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Einleitung 1 

1 Einleitung 

1.1 Grundlagen der Tumorimmunologie 

1.1.1 Wechselseitige Beeinflussung von Tumor und Immunsystem 

 

Die Tumorimmunologie beschreibt immunologische Vorgänge im Zusammenhang mit der 

Entstehung und dem Progress von Tumoren. Mit der Fähigkeit zur Erkennung und 

Elimination von malignen Zellen nimmt das Immunsystem eine zentrale Rolle in der 

Pathophysiologie von neoplastischen Erkrankungen ein. Bei regelrechter 

immunologischer Funktion werden entartete Zellklone entsprechend erkannt und im 

Verlauf eliminiert (Hanahan et al., 2011). Diesen Prozess bezeichnet die Fachliteratur als 

immunologische Überwachung (immunosurveillance). Dies kann gleichzeitig, aber auch 

Initialstadium eines möglicherweise progressiven Verlaufs einer Neoplasie sein. In diesem 

Zusammenhang werden weitere Stadien der immunologischen Funktion unterschieden, 

und als Eliminierung, Equilibrium, und Entrinnen bezeichnet. Der gesamte Prozess der 

wechselseitigen Beeinflussung im Verlauf einer neoplastischen Erkrankung wird mit dem 

Begriff immunoediting zusammengefasst (Dunn et al., 2004). 

 

Gelingt es im Rahmen der immunosurveillance nicht alle entarteten Zellen zu eliminieren, 

tritt nach dem Modell des immunoediting eine Phase des Gleichgewichts, 

beziehungsweise Equilibriums ein. Die immunologische Kontrolle verhindert zwar ein 

starkes Wachstum des Tumors, es gelingt aber nicht alle entarteten Zellklone zu 

eliminieren. Somit stellt diese Stufe in dem Modell neben der Phase der Eliminierung 

einen potentiell stabilen Endpunkt dar, der sich klinisch über viele Jahre inapparent 

zeigen kann. Durch die stetige Interaktion zwischen Tumor, tumor-assoziiertem Stroma 

und dem Immunsystem kann es zu einem Selektionsdruck auf den Tumor kommen, der 

die Qualität des Tumors im Sinne des zellulären Phänotyps verändert, während die 

Quantität der Tumorzellen in etwa konstant bleibt (Grivennikov et al., 2011; Vesely et al., 

2011). 

 

Verliert das Immunsystem die Fähigkeit den Tumor zu erkennen und zu eliminieren, bzw. 

kann es aufgrund von Immunsuppression diese Funktionen nicht mehr wahrnehmen, wird 

das Gleichgewicht zu Gunsten des Tumorwachstums verändert und es kommt zu einem 

konsekutiven Auswachsen, beziehungsweise Entrinnen, des Tumors (Mittal et al., 2014). 

 

1.1.2 Klinische Anwendung immuntherapeutischer Strategien 

 

Vor dem Hintergrund der prinzipiellen Wirksamkeit der immunologischen Überwachung 

zielen therapeutische Anstrengungen grundsätzlich darauf ab, eine wirksame anti-

tumorale Immunität wiederherzustellen, beziehungsweise de novo zu generieren. Im 
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Wesentlichen können dabei passive sowie aktive Ansätze unterschieden werden (Schuster 

et al., 2006).  

 

Passive Ansätze beschreiben die Rekonstitution der anti-tumoralen Immunität durch Gabe 

spezifischer Effektormoleküle. Da die therapeutische Wirksamkeit durch das Molekül 

vermittelt wird, ist diese durch die biologische Verfügbarkeit und dessen Halbwertszeit 

begrenzt. Bei den adressierten Antigenen handelt es sich dabei in der Regel um Tumor-

assoziierte Antigene (TAA). Als klinisch weit verbreitetes Beispiel für passive 

Immuntherapien kann die Behandlung mit monoklonalen Antikörpern genannt werden. 

Dieser Ansatz ist bereits seit 1997 Teil der klinischen Routine und stellt eine 

Weiterentwicklung der klassischen Tumortherapie dar (Maloney et al., 1997). 

 

Aktive Formen der Immuntherapie sollen eine endogene Reaktion hervorrufen und sind 

demnach auch auf andere - dem Patienten eigene - Faktoren angewiesen. Im Gegensatz 

zu passiven Therapieformen sind dabei oft nicht Tumorzellen, sondern vielmehr 

Immunzellen Ziel der therapeutischen Moleküle. Vielfach zeigten sich höhere 

therapeutische Wirksamkeiten im Vergleich zu konventionellen, tumor-zentrierten 

Ansätzen. Relevante Beispiele hierfür umfassen unter anderem Antikörper der Gruppe der 

Checkpoint-Inhibitoren, rekrutierende bispezifische Antikörper sowie zelluläre Therapien. 

Eine strikte Trennung von rein aktiven beziehungsweise passiven Ansätzen ist aufgrund 

der vielen Übergänge nicht sinnvoll (Schuster, 2006). 

 

1.2 Antikörper 

1.2.1 Antikörper als Teil des adaptiven Immunsystems 

 

Antikörper werden als humorale Elemente des adaptiven Immunsystems klassifiziert. Als 

molekulare Grundlage dient dabei das Re-Arrangieren von DNA-Kassetten, wodurch eine 

große Diversität an naiven B-Zellen entsteht (Rajewsky, 1996). Für die Sekretion einer 

quantitativ relevanten Menge spezifischer Immunglobuline (Ig) bedarf es zudem einer 

sequenziellen Aktivierung der B-Zellen durch die Präsenz des komplementären Antigens 

sowie, bei so genannten Thymus-abhängigen Antigenen, einer Interaktion mit CD4+ T-

Zellen (Jeurissen et al., 2004; Mond et al., 1995; Rajewsky, 1996).  

 

Strukturchemisch bestehen endogene Antikörper aus Polypeptid-Untereinheiten, die nach 

ihrem unterschiedlichen Molekulargewicht als leichte und schwere Ketten bezeichnet 

werden. Ein Ig-Monomer setzt sich dabei aus je zwei identischen leichten und zwei 

schweren Ketten zusammen (Harris et al., 1992).  
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Eine funktionelle Unterscheidung einzelner Domänen wird durch die Einteilung in ein 

Antigen bindendes Fragment (fragment antigen binding, Fab) sowie ein kristallisierbares 

Fragment (fragment cristallizable, Fc) getroffen (Padlan, 1994). Während die Fab-Region 

mit ihren complementarity determining regions (CDR) für die Antigen-Spezifität 

verantwortlich ist, bestimmt die Fc-Region über mögliche Effektorfunktionen des 

Antikörpers. Sowohl die antikörperabhängige, zellvermittelte Zytotoxizität antibody 

dependent cell-mediated cytotoxicity, als auch die komplementvermittelte Zytotoxizität 

complement dependent cytotoxicity, sowie die antikörpervermittelte Phagozytose 

antibody dependent cellular phagocytosis sind mögliche Effektormechanismen von 

Antikörpern (North et al., 2012; Weiner et al., 2010). 

 

1.2.2 Monospezifische Antikörper 

 

Die Entwicklung der Hybridom-Technologie 1975 durch Milstein und Köhler (Köhler et 

al., 1975) erlaubte erstmals die Synthese von monoklonalen Antikörpern definierter 

Spezifität durch Immortalisierung eines spezifischen Plasmazellklons. Damit war der 

biotechnologische Grundstein gelegt, gezielt Tumorzellen, sowie andere tumorfördernde 

Strukturen, wie tumor-assoziiertes Stroma oder Zytokine, zu adressieren. Alleine im Jahr 

2017 wurden zehn Präparate durch die Behörden neu zugelassen (Kaplon et al., 2018).  

 

Grundsätzlich kann die Wirkung des therapeutischen Antikörpers dabei direkt durch die 

Blockierung wichtiger Signalwege, beziehungsweise Neutralisierung von löslichen 

Faktoren, oder über die oben genannten Effektorfunktionen vermittelt werden. Oftmals 

wirken beide Prinzipien synergistisch (Chames, Van Regenmortel, et al., 2009). Als 

Beispiele für die Unterbrechung von Signalkaskaden können der anti-CD20 Antikörper 

Rituximab oder der anti-EGFR Antikörper Cetuximab genannt werden (Scott et al., 2012; 

Weiner, 2010). Ein Antikörper mit Spezifität gegen lösliche Faktoren ist beispielsweise der 

der anti-VEGF-Antikörper Bevacizumab (Hurwitz et al., 2004). 

 

Trotz der Erfolge und konsekutiver Implementierung in den klinischen Alltag zeigen 

monoklonale Antikörper eine Reihe von Limitationen. So spielen bei dem Design der 

Antigen-bindenden Domäne mögliche unerwünschte Wirkungen wie on-target-off-tumor-

Effekte oder ein Verlust des Antigens eine Rolle. Bei der Interaktion mit dem Fc-Teil kann 

eine Beeinträchtigung der Affinität durch Fc-Rezeptor-Polymorphismen, beziehungsweise 

antikörperseitig durch Fc-Glykosilierung, die therapeutische Fähigkeit des Antikörpers 

negativ beeinflussen. Auch die Bindung an inhibitorische FcyRIIb Rezeptoren kann, 

sowohl durch kompetitive Hemmung stimulatorischer Rezeptoren, als auch durch 

Internalisierung des Antikörpers zu einer verminderten Effektivität führen (Chames & 

Baty, 2009; Lameris et al., 2014). Zuletzt ist auch die Penetration solider Tumoren 
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eingeschränkt. Dabei sind pharmakokinetische Eigenschaften wie Größe des Moleküls, 

Halbwertszeit oder Immunogenität in der Zusammenschau mit Gewebedruck und 

Vaskularisierung von entscheidender Bedeutung (Beckman et al., 2007; Scott, 2012). 

 

Vielversprechende therapeutische Zielstrukturen sind inhibitorische Rezeptoren der T-

Zellen, die nach Antigenerkennung im Wesentlichen über die Qualität und das Ausmaß 

der T-Zell Antwort bestimmen. Eine therapeutische Intervention mit Unterbrechung 

dieser Liganden-Rezeptoren Achse verspricht somit eine geringere tumor-induzierte 

Immunsuppression (Pardoll, 2012). Diese Hypothesen wurden in der klinischen 

Anwendung bestätigt. So zeigte beispielsweise der anti-CTLA4 Antikörper Ipilimumab als 

erstes Therapieregime ein verlängertes Gesamtüberleben bei Patienten mit 

metastasiertem Melanom (Hodi et al., 2010). Auch Antikörper mit Spezifität gegen die 

Programmed-cell-death-protein 1 (PD-1) - Programmed-cell-death-protein 1 – ligand-1 

(PD-L1) Achse zeigten herausragende klinische Erfolge in verschiedenen Tumorentitäten 

(Borghaei et al., 2015; Motzer et al., 2015). Zusätzlich zeigte sich, dass 

Kombinationstherapien der einzelnen Checkpoint-Inhibitoren synergistisch wirken 

können (Hellmann et al., 2018; Motzer et al., 2018). Neben Checkpoint-Inhibitoren stehen 

noch weitere Möglichkeiten zu Verfügung, um T-Zellen gegen Tumoren zu richten, auf 

die im Folgenden ebenfalls eingegangen werden soll. 

 

1.2.3 Bispezifische Antikörper 

 

Als bispezifische Antikörper (bsAk) werden Antikörper bezeichnet, die über eine Fähigkeit 

zur simultanen Bindung zweier Antigene besitzen (Kontermann et al., 2015). Während 

eine Vielzahl an unterschiedlichen Formaten beschrieben wurde, soll hier aus Gründen 

der Übersichtlichkeit nur auf das für den klinischen Gebrauch zugelassene Format 

eingegangen werden. 

 

Die Kombination zweier Antigen bindenden Domänen eines bsAk kann dazu genutzt 

werden die Selektivität an die Zielzelle zu erhöhen (Lameris, 2014). In klinischer 

Anwendung befinden sich derzeit lediglich Formate, die über den T-Zellmarker CD3 eine 

Rekrutierung der T-Zellen an die Tumorzellen erleichtern.  

 

2014 wurde ein bispezifischer Antikörper gegen CD19 und CD3 zur Behandlung der 

refraktären akuten lymphatischen Leukämie in den USA zugelassen (Przepiorka et al., 

2015). Blinatumomab besteht aus zwei Antigen-Erkennungsdomänen, die über einen 

Linker verbunden sind (Bargou et al., 2008). Der Bispecific T cell Engager (BiTe) besticht 

durch hohe Ansprechraten, wird aber in seiner Anwendung vor allem durch Symptome 

des cytokine release syndrome (CRS) limitiert (Goebeler et al., 2016; Heiss et al., 2010; 
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Nagorsen et al., 2011). Pathophysiologisch handelt es sich bei dem CRS um eine 

massenhafte Aktivierung diverser Immunzell-Subtypen mit konsekutiver Freisetzung von 

pro-inflammatorischen Zytokinen (Lee et al., 2014). Als weitere limitierende Faktoren 

dieser Immuntherapien sind zu nennen, dass häufig weitere Behandlungen wie eine 

allogene Stammzelltransplantation angeschlossen werden müssen, um Rezidive zu 

verhindern. Darüber hinaus sind diese Molekülformate aufgrund ihrer Größe auch in 

Bezug auf deren Halbwertszeit limitiert. Zudem untersteht deren Wirkung unverändert 

der normalen Immunregulation der T-Zellfunktion (Kontermann, 2015; Lameris, 2014). Es 

sind daher weitere Ansätze erforderlich um die Wirksamkeit von T-Zellen voll 

auszuschöpfen.  

 

1.3 Adoptiver T-Zelltransfer 

1.3.1 Grundlagen des adoptiven T-Zelltransfers 

 

Adoptiver Zelltransfer beschreibt die Isolierung und Re-Infusion von Immunzellen zu 

Therapiezwecken. Dabei haben sich in der Tumortherapie T-Zellen als besonders 

geeignet herausgestellt, da diese Subpopulation über ein hohes zytotoxisches Potential 

verfügt und sich durch eine hohe Selektivität auszeichnet. Um eine spezifische Erkennung 

der malignen Zellen zu ermöglichen können entweder bereits TAA spezifische T-Zellen, 

so genannte tumor infiltrating lymphocytes (TILs), oder primär nicht-tumor spezifische, 

polyklonale T-Zellen isoliert werden. Letzteres benötigt eine zusätzliche gentechnische 

Modifikation in vitro, um eine Tumorspezifität zu erzielen. Dies kann durch Einbringen 

von zusätzlichen T-Zell Rezeptoren (TZR) oder chimeric antigen receptors (CAR) erfolgen 

(Kalos et al., 2013; Rosenberg et al., 2015). Im folgenden Abschnitt soll näher auf CAR-T-

Zellen als einzige bislang zugelassene zell-basierte Therapie eingegangen werden.  

 

1.3.2 Wirkungsweise und Limitationen der CAR T-Zell Therapie 

 

CARs sind Transmembranproteine, deren extrazelluläre Domäne über ein integriertes 

single-chain-fragment-variable (scFv) das komplementäre Antigen binden. Die Aktivierung 

der CAR-T-Zellen erfolgt durch die intrazellulären Domänen der rekombinanten 

Rezeptoren, die neben CD3-z in den weiterentwickelten CAR-Generationen auch 

mindestens eine ko-stimulatorische Endodomäne besitzen. Dadurch ist es möglich neben 

Proteinen auch Proteoglycane, Ganglioside, glykosilierte Proteine und Saccharide zu 

erkennen. Zudem kann unter Umgehung der major histocompatibility complex (MHC)-

Restriktion eine spezifische T-Zell Stimulation bewirkt werden (Dai et al., 2016). 

 

Klinische Studien unter Einsatz von anti-CD19-spezifischen CAR-T-Zellen zeigten hohe 

Ansprechraten bei refraktären B-Zell-Neoplasien bei Kindern und Erwachsenen (Grupp et 
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al., 2015; Kochenderfer et al., 2015; Lee et al., 2015; Maude et al., 2018). Diese 

Ergebnisse waren unter anderem Anlass für die Zulassung von anti-CD19-CAR-T-Zellen 

für Patienten mit refraktärer ALL durch die amerikanische Zulassungsbehörde im Jahr 

2017 (Norsworthy et al., 2018).  

 

Trotz dieser Erfolge zeigt die klinische Anwendung auch einige Limitationen von CAR-T-

Zellen auf. Analog zu Antikörpern ist die Wahl des Zielantigens zentral für dessen 

Wirkung. Für die meisten Tumorentitäten kommen hier nur Oberflächenantigene in 

Betracht. Diese werden zumeist auch in gesundem Gewebe exprimiert und sind somit 

nicht spezifisch für das Tumorgewebe. Entsprechend sind auch hier on-target-off-tumor-, 

sowie in geringerem Maß off-target-off-tumor- Toxizität, sowie die Tumorheterogenität 

relevante Probleme (Lim et al., 2017). Darüber hinaus behindern lokale und systemische 

immunsuppressive Mechanismen eine effektive anti-neoplastische Wirkung und machen 

eine lymphodepletierende Präkonditionierung vor Infusion der Zellen notwendig (Dudley 

et al., 2008). Außerdem schränken weitere Nebenwirkungen, wie etwa das CRS, die 

Anwendung ein. Nicht zuletzt stellen auch die gesetzlichen Auflagen und Therapiekosten 

große Hürden dar (Fesnak et al., 2016; Jackson et al., 2016; Kalos, 2013).  

 

1.4 Kombination bispezifischer Antikörper mit T-Zell-aktivierenden Fusionsproteinen 

zur Tumorimmuntherapie 

 

Vor dem Hintergrund der bestehenden Defizite der oben genannten zellulären 

Immuntherapien wurde in Vorarbeiten unserer Arbeitsgruppe bereits die Anwendung von 

T-Zell rekrutierenden bsAk in Kombination mit adoptivem T-Zell Transfer getestet. Ziel 

war es, bsAk als Adaptermolekül zur Rekrutierung von T-Zellen über inerte 

Markerantigene einzusetzen. Die Tumorzellerkennung sollte dabei unverändert über TZR-

MHC Interaktionen stattfinden, um off-tumor-Effekte zu vermeiden.  

 

In präklinischen Modellen gelang es die Wirksamkeit dieser Strategie zu belegen (Kobold, 

Steffen, et al., 2015). Dennoch war es in den Vorarbeiten nicht möglich, die Tumoren der 

Versuchstiere vollständig zur Regression zu bringen. In diesem Zusammenhang wurde 

durch die Arbeitsgruppe postuliert, dass eine direkte Aktivierung durch die 

Antikörperbindung eine Steigerung des therapeutischen Effekts nach sich ziehen könnte. 

Zur Testung der Hypothese wurden durch einen weiteren Doktoranden, Mathias Kurzay, 

aktivierende Fusionsproteine generiert. Diese bestehen jeweils aus einer extrazellulären 

Domäne, die natürlicherweise nicht auf T-Zellen vorkommt. Für die Konstrukte wurden 

epithelial-growth factor receptor transcript -variant III (EGFRvIII), beziehungsweise 

cryptic antigen 1 (Cripto) als Ektodomänen verwendet und mit je zwei intrazellulären 

Domänen zur T-Zellaktivierung (CD28 und CD3-z) verknüpft. Somit sollte die 
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Antigenerkennung und Rekrutierung der T-Zelle durch das Adaptermolekül (ein 

bispezifischer Antikörper, im Folgenden als bsAk bezeichnet) vollzogen werden, während 

über das Fusionsprotein nach Bindung des entsprechenden bsAk die T-Zelle MHC-

unabhängig aktiviert wird. Dadurch sollte erreicht werden, dass durch die bsAk ein 

biotechnologischer Schalthebel implementiert wird, der beispielsweise bei Verlust des 

TAA, oder bei Auftreten unerwarteter Toxizität, auf Basis der biologischen Halbwertszeit 

einen Therapiestopp, beziehungsweise eine Änderung der Spezifität, erleichtert. 

Gleichzeitig wird eine Spezifität für Markerantigen-positive T-Zell Subpopulation erreicht, 

wodurch im Gegensatz zur Bindung an Pan-T-Zell Marker wie CD3 nur transduzierte T-

Zellen rekrutiert werden. Zusammenfassend stellt dieses Konzept also einen 

vielversprechenden Ansatz zur Lösung zentraler Probleme der zell- und 

antikörperbasierten-Tumortherapie dar. 

 

Die prinzipielle Funktionalität des Ansatzes konnte in einer Vorarbeit bereits gezeigt 

werden. Ziel dieser Arbeit war es somit, die biotechnologische Plattform, deren 

Fusionsproteine im Folgenden als synthetic agonistic receptors (SAR) bezeichnet werden, 

näher zu charakterisieren.  
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Abbildung 1: Funktionsprinzip der Kombinationstherapie aus synthetic agonistic receptor (SAR) – 
positiven T-Zellen und bsAk 
Dargestellt sind die verwendeten IgG-ähnlichen, tetravalenten Antikörper im 2 + 2 Format. Sie basieren 
auf einem murinen anti-EpCAM-IgG2a-Gerüst und wurden mit jeweils zwei scFv verbunden. 
Als funktionelle SAR wurden das Fusionsprotein E3 (EGFRvIII-CD28-CD3-z) (A) und C3 (Cripto-CD8-
CD28-CD3-z) (B) verwendet. 
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1.5 Fragestellung 

 

Zusammenfassend kann das Ziel der vorliegenden Dissertation in folgende Punkte 

unterteilt werden: 

 

1. Untersuchung von SAR+ T-Zellen in Kombination mit bsAk (anti-EpCAM x anti-

EGFRvIII/anti-EpCAM x anti-Cripto) in vitro: 

a. Funktionalität und Spezifität der Kombinationstherapie in vitro 

(1) Bestimmung der T-zellvermittelten Zytokinsekretion  

(2) Bestimmung der T-zellvermittelten Zytotoxizität 

(3) Bestimmung der Spezifität für das tumor-assoziierte Antigen 

EpCAM 

b. Wirkprinzip der Kombinationstherapie 

(1) Identifizierung notwendiger Faktoren zur Lyse via bsAk und SAR 

(2) Charakterisierung von membranständigen und löslichen 

Effektoren einer SAR-induzierten Zytotoxizität  

(3) Charakterisierung der Pharmakodynamik zwischen bsAk und 

transduzierten Fusionsproteinen 

c. Charakterisierung der Proliferationskapazität und der phänotypischen 

Veränderungen nach Stimulation in vitro 

 

2. Machbarkeitsstudie in vivo im Mausmodell unter Verwendung von B16-OVA-

EpCAM und Panc-OVA-EpCAM Tumorzelllinien 
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2 Material und Methoden 

2.1 Geräte und Reagenzien 

 

Tabelle 1: Technische Geräte 

Bezeichnung Hersteller 
CO2 – Brutschrank (BD6220) Heraeus (Hanau, Deutschland) 

FACSCanto II BD Biosciences (New Jersey, USA) 

Gefrierschrank -80°C Thermo Scientific (Waltham, USA) 

Kühl- und Gefrierschränke 4°C, -20°C 

Bosch 

(Gerlingen-Schillerhöhe, Deutschland) 

Liebherr 

(Bieberach an der Riß, Deutschland) 

Herasafe Laminar Flow Heraeus (Hanau, Deutschland) 

iCELLigence Messeinheit mit Zellkulturplatte E 

Plate L8 PET 
ACEA Biosciences (San Diego, USA) 

iCELLigence Kontrolleinheit (iPad) Apple (Cupertino, USA) 

Konfokales Mikroskop TCS SP5 II Leica Microsystems (Wetzlar, Deutschland) 

Mikroskop Axiovert 25 Zeiss (Jena, Deutschland) 

Mithras LB940 ELISA Reader 
Berthold Technologies (Bad Wildbad, 

Deutschland) 

Multifuge 3L-R Heraeus (Hanau, Deutschland) 

Multifuge 4KR Heraeus (Hanau, Deutschland) 

Nanodrop 2000c Spectrophotometer Thermo Fisher Scientific (Waltham, USA) 

Neubauer Hämocytometer Optik Labor Frischknecht (Balgach, Deutschland) 

pH-Meter WTW (Weilheim, Deutschland) 

Schüttler NeoLab (Heidelberg, Deutschland) 

Thermocycler T3 Biometra (Göttingen, Deutschland) 

Thermomixer compact Eppendorf (Hamburg, Deutschland) 

Vortex VF2 Janke & Kunkel (Staufen, Deutschland) 

Vakuumpumpe 2522Z-02 Welch (Niles, USA) 

Waage CPA 1003S Sartorius AG (Göttingen, Deutschland) 

Waage SCALTEC SBC21 Scaltec (Göttingen, Deutschland) 

Zentrifuge Rotina 420R Hettich (Tuttlingen, Deutschland) 

Zentrifuge 5424 Eppendorf (Hamburg, Deutschland) 
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Tabelle 2: Reagenzien 

Bezeichnung Hersteller 
beta-Mercaptoethanol Sigma-Aldrich (Steinheim, Deutschland) 

Blasticidin Invivogen (Toulouse, Frankreich) 

Bovines Serum Albumin (BSA)  Sigma-Aldrich (Steinheim, Deutschland) 

Calciumchlorid Carl Roth (Karlsruhe, Deutschland) 

Dimethylsulfoxid (DMSO)  Sigma-Aldrich (Steinheim, Deutschland) 

Dulbecco’s modified Eagles medium (DMEM) Lonza (Basel, Schweiz) 

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich (Steinheim, Deutschland) 

FACSFlow, FACSSafe  BD Biosciences (New Jersey, USA) 

Fetales Kälberserum (FBS) Gibco Products (Grand Island, USA) 

Glycerol Carl Roth (Karlsruhe, Deutschland) 

Hydroxyethylpiperazin-Ethansulfonsäure 

 (HEPES 1M) 
Lonza (Basel, Schweiz) 

Isofluran  Abbott (Zug, Schweiz) 

Isopropanol (70%, 100%)  Apotheke der LMU (München, Deutschland) 

Kaliumacetat Carl Roth (Karlsruhe, Deutschland) 

L-Glutamin 200mM  Lonza (Basel, Schweiz) 

Manganchlorid Carl Roth (Karlsruhe, Deutschland) 

Natriumchlorid 0,9%  Apotheke LMU (München, Deutschland) 

Natrium-Pyruvat  Lonza (Basel, Schweiz) 

Penicillin/ Streptomycin Lonza (Basel, Schweiz) 

Puromycin Invivogen (Toulouse, Frankreich) 

Retronectin TaKaRa (Shiga, Japan) 

Roswell Park Memory Institute (RPMI)  Lonza (Basel, Schweiz) 

Rubidiumchlorid Carl Roth (Karlsruhe, Deutschland) 

Schwefelsäure 2N Apotheke der LMU (München, Deutschland) 

Phosphate buffered saline (PBS) Lonza (Basel, Schweiz) 

Trypan-Blau  Sigma-Aldrich (Steinheim, Deutschland) 

Trypsin (10x) Lonza (Basel, Schweiz) 

Tween 20  Carl Roth (Karlsruhe, Deutschland) 
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Tabelle 3: Kommerzielle Reagenziensets 

Bezeichnung Hersteller 
Enzyme linked immunoabsorbent assay 

(ELISA) 

Murines Interferon-g (INF-g) 

BD Biosciences (New Jersey, USA) 

ELISA 

Murines Granzyme B 
R&D (Minneapolis, USA) 

RNeasyMicro Kit Qiagen (Hilden, Deutschland) 

RevertAid First Strand  

cDNA Synthesis Kit 
Thermo Fisher Scientific (Waltham, USA) 

Plasmidpräperationssystem PureYield™ Promega (Madison, USA) 

Zytotoxizitätsassay CytoTox96® Promega (Madison, USA) 

 

Tabelle 4: Puffer 

Bezeichnung Zusammensetzung 
Blocking Puffer 2 % BSA in PBS 

Erylyse Puffer 10 % BD Lyse in ddH2O 

ELISA Puffer 1 

7,13 g NaHCO3 

1,59 g Na2CO3 

1,0 L ddH2O 

Titration zu pH = 9,5 mit 1M NaOH 

ELISA Puffer 2 10 % FBS in PBS 

ELISA Waschpuffer 0,05 % Tween20 in PBS 

Allgemeiner Waschpuffer 25 mM HEPES in PBS 

Transfektionspuffer 

1,6 g NaCl 

74 mg KCL 

50 mg Na2HPO4 

1 g HEPES 

100 ml ddH2O 

Titration mit NaOH bzw. HCl zu pH = 6,76 

 

Tabelle 5: Medienansätze in der Zellkultur 

Bezeichnung Zusammensetzung 

DMEM Vollmedium 

DMEM 

+10 % FBS 

+1 % L-Glutamin 

+1 % Penicillin/Streptomycin 

Plat E Selektionsmedium 

DMEM 

+10 % FBS 

+1 % L-Glutamin 

+1 % Penicillin/Streptomycin 

+10 µg/ml Blasticidin 

+1 mg/ml Puromycin 

Plat E Transfektionsmedium 
DMEM 

+10 % FBS 
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+1 % L-Glutamin 

+1 % Penicillin/Streptomycin 

T-Zell Medium 

RPMI 

+10 % FBS 

+1 % L-Glutamin 

+1 % Penicillin/Streptomycin 

+1 % Natrium Pyruvat 

+0.1 % HEPES Puffer 

Zytotoxizitätsmedium 

RPMI ohne Phenolrot 

+1 % FBS 

+1 % L-Glutamin 

+1 % Penicillin/Streptomycin 

+1 % Natrium Pyruvat 

+0.1 % HEPES Puffer 

 

Einweg-Plastikmaterialien für die Verwendung in der Zellkultur wurden von den Firmen 

BD Falcon (Franklin Lakes, USA), Becton Dickinson (Heidelberg, Deutschland), Corning 

(Corning, USA), Greiner-Bio One (Kremsmünster, Deutschland), Millipore (Billerica, USA) 

und Sartorius (Göttingen, Deutschland) erworben. 

 

Tabelle 6: Unkonjugierte Antikörper 

Spezifität Klon Speziesreaktivität Herkunft 

Anti-CD3ε 145-2C11 Maus 
eBioscience,  

(San Diego, USA) 

Anti-CD28 37.51 Maus 
eBioscience,  

(San Diego, USA) 

Anti-Cripto - Mensch 
Roche,  

(Penzberg, Deutschland) 

Anti-EGFR (Cetuximab) - Mensch 

Apotheke Großhadern 

(LMU),  

(München, Deutschland) 

Anti-EGFR 

(Panitumumab) 
- Mensch 

Apotheke Großhadern 

(LMU),  

(München Deutschland) 

Anti-Cripto Polyklonal 
Mensch, 

Maus 

Thermo scientific, 

(Waltham, USA) 

 
Die verwendeten Konzentrationen der in Tabelle 6 genannten Antikörper werden jeweils 

in der Beschreibung der entsprechenden Versuche spezifiziert. 
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Tabelle 7: Konjugierte Antikörper 

Spezi-
fität Klon Isotyp Wirt Reak-

tivität 
Fluoro-
chrom 

Ver-
dünnung Herkunft 

Anti-

Vα2 

TZR 

B20.1 IgG2a Ratte Maus FITC 1:2000 

BD 

Biosciences 

(New Jersey, 

USA) 

Anti-

EGFR 
AY13 IgG1, k Maus Mensch APC 1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

CD8a 
53-6.7 IgG2a, k Ratte Maus FITC 1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

CCR7 
4B12 IgG2a, k Ratte Maus 

PerCP 

Cy 5.5 
1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

CD62L 
MEL-14 IgG2a, k Ratte Maus 

Pacific 

Blue 
1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

CD69 
H1.2F3 IgG Hamster Maus Pe-Cy 7 1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

CD279 
29F.1A12 IgG2a, k Ratte Maus Pe-Cy 7 1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

CD223 
C9B7W IgG1, k Ratte Maus 

PerCP 

Cy 5.5 
1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

Ki67 
16A8 IgG2a, k Ratte Maus PE 1:2000 

Biolegend 

(San Diego, 

USA) 

Anti-

IgG 
Poly-klonal IgG Ziege Maus CY2 1:100 

Jackson 

Immuno-

Research 

(Suffolk, UK) 

 

Tabelle 8: Bispezifische Antikörper 

Spezifität Reaktivität Herkunft 

Anti-EpCAM x anti-Cripto Human, Murin 
Roche (Penzberg, 

Deutschland) 

Anti-EpCAM x anti-EGFRvIII Human, Murin 
Roche (Penzberg, 

Deutschland) 
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Tabelle 9: Fusionsproteine gemäß Klonierung durch M. Kurzay 

Bezeichnung Ektodomäne Transmembrandomäne Endodomäne 

E3 

EGFRvIII 

(human,  

Uniprot Eintrag 

P00533 AA 1-29, 

298-646) 

CD28 

(murin, Uniprot Eintrag P10747 

AA 178-218) 

 

CD28 

(murin,  

Uniprot Eintrag P10747 

AA 178-218) 

 

CD3-z 

(murin, Uniprot Eintrag 

P20963 AA 52-164) 

C3 

Cryptic antigen 1 

(human,  

Uniprot Eintrag 

P13385 AA 31-150) 

CD8a 

(murin, Uniprot Eintrag P01731 

AA 153- 196) 

CD28 

(murin,  

Uniprot Eintrag P10747 

AA 178-218) 

 

CD3-z (murin, Uniprot 

Eintrag P20963 AA 52-

164) 

hEGFRvIII 

EGFRvIII 

(human,  

Uniprot Eintrag 

P00533 AA 1-29, 

298-646) 

EGFRvIII 

(human,  

Uniprot Eintrag P00533 AA 1-

29, 298-646) 

EGFRvIII 

(human,  

Uniprot Eintrag P00533 

AA 1-29, 298-646) 

hCripto-CD8 

Cryptic antigen 1 

(human,  

Uniprot Eintrag 

P13385 AA 31-150) 

CD8a 

(murin,  

Uniprot Eintrag P01731 AA 

153- 196) 

- 

 

Tabelle 10: Zelllinien 

Bezeichnung Zugrunde 
liegende Zelllinie 

Gentechnische 
Modifikation 

Verwendetes 
Medium 

Panc-OVA 

Murines, duktales 

Pankreas-Karzinom 

(Panc02) 

pAC-Neo-OVA 

 
DMEM Vollmedium 

Panc-OVA-EpCAM 

Murines, duktales 

Pankreas-Karzinom 

(Panc02) 

pAC-Neo-OVA 

pMXs-EpCAM 
DMEM Vollmedium 

B16-OVA-EpCAM 
Murines Melanom 

(B16-F10) 

pAC-Neo-OVA 

pMXs-EpCAM 
DMEM Vollmedium 

Platinum E 

Humane embryonale 

Nierenzellen (HEK 

293T) 

pGag-pol-IRES-bsr 

pEnv-IRES-puror 

Plat E 

Selektionsmedium 
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Tabelle 11: Zusätze zur Selektion und Kultur muriner T-Zellen 

Zusatz Konzentration 
Beta-Mercaptoethanol 50 µM 

IL-2 10 U/ml 

Anti-CD3ε 1 µg/ml 

Anti-CD28  0,1 µg/ml 

 

Tabelle 12: Verwendetet Antikörper zur Detektion der Transgene mittel Durchflusszytometrie 

Transduziertes 
Fusionsprotein 

Primärantikörper Sekundärantikörper 

E3, EGFRvIII Cetuximab  Anti-human IgG, FITC 

C3, Cripto-CD8 Anti-Cripto  Anti-Hase IgG, FITC 

 

Tabelle 13: Primersequenzen, Sonden und Effizienzen der rt-PCR Ansätze 

Genprodukt Sequenz Sonde Effizienz 
Beta Aktin,  

murin 

L: AAGGCCAACCGTGAAAAGAT 

R:GTGGTACGACCAGAGGCATAC 
#56 1,92 

FasL/CD95L, 

murin 

L: GCTGTGAGAAGGAAACCCTTT 

R: TGGGGACATGGGTAATTCAT 
#23 1,99 

TRAIL,  

murin 

L: GCTCCTGCAGGCTGTGTC 

R: CCAATTTTGGAGTAATTGTCCTG 
#76 1,88 

Granzym B,  

murin 

L: CTGGCCTCCAGGACAAAG 

R: ATAAGAAGCCCCCACATATC 
#66 1,95 

 

Tabelle 14: Software 

Bezeichnung Hersteller 
Adobe Creative Suite 6 Adobe Systems (San Jose, USA) 

Endnote X7 Thomson Reuters (New York, USA) 

FlowJo 8.7 Tree Star (Ashland, USA) 

GraphPad 5.0b GraphPad Software (La Jolla, USA) 

Microsoft Office 2011 Microsoft (Redmond, USA) 

 

2.2 Tierversuche 

 

Mäuse der Linie C57BL/6 wurden als Versuchstiere genutzt und von Janvier Labs (Le 

Genest-Saint-Isle, Frankreich) bezogen. Zum Zweck der Organentnahme, sowie für 

Therapieversuche, wurden die Tiere in der Zentralen Versuchstierhaltung (ZVH) des 

Klinikums der Universität München gehalten. Die Versuche wurden durch die Regierung 

von Oberbayern genehmigt. 
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2.2.1 In vivo Tumormodelle 

 

Die Applikation der B16-OVA-EpCAM und Panc-OVA-EpCAM Tumorzellen erfolgte 

subkutan mit einer Zellmenge von 2 x 104, beziehungsweise 2 x 106 Zellen in Suspension 

mit PBS Trägerlösung nach Randomisierung der Versuchstiere im Alter von sechs 

Wochen. Es wurde im Verlauf die mittlere Tumorfläche durch Messung des größten 

Durchmessers multipliziert mit der Länge der jeweiligen Orthogonalen berechnet. Der 

gesundheitliche Status der Versuchstiere wurde gemäß den Auflagen im 

Tierversuchsantrag kontrolliert und dokumentiert. Abbruchkriterien, die zur Entfernung 

eines Tieres aus der Versuchsgruppe geführt haben, wurden anhand des 

Bewertungsbogens des Tierversuchsantrags festgelegt. Konkret führte eine 

Tumoroberfläche von > 225 mm2 oder eine Ulzeration des Tumors zum sofortigen 

Versuchsstopp beim entsprechenden Individuum. Eine starke Gewichtsabnahme, 

auffälliges Verhalten, Blutbeimengungen des Kots oder auffällige Atemmuster wurden zu 

einem im Tierversuchsantrag definierten Score zusammengefasst und führten bei 

Überschreiten des zulässigen Werts ebenfalls zum Versuchsabbruch.  

 

2.3  Zelluläre Methoden 

2.3.1 Zellkulturbedingungen 

 

Die Kultivierung der Zellen erfolgte bei 37° Celsius, 95 % Luftfeuchtigkeit und bei einem 

CO2 -Volumenanteil von 5 %. Die Experimente wurden unter sterilen Bedingungen unter 

einer laminaren Luftströmung durchgeführt.  

 

2.3.2 Bestimmung von Zellzahl und Viabilität 

 

Zellzahl und Viabilität wurden mittels Trypanblau-Exklusionstest bestimmt. Zur 

Bestimmung der Konzentration der Zellen wurde eine verdünnte Probe unter einem 

Hämocytometer ausgezählt. Dabei gilt: vitale Zellen / ml = (Zellen / Sektor) x 

Verdünnungsfaktor x 104. 

 

2.3.3 Kultivierung von Tumorzelllinien 

 

Zelllinien wurden im entsprechenden Medium gehalten und bei Erreichen einer visuell 

beurteilten Konfluenz größer 90 % nach Waschen mit PBS mittels Trypsinlösung aus der 

Kulturflasche gelöst. Nach Zentrifugation bei 400 G für fünf Minuten (min) erfolgte die 

Resuspension in frischem Medium. Die Kulturen wurden nach jeweils acht Wochen 

verworfen und durch kryokonservierte Zellen ersetzt. 
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2.3.4 Retrovirale Transduktion primärer muriner T-Lymphozyten 

 

Die Transduktion muriner T-Zellen entspricht einer modifizierten Version bereits 

publizierter Methoden (Leisegang et al., 2008). 

 

2.3.4.1 Herstellung replikations-defizienter, ecotroper Retroviren 

 

Die Generierung rekombinanter Retroviren umfasst nach diesem Protokoll neben dem 

retroviralen Vektor pMP71 die Verpackungszelllinie Platinum E als zweite Komponente. 

Die Zellen wurden vereinzelt und erreichten nach circa 20 Stunden Inkubation die 

gewünschte Konfluenz von etwa 70 – 80 %. Es folgten eine Transfektion mit einem für 

das entsprechende Transgen kodierenden Vektor durch Kalzium Präzipitation. Nach etwa 

sechs Stunden wurde der Überstand gewechselt. Virushaltiger Überstand wurde nach 42 

Stunden entnommen. Es folgte eine erneute Inkubation in frischem Medium sowie die 

Entnahme nach weiteren 24 Stunden. 

 

2.3.4.2 Isolation von Splenozyten und Selektion der T-Lymphozyten 

 

Nach Entnahme der Milz aus einem Versuchstier erfolgte die Herstellung einer 

Einzelzellsuspension mit Erylyse. Die anschließende Kultivierung der Splenozyten wurde 

mit oben benannten Zusätzen durchgeführt.  

 

2.3.4.3 Transduktion der T-Zellen 

 

Der zuvor generierte virushaltige Überstand (42 Stunden Kontaktzeit) wurde mittels 

Zentrifugation und unter Einsatz von Retronectin an eine Plastikoberfläche gebunden. Die 

verbleibende Flüssigkeit wurde am Ende vollständig entfernt und verworfen. 

Anschließend erfolgte die Zugabe der kultivierten T-Zellen in entsprechendem Medium. 

Während dieses Vorgangs wird die Proliferation der Zellen durch die Stimulanzien 10 

U/ml IL-2, 50 µM beta-Mercaptoethanol sowie 4 x 106 T-Activator-anti-CD3 anti-CD28 

beads pro well unterstützt. Nach 24 Stunden wurde nochmals virushaltiger Überstand (24 

Stunden Kontaktzeit) der Kultur beigefügt. 

 

Die Effizienz der Transduktion wurde durchflusszytometrisch mit Hilfe der oben bereits 

benannten Primär- und Sekundärantikörper bestimmt. 
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2.3.4.4 In vitro Expansion transduzierter T-Zellen 

 

Die in vitro Kultur der T-Zellen erfolgte nach Abschluss der Transduktion in T-Zell 

Medium unter Zusatz von 50 µM beta-Mercaptoethanol sowie 50 ng/ml rekombinantem 

IL-15. Ein Wechsel des Mediums erfolgte alle 48 Stunden. Für experimentelle Zwecke 

wurden stets Zellen verwendet, die für maximal neun Tage nach der Isolation aus dem 

Versuchstier kultiviert wurden. 

 

2.3.5 Zytotoxizitätsmessungen 

2.3.5.1 Nachweis von Zytotoxizität durch photometrische Bestimmung der Aktivität der 

Laktat-Dehydrogenase (LDH) 

 

Hierfür wurde das Kit der Firma Promega (Madison, USA) nach Maßgaben des Herstellers 

angewendet. Der einheitliche Versuchsaufbau bestand aus der Ko-Kultur von 2,5 x 104 

Tumorzellen zusammen mit einem variierenden Verhältnis an T-Zellen in einem 

Gesamtvolumen von 200 µl. Die Dauer des Versuchs betrug 11,5 h. Neben den Ko-

Kulturen wurden äquivalente Mengen an T-Zellen und Tumorzellen im selben Versuch mit 

vorbereitet, um die unspezifische LDH Freisetzung über die Dauer des Versuchs, sowie 

bei Tumorzellen die maximal mögliche Menge an LDH, feststellen zu können. 

 

2.3.5.2 Nachweis von Zytotoxizität durch kontinuierliche Impendanzmessung 

(iCelligence) 

 

Zur dynamischen Bestimmung von Zytotoxizität wurde das iCellligence-RTCA System 

verwendet. Das Instrument basiert auf kontinuierlicher Impendanzmessung. Zu diesem 

Zweck wird ein Stromfluss durch Goldelektroden am Boden der Messplatten generiert. 

Der als Summe aus biologischem Material und Bauteile des Instruments resultierende 

Widerstand wird zu gegebenen Zeitpunkten registriert und gespeichert. Dabei wird die 

Messgröße Zellindex (ZI) als ZI(x) = (a-b) / b in Abhängigkeit von der Zeit ausgelesen, 

wobei a als Messwert der Versuchsbedingungen, und b als Hintergrundwert gilt.  

 

2.3.5.3 Untersuchung der Dosis-Wirkungskurve durch Darstellung der SAR-Sättigung 

und dadurch induzierten Zytotoxizität 

 

Zur Messung der Zytotoxizität im Zusammenhang mit Analyse der Dosis-Wirkungskurve 

wurde die Transduktionseffizienz zunächst auf 30 % eingestellt. Es wurden zunächst 5 x 

104 Panc-OVA-EpCAM über 20 - 24 Stunden präinkubiert. Im Anschluss erfolgte die 

Kokultur mit 2,5 x 104 E3 transduzierte T-Zellen, die über 30 min bereits mit bsAk in 

variablen Konzentrationen bei Zellkulturbedingungen stimuliert wurden. Der Endpunkt 
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dieses Versuchs lag bei 25 Stunden nach Zugabe der T-Zellen. Zur Quantifizierung der 

Ergebnisse wurden folgende Berechnungen angestellt: Zytotoxizität [%] = [ 1 - (Ko-

Kultur-Hintergrund)] / [Tumor-Hintergrund]. 

 

Der Nachweis der Formierung von Fusionsprotein:bsAk Komplexen erfolgte durch 

durchflusszytometrischer Detektion des Cy2-Flurochroms eines sekundären anti-Maus 

IgG Antikörpers. Dazu wurden 2,5 x 104 E3 T-Zellen nach Entnahme aus der Kultur 

gewaschen und mit 150 µl T-Zell Medium versetzt. Entsprechende Konzentrationen an 

bsAk wurden in 50 µl PBS hinzugefügt und unter Zellkulturbedingungen für 30 min 

inkubiert. Es erfolgte ein Waschschritt und die anschließende Färbung durch 1,5 µg des 

IgG Sekundärantikörpers. Im direkten Anschluss wurde die mean-fluorescence-intensity 

(MFI) der Proben gemessen. 

 

Die Analyse der Daten erfolgte mit Hilfe nicht-linearer Regression für Rezeptorbindungen 

mit einer Bindungsstelle und konstanter nicht-spezifischer Bindung (Fusionsprotein:bsAk 

Komplexe), beziehungsweise mittels nicht-linearer Regression für Dosis-

Wirkungsbeziehungen mit variabler Steigung (Zytotoxizität) der Software GraphPad (La 

Jolla, USA). 

 

2.4  Immunologische Methoden 

2.4.1 Enzyme-linked immunoabsorbent assay (ELISA)  

 

Die genauen Arbeitsabläufe erfolgten gemäß den Vorgaben des jeweiligen Herstellers. 

Die photometrische Bestimmung erfolgte bei 450 nm und unter Verwendung des Geräts 

Mithras Reader. Die Auswertung wurde mit Hilfe von Microsoft Excel unter Verwendung 

einer Standardgeraden durchgeführt.  

 

2.4.2 Durchflusszytometrie 

 

Bei dieser Arbeit wurde das Gerät FACSCanto II des Herstellers BD Biosciences (New 

Jersey, USA) verwendet. Zur Phänotypisierung wurden 1 - 2 x 106 Zellen in 100 µl PBS 

resuspendiert und mit einem Verdünnungsfaktor von 1 : 2000 des entsprechenden 

Antikörpers für 30 min bei 4°C gefärbt. Nach erneutem Waschen mit PBS wurden die 

Proben unmittelbar im Zytometer analysiert. 
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2.5  Molekularbiologische Methoden 

2.5.1 Re-Transformation und Isolierung retroviraler Vektoren 

 

Die Isolation der intrazellulär vorliegenden Plasmid-DNA wurde mittels des aufgeführten 

Produkts der Firma Promega (Madison, USA) und entsprechend den Empfehlungen des 

Herstellers durchgeführt.  

 

2.5.2 Isolation zytoplasmatischer RNA 

 

Nach dem Entfernen von Medienresten durch Waschen mit PBS erfolgte die Isolierung 

zytoplasmatischer RNA mit Hilfe des RNeasyMicro Kit des Herstellers Qiagen (Hilden, 

Deutschland) gemäß den Herstellerangaben. Die Arbeitsschritte erfolgten unter ständiger 

Kühlung sowie unter Verwendung RNAse freier Arbeitsmaterialien. 

 

2.5.3 Reverse Transkription 

 

Zum Zweck der Amplifikation und weiterer Analysemöglichkeiten wurde die isolierte RNA 

mittels RNA-abhängiger DNA-Polymerase in complementary-DNA (cDNA) transkribiert. 

Dies wurde nach den Angaben des Herstellers Thermo Fisher Scientific (Waltham, USA) 

durchgeführt.  

 

2.5.4 Quantitative Real-time PCR 

 

In dieser Arbeit wurden der LightCycler 480 des Herstellers Roche (Penzberg, 

Deutschland) verwendet. Zur Analyse wurden 2,5 µl ddH2O, 0,2 µl Primer sense, 0,2 µl 

Primer antisense, 5,0 µl Probes Master, 0,1 µl Sonde mit je 2 µl cDNA pro Kondition 

vermischt. Die relative Quantifizierung erfolgte mit Bezug auf das konstitutiv exprimierte 

Gen β-Aktin. 

 

Das Primerdesign wurde nach den Vorgaben des Roche Universal Probe Library Assay 

Design Centers entwickelt. Die verwendeten Hydrolyse-Sonden wurden aus dem 

Universal Probe Library Set bezogen. Die angegebenen Effizienzen sind durch Erstellung 

von Verdünnungsreihen und der Analyse der Standardkurve nach -1 + 10 (-1 / Steigung) 

berechnet worden. 

 

2.6 Statistische Analyse 

 

Im Folgenden erfolgt die Darstellung der Werte als arithmetisches Mittel und die 

Streuung als Standardfehler des Mittelwerts (standard error of the mean, SEM). Als 
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Methoden zur Berechnung der statistischen Signifikanz wurde der zweiseitige Student-t-

Test für ungepaarte Stichproben, beziehungsweise die zweifaktorielle Varianzanalyse 

(ANOVA) mit Bonferroni-Korrektur für die Analyse der Tierversuche eingesetzt. Bei einem 

Signifikanzniveau von p < 0,05, p < 0,01 und p < 0,001 wurde von einer statistischen 

Signifikanz ausgegangen und die Markierungen *, ** beziehungsweise *** verwendet. Zur 

Berechnung wurde die Software GraphPad Prism (Version 5.0) eingesetzt. 
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3 Ergebnisse  

3.1 Funktionalität und Spezifität der Kombinationstherapie in vitro  

3.1.1 INF-g Sekretion nach Stimulation von SAR+ T-Zellen durch bispezifische 

Antikörper 

 

Um die Funktionalität der Fusionsproteine zu testen, wurden SAR+ murine T-Zellen (E3 

und C3) mit bsAk und den entsprechenden Zielzellen (Panc-OVA-EpCAM) inkubiert. Die 

Menge der T-Zellen wurde dabei titriert. Als Kontrollen wurden untransduzierte T-Zellen 

(WT) sowie TAA-negative Zielzellen (Panc-OVA) eingesetzt. Als messbares Korrelat der 

Stimulation der Zellen wurde die Konzentration von IFN-g im zellfreien Überstand 

untersucht. 

 

 

Abbildung 2: Sekretion von murinem INF-g durch SAR+ T-Zellen  
Es wurden jeweils 2 x 104 Tumorzellen mit steigenden Konzentrationen an T-Zellen und 5 µg/ml des 
jeweiligen bsAk eingesetzt. Als EpCAM - positive Zielzellen wurden Panc-OVA-EpCAM, in den EpCAM - 
negativen Konditionen wurden Panc-OVA verwendet. Die zellfreien Überstände wurden nach 12 Stunden 
mittels ELISA auf INF-g hin quantifiziert. Die Abbildung ist repräsentativ für n = 3 voneinander 
unabhängigen Experimenten. Darstellung der Mittelwerte (+/- SEM). 
Das Signifikanzniveau zwischen den Stichproben C3 + bsAk + Panc-OVA-EpCAM und C3 + bsAk + Panc-
OVA ist mit * gekennzeichnet. Das Signifikanzniveau zwischen den Stichproben E3 + bsAk + Panc-OVA-
EpCAM und E3 + bsAk + PancOVA ist mit # gekennzeichnet. 
 

Abbildung 2 zeigt eine deutliche Induktion der INF-g Sekretion in den Bedingungen E3 

und C3 im Vergleich zur untransduzierten Kontrolle. Die INF-g Produktion und damit die 

Aktivierung der T-Zellen korreliert darüber hinaus positiv mit der Menge der eingesetzten 

T-Zellen. 

 

Auch in Kokultur mit Panc-OVA - Tumorzellen wurde eine titrierbare Sekretion des 

Zytokins beobachtet. Dabei war allerdings im Vergleich die Konzentration an INF-g in 

Panc-OVA-EpCAM Kokulturen stets deutlich höher als in Konditionen mit Panc-OVA - 

Zellen. 
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3.1.2 Zytotoxizität nach Stimulation von SAR+ T-Zellen durch bispezifische Antikörper 

 

Die zellvermittelte Zytotoxizität wurde durch den Vergleich von untransduzierten 

gegenüber SAR+ T-Zellen unter Titration der Effektorzellmenge analysiert (Abbildung 3, 

A). Darüber hinaus wurde die Lyse der Tumorzellen in Abhängigkeit der Präsenz des bsAk 

anti-mEpCAM x anti-hEGFRvIII durch Impedanz-basierte Echtzeitmessung dargestellt 

(Abbildung 3, B). 

 

 

Abbildung 3: Zytotoxizität von SAR+ T-Zellen gegenüber EpCAM+ Tumorzellen 
(A) LDH-basierte Ermittlung der spezifischen Lyse von Panc-OVA-EpCAM Zellen in Abhängigkeit der 
Effektorzellkonzentration unter Verwendung von 5 µg/ml bsAk.  
(B) Impedanz-basierte Ermittlung der Lyse von Panc-OVA-EpCAM Zellen in Abhängigkeit der Präsenz 
des bsAk anti-mEpCAM x anti-hEGFRvIII. Es wurden 0,25µg/ml bsAk, 25 x 104 SAR+ T-Zellen und 5 x 104 

Tumorzellen verwendet. Der Zeitpunkt der Zugabe von bsAk und T-Zellen ist durch einen Pfeil markiert.  
Die Abbildung ist repräsentativ für n = 3 voneinander unabhängigen Experimenten. Darstellung der 
Mittelwerte (+/- SEM). 

Es besteht eine positive Korrelation zwischen der eingesetzten Menge an E3 bzw. C3-

transduzierter T-Zellen und der Lyse der Panc-OVA-EpCAM Tumorzellen. SAR+ T-Zellen 

waren in allen Konditionen effektiver als untransduzierte T-Zellen. E3-transduzierte T-

Zellen waren in den Verhältnissen 1 : 1, 1 : 2,5 und 1 : 5 C3-transduzierten T-Zellen 

überlegen. 

 

Die dynamische Echtzeitmessung ergab zusätzlich, dass die anti-tumorale Aktivität nur in 

Anwesenheit des entsprechenden bsAk abläuft. Zudem zeigte sich, dass eine Lyse auch 

nach mehr als 20 Stunden nach Beginn der Kokultur noch nachweisbar war. Dabei war 

die Geschwindigkeit der Lyse annähernd konstant. 

 

Auf Grundlage der Beobachtung dieser unspezifischen Aktivierung durch die verwendeten 

bsAk wurde die Spezifität der Lyse von Zielzellen bei einer Gesamtkonzentration von 50 

ng/ml weiterverfolgt. Die Analyse der Zytotoxizität erfolgte aufgrund der höheren 

Messgenauigkeit im Folgenden mit einer Impedanz-basierten Echtzeitmessung.  
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Abbildung 4: Spezifität der T-Zell vermittelten Zytotoxizität für EpCAM 
24 Stunden vor Beginn der Kokultur wurden 4 x 104 Tumorzellen eingesetzt. Nach Zugabe von 2 x 105 
E3-transduzierten T-Zellen sowie 50 ng/ml bsAk (anti-EpCAM x anti-EGFRvIII) wurde bis zu einer 
Gesamtversuchsdauer von 45 Stunden die Veränderung des Plattenwiderstands gemessen.  
(A) Repräsentatives Einzelexperiment.  
(B) Kumulative Darstellung der relativen Reduktion der AUCKo-Kultur im Verhältnis zum regulären 
Tumorwachstum AUCTumor. Die entsprechenden AUC-Werte wurden vom Zeitpunkt der Kokultur (24 h) 
bis Ende des Experiments (45 h; Dauer der Kokultur 21 h) mittels GraphPad Software erhoben. 
Die Abbildung ist repräsentativ für n = 2 voneinander unabhängigen Experimenten. Darstellung der 
Mittelwerte (+/- SEM). 

Abbildung 4 belegt, dass die Kombinationstherapie aus bsAk und E3 T-Zellen bereits nach 

wenigen Stunden zu einem messbaren Absinken des Zellindex in den Kokulturen führte. 

Die Konditionen mit den entsprechenden Tumorzelllinien hingegen zeigten in 

Abwesenheit der T-Zellen eine typische Wachstumskurve. Der Endpunkt unterscheidet 

sich hinsichtlich des gemessenen Zellindex signifikant. Um für das unterschiedliche 

Wachstumsverhalten sowie die divergenten Level zum Zeitpunkt der Zugabe der T-Zellen 

zu korrigieren wurde eine area under the curve (AUC) Analyse durchgeführt. 

Diesbezüglich zeigte sich, dass es in den vorliegenden Untersuchungen keinen 

signifikanten Unterschied zwischen der T-zellvermittelten Lyse von Panc-OVA-EpCAM-, 

und Panc-OVA-Tumorzellen gab. 
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3.2 Wirkmechanismus der Stimulation via bispezifische Antikörper und SAR 

3.2.1 Charakterisierung von EGFR-Interaktionspartnern als potentielle Liganden der 

SAR-Fusionsproteine 

 

Um die Voraussetzungen zur Aktivierung von E3-transduzierten T-Zellen näher zu 

charakterisieren wurden bekannte EGFR-Liganden als mögliche Interaktionspartner für 

das Fusionsprotein E3 mit EGFRvIII-Ektodomäne untersucht.  

 

 

Abbildung 5: Vergleich der INF-g Sekretion nach Stimulation mit EGFR-Interaktionspartnern 
Es wurden je 50 ng der monospezifischen Antikörper Cetuximab und Panitumumab, beziehungsweise 
von Fc-gebundenem EGF, in 50 µl PBS über 12 Stunden bei 4° C an die Oberfläche einer Zellkulturplatte 
gebunden. Der Überstand wurde am Ende der Inkubationszeit entfernt. Danach wurden 2 x 105 T-Zellen 
in 150 µl Medium in den Platten kultiviert. Lösliches hEGF (50 ng) wurde in einem Volumen von 50 µl in 
PBS-Trägerlösung der entsprechenden Kultur hinzugefügt. Den verbleibenden Ansätzen wurde reines 
PBS (50 µl) beigemischt. Die quantitative Analyse der zellfreien Überstände erfolgte nach 48 Stunden 
Inkubation bei Zellkulturbedingungen mittels ELISA. Die Abbildung ist repräsentativ für n = 3 
voneinander unabhängigen Experimenten. Darstellung der Mittelwerte (+/- SEM). Das Signifikanzniveau 
gilt für den Vergleich zu den Konditionen hEGF und ø. 

Die Konditionen Cetuximab, Panitumumab sowie Fc-gebundenes EGF führten im 

Gegensatz zum Liganden EGF zu einer hohen INF-g Ausschüttung durch E3-transduzierte 

T-Zellen. In den untransduzierten Kontrollen war, unabhängig vom Stimulus, keine 

relevante Zytokinsekretion nachzuweisen (Abbildung 5). 
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3.2.2 Vergleich von löslichen und immobilisierten SAR-Agonisten 

 

Aus diesem Versuch ergibt sich, dass der wesentliche Unterschied zwischen 

stimulatorischen und dysfunktionalen Liganden in der Immobilisierung auf dem 

Plattenboden besteht. Um dies auch für die eingesetzten monospezifischen Antikörper 

näher zu charakterisieren, erfolgte ein direkter Vergleich von löslichen gegen 

immobilisierte Antikörper. 

 

 

Abbildung 6: Vergleich der INF-g Sekretion zwischen Stimulation mit gebundenen und löslichen 
anti-SAR Antikörpern 
Zytokinsekretion von transduzierten T-Zellen nach Stimulation mit monospezifischen Antikörpern (mAk) 
in aufsteigender Konzentration für E3 + Cetuximab (A) beziehungsweise C3 + anti-Cripto (B). Durch 
Inkubation von mAk (max. 500 ng) in 50 µl PBS über 12 Stunden bei 4° C wurden diese an die 
Oberfläche einer Zellkulturplatte gebunden. Der Überstand wurde nach Inkubation entfernt. Äquivalente 
Mengen an löslichen Antikörpern wurden in 50 µl PBS-Trägerlösung den entsprechenden Konditionen 
beigemischt. Als Kontrolle erfolgte die Zugabe von 50 µl PBS in bereits mit mAk beschichteten 
Konditionen, Anschließend wurden 2 x 105 T-Zellen in 150 µl Medium hinzugefügt. Die quantitative 
Analyse der zellfreien Überstände nach 48 Stunden Inkubation bei Zellkulturbedingungen erfolgte mittels 
ELISA. Die Abbildung ist repräsentativ für n = 3 voneinander unabhängigen Experimenten. Darstellung 
der Mittelwerte (+/- SEM). 

Die Aktivierung, gemessen an der INF-g Sekretion, korrelierte sowohl bei E3-, als auch bei 

C3 transduzierten Konditionen positiv mit der Menge an immobilisiertem mAk. Bei beiden 

Konditionen fiel die INF-g Sekretion bei maximaler mAk-Konzentration bei 

Immobilisierung stärker aus. Auch bei Stimulation mit löslichem Antikörper fand sich eine 

T-Zellaktivierung (Abbildung 6).  

 

3.2.3 Korrelation der relativen bsAk:SAR Bindung zu erreichter Zytotoxizität zur 

Darstellung der Dosis-Wirkungsbeziehung 

 

Um die Dosisabhängigkeit und den Schwellenwert zur Aktivierung der T-Zellen durch 

SAR zu definieren, wurde stellvertretend erneut das E3-Fusionsprotein verwendet. Dabei 

wurde einerseits die Sättigung des Fusionsproteins durchflusszytometrisch, sowie 
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andererseits die induzierte Zytotoxizität mittels Impendanzmessung, bei ansteigenden 

Konzentrationen des bispezifischen Antikörpers untersucht.  

 

 

Abbildung 7: Vergleich der Sättigung von E3 und der T-Zell vermittelte Zytotoxizität in 
Abhängigkeit der Konzentration des bsAk anti-mEpCAM x anti-hEGFRvIII 
Für beide Versuchsreihen wurde die Transduktionseffizienz auf 30 % titriert. Jeder Datenpunkt stellt das 
arithmetische Mittel aus biologischen Duplikaten dar. Die Werte sind auf den jeweiligen Minimal- und 
Maximalwert normalisiert. Die Abbildung repräsentiert eine kumulative Darstellung der Ergebnisse von n 
= 3 voneinander unabhängigen Experimenten.  

Für beide Parameter stieg der Effekt mit zunehmender Antikörperdosis an (Abbildung 7). 

Dabei reichte für eine subtotale Lyse bereits eine geringfügige Sättigung der E3 

Bindungsstellen aus.  

 

3.3 Charakterisierung der T-Zell vermittelten Effekte 

 

Im Folgenden sollte untersucht werden, welche phänotypischen Auswirkungen diese 

Stimulation auf die Effektorzellen hat. Zudem wurde beleuchtet über welche Mediatoren 

die Lyse vermittelt wird, und inwieweit eine sequentielle Lyse durch T-Zellen in diesem 

therapeutischen Konzept gegeben ist. 
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3.3.1 Lysekapazität SAR+ T-Zellen 

 

Vor dem Hintergrund des modularen Charakters des therapeutischen Ansatzes wurde 

auch untersucht, inwiefern eine sequentielle Lyse durch SAR+ T-Zellen möglich ist. Dazu 

wurde erneut ein Versuchsaufbau mit Echtzeitmessung der Zytotoxizität gewählt. 

 

 

Abbildung 8: Lysekapazität unter Titration des Quotienten von Ziel- zu Effektorzellen 
Es erfolgte der Einsatz von 4 x 104 Panc-OVA-EpCAM-Zellen mit 4 x 104 (1:1), beziehungsweise 2 x 105 

(1:5) T-Zellen und 5 µg/ml bsAk (anti-mEpCAM x anti-hEGFRvIII). Die Datenerhebung erfolgte mittels 
kontinuierlicher Impendanzmessung. Die Abbildung ist repräsentativ für n = 2 voneinander 
unabhängigen Experimenten. Darstellung der Mittelwerte (+/- SEM). 

In Abbildung 8 zeigen die Tumorzellen ohne Zusatz der Effektorzellen näherungsweise 

eine sigmoide Wachstumskurve. Die Kokultur zeigte in beiden der dargestellten 

Zellverhältnisse ein Absinken der Impedanz auf das Niveau der T-Zellkultur. 

Zusammenfassend kann also von einer totalen Lyse der Tumorzellen ausgegangen 

werden. 
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3.3.2 Immunologischer Phänotyp und Proliferationskapazität der T-Zellen 

 

Um das Proliferationsverhalten der SAR+ T-Zellen und deren phänotypischen 

Veränderung gegenüber den Kontrollen zu untersuchen, wurden die T-Zellen 48 Stunden 

mit EpCAM+ Tumorzellen unter Präsenz des bsAk kokultiviert und anschließend 

durchflusszytometrisch untersucht. 

 

 

 

Abbildung 9: Proliferationskapazität E3-transduzierter T-Zellen bei Kokultur mit Panc-OVA-EpCAM 
Tumorzellen über 48 Stunden 
(A) Darstellung der relativen Änderung der Zellzahl im Vergleich zu initialen Messwerten vor Beginn der 
Ko-Kultur. Die Zellzahl wurde anhand von counting beads normiert. Die horizontale Markierung bildet 
das Ausgangsniveau ab. (B) Mittlere Fluoreszenz Intensität (MFI) von CD8+ T-Zellen des PE-markierten 
anti-Ki67 Antikörpers nach abgelaufener Kokultur. Die Abbildung ist repräsentativ für n = 3 voneinander 
unabhängigen Experimenten. Darstellung der Mittelwerte (+/- SEM). 

Die Kokultur induzierte eine deutliche Proliferation der E3-transduzierten T-Zellen im 

Vergleich zu den Kontrollen (Abbildung 9). Dieser Effekt zeigte sich sowohl in einer 

erhöhten Zellzahl, als auch durch eine verstärkte Expression des mitotischen Markers 

Ki67. C3-transduzierte T-Zellen zeigten ebenfalls eine im Vergleich zu den Kontrollen 

erhöhte Zellzahl. In diesem Fall wurde allerdings das initiale Ausgangsniveau nicht 

erreicht (Abbildung 9). Auch hier war der Marker Ki67 deutlich hochreguliert.  
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Abbildung 10: Phänotypische Veränderungen E3-transduzierter T-Zellen bei Kokultur mit Panc-
OVA-EpCAM Tumorzellen über 48 Stunden 
(A) Relative Änderung der CD8+-Transgen+ T-Zellpopulation nach 48 Stunden Kokultur im Hinblick auf 
Marker für immunologische Gedächtnisfunktionen. (B) Expression von LAG-3, PD-1 und CD69 nach 48 h, 
normiert auf den ersten Messpunkt. Die Abbildung ist repräsentativ für n = 3 voneinander unabhängigen 
Experimenten. Darstellung der Mittelwerte (+/- SEM). 

In Abbildung 10 zeigte sich eine Verschiebung der Zellpopulation zu einer CCR7 und 

CD62L negativen Zellpopulation. Dieser Effekt ist für E3-transduzierte T-Zellen im 

Vergleich zur Kontrolle (EGFRvIII) stärker ausgeprägt. Gleichzeitig regulierten E3-

transduzierte T-Zellen die Aktivierungsmarker PD1 und CD69, nicht aber LAG-3, hoch. 

Für C3-transduzierte T-Zellen konnte dieser Effekt nicht beobachtet werden, was mit der 

schwächeren Aktivierbarkeit korreliert. 

 

3.3.3 Relevanz löslicher und membranständiger Effektoren bei T-Zell vermittelter 

Tumorlyse 

 

Darüber hinaus sollte näher beleuchtet werden, über welchen Mechanismus SAR+ T-

Zellen Tumorzellen lysieren. Hierzu wurde die Veränderung der Transkription der 

Proteine tumor necrosis factor related apoptosis inducing ligand (TRAIL), Granzym B 

(GzmB) sowie Fas-Ligand (FasL/CD95L), als mögliche zytotoxische Effektormoleküle, 

nach Stimulation mit bsAk in Kokultur mit EpCAM+ Tumorzellen untersucht. 
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Abbildung 11: Transkriptionelle Regulation der Proteine TRAIL, FasL (CD95L) und GzmB nach 
Stimulation mit bsAk 
Kokultur von 106 T-Zellen mit 5 x 104 Zellen der Linie Panc-OVA-EpCAM und 1 µg/ml bsAk für 24 h. 
Anschließend wurde RNA isoliert und mittels real time PCR nach beschriebenem Protokoll quantifiziert. 
Die Abbildung ist repräsentativ für n = 3 voneinander unabhängigen Experimenten. Darstellung der 
Mittelwerte (+/- SEM). 

Abbildung 11 zeigt eine 20-fache Erhöhung der GzmB Expression durch E3-transduzierte 

T-Zellen nach Kokultur mit Tumorzellen in Anwesenheit von bispezifischen Antikörpern. 

TRAIL und FasL hingegen verändert sich in der Stimulationszeit nicht signifikant.  

 

Um die biologische Relevanz dieser Beobachtungen zu testen wurde das zytotoxische 

Potenzial von E3-transduzierten C57BL/6 Wildtyp- und Perforin-Knockout (Prf -/-)-T-

Zellen verglichen. 

 

 

Abbildung 12: Zytotoxisches Potential von E3-transduzierten Prf -/- T-Zellen im Vergleich zu WT T-
Zellen 
Es erfolgte eine Kokultur von 105 T-Zellen mit 2 x 104 Tumorzellen über 12 h. Zur Stimulation wurden 
500 ng/ml anti-mEpCAM x anti-hEGFRvIII bsAk eingesetzt. Die Abbildung ist repräsentativ für n = 3 
voneinander unabhängigen Experimenten. Darstellung der Mittelwerte (+/- SEM). Beide Konditionen 
zeigten eine ähnliche Lyseeffizienz in Kokulturversuchen bei Transduktion mit E3-Fusionsproteinen und 
in Anwesenheit von bsAK und Tumorzellen (Abbildung 12).  

E283

Kontrolle

K
op

ie
n 

T
R

A
IL

/b
et

a 
A

kt
in

K
op

ie
n 

Fa
sL

/b
et

a 
A

kt
in

K
op

ie
n 

G
zm

B
/b

et
a 

A
kt

in

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.02

0.04

0.06

0.08

0.10

0

10

20

30

40

50

TRAIL

ns ns ***

FasL GzmB
S

pe
zi

fi
sc

he
 L

ys
e 

[%
]

-20

0

20

40

60

E3 UT

Prf -/-

WT

ns

ns



Ergebnisse 33 

Unter Verwendung von Perforin - Knockout Versuchstieren (Prf -/-) zeigte sich weiterhin 

eine Zytotoxizität der E3 transduzierten T-Zellen (Abbildung 12), wobei die Effektstärke 

mit derjenigen der E3-transduzierten T-Zellen aus Wildtyp-Mäusen vergleichbar war. 

Untransduzierte T-Zellen zeigten in beiden Konditionen keinerlei Zytotoxizität gegenüber 

den verwendeten Tumorzellen. 

 
3.4 Kombinationstherapie im murinen B16-OVA-EpCAM und Panc-OVA-EpCAM-Modell 

in vivo 

 

Um erstmalig die potenzielle Wirksamkeit von SAR-T-Zellen in vivo zu testen, wurde 

zunächst das Modell einer simultanen Ko-Injektion aller Komponenten gewählt. 

 

 

Abbildung 13: Tumorwachstum und Überleben von C57Bl/6 Mäusen im Panc-OVA-EpCAM Modell 
A: Tumoroberfläche der Panc-OVA-EpCAM Tumoren im zeitlichen Verlauf. 
B: Gesamtüberleben bei Panc-OVA-EpCAM Tumoren im zeitlichen Verlauf.  
Die subkutane Injektion von 2 x 106 Panc-OVA-EpCAM, 2 x 106 E3 T-Zellen und 1 µg/ml bsAk erfolgte in 
200 µl Gesamtvolumen. Darstellung der Mittelwerte (+/- SEM) von je n = 5 Versuchstieren pro 
randomisierter Therapiegruppe.  
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Abbildung 14: Tumorwachstum und Überleben von C57Bl/6 Mäusen B16-OVA-EpCAM Modell 
A: Tumoroberfläche der B16-OVA-EpCAM Tumoren im zeitlichen Verlauf. 
B: Gesamtüberleben bei B16-OVA-EpCAM Tumoren im zeitlichen Verlauf.  
Die subkutane Injektion von 2 x 104 B16-OVA-EpCAM, 2 x 105 E3 T-Zellen und 1 µg/ml biAk erfolgte in 
100 µl Gesamtvolumen. Darstellung der Mittelwerte (+/-SEM) von je n=5 Versuchstieren pro 
randomisierter Therapiegruppe. 

 

Die Koapplikation verzögerte das Tumorwachstum von B16-OVA-EpCAM Tumorzellen 

gegenüber den Vergleichsgruppen (Abbildung 14). Im Fall des Panc-OVA-EpCAM-

Modells zeigte sich ein Trend hierzu (Abbildung 13). In keinem der Modelle konnte eine 

signifikante Verlängerung des Überlebens der Tiere gezeigt werden. Allerdings zeigte 

sich in beiden Versuchen ein Anteil von 40% an Versuchstieren, die im Rahmen der 

Behandlung durch die Kombinationstherapie über den kurzen Beobachtungszeitraum 

überlebten. 
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4 Diskussion 

4.1 Zusammenfassung der Ergebnisse 

 

Die vorliegende Arbeit konnte SAR+ T-Zellen in vitro nach bereits erfolgtem prinzipiellem 

Wirksamkeitsnachweis weiter charakterisieren. Essentielle Faktoren für die Funktionalität 

des Therapieansatzes waren die Expression der SAR-Transgene inklusive der 

intrazellulären Signaldomänen CD3 und CD28, sowie die Bindung eines spezifischen 

Liganden an die entsprechende Ektodomäne des SAR. Dabei zeigte sich auch, dass es bei 

hohen Konzentrationen von bsAk zu einer Aktivierung in Abwesenheit des TAA kommt. 

Gleichzeitig führte eine Immobilisierung der Liganden zu einer Steigerung der 

Stimulation der SAR+ T-Zellen. Des Weiteren zeigte sich eine Dosis-Wirkungsbeziehung 

zwischen der eingesetzten Konzentration an bsAk sowie der Menge an beteiligten SAR+T-

Zellen. Für eine effektive, subtotale Lyse wurde jedoch nur ein niedriges Sättigungsniveau 

der SAR auf der T-Zelloberfläche benötigt. Die Interaktion via bsAk und SAR vermittelte 

eine Proliferation sowie eine Dedifferenzierung in Richtung einer TEM – Subpopulation der 

entsprechenden T-Zellen. In Versuchen zum Mechanismus der zellvermittelten Tumorlyse 

konnte gezeigt werden, dass die Aktivierung durch SAR und bsAk allem die Transkription 

von GzmB bewirkt, die Zytotoxizität allerdings nicht von der Wirkung von Prf abhängig 

ist. In vivo wurde zudem dargelegt, dass die Kombinationstherapie in zwei EpCAM-

positiven Tumormodellen zu einer Verzögerung des Tumorwachstums führte. 

 

4.2 SAR als Basis für T-Zell vermittelte Zytokinsekretion, Zytotoxizität und 

Differenzierung 

4.2.1 EGFRvIII und Cripto als restriktiv exprimierte Ektodomänen und funktionelle 

Bestandteile von SAR 

 

Das übergeordnete Ziel der gentechnischen Modifikation von T-Zellen zur 

Tumorimmuntherapie ist die Induktion einer anti-tumoralen, zellulären Immunität 

(Sadelain et al., 2017). Als Vorbild dient dabei die physiologische Antigenerkennung 

durch die immunologische Synapse, welche sich durch Zusammenwirken von TZR, 

Adhäsionsmolekülen und ko-stimulatorischen Rezeptoren auszeichnet (Dustin, 2014).  

 

Die hier verwendeten extrazellulären Domänen der endogenen Membranproteine Cripto 

beziehungsweise EGFRvIII sind im adulten Organismus auf gewisse Tumorentitäten 

beschränkt. Dadurch wird die Exklusivität des T-Zell-Markerantigens gewahrt und 

ermöglicht somit eine selektive Bindung der entsprechenden rekrutierenden Antikörper 

(O’Rourke et al., 2017; Persico et al., 2001). 
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Cripto wird in Interaktion mit Nodal, einem Zytokin aus der TGF-beta Superfamilie, 

sowohl Funktionen als Ko-Ligand, wie auch als Ko-Rezeptor, zugeschrieben (Yan et al., 

2002). Dabei wird in der Literatur auch berichtet, dass der Ko-Ligand Nodal in malignen 

Melanomzellen vermehrt exprimiert wird (Topczewska et al., 2006). Bei möglicher 

Translation der Fusionsproteine sollte Nodal somit als potentieller endogener Ligand für 

C3-transduzierte T-Zellen bei Patienten mit malignen Erkrankungen, und somit als 

mögliche Ursache für off-target Toxizität in Betracht gezogen werden.  

 

EGFRvIII entsteht durch eine in-frame-Deletion der Exons 2-7 des natürlicherweise 

vorkommenden EGFR unter Erhalt der als Bindungsdomäne beschriebenen Region L2 

(Domäne 3) (Woltjer et al., 1992). Unter Verwendung von EGFRvIII transfizierten, aber 

EGFR-negativen Zelllinien, wurden widersprüchliche Resultate zum Bindungsverhalten 

von EGFRvIII zu EGF publiziert (Batra et al., 1995; Moscatello et al., 1996). Im Gegensatz 

zu EGFR konnte bei EGFRvIII transfizierten Zellen auch keine Re-Distribution, 

beziehungsweise Dimerisierung der Rezeptoren, auf der Zelloberfläche beobachtet 

werden (Su Huang et al., 1997). Anhand dieser Daten wird aktuell in der Literatur als 

Konsensus akzeptiert, dass EGFRvIII keine natürlichen Liganden binden kann (Gan et al., 

2013; Gong et al., 2014a; Wikstrand et al., 1998). 

 

Auch in den hier dargestellten Versuchen konnte keine Aktivierung von SAR+ T-Zellen mit 

EGFRvIII-Ektodomäne durch EGF nachgewiesen werden. Allerdings zeigte sich, dass Fc-

EGF, als modifizierte Variante des natürlichen Liganden, sowie die monoklonalen 

Antikörper Cetuximab und Panitumumab eine Aktivierung der T-Zellen induzierten. Diese 

Beobachtungen werden durch publizierte Analysen der Epitope von Cetuximab und 

Panitumumab unterstützt. Beide Antikörper binden auf jeweils überlappende Epitope auf 

L2 (Domäne 3), eine Domäne, die sowohl bei EGFR wie auch dem mutiertem EGFRvIII zu 

finden ist. Zusätzlich liegt auch die Bindungsstelle von EGF in räumlicher Nähe (Gong et 

al., 2014b; Voigt et al., 2012). Somit ist auch eine Aktivierung von EGFRvIII über Fc-EGF 

hinsichtlich der Proteinstruktur nicht grundsätzlich widersprüchlich. 

 

Zusammenfassend besteht also kein Anhalt dafür, dass durch den endogen zirkulierende 

Liganden EGF eine unspezifische Wirkung von E3 T-Zellen in vivo zu erwarten ist. Zur 

Klärung der Frage, inwieweit eine Aktivierung von C3 Domänen durch in speziellen 

Patientenkohorten zirkulierendes Nodal zu erwarten ist, sind weitere Untersuchungen 

notwendig. Weitere mögliche Wirkmechanismen der Liganden - Rezeptor Interaktion 

sollen im Folgenden unter Kapitel 4.3.1 ausgeführt werden. EGFRvIII, als eine durch 

Exondeletion entstandene Variante des natürlicherweise vorkommenden EGRF, ist in vivo 

potentiell immunogen. Somit könnten die entsprechenden E3 – SAR in ihrer Wirkung 

durch vorzeitige Elimination in ihrer Wirkung eingeschränkt sein. Im Fall von Cripto als 
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embryonales Antigen ist theoretisch von einer Toleranz aufgrund der Exposition während 

der pränatalen Entwicklung auszugehen. 

 

4.2.2 Die Komposition von Transmembran- und Endodomänen als Grundlage für das 

stimulatorische Potential der SAR 

 

Als Surrogat für die TZR-CD3 Komponente der immunologischen Synapse werden zur 

gentechnischen Modifikation von T-Zellen intrazelluläre Peptide mit ITAM-Motiven 

verwendet, wobei sich die CD3-z Domäne mehrheitlich durchgesetzt hat (Irving et al., 

1991; Sadelain et al., 2009). Zahlreiche Studien erwiesen allerdings, dass die Integration 

von zusätzlichen, ko-stimulatorischen Domänen in der zweiten Generation von CAR vor 

allem im Hinblick auf IL-2 Sekretion, Überwindung von T-Zell-Anergie und 

Proliferationskapazität, den CAR der ersten Generation überlegen waren (Dotti et al., 

2014; A. Hombach et al., 2001; Maher et al., 2002). Dabei scheint die gleichzeitige 

Nutzung mehrerer ko-stimulatorischer Domänen einen synergistischen Effekt zu 

erbringen (J. Wang et al., 2007; Wilkie et al., 2008). Ebenso wird die Ko-Expression von 

Zytokinen neben dem stimulierendem Fusionsrezeptor durch die modifizierende Wirkung 

auf das Tumormilieus als vorteilhaft eingestuft (Markus Chmielewski et al., 2012). 

 

Entsprechend zeigten die um die CD28 und CD3-z gekürzten Fusionsproteine in dieser 

Arbeit keinerlei spezifische Aktivität. Die funktionalen Rezeptoren mit den 

stimulatorischen Endodomänen hingegen führten zu einer Aktivierung der T-Zellen. 

Gemäß den Angaben der Literatur könnte durch die Erweiterung um weitere ko-

stimulatorische Domänen wie OX-40 oder 4-1BB eine Optimierung der T-Zell Funktionen 

erreicht werden. Ebenso lassen sich SAR über Modifizierung des retroviralen Vektors, 

analog zu CAR, mit weiteren Transgenen kombinieren, um über synergistische Effekte 

eine Steigerung der Wirksamkeit zu entwickeln. 

 

4.2.3 Design der extrazellulären Komponenten als Determinanten der T-Zellaktivität bei 

Stimulation via SAR 

 

E3-Fusionsproteine zeigten gegenüber dem C3- Konstrukt hinsichtlich Lyse, 

Proliferationskapazität, INF-g Sekretion und Expression der Aktivierungsmarker CD69 

sowie PD-1 eine Überlegenheit. Dieser Umstand ist vermutlich ein Produkt aus mehreren 

Faktoren. Zum einen konnten für das C3-Transgen geringere Level der Expression nach 

Transduktion erreicht werden. Zweitens ist bekannt, dass auch die Lage des Epitops am 

Fusionsrezeptor sowie dessen Abstand zu Plasmamembran Einflussfaktoren für die 

Signaltransduktion sind. So wird in der Literatur beschrieben, dass eine proximale 

Lokalisation des Epitops im Verhältnis zur Plasmamembran positiv mit dem Ausmaß der 
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Aktivierung der T-Zelle korreliert (Haso et al., 2013; A. A. Hombach et al., 2007). 

Bezüglich E3 ist von einer Bindung in Domäne III (L2) auszugehen, die sich zwischen 

Aminosäure 333-460 erstreckt (Woltjer, 1992). Die Ektodomäne von E3 besteht insgesamt 

aus 1134 Aminosäuren. Im Gegensatz dazu zählt die Ektodomäne von C3 lediglich 492 

Aminosäuren, wobei das Markerantigen Cripto sich lediglich über 360 Aminosäuren 

erstreckt und von einem CD8a-hinge (132 Aminosäuren) gefolgt wird. Somit ist auch bei 

Unkenntnis der exakten Bindungsstelle des bsAk an die C3-Ektodomäne davon 

auszugehen, dass die Bindungsstelle von Cripto über eine ähnliche Lagebeziehung zur 

Plasmamembran wie die Domäne III von EGFRvIII verfügt. Zusammenfassend ist also der 

Einfluss des Abstands zwischen dem jeweiligen Epitop und der Plasmamembran im 

direkten Vergleich beider SAR als gering einzuschätzen. 

 

Als weiterer Unterschied ist die CD8a-hinge Region von C3 zu nennen, die bei E3 keinen 

Einsatz fand. Insgesamt ist der Effekt solcher Domänen anhand der Literatur bei 

divergenten Ergebnissen nicht pauschal zu formulieren und somit individuell für das 

jeweilige Fusionsprotein zu testen (Dotti, 2014; Hudecek et al., 2015). Demnach ist zur 

Optimierung ein direkter Vergleich unterschiedlicher SAR-Designs anzustreben. Dabei 

könnte die Transmembranregion neben unterschiedlichen hinge-Regionen auch durch 

CD28 übernommen werden. Lediglich eine Transmembrandomäne durch Cripto ist nicht 

möglich, da es sich um ein GPI-verankertes Oberflächenprotein handelt (Persico, 2001). 

Um eine Signaltransduktion nach intrazellulär zu gewährleiten, muss also auf Domänen 

anderer Transmembranproteine zurückgegriffen werden.  

 

4.2.4 SAR vermittelt eine Differenzierung zu Gunsten eines TEM-Phänotyps 

 

Die Qualität der anti-tumoralen Effekte von T-Zellen im Rahmen eines adoptiven Transfers 

wird von der T-Zelldifferenzierung bestimmt (Sadelain, 2017). Dieser Phänotyp wird dabei 

stellvertretend an der Expression von CCR7 und CD62L gemessen (Masopust et al., 2014). 

Die Expression dieser Proteine nach Antigenkontakt markiert die zur Auto-Regeneration 

befähigten Subpopulation (T memory stem cells (TSCM), beziehungsweise T central 

memory cells (TCM)). Entsprechend markiert der Verlust dieser Marker die Abnahme der 

Proliferationskapazität bei steigender Fähigkeit zur Lyse. Dieser Subtyp wird als T effector 

memory (TEM) bezeichnet (Busch et al., 2016; Dotti, 2014; Sadelain, 2017). 

 

Erwartungsgemäß zeigte sich in den hier dargestellten Versuchen ein Verlust von CCR7 

und CD62L bei E3 Zellen nach Interaktion mit bsAk unter der Anwesenheit von EpCAM+ 

Tumorzellen. Dies kann als Hinweis gedeutet werden, dass es im Rahmen der T-Zell 

Aktivierung durch SAR zur notwendigen Differenzierung zu Gunsten von zytotoxisch 

aktiven TEM kommt. Gleichzeitig waren aber auch nach 48 Stunden SAR+/CCR7+/CD62L+ 
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Zellen zu detektieren. Damit wurde nachgewiesen, dass auch nach Antigenkontakt eine 

Kohorte mit TCM Phänotyp existiert. Dadurch ist eine Steigerung der therapeutischen 

Effektivität denkbar, da diese Kohorte durch ihre hohe Proliferationskapazität zu einer 

bedarfsweisen Expansion der tumorspezifischen T-Zellen führen könnte. Für 

weiterreichende Aussagen sind zusätzliche Untersuchungen wünschenswert. 

 

Ob sich die beobachtete Proliferation der Zellen tatsächlich vorwiegend aus Zellen des 

TCM Phänotyps speist kann allerdings durch die methodischen Limitationen dieses 

Ansatzes nicht abschließend beurteilt werden. Ebenso kann der beobachtete Verlust der 

Marker des Gedächtniszelltyps unter Kontrollbedingungen (EGFRvIII-Konstrukt) 

möglicherweise mit der zum Versuchszeitpunkt vorgenommenen Stimulation mit IL-15 

und den damit verbundenen anti-apoptotischen und proliferativen Effekten 

zusammenhängen (Zhang et al., 1998).  

 

4.3 Spezifität als Funktion der Valenz SAR-bindender Liganden 

4.3.1 Aggregation, Konformationsänderung und Segregation als mögliche 

Wirkmechanismen für Signaltransduktion via SAR 

 

Der exakte Mechanismus, welcher zur Initiierung intrazellulärer Signalkaskaden führt, ist 

weder für endogene TZR-CD3 Komplexe, noch für synthetische Derivate wie CAR, 

eindeutig geklärt. In beiden Fällen gilt es aber als gesichert, dass die Phosphorylierung 

der intrazellulären ITAM der CD3 Untereinheiten durch die Tyrosin Kinase Lck der Src-

Familie einen essentiellen Schritt darstellt (Irving, 1991; Van der Merwe et al., 2011). Die 

Modulation der Phosphorylierung der ITAM wird in der Literatur durch drei sich teilweise 

ergänzenden Mechanismen für TZR beschrieben.  

 

Zum einen wurde der Aggregation von TZR mit konsekutiver Rekrutierung von Lck eine 

große Bedeutung zugemessen (Yokosuka et al., 2005). Dies stützt sich unter anderem auf 

Experimente, die eine Aktivierung von T-Zellen unter Stimulation mit oligomeren pMHC-

Komplexen und löslichen anti-CD3 Antikörpern nachweisen, die mit monomeren 

Agonisten nicht reproduzierbar waren (Cochran et al., 2000; Minguet et al., 2007; Valitutti 

et al., 1997). Versuche, die eine T-Zell Antwort nur unter Anwesenheit von FcyR+ Zellen, 

und nicht in reinen T-Zell Kulturen, nachweisen konnten, entkräften allerdings die 

Hypothese, dass der monoklonale anti-CD3e Antikörper OKT3 (Muromomab) über reine 

CD3-TZR Quervernetzung zu einer Aktivierung führt. Dies spricht vielmehr für die 

Notwendigkeit eines Zell-Zell Kontakts gegenüber einer reinen Aggregation von CD3-TZR 

Komplexen auf der Oberfläche einer T-Zelle (Reusch et al., 2015). Des Weiteren zeigten 

Versuche eine Aktivierung von T-Zellen durch einen einzigen, solitären pMHC-Komplex 

pro Zielzelle und stellen damit auch die Notwendigkeit der CD3-TZR Quervernetzung als 
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Voraussetzung in Frage (Irvine et al., 2002). Zusammengefasst ist also eine Aggregation 

unter den verschiedenen CD3-TZR Komplexen einer Zelle ausreichend, aber nicht 

notwendig, um eine Aktivierung zu initiieren (Van Der Merwe, 2011). 

 

Ähnlich zu endogenen TZR ist bei beiden hier vorgestellten SAR-Konstrukten anhand 

ihrer Transmembrandomänen von einer Möglichkeit zur Dimerisierung nach Bindung an 

polyvalente Liganden auszugehen. Konkret ist für CD8a (C3) eine Dimerisierung im 

Rahmen von CAR beschrieben (Rodgers et al., 2016). Auch EGFRvIII-Molekülen (E3) wird 

eine, Liganden-unabhängige, Dimerisierung zugesprochen (Gan, 2013). Auch eine 

Interaktion zwischen synthetischen CAR und endogenen TZR wird postuliert (Bridgeman 

et al., 2014).  

 

Ein weiteres Modell propagiert, dass es durch die Bindung von Liganden zu einer 

Konformationsänderung kommt die ursächlich für die Aktivierung ist (Choudhuri et al., 

2009; Kim et al., 2010; Li et al., 2010; Xu et al., 2008).  

 

Zudem wird ein Mechanismus diskutiert, der von einem Fließgleichgewicht der 

Phosphorylierung der ITAM in Ruhe ausgeht. Dieses wird auf der einen Seite durch 

konstitutiv aktive Kinasen (Lck), sowie dazu antagonistisch von CD45 und CD148, als 

Phosphatasen, beeinflusst (Van Der Merwe, 2011). Entsprechend führt die räumliche 

Abtrennung der großen, membranständigen Phosphatasen durch engen Zellkontakt bei 

Antigenerkennung zur Veränderung des Gleichgewichts zugunsten der Phosphorylierung 

mittels Lck. Diese Hypothese stützt sich unter anderem auf die Beobachtungen, dass 

CD45 und CD148 in immunologischen Synapsen nicht zu detektieren sind (Varma et al., 

2006). Außerdem verhindert eine Verkürzung der extrazellulären Domäne der 

Phosphatasen, beziehungsweise eine Verlängerung von pMHC, eine T-Zell-Aktivierung 

(Choudhuri, 2009; Irles et al., 2003). 

 

Dieses Wirkprinzip wurde auch für CAR-Konstrukte vorgeschlagen. Dies stützt sich unter 

anderem darauf, dass eine verbesserte T-Zell-Aktivierung bei Erkennung membrannaher 

gegenüber membranferner Epitope nachgewiesen wurde (Haso, 2013). In diesem Fall 

verbleibt ein kleiner Interzellularspalt und dient somit im Sinne der Segregation von der 

Phosphatasen (Hudecek, 2015). 

 

Zusammenfassend führen bivalente Moleküle zur Quervernetzung der SAR. Damit sind, 

auch in Abwesenheit eines immobilisierenden TAA, hinreichende Voraussetzungen für 

eine Aktivierung der T-Zelle gegeben. Die unspezifische Aktivierung von SAR+ T-Zellen 

durch bivalente Liganden wie mAk, oder bsAK im 2+2 Format, können somit Ausdruck 

einer solchen Quervernetzung sein. Die dadurch generierte Aktivierung ist somit 
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unabhängig von der Präsenz eines TAA, kann aber durch die Zugabe des Antigens massiv 

gesteigert werden. Eine Aktivierung von E3 mit EGFRvIII Ektodomäne durch Fc-tag legt 

nahe, dass eine Bindung entgegen anderweitiger Beschreibungen in der Literatur 

grundsätzlich möglich ist. Weiterhin wurde allerdings keine Dimerisierung der EGFRvIII 

Rezeptoren beobachtet, sodass eine Quervernetzung als ursächlicher Mechanismus 

unwahrscheinlich erscheint. Da nur in Anwesenheit eines Fc-Teils eine Aktivierung 

beobachtet werden konnte ist ferner anzunehmen, dass eine Immobilisierung primär 

nicht-quervernetzender Liganden notwendig ist. Diese Beobachtungen stehen wiederum 

im Einklang mit den oben vorgestellten Hypothesen zur Segregation und 

Konformationsänderung im Rahmen der Aktivierung von T-Zellen. 

 

4.4 Bispezifische Antikörper als molekulare Adapter 

4.4.1 Adaptermoleküle führen zur verbesserten Steuerung von Spezifität und 

biologischer Aktivität der T-Zelltherapie 

 

Weitere Formate rekrutierender Moleküle mit großen Ähnlichkeiten zu dem hier 

vorgestellten Format sind derzeit in der Entwicklung. Auch diese sind in der in der Lage 

T-Zellen über ein Markerantigen zu rekrutieren und aktivieren. Als Beispiele werden in 

der Literatur unter anderem FITC-TAA Adapter (Ma et al., 2016), Biotin-TAA Adapter 

(Lohmueller et al., 2018), CD16-CAR (Caratelli et al., 2017) und UniCARs (Cartellieri et al., 

2016) vorgestellt. Insbesondere bei Verwendung von synthetischen (FITC), 

beziehungsweise artfremden Markern (Streptavidin), ist allerdings eine vorzeitige 

Eliminierung aufgrund der Immunogenität der Moleküle zu erwarten. Im Fall von CD16-

CAR, die den Fc-Teil von mAk binden können, besteht die Schwierigkeit, dass eine 

Vielzahl von bereits in der Onkologie zugelassenen Antikörpern in ihrem IgG-Subtyp nicht 

auf ADCC ausgerichtet sind. Somit sind einige der klinisch verfügbaren Antikörper nicht 

als Kombinationspartner geeignet. Bei UniCAR ist es durch die präzise Auswahl einer 

über Menschen und Mäuse konservierten Aminosäuresequenz als Markerantigen 

gelungen, dass die unerwünschte auto-immunologische Reaktion auf die Komponenten 

der Zelltherapie minimiert wurde (Cartellieri, 2016).  

 

Gemeinsam ist all diesen Ansätzen, inklusive den hier vorgestellten SAR, dass durch 

Implementierung löslicher Adaptermoleküle eine dynamische Anpassung der T-

Zellaktivität erreicht werden konnte. Dabei bestimmt die Präsenz des Adaptermoleküls als 

molekularer Schalter mittels der Fusionsrezeptoren über die Aktivität der T-Zellen. 

Folglich kann durch die Titration dieser Adaptermoleküle die in vivo Aktivität der 

Zelltherapie gesteuert werden. Die biologische Aktivität richtet sich dabei nach der 

biologischen Halbwertszeit der Adaptermoleküle und ist somit gut kalkulierbar. Dies steht 

im Gegensatz zu bisherigen Sicherheitsmechanismen, die eine Eliminierung der T-Zellen 
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zur Folge haben und somit irreversibel sind (Zhou et al., 2015). Des Weiteren ist die 

Spezifität in Form des entsprechenden Adaptermoleküls leicht austauschbar und im 

Gegensatz zu T-Zellen als potentielles off the shelf Produkt verfügbar. Ebenso ist denkbar, 

dass durch Verwendung von multi-spezifischen Formaten eine Verbesserung der 

Spezifität erreicht werden kann. 

 

Die hier nachgewiesenen Wirkmechanismen sind in vivo weiter zu prüfen. Insbesondere 

sind vor dem Hintergrund der Steuerbarkeit die biologische Halbwertszeit der bsAk sowie 

mögliche Mechanismen zur vorzeitigen Elimination der Adaptermoleküle, wie zum 

Beispiel neutralisierende Antigene oder Antikörper zu testen. Zudem gilt es in einem 

weiteren Schritt zu prüfen, ob ein Wechsel der Adaptermoleküle ohne Erneuerung der 

SAR+ T-Zellpopulation gelingt. 

 

4.4.2 Selektive Markerantigene erlauben eine gezielte Rekrutierung von 

Effektorzellsubtypen 

 

Als weiterer Vorteil der hier vorgestellten Kombinationstherapie gilt, dass die Effektorzelle 

durch das Markerantigen selektiert werden kann. Dies steht im Gegensatz zu anderen 

Ansätzen mit bispezifischen Antikörperformaten wie beispielsweise bispecific T cell 

engager (BiTE), die als T-Zell rekrutierende Domäne den Pan-T-Zell-Marker CD3 

verwenden (Bargou, 2008; Goebeler, 2016; Mack et al., 1995). Untersuchungen von 

Patienten mit therapierefraktärer ALL unter Blinatumomab (anti-CD19 x anti-CD3, BiTE) 

Therapie zeigten, dass die Anzahl an immunsupressiven regulatorischen T-Zellen (Tregs), 

die ebenfalls durch den bispezifischen Antikörper rekrutiert und aktiviert werden, als 

negativer prädiktiver Faktor gilt (Duell et al., 2017). Im Gegensatz dazu kann durch eine 

entsprechende Konditionierung in vitro bei SAR+ T-Zellen eine Selektion des Phänotyps 

erfolgen und somit die Effektivität der rekrutierten T-Zellen optimiert werden.  

 

4.4.3 Serielle Lyse durch SAR+ T-Zellen 

 

Unter Einsatz bispezifischer Formate mit anti-CD3 als T-Zell rekrutierende Domäne 

konnte erstmals für rekrutierende bsAk demonstriert werden, dass die sequenzielle Lyse 

mehrerer Zielzellen durch eine einzelne T-Zelle wesentlich zur Effektivität dieses Ansatzes 

beiträgt (Bargou, 2008; Hoffmann et al., 2005; Reusch, 2015). Dies basiert auf der 

Überlegung, dass die maximale Lysekapazität eine Funktion der produktiven 

Interaktionen zwischen Antigen und TZR, beziehungsweise synthetischen Antigen-

Rezeptoren ist (Van Der Merwe, 2011).  
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Entsprechend ist eine insgesamt hohe Bindungsaffinität der einzelnen Komponenten 

untereinander hinderlich, da der Wechsel der Interaktionspartner erschwert ist. Dabei ist 

insbesondere eine hohe Affinität für das T-Zell Markerantigen relativ zur Affinität 

gegenüber dem TAA ungünstig. Denn bei Ausprägung der Affinität zugunsten der TAA ist 

von einer Opsonierung der Tumorzellen, anstatt von einer Aggregation der T-Zellen 

inklusive membranständigem Antikörper, auszugehen (Hoffmann, 2005). Ungeachtet 

dessen wurde in der Literatur sowohl für klassische CAR, wie auch für tetravalente bsAk 

mit hochaffinen anti-CD3 Domänen, eine serielle Lyse beschrieben (Liadi et al., 2015; 

Reusch, 2015).  

 

Die Affinität von Liganden und Rezeptoren werden durch die Bindungskonstanten 

beschrieben, wobei ein niedriger Wert eine hohe Affinität zum Ausdruck bringt. Für die 

hier verwendeten Klone, welche als Vorlage für den bsAk dienten, sind folgende Werte 

publiziert: Kd (anti-EGFRvIII; MR1.1): 1,5x10-9; Kd (anti-EpCAM; G8.8): 6,1x10-8 (Farr et 

al., 1991; Kuan et al., 2000). Dadurch ist eine präferenzielle Bindung an SAR+ T-Zellen 

und somit potentiell ungünstiges Affinitätsverhalten anzunehmen. Folglich könnte eine 

Modifizierung der Affinität des Adaptermoleküls zu einer höheren Lysekapazität 

beitragen. 

 

Auch die Valenz für die T-Zell-rekrutierende Domäne wird als relevanter Faktor 

beschrieben. Dabei wird eine Multivalenz für aktivierende T-Zell-Proteine, wie CD3 oder 

CAR, als negativ für die Fähigkeit zur seriellen Lyse betrachtet, da durch Quervernetzung 

eine unspezifische Aktivierung zu erwarten ist (Hoffmann, 2005).  

 

Die in dieser Arbeit vorgestellten Versuche zeigen auch unter einem 1 : 1 Verhältnis von 

Ziel- zu Effektorzellen eine totale Lyse. Es ist dabei zusätzlich zu berücksichtigen, dass 

aufgrund der unvollständigen Transduktion ein reales Verhältnis von maximal 1 : 0,5 

(Tumorzelle/SAR+ T-Zelle) anzunehmen ist. Vor diesem Hintergrund erscheint auch für 

die hier diskutierte Kombinationstherapie eine serielle Lyse als wahrscheinlich. 

Limitierend ist zu erwähnen, dass keine Kontrolle für eine mögliche Proliferation 

getroffen wurde, so dass der beobachtete Effekt auch Folge einer Expansion durch SAR+ 

T-Zellen sein könnte. Ebenso könnte eine unspezifische Lyse durch Quervernetzung der 

SAR nach oben beschriebenen Mechanismen eine Rolle spielen. 

 

4.5 SAR-induzierte Zytotoxizität ist unabhängig von der Granzym-Perforin Achse 

 

Hinsichtlich des eigentlichen Mechanismus der Lyse maligner Zellen durch zytotoxische 

T-Zellen (CTL) werden im Wesentlichen zwei Prinzipien beschrieben. Die Expression von 

membranständigen Liganden der TNF-Superfamilie und deren Bindung an der Zielzelle 
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induziert zum einen Signalkaskaden, die über die Aktivierung von Cystein-Proteasen 

(Caspasen) zur Apoptose der Zielzelle führen. Diesbezüglich konnte vor allem für die 

Liganden TRAIL und FasL (CD95L) eine Rolle in der CTL-vermittelten Tumorlyse 

nachgewiesen werden (Brincks et al., 2008; Trapani et al., 2002; S. Wang et al., 2003). 

 

Zum zweiten führen durch Exozytose aus zytoplasmatischen Vesikeln freigesetzte 

Proteine ebenfalls zum Untergang der Zielzelle. Inhalte dieser Vesikel sind unter anderem 

das membran-spaltende Perforin und Serin Proteasen, die der Familie der Granzyme 

zugerechnet werden (Cullen et al., 2010; Trapani, 2002). Unter Einbeziehung der 

Ergebnisse von Experimenten mit Knockout-Mausmodellen wird generell dem Signalweg 

durch Liganden-Rezeptor Interaktion eine größere Rolle in der Homöostase der 

lymphatischen Reihe zugeschrieben (Takahashi et al., 1994), während die 

Granzym/Perforin Achse als entscheidend für die Elimination maligner Zellen gilt (Smyth 

et al., 2000; van den Broek et al., 1996). 

 

Im Einklang mit diesen Ergebnissen aus der Literatur bestätigen die hier dargestellten 

Untersuchungen zur Veränderung der Transkription nach Stimulation von SAR+ T-Zellen 

die Dominanz der Granzym/Perforin-Achse gegenüber den membrangebundenen 

Liganden. Im Gegensatz dazu zeigten SAR+ T-Zellen aus Prf-/- Knockout-Versuchstieren 

jedoch keine Einschränkung ihres zytotoxischen Potentials in vitro.  

 

Die Expression von Granzym-Isoformen in Abwesenheit von Perforin ist für diverse 

Gewebe beschrieben (Hoves et al., 2010). Gleichzeitig gibt es auch Hinweise auf Perforin-

unabhängige Mechanismen von Granzym. Vereinzelt werden zytotoxische Effekte 

unabhängig von der membran-spaltenden Eigenschaft der Perforine benannt, die 

allerdings aufgrund ihres in vitro Designs mit supraphysiologischen Konzentrationen 

angezweifelt werden dürfen (Gross et al., 2003). Darüber hinaus gibt es zahlreiche 

Beschreibungen extrazellulärer Effekte von Granzymen, die entsprechend auch ohne die 

Formierung der Membranpore durch Perforin auskommen und per se nicht Apoptose 

induzieren, sondern immunmodulatorischer Natur sind (Bhela et al., 2015; Hiebert et al., 

2013; Prakash et al., 2014). 

 

Somit ist trotz dem Nachweis einer fehlenden Relevanz von Perforin für die Zytotoxizität 

nicht abschließend geklärt, welche biologische Konsequenz aus der Hochregulation von 

Granzymen resultiert. Es erscheint zusammenfassend als unwahrscheinlich, dass 

Granzym unabhängig von Perforin eine relevante Rolle in der zellvermittelten Zytotoxizität 

spielt. Inwieweit mögliche immunmodulatorische Funktionen in diesem Modell eine Rolle 

spielen ist anhand der vorliegenden Daten nicht abschließend zu beurteilen. 
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4.6 Wirksamkeitsnachweis der Kombinationstherapie in vivo 

 

Der lokal, passive Kotransfer von T-Zellen, bsAk und Tumorzellen erbrachte einen 

prinzipiellen Wirkungsnachweis in zwei verschiedenen Zelllinien. Dennoch gelang es 

nicht, eine konsistente und vollständige Remission der Tumorlast nach Applikation der 

Kombinationstherapie zu erreichen. Aufgrund des Versuchsaufbaus ist dennoch auf einige 

methodische Limitationen hinzuweisen. 

 

Insbesondere bei soliden Tumoren ist die Migration und Persistenz der T-Zellen im 

Tumorgewebe entscheidend für den klinischen Effekt (Fesnak, 2016; Slaney et al., 2014). 

Die Migration ist natürlicherweise durch die Koapplikation der Zellen in den dargestellten 

Versuchen nicht ausreichend beurteilbar. Grundsätzlich verfügen T-Zellen 

physiologischerweise über die Möglichkeit gezielt zu migrieren und sogar immunologisch 

privilegierte Kompartimente des menschlichen Körpers zu infiltrieren (Miao et al., 2014). 

Die besonderen anatomischen und physiologischen Verhältnisse eines soliden Tumors 

wie beispielsweise der Gewebedruck, das metabolische und immunologische Milieu und 

die veränderte Gefäßstruktur erschweren insgesamt eine gezielte Migration (Slaney, 

2014). Vor diesem Hintergrund ist eine systemische Applikation, beispielsweise durch 

intravenöse oder intraperitoneale Injektion, in Zukunft anzustreben, um das Potential für 

eine klinische Translation abschätzen zu können. Auch die spezielle Pharmakokinetik der 

Kombinationstherapie, für die beide Komponenten im Tumormilieu wirken müssen, kann 

durch einen solchen Kotransfer nicht adäquat beurteilt werden. 

 

Dennoch weist der Therapieerfolg darauf hin, dass die modifizierten T-Zellen in einem 

immunkompetenten Versuchstier offensichtlich keiner vorzeitigen Elimination aufgrund 

hoher Immunogenität unterliegen. Ebenso unterstreicht diese Wirksamkeitsprüfung, dass 

die Kultur, Expansion und Re-Infusion mit diesen konkreten Konstrukten technisch 

durchführbar ist, ohne eine systemische oder lokale Toxizität zu beobachten. Eine 

endgültige Beurteilung ist aber sicherlich nur zulässig, wenn eine systemische 

Applikation erfolgt und auch TTA+, nicht-neoplastische Gewebe dem bsAk sowie den T-

Zellen verstärkt ausgesetzt sind. 

 

Interessanterweise wurde vergleichbaren Ansätzen mit lokalem T-Zell Transfer in der 

Literatur sogar vereinzelt eine Überlegenheit gegenüber dem systemischen Transfer 

zugeschrieben (Adusumilli et al., 2014; Parente-Pereira et al., 2011; Singh et al., 2013). 

Selbst im Therapieeffekt von Metastasen außerhalb des eigentlichen Kompartiments 

zeigte sich der lokale Ansatz überlegen. Dies wurde mit der frühen Antigenexposition und 

der entsprechend besseren Persistenz der T-Zellen begründet (Adusumilli, 2014). 
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4.7 Ausblick 

 

Im Hinblick auf die unspezifische Aktivierung von T-Zellen durch die bivalenten anti-SAR 

Domänen erscheint eine Re-Strukturierung zugunsten eines Formats mit einer 

monovalenten anti-SAR Bindungsstelle zur Reduzierung von off-target Effekten 

erstrebenswert. Da eine bivalente Bindungsstelle auch als potentiell hinderlich für eine 

serielle Lyse beschrieben wurde, könnte dies zusätzlich auch die Lysekapazität 

verbessern. Dies ist Gegenstand weiterer Untersuchungen in der Arbeitsgruppe. 

 

Auch die Bindungsstelle für EpCAM könnte mit einer geringeren Affinität zu einer 

verbesserten Spezifität und Lysekapazität beitragen. Dies stützt sich auf Beobachtungen 

im Rahmen von Versuchen mit klassischen CAR, wo eine eine relativ geringe Affinität zu 

einer besseren Differenzierung des Expressionsmusters des TAA führte. Die maximale 

Effektstärke blieb davon unberührt (M. Chmielewski et al., 2004). Insbesondere im Fall 

von EpCAM, welches über ein breites Expressionsmuster verfügt und sich im 

Wesentlichen durch die verstärkte Expression bei Tumoren kennzeichnet, wäre also eine 

niedriger Affinität der anti-EpCAM Domänen vorteilhaft (Munz et al., 2009). Synergistisch 

könnte durch Kombination mit anderen anti-TAA Bindungsstelle die Spezifität erhöht 

werden (Chames, 2009; Lameris, 2014). 

 

Hinsichtlich der zellulären Komponente, inklusive der SAR, gilt es vor dem Hintergrund 

der eingeschränkten Effektivität in den Pilotversuchen die in vivo Aktivität zu steigern. 

Wesentlich sind dabei, vor allem bei soliden Tumoren, Strategien zur Reduzierung des 

lokalen, immunsuppressiven Milieus (Sadelain, 2017). Neben der bereits angewandten 

systemischen Prä-Konditionierung kommen dabei unter anderem auch 

immunmodulatorische small molecules wie IDO-Inhibitoren, Lenalidomid und Antikörper 

der Gruppe der Checkpoint-Inhibitoren in Betracht (John et al., 2013; Munn, 2012; 

Ramsay et al., 2012). Auch zusätzliche gentechnische Modifikationen wie dominant-

negative Rezeptoren oder stimulatorische PD1-Rezeptoren könnten zur Verbesserung der 

Effektivität eingesetzt werden (Cherkassky et al., 2016; Kobold, Grassmann, et al., 2015). 

Möglich sind auch zusätzliche Sequenzen auf dem verwendeten Vektor, die eine Sekretion 

von immunmodulatorischen Zytokinen nach sich ziehen würden (Hoyos et al., 2010).  

 

Sowohl die unspezifische Aktivierung der T-Zellen via Quervernetzung der SAR, als auch 

die ubiquitäre Expression von EpCAM bei zugleich hoher Affinität, lassen die 

Wahrscheinlichkeit für ein CRS oder andere schwerwiegende Komplikationen bei einer 

potentiellen klinischen Anwendung inakzeptabel hoch erscheinen. Es sind daher noch 

weitere Untersuchungen zur Wirksamkeit und Sicherheit des Ansatzes erforderlich, die 

derzeit in der Arbeitsgruppe weiter beforscht werden. 
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5 Zusammenfassung 

 

Der Einsatz T-Zell-rekrutierender, bispezifischer Antikörper zeigt in verschiedenen 

Ansätzen großes Potential zur Verbesserung der zellbasierten Therapie onkologischer 

Erkrankungen. Die in der vorliegenden Arbeit untersuchte Kombination von 

bispezifischen Antikörpern zusammen mit T-Zellen und deren transduzierten 

Fusionsproteinen bietet dabei zahlreiche Vorzüge. Die Komponenten sollen in Summe 

eine MHC-unabhängige, selektive Rekrutierung mit gleichzeitiger Aktivierung der T-

Zellen gewährleisten und im Sinn eines modularen Konstrukts flexibel austauschbar sein. 

Konkretes Ziel dieser Arbeit war, die weitere Charakterisierung des dargestellten Ansatzes 

am Beispiel von zwei unterschiedlichen Modellsystemen zu zeigen. Hinsichtlich der 

Fusionsrezeptoren wurden dabei extrazelluläre Markerantigene (EGFRvIII und Cripto) mit 

intrazellulären Stimulationsdomänen kombiniert. Als bispezifische Antikörper wurden 

tetravalente Formate mit Spezifität gegen anti-EpCAM-anti-EGFRvIII, beziehungsweise 

anti-EpCAM-anti-Cripto, eingesetzt. 

 

Die Funktionalität dieses Ansatzes wurde in vitro durch verschiedene Endpunkte 

dargestellt. Durch Stimulation der funktional transduzierten T-Zellen mittels bispezifischer 

Antikörper zeigte sich eine gesteigerte Zytokin-Sekretion, eine spezifische Lyse der 

Tumorzellen sowie eine Differenzierung hin zu einem zytotoxisch aktiven Zellphänotyp. 

Der Vergleich unterschiedlicher Liganden der Fusionproeteine erlaubte Aussagen zu 

notwendigen Anforderungen zur Stimulation der transduzierten T-Zellen und zeigte die 

bivalenten Paratope der bispezifischen Antikörper als mögliche Ursache für eine 

unspezifische Aktivität in Abwesenheit des TAA an. Eine Analyse der Dosis-

Wirkungsbeziehungen stellte dar, dass bereits eine niedrige Sättigung der exprimierten 

Rezeptoren der T-Zellen eine subtotale Lyse auslöst. Weitere Versuche demonstrierten 

zudem, dass die Granzym-Perforin-Achse für die durch SAR+ T-Zellen vermittelten Lyse 

entbehrlich ist. In vivo wurde in zwei syngenen, subkutanen Maustumormodellen mit den 

Zelllinien B16-OVA-EpCAM und Panc-OVA-EpCAM keine relevante lokale oder 

systemische Toxizität der Kombinationstherapie beobachtet, während Tumorwachstum 

und Überleben nicht signifikant verbessert werden konnten.  

 

Die Ergebnisse dieser Arbeit lieferten somit neue Erkenntnisse zu Wirksamkeit und 

Wirkmechanismen der Kombinationstherapie von Rezeptor-transduzierten T-Zellen mit 

bispezifischen Antikörpern. Diese Befunde können in der Folge einen wichtigen 

Ausgangspunkt für weitere Forschungsbemühungen darstellen. Insbesondere wurde im 

Hinblick auf eine mögliche Weiterentwicklung der Kombinationstherapie deutlich, dass 

eine Modifikation der Struktur der bispezifischen Antikörper zu einer Verbesserung der 

Spezifität, sowie potentiell auch zu einer Erhöhung der Lysekapazität führen könnte. 
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7 Verzeichnis der Abkürzungen  

ADA    Anti-drug antibodies 

ALL    Akute lymphatische Leukämie 

AUC    Area under the curve 

APC    Allophycocyanin 

BiTe    Bispecific T-cell engager 

BSA    Bovines Serum-Albumin 

bsAk    Bispezifischer Antikörper 

CAR    Chimeric antigen receptor 

CD    Cluster of differentiation 

cDNA    Complementary desoxyribonucleic acid 

CDR    Complementary determining region 

CRS    Cytokine release syndrome 

Cy2    Cyanin 2 

CTL    Zytotoxische T-Zellen 

ddH2O    Double deionized water 

DMSO    Dimethylsulfoxid 

DNA    Desoxyribonukleinsäure 

dNTP    Desoxy-Nukleosidtriphosphat 

EDTA    Ethylen-Diamin-Tetraessigsäure 

EGF    Epithelial growth factor 

EGFR    Epithelial growth factor receptor 

EGFRvIII   Epithelial growth factor receptor, transcript variant III 

ELISA    Enzyme-linked immunosorbent assay 

EpCAM   Epithelial cell adhesion molecule 

Fab    Fragment antigen binding 

FasL    Fas-Ligand 

Fc    Fragment cristallizable 

FcyR    Fcg Rezeptor 

Fc-EGF    Fc-tagged EGF 

FBS    Fötales bovines Serum 

FITC    Fluorescein-Isocyanat 

Gzm    Granzym 

LDH    Laktatdehydrogenase 

IFN    Interferon 

Ig    Immunglobulin 

IL    Interleukin 

mAk    monospezifischer Antikörper 

min    Minuten 
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MFI    Mittlere Fluoreszenzintensität 

MHC    Major histocompatibility complex 

mRNA    Messenger RNA 

NHL    Non-Hodgkin-Lymphom 

PBS    Phosphate-buffered saline 

PCR    Polymerase-Kettenreaktion 

PD-1    Programmed cell-death protein 1 

PD-L1    Programmed cell-death protein 1 – ligand-1 

PE    Phycoerithrin 

PerCP    Peridinin-Chlorophyll-A-Protein 

PerCPCy5.5   Peridinin-Chlorophyll-A-Protein-Cyanin 5.5 

Prf    Perforin 

RNA    Ribonukleinsäure 

RPMI    Roswell Park Memorial Institute 

SAR    Synthetic agonistic receptor 

scvF    Single chain variable fragment 

SEM    Standard error of mean 

TAA    Tumor-assoziiertes Antigen 

TZR    T-Zell-Rezeptor 

TCM    T central memory cells 

TEM    T effector memory cells 

TIL    Tumor infiltrating lymphocytes 

Tregs    T regulatory cells 

TSCM    T memory stem cells 

TRAIL    Tumor necrosis factor-related apoptosis inducing ligand 

ZVH    Zentrale Versuchstierhaltung 
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