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Abstract

Natural language processing (NLP) deals with building computational techniques
that allow computers to automatically analyze and meaningfully represent human
language. With an exponential growth of data in this digital era, the advent of
NLP-based systems has enabled us to easily access relevant information via a
wide range of applications, such as web search engines, voice assistants, etc. To
achieve it, a long-standing research for decades has been focusing on techniques
at the intersection of NLP and machine learning.

In recent years, deep learning techniques have exploited the expressive power
of Artificial Neural Networks (ANNs) and achieved state-of-the-art performance
in a wide range of NLP tasks. Being one of the vital properties, Deep Neural
Networks (DNNs) can automatically extract complex features from the input data
and thus, provide an alternative to the manual process of handcrafted feature en-
gineering. Besides ANNSs, Probabilistic Graphical Models (PGMs), a coupling of
graph theory and probabilistic methods have the ability to describe causal structure
between random variables of the system and capture a principled notion of uncer-
tainty. Given the characteristics of DNNs and PGMs, they are advantageously
combined to build powerful neural models in order to understand the underlying
complexity of data.

Traditional machine learning based NLP systems employed shallow compu-
tational methods (e.g., SVM or logistic regression) and relied on handcrafting
features which is time-consuming, complex and often incomplete. However, deep
learning and neural network based methods have recently shown superior results
on various NLP tasks, such as machine translation, text classification, named-
entity recognition, relation extraction, textual similarity, etc. These neural models
can automatically extract an effective feature representation from training data.

This dissertation focuses on two NLP tasks: relation extraction and topic mod-
eling. The former aims at identifying semantic relationships between entities or
nominals within a sentence or document. Successfully extracting the semantic
relationships greatly contributes in building structured knowledge bases, useful
in downstream NLP application areas of web search, question-answering, recom-
mendation engines, etc. On other hand, the task of topic modeling aims at under-



standing the thematic structures underlying in a collection of documents. Topic
modeling is a popular text-mining tool to automatically analyze a large collection
of documents and understand topical semantics without actually reading them. In
doing so, it generates word clusters (i.e., topics) and document representations
useful in document understanding and information retrieval, respectively.

Essentially, the tasks of relation extraction and topic modeling are built upon
the quality of representations learned from text. In this dissertation, we have de-
veloped task-specific neural models for learning representations, coupled with re-
lation extraction and topic modeling tasks in the realms of supervised and unsu-
pervised machine learning paradigms, respectively. More specifically, we make
the following contributions in developing neural models for NLP tasks:

1. Neural Relation Extraction: Firstly, we have proposed a novel recurrent
neural network based architecture for table-filling in order to jointly per-
form entity and relation extraction within sentences. Then, we have further
extended our scope of extracting relationships between entities across sen-
tence boundaries, and presented a novel dependency-based neural network
architecture. The two contributions lie in the supervised paradigm of ma-
chine learning. Moreover, we have contributed in building a robust relation
extractor constrained by the lack of labeled data, where we have proposed a
novel weakly-supervised bootstrapping technique. Given the contributions,
we have further explored interpretability of the recurrent neural networks to
explain their predictions for the relation extraction task.

2. Neural Topic Modeling: Besides the supervised neural architectures, we
have also developed unsupervised neural models to learn meaningful doc-
ument representations within topic modeling frameworks. Firstly, we have
proposed a novel dynamic topic model that captures topics over time. Next,
we have contributed in building static topic models without considering
temporal dependencies, where we have presented neural topic modeling ar-
chitectures that also exploit external knowledge, i.e., word embeddings to
address data sparsity. Moreover, we have developed neural topic models
that incorporate knowledge transfers using both the word embeddings and
latent topics from many sources. Finally, we have shown improving neural
topic modeling by introducing language structures (e.g., word ordering, lo-
cal syntactic and semantic information, etc.) that deals with bag-of-words
issues in traditional topic models.

The class of proposed neural NLP models in this section are based on tech-
niques at the intersection of PGMs, deep learning and ANNS.

Here, the task of neural relation extraction employs neural networks to learn
representations typically at the sentence level, without access to the broader docu-



ment context. However, topic models have access to statistical information across
documents. Therefore, we advantageously combine the two complementary learn-
ing paradigms in a neural composite model, consisting of a neural topic and a
neural language model that enables us to jointly learn thematic structures in a
document collection via the topic model, and word relations within a sentence via
the language model.

Overall, our research contributions in this dissertation extend NLP-based sys-
tems for relation extraction and topic modeling tasks with state-of-the-art perfor-
mances.
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Zusammenfassung

Natural language processing (NLP) umfasst die Technologien, die es Comput-
ern erlauben, menschliche Sprache (Natural Language) zu analysieren und zu in-
terpretieren (Processing). Mit dem exponentiellen Wachstum an Daten im Dig-
italisierungszeitalter, werden NLP-basierte System bendtigt, um einen einfachen
Zugang zu den relevanten Informationen in Texten zu erhalten. Bekannte App-
likationen in diesem Bereich sind Suchmaschinen im Internet, Sprachassistenten,
etc. Um das zu erreichen, war Jahrzehnte-lange Forschung notwendig, die sich auf
Techniken an der Schnittstelle von NLP und maschinellem Lernen fokussierte. In
den letzten Jahren wurden Deep-Learning-Technologien fiir NLP-Aufgabenstellu-
ngen angewendet, die die Michtigkeit neuronaler Netze nutzten und damit state-
of-the-art Ergebnisse erzielen konnten.

Es ist eine wesentliche Fihigkeit tiefer Neuronaler Netze (DNN), automatisch
komplexe Merkmale aus Daten zu extrahiren und so eine Alternative zu dem
manuellen Explorieren von Merkmalen zu bieten. Neben den kiinstlichen neu-
ronalen Netzen (ANN) haben die probabilistischen graphischen Modelle (PGM),
die eine Verbindung von Graphen-Theorie und probabilistischen Methoden dars-
tellen, eine dhnliche Fihigkeit, kausale Strukturen zwischen Zufallsvariablen eines
Systems zu beschreiben und dabei mit der vorhandenen Unsicherheit prinzipiell
umzugehen. Die unterschiedlichen, komplementidren Charakteristiken von ANNs
und PGMs werden in dieser Arbeit zu einem méchtigen neuronalen Modell kom-
biniert, um die in den natiirlichsprachlichen Daten vorhandene Komplexitit noch
besser zu verstehen.

Bisherige Ansitze fiir NLP-Systeme, die auf maschinellem Lernen basieren,
haben vergleichsweise einfache, nicht sehr rechenintensive Methoden angewandt,
wie z.B. Support Vector Machines (SVM) oder logistic Regression und sind abhi-
ngig von aussagekriftigen Merkmalen, die durch Fachexperten erzeugt werden
miissen. Das Erzeugen von Merkmalen durch Fachexperten ist jedoch zeitintensiv,
komplex und kann oft nur unvollstidndig sein. Dahingegen haben das tiefe Lernen
sowie auf neuronalen Netzen basierte Methoden in jlingerer Zeit klar iiberlegene
Ergebnisse bei NLP-Aufgaben wie maschinellem Ubersetzen, Textklassifikation,
Named-Entity-Erkennung, Relationsextraktion, Erkennung textueller Ahnlichkeit,
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etc. gezeigt. Diese neuronalen Modelle konnen automatisch eine effektive Merk-
malsreprisentation aus Trainingsdaten lernen.

Vor diesem Hintergrund konzentriert sich die Dissertation im wesentlichen
auf zwei NLP-Aufgabenstellungen: die Relationsextrakion und das sogenannte
Topic Modeling. Die Relationsextraktion hat zum Ziel, semantische Beziehun-
gen zwischen Entitédten innerhalb eines Satzes oder eines Dokumentes zu erken-
nen. Semantische Beziehungen zwischen Entitédten zu erkennen tréagt stark zu dem
Aufbau strukturierter Wissensbasen bei, die in NLP-Applikationen wie der In-
ternetsuche, Frage-Antwort-Systemen, Recommender-Systemen usw. eingesetzt
werden. Auf der anderen Seite hat das Topic Modelling zum Ziel, Themen in
Dokumenten zu analysieren. Topic Modeling ist ein beliebtes Text-Mining Ver-
fahren, um grofle Dokumentenmengen auf darin vorkommende Themen zu unter-
suchen, ohne sie lesen zu miissen. Dabei generiert das Verfahren Wort-Cluster,
die als Themen gesehen werden konnen, und Dokumentenrepridsentationen, die
fiir das Verstehen von Dokumenten sowie fiir das Information Retrieval verwen-
det werden konnen.

Im wesentlichen bauen sowohl die Relationsextraktion als auch das Topic
Modeling auf Textreprisentationen auf, die von den Texten gelernt werden miissen.
In der vorliegenden Arbeit haben wir aufgabenstellungsspezifische neuronale Mod-
elle fiir das Erlernen von Textreprisentationen entwickelt, wobei wir das Lernen
jeweils im Zusammenspiel mit der Relationsextraktion und dem Topic Modeling
gestalten. Wir verfolgen dabei jeweils die beiden Paradigmen des iiberwachten
und des uniiberwachten maschinellen Lernens. Genauer gesagt besteht unser
Beitrag zu der Entwicklung neuronaler Modelle im Bereich des NLP in folgen-
dem.

1. Neuronale Relationsextraktion: wir schlagen eine neuartige Architektur fiir
rekurrente neuronale Netze vor, die Entititen- und Relationsextraktion in
einem Schritt macht. Dariiber hinaus haben wir die Reichweite der En-
titditen- und Relationsexktraktion iiber Satzgrenzen hinaus erweitert und
dafiir eine neuartige Dependency-basierte neuronale Netzwerkarchitektur
entwickelt. Die beiden Hauptbeitrige liegen dabei im Bereich des iiberwac-
hten maschinellen Lernens. Wir haben weiterhin eine schwach tiberwachte
Bootstrapping Methode eingefiihrt, um Relationsextraktion ohne annotierte
Trainingsdaten durchfiihren zu konnen. Wir haben auch die Interpretier-
barkeit der rekurrenten neuronalen Netze untersucht, um ihre Funktion-
sweise bei der Relationsextraktion zu erkldren.

2. Neuronales Topic Modeling: neben den iiberwachten neuronalen Architek-
turen haben wir auch uniiberwachte neuronale Modelle entwickelt, um rel-
evante Dokumentenreprisentationen innerhalb von Topic Modeling Frame-
works zu lernen. Zunichst haben wir ein neuartiges dynamisches Topic
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Model entwickelt, das Topics in Dokumenten iiber der Zeit erfasst. Dann
haben wir einen Ansatz im Bereich des Topic Modelings entwickelt, der
dem prinzipiellen Problem der Knappheit an Trainingsdaten dadurch begeg-
net, dass er vortrainierte Word-Embeddings nutzt. Dariiberhinaus haben
wir neuronale Topic Modelle entwickelt, die einen Wissenstransfer aus ver-
schiedensten Quellen leisten konnen, indem sie auf den jeweiligen Quellen
trainierte Word-Embeddings und latente Topics vereinen. Schlielich haben
wir gezeigt, wie wir Neuronales Topic Modeling durch die Einfiihrung von
Sprachstrukturen (z.B. die Reihenfolge der Worter, lokale syntaktische wie
semantische Informationen, etc.) verbessern, was dabei hilft, Limitierungen
der sogenannten Bag-of-Word-Ansitze im traditionellen Topic Modeling zu
tiberwinden.

Dabei basiert die Klasse der vorgeschlagenen neuronalen NLP-Modelle auf
Technologien an der Schnittstelle von PGM, tiefem Lernen und kiinstlichen
neuronalen Netzen.

Die Relationsextraktion setzt neuronale Netzwerke ein, um Reprisentationen
typischerweise auf Satzebene zu lernen, ohne den erweiterten Dokumentenkon-
text zu betrachten. Topic Modelle haben demgegeniiber Zugang zu statistischer
Information iiber alle Dokumente hinweg. Wir verbinden die beiden komple-
mentiren Lernparadigmen in einem Modell, bestehend aus einem neuronalen Topic
Modell und einem neuronalen Sprachmodell, und ermdoglichen so, gemeinschaftlich
thematische Strukturen in einem Dokumentenset sowie Wortrelationen in Sétzen
zu lernen.

Alles in allem konnten wir zeigen, dass die in der vorliegenden Arbeit en-
twickelten Ansitze den Stand der Technik bei Relationsextraktion und Topic Mod-
eling erweitern.
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Chapter 1

Introduction

1.1 Outline, Contributions and Overall Summary

In this introductory chapter, we first introduce some of the supervised neural net-
works, including Recurrent (RNNs), Recursive (RecvNNs) and Siamese (SNN's)
Neural Networks. Then, we discuss in detail about the unsupervised paradigm of
learning representations via neural density estimators, especially Restricted Boltz-
mann Machine (RBM), Neural Autoregressive Distributional Estimation (NADE),
Replicated Softmax (RSM) and Neural Autoregressive Topic Model (DocNADE).
This class of stochastic graphical models forms the basis for our neural topic learn-
ing in text documents. Following the two paradigms in neural network learning,
the next section highlights the foundation of distributed representation learning at
word and document levels. Moreover, it underlines a need for joint leaning in a
composite model, consisting of a topic and a neural language model. Then, we
provide an outline for the task of semantic relation extraction (RE) within (intra-)
and across (inter-) sentence boundary. Additionally, we also feature major related
works in the realms of relation extraction as well as joint entity and relation ex-
traction. Finally, we review recent questions in explainability of neural models.
While we describe the basic fundamentals, we briefly mention our contribution(s)
in the corresponding sections.

In this dissertation, we organize our contributions in form of the following
Chapters 2-10, each describing a publication. Moreover, the publications are cat-
egorized in the realms of the following research directions, highlighting our con-
tributions:

1. Relation Extraction (RE)

e Chapter 2 — Joint entity and relation extraction via a supervised neu-
ral table-filling approach
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e Chapter 3 — Relation Extraction via a novel weakly-supervised boot-
strapping technique

e Chapter 4 — Relation Extraction within and across sentence boundary
via a novel dependency-based (supervised) neural architecture

e Chapter 10 — Interpretability of Recurrent neural networks via Layer-
wise Semantic Accumulation (LISA) approach in supervised RE

2. Topic Modeling (TM)

e Chapter 5 — Neural dynamic topic model to capture topics over time

e Chapter 6 — Improve neural topic modeling in the sparse-data settings
via knowledge transfer using word embeddings

e Chapter 7 — Improve neural topic modeling in the sparse-data settings
via knowledge transfer using both the word embeddings and latent
topics from many sources

3. Composite neural architecture of a Topic and Language model

e Chapter 8 — Composite modeling to jointly learn representations from
both the global and local semantics, captured respectively by a neural
topic and a neural language model; introduce language structures (e.g.,
word ordering, local syntactic and semantic information, etc.) to deal
with bag-of-words issues in topic modeling

e Chapter 9 — Combine a neural topic and a neural language model
for semantic textual similarity within a Siamese network, applied to a
real-world industrial application of a ticketing system

To summarize, the task of supervised relation extraction (Chapters 2, 4 and
10) applied RNN-based neural models typically at the sentence level (i.e., local
view), without access to the broader document context. However, the topic mod-
els (Chapters 5, 6, and 7) take a global view in the sense that topics have access
to statistical information across documents. Therefore, we naturally extend these
neural NLP models to leverage the merits of the two complementary learning
paradigms. In doing so, we present a composite model (Chapters 8 and 9), con-
sisting of a neural topic (DocNADE) and a neural language (LSTM) model, that
enables us to jointly learn thematic structures in a document collection via the
topic model and word relations within a sentence via the language model.

Additionally, Tables 1.1 and 1.2 summarize our contributions in relation ex-
traction, topic modeling and composite modeling, respectively. They further link
the concepts (or features) and their related sections (of the introductory chapter)
to the relevant publications (Chapter 2-10). Here, we also point out the conference
proceedings of each of the publications.
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1.1 Outline, Contributions and Overall Summary

Proposed Relation Extraction Systems
TF-MTRNN JBM iDepNN LISA Related
Features .
(chapter 2) (chapter 3) | (chapter 4) | (chapter 10) Section
(COLING-16) | (NAACL-18) | (AAAI-19) | (EMNLP-18)

Intra-sentential RE v v v 1.5.1
Inter-sentential RE v 1.5.1
Supervised RE v v v 12,152
Weakly Supervised RE v 154
Joint NER+RE v 1.2.1,1.5.6
Interpretable RE v v 1.2.1,1.6

Table 1.1 — Our multi-fold contributions in Relation Extraction (RE). The
symbol v signifies if a feature (or related section) is related to a chapter.
Thus, we illustrate how the introduction section (i.e., chapter 1) is related to
the rest of the chapters (i.e., our publications).

Probabilistic Graphical and Neural NLP models of TM
Related Works Our Contributions Related
Features NADE RSM DocNADE || RNN-RSM | iDocNADEe MvVT textTOvec Section
(chapter 1) | (chapter 1) | (chapter 1) (chapter 5) (chapter 6) | (chapter 7) | (chapter 8)
(NAACL-18) | (AAAI-19) (ICLR-19)
Tractability v v v v v 1.3.1,1.32
Static TM v v v v v v 1.33,1.34
Dynamic TM v 1.3.3,14.3
Autoregressive v v v v v 1.3.2,1.34
Informed v 1.34
Word Ordering v 1.2.1,1.4.1
Language Structures v 1.2.1,1.4.1
Composite Model v 1.4.4,14.5
Transfer Learning* v v v 142,144
Transfer Learning*™* v 143,144

Table 1.2 — Our multi-fold contributions in Neural Topic Modeling for learn-
ing representations of text documents. The symbol v signifies if a feature (or
related section) is related to a chapter. Thus, we illustrate that how the intro-
duction section (i.e., chapter 1) is related to the rest of the chapters (i.e., our
publications). Here, TM: topic modeling; Transfer Learning*: Using word
embeddings only; Transfer Learning™*: Using both the word embeddings and
latent topics from many sources.
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1.2 Supervised Neural Networks

Machine Learning is a branch of artificial intelligence (Al) that aims at build-
ing intelligent systems with an ability to automatically learn from data, identify
patterns and make decisions with minimal human involvement.

In context of machine learning, there are two main paradigms of learning:
supervised and unsupervised. The difference lies in how they use prior knowl-
edge, i.e., ground truth signals. Supervised learning makes use of the ground truth
values for samples and aims to learn a mapping function that best approximates
the relationship between the inputs and outputs in the data. In contrast, unsuper-
vised learning focuses on learning the inherent structure of data without having
the explicitly-provided output labels. Supervised learning is often applied to clas-
sification or regression tasks, whereas unsupervised learning to clustering, rep-
resentation learning, dimensionality reduction, density estimation, etc. Common
algorithms in supervised learning are: logistic regression, naive bayes, support
vector machines, artificial neural networks, random forests, etc. On other hand,
unsupervised learning algorithms include k-means clustering, principal compo-
nent analysis, autoencoders, restricted Boltzmann machines, etc. In context of this
dissertation, we mainly focus on supervised and unsupervised learning in neural
architectures, applied to text data.

Though explaining how the human brain learns is quite difficult, the artificial
neural networks (ANNs) attempt to simulate the human brain’s ability to learn.
ANNSs are composed of neurons and connections (weights) between them, where
they adjust the weights based on an error signal (or feedback) during the learning
process to find a desired output for a given input. The learning algorithm of a
neural network can either be supervised or unsupervised.

In 1943, Warren MuCulloch (neuroscientist) and Walter Pitts (logician) pro-
posed a highly simplified and the first computational model of a neuron, where
they made attempts to understand how the brain produces highly complex pat-
terns by using many basic cells (or neurons) that are connected together. Neural
network theory is founded on their McCulloch-Pitts model (McCulloch and Pitts,
1943; Piccinini, 2004). The next major advancement was the perceptron (Rosen-
blatt, 1958), introduced by Frank Rosenblatt in 1958.

Feed-forward Neural Networks

Feed-forward Neural Networks or Multi-layer Perceptrons (MLPs) consist of sev-
eral perceptrons arranged in layers, with the first layer taking in inputs and the
last layer producing outputs. The middle layers capture relationship between the
input and output with no exposure to external world, therefore they are called
hidden layers. In such network structures, information flows from one layer to
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Figure 1.1 — (left) An example of a neuron showing the input (x1, ..., x,),
their corresponding weights (w1, ..., w,), a bias b and activation function f,
applied to weighted sum of the inputs. (right) A feed-forward Neural Network
or Multi-layer Perceptron (MLP) with three layers, where the input and hid-
den layers are connected by weight matrix Wy, and the hidden and output
layers by weight matrix W ,,. Here, the n, H and C' are the number of input,

hidden and output dimensions (or units). The vectors b, € R” and b, € R¢
are biases of hidden and output layer, respectively.

the next (e.g., input layer — hidden layer(s) — output layer), hence the name
feed-forward.

Figure 1.1 (left) provides an illustration of a single perceptron that can classify
points into two regions that are linearly separable. However, Figure 1.1 (right)
shows an MLP that can be applied to model relationship between an input and
output, where the input data points are not linearly separable. Observe that there
are no feedback connections among perceptron units in the same layer.

Training Feed-forward Neural Networks: In the realm of supervised learn-
ing, the training comprises three steps: (1) Forward-propagation of infor-
mation from an input through an output layer via a hidden layer(s) to compute the
value of loss (or error minimization) function, (2) Backward-propagation
(Kelley, 1960; Rumelhart et al., 1988) of errors from an output to an input layer
via a hidden layer(s) in direction opposite of the forward-propagation, and (3)
Parameter updates based on the feedback computed via training errors dur-
ing back-propagation. The weights (e.g., W, Wy,,) and biases (b, and b,) are
adjusted so as to minimize the training errors.

Gradient-based methods (Rumelhart et al., 1985; Sutton, 1986; Amari et al.,
2000) are the key tools in minimization of the error function. See Ruder (2016)
for an overview about the gradient-based optimization.

Limitations of Feed-forward Networks: Feed-forward Neural Networks form
the basis of many important neural network architectures of the recent times,
such as Convolutional Neural Networks (CNNs) (LeCun et al., 2004; Krizhevsky
et al., 2012), Recurrent Neural Networks (RNNs) (Rumelhart et al., 1988; Elman,
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1990), Long-short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997),
Recursive Neural Networks (RecvNN) (Goller and Kiichler, 1996; Socher et al.,
2011b), Siamese Neural Networks (SNN) (Bromley et al., 1993; Chopra et al.,
2005; Gupta et al., 2018a), etc. Though Feed-forward Neural Networks can rep-
resent complex function, they are not designed for sequence data because they
do not account for memory and thus, do not remember historic input data. Se-
quential data needs a feedback mechanism to model relationships in data inputs
over time. In order to better model sequential data, RNNs have been popular and
shown success in many sequential tasks.

Distributed Representations in Neural Networks: Each neuron represents
something that can be seen as an explanatory factor about the data. In isolation,
a single neuron is a local representation. On other hand, many neurons come
together to form a concept and each neuron participates in the representation of
many concepts. It leads to distributed representations (Plate, 1995; Hinton, 1986)
in the sense that the informational content is distributed among multiple units,
and at the same time, each unit can contribute to the representation of multiple
elements. For instance, the distributed representations (Le and Mikolov, 2014;
Mikolov et al., 2013c) are vectors of real numbers representing the meaning of
words, phrases, sentences and documents.

1.2.1 Recurrent Neural Network (RNN)

An RNN (Rumelhart et al., 1988; Elman, 1990), a class of supervised neural net-

works, remembers its past input every time a new input is fed using an internal

memory and thus, models sequential information with feedback loops over time.

Itis ‘recurrent’ in the sense that it performs (or loops over) the same task for every

element of a sequence, with the output dependent on previous computations.
Unlike Feed-forward neural network, an RNN models arbitrary length se-

quences in input and/or output, shares features learned across different time steps

and captures relationships in the sequential input to account for the direction of

information flow. These capabilities have made the RNN a popular neural archi-

tecture in solving sequential tasks, such as:

(1) speech recognition (Graves et al., 2013),

(2) video activity analysis (Donahue et al., 2017),

(3) caption generation (Yang et al., 2016),

(4) machine translation (Cho et al., 2014),

(5) language modeling' (Mikolov et al., 2010; Peters et al., 2018),

(6) named entity recognition (Ma and Hovy, 2016; Gupta et al., 2016),

(7) relation extraction (Vu et al., 2016a; Gupta et al., 2019c),

Ithe task of predicting the next word given the previous ones in a text

32



1.2 Supervised Neural Networks

Tayer (9 (22)...(%9
W
hh A A

Whoﬂ Whoj W Whoi
; u unfolding hh
Hae 6 (] | D6 -G HOE -Gl
th \ feledback th \ th \
oop
taper (5)() .. () (CICINC I CICINC)
Xt Xt Xis1 time
-1 t t+1 o
Folded RNN structure Unfolded RNN structure Through Time

Figure 1.2 — (left) Folded RNN with feedback loop to persist information.
(right) Unfolded RNN structure through time.

(8) textual similarity (Mueller and Thyagarajan, 2016; Gupta et al., 2018a)
(9) sentiment analysis (Tang et al., 2015b),

(10) text generation (Sutskever et al., 2011; Zhang and Lapata, 2014),

(11) music generation (Boulanger-Lewandowski et al., 2012),

(12) dynamic topic modeling (Gupta et al., 2018b), etc.

A Simple RNN Formulation: Essentially, an RNN persists information via a
loop that takes information from previous time step and passes it to the input of
current time step. When unfolded in time, an RNN can be seen as multiple copies
of the same network, each passing a message to a successor.

Figure 1.2 shows a folded and an unfolded structure of an RNN through time
t. Notice that a simple RNN consists of three layers: (1) input, (2) hidden and (3)
output. The input layer takes a sequence S of vectors through time ¢, such that
S = {xy, ..., Xy, ..., X7 } where the vector x; = (1, ...,xg); T and E are sequence
length and input dimensions, respectively. Assume a sequence of words (e.g., a
sentence) where a word is represented via an embedding vector (Mikolov et al.,
2013b; Pennington et al., 2014), then x, € R¥ with F as the dimension of word
embedding vector. The input units are connected to hidden units in the hidden
layer by a input-to-hidden weight matrix W, € R¥*E_ The hidden layers (e.g.,
h, € R) consist of H units, and are connected to each other through time by
recurrent connections Wy, € R¥*#_ Further, the output o; = {01, ...,00} is
attached to each of the hidden layers through time, and has C' units, each defining
the number of classes. Each of the hidden layers is connected to its output by
weighted connections, W, € RE*H

Therefore, an RNN processes a sequence S of vectors by applying a recurrence
at every time step ¢, as:

h: = gs(Wapn - x¢ + Wy, - hy_y + by) (1.1)
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Figure 1.3 — An illustration of Back-propagation Through Time (BPTT) in an
unfolded RNN structure. The blue arrows indicate the gradient flow.

where gy, is the hidden layer activation function (e.g., sigmoid, tanh, rectified lin-
ear unit, etc.), and b, € R is the bias vector of the hidden units. Now, the output
units are computed as:

01 = Go(Who - by + by) (1.2)

where g, is the activation function (e.g., sigmoid, softmax, etc.), and b, € R is
the bias vector of the output layer.

Given that the input-output pairs are sequential in time, the above steps exe-
cute repeated over time ¢ € {1,...,T}. Due to the feedback looping and internal
memory, the hidden vector h; can be seen as encoding the selective summariza-
tion of necessary information about the past states (h.;) of the network over many
time-steps. In our work (Gupta and Schiitze, 2018), we have shown how RNNs
leverage inherent sequential patterns in relation classification and build semantics
over a sequence of words.

RNNs (Figure 1.2) evaluate their performance by using a loss function £ that
compares the predicted output o; with ground truth z,, as:

T
z) = Lo 2) (1.3)
t=1

where the summation is applied to overall loss at each of the time steps 7'. There
are several choices for loss function such as cross-entropy over probability dis-
tribution of outputs for classification, Euclidean distance for real-values, Mean
Squared Error (MSE), etc. Given the loss function, RNN parameters are opti-
mized popularly using gradient descent in order to minimize prediction errors.
Training Recurrent Neural Network: Gradient descent (GD) is one of the
popular optimization strategies in training neural network that computes deriva-
tives of the loss function with respect to model parameters. Since an RNN is a
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1.2 Supervised Neural Networks

structure through time, therefore it is trained using back-propagation through time
(BPTT) (Werbos, 1990). It is a generalization of GD, applied to feed-forward net-
works. Essentially, the BPTT propagates error signal backwards though time. See
an illustration of BPTT in Figure 1.3.

Given RNN’s parameters 6 = {W,,, Wy, Wy, by, b,} and hidden vector
h; at time step ¢, we can write the gradients of the loss as:

T
Z aﬁ (1.4)

where the loss £, at time step ¢ is further expanded using chain-rule:

oL, Z <8£t Oh, 8hk> (1.5)

00 S oh; oh;, 00

The Jacobian ahf © propagates error backwards through time from time step ¢ to

k; therefore, h; is dependent on the preceding hidden vectors h_,. To generalize,
we can write the dependence for h; as:

ohy
ohy,

= 8h = [[ Widiaglg, (hi_s)] (1.6)
i1 t>i>k

t>i>k
where ¢), is the derivative of the activation function g;, and diag is the diagonal
matrix. Here, we define the long term and short term dependencies of hidden
states over time, where the long-term refers to the contribution of the inputs and
hidden states at time & << t, and short-term refers to the contribution of the
inputs and hidden states at the other times, except £ << t.

The above-mentioned formal treatment is partially based on the lecture ma-
terial by Gupta (2019) and Pascanu et al. (2013). See Gupta (2019) for further
details on Backpropagation through time (BPTT) in RNN.

Difficulty of Training RNNs: For a large sequence length, the repeated mul-
tiplications of the recurrent matrix Wy, is responsible for exponential decay or
explosion of gradients. It is due to the fact that a product of ¢ — k real numbers
can shrink to zero (i.e., vanishing gradient) or explode (i.e., exploding gradient)
to infinity, as can the product of ¢ — k Jacobian matrices (equation 1.6).

The vanishing gradient causes internal memory of the network to ignore long-
term dependencies and hardly learn the correlation between temporally distant
events. This means that the RNN will tend to focus on short term dependencies
which is often not desired. On other hand, the exploding gradient results in a large
increase in the norm of the gradient during training. Therefore, it is difficulty to
train RNNs to capture long-range temporal dependencies for longer sequences.
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See Pascanu et al. (2013) and Gupta (2019)? for further details about the difficulty
of training RNNss.

To deal with the exploding gradients, Pascanu et al. (2013) proposed a simple
and popular approach of gradient norm-clipping coupled with a clipping threshold
in training RNNs. The clipping scales down the gradients when their norm is
greater than the clipping threshold. Additionally, using an L1 or L2 penalty on the
recurrent weights can help.

On other hand, existing works such as Hochreiter and Schmidhuber (1997),
Graves et al. (2009), Chung et al. (2014) and Chung et al. (2015) have proposed
extensions of a simple RNN model using a gating mechanism to deal with the van-
ishing gradient problem. Additionally, several strategies (Martens and Sutskever,
2012; Mikolov et al., 2014; Le et al., 2015) of initializing recurrent matrix such
as with identity and using rectifier linear units have shown that initialization plays
an important role in training RNNs.

Popular RNN extensions: Beyond traditional uni-direction RNNs, Schuster
and Paliwal (1997) have proposed bi-directional RNNs that consider all available
input sequences in both the past and future for estimation of the output vector,
instead of only using the previous context. They model the sequential data using
two networks: a forward and a backward pass in time. A Recurrent Convolutional
Neural Network (RCNN) (Liang and Hu, 2015) combines the complementary
learning in RNN and Convolutional neural network (CNN) (LeCun et al., 2004;
Krizhevsky et al., 2012). Hochreiter and Schmidhuber (1997) proposed one of the
popular RNN models, named as Long-short Term Memory (LSTM) that reduces
the effects of vanishing and exploding gradients. Recently, Lample et al. (2016)
applied a bidirectional LSTM with a Conditional Random Field (CRF) (Lafferty
et al., 2001) layer (LSTM-CREF) to sequence tagging tasks, such as named-entity
recognition, port-of-speech tagging, etc. Moreover, Sutskever et al. (2014) pre-
sented a general approach of modeling sequences that can be applied to sequences
having variable length in input and output.

Our Contribution: In our efforts to extend RNNs for multi-tasking (Caru-
ana, 1997), we present a novel neural network architecture, which we named as
Table-fiiling Multi-task RNN (TF-MTRNN) (Gupta et al., 2016) that jointly learns
entities and relations within a sentence boundary.

Limitations of Vanilla RNN: Theoretically, RNNs can make use of informa-
tion in arbitrarily long sequences, but empirically, they are limited to looking back
only a few steps. Therefore, they can not model long-term dependencies. Essen-
tially® to prevent gradients from vanishing or exploding (Pascanu et al., 2013),

2www.researchgate.net/publication/329029430_Lecture-05_

Recurrent_Neural Networks_Deep_Learning AI
3www.dbs.ifi.lmu.de/Lehre/DLAI/WS18-19/script/05_rnns.pdf
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Figure 1.4 — A Long Short-Term Memory (LSTM) Cell at time step t

there is a need for tight conditions on eigenvalues of the recurrent matrix during
training.

Long Short-Term Memory (LSTM)

LSTM (Hochreiter and Schmidhuber, 1997) networks are extensions of RNNs that
reduce the effects of vanishing and exploding gradients. They used gating mech-
anism to control memory cells, instead of hidden units from sigmoid or tanh,
where the gating is a way to optionally let information through and composed of
a sigmoid layer and point-wise multiplication operation. The cells transport infor-
mation through units and gates allow the flow of information to hidden neurons
as well as remember information from previous step (i.e., remove or add informa-
tion to the cell state). As a result, LSTMs propagate errors for much longer than
ordinary RNNs and therefore, can exploit long range dependencies in the data.

In principle, an LSTM* (Hochreiter and Schmidhuber, 1997) creates a self
loop path from where gradient can flow and the self loop corresponds to an eigen-
value of Jacobian to be slightly less® than 1, such that OnewState/DoldState =~
Identity.

LSTM Formulation: Figure 1.4 illustrates an LSTM cell at time step ¢ that
consists of three gates: Forget, Input and Output. We discus the mechanics below:

1. The forget gate f; using sigmoid layer decides what information to keep
or throw away from the previous cell state C,_;. It takes in the input x,
of current time step ¢ and hidden state h; ; of previous step, and outputs

‘www.iro.umontreal.ca/~bengioy/talks/DL-Tutorial-NIPS2015.pdf

>If an eigenvalue of Jacobian is >> 1, the gradients explode. If an eigenvalue of Jacobian
is < 1, the gradients vanish. See Gupta (2019) or www.dbs.ifi.lmu.de/Lehre/DLAI/
WS18-19/script/05_rnns.pdf for the necessary condition for exploding gradient and the
sufficient condition for vanishing gradients on eigenvalues of the Jacobian.
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a number between 0 and 1 corresponding to each number in the cell state
C,_1. Therefore, it learns weights to control information decay.

f; = sigmoid(W,sx; + Wy,sh;_1 + by) (1.7)

2. On other hand, the input gate i, selectively updates the cell state C; based
on the new input, where the sigmoid layer decides which values to update.
Additionally, A fanh layer creates candidate values C, to be selected to
include to the cell state. Next, i, and Ct are combined to update C,.

it = 51gm01d(met -+ Whihtfl + bz)

~ (1.8)
Ct = tanh(Wngt + Whght—l + bg)
3. The old cell state C,;_; is now updated into a new one C; as:
C,=f,«Cpy +i, xC, (1.9)

4. Finally, the output gate o, takes in the current input x;, previous hidden
state h; ; and current cell state C,, and regulates the amount of information
from the cell state C, that goes into hidden state h;.

o; = sigmoid(W ., x; + Wy, h; 1 + b,)

1.10
h; = o; * tanh(C;) (1.10)

Limitations of LSTMs: Though LSTMs have been successful in modeling
sequential data, they suffer from higher memory requirements due to an increase
(4 times) in the number of parameters compared to a simple RNN. There is even
a higher computational complexity due to multiple memory cells introduced in
LSTMs.

Gated Recurrent Unit (GRU)

Like the LSTM, a GRU (Chung et al., 2014) deals with the vanishing gradient
problem in RNNs via gating mechanism. It combines the forget and input gates
of LSTM into a single update gate. Moreover, the cell state and hidden states
are merged into a single memory content.  In a way, the GRU does not have
a controlled exposure of the memory content to other units in the network. It is
different to LSTM due to an output gate with a controlled exposure. Though, the
resulting GRU model is simpler than a standard LSTM, it has shown competitive
performance and gained popularity.

See Chung et al. (2014) that outlined several similarities and differences be-
tween GRU and LSTM networks.
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Figure 1.5 — A Recursive Neural Network (RecvNN) architecture. Here, 7
indicates a current node, L(n) and R(n) are the left and right children of 1) in
the tree structure. The leaf nodes consist of word vectors x € R,

1.2.2 Recursive Neural Network (RecvNN)

A Recursive Neural Network (Goller and Kiichler, 1996; Socher et al., 2011Db,
2013), a generalization of Recurrent Neural Network operates on a structured in-
put, i.e., tree structure instead of a sequence. RecvNN expects a fixed number of
branches within a tree structure and recursively computes parent representations
in a bottom-up fashion, by combining child nodes. The computation is sequen-
tially calculated from the leaf nodes toward the root node.

Recursive Neural Network Formulation: Figure 1.5 demonstrates an ar-
chitecture of TreeRNN that operates on binary tree structure with word vector
(x € RP) representations at the leaves and hidden vectors h as internal nodes. For
a current node ), the hidden (internal) vector h( of a current node 7 is computed
from the hidden vectors (h*™ and hf™) of its left L(n) and right R(n) child
nodes, as:

h = fp(WEDRLD 4 WEROREO) 4 1) (1.11)

where fy is an activation function (e.g., sigmoid, tanh, etc.) for hidden layer.
Notice that when 7 is a leaf node then, h™(" = xL) hEM = xE0) WLh) =
WL WHE = WE and b = b; € RF. Here, x € R¥ is an input word vector.
On other hand, when 7 is not a leaf node then, WX = WL, WEN — WE
and b = b, € R¥. Here, the weights W%, and W connect a leaf (e.g., word
embedding) to its hidden vectors, whereas W%, and WX are the weight matrices
that connect hidden vectors of left and right children respectively to the parent
vector representation. The vectors by, and b; are biases for hidden and input layers,
respectively. A recursive computation is performed from each of the leaves up to
the root node.
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Figure 1.6 — A Siamese Neural Network architecture.

Based on the task, an output layer can be attached to each of the hidden vectors
in the tree structure to perform a classification for the node 7.

0 = f,(W,,h™ + b,) (1.12)

Here, f, is an activation function (e.g., sigmoid or softmax) for output layer in
case of classification task. In Figure 1.5, a output layer is attached to the root
only, suggesting a sentence-level classification task.

One of the key benefits of such topological composition order is that RecvNNs
can express relationships between long-distance elements compared to RNNss, be-
cause the depth is logarithmic in NV if the element count is N. Thus, they have
been applied to scene parsing (Socher et al., 2011b), sentiment analysis (Socher
et al., 2013), paraphrase detection (Socher et al., 2011a), dependency parsing
(Kiperwasser and Goldberg, 2016), relation extraction (Liu et al., 2015b; Miwa
and Bansal, 2016; Zhang et al., 2018), etc.

Our Contribution: In the realm of relation extraction within and across sen-
tence boundary, we present a novel inter-sentential Dependency-based Neural
Network (iDepNN) (Gupta et al., 2019¢) that essentially combines the recurrent
and recursive networks over dependency parse features to extract long-distant re-
lationships between entities, spanning sentence boundary.

1.2.3 Siamese Neural Network (SNN)

Siamese neural network (Bromley et al., 1993; Chopra et al., 2005) is a class of
supervised neural networks that employs a unique structure to learn similarity in a
pair of inputs. It is a dual-branch network with tied (or shared) weight parameters
and an objective function, i.e., a distance metric to learn similarity/dissimilarity
between feature representations of the distinct input pairs on each side. Also,
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1.3 Unsupervised Neural Density Estimators

the twin network is symmetric in the sense that whenever we present two distinct
inputs (e.g., image or text pairs), the top conjoining layer will compute the same
metric as if we were to present the same two inputs but to the opposite twins.

When applied to textual pairs, the aim of training is to learn text pair repre-
sentations to form a highly structured space, where they reflect complex semantic
relationships.

Siamese Neural Network Formulation: Figure 1.6 illustrates a Siamese ar-
chitecture, where a neural network, e.g., RNN, LSTM, CNN, etc. can be applied
to each of the two branches. The aim of the neural networks is to find a function
Go that can generate feature representations and map input into a target space,
such that a distance metric d in the target space approximates the “semantic” dis-
tance in the input space. In doing so, the learning is performed by finding the
(being shared) that minimizes a loss function, evaluated over a training set.

Assume S; and S, are two input sentence and G is a feature generator (e.g.,
RNN, LSTM, CNN, etc.) within a neural network framework. The twin network
shares © and generates h; and h, mapped in a features space from each of the
branches, where the distance function d is small if S; and S5 belong to the same
category or similar, and large otherwise. y measures the compatibility between 5}
and S, i.e., a category in case of classification or a similarity/dissimilarity score.

Several mapping function G'g¢ have been investigated. Turk and Pentland
(1991) applied a PCA-based method and Yang et al. (2000) outlined non-linear
extensions using Kernel-PCA and Kernel-LDA. Further, Chopra et al. (2005) em-
ployed CNN-based feature generators in an application to face verification. To
assess semantic similarity between sentences, Mueller and Thyagarajan (2016)
and Yin et al. (2016) applied LSTM and CNN networks to encode the underlying
meaning expressed in sentence pairs.

Our Contribution: We present a Siamese-based neural architecture, which
we named as Replicated Siamese (Gupta et al., 2018a), applied to an industrial
ticketing system to learn similarity in textual pairs beyond sentences.

1.3 Unsupervised Neural Density Estimators

Given a set of data points, probability density estimation is the task of recon-
structing the probability density function that explains underlying structure in the
input multivariate data distribution. From the probabilistic modeling perspective,
it is a process to recover a set of model parameters for a generative neural net-
work (i.e., density estimator) such that it can describe the distribution underlying
the observed high-dimensional data. Essentially in doing so, the density estima-
tor can learn interesting explanatory factors in the underlying data by projecting
it in a latent space while retaining maximal variations in the data. The quality
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RBM > RSM > RNN-RSM
(Hinton, 2002) (Ruslan and Hinton, 2009) (Gupta et. al, 2018)
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Figure 1.7 — RBM and NADE evolution with our contributions

of explanatory factors captured in such generative models is measured by their
predictive data-likelihood in the sense that the probability density function of the
model is as close as possible to the data distribution.

In the following section, we discuss several probability density estimators,
especially Restricted Boltzmann Machine (RBM) (Smolensky, 1986) and its ex-
tensions in an unsupervised neural network setting. Table 1.3 defines the notations
used in describing the different density estimators.

Our Contribution(s): Figure 1.7 summarizes the evolution of neural density
estimators, as discussed in the context of this dissertation. It includes the density
estimators of binary as well as count (i.e., text) data, where the four rightmost
rectangular boxes (i.e., RNN-RSM, iDocNADEe, iDeepDNEe and ctx-DocNADEe)
signify our research contributions in the realm of document topic modeling.

1.3.1 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (Smolensky, 1986; Freund and Haussler, 1992;
Hinton, 2002) is a type of two-layer neural network, consisting of stochastic units
with undirected interactions between pairs of observed visible (input) V and un-
observed hidden H units. The visible and hidden units (or neurons) are binary,
which can be seen as being arranged in two layers. The visible units form the
first layer and represent the observable data (e.g., one visible unit for each pixel
of a digital input image). The hidden units model dependencies between the com-
ponents of observations (e.g., dependencies between pixels in images) and are
inferred from the visible units.

An RBM is an undirected graphical and generative model representing a prob-
ability distribution underlying the training data. Given the training data, an RBM
learns to adjust its parameters in a stochastic manner via iterative forward and
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1.3 Unsupervised Neural Density Estimators

Notation Data Type | Description

v {0,1}” | Binary visible units

h RH Hidden units

\Y% {0, 1}%*P | An observed binary matrix in RSM

K I Vocabulary size

N I Number of documents in a corpus

D I Number of visible units; document size in DocNADE

H I Number of units (i.e., dimension) in a hidden layer

Z R Partition function

E R Energy of the model

E - Expectation

b RP Visible bias

c RH Hidden bias

W RP*H | Weights connecting visible-to-hidden layers in RBM and NADE
w/ RE*DP | Weights connecting hidden-to-visible layer in NADE

w R7*K | Weights connecting visible-to-hidden layers in RSM and DocNADE
U RE*H | Weights connecting hidden-to-visible layers in DocNADE

C] {} A set of parameters

bold+lowercase - A vector
bold+uppercase - A matrix

Table 1.3 — Notations used in the unsupervised density estimators

backward passes between hidden and visible layers, such that the probability dis-
tribution represented by the RBM fits the training data.

The RBM is a special type of Boltzmann Machine (BM) (Ackley et al., 1985)
without lateral connections where the pair interactions I are restricted to be be-
tween visible and hidden units, i.e., I = {{i,j} : i € v,j € h}. Each unit (or
neuron) can take one of the two states, i.e., either 0 or 1, where the joint state
of all the units is defined by an associated energy. Figure 1.8 provides graphical
illustrations of a BM and an RBM.

RBMs belong to Energy Based Models (EBMs) (Hopfield, 1982) that cap-
ture dependencies between observed and unobserved units through modifying an
energy function determined by the pair interactions of visible and hidden states,
weights and biases. A high energy configuration/state implies a bad compatibil-
ity in configuration/pairwise interactions of the units. Therefore, an RBM learning
corresponds to minimizing a predefined energy function, and the states of the units
are updated in a stochastic manner.

The following formulation of an RBM is partially based on Bengio (2009).
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hidden
layer,
h o h: ... h ’
() 85
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visible
layer,
v e {0, 1)P
A Boltzmann Machine (BM) A Restricted Boltzmann Machine (RBM)

Figure 1.8 — (left) A Boltzmann Machine (BM), where the dashed lines indi-
cate visible-visible or hidden-hidden connections. (right) A Restricted Boltz-
mann Machine (RBM), an undirected graphical model based on a bipar-
tite graph with the pair connections between visible and hidden units, while
visible-visible and hidden-hidden connections (dashed lines in BM) are not al-
lowed (i.e., restricted). Each visible (or hidden) unit is arranged into a visible
(or hidden) layer and therefore, an RBM is seen as a 2-layered neural network
with symmetric connections via W in visible-visible and hidden-hidden units.

Formulation of an RBM

In a binary RBM of D visible units v = (vq,...,vp) and n hidden units h =
(hy, ..., hyr), the random variables (v, h) take values (v, h) € {0, 1}P+ and the
joint probability distribution p(v, h) under the model is related to an energy func-
tion £(v,h) and is given by:

1

p(v,h) = Eexp(—E(v,h)) (1.13)

where Z is the partition function (normalization constant):
Z=>") exp(—E(v,h)) (1.14)
v h

and the energy function E(v,h) takes the following form in order to model the
relationship between the visible and hidden variables:

E(v,h) = —b'v —c’h — v/ Wh (1.15)

where W € RP*H ig the weight matrix connecting hidden and visible units, and
b and c are biases of the visible and hidden layers, respectively.

Intractability: We can observe that the partition function Z is computed by
exhaustively summing over all states and therefore, it would be computationally
intractable implying that the joint probability distribution p(v) is also intractable.
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1.3 Unsupervised Neural Density Estimators

Factorial Distributions via Conditionals: Due to the bipartite graph® struc-
ture of RBMs, the visible and hidden units are conditionally independent given
one-another, i.e., its conditional distributions p(v|h) and p(h|v) are factorial and
tractable, i.e, easy to compute.

Given the joint distribution (equation 1.13) and associated energy function
(equation 1.15), the conditional distribution on the visible units v is computed as:

p(hlv) =

1 T T T
= ———=exp(b’v+c h+v' ' Wh
p(v) Z ( )
1 T T
= — exp(c"h+ v’ Wh
Z p( ) (1.16)

H H
1
== exp(z cihj + Z vI'W. h;)
j=1 j=1
L
== H exp(cih; + v W, jh;)
=1

Due to the factorial nature of the conditionals, we can write the joint prob-
ability over the vector h as the product of (unnormalized) distributions over the
individual elements, h;:

H

pthlv) = [ p(h;lv) (1.17)
j=1
D

p(v[h) = [ p(vih) (1.18)
=1

Here, each unit 7 or j is turned ON with probability p(v; = 1|h) or p(h; = 1|v)
and turned OFF with probability 1 — p(v; = 1|h) or 1 — p(h; = 1|v). In other
words, an RBM tries to find an optimal configuration in the network via paired
visible-hidden connections such as positively paired connections seek to share the
same state (i.e., be both ON or OFF), while the negatively paired connections
prefer to be in different states.

%a graph whose vertices can be divided into two disjoint and independent sets such that no two
graph vertices within the same set are adjacent, i.e., every edge connects a vertex in one set to a
vertex in another set.
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Now, normalizing the distributions over individual binary h; as:

p(hj = 1]v)
by = Ov) + plh; = 1Y)
B exp(c; + vIW._ ;) (1.19)
~ exp(0) + exp(c; + VIW. )
= sigmoid(c; + v/ W_)

p(hj =1lv) = o

Therefore, the full conditional over the hidden layer is expressed as the facto-

rial distribution:
H

p(hlv) = [ [ sigmoid(c; + v/'W. ;) (1.20)
j=1

Similarly, the conditional distribution on the hidden units h is given by:

D
1
p(vih) = —; [ exp(bivi + v: Wi h) (1.21)
=1

and the full conditional over the visible layer is expressed as the factorial distribu-
tion:

D
p(v[h) = [ [ sigmoid(b; + W; ) (1.22)
i=1

Due to the factorial nature of the conditionals, one can efficiently draw sam-
ples from the joint distribution via a block Gibbs sampling’ strategy (Casella and
George, 1992). For instance, each iteration of block Gibbs sampling (Markov
chain) consists of two steps: (1): Sample h® ~ p(h|v®) and (2): Sample v+
~ p(v|h®). We can simultaneously and independently sample from all the ele-

ments of h(") given v(¥) and v("*) given h¥), respectively.

Training Restricted Boltzmann Machines

During training, an RBM learns to reconstruct the data in an unsupervised fashion
and therefore, iteratively makes several forward and backward passes between
the visible and hidden layer to adjust its parameters. In the reconstruction phase,
the distance (measured by Kullback-Leibler Divergence) between its estimated
probability distribution and the ground-truth distribution of the input is minimized,

"The idea is to generate posterior samples by sweeping through each variable (or block of
variables) to sample from its conditional distribution with the remaining variables fixed to their
current values. Further details: https://ermongroup.github.io/cs323-notes/
probabilistic/gibbs/
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1.3 Unsupervised Neural Density Estimators

i.e., the log-likelihood of the data (loss or cost) under the RBM with parameters
© ={b, c, W} is maximized and is given by:

B
Il
—

h v,h

(1.23)

where NV is the number of training examples. Here, the gradient of the log-
likelihood with respect to the model parameters © is given as:

%E(@) = %(Zlogz:exp (- E(Vk,h))) - N%logvzl;exp (= E(v,h))

_ i > L €Xp ( — E(VF, h))%( — E(vk, h))
k=1 >nexp (— E(vh h))
log >, 1 €xp (= E(v,h):%(— E(v,h))
log >, 1 exp (- E(v,h))

N
0 0
= Eyiivi)| 35 — BV 0)| =N By | 55 — E(v,b)|
k=1 - ”
the model-driven term

the data-&fiven term
(1.24)

As we can see that the gradient of the log-likelihood %E(@) is written as
the difference between the two expectation terms of the gradient of the energy
function: (1) the data-driven term, the expectation with respect to the product
of the empirical distribution over the data, p(v) = + Z]kvzl §(x — v*) and the
conditional distribution p(h|v*); (2) the model-driven term, the expectation with
respect to the joint model distribution, p(v, h).

Using equation 1.15, we expand the energy term £ and compute its gradient
with respect to W, b and c as:
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v Ev.) = G (7 €TV TWR) =T (125)
0
%(—E(v, h)) =v (1.26)
9
5c(— E(v.h)) =h (1.27)

Putting all together the equations 1.24, 1.25, 1.26 and 1.27, the gradients of
the log-likelihood take the following forms:

7

P N
wl©) =D Eyuun bV T = NE,m[hv']
k=1

~the model-driven term

the data-driven term (1.28)
N
= Z sigmoid(c + vVFW)VF T — N E,y ) [hVT]
k=1
5 N
S L(0) = > v = NEywm V] (1.29)
k=1
P N
%E(@) = ;Ep(hvk’)[h] — N Epwm [h] (1.30)

Intractability of Gradients: Though we can express the gradients of the log-
likelihood, we are not able to calculate the gradients due to the expectations over
the joint model distribution p(v, h), i.e., the exponential number of sums due to
(v,h) € {0,1}™*" configurations in computing the partition function (equation
1.14), and therefore, the computations of gradients are still intractable even we
have conditional distributions p(v|h) and p(h|v) that are easy to compute.

Due to the intractability, it is impractical to compute the exact log-likelihood
gradients leading to approximation strategies in order to train RBMs:

1. Contrastive Divergence (CD): Carreira-Perpifidn and Hinton (2005) and
Hinton (2002) proposed the approximation strategy to estimate the expec-
tation term over the joint distribution p(v, h) using the two factorial con-
ditionals (p(h|v) and p(v|h)) as basis of Gibbs sampling chains (Casella
and George, 1992). It is aimed at drawing S Monte Carlo Markov Chain
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1.3 Unsupervised Neural Density Estimators

(MCMC)? (Hastings, 1970; Metropolis and Ulam, 1949) samples from the
joint distribution p(v, h) to form a Monte Carlo estimate of the expectations
over p(v,h) as:

S
By [F(1,v)] % = 3 £(0,v?) (1.31)

where the k-step MCMC chains are initialized with the current example
from the training set. Additionally, CD requires an extended “burn-in”
MCMC step to reach equilibrium/stationary distribution’ at each iteration.
These lead to a biased approximation of the log-likelihood gradient.

2. Persistent Contrastive Divergence (PCD) (Stochastic Maximum Likeli-
hood): While CD is a popular method of training RBMs, it suffers from
the problem of initialization of the MCMC chains and extended “burn-in”
MCMC steps. PCD (Tieleman, 2008; Tieleman and Hinton, 2009) assumes
that the model is significantly invariant due to the gradient updates by model
parameters in two subsequent iterations and the MCMC state of the penul-
timate iteration ¢tr — 1 should correspond to the equilibrium distribution of
the last iteration 7tr. Thus, instead of initializing the k-step MCMC chain
with the current example from the training set, PCD initializes the MCMC
chain for training iteration ¢ with the last state of the MCMC chain from
the last training iteration (i¢r — 1). It further minimizes the number of “burn-
in” MCMC steps required to reach equilibrium distribution at the current
iteration itr.

In training an RBM with CD or PCD to estimate the gradients of the log-
likelihood, the network “understands” the pair connections in visible and hidden
units using the training data, adjusts its parameters so as the probability distribu-
tion of the model fits the training data. Thus, the training consists of two phases:
(1) Positive phase, where the first term in equation 1.28 measures the association
between the 7th visible and jth hidden unit given the training examples, (2) Neg-
ative phase (reconstruction), where an RBM generates the states of the visible
units from its hypothesis encoded in hidden units, i.e, generates samples that look
like they come from the underlying distribution in the data. The second term in

8The idea of Monte Carlo simulation is to draw an i.i.d. set of samples from a target den-
sity defined on a high-dimensional space. These samples can be used to approximate the target
density. Further details: https://www.cs.ubc.ca/~arnaud/andrieu_defreitas_
doucet_jordan_intromontecarlomachinelearning.pdf

°In a stochastic process, a probability distribution that satisfies 7 = 7P, i.e., if you choose
the initial state of the Markov chain with distribution 7, then the process is stationary and the
stationary distribution is invariant under the Markov chain evolution.
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Limitations of RBMs Extensions of RBMs
Intractability due to partition function Z (equation 1.14)
and can not efficiently compute the joint probability Neural Autoregressive Distribution Estimator
distribution p(v, h). Therefore, tricky to train (NADE) (Larochelle and Murray, 2011)
and exact gradients can not be computed.
Restricted to only binary visible units and Gaussian-Bernoulli RBM (GRBM)
can not model real-valued data (Welling et al., 2004)

Replicated Softmax (RSM)

(Salakhutdinov and Hinton, 2009),

Do not model the count data, e.g., document DocNADE (Larochelle and Lauly, 2012),
iDocNADEe (Gupta et al., 2019a),
ctx-DocNADEpe (textTOvec) (Gupta et al., 2019b)

Table 1.4 — Limitations of an RBM and its (some) extensions, addressing the
limitations. The bold indicates our contributions.

equation 1.28 measures the association between the network generated states of
the hidden and visible units. The pair connections are updated for optimal config-
uration/association(s).

Repeating the positive and negative phases over all training examples, the net-
work parameters are updated due to each of the pair connections using equations
1.28, 1.29 and 1.30. See Hinton (2012) for further details in training RBMs with
CD and PCD.

Applications of Restricted Boltzmann Machines

After training of an RBM, it can be used to generate different samples from the
learnt distribution and the hidden layer h encodes the structure of the input data
that is further used for dimensionality reduction or feature learning (Hinton and
Salakhutdinov, 2006), classification (Larochelle and Bengio, 2008; Salama et al.,
2010; Gupta et al., 2015¢), regression (Hinton and Salakhutdinov, 2006), collab-
orative filtering (Salakhutdinov et al., 2007), etc. Additionally to support better
generalization in deep architectures from the training data, the stacked RBMs such
as Deep Belief Net (DBN) (Bengio et al., 2006; Erhan et al., 2010; Gupta et al.,
2015b) can be used to initialize a multi-layer neural network followed by super-
vised fine-tuning for classification.

Limitations and Variants of RBMs

While RBMs are expressive enough to (1) encode high-order correlations, (2)
form a distributed representation of the data, and (3) model any distribution ro-
bustly in presence of noise in the training data, they cannot efficiently compute
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EHEIEIR

General Autoregressive Model Fully Visible Sigmoid Belief Net (FVSBN)

Figure 1.9 — (left) A general autoregressive graphical model. (right) Fully
Visible Sigmoid Belief Net (FVSBN), where 0; = p(v; = 1|v<;) and each au-
toregressive conditional v; is modeled as logistic regression. The joint proba-
bility distribution is decomposed as: p(v) = [[2, p(vi|v<;).

(i.e., intractable) the probability distribution p(v) for a reasonable number of vis-
ible and hidden units, and therefore, several approximation strategies have been
investigated to estimate it.

Additionally in Table 1.4, we mention some limitations and a few extensions
of RBMs that addresses the issues.

1.3.2 Neural Autoregressive Distribution Estimation (NADE)

While the RBMs have the difficulties in computing the likelihood of the model,
Larochelle and Murray (2011) proposed an autoencoder-like tractable distribution
estimator named as Neural Autoregressive Distribution Estimator (NADE) that is
inspired by the RBM and aimed at estimating the distribution of binary multivari-
ate observations .

Specifically, NADE is a directed graphical model that factorizes the joint dis-
tribution p(v) of a vector (or all variables) v using a chain rule and expresses it as
an ordered product of the one-dimensional distributions, i.e., p(v) = Hf: L p(vilva),
where v; = {v1,v9,...v;_1 } denotes a sub-vector consisting of all attributes pre-
ceding v; € {0, 1} in a fixed arbitrary ordering of the attributes. Importantly, each
distribution (called as autoregressive conditional) is conditioned on the values of
previous dimensions in the (arbitrary) ordering and modeled via a feed-forward
neural network. The main advantage of NADE model is that each autoregressive
conditional p(v;|v;) is tractable, therefore the model distribution p(v) is also
tractable.

Figure 1.9 (left) illustrates the autoregressive property, while a Fully Visible
Sigmoid Belief Network (FVSBN) or logistic autoregressive Bayesian networks
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Figure 1.10 — [llustration of NADE architecture (Uria et al., 2016). Arrows
in color connected together correspond to connections with shared (tied) pa-
rameters across each of the feed-forward neural networks.

(Figure 1.9, right) (Frey et al., 1995) shows a powerful framework for deriving
a tractable distribution of binary data and models each conditional via a logistic
regression. Following the family of fully visible Bayesian networks (Frey et al.,
1998), the FVSBN converts an RBM into a Bayesian network (Larochelle and
Murray, 2011) and factorizes the joint probability distribution of observations as:

D
p(V) = Hp(vi|vparents(i)) (1.32)

i=1
where all observations v; are arranged in a directed acyclic graph!® (DAG) and
each v ents(i) corresponds to variables that are parents of v; in the DAG, for in-
Stance, Vpgrents(iy = V<; for an observation v;. Due to the DAG formulation, each
of the conditional distributions is tractable leading to fractable joint distribution

p(v).

NADE formulation

Instead of a logistic regressor, NADE model extends the FVSBN using a feed-
forward neural network for each conditional with one hidden layer h; € R¥ and
tied weighted connections going in and out of the hidden layer. Each conditional
in the NADE architecture is given by:

103 directed graph where a sequence of the vertices is arranged such that every edge is directed
from earlier to later in the sequence and every edge is uni-directional.
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Algorithm 1 Computation of p(v) in NADE
(inspired by Larochelle and Murray (2011))

Input: A training observation vector v
Output: p(v)
Parameters: {W, W’ b, c}
a<+c
p(v) =0
for i from 1to D do
h; « sigmoid(a)
p(v; = 1|v;) + sigmoid(b; + W'; h;)

p(V) — p(V) <p(vi = 1|V<i)vi + (1 N p(Ui _ 1‘V<i))17vi>
a<+—a+ W;JUi

N R

where, h; = sigmoid(c + W, _;v_;) = sigmoid(c + Z W. i) (1.34)

k<t

and W. _; is a matrix made of the ¢ — 1 first column of W and sigmoid(z) =
1/(1 + exp(—x)). Equations 1.33 and 1.34 correspond to a feed-forward neural
network for each autoregressive conditional p(v; = 1|v.;), and connections are
tied (or shared) across these neural networks, as marked by the colored lines in
Figure 1.10. Unlike in the RBM, NADE architecture does not require a symmetric
connection and therefore, uses a separate matrix W’ € R7*? in the hidden-to-
input connections during the reconstruction.

In order to model the conditionals p(v; = 1|v;), a NADE model is inspired
by the mean-field procedure, where the forward pass in NADE corresponds to
applying a single pass of mean-field inference. NADE is related to the RBM as
these computations (equations 1.33 and 1.34) are inspired by the approximation
inference in the RBM. See Raiko et al. (2014) and Larochelle and Murray (2011)
for further details about how NADE is computationally related to a mean field
inference and RBM, respectively.

The Shared Activations Trick: The parameter W sharing is advantageous
in NADE architecture, since it speeds up the computation of conditionals from
quadratic to linear time. Let’s denote the pre-activations of the i and (i + 1)
hidden layers by a; and a;;.1), respectively. The linear complexity can be achieved
by the following recurrence:

a1 — + W;J‘Vi =a; + W:ﬂ' and a; = C (135)
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for: € 2, ..., D, since the pre-activations differ by:

a1 —a;=(c+W. ;vei) — (c+W. ;vy)

(1.36)
= W:,i+1vi+1 = W:,z'+1

where the equation 1.36 can be computed in O(H). The NADE computes the
probability distribution p(v) by factorizing it into D conditionals and therefore,
computing p(v) costs in time linear in dimensionality O(D H), instead of in time
quadratic O(D?H). NADE achieves it by sharing the computations of the pre-
activations across the conditionals in each of the feed-forward neural networks.

Loss function: Given the training set {v}1_,, NADE minimizes the average
negative log-likelihood,

N N D
/ _ 1 1 ki< .k
LW, W' b, c) N; log p(v NZZ—logp(vi vi,) (1.37)

and the minimization can be performed using stochastic (mini-batch) gradient de-
scent in order to learn the model parameters (W, W', b and c). Algorithm 1 illus-
trates the pseudocode of computing the probability distribution p(v) in the NADE
model.

NADE Extensions: While the NADE is restricted to binary observations, Uria
et al. (2013) proposed its extension, named as Real-valued Neural Autoregressive
Density Estimator (RNADE) that models real-valued observations using a mix-
ture of Gaussians to represent the conditional distributions. Moreover, Uria et al.
(2014) and Zheng et al. (2013) proposed deep and supervised variants of NADE
architecture. On other hand, DocNADE (Larochelle and Lauly, 2012; Lauly et al.,
2017) models text documents via multinomial observations, for instance, to per-
form topic modeling.

1.3.3 Replicated Softmax (RSM)

The Replicated Softmax (RSM) (Salakhutdinov and Hinton, 2009) is an undi-
rected probabilistic topic model to learn representations of documents, and a gen-
eralization (Figure 1.7) of the RBM, since (1) words are multinomial observations,
not binary and (2) documents are of varying lengths. It is difficult to model docu-
ments in the RBM (Smolensky, 1986; Freund and Haussler, 1992; Hinton, 2002)
even when the word-count vectors are modeled as a Poisson distribution (Gehler
et al., 2000).

As illustrated in Figure 1.11 (left), RSM can be interpreted as a collection
of different-sized RBMs created for documents of different lengths, where each
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Figure 1.11 — An ilustration of the Replicated Softmax (RSM). (left) RSM
with D softmax units as there are D words in the document. The connec-
tions W between each observation v; and hidden units are shared, where v;
is an index of a word w. (right): A different interpretation of RSM where the
D softmax units with identical weights is equivalent to a single multinomial
unit that is sampled D times. Notations: V. € RE*P is an observed binary
matrix such that a word index vF = 1 if the visible unit i takes on k'™ value
in the dictionary of size K. E.g., for a document of size D, an observation
vector v = [vq,...,0;, ..., p| is a sequence of word indices v; taking values in
{1,..., K'}. In the illustration, a document of D = 3 words (w1, ws, wy) re-
spectively be indexed in vocabulary at (1,2,1) is represented by v = [1,2,1].
n(v) is a vector of size K with the word-counts of each word in the vocabulary.

RBM has as many softmax (multinomial) observation units as there are words
in the corresponding document with the weights between an observed and all
latent units are shared (replicated) across all the observed units. Moreover, the
weights are shared across the whole family of different-sized RBMs and therefore,
the name Replicated Softmax. It enables RSM to model documents of different
lengths.

Being a generative model of word counts, RSM has demonstrated an effi-
cient training using Contrastive Divergence (CD) (Carreira-Perpifidn and Hinton,
2005; Hinton, 2002; Tieleman, 2008; Tieleman and Hinton, 2009), a better dealing
with documents of different lengths and better generalization compared to Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) in terms of both the log-probability
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on unseen documents and retrieval accuracy. Additionally, RSM has been used in
extracting topics from a collection of documents, where its hidden vector encodes
a document representation (Salakhutdinov and Hinton, 2009).

RSM formulation

As illustrated in Figure 1.11, the RSM is a 2-layered architecture with visible
units v € {1, ..., K}” and binary hidden units (latent topic features) h € {0,1}7,
where D, K and H are document, dictionary and hidden layer sizes, respectively.
Assuming a document of size D and its words be indexed at (vy, vg, ..., vp) in the
vocabulary, the observation vector v for the document is given by a sequence of
word indices taking values in {1, ..., K'}. Here, each observed softmax visible v;
is a word (marked by double circle in Figure 1.11, left), where the connections
W between each softmax observation and hidden units are shared (marked by
the colored lines and tied connections in Figure 1.11, left). Moreover, observe
in Figure 1.11 (left and right) that the D softmax units with identical weights are
equivalent to a single multinomial unit that is sampled D times.

RSM is a generalization of RBM with shared connections across different po-
sitions i in v and thus, defined by the energy of the state {v, h} for a document of
size D with word indices (vy, ..., v;, ..., vp) (each v; modeled as a softmax unit),

D D D
E(v,h)=-) b,-> h"W,_, -> c'h
i=1 i=1 i=1 (1.38)
= —b'n(v) - h’"Wn(v) — Dc’h

with model parameters {W, b, c}, where W, is the v!" column vector extracted
from the matrix W € R¥*X and n(v) € R is a vector obtained by summing
the word count of each word v; in the vocabulary, as shown in Figure 1.11 (right).
Observe that the hidden-bias term c”h is multiplied (scaled up) by the document
length D in order to maintain a balance between all the terms, especially when
v is larger (i.e., a number of summations over ¢) and documents are of different
lengths.

Similar to the RBMs, the probability distribution of the RSM model is related
to its energy and is given by:

p(v) = %Zexp (— E(v,h)) and Z = Zexp (= E(v,h)) (1.39)

v,h

where Z is the normalization constant and intractable. Following the RBMs, the
conditional distributions across layers are factorized as:
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p(vlh) = [ p(vilh) and p(h|v) =[] p(kslv) (1.40)

i=1 j=1

and each conditional is computed as:

D
p(h] — 1|V) = singid(DCj + Z Wj,vi)
i (1.41)
exp(b, + hTW._ )

Zw, eXp(bw/ + hTW;,w/)

p(vi = wlh) =

where p(v; = w}h) is the softmax visible unit for the word index v;. Observe that
the distribution of each word v; in the document is obtained due to a contribution
from each of the topic features in h.

Similar to the RBMs (section 1.3.1), the computation of the gradients of the
negative log-likelihood of training documents with respect to model parameters is
expensive for sufficiently large v due to a number of sums in computing the parti-
tion function Z (equation 1.39). Hence, the gradients are approximated using the
contrastive divergence (CD) (Carreira-Perpifidn and Hinton, 2005; Hinton, 2002)
or its variant PCD (Tieleman, 2008; Tieleman and Hinton, 2009). See Salakhut-
dinov and Hinton (2009) for more details in training the Replicated Softmax.

Limitations of RSM

The RSM has difficulty in training due to intractability in its partition function
(normalization constant). Even, computing the conditional p(v;|h) for each word
v; via Gibbs sampling is expensive when the dictionary size K tends to be quite
large. Additionally, RSM is a bag-of-words topic model and therefore, does not
account for the word ordering that might be helpful for textual representation in
certain tasks. Moreover, RSM is a static topic model in the sense that it does not
consider the temporal ordering of documents.

Our Contribution: As illustrated in Figure 1.7, we attempt to extend RSM
for the dynamic'! topic model setting and present a novel unsupervised neural
architecture, which we named as Recurrent Neural Network-Replicated Softmax
Model (RNN-RSM) (Gupta et al., 2018b) that facilitates the identification of top-
ical and keyword trends over time in temporal collections of unstructured docu-
ments. Essentially, the RNN-RSM model can be seen as a temporal stack of RSM

"'Generative models to analyze the evolution of topics of a collection of documents over time.
The documents are grouped by time slice (e.g., years) and it is assumed that the documents of each
group come from a set of topics that evolved from the set of the previous slice.
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Figure 1.12 — [llustration of DocNADE architecture (Larochelle and Lauly,
2012; Gupta et al., 2019a). Arrows in color connected together correspond
to connections with shared (tied) parameters across each of the feed-forward
neural networks. The double boundary circle represents a softmax (multino-
mial) observation for each word i indexed at v;.

models, conditioned by time-feedback connections using RNN. While RSM cap-
tures topical information at each time slice ¢, the time feed-back connections of
RNN convey topical information through RSM biases across the time steps <t.

1.3.4 Neural Autoregressive Topic Model (DocNADE)

While NADE (Larochelle and Murray, 2011) (section 1.3.2) and RSM (Salakhut-
dinov and Hinton, 2009) (section 1.3.3) are good alternatives than RBM, NADE
is limited to binary data and RSM has difficulties due to large vocabulary size and
intractability leading to approximate gradients of the negative log-likelihood. Un-
like in the RBM and RSM, NADE has an advantage that computing the gradients
with respect to model parameters does not require approximation. On other hand,
RSM is a generative model of word count to learn meaningful representations of
documents.

Inspired by the benefits of NADE and RSM (Figure 1.7), Larochelle and Lauly
(2012) proposed a neural network based generative topic model named as Docu-
ment Neural Autoregressive Distribution Estimator (DocNADE) that learns topics
over a sequence of words in a language modeling fashion (Bengio et al., 2003;
Mikolov et al., 2010), where each word v; is modeled by a feed-forward neural
network accounting for preceding words v; in the sequence.
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Figure 1.12 provides an illustration of the DocNADE model.

Specifically, DocNADE factorizes the joint distribution of words in a docu-
ment as a product of conditional distributions and models each conditional via
a feed-forward neural network to efficiently compute a document representation
following the NADE architecture. Similar to the RSM, a DocNADE treats each
word in a document as a multinomial observation and thus, computes a multino-
mial distribution given the hidden units at each of the autoregressive steps. More
specifically in difference to the RSM, DocNADE organized words in a document
in a hierarchy of binary logistic regressions, i.e., a binary tree where each leaf
corresponds to a word of the vocabulary. It enables DocNADE with a competitive
complexity of computing the probability of an observed word that scales sub-
linearly (i.e., logarithmic) with vocabulary size, as opposed to linearly in RSM.

In modeling documents, DocNADE has shown an improved performance over
the other topic models such as LDA (Blei et al., 2003) and RSM (Salakhutdinov
and Hinton, 2009) in terms of generalization over the unseen documents and in-
formation retrieval.

DocNADE Formulation

For a document v = (vy,...vp) of size D, each word index v; takes value in
{1,..., K} from a dictionary of vocabulary size K. DocNADE models the joint
probability distribution p(v) of the document by decomposing it as the product of
conditional distributions based on the probability chain rule, and is given by:

D

p(v) =[] p(vilvas) (1.42)

i=1

and each autoregressive conditional distribution p(v;|v.;) is modeled by a feed-
forward neural network,

hi(va) = gle+ Y W)

k<i
eXp(bw + Uw,:hi(v<i))
w €XP(bw + Uy hy(ve;))

(1.43)

p(vi = wlve;) = 5

fori € {1,...D}, where v, is the subvector consisting of all v; such that j < i
ie., v € {v1,...,v;_1}, g(+) is a non-linear activation function, W € R¥*X and
U € RE*H are weight matrices, ¢ € R and b € R¥ are bias parameter vectors.
H is the number of hidden units (topics). Unlike the RSM, DocNADE ignored
the scaling factor D for the hidden bias c based on the performance of the model.
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Algorithm 2 Computation of log p(v) in DocNADE using tree-softmax or full-
softmax (inspired by Larochelle and Lauly (2012) and Gupta et al. (2019a))
Input: A training document vector v
Parameters: {b,c, W, U}
Output: log p(v)

1. a<-c

2: p(v) =1

3: for ¢ from 1 to D do

4. hz — g(a)

5: if tree-softmax then

6: p(vilve) =1

7: for m from 1 to |7(v;)| do

8: P(vi|ves) = p(vi| Vi) p(m(Vi)m| Vi)
9: if full-softmax then
10: compute p(v;|v;) using equation 1.43
1: p(v) < p(v)p(vilv<:)
12: a<a+W,,,

As illustrated in Figure 1.12 and equation 1.43, notice that the conditional
distribution p(v; = w|v;) of each word v; is thus computed in a feed-forward
fashion using a position-dependent hidden layer h;(v.;) that learns a representa-
tion based on all previous words v_; in the sequence (vy, ..., v;, ..., up ). Moreover,
computing the hidden representation at each of the autoregressive step is efficient
due to the NADE architecture that leverages the pre-activation'? a;_; of (i — 1)™"
step in computing the pre-activation a; for the i*" step. The shared activation trick
is further described in section 1.3.2.

Taken together, the negative log-likelihood of any document v of an arbitrary
length can be computed as:

D
L(v) =) logp(v;|ves) (1.44)
=1

The model parameters {b,c, W, U} are learned by minimizing the average
negative log-likelihood of the training documents using stochastic gradient de-
scent.

Algorithm 2 gives the computation of log p(v) in DocNADE using a hierar-
chical (tree-softmax) or large softmax (full-softmax) over vocabulary to compute
the autoregressive conditionals. Similar to probabilistic language models (Morin

12term before the application of non-linearity, for instance a; = ¢ + >, <i Wi,
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and Bengio, 2005; Mnih and Hinton, 2008), DocNADE replaces a large softmax
over words by a probabilistic tree model in which each path from the root to a leaf
corresponds to a word. The probabilities 7 of each left/right transitions in the tree
are modeled by a set of binary logistic regressors and the probability of a given
word is then obtained by multiplying the probabilities of each left/right choice of
the associated tree path.

See Larochelle and Lauly (2012) for details about the realization of a hierar-
chical binary logistic regression and computing the gradients with respect to the
model parameters.

To compute the autoregressive conditional distributions p(v;|v.;) for each
word i € [1,2,..., D], the binary word tree instead of softmax over words re-
duces computational cost and achieves a complexity logarithmic in /K. For a full
binary tree of K words, it involves O(log(K')) binary logistic regressions where
each logistic regression requires O(H ) computations. Since there are D words,
the complexity of computing all p(v;|v.;) is in O(log(K)DH). Therefore, the
total complexity of computing p(v) in DocNADE with binary tree softmax is
O(log(K)DH + DH), as opposed to O(KDH + DH) of Replicated Softmax.
Thus, DocNADE offers a complexity competitive to RSM for a large vocabulary
size K.

Importantly, the mean field inference of p(v;|v)< i) in RSM corresponds to
the mean field inference in RBM, given the multinomial observations in RSM.
Following the derivation of NADE, DocNADE estimates p(v;|v)< i) with a sin-
gle iteration of mean field procedure applied to RSM. See Larochelle and Lauly
(2012) for further details.

Limitations of DocNADE and Our Contributions

While DocNADE has shown promising results in terms of generalization and IR
tasks, it experiences the following limitations. Here, we first outline limitations of
the DocNADE architecture, and then present our contributions to address them:

1. Limitation: In computing an autoregressive conditional, i.e., p(v;|v;) for
a word v; in a given sequence, DocNADE considers only the preceding
context, i.e., v.; while learning latent topics.

Contribution: To extend, we present a novel architecture, which we named
as iDocNADE (Gupta et al., 2019a) that exploits the full context information
around words in the given document. Here, the prefix i stands for informed.

2. Limitation: DocNADE does not address the difficulties in learning rep-
resentations especially in the limited context settings, e.g., short-text or a
corpus of few documents.
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Contribution: To address the data sparsity issues, we present a novel archi-
tecture, which we named as DocNADEe (Gupta et al., 2019a) that incorpo-
rates external knowledge, e.g., pre-trained word embeddings into the neural
autoregressive topic model.

Moreover, we present a novel approach of Multi-view Transfer (MVT) (Chap-
ter 7) in the DocNADE model with an aim to inject the two kinds of external
knowledge: word embeddings (local semantics) and latent topics (global se-
mantics) from many sources.

3. Limitation: DocNADE is a bag-of-words model and therefore, it does not
account for language structures such as word ordering, local syntactic or
semantic information, etc.

Contribution: To this end, we present a novel neural composite model
of topic learning that accounts for both the global and local contexts (sec-
tion 1.4.4) while learning word and document representations. We call the
proposed modeling approach as contextualized-DocNADE (ctx-DocNADE)
(Gupta et al., 2019b) that generates contextualized topic vectors (textTOvec)
in the sense that the local semantics is assimilated in the global (i.e., topics)
semantic information.

In doing so, an LSTM-LM (LSTM-based Language Model) captures lan-
guage structures by accounting for the word ordering in local word co-
occurrences at the sentence-level. However, a topic model (i.e., DocNADE)
learns latent topics from the entire document and discovers the underlying
thematic structures (i.e., global semantics) in the document collection. To
benefit from the merits of the two complementary semantics, we unite the
two paradigms of learning in a composite model (section 1.4.5) that jointly
trains a neural topic and a neural language model.

Also, we demonstrate an improved performance of the composite model in
the sparse-data settings by introducing pre-trained word embeddings.

1.4 Distributional Semantics: Word and Document
Representations

Recently, the success of deep learning based NLP systems is coupled with dis-
tributed representations of words (Mikolov et al., 2013b; Pennington et al., 2014),
phrases (Socher et al., 2012, 2011b) or sentences (Le and Mikolov, 2014; Kiros
et al., 2015) where the distributed representations are real-valued vectors to flexi-
bly represent semantics of natural language.

62



1.4 Distributional Semantics: Word and Document Representations

S, S, S, a lion tiger buffalo hunts chases
a— (100000)7 al 1 2 1 al 0 2 1 3 2 1
lion — (010000)7 lion| 1 0 0 (lion]| 2 0 0 0 1 0
tiger — (001000)"  tiger| 0 1 1 iger| 1 0 0 0  1; 1)
buffalo — (000100)7 puffalo| 1 1 1 buffalo| 3 0 0 0 0 0
hunts — (000010)" hunts| 1 0 1 (hunts] 2 1 1% 0 0 0J
chases — (000001)" chases| 0 1 0 chases| 1 0 1. 0 0 0J
Word co-occurrence matrix
one-hot encoding bag-of-words i.e., word vs contextual features
(local representation) (local representation) (distributed representation)

Figure 1.13 — An illustration of Local vs. Distributed Representations using
word co-occurrence matrix of one-window, and sentences Sy, So and S3

1.4.1 Distributed Representations

Specifically, “word embeddings™ are distributional vectors following the distribu-
tional hypothesis in the sense that the words appearing in similar context have
similar meaning. In other words, they are learned representations of text where
words that have the same meaning have a similar representation. Following the
objective, neural networks (Bengio et al., 2003; Mikolov et al., 2010) have been
successful in learning vector representation of a word based on its context. Conse-
quently, each word is mapped to a real-valued vector in a predefined vector space.

To give an intuition for local and distributed representations (i.e., word embed-
dings) of words, consider the following three sentences in a small corpus:

Si:a lion hunts a buffalo
S>: a tiger chases a buffalo

S3:a tiger hunts a buffalo

Local Representations

Figure 1.13 demonstrates local representations via a one-hot word vector repre-
sentation (left) and a bag-of-words (right) representation for each of the three sen-
tences. The one-hot representation denotes each single word as a binary vector of
vocabulary size with one value 1 at the word-specific index and remaining values
0. On other hand, each dimension in the bag-of-words representation of a sentence
indicates a word. These local representations get too sparse (many zeros) when
the size of document and/or vocabulary grows. Additionally, the bag-of-words
model does not account for the word ordering, although the words are presented
in a sequence.

Limitations of local representations: (1) Extremely inefficient as the vocab-
ulary size of the corpus increases, (2) Do not account for word ordering in the
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sequence, (3) Inefficient in neural networks due to sparse vector representations,
and (4) Can not capture word similarity because of a one-to-one mapping from a
word to a vector. Therefore, words appearing differently in symbols are treated
independently and mapped to different word indices in the vocabulary.

Distributed Representations

In contrast, distributed representations are powerful in the sense that each word
is represented by a d-dimensional real-valued dense vector, and the whole vec-
tor represents a word or a sequence of words instead of only one dimension as
in local representations. Essentially in a distributed representation (Plate, 1995;
Hinton, 1986), the informational content is distributed among multiple units, and
at the same time each unit can contribute to the representation of multiple ele-
ments. Specifically for words, the resulting distributional vectors represent words
by describing information related to the contexts in which they appear.

To this end, Figure 1.13 (right) intuitively explains the concept of distributed
representations, where we generate a distributed representation for each word by
building a word vs. contextual feature (i.e., word co-occurrence) matrix using the
corpus of three sentences and considering a 1-word window. Notice that a row
vector is a distributed representation of a particular word, e.g., lion as highlighted,
whereas all other words (corresponding columns) within the context of lion con-
tribute in generating its distributed representation. Moreover, observe that the
words (e.g. lion and tiger) sharing similar semantic attributes (e.g., hunts) are
similar. Similarly, the word hunts is more similar to chases than buffalo, lion
or tiger. Therefore, the words lion and tiger are represented by vectors that are
similar in cosine similarity.

However, it is challenging to learn distributed representations explicitly using
the original co-occurrence matrix that is very costly to obtain and store for large
corpora. In order to deal with the large co-occurrence matrix and exploit the ex-
pressive power of neural networks, Bengio et al. (2003) and Mikolov et al. (2010)
employed a neural network based approach using contextualized information with
no explicitly computed word co-occurrence matrix. They generated distributed,
compact and dense vector representations of words, capture word semantics and
interesting relationship between words.

Neural Language Models

A language model (LM) computes the probability distribution of the next word
in a sequence, given the sequence of previous words in a predefined vocabulary
V. Assuming a sequence of D words indices {vy, vq,...vp} with each vy € V, a
language model computes the joint probability distribution of the sequence as:
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Figure 1.14 — Word2vec: CBOW vs Skip-gram models
D
p(v1,v9,..0p) = Hp(vd|v<d) (1.45)
d=1

where v_, is a sub-vector consisting of word indices preceding the word d in the
given sequence. The conditional distribution of each word v, is computed through
the hidden state h, of the RNN-based model,

P(va|v<q) = p(valhy)
h; = fH(hd—la Ud—1)

where fy(-) can be realized by a basic RNN cell (Elman, 1990), LSTM (Hochre-
iter and Schmidhuber, 1997) cell, GRU (Chung et al., 2014) cell or an MLP (Ben-
gio et al., 2003). Therefore, the name neural language model.

In the process of predicting distributions over words, the language models en-
code language structures, such as word ordering, semantic knowledge, grammati-
cal structure, etc. in the text. RNN-based language models (Mikolov et al., 2010;
Peters et al., 2018) have been successful in variety of NLP applications. However,
they are typically applied at the sentence level without access to the broad docu-
ment context, and consequently, it is difficult to capture long-term dependencies
of a document (Dieng et al., 2017).

(1.46)

1.4.2 Learning Distributed Representations

In the following section, we briefly cover some of the major related works in
learning distributed representations of words and sentences.

Distributed Word Representations

Word2vec (Mikolov et al., 2013b) is one of the popular approaches in learning
word vectors given the local context, where the context is defined by a window
of neighboring words. They proposed a simple single-layer architecture based on
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the inner product between two word vectors and introduced two different learn-
ing techniques to learn word embeddings: (1) Continuous Bag-of-Words model
(CBOW) that learns embeddings by predicting the current word based on its con-
text, and (2) Continuous Skip-Gram model that learns by predicting a context
(surrounding words) given an input word. Figure 1.14 depicts the two approaches
of word2vec technique to model the sentence S;. To train such models, many such
pairs of word-context are provided during training and the prediction capability of
the models is maximized.

Notice that the context is characterized by the window size that has a strong
effect on the resulting vector similarities. The window-based methods also suf-
fer from the disadvantage that they do not operate directly on the global co-
occurrence statistics of the corpus. Instead, they scan context windows across
the entire corpus, thus fail to leverage the vast amount of repetition in the data.

While matrix factorization methods such as as latent semantic analysis (LSA)
(Deerwester et al., 1990) efficiently leverage global statistical information, they do
relatively poorly on the word analogy task. In contrast, word2vec did better on the
analogy task, but they poorly utilize the statistics of the corpus because they train
on separate local context windows rather than on global co-occurrence counts.
Therefore, GloVe (Global Vectors for Word Representation) (Pennington et al.,
2014) algorithm extends word2vec method by combining global text statistics of
matrix factorization techniques with the local context-based learning in word2vec.

As the two conventional word embeddings techniques (word2vec and GloVe)
do not handle out-of-vocabulary (OOV) words, Bojanowski et al. (2017) proposed
a technique called fastText and introduced the idea of subword-level embeddings
that represents each word by a bag of character n-grams. Specifically, special
boundary symbols < and > are added to mark the beginning and end of a word.
For instance, a word ‘halwa’ with n = 3 is represented by character 3-grams
(‘< ha’, ‘hal’, ‘alw’, ‘lwa’, ‘wa >") and a special sequence ‘< halwa >’. Since
each character n-gram is associated to a vector representation, therefore a word
is represented by the sum of these representations. As a result, this technique
enables to compute representations for OOV words.

Buffalo survives a lion attack.
The State University of New York is based in Buffalo.
Buffalo is a brand of clothing and accessories.

Table 1.5 — Different senses of the word ‘buffalo’ based on its context.

Contextualized Word-Embeddings: Though word embeddings have shown
to be powerful in capturing semantic properties of words, their inability to deal
with different meanings (senses) of a word restricts their effectiveness in captur-
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ing the semantics of ambiguous/polysemous words. Essentially, the conventional
word embedding models generate the same embedding for the same word in dif-
ferent contexts. For instance in the sentences above (Table 1.5), the word ‘buffalo’
refers to an animal, location and brand, respectively.

Instead of learning a fixed number of senses per word, contextualized word
embeddings learn “senses” dynamically, i.e., their representations dynamically
change depending on the context in which a word appears. Recently, (Peters et al.,
2018) have shown to capture context-dependent word semantics in order to ad-
dress the issue of polysemous words. To achieve it, they first train a bi-directional
LSTM-based language model (LSTM-LM) on large corpora, and then at test time,
use the hidden states generated by the LSTM for each token to compute a vector
representation of each word, i.e., Embeddings from Language Models (ELMo).
The vector representation is a function of the task-specific sentence in which it
appears, therefore the name contextualized embeddings. Moreover, they have
shown that a deep contextualized LSTM-LM is able to capture different language
concepts in a layer-wise fashion, e.g., the lowest layer captures language syntax
and topmost layer captures semantic features useful in sense disambiguation.

More recently, Akbik et al. (2018) introduced a contextualized character-level
word embedding (named as FlairEmbeddings) in sequence labeling that models
words and context as sequences of characters. It offers several benefits such as
generating different embeddings for polysemous words dependent on their con-
text, handling rare and misspelled words, and accounting for subword-level struc-
tures, e.g., prefixes and suffixes.

Distributed Sentence Representations

One of the straightforward bottom-up baseline method in generating distributed
sentence representation is to compose pre-trained word embeddings by element-
wise addition (Mitchell and Lapata, 2010).

Some of the sophisticated methods include Paragraph Vector (doc2vec) (Le
and Mikolov, 2014) and SkipThought Vectors (Kiros et al., 2015) that employ
neural networks. The doc2vec is an extension of word2vec that introduced two
models of sentence representations: (1) a Distributed Memory (DM) model that
learns a paragraph in such a way that the paragraph vector is concatenated with
several word vectors from a paragraph and predict the following word in the given
context, and (2) a Distributed Bag-of-words (DBOW) model that ignores the con-
text words in the input and forces the model to predict words randomly sampled
from the paragraph in the output. However, SkipThought Vectors (Kiros et al.,
2015) are trained to predict target sentences (preceding and following) given a
source sentence. In doing so, they employed sequence-to-sequence RNN-based
models (Sutskever et al., 2014).
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1.4.3 Document Topic Models

A topic model (TM) is a type of statistical modeling that examines how words
co-occur across a collection of documents, and automatically discovers coherent
groups of words (i.e., themes or topics) that best explain the corpus. Essentially,
they assume that (1) each document is composed of a mixture of topics, and (2)
each topic is composed of a collection of words. A TM aims at uncovering the
underlying semantic structure (i.e.., theme) of a document collection so as to or-
ganize, search or summarize according to these themes.

For instance, documents that contain frequent occurrences of words such as
{computer, information, data, software, network, device, keyboard} are likely to
share a topic on “computers’.

Essentially, topics are inferred from the observed word distributions in the
corpus and the semantics of topics are usually inferred by examining the top rank-
ing words they contain. The number of topics are predefined in the unsupervised
learning algorithm.

Unlike word-word co-occurrence matrices in learning word embeddings (sec-
tion 1.4.1), topic models generate distributional semantic representations of words
by document-word matrices with an intuition that words are similar if these words
similarly appear in documents. In other words, words belonging to the same topic
tend to be more similar and each topic is associated to some documents. There-
fore, topic models have global view in the sense that each topic is learned by lever-
aging statistical information across documents (i.e., global context). To achieve it,
the word vs document matrix is broken down into two matrices: document-topic
and word-topic, where the former describes documents in terms of their topics
and the later describes topics in terms of distributions over words in vocabulary.

Topic modeling can be used to classify or summarize documents based on the
topics detected or to retrieve information based on topic similarities.

Related Studies in Topic Modeling

Latent Semantic Analysis (LSA) (Deerwester et al., 1990) is one of the earliest
techniques in topic modeling, where the core idea is to take a document-term
matrix and decompose it into a separate document-topic matrix and a topic-term
matrix. LSA used tf-idf score to represent raw counts in the document-term ma-
trix and then, singular value decomposition (SVD) to reduce dimensionality. Fur-
ther, Probabilistic Latent Semantic Analysis (pLSA) (Hofmann, 1999) employed
a stochastic method instead of SVD.

The Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is one of the pop-
ular topic models that is a Bayesian version of pLSA. LDA models a document
as a multinomial distribution over topics, where a topic is itself a multinomial
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Documents Topic Topics
| PI’OpOI’tiOHS Topic#1 Proportion
A chip is an integrated circuit, an assembly of semiconduct 0.28
electronic components that are used for electronic 0.22
computer processors, memory, etc. There are circuit 0.13
transistors and diodes, capacitors and resistors chip 0.12
made of semiconductor material. . computer 0.10
Topic
. . . Assignments
Semiconductor is a crucial component of —_—
i i .a. . : N %S
electronic d.evmes, e g , computer. in 2018, the O »\0&( _\o@\o& Toplc#2 Proportion
global semiconductor industry sales reached - <R <R <R e 0.2
477.94 billion dollars, where Samsung Topic #1 - :
(I . windows 0.20
Electronics holds the largest market share. h
linux 0.20
| operating 0.12
0 . . O andriod 0.10
Linux, Unix and Windows are computer Topic #2
operating“systems. Linux’is generally counted as
dominant, about twice the number of hosts as
Windows, and popular a operating system for
supercomputers. As of November 2018, the Topic#3  Proportion
estimated market share of Linux operating Q share 0.20
system on computer desktops is around2.1%. Topic #3 TR 0.20
Android, which is based on the Linux kernel, has Sales .18
become the dominant operating system for NS dollars 0.14
smartphones, worth billion dollars: During the & Q\c}" Q\&‘ billion 0.08
second quarter of 2013, 79.3% of smartphones AT A0F <O
sold worldwide using.Android, responsible for
L] more than'60% of sales. As of December 2014,
Android has a market share of about 46%.

Figure 1.15 — An illustration of the intuitions behind Latent Dirichlet Alloca-
tion (LDA) topic model, inspired by Blei (2012).

distribution over words. While the distribution over topics is specific for each
document, the topic-dependent distributions over words are shared across all doc-
uments. Thus, it can extract a semantic representation from a document by in-
ferring its latent distribution over topics from the words it contains. For a new
document, LDA provides its representation in terms of distribution over topics.

Figure 1.15 illustrates the intuition behind LDA where documents exhibit mul-
tiple topics (i.e., distributions over words) and the generative process assumes a
fixed number of topics across the document collection. Each document is assumed
to be generated as follows: (1) randomly choose a distribution over the topics (the
histograms: topic proportions); (2) for each word, randomly choose a topic from
the distribution over topics in step #1, i.e., topic assignments in the colored coins
and then randomly choose the word from the corresponding topic. See Blei (2012)
for a detailed discussion about the generative process of topic modeling.

Topic Modeling in Sparse-data Setting: Conventional topic modeling algo-
rithms such as LDA infer document-topic and topic-word distributions from the
co-occurrence of words within documents. However, learning representations re-
mains challenging in the sparse-data settings with short texts and few documents,
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since (1) limited word co-occurrences or little context, (2) significant word non-
overlap in such short texts and (3) small training corpus of documents lead to little
evidence for learning word co-occurrences. However, distributional word repre-
sentations (i.e. word embeddings) (Pennington et al., 2014) have shown to capture
both the semantic and syntactic relatedness in words and demonstrated impressive
performance in NLP tasks.

For example, assume that the conventional topic model is run over the two
short text fragments:

A lion catches a buffalo.
A tiger chases a cow.

The traditional topic models with bag-of-words assumption will not be able to
infer relatedness due to the lack of word-overlap and/or small context in the two
sentences. However, the pre-trained word embeddings (Pennington et al., 2014) as
an external knowledge can help in expressing semantic relatedness in word pairs
such as (1ion-tiger, catches-chases and buffalo-cow) and therefore,
improve topic models to generate more coherent topics.

Related work such as Sahami and Heilman (2006) employed web search re-
sults to improve the information in short texts and Petterson et al. (2010) intro-
duced word similarity via thesauri and dictionaries into LDA. Das et al. (2015)
and Nguyen et al. (2015a) integrated word embeddings into LDA and Dirichlet
Multinomial Mixture (DMM) (Nigam et al., 2000) models.

Our Contribution: To alleviate the data sparsity issues, we extend the neural
topic model, i.e., DocNADE" (section 1.3.4) by introducing pre-trained word
embeddings as static priors and external knowledge while topic learning. The
proposed model is named as DocNADEe (Gupta et al., 2019a), where the ‘e’ in
the suffix refers to word embedding (pre-trained) vectors.

1.4.4 Local vs. Global Semantics

To extract word meanings, there is a hierarchy of views (or contexts): (1) context
by a window-size, (2) sentence, (3) paragraph or (4) document.

The word embedding models such as skip-gram (Mikolov et al., 2013b), ELMo
(Peters et al., 2018), etc. learn a vector-space representation for each word, based
on the local word co-occurrences that are observed in a text corpus. Specifically,
they rely on statistics about how each word occurs within a context of another
word, where the context is either limited by a (short) window or a function of the
sentence in which the word appears. Therefore, the word embedding models take
a local view. In contrast, topic models take a global view in the sense that they

B3since DocNADE (Larochelle and Lauly, 2012) outperformed LDA models in terms of gener-
alization and performance on information retrieval task
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infer topic distributions across a document collection and assign a topic to each
word occurrence, where the assignment is equally dependent on all other words
appearing in the same document. Therefore, they learn from word occurrences
across documents via latent topics.

Word embedding models are promising at learning local semantic and syntac-
tic relationships between words. Unlike word embedding models, topic models
capture global semantics in the underlying corpus in form of topics and therefore,
capture the long-range semantic meanings across the document. As a result, topic
models can better deal with polysemous words based on the underlying themes in
document collection.

Corpus of two documents D; and D,

Di: There is a chip on the table.

Djy: There is a chip on the table. Integrated circuit is an
assembly of electronic components that are used for computer
processors, memory, etc. There are transistors and diodes,

capacitors and resistors made of semiconductor material.

Table 1.6 — A corpus of two documents.

For instance, consider a corpus of two documents D, and D, as illustrated in
Table 1.6. Given the local view, it is difficult for the word embedding models to
extract the meaning of the word ‘chip’: Does it mean a potato chip or an electronic
chip? Therefore, the word embeddings from such models have inherently limited
expressive power when it comes to global semantic information.

In contrast, a latent topic, for instance, ‘electronics’ is shared across the doc-
ument collection and assigned to a word occurrence, e.g., chip. Additionally,
the topic-word assignment (i.e., ‘electronic’-chip) is equally dependent on all
other words (e.g., ‘electronic’-circuit, ‘electronic’-computer, ‘electronic’-
memory, ‘electronic’-transistors, ‘electronic’-semiconductor, etc.). It
means that the word chip occurs with other words related to ‘electronics’ within
or across documents, leading to infer ‘electronic’ sense for the word chip. In
a way, a topic model captures long-range dependencies (within or across docu-
ments) to resolve word meanings.

To summarize, the two learning paradigms are complementary in how they
represent the meaning (global and local) of word occurrences, however distinctive
in how they learn from statistical information observed in text corpora.

Our Contribution(s): To address data sparsity and polysemy issues, we present
anovel approach of Multi-view Transfer (MVT) (Chapter 7) in the DocNADE (sec-
tion 1.3.4) model that injects the two kinds of external knowledge: word embed-
dings (local semantics) and latent topics (global semantics) from many sources.
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Topic Proportion
Regenerated document —
circuit 0.13 there chip anie | <cos
table 0.04
Latent electronics 0.22
topics computer 0.10

\ LSTM bl LSTM bl LSTM bl LSTM bl LSTM b LSTM bl LSTM b LSTM |

reconstruction

transistor 0.12

semiconductor 0.28

Input document D, memory 0.10 <sos> lhere is a Chlp on the table

Topic Model FEED 008 LSTM-based Language Model

Figure 1.16 — An overall architecture of a Composite model, consisting of a
(neural) topic model and neural language model (LSTM). Observe that the
latent topics Z are assimilated with hidden representations of LSTM to im-
prove language modeling. Here, we show a single topic (a distribution over a
vocabulary) about ‘electronics’. The symbols <sos> and <eos> indicate the
start and end of a sentence, respectively.

1.4.5 Composite Models of Local and Global Semantics

As discussed in section 1.4.4, language models are typically applied at the sen-
tence level, without access to the broader document context. Additionally, recent
works in neural language models such as ELMo (Peters et al., 2018) are RNN-
based language models and good at capturing the local structure (both seman-
tic and syntactic) of a word sequence, however at the sentence level, under the
assumption that sentences are independent of one another within and/or across
documents (although related works such as Kiros et al. (2015) employed broader
local context such as the preceding/following sentence(s)). In essence, they have
a local view. Consequently, they can not model the long-term dependencies (Di-
eng et al., 2017), i.e., global semantics, since global statistical information is not
exposed. In contrast, latent topic models take a global view, and tend to capture
the global underlying semantic structure of a document but do not account for
language structure, e.g., word ordering.

Given the merits of the two paradigms of learning complementary representa-
tions, an interesting research direction has opened up in recent time to jointly learn
a topic and neural language model. Here, such a unified architecture accounting
for both the global and local contexts is called as a composite model, where a
topic model learns topical information in documents and a neural language model
is designed to capture word relations within a sentence.

IMlustration: Figure 1.16 illustrates an intuition of a composition model, con-
sisting of a topic and language model to jointly learn the complementary repre-
sentation via global and local views, respectively. Here, the topic model takes
the complete document D, (Table 1.6), while an LSTM-based language model
(LSTM-LM) takes a sentence (say the first one of [)5). Essentially during lan-
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guage modeling, the probability distribution of each of the words in a sentence is
conditioned on both the local and global contexts. Observe that the meaning of the
word chip (in documents D; and D-) can be resolved due to an explicit intro-
duction of global semantics (e.g., ‘electronic’ sense) via latent topics Z, captured
by a topic model. Therefore, it helps improving the language modeling task.

Related studies: Major studies, such as TDLM (Lau et al., 2017), Topic-RNN
(Dieng et al., 2017) and TCNLM (Wang et al., 2018) have integrated the merits of
latent topic and neural language models (NLMs). Specifically, the related works
in composite modeling learn the degree of influence of topical information on the
neural language model. To do so, the NLM of the composite model incorporates
topical information by assimilating the document-topic representation(s) with its
hidden output at each time step. While the composite models focused on improv-
ing NLM explicitly via global (semantics) dependencies from latent topics, they
do not investigate topic models by explicitly incorporating the local syntactic and
semantic structures, captured by the NLM. Moreover, the related studies do not
address the bag-of-words assumption in topic modeling.

Our Contribution(s): To this end, we have proposed a novel neural network-
based composite model, which we named as ctx-DocNADEe (textTOvec) (Gupta
et al., 2019b). It integrates the merits of a neural topic model i.e., DocNADE
and a neural language model, i.e., LSTM-LM. In this work, we have attempted to
introduce the local dynamics (syntactic and semantic structures) of the language
into the global (i.e., topics) semantics of DocNADE, where the internal states of
LSTM-LM encode the local dynamics. Consequently, we have shown to improve
the latent topics due to the injection of language concepts, such as word ordering,
latent syntactic and semantic structures, etc.

1.5 Semantic Relation Extraction (RE)

In the digital age, there is an information explosion in form of news, blogs, social
media, email communications, governmental documents, chat logs, etc. Much of
the information lies in unstructured form (Jurafsky and Martin, 2009) and it is dif-
ficult to extract relevant knowledge. This gives rise to Information extraction (IE)
technologies that help humans to mine knowledge in a structured form in order
to understand the data. Essentially, IE is a task of natural language processing
that aims at turning unstructured text into a structured repository such as a rela-
tional table or knowledge base by annotating semantic information. It can extract
meaningful facts from the web or unstructured text that can be used to populate
knowledge bases (Bollacker et al., 2008; Auer et al., 2007) and in applications
such as search, question-answering, etc.

Specifically, Information Extraction consists of subtasks such as named entity
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ORGBased_In

Richard Kahn, officer for the American Diabetes Association in Alexandria, Va .
PER \ ORG \ L(A)C L(}C

Figure 1.17 — An illustration of Named Entity Recognition (NER) and Rela-
tion Extraction (RE), where the named entities are PER (person), ORG (or-
ganization) and LOC (location). noREL indicates the type ‘noRelation’.

recognition (NER), relation extraction (RE), event extraction, coreference reso-
lution, etc. Named entity recognition is the task to identify all the mentions or
occurrences of a particular named entity type in the given text, where a named
entity is often a word or phrase that represents a specific real-world object, e.g.,
person (PER), organization, location, etc. NER is an important sub-problem,
since it forms the basis for relation extraction. In this chapter, we focus on rela-
tion extraction task.

Relation extraction is the task to predict whether there exists a relation or not
in any pair of entity mentions or nominals, and is modeled as binary classification
problem. In other words, the relation arguments (i.e., the entity mentions) partic-
ipating in a relation are not explicitly provided. In contrast, for a set of known
relations, relation classification (RC) refers to predicting the relation type for a
known pair of entity mentions participating in a relation. In the supervised set-
tings, the relation extraction and classification tasks are combined by making a
multi-class classification problem with an extra noRelation (noREL)' class and
thus, they refer to the classification of an entity pair to a set of known relations,
given the mentions (i.e., relation arguments) of the entity pair. In other words,
relation extraction is treated as a classification task that detects and classifies pre-
defined relationships between entities identified in the text. In this dissertation,
we focus on binary relationships, where two arguments participate in a relation.

Figure 1.17 illustrates an example of relation extraction.

1.5.1 Intra- and Inter-sentential Relation Extraction

Based on the location of the mentions of entity pairs that participate in a relation
mention, RE can be categorized as: (1) Intra-sentential RE (Figure 1.17), when

14a relation need not exist between every pair of named entity mentions in the given text
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the mentions are located within the same sentence (2) Inter-sentential RE, when
the mentions span sentence boundary. For instance, consider two sentences with
entity mentions el and e2:

In 1975, Paul G. Allen co-founded [Microsoft]., with
Bill Gates. Later, [Steve Ballmer].; became the CEO in
2000, who was hired by Bill Gates in 1980.

The two sentences together convey the fact that the entity el is associated
with e2 by the relation type, Work_for(PER-ORG) and they occur in different
sentences. This relationship cannot be inferred from either sentence alone using
intra-sentential RE approaches, leading to poor system recall.

Progress in relation extraction is exciting; however most prior works (Kamb-
hatla, 2004; Bunescu and Mooney, 2005; Zhang et al., 2006b; Mesquita et al.,
2013; Miwa and Sasaki, 2014; Nguyen and Grishman, 2015; Vu et al., 2016a;
Gupta et al., 2016, 2018c¢) in RE are limited to intra-sentential relationships, and
ignore relations in entity pairs spanning sentence boundaries. Previous works on
cross-sentence relation extraction such as Gerber and Chai (2010) and Yoshikawa
et al. (2011) used coreferences to access entities that occur in a different sentence
without modeling inter-sentential relational patterns. Swampillai and Stevenson
(2011) described a SVM-based approach to both intra- and inter-sentential re-
lations. Recently, Quirk and Poon (2017) applied distant supervision to cross-
sentence relation extraction of entities using binary logistic regression (non-neural
network based) classifier and Peng et al. (2017) applied sophisticated graph long
short-term memory networks to cross-sentence n-ary relation extraction. How-
ever, it still remains challenging due to the need for coreference resolution, noisy
text between the entity pairs spanning multiple sentences and lack of labeled cor-
pora.

There are two types of Relation Extraction systems: Closed domain'’ relation
extraction systems consider only a closed set of relationships between two argu-
ments. On the other hand, Open-domain relation extraction systems (Banko et al.,
2007; Etzioni et al., 2005; Soderland et al., 2010; Etzioni et al., 2011; Gamallo
et al., 2012; Zhu et al., 2019) use an arbitrary phrase to specify a relationship. In
this context, we focus on the former.

Our Contribution(s): In our efforts to push relation extraction beyond sen-
tence boundary, we present a dependency-based neural network, which we named
as inter-sentential Dependency-based Neural Network (iDepNN) (Gupta et al.,
2019c) that precisely extracts relationships within and across sentence boundaries
using recurrent and recursive neural networks over dependency parse features, and
demonstrates a better balance in precision and recall with an improved F; score.

5The set of relations of interest has to be named by the human user in advance
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Related Work ‘ E2E ‘ classifier Summary
Intra-sentential Supervised Relation Extraction
Lee et al. (2019) LSTM Entity-aware Attention
Zhang et al. (2018) GCN DPT features + pruning
Zheng et al. (2017b) v LSTM Joint NER and RE as a tagging problem
Zhang et al. (2017) LSTM Entity position-aware attention
Adel and Schiitze (2017) v CNN+CRF Global normalization of entity-relation scores
Gupta et al. (2016) v RNN Table Filling RNN architecture
Miwa and Bansal (2016) v | LSTM+RecvNN | LSTM on sequence and TreeLSTM on DPT
Cai et al. (2016) LSTM+CNN | DPT features
Xiao and Liu (2016) RNN Hierarchical RNN with Attention
Zhou et al. (2016) LSTM Attention Bi-LSTM
Wang et al. (2016a) CNN Multi-Level Attention
Shen and Huang (2016) CNN Attention-Based CNN
Xu et al. (2016) RNN DPT features and data augmentation
Vu et al. (2016a) CNN+RNN Ensemble of RNN and CNN
Xu et al. (2015a) CNN DPT features with negative sampling
Gupta et al. (2015a) RNN Connectionist bidirectional RNN
Xu et al. (2015b) LSTM Shortest Dependency Paths (SDP)
Liu et al. (2015a) CNN+RecvNN | SDP and Augmented Subtrees
Miwa and Sasaki (2014) v SVM Table filling approach, lexical features, SDP
Yu et al. (2014) MLP Linguistic contexts and word embeddings
Zeng et al. (2014) CNN Deep CNN
Socher et al. (2012) RecvNN Matrix-vector representations of parse tree
Rink and Harabagiu (2010) SVM Lexical, syntactic and semantic features
Kate and Mooney (2010) v SVM Lexical+syntactic features, Card-Pyramid Parsing
Roth and Yih (2007) v HMM Lexical+syntactic features, ILP for global inference
Inter—-sentential Supervised Relation Extraction
Singh and Bhatia (2019) v | Transformer+MLP | Modeling via second order relations
Gupta et al. (2019¢) RNN+RecvNN | RNN on SDP and TreeRNN on Subtrees
Peng et al. (2017) GraphLSTM | N-ary RE with DPT and co-reference features
Swampillai et al. (2011) SVM DPT, lexical and syntactic features
Intra-sentential Distantly Supervised Relation Extraction
Vashishth et al. (2018) GCN Additional entity type and relation aliases
Lin et al. (2016) CNN Remove noisy instances via selective attention
Surdeanu et al. (2012) logistic Multi-instance Multi-label Learning
Hoffmann et al. (2011) - Multi-instance learning with overlapping relations
Mintz et al. (2009a) logistic Distant supervision for RE without labeled data

Table 1.7 — Summary of the evolution of (Distantly) Supervised Relation Ex-
traction systems. Abbreviations are: E2E: End-to-End (Joint NER and RE)
systems. DPT: Dependency parse tree, ILP: Integer Linear Programming,
RecvNN: Recursive Neural Network, GCN: Graph Convolution Network
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1.5.2 Supervised Relation Extraction

Supervised relation extraction approaches are popular, where they require care-
fully designed labeled data such that each pair of entity mentions is labeled with
one of the pre-defined relation types. A special relation type noREL is introduced
to label the pairs that do not hold any of the pre-defined relation types. The data
preparation is laborious task in the sense that the human annotations can be time-
consuming and costly.

Essentially, the supervised RE is formulated as a multi-class classification
problem where it requires a large human annotated training corpus. Approaches
to supervised RE are broadly classified into two types: (1) Feature-based (Kamb-
hatla, 2004; Zhou et al., 2005; Jiang and Zhai, 2007) methods that rely on a set
of relevant features'® (lexical, syntactic and semantic) designed by domain ex-
perts and/or using lexical resources like WordNet (Fellbaum, 1998) and then, a
classifier is trained using these features, and (2) Kernel-based (Lodhi et al., 2002;
Bunescu and Mooney, 2005; Zhang et al., 2006a) methods that compute similari-
ties between representations (sequences, syntactic parse trees etc.) of two relation
instances using SVM (Support Vector Machine) (Byun and Lee, 2002) as clas-
sifier. Unlike Feature-based methods, the kernel based methods avoid explicit
feature engineering.

See Pawar et al. (2017) for a comprehensive survey on relation extraction,
outlining different feature-based and kernel-based approaches.

Recently in supervised settings, deep learning based methods such as CNN
(Nguyen and Grishman, 2015; dos Santos et al., 2015; Vu et al., 2016a; Le et al.,
2018), RNN (Liu et al., 2015b; Zhang and Wang, 2015; Gupta et al., 2015a, 2016;
Lin et al., 2016; Miwa and Bansal, 2016; Peng et al., 2017; Gupta and Schiitze,
2018; Guptaet al., 2019c¢), etc. have shown promising results in relation extraction
task, in comparison to the traditional RE models that rely on hand-crafted features.

Supervised techniques for machine learning require large amount of training
data for learning. Using manually annotated datasets for relation extraction is
expensive in terms of time and effort.

Table 1.7 summarizes the evolution of supervised relation extraction systems.

1.5.3 Distantly Supervised Relation Extraction

In order to deal with the unavailability of large labeled data for training supervised
methods, Mintz et al. (2009a) proposed a distant supervision (DS) method that
produces a large amount of training data by aligning knowledge base facts with
unstructured texts; therefore it does not require labeled data. The term ‘distant’ is
used in the sense that no explicit labeled data is provided, however a knowledge

16see Kambhatla (2004) for various feature types

77



1. Introduction

base such as Wikipedia or Freebase is used to automatically tag training exam-
ples from the text corpora. Distant Supervision combines advantages of both the
paradigms: supervised and unsupervised, where such large annotated training ex-
amples are used to train supervised systems such as CNNs, LSTMs, etc.

Specifically, the distant supervision uses a knowledge base(s) (KB) (e.g. Free-
base (Bollacker et al., 2008)) to find pair of entities el and e2 for which a relation
r holds. It assumes that if the relation 7 exists between the entity pair in the KB,
then every document containing the mention of this entity pair would express that
relation . Unfortunately, the assumption leads to large proportion of false pos-
itive i.e., noisy training instances because every document containing the entity
pair mention may not express the relation r between the pair. Therefore, to reduce
the noise in the training instances generated by DS approach, Riedel et al. (2010)
proposed to relax the DS assumption by modeling the problem as a Multi-instance
learning (a form of supervised learning where a label is given to a bag of instances,
instead of a single instance). Further, Hoffmann et al. (2011) extended multi-
instance learning to deal with overlapping relations and Surdeanu et al. (2012)
proposed MIML-RE (Multi-Instance Multi-Labeling Relation Extraction) system
that models latent relation labels for multiple instances (occurrences) of an entity
pair.

Moreover, Zeng et al. (2015) modeled MIML-RE paradigm in a neural net-
work (i.e., Piecewise CNN) architecture, however only using the one most-relevant
sentence from the bag. Lin et al. (2016) used an attention mechanism over all the
instances in the bag for the multi-instance problem, that is further extended by
Jiang et al. (2016) by applying a cross-document max-pooling layer in order to
address information loss as in the previous models.

Table 1.7 summarizes some of the major distantly supervised RE systems.

1.5.4 Weakly Supervised Relation Extraction: Bootstrapping

While the labeled data is lacking and annotation procedure is expensive, the dis-
tant supervised RE approaches exploit existing knowledge bases. However, they
introduce noise in training data and can not be applied when the relation of interest
is not covered explicitly by the KB. In such a scenario, bootstrapping techniques
(Riloff, 1996; Brin, 1998; Agichtein and Gravano, 2000; Ravichandran and Hovy,
2002; Bunescu and Mooney, 2005; Batista et al., 2015) are desirable that require a
very small degree of supervision in form of seed instances or patterns for starting
the self-learning process to extract more instances from a large unlabeled corpus.
In an iterative fashion, the initial seeds extract a new set of patterns which extract
more instances that further extract more patterns and so on. Due to lack of labeled
data, the bootstrapping approaches often suffer from low precision and semantic
drift (if a false positive instance is added during an iteration, then all following
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Related Work Summary

closed-domain RE,
use word embeddings in pattern/phrase representation,

JBM or BREX seed type: tuples and templates,

(Gupta et al., 2018c) joint scheme of bootstrapping with two types of seed instances,
control semantic drift with improve confidence measure

BREDS closed-domain RE, word embeddings in phrase representation,

(Batista et al., 2015) seed type: tuples

TextRunner open-domain RE, relies on a dependency parser,

(Banko et al., 2007) self-learning and self-labeling training data

KnowItAll closed-domain RE,

(Etzioni et al., 2005) use generic patterns to learn domain-specific extraction rules

closed domain RE, uses NER, flexible pattern matching,
DIPRE

(Brin, 1998) pattern and tuple evaluation via confidence scores,

seed type: tuples

Snowball closed-domain RE, string matching over regular expression,

(Agichtein and Gravano, 2000) | hard pattern matching, seed type: tuples

Table 1.8 — A summary of the evolution of Semi-supervised Bootstrapping
Relation Extraction systems.

iterations are contaminated).

Specifically, a bootstrapping relation extractor is fed with a few seed instances
(e.g., <Google, YouTube>) of the relation type of interest (e.g., ‘acquisition’) to
extract pattern mentions that express the relation in the large unlabeled corpora.
Given the patterns, a set of new entity pairs having the same relation type is ex-
tracted (e.g., <Google, DeepMind>, <Microsoft, LinkedIn>, <Siemens, Mentor
Graphics>, <Facebook, WhatsApp>, etc.).

Related Studies in Bootstrapping RE: In initial efforts, DIPRE (Dual Iter-
ative Pattern Relation Expansion) (Brin, 1998) was the first bootstrapping based
relation extractor that used string-based regular expressions in order to recog-
nize relations, while the SNOWBALL system (Agichtein and Gravano, 2000)
learned similar regular expression patterns over words and named entity tags.
Unlike DIPRE, the SNOWBALL has a flexible matching system. For instance,
two patterns in DIPRE are different if they only differ by a single punctuation.
SNOWBALL further extended DIPRE by introducing patterns and tuples evalua-
tion by computing their confidence scores. Recently, Batista et al. (2015) advances
SNOWBALL system by introducing word embeddings (Mikolov et al., 2013c) to
represent phrases or patterns in order to improve similarity computations via the
distributed representations (Mikolov et al., 2013b; Le and Mikolov, 2014).

Limitations of the Related Studies: The state-of-the-art relation extractors
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(Brin, 1998; Agichtein and Gravano, 2000; Batista et al., 2015) bootstrap with
only seed entity pairs and suffer due to a surplus of unknown extractions (relation
instances or entity pairs). While computing confidence of patterns and tuples,
the traditional bootstrapping algorithm erroneously penalizes them due to the lack
of labeled data. This in turn leads to low confidence in the system output and
hence negatively affects recall. The prior systems do not focus on improving the
pattern scores. Additionally, SNOWBALL and BREDS used a weighting scheme
to incorporate the importance of contexts around entities and compute a similarity
score that introduces additional parameters and does not generalize well.

Our Contribution(s): To alleviate the issue, we introduce BREX (or JBM:
Joint Bootstrapping Machine) (Gupta et al., 2018c), a new bootstrapping method
that protects against such contamination by highly effective confidence assess-
ments. This is achieved by using entity and template seeds jointly (as opposed to
just one as in previous work) by (1) expanding entities and templates in parallel
and in a mutually constraining fashion in each iteration, and (2) introducing higher
quality similarity measures for templates.

Table 1.8 summarizes some of the major semi-supervised bootstrapping rela-
tion extraction systems.

1.5.5 Unsupervised Relation Extraction

Generally, purely unsupervised relation extraction systems extract strings of words
between given named entities in large amounts of text, and cluster and simplify
these word strings to produce relation-strings (Feldman and Rosenfeld, 2006;
Banko et al., 2007; Sun et al., 2011). Such systems extract a large number of
relations, where it is difficult to map resulting relations to a particular relation of
interest in the knowledge base.

Major prior works in unsupervised relation extractors are based on cluster-
ing approaches such as Hasegawa et al. (2004) and Poon and Domingos (2009)
that only require a NER tagger to identify named entities in the text, cluster the
contexts of the co-occurring named entity pairs and automatically label each of
the clusters, representing one relation type. Feldman and Rosenfeld (2006) pro-
posed a non-clustering based approach for unsupervised relation extraction that
only requires definitions of the relation types of interest in form of a small set of
keywords, indicative of that relation type and entity types of its arguments. Based
on the relation specific keywords, it extracts relation facts from the web.

1.5.6 Joint Entity and Relation Extraction

The supervised relation extraction systems (discussed in sections 1.5.2 and 1.5.3)
assume that entity boundary and its type is provided beforehand. However, the
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approaches can not be used when such a prior knowledge about entity mentions is
not supplied. Therefore, most approaches split it into two independent tasks and
models them sequentially i.e., ‘pipeline’ of named entity recognition (NER) and
relation extraction (RE). Such techniques are vulnerable to propagation of errors
from NER to RE. Additionally, the two tasks are mutually dependent in the sense
that given the entity mentions, the search space of relation can be reduced and
vice-versa. Also, given a relation for the participating arguments, it helps to better
disambiguate the entity types of the arguments.

To avoid error propagation in sequential modeling and exploit the dependence
of entity mentions and relations, there is a line of research that jointly models/ex-
tracts entities and relations. They are also known as end-fo-end models.

Related Studies in End-to-End RE: Most of the joint entity and relation
models'” such as Li and Ji (2014), Miwa and Sasaki (2014), Roth and Yih (2007),
Kate and Mooney (2010), Yu and Lam (2010) and Singh et al. (2013) are feature-
based structured learning and do not employ neural networks. Specifically, Roth
and Yih (2004) applied global normalization of entity types and relations using
constraints in integer linear programming based approach. They first learn inde-
pendent local classifiers for entity and relation extractions. During inference for
a given sentence, a global decision is made to satisfy the domain-specific or task-
specific constraints. Roth and Yih (2007) made the first attempt using graphical
models to jointly learn entities and relations. Further, Kate and Mooney (2010)
proposed an interesting approach via card-pyramid parsing and a graph encod-
ing the mutual dependencies among the entities and relations. Miwa and Sasaki
(2014) used a table structure to represent the mutual dependence between entity
and relations in a sentence.

With the emergence of neural networks and their success in relation extraction,
recent works have employed neural network based approaches to jointly model
entities and relations. To this end, Miwa and Bansal (2016) proposed a neural net-
work based approach for the end-to-end relation extraction, where a bidirectional
tree-structured LSTM captures relations while a bidirectional sequential LSTM
extracts entities. They stacked the treeLSTM over sequence LSTM, resulting in
a unified network that shares parameters during the joint modeling of entities and
relations. Zheng et al. (2017a) proposed a hybrid neural network consisting of
a bidirectional encoder-decoder LSTM for entity extraction and a CNN module
for relation classification. Moreover, Bekoulis et al. (2018) framed the problem
as a multi-head'® selection problem by using a sigmoid loss to obtain multiple
relations and a CRF loss for the NER component. In contrast to joint training and

Tn most of the approaches for joint extraction of entities and relations, it is assumed that the
boundaries of the entity mentions are known
8any particular entity may be involved in multiple relations with other entities
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multi-task learning, Adel and Schiitze (2017) proposed to jointly model entities
and relations by a joint classification layer that is globally normalized on the out-
puts of the two tasks using a linear-chain conditional random field (CRF) (Lafferty
et al., 2001) on the top of continuous representations obtained by a CNN model.

All the related works discussed above are based on intra-sentential relation-
ships. However, a recent work by Singh and Bhatia (2019) introduced joint entity
and relation extraction approach that spans sentence boundaries by modeling sec-
ond order relationships.

Our Contribution(s): In our efforts to jointly model entities and relations
within a sentence boundary, we present a novel neural network architecture, which
we named as Table-fiiling Multi-task RNN (TF-MTRNN) (Gupta et al., 2016).
Specifically for a given sentence, the proposed model fills an entity-relation ta-
ble structure (Miwa and Sasaki, 2014) via a recurrent neural network and conse-
quently, performs entity and relation extractions jointly in a unified network by
sharing parameters in a multi-task learning (Miwa and Sasaki, 2014) setup.

Table 1.7 summarizes the evolution of major end-to-end (joint entity and rela-
tion) relation extraction systems.

1.6 BlackBoxNLP: Interpreting and Analyzing Neu-
ral Networks

Recently, neural networks have shown impressive success in the field of natural
language processing. However, they come at the cost of human understanding in
contrast to feature-rich systems. The feature-based systems are relatively trans-
parent since one can analyze the importance of certain features, such as morpho-
logical properties, lexical classes, syntactic categories, semantic relations, etc. in
order to achieve a better understanding of the model.

The goal of interpretability is to summarize the reasons for neural network
behavior, gain the trust of users and produce insights about the causes of their
decisions in a way that is understandable to humans.

1.6.1 Why Interpret and Analyze Neural NLP models?

In the following section, we discuss different aspects of why we need explainable
models:

1. To explain and verify that the model behaves as expected in order to avoid
incorrect decision that can be costly, for instance in medical domain where
precision is the desired objective
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2. To gain new insights about the model behavior that would support better
interactions with the systems and thus, improve them with human involve-
ment

3. To identify potential flaws or biases in the training data and ensure algorith-
mic fairness

4. To comply with proposed legislation (e.g., “European General Data Protec-
tion Regulation™), assign accountability and build trust, fairness, safety and
reliability (Doshi-Velez and Kim, 2017; Lipton, 2018)

5. To understand how linguistic concepts are captured in the neural networks,
e.g., what happens when they take in word embeddings as input and gener-
ate some output

1.6.2 How to Interpret and Analyze Neural NLP models?

Techniques' in explaining and interpreting neural models mostly focus on either
(1) Interpretable models, i.e., “What information does the network contain in its
internal structure?”, or (2) Explaining decisions, i.e., “Why does a particular input
lead to a particular output?”

Approaches in Interpretable models attempt to explain the internal structures
of the neural network system. For instance, Erhan et al. (2009), Simonyan et al.
(2013) and Nguyen et al. (2016) have focused on model aspects that investigate
neural network components and thus, studied the behavior of neurons/activation
in order to understand neural networks’ behavior. They used activation maximiza-
tion approach that finds patterns (or inputs) maximizing the activity of given neu-
rons. Belinkov and Glass (2018) summarized a long line of research that attempts
to analyze different kinds of linguistic information such as sentence length, word
position, word presence, or simple word order, morphological, syntactic, semantic
information, etc.

Another line of research in Interpretable models focuses on data generation
aspects that attempts to understand neural network models by generating adver-
sarial examples (Goodfellow et al., 2014). In NLP domain, , the adversarial exam-
ples are often inspired by text edits (Sakaguchi et al., 2017; Heigold et al., 2018;
Belinkov and Bisk, 2017; Ebrahimi et al., 2018) in form of typos, misspellings,
similar word substitutions, etc. Related approaches (Papernot et al., 2017; Naro-
dytska and Kasiviswanathan, 2017; Alzantot et al., 2018) interpret neural models
via understanding their failures.

Yinspired by iphome .hhi .de/samek/pdf/DTUSummerSchool2017_1.pdf
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Alternative approaches in explaining decisions focus on understanding the
input-output association to explain which input contributes to classification and
which input leads to increases or decreases in prediction score when changed, i.e.,
sensitivity analysis. Bach et al. (2015) proposed a methodology to understand
classification decisions by pixel-wise decomposition for multi-layered neural net-
works to understand the contribution of a single pixel of an image to the prediction
made by the classifier. They also visualized the contributions of single pixels to
predictions using heat maps. However, this work was focused on vision domain.
Recently, (Porner et al., 2018) introduced techniques to quantitatively evaluate
methods, such as (Bach et al., 2015; Ribeiro et al., 2016; Shrikumar et al., 2017)
explaining the decisions of neural models.

Visualization is a valuable tool for analyzing neural networks in NLP. Recent
studies (Ming et al., 2017; Gupta and Schiitze, 2018) in sensitivity analysis for
NLP domain have investigated visualization of RNN and its variants. Li et al.
(2016) employed heat maps to study sensitivity and meaning composition in re-
current networks for given words in a sentence. Tang et al. (2017) visualized the
memory vectors to understand the behavior of an LSTM and gated recurrent unit
(GRU) in speech recognition task. Ming et al. (2017) proposed a tool, RNNVis to
visualize hidden states based on an RNN’s expected response to inputs.

Since, we have mostly employed RNN-based models in our works such as in
entity extraction (Gupta et al., 2016), relation extraction (Gupta et al., 2015a; Vu
etal., 2016a; Guptaet al., 2016, 2019c¢), textual similarity (Gupta et al., 2018a) and
dynamic topic modeling (Gupta et al., 2018b), therefore we attempt to interpret
and analyze RNN models, especially for relation classification task.

Our Contribution(s): We present a technique, which we named as Layer-
wlise-Semantic-Accumulation (LISA) (Gupta and Schiitze, 2018) that analyzes the
cumulative nature of an RNN for explaining decisions and detecting the most
likely (i.e., saliency) patterns that the network relies on while decision making.
We further demonstrate (1) how an RNN accumulates or builds semantics during
its sequential processing for a given text example and expected response and (2)
how the saliency patterns look like for each category in the data according to the
network in decision making. We also analyze the sensitiveness of RNNs about
different inputs to check the increase or decrease in prediction scores and extract
the saliency patterns, learned by the network. In doing so, we employ relation
classification datasets.

1.7 Summary

In this introductory chapter, we have first introduced some of the supervised neu-
ral networks, including Recurrent (RNNs), Recursive (RecvNNs) and Siamese
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(SNNs) Neural Networks. Then, we have described the unsupervised paradigm of
learning representations via neural density estimators, especially Restricted Boltz-
mann Machine (RBM), Neural Autoregressive Distributional Estimation (NADE),
Replicated Softmax (RSM) and Neural Autoregressive Topic Model (DocNADE).
In context of this dissertation, this class of stochastic graphical models forms the
basis for neural topic learning in text documents. Following the two paradigms
in neural network learning, the next section has highlighted the foundation of dis-
tributed representation learning at word and document levels. Moreover, it has
underlined a need for joint leaning in a composite model, consisting of a topic
and a neural language model. Then, we have provided an outline for the task
of semantic relation extraction (RE) within (intra-) and across (inter-) sentence
boundary, where we have also featured major related works in the realms of re-
lation extraction as well as joint entity and relation extraction. Finally, we have
reviewed recent questions in explainability of neural network models.

While we are discussing the basic fundamentals in this chapter, we have briefly
highlighted our contribution(s) in its corresponding sections.
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Abstract

This paper proposes a novel context-aware joint entity and word-level relation extraction ap-
proach through semantic composition of words, introducing a Table Filling Multi-Task Recurrent
Neural Network (TF-MTRNN) model that reduces the entity recognition and relation classifica-
tion tasks to a table-filling problem and models their interdependencies. The proposed neural
network architecture is capable of modeling multiple relation instances without knowing the
corresponding relation arguments in a sentence. The experimental results show that a simple
approach of piggybacking candidate entities to model the label dependencies from relations to
entities improves performance.

We present state-of-the-art results with improvements of 2.0% and 2.7% for entity recognition
and relation classification, respectively on CoNLLO04 dataset.

1 Introduction

Relation classification is defined as the task of predicting the semantic relation between the annotated
pairs of nominals (also known as relation arguments). These annotations, for example named entity
pairs participating in a relation are often difficult to obtain. Traditional methods are often based on a
pipeline of two separate subtasks: Entity Recognition (ER') and Relation Classification (RC), to first
detect the named entities and then performing relation classification on the detected entity mentions,
therefore ignoring the underlying interdependencies and propagating errors from the entity recognition
to relation classification. The two subtasks together are known as End-to-End relation extraction.

Relation classification is treated as a sentence-level multi-class classification problem, which often
assume a single relation instance in the sentence. It is often assumed that entity recognition affects the
relation classification, but it is not affected by relation classification. Here, we reason with experimental
evidences that the latter is not true. For example, in Figure 1, relation Work_For exists between PER and
ORG entities, ORGBased_in between ORG and LOC, while Located_In between LOC and LOC entities.
Inversely, for a given word with associated relation(s), the candidate entity types can be detected. For
example, in Figure 2, for a given relation, say Located_in, the candidate entity pair is (LOC, LOC).
Therefore, the two tasks are interdependent and optimising a single network for ER and RC to model the
interdependencies in the candidate entity pairs and corresponding relations is achieved via the proposed
joint modeling of subtasks and a simple piggybacking approach.

Joint learning approaches (Roth and Yih, 2004; Kate and Mooney, 2010) built joint models upon com-
plex multiple individual models for the subtasks. (Miwa and Sasaki, 2014) proposed a joint entity and
relation extraction approach using a history-based structured learning with a table representation; how-
ever, they explicitly incorporate entity-relation label interdependencies, use complex features and search
heuristics to fill table. In addition, their state-of-the-art method is structured prediction and not based
on neural network frameworks. However, deep learning methods such as recurrent and convolutional
neural networks (Zeng et al., 2014; Zhang and Wang, 2015; Nguyen and Grishman, 2015) treat relation
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://

creativecommons.org/licenses/by/4.0/
1Entity Recognition (ER) = Entity Extraction (EE); Relation Classification (RC) = Relation Extraction (RE)
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Richard Kahn,officer for the American Diabetes Association in Alexandria, Va. - _In Based_In
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Figure 1: An entity and relation example (CoNLLO04 data). PER:
Person, ORG: Organization, LOC: Location. Connections are: PER

and ORG by Work_For; ORG and LOC by OrgBased_In; LOC and Figure 2: Entity-Relation dependencies
LOC by Located_In relations. (CoNLLO04 dataset).
Richard Kahn |, T officer [ for [ the | American | Diabetes | Association [ in [ Alexandria [ , ] Va I
Richard B-PER, |
Kahn L L-PER, L
B L L 0, L
officer L 1 1 0,1
for I T T I 0,1
the il 1L 1L N iN 0, L
Ameriacan L 1 1 L L iR B-ORG, L
Diabetes 1L L L N iN L N I-ORG, L
Association L Work_For T I 1T 1T 1T 1T L-ORG, L
in il i i N il il il il il 0,1
Alexandria iN L L N iN N iN il ORGBased_In L U-LOC, L
B il 1T T il il il il il il il il [N
Va L €T T i L il il il ORGBased_In il Located_In il U-LOC, 1 ]
. 1L 1L 1 1 1L il il L L L L 1 1 ‘ 0, L ‘

Table 1: Entity-Relation Table for the example in Figure 1. Demonstrates the word-level relation classification via a Table-
Filling problem. The symbol () indicates no_relation word pair. Relations are defined on the words, instead of entities. The
diagonal entries have the entity types and L relations to the words itself, while the off-diagonal entries are the relation types.

classification as a sentence-level multi-class classification, and rely on the relation arguments provided
in the sentence. Therefore, they are incapable in handling multiple relation instances in a sentence and
can not detect corresponding entity mention pairs participating in the relation detected.

We tackle the limitations of joint and deep learning methods to detect entities and relations. The
contributions of this paper are as follows:

1. We propose a novel Table Filling Multi-task Recurrent Neural Network to jointly model entity
recognition and relation classification tasks via a unified multi-task recurrent neural network. We
detect both entity mention pairs and the corresponding relations in a single framework with an
entity-relation table representation. It alleviates the need of search heuristics and explicit entity and
relation label dependencies in joint entity and relation learning. As far as we know, it is the first
attempt to jointly model the interdependencies in entity and relation extraction tasks via multi-task
recurrent neural networks.

We present a word-level instead sentence-level relation learning via word-pair compositions utilis-
ing their contexts via Context-aware RNN framework. Our approach has significant advantage over
state-of-the-art methods such as CNN and RNN for relation classification, since we do not need the
marked nominals and can model multiple relation instances in a sentence.

2. Having named-entity labels is very informative for finding the relation type between them, and vice
versa having the relation type between words eases problem of named-entity tagging. Therefore, a
simple approach to piggyback candidate named entities for words (derived from the associated rela-
tion type(s) for each word) to model label dependencies improves the performance of our system. In
addition, the sequential learning approach in the proposed network learns entity and relation label
dependencies via sharing model parameters and representations, instead modeling them explicitly.

3. Our approach outperforms the state-of-the-art method by 2.0% and 2.7% for entity recognition and
relation classification, respectively on CoNLLO04 dataset.
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Figure 3: The Table Filling Multi-Task Recurrent Neural Network (TF-MTRNN) for joint entity and word-level relation
extraction. Overlapping circle: Entity labels; Single circle: Relation label. In the above illustration, the word Association att =
i (where; t = 0, ..., 4, ..., N) from forward network is combined with each of the remaining words in the sequence (Figure 1),
obtained from backward network at each time step, j = ¢, ..., N. Similarly, perform all possible word pair compositions to
obtain Table 1. ORGBased_In relation in each word-pairs: (Association, Alexandria) and (Association, Va).

2 Methodology

2.1 Entity-Relation Table

As the backbone of our model we adopt the table structure proposed by Miwa and Sasaki (2014), shown
in Table 1. This structure allows an elegant formalization of joint entity and relation extraction because
both entity and relation labels are defined as instances of binary relations between words w; and w; in
the sentence. An entity label is such a binary relationship for ¢ = 7, i.e., a cell on the diagonal. A relation
label is such a binary relationship for ¢ # j, i.e., an off-diagonal cell. To eliminate redundancy, we
stipulate that the correct label for the pair (w;, w;) is relation label 7 if and only if i # j, w; is the last
word of a named entity e;, wj is the last word of a named entity e; and 7(e;, ;) is true.> We introduce
the special symbol L for “no_relation”, i.e., no relation holds between two words.

Apart from the fact that it provides a common framework for entity and relation labels, another ad-
vantage of the table structure is that modeling multiple relations per sentence comes for free. It simply
corresponds to several (more than one) off-diagonal cells being labeled with the corresponding relations.

2.2 The Table Filling Multi-Task RNN Model

Formally, our task for a sentence of length n is to label n(n+1)/2 cells. The challenge is that the labeling
decisions are highly interdependent. We take a deep learning approach since deep learning models have
recently had success in modeling complex dependencies in NLP. More specifically, we apply recurrent
neural networks (RNNs) (Elman, 1990; Jordan, 1986; Werbos, 1990) due to their success on complex
NLP tasks like machine translation and reasoning.

To apply RNNs, we order the cells of the table into a sequence as indicated in Figure 4 and label — or
“fill” — the cells one by one in the order of the sequence. We call this approach rable filling.

More specifically, we use a bidirectional architecture (Vu et al., 2016b), a forward RNN and a back-
ward RNN, to fill each cell (,5) as shown in Figure 3. The forward RNN provides a representation
of the history wy,...,w;. The backward network provides a representation of the following context
Wj, ..., wy|. The figure shows how the named entity tag for “Association” is computed. The forward
RNN is shown as the sequence at the bottom. hy, is the representation of the history and f;; is the rep-
resentation of the following context. Both are fed into /; ; which then predicts the label L-ORG. In this
case, ¢ = j. The prediction of a relation label is similar, except that in that case 7 # j.

Relation types (excluding 1) exist only in the word pairs with entity types: (L-*, L-*), (L-*, U-*), (U-*, L-*) or (U-*,
U-#), where * indicates any entity type encoded in BILOU (Begin, Inside, Last, Outside, Unit) scheme.
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represent both entity and relation label assignments, while filled

circles in gray represent only relation label assignments, anal- Figure 5: The context-aware TF-MTRNN model.
ogous to entries in Table 1. (Z, 7) is the cell index in the table, (...) indicates the remaining word pair composi-
where ¢ and j are the word indices in the sequence. tions (Table 1).

Our proposed RNN based framework jointly models the entity and relation extraction tasks to learn
the correlations between them, by sharing the model parameters and representations. As illustrated in
Figure 3, we use two separate output nodes and weight matrices each for entity and relation classifica-
tion. An entity label is assigned to a word, while a relation is assigned to a word pair; therefore, EE is
performed only when the same words from forward and backward networks are composed.

Dynamics of the proposed TE-MTRNN architecture (Figure 3) are given below:

SRijein = I(Whrhi ;); 8B ;= = 9WhEghi;); hij = hy + I,
hfi = f(Ufwi + thfi_l); hb]‘ = f(Ubwj + thb,y‘+1)

where ¢ and j are the time-steps of forward and backward networks, respectively. ith word in the se-
quence is combined with every jth word, where j = 7, ..., N (i.e. combined with itself and the following
words in the sequence). N is the total number of words in the sequence. For a given sequence, sg, ; and
sg, ; represent the output scores of relation and entity recognition for ith and jth word from forward and
backward networks, respectively. Observe that EE is performed on the combined hidden representation
h;,j, computed from the composition of representations of the same word from forward and backward
networks, therefore ¢ = j and resembling the diagonal entries for entities in Table 1. hy, and hy, are
hidden representations of forward and backward networks, respectively. Wy r and W, are weights
between hidden layers (h; ;) and the output units of relation and entity, respectively. f and g are activa-
tion and loss functions. Applying argmax to sp and sg gives corresponding table entries for
relations and entities, in Table 1 and Figure 4.

ey

i,jei:N i,j=1i

2.3 Context-aware TF-MTRNN model

In Figure 3, we observe that when hidden representations for the words Association and Va are combined,
the middle context i.e. all words in the sequence occurring between the word pair in composition are
missed. Therefore, we introduce a third direction in the network (Figure 5) with missing context (i.e. in
Alexandria ,) to accumulate the full context in combined hidden vectors (h; ;).
Dynamics of the context-aware TF-MTRNN is similar to Eq. 1, except h,, in Figure 5:
hbj = f(Ubwj + thbj+1 + Ufh’mt:T) )
hb = f(Ubwj+1 + thbj+2)§ hmt = f(Uf’U)t + thmtq)

where hy; is the hidden representation in backward network obtained from the combination of jth word
and contexts from backward network and from missing direction, t = (i + 1,...,7 = j — 1), where i
and j are the time-steps for forward and backward networks, respectively. h,,,_, is initialized with zeros
similar to forward and backward networks. There is no missing context when 7 = 0 and 7 = 0 i.e. wy is
NULL and therefore, we introduce an artificial word PADDING and use its embedding to initialise wy.

j+1
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2.4 Piggybacking for Entity-Relation Label Dependencies

Having named-entity labels is very informative for finding the relation type between them, and vice versa
having the relation type between words eases problem of named-entity tagging. We model these label
interdependencies during the end-to-end relation extraction in Figure 6, where the input vector at time
step, t is given by -

inputy = {CrE, EEr, Wems } )

where C'rg is the count vector to model relation to entity dependencies, Egr is the one-hot vector for
predicted entities to model entity to relation dependencies and We,,; is the word embedding vector.
Therefore, the input vector at each time step, ¢ is the concatenation of these three vectors.

To model entity to relation dependency, the TF-MTRNN model, M for NER (Figure 6) first computes
entity types, which are represented by diagonal entries of entity-relation table. Each predicted entity type
FErr (filled blue-color boxes) is concatenated with its corresponding word embedding vector We,,,;, and
then input to the same model, M for relation classification.

To model relation to entity dependency, we derive a list of possible candidate entity tags for each word
participating in a relation(s), except for | relation type. Each word associated with a relation type(s) is
determined from relation classification (RC) step (Figure 6). Figure 7 illustrates the entity type count
vector for each word of the given sentence (Figure 1). For example, the word Alexandria participates in
the relation types: ORGBased_In and Located_In. Possible entity types are {U-ORG, L-ORG, U-LOC,
L-LOC} for ORGBased_In, while {U-LOC, L-LOC} for Located_In. We then compute a count vector
CrEg from these possible entity types. Therefore, U-LOC and L-LOC each with occurrence 2, while
U-ORG and L-ORG each with occurrence 1 (Figure 7). The candidate entity types as count vector (filled-
yellow color box) for each word is piggybacked to model, M for entity learning by concatenating it with
corresponding word embedding vector W,,5. This simple approach of piggybacking the count vectors
of candidate entities enables learning label dependencies from relation to entity in order to improve entity
extraction. In addition, multi-tasking by sharing parameters and adapting shared embeddings within a
unified network enables learning label interdependencies.
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Figure 9: Pipeline Approach in End-to-End Relation Extraction.

2.5 Ranking Bi-directional Recurrent Neural Network (R-biRNN)

Ranking loss has been used in neural architectures (dos Santos et al., 2015) and (Vu et al., 2016b) to
handle artificial classes. In our experiments, for a given sentence x with class label 4T, the competitive
class ¢~ is chosen the one with the highest score among all competitive classes during SGD step. The
basic principle is to learn to maximize the distance between the true label y and the best competitive
label ¢~ for a given data point z. We use the ranking loss to handle the two artificial classes i.e. ‘O’ and
L in entity and relation types, respectively. The ranking objective function is defined as-

L =log(1 + exp(y(m™ — sg(x),+))) + log(1 + exp(y(m™ + s9(2).-)));

- _ “4)
Cc = ar max Sglx
& ceCietyt 0( )C

where sg(z),+ and sy (). are the scores for positive y* and the most competitive ¢~ classes. -y controls
the penalization of the prediction errors while hyperparameters m™ and m ™~ are the margins for the true
and competitive classes. We set v = 2, m™* = 2.5,m~ = 0.5, following (Vu et al., 2016b).

The unified architecture (Figure 3) can be viewed as being comprised of two individual models, each
for NER and RE (Figure 6). We illustrate that the R-biRNN (Figure 12 in Appendix A) is integrated in
TF-MTRNN (Figure 3) and therefore, the unified model leverages R-biRNN (Vu et al., 2016b) effective-
ness for entity extraction, where the full context information is availed from the forward and backward
network at each input word vector along with the ranking loss at each output node. Figure 12 corresponds
to the diagonal entries for named entities in Table 1 and enables entity-entity label dependencies (Miwa
and Sasaki, 2014) via sequential learning.

3 Model Training

3.1 End-to-End Relation Extraction

In CoNLLO04, more than 99% of the whole word pairs lie in the no_relation class. Therefore, named-
entity candidates are required to choose the candidate word pairs in relation learning. In Figure 6 and
Figure 9, we demonstrate the joint and pipeline approach for end-to-end relation extraction.

In Figure 6, the candidate relation pairs are chosen by filtering out the non-entities pairs. Therefore,
in entity-relation table, we insert ‘no_relation’ label for the non-entities pairs and RC is not performed.
Note that a word pair is chosen for RC in which at least one word is an entity. It allows the model M
to correct itself at NER by piggybacking candidate named entities (Figure 7). In addition, it reduces a
significant number of non-relation word pairs and does not create a bias towards the no_relation class.
However, in Figure 9, the two independent models, M| and M; are trained for NER and RC, respectively.
In pipeline approach, the only relation candidates are word pairs with (U-*, U-*),(L-*, L-*) or (U-*, L-*)
entity types. Therefore, only w; and ws from word sequence are composed in M for RC subtask.
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Figure 11: T-SNE view of the semantic entity-relation
Figure 10: CoNLLO04 dataset: Performance on test set for NER  space for the combined hidden representations of each word
and RE; RE in pipeline always used predicted NEs. POS: part- pair composition. Relations: (0:LIVEIN, 1:ORGBASEDIN,
of-speech; CF: capital features; CTX: context awareness (Fig- 2:LOCATEDIN, 3:WORKFOR, 4:KILL, 5:NORELATION).
ure 5); p’backing: piggybacking predicted and candidate enti- Entity-pair and relation denoted by EI1-RELATION-E2
ties in RE and NER, respectively; ensemble: majority vote. and/or count in [0-5]. 5: misclassified entity-pairs.

3.2 Word Representation and Features

Each word is represented by concatenation of pre-trained 50-dimensional word embeddings® (Turian et
al., 2010) with N-gram, part-of-speech (POS), capital feature (CF: all-capitalized; initial-capitalized)
and piggybacked entity vectors (Section 2.4). The word embeddings are shared across entity
and relation extraction tasks and are adapted by updating them during training. We use 7-gram
(W—3Wi—owy_1wWwy+1We+2wy 4+ 3) obtained by concatenating corresponding word embeddings.

3.3 State Machine driven Multi-tasking

Multi-task training is performed via switching across multiple tasks in a block of training steps. However,
we perform switches between ER and RC subtasks based on the performance of each task on the common
validation set and update learning rate only when task is switched from RC to ER (Figure 8). ER is the
task to start for multi-tasking and £ R/RC' is switched in the following training step, when their ValidF'1
score is not better than BestV alidF'1 score of previous steps on the validation set.

4 Evaluation and Analysis

4.1 Dataset and Experimental Setup

We use CONLLO04* corpus of Roth and Yih (2004). Entity and relation types are shown in Figure 2. There
are 1441 sentences with at least one relation. We randomly split these into training (1153 sentences) and
test (288 sentences), similar to Miwa and Sasaki (2014). We release this train-test split at https://
github.com/pgcool/TF-MTRNN/tree/master/data/CoNLL04. We introduce the pseudo-
label | “no_relation” for word pairs with no relation.

To tune hyperparameters, we split (80-20%) the training set (1153 sentences) into train and validation
(dev) sets. All final models are trained on train+dev. Our evaluation measure is F; on entities and
relations. An entity is marked correct if NE boundaries and entity type’ are correct. A relation for a
word pair is marked correct if the NE boundaries and relation type are correct. However, in separate
approach, a relation for a word pair is marked correct if the relation type is correct.

3with a special token PADDING. Also, used when there is no missing context.
4con1104.c0rp at cogcomp.cs.illinois.edu/page/resource_view/43
3For multi-word entity mention, an entity is marked correct if atleast one token is tagged correctly.
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Roth&Yih Kate&Mooney | Miwa&Sasaki TF-MTRNN
rp R I | P R FL | P R F | P R F

Person || .891 .895 .890 | .921 942 .932 | .931 .948 .939 | .932 988 .959
Location || .897 .887 .891 | .908 .942 .924 | 922 939 .930 | .974 .956 .965
Organization || .895 .720 .792 | 905 .887 .895 | .903 .896 .899 | .873 .939 .905
(Average) || .894 .834 858 | 911 .924 . 917 | 919 .927 923 | 926 .961 .943
Live_In || .591 .490 .530 | .664 .601 .629 | .819 .532 .644 | .727 .640 .681
OrgBased_In || .798 .416 .543 | .662 .641 .647 | .768 .572 .654 | .831 .562 .671
Located_In || .539 .557 .513 | .539 .557 .513 | .821 .549 .654 | .867 .553 .675
Work _For || .720 423 .531 | .720 423 .531 | .886 .642 .743 | .945 .671 .785
Kill || .775 .815 .790 | .775 .815 .790 | .933 797 .858 | .857 .894 .875
(Average) || .685 .540 .581 | .672 .607 .622 | .845 .618 .710 | .825 .664 .737

Table 2: State-of-the-art comparison for EE and RE on CoNLL04 dataset.

4.2 Results

Figure 10 shows results for NER® and RE. All models use n-grams for n = 7 (Section 3.2). Embedding
dimensionality is 50. The notation “+” (e.g., +POS) at the beginning of a line indicates that the model of
this line is the same as the model on the previous line except that one more model element (e.g., POS) is
added. The separate NER model performs NER only. The separate RE model performs RE only, without
access to NER results. The pipeline RE model takes the results of the separate NER model and then
performs RE. The joint model is trained jointly on NER and RE. For compactness, we show the results
of two different models (an NER model and an RE model) in the separate part of the table; in contrast,
results for a single model — evaluated on both NER and RE — are shown in the joint part.

We make the following observations based on Figure 10. (i) All of our proposed model elements (POS,
CF, CTX, piggybacking, ensemble) improve performance, in particular CTX and piggybacking provide
large improvements. (ii) Not surprisingly, the pipeline RE model that has access to NER classifications
performs better than the separate RE model. (iii) The joint model performs better than separate and
pipeline models, demonstrating that joint training and decoding is advantageous for joint NER and RE.
(iv) Majority voting’ (ensemble) results in a particularly large jump in performance and in the overall
best performing system; F} is .936 for NER and .721 for RE, respectively.

4.3 Comparison with Other Systems

Our end-to-end relation extraction system outperform the state-of-the-art results. We compare the entity
and relation extraction performance of our model with other systems (Roth and Yih, 2007; Kate and
Mooney, 2010; Miwa and Sasaki, 2014). (Roth and Yih, 2007) performed 5-fold cross validation on the
complete corpus (1441 sentences), while (Miwa and Sasaki, 2014) performed 5-cross validation on the
data set, obtained after splitting the corpus. We report our results on the test set from random split (80-
20%) of the corpus, similar to (Miwa and Sasaki, 2014). Since, the standard splits were not available, we
cannot directly compare the results, but our proposed model shows an improvement of 2.0% and 2.7%
in F7 scores for entity and relation extraction tasks, respectively (Table 2).

%0Our NER model reports 86.80% F1 score, comparable to 86.67% from (Lample et al., 2016) on CoNLLO3 shared task
using the standard NER evaluation script with strict multi-word entity evaluation, and adapted for BILOU encoding.
"Randomly pick one of the most frequent classes, in case of a tie
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4.4 Word pair Compositions (T-SNE)

Using t-SNE (der Maaten and Hinton, 2008), we visualize the hidden representations obtained on the
composition of hidden vectors of every two words (word pair) in the sentence via TF-MTRNN model.
In Figure 11, we show all data points i.e. word pair compositions, leading to natural relations (except
L denoted by 5). We observe that the entity mention pairs with common relation types form clusters
corresponding to each relation in the semantic entity-relation space. We observe that the relation clusters
with common entity type lie close to each other, for example, KILL has (PER, PER) entity pairs, which is
close to relation cluster LIVEIN and WORKFOR, in which one of the entities i.e. PER is common. While,
KILL relation cluster is at a distance from LOCATEDIN cluster, since they have no common entity.

4.5 Hyperparamter Settings

We use stochastic gradient descent with L2 regularization with a weight of .0001. The initial learning
rate for entity and relation extraction is .05 with hidden layer size 200. The learning rate update and
task switching is driven by the state machine (Figure 8). Models are trained for 40 iterations performing
stochastic gradient descent. We initialize the recurrent weight matrix to be identity and biases to be
zero. We use Capped Rectified Linear units (CappedReLu) and ranking loss with default parameters
(section 2.5). The entity vectors Crp and Egp are initialized with zero when NER is performed for
the first time in entity and relation extraction loop (Figure 6). The models are implemented in Theano
(Bergstra et al., 2010; Bastien et al., 2012).

5 Related Work

Recurrent and convolutional neural networks (Zeng et al., 2014; Nguyen and Grishman, 2015; Zhang
and Wang, 2015; Vu et al., 2016a) have delivered competitive performance for sentence-level relation
classification. Socher et al. (2012) and Zhang and Wang (2015) proposed recurrent/recursive type neu-
ral networks to construct sentence representations based on dependency parse trees. However, these
sentence-level state-of-the-art methods do not model the interdependencies of entity and relation, do not
handle multiple relation instances in a sentence and therefore, can not detect entity mention pairs for
the sentence-level relations. Our approach is a joint entity and word-level relation extraction capable to
model multiple relation instances, without knowing nominal pairs.

Existing systems (Roth and Yih, 2004; Kate and Mooney, 2010; Miwa and Sasaki, 2014) are com-
plex feature-based models for joint entity and relation extraction. The most related work to our method
is (Miwa and Sasaki, 2014); however they employ complex search heuristics (Goldberg and Elhadad,
2010; Stoyanov and Eisner, 2012) to fill the entity-relation table based on structured prediction method.
They explicitly model the label dependencies and their joint approach is not based on neural networks.
Multi-task learning (Caruana, 1998) via neural networks (Zhang and Yeung, 2012; Seltzer and Droppo,
2013; Dong et al., 2015; Li and J, 2014; Collobert and Weston, 2008) have been used to model rela-
tionships among the correlated tasks. Therefore, we present a unified neural network based multi-task
framework to model the entity-relation table for end-to-end relation extraction.

6 Conclusion

We proposed TF-MTRNN, a novel architecture that jointly models entity and relation extraction, and
showed how an entity-relation table is mapped to a neural network framework that learns label interde-
pendencies. We introduced word-level relation classification through composition of words; this is ad-
vantageous in modeling multiple relation instances without knowing the corresponding entity mentions
in a sentence. We also introduced context-awareness in RNN network to incorporate missing informa-
tion, and investigated piggybacking approach to model entity-relation label interdependencies.

Experimental results show that TF-MTRNN outperforms state-of-the-art method for both entity and
relation extraction tasks.
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Appendix A. R-biRNN discussed in section 2.5.
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Figure 12: R-biRNN. Disintegrating TF-MTRNN (Figure 3) to illustrate that it is comprised of R-biRNN for entity learning.
(...) indicates remaining words in the sentence (Figure 1).
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Abstract

Semi-supervised bootstrapping techniques for
relationship extraction from text iteratively ex-
pand a set of initial seed instances. Due to the
lack of labeled data, a key challenge in boot-
strapping is semantic drift: if a false positive
instance is added during an iteration, then all
following iterations are contaminated. We in-
troduce BREX, a new bootstrapping method
that protects against such contamination by
highly effective confidence assessment. This
is achieved by using entity and template seeds
jointly (as opposed to just one as in previous
work), by expanding entities and templates in
parallel and in a mutually constraining fash-
ion in each iteration and by introducing higher-
quality similarity measures for templates. Ex-
perimental results show that BREX achieves
an F that is 0.13 (0.87 vs. 0.74) better than
the state of the art for four relationships.

1 Introduction

Traditional semi-supervised bootstrapping rela-
tion extractors (REs) such as BREDS (Batista
et al., 2015), SnowBall (Agichtein and Gravano,
2000) and DIPRE (Brin, 1998) require an initial
set of seed entity pairs for the target binary rela-
tion. They find occurrences of positive seed en-
tity pairs in the corpus, which are converted into
extraction patterns, i.e., extractors, where we de-
fine an extractor as a cluster of instances generated
from the corpus. The initial seed entity pair set is
expanded with the relationship entity pairs newly
extracted by the extractors from the text iteratively.
The augmented set is then used to extract new re-
lationships until a stopping criterion is met.

Due to lack of sufficient labeled data, rule-
based systems dominate commercial use (Chiti-
cariu et al.,, 2013). Rules are typically defined
by creating patterns around the entities (entity ex-
traction) or entity pairs (relation extraction). Re-
cently, supervised machine learning, especially
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deep learning techniques (Gupta et al., 2015;
Nguyen and Grishman, 2015; Vu et al., 2016a,b;
Gupta et al., 2016), have shown promising results
in entity and relation extraction; however, they
need sufficient hand-labeled data to train models,
which can be costly and time consuming for web-
scale extractions. Bootstrapping machine-learned
rules can make extractions easier on large corpora.
Thus, open information extraction systems (Carl-
son et al., 2010; Fader et al., 2011; Mausam et al.,
2012; Mesquita et al., 2013; Angeli et al., 2015)
have recently been popular for domain specific or
independent pattern learning.

Hearst (1992) used hand written rules to gen-
erate more rules to extract hypernym-hyponym
pairs, without distributional similarity. For en-
tity extraction, Riloff (1996) used seed entities to
generate extractors with heuristic rules and scored
them by counting positive extractions. Prior work
(Lin et al., 2003; Gupta et al., 2014) investigated
different extractor scoring measures. Gupta and
Manning (2014) improved scores by introducing
expected number of negative entities.

Brin (1998) developed the bootstrapping rela-
tion extraction system DIPRE that generates ex-
tractors by clustering contexts based on string
matching. SnowBall (Agichtein and Gravano,
2000) is inspired by DIPRE but computes a TF-
IDF representation of each context. BREDS
(Batista et al., 2015) uses word embeddings
(Mikolov et al., 2013) to bootstrap relationships.

Related work investigated adapting extractor
scoring measures in bootstrapping entity extrac-
tion with either entities or templates (Table 1) as
seeds (Table 2). The state-of-the-art relation ex-
tractors bootstrap with only seed entity pairs and
suffer due to a surplus of unknown extractions
and the lack of labeled data, leading to low con-
fidence extractors. This in turn leads to to low
confidence in the system output. Prior RE sys-



BREE Bootstrapping Relation Extractor with Entity pair

BRET Bootstrapping Relation Extractor with Template
BREJ Bootstrapping Relation Extractor in Joint learning
type a named entity type, e.g., person

typed entity  a typed entity, e.g., <“Obama”,person>

entity pair  a pair of two typed entities

template a triple of vectors (v_1, Uy, U1) and an entity pair
instance entity pair and template (types must be the same)
v instance set extracted from corpus

7 a member of ~, i.e., an instance

z(7) the entity pair of instance i

(i) the template of instance ¢

Gy a set of positive seed entity pairs

Gn a set of negative seed entity pairs

6, a set of positive seed templates

&, a set of negative seed templates

g < Gp, Gp, 6,6, >

ki number of iterations

Acat cluster of instances (extractor)

cat category of extractor A

ANNHC Non-Noisy-High-Confidence extractor (True Positive)
ANNLC Non-Noisy-Low-Confidence extractor (True Negative)
ANHC Noisy-High-Confidence extractor (False Positive)
ANLC Noisy-Low-Confidence extractor (False Negative)

Table 1: Notation and definition of key terms

tems do not focus on improving the extractors’
scores. In addition, SnowBall and BREDS used
a weighting scheme to incorporate the importance
of contexts around entities and compute a similar-
ity score that introduces additional parameters and
does not generalize well.

Contributions. (1) We propose a Joint Boot-
strapping Machine' (JBM), an alternative to the
entity-pair-centered bootstrapping for relation ex-
traction that can take advantage of both entity-pair
and template-centered methods to jointly learn
extractors consisting of instances due to the oc-
currences of both entity pair and template seeds.
It scales up the number of positive extractions
for non-noisy extractors and boosts their confi-
dence scores. We focus on improving the scores
for non-noisy-low-confidence extractors, resulting
in higher recall. The relation extractors boot-
strapped with entity pair, template and joint seeds
are named as BREE, BRET and BREJ (Table 1),
respectively.

(2) Prior work on embedding-based con-
text comparison has assumed that relations
have consistent syntactic expression and has
mainly addressed synonymy by using embeddings
(e.g.,”‘acquired” — “bought”). In reality, there is
large variation in the syntax of how relations are
expressed, e.g., “MSFT to acquire NOK for $8B”

! github.com/pgcool/Joint-Bootstrapping-Machines

vs. “MSFT earnings hurt by NOK acquisition”.
We introduce cross-context similarities that com-
pare all parts of the context (e.g., “to acquire” and
“acquisition”) and show that these perform better
(in terms of recall) than measures assuming con-
sistent syntactic expression of relations.

(3) Experimental results demonstrate a 13%
gain in F'1 score on average for four relationships
and suggest eliminating four parameters, com-
pared to the state-of-the-art method.

The motivation and benefits of the proposed
JBM for relation extraction is discussed in depth
in section 2.3. The method is applicable for both
entity and relation extraction tasks. However, in
context of relation extraction, we call it BREJ.

2 Method

2.1 Notation and definitions

We first introduce the notation and terms (Table 1).

Given a relationship like “x acquires y”, the
task is to extract pairs of entities from a corpus for
which the relationship is true. We assume that the
arguments of the relationship are typed, e.g., x and
y are organizations. We run a named entity tagger
in preprocessing, so that the types of all candidate
entities are given. The objects the bootstrapping
algorithm generally handles are therefore fyped
entities (an entity associated with a type).

For a particular sentence in a corpus that states
that the relationship (e.g., “acquires”) holds be-
tween x and ¥, a template consists of three vectors
that represent the context of x and y. ©_; repre-
sents the context before x, ¥ the context between
x and y and ¥ the context after y. These vectors
are simply sums of the embeddings of the corre-
sponding words. A template is “typed”, i.e., in
addition to the three vectors it specifies the types
of the two entities. An instance joins an entity pair
and a template. The types of entity pair and tem-
plate must be the same.

The first step of bootstrapping is to extract a set
of instances from the input corpus. We refer to this
set as 7. We will use ¢ and j to refer to instances.
x(7) is the entity pair of instance 7 and (i) is the
template of instance .

A required input to our algorithm are sets of
positive and negative seeds for either entity pairs
(Gp and G,,) or templates (&, and &,,) or both.
We define G to be a tuple of all four seed sets.

We run our bootstrapping algorithm for k&;, iter-
ations where k; is a parameter.
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A key notion is the similarity between two in-
stances. We will experiment with different sim-
ilarity measures. The baseline is (Batista et al.,
2015)’s measure given in Figure 4, first line: the
similarity of two instances is given as a weighted
sum of the dot products of their before contexts
(U_1), their between contexts (vp) and their after
contexts (71) where the weights w,, are parame-
ters. We give this definition for instances, but it
also applies to templates since only the context
vectors of an instance are used, not the entities.

The similarity between an instance ¢ and a clus-
ter A of instances is defined as the maximum sim-
ilarity of ¢ with any member of the cluster; see
Figure 2, right, Eq. 5. Again, there is a straight-
forward extension to a cluster of templates: see
Figure 2, right, Eq. 6.

The extractors A can be categorized as follows:

Anvuc = eA] AR Acnf(N,G) = Tens} (1)

non—noisy
Annpe ={A e AA— R Acenf(X, G) < Tens} ()
Anme = {A € A A R A enf(A, G) = Tens}
2 3)

notsy

Ance ={AeAA D R A enf(X,G) < Tens}  (4)

where fR is the relation to be bootstrapped. The
Acat 18 @ member of A.,;. For instance, a Ayn Lo
is called as a non-noisy-low-confidence extractor if
it represents the target relation (i.e., A — R), how-
ever with the confidence below a certain threshold
(Teny)- Extractors of types Ay vpc and Ay o are
desirable, those of types Axygc and Aynpc un-
desirable within bootstrapping.

2.2 The Bootstrapping Machines: BREX

To describe BREX (Figure 1) in its most general
form, we use the term item to refer to an entity
pair, a template or both.

The input to BREX (Figure 2, left, line 01) is
a set v of instances extracted from a corpus and
Geed» a structure consisting of one set of positive
and one set of negative seed items. Gyeq (line 02)
collects the items that BREX extracts in several it-
erations. In each of k; iterations (line 03), BREX
first initializes the cache G, (line 04); this cache
collects the items that are extracted in this itera-
tion. The design of the algorithm balances ele-
ments that ensure high recall with elements that
ensure high precision.

High recall is achieved by starting with the
seeds and making three “hops” that consecutively
consider order-1, order-2 and order-3 neighbors
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Figure 1: Joint Bootstrapping Machine. The red and
blue filled circles/rings are the instances generated
due to seed entity pairs and templates, respectively.
Each dashed rectangular box represents a cluster of in-
stances. Numbers indicate the flow. Follow the nota-
tions from Table 1 and Figure 2.

of the seeds. On line 05, we make the first hop:
all instances that are similar to a seed are col-
lected where “similarity” is defined differently for
different BREX configurations (see below). The
collected instances are then clustered, similar to
work on bootstrapping by Agichtein and Gravano
(2000) and Batista et al. (2015). On line 06, we
make the second hop: all instances that are within
T«m Of @ hop-1 instance are added; each such in-
stance is only added to one cluster, the closest one;
see definition of u: Figure 2, Eq. 8. On line 07, we
make the third hop: we include all instances that
are within 7, of a hop-2 instance; see definition
of v: Figure 2, Eq. 7. In summary, every instance
that can be reached by three hops from a seed is
being considered at this point. A cluster of hop-2
instances is named as extractor.

High precision is achieved by imposing, on line
08, a stringent check on each instance before its
information is added to the cache. The core func-
tion of this check is given in Figure 2, Eq. 9. This
definition is a soft version of the following hard
max, which is easier to explain:

cnf(i, A, Q) ~ max{)\eMiew()\)} cnf(i, )\, g)

We are looking for a cluster A in A that li-
censes the extraction of ¢ with high confidence.
enf(i, A\, G) (Figure 2, Eq. 10), the confidence of
a single cluster (i.e., extractor) A for an instance,
is defined as the product of the overall reliability of
A (which is independent of ¢) and the similarity of
i to A, the second factor in Eq. 10, i.e., sim(i, \).
This factor sim(i, A) prevents an extraction by a
cluster whose members are all distant from the in-
stance — even if the cluster itself is highly reliable.



Algorithm: BREX

01 INPUT: v, Geeea
02 gyield = gseed
03 for k;, iterations:

sim(i,\) = maxyeysim(i,i) (5)

sim(z, &) maxegsim(7, t) (6)

BO) = fieqlsmG N il O
w(0,0) = {ie~|sim(i,0) =d A

04 Gorre = & d= max sim(z,0) = Tgm} (8)
05 ©:={i € y[match(i, Gyie)) enf(i,A,G) = 1-]](1—enf(i,\,G)) )
06 A= {u(0,0)|0 € 6} (AeAlied(\)}

07 for each i € (o) ¥(N): £ N G) = cnf(\ G)sim(i. A 10
08 if check(i, A, Gyiaia) : enf(i, 1, 9) enf(, )Slm(z’l ) (10)
09 add(7, Geache) cenf(A,G) = N OG0 voog (D
10 gyie]dU: gcache 1+ wn Ni()‘vgp) + W N+O(>‘:gp)

11 OUTPUT: Gyiag, A No(\G) = [{iez(i) ¢ (GyuGn)}l (12)

Figure 2: BREX algorithm (left) and definition of key concepts (right)

BREE BRET BREJ
Seed Type Entity pairs ‘ Templates ‘ Joint (Entity pairs + Templates)
Q) Ny (\,G) [{ieNz())eG}] | |{iEX|sim(i, &) = Tum}| | [{iEN|2 ()G} +|{iEN|sim(i, &) = Tyim }|
(il) (wn, W) (1.0,0.0) (1.0,0.0) (1.0,0.0)
05 match(i, G) x(i) € Gp sim(%, Bp) = Tyim x(1) € Gp v sim(i, Bp) = Tym
08 check(i, A, G) || enf(i, A, G) = 7ens | cnf(i, A, G) = Tens enf(i, A, G) = Tens A sim(i, Bp) = Toim
09 add(i, G) Gpu={z(i)} | &pu= {z(i)} Gpu= {x(i)}, &,u= {x(i)}

Figure 3: BREX configurations

The first factor in Eq. 10, i.e., cnf(), G), as-

sesses the reliability of a cluster A\: we compute

N+()"gn)

the ratio Ne (NG i.e., the ratio between the num-

ber of instances in A that match a negative and pos-
itive gold seed, respectively; see Figure 3, line (i).
If this ratio is close to zero, then likely false pos-
itive extractions are few compared to likely true
positive extractions. For the simple version of the
algorithm (for which we set w, = 1, w, = 0),
this results in cnf(\, G) being close to 1 and the
reliability measure it not discounted. On the other

hand, if ]]\\ffr 8 g"; is larger, meaning that the rela-
tive number of likely false positive extractions is
high, then cnf(\, G) shrinks towards 0, resulting
in progressive discounting of cnf(\, G) and lead-
ing to non-noisy-low-confidence extractor, partic-
ularly for a reliable A\. Due to lack of labeled
data, the scoring mechanism cannot distinguish
between noisy and non-noisy extractors. There-
fore, an extractor is judged by its ability to extract
more positive and less negative extractions. Note
that we carefully designed this precision compo-
nent to give good assessments while at the same

time making maximum use of the available seeds.
The reliability statistics are computed on A, i.e.,
on hop-2 instances (not on hop-3 instances). The
ratio ]1&8523 is computed on instances that di-
rectly match a gold seed — this is the most reliable

information we have available.

After all instances have been checked (line 08)
and (if they passed muster) added to the cache
(line 09), the inner loop ends and the cache is
merged into the yield (line 10). Then a new loop
(lines 03-10) of hop-1, hop-2 and hop-3 exten-
sions and cluster reliability tests starts.

Thus, the algorithm consists of k; iterations.
There is a tradeoff here between 7, and k;. We
will give two extreme examples, assuming that
we want to extract a fixed number of m instances
where m is given. We can achieve this goal either
by setting k;=1 and choosing a small 7,, which
will result in very large hops. Or we can achieve
this goal by setting 7, to a large value and run-
ning the algorithm for a larger number of k;.. The
flexibility that the two hyperparameters k; and 7,
afford is important for good performance.
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siMmateh (1, 1) = Xpeq_1,01 Welp(D)Tp() 5 simEZ¥™ (4, 5) = maxpeq—1,0,13 Tp(1)o(j) (13)
sim$¥™ ! (4, j) = max (maxpei—1,0,13 Up(8)T0 (), maxpe(— 1,0,1y Tp(§)V0(3)) (14)
simz™2(i, ) = max ((7-1(0) + 71 (D)0 (5), (3-1() + 71(3) %o @), (D)0 () ) 1)

Figure 4: Similarity measures. These definitions for instances equally apply to templates since the definitions only
depend on the “template part” of an instance, i.e., its vectors. (value is O if types are different)

BREE BRET
+1|Y +0(N +1|Y +0(N

Figure 5: Illustration of Scaling-up Positive Instances.
7: an instance in extractor, A. Y: YES and N: NO

2.3 BREE, BRET and BRE]J

The main contribution of this paper is that we
propose, as an alternative to entity-pair-centered
BREE (Batista et al., 2015), template-centered
BRET as well as BREJ (Figure 1), an instantiation
of BREX that can take advantage of both entity
pairs and templates. The differences and advan-
tages of BREJ over BREE and BRET are:

(1) Disjunctive Matching of Instances: The
first difference is realized in how the three algo-
rithms match instances with seeds (line 05 in Fig-
ure 3). BREE checks whether the entity pair of
an instance is one of the entity pair seeds, BRET
checks whether the template of an instance is one
of the template seeds and BREJ checks whether
the disjunction of the two is true. The disjunc-
tion facilitates a higher hit rate in matching in-
stances with seeds. The introduction of a few
handcrafted templates along with seed entity pairs
allows BREJ to leverage discriminative patterns
and learn similar ones via distributional semantics.
In Figure 1, the joint approach results in hybrid
extractors A that contain instances due to seed oc-
currences © of both entity pairs and templates.

(2) Hybrid Augmentation of Seeds: On line
09 in Figure 3, we see that the bootstrapping step is
defined in a straightforward fashion: the entity pair
of an instance is added for BREE, the template for
BRET and both for BREJ. Figure 1 demonstrates
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Seed Entity Pair: Gp ={<Google, DoubleClick>} (7,, = {<Google, Microsoft>}
Seed Templates: 6}7: {[X] 's acquisition of [Y]} QSn= {[X] competitor of [Y]}
J—/|7 Match Seeds in Instances

Matched Instances:
11: <Google> 's purchase of <DoubleClick> is intriguing.
12: <Google> s acquisition of <DoubleClick> is approved.
13: <Dynegy> 's purchase of <Enron> triggered a clause.
14: <Google> 's acquisition of <YouTube> was in its final stages.

J_/L Generate Extractor X
X (BRET)

11: 's purchase of
i 12: 's acquisition of

11:’s purchase of 11:’s purchase of

i |12: s acquisition of| | | |12: s acquisition of| |

i | 13: ’s purchase of 11: 's purchase of

14: 's acquisition of| 12: 's acquisition of]

I13: ’s purchase of | |

i 14: s acquisition of

Ni(\Gn) _ 2. N+ (\Gn) _ 0O {Ny(AGn) _ 240 |
N+(A\Gp) ~ 2 N+(M\Gp) ~ 4 P Ny(NGp) ~ 2+4 |
enf(X\, G)=05 enf(X\,G)=1.0 enf(A,G)=0.75 |

Positive: {11, 12}
Negative: {13, 14}

gcuche {1}

Positive: {I1, 12, 13, 14} Positive: {11, 12, 11, 12, I3, 14}
J_L Output Instances Negative: {3, 14}

Geache: {11,12,13,14}  Geache : {11, 12,13, 14}

Figure 6: An illustration of scaling positive extractions
and computing confidence for a non-noisy extractor
generated for acquired relation. The dashed rectangu-
lar box represents an extractor A\, where A (BREJ) is
hybrid with 6 instances. Text segments matched with
seed template are shown in italics. Unknowns (bold in
black) are considered as negatives. Gcqcpe 1S a set of
output instances where 7.,y = 0.70.

the hybrid augmentation of seeds via red and blue
rings of output instances.

(3) Scaling Up Positives in Extractors: As dis-
cussed in section 2.2, a good measure of the qual-
ity of an extractor is crucial and N4, the number
of instances in an extractor A that match a seed,
is an important component of that. For BREE and
BRET, the definition follows directly from the fact
that these are entity-pair and template-centered in-
stantiations of BREX, respectively. However, the
disjunctive matching of instances for an extrac-
tor with entity pair and template seeds in BREJ
(Figure 3 line “(i)” ) boosts the likelihood of find-
ing positive instances. In Figure 5, we demon-
strate computing the count of positive instances



Relationship Seed Entity Pairs Seed Templates
ired {Adidas;Reebok } ,{ Google;DoubleClick}, {[X] acquire [Y]},{[X] acquisition [Y]},{[X] buy [Y]},
acquire
d {Widnes;Warrington },{Hewlett-Packard;Compaq } {[X] takeover [Y]},{[X] merger with [Y]}
founder-of {CNN;Ted Turner},{Facebook;Mark Zuckerberg}, {[X] founded by [Y]},{[X] co-founder [Y]},{[X] started by [Y]},
ounder-o
icrosoft;Paul Allen},{Amazon;Jeff Bezos}, ounder o; , owner o
Microsoft;Paul Allen},{A Jeff B [X] founder of [Y]},{[X] £ Y]
headanartered {Nokia;Espoo},{Pfizer;New York}, {[X] based in [Y]},{[X] headquarters in [Y]},{[X] head office in [Y]},
eadquartere
q {United Nations;New York},{NATO;Brussels}, {[X] main office building in [Y]},{[X] campus branch in [Y]}
fhiliati {Google;Marissa Mayer},{Xerox;Ursula Burns}, {[X] CEO [Y1},{[X] resign from [Y]},{[X] founded by [Y]},
affiliation
{ Microsoft;Steve Ballmer},{Microsoft;Bill Gates}, {[X] worked for [Y]},{[X] chairman director [Y]}

Table 2: Seed Entity Pairs and Templates for each relation. [X] and [Y] are slots for entity type tags.

N4 (A, G) for an extractor A within the three sys-
tems. Observe that an instance ¢ in A can scale its
N4 (A, G) by a factor of maximum 2 in BREJ if ¢
is matched in both entity pair and template seeds.
The reliability cnf(\, G) (Eq. 11) of an extractor A
is based on the ratio %, therefore suggest-
ing that the scaling boosts its confidence.

In Figure 6, we demonstrate with an example
how the joint bootstrapping scales up the positive
instances for a non-noisy extractor A, resulting in
Ann e for BREJ compared to Ay nrc in BREE.

Due to unlabeled data, the instances not match-
ing in seeds are considered either to be ig-
nored/unknown Ny or negatives in the confidence
measure (Eq. 11). The former leads to high con-
fidences for noisy extractors by assigning high
scores, the latter to low confidences for non-noisy
extractors by penalizing them. For a simple ver-
sion of the algorithm in the illustration, we con-
sider them as negatives and set w,, = 1. Figure 6
shows the three extractors (\) generated and their
confidence scores in BREE, BRET and BREJ. Ob-
serve that the scaling up of positives in BREJ
due to BRET extractions (without w,,) discounts
cnf(A, G) relatively lower than BREE. The dis-
counting results in Ay o in BREJ and Ay nro
in BREE. The discounting in BRE] is adapted for
non-noisy extractors facilitated by BRET in gener-
ating mostly non-noisy extractors due to stringent
checks (Figure 3, line “(i)” and 05). Intuitively,
the intermixing of non-noisy extractors (i.e., hy-
brid) promotes the scaling and boosts recall.

2.4 Similarity Measures

The before (v_1) and after () contexts around
the entities are highly sparse due to large varia-
tion in the syntax of how relations are expressed.
SnowBall, DIPRE and BREE assumed that the
between (7jy) context mostly defines the syntac-
tic expression for a relation and used weighted
mechanism on the three contextual similarities in

‘ORG—ORG ORG-PER  ORG-LOC
58,500 75,600 95,900

count ‘

Table 3: Count of entity-type pairs in corpus

Parameter Description/ Search Optimal
Ju_1] maximum number of tokens in before context 2
|vol maximum number of tokens in between context 6
|v1] maximum number of tokens in after context 2
Tsim similarity threshold [0.6, 0.7, 0.8] 0.7
Tenf instance confidence thresholds [0.6, 0.7, 0.8] 0.7
Wy, weights to negative extractions [0.0, 0.5, 1.0, 2.0] 0.5
Wy weights to unknown extractions [0.0001, 0.00001] | 0.0001
kit number of bootstrapping epochs 3
dimemp dimension of embedding vector, V' 300
PMI PMI threshold in evaluation 0.5
Entity Pairs Ordered Pairs (OP) or Bisets (B.S) OoP

Table 4: Hyperparameters in BREE, BRET and BREJ

pairs, simy,q¢cp, (Figure 4). They assigned higher
weights to the similarity in between (p = 0) con-
texts, that resulted in lower recall. We introduce
attentive (max) similarity across all contexts (for
example, U_1(i)9)(j)) to automatically capture
the large variation in the syntax of how relations
are expressed, without using any weights. We in-
vestigate asymmetric (Eq 13) and symmetric (Eq
14 and 15) similarity measures, and name them as
cross-context attentive (sim..) similarity.

3 Evaluation

3.1 Dataset and Experimental Setup

We re-run BREE (Batista et al., 2015) for base-
line with a set of 5.5 million news articles from
AFP and APW (Parker et al., 2011). We use pro-
cessed dataset of 1.2 million sentences (released
by BREE) containing at least two entities linked to
FreebaseEasy (Bast et al., 2014). We extract four
relationships: acquired (ORG-ORG), founder-
of (ORG-PER), headquartered (ORG-LOC) and
affiliation (ORG-PER) for Organization (ORG),
Person (PER) and Location (LOC) entity types.
We bootstrap relations in BREE, BRET and BREJ,
each with 4 similarity measures using seed entity
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Relationships | #out P R F1 #out P R F1 | #out P R F1 | #out P R F1
baseline: BREE+sim,,qzch configy: BREE+sim{:¥" configs: BREE+sim‘ZlC””1 configy: BREE+sim§;§(m2
acquired 2687 0.88 0.48 0.62 || 5771 0.88 0.66 0.76 | 3471 0.88 0.55 0.68 | 3279 0.88 0.53 0.66
E founder-of 628 098 0.70 0.82 | 9553 086 0.95 0.89 | 1532 094 0.84 0.89 | 1182 095 0.81 0.87
§ headquartered | 16786 0.62 0.80 0.69 || 21299 0.66 0.85 0.74 | 17301 0.70 0.83 0.76 | 9842 0.72 0.74 0.73
affiliation 20948 099 0.73 0.84 || 27424 097 0.78 0.87 | 36797 095 0.82 0.88 | 28416 0.97 0.78 0.87
avg 10262 0.86 0.68 0.74 || 16011 0.84 0.81 0.82 | 14475 0.87 0.76 0.80 | 10680 0.88 0.72 0.78
configs: BRET+simy,,q¢cn, configg: BRET+sim{¥™ config;: BRET+sim%¥™! configs: BRET+simfj{m2
acquired 4206 099 0.62 0.76 || 15666 090 0.85 0.87 | 18273 0.87 0.86 0.87 | 14319 092 0.84 0.87
E founder-of 920 097 0.77 0.86 || 43554 0.81 0.98 0.89 | 41978 0.81 0.99 0.89 | 46453 0.81 0.99 0.89
g headquartered | 3065 0.98 0.55 0.72 || 39267 0.68 0.92 0.78 | 36374 0.71 091 0.80 | 56815 0.69 0.94 0.80
affiliation 20726 0.99 0.73 0.85 || 28822 0.99 0.79 0.88 | 44946 0.96 0.85 0.90 | 33938 0.97 0.81 0.89
avg 7229 098 0.67 0.80 || 31827 0.85 0.89 0.86 | 35393 0.84 0.90 0.86 | 37881 0.85 0.90 0.86
configg: BREJ+sim,,qzcn configjo: BREJ+sim{;Y™ configyq: BREJ+simf;}jm1 configy,: BREJ+sim§}:””"2
acquired 20186 0.82 0.87 0.84 || 35553 0.80 0.92 0.86 | 22975 0.86 0.89 0.87 | 22808 0.85 0.90 0.88
= founder-of | 45005 0.81 0.99 0.89 | 57710 0.81 1.00 0.90 | 50237 0.81 0.99 0.89 | 45374 0.82 0.99 0.90
2.5 headquartered | 47010 0.64 0.93 0.76 || 66563 0.68 0.96 0.80 | 60495 0.68 0.94 0.79 | 57853 0.68 0.94 0.79
affiliation 40959 096 0.84 0.89 | 57301 094 0.88 091 | 55811 094 0.87 091 | 51638 0.94 0.87 0.90
avg 38290 0.81 0.91 0.85 | 54282 0.81 0.94 0.87 | 47380 0.82 0.92 0.87 | 44418 0.82 0.93 0.87

Table 5: Precision (P), Recall (R) and F'1 compared to the state-of-the-art (baseline). #out: count of output in-
stances with cnf(é, A, G) > 0.5. avg: average. Bold and underline: Maximum due to BREJ and sim,., respectively.

pairs and templates (Table 2). See Tables 3, 4 and
5 for the count of candidates, hyperparameters and
different configurations, respectively.

Our evaluation is based on Bronzi et al. (2012)’s
framework to estimate precision and recall of
large-scale RE systems using FreebaseEasy (Bast
et al., 2014). Also following Bronzi et al. (2012),
we use Pointwise Mutual Information (PMI) (Tur-
ney, 2001) to evaluate our system automatically,

7 | kit | #Hout P R F1
0.6 1 691 0.99 021 035
2 11288 0.85 0.79 0.81

0.7 1 610 1.0 0.19 0.32
2 7948 093 0.75 0.83

038 1 522 1.0 0.17 0.29
2 2969 090 0.51 0.65

Table 6: Iterations (k;;) Vs Scores with thresholds (7)
for relation acquired in BREJ. 7 refers to 7, and 7., ¢

. dditi t Vi t 1k led T | #out P R Fl| 7 | #fout P R F1
1-addition fo refymg on an external knowlecge mo60| 1785 91 39 55[ .70 1222 94 31 47
base. We consider Only extracted relatlonshlp m- % 8| 88 95 25 391 .90] 626 96 .19 32
stances with confidence scores cnf(i, A, G) equal £ .60 | 2995 .89 .51 .65 .70 | 1859 .90 .40 .55
[~
or above 0.5. We follow the same approach as @ 80| 1312 91 32 47)90| 752 94 22 35
. o 6018271 81 85 83| .70 | 14900 .84 .83 .83
BREE (Batista et al., 2015) to detect the correct or- 2
S . ) @ 80| 8896 .88 .75 81| 90| 5158 93 65 .77
der of entities in a relational triple, where we try to
identify the presence of passive voice using part-  Table 7: Comparative analysis using different thresh-

of-speech (POS) tags and considering any form of
the verb to be, followed by a verb in the past tense
or past participle, and ending in the word ‘by’. We
use GloVe (Pennington et al., 2014) embeddings.

3.2 Results and Comparison with baseline

Table 5 shows the experimental results in the
three systems for the different relationships with
ordered entity pairs and similarity measures
(simypqtch, Simee). Observe that BRET (configs)
is precision-oriented while BREJ (configg) recall-
oriented when compared to BREE (baseline). We
see the number of output instances #out are also
higher in BREJ, therefore the higher recall. The
BREJ system in the different similarity configura-
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olds 7 to evaluate the extracted instances for acquired

tions outperforms the baseline BREE and BRET in
terms of F'1 score. On an average for the four rela-
tions, BREJ in configurations configg and configg
results in F'1 that is 0.11 (0.85 vs 0.74) and 0.13
(0.87 vs 0.74) better than the baseline BREE.

We discover that sim.. improves #out and re-
call over simp,, correspondingly in all three sys-
tems. Observe that sim.. performs better with
BRET than BREE due to non-noisy extractors in
BRET. The results suggest an alternative to the
weighting scheme in sim,, and therefore, the
state-of-the-art (sim..) performance with the 3 pa-
rameters (w_1, wg and wy) ignored in bootstrap-



acquired founder-of headquartered affiliation
BREX | E T J E T J E T J E T J
#hit 71 682 743 | 135 956 1042 | 715 3447 4023 | 603 14888 15052

Table 8: Disjunctive matching of Instances. #hit: the
count of instances matched to positive seeds in k;; = 1

Attributes | |A|  AIE AES ANE ANNE ANNLC AP AN | ANP
- BREE| 167 127 051 0.84 0.16 0.14 377 93.1 | 246
% BRET | 17 3052 1.00 0.11 0.89 0.00 671.8  0.12 | 0.00
° BREJ | 555 416 074 071 0.29 0.03 3132 448 | 0.14
s BREE 8 133 046 075 0.25 0.12 449 6005 | 13.37
g BRET 5 179.0 1.00  0.00 1.00 0.00 3722 0.0 0.00
£ BREJ 492 109.1 090 0.94 0.06 0.00 451.8 795 | 0.18
E BREE | 655 184 0.60 0.97 0.03 0.02 46.3 82.7 | 178
§_ BRET 7 365.7 1.00  0.00 1.00 0.00 848.6 0.0 0.00
E BREJ | 1311 455 0.80 098 0.02 0.00 3241 775 | 024
s BREE| 198 997 055 025 0.75 0.34 240.5 1522 | 0.63
E BRET | 19 8469 1.00 0.00 1.00 0.00 2137.0 0.0 0.00
E BREJ | 470 1302 0.72 021 0.79 0.06 567.6 122.7 | 0.22

Table 9: Analyzing the attributes of extractors A
learned for each relationship. Attributes are: number of
extractors (JA|), avg number of instances in A (AIE),
avg A score (AES), avg number of noisy A (ANE),
avg number of non-noisy A (ANNE), avg number of
ANnLo below confidence 0.5 (ANNLC), avg number
of positives (AP) and negatives (AN), ratio of AN to
AP (ANP). The bold indicates comparison of BREE
and BREJ with sim,qtch. avg: average

ping. Observe that sim(:Y"™ gives higher recall

than the two symmetric similarity measures.
Table 6 shows the performance of BREJ in dif-
ferent iterations trained with different similarity
Tsim and confidence 7.,s thresholds. Table 7
shows a comparative analysis of the three systems,
where we consider and evaluate the extracted rela-
tionship instances at different confidence scores.

3.3 Disjunctive Seed Matching of Instances

As discussed in section 2.3, BRE] facilitates dis-
junctive matching of instances (line 05 Figure 3)
with seed entity pairs and templates. Table 8
shows #hit in the three systems, where the higher
values of #hit in BREJ conform to the desired
property. Observe that some instances in BREJ
are found to be matched in both the seed types.

3.4 Deep Dive into Attributes of Extractors

We analyze the extractors A generated in BREE,
BRET and BRE]J for the 4 relations to demon-
strate the impact of joint bootstrapping. Table 9
shows the attributes of A. We manually annotate
the extractors as noisy and non-noisy. We compute
AN N LC and the lower values in BREJ compared
to BREE suggest fewer non-noisy extractors with
lower confidence in BREJ due to the scaled confi-

Relationships | Fout P R F1
acquired 387 099 0.13 0.23

5 founder-of 28 096 0.09 0.17
g headquartered 672 095 021 034
affiliation 17516 099 0.68 0.80

avg 4651 097 028 0.39

acquired 4031 1.00 0.61 0.76

E founder-of 920 097 0.77 0.86
f: headquartered | 3522 098 0.59 0.73
affiliation 22062 099 0.74 0.85

avg 7634 099 0.68 0.80
acquired 12278 0.87 0.81 0.84

}3 founder-of 23727 0.80 0.99 0.89
g headquartered | 38737 0.61 091 0.73
affiliation 33203 098 0.81 0.89

avg 26986 0.82 0.88 0.84

Table 10: BREX+simp,ech:Scores when w,, ignored

dence scores. ANNE (higher), ANNLC (lower), AP
(higher) and AN (lower) collectively indicate that
BRET mostly generates NNHC extractors. AP and
AN indicate an average of N (\,G;) (line “ (i)”
Figure 3) for positive and negative seeds, respec-
tively for A € A in the three systems. Observe
the impact of scaling positive extractions (AP) in
BREJ that shrink N+3:92) je  ANP. Tt facili-
+(AGp)

tates Ay n 7 to boost its confidence, i.e., ANy g
in BREJ suggested by AES that results in higher
#out and recall (Table 5, BREJ).

3.5 Weighting Negatives Vs Scaling Positives

As discussed, Table 5 shows the performance
of BREE, BRET and BREJ with the parameter
wy, = 0.5 in computing extractors’ confidence
enf(\, G)(Eq. 11). In other words, configg (Ta-
ble 5) is combination of both weighted negative
and scaled positive extractions. However, we also
investigate ignoring w,, (= 1.0) in order to demon-
strate the capability of BREJ with only scaling
positives and without weighting negatives. In
Table 10, observe that BREJ outperformed both
BREE and BRET for all the relationships due to
higher #out and recall. In addition, BREJ scores
are comparable to configg (Table 5) suggesting
that the scaling in BREJ is capable enough to re-
move the parameter w,,. However, the combina-
tion of both weighting negatives and scaling posi-
tives results in the state-of-the-art performance.

3.6 Qualitative Inspection of Extractors

Table 11 lists some of the non-noisy extrac-
tors (simplified) learned in different configura-
tions to illustrate boosting extractor confidence
enf(\, G). Since, an extractor A is a cluster of
instances, therefore to simplify, we show one in-
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config;: BREE + sim,a¢ch enf(\, G) configs: BRET + simpatch enf(X, G) confige: BREJ + simy,atch enf()\, G) configig: BREJ + sim33Y™ enf(\, G)
acquired
[X] acquired [Y] 0.98 [X] acquired [Y] 1.00 [X] acquired [Y] 1.00 acquired by [X], [Y] t 0.93
[X] takeover of [Y] 0.89 [X] takeover of [Y] 1.00 [X] takeover of [Y] 0.98 takeover of [X] would boost [Y] s earnings ' 0.90
[X] s planned acquisition of [Y] 0.87 [X] ’s planned acquisition of[ Y] 1.00 [X] ’s planned acquisition of [Y] 0.98 acquisition of [X] by [Y] 1 0.95
[X] acquiring [Y] 0.75 [X] acquiring [Y] 1.00 [X] acquiring [Y] 0.95 [X] acquiring [Y] 0.95
[X] has owned part of [Y] 0.67 [X] has owned part of [Y] 1.00 [X] has owned part of [Y] 0.88 owned by [X] ’s parent [Y] 0.90
[X] took control of [Y] 0.49 [X] ’s ownership of [Y] 1.00 [X] took control of [Y] 0.91 [X] takes control of [Y] 1.00
[X] ’s acquisition of [Y] 0.35 [X] ’s acquisition of [Y] 1.00 [X] ’s acquisition of [Y] 0.95 acquisition of [X] would reduce [Y] ’s share ' 0.90
[X] s merger with [Y] 0.35 [X] s merger with[Y] 1.00 [X] s merger with [Y] 0.94 [X] - [Y] merger between T 0.84
[X] s bid for [Y] 0.35 [X] s bid for [Y] 1.00 [X1 s bid for [Y] 0.97 part of [X] which [Y] acquired T 0.83
founder-of
[X] founder [Y] 0.68 [X] founder [Y] 1.00 [X] founder [Y] 0.99 founder of [X], [Y] ' 0.97
[X] CEO and founder [Y] 0.15 [X] CEO and founder [Y] 1.00 [X] CEO and founder [Y] 0.99 co-founder of [X] 's millennial center , [Y] T 0.94
[X] ’s co-founder [Y] 0.09 [X] owner [Y] 1.00 [X] owner [Y] 1.00 owned by [X] cofounder [Y] 0.95
[X] cofounder [Y] 1.00 [X] cofounder [Y] 1.00 Gates co-founded [X] with school friend [Y] ' 0.99
[X] started by [Y] 1.00 [X] started by [Y] 1.00 who co-founded [X] with [Y] T 0.95
[X] was founded by [Y] 1.00 [X] was founded by [Y] 0.99 to co-found [X] with partner [Y] t 0.68
[X] begun by [Y] 1.00 [X] begun by [Y] 1.00 [X] was started by [Y] , cofounder 0.98
[X] has established [Y] 1.00 [X] has established [Y] 0.99 set up [X] with childhood friend [Y] ¥ 0.96
[X] chief executive and founder [Y] 1.00 [X] co-founder and billionaire [Y] * 0.99 [X] co-founder and billionaire [Y] 0.97
headquartered
[X] headquarters in [Y] 0.95 [X] headquarters in [Y] 1.00 [X] headquarters in [Y] 0.98 [X] headquarters in [Y] 0.98
[X] relocated its headquarters from [Y] 0.94 [X] relocated its headquarters from [Y] 1.00 [X] relocated its headquarters from [Y] 0.98 based at [X] ’s suburban [Y] headquarters 0.98
[X] head office in [Y] 0.84 [X] head office in [Y] 1.00 [X] head office in [Y] 0.87 head of [X] ’s operations in [Y] t 0.65
[X] based in [Y] 0.75 [X] based in [Y] 1.00 [X] based in [Y] 0.98 branch of [X] company based in [Y] 0.98
[X] headquarters building in [Y] 0.67 [X] headquarters building in [Y] 1.00 [X] headquarters building in [Y] 0.94 [X] main campus in [Y] 0.99
[X] headquarters in downtown [Y] 0.64 [X] headquarters in downtown [Y] 1.00 [X] headquarters in downtown [Y] 0.94 [X] headquarters in downtown [Y] 0.96
[X] branch offices in [Y] 0.54 [X] branch offices in [Y] 1.00 [X] branch offices in [Y] 0.98 [X] s [Y] headquarters represented ' 0.98
[X] ’s corporate campus in [Y] 0.51 [X] ’s corporate campus in [Y] 1.00 [X] ’s corporate campus in [Y] 0.99 [X] main campus in [Y] 0.99
[X] s corporate office in [Y] 0.51 [X] s corporate office in [Y] 1.00 [X] s corporate office in [Y] 0.89 [X], [Y] s corporate t 0.94
affiliation

[X] chief executive [Y] 0.92 [X] chief executive [Y] 1.00 [X] chief executive [Y] 0.97 [X] chief executive [Y] resigned monday 0.94
[X] secretary [Y] 0.88 [X] secretary [Y] 1.00 [X] secretary [Y] 0.94 worked with [X] manager [Y] 0.85
[X] president [Y] 0.87 [X] president [Y] 1.00 [X] president [Y] 0.96 [X] voted to retain [Y] as CEO t 0.98
[X] leader [Y] 0.72 [X] leader [Y] 1.00 [X] leader [Y] 0.85 head of [X] , [Y] T 0.99
[X] party leader [Y] 0.67 [X] party leader [Y] 1.00 [X] party leader [Y] 0.87 working with [X], [Y] suggested t 1.00
[X] has appointed [Y] 0.63 [X] executive editor [Y] 1.00 [X] has appointed [Y] 0.81 [X] president [Y] was fired 0.90
[X] player [Y] 0.38 [X] player [Y] 1.00 [X] player [Y] 0.89 [X]s [Y] was fired T 0.43
[X] ’s secretary-general [Y] 0.36 [X] ’s secretary-general [Y] 1.00 [X] ’s secretary-general [Y] 0.93 Chairman of [X] , [Y] ' 0.88
[X] hired [Y] 0.21 [X] director [Y] 1.00 [X] hired [Y] 0.56 [X] hired [Y] as manager ' 0.85

Table 11: Subset of the non-noisy extractors (simplified) with their confidence scores cnf(\, G) learned in different
configurations for each relation. # denotes that the extractor was never learned in config; and configs. { indicates
that the extractor was never learned in config;, configs and configg. [X] and [Y] indicate placeholders for entities.

stance (mostly populated) from every A. Each cell
in Table 11 represents either a simplified represen-
tation of A or its confidence. We demonstrate how
the confidence score of a non-noisy extractor in
BREE (config;) is increased in BREJ (configg and
configyo). For instance, for the relation acquired,
an extractor {/X] acquiring [Y]} is generated by
BREE, BRET and BREJ; however, its confidence
is boosted from 0.75 in BREE (config;) to 0.95
in BREJ (configg). Observe that BRET generates
high confidence extractors. We also show extrac-
tors (marked by ) learned by BREJ with sim,.
(config;p) but not by config;, configs and configg.

3.7 Entity Pairs: Ordered Vs Bi-Set

In Table 5, we use ordered pairs of typed entities.
Additionally, we also investigate using entity sets
and observe improved recall due to higher #out
in both BREE and BREJ, comparing correspond-
ingly Table 12 and 5 (baseline and configo).

4 Conclusion

We have proposed a Joint Bootstrapping Machine
for relation extraction (BREJ) that takes advantage
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. . BREE + simycn BREJ + simpqcn

Relationships

#out P R F1| #out P R F1

acquired | 2786 .90 .50 .64 | 21733 .80 .87 .83

founder-of | 543 1.0 .67 .80 | 31890 .80 .99 .89

headquartered | 16832 .62 .81 .70 | 52286 .64 .94 .76

affiliation | 21812 .99 .74 .85 | 42601 96 .85 .90

avg | 10493 .88 .68 .75 | 37127 .80 91 .85

Table 12: BREX+simp,ecn:Scores with entity bisets

of both entity-pair-centered and template-centered
approaches. We have demonstrated that the joint
approach scales up positive instances that boosts
the confidence of NNLC extractors and improves
recall. The experiments showed that the cross-
context similarity measures improved recall and
suggest removing in total four parameters.
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Abstract

Past work in relation extraction mostly focuses on binary re-
lation between entity pairs within single sentence. Recently,
the NLP community has gained interest in relation extrac-
tion in entity pairs spanning multiple sentences. In this paper,
we propose a novel architecture for this task: inter-sentential
dependency-based neural networks (iDepNN). iDepNN mod-
els the shortest and augmented dependency paths via recur-
rent and recursive neural networks to extract relationships
within (intra-) and across (inter-) sentence boundaries. Com-
pared to SVM and neural network baselines, iDepNN is more
robust to false positives in relationships spanning sentences.
We evaluate our models on four datasets from newswire
(MUC6) and medical (BioNLP shared task) domains that
achieve state-of-the-art performance and show a better bal-
ance in precision and recall for inter-sentential relationships.
We perform better than 11 teams participating in the BioNLP
shared task 2016 and achieve a gain of 5.2% (0.587 vs 0.558)
in I over the winning team. We also release the cross-
sentence annotations for MUC6.

Introduction

The task of relation extraction (RE) aims to identify seman-
tic relationship between a pair of nominals or entities e/ and
e2 in a given sentence S. Due to a rapid growth in infor-
mation, it plays a vital role in knowledge extraction from
unstructured texts and serves as an intermediate step in a va-
riety of NLP applications in newswire, web and high-valued
biomedicine (Bahcall 2015) domains. Consequently, there
has been increasing interest in relation extraction, particu-
larly in augmenting existing knowledge bases.

Progress in relation extraction is exciting; however most
prior work (Zhang et al. 2006; Kambhatla 2004; Vu et al.
2016a; Gupta, Schiitze, and Andrassy 2016) is limited to
single sentences, i.e., intra-sentential relationships, and ig-
nores relations in entity pairs spanning sentence boundaries,
i.e., inter-sentential. Thus, there is a need to move beyond
single sentences and devise methods to extract relationships
spanning sentences. For instance, consider the sentences:

Paul Allen has started a company and named [Vern Raburn].
its President. The company, to be called [Paul Allen Group],, will
be based in Bellevue, Washington.

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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The two sentences together convey the fact that the entity
el is associated with e2, which cannot be inferred from ei-
ther sentence alone. The missed relations impact the system
performance, leading to poor recall. But precision is equally
important; e.g., in high-valued biomedicine domain, signif-
icant inter-sentential relationships must be extracted, espe-
cially in medicine that aims toward accurate diagnostic test-
ing and precise treatment, and extraction errors can have se-
vere negative consequences. In this work, we present a neu-
ral network (NN) based approach to precisely extract rela-
tionships within and across sentence boundaries, and show a
better balance in precision and recall with an improved .

Previous work on cross-sentence relation extraction used
coreferences to access entities that occur in a different sen-
tence (Gerber and Chai 2010; Yoshikawa et al. 2011) with-
out modeling inter-sentential relational patterns. Swampillai
and Stevenson (2011) described a SVM-based approach to
both intra- and inter-sentential relations. Recently, Quirk and
Poon (2016) applied distant supervision to cross-sentence
relation extraction of entities using binary logistic regres-
sion (non-neural network based) classifier and Peng et al.
(2017) applied sophisticated graph long short-term memory
networks to cross-sentence n-ary relation extraction. How-
ever, it still remains challenging due to the need for corefer-
ence resolution, noisy text between the entity pairs spanning
multiple sentences and lack of labeled corpora.

Bunescu and Mooney (2005), Nguyen, Matsuo, and
Ishizuka (2007) and Mintz et al. (2009) have shown that
the shortest dependency path (SDP) between two entities
in a dependency graph and the dependency subtrees are the
most useful dependency features in relation classification.
Further, Liu et al. (2015) developed these ideas using Re-
cursive Neural Networks (RecNNs, Socher et al. (2014)) and
combined the two components in a precise structure called
Augmented Dependency Path (ADP), where each word on
a SDP is attached to a dependency subtree; however, lim-
ited to single sentences. In this paper, we aspire from these
methods to extend shortest dependency path across sentence
boundary and effectively combine it with dependency sub-
trees in NN that can capture semantic representation of the
structure and boost relation extraction spanning sentences.

The contributions are: (1) Introduce a novel dependency-
based neural architecture, named as inter-sentential
Dependency-based Neural Network (iDepNN) to extract re-
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boundary. Connection between the roots of adjacent sentences by NEXTS.

lations within and across sentence boundaries by modeling
shortest and augmented dependency paths in a combined
structure of bidirectional RNNs (biRNNs) and RecNNss. (2)
Evaluate different linguistic features on four datasets from
newswire and medical domains, and report an improved
performance in relations spanning sentence boundary. We
show amplified precision due to robustness towards false
positives, and a better balance in precision and recall.
We perform better than 11 teams participating in in the
BioNLP shared task 2016 and achieve a gain of 5.2%
(0.587 vs 0.558) in F; over the winning team. (3) Release
relation annotations for the MUC6 dataset for intra- and
inter-sentential relationships. Code, data and supplemen-
tary are available at https://github.com/pgcool/
Cross—sentence-Relation-Extraction—iDepNN.

Methodology

Inter-sentential Dependency-Based Neural
Networks (iDepNN)

Dependency-based neural networks (DepNN) (Bunescu and
Mooney 2005; Liu et al. 2015) have been investigated for re-
lation extraction between entity pairs limited to single sen-
tences, using the dependency information to explore the se-
mantic connection between two entities. In this work, we
introduce iDepNN, the inter-sentential Dependency-based
Neural Network, an NN that models relationships between
entity pairs spanning sentences, i.e., inter-sentential within
a document. We refer to the iDepNN that only models the
shortest dependency path (SDP) spanning sentence bound-
ary as iDepNN-SDP and to the iDepNN that models aug-
mented dependency paths (ADPs) as iDepNN-ADP; see be-
low. biRNNs (bidirectional RNNs, Schuster and Paliwal
(1997)) and RecNNs (recursive NNs, Socher et al. (2012))
are the backbone of iDepNN.

Modeling Inter-sentential Shortest Dependency Path
(iDepNN-SDP): We compute the inter-sentential Shortest
Dependency Path (iISDP) between entities spanning sen-
tence boundaries for a relation. To do so, we obtain the de-
pendency parse tree for each sentence using the Stanford-
CoreNLP dependency parser (Manning et al. 2014). We then
use NetworkX (Hagberg, Swart, and S Chult 2008) to rep-
resent each token as a node and the dependency relation as
a link between the nodes. In the case of multiple sentences,

the root node of the parse tree of a sentence is connected to
the root of the subsequent tree, leading to the shortest path
from one entity to another across sentences.

Figure 1 (Left) shows dependency graphs for the exam-
ple sentences where the two entities e/ and e2 appear in
nearby sentences and exhibit a relationship. Figure 1 (Right)
illustrates that the dependency trees of the two adjacent sen-
tences and their roots are connected by NEXTS to form an
iSDP, an inter-Sentential Dependency Path, (highlighted in
gray) between the two entities. The shortest path spanning
sentence boundary is seen as a sequence of words between
two entities. Figure 2 shows how a biRNN (Schuster and
Paliwal 1997; Vu et al. 2016b) uses iSDP to detect relation
between e/ and e2, positioned one sentence apart.

Modeling Inter-sentential Dependency Subtrees: To ef-
fectively represent words on the shortest dependency path
within and across sentence boundary, we model dependency
subtrees assuming that each word w can be seen as the word
itself and its children on the dependency subtree. The notion
of representing words using subtree vectors within the de-
pendency neural network (DepNN) is similar to (Liu et al.
2015); however, our proposed structures are based on iISDPs
and ADPs that span sentences.

To represent each word w on the subtree, its word em-
bedding vector x,, € R? and subtree representation c,, €
R are concatenated to form its final representation p,, €
RA4+d" We use 200-dimensional pretrained GloVe embed-
dings (Pennington, Socher, and Manning 2014). The sub-
tree representation of a word is computed through recur-
sive transformations of the representations of its children
words. A RecNN is used to construct subtree embedding c,,,
traversing bottom-up from its leaf words to the root for en-
tities spanning sentence boundaries, as shown in Figure 2.
For a word which is a leaf node, i.e., it does not have a sub-
tree, we set its subtree representation as cppar. Figure 2
illustrates how subtree-based word representations are con-
structed via iSDP.

Each word is associated with a dependency relation 7,
e.g., r = dobj, during the bottom-up construction of the sub-
tree. For each r, a transformation matrix W, € R4 x(d+d)
is learned. The subtree embedding is computed as:

cw = f( WR(w,q) Pq + b) and pg = [%4, ¢4]
geChildren(w)
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where Ry q) is the dependency relation between word w

and its child word g and b € R? is a bias. This process
continues recursively up to the root word such as the word
“named” on the iSDP in the figure.

Modeling Inter-sentential Augmented Dependency
Path (iDepNN-ADP): Following Liu et al. (2015), we com-
bine the two components: iSDP and dependency subtrees
spanning sentence boundaries to form a combined structure
which we name as inter-sentential Augmented Dependency
Path (iDepNN-ADP). As shown in Figure 2, each word on
iSDP is attached to its subtree representation c,,. An at-
tached subtree enriches each word on the iSDP with addi-
tional information about how this word functions in specific
sentence to form a more precise structure for classifying re-
lationships within and across sentences.

To capture the semantic representation of iDepNN-ADP,
we first adopt a RecNN to model the dependency subtrees
for each word on the iSDP. Then, we design a biRNN to ob-
tain salient semantic features on the iSDP. The overall struc-
ture of iDepNN-ADP (Figure 2) is built upon the combina-
tion of recursive and recurrent NNs spanning sentences.

Learning: We develop a biRNN over the two structures:
iDepNN-SDP and iDepNN-ADP, and pass the last hidden
vector hy (in the iSDP word sequence, Figure 2) to a soft-
max layer whose output is the probability distribution y over
relation labels R, as y = softmax(U - hy + b,) where
U e REXH is the weight matrix connecting hidden vector
of dimension H to output of dimension R and b, € R is
the bias. h is the last hidden vector of the biRNN.

To compute semantic representation h,, for each word w
on the iSDP, we adopt the Connectionist biRNN (Vu et al.
2016a) that combines the forward and backward pass by
adding their hidden layers (hy, and hy,) at each time step
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t and also adds a weighted connection to the previous com-
bined hidden layer h;_; to include all intermediate hidden
layers into the final decision.

hfr, = f(Vit +W.hft—1)
hbt = f(V . ith_H + W - hbt+1)
h; = f(hy, + hy, + W -h;_;)

where V e R * |i‘, N is the total number of words on iSDP
and i, the input vector at ¢, defined by:

lDCpNN-SDP : it = [Xt, Lf] lDepNN-ADP . if/ = [Pt’ Lf]
where L; are lexical level features (e.g., part-of-speech tag,
position indicators, entity types) for each word at ¢. Observe,
in order to minimize the number of parameters, we share the
same weight matrix W in three parts: forward pass, back-
ward pass and combination of both. The optimization ob-
jective is to minimize the cross-entropy error between the
ground-truth label and softmax output. The parameters are
learned using backpropagation (Werbos 1990).

Key Features: The features focus on characteristics of the
full sentence, dependency path or individual entities. The
various features used in our experiments are: (1) Position-
Indicator (PI): A one-hot vector for SVM which indicates
the position of the entity in the vocabulary. Four additional
words (<e;>, </e;>, <ea>, </ez>) to mark start and end
of entity mentions e/ and e2, used in NNs. See details about
PI in Gupta (2015). (2) Entity Types (ET): A one-hot vector
to represent the entity type in SVM and embedding vectors
in NNs. (3) Part-of-speech (POS): A bag-of-words (BoW)
in SVM and embedding vector for each POS type in NNs.
(4) Dependency: In SVM, the specific edge types in the de-
pendency path are captured with a BoW vector, similar to



Relation Intra Inter Relation Intra Inter
BioNLP ST 2011 (Medical) BioNLP ST 2013 (Medical)
PartOf 99 103 PartOf 104 83
Localization 261 732 Localization 246 677
Total 360 835 (70%) Total 350 760 (69%)
BioNLP ST 2016 (Medical) MUC6 (News)
Lives_In 363 135 Per-Org 245 112
Per-Post 407 66
Org-Post 268 113
Total 363 135 (27%) Total 920 291 (24%)

Table 1: Count of intra- and inter-sentential relationships in
datasets (train+dev) from two domains

Grouin (2016). In NN, it refers to iDepNN-ADP. (5) [inter-
sentential-]1Shortest-Dependency-Path ([i-]SDP): Sequence
of Words on the [i-]SDP.

Evaluation and Analysis

Dataset. We evaluate our proposed methods on four datasets
from medical and news domain. Table 1 shows counts of
intra- and inter-sentential relationships. The three medi-
cal domain datasets are taken from the BioNLP shared
task (ST) of relation/event extraction (Bossy et al. 2011;
Nédellec et al. 2013; Deléger et al. 2016). We compare our
proposed techniques with the systems published at these
venues. The Bacteria Biotope task (Bossy et al. 2011) of the
BioNLP ST 2011 focuses on extraction of habitats of bacte-
ria, which is extended by the BioNLP ST 2013 (Nédellec et
al. 2013), while the BioNLP ST 2016 focuses on extraction
of Lives_in events. We have standard train/dev/test splits for
the BioNLP ST 2016 dataset, while we perform 3-fold cross-
validation! on BioNLP ST 2011 and 2013. For BioNLP ST
2016, we generate negative examples by randomly sampling
co-occurring entities without known interactions. Then we
sample the same number as positives to obtain a balanced
dataset during training and validation for different sentence
range. See supplementary for further details.

The MUC6 (Grishman and Sundheim 1996) dataset con-
tains information about management succession events from
newswire. The task organizers provided a training corpus
and a set of templates that contain the management suc-
cession events, the names of people who are starting or
leaving management posts, the names of their respective
posts and organizations and whether the named person is
currently in the job. Entity Tagging: We tag entities Per-
son (Per), Organization (Org) using Stanford NER tagger
(Finkel, Grenager, and Manning 2005). The entity type Po-
sition (Post) is annotated based on the templates. Relation
Tagging: We have three types of relations: Per-Org, Per-Post
and Post-Org. We follow Swampillai and Stevenson (2010)
and annotate binary relations (within and across sentence
boundaries) using management succession events between
two entity pairs. We randomly split the collection 60/20/20
into train/dev/test.

Experimental Setup. For MUC6, we use the pretrained

'the official evaluation is not accessible any more and therefore,
the annotations for their test sets are not available

Dataset: BioNLP ST 2016

Features SVM iDepNN

P R £ P R K
iSDP 217 816 344 | 352 574 436
+PI+ET 218 819 344 | 340 593 432
+POS 269 749 396 | 348 568 431

+ Dependency | .284 746 411 | 402 .509 .449
Dataset: MUC6

SVM iDepNN
Features
P R F P R Fy
iSDP .689 .630 .627 | 916 912 913
+ PI 799 741 725 | 912 909 909
+ POS 794 765 761 | 928 926 926

+ Dependency | .808 .768 .764 | 937 934 .935

Table 2: SVM vs iDepNN: Features in inter-sentential
(k<1) training and inter-sentential (k < 1) evaluation.
iSDP+Dependency refers to iDepNN-ADP structure.

GloVe (Pennington, Socher, and Manning 2014) embed-
dings (200-dimension). For the BioNLP datasets, we use
200-dimensional embedding? vectors from six billion words
of biomedical text (Moen and Ananiadou 2013). We ran-
domly initialize a 5-dimensional vectors for PI and POS. We
initialize the recurrent weight matrix to identity and biases
to zero. We use the macro-averaged Fj score (the official
evaluation script by SemEval-2010 Task 8 (Hendrickx et al.
2010)) on the development set to choose hyperparameters
(see supplementary). To report results on BioNLP ST 2016
test set, we use the official web service?.

Baselines. Swampillai and Stevenson’s (2010) annota-
tion of MUCS intra- and inter-sentential relationships is not
available. They investigated SVM with dependency and lin-
guistic features for relationships spanning sentence bound-
aries. In BioNLP shared tasks, the top performing systems
are SVM-based and limited to relationships within single
sentences. As an NN baseline, we also develop Connection-
ist biRNN (Vu et al. 2016a) that spans sentence boundaries;
we refer to it as i-biRNN (architecture in supplementary).
Similarly, we also investigate using a bidirectional LSTM (i-
biLSTM). As a competitive baseline in the inter-sentential
relationship extraction, we run* graphLSTM (Peng et al.
2017). This work compares SVM and graphLSTM with i-
biRNN, i-biLSTM, iDepNN-SDP and iDepNN-ADP for dif-
ferent values of the sentence range parameter & (the distance
in terms of the number of sentences between the entity pairs
for a relation) , i.e., k (=0, < 1, < 2and < 3).

Contribution of different components. Table 2 shows
the contribution of each feature, where both training and
evaluation is performed over relationships within and across
sentence boundaries for sentence range parameter k<1.
Note: iISDP+Dependency refers to iDepNN-ADP structure

http://bio.nlplab.org/

‘http://bibliome. jouy.inra.fr/demo/
BioNLP-ST-20l6-Evaluation/index.html

*hyperparameters in supplementary
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train Evaluation for different values of sentence range %
param Model k= k<1 k<2 k<3
pr P R Fy pr P Fy pr P R Fy pr P R P
SVM 363 474 512 492 | 821 249 606 354 | 1212 199 678 296 | 1517 153 .684 250
graphLSTM || 473 472 668 554 | 993 213 .632 319 | 1345 .166 .660 .266 | 2191 .121 814 218
k=0 | i-biLSTM | 480 475 674 .556 | 998 220 .652 328 | 1376 .165 .668 265 | 1637 .132 .640 219
i-biRNN 286 517 437 474 | 425 301 378 335 | 540 249 398 307 | 570 239 401 299
iDepNN-SDP || 297 519 457 486 | 553 313 .510 388 | 729 240 518 .328 | 832 209 .516 .298
iDepNN-ADP || 266 .526 414 467 | 476 311 438 364 | 607 251 447 320 | 669 226 .447 300
SVM 471 464 645 540 | 888 284 746 411 | 1109 238 779 365 | 1196 221 779 344
graphLSTM || 406 502 .607 .548 | 974 226 .657 .336 | 1503 .165 .732 268 | 2177 .126 813 218
E<1 | ibiLSTM || 417 505 .628 .556 | 1101 .224 730 343 | 1690 .162 818 273 | 1969 .132 772 226
i-biRNN 376 489 544 515 | 405 393 469 427 | 406 391 469 426 | 433 369 472 414
iDepNN-SDP || 303 561 .503 .531 | 525 358 .555 435 | 660 292 569 .387 | 724 265 .568 .362
iDepNN-ADP | 292 .570 491 .527 | 428 .402 509 .449 | 497 356 .522 .423 | 517 341 521 .412
SVM 495 461 675 547 | 1016 259 780 389 | 1296 218 .834 345 | 1418 .199 .834 321
graphLSTM || 442 485 637 .551 | 1016 .232 .702 347 | 1334 .182 723 292 | 1758 .136 .717 .230
E<2 | i-biLSTM | 404 487 582 531 | 940 245 .682 360 | 1205 .185 .661 289 | 2146 .128 .816 .222
i-biRNN 288 566 482 521 | 462 376 515 435 | 556 318 524 396 | 601 .296 525 378
iDepNN-SDP || 335 537 531 534 | 633 319 .598 416 | 832 258 .634 .367 | 941 228 .633 .335
iDepNN-ADP || 309 .538 493 514 | 485 365 .525 .431 | 572 320 .542 402 | 603 .302 .540 .387
SVM 507 458 .686 549 | 1172 234 811 363 | 1629 .186 .894 308 | 1874 .162 .897 275
graphLSTM || 429 491 624 550 | 1082 230 .740 351 | 1673 .167 .833 280 | 2126 .124 787 214
E<3 | i-biLSTM | 417 478 582 526 | 1142 224 758 345 | 1218 .162 .833 273 | 2091 .128 .800 .223
i-biRNN 405 464 559 507 | 622 324 601 422 | 654 310 .604 410 | 655 311 .607 .410
iDepNN-SDP || 351 533 552 542 | 651 315 .605 414 | 842 251 .622 357 | 928 227 .622 .333
iDepNN-ADP || 313 553 512 532 | 541 .355 568 437 | 654 315 .601 415 | 687 .300 .601 .401
k<1 [ ensemble | 480 478 680 .561 | 837 311 .769 443 [ 1003 268 .794 401 | 1074 252 797 382

Table 3: BioNLP ST 2016 Dataset: Performance of the intra-and-inter-sentential training/evaluation for different k. Underline:
Better precision by iDepNN-ADP over iDepNN-SDP, graphLSTM and SVM. Bold: Best in column. pr: Count of predictions

that exhibits a better precision, F; and balance in precision
and recall, compared to SVM. See supplementary for feature
analysis on BioNLP ST 2011 /2013.

State-of-the-Art Comparisons

BioNLP ST 2016 dataset: Table 3 shows the perfor-
mance of {SVM, graphLSTM} vs {i-biRNN, iDepNN-SDP,
iDepNN-ADP} for relationships within and across sentence
boundaries. Moving left to right for each training parameter,
the recall increases while precision decreases due to increas-
ing noise with larger k. In the inter-sentential evaluations
(k < 1,< 2,< 3 columns) for all the training parameters,
the iDepNN variants outperform both SVM and graphLSTM
in terms of F and maintain a better precision as well as bal-
ance in precision and recall with increasing k; e.g., at k < 1
(train/eval), precision and F} are (.402 vs .226) and (.449 vs
.336), respectively for (iDepNN-ADP vs graphLSTM). We
find that SVM mostly leads in recall.

In comparison to graphLSTM, i-biRNN and i-biLSTM,
we observe that iDepNN-ADP offers precise structure in re-
lation extraction within and across sentence boundaries. For
instance, at training k£ < 1 and evaluation k£ = 0, iDepNN-
ADP reports precision of .570 vs .489 and .561 in i-biRNN
and iDepNN-SDP, respectively. During training at £ < 1,
iDepNN-SDP and iDepNN-ADP report better F; than i-
biRNN for evaluations at all k, suggesting that the shortest
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ensemble (train k < 1 and evaluation k = 0)
Dev (official scores) Test (official scores)
pr P R 1 pr P R P

threshold

p=085 | 160 .694 514 591 | 419 .530 .657 .587
p=090 | 151 .709 496 583 | 395 .539 .630 .581
p=095 | 123 740 419 535 | 293 573 497 533

Table 4: Ensemble scores at various thresholds for BioNLP
ST 2016 dataset. p: output probability

and augmented paths provide useful dependency features via
recurrent and recursive compositions, respectively. Between
the proposed architectures iDepNN-SDP and iDepNN-ADP,
the former achieves higher recall for all k. We find that the
training at k < 1 is optimal for intra- and inter-sentential re-
lations over development set (see supplementary). We also
observe that i-biRNN establishes a strong NN baseline for
relationships spanning sentences. The proposed architec-
tures consistently outperform graphLSTM in both precision
and F} across sentence boundaries.

Ensemble: We exploit the precision and recall bias of
the different models via an ensemble approach, similar to
TurkuNLP (Mehryary et al. 2016) and UMS (Deléger et al.
2016) systems that combined predictions from SVM and
NNs. We aggregate the prediction outputs of the neural (i-
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Figure 3: Left: SVM, graphLSTM & iDepNN-ADP on BioNLP ST 2016: Performance analysis on relations that span sentence
boundaries, with different sentence range parameters Right: BioNLP 2016 ST dataset (official results on test set): Comparison
with the published systems in the BioNLP ST, where pr is the count of predictions. This work demonstrates a better balance in
precision and recall, and achieves the highest F; and recall. We extract 419 predictions within and across sentence boundaries,
which is closer to the count of gold predictions, i.e., 340 (Deléger et al. 2016).

biRNN, iDepNN-SDP and iDepNN-ADP) and non-neural
(SVM) classifiers, i.e., a relation to hold if any classifier has
predicted it. We perform the ensemble scheme on the devel-
opment and official test sets for intra- and inter-sentential
(optimal at k& < 1) relations. Table 3 shows the ensemble
scores on the official test set for relations within and across
sentence boundaries, where ensemble achieves the highest
F1 (.561) over individual models.

Confident Extractions: We consider the high confidence
prediction outputs by the different models participating in
the ensemble, since it lacks precision (.478). Following Peng
et al. (2017), we examine three values of the output proba-
bility p, i.e., (= 0.85,0.90 and 0.95) of each model in the
ensemble. Table 4 shows the ensemble performance on the
development and official test sets, where the predictions with
p = 0.85 achieve the state-of-the-art performance and rank
us at the top out of 11 systems (Figure 3, right).

This Work vs Competing Systems in BioNLP ST 2016: As
shown in Figure 3 (right), we rank at the top and achieve a
gain of 5.2% (.587 vs .558) in F; compared to VERSE. We
also show a better balance in precision and recall, and report
the highest recall compared to all other systems. Most sys-
tems do not attempt to predict relations spanning sentences.
The most popular algorithms are SVM (VERSE, HK, UTS,
LIMSI) and NNs (TurkuNLP, WhuNIpRE, DUTIR). UMS
combined predictions from an SVM and an NN. Most sys-
tems rely on syntactic parsing, POS, word embeddings and
entity recognition features (VERSE, TurkuNLP, UMS, HK,
DUTIR, UTS). VERSE and TurkuNLP obtained top scores

on intra-sentential relations relying on the dependency path
features between entities; however they are limited to intra-
sentential relations. TurkuNLP employed an ensemble of 15
different LSTM based classifiers. DUTIR is based on CNN
for intra-sentential relationsips. LIMSI is the only system
that considers inter-sentential relationships during training;
however it is SVM-based and used additional manually an-
notated training data, linguistic features using biomedical re-
sources (PubMed, Cocoa web API, OntoBiotope ontology,
etc.) and post-processing to annotate biomedical abbrevia-
tions. We report a noticeable gain of 21% (.587 vs .485) in
F with an improved precision and recall over LIMSI.

BioNLP ST 2011 and 2013 datasets: Following the
BioNLP ST 2016 evaluation, we also examine two addi-
tional datasets from the same domain. iDepNN-ADP (Ta-
ble 5) is the leading performer in terms of precision and F}
within and across boundaries for BioNLP ST 2013. Examin-
ing BioNLP ST 2011, the iDepNN variants lead both SVM
and i-biRNN for £ < 1 and k < 2.

MUCG dataset: Similar to BioNLP ST 2016, we perform
training and evaluation of SVM, i-biRNN, iDepNN-SDP
and iDepNN-ADP for different sentence range with best fea-
ture combination (Table 2) using MUC6 dataset. Table 6
shows that both iDepNN variants consistently outperform
graphLSTM and SVM for relationships within and across
sentences. For within (k=0) sentence evaluation, iDepNN-
ADP reports .963 F}, compared to .779 and .783 by SVM
and graphLSTM, respectively. iDepNN-ADP is observed
more precise than iDepNN-SDP and graphLSTM with in-
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Dataset: BioNLP ST 2013 Dataset: BioNLP ST 2011

Model k=0 k<1 k<2 k<3 k=0 k<1 k<2 k<3
P R F|P RF|P RF|P RF|P RRKR|PRFR|PRPFEF|PRER
SVM 95 .90 .92[.87 .83 .85[.95 .90 .92[.95 .90 .92 .98 .96 .97|.87 .87 .87|.95 .94 .94]|.91 .88 .90
graphLSTM ||.98 .97 .97|.94 .95 .94|.95 .89 .92(.90 .97 .93 (.99 .99 .99|.95 .98 .96(.95 .97 .96|.96 .92 .93
" i-biLSTM  ||.98 .97 97|.96 .95 .95(.93 .96 .94[.91 .93 .92 .99 99 .99(.95 98 .96|.96 .97 96|.95 92 .93
i-biRNN  ||.95 94 .94|.93 90 .91|.94 92 .93|.94 84 89 .97 .99 .98|.88 .94 .90(.92 .94 .93(.96 .96 .96
iDepNN-SDP || .94 .96 .95|.94 .95 94|.87 92 .89|.91 .94 92| .97 .99 98(.96 .92 .93(.97 .97 .97|.94 91 .92
iDepNN-ADP || .99 .98 .99(.97 .94 .95|.98 .95 .96.96 .91 .93|[.97 97 .97(.93 96 94 |.92 .98 .95|.93 .94 .93

Table 5: BioNLP ST 2011 and 2013 datasets: Performance for training (k¥ < 1) and evaluation for different k. Underline: Better
precision in iDepNN-ADP than iDepNN-SDP, graphLLSTM, i-biLSTM, i-biRNN and SVM. Bold: best in column.

train Evaluation for different &

param Model k=0 k<1 k<3
P R FA| P R FL|P R F
SVM 796 765 .760|.775 762 .759|.791 779 .776
k= | ErOphLSTM || 910 857 880| 867 897 870870 867 870,
i-biLSTM 917 .837 .873|.833 .896 .863|.853 .87 0 .863
i-biRNN 875 .859 .864|.828 .822 .824|.830 .827 .827
iDepNN-SDP ||.958 .948 .952|.934 .928 .930{.935 .930 .932
iDepNN-ADP ||.933 927 .929|.924 .920 .921|.930 .927 .927
SVM 815 772 .769|.808 .768 .764|.802 .775 .770
k<1 | £raphLSTM | 730 900 783|.727 907 773|730 913 770
i-biLSTM [|.760 .880 .780|.670 .950 .767|.697 .937 .770
i-biRNN 925 .934 .927|.870 .872 .860|.868 .866 .858
iDepNN-SDP ||.949 .945 .946|.928 .926 .926|.934 .932 .932
iDepNN-ADP [|.961 .955 .957|.937 .934 .935|.942 .940 .940
SVM .840 .785 .779|.816 .779 .774|.822 .788 .781
k<3 | EOPhLSTM [|737 907 783|703 927 773710 927 767,
i-biLSTM ||.720 .920 .780|.680 .943 .770(.700 .932 .770
i-biRNN 944 934 .938|.902 .890 .895(.926 .923 .924
iDepNN-SDP |.956 .947 .951|.920 .916 .917|.939 .938 .936
iDepNN-ADP ||.965 .963 .963|.933 .933 .931|.939 .938 .936

Table 6: MUC6 Dataset: Performance over the intra- and
inter-sentential training and evaluation for different k.
Underline signifies better precision by iDepNN-ADP over
iDepNN-SDP, graphLLSTM, i-biLSTM, i-biRNN and SVM.
Bold indicates the best score column-wise.

creasing k, e.g., at k<3. Training at sentence range k<1 is
found optimal in extracting inter-sentential relationships.

Error Analysis and Discussion

In Figure 3 (left), we analyze predictions using different val-
ues of sentence range k (=0, <1, <2 and <3) during both
training and evaluation of SVM, graphLSTM and iDepNN-
ADP for BioNLP ST 2016 dataset. For instance, an SVM
(top-left) is trained for intra-sentential (same sentence) rela-
tions, while iDepNN-ADP (bottom-right) for both intra- and
inter-sentential spanning three sentences (three sentences
apart). We show how the count of true positives (TP), false
negatives (FN) and false positives (FP) varies with k.
Observe that as the distance of the relation increases, the
classifiers predict larger ratios of false positives to true pos-
itives. However, as the sentence range increases, iDepNN-
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ADP outperforms both SVM and graphLSTM due to fewer
false positives (red colored bars). On top, the ratio of FP to
TP is better in iDepNN-ADP than graphLSTM and SVM for
all values of k. Correspondingly in Table 3, iDepNN-ADP
reports better precision and balance between precision and
recall, signifying its robustness to noise in handling inter-
sentential relationships.

iDepNN vs graphLSTM: Peng et al. (2017) focuses on
general relation extraction framework using graphLSTM
with challenges such as potential cycles in the document
graph leading to expensive model training and difficulties in
convergence due to loopy gradient backpropagation. There-
fore, they further investigated different strategies to back-
propagate gradients. The graphLSTM introduces a number
of parameters with a number of edge types and thus, requires
abundant supervision/training data. On other hand, our work
introduces simple and robust neural architectures (iDepNN-
SDP and iDepNN-ADP), where the iDepNN-ADP is a spe-
cial case of document graph in form of a parse tree spanning
sentence boundaries. We offer a smooth gradient backprop-
agation in the complete structure (e.g., in iDepNN-ADP via
recurrent and recursive hidden vectors) that is more efficient
than graphLSTM due to non-cyclic (i.e., tree) architecture.
We have also shown that iDepNN-ADP is robust to false
positives and maintains a better balance in precision and re-
call than graphL.STM for inter-sentential relationships (Fig-
ure 3).

Conclusion

We have proposed to classify relations between entities
within and across sentence boundaries by modeling the
inter-sentential shortest and augmented dependency paths
within a novel neural network, named as inter-sentential
Dependency-based Neural Network (iDepNN) that takes ad-
vantage of both recurrent and recursive neural networks
to model the structures in the intra- and inter-sentential
relationships. Experimental results on four datasets from
newswire and medical domains have demonstrated that
iDepNN is robust to false positives, shows a better balance in
precision and recall and achieves the state-of-the-art perfor-
mance in extracting relationships within and across sentence
boundaries. We also perform better than 11 teams participat-
ing in the BioNLP shared task 2016.
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Abstract

Dynamic topic modeling facilitates the iden-
tification of topical trends over time in tem-
poral collections of unstructured documents.
We introduce a novel unsupervised neural dy-
namic topic model named as Recurrent Neural
Network-Replicated Softmax Model (RNN-
RSM), where the discovered topics at each
time influence the topic discovery in the sub-
sequent time steps. We account for the tempo-
ral ordering of documents by explicitly mod-
eling a joint distribution of latent topical de-
pendencies over time, using distributional es-
timators with temporal recurrent connections.
Applying RNN-RSM to 19 years of articles
on NLP research, we demonstrate that com-
pared to state-of-the art topic models, RNN-
RSM shows better generalization, topic inter-
pretation, evolution and trends. We also intro-
duce a metric (named as SPAN) to quantify the
capability of dynamic topic model to capture
word evolution in topics over time.

1 Introduction

Topic Detection and Tracking (Allan et al., 1998)
is an important area of natural language process-
ing to find topically related ideas that evolve over
time in a sequence of text collections and exhibit
temporal relationships. The temporal aspects of
these collections can present valuable insight into
the topical structure of the collections and can be
quantified by modeling the dynamics of the under-
lying topics discovered over time.

Problem Statement: We aim to generate tem-
poral topical trends or automatic overview time-
lines of topics for a time sequence collection of
documents. This involves the following three tasks
in dynamic topic analysis: (1) Topic Structure De-
tection (TSD): Identifying main topics in the doc-
ument collection. (2) Topic Evolution Detection
(TED): Detecting the emergence of a new topic
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Figure 1: (Left): Word Usage over time for Topic
(Word Representation) in scholarly articles. (Right):
RSM-based dynamic topic model with explicit tempo-
ral topic dependence

and recognizing how it grows or decays over time
(Allan, 2002). (3) Temporal Topic Characteriza-
tion (TTC): Identifying the characteristics for each
of the main topics in order to track the words’ us-
age (keyword trends) for a topic over time i.e. fopi-
cal trend analysis for word evolution (Fig 1, Left).

Probabilistic static topic models, such as La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
and its variants (Wang and McCallum, 2006; Hall
et al., 2008; Gollapalli and Li, 2015) have been
investigated to examine the emergence of top-
ics from historical documents. Another vari-
ant known as Replicated Softmax (RSM) (Hinton
and Salakhutdinov, 2009) has demonstrated bet-
ter generalization in log-probability and retrieval,
compared to LDA. Prior works (Iwata et al., 2010;
Pruteanu-Malinici et al., 2010; Saha and Sind-
hwani, 2012; Schein et al., 2016) have investigated
Bayesian modeling of topics in time-stamped doc-
uments. Particularly, Blei and Lafferty (2006)
developed a LDA based dynamic topic model
(DTM) to capture the evolution of topics in a time
sequence collection of documents; however they
do not capture explicitly the topic popularity and
usage of specific terms over time. We propose a
family of probabilistic time series models with dis-
tributional estimators to explicitly model the dy-
namics of the underlying topics, introducing tem-
poral latent topic dependencies (Fig 1, Right).

To model temporal dependencies in high dimen-
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Figure 2: (Left): RSM for a document V,, of D,,=3 words (w). The bottom layer represents the softmax visible
units, that share the same set of weights connected to binary hidden units h. (Middle): Interpretation of RSM
in which D,, softmax units with identical weights are replaced by a single multinomial unit, sampled D,, times.
(Right): Graphical structure of 2-layered RNN-RSM, unfolded in time. Single and double headed arrows represent
deterministic and stochastic-symmetric connections, respectively. V® and h® are binary visible and hidden
layers of RSM for a document collection at time, ¢. u is RNN hidden layer. k: dictionary index for a word w

sional sequences, such as polyphonic music, the
temporal stack of RBMs (Smolensky, 1986; Hin-
ton, 2002) has been investigated to model com-
plex distributions. The Temporal RBM (Taylor
et al., 2007; Sutskever and Hinton, 2007), Recur-
rent Temporal RBM (RTRBM) (Sutskever et al.,
2009) and RNN-RBM (Boulanger-Lewandowski
et al., 2012) show success in modeling the tem-
poral dependencies in such symbolic sequences.
In addition, RNNs (Gupta et al., 2015a; Vu et al.,
2016a,b; Gupta et al., 2016) have been recognized
for sentence modeling in natural language tasks.
We aspire to build neural dynamic topic model
called RNN-RSM to model document collections
over time and learn temporal topic correlations.

We consider RSM for TSD and introduce the
explicit latent topical dependencies for TED and
TTC tasks. Fig 1 illustrates our motivation, where
temporal ordering in document collection V® at
each time step ¢, is modeled by conditioning the
latent topic h(® on the sequence history of latent
topics h(®), ..., h(*~1 accumulated with temporal
lag. Each RSM discovers latent topics, where the
introduction of a bias term in each RSM via the
time-feedback latent topic dependencies enables
to explicitly model topic evolution and specific
topic term usage over time. The temporal connec-
tions and RSM biases allow to convey topical in-
formation and model relation among the words, in
order to deeply analyze the dynamics of the un-
derlying topics. We demonstrate the applicability
of proposed RNN-RSM by analyzing 19 years of
scientific articles from NLP research.

The contributions in this work are:

(1) Introduce an unsupervised neural dynamic
topic model based on recurrent neural network
and RSMs, named as RNN-RSM to explicitly
model discovered latent topics (evolution) and
word relations (topic characterization) over time.
(2) Demonstrate better generalization (log-
probability and time stamp prediction), topic
interpretation (coherence), evolution and charac-
terization, compared to the state-of-the-art.

(3) It is the first work in dynamic topic modeling
using undirected stochastic graphical models and
deterministic recurrent neural network to model
collections of different-sized documents over
time, within the generative and neural network
framework. The code and data are available at
https://github.com/pgcool /RNN-RSM.

2 The RNN-RSM model

RSM (Fig 2, Left) models are a family of different-
sized Restricted Boltzmann Machines (RBMs)
(Gehler et al., 2006; Xing et al., 2005; Gupta
etal., 2015b,c) that models word counts by sharing
the same parameters with multinomial distribution
over the observable i.e. it can be interpreted as a
single multinomial unit (Fig 2, Middle) sampled as
many times as the document size. This facilitates
in dealing with the documents of different lengths.

The proposed RNN-RSM model (Fig 2, Right)
is a sequence of conditional RSMs' such that at
any time step ¢, the RSM’s bias parameters b, )

'Notations: I/:Tz{Un}ﬁjzl; U:2D-Matrix;
U/:Upper/lower-case; Scalars in unbold

l:vector;
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and bp® depend on the output of a determinis-
tic RNN with hidden layer u®1) in the previous
time step, t—1. Similar to RNN-RBM (Boulanger-
Lewandowski et al., 2012), we constrain RNN hid-
den units (uY)) to convey temporal information,
while RSM hidden units (h®) to model condi-
tional distributions. Therefore, parameters (bv(t),

) are time-dependent on the sequence history
at time ¢ (via a series of conditional RSMs) de-
noted by ©®) = {V(™) u|7 < ¢}, that captures
temporal dependencies. The RNN-RSM is defined
by its joint probability distribution:

HP

where ‘ﬁ [\A/' V(T )] and H = [h h(T)]
Each h® ¢ {0, 1}F be a binary stochastlc hidden
topic vector with size F and V® = (V3N
be a collection of N documents at time step ¢. Let
V,(f ) bea K X Dg) observed binary matrix of the
h"document in the collection where, Dg) is the
document size and K is the dictionary size over
all the time steps. The conditional distribution (for
each unit in hidden or visible) in each RSM at time
step, is given by softmax and logistic functions:

P(B.H) = PV O} V0,00 )

exp(by,: " + 1 bYW
P( k(t) — 1|h(t)) — p( Z )

SR exp(byi ) + ZF lhif,éwsp
b K
t t k t
Py, =1V b;L)J+ZZv :(®)

i=1 k=1

where P(v°{" = 1|h{) and P(h{", = 1|V{) are

conditional dlstrlbutlons for i'" visible v, ; and j*
hidden unit h,, ; for the n'* document at ¢. W[j is
a symmetric interaction term between ¢ that takes
on value k£ and j. vfb’(t) is sampled fo) times
with identical weights connected to binary hid-
den units, resulting in multinomial visibles, there-
fore the name Replicated Softmax. The condition-
als across layers are factorized as: P(V{" ") =
12 PO Y); PP V) =TT, PGS V).
Since blases of RSM depend on the output of
RNN at previous time steps, that allows to propa-
gate the estimated gradient at each RSM backward
through time (BPTT). The RSM biases and RNN

hidden state u( at each time step ¢ are given by-

bv(t) = bv+Wuvu(t_1)

(D
br® = bp+Waput ™V

N
u® = tanh(by + Wyuu ™" + Wy, Y ¥) @)
n=1

124

Algorithm 1 Training RNN-RSM with BPTT
% =

Input: Observed visibles,

{\7(0)’{}(1>, ”’{}(ﬁ’ ”,\A/(T)}

RNN-RSM Parameters: 6 = {Wun, Wyn, Wy,

Wvus VVuu, bv, blls bh, bv(t)y bh(t), u(O)}

Propagate u® in RNN portion of the graph using eq 2.

Compute by ® and by, @ using eq 1.

Generate negatives v using k-step Gibbs sampling.

Estimate the gradient of the cost C' w.r.t. parameters of

RSM Wy, by and by, ™ using eq 5.

5: Compute gradients (eq 6) w.r.t. RNN connections (W yp,
Wav, Wau, Wyy, u°) and biases (by, by, by).

6: Goto step 1 until stopping_criteria (early stopping or
maximum iterations reached)

Ealdl S

where Wyy, WL and Wy, are weights con-

necting RNN and RSM portions (Figure 2). by
is the bias of u and Wy, is the weight between
RNN hidden units. vﬁ? is a vector of 0F (de-
notes the count for the k" word in n** document).
ZN (1) vg) refers to the sum of observed vectors
across documents at time step ¢ where each docu-
ment is represented as-

DY
W = [ OB and 03O =30 ()
i=1

where vk ot )—1 if visible unit 7 takes on k" value.
In each RSM, a separate RBM is created for
each document in the collection at time step ¢ with
Dy(f) softmax units, where fo) is the count of
words in the n*" document. Consider a document
of Dﬁf) words, the energy of the state {ng ), hg )}

at time step, ¢ is given by—
-3

=1k=1
F
DS bl
j=1

Z Ak, (t) bk
k=1
Observe that the bias terms on hidden units are
scaled up by document length to allow hidden
units to stabilize when dealing with different-sized
documents. The corresponding energy-probability
relation in the energy—based model is-

( ) Z exp

Zn ()
where 2" =2y o) >0 exp(— E(Vg), hg)))
is the normahzatlon constant The lower bound on
the log likelihood of the data takes the form:

E(V<t) h(t)

~

V(t) V(t) h(*))) @)

mP(VY) >> QMY V) In PV h() + H(Q)
h(t)

=W P(VY) - KLIQMY [VI)||[P(hP V)]



Year 1997 1998 1999 2000 2001 2002 2003

2004

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 | Total

ACL
EMNLP

73
24

250
15

70
21

177
42

112
29

134
58

134
28

307
75

204
132

214
115

243
164

270
125

349
149

227
140

398
206

331
228

3713
1756

ACL+EMNLP 97 265 91 219 141

192

162 382 336 329 407 395 498 367 604 559 | 5469

Table 1: Number of papers from ACL and EMNLP conferences over the years

where H(+) is the entropy and () is the approxi-

mating posterior. Similar to Deep Belief Networks
(Hinton et al., 2006), adding an extra layer im-
proves lower bound on the log probability of data,
we introduce the extra layer via RSM biases that
propagates the prior via RNN connections. The
dependence analogy follows-

EVY h¥) < L

by (1)

and E(VY h{?) oc 1

by (V)

InP(VP) mgln PV «cIn P{V] o <4)
Observe that the prior is seen as the determin-
istic hidden representation of latent topics and in-
jected into each hidden state of RSMs, that enables
the likelihood of the data to model complex tem-
poral densities i.e. heteroscedasticity in document
collections (@) and temporal topics (H).
Gradient Approximations: The cost in RNN-
RSMis: C =T ¢, =YL —mmp(V®)
Due to intractable Z, the gradient of cost at
time step ¢ w.r.t. (with respect to) RSM parame-
ters are approximated by k-step Contrastive Diver-
gence (CD) (Hinton, 2002). The gradient of the
negative log-likelihood of a document collection

{Vq(f)},]j:(? w.r.t. RSM parameter Wy,

N@®)

1
N® ;

1 Wasvy)

d(—n P(VP))
anh

d(—n zM)

N L 9W, OWyp
_ g, (B, g 08V,
Pyata awvh Prodet awvh
data-dependent expectation model’s ;xrpectation
1 Wosvl?)  asviey
TND 2 oWy OWan

The second term is estimated by negative sam-

(t)*

ples V,;” obtained from k-step Gibbs chain

starting at V) samples. Pyora(V® h®) =

POV Py (VD) and  Paara (V)

. SN 5w v

bution on the observable. Pmodel(VT(f )*, h?

) is the empirical distri-

) is

defined in eq. 4. The free energy § (V%t )) is re-
lated to normalized probability of v as P (ng))
=exp ¥ (Vi) /Z,(f) and as follows-

K F
FV) == on b = log(1+
j=1

k=1
K

exp(DPbnj + > o W)
k=1

Gradient approximations w.r.t. RSM parameters,

N®)
O 3 el =3
dby, —
N®)
aC;
o(Wynv®* — DO, ()
~o(Wn¥{) = DPbp®)
oc, LY
awth ~> > o(Wu ¥ — DPbp)
v t=1 n=1
VT _ 5 (Woy v — DOy, ()5 OT
(%)

The estimated gradients w.r.t. RSM biases are
back-propagated via hidden-to-bias parameters
(eq 1) to compute gradients w.r.t. RNN connec-
tions (Wunh, Wuv, Wyu and Wy,) and biases
(bp, by and by,).

T
aC A0t 1y
= u
8Vvuh ; 8bh(t)
aC ZT: 9C: 1y
OWuy = b,
T N®)
oC 9Ct ) Oy N o (O
= 1 —
W tzl gy (- )nzl Vi
T T
aC aC, aC aC,
= and =
dby ; obp  Oby ; oby ")
T
Fby ~ 2 a0 (17U
T
0C 9 Oy (t-DT
W 2 gae® (1 —u)u

(6)
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Parameter Value(s) Optimal
epochs 1000 1000
CD iterations 15 15
learning rate | 0.1, 0.03, 0.001 0.001
hidden size 20, 30, 50 30

model

metric

SumPPL | Err || mean-COH | median-COH | TTD
DTM 10.9 8.10 0.1514 0.1379 0.084
RNN-RSM 3.8 7.58 0.1620 0.1552 0.268

Table 2: Hyperparameters for RNN-RSM model

For the single-layer RNN-RSM, the BPTT recur-
rence relation for 0 < ¢ < T is given by-

oC, _ 0C41 (t+1) (t+1)
Bul® ~ " ul) (1—-u™)
8Ct+1 8C’t—l-l
+Wun abh(t+1) uv abv(tJrl)

(0) Khej oCr _
where u'™ being a parameter and -5 = 0.

See Training RNN-RSM with BPTT in Algo 1.

3 Evaluation

3.1 Dataset and Experimental Setup

We use the processed dataset (Gollapalli and Li,
2015), consisting of EMNLP and ACL conference
papers from the year 1996 through 2014 (Table 1).
We combine papers for each year from the two
venues to prepare the document collections over
time. We use ExpandRank (Wan and Xiao, 2008)
to extract top 100 keyphrases for each paper, in-
cluding unigrams and bigrams. We split the bi-
grams to unigrams to create a dictionary of all un-
igrams and bigrams. The dictionary size (/) and
word count are 3390 and 5.19 M, respectively.

We evaluate RNN-RSM against static (RSM,
LDA) and dynamic (DTM) topics models for topic
and keyword evolution in NLP research over time.
Individual 19 different RSM and LDA models are
trained for each year, while DTM? and RNN-
RSM are trained over the years with 19 time steps,
where paper collections for a year is input at each
time step. RNN-RSM is initialized with RSM
(Wyn, by, by) trained for the year 2014.

We use perplexity to choose the number of top-
ics (=30). See Table 2 for hyperparameters.

3.2 Generalization in Dynamic Topic Models

Perplexity: We compute the perplexity on unob-
served documents (V(t)) at each time step as

1 YN log P<V$f>>>
t (t) t
NO S DY

PPL(V(®,t) = exp (—

*https://radimrehurek.com/gensim/models/dtmmodel.html
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Table 3: State-of-the-art Comparison: Generalization
(PPL and Err), Topic Interpretation (COH) and Evolu-
tion (TTD) in DTM and RNN-RSM models

where ¢ is the time step. N® is the number of
documents in a collection (V(t)) at time ¢. Better
models have lower perplexity values, suggesting
less uncertainties about the documents. For held-
out documents, we take 10 documents from each
time step i.e. total 190 documents and compute
perplexity for 30 topics. Fig 3d shows the com-
parison of perplexity values for unobserved doc-
uments from DTM and RNN-RSM at each time
step. The SumPPL (Table 3) is the sum of PPL
values for the held-out sets of each time step.

Document Time Stamp Prediction: To fur-
ther assess the dynamic topics models, we split
the document collections at each time step into
80-20% train-test, resulting in 1067 held-out doc-
uments. We predict the time stamp (dating) of a
document by finding the most likely (with the low-
est perplexity) location over the time line. See the
mean absolute error (Err) in year for the held-out
in Table 3. Note, we do not use the time stamp as
observables during training.

3.3 TSD, TED: Topic Evolution over Time

Topic Detection: To extract topics from each
RSM, we compute posterior P(\Af(t)|hj = 1) by
activating a hidden unit and deactivating the rest
in a hidden layer. We extract the top 20 terms
for every 30 topic set from 1996-2014, resulting
in |Q|maz = 19 x 30 x 20 possible topic terms.
Topic Popularity: To determine topic popular-
ity, we selected three popular topics (Sentiment
Analysis, Word Vector and Dependency Parsing)
in NLP research and create a set’ of key-terms
(including unigrams and bigrams) for each topic.
We compute cosine similarity of the key-terms de-
fined for each selected topic and topics discovered
by the topic models over the years. We consider
the discovered topic that is the most similar to the
key-terms in the target topic and plot the simi-
larity values in Figure 3a, 3b and 3b. Observe
that RNN-RSM shows better topic evolution for
the three emerging topics. LDA and RSM show

3topic-terms to be released with code
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Figure 3: (a, b, c): Topic popularity by LDA, RSM, DTM and RNN-RSM over time (d): Perplexity on the
unobserved document collections over time (e, f): Mean and Median Topic Coherence (g, h): Topic Evolution
(i,j,k,1): Topic focus change over time. Adj- Adjacent; Sim- Similarity

topical locality in Figure 3c attributed to no corre-
lation in topic dynamics over time, while in Fig-
ure 3b, DTM does not capture evolution of topic
Word Vector.

Topic Drift (Focus Change): To compute the
topic focus change over the years, we first split
the time period 1996-2014 into five parts:{1996,
2000, 2005, 2010, 2014}. The cosine similarity
scores are computed between the topic sets dis-
covered in a particular year and the years pre-
ceding it in the above set, for example the sim-
ilarity scores between the topic-terms in (1996,
2000), (1996, 2005), (1996, 2010) and (1996,
2014), respectively. Figure 3i, 3j, 3k and 3l
demonstrate that RNN-RSM shows higher conver-
gence in topic focus over the years, compared to
LDA and RSM. In RNN-RSM, the topic similar-
ity is gradually increased over time, however not
in DTM. The higher similarities in the topic sets
indicate that new/existing topics and words do not
appear/disappear over time.

We compute topic-term drift (T7'D) to show

the changing topics from initial to final year, as
TTD =1.0-— cosineSimilarity(Q(t), Q(t/))

where Q is the set of all topic-terms for time step
t. Table 3 shows that TT'D (where t=1996 and
t'=2014) are 0.268 and 0.084 for RNN-RSM and
DTM, respectively. It suggests that the higher
number of new topic-terms evolved in RNN-RSM,
compared to DTM. Qualitatively, the Table 4
shows the topics observed with the highest and
lowest cosine drifts in DTM and RNN-RSM.

In Figure 3g and 3h, we also illustrate the tem-
poral evolution (drift) in the selected topics by
computing cosine similarity on their adjacent topic
vectors over time. The topic vectors are selected
similarly as in computing topic popularity. We ob-
serve better TED in RNN-RSM than DTM for the
three emerging topics in NLP research. For in-
stance, for the selected topic Word Vector, the red
line in DTM (Fig 3h) shows no drift (for x-axis
00-05, 05-10 and 10-14), suggesting the topic-
terms in the adjacent years are similar and does
not evolve.
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Drift Model (year) Topic Terms
DTM (1996) document, retrieval, query, documents, information, search, information retrieval, queries, terms,
020 words, system, results, performance, method, approach
DTM (2014) documenF, query, ‘search, fiocumenls, queries, information, retrieval, method, results,
information retrieval, research, terms, other, approach, knowledge
DTM (1996) semantic, lexical, structure, syntactic, argument, frame, example, lexicon, information, approach,
053 source, function, figure, verbs, semantic representation
DTM (2014) semantic, argument, frame, éentence, syntactic, :semantlf: parsing, structure, s?mantlc role,
example, role labeling, language, learning, logical form, system, lexicon
RNN-RSM (1996) reordering, statistical machine, translation model, translations, arabic, word align, translation probability, word alignment,
020 translation system, source word, ibm model, source sentence, english translation, target language, word segmentation
RNN-RSM (2014) reordering, stfitislical machine, translation mOfiel, translations, arabic, word align, trax?slalion pro‘bability, word alignment,
translation system, source word, reordering model, bleu score, smt system, english translation, target language
RNN-RSM (1996) input, inference, semantic representation, distributional models, logical forms, space model, clustering algorithm, space models,
053 A s(im}lar word, frequent word, meaning representation, le)sical acquisi‘tion, new alg?rilhm, sameAcontext, multiple WoArds
RNN-RSM (2014) input, inference, word v#ctor, word vectors, vector r-epresentatlon, semantic répresentatlon, (‘hstrlqulon-al models,' semamlé space,
space model, semantic parser, vector representations, neural language, logical forms, cosine similarity, clustering algorithm

Table 4: Topics (top 15 words) with the highest and lowest drifts (cosine) observed in DTM and RNN-RSM

3.4 Topic Interpretability

Beyond perplexities, we also compute topic coher-
ence (Chang et al., 2009; Newman et al., 2009;
Das et al.,, 2015) to determine the meaningful
topics captured. We use the coherence mea-
sure proposed by Aletras and Stevenson (2013)
that retrieves co-occurrence counts for the set of
topic words using Wikipedia as a reference cor-
pus to identify context features (window=5) for
each topic word. Relatedness between topic words
and context features is measured using normalized
pointwise mutual information (NPMI), resulting
in a single vector for every topic word. The coher-
ence (COH) score is computed as the arithmetic
mean of the cosine similarities between all word
pairs. Higher scores imply more coherent topics.
We use Palmetto® library to estimate coherence.
Quantitative: We compute mean and median co-
herence scores for each time step using the corre-
sponding topics, as shown in Fig 3e and 3f. Ta-
ble 3 shows mean-COH and median-COH scores,
computed by mean and median of scores from
Fig 3e and 3f, respectively. Observe that RNN-
RSM captures topics with higher coherence.
Qualitative: Table 5 shows topics (top-10 words)
with the highest and lowest coherence scores.

3.5 TTC: Trending Keywords over time

We demonstrate the capability of RNN-RSM to
capture word evolution (usage) in topics over
time. We define: keyword-trend and SPAN. The
keyword-trend is the appearance/disappearance of
the keyword in topic-terms detected over time,
while SPAN is the length of the longest sequence
of the keyword appearance in its keyword trend.

4qithub .com/earthquakesan/palmetto-py
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DTM (2001) | RNN-RSM (2001) || DTM (2012) | RNN-RSM (1997)
semantic words discourse parse
frame models relation cluster
argument grammar relations clustering
syntactic trees structure results
structure dependency parsing sentence query
lexical parsers class pos tag
example dependency trees lexical queries
information parsing argument retrieval
annotation parse trees corpus coreference
lexicon dependency parse other logical form
COH: 0.268 0.284 0.064 0.071

Table 5: Topics with the highest and lowest coherence

Let Qmodel = {QS?O dez}thl be a set of sets® of
topic-terms discovered by the model (LDA, RSM,
DTM and RNN-RSM) over different time steps.
Let Q(t) € Qnoder be the topic-terms at time step
t. The keyword-trend for a keyword & is a time-
ordered sequence of Os and 1s, as

trendk(Q) = [find(k, Q(t))]thl

1 if ®)
where; find(k, Q(t)) = ithe Q @)
0 otherwise

And the SPAN (S},) for the kth keyword is-

S,(Q) = length (longestOnesSeq(trendy, (Q))

We compute keyword-trend and SPAN for each
term from the set of some popular terms. We de-
fine average-SPAN for all the topic-terms appear-
ing in the topics discovered over the years,

avg-SPAN(Q) = ——

1 Z Sk(Q)

A ok
v
1Qfl {k|QMeQAkeQ(}
- 1 dict [ (N
ql 2 Q)
{k|QMeQrkeQ®}

5a set by bold and set of sets by bold
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Figure 4: Keyword-trend by RNN-RSM, DTM, RSM,
LDA. Bar: Keyword presence in topics for the year

where [|Q]| = [{K|Q® € Q Ak € QWY
is the count of unique topic-terms and ok =
Zz;l Z?:tl v;f , denotes the count of k** keyword.

In Figure 4, the keyword-trends indicate emer-
gence (appearance/disappearance) of the selected
popular terms in topics discovered in ACL and
EMNLP papers over time. Observe that RNN-
RSM captures longer SPANs for popular key-
words and better word usage in NLP research. For
example: Word Embedding is one of the top key-
words, appeared locally (Figure 5) in the recent
years. RNN-RSM detects it in the topics from
2010 to 2014, however DTM does not. Similarly,
for Neural Language. However, Machine Trans-
lation and Language Model are globally appeared
in the input document collections over time and
captured in the topics by RNN-RSM and DTM.
We also show keywords (Rule-set and Seed Words)
that disappeared in topics over time.

Higher SPAN suggests that the model is capa-
ble in capturing trending keywords. Table 6 shows
corresponding comparison of SPANs for the 13
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Figure 5: Key-term frequency in the input over years

- LDA RSM DTM RNN-RSM
Term vk ; . . .
Sk S}f‘d Sk ng(t Sk ngd Sk ng(t
Textual entailment 918 0 .000 | 1 .001 | 0 .000 |11 .01l
Sentiment analysis 1543 | 6 .004 | 3 .002 | 5 .0032 |11 0.007
Lda model 392 1 .003 |1 .002|0 .000/|8 .02
Dependency parsing | 3409 | 9 .003 | 5 .001 | 11 .0032 | 18 .005
Latent semantic 974 1 .001 2 .002 | 0 .000 | 18 .018
Relation extraction 1734 | 4 002 | 1 .001 | 9 .0052 | 12 .007
Word embedding 534 1 .002 |1 .002|0 .000|5 .09
Neural language 121 0 .000 | 3 0250 .000 |5 .041
Machine translation | 11741 | 11 .001 7 001 | 19 .0016 | 19  .002
Language model 11768 | 13 .001 3 .000 | 19 .0016 | 19  .002
Graphical model 680 0 .000 1 .001 0 .000 | 11  .016
Rule set 589 1 .0017| 4 .0068| 0 .000 | 2 .0034
Seed words 396 1 .0025| 1 .0025| 0 .000 | 4 .0101
avg-SPAN(Q) 002 007 003 018
1Quoael 926 2274 335 1

TableA6: SPAN (S%) for selected terms, avg-SPAN and
set ||Q|| by LDA, RSM, DTM and RNN-RSM

selected keywords. The SPAN S for each key-
word is computed from Figure 4. Observe that
1Ql o7 < [|QIlrv - Rsar suggests new topics
and words emerged over time in RNN-RSM, while
higher SPAN values in RNN-RSM suggest better
trends. Figure 6 shows how the word usage, cap-
tured by DTM and RNN-RSM for the topic Word
Vector, changes over 19 years in NLP research.
RNN-RSM captures popular terms Word Embed-
ding and Word Representation emerged in it.

4 Discussion: RNN-RSM vs DTM

Architecture: RNN-RSM treats document’s
stream as high dimensional sequences over time
and models the complex conditional probability
distribution i.e. heteroscedasticity in document
collections and topics over time by a temporal
stack of RSMs (undirected graphical model), con-
ditioned on time-feedback connections using RNN
(Rumelhart et al., 1985). It has two hidden lay-
ers: h (stochastic binary) to capture topical infor-
mation, while u (deterministic) to convey tempo-
ral information via BPTT that models the topic
dependence at a time step ¢ on all the previous
steps 7 < t. In contrast, DTM is built upon
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Figure 6: Word usage for emerging topic Word Vector
over time, captured by DTM and RNN-RSM

LDA (directed model), where Dirichlet distribu-
tion on words is not amenable to sequential mod-
eling, therefore its natural parameters (topic and
topic proportion distributions) for each topic are
chained, instead of latent topics that results in in-
tractable inference in topic detection and chaining.

Topic Dynamics: The introduction of explicit
connection in latent topics in RNN-RSM allow
new topics and words for the underlying topics to
appear or disappear over time by the dynamics of
topic correlations. As discussed, the distinction of
h and u permits the latent topic h® to capture new
topics, that may not be captured by h(*~1.

DTM assumes a fixed number of global topics
and models their distribution over time. However,
there is no such assumption in RNN-RSM. We
fixed the topic count in RNN-RSM at each time
step, since Wy, is fixed over time and RSM bi-
ases turn off/on terms in each topic. However,
this is fundamentally different for DTM. E.g. a
unique label be assigned to each of the 30 top-
ics at any time steps ¢t and . DTM follows
the sets of topic labels: {TopicLabels®}30, =
{TopicLabels*)}3° | due to eq (1) in Blei and
Lafferty (2006) (discussed in section 5) that limits
DTM to capture new (or local) topics or words ap-
peared over time. It corresponds to the keyword-
trends (section 3.5).

Optimization: The RNN-RSM is based on
Gibbs sampling and BPTT for inference while
DTM employs complex variational methods, since
applying Gibbs sampling is difficult due to the
nonconjugacy of the Gaussian and multinomial
distributions. Thus, easier learning in RNN-RSM.

For all models, approximations are solely used
to compute the likelihood, either using varia-
tional approaches or contrastive divergence; per-
plexity was then computed based on the approxi-
mated likelihood. More specifically, we use vari-
ational approximations to compute the likelihood
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for DTM (Blei and Lafferty, 2006). For RSM and
RNN-RSM, the respective likelihoods are approx-
imated using the standard Contrastive Divergence
(CD). While there are substantial differences be-
tween variational approaches and CD, and thus in
the manner the likelihood for different models is
estimated - both approximations work well for the
respective family of models in terms of approxi-
mating the true likelihood. Consequently, perplex-
ities computed based on these approximated like-
lihoods are indeed comparable.

5 Conclusion and Future Work

We have proposed a neural temporal topic model
which we name as RNN-RSM, based on prob-
abilistic undirected graphical topic model RSM
with time-feedback connections via determinis-
tic RNN, to capture temporal relationships in his-
torical documents. The model is the first of its
kind that learns topic dynamics in collections of
different-sized documents over time, within the
generative and neural network framework. The ex-
perimental results have demonstrated that RNN-
RSM shows better generalization (perplexity and
time stamp prediction), topic interpretation (co-
herence) and evolution (popularity and drift) in
scientific articles over time. We also introduced
SPAN to illustrate topic characterization.

In future work, we forsee to investigate learning
dynamics in variable number of topics over time.
It would also be an interesting direction to inves-
tigate the effect of the skewness in the distribu-
tion of papers over all years. Further, we see a po-
tential application of the proposed model in learn-
ing the time-aware i.e. dynamic word embeddings
(Aitchison, 2001; Basile et al., 2014; Bamler and
Mandt, 2017; Rudolph and Blei, 2018; Yao et al.,
2018) in order to capture language evolution over
time, instead of document topics.
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Abstract

‘We address two challenges in topic models: (1) Context infor-
mation around words helps in determining their actual mean-
ing, e.g., “networks” used in the contexts artificial neural net-
works vs. biological neuron networks. Generative topic mod-
els infer topic-word distributions, taking no or only little con-
text into account. Here, we extend a neural autoregressive
topic model to exploit the full context information around
words in a document in a language modeling fashion. The
proposed model is named as iDocNADE. (2) Due to the small
number of word occurrences (i.e., lack of context) in short
text and data sparsity in a corpus of few documents, the ap-
plication of topic models is challenging on such texts. There-
fore, we propose a simple and efficient way of incorporating
external knowledge into neural autoregressive topic models:
we use embeddings as a distributional prior. The proposed
variants are named as DocNADEe and iDocNADEe.

We present novel neural autoregressive topic model variants
that consistently outperform state-of-the-art generative topic
models in terms of generalization, interpretability (topic co-
herence) and applicability (retrieval and classification) over 7
long-text and 8 short-text datasets from diverse domains.

Introduction

Probabilistic topic models, such as LDA (Blei, Ng, and
Jordan 2003), Replicated Softmax (RSM) (Salakhutdinov
and Hinton 2009) and Document Autoregressive Neural
Distribution Estimator (DocNADE) (Larochelle and Lauly
2012) are often used to extract topics from text collections
and learn document representations to perform NLP tasks
such as information retrieval (IR), document classification
or summarization.

To motivate our first task of incorporating full contex-
tual information, assume that we conduct topic analysis on a
collection of research papers from NIPS conference, where
one of the popular terms is “networks”. However, without
context information (nearby and/or distant words), its ac-
tual meaning is ambiguous since it can refer to such dif-
ferent concepts as artificial neural networks in computer
science or biological neural networks in neuroscience or
Computerldata networks in telecommunications. Given the

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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context, one can determine the actual meaning of “net-
works”, for instance, “Extracting rules from artificial neural
networks with distributed representations”, or “Spikes from
the presynaptic neurons and postsynaptic neurons in small
networks” or “Studies of neurons or networks under noise
in artificial neural networks™ or “Packet Routing in Dynam-
ically Changing Networks”.

Generative topic models such as LDA or DocNADE infer
topic-word distributions that can be used to estimate a doc-
ument likelihood. While basic models such as LDA do not
account for context information when inferring these distri-
butions, more recent approaches such as DocNADE achieve
amplified word and document likelihoods by accounting
for words preceding a word of interest in a document.
More specifically, DocNADE (Larochelle and Lauly 2012;
Zheng, Zhang, and Larochelle 2016) (Figure 1, Left) is
a probabilistic graphical model that learns topics over se-
quences of words, corresponding to a language model (Man-
ning and Schiitze 1999; Bengio et al. 2003) that can be in-
terpreted as a neural network with several parallel hidden
layers. To predict the word v;, each hidden layer h; takes
as input the sequence of preceding words v;. However, it
does not take into account the following words v~ ; in the se-
quence. Inspired by bidirectional language models (Mousa
and Schuller 2017) and recurrent neural networks (Elman
1990; Gupta, Schiitze, and Andrassy 2016; Vu et al. 2016b;
2016a), trained to predict a word (or label) depending on its
full left and right contexts, we extend DocNADE and incor-
porate full contextual information (all words around v;) at
each hidden layer h; when predicting the word v; in a lan-
guage modeling fashion with neural topic modeling.

While this is a powerful approach for incorporating con-
textual information in particular for long texts and cor-
pora with many documents, learning contextual informa-
tion remains challenging in topic models with short texts
and few documents, due to (1) limited word co-occurrences
or little context and (2) significant word non-overlap in
such short texts. However, distributional word representa-
tions (i.e. word embeddings) have shown to capture both
the semantic and syntactic relatedness in words and demon-
strated impressive performance in natural language process-
ing (NLP) tasks. For example, assume that we conduct
topic analysis over the two short text fragments: “Goldman
shares drop sharply downgrade” and “Falling market homes



U

DocNADE

iDocNADE

embedding
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Figure 1: DocNADE (left), iDocNADE (middle) and DocNADEge (right) models. Blue colored lines signify the connections that
share parameters. The observations (double circle) for each word v; are multinomial. Hidden vectors in green and red colors
identify the forward and backward network layers, respectively. Symbols 77; and U'; represent the autoregressive conditionals
p(vi|v<;) and p(v;|vs;), respectively. Connections between each v; and hidden units are shared, and each conditional @"; (or
;) is decomposed into a tree of binary logistic regressions, i.e. hierarchical softmax.

weaken economy”. Traditional topic models will not be able
to infer relatedness between word pairs across sentences
such as (economy, shares) due to the lack of word-overlap
between sentences. However, in embedding space, the word
pairs (economy, shares), (market, shares) and (falling, drop)
have cosine similarities of 0.65, 0.56 and 0.54.

Therefore, we incorporate word embeddings as fixed
prior in neural topic models in order to introduce com-
plementary information. The proposed neural architectures
learn task specific word vectors in association with static
embedding priors leading to better text representation for
topic extraction, information retrieval, classification, etc.

The multi-fold contributions in this work are: (1) We pro-
pose an advancement in neural autoregressive topic model
by incorporating full contextual information around words
in a document to boost the likelihood of each word (and
document). This enables learning better (informed) docu-
ment representations that we quantify via generalization
(perplexity), interpretability (topic coherence) and applica-
bility (document retrieval and classification). We name the
proposed topic model as Document Informed Neural Autore-
gressive Distribution Estimator (iDocNADE). (2) We pro-
pose a further extension of DocNADE-like models by incor-
porating complementary information via word embeddings,
along with the standard sparse word representations (e.g.,
one-hot encoding). The resulting two DocNADE variants
are named as Document Neural Autoregressive Distribution
Estimator with Embeddings (DocNADEe) and Document
Informed Neural Autoregressive Distribution Estimator with
Embeddings (iDocNADEge). (3) We also investigate the two
contributions above in the deep versions of topic models.
(4) We apply our modeling approaches to 8 short-text and
7 long-text datasets from diverse domains. With the learned
representations, we show a gain of 5.2% (404 vs 426) in
perplexity, 11.1% (.60 vs .54) in precision at retrieval frac-
tion 0.02 and 5.2% (.664 vs .631) in F'1 for text categoriza-
tion, compared to the DocNADE model (on average over 15
datasets). Code and supplementary material are available at
https://github.com/pgcool/iDocNADEe.

Neural Autoregressive Topic Models

RSM (Salakhutdinov and Hinton 2009), a probabilistic undi-
rected topic model, is a generalization of the energy-based
Restricted Boltzmann Machines RBM (Hinton 2002) that
can be used to model word counts. NADE (Larochelle and
Murray 2011) decomposes the joint distribution of observa-
tions into autoregressive conditional distributions, modeled
using non-linear functions. Unlike for RBM/RSM, this leads
to tractable gradients of the data negative log-likelihood but
can only be used to model binary observations.

DocNADE (Figure 1, Left) is a generative neural autore-
gressive topic model to account for word counts, inspired
by RSM and NADE. For a document v = [vy,...,vp] of
size D, it models the joint distribution p(v) of all words
v;, where v; € {1,..., K} is the index of the ith word in
the dictionary of vocabulary size K. This is achieved by de-
composing it as a product of conditional distributions i.e.
p(v) = H,L.D:l p(v;|v<;) and computing each autoregressive
conditional p(v;|v<;) via a feed-forward neural network for
1€ {1,...D},

Tl)z'(V<i) =g(c+ Z}Ki W:,vk) (1

N
_ _ exp(bu+Uw. hilvai))
S exp(by + U, i (var)

where v_; € {v1,...,v;_1}. g(-) is a non-linear activation
function, W € R7*K and U € RX*H are weight matrices,
c € R and b € R¥ are bias parameter vectors. H is the
number of hidden units (topics). W -; is a matrix made of
the ¢ — 1 first columns of W. The probability of the word
v; is thus computed using a position-dependent hidden layer
Tl)i(v<i) that learns a representation based on all previous
words v;; however it does not incorporate the following
words v-;. Taken together, the log-likelihood of any docu-
ment v of arbitrary length caI}) be computed as:

LPoeNAPE (v) = 3 log p(vilv<;) )

i=1
iDocNADE (Figure 1, Right), our proposed model, ac-
counts for the full context information (both previous v;

P(Ui = w|V<i)
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and following v-; words) around each word v; for a doc-
ument v. Therefore, the log-likelihood L£:PoNADPE for g
document v in iDocNADE is computed using forward and
backward language models as:

D
1
logp(v) = 5 Y logp(vilvai) +logp(vilv>i)  (3)
=t backward
i.e., the mean of the forward (7) and backward (([_l) log-

likelihoods. This is achieved in a bi-directional language
modeling and feed-forward fashion by computing position

dependent forward (Tl)i) and backward (Fi) hidden layers
for each word 1, as:

forward

Tl)i(v<i) = 9(? + Z W:,vk) 4
k<i

hi(vei) =g(T+ > Woy,) ®)
k>1

where @ € R¥ and ‘€ € R* are bias parameters in for-
ward and backward passes, respectively. H is the number of
hidden units (topics).

Two autoregressive conditionals are computed for each
i1th word using the forward and backward hidden vectors,

- —
plo =l = P * UucBily=d) )
Zw' exp( b + Uw’,: h i(V<i))

exp(?w + Uw,:ﬁi(v>i))
Zw’ exp((g’w’ + U’LU’,:Fi (V>i))

fori € [1,...,D] where b € RX and b € RX are biases
in forward and backward passes, respectively. Note that the
parameters W and U are shared between the two networks.
DocNADEe and iDocNADEe with Embedding priors:
We introduce additional semantic information for each word
into DocNADE-like models via its pre-trained embedding
vector, thereby enabling better textual representations and
semantically more coherent topic distributions, in particular
for short texts. In its simplest form, we extend DocNADE
with word embedding aggregation at each autoregressive
step k to generate a complementary textual representation,
ie., X, E: .. This mechanism utilizes prior knowledge
encoded in a pre-trained embedding matrix E € RF*K
when learning task-specific matrices W and latent repre-
sentations in DocNADE-like models. The position depen-

dent forward I'Tf(vﬂ-) and (only in iDocNADEge) backward
h{(v-;) hidden layers for each word i now depend on E as:

B (vei) =g(@ + D) Wooe +A D E) (g

@)

P(Uz‘ = 'w|V>i) =

k<i k<i

—

hf(vai) = g(T+ Y}, Weo, +A D E) (g
k>i k>i

where, A is a mixture coefficient, determined using valida-
tion set. As in equations 6 and 7, the forward and backward
autoregressive conditionals are computed via hidden vectors
}T‘f(v<i) and }(1_:(V>Z) respectively.

Deep DocNADEs with/without Embedding Priors:
DocNADE can be extended to a deep, multiple hidden layer
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Algorithm 1 Computation of logp(v) in iDocNADE or iDoc-
NADEe using tree-softmax or full-softmax

Input: A training document vector v, Embedding matrix E
=

Parameters: {b, b, @, ©, W, U}

Output: log p(v)

I: @«

2: if iDocNADE then

3: Fe—CTH+Y W,

4: if iDocNADEe then

5 Fe—CTH+Y W, + A, E.

6: q(v)=1

7: for i_{rom 1to D do

8  hi—g(®): hi—g(T)

9: if tree—-softmax then

10: p(vilv<i) =15 p(vilvss) =1

11: for m from 1 to |7 (v;)| do

12: p(vi|v<i) < p(vilv<i)p(m(vi)m|v<i)
13: p(ilvsi) < p(vilvsi)p(m(vi)m|v>i)
14: if full-softmax then

15: compute p(v;|v<;) using equation 6

16: compute p(v;|vs;) using equation 7

17: q(v) « q(v)p(vilv<i)p(vi|v>:)
18: if iDocNADE then

19: B—A+W,: aa-W,
20: if iDocNADEe then

21: E)HE)_*_W:,’Ui +AE:,U7;

22: ‘5 «— g — W:,U,i —A E:,'U,-,

23: logp(v) « 1logg(v)

architecture by adding new hidden layers as in a regular deep
feed-forward neural network, allowing for improved perfor-
mance (Lauly et al. 2017). In this deep version of DocNADE
variants, the first hidden layers are computed in an analogous
fashion to iDocNADE (eq. 4 and 5). Subsequent hidden lay-
ers are computed as:

—(d)

I (d-

(ver) = g(@ @ + WO B (v o)

and similarly, (h_i(d)(v>¢) for d = 2,...,n, where n is the
total number of hidden layers. The exponent “(d)” is used
as an index over the hidden layers and parameters in the
deep feed-forward network. Forward and/or backward con-
ditionals for each word ¢ are modeled using the forward
and backward hidden vectors at the last layer n. The deep
DocNADE or iDocNADE variants without or with embed-
dings are named as DeepDNE, iDeepDNE, DeepDNEe and
iDeepDNEe, respectively where W (1) is the word represen-
tation matrix. However in DeepDNEe (or iDeepDNEe), we
introduce embedding prior E in the first hidden layer, i.e.,

Ee»(l) _ g(?(l) + Z W(lv)k + A\ 2 E:,vk)

k<i k<i

for each word ¢ via embedding aggregation of its context

v; (and v+;). Similarly, we compute E—e’(l).

Learning: Similar to DocNADE, the conditionals p(v; =
w|vg;) and p(v; = w|vs;) in DocNADEe, iDocNADE or
iDocNADEe are computed by a neural network for each



word v;, allowing efficient learning of informed represen-
tations E)l and Kl (or ITf(VQ) and }(l_f(V>i)), as it con-
sists simply of a linear transformation followed by a non-
linearity. Observe that the weight W (or prior embedding
matrix E) is the same across all conditionals and ties con-
textual observables (blue colored lines in Figure 1) by com-
puting each Tl)z or Hl (or }?i(vQ) and }(1_f(v>i)).

Binary word tree (t ree—softmax) to compute condi-
tionals: To compute the likelihood of a document, the au-
toregressive conditionals p(v; = w|v<;) and p(v; = w|vs,)
have to be computed for each word i € [1,2, ... D], requiring
time linear in vocabulary size K. To reduce computational
cost and achieve a complexity logarithmic in K we follow
Larochelle and Lauly (2012) and decompose the computa-
tion of the conditionals using a probabilistic tree. All words
in the documents are randomly assigned to a different leaf
in a binary tree and the probability of a word is computed as
the probability of reaching its associated leaf from the root.
Each left/right transition probability is modeled using a bi-
nary logistic regressor with the hidden layer Tl)l or FZ (Hf
or h(_f) as its input. In the binary tree, the probability of a
given word is computed by multiplying each of the left/right
transition probabilities along the tree path.

Algorithm 1 shows the computation of logp(v) using
iDocNADE (or iDocNADEge) structure, where the autogres-
sive conditionals (lines 14 and 15) for each word v; are ob-
tained from the forward and backward networks and mod-
eled into a binary word tree, where m(v;) denotes the se-
quence of binary left/right choices at the internal nodes
along the tree path and 1(v;) the sequence of tree nodes on
that tree path. For instance, {(v;); will always be the root
of the binary tree and 7(v;); will be 0 if the word leaf v;
is in the left subtree or 1 otherwise. Therefore, each of the
forward and backward conditionals are computed as:

[ (vl

plvi=wlve) = [] p(r(i)mlv<)

[m(v;)]
p(Ui = w|V>z‘) = H p(W(Ui)m|V>i)
m=1

— —

P(T(vi)m|V<i) =9( 0 1w)m + Ut(oy)m.: B (V<i))
_ (5 ﬁ

(Vi) m|v>i) =9( 0 i(v;)m + Uitoi)m,: B (Vi)

where U € RT*H s the matrix of logistic regressions
weights, 7" is the number of internal nodes in binary tree,
and b and b are bias vectors.

Each of the forward and backward conditionals p(v; =
w|v<;) or p(v; = w|vs;) requires the computation of its
own hidden layers Tl)i(v<i) and KZ-(VN) (or h_f(v<l) and
1(1_f(v>i)), respectively. With H being the size of each hidden
layer and D the number of words in v, computing a single
layer requires O(H D), and since there are D hidden lay-
ers to compute, a naive approach for computing all hidden
layers would be in O(D?H). However, since the weights
in the matrix W are tied, the linear activations @ and &
(algorithm 1) can be re-used in every hidden layer and com-
putational complexity reduces to O(H D).

Algorithm 2 Computing gradients of —logp(v) in iDocNADE
or iDocNADEe using tree-softmax

Input: A training document vector v
Parameters: {b, b, @, ©, W, U}
Output: §B,6b,6¢,5C,6W,6U
B0 0T 0T —0Db—0b—0
: foriﬁ}otholdo
oh; «<0; é(Hi —0
for m from 1 to |_7r)(vl)| do
ﬁl(vi)m « ﬁl(vi)m + (p(m(vi)m|v<i) — 7(vi)m)
biwim < Viwim + (0(0)m[Vsi) = 7(vi)m)
dh; —6h + (p(r(vi)mlV<i) = (Vi) m) Uigw;)m,:
oh, —oh + P (Vi) m|Vvsi) = T(V)m) Ulew;ym.,:
6Ul(”i)m - 5Ul(”i)7n + (p(ﬂ—(vi)m|v<i) -
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With the trained iDocNADEe (or DocNADE variants), the
representation ((h_g e R¥) for a new document v* of size D*
is extracted by summing the hidden representations from the
forward and backward networks to account for the context
information around each word in the words’ sequence, as

(V) =g(T+ X W s +A 3 E x)

k<D k<D*
N
B°(v*) = g(T+ ) W s +2 ) B, ) (1
k>1 E>1
Therefore; (h7 = h_g(v*) + F(v*) (12)

The DocNADE variants without embeddings compute the
representation (H) excluding the embedding term E. Param-
eters {l_)>, F, T, '¢, W, U} are learned by minimizing the
average negative log-likelihood of the training documents
using stochastic gradient descent (algorithm 2). In our pro-
posed formulation of iDocNADE or its variants (Figure 1),
we perform inference by computing LP°¢NAPE (v) (Eq.3).

Evaluation

We perform evaluations on 15 (8 short-text and 7 long-
text) datasets of varying size with single/multi-class labeled
documents from public as well as industrial corpora. See
the supplementary material for the data description, hyper-
parameters and grid-search results for generalization and
IR tasks. Table 1 shows the data statistics, where 20NS:
20NewsGroups and R21578: Reuters21578. Since, Gupta
et al. (2018a) have shown that DocNADE outperforms
gaussian-LDA (Das, Zaheer, and Dyer 2015), glove-LDA
and glove-DMM (Nguyen et al. 2015) in terms of topic co-
herence, text retrieval and classification, therefore we adopt
DocNADE as the strong baseline. We use the development
(dev) sets of each of the datasets to perform a grid-search on
mixture weights, A = [0.1, 0.5, 1.0].
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Tree—-Softmax (TS) Full-Softmax (FS)
Data | Train  Val Test K L C Domain | DocNADE | iDocNADE || DocNADE | iDocNADE | DocNADEe | iDocNADEe
PPL IR | PPL IR || PPL IR | PPL IR | PPL IR | PPL IR
20NSshort 1.3k 0.1k 0.5k 2k 135 20 News || 894 .23 | 880 30 || 646 .25 | 639 26 | 638 28 | 633 28
TREC6 55k 05k 05k 2k 9.8 6 Q&A 42 48 39 .55 64 54 61 .56 62 .56 60 57
R21578title’ 73k 05k 30k 2k 73 90 News || 298 .61 | 239 .63 193 .61 | 181 62 | 179 .65 | 176 .66
Subjectivity 8.0k .05k 2.0k 2k 23.1 2 Senti || 303 .78 | 287 81 371 .77 | 365 80 | 362 .80 | 361 81
Polarity 8.5k .05k 2.1k 2k 21.0 2 Senti 311 Sl 292 54 358 .54 | 345 56 | 341 56 | 340 57
TMNtitle | 22.8k 2.0k 7.8k 2k 49 7 News || 863 .57 | 823 S59 || 711 44 | 670 46 | 668 54| 664 55
TMN | 228k 2.0k 7.8k 2k 19 7 News || 548 .64 | 536 66 || 592 .60 | 560 .64 | 563 .64 | 561 .66
AGnewstitle 118k 2.0k 7.6k 5k 6.8 4 News || 811 .59 | 793 .65 545 62 | 516 .64 | 516 .66 | 514 .68

Avg (short) 509

55 | 486 .59 || 435

54 | 417 57 | 416 58 | 413 .60

20NSsmall [ 04k 02k 02k 2k 187 20  News - -] - -Tes 30]592 32[607 .33]5 .33
Reuters§ | S0k 05k 22k 2k 102 8  News | 172 88 | 152 89 | 184 83| 178 88 | 178 .87 | 178 .87
20NS | 89k 22k 74k 2k 229 20  News | 830 27 | 812 33 | 474 20| 463 24 | 464 25 | 463 .25
R21578" | 73k 05k 30k 2k 128 90  News | 215 70 | 179 74 | 297 70 | 285 73| 286 71| 285 72
RCVIV2! | 230k .05k 100k 2k 123 103  News | 381 .81 | 364 .86 | 479 86 | 463 .89 | 465 .87 | 462 .88
SiROBs' | 27.0k 1.0k 105k 3k 39 22 Industry | 398 31| 351 35| 399 34| 340 34 | 343 37| 340 36
AGNews | 118k 20k 7.6k Sk 38 4  News | 471 72| 441 77| 451 71| 439 78 | 433 76 | 438 .79
Avg (long) 417 61383 65| 416 .56 | 394 .60 | 396 .60 | 393 .60
Avg (all) [ 460 57 ] 442 62 426 54 406 58| 407 .59 | 404 .60

Table 1: Data statistics of short and long texts as well as small and large corpora from various domains. State-of-the-art
comparison in terms of PPL and IR (i.e, IR-precision) for short and long text datasets. The symbols are- L: average text length
in number of words, K :dictionary size, C': number of classes, Senti: Sentiment, Avg: average, ‘k’:thousand and 1: multi-label
data. PPL and IR (IR-precision) are computed over 200 (7'200) topics at retrieval fraction = 0.02. For short-text, . < 25. The
underline and bold numbers indicate the best scores in PPL and retrieval task, respectively in FS setting. See Larochelle and
Lauly (2012) for LDA (Blei, Ng, and Jordan 2003) performance in terms of PPL, where DocNADE outperforms LDA.
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iDocNADE

(a) PPL: 20NS

iDocNADE

(b) NLL of 14 Words

Figure 2: (a) PPL (T200) by iDocNADE and DocNADE for
each of the 50 held-out documents of 20NS. The filled circle
points to the document for which PPL differs by maximum.
(b) NLL of each of the words in the document marked by
the filled circle in (a), due to iDocNADE and DocNADE.

Generalization (Perplexity, PPL) We evaluate the topic
models’ generative performance as a generative model
of documents by estimating log-probability for the test
documents. During training, we initialize the proposed
DocNADE extensions with DocNADE, ie., W ma-
trix. A comparison is made with the baselines (Doc-
NADE and DeepDNE) and proposed variants (iDocNADE,
DocNADEe, iDocNADEe, iDeepDNE, DeepDNEe and
iDeepDNEe) using 50 (in supplementary) and 200 (T200)
topics, set by the hidden layer size H.

Quantitative: Table 1 shows the average held-out
perplexity (PPL) per word as, PPL = exp( —
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+ DA ﬁ log p(v")) where N and |v'| are the total num-

ber of documents and words in a document v¢. To compute
PPL, the log-likelihood of the document v?, i.e., log p(v?),
is obtained by £LPoNADPE (eqn. 2) in the DocNADE (for-
ward only) variants, while we average PPL scores from the
forward and backward networks of the iDocNADE variants.

Table 1 shows that the proposed models achieve lower
perplexity for both the short-text (413 vs 435) and long-text
(393 vs 416) datasets than baseline DocNADE with full-
softmax (or tree-softmax). In total, we show a gain of 5.2%
(404 vs 426) in PPL score on an average over the 15 datasets.

Table 2 illustrates the generalization performance of deep
variants, where the proposed extensions outperform the
DeepDNE for both short-text and long-text datasets. We re-
port a gain of 10.7% (402 vs 450) in PPL due to iDeepDNEe
over the baseline DeepDNE, on an average over 11 datasets.

Inspection: We quantify the use of context informa-
tion in learning informed document representations. For
20NS dataset, we randomly select 50 held-out documents
from its test set and compare (Figure 2a) the PPL for
each of the held-out documents under the learned 200-
dimensional DocNADE and iDocNADE. Observe that iDoc-
NADE achieves lower PPL for the majority of the docu-
ments. The filled circle(s) points to the document for which
PPL differs by a maximum between iDocNADE and Doc-
NADE. We select the corresponding document and compute
the negative log-likelihood (NLL) for every word. Figure 2b
shows that the NLL for the majority of the words is lower
(better) in iDocNADE than DocNADE. See the supplemen-
tary material for the raw text of the selected documents.
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Figure 3: Document retrieval performance (IR-precision) on 3 short-text and 3 long-text datasets at different retrieval fractions

Interpretability (Topic Coherence) Beyond PPL, we
compute topic coherence (Chang et al. 2009; Newman,
Karimi, and Cavedon 2009; Das, Zaheer, and Dyer 2015;
Gupta et al. 2018b) to assess the meaningfulness of the un-
derlying topics captured. We choose the coherence measure
proposed by Roder, Both, and Hinneburg (2015) that iden-
tifies context features for each topic word using a sliding
window over the reference corpus. The higher scores imply
more coherent topics.

Quantitative: We use gensim module (coherence type =
c-v) to estimate coherence for each of the 200 topics (top
10 and 20 words). Table 3 shows average coherence over
200 topics using short-text and long-text datasets, where the
high scores for long-text in iDocNADE (.636 vs .602) sug-
gest that the contextual information helps in generating more
coherent topics than DocNADE. On top, the introduction of
embeddings, i.e., iDocNADEe for short-text boosts (.847 vs
.839) topic coherence. Qualitative: Table 5 illustrates ex-
ample topics each with a coherence score.

Applicability (Document Retrieval) To evaluate the
quality of the learned representations, we perform a docu-
ment retrieval task using the 15 datasets and their label in-
formation. We use the experimental setup similar to Lauly
et al. (2017), where all test documents are treated as queries
to retrieve a fraction of the closest documents in the orig-
inal training set using cosine similarity measure between
their representations (eqn. 12 in iDocNADE and IS p in
DocNADE). To compute retrieval precision for each frac-

data DeepDNE | iDeepDNE | DeepDNEe | iDeepDNEe

PPL IR | PPL IR | PPL IR | PPL IR

20NSshort | 917 .21 | 841 .22 | 827 .25 | 830 .26
TREC6 114 .50 69 .52 69 .55 68 S5
R21578title | 253 .50 | 231 .52 | 236 .63 | 230 .61
Subjectivity | 428 .77 | 393 .77 | 392 .81 | 392 .82
Polarity | 408 .51 385 51| 383 .55 | 387 53
TMN | 681 .60 | 624 .62 | 627 .63 | 623 .66

Avg (short) | 467 51 | 424 53| 422 57| 421 .57
Reuters§ | 216 85| 192 .89 | 191 .88 | 191 90
20NS | 551 25| 504 28| 504 .29 | 506 29
R21578 | 318 .71 299 73| 297 72| 298 73
AGNews | 572 .75 | 441 .77 | 441 5 | 440 .80
RCVIV2 | 489 .86 | 464 88 | 466 .89 | 462 .89
Avg(long) | 429 68 | 380 .71 | 379 71| 3719 .72
Avgall) | 450 59 | 404 61 ] 403 .63 [ 402 .64

Table 2: Deep Variants (+ Full-softmax) with T200: PPL and
IR (i.e, IR-precision) for short and long text datasets.

tion (e.g., 0.0001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, etc.),
we average the number of retrieved training documents with
the same label as the query. For multi-label datasets, we
average the precision scores over multiple labels for each
query. Since Salakhutdinov and Hinton (2009) and Lauly et
al. (2017) showed that RSM and DocNADE strictly outper-
form LDA on this task, we only compare DocNADE and its
proposed extensions.

Table 1 shows the IR-precision scores at retrieval frac-
tion 0.02. Observe that the introduction of both pre-trained
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DocNADE || iDocNADE | DocNADEe | iDocNADEe
W10 W20 (||W10 W20 |[WI10 W20 |[WI10 W20

20NSshort | .744 849 || .748 .852 | .747 .851 |.744 849
TREC6 | .746 .860 || .748 .864 |.753 .858 |.752 .866
R21578title | .742 .845 || .748 .855 |.749 .859 |.746 856
Polarity | .730 .833 || .732 .837 |.734 .839 |.738 .841
TMNtitle | .738 .840 || .744 848 |.746 .850 |.746 .850
TMN |.709 811 |.713 .814 |.717 .818 |.721 .822

Avg (short) | .734 839 ||.739 .845 |.742 .846 |.741 .847

20NSsmall | .,515 .629 || .564 .669 |.533 .641 |.549 .661
Reuters8 | .578 .665 || .564 .657 |.574 .655 |.554 .641
20NS | 417 .496 || 453 .531 |.385 .458 | .417 .490
R21578|.540 .570 || .548 .640 | .542 .596 |.551 .663
AGnews | .718 828 || .721 .840 |.677 .739 |.696 .760
RCV1V2|.383 426 || 428 .480 |.364 .392 | .420 .463
Avg (long) | .525 .602 || .546 .636 | .513 .580 |.531 .613

model

Table 3: Topic coherence with the top 10 (W10) and 20
(W20) words from topic models (T200). Since, (Gupta et al.
2018a) have shown that DocNADE outperforms both glove-
DMM and glove-LDA, therefore DocNADE as the baseline.

data glove doc2vec ||DocNADE | DocNADEe |iDocNADE |iDocNADEe

Fl acc | FI acc| FI acc | F1 —acc | FI acc | Fl acc

20NSshort | .493 .520|.413 .457|(.428 474 | 473 529 |.456 .491 |.518 .535
TREC6|.798 .810|.400 .512|.804 .822 |.854 .856 |.808 .812 |.842 .844
R21578title | .356 .695|.176 .505|.318 .653 |.352 .693 |.302 .665 |.335 .700
Subjectivity |.882 .882|.763 .763||.872 .872 |.886 .886 |.871 .871 |.886 .886
Polarity |.715 .715|.624 .624|/.693 .693 [.712 .712 |.688 .688 |.714 .714
TMNTtitle [ .693 .727|.582 .617||.624 .667 |.697 .732 |.632 .675 |.696 .731
TMN |.736 .755|.720 .751|.740 .778 |.765 .801 |.751 .790 |.771 .805
AGnewstitle|.814 .815|.513 .515|(.812 .812 |.829 .828 |.819 .818 |.829 .828

Avg (short) | .685 .739|.523 .593/.661 .721 |.696 .755 |.666 .726 |.700 .756

Reuters8 |.830 .950(.937 .852|.753 .931 |.848 .956 |.836 .957 | .860 .960

20NS |.509 .525|.396 .409|.512 .535|.514 .540 |.524 .548 |.523 544
R21578|.316 .703|.215 .622|(.324 .716 |.322 .721 |.350 .710 |.300 .722
AGnews |.870 .871|.713 .711||.873 .876 |.880 .880 |.880 .880 |.886 .886
RCVIV2|.442 368|.442 .341|.461 .438 |.460 .457 |.463 452 |.465 .454

Avg (long) | .593 .683|.540 .587||.584 .699 |.605 .711 |.611 .710 | .607 .713

Avg (D) [.650 718].530 .590[].631 .712].661 .738 [.645 .720 |.664 .740

Table 4: Text classification for short and long texts with
T200 or word embedding dimension (Topic models with FS)

embedding priors and contextual information leads to im-
proved performance on the IR task for short-text and long-
text datasets. We report a gain of 11.1% (.60 vs .54) in pre-
cision on an average over the 15 datasets, compared to Doc-
NADE. On top, the deep variant i.e. iDeepDNEe (Table 2)
demonstrates a gain of 8.5% (.64 vs .59) in precision over
the 11 datasets, compared to DeepDNE. Figures (3a, 3b, 3c)
and (3d, 3e and 3f) illustrate the average precision for the re-
trieval task on short-text and long-text datasets, respectively.

Applicability (Text Categorization) Beyond the docu-
ment retrieval, we perform text categorization to measure
the quality of word vectors learned in the topic models.
We consider the same experimental setup as in the doc-
ument retrieval task and extract the document representa-
tion (latent vector) of 200 dimension for each document
(or text), learned during the training of DocNADE variants.
To perform document categorization, we employ a logistic

140

DocNADE iDocNADE DocNADEe
beliefs, muslims, |scripture, atheists, | atheists, christianity,
forward, alt, sin, religions, belief, eternal,
islam, towards, christianity, lord, | atheism, catholic,

atheism, christianity, bible, msg, bible, arguments,
hands, opinions heaven, jesus islam, religions
0.44 0.46 0.52

Table 5: Topics (top 10 words) of 20NS with coherence

book jesus windows gun
neighbors s; s, |neighbors s; s, |neighbors s; s, |neighbors s; s,
books .61 .84| christ .86 .83 dos 74 34| guns .72 .79
reference .52 .51 god 718 .63 files .63 36| firearms .63 .63
published .46 .74 |christians .74 49| version .59 43| criminal .63 .33
reading .45 54| faith .71 .51 file 59 36| crime .62 42
author .44 77| bible .71 .51 unix .52 47| police .61 .43

Table 6: 20NS dataset: The five nearest neighbors by iDoc-
NADE. s;: Cosine similarity between the word vectors from
iDocNADE, for instance vectors of jesus and god. s,: Co-
sine similarity in embedding vectors from glove.

regression classifier with L2 regularization. We also com-
pute document representations from pre-trained glove (Pen-
nington, Socher, and Manning 2014) embedding matrix by
summing the word vectors and compute classification per-
formance. On top, we also extract document representation
from doc2vec (Le and Mikolov 2014).

Table 4 shows that glove leads DocNADE in classifica-
tion performance, suggesting a need for distributional pri-
ors. For short-text dataset, iDocNADEe (and DocNADEe)
outperforms glove (.700 vs .685) and DocNADE (.700 vs
.661) in F1. Overall, we report a gain of 5.2% (.664 vs .631)
in F1 due to iDocNADEe over DocNADE for classification
on an average over 13 datasets.

Inspection of Learned Representations: To analyze the
meaningful semantics captured, we perform a qualitative in-
spection of the learned representations by the topic mod-
els. Table 5 shows topics for 20NS dataset that could be in-
terpreted as religion, which are (sub)categories in the data,
confirming that meaningful topics are captured. Observe that
DocNADEEe extracts a more coherent topic.

For word level inspection, we extract word representa-
tions using the columns W. ,,; as the vector (200 dimension)
representation of each word v;, learned by iDocNADE us-
ing 20NS dataset. Table 6 shows the five nearest neighbors
of some selected words in this space and their correspond-
ing similarity scores. We also compare similarity in word
vectors from iDocNADE and glove embeddings, confirming
that meaningful word representations are learned.

Conclusion

We show that leveraging contextual information and intro-
ducing distributional priors via pre-trained word embed-
dings in our proposed topic models result in learning bet-
ter word/document representation for short and long docu-
ments, and improve generalization, interpretability of topics
and their applicability in text retrieval and classification.
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Chapter 7

Multi-view and Multi-source
Transfers in Neural Topic Modeling
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Abstract

Though word embeddings and topics are com-
plementary representations, several past works
have used word embeddings in (neural) topic
modeling to address data sparsity problem in
short text or small collection of documents. In
this paper, we propose an approach to jointly
transfer the two representations (or views) in
neural topic modeling to better deal with pol-
ysemy and data sparsity issues. Moreover, we
identify multiple relevant source domains and
take advantage of word and topic features to
guide meaningful learning in the sparse tar-
get domain. We quantify the quality of topic
and document representations via generaliza-
tion (perplexity), interpretability (topic coher-
ence) and information retrieval.

1 Introduction

Probabilistic topic models, such as LDA (Blei
et al, 2003), Replicated Softmax (RSM)
(Salakhutdinov and Hinton, 2009) and Document
Neural Autoregressive Distribution Estimator
(DocNADE) (Larochelle and Lauly, 2012) are
often used to extract topics from text collections
and learn latent document representations to
perform natural language processing tasks, such
as information retrieval (IR). Though they have
been shown to be powerful in modeling large text
corpora, the topic modeling (TM) still remains
challenging especially in the sparse-data setting,
e.g., on short text or a corpus of few documents.
Though word embeddings (Pennington et al.,
2014) and topics are complementary in how they
represent the meaning, they are distinctive in how
they learn from word occurrences observed in text
corpora. Word embeddings have local context
(view) in the sense that they are learned based on
local collocation pattern in a text corpus, where
the representation of each word either depends on
a local context window (Mikolov et al., 2013) or

144

inquiries@cislmu.org

is a function of its sentence(s) (Peters et al., 2018).
Consequently, the word occurrences are modeled
in a fine-granularity. On other hand, a topic (Blei
et al., 2003) has a global word context (view):
TM infers topic distributions across documents in
the corpus and assigns a topic to each word oc-
currence, where the assignment is equally depen-
dent on all other words appearing in the same
document. Therefore, it learns from word occur-
rences across documents and encodes a coarse-
granularity description. Unlike topics, the word
embeddings can not capture the thematic struc-
tures (topical semantics) in the underlying corpus.

Consider the following topics (Z1-Z4), where
Z1-Z3 are respectively obtained from different
(large) source (S'-S3) domains whereas Z, from
the target domain 7 in the sparse-data setting:

Zy (SY): profit, growth, stocks, apple, consumer, buy, bil-
lion, shares — Marketing/Trading

Z2(82): smartphone, ipad, apple, app, iphone, devices,
phone, tablet — Product Line

Z3 (S8%): microsoft, mac, linux, ibm, ios, apple, xp, win-
dows — Operating System/Company

Zy (T): apple, talk, computers, shares, disease, driver,
electronics, profit, ios — 7

Usually, top words associated with topics
learned on a large corpus are semantically coher-
ent, e.g., Marketing, Product Line, etc. However
in sparse-data setting, topics (e.g., Z4) are inco-
herent (noisy) and therefore, it is difficult to infer
meaningful semantics. Additionally, notice that
the word apple is topically/thematically contex-
tualized (word-topic combination) in different se-
mantics in S'-S3 and referring to a company. Un-
like topics, the top-5 nearest neighbors (NN) of
apple (below) in the embeddings (Mikolov et al.,
2013) space suggest that it refers to a fruit.

apple RS apples, pear, fruit, berry, pears, strawberry

Motivation (1): Das et al. (2015); Nguyen et al.
(2015); Gupta et al. (2019) have shown that TM
can be improved by using external knowledge,
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e.g., word embeddings especially for short text
or small collections to alleviate sparsity issues.
Since the word embeddings ignore the themati-
cally/topically contextualized structures and there-
fore, can not deal with ambiguity. Additionally,
knowledge transfer via word embeddings is vul-
nerable to negative transfer (Cao et al., 2010) on
the target domain when domains are shifted.

To illustrate, consider a short-text document v:
[Apple gained its US market shares] in the
target domain 7. Here!, the word apple refers to
a company and hence, the word vector of apple is
an irrelevant source of knowledge transfer for both
v and topic Z4. In contrast, one can better model
v and amend Z, for coherence, given meaningful
representations Z;-Z3 via latent topic features.

Motivation (2): There are usually several word-
topic associations in different domains, e.g., in
topics Z1-Z3. Given a noisy topic Z4 in T and
meaningful topics Z;-Z3, we want to identify mul-
tiple relevant domains and take advantage of the
representations (word and topic features) of S'-S3
to empower meaningful learning in 7.

Contribution(s): To better deal with polysemy
and alleviate data-sparsity issues, we introduce
an approach to transfer latent topic features (the-
matically contextualized) instead using word em-
beddings exclusively. Moreover, we learn word
and topic representations on multiple source do-
mains and then perform multi-view and multi-
source knowledge transfers within neural topic
modeling by jointly using the complementary rep-
resentations. To do so, we guide the generative
process of learning hidden topics of the target do-
main by word and latent topic features from a
source domain(s) such that the hidden topics on
the target get meaningful. Code in supplementary.

'TM ignores punctuation, capitalization, stop words, etc.

Algorithm 1 Computation of log p(v) and Loss £(v)

Input: A target training document v, |S| source domains
Input: KB of latent topics {Z*, ..., Z!!}
Input: KB of word embedding matrices {E*, ..., EISI}
Parameters: © = {b,c, W, U, A' ... AlISI}
hyper-parameters: 0 = {\', .., ISl 41 . ~ISI H}
Initialize a <— c and p(v) «+ 1
for i from 1 to D do
h;(v<;) < g(a), where g = {sigmoid, tanh}
eXP(b'w+U'w,:hi <V<i))
2w exp(by, +U,,r hi(vey))
p(v) = p(v)p(vilv<i)
compute pre-activation at step, ¢: a <— a + W. ,,
if LVT then
get word embedding for v; from source domain(s)

a—a+ Y AFEF,
L(v) + —logp(v)
if GVT then P . .
L(v) = LvV)+ 20 Zj:l I[A7.W —Zj,

p(vi = wlve;)

2
2

2 Knowledge Transfer in Topic Modeling

Consider a sparse target domain 7 and a set of
|S| source domains S, we first prepare two knowl-
edge bases (KBs) of representations from each
of the sources: (1) word embeddings matrices
{E!,...,ElSl}, where EF € REXK and (2) latent
topic features {Z', ..., ZI°}, where ZF ¢ RH*K
encodes a distribution over a vocabulary of K
words. E and H are word embedding and latent
topic dimensions, respectively. While TM on T,
we introduce two types of knowledge transfers:
Local (LVT) and Global (GVT) View Transfer us-
ing the two KBs, respectively. Notice that a super-
script indicates a source.

Neural Autoregressive Topic Model: Since
DocNADE (Larochelle and Lauly, 2012; Gupta
et al., 2019), a neural-network based topic model
has shown to outperform traditional models, there-
fore we adopt it to perform knowledge transfer.

For a document v = (v1, ..., vp) of size D, each
word index v; takes value in {1,..., K'} of vo-
cabulary size K. DocNADE learns topics in a
language modeling fashion (Bengio et al., 2003)
and decomposes the joint probability distribution
p(v) = Hi 1 P(v;]v<;) such that each autoregres-
sive conditional p(v;|v<;) is modeled by a feed-
forward neural network using preceding words
v; in the sequence. For DocNADE, Figure 1 and
Algorithm 1 (LVT and GVT set to False) demon-
strate the computation of log p(v) and negative
log-likelihood £(v) that is minimized using gra-
dient descent. Importantly, we exploit properties
of W in DocNADE that the column vector W ,,,
corresponds to embedding of the word v;, whereas
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KBs from Model/ Scores on Target Corpus (in sparse-data setting)
Source Transfer 20NSshort TMNtitle R21578title 20NSsmall
Corpus Type | PPL COH IR | PPL COH IR |PPL COH IR | PPL COH IR
glove-DMM - 512 1183 - .633 445 - 364 273 - 578 .090
. doc2vec - - .090 - - .190 - - 518 - - .200
baselines
DocNADE | 646 667 290 | 706 709 521 192 J13 657 | 594 462 270
DocNADEe | 629  .674 294 | 680 719 541 | 187 721 663 | 590 455 274
LVT | 630  .673 298 | 705 709 523 | 194 708 656 | 594 455 288
20NS GVT | 646 690 303 | 718 720 527 | 184 .698  .660 | 594 500 310
MVT | 638 690 314 | 714 718 528 | 188 J15 655 | 600 499 311
+Glove | 630 .700 .298 | 690 733 539 | 186 724 664 | 601 499 306
LVT | 649 668 296 | 655 731 548 | 187 703 659 | 593 460 273
TMN GVT | 661 692 294 | 689 728 555 | 191 709 660 | 596 521 276
MVT | 658 .687 297 | 663 747 553 | 195 720 .660 | 599 507 292
+Glove | 640  .689 295 | 673 750 542 | 186 716 662 | 599 517 261
LVT | 656 667 292 | 704 715 522 186 J15 676 | 593 458 207
R21578 GVT | 654 .672 293 | 716 719 526 | 194 706 672 | 595 485 279
MVT | 650 .670 .296 | 716 720 528 | 194 724 676 | 599 490 280
+ Glove | 633 691 295 | 689 734 540 | 188 734 676 | 598 485 255
LVT | 650  .677 297 | 682 723 533 | 185 710 .659 | 593 458 260
AGnews GVT | 667 695 300 | 728 735 534 | 190 J17 663 | 598 563 282
MVT | 659 696 290 | 718 740 533 | 189 727 659 | 599 566 279
+ Glove | 642 707 291 | 706 745 540 | 190 734 664 | 600 573 284
LVT | 640  .678 308 | 663 732 547 | 186 712 673 | 596 442 277
MST GVT | 658 705 305 | 704 746 550 | 192 727 673 | 599 585 .326
MVT | 656 721 314 | 680 752 556 | 188 737 678 | 600  .600 285
+Glove | 644 719 293 | 687 752 538 | 189 732 674 | 609 586 282

Table 1: State-of-the-art comparisons: Perplexity (PPL), topic coherence (COH) and precision (IR) at retrieval
fraction 0.02. + Glove: MVT+Glove embeddings. Please read column-wise. Bold: best in column.

the row vector W ; . encodes latent features for jth
topic. Therefore, we use DocNADE to prepare
KBs of E and Z using source domains S.

Multi View (MVT) and Multi Source Trans-
fers (MST): lllustrated in Figure 1 and Algorithm
1 with LVT = True, we perform knowledge trans-
fer to 7 using word embeddings {E', ..., ElSI}
from several sources S. Notice that \* is a weight
for EF that controls the amount of knowledge
transferred in 7. Recently, DocNADEe (Gupta
et al., 2019) has incorporated word embeddings in
extending DocNADE though a single source.

Next, we perform knowledge transfer exclu-
sively using latent topic features of S (Algorithm
1 when GVT = True). In doing so, we add a reg-
ularization term to the loss function £(v) and re-
quire DocNADE to minimize the overall loss in a
way that the (latent) topic features in W simulta-
neously inherit relevant topical features from each
of the source domains, and generate meaningful
representations for the target 7. Consequently, the
generative process of learning topic features in W
is guided by relevant features in {Z}lls| to address
data-sparsity. Here, A*cR#*H aligns latent top-
ics in 7 and kth source, and v* governs the degree
of imitation of topic features Z* by W in 7.

When LVT and GVT are True for many sources,
the two complementary representations are jointly
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used in knowledge transfer and therefore, the
name multi-view and multi-source transfers.

3 Evaluation and Analysis

Datasets: Our target domain 7 consists of 3 short-
text (20NSshort, TMNtitle and R21578title)
and a corpus (20Nssmall) of few documents.
However in source S, we use 4 large corpora
(20ns, TMN, R21578 and AGnews) in different label
spaces. See the data description in supplementary.

Baselines: We consider topic models, e.g.,
(1) glove-DMM (Nguyen et al., 2015): LDA-
based with word embedding (2) DocNADE: Neu-
ral network-based, and (3) DocNADEe (Gupta
etal., 2019): DocNADE+Glove embeddings (Pen-
nington et al., 2014). To quantify the quality
of document representations, we employ doc2vec
(Le and Mikolov, 2014) and EmbSum (to repre-
sent a document by summing the embedding vec-
tors of its words using Glove). Using DocNADE,
we first learn word embeddings and latent topics
on each of the sources and then use them in knowl-
edge transfer to 7. See the experimental setup and
hyper-parameter configurations in supplementary.

Generalization via Perplexity (PPL): To eval-
uate the generative performance in TM, we esti-
mate the log-probabilities for the test documents
and compute the average held-out perplexity per
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Figure 2: (a, b) Retrieval performance (precision) on 20NSshort and 20NSsmall datasets. (c) Precision at recall
fraction 0.02, each for a fraction (20%, 40%, 60%, 80%, 100%) of the training set of TMNTtitle. See supplementary.

word as, PPL = exp( — %Zi\;l ‘v—ltllogp(vt)),
where N and |v;| are the total number of docu-
ments and words in a document vy, respectively.
Table 1 quantitatively shows PPL scores on the
four target corpora, each with H=200 topics deter-
mined using the development set. Using TMN in
LVT and MVT, we see improved (reduced) scores
on TMNtitle: (655 vs 680) and (663 vs 680) re-
spectively in comparison to DocNADEe. It sug-
gests a positive knowledge transfer and domain
overlap in TuMNtitle and TMN. Also, MST+LVT
boosts (663 vs 680) generalization in TMNtitle.
Interpretabilty via Topic Coherence (COH):
To estimate meaningfulness of words in the top-
ics captured, we follow Réder et al. (2015); Gupta
et al. (2019) and compute COH with top 10 words
in each topic. Higher scores imply more coher-
ent topics. Table 1 (under COH column) demon-
strates that our proposed knowledge transfer ap-
proaches show noticeable gains in COH, e.g., us-
ing AGnews as a source alone in GVT configura-
tion for 20NSsmall datatset, we observe COH of
(.563 vs .455) compared to DocNADEe. On top,
MST+MVT boosts COH for all the four targets
compared to the baselines, suggesting the need for
two complementary (word and topics) represen-
tations and knowledge transfers from several do-
mains. Qualitatively, Table 2 illustrates example
topics from target domains, where GVT using a
corresponding source shows more coherent topics.
Applicability via Information Retrieval (IR):
To evaluate document representations, we perform
a document retrieval task on the target datasets and
use their label information to compute precision.
We follow the experimental setup similar to Lauly
et al. (2017); Gupta et al. (2019), where all test
documents are treated as queries to retrieve a frac-
tion of the closest documents in the original train-

Feature
DocNADE
20NS GVT
DocNADE
AGnews GVT
DocNADE
AGnews GVT

Target Source Topic-words (top 5) on Target data

sale, price, monitor, site, setup
20NSshort - . . .
shipping, sale, price, expensive, subscribe

apple, modem, side, baud, perform
20NSshort

microsoft, software, desktop, computer, apple

) strike, jackson, kill, earthquake, injures
TMNtitle

earthquake, radiation, explosion, wildfire

Table 2: Topics on Target with/without transfers

ing set using cosine similarity measure between
their document vectors. To compute retrieval pre-
cision for each fraction (e.g., 0.001, 0.005, etc.),
we average the number of retrieved training docu-
ments with the same label as the query.

Table 1 depicts precision scores at retrieval frac-
tion 0.02, where the configuration MST+MVT
outperforms DocNADEe in IR on all the four tar-
get datasets, e.g., (.314 vs .294) for 20Nsshort.
We also see a large gain (.326 vs .274) due to
MST+GVT for 20Nssmall. Additionally, Figures
2a and 2b illustrate the precision on 20NSshort
(in MST+MVT) and 20Nssmall (in MST+GVT),
respectively, where they consistently outperform
both DocNADEe and EmbSum at all fractions.

Moreover, we split the training data of TMN-
title into several sets: 20%, 40%, 60%, 80% of
the training set and then retrain DocNADE, Doc-
NADEe and DocNADE+MST+MVT. We demon-
strate the impact of knowledge transfers via word
and topic features in learning representations on
the sparse target domain. Figure 2c plots precision
at retrieval (recall) fraction 0.02 and demonstrates
that the proposed modeling consistently reports a
gain over DocNADE(e) at each of the splits.

Conclusion: Within neural topic modeling, we
have demonstrated an approach to jointly trans-
fer word embedding and latent topic features from
many sources that better deals with data sparsity.
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ABSTRACT

We address two challenges of probabilistic topic modelling in order to better esti-
mate the probability of a word in a given context, i.e., P(word|context) : (1) No
language structure in context: Probabilistic topic models ignore word order by
summarizing a given context as a ‘“bag-of-word” and consequently the semantics
of words in the context is lost. In this work, we incorporate language structure
by combining a neural autoregressive topic model (TM) (e.g., DocNADE) with
a LSTM based language model (LSTM-LM) in a single probabilistic framework.
The LSTM-LM learns a vector-space representation of each word by accounting
for word order in local collocation patterns, while the TM simultaneously learns a
latent representation from the entire document. In addition, the LSTM-LM mod-
els complex characteristics of language (e.g., syntax and semantics), while the TM
discovers the underlying thematic structure in a collection of documents. We unite
two complementary paradigms of learning the meaning of word occurrences by
combining a topic model and a language model in a unified probabilistic frame-
work, named as ctx-DocNADE. (2) Limited context and/or smaller training cor-
pus of documents: In settings with a small number of word occurrences (i.e., lack
of context) in short text or data sparsity in a corpus of few documents, the appli-
cation of TMs is challenging. We address this challenge by incorporating external
knowledge into neural autoregressive topic models via a language modelling ap-
proach: we use word embeddings as input of a LSTM-LM with the aim to improve
the word-topic mapping on a smaller and/or short-text corpus. The proposed Doc-
NADE extension is named as ctx-DocNADEe.

We present novel neural autoregressive topic model variants coupled with neural
language models and embeddings priors that consistently outperform state-of-the-
art generative topic models in terms of generalization (perplexity), interpretability
(topic coherence) and applicability (retrieval and classification) over 7 long-text
and 8 short-text datasets from diverse domains.

1 INTRODUCTION

Probabilistic topic models, such as LDA (Blei et al., 2003), Replicated Softmax (RSM) (Salakhut-
dinov & Hinton, 2009) and Document Neural Autoregressive Distribution Estimator (DocNADE)
(Larochelle & Lauly, 2012; Zheng et al., 2016; Lauly et al., 2017) are often used to extract topics
from text collections, and predict the probabilities of each word in a given document belonging to
each topic. Subsequently, they learn latent document representations that can be used to perform
natural language processing (NLP) tasks such as information retrieval (IR), document classification
or summarization. However, such probabilistic topic models ignore word order and represent a given
context as a bag of its words, thereby disregarding semantic information.

To motivate our first task of extending probabilistic topic models to incorporate word order and
language structure, assume that we conduct topic analysis on the following two sentences:

Bear falls into market territoryandMarket falls into bear territory
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Figure 1: (left): A topic-word distribution due to global exposure, obtained from the matrix W' as row-vector.
(middle): Nearest neighbors in semantics space, represented by W in its column vectors. (right): BoW and
cosine similarity illustration in distributed embedding space.

When estimating the probability of a word in a given context (here: P(“bear” |context)), traditional
topic models do not account for language structure since they ignore word order within the context
and are based on “bag-of-words” (BoWs) only. In this particular setting, the two sentences have the
same unigram statistics, but are about different topics. On deciding which topic generated the word
“bear” in the second sentence, the preceding words “market falls” make it more likely that it was
generated by a topic that assigns a high probability to words related to stock market trading, where
“bear territory” is a colloquial expression in the domain. In addition, the language structure (e.g.,
syntax and semantics) is also ignored. For instance, the word “bear” in the first sentence is a proper
noun and subject while it is an object in the second. In practice, topic models also ignore functional
words such as “into”, which may not be appropriate in some scenarios.

Recently, Peters et al. (2018) have shown that a deep contextualized LSTM-based language model
(LSTM-LM) is able to capture different language concepts in a layer-wise fashion, e.g., the lowest
layer captures language syntax and topmost layer captures semantics. However, in LSTM-LMs the
probability of a word is a function of its sentence only and word occurrences are modeled in a fine
granularity. Consequently, LSTM-LMs do not capture semantics at a document level. To this end,
recent studies such as TDLM (Lau et al., 2017), Topic-RNN (Dieng et al., 2016) and TCNLM (Wang
et al., 2018) have integrated the merits of latent topic and neural language models (LMs); however,
they have focused on improving LMs with global (semantics) dependencies using latent topics.

Similarly, while bi-gram LDA based topic models (Wallach, 2006; Wang et al., 2007) and n-gram
based topic learning (Lauly et al., 2017) can capture word order in short contexts, they are unable
to capture long term dependencies and language concepts. In contrast, DocNADE (Larochelle &
Lauly, 2012) learns word occurrences across documents i.e., coarse granularity (in the sense that
the topic assigned to a given word occurrence equally depends on all the other words appearing in
the same document); however since it is based on the BoW assumption all language structure is
ignored. In language modeling, Mikolov et al. (2010) have shown that recurrent neural networks
result in a significant reduction of perplexity over standard n-gram models.

Contribution 1: We introduce language structure into neural autoregressive topic models via a
LSTM-LM, thereby accounting for word ordering (or semantic regularities), language concepts and
long-range dependencies. This allows for the accurate prediction of words, where the probability of
each word is a function of global and local (semantics) contexts, modeled via DocNADE and LSTM-
LM, respectively. The proposed neural topic model is named as contextualized-Document Neural
Autoregressive Distribution Estimator (ctx-DocNADE) and offers learning complementary seman-
tics by combining joint word and latent topic learning in a unified neural autoregressive framework.
For instance, Figure 1 (left and middle) shows the complementary topic and word semantics, based
on TM and LM representations of the term “fall”. Observe that the topic captures the usage of “fall”
in the context of stock market trading, attributed to the global (semantic) view.

While this is a powerful approach for incorporating language structure and word order in particular
for long texts and corpora with many documents, learning from contextual information remains
challenging in settings with short texts and few documents, since (1) limited word co-occurrences
or little context (2) significant word non-overlap in such short texts and (3) small training corpus of
documents lead to little evidence for learning word co-occurrences. However, distributional word
representations (i.e. word embeddings) (Pennington et al., 2014) have shown to capture both the
semantic and syntactic relatedness in words and demonstrated impressive performance in NLP tasks.

For example, assume that we conduct topic analysis over the two short text fragments: Deal with
stock index falls and Brace for market share drops. Traditional topic models
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Figure 2: (left): DocNADE for the document v. (right): ctx-DocNADEe for the observable corresponding to
v; € v. Blue colored lines signify the connections that share parameters. The observations (double circle) for
each word v; are multinomial, where v; is the index in the vocabulary of the ith word of the document. hP™
and hZ™ are hidden vectors from DocNADE and LSTM models, respectively for the target word v;. Connec-
tions between each input v; and hidden units hP”™ are shared. The symbol ©; represents the autoregressive
conditionals p(v;|v<;), computed using h; which is a weighted sum of hP" and h*M in ctx-DocNADEEe.

with “BoW” assumption will not be able to infer relatedness between word pairs such as (falls,
drops) due to the lack of word-overlap and small context in the two phrases. However, in the
distributed embedding space, the word pairs are semantically related as shown in Figure 1 (left).

Related work such as Sahami & Heilman (2006) employed web search results to improve the infor-
mation in short texts and Petterson et al. (2010) introduced word similarity via thesauri and dictio-
naries into LDA. Das et al. (2015) and Nguyen et al. (2015) integrated word embeddings into LDA
and Dirichlet Multinomial Mixture (DMM) (Nigam et al., 2000) models. However, these works are
based on LDA-based models without considering language structure, e.g. word order. In addition,
DocNADE outperforms LDA and RSM topic models in terms of perplexity and IR.

Contribution 2: We incorporate distributed compositional priors in DocNADE: we use pre-trained
word embeddings via LSTM-LM to supplement the multinomial topic model (i.e., DocNADE) in
learning latent topic and textual representations on a smaller corpus and/or short texts. Knowing
similarities in a distributed space and integrating this complementary information via a LSTM-LM,
a topic representation is much more likely and coherent.

Taken together, we combine the advantages of complementary learning and external knowledge, and
couple topic- and language models with pre-trained word embeddings to model short and long text
documents in a unified neural autoregressive framework, named as ctx-DocNADEe. Our approach
learns better textual representations, which we quantify via generalizability (e.g., perplexity), inter-
pretability (e.g., topic extraction and coherence) and applicability (e.g., IR and classification).

To illustrate our two contributions, we apply our modeling approaches to 7 long-text and 8 short-text
datasets from diverse domains and demonstrate that our approach consistently outperforms state-of-
the-art generative topic models. Our learned representations, result in a gain of: (1) 4.6% (.790 vs
.755) in topic coherence, (2) 6.5% (.615 vs .577) in precision at retrieval fraction 0.02, and (3) 4.4%
(.662 vs .634) in F'1 for text classification, averaged over 6 long-text and 8 short-text datasets.

When applied to short-text and long-text documents, our proposed modeling approaches gener-
ate contextualized topic vectors, which we name textTOvec. The code is available at https:
//github.com/pgcool/textTOvec.

2 NEURAL AUTOREGRESSIVE TOPIC MODELS

Generative models are based on estimating the probability distribution of multidimensional data,
implicitly requiring modeling complex dependencies. Restricted Boltzmann Machine (RBM) (Hin-
ton et al., 2006) and its variants (Larochelle & Bengio, 2008) are probabilistic undirected models
of binary data. RSM (Salakhutdinov & Hinton, 2009) and its variants (Gupta et al., 2018) are gen-
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eralization of the RBM, that are used to model word counts. However, estimating the complex
probability distribution of the underlying high-dimensional observations is intractable. To address
this challenge, NADE (Larochelle & Murray, 2011) decomposes the joint distribution of binary ob-
servations into autoregressive conditional distributions, each modeled using a feed-forward network.
Unlike for RBM/RSM, this leads to tractable gradients of the data negative log-likelihood.

2.1 DOCUMENT NEURAL AUTOREGRESSIVE TopriC MODEL (DOCNADE)

An extension of NADE and RSM, DocNADE (Larochelle & Lauly, 2012) models collections of
documents as orderless bags of words (BoW approach), thereby disregarding any language structure.
In other words, it is trained to learn word representations reflecting the underlying topics of the
documents only, ignoring syntactical and semantic features as those encoded in word embeddings
(Bengio et al., 2003; Mikolov et al., 2013; Pennington et al., 2014; Peters et al., 2018).

DocNADE (Lauly et al., 2017) represents a document by transforming its BoWs into a sequence
v = [v1,...,up] of size D, where each element v; € {1,2,..., K'} corresponds to a multinomial
observation (representing a word from a vocabulary of size K'). Thus, v; is the index in the vocab-
ulary of the ith word of the document v. DocNADE models the joint distribution p(v) of all words

v; by decomposing it as p(v) = Hiil p(v;|v<i), where each autoregressive conditional p(v;|v<;)
for the word observation v; is computed using the preceding observations v<; € {vy,...,v;—1} ina
feed-forward neural network for i € {1,...D},

exp(bw + Uw,;hZDN(VQ-))

1
S explbw + Uy hP¥(vay) O

bV (va) =gle+ > W.,,) and p(v; = wlve,) =

k<i

where g(-) is an activation function, U € RE*# is a weight matrix connecting hidden to output,
e € R” and b € R¥ are bias vectors, W € R¥*K is a word representation matrix in which a
column W . is a vector representation of the word v; in the vocabulary, and H is the number of
hidden units (topics). The log-likelihood of any document v of any arbitrary length is given by:

LPN(v) = Zfil log p(v;|v<;). Note that the past word observations v; are orderless due to
BoWs, and may not correspond to the words preceding the ¢th word in the document itself.

Algorithm 1 Computation of log p(v) model | h; | pluilver)
Input: A training document v DOCNADE WY —g(a) equation 1
Input: Word embedding matrix E h; « hPY
Output: 1 LM ing =

1: put: logp(v) ctx-DocNADE b e LSTM(C?’,embedduylg w) equation 2
: a(“) e ) h; « hPY 4+ A hiM
2: q(v) = y
) hiM . e —
3: for i from 1to D do ctx-DocNADEe o LSTM(e De:lbeddnlgw W+E) equation 2
4: compute h; and p(v;|v<;) h; < h?" + A by
500 q(v) < q(v)p(vilv<i . .
6: a(e) a+ %V)UE ifv<i) Table 1: Computation of h; and p(v;|v<;) in DocNADE,
ctx-DocNADE and ctx-DocNADEe models, correspondingly
7: logp(v) « logq(v)

used in estimating log p(v) (Algorithm 1).

2.2 DEEP CONTEXTUALIZED DOCNADE WITH DISTRIBUTIONAL SEMANTICS

We propose two extensions of the DocNADE model: (1) ctx-DocNADE: introducing language struc-
ture via LSTM-LM and (2) ctx-DocNADEe: incorporating external knowledge via pre-trained word
embeddings E, to model short and long texts. The unified network(s) account for the ordering of
words, syntactical and semantic structures in a language, long and short term dependencies, as well
as external knowledge, thereby circumventing the major drawbacks of BoW-based representations.

Similar to DocNADE, ctx-DocNADE models each document v as a sequence of multinomial ob-
servations. Let [z1, 2, ...,2n] be a sequence of N words in a given document, where x; is rep-
resented by an embedding vector of dimension, dim. Further, for each element v; € v, let
¢, = [z1,Z2,...,2,-1] be the context (preceding words) of ith word in the document. Unlike in
DocNADE, the conditional probability of the word v; in ctx-DocNADE (or ctx-DocNADEge) is a

function of two hidden vectors: h?Y (v_;) and hX* (c;), stemming from the DocNADE-based and

153



Published as a conference paper at ICLR 2019

short-text long-text
Data Train Val Test [RV| |[FV| L C Domain Data |Train Val Test |[RV| |[FV| L C Domain
20NSshort | 1.3k 0.1k 0.5k 14k 1.4k 13.5 20 News || 20NSsmall | 0.4k 0.2k 02k 2k 4555 187.5 20 News
TREC6| 5.5k 0.5k 0.5k 2k 2295 98 6 Q&A|| Reuters8| 5.0k 0.5k 2.2k 2k 7654 102 8  News
R21578title’ | 7.3k 0.5k 3.0k 2k 2721 73 90  News 20NS| 7.9k 1.6k 52k 2k 33770 107.5 20  News
Subjectivity | 8.0k .05k 2.0k 2k 7965 23.1 2 Senti || R215787| 7.3k 0.5k 3.0k 2k 11396 128 90  News
Polarity | 8.5k .05k 2.1k 2k 7157 21.0 Senti BNC| 15.0k 1.0k 1.0k 9.7k 41370 1189 -  News
TMNtitle | 22.8k 2.0k 7.8k 2k 6240 4.9 News || SiROBs'|27.0k 1.0k 10.5k 3k 9113 39 22 Indus
TMN | 22.8k 2.0k 7.8k 2k 12867 19 News || AGNews| 118k 2.0k 7.6k 5k 34071 38 4 News
AGnewstitle | 118k 2.0k 7.6k 5k 17125 6.8 News

EEEE S

Table 2: Data statistics: Short/long texts and/or small/large corpora from diverse domains. Symbols- Avg:
average, L: avg text length (#words), |RV| and |F'V|: size of reduced (RV) and full vocabulary (FV), C:
number of classes, Senti: Sentiment, Indus: Industrial, ‘k’:thousand and t: multi-label. For short-text, L <25.

LSTM-based components of ctx-DocNADE, respectively:
exp(bw + Uw,:hi (V<i))
Zw, eXp(bw/ + Uw/“hi (V<7;))

where hPY (v_;) is computed as in DocNADE (equation 1) and ) is the mixture weight of the LM

component, which can be optimized during training (e.g., based on the validation set). The second
term hZM is a context-dependent representation and output of an LSTM layer at position i — 1
over input sequence c;, trained to predict the next word v;. The LSTM offers history for the ith
word via modeling temporal dependencies in the input sequence, c;. The conditional distribution
for each word v; is estimated by equation 2, where the unified network of DocNADE and LM
combines global and context-dependent representations. Our model is jointly optimized to maximize
the pseudo log likelihood, logp(v) = Zil log p(v;|v<;) with stochastic gradient descent. See
Larochelle & Lauly (2012) for more details on training from bag of word counts.

In the weight matrix W of DocNADE (Larochelle & Lauly, 2012), each row vector W ;. encodes
topic information for the jth hidden topic feature and each column vector W. ,,; is a vector for
the word v;. To obtain complementary semantics, we exploit this property and expose W to both
global and local influences by sharing W in the DocNADE and LSTM-LM componenents. Thus,
the embedding layer of LSTM-LM component represents the column vectors.

hi(v<i) = hiDN(V<i) + A hiLM(ci) and p(v; = wlve;) =

(€3

ctx-DocNADE, in this realization of the unified network the embedding layer in the LSTM compo-
nent is randomly initialized. This extends DocNADE by accounting for the ordering of words and
language concepts via context-dependent representations for each word in the document.

ctx-DocNADEe, the second version extends ctx-DocNADE with distributional priors, where the
embedding layer in the LSTM component is initialized by the sum of a pre-trained embedding
matrix E and the weight matrix W. Note that W is a model parameter; however E is a static prior.

Algorithm 1 and Table 1 show the log p(v) for a document v in three different settings: Doc-
NADE, ctx-DocNADE and ctx-DocNADEe. In the DocNADE component, since the weights in the
matrix W are tied, the linear activation a can be re-used in every hidden layer and computational
complexity reduces to O(H D), where H is the size of each hidden layer. In every epoch, we run
an LSTM over the sequence of words in the document and extract hidden vectors hiLM , corre-
sponding to c; for every target word v;. Therefore, the computational complexity in ctx-DocNADE
or ctx-DocNADEe is O(HD + 91), where 91 is the total number of edges in the LSTM network
(Hochreiter & Schmidhuber, 1997; Sak et al., 2014). The trained models can be used to extract a
textTOvec representation, i.e., h(v*) = h”" (v*) + Ah"™(c} ;) for the text v* of length D*, where
hPY(v*) = gle+ 3, cp- Wi, ) and h" (¢} 1) = LSTM(c}y ., embedding = W or (W + E)).

ctx-DeepDNEe: DocNADE and LSTM can be extended to a deep, multiple hidden layer architec-
ture by adding new hidden layers as in a regular deep feed-forward neural network, allowing for
improved performance. In the deep version, the first hidden layer is computed in an analogous
fashion to DocNADE variants (equation 1 or 2). Subsequent hidden layers are computed as:
h%\/(vQ) =g(ea+Wi;q-h;q_1(ve;)) or h{’fiw(cz) = deepLST M (c;,depth = d)

for d = 2, ...n, where n is the total number of hidden layers (i.e., depth) in the deep feed-forward
and LSTM networks. For d=1, the hidden vectors h{’}Y and h/{ correspond to equations 1 and 2.
The conditional p(v; = w|v<;) is computed using the last layer n, i.e., h; , = PN + A h[).
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20NSshort TREC6 R21578title | Subjectivity Polarity TMNtitle TMN AGnewstitle Avg
IR F1 IR F1 IR F1 IR F1 IR F1 IR F1 IR F1 IR F1 IR F1
glove(RV) | .236 493 | 480 .798 | 587 .356 | .754 882 | .543 715 | 513 .693 | .638 .736 | .588 814 || 542 .685
glove(FV) | 236 483 | 480 .785 | .595 .356 | .775 901 | .553 728 | .545 736 | .643 813 | 612  .830 | .554 .704
doc2vec | .090 413 | 260 .400 | 518 .176 | .571 763 | 510 .624 | (190 582 | 220 .720 | .265 600 || .328 .534
Gauss-LDA | .080 .118 | 325 202 | .367 .012 | .558 .676 | .505 511 | 408 472 | 713 .692 | .516 752 || 434 429
glove-DMM | 183 213 | 370 454 | 273 011 | .738  .834 | 515 .585 | 445 590 | .551 .666 | .540  .652 | 451 .500
glove-LDA | .160 320 | .300 .600 | .387 .052 | .610 .805 | .517 .607 | .260 412 | 428 .627 | .547 687 || 401 513
TDLM | 219 308 | 521 .671 | .563 .174 | .839  .885 | .520 .599 | .535 .657 | .672 .767 | .534 722 || 550 .586
DocNADE(RV) | 290 440 | .550 .804 | .657 313 | .820 .889 | .560 .699 | .524 .664 | .652 759 | .656  .819 | .588 .673
DocNADE(FV) | 290 440 | 546 791 | .654 302 | .848 907 | 576 .724 | 525 .688 | .687 .796 | .678 821 600 .683
DeepDNE | .100 .080 | 479 .629 | .630 .221 | .865 .909 | .503 .531 | .536 .661 | .671 .783 | .682 825 || .558 .560
ctx-DocNADE | 296 440 | 595 817 | .641 .300 | .874 910 | .591 .725 | .560 .687 | .692 .793 | .691 826 || .617 .688
ctx-DocNADEe | 306 490 | 599 .824 | .656 308 | .874 917 | .605 740 | .595 .726 | .698 .806 | .703  .828 || .630 .705
ctx-DeepDNEe | 278 416 | .606 .804 | .647 244 | .878 920 | .591 .723 | 576 .694 | .687 .796 | .689 826 || .620 .688

Model

Table 3: State-of-the-art comparison: IR (i.e, IR-precision at 0.02 fraction) and classification F'1 for short texts,
where Avg: average over the row values, the bold and underline: the maximum for IR and F1, respectively.

3 EVALUATION

We apply our modeling approaches (in improving topic models, i.e, DocNADE using language
concepts from LSTM-LM) to 8 short-text and 7 long-text datasets of varying size with single/multi-
class labeled documents from public as well as industrial corpora. We present four quantitative
measures in evaluating topic models: generalization (perplexity), topic coherence, text retrieval and
categorization. See the appendices for the data description and example texts. Table 2 shows the
data statistics, where 20NS and R21578 signify 20NewsGroups and Reuters21578, respectively.

Baselines: While, we evaluate our multi-fold contributions on four tasks: generalization (perplexity),
topic coherence, text retrieval and categorization, we compare performance of our proposed models
ctx-DocNADE and ctx-DocNADEe with related baselines based on: (1) word representation:
glove (Pennington et al., 2014), where a document is represented by summing the embedding
vectors of it’s words, (2) document representation: doc2vec (Le & Mikolov, 2014), (3) LDA
based BoW TMs: ProdLDA (Srivastava & Sutton, 2017) and SCHOLAR! (Card et al., 2017) (4)
neural BoW TMs: DocNADE and NTM (Cao et al., 2015) and , (5) TMs, including pre-trained word
embeddings: Gauss—LDA (GaussianLDA3) (Das et al., 2015), and glove—-DMM, glove—-LDA
(Nguyen et al., 2015). (6) jointly? trained topic and language models: TDLM (Lau et al., 2017),
Topic—RNN (Dieng et al., 2016) and TCNLM (Wang et al., 2018).

20NSsmall | Reuters8 20NS R21578 SiROBs AGnews Avg Model PPL Model PPL
IR 71| IR Fi| IR Fi| IR Fi| IR Fi| IR Fi| IR FI DOGNADE | 980 DocNADE | 846
glove(RV) | 214 442|845 830|200 608|644 316|273 202|725 870| 483 544 ctx-DocNADE | 968 ctxDocNADE | 822
glove(FV) | 238 494 | 837 880|.253 .632|.659 340|285 217(.737 .890|.501 .575 cenoctapse | 966 | 2 con-bocnabEe| 820
doc2vec| 200 450|586 852|216 .691|.524 215|282 226|387 713|365 .524
Gauss-LDA | 090 080|712 557 |.142 340|539 114|232 070|456 818|361 329 DOcNADE| 283 DOCNADE | 1375
glove-DMM | 060 134|623 453|092 .187|.501 023|226 050 - - - - ctx-DocNADE | 1358
DocNADE(RV) | 270 530|.884 890|366 .644|.723 336|374 298|787 .882|.567 .596 ctx-DocNADEe | 1361
DocNADE(FV) | 299 509|879 .907|.427 727|.715 .340|.382 .308|.794 .888|.582 .613 DoCNADE | 646
ctx-DocNADE | 313 526 | 880 898|472 732|714 315|386 309|791 890592 .611 ctx-DOCNADE | 656
ctx-DocNADEe | 327 524 | 883 900 |.486 745|721 332|.390 _311|.796 _894|.601 _618 ctx-DocNADEe | 648

Model

ctx-DocNADE | 276
ctx-DocNADEe | 272
DocNADE | 1437
ctx-DocNADE | 1430
ctx-DocNADEe | 1427

20NS  AGnewstitle

TMNtitle Reuters8 Subjectivity

20NSshort

Table 4: IR-precision at fraction 0.02 and classification F'1 for long texts  Table 5: Generalization: PPL

Experimental Setup: DocNADE is often trained on a reduced vocabulary (RV) after pre-processing
(e.g., ignoring functional words, etc.); however, we also investigate training it on full text/vocabulary
(FV) (Table 2) and compute document representations to perform different evaluation tasks. The FV
setting preserves the language structure, required by LSTM-LM, and allows a fair comparison of
DocNADE+FV and ctx-DocNADE variants. We use the glove embedding of 200 dimensions. All
the baselines and proposed models (ctx-DocNADE, ctx-DocNADEe and ctx-DeepDNEe) were run
in the FV setting over 200 topics to quantify the quality of the learned representations. To better
initialize the complementary learning in ctx-DocNADEs, we perform a pre-training for 10 epochs
with A set to 0. See the appendices for the experimental setup and hyperparameters for the following
tasks, including the ablation over A on validation set.

focuses on incorporating meta-data (author, date, etc.) into TMs; SCHOLAR w/o meta-data = ProdLDA
“though focused on improving language models using topic models, different to our motivation
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glove-DMM | glove-LDA | DocNADE | ctx-DNE | ctx-DNEe glove-DMM | DocNADE | ctx-DNE | ctx-DNEe
WI10 W20 WI0 W20 | W10 W20 | W10 W20 | W10 W20 WI0O W20 (W10 W20| W10 W20|WI0 W20
20NSshort| 512 .575| .616 .767 | .669 .779| .682 .794|.696 .801 || Subjectivity| .538  .433| .613 .749| .629 .767| .634 .771
TREC6| 410 475|551 .736| .699 .818|.714 .810| .713 .809 ||AGnewstitle | .584  .678 | .731 .757| .739 .858|.746 .865
R21578title| 364  .458| 478 .677|.701 .812|.713 .802|.723 .834| 20NSsmall| .578 .548| .508 .628| .546 .667| .565 .692
Polarity | .637 363 | .375 .468| .610 .742| .611 .756|.650 .779 Reuters8| 372 .302| .583 .710| .584 .710| .592 .714
TMNtitle | .633 778 | .651 .798| .712 .822|.716 .831|.735 .845 20NS | 458 374 .606 .729| .615 .746| .631 .759
TMN| 705 444 550 .683|.642 .762|.639 .759|.709 .825 Avg (all) | .527 ..452| .643 .755| .654 .772| .672 .790

Data Data

Table 6: Average coherence for short and long texts over 200 topics in FV setting, where DocNADE <> DNE

We run TDLM? (Lau et al., 2017) for all the short-text datasets to evaluate the quality of representa-
tions learned in the spare data setting. For a fair comparison, we set 200 topics and hidden size, and
initialize with the same pre-trained word embeddings (i.e., glove) as used in the ctx-DocNADEge.

3.1 GENERALIZATION: PERPLEXITY (PPL)

To evaluate the generative performance of the topic models, we estimate the log-probabilities for the
test documents and compute the average held-out perplexity (PPL) per word as, PPL = exp ( —
2 211 vy logp(v')), where z and |v?| are the total number of documents and words in a document

v'. For DocNADE, the log-probability log p(v")) is computed using L”% (v); however, we ignore
the mixture coefficient, i.e., A=0 (equation 2) to compute the exact log-likelihood in ctx-DocNADE
versions. The optimal ) is determined based on the validation set. Table 5 quantitatively shows the
PPL scores, where the complementary learning with A = 0.01 (optimal) in ctx-DocNADE achieves
lower perplexity than the baseline DocNADE for both short and long texts, e.g., (822 vs 846) and
(1358 vs 1375) on AGnewstitle and 20NS * datasets, respectively in the FV setting.

3.2 INTERPRETABILITY: TOPIC COHERENCE

We compute topic coherence (Chang et al., 2009; Newman et al., 2009; Gupta et al., 2018) to assess
the meaningfulness of the underlying topics captured. We choose the coherence measure proposed
by Roder et al. (2015) , which identifies context features for each topic word using a sliding window
over the reference corpus. Higher scores imply more coherent topics.

We use the gensim module (radimrehurek.com/gensim/models/coherencemodel.himl, coherence type = c_v)
to estimate coherence for each of the 200 topics (top 10 and 20 words). Table 6 shows average co-
herence over 200 topics, where the higher scores in ctx-DocNADE compared to DocNADE (.772 vs
.755) suggest that the contextual information and language structure help in generating more coher-
ent topics. The introduction of embeddings in ctx-DocNADEge boosts the topic coherence, leading
to a gain of 4.6% (.790 vs .755) on average over 11 datasets. Note that the proposed models also
outperform the baselines methods glove-DMM and glove-LDA. Qualitatively, Table 8 illustrates an
example topic from the 20NSshort text dataset for DocNADE, ctx-DocNADE and ctx-DocNADEze,
where the inclusion of embeddings results in a more coherent topic.

Additional Baslines: We further compare our proposed models to other approaches that combining
topic and language models, such as TDLM (Lau et al., 2017), Topic-RNN (Dieng et al., 2016) and
TCNLM (Wang et al., 2018). However, the related studies focus on improving language models
using topic models: in contrast, the focus of our work is on improving topic models for textual
representations (short-text or long-text documents) by incorporating language concepts (e.g., word
ordering, syntax, semantics, etc.) and external knowledge (e.g., word embeddings) via neural lan-
guage models, as discussed in section 1.

To this end, we follow the experimental setup of the most recent work, TCNML and quantitatively
compare the performance of our models (i.e., ctx-DocNADE and ctx-DocNADEge) in terms of topic
coherence (NPMI) on BNC dataset. Table 7 (left) shows NPMI scores of different models, where
the results suggest that our contribution (i.e., ctx-DocNADE) of introducing language concepts into
BoW topic model (i.e., DocNADE) improves topic coherence’. The better performance for high val-

3https://github.com/jhlau/topically-driven-language-model
“PPL scores in (RV/FV) settings: DocNADE (665/1375) outperforms ProdLDA (1168/2097) on 200 topics
SNPMI over (50/200) topics learned on 20NS by: ProdLDA (.24/.19) and DocNADE (.15/.12) in RV setting
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Model Coherence (NPMI) Topic Model Topic-words (ranked by their probabilities in topic)
50 100 150 TCNLM# pollution, emissions, nuclear, waste, environmental
(sliding window=20) environment | ctx-DocNADE* ozone, pollution, emissions, warming, waste
LDA# 106 119 .119 ctx-DocNADEe* | pollution, emissions, dioxide, warming, environmental
NTM# .081 .070 .072 TCNLM# elections, economic, minister, political, democratic
TDLM(s)# 102 106 .100 politics ctx-DocNADE* elections, democracy, votes, democratic, communist
TDLM(1)# 095 .101 .104 ctx-DocNADEe* democrat, candidate, voters, democrats, poll
Topic-RNN(s)# 102 108 .102 TCNLM# album, band, guitar, music, film
Topic-RNN(1)# 100 105 .097 art ctx-DocNADE* guitar, album, band, bass, tone
TCNLM(s)# 114 111 107 ctx-DocNADEe* guitar, album, pop, guitars, song
TCNLM()# 101 104 102 TCNLM# bedrooms, hotel, garden, situated, rooms
DocNADE .097 .095 .097 facilities ctx-DocNADE* bedrooms, queen, hotel, situated, furnished
B ;t;ﬁoEI\TAbE*IA;(iZS 102 103 102 ctx-DocNADEe* hotel, bedrooms, golf, resorts, relax
ctx-DocNADE*(A\=0.8) 106 105 104 TCNLM# corp, turnover, unix, net, profits
ctx-DocNADEe*(A\=0.2) | .098 .101 - business ctx-DocNADE* shares, dividend, shareholders, stock, profits
ctx-DocNADEe*(A=0.8) | .105 .104 - ctx-DocNADEe* profits, growing, net, earnings, turnover
(sliding window=110) TCNLM# eye, looked, hair, lips, stared
DocNADE 133 131 132 expression ctx-DocNADE* nodded, shook, looked, smiled, stared
B ;t;ﬁoEI\TAbE*IA;(iZS T34 141 138 ctx-DocNADEe* charming, smiled, nodded, dressed, eyes
ctx-DocNADE*(A\=0.8) 139 142 140 TCNLM# courses, training, students, medau, education
ctx-DocNADEe*(A\=0.2) | .133  .139 - education ctx-DocNADE* teachers, curriculum, workshops, learning, medau
ctx-DocNADEe*(A\=0.8) | .135 .141 - ctx-DocNADEe* medau, pupils, teachers, schools, curriculum

Table 7: (Left): Topic coherence (NMPI) scores of different models for 50, 100 and 150 topics on BNC dataset.
The sliding window is one of the hyper-parameters for computing topic coherence (Roder et al., 2015; Wang
etal., 2018). A sliding window of 20 is used in TCNLM; in addition we also present results for a window of size
110. X is the mixture weight of the LM component in the topic modeling process, and (s) and (1) indicate small
and large model, respectively. The symbol ’-’ indicates no result, since word embeddings of 150 dimensions
are not available from glove vectors. (Right): The top 5 words of seven learnt topics from our models and
TCNLM. The asterisk (*) indicates our proposed models and (#) taken from TCNLM (Wang et al., 2018).

ues of ) illustrates the relevance of the LM component for topic coherence (DocNADE corresponds
to A=0). Similarly, the inclusion of word embeddings (i.e., ctx-DocNADEe) results in more coher-
ent topics than the baseline DocNADE. Importantly, while ctx-DocNADEe is motivated by sparse
data settings, the BNC dataset is neither a collection of short-text nor a corpus of few documents.
Consequently, ctx-DocNADEe does not show improvements in topic coherence over ctx-DocNADE.

In Table 7 (right), we further qualitatively show the top 5 words of seven learnt topics (topic name
summarized by Wang et al. (2018)) from our models (i.e., ctx-DocNADE and ctx-DocNADEe) and
TCNLM. Since the BNC dataset is unlabeled, we are here restricted to comparing model perfor-
mance in terms of topic coherence only.

3.3 APPLICABILITY: TEXT RETRIEVAL AND CATEGORIZATION

Text Retrieval: We perform a document retrieval task using the short-text and long-text documents
with label information. We follow the experimental setup similar to Lauly et al. (2017), where all
test documents are treated as queries to retrieve a fraction of the closest documents in the original
training set using cosine similarity measure between their text TOvec representations (section
2.2). To compute retrieval precision for each fraction (e.g., 0.0001, 0.005, 0.01, 0.02, 0.05, etc.), we
average the number of retrieved training documents with the same label as the query. For multi-label
datasets, we average the precision scores over multiple labels for each query. Since, Salakhutdinov
& Hinton (2009) and Lauly et al. (2017) have shown that RSM and DocNADE strictly outperform
LDA on this task, we solely compare DocNADE with our proposed extensions.

Table 3 and 4 show the retrieval precision scores for the short-text and long-text datasets, respec-
tively at retrieval fraction 0.02. Observe that the introduction of both pre-trained embeddings and
language/contextual information leads to improved performance on the IR task noticeably for short
texts. We also investigate topic modeling without pre-processing and filtering certain words, i.e. the
FV setting and find that the DocNADE(FV) or glove(FV) improves IR precision over the baseline
RV setting. Therefore, we opt for the FV in the proposed extensions. On an average over the 8 short-
text and 6 long-text datasets, ctx-DocNADEe reports a gain of 7.1% (.630 vs .588) (Table 3) 6.0%
(.601 vs .567) (Table 4), respectively in precision compared to DocNADE(RV). To further compare
with TDLM, our proposed models (ctx-DocNADE and ctx-DocNADEe) outperform it by a notable
margin for all the short-text datasets, i.e., a gain of 14.5% (.630 vs .550: ctx-DocNADEe vs TDLM)
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Figure 3: Retrieval performance (IR-precision) on 6 datasets at different fractions

in IR-precision. In addition, the deep variant (d=3) with embeddings, i.e., ctx-DeepDNEe shows
competitive performance on TREC6 and Subjectivity datasets.

Figures (3a, 3b, 3c, 3d, 3e and 3f) illustrate the average precision for the retrieval task on 6 datasets.
Observe that the ctx-DocNADEe outperforms DocNADE(RV) at all the fractions and demonstrates
a gain of 6.5% (.615 vs .577) in precision at fraction 0.02, averaged over 14 datasets. Additionally,
our proposed models outperform TDLM and ProdLDA® (for 20NS) by noticeable margins.

Text Categorization: We perform text categorization to measure the quality of our textTovec
representations. We consider the same experimental setup as in the retrieval task and extract
textTOvec of 200 dimension for each document, learned during the training of ctx-DocNADE
variants. To perform text categorization, we employ a logistic regression classifier with L2 reg-
ularization. While, ctx-DocNADEe and ctx-DeepDNEe make use of glove embeddings, they are
evaluated against the topic model baselines with embeddings. For the short texts (Table 3), the glove
leads DocNADE in classification performance, suggesting a need for distributional priors in the
topic model. Therefore, the ctx-DocNADEEe reports a gain of 4.8% (.705 vs .673) and 3.6%(.618 vs
.596) in F'1, compared to DocNADE(RV) on an average over the short (Table 3) and long (Table 4)
texts, respectively. In result, a gain of 4.4% (.662 vs .634) overall.

In terms of classification accuracy on 20NS dataset, the scores are: DocNADE (0.734), ctx-
DocNADE (0.744), ctx-DocNADEe (0.751), NTM (0.72) and SCHOLAR (0.71). While, our pro-
posed models, i.e., ctx-DocNADE and ctx-DocNADEe outperform both NTM (results taken from
Cao et al. (2015), Figure 2) and SCHOLAR (results taken from Card et al. (2017), Table 2), the
DocNADE establishes itself as a strong neural topic model baseline.

3.4 INSPECTION OF LEARNED REPRESENTATIONS

To further interpret the topic models, we analyze the meaningful semantics captured via topic ex-
traction. Table 8 shows a topic extracted using 20NS dataset that could be interpreted as computers,
which are (sub)categories in the data, confirming that meaningful topics are captured. Observe that

®IR-precision scores at 0.02 retrieval fraction on the short-text datasets by ProdLDA: 20NSshort (.08),
TRECG (.24), R21578title (.31), Subjectivity (.63) and Polarity (.51). Therefore, the DocNADE, ctx-DocNADE
and ctx-DocNADEe outperform ProdLDA in both the settings: data sparsity and sufficient co-occurrences.
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Figure 4: Evaluations at different fractions (20%, 40%, 60%, 80%, 100%) of the training set of TMNtitle

the ctx-DocNADEe extracts a more coherent topic due to embedding priors. To qualitatively in-
spect the contribution of word embeddings and text TOvec representations in topic models, we
analyse the text retrieved for each query using the representations learned from DocNADE and ctx-
DoocNADEe models. Table 9 illustrates the retrieval of the top 3 texts for an input query, selected
from TMNtitle dataset, where #match is YES if the query and retrievals have the same class label.
Observe that ctx-DocNADE:Ee retrieves the top 3 texts, each with no unigram overlap with the query.

DocNADE ctx-DocNADE ctx-DocNADEe g Query :: “emerging economies move ahead nuclear plans” | #match
vga, screen, computer, color, svga, graphics : é #IR1 :: imf sign lifting japan yen YES
computer, sell, screen, offer, bar, macintosh, f—j 8 #IR2 :: japan recovery takes hold debt downgrade looms | YES
color, powerbook, vga, card, san, windows, A #IR3 :: japan ministers confident treasuries move YES
sold, cars, terminal, forsale,| utility, monitor, E #IR1 :: nuclear regulator back power plans NO
svga, offer gov, vesa computer, processor é #IR2 :: defiant iran plans big rise nuclear NO
554 .624 .667 g #IR3 :: japan banks billion nuclear operator sources YES

Table 8: A topic of 20NS dataset with coherence Table 9: Illustration of the top-3 retrievals for an input query

Additionally, we show the quality of representations learned at different fractions (20%, 40%, 60%,
80%, 100%) of training set from TMNtitle data and use the same experimental setup for the IR and
classification tasks, as in section 3.3. In Figure 4, we quantify the quality of representations learned
and demonstrate improvements due to the proposed models, i.e., ctx-DocNADE and ctx-DocNADEe
over DocNADE at different fractions of the training data. Observe that the gains in both the tasks
are large for smaller fractions of the datasets. For instance, one of the proposed models, i.e., ctx-
DocNADEEe (vs DocNADE) reports: (1) a precision (at 0.02 fraction) of 0.580 vs 0.444 at 20% and
0.595 vs 0.525 at 100% of the training set, and (2) an F1 of 0.711 vs 0.615 at 20% and 0.726 vs
0.688 at 100% of the training set. Therefore, the findings conform to our second contribution of
improving topic models with word embeddings, especially in the sparse data setting.

3.5 CONCLUSION

In this work, we have shown that accounting for language concepts such as word ordering, syntactic
and semantic information in neural autoregressive topic models helps to better estimate the probabil-
ity of a word in a given context. To this end, we have combined a neural autoregressive topic- (i.e.,
DocNADE) and a neural language (e.g., LSTM-LM) model in a single probabilistic framework with
an aim to introduce language concepts in each of the autoregressive steps of the topic model. This
facilitates learning a latent representation from the entire document whilst accounting for the local
dynamics of the collocation patterns, encoded in the internal states of LSTM-LM. We further aug-
ment this complementary learning with external knowledge by introducing word embeddings. Our
experimental results show that our proposed modeling approaches consistently outperform state-
of-the-art generative topic models, quantified by generalization (perplexity), topic interpretability
(coherence), and applicability (text retrieval and categorization) on 15 datasets.
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Label: training

Instructors shall have tertiary education and experience in the operation and maintenance
of the equipment or sub-system of Plant. They shall be proficient in the use of the English language both written
and oral. They shall be able to deliver instructions clearly and systematically. The curriculum vitae
of the instructors shall be submitted for acceptance by the Engineer at least 8 weeks before
the commencement of any training.

Label: maintenance

The Contractor shall provide experienced staff for 24 hours per Day, 7 Days per week, throughout the Year,
for call out to carry out On-call Maintenance for the Signalling System.
Label: cables
Unless otherwise specified, this standard is applicable to all cables which include single and multi-core cables
and wires, Local Area Network (LAN) cables and Fibre Optic (FO) cables.

Label: installation

The Contractor shall provide and permanently install the asset labels onto all equipment supplied
under this Contract. The Contractor shall liaise and co-ordinate with the Engineer for the format
and the content of the labels. The Contractor shall submit the final format and size of the labels as well
as the installation layout of the labels on the respective equipment, to the Engineer for acceptance.

Label: operations, interlocking

It shall be possible to switch any station Interlocking capable of reversing the service into
“Auto-Turnaround Operation”. This facility once selected shall automatically route Trains into and out of
these stations, independently of the ATS system. At stations where multiple platforms can be used to reverse
the service it shall be possible to select one or both platforms for the service reversal.

Table 10: SiROBs data: Example Documents (Requirement Objects) with their types (label).

A DATA DESCRIPTION

We use 14 different datasets: (1) 20NSshort: We take documents from 20NewsGroups data,
with document size less (in terms of number of words) than 20. (2) TREC6: a set of questions
(3) Reuters21578title: a collection of new stories from nltk.corpus. We take titles
of the documents. (4) Subjectivity: sentiment analysis data. (5) Polarity: a collec-
tion of positive and negative snippets acquired from Rotten Tomatoes (6) TMNtitle: Titles of
the Tag My News (TMN) news dataset. (7) AGnewstitle: Titles of the AGnews dataset. (8)
Reuters8: acollection of news stories, processed and released by (9) Reuters21578: acollec-
tion of new stories from n1tk.corpus. (10) 20NewsGroups: a collection of news stories from
nltk.corpus. (11) RCV1V2 (Reuters): www.ai.mit.edu/projects/jmlr/papers/
volume5/lewis04a/1lyrl12004_rcvlv2_README.htm (12) 20NSsmall: We sample 20
document for training from each class of the 20NS dataset. For validation and test, 10 document
for each class. (13) TMN: The Tag My News (TMN) news dataset. (14) Sixxx Requirement
OBjects (S1iROBs): a collection of paragraphs extracted from industrial tender documents (our
industrial corpus).

The SiROBs is our industrial corpus, extracted from industrial tender documents. The documents
contain requirement specifications for an industrial project for example, railway metro construction.
There are 22 types of requirements i.e. class labels (multi-class), where a requirement is a paragraph
or collection of paragraphs within a document. We name the requirement as Requirement Objects
(ROBs). Some of the requirement types are project management, testing, legal, risk analysis, finan-
cial cost, technical requirement, etc. We need to classify the requirements in the tender documents
and assign each ROB to a relevant department(s). Therefore, we analyze such documents to au-
tomate decision making, tender comparison, similar tender as well as ROB retrieval and assigning
ROBs to a relevant department(s) to optimize/expedite tender analysis. See some examples of ROBs
from SiROBs corpus in Table 10.
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Hyperparameter Search Space
learning rate [0.001]
hidden units [200]
iterations [2000]
activation function sigmoid
A [1.0,0.8,0.5, 0.3, 0.1, 0.01, 0.001]

Table 11: Hyperparameters in Generalization in the DocNADE and ctx-DocNADE variants for 200 topics

Hyperparameter Search Space
retrieval fraction [0.02]
learning rate [0.001]
hidden units [200]
activation function tanh
iterations [2000]
A [1.0,0.8,0.5,0.3, 0.1, 0.01, 0.001]

Table 12: Hyperparameters in the Document Retrieval task.

B EXPERIMENTAL SETUP

B.1 EXPERIMENTAL SETUP AND HYPERPARAMETERS FOR GENERALIZATION TASK

See Table 11 for hyperparameters used in generalization.

B.2 EXPERIMENTAL SETUP AND HYPERPARAMETERS FOR IR TASK

We set the maximum number of training passes to 1000, topics to 200 and the learning rate to 0.001
with tanh hidden activation. For model selection, we used the validation set as the query set and
used the average precision at 0.02 retrieved documents as the performance measure. Note that the
labels are not used during training. The class labels are only used to check if the retrieved documents
have the same class label as the query document. To perform document retrieval, we use the same
train/development/test split of documents discussed in data statistics (experimental section) for all
the datasets during learning.

See Table 12 for the hyperparameters in the document retrieval task.

B.3 EXPERIMENTAL SETUP FOR DOC2VEC MODEL

We wused gensim (https://github.com/RaRe-Technologies/gensim) to train
Doc2Vec models for 12 datasets. Models were trained with distributed bag of words, for 1000
iterations using a window size of 5 and a vector size of 500.

B.4 CLASSIFICATION TASK

We used the same split in training/development/test as for training the Doc2Vec models (also same
split as in IR task) and trained a regularized logistic regression classifier on the inferred docu-
ment vectors to predict class labels. In the case of multilabel datasets (R21578,R21578title,
RCV1V2), we used a one-vs-all approach. Models were trained with a liblinear solver using L2
regularization and accuracy and macro-averaged F1 score were computed on the test set to quantify
predictive power.

B.5 EXPERIMENTAL SETUP FOR GLOVE-DMM AND GLOVE-LDA MODELS
We used LFTM (https://github.com/datquocnguyen/LFTM) to train glove-DMM and
glove-LDA models. Models were trained for 200 iterations with 2000 initial iterations using 200

topics. For short texts we set the hyperparameter beta to 0.1, for long texts to 0.01; the mixture
parameter lambda was set to 0.6 for all datasets. The setup for the classification task was the same as
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Dataset Model A
1.0 0.1 0.01
ctx-DocNADE || 899.04  829.5 842.1

20NSshort
SO ) ix-DocNADEe | 8903 8288 8324
Subiectivity | CCvDocNADE | 9828 9778 966.5
JECVIY | ctx-DocNADEe | 977.1 9750  964.2
IMNde | CDocNADE | 18981 14827 1487.1

ctx-DocNADEe || 1877.7 1480.2 1484.7
ctx-DocNADE || 1296.1 861.1 865

AGnewstitl
NEWSHEe | tx-DocNADEe || 12792 8533  862.9
ctx-DocNADE || 336.1 3132 3119

Reuters-8
ctx-DocNADEe | 3233 3120 3102
JONS ctx-DocNADE || 1282.1 12093 12072

ctx-DocNADEe || 1247.1 1211.6 1206.1

Table 13: Perplexity scores for different A in Generalization task: Ablation over validation set

Dataset Model A
1.0 0.8 0.5 0.3
ctx-DocNADE | 0.264 0.265 0.265 0.265
2ONSshort | DocNADEe | 0277 0277 0278 0276
L ctx-DocNADE | 0.874 0.874 0.873 0.874
Subjectivity
ctx-DocNADEe | 0.868 0.868 0.874 0.87
. ctx-DocNADE | 0.587 0.588 0.591 0.587
Polarity
ctx-DocNADEe | 0.602 0.603 0.601 0.599
TMNtitle ctx-DocNADE | 0.556 0.557 0.559 0.568
ctx-DocNADEe | 0.604 0.604 0.6 0.6
TMN ctx-DocNADE | 0.683 0.689 0.692 0.694
ctx-DocNADEe | 0.696 0.698 0.698 0.7
. ctx-DocNADE | 0.665 0.668 0.678 0.689
AGnewstitle
ctx-DocNADEe | 0.686 0.688 0.695 0.696
20NSsmall ctx-DocNADE | 0.352 0.356 0.366 0.37
ctx-DocNADEe | 0.381 0.381 0.375 0.353
Reuters-8 ctx-DocNADE | 0.863 0.866 0.87  0.87
ctx-DocNADEe | 0.875 0.872 0.873 0.872
20NS ctx-DocNADE | 0.503 0.506 0.513 0.512
ctx-DocNADEe | 0.524 0.521 0.518 0.511
R21578 ctx-DocNADE | 0.714 0.714 0.714 0.714
ctx-DocNADEe | 0.715 0.715 0.715 0.714
. ctx-DocNADE | 0.409 0.409 0.408 0.408
SiROBs
ctx-DocNADEe | 0.41 0.411 0411 0.409
ctx-DocNADE | 0.786 0.789 0.792 0.797
AGnews
ctx-DocNADEe | 0.795 0.796 0.8 0.799

Table 14: ) for IR task: Ablation over validation set at retrieval fraction 0.02

for doc2vec; classification was performed using relative topic proportions as input (i.e. we inferred
the topic distribution of the training and test documents and used the relative distribution as input
for the logistic regression classifier). Similarly, for the IR task, similarities were computed based on
the inferred relative topic distribution.

B.6 EXPERIMENTAL SETUP FOR PRODLDA

We run ProdLDA (https://github.com/akashgit/autoencoding_vi_for_
topic_models) on the short-text datasets in the FV setting to generate document vectors for
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IR-task. We use 200 topics for a fair comparison with other baselines used for the IR tasks. We
infer topic distribution of the training and test documents and used the relative distribution as input
for the IR task, similar to section 3.3.

To fairly compare PPL scores of ProdLDA and DocNADE in the RV setting, we take the pre-
processed 20NS dataset released by ProdLDA and run DocNADE for 200 topics. To further
compare them in the FV setting, we run ProdLDA (https://github.com/akashgit/
autoencoding_vi_for_topic_models) on the processed 20NS dataset for 200 topics used
in this paper.

C ABLATION OVER THE MIXTURE WEIGHT \

C.1 )\ FOR GENERALIZATION TASK

See Table 13.

C.2 AFOR IR TASK

See Table 14.

D ADDITIONAL BASELINES

D.1 DocNADE vs SCHOLAR

PPL scores over 20 topics: DocNADE (752) and SCHOLAR (921), i.e., DocNADE outperforms
SCHOLAR in terms of generalization.

Topic coherence (NPMI) using 20 topics: DocNADE (.18) and SCHOLAR (.35), i.e., SCHOLAR
(Card et al., 2017) generates more coherence topics than DocNADE, though worse in PPL and text
classification (see section 3.3) than DocNADE, ctx-DocNADE and ctx-DocNADEge.

IR tasks: Since, SCHOLAR (Card et al., 2017) without meta-data equates to ProdLDA and we have
shown in section 3.3 that ProdLDA is worse on IR tasks than our proposed models, therefore one
can infer the performance of SCHOLAR on IR task.

The experimental results above suggest that the DocNADE is better than SCHOLAR in generating
good representations for downstream tasks such as information retrieval or classification, however
falls behind SCHOLAR in interpretability. The investigation opens up an interesting direction for
future research.
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Abstract

The goal of our industrial ticketing system is to retrieve a relevant solution for an input query, by
matching with historical tickets stored in knowledge base. A query is comprised of subject and
description, while a historical ticket consists of subject, description and solution. To retrieve a
relevant solution, we use textual similarity paradigm to learn similarity in the query and historical
tickets. The task is challenging due to significant term mismatch in the query and ticket pairs of
asymmetric lengths, where subject is a short text but description and solution are multi-sentence
texts. We present a novel Replicated Siamese LSTM model to learn similarity in asymmetric text
pairs, that gives 22% and 7% gain (Accuracy @ 10) for retrieval task, respectively over unsuper-
vised and supervised baselines. We also show that the topic and distributed semantic features for
short and long texts improved both similarity learning and retrieval.

1 Introduction

Semantic Textual Similarity (STS) is the task to find out if the text pairs mean the same thing. The
important tasks in Natural Language Processing (NLP), such as Information Retrieval (IR) and text
understanding may be improved by modeling the underlying semantic similarity between texts.

With recent progress in deep learning, the STS task has gained success using LSTM (Mueller and
Thyagarajan, 2016) and CNN (Yin et al., 2016) based architectures; however, these approaches model
the underlying semantic similarity between example pairs, each with a single sentence or phrase with
term overlaps. In the domain of question retrieval (Cai et al., 2011; Zhang et al., 2014), users retrieve
historical questions which precisely match their questions (single sentence) semantically equivalent or
relevant. However, we investigate similarity learning between texts of asymmetric lengths, such as short
(phrase) Vs longer (paragraph/documents) with significant term mismatch. The application of textual
understanding in retrieval becomes more challenging when the relevant document-sized retrievals are
stylistically distinct with the input short texts. Learning a similarity metric has gained much research
interest, however due to limited availability of labeled data and complex structures in variable length
sentences, the STS task becomes a hard problem. The performance of IR system is sub-optimal due to
significant term mismatch in similar texts (Zhao, 2012), limited annotated data and complex structures
in variable length sentences. We address the challenges in a real-world industrial application.

Our ticketing system (Figure 1(a)) consists of a query and historical tickets (Table 1). A query (re-
porting issue, q) has 2 components: subject (SUB) and description (DESC), while a historical ticket (t)
stored in the knowledge base (KB) has 3 components: SUB, DESC and solution (SOL). A SUB is a short
text, but DESC and SOL consist of multiple sentences. Table 1 shows that SUB € ¢ and SUB € t are
semantically similar and few terms in SUB € ¢ overlap with DESC € t. However, the expected SOL € t
is distinct from both SUB and DESC € q. The goal is to retrieve an optimal action (i.e. SOL from t) for
the input q.

To improve retrieval for an input g, we adapt the Siamese LSTM (Mueller and Thyagarajan, 2016)
for similarity learning in asymmetric text pairs, using the available information in ¢ and t. For instance,

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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QUERY (q)
SUB: GT Trip - Low Frequency Pulsations
DESC: GT Tripped due to a sudden increase in Low Frequency Pulsations. The machine has been restarted and is now
operating normally. Alarm received was: GT XXX Low Frequency Pulsation.
HISTORICAL TICKET (t)

SUB: Narrow Frequency Pulsations
DESC: Low and Narrow frequency pulsations were detected. The peak value for the Low Frequency Pulsations is ## mbar.

SOL: XXXX combustion support is currently working on the issue. The action is that the machine should not run until resolved.

Table 1: Example of a Query and Historical Ticket

Recommendation(s)

SOL:
sentence 1 w,... W,

N

DESC: ‘ Multi-Channel Manhattan Metric, g(h, E, T, Wh, WE, WT, V) ‘

sentence, 1w, ... W,

sentence_ 1w, ... W, |

N

hSUEl

LSTM o
ESUEI
Action(s) SUB1 A LW, .
I sus1

hnssm

LSTMpeses
N DESC1
' LSTM,, DESC1

- A A
! N ® TDESC]
Symbols:

SUB/DESC/SOL  SUBJECT/DESCRIPTION/SOLUTION
jth word in a ticket component

sentence, : ... W,

M

Reporting Issue

[LSTM™

suBl |3

ith Sentence

h: Hidden Unit Vector of LSTM
T: Latent Topic Vector (DocNADE)
Word+Character Embedding
E: Sum Embeddings (SumEMB)
(Paragraph Representation)

(d) ©

e

Figure 1: (a): Intelligent Ticketing System (ITS) (b): High-level illustration of Siamese LSTM for
cross-level pairwise similarity. (c): Replicated Siamese with multi-channel (SumEMB, LSTM and topic
vectors) and multi-level (SUB, DESC and/or SOL) inputs in the objective function, g. y: similarity score.
The dotted lines indicate ITS output. (d): Symbols used.

we compute multi-level similarity between (SUB € ¢, SUB € t) and (DESC € ¢, DESC € t). However,
observe in Table 1 that the cross-level similarities such as between (SUB € g, DESC € t), (DESC € g,
SUB € t) or (SUB € ¢, SOL € 1), etc. can supplement IR performance. See Figure 1(b).

The contributions of this paper are as follows: (1) Propose a novel architecture (Replicated Siamese
LSTM) for similarity learning in asymmetric texts via multi-and-cross-level semantics (2) Investigate
distributed and neural topic semantics for similarity learning via multiple channels (3) Demonstrate a gain
of 22% and 7% in Accuracy @10 for retrieval, respectively over unsupervised and supervised baselines
in the industrial application of a ticketing system.

2 Methodology

Siamese networks (Chopra et al., 2005) are dual-branch networks with tied weights and an objective
function. The aim of training is to learn text pair representations to form a highly structured space
where they reflect complex semantic relationships. Figure 1 shows the proposed Replicated Siamese
neural network architecture such that (LSTMsygi+LSTMpgsci) = (LSTMsyup2+LSTMpesc2+LSTMsor2), to learn
similarities in asymmetric texts, where a query (SUBI+DESC1) is stylistically distinct from a historical
ticket (SUB2+DESC2+SOL2).

Note, the query components are suffixed by “1” and historical ticket components by “2” in context of
the following work for pairwise comparisons.
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g(h7E7T7 Wh7WE7 WT7V) =

1
exp (— > > Vinar (Wallho = hals + Wl By = Byly + Wrl T, = Tolh)) - D
p € {SUB1,DESC1} q € {SUB2,DESC2,SOL2}

Figure 2: Multi-Channel Manhattan Metric

2.1 Replicated, Multi-and-Cross-Level, Multi-Channel Siamese LSTM

Manhattan LSTM (Mueller and Thyagarajan, 2016) learns similarity in text pairs, each with a single
sentence; however, we advance the similarity learning task in asymmetric texts pairs consisting of one
or more sentences, where similarity is computed between different-sized subject and description or so-
lution texts. As the backbone of our work, we compute similarity scores to learn a highly structured
space via LSTM (Hochreiter and Schmidhuber, 1997) for representation of each pair of the query (SUB1
and DESC1) or historical ticket (SUB2, DESC2 and SOL2) components, which includes multi-level
(SUB1-SUB2, DESCI1-DESC2) and cross-level (SUB1-DESC2, SUB1-SOL2, etc.) asymmetric textual similari-
ties, Figure 1(b) and (c). To accumulate the semantics of variable-length sentences (z1, ..., 1), recurrent
neural networks (RNNs) (Vu et al., 2016a; Gupta et al., 2016; Gupta and Andrassy, 2018), especially the
LSTMs (Hochreiter and Schmidhuber, 1997) have been successful.

LSTMs are superior in learning long range dependencies through their memory cells. Like the stan-
dard RNN (Mikolov et al., 2010; Gupta et al., 2015a; Vu et al., 2016b), LSTM sequentially updates a
hidden-state representation, but it introduces a memory state c; and three gates that control the flow of
information through the time steps. An output gate o; determines how much of ¢; should be exposed to
the next node. An input gate 7; controls how much the input x; be stored in memory, while the forget
gate f; determines what should be forgotten from memory. The dynamics:

it = o(Wizy + Uihy—q
ft = O'(Wfl‘t + Ufht,1

)
)
Oy = O'(Wo{Et + Uohtfl)
)

2
5,5 = tCth(cht + Ucht,1 ( )
=1 O+ ft ©c—1
ht = oy © tanh(cy)
where o(x) = H% and tanh(x) = 22;21 The proposed architecture, Figure 1(c) is composed of

multiple uni-directional LSTMs each for subject, description and solution within the Siamese framework,
where the weights at over levels are shared between the left and right branch of the network. Therefore,
the name replicated.

Each LSTM learns a mapping from space of variable length sequences, including asymmetric texts,
to a hidden-state vector, h. Each sentence (w1, ...wr) is passed to LSTM, which updates hidden state
via eq 2. A final encoded representation (e.g. hsygi, hsupz in Figure 1(c)) is obtained for each query or
ticket component. A single LSTM is run over DESC and SOL components, consisting of one or more
sentences. Therefore, the name multi-level Siamese.

The representations across the text components (SUB DESC or SOL) are learned in order to maxi-
mize the similarity and retrieval for a query with the historical tickets. Therefore, the name cross-level
Siamese.

The sum-average strategy over word embedding (Mikolov et al., 2010) for short and longer texts has
demonstrated a strong baseline for text classification (Joulin et al., 2016) and pairwise similarity learning
(Wieting et al., 2016). This simple baseline to represent sentences as bag of words (BoW) inspires us to
use the BoW for each query or historical ticket component, for instance Egirp1. We refer the approach
as SumEMB in the context of this paper.
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We supplement the similarity metric (g) with SumEMB (E), latent topic (") (section 2.2) and hidden
vectors (h) of LSTM for each text component from both the Siamese branches. Therefore, the name
multi-channel Siamese.

Parameter Search Optimal
E [350] 350
U

E P4 @ © T [20, 50, 100] 100
@ a O © © h [50, 100] 50
g Binary Wi, [0.6,0.7, 0.8] 0.7

O 5 e Wg [03,0.2,0.1] 0.1
O 4 Wr [03,0.2,0.1] 02
O VsuB1-suB2 [0.3,0.4 03
Vbesci-pEsc2 [0.3,0.4] 0.3
input Vsupi—pesc2 | [0.10,0.15, 0.20] 0.20
Vsupi-sor2 | [0.10,0.15, 0.20] 0.10
Vpesci—sors | [0.10,0.15,0.20] | 0.10

DocNADE

Table 2: Hyperparameters in the Replicated Siamese

Figure 3: DocNADE: Neural Auto- LSTM (experiment #No:22)

regressive Topic Model

2.2 Neural Auto-Regressive Topic Model

Topic models such as Latent Dirichlet allocation (LDA) (Blei et al., 2003) and Replicated Softmax (RSM)
(Hinton and Salakhutdinov, 2009; Gupta et al., 2018c) have been popular in learning meaningful repre-
sentations of unlabeled text documents. Recently, a new type of topic model called the Document Neural
Autoregressive Distribution Estimator (DocNADE) (Larochelle and Lauly, 2012; Zheng et al., 2016;
Gupta et al., 2018a) was proposed and demonstrated the state-of- the-art performance for text document
modeling. DocNADE models are advanced variants of Restricted Boltzmann Machine (Hinton, 2002;
Salakhutdinov et al., 2007; Gupta et al., 2015b; Gupta et al., 2015c¢), and have shown to outperform LDA
and RSM in terms of both log-likelihood of the data and document retrieval. In addition, the training
complexity of a DocNADE model scales logarithmically with vocabulary size, instead linear as in RSM.
The features are important for an industrial task along with quality performance. Therefore, we adopt
DocNADE model for learning latent representations of tickets and retrieval in unsupervised fashion. See
Larochelle and Lauly (2012) and Gupta et al. (2018a) for further details, and Figure 3 for the DocNADE
architecture, where we extract the last hidden topic layer (h4) to compute document representation.

2.3 Multi-Channel Manhattan Metric

Chopra et al. (2005) indicated that using lo instead of /; norm in similarity metric can lead to undesirable
plateaus. Mueller and Thyagarajan (2016) showed stable and improved results using Manhattan distance
over cosine similarity.

Mueller and Thyagarajan (2016) used a Manhattan metric (/;-norm) for similarity learning in single
sentence pairs. However, we adapt the similarity metric for 2-tuple (SUB1, DESC1) vs 3-tuple (SUB2,
DESC2 and SOL2) pairs, where the error signals are back-propagated in the multiple levels and channels
during training to force the Siamese network to entirely capture the semantic differences across the query
and historical tickets components. The similarity metric, g € [0,1] is given in eq 1, where ||- || is {; norm.
Wh, Wg and Wy are the three channels weights for h, F and and 7', respectively. The weights (1) are
the multi-level weights between the ticket component pairs. Observe that a single weight is being used
in the ordered ticket component pairs, for instance Vsyp1—prsce is same as Vpgrsca—suBi-

3 Evaluation and Analysis

We evaluate the proposed method on our industrial data for textual similarity learning and retrieval tasks
in the ticketing system. Table 4 shows the different model configurations used in the following exper-
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Held-out Perplexity (100 topics) Query Perplexity (100 topics)

Ticket | M1: SUB+DESC | M2: SUB+DESC+SOL Component DocNADE:M1 | DocNADE:M2
Component | LDA DocNADE || LDA DocNADE
bESC | 380 62 o5 1 Qlr Qv |lQl 1R
SUB+DESC | 480 308 515 289 DESCI | 192 177 132 118
SUB+DESC+SOL | 553 404 541 322 SUBI+DESC1 | 164 140 130 118
(a) (b)

Table 3: (a) Perplexity by DocNADE and LDA trained with M1: SUB+DESC or M2:
SUB+DESC+SOL on all tickets and evaluated on 50 held-out tickets with their respective components or
their combination. Observe that when DocNADE is trained with SUB+DESC+SOL, it performs better
when training with SUB+DESC+SOL and outperforms LDA. (b) Perplexity by DocNADE: M1 trained
on SUB+ DESC and M2 on SUB+DESC+SOL of the historical tickets.

Model ‘ Model Configuration
T(X1-X2) Compute Similarity using topic vector (T) pairs of a query (X 1) and historical ticket (X'2) components
E(X1-X2) Compute Similarity using embedding vector (E) pairs of a query (X'1) and historical ticket (X 2) components
X+Y+2Z Merge text components (SUB, DESC or SOL), representing a single document
T(X1+Y1-X2+ Y2+ Z2) | Compute Similarity using topic vector (7) pairs of a query (X1 + Y'1) and historical ticket (X2 + Y2 + Z2) components
S-LSTM (X1-X2) Compute Similarity using Standard Siamese LSTM on a query (X 1) and historical ticket (X 2) components
ML (X1-X2,Y1-Y2) Multi-level Replicated Siamese LSTM. Compute similarity in (X 1-X2) and (Y 1-Y2) components of a query and historical ticket
CL(X,Y,Z2) Cross-level Replicated Siamese LSTM. Compute similarity in (X 1-Y2), (X'1-Z2), (Y'1-X2) and (Y 1-Z2) pairs

Table 4: Different model configurations for the experimental setups and evaluations. See Figure 1(c) for
LSTM configurations.

imental setups. We use Pearson correlation, Spearman correlation and Mean Squared Error! (MSE)
metrics for STS and 9 different metrics (Table 5) for IR task.

3.1 Industrial Dataset for Ticketing System

Our industrial dataset consist of queries and historical tickets. As shown in Table 1, a query consists
of subject and description texts, while a historical ticket in knowledge base (KB) consists of subject,
description and solution texts. The goal of the ITS is to automatically recommend an optimal action i.e.
solution for an input query, retrieved from the existing KB.

There are ¥ = 949 historical tickets in the KB, out of which 421 pairs are labeled with their relat-
edness score. We randomly split the labeled pairs by 80-20% for train (F;,.) and development (Pg,).
The relatedness labels are: YES (similar that provides correct solution), REL (does not provide correct
solution, but close to a solution) and NO (not related, not relevant and provides no correct solution). We
convert the labels into numerical scores [1,5], where YES:5.0, REL:3.0 and NO:1.0. The average length
(#words) of SUB, DESC and SOL are 4.6, 65.0 and 74.2, respectively.

The end-user (customer) additionally supplies 28 unique queries (Qy7) (exclusive to the historical
tickets) to test system capabilities to retrieve the optimal solution(s) by computing 28 x 949 pairwise
ticket similarities. We use these queries for the end-user qualitative evaluation for the 28 x 10 proposals
(top 10 retrievals for each query).

3.2 Experimental Setup: Unsupervised

We establish baseline for similarity and retrieval by the following two unsupervised approaches:

(1) Topic Semantics T: As discussed in section 2.2, we use DocNADE topic model to learn document
representation. To train, we take 50 held-out samples from the historical tickets €. We compute per-
plexity on 100 topics for each ticket component from the held-out set, comparing LDA and DocNADE
models trained individually with SUB+DESC (M 1) and SUB+DESC+SOL texts? (M 2). Table 3a shows
that DocNADE outperforms LDA.

"http://alt.qcri.org/semeval2016/task 1/
24+ merge texts to treat them as a single document
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#No Model (Query-Historical Ticket) Similarity Task Retrieval Task
r P MSE | MAP@l MAP@5 MAP@10 MRR@I MRR@5 MRR@10 Acc@] Acc@5 Acc@10

1 T (SUB1-SUB2) (unsupervised baseline) 0.388 0.330 5.122 0.08 0.08 0.07 1.00 0.28 0.10 0.04 0.19 0.30
2 T (SUBI-DESC2) 0.347 0312 3.882 0.09 0.07 0.07 0.00 0.05 0.08 0.04 0.13 0.21
3 T (DESC1-SUB2) 0.321 0287 3.763 0.08 0.09 0.09 0.00 0.05 0.11 0.03 0.20 0.31
4 | T(DESCI-DESC2) 0402 0350 3.596 0.08 0.08 0.08 0.00 0.04 0.10 0.03 0.19 0.33
5 T (SUB1-SUB2+DESC2) 0413 0372 3.555 0.09 0.09 0.08 0.00 0.05 0.11 0.04 0.20 0.32
6 T (SUB1+DESC1-SUB2) 0330 0.267 3.630 0.09 0.10 0.09 0.00 0.26 0.12 0.04 0.23 0.35
7 T (SUB1+DESCI1-DESC2) 0.400 0.350 3.560 0.07 0.08 0.08 0.00 0.00 0.10 0.03 0.19 0.35
8 T (SUB1+DESC1-SUB2+DESC2) 0.417 0.378 3.530 0.05 0.07 0.08 0.00 0.07 0.11 0.03 0.22 0.37
9 T (SUB1+DESC1-SUB2+DESC2+SOL2) 0411 0387 3.502 0.09 0.09 0.08 0.00 0.06 0.12 0.04 0.20 0.40
11 E (SUB1-SUB2) (unsupervised baseline) 0.141  0.108 3.636 0.39 0.38 0.36 0.00 0.03 0.08 0.02 0.13 0.24
12 E (DESC1-DESC2) 0.034 0.059 4.201 0.40 0.40 0.39 0.00 0.10 0.07 0.03 0.12 0.18
13 E (SUB1+DESC1-SUB2+DESC2) 0.103 0.051 5.210 0.16 0.16 0.15 0.00 0.03 0.11 0.07 0.16 0.20
14 E (SUB1+DESC1-SUB2+DESC2+SOL2) 0.063 0.041 5.607 0.20 0.17 0.16 0.00 0.03 0.13 0.05 0.13 0.22
15 | S-LSTM(SUBI-SUB2) (supervised baseline) 0530 0501 3778 | 0272 0.234 0.212 0.000 0.128 0.080 0022  0.111 0311
16 | S-LSTM (DESCI-DESC2) 0.641 0586 3220 | 0277 0.244 0.222 0.100 0.287 0.209 0.111 03111 0489
17 | S-LSTM (SUBI+DESCI1-SUB2+DESC2) 0.662 0.621 2992 | 0.288 0.251 0.232 0.137 0.129 0.208 0.111 0342 0.511
18 | S-LSTM (SUBI+DESCI-SUB2+DESC2+SOL2) | 0.693 0.631 2908 | 0.298 0.236 0.241 0.143 0.189 0.228 0.133 0353 0.548
19 ML-LSTM (SUB1-SUB2, DESCI1-DESC2) 0.688 0.644 2.870 0.290 0.255 0.234 0.250 0.121 0.167 0.067 0.289 0.533
20 + CL-LSTM (SUB, DESC, SOL) 0.744  0.680 2.470 0.293 0.259 0.238 0.143 0.179 0.286 0.178 0.378 0.564
21 | + weighted channels (h*0.8, E*0.2) 0.758  0.701 2354 0.392 0.376 0.346 0.253 0.176 0.248 0.111 0.439 0.579
22 | + weighted channels (h*0.7, E*0.1, T*0.2) 0.792  0.762  2.052 0.382 0.356 0.344 0.242 0.202 0.288 0.133 0.493 0.618

Table 5: Results on Development set: Pearson correlation (r), Spearmans rank correlation coefficient
(p), Mean Squared Error (MSE), Mean Average Precision@k (MAP@k), Mean Reciprocal Rank@k
(MRR @k) and Accuracy @k (Acc@k) for the multi-level (ML) and cross-level (CL) similarity learn-
ing, and retrieving the k-most similar tickets for each query (SUB1+DESC1). #[1-14]: Unsupervised
baselines with DocNADE (T) and SumEMB (E). #[15-18]: Supervised Standard Siamese baselines.
#[19-22]: Supervised Replicated Siamese with multi-channel and cross-level features.

Model Similarity Task Retrieval Task
r P MSE | MAP@1 MAP@5 MAP@10 MRR@! MRR@5 MRR@I0 Acc@l Acc@5 Acc@10
T (SUB1-SUB2) 0414 0363 5.062 0.04 0.03 0.03 0.29 0.24 0.10 0.01 0.17 0.28
T (SUB1-DESC2) 0.399 0362 3.791 0.04 0.03 0.03 0.00 0.05 0.07 0.03 0.12 0.19
T (DESCI1-SUB2) 0.371 0.341 3.964 0.05 0.06 0.05 0.25 0.07 0.11 0.04 0.21 0.33
T (DESC1-DESC2) 0.446 0398 3.514 0.05 0.05 0.04 0.00 0.04 0.10 0.04 0.18 0.34
T (SUB1-SUB2+DESC2) 0410 0370 3.633 0.05 0.04 0.04 0.00 0.12 0.08 0.04 0.13 0.20
T (SUB1+DESC2-SUB2) 0.388 0326 3.561 0.06 0.06 0.05 0.25 0.29 0.13 0.05 0.22 0.38
T (SUB1+DESC1-DESC2) 0.443 0396 3.477 0.04 0.04 0.04 0.00 0.00 0.10 0.03 0.17 0.37
T (SUB1+DESCI1, SUB2+DESC2) 0.466 0.417 3.460 0.05 0.05 0.04 0.00 0.06 0.11 0.03 0.24 0.37
T (SUB1+DESCI1, SUB2+DESC2+SOL2) | 0418 0358 3.411 0.07 0.06 0.06 0.00 0.09 0.14 0.05 0.20 0.39

Table 6: DocNADE (M 2) performance for the queries Q1 € (Py + Pjey) in the labeled pairs in unsu-
pervised fashion.

Next, we need to determine which DocNADE model (M1 or M2) is less perplexed to the queries.
Therefore, we use M1 and M2 to evaluate DESC1 and SUB1+DESC1 components of the two sets of
queries: (1) @y, is the set of queries from labeled (421) pairs and (2) QQy is the end-user set. Table 3b
shows that M2 performs better than M1 for both the sets of queries with DESC1 or SUB1+DESCI1
texts. We choose M2 version of the DocNADE to setup baseline for the similarity learning and retrieval
in unsupervised fashion.

To compute a similarity score for the given query g and historical ticket t where (g, t)€ Pge,, we first
compute a latent topic vector (T) each for ¢ and t using DocNADE (M 2) and then apply the similarity
metric g (eq 1). To evaluate retrieval for ¢, we retrieve the top 10 similar tickets, ranked by the similarity
scores on their topic vectors. Table 5 (#No [1-9]) shows the performance of DocNADE for similarity
and retrieval tasks. Observe that #9 achieves the best MSE (3.502) and Acc@10 (0.40) out of [1-9],
suggesting that the topic vectors of query (SUB1+DESC1) and historical ticket (SUB2+DESC2+SOL2)
are the key in recommending a relevant SOL2. See the performance of DocNADE for all labeled pairs
i.e. queries and historical tickets (P + Pge,) in the Table 6.

(2) Distributional Semantics E: Beyond topic models, we establish baseline using the SumEMB
method (section 2.1), where an embedding vector E is computed following the topic semantics approach.
The experiments #11-14 show that the SumEMB results in lower performance for both the tasks, sug-
gesting a need of a supervised paradigm in order to learn similarities in asymmetric texts. Also, the
comparison with DocNADE indicates that the topic features are important in the retrieval of tickets.
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Figure 4: Evaluation on End-user Queries (sub-sample). UNK: Unknown. (Left) Gold Data: The count
of similar (YES) and relevant (REL) tickets for each query (ql-q17). (Middle) ITS Results: For each
query, ITS proposes the top 10 YES/REL retrievals. The plot depicts the count of YES/REL proposals
matched out of the top 10 gold proposals for each q. UNK may include YES, REL or NO, not annotated
in the gold pairs. (Right) Success Rate: YES: percentage of correct similar(YES) proposal out of the top
10; YES+REL: percentage of correct similar (YES) and relevant(REL) proposals out of the top 10.

3.3 Experimental Setup: Supervised

For semantic relatedness scoring, we train the Replicated Siamese, using backpropagation-through-time
under the Mean Squared Error (MSE) loss function (after rescaling the training-set relatedness labels
to lie € [0, 1]). After training, we apply an additional non-parametric regression step to obtain better-
calibrated predictions € [1, 5], same as (Mueller and Thyagarajan, 2016). We then evaluate the trained
model for IR task, where we retrieve the top 10 similar results (SUB2+DESC2+SOL2), ranked by
their similarity scores, for each query (SUB1+DESC1) in the development set and compute MAP@K,
MRR @K and Acc@K, where K=1, 5, and 10.

We use 300-dimensional pre-trained word2vec® embeddings for input words, however, to generalize
beyond the limited vocabulary in word2vec due to industrial domain data with technical vocabulary,
we also employ char-BLSTM (Lample et al., 2016) to generate additional embeddings (=50 dimen-
sion*).The resulting dimension for word embeddings is 350. We use 50-dimensional hidden vector, h;,
memory cells, ¢; and Adadelta (Zeiler, 2012) with dropout and gradient clipping (Pascanu et al., 2013) for
optimization. The topics vector (7) size is 100. We use python NLTK toolkit> for sentence tokenization.
See Table 2 for the hyperparameters in Replicated Siamese LSTM for experiment #No:22.

3.4 Results: State-of-the-art Comparisons

Table 5 shows the similarity and retrieval scores for unsupervised and supervised baseline methods. The
#9, #18 and #20 show that the supervised approach performs better than unsupervised topic models.
#17 and #19 suggest that the multi-level Siamese improves (Acc@10: 0.51 vs. 0.53) both STS and IR.
Comparing #18 and #20, the cross-level Siamese shows performance gains (Acc@10: 0.55 vs. 0.57).
Finally, #21 and #22 demonstrates improved similarity (MSE: 2.354 vs. 2.052) and retrieval (Acc@10:
0.58 vs. 0.62) due to weighted multi-channel (h, E' and T') inputs.

The replicated Siamese (#22) with different features best results in 2.052 for MSE and 0.618 (= 61.8%)
for Acc@10. We see 22% and 7% gain in Acc@10 for retrieval task, respectively over unsupervised (#9
vs. #22: 0.40 vs. 0.62) and supervised (#18 vs. #22: 0.55 vs. 0.62) baselines. The experimental results
suggest that the similarity learning in supervised fashion improves the ranking of relevant tickets.

3.5 Success Rate: End-User Evaluation

We use the trained similarity model to retrieve the top 10 similar tickets from KB for each end-user query
Qu, and compute the number of correct similar and relevant tickets. For ticket ID ¢6 (Figure 4, Middle),

3Publicly available at: code.google.com/p/word2vec
“Run forward-backward character LSTM for every word and concatenate the last hidden units (25 dimension each)
Shttp://www.nltk.org/api/nltk tokenize.html
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Query

Recommendation_1

Recommendation 2

Recommendation_3

SUB:
GT Trip - Low Frequency Pulsations

DESC:
GT Tripped due to a sudden

increase in Low Frequency
Pulsations. The machine has been
restarted and is now operating
normally. Alarm received was:

GT XXX Low Frequency Pulsation

SUB:

Narrow Frequency Pulsations

DESC:
Low and Narrow frequency

pulsations were detected.

The peak value for the Low
Frequency Pulsations is
## mbar.

SOL:

XXXXX combustion support is
currently working on the issue.
The recommended action for
now is that the machine XXXX

SUB:

Low frequency pulsations

DESC:
High level low frequency

pulsations were detected
when active load is XXXX.

SOL:

Since the machine is running
with XXXX, the XXX be
changed in the register. After

adjustment is complete, monitor

the machine behavior between

SUB:

GT3 - High Low Frequency Pulsation alarms after trip
DESC:

Yesterday, after Steam Turbine M, GT-3
experienced high Low Frequency Pulsation alarm.
Theload of GT-3 was ## MW and

went up as high as ## MW. During the time,

Low Frequency Pulsation for 3 pulsation

devices went up as high as ##. The Low

frequency pulsation was a XXX.

SOL:

Aload XXXX from ## MW to ## MW is an

event XXX the unit XXXX trip. The XXXX to

low frequency pulsation during similar event,

should be XXXX. Check that XXXX from after

the XXXX (XX005/XXO01) into combustion chamber

## MW to ## load.
at load XXXX ## MW. (XX030/XX01), XXXX should be XXXX. Repeat
until XXXX is within the range of ## -##.
(Rank, Similarity Score) (1,4.75) (2,4.71) (3, 4.60)

#Topics {#83, #7, #30}

{#83, #16, #30}

{#7, #83, #19}

{#7, #83, #19}

Table 7: Top-3 Tickets Retrieved and ordered by their (rank, similarity score) for an input test query.
#Topics: the top 3 most probable associated topics. SOL of the retrieved tickets is returned as recom-
mended action. Underline: Overlapping words; XXXX and ##: Confidential text and numerical terms.

3 out of 10 proposed tickets are marked similar, where the end-user expects 4 similar tickets (Figure 4,
Left). For ticket ID ¢1, ¢13 and ¢17, the top 10 results do not include the corresponding expected tickets
due to no term matches and we find that the similarity scores for all the top 10 tickets are close to 4.0
or higher, which indicates that the system proposes more similar tickets (than the expected tickets), not
included in the gold annotations. The top 10 proposals are evaluated for each query by success rate
(success, if N/10 proposals supply the expected solution). We compute success rate (Figure 4, Right) for
(1 or more), (2 or more) and (3 or more) correct results out of the top 10 proposals.

4 Qualitative Inspections for STS and IR

Table 7 shows a real example for an input query, where the top 3 recommendations are proposed from
the historical tickets using the trained Replicated Siamese model. The recommendations are ranked by
their similarity scores with the query. The underline shows the overlapping texts.

We also show the most probable topics (#) that the query or each recommendation is associated with.
The topics shown (Table 8) are learned from DocNADE model and are used in multi-channel network.
Observe that the improved retrieval scores (Table 5 #22) are attributed to the overlapping topic semantics
in query and the top retrievals. For instance, the topic #83 is the most probable topic feature for the query
and recommendations. We found terms, especially load and MW in SOL (frequently appeared for other
Frequency Pulsations tickets) that are captured in topics #7 and #83, respectively.

5 Related Work

Semantic Textual Similarity has diverse applications in information retrieval (Larochelle and Lauly,
2012; Gupta et al., 2018a), search, summarization (Gupta et al., 2011), recommendation systems, etc.
For shared STS task in SemEval 2014, numerous researchers applied competitive methods that utilized
both heterogeneous features (e.g. word overlap/similarity, negation modeling, sentence/phrase composi-
tion) as well as external resources (e.g. Wordnet (Miller, 1995)), along with machine learning approaches
such as LSA (Zhao et al., 2014) and word2vec neural language model (Mikolov et al., 2013). In the do-
main of question retrieval (Cai et al., 2011; Zhang et al., 2014), users retrieve historical questions which
precisely match their questions (single sentence) semantically equivalent or relevant.

Neural network based architectures, especially CNN (Yin et al., 2016), LSTM (Mueller and Thya-
garajan, 2016), RNN encoder-decoder (Kiros et al., 2015), etc. have shown success in similarity learning
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ID Topic Words (Top 10)

#83 | pulsation, frequency, low, load, high, pulsations, increase, narrow, XXXX, mw

#7 | trip, turbine, vibration, gas, alarm, gt, time, tripped, pressure, load
#30 | start, flame, unit, turbine, combustion, steam, temperature, compressor, XXXX, detector
#16 | oil, XXXX, XXXX, pressure, kpa, dp, level, high, mbar, alarm
#19 | valve, XXXX, fuel, valves, gas, bypass, check, control, XXXX, XXXX

Table 8: Topics Identifier and words captured by DocNADE

task in Siamese framework (Mueller and Thyagarajan, 2016; Chopra et al., 2005). These models are
adapted to similarity learning in sentence pairs using complex learners. Wieting et al. (2016) observed
that word vector averaging and LSTM for similarity learning perform better in short and long text pairs,
respectively. Our learning objective exploits the multi-channel representations of short and longer texts
and compute cross-level similarities in different components of the query and tickets pairs. Instead of
learning similarity in a single sentence pair, we propose a novel task and neural architecture for asymmet-
ric textual similarities. To our knowledge, this is the first advancement of Siamese architecture towards
multi-and-cross level similarity learning in asymmetric text pairs with an industrial application.

6 Conclusion and Discussion

We have demonstrated deep learning application in STS and IR tasks for an industrial ticketing system.
The results indicate that the proposed LSTM is capable of modeling complex semantics by explicit
guided representations and does not rely on hand-crafted linguistic features, therefore being generally
applicable to any domain. We have showed improved similarity and retrieval via the proposed multi-and-
cross-level Replicated Siamese architecture, leading to relevant recommendations especially in industrial
use-case. As far we we know, this is the first advancement of Siamese architecture for similarity learning
and retrieval in asymmetric text pairs with an industrial application.

We address the challenges in a real-world industrial application of ticketing system. Industrial assets
like power plants, production lines, turbines, etc. need to be serviced well because an unplanned outage
always leads to significant financial loss. It is an established process in industry to report issues (via
query) i.e. symptoms which hint at an operational anomaly to the service provider. This reporting
usually leads to textual descriptions of the issue in a ticketing system. The issue is then investigated by
service experts who evaluate recommended actions or solutions to the reported issue. The recommended
actions or solutions are usually attached to the reported issues and form a valuable knowledge base on
how to resolve issues. Since industrial assets tend to be similar over the various installations and since
they don’t change quickly it is expected that the issues occurring over the various installations may be
recurring. Therefore, if for a new issue similar old issues could be easily found this would enable service
experts to speed up the evaluation of recommended actions or solutions to the reported issue. The chosen
approach is to evaluate the pairwise semantic similarity of the issues describing texts.

We have compared unsupervised and supervised approach for both similarity learning and retrieval
tasks, where the supervised approach leads the other. However, we foresee significant gains with the
larger amount of similarity data as the amount of labeled similarity data grows and the continuous feed-
back is incorporated for optimization within the industrial domain, where quality results are desired. In
future work, we would also like to investigate attention (Bahdanau et al., 2014) mechanism and depen-
dency (Socher et al., 2012; Gupta et al., 2018b) structures in computing tickets’ representation.
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Abstract

Recurrent neural networks (RNNs) are tem-
poral networks and cumulative in nature that
have shown promising results in various nat-
ural language processing tasks. Despite their
success, it still remains a challenge to under-
stand their hidden behavior. In this work,
we analyze and interpret the cumulative na-
ture of RNN via a proposed technique named
as Layer-wlse-Semantic-Accumulation (LISA)
for explaining decisions and detecting the
most likely (i.e., saliency) patterns that the net-
work relies on while decision making. We
demonstrate (1) LISA: “How an RNN accumu-
lates or builds semantics during its sequential
processing for a given text example and ex-
pected response” (2) Example2pattern: “How
the saliency patterns look like for each cate-
gory in the data according to the network in de-
cision making”. We analyse the sensitiveness
of RNNs about different inputs to check the
increase or decrease in prediction scores and
further extract the saliency patterns learned by
the network. We employ two relation classifi-
cation datasets: SemEval 10 Task 8 and TAC
KBP Slot Filling to explain RNN predictions
via the LISA and example2pattern.

1 Introduction

The interpretability of systems based on deep neu-
ral network is required to be able to explain the
reasoning behind the network prediction(s), that
offers to (1) verify that the network works as ex-
pected and identify the cause of incorrect deci-
sion(s) (2) understand the network in order to im-
prove data or model with or without human in-
tervention. There is a long line of research in
techniques of interpretability of Deep Neural net-
works (DNNG5s) via different aspects, such as ex-
plaining network decisions, data generation, etc.
Erhan et al. (2009); Hinton (2012); Simonyan et al.
(2013) and Nguyen et al. (2016) focused on model
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aspects to interpret neural networks via activa-
tion maximization approach by finding inputs that
maximize activations of given neurons. Goodfel-
low et al. (2014) interprets by generating adversar-
ial examples. However, Baehrens et al. (2010) and
Bach et al. (2015); Montavon et al. (2017) explain
neural network predictions by sensitivity analysis
to different input features and decomposition of
decision functions, respectively.

Recurrent neural networks (RNNs) (Elman,
1990) are temporal networks and cumulative in
nature to effectively model sequential data such
as text or speech. RNNs and their variants such
as LSTM (Hochreiter and Schmidhuber, 1997)
have shown success in several natural language
processing (NLP) tasks, such as entity extraction
(Lample et al., 2016; Ma and Hovy, 2016), rela-
tion extraction (Vu et al., 2016a; Miwa and Bansal,
2016; Gupta et al., 2016, 2018c), language mod-
eling (Mikolov et al., 2010; Peters et al., 2018),
slot filling (Mesnil et al., 2015; Vu et al., 2016b),
machine translation (Bahdanau et al., 2014), sen-
timent analysis (Wang et al., 2016; Tang et al.,
2015), semantic textual similarity (Mueller and
Thyagarajan, 2016; Gupta et al., 2018a) and dy-
namic topic modeling (Gupta et al., 2018d).

Past works (Zeiler and Fergus, 2014; Dosovit-
skiy and Brox, 2016) have mostly analyzed deep
neural network, especially CNN in the field of
computer vision to study and visualize the features
learned by neurons. Recent studies have investi-
gated visualization of RNN and its variants. Tang
et al. (2017) visualized the memory vectors to un-
derstand the behavior of LSTM and gated recur-
rent unit (GRU) in speech recognition task. For
given words in a sentence, Li et al. (2016) em-
ployed heat maps to study sensitivity and mean-
ing composition in recurrent networks. Ming et al.
(2017) proposed a tool, RNNVis to visualize hid-
den states based on RNN’s expected response to



U

demolition f U
</el> f

cause

Backward direction ———»

of
<e2> f u layer

Forward directon ———— terror f

Figure 1: Connectionist Bi-directional Recurrent Neural Network (C-BRNN) (Vu et al., 2016a)

inputs. Peters et al. (2018) studied the inter-
nal states of deep bidirectional language model to
learn contextualized word representations and ob-
served that the higher-level hidden states capture
word semantics, while lower-level states capture
syntactical aspects. Despite the possibility of visu-
alizing hidden state activations and performance-
based analysis, there still remains a challenge for
humans to interpret hidden behavior of the“black
box” networks that raised questions in the NLP
community as to verify that the network behaves
as expected. In this aspect, we address the cu-
mulative nature of RNN with the text input and
computed response to answer “how does it aggre-
gate and build the semantic meaning of a sentence
word by word at each time point in the sequence
for each category in the data”.

Contribution: In this work, we analyze and in-
terpret the cumulative nature of RNN via a pro-
posed technique named as Layer-wise-Semantic-
Accumulation (LISA) for explaining decisions and
detecting the most likely (i.e., saliency) patterns
that the network relies on while decision making.
We demonstrate (1) LISA: “How an RNN accumu-
lates or builds semantics during its sequential pro-
cessing for a given text example and expected re-
sponse” (2) Example2pattern: “How the saliency
patterns look like for each category in the data ac-
cording to the network in decision making”. We
analyse the sensitiveness of RNNs about different
inputs to check the increase or decrease in predic-
tion scores. For an example sentence that is clas-
sified correctly, we identify and extract a saliency

pattern (N-grams of words in order learned by the
network) that contributes the most in prediction
score. Therefore, the term example2pattern trans-
formation for each category in the data. We em-
ploy two relation classification datasets: SemEval
10 Task 8 and TAC KBP Slot Filling (SF) Shared
Task (ST) to explain RNN predictions via the pro-
posed LISA and example2pattern techniques.

2 Connectionist Bi-directional RNN

We adopt the bi-directional recurrent neural net-
work architecture with ranking loss, proposed by
Vu et al. (2016a). The network consists of three
parts: a forward pass which processes the original
sentence word by word (Equation 1); a backward
pass which processes the reversed sentence word
by word (Equation 2); and a combination of both
(Equation 3). The forward and backward passes
are combined by adding their hidden layers. There
is also a connection to the previous combined hid-
den layer with weight W; with a motivation to in-
clude all intermediate hidden layers into the final
decision of the network (see Equation 3). They
named the neural architecture as ‘Connectionist
Bi-directional RNN’ (C-BRNN). Figure 1 shows
the C-BRNN architecture, where all the three parts
are trained jointly.

hft = f(Uf "Wt + Wf : hftﬂ) (D
hy, = f(Up - wn—t31 + Wy hey ) (2)
hbit = f(hft + h‘bt + Wb’i : hbit_l) (3)

where wy is the word vector of dimension d for
a word at time step ¢ in a sentence of length n.
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Figure 2: An illustration of Layer-wlse Semantic Accumulation (LISA) in C-BRNN, where we compute
prediction score for a (known) relation type at each of the input subsequence. The highlighted indices in
the softmax layer signify one of the relation types, i.e., cause-effect(el, e2) in SemEval10 Task 8 dataset.
The bold signifies the last word in the subsequence. Note: Each word is represented by N-gram (N=3,
5 or 7), therefore each input subsequence is a sequence of N-grams. E.g., the word ‘of” — ‘cause of
<e2>’ for N=3. To avoid complexity in this illustration, each word is shown as a uni-gram.

D is the hidden unit dimension. U; € RIxD
and Uy, € R?*P are the weight matrices between
hidden units and input wy in forward and back-
ward networks, respectively; Wy € RP*D and
W, € RPXD are the weights matrices connect-
ing hidden units in forward and backward net-
works, respectively. W;; € RP*P is the weight
matrix connecting the hidden vectors of the com-
bined forward and backward network. Following
Gupta et al. (2015) during model training, we use
3-gram and 5-gram representation of each word
wy at timestep ¢ in the word sequence, where a 3-
gram for w; is obtained by concatenating the cor-
responding word embeddings, i.e., w1 WWey 1.

Ranking Objective: Similar to Santos et al.
(2015) and Vu et al. (2016a), we applied the rank-
ing loss function to train C-BRNN. The ranking
scheme offers to maximize the distance between
the true label y™ and the best competitive label ¢~
given a data point x. It is defined as-

L =log(1 +exp(y(m™ — sg(a),+
+log(1 + exp(y(m™ + sg(z).~

)
)

where s¢(x),+ and sy(z).- being the scores for
the classes y* and ¢, respectively. The param-
eter v controls the penalization of the prediction
errors and m™ and m are margins for the correct
and incorrect classes. Following Vu et al. (2016a),
wesety=2,m"=25and m™ =0.5.

4)
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Model Training and Features: We represent
each word by the concatenation of its word em-
bedding and position feature vectors. We use
word2vec (Mikolov et al., 2013) embeddings,
that are updated during model training. As po-
sition features in relation classification experi-
ments, we use position indicators (PI) (Zhang and
Wang, 2015) in C-BRNN to annotate target en-
tity/nominals in the word sequence, without neces-
sity to change the input vectors, while it increases
the length of the input word sequences, as four
independent words, as position indicators (<el>,
</ el>, <e2>, </e2>) around the relation argu-
ments are introduced.

In our analysis and interpretation of recurrent
neural networks, we use the trained C-BRNN
(Figure 1) (Vu et al., 2016a) model.

3 LISA and Example2Pattern in RNN

There are several aspects in interpreting the neu-
ral network, for instance via (1) Data: “Which di-
mensions of the data are the most relevant for the
task™ (2) Prediction or Decision: “Explain why a
certain pattern” is classified in a certain way (3)
Model: “How patterns belonging to each category
in the data look like according to the network™.

In this work, we focus to explain RNN via de-
cision and model aspects by finding the patterns
that explains “why” a model arrives at a particu-



lar decision for each category in the data and veri-
fies that model behaves as expected. To do so, we
propose a technique named as LISA that interprets
RNN about “how it accumulates and builds mean-
ingful semantics of a sentence word by word” and
“how the saliency patterns look like according to
the network” for each category in the data while
decision making. We extract the saliency patterns
via example2pattern transformation.

LISA Formulation: To explain the cumula-
tive nature of recurrent neural networks, we show
how does it build semantic meaning of a sentence
word by word belonging to a particular category
in the data and compute prediction scores for the
expected category on different inputs, as shown in
Figure 2. The scheme also depicts the contribu-
tion of each word in the sequence towards the final
classification score (prediction probability).

At first, we compute different subsequences
of word(s) for a given sequence of words (i.e.,
sentence). Consider a sequence S of words
[wy, wo, ..., wy, ..., wy,] for a given sentence S of
length n. We compute n number of subsequences,
where each subsequence S<j is a subvector of
words [w1, ...wg], 1.e., S<j, consists of words pre-
ceding and including the word wy, in the sequence
S. In context of this work, extending a subse-
quence by a word means appending the subse-
quence by the next word in the sequence. Observe
that the number of subsequences, n is equal to the
total number of time steps in the C-BRNN.

Next is to compute RNN prediction score for the
category R associated with sentence S. We com-
pute the score via the autoregressive conditional
P(R|S<j, M) for each subsequence S<y, as-

P(R|S<j, M) = softmax(Why - hy;, +by) (5)

using the trained C-BRNN (Figure 1) model
M. For each k& € [1,n], we compute the net-
work prediction, P(R|S<, M) to demonstrate the
cumulative property of recurrent neural network
that builds meaningful semantics of the sequence
S by extending each subsequence S<j, word by
word. The internal state hy,;, (attached to softmax
layer as in Figure 1) is involved in decision making
for each input subsequence S<j, with bias vector
b, € R® and hidden-to-softmax weights matrix
Wiy, € RPXC for C categories.

The LISA is illustrated in Figure 2, where each
word in the sequence contributes to final classifi-
cation score. It allows us to understand the net-
work decisions via peaks in the prediction score

Algorithm 1 Example2pattern Transformation

Input: sentence S, length n, category R,
threshold 7, C-BRNN M|, N-gram size N
Output: N-gram saliency pattern patt
for kin1ton do

compute N-gram,, (eqn 8) of words in .S

1:
2:
3: for kin 1ton do

4: compute S<, (eqn 7) of N-grams

5 compute P(R|S<j, M) using eqn 5
6 if P(R|S<j, M) > 7 then

7 return patt < S<j[—1]

over different subsequences. The peaks signify
the saliency patterns (i.e., sequence of words) that
the network has learned in order to make deci-
sion. For instance, the input word ‘of following
the subsequence ‘<el> demolition </el> was
the cause’ introduces a sudden increase in pre-
diction score for the relation type cause-effect(el,
e2). It suggests that the C-BRNN collects the se-
mantics layer-wise via temporally organized sub-
sequences. Observe that the subsequence °...cause
of is salient enough in decision making (i.e., pre-
diction score=0.77), where the next subsequence
‘...cause of <e2>’ adds in the score to get 0.98.

Example2pattern for Saliency Pattern: To
further interpret RNN, we seek to identify and ex-
tract the most likely input pattern (or phrases) for
a given class that is discriminating enough in de-
cision making. Therefore, each example input is
transformed into a saliency pattern that informs us
about the network learning. To do so, we first
compute N-gram for each word w; in the sen-
tence S. For instance, a 3-gram representation
of w; is given by w¢_1,ws, wey1. Therefore, an
N-gram (for N=3) sequence S of words is rep-
resented as [[wi—1,ws, wy1]y ], where wo and
wp+1 are PADDING (zero) vectors of embedding
dimension.

Following Vu et al. (2016a), we use N-grams
(e.g., tri-grams) representation for each word in
each subsequence S<;, that is input to C-BRNN
to compute P(R|S<j), where the N-gram (N=3)
subsequence S<y, is given by,

Sgk = HPADDING, wl,wQ]l, [wl,wg, ’wg]g, ceey

[wtfla Wt, wt+1]ta ey [wk—lawka wk+1]k]

(6)

S<i = [triy, trig, ..., trig, ...trig] @)

for k € [1,n]. Observe that the 3-gram trij con-
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Figure 3: (a-i) Layer-wlse Semantic Accumulation (LISA) by C-BRNN for different relation types in
SemEval10 Task 8 and TAC KBP Slot Filling datasets. The square in red color signifies that the relation
is correctly detected with the input subsequence (enough in decision making). (j-k) t-SNE visualization
of the last combined hidden unit (hy;) of C-BRNN computed using the SemEvall0 train and test sets.
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ID Relation/Slot Types

Example Sentences

Example2Pattern

S1 | cause-effect(el, e2)

S2 | cause-effect(e2, el)

S3 | component-whole(el, e2)
S4 | entity-destination(el,e2)
S5 | entity-origin(el, e2)

S6 | product-produce(el, e2)
ST | instrument-agency(el, e2)
S8 | per:loc_of birth(el, e2)
S9 | per:spouse(el, e2)

<el> demolition </el> was the cause of <e2> terror </e2>
<el> damage </el> caused by the <e2> bombing </e2>
<el> countyard </el> of the <e2> castle </e2>

<el> marble </el> was dropped into the <e2> bowl </e2>
<el> car </el> left the <e2> plant </e2>

<el> cigarettes </el> by the major <e2> producer </e2>
<el> cigarettes </el> are used by <e2> women </e2>
<el> person </el> was born in <e2> location </e2>
<el> person </el> married <e2> spouse </e2>

cause of <e2>
damage </el> caused
<[lel> of the

dropped into the

left the <e2>

</el> by the

</el> are used

born in <e2>

</el> married <e2>

Table 1: Example Sentences for LISA and example2pattern illustrations. The sentences S1-S7 belong to
SemEval10 Task 8 dataset and S8-59 to TAC KBP Slot Filling (SF) shared task dataset.

sists of the word wy 1, if k # n. To generalize for
i € [1,[N/2]], an N-gram,, of size N for word wy,
in C-BRNN is given by-

N-gramy, = [Wk—i, «..s Wk, ooy Wil ()

Algorithm 1 shows the transformation of an ex-
ample sentence into pattern that is salient in deci-
sion making. For a given example sentence .S with
its length n and category R, we extract the most
salient N-gram (N=3, 5 or 7) pattern patt (the last
N-gram in the N-gram subsequence S<,) that con-
tributes the most in detecting the relation type R.
The threshold parameter 7 signifies the probabil-
ity of prediction for the category R by the model
M. For an input N-gram sequence S<j of sen-
tence S, we extract the last N-gram, e.g., tri; that
detects the relation R with prediction score above
7. By manual inspection of patterns extracted at
different values (0.4, 0.5, 0.6, 0.7) of 7, we found
that 7 = 0.5 generates the most salient and inter-
pretable patterns. The saliency pattern detection
follows LISA as demonstrated in Figure 2, except
that we use N-gram (/N =3, 5 or 7) input to detect
and extract the key relationship patterns.

4 Analysis: Relation Classification

Given a sentence and two annotated nominals, the
task of binary relation classification is to predict
the semantic relations between the pairs of nom-
inals. In most cases, the context in between the
two nominals define the relationship. However,
Vu et al. (2016a) has shown that the extended con-
text helps. In this work, we focus on the building
semantics for a given sentence using relationship
contexts between the two nominals.

We analyse RNNs for LISA and exam-
ple2pattern using two relation classification dat-
sets: (1) SemEvall0 Shared Task 8 (Hendrickx

Input word sequence to C-BRNN pp
<el> 0.10
<el> demolition 0.25
<el> demolition </el> 0.29
<el> demolition </el> was 0.30
<el> demolition </el> was the 0.35
<el> demolition </el> was the cause 0.39
<el> demolition </el> was the cause of 0.77
<el> demolition </el> was the cause of <e2> 0.98
<el> demolition </el> was the cause of <e2> terror 1.00
<el> demolition </el> was the cause of <e2> terror </e2> | 1.00

Table 2: Semantic accumulation and sensitivity
of C-BRNN over subsequences for sentence S1.
Bold indicates the last word in the subsequence.
pp: prediction probability in the softmax layer for
the relation type. The underline signifies that the
pp is sufficient enough (7=0.50) in detecting the
relation. Saliency patterns, i.e., N-grams can be
extracted from the input subsequence that leads to
a sudden peak in pp, where pp > 7.

et al., 2009) (2) TAC KBP Slot Filling (SF) shared
task! (Adel and Schiitze, 2015). We demon-
strate the sensitiveness of RNN for different sub-
sequences (Figure 2), input in the same order as
in the original sentence. We explain its predic-
tions (or judgments) and extract the salient rela-
tionship patterns learned for each category in the
two datasets.

4.1 SemEvall0 Shared Task 8 dataset

The relation classification dataset of the Semantic
Evaluation 2010 (SemEval10) shared task 8 (Hen-
drickx et al., 2009) consists of 19 relations (9 di-
rected relations and one artificial class Other),
8,000 training and 2,717 testing sentences. We
split the training data into train (6.5k) and devel-
opment (1.5k) sentences to optimize the C-BRNN

!data from the slot filler classification component of the
slot filling pipeline, treated as relation classification
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Relation

3-gram Patterns

5-gram Patterns

7-gram Patterns

cause-
effect(el,e2)

</el> cause <e2>
</el> caused a

that cause respiratory
which cause acne
leading causes of

the leading causes of <e2>
the main causes of <e2>
</el> leads to <e2>> inspiration
</el> that results in <e2>
</el> resulted in the <e2>

is one of the leading causes of
is one of the main causes of
</el> that results in <e2> hardening </e2>
</el> resulted in the <e2> loss </e2>
<el> sadness </el> leads to <e2> inspiration

cause-

caused due to
comes from the
arose from an

</el> has been caused by
</el> are caused by the
</el> arose from an <e2>

</el> is caused by a <e2> comet
</el> however has been caused by the
</el> that has been caused by the

effect(e2,el) caused by the </el> caused due to <e2> that has been caused by the <e2>
radiated from a infection </e2> results in an <el> product </el> arose from an <e2>
ina<e2> </el> was contained in a </el> was contained in a <e2> box
was inside a </el> was discovered inside a </el> was in a <e2>> suitcase </e2>
content- contained in a </el> were in a <e2> </el> were in a <e2> box </e2>

container(el,e2)

hidden in a
stored in a

is hidden in a <e2>
</el> was contained in a

</el> was inside a <e2> box </e2>
</el> was hidden in an <e2> envelope

product-
produce(el e2)

</el> released by
</el> issued by
</el> created by

</el> issued by the <e2>
</el> was prepared by <e2>
was written by a <e2>

<el> products </el> created by an <e2>
</el> by an <e2> artist </e2> who
</el> written by most of the <e2>

by the <e2> </el> built by the <e2> temple </el> has been built by <e2>
of the <el> </el> are made by <e2> </el> were founded by the <e2> potter
</el> of the </el> of the <e2> device the <el> timer </el> of the <e2>
whole(el, e2) of the <e2> </el> was a part of </el> was a part of the romulan
component- part of the </el> is part of the </el> was the best part of the
<lel> of <e2> is a basic element of </el> is a basic element of the
</el>ona </el>is part of a are core components of the <e2> solutions
put into a have been moving into the </el> have been moving back into <e2>
released into the was dropped into the <e2> </el> have been moving into the <e2>
entity- </el> into the </el> moved into the <e2> </el> have been dropped into the <e2>

moved into the
added to the

destination(el,e2)

were released into the <e2>
</el> have been exported to

</el> have been released back into the
power </el> is exported to the <e2>

</el> are used
used by <e2>
</el> is used
set by the
</el> set by

instrument-
agency(el,e2)

</el> assists the <e2> eye
</el> are used by <e2>
</el> were used by some
</el> with which the <e2>
readily associated with the <e2>

cigarettes </el> are used by <e2> women
<el> telescope </el> assists the <e2> eye
<el> practices </el> for <e2> engineers </e2>
the best <el> tools </el> for <e2>
<el> wire </el> with which the <e2>

Table 3: SemEval10 Task 8 dataset: N-Gram (3, 5 and 7) saliency patterns extracted for different relation

types by C-BRNN with PI

network. For instance, an example sentence with
relation label is given by-

The <el> demolition </el> was
the cause of <e2> terror </e2>
and communal divide is just a way
of not letting truth prevail. —
cause—-effect (el, e2)

The terms demolition and terror are
the relation arguments or nominals, where the
phrase was the cause of is the relationship
context between the two arguments. Table 1
shows the examples sentences (shortened to ar-
gumentl+relationship context+argument2) drawn
from the development and test sets that we em-
ployed to analyse the C-BRNN for semantic accu-
mulation in our experiments. We use the similar
experimental setup as Vu et al. (2016a).
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LISA Analysis: As discussed in Section 3, we
interpret C-BRNN by explaining its predictions
via the semantic accumulation over the subse-
quences S<j, (Figure 2) for each sentence S. We
select the example sentences S1-S7 (Table 1) for
which the network predicts the correct relation
type with high scores. For an example sentence
S1, Table 2 illustrates how different subsequences
are input to C-BRNN in order to compute predic-
tion scores pp in the softmax layer for the relation
e2). We use tri-gram
(section 3) word representation for each word for
the examples S1-S7.

Figures 3a, 3b, 3c, 3d 3e, 3f and 3g demon-
strate the cumulative nature and sensitiveness of
RNN via prediction probability (pp) about differ-
ent inputs for sentences S1-57, respectively. For

cause-effect (el,



Slots N-gram Patterns
</el> wife of
<lel> , wife
<lel> wife
</el> married <e2>
</el> marriages to
was born in
born in <e2>
a native of
</el> from <e2>
</el>’s hometown

per-
spouse(el,e2)

per-
location_of_birth(el,e2)

Table 4: TAC KBP SF dataset: Tri-gram saliency
patterns extracted for slots per:spouse(el, e2) and
per:location_of _birth(el,e2)

instance in Figure 3a and Table 2, the C-BRNN
builds meaning of the sentence S'1 word by word,
where a sudden increase in pp is observed when
the input subsequence <el> demolition
</el> was the cause is extended with the
next term of in the word sequence S. Note that
the relationship context between the arguments
demolition and terror is sufficient enough
in detecting the relationship type. Interestingly,
we also observe that the prepositions (such as of,
by, into, etc.) in combination with verbs are key
features in building the meaningful semantics.

Saliency Patterns via example2pattern Trans-
formation: Following the discussion in Section
3 and Algorithm 1, we transform each correctly
identified example into pattern by extracting the
most likely N-gram in the input subsequence(s).
In each of the Figures 3a, 3b, 3c, 3d 3e, 3f and 3g,
the square box in red color signifies that the rela-
tion type is correctly identified (when 7 = 0.5) at
this particular subsequence input (without the re-
maining context in the sentence). We extract the
last N-gram of such a subsequence.

Table 1 shows the example2pattern transforma-
tions for sentences S1-S7 in SemEvall0 dataset,
derived from Figures 3a-3g, respectively with N=3
(in the N-grams). Similarly, we extract the salient
patterns (3-gram, 5-gram and 7-gram) (Table 3)
for different relationships. We also observe that
the relation types content-container (el,
ez2) and instrument-agency (el,
e2) are mostly defined by smaller rela-
tionship contexts (e.g, 3-gram), however
entity-destination(el,e2) by larger
contexts (7-gram).

4.2 TAC KBP Slot Filling dataset

We investigate another dataset from TAC KBP
Slot Filling (SF) shared task (Surdeanu, 2013),
where we use the relation classification dataset by
Adel et al. (2016) in the context of slot filling. We
have selected the two slots: per:loc_of_birth and
per:spouse out of 24 types.

LISA Analysis: Following Section 4.1, we anal-
yse the C-BRNN for LISA using sentences S8
and S9 (Table 1). Figures 3h and 3i demonstrate
the cumulative nature of recurrent neural network,
where we observe that the salient patterns born
in <e2> and </el> married e2 lead to
correct decision making for S8 and S9, respec-
tively. Interestingly for S8, we see a decrease in
prediction score from 0.59 to 0.52 on including
terms in the subsequence, following the term 1in.

Saliency Patterns via exampleZpattern Trans-
formation: Following Section 3 and Algorithm 1,
we demonstrate the example2pattern transforma-
tion of sentences S8 and 59 in Table 1 with tir-
grams. In addition, Table 4 shows the tri-gram
salient patterns extracted for the two slots.

5 Visualizing Latent Semantics

In this section, we attempt to visualize the hidden
state of each test (and train) example that has ac-
cumulated (or built) the meaningful semantics dur-
ing sequential processing in C-BRNN. To do this,
we compute the last hidden vector hy; of the com-
bined network (e.g., hp; attached to the softmax
layer in Figure 1) for each test (and train) exam-
ple and visualize (Figure 3k and 3j) using t-SNE
(Maaten and Hinton, 2008). Each color represents
a relation-type. Observe the distinctive clusters of
accumulated semantics in hidden states for each
category in the data (SemEval10 Task 8).

6 Conclusion and Future Work

We have demonstrated the cumulative nature of
recurrent neural networks via sensitivity analysis
over different inputs, i.e., LISA to understand how
they build meaningful semantics and explain pre-
dictions for each category in the data. We have
also detected a salient pattern in each of the exam-
ple sentences, i.e., exampleZpattern transforma-
tion that the network learns in decision making.
We extract the salient patterns for different cate-
gories in two relation classification datasets.

In future work, it would be interesting to anal-
yse the sensitiveness of RNNs with corruption in
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the salient patterns. One could also investigate
visualizing the dimensions of hidden states (acti-
vation maximization) and word embedding vec-
tors with the network decisions over time. We
forsee to apply LISA and example2pattern on dif-
ferent tasks such as document categorization, sen-
timent analysis, language modeling, etc. An-
other interesting direction would be to analyze
the bag-of-word neural topic models such as Doc-
NADE (Larochelle and Lauly, 2012) and iDoc-
NADE (Gupta et al., 2018b) to interpret their se-
mantic accumulation during autoregressive com-
putations in building document representation(s).
We extract the saliency patterns for each cate-
gory in the data that can be effectively used in
instantiating pattern-based information extraction
systems, such as bootstrapping entity (Gupta and
Manning, 2014) and relation extractors (Gupta
et al., 2018e).
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