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1 Einleitung 

Parodontitis (griech. peri „um“, odons „Zahn“) gehört zu den parodontalen Erkrankungen 

und sie führt durch eine immunoinflammatorische Infiltration der tieferen Komponenten 

des Parodontiums (Zahnhaltapparates) zu einer progressiven Zerstörung des Binde- 

und Knochengewebes, das die Zähne umgibt (Hajishengallis und Korostoff, 2017). 

1.1 Klassifikation der Parodontalen Erkrankungen 

Die amerikanische und die europäische parodontologische Fachgesellschaften 

(American Academy of Periodontology, AAP; European Federation of Periodontology, 

EFP) haben im Jahr 2017 eine Klassifikation des parodontalen Befundes erarbeitet 

(Caton et al., 2017). Sie unterteilen in drei große Kategorien: (1.) parodontale 

Gesundheit und gingivale Erkrankungen, (2.) parodontale Erkrankungen sowie (3.) 

andere Erkrankungen, die den parodontalen Befund beeinflussen. Die parodontalen 

Erkrankungen umfassen drei Kategorien: die Parodontitis, die mit allgemeinen 

Erkrankungen assoziierte Parodontitis und die nekrotisierenden Parodontopathien. 

1.2 Epidemiologie der Parodontitis. 

Die Parodontitis ist die weltweit häufigste Krankheit, die zum Zahnverlust führt (Darveau, 

2010) und sie weist in Nordamerika und Großbritannien von allen parodontalen 

Erkrankungen die höchste Prävalenz auf (Pihlstrom et al., 2005; Albandar et al., 1999; 

WHO, 2014; Eke et al., 2015). In Deutschland nimmt die Prävalenz der Parodontitis seit 

2005 ab, sie liegt aber immer noch bei 51,6% für Erwachsenen zwischen 35 und 44 

Jahren und bei 64,8% für jüngere Senioren zwischen 65 und 74 Jahren (DMS V, 2014). 

Bei älteren Senioren (75-100 Jahre alt) erreicht sie sogar ca. 90%. Trotz der Senkung 

der Prävalenz der Parodontitis in Deutschland, kann aufgrund der demografischen 

Entwicklung (Alterung der Gesellschaft) ein erhöhter Behandlungsbedarf von 

Parodontalerkrankungen prognostiziert werden. Im Jahr 2030 wird laut 5. Deutscher 

Mundgesundheitsstudie der Großteil der Bevölkerung zur Gruppe der Senioren gehören. 

Die Parodontitis ist daher aktuell ein zentrales Objekt der Forschung innerhalb der 

Zahnmedizin. 
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1.3 Ätiologie und Pathogenese der Parodontitis 

Obwohl die Parodontitis schon an Menschen der Antike beobachtet wurde, treten immer 

wieder neue Aspekte über die Ätiologie und die Pathogenese der Krankheit zu Tage, die 

die Therapiemöglichkeiten der Erkrankung beeinflussen können. Neben der bakteriellen 

Infektion als Auslöser der Parodontitis („Plaquehypothese“) befassen sich aktuelle 

Studien mit unterschiedlichen Funktionen des Immunsystems als Verursacher des 

parodontalen Attachmentverlusts. 

1.3.1 Beteiligung von Bakterien bei der Parodontitis 

Der primäre Auslöser der Parodontitis ist eine bakterielle Infektion. Eine der ältesten 

pathogenetischen Theorien, die mehrfach in der Literatur beschrieben ist, ist die Plaque-

Hypothese (Socransky, 1977; Haffajee und Socransky, 1991; Socransky und Haffajee, 

1994), wonach die Parodontitis durch eine Infektion mit Bakterien ausgelöst wird, die 

einen Biofilm bilden. Diese Hypothese wurde inzwischen durch neue wissenschaftliche 

Arbeiten weiterentwickelt. Bei diesen wurde festgestellt, dass zwar die Anwesenheit von 

Plaque zwingend zur reversiblen Entzündung der Gingiva führt, dass sich daraus aber 

nicht zwangsläufig eine Parodontitis entwickeln muss. Demzufolge stellt die Parodontitis 

– anders als es die Plaque-Hypothese nahegelegt hat -  keine opportunistische 

Infektionserkrankung dar (Stabholz et al., 2010; Laine et al, 2011; Graves, et al. 2012). 

Des Weiteren konnte nachgewiesen werden, dass es durch mechanische und/oder 

antibiotische Elimination der Infektion regelhaft zur klinischen Ausheilung kommt, die 

Infektion allerdings auch nach primär erfolgreicher Beseitigung der Erkrankung auf 

Dauer eine hohe Rezidivneigung aufweist (Hasturk, 2012; Colombo et al., 2012; Beikler 

und Flemmig, 2011). 

Andere aktuelle Studien legen zudem nahe, dass die Parodontitis-assoziierte Mikrobiota 

hinsichtlich ihrer Bakterien-Zusammensetzung eine höhere Komplexität und Diversität 

aufweist, als bisher vermutet worden ist (Abusleme et al., 2013; Dewhirst et al., 2010; 

Duran-Pinedo et al., 2014; Hajishengallis et al., 2011). 
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1.3.1.1 Das PSD Modell 

Zur Erklärung der auslösenden mikrobiellen Infektion wurde das pathogenetische Modell 

der polymikrobiellen Synergie und Dysbiose (PSD Modell) entwickelt (Hajishengallis und 

Lamont, 2012). Demnach sind im gesunden parodontalen Gewebe die Bakterien in 

physiologisch kompatiblen Gemeinschaften organisiert und sie kommunizieren durch 

komplexe Signalmechanismen (Lamont und Hajishengallis, 2015). Im Zuge von 

Veränderungen in der Zusammensetzung der parodontalen Mikroflora verändern sich 

die Wechselwirkungen zwischen Wirt und Biofilm, hierdurch wird die angeborene 

Immunität des Wirts aktiviert und pathologisch beeinflusst (Kawai et al., 2005).  

Im Rahmen dieses PSD Modells wird vor allem die verstärkte Besiedelung des Biofilms 

durch spezielle Bakterien (sogenannte „keystone pathogens“), wie beispielsweise 

Porphyromonas gingivalis, hervorgehoben, die auch in niedrigen Konzentrationen die 

Zusammensetzung und Virulenz des subgingival anzutreffenden Mikrobioms 

(quantitative Veränderung der subgingivalen Bakterienflora) nachhaltig beeinflussen und 

letztendlich die Parodontitis auslösen können (Hajishengallis, et al. 2011; Hajishengallis 

und Lamont, 2014). Diese dysbiotische, pathologisch veränderte Gemeinschaft kann die 

immunologische Antwort des Parodontiums stark und unkontrolliert stimulieren. Dies hat 

eine starke Entzündungsreaktion, einen raschen Gewebeabbau und den 

Zusammenbruch der Knochenhomöostase zur Folge (Abusleme et al. 2013, 

Hajishengallis et al. 2012). 

Es ist von großer Bedeutung, dass diese mikrobiologische Gemeinschaft durch die 

Synergie mehrerer Bakterien Eigenschaften aufweist, die stärker sind als die Summe 

der einzelnen Mikroorganismen, die diese Kolonie bilden (Wright et al., 2014). 

Porphyromonas gingivalis, das am besten charakterisierte parodontalpathogene gram-

negative Bakterium des sogenannten roten Socransky-Komplexes ist nicht in der Lage, 

ohne die gemeinschaftliche Wirkung der gesamten Bakterien des Biofilms eine 

Parodontitis auszulösen, dies konnte in einer tierexperimentellen Studie an Mäusen 

nachgewiesen werden (Hajishengallis et al. 2011). 

Man spricht daher von einer synergistischen Wirkung mehrerer pathogener Bakterien, 

die gezielt die Immunantwort negativ beeinflussen und zur Gewebezerstörung führen. 

Im Rahmen dieser Gewebedestruktion entstehen Abbauprodukte wie Kollagenpeptide, 

diese werden durch den Biofilm metabolisiert und begünstigen wiederum eine 
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„inflammophile“ Modifikation desselben (Hajishengallis, 2014, Darveau et al., 2012, Jiao 

et al., 2013). Porphyromonas gingivalis und Prevotella intermedia kooperieren 

beispielsweise durch die Produktion von Metaboliten, die gegenseitig als 

Ernährungssubstrate konsumiert werden. Durch ihre Präsenz im subgingivalen Biofilm 

zeigen sie eine synergistische Virulenz, die zum alveolären Knochenabbau führt (Frias-

Lopez und Duran-Pinedo, 2012). 

1.3.2 Die Rolle der Immunantwort bei der Parodontitis  

Die mit der Parodontitis assoziierten Gewebedefekte sind aber nicht nur durch die 

Veränderung des bakteriellen Biofilms bedingt, sondern werden indirekt auch durch 

Komponenten des Immunsystems des Wirts vermittelt. Demzufolge spielt die 

Immunantwort des Wirts auf die bakterielle Intervention eine entscheidende Rolle auf 

den Krankheitsverlauf der Parodontitis (Page und Schroeder, 1976). 

1.3.2.1 Die Rolle von Immunmediatoren bei der Parodontitis 

RANKL, ein Tumornekrosefaktor, der unter anderem auch an der Pathogenese der 

rheumatoiden Arthritis beteiligt ist (Miossec, 2012), begünstigt in murinen und humanen 

Präparaten die Knochenresorption im Rahmen einer Parodontitis (Belibasakis und 

Bostanci, 2012). Prostadaglandin E (Lamster und Ahlo, 2007), Interleukin-1α und 

Interleukin-1β (Orozco et al., 2006), Interleukin-8 (Bickel, 1993), Interleukin-6 (D’Aiuto et 

al., 2004), Interleukin-10 (Scarel-Caminaga et al., 2004), Transforming growth factor-β 

(TNF-β)(Wahl et al., 1993), monocyte chemoattractant protein-1 (Gemmelle al., 2001) 

und Tumornekrosefaktor-α (Salvi et al.,1998) sind weitere Zytokine, die bei der 

Parodontitis eine wichtige Rolle spielen. 

Interleukin-6 weist beispielsweise eine signifikant höhere Konzentration im Parodontium 

von erkrankten Patienten auf (Moreira et al., 2009; Becerik et al., 2012). Finoti et al. 

2017 berichten über eine überregulierte Expression und Produktion von IL-8 bei 

Patienten mit chronischer Parodontitis, was im Einklang mit den Ergebnissen zahlreicher 

weiterer Studien steht (Andia et al., 2011; Cesar-Neto et al., 2007; Venza et al., 2010). 

Darüber hinaus werden Polymorphismen der Gene für Interleukin 1α und 1β mit einer 

höheren Expression dieser Interleukine im Parodontium in Verbindung gebracht. Diese 

erhöhte Expression ist ebenfalls mit dem klinischen Bild der Parodontitis assoziiert 

(Shirodaria et al., 2000; Gore et al., 1998; Gabraith, 1998; Gabraith et al., 1999; 
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Trombelli et al., 2010; Engebretson et al., 1999). Alle diese Studienergebnisse legen 

nahe, dass eine gestörte Expression immunologischer Komponenten an der 

Pathogenese der Parodontitis beteiligt ist. 

1.3.2.2 Die Rolle der Neutrophilen Granulozyten bei der klinischen 

Manifestation von Parodontitis 

Neutrophile Granulozyten (PMNs) sind differenzierte Leukozyten, die in hoher Zahl (109 

Zellen pro kg Körpergewicht und Tag) im Knochenmark gebildet werden (von Vietinghoff 

and Ley, 2008). Sie werden dem angeborenen Teil des Immunsystems zugeordnet, 

haben eine Lebensdauer von 6–8 Stunden (von Vietinghoff und Ley, 2008) und besitzen 

zahlreiche antimikrobielle und pro-inflammatorische Eigenschaften (Kobayashi und 

DeLeo, 2009; Amulic et al., 2012). Neutrophile Granulozyten scheinen zudem eine 

zentrale Rolle bei chronisch entzündlichen Erkrankungen wie der rheumatoiden Arthritis, 

Psoriasis, Atherosklerose, Diabetes zu spielen (Kolaczkowska et al., 2013; Fournier und 

Parkos, 2012; Mayadas et al., 2014; Tseng et al., 2014). 

Die neutrophilen Granulozyten sind die am häufigsten vorkommenden Leukozyten im 

Parodontium (>95%) (Delima und Van Dyke, 2003). Ihre Anzahl im parodontalen 

Gewebe weist eine positive Korrelation mit der Schwere der Parodontitis auf (Landzberg 

et al., 2015). Schon früher wurde auf die Manifestation der marginalen Parodontitis als 

Folge einer Funktionsstörung der neutrophilen Granulozyten hingewiesen (Schenkein 

und Van Dyke, 1994). 

So könnten neutrophile Granulozyten zu einem erheblichen Gewebeverlust im 

entzündeten und bakteriell infizierten Parodontalgewebe beitragen, wenn beispielsweise 

deren Rekrutierung gestört wird (Hajishengallis und Korostoff, 2017). 

1.3.2.3 Leukozytenextravasation im Parodontium 

Damit sich die neutrophilen Granulozyten zum richtigen Moment und ausschließlich am 

Ort des mikrobiellen Angriffs befinden, wird eine komplexe, mehrstufige Kaskade in 

Gang gesetzt, bei der schwache und stärkere adhäsive Interaktionen stattfinden 

(Rekrutierung der neutrophilen Granulozyten) (Hajishengallis und Chavakis, 2013; 

Vestweber, 2015). Als Folge dieser Rekrutierung findet die Extravasation der 

neutrophilen Granulozyten aus dem Blut durch die Gefäßwand zum Entzündungsort 
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(z.B. marginales Parodontium) statt (Amulic et al., 2012; Hajishengallis und Chavakis, 

2013; Hajishengallis und Hajishengallis, 2013; Ryder, 2010). 

Die neutrophilen Granulozyten befinden sich nach der Wanderung (Extravasation) im 

Saumepithel des Parodontiums in unmittelbarer räumlicher Nähe zum pathogenen 

bakteriellen Biofilm. Sie bilden somit die erste Linie der Verteidigung gegen die 

Bakterien. Histologisch findet dieses Stadium das Korrelat in einem entzündlichen 

Infiltrat (Schenkein, 2006; Ryder, 2010). Sie spielen dadurch eine wichtige Rolle beim 

Schutz des Parodontiums vor bakteriellen Infektionen (Meng et al., 2007; Schenkein, 

2006; Ryder, 2010; Deas et al., 2003). 

Die Rekrutierung der neutrophilen Granulozyten (Abbildung 1.3.2.1) beginnt mit dem 

sogenannten rolling der Zellen am Gefäßendothel. Das rolling wird durch die Aktivierung 

von Kinasen –wie Src- und Syk-Kinasen, Phosphoinositol-3-Kinase (PI3K) und p38 

mitogen-activated-Proteinkinase - begünstigt (Yago et al., 2010; Mueller et al., 2010; Ley 

et al, 2007). Am rolling sind Interaktionen zwischen P- und E-Selektinen (Mitgliedern der 

Integrin-Familie) mit ICAMs, zwischen Chemokinen des Endothels mit dem Glykoprotein 

P-selectin-glycoprotein-ligand-1 (PSGL-1) sowie mit L-selectin-glycoprotein-ligand-1 

(LSGL-1) der neutrophilen Granulozyten (Kansas, 1996; McEver und Cummings, 1997) 

beteiligt. 

Das nächste Stadium der Extravasation von neutrophilen Granulozyten ist die durch β2-

Integrine (Mac-1 und LFA-1) induzierte feste Adhäsion (Ley et al, 2007, Campbell et al., 

1998; Constantin et al. 2000; Liu et al., 2002) der PMNs. Danach erfolgt das sogenannte 

crawling der neutrophilen Granulozyten, bei dem sie nach einer geeigneten Stelle für die 

Diapedese durch das Endothel suchen. 

Das letzte Stadium der Extravasation der PMNs bildet die Transmigration durch das 

Endothel (Ley et al, 2007). Sie wird durch die Verbindung der β2-Integrine Mac-1 und 

LFA-1 – endothelialen Rezeptorstrukturen –  mit ICAM-1 begünstigt (Goldfinger et al., 

2003; Xu et al., 2003). 
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Abbildung 1.3.2.1: Schematische Darstellung der Leukozytenextravastion: (i) PMNs werden vom 
aktivierten Endothelium festgehalten (ii) Dann erfolgt das rolling und (iii) das slow rolling der 
Leukozyten auf dem Endothelium. Anschließend werden PMNs (iv) von Chemokinen des 
Endotheliums aktiviert (Activation), gefolgt von (v) der festen Adhäsion der PMNs ans 
Endothelium. Danach erfolgt (vi) das post-adhäsive crawling der PMNs (vii), die zum Ende der 
Extravasation transendothelial migrieren (Transmigration oder Diapedese). Spezifische 
Adhäsionsmoleküle sorgen dafür, dass die benötigten Zelltypen zur richtigen Zeit an den 
richtigen Ort rekrutiert werden. (Quelle: Choi EY.: Inhibition of leukocyte adhesion by 
developmental endothelial locus-1 (del-1). Immune Netw. 2009 Oct;9(5):153-7) 

 

Obwohl die neutrophilen Granulozyten das Parodontium vor dem Eindringen von 

Bakterien schützen, können sie gleichzeitig aber auch die Entwicklung eines 

erkrankungsbedingten Gewebedefekts verstärken (Van Dyke und Serhan, 2003). 

Sowohl eine übermäßige als auch eine reduzierte Zahl an neutrophilen Granulozyten 

sowie eine Funktionsstörung der PMNs können den parodontalen Gewebeabbau 

begünstigen (Deas et al., 2003; Ryder, 2010; Nussbaum und Shapira, 2011; Hasturk et 

al., 2012; Hajishengallis und Chavakis, 2013; Hajishengallis und Hajishengallis, 2013; 

Ryder, 2010; Schenkein und Van Dyke, 1994; Hajishengallis et al., 2013). 

Die exzessive Rekrutierung der neutrophilen Granulozyten ins Parodontium führt zu 

einer pathologischen und verhältnismäßig großen Zerstörung des parodontalen 

Gewebes und somit zum Phänotyp einer Parodontitis (Hajishengallis et al., 2016). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Choi%252520EY%25255BAuthor%25255D&cauthor=true&cauthor_uid=20157603
http://www.ncbi.nlm.nih.gov/pubmed/20157603#%2523
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Im Gegensatz zu einer „normalen“ Anzahl an neutrophilen Granulozyten im 

Parodontium, die eine bakterielle Intervention im Bindegewebe blockiert (Sadallah et al., 

2011), erleichtert eine mangelhafte Aktivierung der PMNs und die daraus folgende 

verminderte Anzahl der neutrophilen Granulozyten im entzündeten Parodontium die 

gewebezerstörende Wirkung des Biofilms und begünstigt somit die klinische 

Manifestation der Parodontitis (Hajishengallis et al., 2016). Dies kann besonders 

deutlich bei Patienten mit angeborenen Defekten der Funktion der neutrophilen 

Granulozyten, wie zum Beispiel bei der zyklischen Neutropenie, sowie bei Patienten mit 

Adhäsionsdefizienz der Leukozyten (LAD) festgestellt werden. Diese Individuen weisen 

regelmäßig eine höhere Prävalenz und Schweregrad der Parodontitis auf (Hajishengallis 

und Hajishengallis, 2014; Moutsopoulos et al., 2014). 

Die Regulation dieser sensiblen Kaskade der Rekrutierung von neutrophilen 

Granulozyten scheint somit für eine angemessene Reaktion des Parodontiums auf den 

Biofilm von großer Bedeutung zu sein. Physiologisches Ziel sollte es sein, dass die 

Immunantwort weder zur Zerstörung des Gewebes durch die PMNs noch durch die 

Bakterien führt. Für diese Regulation werden sowohl Inhibitoren der 

Leukozytenextravasation als auch aktivierende Moleküle benötigt. 

1.4 Funktionelle Markermoleküle 

Die Expression von Markermolekülen wie Del-1 (Inhibitor der Extravasation der PMNs 

und der Osteoklastogenese sowie fördernder Faktor der Angiogenese) und PTX3 

(Inhibitoren der Extravasation der PMNs) könnte mit dem Vorliegen und dem 

Schweregrad der Parodontitis assoziiert sein (Chavakis, 2012; Shin et al., 2013; Fan et 

al., 2008). Darüber hinaus gibt es Hinweise, dass die Expression von IL-17α 

(proinflammatorisches Zytokin) und von LFA-1 (Leukozyten-Integrin und Antagonist von 

Del-1) mit der Manifestation der Parodontitis korreliert sein könnte (Kennedy et al., 2017; 

Eskan et al., 2012). 

1.4.1 Developmental endothelial locus - 1 (Del-1) 

Das Markermolekül Del-1 (Edil3) ist ein 52 kDa großes Glykoprotein von Endothelzellen, 

das während der embryologischen Gefäßentwicklung exprimiert und in der 

extrazellulären Matrix freigesetzt wird (Hidai et al., 2007; Ho et al., 2004; Hidai et al., 

1998). Choi et al. (2008) konnten Del-1 in adultem Mausgewebe nachweisen. Sie 
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zeigten mittels Immunhistochemie und Co-Färbung mit dem endothelialen Marker 

PECAM-1 sowie RT-PCR Analyse, dass sich murine Del-1-mRNA hauptsächlich in 

Gehirn, Augen und Lungen sowie in geringerer Menge in den Nieren befindet, nicht aber 

in Leber, Herz, Milz, Knochenmark oder Blut. 

Humanes Del-1 ist zu mehr als 97% identisch mit dem murinen Del-1 und es besteht 

aus einer Signalsequenz an seinem N-Terminus, drei dem epidermalen 

Wachstumsfaktor (EGF) ähnlichen Repeats und zwei Discoidin-I-ähnlichen Domänen 

am C-Terminus (Abbildung 1.4.1.1) (Hidai et al. 1998). Das zweite EGF-Repeat 

(Abbildung 1.4.1.1) beinhaltet ein RGD-Motiv (Arg-Gly-Asp (RGD)-Peptid), das die 

Bindung von Del-1 an Integrin αvβ3 unterstützt (Hidai et al., 1998) und dadurch die 

Adhäsion von Endothelzellen an Del-1 ermöglicht (Wu et al., 1996; Germer et al., 1998; 

Brooks et al., 1994; Hynes, 1992; Hidai et al. 1998). Diese Bindung wurde als erste 

Funktion von Del-1 beobachtet. Sie hängt mit der angiogenetischen Wirkung von Del-1 

zusammen (Hidai et al. 1998). 

 

Abbildung 1.4.1.1: Domänenstruktur von Del-1. Das zweite EGF-Repeat (egf-2) beinhaltet ein 
RGD-Motiv (Arg-Gly-Asp (RGD)-Peptid), das die Bindung von Del-1 an Integrin αvβ3 unterstützt 
und dadurch die Adhäsion von Endothelzellen an Del-1 ermöglicht und die Angiogenese fördert 
(Quelle: Choi EY: Inhibition of leukocyte adhesion by developmental endothelial locus-1 (del-1). 
Immune Netw.2009 Oct;9(5):153-7). 

Del-1 weist des Weiteren eine zentrale immunologische Wirkung auf, da es das Integrin 

LFA-1 in Bezug auf die Bindung an ICAM-1 (intercellular adhesion molecule-1) 

antagonisiert und dadurch die Extravasation der Leukozyten in das entzündlich 

veränderte Gewebe verhindert (Hajishengallis und Sahingur, 2014). Dieser 

Antagonismus von Del-1 und LFA-1 könnte eine pathogenetische Rolle bei der 

Manifestation von chronisch entzündlichen Autoimmunerkrankungen spielen, denn eine 

mangelhafte Expression von Del-1 könnte die ICAM-1 / LFA-1 - Bindung verstärken und 

eine exzessive Leukozytenextravasation begünstigen. Eine mangelhafte Expression von 

Del-1 wurde in der Vergangenheit mit mehreren Erkrankungen wie Multipler Sklerose 

(Goris et al., 2003), Alzheimer-Demenz (Ramanan et al., 2014), ankylosierender 

http://www.ncbi.nlm.nih.gov/pubmed/20157603#%2523
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hajishengallis%2520G%255BAuthor%255D&cauthor=true&cauthor_uid=24736701
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sahingur%2520SE%255BAuthor%255D&cauthor=true&cauthor_uid=24736701


10 

 

Spondylitis (Lin et al., 2012), akuter Pneumonie (Choi et al., 2008), Bleomycin-

induzierter Lungenfibrose (Kang et al., 2014), Sialadenitis (Baban et al., 2013), 

systemischen inflammatorischen Response-Syndrom bei Nebennierenrindeninsuffizienz 

(Kanczkowski et al., 2013) und der Atherosklerose in Verbindung gebracht (Kakino et al. 

2016). 

Nach intranasaler Gabe von LPS (Lipopolysaccharid) an Del-1-defiziente Mäuse zur 

Induktion einer Pneumonie wurde eine stärkere Akkumulation von neutrophilen 

Granulozyten in der bronchoalveolären Lavage beobachtet als bei Kontrollmäusen (Choi 

et al., 2008; Choi et al., 2015; Eskan et al., 2012). Diese Akkumulation von neutrophilen 

Granulozyten konnte durch die Verabreichung von Del-1–Fc (lösliches rekombinantes 

Del-1) verhindert werden (Choi et al., 2015; Eskan et al., 2012). Dieses könnte auf eine 

mögliche therapeutische Wirkung von Del-1 bei der Behandlung der Pneumonie 

hindeuten. Darüber hinaus zeigte sich, dass Del-1 allgemein homöostatisch wirkt und 

die Entzündung in verschiedenen Organen und Geweben, wie dem zentralen 

Nervensystem und den Schleimhäuten, supprimiert (Kanczkowski et al., 2013). 

Inzwischen befasst sich die Forschung auch mit der Rolle von Del-1 bei der 

Pathogenese der Parodontitis. Shin et al. (2015) haben in einem experimentellen Model 

der Parodontitis die inhibierende Funktion von Del-1 bei der Osteoklastogenese gezeigt. 

Eskan et al. (2012) beobachteten erstmals, dass Del-1-mRNA und -Protein im murinen 

Gingivagewebe von Endothelzellen exprimiert werden kann. Immunohistochemische 

Analysen von Del-1 ergaben, dass es lokal in der Gingiva von Endothelzellen produziert 

wird, aber vermutlich durch Diffusion auch in extravaskulären Bereichen nachweisbar 

ist. Es wurde gezeigt, dass Del-1 als ein endogener Inhibitor der Leukozytenrekrutierung 

in der marginalen Gingiva wirkt (Eskan et al., 2012; Chavakis et al., 2012). Es ist zwar 

bekannt, dass viele Adhäsionsrezeptoren die Rekrutierung von Leukozyten fördern, es 

gibt aber nur sehr wenige Informationen über die endogenen Inhibitoren dieser 

Kaskade. 

1.4.2  Pentraxin-related Protein 3 (PTX3) 

Bei Pentraxinen (PTXs) handelt es sich um klassische Akut-Phase-Proteine, die seit 

über einem Jahrhundert bekannt sind (Pradeep et al., 2011). Diese Superfamilie von 

Akut-Phase-Proteinen ist durch eine zyklische Multimerstruktur gekennzeichnet (Emsley 
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et al., 1994). PTXs sind ein wesentlicher Bestandteil der angeborenen Immunität (Pepys 

et al., 1983; Norata et al., 2009). 

Das PTX3-Protein besteht aus 381 Aminosäuren, hat ein Molekulargewicht von 40.165 

Da (Breviario et al., 1992) und wird auch als TNF-inducible gene-14 - Protein (TSG-14) 

bezeichnet. PTX3 spielt eine wichtige Rolle bei der angeborenen Immunität gegenüber 

Pathogenen, der Regulierung der Entzündungsreaktion und der Phagozytose 

apoptotischer Zellen (Gershov et al., 2000; Familian et al., 2001; Rovere et al., 2000; 

Baruah et al., 2006). Es wird von zahlreichen Zellen, die auch im parodontalen Gewebe 

vorkommen, exprimiert. Dazu gehören insbesondere neutrophile Granulozyten (Pradeep 

et al., 2011; Maina et al, 2009), Fibroblasten (Pradeep et al., 2011; Goodman, 2000), 

Monozyten/Makrophagen (Pradeep et al. 2011; Goodman 2000; Alles et al 1994), 

dendritische Zellen (Pradeep et al., 2011; Doni et al., 2006), Epithelzellen (Pradeep et 

al., 2011; Nauta et al., 2005), Endothelzellen (Garlanda et al., 2005; Emsley et al., 1994; 

Brevario et al., 1992; Jaillon et al., 2007; Mantovani et al., 2003; Pradeep et al., 2011; 

Gustin et al., 2008) und glatte Gefäßmuskelzellen (Pradeep et al. 2011). PTX3 bindet 

apoptotische Zellen und hemmt deren Erkennung durch dendritische Zellen (DCs) 

(Garlanda et al., 2005; Diniz et al., 2004; Garlanda et al., 2002; Bottazzi et al., 1997; 

Nauta et al., 2003; Salustri et al., 2004; Rovere et al., 2000; Baruah et al., 2006; 

Scarchilli et al., 2007). PTX3 bindet des Weiteren mit hoher Affinität an Mikroorganismen 

wie Aspergillus fumigatus und Pseudomonas aeruginosa (Dinizua, 2004; Bottazzi et al., 

1997; Nauta et al., 2003; Roos et al., 2003). Diese Ergebnisse legen nahe, dass PTX3 

eine doppelte Funktion hat: den Schutz vor Krankheitserregern durch die Eradikation 

von Mikroorganismen und die Kontrolle der Autoimmunität durch den Abbau der 

apoptotischen Zellen (Rovere et al., 2000; Baruah et al., 2006).  

Darüber hinaus postulieren einige neuere Studien, dass eine mangelhafte Expression 

von PTX3 durch eine Kaskade, die die Akkumulation von neutrophilen Granulozyten 

beinhaltet,  mit dem klinischen Bild der Atherosklerose (Salio et al., 2008) und der 

COPD (Chronisch obstruktive Lungenerkrankung) (Stockley et al., 2013) verbunden ist. 

PTX3 inhibiert zudem das P-Selektin-abhängige rolling der Leukozyten und dadurch 

deren Extravasation vom Endothel in das entzündete Gewebe (Deban et al. 2010). Bei 

einer erhöhten Expression von PTX3 steigt schließlich die Resistenz gegen die LPS-

induzierte Toxizität, wodurch eine reperfusionsabhängige Entzündung und 

Gewebezerstörung attenuiert wird (Souza et al., 2002; Dias et al., 2001). 
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PTX3 kann somit – ebenso wie Del-1 – als ein wichtiger Entzündungshemmer und 

Inhibitor der Rekrutierung von neutrophilen Granulozyten bezeichnet werden (Chavakis, 

2012). Möglicherweise kann eine mangelhafte Expression von PTX3 eine exzessive 

Extravasation von PMNs in die Entzündungsstelle verursachen und die klinische 

Manifestation entzündlicher Erkrankungen, wie beispielsweise der Parodontitis, 

begünstigen. 

1.4.3 Interleukin 17α (IL-17α) 

Interleukin 17α, das auch als zytotoxisches T-Lymphozyten Antigen 8 bezeichnet wird, 

ist ein Zytokin, das 1993 entdeckt wurde (Rouvier et al., 1993). Es wirkt durch die 

Erhöhung der Chemokinproduktion in verschiedenen Geweben proinflammatorisch. 

Diese erhöhte Chemokinproduktion dient dazu, das Endothel zu stimulieren und die 

neutrophilen Granulozyten in das infizierte Gewebe zu rekrutieren (1.3.2.3). 

Es hat sich gezeigt, dass sich IL-17α-produzierende Zellen des angeborenen 

Immunsystems vor allem in der Haut und der Schleimhaut befinden und dort für die 

initiale Immunantwort bei Infektionen zuständig sind (Sutton et al., 2009; Aujla et al., 

2008; Takatori et al., 2009; Khader et al., 2009). Beispiele für IL-17α-produzierende 

Zellen sind γδ-T-Zellen (Sutton et al., 2009; Ito et al., 2009; Fenoglio et al., 2009; Aujla 

et al., 2007; Lockhart et al., 2006),CD3+ invariant natürliche Killer-T- (iNKT) Zellen, 

lymphoide Gewebe-Induktor (LTi)-ähnliche Zellen, natürliche Killerzellen 

(NK),myeloischen Zellen (Takatori et al., 2009; Michel et al., 2007; Passos et al., 2010; 

Sutton et al., 2009; Buonocore et al., 2010) und THy1hiSCA1+ Zellen (Sutton et al., 

2009; Takatori et al,. 2009; Buonocore et al., 2010).  

Die Ausschüttung von IL-17α durch die  erwähnten Zelltypen kann durch Bakterien oder 

andere Mikroorganismen gefördert werden. Oda et al. haben 2003 herausgefunden, 

dass die Oberflächenantigene von P. gingivalis eine signifikante IL-17α-Expression in 

peripheren mononukleären Blutzellen induziert. Außerdem wurde gezeigt, dass das 

Lipopolysaccharid (LPS) von P. gingivalis bei Parodontitis die Knochenresorption fördert 

und die Produktion von IL-17α induziert (Park et al., 2012; Sutton et al., 2009; Aujla et 

al., 2007; Lockhart et al., 2006; Takatori et al., 2009; Buonocore et al., 2010). 

Ferner wurde festgestellt, dass IL-17α selbst die Ausschüttung einer Vielzahl weiterer 

proinflammatorischer Mediatoren in verschiedenen Arten von Zellen bewirken kann. 
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Diese Mediatoren können die Entzündung des Gewebes verstärken und 

Krankheitsverläufe, beispielsweise der Parodontitis, begünstigen. IL-17α fördert bei 

PMNs die Produktion von proinflammatorischen Zytokinen wie zum Beispiel IL-6, IL-

1β,TNF-α (Meng et al., 2012, Gu et al., 2008, Beklen et al., 2007; Jovanovic et al., 

1998), IL-8 (Beklen et al., 2007, Mahanonda et al., 2008), CXCL2 (Kawanokuchi et al., 

2008) und es erniedrigt im Rahmen der Knochendestruktion bei einer Parodontitis die 

Produktion der beiden Chemokine CXCL1 und CXCL5 (Yu und Gaffen, 2008). 

Darüber hinaus erhöht IL-17α die Ausschüttung des Chemokins CCL2 in humanen 

Makrophagen (Shahrara et al., 2010) sowie die der Chemokine CCL4 und CCL5 in 

murinen Makrophagen (Barin et al., 2012). IL-17α stimuliert zudem die Produktion von 

Prostaglandin E2 in MC3T3-E1-Präosteoblasten (Zhang et al., 2011) sowie die 

Generierung von Stickstoffmonoxid in MC3T3-E1-Zellen (Van Bezooijen et al., 2001) 

und in murinen Astrozyten (Trajkovic et al., 2001). Vor diesem Hintergrund wurde die IL-

17α-Familie mit mehreren Autoimmunkrankheiten wie der rheumatoiden Arthritis, 

Asthma bronchiale, Lupus erythematodes oder Psoriasis in Verbindung gebracht 

(Aggarwal und Gurney, 2002). 

IL-17α stimuliert auch die Proliferation von gingivalen Fibroblasten in parodontal 

erkranktem Gewebe (Kawanokuchi et al., 2008; Beklen et al., 2007; Hosokawa et al., 

2009), es fördert vermutlich zusätzlich die Proliferation der Saumepithelzellen und 

verhindert auf diese Weise die Knochenregeneration im Parodontium. Eine erhöhte IL-

17α - Expression im parodontal erkrankten Gewebe ist  in zahlreichen Studien gut belegt 

(Wang et al., 2017; Dutzan et al., 2009; Dutzan et al., 2012; Johnson et al., 2004; 

Ohyama et al., 2009; Okui et al., 2012; Takahashi et al., 2005; Vernal et al., 2005; Allam 

et al., 2011; Baker et al., 1994; Cardoso et al., 2009; Ito et al., 2005; Dutzan et al., 2012; 

Lester et al., 2007; Moutsopoulos et al., 2012; Shaker et al., 2012; Zhao et al., 2011). IL-

17α hat auch nachhaltigen Einfluss auf die Osteoklastogenese in entzündlich 

verändertem Gewebe wie zum Beispiel bei der Parodontitis, der rheumatoiden Arthritis 

und der Spondyloarthritis(Zenobia und Hajishengalllis, 2015; Liao et al., 2017). In einer 

aktuellen in-vitro Untersuchung an atherosklerotisch veränderten Gewebeproben konnte 

gezeigt werden, dass die IL-17α Produktion ebenfalls in Abhängigkeit vom Alter des 

Patienten steht (Li et al., 2017). Zusammenfassend kann festgestellt werden, dass IL-

17α als proinflammatorisches Zytokin starken Einfluss auf die Pathogenese einer 

Vielzahl von autoimmunen und chronischen Erkrankungen einschließlich der 
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Parodontitis hat (Isailovic et al., 2015; Suzuki et al., 2014; Hemdan et al., 2010; Kennedy 

et al., 2017). 

1.4.4 Lymphozytenfunktion-assoziiertes Antigen-1 (LFA-1) 

Das Lymphozytenfunktion-assoziierte Antigen-1 (LFA-1) gehört zur Familie der 

Leukozyten-Integrine, die sich durch eine gemeinsame β2-Kette (β2, CD18) 

auszeichnen. Die β2-Integrin-Kette wird mit je einer α-Kette kombiniert (αL, αΜ und αX). 

Dadurch entstehen die Antigene LFA-1 (αLβ2, CD11a / CD18), Mac-1 (αMβ2, CD11b / 

CD18) und p150, 95 (αXβ2, CD11c/CD18) (Anderson et al., 1987; Watanabe et al., 

1990; Katsuragi et al., 1994). Diese Moleküle werden ausschließlich in Leukozyten 

exprimiert und dienen der Rekrutierung von Leukozyten im infizierten Gewebe, weshalb 

sie auch als Leukozyten-Integrine bezeichnet werden (Smith et al., 2007). 

Der zytoplasmatische Anteil der α- und β-Kette von Integrinen kann bei der Inside-Out-

Signal-Aktivierung, die beispielsweise nach der Stimulation der Chemokin-Rezeptoren 

auftritt, phosphoryliert werden (Fagerholm et al., 2005; Fagerholm et al., 2004; 

Fagerholm et al., 2002). LFA-1 wird dabei an der αL-Kette Ser-1140 phosphoryliert, die 

für den Rap1-Weg der Integrin-Affinität-Regulation zuständig ist, was zu einer 

verstärkten Ligandenbindung führt (Fagerholm et al., 2005). Im Gegensatz dazu tritt die 

Phosphorylierung der β-Kette der LFA-1 bei der Zellstimulation auf, z.B. wird die 

Phosphorylierung von T758 durch Phorbolester oder durch die Ligation des T-Zell-

Rezeptors induziert (Hilden et al., 2003). Diese Phosphorylierung kann zytoskelettale 

Interaktionen des Integrins mit einem multifunktionalen Adapterprotein der 14-3-3-

Familie vermitteln, wobei LFA-1 die Zelladhäsion moduliert (Fagerholm et al., 2005; 

Hibbs et al., 1991; Choi et al., 2008). 

LFA-1 ist als klassisches Integrin an drei wichtigen Stadien der Aktivierung von 

neutrophilen Granulozyten beteiligt: dem rolling, der festen Adhäsion und der 

Transmigration (Abbildung 1.3.2.1). Die Bindung von PSGL-1 und E-Selektin während 

des rollings induziert die intermediär affine Konformation des LFA-1 (Salas et al., 2004). 

Die PSGL-1-abhängige Aktivierung der LFA-1 Signalisierung wird von Fgr, DAP12, 

FcRγ und Syk-Kinase begünstigt (Zarbock et al., 2007; Zarbock et al., 2008). 

Darüber hinaus gibt es Hinweise, dass LFA-1 auch an einem Zwischenstadium der 

Rekrutierung von neutrophilen Granulozyten beteiligt ist, dem slow rolling. Zwischen 
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dem rolling und der Aktivierung der Leukozyten findet ein Prozess statt, der als „slow 

rolling“ bezeichnet wird, hierbei bewegen sich die Leukozyten langsam mit Hilfe der 

Integrine Mac-1 und LFA-1 über die Endotheloberfläche (Abbildung 1.3.2.1) (Schenkel 

et al,. 2004; Shaw et al., 2004; Salas et al., 2004; Zarbock et al., 2007). Im Anschluss 

begünstigt LFA-1 die feste Adhäsion der neutrophilen Granulozyten an das Endothel 

(Ley et al., 2007; Campbell et al., 1998; Constantin et al., 2000; Liu et al., 2002). Um 

schlussendlich die Transmigration der PMNs zu realisieren, bindet sich LFA-1 an 

Endothelrezeptoren der Immunglobulin-Superfamilie, wie die interzellulären 

Adhäsionsmoleküle 1 und 2 (ICAM-1 und -2), an das vaskuläre Zelladhäsionsmolekül-1 

(VCAM-1) und an den Rezeptor für Advanced-Glycation-Endprodukte (RAGE), die in der 

Regel im entzündeten Endothel hochreguliert werden (Ley et al., 2007; Yonekawa et al., 

2005; Chavakis et al., 2003).  

Diese Bindung von LFA-1 an den ICAM-1 wurde bereits im Jahr 1981 beobachtet 

(Davignon et al., 1981). LFA-1 bindet sich hierbei an die D1-Domäne von ICAM-1 und 

trägt nicht nur zur Transmigration bei, sondern ist auch am rolling, der festen Adhäsion 

und dem crawling der PMNs beteiligt (Ley et al., 2007; Simon et al., 2009). Diese frühe 

Beteiligung an der Aktivierung von neutrophilen Granulozyten liegt vermutlich an der 

besonders starken Bindung von LFA-1 an ICAM-1 im Vergleich zu der anderer Integrine 

(Dunne et al., 2002; Phillipson et al., 2006; Kuwano et al., 2010; Yago et al., 2010). Da 

LFA-1 durch den o.g. Mechanismus die Wanderung der neutrophilen Granulozyten an 

die Entzündungsstelle begünstigt, ist die mögliche Beteiligung einer erhöhten LFA-1 - 

Expression an der Pathogenese chronisch-entzündlicher Erkrankungen wie der 

Parodontitis von großer Bedeutung. Hinweise auf eine mögliche Rolle von LFA-1 in der 

Pathogenese der Parodontitis gibt unter anderem eine tierexperimentelle Studie an 

Mäusen (Eskan et al. 2012). 

Ebenfalls Hinweise auf eine mögliche Rolle von LFA-1 in der Pathogenese der 

Parodontitis gibt unter anderem auch die erhöhte Prävalenz dieser Erkrankung bei 

Patienten mit angeborenen Störungen der LFA-1-Funktion. Der 

Leukozytenadhäsionsdefizienz Typ 1 (LAD-1) ist eine autosomal rezessiv vererbte 

Krankheit, die durch Defekte des CD18-Gens entsteht (Paller et al., 1994; Springer et 

al., 1994; Kishimoto et al., 1987). Das CD18-Gen ist für die Expression von β2-Integrine, 

wie LFA-1, zuständig. 
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Patienten mit LAD-1 Syndrom weisen eine eingeschränkte Migration der Leukozyten in 

das Gewebe auf, was wegen mangelhafter Expression der β2-Integrine oder des 

fucosylierten Selektin-Liganden sowie aufgrund von beeinträchtigter Aktivierung der 

Leukozyten-Integrine nach Chemokin-Stimulation zu bakteriellen und mykotischen 

Infektionen oder zu einer peripheren Leukozytose führt (Kinashi et al., 2004). Es gibt 

einige Studien, die eine Assoziation des LAD-1 Syndroms mit dem klinischen Bild der 

Parodontitis, insbesondere bei Kindern, zeigen (Moutsopoulos et al., 2014; Deas et al., 

2003; Hanna et al. 2012; Schmidt et al., 2012).  
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2 Studienziel 

Studienziel war es, zu untersuchen, ob die Expression der Markermoleküle für die 

Rekrutierung von Leukozyten Del-1, PTX3, LFA-1 und Interleukin 17α eine klinische 

Assoziation mit der chronischen Parodontitis zeigt. Des Weiteren sollte festgestellt 

werden, ob die Expression dieser Markermoleküle vom Alter oder dem Geschlecht 

abhängt. 
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3 Material und Methoden 

3.1 Studienpopulation 

Es wurden insgesamt 95 Patienten untersucht, die sich in der Poliklinik für 

Zahnerhaltung und Parodontologie der Universität München sowie einer privaten 

zahnärztlichen Praxis vorgestellt haben. Das Studienprotokoll stand in Übereinstimmung 

mit den Leitlinien der Helsinki Deklaration und wurde von der lokalen Ethikkommission 

genehmigt (Nr.: 138-05). Vor Aufnahme in die Studie mussten alle Patienten, nach der 

Aufklärung über die Ziele der Studie, schriftlich ihr Einverständnis zur Studienteilnahme 

erklären. 

3.1.1 Ausschlusskriterien 

Patienten mit schweren Allgemeinerkrankungen, unter anderem Diabetes mellitus, 

immunologischen Krankheiten und einem erhöhten Risiko für eine bakterielle 

Endokarditis, sowie Schwangere wurden aus der Studie ausgeschlossen. 

3.1.2 Einschlusskriterien 

3.1.2.1 Klinische und radiologische Untersuchung der 

Studienteilnehmer 

Alle Studienteilnehmer wurden einer standardisierten parodontalen Untersuchung 

unterzogen. Im Rahmen dieser Untersuchung wurde an allen natürlichen Zähnen eine 

vertikale Sondierung des Parodontalsulkus bzw. der Parodontaltaschen an 6 Punkten 

pro Zahn (mesiobukkal, medibukkal, distobukkal, mesiolingual, medilingual, distolingual) 

durchgeführt. Die Sondierungstiefe wurde als die Distanz zwischen dem freien 

Gingivasaum und dem Boden der Parodontaltasche gemessen, wobei die Sonde 

parallel zur Zahnachse geführt wurde. Mehrwurzelige Zähne wurden zusätzlich mittels 

horizontaler Sondierung der Furkationseingänge mit einer Nabers-Sonde auf einen 

Furkationsbefall untersucht. Die Klassifikation des Furkationsbefall erfolgte nach dem 

Protokoll von Hamp et al., 1975. Ergänzend wurde der alveoläre Knochenabbau an 

Hand einer radiologischen Panoramaschichtaufnahme bestimmt. 
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3.1.2.2 Auswahlkriterien für Patienten mit leichter Parodontitis 

Patienten, die der Gruppe mit einer leichten Parodontitis zugeordnet wurden, mussten 

mindestens sieben Zähne mit einem Knochenverlust von mindestens 30% nach 

radiologischen Kriterien aufweisen. Zusätzlich mussten mindestens 15 Zähne in situ 

sein, davon mindestens 8 Zähne mit einer Sondierungstiefe von ≥ 5 mm und/oder einem 

Furkationsbefall ≥ Grad II. 

3.1.2.3 Auswahlkriterien für Patienten mit schwerer Parodontitis 

Patienten, die der Gruppe mit einer schweren Parodontitis zugeordnet wurden, mussten 

mindestens sieben Zähne mit einem Knochenverlust von mindestens 50% nach 

radiologischen Kriterien aufweisen. Zusätzlich mussten mindestens 15 Zähne in situ 

sein, davon mindestens 8 Zähne mit einer Sondierungstiefe von ≥ 5 mm und/oder einem 

Furkationsbefall ≥ Grad II. 

3.1.2.4 Auswahlkriterien für Patienten der Kontrollgruppe 

Bei Patienten der Kontrollgruppe durfte maximal ein Zahn eine pathologisch erhöhte 

Sondierungstiefe (> 3 mm) aufweisen und kein Zahn einen Furkationsbefall zeigen. Es 

mussten außerdem mindestens 22 Zähne in situ sein. In der Kontrollgruppe wurde nur 

dann eine röntgenologische Untersuchung durchgeführt, wenn dies aus sonstigen 

Gründen medizinisch indiziert war. Soweit eine Röntgenaufnahme zur Verfügung stand, 

durften keine Zeichen eines crestalen Knochenverlusts anzutreffen sein. 

3.2 Entnahme von Gewebeproben der marginalen Gingiva 

Die Probenentnahme erfolgte an der Poliklinik für Zahnerhaltung und Parodontologie der 

Universität München und in einer zahnärztlichen Praxis durch eine Biopsie der 

marginalen Gingiva in Lokalanästhesie. Dazu wurde eine Infiltrationsanästhesie mit 

Articain mit Adrenalinzusatz 1:200.000 durchgeführt. Das Präparat wurde in der 

Testgruppe durch vertikale Schnittführung ca. 3mm unter Gingivaniveau während der 

chirurgischen Parodontitistherapie entnommen. Jede Entnahmestelle musste bei leichter 

Parodontitis einen radiologischen Knochenverlust von mindestens 30%, bei schwerer 

Parodontitis von mindestens 50% sowie eine Blutung auf Sondierung aufweisen. Die 

Gingivaproben der Kontrollgruppe wurden während einer chirurgischen Behandlung, die 

aus nicht parodontalen Gründen medizinisch indiziert war, gesammelt. Alle 
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Gewebepräparate waren ca. 2 mm x 2 mm groß und enthielten Teile der befestigten 

Gingiva sowie des Bindegewebes der Lamina propria. Direkt nach der Entnahme 

wurden die Proben in RNAse- und DNAse-freie Gefäße mit flüssigem Stickstoff 

eingebracht. 

3.3 Lagerung der Gingivaproben 

Die Proben aus der Poliklinik für Zahnerhaltung und Parodontologie wurden in 

Kryogefäßen, welche in mit Trockeneis (gefrorenem CO2) gefüllten, isolierten Boxen 

gesammelt und bei –80° C in Tiefkühlschränken mit N2- oder CO2-Backups eingefroren 

wurden. 

Die Proben aus der Praxis wurden in flüssigem Stickstoff eingefroren. Die Proben 

wurden in vakuumisolierten Metalltanks in Kryogefäßen gesammelt. Nach dem 

Transport zur Zahnklinik wurden die Gefäße bei –80° C zur Langzeitlagerung 

eingefroren. 

3.4 RNA Isolierung 

Die RNA Isolierung erfolgte unter strikt sterilen Bedingungen. 

Für die Homogenisierung der Proben wurde zunächst in jedes Gefäß 1ml RNAzol 

(Qiagen, Venlo, Niederlande) zugegeben, um das Gewebe und die Zellen zu lysieren. 

Direkt danach wurden die Proben für 5 Minuten bei Raumtemperatur inkubiert. 

Anschließend wurden die Proben zweimal für 30s in einen Homogenisator (Roche) mit 

3000 rpm eingebracht. Anschließend wurde jeder Probe 0,2 ml Chloroform (Merck) 

zugegeben, danach wurden die Gefäße für 15 s gerüttelt (Vortex) und für 5 min bei 

Raumtemperatur gelagert. Nachfolgend wurden die Proben für 15 min mit 12000 rpm 

bei 4° C zentrifugiert und anschließend die obere Phase (RNA) abgenommen und diese 

in ein neues 1,5 ml Eppendorf-Gefäß überführt. 

In jede homogenisierte Probe wurde ein einfaches Volumen von 70% Ethanol (Merck) 

gegeben und vorsichtig gemischt. 700 μl jeder Probe wurden auf RNeasy Mini Kit Säule 

gegeben und mit 10.000 rpm für 15 s bei Raumtemperatur zentrifugiert. Sobald das 

Volumen der Probe 700 μl überschritt, wurde die o.g. Prozedur so oft wiederholt, bis das 

gesamte Volumen der Probe aufbereitet war. Danach wurden die Durchflüsse 
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verworfen, und 350 μl RW1 vom Mini Kit zu jeder Säule zugegeben. Die Säulen wurden 

für 15 s mit 10.000 rpm zentrifugiert. Danach wurde der DNase-Mix (Qiagen, Venlo, 

Niederlande) auf jede Säule pipettiert und für 15 min bei Raumtemperatur inkubiert. Die 

Säulen wurden nach der Wartezeit mit 350 μl RW1 gewaschen und für 15 s mit 10.000 

rpm zentrifugiert. Für die weitere Reinigung des Produkts wurden zweimal jeweils 500 μl 

RPE-Puffer auf die Säule gegeben und die Säule wechselweise für 15 s oder 1 min 

zentrifugiert. 

Zur Entnahme der RNA wurde anschließend eine neue Tube verwendet und direkt auf 

die Membran der Säule 50 μl RNase-freies Wasser gegeben. Die Gefäße wurden für 1 

min bei Raumtemperatur vorinkubiert und für 1 min mit 10000 rpm bei Raumtemperatur 

zentrifugiert, um die RNA vollständig zu extrahieren. Abschließend wurden die Proben 

beschriftet und bis zur Bestimmung der Expression der Markermoleküle bei -80 °C 

eingelagert. 

3.5 Konzentrationsbestimmung der RNA-Proben am Nanodrop 

Direkt nach der RNA-Isolierung wurde die Menge der RNA jeder Probe mit Hilfe von 

Nanodrop (Thermo Scientific) bestimmt. 

3.6 Reverse Translation und Produktion einer cDNA Sammlung (oder Bio-

Bank) (RT-PCR) 

Nach der Isolierung der RNA wurde die gesamte RNA in DNA umgeschrieben und eine 

cDNA-Sammlung produziert, um nachfolgend die Quantifizierung der RNA-Expression 

durch Polymerase-Kettenreaktion (PCR) zu ermöglichen. 

3.6.1 Denaturierung der RNA 

Nach einem standardisierten Protokoll wurde für diesen Schritt ein Reaktionskit zur 

cDNA-Synthese (RT-PCR Transcriptor First Strand, Fa. Roche) genutzt. Für jede Probe 

wurde ein Volumen von 500 ng RNA eingesetzt. Daraufhin wurde die RNA-Lösung mit 

PCR-Grade H2O (Qiagen, Venlo, Niederlande) bis auf ein Gesamtvolumen von 10 μl 

aufgefüllt. Anschließend kam es zur Denaturierung der RNA. Die RNA-Lösung (10 μl) 

jeder Probe wurde mit Hexamer-Primer in einem Volumen von 12 μl gemischt. Die 

Proben wurden in den Multicycler PTC220 Dyad (MJ Research/ BIO-RAD, Hercules, 
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CA, USA) eingesetzt und für 10 Minuten bei 65 °C erhitzt und für den nächsten Schritt 

der Bearbeitung in Eis gelagert. 

3.6.2 c-DNA Synthese 

Für die cDNA Synthese wurde ein Mastermix verwendet (Tabelle 3.6.2-1). Die Proben 

wurden in den Multicycler PTC220 Dyad (MJ Research/ BIO-RAD, Hercules, CA, USA) 

eingesetzt. Bei jedem cDNA-Ansatz wurde eine Negativkontrolle aus sterilem Wasser 

mitgeführt. Die Proben wurden bei 25°C für 15 Minuten, bei 50°C für 60 Minuten, bei 

85°C für 5 Minuten erhitzt und anschließend auf 4°C abgekühlt.Danach wurden die 

Proben in cDNA-Form bei –20°C gelagert. 

 

Pxn-Puffer (8 mM MgCl2) 4 μl 

dTNPs (10 mM) Mix 2 μl 

RNAse-Inhibitor 40 U 0,5 μl 

AMV-Reverse-Transkriptase 0,5 μl 

PCR-Grade-H2O 1 μl 

Tabelle 3.6.2-1: Mastermix Ansatz für die c-DNA Synthese. 

 

3.7 Sequenzierung der verwendeten Primer für das RT - PCR Verfahren 

Für die quantitative PCR (Kapitel 3.9 und 3.10) wurden verschiedene Primer benutzt 

(Tabelle 3.71), die vorher ausgetestet und sequenziert worden waren. Die Proben mit 

der RNA Nr. 11 und 19 wurden wegen der hohen RNA-Konzentration und der dadurch 

hohen Genauigkeit der Ergebnisse für die Primer-Austestung verwendet. 
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Die Zielsequenzen der untersuchten Gene der cDNA-Proben wurden durch PCR 

selektiv (nur die Teile der DNA, die für die Expression eines jeden Gens zuständig sind) 

mit Hilfe der Primer mehrfach exponentiell multipliziert. Bei jedem cDNA-Ansatz wurde 

eine Negativkontrolle aus sterilem Wasser mitgeführt. 

3.7.1 Primer Design 

Alle Primer wurden von der Fa. TIB Molbiol, Berlin, Deutschland produziert. Für die 

untersuchten Gene wurden folgende Primer bei einer primer-spezifischen Melting 

Temperatur (TM) (Tabelle 3.7.1-1) verwendet: 

Name des 

Genes 

Primer for. Primer rev. Produktlänge, bp TM, °C 

hDel-1 5’-CCC gAg gAT 

TTA ATg ggA TT 

5’-gTg ggC CTg 

AgC ATT TgT 

AT 

162 55°C 

hLFA1 5’- CAC gAA gTT 

CAA ggT CAg CA 

5’-TTg Tgg TCT 

TCC Tgg gTT 

TC 

201 50°C 

IL-17α 5’- ATg gCC CTg 

Agg AAT ggC AT 

5’-ggg TTg TgT 

ggT gCC TTg 

AT 

242 65°C 

hPTX3 5‘-gTg ggT ggA gAg 

gAg AAC AA 

5‘- TTC CTC 

CCT CAg gAA 

CAA Tg 

175 57°C 

GAPDH 5’- CAA CTA CAT 

ggT TTA CAT gTT C 

5’- gCC AgT ggA 

CTC CAC gAC 

181 55°C 

Tabelle 3.7.1-1: Primer Design und verwendete Melting Temperatur 

3.7.2 PCR 

Für die PCR wurden die folgenden Komponenten eingesetzt: Die DNA, die den zu 

multiplizierenden Abschnitt enthält (Template), zwei Primer (Forward und Reverse), um 

jeweils den Startpunkt der DNA-Synthese auf den Einzelsträngen der DNA festzulegen, 
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DNA-Polymerase, um den festgelegten Abschnitt zu kopieren, 

Desoxynukleosidtriphosphate (dATPs,dTTPs, dGTPs, dCTPs) als Komponenten für die 

Amplifikation, Mg2+-Ionen und Pufferlösung, damit die Polymerase funktionieren kann 

(Tabelle 3.7.2-1). 

Bei jedem PCR-Ansatz wurde eine Negativkontrolle aus Wasser anstatt cDNA 

mitgeführt. 

 

 

10x PCR-Puffer (Qiagen, Venlo, Niederlande) 2,0 μl 

Magnesiumchloridlösung (MgCl2) 25mM (Qiagen, Venlo, Niederlande) 0,6 μl 

Desoxynukleotidtriphosphate (dNTP) 10mM (Sigma) 0,4 μl 

Primer-Mischung (Forward und Reverse) in gleicher Analogie 10 μΜ 

(TIB Molbiol) 

1,0 μl 

Ηot Start Tag DNA Polymerase (Qiagen, Venlo, Niederlande) 5U/μl 0,2 μl 

Q Solution (Qiagen, Venlo, Niederlande) 4,0 μl 

cDNA  1,0 μl 

H2O(Aqua ad Injectabila) Braun 10,8 μl 

Tabelle 3.7.2-1: PCR Ansatz der untersuchten Genen für die Elektrophorese. 

 

 

Die Proben wurden in den Multicycler PTC220 Dyad (MJ Research/ BIO-RAD, Hercules, 

CA, USA) eingesetzt und wie folgt bearbeitet (Tabelle 3.7.2-2): 
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1. Initialisierung oder Präamplifikation: bei 94 °C für 10 min. Durch die Präamplifikation 

wurde die DNA für längere Zeit erhitzt, um erstens sicherzustellen, dass sich die cDNA 

und die Primer vollständig voneinander getrennt haben und nur Einzelstränge 

vorhanden sind, und zweitens, um die Hot-Start-DNA-Polymerase zu aktivieren. 

2. Die Amplifikation, die aus 35 Zyklen besteht, beinhaltet die folgenden Phasen: 

a) Denaturierung: bei 94°C für 30 s, um die Wasserstoffbrückenbindungen zwischen 

den beiden DNA-Strängen aufzubrechen. 

b) Primerhybridisierung: bei Primerhybridisierungstemperatur (TM) für 30 s, um eine 

Anlagerung der Primer an die DNA zu erlauben. Diese spezifische Temperatur 

wird durch die Länge und die Sequenz der Primer bestimmt. 

c) Elongation oder Verlängerung: bei 72°C für 60s,um die Auffüllung der fehlenden 

Stränge mit freien Nukleotiden durch die DNA-Polymerase zu ermöglichen. Die 

DNA-Polymerase beginnt am 3'-Ende des Primers und folgt dem DNA-Strang. 

d) Am Ende der Amplifikation wurde die DNA für 10 min bei 72 °C erhitzt 

(Endelongation) und anschließend bei 4°C gekühlt aufbewahrt. 

 

PCR-Schritt Zyklenzahl Zyklendauer Temperatur 

Initialisierung 1 10 min 94 °C 

Denaturierung  

35 

30 s 94 °C 

Primerhybridisierung 30 s Tm 

Elongation 1 min 72 °C 

Endelongation 1 10 min 72 °C 

Tabelle 3.7.2-2: Ablauf des PCR Verfahrens für die Sequenzierung der Primer 

3.7.3 Elektrophorese 

Die Agarosegelelektrophorese wurde verwendet, um die optimale 

Primerhybridisierungstemperatur zu bestimmen. Bei dieser Methode werden DNA-

Stränge nach ihrer Größe getrennt. Das Agarosegel ist relativ großporig (ca. 500 nm) 

http://de.wikipedia.org/wiki/Wasserstoffbr%2525C3%2525BCckenbindung
http://de.wikipedia.org/wiki/Elongation_%252528Transkription%252529
http://de.wikipedia.org/wiki/Elongation_%252528Transkription%252529
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und erlaubt die Wanderung der DNA Moleküle unter dem Einfluss eines elektrischen 

Feldes zur positiv geladenen Anode. Die Banden sind nachfolgend unter UV-Licht 

sichtbar, da Ethidiumbromid in der DNA interkalliert ist. Je kleiner die Moleküle sind, 

desto schneller bewegen sie diese im Gel. Durch den Vergleich mit der Wanderung 

eines Molekulargewichtstandards konnte die Größe der DNA-Moleküle ermittelt werden. 

Die Dicke der Banden ermöglichte eine ungefähre Schätzung der Konzentration der 

DNA-Moleküle. 

Dazu wurde Agarose (Typ I-A, Sigma) in einer Menge von 1,08 g bei einem Volumen 

von 60 ml TBE-Puffer (10x TBE beinhaltet 890 mM Tris, 890 mM Borsäure, 20 mM 

EDTA pH8) durch 3-minütiges Kochen in der Mikrowelle gelöst. Danach wurden 3 μl 

Ethidiumbromid (10 mg/ml, Sigma) zugegeben und die Lösung blasenfrei in einen 

Gelträger gegossen. In den Gelträger wurden zuvor ein bis zwei Gelkämme mit je 15 

Zähnen gelegt. Die Gelkämme wurden nach dem Erstarren vorsichtig entfernt und der 

gesamte Gelträger in eine Gelkammer gestellt. Die Elektrophoresekammer (Sub-Cell 

GT, BioRad) beinhaltete 1x TBE-Puffer mit 0,3 μg/ml Ethidiumbromid. Danach wurden 

die DNA-Proben (je 20 μl) mit 3 μl DNA-Puffer (Fermentas Gene Ruler TM Low Range 

DNA Ladder, ready-to-use, 0,1 μg/μl) gemischt. Am Anfang jeder Reihe, die durch den 

Kamm entstanden ist, wurden als Molekulargewichtstandard 20 μl DNA Auftragspuffer 

(Gene Ruler TM DNA Ladder, Low Range SM 1191/2/3, pH 8,0) hinein pipettiert. Im 

weiteren Verlauf wurden die Taschen des Kamms mit den entsprechenden DNA-Proben 

belegt. Anschließend gab es einen Lauf bei 120 V / 11 W für ca. 30 min.Schließlich 

wurde das Agarosegel auf dem UV-Transilluminator (Infinity 3000, Vilber Lourmat) 

betrachtet und fotografisch dokumentiert. 

 

3.7.4 Reinigung des PCR Produkts 

Vor der Sequenzierung erfolgte die Reinigung der DNA-Produkte von Resten der 

Primer, freien Nukleotiden, Polymerasen und Salzen. Die Reinigung des PCR-Produkts 

wurde mit Hilfe des QIAquick PCR Purifikation Kit Protokolls (Qiagen, Venlo, 

Niederlande) vorgenommen. Es wurden 5 Volumen von PB-Puffer zu 1 Volumen jeder 

PCR-Probe zugegeben und gemischt. Der PB-Puffer wurde vorher durch die Zugabe 

von 1: 250 Volumen pH-Indikator I vorbereitet. Durch die gelbe Färbung der Lösung 

wurde bestätigt, dass sie einen pH-Wert von max. 7,5 aufwies. Danach wurde eine 
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QIAquick-spin-Säule auf ein 2 ml Gefäß platziert. Auf die Säule wurde die DNA appliziert 

und für 60 s bei 13.000 rpm bei Raumtemperatur zentrifugiert, um die DNA-Stränge zu 

verbinden. Daraufhin wurden die Durchflüsse verworfen und die Säule wieder auf dem 

Gefäß platziert. Um die DNA zu reinigen, wurden schließlich 750 μl PE-Puffer auf die 

Säule appliziert. Vorher wurde der PE-Puffermit 100%iger Ethanol-Lösung gemischt. 

Das Gefäß wurde weiterhin für 60 s bei 13.000 rpm bei Raumtemperatur zentrifugiert 

und die Durchflüsse verworfen. Die Säule wurde erneut auf dem Gefäß platziert und 

eine zweite Zentrifugation für 60 s bei 13.000 rpm bei Raumtemperatur durchgeführt. 

Danach wurde für die Elution der DNA die Säule auf ein neues 1,5-ml-Gefäß platziert 

und 50 μl EB-Puffer (10 mM Tris Cl, pH 8,5) auf die Mitte der Membran gegeben. Das 

Gefäß wurde wieder für 60 s bei 13.000 rpm Raumtemperatur zentrifugiert und die 

gereinigte DNA entnommen. 

 

3.7.5 Sequenzierung 

Die DNA-Sequenzierung bestimmt die Nukleotid-Abfolge in einem DNA-Molekül. Diese 

Methode wurde verwendet, um die Abfolge der genutzten Primer an der PCR-Probe zu 

identifizieren und dadurch zu bestätigen, dass die Gensequenz der Nukleotid-Abfolge 

die richtige Primersequenz aufweist. Die Sequenzierung erfolgte durch die Fa. 

Sequiserve (Vaterstetten, Deutschland). Die Primer, die für die PCR benutzt worden 

waren, wurden separat in Forward- und Reverse-Form in Konzentration von 10 μmol/ml 

verschickt, ebenso das gereinigte PCR-Produkt und die verwendeten- in cDNA-Form - 

Proben mit der RNA- Nr. 11 und 19 (siehe auch 3.7). Die Sequenzen aller Primer 

wurden an der PCR-Probe wie folgt bestätigt: 

 

(hLFA1-forward) 

GCTGCCGGGAATGCATCGAGTCGGGGCCCGGCTGCACCTGGTGCCAGAAGCTGA

ACTTCACAGGGCCGGGGGATCCTGACTCCATTCGCTGCGACACCCGGCCACAGCT

GCTCATGAGGGGCTGTGCGGCTGACGACATCATGGACCCCACAAGCCTCGCTGAA

ACCCAGGAAGACCACAA 

 

(hLFA1-reverse) 

AGCGAGGCTTGTGGGGTCCATGATGTCGTCAGCCGCACAGCCCCTCATGAGCAGC
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TGTGGCCGGGTGTCGCAGCGAATGGAGTCAGGATCCCCCGGCCCTGTGAAGTTCA

GCTTCTGGCACCAGGTGCAGCCGGGCCCCGACTCGATGCATTCCCGGCAGCTGCT

GACCTTGAACTTCGTG 

Gesamtsequenzen: 

 

(hLFA1 -forward>><<reverse) 

CACGAAGTTCAAGGTCAGCAGCTGCCGGGAATGCATCGAGTCGGGGCCCGGCTG

CACCTGGTGCCAGAAGCTGAACTTCACAGGGCCGGGGGATCCTGACTCCATTCGC

TGCGACACCCGGCCACAGCTGCTCATGAGGGGCTGTGCGGCTGACGACATCATG

GACCCCACAAGCCTCGCTGAAACCCAGGAAGACCACAA 

 

(hDEL -forward) 

CACTGTCAGCACAACATAAATGAATGCGAAGTTGAGCCTTGCAAAAATGGTGGAAT

ATGTACAGATCTTGTTGCTAACTATTCCTGTGAGTGCCCAGGCGAATTTATGGGAA

GAAATTGTCAATACAAATGCTCAGGCCCAC 

 

(hDEL – reverse) 

TGACAATTTCTTCCCATAAATTCGCCTGGGCACTCACAGGAATAGTTAGCAACAAGA

TCTGTACATATTCCACCATTTTTGCAAGGCTCAACTTCGCATTCATTTATGTTGTGCT

GACAGTGAATCCCATTAAATCCTCGGG 

Gesamtsequenzen: 

 

(hDEL-forward>><<reverse) 

CCCGAGGATTTAATGGGATTCACTGTCAGCACAACATAAATGAATGCGAAGTTGAG

CCTTGCAAAAATGGTGGAATATGTACAGATCTTGTTGCTAACTATTCCTGTGAGTGC

CCAGGCGAATTTATGGGAAGAAATTGTCAATACAAATGCTCAGGCCCAC 

(hIL-17Α-forward) 

GGGGAAAATGAAACCCTCCCCAAAATACAAGAAGTTCTGGGAGGAGACATTGTCTT

CAGACTACAATGTCCAGTTTCTCCCCTAGACTCAGGCTTCCTTTGGAGATTAAGGC

CCCTCAGAGATCAACAGACCAACATTTTTCTCTTCCTCAAGCAACACTCCTAGGGC

CTGGCTTCTGTCTGATCAAGGCACCACACAACCC 
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(hIL-17Α-reverse) 

GGAGTGTTGCTTGAGGAAGAGAAAAATGTTGGTCTGTTGATCTCTGAGGGGCCTTA

ATCTCCAAAGGAAGCCTGAGTCTAGGGGAGAAACTGGACATTGTAGTCTGAAGACA

ATGTCTCCTCCCAGAACTTCTTGTATTTTGGGGAGGGTTTCATTTTCCCCATATGAT

CTTTAATAATGACATGCCATTCCTCAGGGCCAT 

Gesamtsequenz: 

(hIL-17Α-forward>><<hIL-17Α-reverse) 

ATGGCCCTGAGGAATGGCATGTCATTATTAAAGATCATATGGGGAAAATGAAACCC

TCCCCAAAATACAAGAAGTTCTGGGAGGAGACATTGTCTTCAGACTACAATGTCCA

GTTTCTCCCCTAGACTCAGGCTTCCTTTGGAGATTAAGGCCCCTCAGAGATCAACA

GACCAACATTTTTCTCTTCCTCAAGCAACACTCCTAGGGCCTGGCTTCTGTCTGATC

AAGGCACCACACAACCC 

(hPTX3 -forward) 

TTGCTGAAGCCATGGTTTCCCTGGGAAGGTGGACCCACCTGTGCGGCACCTGGAA

TTCAGAGGAAGGGCTCACATCCTTGTGGGTAAATGGTGAACTGGCGGCTACCACT

GTTGAGATGGCCACAGGTCACATTGTTCCTGAGGGAGGAA 

(hPTX3-reverse) 

TGACCTGTGGCCATCTCAACAGTGGTAGCCGCCAGTTCACCATTTACCCACAAGGA

TGTGAGCCCTTCCTCTGAATTCCAGGTGCCGCACAGGTGGGTCCACCTTCCCAGG

GAAACCATGGCTTCAGCAACCAGTTTGTTCTCCTCTCCACCCAC 

Gesamtsequenz: 

(hPTX3-forward>><<reverse) 

GTGGGTGGAGAGGAGAACAAACTGGTTGCTGAAGCCATGGTTTCCCTGGGAAGGT

GGACCCACCTGTGCGGCACCTGGAATTCAGAGGAAGGGCTCACATCCTTGTGGGT

AAATGGTGAACTGGCGGCTACCACTGTTGAGATGGCCACAGGTCACATTGTTCCTG

AGGGAGGAA 

Abbildung 3.7.5.1 Sequenzen aller benutzen Primer (Forward, Reverse und Gesamtsequenz). 
Die Sequenzierung erfolgte durch die Fa. Sequiserve (Vaterstetten, Deutschland). 
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3.8 Real-Time-quantitative PCR mit Light Cycler 480® 

Die RT-qPCR (Real-time-quantitative PCR) ist eine sehr sensible Methode zur präzisen 

Quantifizierung der Genexpression. Für diese Methode benötigt man ein Enzym. Das 

verwendete Enzym (SYBR Green LightCycler® 480Roche Diagnostics GmbH, 

Mannheim, Deutschland) besitzt Fluoreszenzmarker an zwei verschiedenen 

Oligonukleotiden, die mit den Primern verbunden sind und sich während der 

Amplifikation auch mit dem DNA-Template verbinden. Diese Fluoreszenzmarker werden 

durch eine Lichtquelle angeregt und geben einen Teil ihrer Energie ab. Aufgrund dieser 

Eigenschaften kann SYBR-Green als Sonde für die Quantifizierung der PCR-Produkte 

eingesetzt werden. Die freigesetzte Lichtenergie wird ständig am Ende der Annealing-

Phase bei jedem Zyklus durch einen Monitor beobachtet und gemessen. 

Um sicher zu stellen, dass nur das gewünschte PCR-Produkt und keine anderen PCR-

Produkte oder Primer-Dimere amplifiziert wurden, erfolgte nach der Amplifikation eine 

Schmelzkurven (Melting Curve)-Phase. Dabei wird das PCR Produkt aufgeschmolzen, 

indem die Temperatur langsam und kontinuierlich erhöht wird (TM→ 95 C). Daraufhin 

denaturieren die DNA-Doppelstränge, der Fluoreszenzfarbstoff des SYBR Green I wird 

freigesetzt und jede Änderung der Fluoreszenz registriert. Die Fluoreszenz durch 

Primer- Dimere kann ausgeschlossen werden, da die doppelsträngige DNA von 

spezifischen PCR-Produkten einen höheren Schmelzpunkt als unspezifische Primer-

Dimere hat. 

H2O PCR Grade (Roche Diagnostics 

GmbH, Mannheim, Deutschland) 

3 μl 

Primer Mischung (Forward und Reverse) 

in Analogie 10 μΜ (TIB Molbiol, Berlin, 

Deutschland) 

2 μl 

SYBR Green (Roche Diagnostics GmbH, 

Mannheim, Deutschland) 

10 μl 

Tabelle 3.7.5-1: Mastermix für das RT-PCR Verfahren. 

 

http://de.wikipedia.org/wiki/Oligonukleotid
http://de.wikipedia.org/wiki/Sonde
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Für jedes Experiment wurde manuell ein Mastermix (PCR-Einsatz ohne DNA-Template) 

zusammengesetzt (Tabelle 3.7.5-1). PCR-Grade-Wasser wurde die Primer-Mischung 

zugefügt und leicht vermengt. Anschließend wurde SYBR-Green zugefügt und leicht 

vermischt. Mit der Thermo Matrix 384 Equalizer Pipette 2–125 µl (Thermo Fisher 

Scientific) wurden je 15 μl Mastermix-Einsatz auf Trägerplatten für 384 Proben 

(LightCycler® 480 Multiwell Plate 384 Roche Diagnostics GmbH, Mannheim, 

Deutschland) aufgebracht. Anschließend wurde manuell mit einer Fix-Vol.-Mikroliter-

Pipette Reference 10 µl (Eppendorf AG, Hamburg, Deutschland) je Einsatz eine 5 μl 

cDNA-Probe (Template cDNA) hineinpipettiert. Bei jedem Experiment wurde zur 

Sicherung des Ergebnisses jedes cDNA-Template in Triplikaten eingesetzt. 

Anschließend wurden die Trägerplatten in den Light Cycler 480® (Fa. Roche Diagnostics 

GmbH, Mannheim, Deutschland) zur Durchführung der PCR eingebracht. Danach 

erfolgte ein standardisierter Ablauf der PCR. Auf die 10-minütige Präinkubations- oder 

Denaturierungsphase bei 95 °C erfolgten 40 Amplifikationszyklen bei der jeweiligen TM 

des Primers. Anschließend folgte die Schmelzkurvenanalyse bei bis auf 95°C 

kontinuierlich steigender Temperatur (Tabelle 3.7.5-2). 

 

Name des 

Programms 

Zyklen Zieltemperature 

(°C) 

Aquisition 

Modus 

Hold 

(hh:mm:ss) 

Ramp 

Rate 

(°C/s) 

Aquisitions 

(per°C) 

Präinkubation 1 40 None 00:00:30 2,50  

95 None 00:10:00 4,80  

 

Amplifikation 

 

40 

95 None 00:00:10 4,80  

TM None 00:00:10 2,50  

72 Single 00:01:00 4,80  

 

Schmelzkurve 

 

1 

95 None 00:00:05 4,80  

TM-10 None 00:01:00   

95 Continious  0,11 5 



32 

 

Cooling 1 40 None 00:00:30 2,50  

Tabelle 3.7.5-2: Ablauf der PCR durch entsprechende Programmierung des Light Cycler 480 

Jedes cDNA-Template wurde in Triplikaten mindestens zweimal auf verschiedenen 

Platten bzw. Experimenten wiederholt. Haben die entstandenen Cp-Werte des Triplikats 

einen größeren Unterschied als 0,2 aufgewiesen, wurde die Prozedur wiederholt. 

3.9 Relative Quantifizierung der Genexpression mit Standardkurven und 

dem Light Cycler 480® 

Da die exakte Anzahl der Kopien des Zielgens im PCR-Produkt nicht bekannt war, 

wurde ein relatives Quantifikationsverfahren mit Hilfe der Ct-Methode ausgewählt. Dabei 

wurde nicht die absolute Anzahl der Kopien des Gens bestimmt, sondern es wurde die 

Expression des Zielgens auf ein Referenzgen (Housekeeping Gen, HKG) bezogen. Als 

Referenzgen wurde das Gen der GAPDH (Glycerinaldehyd-3-phosphat-Dehydrogenase) 

benutzt. Die oben genannte Prozedur wird als „Normalisierung“ bezeichnet. Sie hat den 

Vorteil, dass sich die Varianz der Expressionsergebnisse reduziert. 

Um eine relative Quantifizierung zu ermöglichen, ohne die Effizienz als Standard (=2) zu 

definieren, muss in jedes durchgeführte Experiment eine Standardkurve integriert 

werden. Um die Standardkurve zu erzeugen, wurde ein cDNA-Template als Standard 

definiert, und es wurden aus dieser Probe verschiedene Verdünnungen hergestellt. Alle 

Verdünnungen wurden als Triplikate eingesetzt und ebenfalls als Standard definiert. Die 

daraus grafisch entstandene Standardkurve wies eine hohe Amplifikationseffizienz (90-

105%), Konsistenz innerhalb der Wiederholungen (Triplikate) und eine lineare 

Beziehung (rA2>0.980) auf. 

Diese Grafik wurde mittels Light Cycler Software in das jeweilige Experiment integriert. 

Dafür musste die Probe, die für die Standardkurve benutzt wurde, in jedem Experiment 

identifiziert und auch dort als Standard definiert werden. Mittels der Standardkurve 

konnten die Cp-Werte jeder Probe in dieser Grafik dargestellt und dadurch über die 

Light Cycler Software die Konzentration des PCR-Produkts der Probe ermittelt werden. 

Anschließend erfolgte die sog. Normalisierung der relativen Expression zu der Menge 

des GAPDH (Housekeeping Gen) pro cDNA Probe mit Hilfe der Software SPSS im 

Rahmen der statistischen Auswertung. 
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3.10 Statistische Auswertung 

Die Zufallsvariable X ist je nach Auswertung die Expression von einem der vier 

folgenden untersuchten Gene: 

a) hDel-1 

b) hPTX3 

c) IL-17α  

d) hLFA1 

Darüber hinaus wurde eine weitere Zufallsvariable Y einbezogen: 

a) Geschlecht 

b) Alter 

Die statistische Auswertung erfolgte zum Teil univariat mit der Zufallsvariable X und zum 

Teil bivariat mit den Zufallsvariablen X und Y. 

Jede Stichprobe bestand aus der Anzahl der Expressionsmessungen jeder 

Gingivaprobe, da jede Gingivaprobe mehrmals für die Expression eines Gens getestet 

wurde (Tabelle3.8). 

Für die Auswertung der Daten, die mit der o.g. Methode sortiert und dokumentiert 

wurden, wurde eine Datenanalyse der Einzelgruppen durchgeführt. Dafür wurde das 

Statistikprogramm SPSS Software Version 22.0 (SPSS Inc., Chicago, IL, USA) 

verwendet. 

Alle Ergebnisse der PCR-Expression wurden mit dem Levene-Test auf Homogenität der 

Varianzen und mittels Kolmogoroff-Smirnov-Test auf die Normalverteilung getestet. Für 

den Vergleich der Expression der Markermoleküle zwischen gesunden Proben und 

Parodontitisproben wurden der Mann-Whitney- und der Kruskal-Wallis-Test verwendet. 

Die Analyse von kategorialen Daten erfolgte mittels Pearson-Chi-Quadrat-Test mit 

Yates-Korrektur. Für die Auswertung der Interaktionen zwischen den Variablen X 

(Expression der Markermoleküle) und Y (Parodontitis Ja/ Nein, Stadium der Erkrankung, 
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Alter und Geschlecht) wurde der Spearman-Rho-Koeffizient verwendet. Für alle Tests 

wurde ein p-Wert<0,05 als statistisch signifikant festgelegt. 
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4 Ergebnisse 

4.1 Charakteristika der Studienpopulationen 

Insgesamt wurden 82 Patienten mit chronischer Parodontitis aufgenommen. 42 davon 

hatten eine leichte Parodontitis, während 40 Patienten eine schwere Parodontitis 

aufwiesen. Außerdem gehörten 13 Probanden zur Kontrollgruppe. Alle 

Studienteilnehmer waren Kaukasier. Der Altersdurchschnitt betrug bei den Patienten mit 

leichter Parodontitis 54 Jahre, bei den Patienten mit schwerer Parodontitis 56,1 Jahre, 

und in der Kontrollgruppe lag er bei 44,5 Jahren. In der Gruppe mit leichter Parodontitis 

fanden sich mehr Männer (63%) als in der Gruppe mit schwerer Parodontitis (36%) 

sowie in der Kontrollgruppe (39%) (Tabelle 3.7.5-1). 

 
Kontrollgruppe 

(n=12) 

Gruppe mit 

leichter 

Parodontiti

s (n=42) 

Gruppe mit 

schwerer 

Parodontiti

s (n=40) 

p-Wert 

Alter (Jahre) 44,5 54,0 56.,1 p=0,001 

(*) 

Geschlecht (Männer: 

Frauen) 

61% : 39% 37% : 63% 64% : 36% p=0,001 

(**) 

Tabelle 3.7.5-1: Charakteristika der beiden Parodontitis-Testgruppen und der gesunden 
Kontrollgruppe. (*) p-Wert durch Kruskall-Wallis-Test ausgewertet, (**) p-Wert durch Pearsons-
Chi-Square-Test mit Yales Korrelationen ausgewertet. 

4.2 Expression des Markermoleküls Del-1 

4.2.1 Expression des Markermoleküls Del-1 bei parodontal erkrankten 

Patienten und Kontrollindividuen 

Die relative Expression von Del-1 bei den Patienten mit Parodontitis (gesamt) und der 

Kontrollgruppe wurde mittels RT-qPCR untersucht. Del-1 wurde in den Gingivaproben 
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der Parodontitisgruppe signifikant geringer exprimiert als bei parodontal gesunden 

Individuen (p=0,015). 

 
Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgrupp

e (rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis 

vs. Kontrolle) 

Del-1 (*) 5,68 (± 6,53) 1,38 (± 1,19) 0,015 

 

 

Tabelle und Diagramm 4.2.1-1: Relative Expression von Del-1in Gingivaproben, normalisiert 
durch GAPDH, aus der Kontroll- und Parodontitisgruppe. 

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 

Normalverteilung zwischen den Gruppen (*). 
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4.2.2 Expression des Markermoleküls Del-1 in Abhängigkeit vom Stadium 

der Parodontitis 

Die relative Expression von Del-1 war bei leichter Parodontitis (1,46 (± 1,24)) signifikant 

niedriger (p=0,025) als in der Kontrollgruppe (5,68 (± 6,53)). Darüber hinaus wurde Del-

1 bei schwerer Parodontitis (1,30 (±1,14)) im Vergleich zur Kontrollgruppe (5,68 (± 

6,53)) geringer exprimiert (p=0,019).  

ontrollgruppe 

(rel. 

Expression) 

(±SD) 

Leichte 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(leichte 

vs. 

Kontrolle) 

Schwere 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(schwere 

vs. 

Kontrolle) 

Del-1 (*) 5,68 (± 6,53) 1,46 (± 1,24) 0,025 1,30 (±1,14) 0,019 

 

 

Tabelle und Diagramm 4.2.2-1: Expression von Del-1 in Gingivaproben von gesunden sowie 

parodontal kranken Probanden je nach Schwere der Parodontitis. 
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4.2.3 Expression des Markermoleküls Del-1 in Abhängigkeit vom 

Geschlecht 

 

Nach Analyse der Ergebnisse mit Hilfe des Mann-Whitney-Tests konnte in der 

Parodontitisgruppe bezüglich des Geschlechts eine signifikant niedrigere Expression 

des Del-1-Gens bei Männern nachgewiesen werden (p=0,0001). Im Gegensatz dazu 

war bei Frauen kein signifikanter Unterschied zwischen den beiden Gruppen 

festzustellen (p=0,313) (Tabelle und Diagramm 4.2.4-1). 

 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe (rel. 

Expression) (±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

Männer 

Del-1 

(*) 

7,08 (± 6,74) 1,30 (± 0,92) 0,0001 

Frauen 

Del-1 

(*) 

3,55 (± 5,67) 1,46 (± 1,41) 0,313 

 

Tabelle und Diagramm 4.2.3-1: Expression von Del-1 in Gingivaproben von gesunden sowie 
parodontal kranken Probanden je nach Geschlecht.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. 
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4.2.4 Expression des Markermoleküls Del-1 in Abhängigkeit vom Alter 

 

Bei älteren Individuen (> 50 Jahre) der Parodontitisgruppe war eine signifikant 

niedrigere Expression von Del-1 im Vergleich zur Kontrollgruppe zu beobachten. Bei 

jüngeren Individuen (< 50 Jahre) mit Parodontitis war ebenfalls eine signifikant 

niedrigere Expression von Del-1 im Vergleich zur Kontrollgruppe festzustellen. 

 
Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis 

vs. Kontrolle) 

≤ 50 Jahre alt 

Del-1(*) 8,46 (± 6,90) 1,58 (± 1,52) 0,0001 

> 50 Jahre alt 

Del-1(*) 1,42 (± 2,34) 1,29 (± 1,01) 0,0001 

 

 

Tabelle und Diagramm 4.2.4-1: Expression des Markermoleküles Del-1 bei jüngeren (≤ 50 Jahre 
alt) und älteren Probanden (>50 Jahre alt). 
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Allerdings zeigt sich ein altersabhängiger signifikanter Unterschied in der Expression 

von Del-1 je nach Erkrankungsschwere. Bei Probanden mit leichter Parodontitis und in 

der Kontrollgruppe war die Expression von Del-1 bei jüngeren Probanden (≤ 50 Jahre 

alt) signifikant höher als bei älteren Probanden (> 50 Jahre alt) (p=0,0001). Bei 

Patienten mit schwerer Parodontitis konnte bezüglich des Alters kein signifikanter 

Unterschied in der Expression von Del-1 nachgewiesen werden (Tabelle und Diagramm 

4.2.4-1). 

 
Del-1 

(p-Wert) 

(≤ 50 Jahre alt vs. > 50 Jahre alt) 

Kontrollgruppe 0,0001 

Leichte Parodontitis 0,054 

Schwere Parodontitis 0,615 

Tabelle 4.2.4-1: Vergleich der Del-1 Expression zwischen Probanden ≤ 50 Jahre alt und 
Probanden > 50 Jahre alt je nach Schwere der parodontalen Erkrankung. Die Auswertung 
erfolgte durch den Mann-Whitney-Test. 

 

4.2.5 Multivariate Korrelationsanalyse der Ergebnisse 

Für die bivariate Korrelationsanalyse wurden die Zufallsvariablen Parodontale 

Erkrankung, Stadium der Parodontitis, Alter und Geschlecht mit den Zufallsvariablen 

Relative Expression des Gens Del-1 korreliert. Es wurde dafür der Spearmans-Rho-Test 

verwendet. 

Nach der Spearmans Rank-Korrelation (Tabelle 4.5.3) war die relative Expression von 

Del-1 signifikant mit dem Alter der Probanden korreliert (p=0,001). Im Detail liegt die 

Korrelation zwischen Alter und relativer Expression von Del-1 bei rs=-0,134. Das 

negative Vorzeichen des Korrelationskoeffizienten lässt erkennen, dass es sich hierbei 
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um eine umgekehrt korrelierende Beziehung der beiden Variablen handelt. Es war eine 

signifikant niedrigere Expression von Del-1 bei älteren im Vergleich zu jüngeren 

Probanden zu beobachten. Bezüglich des Geschlechts waren keine signifikanten 

Ergebnisse nachzuweisen. 

Des Weiteren war die Del-1 Expression signifikant mit dem Stadium der Parodontitis-

Erkrankung (p=0,006) assoziiert. Es ist eine negative Korrelation festzustellen (rs =-

0,116), was darauf hindeutet, dass eine erniedrigte Del-1 Expression mit einem 

schwereren Stadium der Parodontitis assoziiert ist.  

  
Del-1 

parodontale Erkrankung (ja/nein) Korrelationskoeffizient -0,103 

Signifikanz (2-seitig) 0,015 

Stadium der parodontalen Erkrankung Korrelationskoeffizient -0,116 

Signifikanz (2-seitig) 0,006 

Alter Korrelationskoeffizient -0,134 

Signifikanz (2-seitig) 0,001 

Geschlecht Korrelationskoeffizient -0,048 

Signifikanz (2-seitig) 0,226 

Tabelle 4.2.5-1: Bivariate Korrelationsanalyse des Einflusses von Erkrankung (ja/nein), Stadium 
der Erkrankung, Alter und Geschlecht auf die Expression von Del-1. Die Auswertung erfolgte 
durch den Spearmans-Rho-Test. 
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4.3 Expression des Markermoleküls PTX3 

4.3.1 Expression des Markermoleküls PTX3 bei parodontal erkrankten 

Patienten und Kontrollindividuen 

Die relative Expression von PTX3 bei den Patienten mit Parodontitis (gesamt) und der 

Kontrollgruppe wurde mittels RT-qPCR untersucht. PTX3 wurde in den Gingivaproben 

der Parodontitisgruppe signifikant geringer exprimiert als bei parodontal gesunden 

Individuen (p<0,0001).  

 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

PTX3 (*) 4,75 (± 7,14) 0,17 (± 0,28) 0,0001 

 

Tabelle und Diagramm 4.3.1-1: Relative Expression von PTX3 in Gingivaproben, normalisiert 
durch GAPDH, aus der Kontroll- und Parodontitisgruppe. 

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 

Normalverteilung zwischen den Gruppen (*). 
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4.3.2 Expression des Markermoleküls PTX3 in Abhängigkeit vom Stadium 

der Parodontitis 

PTX3 war signifikant (p=0,002) in der Gruppe mit schwerer und leichter Parodontitis 

geringer (0,17 (± 0,24) bzw. 0,17 (±0,31)) als in der Kontrollgruppe (4,75 (± 7,14)) 

exprimiert.  

ontrollgruppe 

(rel. 

Expression) 

(±SD) 

Leichte 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(leichte 

vs. 

Kontrolle

) 

Schwere 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(schwere 

vs. 

Kontrolle) 

PTX3 (*) (**) 4,75 (± 7,14) 0,17 (± 0,24) 0,0001 0,17 (±0,31) 0,0001 

 

Tabelle und Diagramm 4.3.2-1: Expression von PTX3 in Gingivaproben von gesunden sowie 
parodontal kranken Probanden je nach Schwere der Parodontitis.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 

Normalverteilung (*) und/oder keine Homogenität der Varianz zwischen den Gruppen 

(**). 
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4.3.3 Expression des Markermoleküls PTX3 in Abhängigkeit vom 

Geschlecht 

Nach Analyse der Ergebnisse mit Hilfe des Mann-Whitney-Tests ist in der 

Parodontitisgruppe bezüglich des Geschlechts eine signifikant niedrigere Expression 

des PTX3-Gens bei Männern nachgewiesen worden (p=0,0001). Im Gegensatz dazu 

war bei Frauen kein signifikanter Unterschied zwischen den beiden Gruppen 

festzustellen (p=0,313) (Tabelle 4.4.1). 

 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

Männer 

PTX3 (*) 5,77 (± 7,65) 0,17 (± 0,28) 0,0001 

Frauen 

PTX3 (*) 3,18 (± 6,09) 0,16 (± 0,28) 0,025 

 

Tabelle und Diagramm 4.3.3-1: Expression von PTX3 in Gingivaproben von gesunden sowie 
parodontal kranken Probanden je nach Geschlecht.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. 

4.3.4 Expression des Markermoleküls PTX3 in Abhängigkeit vom Alter 

Bei älteren Individuen (> 50 Jahre) der Parodontitisgruppe war keine signifikant 

unterschiedliche Expression von PTX3 im Vergleich zur Kontrollgruppe zu beobachten.  
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Bei jüngeren Individuen (< 50 Jahre) mit Parodontitis war allerdings eine signifikant 

niedrigere Expression von PTX3 im Vergleich zur Kontrollgruppe festzustellen 

(p=0,0001).  

 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

≤ 50 Jahre alt 

PTX3(*) 4,29 (± 4,89) 0,14 (± 0,19) 0,0001 

> 50 Jahre alt 

PTX3(*) 4,77 (± 9,74) 0,17 (± 0,30) 0,053 

 

Tabelle und Diagramm 4.3.4-1: Expression des Markermoleküles PTX3 bei jüngeren (≤ 50 Jahre 
alt) und älteren Probanden (>50 Jahre alt). 

4.3.5 Multivariate Korrelationsanalyse der Ergebnisse 

Für die bivariate Korrelationsanalyse wurden die Zufallsvariablen Parodontale 

Erkrankung, Stadium der Parodontitis, Alter und Geschlecht mit den Zufallsvariablen 

Relative Expression von PTX3 korreliert. Es wurde dafür der Spearmans-Rho-Test 

verwendet. 

Nach der Spearmans Rank-Korrelation (Tabelle 4.3.5-1) war die relative Expression von 

PTX3 signifikant mit der Parodontitis bzw. mit dem Stadium der Parodontitis korreliert 

(p=0,0001). Im Detail liegt die Korrelation zwischen Parodontitis bzw. Stadium der 
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Parodontitis und relativer Expression von PTX3 bei rs=-0,354 bzw. rs=--0,276. Je 

vorgeschrittener die Parodontitis war, desto niedriger war die relative Expression des 

Gens PTX3. Allerdings wurde bezüglich des Alters und des Geschlechts keine 

signifikant unterschiedliche Expression nachgewiesen. 

  PTX3 

parodontale Erkrankung 

(ja/nein) 

Korrelationskoeffizient -0,354 

Signifikanz (2-seitig) 0,0001 

Stadium der 

parodontalen 

Erkrankung 

Korrelationskoeffizient -0,276 

Signifikanz (2-seitig) 0,0001 

Alter Korrelationskoeffizient -0,060 

Signifikanz (2-seitig) 0,171 

Geschlecht Korrelationskoeffizient -0,048 

Signifikanz (2-seitig) 0,241 

Tabelle 4.3.5-1: Bivariate Korrelationsanalyse des Einflusses von Erkrankung (ja/nein), Stadium 
der Erkrankung, Alter und Geschlecht auf die Expression von PTX3. Die Auswertung erfolgte 
durch den Spearmans-Rho-Test. 

 

4.4 Expression des Markermoleküls IL-17α 

4.4.1 Expression des Markermoleküls IL-17α bei parodontal erkrankten 

Patienten und Kontrollindividuen 

Die relative Expression von IL-17α bei Patienten mit Parodontitis (gesamt) und der 

Kontrollgruppe wurde mittels RT-qPCR untersucht. Interleukin 17α weist in der 

Parodontitisgruppe eine signifikant höhere Expression auf (p=0,006). 
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 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

Interleukin 17A (*) 0,32 (± 0,68) 0,54 (± 1,41) 0,006 

 

Tabelle und Diagramm 4.4.1-1: Relative Expression von Interleukin-17α in Gingivaproben, 
normalisiert durch GAPDH, aus der Kontroll- und Parodontitisgruppe. 

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 

Normalverteilung zwischen den Gruppen (*). 

4.4.2 Expression des Markermoleküls IL-17α in Abhängigkeit vom Stadium 

der Parodontitis 

Die relative Expression von ΙL-17α war bei der Gruppe mit leichter Parodontitis (0,55 (± 

1,27)) höher als in der Kontrollgruppe (0,32 (± 0,68)), eine signifikant höhere Expression 

konnte allerdings nicht nachgewiesen werden (p= 0,012). Darüber hinaus wurde bei 

schwerer Parodontitis ebenfalls keine signifikant höhere Expression (p = 0,008) im 

Vergleich zur Kontrollgruppe (0,52 (±1,55)) festgestellt. 

0

0,5

1

1,5

2

2,5

Interleukin 17α 

Relative Expression von Interleukin-17α 

Kontrollgruppe

Parodontitis



48 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Kontrollgrupp

e (rel. 

Expression) 

(±SD) 

Leichte 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(leichte 

vs. 

Kontrolle

) 

Schwere 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(schwere 

vs. 

Kontrolle) 

Interleukin 17α 

(*) 

0,32 (± 0,68) 0,55 (± 1,27) 0,012 0,52 (±1,55) 0,008 

 

Tabelle und Diagramm 4.4.2-1: Expression von Interleukin-17A in Gingivaproben von gesunden 
sowie parodontal kranken Probanden je nach Schwere der Parodontitis.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 

Normalverteilung (*) und/oder keine Homogenität der Varianz zwischen den Gruppen 

(**). 

4.4.3 Expression des Markermoleküls IL-17α  in Abhängigkeit vom 

Geschlecht 

Nach Analyse der Ergebnisse mit Hilfe des Mann-Whitney-Tests ist in der 

Parodontitisgruppe bezüglich des Geschlechts eine signifikant höhere Expression des 

IL-17α -Gens bei Frauen nachgewiesen worden (p=0,003). Im Gegensatz dazu war bei 
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Männern kein signifikanter Unterschied zwischen den beiden Gruppen festzustellen 

(p=0,308) (Tabelle und Diagramm 4.4.3-1). 

 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

Männer 

Interleukin 17A (*) 0,42 (± 0,85) 0,46 (± 1,41) 0,308 

Frauen 

Interleukin 17A (*) 0,16 (± 0,21) 0,61 (± 1,41) 0,003 

 

Tabelle und Diagramm 4.4.3-1: Expression von Interleukin-17A in Gingivaproben von gesunden 
sowie parodontal kranken Probanden je nach Geschlecht.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. 

4.4.4 Expression des Markermoleküls IL-17α in Abhängigkeit vom Alter 

Bei älteren Individuen (> 50 Jahre) der Parodontitisgruppe war eine signifikant höhere 

Expression von IL-17α im Vergleich zur Kontrollgruppe zu beobachten. Bei jüngeren 

Individuen (< 50 Jahre) mit Parodontitis war keine signifikant unterschiedliche 

Expression von IL-17α im Vergleich zur Kontrollgruppe festzustellen (p = 0,056). 
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 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

≤ 50 Jahre alt 

Interleukin 17A(*) 0,23 (± 0,24) 0,67 (± 1,44) 0,056 

> 50 Jahre alt 

Interleukin 17A(*) 0,45 (± 1,04) 0,48 (± 1,40) 0,0001 

 

Tabelle und Diagramm 4.4.4-1: Expression des Markermoleküles IL-17α bei jüngeren (≤ 50 
Jahre alt) und älteren Probanden (>50 Jahre alt). 

 

4.4.5  Multivariate Korrelationsanalyse der Ergebnisse 

Für die bivariate Korrelationsanalyse wurden die Zufallsvariablen Parodontale 

Erkrankung, Stadium der Parodontitis, Alter und Geschlecht mit den Zufallsvariablen 

Relative Expression des Gens IL-17α korreliert. Es wurde dafür der Spearmans-Rho-

Test verwendet. 

Es  sind keine signifikanten Ergebnisse nachzuweisen. Allerdings ergibt sich bei der 

Parodontitis eine Tendenz (p= 0,006) zu einer positiven Korrelation (rs 0,115) mit dem 

Gen IL17α (Tabelle 4.4.5-1). 
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  IL-17α 

parodontale Erkrankung 

(ja/nein) 

Korrelationskoeffizient 0,115 

Signifikanz (2-seitig) 0,006 

Stadium der parodontalen 

Erkrankung 

Korrelationskoeffizient 0,084 

Signifikanz (2-seitig) 0,045 

Alter Korrelationskoeffizient -0,102 

Signifikanz (2-seitig) 0,015 

Geschlecht Korrelationskoeffizient -0,025 

Signifikanz (2-seitig) 0,521 

 

Tabelle 4.4.5-1: Bivariate Korrelationsanalyse des Einflusses von Erkrankung (ja/nein), Stadium 
der Erkrankung, Alter und Geschlecht auf die Expression von IL-17α. Die Auswertung erfolgte 
durch den Spearmans-Rho-Test. 

4.5 Expression des Markermoleküls LFA-1 

4.5.1 Expression des Markermoleküls LFA-1 in parodontal erkrankten 

Patienten und Kontrollindividuen 

Die relative Expression von LFA-1 bei den Patienten mit Parodontitis (gesamt) und der 

Kontrollgruppe wurde mittels RT-qPCR untersucht. LFA-1 wiesen in der 

Parodontitisgruppe eine signifikant höhere Expressionen auf (p<0,0001). 
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 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

LFA1 (*) 0,58 (± 0,55) 1,71 (± 2,70) 0,0001 

 

Tabelle und Diagramm 4.5.1-1: Relative Expression von LFA-1 in Gingivaproben, normalisiert 
durch GAPDH, aus der Kontroll- und Parodontitisgruppe. 

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 

Normalverteilung zwischen den Gruppen (*). 

4.5.2 Expression des Markermoleküls LFA-1 in Abhängigkeit vom Stadium 

der Parodontitis 

Die relative Expression von LFA-1 war bei leichter Parodontitis 1,99 (± 3,47)) signifikant 

höher (p=0,0001) als in der Kontrollgruppe (0,58 (± 0,55)). Darüber hinaus wurde LFA-1 

bei schwerer Parodontitis signifikant höher (p=0,0001) im Vergleich zur Kontrollgruppe 

(1,39 (± 1,44)) exprimiert. 
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ontrollgruppe 

(rel. 

Expression) 

(±SD) 

Leichte 

Parodontiti

s (rel. 

Expression

) (±SD) 

p-Wert 

(leichte vs. 

Kontrolle) 

Schwere 

Parodontitis 

(rel. 

Expression) 

(±SD) 

p-Wert 

(schwere 

vs. 

Kontrolle) 

LFA1 (*) 0,58 (± 0,55) 1,99 (± 

3,47) 

0,0001 1,39 (± 1,44) 0,0001 

 

Tabelle und Diagramm 4.5.2-1: Expression von LFA-1 in Gingivaproben von gesunden sowie 
parodontal kranken Probanden, je nach Schwere der Parodontitis.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. Die Werte zeigten keine 
Normalverteilung (*) und/oder keine Homogenität der Varianz zwischen den Gruppen 
(**). 

4.5.3 Expression des Markermoleküls LFA-1 in Abhängigkeit vom 

Geschlecht 

Nach Analyse der Ergebnisse mit Hilfe des Mann-Whitney-Tests ist in der 

Parodontitisgruppe bezüglich des Geschlechts eine signifikant höhere Expression des 

LFA-1-Gens bei Frauen und bei Männer nachgewiesen worden (p=0,0001 bzw. 

p=0,001) (Tabelle und Diagramm 4.5.3-1). 
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 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

Männer 

LFA1(*) 0,66 (± 0,50) 1,44 (± 2,04) 0,001 

Frauen 

LFA1 (*) 0,47 (± 0,60) 1,96 (± 3,21) 0,0001 

 

Tabelle und Diagramm 4.5.3-1: Expression von LFA-1 in Gingivaproben von gesunden sowie 
parodontal kranken Probanden je nach Geschlecht.  

Die Auswertung erfolgte durch den Mann-Whitney-Test. 

4.5.4 Expression des Markermoleküls LFA-1 in Abhängigkeit vom Alter 

Bei älteren Individuen (> 50 Jahre) der Parodontitisgruppe war eine signifikant höhere 

Expression LFA-1 im Vergleich zur Kontrollgruppe zu beobachten.  Bei jüngeren 

Individuen (< 50 Jahre) mit Parodontitis war ebenfalls eine signifikant höhere Expression 

von LFA-1 im Vergleich zur Kontrollgruppe festzustellen.  
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 Kontrollgruppe (rel. 

Expression) (±SD) 

Parodontitisgruppe 

(rel. Expression) 

(±SD) 

p-Wert 

(Parodontitis vs. 

Kontrolle) 

≤ 50 Jahre alt 

LFA1(*) 0,69 (± 0,57) 2,19 (± 2,63) 0,0001 

> 50 Jahre alt 

LFA1(*) 0,42 (± 0,47) 1,49 (± 2,71) 0,0001 

 

Tabelle und Diagramm 4.5.4-1: Expression des untersuchten Markermoleküls LFA-1 bei 
jüngeren (≤ 50 Jahre alt) und älteren Probanden (>50 Jahre alt). 

4.5.5 Multivariate Korrelationsanalyse der Ergebnisse 

Für die bivariate Korrelationsanalyse wurden die Zufallsvariablen Parodontale 

Erkrankung, Stadium der Parodontitis, Alter und Geschlecht mit den Zufallsvariablen 

Relative Expression des Gens LFA-1 korreliert. Es wurde dafür der Spearmans-Rho-

Test verwendet. 
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Die Expression von LFA-1 weist eine signifikant positive Korrelation von rs =0,255 bzw. 

rs =0,174 mit der Parodontitis bzw. mit  dem Stadium der Parodontitis auf (p=0,0001) 

(Tabelle 4.5.5-1). Bezüglich des Alters sind keine signifikanten Ergebnisse 

nachzuweisen. 

 

  LFA-1 

parodontale Erkrankung 

(ja/nein) 

Korrelationskoeffizient 0,255 

Signifikanz (2-seitig) 0,0001 

Stadium der parodontalen 

Erkrankung 

Korrelationskoeffizient 0,174 

Signifikanz (2-seitig) 0,0001 

Alter Korrelationskoeffizient -0,076 

Signifikanz (2-seitig) 0,072 

Geschlecht Korrelationskoeffizient 0,001 

Signifikanz (2-seitig) 0,984 

Tabelle 4.5.5-1: Bivariate Korrelationsanalyse des Einflusses von Erkrankung (ja/nein), Stadium 
der Erkrankung, Alter und Geschlecht auf die Expression von LFA-1. Die Auswertung erfolgte 
durch den Spearmans-Rho-Test. 

 

5 Diskussion 

5.1 Studiendesign und Methoden 

5.1.1 Pathogenese der Parodontitis 

Die Parodontitis ist eine multifaktorielle Erkrankung des Zahnhalteapparates, die 

unweigerlich durch einen entzündlichen Prozess zum Rückgang von Weich- und 
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Hartgewebe führt. Eine wichtige Rolle spielen u.a. die Mundflora und der Biofilm, 

systemische Erkrankungen, aber auch die Immunantwort des Wirts. Ein wichtiger 

Aspekt der Immunantwort ist die Rekrutierung von neutrophilen Granulozyten zur 

Abwehr von in den Organismus eindringenden pathogenen Mikroorganismen. Eine 

übermäßige Rekrutierung kann zu einer extremen Anzahl von neutrophilen 

Granulozyten im Entzündungsgewebe und möglicherweise zu einer ausgedehnten 

alveolären Knochenresorption führen, die einer Autoimmunerkrankung ähnelt  (Zhang et 

al., 2009; Gaffen & Hajishengallis, 2008). 

Andererseits führt die mangelhafte oder fehlende Rekrutierung von neutrophilen 

Granulozyten, zum Beispiel beim LAD-1-Syndrom, ebenfalls zu einer ausgeprägten 

Entzündung mit Knochenverlust, was mit dem klinischen Bild einer Parodontitis 

verbunden ist (Attström & Schröder, 1979; Sallay et al., 1984; Hemmerle et al.,1991; 

Yoshinari et al., 1994). 

Die Suche nach Regulatoren der Rekrutierung von neutrophilen Granulozyten ist daher 

sinnvoll, um zu prüfen, ob deren Expression mit dem Phänotyp einer chronischen 

Entzündung wie der Parodontitis assoziiert ist. Del-1, PTX3, IL-17α und LFA-1 sind in 

die Regulation der Rekrutierung von neutrophilen Granulozyten involviert. 

5.1.2 Auswahl der Studienpopulationen 

Für die Auswahl geeigneter Studienteilnehmer wurden in der vorliegenden Studie zur 

Definition der leichten Parodontitis die Obergrenze von maximal 50% Knochenverlust 

festgelegt, um Probanden und Proben auszuschließen, die sich im Anfangsstadium der 

Erkrankung befanden und einen nur mäßigen Knochenverlust aufwiesen. Zudem wurde 

die Untergrenze von 30% Knochenverlust festgelegt, weil die Diagnose der Parodontitis 

eindeutig sein sollte und klar von Patienten mit einer Gingivitis bzw. gesunden Patienten 

abgegrenzt werden sollte. 

Nibali et al. (2016) bezogen mehrere Parameter zur Definition der Parodontitis ein: einen 

approximalen Attachmentverlust von mindestens 3 mm bei mindestens 2 nicht 

benachbarten Zähnen, eine Sondierungstiefe von mindestens 5 mm und einen 

radiologischen Knochenverlust von mindestens 20% bei mindestens einem Zahn aus 

mindestens zwei Quadranten. Ähnliche Einschlusskriterien unter Einbeziehung des 

radiologischen Attachmentverlustes haben Tonetti und Claffey (2005) verwendet. 
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In der vorliegenden Studie wurden sowohl radiologische als auch klinische Kriterien zur 

Diagnose der Parodontitis verwendet, d.h. der radiologische Knochenverlust und die 

Sondierungstiefe. Darüber hinaus – ähnlich der Klassifizierung von Tonetti und Claffey 

(2005) – wurden Patienten mit chronischer Parodontitis je nach Schwere der Erkrankung 

in 2 Kategorien unterteilt, die nach dem Ausmaß des Knochenverlustes definiert wurden. 

Die Kategorie der „leichten Parodontitis“ wurde in der vorliegenden Studie bei einem 

mindestens 30-prozentigen radiologischen Knochenverlust zugewiesen, bei Tonetti und 

Claffey (2005) wurden Patienten mit einem klinischen Attachmentverlust von 3 mm 

dieser Gruppe zugeordnet. Die Kategorie der „schweren Parodontitis“ wurde mit einem 

mindestens 50-prozentigem radiologischen Knochenverlust definiert und von Tonetti und 

Claffey (2005) mit einem klinischen Attachmentverlust von mindestens 5 mm. Es wurden 

in der vorliegende Studie rein radiologische Kriterien für die Einstufung der Parodontitis 

verwendet, da diese besser objektivierbar sind und den tatsächlichen Knochenverlust, 

den die Parodontitis ausgelöst hat, zeigen. 

Es wurden insgesamt 82 Parodontitis-Patienten untersucht, während die Kontrollgruppe 

aus 13 Probanden bestand. Diese geringe Anzahl an Kontrollpersonen kann zu 

systematischen Fehlern führen, ergab sich jedoch aus folgenden Gründen: Bei 

gesunden Individuen liegt keine Indikation für Parodontalchirurgie vor und häufig auch 

keine Indikation für die Entfernung von Zähnen oder anderen oralchirurgischen 

Therapieformen, die eine begleitende Entnahme einer gingivalen Gewebeprobe 

zulassen. Darüber hinaus weisen die meisten extraktionsreifen Zähne – mit Ausnahme 

der Zähne, die wegen Trauma oder kieferorthopädischer Behandlung extrahiert werden 

müssen – häufig gleichzeitig auch eine Parodontalerkrankung auf. Auch in anderen 

Studien war aus diesen Gründen die Kontrollgruppe kleiner als die Testgruppe (Dutzan 

et al., 2012; Ribeiro et al., 2011; Takeuchi et al., 1995, Lakshmanan et al., 2013). Die 

Gesamtgröße der Patientenpopulation scheint mit insgesamt 95 Individuen jedoch 

ausreichend groß zu sein, um eine wissenschaftlich zuverlässige Beantwortung der 

Fragestellung der vorliegenden Studie zu erlauben. 
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5.1.3 Validität der erhobenen Ergebnisse: Primer Design, Real-Time-

quantitative-PCR 

Die Quantifizierung der Genexpression wird für die Validität der Ergebnisse 

vorausgesetzt. Die angewendeten Methoden müssen auf ihre Zuverlässigkeit geprüft 

werden und für alle Gruppen vergleichbar sein. 

Die Real-Time-quantitative-PCR (RT-qPCR) ist eine sichere und anerkannte Methode 

(Gold Standard) für die Amplifikation von kleinen mRNA-Mengen und die relative 

Bestimmung der Stärke der Gen-Expression (Wang et al., 1989; Nolan et al., 2006; 

Bustin et al., 2005; Derveaux et al., 2010; Pfaffl, 2010). Um Ungenauigkeiten bei der 

Bestimmung der Genexpression aufgrund der unterschiedlichen Menge an Gesamt-

DNA in den Proben auszuschließen, wurde immer die gleiche Gesamtmenge an RNA in 

den Proben verwendet (Fleige und Pfaffl, 2006; Derveaux et al., 2010). Um darüber 

hinaus die Zuverlässigkeit bzw. die Reproduzierbarkeit der Ergebnisse zu sichern, 

wurde jede Probe in Triplikaten mindestens zweimal auf verschiedenen Platten bzw. 

Experimenten wiederholt (Derveaux et al., 2010). Um ein falsch positives Ergebnis 

auszuschließen, wurde bei jedem Experiment eine Negativ-Kontrolle, die statt cDNA 

steriles Wassers enthielt, mitgeführt (Nolan et al., 2006).  

Da sehr geringe Mengen und kleine Unterschiede der Genexpression festgestellt 

werden mussten, wurde die LUX Technologie (Fluorezenz) verwendet, die eine sehr 

hohe Sensitivität bei der Untersuchung von kleinen Probenmengen aufweist (Lowe et 

al., 2003; Kreuzer et al., 2001). In der vorliegenden Studie wurde die Methode einer 

nicht spezifischen Erkennung des amplifizierten DNA-Produkts durch einen 

Fluoreszenzmarker (dsDNA), der sich an die Zielsequenz bindet, angewandt. Dieser 

Marker amplifiziert sich exponentiell, wenn er sich mit der Zielsequenz bindet, und er 

ermöglicht dadurch eine sichere quantitative Messung der DNA-Amplifikation (Navarro 

et al., 2015). 

Der verwendete Fluoreszenzmarker SYBR Green ist einer der am häufigsten 

verwendete Marker (Navarro et al., 2015). Er ist ein asymmetrischer Cyanin-Farbstoff-

Marker (2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3- dihydro-3-methyl-(benzo-

1,3-thiazol-2-yl)-methylidene]-1-phenyl- quinolinium) mit zwei positiv geladenen 

Strängen, die während Standard-PCRs zu einer sehr hohen Affinität der amplifizierten 

Ziel-DNA (negativ geladen) beitragen. SYBR Green ermöglicht dadurch eine besonders 

https://de.wikipedia.org/wiki/Cyanine
https://de.wikipedia.org/wiki/Farbstoff
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hohe Genauigkeit der Ergebnisse (Morrison et al., 1998; Wittwer et al., 1997; Zipper et 

al., 2004; Ahmad et al., 2007). Die Daten wurden darüber hinaus zu der Menge des 

GAPDH (housekeeping Gen) pro cDNA Probe normalisiert. Da nicht jede Probe nach 

Aufbewahrung und Bearbeitung die gleiche Qualität an DNA aufweist, muss diese 

Normalisierung stattfinden, um die Vergleichbarkeit der Proben zu gewährleisten 

(Bengtsson et al., 2005). 

Da die genaue Menge der Ziel-DNA nicht definierbar war, musste eine relative 

Quantifizierung durchgeführt werden (Svec et al., 2015). Das heißt, dass die absoluten 

Expressionswerte nicht berechnet werden konnten und die Auswertung der Daten bzw. 

die Expression jedes Moleküls pro Probe nur relativ bzw. im Vergleich zu den anderen 

Proben erfolgen konnte. Um diese Methode zu verwenden, wurden statt endogener 

Referenzen die Methode der Standardkurve ausgewählt (Calibration), da diese eine 

signifikant höhere Reproduzierbarkeit der Ergebnisse aufweist (Larionov et al., 2005; 

Pfaffl et al., 2004; Bustin, 2000; Boeuf, 2005). Ein weiterer Grund, der für die Messung 

mit Hilfe einer Standardkurve spricht, ist die Tatsache, dass die Experimente dieser 

Studie häufig eine unterschiedliche Effizienz aufwiesen. Im Vergleich zu anderen 

Methoden, die von einer idealen Standardeffizienz von 2 ausgehen, ermöglicht die 

Calibration eine genauere Berechnung anhand tatsächlicher Effizienzen (Pfaffl, 2001). 

5.1.4 Validität der erhobenen Ergebnisse: Statistische Analyse 

Der Mann-Whitney-Test, der für die univariaten Analysen in der vorliegenden Studie 

verwendet wurde (4), ist ein sehr verbreiteter und anerkannter Test, wenn es darum 

geht, zwei Gruppen zu vergleichen, die keine Normalverteilung der Werte aufweisen 

(Bergmann et al., 2000; Landers, 1981; Zimmerman, 1985). Da in der vorliegenden 

Studie immer zwei Gruppen (gesund vs. leichte Parodontitis, gesund vs. schwere 

Parodontitis, gesund vs. Parodontitis), deren Messwerte keine Normalverteilung 

aufweisen, verglichen worden sind, ist der nicht-parametrische Mann-Whitney-Test eine 

geeignete Methode, um die statistische Analyse dieser Studie durchzuführen. 

Darüber hinaus hatte die Kontrollgruppe eine geringe Anzahl an Probanden, was eine 

Inhomogenität der Ergebnisse zur Folge hatte. Auch in solchen Fällen wird der Mann-

Whitney-Test bevorzugt (Kasuya, 2001; Nachar, 2008). Des Weiteren weist der Mann-

Whitney-Test ungefähr 95% der Stärke eines t-Tests auf (Landers, 1981) und hat ein 

geringeres Risiko eines falsch-positiven Ergebnisses (Siegel und Castellan, 1988). 
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Der Spearmans-Rho-Test ist ebenfalls ein nicht-parametrischer Test, der keine 

Normalverteilung der Daten fordert (Zar, 1998). Es ist belegt, dass dieser Test bei nicht 

normalverteilten Werten, wie diese in der vorliegenden Studie, besser abschneidet als 

bei normalverteilten (Cohen, 1988; Zar, 1998). Der Spearmans-Rho-Test wurde in der 

Arbeit für die bivariate Analyse der Parameter Parodontitis, Schwere der Erkrankung, 

Geschlecht und Alter mit der relativen Genexpression der Markermoleküle Del-1, PTX3, 

LFA-1 und IL-17 α verwendet. 

5.2 Expression von Molekülen mit regulatorischer Wirkung auf die 

Leukozytenextravasation 

5.2.1 Vergleich der Ergebnisse der Expression von Del-1 mit Daten aus der 

Literatur 

In der vorliegenden Studie wurde in der Parodontitis-Gruppe eine signifikant niedrigere 

Expression von Del-1 als in der Kontrollgruppe nachgewiesen. Zudem zeigte sich eine 

niedrigere Expression von Del-1 bei Probanden, die über 50 Jahre alt waren. 

Es ist die erste Studie, die bei humanen Probanden eine niedrigere Expression von Del-

1 im Gingivagewebe von Parodontitispatienten im Vergleich zu gesunden Kontrollen 

nachgewiesen hat. Eskan et al. (2012) haben lediglich erkranktes Gewebe mit 

gesundem Gewebe derselben Parodontitis-Patienten verglichen, aber keine gesunden 

Kontrollpatienten wie in der vorliegenden Studie inkludiert. 

5.2.1.1 Einfluss der reduzierten Del-1 - Expression auf die 

Leukozytenextravasation und Entzündungshemmung 

Ein aktuell sehr verbreitetes pathogenetisches Modell der Parodontitis führt den 

parodontalen Gewebeverlust auf eine insuffiziente oder exzessive Immunantwort gegen 

den  dysbiotischen subgingivalen Biofilm (Pihlstrom et al., 2005) zurück. Vor diesem 

Hintergrund könnte die exzessive Rekrutierung der Leukozyten eine zentrale Rolle beim 

klinischen Ausbruch der Parodontitis spielen. Eskan et al. (2012) stellten nach 

Untersuchungen an Mäusen fest, dass Del-1 eine wichtige Komponente für die 

Homöostase der Leukozyten darstellt und am leukozytenabhängigen inflammatorischen 

parodontalen Knochenverlust beteiligt ist. 
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Del-1 inhibiert die Leukozytenextravasation nachweislich am Parodontium (Eskan et al., 

2012) und wirkt entzündungshemmend (Kanczkowski et al., 2013). 

Ein weiterer Mechanismus, durch den Del-1 die Entzündungsreaktion abschwächen 

kann, ist seine Fähigkeit, den Abtransport von platelet-derived Mikropartikeln am 

Endothelium zu fördern (Dasgupta et al., 2012). Platelet-derived Mikropartikel 

begünstigen die Zytokin-Produktion am Endothelium durch eine IL-1- abhängige 

Kaskade (Boilard et al., 2010). In einer weiteren Studie wiesen Mäuse mit Del-1-

Defizienz (Edil3 knock-out Mäuse) einen stärkeren parodontalen Knochenverlust, eine 

höhere Inzidenz der Multiplen Sklerose (MS) sowie eine stärkere Rekrutierung von 

neutrophilen Granulozyten in die Gingiva auf (Choi et al., 2014). 

Auch eine weitere Arbeit von Choi et al. (2015) bringt die erniedrigte Del-1 Expression 

mit pathologischen Prozessen in Verbindung. Die Del-1-Expression war hier signifikant 

niedriger bei Mäusen mit experimenteller Enzephalitis sowie bei Patienten mit 

chronischen und aktiven Hirnläsionen im Rahmen einer multiplen Sklerose (MS), wobei 

keine mangelhafte Expression von Del-1 bei inaktiven MS Läsionen festzustellen war 

(Choi et al., 2015). Darüber hinaus postulierten einige Studien eine niedrigere Del-1 

Expression bei Patienten mit akuter Lungenentzündung (Choi et al., 2008), bei Patienten 

mit Lungenfibrose (Kang et al., 2014) sowie bei Mäusen mit Speicheldrüsenentzündung 

(Baban et al., 2013) und entzündungsbedingter Speicheldrüseninsuffizienz (Kanzkowski 

et al., 2013). Del-1 ist darüber hinaus als Mutationsgen mit der Entstehung für Multiple 

Sklerose (Goris et al., 2003) und der Alzheimer-Neuroerkrankung (Ramanan et al., 

2013) verbunden. 

Die Ergebnisse der vorliegenden Studie bestätigen die Ergebnisse der o.g. Studien. Es 

wurde eine um etwa 75% niedrigere Expression von Del-1 im parodontal erkrankten 

Gewebe gegenüber gesundem parodontalem Gewebe belegt. 

Die Gabe von Del-1 könnte regulierend und entzündungshemmend wirken. Eskan et al. 

(2012) konnten in mehreren Experimenten zeigen, dass die Mikroinjektion von löslichem 

Del-1 (Del-1-Fc) die Entzündung unterdrücken kann. Die Autoren zeigten außerdem,  

dass die systemische oder lokale Infusion eines Fusionsproteins von Del-1 und von Del-

1-Fc bei alten Mäusen im Hinblick auf die Hemmung des parodontalen Knochenverlusts 

viel effektiver als bei der Infusion anderer Inhibitoren war. Del-1 wirkt auch durch die 

Hemmung der Expression von inflammatorischen Markern wie TNF-α 
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(Tumornekrosefaktor), IL-1β (Interleukin-1β), IL-6 und IL-17α sowie RANKL 

entzündungshemmend (Choi et al. 2015). Die vorliegende Studie konnte eine erhöhte 

Expression von Del-1 bei parodontal gesunden Patienten nachweisen. Möglicherweise 

wirkt Del-1 im Gingivagewebe entzündungshemmend und beugt somit dem klinischen 

Ausbruch der Parodontitis vor. 

5.2.1.2 Del-1 als Antagonist der LFA-1 Expression und der mögliche 

Einfluss auf die Parodontitis 

Del-1 konkurriert, wie bereits erwähnt, mit LFA-1 um die Bindung an ICAM-1 des 

Endotheliums und verhindert dadurch die Extravasation der PMNs und unterbindet 

deren Akkumulation im entzündeten Gewebe (Abbildung 5.2.1.1) (Choi et al., 2008, 

Hajishengallis und Sahingur, 2014). LFA-1 und Del-1 doppelt defiziente Mäuse zeigen 

bei einer durch LPS ausgelösten Pneumonie eine sehr niedrige Leukozyten-

Rekrutierung, was darauf hinweist, dass der Phänotyp des Del-1-Mangels von der 

Anwesenheit von LFA-1 abhängt (Choi et al., 2008). Diese Funktion von Del-1 als 

kompetitiver  Antagonist der LFA-1-Bindung wurde auch an Schleimhautzellen und an 

Zellen des zentralen Nervensystems nachgewiesen (Choi et al., 2015; Eskan et al., 

2012; Mitroulis et al., 2014). 

 

Abbildung 5.2.1.1: Del-1 wirkt als lokaler Kompetitor der Leukozytenrekrutierung. Del-1 blockiert 
die LFA-1/ICAM-1-Interaktion, die der Transmigration der Leukozyten durch die 
Endothelmembran dient (Choi et al., 2008; Eskan et al., 2012). (Bild: E. Hajishengallis and G. 
Hajishengallis, neutrophil homeostasis and periodontal health in children and Adults, J Dent 
Res. 2014; 93(3):231-237) 

In einer aktuellen Studie wurde bei Patienten mit einer Parodontitis eine verstärkte 

Expression von LFA-1 zusammen mit einer verringerten Expression von Del-1 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hajishengallis%2520G%255BAuthor%255D&cauthor=true&cauthor_uid=24736701
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sahingur%2520SE%255BAuthor%255D&cauthor=true&cauthor_uid=24736701
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festgestellt und eine exzessive Extravasation von neutrophilen Granulozyten in 

entzündlich verändertes Gewebe sowie daraus resultierend eine verstärkte 

Gewebezerstörung beobachtet (Moutsopoulos et al., 2014). 

Die vorliegende Studie hat zu vergleichbaren Ergebnissen geführt. Der Phänotyp der 

Parodontitis und die damit zusammenhängende Entzündung des parodontalen 

Gewebes war mit einer signifikant höheren Expression von LFA-1 bei gleichzeitig 75% 

erniedrigter Expression von Del-1 verbunden. 

5.2.1.3 Einfluss der Del-1 Expression auf die Osteoklastogenese und 

auf die Expression des IL-17α 

Shin et al. (2015) berichten über die funktionelle Rolle von Del-1 bei der 

Osteoklastogenese. Es wurde eine niedrigere Expression des Del-1 durch RANKL-

stimulierte Osteoklasten festgestellt. Darüber hinaus weisen Gewebe nach der Infusion 

von Del-1-Fc signifikant weniger Osteoklasten sowie eine geringere Knochenresorption 

auf, was darauf hinweist, dass Del-1 in vivo direkt auf die Osteoklasten einwirkt (Shin et 

al., 2015). Del-1 scheint besser als andere Antagonisten von LFA-1, wie beispielsweise 

LFA878 (ein experimenteller Antagonist von LFA-1), gegen den Knochenverlust zu 

wirken (Shin et al., 2015). Nach 5-tägiger experimenteller Parodontitis an Del-1-

knockout Mäusen scheint Del-1-Fc (Del-1 als lösliches Protein exprimiert) auch am 3. 

Tag der Entzündung und 2 Tage nach dem Peak der Neutrophilenanzahl effektiv gegen 

einen Knochenverlust zu wirken, im Gegensatz zu LFA878-Fc, das nur nach einer 

Verabreichung am 1. Tag der Entzündung einem Knochenverlust entgegenwirkte (Shin 

et al., 2015). Khader (2012) hat die Theorie entwickelt, wonach die Dysregulation der 

Expression von Del-1 zusammen mit einer Hochregulierung der IL-17α Expression zur 

ausgeprägten Osteoklastogenese und somit zur Parodontitis führen. Nach dieser 

Theorie wird IL-17α bei einem Del-1-Defizit zunächst von γδ-T-Zellen, wichtigen Zellen 

der IL-17α Expression, sowie nach Präsentation von Antigenen der oralen Mikroflora 

von antigenspezifischen TH17-Zellen produziert. Anschließend wirkt IL-17α auf 

Stromazellen und es lockt neutrophile Granulozyten an die Infektionsstelle. Gleichzeitig 

bindet sich IL-17α auch an die Endothelzellen über deren Rezeptor IL-17R und hemmt 

die Del-1-Expression, was die Extravasation von neutrophilen Granulozyten in das 

entzündete Zahnfleisch, die weitere IL-17-Produktion durch neutrophile Granulozyten 

sowie die Osteoklastogenese fördert (Abbildung 5.2.1.2). Zusammenfassend beeinflusst 
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die Del-1-Expression das klinische Bild der Parodontitis möglicherweise auch durch die 

Hemmung der IL-17α-abhängigen Osteoklastogenese.  

Im Gegensatz zur Del-1 /LFA-1 Theorie von Choi et al. (2008) wurde gezeigt, dass Del-1 

die NFATc1-Expression durch Interaktion mit Mac-1 (CD11b/CD18), einem 

Leukozytenintegrin der gleichen Familie wie LFA-1, inhibiert und nicht durch LFA-1 

(CD11a/CD18) (Shin et al., 2015). NFATc1 ist ein Transkriptonsfaktor, der durch die 

Bindung an die Promotorregion die Expression von Zytokinen, wie IL-17α, aktiviert. Die 

NFATc1 Expression korreliert stark mit dem Phänotyp der Parodontitis und 

insbesondere mit dem klinischen Attachmentverlust (Belibasakis et al., 2011). Del-1 

könnte durch die Hemmung der NFATc1 Expression die Manifestation der Parodontitis 

und die damit verbundene Knochenresorption und den Attachmentverlust verhindern. 

Del-1 scheint außerdem auch an der durch Chemokine induzierten Entzündungsreaktion 

beteiligt zu sein. Humane, durch ICAM-1 aktivierte neutrophile Granulozyten, 

exprimieren CCL3 und CXCL2 (Eskan et al., 2012). Die Chemokine CXCL2 und CCL3 

sind beide potentielle Mediatoren einer entzündlichen Knochenresorption, die mit einer 

bakteriellen Infektion assoziiert sind (Dapunt et al. 2014). So konnte in einem In-vitro-

Experiment an einer humanen PMN-Zelllinie beobachtet werden, dass Del-1 die durch 

ICAM-1 induzierte Expression von CXCL2 und CCL3 inhibiert (Serhan et al., 2008). Die 

reduzierte Expression von Del-1 am entzündlich veränderten Parodontium kann durch 

die Chemokine CXCL2 und CCL3 zu einer verstärkten Aktivierung der Osteoklasten 

führen und dadurch eine intensivere Osteolyse - ähnlich wie bei der Parodontitis - 

auslösen. 

Diese Beobachtungen wurden durch die vorliegende Studie bestätigt, da der Phänotyp 

der Parodontitis und der damit verbundene Knochenverlust mit einer verminderten Del-1 

Expression zusammenhängen. 
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Abbildung 5.2.1.2: Del-1 hemmt die IL-17α-Produktion, die Entzündung und den Knochenverlust 
bei Parodontitis. Die stärkere Expression von Del-1 im parodontalen Gewebe junger Mäuse 
hemmt die IL-17α-Produktion sowie die Neutrophilenrekrutierung in das Gewebe (a). Bei alten 
Mäusen ist die Del-1 Expression während der Infektion herabreguliert, während die IL-17α -
Produktion heraufreguliert ist (b). IL-17α induziert G-CSF und CXC-Chemokine und lockt 
neutrophile Granulozyten in das entzündete Gewebe. Gleichzeitig hemmt IL-17α die Del-1-
Expression und fördert die Extravasation von neutrophilen Granulozyten in das entzündete 
Gingivagewebe. Darüber hinaus wirkt IL-17α synergistisch mit anderen Zytokinen, um die 
Produktion von Matrix-Metalloproteinasen (MMPs) und RANKL zu induzieren. Dies fördert die 
Osteoklastogenese (Quelle: Khader SA.: Restraining IL-17: Del-1 deals the blow. Nat Immunol. 
2012 Apr 18; 13(5):433-5). 

 

Weitere Studien konnten eine niedrigen Del-1-Expression und gleichzeitig eine höhere 

IL-17-Expression für die Parodontitis und die Enzephalitis zeigen (Eskan et al. 2012; 

Choi et al., 2015). Del-1-defiziente Mäuse weisen eine höhere Inzidenz der multiplen 

Sklerose in Verbindung mit einer IL-17α-abhängigen Entzündung auf („IL-17 Signatur“) 

(Choi et al., 2014). 

Darüber hinaus konnten Baban et al. 2013 bei "non-obese diabetic" (NOD)-Mäusen, die 

eine Reduktion von Del-1 und eine höhere Ausschüttung von IL-17α aufwiesen, eine 

signifikante Steigerung der Apoptose und Nekrose der Speicheldrüsenzellen 

beobachten. 

IL-17α –/–, Del-1 –/– Mäuse weisen im Vergleich zu Del-1 –/– Mäusen eine geringere 

Rekrutierung von neutrophilen Granulozyten auf und zeigen eine erhöhte Resistenz 

http://www.ncbi.nlm.nih.gov/pubmed?term=Khader%252520SA%25255BAuthor%25255D&cauthor=true&cauthor_uid=22513326
http://www.ncbi.nlm.nih.gov/pubmed/22513326#%2523
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gegen die Manifestation der Parodontitis (Eskan et al. 2012). Vergleichbare Ergebnisse 

fanden sich bei IL-17α- und Del-1-defizienten Mäusen im zentralen Nervensystem (Choi 

et al., 2014). Diese Beobachtungen weisen darauf hin, dass die Parodontitis aufgrund 

einer Del-1-Defizienz auch von der Expression von IL-17α abhängt. Darüber hinaus 

weisen IL17α –/–Mäuse eine höhere Expression von Del-1-mRNA auf, was zeigt, dass 

IL-17α die Del-1-Expression hemmt (Choi et al., 2008). Die mangelhafte Expression von 

Del-1 kann vor dem Hintergrund der zitierten Studien ohne die Hilfe von IL-17α nicht zur 

pathologischen Leukozytenakkumulation bei Parodontitis oder bei Enzephalitis führen. 

5.2.1.4 Der Einfluss einer erhöhten Del-1 - Expression auf die 

Angiogenese und der mögliche Zusammenhang mit der Parodontitis 

Del-1 weist unter anderem durch die Bindung seines RGD Motivs an die Integrine αvβ3 

angiogenetische Eigenschaften auf (Zhong et al. 2003). Die Aktivierung von αvβ3 

Rezeptoren ist für die vaskuläre Entwicklung erforderlich und mit einer Reduzierung der 

Apoptose von Endothelzellen verbunden (Varner et al., 1995; Stromblad et al., 1996; 

Pollman et al., 1999; Eliceiri et al., 1998; Schaffner-Reckinger et al., 1998). Penta et al. 

(1999) haben vermutet, dass Del-1 durch seine Bindung an Integrine αvβ3 die 

Angiogenese des embryonalen Endothels stimuliert, darüber hinaus wurde die 

Bedeutung der CAM Kaskade für die Gefäßentwicklung herausgestellt. Die Del1/Integrin 

αvβ3-Bindung könnte somit die Angiogenese begünstigen und damit die parodontale 

Regeneration fördern. 

Del-1 stimuliert schließlich auch die angiogenetische Funktion der Gewebe durch eine 

αvβ5-Integrin-Signal-Kaskade (Gorski und Walsh, 2000). Es bindet an Integrin αvβ5 des 

Endotheliums und aktiviert dadurch den Transkriptionsfaktor HoxD3. HoxD3 induziert 

anschließend die Expression anderer proangiogenetischer Faktoren wie Integrin αvβ35 

und Proteinase uPA/uPAR. Integrin αvβ35 fördert die Angiogenese durch Regulierung 

der Zelladhäsion und Migration (Carmeliet, 2002; Travis et al., 2003). Die Expression 

des Integrins αvβ5 verstärkt sich rasch in Anwesenheit von proangiogenetischen 

Zytokinen wie Del-1 (Penta et al., 1999; Sepp et al., 1994). Als Folge kann Del-1 durch 

eine Integrin avß5- abhängige Kaskade indirekt die Angiogenese fördern. Fan et al. 

(2008) beobachteten eine Proliferation der Zellen des Endothels sowie eine Förderung 

der Angiogenese zerebraler Gewebe bei Überexpression des Del-1 Gens in einem 

murinen Modell. 
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Es gibt darüber hinaus zahlreiche weitere Studien, die eine angiogenetische Funktion 

von Del-1  klinisch nachweisen konnten(Ho et al. 2004; Penta et al.1999; Zhong et al. 

2003; Rezaee et al. 2002; Hidai et al. 2007; Aoka et al. 2002; Fan et al. 2008). Diese 

Funktion von Del-1 könnte für den Verlauf der Parodontitis von Bedeutung sein, denn 

durch eine ungestörte angiogenetische Funktion könnte das Knochenremodelling des 

Gewebes gefördert und der Knochenverlust gehemmt werden. 

Ciucurel et al. haben 2013 bei Mäusen, die aufgrund eines lentiviralen Konstrukts 

verstärkt Del-1 exprimieren, subkutane Implantate gesetzt, und fanden 7 Tage nach der 

Implantation eine höhere Produktion von Extrazellulärmatrix sowie eine größere Anzahl 

an Blutgefäßen. Weitere Studien deuten eine mögliche therapeutische Nutzung von Del-

1 an(Ho et al., 2004; Zhong et al., 2003; Kown et al., 2003). Eine erhöhte Expression 

von Del-1 könnte mit dem schnellen remodelling des parodontalen Gewebes und somit 

mit der Verhinderung des klinischen Ausbruchs der Parodontitis zusammenhängen.  

Hsu et al. (2008) haben bei Del-1-transgenen Mäusen, die das Markermolekül 

konstitutiv in basalen Keratinozyten exprimieren, eine signifikant höhere Regeneration 

der Haarfollikel bei Wundgeweben der Haut beobachtet und im Anschluss bewiesen, 

dass diese Regeneration durch die erhöhte Expression von Del-1 der Haut bedingt ist. 

Die Haarwurzeln weisen eine dem Parodontium ähnliche anatomische Architektur auf. 

Dies könnte bedeuten, dass die Verabreichung oder die verstärkte Expression von Del-1 

die Regeneration des parodontalen Gewebes erleichtern könnte. Das 

Parodontalgewebe wird bei Präsenz von Biofilm an der Zahnoberfläche durch das 

Immunsystem, insbesondere durch die PMNs und parodontale Bakterien, angegriffen 

und zerstört. Eine möglichst rasche erneute Angiogenese und die Regeneration des 

Gewebes könnten diese Zerstörung kompensieren und die Heilung des erkrankten 

Gewebes fördern. Eine erhöhte Expression von Del-1 könnte auf diese Weise die 

klinische Manifestation der marginalen Parodontitis abschwächen. 

5.2.1.5 Einfluss der Del-1- Expression auf der Atherosklerose und der 

mögliche Zusammenhang mit der Parodontitis 

Die Atherosklerose ist mit der Parodontitis in den vergangenen Jahren häufig in 

Verbindung gebracht worden und es gibt beinahe 4000 Arbeiten, die über dieses Thema 

berichten (Teeuw et al., 2014). Die Parodontitis könnte demnach an der Pathogenese 

der Atherosklerose beteiligt sein (Chiu, 1999; Kinane und Lowe, 2000). Pinho et al. 
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(2013) beobachteten, dass die Parodontitis signifikant häufiger bei Patienten mit 

Atherosklerose auftritt. Mit der entgegengesetzten Fragestellung haben Bahekar et al. 

2007 eine höhere Prävalenz der Atherosklerose bei Patienten mit einer Parodontitis 

festgestellt. 

Die Atherosklerose ist ähnlich wie die Parodontitis eine entzündliche Erkrankung. 

Chronisch entzündliche Prozesse spielen eine wichtige Rolle bei der Entstehung der 

Atherosklerose (Nauom et al., 2006). Dabei sind Adhäsionsmoleküle beteiligt wie z.B. p-

Selektine und Interzelluläre Adhäsionsmoleküle (ICAMs, Integrinliganden) und 

Entzündungsmediatoren wie IL-8 und MCP-1 (Khlgatian et al., 2002). Del-1 bindet sich 

an ICAM-1 Rezeptoren und verhindert dadurch die Leukozytenextravasation im Rahmen 

einer Parodontitis (Choi et al., 2008), dies deutet auf seine entzündungshemmende 

Wirkung hin. Del-1 könnte auch bei der Atherosklerose durch eine Kaskade, die ICAM-1 

beinhaltet, entzündungshemmend wirken (Khlgatian et al., 2002). Eine mangelhafte Del-

1 Expression könnte daher zugleich mit dem klinischen Bild der Parodontitis, wie in der 

vorliegenden Studie gezeigt, und dem der Atherosklerose zusammenhängen.  

Darüber hinaus berichten Kakino et al. (2016), dass Del-1 die Atherosklerose durch eine 

Kaskade, die modifiziertes LDL (low density lipoprotein) beinhaltet, hemmt. Del-1 bindet 

an modifiziertes LDL und verhindert dessen Bindung an Rezeptoren des Endotheliums. 

Diese Del-1 Bindung an das Endothel könnte für die Entstehung eines Atheroms im 

Gefäß ursächlich sein (Steinberg, 1993; Epstein et al, 1999; Libby et al., 2000; Rufail et 

al., 2007). Del-1-transgene Mäuse hatten eine signifikant niedrigere Bindung der LDLs 

an LOX-1 Rezeptoren des Endotheliums (Kakino et al. 2016). Finn et al. (2013) 

beobachteten darüber hinaus einen höheren Anteil an freiem Del-1 bei Patienten mit 

koronarer Herzkrankheit (KHK) im Vergleich zur Kontrollgruppe. Die schützende Rolle 

von Del-1 vor dem klinischen Ausbruch der Atherosklerose könnte auch auf die 

Parodontitis übertragen werden. 

5.2.1.6 Alters- und geschlechtsabhängige Del-1-Expression 

In der vorliegenden Arbeit wurde eine niedrigere Expression von Del-1 bei älteren 

Patienten (>50 Jahre alt) festgestellt. Der pathogenetische Mechanismus, durch den 

eine Del-1-Expression altersabhängig herabreguliert wird, ist bislang unbekannt. 

Makaewa et al. (2015) berichten über eine Hemmung der Expression von Del-1 durch 

eine von D-Solvin und IL-17α abhängige Kaskade. D-Solvine hemmen die Produktion 
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von GSK-3β, das seinerseits die Bindung des Promoters C/EBPβ von Del-1 hemmt. 

Daraus folgt, dass D-Solvine die Del-1-Expression induzieren. Ältere Mäuse weisen 

signifikant niedrigere Konzentrationen von Proresolving Lipid Mediatoren, die D-Solvine 

enthalten, auf (Arnardottir et al., 2014). Die verringerte D-Solvin-Aktivität bei älteren 

Individuen kann zu einer verringerten Expression von Del-1 führen (Makaewa et al., 

2015). Diese Beobachtung könnte eine mögliche Erklärung zur Altersabhängigkeit der 

Del-1 Expression darstellen.  

Eke et al. (2012 und 2015) berichten über eine signifikant höhere Parodontitisrate bei 

Männern im Vergleich zu Frauen (56,4% zu 38,4%). Ebersole et al. (2008) beobachteten 

bei Menschenaffen ebenfalls eine unterschiedliche immunologische Reaktion von 

Männern und Frauen. In diesem Zusammenhang waren einige Entzündungsmediatoren 

bei Männern stärker exprimiert. In der vorliegenden Studie wurde in der Kontrollgruppe 

bei Männern eine höhere Expression des Gens Del-1 im Vergleich zur Testgruppe 

festgestellt – bei Frauen konnte dies nicht nachgewiesen werden. Pathologische 

Veränderungen der Immunantwort und insbesondere von Signalwegen, die mit der 

Leukozytenextravasation zusammenhängen, können den Ausbruch der Parodontitis 

beim männlichen Geschlecht begünstigen. Nach den vorliegenden Ergebnissen scheint 

bei Frauen die Stärke der Expression von Del-1 in Bezug auf die Parodontitis 

möglicherweise durch andere Faktoren überlagert zu werden. 

5.2.1.7 Vergleich der Ergebnisse der Expression von PTX3 mit Daten 

aus der Literatur 

In der vorliegenden Studie wurde eine signifikant niedrigere Expression von PTX3 im 

Gingivagewebe parodontal erkrankter Patienten im Vergleich zu gesunden Probanden 

beobachtet. Humanes PTX3 wurde, wie bereits erwähnt, neben Del-1 von Chavakis et 

al. (2012) sowie von Deban et al. (2010) als ein Inhibitor der Leukozytenextravasation 

und möglicher Schutzfaktor gegen die Parodontitis identifiziert (Abbildung 5.2.1.3). 

Deban et al. konnten beobachten, dass PTX3 durch P-Selektin / PSGL-1-Interaktion in 

vitro das neutrophilen Granulozyten-Rolling sowie in vivo die Rekrutierung der 

neutrophilen Granulozyten in akuten Inflammationsmodellen blockiert. PTX3-defiziente 

Mäuse haben eine höhere Rate an Akkumulation von neutrophilen Granulozyten bei 

Pleuritis sowie akut induziertem Lungentrauma (Deban et al. 2010). Des Weiteren wirkte 

in der Studie von Deban et al. (2010) die lokale Freisetzung von PTX3 und Del-1 als 
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negatives Feedback, das die Rekrutierung von neutrophilen Granulozyten verhindert. 

Daraus kann gefolgert werden, dass die relative Expression dieser negativen 

Regulatoren der Neutrophilenextravasation einen zentralen Einfluss auf die Schwere der 

parodontalen Entzündung und den Gewebeverlust haben (Hajischengallis und Korostoff, 

2017). Die in der vorliegenden Arbeit beobachtete niedrigere PTX3-Expression in 

parodontal erkrankten Geweben kann zu einer überschießenden Einwanderung von 

neutrophilen Granulozyten in das parodontale Gewebe führen. 

     

Abbildung 5.2.1.3: Die endogenen Inhibitoren der Leukozytenadhäsion: PTX3 hemmt das 
Rolling der Leukozyten, und Del-1 wirkt der LFA-1-abhängigen festen Adhäsion entgegen 
(Chavakis T.: Leucocyte recruitment in inflammation and novel endogenous negative regulators 
thereof. Eur J Clin Invest. 2012 Jun; 42(6):686-91). 

 

5.2.1.8 Einfluss der PTX3 – Expression auf die COPD (Chronisch 

obstruktive Lungenerkrankung) und der mögliche Zusammenhang mit der 

Parodontitis 

Nach den Beobachtungen einer Studie von van Pottelberge et al. (2012) war die PTX3-

Expression in Lungengeweben von Patienten mit einer entzündlichen COPD ebenfalls 

deutlich reduziert. 

Eine Metaanalyse von Zeng et al. (2012) an 3988 COPD-Patienten und 22.871 

Kontrollen hat eine statistisch signifikante positive klinische Assoziation (p<0,001) 

zwischen der Parodontitis und der COPD-Erkrankung festgestellt. Sowohl die 

Parodontitis als auch die COPD sind Erkrankungen mit chronischem Verlauf, in derem 

Zentrum eine durch neutrophile Granulozyten verstärkte Entzündung  und der 

proteolytische Abbau des Bindegewebes steht (Fokkema et al., 1998; Shen et al., 2015; 
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http://www.ncbi.nlm.nih.gov/pubmed?term=Chavakis%252520T%25255BAuthor%25255D&cauthor=true&cauthor_uid=22577952
http://www.ncbi.nlm.nih.gov/pubmed/22577952#%2523
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Stockley et al., 2013). Darüber hinaus wird bei der COPD, analog der Parodontitis, eine 

Störung der Immunhomöostase beobachtet. Die pathogenen Bakterien, die 

normalerweise von der Immunabwehr zerstört werden, proliferieren bei der COPD- 

Erkrankung und das Immunsystem scheint unfähig, diese Entzündung abschließend zu 

beheben. Dadurch entsteht - ähnlich wie bei der Parodontitis - eine mikrobiologische 

Dysbiose (Gleeson et al., 1997; Azarpazhooh und Leake, 2006; Prasanna und Causal, 

2011). Schließlich sind pro-inflammatorische Zytokine, die mit der Parodontitis in 

Verbindung gebracht wurden, auch bei COPD-Patienten zu stark exprimiert (Preshaw 

und Taylor, 2011; Schols und Buurman, 1996; Eid et al., 2001; Karadag et al., 2008). Im 

Lungengewebe von COPD-Patienten wurde eine exzessive Akkumulation von 

neutrophilen Granulozyten beobachtet (Louhelainen et al., 2009; Gamble et al., 2007). 

Die Stärke der leukozytären Infiltration ist mit dem Stadium der COPD korreliert (He et 

al., 2010; Stanescu et al., 1996; Di Stefano et al., 1998; Vernooy et al., 2002; 

Higashimoto et al., 2009). Daraus kann der Schluss gezogen werden, dass eine 

exzessive Aktivierung neutrophiler Granulozyten und deren Extravasation zum 

klinischen Ausbruch der COPD führen, dies wäre eine Erklärung, warum die COPD und 

die Parodontitis epidemiologisch in einigen Studien eine deutliche Assoziation zeigen 

(Shen et al., 2015; Stockley et al., 2013). 

5.2.1.9 PTX3 Expression in Zusammenhang mit der 

Geweberegeneration 

PTX3 scheint ebenso wie Del-1 eine Rolle bei der Geweberegeneration (tissue 

remodelling) zu spielen. In experimentell traumatisiertem Geweben zeigte sich eine 

signifikant schnellere Koagulation, eine Neubildung von Fibrin und eine Kollagen-

Reposition im Zusammenhang mit einer deutlich höheren Expression von PTX3 (Doni et 

al., 2015). Weitere Studien bestätigen die Beteiligung des PTX3 an der 

Geweberegeneration, der Angiogenese und der Regeneration der extrazellulären Matrix 

(tissue remodelling) (Leali et al., 2012; Maina et al., 2009). Darüber hinaus begünstigt 

PTX3 die Fibrozyten-Differenzierung durch FcγRI in fibrotischen Läsionen (Pilling et al., 

2015). PTX3 verhindert die übermäßige Aktivierung des angeborenen Immunsystems 

durch dessen Bindung an apoptotischen Zellen und die Inhibition der Abräumung 

apoptotischer Zellen durch die dendritischen Zellen (Vezzoli et al., 2016; Ortega-

Hernandez et al., 2009). Dadurch begünstigt PTX3 selbst, wie bereits erwähnt, den 

apoptotischen Zelluntergang und fördert die Geweberegeneration. Eine höhere 
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Expression des PTX3 könnte damit auch in den entzündeten parodontalen Geweben die 

Geweberegeneration begünstigen und hierdurch die Zerstörung des Parodontiums und 

den klinischen Schweregrad der Parodontitis verringern. In der aktuellen Studie ist es 

gelungen, eine erhöhte PTX3 - Expression mit dem gesunden parodontologischen 

Zustand in Verbindung zu setzen. 

5.2.1.10 Die antimikrobielle Wirkung von PTX3 und der mögliche 

Zusammenhang mit der Parodontitis 

PTX3 entfaltet auch antimikrobielle und anti-inflammatorische Eigenschaften. Unter den 

ersten publizierten Funktionen von PTX3 war seine bindende Fähigkeit mit pathogenen 

Bakterien. PTX3 bindet an Komponenten von A. fumigatus sowie an wichtige gram-

positive und gram-negative Bakterien wie Staphylococcus aureus, Pseudomonas 

aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium und Paracoccidioides 

brasiliensis (Bozza et al., 2006; Diniz et al., 2004; Garlanda et al., 2002; Jeannin et al., 

2005; Reading et al., 2008). Murine Makrophagen, die PTX3 überexprimieren, weisen 

eine signifikant stärkere Phagozytose von P. brasiliensis im Vergleich zur Kontrollgruppe 

auf (Diniz et al. 2004). PTX3 begünstigt die Abwehr gegen bakterielle Infektionen mittels 

Opsonierung durch seinen Fcγ-Rezeptor und die Komplementaktivierung (Bottazzi et al., 

2010; Mantovani et al., 2013; Garlanda et al., 2016). Es steuert die Entzündung des 

Gewebes mit Hilfe von Komplement – Komponenten (Nauta et al., 2003; Deban et al., 

2008; Csincsi et al., 2015; Braunschweig et al., 2011; Gout et al., 2011; Ma et al., 2009; 

Ma et al., 2011). PTX3 weist außerdem eine antiseptische Funktion auf. Es verhindert 

die Histon-abhängige endotheliale Zytotoxizität (Daigo et al., 2014). 

Dias et al. (2001) und Souza et al. (2002) berichteten, dass PTX3-transgene Mäuse eine 

Resistenz gegen die Toxizität von Lipopolysacchariden wie LtxA aufweisen. LtxA sind 

Lipopolysacharide, die von parodontalen Bakterien wie P. gingivalis freigesetzt werden. 

Eine verminderte PTX3-Expression könnte nach diesen Studien mit einer exzessiven 

parodontalen Inflammation durch das Bakterium P. gingivalis in Zusammenhang stehen 

und zum Phänotyp der Parodontitis führen. 

Im Gegensatz zu den genannten Ergebnissen haben Fujita et al. (2012) bei einer Studie 

mit 50 chronischen Parodontitis-Probanden eine erhöhte Expression von PTX3 

festgestellt und PTX3 als diagnostischen Marker für die Parodontitis vorgeschlagen.  
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5.2.2 Vergleich der Ergebnisse der Expression von IL-17α mit Daten aus 

der Literatur 

In der vorliegenden Studie wurde im Gewebe von parodontal erkrankten Zähnen eine im 

Vergleich zur gesunden Gingiva eine signifikant stärkere Expression von IL-17α 

nachgewiesen. Die meisten Daten aus der Literatur bestätigen eine signifikant höhere 

Expression von IL-17α bei der Parodontitis. 

Zahlreiche Studien belegen,  dass die Geneexpression von IL-17α bei Parodontitis 

höher ist als in parodontal gesundem Gewebe (Ribeiro et al., 2011; Takahashi et al., 

2005; Shenkein et al., 2010; Duarte et al., 2010; Adibrad et al., 2012; Behfarnia et al. 

(2013). Vernal et al. (2005) ermittelten die Expression von IL-17α in der Sulkusflüssigkeit 

von Parodontitis-Patienten und Kontrollpatienten und belegten eine Überexpression bei 

den Parodontitispatienten. Dutzan et al. (2009) verglichen die aktiven parodontalen 

Läsionen mit den inaktiven und fanden heraus, dass in aktiven Läsionen eine 

signifikante Überexpression von IL-17α vorherrscht. 

Diese Ergebnisse wurden durch zahlreiche Studien auf Proteinebene in parodontalen 

Geweben (Nussbaum und Shapira, 2011; Gaffen et al., 2006; Liu et al., 2012; Dutzan et 

al., 2012) sowie in der Sulkusflüssigkeit (Shaker und Ghallab, 2012) bestätigt. Da Costa 

et al. (2015) und Allam et al. (2011) stellten eine starke Akkumulation von IL-17α-

positiven Zellen im Parodontitis-Gewebe fest. Fu et al. (2013) beobachteten des 

Weiteren, dass Parodontitis-Patienten posttherapeutisch eine Reduktion von IL-17α in 

der Sulkusflüssigkeit aufweisen, was ebenfalls darauf hindeutet, dass IL-17α eng mit 

dem Entzündungsprozess der Parodontitis assoziiert ist. 

5.2.2.1 Einfluss der IL-17α- Expression auf die Knochenhomöostase 

und die mögliche Assoziation zur Parodontitis 

IL-17α wird von speziellen Th17-Zellen produziert, die eine wichtige Rolle bei der 

Osteoklastogenese und der chronischen Entzündung zu spielen scheinen (Gaffen und 

Hajishengallis, 2008). Es fördert die RANKL Produktion und inhibiert die 

Osteoprotegerin-Expression im Parodontalligament, was zu einem Ungleichgewicht der 

Knochenhomöostase führt und die Osteoklastogenese begünstigt (Lin et al., 2014; 

Kanzaki et al., 2001 Nakashima und Takayanagi, 2009; Schenkein et al., 2010; Miossec 

und Kolls, 2012). 
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Darüber hinaus kann IL-17α mehrere Gene der Osteoklastogenese aktivieren und 

synergistisch mit anderen proinflammatorischen Zytokinen wie Tumornekrosefaktor α 

(TNF-α) und IL-1β bei chronischer Entzündung eine Knochenzerstörung verursachen 

(Gaffen und Hajishengallis, 2008; Van Bezooijen et al., 1999). Auch an der Zerstörung 

des Bindegewebes durch die Induktion der Matrix-Metalloproteinase bei Fibroblasten 

kann Interleukin-17 beteiligt sein (Miossec und Kolls, 2012). 

Ohyama et al. (2009), Takahashi et al. (2014) sowie Belken et al. (2007) haben 

beobachtet, dass die Expression von IL-17α in parodontalen Geweben und 

insbesondere an Gewebekompartimenten, die eine enge räumliche Beziehung zu 

Knochenläsionen zeigen, höher als im gesunden Gewebe ist. Dies konnte auf 

Proteinebene bestätigt werden. Zahlreiche Th17-Zellen sowie IL-17α konnten in 

parodontalen Knochendefekten beobachtet werden (Cardoso et al., 2009). T- Zellen 

wurden in parodontalen Knochenläsionen gefunden, die in IL-17α produzierende Th-17 

Zellen transformiert wurden (Okui et al., 2012). Eine Hemmung der IL-17α Produktion 

führte in einer tierexperimentellen Studie sogar zur Hemmung der Osteoklastogenese im 

Parodontium (Eskan et al., 2012). Es gibt daher vermehrt Hinweise, wonach IL17-α den 

Krankheitsverlauf der Parodontitis über eine durch Osteoklastogenese induzierte 

Kaskade negativ beeinflusst. 

5.2.2.2 Einfluss der IL-17α- Expression bei der 

Leukozytenextravasation und die mögliche Assoziation zur Parodontitis 

Stark et al. (2005) beschreiben eine IL-17α-IL-23-G-CSF-Zytokin-Kaskade, wonach IL-

17α die Granulopoiese fördert. Darüber hinaus scheint IL-17α die neutrophilen 

Granulozyten nicht nur zu rekrutieren, sondern auch zu aktivieren. Diese Aktivierung 

kann zur Infiltration des parodontalen Gewebes durch die neutrophilen Granulozyten 

und zu einer exzessiven Entzündung des Parodontiums führen (Sugama et al., 2012; 

Witowski, et al. 2000). 

Des Weiteren fördert IL-17α die Neutrophilenrekrutierung durch Induktion von CXC-

Chemokinen wie CXCL1, CXCL2 und CXCL8 sowie von G-CSF und stimuliert so die 

Entzündung des paradontalen Gewebes (Gaffe, 2009; Iwakura et al., 2011; von 

Vietinghoff und Ley, 2008). Eskan et al. (2012) sowie Maekawa et al. (2015) zeigten, 

dass IL-17α, wie bereits erwähnt, auch die Expression von Del-1 hemmen und dadurch 

indirekt die Extravasation von PMNs steigern kann.  
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Eine exzessive Akkumulation von neutrophilen Granulozyten, die eventuell mit einer 

übermäßigen IL-17α-Expression verbunden ist, passt zum klinischen Bild der 

Parodontitis. In der vorliegenden Studie ist tatsächlich eine erhöhte IL-17α-Expression 

bei Parodontitis-Patienten beobachtet worden. 

5.2.2.3 Altersabhängige Expression von IL-17α 

IL-17α scheint auch mit zunehmendem Alter eine höhere Expression aufzuweisen und 

dies ist wiederum mit einer Störung der Immunhomöostase verbunden. Liang et al. 

(2010) stellten fest, dass Mäuse mit einem gealterten Immunsystem nicht in der Lage 

sind, ihre eigene Mundflora zu kontrollieren und aufgrund dessen eine Parodontitis 

entwickeln. Sie verglichen dazu junge Mäuse (8–10 Wochen alt) mit alten Mäusen (≥18 

Monate alt). Alte Mäuse zeigten einen signifikant stärkeren parodontalen 

Knochenverlust und eine erhöhte Expression des Interleukin-17α. 

Mit zunehmendem Alter wird die Expression nicht nur von IL-17α, sondern auch von 

anderen proinflammatorischen Zytokinen wie IL-1β, TNF-α und Rezeptoren des 

angeborenen Immunsystems wie TLR2, CD14, CD11b/CD18, Komplement C5a-

Rezeptor (C5aR) und TREM-3, die am Ausbruch der Inflammation beteiligt sind, 

verstärkt (Gaffen und Hajishengallis, 2008; Graves et al., 2008). 

Liang et al. (2009) haben die Expression der „Signature“-Moleküle IFN-γ, IL-4, IL-17α 

und „forkhead box“ P3 untersucht und sie konnten eine altersbedingte Überexpression 

von IL-17α beweisen. Diese Beobachtung konnten Eskan et al. (2012) im Mausmodell 

bestätigen. In der vorliegenden Studie wurde kein signifikanter altersabhängiger 

Unterschied der Expression von IL-17α festgestellt. 

5.2.3 Vergleich der Ergebnisse der Expression von LFA-1 mit Daten aus 

der Literatur 

In der vorliegenden Studie wurde in der Parodontitisgruppe eine signifikant höhere 

Expression von LFA-1 als in der Kontrollgruppe nachgewiesen. Diese Ergebnisse 

stehen im Einklang mit zahlreichen früheren Studien. Procházkova et al. (1996) stellten 

fest, dass die Expression von LFA-1β-Molekülen in peripheren Blutzellen von 20 

Patienten mit aggressiver Parodontitis signifikant höher war als bei 10 gesunden 

Patienten. 
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Obwohl die verstärkte Expression von LFA-1 wiederholt mit der Parodontitis in 

Verbindung gebracht wurde, sind die pathogenetischen Mechanismen, die dieser 

Beobachtung zugrunde liegen, bislang kaum untersucht. Jedoch konnten 

Untersuchungen zeigen, dass in der Sulkusflüssigkeit von Parodontitispatienten mehr 

und stärker gefärbte CD11a-positive Zellen als im peripheren Blut vorhanden waren 

(Takeuchi et al. 1995) sowie größere Mengen an LFA-1 im parodontalen Epithel und in 

den Zahnfleischtaschen bei Parodontitispatienten als bei Gesunden (Yan et al. 1999). 

Bei parodontal gesunden Kontrollen konnten keine CD11a-positiven Zellen 

nachgewiesen werden (Takeuchi et al. 1995). Dies deutet darauf hin, dass die 

Ausschüttung von LFA-1 lokal im entzündenden Parodontium signifikant höher ist. LFA-

1 scheint positiv mit der Parodontitis korreliert zu sein. 

5.2.3.1 Einfluss der LFA-1 Expression auf die Leukozytenextravasation 

und die mögliche Assoziation zur Parodontitis 

LFA-1 ist bei der Rekrutierung der neutrophilen Granulozyten (Feste Adhäsion und 

Transmigration) in den Entzündungsbereich beteiligt (1.4.4) (Luster et al., 2005; 

Springer, 1994; Ley et al.. 2007; Rao et al., 2007; Keiper et al., 2005; Carlos et al., 1994; 

Schenkel et al., 2004; Müller et al., 2002; Imhof und Aurrand-Lions, 2004; Kinashi, 2005; 

Shaw et al., 2004; Salas et al., 2004; Zarbock et al., 2007 ). LFA-1 interagiert dabei mit 

ICAM-1 und dient dadurch der Aktivierung von neutrophilen Granulozyten. LFA-1 kann 

die Extravasation von T- Lymphozyten in das entzündete Gewebe auch durch eine LFA-

1 /ICAM-1 Kaskade begünstigen und dadurch autoimmunologische Mechanismen, wie 

z.B. bei der Multiplen Sklerose, aktivieren (Rudolph et al., 2016; Verma und Kelleher, 

2017). Die Rekrutierung der PMNs führt zur exzessiven Infiltration von neutrophilen 

Granulozyten am Entzündungsort, beispielsweise dem Parodontium. 

Darüber hinaus scheint Del-1 die LFA-1 Expression in einer ICAM-1 abhängigen 

Kaskade zu inhibieren. Del-1 antagonisiert LFA-1 um die Bindung an ICAM-1 und 

verhindert dadurch die Leukozytenextravasation (Choi et al., 2008).  Tatsächlich ist eine 

erhöhte LFA-1 Expression zusammen mit einer mangelhaften Del-1 Expression bei 

parodontal erkranktem Gewebe zu beobachten (Eskan et al. 2012). Auch in der 

vorliegenden Studie ist es gelungen,  im Gewebe von Parodontitispatienten eine 

mangelhafte Expression von Del-1 in Verbindung mit einer gleichzeitig übermäßigen 

LFA-1 Expression nachzuweisen. 
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Ferner verbindet eine weitere Studie eine verminderte LFA-1 Expression im Rahmen 

des LAD-1 Syndroms mit einer erhöhten IL-17α Expression. Dies hatte eine 

ausgeprägte Parodontitis mit einer exzessiven Granulopoese und einem ausgeprägten 

Knochenverlust zufolge. Durch eine IL-17α-Antikörpertherapie konnte das klinische Bild 

der Parodontitis rückgängig gemacht und die mikrobielle Belastung minimiert werden 

(Moutsopoulos et al., 2014). Diese Daten legen nahe, dass eine verminderte LFA-1 und 

IL-17α –Expression mit der parodontalen Gesundheit verbunden ist, was auch in der 

vorliegenden Arbeit bestätigt werden konnte.  

Es stellt sich darüber hinaus die Frage, warum es im Rahmen des LAD-1-Syndroms 

durch Senkung der IL-17α-Level dennoch zur parodontalen Heilung kommt. Bei 

gleichzeitig niedrigen Spiegeln von IL-17α und LFA-1 wird die Neutrophilenakkumulation 

behindert. Dieses spricht gegen der Theorie, dass die Abwesenheit von neutrophilen 

Granulozyten zu einer vermehrten bakteriellen Belastung und zum Ausbruch der 

Parodontitis führt (Hajishengallis und Korostoff, 2017). Auch die Tatsache, dass 

Individuen mit einer chronischen Granulomatose (CGD), d.h. einer gestörten 

Abwehrfunktion der Granulozyten, kein erhöhtes Risiko für eine Parodontitis aufweisen, 

spricht gegen diese Theorie (Nussbaum und Shapira, 2011; Sima und Glogauer, 2014). 

Die ungestörte Rekrutierung von neutrophilen Granulozyten im Parodontium scheint 

wichtiger zu sein, als die Fähigkeit des Parodontiums, die Bakterien zu eliminieren. Die 

aktuelle Studie hat eine niedrige LFA-1 und IL-17 - Expression mit dem Phänotyp des 

gesunden Parodontiums in Verbindung gebracht. 

5.2.3.2 Zusammenhang zwischen LFA-1 - Expression und mikrobiellen 

Komponenten 

LFA-1 scheint mit Hilfe von LPS (Lypopolysaccharide) des Aggregatibacter 

actinomycetemcomitans (Leitkeims der Parodontitis) überexprimiert zu sein. Zwei 

Studien zeigten, dass nach einer zwölfstündigen Inkubation mit LPS die Expression von 

LFA-1 in murinen Makrophagen-Zelllinien deutlich gesteigert war (Tsutsumi et al., 2010). 

Diese erhöhte Expression von LFA-1 könnte somit eine Rolle beim pathogenetischen 

Beitrag von A. actinomycetemcomitans durch diese LPS-Kaskade zur Parodontitis 

spielen. In der vorliegenden Studie ist es gelungen, eine erhöhte Expression von LFA-1 

bei Patienten mit einer Parodontitis nachzuweisen. Darüber hinaus bindet sich LFA-1 an 

LtxA und begünstigt dadurch die Eliminierung der Leukozyten. Leukotoxin (LtxA) ist ein 
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großes, porenbildendes Protein der RTX-Familie, und es wird von A. 

actinomycetemcomitans und P. gingivalis produziert (Lally et al., 1989; Kraig et al., 

1990). Die Interaktion zwischen Toxin (LtxA) und Rezeptor (LFA-1) führt zum Zelltod der 

PMNs (Morova et al. 2008) (Abbildung 5.2.1.4). Die Konformation von LtxA ändert sich 

nach der Interaktion mit den LFA-1-Rezeptoren der Leukozyten signifikant und führt zur 

Membraninsertion des Toxins (Morova et al., 2008). Anschließend kommt es bei 

niedriger Konzentration der LtxA zur Apoptose der Leukozyten. Bei hohen 

Konzentrationen (> 5 µg/ml) hingegen nekrotisiert LtxA die Leukozyten sehr schnell. 

LtxA tötet primär Zellen, die aktiviertes LFA-1 besitzen (Kachlany et al., 2010). Daher 

kann LtxA die diversen Zellen des Parodontiums nicht ohne die Hilfe von LFA-1 

eliminieren. 

Vermutlich beschleunigen somit mikrobielle Komponenten des Biofilms (beispielsweise 

LtxA) zeitgleich mit einer exzessiven Expression von LFA-1 die Zerstörung des 

parodontalen Gewebes und begünstigen damit den Ausbruch einer Parodontitis, was in 

der vorliegenden Studie bestätigt worden ist. 

 

Abbildung 5.2.1.4: Schematische Darstellung der Molekularstruktur der Interaktion zwischen 
Leukotoxin und Zellmembran. Der Zielrezeptor LFA-1 bindet sich an der repeat region der RTX, 
und diese Interaktion ist verantwortlich für die Affinität der LtxA an den Leukozyten (Quelle: 
Lally, E.T.; Hill, R.B.; Kieba, I.R.; Korostoff, J. The interaction between RTX toxins and target 
cells. Trends Microbiol. 1999, 7, 356–361, modifiziert durch Johansson A.: Aggregatibacter 
actinomycetemcomitans leukotoxin: a powerful tool with capacity to cause imbalance in the host 
inflammatory response. Toxins (Basel). 2011 Mar;3(3):242-59 und). 

Zusammenfassend wurde LFA-1 in mehreren Studien mit der Parodontitis in Verbindung 

gebracht (Choi et al., 2015; Eskan et al., 2012; Mitroulis et al., 2014). Diese Ergebnisse 

konnten durch die vorliegende Studie bestätigt werden. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Johansson%252520A%25255BAuthor%25255D&cauthor=true&cauthor_uid=22069708
http://www.ncbi.nlm.nih.gov/pubmed/22069708#%2523
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5.2.3.3 Altersbedingte Expression von LFA-1 

Ma et al. (2008) haben eine altersbedingte Überregulierung von LFA-1 in einem 

experimentellen Modell zur Atherosklerose ermittelt. Da die Atherosklerose ebenfalls 

eine chronische Entzündungserkrankung wie Parodontitis darstellt (Abbildung 5.2.1.5), 

wurde in der vorliegenden Studie untersucht, ob auch LFA-1 mit zunehmendem Alter 

überexprimiert wird und ob diese veränderte Expression mit dem Phänotyp der 

Parodontitis verbunden ist. Es ist in dieser Studie jedoch nicht gelungen, eine 

altersbedingte Korrelation von LFA-1 mit der Parodontitis aufzuzeigen. 
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6 Anhang 

6.1 Abbildungsverzeichnis 

Abbildung 1.2.2.1: Schematische Darstellung der Leukozytenextravastion: (i) PMNs 

werden vom aktivierten Endothelium festgehalten (ii) Dann erfolgt das rolling und (iii) 

das slow rolling der Leukozyten auf dem Endothelium. Anschließend werden PMNs (iv) 

von Chemokinen des Endotheliums aktiviert (Activation), gefolgt von (v) der festen 

Adhäsion der PMNs ans Endothelium. Danach erfolgt (vi) das post-adhäsive crawling 

der PMNs (vii), die zum Ende der Extravasation transendothelial migrieren 

(Transmigration oder Diapedese). Spezifische Adhäsionsmoleküle sorgen dafür, dass 

die benötigten Zelltypen zur richtigen Zeit an den richtigen Ort rekrutiert werden. (Quelle: 

Choi EY.: Inhibition of leukocyte adhesion by developmental endothelial locus-1 (del-1). 

Immune Netw. 2009 Oct;9(5):153-7) .......................................................................... 7 
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°C Grad Celsius 

AAP  American Academy of Periodontology 

C5aR  Komplement C5a-Rezeptor  

COPD  Chronisch obstruktive Lungenerkrankung  

DEL-1 developmental endothelial locus-1 

Del-1–Fc  lösliches rekombinantes developmental endothelial 

locus1 

DMS V  Fünfte Deutsche Mundgesundheitsstudie 

DNA   Deoxyribunucleic Acid 

EFP  European Federation of Periodontology 

EGF epidermalen Wachstumsfaktor 

GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase 

GSK-3 Glykogensynthase-Kinase 3 

ICAM-1 Interzelluläres Zelladhäsionsmolekül 1  

IFN-γ Interferon gamma 
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IL-1 Interleukin 1 

IL-17α  Interleukin 17 alpha 

IL-1α Interleukin 1α 

IL-1α Interleukin 1 alpha 

IL-1β Interleukin 1 betta 

IL-6 Interleukin 6 

IL-8 Interleukin 8 

Kg kilogram 

LAD-1 Leukozytenadhäsionsdefizienz Typ 1 

LFA-1 lymphocyte function-associated antigen-1 

LPS  Lipopolysaccharid 

LSGL-1 L-selectin-glycoprotein-ligand-1 

Mac-1  Macrophage-1 antigen 

mm millimeter 

mRNA Messenger Ribonucleic Acid 

MS Multiplen Sklerose  

NFATC1 Nuclear Factor Of Activated T Cells 1  

NOD-Mäuse non-obese diabetic Mäuse 

P. gingivalis  Porphyromonas gingivalis 

PCR Polymerasen Ketten Reaktion 

PMN Polymorphkernige Granylozyten 

PMNs Neutrophile Granulozyten 

PSD Modell Modell der polymikrobiellen Synergie und Dysbiose 
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https://en.wikipedia.org/wiki/Macrophage-1_antigen
https://en.wikipedia.org/wiki/NFATC1
https://en.wikipedia.org/wiki/NFATC1
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RANKL   Receptor Activator of Nuclear Factor κB 

rs Korrelationskoeffizient 

RT-PCR Real time Polymerasen Ketten Reaktion 

RT-qPCR  Real-time-quantitative PCR 

TNF-α  Transforming growth factor alpha 

TNF-β  Transforming growth factor betta 

TREM-3 Triggering receptor expressed on myeloid cells 3 

TSG-14  TNF-inducible gene-14 – Protein 

VCAM-1 vaskuläre Zelladhäsionsmolekül-1 

vs. Versus 

WHO World Health Organisation 

β2-Integrine betta-2 Intergine 
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7 Zusammenfassung 

Die Parodontitis ist eine chronische Infektionserkrankung. An der Pathogenese dieser 

Krankheit könnte nach aktuellen ätiologischen Modellen unter anderem eine ineffektive 

und überschießende Reaktion des Immunsystems beteiligt sein. Del-1 und PTX3 gelten 

als Regulatoren der Leukozytenrekrutierung, die eine wichtige Rolle bei der 

Immunantwort während der Entzündung spielen. 

Ziel der vorliegenden Studie war die Bestimmung der Expression von Del-1, PTX3, LFA-

1 und IL-17α bei der klinischen Manifestation der Parodontitis. 

Dazu wurden gingivale Gewebeproben von insgesamt 95 Individuen untersucht, 42 mit 

leichter Parodontitis, 40 mit schwerer Parodontitis und 13 parodontal gesunde 

Probanden. Die Bestimmung der Stärke der Expression erfolgte durch RT-PCR mit 

anschließender Schmelzkurvenanalyse. 

Es zeigte sich, dass die Expression der Moleküle PTX3 und Del-1 in der 

Untersuchungsgruppe signifikant niedriger und die von IL-17Α und LFA-1 signifikant 

höher als in der Kontrollgruppe war. 

Darüber hinaus war die Expression von Del-1 signifikant negativ mit dem Schweregrad 

der Parodontitis und auch dem Alter, aber nicht mit dem Geschlecht der Probanden 

korreliert. Des Weiteren zeigte PTX3 eine signifikante negative Korrelation mit der 

Parodontitis, IL-17α und LFA-1 hingegen waren positiv mit der Parodontitis assoziiert. 

Die vorliegenden Ergebnisse deuten darauf hin, dass eine zum Teil altersabhängige 

Fehlregulation der PMN-Extravasation von LFA-1, IL-17α, PTX3 und Del-1 an der 

Entstehung der Parodontitis beteiligt sein könnte. Diese Hypothese muss noch in 

weiteren Studien bestätigt werden und könnte dann zur Entwicklung neuer spezifischer 

Therapieoptionen der Parodontitis herangezogen werden. 
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