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Abstract 

(Dissertation) 

 

 The current dissertation asks two core questions: How do researchers evaluate statistical 

evidence when drawing inferences from data? And how can we improve this process of statistical 

inference-making among researchers in the field of psychology? In order to gain some insights 

and possible answers to these questions, two projects were carried out. The first (Project 1) took 

a more literal approach and assessed the effectiveness of an 8-week massive open online course 

(MOOC) at reducing individuals’ propensity to fall prey to common statistical misconceptions 

that have been observed as widespread amid the research community, and thus assumed to be 

resistant to change. Not only did findings indicate that misconceptions (concerning p-values, 

confidence intervals, and Bayes factors), were able to be improved in terms of immediate 

learning, it was also found that this learning could be maintained across the 8-week timeframe 

(Study 1). Moreover, additional instructional support which served to explicitly clarify and train 

individuals to recognize p-value misconceptions (Study 2) further bolstered this improvement. 

The second project (Project 2) took a meta-scientific approach to these questions, exploring how 

the concepts of model generalizability and replicability might relate in practice: Specifically, by 

re-analyzing the replication data sets of the recent 2018 replication project (Camerer et al., 

2018), using a repeated k-fold cross validation technique, we could test whether model prediction 

accuracy of a study could positively predict whether it successfully replicated or not. Preliminary 

results were in line with our intuitions, and corroborated the notion that strength of initial 

evidence – which may be captured in multiple ways – may be an important determinant of study 

replicability. Taken together, the two projects speak to the merits of fostering a more thorough 

and nuanced understanding of statistical data among researchers, in order to move away from the 

traditional rote way of teaching and using statistics, and toward a more comprehensive and 

thoughtful approach to drawing well-founded and meaningful statistical inferences from data.   

Word count (dissertation, references incl.) = approx. 46,784 
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INTRODUCTION 

 

1. General introduction 

 The ability to draw meaningful and accurate statistical inferences from data is a key 

component in how researchers make sense of research findings, interpret their meaning, and in 

turn offer implications and conclusions. The trouble is that within disciplines, such as 

psychology, inferential statistics, which are inductive by nature (i.e. involving the estimation of a 

population parameter from a sample-based estimator), are necessarily based on probabilities, and 

thus always entail some degree of uncertainty. Therefore, unlike deduction that results in valid 

versus invalid arguments (for details, see section 2.1), induction relies on corroborating evidence 

to strengthen versus weaken claims. Beyond the fact that dealing with uncertainty adds 

complexity when evaluating statistical evidence, a central stumbling block when it comes to 

psychological research in particular – the focus of the current dissertation – is the inordinate use 

of null hypothesis significance testing (NHST), a framework for ‘statistical inference-making’ 

(i.e. drawing statistical inferences from data) which seems to impart the illusion that one can 

accept or reject hypotheses or theories with certainty. Paired with the long-standing criticism that 

NHST, i.e. use of p-values, promotes rote mechanical and dichotomized thinking (for review of 

NHST controversy, see Nickerson, 2000), a consequence that follows from the overreliance on 

and misuse of significance testing, are widespread inconsistencies between proper statistical 

theory and faulty research practice. As a result, critics of the NHST approach have pushed for 

statistical reforms advocating the use of alternative techniques (a theme which will be carried 

throughout the dissertation), such as methods which encourage estimation thinking, e.g., 
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confidence intervals (CIs), effect sizes, meta-analysis, or use of Bayesian statistics (e.g., Bakan, 

1966; Falk & Greenbaum, 1995; Cohen, 1990; Rozeboom, 1997; Wagenmakers, 2007; Dienes, 

2011; Morey, Romeijn, & Rouder, 2016).  

 In addition to issues stemming from misunderstandings or misuses of the NHST approach 

itself, the competitive academic culture, within which psychology research is conducted, is also 

commonly blamed for incentivizing researchers to inflate claims, fall prey to cognitive biases, or 

appeal to research practices that are questionable and self-serving. Consequently, when it comes 

to drawing statistical inferences, over-generalizations and inflated claims about the nature of 

observed effects can perpetuate false trust in the existence of phenomena, which is particularly 

conflicting given contradictory findings (e.g., negative or null results, or failures to replicate). 

For these reasons, it is not surprising that contemporary science finds itself in a ‘replication 

crisis’, and that calls for system-wide changes in research practices and improved methods are 

ever-growing (e.g., Wasserstein & Lazar, 2016; Amrhein, Greenland, & McShane, 2019).  

 As a response to these calls, the current dissertation proposes to investigate the following 

questions: How do researchers evaluate statistical evidence when drawing inferences from data? 

And how can we improve the process of statistical inference-making in order to foster accurate 

and meaningful inferences from data? While improving the practice of inferential statistics 

among researchers is only one component in fostering more meaningful outcomes from scientific 

investigations, it is nonetheless one of the most heated points of contention within the scientific 

community on account of the very fact that the culture of research puts so much precedence on 

hypothesis-supporting (i.e. positive) study results. In fact, the misuse of statistics often stems 

from a general (or intentional) ignorance about the complexities that surround the process of 

engaging in valid statistical reasoning, amounting to more significance-chasing at the expense of 
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critical thinking. Fostering effective statistical thinking in researchers is thus a multi-faceted 

undertaking, requiring (but not limited to): the skill to move beyond rote use of NHST and ask 

questions that are relevant to one’s given research question(s) and goals, recognizing and 

identifying inherent layers of uncertainty that exist within investigations, replacing dichotomous 

thinking with a more nuanced appraisal of data, and overcoming biases toward significant 

results. While perhaps unrealistically optimistic, shifting away from the routine use of 

significance thresholds, and adopting a more comprehensive understanding of the strengths and 

limitations of a variety of methods, should in theory provide a better foundation for thoughtful 

research. Though broad, this underlying assumption plays a role in each of the dissertation 

projects presented, of which the details will be elucidated below (see section 1.2). 

 Given the complex nature surrounding the questions posed above, it makes sense to 

briefly digress and explicitly appeal to the idea of multiple levels of research as well as inference 

when considering how individual researchers evaluate data (see Figure 1 below). In other words, 

when it comes to understanding how individuals engage in the process of statistical inference-

making, sources of observed differences can originate at the level of the individual researchers 

themselves, such as individual-level differences in grasping certain statistical concepts. On the 

other hand, as described above, many sources of influence exist as a result of more top-down 

influences, i.e. at the level of the research community, such as instructional norms or incentive 

structures (see Figure 1A). Thus, research like ours which seeks to investigate how individuals 

draw inferences, should also consider accounting for the broader context within which statistical 

inferences are drawn. In a similar vein, statistical inferences do not reside on a single level of 

analysis (see Figure 1B):  While the psychological research community has put an “undue 

emphasis on significance levels” (Ioannidis & Trikalinos, 2007, p. 245), and thus research on p-
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value interpretations is warranted, interpreting the outcome of a specific statistical test (e.g., p-

value) is only one component of how researchers are likely to interpret the outcome of an entire 

study, let alone the meaning of that one study amid the full body of literature within which it 

belongs. Therefore, once again, arriving at a more comprehensive answer to the overarching 

dissertation questions posed should necessarily consider these different levels of analysis.  

 

 

 

 

 

 

 

 

Figure 1. A. Levels of research: Individual researchers vs. the broader scientific research 

community. B. Levels of inference: Drawing statistical inferences can occur at the different 

levels: level of individual statistical indices, in terms of the outcome of individual studies, or at 

the level of the full body of research findings taken together (cumulative research).   
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1.1. Structured overview 

 The current dissertation presents two projects, both broadly geared at better 

understanding how researchers draw inferences from statistical data, within the area of 

psychological research
1
. Moreover, in keeping with the continued push toward statistical reforms 

within psychology, central to both thesis projects is also the goal of developing and assessing 

means to improve the practice of drawing statistical inferences. Specifically, each of the projects 

bears relevance to one of two core areas of contention that have arisen in statistical reforms, 

namely the NHST controversy and the ‘replication crisis’. The first project (see section 1.1.1 for 

brief introduction) challenges the idea that certain statistical misconceptions, primarily 

widespread p-value fallacies, are fixed or resistant to change, and empirically tests whether they 

can be systematically improved. The second project (see section 1.1.2 for brief introduction) is 

centered around investigating the nature of replicability, and tests how the assumption of cross-

validation techniques, as an index of generalizability, holds up in practice when used to predict 

the replicability of real data sets. To help give more context, both projects are very briefly 

described in some more words below, after which a structured overview of the dissertation’s core 

line of argumentation (see section 1.1.3) is outlined.  

 1.1.1 Project 1 brief introduction. The first project investigated statistical inference-

making at the level of individual course learners enrolled in an 8-week massive open online 

course (MOOC) on “Improving your statistical inferences”. Specifically, in Study 1, baseline 

misconception rates, as well as improvement rates, for the concepts of p-values, confidence 

intervals (CIs), and Bayes factors (BFs), are assessed across the 8-week course. Building directly 

                                                           
1
 Note: While the applicability of concepts presented are not being argued as isolated to the discipline of 

psychology, for the purpose of the dissertation, the framework and discussions are limited to this context.   
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off of past research, items target common misconceptions that have been observed as particularly 

prevalent among psychological researchers. Additionally, as a novel contribution, baseline 

accuracy rates for p-value misconceptions are compared under two separate contexts, namely: 

whether p-value statements refer to a significant outcome (i.e. p = .001) or not (p = .30). In this 

way, though only indirectly, we attempted to address whether certain top-down biases (at the 

level of research incentives) contribute to individuals’ propensity to fall prey to certain 

misconceptions.  

 In Study 2, we assessed how additional instructional support and training, directed at 

explicitly pinpointing common p-value misconceptions, could potentially further improve rates 

of learning. Note: Regarding the use of the term ‘misconception’, the statistical misconceptions 

literature has not so strictly delineated its definition from other related terms, thus for the 

purposes of the present dissertation, the term ‘misconception’ refers “to any sort of fallacies, 

misunderstandings, misuses, or misinterpretations of [statistical] concepts, provided that they 

result in a documented systematic pattern of error” (for review, see Sotos, Vanhoof, Van den 

Noortgate, & Onghena, 2007, p. 99). In other words, consistent with the literature, these terms 

are used interchangeably; one core reason being that the current work is not making claims about 

the route source of the misconceptions being measured, but rather leaving open the possibility 

that they originate e.g., from innate misguided intuitions or merely a lack of knowledge (see 

section 4.1 for details). 

 1.1.2. Project 2 brief introduction. The second project investigated how researchers 

make sense of data primarily at the level of individual study outcomes. Specifically, it consisted 

of a large-scale re-analysis of the most recent Social Sciences Replication Project (SSRP) by 

Camerer and colleagues (2018), applying a cross-validation (CV) technique (i.e. five-repeated 
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10-fold CV) in order to explore whether measures of model generalizability can be used as 

predictors of replicability. In other words: Can certain individual study features (i.e. CV indices) 

be used to predict future replication success. In this sense, the project operates at all three levels 

of analysis (Figure 1B), bridging features at the level of specific statistical indices with 

prospective assumptions at the level of cumulative research. While presumably abstract, making 

this leap from statistical index to a generalized claim about replicability is not unheard of. In fact, 

falsely assuming that the p-value significance of a study is directly predictive of replication 

success is among one of the most common p-value fallacies observed (see replication fallacy, 

Box 1, p. 23). Therefore, improving our understanding of replicability, not only as it concerns 

comparing original and replication outcomes, but also in terms of statistical predictors, may 

provide a fuller framework through which to understand the limits of how much can be inferred 

from a single study finding within the context of cumulative research. Note: Here, ‘replicability’ 

refers to observing the same finding in a new set of data (replication data set) when using either a 

close or dissimilar methodological approach as the original study (i.e. direct vs. conceptual 

replications); ‘reproducibility’ refers to arriving at the same results by running the same analysis 

on the original data set. This dissertation is primarily concerned with replicability. 

 Though quite disparate, these two projects do share some commonalities: Beyond the fact 

that they both touch upon the topic of replication, there is more broadly shared theme is the 

assumption that capitalizing upon more pieces of statistical information, rather than relying on 

one kind of evidence or one routine approach, should provide a better foundation upon which to 

draw thoughtful conclusions from observed data. Of course, it should not simply be argued that 

more is always better; however (as will be discussed in the coming sections), there are fairly 

compelling grounds to believe that the practice of inferential statistics, when it comes to 
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reporting on psychological research, is currently greatly limited in its application, and in turn has 

left researchers ill-equipped to move beyond a restrictive style of categorical thinking. Therefore, 

beyond walking through the state of research concerning topics related to inferential statistics 

(e.g., the misuse of statistics, statistical reforms, etc.), some sections will also pull in some 

theoretical literature that may provide a broader framework through which to conceptualize how 

to facilitate a shift in thinking, i.e. away from dichotomous framing, and toward a more nuanced 

process of drawing statistical inferences.  

 1.1.3. Dissertation overview: Line of argumentation. The present dissertation is 

structured as follows: The rest of the introduction is organized into three overarching sections 

(sections 2, 3, & 4) outlined below, followed by the inserted full manuscripts (Projects 1 & 2) 

introduced above, after which a final General Discussion is offered (sections 5 & 6). The 

following three pages outline the overarching line of argumentation carried throughout the thesis.  

 First, the section ‘Statistical thinking: Reasoning under uncertainty’ (section 2) 

establishes the concept of inductive inferences and the role of uncertainty (section 2.1) 

commonly overlooked when individuals are faced with probabilistic statements. This concept is 

important to address when assessing how researchers draw inferences in psychological research, 

especially given the overreliance on NHST, as the process of using probabilities to estimate a 

population parameter from a sample-based estimator constitutes the act of making an inductive 

generalization (section 2.2). Thus, should instruction and/or use of significance testing 

commonly fail to communicate this inherent level of uncertainty, and instead promote a rote 

approach to statistical inferences that results in artificial and misleading categorizations of effects 

(e.g., significant or not; true or false), then resulting claims should hardly be indicative of 

rigorous or well-founded statistical understanding. As such, the idea of effective statistical 
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thinking is discussed briefly (section 2.3) as constituting a skill that goes beyond the ability to 

apply statistical techniques, but also in critically asking relevant and more nuanced questions that 

account for research uncertainty.  

 The next section ‘Contemporary science, controversies, & statistical reforms’ 

(section 3) tackles two core controversies that have had predominant roles in contemporary 

science and statistical reforms, and which each of the dissertation projects bear specific relevance 

on, namely: The misuse of significance testing and the prevalence of p-value misconceptions 

(section 3.1) relates to Project 1, and researchers’ response to the replication crisis (section 3.2), 

relates to Project 2. Interestingly, as already alluded to above, it is possible to speculate on how 

misunderstandings at the level of statistical indices (e.g., p-value fallacies, CI misconceptions) in 

fact carry-over when researchers judge cumulative evidence: Exemplified perhaps best by the 

replication fallacy or the widely held confidence-level misconception (see section 3.2), lack of 

proper understanding of these frequentist concepts (i.e. p-values, CIs) is likely to have 

contributed to how researchers perceive and interpret failed replications, and possibly why some 

were inclined to discredit the findings of the initial large-scale replication project (Open Science 

Collaboration, 2015) as evidence of a crisis in psychology. In light of such speculations, a case is 

made for the need for more meta-research, i.e. the empirical study of research itself (section 3.3), 

when addressing questions that operate at multiple levels of analysis, as in the case of 

investigating how researchers statistically reason (e.g., how they make sense of the concept of 

replicability). Finally, accounting for the culture of research within which researchers routinely 

draw inferences (section 3.4) is similarly important in order to more comprehensively gain an 

appreciation of which sources of more top-down biases (e.g., publish-or-perish culture) may 

overshadow correct use – or exacerbate misuse – of inferential statistics. 
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 The last section ‘Fostering statistical & meta-scientific thinking’ (section 4) shifts 

focus away from sources of statistical misunderstandings, and toward the idea of how 

improvements in statistical inference-making might be fostered, including the notion of bettering 

one’s ability to formulate salient questions when approaching research, and optimally assessing 

and weighting multiple (rather than single) pieces of evidence. In order to better conceptualize 

what it might mean to foster improvements in individuals’ skills and understanding, two 

frameworks are argued to offer some insights. First, I appeal briefly to the conceptual change 

literature (section 4.1) and the notion of the novice-expert dichotomy with regard to the 

acquisition of expertise. According to this tradition, the prevalence of p-value misconceptions, 

among both students and experts (e.g., statisticians or methodology instructors), would typically 

suggest that these misconceptions continue to exist because they withstand proper instruction, 

possibly reinforced by past and/or common real-world experiences. The limitation in applying 

this framework to the understanding of NHST misuse (as underscored in sections 2.1 and 3.1) is 

that significance testing has routinely been taught in a formulaic fashion, i.e. as a rote ritual that 

encourages limited dichotomous thinking. Moreover, very little research has investigated 

interventions to improve p-value misconceptions. Therefore, norms of instruction and routine 

misuse of NHST, in combination with the current state of research, make it tough to judge 

whether the widespread misuse of frequentist statistics speaks to some innate problem in 

understanding its correct use, or simply to a lack of knowledge or effective instruction. Put 

differently, in assessing whether p-value fallacies (or other statistical misconceptions) can be 

improved (i.e. Project 1), determining whether these improvements are a product of overcoming 

naïve conceptions versus just providing the correct tools to infer the correct meaning – or 

realistically some combination of both – is a tricky task to reconcile.  
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 Bearing this in mind, I next appeal to the problem-solving literature (section 4.2) 

particularly as it pertains to the concepts of effective problem formulation, fixation, and selecting 

the appropriate tool or strategy to solve a problem. According to Gestalt tradition, fixation, i.e. 

the tendency to approach a problem in a particular or similar way, typically as a result of 

previous familiarity or experience, needs to be overcome by fundamentally restructuring one’s 

problem space, sometimes referred to as breaking frame. Regarding the extent to which NHST 

has been institutionalized among psychology researchers, I would argue that this need to 

fundamentally restructure the problem space can be applied more holistically to the current 

practice of drawing inferences in psychology: In sum, reconfiguring the problem constraints that 

characterize the process of drawing inferences – so that researchers’ goal states, and tools to 

draw inferences, are not fixated on significant results – may be one way to more globally 

conceptualize the presence of multiple sources of influence simultaneously contributing to how 

or why certain misconceptions are so persistent. Though this use of the Gestalt framework is 

more conceptual in nature, I would still contend that (when taken alongside the conceptual 

change literature), it can offer complimentary implications for instruction, that is: While one 

emphasizes the use of formal instruction to refine one’s understanding of statistical concepts, the 

other stresses the need to also act concurrently on other sources of influence (e.g., cognitive 

biases, incentive structures) that may otherwise override the success of proper instruction.         

 After presenting both manuscripts (introduced above, see sections 1.1.1 & 1.1.2) the 

dissertation finishes with a general discussion that brings together some concepts common to 

both projects, and speculates on additional implications for instruction, as well as possible 

avenues of research, in order to further the understanding and improvement of drawing statistical 

inferences from data, among researchers within psychology.   
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2. STATISTICAL THINKING: REASONING UNDER UNCERTAINTY 

 

2.1. Statistics: The science of uncertain inference 

The practice of inferential statistics in scientific research, namely as it concerns the 

discipline of psychology, has been heavily grounded – if not fundamentally defined – by the 

frequentist tradition of defining probabilities. Such an inference model has its foundations in 

“inductive philosophy” (Mayo & Cox, 2006, p. 77) and presupposes a “logic of inductive 

inference” (Fisher, 1935, p.39; Neyman, 1955). In other words, unlike deductive reasoning, 

which constitutes analytic derivation (i.e. the premises of the argument already, in the logical 

sense, contain or entail the conclusion; Greenland, 1998), induction attempts to reason from 

particulars to generals, and as such has been characterized as a logic of evidential support 

whereby the strength (rather than the validity) of an argument is a function of the amount of 

corroborating evidence. In this sense, these two modes of human reasoning (as distinguished by 

logicians), differ critically in the extent to which conclusions can be drawn with certainty: Only 

in the case of a valid deductive argument (e.g., modus tollens) do the premises necessarily 

logically guarantee its conclusion. By contrast, conclusions that follow from inductive inferences 

cannot be guaranteed to be true.  

Specifically in the case of null hypothesis significance testing (NHST), one major source 

of confusion, which has led researchers to believe that inductive inferences can also be drawn 

with certainty, is what Falk and Greenbaum (1995) deemed “the illusion of probabilistic proof by 

contradiction” (p. 76). In essence, this results from a basic probabilistic misinterpretation: 
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inappropriately applying the use of the (otherwise valid) modus tollens conditional argument 

form (i.e. if p then q, not-q, therefore not-p) when interpreting probabilistic statements. In other 

words, while modus tollens follows the structure of a ‘reductio ad absurdum proof’ (i.e. proof by 

contradiction), whereby the rejection of the antecedent (p) follows from the contradiction of the 

consequent (q), this argument form is only valid given categorical statements, i.e. in this case, 

where the outcome contradicted (“not-q”) is absolute, not just highly improbable (i.e. p < .05). 

Herein lies the critical difference: When this logical argument form is inappropriately applied to 

the NHST context, then one might be tempted to assume that observing a highly improbable 

outcome (let p = .001) is analogous to arriving at an outcome so ‘absurd’ given the original 

premise or assumption (here, H0) such that it can justify the rejection of that (null) assumption. In 

fact, because a probability, no matter how small, is never zero, “the probabilistic counterpart of 

that logical deduction does not hold” (Falk & Greenbaum, 1995, p. 78).  

Even though it is common practice for researchers to appeal thresholds of improbability 

(i.e. p = alpha) as a decision criteria to reject or abandon hypotheses, it remains that statistics has 

been characterized as “the science of uncertain inference” (Lehmann, 1993, p. 202): When it 

comes to probability theory and inferential statistics, “such inferences we recognize to be 

uncertain inferences” (Fisher, 1935, p. 39). 

2.2. Statistical inferences: From sample to population 

“Probable evidence, in its very nature, affords but an imperfect kind of information.”  

(Butler, 1736) 

In psychological research, inductive inferences take the form of statistical 

generalizations, using sample-based estimators to draw inferences about population parameters. 
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Consequently, “as in all inductive inferences, we cannot establish that the statistical 

generalization is true with absolute certainty” (Innabi & Jordan, 1999, p. 188). This is because, 

beyond probabilistic misinterpretations (like the one described above; section 2.1), experimental 

data that pertain to probabilistic data-generating models, as in the case of psychology, are 

necessarily stochastic, i.e. possessing some inherent randomness. As such, a critical issue that 

accompanies the process of inferring generalized claims from observational data is that a sample, 

by definition, contains incomplete and/or potentially biased (i.e. non-random) information. 

Understanding how the relationship between sample and population varies as a function of 

sample properties (e.g., size, variability, representativeness) thus constitutes one core component 

leading to meaningful generalizations (see e.g., Sotos et al., 2007), and why the ability to draw 

inferences from data has been considered as an aspect of critical thinking (Ennis, 1985; Innabi & 

Jordan, 1999).  

Although such a concept should be neither controversial, nor particularly tricky to grasp, 

neglecting to account for sampling variability (i.e. sheer random variation) within data, let alone 

potential sources of systematic biases across data (e.g., inflated effect sizes), might partly explain 

why researchers hold falsely optimistic impressions of the expected consistency or 

generalizability of effects. While this point will be further elaborated in a later section (see 

section 3.2), this idea relates to both projects of the current dissertation. Where in the first 

project, statistical inferences are being made at the level of specific statistical indices (e.g., p-

values, CIs), misconceptions commonly arise when trying to infer beyond the specific sample 

data in order to judge the outcome of future studies. Specifically, in the case of p-values, 

individuals commonly fall prey to the replication fallacy, the false belief that significant studies 

necessarily have a high probability of replicating (see Box 1, p. 23); in the case of CIs, 
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individuals commonly confuse a 95% CI with the erroneous belief that it will “on average 

capture 95% of replication means” (Cumming, Williams, & Fidler, 2004, p. 299). Both instances 

of misunderstanding appear to assume that a single statistical index, or the outcome of a single 

study, should be sufficient or representative enough of the population effect to serve as 

predictive criteria of future studies to come (which we know is not the case). 

This idea is very much consistent with the second project, which expressly explores 

potential predictors of study replicability, but through the use of real replication data. Here, while 

we initially narrow in on a specific statistical concept (i.e. model generalizability) in order to 

potentially infer the likelihood that individual studies will replicate, the overarching project goal 

is to harness multiple pieces of information in combination to hopefully yield a more accurate 

predictive model of future replication success. With that said, given the nature of real data, e.g., 

potential effect size inflation or selective publishing of the original studies, even more sources of 

variation need to be accounted for before trying to make sense of why certain statistical indices 

may be observed as successful predictors of replicability.  

All in all, one important point worth stressing is that both the act of drawing statistical 

inferences, as well as research geared at better understanding and improving this process, are 

neither linear undertakings:  While drawing statistical inferences might subsume some general 

mathematical knowledge and competence (such as understanding probability rules; see e.g., 

Chiesi & Primi, 2010), or the ability to apply statistical techniques, the practice of inferential 

statistics cannot be reduced to any one given isolated skill or process. Rather, it operates 

necessarily within a broader framework of inference, in which any given sample-based estimate 

must be evaluated in the context of the entire research cycle, before generalized conjectures can 

be offered about the population parameter in question. In a similar vein, assessing how 
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researchers make sense of statistical concepts, and across different levels of analyses (when 

applicable), should hinge on pooling from multiple research perspectives (e.g., appealing to 

relevant aspects of both dissertation projects, for instance, when assessing the concept of 

replication; more on this last point in section 5.2.1 of the General Discussion).             

2.3. Effective statistical thinking 

 As the last section stressed, drawing inferences from data involves more than performing 

statistical methods and interpreting statistical indices: “Factors such as background evidence, 

study design, data quality and understanding of underlying mechanisms are often more important 

than statistical measures such as p-values or intervals” (Amrhein et al., 2019, p. 307). The ability 

to factor in multiple sources of statistical evidence and levels of understanding – including “the 

omnipresent nature of variation” (Ben-Zvi & Garfield, 2004, p. 7) – has been summarized under 

the definition of statistical thinking as follows (for a comprehensive overview, see Ben-Zvi & 

Garfield, 2004): 

“Statistical thinking involves an understanding of the nature of sampling, how we make 

inferences from samples to populations, and why designed experiments are needed in 

order to establish causation. It includes an understanding of how models are used to 

simulate random phenomena, how data are produced to estimate probabilities, and how, 

when, and why existing inferential tools can be used to aid an investigative process. 

Statistical thinking also includes being able to understand and utilize the context of a 

problem in forming investigations and drawing conclusions, and recognizing and 

understanding the entire process (from question posing to data collection to choosing 

analyses to testing assumptions, etc.)." (Ben-Zvi & Garfield, 2004, p. 7)  
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 For the purposes of the current dissertation, ‘effective statistical thinking’ borrows 

directly from this definition and simply involves engaging in this style of statistical thinking in 

an effective manner so as to most optimally weight various contributing pieces of information 

with regard to the context of inference. Importantly, this also entails recognizing when the 

context of information is too limited or simply insufficient to warrant drawing conclusions.    

 Part of drawing well-founded inferences through effective statistical thinking, involves 

not only weighting different sources of evidence, and providing answers accordingly (with a 

specified level of uncertainty), but also considering first and foremost which questions are 

relevant to ask in the first place: “Researchers often ask multiple different questions at different 

phases of a research project, and the questions they ask depend on the field, the specific study, 

previous knowledge, and their philosophy of science” (Lakens, 2019, p. 5). Because the nature of 

research questions within psychology (and the specifics surrounding their investigation) is 

diverse, no set of invariant criteria exists to distinguish between which questions should or 

should not be asked, and as such it is up to the researcher to make sense of and pinpoint those 

salient to his or her specific research aim(s). In this sense, and in no uncertain terms: “Judgment 

is part of the art of statistics” (Gigerenzer, 2004, p. 604). 

While far from exhaustive, some general questions that a researcher might ask (see Mayo & Cox, 

2006; Lakens, 2019) include: 

 “What would falsify my hypothesis?” 

 “What may be justifiably inferred?” 

 “How can the gap between available data and theoretical claims be bridged reliably?” 
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Or perhaps more specifically in relation to inductive reasoning: “What is the nature and role of 

probabilistic concepts, methods, and models in making inferences in the face of limited data, 

uncertainty and error?” (Mayo & Cox, 2006, p. 78). 

 

This first overarching section of the dissertation outlined some core complexities of 

inductive reasoning and inferential statistics (e.g., reasoning and generalizing under uncertainty 

when using probabilities to move from sample to population), as well as components of effective 

statistical thinking (e.g., weighing multiple pieces of evidence and fostering the ability to ask 

nuanced and salient questions). All of these ideas are summarized fairly astutely by this final 

question provided by Mayo & Cox (2006) directly above. The next section furthers the 

discussion on the need to foster better inferential skills among psychology researchers, by 

highlighting two ever-prevalent issues which continue to plague the research community: 

namely, long-standing criticisms and high misconception rates surrounding the use of NHST, 

and the replication crisis.     

 

3. CONTEMPORARY SCIENCE, CONTROVERSIES, & STATISTICAL REFORMS 

 

The next section tackles two core controversies that have had predominant roles in 

contemporary science and statistical reforms within psychology. Each warrants that more 

empirical research be developed and carried out in order to better understand their respective 

complexities, and in turn possible avenues for subsequent improvement. The current dissertation 

projects aim to tackle these goals. First, backgrounds of each of the controversies, as well as how 
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they directly relate to each of the dissertation projects, are provided below. Respectively, 

Projects 1 and 2 aim to better understand and improve: The misuse of significance testing and 

the prevalence of p-value misconceptions (section 3.1), and researchers’ ability to make sense of 

replicability in the wake of the replication crisis (section 3.2). 

3.1. Dichotomous thinking & the misuse of statistics 

Contemporary science has undoubtedly been marked by cultural and methodological 

reforms which have called into question the veracity of scientific research (e.g., Simmons, 

Nelson, and Simonsohn, 2011; Pashler & Wagenmakers, 2012). These reforms did not simply 

develop in light of uncertainty in conclusions, but as a consequence of more substantive reasons 

to doubt the reliability of the scientific method (mainly as it pertains to the use of null hypothesis 

significance testing (NHST); see e.g., Carver, 1978), and to question the norms of scientific 

conduct. Most notably, the Open Science movement has accelerated in recent years in alignment 

with growing concerns about the methodological and statistical rigour of scientific research, the 

prevalence of questionable research practices (QRPs) among scientists (see e.g., John, 

Loewenstein, & Prelec, 2012), and low replication rates of research findings, i.e. the ‘replication 

crisis’ (Open Science Collaboration (OSC), 2015). These and other concerns, concerning the 

culture of research (for further details, see section 3.4 below), have led to widespread skepticism 

not only about the scientific integrity of research methods, but in turn about the credibility of 

published findings. 

What is worth noting is that while reasons to question the trustworthiness of findings may 

have historically implicated cases of scientific misconduct (e.g., falsifying data or deliberate p-

hacking), grounds for current distrust in research is also largely motivated by the misuse (rather 
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than the abuse) of statistical methods, which has been argued to stem from fundamental 

misunderstandings, markedly in the case of NHST (for an overview of criticisms, see Nickerson, 

2000). Beyond theoretical criticisms of the method, such as its flawed logical structure (see e.g., 

Falk & Greenbaum, 1995), the misuse of significance testing among scientists was exemplified 

in the seminal work of Oakes (1986) in which he probed the baseline misconception rates of 

academic psychologists when it came to interpreting the meaning of p-values (see Box 1 below 

for overview of p-value fallacies): His findings, which showed that 97% of surveyed researchers 

fell prey to at least 1 erroneous interpretation, raised a red flag in the research community, 

signalling a need to revisit the strengths and (perhaps more crucially) the limitations of the 

NHST approach as a model to infer conclusions and meaning from data. Since Oakes’s initial 

work, the NHST controversy has not receded but arguably grown, despite the continued and 

dominant use of p-values in psychology (Cumming et al., 2007). In fact, the misuse of NHST is 

still very much an ongoing and real problem among psychology researchers, as evidenced in 

recent replications of high rates of p-value misconceptions (e.g., Haller & Krauss, 2002; 

Badenes-Ribera et al., 2015; Lyu, Peng, & Hu, 2018), as well as numerous cases of 

“interpretational overreach” (Spence & Stanley, 2018, p. 4) within the published literature (e.g., 

Vacha-Haase & Ness, 1999; Finch, Cumming, & Thomason, 2001; Hoekstra, Finch, Kiers, & 

Johnson, 2006) and in scholarly textbooks (Brewer, 1985).  

This systematic pattern of documented error has been often attributed to the mechanical 

and formulaic use (i.e. “the null ritual”; Gigerenzer, 2004) of NHST, leading researchers to 

falsely assume “that the test of significance provides automaticity of inference” (Bakan, 1966, p. 

423). Moreover, the emphasis on dichotomous thinking, i.e. “bucketing results into ‘statistically 

significant’ and ‘statistically non-significant’” (Amrhein et al., 2019, p.306), has undermined the 
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complexity or nuanced-nature of research findings, and has led reform advocates (over 800 

signatories just last year) to once again reject the use of arbitrary thresholds as signifying 

meaningful categorical differences: “In line with many others over the decades, we are calling 

for a stop to the use of P values in the conventional, dichotomous way – to decide whether a 

result refutes or supports a scientific hypothesis” (Amrhein et al., 2019, p. 306).   

While there is no doubt that NHST has been heavily criticized for decades, being 

described at times by critics as “essential mindlessness in the conduct of research” (Bakan, 1966, 

p. 436), “a corrupt form of the scientific method” (Carver, 1978, p.378), or even “the most bone-

headedly misguided procedure in the rote training of science students” (Rozeboom, 1997, p. 

335), producing “nothing but an increase in pseudo-intellectual garbage” (Lakatos, 1978, p. 88) 

in place of scientific progress, there are several reasons that contribute to the appeal and 

persistent use of NHST  (see Nickerson, 2000, for overview). Two key reasons summed up aptly 

by Nickerson (2000) include what was already touched upon above (see section 2.1), i.e. the 

“lack of understanding of the logic of NHST or confusion regarding conditional probabilities” (p. 

246), as well as “the deep entrenchment of the approach within the field, as evidenced in the 

behavior of advisors, editors, and researchers” (p. 246). Taken together, these two reasons call 

for improvements in the widespread misuse of significance testing, and are the basis for the first 

dissertation project: “Improving statistical inferences: Can a MOOC reduce statistical 

misconceptions?” 

While criticisms listed above may render such a task seemingly futile, there are two 

points work mentioning that offer optimism. The first is that while prevalent rates of p-value 

misconceptions have led some to claim that they are “impervious to correction” (Haller & 

Krauss, 2002, p.1), this tendency to assume that NHST misconceptions are deeply rooted in the 
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minds of researchers, or withstanding of proper instruction, appear to be largely a product of 

surveys like Oakes’s (1986), rather than evidence that instructional interventions are ineffective. 

In fact, even if misconceptions that are resistant to change should produce widespread 

misconception rates, the converse does not necessarily logically follow: In other words, the 

observation that misconception rates are widespread does not entail that they stem necessarily 

from conceptions that cannot be refined or improved. This invalid reasoning form, i.e. affirming 

the consequent, is analogous to the inverse probability fallacy, a fallacy individuals commonly 

fall prey to when interpreting p-values (see Box 1 below).  

The other point concerns the work of Kalinowski, Fidler, and Cuming (2008), one of the 

very few studies that sought to investigate teaching interventions to improve p-value 

misunderstandings, specifically in terms of the aforementioned inverse probability fallacy. 

Authors appealed to the concept of “insight by comparison” (Haller & Krauss, 2002) as a method 

actively pinpoint contrasts between related but critically distinct concepts, in order to elicit 

commonalities as well as inconsistencies in reasoning. In particular, in one intervention, authors 

compared and contrasted NHST with Bayes’ theorem in order to highlight that one cannot falsely 

assume the equivalence between P(H0 | D) and P(D | H0). In a second intervention, they 

explicitly drew attention to the common misapplication of the modus tollens argument form 

when categorical statements are replaced by probabilistic statements, i.e. how the validity of the 

(otherwise valid) deductive argument form breaks down when it is used to interpret the meaning 

of probabilities, such as p-values (for details, see section 2.1). As both interventions were found 

to be effective in improving the understanding of the inverse probability fallacy among students, 

Kalinowski and colleagues (2008) speculated that findings reflected the outcome of Gigerenzer’s 
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concept of disrupting the null ritual; in other words, moving beyond the formulaic step-wise 

approach to more effectively teach NHST.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Box 1 – NHST Misconceptions: p-value fallacies & correct definition 

 

 Inverse probability fallacy (Shaver, 1993; Kirk, 1996):  

The misconception that derives fundamentally from confusing the probability of the 

data, P(D | H0), with the probability of the theory, P(H0 | D), i.e. falsely assuming that 

one can draw conclusions about the probability of a theory or hypothesis, given sample 

data. This can manifest as the false belief that a p-value (e.g., p = .01) is equal to the 

probability that H0 is true (i.e. 1%). 

 

 Replication fallacy (Carver, 1978): 

The misconception that a p-value is directly related to the probability that an effect 

will replicate, i.e. falsely assuming that the p-value probability (e.g., p = .01, or 1%) 

can be taken as the complement of the replication probability (i.e. 1 - .01 = .99, or 

99%).  

 

 Effect size fallacy (Gliner, Vaske, & Morgan, 2001): 

The misconception that a p-value is directly related to the size of the effect, i.e. falsely 

assuming that a significant p-value necessarily entails a large effect size (or that a non-

significant p-value necessarily entails a small effect size). 

 

 Clinical or practical significance fallacy (Kirk, 1996):  

The misconception that a p-value is directly related to whether the effect in question is 

meaningful or not, i.e. falsely assuming that a significant p-value necessarily implies 

that the effect is practically important or clinically meaningful (or vice-versa for non-

significant effects).  

 

 Correct definition: The p-value of a statistical test is the probability of the observed 

result or a more extreme result, assuming the null hypothesis is true. The formal 

definition can be expressed as follows: P(X ≥ x | H0 ) or P(X ≤ x | H0 ), for right- versus 

left-tailed events, where X represents a random variable and x the observed event. 
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3.2. Making sense of ‘failed’ replications  

This next section discusses the controversy surrounding the replication crisis, namely as 

it pertains to how researchers perceived and responded to the high rates of failed replications 

reported in the Open Science Collaboration (OSC; 2015) replication project. Here, the concept of 

treating effects categorically, characteristic of significance testing, is carried over to how the 

research community tends to treat the outcomes of replication effects: either a success or failure. 

Some speculations are then offered as to how this common way of thinking may have resulted in 

too-limited an understanding of how to judge replication research, leading some to be likely 

highly surprised by the low replication rates, and others to feel inclined to discredit the findings 

of the OSC (2015) project as evidence of a crisis in psychology. Specifically, misconceptions 

among researchers at the level of statistical indices, i.e. failure to fully comprehend the nature of 

frequentist concepts (p-values and CIs), may have contribute indirectly to misunderstandings in 

interpreting replicability at the level of cumulative research; eliciting, in turn, a crisis at the level 

of the scientific community.  

Dichotomized framing is readily observed not only when researchers report on the 

outcome of a specific result (significant vs. non-significant), but also more generally when 

discussing the existence (vs. absence) of a phenomenon, the truth (vs. falsehood) of an effect, or 

the success (vs. failure) of replication attempts. Such an all-or-none way of thinking is 

consequently debilitating in face of contradictory results: “Because significance testing implies 

categorization of experimental outcomes, situations arise in which it is difficult to resolve 

controversies about whether a particular effect exists or not” (Hoekstra et al., 2006). The remark 

by Hoekstra and colleagues (2006), almost a decade prior, arguably forecasted how the routine 

dichotomizing of effects might have contributed to why the OSC (2015) replication study 
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elicited such a controversial response from the scientific community: Because the 100 original 

published studies being replicated were (up till then) broadly accepted or undisputed in the 

literature, it followed that when only a fraction of them successfully replicated (36% to 47% 

depending on the criterion), a ‘replication crisis’ broke out about whether the majority of studied 

effects in psychology were in fact true. Though there are many reasons for why one should not 

leap to such a generalized conclusion, it is nonetheless consistent with the popular intuition that 

if a pattern or result is repeatedly observed within a field, then it has a high probability of being 

real (Ioannidis, 2008; Simonsohn, Nelson, & Simmons, 2014), whereas failure to replicate 

undermines the likelihood that it exists. If you pair this intuition with the assumption that 

published effects in the literature are trustworthy, the wide-held false belief that significant p-

values prove the existence of effects (i.e. inverse probability fallacy; Shaver, 1993; see Box 1), 

and the expectation that a significant finding has a necessarily high probability of replicating (i.e. 

replication fallacy; Carver, 1978; see Box 1), then it is additionally unsurprising that the OSC 

(2015) results became such a point of contention. 

In response to the study, Gilbert and colleagues (2016) tried to dilute the impact of the 

study’s results by identifying sources of error that were not accounted for (such as 

methodological infidelities and low power) so as to explain away and minimize the evidence of 

low replicability. In their comment, they stated:  

 “If all 100 of the original studies examined by OSC had reported true effects, then 

sampling error alone should cause 5% of the replication studies to “fail” by producing 

results that fall outside the 95% confidence interval of the original study.” (Gilbert, King, 

Pettigrew, & Wilson, 2016, p. 1037-a)  
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While Gilbert et al.’s (2016) criticism raised some fair points (like the issue of statistical power), 

it also demonstrated that misconceptions also exist when making sense of replication results. As 

illustrated in the excerpt above: Authors appealed to the widely held confidence-level 

misconception (CLM), which is the erroneous belief “that a 95% CI will on average capture 95% 

of replication means” (Cumming et al., 2004, p. 299). In reality, the capture percentage (CP) is 

closer to 83.4% on average, but can range significantly depending both on where the original 

study mean, as well as the replication mean, each fall in relation to the true population mean – 

two pieces of information which are by definition unknown (for details, see Cumming & 

Maillardet, 2006).  

What is important to note here is that, while it is important to understand that “much 

scientific research is based on investigating known unknowns” (emphasis added; Logan, 2009, p. 

712), it is just as important to simultaneously recognize the existence of unknown unknowns (M. 

Elson, personal communication, May 17, 2017), and to take those steps necessary to compensate 

for such sources of uncertainty. To elucidate in a few more words: While some factors in the 

research process are known to, say, affect sample estimates (for instance, in the case of meta-

analysis, use of p-hacking techniques and publication bias are known to inflate meta-analytic 

effect size estimates), what is not known, for example, is which specific p-hacking techniques, 

and within which specific studies, these techniques were applied. Moreover, while one might 

knowingly attempt to correct for inflation of meta-analytic effect sizes (e.g., by trying to quantify 

the amount of inflation (known unknown) through the use of publication bias tests), such tests are 

incapable of distinguishing between inflation caused by p-hacking versus publication bias, or the 

interaction of both (unknown unknowns).  
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In the case of replication, a similar scenario is observed: On the one hand, when making 

sense of replication effects, some sources of uncertainty are known to exist, such as the two 

aforementioned sources of variation identified in the work of Cumming and Maillardet (2006) 

i.e. variation of the original mean around the population mean, and the variation of the 

replication mean around the population mean. Therefore, in order to effectively consider how 

two studies (original vs. replication) compare, authors should acknowledge, in a first step, the 

existence of these two sources of variance (known unknowns) and how they affect the CP of 

future replication estimates, which may help dispel the common CLM belief among researchers 

(roughly 46% prevalence; Cumming et al., 2004). Second, one must importantly recognize, 

however, that the very fact that the population parameter is unknown, means that knowing the 

extent to which either the original mean, or the replication mean, deviates from the population 

mean – and in turn which (original vs. replication mean) may better approximate the true mean – 

is simply not possible (unknown unknowns). As such, only by conducting a series of replication 

studies (direct and/or conceptual) can one begin to get a sense of where the population parameter 

might lie, and what might constitute an ‘accepted’ range of estimates for the specific effect in 

question. Without factoring in these layers of uncertainty and sampling variability (emphasized, 

resp., in sections 2.1 & 2.2), a researcher risks drawing inaccurate conclusions about the 

meaning of ‘successful’ or ‘failed’ replications, especially in face of contradictory findings. 

While, as mentioned above, a series of independent replication studies (both direct and 

conceptual) is necessary to appreciate the totality of some specific effect – from establishing its 

basic existence to assessing the extent to which it is stable or justifiably generalizable (see LeBel, 

Berger, Campbell, & Loving, 2017) – research which looks at replicability across a set of 

different effects, as in the case of the OSC (2015) replication project, can also lend insight into 
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the nature of replicability. Beyond establishing general rates of replicability within a discipline, 

these replication projects have begun to explore the use of different criteria to judge success 

versus degree of replication, as well as predictors of replicability at the level of individual study 

features, such as p-values or effect sizes.  

The second project of the dissertation, “Exploring indices of repeated cross-validation 

as predictors of study replicability”, builds directly off of this line of research, and seeks to 

explore the use of additional statistical indices as potential predictors to add to the cumulative 

research on the understanding of replicability of effects within psychology. What is interesting 

about this line of research is that, unlike Cumming & Maillardet’s (2006) work mentioned above, 

which made use of simulations to explore replication and CPs, this second dissertation project 

involves the re-analysis of large high-powered real data sets to predict observed replication rates. 

While still in its infancy, opportunities to empirically explore the behaviour of real replication 

data sets, that have additionally (where possible) explicitly controlled for known unknowns (e.g., 

researcher degrees of freedom; see section 3.4 below) have grown in recent years with the rise of 

meta-research (see section 3.3 below). 

3.3. Meta-research: The study of research itself 

“Major disruptions are likely to happen in the way we pursue scientific investigation, and it is 

important to ensure that these disruptions are evidence based.” (Ioannidis, 2018, p. 1) 

Since the original replication project (OSC, 2015), efforts to estimate the replicability of 

scientific findings have risen in recent years, involving collective large-scale efforts like the 

Many Labs 1, 2, and 3 replication projects (Klein et al., 2014, 2018; Ebersole et al., 2016), the 

Experimental Economics Replication Project (Camerer et al., 2016), and most recently the Social 
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Sciences Replication Project (Camerer et al., 2018). Alongside these collective undertakings, 

notable advancements have also been made in the field of meta-research: “Meta-research is the 

study of research itself: its methods, reporting, reproducibility, evaluation, and incentives” 

(Ioannidis, 2018, p. 1).  

Beyond investigating how research is being conducted, either at the level of individual 

studies or within sub-disciplines, a core objective of meta-research is also to gain a more global 

perspective on what makes for good scientific research, i.e. scientific investigations that more 

efficiently yield credible and useful research results (Ioannidis, 2018). In this way, “meta-

research uses an interdisciplinary approach to study, promote, and defend robust science” 

(Ioannidis, 2018, p. 1). Therefore, central to effective meta-research is the ability to move 

between these levels of analysis to gain a comprehensive understanding of how different 

components of the research process interact, and in turn gain insight on how these interactions 

are unique or similar across different areas of research.  

Not only is the overarching aim of the current dissertation in keeping with the objectives 

of meta-research, but given the complexities involved in the process of drawing accurate and 

meaningful inferences from statistical data, I would argue that this style of holistic 

interdisciplinary research approach, which attempts to bridge different elements involved in 

process of inference-making, is a promising framework through which to most comprehensively 

understand how researchers evaluate statistical evidence when drawing inferences from data, and 

how best to improve the art of effective statistical thinking and inference-making. While both 

dissertation projects may only offer two small disparate pieces of a much larger picture, hints 

about how misunderstandings may transcend or interact across different levels of analysis, might 

offer some initial empirical grounds upon which to speculate about more evidence-based 
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instructional supports to improve statistical inference-making  (speculations elaborated in 

General Discussion).  

Before moving onto the last section on how to foster better statistical thinking, one last 

component of the process of drawing statistical inferences which remains to be considered 

concerns the culture within research is carried out and inferences are routinely drawn (see 

section 3.4 below). This can include research traditions, like NHST; however, because this was 

already covered above (see section 3.1), the following section will focus briefly on some 

potential sources of error or bias when interpreting statistical results, originating either at the 

level of the individual researcher (e.g., cognitive biases), or the community as a whole (e.g., 

incentive structures), which may contribute jointly to collective values or illusions regarding 

what should constitute informative or desirable effects.  

3.4. Collective illusions & the culture of research 

“Rituals call for collective illusions. Their function is to make the final product, a significant 

result, appear highly informative, and thereby justify the ritual.” (Gigerenzer, 2004, p. 594) 

 The system of scientific inquiry, for any given discipline, is embedded within a culture of 

research, which includes, but is not limited to: traditions in research (either concerning theory or 

practice), accepted norms, as well as incentives. Beyond the ritual of NHST, psychology is 

rooted in a ‘publish-or-perish’ culture, a system that has been argued to pressure and reward 

“impact and productivity over quality and replicability” (Fanelli & Ioannidis, 2013, p. 15031). 

Such an incentive structure is likely to indirectly – if not directly – influence how researchers 

draw inferences from data, interpret statistical outcomes, and report results.  
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In discussing the social context of research, Klein et al. (2012) emphasize the existence of 

human sources of error that may unconsciously bias an experimental outcome toward success, 

consisting perhaps most importantly of “the twin (and sometimes incestuous) brother of demand 

characteristics, that is, experimenter bias” (emphasis added, p. 573). While their article was 

discussing bias at the level of individual participants and experimenters, their main idea has 

analogous implications at the level of the scientific community: Like participants, researchers are 

not “passive receptacles of stimuli” (Klein et al., 2012, p. 572). Given the high stakes to produce 

positive results, researchers are arguably less likely to approach their work with an impartial 

stance, and more prone to fall prey to confirmation bias, i.e. “the tendency to emphasize and 

believe experiences which support one’s views and to ignore or discredit those which do not” 

(Mahoney, 1977, p. 161). Moreover, whether conscious or not, researchers are also likely to 

capitalize on researcher degrees of freedom to increase the likelihood of generating a significant 

result in order to produce a study that ‘worked’, and thus gain a competitive advantage. Such a 

culture of research reinforces carelessness (Martinson, Anderson, & De Vries, 2005) and 

indirectly promotes “‘cutting corners’ to achieve more interesting-looking results” (Ioannidis, 

2018, p. 3). Self-serving behaviors of this nature have been referred to as “p-hacking” 

(Simonsohn et al., 2014, p. 534), “significance-chasing” (Ioannidis & Trikalinos, 2007, p. 247), 

or more generally as questionable research practices (QRPs), i.e. “the steroids of scientific 

competition” (John et al., 2012, p. 524). Not only have QRPs been described as ‘normal 

misbehaviours’ (De Vries, Anderson, Martinson, 2006), but their prevalent use was even judged 

as defensible among researchers (John et al., 2012).  

The selective distortion of results is not limited to the treatment of the data (e.g., 

‘cleaning’ or ‘cooking’ the data, or statistical adjustments), but also poignantly includes the 
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interpretation and reporting of results. These can for instance take the form of post-hoc 

predictions (e.g., HARKing: hypothesizing after the results are known; Kerr, 1998), inflated 

interpretations, or over-generalizations. One driving source of these distorted interpretations are 

presumably underlying misconceptions of what a statistical index means – e.g., conflating the 

meaning of statistical significance with practical relevance (i.e. clinical or practical significance 

fallacy; Kirk, 1996; see Box 1) or assuming that a significant p-value necessarily entails a large 

effect size (i.e. effect size fallacy; Gliner, Vaske, & Morgan, 2001; see Box 1). Similarly, over-

generalizing is likely to be exacerbated by misunderstandings when inferring population 

characteristics from sample properties (see section 2.2), such as the representativeness heuristic 

and the belief in the law of small numbers, two misconceptions originating in misunderstandings 

of the law of large numbers (Tversky & Kahneman, 1971; Innabi & Jordan, 1999; Sotos et al., 

2007). On the other hand, the pervasiveness of biased (e.g., confirmatory) interpretations has 

been recently argued to stem from a form of “cognitive opportunism” (Mercier & Sperber, 2017, 

p. 76); in other words, the exploitation of an evolved disposition in humans to apply post-hoc 

rationalization “to explain and justify after the fact the conclusions we have reached” (emphasis 

added, p. 112). Mercier and Sperber (2017) expressly distinguish between the concepts of 

‘inference’ and ‘reasoning’, reserving the former for more spontaneous instances of information 

extraction, and the latter as the process of attending to reasons to accept a conclusion. Should this 

conclusion already be accepted inherently by the thinker in question, then reasoning in this 

context consists of a retrospective process of justification; arguably akin to wishful thinking. 

Taken together, it is not surprising that, given the wide “latitude of rationalization” (John 

et al., 2012, p. 528) within psychology, that the published literature is saturated with positive 

findings (with odds of positive reporting bias approximately 5 times greater as compared to 
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‘harder’ sciences; Fanelli, 2010). In essence, not only does it appear to be “unacceptably easy to 

publish ‘statistically significant’ evidence consistent with any hypothesis” (Simmons et al., 2011, 

p.1), but negative (i.e. contradictory) findings are essentially non-existent. Consequently, it is 

even less shocking that researchers hold unrealistic expectations about the robustness or stability 

of effects (presumed to be true), and that they are particularly ill-equipped to deal with 

conflicting replication outcomes. Meta-research that seeks to understand how researchers 

approach data and make sense of results must also account for the suboptimal conditions within 

which statistical inferences are routinely drawn, including accepted norms, collective illusions, 

and cognitive biases. 

Regarding the present dissertation, appreciating these potential sources of bias is directly 

relevant to the Project 1 with regards to how interpretations are being made about p-values. 

Specifically, the main motivation in Study 1 to include p-value items that also measure 

individuals’ understanding about the meaning of non-significant outcomes (i.e. p = .30), in 

addition to items that probe the meaning of significant outcomes (i.e. p = .001), was to address 

this asymmetry in research norms that favour significant findings at the expense of publishing 

negative or null results. Consequently, not only are researchers faced with more opportunities to 

come across and familiarize themselves with significant outcomes as a result of the biased 

literature, but are also realistically provided with more instances to encounter over-generalized or 

inflated claims in reference to the meaning of a significant p-value, which may in turn introduce 

or reinforce existing misconceptions. Moreover, because to date, p-value misconception surveys 

have only assessed individuals’ understanding of significant p-values, which may or may not be 

perceived or treated differently than less ‘interesting’ or ‘desirable’ outcomes, misconception 

rates may also be skewed, or at the very least establish an incomplete picture to work off of when 
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attempting to develop means to improve these misconceptions. As such, Study 1 sought to first 

establish a slightly more nuanced understanding of how researchers interpret p-values by not 

limiting items to include interpretations about only an exclusive and unique fraction of the full 

set of possible p-values that researchers may observe. 

 

4. FOSTERING EFFECTIVE STATISTICAL & META-SCIENTIFIC THINKING 

 

 Up to now, a great deal of emphasis has been placed upon discussing the complexities 

that surround the act of drawing accurate and meaningful statistical inferences from data, namely 

in the case of researchers within the discipline of psychology. Far from being a static process, 

inferential statistics involves dynamically assessing a set of considerations that extend well 

beyond the scope of the statistic or statistical index being interpreted, including theoretical 

constraints, design limitations, sampling properties, the nature of the data, etc. Moreover, 

inferring meaningful conclusions or implications of a statistical outcome requires inhibiting the 

tendency to fall victim to cognitive biases, such as the representativeness heuristic, the belief in 

the law of small numbers, confirmation bias or wishful thinking. Critically, the ability to 

recognize degrees of uncertainty that characterize inductive inferences should attenuate the odds 

of over-generalizing, making inflated claims, or post-hoc rationalizing when interpreting 

statistics. It follows that the art of effective statistical thinking importantly calls for researchers to 

move beyond a dichotomized way of framing their results, i.e. ‘Is my finding significant (or not)? 

or ‘Did my study work (or fail)?’, and instead ask thoughtful questions such as ‘What would 

falsify my hypothesis?’ and ‘Given the gap between data and theory, what may be justifiably 
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inferred?’. In this way, effective statistical thinking, or the ability to engage in statistical 

reasoning, cannot be lessened to any one core skill (e.g., mathematics or logic). 

 With this in mind, when it comes to considering what kind of interventions or scaffolds 

might be best suited to foster effective statistical thinking, it might be sensible to consider 

improvements in understanding beyond the perspective of conceptual change models (e.g., 

novice-expert dichotomy), but also appeal to theoretical frameworks (e.g., problem-solving 

literature) that might elucidate how shifting one’s pattern of thinking can fundamentally shape 

the way in which an individual frames a problem to be more apt to its solution; this relates back 

to how the ability to formulate salient and meaningful questions can be instrumental to effective 

statistical thinking (see section 2.3), and in turn the basis for well-founded inferences. Beyond 

lending alternative perspectives, the two bodies of literature (i.e. conceptual change vs. problem-

solving) share some core aspects that map well onto the discussions provided thus far about the 

prevalence of statistical misconceptions, specifically with respect to the institutionalized nature 

of NHST in psychology. 

 First, both areas of research commonly appeal to the role of prior knowledge or previous 

experience when it comes to the predominant and/or persistent use of some given way of 

thinking. In terms of the conceptual change literature, this would be characterized by the 

existence of naïve or misguided conceptions among novices which stem from prior instruction, 

or develop from (and are likely reinforced by) real-world familiar experience. Only when these 

preconceptions are successfully replaced or refined, typically via formal instruction, do they 

become expert concepts (for details, see section 4.1 below). In terms of the problem-solving 

literature, getting stuck within one frame of thinking and being unable to conceptualize a 

problem in a novel way, is typically a function of how an individual has habitually approached 
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the problem, shaped through past goals and experience. Being able to deviate from convention, 

whether it involves abandoning one’s initial strategy for a more suitable one, or perceiving and 

applying a familiar tool/strategy in an unconventional way or to an unfamiliar context, is 

typically viewed as the process through which one overcomes fixation or functional fixedness 

(Maier, 1931; Duncker, 1945) and arrives at the problem solution (for details, see section 4.2 

below). Secondly, common across both bodies of literature is the notion of triggering a shift in 

thinking: In terms of conceptual change, cognitive conflict (Piaget, 1975; Posner ,Strike, 

Hewson, & Hertzog, 1982) is one mechanism through which naïve intuitions or conceptions 

develop into more expert concepts; when it comes to problem-solving, the act of breaking frame 

(or restructuring the problem space) is argued to facilitate effective problem reformulation (e.g., 

Maier, 1931; Dunker, 1945), affording in turn a vantage more suitable for problem solution. 

 When applied to the traditional use of p-values, which has been (and continues to be) the 

convention amid the research community, it is thus arguably among the majority of researchers 

the approach to inferential statistics most rooted in practical experience. As such, this “deep 

entrenchment of the [NHST] approach within the field” (Nickerson, 2000, p. 246), which has 

stood up to decades of criticism (see section 3.1), might explain why the field has not felt the 

impetus to move beyond a more naïve (i.e. dichotomous) use of p-values when drawing 

inferences. It may also explain why this overreliance on one strategy to approach statistical 

inference may persist even when ill-suited to answer the questions researchers are attempting to 

answer. In this respect, whether appealing to models of conceptual change, or traditions within 

the problem-solving literature, overcoming or breaking free from misguided habits when 

drawing inferences (i.e. fostering better statistical thinking) may entail a shift in tradition, 

involving fundamental changes in the way inferential statistics are routinely taught.  
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 While I would argue that part of this change should move toward the instruction and 

exploration of multiple statistical techniques, or as Gigerenzer and colleagues would describe as 

instructing researchers the art of “opening the statistical toolbox and comparing tools” 

(Gigerenzer, Krauss, & Vitouch, 2004, p. 7) (see section 4.3), this is not to say that mere 

exposure to more statistical methods will necessarily undo pre-existing misconceptions, or 

prevent them from arising in the first place. Rather, comparing and contrasting why and how 

different statistical concepts and methods (e.g., frequentist vs. Bayesian) can be used to answer 

similar versus different questions, may play a critical role in teaching researchers to effectively 

appeal to different statistical tools and methods when drawing inferences from data (see section 

4.3 and general discussion). Prior to delving into this last idea, both bodies of literature 

mentioned above (i.e. conceptual change and problem-solving) are briefly discussed below (resp. 

sections 4.1 & 4.2). 

4.1. Cognitive conflict: A model of conceptual change  

 Proponents of conceptual change theory (e.g., Posner et al., 1982) have commonly 

invoked the following learning framework when it comes to the acquisition of expertise: 

Conceptual change constitutes the key mechanism via which a novice, who initially holds naïve 

or misguided conceptions, replaces these incorrect intuitions with correct knowledge (i.e. expert 

concepts), typically as a result of formal instruction. Although the majority of the literature has 

pertained specifically to the domains of mathematical and scientific thinking, and has been 

investigated at the level of student learning (see Smith, diSessa, & Roschelle, 1993, for an 

overview), such a perspective has been also applied to the concept of statistical learning, “a view 

of learning as conceptual change [that] requires a shift from these ‘naïve statistics’ ideas, based 
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on everyday beliefs about probability and statistics, to accurate conception” (Finch & Cumming, 

1998, p. 900).  

 While discussing the details of conceptual change theory goes beyond the scope of this 

work, it is worth briefly pointing out a set of assertions that have been described to characterize 

the misconception literature (see Smith et al., 1993 for details). First, misconceptions are framed 

in the context of a novice-expert distinction, whereby only through replacement can naïve 

conceptions be exchanged for expert concepts. Those who take a more constructivist approach to 

learning assert rather a novice-expert continuum, in which naïve intuitions play a productive role 

in learning; in other words, acquisition of expertise involves the gradual refinement (rather than 

replacement) of naïve beliefs into more advanced conceptions. It follows that the traditional 

perspective views misconceptions as necessarily interfering with learning, whereas the 

constructivist view reserves the possibility that misconceptions can be foundational in the 

development of expert reasoning. Both traditions agree on the assertion that learners are not 

blank slates when it comes to learning, and possess a set of prior beliefs (which may or may not 

be wholly accurate), stemming either from real-world experience or prior instruction. In keeping 

with these differences, some authors (e.g., Glaser & Bassok, 1989) distinguish between the ideas 

of valid versus invalid conceptions, i.e. preconceptions versus misconceptions (resp.), whereas 

others differentiate between “misconceptions – [i.e.] misunderstandings derived from instruction 

– from alternative conceptions – [i.e.] explanations students formulate as a result of their 

ordinary life experiences and bring with them to instruction (Driver & Easley, 1978)” (Guzzetti 

et al., 1993, p. 117). When it comes to statistical misconceptions, authors have typically not 

taken so strict a stance, taking the term ‘misconception’ to refer “to any sort of fallacies, 

misunderstandings, misuses, or misinterpretations of [statistical] concepts, provided that they 
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result in a documented systematic pattern of error” (Sotos et al., 2007, p. 99; Cohen, Smith, 

Chechile, Burns, & Tsai, 1996). 

 Another core tenet of the misconception literature is the notion of cognitive conflict 

(Piaget, 1975; Posner et al., 1982), which is viewed as conducive to conceptual change. Whether 

triggered by direct instruction, or by being confronted with plausible counterevidence or 

conceptual alternatives, such discordance should lead to system-level changes, prompting the 

learner to reformulate his or her prior intuitions to cohere with newly gained information. That 

said, misconceptions are often characterized as: “deep seated and resistant to change” (Clement, 

1987, p. 3) despite proper instruction, being able to coexist in the mind of a learner alongside the 

correct understanding (Clement, 1982), and in even some cases defended by the learner (Smith et 

al., 1993). When a systematic pattern of error is observed among learners and/or experts, 

especially in spite of correct instruction, these types of misconceptions have been argued to be 

rooted in – and reinforced by – daily experiences in the real world (e.g., physics concepts): 

“Misconceptions that are persistent and resistant to change are likely to have especially broad 

and strong experiential foundations” (Smith et al., 1993, p. 152).   

 With regard to statistical misconceptions, most notably in the case of p-value 

misunderstandings, the systematic pattern of errors observed across students and researchers 

(e.g., Oakes, 1986; Haller & Krauss, 2002; Badenes-Ribera et al., 2015; Lyu, Peng, & Hu, 2018) 

have led some to describe these misconceptions as “impervious to correction” (Haller & Krauss, 

2002, p. 1). While the authors made no explicit link to conceptual change models, such a 

description is nonetheless consistent with the notion of naïve conceptions that resist 

improvement, on account of ingrained false beliefs and assumptions. Moreover, the fact that 

seasoned researchers, and even methodology instructors, are not immune to misuse of 



DRAWING STATISTICAL INFERENCES FROM DATA 

40 
 

significance testing, reinforces the implication that formal instruction of frequentists statistics is 

not sufficient in triggering lasting conceptual change.   

The trouble with these speculations however is that first and foremost, these studies only 

measured misconception rates at one time point and did not probe whether improvements could 

be facilitated by instruction. In other words: Even if misconceptions that are resistant to change 

should produce widespread misconception rates, this does not logically entail that widespread 

observation of misconception rates stem necessarily from preconceptions that cannot be refined 

or improved. This assumption cannot be presumed but must be empirically tested (i.e. Project 

1). Moreover, instruction of NHST, which has been heavily and consistently criticized for being 

taught mechanically, i.e. as a rote ritual that encourages limited categorical thinking (e.g., 

Gigerenzer, 2004; see section 3.1), may itself contribute to the naïve or restricted understanding 

of p-values among researchers. Finally, even if some core misunderstandings, like the inverse 

probability fallacy (see Box 1, p. 23), have been argued to be based in a basic probabilistic 

misinterpretation (see Nickerson, 2000), which unjustifiably applies a deductive reasoning 

framework to an inductive inference scheme (see section 2.1), this confusion between 

probabilistic versus categorical statements may be reinforced by the practice of treating statistical 

outcomes as categorical, a practice commonplace across researchers at all levels, and across 

subdisciplines. It is also thus imperative to empirically assess whether instruction, which deviates 

from the null ritual approach, can improve misconceptions (Project 1). 

Unlike the misconception literature above, which would place more weight on 

preconceptions developed outside of formal instruction as a basis for the formation of 

misconceptions among novices, this perspective highlights how facets of how NHST is routinely 

taught and applied would in part explain why, despite decades of theoretical criticisms, the 



DRAWING STATISTICAL INFERENCES FROM DATA 

41 
 

misuse of p-values persists even among seasoned researchers. In this way, the notion of a novice-

expert dichotomy or continuum is arguably not wholly applicable (or non-representative at best) 

in the case of NHST. Finally, because the NHST null ritual is so widespread, and alternative 

methods (e.g., Bayesian statistics) so sparse, it is difficult to begin to assess whether correct 

instruction or exposure to conceptual alternatives could effectively trigger conceptual change 

when it comes to interpreting the meaning of p-values (see idea of “insight by comparison”, 

section 3.1) .  

 For these reasons, I will appeal additionally to the problem-solving literature (see section 

4.2 below) as an alternative or complementary framework which highlights the merits of being 

able to flexibly adapt one’s perspective, especially when it comes to ill-defined problems, to suit 

the constraints of potentially similar yet distinct problems. Fostering this type of nuanced or 

dynamic outlook when approaching a problem space maps well onto the idea of effective 

statistical thinking, which necessitates appreciating and weighting multiple sources of evidence 

simultaneously in order draw well-founded inferences (see section 2.3).      

4.2. Statistical tools & effective problem formulation 

“The mere formulation of a problem is far more often essential than its solution.”  

(Einstein & Infeld, 1938, p. 83) 

A key feature of effective statistical thinking, beyond the ability to optimally weight 

various pieces of evidence when drawing inferences, is the ability to ask salient questions (see 

section 2.3). This entails critically knowing which questions can and cannot be tackled, and to 

which degrees of certainty questions can be answered, given the choice of statistical method 

being used. Such an idea is not novel: Advocates of statistical reforms have referred to statistical 
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tests as tools (e.g., Mayo & Cox, 2006), the array of statistical tests as the statistical toolbox, and 

effective statistical thinking as “the art of choosing a proper tool for a given problem” 

(Gigerenzer, 2004, p. 588). 

In the problem-solving literature, this can be construed as one component in the art of 

effective problem formulation. According to the search-inference framework (Baron, 2000), 

problem-solving involves moving from the initial problem state to the goal state, via a set of 

available operators, by selecting actions relevant to reducing the differences between these 

respective states; otherwise referred to as the means-ends analysis approach, and characteristic of 

the structure of Newell and Simon’s (1976) General Problem Solver (GPS; 1976). Specifically, 

“a problem space is defined by mental representations of the initial problem situation, a set of 

relevant actions, and a goal” (Ohlsson, 2012, p. 118). As such, the way in which one construes 

his or her problem space, which is shaped not only by which problem characteristics are 

perceived as relevant, but also theoretical goals and epistemic aims, will necessarily play an 

operative role in how one engages in strategies in attempts to arrive at a solution. Given that 

there does not exist only one way to represent a problem, with some more apt than others, 

problem formulation is an integral part of effective problem-solving.  

While the means-ends analysis framework is applicable for well-defined analytic 

problems, whose solutions can be obtained in a linear step-wise process, such a serial heuristic 

search through the problem space and possible solution paths will ultimately fail when the 

problem space itself is not appropriately or easily represented, as in the case with ill-defined 

problems:  
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“In an ill-defined problem, uncertainty inheres not only in whether the goal will be reached 

but in how best to conceive the current state, goal state, and/or operators. The real problem, 

therefore, is how to develop a new problem formulation, transforming the ill-defined 

problem into a well-defined problem that can be solved.” (DeYoung, Flanders, & Peterson, 

2008, p. 279) 

Given the complex and ill-defined nature of psychological phenomena, Newell and Simon’s 

attempt at a general psychological theory (i.e. principle of heuristic search) failed. As Ohlsson 

(2012) points out, “there is no single problem solving mechanism, no universal strategy that 

people apply across all domains” (p. 117).   

The Gestalt tradition, on the other hand, which offers a more holistic and nonlinear 

framework, has been adopted by scholars in the context of problem-solving (e.g., Köhler, 1970), 

where a problem’s solution necessitates a fundamental shift in perspective or restructuring of the 

problem space. Such a need for problem reformulation, or breaking frame, is typical in the case 

of insight problems where one’s initial conception of what is or is not relevant to a problem 

frame might lead to fixation (Maier, 1931) on components or characteristics of the problem that 

are not conducive to its solution. Insight, as such, has been described in terms of overcoming 

functional fixedness (Duncker, 1945), allowing for a novel representation of the situation to 

emerge. This process of breaking frame is commonly characterized as a response to encountering 

an impasse after attempted solution paths fail, and often “reflects the need to overcome the 

imperatives of past experience” (Knoblich, Ohlsson, Haider, & Rhenius, 1999, p. 1534). In line 

with the notion of affordances (Gibson, 1977), i.e. the perception of an object as a function of its 

action possibilities, the way in which one will perceive a problem and/or a potential tool for its 

solution will necessarily be shaped by the thinker’s goals and past experiences. Likewise, a shift 
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in goals, or exposure to more tools (or more affordances of the same tool), should in theory 

foster a basis for more flexible and in turn more effective problem formulation. 

With regard to the domain of psychological research, the problem of drawing inferences 

from data has been approached almost exclusively from the perspective of the step-wise NHST 

approach, whose misuse has also been attributed to misunderstandings about what the test of 

significance can and cannot afford in terms of statistical conclusions (e.g., Bakan, 1966; Shaver, 

1993): “p values are simply not suitable for scientific inferences because they don’t provide the 

information scientists really want to know” (Colling & Szucs, 2018, p. 7; see also Nickerson, 

2000; Lindley, 2000). This reasoning has been invoked by Bayesian advocates (e.g., 

Wagenmakers, 2007; Dienes, 2011; Morey et al., 2016) to argue that Bayesian statistics can in 

fact solve this dilemma: Researchers are less interested in knowing the probability of their data 

(or more extreme data) under the null (i.e. P(D | H0) or the p-value), but rather more interested in 

the probability of their hypothesis given their (or more extreme) data (i.e. P(H1 | D), computed by 

Bayes’ rule). Without implying that there is only one question worth posing, from this line of 

reasoning it can also be argued that: The greater the toolset provided to researchers, the higher 

the likelihood that it should contain the tool best suited to answer the question(s) being posed. 

From the perspective of the problem-solving literature, the tradition of inferential 

statistics in psychology, to rely on the NHST formulaic approach, has likely stunted researchers 

in the following ways: First, it may have led researchers to commonly misframe the process of 

drawing statistical inferences as a well-defined problem, taking for granted as the goal state to 

produce a significant result. Moreover, such an overreliance on one approach is likely why 

researchers are not better equipped with a broader set of statistical tools through which to tackle 

research problems. Much in the same way that the GPS was criticized for assuming that a 
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universal problem-solving strategy exists, the overreliance on NHST in psychology can be 

criticized for naively presupposing that different research questions can be tackled in the same 

way, as well as fundamentally ignoring that what constitutes ‘relevant’ in one scenario will not 

necessarily be the case in the next:  

“We know but often forget that the problem of inductive inference has no single solution. 

There is no uniformly most powerful test, that is, no method that is best for every 

problem. Statistical theory has provided us with a toolbox with effective instruments, 

which require judgment about when it is right to use them.” (Gigerenzer, 2004, p. 604) 

An important caveat of course is that simply increasing exposure to more statistical 

methods will not necessarily produce more flexible or effective statistical thinking, nor 

necessarily protect against pre-existing versus newly acquired misconceptions for, respectively, 

familiar versus new concepts. Therefore, not just content, but also how instruction is carried out, 

should be jointly considered when attempting to develop interventions to improve statistical 

inference-making. Finally, before discussing this last point further (see section 4.3 below), it is 

worth highlighting one final aspect of problem formulation that was already mentioned above, 

namely: that how one construes his or her problem space will include characteristics of the 

problem deemed relevant as well as situational constraints, such as theoretical goals and 

epistemic aims. Though more conceptual in nature, it could be argued that from a Gestalt 

perspective, pressures at the level of the scientific community (e.g., competitive incentives to 

publish and report impressive effects) might not only shape one’s goal state (e.g., generate 

positive results), but accordingly influence which path of actions researchers perceive as relevant 

in attaining this goal (e.g., p-hacking, optional stopping, making over-inflated claims) versus 

those that may be viewed as unwanted hurdles to this goal (e.g., collecting large amounts of data, 
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reporting null results, being transparent about the meaning of one’s findings). While this may 

just sound like an alternative way to restate what was already stressed in the section about 

research cultures (section 3.4) – i.e. that research pressures exist and should thus also be 

accounted for – the reason for framing it in these terms has to do with what might be surmised in 

terms of instructional implications, from the perspective of the problem-solving literature, 

specifically when it comes to accounting for constraints at this level. These ideas are now 

discussed below (section 4.3).     

4.3. Breaking frame: Disrupting the null ritual 

“It is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.” 

(Maslow, 1966, p. 15-16) 

Given the literature above, and taking into account the core criticisms that have loomed 

for decades around the misuse of statistics within research (e.g., NHST controversy), it behooves 

the scientific community to make active changes in the way in which researchers are taught to 

draw inferences from data. Current statistical reforms, especially those urging a shift away from 

dichotomous and categorical thinking in favour of a push toward use of alternative techniques, 

are accordance with Gigerenzer’s notion of disrupting the null ritual, in order to cultivate a more 

meaningful – rather than mindless – approach to the use of statistics. Understanding from where 

sources of statistical errors originate, which factors and biases contribute to their existence, as 

well as how these misunderstandings can be improved, are just some questions that might be 

central to the success of these reforms. As such, more empirical research is warranted to 

effectively tackle these questions – a goal directly consistent with the projects of the current 

dissertation. 
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One common theme that has emerged throughout the text is the need to abandon, so to 

speak, the current tradition of over-relying on (significant) p-values, which to date seems to 

constitute for the vast majority of researchers both the main approach to – and the main goal of – 

inferential statistics. One idea raised, to alleviate this fixation on significance testing, was to 

introduce a broader range of statistical approaches, and their respective appropriate uses, to 

theoretically and practically equip researchers with a greater set of statistical tools and 

affordances when conducting research. Moreover, comparing and contrasting different methods, 

like the frequentist versus Bayesian models of inference, may be a means via which to trigger a 

sort of ‘insight by comparison’: By specifying how two statistical tools relate, or perhaps more 

critically how they fundamentally differ, may improve overall understandings of either or both 

methods. Finally, improving researchers’ ability to ask questions when conducting research and 

interpreting data should also help guide individuals’ in selecting and applying a statistical 

technique effectively. Importantly, the goal here would not be to “tell researchers what they want 

to know. Instead, we should teach them the possible questions they can ask” (for more on the 

Statistician’s Fallacy; see Lakens, 2019, p. 5).  

In keeping with these ideas, the first project of the dissertation “Improving statistical 

inferences: Can a MOOC reduce statistical misconceptions?” (Herrera-Bennett, Lakens, 

Heene, & Ufer) investigated the baseline misconception rates of p-values, confidence intervals 

(CIs), and Bayes factors (BFs) when it came to inferring the correct meaning of these statistical 

indices, as well as improvements gained as a result of participating in the 8-week online statistics 

course. Study 1 extended past research (e.g., Oakes, 1986; Haller & Krauss, 2002) by 

challenging the assumption that systematic patterns of observed errors necessarily mean that 

misconceptions are resistant to change. Moreover, we measured whether differences in baseline 
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misconceptions rates arise when individuals are asked to draw interpretations about significant 

outcomes (i.e. when p = .001) versus non-significant outcomes (i.e. p = .30), which may point 

indirectly to the effects of cognitive biases (e.g., confirmation bias, wishful thinking) on the 

propensity to draw misguided conclusions. In Study 2, we investigated the effect of adding 

instructional material that explicitly pinpointed p-value misconceptions and helped train learners 

on how not to fall prey to common fallacies, to see whether learning can be further improved as 

well as maintained. While this project cannot speak to whether improvements in statistical 

understanding transfers beyond the scope of the course, and say into real research practice, it is 

necessary as a first step to gain an appreciation of how actively clarifying and disrupting prior 

intuitions does (or does not) elicit learning gains when it comes to inductive inferences, and/or 

what are the limits of these techniques. Additionally, though the sample was not exclusive to 

researchers in psychology, it is argued that since the course is taught from the perspective of 

psychology research, and that the majority of course users were pursuing academia at some level 

(e.g., BA, MA, prof), that study is thus relevant to gaining insights into the way researchers 

approach statistical inference-making. Lastly, while not central to the project’s research 

questions, by investigating the effectiveness of a learning platform which covers a wide range of 

statistical concepts, including both frequentist and Bayesian approaches (taught back to back in 

weeks 1 and 2 of the MOOC, resp.), results may hint to the potential merit of equipping 

individuals with a broader range of statistical tools, and/or how deliberate comparison between 

approaches may improve the process of drawing statistical inferences from data. 

Finally, in relation to the importance of asking questions when conducting research, the 

rise in meta-science in recent years has made it possible to ask questions today that previously 

were not possible to answer in practice. Specifically, high-powered replication projects can 
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provide initial insights into the nature of replicability in practical terms, beyond what theory has 

already taught us, such as: What are the observed rates of replicability in psychology and the 

social sciences (OSC, 2015; Camerer et al., 2018) versus economics (Camerer et al., 2016)? 

Given a set of direct replications of the same effect, what is the variation in replicability across 

different effects (Many Labs 1; Klein et al., 2014)? And how is variability in observed effect 

sizes affected by sample and setting characteristics (Many Labs 2; Ebersole et al., 2018) or 

participant pool quality (Many Labs 3; Ebersole et al., 2016)? As more of these works have 

continued to emerge, researchers have also tried to assess whether features of individual studies 

(e.g., sample size, p-value) reliably predict likelihood of a study to replicate. Being able to 

answer these questions will hopefully help dispel some of the misguided intuitions among 

researchers about replication and replicability rates, and/or provide hints as to why 

misunderstandings of a concept at one level (e.g., meaning of a single p-value) may relate to 

misunderstandings at a higher level (e.g., meaning of a distribution of p-values). 

 With these goals in mind, the second dissertation project “Exploring indices of 

repeated k-fold cross-validation as predictors of study replicability” (Herrera-Bennett, Ong, 

& Heene) investigates whether resampling techniques, namely cross-validation (CV), can be 

used to gain a deeper understanding about the relationship between individual study features (i.e. 

estimates of model fit and error: average R-squared, RMSE, MAE) and its likelihood to replicate. 

Through the re-analysis of the Camerer et al. (2018) replication project, this project on the one 

hand aimed to extend past replication research regarding the investigation of study features as 

potential predictors of replication success. On the other hand, the project also sought to test the 

theoretical assumption that cross-validation can serve as a model validation technique in practice 

if used to predict replication rates of real data. While CV theoretically provides a measure of 
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how the statistical model will generalize to and perform within an independent data set, rarely is 

this assumption able to be carried out in practice in a strict sense. Therefore, this project may 

provide some novel insights about the practical implications of CV which until now have 

received little to no investigation beyond simulation studies. Finally, in accordance with 

Thompson’s (1995) remark about bootstrapping, CV analyses are likely to “capitalize during 

resampling on the commonalities inherent in a given sample in hand” (p. 95). In other words, 

because both the training and test samples do not capture variation associated with different 

experimental implementations across replication attempts, then the idea behind CV as providing 

an ‘out-of-sample’ generalization error estimate – while perhaps theoretically sound – might be 

an optimistic one. To this end, the project also speaks to the importance of empirically testing 

statistical assumptions, especially those that may be used to support claims about the validity of a 

model, such that as researchers, we continue to learn about the strengths and limitations of 

different statistical approaches.  
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Abstract 

 Perseverant rates of statistical misconceptions have raised doubts about the methodological 

and statistical rigour in psychology and surrounding domains, leading some to claim that intrinsic 

misconceptions are “impervious to correction” (Haller & Krauss, 2002, p. 1). Surprisingly, little 

work to date has empirically investigated the extent to which statistical misconceptions can be 

improved reliably within individuals, nor whether these improvements are transient or maintained. 

Study 1 (N = 2,320) evaluated baseline misconception rates of p-value, confidence intervals, and 

Bayes factor interpretations among online learners, as well as rates of improvement in accuracy on 

these items across an 8-week MOOC. Given that the MOOC was not designed to specifically target 

statistical misconceptions, but rather to cover core concepts, Study 2 (N = 1,301, preliminary data) 

investigated the added effects on improvement rates for p-value interpretations by having an 

experimental group (n = 649) complete an additional assignment in week 1 of the MOOC, 

developed to explicitly cover and clarify common p-value misconceptions, as compared to controls 

(n = 652). Both Studies 1 and 2 demonstrated statistically significant improvements in accuracy 

rates, across all three concepts, for both immediate learning (at post-test1), as well as retained 

learning until week 8 (post-test2). Study 2 provided preliminary evidence to suggest that learners 

who underwent explicit training and clarification on common p-value misconceptions demonstrated 

greater improvements in learning, i.e. fell prey to fewer p-value misconceptions, as compared to 

controls. Taken together, the current work challenges the idea that statistical misconceptions are not 

flexible to change, and provides empirical evidence for the effectiveness of enhanced statistical 

training tools and online learning platforms. Moreover, these studies speak importantly to the role of 

explicit clarification when it comes to teaching statistical concepts and how to correctly draw 

statistical inferences. 

 

Abstract word count = 291 

Keywords: MOOC, p-values, misconceptions, statistical inferences 
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Improving statistical inferences:  

Can a MOOC reduce statistical misconceptions? 

 

 

Introduction 

 Doubts have been raised about the methodological rigour of psychology and the social 

sciences, evidenced by the documented errors in the scientific literature (Casadevall & Fang, 2012). 

A common concern that is assumed to contribute to these errors is misconceptions when drawing 

statistical inferences. The misuse of statistics and pervasiveness of misconceptions among 

researchers has been argued for decades to stem from fundamental misunderstandings, markedly in 

the case of null hypothesis significance testing (NHST; for an overview of criticisms, see Nickerson, 

2000). In fact, beyond being described as “numerous and repetitive” (Badenes-Ribera et al., 2015, 

p.290), some authors have deemed p-value misinterpretations “impervious to correction” (Haller & 

Krauss, 2002, p. 1).  

The trouble with such absolute claims is that although misconception rates appear to be 

relatively stable over time, this does not mean that misconceptions cannot be corrected given 

clarification or training. Yet surprisingly, little work to date has empirically investigated the extent 

to which statistical misconceptions can be improved reliably within individuals through training, nor 

whether these improvements are transient or maintained. The current research aims to address these 

questions.  

Despite the reform toward the use of alternative or complementary statistical techniques, 

such as confidence intervals (CIs) and effect sizes (e.g., Bakan, 1966; Falk & Greenbaum, 1995; 

Cohen, 1990; Rozeboom, 1997; Wasserstein & Lazar, 2016), p-values continue to dominate the 

published literature in psychology (approx. 97% of articles across 10 leading journals; Cumming et 

al., 2007). Furthermore, “mindless statistics are not limited to p-values” (Lakens, 2019, p. 9): 

Alternative approaches such as CIs and Bayesian inference have their own possible 

misinterpretations (for overviews, see Greenland et al., 2016; Morey, Hoekstra, Rouder, Lee, & 
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Wagenmakers, 2016). As such, simply replacing p-values with other statistical tools is unlikely to 

resolve the problem that researchers have misconceptions about the statistical inferences they make 

(Lakens, 2019). Instead, we have to develop ways to improve the way people interpret statistics.  

To this end, Study 1 investigated misconception rates among learners in the context of an 

online 8-week Coursera MOOC (massive open online course) aimed at the improving the process of 

drawing statistical inferences. To extend previous work, our sample was not limited to 

psychologists, but included learners across various disciplines. Moreover, while previous research 

has focused on inferences about statistically significant p-values (i.e. p = .01 or .001), our work also 

examines interpretations of CIs, Bayes Factors (BFs), and non-significant p-values (i.e. p=.30). 

Given that the MOOC was not initially designed to specifically educate learners about statistical 

misconceptions, but rather to cover core concepts as a whole, Study 2 investigated whether 

instructional material which explicitly targets and aims to clarify misconceptions about p-value can 

further bolster improvements in learning. Are misconceptions about p-values really impervious to 

correction, or can good educational material provide a source of hope? 

Statistical Misconceptions: Frequencies and Common Fallacies 

 Since the seminal work of Oakes (1986), which found that 97% of academic psychologists 

fell prey to at least one erroneous p-value interpretation, misconception rates have appeared to 

remain relatively stable: Similar frequencies were observed among German (N=113; Haller & 

Krauss, 2002), Spanish (N=418; Badenes-Ribera et al., 2015), and Chinese (N=246; Lyu, Peng, & 

Hu, 2018) samples, and misconceptions are not limited to the field of psychology (N = 221 

communication researchers; Rinke & Schneider, 2018). Although accuracy rates varied across 

academic status (Haller & Krauss, 2002), and qualification (Lyu et al., 2018), differences were only 

marginal. In fact, even methodology researchers and instructors, who made comparatively fewer 

incorrect interpretations (Haller & Krauss, 2002; Badenes-Ribera et al., 2015), were not immune to 

general misunderstandings (see also Lecoutre, Poitevineau, & Lecoutre, 2003), lending strength to 

the assumption that p-value misconceptions withstand proper instruction or training. These findings 

are evidence for the need to improve statistical education.  

 The current research strives to tackle this need, specifically drawing upon the work by 

Badenes-Ribera and colleagues (2015), who identified the rates of four specific p-value fallacies, 
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namely the inverse probability (Shaver, 1993; Kirk, 1996), replication (Carver, 1978; Fidler, 2005; 

Kline, 2013), effect size (Gliner, Vaske, & Morgan, 2001), and clinical or practical significance 

(Kirk, 1996) fallacies. The inverse probability misconception derives fundamentally from falsely 

assuming that one can draw conclusions about the probability of a theory or hypothesis, given 

sample data. Instead, the correct interpretation entails the converse: The p-value determines the 

probability of observing data (or more extreme results), contingent on having assumed the null-

hypothesis is true. The formal definition can be expressed as follows: P(X ≥ x | H0 ) or P(X ≤ x | H0 ), 

for right- versus left-tailed events, where X represents a random variable and x the observed event. 

The replication, effect size and clinical or practical significance fallacies – i.e. respectively, the 

false assumptions that p-values are directly related to replication rates, effect size, and practical 

significance – are examples of inflated interpretations or over-generalizations when it comes to 

communicating the meaning and implications of a significant p-value. Specifically, in the case of the 

replication fallacy, individuals falsely take the p-value probability (e.g., p = .03, or 3%) as the 

complement of the replication probability (i.e. 1 - .03 = .97, or 97%). For the effect size fallacy, a 

significant p-value is falsely assumed to necessarily entail a large effect size (or a non-significant p-

value a small effect size); in the case of the clinical or practical significance fallacy, a finding that is 

statistically significance is conflated with the idea that it is practically important or clinically 

meaningful. 

Badenes-Ribera et al. (2015) demonstrated that academic psychologists were particularly 

prone to the inverse probability fallacy (93.8% error rate), a fallacy which has been deemed “the 

most common, and arguably the most damaging, misinterpretation of p value (Oakes, 1986)” 

(Kalinowski, Fidler, & Cumming, 2008). In contrast, the replication, effect size and clinical or 

practical significance fallacies incurred relatively lower error rates (resp. 34.7%, 13.2%, & 35.2%). 

Interestingly, nearly 50 years prior, Bakan (1966) referred to such assumptions as a form of 

researcher bias; that is, an intrinsic misattribution about p-value characteristics stemming from 

placing too much weight on the role of null hypothesis significance testing (NHST). In other words, 

when statistical tests or outcomes assume the “burden of scientific inference” (Bakan, 1966, p. 423), 

researchers “tend to credit the test of significance with properties it does not have, […] and overlook 

characteristics that it does have” (Bakan, 1966, p. 423-428). Similar impressions were shared by 

other critics of the NHST approach, considering the approach as harmful “because such tests do not 

provide the information that many researchers assume they do” (Shaver, 1993, p.294), in turn 
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allowing a p-value to be “interpreted to mean something it is not” (Carver, 1978, p. 392). This 

framework can be directly applied to our understanding of p-value fallacies, namely wherein the 

process of quantifying the outcome or implications of a study, the measure of statistical significance 

is being confounded with measures of impact (e.g., effect size) or meaningfulness (i.e. clinical or 

practical significance).  

 Misconceptions have also been identified with regard to CI interpretations, including the 

false belief that overlapping CIs necessarily imply a statistically non-significant mean difference 

(Belia et al., 2005), that CIs reflect the probability of containing the true population value (Hoekstra, 

Morey, Rouder, & Wagenmakers, 2014), as well as the confidence-level misconception (CLM), i.e. 

the (erroneous) belief “that a 95% CI will on average capture 95% of replication means” (Cumming, 

Williams, & Fidler, 2004, p. 299; Cumming & Maillardet, 2006). Prevalent misconception rates 

have been observed among undergraduates and graduate students, as well as researchers (see 

Hoekstra et al., 2014, Lyu et al., 2018; Rinke & Schneider, 2018). In turn, methodological reforms, 

such as calls for improved training in probability and statistics, have been proposed to “enhance 

conceptual rigour and reduce the likelihood of a false conclusion” (Casadevall & Fang, 2012, p. 

894).  

Improving Statistical Inferences: Intervention Research 

 To date, despite the many articles lamenting how common misconceptions about statistical 

inferences are, few studies have aimed to examine interventions that could reduce misconceptions, 

particularly when it comes to p-values. Two studies, however, provide some initial insights, both 

geared toward overcoming students’ tendency to conflate P(D|T) with P(T|D). The first is the work 

by Falk and Greenbaum (1995) who investigated, among a sample of university students (N = 53), 

the effect of warning students about this specific misconception prior to assessing their 

understanding of statistical significance. Specifically, students were asked to read Bakan’s (1966) 

paper as part of one of their courses before being tested on the meaning of a significant p-value item. 

Results indicated that only 13.2% of individuals endorsed the correct interpretation, leading authors 

to conclude that their findings corroborated Oakes’s (1986) misconception rates. In particular, 

authors attribute high misconception rates to subjects’ inability to overcome “the (erroneous) belief 

that one has rendered the null hypothesis improbable by obtaining a significant result,” (Falk & 

Greenbaum, p. 76), a misconception the authors label “the illusion of probabilistic proof by 
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contradiction” (p. 76). In response to the observation that vast majority (79.2%) of responses 

endorsed the interpretation of a significant p-value as “we showed that H0 is improbable” (p. 85), the 

authors explain that: 

A significant test result virtually asks to be interpreted that way. The test was invented from 

the beginning to reject the null hypothesis, namely to show that it is unlikely to be true. 

People manage therefore to skillfully skip over the fact that the test computes the probability 

of (at least as extreme) results, given H0, instead of giving the probability of H0 conditioned 

on the results. (p. 84) 

Such criticism aligns with Gigerenzer et al.’s (2004) concept of ‘the null ritual’, i.e. researchers’ 

habit of engaging “in a statistical ritual rather than statistical thinking” (p. 2). In other words, rather 

than considering NHST as suitable to answering one’s research question, use of significance testing 

is taken at face value as the default ‘all-purpose’ approach, whose logic as a result has been 

collapsed into to a set of mindless steps: Let H0 = “no mean difference” or “zero correlation”; set 

alpha = 5%; if p < α, then reject H0, and accept H1.  

Disrupting such a ritual, by for instance contrasting the logic of NHST with the Bayesian 

approach, is argued to be a means via which a learner may more readily distinguish between what a 

researcher hopes to find, i.e. P(H1 | D), versus what a p-value actually indicates, i.e. P(D | H0). 

Pointing out this contrast, or ‘inverse’, is what Haller and Krauss (2002) refer to as the “insight by 

comparison” (p. 11), and what Kalinowski et al. (2008) used as one of their teaching interventions in 

a sample of undergraduate students (N = 120) to overcome the inverse probability fallacy. Authors 

found that either by contrasting significance testing with Bayes’ theorem, or using counterexamples 

to highlight how probabilistic statements can be rendered invalid, students’ improved their 

understanding from a baseline of 4.0 misconceptions (max. of 6.0) to only 2.0 post-intervention, and 

2.7 at follow-up (5 weeks later). Such research provides initial insights on how explicit training on 

misconceptions, via for instance actively contrasting statistical approaches (frequentist vs. Bayes), 

may serve as instrumental in fostering a better understanding about the meaning of p-values. 

Additional research should not only aim to replicate such improvements, but also tackle other 

misconceptions that commonly exist among learners when drawing conclusions from data. 
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Study 1 

 Study 1 aimed at investigating the baseline misconception rates among online learners, as 

well as improvements, across the 8-week MOOC, when it came to drawing inferences about the 

meaning of p-values, CIs, and BFs. Because, to date, research has focused exclusively on how 

individuals draw inferences about statistically significant outcomes (i.e. p = .01 or .001), Study 1 

also examined misconception rates for non-significant outcomes (i.e. p = .30), comparing baseline 

accuracy rates for p-value items in scale versions 1 (p = .001) and 2 (p = .30), which target the same 

misconceptions but are phrased to be consistent with significant versus non-significant outcomes. 

Procedure 

 Building on previous work, a 14-item True/False scale was developed, targeting concepts of 

p-values (8 items), BFs (3 items), and CIs (3 items). Before arriving at this final 14-item scale, 

initial piloting (N = 216) was first carried out on an 11-item p-value scale adapted from previous 

scales (i.e. Haller & Krauss, 2002; Badenes-Ribera et al., 2015). Specifically, four versions of the 

11-item scale were constructed to test how comparable items performed when interpretations 

concerned a significant (i.e. p = .001; versions 1 & 2) versus non-significant p-value (i.e. p = .30; 

versions 3 & 4); versions were also counterbalanced for negative-phrasing. After piloting, one item 

was dropped due to poor item discrimination across all four versions (i.e. corrected item-total 

correlations all < .243). The resulting 10-item scales yielded the following levels of internal 

consistency (Cronbach’s α): version 1 (n = 52; α = .74), version 2 (n = 64; α = .67), version 3 (n = 

45; α = .60), and version 4 (n = 55; α = .69); when items were collapsed across versions (N = 216), α 

= .68 (as the scale was not assumed to be unidimensional in nature, but rather tapping into different 

types of p-value misunderstandings, scale consistency was considered acceptable). Additionally, 

pilot results revealed that two items had systematically worse item discrimination when reverse-

phrased, and thus were not reverse items in the final 14-item scale (namely, PV2 & PV8). In the 

end, two versions (details below) of the finalized 14-item scale were used for Study 1: p-value items 

were reduced to 8 in total (dropping a couple redundant items), and 3 items each were added for the 

BF and CI concepts (see Appendix A & B).  

Some important differences from the original scale administrations, aside from edits in item 

wording (e.g., reverse-phrasing in some cases), included prefacing items with the instruction that 
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“Several or none of the statements may be correct” (as was done in the Haller & Krauss, 2002, 

study), as well as including an “I don’t know” response option (this is because as some concepts 

were expected to be completely new to some learners, the added response option was expected to 

discourage guessing). Additionally, two versions of the scale provided alternate wordings for the 

same misconceptions (see e.g., items CI1 or BF1) as well as items measuring both statistically 

significant (p = .001) and non-significant (p = .30) outcomes (respectively, Appendix A and B); 

note that p-value items across both versions differ only in regard to statistical outcome (i.e. p = .001 

vs. .30) and not in terms of phrasing (i.e. reversed or not). Both versions were implemented (item 

order fixed-randomized and scale versions counterbalanced across participants) in the form of six 

“Pop Quizzes” (PQs) within the 8-week MOOC, namely the course “Improving your statistical 

inferences” taught by Daniёl Lakens. Pre-/post-test design with three measurement periods served 

as proxies of: i) prior knowledge (pretest, i.e. PQ1; administered week 1), ii) immediate 

improvement (post-test1, PQs2-5; weeks 1-5, directly after the relevant lecture), and iii) retained 

learning (post-test2, i.e. PQ6; week 8). Post-test1 items were staggered across weeks 1 to 5 in order 

to occur immediately after the relevant module whose content pertained to the concepts in question. 

Questions were clustered into four subsets: subsets 1 and 2 (p-value items), subset 3 (BF items), and 

subset 4 (CI items) (see Appendix A & B for details). Demographics (e.g., self-rated statistical 

expertise level, level of education obtained) as well as confidence ratings of responses (7-point 

Likert scale ranging from 1 “Not at all confident” to 7 “Very confident”) were voluntarily 

requested.  

Exclusion Criteria 

 Due to the flexible nature of the online course, participants could complete the pop quizzess 

more than once, and move between modules at their own pace. Therefore, data only included 

subjects’ first response attempts, and excluded any users that did not complete measurements in the 

expected order (e.g., if participants completed post-test before pretest). Response latencies (i.e. lag 

between any 2 measurement occasions, measured in hours) were corrected for skewedness, 

excluding outliers (+/- 3 median absolute deviations; Leys, Ley, Klein, Bernard, & Licata, 2013); 

resulting asymmetry fell within acceptable limits (i.e. between -2 and +2; George & Mallery, 2010; 

see Appendix E). 
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Results (Study 1) 

Sample 

 Data collection ran for 1 year (Aug 2017 – Aug 2018). Total number of MOOC learners at 

pretest was N = 2,320; of those learners who responded voluntary to the demographic questionnaire 

(n = 611), 57.8% were male (39% female; 3.3% opting not to specify), with a mean age of 37.93 

years (SD = 10.77). Thirty-four percent of users reported English as their native language, and 

82.0% of having previously taken a statistics course before participating in the MOOC. When asked 

to rate their level of statistical knowledge and understanding, 38.9% rated themselves as beginners, 

54.2% intermediate, and 6.9% advanced. Regarding academic experience, about a third of 

individuals held a bachelor’s degree or lower (29.7% with high school diploma or bachelor’s 

degree), roughly half had completed graduate-level training (51.6% with Master’s or PhD degrees), 

and the rest held post-graduate degrees (14.4% post-doctoral degree, 4.3% professorship). 

Response Trends  

In keeping with typically high MOOC dropout rates (average completion rates approx. 5%; 

for review, see Feng, Tang, & Liu, 2019), marked response attrition was observed across the six 

quizzes, with total number of learners at PQ1 (n1 = 1,915) dropping to n2 = 1,045 (PQ2), n3 = 621 

(PQ3), n4 = 421 (PQ4), n5 = 371 (PQ5), and n6 = 276 (PQ6) respondents. Sample sizes for pop 

quizzes and reported mean scores exclude for cases with missing data on any of the respective quiz 

items (see Figure 1 & Table 1). Notably larger proportions of “I don’t know” responses were 

observed at pretest (27% at PQ1) as compared to post-tests (approx. 1% - 3% of responses across 

PQs 2-6). Mean confidence ratings remained relatively stable across all pop quizzes (ranging from 

4.04 – 5.80; see Table 1).  

Baseline Misconception Rates 

 Baseline rates were broadly consistent with past research insofar as general trends across p-

value fallacies: The inverse probability fallacy was among the more difficult fallacies, with the 

replication fallacy displaying poorest rates, whereas the effect size fallacy had greatest accuracy. 

With that said, because the original studies only provided respondents with “True” or “False” 

options, whereas the current study also allowed for “I don’t know” responses, two sets of accuracy 
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rates were computed and reported: proportion of correct responses as a function of all responses (i.e. 

“I don’t know” coded as incorrect; see Fig. 2A&C), versus only attempted responses (i.e. “I don’t 

know” responses omitted; Fig. 2B&D). CIs and BFs yielded greater were observed as relatively less 

familiar concepts across users, i.e. yielding greater proportions of “I don’t know” responses. What is 

worth noting is relative difficulty levels across the different statistical concepts was fairly consistent 

given the different scoring computations (i.e. whether “I don’t know” responses were coded as 

incorrect vs. omitted). The one exception was the BF items: Rates tended to show that among those 

who attempted to answer the BF items (i.e. did not opt for the “I don’t know” option), accuracy was 

markedly higher. Specifically, when “I don’t know” responses were coded as incorrect, the 3 BF 

items yielded accuracy rates of 14% (BF1), 47% (BF2), and 27% (BF3); in contrast, when only True 

and False options were compared, accuracy was 43%, 86%, and 64%, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Response trends (Study 1). Proportion of responses (correct, incorrect, “I don’t know”) across 

the 8-week MOOC timeline, i.e. from Pop Quizzes (PQs) 1 to 6. Pre = pretest (PQ1), post1 = first post-test 

(summed across PQ2 – PQ5), post2 = second post-test (PQ6). 

Response Trends (Study 1) 
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Table 1 

Response trends & confidence levels (Study 1). Accuracy rates (i.e. mean proportion of correct, incorrect, & “I 

don’t know” responses), and mean confidence ratings (CRs), across pop quizzes (PQs) 1 to 6. Items covered in 

each PQ were clustered into four subsets: subsets 1 and 2 (p-values), subset 3 (BFs), and subset 4 (CIs). 

 PQ1 PQ2 PQ3 PQ4 PQ5 PQ6 

Items covered Subsets 1 – 4 Subset 1 Subset 3 Subset 2 Subset 4 Subsets 1 – 4 

N 1,915 1,045 621 421 371 276 

Correct (%) 48.06 75.26 64.93 89.73 77.43 80.84 

Incorrect (%) 24.67 22.22 31.70 9.33 21.53 17.90 

I don’t know (%) 27.26 2.54 3.33 0.97 0.97 1.26 

mean CR (7-pt Likert) 4.04 5.06 4.74 5.80 5.35 5.17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseline Accuracy Rates (Study 1) 
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Figure 2 – Baseline accuracy rates (Study 1). Accuracy rates across the 14 individual items (Figures 2A & 2B), 

and averaged across statistical concepts (Figures 2C & 2D). Accuracy rates are computed in two manners. 2A & 

2C: As the proportion of correct responses given all provided responses (i.e. “I don’t know” responses coded as 

incorrect); 2B & 2D: As the proportion of all ‘attempted’ responses (i.e. “I don’t know” responses omitted). 

Individual items consist of 8 p-value items (PV1 to PV8), 3 confidence interval items (CI1 to CI3), and 3 Bayes 

factor items (BF1 to BF3); statistical concepts are grouped into p-value fallacies (PV.IP = inverse probability 

fallacy; PV.R = replication fallacy; PV.ES = effect size fallacy; PV.CPS = clinical or practical significance 

fallacy; PV.correct = correct interpretation), confidence intervals (CI), and Bayes factors (BF). 

 

Effects of scale versions. To date, studies investigating p-value misconceptions have only 

surveyed individuals’ statements about significant p-values (i.e. given p = .01 or .001). As we also 

administered a version of the scale dealing with statements about non-significant outcomes, (i.e. p = 

.30), binary logistic regression analyses (see Table 2) were run to compare baseline accuracy rates 

for both sets of the p-value items  (“I don’t know” responses coded as incorrect; Holm-Bonferroni 

correction applied for multiple testing). Analyses revealed that individuals were 2.19 times more 

likely (p < .001) to avoid falling prey to the clinical or practical significance fallacy (PV7) when 

interpreting a false statement about a non-significant outcome (i.e. “Obtaining a statistically non-

significant result implies that the effect detected is unimportant”) as compared to a significant 

outcome (i.e. “Obtaining a statistically significant result implies that the effect detected is 

important”). Additionally, inverse probability item PV1 was 1.76 times more likely (p < .001) to be 

correctly recognized as false when in the context of interpreting a non-significant p-value (i.e. given 

p = .30 (α = .05), “You have absolutely proven the null hypothesis (that is, you have proven that 

there is no difference between the population means)”) than in the context of interpreting a 

significant p-value (i.e. given p = .001 (α = .05), “You have absolutely proven your alternative 

hypothesis (that is, you have proven that there is a difference between the population means)”).  

It should be noted, however, that observed misconception rates were also significantly 

different for two further items (PV5 and PV8) of which the phrasings were identical in both 

versions, with the exception of the p-value provided in the given information (i.e. “Let’s suppose 

that a research article indicates a value of p = .001 [vs. p = .30] in the results section (alpha = 

.05)”). Specifically, individuals were 1.44 times more likely (p < .001) to correctly interpret the p-

value item about replication (i.e. “The probability that the results of the given study are replicable is 

not equal to 1-p.”), and 1.61 times more likely (p < .001) to correctly endorse the correct p-value 
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definition (i.e. “The p-value of a statistical test is the probability of the observed result or a more 

extreme result, assuming the null hypothesis is true”) when considered in the context of a non-

significant outcome. While we did not expect to find differences between scale versions for those p-

value items which were identically phrased (i.e. PV5 and PV8), such a pattern might be explained 

by the existence of potential item dependencies, contributing to consistency in item responses: In 

other words, if for instance the odds of arriving at the correct response are higher in one context 

(such as for items PV1 and PV7 in the non-significant context), then this might carry over to how 

other items are solved. On the other hand, observed differences in accuracy between scale versions 

might also be simply due to random sampling error, i.e. reflective of differences between 

subsamples despite random assignment (i.e. counterbalancing) across scale versions.           

Remaining p-value items did not yield significant differences in accuracy between versions. 

Taken together, there is some evidence to suggest that the context in which a p-value is being 

interpreted (i.e. significant vs. non-significant outcome) may influence the propensity for individuals 

to fall prey to some common misconceptions, whereby the odds of endorsing a misinterpretation is 

greater when concerning significant outcomes. However, one should be cautious when speculating 

about these results as they could reflect spurious differences. 

 

Table 2 

 

Effects of scale version at baseline (n = 1,915). Binary logistic regression analyses, comparing effects of 

scale versions on accuracy rates, i.e. differences in baseline misconception rates given interpretations about a 

significant (p = .001; reference category) versus non-significant (p = .30) outcomes. 

 

Binary logistic regression estimates  Model summary 

Item Parameter df Estimate 
^

 SE Wald p-value OR  Wald ꭕ
2 

p-value
 RN

2 a
 RCS

2 b
 

PV1 
Version 1 0.56 0.11 26.36 < .001 1.76  

27.44 < .001 .02 .01 
Constant 1 0.02 0.15 0.02 .881 1.02  

PV2 
Version 1 0.12 0.10 1.58 .208 1.13  

1.59 .208 .00 .00 
Constant 1 0.08 0.14 0.34 .561 1.08  

PV3 
Version 1 0.19 0.10 3.89 .049 1.21  

3.89 .049 .00 .00 
Constant 1 -0.27 0.14 3.95 .047 0.76  

PV4 
Version 1 0.10 0.10 0.96 .326 1.10  

0.97 .325 .00 .00 
Constant 1 0.40 0.14 7.99 .005 1.49  
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PV5 
Version 1 0.36 0.10 13.40 < .001 1.44  

13.34 < .001 .01 .01 
Constant 1 -1.00 0.14 49.12 < .001 0.37  

PV6 
Version 1 0.05 0.11 0.23 .630 1.05  

0.23 .629 .00 .00 
Constant 1 0.91 0.15 34.88 < .001 2.48  

PV7 
Version 1 0.78 0.10 59.90 < .001 2.19  

65.04 < .001 .04 .03 
Constant 1 -0.86 0.14 37.29 < .001 0.43  

PV8 
Version 1 0.48 0.10 21.27 < .001 1.61  

21.80 < .001 .02 .01 
Constant 1 -0.11 0.14 0.54 .463 0.90  

a.
 Nagelkerke R-squared. 

b.
 Cox & Snell R-squared. 

 

Rates of Improvement 

 Rates of improvement were operationalized as increases in conceptual understanding, 

entailing both shifts from misconceptions or lack of knowledge (resp. incorrect or “I don’t know” 

responses) to correct interpretations; therefore, for the following analyses, accuracy was computed 

as proportion of correct responses given all responses (i.e. “I don’t know” responses coded as 

incorrect). See online supplementary materials (osf) for properties of full scale & scale subsets. 

 

Overall learning. Linear mixed model (LMM) analysis first investigated overall learning 

effects, across the subset of individuals who completed all six pop quizzes (n = 162, after 

exclusions). LMM with random intercepts was used to regress quiz scores (resp., totals at pretest, 

post-test1, and post-test2) on time (dummy coded categorical predictor with 3 time points (pre, 

post1, post2); pre as reference category). As effects of time on learning might be influenced by 

individual differences in course duration (i.e. number of days/weeks required to complete course; 

median course duration = 47.93 days or 6.85 weeks), the model also included an interaction term 

between time and lag (where here, lag (continuous, mean-centered) represented total time of 

completion from pre to post2, measured in hours). As the model contained three effects of interest, 

i.e. effect of time (at post1 & post2) and interaction effect time*lag (see Table 3), significance levels 

were corrected for Type-1 errors using a Bonferroni correction (alpha = .0167). Post-hoc Tukey’s 

HSD analysis was included as a follow-up test, accounting for multiple comparisons (family-wise 

Type-1 error rate = 5%). LMM analyses (model R
2

semi-partial = .28, ICC = .19) revealed a significant 

effect of time, with improvements in scores significantly increasing from baseline mean score of 



IMPROVING STATISTICAL INFERENCES 

66 
 

8.26 (max. score of 14) to 11.13 at post1 (mean increase from pre to post1 of 2.87, p < .001), and 

11.60 at post2 (mean increase from post1 to post2 of 3.35, p < .001); improvement from post1 to 

post2 (mean increase of 0.48, p = .169) was not statistically significant. Interaction with lag was also 

non-significant 
^
 = 1.01e-04, p = .777). 

 

 

Table 3 – Overall learning effects (n = 162). Improvements in learning for the 14 quiz items, across 3 

assessment time points (pre, post1, post2); pre as reference category. LMM is summarized for fixed effects 

parameter estimates, as well as random effects (random intercepts variance ( )). 

 

Fixed effects 

Parameter Estimate 
^

 SE df T p-value semi-partial R
2
  

(Intercept) 8.26e+00 1.87e-01 339.30 44.28 < .001  

Time (post1) 2.87e+00 1.95e-01 319.50 14.75 < .001 .25 

Time (post2) 3.35e+00 1.95e-01 319.50 17.20 < .001 .20 

Time*Lag 1.01e-04 3.58e-04 401.80 0.28 .777 .00 

Random effects 

Parameter    

ID (Intercept) 2.57   

Residual 3.07   

 

Quiz-level effects. Next, effects of learning were investigated at the quiz-level, applying 

once again random intercepts LMM analyses to assess effect of time, and accounting for possible 

interactions between time and lag (mean-centered). Specifically, eight separate LMMs were run to 

assess improvements across each of the four subsets of items for first immediate learning (i.e. four 

LMMs), and then retained learning (i.e. another four LMMs; see Table 4 for overview); for each set 

of analyses, Bonferroni Type-1 error correction was applied for 4 analyses with 2 effects of interest 

each (alpha = .006). Due to response attrition, improvements in learning for concepts covered later 

in the course are based on smaller ns, and reported accordingly.  
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Immediate learning. Results revealed significant improvements in immediate learning (pre 

to post1) across all sets of items: Specifically, main effect of time on quiz scores was most notable 

for less familiar concepts (i.e. BFs and CIs), respectively subset 3 (n = 478, 
^
 = 1.02, p < .001, 

R
2

semi-partial = .27) and subset 4 (n = 271, 
^
 = 0.93, p < .001, R

2
semi-partial = .23), and less pronounced 

for the two p-value quizzes, i.e. subset 1 (n = 712, 
^
 = 0.72, p < .001, R

2
semi-partial = .07) and subset 2 

(n = 325, 
^
 = 0.38, p < .001, R

2
semi-partial = .07). More concretely, while baseline rates for BF and CI 

items started off lower (resp. at 0.98 and 1.40 correct, out of max 3.0), scores improved on average 

by approx. 1 point for both sets of items (i.e. increasing to 2.00 and 2.32 items correct at post1, 

resp.). In contrast, p-value scores, which were initially higher at baseline (subset 1 mean score of 

3.12 out of 5; subset 2 mean score of 2.34 out of 3) incurred relatively smaller improvements, 

resulting in scores of 3.85 (subset 1) and 2.72 (subset 2) at post1. Across all analyses, interaction 

between lag and time was non-significant (ps ≥ .564); in other words, the amount of time that 

elapsed between pretest and the first post-test did not have a statistically significant impact on 

degree of improvement observed across individuals.  

 

Retained learning. Regarding retained learning (post1 to post2), LMMs demonstrated 

further positive effects of time on p-value items, which were statistically significant for subset 1 (n = 

207, 
^
 = 0.38, p < .001, R

2
semi-partial = .03), but non-significant for subset 2 (n = 216, 

^
 = 0.10, p = 

.007, R
2

semi-partial = .01); both analyses yielding non-significant interaction effects of lag*time (ps > 

.472). In other words, individuals continued to improve on p-value items until post2, though 

learning gains were relatively small. In contrast, for BF items (subset 3, n = 206) and CI items 

(subset 4, n = 225), neither effects of time nor interaction effect with lag were significant (all ps 

were larger than the Bonferroni-corrected alpha level of .006), demonstrating retention of learning, 

i.e. no significant increases or drops in scores at post2. Once again, time lag, i.e. the amount of time 

that elapsed between the two assessments, did not have a statistically significant impact on changes 

in scores observed across individuals for any of the subsets of items.  
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Table 4 

 

Quiz-level learning effects. Improvements in immediate and retained learning, across the four subsets of 

items, corresponding to p-values (subsets 1 and 2), Bayes factors (subset 3), and confidence intervals (subset 

4). LMMs are summarized: Indices include model R-squared (Rβ
2
), intraclass correlation (ICC), and random 

effects, i.e. random intercepts variance ( ). 

 

                           Immediate learning (pre to post1)  Retained learning (post1 to post2) 

Subset 

(items) 
n Rβ

2 a 
ICC   

N
 Rβ

2 a ICC
  

Subset 1 

(PV1 – PV5) 
712 .07 .37 .82  207 .03 .48 .57 

Subset 2 

(PV6 – PV8) 
325 .07 .07 .08  216 .01 .30 .07 

Subset 3 

(BF1 – BF3) 
478 .27 .00 .11  206 .01 .35 .21 

Subset 4 

(CI1 – CI3) 
271 .23 .00 .13  225 .02 .33 .20 

a. Rβ
2
 = standardized measure of multivariate association between the fixed predictors and the 

observed outcome (Edwards et al., 2008).   

 

Correlates of Performance 

Baseline accuracy rates correlated positively and significantly with self-reported statistics 

expertise (r = .470, n = 582), as well as level of education completed (r = .198, n = 581). As the 

course progressed, the relationship between performance and initial expertise rating attenuated 

(respectively to r = .341 (n = 85) at post1 and r = .093 (n = 69) at post2), whereas correlations with 

education level remained fairly constant (r = .274 (n = 85) at post1 and r = .238 (n = 69) at post2). 

Performance (i.e. accuracy levels across all 6 quizzes) was also found to systematically correlate 

positively with corresponding confidence ratings, respectively: r1 = .250 (n1 = 1,915), r2 = .268 (n2 = 

1,045), r3 = .082 (n3 = 621), r4 = .184 (n4 = 421), r5 = .233 (n5 = 371), and r6 = .300 (n6 = 276).  
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Figure 3 – Rates of improvement (Study 1). Improvements in learning across all 14 items from week 1 (PQ1) 

to week 8 (PQ6). Graphs demonstrate mean rate fluctuations in immediate learning (solid lines), i.e.from 

baseline (pre) to first post-test (post1), and retained learning (dashed lines), from first to second post-test (i.e. 

post1 to post2). Top: 8 p-value items (PV1 – PV8), note: y-axis ranges from 40% to 100% accuracy; Bottom: 3 

Bayes factor items (BF1 – BF3) and 3 confidence interval items (CI1 – CI3), note: y-axis ranges from 0% to 

100% accuracy. 
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 Discussion (Study 1) 

 Study 1 provided evidence for the ability to improve misconception rates among online 

learners with respect to interpreting the meaning of p-values, BFs, and CIs. Mean scores, across the 

14 items, improved from a baseline of 8.26 correct responses to 11.13 (at post1) and finally 11.60 (at 

post2); in other words, individuals made on average three to four fewer misconceptions as a result of 

participating in the 8-week MOOC. Specifically, all p-value fallacies (inverse probability, 

replication, clinical or practical significance, and effect size), as well as BF and CI item subsets 

incurred statistically significant improvements in immediate learning, i.e. as measured immediately 

after the concept in question was taught, with lesser known items (i.e. BFs and CIs) demonstrating 

unsurprisingly more pronounced improvements in immediate learning, as compared to p-values. 

Retained learning, as measured by a follow-up assessment in week 8, was observed across all 

statistical concepts, indicating neither significant increases nor drops in learning from post1 to post2. 

Taken together, improvements resulting from the MOOC were not only successful in improving 

learners’ ability to correctly interpret statements about statistical concepts, but these improvements 

were maintained until the final week of the course.  

It is worth noting that the MOOC pop quizzes were voluntary (i.e. not graded, nor required 

to complete in order to advance in or pass the course). As such, it would be of interest to replicate 

such a study within an educational setting where performance on the quizzes had specific learning 

goals or consequences. In the same vein, as it is not possible to account for additional inter-

individual differences between users (e.g., motivation, interest), or strategies adopted (e.g., working 

individually vs. in a group, note-taking, etc.), it would be hard to speculate as to whether learning 

effects reflect conservative versus optimistic estimates with respect to the average learner. On the 

other hand, as this flexibility in use is integral to the MOOC learning platform, work going forward 

might seek to investigate which characteristics of a MOOC, that would otherwise not be present in a 

traditional learning environment, may or may not facilitate the learning process. 

 One potential limitation of Study 1 was the observation that there may have been too 

systematic a relationship between the item phrasing and correct answers: Specifically, with the 

exception of the correct p-value interpretation (item PV8), all False items used positive phrasing, 

whereas all True statements were reverse items. Should participants have noticed this pattern, and 

used it to drive their responses, this could act as a confound and weaken the assumed benefits of the 
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MOOC on learning. While we do not expect that this was the case, follow-up work should account 

for this potential confound. Moreover, one cannot exclude the possibility that mere exposure to 

items and their correct answers prompted individuals to score higher at subsequent post-tests. That 

said, were this to have occurred, we should arguably have observed ceiling effects (or at least more 

pronounced increases in scores, presumably across all items, from post1 to post2), as well as greater 

improvements for items with a short lag between assessments, neither situation of which was present 

in our data. Moreover, it should also be mentioned again that individuals were exposed to two scale 

versions containing non-identical items (i.e. version 1 at pretest, version 2 at post-test1 (order 

counterbalanced between learners), and finally a combination of items from version 1 and 2 at post-

test2; see Appendix A & B), thus further reducing the likelihood that mere exposure to items wold 

have realistically accounted for observed improvements. Nonetheless, follow-up work which 

experimentally manipulates the degree of instructional support learners’ receive, might lend 

explanatory power to the merits of supplementing statistical teaching with explicit tools aimed at 

tackling and overcoming common misconceptions when drawing inferences from data. 

 

Study 2 

 As the MOOC was not originally designed to explicitly clarify misconceptions, but rather to 

teach core concepts, Study 2 investigated the effect of adding teaching material geared toward 

actively pinpointing and clarifying common p-value misconceptions, namely: the inverse 

probability, replication, and clinical or practical significance fallacies. To this end, in Study 2, we 

dropped the CI and BF items, and focussed exclusively on the clarification of 9 p-value items, 

comparing improvement rates of controls against an experimental group, who received additional 

instructional material (see online supplementary materials (osf)) in week 1 of the MOOC. 

Procedure 

In Study 2, the scale was reduced to the eight original p-value items from Study 1 (with 

some minor modifications), plus one additional item PV9 (inverse probability). Slight variations in 

phrasing, namely for items PV1 (inverse probability), PV6 (effect size), and PV7 (clinical or 

practical significance), were primarily introduced to create a less systematic relationship between 

true items and negative phrasing, in response to the concern noted in the Discussion of Study 1. Two 
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versions of the scale were once again implemented: Version 1 framed interpretations and fallacies in 

the context of a significant outcome (i.e. p = .001; see Appendix C), and Version 2 in the context of 

a non-significant outcome (i.e. p = .30; see Appendix D). Across all learners, items were presented 

in a fixed-randomized order, with Version 1 at pretest (PQ1; week 1), Version 2 at post-test1 (PQ2 

& PQ3; weeks 1-4), and a combination of both versions at post-test2 (PQ4; week 8). In order to 

investigate the effect of explicit clarification on misconception improvements, an experimental 

group was provided one additional assignment in week 1, as compared to controls, on 

“Understanding common misconceptions about p-values”, which included a series of explanations 

and practical exercises (e.g., interpreting graphs and use of shinyapps; see supplementary materials 

(osf)), and which targeted and outlined five common misunderstandings (see below; fallacies where 

relevant specified in parentheses). Assignment also included 14 multiple choice questions to test 

students’ learning; upon submission, tailored feedback was provided to users in cases where the 

wrong answer was selected (80% was the required passing rate, multiple response attempts were 

allowed). Demographics and confidence ratings were again voluntarily requested as in Study 1. 

Common misconceptions about p-values: 

1. A non-significant p-value means that the null hypothesis is true. (inverse probability) 

2. A significant p-value means that the null hypothesis is false. (inverse probability) 

3. A significant p-value means that a practically important effect has been discovered. (clinical 

or practical significance) 

4. If you have observed a significant finding, the probability that you have made a Type 1 error 

(a false positive) is 5%. 

5. One minus the p-value is the probability that the effect will replicate when repeated. 

(replication) 

 

Exclusion Criteria 

 The same exclusion criteria as in the first study was also applied in Study 2, including 

response latency outliers (see Appendix F for overview of final lag distribution statistics). 

Additionally, users who did not provide responses for the added assignment in the experimental 
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condition were excluded from analyses comparing conditions (but included in measures of baseline 

misconception rates and response trends). 

 

Results (Study 2) 

Sample 

 Total number of learners at pretest (N = 1,301; preliminary data) was split randomly 

between control (n = 652) and experimental (n = 649) groups. Study 2 demographics (n = 1,195) 

were quite similar to those of the first study, consisting of 59.3% male participants (38.8% female; 

1.9% opting not to specify), with a mean age of 32.90 years (SD = 9.72); 31.6% English native 

speakers, and 80.4% of having previously taken a statistics course before participating in the 

MOOC. Thirty-six percent of learners rated their statistical expertise-level as beginner, 56.5% as 

intermediate, and 7.5% as advanced. Academic experience (i.e. degree obtained) was distributed as 

follows: 7.9% high school diploma, 29.5% bachelor’s degree, 43.6% Master’s degree, 13.7% PhD 

degree, 3.6% post-doctoral degree, and 1.7% professorship attained. 

Response Trends and Baseline Misconception Rates 

Study 2 response trends were similar to those patterns observed in Study 1: High dropout 

rates were observed from week 1 to week 8, and proportion of correct responses rose (approx. 88-

90% correct by week 8) as proportion of incorrect and “I don’t know” responses shrunk (see Table 

5). Visual inspection of Table 5 also demonstrates some differences between Control and 

Experimental groups: While at baseline, proportions of correct, incorrect, and “I don’t know” 

responses are fairly matched between conditions, trends across pop quizzes 2 through 4 indicate 

systematically larger proportions of correct answers among the Experimental respondents, though 

whether this effect of condition is significant will be more closely assessed via LMM analyses 

below. In terms of baseline misconception rates, Study 2 findings were also consistent with accuracy 

rates for p-value items observed in Study 1: The replication fallacy proved once again to be the most 

difficult at baseline (51% - 64% accuracy), whereas the effect size fallacy was again the least 

problematic (67% - 85% accuracy; see Figures 4C & 4D). 
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Baseline Accuracy Rates (Study 2) 

Table 5 

Response trends & confidence levels. Accuracy rates (i.e. mean proportion of correct, incorrect, & “I don’t 

know” responses) across all individuals (split between Control and Experimental groups), and mean confidence 

ratings (CRs), across pop quizzes (PQs) 1 to 4. Items covered in each PQ were clustered into two subsets of p-

value items: subset 1 (inverse probability and replication fallacies), and subset 2 (effect size and clinical or 

practical significance fallacies, and the correct p-value definition). 

 PQ1 (N = 1,143)  PQ2 (N = 504)  PQ3 (N = 179)  PQ4 (N = 100) 

 Control Expt.  Control Expt.  Control Expt.  Control Expt. 

Items covered Subsets 1 & 2  Subset 1  Subset 2  Subsets 1 & 2 

N 566 577  281 223  90 89  62 38 

Correct (%) 59.78 59.92  76.77 89.23  85.57 91.03  87.81 90.07 

Incorrect (%) 23.76 24.20  20.40 9.57  12.23 7.87  11.12 8.18 

I don’t know (%) 16.46 15.84  2.85 1.17  2.20 1.13  1.07 1.74 

mean CR  

(7-pt Likert) 
4.45 4.48  4.91 5.59  5.24 5.51  5.56 5.76 
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Figure 4 – Baseline accuracy rates (Study 2). Accuracy rates across the 9 individual items (Figures 4A & 4B), 

and averaged across p-value fallacies (Figures 4C & 4D). Accuracy rates are computed in two manners. 4A & 4C: 

As the proportion of correct responses given all provided responses (i.e. “I don’t know” responses coded as 

incorrect); 4B & 4D: As the proportion of all attempted responses (i.e. “I don’t know” responses omitted). 

Individual items consist of 9 p-value items (PV1 to PV9), measuring four distinct p-value fallacies (PV.IP = inverse 

probability fallacy; PV.R = replication fallacy; PV.ES = effect size fallacy; PV.CPS = clinical or practical 

significance fallacy; PV.correct = correct interpretation). 

 

Rates of Improvement 

Overall learning. Linear mixed model (LMM) analysis first investigated overall learning effects, 

across the subset of 9 p-value items, accounting for effect of condition (model Rβ
2

 = .15, ICC = .32). 

Across the n = 52 individuals who completed all assessments (pretest, post-test1, and post-test2), 

scores for the control group (nc = 34) improved from a baseline rate of 6.45correct responses to 7.30 

at post1, and a final score of 7.81 (out of a max 9.0) at post2. Overall, learners in the control condition 

improved by 1.36 points as a result of participating in the 8-week MOOC (p < .001), with those in the 

experimental group (ne = 18) displaying a mean further improvement in score of 0.52 points at post2 

(effect of condition positive but non-significant; see Table 6). Interactions between time and 

condition, as well as time and lag, were also non-significant. It should be noted, however, that due to 

steep response attrition, sample size is only a tiny fraction of the desired sample size (and is – barring 

the exception of very large effects – expected to be highly underpowered, ). It is important to stress 

here that such a tiny sample size prevents us from drawing meaningful inferences at this juncture; as 

such, while planned analyses are reported, all preliminary estimates below will be updated after a 

second wave of data collection and reinterpreted based on a larger and more informative N.  

 

Table 6 

 

Overall learning effects (n = 52). Improvements in learning for the 9 p-value items, across 3 assessment time 

points (pre, post1, post2); post2 and control group as reference categories. LMM is summarized for fixed 

effects parameter estimates, as well as random effects (random intercepts variance ( )). 

 

Fixed effects 

Parameter Estimate 
^

 SE df T p-value semi-partial R
2
  

(Intercept) 7.81e+00 2.79e-01 111.30 27.97 < .001  
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Time (pre) -1.36e+00 3.01e-01 99.40 -4.54 < .001 .08 

Time (post1) -5.11e-01 3.01e-01 99.40 -1.70 .092 .01 

Condition 5.63e-01 4.78e-01 112.70 1.18 .241 .01 

Time(pre)*Condition -3.38e-01 5.14e-01 99.72 -0.66 .513 .00 

Time(post1)*Condition 3.18e-02 5.14e-01 99.72 0.06 .951 .00 

Time(post2)*Lag 1.90e-04 4.19e-04 126.70 0.45 .651 .00 

Random effects 

Parameter    

ID (Intercept) 1.10   

Residual 1.53   

 

Quiz-level effects. In order to gain additional insights into learning effects across the two 

subsets of items, namely with respect to effects of additional training, random intercepts LMMs 

were once again run to separately assess improvement for immediate learning and retained learning. 

LMMs included effects of time and condition, as well as interactions between time and lag (mean-

centered) and between condition and time; Bonferroni Type-1 error correction was applied for each 

sets of analyses (i.e. immediate vs. retained, each consisting of two LMMs with four effects of 

interest per analysis; alpha = .006). Subset 1 consisted of six items measuring the inverse probability 

fallacy (4 items) and replication fallacy (2 items), and subset 2 three items measuring the effect size 

fallacy (1 item), clinical or practical significance fallacy (1 item), and the correct p-value definition 

(1 item) (see Figure 5). Again, it is worth stressing that regarding the analyses below, small sample 

sizes (especially in the case of retained learning) prevent us from drawing meaningful conclusions at 

this point; in the case of the immediate learning analyses, n’s start to approach a more reasonable 

size upon which to interpret estimates. 

Immediate learning. Results revealed significant improvements in immediate learning (pre 

to post1) across both sets of items: Specifically, effect of time on quiz scores was greater for subset 

1 (n = 353, 
^
 = 0.64, p < .001, R

2
semi-partial = .03), relative to subset 2 (n = 123, 

^
 = 0.37, p = .004, 

R
2

semi-partial = .03), while effect of condition was non-significant for either of the subsets (ps > .064). 

Interaction between condition and time was only significant for improvement in mean scores on the 
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first set of items targeting the inverse probability and replication fallacies (
^
 = 0.71, p < .001, R

2
semi-

partial = .02), but non-significant for subset 2 targeting effect size and clinical or practical significance 

fallacies (p = .848). In other words, while both groups (control vs. experimental) started off with 

comparable baseline scores for subset 1 (4.05 and 4.13, resp., out of max. 6.0) and subset 2 (2.15 

and 2.41, resp., out of max. 3.0), rate of improvement for subset 1 was significantly less pronounced 

for controls as compared to the experimental group, yielding respective mean scores at post1 of 4.69 

versus 5.48. By contrast, subset 2 displayed overall effects of time, but a non-significant interaction 

with condition, yielding comparable final mean scores at post1 of 2.52 and 2.75 (control vs. 

experimental). Additionally, across both analyses, interaction between lag and time was non-

significant (ps > .859): Similar to Study 1, amount of time that elapsed between assessment time 

points did not have a significant effect on changes in score across either subsets of p-value items and 

for both conditions.  

Retained learning. LMMs demonstrated no significant effects of time on retained learning 

(post1 to post2), in other words no significant increases nor drops in learning occurred across either 

of the item subsets: subset 1 (n = 56, 
^
 = 0.45, p = .047, R

2
semi-partial = .03), subset 2 (n = 60, 

^
 = 0.07, 

p = .497, R
2

semi-partial = .00). Effect of condition (ps ≥ .105), as well as interactions between lag and 

time (ps > .761), and condition and time (ps > .872), were all non-significant. Overall, learning gains 

held roughly steady until week 8 of the MOOC. 

Table 7 

 

Quiz-level learning effects. Improvements in immediate and retained learning, across the two p-value item 

subsets. LMMs are summarized: Indices include model R-squared (Rβ
2
), intraclass correlation (ICC), and 

random effects, i.e. random intercepts variance ( ). 

 

                                              Immediate learning (pre to post1)  Retained learning (post1 to post2) 

Subset 

(items) 
n Rβ

2 a 
ICC   

n
 Rβ

2 a ICC
  

Subset 1 

(PV1 – PV5, & PV9) 
353 .14 .17 .55  56 .08 .26 .32 

Subset 2 

(PV6 – PV8) 
123 .07 .09 .07  60 .01 .42 .17 

a. Rβ
2
 = standardized measure of multivariate association between the fixed predictors and the 

observed outcome (Edwards et al., 2008). 
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Figure 5 – Rates of improvement (Study 2). Improvements in learning across all 9 items from week 1 to 8. 

Graphs demonstrate mean rate fluctuations in immediate learning (i.e. from pre to post1), and retained learning 

(i.e. from post1 to post2); note: y-axis ranges from 40% - 100% accuracy. Left: Control condition; Right: 

Experimental condition. 
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Correlates of Performance 

Baseline accuracy rates significantly correlated once again with self-reported statistics 

expertise (r = .301, n = 1,098), and level of education completed (r = .194, n = 1,098). As in Study 

1, performance levels systematically correlated positively with corresponding confidence ratings at 

each assessment (i.e., r1 = .283 (n1 = 1,143), r2 = .398 (n2 = 504), r3 = .207 (n3 = 179), r4 = .412 (n4 = 

100). For individuals in the Experimental condition, mean performance at post 1 (averaged across 

all 9 p-value items) correlated positively with scores on the p-value assignment (r = .402, n = 59); in 

particular, assignment scores were only significantly correlated with accuracy rates for subset 1 (r = 

.467, n = 186), but not for subset 2 (r = .146, n = 59).  

 

Discussion (Study 2) 

Study 2 specifically investigated the effects of supplementary instructional training on rates 

of learning, when it came to overcoming common misconceptions of p-values. Preliminary findings 

replicated those of Study 1, demonstrating significant improvements in mean quiz scores, across all 

individuals, from pre to post1, and subsequent retained learning from post1 to post2, as a result of 

participation in the 8-week MOOC. While preliminary analyses, assessed across all 3 time points, 

found no statistically significant effect of condition on overall learning (i.e. improvements in mean 

scores across the 9 p-value items), analyses specifically addressing immediate improvements, across 

each of the two item subsets, found that effect of additional training was significant for improving 

the understanding of inverse probability and replication fallacies (follow-up measure in week 1), but 

not significant for effect size and clinical or practical significance fallacies (follow-up measure in 

week 4). Due to response attrition, and thus small preliminary samples, these results should not be 

taken as conclusive; with that said, some speculations might be offered about the inconsistency of 

condition effects across analyses. Perhaps most salient is the fact that the assignment in question 

provided to the Experimental group addressed five core misinterpretations, two of which were 

focussed on the inverse probability fallacy and one on the replication fallacy (i.e. the concepts tested 

in subset 1), while only one item tackled concepts addressed in subset 2 (namely, the clinical or 

practical significance fallacy). Moreover, the follow-up test for subset 1 occurred immediately after 

completion of the assignment at the end of week 1, whereas the follow-up test for subset 2 occurred 
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in week 4 of the course. Finally, as demonstrated in both Study 1 and Study 2, inverse probability 

and replication fallacy items tended to be among the more difficult items, allowing for more room 

for improvement. As such, prior understanding, in combination with both the relevance of the 

instructional materials to the items in subset 1, as well as the timing of the follow-up assessment, 

might explain why learners demonstrated greater improvements in learning with respect to 

specifically the inverse probability and replication misconceptions as a result of the additional 

training, and why the effect of condition might have been reduced when learning was averaged 

across all 9 items (and over a smaller sample of participants). As these results are only preliminary, 

all effects must be re-assessed at the intended larger sample size.  

 

(General) Discussion 

 To date, work on statistical misconceptions among academic psychologists has depicted the 

following consensus: When it comes to statistical indices, such as p-values, researchers’ are 

engrained with intrinsic misunderstandings when interpreting data. The current work challenges this 

point of view, offering empirical evidence that misconceptions are flexible to change, and can even 

be significantly improved and maintained. Specifically, participants of an 8-week MOOC 

demonstrated significant improvements in learning across common p-value fallacies, BFs, and CIs. 

Moreover, preliminary evidence suggests that when provided with additional instructional materials, 

specifically geared toward pinpointing and clarifying common p-value misconceptions (e.g., inverse 

probability and replication fallacies), learners incurred greater improvements in their quiz scores, in 

contrast to those who did not receive additional training. In this way, the present work speaks to the 

merit in developing more dedicated teaching materials, and supplementing the teaching of statistical 

concepts with targeted training on how not to draw conclusions from data, so as to reduce 

individuals’ likelihood of falling prey to common misinterpretations of statistical indices. 

An important contribution of Study 1 was the investigation of differences between baseline 

misconception rates of statistically significant (p=.001) versus non-significant (p=.30) inferences. Of 

note, individuals made significantly more mistakes when interpreting certain p-value items in the 

context of a significant outcome (vs. non-significant outcome), namely when it came to the clinical 

or practical significance misconception, as well as one of the inverse probability items. Such 
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findings may be attributed to cognitive biases, such as confirmation bias in light of ‘significance 

chasing’ (Ware & Munafo, 2015): Due to “the tendency to emphasize and believe experiences 

which support one’s views and to ignore or discredit those which do not” (Mahoney, 1977, p.161), 

individuals tasked to interpret a significant result may be more prone to prematurely endorsing a 

conclusion before questioning its limitations than the converse, i.e. when the outcome (e.g., non-

significant p-value) conflicts with one’s expectations. This ties in with the idea of inflated 

interpretations to which Bakan (1966) alluded: When it comes to interpreting research findings, 

over-stated generalizations, unwarranted extensions to different inferential levels, and downplaying 

limitations, can lead to unrealistic conclusions and false endorsements of study outcomes, an abuse 

of “the realm of qualitative interpretation of quantitative effects” (Ioannidis, 2008, p. 643).  

What is worth pointing out in Study 1 was that across the four subsets of items, only the p-

value items demonstrated further significant improvements from post1 to post2, with subset 1 

yielding the relatively larger additional increase in score. This further improvement, especially for 

inverse probability fallacy items, should not be wholly unsurprising given the findings of 

Kalinowski et al. (2008): Contrasting NHST teaching with the concept of Bayesian inference was 

found to help students overcome the inverse probability misconception. As the MOOC module on 

Bayesian statistics occurred in week 2, and the concept of equivalence testing (see Lakens, Scheel, 

Isager, 2018) in week 6 (both occurring between the first and second post-test of the IP items), it is 

possible that familiarizing learners with these concepts further improved their understanding of what 

can and cannot be inferred from p-values.  

Finally, an interesting and unanticipated finding in Study 2, which was in contrast to Study 

1, was the decrease in accuracy from pre to post1 for item PV1 (i.e. one of the inverse probability 

items). While all other inverse probability items improved between both assessments, the 

performance on PV1 at post1, across both control and experimental groups, dropped relative to 

baseline performance only in Study 2, which begs the question why this item in question might may 

have been detrimentally affected relative to the rest of the items measuring the same type of 

misunderstanding, specifically in the second study alone. While merely speculation, the following 

explanation might be offered: One key difference in Study 2 was the addition of item PV9, which 

attempted to provide an umbrella statement on how to (and how not to) interpret p-value statements: 

“P-values (e.g., p = .001) are statements about the probability of data, not the probability of a 
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theory or hypothesis” (version 1).  While not addressed explicitly, this item taps into the argument 

by Falk and Greenbaum (1995), who emphasize “that rejection of H0 goes along with believing that 

H0 is improbable” (p. 81). Specifically, they state: “When a procedure instructs us to reject a 

hypothesis, in the context of scientific induction, believing that the hypothesis deserves to be 

rejected, namely that it is no longer credible, is inevitable” (p. 81). In this way, it is possible that 

item PV1 in Study 2 inadvertently became a double-barrelled item if individuals perceived the first 

half of the item (i.e. ‘You have rejected the null hypothesis’) as implying a statement about the 

probability of the null (which would be in direct contention with PV9), whereas the second half of 

the item would be viewed as an accurate description of a significant finding (i.e. ‘that is, you have 

shown that there is a statistically significant difference between the sample means’). Despite avid 

recommendations from Falk and Greenbaum, unpacking this misconception, namely the illusion of 

probabilistic proof by contradiction, is not routine when teaching frequentists statistics. One trick to 

help learners overcome these implied misunderstandings of NHST might be to equip them with key 

statements like PV9 (i.e. p-values are statements about the probability of data, not the probability of 

a theory or hypothesis) which demonstrated ceiling effects in understanding. It should be noted 

however that even though attempts to simplify NHST inferences into accurate and understandable 

statements might help scaffold learners, too often such short-hands can themselves result in 

“interpretational overreach and predictable mistakes” (see Spence & Stanley, 2018). Therefore, 

blanket statements should ultimately serve only as supplemental support when correctly teaching the 

concept of statistical significance to learners. 

 Taken together, the current findings emphasize not only the value but the real potential that 

targeted training techniques, such as online learning platforms, may have on the effective 

improvement of statistical misunderstandings among researchers and learners. Perhaps more 

pertinently, our findings also challenge the notion that misconceptions are impervious to correction. 

While of course a limitation of the work is that it can only speak to individuals’ ability to recognize 

misconceptions at the level of stand-alone theoretical (and often abstract) statements, and not to 

whether such learning will transfer into practice, it is nevertheless important to first test whether 

claims about the “persistency and deepness of the misconceptions” (Sotos et al., 2007) are in fact 

resistant to change when explicitly tackled, and/or simply due to perhaps inadequate instruction on 

the limitations and common misinterpretations of p-values. To date, the tendency to accept that 

NHST misconceptions are deeply rooted in the minds of scientists appears to be largely a product of 
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surveys like the Oakes (1986) study, rather than evidence that instructional interventions are 

ineffective. While there is no doubt that baseline misconception rates continue to be problematic 

among students and researchers, this does not entail that improvements are impossible; in fact, it 

calls for increased work on what makes certain instructional interventions (like disrupting the null 

ritual) effective. All in all, a greater investment in teaching the correct use of p-values rather than 

only endorsing alternatives is warranted (Lakens, 2019), whereby pinpointing common 

misunderstandings may be a critical first step to circumvent the development of misconceptions in 

the first place.    
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APPENDIX A 

Scale Version 1 (Study 1) 

 

Task: Please read through the following statements, and mark each as True or False. Note that several or 

none of the statements may be correct. [Options: True / False / I don’t know]  

Given: Let’s suppose that a research article indicates a value of p = .001 in the results section (alpha = .05).  

Subset Item Fallacy Correct A 

1 

PV1 

You have absolutely proven your alternative hypothesis 

(that is, you have proven that there is a difference 

between the population means). 

Inverse probability F 

PV2 
You have found the probability of the null hypothesis 

being true (p = .001). 
Inverse probability F 

PV3 The null hypothesis has been shown to be false. Inverse probability F 

PV4 

The p-value gives the probability of obtaining a 

significant result whenever a given experiment is 

replicated. 

Replication F 

PV5 
The probability that the results of the given study are 

replicable is not equal to 1-p. 
Replication T 

2 

PV6 
The value p = .001 does not directly confirm that the 

effect size was large. 
Effect size T 

PV7 
Obtaining a statistically significant result implies that 

the effect detected is important. 

Clinical or practical 

significance 
F 

PV8 

The p-value of a statistical test is the probability of the 

observed result or a more extreme result, assuming the 

null hypothesis is true. 

Correct 

interpretation 
T 

3 

BF1 

When a Bayesian t-test yields a BF = 0.1, it is ten times 

more likely that there is no effect than that there is an 

effect. 

N/A F 

BF2  
A Bayes Factor that provides strong evidence for the 

null model does not mean the null hypothesis is true. 
N/A T 

BF3 
A Bayes Factor close to 1 (inconclusive evidence) 

means that the effect size is small. 
N/A F 

4 

CI1 

The specific 95% confidence interval observed in a 

study has a 95% chance of containing the true effect 

size. 

N/A F 

CI2 

If two 95% confidence intervals around the means 

overlap, then the difference between the two estimates is 

necessarily non-significant (alpha = .05). 

N/A F 

CI3 

An observed 95% confidence interval does not predict 

that 95% of the estimates from future studies will fall 

inside the observed interval. 

N/A T 

 

 



IMPROVING STATISTICAL INFERENCES 

88 
 

APPENDIX B 

Scale Version 2 (Study 1) 

Task: Please read through the following statements, and mark each as True or False. Note that several or 

none of the statements may be correct. [Options: True / False / I don’t know]  

Given: Let’s suppose that a research article indicates a value of p = .30 in the results section (alpha = .05).  

Subset Item Fallacy Correct A 

1 

PV1 

You have absolutely proven the null hypothesis (that is, 

you have proven that there is no difference between the 

population means). 

Inverse probability F 

PV2 
You have found the probability of the null hypothesis 

being true (p = .30). 
Inverse probability F 

PV3 The alternative hypothesis has been shown to be false. Inverse probability F 

PV4 

The p-value gives the probability of obtaining a 

significant result whenever a given experiment is 

replicated. 

Replication F 

PV5 
The probability that the results of the given study are 

replicable is not equal to 1-p. 
Replication T 

2 

PV6 
The value p = .30 does not directly confirm that the 

effect size was small. 
Effect size T 

PV7 
Obtaining a statistically non-significant result implies 

that the effect detected is unimportant. 

Clinical or practical 

significance 
F 

PV8 

The p-value of a statistical test is the probability of the 

observed result or a more extreme result, assuming the 

null hypothesis is true. 

Correct 

interpretation 
T 

3 

BF1 

When a Bayesian t-test yields a BF = 0.1, it is ten times 

more likely that there is no effect than that there is an 

effect. 

N/A F 

BF2  

A Bayes Factor that provides strong evidence for the 

alternative model does not mean the alternative 

hypothesis is true. 

N/A T 

BF3 
A Bayes Factor close to 1 (inconclusive evidence) 

means that the effect size is small. 
N/A F 

4 

CI1 

The specific 95% confidence interval observed in a 

study has a 5% chance of not containing the true effect 

size. 

N/A F 

CI2 

To draw the conclusion that the difference between the 

two estimates is non-significant (alpha = .05), it is 

necessary that the two 95% confidence intervals around 

the means do not overlap.
1 

N/A F 

CI3 

An observed 95% confidence interval does not predict 

that 95% of the estimates from future studies will fall 

inside the observed interval.
 

N/A T 

1
Note: Typo observed after implementation of the scale. While item correctly signals a misinterpretation about CIs, it is 

not identical to the misunderstanding measured in Version 1. To correspond, should be corrected to “To draw the 

conclusion that the difference between the two estimates is non-significant (alpha = .05), it is necessary that the two 

95% confidence intervals around the means overlap.” 
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APPENDIX C 

Scale Version 1 (Study 2) 

 

Task: Please read through the following statements, and mark each as True or False. Note that several or 

none of the statements may be correct. [Options: True / False / I don’t know]  

Given: Let’s suppose that a research article indicates a value of p = .001 in the results section (alpha = .05).  

Subset Item Fallacy Correct A 

1 

PV1 

You have rejected the null hypothesis (that is, you 

have shown that there is a statistically significant 

difference between the sample means). 

Inverse probability T 

PV2 
You have found the probability of the null hypothesis 

being true (p = .001). 
Inverse probability F 

PV3 The null hypothesis has been shown to be false. Inverse probability F 

PV9
1 

P-values (e.g., p = .001) are statements about the 

probability of data, not the probability of a theory or 

hypothesis. 

Inverse probability T 

PV4 

The p-value gives the probability of obtaining a 

significant result whenever a given experiment is 

replicated. 

Replication F 

PV5 
The probability that the results of the given study are 

replicable is not equal to 1-p. 
Replication T 

2 

PV6 
The value for p (e.g., p = .001) can occur with large as 

well as with small effect sizes. 
Effect size T 

PV7 
Obtaining a statistically significant result implies that 

the effect detected has important and practical impact. 

Clinical or practical 

significance 
F 

PV8 

The p-value of a statistical test is the probability of the 

observed result or a more extreme result, assuming the 

null hypothesis is true. 

Correct 

interpretation 
T 

1
Note: PV9 was a new item added in Study 2. 
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APPENDIX D 

Scale Version 2 (Study 2) 

 

Task: Please read through the following statements, and mark each as True or False. Note that several or 

none of the statements may be correct. [Options: True / False / I don’t know]  

Given: Let’s suppose that a research article indicates a value of p = .30 in the results section (alpha = .05).  

Subset Item Fallacy Correct A 

1 

PV1 

You have not rejected the null hypothesis (that is, you 

have shown that there is a statistically non-significant 

difference between the sample means). 

Inverse probability T 

PV2 
You have found the probability of the null hypothesis 

being true (p = .30). 
Inverse probability F 

PV3 The alternative hypothesis has been shown to be false. Inverse probability F 

PV9
1 

P-values (e.g., p = .30) are statements about the 

probability of a theory or hypothesis, not the 

probability of data. 

Inverse probability F 

PV4 

The p-value does not give the probability of obtaining 

a significant result whenever a given experiment is 

replicated. 

Replication T 

PV5 
The probability that the results of the given study are 

replicable is equal to 1-p. 
Replication F 

2 

PV6 
A given value for p (e.g., p = .30) can occur with small 

as well as large effect sizes. 
Effect size T 

PV7 

Obtaining a statistically non-significant result implies 

that the effect detected has no important and practical 

impact. 

Clinical or practical 

significance 
F 

PV8 

The p-value of a statistical test is the probability of the 

observed result or a more extreme result, assuming the 

null hypothesis is true. 

Correct 

interpretation 
T 

1
Note: PV9 was a new item added in Study 2. 
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APPENDIX E 

Response Latencies (Study 1) 

Response latencies (Study 1). Lags in time between sets of assessment time points. Latencies are reported for 

immediate learning, i.e. from pretest (pre) to first post-test (post1); for retained learning, i.e. from first post-test 

(post1) and second post-test (post2); and for total time of completion, i.e. from pre to second post2. 

Distribution properties (i.e. skewness and kurtosis) and descriptives (i.e. M, SD, Median, median absolute 

deviation (MAD), Min, Max) are provided in minutes, hours, days, and weeks. 

 

Immediate learning 

Latency  

(pre to post1) 
n 

M hrs 

[days] 

SD hrs 

[days] 

Med hrs 
a 

[days] 

Min hrs 

[mins] 

Max hrs 

[weeks] 
Skew.

b 
Kurt.

c 

PQ1 to PQ2 712 
56.97 

[2.37] 

63.52 

[2.65] 

26.45 

[1.10] 

0.02 

[1.20] 

252.48 

[1.50] 
1.236 0.642 

PQ1 to PQ3 478 
258.00 

[10.75] 

193.01 

[8.04] 

224.19 

[9.34] 

0.02 

[1.20] 

866.72 

[5.16] 
0.857 0.368 

PQ1 to PQ4 325 
545.72 

[22.74] 

324.04 

[13.50] 

531.92 

[22.16] 

0.02 

[1.20] 

1,507.62 

[8.97] 
0.471 -0.077 

PQ1 to PQ5 271 
719.58 

[29.98] 

387.63 

[16.15] 

706.17 

[29.42] 

0.10 

[6.00] 

1,897..22 

[11.29] 
0.291 -0.027 

Retained learning 

Latency  

(post1 to post2) 
n 

M hrs 

[days] 

SD hrs 

[days] 

Med hrs 

[days] 

Min hrs 

[mins] 

Max hrs 

[weeks] 
Skew. Kurt. 

PQ2 to PQ6 207 
919.94 

[38.33] 

436.25 

[18.18] 

1,044.95 

[43.54] 

48.95 

[2,937.00] 

1,837.17 

[10.94] 
-0.408 -0.746 

PQ3 to PQ6 206 
758.85 

[31.62] 

379.53 

[15.81] 

882.32 

[36.76] 

1.03 

[61.80] 

1,630.70 

[9.71] 
-0.336 -0.661 

PQ4 to PQ6 216 
500.38 

[20.85] 

296.71 

[12.36] 

530.89 

[22.12] 

0.23 

[13.80] 

1,367.75 

[8.14] 
0.158 -0.324 

PQ5 to PQ6 225 
348.87 

[14.54] 

245.57 

[10.23] 

352.27 

[14.68] 

0.28 

[16.80] 

1,082.88 

[6.45] 
0.520 -0.143 

Total time of completion 

Latency  

(pre to post2) 
n 

M hrs 

[days] 

SD hrs 

[days] 

Med hrs 

[days] 

Min hrs 

[mins] 

Max hrs 

[weeks] 
Skew. Kurt. 

PQ1 to PQ6 162 
1,040.09 

[43.34] 

441.29 

[18.39] 

1,150.23 

[47.93] 

50.78 

[3,046.80] 

2,004.25 

[11.93] 
-0.500 -0.505 

 

a. Median used as measure of central tendency (due to skewed latency distributions). 

b. Skewness; range is considered acceptable between -2 and +2 (George & Mallery, 2010). 

c. Kurtosis; range is considered acceptable between -2 and +2 (George & Mallery, 2010). 
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APPENDIX F 

Response Latencies (Study 2) 

Response latencies (Study 2). Lags in time between sets of assessment time points. Latencies are reported for 

immediate learning, i.e. from pretest (pre) to first post-test (post1); for retained learning, i.e. from first post-test 

(post1) and second post-test (post2); and for total time of completion, i.e. from pre to post2. Distribution 

properties (i.e. skewness and kurtosis) and descriptives (i.e. M, SD, Median, median absolute deviation (MAD), 

Min, Max) are provided in minutes, hours, days, and weeks. 

 

Immediate learning 

Latency  

(pre to post1) 
n 

M hrs 

[days] 

SD hrs 

[days] 

Med hrs 
a 

[days] 

Min hrs 

[mins] 

Max hrs 

[weeks] 
Skew.

b 
Kurt.

c 

PQ1 to PQ2 374 
69.41 

[2.89] 

76.50 

[3.19] 

41.81 

[1.74] 

0.00 

[0.00] 

300.84 

[1.79] 
1.233 0.684 

PQ1 to PQ3 127 
563.53 

[23.48] 

293.69 

[12.24] 

551.08 

[22.96] 

15.97 

[958.20] 

1,360.62 

[8.10] 
0.357 -0.178 

Retained learning 

Latency  

(post1 to post2) 
n 

M hrs 

[days] 

SD hrs 

[days] 

Med hrs 

[days] 

Min hrs 

[mins] 

Max hrs 

[weeks] 
Skew. Kurt. 

PQ2 to PQ4 59 
894.64 

[37.28] 

465.32 

[19.39] 

999.79 

[41.66] 

0.14 

[8.40] 

1,995.26 

[11.88] 
-0.074 -0.723 

PQ3 to PQ4 71 
454.78 

[18.95] 

301.11 

[12.55] 

429.17 

[17.88] 

13.61 

[816.60] 

1,277.81 

[7.61] 
-0.518 -0.389 

Total time of completion 

Latency  

(pre to post2) 
n 

M hrs 

[days] 

SD hrs 

[days] 

Med hrs 

[days] 

Min hrs 

[mins] 

Max hrs 

[weeks] 
Skew. Kurt. 

PQ1 to PQ4 55 
1,021.15 

[42.55] 

474.08 

[19.75] 

1,123.94 

[46.83] 

34.82 

[2,089.20] 

1,998.17 

[11.89] 
-0.159 -0.834 

 

a. Median used as measure of central tendency (due to skewed latency distributions). 

b. Skewness; range is considered acceptable between -2 and +2 (George & Mallery, 2010). 

c. Kurtosis; range is considered acceptable between -2 and +2 (George & Mallery, 2010). 
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Abstract 

The current study is a Registered Report (RR) for a large-scale re-analysis of the Social 

Sciences Replication Project (SSRP; Camerer et al., 2018) replication studies, which evaluated 

the replicability of 21 experiments published in Nature and Science between 2010 and 2015. Our 

aim is to first apply a five-repeated 10-fold cross-validation technique to yield indices of model 

fit and error estimates (i.e. average R-squared, RMSE, MAE), which will then be correlated with 

index of replication success (i.e. statistical significance indicator). We will also run an 

exploratory random forest prediction model of replicability using obtained CV indices and 

observed replicability correlates (i.e. p-values, effect size, and sample size). As such, the 

overarching goal of the current project is to investigate whether cross-validation indices, as 

measures of how well the results of a statistical analysis will generalize to independent data, can 

serve as predictors of study replicability and/or provide corroborating evidence for the link 

between effect strength, model generalizability, and replicability. The RR submission is 

exploratory in nature, and consists of a registration prior to re-analysis of the data (osf project: 

https://osf.io/m4y3w/). 
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Exploring indices of repeated k-fold cross-validation  

as predictors of replicability 

 

 

Introduction 

 

Replicability and Credibility of Scientific Findings 

Replicability of scientific findings is not only considered a defining feature or core 

principle of science, but a crucial component underlying scientific progress (e.g., Lakatos, 1970; 

Meehl, 1990; Ioannidis, 2005; McNutt, 2014; Open Science Collaboration (OSC), 2015; 

Camerer et al., 2018). When it comes to the accumulation of credible scientific evidence, 

replication serves as an empirical self-correcting mechanism to test and falsify theory (Popper, 

1959; LeBel, Berger, Campbell, & Loving, 2017), allowing for the unfolding body of scientific 

knowledge to align more readily with scientific truth. While methodologically similar (or direct) 

replications can speak to the existence and/or stability of a phenomenon, methodologically 

dissimilar (or conceptual) replications attempt to “investigate the validity and generalizability of 

psychological phenomena” (LeBel et al., 2017, p. 255). As such, it follows that establishing trust 

and confidence in observed findings does not hinge single-handedly upon observing whether a 

replication attempt of some initial finding ‘fails’ or ‘succeeds’, but also upon importantly 

understanding the nature of replicability itself, insofar as replication rates, predictors, and 

indicators – an area of research which despite marked concern (Ioannidis, 2005; Prinz; Schlange, 

& Asadullah, 2011; Begley & Ellis, 2012; Pashler & Wagenmakers, 2012; McNutt, 2014) has to 

date yielded limited evidence (OSC, 2015). 
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Estimating and Evaluating Replication Success 

Efforts to estimate the replicability of scientific findings have risen considerably within 

the field of psychology in recent years. While such attempts were initially more focussed on 

trying to formally quantify, or theoretically estimate, the probability that a given study will 

successfully replicate (e.g., Greenwald, Gonzalez, Harris, & Guthrie, 1996; Sohn, 1998; Posavac, 

2002; Macdonald, 2003; Killeen, 2005; Froman & Shneyderman, 2004; Gorroochurn, Hodge, 

Heiman, Durner, & Greenberg, 2007; Miller & Schwarz, 2011), more recent undertakings have 

involved collective large-scale efforts to directly and systematically test the extent to which a 

sample of documented effects within the literature can be successfully replicated in practice. 

These include the Many Labs 1, 2, and 3 replication projects (Klein et al., 2014, 2018; Ebersole 

et al., 2016), the Reproducibility Project: Psychology (RPP; OSC, 2015), the Experimental 

Economics Replication Project (EERP; Camerer et al., 2016), and most recently the Social 

Sciences Replication Project (SSRP; Camerer et al., 2018).  

In spite of such efforts, researchers have yet to arrive at a consensus as to which single 

measure or set of criteria should serve as a universal standard for evaluating replication success 

(Gelman & Stern, 2006; Cumming, 2008; Verhagen & Wagenmakers, 2014; OSC, 2015; 

Simonsohn, 2015; Camerer et al., 2018). Most commonly, replication success has been 

characterized as a binary index: detecting an effect that is both significant and in the same 

direction as the original effect, sometimes referred to as the “statistical significance criterion” 

(Camerer et al., 2018, p. 2). Effect size measures (e.g., relative effect size of replication to 

original effect) have also been used as complementary continuous measures to assess degree of 

replicability. Beyond these indices, the RPP, EERP and SSRP projects explored additional 

measures as potential indicators of replication success, including meta-analytic estimates 

(combining replication with original effects), use 95% confidence intervals and 95% prediction 

intervals, small telescopes approach, Bayes factors, Bayesian mixture models, peer beliefs (i.e. 

prediction markets), and subjective assessments of replicability success by the replication teams 

(for details, see OSC, 2015 and Camerer et al., 2016, 2018). Overall, no one indicator in any of 

the projects was found to systematically reflect or sufficiently capture replication success; nor do 

authors suggest however that the list of potential indicators investigated is exhaustive.  
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Similarly, when it comes to agreeing upon a shared definition of replication probability, 

and in turn a formal method to mathematically approximate replication probabilities from 

experimental data, sharp disagreements continue to persist among researchers (Miller & 

Schwarz, 2011). Despite nontrivial criticisms (Cumming, 2005; Doros & Geier, 2005; 

Macdonald, 2005; Wagenmakers & Grünwald, 2006; Iverson, Lee, Zhang, & Wagenmakers, 

2009; Iverson, Lee, & Wagenmakers, 2009, 2010; Iverson, Wagenmakers, & Lee, 2010; Maraun 

& Gabriel, 2010), Peter Killeen’s prep (2005) and prep,aug (2007) methods are still to date arguably 

among – if not the most – prominent of approaches to approximate replication probabilities. 

Moreover, while alternative methods have been proposed (e.g., Iverson, Wagenmakers, & Lee, 

2010), lack of general consensus or adequate formal evaluation of such methods, in combination 

with sheer technical complexity, almost certainly limits the reception and impact of these 

potential improvements on estimation methods of replicability (Miller & Schwarz, 2011).  

Correlates of Replicability: Strength of Initial Evidence 

One note-worthy contribution of the RPP, EERP, and SSRP projects was the observation 

that the strength of the initial finding was found to be more consistently related to, or predictive 

of, a study’s propensity to successfully replicate compared to other indicators, such as 

characteristics of the research implementation (e.g., quality) or research team (e.g., expertise) 

(OSC, 2015). Specifically, across all three replication projects (RPP, EERP, SSRP), original p-

values correlated negatively with replication success (Spearman correlation coefficients: r = -

.327, r = -.572, r = -.405, resp.). Moreover, the RPP found replication success to correlate 

positively with both original effect size (Spearman r = .304), as well as replication effect size 

(Spearman r = .731), whereas EERP and SSRP reported positive correlations between relative 

effect size and replicability (Spearman rs = .846 and .842, resp.). This was exemplified in the 

SSRP results which found that mean relative effect size for the set of effects that replicated was 

74.5%, whereas for non-replicating effects it was 0.3%; in other words, “for the non-replicating 

effects, the mean effect sizes were approximately zero” (Camerer et al., 2018, p. 2). Finally, 

while the EERP found a positive relationship between original N and tendency to successfully 

replicate (Spearman r = .627), for the SSRP studies, neither original number of observations, nor 

number of participants, positively correlated (Spearman rs = -.292 and -.057, resp.). Taken 

together, results suggest that certain features of the original study, such as strength of initial 
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evidence (e.g., p-value significance and effect size), might serve as important determinants of 

replicability.  

While it goes without saying that this finding affords valuable insight into the nature of 

replicability, it should not be wholly surprising, especially when considering the nature of effect 

sizes: “An ES is a measure of the strength of a phenomenon which estimates the magnitude of a 

relationship” (Kühberger, Fritz, & Scherndl, 2014, p. 1). With this follows the logical 

assumption that the greater the effect – or the stronger the phenomenon in question – the greater 

the likelihood that it be detected across a set of investigations. In fact, this assumption is readily 

verified in the context of meta-analysis, in which “the effect size and number of observed [H0] 

rejections are positively related” (Francis, 2013, p. 5). In other words, assuming a fixed sample 

size (and absence of p-hacking and publication bias), the stronger the effect under investigation, 

the greater the proportion of studies in which a significant effect will be detected. Moreover, the 

concepts of meta-analysis and replicability are inextricably linked, given that a meta-analysis 

should simply represent the resulting distribution of estimates obtained across all replication 

attempts, for some given research question or investigated phenomenon.  

Taking this one step further, one can appeal to the three-layer model of the research 

process, a “standard model for the analysis of replication probability” (Miller & Schwarz, 2011, 

p. 338) used also in meta-analyses (e.g., Wilson & Lipsey, 2001) to quantify sources of variance 

for a given distribution of observed experimental ESs. The three-layer model identifies three 

sources of variance, each reflecting one ‘layer’ or step in the overall research process, namely: 

the research context, experimental implementation, and data collection steps. Each step 

introduces, respectively, a source of unique variance, notably the variance in true effect sizes 

(Ϭ
2

T), realization variance (Ϭ
2

R), and sampling error (Ϭ
2

E). Broadly speaking, the better the 

approximation of these individual terms, the better the approximation of the resulting overall 

distribution O of observed effects tested (for a detailed overview, see Miller & Schwarz, 2011): 

O = T + R + E .      (1) 

While we will not go into great detail, there are two points here worth noting. The first is 

that replicability – or at least the conceptual model of replication probabilities – appears to be, 

once again, decidedly contingent upon the strength of the true underlying effect. In other words, 
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“an individual researcher’s probability of a positive effect (e.g., across 1,000 replication attempts 

for the given experiment) depends on the size of the true effect that the researcher selected for 

study in the first place, so different researchers will have different individual probabilities of 

observing a positive effect” (Miller & Schwarz, 2011, p. 344).  

The second is the concept of ‘realization variance’, sometimes referred to as ‘replication 

jitter’, which is conceptualized as the net perturbation or variation associated with an 

experiment’s implementation across replication attempts (Killeen, 2005, 2007; Miller & 

Schwarz, 2011). This jitter operates specifically at the level of practical design choices, and can 

range from trivial or arbitrary differences in experimental setup to intentional methodological 

deviations from the original design – arguably the layer of variation characterizing where along 

the continuum from direct to conceptual a replication attempt lies.  

All things considered, given a large true population effect size, there is good reason to 

expect that it be met with a relatively greater propensity to replicate, than that of a smaller effect. 

Moreover, theoretically, the stronger the phenomenon in question, the more we would expect it 

to be more robust against variations in methodological implementation (i.e. replication jitter). 

With that said, in practice, a myriad of other factors will influence the extent to which conceptual 

variations in design will yield similar effects; nonetheless, it is important to appreciate these 

different sources of variance, and how they interact. 

Approximating Replication Probabilities 

What is interesting to observe is that there exists an asymmetry when it comes to 

observed correlates of replicability (e.g., p-values or ESs) and approximating replicability from 

that initial data themselves. While strength of original effect appears to be predictive of 

replication success (i.e. RPP, EERP, SSRP findings), formal attempts to quantify replication 

probability, as estimated from initial experimental findings, has been often met with the 

following conclusion: “the data from an initial experiment do not generally provide exact 

information about the likelihood of a statistically significant replication of that particular 

experiment” (Miller & Schwarz, 2011, p. 348). In fact, Miller and Schwarz (2011) go so far as to 

characterize attempts to accurately estimate replication probabilities as “generally unattainable” 

(p. 337) and “essentially impossible” (p. 355); in sum, stating that “attempting to determine the 
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individual replication probability associated with a particular new effect seems to be a waste of 

time, and claiming to have done so is naïve” (p. 357). 

The issue lies in the assumption that strength of initial evidence is necessarily an accurate 

proxy of strength of true effect. As Cumming and Maillardet (2006) astutely point out, even in 

the (unrealistic) case where the variation between two investigations of the same effect stems 

only from sampling differences (i.e. population and experimental characteristics are held fixed), 

the extent to which the original and replication estimates (e.g., means) will agree (or disagree) 

rests critically on two sources of variance: variation of original estimate around the true mean, 

and variation of the replication estimate around the true mean. The authors formally define this 

agreement between estimates in terms of the capture percentage (CP), “the percentage of 

replication means that will fall within a given original CI” (p. 217). CPs, as such, are a direct 

function of the original estimate, or more specifically how much this estimate deviates from the 

true population value. Put simply, the extent to which a replication will be deemed successful 

will depend directly upon how accurately the initial study approximated the population 

parameter in the first place. Because, however, in real-life, population parameters are unknown, 

it would be erroneous in practice to take original estimates at face value as being accurate 

estimates of the true effect against which to judge the replication attempts.  

Nevertheless, across a set of studies (as in the case of the RPP, EERP, SSRP), we would 

still expect to observe a general correlation between studies’ effect strength and the propensity to 

replicate. Despite initial study information being insufficient or inadequate at approximating 

replication accurately when taken in isolation, general features of a study appear to be more 

indicative of replicability rates as observed across a distribution of study effects. To this end, we 

propose to further the investigation of possible determinants of replication success, building 

directly upon the work of Camerer et al. (2018). Namely, when it comes to study characteristics 

that might generally forecast the likelihood of replication success, developing or appealing to 

additional measures of effect strength should contribute to our cumulative knowledge and 

understanding on how strength of evidence relates to the concept of replicability. As such, we 

plan to adopt a resampling technique, namely the repeated k-fold cross-validation approach, to 

yield a complementary index of model strength and generalizability for the set of N = 21 

replication studies in the SSRP data set.  
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Here it is important to note, for clarity, that while the rationale above for investigating 

further measures of effect strength did hinge on the idea of initial strength of evidence, as well as 

correlates between original study features and replication success, the current project focuses 

rather on characteristics of the replication studies when investigating replicability. As 

investigations of replicability deal ultimately with the consistency between observed effects, the 

choice of which estimate (original vs. replication) will constitute the ‘initial’ evidence is really 

just a matter of determining the point of reference to judge replication success against. For our 

study, this initial evidence is captured by the model generalizability indices generated from the 

replication samples, described in further detail below.         

Cross-Validation as Method of Model Generalizability 

Cross-validation, which traditionally entails a single split of the data into mutually 

exclusive training and test sets, involves running the model that was built on the training set on 

the remaining test set data, and as such is a statistical technique which provides an index of 

model generalizability. Here, ‘generalizability’ captures the model’s predictive power or validity, 

i.e. a model’s theoretical accuracy or effectiveness in predicting new or unseen data. In other 

words, cross-validation as a model validation technique should provide an index on how the 

statistical model will generalize to and perform within an independent data set (for overview of 

resampling techniques, see e.g., Kohavi, 1995; Beleites et al., 2005; Molinaro, Simon, & 

Pfeiffer, 2005). 

It should then follow logically to bridge the concepts of model generalizability and 

replicability. That is: The stronger, theoretically, the model prediction accuracy, the smaller the 

generalization (or out-of-sample) error, and in turn the higher the likelihood that such a model 

should theoretically hold or fit to an independent sample of data. While sound in rationale, it 

should be prefaced that while there exists replication jitter from one replication attempt to 

another, in cross-validation subsets (e.g., training vs. test), this realization variance is necessarily 

stable across subsamples. This is because ultimately all subsamples are derived from the same 

overarching sample and subject to the same methodological considerations. As such, variation in 

population characteristics and practical design decisions (which each introduce their own source 

of variance), would not be factored into the estimates of model accuracy and generalization error. 

In fact, it is likely that cross-validation analyses, like bootstrapping, “capitalize during 
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resampling on the commonalities inherent in a given sample in hand” (Thompson, 1995, p. 92), 

yielding inflated estimates of model fit and, in turn, inflated estimates of generalizability and/or 

replicability. 

For these reasons, we are particularly interested in also investigating the extent to which 

some of the theoretical assumptions underlying cross-validation estimates apply in real practice. 

Specifically, can model validity estimates, which are assessed within a single sample (and are 

thus reflective of some set of specific sample and design characteristics), in fact generalize to 

future independent samples? And if so, are such estimates correlated with replication success?  

Before outlining our methods, it should made clear that our aim is not to suggest by any 

means that cross-validation be offered as a substitute to independent replication attempts. In fact, 

we suspect that generalization of a model beyond the sample of data upon which it was built may 

be too idealistic a concept when applied in practice. Nevertheless, an index of model strength or 

generalizability, while perhaps limited, may still provide a general measure of strength of study 

evidence, and in turn positively correlate with replication success, as in the case of 

aforementioned observed effect size and p-value significance correlates. Therefore, testing this 

prediction may not only provide corroborating evidence for the link between effect strength and 

replicability, but also test the strengths or limitations of what can be inferred from cross-

validation techniques, namely the five-repeated 10-fold cross-validation approach.  

 

Methods 

Brief Study Overview 

The current study plans to carry out a set of further analyses on a pre-existing data set, 

namely borrowing from the Social Sciences Replication Project (SSRP; Camerer et al., 2018), 

which sought to evaluate the replicability of a subset of social science experiments, published in 

Nature and Science between 2010 and 2015. The SSRP data set consists of N = 21 open source 

replication studies, with accompanying data sets and analysis scripts for the main analyses 

investigated (https://osf.io/pfdyw/). In order to evaluate rates of replicability, authors conducted a 

set of high-powered replication studies, and made use of two primary replication criteria, as well 

https://osf.io/pfdyw/
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as a set of six complementary replicability indicators, to assess success of replicated effects as 

compared to originally reported effects. Primary criterion for replication included a binary 

measure of success (statistical significance criterion, i.e. detecting a significant effect in the same 

direction as the original effect, using the same statistical test) as well as a continuous measure of 

the degree of replication (i.e. relative effect size of the replication).  

For our project, we specifically aim to first re-analyze the data applying a five-repeated 

10-fold cross-validation technique to yield indices of model fit and error estimates (i.e. average 

R-squared, root-mean-squared error, RMSE, and mean absolute error, MAE) for each of the 

individual replication data sets. This specific cross-validation approach was selected based on 

past research showing that, across different resampling techniques (e.g., hold-out, leave-one-out 

cross-validation (LOOCV), 0.632 bootstrap), repeated 10-fold cross-validation tends to yield the 

best trade-off between bias and variance (e.g., Breiman & Spector, 1992; Molinaro, Simon, & 

Pfeiffer, 2005; Kuhn & Johnson, 2013). In other words, both the accuracy of estimation 

(contingent on training set), as well as the precision of model performance (run on test set), are 

optimally maximized; i.e. bias (the difference between the average prediction of our model and 

the actual value) and variance (variance of a model prediction for a given data point) are 

respectively minimized. This is in part due to the fact that every observation across the full 

sample contributes with the same weight to both the training and test sets, and thus contributes 

equally to the error estimation (Beleites et al., 2005). In essence, k-fold CV approximates the 

prediction error as would be obtained via LOOCV, without sacrificing precision for accuracy, 

and at a much lower computational cost, especially in the case of large samples. Moreover, 

simulated data has shown that repeated resamplings (in our case, averaging across five 

repetitions) further reduces bias and variance (Molinaro et al., 2005). Lastly, it should be noted 

that performance of repeated k-fold CV, like most resampling techniques, decreases with lower n 

(see e.g., Kim, 2009). Details of the five-repeated 10-fold CV methodology are included in 

Planned Analyses section below.  

Next, these CV indices will be correlated with the binary indicator of replication success 

as specified in the SSRP study (i.e. statistical significance indicator) as a descriptive analysis. 

We will then run an exploratory random forest prediction model of replicability using obtained 

CV indices (i.e. average R-squared, RMSE, MAE) and aforementioned replicability correlates 
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(i.e. p-values, effect size, and sample size): In other words, while the SSRP study investigated 

replicability predictors independently, we will attempt to investigate how combinations of 

indicators might serve to jointly predict rates of replicability, assessing alongside the relative 

weights of their unique contributions using relative variable importance measures (Strobl, 

Boulesteix, Kneib, Augustin, & Zeileis, 2008). As such, the overarching goal of the current 

project is to investigate whether cross-validation indices, as measures of how well the results of a 

statistical analysis will generalize to independent data, can serve as predictors of study 

replicability (i.e. using single-study properties to estimate a study’s likelihood to replicate); or 

perhaps more realistically as corroborating evidence, alongside other indicators (e.g., p-values, 

magnitude of effect), for the link between effect strength and replicability. In this sense, the RR 

submission is exploratory in nature, and consists of a registration prior to re-analysis of the data 

(all project information and materials will be made available via osf: https://osf.io/m4y3w/). 

Sample  

As stated above, the current study borrows from the pre-existing SSRP data set (Camerer 

et al., 2018), and thus consists of N = 21 replication data sets. No additional data collection is 

involved in the sampling plan. Regarding inclusion and exclusion subject criteria, incomplete or 

missing data, and/or outliers at the study level, these criteria were already pre-specified by each 

of the replication teams and integrated into the analysis; as such, the final data sets provided 

(which will be used for our re-analysis, with no additional edits) have already accounted for 

necessary exclusions. As each of the N = 21 study sets possess unique study characteristics, a 

breakdown of these individual sample characteristics is provided below (for sample sizes and 

power, see Table 1; for study effect sizes and statistical tests run, see Table 2).  

It should be noted that the SSRP study ran two stages of replications; this was done to 

account for potential degrees of inflation of the original reported effect sizes – a factor that the 

initial Reproducibility Project (OSC, 2015) failed to account for. Specifically, Stage 1 replication 

samples were computed at 90% power to detect an effect 75% the size of the original effect, 

whereas Stage 2 sample sizes were determined based upon 90% power to detect an effect 50% of 

the original effect size. In cases where there was failure to replicate at Stage 1, Stage 2 was 

further administered. This was done to ensure that failure to replicate based on the statistical 

significance criterion was not due to insufficient power at Stage 1 to detect a smaller effect. On 

https://osf.io/m4y3w/
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average, Stage 1 and Stage 2 replication samples were approximately three times and six times 

larger than original studies, respectively; all in all, five times larger on average. The current 

study plans to always make use of the larger replication sample sizes when given both options. In 

other words, in cases where Stage 2 was carried out, we will re-analyze the data on this larger 

data set; for remaining cases, Stage 1 samples will be use (see Table 1, bolded n values). The 

rationale here is so that we can directly compare our results with the final SSRP results.  

 

Table 1  

Replication study sample sizes. Breakdown of N = 21 replication study sample characteristics: 

original n0, replication samples n1 (Stage 1) and n2 (Stage 2), and accompanying a priori 

power. 

Studies  

(N = 21) 

Original 

Study 

 

 

Replication Study 

Stage 1  Stage 2 

n0
a 

 n1
a 

power
b 

 n2
a 

power
c 

Ackerman et al. (2010) 54 (54)  259 (259) .901  599 (599) .904 

Aviezer et al. (2012) 15 (15)  14 (14) .930    

Balafoutas & Sutter (2012) 72 (72)  243 (243) .898    

Derex et al. (2013) 51 (366)  65 (482) .902    

Duncan et al. (2012) 15 (15)  36 (36) .909  92 (92) .906 

Gervais & Norenzayan (2012) 57 (57)  224 (224) .902  531 (531) .910 

Gneezy et al. (2014) 178 (178)  407 (407) .922    

Hauser et al. (2014) 40 (200)  22 (110) .919    

Janssen et al. (2010) 63 (105)  42 (70) .902    

Karpicke & Blunt (2011) 40 (40)  49 (49) .922    

Kidd & Castano (2013) 86 (86)  285 (285) .923  714 (714) .943 

Kovacs et al. (2010) 24 (24)  95 (95) .923    
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Lee & Schwarz (2010) 40 (40)  123 (123) .904  286 (286) .901 

Morewedge et al. (2010) 32 (32)  89 (89) .904    

Nishi et al. (2015) 200 (366)  480 (792) .912    

Pyc & Rawson (2010) 36 (36)  132 (132) .904  306 (306) .901 

Ramirez & Beilock (2011) 20 (20)  26 (52) .929  79 (131) .949 

Rand et al. (2012) 343 (343)  1014 (1014) .920  2136 (2136) .901 

Shah et al. (2012) 56 (56)  278 (278) .916  619 (619) .908 

Sparrow et al. (2011) 69 (69)  104 (104) .820  234 (234) .807
d 

Wilson et al. (2014) 30 (30)  39 (39) .930    

Note. Values borrowed directly from Supplementary Tables 3 & 4 (p. 53-54) of the SSRP Supplementary 

Information.pdf (see https://osf.io/sva2k/).
 

a
n0, n1, and n2 = number of observations (number of individuals provided in parentheses). 

b
Stage 1 power = statistical power to detect 75% of the original effect size r. 

c
Stage 2 power = statistical power to detect 50% of the original effect size r. 

d
Sparrow et al. (2011) is the one case where power is not approx. 90%; power-level was re-computed 

post-hoc after original authors noted that original n0 was misreported as n = 46, rather than n = 69 (see 

details in Replication Report https://osf.io/84fyw/).  

 

Table 2 

Main replication analyses, effect sizes and p-values. Breakdown of N = 21 replication study 

effect sizes (with accompanying p-values): original (r), replication at Stage 1 or 2 (r’), and 

relative replication effect (r’rel). Values are based on respective statistical tests specified. 

Studies  

(N = 21) 

Original 

Study 

 

 

Replication  

Study 

r 
a
 

(p-value) 

 r' 
b
 

(p-value) 

r'rel 
c 

Statistical test 

Ackerman et al. (2010) .270 

(4.86e-02) 
 

.063 

(1.25e-01) 

0.232 Independent-samples t-test 

Aviezer et al. (2012) .961 

(3.10e-09) 
 

.829 

(1.34e-04) 

0.862 Paired-samples t-test 

https://osf.io/sva2k/
https://osf.io/84fyw/
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Balafoutas & Sutter 

(2012) 

.278 

(1.78e-02) 
 

.146 

(2.23e-02) 

0.527 ꭕ
2 

test 

Derex et al. (2013) .525 

(5.41e-05) 
 

.361 

(2.96e-03) 

0.687 ꭕ
2 

test 

Duncan et al. (2012) .674 

(4.23e-03) 
 

.436 

(1.22e-05) 

0.648 Paired-samples t-test 

Gervais & Norenzayan 

(2012) 

.289 

(2.92e-02) 
 

-.035 

(4.15e-01) 

-0.123 Independent-samples t-test 

Gneezy et al. (2014) .223 

(2.70e-03) 
 

.182 

(2.10e-04) 

0.818 z-test of proportions 

Hauser et al. (2014) .816 

(1.43e-10) 
 

.832 

(1.58e-06) 

1.020 t-test of regression coefficients 

Janssen et al. (2010) .631 

(8.36e-09) 
 

.344 

(2.52e-02) 

0.545 Mann-Whitney test 

Karpicke & Blunt (2011) .602 

(3.93e-05) 
 

.384 

(5.89e-03) 

0.638 Independent-samples t-test 

Kidd & Castano (2013) .269 

(1.33e-02) 
 

-.027 

(4.68e-01) 

-0.101 2-way btw-subjects ANOVA 

Kovacs et al. (2010) .450 

(2.38e-02) 
 

.586 

(3.50e-10) 

1.301 Paired-samples t-test 

Lee & Schwarz (2010) .388 

(1.33e-02) 
 

-.046 

(4.36e-01) 

-0.120 2-way mixed ANOVA 

Morewedge et al. (2010) .453 

(9.21e-03) 
 

.355 

(6.49e-04) 

0.783 Independent-samples t-test 

Nishi et al. (2015) .201 

(4.40e-03) 
 

.116 

(1.09e-02) 

0.579 t-test of regression coefficient 

Pyc & Rawson (2010) .377 

(2.36e-02) 
 

.150 

(8.71e-03) 

0.398 Independent-samples t-test 

Ramirez & Beilock 

(2011) 

.793 

(3.02e-05) 
 

-.098 

(3.94e-01) 

-0.124 2-way mixed ANOVA 
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Rand et al. (2012) .141 

(8.87e-03) 
 

.026 

(2.34e-01) 

0.183 z-test of regression coefficient 

Shah et al. (2012) .267 

(4.63e-02) 
 

-.015 

(7.10e-01) 

-0.056 1-way btw-subjects ANOVA 

Sparrow et al. (2011) .368 

(1.74e-03) 
 

.050 

(4.49e-01) 

0.135 Paired-samples t-test 

Wilson et al. (2014) .674 

(4.41e-05) 
 

.594 

(6.80e-05) 

0.880 Independent-samples t-test 

Note. Values borrowed directly from Supplementary Tables 3 & 4 (p. 53-54) of the SSRP Supplementary 

Information.pdf (see https://osf.io/sva2k/), as well D3 – ReplicationResults.csv file (see 

https://osf.io/abu7k/). 
a
 r = original standardized effect sizes (p-values in parentheses). 

b
 r’ = replication standardized effect sizes after Stage 2; Stage 1 values are reported for those studies that 

did not proceed to Stage 2 (respective p-values in parentheses). 
c
 r’rel = relative standardized effect size of replication effect size r’; i.e. after Stage 1 and 2 respectively. 

  

 

Sample Size Rationale 

The current project involves analyses i. at the individual study level (i.e. repeated 10-fold 

cross-validation measures), as well as ii. analyses across the full set of N = 21 studies (i.e., 

correlations with replicability, and forest prediction model). As such, both levels of analysis are 

considered with regard to sample size rationale. 

Sample size rationale for analyses at individual study level. First, each individual 

replication study will be re-analyzed in accordance to the main effect under investigation as 

specified in the original studies (for breakdown of 21 main hypotheses, see Supplementary Table 

1, p. 48 of ‘SSRP – Supplementary Information.pdf’ https://osf.io/sva2k/). The key difference 

is that each main analysis will be re-analyzed using a repeated 10-fold cross-validation approach 

(repeated five times), yielding model fit and error estimate indices (i.e. average R-squared, 

RMSE, and MAE). As such, each study should be sufficiently powered (i.e. at 90%) to run the 

main analysis that relates to the specific research question of the respective original study. As 

listed above, the 90% statistical a priori power criterion was met in the SSRP replication 

attempts (see Table 1), and pre-specified as a function of each study’s main statistical analysis 

(see Table 2), under Planned Analyses). It should be noted that there was one exception: in the 

case of the Sparrow et al. (2011) replication sample, power was re-computed post-hoc at 80.7% 

https://osf.io/sva2k/
https://osf.io/abu7k/
https://osf.io/sva2k/
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after original authors noted that original n was misreported (see Replication Report 

https://osf.io/84fyw/ for details), and thus does not fit the 90% power criterion. The Sparrow et 

al. (2011) study will nonetheless be included in the re-analysis; lower power will be considered 

as a potential constraint in the interpretation of the results. 

Moreover, because repeated 10-fold cross-validation requires a sample that can be split into 

10 approximately equal subsamples, a large enough initial sample that meets this criteria is 

needed to carry out the analysis. As such, it is optimal to make use of the N = 21 large high-

powered samples provided by in the SSRP. It should be noted that some of the sample sizes 

listed in Table 1 may look misleadingly small. For example, while the Aviezer et al. (2012) 

replication sample compares within-subject mean valence ratings (for winning vs. losing 

expressions) across n = 14 subjects, each subject’s mean valence rating (for winners vs. losers, 

resp.) was based on 88 trials (i.e. 176 data points were collected per participant, for a total of 

2,464 data points across subjects). This, for instance, differs importantly from the Gervais and 

Norenzayan (2012) replication sample which compared between-subject mean ‘belief-in-God’ 

ratings between two conditions (analytic vs. control). Here, mean group ratings were based on 1 

data point per subject, across n1 = 262 (analytic group) and n2 = 269 (control group) individuals, 

respectively (i.e. a total of 531 data points across subjects). See breakdown of all 21 design and 

sample details in Table A1 of the Supplementary Materials.   

Sample size rationale for analyses across studies. Analyses across studies will consist of 

correlations between CV measures and replicability, and random forest prediction model 

analysis. While an N of 21 studies is far from large, it certainly can be considered a valuable 

starting point considering the constraints that exist when it comes to investigating properties of 

replicability in practice, and on large-scale high-powered data sets. Of particular merit are indeed 

the large replication sample sizes which, as the original authors point out, should “get relatively 

precise estimates of the individual effects of these single replications and the average relative 

effect sizes” (Camerer et al., 2018, p. 5). As such, we would argue that for both the purposes of 

the current study, as well as the larger goal of contributing to the accumulating literature on and 

evidence for potential complementary replicability indicators, the SSRP sample is most apt. 

Constraints on generalizing obtained results beyond the SSRP sample will be considered when 

interpreting outcomes. 

https://osf.io/84fyw/
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Experimental Procedure 

The experimental procedure for the proposed study concerns first and foremost the steps 

involved in the preparation of the data, and the re-analysis of the individual replication data sets, 

before applying the final analyses across studies. Steps include: 

1. First, the SSRP database, which constitutes a combination of different data file formats 

(e.g., .dta, .tsv, .sav, .csv), and analysis syntax formats (e.g., .do, .sps, .R), will be 

converted into a common format. Namely, all N = 21 data sets provided in the SSRP 

database will be converted (if required) into formats that can be read into R: .csv or .dta 

for data files, and R code for all analysis scripts. Final set of converted data files and R 

scripts will be uploaded under the Materials component (https://osf.io/ynm8x/) of the 

main osf project (for an example, see converted Derex et al. (2013) data file 

https://osf.io/r43zk/ and main analysis syntax file https://osf.io/5mzfs/). 

 

2. In order to ensure that conversion of file formats was successful, we will run the main 

analyses in both the original file format (e.g., Stata) as well as in the new file format (i.e. 

R) to check that the original analysis outcomes match (i.e. are reproducible) before 

proceeding to the re-analysis.  

 

3. Next, the re-analysis component of the project will be specified. First, each main analysis 

will be converted into an equivalent General Linear Model; re-expressing the analyses as 

a linear model will allow us to apply the CV technique and estimate the CV indices listed 

in step 4; this is also required when using the “caret” package (Wing et al., 2018) because 

it expects regression models as inputs to run the CV analysis. After running a second 

reproducibility check on the re-expressed analyses (across the full sample), we will 

specify the five-repeated 10-fold cross-validation analysis in R, using the “caret” 

package. For each of the 21 individual SSRP studies, the CV analysis will be applied 

when re-running each respective main replication analysis (see Table 2 for details of 

statistical tests). Final set of R scripts to run the CV analyses will be uploaded under the 

Planned analyses component (https://osf.io/6tnk4/) of the main osf project (for an 

example, see Derex et al. (2013) CV analysis syntax file https://osf.io/m4jfd/).   

https://osf.io/ynm8x/
https://osf.io/r43zk/
https://osf.io/5mzfs/
https://osf.io/6tnk4/
https://osf.io/m4jfd/
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4. The following indices, resulting from the aforementioned CV re-analyses, will then be 

computed: average R-squared, RMSE, and MAE (details of steps 3 and 4 in Planned 

Analyses section below).  

 

Planned Analyses 

The main analyses for the proposed project consist of the i. five-repeated 10-fold CV at the 

individual study level, as well as the analyses across all N = 21 studies, including ii. correlations 

with replicability and iii. a random forest prediction model of replicability. Each is described in 

more detail below, specifying where applicable our hypotheses (e.g., H1) of the expected results. 

Five-repeated 10-fold CV. Briefly, the k-fold CV strategy involves randomly splitting the 

data into k subsets of approximately equal size from which k distinct submodels are built: 

[…] k different submodels are built by iteratively using k – 1 of subsets in each submodel. 

For each submodel the subset of the data excluded from building the model is used as the 

test set for that submodel. In this way all samples are used in both model training and testing 

over the sequence of k submodels and the error estimated over the k submodels (k-fold CV 

error estimate) provides an estimate of the generalization error of the model built on the 

entire data set. The test and training sample sizes depend on k; common choices are k = 5 or 

10. In practice, using a single random split of the data is common; however, multiple splits 

can be done to help control the variance of the estimator. (Beleites et al., 2005, p. 92). 

Our paradigm aims to randomly split the data into 10 folds five times over. As such, the 

generalization error will first be assessed within each of the submodels, before being averaged 

across all 10 folds. This process will be repeated five times, across which a final set of averaged 

estimates for all cross-validation indices will be obtained. CV indices in question are: average R-

squared, RMSE, and MAE. We will also translate this average R-squared effect size estimate 

into its respective standardized effect size (correlation coefficient r), which will allow for direct 

comparison with SSRP original and replication effect size values. 
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To check for consistency between the cross-validated replication effect size estimates 

with the initial SSRP replication estimates, we will compute the relative effect sizes of the r 

coefficients obtained via CV (i.e. square-root of average R-squared) versus the r coefficients 

estimated from the full sample (i.e. reported in the SSRP output). While we expect to observe 

some deviations between both sets of estimates, we expect that the mean relative standardized 

effect size, across all 21 studies, will approximate 1.00, especially given the large replication 

samples which should yield small standard errors. Such a comparison should serve in a sense as 

an unbiasedness check regarding the CV effect size averaged estimates in relation to those 

obtained via the traditional method (i.e. entire sample assessed in one go). Should considerable 

deviations, however, be observed across any of the individual studies, these differences will be 

reported. 

Correlations with replicability. Replication success across studies will then be 

correlated with the aforementioned CV indices. Specifically, the replicability indicator is taken 

directly from the SSRP results, and will consist of the binary statistical significance criterion (i.e. 

detecting a significant effect in the same direction as the original effect, using the same statistical 

test), dummy coded (0 = failure, 1 = success). CV indices will be those obtained in the five-

repeated 10-fold CV step above, i.e. average R-squared, RMSE, and MAE. As these analyses are 

exploratory, 2-tailed significance tests of the bivariate Spearman correlations (alpha = .05) will 

be run, consistent with the past investigations of replicability correlates (i.e. RPP, EERP, SSRP). 

In order to provide a comparison against the initial SSRP findings, correlations will be run across 

all 21 studies; with that said, assumptions of outliers, normality, linearity, and homoscedasticity 

will also be checked, and any violations reported. We hypothesize that variance explained (i.e. 

average R-squared) should correlate positively with replicability (H1a), whereas fit indices (i.e. 

RMSE and MAE) should correlate negatively with replication success (H1b). Note: While an 

expected direction is specified for H1a and H1b, we nonetheless consider such analyses 

exploratory, hence the aforementioned 2-tailed (alpha = .05) tests. 

Random forest prediction model of replicability. Lastly, we will run an exploratory 

random forest prediction model, using the “caret” package (Wing et al., 2018), applying once 

again a five-repeated 10-fold cross-validation technique. In other words, across the 21 replication 

studies, we will generate a classification model, using as the target value the replication success 
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outcomes (dichotomous index), and as potential predictors (or model ‘features’) the observed 

correlates of replicability (i.e. replication study p-values, effect sizes, and N, where N represents 

the number of observations; see Table 1), as well as cross-validation indices (i.e. average R-

squared, RMSE, MAE). As our model features are continuous, order of features and respective 

split rules will be determined via a data-driven approach, i.e. by comparing all possible (n – 1) 

single-split partitions as implied by our data, and selecting that which yields the greatest error 

reduction (i.e. largest information gain), using the information gain classifier criterion. Note: 

Because this analysis is fully exploratory and data-driven, we do not predict any specific 

hypotheses regarding the model; all exploratory steps will be reported exhaustively. 

Outcome-Neutral Criteria 

Regarding potential outcome-neutral conditions (such as absence of floor and ceiling effects), we 

recognize that given a lack of variation in measures derived from the CV analysis (e.g., floor or 

ceiling effects for RMSE), this would limit our ability to test the stated hypotheses regarding 

potential correlates of replicability. With that said, we expect that such an outcome is highly 

unlikely. In terms of a neutral-outcome, i.e. if we failed to observe any correlations (rs ~ .00) 

between cross-validation measures and replicability index, this would also limit which inferences 

could be drawn. Namely, lack of evidence for a link between these variables should not be taken 

as evidence for absence of an effect; rather, results would warrant further investigation before 

any general claims are drawn. This last point is especially salient given the low number of 

sampled studies the correlations are being run on. 

 

Preliminary Results
1
 

Correlations with Replicability 

Preliminary correlation results are reported for n = 12 of the SSRP replication studies. 

Namely, CV indices (i.e. average R-squared, RMSE, and MAE) were correlated with replication 

                                                           
1
As this project is still under Stage 1 review, results reported here are merely preliminary and subject to change post-

revision; for the purpose of the thesis, preliminary results are limited to correlations of cross-validation indices and 

replicability, across n = 12 cross-validation re-analyses. The 12 studies reported are arbitrary, i.e. they constitute the 

subset of studies that were able to re-analyzed in time for the thesis.  
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success as indexed by the binary statistical significance criterion (i.e. observed replication effect 

that is both significant (p < .05) and in the same direction as the original study). Results are in 

line with our predictions: R-squared correlated positively, whereas RMSE and MAE correlated 

negatively, with replicability (see Table 3 for Spearman correlation coefficients). It should be 

noted that because Spearman correlations were run (pre-registered on account of small sample 

size and consistent with the correlational approach applied in existing replication studies, i.e. 

RPP, EERP, and SSRP), resulting coefficients for variables correlated with RMSE and MAE are 

identical (due to their highly-related nature). In other words, while they do not provide the exact 

same information (i.e. are not computationally identical), they are nevertheless reflective of the 

same information, namely the mean residual variance of observed versus predicted data, and 

were thus highly correlated (Pearson r = .998) and in turn provided the same rank information 

(Spearman r = 1.000). In this sense, for our purposes, RMSE and MAE ended up providing 

redundant information insofar as out-of-sample error indices. 

Consistent with existing research, the p-value predictor was found to be highly negatively 

correlated with study replicability. While the RPP, EERP, and SSRP correlated the original 

studies’ p-values with replication success, we used the p-value of the SSRP replication studies as 

predictor of replicability (see Table 3 below). Unsurprisingly, the p-value was among the 

strongest determinants of study replication, alongside R-squared; once again, due to the observed 

high relationship between these two predictors (i.e. p-value and R-squared), Spearman 

correlation coefficients for each of these predictors with replication success were equivalent in 

strength (i.e. r = .857), but predictive in opposite directions (i.e. p-value as negative predictor; R-

squared as positive predictor). Taken together, preliminary correlation results agree with the 

overarching study rationale, namely the observation that the strength of effect appears to be 

consistently related to a study’s propensity to successfully replicate. In sum, the smaller the 

observed p-value, or the greater the variance explained of the predictive linear model (R-

squared), the greater the likelihood of replication; in contrast, the higher the out-of-sample error 

of the model (RMSE, MAE), the lower the tendency to replicate. 
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Table 3 

Preliminary correlation results. Spearman correlation coefficients for n = 21 SSRP replication 

studies were run between obtained CV indices (average R-squared, RMSE, MAE), replication 

success (statistical significance criterion), as well as p-values (based on full replication sample). 

 p-value 
replication 

success 
R-squared RMSE MAE 

p-value - -.857*** -.818** .210 .210 

replication 

success 
 - .857*** -.465 -.465 

R-squared   - -.601* -.601* 

RMSE    - 1 

MAE     - 

* p < .05; ** p < .01; *** p < .001 

 

Relative Effect Sizes: Replication vs. Cross-validation (CV) 

Relative effect sizes were computed to compare estimates obtained via the five-repeated 

10-fold cross-validation (CV) approach versus those obtained via the traditional method (i.e. 

estimated once as based on the entire sample). Specifically, because the CV effect size estimates 

were necessarily positive values, i.e. calculated by taking the square-root of the R-squared value 

averaged across folds (i.e. sqrt(average R-squared)), these were therefore compared against the 

absolute values of the replication r coefficients as reported in the SSRP results (i.e. | r’ |, where r’ 

corresponds to the replication standardized effect size values as listed in Table 2 above). 

Relative effect sizes, across the n = 12 studies analyzed, displayed an overall tendency for CV 

estimates (y-axis) to be approximated as larger than their traditional estimate counterparts (x-

axis), whereby only 1 out of the 12 studies yielded a smaller CV estimate, i.e. falling below the 

diagonal (x = y) line (see Figure 1).   
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While plotted effect sizes in Figure 1 appear to fall more or less along the diagonal line, 

the average relative effect size taken across all 12 studies yielded a ratio of 2.16, indicating that 

on average CV effect size estimates were approximated at roughly twice the size of effect sizes 

computed via the traditional method. This pattern is not consistent with our predictions which 

assumed that across all 21 replication studies, deviations in both the positive as well as the 

negative directions would average out to roughly 0.00, and in turn yield a relative effect size of 

approximately 1.00. Instead, we observe an almost systematic upward bias across all studies 

when computing the estimated effect size as the square-root of the CV R-squared value, averaged 

across folds. Certainly we cannot know whether these randomly 12 selected studies arbitrarily 

resulted in more over- rather than under-estimations of the traditional r coefficient, and as such 

this pattern should be reassessed upon completion of all N = 21 study re-analyses. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 –Replication study effect size versus cross-validation (CV) effect size (correlation 

coefficient). Absolute values are plotted for replication (i.e. | r’ |) and CV (i.e. sqrt(average R-squared)) 

effect sizes (x-axis & y-axis, resp.). Diagonal line represents replication effect size equal to cross-

validation effect size. Plot is separated by replicated (blue) and non-replicated (red) effects, in accordance 

with the statistical significance criterion (i.e. p < .05 and same direction of original effect). 
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With that said, there is reason to presume that the resampling process is the source of this 

upward bias. Most pertinently, across these 12 studies analyzed, re-expressing and re-running the 

original analyses in the form of linear models on the full sample successfully produced the same 

effect estimates (e.g., specific t-value), as well as multiple R-squared values which (after taking 

the square-root) were equivalent to the r coefficients reported in the SSRP study. Therefore, 

realistically the reason for these inflated CV effect size estimates is related to what Thompson 

(1995) referred to about commonalities inherent within subsamples of the full sample, 

characteristic of resampling; in other words, dependencies unknowingly introduced between 

training and test sets (Hastie, Tibshirani, & Friedman, 2009; see also Vanwinckelen & Blockeel, 

2012). Once all 21 re-analyses are complete, considerations should be made regarding how this 

non-zero bias may or may not influence the meaning and/or implications of the results.    

 

Discussion 

The present study aimed at exploring the relationship between the concepts of model 

generalizability and study replicability, namely in the context of real large-scale data sets. The 

rationale for the project stemmed in part from the observation that, across all three recent 

replication projects (i.e. RPP (2015), EERP (2016), and SSRP (2018)), certain features of the 

original study findings, indicative of strength of initial evidence, tended to be predictive of study 

replicability: Namely, statistical significance (p-value) correlated negatively, whereas effect size 

correlated positively, with replication success, whereby the latter was defined by the ‘statistical 

significance criterion’, the binary indicator that categorizes a replication as successful if it is 

significant (p < .05) and is in the same direction as the original effect. While not wholly 

surprising, these findings nevertheless raised the question as to whether further individual study 

features might serve as important determinants of replicability. For this reason, the current work 

sought to build directly upon this work and investigate whether estimates of model strength and 

generalizability might serve as a set of complementary measures to capture strength of evidence 

and, in turn, predict replication success.  

Specifically, we were interested in exploring the use of cross-validation techniques (i.e. 

five-repeated 10-fold cross-validation) in order to yield indices of model generalizability. The 
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reason for this boils down as follows: Cross-validation (CV), as a model validation technique, 

provides an index of how the statistical model will perform within or generalize to an 

independent data set. While such a generalizability index is established within the two subsets of 

the same sample (i.e. by assessing how the model developed on the training set performs within 

the test set), cross-validation is nevertheless assumed to be theoretically predictive of how such a 

model would hold in unseen data, i.e. beyond that of the training or test sets. In this way, it 

seemed logical to bridge the concepts of generalizability (obtained via CV) and replication: 

Namely, the stronger the model prediction accuracy of the pre-registered replication studies (as 

indexed by average R-squared), or the smaller the out-of-sample generalization error (i.e. RMSE 

and MAE), the higher the expected likelihood of replication. In this way, the current project was 

also in part motivated by the interest to test this theoretical assumption; in other words, to test in 

practice the extent to which CV indices (established on the basis of one model, from within one 

sample) can provide information about how this same model should perform within an 

independent sample. Thus, by investigating whether CV indices might serve to generally forecast 

the likelihood of replication success, the current research sought to contribute to a more 

cumulative understanding of the concept of replicability as well as cross-validation techniques. 

In order to accomplish these goals, the present study undertook a re-analysis of the SSRP 

(Camerer et al., 2018) data set, consisting of N = 21 high-powered (90% statistical power) 

replication studies, whose corresponding original studies were sampled from Nature and Science, 

published between 2010 and 2015. Re-analysis across n = 12 of the studies (preliminary results), 

in a first step, involved re-expressing each of individual study analyses in the form of a linear 

model, after which the five-repeated 10-fold CV approach was run to yield three indices of 

interest per replication study, namely average R-squared, RMSE, and MAE (averaged across 

folds). Preliminary results were consistent with our predictions, indicating high positive 

correlations ( > .80) between replication success and variance explained (i.e. average R-squared), 

and moderate negative correlations (-.47) between prediction error indices (i.e. RMSE and MAE) 

and replicability. Because RMSE and MAE indices, though not computationally identical, reflect 

the same information, Spearman rank correlations obtained were identical across these two 

variables, and as such provided redundant information. While of course these correlation results, 

taken across the incomplete sample of 12 studies, provide only first insights into our broader 

investigation, they are nonetheless quite compelling insofar as the observed sizes of the 
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correlations. Though logically consistent with the theoretical assumptions behind cross-

validation, there are nevertheless reasons, namely as it concerns sources of variance (outlined 

below), which should arguably lead one to be skeptical as to how well model generalizability (as 

determined from resampling) might translate into practice. 

First and foremost, beyond how strong or robust an effect is, the existence of sources of 

variance when investigating an effect across multiple occasions (barring major methodological 

deviations or questionable research practices) will necessarily play an important role in how 

likely a replication attempt will turn out “successful”. As exemplified by the work of Cumming 

and Maillardet (2006), in which the authors identify two important sources of variance that 

determine the capture percentage (CP) of replication attempts (i.e. variation of original estimate, 

as well as replication estimate, around the true mean), they highlight the extent to which mere 

sampling differences influence how much the findings from one replication attempt to the next 

will agree (or disagree). Consequently, the probability that a replication will succeed (as 

operationalized by the 95% CI of the replication mean capturing the original sample mean) is a 

function in part of how accurately the original mean approximated the true mean. Notably, the 

authors explicitly “assume that replications come from the same population, so variation from 

sample to sample is caused only by sampling variability, and not by any other changes in 

population or experimental characteristics” (2006, p. 217). In this way, their simulated 

replications represent an optimistic set of conditions, not likely reflective of the vast majority (if 

any) real-life replication experiments. Nevertheless, the idea of CP and sources of variation 

speak to some important ideas worth considering when it comes to real replication data sets, as in 

the case of the current project.  

Regarding the real SSRP replication data sets, one strong advantage was certainly the 

large high-powered sample sizes expected to produce “relatively precise estimates of the 

individual effects of these single replications” (Camerer et al., 2018, p. 5); with that said, the 

original studies being replicated were not necessarily well-powered, and as such may have 

produced less precise original estimates of the population parameter in question. What this 

means in terms of CPs is that by using the less powerful original study to determine the initial 

mean, which then served as the basis upon which to judge replication success, one may have 

yielded biased or misleading outcomes if the original estimate strongly deviated from the true 
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mean (i.e. consequence of variation of original estimate around the true mean). On the other 

hand, one should not theoretically fare any better given the converse: If the well-powered 

replication estimate is rather used to establish a presumably more precise initial mean, the CP 

will nevertheless still be impacted by the potential imprecision of the original estimate, because 

the CP necessarily functions as a product of both sources of variation.  

The reason for stressing this is two-fold: On the one hand, it speaks to a limitation of the 

current study. Because, as established above, assessing replicability will necessarily depend on 

both studies being compared, if the original studies are low-powered then this will skew the 

accuracy of replicability indicators (e.g., whether replication effect falls within the 95% CI of the 

original effect). While the SSRP project accounted for the shortcoming of the OSC project (i.e. 

low-powered replication n’s), this only took care of one half of the same underlying issue raised. 

Ultimately, having access to two independent sets of highly powered studies (original vs. 

replication) would provide for a more valid setup to assess replicability rates of individual 

studies, and in turn which features of these studies may or may not be predictive of replication 

success. This is not to say that, under these conditions, the existence of both sources of variance 

would not continue to play a role, but acknowledging and controlling to some extent these 

variations in estimates (i.e. aiming for two precise estimates) is nevertheless better practice, even 

if one or both of these effect estimates deviates strongly from the population parameter. 

The second reason for raising to the CP concept is because it speaks to a conceptual point 

which is that in talking about replications, it is commonplace to label the second study as the 

replication of the first, which is completely logical in the sense that the replication study (as in 

the case of all three large-scale replication projects) is the outcome of having repeated a 

previously observed experiment. With that said, when it comes to the statistical concept of 

replicability, neither the first nor second instantiation of an experiment (let alone a third or a 

fourth, assuming all other things equal) is more representative of the effect in question being 

approximated. Rather, they each represent one data point along a distribution of effect estimates 

for the same phenomenon. While perhaps self-evident, this idea of ‘strength of evidence’ as a 

predictor or replicability, is thus not constrained to assessing the properties of an original study 

effect, but rather (as in the case of our project) can also include facets of the replication study. 

Although our reasons to appeal to the replication data sets were primarily logistical (i.e. requiring 
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access to the data and syntax, and large N suitable for repeated k-fold CV), a perhaps more 

compelling reason to investigate features of both original and replication studies is that they each 

afford separate (though perhaps related) pieces of information. Future work might consider 

complementing the assessment of original study properties (to predict replicability of replication 

studies) with the same approach but to assess the properties of replication studies (to predict 

replicability of original studies). While results should be consistent, and might appear redundant, 

they should afford two (rather than one) sets of estimates when attempting to quantify the 

predictive relationship between some set of individual study properties and replication outcome. 

It should be noted that here the idea of gaining a more accurate estimate when quantifying 

predictor estimates is not to say that there is a specific value or cut-off that should determine 

replicability across studies. Case in point would be the prediction error indices which are unit-

dependent (i.e. dependent on the scale the variable of interest is measured on), thus particularly 

indicative of why specific cut-offs would not be informative across different studies. Rather, this 

idea would be relevant to meta-scientific projects like the one described below.      

One example where this could be implemented is the recent work of Altjmedt et al. 

(2019) which ran a Random Forest model on 131 original-replication study pairs, combining the 

results of four large-scale replication projects (i.e. OSC, EERP, Many Labs 1 & 3): Specifically, 

the authors appealed to over a dozen original study characteristics to predict study replicability 

(reaching approx. 70% accuracy), observing as top predictors statistical features (i.e. p-value, 

and effect size), but also relatively weaker descriptive variables, such as nature of the finding 

(interaction vs. main effect), paper length, number of authors, etc. Beyond already providing 

some interesting insights into the joint predictive power of study features, as well as a first 

approximation of the weight of each contributing predictor when features are taken in 

combination, such an investigation might be further exploited by running the same prediction 

model but on the replication study characteristics, especially given that features of the replication 

data sets may differ statistically and descriptively from those of the original data sets. 

This last point relates in part to another important source of variance which has yet to be 

discussed, denoted in the introduction as the “realization variance” or “replication jitter”, and 

conceptualized as the net perturbation or variation associated with an experiment’s 

implementation across replication attempts. While the SSRP replications were ‘very close’ 
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replications (i.e. highly methodologically similar to the original designs; see LeBel et al., 2017, 

for replication continuum taxonomy), differences will nevertheless arise from one 

implementation (of the same design) to the next. Even in cases where these discrepancies could 

be argued to constitute merely trivial differences, variation of this kind cannot be neglected when 

it comes to real-life replication research. With regard to the current project, it would be hard to 

establish the extent to which this realization variance might exist between original and 

replication attempts, and moreover the degree to which it might affect the performance of CV 

measures of model generalizability when predicting replicability. It raises the question as to 

whether bridging the concepts of out-of-sample generalization and replicability makes sense in 

real practice given more disparate or conceptual replication attempts. Thus while we might be 

compelled to look positively upon the moderately- to large-sized correlations observed (approx. 

.47 – .86), these may reflect optimistic estimates yielded under more favourable or unrealistic 

circumstances. With that said, one interesting and perhaps encouraging finding that Altjmedt and 

colleagues (2019) pointed out was the fact that “some features that vary across studies are not 

robustly associated with poor replication: These include measures of language, location and 

subject type differences between replication and original experiments, as well as most of the 

variation in compensation” (p. 11). In other words, despite discernible differences between 

studies, at the level of practical design choices and study implementation, these discrepancies 

were not observed to be predictive low replicability. Though once again these results were based 

on replication studies where replication teams contacted original authors for original materials 

and consultation on methodological deviations that were often endorsed. As such, there is reason 

to reserve skepticism regarding the nature of our preliminary results insofar as how they might 

generalize beyond the specific research context. 

Further Study Limitations & Future Directions 

 Beyond those already discussed above, another limitation of our preliminary results is 

that they currently only speak to the predictive power of study features assessed separately rather 

than in combination. Therefore, running the planned forest prediction model with multiple 

predictors may provide a more informative overview of which study characteristics are 

predictive of replication. Additionally, the present study made use of only a single replication 

indicator (i.e. the statistical significance criterion). As there is no universal standard for 
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evaluating replication success, and given existing alternatives (e.g., replication mean contained 

within 95% CI of original mean), our plan going forward will be to make use of complementary 

indicators (binary and continuous) to assess replicability, when completing and updating the 

planned correlation analyses as well as when running the forest prediction models. Regarding the 

RMSE and MAE predictors, aside from providing essentially redundant information, these 

measures should also be acknowledged as being unit-dependent which itself may skew the 

results, given that the variables across the set of replication studies is not consistent. As such, 

another planned deviation from the original design going forward will be to additionally include 

a standardized version of these measures (e.g., dividing the RMSE by the mean of the outcome 

variable, such that it can be interpreted rather in terms of the percentage of the mean). Finally, a 

last point of consideration concerns the observed relative effect sizes, which indicated 

systematically larger estimates when computed via the repeated k-fold CV approach (i.e. 

multiple estimates averaged across subsample folds) as compared to the traditional method (i.e. 

single estimate calculated from the full sample). Delving deeper into possible explanations for 

this upward bias, and its implications regarding cross-validation techniques, would be of further 

interest. 
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Supplementary Materials 

 

 

Table A1 

Replication studies’ sample & design details. Breakdown of N = 21 replication study designs, 

namely as they pertain to overall sample sizes (Np = number of participants), group sizes across 

conditions (e.g., n1 vs. n2), and number of trials. 

Studies  

(N = 21) 

Replication Study 

Sample / design details 

Ackerman et al. (2010) 

Np = 599 participants (between-subject design): 1 composite 

score per subject (across 6 different item ratings), comparing 

between heavy group (n1 = 296) vs. light group (n2 = 303) 

scores. 

Aviezer et al. (2012) 

Np = 14 participants (within-subject design): 176 trials (ratings) 

per subject, comparing mean ratings for winner trials (n = 88) 

vs. loser trials (n = 88). 

Balafoutas & Sutter (2012) 

Np = 243 participants (between-subject design): 1 choice made 

per subject, comparing control (n1 = 120) vs. preferential (n2 = 

123) choice frequencies.  

Derex et al. (2013) 

Np = 482 participants (between-subject design), split into 4 

group sizes: groups of 2 (17 grps), 4, 8, and 16 (16 grps each). 

Group probabilities of engaging in both tasks (among last 3 

trials) are compared. 

Duncan et al. (2012) 

Np = 92 participants (within-subject design): 1,276 total trials 

per subject, presented as follows: 676 are initially new object 

trials, of which 76 are not shown again, 200 are repeated (i.e. 

old trials), and 400 are presented again in a manipulated form 

(i.e. similar trials). Comparison is made between the fractions 

of objects rated as similar when preceded by new vs. old trials. 

Gervais & Norenzayan (2012) 

Np = 531 participants (between-subject design): 1 trial (self-

rating) per subject, comparing ‘belief-in-God’ scores between 

analytic group (n1 = 262) and control group (n2 = 269). 
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Gneezy et al. (2014) 

Np = 407 participants (between-subject design): 1 choice made 

per subject, comparing percentage choosing to donate to 

“charity: water” in “50% overhead” (n1 = 205) vs. “50% 

overhead, covered” (n2 = 202) conditions. 

Hauser et al. (2014) 

Np = 110 participants (between-subject design), split into 

groups of 5: 1 score per group, comparing nb of groups 

‘sustained’ in the unregulated (11 grps; n1 = 55) vs. voting (11 

grps; n2 = 55) conditions. 

Janssen et al. (2010) 

Np = 70 participants (between-subject design), split into groups 

of 5: 3 observations per group; comparison of average group net 

earnings between NCP-C (11 grps) vs. C-NCP (3 grps) 

conditions. 

Karpicke & Blunt (2011) 

Np = 49 participants (between-subject design): Comparison 

between mean retrieval scores for retrieval practice (n1 = 23) 

vs. concept-mapping (n2 = 26) groups. 

Kidd & Castano (2013) 

Np = 714 participants (between-subject design): Comparison 

between mean RMET scores (across 36 trials) for fiction (n1 = 

349) vs. non-fiction (n2 = 365) groups. 

Kovacs et al. (2010) 

Np = 95 participants (within-subject design): 20 trials per 

subject, comparing mean RTs for the “P-A-” trials (n = 5) vs. 

“P-A+” trials (n = 5). 

Lee & Schwarz (2010) 

Np = 286 participants (between-subject design): Comparison of 

rank difference between chosen and rejected CDs, before vs. 

after hand-washing activity, for hand-washing (n1 = 147) vs. no 

hand-washing (n2 = 139) conditions.  

Morewedge et al. (2010) 

Np = 89 participants (between-subject design): Comparison 

between average grams of M&Ms consumed in control (n1 = 

44) vs. 30-repetition (n2 = 45) conditions. 

Nishi et al. (2015) 

Np = 792 participants (between-subject design), split into group 

sessions (approx. 16.5 subjects per session): Comparison of 

mean Gini coefficient per session (averaged across 10 rounds 

per session) for visible (n1 = 24 sessions) vs. invisible (n2 = 24 

sessions) treatment conditions. 
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Pyc & Rawson (2010) 

Np = 306 participants (between-subject design): Comparing 

mean fraction of recalled mediators (for 48 translation pairs) 

between “test-restudy” (n1 = 156) vs. “restudy” (n2 = 150) 

conditions. 

Ramirez & Beilock (2011) 

Np = 131 participants (between-subject design), split between 

high-pressure (N1 = 79) and low-pressure (N2 = 52) groups. 

Comparison between pre-/post-test (40 items each) 

improvement in math performance for expressive (n1 = 34) vs. 

control (n2 = 45) conditions within the high-pressure group. 

Rand et al. (2012) 

Np = 2136 participants (between-subject design): Comparison 

of mean donation in public goods game between “promote 

intuition” (n1 = 1058) vs. “promote reflection” (n2 = 1078) 

conditions. 

Shah et al. (2012) 

Np = 619 participants (between-subject design), 80 trials per 

subject: Comparison between mean performance on Dots-

Mixed task for poor (n1 = 298) vs. rich (n2 = 321) conditions. 

Sparrow et al. (2011) 

Np = 234 participants (within-subject design), 48 trials per 

subject: Comparing mean color-naming RTs in Modified 

Stroop Task for computer words (n = 16 trials) vs. unrelated 

words (n = 32 trials). 

Wilson et al. (2014) 

Np = 39 participants (between-subject design): Comparing 

average self-rated enjoyment scores (mean across 3 items) for 

“external activities” (n1 = 20) vs. “standard thought” (n2 = 

19) conditions. 

Note. Details borrowed from each of the 21 respective Replication Reports (Post-Replication) 

(see  https://osf.io/sbru6/).
 

 

  

https://osf.io/sva2k/


REPEATED K-FOLD CV AND REPLICABILITY 

132 
 

 



DRAWING STATISTICAL INFERENCES FROM DATA 

133 
 

 

GENERAL DISCUSSION 

 

The present dissertation was broadly concerned with two core questions: First, how do 

researchers evaluate statistical evidence when drawing inferences from data? And how can we 

improve the process of statistical inference-making among researchers in psychology? Project 1 

took a more literal approach to these questions, assessing the effectiveness of an online learning 

platform in improving baseline misconception rates of statistical indices among learners, as well 

as measuring whether immediate learning was subsequently retained across the 8-week 

timeframe. Project 2, in comparison, appealed to a meta-scientific design, in order to explore 

how the use of advanced statistical resampling techniques might be used to gain more 

informational value about features of individual study effects, and in turn be used as a novel 

method to predict replicability in large-scale real replication data sets. Both projects and their 

main results are briefly summarized and discussed below, including implications for instruction, 

as well as a means to conceptually and practically bridge the two projects together. 

5.1. Project 1: Discussion 

Project 1 of the dissertation, “Improving statistical inferences: Can a MOOC reduce 

statistical misconceptions?” (Herrera-Bennett, Lakens, Heene, & Ufer), which consisted of two 

studies, used a repeated-measures design (across three time points) to assess baseline 

misconceptions rates, as well as improvement rates, of three statistical concepts (i.e. p-values, 

confidence intervals (CIs), and Bayes factors (BFs)), in the context of an 8-week massive open 

online course (MOOC). Study 1 challenged an assumption commonly expressed within the 

literature in response to the observed widespread misuse of null hypothesis significance testing 
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(NHST) among researchers, that is: that statistical misconceptions are impervious to change. Not 

only did this first study show that misconceptions did not withstand instruction, demonstrating 

significant improvements in immediate learning across all three concepts, but that gains in 

learning were able to be retained until the end of the 8-week course. Study 1 also extended the 

past research in a few key ways: First, beyond assessing misconceptions across a range of time, 

rather than only at one single time point, it also provided preliminary evidence of distinctions 

between the learning trajectories of p-values, CIs and BFs: While, unsurprisingly, the CI and BF 

concepts proved to be the least familiar across the majority of learners at baseline, they incurred 

on average the greatest overall improvements in immediate learning, with learning being 

maintained (i.e. non-significantly increasing or dropping) until week 8. In comparison, 

immediate improvements rates across all p-value fallacies were also significant, but relatively 

less steep on average than CI and BF rates. Interestingly, however, p-value items that measured 

the inverse probability and replication fallacies, continued to significantly improve until week 8 

(though this increase was small). This last finding could be interpreted as corroborating the 

findings of Kalinowski et al. (2008), and in line with the idea of ‘insight by comparison’: 

Because the concepts of Bayesian inference and equivalence testing, introduced between the first 

and second post-test, are two concepts which offer additional ways to understand how or why a 

non-significant effect is not the same thing as a non-existent effect, it is possible that these added 

conceptualizations may have elicited a deeper understanding in some individuals as to why the 

inverse probability fallacy is in fact incorrect; in other words, why the probability of the data 

cannot be used to infer the probability of a theory or hypothesis.   

Another novel contribution of Study 1 was the comparison of baseline misconception 

rates for p-value fallacies when considered in either the context of a significant versus non-
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significant outcome; in other words, comparing whether individuals were more or less prone to 

fall prey to certain fallacies when the p-value being interpreted was statistically significant (p = 

.001) versus non-significant (p = .30). Results showed that in some cases, interpretations made in 

the context of a non-significant outcome yielded fewer misconceptions, whereas the converse 

was never observed. The most pronounced case was for the clinical or practical significance 

fallacy, which demonstrated that individuals were over twice more likely to correctly recognize 

the following item as false “Obtaining a statistically non-significant result implies that the effect 

detected is unimportant”, as compared to its counterpart “Obtaining a statistically significant 

result implies that the effect detected is important”. Findings were speculated to support the idea 

of cognitive biases (e.g., confirmation bias) acting on the process of drawing inferences: If 

considered in the context of a competitive academic environment, it is plausible that when faced 

with results that align with desired expectations (e.g., significant effects), researchers might be 

less inclined to challenge statements that colour results in a favourable light; conversely, if 

results conflict with expectations or are perceived as undesirable (e.g., non-significant results), 

these cases may trigger researchers to question the validity of unfavourable statements, or 

perhaps make them more prone to rationalize why they may not be true.  

As the MOOC was not originally designed to explicitly clarify misconceptions, but rather 

to teach core concepts, the second study of the project investigated the effect of explicit training 

on learning, focussing exclusively on the improvements in p-value items. Study 2 adopted once 

again a repeated-measures design but with the addition of an experimental group who received 

supplementary instructional support in week 1 of the MOOC, namely an extra assignment which 

explicitly pinpointed and explained common p-value misconceptions, and provided active 

training on how to recognize and avoid them. While results were only preliminary, some support 
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was found for the added effects of explicit training on improvement rates. Specifically, with 

respect to effects on immediate learning (where ns started to reach a size that might allow for 

meaningful interpretation), the effect of the added assignment was significant in improving the 

inverse probability and replication fallacies – fallacies that were found to be on average 

consistently trickier at baseline, across both studies.  

Taken together, the two studies in Project 1 emphasize the instructional merits and 

strengths of explicit clarification in improving the process of drawing inferences from statistical 

indices, at least insofar as it concerns the interpretations of conceptual statements, in the context 

of a MOOC. Beyond explicit clarification, additional insights on how to optimize the instruction 

of statistical concepts can be gained: For example, imparting a more thorough and nuanced 

understanding of statistical concepts might be achieved by bringing together (where applicable) 

certain concepts that share commonalities or differences, and specifically teasing apart how and 

why they are similar or distinct. In the case of NHST, this can involve introducing the idea of 

Bayesian inference, or equivalence testing, when explaining the idea behind significance testing 

(see also section 5.1.1 below). Lastly, whether differences in accuracy when interpreting 

significant versus non-significant p-value statements stem from i. cognitive biases resulting from 

top-down pressures, ii. from the fact that the published literature is saturated with statements 

about significant outcomes, iii. from the possibility that simply some ideas (e.g., why the clinical 

or practical significance fallacy is false) are more intuitive in one context over the other, or iv. 

from a combination of all three, warrants further investigation. This would be especially relevant 

for future research that seeks to more practically assess how researchers in their daily careers 

draw inferences when conducting, evaluating, and reporting theirs and others’ real data.  
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5.1.1. Improving NHST: A practical corollary  

 In the beginning of the dissertation, the following question was raised: If p-value fallacies 

(or other statistical misconceptions) can be improved, is it possible to determining whether these 

improvements are a product of overcoming naïve conceptions versus just providing the correct 

tools to infer the correct meaning – or some combination of both? As demonstrated in Project 1, 

we know that p-value fallacies can in fact be improved through the use of explicit clarification 

and training, so seemingly a lack of information did play a role in why these baseline 

misconceptions were observed. While the project cannot ultimately speak to whether individuals 

initially held some deep-seated misconception, or merely lacked the right problem strategy, 

before instruction successfully improved their understanding, we can nonetheless offer a more 

practical take-away on how to foster this improvement. The example of improving the inverse 

probability fallacy (see Box 1, p. 23) is discussed below. 

 It is worth first digressing to an explanation of the relationship between p-values and 

effects, emphasizing the frequentist perspective (for further details, see Colling & Szucs, 2018 

for recent summary of frequency interpretation of p-values, and Morey et al., 2016, for detailed 

frequency interpretation of CIs). In frequentist terms, evidence of the existence of an effect is 

inferred as a function of the long run behaviour of a statistical test (p-value), across a set of 

repeated experiments (Neyman & Pearson, 1933). Specifically, the likelihood of observing a 

small p-value is consistent with the existence of a true effect, in the sense that if the null model is 

true (H0 = T), statistical tests should only very rarely produce small (significant) p-values (i.e. 

only 5% of the time), whereas if the alternative model is true (H1 = T), the likelihood over the 

long run that the test should produce small p-values (p < .05) is far greater.  
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 Therefore, in some sense, it is easy to see why individuals may fall prey to the inverse 

probability fallacy, i.e. the false belief that a significant p-value means that the alternative 

hypothesis is true, if on some level they are aware of this relationship between a true effect and 

the greater proportion of significant p-values that should be observed over the long run. In other 

words, researchers may have some intuitions that correctly align with the logic of significance 

testing, but are misguidedly applying this logic at the level of single p-values, rather than across 

a set of repeated experiments. It follows that in terms of instruction, highlighting this frequentist 

interpretation may prove most fruitful to eliciting improvements.  

Such an approach was in fact taken in week 1 of the MOOC when introducing p-values, 

directly relating the concepts of true versus null effects, statistical power, and expected p-value 

distributions, in order to actively demonstrate this frequentist concept. As exemplified by the 

plots below (see Figure 2), a true effect would be visualized as a more heavily right-skewed 

distribution of p-values (assuming acceptable power, and absence of p-hacking or publication 

bias; see Figures 2A & 2C). By contrast, a null effect would be visualized as a flat uniform 

distribution: Across 100 repeated experiments, each p-value should theoretically be observed 1% 

of the time (see Figures 2B & 2D).   

  What these plots should readily emphasize is that, inherent to the frequentist notion, a p-

value only becomes meaningful as evidence for an effect when taken in the context of many 

observations over the long run. Otherwise, a single p-value can only provide a statement about 

the probability of the data, not the probability of a theory or hypothesis. Taken in isolation, a p-

value affords only partial information about the hypothesis being tested (Ioannidis, 2005; Nuzzo, 

2014). Pairing this more dynamic approach of instruction (e.g., use of simulations and/or 

visualizations) with straight-forward yet theoretically accurate statements, such as “P-values are 



DRAWING STATISTICAL INFERENCES FROM DATA 

139 
 

statements about the probability of the data, not the probability of a theory of hypothesis” (item 

PV9 of Study 2) may also help scaffold and maintain learning.    

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Simulated p-value distributions: Theoretical distribution of p-values for a one-

sample t-test for true vs. null effects; x-axis: p-values (.0 to 1.0); y-axis: raw number of p-values 

in relation to total simulated; red dotted line denotes alpha of 5%. A. P-value distribution with 

80% power: True effect, right-skewed (nSims = 100). B. P-value distribution with 5% power: 

Null effect, uniform (nSims = 100). C. P-value distribution with 80% power: True effect, 

right-skewed (nSims = 100,000). D. P-value distributions with 5% power: Null effect, 

uniform (nSims = 100,000). nSims = number of simulated experiments. R Syntax borrowed from 

MOOC Assignment 1.1 (Daniёl Lakens, “Improving your statistical inferences”). 
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5.2. Project 2: Discussion 

Project 2 of the dissertation, “Exploring indices of repeated k-fold cross-validation as 

predictors of study replicability” (Herrera-Bennett, Ong, & Heene), attempted to gain a deeper 

understanding of the concept and nature of replicability, namely as it concerns how features of 

individual studies might be used to predict replication success. Specifically, it involved a large-

scale re-analysis of the Social Sciences Replication Project (SSRP; Camerer et al., 2018), 

applying a five-repeated 10-fold cross-validation (CV) technique across 12 of the 21 high-

powered replication data sets, in order to compute indices of model generalizability (i.e. average 

R-squared, RMSE, and MAE). These indices were then correlated with the studies’ replication 

success, as indexed by the ‘statistical significance criterion’, a binary index that categorizes a 

replication as successful if it is both significant (p < .05) and in the same direction as the original 

effect. The rationale for the study aimed in part to test whether cross-validation, as an index of 

how a statistical model will generalize to and perform within an independent data set, might 

theoretically hold in practice when applied to the concept of replicability. Specifically, we 

presumed that the stronger the model prediction accuracy of the pre-registered replication data 

sets (i.e. average R-squared), the smaller the generalization (or out-of-sample) error (i.e. RMSE 

and MAE), and in turn the higher the likelihood of replication.  

Preliminary results were in line with our predictions, demonstrating a high positive 

correlation (r > .80) between variance explained (average R-squared) and replication success, 

and moderate negative correlations between prediction error indices (RMSE and MAE) and a 

study’s tendency to replicate. Unsurprisingly, the two prediction error indices, though not 

computationally equivalent, ended up being redundant as predictors, yielding identical Spearman 

coefficients when correlated with the binary replication indicator. While these results should 
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necessarily be reassessed after completing the full set of (N = 21) re-analyses, a more 

comprehensive understanding should also entail investigating the relationship between these CV 

indices and replicability, by appealing to more than one criterion to judge replication success (i.e. 

use of a continuous indicator to indicate degree of replication). Redundancy of the prediction 

error indices could also have been affected by having used the binary indicator when running 

Spearman correlations. Despite these current limitations, one promising outcome of this project’s 

work is, nevertheless, the potential contribution of at least two additional and complimentary 

statistical indices (i.e. average R-squared and RMSE and/or MAE) as predictors of replication, 

alongside those which have already been pinpointed in previous work. This refers, most 

prominently, to the observation that p-values negatively correlated, and effect sizes positively 

correlated, with replication success, when evaluated independently in each of the three large-

scale replication projects (OSC, 2015; Camerer et al., 2016, 2018). Moreover, when a Random 

Forest model was trained across a number of the replication projects, including some of the 

Many Labs projects (see Altjmedt et al., 2019), using over a dozen study features as predictors, 

model prediction accuracy reached approximately 70%, with the top predictors being the 

significance level of the p-value and the size of the effect. Taken alongside our preliminary 

findings, this work further corroborates the idea that strength of initial evidence – whether 

expressed in terms of statistical significance, effect size, or model strength – is an important 

determinant of study replicability.  

 What is interesting about the statement above is that there seems to be an intuitive 

connection between statistical concepts including p-value significance and replicability. In fact, 

as will be discussed in the section below, when researchers were provided the details of the 

original replication project studies (e.g., OSC, 2015; SSRP, 2018) before studies were replicated, 
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they were fairly accurate in predicting those that would and would not replicate. This is a point 

worth discussing, especially because from Project 1, we know that individuals find the concept 

of replication (at least as it pertains to p-values) fairly difficult (i.e. high baseline replication 

fallacy misconception rates), thus uncovering why replication is more or less intuitive across 

different contexts would be potentially informative to understand and improve how researchers 

tend to understand these statistical concepts. The following section addresses this point.  

5.2.1. Reconciling replication intuitions: Avenues for future research 

 Following from the idea above, there seems to exist two seemingly conflicting intuitions 

about the concept of replication, across researchers. Specifically, it was observed that on the one 

hand, researchers are apparently intuitive about the replicability of real studies, as evidenced by 

their fairly accurate ability to predict the future replication success of studies, when provided 

with information about the original study and replication designs (i.e. prediction markets; Dreber 

et al., 2015). Yet on the other hand, individuals commonly fall prey to the replication fallacy, 

which is the false belief that a significant p-value (e.g., p = .01) will directly entail a 99% 

probability of replicating. The reason why these two statistical intuitions seem particularly 

conflicting is because in terms of individual study features, p-values have systematically been 

found to be the best predictor of replication success (OSC, 2015; Camerer et al., 2016, 2018; 

Amrhein et al., 2019).  

Therefore, it begs the question as to which single or set of characteristics of a study 

individuals are appealing to, when making these prediction market judgments, given the 

overwhelming emphasis and over-reliance there is on p-values in the research community. While 

only speculation, if – for argument’s sake – individuals are appealing to the size of the p-value 
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when predicting replication, then this would align with their tendency to also fall prey to the 

replication fallacy. Why then is the use of the information accurate (so to speak) in one context, 

but not in the other? Alternatively, if individuals are not singularly using p-values as the basis for 

their predictions, but a combination of information, then why should the relevance of weighting 

multiple pieces of evidence be seemingly lost on individuals when faced with replication fallacy 

statements? These and other questions warrant further research into how researchers, both 

novices and experts, reason about replication. 

One core distinction which is hard to ignore when assessing both these intuitions is that 

measures of the replication fallacy (e.g., Project 1) are delivered in isolation and thus constitute 

a more theoretical conceptualization about the relationship between p-values and the likelihood 

of an effect to replicate. In contrast, prediction market research assesses researchers’ ability to 

judge the likelihood of a real study replicating, presented not only within the context of the 

original observed results, but also a study’s theoretical rationale and design. In this sense, 

researchers are technically able to appeal to a host of information, beyond statistical indices, as a 

basis upon which to make their predictions (i.e. more closely related to Project 2). 

Consequently, where a better grasp of the technical statistical definition of a p-value may 

improve one’s performance on replication fallacy items, components of effective statistical 

thinking are likely to play an important role in prediction market accuracy. That is, if we assume 

that prediction accuracy functions in part by being able to take a more global approach to 

evaluating evidence, by assessing and optimally weighting multiple pieces of information, then 

this may help reconcile in part why the shared concept of replication can be misunderstood when 

measured across different contexts or, put differently, when measured across two different levels 

of analysis.  
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Given these two findings, it would be reasonable to speculate that when presented with 

limited information from which to infer a judgment (e.g., only the p-value), some researchers 

may take for granted properties of other statistical concepts (e.g., statistical power, type-1 error 

rate) relevant to making a well-founded inference. By contrast, it is likely that others might be 

better skilled at knowing when to ask these key questions in order to ascertain or realize the 

extent to which information is unknown or uncertain. In situations where individuals are given 

more information to work with (e.g., full study details), this could serve to partially close the gap 

between these two types of thinkers, assuming that the additional pieces of information serves to 

help scaffold those who would have otherwise neglected to consider them as a relevant to the 

problem space.     

Resolving these types of questions is an active goal among meta-researchers today. 

Specifically, current collaborations such as the SCORE program (Systematizing Confidence in 

Open Research and Evidence) and the repliCATS projects, both DARPA-funded (Defense 

Advanced Research Projects Agency) research projects, specifically bring together 

interdisciplinary researchers in order to investigate questions related those outlined above. In 

brief, these collaborations aim to make use of a combination of machine-learning models in 

conjunction with direct input from a group of experts in order to gain a more comprehensive 

understanding about which elements of evidence evaluation and reasoning may be playing a role 

in accurate prediction accuracy. This necessarily goes hand in hand with continuing to identify 

areas where researchers (experts included) fall prey to misunderstandings, essentially taking the 

line of research one step further, by investigating how individuals succeed or fail at evaluating 

statistical concepts when assessed in combination. One fruitful outcome currently underway 

from Project 1, is the contribution of the misconception scales developed and refined in Studies 
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1 and 2 to the repliCATS project, to serve as a subset of baseline controls and discriminators 

when assessing the reasoning among the group of experts. These and other types of collaborative 

projects that seek to investigate common questions from distinct perspectives may help pinpoint 

additional intuitions about statistical concepts among researchers which – correct or misguided – 

may provide additional information on how to improve instruction.  

Taken together, both Project 1 and Project 2 provide fairly disparate vantage points 

from which to consider the questions of how researchers evaluate evidence when drawing 

statistical inferences, and how this process might be better understood and improved. That said, 

when it comes to investigating questions of this complex nature, I would argue that there are 

merits in gaining a more multi-faceted outlook on such a topic of investigation, if only to 

contribute to a more cumulative body of research from which to tease out more concrete 

implications. In fact, upon closer look, not only are there theoretical bridges that can be made 

between the two works, but such an interdisciplinary approach (e.g., meta-research) may inspire 

veritable avenues of research to build toward a more comprehensive understanding of the 

dynamic processes of effective statistical thinking and inference-making. Some general insights 

and conclusions as an outcome of these two dissertation projects are summarized below.    

6. Conclusion 

One common theme that has been raised in the current dissertation, and carried throughout 

the two projects, is the notion of effective statistical thinking and inference-making as a process 

that involves many moving parts. Therefore, equipping researchers with alternative methods and 

strategies for drawing inferences has been argued as a goal worth pursuing. With this goal, 

however, follows the continued need to identify and improve misconceptions or misuses of any 
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new statistical tool introduced – simply replacing one method with another would be too 

simplistic an approach. Accordingly, beyond assessing one’s understanding of statistical 

concepts separately, investigating how multiple pieces of information are considered collectively 

and respectively weighted, as well as considering the broader context within which researchers 

routinely draw inferences (e.g., culture of research), should provide deeper insight into how 

researchers navigate their problem space. Furthermore, figuring out how this dynamic appraisal 

of information is more successful among some over others may help uncover how researchers 

determine which pieces of evidence are most relevant to the specific situation at hand, and may 

help identify ways to improve this type of flexible thinking.  

It follows that if we accept the premise that multiple sources of influence can drive a 

researcher’s process of statistical inference-making, then it would be plausible to assert that there 

are also multiple means through which to trigger a shift toward an improved approach to drawing 

statistical inferences. In the same way that it took a crisis at the level of the research community 

to really start tackling what (NHST) critics have been belaboring for decades, it could be argued 

that to truly prompt not just immediate but maintained improvements in inference-making among 

researchers, it demands more than just pointing out misconceptions, but provoking some kind of 

deeper learning, and/or motivation for change. This might be elicited at the level of conceptual 

learning (e.g., explicit clarification, insight by comparison), or in terms of a shift in problem 

strategy (e.g, relaxing constraints on goal-state, or shift toward goal-free problem-solving, like 

implementation of Registered Reports), or potentially via fundamental changes at the level of the 

scientific community (e.g., shift in incentive structures).  

Finally, another common idea that evolved out of both projects was the idea of statistical 

intuitions. When it comes to statistics, some concepts will certainly be on average more intuitive 
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to understand than others which, in terms of implications for instruction, may simply boil down 

to devoting more time and effort in clarifying them. On the other hand, a more daunting 

instructional hurdle will be met when statistical intuitions are inherently wrong or misguided, 

and/or conflict with others which are intrinsically correct. Thus ideally, when teasing apart the 

complexities of an overarching statistical concept – e.g., confronting the reasons for why one 

intuition over another may be right versus wrong – it would be arguably advantageous to 

capitalize upon those common sense notions among novices or experts that intuitively feel (and 

are) correct in order to override, and/or ultimately undo, those that are incorrect. How to achieve 

this successfully, however, and in practical terms, may be easier said than done. With that said, 

advances in meta-research and interdisciplinary collaborations seem to be a promising avenue to 

tackle these sorts of questions.  
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