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1. Introduction  

Species identification of food has gained increasing interest due to scandals such as the 

‘horse meat scandal’ in Europe, where food products labelled as beef contained up to 100% 

horse meat (Iwobi et al., 2017). According to a report of the European Parliament the recent 

food fraud cases, such as the mislabelling of seafood products, have damaged the 

consumer trust in the agro-food sector (2013/2091(INI)). Reliable species identification of 

seafood is necessary due to the high commercial interest of this group. In recent years, 

household consumption in Germany has remained stable at around 400.000 tonnes, with a 

per capita consumption between 13 and 15 kg per year (FIZ, 2018). The major part (74%) 

of sold seafood products was processed fish (e.g., preserves and marinades, frozen and 

smoked). This makes it difficult for the consumer to verify, whether the purchased seafood 

is the declared species or not. Hence, the adulteration of processed fish is appealing to the 

food retailer. Crustaceans and molluscs (fresh, frozen and pre-treated) represented only 

14% of the sold seafood products in Germany (FIZ, 2018). The consumption of the three 

major seafood groups in Germany is comparable to the whole world trade. For instance, the 

percentage sold worldwide in 2016 was 65% fish, 23% crustaceans and 11% molluscs 

(FAO, 2018a). Among crustaceans, species of the order Decapoda (e.g., prawn, shrimps, 

lobsters, crabs and crayfish) are the most consumed (Cawthorn and Hoffman, 2017; 

Fernandes et al., 2017; Zagon et al., 2017). Consequently, this order is a potential target 

for food fraud. 

As a response to the increasing phenomenon of adulterated and substandard food products 

Interpol and Europol initiated the ‘Operation Opson’ in 2011. A key aim of these operations 

is the identification of organized criminal networks behind illicit trade of counterfeit food 

(Europol, 2014). The ‘Opson’ operations are carried out annually and are assisted by the 

food control authorities of several countries around the world. Over 400 tons of seafood 

products were seized for incorrect labelling or food safety concerns in 2017 based on the 

‘Operation Opson VI’ (Interpol, 2017). Seafood was seized in several countries, including 

Italy, France, the USA, and Iraq. Like in previous operations, seafood was one of the most 

afflicted products. When Germany fully participated for the first time in the ‘Operation 

Opson’ in 2015, the focus was on trade of Asian fish and the risk of species substitution 

(Interpol, 2016). Especially the two high priced fish species red snapper [Lutjanus 

malabaricus (Bloch & Schneider, 1801)] and Japanese eel (Anguilla japonica Temminck & 

Schlegel, 1846) were targets of the operation. These species are known to be replaced by 

lower priced fish, for instance rockfish (Sebastes sp.) or European eel [Anguilla anguilla 

(Linnaeus, 1758)] (Interpol, 2016).  
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Frequently, the declared fish or crustacean species did not match the determined species 

(Table 1 and Table 2). There are several reasons for wrong declaration by the food business 

operator, such as lack of knowledge about the species or prospect of economic gain. When 

species are similar in morphology and caught together, mislabelling can also occur 

unintentionally. For instance, Guardone et al. (2017) revealed labelling Merluccius 

paradoxus Franca, 1960 as Merluccius capensis Castelnau, 1861 and Metapenaeus 

monoceros (Fabricius, 1798) as Metapenaeus affinis (H. Milne Edwards, 1837 [in Milne 

Edwards, 1834-1840]). However, mislabelling is unlikely to be accidental if the species do 

not occur in the same area and/or the substitution happens with a lower value species. For 

instance, when the lower-priced freshwater fish Pangasianodon hypophthalmus [(Sauvage, 

1878), pangasius] is labelled as the marine flatfish Solea solea [(Linnaeus, 1758), sole]. 

This common case of substitution was uncovered, inter alia, during market surveys in Italy 

and Germany (Filonzi et al., 2010; Kappel and Schröder, 2016; Gerdes et al., 2017). 

Furthermore, the whiteleg shrimp Litopenaeus vannamei (Boone, 1931) was replaced by 

the blue shrimp Litopenaeus stylirostris (Stimpson, 1871). Litopenaeus stylirostris has a 

different smell and taste, but looks similar to the consumer (Wilwet et al., 2018). Further 

reported cases are the declaration of lower priced sturgeon species (Acipenser spp.) as the 

more expensive beluga [Huso huso (Linnaeus, 1758)] in caviar (Fain et al., 2013; Ludwig 

et al., 2015; Harris and Shiraishi, 2018). Moreover, the false declaration of the less valued 

Greenland halibut [Reinhardtius hippoglossoides (Walbaum, 1792)] as Atlantic halibut 

[(Hippoglossus hippoglossus (Linnaeus, 1758)] was revealed in Germany and Italy by 

Filonzi et al. (2010) and Günther et al. (2017). 

A further concern is the mislabelling of endangered species, such as the labelling of 

European eel (Anguilla anguilla) as Japanese eel (Anguilla japonica) (Pfund et al., 2018). 

Besides, occurrences of unintentional mislabelling of eels caught in European waters 

cannot be excluded due to reported cases of using American eel [Anguilla rostrata (Lesueur, 

1817)] instead of European eel as stocking material in European aquaculture (Trautner, 

2006). In contrast to Japanese eel and American eel that are listed as endangered, the 

European eel is classified as critically endangered in the International Union for 

Conservation of Nature (IUCN) Red List of Threatened Species (Jacoby and Gollock, 

2014b; Jacoby and Gollock, 2014a; Jacoby et al., 2017). Therefore there is an import and 

export ban for the European eel since the end of 2010 in the EU (Dekker, 2019). 
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Furthermore, Marín et al. (2018) detected labelling of the vulnerable hammerhead shark 

Sphyrna zygaena (Linnaeus, 1758) and the near threatened blue shark Prionace glauca 

(Linnaeus, 1758) as smoothhound (Mustelus sp.). Besides, Feitosa et al. (2018) revealed 

illegal trade of the shark species Ginglymostoma cirratum (Bonnaterre, 1788) in Brazil, 

where harvesting of this species is prohibited.  

In addition, mislabelling can lead to health risk when toxic fish species are substituted for 

non-toxic species, for instance declaration of species assigned to the puffer fish family 

Tetraodontidae as monkfish (Lophius sp.), as revealed by Cohen et al. (2009) as well as 

Gerdes et al. (2017). This family can contain the neurotoxin tetrodotoxin, leading to 

paralysis and potential death. Furthermore, as uncovered by Lowenstein et al. (2009) and 

Staffen et al. (2017) escolar [Lepidocybium flavobrunneum (Smith, 1843)] was sold as tuna 

(Thunnus sp.). Escolars contain high levels of wax esters that can cause oily diarrhoea 

(keriorrhoea) and other acute gastrointestinal symptoms after consumption (Ling et al., 

2009). 

Due to the multitude of reported case of mislabelling of seafood products, reliable methods 

to combat food fraud are badly needed to protect the consumer from deceit and health risk 

as well as to prevent species from extinction. 
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Table 1 Exemplary recorded cases of mislabelled fish and detection methods.  

Labelled species 
(English name) 

Detected species (English name) Detection method 
(Gene) 

Investigated 
country 

Reference 

Epinephelus marginatus 
(Grouper) 

Lates niloticus (Nile perch) DNA sequencing 
(16S rDNA1) 

Spain Horreo et al. (2019) 

Eusphyra blochii 
(Hammerhead shark) 

Sphyrna lewini (Scalloped hammerhead) DNA sequencing 
(COI2) 

Indonesia Abdullah and Rehbein (2017) 

Gadus morhua 
(Cod) 

Gadus macrocephalus (Pacific cod), 
Melanogrammus aeglefinus (Haddock), 
Pollachius virens (Pollock) 

DNA sequencing 
(COI) 

France, 
Canada 

Bénard-Capelle et al. (2015); 
Shehata et al. (2018); (Tinacci 
et al., 2018) 

Hippoglossus 
hippoglossus 
(Atlantic halibut) 

Reinhardtius hippoglossoides (Greenland 
halibut) 

DNA sequencing 
(COI, cytb3) 

Germany 
Italy 

Filonzi et al. (2010); Günther et 
al. (2017) 

Huso huso 
(Beluga) 

Acipenser baerii (Siberian sturgeon), 
Acipenser gueldenstaedtii (Russian sturgeon), 
Acipenser schrenckii (Amur sturgeon) 

DNA sequencing 
(cytb) 

Austria, 
USA, 
Russia 

Fain et al. (2013); Ludwig et al. 
(2015); Harris and Shiraishi 
(2018) 

Lophius sp. 
(Monkfish) 

Tetraodontidae (Puffer fish), 
Ephippion guttifer (Puffer fish) 

DNA sequencing 
(COI, cytb)  

Germany, 
USA 

Cohen et al. (2009); Gerdes et 
al. (2017) 

Merluccius capensis 
(Whiting) 

Merluccius paradoxus (Whiting) DNA sequencing 
(COI) 

Italy Guardone et al. (2017) 

Mustelus sp. 
(Shark) 

Prionace glauca (Blue shark), 
Sphyrna zygaena (Hammerhead shark) 

DNA sequencing 
(COI) 

Peru Marín et al. (2018) 

Solea solea 
(Sole) 

Arnoglossus laterna (Scaldfish), 
Cynoglossus senegalensis (Senegalese 
tonguesole), 
Limanda aspera (Yellowfin sole), 
Lepidopsetta polyxystra (Northern rock sole), 
Pangasianodon hypophthalmus (Pangasius), 
Synaptura lusitanica (Portuguese sole) 

DNA sequencing 
(COI, cytb), 
PCR-RFLP4 
(COI) 

Belgium, 
France, 
Germany, 
Italy 

Bénard-Capelle et al. (2015); 
Pappalardo and Ferrito (2015); 
Kappel and Schröder (2016); 
Christiansen et al. (2018); 
Pappalardo et al. (2018) 

Thunnus sp. 
(Tuna) 

Lepidocybium flavobrunneum (Escolar) DNA sequencing 
(COI) 

Brazil, 
North 
America 

Lowenstein et al. (2009); 
Staffen et al. (2017) 

116S rDNA: 16S ribosomal DNA, 2COI: Cytochrome c oxidase subunit 1, 3cytb: Cytochrome b, 4PCR-RFLP: Polymerase chain reaction-restriction fragment length 
polymorphism 
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Table 2 Exemplary recorded cases of mislabelled crustacean and detection methods.   

Labelled species 
(English name) 

Detected species (English name) Detection method 
(Gene) 

Investigated 
country 

Reference 

Chionoecetes sp. 
(Snow crab) 

Cancer irroratus (Atlantic rock crab) DNA sequencing 
(COI1) 

Canada Shehata et al. (2018) 

Fenneropenaeus indicus 
(Whiteleg shrimp) 

Litopenaeus vannamei (Whiteleg shrimp) DNA sequencing 
(COI, 16S rDNA2) 

South Africa Cawthorn and Hoffman (2017) 

Litopenaeus vannamei 
(Whiteleg shrimp) 

Litopenaeus stylirostris (Blue shrimp), 
Parapenaeopsis sp. (Shrimp), 
Sicyonia brevirostris (Rock shrimp) 

DNA sequencing 
(COI) 
PCR-RFLP3 (16S 
rRNA/tRNA Val4) 

India, 
Italy, 
USA 

Guardone et al. (2017); Stern et 
al. (2017); Wilwet et al. (2018) 

Metapenaeus affinis 
(Shrimp) 

Metapenaeopsis sp. (Shrimp), 
Litopenaeus vannamei (Whiteleg shrimp) 

DNA sequencing 
(COI, 16S rDNA) 

Italy, 
South Africa 

Cawthorn and Hoffman (2017); 
Guardone et al. (2017) 

Metapenaeus dobsoni 
(Shrimp) 

Parapenaeopsis cornuta (Shrimp) DNA sequencing 
(COI) 

Italy Guardone et al. (2017) 

Metapenaeus ensis 
(Shrimp) 

Penaeus monodon (Shrimp) HRM5 

(COI) 
Portugal Fernandes et al. (2017) 

Metapenaeus monoceros 
(Shrimp) 

Metapenaeus affinis (Shrimp) DNA sequencing 
(COI) 

Italy Guardone et al. (2017) 

Nephrops norvegicus 
(Norway lobster) 

Metanephrops australiensis (Lobsterette),  
Metanephrops rubellus (Lobsterette), 
Metanephrops challengeri (Lobsterette)  

Morphological 
analysis 

Italy Meloni et al. (2015) 

Penaeus monodon 
(Shrimp) 

Litopenaeus vannamei (Whiteleg shrimp) DNA sequencing 
(COI, 16S rDNA) 

Germany, 
South Africa 

Cawthorn and Hoffman (2017); 
Günther et al. (2017) 

Penaeus indicus 
(Shrimp) 

Metapenaeus affinis (Shrimp) HRM 
(COI) 

Portugal Fernandes et al. (2017) 

Solenocera melantho 
(Shrimp) 

Parapenaues sp. (Shrimp), 
Pleoticus robustus (Royal red shrimp) 

DNA sequencing 
(COI, 16S rDNA) 

Italy, 
South Africa 

Cawthorn and Hoffman (2017); 
Guardone et al. (2017) 

1COI: Cytochrome c oxidase subunit, 216S rDNA: 16S ribosomal DNA, 3PCR-RFLP: Polymerase chain reaction-restriction fragment length polymorphism, 
416S rRNA/tRNA Val: 16S ribosomal RNA/transfer RNA Val, 5HRM: High resolution melting 
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2. Review of molecular biological methods for fish and 

crustacean species authentication  

According to the Council Regulation (EC) No 1379/2013 on the common organization of the 

markets in fishery and aquaculture, fishery and aquaculture products have to be labelled, 

inter alia, with the commercial designation of the species and its scientific name. The 

member states of the European Union are enforced to draw up and publish a list of the 

commercial designations accepted in their territory, together with their scientific names. 

Only the listed species are allowed to be traded in the respective country. The German list 

contains over 600 fish species, 160 molluscs and 80 crustacean species (BLE, 2018). Due 

to the large number of listed seafood species with different degrees of processing and 

possibly closely related species not authorised for sale, reliable methods of species 

authentication are required, covering as many species as possible. 

Most morphological characteristics, for instance heads, tails and fins in case of fish, or 

external carapace in case of shrimps, are lost during processing (Teletchea, 2009; 

Fernandes et al., 2017; FAO, 2018b). Consequently, morphological species identification 

of smoked, canned or filleted seafood often reaches its limits. In addition, even if the 

morphological characteristics have not been removed, discrimination of closely related 

species is difficult and often needs specialized taxonomists for correct identification (Mafra 

et al., 2008; Tizard et al., 2019). Therefore, it is almost impossible for the consumer as well 

as for the control authorities to ascertain if the purchased seafood is the declared species 

by morphological characteristics. Consequently, control authorities need reliable analytical 

methods for unambiguous species authentication. The European Parliament and Council 

recommend to the national authorities, responsible for monitoring of fishery and aquaculture 

products, to use available technologies, such as DNA-testing, to prevent operators from 

mislabelling catches (Council Regulation (EC) No 1379/2013). 

Standardised methods as basis for a reliable assessment of analytical data and for a 

nationwide standardized quality of examination to ensure a uniform enforcement of existing 

laws are offered by the Official Collection of Methods of Analysis and Sampling (ASU) 

according to § 64 of the German Food and Feed Code (BVL, 2014). The Bundesamt für 

Verbraucherschutz und Lebensmittelsicherheit (Federal Office of Consumer Protection and 

Food Safety) in Germany is responsible for publication of the ASU. It proposed to consider 

new modern analytical methods, such as DNA barcoding and matrix-assisted laser 

desorption ionization time of-flight mass spectrometry (MALDI-TOF MS), to provide the 

control authorities with powerful and standardised methods for their monitoring tasks 

(Szabo et al., 2017). 
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The most common methods for seafood species authentication are protein- or DNA-based 

methods (Horstkotte and Rehbein, 2003; Ortea et al., 2012; Verrez-Bagnis et al., 2018). 

Indeed, all official analytical methods recommended for animal species authentication in the 

ASU are protein- or DNA-based (BVL, 2014). Only one of the four methods concerning 

seafood authentication is protein-based and uses isoelectric focusing (IEF) for fish species 

detection: L 11.00-6 Detection of fish species of native muscle by means of isoelectric 

focusing. A further method recommended for the authentication of fish is the polymerase 

chain reaction-restriction fragment length polymorphism (PCR-RFLP): L 11.00-7 

Identification of fish species in raw and heat-processed fish products. The two other 

methods use DNA sequencing for identification of fish and crustacean, respectively: 

L 10.00-12 Fish species identification in raw fish and fish products by means of sequence 

analysis of cytochrome b sequences and L 12.01-03 Crustacean species identification in 

raw and processed crustacean products by means of sequence analysis of 16S rRNA 

sequences. 

Aside from the content of a respective reference library the suitability of these methods 

depends on the focus of analysis (e.g., species identification, delimitation or detection) and 

the processing grade and storage temperature (e.g., fresh, frozen, smoked). Hereinafter, 

application, advantages as well as disadvantages of existing molecular biological methods 

in the context of the official control of foodstuff as well as recent approaches for fish and 

crustacean species authentication are evaluated.  
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2.1. Protein-based methods 

Although DNA-based methods are mostly applied for seafood species authentication, some 

long-established methods such as IEF are still used due to their simplicity and cost 

efficiency. In addition, MALDI-TOF MS, for which suitability for species identification has 

been proven for several organisms, is increasingly used for seafood species.  

2.1.1. Isoelectric focusing (IEF) 

IEF is based on separating proteins in a polyacrylamide gel using a pH gradient (Rehbein 

et al., 1995; Ortea et al., 2012). After visualization of the proteins by staining, verification is 

performed by comparing the band patterns with those of reference species running on the 

same gel (Verrez-Bagnis et al., 2018).  

Among the protein-based methods, IEF is a cost-effective and simple technique used for 

fish and crustacean species identification (Ortea et al., 2012; Verrez-Bagnis et al., 2018). 

Ortea et al. (2010) showed the potential of species identification using IEF for 14 

commercially important shrimp species of the order Decapoda. Moreover, a wide variety of 

fish species (e.g., fish of the families Gadidae, Clupeidae and Pleuronectidae) was identified 

by the application of IEF (Rehbein, 1990; Abdullah and Rehbein, 2015; Böhme et al., 2015). 

Although IEF is one of the three official analytical methods recommended for fish species 

identification in the ASU, it is less suitable for processed seafood due to the lack of stability 

of some proteins during thermal processing (Rehbein, 1990; Verrez-Bagnis et al., 2018). In 

addition, it needs to be examined whether closely related species, of which at least one is 

the target of the analysis, produce identical or highly similar band patterns (Rehbein, 1990; 

Kappel and Schröder, 2016). Therefore, the scope of IEF is limited (Kappel and Schröder, 

2015). Nevertheless, it is still used as a screening method for fish species identification 

(Abdullah and Rehbein, 2015; Kappel and Schröder, 2016; Verrez-Bagnis et al., 2018). 

Since IEF is quite time-consuming, MALDI-TOF MS offers a faster protein-based approach 

for animal species identification that requires fewer preparation steps (Table 3). 
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2.1.2. Matrix-assisted laser desorption ionization time of-flight mass 

spectrometry (MALDI-TOF MS) 

MALDI-TOF MS is a fast, non-targeted protein-based method being based on co-

crystallization of the sample (whole cell or extracted proteins) on a target plate with an 

energy-absorbing matrix. By the assistance of the matrix, a pulsed laser desorbs and 

ionizes the sample. Subsequently, the generated charged ions of the sample are 

accelerated by a strong electric field, are discriminated according to their mass-to-charge 

ratio, and finally are measured with the time-of-flight mass spectrometer (Figure 1). The 

generated protein spectra are correlated to a database containing reference protein spectra 

for species identification (Pavlovic et al., 2011). 

 

 

Figure 1 Schematic representation of matrix-assisted laser desorption ionization time of-flight 

mass spectrometry (MALDI-TOF MS). First, the sample is co-crystallized on the target 

plate with an energy-absorbing matrix. This matrix assists the desorption and ionisation of 

the samples via a pulsed laser (MALDI). The generated charged ions of the sample are 

subsequently accelerated using a strong electric field. These ions of various sizes are 

discriminated according to the mass-to-charge ratio and measured with the time of flight 

detector mass spectrometer (TOF MS). The generated protein spectra are subsequently 

evaluated against a database containing reference protein spectra for species 

identification. 
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MALDI-TOF MS has become a well-established technique for identification of bacteria and 

fungi (see Seng et al., 2009; Welker, 2011; Wieser et al., 2012; Bader, 2017). In recent 

years MALDI-TOF MS was applied for authentication of several metazoan species such as 

insects (e.g., Perera, 2005; Ulrich et al., 2017), mammals (e.g., Hiller et al., 2017), molluscs 

(e.g., Stephan et al., 2014), fish (e.g., Mazzeo et al., 2008; Volta et al., 2012; Stahl and 

Schröder, 2017) as well as crustacean (e.g., Laakmann et al., 2013; Salla and Murray, 2013; 

Kaiser et al., 2018). However, for the various groups of animals no standardised protocol is 

applied, and up to now the influence of fat-content, storage temperature and level of food 

processing has been studied only to a limited extent. 

In case of molluscs, Stephan et al. (2014) used formic acid including chloroform–methanol 

defatting for protein preparation of fresh and frozen tissues to uncover mislabeling of 

Placopecten magellanicus (Gmelin, 1791) as Pecten maximus (Linnaeus, 1758). Salla and 

Murray (2013) identified skeletal muscles from six shrimps to species level irrespective of 

their storage condition (fresh and frozen) using trifluoroacetic acid for protein preparation. 

Furthermore, Laakmann et al. (2013) showed the suitability of MALDI-TOF MS for the 

discrimination of 11 calanoid copepod species (Crustacea) from tissue fixed in ethanol on 

different developmental stages without preceding protein preparation. Concerning fish 

species identification, Volta et al. (2012) compared protein spectra, yielded from frozen 

muscle and liver prepared with formic acid, of three fish species [Alosa agone (Scopoli, 

1786), Coregonus macrophthalmus Nüsslin, 1882 and Rutilus rutilus (Linnaeus, 1758)] and 

showed that both tissues are suitable for discrimination. Mazzeo et al. (2008) examined 

proteins prepared with trifluoroacetic acid of frozen muscle tissue from 25 fish species of 

the orders Perciformes, Gadiformes and Pleuronectiformes. By applying this protein 

preparation protocol, it was possible, besides genera discrimination, to differentiate species 

within the genus Merluccius. Stahl and Schröder (2017) developed a MALDI-TOF MS 

database of 54 fish species (belonging to 14 orders) using protein spectra prepared with 

trifluoroacetic acid of frozen filets and also assessed the impact of contamination of the 

fillets with bacterial proteins on identification of the fish species. They demonstrated that a 

cell content of about 1% of Escherichia coli, which may be expected on fresh fish filets, 

does not have an impact on fish species identification. 

As for all protein-based techniques, species identification using MALDI-TOF MS has the 

limitation that proteins are less thermostable than DNA. Furthermore, like DNA sequencing 

a comprehensive available background database (reference library) is required. However, 

MALDI-TOF MS possesses great advantages over IEF and several DNA-based methods 

as it requires only few and simple preparation steps along with short analysis times (Wang 

et al., 2012; Stephan et al., 2014; Stahl and Schröder, 2017).   
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2.2. DNA-based methods 

DNA-based methods offer several advantages over protein-based: i) independence of 

sample origin (all cells of an organism contain DNA) and developmental stages (from egg 

to adults or rests), ii) higher information content (down even to populations), and iii) the 

suitability for processed samples (e.g., heated) due to the higher thermostability of DNA in 

contrast to proteins (Wolf et al., 1999; Teletchea, 2009; Ward et al., 2009; Wilwet et al., 

2018). Therefore, three of the four official analytical methods for seafood species 

authentication in the ASU are DNA-based methods, in particular PCR-RFLP and DNA 

sequencing (BVL, 2014). Additionally, the loop-mediated isothermal amplification (LAMP) 

technique is becoming an alternative approach for animal species detection. 

2.2.1. Polymerase chain reaction-restriction fragment length polymorphism 

(PCR-RFLP) 

PCR-RFLP is based on endonucleases that recognize specific restriction sites of an 

amplified fragment and digest them into smaller fragments of different sizes. These 

fragments can be separated by gel electrophoresis and visualized (Teletchea, 2009; 

Hellberg and Morrissey, 2011). 

PCR-RFLP is a much easier to perform and less expensive method than DNA sequencing 

for species identification of seafood (Teletchea, 2009; Pappalardo et al., 2018; Verrez-

Bagnis et al., 2018). For instance, Pascoal et al. (2008) developed a PCR-RFLP method 

for 17 prawn and shrimp species targeting a gene region of 16S ribosomal RNA/transfer 

RNA Val, also used by Wilwet et al. (2018) for authentication of commercially important 

shrimp species in India. In addition, several working groups applied PCR-RFLP for fish 

species identification. Sanjuan and Comesaña (2002) as well as Pappalardo et al. (2018) 

differentiated flatfish species while Sivaraman et al. (2018) used PCR-RFLP for 

authentication of snappers. Furthermore, Frankowski et al. (2009), Rehbein et al. (2002) 

and Gagnaire et al. (2007) used PCR-RFLP for identification of (in sum eight) eel species 

based on the cytochrome b (cytb) or the 16S ribosomal RNA (16S rRNA) gene. 

However, PCR-RFLP is vulnerable to errors due to intraspecific variability as well as 

incomplete enzyme digestion and does not provide the high level of information acquired 

with DNA sequencing (Lockley and Bardsley, 2000; Hellberg and Morrissey, 2011). One of 

the three official analytical methods recommended for fish species identification in the ASU 

uses PCR-RFLP analysis of amplified mitochondrial cytb-DNA fragments (BVL, 2014). 

However, this method is used only to a limited extent in the official control of foodstuff since 

there are other methods available offering more advantages, for instance DNA sequencing 

(Kappel and Schröder, 2015).  
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2.2.2. DNA sequencing  

The DNA sequencing technique includes several steps. First, amplification of a specific 

DNA fragment using PCR and purification steps. Subsequently, the DNA sequence is 

determined using the didesoxy terminator DNA sequencing method developed by Sanger 

et al. (1977). For species identification, the generated sequence is matched to reference 

sequences in a DNA database through phylogenetic analysis (FINS: Forensically 

informative nucleotide sequencing) or similarity searches.  

The most commonly used DNA-based techniques for fish species identification are based 

on amplification of mitochondrial DNA (Mafra et al., 2008; Verrez-Bagnis et al., 2018). The 

advantages of mitochondrial DNA in contrast to nuclear DNA are i) much faster evolution, 

ii) higher copy number (approximately 100-1000 times higher) and iii) for many aquatic 

organisms complete mitochondrial DNA sequences are known (Chow et al., 1997; Mackie 

et al., 1999; Teletchea et al., 2005; Rasmussen and Morrissey, 2008; Wilwet et al., 2018). 

The choice of the most suitable DNA gene region (marker) is essential for reliable species 

identification of the target group. This marker needs high interspecific and low intraspecific 

sequence variation for discrimination between the selected species, conserved regions as 

binding sites for universal primers to ensure amplification across a wide taxonomic range, 

as well as enough available reference sequences in the database (Dawnay et al., 2007; 

Hellberg and Morrissey, 2011; Ferrito and Pappalardo, 2017). In cases of species 

identification of marine animals, the three mitochondrial genes cytb, 16S rRNA and the 

‘DNA-barcode’, cytochrome c oxidase subunit 1 (COI) are the most frequently used (see 

Verrez-Bagnis et al., 2018). For instance, Jamandre et al. (2007) analysed three Anguilla 

species via sequencing of cytb and 16S rDNA and Lago et al. (2012) used FINS of cytb for 

differentiation of twelve eel species. Furthermore, Shehata et al. (2018) analysed over 300 

seafood species in the regulatory context in Canada by COI sequencing. Comparing the 

applicability of cytb, COI and 16S rDNA using 50 European marine fish species (of 20 

different families) Kochzius et al. (2010) revealed discrimination failure of 16S rDNA for 

closely related flatfish and gurnard species.  

Most control authorities in Germany still use DNA-sequencing of a cytb fragment for fish 

species identification (BVL, 2014; Kappel and Schröder, 2015). Nevertheless, COI 

sequencing is currently discussed for implementation in the ASU for fish species 

identification (Kappel and Schröder, 2015). Furthermore, it is applied in many other 

countries (e.g., Brazil, Canada and the United States) as a regulatory tool for seafood 

species identification in terms of combating food fraud (Shehata et al., 2018).  
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Hebert et al. (2003) proposed a region of COI of about 650 base pairs (bp) at its 5’-end as 

the standard ‘DNA-barcoding’ gene for metazoan species identification. The main 

advantages of COI over other mitochondrial genes are the potentially higher phylogenetic 

signal and the availability of robust universal primer-sets for this region, covering most of 

the animal phyla (Folmer et al., 1994; Hebert et al., 2003; Hebert et al., 2016a). A huge 

variety of studies has shown the potential of unambiguous species identification of animals 

via COI sequencing, such as mammals (e.g., Bitanyi et al., 2011; Kumar et al., 2018; Kundu 

et al., 2019), birds (e.g., Hebert et al., 2004; Huang and Ruan, 2018; Tizard et al., 2019), 

and insects (e.g., Hausmann et al., 2011; Hebert et al., 2016b; Ashfaq et al., 2018).  

Furthermore, the potential of COI sequencing for fish and crustacean species identification 

was shown by several working groups (e.g., Radulovici et al., 2009; Haye et al., 2012; Nicolè 

et al., 2012; Raupach et al., 2015; Muñoz-Colmenero et al., 2016; Shen et al., 2016; Staffen 

et al., 2017; Stern et al., 2017; Mantelatto et al., 2018; Sarmiento-Camacho and Valdez-

Moreno, 2018). Besides COI, 16S rDNA is the most used gene region for crustacean 

species identification (Pascoal et al., 2011; Ortea et al., 2012; Cawthorn and Hoffman, 2017; 

Lee et al., 2017; Mantelatto et al., 2018; Verrez-Bagnis et al., 2018). In the ASU DNA 

sequencing of a 16S rDNA fragment is recommended for crustacean species identification 

(BVL, 2014). However, this method has some limitations. For instance, it is not suitable for 

analysing species of the shrimp genus Crangon because no suitable amplicons are 

obtained (BVL, 2014).  

With DNA sequencing the largest amount of information from PCR fragments is produced 

directly (Lockley and Bardsley, 2000; Civera, 2003; Rasmussen and Morrissey, 2008). The 

possibility of using ‘universal’ primers enables obtaining DNA sequences of a wide range of 

animals without prior knowledge of the animal species. Therefore this technique is suitable 

for seafood species that are often sold processed (e.g., eviscerated, beheaded, skinned, 

filleted) and thus lose their morphological characteristics (Mafra et al., 2008; Tizard et al., 

2019). DNA sequencing is one of the most commonly applied DNA based techniques for 

seafood species identification (see Teletchea, 2009; Verrez-Bagnis et al., 2018). In recent 

years, it was widely used for revealing food fraud (Table 1 and Table 2). However, DNA 

sequencing is comparatively time-consuming and needs several preparation steps (Gil, 

2007; Laakmann et al., 2013; Fernandes et al., 2017). Furthermore, a reference database 

is required for data analysis, as in case of MALDI-TOF MS (Table 3).  
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One of the most frequently used DNA database for species identification is GenBank (of the 

National Institute of Health (NIH), built and distributed by the National Center for 

Biotechnology Information (NCBI): http://www.ncbi.nlm.nih.gov). GenBank contains over 5 

million mitochondrial animal sequences (March 2019). The sequences of GenBank can be 

searched and aligned using BLAST (Basic Local Alignment Search Tool) whereby 

similarities between a query sequence and GenBank sequences can be detected (Benson 

et al., 2017). However, species identification of sequences in GenBank often is highly 

doubtful and usually cannot be checked (Vilgalys, 2003; Federhen, 2015). 

Another often used database is the Barcode of Life Data System (BOLD: 

http://www.boldsystems.org) from the Consortium for the Barcode of Life (CBOL). This 

database mainly uses the COI gene for animal identification and contains over 8 million 

public animal COI sequences (March 2019). BOLD has the aim to build a barcode library 

for all eukaryotic life by using standard protocols (Ratnasingham and Hebert, 2007). 

Sequences in BOLD which gained the ‘barcode status’ include voucher specimen with 

taxonomic identifications and further data (Ratnasingham and Hebert, 2007). COI 

sequences and data, which are publicly accessible in BOLD, are regularly migrated to 

GenBank (Ratnasingham and Hebert, 2007). Furthermore, BOLD imports COI sequences 

and data fulfilling the requirements of BOLD (Raupach and Radulovici, 2015). 

2.2.3. Loop-mediated isothermal amplification (LAMP) 

The LAMP developed by Notomi et al. (2000) is a highly specific and rapid technique 

running under isothermal conditions. For this technique a set of two inner and two outer 

primers (each consist of one forward and one reverse primer), as well as a polymerase with 

high strand-displacement activity is used (Figure 2). The outer primers are only used in the 

initial steps of the reaction, in combination with the inner primers. One of the resulting DNA 

structures of the initial steps is a stem-loop. The yielded stem-loop is the starting material 

for the subsequent cycling reaction and only requires the inner primers. The inner primers 

consist of two sequences (one corresponds to the sense and the other to the antisense 

sequence of the target DNA) and a spacer between them. The antisense sequence binds 

in the first steps for elongation whereas the sense sequence is for self-priming in the later 

steps. The final products after the elongation and recycling step are different stem-loop DNA 

and cauliflower-like structures with several loops (Notomi et al., 2000; Notomi et al., 2015). 
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Figure 2 Schematic representation of the first stages of loop-mediated isothermal 

amplification (LAMP) analogous to Notomi et al. (2000). The forward inner primer 

(FIP) consists of the F2 sequence (corresponding to the sense sequence of the target 

DNA F2c) a spacer, and the F1c sequence (corresponding to the antisense sequence of 

the target DNA F1). The reverse inner primer (BIP) consists of the B2 sequence, a spacer 

and the B1c sequence. The outer primers are F3 (forward) corresponding to the sense 

sequence of the target DNA F3c and B3 (reverse), respectively. In the initial steps, the 

inner and outer primers are used. DNA synthesis could start with FIP or BIP primer. Here 

starting with the FIP primer is described. FIP binds to the sequence F2c of the target 

DNA and initiates synthesis of the complementary strand. When F3 binds to the 

sequence F3c of the target DNA, it initiates DNA synthesis via strand displacement (1). 

One of the resulting DNA is a double strand (2) and the other is a single strand with a 

loop structure at one end (3). Now the BIP primer binds to the other end of the single 

strand as well as the B3 primer, leading again to DNA synthesis via strand displacement 

as described above. One of the resulting DNA is a double strand (4). The resulting dumb-

bell structure is converted to a stem-loop due to self-priming DNA synthesis (5). This 

stem-loop serves as starting material for the second stages of the LAMP reaction (cycling 

reaction) whose first step is illustrated in the figure above (6) where again FIP binds to 

the DNA. For further steps of the cycling reaction as well as for elongation and recycling 

step, leading to the final products of different stem-loop DNA and cauliflower-like 

structures with several loops, see Notomi et al. (2000). 
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In contrast to PCR, which uses heat, strand separation of the DNA within LAMP is 

performed using enzymatic activity (Tanner et al., 2012). For detection of positive LAMP 

reactions, techniques such as visual detection using DNA-binding dyes, turbidity detection 

of precipitated magnesium or gel electrophoresis are applied subsequently to the reaction 

(see Tanner et al., 2012; Zhang et al., 2014; Wong et al., 2018). Furthermore, real-time 

fluorescence detection and subsequent melting curve analysis can be performed on 

instruments such as real-time cyclers or real-time fluorimeters [e.g., the portable Genie 

instrument from OptiGene (Horsham, United Kingdom), specially designed for isothermal 

amplification]. 

LAMP has already been successfully applied for detection of bacteria and viruses (Notomi 

et al., 2000; Fu et al., 2011; Dhama et al., 2014) as well as for plant species in herbal 

medicine and food (Focke et al., 2013; Li et al., 2016). Due to its high specificity and short 

analysis time identification of meat species using LAMP is becoming an alternative 

approach to PCR-based methods, such as for detection of poultry and mammalian species 

(Ahmed et al., 2010; Abdulmawjood et al., 2014; Cho et al., 2014; Sul et al., 2019). In case 

of seafood species detection Ye et al. (2017) developed a LAMP assay, based on COI as 

target gene, for identification of the jumbo flying squid Dosidicus gigas (D’Orbigny, 1835). 

Furthermore, Saull et al. (2016) developed a LAMP assay for discrimination of Atlantic cod 

(Gadus morhua Linnaeus, 1758) from Pacific cod (Gadus macrocephalus; Tilesius, 1810) 

and pollock (Gadus chalcogrammus Pallas, 1814), based on cytb as target gene, for the 

analysis of frozen and smoked fish fillets. 

The main advantages of the LAMP technique are that it is less prone to inhibitors and more 

sensitive than PCR (Notomi et al., 2000; Keremane et al., 2015; Wong et al., 2018). 

Furthermore, it needs only easy to handle equipment (no thermal cycling equipment is 

required in contrast to PCR) making it suitable for on-site analysis (e.g., field studies). 

However, for development of LAMP assays prior sequence information of the target DNA 

sequence is required and it is limited to a defined species spectrum, as for all species-

specific techniques (Lockley and Bardsley, 2000).   
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Table 3 Comparison of existing molecular biological methods for marine species 
authentication in the context of official control of foodstuff and recent 
approaches for fish and crustacean species. 

 Simple 

protocol 

Analysis 

time1 

Main 

advantage2 

Main 

disadvantage(s)3 

ASU4-

method 

Protein-based 

IEF5 - +++ Easy to perform Time-consuming x (Fish) 

MALDI-TOF MS x + Fast Database required - 

DNA-based 

PCR-RFLP7 - +++ Cost-effective Incomplete 
enzyme digestion 

x (Fish & 

Crustacean)  

DNA sequencing - ++++ Quantity of 
information 

Time-consuming, 

database required 

x (Fish & 

Crustacean) 

LAMP8 x ++ Fast Limited to a 
defined species 
spectrum 

- 

Methods marked with an ‘x’ indicate that they exhibit the corresponding feature.  
1Analysis time: time required from the extraction of DNA/protein to result, 2Main advantage compared to the 
other listed methods, 3Main disadvantage compared to the other listed methods, 4ASU: Official Collection of 
Methods of Analysis and Sampling according to § 64 of the German Food and Feed Code (Lebensmittel-und 
Futtermittelgesetzbuch; LFGB) in case of food monitoring, 5IEF: Isoelectric focusing, 6MALDI-TOF MS: Matrix-
assisted laser desorption ionization time of-flight mass spectrometry, 7PCR-RFLP: Polymerase chain reaction-
restriction fragment length polymorphism, 8LAMP: Loop-mediated isothermal amplification 
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3. Aims of the thesis  

Due to the many reported cases concerning mislabelling of seafood products, food control 

authorities require reliable methods to protect the consumer against deceit and health risks 

or to uncover trade or consumption of protected species.  

Consequently, the first aim of this thesis was to establish DNA- and protein-based molecular 

biological methods for seafood species authentication, in particular fishes and crustaceans. 

The second aim was to compare these methods for suitability to authenticate seafood 

species enabling the control authorities to select appropriate methods to combat food fraud. 

MALDI-TOF MS as protein-based and DNA sequencing as well as LAMP as DNA-based 

methods were evaluated for their suitability for seafood species authentication. In particular, 

it was ascertained which molecular biological method should be preferred for a particular 

focus of analysis (species identification, delimitation or detection), as well as for which 

processing grade and storage temperature (fresh, refrigerated, frozen, cooked or smoked).  

DNA sequencing as well as MALDI-TOF MS show some limitations, such as the need for 

expensive and bulky equipment as well as DNA sequence- or protein spectra-databases. 

The LAMP technique offers an alternative when the focus of analysis is the delimitation of 

two species or specific detection of known species. This technique can be easily performed 

with portable equipment for a fast on-site analysis. Suitability of LAMP for fish was already 

shown for identification of frozen and smoked Atlantic cod (Gadus morhua Linnaeus, 1758) 

filets. However, applicability of LAMP had not yet been shown for fish eggs. Besides, cases 

of mislabelling of the critical endangered European eel [(Anguilla anguilla (Linnaeus, 1758)] 

as Japanese eel (Anguilla japonica Temminck & Schlegel, 1846) as well as wrong stocking 

of American eel [Anguilla rostrata (Lesueur, 1817)] instead of European eel in European 

waters were reported. Consequently, delimitation of the critical endangered European eel 

from the other eel species of the genus Anguilla is of high relevance. Therefore, one part of 

the thesis was to examine the suitability of LAMP assays for species delimitation on frozen 

and smoked fish as well as fish eggs. This was performed by developing assays for specific 

detection of DNA of Anguilla anguilla and of the genus Anguilla respectively.  
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For analysis of unknown species MALDI-TOF MS, a much faster approach than DNA 

sequencing due to fewer preparation steps, can be applied. Suitability of animal species 

identification was shown by several working groups (e.g., for crustacean, fish, molluscs, 

mammals as well as insects). However, the influences of the preparation protocol, fat-

content, storage temperature and level of food processing have been studied only to a 

limited extent. Therefore, using fish as an example, the suitability of five preparation 

methods for proteins were compared for subsequent MALDI-TOF MS analysis. 

Furthermore, influence of different fat-content, storage temperature, and level of food 

processing (fresh, refrigerated, frozen, cooked and smoked) on identification suitability and 

reproducibility were examined in this thesis by using high-fat Atlantic mackerel (Scomber 

scombrus Linnaeus, 1758) and low-fat rainbow trout [Oncorhynchus mykiss (Walbaum, 

1792)] as representatives.  

In case of DNA sequencing, the available official control method in the food monitoring 

sector for fish species identification based on cytb is currently discussed to be 

supplemented with COI sequencing. However, the official method for crustacean species 

identification via DNA sequencing of a 16S rDNA fragment has some limitations. Therefore, 

suitability of another 16S rDNA marker region and the COI barcoding region were examined 

for species identification of crustacean of the most consumed order Decapoda in 

comparison with the official control method.  
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Abstract 

Rapid and reliable methods for fish authentication are required in order to protect 

consumers against food fraud. Matrix-assisted laser desorption ionization time of-flight 

mass spectrometry (MALDI-TOF MS) is known as a fast and accurate method for 

microorganisms. In this study the effect of five preparation protocols for fish samples on the 

quality and reproducibility of spectra using the MALDI Biotyper platform were evaluated. 

The suitability of the protocols for the identification of high-fat Atlantic mackerel (Scomber 

scombrus) and low-fat rainbow trout (Oncorhynchus mykiss) was examined in dependence 

on different storage temperatures and levels of food processing (fresh, refrigerated, frozen, 

cooked and smoked).  

The results of the present study showed that acquisition of reproducible and high quality 

main spectra projections for high-fat and low-fat fishes in fresh and frozen states was only 

possible by sample preparation with 25% formic acid followed by chloroform-methanol 

defatting. MALDI-TOF MS based identification was also possible after treating samples at 

99 °C for 5 min but not for smoked fish. Furthermore, log score values for identification of 

frozen fish remained stable even after fourteen months of storage at -20 °C. 
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Introduction 

Fish is one of the most common food products susceptible to fraudulent labelling. A current 

example is the mislabeling of less expensive tonguefish (Cynoglossus spp.) as common 

sole (Solea solea) [1] or the replacement of European plaice (Pleuronectes platessa) by 

dab (Limanda limanda) and flounder (Platichthys flesus) [2]. Moreover, consumer deception 

can also cause health risks. The sale of specimens assigned to the family Tetraodontidae 

(puffer fish) as monkfish (Lophius spp.) is one of these cases. Puffer fish may contain lethal 

amounts of the toxic neurotoxin tetrodotoxin, which may lead to paralysis and potential 

death [3]. Rapid and reliable methods for fish authentication are required in order to protect 

consumers against food fraud. 

Identification of fish species within the context of official control of foodstuffs in Germany is 

currently performed via sequencing of a fragment of the mitochondrial cytochrome b (cytb) 

gene [4]. But sequencing is a time consuming process including several steps like DNA 

extraction, PCR, purification of the PCR product, sequencing, and evaluation of the results. 

Therefore, several working groups studied the potential of matrix-assisted laser desorption 

ionization time of-flight mass spectrometry (MALDI-TOF MS) for fish and, more broadly 

seafood [5–9]. MALDI-TOF MS has emerged as a rapid and accurate method for the 

identification of microorganisms, but has already been successfully employed for species 

identification of eukaryotic cell lines or insects [10, 11]. This technology is used to identify 

genera and species via the generation of fingerprints of highly abundant proteins followed 

by correlation to reference spectra in a database. As shown by Mazzeo et al. MALDI-

TOF MS can discriminate between Merluccius species [5]. Due to short turnaround times, 

low sample volume requirements and low reagent costs, MALDI-TOF MS has recently 

emerged as a powerful tool for the routine identification of microorganisms [12, 13].  

For identification of bacteria by MALDI-TOF MS universal sample preparation protocols are 

generally available: the standard extraction protocol with 70% formic acid (FA) and a 

protocol typically used for spore-formers with 80% trifluoroacetic acid (TFA) [14, 15]. A 

similar universal protocol for fish has yet to be established. Various procedures have been 

published so far. Mazzeo et al. [5] used 0.1% TFA for sample preparation of fish specimen, 

while Stephan and co-workers [8] published a sample preparation protocol in which the 

seafood specimens are treated with 25% FA and chloroform-methanol. A third protocol was 

performed by Rau and colleagues (CVUA Stuttgart, Germany, personal communication). 

Here, zirconia beads are used for additional mechanical disruption. So far, this protocol has 

successfully been used for identification of land animals by MALDI-TOF MS, but has not 

been tested for seafood so far. 
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The aim of this study was to evaluate the potential of each protocol to generate high-quality 

and reproducible mass spectra for high- and low-fat fish, dependent on different storage 

conditions and levels of food processing (fresh, frozen, refrigerated, cooked and smoked). 

Moreover, it was determined whether the protein fingerprints of frozen fish specimen were 

stable enough to enable accurate species identification over a longer storage period. 

Material and methods 

Fish sampling and processing 

A low-fat and a high-fat fish were chosen as sample materials: the rainbow trout 

(Oncorhynchus mykiss) which contains about 2% fat [16] and the Atlantic mackerel 

(Scomber scombrus) with about 12% fat content [17]. In total, two fresh and two smoked 

specimens of both species were purchased from the local market. For further analysis 

muscle tissue of the fish was used. The smoked fish were stored at +4 °C until use within 

three days. Each of the fresh fish specimens was cut into smaller parts. One part of 

approximately 20 cm3 was frozen (-20 °C), one part of approximately 20 cm3 was stored in 

a refrigerator for a maximum of seven days at +4 °C and one part of approximately 1 cm3 

was treated at 99 °C for 5 min before protein extraction. A further part of the fish was 

subjected immediately to MALDI-TOF MS analysis. 

DNA Extraction and cytb sequencing 

DNA was extracted from four grams of fish muscle using a modified 

cetyltrimethylammonium bromide (CTAB) protocol [18]. For molecular species 

identification, a fragment of mitochondrial cytb gene was chosen. Amplification by PCR and 

sequencing was performed as described in conformity with the official collection of analytical 

methods according to ASU § 64 of the German Food and Feed Code [4]. The cytb fragment 

was amplified in 50 μl reactions in a Mastercycler® gradient cycler (Eppendorf, Hamburg, 

Germany). The reaction mixtures contained 0.5 μM of each primer (L14735 5’-

AAAAACCACCGTTGTTATTCAACTA-3’ and H15149ad 5’-

GCICCTCARAATGAYATTTGTCCTCA-3’), 1.5 mM MgCl2, 200 μM each dNTP as well as 

0.05 U μl-1 HotStarTaq-DNA-polymerase. All PCR reagents were purchased from Qiagen 

(Hilden, Germany). The PCR program consisted of an initial activation step for 15 min at 

95 °C followed by 35 cycles of denaturation for 40 s at 95 °C, annealing for 80 s at 50 °C, 

extension for 80 s at 72 °C and a final extension step for 10 min at 72 °C. Amplicons were 

sequenced using the ABI Prism® 3130 Genetic Analyzer (Applied Biosystems, USA) and 

queried against the Basic Local Alignment Search Tool (BLAST).  
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MALDI-TOF MS 

Sample preparation 

Five different sample preparation protocols for MALDI-TOF MS analyses of fish muscle 

tissue were compared (Table 1).  

Independent of the protocol applied, 1.0 µl of the supernatant was spotted on a polished 

steel target (Bruker Daltonics, Bremen, Germany). Immediately after drying 1.0 µl of the 

matrix solution was added to each spot and dried at room temperature. A saturated a-cyano-

4-hydroxy-cinnamic acid (4-HCCA, Bruker Daltonics) solution dissolved in 50% (v/v) 

acetonitrile with 2.5% (v/v) TFA was added with subsequent air drying at room temperature.  

Protocol A: 70% FA  

FA extraction was performed according to standard sample preparation procedure for 

bacteria [14]. 10 mg fish sample were mixed with 200 µl 70% FA (Sigma-Aldrich Chemie 

GmbH, Taufkirchen, Germany). After vortexing, 200 µl of acetonitrile (Carl Roth GmbH, 

Karlsruhe, Germany) were added and mixed thoroughly. The homogenate was centrifuged 

at 20,000 x g for 2 min.  

Protocol B: 0.1% TFA 

100 mg fish sample were homogenized in 500 µl of 0.1% TFA (abcr GmbH, Karlsruhe, 

Germany) according to Mazzeo et al. [5]. Subsequently, the sample was vortexed for 30 sec 

and centrifuged for 2 min at 20,000 x g. 

Protocol C: 80% TFA 

10 mg fish sample were homogenized in 50 µl of TFA (80%) using micropistils. The sample 

was incubated at room temperature for 10 min. Subsequently, 150 µl of 

Diethylpyrocarbonate (DEPC) water (Pyrogen-free, Invitrogen, Carlsbad, USA) and 200 µl 

acetonitrile were added. The sample was vortexed for 10 sec and centrifuged for 2 min at 

20,000 x g [15].  

Protocol D: Zirconia beads in 50% acetonitrile and 2.5% TFA 

5 mg zirconia beads (0.1 mm, Biospec Product, Carl Roth GmbH,) and 100 µl organic 

solvent (50% (v/v) acetonitrile with 2.5% (v/v) TFA) were added to 5 mg fish muscle tissue. 

The sample was homogenized using a micropistil, vortexed for 15 sec and centrifuged for 

2 min at 20,000 x g according to the protocol performed by Rau for meat sample preparation 

(CVUA Stuttgart, Germany, personal communication).  
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Protocol E: 25% FA including chloroform-methanol defatting 

5 mg fish sample were homogenized in 100 µl of FA (25%) using a micropistil and vortexed 

for 5 sec. After adding 100 µl of chloroform (Carl Roth GmbH) and 100 µl of methanol 

(Fisher Scientific GmbH, Schwerte, Germany) the sample was vortexed for 30 sec and 

centrifuged for 2 min at 20,000 x g [8].  

Sample measurement 

The MALDI-TOF MS measurements were performed on a microflex LT mass spectrometer 

(Bruker Daltonics) equipped with a 60-Hz nitrogen laser. All spectra were recorded in a 

linear positive detection mode within a mass range from 2,000 to 20,000 Da using 

FlexControl Version 3.4 Software (Bruker Daltonics) at the minimum laser power necessary 

for ionization of samples. Bacterial Test Standard (Bruker Daltonics) was used for mass 

calibration before a set of sum spectra was acquired and used as reference standard in 

every run.  

For generation of a main spectra projection (MSP) 24 sum spectra were performed. A MSP 

is a reduced reference spectrum calculated from sum spectra by considering only a 

predefined number of reproducible peaks (here 100 peaks that had to occur in at least 25% 

of the spectra) with high intensities and high signal-to noise ratios. Each sample was spotted 

on eight positions of the target and sum spectra of each position were acquired in triplicate 

by collecting 240 laser shots for each sum spectra. For verification of a MSP samples were 

measured in duplicates. 

Quality control of acquired raw spectra  

All 24 sum spectra were imported into flexAnalysis Version 3.4 software (Bruker Daltonics). 

Baseline correction, smoothing and quality control were performed according to the criteria 

previously published by Zeller-Péronnet et al. [19]. The measurement deviation was 

examined in a mass range of 3.000 to 10.000 Da. Single spectra with more than 500 ppm 

variance from the average mass to charge ratio were removed. 

MSP creation and in-house fish species database 

Sum spectra that passed the manual quality check were uploaded using the Biotyper OC 

3.1 software. MSPs were created with the standard Biotyper algorithm. The software setting 

for MSP creation was: maximal mass error of each single spectrum: 2,000; desired mass 

error for the MSP: 200; desired peak frequency minimum (%): 25; maximal desired peak 

number of the MSP: 70. MSPs were added to the main spectra in-house fish species 

database.  



5. Publication II 
 

42 
 

Verification of the MSP 

The validity of the MSP was verified by repeating all sample preparations with a second 

specimen of both species in duplicates and two technical replicates in MALDI-TOF MS 

analysis. Acquired spectra were compared to the in-house fish species database using the 

Biotyper OC software (version 3.1). The resulting log (score) value represents the 

probability that the match is correct.  

Stability test for mass spectra of frozen fish 

Furthermore a fourteen-month long stability test of mass spectra was performed for the 

frozen O. mykiss and S. scombrus specimen. Samples were prepared in duplicate 

according to protocol E (25% FA including chloroform-methanol defatting). Once a month, 

two technical replicates of two independent sample preparations were analysed and the 

resulting mass spectra were searched against the in-house fish species database. 

Results 

Cytb gene sequencing 

Sequence analysis of a cytb fragment was used as reference method for the identification 

of the eight fish specimen used in this study. The generated cytb sequences of the four 

rainbow trouts were identified with homologies between 99% and 100% as O. mykiss, while 

the generated cytb sequences of all four Atlantic mackerels showed 100% homology to S. 

scombrus (Table 2). 

Choice of sample preparation protocol 

24 separate sum spectra (eight spots with three technical replicates) of frozen and fresh 

aliquots of fish specimen S1_1 and S3_1 (Table 2) were collected for each protocol. 

Preliminary MSPs were calculated from the respective successfully acquired sum spectra. 

Spectra reproducibility was tested by using a second specimen (S1_2 and S3_2) (Table 2). 

Here, two independent sample preparations with two technical replicates were performed 

for each protocol. Further criteria for the selection of the optimal protocol were the average 

number of peaks with a signal to noise ratio (S/N) higher than three and an average (S/N) 

value for the fifteen most intense peaks. The results are summarized in Table 3.  

Considering the common criteria of at least 20 sum spectra required for MSP calculation 

[19] only protocol E was successful for both species and both processing grades. 

Furthermore, only processing of fresh and frozen S. scombrus with protocol B complied with 

the above-mentioned criteria. Application of all other protocols resulted in yields between 

one and thirteen of 24 sum spectra.  
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For evaluation of spectra, log score values resulting from analysis of a second specimen, 

are meaningful. Criteria for the identification of microorganisms via MALDI Biotyper are as 

follows: scores values equal or greater than 2.300 indicate highly probable species 

identification, values between 2.000 and 2.299 indicate a secure genus and probable 

species identification, values between 1.700 and 1.999 indicate probable genus 

identification and score less than 1.700 are considered as unreliable identification. 

However, these criteria may vary for specific phylogenetic groups of fish. It is necessary to 

carry out further studies with closely related fish species to set limits for their MALDI-

TOF MS based classification. Log scores between 1.94 and 2.38 were obtained for both 

fish species using protocol E. Protocol D showed good reproducibility for O. mykiss 

obtaining log scores of 2.36 and 2.45. However, protocol D failed for S. scombrus. As only 

two and accordingly seven of 24 sum spectra were generated for preliminary MSP 

generation, no spectra acquisition for identification was possible. The lowest reproducibility 

with log scores of 1.21 and 1.63 was found for fresh O. mykiss using protocols A and B. 

However, for fresh S. scombrus spectra, high reproducibility and satisfactory yield of sum 

spectra were obtained using protocol B. For frozen S. scombrus in turn protocol B resulted 

in the lowest reproducibility of all five protocols with an average log score of 1.74.  

When looking at the number of peaks with S/N ratio higher than three, the maximum for 

frozen and fresh S. scombrus of 100 and accordingly 92 was obtained using protocol E. 

Protocol E also resulted in the maximum number of peaks for fresh O. mykiss (n=99). 

Taking into account the ranges of values peak number obtained with protocols E and D 

were comparable for frozen O. mykiss (n=74 ± 15 and n= 82 ± 12). The lowest number of 

peaks for O. mykiss was observed by using protocol C (n=57 ± 7 and n= 31). In case of S. 

scombrus protocol A resulted in the lowest number of peaks, which in turn also had the 

largest relative standard deviation (n=45 ± 14 and n= 59 ± 18). 

In conclusion, protocol E was chosen as standard protocol for generation of an in-house 

MSP library for fish species. All in all, spectra reproducibility, yield of sum spectra and the 

resulting number of peaks were superior to the other protocols.  

Influence of the storage period on the quality of spectra 

Since fresh fish is very perishable and was possibly already longer frozen at the time of 

purchase, the influence of the storage period on the quality of spectra was examined for 

fresh and frozen fish. For this purpose, an aliquot of approximately 20 cm3 was stored at -

20 °C for up to fourteen months, while another aliquot of approximately 20 cm3 was stored 

at +4 °C for seven days. 
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After a defined storage time, samples S1_2 and S3_2 were analyzed twice using protocol 

E and matched against the MSPs of samples S1_1 and S3_1 that were generated after 1 

day storage at the respective temperature using protocol E. For fresh fish, log scores 

decreased from 1.94 and 2.31 to 1.83 and 1.78 already after one week of storage at +4 °C 

(Table 4). In contrast, spectra were stable even after fourteen months of storage at -20 °C 

for both fish species (Figure 1 and Figure 2): the respective log scores still had values of 

2.44 (O. mykiss) and 2.39 (S. scombrus) (Table 4).  

Influence of processing and sample preparation on identification results 

In the further course of the study it was determined whether MSPs generated from frozen 

fish by protocol E were suitable for accurate identification i) of fresh, refrigerated, and 

processed fish (cooked and smoked) and ii) of fish samples that were treated with an 

alternative sample preparation protocol. The results are summarized in Table 5. It could be 

shown that MSPs generated from frozen fish by protocol E provide reliable identifications 

of fresh and cooked fish samples. Since the corresponding log scores are generally higher 

than 2.0. For O. mykiss no significant differences in the probability of correct identification 

where observed between frozen and cooked samples (log score 2.38 vs. 2.42), while log 

scores for S. scombrus decreased from 2.31 to 2.01 after cooking. However, acquisition of 

reproducible spectra from smoked fishes as well as identification via MSPs from frozen 

samples both failed, being reflected by log scores of 1.40 for O. mykiss and 0.35 for 

S. scombrus. 

With regard to sample preparation using alternative protocols, clear differences in the effect 

on identification quality of both fish species were observed. Spectra from frozen O. mykiss 

treated with protocol B yielded a log score of 1.79 when matched against MSPs acquired 

by using protocol E. Apart from this, all spectra generated from fresh, frozen or cooked 

O. mykiss resulted in log scores higher than 2.0, independent of the protocol used. In 

contrast, species identification of S. scombrus failed when varying processing grade and 

sample preparation protocol. Even for frozen samples, preparation via protocol B resulted 

in a log score of 0.79, which does not permit species identification. Moreover, it was not 

possible to acquire sum spectra using protocol D for fresh, frozen and cooked S. scombrus.  
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Discussion 

MALDI-TOF MS is accepted as a fast and reliable technology usually applied for bacterial 

species identification. Concerning bacteria MALDI-TOF MS has certain advantages over 

genotypic techniques including speed of analysis, wide applicability and the simple 

procedure of analysis [12]. Exactly such a method is needed in order to counteract against 

the not uncommon practice of fraudulent as well as unintentional mislabeling of fish and 

fishery products.  

Several working groups have published first results of seafood species identification using 

MALDI-TOF MS. While a key benefit of MALDI-TOF MS based bacterial species 

identification is the availability of a universal sample preparation protocol, there are various 

protocols for seafood species identification [5–9]. 

The aim of this study was to evaluate various protocols for MALDI-TOF MS based 

identification of fish species to enable exchange of spectra between working groups as well 

as the set-up of a common database. The quality of the underlying database is a critical 

factor concerning the accuracy of the identification. The use of taxonomically verified fish 

specimens is a prerequisite for a correct database. Furthermore, the accuracy of species 

identification rises with the number of reference spectra present for each species [12, 20]. 

In case of bacterial species identification, at least five MSPs of each species are considered 

as necessary to ensure reliable identification [20].  

Identification and subsequent delineation of fish species is only possible if a good number 

of reference spectra of all relevant species are available. Creation, maintenance and 

validation of a fish species database is time-consuming − particularly in view of the fact that 

until now there is no commercial MALDI-TOF MS database for animal species available. 

The collective work of several laboratories on a common, ideally global database is required 

to overcome this obstacle. Therefore, an appropriate standard protocol has to be selected 

first. All in all, of the five protocols compared in this study, protocol E using 25% FA for 

extraction followed by chloroform-methanol defatting showed the best results concerning 

spectra yield, reproducibility and number of peaks. This protocol has originally been 

published by Stephan and co-workers [8] for the identification of scallop species. By using 

sinapic acid instead of 4-HCCA the authors were able to prove the mislabeling of several 

Placopecten magellanicus specimen as Pecten maximus. They also showed a high 

resolution on species level through their ability to distinguish the two Argopecten species A. 

irradians and A. purpuratus by MALDI-TOF MS analysis. 

Differences between the evaluated protocols were much more pronounced for the high-fat 

S. scombrus than for the low-fat O. mykiss (Table 3). The good performance of protocol E 

for S. scombrus may be explained by the defatting step. 
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Despite the universal sample preparation protocol for bacterial isolates, experience gained 

there shows that some groups need a special sample preparation procedure to improve 

spectra quality and significance [21]. That can, of course, also be the case for fish. Even 

though protocol E is now used as the protocol of choice in our laboratory and has already 

been used for successful generation of MSP from several fish species, it cannot be excluded 

that an alternative protocol will be required for certain fish species. Generally, metadata of 

MSP should provide details about the sample preparation protocol used. If an alternative 

protocol is used for MSP generation, information about the possibility to identify the 

respective species using the standard protocol should be available. In this context, 

parameters for fish species identification have to be discussed. It is questionable whether 

the MALDI Biotyper criteria for the identification of microorganisms can simply be adopted 

for fish classification. For more accurate conclusions about log (score) cut-off values 

recommended for fish genera and species identification, extensive expansions of the 

database and (genera specific) validation studies are still required.  

The possibility to identify cooked fish via MSPs generated by protocol E from frozen 

samples is an essential information in terms of routine analysis (Table 5). As expected this 

was not the case for smoked fish as well as fish refrigerated for several days. Concerning 

refrigerated samples, log (score) values decreased below 2.0 for O. mykiss and S. 

scombrus after seven days. Here, sequence based identification should remain the protocol 

of choice in future. Anyhow, according to the results presented in Table 4 spectra of frozen 

fish remain stable even after fourteen months of storage at -20 °C. This test will be 

continued in order to determine the stability period for spectra generation.  

Conclusions 

In this study, it was shown that sample preparation with 25% FA followed by chloroform-

methanol defatting resulted in spectra of highest quality and reproducibility. Frozen fish are 

well suited for MALDI-TOF MS based identification over a longer time of storage. 

Furthermore, substitution of the sample preparation protocol used for MSP acquisition when 

identifying samples must be treated with due caution. Taking this into account, MALDI-

TOF MS has the potential to be used as an alternative to DNA sequencing as soon as a 

valid database with similar species resolution as DNA sequencing has been established.  
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Table 1 Brief overview of the characteristics of the five different sample 
preparation protocols used for MALDI-TOF MS analysis of fish muscle tissue  

Protocol A Protocol B Protocol C Protocol D Protocol E 

70% FA 0.1% TFA 80% TFA 

Zirconia beads, 

50% (v/v) 

acetonitrile with 

2.5% (v/v) TFA 

25% FA, 

Methanol, 

Chloroform 

 

 

 

Table 2: Results of the cytb-sequence analysis of the eight fish specimen used 
in this study. Samples S1_1, S2_1, S3_1 and S4_1were used for MSP 
generation. Samples S1_2, S2_2, S3_2 and S4_2 were used for confirmation of 
the MSP 

  Cytb-sequence 

Sample Declaration Species Homology Accession 

number 
S1_1 rainbow trout (fresh) O. mykiss 99.0% KP013084.1 

S1_2 rainbow trout (fresh) O. mykiss 99.0% KP013084.1 

S2_1 smoked rainbow trout O. mykiss 100% KP013084.1 

S2_2 smoked rainbow trout O. mykiss 100% KP013084.1 

S3_1 Atlantic mackerel (fresh) S. scombrus 100% AB120717.1 

S3_2 Atlantic mackerel (fresh) S. scombrus 100% AB120717.1 

S4_1 smoked Atlantic mackerel S. scombrus 100% AB120717.1 

S4_2 smoked Atlantic mackerel S. scombrus 100% AB120717.1 
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Table 3: Comparison of the sum spectra for preliminary MSP, mean log score values, sucessfully aquired sum spectra for spectra 
identification, number of peaks with a signal-to-noise (S/N) ratio >3 and average S/N of the 15 most intense peaks obtained by the five 
sample preparation protocols (A: 70% FA, B: 0.1% TFA, C: 80% TFA, D: zirconia beads in 50% acetonitrile and 2.5% TFA, E: 25% FA 
followed by chloroform-methanol defatting) for O. mykiss and S. scombrus. Sum Spectra were matched against the corresponding MSP 
of each sample preparation protocol and processing grade. Log score values greater than 2.3 or the highest log score values, the highest 
yields for sum spectra, the highest no. of peaks S/N > 3 and the highest S/N average are in bold 

  O. mykiss S. scombrus  

Processing 
grade 

Protocol 
Sum spectra 
for prelimary 

MSP 

Mean log 
score value 

Successfully 
acquired 

sum spectra 
for 

identification 
1 

No. of 
peaks2 
S⁄N > 3 

Average S/N 
of the 15 

most intense 
peaks 

Sum spectra 
for prelimary 

MSP 

Mean log 
score value 

Successfully 
acquired 

sum spectra 
for 

identification 
1 

No. of 
peaks2 
S⁄N > 3 

Average S/N 
of the 15 

most intense 
peaks 

Fresh 

A 08/24 1.21 ± 0.06 4/4 93 ± 5 16 ± 2 02/24 1.71 ± 0.05 2/4 45 ± 14 6 ± 2 

B 08/24 1.63 ± 0.11 4/4 75 ± 7 12 ± 1 23/24 2.24 ± 0.28 4/4 70 ± 8 21 ± 2 

C 03/24 2.32 ± 0.06 3/4 57 ± 7 13 ± 1 02/24 1.77 1/4 37 5 

D 13/24 2.36 ± 0.03 2/4 86 ± 20 17 ± 3 07/24 no peaks 
found 

0/4 no peaks 
found 

no peaks 
found 

E 24/24 1.94 ± 0.10 4/4 99 ± 3 21 ± 2 24/24 2.28 ± 0.10 4/4 92 ± 6 9 ± 1 

Frozen 

A 03/24 2.27 1/4 66 12 ± 09/24 2.32 ± 0.10 4/4 59.0 ± 18 12 ± 6 

B 07/24 2.53 ± 0.03 3/4 56 ± 8 11 ± 1 21/24 1.74 ± 0.35 2/4 61 ± 16 16 ± 1 

C 01/24 2.04 1/4 31 6 01/24 2.39 ± 0.2 2/4 75 ± 25 12 ± 2 

D 09/24 2.45 ± 0.08 3/4 82 ± 12 14 ± 7 02/24 
no peaks 

found 0/4 
no peaks 

found 
no peaks 

found 

E 24/24 2.38 ± 0.10 4/4 74 ±15 13 ± 3 23/24 2.31 ± 0.08 4/4 100 ± 0 19 ± 1 

1obtained from two sample preparations with two measured spots each, 2calculated from successfully acquired sum spectra for identification 
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Table 4: Influence of the period of storage of fish samples at -20 °C and +4 °C on the quality of MALDI-TOF MS spectra. 
Mean log score values of at least three independent measurements are presented. Sum spectra were acquired by 
treating samples with protocol E and matched against MSP obtained by using protocol E and the respective storage 
temperature. Log score values greater than 2.3 are in bold 

 Period of storage 

  1 day 7 days 1 month 2 months 3 months 6 months 9 months 12 months 14 months 

At -20 °C 

O. mykiss 2.38 ± 0.10 n. d.1 2.54 ± 0.03 2.53 ± 0.02 2.56 ± 0.03 2.47 ± 0.05 2.46 ± 0.03 2.40 ± 0.05 2.44 ± 0.07 

S. scombrus 2.31 ± 0.08 n. d. 2.47 ± 0.05 2.38 ± 0.22 2.40 ± 0.06 2.45 ± 0.02 2.24 ± 0.13 2.34 ± 0.05 2.39 ± 0.07 

At +4 °C 

O. mykiss 1.94 ± 0.10 1.83 ± 0.06 n. d. n. d. n. d. n. d. n. d. n. d. n. d. 

S. scombrus 2.28 ± 0.10 1.78 ± 0.06 n. d. n. d. n. d. n. d. n. d. n. d. n. d. 

1n. d. – not determined 
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Table 5: Influence of sample preparation on identification 
results. Fish samples S1_2 to S4_2 were treated with five 
different sample preparation protocols (A: 70% FA, 
B: 0.1% TFA, C: 80% TFA, D: zirconia beads in 
50% acetonitrile and 2.5% TFA, E: 25% FA followed by 
chloroform-methanol defatting) and matched against MSP 
of frozen O. mykiss and S. scombrus, which were acquired 
by using protocol E and samples S1_1 and S3_1. Log 
score values greater than 2.3 are in bold. 

  mean log score value 

Processing 
grade 

Protocol O. mykiss S. scombrus 

Fresh 

A 2.40 ± 0.08 1.63 ± 0.05 

B 2.32 ± 0.05 0.30 ± 0.17 

C 2.29 ± 0.04 1.60 

D 2.29 ± 0.02 no spectra1 

E 2.54 ± 0.06 2.31 ± 0.10 

Frozen 

A 2.33  2.13 ± 0.06 

B 1.79 ± 0.10 0.79 ± 0.27 

C 2.09 2.32 ± 0.18 

D 2.34 ± 0.10 no spectra 

E 2.38 ± 0.10 2.31 ± 0.08 

Cooked 

A 2.29 ± 0.08 1.75 ± 0.01 

B 2.07 ± 0.06 no spectra 

C 2.24 ± 0.14 2.02 

D 2.14 ± 0.18 no spectra 

E 2.42 ± 0.09 2.01 ± 0.17 

Refrigerated, 
7d 

A 2.02 ± 0.06 1.87 ± 0.09 

B 1.32 ± 0.09 0.97 ± 0.12 

C 2.15 ± 0.13 1.76 ± 0.06 

D 0.71 ± 0.16 1.44 ± 0.10 

E 1.96 ± 0.15 1.79 ± 0.06 

Smoked 

A 1.47 ± 0.30 0.262 ± 0.14 

B no spectra no spectra 

C no spectra 0.46 ± 0.26 

D no spectra 0.39 

E 1.40 0.35 ± 0.17 

  1 Application of the respective protocol did not result in any spectra 
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Fig. 1: Representative MALDI-TOF MS profiles of frozen O. mykiss. Sample S1_2 was treated with five different sample preparation protocols - A: 70% FA, 

B: 0.1% TFA, C: 80% TFA, D: zirconia beads in 50% acetonitrile and 2.5% TFA, E: 25% FA followed by chloroform-methanol defatting, F: Spectra acquisition with 

protocol E was repeated with sample S1_2 after fourteen months of storage at -20 °C 
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Fig. 2: Representative MALDI-TOF MS profiles of frozen Scomber scombrus. Sample M_3 was treated with five different sample preparation methods -A: 70 % FA, 

B: 0.1 % TFA, C: 80 % TFA, D: zirconia beads in 50 % acetonitrile and 2.5 % TFA, E: 25 % acetic acid followed by chloroform-methanol defatting, F: Spectra 

acquisition with   E was repeated with sample S_3 after fourteen months of storage at -20°C. 
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Abstract 

As a result of the commercial importance of food relevant crustaceans belonging to the 

order Decapoda, reliable methods for species identification are required to protect 

consumers against adulteration and mislabelling of crustacean products. The aim of this 

present study is therefore to compare three marker regions for their suitability to identify 

food relevant crustaceans of the order Decapoda: (A) the official control method in Germany 

for identification of crustacean species based on 16S rDNA sequences; (B) sequencing of 

another 16S rDNA fragment developed by Palumbi and colleagues; (C) ’DNA barcoding’ by 

sequencing of the mitochondrial cytochrome c oxidase subunit 1 gene (COI).  

Marker region A showed some disadvantages compared to marker region C because of 

inadequate amplification or resulting low-quality sequences for several decapods. Marker 

region B showed better species identification results than marker region A but offered no 

advantage compared to marker region A combined with marker region C. Marker region A 

is only to be preferred for species, of which the reference sequences of COI are not yet 

present in public sequence databases. The results of this study show that the most suitable 

marker region for the identification of food relevant decapods is COI and that this marker 

region has the potential to supplement or even replace the current official method of 

Germany in the official control of foodstuff.  

Moreover, this study shows that for certain food relevant crustacean species there is still a 

lack of reference sequences.  

Introduction 

Crustaceans belonging to the order of Decapoda (prawns, shrimps, lobsters, crayfish, or 

crabs) have a significant commercial importance [1, 2]. Under the Council Regulation (EC) 

No 1379/2013 on the common organization of the markets in fishery and aquaculture, 

products have to be labelled among others with (i) the commercial designation of the 

species and its scientific name, (ii) the production method, and (iii) the area where the 

product was caught or farmed. This regulation has enforced the EU member states to draw 

up and publish a list of the commercial designations for fish and seafood species that are 

accepted in their territory, indicating the scientific name and the corresponding name in the 

official language. In Germany, the Federal Office for Agriculture and Food is responsible for 

this list. 
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Crustaceans are commonly consumed as food products and thus are exposed to the risk 

of adulteration [4-7]. In many cases a species of higher value is substituted by another 

similar species of lower value after being processed. Well-known replacements are 

Fenneropenaeus indicus (H. Milne Edwards, 1837) by Metapenaeus species (Wood-

Mason, 1891), Farfantepenaeus aztecus (Ives, 1891) by Farfantepenaeus brasiliensis 

(Latreille, 1817) or Nephrops norvegicus (Linnaeus, 1758) by Metanephrops species [5, 8]. 

Therefore, reliable analytical methods for species identification are required in order to 

protect consumers against adulteration and mislabelling of products [1]. Because of 

phenotypic similarities among Decapoda and due to industrial processing, species 

identification based on morphological analysis underlies limitations and is almost impossible 

in many cases [1, 9-11]. Species identification of crustacean is performed with several 

molecular biology methods. Among the protein based methods isoelectric focusing 

electrophoresis (IEF) for species identification of crustacean [12-15] is commonly used [1]. 

A recent approach is MALDI-TOF MS whose suitability for crustacean species identification 

was shown by Salla and Murray [16]. But protein based techniques often reach their limits 

with processed seafood due to denaturation of the proteins [17]. Among DNA based 

methods PCR-RFLP is, besides DNA sequencing, the most commonly used method for 

species identification of crustacean [18, 19]. However, this method has the disadvantage 

that incomplete restriction digestion or depletion or creation of additional restriction sites 

due to intraspecific variation can lead to wrong species identification results [20]. In this 

context, DNA-sequencing offers an alternative approach, also enabling the identification of 

processed (e.g., cooked) seafood [9]. Mitochondrial DNA has, in contrast to nuclear DNA, 

the advantage of an elevated rate of mutation. Therefore, smaller gene segments can be 

used for reliable species identification [21, 22]. Moreover, due to higher copy numbers 

(approx. 1.000 times the copy of nuclear DNA in some cases) even processed samples 

have been successfully analysed by DNA-sequencing [22]. Although mitochondrial DNA 

has several advantages to nuclear DNA some aspects have to be considered [23]. The 

great disadvantage of sequencing mitochondrial DNA is the potential occurrence of nuclear 

mitochondrial pseudogenes (numts). Numts are non-functional nuclear sequences of 

mitochondrial origin [24]. Numts occur in a variety of metazoan among other in crustacean 

[e.g., 24-26]. By amplifying these nuclear sequences instead of or in addition to the 

mitochondrial sequence this can lead to wrong phylogenetic replacements, frameshift 

mutations, stop codons as well as ambiguous sequences [27]. By checking for the 

occurrence of these effects, numts can be detected. 
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Identification of crustacean species in raw specimens and crustacean products for official 

control of foodstuffs in Germany is performed with the official method for identification of 

crustacean species afforded by §64 of the German Food and Feed Code (LFGB) via 

sequencing 312 base pairs (bp) of a fragment of the mitochondrial 16S rRNA gene (12.01-

03 Crustacean species identification in raw and processed crustacean products by means 

of sequence analysis of 16S rRNA sequences). However, sequencing this marker region is 

not suitable for all food relevant crustacean species: For example, it is not recommended 

for the analysis of species of the genus Crangon (Fabricius, 1798), because no suitable 

amplicons were obtained [28]. For this reason, we aimed to find a marker region able to 

identify food relevant crustacean species and to determine whether one marker region 

alone is sufficient - or if two or more should be combined - for an all-around identification. 

The combination of more than one marker region can lead to a higher success of species 

identification, like in case of hakes, tunas and decapod species [29-32]. Furthermore, 

analyzing more than one marker can prevent wrong species identification due to the 

presence of nuclear mitochondrial pseudogenes (numts) [33].  

Mitochondrial cytochrome c oxidase subunit 1 gene (COI) is as barcode widely used for 

species identification in a variety of taxa [34] and is widely used for species identification 

such as fish [e.g., 35-42], molluscs [e.g., 43-45] and crustacean [e.g., 7, 9, 11, 23, 32, 46, 

47]. The purpose of DNA barcoding is identification of known species and discovering 

undescribed species [48] even by non-experts [49] but in some taxa species identification 

reaches it limits, like in the case of tuna species [30, 50, 51]. For such species analysis of 

other markers instead or in addition are recommended. Another 16S rDNA marker region 

with the primers by Palumbi et al. [52] amplifying a 570 bp fragment of 16S rDNA enclosing 

the 312 bp fragment amplified by the official method primers (localisation of both 16S rDNA 

primer pairs is shown in supplementary material Fig. S1) is used successfully for species 

identification of commercially important penaeid shrimp [53] and other Decapoda [54, 55]. 

Thus, these marker regions are presenting promising alternatives for identification of 

crustacean species. Accordingly, 19 decapod species were analysed using three gene 

markers and compared for their suitability for species identification in this work. 
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Material and methods 

Sample collection 

The 19 crustacean species of commercial interest (see Table 1 for species) – all belonging 

to the order Decapoda - were samples of the routine analysis or purchased from local 

markets. The samples were frozen at -20 °C until further use. Of each species two 

specimens were analysed. 

DNA extraction 

DNA was extracted from two grams of decapod muscle using a modified 

cetyltrimethylammonium bromide (CTAB) protocol [56].  

DNA-sequencing 

The COI and 16S rRNA marker regions were amplified with approximately 100 ng DNA in 

50 μl reactions in a Mastercycler® gradient cycler (Eppendorf, Germany). The quality of the 

amplified products was checked with the 2100 Bioanalyzer Instrument (Agilent 

Technologies, Santa Clara, CA, USA) and purified using the QIAquick PCR Purification Kit 

(Qiagen, Hilden, Germany). Amplicons were sequenced using the ABI Prism® BigDyeTM 

Terminator V 1.1 Kit and the ABI Prism® 3130 Genetic Analyzer (Applied Biosystems, 

Carlsbad, CA, USA).  

16S rDNA 

Marker region A 

The reaction mixture of the official German method contained 0.5 µM of each Primer 

(16S 312F 5’-GRAGGCTTGTATGAATGGTTG-3’ and 16S 312R-1 3’-

AARWARATWACGCTGTTA-5’), 1.5 mM MgCl2, 200 µM of each dNTP as well as 0.05 U µl-

1 HotStarTaq DNA Polymerase [28]. All PCR reagents were purchased from Qiagen. The 

used PCR program consisted of an initial activation step for 15 min at 95 °C followed by 35 

cycles of denaturation for 60 s at 95 °C, annealing for 60 s at 50 °C, extension for 60 s at 

72 °C and a final extension step for 10 min at 72 °C.  

  



6. Publication III 
 

61 
 

Marker region B 

The reaction mixture of the 16S rDNA marker region by Palumbi et al. [52] contained 

0.12 µM of each Primer (16Sar-L 5’-CGCCTGTTTATCAAAAACAT-3’ and 16Sbr-H 5’- 

CCGGTCTGAACTCAGATCACGT-3’), 2 mM MgCl2, 100 µM each dNTP as well as 

0.04 U µl-1 TaKaRa Ex Taq DNA Polymerase. All PCR reagents were purchased from 

Takara Bio Europe (Saint-Germain-en-Laye, France). The used PCR program consisted of 

an initial activation step for 2 min at 94 °C followed 30 cycles of denaturation for 30 s at 

94 °C, annealing for 40 s at 55 °C, extension for 60 s at 72 °C and a final extension step for 

5 min at 72 °C. 

Cytochrome c oxidase subunit 1 (Marker region C) 

The reaction mixture contained 0.3 µM of each Primer (LCO1490 5’-

GGTCAACAAATCATAAAGATATTGG-3’ and HCO2198 5’-

TAAACTTCAGGGTGACCAAAAAATCA-3’, [57]), 2 mM MgCl2, 200 µM each dNTP as well 

as 0.025 U µl-1 TaKaRa Ex Taq DNA Polymerase. All PCR reagents were purchased from 

Takara Bio Europe.  

The used PCR program consisted of an initial activation step for 2 min at 94 °C followed by 

5 cycles for 30 s at 94 °C, annealing for 40 s at 47° C, extension for 60 s at 72 °C, 35 cycles 

of denaturation for 30 s at 94 °C, annealing for 40 s at 52 °C, extension for 60 s at 72 °C 

and a final extension step for 10 min at 72 °C. 

Data Analysis 
Sequence chromatograms were checked visually and assembled in the Integrated 

Database Network System (IDNS®) Software (SmartGene Inc., Lausanne, Switzerland). 

Sequences were checked for the presence of nuclear copies of mitochondrial sequences 

[58] and subsequently queried against the publicly accessible databases Basic Local 

Alignment Search Tool (BLAST) and in case of COI also against the Barcode of Life 

Database (BOLD) [59] before the end of October 2018. All sequences derived from this 

study were deposited in GenBank (accession numbers: MH300622-MH300672 and 

MK000234-MK000286). 

For sample S6 (Heterocarpus reedi, Bahamonde, 1955), COI sequences generated from 

all species from this study for marker region C with clear identification results for both genes, 

and further sequences from other decapod species extracted from GenBank (in total two 

sequences from each species) were assembled and aligned with BioEdit version 5 [60]. The 

alignment was trimmed to 432 nucleotides and used to construct a neighbour-joining tree 

using MEGA7 [61] utilizing the Kimura 2-parameter model [62]. Bootstrap values were 

calculated with 1000 pseudoreplicates [63].  
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Results 

We analysed 38 specimens (19 species) of the order of Decapoda (Table 1). 32 specimens, 

for which the species and the scientific name were declared, belonged to nine different 

families (Aristeidae, Cambaridae, Cancridae, Crangonidae, Nephropidae, Pandalidae, 

Parastacidae, Penaeidae and Solenoceridae). In case of six specimens, no scientific name 

of the species (S8, S13 and S14) was declared. Identification by DNA-sequencing with at 

least one of the three marker regions revealed that they belonged to the families Penaeidae, 

Palaemonidae and Parastacidae. In total, ten families of the order Decapoda were analysed 

with all three marker regions (16S rDNA: marker region A_312 bp and marker region B_570 

bp as well as COI: marker region C). 

The three marker regions were compared for their suitability for the identification of 

decapods on the basis of these 19 species. Basis for comparison was the successful 

identification on species or genus level, identification failures due to inadequate 

amplification or low-quality sequences as well as lack of reference sequences in the 

databases. 

By sequencing COI gene fragment (marker region C) all 38 specimens (19 species, 100%) 

were successfully sequenced. 34 specimens (17 species) of these were identified to 

species level (89%).  

In case of 16S rDNA 28 (of 14 species, 74%, marker region A_312 bp) and 38 (of 19 

species, 100%, marker region B_570 bp) sequences were successfully obtained. Of these, 

three species (six specimens) could not be identified to species level using either marker 

region (S5, S6 and S13). Identification of ten specimens (S1-1 and S1-2: Nephrops 

norvegicus (Linnaeus, 1758), S14-1 and S14-2: Cherax destructor (Clark, 1936), S15-1 and 

S15-2: Cancer pagurus (Linnaeus, 1758), S17-1 and S17-2: Procambarus clarkii (Girard, 

1852) as well as S19-1 and S19-2: Crangon crangon (Linnaeus, 1758)) was hampered by 

insufficient sequences for marker region A (16S rDNA_312 bp), compared to marker region 

B (16S rRNA_570 bp) where all five species were successfully sequenced. 

Samples S13-1 and S13-2 (‘Freshwater Shrimp’) showed, besides high sequence similarity 

to Macrobrachium rosenbergii, (de Man, 1879) also high sequence similarity to 

Macrobrachium daqueti (Sunier, 1925). With marker region A (16S rDNA_312 bp) sample 

S13-1 and S13-2 showed 100% sequence similarity to Macrobrachium rosenbergii and 99% 

sequence similarity (2 mismatches) to Macrobrachium dacqueti. With marker region B (16S 

rDNA B_570 bp) sample S13-1 and S13-2 showed 99% sequence similarity (1 mismatch) 

to Macrobrachium rosenbergii and Macrobrachium dacqueti. 
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With marker region C (COI) sample S13-1 showed 100% sequence similarity and sample 

S13-2 99% sequence similarity (1 mismatch) to Macrobrachium rosenbergii and both 

samples showed 99% sequence similarity (2 mismatches) to Macrobrachium dacqueti. 

In case of one shrimp species (S5-1 and S5-2 declared as Pandalus jordani (Rathbun, 

1902)), no 16S rDNA sequences of Pandalus jordani are deposited in GenBank. 

Sequencing of the 16S rRNA gene of sample S5-1 resulted in 96% (marker region A: 16S 

rDNA_312 bp) and 98% (marker region B: 16S rDNA_570 bp) sequence similarities to 

Pandalus borealis (Krøyer, 1838). 

Samples S6-1 and S6-2 (declared as Heterocarpus reedi) were only matched on genus 

level with all three marker regions, because no database hits had sufficient identity for 

species identification and no sequence of Heterocarpus reedi was deposited in the 

sequence databases. The sequence similarities were for COI: 85% (S6-1) and 84% (S6-2) 

to Heterocarpus laevigatus (Bate, 1888, also with BOLD) and for 16S rDNA: 91-93% 

similarity to Heterocarpus species among other Heterocarpus laevigatus.  

To identify the samples S6-1 and S6-2 at least on genus level, a neighbour-joining tree was 

constructed with all COI sequences from this study which had clear identification results 

with both genes (S1, S2, S3, S4, S7, S8, S9, S10, S11, S12, S14, S15, S16, S17, S18 and 

S19) and further sequences from diverse decapod species extracted from GenBank 

(altogether 20 species from nine families: Nephropidae, Cambaridae, Parastacidae, 

Pandalidae, Aristeidae, Solenoceridae, Cancridae, Penaeidae and Crangonidae; Figure 1).  

The generated COI sequences of samples S6-1 and S6-2 was grouped in a cluster of 

species belonging to the genus Heterocarpus with a bootstrap value of 63% and showed 

closest relationship to the species Heterocarpus laevigatus with a bootstrap value of 88%. 

Further, samples S6-1 and S6-2 were grouped in a cluster with Pandalus borealis belonging 

to the family Penaeidae.  

These results underline the presumption that samples S6-1 and S6-2 belong to the family 

Penaeidae and the genus Heterocarpus and that the species of the samples S6-1 and S6-

2 has not yet been analysed with sequencing COI and 16S rDNA.  
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Discussion 

The standard method for identification of crustacean species within the context of official 

control of foodstuffs in Germany (§64 LFGB) is the DNA-sequencing of a fragment of the 

mitochondrial 16S rDNA. Because this marker region is not suitable for every food relevant 

crustacean, the aim of this study was to establish a suitable DNA-sequencing-strategy by 

which food relevant crustacean species can be identified.  

None of the three tested marker regions could identify all of the 38 analysed specimens at 

species level. However with marker region C (COI) most of the specimens (94%, in contrast 

to marker region A (16S rDNA_312 bp): 58% and marker region B (16S rDNA_570 bp: 84%) 

were successfully identified on species level. Both 16S rDNA marker regions did not show 

an advantage to COI sequencing. 

Moreover, the official German method (marker region A: 16S rDNA_312 bp) showed some 

deficiencies: Eight specimens were characterized by inadequate amplification or low-quality 

sequences such as Crangon crangon as already described in the official control method 

[28]. With marker region B (16S rDNA_570 bp) more specimens yielded sufficient 

sequences (38 in contrast to 28 with marker region A: 16S rDNA_312 bp), but for 28 

specimens (14 species) DNA was amplified successfully with both 16S rDNA marker 

regions (A and B). 

It was expected, that marker region B (16S rDNA_570 bp) would lead to a higher species 

resolution due to the generation of longer sequences. But in case of the 28 specimens (14 

species, which were successfully sequenced with marker region A (16S rDNA_312 bp) and 

B (16S rDNA_570 bp), marker region B showed no higher species resolution than marker 

region A, probably because most of the regions which are additionally amplified with the 

primers for marker region B are conserved among the decapod species (supplementary 

material Fig. S1). 

None of the three methods tested was able to differentiate between the two congeneric 

species Macrobrachium rosenbergii and Macrobracium dacqueti because of insufficient 

sequence divergence. Accordingly, in this case another marker might be more suitable. 

Furthermore, none of the three marker regions was able to identify samples S6-1 and S6-2 

to species level. However, with a neighbour-joining tree analysis conducted with COI 

sequences, results indicate that the samples most probably belong to the genus 

Heterocarpus. If the samples were the species Heterocarpus reedi as declared, cannot be 

concluded with certainty because no COI or 16S rDNA sequence of this species is 

deposited in GenBank and BOLD. 
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In July 2018 public DNA barcodes of 4.306 decapod species were available in BOLD and 

the database is continuously growing. The main goal of DNA barcoding is to assign 

unidentified specimens to identified species. Most crustacean barcoding studies were found 

to build on existing reference libraries for identification purposes, and this trend will surely 

continue and probably increase in the future [64]. Indeed, it might be a matter of (probably 

short) time until a COI sequence of Heterocarpus reedi will be available in BOLD and 

GenBank. 

The COI marker region showed the potential to supplement or even replace the official 

method, but there should be further studies like the analyses of more species and families 

of the order Decapoda as well as ring trials to confirm this.  

The failure to identify samples S6-1 and S6-2 to species level showed the problem of still 

incomplete publicly accessible DNA-databases. For this reason, the collaborative project 

‘Development of DNA-based methods for the identification of fish and fishery products, as 

well as crustaceans and molluscs for practical use in the food and import control 

(MARINEFOOD)’, covering also the present study, aims to fill these gaps for the most 

important species from the viewpoint of the official food control and surveillance authorities. 

Conclusions 

Because of inadequate amplification or low-quality sequences for several crustacean 

species, the official German method (marker region A) showed some disadvantages 

compared to marker region C (COI). The most suitable method for identification of food 

relevant decapods is DNA-sequencing of COI. The official method is only to be preferred 

for species where reference sequences of COI are not yet available in databases. More 

crustacean species have to be sequenced, but in the future COI sequencing has the 

potential to replace the current official method in the official control of foodstuff. Although, 

except Macrobrachium spp., all analysed decapod species in this study were 

unambiguously identified by using the COI marker region, sequencing of more than one 

marker region can confirm the identification results or lead to species identification when 

sequences of COI are not yet available. The fact that there is still a lack of reference 

sequences shows the need for a publicly accessible database containing all food relevant 

seafood species for supporting the authorities to protect consumers against adulteration 

and mislabelling of products.  
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Table 1 Results of decapods identification by DNA-sequencing 

Sample ID Declared species Species identified 

     

 Scientific name 
Commercial 
name 

Marker region A 
(16S rDNA_312 bp) 

Marker region B 
(16S rDNA_570 bp) 

Marker region C (COI) 

S1-1  Nephrops norvegicus 
Norway 
Lobster  -1 100% Nephrops norvegicus  99% Nephrops norvegicus 

S1-2 Nephrops norvegicus 
Norway 
Lobster  -1 100% Nephrops norvegicus 100% Nephrops norvegicus 

S2-1  Homarus gammarus 
European 
Lobster 

99% Homarus gammarus 99% Homarus gammarus 100% Homarus gammarus 

S2-2 Homarus gammarus 
European 
Lobster 100% Homarus gammarus 100% Homarus gammarus 100% Homarus gammarus 

S3-1  Homarus americanus 
American 
Lobster 100% Homarus americanus 100% Homarus americanus 100% Homarus americanus 

S3-2 Homarus americanus 
American 
Lobster 100% Homarus americanus 100% Homarus americanus 100% Homarus americanus 

S4-1  Pandalus borealis Shrimp 99% Pandalus borealis 100% Pandalus borealis 100% Pandalus borealis 

S4-2 Pandalus borealis Shrimp 100% Pandalus borealis 100% Pandalus borealis 100% Pandalus borealis 

S5-1  Pandalus jordani  Shrimp 96% Pandalus borealis 98% Pandalus borealis 100% Pandalus jordani 

S5-2 Pandalus jordani  Shrimp 97% Pandalus borealis 98% Pandalus borealis 99% Pandalus jordani 

S6-1  Heterocarpus reedi  Shrimp 91% Heterocarpus laevigatus 93% Heterocarpus laevigatus 85% Heterocarpus laevigatus 

S6-2 Heterocarpus reedi  Shrimp 91% Heterocarpus laevigatus 93% Heterocarpus laevigatus 84% Heterocarpus laevigatus 
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S7-1  Penaeus monodon Shrimp 100% Penaeus monodon 100% Penaeus monodon 100% Penaeus monodon 

S7-2 Penaeus monodon Shrimp 100% Penaeus monodon 100% Penaeus monodon 100% Penaeus monodon 

S8-1  n. a. Shrimp 99% Metapenaeus ensis 100% Metapenaeus ensis 99% Metapenaeus ensis 

S8-2 n. a. Shrimp 100% Metapenaeus ensis 100% Metapenaeus ensis 99% Metapenaeus ensis 

S7-1  Penaeus monodon Shrimp 100% Penaeus monodon 100% Penaeus monodon 100% Penaeus monodon 

S7-2 Penaeus monodon Shrimp 100% Penaeus monodon 100% Penaeus monodon 100% Penaeus monodon 

S8-1  n. a. Shrimp 99% Metapenaeus ensis 100% Metapenaeus ensis 99% Metapenaeus ensis 

S8-2 n. a. Shrimp 100% Metapenaeus ensis 100% Metapenaeus ensis 99% Metapenaeus ensis 

S9-1  
Xiphopenaeus 
kroyeri   Seabob 100% Xiphopenaeus kroyeri   100% Xiphopenaeus kroyeri   99% Xiphopenaeus kroyeri  

S9-2 
Xiphopenaeus 
kroyeri   Seabob 100% Xiphopenaeus kroyeri  100% Xiphopenaeus kroyeri  99% Xiphopenaeus kroyeri  

S10-1  Penaeidae sp. Shrimp 100% Fenneropenaeus indicus 99% Fenneropenaeus indicus 99% Fenneropenaeus indicus 

S10-2 Penaeidae sp. Shrimp 100% Fenneropenaeus indicus 100% Fenneropenaeus indicus 100% Fenneropenaeus indicus 

S11-1  Penaeidae sp. Shrimp 100% 
Fenneropenaeus 
merguiensis 100% 

Fenneropenaeus 
merguiensis 

99% 
Fenneropenaeus 
merguiensis 

S11-2 Penaeidae sp. Shrimp 100% 
Fenneropenaeus 
merguiensis 

100% 
Fenneropenaeus 
merguiensis 

99% 
Fenneropenaeus 
merguiensis 
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S12-1  
Litopenaeus 
vannamei  Shrimp 99% Litopenaeus vannamei 99% Litopenaeus vannamei 100%  

S12-2 
Litopenaeus 
vannamei  Shrimp 99% Litopenaeus vannamei 100% Litopenaeus vannamei 100%  

S13-1 n. a. Freshwater 
Shrimp 100% Macrobrachium rosenbergii 100% Macrobrachium rosenbergii 100% Macrobrachium rosenbergii 

   100% Macrobrachium dacqueti 99% Macrobrachium dacqueti 99% Macrobrachium dacqueti 

S13-2 n. a. Freshwater 
Shrimp 100% Macrobrachium rosenbergii 100% Macrobrachium rosenbergii 100% Macrobrachium rosenbergii 

   100% Macrobrachium dacqueti 99% Macrobrachium dacqueti 99% Macrobrachium dacqueti 

S14-1  n. a. Crawfish  -1 99% Cherax destructor 100% Cherax destructor 

S14-2 n. a. Crawfish  -1 99% Cherax destructor 100% Cherax destructor 

S15-1  Cancer pagurus Rock Crab  -1 100% Cancer pagurus 100% Cancer pagurus 

S15-2 Cancer pagurus Rock Crab  -1 100% Cancer pagurus 100% Cancer pagurus 

S18-1  Aristeus alcocki  Shrimp 99% Aristeus alcocki 99% Aristeus alcocki 99% Aristeus alcocki 

S18-2 Aristeus alcocki  Shrimp 99% Aristeus alcocki 99% Aristeus alcocki 100% Aristeus alcocki 

S19-1  Crangon crangon Shrimp  -1 99% Crangon crangon 100% Crangon crangon 

S19-2 Crangon crangon Shrimp  -1 100% Crangon crangon 99% Crangon crangon 

1: no amplification/low-quality sequences. n. a.: not available. COI: cytochrome c oxidase subunit I, 16S rDNA: 16S ribosomal DNA. 
Species in bold have low match values 
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Fig. 1 Unrooted Neighbor-Joining tree based on partial sequences of COI gene obtained 

from this study and GenBank. GenBank sequences were indicated using their accession 

numbers. The percentage of replicate trees, in which the associated taxa clustered together 

in the bootstrap test (1000 replicates), are shown next to the branches. The evolutionary 

distances were computed using the Kimura 2-parameter method and are in the units of the 

number of base substitutions per site. The analysis involved 42 nucleotide sequences. All 

positions containing gaps and missing data were eliminated. There were a total of 432 

positions in the final dataset. Evolutionary analyses were conducted in MEGA7. The families 

to which the sequences belong to are indicated   
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Appendix 
 

Supplementary material 
 

Fig S1. Alignment of the used primers (16Sar-L and 16Sbr-H as well as 16S 312F and 16S 
312R) with four 16S rDNA sequences from decapod species extracted from GenBank 
(Homarus americanus NC015607.1:c12603-11264, Penaeus monodon 
NC002184.1:c14066-12702, Procambarus clarkii NC016926.1:6951-8212, Pandalus 
borealis LC341266.1:c13978-12664 and Cherax destructor NC011243.1:c8668-7367). 
Conserved regions are highlighted in grey. 
 
                             710       720       730       740       750       760       770       
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   CTCGGCAAATA--AAGCTTCTGCCTGTTTATCAAAAACATGTCTATATGATG--GTT-TATAAAGTCTAA  
Penaeus monodon      CTCGGCAAATA--CTACTTTTGCCTGTTTATCAAAAACATGTCTATATGATT--GTTATATAAAGTCTAG  
Procambarus clarkii  TTCGGCAAAAA--TTATTTCTGCCTGTTTAACAAAAACATGTCTTTATGGAG---GTTTATAAAGTCTAA  
Pandalus borealis    CTCGGCAAATA--TTGCCTCTGCCTGTTTATCAAAAACATGTCTGTATGTTTTAATTATATGGAGTCTGG  
Cherax destructor    TTCGGCAAAAAGTTTATTTCCGCCTGTTTATCAAAAACATGTCTGTATGGTA--GGTATATAAAGTCTGG  
16Sar-L              --------------------TGCCTGTTTATCAAAAACAT------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             780       790       800       810       820       830       840       
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   CCTGCCCACTGGGATCAAACTAAAGGGCCGCGGTATTTTAACCGTGCGAAGGTAGCATAGTCATTAGTCT  
Penaeus monodon      CCTGCCCACTGAATTATTTTTAAAGGGCCGCGGTATACTGACCGTGCGAAGGTAGCATAATCATTAGTCT  
Procambarus clarkii  CCTGCCCATTGGGAAC----TAAAAGGCCGCGGTATTATGACCGTGCAAAGGTAGCATAATCATTAGTTT  
Pandalus borealis    CCTGCCCACTGATGTT---TTTAAGGGCCGCGGTAATTTGACCGTGCGAAGGTAGCATAATCAGTAGTCT  
Cherax destructor    CCTGCCCACTGAGGGT-ATTTAAAGG-CCGCTGTATTATGACCGTGCGAAGGTAGCATAATCATTAGTCT  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             850       860       870       880       890       900       910       
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   CTTAATTGGAGGCTTGTATGAATGGTTGGACAAGAAGCAAACTGTCTCAAAC-ACAAAAATTGAATTTGA  
Penaeus monodon      TTTAATTGAAGGCTTGTATGAATGGTTGGACAAAAAGTAATCTGTCTCAGTT-ATAATAGTTGAACTTAA  
Procambarus clarkii  TTTAATTGAAGGCTAGAATGAATGGTTGAACAAGAAATAATCTGTCTTAAAT-TAATATATTGAATTTAA  
Pandalus borealis    TTTAATTGGAGGCTGGAATGAATGGTTGGACAAGGGGGAAGCTGTCTCTTTTTACAATTTTTGAATTTTA  
Cherax destructor    TTTAATTGGGGGCTGGTATGAAGGGTCGGACGAGAAATGAGCTGTCTTAAATTTTGAAAATTGAATTTAA  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             -------GRAGGCTTGTATGAATGGTTG------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             920       930       940       950       960       970       980       
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   CTTTTAAGTGAAAAGGCTTAAATATTTTAAAGGGACGATAAGACCCTATAAAGCTTAATAATTTAGTATA  
Penaeus monodon      CTTTTAAGTGAAAAGGCTTAAATACTTTAAGGGGACGATAAGACCCTATAAAACTTAACAATAATTTGAT  
Procambarus clarkii  CTTTTAAGTGAAAAGGCTTAAATAATCTGGAGGGACGATAAGACCCTATAAAACTTTATATTTATAATAT  
Pandalus borealis    CTTTTAAGTGAAAAGGCTTAAATAATTTGGGGGGACGATAAGACCCTATAAAATTTTACAAAATTGGGAT  
Cherax destructor    CTTTTAAGTGAGAAGGCTTAAATAGGCTAGGGGGACGATAAGACCCTATAAAGTTTGACATTAAATTAAT  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             990       1000      1010      1020      1030      1040      1050      
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   TAATTAGATGAGTTGAAAGTTTAATATTATTTATATACTAAATTATTTCGTTGGGGCGACGATGATATAA  
Penaeus monodon      TAAATT-ATAAATTGTTAGTATAACTTGATTTTAATTAATGTTTGTTGCGTTGGGGCGACGGGAATATAA  
Procambarus clarkii  AGTAGT--------TAGTTTTATTTAAGGGTATTATTTTAGAGTATTTGGTTGGGGTGACAAGGATAAAA  
Pandalus borealis    TTTTTT-TTGAATTAA-GGTTTAA-ATTCTATAAGTTCTTATTTGTTTTGTTGGGGCGGCAAAGATAAAA  
Cherax destructor    TAAGGG--TAATTTAGATTATAAAGTCTTAT-TATTATATAAGTGTTTAGTTGGGGCGACTAGGATATAA  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             1060      1070      1080      1090      1100      1110      1120      
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   TTTGTAACTGTTTAAATTTAAAATACAGAGATAT-TTGTGTGTAATGA-------TCCTTGTTGTTGATT  
Penaeus monodon      TTAGTAACTGTTCTTAAATATTTTATTAACAAGT-ATAATTGAAGAATAATTGATCCTTTATTAAAGATT  
Procambarus clarkii  TATTAAATAACTGTCTTTTTTTTTTACAGTGATGTTTGGTTTAATGA----------TCCTAAAAGGGAT  
Pandalus borealis    --ATTAGTAACTGTCATTTAATTAGAATAATTA---TAATTAGTTTA--ATTGATCCTTTATTAGAGATT  
Cherax destructor    GTTATTTAACTGTTTCTTCATTCGAATCAAAAA---TTTTTGATTTTA---TGATCCTTTTT--AAGGGT  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
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                             1130      1140      1150      1160      1170      1180      1190      
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   AAAAATTTAAGTTACTTTAGGGATAACAGCGTTATTTATTTTGAGAGTTCATATCGACAAAAAAGTTTGC  
Penaeus monodon      AAAAGATTAAGTTACTTTAGGGATAACAGCGTAATCTTCTTTGAGAGTCCTCATCGACAAGAAGGTTTGC  
Procambarus clarkii  TAAAGATTAAGTTACTTTAGGGATAACAGCGTAATTTTCTTTAAGAGTTCTTATCGACAAGAAAGTTTGC  
Pandalus borealis    AAAAGATTAAGTTACTTTAGGGATAACAGCGTAATTTTCCCTGAGAGTTCTTATCGACGGGAGTAGTTGC  
Cherax destructor    ACTAGAGTAAATTACTTTAGGGATAACAGCGTAATTTTTTTTGAGAGTTCTTATCGATAAAAGAGTTTGC  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             -----------------------TAACAGCGTWATYTWYTT-----------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             1200      1210      1220      1230      1240      1250      1260      
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   GACCTCGATGTTGAATTAAAAATTCGCCATGGCGTAGGAGTTGTGGAGGTAGGTCTGTTCGACCTTTAAA  
Penaeus monodon      GACCTCGATGTTGAATTAAGGTATCCTTATAATGCAGCAGTTACAAAGGAAGGTCTGTTCGACCTTTAAA  
Procambarus clarkii  GACCTCGATGTTGAATTAAAAGTTCTTTATAGAGTAGAGACTATAATAGAAGGTCTGTTCGACCTTTAAA  
Pandalus borealis    GACCTCGATGTTGAATTAAGGTCTCTTTTAAGTGTAGCAGCTTAGTGAGTGGGTCTGTTCGACCCTAAAA  
Cherax destructor    GACCTCGATGTTGAATTAAAATTTCTTTGTAATGCAGCAGTTACAAGAGAGGGTCTGTTCGACCTTTAAA  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              ----------------------------------------------------------------------  
 
                             1270      1280      1290      1300      1310      1320      1330      
                     ....|....|....|....|....|....|....|....|....|....|....|....|....|....| 
Homarus americanus   TTTTTACATGATTTGAGTTCAAACCGGCGTGAGCCAGGTTGGTTTCTATCTTTTAAGAA-AATAAAAATT  
Penaeus monodon      TCCTTACATGATTTGAGTTCAGACCGGCGTGAGCCAGGTCGGTTTCTATCTCTTAATTT-TATTATAATT  
Procambarus clarkii  ATTTTACATGATTTGAGTTCAGACCGGTGTAAGCCAGGTTGGTTTCTATCTTTCAGGATTAATTGTAGTT  
Pandalus borealis    ACCTTACATGATTTGAGTTCAAACCGGCGTGAGCCAGGTTGGTTTCTATCTTCCAGTTT-AATTAACCTT  
Cherax destructor    TTTTTACATGATTTGAGTTCAGACCGGCGTGAGCCAGGTTGGTTTCTATCTCCTAGAAA-AACAAGAATT  
16Sar-L              ----------------------------------------------------------------------  
16S 312F             ----------------------------------------------------------------------  
16S 312R             ----------------------------------------------------------------------  
16Sbr-H              -----ACATGATTTGAGTTCAGACCGG-------------------------------------------  
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7. Results and discussion 

Molecular biology is a constantly evolving research field and therefore the control authorities 

have to be up to date with using analytical methods for detection of food fraud. These 

methods should be fast, reliable and best applicable for all focus of analyses. Therefore, in 

this thesis one protein-based (MALDI-TOF MS) and two DNA-based (DNA sequencing and 

LAMP) methods were evaluated and compared for application suitability in the context of 

the official control of foodstuff for fish and crustacean species authentication. 

Hereinafter, applicability of these three methods for the various processing grades and 

storage temperatures (fresh, refrigerated, frozen, cooked and smoked) as well as the focus 

of analysis (species identification, delimitation or detection), are discussed separately and 

at the end of this chapter comprehensively. 

7.1. Suitability of loop-mediated isothermal amplification for 

species delimitation 

Because of the reported cases of mislabelling the critically endangered European eel 

[(Anguilla anguilla (Linnaeus, 1758)] as Japanese eel (Anguilla japonica Temminck & 

Schlegel, 1846) as well as the wrong stocking of American eel [(Anguilla rostrata (Lesueur, 

1817)] instead of European eel in European waters, delimitation of the European eel from 

other eel species is required. Several PCR-RFLP and real-time PCR methods were 

developed for eel species differentiation (e.g., Rehbein et al., 2002; Gagnaire et al., 2007; 

Lago et al., 2012; Trautner, 2013; Espiñeira and Vieites, 2016). One advantage of LAMP to 

the aforementioned methods is that it only needs easy to handle equipment, making it 

suitable for on-site analysis. Therefore, two LAMP assays for delimitation of the species 

European eel (Anguilla anguilla) from the other eel species of the genus Anguilla were 

developed and validated in this thesis (Chapter 4). 

Application of both LAMP assays was shown on two instruments. In addition to a real-time 

cycler, the portable Genie instrument (OptiGene, Horsham, United Kingdom) which 

combines real-time fluorescence detection and subsequent melting curve analysis was 

used for this purpose. The genus-specific LAMP assay was able to detect specifically down 

to 500 pg DNA of all four tested eel species [Anguilla anguilla, Anguilla japonica, Anguilla 

rostrata and Anguilla australis Richardson, 1841]. Furthermore, none of the tested 112 fish 

species (belonging to 49 families) not classified to the genus Anguilla was detected (i.e. no 

false positives). The Anguilla anguilla-specific LAMP assay detected down to 500 pg DNA 

of Anguilla anguilla, but none of the other tested 115 fish species. 
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In addition, smoked eels showed no difference in performance of the LAMP assays 

compared to the frozen tissues (considering threshold times and melting temperature). This 

is especially important because eels are often sold smoked (Mafra et al., 2008; Coad, 2016), 

wherefore food control authorities need techniques suitable for species authentication on 

this processing grade. Furthermore, combined with a simplified extraction method DNA of 

Anguilla anguilla yielded from a single egg was detectable. The extraction method can be 

easily performed by homogenizing the sample using a micropistil with 5% Chelex 100 resin 

and subsequent incubation at 95 °C for 20 min. Moreover, positive LAMP reactions can be 

detected with reporter dyes, as shown in the study with SYBR Gold. Consequently, the 

analysis can be conducted with a simple heating block or water bath making these assays 

suitable for on-site analyses (e.g., for ecological studies or food control investigations in 

restaurants or retails). In addition, the Anguilla genus-specific LAMP assay can be used for 

verification of a successful DNA extraction as well as a check for occurrence of reaction 

inhibitors. Currently, samples that are negative in the Anguilla anguilla specific LAMP assay 

require other methods for secure species authentication. This problem can be overcome 

through development of specific LAMP assays for the other commercially important eel 

species (Anguilla rostrata, Anguilla japonica and Anguilla australis). 

For simultaneous detection of multiple targets using LAMP, various protocols have been 

provided in the literature (for a review see Wong et al., 2018). For instance, Aonuma et al. 

(2010) detected two parasites in mosquitos with primers labelled with two different 

fluorescence dyes. He and Xu (2011) used subsequent restriction enzyme digestion. 

However, digestion could be incomplete because of the various structures of LAMP 

products (Liang et al., 2012). Besides, all these protocols require additional equipment, for 

instance real-time detection of different fluorophores or gel electrophoresis devices.  

Due to the shown applicability of LAMP for eel eggs, this technique offers a fast approach 

for detection of fish species of one of the most expensive animal product in the world trade: 

caviar from sturgeons and paddlefish (Order Acipenseriformes). Additionally, this group is 

one of the most critically endangered, wherefore its international trade is controlled. 

Mislabelling of caviar concerning the fish species has been reported frequently and 

commercially relevant (Chapter 1). Furthermore, Ludwig et al. (2015) revealed in a market 

survey four cases in which the sold product does not contain sturgeon DNA. Moreover, only 

in one of these products animal DNA, namely of lumpfish (Cyclopterus lumpus Linnaeus, 

1758; order Scorpaeniformes), was present.  
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Additionally, the finding that LAMP is also suitable for smoked products offers development 

of further LAMP assays enabling food control investigators to directly analyse potentially 

mislabelled food, for instance in restaurants. Therefore, LAMP assays are an appropriate 

tool for food control authorities to detect mislabelling as well as for custom authorities for 

the protection of endangered species from illegal trade. 

7.2. Suitability of matrix-assisted laser desorption ionization time 

of-flight mass spectrometry for species identification 

Several working groups studied the potential of MALDI-TOF MS for seafood species 

identification of fresh, frozen and ethanol fixed tissues using various protein preparation 

protocols (Chapter 2.1.2). However, the influences of fat-content, storage temperature or 

level of food processing to the identification reliability have not yet been fully investigated. 

It also needed examination, whether the same protein preparation protocol has to be used 

for MSP generation as well as for identification to ensure a reliable species identification.  

Therefore, in this thesis (Chapter 5) the influence of the protein preparation protocol, fat-

content, as well as storage temperature and processing grade (fresh, refrigerated, frozen, 

cooked and smoked) on the reliability of identification of fish was examined. The high-fat 

Atlantic mackerel (Scomber scombrus Linnaeus, 1758; order: Perciformes) and the low-fat 

rainbow trout [Oncorhynchus mykiss (Walbaum, 1792), order: Salmoniformes) were used 

for this study as representatives.  

The reliability of the five protein preparation protocols was determined based on the 

suitability to generate high quality main spectra projections (MSP) of both fishes with 

different storage temperature and processing grade. MSP are reduced reference spectra 

calculated from sum spectra by considering only a predefined number of reproducible peaks 

with high intensities and signal-to noise ratios. Generation of MSP of fresh and frozen 

tissues from both fish species was possible with all five tested protein preparation protocols. 

However, only one protocol (using 25% formic acid followed by chloroform-methanol 

defatting) resulted in high quality MSP (yield of sum spectra, resulting number of peaks and 

spectra reproducibility). Regarding the high-fat Atlantic mackerel, this could be due the 

defatting step of the used protocol. Hence, this protocol was selected as standard protocol 

for protein preparation of fish for subsequent MALDI-TOF MS analysis. 
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However, suitability of this protocol has to be examined case-by-case for each target group 

of fish. Furthermore, the applicability of this protocol for other animal groups (e.g., 

crustacean) has to be evaluated. Since this protocol has already been used successfully 

for the identification of another seafood group, namely molluscs (Stephan et al., 2014), there 

is the potential that it is also applicable for crustacean species. However, if this method 

proves to be unsuitable for crustacean, other protein extraction methods that have already 

been successfully applied to crustacean (e.g., Salla and Murray, 2013) can be used. 

Nevertheless, it is desirable for the practicability in routine analytics to apply a single protein 

preparation protocol for all groups. 

In addition, it was ascertained whether the same protein preparation protocol as well as the 

same storage temperature or processing grade of the tissue has to be used for MSP 

generation as well as for identification to ensure a reliable species identification. Hence, 

proteins from tissues with varying storage temperatures and processing grades were 

prepared with all five protocols and analysed using the MSP obtained with the chosen 

standard protein preparation protocol of frozen fish. The varying storage temperatures and 

processing grades were fresh, frozen (1 day up to 14 months), refrigerated (7 days), cooked 

(99 °C for 5 min), and smoked. It was not possible to obtain identifiable protein spectra of 

smoked and refrigerated fish using the five protein preparation protocols. Fresh, frozen and 

cooked Atlantic mackerel and rainbow trout were successfully identified by using the chosen 

standard protein preparation for analysis as well as for MSP generation. This was not 

possible when using one of the other four tested preparation protocols. Consequently, the 

same protein preparation protocol should be used for MSP generation as well as for 

identification.  

Besides this, it was shown that MSP generated from frozen tissues are sufficient for analysis 

of fresh, frozen or cooked fish, which simplifies the development of a protein spectra 

database for fish species and offers a fast and reliable approach for species identification 

in the context of the official control of foodstuff for these processing grades and storage 

conditions. However, when analysing unknown long refrigerated or smoked fish, DNA 

sequencing is recommended to ensure reliable species identification.  
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Nevertheless, correct species identification depends on the quality and size of the 

underlying reference database. Stahl and Schröder (2017) pointed out that the lack of 

reference spectra may lead to incorrect identification results. For instance, because no 

protein spectrum of Gadus chalcogrammus Pallas, 1814 was deposited in the database, 

this species was wrongly identified as Gadus macrocephalus Tilesius, 1810 due to the high 

similarity of the protein spectra in both species. Consequently, until a database containing 

spectra of all food relevant and closely related marine animal species as well as exotic 

species is available no unambiguous species identification is possible. 

However, due to the growing application of MALDI-TOF MS the demand for comparing 

protein spectra of seafood species will increase (Mazzeo et al., 2008; Volta et al., 2012; 

Laakmann et al., 2013; Stahl and Schröder, 2017). Currently, there is no commercial or 

non-commercial MALDI-TOF MS database available containing protein spectra of all food 

relevant and closely related marine animal species. Creation, maintenance and validation 

of a protein spectra database is time-consuming. The collective work of an institutional 

network of several laboratories on a common, ideally global database may overcome this 

obstacle. As true for all reference libraries, the greatest challenge in developing a protein 

spectra database for species identification in the context of official control of foodstuffs using 

MALDI-TOF MS is to obtain material from all food relevant and closely related marine 

animal species as well as exotic species. 

The MALDI-User-Platform (MALDI-UP, http://maldi-tof-ms-user-platform.ua-bw.de/) may 

facilitate the development of a protein spectra database. This platform provides a catalogue 

hosted by the State Institute of Chemical and Veterinarian Analysis (the food control 

authority of Baden-Wuerttemberg) containing taxonomic information, MALDI-TOF MS 

instrument, sample preparation parameters and further metadata (Rau, 2016). The 

interested users can obtain these information as well as contact information of the spectra 

creators for exchanging spectra under own merchandising criteria. This catalogue is 

updated on a regular basis and contained 111 entries (1269 entries in total) of 47 fish 

species in March 2019. Furthermore, 11 crustacean species (all of the order Decapoda) 

were listed in the catalogue. However, only in case of five fish species spectra were 

obtained with the chosen protein preparation protocol (25% formic acid followed by 

chloroform-methanol defatting). 
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As shown above, the same protein preparation protocol should be used for MSP generation 

as well as for identification to ensure reliable species identification. It will take a lot of time 

and effort until protein spectra of all requested species created with the selected protocol 

are available. Consequently, MALDI-TOF MS can currently only be used as a screening 

method or to analyse a limited species group of which reference spectra of all species are 

available.  

7.3. Suitability of DNA sequencing for species identification  

The official analytical method in the ASU for crustacean species identification is sequencing 

of an approximately 312 bp fragment of the 16S rDNA (16S rDNA_312 bp). However, this 

method is not recommended for all crustacean species. For instance, it cannot be applied 

to the important shrimp genus Crangon due to the lack of amplification (BVL, 2014). 

Therefore, in comparison with the official method, the applicability of two other marker 

regions commonly used for crustacean species identification were examined in this thesis 

on 19 food relevant decapod species (Chapter 6). One marker was another 16S rDNA 

region of about 570 bp (16S rDNA_570 bp). This region enclosed the 16S rDNA_312 bp 

fragment. The other marker was the COI barcoding region. 

It was shown that the COI barcoding region is the most suitable gene marker for reliable 

identification of all 19 examined species belonging to ten different crustacean families 

(Aristeidae, Cambaridae, Cancridae, Crangonidae, Nephropidae, Palaemonidae, 

Pandalidae, Parastacidae, Penaeidae and Solenoceridae). The official German control 

method showed some disadvantages compared to COI and the other tested 16S rDNA 

marker region (16S rDNA_570 bp) as described hereafter. In case of four decapod species, 

identification using the official 16S rDNA marker region was hampered by insufficient 

sequences (lack of amplification or heterogeneous sequences). These four species were 

Nephrops norvegicus (Linnaeus, 1758), Cancer pagurus Linnaeus, 1758, Procambarus 

clarkii (Girard, 1852) and Crangon crangon (Linnaeus, 1758). With the further tested 

16S rDNA marker region and the COI marker region, sufficient sequences were obtained 

from all 19 decapod species. However, in case of the species Pandalus jordani Rathbun, 

1902 no 16S rDNA reference sequence was available in GenBank in contrast to COI. 

Identification of one decapod species (declared as Heterocarpus reedi Bahamonde, 1955) 

failed, because no sequences of either of the two analysed genes of the species 

Heterocarpus reedi were deposited in GenBank or BOLD in July 2018 when the study was 

conducted. In addition, in March 2019 no sequences were available. 
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The BOLD database (http://www.boldsystems.org) contained COI barcodes of about 

200.000 animal species and about 40.000 public COI barcodes of decapod species. In 

addition, over 43.000 COI and 22.000 16S rDNA records were available in GenBank 

(GenBank search, March 2019). Both databases are continuously growing. For instance, in 

2018 Mantelatto et al. (2018) deposited about 100 COI and 16S rDNA sequences of 

decapod species that were not yet present in GenBank at that time. Therefore, it seems to 

be only a matter of time until COI sequences of the species Heterocarpus reedi Bahamonde, 

1955 become available in public databases. Furthermore, about more than twice as many 

COI than 16S rDNA sequences of decapods are published in GenBank, making COI, in 

addition to the other aforementioned advantages, with the current state of knowledge, the 

marker of choice for reliable decapod species identification. 

The results obtained from this part of the thesis showed the potential of the COI barcoding 

region for the complementation or even the replacement of the official method in the official 

control of foodstuff for crustacean species identification to detect and combat food fraud. 

However, accuracy of species identification depends on the available reference sequences 

and the genetic differences among the investigated species (Almerón-Souza et al., 2018). 

Therefore, in some cases additional markers are required for unambiguous species 

identification. For instance, Moftah et al. (2011) suggested cytb sequencing, additionally to 

COI sequencing, when analysing the shark genus Carcharhinus due to the higher evolution 

rate of cytb in this genus. Viñas and Tudela (2009) suggested using the first internal 

transcribed spacer (ITS1) in addition to the mitochondrial control region (CR) as a nuclear 

gene marker when analysing certain tuna species, for instance in distinguishing between 

Thunnus alalunga (Bonnaterre, 1788) and Thunnus thynnus (Linnaeus, 1758) with 

introgressed mitochondrial DNA of Thunnus alalunga. Moreover, Abdullah and Rehbein 

(2017) used the nuclear rhodopsin gene fragment complementary to COI for identification 

of fishery products to detect possible hybrids. Besides, additional markers are 

advantageous, if reference sequences are lacking or ambiguous, such as in case of the 

shark species Squalus cubensis Howell Rivero, 1936 (Almerón-Souza et al., 2018). 

Additionally, they can lead to better amplification result as in case of 16S rDNA sequencing 

of portunid crabs in contrast to COI (Brandão et al., 2016) or confirm the identification results 

as done by Cawthorn and Hoffman (2017) with 16S rDNA supplementary to COI for 

decapod species identification. However, traditional Sanger sequencing reaches its limits 

when mixed products (containing more than one animal species, for example surimi or 

canned tuna) are analysed. In this case, time-consuming and unsuitable for routine analysis 

separation of amplicons (e.g., PCR cloning) is needed prior to sequencing (Bottero and 

Dalmasso, 2011; Kumar et al., 2015). 
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In recent times, Next Generation Sequencing (NGS) has been becoming a useful approach 

for seafood species identification in products with mixed species content by parallel 

sequencing of different target sequences in one reaction. Especially metabarcoding 

(combination of DNA barcoding with NGS) is becoming a suitable application for 

simultaneous detection of several species in food (Staats et al., 2016). This was shown by 

multiple examples also within the area of seafood. Galal-Khallaf et al. (2016) used COI 

metabarcoding for fish identification of aquaculture feeds, Kappel et al. (2017) showed the 

potential of cytb metabarcoding for discrimination of tuna species, Giusti et al. (2017) 

identified fish and cephalopod species of surimi-based products using 16S rDNA 

metabarcoding, and Maggia et al. (2017) applied COI metabarcoding to discriminate fish 

larval of the Amazonian catfish.  

7.4. Suitability of the examined methods depending on the issue 

There are many molecular biological methods for seafood authentication and it is a case-

by-case decision which method is the most suitable for which focus of analysis, processing 

grade and storage temperature. The suitability of the three techniques examined in this 

thesis (MALDI-TOF MS, DNA sequencing and LAMP), depending on the aforementioned 

issues, is described hereinafter for crustacean and fish species authentication (for an 

overview see Table 4). 

Considering delimitation of two species or detection of few known species, the LAMP 

technique has the potential to serve as a fast and easy to handle alternative to MALDI-

TOF MS and DNA sequencing which are time-consuming and/or need bulky equipment. 

For instance, in the case of the common substitution of Atlantic halibut [(Hippoglossus 

hippoglossus (Linnaeus, 1758)] with Greenland halibut [Reinhardtius hippoglossoides 

(Walbaum, 1792)] development of LAMP assays for each of the two species would be 

appropriate for a fast on-site detection (e.g., investigation of food samples in restaurants or 

retailers). Furthermore, a LAMP assay for detection of the family Tetraodontidae (puffer 

fish) or the genus Lophius (monkfish) could serve as a fast screening method (even on 

board of a fishing vessel) to distinguish the potentially toxic puffer fish from the non-toxic 

monkfish. Additionally, delimitation of the higher priced beluga [Huso huso (Linnaeus, 

1758)] from the lower priced sturgeon species (Acipenser spp.) in caviar is a further possible 

approach due to the shown application of LAMP on fish eggs.  
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A further common case of food fraud is adulteration of sole [Solea solea (Linnaeus, 1758)]. 

However, in this case several species are used for substitution. In 2013 during an 

undercover restaurant investigation in Germany 50% of the analysed samples were not sole 

as declared. Several species were used for substitution, in particular Senegalese 

tonguesole [(Cynoglossus senegalensis (Kaup, 1858)], Portuguese sole (Synaptura 

lusitanica de Brito Capello, 1868), even pangasius [Pangasianodon hypophthalmus 

(Sauvage, 1878)] as well as two unidentified species (Kappel and Schröder, 2016). In a 

further undercover investigation in Brussels' restaurants and canteens conducted by 

Christiansen et al. (2018) sole was replaced with yellowfin sole [Limanda aspera (Pallas, 

1814)] and Northern rock sole [Lepidopsetta polyxystra Orr & Matarese, 2000] in addition 

to the abovementioned species. In such cases, LAMP assays reach their limits, because 

LAMP is restricted to the specified target species. Nevertheless, application of LAMP for 

detection or exclusion of sole is a potential approach. However, it does not offer the 

possibility to specify the variety of other species used for substitution. 

In such cases, MALDI-TOF MS can serve as a fast and easy to handle alternative approach. 

Currently, the drawback of MALDI-TOF MS is the incomplete protein spectra database. For 

instance, the developed MALDI-TOF MS database of Stahl and Schröder (2017) contains 

protein spectra of sole and pangasius but spectra of Senegalese tonguesole and 

Portuguese sole are missing. Additionally, Stahl and Schröder (2017) showed that the lack 

of reference spectra can lead to incorrect identification results. Consequently, the 

application of MALDI-TOF MS is still limited.  

However, due to the increasing application of MALDI-TOF MS for seafood species 

identification, it is a matter of time until a protein spectra database containing spectra of all 

food relevant and closely related marine animal species as well as exotic species will be 

available. To build such a database in a non-commercial way it will take several years or 

decades, considering the DNA database BOLD which still lacks DNA sequences from some 

species, for instance the crustacean species Heterocarpus reedi Bahamonde, 1955.  

Furthermore, this thesis showed that secure species identification using MALDI-TOF MS 

was not possible for smoked fish. DNA-based methods are more suitable for eels as they 

are often sold smoked (Mafra et al., 2008; Coad, 2016). When the expected number of 

species is low and known, detection methods such as LAMP assays may be used for fast 

analysis of processed seafood samples. However, when there is a broad range of expected 

species or the target species is unknown, DNA sequencing is recommended for reliable 

authentication of highly processed seafood products. As shown in this thesis the COI 

barcoding region should be applied for crustacean species identification. 
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Table 4 Comparison of suitability of the molecular biological methods for marine 
species authentication examined in this study depending on the focus of analysis 
and available equipment as well as on the handling. 

 LAMP1 MALDI-TOF MS2 DNA sequencing 

On-site analysis x - - 

No Database required x - - 

Database available n.a.3 - x 

Broad species spectrum - x x 

Suitable for processed food x - x 

Fast x x - 

Easy to handle x x - 

Methods marked with an ‘x’ indicate that they exhibit the corresponding feature 
1LAMP: Loop-mediated isothermal amplification 
2MALDI-TOF MS: Matrix-assisted laser desorption ionization time of-flight mass spectrometry 
3n.a.: not applicable 

 

Summing up, using the three methods examined in this thesis, depending on the processing 

grade and the storage temperature (fresh, refrigerated, frozen, cooked and smoked) as well 

as the focus of analysis (species identification, delimitation or detection), reliable species 

identification of seafood is possible in most of the cases.  
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8. Conclusion 

Overall, this work has improved seafood species authentication, in particular fish and 

crustacean, in the context of the official control of foodstuff to detect and combat food fraud. 

The results of this thesis show the limits and possibilities of MALDI-TOF MS depending on 

the influence of storage temperature and level of food processing as well as the used protein 

preparation protocols. Additionally, the most appropriate protein preparation protocol for 

subsequent MALDI-TOF MS analysis was determined. This may be used for standardized 

generation of protein reference spectra for development of a common database as well as 

for species identification. However, suitability of this protocol has to be examined case-by-

case for each target group of fish. In addition, it is recommended to examine the applicability 

of this protocol to other groups of animals in order to enable easy and fast routine analysis. 

Concerning crustacean, the reliability of species identification was enhanced due to the 

shown suitability of COI sequencing. Besides, suitability of LAMP for smoked fish as well 

as fish eggs with eel as representative was demonstrated. 

Due to the establishment of the three molecular biological methods, including preparation 

protocols, the food control authorities can combat food fraud more effectively. All three 

methods have the potential to be implemented in the ASU leading to a nationwide 

standardized quality of seafood examination in Germany. Furthermore, this thesis has 

shown that there is no molecular biological approach suitable for every analytical focus. 

However, this work can be useful as a guidance for food control authorities to choose the 

appropriate method depending on the analysed food, not only for seafood. 

Besides the suitability of the well-established methods DNA sequencing and MALDI-

TOF MS, the applicability of LAMP for on-site analysis was shown in this thesis. On-site 

analyses are beneficial for species determination both for ecological studies as well as on 

board of research or fishing vessels. Besides, LAMP offers food control investigators direct 

analysis of potentially mislabelled food, for instance in restaurants or retails. In addition, due 

to the reported applications for other animals as well as plants in the literature, there are 

(almost) no limits to the possible applications. 

Although seafood authentication using MALDI-TOF MS and DNA sequencing was improved 

in this thesis, it has to be noted that there is a lack of DNA sequences and protein spectra. 

Reliable species identification using database-based methods is only as accurate as the 

coverage of the underlying database. The collective work of the food control authorities of 

Germany and other countries in generation and exchange of more spectra can enhance the 

reliability of species authentication, not only for seafood. 
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9. Summary 

Due to the multitude of uncovered cases of food fraud concerning seafood in recent years, 

reliable methods for species authentication in the context of the official control of foodstuff 

are required. Most of the sold seafood lacks morphological characteristics due to 

processing. Consequently, morphological species identification often reaches its limits. 

Therefore, in this thesis one protein-based (Matrix-assisted laser desorption ionization time 

of-flight mass spectrometry: MALDI-TOF MS) and two DNA-based (DNA sequencing and 

loop-mediated isothermal amplification: LAMP) methods have been established and 

compared for suitability of application in the context of the official control of foodstuff for fish 

and crustacean species authentication. In particular, it was examined which of these three 

methods is suitable for which focus of analysis (species identification, delimitation or 

detection), processing grade and storage temperature (fresh, refrigerated, frozen, cooked 

and smoked). 

The LAMP technique has the potential to serve as a fast and easy approach for delimitation 

of two species or detection of few, known species. The advantages of this technique in 

contrast to MALDI-TOF MS and DNA sequencing are, that it is neither time-consuming nor 

requires bulky equipment and therefore is also suitable for on-site analysis. The suitability 

of the LAMP technique was demonstrated in this thesis by developing LAMP assays for 

delimitation of the endangered European eel [Anguilla anguilla (Linnaeus, 1758)] from other 

eels of the genus Anguilla, for frozen and smoked fish as well as in fish eggs. 

For the analysis of unknown species, or groups consisting of many species, the LAMP 

technique reaches its limits. Considering this problem, MALDI-TOF MS can serve as an 

also fast and easy to handle alternative approach for species authentication. The influence 

of storage temperature and processing grade (fresh, refrigerated, frozen, cooked and 

smoked) on the reliability of identification of the high-fat Atlantic mackerel (Scomber 

scombrus Linnaeus, 1758) and the low-fat rainbow trout [Oncorhynchus mykiss (Walbaum, 

1792)] was examined in this thesis. It was shown, that only fresh, frozen and cooked fish 

can be identified reliably using MALDI-TOF MS. Furthermore, due to comparison of five 

protein preparation protocols the most suitable was chosen. Additionally, it was shown, that 

the same protein preparation protocol should be used for generation of reference spectra 

as well as for generation of spectra used for identification. However, the disadvantages of 

this technique are the lack of a protein spectra database containing all food relevant seafood 

species and the unsuitability for identification of smoked fish. Consequently, the applicability 

of this approach for the area of food fraud concerning seafood species authentication is 

currently limited.  
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DNA sequencing remains the gold standard for seafood species identification in the context 

of the official control of foodstuff. The method in the Official Collection of Methods of 

Analysis and Sampling is based on sequencing of a 16S ribosomal DNA (16S rDNA) 

fragment. However, this method shows some deficiencies concerning amplification of 

several species due to hampering by insufficient sequences (missing amplification, 

heterogeneous sequences). Therefore, this marker was compared with a larger 16S rDNA 

marker region and the cytochrome c oxidase subunit 1 (COI) barcoding region. Due to the 

shown suitability of COI sequencing for crustacean and the potential of this marker to 

complement or even replace the official method, the reliability of species identification for 

this group was enhanced. However, as with MALDI-TOF MS, reliable species identification 

depends on the coverage within the database. Generation and exchange of protein spectra 

and DNA-sequences is necessary to overcome this problem. 

In summary, the three methods established and compared in this thesis enable in most 

cases a reliable authentication of seafood, in particular fish and crustacean. This gives the 

control authorities reliable state of the art methods to detect and combat food fraud in a 

nationwide standardised quality. Although no molecular biological approach was suitable 

for every analytical focus, this work can be a useful guide for food control authorities in 

choosing the method most appropriate for analysis of a given food sample, whether of 

seafood origin or not. 



10. Zusammenfassung 
 

91 
 

10. Zusammenfassung 

Aufgrund der Vielzahl in den letzten Jahren aufgedeckten Fällen von Lebensmittelbetrug 

bei Fischereierzeugnissen sind zuverlässige Methoden zur sicheren Artenerkennung im 

Rahmen der amtlichen Lebensmittelkontrolle erforderlich. Bei den meisten verkauften 

Fischereierzeugnissen fehlen aufgrund der Verarbeitung morphologische Merkmale. Daher 

stößt die morphologische Artidentifizierung oft an ihre Grenzen. 

Aus diesem Grund wurden in dieser Dissertation eine proteinbasierte (Matrix-assisted laser 

desorption ionization time of-flight mass spectrometry: MALDI-TOF MS) und zwei DNA-

basierte (DNA-Sequenzierung und loop-mediated isothermal amplification: LAMP) 

Methoden auf ihre Eignung für die Anwendung im Rahmen der amtlichen Kontrolle von 

Lebensmitteln zur Authentifizierung von Fisch und Krustentieren etabliert und verglichen. 

Im Speziellen wurde untersucht, welches dieser drei Verfahren für welchen Analysenfokus 

(Artenidentifikation, Abgrenzung oder Nachweis), Verarbeitungsgrad und Lagertemperatur 

(frisch, gekühlt, gefroren, gekocht und geräuchert) geeignet ist. 

Die LAMP-Technik hat das Potential, als schnelle und einfach zu handhabende Anwendung 

bei der Abgrenzung von zwei Arten oder dem Nachweis von wenigen, bekannten Arten zu 

dienen. Der Vorteil dieser Technik im Gegensatz zu MALDI-TOF MS und der DNA-

Sequenzierung ist, dass sie weder zeitaufwendig ist noch sperrige Geräte erfordert und sich 

daher auch für die Analyse vor Ort eignet. Die Eignung der LAMP-Technik wurde in dieser 

Dissertation durch die Abgrenzung des gefährdeten Europäischen Aals Anguilla anguilla 

(Linnaeus, 1758) von anderen Aalen der Gattung Anguilla bei gefrorenem und 

geräuchertem Fisch sowie bei Eiern gezeigt. 

Für die Analyse unbekannter Arten oder Gruppen mit vielen Arten stößt die LAMP-Technik 

an ihre Grenzen. Daher kann MALDI-TOF MS als ein, auch schnell und einfach zu 

handhabender, alternativer Ansatz zur Artauthentifizierung dienen. Den Einfluss von 

Lagertemperatur und Verarbeitungsgrad (frisch, gekühlt, gefroren, gekocht und geräuchert) 

auf die Zuverlässigkeit der Identifizierung der fettreichen Makrele (Scomber scombrus 

Linnaeus, 1758) und der fettarmen Regenbogenforelle [Oncorhynchus mykiss (Walbaum, 

1792)] wurde in dieser Dissertation untersucht. Es wurde gezeigt, dass nur frische, 

gefrorene und gekochte Fische sicheren mittels MALDI-TOF MS identifiziert werden 

können. Darüber hinaus wurde durch den Vergleich von fünf 

Proteinaufarbeitungsprotokollen das am besten geeignete ausgewählt. Des Weiteren 

wurde gezeigt, dass das gleiche Proteinaufarbeitungsprotokoll sowohl für die Generierung 

von Referenzspektren als auch für die Generierung der Spektren zur Identifizierung 

verwendet werden sollte. 
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Jedoch sind die Nachteile dieser Methode das Fehlen einer Proteinspektren-Datenbank die 

alle lebensmittelrelevanten Fischereierzeugnisse beinhaltet und der fehlenden Eignung für 

die Identifizierung von geräucherten Fischen. Daher ist die Anwendung für die 

Authentifizierung von Meeresfrüchten zur Bekämpfung von Lebensmittelbetrugs derzeit 

begrenzt.   

Die DNA-Sequenzierung bleibt der Goldstandard für die Identifizierung von 

Fischereierzeugnissen im Rahmen der amtlichen Kontrolle von Lebensmitteln. Die offizielle 

Kontrollmethode in der Amtlichen Sammlung von Untersuchungsverfahren für die 

Identifizierung von Krebsarten basiert auf der Sequenzierung eines 16S ribosomalen DNA 

(16S rDNA) Fragmentes. Jedoch weist die offizielle Kontrollmethode einige Defizite in 

Bezug auf die Amplifizierung einiger Arten durch fehlende Amplifikation bzw. heterogene 

Sequenzen auf. Daher wurde dieser Genmarker mit einer größeren 16S rDNA-

Markerregion und der Cytochrom c Oxidase Untereinheit 1 (COI) Barcode-Region 

verglichen. Aufgrund der, in dieser Dissertation nachgewiesenen Eignung der COI-

Sequenzierung für die Identifizierung von Krebsarten, wurde die Zuverlässigkeit der 

Artenidentifikation für diese Gruppe verbessert. Jedoch hängt die zuverlässige 

Artenbestimmung wie bei MALDI-TOF MS von der Abdeckung innerhalb der Datenbank ab. 

Die Generierung und der Austausch von Proteinspektren und DNA-Sequenzen sind 

notwendig, um dieses Problem zu lösen. 

Insgesamt ermöglichen die drei in dieser Dissertation etablierten und verglichenen 

Methoden in den meisten Fällen eine zuverlässige Authentifizierung von 

Fischereierzeugnissen, insbesondere von Fisch und Krebstieren. Damit verfügen die 

Kontrollbehörden über zuverlässige und hochmoderne Methoden zur Aufdeckung und 

Bekämpfung von Lebensmittelbetrug. Obwohl kein molekularbiologischer Ansatz für jeden 

analytischen Fokus geeignet ist, kann diese Arbeit als Orientierungshilfe für die 

Lebensmittelkontrollbehörden bei der Wahl der geeigneten Methode in Abhängigkeit vom 

analysierten Lebensmittel - nicht nur für Fischereierzeugnisse - genutzt werden. 
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11. Abbreviations  

16S rDNA 16S ribosomal DNA 

16S rRNA 16S ribosomal RNA 

16S rRNA/tRNA Val 16S ribosomal RNA/transfer RNA Val 

ASU Official Collection of Methods of Analysis and Sampling 

BIP Reverse inner primer  

BOLD Barcode of Life Data System 

bp Base pairs  

CBOL Consortium for the Barcode of Life 

COI Cytochrome c oxidase subunit 1 

CR Control region  

cytb Cytochrome b  

FINS Forensically informative nucleotide sequencing 

FIP Forward inner primer  

HRM High resolution melting 

IEF Isoelectric focusing 

ITS1 First internal transcribed spacer  

IUCN International Union for Conservation of Nature 

LAMP Loop-mediated isothermal amplification  

MALDI-TOF MS Matrix-assisted laser desorption ionization time of-flight mass 
spectrometry 

MALDI-UP MALDI-User-Platform  

MSP Main spectra projection 

NCBI National Center for Biotechnology  

NGS Next Generation Sequencing 

NIH National Institute of Health 

PCR  Polymerase chain reaction 

PCR-RFLP Polymerase chain reaction-restriction fragment length 
polymorphism  
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