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1 Einleitung 

Die Yersinia-HPI (High-Pathogenicity Island) stellt eine klassische Pathogenitätsinsel dar 
(Hacker et al., 1990, Rakin et al., 1995). Sie umfasst einen genetisch instabilen, 45-100 kb 
großen genomischen DNA-Bereich, der ein siderophorvermitteltes Eisenaufnahmesystem 
kodiert (Heesemann, 1987, Pelludat et al., 1998). Über die funktionelle Kernregion der Insel 
werden Synthese, Transport und Aufnahme des Siderophors Yersiniabaktin vermittelt. Die 
Expression der Yersinia-HPI trägt maßgeblich zur Virulenzausprägung hochpathogener 
Yersinia sp. (Y. pestis, Y. pseudotuberculosis, Y. enterocolitica) bei (Almeida et al., 1993, 
Heesemann, 1987). Mutationen des Genbereiches führen zu einer deutlichen 
Virulenzabschwächung der Yersinien und machen die Bedeutung der HPI für das 
Infektionsverhalten deutlich (Rakin et al., 1994). Eine orthologe HPI konnte bei 
humanpathogenen Escherichia coli mit einer Sequenzhomologie von 99,7 % sowie bei 
anderen Vertretern der Familie Enterobacteriacae, wie Klebsiella pneumoniae, K. oxytoca, 
Citrobacter koseri und Enterobacter sp. identifiziert werden (Schubert et al., 2000). Schubert 
et al. (1998) wiesen die HPI bei 93 % enteroaggregativer E. coli (EAEC), bei 27 % 
enteroinvasiver E. coli (EIEC), bei 5 % enteropathogener (EPEC) und enterotoxischer 
(ETEC) E. coli sowie bei 80 % klinischer Blut- und Urinisolate nach. Von diesen klinischen 
Isolaten zeigten 70 % eine funktionell aktive HPI. Extraintestinale E. coli stellen die 
wichtigsten Verursacher akuter Harnwegserkrankungen bei Mensch und Tier dar. Über 7 Mio. 
Krankheitsfälle werden jährlich in den USA in der Humanmedizin gemeldet (Hooton & 
Stamm, 1997). Human- und veterinärmedizinisch relevante extraintestinale E. coli (ExPEC) 
zeigen häufig ähnliche Pathogenitätsmerkmale (Gophna et al., 2001, Johnson et al., 2000). 
Interessanterweise konnte die Yersinia-HPI auch bei dem kommensalen E. coli Stamm Nissle 
1917 (Mutaflor®) nachgewiesen werden, der erfolgreich v.a. in der humanmedizinischen 
Praxis zur Behandlung gastrointestinaler Störungen eingesetzt wird. Dieser apathogene 
Stamm zeichnet sich dadurch aus, dass er keinerlei bekannte Virulenzfaktoren aufweist.  
In der vorliegenden Arbeit sollte die Bedeutung der HPI für uropathogene und kommensale 
(Mutaflor®) E. coli im Tiermodell der Maus untersucht werden. Neben der Expression 
relevanter Genbereiche sollte der Einfluss von Insertionsmutanten dieser Gene auf die 
Kolonisierungsfähigkeit des Darmes und die Uropathogenität bestimmt werden.  
Die Kenntnis über molekulare Mechanismen von Pathogenitätsfaktoren kann zu einer 
gezielten Behandlung der Erkrankung und zur Entwicklung spezifischer Impfstoffe führen. 
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2 Schrifttum 

2.1 Taxonomie und Vorkommen der Spezies Escherichia coli 

Die Spezies Escherichia coli gehört zur Gattung Escherichia und wird der Familie 

Enterobacteriacae (enteron, griech.: der Darm) zugeordnet. E. coli kommt bei Mensch und 

Tier sowohl als Kommensale in der Normalflora des Intestinaltraktes als auch als wichtiger 

Krankheitserreger intestinaler und extraintestinaler Infektionen vor. Es handelt sich um ein 

gramnegatives, peritrich begeißeltes gerades Stäbchen, das zwischen 2,0 und 6,0 µm lang und 

1,1-1,5 µm breit ist. Der Nachweis biochemischer Eigenschaften, wie etwa die 

Lactosespaltung durch das Enzym β-Galaktosidase bei 99 % aller E. coli Stämme (Le Minor 

et al., 1962), bildet die Grundlage der Differenzierung der Enterobacteriacae. Die 

serologische Einteilung der unterschiedlichen E. coli Stämme wird durch eine Serotypisierung 

(Kauffmann, 1947) über O-, K- und H-Antigene möglich. O-Antigene stellen dabei 

hitzestabile Bestandteile des LPS-Komplexes der Zellwand, K-Antigene Polysaccharide der 

Kapsel und H-Antigene Geißelantigene dar. Die Vielzahl der Antigene unterschiedlicher 

Serovare ergibt insgesamt über tausend Kombinationsmöglichkeiten. Die Bestimmung der 

Serotypen ist ein wichtiges Orientierungsmittel für die Einordnung der E. coli Stämme in 

Hauptgruppen.  

Während sich die zur Begleitflora zählenden kommensalen E. coli durch Apathogenität 

auszeichnen, sind darmpathogene E. coli durch Pathogenitätsfaktoren wie Entero- und 

Cytotoxine, sowie Adhäsions- und Invasionsfaktoren charakterisiert. Extraintestinale 

Infektionen enstehen durch das Vordringen von Colibakterien der eigenen Flora in sterile 

Bereiche des Organismus, in denen eine Vermehrung begünstigt wird. Eine Adaption an die 

neue Umgebung wird meist durch zusätzliche spezielle Virulenzfaktoren, wie Adhäsine, 

Siderophore, Toxine, Invasine und Polysaccharid-Kapseln (Johnson, 1991) ermöglicht.  
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2.1.1 Die human- und veterinärmedizinische Bedeutung der Spezies E. coli 

Die Spezies E. coli ist als Verursacher intestinaler und extraintestinaler Infektionen weit 

verbreitet. 

Eine Bedeutung als Zoonoseerreger kommt den enterohämorrhagischen E. coli (EHEC) zu. 

Diese stellen eine häufige Ursache übertragbarer Infektionen über Lebensmittel, Trinkwasser 

und Oberflächenwasser dar. So werden in Deutschland pro Jahr auf 100.000 Einwohner 13 

Fälle einer enterohämorrhagischen Infektion diagnostiziert. Der Erreger konnte in über 50 % 

aller untersuchten Fäzes-Isolate des Rindes festgestellt und das Rind als Erregerreservoir 

identifiziert werden (Baljer & Wieler, 1999). Charakteristisch für enterohämorrhagische E. 

coli (EHEC) bzw. Shiga-Toxin-bildende E. coli (STEC) ist die Bildung des Shiga-Toxins 

(Stx) (Mainil, 1993) und die durch Fimbrien vermittelte Adhärenz an Enterozyten (Wieler et 

al., 1997), durch die attaching and effacing (AE-) Läsionen verursacht werden (Moon et al., 

1983, Goffaux et al., 2001). Humanpathogene STEC exprimieren häufig das Enterohämolysin 

oder EHEC-Hämolysin und das als Adhäsionsfaktor wirkende Membranprotein Intimin. 

EHEC können beim Menschen eine hämorrhagischen Kolitis sowie das hämolytisch 

urämische Syndrom (HUS) verursachen, das mit Nierenversagen, Thrombozytopenie und 

Anämie einhergeht (Kayser et al., 2001), während EHEC-Infektionen beim Tier eher 

inapparent verlaufen. Wichtige Bedeutung kommt ihnen jedoch als Erreger der 

Colienterotoxämie (Ödemkrankheit) abgesetzter Schweine zu, die häufig tödlich verläuft. Das 

Verotoxin STX2e sowie F18ab-Fimbrien sind hierbei relevante Virulenzfaktoren, die zur 

Ödembildung und hypoxischer Nervenschädigung führen.  

Weitere bedeutende intestinale E. coli sind die enterotoxischen E. coli (ETEC), deren 

Pathogenität zum einen auf der fimbrienvermittelten Anheftung an Enterozyten, zum anderen 

auf der Bildung der Enterotoxine LT (hitzelabil) und ST (hitzestabil) beruht, die zusammen 

oder einzeln produziert werden. LT ist ein dem Choleratoxin ähnliches Toxin, das die 

Aktivität der Adenylatzyklase stimuliert. Durch eine Störung des Elektrolythaushaltes kommt 

es zu einer sekretorischen Diarrhö mit starker Flüssigkeitsansammlung im Dünndarm. ST 

stimuliert die Aktivität der Guanylatzyklase und induziert ebenfalls eine sekretorische 

Diarrhö. ETEC lösen zu über 50 % Reisediarrhö aus, hierbei charakterisieren wässrige 

Durchfälle das klinische Bild. Eine große wirtschaftliche Bedeutung kommt ihnen als Erreger 

der Neugeborenen- und Jungtier-Diarrhö bei Rind und Schwein zu. Ohne therapeutische 

Behandlung können hierbei hohe Mortalitätsraten auftreten. 

Enteropathogene E. coli (EPEC) heften sich mithilfe des sog. "EPEC-adhesion-factors" an 

Epithelzellen des Dünndarms, zerstören die Mikrovilli und Mucosazellen und führen so zu 
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attaching and effacing (AE-) Läsionen der Darmwand (Moon et al., 1983, Goffaux et al., 

2001). Sie sind vor allem in Entwicklungsländern Verursacher tödlich verlaufender 

Säuglingsdiarrhöen. Auch in der Veterinärmedizin spielen sie insbesondere bei der Dysenterie 

5-10 Wochen alter Kaninchen eine Rolle. Enteroinvasive E. coli (EIEC) adhärieren und 

invadieren die Schleimhaut des Kolons, wobei sie geschwürige Entzündungen verursachen 

können. Die Pathogenese und das klinische Bild ähnelt in der Humanmedizin den 

Shigellosen, bei denen es zu wässrigen Durchfällen, späterer Beimengung von Schleim, Eiter 

und Blut sowie Darmkrämpfen und Fieber kommen kann. Eine Tierpathogenität besteht nicht. 

Nekrotoxische E. coli (NTEC) bilden Cytonekrosefaktoren (CNF1). CNF1 kommt als 

Virulenzfaktor extraintestinaler Coliinfektionen bei Menschen, CNF2 bei Isolaten aus 

Kälbern mit Durchfällen und Septikämien vor. Enteroaggregative E. coli (EaggEC) lösen 

chronische Durchfallerkrankungen bei Menschen aus. Fimbrien und Cytotoxine bestimmen 

die Pathogenese. Diffus adhärente E. coli (DAEC) werden durch zwei spezifische Fimbrien 

bestimmt (u.a. AIDA= adhesin involved in diffuse adherence) und in humanen Durchfall-

isolaten nachgewiesen.  

Bei extraintestinalen Infektionen spielt E. coli vor allem als Erreger von Harnwegsinfekten 

(uropathogene E. coli= UPEC) bei Mensch und Tier eine wichtige Rolle (Beutin, 1999, 

Johnson & Stamm, 1989, Ling, 1995, Wooley & Blue, 1976). Man geht davon aus, dass beim 

Menschen weltweit jährlich 150 Mio. Harnwegsinfekte vorkommen, was einen medizinischen 

Kostenaufwand von über 6 Mrd. Dollar verursacht (Harding & Ronald, 1994). Mit 70-95 % 

stellt E. coli den Hauptverursacher akuter humaner Harnwegsinfekte dar (Hooton & Stamm, 

1997). Die jährliche Inzidenz akuter Harnwegsinfekte bei jungen Frauen beträgt 0,5-0,7 

(Hooton et al., 1996), wobei zu 25-30 % rekurrente Infektionen auftreten (Neu, 1992). E. coli-

Infektionen der Harnwege zählen damit zu der häufigsten bakteriellen Infektion bei Frauen. 

Die Erreger manifestieren sich entweder im unteren Bereich der Harnwege und verursachen 

Urethritis, Zystitis oder Urethrozystitis, oder sie etablieren sich ergänzend in Nierenbecken 

und Niere, so dass eine Zystopyelitis oder Pyelonephritis entstehen kann. Spezifische 

Virulenzfaktoren der UPEC, wie Adhäsine, Invasine, LPS, Eisenaufnahmesysteme und 

Toxine (Hämolysin, CNF1-Faktor), sind hierbei für die Infektionsentwicklung von Bedeutung 

(Mühldorfer et al., 2001, Mulvey, 2002).  

Als Verursacher von Septikämien führen E. coli-Infektionen zu bedeutenden Mortalitäts- und 

Morbiditätsraten (Russo & Johnson, 2003). Neben der Coliseptikämie der Kälber und 

Lämmer ist die Coliseptikämie des Geflügels eine wichtige Erkrankung. Avian E. coli 

(APEC) (Dozois et al., 2003, Brown & Curtiss, 1996) führen hierbei zu extraintestinalen 

Infektionen (Aerosacculitis, Pneumonie, Septikämie, Perikarditis, Perihepatitis), die 
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wirtschaftlich bedeutsame Verluste erbringen. Zu weiteren extraintestinalen E. coli-

Infektionen zählen Früh- und Neugeborenen-Meningitis, Peritonitis, Cholezystitis, 

Appendizitis, Wundinfektion, Pneumonie, Pyometra (Chen et al., 2003) sowie Mastitis. Das 

Mastitis-Metritis-Agalaktie-Syndrom der Sauen (MMA) gehört hierbei weltweit zu den 

wirtschaftlich bedeutsamsten Schweinekrankheiten und wird vorrangig von E. coli Stämmen 

und anderen Enterobacteriacae verursacht (Bertschinger et al., 1997). 

Unterschiedliche Arbeitsgruppen konnten beim Vergleich der Virulenzfaktoren 

extraintestinaler E. coli bei Mensch und Tier Gemeinsamkeiten feststellen (Johnson et al., 

2000, Johnson et al., 2001, Low et al., 1988, Westerlund et al., 1987). Das weite Spektrum 

der E. coli-Infektionen sowie das Vorkommen gemeinsamer Virulenzfaktoren bei human- und 

veterinärmedizinisch relevanten ExPEC-Stämmen unterstreicht die Bedeutung der 

Erforschung von Virulenzfaktoren sowohl für die Human- als auch für die Tiermedizin. 

2.2 Mutaflor®, E. coli Stamm Nissle 1917 

2.2.1 Herkunft 

Der E. coli Stamm Nissle 1917 wurde während des 1. Weltkrieges im Jahr 1917 durch den 

Freiburger Hygieniker und Bakteriologen A. Nissle aus den Fäzes eines Pionieroffiziers 

isoliert, der im Balkankrieg im Gegensatz zu all seinen Kameraden vollkommen darmgesund 

blieb (Nissle, 1918, Nissle, 1925). Die Herstellung und den Vertrieb der E. coli Stamm Nissle 

1917 haltigen Kapseln unter dem Namen Mutaflor® wurde 1917 von der Fa. G. Pohl, Danzig, 

begonnen und seit 1970 von der Ardeypharm GmbH in Herdecke weitergeführt. Der vom 

lateinischen Wort mutare (= verändern) abgeleitete Begriff sollte die Fähigkeit des E. coli 

Stammes zur Beeinflussung der Darmflora zum Ausdruck bringen.  

2.2.2 Stammcharakterisierung und biologische Eigenschaften 

Der E. coli Stamm Nissle 1917 ist in der Deutschen Sammlung von Mikroorganismen als E. 

coli DSM 6601 registriert und vom WHO-Referenzzentrum für Escherichia coli in 

Kopenhagen als Serovar O6:K5:H1 typisiert. Eine heterogene Gruppe von Bakterien lässt sich 

dieser Serogruppe zuordnen, wie z. B. Mitverursacher von Harnwegsinfektionen bei Tier und 

Mensch. Der E. coli Stamm Nissle 1917 weist dabei keines der für harnwegspathogene E. coli 

Stämme typischen Uropathogenitätsmerkmale auf und stellt einen apathogenen Vertreter der 

O6-Gruppe dar (Blum et al., 1995). Virulenzmerkmale wie Invasivität, Serumresistenz, 

Produktion von Toxinen (H-LT, H-ST, CNF1, Hly, SLT I, SLT II), Typ III 
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Sekretionssystemsystem, Mannose-resistente Hämagglutination, Expression 

virulenzassoziierter Fimbrien (CFA I/II, P-, M-, S-Fimbrien) sowie Resistenz gegenüber 

gängigen, gegen gramnegative Enterobakterien wirksame Antibiotika, sind bei ihm nicht 

nachweisbar. Das Genom des E. coli Stamm Nissle 1917, Mutaflor® weist zwei kleine 

genetisch stabile Plasmide auf (pMUT1 und pMUT2), die weder Pathogenitätsfaktoren noch 

Antibiotikaresistenzen besitzen (Blum-Oehler et al., 2003) und nicht auf andere E. coli 

Stämme transferierbar sind. Fremd-DNA in Form von Plasmiden wird kaum akzeptiert. 

E. coli Stamm Nissle 1917, Mutaflor® hat sich als effektiver Kolonist des menschlichen und 

tierischen Darmes erwiesen und verfügt offenbar über verschiedene Faktoren, die die 

Etablierung und das Überleben im Wirtsorganismus ermöglichen. Dazu gehören drei 

verschiedene Fimbrientypen (F1A, F1C und Curli-Fimbrien), Mikrozine und für die Motalität 

verantwortliche Geißeln des Serotyps H1. Der Stamm produziert mehrere für die 

Eisenaufnahme wichtige Siderophore (Aerobaktin, Enterobaktin, Salmochelin, Colibaktin, ein 

Hämin- und ein Citrat-abhängiges Eisenaquisitionssystem und das Yersiniabaktin) sowie 

kurzkettige Karbonsäuren (vorrangig Formiat und Acetat), die Darmmotalität und 

Durchblutung der Darmschleimhaut fördern (Hacker et al., 2001). Mutaflor® zeigt in vitro 

Effekte gegen einige enteropathogene E. coli Stämme, wie z.B. Salmonella enteritidis, 

Shigella dysenterica, Yersinia enterocolitica, Vibrio cholerae, Proteus vulgaris und Candida 

albicans. Die Ursachen für dieses antagonistische Verhalten sind bislang nicht bekannt. 

Bisherige Untersuchungen zeigten hierbei, dass es sich bei dem entscheidenden Faktor weder 

um den direkten Kontakt zwischen den Spezies noch um die produzierten Mikrozine handelt 

(Ölschläger et al, 2001). Eine weitere Besonderheit zeigt seine modifizierte LPS-Struktur 

(Zähringer et al., 2001), die dem Stamm offenbar immunmodulatorische Eigenschaften 

(sowohl spezifische als auch unspezifische) verleiht, ohne immunotoxisch zu wirken. Somit 

ist dem E. coli Stamm Nissle 1917, Mutaflor® eine Zwischenstellung zwischen 

physiologischen und klassisch pathogenen Keimen eigen. 

2.2.3 Therapeutischer Einsatz von Mutaflor ®, E. coli Stamm Nissle 1917 

Neben gängigen antiinflammatorischen Medikamenten gewinnen Probiotika als weiteren 

therapeutischen Ansatz bei chronisch entzündlichen Darmerkrankungen mehr und mehr an 

Bedeutung. Während durch die gegenwärtig eingesetzten Medikamente überwiegend auf die 

Beeinflussung der Immun- bzw. Entzündungsreaktion gezielt wird, versucht man mit Gabe 

von Probiotika die enterische Mikroflora zu beeinflussen (Hoffmann & Kruis, 2002). 

E. coli Stamm Nissle, Mutaflor® wird bei einem großen Spektrum von Darmerkrankungen 

eingesetzt: Behandlungserfolge erzielte man sowohl bei akuten infektiösen 
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Darmerkrankungen, wie Salmonellosen und Shigellosen, als auch bei chronisch 

rezidivierenden Diarrhöen, chronischen Obstipationen, Meteorismus, Colitis ulcerosa und 

Morbus Crohn (Kruis et al., 2001, Rembacken et al., 1999, Malchow, 1997, Möllenbrink & 

Bruckschen, 1994). Auch Fernwirkungen auf Erkrankungen außerhalb des Darmes, die aber 

mit einer veränderten Darmflora in Zusammenhang stehen, wurden beobachtet 

(Harnwegsinfektionen, Arthritis, Allergien, Ekzeme, Stomatitis) (Sonnenborn & Greinwald, 

1991). Studien an Neugeborenen ergaben eine Verhinderung der Besiedlung mit 

Hospitalkeimen bei Gabe von Mutaflor® in der ersten Lebenswoche und eine Steigerung 

lokaler und systemischer Immunoglobuline (Lodinova-Žádníková et al., 1994). Der Einsatz 

von E. coli Stamm Nissle, Mutaflor® wird nicht nur in der Humanmedizin sondern ebenfalls 

in der Veterinärmedizin beobachtet. So konnten schon Enteritis-Epidemien bei Saugkälbern 

durch Gabe von Mutaflor® bei neugeborenen Kälbern verhindert werden. 

2.2.4 Zusammenfassung Mutaflor® 

Für E. coli Stamm Mutaflor® liegt durch serologische, biochemische und molekulargenetische 

Typisierungen eine klare Stammcharakterisierung vor. Dennoch sind wichtige 

Wirkungsweisen, wie der beobachtete Antagonismus zu anderen Keimen, bislang ungeklärt. 

Interessanterweise konnte die Yersinia-HPI, die maßgeblichen Einfluss auf die Virulenz von 

Yersinia sp. hat, bei dem apathogenen E. coli Stamm Mutaflor  nachgewiesen werden. Zur 

Verwendung von Mikroorganismen als Probiotikum müssen bestimmte Anforderungen erfüllt 

werden. Hierzu gehört das Fehlen von transferierbaren genetischen Elementen, die 

Pathogenitätsfaktoren oder Antibiotikaresistenzen übertragen. Somit wird im ersten Abschnitt 

der Arbeit die genaue Bedeutung der Yersinia-HPI des Mutaflor®-E. coli für die probiotische 

Wirkung untersucht. Grundlage der Untersuchungen sind Vorversuche, die ein 

funktionsfähiges Yersiniabaktin-Siderophor-System der Yersinia-HPI bei E. coli Mutaflor® 

zeigen. 
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2.3 Pathogenitätsinsel 

Die Pathogenität von Bakterien ist ein multifaktorieller Prozess (Griffiths, 1983). Neben 

pathogenen Fähigkeiten des Mikroorganismus spielen Interaktionen zwischen Wirt und 

Erreger, wie Abwehrlage des Wirtes, anatomische Besonderheiten, physiologische 

Gegebenheiten der Wirtsflora, Temperatur, pH-Wert, Luftfeuchte und das Vorhandensein 

bestimmter Nährstoffe, eine entscheidende Rolle. Für die Eigenschaften eines Erregers sind 

zwei Genklassen relevant. Zum einen sind dies Gene, die für das Überleben im Wirt und in 

der wirtsunabhängigen Umwelt wichtig sind. Sie kommen sowohl bei pathogenen als auch bei 

apathogenen Keimen vor. Zum anderen spielen für die Pathogenität einer Spezies spezielle 

Gene eine Rolle, die bei apathogenen Vertretern derselben Spezies nicht vorhanden sind. 

Diese Virulenzfaktoren können sowohl extrachromosomal als auch chromosomal kodiert sein 

(Groisman & Ochman, 1996). 

Ein horizontaler Transfer virulenzassoziierter Gene zwischen verschiedenen Spezies wird 

durch Virulenzplasmide, Bakteriophagen, Transposons und sogenannte Pathogenitätsinseln 

(PAI) möglich. Bei den Pathogenitätsinseln handelt es sich um chromosomale, 

virulenzassoziierte Gencluster, die gemeinsame, auf einen horizontalen Transfer hinweisende 

Charakteristika zeigen (Abb. 1) (Hacker et al., 1997): 

 

1. PAIs kodieren einen oder meist mehrere Virulenzfaktoren (Adhäsine, Invasine, 

Eisenaufnahmesysteme, Toxine, Typ III und Typ IV Sekretionssystem) 

2. PAIs kommen im Genom pathogener Stämme vor, nicht aber bei apathogenen 

Stämmen derselben oder nahe verwandter Spezies 

3. es handelt sich um relativ große Genabschnitte (10-200 kb) 

4. PAIs unterscheiden sich oft in ihrem G+C mol% Gehalt und in der Kodierung von 

Aminosäuren durch bevorzugte spezifische Basentripletts vom Wirtsgenom 

5. PAIs werden oft von zwei identischen DNA-Sequenzen begrenzt, die als direct 

repeats (DR) bezeichnet werden. DR haben meist eine Größe von 16-20 bp (Hacker & 

Kaper, 1999) und stellen den DNA-Bereich homologer Rekombination dar 

6. PAIs sind oft mit tRNA-Genen assoziiert. In vielen Prokaryoten und einigen 

Eukaryoten sind konserviert vorliegende tRNA-Gene oft Ansatzstelle für die 

Integration fremder DNA. Die 3'-Region der tRNA ist meist identisch zu der 

Anheftungsstelle von Bakteriophagen (Cheetham & Katz, 1995). Zusätzlich findet 
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sich oft das Phagen-Integrase-Gen in unmittelbarer Nähe zu der tRNA, was auf eine 

ursprüngliche Bakteriophagen-Einheit der PAI oder Teile von ihr schließen lässt 

7. PAIs tragen oft Mobilitätsfaktoren, wie Integrasen, Transposasen oder Teile von 

Insertionselementen (IS), die der PAI einen instabilen Charakter verleihen 

8. PAIs zeigen anstelle einer homogenen eher eine Mosaikstruktur, die u.a. durch 

schrittweise Umstrukturierung über IS-Elemente entstanden sein kann. 
 

Abbildung 1: Genetische Struktur einer pathogenen Insel (PAI). Die PAI umfasst repräsentative 

charakteristische genetische Elemente, wie direct repeats (DR), ein tRNA-Gen in der Nähe eines Integrase-

Gens (int), Mobilitätsgene (mob A, B) und Virulenz-Gencluster (vir A, B). 

Pathogenitätsinseln wurden zuerst bei Escherichia coli entdeckt (Blum et al., 1994) und 

mittlerweile bei einer Vielzahl pathogener Bakterien nachgewiesen (Strauss & Falkow, 1997, 

Hacker & Kaper, 2000). Sie werden überwiegend bei gramnegativen Bakterien gefunden 

(Salmonella, E. coli, Yersinia, Vibrio cholera, Helicobacter pylori), kommen aber auch bei 

grampositiven Bakterien, wie z.B. Listeria ivanovii und Staphylococcus aureus, vor. Bei 

grampositiven Keimen wurden im Gegensatz zu den dargestellten Charakteristika bislang 

weder direct repeats noch Mobilitätsgene nachgewiesen, was auf eine stabile Integration der 

Insel in das Wirtsgenom deutet (Hacker et al., 1997). 

PAIs können neben den gemeinsamen Charakteristika unterschiedliche Genstrukturen 

aufweisen. Während einige PAIs, wie z.B. bei Salmonella enterica (Hensel et al., 1997), 

kompakte funktionale Gencluster umfassen, gibt es andere, wie z.B. bei UPEC, die 

zusätzliche offene Leseraster mit unbekannten Funktionen besitzen (Hacker & Kaper, 1999). 

PAIs von Salmonella enterica und intestinalen E. coli sind stabil integriert, wohingegen PAIs 

von UPEC, Helicobacter pylori und Yersinia sp. eine hohe Tendenz zu Deletion zeigen. Die 

unterschiedliche Struktur und Stabilität korreliert mit dem entsprechenden Evolutionsstadium 

der integrierten PAI (Hacker & Kaper, 1999): PAIs entstehen durch Integration von Phagen, 

Plasmiden oder konjugativen Transposons. Stellt die integrierte DNA einen Selektionsvorteil 

Pathogenitätsinsel 
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für den Wirt dar, werden im Laufe der Zeit durch Deletion bzw. Inaktivierung von Genen, 

aufgrund von Punktmutationen, Gene, wie z. B. Integrasen, ausgeschaltet und die Insel somit 

im Genom stabilisiert. Dieser Adaptionsprozess wird auch als "homing" bezeichnet (Lee, 

1996). Im weiteren Evolutionsgeschehen werden G+C mol% Gehalt sowie Aminosäure-

Kodierung durch Punktmutationen nach und nach adaptiert bis die PAI letztendlich nicht 

mehr vom ursprünglichen Wirtsgenom abzugrenzen ist.  

Jeder lebende eukaryotische und prokaryotische Organismus ist im Sinne der darwinistischen 

Lehre das Resultat evolutionärer Entwicklungsprozesse (Arber, 2000). Punktmutationen, 

genetische Umstrukturierungen ("rearrangements") und horizontaler Transfer (Ziebuhr et al., 

1999) führen zu neuen genetischen Strukturen und helfen dem Organismus sich an die immer 

wechselnde Umgebung anzupassen und der natürlichen Selektion standzuhalten. Durch die 

Übertragung genetischer Inseln wird im Gegensatz zu dem langsamen Evolutionsprozess 

durch Punktmutationen eine Evolution "in großen Sprüngen" ermöglicht (Groisman & 

Ochman, 1996, Finlay & Falkow, 1997). So werden drastische Veränderungen im 

Wirtsgenom innerhalb kürzester Zeit erreicht (Ochman et al., 2000), was einen deutlichen 

Selektionsvorteil durch schnellere Anpassungsfähigkeit für die Bakterien in einer neuen 

Umgebung darstellt.  

Da auch bei nichtpathogenen Keimen Fremd-DNA nachweisbar ist, die Ähnlichkeiten zu 

PAIs zeigen, werden alle DNA-Bereiche, welche die typische Struktur aufweisen, als 

genomische Inseln bezeichnet. Einige Inseln, die zur Pathogenität der entsprechenden 

Bakterienspezies beitragen, sind bei anderen Spezies lediglich für eine bessere 

Adaptionsfähigkeit des Mikroorganismus an den Wirt verantwortlich. Hierzu gehört 

möglicherweise die "High-Pathogenicity Island" (Schubert et al., 1998, Bach et al., 2000), die 

in 30 % nichtpathogener E. coli nachgewiesen werden kann sowie P-, S-, und F1C-Fimbrien 

(Finlay & Falkow, 1997). Eine Unterteilung der genomischen Insel in Pathogenitätsinsel und 

Fitnessinsel ist daher sinnvoll. Stellt die Insel einen deutlichen Vorteil für Replikation und 

Überleben in bestimmten ökologischen Nischen dar, wird sie als Fitnessinsel bezeichnet 

(Preston et al., 1998). Fitnessinseln kodieren meist Antibiotika-Resistenzen oder metabolische 

Funktionen wie z. B. Sucroseaufnahme (Hochhut et al., 1997), Eisenaufnahme und Enzyme 

(Ravatn et al., 1998). Kodiert die Insel für Faktoren, die Gewebs-Schädigungen und 

Infektionen auslösen, gilt sie als Pathogenitätsinsel.   
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2.4 Eisentransportsysteme von E. coli: Bedeutung für Ökologie und 

Pathogenität 

Als wichtiger Darmbesiedler und Erreger extraintestinaler Infektionen verfügt E. coli über 

unterschiedliche Faktoren, um sich gegenüber anderen Mikroorganismen durchzusetzen und 

im Wirt zu etablieren. Diese Faktoren, die chromosomal- sowie plasmidkodiert sind (Griffiths 

et al., 1980), befähigen das Bakterium in den Wirt einzudringen, an bestimmte Gewebe zu 

adhärieren, in Wirtszellen zu invadieren und Toxine sowie antagonistisch wirksame 

Moleküle, wie Bakteriozine und Mikrozine, zu produzieren. Einen wichtigen Faktor für die 

Durchsetzungsfähigkeit des Keimes stellt die Eisenaufnahmefähigkeit des Bakteriums dar. 

Sowohl bei Prokaryoten als auch Eukaryoten spielt Eisen eine zentrale Rolle bei elementaren 

biochemischen Reaktionen, wie z.B. beim Elektronentransfer der Atmungskette (Neilands, 

1981). Aufgrund seines großen Redoxpotentials ist Eisen wichtiger Kofaktor vieler Enzyme, 

wie Nitrogenasen, Peroxidasen, Katalasen und Ribotidreduktasen. Bei Vertebraten ist Eisen 

außerdem Bestandteil der biologischen Makromoleküle Hämoglobin und Myoglobin und 

damit am Transport und der Bereitstellung von Sauerstoff beteiligt. Bei Prokaryoten sind 

Eisenionen besonders für Enzyme des Reduktions- und Oxidationsstoffwechsels essentiell, 

ein Mangel führt zu Wachstumshemmung. Lediglich Laktobakterien (Archibald & Duong, 

1984) und Borrelia burgdorferi (Posey & Gherardini, 2000) sind nicht eisen- sondern 

manganabhängig. 

Pathogene Bakterien haben unterschiedliche Strategien entwickelt, um ihren Eisenbedarf in 

der Umwelt und während der Infektion im Wirt zu sichern. Eisen liegt unter aeroben 

Bedingungen und neutralem pH-Wert in Form schwerlöslicher dreiwertiger FeIII-Komplexe 

vor. Der Großteil des Eisenreservoires des Wirtes liegt intrazellulär vor (Hämoglobin der 

Erythrozyten). Extrazelluläre Eisenbindungsproteine wie Laktoferrin in den Schleimhäuten, 

sowie Transferrin im Blut und intrazelluläres Ferritin verursachen eine zusätzliche 

Reduzierung freier Eisenionen auf 10-18 mol/l (Bullen & Griffiths, 1987), was deutlich unter 

der von Bakterien benötigten Konzentration liegt. Im Falle einer Infektion führen 

eingewanderte Leukozyten zu einer Sezernierung von Laktoferrin und halten so die 

Eisenkonzentration zusätzlich gering (Leffel & Spitznagel, 1975). Pathogene Bakterien sind 

somit auf die Synthese eigener hochaffiner Eisentransport- und Aufnahmesysteme 

angewiesen. 
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Stämme der Spezies E. coli besitzen mehrere Möglichkeiten ihren Eisenbedarf zu sichern. 

Hierzu gehört die Aufnahme von Hämin und Hämprodukten durch Lyse der Erythrozyten 

(Coulton et al., 1983), von Eisenionen im Kotransport mit Citrat (Woodrow et al., 1978, 

Hussain et al., 1981, Zimmermann et al., 1984) und die direkte Verwertung von Eisen aus 

Transferrin und Lactoferrin (Mickelsen & Sparlin, 1981, Cowart & Foster, 1985). Einige 

Stämme sind zusätzlich in der Lage niedermolekulare (0,5-1 kDa), hochaffine 

Eisenchelatoren (Siderophore) in das umgebene Medium zu sezernieren. Neben der 

Aufnahme minimaler Mengen freien Eisens (Neilands, 1981) konkurrieren Siderophore mit 

wirtseigenen eisenbindenden Proteinen. Das komplexierte FeIII wird über spezifische 

Membranrezeptoren (Nikaido, 1979, Braun et al., 1991) und Transportsysteme aufgenommen 

(Braun et al., 1976, Bagg & Neilands 1987a, Guerinot, 1994, Mietzner & Morse, 1994, Braun 

et al., 1998, Byers & Arceneaux, 1998) und ins Cytoplasma transportiert. Stämme der 

Gattung E. coli besitzen meist mehrere endogene Siderophore, wie das Katecholat-Typ-

Siderophor Enterocholin (syn. Enterobaktin) (Rogers, 1973, O'Brian & Gibson, 1970, Pollack 

& Neilands, 1970) und das aus Hydroxamat-Vorstufen hervorgehende Siderophor Aerobactin 

(Williams, 1979, Valvano & Crosa, 1984, Lafont et al., 1987, Jacobson et al., 1988).  

Auch exogene Siderophore anderer Bakterien und Pilze können genutzt werden, wie 

Ferrichrom, FeIII-Coprogen, Ferrioxamine (Leong & Neilands, 1976, Raymond & Carrano, 

1979, Neilands, 1981, Hantke, 1983). Hierfür werden unter Eisenmangel verschiedene 

Siderophorrezeptoren in der äußeren Bakterienmembran gebildet, welche eine spezifische 

Aufnahme des jeweiligen Siderophors ermöglichen. Vorraussetzung ist die Anwesenheit und 

der unmittelbare Kontakt zu siderophorproduzierenden Bakterien.  

Eisenmangel stellt ein wichtiges Umweltsignal dar, da er dem Bakterium den Kontakt zum 

Wirtsorganismus signalisiert. Neben der Induktion von Eisenaufnahmesystemen wird auch 

die Produktion von Virulenzfaktoren reguliert (Griffiths, 1991), die in keinem direkten Bezug 

zu dem Eisenmetabolismus stehen. Hierzu gehören z.B. das Shiga-like toxin-1 (SLT-1) 

(Calderwood & Mekalanos, 1987), Enterotoxin von EIEC (Fasano et al., 1990), 

Superoxiddismutase (Niederhoffer et al., 1990), Hämolysin (Grünig et al., 1987), 

Diphtherietoxin (Pappenheimer, 1977) und das Exotoxin A von Pseudomonas aeruginosa 

(Bjorn et al., 1978). Die meisten dieser Gene werden wie die Gene des 

Siderophoraufnahmesystems über das Fur (ferric uptake regulation)-Repressorprotein 

reguliert. Das Regulatorprotein bildet nach Aufnahme von FeII in die Zelle mit diesen einen 

Komplex, der als Repressor die Transkription Fur-regulierter Gene unterdrückt (Bagg & 

Neilands, 1987b, O'Halloran, 1993). Das Zusammenspiel von Eisenaufnahme und Expression 

von Virulenzfaktoren unterstreicht die Bedeutung von Eisenaufnahmesystemen.  



SCHRIFTTUM  13  

 

Die Tatsache, dass Eisen einen wichtigen Beitrag zur Infektionsentstehung leistet, lässt 

vermuten, dass bakterielle Eisenaufnahmesysteme als Pathogenitätsfaktoren betrachtet 

werden können. So zeigte sich bei Tieren, die mit unterschiedlichen Formen von Eisen 

gefüttert wurden, eine höhere Infektanfälligkeit als bei der jeweiligen Kontrollgruppe (Bullen 

& Griffiths, 1987, Bullen et al., 1991). Weitere Versuche (Bullen et al., 1968) konnten durch 

Zugabe von Eisen eine starke Reduzierung der lethalen Dosis erreichen. 

2.5 Yersinia "High-Pathogenicity Island" 

Das Genus Yersinia wird der Familie Enterobacteriacae zugeordnet und kann in 11 Spezies 

unterteilt werden, wovon lediglich die drei Spezies Y. pseudotuberculosis, Y. pestis und Y. 

enterocolitica von humanpathogener Bedeutung sind (Salyers & Whitt, 1994). Die 

Pathogenität dieser Spezies wird durch ein 70 kb großes Virulenzplasmid (pYV) kodiert, das 

in hoch- und schwachpathogenen Stämmen vorkommt (Cornelius, 1998). Zusätzlich konnte 

man in den hochpathogenen Stämmen der Spezies Y. pestis (55 %), Y. pseudotuberculosis 

Serotyp O:I (80 %) und Y. enterocolitica Biotyp 1B (100 %) ein 36 kb großes chromosomales 

Gencluster (HPI) nachweisen (Carniel et al., 1992, Almeida et al., 1993). Diese "High-

Pathogenicity Island" kodiert für ein bakterielles Eisenaufnahmesystem, das das 483 Da große 

Siderophor Yersiniabaktin (Ybt) (Heesemann, 1997, Pelludat et al., 1998) und den 

spezifischen Eisenaufnahmerezeptor FyuA (Haag et al., 1993, Heesemann et al., 1993) 

umfasst. Mutationen der HPI-Gene irp2, fyuA/psn, ybtA machen den Einfluss dieser Gene für 

die Expression eines hochpathogenen Phänotyps (Rakin et al., 1994) deutlich und zeigen die 

Bedeutung der HPI bzw. ihrer Produkte für die Infektiosität von Yersinia sp. (Almeida et al., 

1993, Heesemann, 1987).  

Nach der Entdeckung der HPI in Yersinia sp. konnte sie später bei weiteren Vertretern der 

Familie Enterobacteriacae, wie Citrobacter diversus, Klebsiella sp., Enterobacter sp., 

Salmonella enterica non-I Serotyp und E. coli nachgewiesen werden (Schubert et al., 2000, 

Bach et al., 2000, Ölschläger et al., 2003). Eine orthologe HPI wurde bei E. coli vor allem bei 

septikämischen Human- (80 %) und Geflügelisolaten (Gophna et al., 2001), Isolaten aus 

Urinproben (Schubert et al., 2000) sowie enteroaggregativen (93 %) E. coli festgestellt. Mit 

einer geringeren Häufigkeit wurde sie bei Stuhlproben gesunder Individuen (30 %) sowie bei 

enteroinvasinen (27 %), enteropathogenen und enterotoxischen (5 %) E. coli (Schubert et al., 

1998) nachgewiesen, wogegen sie bei hochpathogenen enterohämorrhagischen E. coli, 

Shigella sp., Salmonella enterica Serotyp Enteritidis und Typhimurium nicht festgestellt 

werden konnte. 
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Die HPI liegt in Yersinia und E. coli hochkonserviert mit einer Sequenzhomologie von 97-

100 % vor (Rakin et al., 1995, Schubert et al., 1998). Dabei kann das HPI-Gencluster in zwei 

verschiedene evolutionäre Gruppen geteilt werden; die erste umfasst Y. pseudotuberculosis, Y. 

pestis und E. coli, die zweite Y. enterocolitica Stämme (Almeida et al., 1993, Rakin et al., 

1995). Generell zeigt sie typische Charakteristika einer Pathogenitätsinsel: so umfasst sie ein 

36 kb großes, instabiles chromosomales DNA-Fragment (Almeida et al., 1993), weist 

Insertionselemente (IS) (Fetherston & Perry, 1994) und Mobilitätsgene auf (P4-Integrase 

Gen), ist mit asn tRNA-Genen assoziiert (Carniel et al., 1996), wird von einer 17-20 bp 

großen, analogen Basenpaarwiederholung (direct repeats) flankiert, die eine Verdopplung des 

3'-Endes der asn tRNA darstellt, und zeigt einen signifikant höheren G+C mol% Gehalt als 

das ursprüngliche Yersinia- oder E. coli-Genom (Rakin et al., 1995). Die HPI kann somit als 

typische Pathogenitätsinsel bezeichnet werden, die offenbar über horizontalen Transfer von 

anderen Mikroorganismen übertragen worden ist. 

 

Abbildung 2: Darstellung der Yersinia-HPI Struktur bei Y. pestis und E coli im Vergleich. 

Neben einer funktionellen Kernregion, die alle wichtigen Gene für die Synthese, den 

Transport und die Aufnahme des Yersiniabaktin-Siderophors sowie dessen Regulation 

umfasst, besitzt die HPI bei Y. enterocolitica und Y. pseudotuberculosis am 3'-Ende (Abb. 2 

attR) eine 5-13 kb große AT-reiche Region unbekannter Funktion (Schubert et al., 1999). Im 
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Gegensatz zu der Yersinia-HPI hat bei der E. coli-HPI am 3'-Ende durch Deletion eine 

Verankerung der Insel in das Chromosom stattgefunden, hingegen sind am 5'-Ende beide mit 

der asn tRNA assoziiert (Vergleich Abb. 2). Die Yersiniabaktin-Biosynthese-Gene irp2, irp1, 

irp3, irp4, irp5 und irp9 (iron repressible proteins) werden von dem Promotor des irp2-Gens 

reguliert, während das fyuA-Gen einen eigenen Promotor besitzt. Insgesamt sind 11 Gene in 4 

Operons organisiert. Die Gene irp1 und irp2 kodieren für die hochmolekularen, nicht-

ribosomalen Peptidsynthetasen HMWP1 und HMWP2 (high molecular weight proteins 1, 2) 

(Carniel et al., 1987, Almeida et al., 1993). Die Gene fyuA/psn, irp6 und irp7 vermitteln den 

Transport und die Aufnahme des Yersiniabaktins in das Cytosol des Bakteriums. Während 

irp6 und irp7 Innermembran-Permeasen kodieren, stellt das 71 kDA große FyuA (Ferric 

yersiniabactin uptake) den äußeren Membranrezeptor für Yersiniabaktin und Pestizin dar.  

Die Gene für die Yersiniabaktin-Synthese und den Eisenaufnahmerezeptor FyuA erfahren 

eine gegenseitige Koregulation. Einerseits unterbricht die Inaktivierung von irp1 oder irp2 die 

gesamte Biosynthese und reduziert die FyuA-Expression. Andererseits verursachen auch 

Mutationen bei fyuA und irp1 eine verminderte Expression der irp2-Gene. Überdies ist 

Yersiniabaktin selbst ein wichtiger positiver Regulator seiner eigenen Biosynthese (Bearden 

et al., 1997, Pelludat et al., 1998). Die Expression der Proteine ist hierbei vom extrazellulären 

Yersiniabaktin abhängig (Perry, 1999). Nach Aufnahme in die Bakterienzelle bildet das 

Yersiniabaktin einen Komplex mit dem YbtA-Protein, der die Promotoren der fyuA- und irp-

Biosynthesegene aktiviert (Fetherston et al., 1996). Alle vier Promotorregionen besitzen eine 

Fur- (Ferric uptake regulator) Bindungsstelle und werden von dem Fur-Repressor bei 

Anwesenheit von Eisen negativ reguliert (Gehring et al., 1998, Rakin et al., 1994). 

Die Verbreitung der HPI und ihr Einfluss auf die Pathogenität zeigt eine wichtige, vielleicht 

über die Eisenversorgung hinausgehende Rolle des Ybt-Systems (Pelludat et al., 1998). Die 

Bedeutung der HPI für die Virulenzausprägung bei Yersinia sp. konnte wie oben aufgeführt 

bereits gezeigt werden und sollte in der vorliegenden Arbeit insbesondere für uropathogene 

und kommensale E. coli untersucht werden.  
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3 Material und Methoden 

Verwendete kommerzielle Kitsysteme sowie Herstellerverzeichnis mit Kontaktadressen sind 

in Kapitel 7 "Materialliste" aufgeführt.  

3.1 Bakterienstämme, Plasmide, Primer 

3.1.1 Bakterienstämme, Plasmide 

Stämme und Plasmide sind in Tabelle 1 aufgelistet. Alle Bakterien wurden unter 

Standardbedingungen in Luria-Bertani-Medium (LB) mit den entsprechend erforderlichen 

Antibiotika bei einer Temperatur von 37°C kultiviert. Die Antibiotika wurden in folgenden 

Konzentrationen verwendet: Ampicillin 100 µg/ml, Chloramphenicol 30 µg/ml, Kanamycin 

50 µg/ml, Rifampicin 150 µg/ml, Streptomycin 30 µg/ml, Tetracyclin 12 µg/ml, 

Trimethoprim 75 µg/ml. Alle Stämme wurden unter aeroben Bedingungen inkubiert. 

Tabelle 1 Bakterienstämme und Plasmide 

Stamm  Genotyp, relevante Charakteristika Quelle 

Escherichia coli 

S17-1 λpir  Tpr Strr recA, thi, pro, hsdR-M+RP4:2-Tc:Mu:Kanr Tn7 

λpir 

Donor für Konjugationen, trägt den Vektor pKAS32 

De Lorenzo & 

Timmis, 1994 

DH5α             Klonierungsrezipient, hier als HPI-Negativkontrolle  

F-ф80dlac ZΔM15 Δ(lacZYA-argF) U169deoR recA1 

endA1 hsdR17 phoA supE44λ- thi-gyrA96 relA1 

GibcoBRL    

 

SCS 110  rpsL (Strr) thr leu endA thi-1 lacY galK galT ara tonA tsx 

dam dcm supE44 Δ(lac-proAB) [F' traD36 proAB lac1 

ZΔM15] 

In dieser Arbeit als Negativkontrolle 

Stratagene 
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SM10 λpir thi-1, thr, leu, tonA, lacY, supE, 

recA::RP4-2-Tc::Mu, Cmr, λpir 

Miller & 

Mekalanos, 

1988 

Mutaflor®  

Nissle 1917  

(DSM 6601) 

Originalisolat, HPI-positiv Fa. 

Ardeypharm 

Mutaflor®  1259 Strr Rifr    

Ausgangsstamm Mutaflor®, Rifampicin- und 

Streptomycin-Resistenz durch spontane Mutation 

verursacht 

Schubert 1) 

Mutaflor® irp1 

480 

Strr Rifr Kanr, irp1::kan  

Mutaflor® Stamm 1259 mit Insertion einer Kanamycin-

Kassette in die SalI-Schnittstelle des irp1-Gens 

Schubert 1) 

Mutaflor® fyuA 

481 

Strr Rifr  Kanr,  fyuA::kan  

Mutaflor® Stamm 1259 mit Insertion einer Kanamycin-

Kassette in die SphI-Schnittstelle des fyuA-Gens 

Schubert 1) 

Mutaflor® fyuA 

rec 

Strr Rifr Cmr  

Mutaflor® fyuA mit rekonstituiertem fyuA-Gen 

diese Arbeit 

(Kapitel 4.1.1) 

UPEC Stamm 

U3366 

Apr, Cmr, Tcr, Stri 

β-hämolysierndes E. coli-Isolat, aus Pyelonephritis-

Nierenpunktat 

1) 

UPEC Stamm 

U3366 irp1 

Apr, Kanr ,Cmr, Tcr, Stri 

U3366 mit irp1::kan 

diese Arbeit 

(Kapitel 4.2.3) 

UPEC Stamm 

U3366 irp1 rec 

Apr, Cmr, Tcr, Stri 

U3366 irp1 mit rekonstituiertem irp1-Gen 

diese Arbeit 

(Kapitel 4.2.4) 

S17-1<pKAS32 

irp1::kan> 

Kanr, pir+, tra+ 

Donor für Konjugation, pKAS32 Plasmid trägt irp1-Gen 

mit integrierter Kanamycin-Kassette aus pUK-4K 

Schubert 1) 

SM10 λpir 

<pJul1.A-Trim> 

Tpr, Cms, pir+ 

Donorstamm SM10 λpir mit Vektor pJul1.A, der 

EZ::TN<DHFR-1> Transposon im Cm-Resistenzgen trägt 

diese Arbeit 

(Kapitel 4.2.4) 

Salmonella enterica Serotyp Typhimurium 

WR 1330 Tcr, Apr, Kanr 

fepA::Tn10dTc, iroN::pGP704, cir::MudJ 

Rabsch, RKI 
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WR 1542 Tcr, Apr, Kanr, Cmr 

fepA::Tn10dTc, iroN::pGP704, cir::MudJ 

pACYC5.3L (trägt fyuA-, ybtA-, fyuA-luc-, irp6-8, Cmr) 

Rabsch, RKI 

Plasmid 

pKAS32 Ampr 

pGP704, rpsL, ori R6K, mob RP4 

Skorupski & 

Taylor, 1996 

pJul1.A Cmr 

mob RP4, sacB, ori R6K 

Hornef 1) 

pJul1.A fyuA Cmr 

mob RP4, sacB, ori R6K 

fyuA aus pKAS32 fyuA über SstI und SalI in den pJul1.A 

ligiert 

diese Arbeit 

(Kapitel 4.1.1) 

pJul 1.A Trim Cms Tpr 

mob RP4, sacB, ori R6K 

EZ::TN <DHFR-1> Transposon in Cm-Resistenzgen des 

pJul1.A integriert 

diese Arbeit 

(Kapitel 

4.2.4.1) 

pKAS32 fyuA Apr 

mob RP4, rpsL, ori R6K fyuA mit BamHI und KpnI aus 

pBluescript II KS/SK in die BglII und KpnI-Schnittstelle 

des pKAS32 

1) 

 

1) Max von Pettenkofer-Institut, München, Deutschland 

 

3.1.2 Primer 

Für die PCR wurden folgende synthetische Oligonucleotide (Primer) eingesetzt. Alle Primer 

wurden von der Fa. metabion (Martinsried, Deutschland) bezogen. 
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Tabelle 2 Primer 

Primer Herkunft der 

DNA-Sequenz  

DNA-Sequenz (5´- 3´) TM (°C) Produkt- 

grösse 
fyuA-start.for.seq 

fyuA-stop.rev.seq 
fyuA 

 

5´-ATGAAAATGACACGGCTTTATCC-3´ 

5´-TCAGAAGAAATCAATTCGCGTAT-3´ 
   55,5°C    2022 bp 

Muta 7      

Muta 8    

Mutaflor® 

Plasmid 

pMUT2 

5´-GACCAAGCGATAACCGGATG-3´ 

5´-GTGAGATGATGGCCACGATT-3´ 
   60°C    427 bp 

fyuA162-HPI 

29688.for 

fyuA1319-HPI 

30233.rev 

Mutaflor® HPI 5´-GCGACGGGAAGCGATGATTTA-3´  

   

5´-TAAATGCCAGGTCAGGTCACT-3´ 

   58°C    545 bp 

irp1.8676.for 

irp1.9293.rev 

Mutaflor® HPI 5´-CCATCTACAGGCGGCTACGTC- 3´ 

5´-GTCTCCCGGCGGCATACACCA -3´  
   62°C    617 bp 

hly-for. 

hly-rev. 

hly 

 

5´-AACAAGGATAAGCACTGTTCTGGC-3´ 

5´-ACCATATAAGCGGTCATTCCCGTCA-3´ 
   61.3°C 

   63.0°C 

   1177 bp 

RPAI-for. 

RPAI-rev. 

PAI 5´-GGACATCCTGTTACAGCGCGCA-3´ 

5´-TCGCCACCAATCACAGCCGAAC-3´ 
   64.0°C 

   63.7°C 

   930 bp 

fimH-for. 

fimH-rev. 

fim H 5´-TGCAGAACGGATAAGCCGTGG-3´ 

5´-GCAGTCACCTGCCCTCCGGTA-3´ 
   61.8°C 

   65.7°C 

   508 bp 

sfa1 

sfa2 

sfa 5´-CTCCGGAGAACTGGGTGCATCTTAC-3´ 

5´-CGGAGGAGTAATTACAAACCTGGCA-3´ 
   66.3°C 

   63.0°C 

   410 bp 

aerJ-for. 

aerJ-rev. 

iutA 5´-GGCTGGACATCATGGGAACTGG-3´ 

5´-CGTCGGGAACGGGTAGAATCG-3´ 
   64.0°C 

   63.7°C 

   300 bp 

ibe 10-for. 

ibe 10-rev. 

ibeA 5´-AGGCAGGTGTGCGCCGCGTAC-3´ 

5´-TGGTGCTCCGGCAAACCATGC-3´ 
   67.6°C 

   63.7°C 

   170 bp 

afa-for. 

afa-rev. 

Afa/dra BC 5´-GGCAGAGGGCCGGCAACAGGC-3´ 

5´-CCCGTAACGCGCCAGCATCTC-3´ 
   69.6°C 

   65.7°C 

   559 bp 

cnf-1 

cnf-2 

cnf 1 5´-AAGATGGAGTTTCCTATGCAGGAG-3´ 

5´-CATTCAGAGTCCTGCCCTCATTATT-3´ 
   61.0°C 

   61.3°C 

   498 bp 

focG-for. 

focG-rev. 

focG 5´-CAGCACAGGCAGTGGATACGA-3´ 

5´-GAATGTCGCCTGCCCATTGCT-3´ 
   61.8°C 

   61.8°C 

   360 bp 

sfaS-for. 

sfaS-rev. 

sfaS 5´-GTGGATACGACGATTACTGTG-3´ 

5´-CCGCCAGCATTCCCTGTATTC-3´ 
   57.9°C 

   61.8°C 

   240 bp 

Kan 4052 

Kan 3802 

irp 1 5´-GCCAGTTGGGTAAGTTCGTG-3´ 

5´-CATCCTGCAAGCCGTCATCG-3´ 
   60.0°C    250 bp 
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3.2 Methoden zur DNA-Klonierung 

3.2.1 "Suizid-Vektoren" zur Mutagenese durch reziproken Genaustausch: pJul1.A 

und pKAS32 

Abbildung 3: Darstellung des Vekors A) pJul1.A, B) pKAS32. 

Sowohl der Vektor pJul1.A als auch der Vektor pKAS32 (Abb. 3) entstammen dem 

Ursprungsvektor pGP 704 (Miller & Mekalanos, 1988). Dieser 3,7 kb große Vektor zeichnet 

sich sowohl durch den Besitz des mob RP4 Gens, als auch durch den π-abhängigen 

Replikationsstartpunkt ori R6K aus. Das mob RP4-Gen trägt für den Transfer des Plasmides 

essentielle Sequenzen, was eine Konjugation zwischen unterschiedlichen Stämmen 

ermöglicht. Für die Replikation des Plasmides spielt das ori R6K eine entscheidende Rolle: 

das ori R6K tragende Plasmid ist abhängig von dem π-Protein und kann sich nur in 

Anwesenheit des Proteins selbstständig im Zytosol replizieren. Fehlt einem Bakterium das π-

Protein, führt dies zu einer spezifischen Integration des Plasmides durch Rekombination 

homologer DNA-Bereiche in das Wirtschromosom (Skorupski & Taylor, 1996). π-abhängige 

Vektoren bezeichnet man auch als "Suizid-Vektoren".  

Der Vektor pKAS32 (4,4 kb) entstand durch Klonierung des 715 bp SalI Fragmentes rpsL mit 

Anhang aus der "multiple cloning site" des Vektors pSL1180 in den Vektor pGP704 (BglII, 

SacI), (Skorupski & Taylor, 1996). Das rpsL-Gen (Dean, 1981) kodiert das ribosomale 

Protein S12, welches einen Streptomycin-sensiblen Phänotyp in Streptomycin-resistenten 

Stämmen verursacht. Eine anschließende Selektion auf Streptomycin-Resistenz ergibt eine 

Identifikation von Transkonjuganden, deren Plasmid aus der chromosomalen DNA verloren 

ging. Das rpsL-Gen dient somit der Positivselektion von Bakterien, bei denen Plasmid-DNA 
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mit entsprechend homologen chromosomalen Sequenzen ausgetauscht wurde. Als weiteren 

Selektionsmarker besitzt der Vektor pKAS32 wie der pGP704 ein Ampicillinresistenzgen. 

Eine "multiple cloning site" ermöglicht eine leichte Klonierung gewünschter DNA-

Fragmente.  

Der Vektor pJul1.A entstand durch Austausch des rpsl-Gens mit dem ebenfalls als 

Selektionsmarker dienenden sacB-Gen, das über die Restriktionsenzyme SalI und BglII in den 

pKAS32 ligiert wurde. Das sacB-Gen, ursprünglich aus Bacillus subtilis isoliert (Donnenberg 

& Kaper, 1991), produziert das Enzym Levansucrase, das in Anwesenheit von Sucrose für 

gramnegative Bakterien toxische Produkte (Levane) synthetisiert (Gay et al., 1985). Dieser 

Selektionsdruck bewirkt den Verlust des Plasmides aus dem Zielgenom und kann somit 

Deletionen und Insertionen homologer DNA-Bereiche in dem gewünschten Genom erzielen. 

Anstelle eines Ampicillinresistenzgens wurde eine Chloramphenicolkassette als 

Selektionsmarker in den Vektor ligiert. Der 5,65 kb große pJul1.A-Vektor besitzt wie seine 

Vorgänger eine "multiple cloning site".  

3.2.2 Sucrose-Selektion nach Integration des "Suizid-Vektors "pJul1.A 

Mithilfe des als Selektionsmarker dienenden sacB-Gens des Vektors pJul1.A (s. 3.2.1) kann 

nach Single-Rekombination homologer DNA-Bereiche des Vektors und des 

Wirtschromosoms eine Sucroseselektion durchgeführt werden. Ziel ist es, durch den 

enstandenen Selektionsdruck eine spezifische Integration und / oder Deletion bestimmter 

DNA-Fragmente in das bakterielle Genom zu erreichen. 

Durchführung der Sucroseselektion: 1 Einzelkolonie des durch Rekombination entstandenen 

Klones wird in 5 ml LB-Medium mit entspechenden Antibiotika bei 37°C angereichert. Aus 

der Kultur werden Verdünnungsreihen von 10-2 bis 10-5 hergestellt, von denen je 100 µl auf 5 

%ige Sucrose-Platten (5 g Sucrose gelöst in 100 ml LB-Agar) ausplattiert und ÜN bei 37°C 

inkubiert werden. Am folgenden Tag werden Kolonien entnommen und parallel auf 

Antbiotikaselektivagarplatten (richtet sich nach Resistenzlage des Stammes vor der 

Sucroseselektion) und MH-Platten (Mueller-Hinton) ausgestrichen. Selektiert wird auf 

entstandene Antibiotikaempfindlichkeiten und -resistenzen, die durch die Sucroseselektion 

und die damit verbundene Deletion und Insertion von DNA-Fragmenten enstanden sind. 

3.2.3 Plasmid-DNA-Gewinnung 

Die Plasmid-DNA-Gewinnung wurde mithilfe des QIAprep® Spin Miniprep Kit Protocol 

(Qiagen, Hilden) durchgeführt. Die Isolierung der Plasmid-DNA basiert hierbei auf folgenden 

Schritten: eine Kolonie des plasmidtragenden Stammes wird in 50 ml LB-Medium mit 
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entsprechendem Antibiotikum ÜN angereichert. Bakterienkulturen werden abzentrifugiert 

und das Pellet anschließend in EDTA- und RNAse-haltigen Puffer (P1) resuspendiert, was zu 

einer Destabilisierung der Bakterienzellwand führt. Durch die anschließende Zugabe eines 

SDS und NaOH-haltigen Puffers (P2) erfolgt eine alkalische Lyse der Bakterien: das 

Detergenz SDS löst Phospholipide und Proteinkomponenten der Zellwände; Natriumhydroxid 

denaturiert Proteine, chromosomale- und Plasmid-DNA. Das Lysat wird mit saurem 

Kaliumacetatpuffer neutralisiert (N3). Während die Plasmidmoleküle in Lösung bleiben und 

renaturieren, bilden denaturierte Proteine, denaturierte chromosomale DNA, sowie RNA und 

bakterieller Zelldebris aufgrund des hohen Salzgehaltes unlösliche Komplexe, werden 

präzipitiert und nach Zentrifugation entfernt. Anschließend wird der plasmidhaltige Überstand 

auf eine Silikatgel-Matrix des Aufreinigungsröhrchens gebracht, wo es aufgrund des hohen 

Salzgehaltes zu einer Bindung der Plasmid-DNA kommt. Es folgen Waschgänge zur 

Entfernung von Zellresten und Salz (Puffer PB, PE) bis letztendlich die Plasmid-DNA in 

salzarmen Puffer (pH 7,0-8,5) gelöst wird (Puffer EB: 10 mM Tris-HCl, pH 8,5). 

3.2.4 DNA-Konzentrationsbestimmung 

Die Konzentration der gelösten Plasmid-DNA erfolgt durch Elektrophorese in 0,8-1%igem 

Agarosegel bei einer Gleichspannung von 80-100 V. Zusätzlich kann die 

Konzentrationsbestimmung von in Aqua dest. gelöster DNA durch photometrische Messung 

der Absorption bei 260 nm bestimmt werden (UV-Visible Spectrophometer, Pharmacia, 

Tennenlohe). Zur Größen- bzw. Mengenbestimmung wird je nach Größe des DNA-

Fragmentes ein 100 bp- bzw. ein 1 kb-Marker mit definierter DNA-Menge mitgeführt.  

3.2.5 DNA-Spaltung mit Restriktionsendonucleasen 

Die DNA-Spaltung von Plasmiden erfolgt mit Restriktionsendonukleasen, die 

Phosphodiesterbindungen eines DNA-Moleküls schneiden. Dabei erkennt jedes Enzym eine 

bestimmte Sequenz, an der es die DNA spaltet. Der Verdau wird in einem Endvolumen von 

50 µl durchgeführt. In jedem Ansatz werden pro 1 µg Plasmid-DNA 10 U Enzym und 5 µl 

des vom Hersteller (Invitrogen, Niederlande) empfohlenen 10x Puffers zugeführt. Der 

Restriktionsansatz wird unter leichtem Schütteln bei 37°C, 3 h inkubiert und anschließend bei 

80°C hitzeinaktiviert. 

3.2.6 Agarosegel-Aufreinigung geschnittener DNA 

Nach Verdau mit den entsprechenden Restriktionsenzymen werden die DNA-Fragmente 

durch Gelelektrophorese getrennt. Hierfür wird der gesamte Ansatz des Verdaus (50 µl) 
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gemeinsam mit je 5 µl des ungeschnittenen Vektors ("Negativkontrolle") auf das Agarosegel 

aufgetragen. Je nach erwarteter Fragmentgröße wird ein 0,6 bis 2 %iges Agarosegel gewählt 

und als Größenmarker ein 100 bp- bzw. ein 1 kb-Marker eingesetzt. Dem Gel wird eine 

Gleichspannung von 80-100 V angelegt. Um die DNA sichtbar zu machen, wird dem 

Agarosegel Ethidiumbromid in einer Konzentration von 0,0025 % zugegeben. Die 

gewünschten Fragmente können so unter UV-Licht sichtbar gemacht und mit dem Skalpell 

ausgeschnitten werden. Die Extraktion der DNA aus dem Gel erfolgt mit dem GelSpin DNA 

Purification Kit (Mo Bio Laboratories, Hamburg). Das Prinzip der DNA-Isolierung beruht 

wie bei dem QIAprep® Spin Miniprep Kit (Qiagen, Hilden) (s.o.) auf der Bindung der DNA 

an eine Silikatgel-Matrix unter hohen Salzkonzentrationen und einem pH-Wert von < 7,5. 

Nach Lösen des DNA-haltigen Agarosestückes in 3 Vol. GelBind Puffer (NaClO4) bei 55-

65°C, wird die Probe auf den silikatmatrixhaltigen Spin Filter aufgetragen, so dass es zu der 

gewünschten Bindung der DNA kommt; gewaschene Salze, Enzyme, Agarose, 

Ethidiumbromid und Dyes hingegen passieren die Matrix. Nach Zentrifugation (14.000 UpM, 

30 s) und erneutem Durchlauf der Probe wird der Filter mit 300 µl ethanolhaltigem Gel Wash 

Puffer gewaschen. Restliche Salze werden hiermit entfernt. Nach zweimaliger Zentrifugation 

(14.000 UpM, 30 s) wird die DNA schließlich mit 30-50 µl EB-Puffer (10 mM Tris-HCl, pH 

8,5) eluiert. 

3.2.7 Ligation der Insert- und Vektor-DNA und Transformation des Ligationsansatzes 

in elektrokompetente Zellen 

Nach Konzentrationsbestimmung der gelösten DNA durch Agarose-Gelelektrophorese (s. 

3.2.4) werden Vektor und Insert in einem 1:3 molarem Verhältnis ligiert. Dafür wird eine 1 

Unit T4-DNA Ligase mit 1 µl Ligationspuffer (Invitrogen, Niederlande) und Aqua dest. ad. 

10 µl eingesetzt. Die Reaktion erfolgt über Nacht bei 16°C im Thermocycler. 

Der Ansatz kann direkt für die folgende Transformation eingesetzt werden. Als Methode 

wurde die Elektroporation gewählt, bei der suspendierte gewaschene Bakterienzellen in dem 

Elektroporationsgerät (Gene Pulser® II Electroporation System, BIO-RAD, München) in ein 

elektrisches Feld gebracht und einem kurzen elektrischen Puls hoher Feldstärke ausgesetzt 

werden. Dabei entstehen kurzzeitig Poren in der Zellmembran, durch die Makromoleküle, wie 

DNA, in die Zelle gelangen können. Zur nachfolgenden Selektion plasmidtragender Bakterien 

muss der eingesetzte Vektor ein Resistenzgen besitzen, das in der transformierten 

Bakterienzelle exprimiert wird.  
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Durchführung der Elektroporation: Elektrokompetente Zellen (= Zellen, deren Fähigkeit DNA 

aufzunehmen durch eine vorangegangene chemische und/oder physikalische Behandlung 

verstärkt ist), werden bei Raumtemperatur auf Eis gelagert vorsichtig aufgetaut. 50 µl der 

Zellsuspension werden mit 5 µl DNA (Ligationsansatz) gemischt und 5 min auf Eis gelagert. 

Der Ansatz wird in eine sterile, gut vorgekühlte Elektroporations-Küvette von 0,2 cm 

Durchmesser pipettiert und in den Gene Pulser Apparat gebracht. Eine empfohlene Spannung 

von 1,8 kV bei E. coli wird angelegt, bei einem Widerstand von 200 Ohm und einer Kapazität 

von 25 µF. Die optimale Zeitkonstante liegt bei 3,5-5 msec. Anschließend werden die 

elektroporierten Zellen mit 1 ml sterilem SOC-Medium ausgewaschen, in ein frisches 

Eppendorf-Cup gebracht und bei 37°C 1 h unter starkem Schütteln inkubiert. 100 µl des 

jeweiligen Ansatzes werden je nach Resistenzgen des Plasmides auf entsprechende 

Antibiotikaplatten ausplattiert und bei 37°C ÜN bebrütet.  

Bakterienklone der gewünschten Resistenz werden in 50 ml LB-Medium mit Antibiotika ÜN 

bei 37°C angereichert. Anschließend wird eine Plasmid-DNA-Gewinnung mithilfe des 

QIAprep® Spin Miniprep Kit Protocol (Qiagen, Hilden) (s. 3.2.3) durchgeführt. Die Plasmid-

DNA wird nun durch Verdau mit Restriktionsenzymen (Ansatz s. 3.2.5) auf Existenz von 

ursprünglichem Vektor und Insert überprüft. Die geschnittenen Ansätze werden zusammen 

mit ihrer ungeschnittenen Kontrolle auf ein 1 %iges Agarosegel aufgetragen (s.o.) und die 

Größen der Banden mithilfe des 1 kb- bzw. 100 bp-Markers zugeordnet.  

3.2.8 Konjugation  

Die Fähigkeit zum "sexuellen" DNA-Austausch zwischen Bakterienzellen (Konjugation), d.h. 

ein Plasmid von einer Zelle auf andere Zellen zu übertragen, basiert auf dem Vorhandensein 

sogenannter Transfer- (tra) und Mobilitäts- (mob) Gene konjugativer Plasmide. Die 

Transfergene kodieren u. a. für einen Sexpilus, der die Verbindung zwischen Bakterien 

herstellt, während die Mobilitätsgene die Plasmidübertragung ("rolling circle replication") 

steuern. Diese Gene fehlen den nichtkonjugativen Plasmiden.  

Durchführung der Konjugation: Die zu konjugierenden Stämme werden in 50 ml LB-Medium 

mit geeignetem Antibiotikum ÜN bei 37°C angereichert. 20 ml jeder Kultur werden 

entnommen, gut miteinander vermischt und in einem 50 ml-Tube bei 4300 UpM, 20 min 

zentrifugiert. Der Überstand wird verworfen, das Pellet auf eine Blutagar-Platte gegeben und 

über Nacht bei 37°C inkubiert. Am nächsten Tag wird die Platte abgeschabt und die Bakterien 

in 1,5 ml Aqua dest. suspendiert. In einer Verdünnung von 10-3, 10-4 werden je 100 µl der 

Suspension auf Selektivagarplatten ausplattiert (ÜN, 37°C) und am folgenden Tag 

gewachsene Kolonien auf Blutagar-Platten mit Antibiotikablättchen ausgestrichen. 
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3.2.9 DNA-Amplifizierung mittels Polymerase-Kettenreaktion (PCR) 

Für die Amplifizierung des gewünschten DNA-Abschnittes werden Oligonukleotide (Primer) 

gewählt, deren Sequenz komplementär zu einer Sequenz am 3´-Ende von Strang und 

Gegenstrang des gewünschten Amplifikates ist. Nach Trennen des Doppelstranges bei 94°C 

legen sich die Primer bei der sequenzabhängigen Schmelztemperatur (s. Tabelle 2) an ihre 

komplementären DNA-Abschnitte an und dienen einer thermostabilen DNA-Polymerase als 

Startpunkte für die Synthese eines neuen Gegenstranges in 5´→3´ Richtung. Die so 

entstandenen neuen Doppelstränge werden geschmolzen und dienen als Matrize für eine 

weitere Gegenstrangsynthese. Durch Wiederholung dieser Schritte (je nach Polymerase 25-30 

Wiederholungen) wird eine exponentielle Vermehrung des gewünschten DNA-Abschnittes 

erreicht. Die Standard-PCR (Saiki et al., 1988) erfolgt in drei Schritten: Nach Denaturierung 

der DNA-Doppelstränge bei 94°C folgt die Primer-Annealingphase, bei der die Anlagerung 

der Primer stattfindet. Dies geschieht bei einer Temperatur, die sich nach der 

Schmelztemperatur der Primer richtet. Anschließend erfolgt eine Erhöhung der Temperatur 

auf die für die Aktivität der DNA-Polymerase optimale Temperatur, so dass die 

Gegenstrangsynthese stattfinden kann. 

Durchgeführtes PCR-Protokoll: 

Ein 25 µl-Reaktionsansatz enthält 6,8 µl Aqua dest., 2,5 µl 10x Puffer (Ampli®Taq PCR 

Puffer), 4 µl Mg2+Lösung (2 mM MgCl2), 5 µl dNTPs (je 0,2 mM dATP, dCTP,dGTP, 

dTTP), je 0,6 µl Primer (12 pmol) (Tabelle 2), 5 µl Template-DNA (gekochte Zellen: 1 

Kolonie wird in 50 µl Aqua dest. 10 min bei 100°C erhitzt) und 0,5 µl (5 U/µl) Ampli®Taq-

Gold-Polymerase. Die Amplifikation der DNA-Segmente wird in 25 Zyklen der folgenden 3 

Inkubationsschritte in dem Gene Amp® 9700 Cycler (Perkin Elmer Cetus, Norwalk, USA) 

durchgeführt: 1) Denaturierung der DNA bei 94°C für 30 s, 2) Bindung der Primer bei der 

entsprechenden Schmelztemperatur für 30 s, 3) DNA-Polymerisierung bei 68°C für 4 min. 

Den Zyklen geht ein einmaliger Denaturierungsschritt bei 95°C für 12 min voraus. Die PCR-

Produkte werden anschließend elektrophoretisch in einem 0,6 bis 2 %igem Agarosegel 

analysiert. 

3.2.10 Einbau eines Trimethoprim-Kassette tragenden Transposons in einen Vektor 

Die Integration eines Transposons, das eine Trimethoprim-Resistenzkassette trägt, in einen 

Vektor ermöglicht die Identifizierung des Vektors durch einen zusätzlichen Selektionsmarker. 

Ein Transposon ist ein mobiler, übertragbarer DNA-Abschnitt, der neben Genen für die 

Transposition auch andere den Phänotyp der Bakterienzelle verändernde Determinanten 
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aufweisen kann. Bei der Transposition, die auch als illegitime Rekombination bezeichnet 

wird, werden DNA-Sequenzen ohne bestehende Homologien zwischen der Donor- und 

Empfänger-DNA in das gleiche oder in ein anderes DNA-Molekül integriert. Diesen Vorgang 

macht sich der EZ::TNTM <DHFR-1> Insertion Kit (Epicentre, Hess. Oldendorf) zunutze, mit 

dem die Klonierung eines Trimethoprim-Resistengen-tragenden Transposons (887 bp) in 

einen beliebigen Vektor ermöglicht wird. Folgendes Reaktionsgemisch wird auf ein 

Endvolumen von 5 µl angesetzt: 

                 0,5 µl 10x Reaktionspuffer (vom Hersteller geliefert) 

                 0,1 µg DNA 

                 x µl EZ::TN <DHFR-1>Transposon (0,1 pmol/µl) 

                 x µl Aqua dest. ad 5 µl 

                 0,5 µl EZ::TN Transposase (1 U/µl) 

Die Menge des einzusetzenden Transposons richtet sich nach der Größe der Ziel-DNA in bp 

und der eingesetzten Masse der Ziel-DNA in µg und berechnet sich aus folgender Formel:  

 

0,1 µg DNA      = µmol DNA = einzusetzende Transposonmenge in µmol 

bp DNA  x 660 

 

Das Reaktionsgemisch wird 2 h bei 37°C inkubiert und anschließend nach Zugabe von 1 µl 

EZ::TN 10 x Stop Solution (1% SDS) 10 min bei 70°C deaktiviert. 

3.3 Methoden des in vivo Tiermodells der Maus 

3.3.1 Vorbereitung der Bakterienstämme 

Die einzusetzenden Bakterienstämme werden auf Agarplatten mit geeignetem Antibiotikum 

ausgestrichen und über Nacht bei 37°C inkubiert. Jeweils 1 Kolonie wird diesen Kulturen 

entnommen und in 50 ml LB-Medium (Luria-Bertani) bei 37°C ÜN angereichert, so dass die 

OD600=1-2 (was einer Konzentration von 109 KBE/ml entspricht) beträgt. Die 

Bakterienkulturen werden bei 4°C, 30 min, 4300 UpM zentrifugiert, der Überstand 

verworfen, das Pellet in 20 ml PBS (phosphate-buffered-saline) resuspendiert und erneut 

zentrifugiert. Der Waschvorgang wird 2x wiederholt und das Pellet letztendlich in 3 ml 

sterilem 25 % Glycerol aufgenommen und in –80°C eingefroren. Zur Keimzahlbestimmung 

der eingefrorenen Bakterienstämme wird ein Aliquot aufgetaut, bei 14.000 UpM 5 min 

zentrifugiert und der Überstand verworfen. Das Pellet wird 2 x mit PBS gewaschen und 
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zuletzt in einem dem Aliqout entsprechendem Volumen PBS resuspendiert und eine 

Verdünnungsreihe durchgeführt. Von den Verdünnungsstufen 106 bis 1010 werden jeweils 100 

µl auf MH-Platten (Mueller-Hinton) ausplattiert, bei 37° ÜN bebrütet und am folgenden Tag 

die Keimzahl (KBE) des entsprechenden Stammes bestimmt. Vor dem Einsatz in der 

Mauspassage werden aus dem eingefrorenem Aliquot 0,5 ml des Bakterienstammes 

entnommen, in gleicher Weise wie für die Verdünnungsreihe gewaschen und das Pellet 

zuletzt in 0,5 ml PBS aufgenommen.  

3.3.2 Mauspassage und Peritoneallavage 

Um nur lebensfähige Bakterien in den Versuch einzusetzen, wird einer BALB/c-Maus 

(KGW= 20-25 g) 0,2 ml (107 KBE) des jeweiligen Bakterienstammes intraperitoneal 

appliziert. Die Applikation erfolgt seitlich der Mittellinie nahe des Nabels im unteren 

Quadranten des Abdomens, da hier bei einem Einstich von 45° weder die Gefahr einer 

Verletzung des Darmes noch der Niere erfolgt. Es wird eine 1 ml Spritze mit einer Kanüle der 

Größe 20G verwendet. Maximales Volumen der Applikationsmenge beträgt 1 ml, wobei in 

den hier durchgeführten Versuchen nie mehr als 0,2 ml eingesetzt wurden. Nach der 

Applikation wird anhand einer Verdünnungsreihe die Konzentration der applizierten Menge 

überprüft. Nach 24 h wird die Maus getötet (5 min in CO2) und eine Peritoneallavage 

durchgeführt. Hierbei wird ein 1 cm langer Schnitt in der zuvor mit 100 % Isopropanol 

desinfizierten Medianen der Bauchdecke vollzogen, das Abdomen eröffnet und mit einer 5 ml 

Spritze 3 ml steriles PBS in die Bauchhöhle appliziert. Der Peritonealraum wird gewaschen 

und anschließend die Flüssigkeit mit einer 1 ml Spritze vorsichtig abgezogen, ohne den Darm 

zu verletzen. Der Lavageinhalt wird auf geeignete antibiotikahaltige LB-Platten ausplattiert. 

Es werden zweimal 100 µl des Lavageproduktes als auch das abzentrifugierte (14.000 UpM, 5 

min) konzentrierte Pellet ausplattiert und ÜN bei 37° bebrütet. Von den Platten wird pro 

Bakterienstamm 1 Kolonie in 500 ml LB-Medium mit Antibiotikum ÜN bei 37°C 

angereichert. Am nächsten Tag wird die Kultur wie oben beschrieben abzentrifugiert, mit 

PBS zweimal gewaschen und letztendlich in 15 ml 25 % Glycerol aufgenommen und bei –

80°C eingefroren. Die Keimzahl, der für den Tierversuch einsetzbaren Stämme, wird wie 

beschrieben mithilfe einer Verdünnungsreihe durchgeführt. 

3.3.3 In vivo Darmkolonisierung im Tiermodell der Maus 

Für das Darmkolonisierungsmodell werden weibliche, 7-8 Wochen alte C57Bl/6-Mäuse der 

Firma Harlan-Winkelmann (Borchen) eingesetzt. Die Mäuse werden in gängigen 

Versuchsräumen in IVC-Käfigen (individual ventilated cages) gehalten. 
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3.3.3.1 Nachweis von E. coli 

Das zu untersuchende Material, wie z.B. Kot, wird auf McConkey-Platten, die der Selektion 

gramnegativer Keime dienen, ausplattiert. Nach ÜN-Bebrütung bei 37°C wird eine genaue 

Keimbestimmung der Kolonien vorgenommen. Hierfür wird die biochemische Eigenschaft 

von E. coli, weder Citrat noch Harnstoff zu spalten, genutzt und ein Citrat- bzw. 

Harnstoffröhrchentest durchgeführt. Die Röhrchen werden mit je einer Kolonie beimpft und 

nach 24 h (37°C) das Ergebnis beurteilt: würden die Bakterien Citrat und Harnstoff umsetzen, 

käme es durch die entsprechende chemische Reaktion des Teströhrchenagars zu einem 

Farbumschlag (Citrat: von grün nach blau; Harnstoff: von gelb nach rosa). Ein weiterer 

Nachweis für E. coli kann mit der kommerziellen "Bunten Reihe" (Api 20E) erbracht werden. 

Sie dient der Untersuchung unterschiedlicher biochemischer Eigenschaften eines 

Bakterienstammes. 

3.3.3.2 Kokolonisierungsmodell 

In dem Kokolonisierungsmodell wird den Mäusen ein Keimgemisch des jeweiligen 

Bakterienstammes und dessen Mutanten im Verhältnis 1:1 oral appliziert. Der Vorteil einer 

gemeinsamen Applikation liegt zum einen in der direkten Vergleichsmöglichkeit der 

Keimzahlwerte beider Stämme in einem Individuum (Maus), zum anderen kann eine 

gegenseitige Beeinflussung von Ausgangsstamm und Mutante untersucht werden. 

Versuchsdurchführung: 1 ml der einzusetzenden Stämme (2x 108 KBE) wird dem 

eingefrorenen Aliquot entnommen, die Stämme werden 5 min bei 14.000 UpM zentrifugiert, 

der Überstand verworfen, das Pellet mit 1 ml sterilem PBS gewaschen und erneut 

zentrifugiert. Der Waschvorgang wird 2 x wiederholt. Zuletzt wird das Pellet in 1 ml sterilem 

PBS resuspendiert. Je 500 µl der einzusetzenden Stämme werden gut miteinander vermischt 

und bis Einsatz im Tierversuch auf Eis gelagert. 

In jedem Kokolonisierungsversuch werden 15 C57Bl/6 Mäuse mit einer Gruppengröße von 5 

Mäusen infiziert. Um die Flüssigkeitsaufnahme zu erleichtern, werden die Mäuse 3-4 h vor 

Applikation nüchtern gesetzt. Die Applikation des Keimgemisches erfolgt oral mithilfe einer 

10-100 µl Eppendorf-Research-Pipette. Hierbei wird ein Volumen von 50 µl appliziert, was 

einer Keimzahl von 107 KBE entspricht. Nach Applikation erfolgt eine 

Konzentrationsbestimmung mithilfe einer Verdünnungsreihe, um die oral verabreichte Menge 

zu bestimmen bzw. zu bestätigen. Hierbei wird das Keimgemisch auf antibiotikahaltige LB-

Agarplatten ausplattiert. Die erste Mäusegruppe wird am Tag 3, die zweite am Tag 7 und die 

dritte Mäusegruppe am Tag 14 unter CO2 (5 min) getötet. Zur Bestimmung der Keimzahl/ml 

Darminhalt wird eine Darmlavage durchgeführt. Hierfür wird der zu öffnende Bereich mit 
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100 % Isopropanol desinfiziert, das Abdomen durch einen Schnitt in der Medianen eröffnet, 

der Darm hinter dem Pylorus von dem Magen getrennt und das Gekröse entfernt. 

Anschließend erfolgt die Darmspülung mit 5 ml sterilem PBS. Unterschiedliche 

Konzentrationen (konzentriert, 10-1,10-2, 10-3) des suspendierten Darminhaltes werden nun auf 

die oben genannten Antibiotikaplatten ausplattiert, bei 37°C ÜN bebrütet und am folgenden 

Tag die Keimzahl (KBE) der eingesetzten Stämme pro ml Darminhalt bestimmt. 

3.3.3.3 Einzel-Kolonisierungsversuch 

Der Versuch wurde als Hauptversuch des Darmkolonisierungsmodells gewählt, da hier die 

einzelnen Stämme unabhängig voneinander bzw. ohne gegenseitige Beeinflussung in ihrem 

Kolonisierungsverhalten beurteilt werden können. Pro Stamm werden für einen 

Infektionsversuch 24 C57Bl/6 Mäuse eingesetzt, wobei die Gruppengröße 8 Mäuse beträgt. 

Die Tiere werden an den Tagen 2, 8 und 15 getötet. Für eine differenzierte Bewertung der 

Lokalisation der Bakterienstämme wurde das folgende Material untersucht: 1. 

Dünndarminhalt, 2. Dünndarmwand, 3. adhärente Zellen aus dem Dünndarm, 4. 

Dickdarminhalt, 5. Dickdarmwand, 6. adhärente Zellen aus dem Dickdarm. 

Versuchsdurchführung: Je 1 ml der einzusetzenden Stämme werden dem eingefrorenen 

Aliquot entnommen, die Stämme werden 5 min bei 14.000 UpM zentrifugiert, der Überstand 

verworfen, das Pellet mit 1 ml sterilem PBS gewaschen und erneut zentrifugiert. Der 

Waschvorgang wird 2 x wiederholt. Zuletzt wird das Pellet in 1 ml sterilem PBS 

resuspendiert und bis Einsatz im Tierversuch auf Eis gelagert. Die Applikation erfolgt wie in 

3.3.3.2 beschrieben, wobei 50 µl (107 KBE) eines Stammes oral appliziert werden, und die 

gleiche Applikation an drei aufeinanderfolgenden Tagen erfolgt. So ist eine hohe und stabile 

Keimzahl innerhalb einer Versuchsgruppe gewährleistet. Die Keimzahlbestimmung der oral 

applizierten Bakterien wird, wie unter 3.3.3.2 dargestellt, durchgeführt.  

Vorgehensweise der Organentnahme: Der Darm wird, wie in 3.3.3.2 beschrieben, 

entnommen. Dünndarm und Dickdarm werden getrennt voneinander behandelt. Hierbei wird 

ein ca. 1-2 cm großer Abschnitt des entsprechenden Darmes mit einem Skalpell 

herausgetrennt, das Gewicht mit Darminhalt bestimmt, anschließend mit 3 ml sterilem PBS + 

0,5 % Tergitol gespült und der Inhalt darin aufgenommen. Die Darmwand wird erneut, 

diesmal ohne Inhalt, gewogen und in 3 ml PBS + 0,5 % Tergitol gebracht. Zur Bestimmung 

der adhärenten Zellen wird ein neben dem ersten Abschnitt gelegener Darmabschnitt 

derselben Größenordnung abgetrennt, mit sterilem PBS gespült, gewogen, mit einem Skalpell 

der Länge nach aufgeschnitten und mit einem sterilen Objektträger die Schleimhautoberfläche 
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vorsichtig abgekratzt. Die abgeschabten Zellen werden in 2 ml PBS + 0,5 % Tergitol 

aufgenommen. Die Auswertung der adhärenten Zellen erfolgt in KBE/g Darmwand. 

Anschließend werden Dünn- und Dickdarmwand homogenisiert, Darminhalt und adhärente 

Zellen gut suspendiert und von allen Proben 100 µl unterschiedlicher Verdünnung 

(konzentriert, 10-1, 10-2) auf entspechende Antibiotikaplatten ausplattiert und ÜN bei 37°C 

bebrütet. Am folgenden Tag wird durch Auszählen der Kolonien die Keimzahl pro Gramm 

Probenmaterial (KBE/g) bestimmt. 

3.3.4 Harnwegsinfektionsmodell 

Im Harnwegsinfektionsmodell wird das Infektionsverhaltens eines HPI-tragenden UPEC-

Stammes und dessen HPI-Mutanten untersucht. Hierbei erfolgt eine Keimzahlbestimmung in 

Urin, Blase und Niere und eine Bestimmung des Infektionsgrades anhand der Auszählung 

neutrophiler Granulozyten im Urin. 

3.3.4.1 Mausstamm 

Aus der Literatur (Hopkins et al., 1998) ist die Bedeutung des genetischen Hintergrundes des 

einzelnen Individuums für die Empfänglichkeit eines Harntraktinfektes, dessen Entwicklung 

und den Grad der verursachten Entzündung bekannt. Der Inzucht-Stamm C3H/HeN wird für 

den Einsatz unseres Harnwegsinfekionsmodells gewählt, da dieser "Endotoxin-high-

responder" Stamm keinerlei Defekte in der Immunantwort auf Lipopolysaccharide u.a. 

Antigene besitzt. Somit stehen Infektions- und Entzündungsgrad in einem natürlichen 

Verhältnis zueinander, wobei Harnwegsinfektionen meist innerhalb von 14 Tagen 

überwunden werden (Hopkins et al., 1998).  

Für das Harntraktinfektionsmodell werden weibliche 8-9 Wochen alte C3H/HeN Mäuse der 

Firma Charles River (Sulzfeld) eingesetzt. 

3.3.4.2 Applikationsart und Menge 

Die Applikation der uropathogenen Keime erfolgt gemäß ihres natürlichen Infektionsweges 

transurethral. Nach anfänglichen Vorversuchen mit einer 0,5-10 µl Eppendorf-Research 

Pipette und aufgesetzter GELoader Spitze (Eppendorf, Hamburg) (das nachgebende vordere 

Spitzenende wurde mit einer sterilen Schere entfernt), erfolgten die Hauptversuche mit einer 

elektronischen Pipette (Rainin, Gießen). Diese ermöglicht eine manuell steuerbare 

Flüssigkeitsabgabe in 0,2 µl-Abständen und Applikation des Gesamtvolumens über 30 s. 

Hierdurch wird eine Applikation mit minimaler Druckausübung auf die Blase gewährleistet, 

so dass die Gefahr eines künstlich erzeugten vesicoureteralen Refluxes verringert wird. Nicht 
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nur die zu große Druckausübung spielt hierfür eine Rolle, ebenso ist das applizierte Volumen 

von Bedeutung. Bei einem maximalen Blasenvolumen von ca. 50-100 µl bei einer 7-8 

Wochen alten Maus, sollte das Applikationsvolumen nicht mehr als 20 µl betragen (Johnson 

& Brown, 1996, Hopkins et al., 1995). Vor der Applikation ist durch sanften Druck auf das 

untere Abdomen die Blase zu entleeren, wodurch die Gefahr einer allzu raschen Urinabgabe 

nach Erwachen minimiert und der Widerstand bei Applikation verhindert wird.  

3.3.4.3 Anästhesie 

Als Narkoseform wurde die etablierte Ketamin- (Ketavet®) Xylazin (Rompun®) Narkose 

gewählt (Paddleford & Erhardt, 1998). Ketamin stellt hierbei das Analgetikum mit 

hypnotischen Eigenschaften, Xylazin ein Muskelrelaxans mit sedativen und initial kurz 

analgetischen Eigenschaften dar. Ein Gemisch aus 2 ml Ketavet® (Pharmacia, Erlangen), 1 ml 

Rompun® (Bayer, Leverkusen) und 9 ml Aqua dest. wurde hergestellt, dies entspricht einer 

Konzentration von 1,7 mg Ketamin und 0,17 mg Xylacin/100 µl. Die von Erhardt empfohlene 

Konzentration beträgt für Ketamin 100 mg/kg KGW, für Xylazin 5 mg/kg KGW. Einer 8-

Wochen alten Maus mit einem KGW von 20-25 g werden 0,08-0,1 ml des Anästhetikums 

intraperitoneal, neben der Medianen im unteren Quadranten des Abdomens appliziert. Die 

Einleitungsphase der Narkose dauert ca. 5 min, die chirurgische Toleranz ca. 30 min, wobei 

die Nachschlafzeit bis zu 60 min andauern kann. Da die Wirkung durch äußere Reize 

beeinträchtigt werden kann, sind Lärm und Berührung zu vermeiden. Eine Nachinjektion zur 

Verlängerung der Anästhesie ist möglich. Da die Gefahr einer Hypothermie besteht (Muir et 

al., 1996), sollten die Tiere nach dem Eingriff unter einer Rotlichtlampe warmgehalten 

werden. Ein präanästhetischer Futterentzug ist bei Tieren < 1 kg nicht angebracht, da es zu 

Verschiebungen im Säure-Basen-Haushalt und zu einer Hypoglykämie kommen kann 

(Paddleford & Erhardt, 1998). Unter Ketamin-Wirkung sind die Augen geöffnet, so dass mit 

einer Salbe (Bepanthen®, Roche) Vorsorge gegen Austrocknung getroffen werden muss. 

Während und nach dem Eingriff ist die Atemfrequenz zu beobachten. Im Falle der Gefahr 

eines Atemstillstandes ist durch Fingertippen auf die Thoraxwand sowie durch Schwingen der 

Maus in ihrer Längsachse die Atmung anzuregen. 

3.3.4.4 Versuchsdauer 

Vorherige Studien belegen, dass sich Harnwegsinfektionen in C3H/HeN-Mäusen innerhalb 

von 14 Tagen (Hopkins et al., 1998) ausheilen. So wurde ein Versuchszeitraum von 7 Tagen 

gewählt, um das Infektionsverhalten und Entzündungsreaktionen der UPEC-Stämme zu 
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beobachten. Die Tiere wurden am Tag 1, 3 und 7 getötet und die Organentnahme 

durchgeführt. 

3.3.4.5 Überprüfung der Versuchsmäuse auf existierenden Harnwegsinfekt und 

Infektsanierung 

Vor Versuchsbeginn sind alle Mäuse auf bestehende Harnwegsinfekte zu überprüfen. Hierfür 

wird jede Maus auf eine sterile Petrischale gesetzt und der abgelassene Urin anschließend auf 

einer Mueller-Hinton Platten ausplattiert und ÜN bei 37°C bebrütet. Bei einer Keimzahl von 

> 100.000 Keimen/ml besteht ein hochgradiger Verdacht auf eine bereits bestehende 

Harnwegsinfektion, die Tiere sind somit von dem Versuch auszuschließen. Bei verbreiteten 

Auftreten sollte eine Antibiotikabehandlung der gesamten Gruppe durchgeführt werden. Das 

durch Erstellung eines Antibiogramms gewählte Antibiotikum wird durch Zugabe in das 

Trinkwasser appliziert, wobei die Behandlung über 5 Tage erfolgen soll. Nach einer 

Regenerationszeit von 5-7 Tagen ist erneut die Keimzahl zu bestimmen, bevor die Tiere in 

den Versuch eingesetzt werden können. 

3.3.4.6 Durchführung des Harnwegsinfektionsmodelles 

Das Harnwegsinfektionsmodell wird in Form von Einzelinfektionsversuchen durchgeführt, so 

dass unabhängig von gegenseitiger Beeinflussung das Infektionsverhalten des UPEC-

Stammes und seiner Mutante beurteilt werden kann. Aufgrund der höheren Schwankungen 

der applizierten Keimzahl bei transurethraler Applikation im Vergleich zu i.v.-Gaben, werden 

für einen Infektionsversuch pro Stamm 30 C3H/HeN-Mäuse eingesetzt, wobei die 

Gruppengröße 10 Mäuse beträgt. Die Tiere werden am Tag 1, 3 und 7 getötet. Neben der 

Organentnahme von Niere und Blase zur Bestimmung der Keimzahl wird der Urin desselben 

Tages auf Anzahl der Bakterien (KBE/ml) und Granulozyten überprüft. 

Versuchsdurchführung: 1 ml der Bakteriensuspension des entsprechenden UPEC-Stammes 

wird dem eingefrorenem Aliquot entnommen und 5 min bei 14.000 UpM zentrifugiert. Der 

Überstand wird verworfen, das Pellet mit 1 ml sterilem PBS gewaschen und erneut 

zentrifugiert. Der Waschvorgang wird 2 x wiederholt. Zuletzt wird das Pellet in 1 ml sterilem 

PBS resuspendiert und bis Einsatz im Tierversuch auf Eis gelagert. Die Mäuse werden wie 

unter 3.3.4.3 beschrieben anästhesiert, nach Eintritt der Narkose auf den Rücken gelagert und 

durch sanften Druck auf das untere Abdomen die Blase entleert. Die Applikation erfolgt 

transurethral mithilfe der Rainin®-Pipette und aufgesetzen GELoadertip (3.3.4.2), wobei ein 

Volumen von 20 µl gewählt wird, was einer applizierten Keimzahl von 107 KBE entspricht. 

Nach Applikation werden die Tiere ca. 30 min unter einer Rotlichtlampe erwärmt, um eine 
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Hypothermie zu vermeiden. An den Tagen 1, 3 und 7 werden die Tiere getötet (CO2). Zuvor 

wird der Urin auf einer sterilen Petrischale gewonnen und bis zur weiteren Untersuchung in 

einem Eppendorf-Cup auf Eis gelagert. Zur Bestimmung der Keimzahl im Urin werden 10 µl 

des Urins sowie eine 10-fache Verdünnung auf Mueller-Hinton Platten ausplattiert, bei 37° 

ÜN bebrütet und am folgenden Tag als KBE/ml Urin abgelesen. Die Granulozytenzahl im 

Urin wird aus 9 µl des Urins mithilfe einer Neubauer-Zählkammer ermittelt. Die Anzahl der 

Granulozyten pro µl Urin lässt sich mittels folgender Formel bestimmen: 

 
                                                  Anzahl der Granulozyten                                                                      

                                                                                                                                      = Granulozyten/µl Urin  

                              ausgezählte Fläche (mm2) x Kammertiefe (mm) x Verdünnung 

 

Die Organe Niere und Harnblase werden nach Eröffnen der Bauchhöhle mit sterilem Besteck 

entnommen, mit einem Skalpell halbiert und je eine Hälfte in ein Einbettgefäß mit 

Einbettmedium (Tissue-TEK®, Vogel) gebracht und in flüssigem Stickstoff schockgefroren. 

Die kryokonservierten Gewebe können später einer histologischen Untersuchung des Nieren- 

und Blasengewebes dienen. Die zweite Hälfte der Organe wird gewogen, in 1 ml 0,5 % 

Tergitol-haltigen PBS aufgenommen und 1-2 Stunden auf Eis gelagert. Die Organe werden 

anschließend in 2 ml-Homogenisatoren homogenisiert, je 100 µl der Suspension werden in 

unterschiedlichen Konzentrationen (konzentriert, 10-1, 10-2) auf Mueller-Hinton-Platten 

ausplattiert (ÜN, 37°C) und am folgenden Tag die Keimzahl pro g Gewebe bestimmt. 

3.3.4.7 Koinfektionsmodell 

Das Koinfektionsmodell entspricht in seiner Durchführung dem Einzelinfektionsmodell, nur 

werden in diesem Fall zwei Stämme (z.B. Ausgangsstamm und Mutante) im Verhältnis 1:1 

miteinander vermischt und die Suspension anschließend, wie unter 3.3.4.2 beschrieben, 

transurethral appliziert. Das Modell dient der Untersuchung der gegenseitigen Beeinflussung 

der Stämme in ihrem Infektionsverhalten und gibt gleichzeitig einen Hinweis über Expression 

der zu untersuchenden Proteine. Bei diesem Modell wird auf eine Untersuchung von 

Entzündungszellen (neutrophile Granulozyten) verzichtet. Die Keimzahlbestimmung von 

Niere, Blase und Urin erfolgt wie beschrieben (3.3.4.6), wobei die Homogenisate zur 

Differenzierung der Bakterienstämme entsprechend des jeweiligen Resistenzverhaltens auf 

unterschiedliche Antibiotikaselektivplatten ausplattiert werden. 
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3.4 Spezielle Methoden 

3.4.1 Untersuchung der HPI-Genexpression unter Urinexposition 

Neben der Keimzahlbestimmung im Harnwegsinfektionsmodell soll die Expression der HPI-

Gene des UPEC-Stammes in vitro und in vivo untersucht werden. Der Nachweis einer 

Yersiniabaktinproduktion kann zum einen durch den Luciferase-Bioassay, zum anderen durch 

den Cross-feeding-Assay erbracht werden. 

3.4.1.1 Luciferase-Bioassay 

Der Luciferase-Bioassay dient dem Nachweis der Yersiniabaktinproduktion eines zu 

untersuchenden Stammes in vitro. Aufgrund der geringen Urinmenge, die von Mäusen 

gewonnen werden kann, wird zum Nachweis der in vivo Ybt-Produktion nach transurethraler 

Infektion auf die Nachweismethode über den Luciferase-Bioassay verzichtet und der unter 

3.4.1.2 beschriebene Cross-feeding-Assay durchgeführt.  

Die Grundlage des Luciferase-Assays stellt das Reportergen luc dar, welches die Synthese des 

Enzyms Luciferase kodiert und dessen Aktivität in einer Biolumineszenzreaktion 

nachgewiesen werden kann. Luciferase kommt in der Natur bei Glühwürmchen, Leuchtkäfern 

(firefly) oder Leuchtbakterien vor. Wird Luciferase in transfizierten Zellen als 

Reportergenprodukt hergestellt, kann die Aktivität des Enzyms in vitro durch eine 

Biolumineszenzreaktion in den Zelllysaten gemessen werden. Firefly-Luciferase wandelt 

Luciferin in Gegenwart von molekularem Sauerstoff, ATP und Mg2+ in Oxyluciferin und CO2 

um. Bei dieser Reaktion wird Licht der Wellenlänge 562 nm emittiert, welches in einem 

Luminometer (MicroLumat Plus LB 96 V, Berthold Technologies, Bad-Wildbach) gemessen 

werden kann. Da die gemessene Lichtemission proportional zur Menge Luciferase ist, kann 

indirekt auf die Transkriptionsrate des Luciferase-Reportergens geschlossen werden. Eine 

Quantifizierung der Syntheserate ermöglicht den direkten Vergleich unterschiedlicher 

Teststämme.  

Um die Produktion des Siderophors Yersiniabaktin bei HPI-tragenden UPEC-Stämmen und 

damit eine funktionell aktive HPI nachweisen zu können, wurde das folgende Konstrukt 

erstellt. Der Salmonella enterica Serotyp Typhimurium Stamm WR 1542 dient als 

Indikatorstamm zum Nachweis von Ybt und zeichnet sich dadurch aus, dass sämtliche 

Eisenaufnahmesysteme durch Mutationen deletiert wurden (Rabsch, RKI, unveröffentlicht). 

Der Stamm trägt das Plasmid pACYC5.3L auf dem das luc-Gen unter Kontrolle des fyuA-

Promotors liegt. Zudem trägt das Plasmid das Regulatorgen ybtA, das fyuA-Gen für den Ybt-
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Rezeptor und die für den Siderophortransport wichtigen Gene irp 6, 7 und 8. Somit kann der 

Stamm WR 1542 Eisen ausschließlich in Form von Eisen-beladenen Yersiniabaktin über den 

FyuA-Rezeptor beziehen. Nach Aufnahme des Yersiniabaktins bindet das Siderophor an das 

Regulatorprotein YbtA, das in dieser Form als Positivregulator des fyuA-Promotors dient 

(Fetherston et al., 1996). Die Ybt-Menge eines HPI-positiven Stammes im Kulturüberstand 

(z.B. Urinkultur) kann durch Zugabe des Überstandes zu dem Indikatorstamm bestimmt 

werden. Das im Kulturüberstand befindliche Ybt kann vom Indikatorstamm über den FyuA-

Rezeptor aufgenommen werden und bindet über das YbtA-Protein an den fyuA-Promotor des 

pACYC5.3L Plasmides, wobei es die Expression des nachgeschalteten Luciferase-Gens 

erhöht. Die Produktion der Luciferase lässt sich mittels Chemilumineszenzreaktion 

nachweisen und quantifizieren, so dass unterschiedliche Teststämme in Bezug auf ihre 

Yersiniabaktinproduktion miteinander verglichen werden können.  

 

Abbildung 4: Darstellung der Yersiniabaktin-Aufnahme und Regulation in der Bakterienzelle. A) Ybt 

bindet im Zytoplasma an das Regulatorprotein YbtA, das in gebundener Form als Positivregulator des 

fyuA-Promotors dient. B) In Salmonella enterica Typhimurium WR 1542 ist dem fyuA-Promotor ein 

Luciferase-Gen (luc) nachgeschaltet. 

Protokoll zur Untersuchung der Yersiniabaktinproduktion verschiedener Teststämme in 

unterschiedlichen Nährmedien: Die Teststämme werden zunächst zwei Tage in 

nährstoffreichem LB-Medium angereichert (8 ml LB mit entsprechendem Antibiotikum bei 

37°C), so dass eine hohe Ausgangskeimzahl für den folgenden Versuch gewährleistet werden 

kann. Hierbei wird das Anreicherungsmedium nach 24 h abzentrifugiert (4300 UpM, 15 min) 

A) B) 



MATERIAL UND METHODEN  36  

 

und das Pellet in frischem Nährmedium aufgenommen (8 ml LB mit entsprechendem 

Antibiotikum bei 37°C). Nach erneuter Anzüchtung der Bakterien über 24 h wird das 

abzentrifugierte Pellet parallel in NBD-, Urin und LB-Medium über 5 Tage angereichert. 

Hierfür werden 3 x 2 ml der ÜN-Kultur aufgeteilt, bei 4300 UpM 15 min zentrifugiert, der 

Überstand verworfen und die Pellets in den Medien NBD, Urin und LB aufgenommen. Die 

übrigen 2 ml der Kultur werden bei 14.000 UpM 5 min zentrifugiert und der Überstand als 

Nullwert eingefroren. Die eisenreichhaltige LB-Kultur, sowie die sehr eisenarme NBD-Kultur 

(2,2'-Dipyridyl-Eisen-Komplex) dienen als Kontroll- und Vergleichsmedien.  

 

Abbildung 5: Die Yersiniabaktinproduktion des HPI-positiven Teststammes kann durch Zugabe des 

Überstandes zum Indikatorstamm Salmonella enterica Typhimurium WR 1542 bestimmt werden. Ybt 

bindet im Zytoplasma über das YbtA-Protein an den fyuA-Promotor, wodurch die Expression des 

nachgeschalteten Luciferase-Gens erhöht wird. Die Luciferase-Produktion lässt sich mittels 

Chemilumineszenzreaktion nachweisen. 

Am Tag 6 der Versuchsreihe wird der Indikatorstamm Salmonella enterica Serotyp 

Typhimurium WR 1542 mit entsprechenden Antibiotika (Kanamycin, Tetracyclin, 

Chloramphenicol, Ampicillin) in CDHM-Medium bei 37°C ÜN angereichert. Nach 24 h (Tag 

7) werden 2 ml der Proben bei 14.000 UpM 5 min zentrifugiert und je 666 µl des Überstandes 

mit 100 µl der Indikatorstamm-Kultur in 333 µl NBD-Medium aufgenommen. Die NBD-

Kultur erhält hierbei die dreifache Konzentration an Antibiotikum. Der Ansatz wird 24 h bei 

37°C im Schüttler inkubiert, so dass im Überstand enthaltenes Yersiniabaktin von dem 

Indikatorstamm aufgenommen werden kann. Anschließend werden die Proben 15 min bei 

14.000 UpM und 4°C pelletiert, der Überstand sofort vollständig abpipettiert und die Pellets 

in 1 ml Luc-Lysispuffer resuspendiert. Die Inkubation erfolgt 15 min bei RT, wobei die 

Proben alle 3 min durch starkes Schütteln resuspendiert werden sollten. Das Lysat wird 10 

min bei 14.000 UpM zentrifugiert, das Pellet verworfen und der Überstand für die Luciferase-
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Messung verwendet. Hierfür werden je 75 µl pro Probe in eine Vertiefung einer 

Mikrotiterplatte gefüllt, wobei zur Mehrfachbestimmung jeweils 2-3 Ansätze der Probe 

eingesetzt werden sollten. Die Luciferaseaktivität wird in einem Chemiluminometer (s.o.) 

gemessen. Das Gerät führt jeder Probe 50 µl des luciferinhaltigen Luc-Reagenzes zu und 

misst anschließend die enstandene Biolumineszenz, anhand derer auf die 

Yersiniabaktinproduktion der Teststämme in den unterschiedlichen Medien geschlossen 

werden kann. 
 

Induktionsschema: 

Tag 0   Tag 1    Tag 2    Tag 7 

! A) 2 ml für Luciferase- 

Anreicherung     Bioassay (Nullwert) 

in 8 ml LB ! Pellet in 8 ml LB      !  Luciferase- 

! B) 3x 2 ml Pellet in 5 ml  messung 

      NBD, Urin, LB 

 

Protokoll zur Untersuchung der Yersiniabaktinproduktion verschiedener Teststämme in 

eisenarmen NBD-Medium: Die Teststämme werden mit den entsprechenden Positiv- und 

Negativkontrollstämmen in je 5 ml eisenarmen NBD-Medium bei 37°C 5 Tage unter leichtem 

Schütteln inkubiert. Am Tag 6 erfolgt die Luciferasemessung mit dem Indikatorstamm 

Salmonella enterica Serotyp Typhimurium WR 1542. (s.o.). Je nach Höhe der 

Luciferaseaktivität kann auf die Yersiniabaktinproduktion verschiedener Teststämme im 

eisenarmen Medium geschlossen werden. 

 

Induktionsschema: 

Tag 0         Tag 6 

Anreicherung  

 in 5 ml NBD       ! Luciferasemessung 

3.4.1.2 Cross-feeding-Assay mit dem Salmonella enterica Serotyp Typhimurium Stamm 

WR 1542 

Einen weiteren Nachweis über Produktion von Yersiniabaktin wird durch den sogenannten 

Cross-feeding-Assay erbracht. Dieser Test nutzt die Tatsache, dass der S. enterica 

Typhimurium Stamm WR 1542 (Indikatorstamm) unter Eisenmangelbedingungen nur bei 

gleichzeitigem Vorhandensein von Yersiniabaktin wachsen kann. Aufgrund der Mutation 
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sämtlicher Eisenaufnahmesysteme kann er Eisen lediglich über den plasmidkodierten FyuA-

Rezeptor (s. 3.4.1.1) in Form von eisengebundenen Yersiniabaktin aufnehmen. Der 

Indikatorstamm wird in einen Weichagar (0,5 %ig) eingegossen (CDHM-Agar s. Anhang), in 

dem durch Zusatz des Chelators EDDA (0,06 %) (Ethylendiamindi(o-hydroxyphenyl-

essigsäure) die Konzentration von Eisenionen (FeII) stark erniedrigt ist. Durch Auftragen 

eines definierten Volumens (8 µl) des zu testenden Mediums auf ein Filterblättchen und 

Auflegen des so beschickten Testblättchens auf die Agarplatte, kann nach ÜN Bebrütung bei 

37°C das Yersiniabaktin-Siderophor im Testmedium als Wachstumshof des Indikatorstammes 

um das Filterblättchen nachgewiesen werden. Um das Bakterienwachstum besser 

darzustellen, ist durch Zugabe von 1 %iger Triphenyltetrazoliumchlorid-Lösung und einer 

Einwirkzeit von 5-10 min ein rotes Anfärben des Bakterienhofes möglich.  
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4 Ergebnisse  

4.1 Darmkolonisierung mit E. coli Stamm Nissle 1917, Mutaflor® 

In diesem Abschnitt der Arbeit wird die Bedeutung der Yersinia-HPI für die 

Kolonisierungsfähigkeit des darmkommensalen E. coli Stamm Nissle 1917 (Mutaflor®) 

dargestellt. Hierzu wurde das Darmkolonisierungsmodell in der Maus gewählt und die 

Fähigkeit der Darmkolonisierung des Mutaflor®-Stammes im Vergleich zu den isogenen 

Mutanten Mutaflor® irp1 und Mutaflor® fyuA in vivo untersucht. Um die Bedeutung der HPI 

für die Darmkolonisierung darzustellen, wurde sowohl der Einfluss der irp1-Mutation 

(defekte Yersiniabaktinproduktion) als auch der fyuA-Mutation (fehlende Expression des 

Siderophorrezeptors) auf die Persistenz des Mutaflor®-Stammes im Darm betrachtet. Die 

Untersuchung erfolgte durch Keimzahlbestimmung des entsprechenden Stammes im Darm an 

unterschiedlichen Zeitpunkten nach oraler Applikation. Um unvorhergesehene Mutationen am 

Genom bei der Mutantenherstellung und damit verfälschte Ergebnisse auszuschließen, 

wurden die Versuche abschließend mit einer rekomplementierten Mutante durchgeführt. Die 

Mutanten irp1 und fyuA wurden in früheren Arbeiten der Arbeitsgruppe S. Schubert, Max von 

Pettenkofer-Instititut, München hergestellt, die fyuA-Rekomplementante wurde in dieser 

Arbeit erstellt. 

4.1.1 Strategie zur Rekomplementierung der Mutaflor® fyuA Mutante 

Die Herstellung der Rekomplementante erfolgte über den rekombinatorischen Austausch 

homologer DNA-Bereiche des fyuA-Gens der Mutanten fyuA::kan (Mutante fyuA wurde durch 

Insertion einer Kanamycinkassette in das fyuA-Gen erstellt) mit dem intakten fyuA-Gen des 

Suizidvektors pJul1.A fyuA (Abb. 6). Um einen kompletten Austausch zu gewährleisten, 

wurde der Vektor pJul1.A eingesetzt, der das Sucroseempfindlichkeitsgen sacB als Negativ-
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Selektionsmarker trägt. Nach Zugabe von Sucrose übt das sacB kodierte Enzym Levansucrase 

toxische Wirkung auf gramnegative Bakterien aus. 

 

 

Abbildung 6: Nach Konjugation der Mutanten Mutaflor® fyuA mit dem E. coli Stamm S17-1 λpir 

<pJul1.A fyuA> kommt es zu einer Einfach-Rekombination homologer DNA-Bereiche (A). Daraus 

ergeben sich zwei mögliche Integrationsschemata (B). Durch anschließende Zugabe von Sucrose wird auf 

Verlust des sacB-Gens selektiert. Hierbei kann es durch eine 2. Rekombination entweder zu einem Verlust 

des Vektors oder zu einem Verlust des mutierten fyuA-Gens mit Resten des Vektors kommen (gestrichelte 

Linie). In letzterem Fall verbleibt das intakte fyuA-Gen des Vektors im Genom des Mutaflor®-Stammes 

(C).  

Nach Konjugation der Mutaflor® fyuA-Mutanten mit einem pJul1.A fyuA tragenden Stamm 

kommt es zu einer Einfach-Rekombination homologer DNA-Bereiche (Abb. 6 A). Bei der 

Integration des Vektors in die chromosomale DNA der Mutanten ergeben sich zwei 

Möglichkeiten der Rekombination, die in Abbildung 6 B dargestellt werden. Durch Zugabe 

von Sucrose wird anschließend auf Verlust des sacB-Gens selektiert. Hierbei kann durch eine 
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2. Rekombination entweder der gesamte Vektor oder das mutierte fyuA-Gen mit Resten des 

Vektors aus dem Genom deletiert werden (Abb. 6 B). In letzterem Fall bleibt das intakte fyuA-

Gen, das aus dem Plasmid pJul1.A fyuA stammt, im Genom des Mutaflor®-Stammes integriert 

(Abb. 6 C). Für die Erstellung der Rekomplementanten Mutaflor® fyuA wurde auf diesem 

Weg das mutierte chromosomale fyuA-Gen mit dem intakten fyuA-Gen des Vektors 

ausgetauscht.  

4.1.1.1 Klonierung des Vektors pJul1.A fyuA und Transformation des 

Ligationsansatzes in den E. coli Stamm S17-1 λpir 

1 kb Marker 

1. pJul1.A ungeschnitten    3.  pKAS32 fyuA ungeschnitten 

2. pJul1.A SalI / SstI    4.  pKAS32 fyuA SalI / SstI 

Abbildung 7: Nach Doppelrestriktion der Vektoren pJul1.A und pKAS32 fyuA mit den Enzymen SalI / 

SstI wurden die Produkte neben der ungeschnittenen Kontrolle auf ein Agarosegel aufgetragen und das 

fyuA-tragende Insert (4,8 kb) sowie der geschnittene Vektor pJul1.A (5,5 kb) extrahiert.  

Für die Herstellung der Rekomplementanten wurde der Suizid-Vektor pJul1.A eingesetzt, der 

durch den Negativ-Selektionsmarker sacB charakterisiert wird (s. 3.2.1). In den Vektor wurde 

zunächst ein intaktes fyuA-Gen integriert, dessen Quelle der in früheren Arbeiten erstellte 

Vektor pKAS32 fyuA war. Zunächst wurde eine Plasmid-DNA-Gewinnung der Vektoren 

pJul1.A und pKAS32 fyuA mithilfe des QIAprepSpin® Miniprep Kit Protocolls (Qiagen, 

Hilden) durchgeführt (s. 3.2.3). Die Plasmid tragenden Stämme wurden hierfür anfänglich in 

entsprechenden antibiotikahaltigen Nährmedien angereichert, die Isolierung der Plasmid-

DNA durchgeführt und anschließend eine Konzentrationsbestimmung der gelösten DNA 

mithilfe der Gelelektrophorese vorgenommen. Die Restriktionsschnitte der Plasmide pKAS32 

fyuA und pJul1.A erfolgten mit den Enzymen SstI und SalI (Invitrogen) (Abb. 8). Für den 

Verdau wurden 4,5 µg DNA, 5 µl des vom Hersteller empfohlenen Puffers 2 (Invitrogen) und 

40 U beider Enzymen eingesetzt und nach dreistündiger Inkubation und Hitzeinaktivierung 

M 1           2           3          4 

Vektor 
(5,5 kb) Insert 

(4,8 kb) 
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die DNA-Fragmente durch Gelelektrophorese getrennt (s. 3.2.5). Hierbei wurde der gesamte 

Ansatz des Verdaus neben einem Aliquot des jeweiligen ungeschnittenen Vektors aufgetragen 

und später mithilfe des GelSpin DNA Purification Kits (Mo Bio Laboratories, Hamburg) der 

SstI und SalI geschnittene Vektor pJul1.A (Produkt 5,5 kb) und das 4,8 kb große, fyuA-

tragende DNA-Fragment aus pKAS32 fyuA extrahiert (s. 3.2.6) (Abb. 7). 
 

 

Abbildung 8: Die Vektoren pJul1.A (A) und pKAS32 fyuA (B) wurden mit den Restriktionsenzymen SalI 

und SstI geschnitten. Das SalI / SstI fyuA-Fragment des pKAS32 fyuA wurde anschließend mit dem 

geschnittenen Vektor pJul1.A ligiert (C). 

Der mit den Restriktionsenzymen SstI und SalI geschnittene Vektor pJul1.A und das fyuA-

Gen tragende Insert wurden nach Konzentrationsbestimmung der gelösten DNA durch 
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Gelelektrophorese in einem 1:3 molarem Verhältnis ligiert (3.2.7). Der Ansatz wurde 

anschließend direkt für die Transformation in dem Gene Pulser®II Electroporation System 

(BIO-RAD, München) eingesetzt. Als Empfängerstamm wurden elektrokompetente Zellen 

des E. coli Stammes S17-1 λpir gewählt, da dieser als Donorstamm (tra-Gen) in 

Konjugationen eingesetzt werden kann und durch Produktion des π-Proteins eine 

eigenständige Vermehrung π-abhängiger Vektoren im Zytosol ermöglicht. Für die 

Elektroporation wurden 50 µl der elektrokompetenten Zellen mit 5 µl des Ligationsansatzes 

unter 5 min Kühlung auf Eis vermischt und anschließend transformiert (s. 3.2.7). Nach einer 

1-stündigen Inkubation bei 37°C in sterilem SOC-Medium, wurden je 100 µl der Ansätze auf 

Chloramphenicol-Platten ausplattiert und bei 37°C bebrütet. Chloramphenicol-resistente 

Klone wurden anschließend in 50 ml Cm-haltigem LB-Medium angereichert, eine Plasmid-

DNA-Isolierung (QIAprep®Spin Miniprep Kit Protokoll, Qiagen, Hilden) (s. 3.2.3) 

durchgeführt und der Verdau mit den Restriktionsenzymen SstI und SalI wiederholt. Die 

Plasmide konnten somit auf Existenz von ursprünglichem Vektor und Insert überprüft 

werden. Der geschnittene Ansatz wurde zusammen mit der ungeschnittenen Kontrolle auf ein 

1 %iges Agarosegel (s.o.) aufgetragen und die Größen der Banden mithilfe des 1 kb-Markers 

zugeordnet. Die Überprüfung des Vektors pJul1.A fyuA über den Verdau ergab folgendes 

Ergebnis (Abb. 9): Klon 1 zeigte geschnitten sowohl das Insert fyuA (4,8 kb) als auch den 

Ligationsvektor pJul1.A (5,5 kb) und konnte somit für die weitere Arbeit eingesetzt werden. 

 

Abbildung 9: Der Ligationsansatz des Vektors pJul1.A und des fyuA-Inserts wurde nach Elektroporation 

in den Stamm S17-1 λpir und anschließendem Plasmidpräp mit den Endonukleasen SalI und SstI 

geschnitten und das Produkt neben der ungeschnittenen Kontrolle auf ein Agarosegel aufgetragen.  

4.1.1.2 Konjugation der Mutaflor® fyuA-Mutante mit S17-1 λpir <pJul1.A fyuA> 

Um das Plasmid pJul1.A fyuA in die fyuA-Mutante des E. coli Stammes Mutaflor® zu 

übertragen, erfolgte eine Konjugation der Mutanten mit dem Stamm S17-1 λpir <pJul1.A 

5 kb 
4 kb 

10 kb 

                  M      1      2 

       1 kb Marker 

1. Klon 1 ungeschnitten 

2. Klon 1 SalI / SalI 
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fyuA>. Der pJul1.A-Vektor verfügt über das mobRP4-Gen und konnte so aus dem Donor-

Stamm S17-1 λpir <pJul1.A fyuA> auf den Rezipienten Mutaflor® fyuA übertragen werden. 

Die Konjugation wurde wie unter 3.2.8 beschrieben durchgeführt und die Konjuganden auf 

Chloramphenicol- und Kanamycin-haltigen Platten selektiert. Bei einem Stamm mit beiden 

Resistenzen handelte es sich um einen Kanamycin-resistenten Mutaflor®fyuA Stamm, der die 

Chloramphenicol-Resistenz von dem pJul1.A fyuA-Plasmid vermittelt bekommen hat.  

4.1.1.3 Sucrose-Selektion Kanamycin-empfindlicher Klone 

Die Integration des Plasmides pJul1.A fyuA in den Mutaflor® fyuA Stamm wurde bereits in 

Kapitel 4.1.1 beschrieben. Nach Konjugation der fyuA-Mutanten mit dem Stamm S17-1 λpir 

<pJul1.A fyuA> wurde auf die einfach-rekombinierte 'Rekomplementante' (da Kanamycin- 

und Chloramphenicol-resistent!) ein Selektionsdruck durch Zugabe von Sucrose ausgeübt 

(3.2.2). Eine anschließende Resistenzprüfung ergab Kanamycin-sensible, Chloramphenicol-

resistente Stämme. Durch die 2. Rekombination wurde offenbar der Verlust des mutierten 

fyuA-Gens (fyuA::kan) und Teilen des pJul1.A fyuA-Vektors erbracht. Dabei verblieb das 

intakte fyuA-Gen und unerwarteterweise (s. Abb. 6) das Chloramphenicol-Resistenzgen des 

Vektors pJul1.A im Mutaflor®-Genom (Abb. 10). Um die Feinstruktur der 

Rekomplementanten Mutaflor® fyuA rec zu überprüfen, wurde im folgenden ein fyuA-

Nachweis mittels PCR durchgeführt. 

 

Abbildung 10: Darstellung der Integration des pJul1.A fyuA-Vektors in das Mutaflor®-Genom nach 

Einfach-Rekombination durch Konjugation (A). Durch eine zweite Rekombination nach 

Sucroseseexposition erfolgte ein Verlust des fyuA::kan-Fragmentes sowie von Resten des pJul1.A-Vekors 

mit dem sacB-Gen (gestrichelte Linie). Das intakte fyuA-Gen und das Chloramphenicol-Resistenzgen 

verblieben im Mutaflor®-Genom (B). 
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4.1.1.4 Durchführung eines fyuA-Nachweises mittels Polymerase-Kettenreaktion (PCR) 

Abbildung 11: Anlagerung der Primer fyuA-start. for. seq und fyuA-stop. rev. seq. an das fyuA-Gen. Die 

Pfeile zeigen die Lage der Primer an. A) PCR amplifiziert das 2 kb-große fyuA-Fragment bei Mutaflor® 

und bei gelungener Mutaflor® fyuA Rekomplementante. B) Bei Mutaflor® fyuA wird das 2,8 kb große 

fyuA::kan-Fragment amplifiziert. Nach Einfach-Rekombination mit dem intakten fyuA-Gen des pJul1.A 

fyuA werden beide Fragmente nachgewiesen. 

Um die Rekomplementante strukturell auf Existenz eines intakten fyuA-Gens zu überprüfen, 

wurde eine PCR-Reaktion mit den Primern fyuA-start.for.seq.und fyuA-stop.rev.seq. (s. Tab. 

2) durchgeführt. Es handelt sich um Primer, die an Sequenzen des fyuA hybridisieren, welche 

Anfang und Ende des Gens darstellen (Abb. 11) Somit kann je nach Größe der amplifizierten 

DNA auf Existenz oder Fehlen einer Kanamycinkassette geschlossen werden. Als Matrizen-

DNA wurde die Positivkontrolle E. coli Mutaflor®, die Negativkontrolle E. coli Mutaflor® 

fyuA und 4 Klone der Rekomplementanten nach der Sucroseselektion eingesetzt. Die PCR 

wurde gemäß des aufgeführten Protokolls in Kapitel 3.2.9. durchgeführt und die fyuA-PCR 

Produkte anschließend elektrophoretisch in einem 1 %igem Agarosegel analysiert (Abb. 12). 

Bei dem Positivkontrollstamm E. coli Mutaflor®, sowie bei allen 4 Klonen der 

Rekomplementanten wurde eine 2 kb-Bande amplifiziert. Im Gegensatz hierzu zeigte die 

PCR-Reaktion bei der fyuA::kan Mutanten ein ca. 3 kb-großes Amplifikat, dessen Größe 

durch die zusätzliche Kanamycin-Resistenzkassette bedingt ist.  
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1 kb Marker 

1. Mutaflor® 

2. Mutaflor® fyuA 

3.-4.  Klon 1-4 

Abbildung 12: Einsatz von 4 Klonen der Rekomplementanten nach Sucroseselektion, sowie den 

Kontrollstämmen Mutaflor® und Mutaflor® fyuA in die PCR mit den Primern fyuA-stop.rev.seq. und 

fyuA-start.for.seq.  

4.1.2 in vivo Darmkolonisierung im Mausmodell 

Das Darmkolonisierungsmodell in vivo diente der Untersuchung des 

Kolonisierungsverhaltens des darmkommensalen E. coli Stamm Nissle 1917 (Mutaflor®) im 

Vergleich zu der isogenen fyuA- und irp1-Mutanten. Folgende Bakterienstämme wurden in 

dem Darmkolonisierungsmodell eingesetzt und zuvor, wie in Kapitel 3.3.1-3.3.2 beschrieben, 

für den Tierversuch vorbereitet: E. coli Mutaflor®, Mutaflor® irp1, Mutaflor® fyuA und 

Mutaflor® fyuA rec. Nach Resistenzüberprüfung und Selektion überlebensfähiger Bakterien 

durch die Peritoneallavage in der Maus, wurden die Stämme in antibiotikahaltigen LB-

Medium angereichert und anschließend bis Einsatz in den Mausversuch bei –80°C 

eingefroren. 

4.1.3 Strukturelle Überprüfung der E. coli Mutaflor®-Stämme 

Um die im Versuch eingesetzten Mutaflor®-Stämme von der übrigen Darmflora unterscheiden 

und isolieren zu können, wurden nach vorheriger Kontrolle der Darmflora die 

stammtypischen Antibiotikaresistenzen als Selektionsmarker genutzt (Mutaflor® Strepr,Rifr; 

Mutaflor® fyuA und irp1 Kanr, Mutaflor® fyuA rec Cmr). Um spontane Resistenzbildungen in 

der normalen Darmflora auszuschließen und sicherzustellen, dass es sich bei den jeweiligen 

resistenten Isolaten um E. coli Mutaflor®-Abkömmlinge handelt, wurden aus dem Darm 

gewonnene Bakterien weiter untersucht. So wurden die Isolate durch eine Mutaflor®-

2 kb 

3 kb

M       1     2     3    4     5    6 
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spezifische PCR (Blum-Oehler et al., 2003) mit den Primern Muta 7 und 8 als E. coli 

Mutaflor® identifiziert. Die PCR weist das stammeigene Plasmid pMUT2 nach, das stabil 

vorliegt und somit für den Nachweis des E. coli Stammes Mutaflor® gut geeignet ist. Als 

Matrizen-DNA wurde der jeweils oral applizierte E. coli Mutaflor® Stamm als 

Positivkontrolle (Mutaflor®, Mutaflor® fyuA, Mutaflor® irp1, Mutaflor® fyuA rec), die 

Negativkontrolle E. coli DH5α und je 10 aus dem Darm isolierte resistente Keime eingesetzt. 

Die PCR wurde wie in Kapitel 3.2.9 beschrieben durchgeführt und die PCR-Produkte 

anschließend elektrophoretisch in einem 1 %igem Agarosegel analysiert. 

Ergebnis: Bei allen aus dem Darm isolierten Keimen konnte, wie bei der jeweiligen 

Positivkontrolle, das Mutaflor® Plasmid pMUT2 nachgewiesen werden. Die Negativkontrolle 

E. coli DH5α zeigte dagegen keinen Plasmid-Nachweis. Es ist also davon auszugehen, dass es 

sich bei den aus dem Darm isolierten Keimen um den jeweiligen Mutaflor®-Stamm 

(Mutaflor®, Mutaflor® fyuA, irp1 und Mutaflor® fyuA rec) handelte, und dass 

Spontanresistenzen der Darmflora ausgeschlossen werden konnten. Die Selektion des 

jeweiligen Mutaflor®-Stammes von der übrigen Darmflora konnte demnach im Tierversuch 

über sein Resistenzverhalten erfolgen. 

4.1.4 Untersuchung auf HPI-positive E. coli der natürlichen Darmflora 

Kot von 5 Mäusen wurde in einer für die Suspension nötigen Menge Aqua dest. 

aufgenommen und je 100 µl auf McConkey-Platten, die der Selektion gramnegativer Keime 

dienen, ausplattiert. Nach ÜN-Bebrütung bei 37°C wurde eine Keimdifferenzierung von 10 

gramnegativen, lactosepositiven Kolonien vorgenommen. Hierfür wurde die biochemische 

Eigenschaft von E. coli, weder Citrat noch Harnstoff zu spalten, genutzt und ein Citrat- bzw. 

Harnstoffröhrchentest durchgeführt. Die Röhrchen wurden beimpft und nach 24 h (37°C) das 

Ergebnis beurteilt: Bakterienisolate, die keine chemische Reaktion in Citrat- und 

Harnstoffröhrchen zeigten (s. 3.3.3.1), wurden als E. coli betrachtet und weiteren PCR-

Untersuchungen zugeführt. Mithilfe der PCR wurden sie auf Besitz des irp1- und fyuA-Gens 

untersucht. Hierfür wurden 2 getrennte Screening-PCRs mit den Primerpaaren fyuA162-HPI 

29688. for, fyuA1319-HPI 30233. rev und irp1. 8676. for, irp1. 9293. rev (Tab. 2) 

durchgeführt (3.2.9). Als Matrizen-DNA wurden die Positivkontrolle E. coli Mutaflor®, die 

Negativkontrolle E. coli DH5α  und  gekochte Zellen von 8 identifizierten E. coli eingesetzt. 

Die fyuA-PCR-Produkte wurden anschließend elektrophoretisch in einem 1,2 %igem, die 

irp1-PCR-Produkte in einem 1,6 %igem Agarosegel analysiert. 

Das Ergebnis beider Sreening-PCRs zeigte in allen 8 E. coli-Isolaten der Normalflora 

unbehandelter Mäuse den Nachweis des fyuA- und des irp1-Gens (Abb. 13). Somit sind 
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wichtige HPI-Gene offenbar auch in der natürlichen Darmflora nachweisbar. Hiermit ist 

lediglich ein struktureller Nachweis einzelner Gene, nicht aber der gesamten HPI gegeben. 

Auch ist und keine Aussage über die Aktivität der HPI möglich. 

 

100 bp Marker 
1. Mutaflor® 

2. DH5αααα 

3.–10. E. coli Isolat 1-8 

Abbildung 13: Nachweis des irp1- (A) und fyuA-Gens (B) in 8 E. coli Isolaten der natürlichen Darmflora 

mittels PCR. Als Kontrollstämme dienten E. coli Mutaflor®  und E. coli DH5αααα.  

4.1.5  Vorversuch, Kokolonisierungsmodell 

Durch Koapplikation des Stammes E. coli Stamm Nissle (Mutaflor®) und der entsprechenden 

isogenen Mutanten konnte ein direkter Vergleich der Keimzahl der jeweiligen Stämme in ein 

und demselben Organismus, sowie ein evtl. unterschiedliches Kolonisierungsverhalten der 

irp1- und fyuA-Mutanten untersucht werden. Die Mutante Mutaflor® irp1 kann im Gegensatz 

zu der fyuA-Mutanten kein Yersiniabaktin produzieren, sie ist jedoch in der Lage, 

Yersiniabaktin anderer Bakterien über den FyuA-Rezeptor aufzunehmen. Die Mutaflor® fyuA 

Mutante hingegen exprimiert über die irp-Gene Yersiniabaktin, eine Aufnahme von 

Yersiniabaktin-Siderophoren ist allerdings aufgrund des fehlenden FyuA-Rezeptors nicht 

möglich.  

617 bp 

M   1    2   3    4   5   6    7   8    9  10 A. 

545 bp 

M    1   2   3    4    5   6   7   8   9   10 B. 
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In dem Kokolonisierungsversuch wurde den Mäusen ein Keimgemisch (1:1) von 

Mutaflor®/Mutaflor® irp1 bzw. Mutaflor®/Mutaflor® fyuA oral appliziert, wobei die 

Applikation wie in Kapitel 3.3.3.2 beschrieben durchgeführt wurde. 

In jedem Versuch wurden 15 C57Bl/6 Mäusen in einer Gruppengröße von je 5 Mäusen die 

Mutaflor®-Isolate oral appliziert. Bei der Keimzahlbestimmung der oral applizierten Menge 

sowie der Bestimmung der Keimzahl im Darm, wurde das Keimgemisch auf Rifampicin- 

bzw. Rifampicin-/Kanamycin-haltigen LB-Agarplatten ausplattiert. Mutaflor® zeigt 

Rifampicin-Resistenz, die jeweilige irp1- und fyuA-Mutante eine zusätzliche Resistenz 

gegenüber Kanamycin. Die Keimzahl der Rifampicin-resistenten Bakterien stellte somit die 

Summe aus Mutaflor® und jeweiliger Mutante dar, die Rifampicin-/Kanamycin-resistenten 

Isolate waren die jeweilige Mutante. Demnach musste zur Ermittlung des Mutaflor®-Stammes 

die Anzahl der Rifampicin-/Kanamycin-resistenten Isolate von der Gesamtzahl der 

Rifampicin-resistenten Bakterien substrahiert werden.  

Abbildung 14: Rückisolierung von E. coli Mutaflor®, E. coli Mutaflor® fyuA (A), E. coli Mutaflor®, E. coli 

Mutaflor® irp1 (B) nach oraler Koapplikation (107 KBE) von C57/Bl6 Mäusen (n=10/d) und 

anschließender Darmlavage am Tag 3, 7, 14. Dargestellt sind die berechneten Mittelwerte und 

Standardabweichungen der Keimzahl pro ml Gesamtdarminhalt am jeweiligen Versuchstag. *P<0.05. 

Am Tag 3, 7 und 14 wurde die Bestimmung der Keimzahl pro ml Darminhalt mittels 

Darmlavage durchgeführt (s. 3.3.3.2). Der Darminhalt wurde auf die oben genannten 

Antibiotikaplatten ausplattiert, bei 37°C ÜN inkubiert, und am folgenden Tag die Keimzahl 

(KBE) des Mutaflor®-Stammes und der koapplizierten Mutante pro ml Darminhalt bestimmt. 

Die Kokolonisierungsversuche Mutaflor®/Mutaflor® fyuA sowie Mutaflor®/Mutaflor® irp1 

wurden insgesamt 3 x nach dem oben beschriebenen Protokoll durchgeführt (Abb. 14). 

 

A 
* * *
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Ergebnis des Vorversuches, Kokolonisierungsversuches: Die Abb. 14 A zeigt einen 

signifikanten Unterschied im Kolonisierungsverhalten zwischen Mutaflor® und der isogenen 

Mutante fyuA. Während sich die Keimzahl des Stammes Mutaflor® über den 

Beobachtungszeitraum nahezu konstant bis leicht zunehmend (103-104 KBE/ml) verhielt, 

erreichte die Mutante fyuA innerhalb der ersten beiden Beobachtungszeiträume den 

Höchstwert von 101 Keime/ml und lag am Tag 14 der Versuchsreihe unterhalb der 

Nachweisgrenze. Im Gegensatz zu der fyuA-Mutanten wies die irp1-Mutante eine nahezu 

gleiche Persistenz im Darm wie der E. coli Mutaflor®-Stamm auf (102-104 KBE/ml) (Abb. 14 

B). Die Kokolonisierungsversuche zeigten, dass Mutaflor® eine deutlich bessere 

Kolonisierungsbereitschaft insbesondere gegenüber der fyuA-Mutanten bewies.  

4.1.5.1 Kokolonisierungsversuche mit Mutaflor® fyuA rec 

Nachdem ein Kolonisierungsunterschied zwischen dem Ausgangsstamm E. coli Mutaflor®  

und der fyuA-Mutanten festgestellt werden konnte, sollte die Mutante genauer untersucht 

werden. Um die Frage zu beantworten, ob die beobachteten Kolonisierungsunterschiede Folge 

des mutierten fyuA-Gens waren, wurde mit einer rekomplementierten fyuA-Mutante 

(Mutaflor® fyuA rec) der Kokolonisierungsversuch wiederholt. Es wurde das 

Kolonisierungsverhalten der Rekomplementanten im Vergleich zu der Mutanten fyuA und E. 

coli Mutaflor® untersucht und folgende Koapplikationen durchgeführt: 1. Mutaflor® fyuA 

rec/Mutaflor®, 2. Mutaflor® fyuA rec/Mutaflor® fyuA. Hierfür wurde der Darminhalt von je 6 

Mäusen an den Tagen 7 und 14 untersucht (Abb. 15). Die Versuchsauswertung erfolgte bei 

dem Versuch Mutaflor® fyuA rec/Mutaflor® auf den Antibiotikaplatten 

Streptomycin/Chloramphenicol und Streptomycin. Auf den Streptomycin/Chloramphenicol-

Platten wächst nur die Rekomplementante, auf den Streptomycin-Platten wachsen beide 

Keime, so dass die Keimzahl der unterschiedlichen Platten entsprechend voneinander 

substrahiert werden musste, um die Keimzahl des E. coli Stammes Mutaflor® bestimmen zu 

können. Bei dem Kokolonisierungsversuch E. coli Mutaflor® fyuA rec/Mutaflor® fyuA 

konnten beide Stämme getrennt voneinander auf Chloramphenicol- und Kanamycin-Platten 

selektioniert werden.  
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Abbildung 15: Rückisolierung von E. coli Mutaflor®, E. coli Mutaflor® fyuA rec (A), E. coli Mutaflor® 

fyuA rec, E. coli Mutaflor® fyuA (B) nach oraler Koapplikation (107 KBE) von C57/Bl6 Mäusen (n=6/d) 

und anschließender Darmlavage am Tag 7, 14. Dargestellt sind die berechneten Mittelwerte und 

Standardabweichungen der Keimzahl pro ml Gesamtdarm am jeweiligen Versuchstag. *P<0.05. 

Ergebnisse der Kokolonisierungsversuche mit Mutaflor® fyuA rec (Abb. 15): Die 

Kokolonisierungsversuche des E. coli Stammes Mutaflor® fyuA rec mit 1. E. coli Mutaflor® 

und 2. E. coli Mutaflor® fyuA dienten der Überprüfung beobachteter Kolonisierungs-

unterschiede zwischen E. coli Mutaflor® und der Mutanten E. coli Mutaflor® fyuA in vivo. 

Wie in Abb. 15 A dargestellt, zeigten E. coli Mutaflor® und E. coli Mutaflor® fyuA rec nahezu 

identisches Kolonisierungsverhalten. Dagegen ist ein signifikanter Unterschied zwischen der 

Rekomplementanten und der Mutanten fyuA, die am Tag 7 und 14 praktisch nicht mehr 

nachgewiesen werden konnte, festzustellen (Abb. 15 B). Das Kolonisierungsverhalten der 

Rekomplementanten zeigt eine gelungene Rekomplementierung der fyuA-Mutanten und 

schließt gleichzeitig andere unerwünschte Genomveränderungen bei der Mutantenherstellung 

aus, die zur mangelnden Kolonisierungsfähigkeit der Mutanten E. coli Mutaflor® fyuA 

beigetragen haben könnten. 

 

Fazit beider Vorversuche: Der Darmkommensale E. coli Mutaflor® weist im Vergleich zu 

den HPI-Mutanten Mutaflor® fyuA eine erhöhte Kolonisierungsbereitschaft auf. Die Tatsache 

der stark reduzierten Kolonisierungssfähigkeit der Mutante fyuA und der ausgeprägteren 

Kolonisierung der irp1-Mutanten, lässt auf eine essentielle Rolle des intakten fyuA-Gens bzw. 

des FyuA-Reporterproteins für die Etablierung des E. coli Mutaflor®-Stammes im Darm 

schließen. Zudem bestätigen die Experimente indirekt eine in vivo-Expression der HPI-Gene. 

Aufgrund des nahezu identischen Kolonisierungsverhaltens der Rekomplementanten E. coli 

Mutaflor® fyuA rec und des Ausgangsstammes E. coli Mutaflor®, konnten unerwünschte 

* *
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Veränderungen des Genoms der E. coli Mutaflor® fyuA-Mutanten bei der 

Mutantenherstellung ausgeschlossen werde. Somit kann davon ausgegangen werden, dass die 

Mutation des fyuA-Gens für die beobachteten Kolonisierungsunterschiede ausschlaggebend 

war. 

4.1.6 Hauptversuch, Einzelkolonisierungsversuch 

Die Vorversuche zeigten Unterschiede im Kolonisierungsverhalten des E. coli Stammes 

Mutaflor® und der fyuA-Mutanten. Zusätzlich konnte durch Einsatz der Rekomplementanten 

gezeigt werden, dass das fyuA-Gen für den beobachteten Effekt tatsächlich ausschlaggebend 

war. Um eine genaue Lokalisation der Stämme im Darm feststellen zu können, wurde im 

Hauptversuch nicht der gesamte Darminhalt betrachtet, sondern eine differenzierte 

Untersuchung von Darminhalt, Darmwand und adhärenten Zellen in Dünn- und Dickdarm 

vorgenommen. Eine direkte Beeinflussung der Stämme untereinander sollte vermieden 

werden, so dass im Hauptversuch orale Einzelapplikationen mit den E. coli Stämmen 

Mutaflor®, Mutaflor® fyuA, Mutaflor® irp1 und Mutaflor® fyuA rec durchgeführt wurden. 

Die Gruppengröße wurde aufgrund der bei Tier zu Tier auftretenden individuellen 

Schwankungen bei der oralen Aufnahme der Bakteriensuspension auf 8 Mäuse pro 

Versuchstag erhöht. So wurden 24 C57Bl/6 Mäuse je Bakterienstamm eingesetzt und die 

Tiere an den Tagen 2, 8 und 15 untersucht. Durch Applikation von 50 µl Bakteriensuspension 

(107 KBE) an drei aufeinanderfolgenden Tagen, wurde die Aufnahme einer Keimzahl von 107 

KBE gewährleistet und somit eine hohe und stabile Keimzahl pro Versuchsgruppe erreicht. 

Die Keimzahlbestimmung der oral applizierten Bakterien wurde, wie unter 4.1.5 beschrieben, 

durchgeführt, wobei sich die Gesamtmenge der Bakterien aus der Summe der applizierten 

Teilmengen ergab. Die Keime wurden aufgrund der Resistenzlage der Darmflora auf 

Streptomycin-Agarplatten (E. coli Mutaflor®), Streptomycin/Kanamycin-Platten (E. coli 

Mutaflor® fyuA, Mutaflor® irp1) und auf Chloramphenicol-Platten (E. coli Mutaflor® fyuA 

rec) selektiert.  

 

Statistische Analyse: Zur Prüfung, ob sich die arithmetrischen Mittel der jeweiligen Gruppen 

signifikant unterscheiden, wurde der Student´s t test durchgeführt, der die Mittelwerte der 

Keimzahl (KBE) unterschiedlicher Bakterienstämme pro g Gewebe oder Darminhalt 

miteinander verglich. Entsprach die Verteilung der Versuchswerte nicht der Gauß´schen 

Normalverteilung wurde der verteilungsunabhängige Mann-Whitney U Test durchgeführt. 
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Abbildung 16: Darstellung der mittleren Keimzahlwerte sowie Standardabweichungen rückisolierter E. 

coli Mutaflor®, E. coli Mutaflor® fyuA, E. coli Mutaflor® irp1 pro g Darminhalt, Darmwand und 

adhärente Zellen aus Dünndarm (A-C) und Dickdarm (D-F) am Tag 2, 8, 15 nach oraler Applikation (107 

KBE) bei C57/Bl6 Mäusen (n=8/Tag und Bakterienstamm). **P<0,05. *0,05<P<0,06. 
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Abbildung 17: Darstellung der mittleren Keimzahlwerte sowie Standardabweichungen rückisolierter E. 

coli Mutaflor®, E .coli Mutaflor® fyuA, E. coli Mutaflor® rec pro g Darminhalt, Darmwand und adhärente 

Zellen aus Dünndarm (A-C) und Dickdarm (D-F) am Tag 2, 8, 15 nach oraler Applikation (107 KBE) bei 

C57/Bl6 Mäusen (n=8/Tag und Bakterienstamm). **P<0,05. *0,05<P<0,06. 
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Ergebnisse des Hauptversuches: Die Einzelkolonisierungsversuche mit den E. coli-

Stämmen Mutaflor®, Mutaflor® irp1 und Mutaflor® fyuA (Abb. 16) zeigten signifikante 

Unterschiede im Kolonisierungsverhalten und bestätigten die Ergebnisse der Vorversuche. 

Wie bereits in den Vorversuchen beobachtet, wurden besonders ausgeprägte Differenzen 

zwischen der Mutanten E. coli Mutaflor® fyuA und dem E. coli Mutaflor®-Stamm 

nachgewiesen.  

Während eine hohe und nahezu konstante Keimzahl des E. coli Mutaflor®-Stammes in 

Darminhalt von Dünn- und Dickdarm sichtbar war (104 KBE/g Dünndarminhalt; 105 KBE/g 

Dickdarminhalt), zeigte sich ein Keimzahlabfall beider E. coli Mutaflor®-Mutanten während 

des Beobachtungszeitraumes. Signifikante Unterschiede konnten hier bei der fyuA-Mutanten 

am Tag 15 im Dünndarminhalt (103 KBE/g Dünndarminhalt) und am Tag 8 und 15 im 

Dickdarminhalt (103 -104 KBE/g Dickdarminhalt) nachgewiesen werden. Die irp1-Mutante 

zeigte ebenfalls einen Keimzahlabfall am Tag 15 in Dünn- und Dickdarm, dieser wies im 

Gegensatz zu der fyuA-Mutanten jedoch keinen signifikanten Unterschied zum E. coli 

Mutaflor®-Stamm auf. Die Keimzahlwerte der Darmwand von Dünn- und Dickdarm waren 

verglichen mit den hohen Werten der Bakterienzahl des Darminhaltes bei allen eingesetzten 

Stämmen wesentlich niedriger (1-2 Logstufen). Jedoch waren auch hier signifikante 

Unterschiede im Kolonisierungsverhalten zwischen E. coli Mutaflor® und den isogenen 

Mutanten nachweisbar. So zeigten sich am Tag 15 sowohl bei der fyuA- als auch bei der irp1-

Mutanten signifikante Kolonisierungsunterschiede zum E. coli Mutaflor®-Stamm in der 

Dünndarmwand, sowie in der Dickdarmwand am Tag 8 zwischen E. coli Mutaflor® und der 

fyuA-Mutanten. Die Keimzahlwerte der adhärenten Zellen von Dünn- und Dickdarm waren 

nicht direkt mit den Werten von Darminhalt und Darmwand vergleichbar, da sie durch 

unterschiedliche Isolierungsweise gewonnen wurden (s. 3.3.3.3). Sie waren jedoch innerhalb 

ihrer eigenen Versuchsreihe bewertbar. Besonders ausgeprägt war die signifikant stark 

herabgesetzte mukosale Adhärenz der fyuA-Mutanten in Dünn- und Dickdarm. Der 

Unterschied war hierbei im Dünndarm stärker ausgeprägt, wobei die Keimzahlwerte der fyuA-

Mutanten hier unterhalb der Nachweisgrenze lagen (Abb. 16 C). Signifikante 

Kolonisierungsunterschiede zwischen E. coli Mutaflor® und der fyuA-Mutanten waren hier 

sowohl in Dünn- als auch im Dickdarm am Tag 2 und 8 zu verzeichnen. Am Tag 15 waren im 

Dickdarm keine Keime der fyuA-Mutanten mehr nachweisbar.  

Die Ergebnisse deuten auf einen Einfluss des FyuA-Rezeptors auf die adhäsiven 

Eigenschaften des E. coli Mutaflor®-Stammes hin. Die bessere Persistenz der irp1-Mutanten 

lässt sich durch eventuelle Yersiniabaktin-Fütterung anderer Darmkommensalen erklären, 

wobei jedoch die Kolonisierungsunterschiede zwischen der irp1-Mutanten und dem E. coli 
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Mutaflor®-Stamm im Hauptversuch deutlicher als bei den Kokolonisierungsversuchen (Abb. 

14) waren. 

Die Rekomplementante E. coli Mutaflor®  fyuA rec, in Abb. 17 vergleichend zu 

Keimzahlwerten von E. coli Mutaflor®  und der fyuA-Mutanten dargestellt, war in ihrem 

Kolonisierungsverhalten dem Mutaflor®-Stamm gleichzusetzen. Sie zeigte, wie auch der E. 

coli Mutaflor®-Stamm, gegenüber der fyuA-Mutanten eine ausgeprägte 

Kolonisierungsfähigkeit in Darminhalt, Darmwand und in der Fraktion der adhärenten Zellen 

in Dünn- und Dickdarm. So wurden signifikante Kolonisierungsunterschiede zwischen der 

Rekomplementanten Mutaflor®  fyuA rec und der fyuA-Mutanten im Dünndarminhalt am Tag 

2, im Dickdarminhalt am Tag 15 und in der Dünndarmwand ebenfalls am Tag 2 des 

Beobachtungszeitraumes festgestellt. Der Keimzahlnachweis bei adhärenten Zellen in Dünn- 

und Dickdarm ergab signifikante Unterschiede am Tag 2. Wie im Vorversuch bewies das 

Kolonisierungverhalten der Rekomplementante den Einfluss des fyuA-Gens auf die 

Kolonisierungsfähigkeit des E. coli Mutaflor®-Stammes im Darm. 

 

Fazit des Hauptversuches: Der Hauptversuch bestätigte die in den Vorversuchen erbrachten 

Ergebnisse. Die differenzierte Lokalisation der Stämme im Darm deutet auf einen Einfluss 

des fyuA-Gens bzw. des FyuA-Proteins auf die Darmadhärenz des E. coli Mutaflor®-Stammes 

hin und zeigt erstmals die Bedeutung eines intakten HPI-Genclusters für die 

Kolonisierungsfähigkeit des Darms bei einem E. coli-Isolat. 
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4.2 Harnwegsinfektionsmodell mit UPEC Stamm U3366 

In diesem Abschnitt der Arbeit sollte die Bedeutung der Yersinia-HPI für das 

Infektionsverhalten von uropathogenen E. coli (UPEC) untersucht werden. Hierzu wurde das 

Harnwegsinfektionsmodell an der Maus ausgewählt und das Infektionsverhalten des HPI-

positiven UPEC-Stammes im Vergleich zu der isogenen irp1-Mutanten betrachtet. Zur 

Etablierung des Harnwegsinfektionsmodells mussten im Vorfeld entsprechende Vorversuche 

zur Bestimmung verschiedener Parameter, wie Art des UPEC-Stammes, Art des 

Mäusestammes, Applikationsart und -menge, Narkoseform und Versuchdauer durchgeführt 

werden. Der ausgewählte UPEC-Stamm, der von der Routinediagnostik des Max von 

Pettenkofer-Institutes, München, zur Verfügung gestellt wurde, sowie die in dieser Arbeit 

erstellte isogene irp1-Mutante und irp1-Rekomplementante, wurden anfänglich in in vitro 

Versuchen getestet. Durch Kokultivierung der entsprechenden Bakterien im Urin, sollte die 

Produktion des HPI-vermittelten Siderophors Yersiniabaktin und damit die Expression der 

HPI-kodierten Gene in vitro untersucht werden. Nach Bestätigung der 

Yersiniabaktinproduktion in vitro wurde der Urin infizierter Mäuse betrachtet und so eine 

Siderophorexpression in vivo untersucht. Um die Auswirkung der HPI auf das 

Virulenzverhalten des HPI-positiven UPEC-Stammes zu untersuchen, wurde anschließend der 

uropathogene Stamm und die isogene irp1-Mutante im Tiermodell eingesetzt. Hierfür wurden 

die entsprechenden Stämme Mäusen in Einzelinfektionsversuchen transurethral appliziert und 

die Keimzahl in Niere und Harnblase zu den Zeitpunkten Tag 1, 3 und 7 nach Applikation 

bestimmt und miteinander verglichen. Neben der Bestimmung der Keimlast wurde die 

zelluläre Infektionsantwort des Wirtes anhand der Anzahl von Entzündungszellen 

(neutrophile Granulozyten) betrachtet. Um unvorhergesehene Mutationen im Genom des 

UPEC-Stammes bei der Mutantenherstellung auszuschließen, wurde eine Rekomplementante 

der irp1-Mutanten eingesetzt und die Versuche wiederholt. 

4.2.1  Vorversuch zur Auswahl geeigneter UPEC-Teststämme 

Der für den Versuch geeignete UPEC-Stamm sollte die "High-Pathogenicity Island"(HPI) 

tragen, wobei die Insel strukturell und funktionell intakt sein musste. Der Stamm sollte ferner 

Verursacher einer Monoinfektion des Harntraktes sein und über möglichst wenige 

Antibiotikaresistenzen verfügen, um eine Mutagenese zu vereinfachen. Die Routinediagnostik 

des Max von Pettenkofer-Institutes, München, stellte einen entsprechenden Stamm aus dem 

Nierenpunktat eines Pyelonephritispatienten zur Verfügung, der auf Blutagar β-Hämolyse 
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zeigte (U3366). Neben dem Pyelonephritisstamm U3366 wurde der Prototyp-Stamm UPEC 

536 (Dobrindt et al., 2002) und als Negativkontrolle der apathogene E. coli Stamm DH5α  in 

einem Vorversuch des Harnwegsinfektionsmodells getestet. Der Versuch wurde wie unter 

3.3.4.6 beschrieben durchgeführt, wobei je Versuchtag und Gruppe 5 Mäuse am Tag 1 und 7 

getötet wurden und anschließend die Keimzahl von Niere und Blase bestimmt wurde (Abb. 

18). Als Mäusestamm wurde der C3H/HeN-Stamm eingesetzt (Hopkins et al, 1998). Nach 

einer applizierten Menge von 10 µl (107 KBE) war am Tag 1 nach Applikation ein deutlicher 

Abfall der Keimzahlwerte aller Stämme in Blase und Niere zu beobachten, was auf Verluste 

durch den Urinfluss der Mäuse beruht. Eine Woche nach intraurethraler Applikation (Tag 7) 

waren Keimzahlunterschiede von 1-2 Logstufen zwischen dem apathogenen E. coli Stamm 

DH5α und dem UPEC-Stamm U3366 zu erkennen. Auffallend waren die deutlich niedrigen 

Keimzahlwerte des UPEC Stammes 536 in Blase und Niere, die etwa denen des apathogenen 

Stammes gleichzusetzen waren. Dieser Verlust der Pathogenität des UPEC 536 ist offenbar 

durch Genomumlagerungen und Deletionen verursacht, die insbesondere zu Verlust der PAI 

führen (Hacker et al., 1990). Daher wurde für die weiteren Harnwegsinfektionsversuche der 

UPEC Stamm U3366 gewählt. Dieses frische Isolat zeigte ein hohes Virulenzpotential und 

hat im Gegensatz zum UPEC-Stamm 536 keine Attenuierung durch Laborkultivierung 

erfahren. 

Abbildung 18: Harnwegsinfektion von C3H/HeN-Mäusen mit den UPEC-Stämmen U3366, E. coli 536 und 

dem apathogenen E. coli Stamm DH5αααα. 10 weiblichen C3H/HeN-Mäusen wurden transurethral je 10 µl 

(107 KBE) des jeweiligen Stammes appliziert, Niere und Blase am Tag 1 und 7 entfernt und die Keimzahl 
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(KBE) pro g Gewebe bestimmt. Dargestellt sind die Mittelwerte und die Standardabweichungen am 

jeweiligen Versuchstag. 

4.2.2 Virulenzgentypisierung mittels Multiplex-PCR 

Um eine genauere Charakterisierung des Pyelonephritisstammes U3366 vorzunehmen und das 

Spektrum weiterer Virulenzfaktoren dieses Stammes zu erfassen, wurde die UPEC-

Virulenzfaktor-Multiplex-PCR nach J. R. Johnson durchgeführt (Johnson & Stell, 2000). 

Durch den Einsatz mehrerer Primerpaare in getrennten PCR-Ansätzen (Tab. 2), kann der 

Nachweis bekannter Virulenzfaktoren uropathogener E. coli erbracht werden. Hierzu gehören 

das Toxin Hämolysin (hlyA) (Cavalieri & Snyder, 1982), ein Pathogenitätsinsel assoziierter 

DNA-Bereich (PAI-Marker) (Kao et al., 1997), Adhäsin Typ 1 Pili (fimH) (Jones et al., 

1995), Sialosyl-spezifisches Adhäsin (sfa/focDE) (Marre & Hacker, 1987, Siitonen, 1994), 

das Siderophor Aerobactin (iutA) (Johnson, 1991), das die Blut-Hirn-Schranke überwinden 

helfende Invasin (ibeA) (Huang et al., 1995), Adhäsine der Afa/Dr-Familie (afa/draBC) 

(Blanc-Potard et al., 2002), das Toxin Cytotoxic Necrotising Factor (cnf1) (Ripperle-Lampe 

et al., 2001), F1C Fimbrien (focG) (Marre & Hacker, 1987) und S-Fimrien-Adhäsin (sfaS) 

(Morschhauser et al., 1990). 

Die eingesetzten Primerpaare sind Tabelle 2 zu entnehmen. Neben dem Stamm U3366 

wurden die UPEC-Kontrollstämme E. coli J724 RS 218, E. coli J 632 UPEC 76 und E. coli 

J584 CP9 eingesetzt, die PCR wie in Kapitel 3.2.9 durchgeführt und die PCR-Produkte 

anschließend in einem 2 % Agarosegel elektrophoretisch analysiert (Abb. 19). Auf diese 

Weise konnten bei dem UPEC-Stamm U3366 die Gene fimH, afa/dra BC und die PAI-

assoziierte DNA-Sequenz dargestellt werden. Adhäsine der Familie Afa/Dr werden sowohl 

bei Diarrhö verursachenden als auch bei Erregern von Harnwegsinfektionen beobachtet. Über 

das Afa/Dr Operon werden Invasine (AfaD, DraD) exprimiert, die es dem Stamm 

ermöglichen in Epithelzellen einzudringen (Blanc-Potard et al., 2002). Die Adhäsine Typ 1 

Fimbrien werden in nahezu allen E. coli, v.a. bei urosepsischen Erregern nachgewiesen 

(Johnson & Stell, 2000). Ebenso ist die Verbreitung von Pathogenitätsinseln, die 

Pathogenitätsfaktoren über horizontalen Transfer innerhalb verschiedener Spezies übertragen, 

innerhalb der uropathogenen E. coli sehr häufig.  



ERGEBNISSE  60  

 

Tabelle 3 Virulenzfaktoren bei UPEC Stamm U3366 

Hämolysin (hly)     - 

Marker für uropathogene Pathogenitätsinsel (PAI)     + 

Adhäsin Typ 1 Pili (fimH)     + 

Sialosyl-spezifisches Adhäsin (sfa/foc DE)     - 

Aerobactin (iutA)     - 

Invasin (ibe)     -     

Adhäsine der Afa/Dra-Familie (afa/draBC)     +     

Cytotoxic Necrotising Factor (cnf1)     -     

F1C Fimbrien (foc G)     -     

S-Fimbrien-Adhäsin (sfaS)     -      

 

 

 

100 bp Marker 

1. U3366 

2. E. coli J724 RS218 

3. E. coli J632 UPEC 76 

4. E. coli J584 CP9 

Abbildung 19: Einsatz des UPEC-Stammes U3366 und der Kontrollstämme E. coli J724 RS218, E. coli 

J632 UPEC 76, E. coli J584 CP9 in die UPEC-VF-Multiplex-PCR nach Johnson & Stell, 2000. 

4.2.3 Generierung der irp1-Mutante des UPEC-Stammes U3366 

Der Stamm U3366 irp1 endstand über Konjugation (s. 3.2.8) des Stammes U3366 mit dem E. 

coli Stamm S17-1<pKAS32 irp1::kan>, wobei über Rekombination homologer DNA-

afa/draBC (559 bp) 

M      1       2        3       4 

fimH (508 bp) 

PAI (930 bp) 

M      1       2       3      4 
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Bereiche die Übertragung des mutierten irp1-Gens in die chromosomale DNA des U3366 

erzielt wurde. Die gezielte Integration einer Resistenzkassette (Kanamycin) in das irp1-Gen 

führt zu einer Unterbrechung des Leserasters und damit zu einer gestörten Transkriptionsrate 

des HMWP1-Proteins. Das Konstrukt irp1::kan wurde durch Einbau der mit der 

Endonuclease SalI geschnittenen Kanamycinkassette aus pUK-4K in die SalI 

Restriktionsstelle (nt-site 14032) des HPI-Genclusters erstellt. Über EcoRI-Restriktionsstellen 

wurde irp1::kan anschließend in den Vektor pKAS32 ligiert und dieser in den als 

Donorstamm fungierende Stamm S17-1 λpir transformiert (Abb. 20). Der Stamm wurde von 

S. Schubert, Max von Pettenkofer-Institut, München bereitgestellt. 

Abbildung 20: Konstruktion des Suizidvektors pKAS32 irp1::kan. Die Pfeile zeigen die Lage der Primer 

an. 

4.2.3.1 Konjugation des Stammes U3366 mit dem E. coli-Stamm S17-1<pKAS32 

irp1::kan> 

Die Konjugation des Stammes U3366 mit dem Stamm S17-1<pKAS32 irp1::kan> wurde wie 

in Kapitel 3.2.8 beschrieben durchgeführt (Abb. 21 A). Da beide Stämme über 

unterschiedliche Antibiotikaresistenzen verfügen, wurden die Konjuganden über 

Antibiotikaplatten (Kanamycin und Chloramphenicol) selektioniert und Einzelkolonien zur 

Kontrolle auf Blutagar-Platten mit den Antibiotikablättchen Kanamycin, Chloramphenicol 

und Tetracyklin ausgestrichen. Während der Rezipient U3366 eine Chloramphenicol- und 

Tetracyklinresistenz und der Donorstamm S17-1<pKAS32 irp1::kan> eine 
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Kanamycinresistenz aufweist, zeigten die Konjuganden nach Rekombination alle drei 

Antibiotikaresistenzen sowie die Hämolysefähigkeit des Stammes U3366 auf Blutagar. Die 

Selektierung auf Antibiotikaresistenzen zeigt die Integration des Kanamycinkassette-

tragenden Gens (irp1::kan) in die chromosomale DNA des U3366, erlaubt jedoch keine 

Aussage darüber, ob das Gen durch Einfach- oder Doppel-Rekombination integriert wurde 

(Abb. 21 B). Um dies zu untersuchen, wurde im folgenden eine PCR durchgeführt . 

 

Abbildung 21: A) Konjugation des UPEC-Stammes U3366 mit dem E. coli Stamm S17-1<pKAS32 

irp::kan>. Hierbei ergibt sich die Möglichkeit einer Einfach- oder einer Doppel-Rekombination (B). Bei 

der Einfach-Rekombination sind 2 mögliche Integrationsschemata des Vektors dargestellt (1 A ,B), 

während bei der Doppel-Rekombination das intakte irp1-Gen gegen das mutierte irp1::kan-Gen 

ausgetauscht wird. 
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4.2.3.2 Nachweis der irp1-Mutation mittels PCR 

Der Nachweis der Rekombination des irp1::kan-Fragmentes in die chromosomale DNA des 

Stammes U3366 wurde mittels PCR erbracht, wobei die Primer (Kan 4052, Kan 3802) nahe 

der SalI Restriktionsstelle des irp1-Gens und damit an der Insertionsstelle der 

Kanamycinkassette hybridisieren (Abb. 20). Im Falle einer Einfach-Rekombination wurden 2 

amplifizierte DNA-Fragmente, nämlich ein kleines und ein um 800 bp (Kanamycinkassette = 

800 bp) größeres Fragment, erwartet. Der kleinere DNA-Bereich (269 bp) sollte das intakte 

irp1-Gen, das größere Fragment das mutierte irp1::kan-Gen darstellen. Bei der Doppel-

Rekombination hingegen wurde nur ein großes DNA-Fragment, das irp1::kan-Amplifikat, 

erwartet. 

Als Matrizen-DNA wurden gekochte Zellen des UPEC-Stammes U3366, des Stammes S17-

1<pKAS32 irp1::kan> und von 6 U3366 irp1-Klonen eingesetzt. Die Amplifizierung der 

DNA-Segmente erfolgte wie in 3.2.9 beschrieben, wobei die irp1-PCR-Produkte anschließend 

in einem 1,2 %igem Agarosegel elektrophoretisch aufgetrennt und analysiert wurden (Abb. 

22). 

 

100 bp Marker 

1.-6. U3366 irp1 Klon 1-6 

7. U3366 

8. S17-1<pKAS32 irp1::kan> 

Abbildung 22: PCR-Nachweis der irp1-Mutation: PCR-Amplifikate von 6 U3366 irp1 Klonen (1-6) 

wurden durch Gelelektrophorese getrennt und auf Existenz einer irp1::kan-Bande überprüft. Als 

Kontrollen dienten der Stamm U3366 (7) und S17-1<pKAS 32 irp1::kan> (8). 

Ergebnis: Die PCR ergab bei allen 6 U3366 irp1 Klonen einen deutlichen Nachweis des 

intakten irp1-Gens (269 bp). Bei den Klonen 1, 3, 4 und 5 konnte außerdem eine schwache 

große Bande dargestellt werden, die das irp1::kan-Fragment repräsentiert. Das kurze PCR-

Amplifikat wurde in der PCR-Reaktion mit den eingesetzten Primern offenbar bevorzugt 

synthetisiert. Die Kanamycinresistenz der eingesetzten Klone (s.o.) und das Ergebnis der PCR 

           M         1     2    3     4     5    6     7    8 
1500 bp 

      300 bp 
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deuten auf ein Einfach-Crossing-over bei der Konjugation im Falle der Klone 1, 3, 4 und 5. 

Jedoch blieb unklar, ob die Einfach-Insertion an der richtigen Stelle des Genoms oder in 

illegitimer Weise an einem anderen Genombereich stattgefunden hat. In erstem Fall sollte die 

Yersiniabaktin-Produktion der Mutante unterbunden sein, da durch Insertion des 

Suizidvektors das Operon für die Siderophor-Synthese unterbrochen wird. Um dies zu klären 

und eine Aussage über die Yersiniabaktin-Synthese der U3366 irp1-Klone machen zu 

können, wurden die Mutanten mithilfe des Luciferase-Bioassays auf Funktionalität der HPI 

hin untersucht. 

4.2.3.3 Durchführung des Luciferase-Bioassays zur funktionellen Bestätigung der 

Mutante U3366 irp1 

Der Nachweis über die richtige Insertion des irp1::kan-Fragments in die chromosomale DNA 

des Stammes U3366 und damit über die Funktionalität der HPI der entsprechenden U3366 

irp1-Klone, wurde mithilfe des Luciferase-Bioassays erbracht, der im Kapitel Material und 

Methoden beschrieben wurde. Bei einer korrekten Insertion in das irp-Gencluster kann kein 

Yersiniabaktin produziert werden, wodurch eine verminderte Aktivität im Luciferase-

Bioassay zu erwarten ist. Mithilfe der im Bioassay bestimmten Luciferaseaktivität des 

Indikatorstammes Salmonella enterica Typhimurium WR 1542 konnte auf die 

Yersiniabaktinproduktion der zu untersuchenden Stämme geschlossen werden. Das vom 

Versuchsstamm produzierte Yersiniabaktin kann vom Indikatorstamm über den FyuA-

Rezeptor aufgenommen werden und bindet an das Regulatorprotein YbtA, was zu einer 

Steigerung der FyuA-Expression und damit zu einer gesteigerten Expression des 

nachgeschalteten Luciferase-Gens führt. Die Luciferaseproduktion kann mittels 

Chemilumineszenzreaktion quantifiziert werden, wodurch ein Vergleich unterschiedlicher 

Teststämme in Bezug auf ihre Yersiniabaktinproduktion möglich ist.  

In den Versuch wurden die oben aufgeführten U3366 irp1-Klone 1, 3, 4 und 5, der E. coli 

S17-1 <pKAS32 irp1::kan> und der UPEC Stamm U3366 eingesetzt und der Bioassay, wie in 

Kapitel 3.4.1.1 beschrieben, durchgeführt. 
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Abbildung 23: Bestimmung der Yersiniabaktinproduktion der Stämme UPEC U3366 irp1-Klon 1, 3, 4 

und 5 im Vergleich zu den Kontrollen S17-1<pKAS32 irp1::kan> und UPEC Stamm U3366 nach 5 tägiger 

Inkubation in NBD-Medium mithilfe des Luciferase-Bioassays. Die Enzymaktivität der Luciferase wurde 

als emittiertes Licht der Wellenlänge 562 nm in einem Luminometer gemessen. Als Indikatorstamm 

diente der S. enterica Typhimurium Stamm WR 1542. Dargestellt sind die Mittelwerte einer 

durchgeführten Zweifachbestimmung und die Standardabweichungen.  

Ergebnis: (Abb. 23) Der Luciferase-Biossay zeigte einen Unterschied in der 

Luciferaseaktivität zwischen den Stämmen U3366 (Positivkontrolle) und S17-1<pKAS32 

irp1::kan> (Negativkontrolle) auf. Die Luciferaseaktivität der U3366 irp1-Klone wurde mit 

den Messwerten der Kontrollstämme verglichen, wobei die Klone 1 und 4 eine 

Luciferasaktivität im Bereich der Negativkontrolle aufwiesen und die Klone 3 und 5 in ihrer 

Produktion eher dem Stamm U3366 glichen. Die Ergebnisse wurden durch dreimalige 

Versuchswiederholung bestätigt. Der Klon 4 des Stammes U3366 irp1 wurde für den Einsatz 

in den Tierversuch ausgewählt. Durch die im Bioassay dargestellte Unterbrechung der 

Siderophorsynthese der irp1-Mutante (Klon 4) konnte eine korrekte Insertion des irp1::kan-

Gens in das irp-Gencluster des U3366 gezeigt werden. 

4.2.4 Herstellung der Rekomplementante UPEC Stamm U3366 irp1 rec 

Neben dem UPEC Stamm U3366 und der irp1-Mutanten wurde in den Versuchen eine 

rekomplementierte irp1-Mutante eingesetzt. Durch den Einsatz der Rekomplementante sollten 

unvorhergesehene Mutationen im Genom bei der Mutantenherstellung und dadurch 
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entstandene verfälschte Ergebnisse ausgeschlossen werden. Die Klonierung der 

Rekomplementante erfolgte analog der Erstellung der Rekomplementante E. coli 

Mutaflor®fyuA rec (s. 4.1.1). Über Konjugation mit dem Suizid-Vektor pJul1.A integrierte 

dieser durch Einfach-Rekombination in das Wirtschromosom der irp1-Mutanten. Da der 

U3366-Stamm bereits eine Resistenz gegenüber Chloramphenicol aufweist, konnte der 

Suizid-Vektor pJul1.A nicht direkt eingesetzt werden. Durch die Integration eines 

Trimethoprim-Resistenzmarkers in die Chloramphenicol-Kassette des Vektors pJul1.A wurde 

der Suizid-Vektor pJul1.A Trim hergestellt. So konnte nach der Konjugation auf den ins 

Genom inserierten Suizidvektor durch Inkubation auf Trimethoprim-haltigen Agarplatten 

selektiert werden. Die Übertragung des Resistenzmarkers Trimethoprim in den Vektor 

pJul1.A erfolgte über Insertion des EZ::TNTM<DHFR-1> Transposons (3.2.10). Nach der 

Einfach-Rekombination (Abb. 24 A, B) sollte mithilfe eines Sucrose-Selektionsdruckes 

sowohl der Vektor pJul1.A Trim (trägt das Sucroseempfindlichkeitsgen sacB) als auch der 

integrierte Vektor pKAS32 irp1::kan aus dem chromosomalen Genom des Stammes U3366 

irp1 entfernt werden. Durch den Selektionsdruck ergaben sich 2 Möglichkeiten einer zweiten 

Rekombination (Abb. 24 B): Entweder sollte der integrierte Vektor pJul1.A Trim mit Teilen 

des pKAS32 irp1::kan und dem intakten irp1-Gen oder aber der Vektor pJul.A Trim mit dem 

gesamten Vektor pKAS32 irp1::kan deletieren. In letzterem Fall hätte die gewünschte 

Wiederherstellung des ursprünglichen Stammes U3366 stattgefunden (Abb. 24 C).  

Die Selektion über das sacB-Gen des Suizid-Vektors pJul1.A wurde gewählt, da der UPEC 

Stamm U3366 eine dominante Form der Streptomycin-Resistenz zeigt. Somit konnte das 

Streptomycin-Empfindlichkeitsphänotyp-Gen (rpsL) des Suizid-Vektor pKAS32 zur 

Entfernung des irp1::kan Fragmentes aus dem Genom der U3366 irp1-Mutanten nicht 

ausgenutzt werden. 
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Abbildung 24: A) Rekombination des Stammes U3366 irp1 mit dem Suizid-Vektor pJul1.A Trim. B) 

U3366 irp1 nach Einfach-Rekombination mit pJul1.A Trim. Gestrichelte Linien zeigen mögliche 

Deletionen nach 2. Rekombination durch Sucroseselektion. C) Verlust des Vektors pJul1.A Trim und 

pKAS32 irp1::kan durch Sucroseselektion und Entstehung der Rekomplementante U3366 irp1 rec. 

4.2.4.1 Erstellung des Vektors pJul1.A Trim und Transformation in den E. coli Stamm 

SM10 λpir 

Da der Vektor pJul1.A eine Chloramphenicolkassette als Selektionsmarker besitzt, die UPEC-

Stämme U3366, U3366 irp1, U3366 irp1 rec jedoch ebenfalls eine Chloramphenicol-

Resistenz aufweisen, wurde eine Trimethoprim-Resistenzkassette als Marker in den Vektor 
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pJul1.A inseriert (Abb. 25). Die Integration des Transposons erfolgte wie unter 3.2.10 

beschrieben. Die Menge des einzusetzenden EZ::TNTM<DHFR-1> Transposons richtete sich 

nach der Größe des Vektors (5600 bp) sowie nach der eingesetzten Masse der Ziel-DNA (0,1 

µg) und wurde mithilfe der aufgeführten Formel (s. 3.2.10) berechnet. 

Abbildung 25: Integration eines Trimethoprim-Resistenzgen tragenden Transposons in das 

Chloramphenicol-Resistenzgen des Vektors pJul1.A. 

Nach erfolgter Transposition wurde 1 µl des Transposonansatzes in 50 µl elektrokompetenter 

Zellen des Stammes E. coli SM10 λpir transformiert, der sich durch Trimethoprim-

Empfindlichkeit und Konjugationsbereitschaft als Donorstamm auszeichnet. Die 

Durchführung der Elektroporation erfolgte wie unter 3.2.7 beschrieben. Nach einstündiger 

Inkubation bei 37°C wurden je 100 µl der Elektroporationsansätze auf Trimethoprim-haltige 

MH-Platten ausplattiert und bei 37°C ÜN bebrütet. Die am nächsten Tag gewachsenen 

Kolonien wurden entnommen, auf MH-Platten ausgestrichen und diese mit Trimethoprim- 

und Chloramphenicol-Antibiotikablättchen belegt (ÜN, 37°C). Selektioniert wurde auf einen 

Trimethoprim-resistenten und Chloramphenicol-sensiblen Klon, da in diesem Fall das 

Trimethoprim-tragende Transposon exakt in die Chloramphenicol-Kassette des Vektors 

pJul1.A integriert ist (Abb. 25). 

4.2.4.2 Konjugation der Mutante U3366 irp1 mit SM10 λpir  <pJul1.A-Trim> 

Bei der Konjugation (s. 3.2.8) wurde der E. coli Stamm SM10 λpir <pJul1.A-Trim> als 

Donor, der Stamm U3366 irp1 als Rezipient des übertragenden Plasmides eingesetzt. Nach 

Anreicherung, Zusammenführung und Inkubation der Konjuganden, wurden je 100 µl der 

Suspension in den Verdünnungsstufen 10-3, 10-4 auf Chloramphenicol- und Trimethoprim-
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Selektivagarplatten ausplattiert und ÜN bei 37°C bebrütet. Gewachsene Kolonien wurden 

anschließend zur Kontrolle mit den entsprechenden Antibiotikablättchen auf MH-Platten 

ausgestrichen (ÜN, 37°C). Aufgrund des π-Protein-Defizites des UPEC-Stammes U3366 fand 

bei der Konjugation durch Einfach-Rekombination homologer DNA-Bereiche eine 

Integration des Plasmides pJul1.A-Trim in das Wirtschromosom statt. Ein solch entstandenes 

Konstrukt konnte durch die dazugewonnene Trimethoprim-Resistenz in dem 

Chloramphenicol-resistenten Stamm U3366 irp1 nachgewiesen werden. 

4.2.4.3 Sucrose-Selektion Kanamycin empfindlicher Klone 

Die Mutante U3366 irp1 ist offenbar durch eine Einfach-Rekombination enstanden (s. 

4.2.3.2) und verfügt damit sowohl über ein intaktes als auch über ein mutiertes irp1-Gen 

(Abb. 24 A). Um für die Herstellung der Rekomplementanten den einfach integrierten Vektor 

pKAS32 irp1::kan zu entfernen und den ursprünglichen Stamm U3366 wiederherzustellen, 

wurde mithilfe des integrierten Vektors pJul1.A-Trim eine Sucrose-Selektion durchgeführt. 

Basierend auf dem Sucroseempfindlichkeitsgen sacB des Vektors pJul1.A-Trim (s. 3.2.2) 

konnte über die Zugabe von Sucrose ein Verlust des Vektors pJul1.A-Trim und durch eine 2. 

Rekombination innerhalb des Genoms der Verlust des Vektors pKAS32 irp::kan erreicht 

werden (Abb. 24 C). Aufgrund eines damit verbundenen Verlustes der Kanamycin-Resistenz, 

konnte die Deletion des mutierten irp1-Gens über den Nachweis eines Kanamycin-sensiblen 

Stammes nach der Sucrose-Selektion überprüft werden. Die auf 5 %igen Sucrose-Platten 

gewachsenen Kolonien wurden parallel auf Kanamycin-haltige LB- und antibiotikafreie MH-

Platten ausgestrichen und nach Inkubation Kanamycin-empfindliche Klone selektiert. Der 

integrierte Vektor pJul1.A-Trim (Abb. 24 B) wurde in diesem Fall durch den ausgeübten 

Selektionsdruck samt pKAS32 irp1::kan aus dem Chromosom entfernt (Abb. 24 C). Die 

Mutante U3366 irp1 wurde somit vollständig rekomplementiert und im folgenden funktionell 

bestätigt. 

4.2.4.4 Durchführung des Luciferase-Bioassays zur funktionellen Bestätigung der 

Rekomplementante U3366 irp1 rec 

Nach Rekomplementierung der irp1-Mutanten sollte die Wiederherstellung des intakten HPI-

Gencluster funktionell bestätigt werden. Aufgrund eines wieder intakten Leserasters der 

Siderophorsynthesegene war eine Yersiniabaktinproduktion vergleichbar zum 

Ursprungsstamm U3366 zu erwarten. Mithilfe des Luciferase-Bioassays (s. 3.4.1.1) wurde die 

Yersiniabaktin-Produktion der Rekomplementante im Vergleich zu dem Stamm U3366 und 

der Mutante U3366 irp1 in vitro untersucht. Anhand der Luciferase-Aktivität, die über 
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Chemilumineszenz-Messung quantifiziert wurde, konnten, wie in Kapitel 4.2.3.3 ausführlich 

beschrieben, Rückschlüsse auf die Yersiniabaktinproduktion der unterschiedlichen Stämme 

geschlossen werden. 

Neben dem Stamm U3366, U3366 irp1 rec und U3366 irp1 wurden als Positivkontrolle der E. 

coli Stamm Mutaflor®, als Negativkontrolle der E. coli Stamm SCS 110 eingesetzt und die 

Luciferase-Messung am Tag 6 nach Inkubationsbeginn durchgeführt (3.4.1.1). 

 

Abbildung 26: Bestimmung der Yersiniabaktinproduktion der UPEC Stämme U3366 irp1, U3366, U3366 

irp1 rec im Vergleich zur Positivkontrolle E. coli Mutaflor® und der Negativkontrolle E. coli Stamm SCS 

110 nach 6 tägiger Inkubation in NBD-Medium mithilfe des Luciferase-Bioassays. Die Enzymaktivität der 

Luciferase wurde als emittiertes Licht der Wellenlänge 562 nm in einem Luminometer gemessen. Als 

Indikatorstamm diente der Salmonella enterica Typhimurium Stamm WR 1542. Dargestellt sind die 

Mittelwerte einer Doppelbestimmung und die Standardabweichungen.  

Ergebnis: Abbildung 26 zeigt eine niedrigere Luciferaseaktivität der Negativkontrolle E. coli 

SCS 110 und der Mutanten U3366 irp1 (au= 104) gegenüber den HPI-intakten Stämmen, was 

auf die fehlende Yersiniabaktinproduktion hinweist. Die Siderophorsynthese der 

Rekomplementante U3366 irp1 rec (au= 933.313) nimmt gemessen an der Luciferaseaktivität 

eine Zwischenstellung zwischen dem Stamm U3366 (au= 6.802.117) und der Positivkontrolle 

E. coli Mutaflor®  (au= 332.880) ein und zeigt eine in vitro intakte HPI-Aktivität. 
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4.2.5 Werden die HPI-Gene bei Urinkontakt in vitro exprimiert? 

Bevor die entsprechenden Bakterienstämme im Mausmodell eingesetzt wurden, sollten in 

vitro-Untersuchungen die Möglichkeit eines Einflusses der HPI auf das Infektionsverhalten 

des jeweiligen Stammes bekräftigen. Es sollte im folgenden untersucht werden, ob der UPEC 

Stamm U3366 gegenüber der irp1-Mutante Yersiniabaktin bei Inkubation in Urin in vitro und 

bei Kontakt zu Urin in vivo exprimiert. Der Nachweis einer Siderophorproduktion sollte den 

Beweis einer funktionell aktiven HPI bei E. coli U3366 erbringen und damit den Einsatz im 

Tierversuch rechtfertigen. Für den in vitro Versuch wurden zwei unterschiedliche 

Nachweisverfahren gewählt: der Yersiniabaktin-Luciferase-Bioassay (s. 3.4.1.1) und der 

Cross-feeding-Assay (s. 3.4.1.2).  

4.2.5.1 Yersiniabaktin-Luciferase-Bioassay 

Die Grundlagen des Luciferase-Bioassays wurden in Kapitel 3.4.1.1 ausführlich beschrieben. 

Mit dem Einsatz in den Bioassay sollten die UPEC-Stämme U3366, U3366 irp1 und die 

Rekomplementante U3366 irp1 rec in unterschiedlich eisenreichen Medien auf Exprimierung 

von Yersiniabaktin in vitro untersucht werden. Es sollte hiermit eine von der Umgebung 

eisenabhängige Produktion des Siderophors bewiesen werden. Um eine hohe 

Ausgangskonzentration der Bakterien zu erreichen, wurden die Stämme zunächst ÜN bei 

37°C in LB-Medium angereichert. Die Kulturen wurden am nächsten Morgen abzentrifugiert 

und das erste Anreicherungsmedium ausgetauscht, so dass eine mögliche Ybt-Produktion in 

der logarithmischen Wachstumsphase der LB-Kultur unterbunden werden konnte. Nach 

erneuter Inkubation über Nacht wurden die Stämme in das entsprechende endgültige Medium 

überführt. Neben Urin wurden Medien unterschiedlicher Eisensättigung, wie LB (eisenreich) 

und NBD (durch den Zusatz des Eisenchelators 2,2'-Dipyridyl sehr eisenarm) eingesetzt. Vor 

der Überimpfung des jeweiligen Stammes in LB, NBD und Urin wurde ein Aliquot des 

Anreicherungsmediums (LB) entnommen, der Überstand nach Zentrifugation als 

Nullwertprobe eingefroren und später mit den Versuchsproben gemeinsam weiterverarbeitet 

und beurteilt (s. Protokoll 3.4.1.1). Die Stämme U3366, U3366 irp1 und U3366 irp1 rec 

wurden anschließend in den aufgeführten Medien 5 Tage bei 37°C inkubiert und die 

Luciferase-Messung durchgeführt. Aufgrund der zur gemessenen Lichtemission 

proportionalen Menge Luciferase, konnte auf die aufgenommene Menge Yersiniabaktin und 

damit auf die Expression des Siderophors des jeweiligen Teststammes geschlossen werden. 

Die Ergebnisse sind in Abb. 27 dargestellt. Der Versuch wurde zur Bestätigung insgesamt 4 x 

wiederholt. 
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Abbildung 27: in vitro-Bestimmung der Yersiniabaktinproduktion der UPEC Stämme U3366, U3366 irp1 

und U3366 irp1 rec am Tag 0 und nach 5-tägiger Inkubation in den Medien LB, NBD, Urin bei 37°C 

mithilfe des Luciferase-Bioassays. Die Enzymaktivität der Luciferase wurde als emittiertes Licht bei der 

Wellenlänge 562 nm in einem Luminometer gemessen. Als Indikatorstamm diente der Salmonella enterica 

Serotyp Typhimurium Stamm WR 1542. Dargestellt sind die Mittelwerte einer Dreifachbestimmung und 

die Standardabweichungen. 

Tabelle 4 Luciferase-Quotient 

Quotient  Nullwert Grenzwert LB NBD Urin 

U3366/U3366 irp1 1,12 1,568 1,28 1,89 3,98 

U3366 irp1 rec/U3366 irp1 1,2 1,68 1,18 1,73 4,4 

 

Ergebnis: Während die Luciferase-Messung nach Anreicherung in dem eisenreichen LB-

Medium bei allen Stämmen Werte zeigte, die den Nullwert (ca. 60 au) nicht überstiegen, war 

ein Anstieg der Luciferaseproduktion bei dem Stamm U3366 und der Rekomplementante in 

den Medien Urin und NBD zu erkennen. Hierbei wurden bei den NBD inkubierten Stämmen 

Werte von ca. 700 au, bei den in Urin angereicherten Stämmen Werte von ca. 400 au erreicht. 

Dagegen zeigte die irp1-Mutante im eisenarmen NBD-Medium eine Lichtemission von 377 

au und im Urin von 89 au. Wie in Abbildung 27 dargestellt, unterscheiden sich die 

arithmetischen Mittelwerte der Messwerte in Abhängigkeit der eingesetzten Kulturmedien 

erheblich. So sind die Chemilumineszenzwerte der irp1-Mutante im NBD-Kulturmedium 

Luciferase-Assay zur Analyse der Yersiniabaktin-Produktion 
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deutlich höher als im Urin oder im LB-Medium. Daraus folgt, dass für den Vergleich der 

Chemilumineszenz der Stämme bei unterschiedlichen Anzuchtbedingungen nicht die 

Absolutwerte herangezogen werden können. Um eine Vergleichbarkeit zu erbringen, sind 

vielmehr Quotienten zwischen den Werten von Ausgangsstamm bzw. Rekomplementante und 

der irp1-Mutante zu bilden. Der Quotient aus der Nullwertbestimmung U3366/U3366 irp1 

bzw. U3366 irp1 rec/U3366 irp1 zuzüglich eines 40 %igen Sicherheitszuschlages wird als 

Grenzwertquotient für die Beurteilung positiver Yersiniabaktinproduktion definiert. Wie aus 

Tabelle 4 ersichtlich, zeigen der Ausgangsstamm U3366 und die irp1-Rekomplementante 

erwartungsgemäß im eisenreichen LB-Medium keine Ybt-Produktion. Deutliche Hinweise für 

eine Yersiniabaktin-Synthese ergeben sich dagegen aus den hohen Quotienten beim NBD-

Medium und interessanterweise auch bei der Urinkultivierung. 

Zusammenfassend zeigten die Ergebnisse eine Abhängigkeit der Yersiniabaktinproduktion 

von der Eisenkonzentration des Anreicherungsmediums in vitro. Je eisenärmer das Medium, 

desto größer war die Siderophorproduktion. Außerdem wurden eindeutige Unterschiede in der 

Expression des Siderophors zwischen den HPI-intakten Stämmen und der irp1-Mutanten 

deutlich. 

4.2.5.2 Cross-Feeding-Assay mit dem Salmonella enterica Serotyp Typhimurium 

Stamm WR 1542 

Da der im Max von Pettenkofer-Institut entwickelte Luciferase-Assay neben der 

Eisenkonzentration im Anreicherungsmedium andere Einflüsse auf den Luciferase-Promotor 

nicht ausschließen kann, wurde zur Bestätigung der Yersiniabaktinproduktion im Urin als 

ergänzender Test der Cross-feeding-Assay (s. 3.4.1.2) durchgeführt. Als Indikatorstamm 

wurde der Salmonella enterica Serotyp Typhimurium WR1542 eingesetzt, der in den 

eisenarmen CDHM-Agar eingegossen wurde. Aufgrund der Mutation sämtlicher 

Eisenaufnahmesysteme kann der Salmonella-Stamm Eisen lediglich über den plasmid-

kodierten FyuA-Rezeptor in Form von Ferro-Yersiniabaktin aufnehmen. Trägt man dem in 

eisenarmen CDHM-Agar eingegossenen Salmonella-Stamm über Filterblättchen Testmedien 

auf, kann je nach Anwesenheit von Ybt im Testmedium ein Wachstumshof des Salmonella-

Indikatorstammes um das Filterblättchen nachgewiesen werden. Der Wachstumshof 

demonstriert die Yersiniabaktinproduktion des Teststammes. Das Protokoll wurde wie unter 

3.4.1.2 beschrieben durchgeführt und als Teststämme der UPEC Stamm U3366, U3366 irp1 

und U3366 irp1 rec eingesetzt. Die Stämme wurden 5 Tage in Urin angereichert und ein 

Aliquot von 8 µl über ein Filterblättchen auf den Agar aufgetragen und bei 37°C ÜN bebrütet. 
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Am nächsten Tag wurde die Bildung von Wachstumshöfen des Indikatorstammes um die 

jeweiligen Testblättchen bewertet. Die Ergebnisse sind in Abb. 28 dargestellt. 

 

Ergebnis: Ein Wachstumshof des Salmonella enterica Typhimurium-Stammes WR 1542 

wurde bei den Yersinia-HPI-intakten Stämmen U3366 und U3366 irp1 rec nachgewiesen, 

während um die Testblättchen der irp1-Mutanten kein Wachstum des Indikatorstammes zu 

erkennen war. Damit wurde neben dem Luciferase-Bioassay ein weiterer unabhängiger 

Nachweis einer Yersiniabaktinproduktion im Urin HPI-positiver Stämme in vitro erbracht. 

Die Ergebnisse wurde durch Versuchswiederhohlung bestätigt. 

 

 

Abbildung 28: in vitro Nachweis der Yersiniabaktinproduktion der UPEC Stämme U3366, U3366 irp1 und 

U3366 irp1 rec mithilfe des in CDHM-Agar eingegossenen Indikatorstammes Salmonella enterica Serotyp 

Typhimurium Stamm WR 1542 nach 5-tägiger Inkubation. 8 µl der jeweiligen Urinkultur wurden auf 

Filterblättchen übertragen und bei 37°C inkubiert. Anfärbung (rot) des Bakterienwachstums erfolgte, wie 

in Material und Methoden beschrieben, durch Zusatz von Triphenyltetrazoliumchlorid-Lösung. 

4.2.6 Werden die HPI-Genen bei Urinkontakt in vivo exprimiert 

Nach der Bestätigung der in vitro Expression von HPI-Genen sollte der Nachweis einer Ybt-

Produktion nach transurethraler Infektion in vivo erbracht werden. Aufgrund der geringen 

Urinmenge, die von Mäusen gewonnen werden konnte, wurde hier auf die Nachweismethode 

des Luciferase-Bioassays verzichtet und ausschließlich der Cross-feeding-Assay 

durchgeführt. Zuvor wurde C3H/HeN-Mäusen der jeweilige Stamm (UPEC U3366, U3366 

irp1, U3366 irp1 rec) unter Narkose (s. 3.3.4.3) appliziert (s. 3.3.4.2) und der Urin am Tag 1 

bis 7 auf sterilen Petrischalen gewonnen. 8 µl des gewonnenen Urins wurde auf die 

Filterblättchen des Assays gebracht, bei 37°C ÜN inkubiert und die Ergebnisse am nächsten 

U3366 irp1 

U3366 irp1 rec 
U3366  
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Tag ausgewertet (s. Abb. 29). Um eine Yersiniabaktinproduktion der Bakterien nach 

Gewinnung des Urins zu vermeiden, wurde in einer zweiten Versuchsreihe dem CDHM-Agar 

das Antibiotikum Kanamycin zugegeben. Das Antibiotikum, das seinerseits keine 

Auswirkungen auf den Stamm WR1542 hat, wirkt abtötend auf die U3366-Stämme, so dass 

eine Untersuchung auf in vivo Produktion des Siderophors gewährleistet wurde. 

 

Ergebnis: Der Urin der Mäuse wurde an 7 aufeinanderfolgenden Tagen gewonnen und auf 

die Testblättchen des CDHM-Agars gebracht. Bereits am ersten Versuchstag wurde der 

Nachweis einer Yersiniabaktinproduktion des Stammes U3366 und U3366 irp1 rec erbracht, 

während die Mutante irp1 den Salmonella-Stamm nicht mit dem Siderophor versorgen 

konnte. Das gleiche Ergebnis erhielt man an den darauffolgenden Versuchstagen. 

Repräsentativ wurde hier die Siderophorproduktion am Tag 3 dargestellt (Abb. 29). Offenbar 

wurden unmittelbar bei Kontakt zum Wirtsorganismus, bzw. bei Urinkontakt in vivo, die HPI-

kodierten Gene exprimiert und Siderophore in die Umgebung abgegeben. Durch die 

Herstellung kanamycinhaltiger CDHM-Platten in einer zweiten Versuchsreihe wurde das 

Wachstum des jeweiligen UPEC-Stammes gehemmt und nur der in vivo produzierte 

Proteinüberstand gemessen. Eine Yersiniabaktin-Produktion des Stammes U3366 und der 

Rekomplementanten konnte auch hier im Gegensatz zu der irp1-Mutanten nachgewiesen 

werden.  

 

Abbildung 29: Nachweis der in vivo Yersiniabaktinproduktion der UPEC Stämme U3366, U3366 irp1 und 

U3366 irp1 rec mithilfe des in CDHM-Agar eingegossenen Indikatorstammes Salmonella enterica Serotyp 

Typhimurium Stamm WR 1542. 8 µl des von infizierten Mäusen gewonnenen Urins (Tag 3) wurde auf 

Filterblättchen, die auf CDHM-Platten aufgelegt wurden, übertragen und bei 37°C ÜN inkubiert. 
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4.2.7 In vivo Harntraktinfektion im Mausinfektionsmodell 

Nachdem in Vorversuchen neben Parametern wie Applikationsart, Narkoseform und 

Mausstamm der geeignete UPEC-Stamm gewählt und die entsprechende Mutante und 

Rekomplementante hergestellt und getestet wurde, wurden die uropathogenen E. coli-Stämme 

U3366, U3366 irp1 und die Rekomplementante U3366 irp1 rec im Harntraktinfektionsmodell 

untersucht. Zuvor wurde die Expression der HPI-kodierten Proteine im Urin durch in vitro 

Untersuchungen bestätigt. Im Mausinfektionsmodell, das sich für Untersuchungen von E. 

coli-Infektionen im Harntrakt etabliert hat, sollte der Einfluss der HPI auf das 

Infektionsverhalten des UPEC-Stammes untersucht werden. Die Stämme wurden, wie in 

Kapitel 3.3.1-3.3.2 beschrieben, für den Einsatz im Tierversuch vorbereitet und alle Mäuse 

auf bereits bestehenden Harnwegsinfekt überprüft und im Falle einer Infektion saniert (s. 

3.3.4.5). 

4.2.8 Einzelinfektionsversuch 

Der Einzelinfektionsversuch wurde gewählt, um die Bakterienstämme getrennt voneinander 

bezüglich ihres Infektionsverhaltens zu untersuchen. Da die Harnwege primär steril sind, 

wurde die Isolierung der eingesetzten Keime und ihre Quantifizierung erleichtert. Pro 

Bakterienstamm wurden für einen Infektionsversuch 30 C3H/HeN-Mäuse eingesetzt, wobei 

die Gruppengröße pro Tag 10 Mäuse betrug. Die Bakteriensuspension wurde den Mäusen 

unter Ketamin-Xylazin-Narkose (s. 3.3.4.3) intraurethral appliziert (s. 3.3.4.2). Nach der 

Infektion, die den natürlichen Infektionsweg simuliert, wurde die Keimzahl aus Blase, Niere 

und Urin an den Tagen 1, 3 und 7 bestimmt. Der Urin der infizierten Mäuse wurde zu den 

genannten Zeitpunkten gesammelt, eine Keimzahlbestimmung und Granulozytenzählung pro 

ml Urin durchgeführt und anschließend Blase und Niere der Tiere entfernt, gewogen und für 

die Bestimmung der Keimzahl homogenisiert. Die Homogenisate wurden in verschiedenen 

Verdünnungsstufen ausplattiert und nach ÜN-Inkubation bei 37°C die Keimlast (KBE) für 

Niere, Blase und Urin pro g Gewebe bestimmt. Die Versuchsdurchführung ist Kapitel 3.3.4.6 

zu entnehmen.  

 

Statistische Analyse: Das arithmetische Mittel der Keimzahl (KBE) pro g Gewebe bzw. pro 

ml Urin der Bakterienstämme wurde mithilfe des Student´s t test verglichen. Entsprach die 

Verteilung der Versuchswerte nicht der Gauß´schen Normalverteilung, wurde der 

verteilungsunabhängige Mann-Whitney U Test durchgeführt. 
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Ergebnis des Vorversuches: Im Vorversuch des Harnwegsinfektionsmodells wurden der 

Stamm U3366 und dessen Mutante U3366 irp1 eingesetzt. Es sollte das Virulenzverhalten 

beider Stämme verglichen und im Falle signifikanter Unterschiede anschließend der 

Hauptversuch unter Einsatz der Rekomplementanten U3366 irp1 rec durchgeführt werden. 

Aufgrund der geringen Urinmenge wurde hier auf eine Darstellung der Keimzahl pro ml Urin 

verzichtet. In Abb. 30 ist die Keimzahl (KBE) pro g Gewebe und die Anzahl neutrophiler 

Granulozyten pro ml Urin beider Stämme dargestellt. Ein deutlicher Unterschied war bei der 

Keimlast in Niere und Blase zu erkennen. Während beim Ausgangsstamm U3366 in der Blase 

die Keimzahl (KBE) von 106-107 (Tag 1) auf 107-108 am Tag 3 und 7 anstieg, sankt die 

Keimlast der Mutanten U3366 irp1 von 105 am Tag 1 auf den Wert von 104 pro g 

Blasengewebe. Am Tag 7 war in der Blase ein statistisch signifikanter Unterschied der 

Keimzahl beider Stämme von ca. 3 Logstufen nachweisbar. In der Niere war die Keimlast 

insgesamt etwas geringer, jedoch waren die Ergebnisse analog zu denen in der Blase. Der 

Ausgangs-Stamm U3366 ließ sich mit einer Keimzahl von 104-105  am Tag 1 und mit einem 

Wert von 105-106 am Tag 3 und 7 rückisolieren, während die Keimzahl der Mutanten irp1 von 

104 KBE/g Niere auf 102-103 am Tag 7 kontinuierlich sank. Statistisch signifikante 

Unterschiede (P<0,05) waren am Tag 3 und 7 bei einer Differenz von 2-3 Logstufen 

nachweisbar. Der Stamm U3366 zeigte durch seine intakte HPI insbesondere im längeren 

Infektionsverlauf einen Infektionsvorteil in Niere und Blase und etablierte sich mit einer 

wesentlich höheren Keimzahl über einen längeren Zeitraum im Harntrakt. Betrachtet man die 

Granulozytenverteilung pro ml Urin waren keine signifikanten Unterschiede zu erkennen. Die 

Anzahl der Granulozyten betrug über den gesamten Beobachtungszeitraum 105-106 Zellen pro 

ml.  

Der Vorversuch diente zunächst der Etablierung der Methodik und zeigte bereits signifikante 

Effekte im Virulenzverhalten zwischen dem Ausgangsstamm U3366 und der irp1-Mutanten. 

Im folgenden Hauptversuch wurden zum einen zusätzliche Keimzahluntersuchungen im Urin 

durchgeführt, zum anderen sollte ergänzend die Rekomplementante U3366 irp1 rec eingesetzt 

werden. Da die im Vorversuch nachgewiesenen Effekte auf klonierungsbedingten Mutationen 

anderer relevanter Genomloci beruhen könnten, sollte die Rekomplementante den Einfluss der 

HPI-kodierten Proteine auf das Infektionsgeschehen bestätigen. 
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Abbildung 30: Keimlast infizierter C3H/HeN-Mäuse mit UPEC Stamm U3366 und der isogenen Mutanten 

U3366 irp1. 30 weiblichen C3H/HeN Mäusen wurden transurethral 10 µl U3366 oder U3366 irp1 (107 

KBE) appliziert und am Tag 1, 3 und 7 Blase und Niere entnommen, homogenisiert und die Keimzahl pro 

g Gewebe bestimmt (A, B). Gleichzeitig wurde der Urin gewonnen und mit Hilfe der Neubauer 

Zählkammer der Gehalt neutrophiler Granulozyten pro ml Urin bestimmt (C). Dargestellt sind die 

Mittelwerte und Standardabweichungen am jeweiligen Versuchstag. **P<0,05 

 

Ergebnis des Hauptversuches: Der Hauptversuch wurde analog zum oben beschriebenen 

Vorversuch durchgeführt, jedoch wurde ergänzend die Rekomplementante U3366 irp1 rec 

eingesetzt und eine Keimzahlbestimmung im Urin durchgeführt. Die in Abb. 31 dargestellten 

Ergebnisse des Hauptversuches bestätigten die im Vorversuch festgestellten Effekte: In der 

Niere etablierten sich die Stämme U3366 und die Rekomplementante im Versuchsverlauf in 

einer Keimzahl von 104-105 KBE pro Gramm Gewebe, während die Keimzahl der Mutanten 

irp1 von einem Ausgangswert von 104 KBE/g am Tag 1 auf den Wert von 102-103 am Tag 7 

absank. Es ergaben sich dabei in der Niere am Tag 7 signifikante Unterschiede zwischen dem 

Ausgangsstamm U3366 und der Mutante irp1, sowie zwischen der Mutante irp1 und der 
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Rekomplementante am Tag 3 und 7. Auch in der Blase nahm die Keimlast der irp1-Mutante 

von 105-106 am Tag 1 auf 103-104 KBE/g am Tag 7 kontinuierlich ab. Die Keimzahl des 

Stammes U3366 sank ebenfalls innerhalb des Beobachtungszeitraumes, allerdings zeigte sie 

am Tag 3 und 7 höhere Werte (1 Logstufe) als die isogene irp1-Mutante. Die 

Rekomplementante etablierte sich hingegen in der Blase mit einer Keimzahl von 105-106 

KBE/g Blase. So sind an den Tagen 3 und 7 signifikante Unterschiede der Keimzahl zwischen 

Rekomplementante und irp1-Mutante in der Blase nachweisbar. Eine deutlichere Etablierung 

des Stammes U3366 in der Niere als in der Blase ist möglicherweise auf die Herkunft des 

U3366-Stammes (Nierenbeckenisolat) zurückzuführen. Interessanterweise sind innerhalb der 

drei Stämme keine Unterschiede hinsichtlich der Keimzahl im Urin (KBE/ml Urin) sowie der 

Granulozytenzahl pro ml Urin zu beobachten. Die Keimlast im Urin betrug über den 

gesamten Beobachtungszeitraum 104-105 KBE/ml, wobei die Keimzahl der irp1-Mutante am 

Tag 7 geringfügig absank. Die Anzahl der Granulozyten zeigte wie in dem Vorversuch einen 

konstanten Wert von 105-106 Zellen pro ml Urin. Der Hauptversuch wurde zur Bestätigung 

der Ergebnisse analog wiederholt. Bei den Wiederholungsversuchen konnten signifikante 

Unterschiede in der Keimzahl der Blase zwischen U3366 und der Mutante U3366 irp1 am 

Tag 1 und 3 nachgewiesen werden. Die Rekomplementante zeigte in beiden Hauptversuchen 

analoge Keimzahlen zu dem Ausgangs-Stamm U3366 und damit signifikante Unterschiede zu 

der irp1-Mutanten. Die Ergebnisse stellten die Bedeutung der HPI für das Virulenzverhalten 

des UPEC-Stammes dar und konnten den Einfluss möglicher Genomveränderungen durch 

klonierungsbedingte Mutationen anderer Genomloci auf die Urovirulenz ausschließen. 
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Abbildung 31: Keimlast nach Infektion von C3H/HeN Mäusen mit UPEC Stamm U3366, dessen Mutante 

U3366 irp1 und der Rekomplementante U3366 irp1 rec. 30 weiblichen C3H/HeN Mäusen wurden 

transurethral 20 µl U3366, U3366 irp1 oder U3366 irp1 rec (107 KBE) appliziert und am Tag 1, 3 und 7 

Blase und Niere entnommen, homogenisiert und die Keimzahl pro g Gewebe bestimmt (A, B). Gleichzeitig 

wurde der Urin gewonnen, die Keimzahl pro ml Urin bestimmt (C) und mithilfe der Neubauer 

Zählkammer der Gehalt neutrophiler Granulozyten pro ml Urin festgestellt (D). Dargestellt sind die 

Mittelwerte und Standardabweichungen am jeweiligen Versuchstag. **P<0,05  

4.2.9 Koinfektionsversuch 

Ergänzend zu den Einzelinfektionsversuchen wurden im Folgenden Koinfektionen 

durchgeführt, um eine gegenseitige Beeinflussung von Ausgangsstamm und Mutante in vivo 

zu untersuchen. Hierzu wurden der UPEC Stamm U3366 mit der Mutante U3366 irp1 sowie 

die Rekomplementante U3366 irp1 rec mit U3366 irp1 simultan appliziert und der Versuch 

wie unter 3.3.4.7 beschrieben durchgeführt. Das Keimgemisch wurde im Verhältnis 1:1 

hergestellt und 30 C3H/HeN-Mäusen intraurethral appliziert. An den Tagen 1, 3 und 7 
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wurden Blase und Niere entnommen und wie unter 3.3.4.6 aufgeführt die Keimzahl pro g 

Gewebe bzw. pro ml Urin bestimmt (Abb. 32). Die Identifizierung einzelner Stämme erfolgte 

über Selektion entsprechender Antibiotikaplatten. Es wurden hierfür Chloramphenicol- und 

Kanamycin-Agarplatten eingesetzt, wobei alle drei Stämme eine Chloramphenicol-Resistenz 

aufweisen, jedoch nur die Mutante auf Kanamycinplatten wächst. Die Differenz der Keimzahl 

(KBE) der Chloramphenicolplatten und der Keimzahl der Kanamycinplatten ergab die 

Keimzahl des Stammes U3366 bzw. der Rekomplementante U3366 irp1 rec. 

 

Abbildung 32: Koinfektionsversuch U3366/U3366 irp1. Keimlast nach Infektion mit UPEC Stamm U3366 

und der Mutante U3366 irp1. 30 weiblichen C3H/HeN-Mäusen wurden transurethral je 10 µl U3366 und 

U3366 irp1 (107 KBE) appliziert, am Tag 1, 3 und 7 Blase und Niere entnommen, homogenisiert und die 

Keimzahl KBE pro g Gewebe bestimmt (A, B). Gleichzeitig wurde der Urin gewonnen und die Keimzahl 

pro ml Urin bestimmt (C). Dargestellt sind die Mittelwerte und die Standardabweichungen am jeweiligen 

Versuchstag. **P<0,05 

Ergebnis des Koinfektionsversuches: Innerhalb des Beobachtungszeitraumes sank die 

Keimzahl der Stämme U3366 und der irp1-Mutante in Niere und Blase in gleicher Weise. 
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Während ein signifikanter Unterschied in der Niere am Tag 1 berechnet wurde, ist ein 

entsprechend signifikanter Unterschied bei der Keimzahl am Tag 3 und 7 nicht zu 

beobachten. Auch in der Harnblase sind vergleichbare Keimzahlwerte an den Versuchstagen 

nachgewiesen worden. So sank die Keimzahl/g Blase bei beiden Stämmen von 106 KBE am 

Tag 1 auf 104 KBE am Tag 7. Am Tag 3 zeigte sich jedoch ein signifikanter Unterschied in 

der Keimlast. Die Keimzahl beider Stämme im Urin lag während des Beobachtungszeitraums 

bei einem Wert von 104-105 KBE/ml Urin, wobei am Tag 3 auch hier ein signifikanter 

Unterschied nachgewiesen werden konnte. Die Ergebnisse zeigten im Gegensatz zu den 

Einzelinfektionsversuchen keinen signifikanten Vorteil im Infektionsverhalten des Stammes 

U3366 gegenüber der irp1-Mutanten am Ende des Infektionsversuches auf. Unterschiede 

waren in der Frühphase der Koinfektion sichtbar, so dass eine gegenseitige Beeinflussung der 

Stämme in Form einer Yersiniabaktin-Fütterung erst zu einem späteren Zeitpunkt möglich zu 

sein scheint. Der Koinfektionsversuch wurde zur Bestätigung mit der Rekomplementanten 

U3366 irp1 rec und der Mutanten irp1 wiederholt. Die Ergebnisse sind in Abb. 33 dargestellt 

und zeigten durch eine gleichmäßige Abnahme der Keimzahl in Niere und Blase über den 

Beobachtungszeitraum ein ähnliches Infektionsverhalten beider Stämme. Hierbei konnten 

keine signifikanten Unterschiede nachgewiesen werden.  
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Abbildung 33: Koinfektionsversuch U3366 irp1 rec/U3366 irp1. Keimlast nach Infektion mit UPEC 

Stamm U3366 irp1 rec und der Mutante U3366 irp1. 30 weiblichen C3H/HeN-Mäusen wurden 

transurethral je 10 µl U3366 irp1 rec und U3366 irp1 (107 KBE) appliziert, am Tag 1, 3 und 7 Blase und 

Niere entnommen, homogenisiert und die Keimzahl pro g Gewebe bestimmt (A, B). Gleichzeitig wurde 

der Urin gewonnen und die Keimzahl pro ml Urin bestimmt (C). Dargestellt sind die Mittelwerte und die 

Standardabweichungen am jeweiligen Versuchstag. **P<0,05 

Zusammenfassung der Ergebnisse des Harntraktinfektionsversuches: Der Vorversuch 

und die Hauptversuche des Einzelinfektionsmodells ergaben einen signifikanten 

Infektionsvorteil des UPEC Stammes U3366 gegenüber der Mutanten U3366 irp1. Die 

Versuche wurden durch den Einsatz der Rekomplementanten U3366 irp1 rec bestätigt. 

Aufgrund des analogen Infektionsverlaufes des Ausgangsstammes U3366 und der 

Rekomplementanten, konnte der Einfluss einer intakten HPI auf das Infektionsverhalten 

gezeigt und klonierungsbedingte Mutationen anderer Genloci bei der irp1-

Mutantenherstellung ausgeschlossen werden. Der UPEC Stamm U3366 sowie die 

Rekomplementante U3366 irp1 rec konnten sich über einen längeren Zeitraum im Harntrakt 
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etablieren, während die Keimzahl der irp1-Mutante in Blase und Niere innerhalb des 

Beobachtungszeitraumes kontinuierlich sank und somit Unterschiede im späteren 

Infektionsverlauf festzustellen waren. Die Aufnahme von Yersiniabaktin ist offenbar für eine 

längere Überlebensdauer des uropathogenen Stammes in vivo essentiell. Interessanterweise 

war bei beiden Stämmen ein gleicher Granulozytenstatus nachweisbar.  

Die Koinfektionsversuche mit dem Stamm U3366 und der isogenen irp1-Mutante gaben 

neben signifikanten Keimzahlunterschieden in Niere und Blase zu Beginn der Infektion 

Hinweise auf eine gegenseitige Beeinflussung der entsprechenden Stämme im späteren 

Infektionsverlauf. Denkbar ist hier eine Yersiniabaktinfütterung zwischen beiden Stämmen, 

was auf eine in vivo-Expression HPI-kodierter Proteine deutet. 
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5 Diskussion 

5.1 Darmkolonisierung mit E. coli Stamm Nissle 1917, Mutaflor® 

Der E. coli Stamm Nissle 1917 (Mutaflor®) stellt einen apathogenen Vetreter der Darmflora 

dar und wird bei unterschiedlichen akuten und chronischen Darmerkrankungen therapeutisch 

eingesetzt (Kruis et al., 2001, Rembacken et al., 1999, Malchow, 1997, Möllenbrink & 

Bruckschen, 1994). Trotz einer genauen Stammtypisierung konnte bisher die Wirkungsweise 

sowie die Ursache für seine besondere Konkurrenzfähigkeit gegenüber der übrigen Flora nicht 

geklärt werden (Ölschläger et al., 2001). Der Stamm verfügt über keinerlei typische 

Pathogenitätsfaktoren, was eine Grundvoraussetzung für den Einsatz als Therapeutikum 

darstellt. Interessanterweise konnte die bei Yersinien maßgeblich für die Virulenzausprägung 

verantwortliche HPI ("High-Pathogenicity Island") (Almeida et al., 1993, Heesemann, 1987) 

bei E. coli Stamm Mutaflor® nachgewiesen werden (Schubert et al., 1999). Die weite 

Verbreitung der HPI bei unterschiedlichen Spezies der Familie Enterobacteriacae lässt auf 

eine Übertragung via horizontalen Transfer schließen (Schubert et al., 2000). Während 

Mutationen der HPI bei Yersinien zu einem deutlichen Virulenzabfall des entsprechenden 

Stammes führen, ist die Bedeutung der Pathogenitätsinsel für den apathogenen E. coli Stamm 

Mutaflor® ungeklärt.  

Die essentielle Bedeutung von Eisen für unterschiedliche biochemische Reaktionen bei 

Prokaryoten erklärt die Notwendigkeit für Bakterien, Eisenaufnahmesysteme zu besitzen 

(Neilands, 1981). Eisen ist unter anaeroben Bedingungen im Darm in Form freier FeII-Ionen 

für Bakterien gut verfügbar. In sauerstoffreicher und pH-neutraler Umgebung liegt Eisen 

dagegen in Form schwerlöslicher dreiwertiger FeIII-Komplexe vor. Die gut durchblutete 

Darmwand bewirkt einen Sauerstoffgradienten zwischen Darmlumen und Darmwand, so dass 

die Verfügbarkeit freier Eisenionen vermutlich zur Darmwand hin abnimmt. E. coli Stamm 

Mutaflor® besitzt neben dem HPI-kodierten Yersiniabaktin-Aufnahmesystem weitere 

Eisenaufnahmesysteme: Aerobaktin, Enterobaktin, Salmochelin, Colibaktin, ein Hämin- und 
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ein Citrat-abhängiges Eisenaquisitionssystem (Heesemann, 2001, Hantke et al., 2003). Die 

Existenz des zusätzlichen HPI-kodierten Siderophors lässt unterschiedliche Affinitäten der 

Eisenaufnahmesysteme bei verschiedenen Eisenmangelbedingungen vermuten. Somit könnten 

im Darmlumen andere Eisenaufnahmesysteme aktiviert sein als in der Mukosa oder in der 

Darmwand.  

Ziel der vorliegenden Arbeit war es, die Bedeutung der Yersinia-HPI für die 

Kolonisierungsfähigkeit des darmkommensalen E. coli Stamm Mutaflor® darzustellen. Hierzu 

wurde im Mausmodell die Fähigkeit der Darmkolonisierung des E. coli Mutaflor® Stammes 

im Vergleich zu isogenen Mutanten der Yersiniabaktin-Synthese (Mutaflor® irp1) und der 

Yersiniabaktin-Aufnahme (Mutaflor® fyuA) untersucht.  

Da die Selektion der Stämme über ihr Resistenzverhalten durchgeführt werden sollte, wurde 

vor Einsatz im Tierversuch eine spontane Resistenzbildung der natürlichen Darmflora nach 

oraler Zugabe der E. coli Mutaflor®-Stämme untersucht und ausgeschlossen. Eine weitere 

Voraussetzung für den Einsatz im Tierversuch war die Erstellung stabiler Mutanten, die in 

früheren Arbeiten der Arbeitsgruppe Schubert hergestellt werden konnten. Um eine 

Yersiniabaktinproduktion von E. coli der natürlichen Darmflora ausschließen zu können, 

wurden 8 gramnegative, lactosepositive Keime aus dem Mäusedarm isoliert und mithilfe 

entsprechender PCRs auf Existenz der HPI-Gene fyuA und irp1 untersucht. Bei allen 

untersuchten Keimen konnte der Nachweis beider HPI-Gene erbracht werden. Allerdings ist 

damit lediglich der Nachweis einzelner Gene, nicht aber der gesamten HPI gegeben, auch 

kann mit der PCR keine Aussage über die Aktivität der Gene getroffen werden. Es ist jedoch 

bekannt, dass 80 % darmkommensaler E. coli eine HPI-Aktivität zeigen (Schubert, 

unveröffentlicht). Die Möglichkeit einer HPI-Expression der natürlichen Darmflora muß 

daher bei der Bewertung der Versuche berücksichtigt werden.  

Die Vorversuche des Darmkolonisierungsmodells wurden als Kokolonisierungsversuche 

durchgeführt. Durch orale Koapplikation einer äquivalenten Konzentration des E. coli 

Stammes Mutaflor® und der entsprechenden isogenen Mutante konnte zum einen ein direkter 

Vergleich der Keimzahl der jeweiligen Stämme in ein und demselben Organismus, zum 

anderen ein evtl. unterschiedliches Kolonisierungsverhalten der irp1- und fyuA-Mutanten 

untersucht werden. Die irp1-Mutante kann im Gegensatz zu der fyuA- Mutanten kein 

Yersiniabaktin produzieren, ist jedoch unter Umständen in der Lage Yersiniabaktin anderer 

Bakterien über den Eisenaufnahmerezeptor aufzunehmen. Die fyuA-Mutante hingegen kann 

aufgrund des mutierten Eisenaufnahmerezeptors keine Yersiniabaktin-Siderophore 

aufnehmen (Rakin et al., 1994, Pelludat et al., 1998). Eine eventuelle Yersiniabaktinfütterung 

der irp1-Mutante von Seiten des HPI-intakten Mutaflor®-Stammes ist also denkbar. Wie von 
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mehreren Arbeitsgruppen bereits beschrieben, können Bakterien auch exogene Siderophore 

anderer Bakterien nutzen, wenn sie über die entsprechenden Rezeptoren verfügen (Leong & 

Neilands, 1976, Raymond & Carrano, 1979, Neilands, 1981, Hantke, 1983). Die Bestimmung 

der Keimzahl pro ml Darminhalt wurde an den Tagen 3, 7 und 14 durchgeführt, wobei die 

Versuche zur Bestätigung 3 x wiederholt wurden und ein eindeutiges Ergebnis erbrachten: 

Während die irp1-Mutante über den Beobachtungszeitraum eine nahezu gleiche Persistenz im 

Darm wie der Ausgangsstamm E. coli Stamm Mutaflor® zeigte, konnte eine signifikant 

höhere Kolonisierungsbereitschaft von E. coli Mutaflor® gegenüber der fyuA-Mutanten 

nachgewiesen werden. Aufgrund der höheren Keimzahl der irp1-Mutanten gegenüber der 

fyuA-Mutanten ist eine Yersiniabaktinfütterung zwischen Mutaflor® und Mutaflor® irp1 

denkbar. So könnte die irp1-Mutante im Gegensatz zu der fyuA-Mutante in der Lage sein, 

Yersiniabaktin von E. coli Mutaflor® über den intakten FyuA-Eisenaufnahmerezeptor 

aufzunehmen. Dies setzt voraus, dass Mutaflor® in vivo tatsächlich HPI-kodierte Proteine 

exprimiert. Auch eine Fütterung der irp1-Mutante durch HPI-positive Keime der natürlichen 

Darmflora ist dabei nicht ausgeschlossen. Nachdem ein Kolonisierungsunterschied zwischen 

dem Ausgangsstamm E. coli Mutaflor® und der fyuA-Mutanten festgestellt wurde, sollte 

anschließend durch Einsatz einer rekomplementierten fyuA-Mutante die Frage geklärt werden, 

ob die Kolonisierungsunterschiede Folge des mutierten fyuA-Gens oder 

"Klonierungsprobleme" hierfür ausschlaggebend waren. So sind bei der Erstellung der 

Mutanten klonierungsbedingte Veränderungen anderer Genloci nicht auszuschließen, die 

einen eventuellen Einfluss auf die Kolonisierungsfähigkeit ausüben können. Die in dieser 

Arbeit erstellte Rekomplementante wurde im Kokolonisierungsversuch mit der fyuA-Mutante 

und zur Kontrolle mit dem Ausgangsstamm E. coli Mutaflor® eingesetzt und das 

Kolonisierungsverhalten beobachtet. Es stellte sich heraus, dass die Rekomplementante fyuA 

rec und E. coli Mutaflor® nahezu identisches Kolonisierungsverhalten zeigten, während ein 

signifikanter Unterschied zwischen Mutaflor® fyuA rec und der fyuA-Mutanten nachweisbar 

war. Damit konnte eine gelungenen Rekomplementierungen des Stammes E. coli Mutaflor® 

fyuA gezeigt und unerwünschte Genomveränderungen bei der Mutantenherstellung 

ausgeschlossen werden. Die Mutation des fyuA-Gens ist somit alleinig für die beobachteten 

Kolonisierungsunterschiede ausschlaggebend. FyuA spielt offenbar eine essentielle Rolle für 

die Etablierung des Stammes im Darm. Um die Ergebnisse zu bestätigen und eine genaue 

Lokalisation der E. coli Mutaflor®-Stämme im Darm festzustellen, wurde im Hauptversuch 

nicht nur der Darminhalt beurteilt, sondern eine differenzierte Untersuchung von Darminhalt, 

-wand und adhärenten Zellen in Dünn- und Dickdarm vorgenommen. Hiermit sollte ein 

eventueller Zusammenhang zwischen der lokalen Wirkungsweise von Mutaflor® und der 
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Eisenversorgung im Darm untersucht werden. Es wurden orale Einzelkolonisierungsversuche 

durchgeführt, um eine gegenseitige Beeinflussung der Stämme zu vermeiden. Um die von 

Tier zu Tier auftretenden individuellen Schwankungen der oral aufgenommenen 

Bakterienmenge zu minimieren, wurde die Gruppengröße erhöht und die Applikation an drei 

aufeinanderfolgenden Tagen vorgenommen, so dass eine Aufnahme von mindestens 107 KBE 

gewährleistet war. Die Einzelkolonisierungsversuche mit den E. coli Stämmen Mutaflor®, 

Mutaflor® irp1, Mutaflor® fyuA und Mutaflor® fyuA rec zeigten signifikante Unterschiede im 

Kolonisierungsverhalten und bestätigten die Vorversuche. Signifikante Differenzen konnten 

auch hier zwischen der fyuA-Mutante und E. coli Mutaflor® sowie der Rekomplementante 

fyuA rec nachgewiesen werden. Besonders ausgeprägt zeigten sich die Unterschiede im 

Bereich der adhärenten Zellen in Dünn- und Dickdarm. Die Ergebnisse gaben den Hinweis 

auf einen eventuellen Einfluss des FyuA-Rezeptors auf die adhäsiven Eigenschaften des E. 

coli Mutaflor®-Stammes. Offen blieb allerdings die Frage, ob der Rezeptor direkt Adhärenz-

Eigenschaften vermittelt, oder eher ein indirekter Mechanismus über Regulation anderer 

Adhärenzfaktoren, z.B. über das YbtA-Regulatorprotein, eine Rolle spielt. YbtA, ein 

Positivregulator der fyuA- und irp1-Biosynthese, bildet nach Aufnahme von Yersiniabaktin 

ins Cytosol mit diesem ein Komplex und aktiviert so die entsprechenden Promotoren 

(Fetherston et al., 1996). Denkbar wäre eine gleichzeitige Aktivierung bisher unbekannter 

Promotoren oder Repressoren, die Einfluss auf die Adhärenzfähigkeit des Mutaflor®-Stammes 

haben. Die Bedeutung der HPI für die Adhärenzfähigkeit von Mutaflor® steht im Einklang 

mit der Verfügbarkeit freier Eisenionen im Darm. So wird aufgrund des Sauerstoffgradienten 

zwischen Darmlumen und Darmwand die Eisenversorgung der Bakterien im aeroben Bereich 

schwieriger, was die Produktion eines zusätzlichen hochaffinen Eisenaufnahmesystems 

notwendig macht (Braun et al., 1998, Byers & Arceneaux, 1998, Guerinot, 1994, Mietzner & 

Morse, 1994). Das eisenärmere Milieu der mukosalen Bereiche könnte als Indikator die 

Produktion des Siderophors und des Rezeptors FyuA bewirken, der wiederum Einfluss auf die 

Adhärenzfähigkeit ausübt und dem Stamm eine bessere Kolonisierung ermöglicht. 

Während signifikante Keimzahlunterschiede bei den adhärenten Zellen beobachtet wurden, 

zeigten sich weniger große Unterschiede in der Darmwand. Dies erscheint zunächst 

widersprüchlich, hier muß jedoch die unterschiedliche Präparationsweise der Proben beachtet 

werden. Für die Keimzahlbestimmung der Darmwand wurde ein inhaltsreicher Darmabschnitt 

gespült und Inhalt sowie Darmwand zur Auszählung der Keimzahl verwendet. Adhärente 

Zellen wurden dagegen aus einem inhaltsarmen bzw. -freien Darmabschnitt nach zusätzlicher 

PBS-Spülung mit einem Objektträger von der Darmwand geschabt. Die Keimzahl in der 
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Darmwand sollte somit nicht mit der Keimzahl der adhärenten Zellen verglichen, sondern 

jeweils innerhalb der eigenen Versuchsreihe betrachtet werden. 

Die bessere Persistenz der irp1-Mutante im Vergleich zur fyuA-Mutante kann durch eine 

eventuelle Yersiniabaktinfütterung anderer Darmkommensalen erklärt werden. Die 

Kolonisierungsunterschiede waren im Hauptversuch deutlicher als bei den 

Kokolonisierungsversuchen. Dies liegt offenbar daran, dass im Gegensatz zum 

Kokolonisierungsversuch der Donorstamm für Yersiniabaktin (E. coli Stamm Mutaflor®) 

nicht in unmittelbarer Nähe und in hoher Konzentration vorliegt. 

Die im Vergleich zum E. coli Mutaflor® niedrigere Kolonisierungsfähigkeit der irp1-

Mutanten ist durch eine reduzierte FuyA-Expression durch Inaktivierung von irp-Genen zu 

erklären. Die Reduktion der FyuA-Produktion infolge der irp1-Inaktivierung zeigt die 

Autoregulation des Yersiniabaktin-Operons über das YbtA-gebundene Siderophor (Pelludat, 

1998). 

Zusammenfassend wird durch die Mono- und Kokolonisierung des Mäusedarms die 

Bedeutung eines intakten HPI-Genclusters für die Kolonisierungsfähigkeit des E. coli 

Stammes Mutaflor® deutlich. Die Yersinia-HPI nimmt aufgrund der kolonisierungsfördernden 

Eigenschaften und dem damit verbundenen Vorteil für Replikation und Überleben bei E. coli 

Mutaflor® die Rolle einer Fitnessinsel ein (Hacker & Carniel, 2001).  

Um den Einfluss des fyuA-Gens auf die Adhärenzfähigkeit genauer zu überprüfen, sind 

weiterführende Untersuchungen der direkten oder indirekten Wirkung des FyuA-Rezeptors 

interessant. Folgender in vitro Versuch wäre hier denkbar: In einen apathogenen Stamm (E. 

coli DH5α) wird ein fyuA-tragendes Plasmid transformiert, dessen Gen nachweislich 

exprimiert wird. Der Bakterienstamm wird anschließend in den Gentamycin-Kill-Assay 

gebracht, mit Hilfe dessen adhärente Zellen qualitativ und quantitativ bestimmt werden 

können (Mulvey et al., 2001). Somit könnte der Nachweis des direkten Einflusses des FyuA-

Rezeptors erbracht oder wiederlegt werden. Um die Lokalisation von E. coli Stamm 

Mutaflor® im Darm neben der schon erbrachten differenzierten Keimzahlbestimmung optisch 

darzustellen und gleichzeitig die Expression HPI-kodierter Gene in vivo zu untersuchen, 

könnte eine histologische Darstellung von Gfp- oder DsRed-markiertem E. coli Mutaflor® im 

Darm erfolgen (Hui Zhao et al., 1998). Die Reportergene könnten in Verbindung mit 

konstitutiven (plac) oder induzierbaren (pfyuA) Promotoren gebracht werden. Vorraussetzung 

hierbei wären stabile, vom E. coli Mutaflor® Stamm akzeptierte, Plasmide. Ein weiterer 

Hinweis exprimierter Proteine könnte über den Nachweis einer Antikörperantwort auf HPI-

kodierte Proteine mittels Immunoblot erbracht werden. 
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5.2 Harnwegsinfektionsmodell mit UPEC Stamm U3366 

Extraintestinale pathogene E. coli (ExPEC) spielen als Erreger von Harnwegsinfekten bei 

Mensch und Tier eine entscheidende Rolle (Beutin, 1999, Johnson & Stamm, 1989, Ling, 

1995, Wooley & Blue, 1976). Uropathogene E. coli stellen mit 70-95 % den 

Hauptverursacher aller Harnwegserkrankungen dar (Mulvey, 2002) und sind zudem Erreger 

in 40 % aller katheterassoziierten nosokomialen Infektionen (Stamm, 1999). In der 

Humanmedizin geht man von weltweit 150 Mio. Harnwegsinfekten jährlich aus, was einen 

Kostenaufwand von über 6 Mrd. Dollar verursacht (Harding & Ronald, 1994). Die 

wirtschaftlichen Verluste extraintestinaler E. coli-Infektionen beim Tier sind bekannt (Dozois 

et al., 2003, Brown & Curtiss, 1996, Bertschinger et al., 1997, Rolle & Mayr, 

2002).Vergleicht man die Virulenzfaktoren extraintestinaler E. coli bei Mensch und Tier 

konnten bereits von mehreren Arbeitsgruppen Gemeinsamkeiten festgestellt werden (Johnson 

et al., 2000, Johnson et al., 2001, Low et al., 1988, Westerlund et al., 1987). Das fyuA-Gen 

der Yersinia-"High-Pathogenicity Island" konnte hierbei bei unterschiedlichen 

extraintestinalen Erregern nachgewiesen werden (Johnson et al., 2000, Bingen-Bidois et al., 

2002, Janben et al., 2001). Unter 29 Virulenzfaktoren, die von Johnson & Stell (2000) bei 75 

UPEC-Isolaten differenziert wurden, konnte interessanterweise das fyuA-Gen als häufigster 

Virulenzfaktor (93 %) charakterisiert werden. Bekanntere klassische Virulenzfaktoren wie 

sfaS, focG, afa/dra, cnf1, ibeA waren dagegen mit einer Häufigkeit von unter 20 % deutlich 

seltener vertreten. 

In der vorliegenden Arbeit sollte die Bedeutung der Yersinia-HPI für das Infektionsverhalten 

uropathogener E. coli untersucht werden. Die weite Verbreitung des fyuA-irp Genclusters bei 

human- und tiermedizinisch relevanten uropathogenen und extraintestinalen E. coli (Bingen-

Bidois et al., 2002, Janben et al., 2001, Johnson et al., 2000, Mulvey, 2002) deutet auf einen 

virulenzprägenden Einfluss der Yersinia-HPI hin (Almeida et al., 1993, Heesemann, 1987). 

Um die Bedeutung des HPI-Genclusters zu untersuchen, wurde im Harnwegsinfektionsmodell 

der Maus das Infektionsverhalten des HPI-positiven UPEC Stammes U3366 im Vergleich zu 

der isogenen irp1-Mutanten betrachtet. Zur Etablierung des Harnweginfektionsmodells 

mussten im Vorfeld bestimmte Parameter, wie der geeignete Bakterienstamm, Applikationsart 

und -menge, Art des Mäusestammes, Narkose und Versuchsdauer optimiert werden. Als 

Mäusestamm wurde der C3H/HeN-Stamm eingesetzt, bei dem Infektionsgrad und 

Entzündungsantwort miteinander korrelieren, so dass Infektionen innerhalb von 14 Tagen 

überwunden werden können (Hopkins et al., 1998). Die im Rahmen der Vorversuche 

erstellten Applikationsbedingungen sollten den natürlichen Infektionsweg simulieren, so 
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wurde beispielsweise eine transurethrale Applikation der Keime mithilfe einer elektronischen 

Pipette durchgeführt. Die Pipette ergab den Vorteil einer langsamen Applikation, was 

aufgrund der geringen Druckausübung einen vesicoureteralen Reflux vermeiden sollte. Dabei 

wurden in Anbetracht der 50-100 µl großen Blase einer 8 Wochen alten Maus nicht mehr als 

20 µl Keimsuspension eingesetzt (Johnson & Brown, 1996, Hopkins et al., 1995). Die 

Applikation wurde im Vorfeld mithilfe applizierter Tinte an toten Mäusen getestet. Ein 

weiterer wichtiger Parameter war der einzusetzende UPEC-Stamm, der eine intakte HPI 

besitzen sollte. Da sich Cystitis- und Pyelonephritisstämme durch unterschiedliche 

Virulenzfaktoren auszeichnen und sie demnach ein unterschiedliches Infektionsverhalten in 

Niere und Blase zeigen (Johnson et al., 1998), war ein Stamm bekannter Herkunft 

auszuwählen. Der in dieser Arbeit eingesetzte UPEC-Stamm U3366, der aus einem 

Nierenpunktat eines Pyelonephritispatienten isoliert wurde, zeigte β-Hämolyse und bewies in 

Vorversuchen im Vergleich zu dem Referenzstamm DH5α hohes Virulenzpotential im 

Harntraktinfektionsversuch. Eine Stammtypisierung mittels Multiplex-PCR (Johnson & Stell, 

2000) ergab den Nachweis der Virulenzfaktoren fimH, afa/dra Bc und einer PAI assoziierten 

DNA-Sequenz (Welch et al., 2002). Viele kommensale und pathogene E. coli sowie andere 

Spezies der Familie Enterobacteriacae besitzen Typ-1-Pili (fimH) (Mulvey et al., 2001), die 

für Anheftung und Adhäsion verantwortlich sind und besonders bei Cystitis-Erregern eine 

Rolle für die Invasion des Blasenepithels spielen. In der Niere führen Typ-1-Pili allerdings 

nicht zu einer bakteriellen Adhärenz, die stattdessen durch P-Pili und Dr Adhäsine erreicht 

wird. Afa/Dr Adhäsine, die ein Invasin kodieren, kommen sowohl bei intestinalen als auch bei 

uropathogenen E. coli vor. 50 % aller afa/dr tragenden E. coli sind mit dem irp2-Gen 

assoziiert (Blanc-Potard et al., 2002). Die nachgewiesene PAI-assoziierte Gensequenz ist 

unbekannter Funktion, die Häufigkeit ihres Auftretens lässt allerdings virulenzassoziierte 

Eigenschaften vermuten (Johnson & Stell, 2000). 

Der Hämolysin-Gen Nachweis per PCR verlief negativ, obgleich der Stamm auf Blutagar β-

Hämolyse zeigte. Deletionen des entsprechenden Genbereiches oder aber die polymorphe 

Natur der Gene können hierbei zu einer falsch negativen PCR-Reaktion führen (Johnson & 

Stell, 2000).  

Vor Einsatz in den Tierversuch wurden der UPEC Stamm U3366 sowie die in dieser Arbeit 

erstellte isogene Mutante U3366 irp1 und die Rekomplementante U3366 irp1 rec hinsichtlich 

einer funktionalen HPI in vitro getestet. In zwei unterschiedlichen Testverfahren (Luciferase-

Bioassay, Cross-feeding-Assay) sollte durch Kultivierung der Stämme in Urin die Produktion 

des HPI-vermittelten Siderophors Yersiniabaktin untersucht werden. Im Luciferase-Bioassay 

wurden neben Urin das eisenreiche LB-Medium sowie das eisenarme NBD-Medium 
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eingesetzt und nach 5-tägiger Inkubation der UPEC-Stämme die Luciferase-Messung 

durchgeführt. Die Ergebnisse zeigten eine Yersiniabaktinproduktion der HPI intakten Stämme 

U3366 und der Rekomplementanten U3366 irp1 rec im Unterschied zu der irp1-Mutanten. 

Dabei war eine Abhängigkeit der Yersiniabaktinproduktion von der Eisenkonzentration des 

Anreicherungsmediums in vitro festzustellen. So zeigte die Luciferase-Messung nach 

Anreicherung in dem eisenreichen LB-Medium bei allen Stämmen mit dem Nullwert 

vergleichbare Werte. In den eisenärmeren Medien NBD und Urin dagegen waren hohe 

Luciferaseaktivitäten, besonders im NBD-Medium nachzuweisen. Durch die eisenarme 

Umgebung wird die Repressortätigkeit des Fur-Regulatorproteins aufgehoben und die 

Synthese HPI-regulierter Gene induziert (Crosa, 1997). Erstaunlicherweise wies die irp1-

Mutante im sehr eisenarmen NBD-Medium erhöhte Werte auf. Möglich ist hier eine 

gemessene Restaktivität des fyuA-Promotors, der vor dem luc-Gen lokalisiert ist. Der 

Promotor reagiert nicht nur positiv auf Yersiniabaktin, sondern wird offenbar auch von 

anderen Regulatoren durch das umgebene Medium beeinflusst (Gehring et al., 1998, Rakin et 

al., 1994). Um dennoch das Verhältnis der Luciferaseaktivität der HPI-positiven Stämme 

gegenüber der irp1-Mutante in unterschiedlichen Inkubationsmedien beurteilen zu können, 

wurde der Quotient der Luciferaseaktivität der Stämme U3366/U3366 irp1 und U3366 irp1 

rec/U3366 irp1 innerhalb der einzelnen Medien bestimmt und die Werte miteinander 

verglichen. Die HPI intakten Stämme bewiesen hierbei eine erhöhte Luciferaseaktivität in den 

eisenarmen Medien Urin und NBD gegenüber der irp1-Mutante. Insgesamt konnte eine von 

der Umgebung eisenabhängige Produktion des Siderophors gezeigt werden, was der 

Feststellung von Torres et al. widerspricht, Urin stelle in vitro kein eisenlimitierendes Milieu 

dar (Torres et al., 2001). Die in dieser Arbeit erstellten Ergebnisse stehen in Einklang mit 

Inkubationsversuchen von Sharma et al., bei denen Enterobactin- und Aerobactin-

produzierende, uropathogene E. coli-Isolate über mehrere Tage in humanem Urin in vitro 

inkubiert wurden und die ebenfalls eine gesteigerte Siderophorproduktion in eisenarmer 

Umgebung zeigten (Sharma et al., 1991). Einen weiteren Nachweis der 

Yersiniabaktinproduktion in vitro konnte durch den Cross-feeding-Assay erbracht werden. 

Mithilfe des Indikatorstammes Salmonella enterica Typhimurium WR 1542, der sich nur in 

Anwesenheit von Yersiniabaktin vermehren kann, konnte bei den HPI-positiven Stämmen 

U3366 und U3366 irp1 rec im Gegensatz zu der irp1-Mutante eine Siderophorproduktion 

nachgewiesen werden. Die Ergebnisse des Bioassays sowie des Cross-feeding-Assays wurden 

durch mehrfache Wiederholung der Versuche bestätigt. Nach der Darstellung der in vitro 

Expression von HPI-Genen sollte der Nachweis der Yersiniabaktin-Produktion nach 

transurethraler Infektion in vivo untersucht werden. Hierfür wurden C3H/HeN-Mäusen die 
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Stämme U3366, die irp1-Mutante und die Rekomplementante transurethral appliziert, über 

einen Zeitraum von 1-7 Tagen der Urin gewonnen und der Cross-feeding-Assay durchgeführt. 

Bereits am ersten Tag war eine Yersiniabaktinproduktion der HPI-positiven Stämme im 

Gegensatz zu der irp1-Mutante nachzuweisen. Entweder wurde unmittelbar bei Kontakt zum 

Wirt bzw. bei Urinkontakt die Siderophorproduktion aktiviert, oder die 

Yersiniabaktinproduktion ist zu Beginn auf eine Restaktivität der HPI des in vitro 

angezüchteten Keimes zurückzuführen. Um eine Ybt-Produktion der Bakterien auf der 

CDHM-Platte in vitro zu vermeiden, wurde in einer zweiten Versuchsreihe den Agarplatten 

ein die UPEC-Stämme abtötendes Antibiotikum (Kanamycin) zugeführt. Allerdings war 

hiermit nicht ausgeschlossen, dass die Yersiniabaktinproduktion in der Zeit zwischen 

Urinabgabe und Auftragen auf die Platten stattgefunden hat.  

Nachdem die Expression der HPI-kodierten Proteine im Urin durch in vitro und in vivo 

Untersuchungen bestätigt wurde, wurden die uropathogenen E. coli Stämme U3366, U3366 

irp1 und U3366 irp1 rec im Harntraktinfektionsmodell untersucht. Im Mausmodell sollte der 

Einfluss der HPI auf das Infektionsverhalten des jeweiligen UPEC-Stammes betrachtet 

werden. Es wurden Einzelinfektionsversuche durchgeführt, um das Virulenzverhalten der 

entsprechenden Stämme im Vergleich beurteilen zu können. Aufgrund der Schwankungen der 

transurethral verabreichten Applikationsmenge wurde eine Gruppengröße von 10 Mäusen 

gewählt. An den Tagen 1, 3 und 7 nach Applikation wurde die Keimzahl in Niere und Blase 

bestimmt, sowie eine Granulozytenzählung pro ml Urin durchgeführt. Der Vorversuch, bei 

dem zunächst der Stamm U3366 und die isogene irp1-Mutante eingesetzt wurde, zeigte in der 

Niere am Tag 3 und 7 und in der Blase am Tag 7 statistisch signifikante Unterschiede im 

Infektionsverhalten beider Stämme. Der HPI-intakte UPEC Stamm U3366 wies insbesondere 

im längeren Infektionsverlauf einen Infektionsvorteil in Niere und Blase auf und etablierte 

sich in einer wesentlich höheren Keimzahl im Harntrakt, was auf eine erhöhte Infektiosität 

hinweist. Die Granulozytenanzahl pro ml Urin ließ keine signifikanten Unterschiede zwischen 

dem Ausgangsstamm U3366 und der irp1-Mutante erkennen. Im anschließenden 

Hauptversuch, in dem eine zusätzliche Untersuchung der Keimzahl im Urin und der Einsatz 

der Rekomplementanten U3366 irp1 rec erfolgte, sollte der Einfluss der HPI auf das 

Infektionsgeschehen bestätigt und Unterschiede aufgrund von klonierungsbedingten 

Mutationen ausgeschlossen werden. Die Ergebnisse des Hauptversuches bestätigten die 

Effekte des Vorversuches. So konnten in der Niere signifikante Keimzahl-Unterschiede am 

Tag 7 zwischen U3366 und U3366 irp1, sowie am Tag 3 und 7 zwischen U3366 und U3366 

irp1 rec nachgewiesen werden. Hierbei etablierten sich die HPI-positiven Stämme mit nahezu 

konstanter Keimzahl in der Niere, was unter Umständen durch die Herkunft des Stammes 
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(Pyelonephritisisolat) erklärbar ist. In der Blase wurden signifikante Unterschiede zwischen 

der Rekomplementante U3366 irp1 rec und der irp1-Mutante an den Tagen 3 und 7 

festgestellt. Während die Keimzahl für den Stamm U3366 innerhalb des 

Beobachtungszeitraumes sank, zeigte er jedoch an den Tagen 3 und 7 jeweils höhere Werte 

als die irp1-Mutante. Die hohe Keimzahl der Rekomplementante zeigt den Einfluss der HPI 

auf das Virulenzverhalten des UPEC-Stammes, so dass unerwünschte Genomveränderungen 

durch klonierungsbedingte Mutationen bei der Herstellung der irp1-Mutante ausgeschlossen 

werden konnten. Interessanterweise zeigte die Keimzahl und die Granulozytenzahl im Urin 

keinerlei signifikante Unterschiede während des Beobachtungszeitraumes. Die Keimzahl im 

Urin bestätigt die Beobachtung mehrere Autoren (Hagberg et al., 1983, Hultgren et al., 1985), 

dass bei Pyelonephritisstämmen keine Korrelation zwischen der Keimzahl im Urin und der 

Blasen- sowie Nierenkeimzahl bestehe. Die hohe Granulozytenzahl im Urin zeigt eine 

Entzündungsantwort innerhalb der ersten 24 h auf die Infektion (Mulvey, 2002) durch den 

UPEC-Stamm U3366. Da auch der HPI-negative Stamm U3366 irp1 über eine nahezu 

konstante Granulozytenzahl verfügt, ist davon auszugehen, dass andere Pathogenitätsfaktoren 

des Stammes die Entzündungsantwort hervorrufen. So sind Bakterienstämme wie der UPEC 

Stamm U3366 in der Lage durch das bakterielle LPS (Lipopolysaccharide) über die TL-

Rezeptoren der Urothelzellen (toll like rezeptor) eine eptheliale Cytokinin-Antwort zu 

vermitteln. Die Ausschüttung von MIP-2 (macrophage inflammatory protein), das dem 

humanen Interleukin-8 analog ist, verursacht die transepitheliale Migration neutrophiler 

Granulozyten zum Entzündungsherd (Svanborg et al., 2001).  

Bei der Wiederholung des Hauptversuches konnten zusätzlich signifikante Unterschiede 

zwischen U3366 und der irp1-Mutante in der Blase am Tag 1 und 3 nachgewiesen werden. 

Um eine gegenseitige Beeinflussung des Ausgangsstammes U3366 und der irp1-Mutante zu 

untersuchen und damit Erkenntnisse über eine in vivo Expression von Yersiniabaktin zu 

erhalten, wurden Koinfektionsversuche durchgeführt und die Keimzahl der eingesetzten 

Stämme in Niere und Blase bestimmt. Die Koinfektionsversuche U3366/U3366 irp1 sowie 

U3366 irp1 rec/U3366 irp1 ergaben keinen signifikanten Vorteil der HPI-positiven Stämme 

im Infektionsverhalten gegenüber der irp1-Mutante. Die vergleichbare Keimzahl in dem 

untersuchten Material über den gesamten Beobachtungszeitraum lässt auf eine 

Yersiniabaktinfütterung schließen. Aufgrund des unmittelbaren Kontakts beider Stämme im 

Harntrakt, bedingt durch die gemeinsame Applikation und das kleine Volumen der 

betroffenen Organe, ist eine Yersiniabaktinaufnahme der Mutante irp1 von dem HPI-

positiven Stamm denkbar. Unterschiede waren lediglich in der Anfangsphase des 

Infektionsverlaufes nachweisbar, was darauf hinweist, dass am Ende des Infektionsverlaufes 
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der Eisenmangel, der im Koinfektionsversuch durch Ybt-Übertragung kompensiert werden 

konnte, für die signifikanten Unterschiede im Einzelinfektionsversuch verantwortlich war. 

Ferner zeigen die Kolonisierungsunterschiede in der Frühphase der Koinfektion, dass sie 

entweder nicht durch die Ybt-Eisenversorgung kompensiert werden können oder aber dass die 

Eisenversorgung zu Beginn noch nicht aktiv genug ist. Zusammenfassend konnten die 

Koinfektionsversuche den Hinweis auf eine Yersiniabaktinfütterung zwischen den HPI-

positiven und negativen Stämmen geben, was für eine in vivo Siderophorsynthese sprechen 

würde. Ähnliche Beobachtungen konnten von Torres et al. bei Koinfektionsversuchen 

Aerobactin- und Enterobactin-tragender UPEC-Stämme und deren Mutanten gemacht werden. 

Die UPEC Mutante CFT073 iuc ent, die weder das Siderophor Enterobactin noch Aerobactin 

synthetisieren kann, zeigte im Mausmodell im Gegensatz zum Wildtyp-Stamm CFT073 eine 

signifikant niedrigere Infektion der Blase und Niere. In einem anschließenden 

Koinfektionsversuch der Mutante und des Wildtyps konnten beide Stämme mit einer 

vergleichbaren Keimzahl in Blase und Niere nachgewiesen werden (Torres et al., 2001). 

Die Ergebnisse der Infektionsversuche im Tiermodell der Maus deuten eine Expression der 

HPI-Gene des UPEC Stammes U3366 in vivo an. Offenbar ist das HPI-Gencluster für die 

Etablierung des UPEC-Stammes im Harntrakt von Bedeutung. Dabei konnten die 

Experimente dieser Arbeit nicht die Frage klären, ob die Eisenversorgung alleine oder aber 

andere Funktionen des Eisenaufnahmesystems für die Etablierung der Isolate im Harntrakt 

eine Rolle spielen. Neben dem Siderophor Yersiniabaktin besitzen UPEC weitere 

Eisenaufnahmesysteme. Es ist denkbar, dass die einzelnen Systeme in unterschiedlichen 

Stadien der Infektion (Schubert et al., 1998) und in Abhängigkeit von der 

Eisenbindungskonstante in bestimmter Umgebung effektiver sind als andere (Russo et al., 

2001, Bearden & Perry, 1999). Auch könnte die niedrige Eisenkonzentration im Urin als 

Indikator für das Wirtsmilieu dienen und über das Eisenaufnahmesystem direkte oder 

indirekte Effekte induzieren. Der Eisenaufnahmerezeptor FyuA könnte dabei entweder direkt 

adhäsive Eigenschaften aufweisen, oder aber indirekt weitere Reaktionen innerhalb des 

Genoms, wie die Bildung von Toxinen (Griffiths, 1991) oder Adhäsinen, auslösen. Auch 

Russo et al. vermuteten, dass die Eisenaufnahmesysteme iroN und ireA als Adhäsine 

fungieren könnten (Russo et al., 2001). Die Bedeutung von Adhäsinen als wichtigste 

Virulenzfaktoren uropathogener E. coli wurde von Mulvey, 2002 dargestellt.  

Um die Frage einer adhärenten Eigenschaft des FyuA-Proteins zu klären, wäre, wie in der 

Diskussion über Mutaflor® vorgeschlagen, die Durchführung eines Gentamycin-Kill-Assays 

mit Uroepithel-Zellkulturen interessant (Mulvey et al., 2001). Ergänzend ist die genaue 
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Lokalisation des UPEC-Stammes U3366 im Harntrakt anhand histologischer Untersuchungen 

zu bestimmen. 

Charakteristika für einen typischen Impfstoffkandidaten (Russo et al., 2001), wie die 

Repräsentation an der Bakterienoberfläche, die weite Verbreitung bei extraintestinalen E. 

coli-Isolaten und die gesteigerte Expression bei Infektion, werden von dem FyuA-Protein 

erfüllt. Eine Bestimmung der immunologischen Antwort auf HPI-kodierte Proteine müsste 

allerdings in weiteren Versuchen bestimmt werden. Nach ergänzenden Untersuchungen ist 

FyuA als aussichtsreicher Kandidat eines virulenzassoziierten Kombinations-Impfstoffes 

gegen extraintestinale E. coli in Betracht zu ziehen.  
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6 Zusammenfassung / Summary 

In der vorliegenden Arbeit konnte die Bedeutung der genomischen Yersinia-"High-Pathogenicity 

Island" (HPI) für kommensale und uropathogene Escherichia coli dargestellt werden. Im 

Infektionsmodell der Maus wurde der Einfluss der HPI auf die Kolonisierungsfähigkeit des 

darmkommensalen E. coli Stamm Nissle Mutaflor® im Vergleich zu den isogenen Mutanten 

Mutaflor® irp1 (Mutante der Siderophorsynthese) und Mutaflor® fyuA (Mutante des 

Siderophorrezeptors) in vivo untersucht. Dabei ergab sich eine signifikant höhere 

Kolonisierungsfähigkeit des Ausgangsstammes E. coli Mutaflor® gegenüber der fyuA-Mutanten. 

Durch eine gezielte Untersuchung verschiedener Darmbereiche konnte die Lokalisation der 

eingesetzten Mutaflor®-Stämme bestimmt werden. Die Ergebnisse dieser Untersuchungen deuten 

auf einen Einfluss des FyuA-Rezeptors auf die adhäsiven Eigenschaften des E. coli Mutaflor®-

Stammes. Zusammenfassend konnte im Rahmen dieser Arbeit die Bedeutung eines intakten HPI-

Genclusters für die Kolonisierungsfähigkeit des kommensalen E. coli Stamm Mutaflor® gezeigt 

werden.  

Die weite Verbreitung der HPI bei human- und tiermedizinisch relevanten extraintestinalen E. 

coli sowie die pathogenetische Bedeutung bei verschiedenen Yersinia sp. lässt eine 

virulenzfördernde Eigenschaft der HPI bei uropathogenen E. coli vermuten. Die 

Siderophorproduktion der UPEC-Stämme U3366 und der U3366 irp1-Rekomplementanten 

konnte in vitro unter Eisenmangelbedingungen gezeigt werden, wohingegen die Mutante des 

Syntheseapparates (U3366 irp1) keine Yersiniabaktinproduktion aufwies. Im 

Harntraktinfektionsmodell der Maus zeigten Ausgangsstamm und Rekomplementante im 

Vergleich zu der irp1-Mutante einen signifikanten Infektionsvorteil in Blase und Niere. Während 

Ausgangsstamm U3366 und Rekomplementante U3366 irp1 rec in hoher Keimzahl über einen 

längeren Zeitraum nachgewiesen werden konnten, sank die Keimzahl der irp1-Mutante in Blase 

und Niere kontinuierlich. Somit waren signifikante Unterschiede insbesondere im späteren 

Infektionsverlauf festzustellen. In den Koinfektionsversuchen U3366/U3366 irp1 und U3366 

irp1 rec/U3366 irp1 wurde eine Yersiniabaktin-Produktion in vivo durch eine gegenseitige 

Fütterung der entsprechenden Stämme nachgewiesen. Zusammenfassend konnte die HPI nicht 

nur als essentieller Faktor für die Kolonisierung des Darms, sondern auch als neuer 

Virulenzfaktor bei Harnwegsinfekten beschrieben werden. Die in dieser Arbeit gewonnenen 

Erkenntnisse sollen in naher Zukunft in die Entwicklung einer virulenzassoziierten Vakzine 

einfließen, die sowohl für die Human- als auch für die Tiermedizin eine Bedeutung hat. 
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The impact of the High-Pathogenicity Island on colonization and extraintestinal virulence 

of Escherichia coli 

In this study the impact of the genomic Yersinia-"High-Pathogenicity Island" (HPI) for 

colonizing and uropathogenic Escherichia coli was examined.  

Using an in vivo mouse model, the influence of the HPI for commensal E. coli strain Nissle 

Mutaflor® in comparison to isogenic mutant strains E. coli Mutaflor® irp1 (siderophore-synthesis 

mutant) and Mutaflor® fyuA (siderophore-receptor mutant) was investigated. It could be shown 

that colonisation of the mouse intestine with E. coli strain Mutaflor® was significantly higher 

than the colonisation with the fyuA mutant strain, which is unable to deliver the HPI-encoded 

siderophore Fe-yersiniabactin. By examinating different parts of the intestine, Mutaflor® strains 

could be localized and quantified. Analysing the results, the influence of the FyuA receptor for 

the adhesion ability of the Mutaflor® strain is obvious. In conclusion, the study provides 

evidence for the impact of a functional HPI-genecluster on colonisation of the commensal E. coli 

strain Mutaflor®. 

The HPI is widely spread among relevant human and animal extraintestinal E. coli and shows an 

important pathogenic relevance in different Yersinia sp. This assumes virulence supporting 

characteristics for uropathogenic E. coli strains. In vitro assays revealed a medium-dependant 

siderophore production for both the wildtyp UPEC strain U3366 and the recomplementant strain 

U3366 irp1 rec. In contrast, the irp1 mutant strain was not able to produce the HPI-encoded 

siderophore yersiniabactin. In the urinary tract infection mouse model, significantly higher 

infection levels in bladder and kidneys of the wildtyp strain U3366 and U3366 irp1 rec in 

contrast to the irp1 mutant could be demonstrated. A high bacterial count of wildtyp and 

recomplementant strain could be shown for the entire period, whereas a decreasing number of 

irp1 mutant CFU was determined. Thus, significant differences could be proved, especially at a 

later stage of infection. Having conducted coinfection experiments with strain U3366/U3366 

irp1 and U3366 irp1 rec/U3366 irp1, a mutual yersiniabactin-feeding could be detected, which 

indicates an in vivo yersiniabactin production.  

In this study, the HPI could be recognized as both an essential factor for colonizing the intestine 

as well as a new virulence factor for urinary tract infections. All this considered, FyuA can be 

regarded as a potential protein for a polyvalent virulence-factor-based vaccine. Widely spread E. 

coli infections in humans and animals, which cause enormous medical expenditures and 

economic losses, account for the necessity to develop extraintestinal E. coli vaccines. 
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7 Materialliste 

7.1 Geräte 

Brutschrank (WTB Binder, Tuttlingen) 

Citrat- und Harnstoffröhrchen (Max von Pettenkofer-Institut, München) 

Drehrad, Typ CMV-ROM (Fröbel Labortechnik, Lindau) 

Einbettmedium: Tissue TeK (Vogel Wilhelm, Giessen) 

Elektronische Pipette EDPTM (Rainin, Gießen) 

Elektroporationsapparat: Gene Pulser ® II Elektroporation System (Bio-Rad, München) 

Elektroporationsküvetten: Gene Pulser ® Cuvette (Bio-Rad, München) 

Eppendorf Pipetten (Eppendorf, Hamburg) 

Eppendorf Reaktionsgefäße (Eppendorf, Hamburg) 

Eppendorf Zentrifuge 5417 R (Eppendorf, Hamburg) 

Eppendorf Zentrifuge 5417 C (Eppendorf, Hamburg) 

Gelelektrophoresekammer (PEQLAB, Erlangen) 

GelLoader Tips (Eppendorf, Hamburg) 

Heizblock Unitek HB-130 (SEL Laboratory Products, England) 

Homogenesatoren (Glasgerätebau Ochs, Bovenden) 

Inkubationsschüttelschrank Certomat®H (B. Braun Biotech, Melsungen) 

Kanülen (Braun, Melsungen) 

Kryoröhrchen für Organeinbettung (Roth, Karlsruhe) 

Chemiluminometer: MicroLumat Plus LB 96 V (Berthold Technologies, Bad-Wildbach) 

Mikroskop (Leitz, Wetzlar) 

Mikrotiterplatten 96 Well (Sarstedt, Nümbrecht) 

Petrischale (Greiner, Österreich) 

Pipettierhelfer accu-jet® (Brand, Wertheim/Main) 

Pipettenspitzen (Brand, Wertheim/Main) 
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Reaktionsgefäße: 50 ml Polypropylen Conical Tubes (Becton Dickinson, Heidelberg) 

Skalpell (Braun, Melsungen) 

Software Sigma Plot (SPSS, Erkrath) 

Software Sigma Stat (SPSS, Erkrath) 

Software Win Glow Windows für MicroLumat Plus LB 96 V (Berthold Technologies, Bad 

Wildbach) 

Spritzen (Braun, Melsungen) 

Thermocycler Gene Amp 9700 (Perkin Elmer Cetus, Norwalk, CT, USA) 

Thermoschüttler: Thermomixer comfort (Eppendorf Hamburg) 

Tischzentrifuge gekühlt, Sorvall®Super 21(DuPont de Nemours, Bad Homburg) 

UV-Transilluminator (Biotec-Fischer, Reiskirchen) 

UV-Visible Spectrophometer (Pharmacia, Tennenlohe) 

Vakuumzentrifuge DNA Speed Vac (Savant, NY, USA) 

Vortex-Genie 2 (Scientific Industries, Bohemia, USA) 

Waage PE 3600 (Mettler, Schweiz) 

7.2 Chemikalien und Reagenzien 

Agarose (Invitrogen, NV Leek, Niederlande) 

Ampicillin (Roth, Karlsruhe) 

Ampli®Taq PCR Puffer (Perkin Elmer Cetus, Norwalk, CT, USA) 

Antibiotikaplättchen: Antimicrobial Susceptibility Test Discs (Oxoid, Wesel) 

Bepanthen® (Roche, Mannheim) 

Blutagarplatten (Becton-Dickinson, Heidelberg) 

Chloramphenicol (Roth, Karlsruhe) 

DNA-Marker 1 kb-ladder (MBI Fermentas, St. Leon-Rot) 

DNA-Marker 100 bp-ladder (MBI Fermentas, St. Leon-Rot) 

dNTP (PEQLAB, Erlangen) 

DTT (Dithiothreitol; Sigma-Aldrich, Taufkirchen) 

EDTA (Ethylendiamintetraessigsäure; Serva, Heidelberg) 

Ethanol (Biesterfeld Graen, München) 

Ethidiumbromid (Sigma-Aldrich, Taufkirchen) 

Glycerol, ICN Biomedicals (Ohio, USA) 

Isopropanol (Roth, Karlsruhe) 

Kanamycin (Serva, Heidelberg) 
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Ketavet® (Pharmacia & Upjohn, Erlangen) 

Ligationspuffer für T4-Ligase (Invitrogen, NV Leek, Niederlande) 

McConkey-Platten (Becton-Dickinson, Heidelberg) 

2 mM MgCl2 (Perkin Elmer Cetus, Norwalk, CT, USA) 

Müller-Hinton-II-Agar (Becton Dickinson, Heidelberg) 

10 x Puffer für Endonucleasen (Invitrogen, NV Leek, Niederlande) 

Sucrose (Merck, Darmstadt) 

Streptomycin (Sigma-Aldrich, Taufkirchen) 

Tergitol (Fluka, Schweiz) 

Tetracyclin (Sigma-Aldrich, Taufkirchen) 

Trimethoprim (Sigma-Aldrich, Taufkirchen) 

2,3,5-Triphenyltetrazoliumchloride (ICN Biomedicals, Ohio-USA) 

Rifampicin (Serva, Heidelberg) 

Rompun® 2 % (Bayer, Leverkusen ) 

Xylol (Merck, Darmstadt) 

7.3 Enzyme 

AmpliTaq®Gold-Polymerase (Perkin Elmer Cetus, Norwalk, CT, USA) 

T4-DNA Ligase (Invitrogen, NV Leek, Niederlande) 

Luciferin (Roche, Mannheim) 

SalI (Invitrogen, NV Leek, Niederlande) 

SstI (Invitrogen, NV Leek, Niederlande) 

Transposase (s. EZ::TNTM<DHFR-1> Insertion Kit) 

7.4 Kommerzielle Kits 

QIAprep®Spin Miniprep Kit Protocol (Qiagen, Hilden) 

GelSpin DNA Purification Kit (Mo Bio Laboratories über Dianova, Hamburg) 

EZ::TNTM<DHFR-1> Insertion Kit (Epicentre, Biozym Diagnostics, Hess. Oldendorf) 
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7.5 Puffer und Lösungen 

Agarosegel 0,6-2 % Agarose in TAE-Elektrophorese-

puffer mit 0,0025 % Ethidiumbromid 

CDHM-Agar 20 ml Lösung A 

30 ml Lösung B 

30 ml Aqua dest. 

2 ml Hefeextrakt (25 g Hefe in 100 ml Aqua dest.) 

200 µl Vitaminlösung 

60 µl EDDHA (1 g in 40 ml Aqua dest.) 
(Ethylendiamindi(o-hydroxyphenylessigsäure) 

20 ml 5 % Agar 

Grundpuffer 3,5834 g 20 mM Tricine 

0,5197 g 1,07 mM (MgCO3)4Mg(OH)2 x 5 

H2O 

200 µl 0,5 M EDTA 

ad 1 l Aqua dest., pH 7,8 

LB-Medium / LB-Agar 10 g Trypton 

5 g Hefeextrakt  

5 g NaCl 

ad 1 l Aqua dest., pH 7,4-7,6 

(+ 15 g Bacto-Agar für LB-Agar) 

Lösung A 32,3 g Na2HPO4 x 12 H2O 

1,36 g KH2PO4 

1,19 g NaCl 

6,0 g Glucose 

0,12 g L-Cystein Hydrochlorid 

0,065 g L-Isoleucin 

0,065 g L-Leucin 

0,095 g L-Phenylalanin 

0,15 g L-Glutaminsäure 

0,20 g L-Arginin 

0,20 g L-Serin 

ad 200 ml Aqua dest., pH 7,2-7,4 
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Lösung B  0,25 g MgSO4 x 7 H2O 

1,6 g L-Asparaginsäure 

0,09 g L-Tyrosin 

ad 300 ml Aqua dest., pH 7,2-7,4 

Luc-Lysispuffer 1,4 g K2HPO4 

0,26705 g KH2PO4 ad 90 ml Aqua dest., pH 

7,8 

400 µl 0,5 M EDTA 

1 g Triton X-100 

500 mg BSA 

ad 100 ml Aqua dest. 

unmittelbar vor Gebrauch Zugabe von: 

1 mM DTT 

5 mg/ml Lysozym 

Luc-Reagenz 80 ml Grundpuffer 

0,4108 g D/L-DTT 

0,0166 g Li3-Coenzym A 

0,0215 g Mg-ATP 

Luciferin 

NB-Medium 8 g Nutrient broth 

5 g NaCl 

ad 1 l Aqua dest., pH 7,4-7,6 

NBD-Medium 8 g Nutrient broth  

5 g NaCl  

31,2 mg Bipyridin (2,2'-Dipyridyl) C10H8N2 

ad 1 l Aqua dest., pH 7,4-7,6 

PBS (Phosphat Buffer Saline) 8 g NaCl 

0,2 g KCl 

0,2 g KH2HPO4 

1,15 g Na2HPO4 

ad 1 l Aqua dest., pH 7,3 

SOC-Medium 2,0 % Bacto Trypton 

0,5 % Bacto Yeast Extract 

10 mM NaCl 
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2,5 mM KCl 

10 mM MgCl2 

10 mM MgSO4 

20 mM Glucose 

TAE-Elektrophoresepuffer 50 x 242 g Tris 

57,1 ml 100 % Eisessig 

37,2 g Na2EDTA·2 H2O 

ad 1 l Aqua dest. 

Vitaminlösung 40 mg Vitamin B5 

100 mg Nikotinamid 

2 mg Vitamin B1 

30 mg Orotsäure 

ad 20 ml Aqua dest. 

7.6 Mäuse 

C3H/HeN (Charles River, Sulzfeld) 

C57Bl/6 (Harlan Winkelmann, Borchen) 

7.7 Tierversuchsantrag 

Die Tierversuche dieser Arbeit sind im Rahmen der Tierversuchsvorhaben 209.1/211-2531-

107/03 und 209.1/211-2531-92/02 durch die Regierung von Oberbayern genehmigt. 
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10 Appendix 

10.1 Verzeichnis der verwendeten Abkürzungen 

Abb.   Abbildung 
Afa/draBC  Adhäsine der Afa/Dr-Familie 
Ap   Ampicillin 
Aqua dest.  Aqua destillata 
asnT   Gen für Asparagin-t-RNA 
AT   Adenin, Thymin 
ATP   Adenosintriphosphat 
au   absolut unit 
bp   Basenpaare 
bzw.   beziehungweise 
°C   Grad Celsius 
CFU   colony forming units 
Cm   Chloramphenicol 
CNF 1   Cytonekrosefaktor 1 
CO2   Kohlenstoffdioxid 
d   Tag 
DAEC   diffus adhärente E. coli 
DNA   Desoxyribonukleinsäure 
dATP   Desoxy-Adenosintriphosphat 
dCTP   Desoxy-Cytosintriphosphat 
dGTP   Desoxy-Guanosintriphosphat 
dNTP   3'desoxy-Ribonukleosiod-5'-triphosphat 
DR   Direct Repeats 
DSM   Deutsche Stammsammlung für Mikroorganismen 
DsRed   discosoma red fluorescent protein 
DTT   Desoxy-Thymidintriphosphat 
EAEC   enteroaggregative E. coli 
EDTA   Ethylendiaminetetraessigsäure 
EHEC   enterohämorrhagische E. coli 
EIEC   enteroinvasive E. coli 
EPEC   enteropathogene E. coli 
et al.   und andere Autoren 
ETEC   enterotoxische E. coli 
F   Farad 
Fa.   Firma 
Fe   Eisen 
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fimH   Gen für Adhäsin Typ 1 Pili 
focG   Gen für F1C-Fimbrien 
Fur   ferric uptake regulation 
fyuA   ferric yersiniabactin uptake 
g   Gramm 
Gfp   green fluorescent protein 
h   Stunde 
HCl   Salzsäure, Chlorwasserstoff 
H-LT   hitzelabile Enterotoxine 
Hly   Hämolysin 
HMWP  high molecular weight protein 
HPI   High Pathogenicity Island 
H-ST   hitzestabile Enterotoxine 
IbeA   Blut-Hirn-Schranke überwindenes Invasin 
int   Integrase-Gen 
irp   iron repressible protein 
IS   Insertionselemente 
i.v.   intravenös 
K   Kilo 
kb   Kilobasenpaare 
KBE   koloniebildende Einheit 
kDa   Kilodalton 
KGW   Kilogramm Körpergewicht 
Kn   Kanamycin 
Konz.   konzentriert 
L   Liter 
lac   Gen für β-Galactosidase 
LB   Luria Bertani broth 
log   Logarithmus 
LPS   Lipopolysaccharide 
luc   Luciferase-Gen 
µ   Mikro 
m   Milli 
M   Molar (= mol pro l) 
MgCl   Magnesiumchlorid 
MH   Mueller-Hinton 
min   Minute 
Mio   Millionen 
Mrd   Milliarden 
mob   Mobilitäts-Gen 
NaClO4  Natriumperchlorat 
Nal   Nalidixin 
NaOH   Natriumhydroxid 
NBD   2,2'-Dipyridyl Nutrient broth 
nm   Nanometer 
NTEC   nekrotoxische E. coli 
ori   origin of replication 
PAI   Pathogenitätsinsel 
PBS   Phosphat buffered saline, Phosphat gepufferte Salzlösung 
PCR   Polymerase chain reaction, Polymerase-Kettenreaktion 
pH   potentia Hydrogenium 
pgm   Pigmentation Locus in Y. pestis 
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psn   Pesticin-Sensitivität 
Rif   Rifampicin 
rpsL Streptomycin-Empfindlichkeits-Gen, kodiert das ribosomale Protein 

S12 
RT-PCR  Reverse Transkription-Polymerase-Kettenreaktion 
s   Sekunde 
sacB  Saccharose-Empfindlichkeits-Gen ursprünglich aus Bacillus subtilis 

 isoliert 
SDS   Sodium-Dodecyl-Sulfat 
sfa/foc DE  Gen für sialosyl-spezifisches Adhäsin 
sfaS   Gen für S-Fimbrien-Adhäsin 
SLT   Shiga-like toxin 
s.o.   siehe oben 
sp.   Spezies 
STEC   Shiga-Toxin-bildende E. coli 
Str   Streptomycin 
s.u.   siehe unten 
Stx   Shiga Toxin 
Tab.   Tabelle 
t [d]   Zeit (in Tagen) 
Taq   Thermus aquaticus 
Tc   Tetracyklin 
Tm Schmelztemperatur von Nukleinsäuren; entspricht der Temperatur, bei 

der 50 % Helices denaturiert sind. 
Tp   Trimethoprim 
tra   Transfer-Gen 
traT   Gen für Serumresistenz 
Trim   Trimethoprim 
Tris   Trishydroxymethylaminomethan 
tRNA   Transfer-Ribonukleinsäure 
U   Unit (Einheit) 
u.a.   unter anderem 
Upm   Umdrehung pro Minute 
ÜN   über Nacht 
UPEC   uropathogene E. coli 
UV   ultraviolett 
V   Volt 
Vol   Volumen 
vir   Virulenz-Gen 
WHO   World Health Organisation, Weltgesundheitsorganisation 
Ybt   Yersiniabaktin 
YbtA   Regulatorprotein 
ybtE   irp5-homolog in Y. pestis 
ybtT   irp4-homolog in Y. pestis 
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