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Zusammenfassung

Die Kopplung supersymmetrischer skalarer Materie-Multipletts an superkonforme Eich-
theorie und Gravitation in drei Raumzeit-Dimensionen wird im Formalismus des N-
erweiterten Superraumes beschrieben. Die Formulierungen supersymmetrischer Eich-
theorie und konformer Supergravitation in diesem Superraum werden vorgestellt und ein
Formalismus fiir die Analyse von Superfeldkomponenten wird entwickelt. Ein Superfeld-
Wirkungsprinzip, welches zu einer allgemeinen Klasse minimaler Multipletts auf der
Massenschale fithrt, wird eingefiihrt. Darauf folgend wird ein Skalar-Multiplett, wel-
ches von einem zwangsbeschrinkten Superfeld beschrieben wird und nur aus unter
spin(N) transformierenden Lorentz-Skalaren und Spinoren besteht, als speziell zwangs-
beschréinkter Fall des minimalen unbeschréinkten Multipletts identifiziert. Seine Super-
feldwirkung wird aus dem Wirkungsprinzip fiir das unbeschriankte skalare Superfeld
hergeleitet. Die Analyse wird fiir eine supersymmetrisch eich- und gravitationskovari-
ante Beschreibung von Superfeldkomponenten verallgemeinert und eine Kopplungsbe-
dingung sowie die Wirkung, welche diese Kopplung beschreibt, werden gefunden. Auf
dieser Basis werden alle Eichgruppen fiir das Skalar-Multiplett, welche von N' < 8 er-
weiterter superkonformer Symmetrie erlaubt sind, im flachen Superraum bestimmt und
ebenso im gekriimmten Superraum, in welchem das Skalar-Multiplett zusétzlich gravita-
tionell gekoppelt ist. Dies fithrt zur Konstruktion sdmtlicher gravitationell gekoppelter
Chern-Simons-Materie-Theorien. Unter der Benutzung des gravitationell gekoppelten
Skalar-Multipletts als konformen Kompensator werden die resultierenden kosmologi-
schen topologisch massiven Gravitationen nach den korrespondierenden Parametern pf,
also dem Produkt aus der Kopplungskonstante der konformen Gravitation und dem
anti-de-Sitter-Radius, klassifiziert. Die Modifikationen von uf bei der Priasenz erlaubter

Eichkopplungen fiir den skalaren Kompensator werden bestimmt.
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Abstract

The coupling of supersymmetric scalar-matter multiplets to superconformal gauge theory
and gravity in three-dimensional space-time is described in the formalism of N -extended
superspace. The formulations of super-gauge theory and conformal supergravity in this
superspace are reviewed and a formalism for analysing superfield components is devel-
oped. A superfield action principle giving rise to a general class of minimal on-shell
multiplets is introduced. Subsequently, a scalar multiplet described by a constrained su-
perfield and consisting only of Lorentz scalars and spinors transforming under spin(N)
is recognised as a specially constrained case of the minimal unconstrained multiplet.
Its superfield action is deduced from the action principle for the unconstrained scalar
superfield. The analysis is generalised to a super-gauge- and supergravity-covariant de-
scription of superfield components and a coupling condition for the scalar multiplet as
well as the action describing this coupling are obtained. Based on this, all gauge groups
for the scalar multiplet consistent with /' < 8 extended superconformal symmetry are
determined in flat superspace, as well as in curved superspace where the scalar multiplet
is also coupled to conformal supergravity. This results in the construction of all super-
conformal Chern-Simons-matter theories coupled to gravity. Using the gravitationally
coupled scalar multiplet as a conformal compensator, the resulting cosmological topolog-
ically massive supergravities are classified with regard to the corresponding parameters
wl, i.e. the product of the conformal-gravity coupling and the anti-de Sitter radius. The
modifications of puf in presence of possible gauge couplings for the scalar compensator

are determined.
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1. Introduction

Fields have been recognised as indispensable entities for the formulation of physical the-
ories since the development of electromagnetism by Maxwell. Today, field theories are
still the language for the most successful models of fundamental phenomena. Incor-
porating the principles of special relativity and quantum mechanics, they describe the
particles and interactions in the Standard Model of particle physics. A classical field
theory for gravity, and thereupon models for cosmology, are implied by the principle of

general relativity.

A particular power for the formulation of field theories is provided by the principle of
symmetry. A symmetry is given, if the most basic description of a theory is invariant
under a specific transformation of its constituting objects.

Above all, the symmetry under space-time transformations is obviously demanded
by the principle of relativity. The symmetry transformations associated to space-time
can act on two kinds of fields which are called bosonic and fermionic. They are the
representations of the space-time symmetry group with integer and half-integer spin,
respectively. Physically, they are conceptually distinguished. The latter describe matter
fields like leptons and quarks, while the former correspond to force particles like photons
and gluons as well as scalar fields like the Higgs boson.

Furthermore, especially in the Standard Model of particle physics, internal symmetry
groups acting on the degrees of freedom formed by the fields themselves play an impor-
tant role. For a manifestly invariant formulation, the degrees of freedom are arranged
in multiplets on which a matrix representation of the respective symmetry group can
act. These transformations become vital if they are allowed to be space-time-dependent.
Such local symmetries, also called gauge symmetries, lead to successful descriptions of
force particles interacting with the matter particles and mediating interactions between
them.

There is no better outside reason for the existence of such internal symmetries, than

that they are, together with space-time symmetry, eligible symmetries of a reasonable



1. Introduction

scattering matrix, i.e. the matrix describing scattering processes between particles. In
this regard, there is only one further allowed kind of symmetry. It is called supersym-
metry and concerns the symmetry of space-time itself.

Supersymmetry generalises the symmetry associated to space-time in a way, that the
fermionic and bosonic representations transform into each other. Supersymmetric theo-
ries therefore always describe systems where both kinds of particles appear together and
can be seen as members or aspects, sometimes called superpartners, of one supermul-
tiplet. These supermultiplets can manifestly be described using superfields instead of
fields, which are functions of a superspace instead of space-time, resembling the fact that
supersymmetry is a generalisation of space-time symmetry. The bosonic and fermionic
fields are encapsulated in a superfield as the coefficients of an expansion in even and odd
powers of the fermionic superspace coordinates. Together with supersymmetry comes
another symmetry, similar to an internal one, naturally acting on the fermionic repre-
sentations. These degrees of freedom can be regarded as corresponding to a number N
of usual supersymmetries, implying an extension of the structure of possible supermul-
tiplets. These symmetries are called (N-)extended supersymmetries.

Applying the paradigm of supersymmetry leads to various consequences. As for parti-
cle physics, it would for example predict corresponding superpartners for each particle of
the Standard Model. This has provoked a phenomenological interest in supersymmetry
for decades, with no concluding result so far.

Regarding gravity, the principle of general relativity adapted for superspace leads to
supersymmetric gravity, with the metric field or graviton and a so-called gravitino as
superpartners. An interesting feature of supersymmetry is the automatic implication
of supergravity, if the transformations are local, similar to a gauge theory. After all,
two (fermionic) local supersymmetry transformations correspond to a (bosonic) local
space-time translation, which is the symmetry transformation corresponding to general

relativity.

In this thesis, the focus lies on three-dimensional supersymmetric field theories with
highly extended supersymmetry. Those can be motivated from the point of view of
11-dimensional space-time: The supermultiplet of 11-dimensional N = 1 supersym-
metry contains the graviton as the field with highest spin. Since massless fields with
spins higher than two are considered unphysical, this theory qualifies as the highest di-
mensional and unique supersymmetric field theory and supergravity [1]. The equations

of motion of 11-dimensional (11d) supergravity admit a solution describing spatially



two-dimensional membranes which are called M2-branes [2]. Their three-dimensional
world-volume theory [3], i.e. the theory describing their internal dynamics, naturally
involves the coupling to 11d supergravity. The M2-brane world-volume preserves one
half of the 32 supercharges needed to parametrise the N' = 1 supersymmetry transfor-
mations in 11 dimensions, thus gaining the higher amount of N = 8 supersymmetry [4],
which is a common effect of this dimensional reduction.

Furthermore, in a suitable scaling limit, the M2-brane solution describes the space
AdS, x S7 [5], i.e. the four-dimensional space of constant negative curvature with 7-
spheres at each point. In this case, it additionally displays conformal symmetry [6],
which corresponds to invariance under local rescaling of the metric. According to the so-
called AdS/CFT correspondence [6], this suggests the existence of a three-dimensional
superconformal gauge theory with a number of N internal degrees of freedom, which
would be interpreted as the world-volume theory for a stack of N coincident M2-branes.

Another point of view on M2-branes comes from their interplay with superstring
theory. The five known formulations of superstring theory are connected by a web of
dualities, which means they are equivalent ways for describing the same phenomena,
but in different physical regimes. Their low-energy limits are corresponding versions of
ten-dimensional supergravity. One of these, the type IIA supergravity, can directly be
obtained from the unique 11d supergravity, by compactifying one of the 11 dimensions
on a circle whose radius is proportional to the string-coupling constant. Thus, via the
duality web, all ten-dimensional supergravities descend from the 11-dimensional one. In
turn, 11d supergravity is expected to be the low-energy limit of the so-called M-theory,
whose full high-energy formulation is unknown. The superstring theories (as well as 11d
supergravity) are thus regarded as certain limits of M-theory and the M2-branes are
considered as fundamental for M-theory as strings are for string theory.

The type ITA supergravity also contains membranes which are called D2-branes and
describe hypersurfaces for string endpoints. Due to this relation to string dynamics,
the low-energy world-volume theory for a stack of N coincident D2-branes is known to
be a non-conformal three-dimensional gauge theory for N internal degrees of freedom.
The gauge coupling is proportional to the string coupling and thus to the size of the
compactified 11th dimension. Therefore, in the limit of infinite coupling strength, the
size of the 11th dimension increases again, until the theory corresponds to a stack of
M2-branes in 11 dimensions. In this strong-coupling regime, the theory should obtain
the conformal symmetry implied by the AdS/CFT correspondence

The three-dimensional field theory meeting the above requirements for the low-energy
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world-volume theory for a stack of M2-branes is N' = 8 superconformal Chern-Simons
gauge theory coupled to eight scalar and spinor fields, which are usually called matter
fields [7]. Since the Chern-Simons theory is non-dynamical, the scalar fields represent
the degrees of freedom of M2-branes in the eight transverse directions. The theory is
known as the BLG model [§, 9] and is invariant under the gauge group SU(2) x SU(2).
Due to this unique gauge group, it cannot be interpreted as the world-volume theory of
a stack of N > 2 coincident M2-branes [10} I1], as implied by the D2-brane theory and
desired by the AdS/CFT correspondence. This is however possible for a theory with
only N = 6 supersymmetries and the gauge group SU(N) x SU(NN), known as the ABJM
model [I2]. The reduction of the amount of supersymmetry is achieved by geometric

restrictions on the transverse coordinates.

Apart from this motivation for the ABJM model, superconformal Chern-Simons-
matter theories with lower amounts N/ < 8 of supersymmetry and different gauge groups
are still a matter of interest. Their most crucial feature is that possible gauge groups
are restricted by consistency with supersymmetry for N' > 4. Notable achievements in
the classification of Chern-Simons-matter theories with regard to supersymmetry and
gauge groups have been made in [13] for N' = 4 in the context of four-dimensional su-
persymmetric gauge theories, in [14] [15] for A/ = 5,6 in the context of the geometry of
M2-branes, and in demand for formal classifications, in [16] for N = 6 and [17] for all
N. A superspace point of view was adopted in [I8] for N' = 4, [19] for ' = 5,6, [20] for
N =6, [2I] for N = 6,8, and in [22] for N = 8.

As a part of the present thesis, this quest is repeated using the formalism of N-
extended superspace. In this approach, the supersymmetric matter is described by a
scalar superfield. The advantage of this approach is not only the manifestly supersym-
metric formulation, but also the as far as possible unified manner in which the cases of
N are analysed. The scalar superfield is subject to a certain supersymmetric constraint
in order to describe a familiar scalar-matter supermultiplet. However, in the presence of
a gauge coupling, this constraint is in general inconsistent. Rather, it is valid only under
an algebraic condition involving a superfield representing the field-strength multiplet,
containing the usual gauge field strength and its superpartners. In general, these field
strengths have to be expressed by the scalar-matter current which couples to the gauge
fields, according to their Chern-Simons equation of motion. The specific algebraic prop-
erties of these matter currents decide on the solvability of the condition for the scalar

superfield and thus over the admissibility of the gauge group in question.



The classification of coupled supersymmetric matter gives rise to another application,
which is the realisation of certain supergravity theories. Non-supersymmetric three-
dimensional gravity, likewise a field theory emerging in curved space, has some distin-
guished features compared to its analogue in four dimensions. Namely, both its versions
of Einstein-Hilbert gravity and conformal gravity each for themselves have no dynamics.
The latter is solved by conformally flat space-time and the former completely fixes the
geometry of space-time by its equations of motion to be flat or have constant curvature,
leaving no room for a locally propagating graviton. Nevertheless, in the presence of a
negative cosmological constant, a black hole solution [23] with anti-de Sitter space as
the asymptotic limit and in consequence [24] a corresponding two-dimensional conformal
field theory in this region with its two propagating modes are supported.

Thanks to the existence of these two models for gravity, a third model can be con-
structed by adding them together. The result is a dynamical theory known as topologi-
cally massive gravity [25], since it gives rise to a new propagating degree of freedom with
a mass determined by the coupling of the conformal supergravity. It notoriously requires
some finesse regarding the positivity of the occurring energies. As for the massive gravi-
ton alone and in absence of the cosmological constant, the sign of the Einstein-Hilbert
action must be inverted to ensure a positive energy. This carries with it the downside
of negative black-hole masses upon including the negative cosmological constant. A
sensible model with no negative energies is given by the so-called chiral gravity [26]. It
is characterised by the usual sign of the Einstein-Hilbert action and the value uf = 1,
where p is the conformal-gravity coupling and ¢ is the anti-de Sitter radius related to the
negative cosmological constant. Under this specification, the black holes have positive
mass while the massive graviton and one of the boundary gravitons disappear, leaving

only one mode with positive energy in the boundary conformal field theory [27].

N-extended supergravity in three dimensions can be formulated in N-extended curved
superspace. This approach automatically leads to a description of conformal super-
gravity. In view of the Einstein-Hilbert term of topologically massive gravity, realising
non-conformal supergravities requires the coupling to certain fields which are called
conformal compensator. These have to display specific properties in order to ensure
conformal invariance. In a second step, the conformal symmetry can be broken by fixing
an expectation value of the compensator, thus preventing it from preserving conformal

invariance by compensating for the transformations of the other fields in the theory.
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In order to serve as a conformal compensator, the scalar-matter multiplet coupled to
superconformal Chern-Simons theories can further be coupled to conformal supergravity
[28, 29, 21]. This carries with it the effect of modifying the spectrum of the admissi-
ble gauge groups compared to flat superspace [30] 21I]. The above superfield formalism
for the coupled scalar-matter multiplet remains applicable, but in addition to the field-
strength multiplet, there appears the conformal-supergravity multiplet described by a
superfield called super-Cotton tensor. It contains the Cotton tensor, which is an in-
variant tensor of conformal gravity constructed from the curvature tensor, but instead
of curvature, it measures the conformal flatness of a space-time. The impact of curved
superspace on the allowed gauge groups is quite particular regarding the number of su-
persymmetries. In the cases NV = 4 and N' = 5 it has no effect. For N' = 6, it relaxes
the restrictions on certain U(1) factors of the gauge groups present in flat superspace
[30]. This phenomenon is due to the fact, that the N/ = 6 super-Cotton tensor can be
regarded as being dual to a U(1) field strength. For N/ =7 and N/ = 8 it gives rise to
the possibility of matter fields in the fundamental representations of gauge groups which

are unrelated to those in flat superspace.

Using the gauge- and supergravity-coupled scalar-matter multiplet as a conformal
compensator naturally realises supersymmetric versions of topologically massive grav-
ity. A distinguished feature of the resulting theories is that the value of uf is always
fixed by the superconformal geometry for N' > 4 [31 32]. The underlying mechanism
is essentially the following. Since the super-Cotton tensor contains the field strength
of the gauged SO(N) structure group of extended superspace, its value is determined
by the Chern-Simons coupling p via the Chern-Simons equation of motion of confor-
mal supergravity. In the geometry defining anti-de Sitter superspace, the cosmological
constant is generated by the value of a torsion superfield transforming inhomogeneously
under super-Weyl transformations, which are transformations related to conformal in-
variance. The presence of a scalar compensator superfield in this background requires a
gauge for this superfield relating it to the super-Cotton tensor. Upon giving the scalar
compensator its expectation value, this fixes the relation between p and /.

As is the nature of a conformal compensator, the opposite sign of the Einstein-Hilbert
action is generated [29]. It suggests that the nature of negative mass BTZ black holes,
being a consequence of this sign, should be addressed by different interpretations. This
issue is not a topic of this thesis, but will be addressed again in the conclusion.

The question is then which supergravities may imply the value ¢ = 1 preferred by



the model of chiral gravity. They are the ones with ' = 4 [31] and /' = 6 [29]. The list
of values pf for all amounts of supersymmetry 4 < A < 8 obtained from the analysis

with a compensator not coupled to a gauge group is [32]

N= 45 6 7 8
(W)t= 1 35 1 2 3.

Modifications of these values may occur if the compensator is also coupled to its allowed
gauge groups [21, B2]. In this case, a number of its gauge components can be chosen to
generate the Einstein-Hilbert coupling constant. The most diverse, yet specific, effects

appear for N' = 6 with gauge group SU(NV) in shape of the formula [32]

2
Nt == -1,
(ul) p

where p is the number of non-vanishing components, and for A/ = 8 with the gauge
group SO(N) [21I] and the formula [33]

4
N == -1,
(1l) p

Both cases additionally allow pf = oo corresponding to the solution of Minkowski space.
For N/ = 8 also the value uf = 1 can be generated by choosing two compensator com-

ponents.

Outline. The present thesis is organised as follows. In Chapter 2, the formalism of
three-dimensional extended superspace is introduced to describe supersymmetric scalar
matter fields, super-gauge theory and conformal supergravity, which will be coupled
together in the subsequent Chapter 3. Regarding supersymmetric scalar matter, the
component expansion of scalar superfields is developed and discussed, with the goal of
arriving at the case of an on-shell multiplet described by a constrained superfield, which
consists of a scalar and a spinor field transforming under the fundamental representation
of spin(N'). An off-shell superfield action principle leading to a general class of minimal
on-shell multiplets is proposed, from which the spin(/N) scalar multiplet and its superfield
and component actions follow as a special, constrained case. Subsequently, super-gauge

theory and conformal supergravity in the formulations of conventional curved SO(N)
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superspace and conformal superspace are reviewed. A special focus lies on anti-de Sit-
ter superspace as a supersymmetric background solution of supergravity, which will be
relevant for topologically massive supergravity discussed in Chapter 4.

In Chapter 3, the component analysis of scalar superfields is generalised in order
to describe gauge-covariant superfield components. This leads to the derivation of a
coupling condition for the spin(A/) scalar multiplet, which is implied by consistency with
the covariant constraint on the scalar superfield describing this multiplet or, in other
words, by consistency of the supersymmetry transformations of its covariant components.
This condition is then fully analysed and solved for 4 < N < 8, resulting in the complete
spectrum of allowed gauge groups in flat as well as in curved superspace. To this end, the
scalar-matter currents which couple to gauge fields are determined and recast as scalar-
superfield currents, corresponding to equations of motion for the superfields describing
the gauge and supergravity multiplets.

In Chapter 4, results are combined in order to use the coupled scalar multiplet as
a conformal-compensator multiplet for topologically massive supergravities. Requiring
consistency with the background of anti-de Sitter superspace leads to a formula for the
values of ¢ with a single compensator, depending on the case A. Subsequently, the
effects on the value of uf generated by a gauged scalar compensator will be investigated.

Aspects and conventions of the general treatment of symmetry groups used in the
main text, as well as some formal expressions belonging to the superfield-component

analysis have been relegated to the appendix.



2. Three-dimensional superspace

In this chapter, the relevant formalisms in three-dimensional superspace needed for the
later purpose of coupling supersymmetric scalar matter conformally to super-gauge the-
ory and conformal supergravity are reviewed, developed, or elaborated on.

In Section , the supersymmetry algebra is introduced and properties of the
Lorentz group are presented.

In Section , the representation of supersymmetry on superfields is discussed and
a formalism for the analysis of superfield components is developed. An off-shell action
principle, giving on shell rise to minimal scalar multiplets, is proposed. Based on this
formalism, the constrained scalar superfield transforming under spin(/N') describing the
on-shell multiplet coupled to super-gauge fields and supergravity in the next chapter is
analysed and the corresponding superfield action is derived.

In Section , gauge-covariant derivatives are introduced and the content of the
gauge connection is examined. The algebra of covariant derivatives is derived by solving
the super-Jacobi identity under the constraint defining the field-strength multiplet.

In Section , two descriptions of extended conformal supergravity are presented.
The first approach is the conventional curved SO(N) superspace, which is described by
certain Weyl-invariant constraints on the torsions. These will be motivated by investigat-
ing the algebra of covariant derivatives in terms of the gauge fields of the local structure
group. The super-Jacobi identity will be solved under these constraints in order to de-
rive the field strengths in the supergravity algebra in terms of the super-Cotton tensor
and the torsions. Subsequently, anti-de Sitter superspace is introduced as the maximally
symmetric background of this geometry. The more briefly presented second approach
is conformal superspace, where the whole superconformal group is gauged as the local
structure group. It can be translated into conventional superspace and is convenient for

obtaining useful relations in a simpler way.



2. Three-dimensional superspace

2.1. Supersymmetry algebra

Three-dimensional supersymmetric space-time or superspace is parametrised by the co-

ordinates
24 = (xa,Qé), (2.1.1)

where 6! are odd supernumbers, i.e.
09607 = —0°0%, (2.1.2)

carrying an SL(2,R) index a = 1,2 and an SO(N) index I = 1,..., V. The space-time
coordinate z, carries an SO(2,1) index a = 0,1, 2.

The symmetry group of this superspace is the three-dimensional super-Poincaré group,
which is generated by the super-Poincaré algebra. The super-Poincaré algebra is ob-

tained from the Poincaré superalgebra

[%ab’%cd] _ _4T][c[a%b]d] (213&)
[P, Py) =0 (2.1.3b)
{QL, Q%) = 26" P.g (2.1.3¢)

by requiring anticommuting parameters for the fermionic generators Q! and commuting
parameters for the remaining bosonic generators. In other words, an element of the

super-Poincaré algebra reads

X = L My, + 10" P, +i7Q) (2.1.4)

[}

where
£9eh = —ePed. (2.1.5)

The part corresponding to the bosonic part of the Poincaré superalgebra is the symme-
try group of non-supersymmetric space-time SO(2,1) x R3. The part corresponding to

the fermionic part is the group of supersymmetry transformations.

Referring to the terminology introduced in Appendix A, the Lorentz group SO(2,1)
is the pseudo-orthogonal group with

™" = diag(—1,1,1)™ (2.1.6)

10
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and SL(2,R) is the symplectic group Sp(2) with

ap
0 1
e = : (2.1.7)
-1 0

The two-to-one correspondence between these two groups is established by mapping
a Lorentz vector to the space of symmetric 2 X 2-matrices Sym(2,R) with the basis
Sy = {S0, S1, S}, where

50:<1 0) , 51:<0 1) | 52:(1 0). 215)
01 10 0 —1

This basis is (pseudo-) normalised as
tr(S™S") = —2mm, (2.1.9)

where S,, = {So, —=S1, =S }. The components of a Lorentz vector z,, are the expansion

coefficients in this basis,

X = 2,5™, (2.1.10)

and inversely,
— Str(XS™) = —5tr(2,S"S™) = ™. (2.1.11)

Since the negative determinant of X equals the scalar product of the Lorentz vector, a

Lorentz transformation of X must be determinant- and symmetricity-preserving, i.e.
LT 3 T
X — X =AXA (2.1.12)

with A € SL(2,R) being an element of the group of 2 x 2-matrices with unit determinant.
The map between A € SL(2,R) and A € SO(2, 1) follows from

—Lgp(XS™) = " (2.1.13)

2
as
—Ltr(AS,ATS™) = A™ (2.1.14)

n:
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2. Three-dimensional superspace

It is a two-to-one map because A and —A are mapped to the same A. In other words,
SO(2,1) = SL(2,R)/Zs. (2.1.15)

As is apparent, the matrices S,, have two lower indices and the matrices S,, have two
upper indices,

(Sm)™® = e*%(S,)5. (2.1.16)

A set with one lower and one upper index is defined by

(vo)aﬁ =- sﬁ’Y(SO)a'y
(11.2)a” =" (S12)ar- (2.1.17)

These are a basis for traceless matrices and fulfil the Clifford algebra

In this context of space-time symmetry, the components of SL(2,R) vectors (also called

spinors) are odd supernumbers with

VaWg = —WaV, (2.1.19)
and the complex conjugation rule

(vawg)" = wxvy,. (2.1.20)

An antisymmetric SO(2, 1) tensor of rank two, a vector and a rank-two SL(2, R) tensor

are equivalent to each other by the relations

Fab - aachC - Eabc(_%ECddef) (2121&)
Fos = (Y")apFu = (Y)ap(—3(va) " Fye). (2.1.21D)

The contraction of two Lorentz vectors can thus be written in the forms

F'Gy = —LF®G, = —1F*G . (2.1.22)

12



2.1. Supersymmetry algebra

The action of the Lorentz generators with different label representations is given by

ﬂabvc — 21’]6[&1]17] (2123&)
%avb — _sabcvC (2123b)
%aﬁ c _ _(.ch)oéﬁvb (2123C)
and
%abU7 — %(Yab)ydvf; (2124&)
%avﬁ/ — %(YG),yévé (2124b)
B — erlayd) (2.1.24c)

for Lorentz vectors and spinors, respectively. The commutation relation can be written

in the forms

[ Y] = —dnlle gt (2.1.25a)
[, M) = ™ M. (2.1.25b)
[,//aﬁ, .//75] = —ZE(W(Q%[g)(;). (2.1.250)

13



2. Three-dimensional superspace
2.2. Superfields

2.2.1. Field representation

Fields A(x,0) in superspace are covariant with the coordinates both as finite- and

infinite-dimensional representations of the super-Poincaré group. The former correspond

to transformations in a finite vector space representing SL(2, R)
A2, 0) = A(z,0) + 5A(2,0) = Az, 0) + 3w}, - A(z,0)
and the latter to translations in the infinite space of functions
A'(x,0) = A(z,0) + AA(z,0).
In this infinitesimal form, the two are related by a Taylor expansion

AA(z,0) = 8A(x,0) — (a® 4+ w™x)0,A(x, )
— (e + 39" (Yab) " 051) 00 Al 0),

— 0 I— 0 :
where 0, = 5 and J, = 07 Comparing the commutator

(A1, Do =iy, (M, + 2105 — §(Yar) P 05105)

a

—+ 2(1(3[1(4}%:8@ + 26%1(6£a(21})8a

with the one of two generators X = %w“b,///ab +ia*P, + 1§ é,

ac i, ab_a s oa b «a
(X1, Xo] =wiw, " My + 5“[1b52}1(1/ab)aﬁ@5] — 2iafwy, Py + 2€7 Igglpag,
reveals that a, must have the #-dependent part, or the “soul”

ay = =107 (V") ap,

a

while

Moy =My + 22,0y — i(%b)aﬁeﬁfai
P, =io,
QL =i0! 4 0°1(v") 00,
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2.2. Superfields
Furthermore, there is a supercovariant derivative
DI = 0L +i0°1 (v*) 00, (2.2.8)
commuting with the supersymmetry generator,
D5QIA =HQIDLA, (2.2.9)

and obeying the supersymmetry algebra

{DL, D}} = 2i8" 0,. (2.2.10)

It has the useful property [34]
(D! A)* = - D! A* (2.2.11a)
(DLAg)* =D A} (2.2.11b)

and likewise for all SL(2, R) tensors of even or odd rank.

It can be convenient to combine the supercovariant spinor derivative together with

the vector derivative 9, = D, into a supervector
Dy = (Dg, DY). (2.2.12)
It is subject to the algebra
[Da, Dp} = DaDg — (=1)*DpD, = T3 D, (2.2.13)

where the powers A are 0 if A is a vector index and 1 if it is a spinor index. The torsion

TSy is constrained by
Tgs = 21(Y")ap, (2.2.14)

while all others are zero.

15



2. Three-dimensional superspace

2.2.2. Component expansion of superfields

A superfield is expanded in powers of 0! as
A(x,0) = a(x) + 03al (x) + 10505alk (2) + ... (2.2.15)
The component fields are give by the projections

I I _ Al I L.
(Ot -0k A)lg—o = 0, .0k Al = ay! 1k . (2.2.16)
This definition requires appropriate normalisation factors in the explicit expansion as
indicated above. Since the spinor derivatives anti-commute, the component fields have
the symmetry property

Lo L. dy _ Lol Iy
aoq...z;i]ozj...ak - a’afl...ojéj;b)éi...ock' (2217)

Supercovariant projections are denoted by

DI ..Dl Al = Al (2.2.18)

aq...op”

They are related to the component fields by

Ah N 11 Ay +Q(Il T (2219)

aq...0p O‘1 O aj...op”

The fields Qlé}l ng depend on multiple space-time derivatives of components of corre-

spondingly lower ranks. Explicitly, they are given by

AL =0 (2.2.20a)
AL =18"Dupa (2.2.20b)
ALY =i8"% 0gyal, — 16" Onyay + 18" Onpal (2.2.20¢)
UL =18 Onpaly’ — 18" Oaqay + 16570 5al
+ 16”8&5@57 + 16‘”(85@ 16JL855a
— 8" 85%0,50,5a + 8% 87 0,,055a — 8787 0,505,a, (2.2.20d)

and so on. Systematic formulas and further examples are presented in Appendix B.

In the following, this relation will be symbolically denoted by

Alle — ghele ok (9g o 90a_y, ...), (2.2.21)

oq...0 oq Qg aq...0p
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2.2. Superfields

where a(_; is of rank k — [.

Under infinitesimal supersymmetry transformations, the superfield changes by
8. A = ie™QurA = ™ (—D! +2i0"70,5)A. (2.2.22)
The transformed components are the components of the transformed superfield, i.e.

Sall e =0l 08 A| = DI .. .DxSA| — ALk (08a(_s), 008a(_yy,...).  (2.2.23)

ay...0L k k aq...0k

Re-expressing the supercovariant projections, it follows

Sali-te = _golghedy _ calg(ll..Iy (Oa(—g),...) — LTk (0da(—ay, -..), (2.2.24)

at...o aail...ap aal...op 1.0

iteratively describing the transformations of all superfield components.

It can be shown that these transformations indeed represent the supersymmetry alge-
bra by considering two successive transformations

JII. I
Baag..ap

+ g T (Ja gy, ) — AT (98,8.a(_g),..). (2.2.25)

11..Ik _ -~ ﬁ
6776 a €rn a Baaq..ay aq..ap

e¥aq..a

Their commutator is

[8,, 8] alitr =(5n — neeNAT T (Da_y), ) — ATk (D[S, 8. ]a(_a), ). (2.2.26)

aq..op Baai ..o aj..op

The combination of the parameters on the right-hand side is either symmetric or anti-

symmetric in both types of indices projecting on the corresponding representations in

JIL...Iy, . . .
Asear o, This is only the symmetric one, given by
LIs..I, LI, _ o:shl I3..I, s I I3..I,
Q(alag...ak + Q[agal...ak - 215 aalazaa3...ak + 216 6@104222[043.,.0%7 (2227>

as is apparent from its definition. Assuming that the supersymmetry algebra closes on

fields of lower ranks inductively leads to its closure on all components,

[5,), 8c)ali-Te  =2ieSni517 9, sali- 1 (2.2.28)

aq...0 ..o "

It is difficult to read off an explicit solution from the inductive transformation formula.

17



2. Three-dimensional superspace

For example, the transformations of the first five components read

da = — etal (2.2.29a)

sal, = — ehall — 158" 95,0 (2.2.29b)

Sagl = — ejalsll —ie) (—8™ 0 qa} + 8%70,pal) (2.2.29¢)

Saliyll = — &5 affll — i (8% 05, all — 8™/ O55al) + 87 0500ty (2.2.294)

Sajlitl = — efalit i (2.2.29¢)
— ie5, (M 0.5al5l — MK O afyl + 6M7 0.gall] — M1 0.qafly).

Apparently, each component transforms into the next higher component and first deriva-
tives of the next lower component. Terms with more derivatives drop out and would be
inconsistent with the symmetry of the tensor on the left-hand side. Therefore, it can be
concluded that

... - €Ik+1 Q-1 OZk-‘—l{ak ak—l---al}

Sale-h — k1 <a1k+1-~11 + iole+1llky alkfl“'ll} > , (2.2.30)

where the brackets {.} collect the sum of & terms sharing the symmetry of the tensor
on the left-hand side, as in the above examples.

The transformation of irreducible SL(2, R) x SO(N') representations contained in the
components can easily be derived from the above formula. The particularly common

partially reduced field (Z)ak...al defined by

() p 1 1 o 1Bon T Ty Jop
a Ozkk...Olél — (_§)n5J1J25ﬁ152---6J2n_1J2n852 182 aakku.ozg%...[lﬁ (2.2.31)

has the transformation

(n) I....T Qg1 T I Iesr {1 I Ih % 8 (n_l)I’“"'Illk-&-l
R dl — + k41--11 1§ k+1k 1. Y
8 a Qa1 gl’“‘*‘l Qa0 +1id 8ak+1{akaak71~-a1} ln( 1) aOék-H @ oy0np :
(2.2.32)

2.2.3. Supercovariant constraints

Since the supercovariant derivatives commute with supersymmetry transformations, they
can be used to impose supersymmetrically invariant constraints on superfields. In view of

the later purpose of describing scalar multiplets, an important class of scalar constraint

18



2.2. Superfields

equations considered in the following is

(n)

(DSDI)"A = (D*)"A =A=0. (2.2.33)

Hiding the SO(N) indices, the components of this superfield equation are

(n) (n) (n)
Al=0a+ 2A=0 (2.2.34a)
(n) (n) (0 (n)
851 A | = Aﬁlzaﬁl + Qll?l: 0 (2234b>
(n) (n) (n)
aﬁszzn”aﬂl A | = A By gnfr T ABon_on. 1= 0 (2234C)
(n) (n)
852N72n+1“851 A | = Qlﬁszan..Bl: 0 (2.2.34(1)
(n) (n)
a,82./\/"‘851 A | = Qlﬁgj\/’..ﬁlz 07 (22346)

where components of A being determined by lower components of the equation have to
be accordingly substituted in the higher components. This is why the spinor derivatives
0L on the left-hand-sides can be replaced by supercovariant derivatives.

The equations of the form
(n) (n)
ag,.p=— 2Ap,.5 (2'2'35>

: (n) ) o
determine the components a g, g, in terms of derivatives of lower components; however,

the equations
(n)
A Bonr—ns1-pr= 0 (2.2.36)

give rise to higher-order differential relations among the lower components and other
(m<n)
a

representations 8,5~ This circumstance shows that the constraint sets the super-

field partially on shell.

The constraint is invariant under the transformation

A— A-B, (2.2.37)
if
(m<n-—1)
B =0. (2.2.38)
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2. Three-dimensional superspace
This gauge freedom can be fixed in the superfield A defined by
A=A+ B|y, (2.2.39)

where B|a means that the component fields appearing in the constrained superfield
B are evaluated at the values of the components of A. Concretely, A a has those
components gauged away which are unconstrained in B and the other components are

redefined in terms of the constrained components of B and are not redundant.

In order to illustrate the above in an example, one can consider the case N’ = 2 and

D*D*A = 0. (2.2.40)
This constraint is invariant under
A— A-B, (2.2.41)
where
D*B = 0. (2.2.42)
The components of B fulfil
b =0 (2.2.43a)
bl =— Bl =10, (2.2.43b)
> ot . 1J
bih = — B! = e5087700b — 2i0) ;00 (2.2.43¢)
0=385=0 (2.2.43d)
S v KL
0 =B = 0,0, b5 (2.2.43¢)
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2.2. Superfields

and the gauge shift translates to the components of A as

a—ra—1>b (2.2.44a)
ag, — ag — b, (2.2.44b)
a— a (2.2.44c¢)
&((JI)) — a((JI)) b((JI)) (2244d)
[J1] [J1) [J1]
Usa) — Usa) ~ V(pa) ‘ozaﬁa(éabg)f (2.2.44¢)
ay, — ay, —i0,"b;, (2.2.44f)
ajh — all — epnd7100b — 2i0) "0, (2.2.44g)
where a((/1) denotes the traceless part of —1e®? a(‘n) The fields a, o’ and a((/?) can be

shifted arbitrarily and possibly to zero, whlle the ﬁelds a, al and a a ! are non-redundant.
Being interested in a minimal non-redundant multiplet, the field a[ (3 ]) can further be
required to fulfil the constraint

= 0,°0,"a}, (2.2.45)

in which case it can be shifted to zero as well.

According to (2.2.39)), the components of A are then redefined as

a=a (2.2.46a
al =al, (2.2.46b
i=a (2.2.46¢

a(d0) — F((1)) 2.2.46d
2.2.46e
2.2.46f

2.2.46g

—~

I [JI
A(ga) = Y(Ba)
dé = éf +1i0 “ai

PN
~— ~— Y S Y ~— ~—

—~

~JT JI : 17
Ao = aﬁa + €5,07 Oa + 21(9(6“(1([1);}.
The gauge-fixed superfield A is therefore given by

A = 1090% (a+ 030" + L07.05a5"). (2.2.47)

Due to (2.2.46g)) and the condition ([2.2.45)), the Lorentz vector égf)] has to fulfil the

8 H Cf)‘ﬁ in (2.2.45)). This can be written as the Maxwell

same relation as the vector
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2. Three-dimensional superspace

equation and Bianchi identity

O gy = 0magy =0, (2.2.48)

In summary, the superfields A and A fulfil the same constraint equation
D*D*A = D’D?A =0 (2.2.49)

under the assumption of (2.2.48)).

2.2.4. Superfield actions and equations of motion

A generalisation of the action known from N = 1 supersymmetry [35] is
S = / d*z (*0)V (D'..DIN A)DE DX A|. (2.2.50)

It is manifestly invariant under supersymmetry, since the integral is over the whole
superspace, i.e. the spinorial measure (d?6)" = (939%)N contains all spinor derivatives
and is thus annihilated by every supersymmetry generator. It is worth to note that
(0901)YN may be replaced by (D$DI)N up to a total derivative, which is useful for
obtaining the component action. While the choice of the measure is unique (assuming
that no indices are contracted with those of the integrand), the integrand is highly
reducible. A particular choice in view of the present purpose is the completely traced

part. For even N it is

S= / &z (20)Y (D) A|(D2)" A (2.2.51)
and for odd N
5= / &z (20 (D2 (D) A|DL(D2)" A, (2.2.52)
where n = %/ orn = N L respectively.

The superfield equation of motion can be obtained by partially integrating so that

S = / & (@20 A(D2V A, (2.2.53)
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2.2. Superfields
and is given by
(DN A = 0. (2.2.54)

It is of the constraint form studied above. It has a redundancy due to the transformation
A— A- B, (2.2.55)

where
(DHYNIB =0. (2.2.56)

Written in components (2.2.34]), and omitting the SO(N') indices, this constraint on B

reads

N-1) N=1)  (N=1)

B |= p + B =0 (2.2.57a)
W-1) N-1)  (N-1) (N-1)
9, B |= B pp=b s+ B z=0 (2.2.57b)
WN=1) N-1) (N—-1)
aﬁzaﬁl B ’: b g T B pp= 0 (2‘2‘57C)
W=1) N-1)
aﬁs“aﬁl B ’ = B B3..01— 0 (2.2.57d)
WN=1) N-1)
aﬁz/\/"aﬁl B ’ = B Bon..B1— 0. (2.2.576)
N-1) (N-1 N-1
Accordingly, the components N ), NV I and N 4., are not redundant, but can be

N-1) (N-1 N—1
redefined to invariant fields e ), e )é and N )éé as defined by (2.2.39). The other

components can be gauged away if they fulfil the superfield equation of motion, because

in this case they fulfil the same differential relations as the corresponding components
of the gauge parameter field B.
In consequence, the superfield equation of motion contains the non-redundant infor-

mation

(

Q=

)

=0 (2.2.58a)

N1
Ni@a“( a )i =0 (2.2.58b)

N-1 N-1
—W%“( a )Ef)‘ﬁ + 8 es0"a" =0 (2.2.58¢)

This system contains the equations of motion of a minimal on-shell multiplet, being
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2. Three-dimensional superspace

~

1

o)

N-1
defined by the above off-shell action. The Lorentz vector ( a )g even though it appears

quadratic in the off-shell action, on shell fulfils the Maxwell equation and in addition

the Bianchi identity, which is an effect of the on-shell gauge fixing as demonstrated for

the example ([2.2.48)).

2.2.5. A spin(NN) on-shell superfield

A superfield Q; transforming under the fundamental representation of spin(N) (see
Appendix A) can be subject to the constraint [31) 22], 20], 18 [19]

DiQ, = (¥")!Qja. (2.2.59)
where Q,, is a general superfield carrying an additional Lorentz index and reads
Qio = Gia + 700 + - (2.2.60)
For chiral representations of spin(N), the constraint is
DlQ =73'Q, (2.2.61)
or
DiQ =2'Q,, (2.2.62)

depending on the chosen handedness. The chiral spin(/N') indices have been omitted,
since they depend on the specific case of N'. A discussion of fields transforming under
chiral representations will follow in Chapter 3. In the following formal considerations,

the form for non-chiral representations will be used.

The first component of the constraint superfield equation is
7t =v"qa. (2.2.63)
Taking a general number of supercovariant projections

~J1 Ji..J
Qi o =Y Quj i (2.2.64)
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2.2. Superfields

and reminding that
QUi = qlil kit (2.2.65)

Q.01

leads to the expression for the components of Q,

.]JI_ Ji..J I Ji..J Ji. I
Gor o =Y Gafiis TY Qo — Qo v (2.2.66)

in terms of the components of @Q,,. These are determined by taking the representations

of this equation not contained in qg: éii, i.e. both symmetric or antisymmetric in a

particular index pair, leading to

Ji. (Jll ] |Jk..|J1) . (] ‘Jk..‘Jl)

Q5 ey — Y Qi =Y i) (2.2.67a)
Jk (1] [ [l ) (1 k] 1]

5 el — Y Qe =Y o] (2.2.67b)

In terms of covariant projections, this is solved by

J 1
Qa P /31 =i9,aY" Q355 + - (2.2.682)
Qo 15 =0 (2.2.68D)

where the dots indicate the further permutations implied by the symmetries on the
left-hand-side (an example will appear below). Accordingly, the components or super-

covariant projections of @, are provided by the expressions

QJk [211101 —id laythgz éz ) (2.2.69a)
(WD)
Qﬁk frp) (2.2.69b)

For the second component this means

qg‘ég) =iy’ 9544 (2.2.70a)
g =o0. (2.2.70D)

The constraint (2.2.59)) therefore defines an on-shell multiplet consisting of ¢ and g,

subject to the supersymmetry transformations

8q = — %Y qa (2.2.71a)
8qe = — i€V Dsaq. (2.2.71b)
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2. Three-dimensional superspace

This multiplet corresponds to the special case of a minimal on-shell multiplet (2.2.58))

arising from an unconstrained scalar superfield with an attached spin(N') index, where

W)y

N-1

W, (2.2.72b)
N-1
W=1) [(21;]) — iy 9500, (2.2.72¢)

N 1
In other words, the defining constraint (2.2.59) for Q, removes the vector W Eﬂ by

identifying it with the derivative of the scalar field, which is consistent with the Maxwell
equation and the Bianchi identity fulfilled by this vector.

Since the scalar multiplet is encoded in the lowest components of the constrained
superfield Q;, a corresponding superfield action resembles the one for NV = 1 [35]. Tt

may be postulated as
S =i / 4’z d67de!, (D}.Q)DX Q)
=50 / P (QRQIIE — Qi QF — 2Q77QIK), (2.2.73)
where A(N) is a normalisation factor. Indeed, reminding that

QP =iy v Y0P + 1y yrY10"P ¢ — vy iy 07 (2.2.74a)
Q7 =ryry,0°%q, (2.2.74D)

the component action follows as
S =455 - / &Pz (—2i770,%¢a — 2iq7(0,%qa) — 2(0°%q)Dasq), (2.2.75)

where for canonic normalisation it can be chosen A(N) = —8N2.
This action is not manifestly supersymmetric, but rather supersymmetric only on

shell. It can however be derived from the off-shell actions

S = / Bz (d20)N [(D*)"A](D*)"A| (2.2.76)
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2.2. Superfields

and
S = / d*z (d2%0)V [D(D*)"A]DL(D*)"A]. (2.2.77)

In the gauge for the minimal multiplet the superfield takes the form

Ao (@Y 4 (2.2.78)

Insertion into the action for even N (for odd N the procedure is similar) gives
S / Pz (@oR@0N ()51 4 e Y L ) @279a)
o</d3x @op (Ve + a1 (2.2.79D)

The superfield appearing in the square-brackets corresponds to Q; and can be accord-

ingly replaced so that

S oc/d% (d%0)* QQ)|, (2.2.80)

where the trace over indices of @ is implied. Using the product rule, this form can be

brought to the postulated action
S oc/d3a: d%0 (D3Q)DLQ)|, (2.2.81)

where it was used that D?*Q,| = 0, as is implied by (2.2.69b)).

Summarising this section, an off-shell action (2.2.51))/([2.2.52)) for a general N-extended
scalar superfield A was proposed. It contains the three highest component fields of the

superfield with canonical kinetic terms, i.e. with not more than two derivatives. The
superfield equation of motion (2.2.54]) resulting from this action bears redundancies
due to its superfield-constraint form involving multiple supercovariant derivatives. In
the gauge where the minimal number of fields is kept non-redundant the equations of
motion describe a multiplet consisting of a scalar field, to which the canonical dimension
one-half can be assigned, a spinor being also an SO(N') vector with dimension one, and
a field of rank two with dimension three-halves, which contains scalar auxiliary fields
vanishing on shell as well as a Lorentz vector displaying the properties of a Maxwell field

strength.
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2. Three-dimensional superspace

This Lorentz vector is considered undesirable for the description of an actual scalar-
matter multiplet consisting only of scalars and spinors. Therefore, the scalar superfield
Q), transforming under the fundamental representation of spin(N) and being subject to
the constraint , which involves the SO(N) spin matrices, was introduced. The
constraint removes the problematic vector field by identifying it with the derivative of
the scalar and decouples the SO(N) index from the spinor, leaving an equal number
(given by the dimension of the fundamental representation of spin(N)) of scalar and
spinor fields in the on-shell multiplet.

As compared to the unconstrained superfield A, the constrained superfield Q, (2.2.59)
contains the scalar multiplet in its lowest components, rather than in the highest ones.
Its superfield action therefore resembles the one for an unconstrained N = 1
superfield. It can be derived from the off-shell action for the unconstrained superfield
A by imposing the on-shell gauge for the minimal multiplet and integrating out the

appropriate number of spinor coordinates.
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2.3. Local symmetries
2.3. Local symmetries

2.3.1. Gauge-covariant derivatives

An important generalisation of symmetries is space-time dependence of the transforma-
tion parameters, where derivatives of fields representing the symmetry group are not

covariant under group transformations, but rather behave as
DjA — Dje* A = (DyX)eXA+eXD,A. (2.3.1)
A gauge-covariant derivative is given by
D= Dy + By, (2.3.2)
where B, is a Lie algebra valued superfield transforming as
B, — eXBje* — (Dye®X)e ¥, (2.3.3)

so that in consequence
DsA — X D4 A. (2.3.4)

The supercovarian projections of the spinor gauge field B?, transform under infinites-

imal gauge transformations as

L Ji _  sedxeid il asdin i
5Baﬁk--ﬁ1 - Xﬁknﬁm = T8 Bra Br--Bra? (2'3’5>

which, for the first few projections, means

8B, = — 1, (2.3.6a)
8BLY = — wh, — 18" Oga (2.3.6b)
A i (2.3.6¢)
I,LKJ
8By == Tsysa — Xaypa - (2.3.6d)

!Component projections are not of interest, because the spinor gauge field covariantises the superco-
variant derivative rather than the spinor derivative in this formalism.
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2. Three-dimensional superspace

Many of them can be gauged away by these transformations, while

8B = —i8" Dpax (2.3.72)
7] _
8B =0 (2.3.7b)
LK) _
8B =0 (2.3.7¢)
LILK|T] _
s =0, (2.3.7d)

This suggests that the trace of B((igg can be identified with the vector gauge field and
the other fields correspond to various invariant, i.e. finitely covariant, field strengths.
These can be defined in the manifestly covariant formalism of commutators of covariant

derivatives, forming the gauge superalgebra described in the following.

2.3.2. Gauge superalgebra

The algebra of covariant derivatives is defined by [35]
(Da, D5} = T 3Pc + F 4. (2.3.8)

The superfields TgB and F'4p are called torsion and field strength, respectively. The

case of two spinor derivatives, written explicitly in terms of the spinor gauge field, reads

{28, 7]} = 218" 0op + 2D\ B) + {B{.. B})} + 2D By + {B[. BJ}.  (2.3.9)

It implies the identifications

2i5" B + FEL‘Q) :2D§(§Bg§ + {ng ng} (2.3.10a)
1J I J I J
F{ag]] ZQDLBA + {B{a, Bﬁ}}. (2.3.10b)

They agree with what is expected from the above analysis of the supercovariant gauge-
field projections ({2.3.7)), by noting that

5{B.,B}} =0. (2.3.11)

Conventionally, the trace of FEL‘Q) can be set to zero, corresponding to a redefinition of

B, 3, which leads to [34]

{28, 9]} = 26" Do + FL) + 2ieapF". (2.3.12)
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2.3. Local symmetries

It is common to formulate these identifications equivalently in terms of conventional

constraints on the torsion and field strength

5 =21(Y")ap (2.3.13a)
I
FIL=F)) +2ie,sF", (2.3.13b)

with all the other torsion components being zero.

The conventional constraints affect the whole algebra due to the super-Jacobi identity
0= ['@[Av['@Ba'@C)}}7 <2314)

where [ABC') means antisymmetrisation with the caveat of an additional sign change if
two spinor indices are permuted. Unless indices have otherwise been manipulated, it is
usually understood that spinor indices are permuted together with their SO(N) index.

Inserting the commutators in terms of field strengths and torsions, the super-Jacobi

identity can be written as

0= [@[A,Tgc)@[,} + [Z1a, F ey}
(24T Bey) Zo — (V)P OPT 0 Dip), Pay} + DaF 50y
- (@[ATgC T[BCT\IJ)E|A)) Db + DaFpe) — T[%CF|D|A), (2.3.15)

where |A| denotes the exclusion of this index from surrounding permutation brackets.
It contains four distinct cases of combinations of vector and spinor indices, leading to
the conditions on the field strength

DL =T 0 FiS + T LF (2.3.16a)
ZaFog =T, 6LF|5\ gt T[ab F\yq (2.3.16b)
-@[{;lFbc] _ T[IbéLFw g+ T[ab Fqq (2.3.16¢)
DLy =Tp "Flil + TplFl (2.3.16d)
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2. Three-dimensional superspace

Due to the vanishing torsions they simplify to

DLFPS = 28" () 0 F oy (2.3.17a)
DaF o =0 (2.3.17b)
D Foq =0 (2.3.17¢)
Dt Fipey = —2i8" (v ap Fge. (2.3.17d)

The gauge multiplet is defined by the additional constraint FE((II[;]))) = 0 [34], in which

case

ap Py FV + 65, DL F'F + o7 F* = 8" FE, +8"'F], ;+ "% F}, . (2.3.18a)
D1aFpg =0 (2.3.18b)

D, Foq = 0 (2.3.18¢)

DLF) + 21Dt F" — D] F), = —2i8" (v")apF ge. (2.3.18d)

The first line shows that the totally symmetric part F]fam) vanishes and implies the

relation
PR — g FN = 1V (v ) F (2.3.19)
The trace in I.J

PLFE = LN -1)(y)F, =N -1)FE (2.3.20)

dry

produces the field strength of dimension three-halves (y¢) " F de. Inserting back, this

leads in turn to the consistency relation for the dimension-one field strength
gLF’% = gl P/ — 25V g, FXIT. (2.3.21)
The last line of (2.3.18]) yields the dimension-two field strength F;, as
(Vi) DLF = —(Yar) " DLF = 2N F g (2.3.22)
or

~(Yab) Do D Fry = 2N (N = 1)F . (2.3.23)
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2.3. Local symmetries

Summarising, the whole algebra of covariant derivatives can be written as [34]

9, 9 =216 D5 + 2ie s F1Y 2.3.24a
a3 B B
(D, 23] =575 (Ya) 5" 2 F k4| (2.3.24b)
(Zas Do) = sy (Yar)* D0 D5 F|, (2.3.24¢)
with the condition
gLF'E = gUp/K — 2.5V g, FRIE, (2.3.25)

The superfield F'7 is called field-strength or gauge multiplet, since it describes all field
strengths appearing in the algebra in terms of covariant projections. As seen above, these
differ from pure supercovariant projections by those projections of the spinor gauge field

B! which can be removed by a gauge transformation (2.3.6)).
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2. Three-dimensional superspace
2.4. Supergravity

2.4.1. Supergravity-covariant derivative
General superspace coordinate transformations
2 — Zu(2) (2.4.1)
induce the transformation of a supervector field
VM () — VY (z) = (VI (2). (2.4.2)

At each point, a supervector VM can be expanded in a standard basis of the tangent

space as

vM =-vig M (2.4.3)

The vector V# transforms under the local structure group of the tangent space, which

leaves this expansion invariant and thus relates equivalent bases to each other.

In the conventional curved SO(N') superspace, the local structure group is chosen to

be SL(2,R) x SO(N) [36]. Consequently, the super-vielbein

E™ E*
M a a,J
EM = ( i Qf}) (2.4.4)

carries local Lorentz indices a,« and local SO(N) indices I, transforming under this
local structure group. As a basic principle, the leading component of E ™ is identified

with the vielbein of non-supersymmetric space-time,
E™ =e™. (2.4.5)

Further, in flat superspace the super-vielbein takes the form [35]

E, = % 0 (2.4.6)
b\ 828 B
corresponding to the relation
D, =E , 50p. (2.4.7)
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2.4. Supergravity
Accordingly, the supergravity covariant derivative is given by [34]
Da=E MO+ 392, My + 38,79 N, (2.4.8)

where 24 and @ 4 are the connection or gauge fields associated with the Lorentz group
and SO(N), respectively.

2.4.2. Supergravity algebra
The algebra of covariant derivatives is defined by [34]
(Da, D} =T 45 Do + 1R, .7 Nog + LR, 5™ M. (2.4.9)

The torsion and field strengths are, in terms of the super-vielbein and connections, given
by

T 5" =C 5% + %QAmn(///mn)BC - (‘)AB%Qan(///mn)AC
+ 18,9 Mp65C — ()L O Npos ,C (2.4.10a)
Ry =E 25— (-)"PEpN, - C,;°2¢
+E Pp— (—)PEp®,— C,5°®¢
+[24+ B4, 25+ D5}, (2.4.10D)

where the superfields C ;¢ are defined by
[Es,Ep} = [(EAE;")E, — (-1)"?(EgE,"E\,°| Ec = C 5 Ec.  (2.4.11)
Via the Jacobi identity
0= [Eu, Ep, E¢)}}, (2.4.12)

they are related by
E(zCpe)” — C 3" C 4 p" =0, (2.4.13)

where it is as usual understood that SO(N') indices are permuted together with their

Lorentz spinor index.

The content generated by the fields introduced above can be conventionally reduced
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2. Three-dimensional superspace

by imposing constraints on the torsions [36]. At least in four-dimensional simple su-
pergravity, this procedure (together with chirality-conserving constraints) is known to
completely determine the field strengths in terms of these torsions via the super-Jacobi
identity. Also in three dimensions, it is sufficient to impose constraints only on the tor-
sions; however, the description of the field strengths needs one additional field emerging
in the solution of the super-Jacobi identity, as will be seen below. The torsion constraints
are equivalent to choosing connections in terms of vielbeins in shape of the fields C , 3¢
in order to reduce degrees of freedom as much as possible. The specific choices and

resulting dependencies are motivated in the following.

Concretely, for the case of two spinor derivatives the torsions are

Toik?y + Tay' e =3l= 20,50k — 05,80 + @78, + B8] 7

The spinor connections can be chosen to absorb the fields Ci‘g}{, leaving

T, =0 (2.4.15a)
Th =CLY. (2.4.15b)

In order to incorporate the case of flat superspace, it is natural to choose
IJc IJc : c
Ty =CLy = 216" (V) as. (2.4.16)

In consequence, the vector vielbein is expressed by the spinor vielbeins and spinor con-

nections by virtue of the vielbein algebra
{EL, EJ} =2i8" (v°)op E. + C o EX (2.4.17)
with the replacement
Clli =3[, J5"% — 0] 76" + #1755 + &5175). (2.4.18)

The spinor vielbeins, the spinor connections and the vector connections remain as inde-

pendent objects.
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2.4. Supergravity

For a vector and a spinor derivative, the torsions are

c K _ J c JK opK JK K
+ CQBC@C + Caﬁ”%ff : (2.4.19a)

The constraint
Taﬁc =0 (2.4.20)

can be imposed to set
C. =12, (2.4.21)

This constraint not only relates the spinor Lorentz connections to vielbeins, but also

spinor Lorentz and SO(N') connections among themselves, due to the Jacobi identity
875 (V) (512004 — CUSTY s = . (2.4.22)
In order to choose the vector SO(N) connections, the constraint
JK _
T.i5, =0 (2.4.23)
can be imposed (with T' {gﬁ =0orT, [ ] being alternative versions), leading to

J K
C S

i €4 (2.4.24)

The vector Lorentz connection has not been chosen until this point in order to impose
the usual constraint on the torsion known from non-supersymmetric gravity. The case

of two vector derivatives

TP+ Ty 25 =C 9.+ C oy 75 + 2,9 — 2,,°P. (2.4.25a)
suggests

T, =0 (2.4.26a)

T, =C," (2.4.26D)

or equivalently
C bc - —QQ[ab]C, (2427)

a

which has a well-known solution for §2,,° in terms of C,;°.
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2. Three-dimensional superspace

Further dependencies are established by the algebra of vielbeins,

(EL, E}} =2i" (v°)apE. + CL01 (25, $5)EX, (2.4.28a)
[E.,E}) =) ‘E.+C,JEY (2.4.28b)
[E.,Ey)) = —22,,,’E. + C,)EY (2.4.28c¢)

and by the corresponding Jacobi identity, which contains differential relations between

torsions, connections and their superfield components.
2.4.3. Solution to the constrained Jacobi identity
The super-Jacobi identity for the algebra of covariant derivatives
0=[%4,(%8,%c)}} (2.4.29)
can be written as

D D E D PQ D mn
0= <@[ATBC) ) Dp — (T[BC T\D\A) De + %T[BC R|D|A) Npq + %T[BC R\D|A) ///mn>
P
+3 (9[ARBC)PQ> Npq — %R[BC U Apg, D )]

+1 (.@[ARBC)’”") Mun — 3R [ Moy D), (2.4.30)

which is equivalent to

0 =(Z2uT pe)") P (2.4.31a)
- (T[BCDT\D\A>E9E + 3Ry [ Mo, D)) + 3R N, %)])

0 :g[ARBC)PQ - T[BCDR|D|A)PQ (2.4.31b)

0 :‘@[ARBC)mn - T[BCDR\D|A)mn' (2.4.31c)
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2.4. Supergravity

As motivated above, the non-vanishing torsions are subject to the conventional con-
straints [30]

To5 = 2i8" (1 )as (2.4.32a)
T,5% = (1) K% + (1) Ly (2.4.32b)
Tk = Yo (2.4.32c)

The special parametrisation of Tag’}( (with Tagﬁ( = 0) in terms of the superfields K'’

and L, I is conventionally sufficient, but not unique. Since it determines essentially
the dlIIlGIlSlOIl one curvatures, the choice of Taﬁ 5 can interact with further conventional

redefinitions of these curvatures [37].

In the following, the super-Jacobi identity will be solved under these constraints. The

various field strengths are determined and commented.

Dimension-one Lorentz curvature The case af~y yields terms proportional to the

vector derivative,
0= 2(Ta5(Y" )6 + Tor (Y)35) + R M, (2.4.33)
determining the dimension-one Lorentz curvature [34]

RE = —4i(y*) 5, K7 — dig g, L*". (2.4.34)

Dimension-one SO(N) curvature The case a3y yields only terms proportional to

the spinor derivative,
1Jd 1 IJmn K1, 1plJPQ K
0 =TT D + 3 R5" [ Min, D3] + 3R~ [Npq, 3] (2.4.35)
This is equivalent to

0 =2i8" (V") (s Ty + TR (Vea) )" + RS (2.4.36)
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2. Three-dimensional superspace

Inserting the torsion and the dimension-one Lorentz curvature derived above, it follows

_R(I(;f,BKLéi) :Qi(yd)(aﬁ('}/d> 6(5IJKKL+6KLKIJ)

+ 218" e (ap(va) ) L + 218" (v) (s (v, Eesa LN, (2.4.37)

which can be identically written as

_RIJKL6§ —216(7 aﬁ)(SKJKIL + 6ILKKJ) o 2i5((5’yeaﬁ)(5IKKJL + 6JLKIK)

. 416(7 (,Yd)ﬂa)éJLLdIK
+i[—280,(Va) pay 8" LY + 48], (Va) pa) 8™ L"), (2.4.38)

The dimension-one SO(N) curvature is thus [34]

R =i s WKL + 8ie 58T KM 4 8i(y?) 5o 8L + 2i(y4) 508" L,
(2.4.39)

where the introduction of the totally antisymmetric tensor field W!/XE is allowed by

the Jacobi identity, because
easW! 8] + £ WHITLS) 4 6 WHILS) = WK (26,587 + €4,80) = 0.

Dimension-two curvatures The case abc contains terms proportional to the spinor

derivative,

0= (21aT)Z: — 2T ) Ty D — SR (Mo, Do) — R [ Nog, Do), (2.4.40)

q
which are equivalent to

0= DTy — 2T, T — SER (V)8 — 2R,1VE:, (2.4.41)

d T 62

This equation determines both the Lorentz curvature and the SO(N) curvature. The

former follows from

%’Rbcmn(’ym”)aa :‘@[04111)035 o %Toz[b T\5|C]
= 21Ty — (W) KK — (") LI LET) (2.4.42)
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2.4. Supergravity

and reads

mn __
R, =—

C

(V™). DTy — O SaK K" — LIN LA, (2.4.43)

cn

ZJee

while the latter is given by

« 0 a a KI[I y LK
RbcIL :%@[aTbc] — Tocb T|5|c] = %@[aTbc] -+ 2Ld[l£ Lc]d . (2444)

[ ]

Dimension-three-halves curvatures The curvatures of dimension three-halves are de-

termined by the differential identities

0= 2L RS — 28" (v!) 5, Ry s ¢ (2.4.45a)
0= L R™ — 288" (v*) 5 Ry g ™ (2.4.45b)

in terms of spinor derivatives of K7, Lé‘f and W!7EL  For the second identity, an
important consistency relation is obtained by projecting the Jacobi identity on the totally

antisymmetric part of the dimension-one curvature, leading to

ea, DAW K — g PUWIPA 5V R 119, (2.4.46)

The trace in IJ determines the part of the curvature

K,PQ
e AW PO LW - 3)R, 1", (2.4.47)
which in turn yields
PIWIRFQ —gllw 7KPQl _ 451l g, WHPAIL, (2.4.48)

Remaining relations The remaining differential identities can be regarded as consis-
tency relations with respect to the preceding results [34]. The other remaining identities
contain terms proportional to the spinor derivative from the case a7y, terms propor-
tional to the vector derivative from the case abe, and the case abc. They relate field
strengths of dimension three-halves and two to ¥, and spinor derivatives of K I and
L!7. This in turn is a consistency condition with respect to the differential identities

which have been used above to define the field strengths of dimension three-halves.
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2. Three-dimensional superspace

2.4.4. Super-Weyl invariance

The supergravity algebra constructed above describes N-extended conformal supergrav-
ity, because it is invariant under super-Weyl transformations [34, 38]. More precisely,
the torsion fields K’/ and L!” as well as the superfield W!/%% can be endowed with
appropriate transformation properties in order to leave the algebra invariant. They will
be derived in the following, by demanding the invariance of the anticommutator of two

spinor derivatives.

The infinitesimal super-Weyl transformations of the covariant derivatives can be pos-
tulated in the familiar form [34]

56D =30 D! — 6 Moy — 2N (2.4.49a)
80 Dop =0 Do — 16 (WDl — &) My, — 16 (5 Nicw, (2.4.49b)

where ¢ = Z.o. The anticommutator of covariant spinor derivatives changes by the

amount
{8.9%, 2} + {22,559} =2i8"" 65D + 55 RL),. (2.4.50)

Inserting the above expressions leads to

(b0 — OVREL =~ 0T}ty — L5 N — 6ty — L
_2161J< 5 7%6 —i {i%)f/VKL> (2451)

For the Lorentz field strength this gives

4(8, — o) (K" Mop + eas Lyj M) = = & M5 — & 5] M + 28776 ) M),
22" D) o) M o5 + sag(@[l%a)///w, (2.4.52)

while the SO(N) field strength yields the equality of

(5, — o) (aaﬁW”KL +deq KUK 4 45U LID 5”L§BL> N, (24.53)
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2.4. Supergravity
and
(25[(([(@({3@;)0) + gaﬁéK[l(@Jh@,yLG'> _ %61'(](@(1295’)0-)) Nk (2454)

The required transformations can then be read off to be [34]

S WKL —gW 7KL (2.4.55a)
5. K" =o K" — {(9'9) o) (2.4.55b)
8, L} =o Ll + 1(2.7)0). (2.4.55¢)

The torsion superfields Lé{; and K’ transform inhomogeneously. This means that they
can be shifted to zero or any other desired value, if a corresponding Weyl gauge is
imposed. The superfield WXL transforms homogeneously. Due to this property, and
because it is supposed to describe conformal supergravity, it is called the super-Cotton
tensor. This designation is further justified by its role in conformal superspace [37],

which will be reviewed below.

2.4.5. Anti-de Sitter superspace

Anti-de Sitter superspace is defined as a background where the non-Lorentz-scalar part of
the torsion L’/ and covariant derivatives of the Lorentz-scalar part K’/ and of W'/~

vanish. In this case, the algebra of covariant derivatives reads [3§]

(2L, 2]} =2i6" Dog + K" Mo + ieas(WKE + 465V K A7, (2.4.56a)
(D, 23] =(a) s K" D (2.4.56b)
(Do D) = — K" K 1M, (2.4.56¢)

The fields K!7 and W!/5L are subject to additional algebraic relations. The differential

Jacobi identities, which are now algebraic ones, contain the condition

1 d 2
0=3T5 Ry, + 3T, 5 Ry "

= i/%&m( )ﬁ’yé[d a]KILKIL —4i(7a) s "(Y") s KTF KR (2.4.57)
which is equivalent to [3§]

K'"K" = LsV KNP KM (2.4.58)
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2. Three-dimensional superspace
This means that there is a basis in which K’’ has the form
K = Kdiag(1,...,1,-1,..., - 1)/, (2.4.59)

where a number of p entries is 1 and ¢ entries are —1, in which case the corresponding
space is classified as a (p, ¢) anti-de Sitter superspace.
The covariant constancy further requires the action of the SO(N) field strength on

K" and W!/EL 6 vanish, since
(2L, 7]y K" = {9], 2]yW 5% = 0. (2.4.60)
In the basis where K’/ is diagonal, this corresponds to the relations

0= -WHEHPKOL (2.4.61a)
0 = —WILISyyPQRIL | 2(KL[J51][S + 6L[JKI][S)WPQR}L. (2.4.61b)

The first one implies that for non-vanishing components of W75 all indices must
be in the same range, either I = 1,...,p or I = p+ 1,..., . Then, the second one
implies that if there are indices from different ranges, W/ 7% must vanish completely.
In consequence, the super-Cotton tensor can appear only in an (N,0) anti de-Sitter

superspace, where K7 = K§!/ [38]. In this case, the above algebra becomes

{2, 2]} =218" Dog + 416" K Mo + ieas(WEE + 465UV K) Ay, (2.4.62a)
(D, 73] =(Ya) s K 7] (2.4.62b)
[gaa 9{,] = - 4K2'%ab> (2462C)

where the relation
0 = —WIILSWPQREL | 4 g slISyPRR]] (2.4.63)
holds.

2.4.6. Conformal superspace

In conformal superspace [37], the superconformal group is chosen to be the local struc-
ture group. The generators of the superconformal group are the generators of the super-

Poincaré group supplemented by the generators for special conformal transformations
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2.4. Supergravity

K,, for special superconformal transformations S. and for dilatations D. Accordingly,
the superconformal algebra is the Poincaré superalgebra supplemented by the commu-

tation relations

{55, 89} =28" K,5 (2.4.64a)

Ky P} =200 + 240, (2.4.64b)

(S5, P =(v1)." Q% (2.4.64c)

[Ka,Qg] — (Ya)a"S3 (2.4.64d)

[S2, QF) =2€058"" D — 28" M5 — 2e05.8" (2.4.64¢)

(D, {Pa, Ko, Qs SI}] ={P,, — K., QL 355} (2.4.64f)

The covariant derivatives are denoted by (V,, V1) and have the same commutation re-
lations as (P,, Q!) with the rest of the algebra.

The anticommutator of two covariant spinor derivatives has the form
(VL.V} =21""V,5 + 2ieqsW'. (2.4.65a)

The main idea of conformal superspace is that the algebra of covariant derivatives is
given in terms of a super-Cotton tensor W!/XL which coincides with the superfield
WI7EL introduced before. It is therefore postulated that

W _ 1WIJKL</V[(L + (va W[JKL)S£ o 4(]\/—_2%(]\[_3)( ?{VQWIJKL)Kaﬁ
(2.4.66)
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2. Three-dimensional superspace

This operator proves to be a conformal primary, since

[S;]va WIJ] - _ WIJMLSL
s ({90 VW RN S5 — (VEW RN {SI, S0
- w5y, Va VW K,
_ WIJMLSL
+9 (,/\} 3)[((5MKD JVMK)WIJKL)SL (V?(WIJKM)KMQ]
vy ("D = 8YME M — 0 WM E)VEWHIEE) KO
+2aiv=g (Va (€587 D — s A M EYWITEE) 0P
=0. (2.4.67)

The remaining algebra has the form known from super-gauge theory [37]

[Va, Vil =575 ()" [V, W] (2.4.68)
Va, Vil =sxv=n (Ya) AV [V, W]} (2.4.68D)

This qualifies W75 as a single conformal supergravity multiplet for A~ > 4. The
commutator of two vector derivatives is of special interest, since it contains the SO(N)
field strength [37]

Fo' = (va) swv=syv=g Va VW' HE (2.4.69)

being expressed as covariant projections of the super-Cotton tensor.

Translating this formalism to the conventional SO(N') curved superspace is achieved

by de-gauging the special conformal connections via the relation
D) =V, —Fos Ko — Ty SK, (2.4.70)

where §4 is the special superconformal connection and the dilatation connection has
been gauged away as is possible by a superconformal transformation. The algebra can

be calculated in these terms, as if acting on a superconformal primary of dimension zero,

(DL, 20} + T AV S S5y + FAVLE, S5} =2i6" Dop + ieas WK M, (24.71)

46



2.4. Supergravity
which can be written as

{2, 2]} =218" Do + ie s WK N,
+ 280 (35 o + g N ) + 25 (S Mo + g0V ). (2.4.72)

Comparison with the geometry of curved SO(N') superspace implies the relation

. IK 71K
FE = —iea, K — LS. (2.4.73)
This form of %’fff is indeed dictated by the consistent vanishing of the special conformal
curvature [37]. The de-gauging procedure leads to the full conventional supergravity
algebra and furthermore implies the super-Weyl transformations under which it is in-

variant [37].

It is of special interest to translate the formula for the SO(N) field strength to SO(N)

curved superspace by evaluating

VIVIWIEL —( P 4 5 K, + F.0S) (] + F 5 Ka + §5°95) WKL
= (7025 + S E 73]+ 3 S) 73)) W
=90 D WKL 1 o5l (6MJD N MWL, (2.4.74)

It differs from the replacement of V! by 2! only by a term proportional to LiJ. There-

fore, in the gauge where L!7 vanishes, the formula [32]
Fo' = (Yab)aﬂW.@I@ WKL (2.4.75)

is valid.

To summarise this section, M -extended superconformal gravity was formulated in the
language of conventional curved superspace by imposing conventional constraints on
the torsions appearing in the algebra of covariant derivatives. These constraints can
be motivated by redefinitions in the explicit construction of the torsion fields in terms
of gauge connections. The Jacobi identity has been solved under these constraints in
order to express the field strengths in terms of the torsion fields and the super-Cotton
tensor appearing for N' > 4. The resulting algebra is invariant under certain super-Weyl

transformations, which is the reason why it describes conformal supergravity (a theory
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2. Three-dimensional superspace

has conformal symmetry, if a conformal transformation of the metric can be compensated
by local Lorentz and Weyl transformations of the other fields; the algebra must therefore
be invariant under the latter). Since the super-Cotton tensor transforms homogeneously
under these super-Weyl transformations, i.e. it cannot be gauged to zero, it qualifies as
the true conformal-supergravity multiplet.

The formulation in conformal superspace starts from a larger local structure group,
namely the superconformal group, and provides an elegant description only in terms
of the super-Cotton tensor. The superconformal group has to be eventually de-gauged
in order to recover the conventional superspace. Nevertheless, owed to its simplicity,
conformal superspace proves to be a powerful tool and was used to derive a relevant for-
mula for the SO(N) field strength, which is hard to obtain using conventional superspace

alone.
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3. Coupled scalar matter

In this chapter, the coupling of scalar-matter multiplets to super-gauge fields and con-
formal supergravity is discussed and further analysed for the spin(N\) on-shell scalar
multiplet introduced in Chapter 2.

In Section (3.1), the superfield-component formalism from Chapter 2 is adjusted for
super-gauge- and supergravity-covariant derivatives in order to describe covariant su-
perfield components.

In Section (3.2)), the defining constraint for the spin(N) scalar multiplet is altered to
a covariant form. Analysing the covariant components, an algebraic relation involving
the field-strength multiplet is derived, which is needed for the validity of the covariant
defining constraint. Furthermore, the superfield action for the coupled scalar multiplet
is presented.

In Section , the Chern-Simons action for vector gauge fields and the equation of
motion for the field strengths in presence of matter currents resulting from the coupled-
matter action are given. The equations of motion are recast as dimension-one superfield
equations of motion for the gauge multiplet and for the super-Cotton tensor, which
contains the SO(N) field strength of the local structure group.

In Sections and , these on-shell expressions are used for investigating the
coupling condition for the spin(/N') scalar multiplet derived in Section . All allowed
gauge goups are determined, with regard to the number of supersymmetries both in
flat and curved superspace. Thereby, explicit expressions, which are needed for the
transformation rules of the scalar multiplet and the component actions, are established.

In Section , an overview of the allowed gauge groups found in the previous two

sections is presented and commented.
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3. Coupled scalar matter

3.1. Covariant superfield projections

Generic covariant projections of a superfield are defined by

Avy oy = Doy D, Al (3.1.1)

They are related to superfield components and supercovariant projections by additional
terms involving powers of covariant projections of spinor connections B i It is postulated
that

Aak...al = dak...a1 + Qvlak...ap (312)
where /)< Il possesses the same symmetry as a[<:f! and is called a gauge-covariant
component ﬁeld.

Explicitly, one can write
Al =a (3.1.3a)
PLA| =g, (3.1.3b)
25 DL A| =ajl + 18" Dgaa + SR (3.1.3¢)
25X 2] 7L A| =aXl! + B gj;’a (3.1.3d)
(1@ KJ)CL _(1@KI lRKI) (1@‘” JI)a
(G9 + RE D+ (G2 + SR e — (G4l + LRI

and so on. The field Réé stands for the field strengths defined by the anticommutator

of covariant spinor derivatives, and the covariant components are given by

Qo =g + bl“ (3.1.4a)
JI blal — bl g’ B[I, J] B(I J) 3 1.4b
Qo =03+ D o3+ B ga+ By jpa (3.1.4b)
ST =alt + bKa@a b3ae + balyg
[IJ} []K} [JK] I V( ) K '(]K) J (JK
+ By — Bianyas + Bigoyaq + By — By ag + Bl ag. (3.1.4c)

It can be noted that in the gauge corresponding to b2 = 0 (compare ({2.3.6))), components
and covariant components coincide. The field Bi ffﬁ‘] 95 9@’ BL. appearing in the
rank-three projection, contains a gauge-invariant part related to the field strength of

dimension three-halves.
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3.2. Coupled spin(N') superfield

3.2. Coupled spin(/\) superfield

For covariant projections, the constraint (2.2.59)) on the spin(N') on-shell superfield is
modified to [31, 22], 20} 18] [19]

7,Q; = (Yl)iija' (3.2.1)

The leading component of this superfield equation is
it =v"4a (3.2.2)

and the higher covariant projections are of the form
Tt + Q50 = Y 4 + Y Q0 (3.2.3)

The covariant components of Q; are provided by this expression, only if the components

of Qm are determined by taking the representations not contained in qg’“ g;i, ie.

Ji. (]1] ] |Jk.‘|J1) . (Iv ‘Jk..‘Jl)

Q - (Bro) Q aBr1B) =Y Y(a,|Be.181) (3.2.4a)
Jk [Jlf] . [[ |Jk..|J1} o [Iv |Jk..‘J1]

Q5 Qpajeclpr] =Y D)l (3.2.4b)

J1

A solution of these equations for ¢, B B is therefore a necessary condition for the valid-

ity of the covariant defining constraint (3.2.1).

As opposed to the non-coupled case, this solution is not always existent, but requires
specific properties of the field-strength multiplets, which will be derived below separately
for the gauge- and gravitationally coupled cases. Solutions are given as far as possible;
however, the general spectrum of solutions analysed in Sections (3.4]) and (3.5} . requires
the on-shell form of the field-strength and supergravity mult1plets derived in Section

B.
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3. Coupled scalar matter

3.2.1. Gauge-coupled spin(\') superfield

Regarding the above expressions for the components of Q,.., the first projection can be

a)

recast as the superfield equations

15" 75.Q =y 2) Q. (3.2.5a)
1FlQ —y@ 5Q. (3.2.5b)

The first one is solved by
Di5Qa) = 1V D5.Q. (3.2.6)

The second one imposes a strong condition on the form of F77. If it does not allow a
solution for QféQa], the covariant components of Q, are not defined, and the defining
constraint (3.2.1)) is not valid.

Provided the possible solutions of (3.2.5b)), which are obtained in Section (3.4, the
existence of all higher covariant components follows by means of covariant projection

and proper symmetrisation from

= (JI) (I 7 J)
Qi) =Y Qo (3.2.7a)
Qo) =" 25.Q, (3.2.7b)

and the transformations of the gauge-covariant components are given by

5q = — £7Y'da (3.2.82)
8o = — €51V Dot + G ) (3.2.8b)

where Ao ;} has to be replaced accordingly.

The superfield action for the gauge-coupled scalar multiplet is obtained from the
free action ([2.2.73)) by replacing the supercovariant derivatives by super-gauge-covariant

derivatives [35]

Sm =—r / d3z dgede! (@;Q)@Kq

e [ @GR - QIRQK 200l 329
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3.2. Coupled spin(N') superfield

where the integrand is gauge-traced. This coupling is conformal, since the action is

scale-invariant [7]. The component action can be obtained by inserting the covariant

projections
N Ba . o pa J
Q77 =iyrvs2"q +YIQ[Q7/3] (3.2.10a)
X o . o . a o ~ [C‘" }
Q5 =ty1rv 2. 2°Q| + ivry vk 27§ + L2 (F5 Q)| + Z3vuQ 7

+ “Bavy, JIK” — “yaf, KI1J". (3.2.10Db)

These rely on the solutions Q[aé} of the condition (3.2.5bf), which will be found in
Section |} Furthermore, it will turn out that the field-strength multiplet F'/ has to

be expressed by matter currents which are derived in Section (13.3)).

3.2.2. Gravitationally coupled spin(\) superfield

As opposed to the gauge-covariant derivatives, the anticommutator of supergravity co-
variant spinor derivatives contains field-strength terms which are symmetric in Lorentz
and SO(N) indices. The solvability conditions for the constraint on the spin(N) scalar

superfield therefore read

. JI J) /A
15 75.Q + 1RV Q =Y 2.)Q,,, (3.2.11a)
U1y T ) ¢
%R[BQ]Q —'Y[ -@[ﬂ Qa]7 (3211b)
where
IR(Y =28V L) + 18T LE) A, (3.2.12a)
LRI =epa (SW/HEE 1 2isl KV KM Ay (3.2.12b)
The first one is solved by
DsQay = v/ P5.Q + Y L v Q + 115y Q. (3.2.13)

A solution for @[‘éQa} can readily be given in terms of the super-Cotton tensor W!7/%~
and the field K7/ for N =4, N’ =5 and N = 6, as will be shown in the following.
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3. Coupled scalar matter

J .
h , one can write

Defining H' = %qﬁ’
YWHY = LWLy ) + 4Ky ). (3.2.14)
Generally, a solution can be expected in the form

H' = AWIKLM‘YKLM(] + BWKLMN’YIKLMN(] — Kqu (3.2.15)

and similarly for chiral representation of spin(N') (see Appendix A). In the following,
for odd AV the notation ¢ = Q| will be applied, while for even A/ the notation Q = Q|

will indicate that @ transforms under a chiral representation of spin(N).

N =4 For N = 4, the super-Cotton tensor is dualised as W!/KL = Wel/KL - Gince

the left-handed generators are anti-self-dual, it follows that
YWHD = LW - 2K)517Q (3.2.16)

and
H' = {(W -2K)2'Q. (3.2.17)

N =5 For N =5, the super-Cotton tensor is Wjxry = W'lerjxy and
YWHT = —L(WiryS — 2Kvy)q. (3.2.18)
The solution is given by

H' = — Wiy g+ 3W'q — Kv'q. (3.2.19)

N =6 For N =6, the super-Cotton tensor is W!/KE = 1el/KLPQYYL 4 This theory
requires the additional gauging of a U(1) symmetry, which corresponds to the local
structure group SO(6) x U(1), rather than SO(6) [21]. The U(1) field-strength superfield
is proportional to the super-Cotton tensor by a charge ¢ [21], so that

Y[JHI} = le(—iWKLYKL[J —|—4q~W1J —|—4K'Y[J)q (3220)
Only for ¢ = —% there exists the solution
H' = Wi, DFHQ — iwH e — KX'Q. (3.2.21)
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3.2. Coupled spin(N') superfield

For N'=7 and N = 8 (chiral), such solutions exist only in terms of the matter cur-

rent, which couples to the super-Cotton tensor and is derived in the next section. They

will be discussed in Section ({3.5)).

The superfield action for the gravitationally coupled scalar multiplet is obtained from
the free action (2.2.73)) by replacing the supercovariant derivatives by supergravity-
covariant derivatives and inserting the super-determinant of the super-vielbein E [35],

leading to

S ==t [ P 0300 B (FLQ7EQ 3:22)

This matter coupling is not conformal, because the action is not locally scale-invariant.

Covariant projections of @ needed to calculate the component action are
Qhe =V (1iv/ 25.Q + ¥/ L vk Q + LG Y™ Q)|
+ Lepa (AWTRE 4 28K KM Yy, QL+ vV 27 Q| (3.2.23)
and
Pl =Y DX (v D.Q + IV LE vk Q + L5V Q)|
- L PE W L2V Ky, Q)+ Y70, |
+ “Bay, JIK” — “~vyaf, KIJ”. (3.2.24)

The full component action would also require information about the component structure
of E.

3.2.3. Gauge- and gravitationally coupled spin(/') superfield

In presence of both supergravity and gauge fields, the two respective solutions %qﬁ AT —

H’ can in many cases be added,
H' = H{, + Hlq. (3.2.25)

However, as the investigation in Section ([3.5)) will show, this is not possible for N’ =7
and N/ = 8, where instead the on-shell gauge sector has to contribute terms to the

on-shell supergravity sector in order to solve the coupling condition, causing the gauge
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3. Coupled scalar matter

couplings to become dependent of the supergravity coupling.

On the other hand, there are more solutions apart from this sum for N' = 6, N’ = 7 and
N = 8. They arise in cases where the on-shell supergravity sector can contribute terms
to the on-shell gauge sector or vice versa, leading either to a gravity coupling-dependent
generalisation of the gauge groups possible in flat superspace, or, as for N' = 7 and

N =8, to new gauge groups which are unrelated to those in flat superspace.

Summarising, the coupling of the spin(N') on-shell multiplet to gauge theory and con-
formal supergravity has been described by generalising the analysis of supercovariant
projections to gauge covariant projections. Covariance of the defining constraint
requires the strong condition (3.2.5b])/(3.2.11b]), which must be fulfilled for the descrip-

tion of a covariant scalar multiplet. Solutions to this condition can be formulated for

the coupling to supergravity in terms of the super-Cotton tensor W/*% and the torsion
superfield K7 in the cases N < 6.

The superfield action / for the covariantly constrained superfield Q,
can be obtained from the free action by replacing the supercovariant deriva-
tives by gauge- or supergravity-covariant derivatives and, for the latter, inserting the
super-vielbein determinant in the action. These actions are scale-invariant and there-

fore describe conformal coupling.
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3.3. Matter currents

3.3. Matter currents

The gauge- and gravitationally coupled spin(N') scalar multiplet transforms under the
respective gauge group and under the local SO(N) structure group of conformal su-
pergravity. In the Lagrangian formalism, it couples to the respective gauge fields as a
corresponding current. If the kinetics of the gauge fields are described by Chern-Simons
terms, the equations of motion equate these currents to the field strengths of the gauge
fields. Since the field strengths are contained in the gauge and conformal-gravity mul-
tiplets respectively, these equations of motion can be recast as corresponding superfield
equations, in order to obtain on-shell expressions for all fields in these multiplets. They

will be constructed in the following.

3.3.1. Chern-Simons-matter current

The Chern-Simons action for a gauge field B, = BT = 5 BYT;; is given by

Scs = 1 /d333 e™" (=2B} Frij — 3BA B B"), (3.3.1)
where
F4 =20,By + 2B B} (3:3:2)

The equation of motion is
_ lgabcpég — 2pc — . (3.3.3)
p 1

)

The spin(N) scalar multiplet couples to the gauge field via the kinetic terms for ¢ and
Ja,; contained in the superfield action (3.2.9)

S = =t [ @ avatt, Q)75 (3:3.4)
Working out the component form, they are found to be

Smkin. = — 3 / &2 (2°9)Puq — 13°2, G5 — 13°Da" G (3.3.5)

N[ =

/ & [q)0q — 200,45 — 34070 + BLj¥ + 1 B2 BIT0g) (Tuq),
where

75 =500 Tijq + 5(T50)0%q + 5(v*) T ds- (3.3.6)
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3. Coupled scalar matter

In presence of this coupling, the equation of motion obtained from the full action S =

Scs + Sm becomes

|
N
~~
b
X
S~—
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<
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=
—
!
<
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=
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~<
IS
N~—
Q
®
K¢
Q
=3
<.
Q¢
®

(3.3.7)

which means that the field strength is equal to the covariant matter current.

On the other hand, the dimension-two field strength is contained in the gauge multiplet
described by the superfield F'/ as the covariant projection [34]

Fo =550 (Ya) 24 F 1. (3.3.8)

It is desirable to reproduce the equation of motion in presence of a matter current from
a superfield equation of motion for F'/. The dimension-one matter current must be
proportional to the square of a dimension-one-half scalar superfield [21]. In addition, it
has to obey the identity [34]

gLF = gl p/" — 2.5V g, FRE, (3.3.9)
Due to the property of the elements of the SO(N') Clifford algebra
Yy = yIIE oIl K]y ITK _ ﬁéI[JYL,YK}L’ (3.3.10)

it is consistent to write [32, 21]
FY = aQvy!’ Q. (3.3.11)
The Lie algebra valued gauge multiplet F'/ = %Ffjf]Tij is expanded with the coefficients
Fl/ = aQy"'T;Q, (3.3.12)

where the trace over gauge indices is implied.

In order to obtain the dimension-two Chern-Simons equation of motion, one has to
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3.3. Matter currents

evaluate

L9LTEFL) (9L QVTIQ + QT T TIQ + AL QL THTQ)
. WVUT”Q + icj‘y”y‘”@cygTijq _ 2(y1q(a)y1JVJTijd5)
_ imyﬂyuqu + quIJyJI@aﬁTijq _ 2§(ay1yl‘]y‘]Tij(jg)
= — N = D[(Zas0)T?q + T Papq — 2G0T d5)),

leading to

F7 =(Yap)*?a[(Zap) T q + T qPupq — 21T ds)). (3.3.13)

3.3.2. Supergravity-matter current

The Chern-Simons action for the SO(N) gauge field BI” is given by [39)]

1
o 4k /d?’g; e e (_QBL,JFnz,IJ - %B{nJBr{KBzKI)a (3.3.14)

where
FY) =20,BY + 2B B, (3.3.15)

The equation of motion is

1 abc IJ __
pr? Fap /m2

F¢, =0. (3.3.16)

The spin(N) scalar multiplet couples to the SO(N') gauge field via the kinetic terms for
q and ¢, contained in the superfield action (3.2.22))

S = —a / d*z d67d0. E (73.Q)2°Q|. (3.3.17)
They are
S Jin, = — %/d% e Dot — 30D 4s — 50" Pa" s (3.3.18)
- %/d‘"’x e (0°0)0ug — $3°0,45 — 30°0a" s + Bi, il + B3, BEF Y g) (i),
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3. Coupled scalar matter

where

it =20%q)vria + 1(v1s0)0%q + 1 (v)*P quy 155 (3.3.19)
For the action S = Scg + S the equation of motion becomes

%Fﬁ] =1jt, + B (Y)Y g + (Yis9)THq)

:%(QGCI)YUC] + %(VIJC])-@CLC] + %(YG)Q’BCLYU@B- (3.3.20)

The SO(N) field strength F%/ is contained in the super-Cotton tensor W/ /% as the

covariant projection [32] derived in conformal superspace [37],

1J i K oL IJKL
Fog = wamsZeZsW" "7, (3.3.21)

which is valid in the gauge L!” = 0. Similarly to the gauge multiplet, the on-shell

super-Cotton tensor must fulfil
PIWIKPQ —gllyy JKPQ] _ ﬁéI[J@aLWKPQ]L (3.3.22)
and is consistently described by [32] 21]
WIHEL — (QylELQ. (3.3.23)
The combinatorial number c¢ is found by evaluating

TLTQYQ =LY Q + Qv AL 7Q + A LR 7R
= — (V" Dap)Y""" g + 10y v Dapq — 2(v7q40) Y Y G5

= — {(Das )V Y G+ Y Dpg — 20y Y Y )

= — (N = 3)(N = 2)[(Zapa)Y* " q + (YELq) Dupq — 2iGy™ " ds)),

IJKL.,KJ ~

TIKI 2 —

The equations of motion for the gauge and supergravity multiplets in terms of the
dimension-one superfields constructed in this section are relevant for two reasons.
Firstly, in order to possibly resolve the coupling condition (3.2.5b|), the field-strength
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3.3. Matter currents

multiplet must fulfil the equation of motion and be expressed by matter fields. The
corresponding analysis will be performed in the next section. Similarly, the super-Cotton
tensor must be expressed by matter fields in order to resolve the coupling condition
for A/ > 6 as will be shown in Section (j3.5)).

Secondly, the pre-factor in the determination of the super-Cotton tensor will
furthermore be required for the realisation of topologically massive gravities in Chapter
4.
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3. Coupled scalar matter

3.4. All gauge groups for the spin(/N') scalar multiplet

In this section, the coupling condition for the constrained spin(AN') scalar multiplet is
analysed in flat superspace for N' < 8. The results will be adapted to the presence of

supergravity in the next section.

For the sake of generality, the superfield @, is taken to transform under the bifunda-
mental representation of a flavour group of the form F' x G. The gauge algebra acting
on @, has the form

{25, 2]3Q; = 218" DopQ; + 2ieasF'’ Q; + 2iesQ,G", (3.4.1)

where F'/ and G'7 are the right- and left-acting field strengths corresponding to the

two group factors [21]. They must allow solutions for H! of the equation
YWHT = Fq 4 ¢G", (3.4.2)
where H”' = %QVB’BJ.
A general ansatz in terms of the off-shell field strengths
H' = AF™8y g+ BFx i v"™ g+ CyqG™ + Dy LgGrp (3.4.3)

does not provide such a solution. The field strengths must rather be replaced by their
on-shell equations in terms of the scalar fields [2I]. Introducing gauge-group indices, the

right- and left-acting field-strength terms are expressed by

Fi(m49)," = atr(qy"740)(7%q)," = aq,"v" (74),," 3" (7%),%q” (3.4.4a)
(47, GR = b0, r(avoue) =0, NG T o) (BAD)

where the order of conjugated fields has been adjusted for convenience. The numbers
a, b are the coupling constants and 74, 04 are the generators of the right- and left-acting
group factors, respectively. In the case of a fundamental representation the single field-

strength term has the form

7" IJ(TA)vaw(TA>rSQS- (3.4.5)

62



3.4. All gauge groups for the spin(N') scalar multiplet

It is further useful to define a product of three fields in a bifundamental representation

which itself is in the bifundamental representation as

{ABC},s = 1 AsBC + A B:C + c3A,BC
+d1 A B ,C + dyAB;,C + dsAB ,.C -
+e1A ;BC, + esAB;:C, + e3ABC, -
+Crvws(J1AvB wCsi + f2AyBruCs + f3AurB 1, Cs)
+Crws(1A 5BaCrs + 92A 5BinC s + g3ArsBaC 5), (3.4.6)

where the invisible indices are appropriately contracted. Correspondingly, for a funda-

mental representation,
{ABC}a = ClABBBCa + CQAgBan + C3AQB505 + C4Ca575A5§VC§. (347)

The summation over Lie-algebra indices A can be evaluated using the known com-
pleteness or incompleteness relations for the generators (see Appendix A). The chosen
conventions and examples for field-strength terms for a fundamental representation are

presented in the table

group factor (Ta)as ()15 (v 7aq)(T%q)a
SO(N) 26,1284 2(qy" a0)as
Sp(N) 208 2p)s 207 (G " ¢v)) 45
U(1) —¢*8,89 —*(@"Y" 45)4a
SU(N) NOa8) — 8385 ¥ @Y 48)40 — (@Y 4a) a5
U(N) —53,87 —(7°¥" 4a) s

spin(7) 280,058 + 2Caprs 20" a5))a5 + 2Caprs(a5Y" 4y)gs.

The analysis in terms of these tools will be carried out in subsections, each being
concerned with scalar fields in fundamental representations of spin(A') which have
the same dimension. These families are N' = 2(Clifford)/N' = 3/N = 4(chiral),
N = 4(Clifford)/N = 5/N = 6(chiral) and N' = 6(Clifford)/N = 7/N = 8(chiral),
where the addenda (Clifford) and (chiral) denote the reducible Clifford representation

and the irreducible chiral representation for even N .
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3. Coupled scalar matter

For better distiction, chiral spinor representations will be denoted by Q| = @, as

opposed to Q| = ¢ for the cases of odd N and reducible Clifford spinors for even N.

3.4.1. N =2 (Clifford), V' =3 and N = 4 (chiral)

The spin matrices are (compare Appendix A)

L (o1 , (0 —i L (10
y_<1 o) y_<i 0) Y_V_<o —1) (3:48)

and the generators proportional to y'2,y!® and y* are those of spin(3) = SU(2). The

left- and right-handed chiral spin matrices are

(2N =[1,1v128]a (3.4.9a)

(X" =1, —iY1,2,3]ﬁ (3.4.9b)

and the corresponding spin group is SU(2)y, x SU(2)gr, where the two factors are associ-

ated with the indices i and i respectively. Relevant identities are

(Y[J)z‘j (Y = 8(i(k(Y”)l)j) (3.4.10)

and
(Z[I)ij(zﬂ)kf = _%5ik(21J)j[+ %831*(2”)7% (3.4.11a)
(Z0)5( 2% = 388 (E1) 4 38521 (3.4.11b)

The most general expression for H! in terms of the Clifford spinor is given by

H! :(Yl)ij(A{qjquk} + B{quij} + C{quij})
+ 4" (D{d* qa} + E{d"Ga} + F{a:d"a}) (3.4.12)
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3.4. All gauge groups for the spin(N') scalar multiplet

and leads to

YWH") = = A" {@)id" e} — B{d" v @ian} — C{d" % (v 0)i}
+ D{a(av" o) + d*a(v" o) — OV Dot — Y 0)i0F i}
+ E{a( v ) + (v D — Fa )i + Y 9)id a}
+ F{" a0 o + (Y e + oy i + Y Qi (34.13)

In order to reproduce the on-shell field strengths, the coefficients must be related by
D=—-F=—-B, E—D=Aand F— FE =C, so that

WHY); =(E + F){(ov" @)a;} + (B = F){ai(ay"q)}. (3.4.14)

Since the left- and right-acting terms have independent coefficients, any gauge group is

possible if one chooses the appropriate coefficients in the expansion (3.4.6) or (3.4.7)) of

ns

The most general expression for H! in terms of a left-handed chiral spinor reads
HY = (2™ (A{QnQ'Qi} + B{Q'QmQi} + C{Q'QiQu}), (3.4.15)
leading to

(SVHDY = (2™ A{QmQkQi — QmQiQr} + C{QiQiQm — QiQrQu}), (3.4.16)

where B has been set to zero without loss of generality. This case requires the relation
A = C in order to cancel the terms where the free spin(A) index k is carried by the
conjugate field, so that

(ZVHM, = —A{(QXQ)Qr — Qr(QXTQ)}. (3.4.17)

The only expansion of {.} reproducing group-specific field-strength terms which do not
involve an invariant tensor Cj;x; is then given by the choice where only c3 # 0. This can

be written as

(ZVHMN), = —Acs[(QE17Q)Qr — QrQETQ)], (3.4.18)

where the products are understood as matrix products with the bifundamental indices.
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3. Coupled scalar matter

The groups which naturally fulfil this requirement are U(M) x U(N) and SU(N) x
SU(N) [13] with opposite couplings a = —b or, more generally, SU(M) x SU(N) x U(1)°

where the U(1) charge is constrained by —¢* = a(4; — %

traced bilinear terms from the SU(N) factors. This product can be extended by further

) so that it cancels the gauge-

pairwise cancelling U(1) factors. The coefficients are Acz = a, resulting in the solution

Y = a(2)™™(QnQ'Qi — QiQ' Q). (3-4.19)
Another combination is Sp(M) x SO(N) [13] with opposite couplings and the reality
condition
Qi = Qe (3.4.20)
leading to
H'™ = 2a( )" (QnQ'Qs — QiQ'Quy). (3-4.21)

The third possibility is to involve an invariant antisymmetric tensor Cl;jx in the expan-

sion of {.}. In this case, the second group factor has to be SU(2) in order to write
_Crvstvﬁ(Q’DwEIJQSF) = %Crvws(QUGZ]JQ’Dw)QsFJ (3422)

where the reality of @) has been used. Since the left-acting symplectic SU(2) requires
the presence of an orthogonal term from the right-acting factor, the generators of the

right-acting group must fulfil
(7h)i(Ta) ke = 28ix8y;5 + 2Cjma. (3.4.23)
This is the case for spin(7) (and its subgroup Gs) [I7]. In this case, the solution reads

H'™ =2a(L27) "™ (QmQ' Qi — QiQ'Qm),”
+ a(z_'l)mmcrvws(QmwﬁQﬁwQsF - QyﬂQﬁme7SF)' (3424)

Finally, the analysis can be repeated for fundamental representations. This leads to

(ZVHN), 5 = Far [(Q*2MQu)Qrps — (Q“ZQp)Qua] — (2 F 2)(QsX" Q¥) Qs
(3.4.25)

where the lower sign holds for groups with an antisymmetric metric and, without loss
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3.4. All gauge groups for the spin(N') scalar multiplet

of generality, it has been chosen ¢3 = 0 and A = 1. This is consistent with the groups

Sp(N) x U(1)° (¢* = a) and SU(N) x U(1)° (¢* = & — a),with the U(1) charges being

restricted as indicated. For Sp(/N) x U(1)° the solution is

HY = 2a(Z") "™ (QmaQ"Qip — QiaQ"*Qp) (3.4.26)
and for SU(N) x U(1)° it is

H' = —a(ZN) "™ (QnaQ"Qip — Qi,aQ " Qum,p)- (3.4.27)

These fundamental representations are equivalent to special cases of the above bifunda-
mental ones, namely Sp(M) x SO(2) and SU(NV) x SU(1) x U(1)°, respectively.

3.4.2. N =4 (Clifford), N' =5 and N = 6 (chiral)

The transition between the N = 4 (chiral) and N' = 4 (Clifford) representations is
performed by formally defining the Clifford spinor

w= (%), (3.4.28)
Q’L
the Clifford matrices

v, = ( 0 (ZI)@) L= <5g ’ ) (3.4.29)

and also
C* = diag(e”, &;). (3.4.30)

These matrices are equal to the SO(5) matrices (y!);?, which can be written as

Yi=01®1 (3.4.31a)

Y234 = —02®@ V123 (3.4.31b)

Y =vs=03@1. (3.4.31c)

The corresponding generators are those of USp(4) with the metric €;; = Cyp, 1.6. €12 =
—€91 = €34 = —€43 = 1. The N = 5 matrices with lower and upper indices y! serve as
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3. Coupled scalar matter
the chiral blocks for N' = 6, i.e.

(1)
(El)ij

e, iyh 3, (3.4.32a)
[—e, iyh23 45 (3.4.32D)

and the corresponding generators are those of SU(4).

Basic identities for these spin matrices are

ek (Y1), = — 2(y!)d (3.4.33a)
Ukl = —o(5T)i, (3.4.33b)
(’Yl)ij(yl)kl - 5?‘52 + 2€ik5jl + 2626{: (3.4.34a)
(Z‘.I)ij( ‘I)kl —9¢ ikl (3.4.34c¢)

and
(1) (y)H :Qé{f(yIJ)j]ll (3.4.35a)
(S (), :255{ ( EU)”J'L (3.4.35b)

The most general expression for H! in terms of an N' = 5 spinor is

1 =" [Aad @} + B{d'aa} + C{d'Ga}]
+20v)/ [D{dGac} + E{d@a;} + Fland'a;}] - (3.4.36)

Without loss of generality, one can choose D = F' = B = 0. In order to generate
field-strength terms, the relation A = C' = —F must hold, so that

Y HM, = B{(ev" Dar — ax(@v" a)}. (3.4.37)

The formulation in terms of an N = 4 Clifford spinor is equivalent, except for the
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3.4. All gauge groups for the spin(N') scalar multiplet

range of I. For example, it holds that

W ED), ~E{ <(ZUQ)I<:Q3Qj +Qu(QEVQ) + Q;Q7 (X1 Q)i — (QEUQ)Qk> Ly

(QEVQQ" - QIQ;(TVQ)F - QHQITQ) - (EV QI QIQ;
=E{(v" )¢ — ¢.(@v""q) — (V"7 @)alqc — ¢“6-(Y"" @)} + ...

and similarly for other types of terms. In particular, no terms involving y* are required.

As is apparent, the allowed gauge groups are the same as in the case of the chiral
SO(4) spinor discussed in the previous subsection [15, [I7]. The corresponding solutions
H' in terms of the A/ = 5 spinor are listed in the table

gauge group Hbe

U(M) x U(N) a(Y") "™ (@7 e — 9eT°q) + 2a(y") .G qa

Sp(M) x SO(N) 2a(Y") ™ (%3¢ — 9eT°q) + 4a(y") 4" qa

spin(7) x SU(2) —2a(y") " (@ 7°Ge — qeq°a) — 4a(y")*“q.q"qa
—a(Y")*Cl07°Ge — 4.0°0)] — 2a(¥")*Cgeq"qd]

SU(N) x U(1) —a(y)™(g5q5q? — a2 @a;) — 2a(v") g2 7}

Sp(N) x U(1) —Sa(y") (g 3548 — ¢ Tay) — 3a(y!) g2 32y,

where (C[ABC)),r = CyywsAvs BowCsr. They may be written in the compact form
H" = — BV {(0¢°¢c — 4:0°%) + 2(v") g0 qa}, (3.4.38)

with the appropriate coefficients specified above.

The most general expression for H' in terms of a left-handed chiral A" = 6 spinor is
H' =2A(517{Q:;QFQ;} + B(ZH*{QiQ'Q;} + C(X)*{Q:Q'Q;}. (3.4.39)

The coefficients must be chosen A = B = —C, leading to
(ZVH), =A{(QE"Q)Qr + Qx(QE"Q)}. (3.4.40)

This admits the same gauge groups as for N' = 4 and N’ = 5, with the exceptions of
Sp(M) x SO(N > 2) and spin(7) x SU(2) [15] [16], since the necessary reality condition
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3. Coupled scalar matter
is not available for the group spin(6) = SU(4). The solutions can be written as
HY* = “AGEY{QQQ — QQ'Q) + 250,04, (3.4.41)

and correspond to the above solutions for N' = 5 after obvious replacements.

3.4.3. N =6 (Clifford), N’ =7 and \ = 8 (chiral)

The transition between the representations N = 6 (chiral) and N' = 6 (Clifford) is
performed by formally defining the Clifford spinor

Ga = <g> (3.4.42)

and the Clifford matrices
0 21 ,,,,, 6
vt = (21 ..... 60 ) , Y =3 e1el, (3.4.43)

which are equal to the SO(7) spin matrices with the identification y* = y". Conveniently,
these have an imaginary and antisymmetric representation, which is constructed via the
basis transformation
1 1 1
v — oyt Uu=—( " " |. (3.4.44)
—il il

The chiral blocks (£7); and (£71); for N'= 8 are given by

L
528 o 528 g leT (3.4.45)
so that (X1)T = 1.
The spin matrices fulfil
(YD (YD ok = 8idji — S8k (3.4.46)
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3.4. All gauge groups for the spin(N') scalar multiplet

and are subject to the Fierz lemma (see Appendix A)

88:k051 = Subjk + Vi Yix — sYIYIH — s¥iy i~ (3.4.47)

Some relevant consequences are

IIK_ LI [K_ L]

Yii Vil = WY — Vi Y (3.4.482)
v vl = -85 uavish (3.4.48b)
—85(19[1'1’;(];) = 5le5 - %Yﬁ”ﬁ’fj} (3.4.48¢)
—88psY iy = — Vi Vi Vi Vi (3.4.484)

In terms of v* instead of ¥7, the Fierz lemma is

88a68ed =Baades + YiaaYep + YiuaYeo — 5YianYei — YiaaYes

— YU YE S = i (3.4.49)
and provides the identities
1K _ LT «[K _ L] K_L
’yaé Yc; +’Ya£) ch = 45[&[6Yfl§bﬁ/ —YLbch]l (3450&)
88 ety Yaja) = Sea Vo — You ' Yir — 3V Y (3.4.50b)
88l Yajd) = —Yed Yoo + Ve Yea — Yea Yir + Yoo Yea: (3.4.50¢)

In terms of the chiral matrices follows the so-called “triality relation”[]
(ZDia(2)5 = 8,85 (3.4.51)

and
(DK (2T g = 48w (27 )y (3.4.52)

As suggested by the Fierz identities, a sufficiently general expression for H? in terms

Tt indicates that interchanging the role of the SO(8) indices with that of one of the spin(8) matrix
indices specifies new spin matrices solving the Clifford algebra. For the superspace it is then formally
possible to let the spinor coordinates transform under one of the spin(8) representations while the
scalar multiplet carries an SO(8) vector index.
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3. Coupled scalar matter
of an N = 7 spinor is

H! =y}, [Md T} + B{d"P o} + C{d" 0’}
+vh [D{d*T @} + E{d"@:d'} + F{a:d"¢'}]
Y v [G{dd Y + H{d3"¢'}] . (3.4.53)

Without loss of generality one can choose H = 0. In order to produce only field-strength

terms, the necessary relations are G = —D, E =0 and A = —B = —G, leading to

Y HD ) =GUav Dam + 4 (@ 0) = Vi 0T} (3.4.54)

The third term in this expression can only be converted into a field-strength term if the
gauge group is real SU(2) x SU(2) [21], where

@' = €"q," ewn- (3.4.55)
In this case, the relation
Qeli|Gm) = —390Tm % — 3% kTm)» (3.4.56)
following from
@t (GrGm) = Wwam@ + @@ = GqrGm + GGk, (3.4.57)
applies and leads to
(YW H), =3Gey [(QY”‘?)% + Qk((ﬁ/”(Jﬂ : (3.4.58)
With Ges = —%a, the resulting solution is
H =20 [(Y'Q)iT" a0 — "Y' Diar + (V' Da: — (v D (v"q)s] - (3.4.59)

For fundamental representations one finds no solution.

The analysis in terms of an N = 6 Clifford spinor leads to the same conclusion as for
the N = 7 spinor, with the condition

Go = (g) , (3.4.60)
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3.4. All gauge groups for the spin(N') scalar multiplet

where Q' = (Q;)*. In the real basis introduced above, this spinor becomes real in the

Qi L 1 1 ‘ Qi _ L Q,; + O
<Q1> — /2 (—i]l i]l) (C_T’) NG (‘i(Qi —Qz)) : (3.4.61)

This formulation is therefore equivalent to N = 7, if the replacement of v by y* takes

form

place. Correspondingliy, the solution is written as

H =2a [(v'q)i0"ax — " (V' Dsae + (av' D — (¥ )Y 0)i — (av" D) (v )] -
(3.4.62)

The most general form for H' in terms of a left-handed chiral N/ = 8 spinor is
1 =(5) [A{QQQ:) + BIAQIQY] + O™ )y (20 {QQ,Qu).  (3.4.63)
Choosing C' = —A = B leads to
(ZVHD), =C{QZ"Q)Qm + Qu(QX Q) — 57 QuQumQi}. (3.4.64)

As is known from the analysis for A/ = 7 the only solution is for real SU(2) x SU(2) and

reads
Hi =2a(27)5, [QeQiQi — QiQ1Qi] — 2a(277);5(27) 1 QiQ; Q- (3.4.65)

This concludes the determination of allowed gauge groups in flat superspace. An
overview will be given in Section (3.6)). In the next section, the above analysis is adapted

to the presence of superconformal gravity.
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3. Coupled scalar matter

3.5. All gauge groups for the gravitationally coupled
spin(N) scalar multiplet

The coupling of the spin(/N) scalar multiplet to both a gauge sector and supergravity

demands a solution to the equation
YWHY = g+ G + LW KLy o + 4Ky )g. (3.5.1)
As mentioned in Section , this solution is not always given by
H' = HI, + H, (3.5.2)

or can in some cases be more general. In the following, each case N' with matter fields
transforming under irreducible chiral representations of spin(/) is considered separately.
The on-shell super-Cotton tensor is specified in terms of its corresponding matter current
implied by the coupling to a gauge-coupled scalar and the implications of the coupling

condition are analysed.

3.56.1. N =14

On shell, the super-Cotton tensor WI/KL = Wel/EL i5 in terms of a gauge-coupled

scalar, given by
W = 21Q'Qil, (3.5.3)

where |.| indicates the trace over gauge-group indices. The complete solution to the

coupling condition is then
H' = H!, + H], (3.5.4)

where
Hy, = 3(%1Q'Qi| —2K)2'Q (3.5.5)

and HZ, is the contribution from the gauge sector of the desired gauge group. There is
no other solution both representing the supergravity sector and generalising the gauge

groups possible in flat superspace than the above sum.
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3.6.2. N=5

The on-shell super-Cotton tensor is given by
W=~ Aley'dl (3.5.6)
in terms of which H., becomes

HJGJC = — W (Y" @)k + W, — K(v'q)
=— 2 [(V|w@ la; — | V'@l)eas — lau(@y' @) + 1" @l (V' @)m + lav' @lar]
— KW' (3.5.7)

Also here, the gauge groups found in flat superspace cannot be generalised.

353. N=6

The on-shell super-Cotton tensor is
W = —2i|QX"qQ), (3.5.8)
so that

HLE =3Wie (SRHQ) — SR (S4Q)F — K(51Q)
= - 2Q:Q"(2'Q) + $1Q:Q'(2'Q)" — K(2'Q). (3.5.9)

As opposed to the cases NV = 4 and N/ = 5, the presence of the supergravity coupling
admits more general gauge groups compared to flat superspace [30]. As can be seen in

the expression
YWH = W —iW Sy gy + 4§W + 4Ky1)g + 17Q + Qg", (3.5.10)

the R-symmetry U(1) charge can be used to liberate the U(1) factors of the special-
unitary-group factors in order to generalise SU(NN) x SU(N) to SU(N) x SU(M).

One way to do this is to shift the charge ¢ to ¢ — afyas in order to cancel the parts
of the gauge field strength corresponding to the U(1) factors in the algebra, leaving the
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algebra and the solution H! formally invariant, i.e.
H' = - £|Q.Q°(2'Q)" + 1Q:Q'(21Q)F — K(2'Q)"
—2a(X2")7Q,Q%Q; — a(L*(QiQ'Qi — Q:Q'Q)). (3.5.11)

This bifundamental representation corresponds to matter in the fundamental represen-
tation of SU(M) x U(1) with arbitrary U(1) charge if the replacement 5 — % + a takes
place. The solution can be written as
H' = = 3Q7Q5(Z'Q°) + Q] Qp(2'Q")* — K(£1Q)"
—2a(2)9Q7Q5Q] — a(EHM(QrQLQT — QFQ5Q)). (3.5.12)
Another possibility is to formally gauge U(N) x U(M) and then shift § — ¢+ afnu
in order to produce field-strength terms in the algebra completing the U(N) x U(M) to

SU(N) x SU(M). In this case, it is required that ¢+ afyy = —3, thus fixing the gauge
coupling for given ¢, N and M.

354 N =7

WIJKL _

The super-Cotton tensor is gl JKLSP QWSPQ and

1
6
YVH = 1 (iWspgy!75T9 + 4kv) q. (3.5.13)

As mentioned in Section (3.1)) and opposed to the cases N' =4, N' =5 and N = 6, HZ,

cannot be expressed in terms of W//% since the general ansatz
Hi, = XWirpny ™™g+ YWty g — Ky'q (3.5.14)

admits no adequate choice of X,Y".

In terms of a matter current, the on-shell super-Cotton tensor is

W =i jqy""q], (3.5.15)
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so that

(Y[JHsIé)z‘ 23% [|C]z'(q_|YUQ) +las (Y al)iar + (Y |9) Gk | ax + |Qijz’|(YIJQ)k}
— 55 [Wo)i(av”e) + lae (Y al) (v g)e] + K(v"q)s. (3.5.16)

The general ansatz becomes

Hly =— 42 = 3X) [la:(av'a) + |a@| (v a)x]
— 42 (Y +3X) [lae (Y7l )iar + (V' 0)ik | ax]
+2Y Flawanl (v 9)i — K(v'q)s, (3.5.17)

implying

(YW H): = — 42y - 3X) [(VW[9)i(@v"a) + la (Y a)i(v" )1
+ (Y +3X) [lae (v al)iar + (v |9)idilax]
= 2Y Rlawdel (v a)i + K ). (3.5.18)

Still, the coefficients cannot in general be chosen to reproduce the supergravity term,

except in the absence of gauge group indices, where X =0, Y = —é and

HY, = —&aq(v'q) — Kv'q. (3.5.19)

Even though the supergravity sector cannot exist separately in presence of a gauge
group, there exist solutions for matter which is coupled to both supergravity and gauge
fields. For the gauge-coupled scalar transforming in the bifundamental representation
of SU(2) x SU(2), the traces over gauge indices can be turned into matrix products, so
that

YYHL): =2 Ba@y”a) + o (v’ @iar + Y @)idear — gy )ai]
=2 [Wei(ay"q) + ax (YW @) (v )] + K(v"q)s. (3.5.20)

Conveniently one can add the respective ansatzes for H! from the gauge and supergravity
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sectors, i.e.
HiI,SG = 8%(3/ —3X) [Qi(Q_YIC]) + le?z'(YIQ)k]
=85 (Y +3X) [a: (V' Diax + (v @)irar]
+4Y Eaa(y' )i — K(v )i (3.5.21)
and
Hl s =y [AldT a0} + B{d" P a} + C{d"0q’}]
+ Y [D{qkqui} + E{d"qd'} + F{C]iqkql}}
+vi vl [G{d*ddy + H{dd*d'}] (3.5.22)
and solve

(YWH) = =85%(Y = 3X) [(vWa)i(av"a) + au (v Ds (v 0)s]
+ 82 (Y +3X) [an(v" 0iar + (Y @)strar] — 4Y 2aqran (v q);
— [AY" @)igrar + Ba(Y" Diae + Cara(v" )]
+ VEJJYQZ [Darqiq; + Eqr@iar + Fq;qrq)
+ (vii 855 — 40y + YE}IYQI)[G%@%‘ + Haq;qreqi]
+ K(y"q);.

One can choose the coefficients H = F = F =0 and G = —A = B = —D such that

(YHD) = =8%(Y = 3X) [(vW9)i(av"a) + e (YW D) (v )]
+ 8 (Y +3X) [ (Y Qi + (Y 0)i@rar] — 4Y B (v )

— Cquar(Y" q);
+ 3G (il b3 + Skl ) an@ug
+ K('}/Ijq)z
The couplings are then related by %G = —a — 3—)‘2 = —b+ 3%, since the field-strength

terms of the gauge sector also have to contribute to the supergravity sector. Fixing the
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remaining constants X = —Y = —1416 and C' = 644 leads to the solution
HY =4 [g (') + aa (Y a)e] — % Lo Y Qi + (V' @)idrar] — &Qk@k(YIQ)z‘ —- K(v'q);
+23(—a—3) [ (v]q) Gt + V' Diae — (V' D + (@™ )V 0)i] + Sara(v'q)i,

(3.5.23)

which can be rewritten in terms of traces as

H =3gi(ay' ) — 2la(v'a)ar — K(v'q)

+2(—a— ) [~V @ilaa] + o' d)iax — (V' Da + (™D (v )] -
(3.5.24)

Other gauge groups with a bifundamental representation are not possible.

Regarding fundamental representations, one case derived from the bifundamental rep-
resentation is SU(2) with one of the couplings a, b set to zero. As opposed to the previous
cases, there are more solutions which are not special cases of bifundamental represen-
tations. The supergravity sector in terms of scalars transforming under a fundamental

representation,

I 6% — (6% (6%
(v HI)e = [ @Y q™) + @, (v as)ial + (v a%)idhas + a4l dsi (Y q)n

— % [(v” i@y’ )+q,f(v”%)i(v”q“)k] + K¢, (3.5.25)

has to be compared to the ansatz (choosing H = F=F =0and G=—-A= B = -D)

(VW H); == 42V = 3X) [(VWa")i(asv"a™) + af (V)i (v ")
+ 4R (Y +3X) g7y ds)iat + vy
—2Y i as (v e+ K(v' g%,
— Ciq (v q*)i
+ Gs(vi 85 — Survi{ + 8y )ardsd;
+ Ga(Vi bsj — Syl + 8y i) C g} d ).

As before, X = —-Y = —%, and Cf = ﬁ cancels the superfluous term in the super-
gravity ansatz. (G3 provides both the missing terms in the supergravity ansatz and the

gauge field strength. A solution is then possible for SU(V) x U(1) with the specification
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2
A _a ¢ s o
5 = — ~ and is given by

H =2 6l (@sy'a) + aas (v 0] - 3 |0l aphias + (v P yba | — K(v'a),
— 2OV q0)i@har + SaE (Y )iy — 350"V 3 al + (@Y @) (v q”)i. (3.5.26)
For SO(N), the ansatz for H., cannot provide field-strength terms; however, the
missing terms in the supergravity ansatz can be explained by an SO(N) field strength

cancelling them. Concretely, in the supergravity sector in terms of a scalar transforming

under SO(N),

(Y HD) =2 [2(aY" 0)@ip + 2(v" 45)id50"] — 22007 48)i (457" 00) + K (v g0 ),

(3.5.27)
the first term can be cancelled by choosing a = —312. The solution depends therefore
only on A and is given by

Ha =%a5(a5Y'00) — 75 (v 95) 4500 — KV o (3.5.28)

This SO(N) gauge group can further be promoted to spin(7) by taking 3G, = —32.

The corresponding solution reads

Hy =3a5(a57"da) = 76(v'45)050n — §iCapnsl(d™Y " )" ¢") = (@*¥'¢")d’] = KV da.

(3.5.29)
3.5.5. V=38
The super-Cotton tensor is self-dual and
SVHL = YWl EE 5, Q + 4K 51 Q). (3.5.30)
The ansatz
Hi, = XWHM S 0Q + 2K 57Q (3.5.31)
provides no solution off shell since
sVl = xWUIKLM 9 IKLM G 4 s Xy lIM 5 o 9 )¢ 5170). (3.5.32)
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The on-shell super-Cotton tensor is
WIIEL _ 1_A6|QEIJKLQ|7 (3.5.33)
so that
SV HG =31QiQ(2Q) - F1Q:i(27QNQs - 5(2"1Q) Qi Qs
- %|Q(Q|ZUQ) - %|Qi@|(2uQ)i + KX7Q. (3.5.34)
The ansatz becomes
Hi, =X 15 [24]Qi(27'Q)Qi + 24(2'Q)Qi|Q; — 6]QiQi| (27 Q)] — KZ'Q,  (3.5.35)
implying

SVHL = — X2 [241Q/(27Q)Qi + 24(271Q)Q41Qi — 61Qi Qi (277 Q)]
+ KX17Q. (3.5.36)

Similarly to the case N' = 7, the coefficients cannot in general be chosen to reproduce

the supergravity term, except in the absence of gauge-group indices, where X = % and

HL, =320°2'Q - KX'Q. (3.5.37)

SG 2

However, a solution with a gauge-coupled scalar field exists for the combined gauge
and supergravity sector. Conveniently, the on-shell ansatz of the gauge sector to the one
for the supergravity sector can be added. For a bifundamental representation, the only

possibility remains real SU(2) x SU(2) [21]. In this case, it can be written

SVHG = =227 Q)Qi — 2(277Q)Q:Q;
- 20QI7Q) + %QE7QQ+ K2Q (3.5.38)

and for the combined ansatz

SVHT = — X2 [48Q:(27Q)Q; + 36(277Q)Q:Qi] + KL Q
- [A(EIJQ)QiQi + BQi(ZUQ)Qi]
+C2QXYQ)Q+2Q(QEQ) + Q:(XQ)Q: — (X7 Q)Q:Q:] . (3.5.39)
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3. Coupled scalar matter

The couplings must fulfil a +b = —-3C and a — b = % [21], while e.g. X = 24, C =B
and A = —C — 2. The solution is
! =2 20,(5'Q)0: + 4(5'Q)0.Q)] - K5'Q
+3(20 - H(Z'Q)Q.Q; — @ (Z'Q)Qi — (@X™Q)(ZFQ)]
- A5G0 (3.5.40)

As for gauge groups with fundamental representations, one example is given by SU(2),
realised by setting a or b to zero in the above gauging of SU(2) x SU(2). In general, the
supergravity sector in terms of scalars transforming under a fundamental representation

reads

SUHD =20Q7Q5(57 Q) — 2Q1(ZVQs)Q — (27 Q%)Q5Q8
— 2Q%(Qs XV QY) = £Q)Qs(2M Q)i + KXV Q™. (3.5.41)

Comparing with the combined ansatz
SV = X3 [24Q0(27Qp)Q8 + 24(57 Q1 Q4Q¢ — 6Q7 Q) (27 Q)| + KX Qe
- [A(EUQ)QiQi + BQz’(ZU@)Qi]

+C5[(Q 2 Qp)Q" + QY(Qs X" Q°) — QFQr (2 Q7):
+ QM QpQ) — (27 Q")Q:5Q7), (3.5.42)
2

a solution exists for SU(N) x U(1)° with a = —4 and ¢* = —3(3 — 1), reading

H'® =3107Q5(2'Q") + 207 Q5(2'Q")] - £(Q° 2" Qs)(27Q”)
+ 2K 51Q”. (3.5.43)

For a scalar transforming under SO(N), the supergravity sector becomes

SVHg == 3Q°(Qs 27 Q%) + 5,Q/Q5(27 Q") — 3(2M Q7038
+ KX Q. (3.5.44)

If the SO(N) coupling is chosen to be a = %6 [21], the first term is cancelled and a
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3.5. All gauge groups for the gravitationally coupled spin(N') scalar multiplet
solution can be given as
H' =3 [4(£1Q")QQ7 - Q1Q(51Q")] - K21Q". (3.5.45)
This solution can be modified for spin(7) to

H' =3 [4(Z'Q")Q5Q7 = QIQ5(E7Q")] + 35Cans(Q' 25 QN)(ZF Q") - KE'Q".
(3.5.46)

This concludes the determination of allowed gauge groups in curved superspace, where
the scalar multiplet is additionally coupled to superconformal gravity. An overview of

the results from the last two sections is given in the next section.
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3. Coupled scalar matter

3.6. Overview of gauge groups

The following table summarises the findings from the previous two sections. The columns
“fundamental” and “bifundamental” list the allowed gauge groups for which the scalar
fields are in the fundamental or bifundamental representation, respectively. Together
with the values A it is implied that the scalar multiplet transforms under an irreducible
(chiral) representation of spin(N'). The lines denoted by “+SG” contain the allowed
gauge groups in curved superspace, i.e. in the presence of conformal supergravity. For
N =4 and N = 5 they are the same as in flat space. The subscripts of the group factors

indicate the relative coupling constants.

fundamental bifundamental
N =14 SU(N), X U(l)a_a/N U(M), x UN)_,
Sp(N)a X U(l)fa SU( ) X SU(N —a ( )a/N_a/M

Sp(M)a x SO(N)-a
spin(7), x SU(2)_,

N=5 SU(N)a % U(Laasn U(M), x U(N)._,
Sp(N)a x U(1)_q SU(M)a x SU(N)—q x U(1)a/n—a/u
Sp(M), x SO(N)_,
spin(7), x SU(2)_,

N =6 SU(N)a x U(L)a-a/n U(M), x U(N),
Sp(N)a x U(1)-a SU(M)a x SU(N)a X U(L)a/—a/as
Sp(M)a x SO(2)a
+SG SU(N) x U(1) SU(M), x SU(N),
N = SU(2), x SU(2),
+SG SU(N)_A/S X U(l)(Q_N)A/w SU(Z)a X SU(2)a_)\/8
SO(N)-xn6
spin(7) /e
N =28 SU(2), x SU(2),
+SG SU(N),A/Zl X U(l)(Q,N)A/g SU(Q)Q X SU(Q)CL,/\/AL
SO(N)_s

spin(7)_xs
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3.6. Overview of gauge groups

As mentioned during the above analysis, the groups with fundamental representation
in flat space are equivalent to corresponding groups with bifundamental representation
for a certain case of N, M. The same is true in curved superspace, except for SO(N)
and spin(7) in the cases N' = 7,8.

It is worth to note that for the cases N' = 6,7,8 the coupling constants of the two
group factors with bifundamental representation appear with equal sign, which is due
to the conventional ordering of the conjugated scalar fields in the on-shell expressions
for the left- and right-acting field strengths, as defined in Section . This however
correspond to opposite signs of the matter currents, which contain the conjugate fields

in the usual order. Concretely, since for A' = 6, 7, 8 the matrices y!/ have the property

Qv"Q=-av"Q (3.6.1a)
QEQ=-QL"Q, (3.6.1b)

the sign of the right-acting field strength gets reverted in the usual ordering.

This sign difference is reflected in opposite signs of the two Chern-Simons terms for
the two group factors. It is essential for describing the world-volume theory of M2-
branes. Since one Chern-Simons term is parity-odd due to the cubic vector fields, the
interchange of left- and right-acting gauge fields under parity can be imposed in order
to leave the combined Chern-Simons terms invariant [I0]. The requirement of parity
invariance comes from the principle that M2-branes correspond to the strong-coupling

limit of D2-branes, which are parity-even.

The results in the table have been partially present in various places in the literature.
Regarding flat space, the groups for N' = 4, except for spin(7), x SU(2)_,, had been
initially discovered in [13], and extended for A = 5 in [15]. Classifications for N' = 6
were given in [14], [12] and [16]. The unique gauge group for N/ = 8 appeared in the
BLG model [9, 8] and subsequent comments, e.g. [I0]. The group spin(7), x SU(2)_,
was found in [I7], where also the case N' = 7 had been mentioned. As for the presence
of supergravity, the group SO(N) for N' = 8 was found in [21] and the generalisation
to SU(M) x SU(N) of N' = 6 was mentioned in [30]. The groups with fundamental
representation SU(N) x U(1) and spin(7) for N' = 7, 8 [32] are new results of the present

analysis.
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4. Topologically massive supergravity

In this chapter, the gravitationally coupled spin(/N') scalar multiplet is interpreted as a
conformal compensator in order to realise extended topologically massive supergravities
and to specify the corresponding values of u/f.

In Section , basic properties of three-dimensional Einstein-Hilbert gravity with a
negative cosmological constant, conformal gravity, and topologically massive gravity are
reviewed.

In Section , the relation between the cosmological constant of anti-de Sitter space
and the geometry of anti-de Sitter superspace is established. Further, the action for the
scalar conformal compensator is given.

In Section , the spin(N) superfield describing the compensator multiplet is intro-
duced into anti-de Sitter superspace. Consistency with this background together with
previous results directly leads to a formula for pf in the cases 4 < N < 8, which is eval-
uated. Subsequently, it is analysed how the values of uf can change if the compensator

transforms under additional gauge groups.

4.1. Einstein gravity and topologically massive gravity

In three space-time dimensions, the Riemann tensor Rk = Rijmn is dual to a

symmetric tensor of rank two

Ryt = €mnreris R (4.1.1)
It is completely determined by the Ricci tensor and curvature scalar, since
R = Ryn + R = R — 3 Ryn, (4.1.2a)

which translates back to
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4. 'Topologically massive supergravity

In consequence, the Einstein equation with negative cosmological constant A = —¢~2

1

5 (4.1.4)

completely fixes the geometry to describe space-time with constant negative curvature,

or anti-de Sitter space, specified by

R = _% (4.1.5a)
1
Run = ~2un g5 (4.1.5b)

This leaves no freedom for a locally propagating graviton. However, the solution of the
Einstein equation with negative cosmological constant can be generalised to a metric
which describes the analogue of a black hole in four dimensions, known as the BTZ
black hole [23]. Its parameter corresponding to the mass is positive when describing a
black hole and can take a separated negative value to recover the anti-de Sitter metric.
Asymptotically, the BTZ metric always becomes the anti-de Sitter metric. Gravity on
this asymptotic anti-de Sitter space can be described by a two dimensional conformal

field theory on its boundary [24] with the total central charge

3¢

= (4.1.6)

Cr+cL =

The left- and right-moving modes correspond to massless gravitons propagating on this

boundary.

The model of cosmological topologically massive gravity is given by the action [25]

1 3 L
+ 4/,6,%2 /Vdsaj € smnl <wgri)Rnl,ab - %w’?:wn,bcwl,ca>7 (417)

where k% = 16mtG. It is the sum of the Einstein-Hilbert action and the conformal gravity

action for the spin connection w,,(e). The resulting equations of motion are

Gun + 5 Cran = 0 (4.1.8)
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4.1. Einstein gravity and topologically massive gravity

with

1
2
Coun =€,,""Vi(Rin — 21 R). (4.1.9b)

Vanishing of the Cotton tensor C,,, is equivalent to a conformally flat space-time. There-
fore, conformal gravity alone also has no propagating degrees of freedom. While the anti-
de Sitter solution for pure cosmological Einstein-Hilbert gravity, including black holes
and massless boundary gravitons, is still valid, the presence of the conformal-gravity
term gives rise to a massive propagating graviton with mass p. In absence of the cosmo-
logical constant, the Einstein-Hilbert term is usually taken with the sign opposite to the
one above, in order to ensure a positive energy for the graviton. This, however, would
cause the mass of the BTZ black hole to become negative [40].

The central charges of the boundary conformal field theory are modified due to the

conformal-gravity term, becoming [27]

3,

er =51+ 7) (4.1.10a)
30
e =55 (1= 7). (4.1.10b)

Choosing the appropriate sign for positive-mass black holes, the analysis of the gravi-
ton modes in presence of the negative cosmological constant [26] then shows that for
general values of pf the theory suffers from negative energies of the gravitons. Only
in the special case uf = 1, the massive and left-moving gravitons become degenerate
and non-propagating, leaving a chiral conformal field theory with (cg,cL) = (3¢/G,0)
[26, 41] and a right-moving degree of freedom with positive energy. This model is called

chiral gravity or topologically massive gravity at the chiral point.

The parameter puf can freely be chosen to have this most sensible value of puf =
1. However, in the following it will be shown that pf is fixed by the superconformal
geometry for N’ > 4 supersymmetric topologically massive gravity, where the Einstein-
Hilbert action is realised via a superconformal compensator [31], B2]. The resulting
topologically massive gravities and values of uf will be classified corresponding to all

possible gauged compensators.
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4. 'Topologically massive supergravity

4.2. Conformal supergravity and conformal

compensators

In the supersymmetric case, the Chern-Simons action for conformal gravity is replaced
by the action for extended superconformal gravity [39]. Most importantly, besides the
terms for fermionic and auxiliary fields, it is supplemented by a Chern-Simons term for
the gauge field BZ/ of the SO(N) local structure group

1
41K?

/ d*z e €™ (=2B} Fu 1y — 2BY BI* B). (4.2.1)

In view of the anti-de Sitter solution of cosmological Einstein gravity, the geometries
of anti-de Sitter space and the anti-de Sitter background of superconformal gravity can
be compared using the algebra of covariant derivatives. The Riemann tensor is defined

by the commutator

2
[V, Vo ]VE = (2a[mrﬁ], + 2Ffm|p‘I‘Z]l) Vi=R, kVi= _ﬁsfmgn]lvl, (4.2.2)
which can be translated to the tangent space as
c 2 c d
[Va,Vb]V = —ﬁé[anb]dv . (423)

Comparison with the commutator from superconformal geometry in the background of

anti-de Sitter superspace [3§]
(D, D)V = —AK* MV = —8K>8{ 414V (4.2.4)
shows that the cosmological constant is generated by the value of the field K with [31]
' =2|K|. (4.2.5)

The Einstein-Hilbert term can be realised by a supersymmetric conformal compensator

g subject to the bosonic part of the conformally invariant action [42]

Shos. = /d?’x e (—3(2°0)(Zaq) — 5 Rlal* + M|al*)?), (4.2.6)

where A is a constant. The Einstein-Hilbert term is recovered in the super-Weyl gauge
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for ¢, where
q)* = 16K2. (4.2.7)

This action is naturally part of the action for the gravitationally coupled spin(/N') scalar
multiplet [29, 21]. It would be desirable to obtain it from the superfield action (3.2.22)
presented in Chapter 3; however, the action would have to be formulated in a locally
scale invariant way, and the relation of the Riemann scalar R in terms of the geometry
of conventional curved superspace to the fields appearing in the component action would
have to be established, possibly accounting for the differential relations appearing in the

expression for the dimension-two Lorentz curvature derived in Chapter 2.

4.3. Extended topologically massive supergravity

4.3.1. Fixation of u/

In order to agree with the background defining anti-de Sitter superspace, the superfield

describing the spin(N) scalar compensator multiplet has to be covariantly constant
24Q = 0. (4.3.1)
In consequence, the anticommutator of spinor covariant derivatives acting on Q
{28, 2]3Q =0 (4.3.2)
implies the algebraic condition [31], 32]
AKYYQ = - WKLy 1 Q. (4.3.3)

Conveniently, this condition is equivalent to cj[a'ﬂj] = 0or H/ = 0 [32]. Using the relations

1
K= (4.3.4)

and

2
WK
WKL _ - Iy 5 Lq] (4.3.5)

leads to

2 uK?
zYUq = —E\CJVUKLQWKLQ- (4.3.6)
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4. 'Topologically massive supergravity

Replacing the gravitational coupling with
K* = 16|q| 2 (4.3.7)

and multiplying by y!” leads to the formula

1JKL

(ul)q = gxprp lal v Faly . (4.3.8)

Its evaluation yields [32]

N= 4 5 6
()™= 1 35 1

where for N' = 6 the formula was adjusted due to the additional U(1) field strength

associated with the local structure group, contributing to the super-Cotton tensor.

4.3.2. Gauged compensators

For a gauge-coupled compensator, the adapted condition for anti-de Sitter background
H' =H!. +H/ =0 (4.3.9)

generally leads to deformations of p, which can involve the gauge coupling, special
properties of the gauge group and the number of compensator components with non-
vanishing values. If the compensator transforms under a bifundamental representation,
the deformation typically vanishes.

Usually, if H. can be written in the form

(HL)Y = X&) ey (4.3.10)

C

for some subset of the range of spin(A) indices a and gauge indices «, then there is a
shift
p— p+ 32Xk (4.3.11)

Special effects can appear, if the gauge and supergravity sectors depend on each other.

In the following, features of each case N are commented.
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4.3. Extended topologically massive supergravity

N =4 For N = 4 the deformation vanishes for compensators in bifundamental rep-
resentations due to the opposite signs of the coupling constants of the factor groups
and to the antisymmetry of the spin(7) tensor C,.gy,. For the groups with fundamental
representation, since one can choose only one gauge component to be non-vanishing, the

deformation likewise cancels.
N =5 For N =5, the same statements as for A" = 4 hold.

N =6 For N = 6, the statements made for A’ = 4 and N = 5 still apply; however,
the gauge group SU(N) x U(1) in the presence of supergravity causes a deformation of
. In this case, the AdS background requires

K(ElQa)k _ %Qf@g(EIQa)l + %Qf@lﬁ(E]QQ)k
—2a(2)9QQ5Q) — a(Z)M(QFQLQY — QP QLQY). (4.3.12)

In general, only one component of the matrix ()¢ can be non-vanishing, leaving u¢ = 1.

A

However, in the special case where a = 7,

or
K(5'Q)" =~ 5QIQU(E"Q" + 55Qr QTR (43.13)

one can choose @', = 4k 'p~18"  where a = 1,...,p < 4. This leads to the relation

1 R T |
—=—-—1 —1 - 4.3.14
57 3 6k~ + 16 6K (4.3.14)
and to the formula [32]
2
(nt)™' = o 1. (4.3.15)

N =T For the compensator coupled to supergravity and the gauge group SU(2) x
SU(2), the condition

KyLap =210abYiede — 351001V, ae
+2(a— 2) [~Vh®l@a] + Viladblae — (@' @a+ (v @) (v @)  (4.3.16)

is realised by one non-vanishing spin(7) component, leaving (uf)~' = 2. Similarly,
compensators transforming under a possible fundamental representation do not realise

any deformation of (uf)~* [32].
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4. 'Topologically massive supergravity

N =8 For the compensator coupled to supergravity and the gauge group SU(2) x
SU(2), the AdS condition yields (uf)~! = 3 [21].
The gauge group SO(N) allows a deformation of pf. The condition is

K(2'Q)" =3 |42 QM Q508 — QJQu(Z'Q)*| . (4.3.17)

One can choose Q! = 4k~ 'p~18!, where a = 1,...,p < 8. This leads to

1 pr? Ly pst 1
—=-"16 o 16k72= 4.3.18
o0 T g g (4.3.18)
or [33]
4
()t == —1. (4.3.19)
p

In summary, the gravitationally coupled scalar multiplet was used as a conformal
compensator, which naturally realises topologically massive supergravities with fixed
value of uf for N' > 4. This fixation is mainly owed to the fact that the super-Cotton
tensor appearing for A/ > 4 contains the SO(N) field strength whose corresponding
coupling constant involves p. The relation between p and the anti-de Sitter radius ¢ is
implied by the background of anti-de Sitter superspace. Using an ungauged compensator
field, the values uf are given by a generic formula which can be evaluated for the specific
cases N. For a gauged compensator, a number of gauge components can be given an
expectation value generating the gravitational coupling constant. This has no effect for
N = 4,57, but leads to specific diversifications for N' = 6 with gauge group SU(N)
and N/ = 8 with gauge group SO(N) given by formulas involving the number of chosen

gauge components.
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5. Conclusion

In this thesis, the coupling of scalar supermultiplets to superconformal Chern-Simons
gauge theories and superconformal gravity has been described in the framework of N-
extended superspace.

As for the gauge coupling, a list of all possible gauge groups for theories with 4 <
N < 8 supersymmetries has been produced. It agrees with the classifications found
in various places in the literature. However, the superfield formalism employed here
proves more powerful in several regards: First of all, it does not require any knowledge
about the component actions of the theories, but rather provides the superfield action
principle readily producing such component actions. Furthermore, these actions are
delivered for all A/, only requiring the gauge-group-dependent field H! appearing in the
transformation law of the fermionic matter field.

Most importantly for the main goal of this thesis, the superfield analysis is equally
suited for superconformal gravity-coupled matter. The thorough investigation of mod-
ifications or new emergence of gauge groups in curved superspace, as compared to flat
superspace, has produced some new results, completing the existing knowledge in this
regard.

For the topologically massive gravities realised by using the coupled matter field as
a conformal compensator, the resulting fixed values pf have been determined and its
possible modifications due to the presence of gauge groups have been discussed. These
values are important concerning the stability, or positive energies, of topologically mas-
sive gravity. The value uf = 1 preferred by the model of chiral gravity is indeed implied
by N = 4 and N = 6 supersymmetry, and can also be achieved for A = 8 with gauge
group SO(N).

However, as was mentioned in the introduction, the conformal compensator generates
the opposite sign of the Einstein-Hilbert action. This corresponds to a negative mass
of the BTZ black hole. This problem has often been noted in the literature [29], with
no satisfying conclusion so far. One promising discussions is given in [43]. There, it is

conjectured that the negative-mass black holes may be excluded from interaction with
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5. Conclusion

the physical matter fields or, in other words, could never be formed by the collapse of
the positive-energy matter and therefore would live in a different superselection sector
of the theory.

Such a solution would be necessary in view of a positive total mass of topologically
massive gravity. General relativity in four space-time dimensions possesses various
positive-energy theorems, stating that space-times with appropriate asymptotic sym-
metries allowing for conserved asymptotic charges have non-negative mass with unique
zero-energy states. Classic examples are asymptotically-Minkowski and -anti-de Sitter
spaces. The most simple proofs for these theorems can be derived from supergravity
[44], whose positivity of energy is implied by the supersymmetry algebra [45]. Also for
three-dimensional cosmological topologically massive gravity, positive energy has been
established by its embeddability in simple supergravity [46]. The value pf relevant for
perturbative stability is however free to choose. The feature of the new extended topo-
logically massive supergravities is the fixation of this parameter, in some cases to the
value puf = 1 required by perturbative stability. As is known to be possible in four di-
mensions [47], it could therefore be beneficial to generalise the analysis of mass-positivity

to these extended supergravities.
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A. Symmetry groups

A.1. Fundamental representations

If the elements of a Lie group are represented by matrices M, a vector v transforms

under the standard-fundamental representation as
v — M -, (A.1.1)
a dual vector transforms under the dual representation as
7% — (MHT ™), (A.1.2)
a complex conjugate vector transforms under the complex conjugate representation as
vt — M* T, (A.1.3)

and a dual complex conjugate vector transforms under the dual complex conjugate

representation as
7 — (MY ™), (A.1.4)

Dual vectors map vectors to numbers according to

v (w) = (T w e C. (A.1.5)

(w,v) = (W v (A.1.6)

(holding for all v) being invariant under the group transformations, the two representa-

tions are equivalent. If the scalar product is described by a metric g

(w,v) =w" - g" v, (A.1.7)
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A. Symmetry groups
the metric is a linear map between w and w®
w =g-w (A.1.8)
If the elements of a group are defined to leave a certain matrix ¢ invariant, i.e.
g Mt g=M", (A.1.9)

then ¢ is such a metric.

A.2. Index notation

Components of vectors are denoted by a lower index, components of dual vectors are
denoted by an upper index. Same named upper and lower indices are summed over.

The scalar product reads
(w,v) = (™). (A.2.1)

A metric mapping vectors to dual vectors has two upper indices (for real groups the (x)

superscript is usually omitted)
(W) = ghw; (A.2.2)

and the inverse metric has two lower indices
wi = (g7 )i (W) = (WY ((g7) ) = (W) gy (A.2.3)

The indices of the transformation matrices can be deduced and are summarised in the

relation

g-M-gt=(MHT (A.2.4a)
97 M; (g™ =((M )T (A.2.4b)

Examples. Elements of the pseudo-orthogonal group SO(M,N) are real and
have g =1, where
n =diag(—1,..,-1,1,..,1), (A.2.5)

and elements of the symplectic group Sp(N) have g = € where € is antisymmetric.
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FElements of the unitary group SU(N) fulfil
M =M1, (A.2.6)

identifying the dual and complex conjugate representations. The isomorphism between
the fundamental and dual representations is given by complex conjugation and the scalar

product s

(w,v) = (w*)" - v. (A.2.7)

A.3. Generators
A Lie-group element is given by the exponential
M =¥ = X'

(A.3.1)

Y

where X is the generator of this group element and is expanded in the basis elements

T4 depending on the group, which are the generators of the group. Due to the formula
oX oY = (XY HBIXY XX Y] (A.3.2)

the generators must fulfil a Lie algebra
[T, Ts] = figTc (A.3.3)
where f{ are constants.

For the fundamental representation of the special unitary group acting on vectors

with components z;, the matrix X, is anti-hermitian,

X' =-X. (A.3.4)
It is expanded in a basis Ty
X,/ = XNTy)/ (A.3.5)
with the normalisation
tI‘(TA, TB) = 6AB- (A36)
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This implies
Xa=X/(Tn), (A.3.7)

and, together with the tracelessness,
(T (Ta)y' = 878, — %875}, (A.3.8)
The generators can thus be relabelled as
XATy = XT)", (A.3.9)
in terms of which the Lie algebra becomes
1,7, T,") = &.T,' — 8T, 7. (A.3.10)

For the fundamental representation of the special pseudo-orthogonal group SO(m,n)

acting on vectors with components x;, the matrix Xij fulfils
gt XT.g=-X. (A.3.11)

The space of X is spanned by D = £(d? — d) matrices of dimension d

1
2

(Ta)! = (Ta)ix(g™)", (A.3.12)

where T4 span the space of antisymmetric matrices. If the positions in a matrix are

numbered like

012 3 4
08 9 5
0 10 6], (A.3.13)
0 7
0

T, is chosen to have only the entries 1 at position A and —1 at the mirror position.

Matrices TA with two upper indices (i.e. multiplied from both sides by ¢)

(fA)Zj = 9" g" (Ta)u (A.3.14)
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A.4. Spin groups

are related to T "4 by
T,y = (—TI, o =T, T, TD> , (A.3.15)

where S = 2mn — n. Therefore,
tr(TuTp) = —2Man (A.3.16)

where 1 is the metric of the group SO(T,S), where T'= D — S. It follows that

tr(TATB) = —2T]AB, <A317)
because
(Ta) (Ta);" = (Ta)ing™ (Ta) jug" = (Ta)iu(Ta)™. (A.3.18)
Then
Xa=—-1X)(Tw), (A.3.19)
and
(T (T = (T); = 254", (A.3.20)
This suggests the relabelling
XATy = 1XVT, (A.3.21)
and the Lie algebra becomes
[T, T = —4gleTid, (A.3.22)

A.4. Spin groups
The N-dimensional Clifford algebra is

{yr.vs} =281 (A.4.1)

The matrices

c/VIJ — %L[YI’YJ] — %YIJ (A.4.2)
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A. Symmetry groups

solve the SO(NNV) Lie algebra and are the generators defining the group spin(/N). One
solution for the Clifford algebras of dimension N = 2m and N =2m + 1 is

YVi=0®1l®..01

‘y* :’Y2m+1 E—lmy1y2m:03®]]-®®]la <A43)

where 4 solve the N = 2m — 1 dimensional Clifford algebra and each line consists of m
Kronecker-factors of 2 x 2 matrices. For N = 2m, the generators of spin(/N) commute

with the matrices
Pun = (1 £v%), (A.4.4)

which project on the generators of irreducible representations. These are called left- and

right-handed and transform under the generators defined by the chiral Clifford algebra

2yt =t 4 xt (A.4.52)
2yt =810 4 2 (A.4.5b)

= (;I Zg) ) : (A.4.6)

The map to the corresponding SO(N) representation is given by

where

vf =9 (") xe, (A47)

which transforms as an SO(N) vector since for infinitesimal parameters w’”,

(A_1>ca(71>abAbd - (]‘ - %WKL‘YKL%G(VI)ab(l + %LMPQ‘YPQ)bd

= (71)cd - inLh/KLu ’yl]cd
= () 4wty L (A48)

An SO(N) vector is therefore equivalent to a matrix in the space spanned by y! according
to
Ui] = UI<']/[)i] < UI = %(’Y})ij’vjz. (A49)
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A.4. Spin groups
This implies an (in-)completeness relation
(v1). ()i = 2m8i8), + C) (A.4.10)

with
(yl)jicijkl = (Vl)zkcijkl = 0. (A.4.11)
There are completeness relations, called Fierz-indentities or -lemmas, for odd N = 2m—+1

with the basis
M= {Lyh iyl (A.4.12)

and even N = 2m with the basis

F={1,y" yhe  yh-Ivy (A.4.13)
They are given by [48]
2898, = 8,8, + (v (V1) + -+ (V) (o )i (A-4.14)
and
2m808), = 818 + (V) (v + -+ ) (i )i (A-4.15)
respectively.
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B. Systematic supercovariant

projection

The component fields

Il Ik — 11‘..11C
ope ...8akA] =a, e

and supercovariant projections

Il Ik — IIIk
Dl ..DXAl=A

.0

are related by

nL..I, _ L. oIy
Aal...ak - aal...ak, + Qloal...ak,'

The fields A% can be constructed after the pattern

Ol

k

Q[h---fk :1§ élalb all~--1k\la,b

aq...0 Qg Qp al...ak,\oza,b
b>a
k

4 i2 Z rab,cdélalb 51c1d all-ulk\la,b,c,d

QaQp 7 0eld a1 ..o \Og b, c,d
a<b,c<d,a<c

k

443 Z Tab,cd,efé]alb 5161d %elf a11~~~Ik\Ia,b,c,d,e,f

ef Can..ap\Qa,bc,de, f

QqQp ~ OeXg
a<b,c<de< fa<c<e

+ ..

with

NIy, b—a+1glgI
aaao?b - (_1) o baaaozb-

The symbol rab-cdefs

(B.0.1)

(B.0.2)

(B.0.3)

(B.0.4)

(B.0.5)

- carries several pairs of indices. In each pair, the value of the second

index is higher than the value of the first index. Two neighbouring pairs are said to be

crossing if the value of the second index of the first pair lies between the values of the

two indices of the second pair (eg. 15,28). They are said to be embracing, if the value
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B. Systematic supercovariant projection

of the second index of the first pair is higher than the values of the indices of the second
pair (e.g. 18,35). They are said to be paired, if the value of the second index of the
first pair is lower than the values of the indices of the second pair (e.g. 13,67). If the

number of crossing neighbouring pairs is C', then the value of the symbol is given by
pabedef — (1)°, (B.0.6)

In the following, the indices I, are not displayed, and the summation constraints are
implied, i.e. the indices of o, carried by a 0 are increasing from left to right, as are the
first indices of the different 0.

An iterative formula is

mal...akagﬁ_l :Q[al...ak(aa(k—Z)k—i-la 8aa(k—4)k+ly )

k
+1 g aaaak+1aa1...ak\aa
a

k
22 2 a(k+1),cd 3
_'_ 1 r ( ) aaaak+laacadaabnak\aa,c,d
a,c,d
k
-2 ab,c(k+1) 3
+1 § rabel )aaaabaacakﬂaa1---ak\aa,b,c

a,b,c

k
-3 E ) a(k+1),cd,ef 3 3
t1 aaaak+lr aOlcadac’éeaf Aoy
ac,de,f
k
-3 § ab,c(k+1),ef 3 A ~
+1 r ao4116V11801calc+1aCYeOéf0’041---Oélc\OCa,b,c,e,f
a/7b7c7e7f
k
-3 § ab,cd,e(k+1) 5 a3 a3
+1 r aaaabaacadaaeak+laal---ak\aa,b,c,d,e

a,b,c,d,e

+o (B.0.7)

---ak\aa,c,d,e,f

where, symbolically, a(;—2),+1 has the indices carried by d removed and the indices a1
and [ attached.

The above formulas can be verified by convincing, direct calculations. A more conve-
nient method for calculating supercovariant projections is to perform successive super-

symmetry transformations, according to the relation

— 85145@1_0% = _56D6Aa1..ak| = i€'BQgAal_uk| = 6514&1._0%. (BOS)
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A resulting list with the pattern (Z)ak_m: —

for some applications is
(Z)ak“alz_ (Sl)ak“al
a =0
al =io,”
~é£ —eﬂf Oa — 218 K I)‘L]
a =N0a
ao =2i0,"a, + NOa,

g = — 418(5 o)y

@ =(3N —2)0a

G =3i0,"d, + (3N — 2)0(aa — i0,%a
:6i8(a“fbﬁ)u -+ 3£5QDCZL — 68a“8ﬁ”dw, +

QN
Sy
Q

+ (6N — 8)0(aga — 410, gy, — 2ep00a + 20, 05" )

—2i0, a,,)

(n)
Aay.ap (K < 2), which may prove useful

+ QEﬂaD& — 28a“8ﬁ”a,w + NDCLﬁa

(SN — 2)[](&5& — Elga[j(l + 218(5“aa)u)

— N (3N —2)00a,

— N (BN —2)00ag.

G =(6N — 8)0a — N (3N — 2)00a
(o =410, a,, + (6N — 8)0(ia
50 = — 810, Gy + A€ a0 — 120,10,
i =(10N — 20)0a + (15N + 26N — 16)00a.

107






Bibliography

1]

[10]

[11]

W. Nahm. Supersymmetries and their Representations. Nucl. Phys., B135:149,
1978. [,7(1977)].

M. J. Duff and K. S. Stelle. Multimembrane solutions of D = 11 supergravity. Phys.
Lett., B253:113-118, 1991. [,110(1990)].

E. Bergshoeff, E. Sezgin, and P. K. Townsend. Supermembranes and Eleven-
Dimensional Supergravity. Phys. Lett., B189:75-78, 1987. [,69(1987)].

E. Bergshoeft, E. Sezgin, and P. K. Townsend. Properties of the Eleven-Dimensional
Super Membrane Theory. Annals Phys., 185:330, 1988.

G. W. Gibbons and P. K. Townsend. Vacuum interpolation in supergravity via
super p-branes. Phys. Rev. Lett., 71:3754-3757, 1993.

Juan Martin Maldacena. The Large N limit of superconformal field theories and
supergravity. Int. J. Theor. Phys., 38:1113-1133, 1999. [Adv. Theor. Math.
Phys.2,231(1998)).

John H. Schwarz. Superconformal Chern-Simons theories. JHEP, 11:078, 2004.

Andreas Gustavsson. Algebraic structures on parallel M2-branes. Nucl. Phys.,
B811:66-76, 2009.

Jonathan Bagger and Neil Lambert. Gauge symmetry and supersymmetry of mul-
tiple M2-branes. Phys. Rev., D77:065008, 2008.

Mark Van Raamsdonk. Comments on the Bagger-Lambert theory and multiple
M2-branes. JHEP, 05:105, 2008.

Miguel A. Bandres, Arthur E. Lipstein, and John H. Schwarz. N = 8 Superconformal
Chern-Simons Theories. JHEP, 05:025, 2008.

109



Bibliography

[12]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

22]

110

Ofer Aharony, Oren Bergman, Daniel Louis Jafferis, and Juan Maldacena. N=6

superconformal Chern-Simons-matter theories, M2-branes and their gravity duals.

JHEP, 10:091, 2008.

Davide Gaiotto and Edward Witten. Janus Configurations, Chern-Simons Cou-
plings, And The theta-Angle in N=4 Super Yang-Mills Theory. JHEP, 06:097,
2010.

Ofer Aharony, Oren Bergman, and Daniel Louis Jafferis. Fractional M2-branes.
JHEP, 11:043, 2008.

Kazuo Hosomichi, Ki-Myeong Lee, Sangmin Lee, Sungjay Lee, and Jaemo Park.
N=5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds. JHEP,
09:002, 2008.

Martin Schnabl and Yuji Tachikawa. Classification of N=6 superconformal theories

of ABJM type. JHEP, 09:103, 2010.

Eric A. Bergshoeff, Olaf Hohm, Diederik Roest, Henning Samtleben, and Ergin
Sezgin. The Superconformal Gaugings in Three Dimensions. JHEP, 09:101, 2008.

Evgeny I. Buchbinder, Sergei M. Kuzenko, and Igor B. Samsonov. Implications of
N = 4 superconformal symmetry in three spacetime dimensions. JHEP, 08:125,
2015.

Sergei M. Kuzenko and Igor B. Samsonov. Implications of N = 5, 6 superconformal

symmetry in three spacetime dimensions. JHEP, 08:084, 2016.

Henning Samtleben and Robert Wimmer. N=6 Superspace Constraints, SUSY
Enhancement and Monopole Operators. JHEP, 10:080, 2010.

Ulf Gran, Jesper Greitz, Paul S. Howe, and Bengt E. W. Nilsson. Topologically
gauged superconformal Chern-Simons matter theories. JHEP, 12:046, 2012.

Henning Samtleben and Robert Wimmer. N=8 Superspace Constraints for Three-
dimensional Gauge Theories. JHEP, 02:070, 2010.

Maximo Banados, Claudio Teitelboim, and Jorge Zanelli. The Black hole in three-
dimensional space-time. Phys. Rev. Lett., 69:1849-1851, 1992.



[24]

28]

[29]

[30]

[33]

[34]

Bibliography

J. David Brown and M. Henneaux. Central Charges in the Canonical Realization of

Asymptotic Symmetries: An Example from Three-Dimensional Gravity. Commun.

Math. Phys., 104:207-226, 1986.

Stanley Deser, R. Jackiw, and S. Templeton. Topologically Massive Gauge Theories.
Annals Phys., 140:372-411, 1982. [Annals Phys.281,409(2000)].

Wei Li, Wei Song, and Andrew Strominger. Chiral Gravity in Three Dimensions.
JHEP, 04:082, 2008.

Per Kraus and Finn Larsen. Holographic gravitational anomalies. JHEP, 01:022,
2006.

Ulf Gran and Bengt E. W. Nilsson. Three-dimensional N = 8 superconformal
gravity and its coupling to BLG M2-branes. JHEP, 03:074, 2009.

Xiaoyong Chu and Bengt E. W. Nilsson. Three-dimensional topologically gauged
N=6 ABJM type theories. JHEP, 06:057, 2010.

Bengt E. W. Nilsson. Aspects of topologically gauged M2-branes with six super-
symmetries: towards a ’sequential AdS/CFT’? In Proceedings, 7th International
Conference on Quantum Theory and Symmetries (QTS7): Prague, Czech Republic,
August 7-13, 2011, 2012.

Frederik Lauf and Ivo Sachs. Topologically massive gravity with extended super-
symmetry. Phys. Rev., D94(6):065028, 2016.

Frederik Lauf and Ivo Sachs. Complete superspace classification of three-
dimensional Chern-Simons-matter theories coupled to supergravity. JHEP, 02:154,
2018.

Bengt E. W. Nilsson. Critical solutions of topologically gauged N = 8 CFTs in
three dimensions. JHEP, 04:107, 2014.

Sergei M. Kuzenko, Ulf Lindstrom, and Gabriele Tartaglino-Mazzucchelli. Off-shell
supergravity-matter couplings in three dimensions. JHEP, 03:120, 2011.

S. J. Gates, Marcus T. Grisaru, M. Rocek, and W. Siegel. Superspace Or One
Thousand and One Lessons in Supersymmetry. Front. Phys., 58:1-548, 1983.

111



Bibliography

[36]

[37]

[38]

[39]

[47]

[48]

112

Paul S. Howe, J. M. Izquierdo, G. Papadopoulos, and P. K. Townsend. New super-
gravities with central charges and Killing spinors in (2+1)-dimensions. Nucl. Phys.,

B467:183-214, 1996.

Daniel Butter, Sergei M. Kuzenko, Joseph Novak, and Gabriele Tartaglino-
Mazzucchelli. Conformal supergravity in three dimensions: New off-shell formu-
lation. JHEP, 09:072, 2013.

Sergei M. Kuzenko, Ulf Lindstrom, and Gabriele Tartaglino-Mazzucchelli. Three-
dimensional (p,q) AdS superspaces and matter couplings. JHEP, 08:024, 2012.

Daniel Butter, Sergei M. Kuzenko, Joseph Novak, and Gabriele Tartaglino-
Mazzucchelli. Conformal supergravity in three dimensions: Off-shell actions. JHEP,
10:073, 2013.

Karim Ait Moussa, Gerard Clement, and Cedric Leygnac. The Black holes of
topologically massive gravity. Class. Quant. Grav., 20:L277-1.283, 2003.

Andrew Strominger. A Simple Proof of the Chiral Gravity Conjecture. 2008.

N. D. Birrell and P. C. W. Davies. Quantum Fields in Curved Space. Cambridge
Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK,
1984.

S. Deser and J. Franklin. Is BTZ a separate superselection sector of CTMG? Phys.
Lett., B693:609-611, 2010.

C. M. Hull. The Positivity of Gravitational Energy and Global Supersymmetry.
Commun. Math. Phys., 90:545, 1983.

Stanley Deser and Claudio Teitelboim. Supergravity Has Positive Energy. Phys.
Rev. Lett., 39:249, 1977.

S. Deser. Positive energy of topologically massive gravity. Class. Quant. Grav.,
26(19):192001, 20009.

G. W. Gibbons, C. M. Hull, and N. P. Warner. The Stability of Gauged Supergrav-
ity. Nucl. Phys., B218:173, 1983.

Daniel Z. Freedman and Antoine Van Proeyen. Supergravity. Cambridge Univ.
Press, Cambridge, UK, 2012.



	Introduction
	Three-dimensional superspace
	Supersymmetry algebra
	Superfields
	Field representation
	Component expansion of superfields
	Supercovariant constraints
	Superfield actions and equations of motion
	A spin(N) on-shell superfield

	Local symmetries
	Gauge-covariant derivatives
	Gauge superalgebra

	Supergravity
	Supergravity-covariant derivative
	Supergravity algebra
	Solution to the constrained Jacobi identity
	Super-Weyl invariance
	Anti-de Sitter superspace
	Conformal superspace


	Coupled scalar matter
	Covariant superfield projections
	Coupled spin(N) superfield
	Gauge-coupled spin(N) superfield
	Gravitationally coupled spin(N) superfield
	Gauge- and gravitationally coupled spin(N) superfield

	Matter currents
	Chern-Simons-matter current
	Supergravity-matter current

	All gauge groups for the spin(N) scalar multiplet
	N=2 (Clifford), N=3 and N=4 (chiral)
	N=4 (Clifford), N=5 and N=6 (chiral)
	N=6 (Clifford), N=7 and N=8 (chiral)

	All gauge groups for the gravitationally coupled spin(N) scalar multiplet
	N=4
	N=5
	N=6
	N=7
	N=8

	Overview of gauge groups

	Topologically massive supergravity
	Einstein gravity and topologically massive gravity
	Conformal supergravity and conformal compensators
	Extended topologically massive supergravity
	Fixation of 
	Gauged compensators


	Conclusion
	Symmetry groups
	Fundamental representations
	Index notation
	Generators
	Spin groups

	Systematic supercovariant projection
	Bibliography

