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1 Abstract 

Parkinson’s disease (PD) is the second most common neurodegenerative disease following 

Alzheimer’s disease and the most common movement disorder. Clinically, a motor phenotype 

can be observed only after approximately 50% of dopaminergic neurons in the substantia nigra 

(SN) have been lost with rigor, resting tremor, bradykinesia or akinesia, and postural instability 

being the cardinal symptoms. Yet, to date, a definite diagnosis is only possible by analysis of 

post-mortem brain tissue. Here, a degeneration of the SN can be observed, and Lewy bodies and 

Lewy neurites in remaining dopaminergic neurites represent the histopathological hallmark of 

the disease.  

On the molecular level, several routes of evidence suggest that the formation of small, soluble 

αSyn oligomers is causative for the loss of dopaminergic neurons in the SN, yet the toxic αSyn 

species and the exact mechanism of toxicity remain obscure. To date, agents for symptomatic 

therapy of PD are available, but no causative therapeutic approaches have been identified so far.   

In order to achieve an earlier diagnosis and develop disease-modifying therapies, a better 

understanding of underlying molecular pathogenic mechanisms is desirable. Established cell 

lines represent suitable models to identify potential disease-modifying therapeutics and to study 

αSyn-mediated toxic mechanisms. To the best of our knowledge, by the beginning of this project, 

overexpression of αSyn in cell models was either constitutive or relied on transient transfection 

or viral transduction.  

In this study, we aimed to develop a strategy for the creation of stable cell lines which inducibly 

overexpress variants of αSyn by addition of certain chemical agonists. The system should be 

applicable to a variety of established and primary cell lines for the investigation of aggregation, 

modulation, and toxicity of αSyn oligomers with regard to PD and other synucleinopathies. 

We created vectors for the inducible overexpression of αSyn (S), the fluorescence protein Venus 

(V), αSyn coupled to Venus (SV), and αSyn coupled to the N-terminal (V1S) or C-terminal Venus 

fragment (SV2) for a bimolecular fluorescence complementation assay (BiFC). Inducibility was 

achieved by applying the GAL4_EcR-UAS (GE) or the Cre_ERT2-loxP (CET2) system, respectively. 

The expression constructs were stably integrated into the genome of the host cell line by 

lentiviral transduction. 

We here demonstrate the successful application of this strategy for the creation of inducibly 

αSyn overexpressing cell lines in H4 and LUHMES cells. We observed stronger inducibility of 

transgene expression in H4_GE cells compared to H4_CET2 cells. Expression characteristics of 
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inducible H4_GE cells were investigated in detail based on both fluorescence intensity and 

protein amount. All cell lines showed low background expression and a maximum increase in 

transgene expression upon incubation with 1 or 10 µM tebufenozide for 4-6 days.  

Exposure to heavy metals has been described as risk factor for the development of PD in 

epidemiological studies. In particular, ferric iron appears to be increased in the SN of PD patients 

and incubation of recombinant αSyn with DMSO or DMSO and FeCl3 results in the formation of 

distinct oligomer species. Using the H4_GE cell models described in this work we observed a 

strong increase in fluorescence intensity in the BiFC assay upon incubation with DMSO in 

combination with FeCl3 which was not observed for other tri-, di-, or monovalent ions. 

Additionally, an increase in αSyn protein load and higher molecular αSyn species were detected 

in western blot and sucrose gradient centrifugation. Taken together, these data suggest 

increased aggregation of αSyn in the H4_GE cell model upon incubation with DMSO and FeCl3. 

In summary, the system presented in this work holds high potential for the creation of αSyn 

overexpressing cell lines to evaluate risk factors of αSyn aggregation and αSyn-mediated toxicity 

as well as to screen for anti-aggregative compounds for potential disease-modifying therapeutics 

for PD and other synucleinopathies.   
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2 Introduction 

2.1 Parkinson’s Disease 

Neurodegenerative disorders comprise a group of diseases that lead to a progressive loss of 

neurons resulting in disease-specific symptoms1. This loss of neurons is commonly accompanied 

by the deposition of disease-specific protein aggregates. Exemplarily, these aggregates consist of 

prion protein in Creutzfeldt-Jakob disease (cytoplasmic), huntingtin in Huntington’s disease 

(cytoplasmic), tau protein (cytoplasmic) and amyloid-beta peptide (extracellular) in Alzheimer’s 

disease (AD), and alpha-synuclein (αSyn) (cytoplasmic) in Parkinson’s disease (PD) and other 

synculeinopathies including dementia with Lewy bodies (DLB) or multiple system atrophy 

(MSA)2,3.  

PD is the second most common neurodegenerative disease following AD and the most common 

movement disorder and was first described in 1817 in James Parkinson’s An Essay on the 

Shaking Palsy4. On the cellular level, degeneration of synapses and axons in the striatum 

precedes the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) leading 

to a depletion of dopamine in the nigrostriatal circuitry5. The typical clinical phenotype is 

characterized by the four cardinal symptoms rigor (stiffness of muscles), tremor (resting tremor 

with a frequency of 4-6 Hz), slowness or absence of motion (bradykinesia/akinesia), and 

postural instability6 and can only be observed after 50 to 80% of dopaminergic neurons have 

already been lost (Figure 2-1 A). With further symptoms including sleep disturbances, visual 

halluzinations and illusions, cognitive deterioration and dementia, depression and anxiety, and a 

variety of sensory symptoms7,8, PD places a heavy burden on both patients and relatives.  

The loss of dopaminergic neurons in the substantia nigra (SN) (Figure 2-1 B) and Lewy bodies or 

Lewy neurites in some of the remaining neurons represent the histopathological hallmarks of PD 

(Figure 2-1 C), but degeneration can also be observed in other brain areas that use different 

neurotransmitter systems9. However, since Lewy body pathology is not proportional to the 

extent of cell death or the severity of the clinical phenotype and since also asymptomatic 

individuals show Lewy bodies in an age-dependent manner, it is still under debate if Lewy 

bodies are a sign of presymptomatic PD10 or of normal aging11.  
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Figure 2-1: Background on Parkinson’s disease 

A) Illustration of the typical clinical phenotype of a PD patient by Sir William Richard Gowers
12

 

(source: https://de.wikipedia.org/wiki/Parkinson-Krankheit).  

B) Midbrain sections of healthy control (top) and PD patient (bottom). Arrows point to SN which 

is degenerated in the PD case (pictures from Prof. Dr. med. Armin Giese, LMU Munich). 

C) Staining of a brainstem neuron with hematoxylin and eosin (H&E) showing a cytoplasmic 

Lewy body (top) (pictures from Dr. med. Tobias Högen, LMU Munich). Staining of Lewy bodies 

and Lewy neurites with an anti-αSyn antibody (αSyn-42) (bottom).  

D) αSyn fibrils observed in electron microscopy (from Michael Schmidt and Dr. med. Johannes 

Levin, LMU Munich). 

  

 

 

In industrialized countries approximately 0.3% of the population suffer from PD13 with probably 

slightly higher prevalence in men than in women (of approximately 1.5 to 1)14. The biggest risk 

factor for the development of PD is increasing age: The disease occurs only seldom in individuals 

below the age of 50 years and a strong increase in prevalence can be observed from 60 years 

on14. Thus, approximately 0.6% of the 65-69-year-olds are affected in Europe, and the 

prevalence increases to approximately 2.6% in the age group of 85-89 years14-16. Thus, with an 

expected prolonged lifespan over the next decades the number of PD patients is likely to further 

increase in the future. In 2010, approximately 630,000 people had been diagnosed with PD in 

the United States. It has been estimated that this number will increase to 819,000 by 2020, 1.06 

million by 2030, 1.24 million by 2040, and 1.34 million by 205017. With increasing number of 

patients, medical costs are likely to increase in the future (in the United States from 

approximately 8 billion $ in 2010 to 18.5 billion $ in 2050)17.  

Clinical diagnosis of PD relies on motor and nonmotor abnormalities, with motor parkinsonism 

(i.e., bradykinesia plus rest tremor or rigidity) being the core feature18. Since the motor 

phenotype occurs only after a substantial amount of dopaminergic neurons has already been 

lost, treatment of PD is currently limited to already advanced disease stages. To date, a definite 

diagnosis of PD is only possible by post-mortem histopathological examination since 
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parkinsonian symptoms can be observed in patients suffering from a variety of neurological 

disorders19. Indeed, a study from 1992 found that clinical diagnosis of PD was correct in only 

76% of cases20. For this, better tools to diagnose PD with higher reliability and earlier in the 

course of disease are urgently required to improve the treatment of PD patients but also to 

improve clinical trials and epidemiological research19.  

Current treatment of PD patients is largely focused on the compensation for the pathological 

depletion of dopamine. Thus, PD patients are typically treated with levodopa, a dopamine 

precursor that can cross the blood-brain barrier (BBB) and is afterwards converted to dopamine 

by neuronal decarboxylases. Treatment with levodopa is often combined with administration of 

carbidopa, an inhibitor of peripheral decarboxylases that prevents decarboxylation of levodopa 

to dopamine and is incapable of crossing the BBB. Unfortunately, the effect of levodopa 

administration decreases over time. Another possibility to overcome symptoms caused by 

depletion of dopamine is the treatment with dopamine receptor agonists. Additionally, 

substances to reduce dopamine metabolism like monoamine oxidase B (MAOB) inhibitors or 

catechol-O-methyl-transferase (COMT) inhibitors can be given to slow down the degradation of 

dopamine to inactive metabolites19,21. A neurosurgical approach is taken by deep brain 

stimulation. Here, a neurostimulator, or “brain pacemaker”, is implanted that stimulates areas 

like the globus pallidus, subthalamic nucleus, or thalamus to substitute missing inhibition from 

the SN and thus decrease inhibition of the motor cortex22.  

To date, there is no cure and no disease-modifying therapy for PD available. Therefore, a better 

understanding of underlying disease mechanisms is inevitable for the development of better 

diagnostic tools – allowing an earlier and more reliable diagnosis of PD – and for the 

development of disease-modifying therapies. 
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2.2 Alpha-Synuclein and its Physiological Role 

Synuclein proteins – purified from Torpedo californica – were first characterized by Maroteaux 

et al.23 in 1988. The acronym “synuclein” refers to the initially described localization in synapses 

and in the nucleus23-31. By now, the synuclein family has been subdivided into three groups, 

termed alpha-, beta-, and gamma-synuclein (with gamma-synuclein being equivalent to breast 

cancer specific gene 1 (BCSG-1))30. Meanwhile, alpha-synuclein (αSyn) has been found to localize 

not only to synapses and the nucleus but also to the cytosol, the mitochondria-associated 

membrane of the endoplasmic reticulum (ER), and the inner membrane of mitochondria. 

Hence, αSyn appears to travel actively between different compartments32-34.  

In humans, αSyn is expressed from the SNCA gene located on 4q21, i.e., the long (q) arm of 

chromosome 4 at position 21. It belongs to the family of natively unfolded proteins and accounts 

for approximately 0.5% to 1% of total protein in soluble cytosolic brain fractions19,25,35. The 

highest expression of αSyn is observed in neurons in both the central and peripheral nervous 

system32,35. αSyn exists mainly as a small soluble protein of 140 residues with a molecular 

weight of 14 kDa whose primary structure can be subdivided into three distinct regions19,25: the 

N-terminal lipid-binding region (1-60), the central NAC region (non-amyloid-beta component) 

(61-95), and the hydrophilic C-terminal region (96-140)19,25 (Figure 2-2 A). Two further 

isoforms can be observed as a result of alternative splicing: αSyn-126 (lacking the amino acids 

41 to 54 in exon 3) and αSyn-112 (lacking the amino acids 103-130 in exon 5)35,36. 

The physiological function of αSyn is still subject of ongoing research. It has been shown that 

mice lacking alpha- and/or beta-synuclein show normal survival and no obvious brain 

defects19,37. The only observed phenotype in mice with a depletion of αSyn expression was a 

different modulation in dopamine release and recycling pool homeostasis. However, the lack of 

more obvious phenotypes might be due to an artificial environment without evolutionary 

pressure and compensatory mechanisms or a redundancy of other synucleins32,38-41, since age-

related neurodegeneration and endocytosis abnormalities can be observed in mice lacking 

alpha-, beta-, and gamma-synuclein42,43 and acute knockdown using RNAi expressed from adeno-

associated viruses promotes degeneration in neurons of the SN32,44.  

Although it has been observed in a variety of cell compartments, αSyn has been described to be 

mainly enriched in presynaptic vesicles of vertebrates32,45-47. A lipid-binding property of αSyn 

can already be postulated based on its primary structure since its N-terminal region consists 

almost entirely of imperfect 11-mer repeats with a degenerate KTKEGV consensus motif35,48 

which is related to an alpha-helical lipid-binding motif of apolipoproteins (Figure 2-2 A).  
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Figure 2-2: Background on αSyn 

A) Amino acid sequence of αSyn (140-amino-acid isoform) with three distinct regions: N-terminal 

lipid-binding region (1-60), central NAC region (61-95), and hydrophilic C-terminal region 

(96-140). 11-mer repeats with degenerate KTKEGV consensus motif are underlined. All known 

disease-associated mutations are located within the N-terminal region (affected sequence 

positions are highlighted in color and amino acid substitutions are indicated below) (modified 

after Beyer, 2007
48

).  

B) 3D structure of micelle-bound human αSyn according to Ulmer et al., 2005
49

. Position of 

disease-associated mutations are highlighted in color (figure kindly provided by Dr. Viktoria 

Ruf, LMU, modified). 

 

 

Indeed, it has been shown that the exposure of αSyn to lipid micelles leads to a change in 

secondary structure from unfolded to alpha-helix in the N-terminal region19,49,50 (Figure 2-2 B) 

and that a fraction of αSyn interacts with the presynaptic membrane and membranes of synaptic 

vesicles51-54. It has been hypothesized that this binding of αSyn to vesicles inhibits their fusion 

with other membranes. The association of αSyn to lipid membranes seems to be supported by a 

topologically stressed bilayer–water interface: Accordingly, it appears to be critically dependend 

on surface curvature and lipid composition favored by strong surface curvature and negatively 
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charged lipids or membranes composed of zwitterionic lipids in the gel state but not in the 

liquid-crystalline state48,55,56.  

In line with its lipid-binding properties, the physiological function of αSyn may play a role in the 

regulation of the homeostasis of the presynaptic vesicular pool, of synaptic vesicle cycling and 

endocytosis23,32,35,37,57-59, and the regulation of neurotransmitter release19,60,61, especially for 

dopamine39,62-65. Apart from direct lipid-binding, there may also be an indirect effect of αSyn 

towards the regulation of synaptic transmission. In line with this, it has been described that 

αSyn can bind to and inhibit phospholipase D2 (PLD2) which is involved in vesicular trafficking 

and breakdown of phosphatidylcholine66-69. 

Several members of the family of natively unfolded proteins have been shown to have chaperone 

function19. For αSyn, the C-terminal region has been suggested to show chaperone activity 

(Figure 2-2 A). Thus, αSyn may act as auxiliary chaperone for the cysteine string protein alpha 

(CSPalpha) which acts as co-chaperone for soluble N-ethylmaleimide-sensitive factor 

attachment protein receptor (SNARE) proteins located in synaptic vesicles19,51. By this, αSyn may 

be involved in the facilitation and stabilization of SNARE complexes with overexpression of αSyn 

leading to decreased exocytosis in cultures of embryonic hippocampal neurons32,70,71. It has also 

been suggested that the C-terminal region can prevent the self-assembly of αSyn by interacting 

with its hydrophobic core region32,72,73 which is involved in the aggregation process of 

monomers into aggregates and amyloid fibrils19,74.  

The control of αSyn activity and/or its localization could be mediated by post-translational 

modifications (such as phosphorylation) for which the C-terminal region shows several putative 

sites32,75,76. Thus, αSyn can be phosphorylated at S129 by casein kinase I and G protein-coupled 

receptor kinases, modulating its lipid-binding properties69,77. Moreover, the C-terminal region 

has been shown to target recombinant αSyn into the nucleus, whereas the N-terminal and core 

region were required to target αSyn to the presynapse24,78.  

However, the functions of αSyn described above are by far not complete and a variety of 

additional mechanisms with involvement of αSyn have been suggested. According to this, its 

expression has been shown to be upregulated in early development79. Additionally, αSyn 

conveys protection against oxidative stress by inhibiting the c-Jun N-terminal kinase (JNK) 

stress signaling pathway in neuronal cells80. It has also been shown to bind to histones81 and 

affect histone acetylation24,82 and to influence the function of nuclear proteins32,78,81,82. 
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2.3 Evidence for αSyn as Important Factor in Neurodegeneration 

The first evidence for an involvement of αSyn in neurodegenerative disorders came in 1993, 

when αSyn was identified as non-amyloid-beta component in amyloid preparations from 

patients suffering from AD27,28. Later on, αSyn was also found to be the principal component of 

Lewy bodies24,45,83 where it occurs as highly ordered amyloid-type fibril45,84,85 (Figure 2-1 D) and 

usually appears to be subjected to post-translational modifications like cleavage, S129 

phosphorylation, oxidation, and nitration, which increase the rate of oligomer formation19,32,86-92. 

The aggregation of αSyn can also be observed in solution in vitro where full-length αSyn and 

peptides derived from it form aggregates and amyloid fibrils with a morphology comparable to 

fibrils purified from Lewy bodies19,93,94.  

Critically important for the aggregation process appears to be the NAC-region (comprising 

amino acids 61-95) (Figure 2-2 A) which consists largely of hydrophobic amino acids: The 

aggregation behavior of beta-synuclein (βSyn) – which differs from αSyn by the absence of 

eleven amino acids (73-83) in the NAC-region – has been discussed controversially, but overall a 

reduced aggregation propensity compared to αSyn can be postulated95-99. Moreover, an area of 

12 amino acids inside the NAC region (71-82) was shown to be necessary and sufficient for αSyn 

fibrillization100.  

A causal part of αSyn in disease progression can be assumed due to the presence of aggregated 

αSyn in neuronal populations which correlates to the onset of cell loss32,101-103. This αSyn 

pathology precedes cell loss in a model where mice had been injected with preformed fibrils, 

suggesting that pathological αSyn species are the main driver of neurodegeneration32,103-105. 

Although the vast majority of PD cases is sporadic106, clues for an involvement of αSyn in the 

development of PD also come from gene mutations detected in familial PD cases. Thus, several 

disease-associated mutations leading to single amino acid exchanges have been identified in the 

SNCA gene: A53T107, A30P108, E46K109, H50Q110, G51D111, and A53E112 (Figure 2-2 A, B). The 

pathological mode of action of these mutations is currently largely unsolved, but A30P, E46K, 

and A53T have been shown to increase the aggregation rate of αSyn94,113. Additionally, 

duplication or triplication of the SNCA gene cause parkinsonian symptoms with the age of onset 

and severity of symptoms correlating with the gene copy number19,105,114-116. Recently, a number 

of polymorphisms in the promoter region of αSyn has been described as risk factors for PD117, 

and genome-wide association studies indicate a connection between the SNCA locus and 

PD32,118,119. In line with this are experiments in mice and flies where overexpression of human 

αSyn was accompanied by neuronal dysfunction, loss of neurons and synaptic terminals, and an 

unphysiological motor phenotype19,120,121.  
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Interestingly, several genetic risk factors for PD comprising mutations in other genes than SNCA 

might actually exert their pathological potential via αSyn. Accordingly, mutations in 

gluocerebrosidase which cause Gaucher’s disease also increase the amount of αSyn and the risk 

for PD122,123. In addition, Lewy pathology has been observed for mutations in a variety of 

proteins including DJ-1, PINK1, GBA and likely also LRRK2, Parkin, and ATP13A2124-129.  

Not only genetic risk factors but also several environmental risk factors for the development of 

PD have been shown to influence αSyn aggregation130. According to epidemiological studies, the 

exposure to heavy metals like iron represents one such risk factor131. Indeed, alterations in brain 

iron levels with an increased iron load in the SN have been described in PD 132-134.  Elevated brain 

iron levels in PD patients can be detected using magnetic resonance tomography or transcranial 

sonography (TCS). This might already be possible early in the course of disease, and elevated 

brain iron levels might precede neurodegeneration since several persons rated as healthy 

subjects showed increased echogenicity and were clinically diagnosed with PD several years 

later135,136. In the post-mortem tissue of PD patients, elevated brain iron levels and a shift in the 

ferrous-to-ferric iron ratio towards ferric iron can be observed137,138. In line with this, iron 

chelators show a neuroprotective effect in the SN in PD models139-143. 

In vitro, ferric iron and other metal ions have been shown to increase αSyn aggregation131,144,145, 

and αSyn promotes the production of reactive oxygen species (ROS) in the presence of iron146. 

Interestingly, oxidative stress in turn increases the formation of iron-induced αSyn oligomers144, 

presumably resulting in a vicious circle. According to post-mortem studies in PD brains, several 

molecules appear to be damaged as a result of oxidative stress including lipids, proteins, and 

DNA132,147. 

Additionally, pesticides like paraquat148 or rotenone149,150 have been suggested to increase αSyn 

aggregation and to promote PD-like progression via increased release of αSyn from enteric 

neurons151. The interaction with αSyn and the stabilization of a protofibril stage of aggregation 

by dopamine and related catecholamines152,153 might in parts explain, why dopaminergic 

neurons in the SNpc are particularly vulnerable to αSyn-mediated toxicity in PD. Taken together, 

several lines of evidence point to a central role of αSyn in the development of PD.  
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2.4 The Toxic αSyn Species and the Pathological Mechanism 

To date, the toxic species and the pathological mechanism(s) of αSyn aggregation remain 

obscure24.  

Besides the prototypical amyloid fibrils with a typical width of 12-15 nm that can be found in 

LBs several different molecular species have been described24,32,152,154-156. These include short 

β-sheet-rich fibril-like intermediates, termed protofibrils, that can assemble linearly forming 

chains154 or circularly forming ring structures consisting of 25 to several hundred αSyn 

molecules32,152,156. Since cell death cannot be explained by the presence of fibrillar αSyn 

aggregates, and since overexpression of αSyn can lead to disruption of organelles and cell death 

in the absence of detectable fibrillary deposits, it was suggested that such smaller, oligomeric 

species – which may be on- or off-pathway to amyloid fibrils – might comprise the cytotoxic 

αSyn species157-160. To date, this hypothesis has not been proven but is supported by several 

lines of (indirect) evidence19,161,162.  

Concerning their structural features, αSyn oligomers show similarities to oligomers of other 

disease-associated peptides such as amyloid-beta, polyglutamine, or prion peptide 106-126, 

supporting the hypothesis of a common pathological mechanism in different neurodegenerative 

disorders163. Iron has been shown to promote aggregation of αSyn resulting in toxicity in cell 

culture164-166, and the inhibition of αSyn oligomer formation reduces cytotoxicity, suggesting a 

toxic effect of αSyn oligomers165. Moreover, large iron-induced αSyn oligomers lead to increased 

intracellular calcium dyshomeostasis and excitotoxic neuronal death by enhancing pre- and 

post-synaptic α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor-mediated 

synaptic transmission167. Further indirect evidence comes from αSyn-expressing cells which 

show increased but unspecific cation permeability162,168. Moreover, αSyn oligomers were shown 

to increase calcium permeability and cause cell death32,169. In vivo, the overexpression of αSyn 

with mutations that favor oligomer formation (E57K and E35K) in the midbrain of rats results in 

increased loss of dopaminergic neurons, whereas mutations that lead to a quick fibrillization of 

αSyn are less toxic32,169.  

Since αSyn protofibrils can display an annular structure that is reminiscent of bacterial pore-

forming toxins161,170, a common hypothesis for the oligomer-mediated toxicity is the formation of 

pore-like structures in cellular membranes leading to membrane permeabilization170,171. This is 

supported by the finding that the binding affinity of αSyn to membranes depends on its 

aggregation state with intermediates – formed during the conversion from monomeric αSyn to 

fibrils – showing highest affinity19,172. Moreover, the binding of αSyn protofibrils to phospholipid 

vesicles is much stronger than that of monomeric or fibrillar αSyn161,170,173. Interestingly, αSyn 
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oligomers show a modified lipid-binding behavior compared to monomeric αSyn: In contrast to 

monomeric αSyn, iron-induced oligomers can bind to membranes independently of charge, lipid 

composition, or surface curvature with high affinity56. Recently, our group was able to show that 

iron-induced αSyn oligomers lead to the insertion of distinct pore species in lipid bilayers in 

vitro171. Taken together, this might account for a pathological mechanism in which αSyn 

oligomers can bind to the plasma membrane or membranes of cell organelles such as ER or 

mitochondria with high affinity, where the insertion of pores results in impaired organell 

function leading to reduced cell viability.   

Meanwhile, a number of studies suggests a role of oxidative stress and mitochondrial 

dysfunction in αSyn-mediated toxicity19. First hints for an involvement of mitochondria came in 

1976, when Barry Kidston, a 23-year-old chemistry graduate student, developed parkinsonian 

symptoms three days after consumption of the self-synthesized opioid drug MPPP (1-methyl-4-

phenyl-4-propionoxypiperidine or desmethylprodine). When Kidston died 18 months later 

(from a cocaine overdose), brain autopsy revealed destruction of dopaminergic neurons in the 

SN. Some years later, several young adults developed sudden, severe parkinsonism after 

consumption of synthetic heroin. In both cases, contaminations with MPTP (1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridin), a selective inhibitor of mitochondrial complex-I, were detected174-176. 

Treatment of squirrel monkeys with MPTP-induced permanent parkinsonism177, while mice 

lacking αSyn appeared to be resistant against MPTP induced degeneration of dopaminergic 

neurons178,179. Additionally, it has been described that αSyn binds to mitochondria and that 

changes in the amount of αSyn can influence mitochondrial function32,180-183. Furthermore, the 

expression of mutant αSyn leads to mitochondrial defects, promotes cell death and enhances 

susceptibility to oxidative stress19.  

It has also been suggested that αSyn exists mainly as physiological tetramer184 and that the 

interaction of αSyn multimers with membranes is a physiological event. Then, disease-

associated mutations located within a small part of the N-terminal region could lead to 

disruption of physiological αSyn multimers and thus decrease membrane binding affinity of 

αSyn32,184-189. Furthermore, the disruption of tetrameric αSyn to unfolded monomers has been 

discussed as starting point for pathological αSyn aggregation32,190. However, the tetramer 

hypothesis is under strong debate and the scientific relevance remains questionable191.  

Several additional mechanisms have been described for αSyn-mediated toxicity such as ER 

stress and unfolded protein response (UPR) activation, which are likely to be both cause and 

effect in the pathogenesis of PD, or dysfunction of the ubiquitin proteasome system, calcium 

homeostasis dysregulation, and neuroinflammation19,32.   
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All in all, to date it, remains unclear if one specific pathological oligomeric αSyn species or 

several different pathological species can act via one specific or several different pathological 

mechanisms. Yet, the development of small molecule modulators of αSyn oligomerization 

appears to represent a promising strategy towards new treatment options for 

neurodegenerative disorders in general and PD in particular192. Indeed, inhibition of 

polyglutamine oligomerization has shown beneficial effects in models of Huntington’s disease193, 

and anle138b – which inhibits αSyn oligomer formation and prion propagation in vitro – also 

displays beneficial effects on pathology in in vivo models of synucleinopathies and prion 

diseases192. 

 

2.5 Cell Models for the Investigation of Synucleinopathies 

Using models to study disease mechanisms is inevitable, yet every model system will differ from 

the process being modelled. Moreover, since studying disease mechanisms is usually performed 

for diseases where the pathomechanism is not fully understood yet, models will rely on an 

incomplete assembly of well-known characteristics of the disease of interest and, thus, will not 

necessarily represent a complete picture of it194. For this, choosing a combination of different 

suitable models should increase the probability of gaining relevant information concerning the 

process being modelled. 

While in vitro methods hold high potential to study principle mechanisms in short time and a 

simplified environment, no information concerning cytotoxicity can be obtained. Animal studies, 

on the other hand, hold the benefit of investigating mechanisms in a complex environment but 

are usually much more expensive and time-consuming, more restricted concerning the number 

of independent experiments and require some lead time due to governmental regulations. 

Besides, the use of rodent models and rodent cells has been discussed critically since these 

models may have low predictivity for human disease states195,196. 

A promising strategy to improve the poor translation rate from animal models to human 

patients is represented by a more detailed characterization of drug candidates in combinations 

of more and better in vitro and in vivo models. Thus, attempts to provide elaborated disease 

models based on human cells are ongoing197,198. Cell models with a human background provide 

the opportunity to close a fundamental gap between in vitro studies and experiments performed 

in animals since they represent a more complex experimental setup than in vitro experiments 

with the potential to assess complex interactions and cytotoxicity on a much shorter time scale 

than experiments performed in animal models. Concerning αSyn-mediated toxicity, they also 
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enable the investigation of timing of αSyn aggregation relative to downstream events, hereby 

increasing the chance of identifying αSyn-mediated toxic effects162.  

The investigation of αSyn oligomers is hampered by the fact that oligomers represent transient 

intermediates whose formation depends on non-covalent interactions and appears to be highly 

dynamic162. Thus, oligomerization is influenced by external conditions like concentration, 

temperature, and medium composition95,199-201. Since αSyn oligomers are submicroscopic 

particles, their detection requires indirect biochemical methods such as native gel 

electrophoresis, density gradient centrifugation, or size exclusion chromatography. 

Alternatively, microscopic methods can be applied that include additional preparatory steps 

such as atomic force microscopy, or fluorescence labeling like fluorescence intensity distribution 

analysis200,202-205. However, apart from being time-consuming and labor-intensive, none of these 

methods enables the investigation of the formation of αSyn oligomers in a cellular environment 

in real time206. To overcome this problem, a bimolecular protein fragment complementation 

assay (PCA) has been developed to study αSyn aggregation207,208 applying both luminescence 

using Gaussia princeps luciferase and fluorescence using a variety of fluorescence proteins 

including Venus, a variant of the yellow fluorescent protein (YFP)209-216. 

Several cell culture models have been established to study αSyn oligomerization and αSyn-

mediated toxicity. Over the last years, more and more studies using human induced pluripotent 

stem cells (iPSCs) have been published217-219, and these models will certainly gain further 

relevance in the future. However, by now, the usage of iPSCs has two important drawbacks 

compared to established cell lines: It is very money- and time-consuming1. 

Cultures of primary midbrain dopaminergic neurons, usually derived from mice or rats, hold 

high potential to study the effect of αSyn aggregation and cytotoxicity220. These primary neurons 

are suited to dissect mechanisms of neurodegeneration including neurite retraction and 

neuronal death. Moreover, they enable the investigation of pharmacological compounds and 

their underlying mechanism(s)1,221. On the other hand, the preparation of primary cultures from 

midbrain dopaminergic neurons requires some experience and is time-consuming. Moreover, 

primary neurons are usually less susceptible to transient transfection mechanisms1. 

Furthermore, breeding and maintenance of transgenic rodents requires man power and the 

existence of an animal facility. Finally, the use of rodent dopaminergic neurons might be limited 

since humans are the only known species which is affected by the development of PD32,222.  

Several established human cell lines have been used to unravel mechanisms of αSyn-mediated 

neurodegeneration. In contrast to iPSCs or cultures from primary dopaminergic neurons, 

established cell lines tend to acquire some artificial features over time. HEK293 cells or H4 cells, 
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e.g., show multiplication of chromosomes. Thus, their phenotype might be more different from 

human dopaminergic neurons compared to iPSCs or primary dopaminergic neurons, although 

the existence of more than one cell type in primary cultures can often not be excluded. On the 

other hand, established cell lines have several advantages compared to iPSCs and primary 

cultures: Most of them, such as HEK293 cells and H4 cells, are quite easy in handling and 

susceptible to transient transfection. Furthermore, the cell populations are very comparable 

between different experiments. 

The commonly used HEK293 cells were derived from human embryonic kidney1,223 and have 

been used extensively to study pathological mechanisms of PD1,224-228. However, a drawback of 

HEK293 cells is the lack of a neuronal phenotype. 

Another group of established cell lines with neuronal background has been derived from brain 

tumors. SH-SY5Y cells, for example, have been derived from human neuroblastoma cells and are 

commonly used to investigate neurodegenerative mechanisms1 including the overexpression of 

αSyn1,229 and transmembrane seeding of αSyn aggregation230. However, SH-SY5Y cells are hard 

to differentiate into a postmitotic mature dopaminergic state1. NT2 and hNT are human cell lines 

that have been derived from embryonic teratocarcinomas and can be differentiated to a 

postmitotic neuronal phenotype231,232. H4 cells, derived from human neuroglioma represent 

another commonly used cell line for the investigation of αSyn oligomerization and related 

toxicity210,233,234. Based on H4 cells, Outeiro et al. established a cell line which stably 

overexpresses variants of αSyn213. A drawback of all of these tumor-derived cell lines is that they 

show only a moderate neuronal phenotype1.  

Since brain cells physiologically show very low proliferation rates, they are naturally more 

difficult to cultivate than established cell lines. This problem can be overcome by Lund human 

mesencephalic (LUHMES) cells. This cell line was derived from 8-week-old human fetal ventral 

mesencephalic cells and immortalized by tetracycline-regulated expression of v-myc using the 

LINXv-myc retroviral vector235. In the absence of tetracycline, expression of v-myc from a 

minimal human cytomegalovirus (CMV) promoter is enhanced by a tetracycline transactivator 

resulting in continuous proliferation. Upon addition of tetracycline, the tetracycline 

transactivator is inactivated and expression of v-myc is turned off. Additional incubation with 

glial cell line-derived neurotrophic factor (GDNF) and cyclic adenosine monophosphate (cAMP) 

induces differentiation to a neuronal phenotype within five days236. Once differentiated, 

LUHMES cells show features of dopaminergic neurons: They release dopamine and show 

neuronal electric properties237,238. LUHMES cells have been used to study dopamine-related cell 

death mechanisms236,238,239 but also other features of neurodegeneration239,240 and seem to 

become more and more popular in PD research. Moreover, the cultivation of LUHMES cells does 
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not require addition of components obtained from animals (like fetal bovine serum, FBS). Thus, 

using LUHMES cells is in line with the development of alternative systems to reduce the amount 

of sacrificed animals in science. Unfortunately, transient transfection is very inefficient in 

LUHMES cells. Thus, for efficient transfection a lentiviral approach is necessary1. 

So far, formation, modulation, and toxicity of αSyn oligomers have mainly been studied in two 

kinds of cell models: First, cell models in which the overexpression of αSyn is induced by 

transient transfection241 or viral transduction242. Second, cell models in which the gene coding 

for αSyn is stably inserted and constitutively overexpressed243. Both strategies hold several 

drawbacks: (1) When using transient transfection or viral transduction, the fraction of transgene 

expressing cells and the strength of overexpression are subject to great inter-experimental 

variation. Moreover, individual experiments are rather time-consuming and expensive. 

Additionally, the initiation of expression cannot be defined accurately, and for several cells (such 

as primary cells and LUHMES cells) transient transfection is very inefficient. (2) Constitutive 

overexpression of αSyn enables the investigation of αSyn oligomers only in steady state but not 

the investigation of de novo oligomer formation. This hinders the identification of compounds 

which prevent αSyn aggregation but are not capable of degrading preformed αSyn aggregates. 

Moreover, the constitutive overexpression of αSyn and the resulting αSyn-mediated toxicity may 

result in selection for cells that are resistant to αSyn-mediated toxicity. This might interfere with 

the investigation of potential toxic effects. For these reasons, a system for the fast and easy 

creation of stable and inducible αSyn overexpression that is applicable to a variety of cell lines to 

investigate αSyn-mediated effects in different synucleinopathies would be desirable.  

 

2.6 Aim of this Study and Project Strategy 

The aim of this study was to develop a system for the fast and easy creation of cell lines which 

inducibly overexpress variants of αSyn upon incubation with certain chemical agonists that can 

be applied to a variety of established and primary cell lines for the investigation of aggregation, 

modulation, and toxicity of αSyn oligomers with regard to PD and other synucleinopathies.  

We decided to overexpress different kinds of αSyn constructs based on untagged human 

wildtype αSyn-140 which is the most abundant splice-variant of αSyn in humans (Figure 2-3 A). 

Since this variant can only be visualized indirectly, we also used a construct where αSyn-140 is 

coupled to the fluorescence protein Venus for direct visualization (Figure 2-3 B). Venus is a YFP-

variant and holds the advantage over GFP244-248 that it shows improved maturation (especially at 

37°C) and brightness, and is less sensitive towards environmental influences249,250. Since 
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fluorescence tags might interfere with the protein function, results obtained with this kind of 

construct have to be controlled carefully. Moreover, we used a bimolecular fluorescence 

complementation (BiFC) system in order to study the aggregation of αSyn (Figure 2-3 C). BiFC 

assays have widely been used to study protein-protein interactions251 and have been established 

for studying αSyn interaction by Outeiro et al.213. In short, the protein of interest (here: αSyn) is 

coupled to the N-terminal or C-terminal part of a fluorescence protein (here: Venus), 

respectively. Each construct alone does not show any fluorescence signal. Upon interaction of 

two suited αSyn proteins the N-terminal and C-terminal part of Venus are brought into close 

proximity. This results in complementation of these fragments and a fluorescence signal can be 

detected. Thus, the BiFC assay enables the detection of αSyn oligomers without background 

signals from monomeric αSyn. Moreover, if we assume that the complementation of N- and C-

terminal Venus is a statistic event, the fluorescence intensity should be directly proportional to 

the extent of aggregation. This allows a fast and easy readout for high-throughput screening 

assays for anti-aggregative compounds. On the other hand, it has been described that the 

complementation of fluorescence proteins might stabilize pre-existing protein-protein 

interactions213. Moreover, the signal-to-noise ratio is a common problem in BiFC systems which 

is difficult to control for251. Additionally, we planned to establish cell lines that overexpress 

Venus alone as a control. To be able to estimate the fraction of transduced cells we also 

established cell lines which inducibly overexpress untagged αSyn and constitutively overexpress 

mCherry-NLS, a fluorescence protein which is coupled to a nucleotide localization sequence. In 

this case, all cells that took up the αSyn construct will show a fluorescence signal with an 

emission maximum of 610 nm in the nucleus248. 

Inducible expression in cell lines is often achieved using Tet-On or Tet-Off systems252,253. Since 

differentiation of LUHMES cells is mediated by a Tet-Off system, we decided to apply induction 

systems which act independently of tetracycline and followed two different strategies: 

First, we used a modified GAL4-UAS system254, GAL4_EcR-UAS (GE), which has been established 

in zebrafish by Esengil et al.255 and has been optimized for cell culture application by Peer-

Hendrik Kuhn (unpublished) (Figure 2-3 D-E). In this system, the DNA-binding and 

homodimerization regions of GAL4 (a yeast transcription factor) have been coupled to the 

activation domain of the herpes simplex virus regulatory protein VP16 and the ligand binding 

domain of the insect-specific ecdysone receptor from Bombyx mori (GAL4_EcR). There are no 

known vertebrate orthologues of EcR, and EcR agonists have no known effect in vertebrates255-

258. The GAL4_EcR protein is constitutively expressed from a human ubiquitin-C promoter (Ubi), 

while the gene of interest (GOI) is located downstream of an upstream activation sequence 

(UAS) and requires binding of GAL4 to the UAS in order to be transcribed from a minimal E1b 
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promoter. In the absence of an ecdysone agonist, binding of GAL4_EcR to the upstream 

activation sequence (UAS) is prevented by unclear mechanisms255. Thus, transcription of the GOI 

does not take place (Figure 2-3 D). The interaction of an ecdysone agonist, such as tebufenozide, 

with the EcR induces binding of GAL4_EcR to the UAS. As a consequence, transcription of the GOI 

is induced, resulting in its expression and production of the protein of interest (POI) (Figure 

2-3 E). 

Second, we also established viruses for inducible expression using the Cre_ERT2-loxP (CET2) 

system259-261. Here, Cre recombinase is coupled to the modified estrogen receptor ERT2, which 

shows higher affinity for 4-OH-tamoxifen over estrogen compared to wildtype (wt) ER260. The 

Cre_ERT2 protein is constitutively expressed from a human ubiquitin-C promoter. The GOI is 

located downstream of a constitutively active human phosphoglycerol kinase (hPGK) promoter 

and a floxed puromycin resistence gene (i.e., it is flanked by two loxP sites). In the absence of 

tamoxifen, Cre cannot interact with the loxP sites. Thus, translation of the mRNA stops at the 

termination codon in puromycin and the GOI is not expressed (Figure 2-3 F). Upon binding of 

4-OH-tamoxifen to ERT2, Cre will interact with the loxP sites and excise the floxed puromycin 

gene, leading to expression of the GOI (Figure 2-3 G).  

In order to insert the required machineries for inducible expression we used lentiviruses. It has 

been shown that expression rates are more stable when using lentiviruses compared to 

transient transfection and antibiotic selection262. The transduction of cells with lentivirus 

particles leads to the stable insertion of the expression constructs into the host genome. To 

insert all components of the induction system into the host genome the cells have to be 

transduced with two different kinds of viruses: a driver virus carrying the GAL4_EcR system 

(GAL4 driver) or the Cre_ERT2 system (Cre driver) and a corresponding receiver virus carrying 

the UAS-GOI system (UAS-GOI receiver) or the loxP-GOI system (loxP-GOI receiver).  

For the BiFC system, an equimolar expression rate of the two hemi-Venus constructs (V1S and 

SV2) would be desirable. Expressing two GOIs from one promoter via an IRES sequence holds 

the disadvantage that expression of the GOI downstream of the IRES is usually lower than 

expression of the GOI upstream of the IRES sequence263. To overcome this problem, we decided 

to couple the hemi-Venus constructs by a “self-cleaving” P2A sequence derived from porcine 

teschovirus-1. Several 2A sequences have been described of which the P2A sequence showed the 

highest “cleavage” efficiency in a variety of model system264-266. Separation of transgenes coupled 

via 2A sequences occurs on the level of translation due to ribosomal skipping of a peptide 

bond267. In contrast to IRES sequences, 2A sequences are shorter and show stoichiometric 

expression of multiple proteins264.  
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In summary, we here present a valuable system for the fast and easy creation of cell lines with 

inducible αSyn overexpression relying on the CET2 system or the GE system. The system applies a 

strategy based on lentiviral transduction to stably integrate the expression machinery of both 

systems into the host genome. Overexpression of αSyn only occurs upon incubation with a 

certain agonist (4-OH-tamoxifen or tebufenozide).  

The system was first established in H4 cells, a human neuroglioma cell line which has become a 

well-established model in research for neurodegenerative diseases. H4 cells are very robust and 

quite easy and cheap in handling, making them a valuable model to establish the above 

described expression systems and for high-throughput screening assays. Since the H4 cell lines 

relying on the GE system (H4_GE cells) showed higher transgene induction than the H4 cell lines 

relying on the CET2 system (H4_CET2 cells), the H4_GE cells were further characterized and the 

GE system was applied for the creation of additional cell lines. 

We show a detailed analysis of the expression characteristics of the tebufenozide-dependent 

transgene expression in H4_GE cells. Using the H4_GE cell model we found that incubation with 

DMSO and ferric iron led to a stronger increase in fluorescence intensity in a bimolecular 

fluorescence complementation (BiFC) model for αSyn aggregation compared to other tri-, bi-, 

and monovalent metal ions. Additionally, incubation with DMSO and FeCl3 increased αSyn 

protein load in all tested αSyn overexpressing H4_GE cells and led to the detection of higher 

molecular αSyn species after sucrose gradient centrifugation. Taken together, these results 

suggest that incubation with DMSO and FeCl3 increased aggregation of αSyn in the H4_GE cell 

model. Furthermore, the strategy for the creation of stable inducible cell lines was not limited to 

H4 cells but was also succesfully applied to LUHMES cells. 
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Figure 2-3: Overview of αSyn constructs and induction systems 

Cell models were generated for the inducible overexpression of different αSyn constructs:  

A) Unmodified human αSyn. 

B) αSyn coupled to the fluorescent protein Venus. 

C) αSyn coupled to the N-terminal part of Venus (V1; 1-157) or the C-terminal part of Venus (V2; 

158-240) for a BiFC assay. 

Inducible overexpression using the GAL4_EcR-UAS (GE) system:  

D) No expression of the GOI in the absence of tebufenozide since binding of GAL4 to the UAS is 

inhibited. 

E) Expression of the GOI is induced upon interaction of tebufenozide with EcR resulting in 

binding of GAL4 to the UAS. 

Inducible overexpression using the Cre_ER
T2

-loxP (CE
T2

) system: 

F) No expression of the GOI in the absence of 4-OH-tamoxifen since binding of Cre recombinase 

to the loxP sites is inhibited and translation is terminated at the stop-codon of puro. 

G) Expression of the GOI is induced upon interaction of 4-OH-tamoxifen with ER
T2

 resulting in 

excision of the floxed puro gene by Cre recombinase.  

Syn: αSyn; V1: N-terminal Venus fragment; V2: C-terminal Venus fragment; Ubi: human ubiquitin-C 

promoter; EcR: ecdysone receptor; UAS: upstream activation sequence; E1b: minimal E1b-promoter; 

GOI: gene of interest; POI: protein of interest; Cre: Cre recombinase; ER
T2

: estrogen receptor, optimized 

for tamoxifen over estrogen; hPGK: human phosphoglycerol kinase promoter; Puro: puromycin 

resistance gene; red triangle: loxP site 
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3 Materials and Methods 

3.1 Creation and Transformation of XL2-Blue Competent E. coli 

In order to obtain competent cells for transformation, 10 ml of antibiotic-free LB medium (5 g/l 

yeast extract (Carl Roth, 2363.1), 10 g/l tryptone/peptone (Carl Roth, 8952.3), 10 g/l NaCl (Carl 

Roth, 3957.1)) were inoculated with 2 µl of XL2-Blue competent cells (kind gift from Klaus 

Förstemann) and incubated in a shaker at 37°C and 225 rpm overnight. 1 ml of the overnight 

culture was then added to 100 ml LB medium and incubated in a shaker at 37°C and 130 rpm 

until it reached an optical density (OD600) of 0.7-0.8. Optical density was measured using a 

photometer (Eppendorf AG, Hamburg). Afterwards the culture was cooled on ice and transferred 

to two 50-ml Falcons and centrifuged at 4°C and 3220 relative centrifugal force (rcf) for 15 min 

(5810 R, Eppendorf, Hamburg). The supernatant was discarded and the pellet was resuspended 

in 25 ml of freshly diluted precooled and sterile filtered 0.1 M CaCl2 solution and incubated on 

ice for 30 min. Afterwards the cells were centrifuged for 15 min at 3,320 rcf and 4°C. The 

supernatant was discarded and the pellet was resuspended in 2.5 ml of precooled 0.1 M CaCl2 

solution supplemented with 10% glycerol. The competent cells were then frozen in liquid 

nitrogen in 100 µl aliquots and stored at -80°C.  

For transformation cells were thawed on ice before 1 to 100 ng of plasmid (but not more than 

10 µl total volume) was added. Cells were incubated on ice for 30 min and afterwards 

heat-shocked for 1 minute at 42°C without shaking in a thermomixer (Eppendorf, 5355000.011). 

After incubating the cells on ice for 3 min, 900 µl of antibiotic-free LB medium was added and 

the mixture was incubated at 37°C and 225 rpm for 1 h in a shaker (CERTOMAT IS, Braun). 10 to 

200 µl were plated on LB-Amp plates (100 µg/ml ampicillin (Carl Roth, K029.2)), LB-Kan plates 

(100 µg/ml kanamycin (Carl Roth, T832.1)), or LB-Spec plates (100 µg/ml spectinomycin 

(Sigma, S4014), respectively.  

 

3.2 Plasmid Cloning 

Plasmids were expanded in XL2-Blue cells and extracted using the NucleoSpin Plasmid Mini kit 

(Macherey-Nagel, 740588.250). Glycerol stocks of transformed XL2-Blue cells were generated 

by mixing 600 µl of cell suspension with 200 µl glycerol (AppliChem, A1123.1000). 

The plasmids and primers used in this work are summarized in Table 3-1 and Table 3-2, 

respectively. 
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The constructs αSyn (S), VenusN-terminal fragment (V1), V1-αSyn (V1S), αSyn-VenusC-terminal fragment 

(SV2), SV2-P2A-sequence-V1S (SV2-P2A-V1S), SV2-P2A-sequence-V1 (SV2-P2A-V1), 

αSyn-Venusfull-length (SV), and Venus (V) (see Figure 2-3 A, B, C) were amplified from plasmids 

#1-#4 (see also Figure 8-1, kind gift from Pamela McLean) using polymerase chain reaction 

(PCR) and primers that carry a suitable restriction site. Plasmids #1-#4 were sequenced using 

primers MB1 and MB2. The different constructs were amplified according to Table 3-3. 

Following PCR amplification, amplificates were separated via agarose gel electrophoresis and 

purified using the NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel, 740609.250). For 

ligation into the desired plasmids, constructs were cut with the corresponding restriction 

enzymes. In order to insert the construct SV2-P2A-V1S, the construct SV2-P2A-V1 was cut with 

the restriction enzymes HindIII and ClaI and the construct P2A-V1S was cut with the restriction 

enzymes ClaI and NotI. Both restricted constructs were ligated simultaneously into the desired 

plasmid. For transient transfection and constitutive expression, constructs were cloned between 

the HindIII and NotI site of the P12-HA-TGFa-FLAG-plasmid (Table 3-1, kind gift from Peer-

Hendrik Kuhn and Stefan Lichtenthaler).  

For the creation of lentiviral expression plasmids, αSyn constructs were first inserted between 

the HindIII and NotI site of the entry vector pCR8/GW/TOPO+pCS2-MCS (Figure 8-2 A, kind gift 

from Peer-Hendrik Kuhn and Stefan Lichtenthaler) and later on transferred to the destination 

vectors using the Gateway® Technology (Table 3-4, see also chapter 3.3). Destination vectors 

F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (db 636, Figure 8-2 B), F2-Delta Zeo-

Kozak-Puro-5XUAS-E1b-(GW)Dest (db 597, Figure 8-2 C), F2-Delta Zeo-Kozak-Hygro-5XUAS-

E1b-(GW)Dest (db #44, Figure 8-2 D), and F2-Delta Zeo-Kozak-Zeo-5XUAS-E1b-(GW)Dest 

(db #45, Figure 8-2 E) were kindly provided by Stefan Lichtenthaler and Peer-Hendrik Kuhn. 

Destination vector F-Delta Zeo-Kozak-mCherry-NLS-5X UAS-E1b-(GW)Dest (db #92, Figure 

8-2 F) was created by amplifying mCherry-NLS from template plasmid #87 (addgene, plasmid 

#39319) using primers 42MB_SalI-mCherry_f and 43MB_NsiI_mCherry_r and subcloning 

between the XhoI and NsiI restriction sites of plasmid #45. 

Point mutations I152L in V1 and L201V in V2 were inserted using Pfu Turbo Cx hotstart DNA 

Polymerase (Agilent Technologies, 600412) in template plasmid #21 with primers 

MB31_V1_I152L_f and MB32_V1_I152L_r and in template plasmid #20 using primers 

MB33_V2_L201V_f and MB34_V2_L201V_r, respectively. After PCR, template plasmids were 

DpnI-digested for 1 h at 37°C followed by inactivation for 10 minutes at 80°C resulting in 

plasmids #63 and #53, respectively. 
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To create plasmid #71, V1SI152L was amplified from template plasmid #63 using primers 

MB24_V1_HindIIIf and MB6_V1S_Not1_r. For plasmid #73, V1I152L+Spacer was amplified from 

template plasmid #63 using primers MB24_V1_HindIIIf and MB39_V1+Sp_Not1_r. For plasmid 

#75, SV2L201V was amplified from template plasmid #53 using primers MB3_SV2_Hind3_f and 

MB25_V2_NotI_r. All constructs were then subcloned between the HindIII and NotI restriction 

sites of plasmid #14. 

The inserts of all newly created plasmids were sequenced (Eurofins Scientific, Luxemburg). For 

sequencing of inserts in plasmids with P12-HA-TGFa-FLAG backbone we used Eurofins standard 

primer T7 (5’-TAATACGACTCACTATAGGG-3’). For sequencing of inserts in plasmids with 

pCR8/GW/TOPO+pCS2-MCS backbone we used primer MB37_pCR8_r or Eurofins standard 

primer M13 uni (-21) (5’-TGTAAAACGACGGCCAGT-3’). For sequencing of inserts in plasmids 

with F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) backbone we used primers 

MB26_691_fw and MB28_636+691_r. For sequencing of inserts in plasmids with F2P-Delta Zeo-

LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) backbone we used primers MB27_636_fw and 

MB28_636+691_r.  

 

3.3 Gateway® Reaction 

In order to transfer the generated constructs into different expression plasmids we used the 

Gateway® Technology268. This technology utilizes the site-specific recombination provided by 

bacteriophage lambda269. Here, the gene of interest (GOI) is cloned between optimized 

attachment (att) sites attL1 and attL2 of the entry clone which serve as binding sites for 

recombination proteins. The destination vector carries a control of cell death B (ccdB) gene 

flanked by an attR1 and attR2 site. In the LR reaction, the recombination of the entry clone and 

the destination vector results in the creation of an expression clone which carries the GOI 

between two attB sites, and a by-product carrying ccdB between attP sites. CcdB is a bacterial 

toxin that targets the GyrA subunit of DNA gyrase270,271 and thus inhibits proliferation of most 

E. coli strains by preventing cleavage of double-stranded DNA. This results in a negative 

selection for bacteria that take up ccdB-containing vectors like unreacted destination vector or 

LR reaction by-product. 
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Table 3-1: List of plasmids 

This table summarizes information on plasmids that have been used in this study. #DB: Database number. 

#DB Insert Backbone 

#1 V1S pCS2 

#2 SV2 pCS2 

#3 SV pCS2 

#4 Venus pCS2 

#11 SV2-P2A-V1S P12-HA-TGFa-FLAG 

#12 SV2-P2A-V1 P12-HA-TGFa-FLAG 

#13 SV P12-HA-TGFa-FLAG 

#14 αSyn P12-HA-TGFa-FLAG 

#15 Venus P12-HA-TGFa-FLAG 

#20 SV2 pCR8/GW/TOPO+pCS2-MCS 

#21 V1S pCR8/GW/TOPO+pCS2-MCS 

#22 V1 pCR8/GW/TOPO+pCS2-MCS 

#23 SV pCR8/GW/TOPO+pCS2-MCS 

#24 αSyn pCR8/GW/TOPO+pCS2-MCS 

#25 Venus pCR8/GW/TOPO+pCS2-MCS 

#32 SV2 F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

#33 V1S F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

#34 V1 F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

#35 SV F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

#36 αSyn F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

#37 Venus F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

#38 SV2 F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) 

#39 V1S F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) 

#40 V1 F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) 

#41 SV F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) 

#42 αSyn F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) 

#43 Venus F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (597) 

#44 ccdB F2-Delta Zeo-Kozak-Hygro-5XUAS-E1b-(GW)Dest  

#45 ccdB F2-Delta Zeo-Kozak-Zeo-5XUAS-E1b-(GW)Dest  

#46 SV2 in 44 F2-Delta Zeo-Kozak-Hygro-5XUAS-E1b-(GW)Dest  

#47 Venus in 44 F2-Delta Zeo-Kozak-Hygro-5XUAS-E1b-(GW)Dest  

#48 SV2 in 45 F2-Delta Zeo-Kozak-Zeo-5XUAS-E1b-(GW)Dest  

#49 Venus in 45 F2-Delta Zeo-Kozak-Zeo-5XUAS-E1b-(GW)Dest  

#53 L201V in MB20 pCR8/GW/TOPO+pCS2-MCS 

#63 I152L in V1S pCR8/GW/TOPO+pCS2-MCS 
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Table 3-1: List of plasmids (continued) 

#DB Insert Backbone 

#71 V1S P12-HA-TGFa-FLAG 

#73 V1+Spacer P12-HA-TGFa-FLAG 

#75 SV2 P12-HA-TGFa-FLAG 

#87 mCherry-NLS pmCherry-C1 

#88 V1_I152L+Spacer P12-HA-TGFa-FLAG 

#90 SV2_L201V P12-HA-TGFa-FLAG 

#91 V1S_I152L P12-HA-TGFa-FLAG 

#92 ccdB F-Delta Zeo-Kozak-mCherry-NLS-5X UAS-E1b-(GW)Dest 

#97 psPAX2  

#98 VSV-G pcDNA3.1  

#99 Zeo-GAL4-VP16 FUGW 

#100 Zeo-GAL4-VP16-EcR FUGW 

#101 F2U-Delta Zeo-iCre FUGW 

#102 F2U-Delta Zeo-iCre_ER
T2

 FUGW 

#120 S F-Delta Zeo-Kozak-mCherry-NLS-5X UAS-E1b-(GW)Dest 

597 ccdB F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest 

636 ccdB F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (636) 

---   Empty pCR8/GW/TOPO+pCS2-MCS 

 

 

For the LR reaction, 75 ng of the entry clone and 0.5 µl of the destination vector (150 ng/µl) were 

incubated in a 1.5-ml microcentrifuge tube. TE buffer, pH 8.0, was added to a total volume of 

4 µl. Afterwards the LR ClonaseTM II enzyme mix (Invitrogen, 11791-020) was thawed on ice, 

briefly vortexed and spun down. 1 µl of LR ClonaseTM II enzyme mix was added to the reaction 

followed by vortexing briefly and short centrifugation. The reaction mixture was incubated at 

25°C for 1 h before 1 µl of Proteinase K solution was added to stop the reaction. Afterwards the 

samples were incubated for 10 min at 37°C. XL2-Blue competent cells were transformed with 2 

µl of the LR reaction mixture, plated on LB plates containing 100 µg/ml ampicillin (Carl Roth, 

K029.2), and incubated at 37°C overnight. A summary of entry clones, destination vectors 

(Figure 8-3 A-D), and resulting plasmids is shown in Table 3-4. 
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Table 3-2: List of primers 

This table summarizes information on primers that have been used for molecular cloning or sequencing 

reactions in this study. 

Primer Name Sequence (5’-3’) 

MB1_BGH_r TAGAAGGCACAGTCGAGG 

MB2_SV40_polyA_r GAAATTTGTGATGCTATTGC 

MB3_SV2_Hind3_f GATCAAGCTTGCCACCATGGATGTATTCATGAAAGG 

MB4_SV2_P2A_r 
CACGTCTCCAGCCTGCTTCAGCAGGCTGAAGTTAGTAGCTCCGCTTCCCTTGTA

CAGCTCGTCCATGC 

MB5_V1S_P2A_f 
GCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGGTGAGCAA

GGGCGAGGAGC 

MB6_V1S_Not1_r GATCGCGGCCGCTTAGGCTTCAGGTTCGTAG 

MB7_Ven1_Not1_r GATCGCGGCCGCCTACTTGTCGGCGGTGATATAGACG 

MB8_SV_Hind3_f GCGCAAGCTTGCCACCATGGATGTATTCATGAAAGG 

MB9_SV_PspOMI_r  GATCGGGCCCTCTACAAATGTGGTATGGCTG 

MB10_V_Hind3_f GATAAAGCTTGCCACCATGGTGAGCAAGGGCGAGG 

MB11_Syn_Not1_r GATCGCGGCCGCCTAGGCTTCAGGTTCGTAGTCTTG 

MB24_V1_HindIIIf GATCAAGCTTGCCACCATGGTGAGCAAGGGCGAGGAGC 

MB25_V2_NotI_r GATCGCGGCCGCTTACTTGTACAGCTCG 

MB26_691_fw CGACTCTAGAGGGTATATAATGG 

MB27_636_fw AGCCCGGTGCCTGAATGCATTAGATAACTTCG 

MB28_636+691_r GGAGCAACATAGTTAAGAATACC 

MB31_V1_I152L_f CCACAACGTCTATCTCACCGCCG 

MB32_V1_I152L_r CGGCGGTGAGATAGACGTTGTGG 

MB33_V2_L201V_f CGACAACCACTACGTGAGCTACC 

MB34_V2_L201V_r GGTAGCTCACGTAGTGGTTGTCG 

MB37_pCR8_r CAGGAAACAGCTATGACC 

MB39_V1+Sp_Not1_r GATCGCGGCCGCCTACTTAAGGGACCCACCACC 

42MB_SalI_mCherry_f GATCGTCGACGCCACCATGGTGAGC 

43MB_NsiI_mCherry_r GATCATGCATTTATCTAGATCCGGTGGATCC 
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Table 3-3: Overview of the amplification of the different constructs 

This table summarizes information on the PCR amplification for the moleclular cloning of the different 

constructs for inducible overexpression. 

Construct Template Forward Primer Reverse Primer 

αSyn Plasmid #3 MB8_SV_Hind3_f MB11_Syn_Not1_r 

V1 Plasmid #1 MB24_V1_HindIIIf MB7_Ven1_Not1_r 

V1+Spacer Plasmid #1 MB24_V1_HindIIIf MB39_V1+Sp_Not1_r 

V1S Plasmid #1 MB24_V1_HindIIIf MB6_V1S_Not1_r 

SV2 Plasmid #2 MB3_SV2_Hind3_f MB25_V2_NotI_r 

SV2-P2A Plasmid #2 MB3_SV2_Hind3_f MB4_SV2_P2A_r 

P2A-V1S Plasmid #1 MB5_V1S_P2A_f MB6_V1S_Not1_r 

P2A-V1 Plasmid #1 MB5_V1S_P2A_f MB7_Ven1_Not1_r 

SV2-P2A-V1 
SV2-P2A 

P2A-V1 
MB3_SV2_Hind3_f MB7_Ven1_Not1_r 

SV Plasmid #3 MB8_SV_Hind3_f MB9_SV_PspOMI_r 

V Plasmid #3 MB10_V_Hind3_f MB9_SV_PspOMI_r 

 

 

3.4 Cell Maintenance 

All cell lines were tested regularly for mycoplasma contamination using PCR Mycoplasma Test 

Kit I/C (PromoKine, PK-CA91-1096) and following the manufacturer’s instructions.  

 

 HEK293T Cells 3.4.1

HEK293T cells (ATCC, CRL-3216, kind gift from Peer-Hendrik Kuhn) were maintained in T75 

flasks (Hartenstein, ZF12) in normal growth medium consisting of DMEM (PAN, P04-03600) 

supplemented with 1% glutamine (PAN, P04-80100) and 10% fetal bovine serum (FBS; Pan, 

P30-3702) and grown at 37°C in a humidified 95% air/5% CO2 atmosphere. Cells were passaged 

twice a week by washing with DPBS (PAN, P04-36500) once and subsequent enzymatic 

dissociation by incubation with 2 ml trypsin-EDTA (Sigma, T3924) for 2 min. Subsequently, 8 ml 

of normal growth medium were added and cells were aspirated and transferred to fresh culture 

vessels using a subcultivation ratio of 1:3 to 1:10.  
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Table 3-4: Overview of plasmids of the Gateway® reaction 

This table summarizes information on plasmids used as entry clone and destination vector and the resulting 

expression clone (viral plasmid). #DB: Database number. 

Entry Clone Destination Vector 
Viral 

Plasmid 

#DB Backbone Construct #DB Backbone #DB 

#20 pCR8/GW/TOPO+pCS2-MCS SV2 636 
F2P-Delta Zeo-LoxP-Ko.Puro-

LoxP-STNST-GW(DEST) 
#32 

#21 pCR8/GW/TOPO+pCS2-MCS V1S 636 
F2P-Delta Zeo-LoxP-Ko.Puro-

LoxP-STNST-GW(DEST) 
#33 

#23 pCR8/GW/TOPO+pCS2-MCS SV 636 
F2P-Delta Zeo-LoxP-Ko.Puro-

LoxP-STNST-GW(DEST) 
#35 

#24 pCR8/GW/TOPO+pCS2-MCS S 636 
F2P-Delta Zeo-LoxP-Ko.Puro-

LoxP-STNST-GW(DEST) 
#36 

#25 pCR8/GW/TOPO+pCS2-MCS V 636 
F2P-Delta Zeo-LoxP-Ko.Puro-

LoxP-STNST-GW(DEST) 
#37 

#20 pCR8/GW/TOPO+pCS2-MCS SV2 597 
F2-Delta Zeo-Kozak-Puro-

5XUAS-E1b-(GW)Dest 
#38 

#21 pCR8/GW/TOPO+pCS2-MCS V1S 597 
F2-Delta Zeo-Kozak-Puro-

5XUAS-E1b-(GW)Dest 
#39 

#23 pCR8/GW/TOPO+pCS2-MCS SV 597 
F2-Delta Zeo-Kozak-Puro-

5XUAS-E1b-(GW)Dest 
#41 

#24 pCR8/GW/TOPO+pCS2-MCS S 597 
F2-Delta Zeo-Kozak-Puro-

5XUAS-E1b-(GW)Dest 
#42 

#25 pCR8/GW/TOPO+pCS2-MCS V 597 
F2-Delta Zeo-Kozak-Puro-

5XUAS-E1b-(GW)Dest 
#43 

#20 pCR8/GW/TOPO+pCS2-MCS SV2 #44 
F2-Delta Zeo-Kozak-Hygro-

5XUAS-E1b-(GW)Dest 
#46 

#25 pCR8/GW/TOPO+pCS2-MCS V #44 
F2-Delta Zeo-Kozak-Hygro-

5XUAS-E1b-(GW)Dest 
#47 

#20 pCR8/GW/TOPO+pCS2-MCS SV2 #45 
F2-Delta Zeo-Kozak-Zeo-5XUAS-

E1b-(GW)Dest 
#48 

#25 pCR8/GW/TOPO+pCS2-MCS V #45 
F2-Delta Zeo-Kozak-Zeo-5XUAS-

E1b-(GW)Dest 
#49 

#24 pCR8/GW/TOPO+pCS2-MCS S #92 
F-Delta Zeo-Kozak-mCherry-

NLS-5X UAS-E1b-(GW)Dest 
#120 
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For long-term storage cells were enzymatically dissociated as described above upon reaching 

80% confluency. After addition of normal growth medium cells were transferred to 15-ml or 

50-ml centrifuge tubes (Hartenstein, ZR97 or ZR82, respectively) and centrifuged at 180 rcf for 

8 min. Medium was discarded and cells were resuspended in cryoprotectant medium consisting 

of 90% normal growth medium and 10% DMSO (Sigma, D2438), transferred to cryogenic vials 

and frozen in a Mr. Frosty Freezing Container (Thermo Scientific, 5100-0001) at -80°C 

overnight. Afterwards, the vials were stored at about -140°C in the gas phase of a liquid nitrogen 

cell tank.  

 

 H4 Cells 3.4.2

H4 human neuroglioma cells (ATCC, HTB-148) were maintained in T75 flasks (Hartenstein, 

ZF12) in normal growth medium consisting of Opti-MEM (Invitrogen, 31985-070) supplemented 

with 10% FBS (Pan, P30-3702) and grown at 37°C in a humidified 95% air/5% CO2 atmosphere. 

Cells were passaged twice to three times a week by washing with DPBS (PAN, P04-36500) once 

and subsequent enzymatic dissociation by incubation with 2 ml trypsin-EDTA (Sigma, T3924) 

for 6 min. Subsequently, 8 ml of normal growth medium were added and cells were aspirated 

and transferred to fresh culture vessels using a subcultivation ratio of 1:3 to 1:10.  

For long-term storage cells were enzymatically dissociated as described above upon reaching 

80% confluency. After addition of normal growth medium cells were transferred to 15-ml or 50-

ml centrifuge tubes (Hartenstein, ZR97 or ZR82, respectively) and centrifuged at 180 rcf for 

8 min. Medium was discarded and cells were resuspended in cryoprotectant medium consisting 

of 95% normal growth medium supplemented with 5% DMSO (Sigma, D2438), transferred to 

cryogenic vials and frozen in a Mr. Frosty Freezing Container (Thermo Scientific, 5100-0001) 

at -80°C overnight. Afterwards the vials were stored at approximately -140°C in the gas phase of 

a liquid nitrogen cell tank.  

 

 LUHMES Cells 3.4.3

The Lund human mesencephalic (LUHMES) cell line is a subclone of the MESC2.10 cell line272. 

This cell line was derived from 8-week-old human fetal ventral mesencephalic cells and 

immortalized by tetracycline-regulated expression of v-myc using the LINXv-myc retroviral 

vector235.  
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3.4.3.1 Maintenance 

LUHMES cells (ATCC, CRL-2927) were maintained in precoated T75 flasks (Hartenstein, ZF12) in 

complete growth medium consisting of DMEM-F12 (Invitrogen, 31985-070) supplemented with 

1% 100-fold N2 supplement (Invitrogen, 17502-048) and human basic fibroblast growth factor 

(bFGF; Invitrogen, 13256-029) and grown at 37°C in a humidified 95% air/5% CO2 atmosphere.  

Flasks were precoated with 7 ml of freshly diluted 50 µg/ml poly-L-ornithin (PLO; Sigma, 

P3655) overnight at room temperature. Afterwards PLO was removed and flasks were rinsed 

three times with sterile double distilled water and allowed to air-dry uncapped standing upright 

in a biological cabinet for 10 min. Subsequently, 5 ml of freshly diluted 1 µg/ml human 

fibronectin (Sigma, F0895) was added and flasks were incubated at 37°C. After 3 h, fibronectin 

solution was removed and discarded and flasks were rinsed three times with sterile double 

distilled water and allowed to air-dry uncapped standing upright in a biological cabinet for 

10 min. Flasks were either used immediately afterwards or stored at 4°C for up to 5 days.  

Cells were passaged every two to three days by washing with DPBS (PAN, P04-36500) once and 

subsequent enzymatic dissociation by incubation with 4 ml of 1x trypsin solution (2 ml 

2x trypsin (137mM NaCl (Carl Roth, 3957.1), 5.4 mM KCl (Sigma, P5405), 6.9 mM NaHCO3 

(Sigma, S-5761), 5.6 mM D-Glucose (Carl Roth, HN06.3), 0.68 mM EDTA (Carl Roth, 8043.1), 

0.5 g/l trypsin (Sigma, T7409)) and 2 ml DPBS (PAN, P04-36500)) for 3 min. Subsequently, 6 ml 

of wash medium (DMEM-F12 (Invitrogen, 31985-070) supplemented with 1% 100-fold 

N2 supplement (Invitrogen, 17502-048)) were added and cells were aspirated and transferred 

to 15-ml or 50-ml centrifuge tubes (Hartenstein, ZR97 or ZR82, respectively) and centrifuged at 

180 rcf for 8 min. Medium was discarded and cells were resuspended in complete growth 

medium and transferred to fresh precoated culture vessels using a subcultivation ratio of 1:3 to 

1:10.  

For long-term storage cells were enzymatically dissociated as described above upon reaching 

80% confluency. After centrifugation medium was discarded and cells were resuspended in 

cryoprotectant medium consisting of 70% complete growth medium, 20% FBS (Pan, P30-3702) 

and 10% DMSO (Sigma, D2438), transferred to cryogenic vials and frozen in Mr. Frosty Freezing 

Containers (Thermo Scientific, 5100-0001) at -80°C overnight. Afterwards, the vials were stored 

at approximately -140°C in the gas phase of a liquid nitrogen cell tank.  
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3.4.3.2 Differentiation 

V-myc expression in LUHMES cells occurs from a minimal human cytomegalovirus (CMV) 

promoter under control of a tetracycline transactivator, resulting in continuous proliferation in 

the absence of tetracycline. Differentiation of LUHMES cells is induced by addition of 

tetracycline, glial cell line-derived neurotrophic factor (GDNF) and N6,2’-O-Dibutyryladenosine 

3’,5’-cyclic monophosphate (db-cAMP)272.  

LUHMES cells were differentiated following the two-step protocol described in Scholz et al.237. 

Cells were enzymatically dissociated and centrifuged as described above and diluted to a 

concentration of 437,000 cells/ml in 8 ml of complete growth medium and transferred to a 

precoated T75 flask. 24 h later, complete growth medium was replaced with differentiation 

medium consisting of DMEM-F12 (Invitrogen, 31985-070) supplemented with 1 µg/ml 

tetracycline (Sigma-Aldrich, T7660), 2 ng/ml recombinant human GDNF (R&D Systems, 

212-GD-010) and 1 mM db-cAMP (Sigma-Aldrich, D0627-250MG). 48 h later, cells were 

enzymatically dissociated by incubation with 4 ml of 2x trypsin solution for 4 min. Subsequently, 

6 ml of wash medium were added and cells were aspirated and transferred to 15-ml or 50-ml 

centrifuge tubes and centrifuged at 180 rcf for 8 min. Medium was discarded and cells were 

resuspended in differentiation medium, diluted to a concentration of 350,000 cells/ml and 

transferred to fresh precoated culture vessels. Differentiation medium was replaced every two 

days. 

Alternatively, LUHMES cells were differentiated following a one-step protocol. For this, LUHMES 

cells were immediately diluted in differentiation medium at a concentration of 300,000 cells/ml 

after enzymatic dissociation and centrifugation. Differentiation medium was replaced every two 

days without additional enzymatic dissociation. 

 

3.5 Virus Production and Purification 

To produce infectious but replication-incompetent virus particles two different packaging 

plasmids encoding for viral enzymes (db #97, Figure 8-3 E) and surface proteins (db #98, Figure 

8-3 F), and expression plasmids were transiently transfected into HEK293T cells (see Table 3-5). 

The virus production protocol described here was provided by Peer-Hendrik Kuhn and has been 

slightly adapted.  

To produce virus in one 10-cm dish, HEK293T cells were maintained in normal growth medium 

and expanded to approximately 1.5 T75 flasks. Cells were then washed once with DPBS and then 
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enzymaticly dissociated by incubation with 2 ml trypsin-EDTA (Sigma, T3924) for 2 min. 

Subsequently, 8 ml of normal growth medium were added and the cells were aspirated and 

transferred to 15-ml or 50-ml centrifuge tubes and centrifuged at 180 rcf for 8 min. Medium was 

discarded, cells were resuspended in room temperature Opti-MEM supplemented with 10% FBS, 

counted using a Neubauer counting chamber (VWR, 631-0926), and diluted to a final 

concentration of 600,000 cells/ml in a volume of 1.5 ml.  

For each 10-cm dish a DNA mix and a Lipofectamine® 2000 mix was generated. The DNA mix 

consisted of 5 µg of psPAX2 (#97), 2.7 µg of VSV-G (#98) and 5.5 to 6.5 µg of the expression 

plasmid (Table 3-5) in 750 µl Opti-MEM. For the Lipofectamine® 2000 mix 750 µl Opti-MEM and 

38 µl of Lipofectamine® 2000 (Invitrogen, 11668-019) were mixed and incubated for 5 min at 

room temperature. Afterwards the Lipofectamine® 2000 mix was mixed with the DNA mix and 

incubated for 15 min at room temperature before the cell mix was added.  

Afterwards, 6 ml of Opti-MEM supplemented with 10% FBS were pipetted into a 10-cm dish 

(Hartenstein, GK03). 3 ml of the DNA Lipofectamine® 2000 cell mixture were added and 

incubated at 37°C in a humidified 95% air/5% CO2 atmosphere. After 24 h the transfection mix 

was carefully replaced with 8.5 ml of normal growth medium. 24 h later, the virus-containing 

medium was carefully aspirated, pipetted into a 50-ml centrifuge tube and stored for 24 h at 4°C 

(1st harvest). The cells in the 10-cm dish were again incubated in normal growth medium for 

another 24 h at 37°C in a humidified 95% air/5% CO2 atmosphere before viruses were 

harvested for a second time and pooled with the 1st harvest.  

To get rid of cellular debris, the 50-ml tube was centrifuged at 3000 rcf for 15 min. Afterwards, 

the supernatant was filtered using a 0.45-µm filter (Carl Roth, KH55.1) to remove further 

cellular particles. Centrifuge polymer tubes (Beckman Coulter, 358126) were thoroughly 

washed with 70% ethanol in a biological cabinet. Ethanol was aspirated and tubes were allowed 

to air-dry for 20 min. Afterwards the virus supernatant was loaded into the tubes and 

centrifuged at 22,000 rpm in an SW28 rotor (Beckman Coulter, 342196) for 2 h at 4°C in an 

ultracentrifuge (Sorvall Discovery 90SE). The supernatant was discarded and the pellet was 

incubated in TBS-5 buffer (50 mM Tris-HCl (pH 7.8), 130 mM NaCl, 10 mM KCl, 5 mM MgCl2, 

10% BSA weight per volume (w/V)), sterile filtered through a 0.22-µm filter (Hartenstein, FI02)) 

overnight. The pellet was carefully resuspended without producing air bubbles, transferred to a 

1.5-ml reaction tube (Hartenstein, RSL1), and centrifuged at 800 rcf for 2 min at 4°C. 

Supernatant was frozen in 20-µl aliquots in 0.5-ml reaction tubes (Hartenstein, RSL0) or PCR 

tubes (Eppendorf, 0030 124359) at -80°C.  
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Table 3-5: List of viruses 

This table summarizes the plasmids used for production of infectious but replication-incompetent viruses. Co-

transfection of HEK293T cells with viruses #97 and #98 and an expression plasmid resulted in production of 

viruses shown in the right column. #DB: Database number. 

Plasmid 

#DB 

Kind of 

Plasmid 
Insert Comment 

Virus 

#DB  

#97 Packaging psPAX2 
Encodes for viral enzymes gag-pol to generate 

lentiviruses 
 

#98 Packaging VSV-G 
Encodes for the envelope glycoprotein VSV-G 

from Vesicular Stomatitis Virus (broad tropism) 
 

#99 Expression Zeo-GAL4-VP16 Constitutive GAL4 driver V99 

#100 Expression Zeo-GAL4-VP16-EcR Inducible GAL4_EcR driver (+tebufenozide) V100 

#101 Expression F2U-Delta Zeo-iCre Constitutive Cre driver V101 

#102 Expression 
F2U-Delta Zeo-

iCre_ER
T2

 
Inducible Cre_ER

T2
 driver (+4-OH-tamoxifen) V102 

#32 Expression SV2 Cre-loxP receiver (puromycin resistance) V32 

#33 Expression V1S Cre-loxP receiver (puromycin resistance) V33 

#34 Expression V1 Cre-loxP receiver (puromycin resistance) V34 

#35 Expression SV Cre-loxP receiver (puromycin resistance) V35 

#36 Expression S Cre-loxP receiver (puromycin resistance) V36 

#37 Expression V Cre-loxP receiver (puromycin resistance) V37 

#38 Expression SV2 GAL4-UAS receiver (puromycin resistance) V38 

#39 Expression V1S GAL4-UAS receiver (puromycin resistance) V39 

#40 Expression V1 GAL4-UAS receiver (puromycin resistance) V40 

#41 Expression SV GAL4-UAS receiver (puromycin resistance) V41 

#42 Expression S GAL4-UAS receiver (puromycin resistance) V42 

#43 Expression V GAL4-UAS receiver (puromycin resistance) V43 

#46 Expression SV2 GAL4-UAS receiver (hygromycin resistance) V46 

#47 Expression V GAL4-UAS receiver (hygromycin resistance) V47 

#48 Expression SV2 GAL4-UAS receiver (zeocin resistance) V48 

#49 Expression V GAL4-UAS receiver (zeocin resistance) V49 

#120 Expression S GAL4-UAS receiver (mCherry-NLS) V120 
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3.6 Transient Transfection of H4 Cells 

In order to transiently transfect H4 cells, cells were enzymatically dissociated as described 

above and seeded at a concentration of 100,000 cells/ml and incubated at 37°C, 5% CO2 for 24 h 

before the transfection mix was added. Per 1 ml cell-containing medium the transfection mix 

consisted of 100 µl serum-free Opti-MEM, 0.5 µg plasmid and X-tremeGENETM HP DNA 

Transfection Reagent (3 µl/µgplasmid; Roche Diagnostics, 06366236001). The transfection mix 

was incubated for 15 to 30 min at room temperature before it was pipetted into the wells. The 

medium was mixed by rocking the plate gently. Afterwards, the cells were incubated at 37°C in a 

humidified 95% air/5% CO2 atmosphere. 24 to 72 h after transfection cells were processed 

according to the following analysis.  

 

3.7 Compound Testing Using Transiently Transfected H4 Cells 

In order to test compounds using transiently transfected H4 cells, cells were seeded at a 

concentration of 100,000 cells/ml and incubated with different compounds at different 

concentrations at a final DMSO concentration of 0.1% or 1% DMSO as a control at 37°C in a 

humidified 95% air/5% CO2 atmosphere. After 24 h, the medium was aspirated, cells were 

carefully washed once with DPBS and fresh normal growth medium was added. Afterwards, the 

cells were transiently transfected as described above and incubated at 37°C in a humidified 95% 

air/5% CO2 atmosphere for 2 h. Then, medium was aspirated, cells were carefully washed once 

with DPBS and fresh normal growth medium containing the corresponding compound or DMSO 

as a control was added. 48 h after transfection, cells were processed according to the following 

analysis. 

 

3.8 Creation of Stable Cell Lines 

 H4 Cells 3.8.1

3.8.1.1 Optimization of the H4 Transduction Protocol 

In order to obtain as many transduced cells as possible we tested the transduction efficiency of 

viruses V99 and V41 (see Table 3-5) using different protocols. For all protocols H4 cells were 

handled as described in chapter 3.4.2.  
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Protocol AH4: 

Virus was diluted 1:200 in cell-containing medium. H4 cells were diluted to a concentration of 

50,000 cells/ml. 2 ml of cell suspension was pipetted into one well of a 6-well plate and 10 µl of 

both V99 and V41 were added. The composition was mixed by rocking the plate gently.  

 

Protocol BH4: 

Virus was diluted 1:50 in cell-containing medium. H4 cells were diluted to a concentration of 

50,000 cells/ml. 2 ml of cell suspension were pipetted into one well of a 6-well plate and 40 µl of 

both V99 and V41 were added. The composition was mixed by rocking the plate gently.  

 

Protocol CH4:  

Virus was diluted 1:12 in cell-containing medium. H4 cells were diluted to a concentration of 

100,000 cells/ml. 200 µl of the cell suspension were mixed with 20 µl V99 and 20 µl V41 in a 

0.5-ml reaction tube and incubated for 5 min at room temperature. Afterwards, the mixture was 

seeded into a 24-well plate.  

 

Protocol DH4: 

Virus was diluted 1:3.5 in cell-containing medium. H4 cells were diluted to a concentration of 

50,000 cells/ml. 50 µl of the cell suspension were mixed with 20 µl V41 in a 0.5-ml reaction tube 

and incubated for 5 min at room temperature. Afterwards the mixture was seeded into a 96-well 

plate. 72 h after transduction virus-containing medium was aspirated and replaced with normal 

growth medium. Cells were expanded to 6-well plates and then expanded to T75 flasks when 

they reached 80% confluency and maintained as described above. After two weeks, the obtained 

H4_41 cells were diluted to a concentration of 50,000 cells/ml. 50 µl of the cell suspension were 

mixed with 20 µl V99 in a 0.5-ml reaction tube and incubated for 5 min at room temperature. 

Afterwards the mixture was seeded into a 96-well plate and the cells were expanded as 

described in chapter 3.4.2. 

For all protocols, cell nuclei were stained with 10 µg/ml DAPI (Carl Roth, 6335.2) or 0.5 µg/ml 

Hoechst33342 (Invitrogen, H1399) 72 h after transduction and pictures were taken using a 

fluorescence microscope (Hundt, Wetzlar or Olympus, Hamburg). The fraction of fluorescing 
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cells was determined manually using the ImageJ software. Alternatively, virus-containing 

medium was aspirated and replaced with normal growth medium. Cells were expanded to T25 

flasks and then expanded to T75 flasks when they reached 80% confluency and maintained as 

described in chapter 3.4.2.  

 

3.8.1.2 Creation of Stable Inducible H4 Cell Lines 

H4 cells were diluted to a concentration of 50,000 cells/ml. In order to achieve inducible 

expression based on the GAL4_EcR-UAS (GE) system, 50 µl of the cell suspension were mixed 

with 20 µl of V39, V41, V42, V43, or V120 in a 0.5-ml reaction tube, respectively. In order to 

achieve inducible expression based on the Cre_ERT2-loxP system, 50 µl of the cell suspension 

were mixed with 20 µl of V32, V35, V36, or V37 in a 0.5-ml reaction tube, respectively. The 

mixture was incubated for 5 min at room temperature. Afterwards, the mixture was seeded into 

a 96-well plate. 72 h after transduction, virus-containing medium was aspirated and replaced 

with normal growth medium. The created cell lines H4_39, H4_41, H4_42, H4_43, H4_120, H4_32, 

H4_35, H4_36, and H4_37 were expanded and maintained as described in chapter 3.4.2.  

All following viral transductions were performed according to the transduction protocol 

described above. The created cell lines H4_39 and H4_32 were transduced with V46 or V33, 

respectively, resulting in cell lines H4_39-46 and H4_32-33. The cell lines H4_41, H4_42, H4_43, 

H4_120 and H4_39-46 were transduced with V100, resulting in cell lines H4_100-41, H4_100-42, 

H4_100-43, H4_100-120 and H4_100-39-46. The cell lines H4_32-33, H4_35, H4_36, and H4_37 

were transduced with V102, resulting in cell lines H4_102-32-33, H4_102-35, H4_102-36, and 

H4_102-37. H4_100-42 was transduced with V42 a second time generating cell line H4_100-422. 

H4_100-39-46 was transduced with V46, generating cell line H4_100-39-462, which was then 

transduced with V39, generating cell line H4_100-392-462. The later on commonly used cell lines 

were renamed according to Table 3-6. 
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Table 3-6: List of H4 cell lines 

This table summarizes the inducible H4 cell lines created in this study. 

Old Name New Name 

H4_100-41 H4_GE-SV 

H4_100-422 H4_GE-S 

H4_100-43 H4_GE-V 

H4_100-120 H4_mC_GE-S 

H4_100-392-462 H4_GE-V1S+SV2 

H4_102-35 H4_CE
T2

-SV 

H4_102-36 H4_ CE
T2

-S 

H4_102-37 H4_ CE
T2

-V 

H4_100-32-33 H4_ CE
T2

-V1S+SV2 

 

 

 LUHMES Cells 3.8.2

3.8.2.1 Optimization of the LUHMES Transduction Protocol 

In order to obtain as many positively transduced LUHMES cells as possible we tested the 

transduction efficiency of viruses V99 and V43 (see Table 3-5) using different protocols. For all 

protocols LUHMES cells were handled as described in chapter 3.4.3.  

 

Protocol ALUHMES: 

LUHMES cells were diluted to a concentration of 50,000 cells/ml. 2 ml of the cell suspension 

were transferred to one well of a 6-well plate. 20 µl of V43 were added. The composition was 

mixed by rocking the plate gently and incubated at 37°C in a humidified 95% air/5% CO2 

atmosphere. 24 h after transduction, medium was aspirated and replaced by 2 ml complete 

growth medium supplemented with 20 µl of V99. 24 h later, virus medium was discarded and 

the LUHMES cells were passaged into a T75 flask. 72 h later, cells were seeded into 6-well plates 

at a concentration of 50,000 cells/ml.  
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Protocol BLUHMES:  

LUHMES cells were diluted to a concentration of 500,000 cells/ml. 200 µl of the cell suspension 

were mixed with 20 µl V43 in a 0.5-ml reaction tube and incubated for 2 min at room 

temperature. The mixture was transferred to one well of a 6-well plate. 1.8 ml of complete 

growth medium were added and mixed with the cell-virus suspension by rocking the plate 

gently and incubated at 37°C, 5% CO2. 48 h later, virus medium was discarded and the LUHMES 

cells were passaged into a T75 flask. Upon reaching a confluency of 80% the cells were 

transduced with V99 as described above.  

 

Protocol CLUHMES: 

LUHMES cells were diluted to a concentration of 1,000,000 cells/ml. 100 µl of the cell 

suspension were mixed with 20 µl V43 in a 0.5-ml reaction tube and incubated for 5 min at room 

temperature. The mixture was transferred to one well of a 6-well plate. 1.9 ml of complete 

growth medium were added and mixed with the cell-virus suspension by rocking the plate 

gently and incubated at 37°C, 5% CO2. 72 h later, virus medium was discarded and the LUHMES 

cells were passaged into a fresh 6-well plate. Upon reaching a confluency of 80% the cells were 

passaged into a T75 flask. Upon reaching a confluency of 80% the cells were transduced with 

V99 as described above. 72 h later, virus medium was discarded and the LUHMES cells were 

passaged into a T75 flask. Upon reaching a confluency of 80% the cells were seeded into 6 well 

plates at a concentration of 50,000 cells/ml.  

For all protocols, cell nuclei were stained with Hoechst33342 (0.5 µg/ml; Invitrogen, H1399) 

72 h later, and pictures were taken using a fluorescence microscope (Olympus, Hamburg). The 

fraction of fluorescing cells was determined manually using the ImageJ software. 

 

3.8.2.2 Creation of Stable Inducible LUHMES Cell Lines 

LUHMES cells were diluted to a concentration of 1,000,000 cells/ml. 100 µl of the cell 

suspension were mixed with 20 µl of V100 in a 0.5-ml reaction tube and incubated for 5 min at 

room temperature. The mixture was pipetted into one well of a 6-well plate. 1.9 ml of complete 

growth medium were added and mixed with the cell-virus suspension by rocking the  

plate gently and incubated at 37°C in a humidified 95% air/5% CO2 atmosphere for 2 h. 
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Table 3-7: List of LUHMES cell lines 

This table summarizes the inducible LUHMES cell lines created in this study. 

Old Name New Name 

LUHMES_1004-414 LUHMES_GE-SV 

LUHMES_1004-424 LUHMES_GE-S 

LUHMES_1004-434 LUHMES_GE-V 

LUHMES_1004-1204 LUHMES_mC_GE-S 

LUHMES_1004-394-464 LUHMES_GE-V1S+SV2 

 

 

72 h later, virus medium was discarded and the generated LUHMES_100 cells were passaged 

into a T75 flask. Cells were maintained until they reached a confluency of 80%. Transduction 

was repeated for three times.  

Afterwards the generated LUHMES_1004 cells were transduced four times as described above 

with V39, V41, V42, V43, or V120, respectively. LUHMES_1004-394 cells were then transduced 

four times as described above with V46, generating cell line LUHMES_1004-394-464. The 

generated cell lines were renamed according to Table 3-7. 

 

3.9 Induction of Transgene Expression 

Tebufenozide (Santa Cruz, sc-280110) was diluted in DMSO to a final concentration of 100 mM. 

Based on this solution, 1,000-fold stock solutions were made with concentrations ranging from 

100 nM to 100 mM. To induce transgene expression, cells were incubated with 100 pM to 

100 µM tebufenozide and a final DMSO concentration of 0.1%. 

(z)-4-OH-tamoxifen (Abcam, ab141943) was diluted in DMSO to a final concentration of 

100 mM. Based on this solution, 1,000-fold stock solutions were created with concentrations 

ranging from 100 nM to 100 mM. To induce transgene expression, cells were incubated with 

100 pM to 100 µM 4-OH-tamoxifen and a final DMSO concentration of 0.1%. 
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3.10 BCA Assay 

To determine the protein concentrations of the cell lysates for western blot, sucrose gradient, or 

fluorescence correlation spectroscopy we used a BCA assay. In this assay, the protein solution 

was incubated with a mixture of bicinchoninic acid and copper(II) sulfate (CuSO2). In the 

presence of protein, Cu2+ is reduced to Cu+ which is subsequently chelated by two molecules of 

bicinchoninic acid. This results in a green to purple color change which is proportional to the 

amount of protein over a broad range of protein concentrations and can be quantified by 

measuring absorbance at ~560 nm273. 

In order to perform this assay, the cell lysates were diluted to an expected concentration of 0.2 

to 1 mg/ml in 25 µl and transferred into the wells of a 96-well plate in quadruplicates. 

Bicinchoninic acid solution (BCA; Sigma, B9643) and CuSO2 (Sigma, C2284) were mixed 50:1 

and 200 µl of the BCA/CuSO2 solution were pipetted to each well. 

For the calibration curve, bovine serum albumin (BSA, 1 mg/ml) was diluted in lysis buffer to 

concentrations of 0.8 mg/ml, 0.6 mg/ml, 0.4 mg/ml, 0.2 mg/ml, and 0 mg/ml in duplicates in a 

96-well plate with a final volume of 25 µl each.  

The plate was then incubated at 37°C for 30 min. Subsequently, absorbance at 560 nm was 

analyzed using a FLUOStar OPTIMA Microplate Reader (BMG Labtech). Protein concentration 

was determined in reference to the fitted standard curve using the provided software (BMG 

Labtech). 
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3.11 Western Blot 

 Cell Lysis for Western Blot 3.11.1

Cells were maintained, enzymatically dissociated and centrifuged as described in chapter 3.4. 

Afterwards the cells were resuspended in 1 ml of precooled DPBS (4°C) and transferred to a 

1.5-ml reaction tube. Cells were centrifuged at 4°C and 16,100 rcf for 10 min (Eppendorf 

centrifuge 5415 R). The supernatant was discarded and cell pellets were resuspended in 40-

80 µl precooled (4°C) lysis buffer (25 mM Tris, 50 mM NaCl, 0.5% Na-deoxycholate, 0.5% Triton 

X-100, pH=8.0; prior to use, protease inhibitor (Roche Applied Science, 04693124001) was 

added) per 1,000,000 cells. Cells were incubated at 4°C and 1,000 rpm on a Thermomixer 

Comfort (Eppendorf, Hamburg) for 30 min and afterwards centrifuged at 4°C and 16,100 rcf for 

10 min. Supernatant was transferred to a precooled 1.5-ml Protein LoBind reaction tube (VWR, 

525-0133) and protein concentration was determined by BCA assay.  

 

 Preparation of the Polyacrylamide Gels 3.11.2

15% polyacrylamide separating gels were prepared by mixing 1.875 ml Lower Tris 4x 

(181.7 mg/ml Tris Base (Carl Roth, 4855.2), 0.4% sodium dodecyl sulfate (SDS, Carl Roth, 

CN30.3), pH 8.8), 1.8 ml H2O, and 3.75 ml Rotiphorese® Gel 30 (Carl Roth, 3029.1). 6.25 µl 

tetramethylethylenediamine (TEMED) (Carl Roth, 2367.3) and 62.5 µl 10% ammonium 

persulfate (APS) (Carl Roth, 9592.2) were added and all components were mixed by inverting 

the 50-ml tube gently. The mixture was cast between clean glass plates for SDS-PAGE. To get rid 

of air bubbles, 400 µl of isopropanol were pipetted on top of the separating gel mixture. 

Subsequently, the gel was incubated for 15 min at room temperature to polymerize. Afterwards, 

isopropanol was discarded and the stacking gel was prepared by mixing 0.85 ml Upper Tris 4x 

(60.6 mg/ml Tris Base, 0.4% SDS, pH 6.6), 2.45 ml H2O, and 462.5 µl Rotiphorese® Gel 30 in a 50-

ml centrifugation tube. 3.75 µl TEMED and 37.5 µl 10% APS were added and all components 

were mixed by inverting the 50-ml tube gently. The mixture was cast on top of the separating gel 

and a gel comb was inserted carefully into the stacking gel without producing air bubbles to 

create 15 pockets. The gel was incubated at 4°C overnight to polymerize.  
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 Sample Preparation 3.11.3

For western blot analysis cell lysates were diluted to a concentration of 2.08 mg/ml. 24 µl of the 

samples were mixed with 6 µl 5x Lämmli sample buffer (10% SDS (w/V), 250 mM Tris (pH 6.8), 

1 mg/ml bromophenol blue, 0.5 M DTT, 50% glycerol (V/V)) and incubated at 95°C for 5-7 min. 

This results in a reduction of preformed disulfide bonds to thiols by DTT and the breakup of 

non-covalent interactions by SDS, thus destroying the proteins’ secondary structure and 

enabling a separation according to molecular weight in the following electrophoresis. 30 µl of 

each sample and Lämmli buffer mixture were pipetted into separate pockets of the 

polyacrylamide gel, so that 50 µg of protein per mixture were used for PAGE. To determine the 

size of occurring western blot bands, 5 µl of PageRulerTM Prestained Protein Ladder (Thermo 

Fisher Scientific, 26616) were pipetted into one pocket of the polyacrylamide gel.  

 

 Electrophoresis 3.11.4

For electrophoresis the gel comb was removed and the gels including glass plates were inserted 

into a PAGE running chamber filled with 1x running buffer (3 mg/ml Tris Base, 14.4 mg/ml 

glycine (Carl Roth, 3790.3), 1 mg/ml SDS). After samples and ladder had been loaded to the gel, a 

voltage of 80 V was applied until samples reached the bottom of the stacking gel (approximately 

30 min). Afterwards a voltage of 120 V was applied until the green marker (10 kDa) of the 

protein ladder reached the bottom of the separating gel (approximately 60 min).  

Afterwards, running buffer was discarded and the gels were removed from the running 

chamber. The glass plates were removed, separating and stacking gel were separated and 

stacking gel was discarded. Until further processing, the separating gel was incubated in blotting 

buffer (3.032 mg/ml Tris Base, 14.4 mg/ml glycine, 20% methanol). 

 

 Blotting 3.11.5

In order to transfer the proteins from the polyacrylamide gel to a polyvinylidene fluoride (PVDF) 

blotting membrane (Millipore, IPVH00010), four pieces of Whatman blotting paper (9 cm x 

7 cm; Hartenstein, GB40) were incubated in blotting buffer until they were fully soaked. For 

activation, the PVDF membrane (9 cm x 7 cm) was incubated in methanol (Hartenstein, CM20) 

for 5 min at RT. Two Whatman blotting papers were put into a blotting chamber on top of each 

other and the PVDF membrane was carefully put on top without inclusion of air bubbles. The 
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separating gel was carefully put on top of the membrane without inclusion of any air bubbles. 

Two Whatman papers were put on top, and the whole “sandwich” was carefully compressed to 

ensure close contact between all parts of it. To transfer proteins from the polyacrylamide gel to 

the PVDF membrane, a current of 50 mA per gel was applied for 2 h. Afterwards, the membrane 

was subjected to labeling with Ponceau S solution or antibody detection.  

 

 Ponceau S Staining 3.11.6

For Ponceau S staining the membrane was incubated in Ponceau S solution (Carl Roth, 5938.1) 

for 2-3 min. Afterwards Ponceau S solution was removed and the membrane was washed with 

desalted water until protein bands appeared with a good signal-to-noise ratio.  

 

 Antibody Labeling 3.11.7

After blotting, the membranes were blocked in 5% milk (AppliChem, A0830) in TBS-T (0.01 M 

Tris-HCl (VWR, 1.08219.1000), 0.15 M NaCl, 0.2% Tween® 20 (AppliChem, A1389)) for 1 h. 

Afterwards, the membranes were incubated overnight with primary antibodies (anti-αSyn 

(15G7274, 4B12 (monoclonal; Hiss, SIG-39730-200)), anti-phospho-αSyn(pSyn; Abcam, 

ab59264), anti-GFP (Abcam, Ab290), anti-GAPDH (Abcam, ab9485), anti-tubulin (Sigma, T4026), 

anti-actin (Sigma, A2066)) diluted in 5% milk in TBS-T supplemented with 0.02% NaN3 

according to Table 3-8.  

After washing the membranes four times with TBS-T for 5 min, they were incubated with a 

secondary antibody (rabbit-anti-rat IgG (H&L) (alkaline phosphatase (AP)-conjugated) (Biomol 

GmbH, 712-405-002), goat-anti-rabbit IgG (AP-conjugated) (JacksonImmoResearch, 111-055-

003), goat-anti-mouse IgG (AP-conjugated) (Cell Signaling Technology, 7056)), goat-anti-rabbit 

(horseradish peroxidase (HRP)-conjugated) (Cell Signaling Technology, 7074), horse-anti-

mouse (HRP-conjugated) (Cell Signaling Technology, 7076)) diluted in 5% milk in TBS-T 

according to Table 3-8 for 1 h. After washing the membranes four times with TBS-T for 5 min 

membranes were prepared for signal detection. 
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Table 3-8: List of antibodies 

This table summarizes the primary and corresponding secondary antibodies used for western blot analyses.  

Primary Antibody Corresponding Secondary Antibody 

Type Dilution Type Dilution 

15G7 (anti-αSyn) 1:2000-1:2500 rabbit-anti-rat (AP-conjugated) 1:2000 

4B12 (anti-αSyn) 1:1000-1:5000 
goat-anti-mouse (AP-conjugated) 

horse-anti-mouse (HRP-conjugated) 

1:5000 

1:5000 

pSyn (anti-phospho-αSyn) 1:1000 
goat-anti-rabbit (AP-conjugated) 

goat-anti-rabbit (HRP-conjugated) 

1:5000 

1:5000 

anti-GFP 1:10000 
goat-anti-rabbit (AP-conjugated) 

goat-anti-rabbit (HRP-conjugated) 

1:5000 

1:5000 

anti-GAPDH 1:3000 
goat-anti-rabbit (AP-conjugated) 

goat-anti-rabbit (HRP-conjugated) 

1:5000 

1:5000 

anti-β-tubulin 1:500 
goat-anti-mouse (AP-conjugated) 

horse-anti-mouse (HRP-conjugated) 

1:5000 

1:5000 

anti-actin 1:200 
goat-anti-rabbit (AP-conjugated) 

goat-anti-rabbit (HRP-conjugated) 

1:5000 

1:5000 
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 Detection 3.11.8

All secondary antibodies used in this study were either conjugated with alkaline phosphatase 

(AP) and signal was detected using CDP-Star (Roche Applied Science, 12041677001), or with 

horseradish peroxidase (HRP) and signal was detected using the ClarityTM Western ECL 

Substrate (BioRad, 1705060). The CDP-Star solution contains dioxetane which is 

dephosphorylated by AP to metastable dioxetane phenolate anion which emits light at a 

wavelength of 466 nm upon its decomposition (see CDP-Star manual for more detailed 

information). The HRP catalyses the oxidation of luminol 3-aminophtalate dianion which is 

accompanied by light emission. The ECL substrate includes an enhancer which increases 

longevity and intensity of the luminescence reaction (see ClarityTM Western ECL Substrate 

Instruction Manual for more detailed information). The chemiluminescence can be detected with 

suitable camera systems. 

For detection of AP-conjugated antibodies, the membranes were washed with AP buffer 

(0.1 M Tris, 0.1 M NaCl, pH 9.5) for 5 min at room temperature. Afterwards the membranes were 

dried with paper towels and the chemiluminescence reaction was started by incubating the 

membranes with 5 drops of CDP-Star (Roche Applied Science, 12041677001) in a plastic cover 

for 2 min. 

For detection of HRP-conjugated antibodies, the membranes were dried using paper towels. Per 

membrane, 500 µl of ClarityTM Western ECL Substrate (Bio-Rad, #1705060) were pipetted onto 

the membrane and incubated in a plastic cover for 2 min before signal detection. 

Chemiluminescence signals were detected with the ChemiLux camera system and the ChemoStar 

software (Intas, Göttingen) 
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3.12 Sucrose Gradient Centrifugation 

 Cell Lysis for Sucrose Gradient Centrifugation 3.12.1

Cells were maintained, enzymatically dissociated and centrifuged as described above. 

Afterwards the cells were resuspended in 1 ml of precooled DPBS (4°C) and transferred to a 

1.5-ml reaction tube. Cells were centrifuged at 4°C and 16,100 rcf for 10 min (Eppendorf 

centrifuge 5415 R). Supernatant was discarded and cell pellets were resuspended in 40 µl SC 

lysis buffer (50 mM Tris (pH 7.4), 175 mM NaCl, 0.1% NP-40, 1x protease inhibitor (Roche 

Applied Science, 04693124001)). The cell suspension was repeatedly pipetted up and down and 

incubated on ice for 15 min. Afterwards, cell suspension was pipetted up and down again and 

incubated on ice for additional 15 min. Next, the suspension was centrifuged at 17,000 rcf and 

4°C for 1 minute. The supernatant was transferred to a precooled 1.5-ml Protein LoBind reaction 

tube (VWR, 525-0133) and protein concentration was determined by BCA assay.  

 

 Sample Preparation and Centrifugation 3.12.2

50-200 µg of total protein were adjusted to a volume of 200 µl in 50 mM Tris (pH 7.4), 175 mM 

NaCl, and 0.1 % NP-40 and used for sucrose gradient centrifugation. Centrifuge tubes were filled 

with buffer A (50 mM Tris-HCl (pH 7.5), 0.1 % NP-40, 0-60 % Sucrose) in layers in the given 

order: 200 µl 60 % sucrose, 400 µl 50 % sucrose, 400 µl 40 % sucrose, 400 µl 30 % sucrose, 

400 µl 20 % sucrose, 400 µl 10 % sucrose, 200 µl sample without sucrose (Figure 3-1). The 

samples were ultracentrifuged at 4°C and 40,000 rpm in an SW60 rotor (Beckmann Coulter) for 

70 min (Sorvall WX Ultra 90, Thermo Scientific). After centrifugation, 12 fractions of 200 µl each 

were collected from top to bottom. 
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Figure 3-1: Schematic representation of sucrose gradient centrifugation 

The sample is loaded on top of layers with increasing sucrose concentration. During ultracentrifugation 

αSyn species migrate according to their density and are finally detected by western blot analysis (figure 

modified from Dr. rer. biol. hum. Felix Schmidt, LMU Munich). 

 

 

 TCA Precipitation 3.12.3

200 µl of the fractions were added to 800 µl of 12.5% trichloroacetic acid (TCA). Afterwards 

samples were inverted and incubated at 20°C overnight. After centrifugation at 20,000 rcf and 

4°C for 15 min, supernatant was discarded and pellets were washed by adding 1 ml acetone 

(-20°C). The samples were inverted repeatedly and centrifuged at 4°C and 20,000 rcf for 15 min. 

Supernatant was discarded and pellet was allowed to dry at room temperature for 5 min. 30 µl 

of 5x Lämmli sample buffer were added and samples were shaken for 10 min at 30°C and 

1,400 rpm. Afterwards, they were incubated at 96°C for 5 min, vortexed briefly and spun down. 

 

 SDS-PAGE and Western Blot 3.12.4

After TCA precipitation samples were subjected to SDS-PAGE and western blot analysis. 12.5% 

polyacrylamide gels were prepared according to chapter 3.11.1. Samples were loaded onto the 

gel with the topmost fraction to the left and the fraction from the bottom to the right (Figure 

3-1). 
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3.13 Confocal Single Particle Spectroscopy 

Single particle spectroscopy represents a powerful tool to characterize αSyn aggregation on 

single particle level using fluorescently labeled αSyn both for in vitro studies and for the 

investigation of cell lysates.  

 

 Measurement Setup 3.13.1

Single particle spectroscopy was performed using an InsightTM Reader (Evotec-Technologies, 

Hamburg). The measurement setup resembles a confocal microscope (Figure 3-2). Laser light is 

emitted by an argon-ion laser at a wavelength of 488 nm and by a helium-neon laser at a 

wavelength of 633 nm. Light of both wavelengths is reflected at the first dichroic mirror and 

focused into the sample volume approximately 150 µm above the glass bottom of a 384-well 

plate (Evotec-Technologies/Perkin Elmer, Hamburg) via a 40x water immersion objective 

(Olympus, Hamburg) with high numerical aperture (1.2). Due to Brownian movement, 

fluorescently labeled particles in the sample solution will pass the laser focus (comprising a 

volume of approximately 1 fl) and emit photons upon excitation by the laser light. Since this 

fluorescence light is emitted in all directions, a part of it passes the objective and follows the way 

of the exciting laser light retrogradely until it passes the first dichroic mirror and is reflected by 

the second dichroic mirror. In order to reduce background signals, the light has to pass a pinhole 

with a diameter of 70 µm. The pinhole is inserted at a position corresponding to the 

intermediate image of a conventional optical microscope. Afterwards, light is separated 

according to its wavelength by the third dichroic mirror. Thus, light of two different wavelengths 

is detected separately by two single-photon avalanche detectors enabling the separate detection 

and analysis of a fluorescence signal in two channels in parallel. As readout, fluctuation of 

fluorescence intensity over time can be observed. Using mathematical evaluation tools, 

information on certain particle characteristics such as concentration, diffusion time and particle 

brightness can be extracted. This allows the conclusion of particle size and thus enables the 

distinction between monomeric and oligomeric protein assemblies. 

Measurements can be performed using a stationary focus or the beam scanner unit in which 

oscillating mirrors move the laser focus horizontally through the sample solution. Scanning the 

sample increases the probability for the detection of rare particles. Thus, while the optimal 

particle concentration for a stationary focus lies in the low nanomolar range (0.1-50 nM), the 

detection limit is decreased to attomolar particle concentrations using the beam scanner275.  
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Figure 3-2: Measurement setup of the Insight
TM

 Reader 

Schematic representation of the Insight
TM

 Reader. Laser light from two lasers (488 nm and 633 nm) is 

focused into the sample volume via dichroic mirrors and a beam scanning unit. Emitted photons pass 

the objective retrogradely and are guided via dichroic mirrors and a pinhole to be detected separately in 

two single-photon avalanche diodes
205,275

. SPD: single photon detector. 

 

 

 Adjustment 3.13.2

Lasers were turned on 30 min before the experiments to ensure constant laser power during the 

measurement. Afterwards, laser power was adjusted to 200 µW for the argon-ion laser 

(488 nm).  

In order to adjust the device for the measurement, the correct positioning of the focus was 

manually controlled by detection of reflections in the glass bottom using a camera. The focus 

volume and shape were monitored by fluorescence intensity and diffusion time of a defined 

calibration solution containing freely diffusing fluorescence dyes (Alexa 488 and Alexa 647) with 
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known properties. Critical parameters for the adjustment of the optimal focus conditions were 

counts per particle (CPP) and diffusion time (Tdiff) of individual fluorescence molecules. CPP 

represents a measure for the brightness of individual fluorescence molecules independent of 

their concentration. Tdiff is a measure for the focus spot size. Positioning of laser focus, pinhole, 

and sample carrier was controlled via the included FCS+Plus_Control software (Evotech, 

Hamburg). 

Each single measurement was performed for 10-15 seconds at room temperature. In scanned 

measurements samples were scanned in a length of 100 µm with a frequency of 50 Hz of the 

mobile focus (beam scanner) and a displacement of 2,000 µm of the sample carrier. 

 

 Data Analysis 3.13.3

The setup described above allows to determine fluctuations of fluorescence intensity over time. 

Using mathematical evaluation tools like fluorescence correlation spectroscopy276-278 (FCS) or 

fluorescence intensity distribution analysis279,280 (FIDA) further information concerning particle 

number, concentration, brightness, and diffusion time can be obtained. Scanning for intensely 

fluorescent targets202,203 (SIFT) represents an approach to maximize sensitivity for slowly 

diffusing bright particle species like aggregates of fluorescently labeled proteins275. 

 

3.13.3.1 Correlation Analysis 

Autocorrelation analysis (Figure 3-3, A) relies on the characterization of the fluctuation of a 

fluorescence signal over time. Thus, this analysis method can only be applied to measurements 

with stationary focus. For autocorrelation the FCSPP Evaluation 2.0 Software (Evotec 

Technologies) was used. For this type of data evaluation, time is subdivided into so called bins of 

usually 50 ns and the fluorescence signal is converted into a binary signal (0 = no fluorescence 

signal detected; 1 = fluorescence signal detected) resulting in a row of numbers 0 and 1. Using 

the autocorrelation function the values for all bins which are separated by defined time gaps of 

multiples of 50 ns (correlation times; 50 ns, 100 ns, 150 ns, …) are multiplied with each other. 

The products for each correlation time are then summed up and normalized against the overall 

signal.  
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Figure 3-3: FCS and FIDA analysis 
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Figure 3-3: FCS and FIDA analysis 

This figure shows the basic principle of fluorescence correlation spectroscopy (FCS) and fluorescence 

intensity distribution analysis (FIDA) in a simplified manner.  

A) For FCS, time is subdivided into bins of typically 50 ns and signals are evaluated in a binary 

manner. The number of events occurring for distinct correlation times can be visualized using 

a correlation histogram. When a fluorescently labeled particle passes the laser focus, this 

results in a burst lasting for several bins (lower panel, left). This leads to higher values of the 

autocorrelation function (visualized by an increased number of events in the correlation 

histogram (lower panel, right)) for shorter correlation times. As a result, the diffusion time of 

the average particle can be deduced from the shape of the autocorrelation function. 

B) For FIDA, time is subdivided into bins of typically 40 µs. The number of photons per bin is 

recorded (middle column) and can be plotted as intensity distribution histogram (right 

column). For monomeric protein solutions (upper row) the number of photons per bin is quite 

constant, resulting in a sharp peak in the intensity distribution histogram. For solutions with 

protein aggregates of variable size the number of photons per bin will be more variable, 

resulting in a broader peak in the intensity distribution histogram. Thus, the shape of the 

intensity distribution histogram provides insight into the aggregate composition of the 

protein solution.  

 

 

Whenever a fluorescent particle passes the focus it creates a fluorescence burst lasting for 

several bins according to its time in focus. This results in highest autocorrelation values for 

neighboring bins (i.e., time gaps which are shorter than the particle’s duration of stay in the 

focus). The autocorrelation function is mathematically fitted in an iterative process from the 

correlation distribution and the fit quality is estimated using Chi-square. The mean diffusion 

time (Tdiff) and thus the particle size of the average particle can finally be deduced from the 

autocorrelation function.  

Different further parameters like mean particle brightness (CPP) and mean number of particles 

in the laser focus (N) can be inferred: The mean number of photons over measurement time 

(given in kHz) is directly deduced from the measurement and accounts for the total fluorescence 

intensity (Itot). CPP is calculated by dividing total fluorescence intensity by the number of 

particles (Itot/N). Using the FCSPP Evaluation Software different species of molecules can also be 

detected using a multi component fit. Here, a relative amount of particles (in %) and a 

corresponding Tdiff are assigned to each component.  

The cross-correlation represents an analysis for measurements with fluorescence signals in 

more than one channel. This enables the quantitative analysis of intermolecular aggregation 

processes. To this end, the detected signal intensity in one channel is correlated to the signal 

intensity in the second channel for all correlation times. Hence, particle species showing 
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coinciding signals in both channels can easily be distinguished from particles showing a 

fluorescence signal in only one channel.  

Given that Itot remains stable over the measurement, parameters such as concentration, diffusion 

time (Tdiff), and specific brightness of the particle species showing fluorescence signals in both 

channels can be determined. A typical experiment for this application is the investigation of 

receptor-ligand binding using different fluorescently labeled binding partners276-278.  

 

3.13.3.2 Fluorescence Intensity Distribution Analysis (FIDA) 

For fluorescence intensity distribution analysis (FIDA, Figure 3-3 B) the number of photons in 

consecutive time intervals of defined length (so called bins, typically 40 µs) is detected and 

statistically analyzed using the Evaluation 2.0 Software (Evotec Technologies). The number of 

detected photons per bin is illustrated in an intensity distribution histogram and can be 

statistically analyzed via a FIDA multi component fit. Here, a model-based fitting procedure is 

applied to infer the brightness (qn [kHz]) and the concentration (cn) of one to four particle types 

from the total fluorescence intensity of the sample (Itot) depending on the expected amount of 

different kinds of particles275.  

Since fluorescence intensity is the primary measure for FIDA, this kind of analysis is 

independent of diffusion time and can thus be applied both for scanned and unscanned 

measurements. Moreover, the measurement of fluorescence intensity renders FIDA more 

sensitive towards small aggregates than FCS (since fluorescence intensity increases 

approximately linearly with the number of fluorescently labeled particles within one aggregate, 

whereas diffusion time only increases with the third root of particle diameter). However, it 

provides no information on diffusion time.  

 

3.13.3.3 Scanning for Intensely Fluorescent Targets (SIFT) 

Using a stationary focus has limitations when it comes to the detection of rare and large (and 

thus slowly diffusing) particles at low concentrations. Since FIDA is independent of measuring 

diffusion time, the measurement efficiency for such solutions can be increased by scanning for 

intensely fluorescent targets (SIFT)202,203 where the focus scans through the solution (Figure 

3-4 A) using the InsightTM Reader’s scanning unit (Figure 3-2)279,280.  
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Thus, aggregation and co-aggregation processes can easily be analyzed qualitatively in color-

coded intensity distribution histograms that can be evaluated further using SIFT analysis via the 

2D-SIFT Software (Evotec Technologies)202 (Figure 3-4 B). For quantification the histogram can 

be subdivided into several segments and a threshold – evaluated in samples without 

aggregates – can be determined to exclude the signal from low intensity bins202,203,205,281. Since 

the signal of equally intensely fluorescing particles is approximately uniformly distributed over 

the same number of bins, the number of “highly intense bins” correlates with the number and 

concentration of intensely fluorescent target molecules.  

All in all, FIDA is highly sensitive for rare, large particles but provides no information on the 

diffusion time since the mean time a particle is located in the focus is no longer determined by 

its properties but by the scanning velocity. 

 

 Cell Lysis for Fluorescence Correlation Spectroscopy 3.13.4

Cells were maintained, enzymatically dissociated and centrifuged as described above. 

Afterwards the cells were resuspended in 1 ml of precooled DPBS (4°C) and transferred to a 

1.5-ml reaction tube. Cells were centrifuged at 4°C and 16,100 rcf for 10 min (Eppendorf 

centrifuge 5415 R) and supernatant was discarded. Afterwards, cell lysis was performed as 

described previously282. Briefly, cell pellets were resuspended in 200 µl of RIPA buffer (50 mM 

Tris-HCl, pH 7.6, 1% NP-40, 150 mM NaCl, 1 mM EDTA) and incubated on ice for 10 min. 

Afterwards, samples were homogenized by pipetting ten times through a yellow needle and 

subsequently centrifuged for 10 min at 16,100 rcf and 4°C. The supernatant was transferred to 

new precooled 1.5-ml reaction tubes and frozen at -80°C.  
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Figure 3-4: SIFT analysis 

The figure shows the main principles of SIFT in a simplified manner. 

A) Using a stationary focus the detection of large particles is limited by their slow Brownian 

movement (left) and can be improved by moving the laser focus through the sample volume 

using the Insight
TM

 Reader’s beam scanning unit (right). 

B) A qualitative analysis of aggregation and co-aggregation can be obtained by using two-

dimensional color-coded histograms. As example, histograms for monomeric proteins (left 

column), monomeric “red” proteins and aggregated “green” proteins (2
nd

 left column), 

aggregated “red” proteins and aggregated “green” proteins (2
nd

 right column), and mixed 

aggregates of “red” and “green” proteins (right column) are shown. 
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3.14 High Content Screening (Opera®) 

 Cell Maintenance for High Content Screening 3.14.1

Cells were maintained as described above. Prior to measurement, nuclei were stained by 

incubating the cells for 15 min at 37°C in a humidified 95% air/5% CO2 atmosphere with Draq5 

(Thermo Fisher Scientific, 62252) diluted 1:1,000 in medium to a final concentration of 5 µM. 

 

 Measurement Setup of the Opera® System 3.14.2

High content screening was performed using the Opera® high-throughput confocal imaging 

platform (PerkinElmer Cellular Technologies GmbH, Hamburg, Germany). In this setup (Figure 

3-5 A), laser light can be emitted at four different wavelengths: 442 nm, 488 nm, 561 nm, and 

640 nm. The light passes the Nipkow unit with the primary dichroic mirror depending on the 

filters and can be focused on the sample carrier using four different objectives: one 20-fold air 

objective (20x_Air_LUCPLFLN_NA=0.45), and three different water immersion objectives: 

20xW_UAPO20xW3/340_NA=0.7, 40xW_PlanAPO_40xWLSM_NA=0.9, and 60xW_UPLAPO_60x_ 

NA=1.2. Fluorescent dyes or proteins in the sample carrier will emit photons upon excitation by 

laser light with corresponding wavelengths. Since this fluorescence light is emitted in all 

directions, a part of it passes the objective and follows the way of the exciting laser light 

retrogradely until it is reflected by the primary dichroic mirror. Depending on its wavelength, 

fluorescence can finally be detected by three different cameras. Camera 3 can detect 

fluorescence excited with 640 nm. Fluorescence excited with all other lasers is mirrored at the 

detection dichroic mirror 2 (“Detection dichro 2”) and subdivided according to its wavelength at 

the detection dichroic mirror (“Detection dichro”). Depending on the filter settings applied, light 

of given wavelengths is finally detected using Camera 1 or Camera 2. 
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Figure 3-5: Measurement setup of the Opera® 
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Figure 3-5: Measurement setup of the Opera® 

Schematic representation of the Opera® high-throughput confocal imaging platform and the Nipkow 

unit.  

A) Laser light from four lasers (442 nm, 488 nm, 561 nm, and 640 nm) can be focused on the 

sample carrier via dichroic mirrors. Emitted photons pass the objective retrogradely and are 

guided via dichroic mirrors and a Nipkow unit to be detected separately using three different 

cameras.  

B) The Nipkow disk inside the Nipkow unit consists of small holes arranged in an arched manner. 

Inside the Nipkow unit laser light is focused by microlenses in a disk with similar arrangement 

through the Nipkow disk and the objective on the sample. Emitted fluorescence is guided 

retrogradely through the Nipkow disk where the single holes decrease background 

fluorescence by excluding signals from above or below the focus plane. Due to the rotation of 

the Nipkow disk an arched image is recorded for each hole. The images of the different holes 

will finally add up to a complete image.  

 

 

In order to reduce background signals, the light in a conventional confocal fluorescence 

microscope would normally pass a pinhole which is inserted at a position corresponding to the 

intermediate image of a conventional optical microscope and would thus exclude signal from 

fluorescent particles below or above the focus plane. In the Opera® high-throughput confocal 

imaging platform the confocal pinholes are replaced by a Nipkow unit (Figure 3-5 B). In this 

setup, the exciting laser light is focused by a microlense array before it passes the primary 

dichroic mirror, the pinhole disk, and the objective to finally excite fluorescent dyes or proteins 

in the sample. The fraction of fluorescence light that is guided retrogradely passes the pinhole 

disk, a spinning disk with holes arranged in an arched profile. The microlenses on the 

microlense array and the pinholes on the pinhole disk are arranged in a similar manner. Due to 

the rotation of the microlense array and the pinhole disk (with a speed of 25 revolutions per 

second) not a single point is detected but an arched area of the image. Due to the arrangement of 

the microlenses and the pinholes and the spinning of those disks, the single arched areas will 

add up to a complete image of the focal area.  

The autofocus function enables a fully automated acquisition of fluorescence images. Here, 

characteristic reflections of the autofocus laser are detected when passing the bottom of the 

multiwell plate. Afterwards, laser light is focused on a defined height above the bottom of the 

multiwell plate depending on the desired image plane.  
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 Adjustment 3.14.3

Prior to each experiment a reference image and a skew analysis have to be applied in order to 

compensate for systemic errors of the optics and the CCD cameras. 

Uneven brightness distribution within an image was compensated for by using the “reference 

image” function. Using the Opera® adjustment plate, an image of free floating fluorescence dye 

was acquired. This should theoretically lead to evenly distributed fluorescence intensity within 

the image field. Practically, we observed higher intensity in the center of the image and 

decreasing intensity towards the edges. This effect is counteracted by the flat-field correction 

algorithm which (simplified) works by multiplying the recorded image with the inverted 

reference image. 

The mechanical alignment of the CCD cameras alone is subject to variations (for example due to 

changes in temperature) and not sufficient to provide an adequate overlay of high resolution 

images obtained from more than one camera. To counteract this phenomenon the “skew 

analysis” function was applied. The Opera® adjustment plate provides wells with beads with 

different diameters for the different objectives: 10 µm for 10x, 5 µm for 20x, and 2.5 µm for 40x 

and 60x. Images of these beads are recorded for all excitation wavelengths and all detection 

cameras. Afterwards, a theoretical optimal overlay of the obtained images is calculated. This 

optimization is later on applied to all images of one measurement. 

In order to set up an automated experiment, the kind of multiwell plate and the required 

objective were defined. Wavelengths and intensities of laser light as well as corresponding filters 

were defined depending on experimental conditions. A “plate layout” (defining the wells of a 

multiwell plate) and a “sublayout” (defining the area insight the wells) where images should be 

acquired were defined.  
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 Data Acquisition 3.14.4

All data from automated fluorescence imaging shown in this work have been acquired using the 

20x air objective. 

 

3.14.4.1 Initial Characterization of Inducible H4 Cells 

For the initial characterization of inducible H4 cells (see chapter 4.2.2) the following 

experimental setup was applied:  

In “Exposure 1” focus height was set to -9.0 µm for the detection of Venus fluorescence in the 

cytoplasm. Venus fluorescence was excited using the 488-nm laser with a laser power of 

7,110 µW. Fluorescence was detected using Camera 1 with an exposure time of 200 ms and 

twofold binning using a 520/35 filter. 

In “Exposure 2” focus height was set to -13.0 µm for the detection of mCherry fluorescence in the 

nucleus. Fluorescence of mCherry was excited using the 561-nm laser with a laser power of 

3,240 µW. Fluorescence was detected using Camera 2 with an exposure time of 7,000 ms and 

twofold binning using a 600/40 filter. 

In “Exposure 3” focus height was set to -13.0 µm for the detection of Draq5 fluorescence in the 

nucleus. Fluorescence of Draq5 was excited using the 640-nm laser with a laser power of 

3,830 µW. Fluorescence was detected using Camera 3 with an exposure time of 400 ms and 

twofold binning using a 690/50 filter. 

For all three exposures, the filter of the primary dichroic mirror was 488/561/640 and the filter 

of the detection dichroic mirror was 568. Imaging was performed sequentially for all wells. 

  



Materials and Methods 

 
 

 
61 

3.14.4.2 Fluorescence Kinetics of H4_GE Cells 

For the characterization of fluorescence kinetics and fluorescence depending on tebufenozide 

concentration in H4_GE cells (see chapter 4.2.2.3) the following experimental setup was applied: 

In “Exposure 1” focus height was set to -8.0 µm for the detection of Venus fluorescence in the 

cytoplasm. Venus fluorescence was excited using the 488-nm laser with a laser power of 

7,110 µW. Fluorescence was detected using Camera 1 with an exposure time of 200 ms and 

twofold binning using a 520/35 filter. 

In “Exposure 2” focus height was set to -12.0 µm for the detection of Draq5 fluorescence in the 

nucleus. Fluorescence of Draq5 was excited using the 640-nm laser with a laser power of 

3,830 µW. Fluorescence was detected using Camera 3 with an exposure time of 120 ms and 

twofold binning using a 690/50 filter. 

For both exposures, the filter of the primary dichroic mirror was 488/640 and the detection 

dichroic mirror was set to empty1. Imaging was performed sequentially for all wells. 

 

3.14.4.3 Evaluation of the Effect of Ferric Iron and DMSO on H4_GE-

V1S+SV2 and H4_GE-V Cells 

In order to evaluate the effect of ferric iron and DMSO on H4_GE-V1S+SV2 and H4_GE-V cells 

(see chapter 4.3) the following experimental setup was applied: 

In “Exposure 1” focus height was set to -8.0 µm for the detection of Venus fluorescence in the 

cytoplasm. Venus fluorescence was excited using the 488-nm laser with a laser power of 

7,110 µW. Fluorescence was detected using Camera 1 with an exposure time of 320 ms and 

twofold binning using a 520/35 filter. 

In “Exposure 2” focus height was set to -12.0 µm for the detection of Draq5 fluorescence in the 

nucleus. Fluorescence of Draq5 was excited using the 640-nm laser with a laser power of 

1,500 µW. Fluorescence was detected using Camera 3 with an exposure time of 40 ms and 

twofold binning using a 600/40 filter. 

For both exposures, the filter of the primary dichroic mirror was 488/640 and the detection 

dichroic mirror was set to empty1. Imaging was performed sequentially for all wells. 
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3.14.4.4 Initial Characterization of LUHMES_GE Cells 

For the initial characterization of LUHMES_GE cells (see chapter 4.4.2.1) the following 

experimental setup was applied: 

In “Exposure 1” focus height was set to -8.0 µm for the detection of Venus fluorescence in the 

cytoplasm. Venus fluorescence was excited using the 488-nm laser with a laser power of 

7,110 µW. Fluorescence was detected using Camera 1 with an exposure time of 360 ms and 

twofold binning using a 520/35 filter. 

In “Exposure 2” focus height was set to -11.0 µm for the detection of Draq5 fluorescence in the 

nucleus. Fluorescence of Draq5 was excited using the 640-nm laser with a laser power of 

3,830 µW. Fluorescence was detected using Camera 3 with an exposure time of 120 ms and 

twofold binning using a 690/50 filter. 

For both exposures, the filter of the primary dichroic mirror was 488/640 and the detection 

dichroic mirror was set to empty1. Imaging was performed sequentially for all wells. 

 

 Data Analysis 3.14.5

An automated image analysis tool was developed  in order to quantify cellular Venus 

fluorescence using the Acapella® software (PerkinElmer Cellular Technologies GmbH).  

Here, nuclei (Figure 3-6 A) and cell boundaries (Figure 3-6 B) were automatically detected based 

on Draq5 signal. Based on this detection, an area for the quantification of mean cellular Venus 

fluorescence intensity was determined (Figure 3-6 C). By setting an arbitrary threshold for the 

mean cellular Venus fluorescence intensity, cells were considered Venus-positive (Figure 3-6 D) 

or Venus-negative (Figure 3-6 E). As a final result, a table with high content data concerning 

different properties was obtained (Figure 3-6 F). 
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Figure 3-6: Opera® data analysis 

Overview of the automated image analysis using the Acapella® software. 

A) Detection of nuclei based on Draq5 fluorescence. 

B) Determination of cell boundaries based on Draq5 fluorescence. 

C) Definition of the area to quantify mean cellular Venus fluorescence. 

D) Cells considered Venus-positive based on an arbitrarily set threshold for mean cellular Venus 

fluorescence. 

E) Cells considered Venus-negative based on an arbitrarily set threshold for mean cellular Venus 

fluorescence. 

F) Final output table showing different sample properties. 
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4 Results 

4.1 Testing the Project Strategy 

 Susceptibility of H4 and LUHMES Cells to Lentiviral 4.1.1

Transduction 

To test if H4 and LUHMES cells are susceptible to viral transduction, we produced a Cre driver 

virus, a GAL4 driver virus, a UAS-Venus receiver virus and a loxP-Venus receiver virus. H4 and 

LUHMES cells were expanded in 6-well plates for 48 h before incubating them in virus 

supernatant of Cre driver and loxP-Venus receiver or GAL4 driver and UAS-Venus receiver, 

respectively, for 5.5 h. Cells were imaged 24 h after addition of virus supernatant. In H4 cells, 

fluorescent cells for both the Cre-loxP system (Figure 4-1 A) and the GAL4-UAS system (Figure 

4-1 B) were observed. For the LUHMES cells we could not detect any fluorescent cell neither for 

the Cre-loxP system (Figure 4-1 C) nor for the GAL4-UAS system (Figure 4-1 D). In contrast, no 

living LUHMES cells were observed at all. We speculated that the reason for this could be the 

presence of fetal bovine serum (FBS) in the virus supernatant. For this reason, we repeated the 

experiment and incubated LUHMES cells with purified GAL4 driver virus and UAS-GFP receiver 

virus (kind gift from P.H. Kuhn) without FBS at a ratio of 1:267. 48 h later, green fluorescent 

LUHMES cells were detectable (Figure 4-1 E). Thus, we concluded that both H4 and LUHMES 

cells were susceptible to lentiviral transduction, although the transduction of LUHMES cells 

required the usage of purified virus. 
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Figure 4-1: Susceptibility of H4 and LUHMES cells to lentiviral transduction 

H4 and LUHMES cells were incubated with virus supernatant (A-D) or purified virus (E) of Cre driver and 

loxP-Venus receiver virus or GAL4 driver and UAS-Venus receiver virus, respectively. For all cells, 

brightfield (upper row) and fluorescence images (lower row) were taken. 

A)  H4 cells showed green fluorescence 24 h after transduction using the Cre-loxP system. 

Scale bar in A is 100 µm and is valid for all panels. 

B)  H4 cells showed green fluorescence 24 h after transduction using the GAL4-UAS system. 

C, D) No viable LUHMES cells after incubation with virus supernatant.  

E) LUHMES cells tolerated incubation with purified virus and displayed green fluorescence 

after 24 h incubation with purified GAL4 driver and UAS-GFP receiver virus.  

 

 

 Incomplete Separation of Hemi-Venus Constructs Using a P2A 4.1.2

Sequence 

In order to ensure equimolar expression in the BiFC system, we decided to couple the hemi-

Venus constructs via a P2A sequence. To test this system, the αSyn-hemi-Venus constructs were 

connected via a P2A sequence (SV2-P2A-V1S). As negative control, SV2 was connected with V1 

(i.e., the N-terminal Venus fragment lacking αSyn) via a P2A sequence (SV2-P2A-V1) (Figure 

4-2 A). HEK293T cells were transiently transfected with both constructs and subjected to 

fluorescence microscopy 48 h after transfection. Surprisingly, we observed green fluorescence in 

both SV2-P2A-V1S-transfected cells and the negative control (Figure 4-2 A). Since no 

background has been described for the αSyn-hemi-GFP system when co-transfecting H4 cells 

with GFPN-terminus-αSyn and GFPC-terminus
213, we speculated that this background signal is due to an 

incomplete separation mediated by the P2A sequence.  
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Figure 4-2: Incomplete separation of hemi-Venus fusion proteins connected by a P2A sequence 

HEK293T cells were transiently transfected with SV2-P2A-V1S or a negative control lacking αSyn linked 

to V1 (SV2-P2A-V1) and subjected to fluorescence microscopy and western blot analysis.  

A) Both cells transfected with SV2-P2A-V1S (positive control) and cells transfected with the 

negative control SV2-P2A-V1 showed green fluorescence. Scale bar: 100 µm. 

B) Western blot of cells transfected with SV2-P2A-V1S shows incomplete separation of the two 

hemi-Venus constructs for two individual transfections (lane 1, 2). Lane 3: control with cells 

transfected with SV2. FL: full-length SV2-P2A-V1S construct.  

 

 

To test this hypothesis, we transfected HEK293T cells with the SV2-P2A-V1S constructs in 

duplicates and harvested the cells 48 h after transfection for western blot analysis. For both 

transfections we observed incomplete separation of the full-length construct (Figure 4-2 B, FL). 

Therefore, we discarded the P2A system and decided to use separate viruses for the 

transduction with the V1S and the SV2 construct, respectively. 

 

 Background Fluorescence upon Transduction of Cells with V1 4.1.3

and SV2  

We wondered if the incomplete P2A sequence mediated separation of the hemi-Venus 

constructs was the only explanation for the background signal in the cells that had been 

transfected with the negative control construct (lacking αSyn linked to V1; Figure 4-2 B). For the 

αSyn-hemi-GFP system no background signal has been described for a negative control where 

H4 cells had been co-transfected with GFPN-terminus-αSyn and GFPC-terminus
213. Still, background 

fluorescence and an improvable signal-to-noise ratio are commonly observed in BiFC systems 

(including systems where a split-Venus strategy is applied)251.  
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Figure 4-3: Background fluorescence due to self-complementation of hemi-Venus fragments  

H4 cells were transduced with constitutively active GAL4 driver virus and UAS-GOI receiver viruses 

carrying V1, V1S, and SV2 as annotated.  

A) Fluorescence images of transduced cells, nuclei were stained with DAPI. Co-transduction with 

both the positive control (V1S and SV2) and the negative control (V1 + SV2) led to green 

fluorescence. No green fluorescent cells were observed upon transduction with SV2, V1, or 

V1S alone.  

B) The fraction of positive cells was approximately 10% for transduction with V1S + SV2, 

approximately 7% for transduction with V1 + SV2, and exactly 0% for transduction with SV2, 

V1, or V1S alone. 

C) Western blot showing expression of the corresponding constructs on protein level; no 

massive increase in signal intensity of V1 (lane 3) compared to V1S (lane 2) was observed.  
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To our surprise, we did not find any literature concerning the signal-to-noise ratio of the αSyn-

split-Venus system to the beginning of this thesis. Since this system is commonly used, we 

considered that the signal-to-noise ratio for the αSyn-split-Venus system would be an important 

issue to investigate.  

To do so, we transduced H4 cells with purified viruses of constitutive GAL4 driver and UAS-V1 

receiver, with UAS-V1S receiver, with UAS-SV2 receiver, with a combination of UAS-V1S receiver 

and UAS-SV2 receiver (positive control), or a combination of UAS-V1 receiver and UAS-SV2 

receiver (negative control), respectively. 48 h after transduction cells were subjected to 

fluorescence microscopy or harvested for western blot analysis.  

In the positive control (V1S + SV2) about 10% of cells showed green fluorescence (Figure 

4-3 A, B, left column). To our surprise, we also observed green fluorescence in the negative 

control (V1 + SV2, Figure 4-3 A, B, second column) with a fraction of about 7% of positive cells. 

As expected, no fluorescent cells were observed when cells were transduced with any of the 

constructs V1, V1S, or SV2 alone (Figure 4-3 A, B, right three columns).  

The observed background signal in the negative control might be explained by a massive 

overexpression of V1 compared to V1S. To exclude this possibility, we performed western blot 

analysis and did not observe a visible increase in signal intensity for V1 compared to V1S (Figure 

4-3 C).  

Thus, we found noteworthy self-complementation of Venus fragments without αSyn 

oligomerization as driving force resulting in background fluorescence in cells transfected with a 

combination of V1 and SV2.  

 

 No Increase in the Signal-to-Noise Ratio upon Insertion of Point 4.1.4

Mutations into V1 and V2 

Background fluorescence and an unfavorable signal-to-noise ratio are common problems in BiFC 

assays251. It has been described that one possibility of increasing the signal-to-noise ratio is the 

insertion of point mutations at the interface of Venus fragment interaction251 since the 

complementation of the two Venus fragments appears to be at least partly driven by 

hydrophobic interactions of the side chains283. Thus, in order to decrease self-association 

tendencies, hydrophobic amino acids could be replaced by neutral amino acids283,284. For Venus, 

several of these point mutations have been described283,285,286. We inserted two such promising 

single amino acid exchanges – I152L283 and L201V285 – in V1 and V2, respectively287.  
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Figure 4-4: No effect of point mutations in V1 and V2 on signal-to-noise ratio 

H4 cells were transiently transfected with V1S + SV2 as positive control or V1 + SV2 as negative control 

with or without the point mutations I152L (in V1) and L201V (in V2) to test their effect on the signal-to-

noise ratio.  

A)  Fluorescence images showing decreased fluorescence intensity for both the I152L and the 

L201V mutation and both the positive and the negative control. Scale bar: 100 µm. 

B)  Quantification of total fluorescence intensity per protein amount using the Insight
TM

 Reader. 

Fluorescence intensity decreased for both I152L and L201V mutation for both the positive and 

the negative control. 

C)  Signal-to-noise ratio was determined from signal intensities shown in B) and not considerably 

affected by insertion of both point mutations.  

Bars in B) and C) show mean of 1-2 independent experiments.  
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H4 cells were transiently transfected with V1S + SV2 as positive control or V1 + SV2 as negative 

control carrying different combinations of V1wt, V1I152L, V2wt, and V2L201V. 48 h after transfection 

cells were subjected to fluorescence microscopy and cell lysates were analyzed using single 

particle spectroscopy. For both the positive and negative control highest total fluorescence 

intensity was observed for wildtype, i.e., the combination V1wt + V2wt (Figure 4-4 A, B, left 

column). Compared to wildtype, total fluorescence intensity was decreased for I152L, i.e., the 

combination V1I152L + V2wt (Figure 4-4 A, B, second column). The fluorescence intensity 

decreased even more for L201V, i.e., the combination V1wt + V2L201V (Figure 4-4 A, B, third 

column), and was lowest for the combination of both mutations, V1I152L + V2L201V (Figure 4-4 A, 

B, right column). Unfortunately, we did not observe a noteworthy increase in signal-to-noise 

ratio due to either of the point mutations or a combination of both of them (Figure 4-4 C).  

Thus, since the mutations did not critically increase the signal-to-noise ratio and since we 

obtained the highest total fluorescence intensity when using the combination V1wt + V2wt, we 

decided to do our further studies using these constructs. 

 

 

 Decreased Fluorescence Intensity in Cells Transfected with V1S 4.1.5

and SV2 upon Incubation with Known Modulators of αSyn 

Aggregation  

The main advantage of the BiFC system is that it allows the real-time observation of αSyn 

oligomerization in living cells. Thus, it might be a useful tool for high-throughput screenings for 

αSyn anti-aggregative compounds. In order to test if the BiFC system – despite the self-

complementation of the Venus fragments in the absence of αSyn – is suitable for such 

experiments, H4 cells were transiently transfected with αSyn BiFC plasmids and treated with 

anle138b, anle138c, baicalein, or DMSO as control. Anle138b, anle138c, and baicalein have been 

shown to inhibit αSyn aggregation in vitro56,145,192,288-290 and anle138b has also shown beneficial 

effects in various animal models of PD192,291,292. 48 h after transfection, cells were subjected to 

fluorescence microscopy, and fluorescence intensity of cell lysates was determined using single 

particle spectroscopy.  

Fluorescence intensity was decreased following treatment with anle138b, anle138c, or baicalein 

compared to DMSO control, suggesting inhibited aggregation of αSyn (Figure 4-5). Moreover, 

fluorescence intensity was increased upon treatment with DMSO compared to the untreated 

control (Figure 4-5). This is well in line with in vitro findings where incubation of recombinant 

αSyn with DMSO increased aggregation145. 
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Figure 4-5: Reduced fluorescence intensity in the BiFC system as result of aggregation inhibitors 
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Figure 4-5: Reduced fluorescence intensity in the BiFC system as result of aggregation inhibitors 

H4 cells were transiently transfected with the BiFC plasmids and left untreated or were incubated with 

DMSO (control), anle138b, anle138c, or baicalein.  

A) Fluorescence images showed a decrease in fluorescence intensity upon treatment with 

anle138b, anle138c, and baicalein compared to treatment with DMSO. Nuclei were stained 

with Hoechst33342. Scale bar in top left panel is 500 µm and valid for images in the first row. 

Scale bar in the left panel of the second row is 100 µm and valid for images in the second and 

third row. 

B) Cell lysates were analyzed using single particle spectroscopy. Total fluorescence intensity was 

increased in DMSO-treated cells compared to untreated cells and decreased upon treatment 

with anle138b, anle138c, or baicalein compared to DMSO-treated cells.  

 

 

Thus, the BiFC system is suitable to detect anti-aggregative compounds (like anle138b, anle138c, 

and baicalein) as well as substances that increase αSyn aggregation (like DMSO) and therefore 

might represent a valuable tool for high-throughput screening assays. Obviously, additional 

experiments will be needed to carefully evaluate hits from primary screens since false positive 

results cannot be excluded. 
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4.2 Establishment and Characterization of Inducibly αSyn 

Overexpressing H4 Cell Lines  

 Transgene Expression in 98% of H4 Cells for at Least 18 Days 4.2.1

after Lentiviral Transduction 

In the next step, we produced and purified the required lentiviruses to prepare stable cell lines. 

In order to obtain as many lentivirally transduced H4 cells as possible, an optimized 

transduction protocol was established. To this end, cells were incubated with viruses that carry 

a constitutive GAL4 driver (V99, see Table 3-5) and the UAS-SV receiver (V41, see Table 3-5) 

following 4 different protocols. 72 h after transduction cells were imaged and Venus-positive 

cells were counted using ImageJ. For protocol A we obtained approximately 20% of Venus-

positive cells (Figure 4-6 A), protocol B led to approximately 39% of Venus-positive cells (Figure 

4-6 A). Using protocol C we counted ~80% of Venus-positive cells (Figure 4-6 A) and using 

protocol D we obtained 98% of Venus-positive cells (Figure 4-6 A, B, C). Following protocol D, 

the fraction of positive cells remained quite stable for at least 18 days after transduction. 23 days 

after transduction we observed a decrease in the fraction of positive cells (95%) which was not 

significant (p=0.36).  

As a consequence, stable cell lines were created following protocol D. This resulted in the 

following cell lines with inducible expression based on the GE system: 

- H4_GE-S: inducible overexpression of αSyn (transduction with V100 and V42) 

- H4_mC_GE-S: constitutive expression of mCherry coupled to a nuclear localization 

sequence (NLS) resulting in red fluorescence in the nucleus of positively transduced cells 

and inducible overexpression of αSyn (transduction with V100 and V120) 

- H4_GE-V: inducible overexpression of Venus (transduction with V100 and V43) 

- H4_GE-SV: inducible overexpression of αSyn coupled to Venus (transduction with V100 

and V41) 

- H4_GE-V1S+SV2: inducible overexpression of the N-terminal part of Venus coupled to 

αSyn (V1S) and of αSyn coupled to the C-terminal part of Venus (SV2) (transduction with 

V100, V39, and V46) 
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Figure 4-6: Stable and highly efficient transduction of H4 cells following protocol D 

H4 cells were transduced with the constitutive GAL4 driver virus (V99) and the UAS-SV receiver virus 

(V41) according to protocols A-D (see chapter 3.8.1.1). 

A) Quantification of the fraction of Venus-positive cells.  

B) Representative images obtained for protocol D. Nuclei were stained with Hoechst33342. Scale 

bar is 100 µm and valid for both panels. 

C) The fraction of positive cells was not significantly changed for 23 h after transduction (Fisher’s 

exact test, n.s.: not significant (i.e. p>0.05)).  

Data points represent mean of 3 to 4 wells; error bars show SEM; at least 300 cells were counted.  

 

 

The following cell lines with inducible expression based on the CET2 system were created: 

- H4_CET2-S: inducible overexpression of αSyn (transduction with V102 and V36) 

- H4_CET2-V: inducible overexpression of Venus (transduction with V102 and V37) 

- H4_CET2-SV: inducible overexpression of αSyn coupled to Venus (transduction with V102 

and V35) 

- H4_CET2-V1S+SV2: inducible overexpression of the N-terminal part of Venus coupled to 

αSyn (V1S) and of αSyn coupled to the C-terminal part of Venus (SV2) (transduction with 

V102, V32, and V33) 

 

Afterwards, cells were expanded and frozen in liquid nitrogen in “STOCK vials”. Afterwards, one 

“STOCK vial” was unfrozen, cells were expanded to five T75 flasks and frozen in ten “WORK 

vials”. For each experiment one “WORK vial” was unfrozen and cells were discarded after the 

experiment in order to obtain reproducible cell populations and to avoid effects of gene 

silencing. 
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 Characterization of the Inducibly αSyn Overexpressing H4 Cell 4.2.2

Lines  

4.2.2.1 Expression of Fluorescence Proteins in H4_mC_GE-S, H4_GE-V, 

H4_GE-SV, and H4_GE-V1S+SV2  

In order to test the generated cell lines, we incubated them with 10 µM tebufenozide or 0.1% 

DMSO as control for 48 h and analyzed the cells using the Opera® reader. To determine the 

factorial increase in transgene expression upon incubation with tebufenozide, the background 

signal from H4 cells was subtracted from the signal of the corresponding inducible H4_GE cells 

after treatment with tebufenozide or DMSO.  

As expected, we observed no green fluorescence in H4 cells, H4_GE-S cells, or H4_mC_GE-S cells 

treated with DMSO (Figure 4-7 A, C) or tebufenozide (Figure 4-7 B, C). The fraction of Venus-

positive cells was automatically determined using the Acapella® software and was below 1% for 

these cell lines independent of DMSO or tebufenozide treatment. We found approximately 99% 

mCherry-positive cells in the H4_mC_GE-S cell line independent of tebufenozide or DMSO 

treatment, while the fraction of mCherry-positive cells was approximately 0% in all other cell 

lines as expected. Thus, 99% of H4_mC_GE-S cells were transduced successfully with the 

mCherry-NLS-UAS-αSyn receiver virus (V120) (Figure 4-7 D).  

For H4_GE-V cells we observed increased background fluorescence upon treatment with DMSO 

compared to untreated H4 cells (Figure 4-7, C). Following incubation with tebufenozide, 

fluorescence intensity increased dramatically from approximately 33 to 616 counts, suggesting 

an 18.6-fold increase in transgene expression following tebufenozide treatment (Figure 4-7 B, C). 

The fraction of Venus-positive cells increased from 87% to 99% upon treatment with 

tebufenozide (Figure 4-7 D).  

For H4_GE-SV cells, background fluorescence intensity following treatment with DMSO was 

slightly lower than in H4_GE-V cells but still higher than in untreated H4 cells (Figure 4-7 A, C). 

Following induction of expression by tebufenozide, the fluorescence intensity increased by the 

factor 6.8 from approximately 29 to 198 counts (Figure 4-7 B, C). The fraction of Venus-positive 

cells increased from 77% to 94% upon treatment with tebufenozide (Figure 4-7 D).  

For DMSO-treated H4_GE-V1S+SV2 cells, background fluorescence was in the range of 

unmodified H4 cells (Figure 4-7 A, C). Upon incubation with tebufenozide, fluorescence intensity 

increased slightly from approximately 2.6 to 15.1 counts, suggesting an 5.8-fold increase in 

transgene expression upon tebufenozide treatment (Figure 4-7 B, C). The fraction of Venus-

positive cells increased from 0% to 37% upon treatment with tebufenozide (Figure 4-7 D). 
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Figure 4-7: Induction of transgene expression in H4_GE cells  

The generated H4_GE cell lines were incubated with 0.1% DMSO or 10 µM tebufenozide for 48 h. 

A) Representative fluorescence images of cells incubated with 0.1% DMSO. Nuclei were stained 

with Draq5. Scale bar is 100 µm and valid for all panels in A and B. 

B) Representative fluorescence images of cells incubated with 10 µM tebufenozide. 

C) Quantification of the mean cellular Venus fluorescence intensity of H4 cells upon incubation 

with DMSO or tebufenozide using the Acapella® software.  

D) Quantification of the fraction of Venus or mCherry-positive H4 cells upon incubation with 

DMSO or tebufenozide using the Acapella® software. Quantification was performed by setting 

an arbitrary threshold for Venus fluorescence intensity.  

Columns in C and D show mean of 3 independent experiments; error bars show SEM; Tebu: 

tebufenozide. 
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4.2.2.2 Expression of Fluorescent Proteins in H4_CET2-SV, H4_CET2-S, 

H4_CET2-V, and H4_CET2-V1S+SV2 

4.2.2.2.1 Determination of the Optimal Concentration of 4-OH-Tamoxifen for 

Transgene Induction 

Since we had no experience concerning the induction of transgene expression using 

4-OH-tamoxifen in cell culture, we incubated H4_CET2-V cells with different concentrations of 

4-OH-tamoxifen ranging from 100 pM to 100 µM or DMSO as control for 72 h in order to 

determine its optimal concentration. Subsequently, fluorescence intensity and the number of 

cells were determined using the Opera® high-throughput imaging setup. We found the highest 

fluorescence intensity (Figure 4-8 A, B) without obvious adverse effects on cell shape and cell 

survival (Figure 4-8 A, C) to be obtained upon incubation with 10 µM 4-OH-tamoxifen.  

 

 

4.2.2.2.2 Less Efficient Induction of Transgene Expression in H4_CET2 Cells 

Compared to H4_GE Cells 

As for H4_GE cell lines, the H4_CET2 cell lines were incubated with 10 µM 4-OH-tamoxifen or 

DMSO as control for 48 h and analyzed using the Opera® reader. As described in chapter 4.4.2.1, 

the background signal from H4 cells was subtracted from the signal of the corresponding 

inducible H4_CET2 cell lines after treatment with 4-OH-tamoxifen or DMSO for the determination 

of the factorial increase in transgene expression upon incubation with 4-OH-tamoxifen.  

As expected, we observed no fluorescence in H4 cells and H4_CET2-S cells with a fraction of 

Venus-positive cells below 1% independent of treatment with 4-OH-tamoxifen or DMSO (Figure 

4-9 A-D).  

For H4_CET2-V cells we observed increased background fluorescence upon treatment with DMSO 

compared to untreated H4 cells (Figure 4-9 C). Following incubation with 4-OH-tamoxifen, 

fluorescence intensity increased by a factor of 2.9 (Figure 4-9 B, C). The fraction of Venus-

positive cells increased from 12.1% to 35.6% upon treatment with 4-OH-tamoxifen (Figure 

4-9 D). 
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Figure 4-8: Maximum transgene induction in H4_CE

T2
 cells achieved by 10 µM 4-OH-tamoxifen  

H4_CE
T2

-V cells were incubated with different concentrations of 4-OH-tamoxifen ranging from 100 pM 

to 100 µM or DMSO as control for 72 h to determine the optimal concentration.  

A) Fluorescence images showed increasing fluorescence with increasing concentration of 

4-OH-tamoxifen up to a concentration of 10 µM. Nuclei were stained with Draq5. Scale bar is 

100 µm and valid for all panels.  

B) Quantification of fluorescence intensity using the Opera® system. A maximum in fluorescence 

intensity was observed upon incubation with 10 µM 4-OH-tamoxifen.  

C) Quantification of cell number using the Opera® system. Incubation with 100 µM 4-OH-

tamoxifen led to decreased cell number whereas all other concentrations showed no adverse 

effect on cell number. 

 

 

For H4_CET2-SV cells, background fluorescence intensity following treatment with DMSO was 

slightly lower than in H4_ CET2-V cells but still elevated compared to H4 cells (Figure 4-9 A, C). 

Following induction of expression by 4-OH-tamoxifen, fluorescence intensity increased by a 

factor of 2.4 (Figure 4-9 B, C). The fraction of Venus-positive cells increased from 10.2% to 

27.9% upon treatment with 4-OH-tamoxifen (Figure 4-9 D).  

For H4_CET2-V1S+SV2 cells fluorescence intensity was in the range of untreated H4 cells and the 

fraction of Venus-positive cells was below 1% independent of treatment with 4-OH-tamoxifen 

(Figure 4-9 A-D).  

Since we obtained a stronger increase in transgene expression upon treatment with 

tebufenozide in the H4_GE cells compared to 4-OH-tamoxifen treatment in the H4_CET2 cells, we 

continued with the GE-based system for the characterization of expression kinetics.  
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Figure 4-9: Induction of transgene expression in H4_CE
T2

 cells  
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Figure 4-9: Induction of transgene expression in H4_CE
T2

 cells  

The generated H4_CE
T2

 cell lines were incubated with 0.1% DMSO or 10 µM 4-OH-tamoxifen for 48 h. 

A) Representative fluorescence images of cells incubated with 0.1% DMSO. Nuclei were stained 

with Draq5. Scale bar is 100 µm and valid for all panels in A and B. 

B) Representative fluorescence images of cells incubated with 10 µM 4-OH-tamoxifen. 

C) Quantification of the mean cellular Venus fluorescence intensity of H4 cells upon incubation 

with DMSO or 4-OH-tamoxifen using the Acapella® software. Bars show mean of 3 

independent experiments; error bars show SEM; Tam: 4-OH-tamoxifen. 

D) Quantification of the fraction of Venus-positive H4 cells upon incubation with DMSO or 4-OH-

tamoxifen using the Acapella® software. Quantification was performed by setting an arbitrary 

threshold for Venus fluorescence intensity. Bars show mean of 3 independent experiments; 

error bars show SEM; Tam: 4-OH-tamoxifen. 

 

 

4.2.2.3 Expression Characteristics of H4_GE Cells – Cellular Fluorescence 

In order to characterize the created cell lines regarding their transgene expression over time 

and as a function of tebufenozide concentration, all cell lines were incubated for up to 8 days 

post induction (DPI) with different tebufenozide concentrations ranging from 100 pM to 100 µM 

or DMSO as control, respectively.  

No increase in mean cellular Venus fluorescence was observed in H4, H4_GE-S, or H4_mC_GE-S 

cells (Figure 4-10 A). In line with this, the fraction of positive cells remained 0% for all time 

points and tebufenozide concentrations evaluated in H4, H4_GE-S, or H4_mC_GE-S cells (Figure 

4-10 B). Accordingly, no influence of tebufenozide concentration on fluorescence intensity could 

be observed in these cell lines (Figure 4-10 A, B, and visualized for day 5 in C).  

On the contrary, the fluorescence signal increased in a tebufenozide concentration-dependent 

manner from day 0 on in H4_GE-V, H4_GE-SV, and H4_GE-V1S+SV2 cells (Figure 4-10 A).  

In H4_GE-V cells, maximum fluorescence was obtained upon incubation with 1 µM tebufenozide 

on DPI 5 (Figure 4-10 A, C) with an increase from approximately 37.9 counts (for DMSO-treated 

cells on DPI 0) to 3,439.0 counts (all values are indicated after subtraction of background signal), 

equivalent to a 90.8-fold increase in fluorescence intensity following tebufenozide treatment. 

The fraction of positive cells increased from approximately 63% on DPI 0 (due to background 

fluorescence) to 100% 3-7 DPI for cells treated with 1 µM or 10 µM tebufenozide, while a 

maximum of about 89% of DMSO-treated cells were considered Venus-positive on DPI 5. 
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For H4_GE-SV cells, maximum fluorescence was obtained upon incubation with 10 µM 

tebufenozide on DPI 6 (Figure 4-10 A) with an increase from approximately 34.6 counts (for 

DMSO-treated cells at day 0) to 3,350.6 counts, equivalent to a 96.9-fold increase in fluorescence 

intensity following tebufenozide treatment. The fraction of positive cells increased from 

approximately 55% on DPI 0 (due to background fluorescence) to 100% 4-7 DPI for cells treated 

with 10 µM tebufenozide, while a maximum of approximately 88% of DMSO-treated cells was 

Venus-positive on DPI 5 (Figure 4-10 B).  

In H4_GE-V1S+SV2 cells fluorescence intensity increased more slowly than in H4_GE-V and 

H4_GE-SV cells and reached its maximum on DPI 6 upon incubation with 10 µM tebufenozide 

(Figure 4-10 A) with an increase from approximately 0.4 counts (for DMSO-treated cells at 

DPI 0) to 520.5 counts, equivalent to an 1,240.7-fold increase in fluorescence intensity following 

tebufenozide treatment. The fraction of positive cells increased from approximately 1% on DPI 0 

to 99% on DPI 5 and 6 for cells treated with 10 µM tebufenozide, while a maximum of 

approximately 15% of DMSO-treated cells was Venus-positive on DPI 5 (Figure 4-10 B). 

For H4_GE-V, H4_GE-SV, and H4_GE-V1S+SV2 cells, fluorescence intensity increased with 

increasing tebufenozide concentrations in the range of 100 pM to 10 µM and decreased when 

cells were incubated with 100 µM tebufenozide (Figure 4-10 C). 

For all cell lines the number of cells increased until DPI 4 or 5. No obvious effect on cell number 

was observed for all tebufenozide concentrations except for treatment with 100 µM 

tebufenozide where the number of cells was decreased in all cell lines.  
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Figure 4-10: Expression characteristics of H4_GE cells – cellular fluorescence 

H4 cell lines were incubated for up to 8 days with DMSO or with different tebufenozide concentrations 

ranging from 100 pM to 100 µM and imaged using the Opera® system. Quantification was performed 

using the Acapella® software. 

A) Quantification of the mean cellular Venus fluorescence intensity of H4 cells upon incubation 

with DMSO or different concentrations of tebufenozide (color-coded).  

B) Quantification of the fraction of Venus-positive H4 cells.  

C) Quantification of the mean cellular Venus fluorescence intensity of H4 cells in dependence of 

the tebufenozide concentration using the dataset from A) at DPI 5.  

D) Quantification of the number of cells per image field.  

Data points show mean of 3-6 independent experiments; error bars show SEM. 
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4.2.2.4 Expression Characteristics of H4_GE Cells – Protein Amount 

Depending on Tebufenozide Concentration 

In order to further characterize the cell lines regarding their transgene expression properties in 

dependence of the tebufenozide concentration, the cells were incubated for 4 days with different 

tebufenozide concentrations ranging from 10 nM to 10 µM or with DMSO as control, 

respectively. After 4 days cells were harvested, lysed and subjected to western blot analyses.  

As expected, we observed no transgene expression in H4 cells (Figure 4-11 A).  

For all transgene-expressing cell lines we observed very little background expression upon 

incubation with DMSO. In all cases, protein amounts increased with increasing tebufenozide 

concentration up to 1 or 10 µM (Figure 4-11 B, C).   

Cell lines H4_GE-S, H4_mC_GE-S, and H4_GE-V showed the highest transgene expression after 

incubation with 10 µM tebufenozide, whereas maximum transgene expression in H4_GE-SV and 

H4_GE-V1S+SV2 was observed upon incubation with 1 µM tebufenozide. According to the 

quantification of western blot signal intensity we obtained a maximum increase in transgene 

expression compared to DMSO by a factor of 19.7 in H4_GE-S, 45.9 in H4_mC_GE-S, 5.1 in 

H4_GE-V, 7.0 in H4_GE-SV, and 10.0 in H4_GE-V1S+SV2 for SV2 expression. Concerning the 

expression of V1S in H4_GE-V1S+SV2 the factorial increase in transgene expression could not be 

evaluated since no background signal for treatment with DMSO was detected. 
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Figure 4-11: Expression characteristics of H4_GE cells – protein amount depending on tebufenozide 

concentration 

H4 cell lines were incubated for 4 days with DMSO or different tebufenozide concentrations ranging 

from 10 nM to 10 µM. For all samples, expression of housekeeper β-tubulin was used as reference. 

A) Control western blots of H4 cells were treated like the western blots of the corresponding 

samples and showed no expression of αSyn, Venus, SV, V1S, or SV2.  

B) In all transgene expressing cell lines signal intensity increased with increasing tebufenozide 

concentration up to 1 µM or 10 µM for inducible transgenes.  

C) Quantification of western blot signal intensity was performed using ImageJ. Signal intensity 

of transgenes was normalized to housekeeper signal (β-tubulin).  
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4.2.2.5 Expression Characteristics of H4_GE Cells – Kinetics of Protein 

Amount 

In order to further characterize the cell lines regarding their expression kinetics according to 

protein levels, the cells were incubated for up to 5 days with 10 µM tebufenozide since 10 µM 

reached the highest transgene expression in most cell lines (see Figure 4-10 and Figure 4-11). 

Cells were harvested, lysed and subjected to western blot analyses on DPI 0, 1, 2, 3, 4, and 5.  

As expected, no transgene expression was observed in H4 cells (Figure 4-12 A).  

For all transgene expressing cell lines we observed very little background expression in the 

absence of tebufenozide (DPI 0). For all transgene expressing cells lines we observed an increase 

in protein amounts over time (Figure 4-12 B, C).  

According to the quantification of western blot signal intensity we obtained a maximum increase 

in protein amount by a factor of 27.8 in H4_GE-S, 16.7 in H4_mC_GE-S, and 90.3 in H4_GE-V. For 

H4_GE-SV and H4_GE-V1S+SV2 the factorial increase in protein amounts could not be evaluated 

since no background signal was observed on DPI 0. 
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Figure 4-12: Expression characteristics of H4_GE cells – kinetics of protein amount  

H4 cell lines were incubated with 10 µM tebufenozide for 0 to 5 days. For all samples, expression of 

housekeeper β-tubulin was used as reference. 

A) Control western blots of H4 cells were treated like the western blots of the corresponding 

samples and showed no expression of αSyn, Venus, SV, V1S, or SV2.  

B) In all transgene expressing cell lines signal intensity increased over time for inducible 

transgenes.  

C) Quantification of western blot signal intensity was performed using ImageJ. Signal intensity 

of transgenes was normalized to housekeeper signal (β-tubulin).  
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4.3 Increased αSyn Aggregation upon Incubation with DMSO and 

Ferric Iron  

DMSO and FeCl3 have been shown to increase αSyn aggregation in vitro144,145. In order to 

investigate the effect of DMSO and ferric iron on αSyn aggregation in the H4_GE cell model, 

H4_GE-V1S+SV2 and H4_GE-V cells were incubated with different combinations of DMSO 

(ranging from 0.1% to 1.0%) and FeCl3 concentrations (ranging from 0 µM to 1 mM) for 3 days. 

Transgene expression was induced with 10 µM tebufenozide in H4_GE-V1S+SV2 cells and with 

10 nM tebufenozide in H4_GE-V cells for three days in order to reach comparable fluorescence 

intensities. After 3 days, cellular fluorescence intensity was determined using the Opera® setup. 

We found an increase in fluorescence intensity with increasing DMSO and FeCl3 concentrations 

in H4_GE-V1S+SV2 cells (Figure 4-13, A left) but not in H4_GE-V cells (Figure 4-13, A right). The 

increase in fluorescence intensity was most prominent for incubation with FeCl3 compared to 

other tri-, di-, or monovalent metal ions (Figure 4-13, B). 

To test if the observed increase in fluorescence intensity in the BiFC assay is due to αSyn 

aggregation, we also analyzed the effect of DMSO and ferric iron on protein amount of cells 

overexpressing variants of αSyn (H4_GE-S, H4_GE-SV, and H4_GE-V1S+SV2) compared to 

H4_GE-V cells overexpressing Venus. Since we observed many dead and rounded cells among 

both H4_GE-V1S+SV2 and H4_GE-V cells upon incubation with 1% DMSO and iron precipitation 

upon incubation with 1 mM FeCl3, we chose the conditions 0.75% DMSO and 100 µM FeCl3 

versus 0.1% DMSO and 0 µM FeCl3. Allcell lines were incubated for 3 days, then harvested and 

lysed. We observed an increase in protein amount in H4_GE-S, H4_GE-SV, and H4_GE-V1S+SV2 

upon treatment with 0.75% DMSO and 100 µM FeCl3 compared to incubation with 0.1% DMSO, 

while there was no striking effect on Venus protein amount in H4_GE-V cells (Figure 4-14 A). 

Additionally, H4_GE-V1S+SV2 cells and H4_GE-V cells were analyzed using sucrose gradient 

centrifugation. For H4_GE-V1S+SV2 cells we observed higher molecular αSyn species (occurring 

in fractions with higher sucrose concentrations) when cells were treated with 0.75% DMSO and 

100 µM FeCl3 (Figure 4-14 B, left top) compared to cells treated with 0.1% DMSO (Figure 4-14 B, 

left bottom). In contrast, we found no difference between both treatments in H4_GE-V cells 

(Figure 4-14 B, right).  

Taken together, this suggests that incubation with high concentrations of DMSO and FeCl3 

increases aggregation of αSyn in inducibly αSyn-overexpressing H4_GE cells. 
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Figure 4-13: Increased fluorescence intensity in H4_GE-V1S+SV2 cells upon incubation with DMSO and FeCl3 

H4_GE-V1S+SV2 and H4_GE-V cells were incubated with 10 µM or 10 nM tebufenozide, respectively, 

and different concentrations of DMSO and tri-, di-, or monovalent ions for 3 days.   

A) Mean cellular Venus fluorescence intensity was increased upon incubation with higher DMSO 

and FeCl3 concentrations in H4_GE-V1S+SV2 cells (left), but not in H4_GE-V cells (right). Bars 

show mean of three independent experiments. 

B) Fluorescence intensity increased upon incubation with FeCl3 compared to other trivalent 

(AlCl3, GdCl3), divalent (CuCl2, ZnCl2, MnCl2), or monovalent (NaCl) ions. All cells were co-

incubated with 1% DMSO. Data points show mean of 8 to 9 independent experiments; error 

bars show SEM. *: p’<0.05; **: p’<0.01; ***: p’<0.001 (Student’s t-test, Bonferroni corrected 

for multi-testing). 
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Figure 4-14: Increased protein amount and aggregation in αSyn-overexpressing H4_GE cells upon incubation 

with DMSO and FeCl3 
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Figure 4-14: Increased protein amount and aggregation in αSyn-overexpressing H4_GE cells upon incubation 

with DMSO and FeCl3 

H4_GE-V1S+SV2 and H4_GE-V cells were incubated with 10 µM or 10 nM tebufenozide, respectively, 

and different concentrations of DMSO and FeCl3 for 3 days.  

A) Protein amounts increased in cell lines overexpressing variants of αSyn but not in cells 

overexpressing Venus alone upon incubation with 0.75% DMSO and 100 µM FeCl3. For 

quantification signals were normalized to housekeeper. Signals from samples treated with 

0.1% DMSO were set to 100%. Bars show mean of 3 to 4 independent experiments and error 

bars show SEM. 

B) Western blots from cell lysates after sucrose gradient centrifugation of H4_GE-V1S+SV2 (left) 

and H4_GE-V cells (right) incubated with 0.75% DMSO and 100 µM FeCl3 (top) or 0.1% DMSO 

and 0 µM FeCl3 (bottom).  

 

 

 

 

  



Results 

 

 
91 

4.4 Establishment and Characterization of Inducibly αSyn 

Overexpressing LUHMES Cells  

 Transgene Expression in 75% of LUHMES Cells After Lentiviral 4.4.1

Transduction  

In order to obtain as many transgene expressing LUHMES cells as possible we first tried to apply 

the same protocol that was used for the establishment of the stable H4 cell lines (Figure 4-6 A, 

protocol D). Since all LUHMES cells were dead 24 h after transduction, we next tested three 

different transduction protocols to create stable LUHMES cell lines (see chapter 3.8.2.1). For this, 

LUHMES cells were transduced with the constitutive GAL4 driver virus (V99) and the UAS-Venus 

receiver virus (V43). After imaging the fraction of Venus-positive cells was determined manually 

using ImageJ (Figure 4-15). Using protocol A a fraction of 36% of Venus-positive cells was 

obtained (Figure 4-15 A). Protocol B led to a fraction of 63% (Figure 4-15 A, B) and protocol C to 

a fraction of 75% of Venus-positive cells (Figure 4-15 A).  

 

As for the inducible H4 cells, we next created the following inducible LUHMES cell lines 

following protocol C: 

- LUHMES_GE-S: showing inducible overexpression of αSyn (transduction with V100 and 

V42) 

- LUHMES_mC_GE-S: showing constitutive expression of mCherry coupled to a nuclear 

localization sequence (NLS), resulting in red fluorescence in the nucleus of positively 

transduced cells, and inducible overexpression of αSyn (transduction with V100 and 

V120) 

- LUHMES_GE-V: showing inducible overexpression of Venus (transduction with V100 and 

V43) 

- LUHMES_GE-SV: showing inducible overexpression of αSyn coupled to Venus 

(transduction with V100 and V41) 

- LUHMES_GE-V1S+SV2: showing inducible expression of the N-terminal part of Venus 

coupled to αSyn (V1S) and of αSyn coupled to the C-terminal part of Venus (SV2) 

(transduction with V100, V39, and V46) 

 

Each LUHMES cell line was transduced four times with each virus. 
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Figure 4-15: Highly efficient transduction of LUHMES cells following protocol C 

LUHMES cells were transduced with the constitutive GAL4 driver virus (V99) and the UAS-Venus receiver 

virus (V43) according to protocols A-C (see chapter 3.8.2.1). Nuclei were stained with Hoechst33342. 

A) Quantification of the fraction of Venus-positive cells. Columns show mean of 4 to 5 wells. 

Error bars show SEM. At least 380 cells were counted for each protocol. 

B) Representative images obtained for protocol B. Scale bar is 100 µm and valid for both panels. 

  

 

 Characterization of the Inducibly αSyn-Overexpressing LUHMES 4.4.2

Cells  

4.4.2.1 Increased Transgene Expression upon Incubation with 

Tebufenozide in all LUHMES_GE Cell Lines 

LUHMES cell lines were incubated with differentiation medium for 48 h. Afterwards, cells were 

incubated with differentiation medium supplemented with DMSO or 10 µM tebufenozide for 4 

days.  

As expected, no effect of tebufenozide neither on fluorescence (Figure 4-16 A-C) nor on protein 

expression (Figure 4-16 D) was observed in LUHMES cells.  
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Figure 4-16: Induction of transgene expression in LUHMES_GE cells 

LUHMES cell lines were incubated with differentiation medium for 48 h. Afterwards cells were incubated 

with differentiation medium supplemented with DMSO or 10 µM tebufenozide for 4 days.  

A) Fluorescence images of cells incubated with 0.1% DMSO. Nuclei were stained with Draq5. 

Scale bar is 100 µm and valid for all panels in A and B.  

B) Fluorescence images of cells incubated with 10 µM tebufenozide. 

C) Quantification of the mean cellular Venus fluorescence intensity of LUHMES cells upon 

incubation with DMSO or tebufenozide using the Acapella® software. Tebu: tebufenozide. 

D) Western blot analysis of protein levels in LUHMES cells upon incubation with tebufenozide or 

DMSO. All LUHMES_GE cell lines showed an increase in protein levels upon incubation with 

tebufenozide. 

Data were obtained from one single experiment. 
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For LUHMES_GE-S and LUHMES_mC_GE-S cells, tebufenozide showed no effect on fluorescence 

intensity (Figure 4-16 A-C). While LUHMES_GE-S cells showed a faint αSyn band in the western 

blot in the absence of tebufenozide (Figure 4-16 D), no background expression could be detected 

in LUHMES_mC_GE-S cells (Figure 4-16 D). In both cell lines expression of αSyn increased upon 

incubation with tebufenozide.  

Both in LUHMES_GE-V and LUHMES_GE-SV cells we observed neither background fluorescence 

(Figure 4-16 A) nor protein expression (Figure 4-16 D) upon treatment with DMSO, but 

fluorescence quantification revealed a faint increase in mean cellular Venus fluorescence (Figure 

4-16 C). Transgene expression increased dramatically upon incubation with tebufenozide 

(Figure 4-16 B-D). 

For LUHMES_GE-V1S+SV2 cells we detected no background expression of V1S or SV2 (Figure 

4-16 A, C, D). Upon incubation with tebufenozide, fluorescence increased only slightly (Figure 

4-16 B, C), whereas protein expression was markedly increased (Figure 4-16 D). 



 

95 

5 Discussion 

5.1 Development of Stable Inducible Cell Lines – Original Strategy, 

Problems and Troubleshooting 

 Development of Viruses for the Overexpression of Various αSyn 5.1.1

Constructs Using the GE System or the CET2 System 

This thesis presents the development of H4 and LUHMES cells that stably and inducibly 

overexpress different constructs, namely: wt αSyn (S), the YFP variant Venus (V), αSyn coupled 

to Venus (SV), the N-terminal part of Venus coupled to αSyn (V1S), and αSyn coupled to the 

C-terminal part of Venus (SV2), where the co-expression of V1S and SV2 can be used for a 

bimolecular fluorescence complementation assay (BiFC). BiFC systems have been widely used to 

study protein-protein interactions in general207,293 and oligomerization of αSyn in 

particular213,294.  

In order to stably insert the expression machinery into host cells, we produced lentiviruses to 

deliver both the expression driver (GAL4_EcR and Cre_ERT2, respectively) and the receiver 

(UAS-GOI and loxP-GOI, respectively) for the inducible system. We decided to use the GAL4_EcR-

UAS (GE) system and the Cre_ERT2-loxP (CET2) system for inducible expression in our cell lines 

since differentiation of LUHMES cells relies on a Tet-OFF system. For this reason, we had to 

concentrate on inducible systems that do not use tetracycline as agonist or antagonist in order to 

be able to induce expression independent of differentiation. Both the GE and the CET2 system 

were kindly provided by the Lichtenthaler group.  

The GAL4-UAS system has been used extensively for tissue-specific transgene expression in 

Drosophila melanogaster and zebrafish254,295,296. In these model systems, GAL4 is typically 

expressed under control of a tissue-specific promoter in order to achieve tissue-specific 

transgene expression. The GOI is expressed under the control of a minimal promoter which is 

controlled by a UAS. Thus, expression of the GOI depends on binding of GAL4 to the UAS. The 

existence of various driver lines expressing GAL4 in specific tissues and various receiver lines 

expressing different GOIs enables the creation of transgenic animals by breeding of distinct 

driver and receiver lines. This results in the expression of the GOI in a distinct tissue due to 

mendelian recombination.  

In 2007, Esengil et al.255 developed an inducible expression system based on the GAL4-UAS 

system. For this system, the DNA-binding and homodimerization domains of GAL4 (a yeast 

transcription factor) was coupled to a modified subset of the activation domain of the herpes 
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simplex virus regulatory protein VP16 and the ligand binding domain of the ecdysone receptor 

(EcR) of Bombyx mori. Ecdysone is an insect steroid hormone without known effects on 

vertebrate cells256-258. In this system, incubation with an ecdysone agonist, called tebufenozide, 

leads to translocation of GAL4-EcR from the cytoplasm into the nucleus255. Consequently, 

expression of a transgene located downstream of a UAS is induced. 

The Cre-loxP system259,297,298 from bacteriophage P1 is widely used for tissue-specific gene 

knockdown or gene expression and especially popular for studies in mice, where a great variety 

of Cre driver lines is available. It consists of the enzyme Cre recombinase which catalyzes 

recombination of DNA between specific recognition sequences called loxP sites. Similar to the 

GAL4-UAS system, the Cre recombinase can be expressed under the control of a tissue-specific 

promoter for tissue-specific gene expression or knockout. For gene knockout the GOI is 

surrounded by two loxP sites, i.e., it is floxed, and located downstream of a constitutively active 

promoter. In cells that express Cre recombinase the GOI and one of the loxP sites will be excised 

resulting in knockdown of the expression of the GOI. 

For expression of a specific GOI it is located downstream of a constitutively active promoter and 

a floxed spacer gene carrying a termination codon. In the absence of Cre recombinase the GOI 

will not be expressed due to the termination codon. In Cre recombinase-expressing cells the 

spacer gene will be excised resulting in expression of the GOI299.  

For tissue and time-specific transgene expression, Cre recombinase was coupled to a mutated 

ligand-binding domain of the estrogen receptor (ERT2) which showed highest binding affinity 

not for estrogen but for tamoxifen260. Upon binding of tamoxifen to ERT2, Cre_ERT2 is 

translocated to the nucleus where Cre recombinase interacts with the loxP sites300. For time-

specific expression mice can be injected intraperitoneally (i.p.) with tamoxifen. Interestingly, 

this is also possible for embryonic gene expression when pregnant animals are treated with 

tamoxifen301. Time-specific gene knockout or expression is of special interest for the 

investigation of developmental processes or proteins with lethal phenotypes at early 

developmental stages. 

In vivo, tamoxifen is metabolized to several products with 4-OH-tamoxifen displaying greater 

affinity for the estradiol receptor than tamoxifen and showing the most potent antiestrogenic 

effect302-304. Thus, for cell culture experiments, the addition of 4-OH-tamoxifen is preferable, yet 

hampered by its low stability. Recently, endoxifen has been proposed as a potential alternative 

compound305. 

After cloning of the desired constructs, we created lentiviruses for both the GE system and the 

CET2 system. Next, we established a protocol for an effective transduction of H4 cells resulting in 
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long-term stable gene expression (Figure 4-6). Inducible H4 cell lines relying on both induction 

systems (H4_GE cells and H4_CET2 cells) were created. After testing both systems we 

concentrated on the GE system since we obtained higher transgene inducibility in pilot 

experiments (18.6-fold vs. 2.9-fold for Venus, and 6.8-fold vs. 2.4-fold for Syn-Venus) (Figure 

4-7, Figure 4-9). Moreover, this system holds the benefit that transgene expression can be 

turned on and off again, whereas the CET2 system cannot be turned off once the floxed gene has 

been excised. However, lentiviruses for both expression systems were developed and will 

immediately be available for further studies, allowing the production of inducible αSyn 

overexpression models in short time. Possible applications include the production of diverse cell 

lines to study different synucleinopathies. Exemplarily, αSyn deposition was observed in 

astroglial cells in patients suffering from dementia with Lewy bodies (DLB). Moreover, 

oligodendroglial cells could represent an interesting model for multiple system atrophy (MSA), 

where glial cytoplasmic inclusions (GCIs or Papp-Lantos bodies) represent the histopathological 

hallmark306. We have recently started a collaboration to test different strategies against αSyn-

mediated toxicity individually and in combination in several cell culture and animal models. For 

this, we created an inducible oligodendroglial cell line based on MO3.13 cells using the GE 

system. 

Moreover, the system for the development of stable cell lines that inducibly overexpress a 

certain protein of interst upon incubation with a chemical agonist could easily be adjusted for 

the investigation of other disease-associated proteins or peptides like tau307 or amyloid-beta308 

and other cell lines. 

Apart from cell culture applications, especially the loxP-GOI receiver virus might be interesting 

for the inoculation of animals expressing Cre or Cre_ERT2 in dopaminergic neurons or for 

primary neuron cultures from such animals. To a lesser extent, this might also be true for the 

UAS-GOI receiver in GAL4 expressing animal models.  
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 Individual Insertion of V1S and SV2 by Separate Lentiviruses 5.1.2

Ideally, equimolar expression of the V1S and SV2 construct for the BiFC assay would be 

desirable. Therefore, we decided to couple the V1S and SV2 constructs in a first attempt via a 2A 

sequence since 2A sequences have been shown to display quite stoichiometric expression of the 

upstream and downstream transgene, whereas IRES sequences typically show a decreased 

expression of the downstream transgene264. When two genes are linked via a 2A sequence both 

genes and the embedded 2A sequence are transcribed as one mRNA. During translation in the 

ribosome the 2A sequence causes a tilt in the nascent polypeptide chain which leads to 

ribosomal skipping of a peptide bond267. This should result in the occurrence of two separate 

proteins from one mRNA both of which carry a short peptide tag resulting from the 2A 

sequence265.  

Several 2A sequences from different organisms have been established. Here, we decided to use a 

P2A sequence from teschovirus-1 since it showed the best separation properties in different 

model systems including HEK293T, HT1080, and HeLa cells compared to other 2A sequences. 

Importantly, Kim et al.265 observed very low amounts of “uncleaved” protein in HEK293T cells 

when using a P2A sequence. Unfortunately, in our hands and in an experimental setup where we 

transiently transfected HEK293T cells with SV2-P2A-V1S we observed incomplete separation of 

V1S and SV2 in the western blot (Figure 4-2) with great inter experimental variation in 

separation efficiency. This controversial observation might be due to different amounts of 

expressed protein or an influence of the flanking proteins on P2A-mediated cleavage efficiency 

itself. Consequently, we discarded the P2A sequence and transduced the cells with lentiviruses 

carrying V1S or SV2 individually. 

 

 No Improvement of Signal-to-Noise Ratio by the Insertion of 5.1.3

Point Mutations into V1 and V2 

Self-assembly of Venus fragments and resulting background fluorescence is commonly observed 

in BiFC assays. At the beginning of this thesis, no study had evaluated the signal-to-noise ratio of 

an αSyn-hemi-Venus-based BIFC (to the best of our knowledge). However, while the present 

work was in progress, Eckermann et al.99 postulated a signal-to-noise ratio in an αSyn-hemi-

Venus BiFC of approximately 2-10, whereas we observed a signal-to-noise ratio in the range of 

1.5 (Figure 4-4). However, the signal-to-noise ratio might depend greatly on the strength of 

transgene expression and on the cell culture model used, with H4 cells displaying a particularly 

low signal-to-noise ratio99.   
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In order to improve the signal-to-noise ratio in Venus-based BiFCs several point mutations have 

been described mainly located at the interface of the Venus fragments251. The rational is a 

replacement of hydrophobic amino acids with neutral amino acids in order to reduce self-

complementation tendencies due to hydrophobic interactions.  

For the C-terminal Venus fragment, Nakagawa et al. observed a maximum increase in the signal-

to-noise ratio of 4.2-fold for the mutation L201V upon transfection into mouse C3H10T1/2 cells 

whereas the mutation L207V yielded a 3.0-fold increase285. For the N-terminal Venus fragment, 

Kodama et al.283 described an increase in the signal-to-noise ratio of approximately 4-fold for the 

mutations V150L and I152L upon transfection of COS-1 cells. Here, the N-terminal Venus 

fragment was coupled to the bZIP domain of c-Jun (bJun) and the C-terminal Venus fragment 

was coupled to the bZIP domain of c-Fos (bFos). For the negative control, the C-terminal Venus 

fragment was coupled to a mutant version of bFos (ΔbFon). For both mutations an increase in 

signal-to-noise ratio has also been described by Lin et al.286, and an 8.6-fold increase has been 

described for V150A285. Since the overall fluorescence intensity was markedly reduced when 

inserting the mutation of V150L compared to I152L283 we decided to test the mutation I152L in 

our BiFC system. 

We inserted the point mutations I152L into V1283 and L201V into V2285 and transiently 

transfected H4 cells with different combinations of V1wt(S), SV2wt, V1I152L(S), and SV2L201V. 48 h 

after transfection, cells were imaged or harvested and cell lysates were analyzed using the 

InsightTM Reader. While we observed a decrease in total fluorescence intensity when using 

mutated Venus fragments compared to wt Venus, signal-to-noise ratio was not dramatically 

affected (Figure 4-4).  

Thus, in our hand in this experimental setup, the insertion of point mutations I152L and L201V 

into the Venus fragments showed no noteworthy effect on signal-to-noise ratio which is in 

contrast to the observations by Nakagawa et al.285, Kodama et al283., and Lin et al.286. This might 

be due to different amounts of expressed protein or to the usage of different cell lines since it has 

been described that the signal-to-noise ratio of BiFC assays is affected by the applied cell line99. 

Moreover, expression levels and the subcellular localization of the protein connected to the 

Venus fragments might affect the amount of their self-complementation tendencies. 
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5.2 Characterization of H4 Cells 

 Highly Efficient and Stable Lentiviral Transduction in H4 Cells 5.2.1

In order to obtain a high fraction of transgene expressing H4 cells, we tested different 

transduction protocols using a constitutive GAL4 driver virus and the UAS-SV receiver virus. In 

the best case – for protocol D – we obtained approximately 98% transgene expressing cells 72 h 

after transduction. We monitored the cells until 23 days after transduction and observed no 

significant change in the fraction of Venus-positive cells. However, we observed a trend towards 

a decrease in transgene expressing cells at day 23 which might be due to epigenetic events 

resulting in gene silencing309. This effect might depend on the promoter employed: Following 

lentiviral transduction, Oberbek et al. observed a decrease of GFP-positive Chinese hamster 

ovary (CHO) cells using a human cytomegalovirus (CMV) major immediate early 

promoter/enhance after 2 to 3 weeks, whereas the fraction of positive cells was stable when 

applying a human elongation factor-1α (EF-1α) promoter262.  

In order to minimize interexperimental variations of cellular characteristics we applied a 

strategy where we obtained 300 batches of cells with theoretically identical properties for all 

cell lines. Since a new batch is used for every single experiment, a stable transgene expression 

over a time-course of 23 days appears to be sufficient. Indeed, for the experiments presented in 

this work, cells were in culture for less than 13 days.  

After production of stable H4_GE cell lines following protocol D, we obtained almost 100% of 

transgene expressing cells for all cell lines that express fluorescence proteins (H4_mC_GE-S 

(Figure 4-7 D), H4_GE-V, H4_GE-SV, and H4_GE-V1S+SV2 (Figure 4-10 B)). Thus, it is likely that 

we also obtained a very high fraction of αSyn-expressing cells in the H4_GE-S cell line, although 

this has not been shown yet. Immunohistochemical stainings using αSyn-specific antibodies will 

have to be performed in order to determine the fraction of αSyn-overexpressing cells in the 

H4_GE-S cell line. 
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 Induction of Transgene Expression in a Time- and Tebufenozide 5.2.2

Concentration-Dependent Manner 

In order to characterize the cell lines concerning their transgene expression, we used the Opera® 

system and western blot analyses. The Opera® system is a fully automated confocal fluorescence 

microscope. In order to quantify fluorescence intensities we developed a script for the Acapella® 

evaluation software. This software enables – among other readouts – the determination of the 

mean cellular fluorescence intensity, the fraction of positive cells (by using an arbitrary 

threshold for fluorescence intensity), and the number of cells.  

We incubated the different cell lines with different tebufenozide concentrations ranging from 

100 pM to 100 µM for 8 days and imaged the cells every 24 h (Figure 4-10). We found that mean 

cellular fluorescence intensity showed a maximum at day 5 or 6. This corresponds to the data 

obtained from the western blot evaluation of expression kinetics (Figure 4-12). Interestingly, the 

fluorescence intensity and the fraction of positive cells increased more slowly in the H4_GE-

V1S+SV2 cells compared to H4_GE-V or H4_GE-SV cells, while protein amounts increased in a 

comparable fashion. This might be due to the fact that a detectable fluorescence signal in the 

BiFC system requires not only expression of a fluorescence protein but also nucleation of αSyn 

aggregation. This is further supported by investigation of the expression kinetics of H4_GE-

V1S+SV2 cells. While they showed a rather exponential increase in fluorescence intensity over 

time (Figure 4-10 A) protein amounts of V1S and SV2 increased rather linearly 

(Figure 4-12 B, C). 

Furthermore, we found that fluorescence intensity was dependent on tebufenozide 

concentration. These data are in line with our investigation of protein amounts increasing with 

tebufenozide concentration using western blot analysis (Figure 4-11). Our results correspond to 

the expression kinetics in zebrafish embryos published by Esengil et al.255 where transgene 

expression increased in a tebufenozide-dependent manner upon incubation with 1 nM to 10 µM 

tebufenozide. The decreased fluorescence intensity observed when incubating cells with 100 µM 

tebufenozide can most likely be explained by precipitation of tebufenozide. 

For H4_GE-S, H4_mC_GE-S, H4_GE-V, and H4_GE-SV cell lines we found low background 

expression in the absence of tebufenozide by fluorescence microscopy (Figure 4-7 A, B), 

quantification of fluorescence intensity (Figure 4-7 C and Figure 4-10 A) and western blot 

analysis (Figure 4-11 and Figure 4-12). For H4_GE-V1S+SV2 almost no background expression 

could be observed compared to untreated H4 cells. 
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The dynamic range and the increase in transgene expression are important aspects for inducible 

cell lines. The results we obtained for induction of transgene expression showed great variation 

and are summarized in Table 5-1.  

For all cell lines the number of cells increased until day 4 or 5 after induction (Figure 4-10). The 

following decrease in cell number is probably due to the experimental setup where we seeded 

the cells at a concentration of 50,000/ml on day 0 and incubated them without splitting them or 

changing the medium until the end of the experiment. Thus, it is likely that cell growth was 

hampered by a depletion of nutrients and an increasing pH.  

After our cell lines had been established, Moussaud et al. published a paper in which they 

described the development of a comparable model for inducible expression of αSyn in H4 

cells206. For their model, they stably inserted the different αSyn constructs using the Flp-FRT 

recombinase in combination with a tetracycline-driven bidirectional expression system, thus 

enabling the inducible transgene expression via a Tet-Off system. In this system, presence of 

tetracycline inhibits the expression of the transgene, whereas removal of tetracycline induces 

transgene expression. 

In their study, two kinds of protein fragment complementation assays are used to investigate 

αSyn aggregation: Like in the thesis presented here, their first model uses a fluorescence readout 

and relies on complementation of hemi-Venus constructs (V1S and SV2). The second model 

requires a bioluminescence readout. Here, αSyn is coupled to the C-terminal or N-terminal part 

of Gaussia princeps luciferase (SL1 and SL2). Upon aggregation of αSyn the luciferase parts 

complement. In the presence of luciferin and ATP, luciferase catalysis a multistep reaction 

resulting in the emission of light. The luminescence intensity should be approximately 

proportional to αSyn aggregation. For both systems they used Leucine zipper-linked protein 

complementation (V1Lz and LzV2, or LzL1 and LzL2, respectively) as positive control. 

Additionally, they produced H4 cells which inducibly overexpressed wt αSyn. 
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Table 5-1: Relative increase in transgene expression 

This table summarizes the relative increase in transgene expression according to change in fluorescence 

intensity or protein amount. WB: western blot 

 Fold increase 

in fluorescence 

 (Figure 4-10) 

Fold increase 

 in WB signal  

(Figure 4-11) 

Fold increase 

 in WB signal  

(Figure 4-12) 

H4_GE-S  - 19.7 27.8 

H4_mC_GE-S  - 45.9 16.7 

H4_GE-V  90.8 5.1 90.3 

H4_GE-SV  96.9 7.0 no background 

H4_GE-V1S+SV2 
V1S 

1,240.7 
no background no background 

SV2 no background 10.0 

 

 

A reliable comparison of the characteristics of the cell lines produced by Moussaud et al. and 

ours would require the investigation of both kinds of cell lines in parallel under equal conditions 

and is difficult from published data alone. However, the strategy applied by Moussaud et al. 

holds two fundamental disadvantages compared to our strategy: First, the stable insertion of the 

induction system relies on transient plasmid transfection, but a variety of established cell lines 

(including LUHMES cells) and primary cell lines are rather insusceptible to transient 

transfection with plasmids1. Second, the induction of transgene expression relies on presence or 

absence of tetracycline in a Tet-Off system. Thus, independent transgene induction cannot be 

achieved in model systems where a Tet-On or Tet-Off system is used for inducible expression of 

other proteins. This is for example the case in LUHMES cells where addition of tetracycline turns 

off the expression of v-myc and by this induces their differentiation to dopaminergic 

neurons235,236. 

Moussaud et al. observed low background transgene expression in the presence of tetracycline. 

Transgene expression was detectable from 16 h after removal of tetracycline on using western 

blot analysis. Transgene expression increased over time and reached a maximum 4 days after 

removal of tetracycline. Expression was not monitored from that time on206. In our cells, we did 

not investigate transgene expression before 24 h after induction. Like Moussaud et al. we 

observed low background expression and an increase in transgene expression over time, 

reaching a maximum 4 to 6 days after induction (Figure 4-10, Figure 4-12).  

Interestingly, Moussaud et al. observed αSyn immunoreactivity in H4 V1S&SV2 cells which did 

not display Venus fluorescence suggesting the presence of monomeric αSyn206. This is in line 
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with our findings that expression of V1S and SV2 increased faster than fluorescence intensity in 

H4_GE-V1S+SV2 cells (Figure 4-10, Figure 4-12). One explanation is that the probability of 

nucleation increases with increasing amounts of αSyn and that a certain threshold of αSyn 

monomers might be required in order to induce a sufficient amount of oligomeric αSyn species 

to be detectable via BiFC. 

Additionally, Moussaud et al. found that protein tags for the protein complementation assay 

(PCA) do neither interfere with the normal cellular distribution of αSyn nor with the 

polymerization of αSyn. Yet, αSyn half-life and oligomer stability appeared to be increased in the 

H4 V1S&SV2 cells which might be due to an irreversibility of Venus fragment 

complementation206,209,214,310. Moreover, using the H4 V1S&SV2 cells they performed a 

preliminary screening for anti-aggregative compounds using an EnVision multilabel HTS plate 

reader (PerkinElmer) and concluded that the fluorescent αSyn PCA can be used as high-

throughput primary assay to screen large libraries206. This is in line with our experiments to 

screen for anti-aggregative compounds (Figure 4-5) and aggregation enhancers (Figure 4-13). 

All in all, the paper by Moussaud et al. further supports the relevance of BiFC-based inducible 

αSyn cell models as valuable tools in drug discovery for PD. 

 

5.3 Increased αSyn Aggregation upon Incubation with DMSO and 

FeCl3 

Iron has been discussed extensively and controversially as possible risk factor for the 

development of PD133,311. Elevated levels of iron (and other metal ions) have been described in 

the SN of PD patients when compared to control tissue135,137,138,312 at least in severly affected 

individuals313. High iron levels were also observed in Lewy bodies of the SN of PD patients314 and 

several epidemiological studies describe a correlation between the exposure towards iron (and 

other heavy metals) and an increased risk for PD311,315,316.  

In order to investigate the effect of DMSO and ferric iron on αSyn aggregation in cell culture, we 

induced transgene expression in H4_GE-V1S+SV2 and H4_GE-V cells and incubated them with 

different concentrations of DMSO (ranging from 0.1% to 1.0%) and FeCl3 (ranging from 0 µM to 

1 mM) (Figure 4-13). DMSO concentration cannot be decreased to 0% since tebufenozide, the 

inducer of transgene expression, is dissolved in DMSO. In H4_GE-V1S+SV2 cells, fluorescence 

intensity increased considerably upon incubation with 1.0% DMSO even in the absence of FeCl3, 

whereas incubation with different concentrations of FeCl3 without additional DMSO did not 

markedly influence fluorescence intensity. The strongest increase in fluorescence intensity was 
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observed for the combination of DMSO and FeCl3, reaching a maximum upon incubation with 1% 

DMSO and 1 mM FeCl3.  

In contrast, fluorescence intensity was not affected by incubation with DMSO or FeCl3 in 

H4_GE-V cells, suggesting that the effect on fluorescence intensity observed in H4_GE-V1S+SV2 

cells was not due to an effect on Venus fluorescence itself but due to an increase in 

complementation of the Venus fragments V1 and V2 (Figure 4-13 A). This effect appeared to be 

rather specific for incubation with FeCl3 and was more pronounced than for incubation with 

other tri-, di-, or monovalent ions where only incubation with 100 µM ZnCl2 resulted in slightly 

increased fluorescence intensity in H4_GE-V1S+SV2 cells (Figure 4-13 B). 

To further validate the effect of DMSO and FeCl3 on aggregation of αSyn in cell culture we 

analyzed the protein amount and observed an increase in αSyn protein load in H4_GE-S, 

H4_GE-SV, and H4_GE-V1S+SV2 cells upon treatment with 1% DMSO and 100 µM FeCl3, but no 

change in the Venus protein load in H4_GE-V cells (Figure 4-14 A). An increase in αSyn protein 

load upon its aggregation has been reported before317 and might be due to reduced degradation 

of aggregated αSyn.  

We also performed sucrose gradient analyses from cell lysates obtained from both H4_GE-

V1S+SV2 and H4_GE-V cells incubated with 0.75% DMSO and 100 µM FeCl3, or 0.1% DMSO and 

0 µM FeCl3. We chose the parameters 0.75% DMSO and 100 µM FeCl3 as high control since we 

observed many dead cells upon incubation with 1% DMSO and precipitation of iron upon 

incubation with 1 mM FeCl3. We observed a shift in the αSyn signal to fractions of higher sucrose 

density in H4_GE-V1S+SV2 cells upon incubation with 0.75% DMSO and 100 µM FeCl3 compared 

to incubation with 0.1% DMSO and 0 µM FeCl3, suggesting increased αSyn oligomerization. This 

effect was not observed for Venus in H4_GE-V cells (Figure 4-14 B). However, since αSyn 

oligomers appear to be very sensitive to the cell lysis methods applied, especially concerning 

detergents, we are currently further optimizing the cell lysis conditions for sucrose gradient 

analysis. Thus, these results should be carefully regarded as preliminary. 

Taken together, our data suggest an increase in αSyn aggregation in H4_GE cells upon incubation 

with DMSO and FeCl3. Iron is present in the body in two oxidative states: ferrous iron (Fe2+) and 

ferric iron (Fe3+) and our results are well in line with several findings that point towards ferric 

iron as an important player in the course of pathology. Accordingly, a shift in the Fe2+/Fe3+ ratio 

in favor of Fe3+ has been observed in the SN of PD patients. In line with this, a decreased amount 

of glutathione (GSH) – which can dimerize to glutathione disulfide (GSSG) upon oxidization and 

protect cellular molecules from oxidative stress by acting as electron donor for reactive oxygen 

species – and an increased amount of the ferric iron binding protein ferritin has been 
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described312,313. After injection of FeCl3 into the SN, rats show almost erased dopamine levels in 

the striatum and develop a parkinsonian phenotype318. In line with this, an epidemiological 

study found an increased risk for PD among individuals with high nonheme iron and low vitamin 

C intake319. 

In vitro, incubation of recombinant αSyn with DMSO and with or without FeCl3 leads to the 

formation of distinct oligomer species145. In this study, incubation with DMSO leads to formation 

of intermediate I oligomers in vitro. The additional incubation with FeCl3 induces the formation 

of intermediate II oligomers145 which are capable of inserting pores into lipid bilayers145,171. 

Moreover, ferric iron has been shown to accelerate αSyn fibrillization131. Interestingly, 

oligomerization of αSyn appears to result from direct interaction with ferric iron whereas 

oxidizing agents show no direct effect on αSyn oligomerization. Thus, an effect of oxidative 

stress on aggregation of αSyn might be mediated by oxidation of ferrous iron to ferric iron144.  

 

5.4 Reduced Fluorescence Intensity in the BiFC Assay upon 

Incubation with Known Modulators of αSyn Oligomerization  

Interestingly, we also observed a slight increase in fluorescence intensity in the BiFC assay upon 

transient transfection of H4 cells with V1S and SV2 and incubation with DMSO. In the same 

experimental setup, incubation with three known inhibitors of αSyn aggregation – baicalein, 

anle138c, and anle138b – led to a decrease in fluorescence intensity compared to incubation 

with DMSO (Figure 4-5). These three substances have been shown to have antiaggregative 

properties in vitro, and anle138b has also been shown to have a beneficial effect on disease 

progression in a variety of models for PD and other neurodegenerative disorders56,145,192,288-292. 

We conclude that the αSyn BiFC system might represent a valuable tool for high-throughput 

screening assays for aggregation inhibitors of αSyn despite its poor signal-to-noise ratio. It has 

to be mentioned that this assay system is not specific for compounds that act directly on αSyn 

aggregation. In contrast, also compounds decreasing expression or increasing clearance of αSyn 

might appear as hits in a primary screen. Moreover, we cannot exclude the possibility of false 

positive results since compounds might also act on fluorescence intensity or Venus fragment 

complementation. 

However, Venus shows a β-barrel structure which is typical for GFP-derived fluorescent 

proteins250,320, and the complementation of Venus fragments relies on the interaction of β-sheets 

in both fragments with interaction of hydrophobic amino acids appearing to be a driving 

force284,285. This is comparable to the situation observed in the aggregation process of αSyn, 
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where the NAC-region (comprising amino acids 61-95, see Figure 2-2) appears to be of critical 

importance95-100. The NAC-region comprises the amino acids 61-95 of which almost 50% are 

hydrophobic. Indeed, Giasson et al.100 found that the 12-amino-acid stretch comprising amino 

acids 71-82 (VTGVTAVAQKTV) in the NAC region is necessary and sufficient for the assembly of 

αSyn filaments. Notably, six of these amino acids (underlined) exhibit hydrophobic side chains. 

Therefore, both the complementation of Venus fragments and the aggregation of αSyn appear to 

be at least partly driven by the interaction of hydrophobic amino acids. For this reason, 

inhibitors of αSyn aggregation are not unlikely to also act on complementation of Venus 

fragments. Thus, excluding compounds that do not act specifically on αSyn aggregation but also 

on Venus fragment complementation might result in the exclusion of promising therapeutic 

candidates. That is why we decided not to do a control for specificity (in contrast to the leucine 

zipper (LZ)-hemi-Venus used by Moussaud et al.206). Still, we would expect that our strategy 

leads to more false positive results that will have to be extracted in secondary screenings which 

are independent of protein complementation. For this, cell lines inducibly overexpressing 

untagged αSyn in combination with western blot or sucrose gradient centrifugation analysis 

(Figure 4-14), immunohistochemical stainings for total or phosphorylated αSyn or αSyn 

oligomers using specific antibodies321,322, and cytotoxicity assays will likely prove beneficial.   

 

5.5 Inducible Transgene Expression in LUHMES Cells 

The first step towards the creation of stable LUHMES cell lines was to test the transduction 

protocol that was used for the creation of stable H4 cell lines. Interestingly, LUHMES cells did not 

tolerate this protocol and we had to reduce the amount of virus from 1:3.5 (volume per volume) 

to 1:100 in order to obtain stably transgene-expressing LUHMES cells (Figure 4-15). Using 

protocol C we finally obtained 75% of Venus-positive cells and further used this protocol to 

create stable LUHMES cell lines that inducibly overexpress αSyn variants.  

In order to test the inducible LUHMES cells, we first induced differentiation according to the 

two-step protocol by Scholz et al.237. Two days after induction of differentiation, cells were split 

and seeded into 384-well plates for Opera® analysis and T75 flasks for western blot analysis in 

differentiation medium, respectively. Cells were incubated with 10 µM tebufenozide for 4 days 

to induce transgene expression or DMSO as control, respectively.  

After 6 days of incubation in differentiation medium LUHMES cells showed a morphological 

change to a neuron-like phenotype with an extensive network of neurites (Figure 4-15 B; Figure 

4-16 B). Comprehensive characterization on the phenotype of differentiated LUHMES cells has 



Discussion 

 

 
108 

been performed before and revealed that they release dopamine and display neuronal electric 

properties237,238. For all inducible LUHMES cell lines we detected no obvious increase in 

background fluorescence upon incubation with DMSO compared to untreated LUHMES cells 

(Figure 4-16). In contrast, we observed an increase in western blot signal of the POI upon 

incubation with tebufenozide for all inducible LUHMES cell lines (Figure 4-16 D). Despite the 

clear increase in protein amount in LUHMES_GE-V1S+SV2 cells upon treatment with 

tebufenozide (Figure 4-16 D), we observed only a very faint increase in mean cellular 

fluorescence intensity (Figure 4-16 B, C). This is in line with our findings in H4_GE-V1S+SV2 cells 

and fits the observation by Moussaud et al.206 that significant amounts of V1S and SV2 are 

required for a detectable BiFC signal. However, since these data were obtained from one single 

experiment they should be carefully regarded as proof of concept, and further evaluation of the 

LUHMES_GE cells concerning expression characteristics will need to be performed. 

It has to be mentioned that, in our hands, the two-step differentiation protocol described by 

Scholz et al.237 was hampered by the fact that harsh conditions had to be used for trypsinization 

after two days of differentiation. Unfortunately, proliferation of LUHMES cells is not immediately 

stopped upon incubation with differentiation medium, but cells proliferate markedly for at least 

two additional days. Thus, skipping the splitting step after two days of differentiation is difficult 

in small formats (like 384-well plates). We are currently optimizing the differentiation protocol 

for different formats (T75 flasks, 6-well plates, 24-well plates, 96-well plates, 384-well plates).  

According to Schlachetzki et al., the perfect cell line to study possible disease processes in PD 

would comprise “a homogeneous cell culture system that is easy to handle (…). Cells should be 

easy to expand in order to generate large numbers of neuronal precursor cells. Next, these cells 

should be easily directed towards a postmitotic state in a synchronized manner with a mature 

neuronal (dopaminergic) phenotype”1. LUHMES cells fulfill these criteria and seem to become 

more and more popular in PD research. In order to overexpress αSyn in LUHMES cells, different 

strategies have been applied so far including the stable constitutive overexpression of αSyn and 

the induction of αSyn overexpression by lentiviral transduction242,243. To the best of our 

knowledge, we here present the first report on LUHMES cells where overexpression of αSyn can 

be triggered by incubation with a chemical agonist.  

Taken together, the model presented in this work shows several advantages compared to 

strategies where αSyn is constitutively overexpressed or where αSyn overexpression is induced 

by lentiviral transduction. Exemplarily, strength and kinetics of αSyn expression should be 

highly reproducible in our system since we have produced several homogeneous stocks of 

inducible H4_GE and LUHMES_GE cells that should not differ significantly between one another 

concerning fraction of transgene expressing cells and expression characteristics. The transgene 
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induction using the GE system was highly reproducible in H4_GE cells (Figure 4-10, Figure 4-11, 

Figure 4-12) and it is unlikely that reproducibility in LUHMES_GE cells is significantly worse. On 

the contrary, we would expect greater inter-experimental variation concerning the number of 

transduced cells and the strength of transgene expression when αSyn overexpression is induced 

by lentiviral transduction. Moreover, the success of lentiviral transduction critically relies on the 

quality of the produced lentiviruses, which itself is subject to variation between different virus 

productions and purifications. Furthermore, the production of lentiviruses is rather time- and 

money-consuming compared to purchasing the chemical agonist tebufenozide. 

Several factors may contribute to the affection of dopaminergic cells in the SN in PD. 

Correspondingly, dopaminergic neurons show high metabolic needs due to their high density of 

connections to other neurons and their high-frequency autonomous firing32,323,324. This is 

accompanied by increased oxidative stress and increased calcium entry via opened L-type 

calcium channels (driving the rhythmic pacemaking activity) into the cell which is not well 

tolerated by SN neurons32,325-327. The effect of calcium is even more pronounced since they lack 

the expression of calcium binding proteins (like calbindin) which can act as calcium buffers32. 

Additionally, their large number of synapses increases the risk of being exposed to seeding 

species, and synaptic connections are generally thought to be “hot spots” for pathology in 

various types of neurons32,104. Using differentiated and undifferentiated LUHMES cells might be a 

valuable tool to unravel the role of dopamine metabolism on the pathological effect of αSyn 

aggregation. 

Since PD represents a slowly progressing neurodegenerative disorder and a combination of 

genetic background and long-term exposition towards environmental risk factors at low-dose 

appears to be a driving force in disease progression, the use of acute cytotoxicity studies seems 

to be of limited use197,328. In this context, differentiated LUHMES cells represent a valuable tool 

since they allow prolonged exposure for up to 9-12 days in conventional cell culture compared 

to other immortalized cell lines where exposure time is usually limited by proliferation and a 

following increase in cell number. Recently, a protocol for 3D culturing of LUHMES cells has been 

published. Following this protocol, differentiated LUHMES cells showed a stable dopaminergic 

phenotype for up to 21 days, further strengthening the LUHMES cell model for the investigation 

of long-term exposure against low-dose toxicants197.  
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6 Conclusions and Suggestions for Further Work 

We here present the development of a system for the fast and easy creation of cell lines which 

inducibly overexpress the fluorescence protein Venus (V) or different variants of αSyn-140, 

namely human wildtype αSyn (S), αSyn coupled to Venus (SV), and αSyn coupled to the 

N-terminal (V1S) or C-terminal (SV2) part of Venus for a BiFC assay. The induction machinery 

was stably inserted into the host genome mediated by lentiviral transduction and relies on a 

modified GAL4-UAS system where GAL4 is coupled to an ecdysone receptor to allow inducible 

transgene expression (GE)255. Alternatively, induction was achieved by using a Cre_ERT2-loxP 

system (CET2). Both induction systems were applied successfully to H4 cells, where the GE 

system showed stronger inducibility compared to the CET2 system. Transgene expression 

properties of H4_GE cells were characterized in detail both with regard to kinetics and 

dependence on tebufenozide concentration. 

Iron has been discussed extensively as possible risk factor for the development of PD. Here, we 

observed a striking effect of FeCl3 on αSyn aggregation which was not observed for other tri-, di-, 

or monovalent ions. The incubation of H4_GE cells with DMSO and FeCl3 led to increased 

aggregation of αSyn demonstrated by increased fluorescence intensity in the BiFC model, 

increased αSyn protein load in αSyn overexpressing H4_GE cells, and by sucrose gradient 

centrifugation.  

Moreover, the GE system was successfully implemented in LUHMES cells, and inducibility was 

demonstrated in a proof of concept experiment. To the best of our knowledge, this is the first 

report on inducible overexpression of αSyn in LUHMES cells mediated by a chemical agonist. 

Further experiments to characterize transgene expression are currently in progress. 

It will be interesting to investigate effects of αSyn overexpression on its aggregation in 

combination with αSyn-mediated cytotoxicity and susceptibility to cytotoxic agents. Preparatory 

experiments to screen for modulators of αSyn aggregation and αSyn-mediated toxicity are 

currently in progress. 

Moreover, using the system described herein, we have developed H4_GE cell lines that inducibly 

overexpress variants of αSyn carrying disease-associated mutations. Patients with SNCA 

mutations show distinct clinical and neuropathological phenotypes, and different mutations in 

αSyn lead to distinct aggregation and lipid-binding properties in vitro329-334. This suggests 

different pathological molecular mechanisms acting in synucleinopathies. Thus, investigating 

disease-associated αSyn mutations might provide information on general processes occurring in 

familial and sporadic PD as well as in other synucleinopathies. 
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Aggregation of αSyn is not a specific pathological feature of PD but in contrast occurs in a variety 

of disorders summarized as synucleinopathies. Yet, the location of αSyn aggregation and 

neuronal degeneration differs between these disorders. Exemplarily, in multiple system atrophy 

(MSA), αSyn aggregates mainly in oligodendrocytes with glial cytoplasmic inclusions (GCIs) or 

Papp-Lantos bodies being the neuropathological hallmark, and cytoplasmic aggregation of αSyn 

may also occur in astroglial cells in PD, dementia with Lewy bodies (DLB) or MSA306. The 

strategy presented in this work appears to be applicable to a variety of cell models and thus 

holds the potential to create distinct αSyn overexpression models for several different 

synucleinopathies. 

We believe that the strategy presented in this work holds high potential for cutting edge 

questions in research on synucleinopathies in general and PD in particular since it is suitable for 

the application in a variety of established and primary cell lines for the investigation of 

aggregation, modulation, and toxicity of αSyn oligomers.  

This could lead to the development of valuable models for PD and other synucleinopathies that 

help to unravel the underlying molecular pathological mechanism(s) and to develop disease-

modifying therapies. In line with this, we are currently investigating a combination strategy of 

different treatment approaches modifying the homeostasis or aggregation of αSyn in an 

oligodendroglial cell model for the treatment of MSA in an E-Rare-funded project using the 

system presented in this work. For this, the induction machinery has been implemented in the 

oligodendroglial MO3.13 cell line. 

The combination of the Venus-based BiFC assay and inducible expression appears to be 

especially suitable for high-throughput screenings of possible anti-aggregative compounds when 

combined with proper secondary readouts like sucrose gradient centrifugation and cytotoxicity 

assays. However, the cell models created here are not limited to the investigation of formation, 

modulation, and toxicity of αSyn oligomers but also enable the examination of further important 

effects in neurodegeneration like mitochondrial dysfunction, neurotoxicity, oxidative stress, 

defects in the protein degradation machinery or seeding and spreading mechanisms1,32,335. Thus, 

we hope that the system presented in this work will prove beneficial for the discovery and 

detailed characterization of novel drug candidates which be can be translated to clinical 

application in the end.  
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8 Appendix 

8.1 Plasmid Maps  

 

Figure 8-1: Plasmid maps I 

A) Plasmid carrying the construct V1S (db #1) 

B) Plasmid carrying the construct SV2 (db #2) 

C) Plasmid carrying the construct αSyn-Venus (db #3) 



Appendix 

 

 
131 

 

Figure 8-2: Plasmid maps II 
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Figure 8-2: Plasmid maps II 

A) pCR8/GW/TOPO+pCS2-MCS 

B) F2P-Delta Zeo-LoxP-Ko.Puro-LoxP-STNST-GW(DEST) (db 636) 

C) F2-Delta Zeo-Kozak-Puro-5XUAS-E1b-(GW)Dest (db 597) 

D) F2-Delta Zeo-Kozak-Hygro-5XUAS-E1b-(GW)Dest (db #44) 

E) F2-Delta Zeo-Kozak-Zeo-5XUAS-E1b-(GW)Dest (db #45) 

F) Delta Zeo-Kozak-mCherry-NLS-5X UAS-E1b-(GW)Dest (db #92) 

Amp: ampicillin; att: attachment site for Gateway® cloning; bla: beta-lactamase; ccdB: control of cell 

death B; Chl: chloramphenicol; cPPT: central polypurine tract; hCMV: human cytomegalovirus; HIV: 

human immunodeficiency virus; hPGK: human phospho-glycero-kinase; Hygro: hygromycin; LTR: long 

terminal repeat; Prom: promoter; Psi: retroviral Psi packaging element; pUC Ori: pUC origin of 

replication; Puro: puromycin; R: resistance; RRE: rev response element; Spec: spectinomycin; UAS: 

upstream activation sequence; WPRE: woodchuck hepatitis virus posttranscriptional regulatory element; 

Zeo: zeocin
TM 
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Figure 8-3: Plasmid maps III  
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Figure 8-3: Plasmid maps III 

A) FUVALENTIN Delta Zeo-Gal4-VP16 (db #99) 

B) FUVALENTIN Delta Zeo-Gal4-VP16-EcdR-F’ (db #100) 

C) F2U-Delta Zeo-iCre (db #101) 

D) F2U-Delta Zeo-iCre-ERT2 (db #102) 

E) psPAX2 (db #97) 

F) pcDNAT3.1(-)VSVG (db #98) 

Amp: ampicillin; bla: beta-lactamase; cPPT: central polypurine tract; Cre: Cre recombinase; EcR: ecdysone 

receptor; ER: estrogen receptor; hCMV: human cytomegalovirus; HIV: human immunodeficiency virus; LTR: 

long terminal repeat; Prom: promoter; Psi: retroviral Psi packaging element; pUC Ori: pUC origin of replication; 

R: resistance; RRE: rev response element; Ubi: ubiquitin; VSV-G: Vesicular stomatitis virus, glycoprotein G; 

WPRE: woodchuck hepatitis virus posttranscriptional regulatory element. 
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