CpG-DNA fördert die Bildung von multinukleären Riesenzellen mit Resistenz gegen intrazelluläre Leishmanieninfektion

Dissertation
zum Erwerb des Doktorgrades der Humanbiologie
an der Medizinischen Fakultät der Ludwig-Maximilians-Universität zu München

vorgelegt von
Carmen Maria Bock
aus Vohenstrauß
2004
Mit Genehmigung der Medizinischen Fakultät
der Universität München

Berichterstatter: Prof. Dr. med. S. Endres

Mitberichterstatter: Prof. Dr. J. Diebold
Prof. Dr. Dr. J. Heesemann

Mitbetreuung durch den promovierten Mitarbeiter: PD Dr. med. G. Hartmann

Dekan: Prof. Dr. med. Dr. h. c. K. Peter

Tag der mündlichen Prüfung: 23.07.2004
1. Einleitung ... 1

1.1 Fragestellung ... 1

1.2 CpG-Oligonukleotide .. 1
 1.2.1 Definition und Struktur von CpG-Oligonukleotiden ... 1
 1.2.2 Wirkung von CpG-Oligonukleotiden auf das Immunsystem 3
 1.2.3 Toll-like Rezeptoren .. 7
 1.2.4 Klinische Relevanz von CpG-Oligonukleotiden ... 9

1.3 Differenzierungswege von Monozyten ... 10

1.4 Multinukleäre Riesenzellen .. 11

1.5 Leishmaniose .. 13
 1.5.1 Lebenszyklus von Leishmanien ... 13
 1.5.2 Pathologie ... 15
 1.5.3 Verlaufsformen der Leishmaniose ... 17
 1.5.4 Diagnostik und Therapie .. 19
 1.5.5 Epidemiologie .. 20

1.6 Ausgangspunkt und Ziele der Arbeit ... 21

2. Material und Methoden .. 22

2.1 Präparation der Zellen und Zellkultur ... 22

2.2 Oligonukleotide .. 25

2.3 Morphologie .. 26
<table>
<thead>
<tr>
<th>2.4</th>
<th>Oberflächenmarker</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1</td>
<td>Durchflusszytometrie</td>
<td>28</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Fluoreszenzmikroskopie</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Phagozytose</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Intrazelluläre Infektion mit Leishmania major</td>
<td>31</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Kultur und Isolierung von Leishmania major</td>
<td>31</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Kokulturexperimente von Monozyten mit Leishmanien</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Statistische Analyse</td>
<td>33</td>
</tr>
<tr>
<td>3.</td>
<td>Ergebnisse</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Etablierung eines Protokolls zur Generierung von multinukleären Riesenzellen</td>
<td>34</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Das CpG-Oligonukleotid 2006 fördert die Bildung von multinukleären Riesenzellen aus Monozyten in Kultur mit GM-CSF und Interferon-γ</td>
<td>34</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Die CpG-Oligonukleotid-induzierte Bildung von multinukleären Riesenzellen ist abhängig von der Konzentration des Oligonukleotids</td>
<td>39</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Einfluss der Isolationsmethode auf die Generierung von multinukleären Riesenzellen</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>Die Rolle von Interferon-α bei der Bildung von multinukleären Riesenzellen</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Eigenschaften von multinukleären Riesenzellen und Monozyten auf dem Differenzierungsweg zu multinukleären Riesenzellen im Hinblick auf Abwehr intrazellulärer Infektionen</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Monozyten im Differenzierungsprozess zu multinukleären Riesenzellen exprimieren kostimulatorische und antigenpräsentierende Moleküle und haben eine verminderte CD14-Expression</td>
<td>47</td>
</tr>
</tbody>
</table>
3.3.2 Makrophagen, die phagozytiert haben, bewahren ihre Fähigkeit zur Fusion ... 49
3.3.3 Multinukleäre Riesenzellen exprimieren MHC I und MHC II .. 52
3.3.4 Multinukleäre Riesenzellen begrenzen intrazelluläre Infektionen mit Leishmania major ... 52

4. Diskussion ... 56
4.1 Übersicht über die experimentellen Befunde ... 56
4.2 Bewertung der Ergebnisse .. 57
4.2.1 Etablierung eines Protokolls zur Generierung von multinukleären Riesenzellen ... 57
4.2.2 Die Rolle von Interferon-α in der Induktion von multinukleären Riesenzellen ... 61
4.2.3 Eigenschaften der multinukleären Riesenzellen hinsichtlich intrazellulärer Infektionen .. 64

4.3 Klinische Relevanz und Ausblick .. 67

5. Zusammenfassung ... 69

6. Literatur ... 70

Verzeichnis der Abkürzungen ... 82
Veröffentlichungen ... 85
Danksagung ... 86
Curriculum vitae ... 87
1. Einleitung

1.1 Fragestellung

Es ist bekannt, dass Monozyten unter bestimmten Bedingungen in der Lage sind, multinukleäre Riesenzellen zu bilden. In dieser Arbeit sollte untersucht werden, ob immunstimulatorische CpG-DNA einen Einfluss auf die Bildung dieser Zellen und deren funktionellen Eigenschaften besitzt.

Multinukleäre Riesenzellen spielen in vivo eine Rolle in der Abwehr intrazellulärer Infektionen.

1.2 CpG-Oligonukleotide

1.2.1 Definition und Struktur von CpG-Oligonukleotiden

Einleitung

Übersicht zum Aufbau von CpG-DNA

<table>
<thead>
<tr>
<th></th>
<th>CG-Dinukleotide</th>
<th>Methylierung am Cytidin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wirbeltier-DNA</td>
<td>1 von 60</td>
<td>ja</td>
</tr>
<tr>
<td>Bakterielle DNA</td>
<td>1 von 16</td>
<td>nein</td>
</tr>
<tr>
<td>CpG-Oligonukleotid</td>
<td>vorhanden (CpG-Motive)</td>
<td>nein</td>
</tr>
</tbody>
</table>

Tab. I: Unterschiede in der Struktur von eukaryontischer und prokaryontischer CpG-DNA [Rothenfusser 2001b]

1.2.2 Wirkung von CpG-Oligonukleotiden auf das Immunsystem

CpG-DNA stimuliert in PDC die Hochregulierung von CD80, CD86, MHC II und ICAM-1 (interzelluläres Adhäsionsmolekül-1). Anhand der Aktivierung von PDC wurden in unserer und in einer anderen Arbeitsgruppe zwei Klassen von
Einleitung

B-Zellen gehören zum spezifischen Immunsystem und werden durch CpG-DNA direkt zu Proliferation, Produktion von antigenpräsentierenden Molekülen, Immunglobulinen (Ig) und Zytokinen (Interleukin-6, Interleukin-10) angeregt [Hartmann und Krieg 2000; Krieg 2002].

CpG-Oligonukleotide wirken also direkt auf das angeborene Immunsystem. Durch ihre Effekte greifen sie auch in das erworbene Immunsystem ein.
Abb. II: Zusammenfassung der Effekte von CpG-ODN auf Immunzellen

1.2.3 Toll-like Rezeptoren

1.2.4 Klinische Relevanz von CpG-Oligonukleotiden

CpG-Oligonukleotide schützen Mäuse und Primaten durch Th1-gerichtete Aktivierung des Immunsystems vor Infektionen mit intrazellulären Pathogenen

1.3 Differenzierungswege von Monozyten

Das mononukleäre phagozytäre System vermittelt verschiedene immunologische Abwehrmechanismen. Abhängig vom umgebenden Zytokinmilieu können Monozyten verschiedene Differenzierungswege einschlagen. So kann die für die jeweiligen Erfordernisse richtige Immunantwort induziert werden.

In bestimmten Kulturbedingungen in vitro oder bei verschiedenen pathologischen Zuständen in vivo entstehen aus Monozyten multinukleäre Riesenzellen.

1.4 Multinukleäre Riesenzellen

Einleitung

Osteoklasten entstehen in der Gegenwart von receptor activator of nuclear factor-kappaB ligand (RANKL) in Kombination mit Makrophagen-Kolonie-stimulierendem Faktor (M-CSF) [Zou 2001]. Sie sind meist kleine multinukleäre Riesenzellen mit nur zwei bis sechs Zellkernen und sind am Knochenabbau beteiligt [Anderson 2000; Vignery 2000].

Einleitung

Abb. IV: Multinukleäre Riesenzellen vom Langhans-Typ aus der Gewebeprobe eines Tuberkulosepatienten der Medizinischen Klinik Innenstadt, Klinikum der LMU München
Abgebildet sind zwei multinukleäre Riesenzellen vom Langhans-Typ in einer mit May-Grünwald/Giems-Lösung angefärbten Knochenmarksprobe. Gut zu erkennen ist die charakteristische hufeisenförmige Anordnung der Nuklei (blauviolett angefärbt) innerhalb der Riesenzelle. Das Foto wurde von Prof. Dr. Löhrs, Pathologisches Institut, LMU München zur Verfügung gestellt.

1.5 Leishmaniose

Rund 500 000 Menschen infizieren sich jährlich mit der viszeralen Leishmaniose und bis zu 1,5 Millionen Menschen mit der kutanen Form der Leishmaniose.

1.5.1 Lebenszyklus von Leishmanien

Das infektiöse Agens Leishmania ist ein obligat intrazellulärer Parasit. Es existieren etwa 30 Spezies von Leishmanien, 21 davon können auf den Menschen übertragen werden.
Die Übertragung der Infektion erfolgt durch weiblichen Sandmücken (Gattungen Phlebotomus oder Lutzomyia). Sie kommen vorzugsweise an dunklen und feuchten Orten vor und sind vor allem abends und nachts aktiv.

1.5.2 Pathologie

Bei schlechtem Immunstatus, wie z.B. bei HIV-Patienten kommt es zur Ausbreitung der Infektion durch das retikuloendotheliale Netzwerk auf das gesamte mononukleäre phagozytäre System.
Im Mausmodell wird die Bedeutung des Th1/Th2 – Paradigmas gut deutlich: Bei infizierten Wildtyp-Mäusen vermittelt IFN-γ aus natürlichen Killerzellen und Th1-Zellen eine Resistenz gegen die Infektion durch Aktivierung von Makrophagen, die daraufhin intrazelluläre Leishmanien töten können. Steht hingegen wie bei BALB/c-Mäusen die Th2 – Antwort mit Interleukin-4 und Interleukin-10 im Vordergrund, entfällt die Makrophagenaktivierung und die Mäuse sind empfindlich für eine Leishmanieninfektion [Reed und Scott 1993; Janeway 1999].

Dieses Modell der experimentellen Leishmaniose hat große Bedeutung in der Erforschung von Immunantworten auf intrazelluläre Infektionen erlangt. Interleukin-12 wird zur Zeit als vielversprechendes Impfadjuvans untersucht. Interleukin-4 und Interleukin-10 hingegen werden mit einer Progression der Leishmanieninfektion assoziiert.

1.5.3 Verlaufsformen der Leishmaniose

Die Leishmaniose wird eingeteilt in die viszerale, die kutane und die mukokutane Form, die von unterschiedlichen Spezies hervorgerufen werden (Tabelle II).

<table>
<thead>
<tr>
<th>Typ der Leishmaniose</th>
<th>Erreger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viszerale Leishmanose</td>
<td>L. donovani-Komplex: donoviani, infantum, chagasi</td>
</tr>
<tr>
<td></td>
<td>L. tropica</td>
</tr>
<tr>
<td></td>
<td>L. amazonensis</td>
</tr>
<tr>
<td>Kutane Leishmaniose</td>
<td>L. tropica</td>
</tr>
<tr>
<td>der Alten Welt</td>
<td>L. major</td>
</tr>
<tr>
<td></td>
<td>L. aetiolica</td>
</tr>
<tr>
<td></td>
<td>L. infantum</td>
</tr>
<tr>
<td></td>
<td>L. donovani</td>
</tr>
<tr>
<td>Kutane Leishmaniose</td>
<td>L. brasiliensis</td>
</tr>
<tr>
<td>der Neuen Welt</td>
<td>L. mexicana – Komplex:</td>
</tr>
<tr>
<td></td>
<td>mexicana, pifanoi, amazonensis, venezuelensis</td>
</tr>
<tr>
<td></td>
<td>L. chagasi</td>
</tr>
<tr>
<td></td>
<td>Subgenus Viannia</td>
</tr>
<tr>
<td>Mukokutane Leishmaniose</td>
<td>L. brasiliensis-Komplex:</td>
</tr>
<tr>
<td></td>
<td>brasiliensis, peruvial, panamensis, guyanensis</td>
</tr>
<tr>
<td></td>
<td>L. mexicana – Komplex</td>
</tr>
<tr>
<td></td>
<td>L. amazonensis</td>
</tr>
<tr>
<td></td>
<td>Subgenus Viannia</td>
</tr>
</tbody>
</table>

Tabelle II: Verlaufsformen der Leishmaniose und ihre Erreger
[Herwaldt 1999; Hepburn 2000; Banzer 2002]

Einleitung

Abb. VI: Hautläsion eines Patienten mit kutaner Leishmaniose
[Banzer 2002]

1.5.4 Diagnostik und Therapie

Die Diagnose einer Infektion mit Leishmanien wird hauptsächlich mittels Giemsa-Färbung von Geweben durchgeführt. Dabei werden die Amastigoten anhand ihrer Größe (2-4 µm Durchmesser), ihrer runden bis ovalen Form und der blauvioletten Anfärbung ihrer Organellen (Nukleus und Kinetoplast) im Lichtmikroskop identifiziert (Abb. VII). Kinetoplasten sind stabförmige mitochondrialle Strukturen, die extranukleäre DNA enthalten.

Abb. VII: Lichtmikroskopische Diagnostik
Infizierter Makrophage (rotviolett) mit Amastigoten, gefärbt mit Giemsa-Lösung. An ihrer Größe, Form und den angefärbten Organellen sind die Amastigoten (blauviolett) gut zu erkennen Die Fotografie stammt aus einem Kokulturexperiment im Rahmen dieser Arbeit.

Molekulare Methoden nutzen die charakteristische Struktur der DNA in den Kinetoplasten zur Diagnose. Eine genauere Identifizierung der Leishmanienspezies kann durch serologische Tests (ELISA,
Hämaggulntinationstests) auf Antigene und Antikörper oder durch Isoenzymanalyse kultivierter Promastigoten durchgeführt werden. Die Polymerasekettenreaktion (polymerase chain reaction, PCR) gewinnt immer mehr an Bedeutung für die klinische Diagnostik.

Derzeit ist noch keine Vakzine zur Prophylaxe verfügbar, befindet sich aber in intensiven Studien. Dabei werden vor allem Kombinationsmöglichkeiten mit Zytokinen und Adjuvantien getestet [Modabber 1995; Machado-Pinto 2002].

1.5.5 Epidemiologie

Einleitung

1.6 Ausgangspunkt und Ziele der Arbeit

2. Material und Methoden

2.1 Präparation der Zellen und Zellkultur

Blut von gesunden nüchternen Spendern wurde mit 100 µl Heparin-Natrium (Braun, Melsungen) pro 10 ml Blut antikoaguliert. Alternativ wurden Buffy coats (Bayerisches Rotes Kreuz, München und Abteilung für Transfusionsmedizin, Universität Greifswald) verwendet. Als Buffy coat bezeichnet man die Leukozytenmanschette, die man beim Abzentrifugieren von Vollblut erhält. Diese besteht aus den plasmareichen zellulären Bestandteilen des Blutes mit einem reduzierten Gehalt an Erythrozyten. Die mononukleäre Zellfraktion (PBMC) wurde durch Dichtegradientenzentrifugation\(^1\) (1000 g, 20°C, 15 Minuten) über Ficoll-Paque (Biocoll, Biochrom KG Seromed, Berlin) in Blue cap – Röhrchen (Greiner, Frickenhausen) gewonnen. Es folgten drei Waschschritte in steriler physiologischer Kochsalzlösung (Baxter GmbH, Unterschleißheim) bei 4°C. Erythrozyten wurden durch Lyse (5 Minuten, 20°C) mit Ortho-mu ne lysing reagent (Ortho Diagnostic Systems GmbH, Neckargmünd) entfernt. Zur Negativselektion von Monozyten aus PBMC wurde die Depletion anderer Zelltypen mit Hilfe der magnetischen Zellsortierung (MACS – Technik) angewendet. Dazu wurden mit Monocyte isolation kit (Miltenyi Biotec GmbH, Bergisch Gladbach) CD3, CD7, CD19, CD45RA, CD56 und IgE auf der Zelloberfläche magnetisch markiert und in einer magnetischen Säule (VarioMacs, Miltenyi Biotec, Bergisch Gladbach) retiniert. Als MACS-Puffer wurde eine entgaste Lösung von Phosphatpuffer (PBS, Dulbecco’s phosphate-buffered saline, PAA, Linz, Österreich) mit 0,02 % EDTA (Ethylendiamintetraacetat, Sigma, St.Louis, USA) und 2 % humanes Serum (humanes ABRh+ Serum, BioWhittaker, St. Louis, USA) verwendet. Die

\(^1\) Zentrifugation einer Zellsuspension in Ficoll-Lösung (Dichte 1.077 g/ml) führt zur Aufkonzentrierung der PBMC an der Blutserum/Ficoll-Interphase. Granulozyten und Erythrozyten haben eine höhere Dichte und sedimentieren somit durch die Ficoll-Lösung zu Boden. Thrombozyten befinden sich aufgrund ihrer geringeren spezifischen Dichte im Serum oberhalb der Ficollschicht. PBMC können dann mit der Pipette aus der Interphase entnommen werden.
Reinheit der Monozytenpräparation betrug 85 bis 95 %, bestimmt durch durchflusszytometrische Messung von CD14.

Als dritte Isolierungsmethode wurde in Vorversuchen die Adhärenzmethode angewendet. Dabei wurden die PBMC mit RPMI-Medium (VLE RPMI 1640 Medium, Biochrom KG seromed, Berlin) mit 10 % (v/v) hitzeinaktiviertem fetalem Kälberserum (FCS, HyClone, Logan, UT); 1.5 mM L-Glutamin; 100 U/ml Penicillin und 100 µg/ml Streptomycin (alle von Gibco BRL, Grand Island, New York) und mit 2 % AB-Serum (ABRh+ Serum, BioWhittaker, St.Louis, USA) auf eine Konzentration von ca. 20 Millionen PBMC/ml eingestellt und suspendiert. Jeweils 10 ml der Suspension wurden in Kulturflaschen (600 ml, Greiner, Frickenhausen) verteilt, in denen 15 ml Medium vorgelegt waren. Nach einer Inkubationszeit von einer Stunde bei 37°C und 5 % CO₂ wurde der Überstand mit den nicht adhärenzen Zellen abgenommen und verworfen. Dann wurde die adhärenze Zellschicht an der Plastikwan der Flasche mit 15 ml PBS bei Raumtemperatur durch sanftes Schütteln gewaschen, das PBS abgenommen und verworfen. Die so gewonnene adhärenze Monozytenfraktion wurde mit 25 ml Medium weitere 24 Stunden im Brutschrank inkubiert. Dabei lösen sich die Monozyten wieder von der Plastikoberfläche. Beim Dekantieren der Monozytensuspension wurden restliche, noch am Flaschenboden adhärenze Monozyten mit einem Zellschaber (Sarsted, Newton, NC) geerntet. Die so erhaltene Zellsuspension wurde bei 4°C und 300 g zehn Minuten lang zentrifugiert und das Zell pellet in Medium resuspendiert.

In einigen Ansätzen wurden aus PBMC die plasmazytoiden dendritischen Zellen durch magnetische Markierung des PDC-spezifischen

2 Im folgenden „Medium“ genannt

Die Viabilität der Zellen wurde durch Trypanblauausschluss\(^3\) lichtmikroskopisch bestimmt und ergab über 95 Prozent viable Zellen. Zellkonzentrationen wurden mit einer Neubauer-Zählkammer bestimmt.

Für einige Ansätze wurde eine Dreifachkombination von blockierenden Antikörpern gegen Interferon-\(\alpha\) (*Polyclonal rabbit anit-human Interferon-\(\alpha\)*,

3 Im Gegensatz zu toten Zellen und Zellfragmenten nehmen lebende Zellen aufgrund ihrer intakten Zellmembranen den Farbstoff Trypanblau nicht auf.
Material und Methoden

5000 U/ml), Interferon-β (Polyclonal rabbit anti-human Interferon-β, 1000 U/ml) und gegen die Interferon-α-Receptor-Kette 2 (Mouse anti-human interferon-α receptor chain 2 = CD118, 20 µg/ml; alle von PBL, New Brunswick, NJ) eingesetzt, abgekürzt anti-IFN-α/-β/R. Weiterhin wurde ein blockierender monoklonaler Antikörper gegen Interleukin-12 eingesetzt (Mouse anti-human IL-12 (p40/p70), Klon C8.6, 3 µg/ml, BD Pharmingen, Heidelberg, Deutschland). Rekombinantes Interferon-α (PBL, New Brunswick, NJ) wurde in einer Konzentrationsreihe von 0,1 U/ml bis 1000 U/ml eingesetzt. Alle Arbeitsschritte unter Sterilbedingungen wurden unter einer Sterilwerkbank (LaminAir® HB 2448, Heraeus, München) durchgeführt.

2.2 Oligonukleotide

4 C = Cytidin, G = Guanosin, T = Thymidin, A = Adenosin
2.3 Morphologie

\[
\text{FI}[\%] = \frac{\text{Anzahl der Nuklei innerhalb von MGC}}{\text{Gesamtzahl der Nuklei}} \times 100
\]

Die Zellkulturen wurden in einigen Experimenten zu den angegebenen Zeitpunkten mit einer am Mikroskop installierten Kamera (Nikon, Tokio, Japan) fotografiert.

In einem Experiment wurde unter Verwendung von *Acid phosphatase kit* (Sigma Diagnostics, St.Louis, USA) ein Test auf tartratresistente saure Phosphatase (TRAP-Assay) durchgeführt. Das Enzym wird dabei indirekt nachgewiesen, indem es von einer phosphatierten Naphtholverbindung Phosphat abspaltet. Das freie Naphthol kann daraufhin an ein Diazoniumsalz koppeln und dadurch einen rotbraunen Farbstoff bilden. Aufgereinigte Monozyten wurden neun Tage lang mit GM-CSF, Interferon-γ und CpG-ODN 2006 kultiviert. Dann wurden die Zellen im Well mit PBS gewaschen und 30 Sekunden lang mit 0,4 ml Citratlösung pro Well (18 mmol/L Zitronensäure, 9 mmol/L Natriumcitrat und 12 mmol/L Natriumchlorid; pH 3,6), 65 ml Aceton und 8 ml Formaldehydlösung 37 % fixiert. Anschließend wurde die Fixierlösung mit entmineralisiertem Wasser abgewaschen. Dann wurde pro Well 0,4 ml Reaktionslösung (125 µl Diazoniumsalz GBC; 125 µl Natriumnitrit; 11,25 ml entmineralisiertes Wasser; Naphthol-AS-BI-Phosphorsäure 0,125 ml; Acetatpuffer 0,5 ml; Tartratpuffer 0,25 ml) eingesetzt und eine Stunde lang bei 37°C und 5 % CO₂ inkubiert. Danach wurde die Reaktionslösung mit entmineralisiertem Wasser abgewaschen und zwei Minuten lang mit Hematoxylinlösung (6 g/L Hematoxylin; 0,6 g/L Natriumjodat und 52,8 g/L Aluminiumsulfat) zur Stabilisierung überschichtet. Diese wurde mit Leitungswasser abgewaschen. Nach Trocknen an der Luft wurden die Wells mikroskopisch auf die charakteristische TRAP-Färbung untersucht. Einige Proben wurden zur Verdeutlichung der Morphologie bei einer 630fachen Vergrößerung mittels Immersionsöl untersucht.
2.4 Oberflächenmarker

2.4.1 Durchflusszytometrie

Der Fluoreszenzfarbstoff (Fluorochrom) an bestimmten Oberflächenstrukturen der Zelle wird durch den Laserstrahl zur Emission von Licht bestimmter Wellenlängen angeregt. Dieses Licht wird durch eine Linse gesammelt, durch Bandpassfilter in die einzelnen Wellenlängen getrennt und durch Detektoren in elektrische Signale umgewandelt und logarithmisch verstärkt. Die Intensität der Signale ist proportional zur Anzahl der pro Zelle gebundenen Antikörper und damit zur Anzahl der untersuchten Oberflächenmoleküle. Es können bis zu vier verschiedene Fluoreszenzfarbstoffe verwendet werden und somit an einer Zelle bis zu vier verschiedene Oberflächenstrukturen gleichzeitig ausgewertet werden.

Durch Negativselektion isolierte, nicht markierte Monozyten wurden am zweiten Tag der Kultur mit eiskaltem PBS geerntet und ausgewählte Oberflächenmarker wie beschrieben gefärbt [Hartmann 1998]. Es wurden Fluoreszein-Isothiozyanat-, Phycoerythrin-, Peridinin-Chlorophyll-Protein- und
Allophycozyanid - gefärbte monoklonale Antikörper gegen CD80, CD86, CD14, IgG \(_1\kappa\) (Pharmingen, San Diego) und gegen HLA-DR, CD123 und IgG\(_{2a}\) (Becton Dickinson, San Diego CA) verwendet. Die Zellsuspensionen wurden auf ca. 500 000 bis 1 Million Zellen pro 100 \(\mu l\) Flüssigkeit eingestellt. Bei jeder Messung wurden mindestens 10 000 Zellen vermessen. Zur Aufnahme wurde ein FACS Calibur® Durchflusszytometer (Becton Dickinson Immunocytometry Systems, San Jose, CA) mit einem Argonlaser (\(\lambda = 488\) nm) und einem roten Diodenlaser (\(\lambda = 635\) nm) eingesetzt. Die Überlappung der Fluoreszenzspektren wurde durch Kompensierung korrigiert. Anhand von farbstoffmarkierten Isotyp-Kontrollen (verwendet wurden Anti-IgG \(_1\kappa\) und Anti-IgG \(_{2a}\)-Antikörper) können die Signale so eingestellt werden, dass die Fluoreszenz unspezifischer IgG-Strukturen herausgemittelt werden kann.

Die Analyse wurde in einem Lebendfenster durchgeführt (FSC, SSC >97 \% der viablen Zellen). Die Daten wurden mit CellQuest ®– Software (Becton Dickinson) analysiert. Die Ergebnisse wurden für Reinheitsbestimmungen als prozentuale Anteile der gemessenen Zellpopulation von der Gesamtzellzahl angegeben oder bei VergleichsMessungen von Oberflächenmarkern als mittlere Fluoreszenzintensität (MFI, \textit{mean fluorescence intensity}), die sich aus dem arithmetischen Mittel der Fluoreszenzintensitäten aller im Analysenfenster befindlichen Ereignisse errechnet.

2.4.2 Fluoreszenzmikroskopie

Zur Bestimmung der Expression von Oberflächenmarkern auf MGC musste auf die Fluoreszenzmikroskopie zurückgegriffen werden, da MGC aufgrund ihrer Größe nicht im Durchflusszytometer vermessen werden können. Dabei werden Oberflächenmarker der Zellen mit dem Fluoreszenzfarbstoff Fluorescein-Isothiozyanat (FITC) spezifisch angefärbt. Dieser Farbstoff wird durch monochromatisches Licht angeregt und emittiert daraufhin Licht einer
charakteristischen Wellenlänge, die mithilfe eines Fluoreszenzfilters im Mikroskop detektiert werden kann. Monozytenpräparationen wurden nach fünf Tage langer Kultur mit GM-CSF, Interferon-\(\gamma\) und CpG-ODN 2006 mit FITC-markierten Antikörpern gegen humanes HLA-A, B, C (MHC I) und HLA-DR, DP, DQ (MHC II) gefärbt (Pharmingen, San Diego, CA, USA). Die qualitative Analyse erfolgte mit einem Fluoreszenzmikroskop (Nikon Diaphot®, Fluoreszenzfilter 520 nm) in den Kulturwells. Die Dokumentation der Ergebnisse erfolgte wie oben beschrieben mittels Fotografien.

2.5 Phagozytose

2.6 Intrazelluläre Infektion mit Leishmania major

Die Experimente mit Leishmania major wurden von der Autorin in einem Labor mit Sicherheitsstufe B nach Biostoff-Verordnung am Institut für Dermatologie der Universität Mainz unter der Betreuung von Frau Dr. von Stebut durchgeführt. Die Materialien inklusive der Leishmanien wurden von Dr. von Stebut zur Verfügung gestellt.

2.6.1 Kultur und Isolierung von Leishmania major

Leishmania major Klon V1 (MHOM/IL80/Friedlin) wurde in Complete medium 199 [Sacks 1998] kultiviert, versetzt mit 20 % hitzeinaktiviertem FCS (100 U/ml Penicillin; 100 µg/ml Streptomycin; 2 mM L-Glutamin; 40 mM Heps (Sigma Aldrich GmbH, Steinheim); 0,1 mM Adenin (in 50 mM Heps); 5 µg/ml Hemin (in 50 % Triethanolamin) und 1 µg/ml 6-Biotin (in 95%igem Ethanol). Die infektiösen metazyklischen Promastigoten von Leishmania major wurden aus stationären, fünf bis sechs Tage alten Kulturen durch Negativselektion mittels Erdnuss-Agglutinin (Vector Laboratories Inc., Burlingame, CA) isoliert. Die isolierten Parasiten wurden mit humanem Serum opsonisiert. Der LPS-Gehalt der Parasitenpräparationen lag unter dem Detektionslimit (<0,1 Endotoxin U/ml; LAL-Test, Bio Whittaker, Walkersville, MD). Die Parasiten wurden in einer Stammkonzentration von 5 Millionen Parasiten pro ml eingesetzt [Belkaid 1998; Sacks 1998].
2.6.2 Kokulturexperimente von Monozyten mit Leishmanien

\[
\text{Infektionsrate [%]} = \frac{\text{Anzahl der infizierten Zellen}}{\text{Gesamtzahl der Zellen}} \times 100
\]
Material und Methoden

33

Nukleus des Makrophagen

Leishman-Donovan-Körper

Kinetoplast

Abb. V: Infizierter Makrophage aus einem Kokulturexperiment
Nach Anfärben mit DiffQuick staining set sind die Amastigoten (Leishman-Donovan-Körper) bei einer 630fachen Vergrößerung mit Immersionsöl im Lichtmikroskop an ihrer Größe, ihrer runden bis ovalen Form und der dunkelvioletten Anfärbung ihrer Organelen Nukleus und Kinetoplast gut zu erkennen.

2.7 Statistische Analyse

3. Ergebnisse

3.1 Etablierung eines Protokolls zur Generierung von multinukleären Riesenzellen

3.1.1 Das CpG-Oligonukleotid 2006 fördert die Bildung von multinukleären Riesenzellen aus Monozyten in Kultur mit GM-CSF und Interferon-γ

May-Grünwald/Giemsa-Färbung der Zellen zeigte, dass die entstandenen MGC die Charakteristika von multinukleären Riesenzellen vom Langhans-Typ aufweisen: mehr als zehn Zellkerne innerhalb der Zellmembran in einer hufeisenförmigen Anordnung (Abb.1F).
Ergebnisse

Ergebnisse

Die Kultur wurde bis zum Tag 15 weitergeführt. Bis zu diesem Zeitpunkt waren alle MGC viabel, wie durch Färbung mit Trypanblau gezeigt wurde.

Als nächstes wurde in den verschiedenen Kulturbedingungen die erforderliche Inkubationszeit bis zum ersten Erscheinen von MGC bestimmt. Mit der Dreierkombination GM-CSF, Interferon-\(\gamma\) und CpG-ODN 2006 erschienen die ersten MGC nach durchschnittlich 2,8 Tagen. Mit der Kombination von GM-CSF und Interferon-\(\gamma\) dauerte es durchschnittlich 6,7 Tage bis zur ersten Bildung von MGC (Abb. 3).

\[\text{GM-CSF + IFN-}\gamma + \text{CpG-ODN 2006}\]

\[0\]
\[1\]
\[2\]
\[3\]
\[4\]
\[5\]
\[6\]
\[7\]
\[8\]

3.1.2 Die CpG-Oligonukleotid-induzierte Bildung von multinukleären Riesenzellen ist abhängig von der Konzentration des Oligonukleotids

\[
FI = \frac{\text{Zahl der Nuklei innerhalb von MGC}}{\text{Gesamtzahl der Nuklei im Analysenfeld}} \times 100 \%
\]

Die Bildung von MGC war zu jedem Zeitpunkt abhängig von der Konzentration des Oligonukleotids, wie der Anstieg des Fusionsindex mit steigender Oligonukleotidkonzentration zeigt (Abb. 4A und B).
Ergebnisse

Aufgereinigte humane Monozyten wurden mit GM-CSF, Interferon-γ und verschiedenen Konzentrationen von CpG–ODN 2006 kultiviert. Am dritten und siebten Tag der Kultur wurden die MGC gezählt (Abb. 4A, n = 3, *p = 0,03; **p = 0,04). Nach zehn Tagen in Kultur wurden die Zellen mit May-Grünwald/Giemsa-Lösung gefärbt und die Anzahl der MGC, Monozyten und Zellkerne bestimmt (Abb. 4B; n = 3). Die Zählungen erfolgten jeweils in drei verschiedenen Analysenfeldern des Kulturwells. Das Ergebnis wurde als Mittel der drei Werte angegeben. Der Fusionsindex FI wurde nach folgender Formel berechnet:

\[FI = \frac{\text{Anzahl der Nuklei innerhalb von MGC}}{\text{Gesamtzahl der Nuklei}} \times 100 \% \]
3.1.3 Einfluss der Isolationsmethode auf die Generierung von multinukleären Riesenzellen

Die höchste Reinheit wird mit der Negativselektion erreicht. Sie bringt durchschnittlich 87 Prozent an CD14-positiven Zellen, wohingegen Positivselektion und Adhärenzmethode bei weniger als 80% Reinheit liegen.

Die größte Anzahl an MGC entsteht in Monozytenpräparationen, die durch die Negativselektion aufgereinigt wurden, gefolgt von Präparationen durch Positivselektion. Am wenigsten MGC entstehen bei adhärenzisolierten Monozyten (Abb. 5).
3.2 Die Rolle von Interferon-α bei der Bildung von multinukleären Riesenzellen

Ergebnisse

GM-CSF + IFN-γ + CpG-ODN 2006
GM-CSF + IFN-γ + CpG-ODN 2006 + anti-IFN-α/β/R-Antikörper
GM-CSF + IFN-γ + CpG-ODN 2006 + anti-IL-12-Antikörper

Abb. 7: Rekombinantes IFN-α induziert keine MGC in Monozyten in Kultur mit GM-CSF und Interferon-γ.

Als nächstes wurde der Effekt von plasmazytoiden dendritischen Zellen auf die Bildung von MGC untersucht. Auf gereinigte Monozytenpräparationen mit weniger als 0,02% PDC-Gehalt wurden mit Präparationen verglichen, die mehr als 0,2% an PDC enthielten. Die Bildung von MGC aus Monozyten, die mit GM-CSF, Interferon-γ und CpG-ODN 2006 kultiviert wurden, war in Präparationen mit geringem PDC-Gehalt signifikant höher (Abb.8).
Abb. 8: Die MGC-Bildung in Monozytenpräparationen mit hohem Gehalt an plasmazytoiden dendritischen Zellen ist vermindert verglichen mit Präparationen mit niedrigem PDC-Gehalt.

Monozytenpräparationen, die mehr als 0,2 % an PDC enthalten und Präparationen mit weniger als 0,02 % an PDC wurden mit GM-CSF, Interferon-γ und CpG-ODN 2006 kultiviert. Nach drei Tagen in Kultur wurde die Anzahl der MGC pro Analysenfeld mikroskopisch bestimmt. Die Monozyten wurden durch Positivselektion mit Hilfe von Markierung mit magnetischen CD14−Beads isoliert. PDC wurden durch Markierung mit magnetischen BDCA-4-Beads depletiert (PDC >0,2: n=3; PDC < 0,02 %: n=4; +/- SEM; * p=0,038; ungepaarter t-Test).

Die Präsenz von geringen Mengen an Typ I-Interferon ist für die CpG-ODN-induzierte Bildung von MGC nötig. Hingegen hemmen hohe Konzentrationen an IFN-α die Fusion von Monozyten zu MGC.
3.3 Eigenschaften von multinukleären Riesenzellen und Monozyten auf dem Differenzierungsweg zu multinukleären Riesenzellen im Hinblick auf Abwehr intrazellulärer Infektionen

3.3.1 Monozyten im Differenzierungsprozess zu multinukleären Riesenzellen exprimieren kostimulatorische und antigenpräsentierende Moleküle und haben eine verminderte CD14-Expression

Endergebnisse

Ergebnisse

Abb. 9B: CpG-ODN 2006 und LPS beeinflussen in unterschiedlicher Weise die CD14-Expression von Monozyten in Kultur mit GM-CSF und Interferon-γ.

3.3.2 Makrophagen, die phagozytiert haben, bewahren ihre Fähigkeit zur Fusion

Ergebnisse

Abb. 10: Frisch isolierte Monozyten haben eine größere Phagozytosekapazität als Makrophagen.

CpG-ODN 2006 bildeten sich MGC mit intrazellulären Latexbeads (Abb. 11A und B). Monozyten, die phagozytiert haben, bewahren sich also die Fähigkeit, zu MGC zu fusionieren.

Abb. 11A-D: Monozyten, die phagozytiert haben, können MGC bilden und mit bereits bestehenden MGC fusionieren
3.3.3 Multinukleäre Riesenzellen exprimieren MHC I und MHC II

Um zu untersuchen, ob MGC die nötigen Signale für eine T-Zell-Aktivierung liefern können, wurde die Expression von MHC I und II mittels Fluoreszenzmikroskopie untersucht. Multinukleäre Riesenzellen exprimierten große Mengen an MHC I (Abb. 12A) und MHC II (Abb. 12B). Außerdem färbten sich auf MGC auch CD86 und CD80 an (nicht in Abbildung).

Abb. 12A, B: Multinukleäre Riesenzellen exprimieren MHC I und MHC II

3.3.4 Multinukleäre Riesenzellen begrenzen intrazelluläre Infektionen mit Leishmania major

Ergebnisse

Aufgereinigte humane Monozyten, die sechs Tage lang in den angegebenen Bedingungen kultiviert wurden, wurden vier Stunden lang mit Leishmania major inkubiert. Dann wurden extrazelluläre Parasiten weggewaschen. Eine Stunde (schwarze Balken) oder zwei Tage (graue Balken) nach dem Waschschritt wurden die Proben mit May-Grünwald/Giemsa-Lösung gefärbt. Dann wurde mikroskopisch die Zahl der infizierten Makrophagen und die Gesamtzahl der Makrophagen pro Analysenfeld (1,2 mm²; definiert durch den Fotorahmen des Mikroskops) bestimmt (n = 3; +/- SEM). Die Infektionsrate berechnet sich nach folgender Formel:

\[
\text{Infektionsrate [%]} = \frac{\text{Zahl der infizierten Makrophagen}}{\text{Gesamtzahl der Makrophagen}} \times 100
\]
Ergebnisse

Abb. 15: Leishmania major infiziert MGC in geringerem Ausmaß als Makrophagen und zeigt weniger Replikation innerhalb der MGC als in Makrophagen.

Monozyten wurden sechs Tage lang in den angegebenen Bedingungen kultiviert und dann vier Stunden lang mit Leishmania major inkubiert. Eine Stunde (schwarze und graue Balken) und zwei Tage (blaue und hellblaue Balken) nach der Infektion wurde die Anzahl der Parasiten in Makrophagen und MGC mikroskopisch bestimmt (Parasiten pro Makrophage: n = 3, mean +/- SEM; Parasiten pro MGC: n = 1).
4. Diskussion

4.1 Übersicht über die experimentellen Befunde

4.2 Bewertung der Ergebnisse

4.2.1 Etablierung eines Protokolls zur Generierung von multinukleären Riesenzellen

Beim Vergleich der Isolierungsmethoden zeigt die Negativselektion die besten Ergebnisse bezüglich der Reinheit der Monozytenpräparation und der Menge der entstandenen MGC. Der Vorteil dieser Methode ist, dass die Monozyten nicht markiert werden und damit ihre Oberflächenstrukturen unverändert erhalten bleiben. Die Isolierung durch Positivselektion führt zu einer etwas geringeren Reinheit der Monozytenpräparation und zu einer verringerten Ausbeute an MGC. Die Monozyten sind an ihrer CD14-Oberflächenstruktur magnetisch gelabelt. Da CD14, ein Rezeptor für Lipopolysaccharide, an der Adhärenz humaner Monozyten untereinander und somit an ihrer Fusion nach

Eine weitere Isolierungsmethode, die Aufreinigung der Monozyten unter Ausnützung ihrer Fähigkeit zur Adhärenz, zeigte sowohl in der Reinheit der Monozytenpräparation als auch bei der Ausbeute an MGC unbefriedigende Ergebnisse und wurde nicht weitergeführt.

Interleukin-12 fördert die Differenzierung von CD4-positiven Zellen in Th1-Zellen, aktiviert NK-Zellen, induziert die Produktion von Interferon-γ und ist an der Th1-Immunantwort beteiligt. Interferon-γ fördert die Expression von IL-12 [Biron 2001]. Die Bildung von MGC im experimentellen Ansatz dieser Arbeit ist unabhängig von IL-12, da sie durch Zugabe von blockierenden Antikörpern gegen IL-12 nicht beeinträchtigt wurde. Dieses Ergebnis steht im Einklang mit aktuellen Studien, die Interleukin-12-unabhängige Pfade für die Regulation von Th1- Antworten über IFN-γ gefunden haben [Cousens 1997; Cousens 1999].

Im humanen System bilden Monozyten in Kultur mit GM-CSF und Interferon-γ multinukleäre Riesenzellen vom Langhans-Typ innerhalb von sieben Tagen [Enelow 1992; McNally und Anderson 1995]. Die Zugabe einer Kombination von GM-CSF und Interferon-γ oder Interferon-γ und Interleukin-3 zu Monozyten, die drei Tage lang in RPMI-Medium und autologem Serum kultiviert wurden,

4.2.2 Die Rolle von Interferon-α in der Induktion von multinukleären Riesenzellen

4.2.3 Eigenschaften der multinukleären Riesenzellen hinsichtlich intrazellulärer Infektionen

Es wurde gezeigt, dass Monozyten eine größere Kapazität haben als Makrophagen, intrazelluläre Mikroorganismen zu töten [Weinberg 1985]. Die Fusion von neu an der Infektionsstelle eintreffenden Monozyten mit infizierten Monozyten oder Makrophagen könnte also die Fähigkeit wiederherstellen, Pathogene zu töten [Fais 1997; Most 1997; Gasser und Most 1999]. So konnten Byrd et al. zeigen, dass humane Monozyten, die mit IFN-γ und IL-3 kultiviert und mit Mykobacterium tuberculosis infiziert wurden, MGC bildeten und das Wachstum der Mykobakterien hemmten [Byrd 1998].

Arbeit nicht, weil keine Lymphozyten vorhanden sind, die eine Aktivierung der Makrophagen oder eine Th1-gerichtete Immunantwort vermitteln können.

Im weiteren Verlauf einer Infektion in vivo werden infizierte Makrophagen von aktivierten Makrophagen getötet. MGC zeigten sich resisterter gegen Infektion mit Leishmania major als Makrophagen, was vor allem durch die verminderte Phagozytosefähigkeit der MGC zu erklären ist. Leishmanien interagieren mit dem Komplementrezeptor CR3 und werden durch Phagozytose in die Makrophagen internalisiert [Schonlau 2000].

4.3 Klinische Relevanz und Ausblick

Die Leishmanien-Forschung hat in letzter Zeit an Bedeutung gewonnen. Die Suche nach effizienten, verträglichen, breit einsetzbaren und kostengünstigen Prophylaxe- und Therapiemöglichkeiten zur Verminderung der Morbidität und

5. Zusammenfassung

Die Anwesenheit von Interferon-\(\alpha\) ist dabei in geringen Konzentrationen nichtwendig; rekombinantes Interferon-\(\alpha\) hingegen kann alleine keine MGC induzieren.

6. Literatur

Verzeichnis der Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abb. (3⁶)</td>
<td>Abbildung</td>
</tr>
<tr>
<td>AIDS (64)</td>
<td>Aquired immune deficiency syndrome</td>
</tr>
<tr>
<td>Anti-IFN-α/-β/R (25)</td>
<td>Cocktail aus blockierenden Antikörpern gegen Interferon-α,</td>
</tr>
<tr>
<td></td>
<td>Interferon-β und die Interferon-α-Rezeptorkette 2</td>
</tr>
<tr>
<td>AP (8)</td>
<td>Adapterprotein</td>
</tr>
<tr>
<td>BALB/c (16)</td>
<td>Bagg albino/c (Mausstamm)</td>
</tr>
<tr>
<td>BCG (1)</td>
<td>Bacillus Calmette Guérin</td>
</tr>
<tr>
<td>BDCA-4 (24)</td>
<td>Blood dendritic cell antigen-4</td>
</tr>
<tr>
<td>CD (4)</td>
<td>Cluster of differentiation</td>
</tr>
<tr>
<td>CD40L (5)</td>
<td>CD40-Ligand</td>
</tr>
<tr>
<td>CpG (2)</td>
<td>Cytosin-(phosphat)-Guanin-Dinukleotid</td>
</tr>
<tr>
<td>CpG-A (5)</td>
<td>CpG-Oligonukleotid vom Typ A</td>
</tr>
<tr>
<td>CpG-B (5)</td>
<td>CpG-Oligonukleotid vom Typ B</td>
</tr>
<tr>
<td>CpG-DNA (3)</td>
<td>DNA mit CpG-Motiven</td>
</tr>
<tr>
<td>CpG-ODN (2)</td>
<td>CpG-Oligodesoxynukleotide</td>
</tr>
<tr>
<td>CTL (6)</td>
<td>Zytotoxischer T-Lymphozyt</td>
</tr>
<tr>
<td>DC (8)</td>
<td>Dendritische Zelle</td>
</tr>
<tr>
<td>DNA (1)</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>EDTA (20)</td>
<td>Ethylendiamintetraacetat</td>
</tr>
<tr>
<td>EKG (20)</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>ELISA (19)</td>
<td>Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>ERK (8)</td>
<td>Extracellular receptor kinase</td>
</tr>
<tr>
<td>FACS (29)</td>
<td>Fluorescence-activated cell sorter</td>
</tr>
<tr>
<td>FCS (23)</td>
<td>Fetales Kälberserum</td>
</tr>
<tr>
<td>FI (26)</td>
<td>Fusionsindex</td>
</tr>
<tr>
<td>FITC (29)</td>
<td>Fluorescein-Isothiozyanat</td>
</tr>
<tr>
<td>FSC (28)</td>
<td>Vorwärtsstreulicht</td>
</tr>
<tr>
<td>GM-CSF (10)</td>
<td>Granulozyten-Makrophagen-Kolonie-stimulierender Faktor</td>
</tr>
</tbody>
</table>

⁶ Seitenzahl der erstmaligen Erwähnung
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-PDC (17)</td>
<td>Monozytenpräparation mit PDC-Gehalt > 0,2%</td>
</tr>
<tr>
<td>HIV (15)</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HLA (24)</td>
<td>Human lymphocyte antigen</td>
</tr>
<tr>
<td>ICAM (4)</td>
<td>Interzelluläres Adhäsionsmolekül</td>
</tr>
<tr>
<td>IFN (1)</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig (5)</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IKK (8)</td>
<td>IκB-Kinase-Komplex</td>
</tr>
<tr>
<td>IL (6)</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IRAK (8)</td>
<td>Interleukin-1 receptor-associated kinase</td>
</tr>
<tr>
<td>JNK (8)</td>
<td>C-jun N-terminal kinase</td>
</tr>
<tr>
<td>L. (17)</td>
<td>Leishmania</td>
</tr>
<tr>
<td>LAL (25)</td>
<td>Limulus-Amöbozytenlysat</td>
</tr>
<tr>
<td>LFA (59)</td>
<td>Lymphocyte function-associated antigen</td>
</tr>
<tr>
<td>LGC (11)</td>
<td>Multinukleäre Riesenzellen vom Langhans-Typ</td>
</tr>
<tr>
<td>Low-PDC (17)</td>
<td>Monozytenpräparation mit PDC-Gehalt < 0,02%</td>
</tr>
<tr>
<td>LPS (3)</td>
<td>Lipopolysaccharid</td>
</tr>
<tr>
<td>mAb (9)</td>
<td>Monoklonaler Antikörper</td>
</tr>
<tr>
<td>MACS (20)</td>
<td>Magnetische Zellsortierung</td>
</tr>
<tr>
<td>MAK (10)</td>
<td>Aktivierte Killermakrophagen</td>
</tr>
<tr>
<td>M-CSF (12)</td>
<td>Makrophagen-Kolonie-stimulierender Faktor</td>
</tr>
<tr>
<td>MDC (4)</td>
<td>Myeloide dendritische Zellen</td>
</tr>
<tr>
<td>MFI (29)</td>
<td>Mittlere Fluoreszenzintensität</td>
</tr>
<tr>
<td>MGC (11)</td>
<td>Multinukleäre Riesenzellen</td>
</tr>
<tr>
<td>MHC (4)</td>
<td>Major histocompatibility complex</td>
</tr>
<tr>
<td>MyD88 (8)</td>
<td>Myeloid differentiation marker 88</td>
</tr>
<tr>
<td>n (37)</td>
<td>Fallzahl</td>
</tr>
<tr>
<td>NF-κB (8)</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>NK-Zellen (4)</td>
<td>Natürliche Killerzellen</td>
</tr>
<tr>
<td>ODN (1)</td>
<td>Oligodesoxynukleotid</td>
</tr>
<tr>
<td>p38 (8)</td>
<td>Protein 38</td>
</tr>
<tr>
<td>PBMC (20)</td>
<td>Mononukleäre Zellfraktion des peripheren Blutes</td>
</tr>
<tr>
<td>PBS (20)</td>
<td>Phosphatgepufferte physiologische Salzlösung</td>
</tr>
<tr>
<td>PCR (20)</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Definition</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>PDC (4)</td>
<td>Plasmazytoide dendritische Zellen</td>
</tr>
<tr>
<td>PE (21)</td>
<td>Phycoerythrin</td>
</tr>
<tr>
<td>PerCP (21)</td>
<td>Peridinin-Chlorophyll-Protein</td>
</tr>
<tr>
<td>PKR (8)</td>
<td>Doppelstrang-RNA-aktivierte Proteinkinase</td>
</tr>
<tr>
<td>PRR (7)</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>RANKL (12)</td>
<td>Receptor activator of nuclear factor-kappaB ligand</td>
</tr>
<tr>
<td>SEM (33)</td>
<td>Standardfehler des Mittels</td>
</tr>
<tr>
<td>SSC (28)</td>
<td>Seitwärtsstreulicht</td>
</tr>
<tr>
<td>Tab. (2)</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TCR (6)</td>
<td>T-Zell-Rezeptor</td>
</tr>
<tr>
<td>Th (5)</td>
<td>T-Helferzelle</td>
</tr>
<tr>
<td>TIRAP (8)</td>
<td>TIR domain-containing adapter protein</td>
</tr>
<tr>
<td>TLR (7)</td>
<td>Toll-like receptor</td>
</tr>
<tr>
<td>TRAF6 (8)</td>
<td>TNF-Rezeptor-assozierter Faktor 6</td>
</tr>
<tr>
<td>TRAP (27)</td>
<td>Tartratresistente saure Phosphatase</td>
</tr>
<tr>
<td>Typ I-IFN (5)</td>
<td>Interferon-α und Interferon-β</td>
</tr>
<tr>
<td>WHO (20)</td>
<td>World health organisation</td>
</tr>
</tbody>
</table>
Veröffentlichungen

A. Originalartikel:

Krug, A., Rothenfusser, S., Selinger, S., Bock, C., Kerkmann, M., Battiany, J., Sarris, A., Giese, T., Speiser, D., Endres, S., und Hartmann, G., CpG-A ODN induce a monocyte-derived dendritic cell-like phenotype that preferentially activates CD8 T cells. *J. Immunol.*, 2003 Apr 1 170(7); 3468-77

B. Forschungsberichte:

C. Vorträge und Poster:

Human monocytes primed with GM-CSF and IFN-γ form multinucleated giant cells in response to CpG-ODN. *Vortrag auf dem Spring Meeting der Deutschen Gesellschaft für Immunologie in Innsbruck, 2002*

Danksagung

Ich danke meinem Doktorvater Prof. Dr. Stefan Endres für die Möglichkeit, in der engagierten und herzlichen Atmosphäre der Klinischen Pharmakologie arbeiten zu können, für seine fachliche und persönliche Unterstützung und für die Möglichkeit, meine Ergebnisse auf internationalen Kongressen präsentieren zu können.

Ich danke Herrn PD Dr. Gunther Hartmann für die wissenschaftliche Betreuung meiner Arbeit, die methodische Anleitung und besonders für die stete Motivation.

Ich danke Frau Dr. Anne Krug für die Begleitung meiner ersten Schritte ins wissenschaftliche Arbeiten.

Ich danke meinen Laborkollegen, vor allem Dr. Simon Rothenfusser, Dr. Katharina Tschoep und Miren Kerkmann, die mir mit freundschaftlichem Rat und Inspiration stets zur Seite standen.

Frau Dr. von Stebut danke ich für die Betreuung der Leishmanien-Experimente und für die herzliche Aufnahme in Mainz.

Ich danke meinen Mitarbeiterinnen in der Apotheke, vor allem Caroline Frank, Christiane Fröhlich und Dagmar Schwarz, die mir durch ihr Engagement die Erstellung der Dissertation erst ermöglicht haben.

Ich danke meinen Freunden Bettina Brunner und Hans-Peter Pösl für ihre unschätzbare Hilfe.

Ich danke meinen Schwestern und ganz besonders meinen Eltern.
Curriculum vitae

Persönliche Daten:
Name: Carmen Bock
Geburtsdatum: 05. Dezember 1973 in Vohenstrauß

Schulbildung:
1980 – 1984 Trautwein-Grundschule Moosbach
1984 – 1993 Ortenburg-Gymnasium Oberviechtach
05/1993 Abitur

Hochschulausbildung:
1993 – 04/98 Pharmaziestudium an der Universität Regensburg
07/1999 Approbation als Apothekerin
09/1999 – 05/2003 Dissertation in der Abteilung für Klinische Pharmakologie der LMU München, Professor Endres

Praktika:
08/1994 Praktikum in der Medizinstation von Rodriguez/Formiga, Minas Gerais, Brasilien
10/1994 Famulatur in der Apotheke am Schlesischen Tor in Berlin
08-09/1996 Apotheke des Klinikums in Regina, Kanada

Beruflicher Werdegang:
ab 02/2000 Leiterin der Paracelsus-Apotheke in Weiden