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Chapter 0: Summary 

 

0.1 General 

 

The purpose of this thesis is to provide a physical basis for the design of organocatalytic 

reactions using secondary amines. For that reason the Brønsted basicities and 

nucleophilic reactivities of pyrrolidines and imidazolidinones substituted by groups with 

different steric and electronic effects, which are the main classes of secondary amine 

organocatalysts, have been investigated.  

In addition, I have contributed to several related collaboration projects (Appendices 1–4), 

where my contributions are shown in the Experimental Sections. 

 

0.2 Brønsted Basicities and nucleophilic reactivities of pyrrolidines 

and imidazolidinones 

 

Equilibrium constants (K) for the proton transfer reactions from the CH acids (indicator 

acids with known pKa values) to pyrrolidines and imidazolidinones were determined by 

spectrophotometric titration in acetonitrile at 20 °C (Scheme 0-1).  

Scheme 0-1. Proton transfer reaction of secondary amines with CH acids 

 

The Brønsted basicities of most pyrrolidines vary within 4 orders of magnitude (pKaH from 

16 to 20). However, prolinate A1 is a much stronger Brønsted base and the imidazolium 

and trifluoromethyl substituted pyrrolidines A14 and A21 are much weaker bases. The 

imdazolidinones A29–A32 are weaker Brønsted bases than substituted pyrrolidines 

(Figure 0-1). 
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Figure 0-1. pKaH values of pyrrolidines and imidazolidinones in acetonitrile (20 °C) 
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Benzhydrylium ions (Ar2CH
+
) and structurally related quinone methides were employed 

as reference electrophiles for comparing the nucleophilic reactivities of pyrrolidines and 

imidazolidinones by measuring the second-order rate constants for their reactions with 

these amines in acetonitrile. 

Scheme 0-2. Reactions of secondary amines with benzhydrylium ions and quinone methides in 
acetonitrile at 20 °C 

 
The linear-free-energy relationship lgk2 (20 °C) = sN(N + E), where sN and N are 

nucleophile-specific parameters and E is an electrophile-specific parameter, was 

employed to define the nucleophilic reactivities of pyrrolidines and imidazolidinones, 

whereby the slopes of the linear correlations between lgk2 and E correspond to the 

nucleophile-specific parameter sN and the intercepts on the abscissa (lgk2 = 0) represent 

the nucleophilicity parameters N of the secondary amines. Figure 0-2 shows the linear 

correlation between lgk2 and corresponding E parameters of the reference electrophiles. 
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Figure 0-2. Plot of lgk2 versus the corresponding electrophilicities of the benzhydrylium ions and 
quinone methides for the reactions of pyrrolidines with reference electrophiles in acetonitrile at 20 °C 
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The almost parallel correlation lines in Figure 0-2 (numerically expressed by similar sN 

values) illustrate that the relative nucleophilicities of these pyrrolidines are independent of 

the electrophilicity of the reaction partners. Figure 0-3 shows, however, that the slopes (≙ 

sN) for the pyrrolidines with bulky substituents in 2-position are steeper, i.e., their 

reactivities are more affected by variation of the reaction partner than those of ordinary 

pyrrolidines. All imidazolidinones are less nucleophilic than the investigated pyrrolidines 

and have sN values around 1, in between ordinary pyrrolidines (0.53 < sN < 0.82) and 

pyrrolidines with bulky substituents (0.98 < sN < 1.39). 
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Figure 0-3. Plot of lgk2 versus the corresponding electrophilicities of the benzhydrylium ions for the 
reactions of pyrrolidines with reference electrophiles in acetonitrile at 20 °C 
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Figure 0-4. Reactivity parameters for 2-substituted pyrrolidines and imidazolidinones in acetonitrile 
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Figure 0-5. Plot of the rate constants for the reactions of secondary amines with benzhydrylium ion 
E11 versus their Brønsted basicities; The correlation line is based on the reactivities of pyrrolidines 
identified by circles (i.e. excludes pyrrolidines with bulky substituents and imidazolidinones); open 
symbols refer to the rate constants which have not been directly measured but were calculated by the 
linear-free-energy relationship lgk2(20 °C) = sN(N + E) 

The correlation line drawn in Figure 0-5 shows a fair correlation (R
2
 = 0.92) between the 

rate constants of the reactions of the 2-substituted pyrrolidines represented by circles 

(pyrrolidines with bulky substituents represented by triangles are excluded) with 

benzhydrylium ion E11 versus the Brønsted basicities pKaH. From the Brønsted coefficent 

of this correlation one can see that 44% of the differences in basicity are reflected in the 

transition states of their reactions with E11. Figure 0-5 furthermore shows that the 

trityl-(A24) and azidodiphenylmethyl-substituted pyrrolidines (A27) react 2–3 orders of 

magnitude more slowly than ordinary pyrrolidines of comparable basicity. Obviously the 

steric retardation is much smaller for the Hayashi-Jørgensen catalyst A25, which is 

located only by a factor of 40 below the correlation line. The nucleophilicities of the 

diphenylprolinol A26 and triphenylsilyl-substituted pyrrolidine A28 are only marginally 

smaller than expected from their basicities. The imidazolidinones A29–A32 (represented 
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by open triangles) react much more slowly than all pyrrolidines included in this 

investigation.  

0.3 Appendix 1 

 

We have synthesized a series of substituted Cinnamaldehyde-derived iminium ions and 

studied their structures in the solid and liquid phases. The kinetics of the reactions of 

iminium ions with the ketene acetals allowed us to determine their electrophilicities, which 

cover almost 5 orders of magnitude, reflecting the strong effect of the substituents at the 

aromatic ring of the cinnamaldehydes on the electrophilicity of the corresponding iminium 

ions, which is in line with the substituent effects on the structures of the iminium ions 

elucidated by the crystal structures. 

 

0.4 Appendix 2 

 

Though the trityl group had previously been reported to be an electronically neutral 

substituent with a Hammett substituent constant of σ ≈ 0, the trityl group behaves as an 

electron-withdrawing substituent in 2-position of pyrrolidine, which we explain by negative 

hyperconjugation. This effect rationalizes why the trityl-substituted enamine is 26 times 

less nucleophilic than the parent analogue and the trityl substituted iminium ion is 8 to 12 

times more electrophilic than the parent analogue. 

Comparison of the reactivities of the 2-trityl-pyrrolidine-derived enamine and the 

2-trityl-pyrrolidine-derived iminium ion with the corresponding Jørgensen-Hayashi 

pyrrolidine-derived analogues indicates that the CPh3 group and the CPh2OSiMe3 group 

exert similar electronic effects on the enamine and iminium intermediates of 

organocatalytic reactions. 

Reaction X H CPh3 CPh2(OSiMe3) 

 

krel 1.0 1/26 1/28  

 

krel 1.0 12 19  
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0.5 Appendix 3 

 

The ability to modulate the nucleophilicity and Lewis basicity of N-heterocyclic carbenes 

is pivotal to their application as organocatalysts. Herein we examine the impact of the 

N-substituent on nucleophilicity and Lewis basicity. Four N-substituents popular in NHC 

organocatalysis have been examined, N-2,6-(CH3O)2C6H3, N-2,4,6-(CH3)3C6H2, 

N-4-(CH3O)C6H4, and N-t-butyl groups. From these studies it is clear that the 

nucleophilicity is strongly affected by the nature of this substituent, with the 

N-2,6-(CH3O)2C6H3 group giving one of the most nucleophilic imidazolylidene NHCs 

reported to date and the t-butyl one of the least. This difference in nucleophilicity is 

reflected in the catalyst efficiency observed with a recently reported trienyl ester 

rearrangement. 

 

 

0.6 Appendix 4 

 

2-Cinnamoylimidazolium ions 4 have been synthesized by treatment of 

2-cinnamoylimidazoles with methyl triflate. They were characterised by NMR and mass 

spectroscopy, in one case also by X-ray analysis. The kinetics of their reactions [and also 

those of cinnamoyl fluoride (1)] with stabilized carbanions and silyl ketene acetals 

(reference nucleophiles) were measured photometrically. The correlation log k (20 °C) = 

sN(E + N) was used to calculate the electrophilicity parameters E of the cinnamoyl 

azolium ions 4 from the resulting second-order rate constants k and the previously 

reported N and sN parameters of the reference nucleophiles. All 2-cinnamoylimidazolium 

ions 4 were found to be 2-4 orders of magnitude more electrophilic than cinnamoyl 

fluoride (1) showing that the direct attack of nucleophiles at 1 can be avoided if sufficient 

concentrations of 4 are produced in the NHC-catalysed reactions of 1 with nucleophiles. 

From the range of electrophilicity (−12 < E < −10) for the cinnamoylimidazolium ions 4 

one can derive that only nucleophiles stronger than N ≈ 7 will react with 4 at 20 °C in 
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reasonable time, suggesting that in NHC-catalysed reactions of cinnamoyl fluoride (1) 

with silyl enol ethers (typically 4 < N < 7), enolate ions, produced by fluoride-induced 

desilylation of silyl enol ethers, are the active nucleophiles. 

Plausible catalytic cycle for the NHC-catalysed reaction of cinnamoyl fluoride with 

1-(trimethylsiloxy)-cyclohexene: 
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Chapter 1: Introduction and Objective 

 

1.1 Secondary Amines as Organocatalysts 

 

Organocatalysis refers to the acceleration of organic reactions by substoichiometric 

amounts of organic compounds (organocatalyst), such as amines, carbenes, ylides, and 

so on. Because of their wide applications for the functionalization of carbonyl 

compounds, chiral secondary amines are considered as one of the most useful class of 

organocatalysts. Secondary amine catalysis can be employed for: (a) α–functionalization 

of ketones or aldehydes through the formation of enamines (enamine activation) or 

radical cations (SOMO–activation); (b) β–functionalization of enals via the formation of 

α,β–unsaturated iminium ions or γ–functionalization of enals through the formation of 

dienamines; (c) ε,β–functionalization of 2,4–dienals via the formation of trienamines, 

which undergo Diels–Alder reactions with highly polarized electron-deficient olefinic 

species, such as 3–alkenyl oxindoles, azlactones, and so on.
[1]

   

 

Enamines have been introduced as reagents in organic synthesis by Stork in the 1950s.
[2]

 

As shown in Scheme 1, they were used for α-alkylations of cyclic ketones and Michael 

additions to acceptor substituted olefins. 

Scheme 1. Use of enamines as reagents and reactive intermediates by Stork 

 

The L-proline-catalyzed intramolecular aldol-condensation shown in Scheme 2 reported 

in 1971 known as Hajos–Parrish–Eder–Sauer–Wiechert reaction
[3]

 represents the first 

asymmetric secondary amine catalyzed reaction.   
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Scheme 2. The first asymmetric synthesis using secondary amine as organocatalyst 

 

Yamaguchi reported that the lithium prolinate-catalyzed addition of dimethyl malonate to 

hex-2-enal in methanol led to a racemic adduct,
 [4a] 

whereas 59% ee was observed when 

rubidium prolinate was used as a catalyst in chloroform.
[4b]

 

Scheme 3. The first iminium-activated conjugate addition in 1991 by Yamaguchi 

 

In the last two decades, numerous new types of secondary amines were synthesized and 

applied as organocatalysts. Among them, the most important classes are substituted 

pyrrolidines and imidazolidinones. 

In the beginning of this century, MacMillan and coworkers reported applications of chiral 

imidazolidinones as catalysts for enantioselective cycloadditions and electrophilic 

aromatic substitutions.   

Scheme 4. Imidazolidinones as organocatalysts in iminium-activated reactions by MacMillan 
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Till today, imidazolidinones have been applied as catalysts in more than two hundred 

publications (for enamine activated reactions see [6]; for crystal structure and 

conformation studies of the catalysts and enamine and iminium intermediates see [7]; for 

SOMO activated reactions see [8]; for reactivity studies of enamine intermediates and 

iminium ions see [9]; for proton catalysis of iminium formation see [10]). 

In 2005, the groups of Jørgensen and Hayashi published the first diarysilylprolinol- 

catalyzed reactions, illustrated in Scheme 5.  

Scheme 5. First application of diarysilylprolinols as organocatalysts 

 

Since then diarysilylprolinols became the most successful catalysts in the pyrrolidine 

family, which so far were applied in more than four hundred publications (for further 

enamine mediated reactions see [12]; for iminium mediated reactions see [13]; for single 

crystal study see [14]; for dienamine activation see [15]; for trienamine activation see 

[16]; for α,β,γ,δ-conjugate iminium activation see [17]; for reactivity of enamines see [18]; 

for [2+2] cycloaddition see [19]; mechanistic studies of enamine mediated reactions see 

[20]; for pH-efficiency relationship study see [21]; for the comparison with 

imidazolidinones see [22]).  

In view of the success of diarysilylprolinol catalysts, some structural analogs were 

synthesized and applied as organocatalysts. As examples, the use of trityl
[23]

 and 

triphenylsilyl
[24]

-substituted pyrrolidines as catalysts is shown in Scheme 6. 

Scheme 6. Trityl and triphenylsilyl substituted pyrrolidines as catalysts 

 

Applications of other substituted pyrrolidines as organocatalysts are shown in Scheme 7.
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Scheme 7. Other 2-substituted pyrrolidines as organocatalysts 
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1.2 Goals of this Work  

 

As shown in chapter 1.1, numerous secondary amines as organocatalysts have been 

applied for a variety of reactions. In order to obtain insights in the relationship between 

catalytic efficiency and structure of the amines, in this work, basicities and 

nucleophilicities of pyrrolidines and imidazolidinones substituted by groups with different 

steric and electronic effects were studied in acetonitrile. These amines are depicted in 

Figure 1. 

 

Figure 1. Amines investigated in this research  
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Chapter 2: Synthesis of the secondary Amines A1–A32  

2.1 Synthesis of Pyrrolidines from L-Proline 

 

Most pyrrolidines were synthesized from commercially available L-proline. Esterification 

with SOCl2/MeOH according to literature procedures
 [30]

 gave methyl prolinate A15. 

 

Reduction of proline with LAH gave prolinol A12
[31]

, which was Boc protected and 

methylated with NaH/MeI to give prolinol methyl ether A13.
[32]

  

 

The condensation of N-Boc-protected A12 with phthalimide according to Mitsunobu 

reaction afforded N-Boc A18, which was deprotected to give protonated A18.
[33]

 

 

 
Figure 2. The comparison of 

1
H NMR spectra of A18H

+
 and the quantitative deprotonation of A18H

+
 

with DBU in CD3CN 
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The clean quantitative deprotonation of A18H
+
 in acetonitrile was achieved with DBU 

base (Figure 2). However, the resulting amine A18 is only stable in highly diluted solution 

and side reactions turned up during attempts to remove the solvent. 

 

Tosylation of N-Boc-protected A12 gave 1-Boc-2-(S)-pyrrolidinylmethyl 

p-toluenesulfonate
[34]

, which reacts with pyrrolidine to give A10-Boc
[35]

, with azide anion 

to give A11-Boc
[36]

, and with imidazolide anion to give A20-Boc
[28]

. Deprotection of the 

Boc group afforded A10, A11, and A20, respectively.   

 

The copper-catalyzed 1,3-dipolar cycloaddition of N-Boc-protected A11 with phenyl 

acetylene led to the formation of A19-Boc
[25]

, which was deprotected to yield A19. 

 

n-Butylation of A20-Boc gave A21-Boc
[28]

. The deprotection of the Boc group and counter 

ion exchange with silver triflate gave A21-OTf.  

 

The quantitative deprotonation of A21H
+
 with sodium carbonate in water does not provide 

the target amine A21. When the much weaker basic and less nucleophilic sodium 

hydrogen carbonate was applied to remove the proton, pure A21 was obtained whose 

NMR spectrum is shown in Figure 3. The fact that the full deprotonation of A21H
+
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requires more than 40-equivalents of sodium bicarbonate shows that A21 is a slightly 

stronger Brønsted base in water than sodium bicarbonate. 

 
Figure 3. Comparison of 

1
H NMR spectra of A21H

+
 in D2O, the quantitative deprotonation of A21H

+
 

with sodium carbonate in D2O, and A21 in CD3CN 

 

N-Boc protected A18 reacted with hydrazine to give A8-Boc
[33]

, which was combined with 

1-isocyanato-3,5-bis(trifluoromethyl) benzene and 1-isothiocyanato-3,5-bis 

(trifluoromethyl) benzene
[37]

 to give N-Boc protected A23 and A22. Removing the Boc 

group under acidic conditions and subsequent deprotonation gave A7 and A22. Amine 

A23 was stored as protonated salt, because it is only stable in highly diluted solution. The 

clean quantitative deprotonation of A23H
+
 in acetonitrile was achieved with DBU base. 
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The deprotonation of A23H
+
 with saturated aqueous sodium bicarbonate solution as 

reported in the literature failed.
[37,38]

 

Protection of A1 with ethyl chloroformate in methanol gave N-ethoxycarbonyl-protected 

A15, which was treated with PhMgBr and then deprotected with KOH to give A26
[39]

.  

 

Amine A26 reacted with TMSOTf/triethylamine to give A25
[11a]

, with sodium azide in the 

presence of trifluoroacetic acid to afford A27
[40]

, and with triphosgene and subsequent 

hydrogenation to yield A7
[41]

. 

 

N-Protection of A1 with benzyl chloroformate and esterfication with 4-nitrophenol gave 

1-benzyloxycarbonyl-2-(4-nitrophenyloxycarbonyl)-(S)-pyrrolidine, which reacted with 

dimethylamine and n-propylamine to give N-Cbz protected A16 and A17
[42]

. Catalytic 

hydrogenation of A16-Cbz and A17-Cbz gave A16 and A17, respectively.  

 

Reduction of A16 with lithium aluminium hydride gave A9
[42]

, which was protonated with 

triflic acid to give A9H. 
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2.2 Synthesis of Pyrrolidines from other Precursors 

 

Racemic A3 was prepared by catalytic hydrogenation of the cyclic hydroxylamine A3-OH, 

which was obtained by the reaction of hydroxylamine with 1,4-dibromopentane
[43]

. 

 

Pyrrolidine A4 was synthesized from L-valine in six steps. Reduction of L-valine gave 

L-valinol
[44]

, which was first N,O-ditosylated with tosyl chloride and then combined with 

diethyl malonate. After ester cleavage with concentrated hydrobromic acid and 

decarboxylation, the protonated amino acid (R)-1-carboxy-4-methylpentan-3-aminium 

bromide was obtained, which cyclized in pyridine to give (R)-5-isopropylpyrrolidin-2-one. 

Its reduction with litium aluminium hydride gave A4
 [45]

. 

 

N-Boc-protected pyrrolidine
[46]

 was deprotonated with BuLi/TMEDA and subsequently 

treated with dimethoxyldiphenylsilane and phenyllithium to give N-Boc protected A28, 

which gave A28 after deprotection of the Boc group
[47]

. 

 

Pyrrolidine A5 was synthesized in two different ways. Route 1: The Michael adduct from 

nitromethane and methyl vinyl ketone
[48]

 was reduced with zinc dust and aqueous 

ammonium chloride solution
[49]

. The resulting cyclic nitrone was methylated with 

methylmagnesium bromide and reduced by catalytic hydrogenation to give A5
[50]

. 

Route 2: The Michael adduct from 2-nitropropane and methyl acrylate
[51]

 was reduced 

with nickel(II) chloride-sodium borohydride in methanol
[52]

 to yield 5,5-dimethylpyrrolidin- 

2-one, which was reduced by lithium aluminium hydride to give A5
 [53]

. 
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Hydroxylamine was combined with 1,4-dibromobutane to give N-hydroxypyrrolidine, 

which was oxidized by mercury(II) oxide to form a nitrone
[54]

. Its reaction with trityl anion 

afforded A24-OH, which was reduced by hydrogen to form A24
[23a]

. 

 

The product from the combination of deprotonated 1-vinyl-2-pyrrolidinone and ethyl 

trifluoroacetate was treated with hydrochloric acid to give 5-trifluoromethyl-3,4- 

dihydro-2H-pyrrol, which was hydrogenated to yield A14
[55]

. 

 

2.3 Synthesis of the Imidazolidinones A29–A32 

 

The imidazolidinones were constructed from (S)-(−)-phenylalanine following literature 

procedures. 

 

Esterification of phenylalanine with SOCl2/MeOH gave L-phenylalanine methyl ester. 

Treatment with methyl amine yields in L-phenylalanine methyl amide, which is a key 

intermediate for the synthesis of A29–A32. 

 

Under activation of Brønsted acid or Lewis acid, L-phenylalanine methylamide reacted 

with acetone to give A29
[5a,5b]

, with pivalaldehyde to give A30
[5d]

 and with 5-methyl-2- 

fural to give a mixture of A31 and A32
[5c]

, which were separated by column 

chromatography. 
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2.4 13C Spectra of Secondary Amines 

 

As shown in Table 1, the carbon chemical shifts of C4 and C5 of the pyrrolidines A1–A28 

generally differ less than 2 ppm and are slightly downfield-shifted from that of the parent 

compound A2 [δ(C4) = 25.0 and δ(C5) = 46.5]. The strongest downfield-shift of C4 is 

observed for the 2,2-dimethyl substituted pyrrolidine A5 [δ(C4) = 29.0] whereas the 

strongest downfield-shift of C5 is observed for 2–triphenylsilyl pyrrolidine A28 [δ(C5) = 

49.3]. Analogously δ(C4) and δ(C5) of the imidazolidinones A29–A32 are almost 

unaffected by variation of the substituents at C2. 

Table 1. 
13

C NMR chemical shifts of pyrrolidine ring and imidazolidinone ring in CDCl3 

 

δ / ppm C2 C3 C4 C5 

A1
*  

62.8 31.3 26.2 47.1 

A2
[56] 

46.5 25.0 25.0 46.5 

A3 54.7 33.8 25.9 46.9 

A4 66.2 29.9 25.7 47.0 

A5 59.0 39.7 29.0 46.2 

A7
** 

62.7 31.7 26.0 47.1 

A8 61.3 29.3 26.0 46.8 

A9
** 

57.1 30.8 25.8 46.8 

A10
 

57.6 30.3 25.2 46.3 

A11 57.9 29.2 25.7 46.8 

A12
 

59.3 27.8 26.3 46.6 
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A13 57.8 27.9 25.4 46.6 

A14 58.8 26.0 25.7 47.3 

A15
** 

60.5 30.8 26.4 47.7 

A16 58.3 30.8 26.6 47.9 

A17 60.7 30.8 26.2 47.3 

A19 58.1 29.2 25.6 46.7 

A20 59.0 29.2 25.3 46.6 

A21
** 

60.0 29.0 25.0 48.1 

A22 59.6 28.6 27.4 46.3 

A24 64.1 29.2 25.9 46.8 

A25
** 

65.4 27.6 25.3 47.5 

A26 64.6 26.4 25.7 46.9 

A27 65.4 28.1 26.2 47.3 

A28 46.8 29.2 26.9 49.3 

A29
** 

76.3 − 174.0 60.3 

A30 82.6 − 175.4 59.6 

A31 71.1 − 174.0 60.3 

A32 71.1 − 173.9 59.8 

*: measurement in DMSO-d6; **: measurement in CD3CN 
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Chapter 3: Brønsted Basicities of Substituted Pyrrolidines 

and Imidazolidinones 

 

3.1 General 

 

In order to correlate the nucleophilic reactivities of the pyrrolidines and imidazolidinones, 

which are measured in acetonitrile, with their basicities, the pKa values of their conjugate 

ammonium ions (also defined as pKaH values of secondary amines) were determined in 

acetonitrile. For that purpose, the CH acids C1H–C6H were used as indicators, since 

their pKa values have previously been reported by Leito and coworkers (Figure 4). 

Compared to colored OH and NH acids, carbon acids have particular advantages as 

indicators. Because of the highly delocalized charge in the colored carbanions, traces of 

water or other ions in the medium do not disturb the measurements
 [57]

. The pKa values of 

the carbon acid used as indicators cover the whole range of the basicities of investigated 

amines. 

 

Figure 4. pKa values of indicator acids in acetonitrile
[58]
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3.2 Titration Method  

 

The basicities of the secondary amines A were measured by spectrophotometric titration 

using indicators CH, the anions of which (C
−
) have UV-Vis absorptions in the range of 

300–600 nm, while the amines A, the ammonium ions AH
+
 and the indicators CH are 

transparent in this region. 

 

(Titration Method) A + CH ⇄ AH
+
 + C

−
: 

Solutions containing the indicator acids CH were titrated with stock solutions of amine A, 

while the spectra in the range of 300–600 nm were recorded. The number of titration 

points per experiment ranged from 5 to 10. Full quantitative deprotonation of the carbon 

acids CH was subsequently achieved by adding the strong bases 

1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) 

after titration. The absorption (A) of the solutions at a specific wavelength during the 

titration and after quantitative deprotonation (Af) was recorded.  

For each step of the titration, the equilibrium constant K can be calculated by equation 

(1). 

𝑲 =
[𝐀H+][𝐂−] 

[𝐀][𝐂H]
                                                                 (1) 

Since  

[AH
+
] = [C

−
] = [CH]0A/Af 

  [A] = [A]0 − [CH]0A/Af  

  [CH] = [CH]0 − [CH]0A/Af 

Then the equilibrium constant K can be expressed by equation (2). 

𝐾 =  
[C−]2

([A]0 − [𝐂−])([𝐂H]0 − [C−])
                                            (2) 

According to equation (1), the individual equilibrium constants lg K were then determined 

from the slopes of a linear plot of [A][CH] vs [C
–
]
2
. The basicity of amine A (pKaH) is then 

given by equation (3): 

 

p𝐾aH(𝐀) = p𝐾a(𝐂H) + lg 𝐾                                                       (3) 

 

Since the free amines A18 and A23 are only stable in highly diluted solution, their 

basicities were determined by titration of their ammonium salts A18H
+
 and A23H

+ 
with 

the colored anions of the indicators (C
−
)  
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3.3 Synthesis of the Indicators 

 

The indicators C1H and C2H were synthesized by former members of the group. The 

indicators C3H–C6H were synthesized by nucleophilic aromatic substitutions of electron 

deficient fluorobenzenes with secondary carbanions following literature procedures 

(Figure 5). 

 

Figure 5. Synthesis of indicators by nucleophilic aromatic substitutions 

The crude products were recrystallized several times (details see experimental part in 

Chapter 7) to get pure crystalline products, which were used as indicators.   
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3.4 Results 

 

Though the pKa values of the used indicators were measured at 25 °C by Leito and 

coworkers, all proton transfer equilibria were measured at 20 °C, the temperature used 

for the kinetic measurements.
[58] 

In order to avoid almost quantitative deprotonation of the 

indicator acid CH, the basicity of the amine should at maximum be one pKa unit higher 

than that of the indicator. On the other side, pKaH (A) should not be too low to achieve 

sufficient deprotonation of the catalyst, which led to the range (pKaH (C) –3 < pKaH (A) < 

pKaH (C) + 1) for the equilibrium measurements.  

As shown in Table 2, the indicator acids covered an acidity range from 11.6 < pKa < 23.5, 

which allowed us to compare amines of widely differing basicity. In several cases (A7, 

A11, A15–A20, A22–A29) basicities were determined with two different indicators, and 

the agreement was typically within 0.03 pKa units, and never deviated by more than 0.1 

pKa units. 

 

Table 2. Acid dissociation measurement results of amines A in acetonitrile at 20°C  

Amine Indicator Ka Individual pKaH Averaged pKaH 

A1 C1H 3.07 24.02 24.02 

A2 C2H 3.35 × 10
−2

 19.89 19.89 

A3 C2H 1.62 × 10
−2

 19.57 19.57 

A4 C2H 8.92 × 10
−3

 19.31 19.31 

A5 C2H 1.30 × 10
−2

 19.47 19.47 

A6 C2H 2.04 × 10
−3

 18.67 18.67 

A7 C2H 5.59 × 10
−4

 18.11 18.13 

 
C3H 2.47 18.14  

A8 C2H 3.19 × 10
−2

 19.86 19.86 

A9 C2H 2.82 × 10
−2

 19.81 19.81 

A9H
+
 C6H 3.46 × 10

−4
 8.15 8.15 

A10 C2H 4.81 × 10
−2

 20.04 20.04 

A11 C3H 7.65 × 10
−1

 17.63 17.66 

 
C4H 1.93 17.68  

A12 C2H 4.28 × 10
−3

 18.99 18.99 

A13 C2H 3.28 × 10
−3

 18.88 18.88 

A14 C5H 4.21 × 10
−1

 12.63 12.63 

A15 C3H 7.56 × 10
−2

 16.63 16.63 

 
C4H 1.72 × 10

−1
 16.63  

A16 C2H 1.14 × 10
−3

 18.42 18.38 

 C3H 6.11 18.34  

A17 C3H 2.72 × 10
−1

 17.18 17.18 

 C4H 6.19 × 10
−1

 17.18  

A18 C3
−
 2.28

 b
 18.11 18.12 
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 C4
− 

5.53
 b
 18.13

 
 

A19 C3H
 

1.72 × 10
−1

 16.99
 

16.94 

 C4H 3.13 × 10
−1

 16.89  

A20 C3H 9.78 × 10
−2

 16.74 16.74 

 C4H 2.26 × 10
−1

 16.75  

A21 C6H 3.38 × 10
−1

 11.14 11.14 

A22 C3H 3.97 × 10
−1

 17.35 17.31 

 C4H 7.64 × 10
−1

 17.27  

A22
–
 ––

c
 7.04 25.16 25.16 

A23 C3
− 

2.14 × 10
1 b

 19.08 19.13 

 C4
− 

6.12 × 10
1 b

 19.18
 

 

A24 C3H
 

1.12 × 10
−1

 16.80
 

16.79 

 C4H 2.47 × 10
−1

 16.78  

A25 C3H 7.21 × 10
−1 

17.61 17.61 

 C4H 1.68 17.62  

A26 C3H 4.36 × 10
−1

 17.39 17.39 

 C4H 9.82 × 10
−1

 17.38  

A27 C3H 1.14 × 10
−2

 15.81 15.79 

 C4H 2.46 × 10
−2

 15.78  

A28 C3H 1.17 17.82 17.81 

 C4H 2.57 17.80  

A29 C5H 6.72 × 10
−2

 11.84 11.83 

 C6H 1.64 11.83  

A30 C6H 1.06 × 10
−1

 10.63 10.63 

A31 C6H 8.61 × 10
−2

 10.54 10.54 

A32 C6H 1.22 × 10
−1

 10.70 10.70 
a K as defined in equation 3; b Obtained by titrating AH+ into solutions of deprotonated indicators C

–. c By 

following the absorbance of A22
– in the titration with DBU (pKaH = 24.31)[62]. 

 

The basicity constants in Figure 6 show that the basicity scale in acetonitrile covers the 

range from 10–24, where most pyrrolidines are in the range 16 < pKaH < 20 and the 

imidazolidinones are in the range 10 < pKaH < 12. Thus, steric and electronic effects of 

the 2-substituents generally reduce the basicity of the parent compound A2 by less than 

4 pKa units. If one disregards the slightly higher basicity of the diamine A10, 

2-trifluoromethylpyrrolidine A14 is the only neutral pyrrolidine outside this range with a 

basicity constant which is 7 pKa units smaller than that of the parent pyrrolidine. On the 

other hand, charged substituents have a large effect on the basicity. Thus, the negative 

charge of the carboxylate group in A1 increases the basicity of the pyrrolidine by 4 orders 

of magnitude, while the positive charge of the imidazolium group in A21 reduces the 

basicity by almost 9 pKaH units.  
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Figure 6. pKaH values of secondary amines in acetonitrile (20 °C)  
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Chapter 4: Nucleophilic Reactivities of substituted 

Pyrrolidines and Imidazolidinones 

 

4.1 General 

 

Mayr and coworkers demonstrated that the linear free energy relationship (equation 4)
[63]

 

can be used to describe the rate constants for the reactions of carbocations and Michael 

acceptors with π-, σ-, and n-nucleophiles . 

 

lg𝑘2(20 °C) = 𝑠N(𝑁 + 𝐸)                       (4) 

 

In equation (4), the solvent-independent electrophilicity parameter E characterizes the 

strengths of electrophiles; the solvent-dependent nucleophilicity parameter N 

characterizes the strengths of the nucleophiles and the sensitivity parameter sN is a 

nucleophile-dependent slope parameter. More than 1100 nucleophiles and 300 

electrophiles are summarized in the freely accessible database: 

http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html.  

Following earlier strategies in the Mayr group, the nucleophilic reactivities of the amines 

A1–A32 (Figure 7) were calculated by equation (4) from the second order rate constants 

of their reactions with benzhydrylium ions and quinone methides of known 

electrophilicities.  

 

http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html
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Figure 7. Electrophilicity parameters of benzhydrylium ions and quinone methides 
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4.2 Kinetic Method  

 

The kinetics of the reactions of the amines A1–A32 with the quinone methides E3–E7 

and benzhydrylium ions E8–E19 were determined photometrically in acetonitrile at 20 °C. 

The disappearance of the colored electrophiles (346 nm ≤ λmax ≥ 646 nm) was monitored 

by time-resolved UV-Vis spectroscopy.  

 

The kinetic investigations of all reactions were performed with a high excess of the 

amines over the electrophiles (≥ 10 equivalents) resulting in pseudo-first-order kinetics. 

As a consequence, a mono-exponential decay of the absorbances of the electrophiles 

was observed, from which the first-order rate constants kobs (s
–1

) were derived by a least 

squares fitting of the function At = A0exp(−kobst) + C to the observed time-dependent 

absorbances. According to the relation kobs = k2[Nu], the first-order rate constants kobs 

were linearly dependent on the nucleophile concentrations [A], and the slopes 

correspond to the second-order rate constants k2 (M
–1

 s
–1

), as illustrated for the reaction 

of amine A13 with E9 in figure 8.  

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

A
 (

6
3
5
 n

m
)

t / s

kobs = 1.10 x 105 [A13] + 0.4
R² = 0.9996

0

5

10

15

20

0 0.00005 0.0001 0.00015

k
o
b
s

/ 
s

−
1

[A13] / M  

Figure 8. left: Determination of the pseudo-first-order rate constant for the reaction of A13 (4.49 x 10
-5

 

molL
−1

) with E9 (4.28 x 10
-6

 molL
−1

); right: determination of the second order rate constant for reaction 
of A13 with E9 

The second order rate constants for the reactions of A1, A3–A13, A15–A23 and A26 

with electrophiles were determined by this method. In all these measurements, a linear 

correlation between the concentrations of the amines A and the observed rate constants 

kobs was observed, which allowed us to determine the second-order rate constants for the 

reactions of amines with electrophiles. More complex kinetics were observed for the other 

amines as discussed below. 



 

32 

 

4.3 Reaction Mechanism  

 

The mechanism for the reactions of amines A with benzhydrylium ions is described in 

Scheme 8: 

Scheme 8. Mechanism for the reactions of amines A with benzhydrylium ions 

 
The reaction of A with E initially generates ammonium ion F, which may either directly 

transfer a proton to amine A (k3) used in large excess, or undergo proton transfer to the 

solvent (k2). Though the latter step will be usually be endergonic due to the lower basicity 

of most solvents compared to the amines F, reversibility of this step can be neglected 

since proton transfer from the protonated solvent to a (k4[A]) will be faster than the 

reverse reaction (k−2[F]). There are three different cases which have to be considered: 

Case 1: If k−1 < k2 or k3[A], the NC-bond formation (k1) is rate-determining. The reaction 

follows second order kinetics, first order in A and first order in E. Under pseudo 

first-order-conditions ([A] >> [E]), a linear increase of the first-order rate constants with 

the concentration of the amine A should be observed. The free energy diagrams for the 

reactions in case 1 are shown in Scheme 9. 

Scheme 9. Free energy diagrams for the reaction in case 1. Please note that the heights of the 
barriers in this scheme do not directly correlate with the rates of the individual reactions, since k1 and k3 
are second-order rate constants, whereas k−1 and k2 are first-order rate constants. 

 
Case 2: If k−1 > k2 > k3[A], the proton transfer from F to the solvent to give G is 

rate-determining. Under pseudo first-order-conditions, the first-order rate constants will 

depend on the concentration of F and the protophilicity of the solvent (Scheme 10). This 
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case should only be encountered in highly basic solvents and results in second-order 

kinetics, first order in A and first order in E. 

Case 3: If k−1 > k3[A] > k2, the proton transfer from F to A to give G is the rate-determining 

step. The reaction follows third-order kinetics, second order in A and first order in E. 

Under pseudo first-order-conditions ([A] >> [E]), the first-order rate constants increase 

with the square of the concentration of the amine A (Scheme 10).  

Scheme 10. Free energy diagrams for the reaction in cases 2 and 3 

 
The reactions of amines A with quinone methides can be expected to proceed in a similar 

way as the reactions with benzhydrylium ions (Scheme 11). Since the isomerization F→G 

cannot proceed intramolecularly, either the solvent or another amine must serve as a 

proton shuttle. 

Scheme 11. Mechanism for the reactions of amines A with quinone methides E1–E7 

 

Figure 9 shows that the pseudo-first order rate constants for the reactions of pyrrolidine 

(A2) with the benzhydrylium ions E8 and E9 in dichloromethane do not increase linearly 
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with the concentration of pyrrolidine, indicating operation of mechanism case 2 with a 

transition state which involves more than one pyrrolidine molecule. 
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Figure 9. Kinetics of the reactions of pyrrolidine A2 with electrophiles E8 (top) and E9 (bottom) in 
dichloromethane (left) and acetonitrile (right) 

[64]
 

On the contrary, in acetonitrile the reactions follow second order kinetics. Due to the 

higher basicity of acetonitrile compared to dichloromethane, the proton transfer rate 

constant k2 becomes greater than k−1, and kobs increases linearly with the concentration of 

A2 (Figure 9). 

 

For that reason, acetonitrile was used for all kinetic investigations. However, also in 

acetonitrile, not all reactions of amines with the reference electrophiles followed 

second-order kinetics.  

 

As exemplified in Figure 10 for the reaction of A27 with the benzhydrylium ion E13, 

deviations from the linear kobs versus [A] correlations were generally observed in the 

reactions of the pyrrolidines A24, A25, A27, and A28 carrying bulky substituents in 
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2-position as well as in the reaction of the weakly basic 2-CF3 substituted pyrrolidine A14. 

Reversibility of the initial attack of the amine at the benzhydrylium ions was thus 

indicated. 
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Figure 10. Plot of observed pseudo first order rate constants and the concentration of nucleophile for 
the reaction between A27 and E13 (2.35 × 10

−6
 M) 

 

Deviations from the linear kobs versus [A] correlations were also observed in the reactions 

of pyrrolidine A2 with the quinone methides E3 and E4. Thus deprotonation is generally 

rate determining in the reactions of secondary amines which initially form 

thermodynamically unstable zwitterions. 
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Figure 11. Plot of pseudo first-order rate constants kobs versus the concentration of amines for the 
reactions of A2 with E3 and E4 
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4.4 Kinetics in the Presence of Sterically Shielded Pyridines 

 

The reaction between A27 and E13 (Figure 11) follows case 2 type kinetics. A second 

molecule of amine A27 was needed to remove the proton from the initially formed 

ammonium ion. However, the upper line of Figure 12 shows that the benzhydrylium ion 

E13 is only consumed to a small extent by 10 equivalents of the sterically shielded 

pyrrolidine A27. Attempts to shift this equilibrium by adding aliphatic tertiary amines 

(trimethylamine, ethyldimethylamine, ethyldisopropylamine) were unsuccessful, because 

these amines reacted with E13 (probably via hydride transfer) with similar rates as A27. 

In contrast, the substituted pyridines D1 and D2 did not react with E13. As shown by the 

lower graphs in Figure 12, addition of large quantities of E2 shifted the reaction of A27 

with E13 to the product side.  
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Figure 12. Reaction of A27 (7.67× 10
−5

 mol/L) with E13 (7.06 × 10
−6

 mol/L) in presence of different 
amounts of D2. 
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As depicted in Figure 13, collidine (D2) can also suppress the reversibility of the first step 

of the case 2 (Scheme 8) mechanism resulting in a second-order reaction, first order with 

respect to E13 and first order with respect to pyrrolidine A27. A confirmation for this 

interpretation comes from the observation that the same rate constants were obtained 

when collidine (D2) or the tert-butyl substituted pyridine D1 were used as additives 

(Figure 13). 
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Figure 13. Comparison of the reaction between A27 and E13 (left: 5.10 × 10

−6
 M; right: 5.29 × 10

−6
 M) 

with D1 and D2 as additives 

 

Deviations from second-order kinetics were not only observed, however, in reactions of 

pyrrolidines with low Lewis basicity due to bulky substituents in 2-position, but also in the 

case of pyrrolidine A14, which is a weaker Lewis and Brønsted base due to the 

electron-withdrawing CF3 group in 2-position.The kinetics of the reactions between A14 

and E13 are shown in Figure 14. 
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Figure 14. Kinetics of the reactions between A14 and E13 (4.85 × 10
−6

 mol/L) with different base 
additives 



 

38 

 

The reaction of the CF3-substituted pyrrolidine A14 with E18 the most electrophilic and 

Lewis-acidic benzhydrylium ion of this series followed second order kinetics (see last 

column of Table 3). In contrast, the less electrophilic (and less Lewis acidic) 

benzhydrylium ions E17 and E15 only reacted by second-order kinetics, when an 

additional base was present. In these cases, addition of the di-tert-butyl-methyl 

substituted pyridine D1 (2.46 × 10
−3 

mol/L for the reaction with E15 and 1.23 × 10
−3 

mol/L 

for the reaction with E17) was found to be sufficient for obtaining pseudo-first order 

kinetics in the reaction of E17 and E15 with more than 10 equivalents of A14. Figure 14a 

shows, however, that kobs for the reaction of the better stabilized benzhydrylium ion E13 

with excess A14 does not linearly increase with the concentration of A14, even in the 

presence of 4.92 × 10
−3

 M of D1. A concentration of 2.25 × 10
−3

 M of D2 was also not 

sufficient to achieve a linear correlation between kobs with [A14] for the reaction of A14 

with E13 (Fig. 14b). A linear correlation of kobs with [A14] was eventually observed in the 

presence of 4.45 × 10
−3

 M of D2 (Fig. 14c). With a pKaH value of 15.00
[62]

, collidine (D2) is 

a stronger base than A14 (pKaH = 12.63) which explains the observation that 

second-order kinetics for the reaction of E13 with A14 ware obtained in the presence of 

D2 at a high concentration 4.45 × 10
−3

 M. Since pyridine D1 is less basic (pKaH = 12.8
[65]

) 

than D1 in acetonitrile, one can explain, why D1 is less efficient as a proton acceptor. A 

rationalization of the different kinetics in Fig.14a and Fig.14c is shown in Figure 15. 

 

Figure 15. Change of mechanism in the reactions of A14 with E13 using D1 and D2 as additives 
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4.5 Kinetic Measurements of the Reactions of Imidazolidinones 

A29–A32 

 

According to the discussion in 4.4, both steric hindrance and electron withdrawing effects 

will reduce the Lewis basicity of the amines and lead to kinetics in which deprotonation of 

the initially formed ammonium ions is rate determining. Imidazolidinones A29–A32 have 

a sterically hindered reaction center by the substituents neighboring the NH group and 

are less basic than A14 (Table 2). As a consequence, even the initial attack of the 

imidazolidinones at the highly reactive benzhydrylium ions E17 and E18 is reversible as 

illustrated in Figures 16 and 17. 

Figure 16a shows traces for three reactions of A29 with E18 performed under exactly the 

same conditions (concentrations etc.), i.e., the kinetics of the reaction of A30 with E18 

without additives are not reproducible. Figure 16b shows that the benzhydrylium ion E17 

is only consumed to a small extent when combined with 11 equivalents of A29. 
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Figure 16. (a) Nonreproducible kinetics of the reactions of A29 (1.78 × 10

−4
 M) with E18 (1.36 × 10

−5
 

M) (b) kinetics of the reaction of A29 (1.67 × 10
−4

 M) with E17 (1.54 × 10
−5

 M) 

In the presence of 9.87 × 10
−4

 M of D1, the reproducibility of the kinetics of the reaction of 

A29 with E18 improved and a linear correlation between kobs and [A29] was observed 

(see 7.2.2). However, in the presence of a similar concentration of D1 (9.66 × 10
−4

 M) kobs 

for the reaction of the better stabilized benzhydrylium ion E17 with A29 did not linearly 

increase with the concentration of A29 (Fig. 17a). A concentration of 1.18 × 10
−3

 M of D2 

also was not sufficient to achieve a linear correlation between kobs and [A29] for the 

reaction of A29 with E17 (Fig. 17b). Clean second-order kinetics were observed for the 

reactions of A29 with E17, however, when a high concentration of D2 (2.33 × 10
−3

 M) was 

present (Fig. 17c). 
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Figure 17. Kinetics of the reactions between A29 and E17 (1.01–1.33 × 10
−5

 M) in the presence of the 
weakly nucleophilic pyridines D1 and D2 
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4.6 Correlation Analysis 

 

Table 3 summarizes that most reactions of the secondary amines with benzhydrylium 

ions followed second-order kinetics in acetonitrile in the absence of any additive. As 

indicated in the last column of Table 3, in several cases 2,4,6-trialkylated pyridines were 

added in order to get second-order kinetics with rate-determining attack of the amine at 

the carbenium center. 

Figure 18 shows that the second-order rate constants (lgk2) for the attack of the amines a 

at the electrophiles E7–E13 correlate linearly with the corresponding E parameters as 

required by eq. (3), whereby the slopes correspond to the nucleophile-specific parameter 

sN and the intercepts on the abscissa (lgk2 = 0) represent the nucleophilicity parameters 

N of the secondary amines A.  

3

4

5

6

7

-12 -11 -10 -9 -8 -7 -6

lg
 k

2

E  

Figure 18. Plot of lgk2 versus E of the reactions of pyrrolidines A with reference electrophiles E in 
acetonitrile at 20 °C 

The almost parallel correlation lines in Figure 18 (numerically expressed by similar sN 

values) illustrates that the relative nucleophilicities of these pyrrolidines are independent 

of the electrophilicity of the reaction partners. Figure 19 shows, however, that the slopes 

(≙ sN) for the pyrrolidines with bulky substituents in 2-position are steeper, i.e. their 

reactivities are more affected by variation of the reaction partner than the those of 

ordinary pyrrolidines. All imidazolidinones A29–A32 are less nucleophilic than the 
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investigated pyrrolidines and have sN values around 1, in between ordinary pyrrolidines 

and pyrrolidines with bulky substituents. 
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Figure 19. Plot of lgk2 versus E of the reactions of pyrrolidines carrying bulky substituents in 2-position 
and imidazolidinones with reference electrophiles E in acetonitrile at 20 °C 

 

 

 

Table 3. Nucleophilicity determination of the investigated amines A 

Amines Electrophiles k2 (M
−1

s
−1

) Aditives N sN 

 

E2 no reaction 

 

19.95 0.68 

E3 2.53 × 10
3 

E4 4.77 × 10
3
 

E5 4.09 × 10
4
 

E6 1.39 × 10
5
 

E7 2.31 × 10
5
 

E8 6.41 × 10
6
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E1 3.25 × 10
1 a

 

 

18.58 0.61 

E2 4.82 × 10
1 a

 

E3 not linear 

E4 not linear 

E5 2.12 × 10
3
 

E6 6.31 × 10
3
 

E7 1.09 × 10
4
 

E8 1.18 × 10
5 a

 

E9 3.50 × 10
5 a

 

E10 1.06 × 10
6
 

E11 2.78 × 10
6
 

 

E8 5.53 × 10
4
 

 

16.78 0.71 

E9 1.67 × 10
5
 

E10 4.22 × 10
5
 

E11 1.15 × 10
6
 

 

E8 3.42 × 10
4
 

 

16.44 0.71 

E9 9.94 × 10
4
 

E10 2.55 × 10
5
 

E11 7.18 × 10
5
 

 

E9 2.72 × 10
3
 

 

13.96 0.76 

E10 7.89 × 10
3
 

E11 2.46 × 10
4
 

E12 7.18 × 10
4
 

E13 1.78 × 10
5
 

E14 1.33 × 10
6
 

 

E8 7.21 × 10
4
 

 

17.43 0.66 

E9 2.29 × 10
5
 

E10 4.51 × 10
5
 

E11 1.33 × 10
6
 

 

 

 

E8 2.67 × 10
4
 

 

16.61 0.67 

E9 6.08 × 10
4
 

E10 1.57 × 10
5
 

E11 4.30 × 10
5
 

E12 9.80 × 10
5
 

 

E7 3.92 × 10
3
 

 

17.24 0.67 

E8 6.03 × 10
4
 

E9 1.70 × 10
5
 

E10 4.14 × 10
5
 

E11 1.12 × 10
6 

 

 

 

 

 

 

E8 9.25 × 10
4
 

 

17.41 0.68 

E9 3.32 × 10
5
 

E10 6.58 × 10
5
 

E11 1.86 × 10
6
 



 

44 

 

 

E7 1.31 × 10
4
 

 

18.33 0.64 

E8 1.72 × 10
5
 

E9 5.48 × 10
5
 

E10 1.05 × 10
6
 

E11 2.93 × 10
6
 

 

E8 7.54 × 10
3
 

 

15.43 0.73 

E9 2.43 × 10
4
 

E10 6.38 × 10
4
 

E11 1.92 × 10
5
 

E12 4.76 × 10
5
 

E13 1.13 × 10
6
 

 

E8 2.90 × 10
4
 

 

16.74 0.67 

E9 7.89 × 10
4
 

E10 2.02 × 10
5
 

E11 4.98 × 10
5
 

 

E8 3.60 × 10
4
 

 

16.50 0.71 

E9 1.10 × 10
5
 

E10 2.63 × 10
5
 

E11 7.69 × 10
5
 

 

E13 1.45 × 10
3
 D2 11.34 0.73 

E15 1.91 × 10
4
 D1 

E17 2.27 × 10
5
 D1 

E18 1.21 × 10
6
  

 

E8 6.57 × 10
3
 

 

14.75 0.82 

E9 2.47 × 10
4
 

E10 7.00 × 10
4
 

E11 2.21 × 10
5
 

 

E8 1.08 × 10
5
 

 

17.61 0.67 

E9 3.70 × 10
5
 

E10 7.67 × 10
5
 

E11 2.04 × 10
6
 

 

E9 1.68 × 10
4
 

 

15.20 0.73 

E10 3.87 × 10
4
 

E11 1.17 × 10
5
 

E12 3.04 × 10
5
 

 

E8 3.33 × 10
4
 

 

15.90 0.77 

E9 8.06 × 10
4
 

E10 2.77 × 10
5
 

E11 7.35 × 10
5
 

E12 2.06 × 10
6
 

 

E8 6.16 × 10
3
 

 

15.32 0.72 

E9 1.54 × 10
4
 

E10 4.42 × 10
4
 

E11 1.31 × 10
5
 

E12 3.37 × 10
5
 

E13 7.81 × 10
5 
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E8 5.39 × 10
3
 

 

15.55 0.69 

E9 1.83 × 10
4
 

E10 3.66 × 10
4
 

E11 1.18 × 10
5
 

E12 2.77 × 10
5
 

E13 6.28 × 10
5
 

 

E13 2.97 × 10
3
 

 

13.57 0.53 

E14 2.11 × 10
4 b

 

E15 1.49 × 10
4
 

E16 1.20 × 10
5 b 

E17 1.33 × 10
5
 

E18 3.09 × 10
5
 

 

E8 2.42 × 10
3
 

 

14.97 0.69 

E9 7.25 × 10
3
 

E10 1.76 × 10
4
 

E11 4.11 × 10
4
 

E12 1.14 × 10
5
 

 

E8 5.44 × 10
4
 

 

17.50 0.64 

E9 1.45 × 10
5
 

E10 3.68 × 10
5
 

E11 8.11 × 10
5
 

 

E11 1.97 × 10
1
 D1 9.16 1.39 

E12 1.27 × 10
2
 D1 

E13 7.92 × 10
2
 D1 

E15 1.16 × 10
5
 D1 

E15 1.14 × 10
5 c

  

 

E9 2.26 × 10
2
 D1 12.03 0.98 

E10 2.67 × 10
3
 D1 

E11 5.30 × 10
3
 D1 

E12 1.63 × 10
4
 D1 

E13 9.65 × 10
4
  

E15 2.05 × 10
6
  

 

E9 5.48 × 10
3
  16.18 0.56 

E10 1.22 × 10
4
  

E11 3.57 × 10
4
  

E12 7.50 × 10
4
  

E13 1.72 × 10
5
  

E15 7.64 × 10
5 c

  

E15 8.02 × 10
5
 D1 

 

 

 

 

 

 

E11 1.26 × 10
2
 D2 9.90 1.22 

E12 3.29 × 10
2
 D2 

E13 4.33 × 10
3
 D2 

E13 4.37 × 10
3 c

 D1 

E15 1.94 × 10
5
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E9 4.90 × 10
3
 D1 14.00 0.84 

E10 3.96 × 10
4
 D1 

E10 4.14 × 10
4 c

  

E10 4.02 × 10
4 c

 D1 

E11 7.29 × 10
4
  

E12 1.60 × 10
5
  

E13 7.15 × 10
5
  

 

E15 2.99 D2 6.04 0.92 

E17 1.20 × 10
2
 D2 

E18 3.79 × 10
2
 D1 

E19 2.16 × 10
4 

 

 

E13 1.33 × 10
−2

 D2 5.44 1.12 

E15 1.38 D2 

E17 3.94 × 10
1
 D2 

E18 4.24 × 10
2
 D1 

 

E13 2.68 × 10
1
 D2 8.76 0.89 

E15 1.33 × 10
3
 D2 

E17 1.63 × 10
4
 D2 

E18 1.10 × 10
5
 D1 

 

E13 1.76 D2 7.39 1.00 

E15 1.28 × 10
2
 D2 

E17 2.48 × 10
3
 D2 

E18 1.89 × 10
4
 D1 

[a]: literature reported date
[63]

 [b]: Second-order rate constants k2 for the reactions of A21 with E14 and 
E16 were not used for the determination of the N and sN parameters. [c]: Comparative measurements 
of the Second-order rate constants k2 under different conditions of additives (concentrations of 
additives see 7.2). 

 

  



 

47 

 

 
Figure 20. Reactivity parameters for 2-substituted pyrrolidines and imidazolidinones in acetonitrile 
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Chapter 5: Discussion 

 

Correlations between nucleophilic reactivities and Brønsted basicities (so-called 

Brønsted correlations) have been a main topic of Physical Organic Chemistry since the 

1930s. It is well known that seperate lgk vs. pKaH correlations are obtained when the 

nature of the central atom of the nucleophiles is varied.
[66]

 However, in recent work we 

reported that lgk vs. pKaH correlations are even very poor when  only N-centered 

nucleophiles of different structures are considered.
[63, 67] 

lg k2 = 0.442pKaH − 2.46
R² = 0.922
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Figure 21. Plot of the rate constants for the reactions of A with E11 versus their Brønsted basicities 
The correlation line is based on the reactivities of pyrrolidines identified by circles (i.e. excludes 
pyrrolidines with bulky substituents and imidazolidinones). Rate constants characterized by open 
symbols were calculated by eq. (3) because their direct measurement is not possible due to the lacking 
thermodynamic driving force or their extremely high speed (A1). 

Because of the wide structural variation of the pyrrolidines (A1–A28) and 

imidazolidinones (A29–A32), it is not possible to select a single reference electrophile for 

the characterization of the nucleophilic reactivities of all investigated amines (A1–A32). In 

order to compare nucleophiles of widely differing reactivities, we have generally regarded 
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the nucleophilicity parameter N as defined by eq. (3). Table 2 shows, however, that 

several of the secondary amines have widely differing sN values with the consequence 

that their N values may differ significantly even if similar rate constants have been 

measured in reactions with certain electrophiles. For that reason, we have plotted the 

rate constants for the reactions of the amines A1–A32 with benzhydrylium ion E11 

against the corresponding pKaH values in Figure 21. The open symbols in Figure 21 refer 

to the rate constants which have not been directly measured but were calculated by eq. 

(3). The reliability of these extrapolations is justified by the high quality of the correlations 

in Figures 18 and 19. 

The correlation line drawn in Figure 21 shows a fair correlation (R
2
 = 0.92) between the 

rate constants of the reactions of the 2-substituted pyrrolidines represented by circles 

with benzhydrylium ion E11, while pyrrolidines with bulky substituents (represented by 

triangles) are excluded. From the Brønsted coeffient of this correlation one can see that 

44% of the differences in basicity are reflected in the transition states of their reactions 

with E11. Figure 21 furthermore shows that the trityl-(A24) and azidodiphenylmethyl- 

substituted pyrrolidines (A27) react 2–3 orders of magnitude more slowly than ordinary 

pyrrolidines of comparable basicity. Obviously the steric retardation is much smaller for 

the Hayashi-Jørgensen catalyst A25, which is located only by a factor of 40 below the 

correlation line. The nucleophilicities of the diphenylprolinol A26 and triphenylsilyl- 

substituted pyrrolidine A28 are only marginally smaller than expected from their 

basicities. 

The imidazolidinones A29–A32 (represented by open triangles) react much more slowly 

than all pyrrolidines included in this investigation. This can only partially be due to their 

lower basicity, since the pyrrolidine A21, which has a similar basicity reacts much faster. 

Obviously, steric retardation is most effective in the reactions of MacMillan generation 2 

catalyst A31, followed by MacMillan generation 1 catalyst A29. Steric effects also retard 

the reactions of the 2-furyl substituted imidazolidinones A30 and A31, among which the 

trans-isomer is 20-times less reactive because there is a substituent on both faces of the 

5-membered ring. 

 

A different analysis of steric effects on nucleophilic reactivities can be based on the 

comparison of pyrrolidines A2, A3, and A5. Table 4 and Figure 22 show that one 

2-methyl group reduces Brønsted basicity and nucleophilic reactivity by a factor of 2, 

which may be assigned to a statistical effect. While the second 2-CH3 group has almost 
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no effect on basicity, the nucleophilic reactivity towards benzhydrylium ions is reduced by 

approximately two orders of magnitude.  

 

Figure 22. Comparison of the Brønsted basicities of A2, A3, and A5 

Table 4. Comparison of the second order rate constants k2 (M
−1

s
−1

) for the reactions of A2, A3 and A5 
with electrophiles E8-E11 

k2 A2 A3 A5 

E8 1.18 × 10
5
 5.53 × 10

4
 - 

E9 3.50 × 10
5
 1.67 × 10

5
 2.72 × 10

3
 

E10 1.06 × 10
6
 4.22 × 10

5
 7.89 × 10

3
 

E11 2.78 × 10
6
 1.15 × 10

6
 2.46 × 10

4
 

 

Since 2-methyl-pyrrolidine A3 and 2-isopropyl-pyrrolidine A4 have similar basicities and 

nucleophilicities, we can conclude that the differences between the 2-monosubstituted 

pyrrolidines characterized by circles in Figure 21 are predominantly due to electronic 

effects.  

As a consequence, the basicities (Figures 23 and 24 left) as well as the rate constants for 

the reactions of these pyrrolidines (systems with bulky substituents in 2-position excluded) 

with reference electrophile E11 (Figures 23 and 24 right) correlate fairly with the Hammett 

σm parameters
[68]

 of the 2-substituents.   

lg k2 = −5.05σm + 5.58
R² = 0.228
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pKaH = −11.7σm + 19.0
R² = 0.572
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Figure 23. Hammett plot between pKaH and σm of substituents at C-2 positon of pyrrolidine ring (left); 
Hammett plot between the rate constants for the reactions of A with E11 and σm of substituents at C-2 
positon of pyrrolidine ring (right). 
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lg k2 = −1.61σm + 5.99
R² = 0.805
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Figure 24. Hammett plot between pKaH and σm of substituents at pyrrolidin-2-ylmethyl positon (left); 
Hammett plot between the rate constants for the reactions of A with E11 and σm of substituents at 
pyrrolidin-2-ylmethyl positon (right) 

The corresponding Hammett ρ values for the rate constants (−5.05 in Fig. 23 and −1.61 

in Fig. 24) are somewhat smaller than those for the correlations of pKaH with σm (−11.7 in 

Fig. 23 and −4.04 in Fig. 24). The much lower quality of the correlations for the 

pyrrolidines with substituents at C-2 position of pyrrolidine ring (Fig. 23) compared to the 

plots in Fig. 24 indicates that other effects (steric effect, etc.) beyond electric effect play a 

more important role when the substituents are located closer to the react center nitrogen 

atom. We have also analyzed to corresponding correlations with Taft's aliphatic 

substituent constants σ
*[68b]

. Figures 25 and 26 show that these correlations are of similar 

quality, we have not pursued these correlations further. 

pKaH = −2.16σ* + 19.9
R² = 0.702
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Figure 25. Taft plot between pKaH and σ
*
 of substituents at C-2 positon of pyrrolidine ring (left); Taft 

plot between the rate constants for the reactions of A with E11 and σ
*
 of substituents at C-2 positon of 

pyrrolidine ring (right) 
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pKaH = −0.781σ* + 19.9
R² = 0.725
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Figure 26. Taft plot between pKaH and σ

*
 of substituents at pyrrolidin-2-ylmethyl positon (left); Taft plot 

between the rate constants for the reactions of A with E11 and σ
*
 of substituents at 

pyrrolidin-2-ylmethyl positon (right) 

Though alkyl carboxylates are stronger bases in acetonitrile [pKa(CH3CO2H) = 23.51] 

than 2-substituted pyrrolidine A3 [pKa(A3H
+
) = 19.57] (Fig. 27), protonation of A1 occurs 

at nitrogen to give a zwitterion, as shown in the crystal structure of 4-hydroxyproline
*[69]

. 

The short distance between H1 and O1 marked in Figure 28 stabilizes the zwitterion and 

explains, why the prolinate anion A1 is a stronger Brønsted base as well as a stronger 

nucleophile than the parent pyrrolidine. 

 

Figure 27. Comparison of the Brønsted Basicity and Nucleophilicity (krel vs E11) of the Prolinate Anion 
and its Building Blocks (Acetonitrile, 20 °C)

[58,70]
 *measured at 25 °C  

 

Figure 28. Single crystal structure of 4-hydroxyproline
[69] 

As shown in Figure 29, the amino-substituted pyrrolidines A8–A10 are slightly stronger 

Brønsted bases than 2-methyl pyrrolidine (A3), whereas the hydroxyl and 

                                                   
*
 Crystal structure of the parent proline generally include an additional HCl molecule.

[71]
 

2.06 Å 
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methoxyl-substituted pyrrolidine A12 and A13 are slightly weaker Brønsted bases.  

Their reactivities toward electrophile E11 differ only slightly. While the 

aminomethyl-substituted pyrrolidine A8 is a marginally stronger Brønsted base than the 

dimethylaminomethyl-substituted pyrrolidine A9, the nucleophilic reactivity of A8 is 

smaller than that of A9. Analogonsly, the hydroxylmethyl-substituted pyrrolidine A12 is a 

stronger Brønsted base than methoxylmethyl-substituted pyrrolidine A13, whereas the 

nucleophilic reactivity of A12 is smaller than that of A13.   

 

Figure 29. Comparison of Brønsted basicities and rate constants for the reactions of 2-substituted 
pyrrolidines with E11 in acetonitrile at 20 °C 

The unexpected observation that the less basic N,N-dimethylamino-substituted 

pyrrolidine A16 has a similar nucleophilic reactivity as the N,N-dimethylaminomethyl 

substituted pyrrolidine A9 (Figure 30) can be assigned to intramolecular hydrogen bridge 

in the ammonium ion initially formed during electrophilic attack at A16. This bond is 

marked in the structurally related tripeptide in Figure 31. The corresponding interactions 

with the secondary amide in A17 and the ester A15 are obviously less important.  

 

Figure 30. Comparison of basicities and nucleophilic reactivities towards E11 of A15–A17 and A9 

 

Figure 31. Single crystal structure of tripeptide
[72] 

Figure 32 shows that the aryl urea-substituted pyrrolidine A23 has a slightly weaker 

Brønsted basicity and nucleophilic reactivity than 2-methyl-pyrrolidine (A3), whereas the 

2.28 Å 

1.76 Å 
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change from the urea to the thiourea derivative A22 reduces the Brønsted basicity and 

nucleophilic reactivity by two orders of magnitude. The phthalimidyl-substituted 

pyrrolidine A18 is one order of magnitude less basic than A23, while their nucleophilic 

reactivity is similar. 1,2,3-Triazole- and 1-imidazole-substituted pyrrolidines A19 and A20 

have similar Brønsted basicities and nucleophilic reactivities, whereas butylation of 

imidazole (A21) reduces the Brønsted basicity by 5.6 orders of magnitude and the 

nucleophilic reactivity by a factor of 172. Trifluoromethyl-substituted pyrrolidine A14 is 31 

times more basic but 4 times less nucleophilic than A21. 

 

Figure 32. Comparison of the Brønsted basicities of pyrrolidines A3, A14 and A18–A23 the rate 
constants of their reactions with E11 in acetonitrile at 20 °C 

 
Figure 33. Comparison for the Brønsted basicity decrease (in acetonitrile) by introduction of two 
phenyl groups  

Comparison of the Brønsted basicities of the pyrrolidines in the upper line of Figure 33 

with those in the bottom line shows that introduction of two phenyl groups in the side 

chain reduces the basicity by one to two orders of magnitude. Comparison of A6 and A7 

shows that the change from benzyl to benzhydryl substitution reduces the basicity by a 
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factor of three, whereas the trityl group reduces the basicity by fast 2 orders of magnitude 

relative to A6. 

The analogous substituent effects on nucleophilic reactivities are shown in Figure 34 for 

the reactions of amines a with electrophile E11. The benzhydryl-substituted pyrrolidine 

A7 is 2.7 times less nucleophilic than 2-methylpyrrolidine (A3), whereas the 

diphenylhydroxymethyl group reduces the reactivity by one order of magnitude more than 

hydroxylmethyl group (A26 vs A12). Large steric effects on nucleophilic reactivities are 

found in the comparison A24/A6 (factor 6750) and A27/A11 (factor 1520). 

 

Figure 34. Comparison for the second order rate constants of the reactions of A with E11 by 
introduction of two phenyl groups 

Figure 35 shows that the basicities of the 2-alkyl-substituted pyrrolidines correlate fairly 

with Taft's steric parameters Es.
[68b]

   

pKaH = 0.522Es + 19.8
R² = 0.919
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Figure 35. Correlation between pKaH and Es of substituted pyrrolidines 
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Figure 36 shows crystal structures of pyrrolidines with bulky groups in 2-position.  

 

Figure 36. Crystal structures (with CCDC numbers) of pyrrolidines with bulky substituents in 2-position 

Whereas the amino group in the four structures on the right is schielded by two gauche 

aryl groups, the intramolecular hydrogen bridge (N1–H1–O1) fixes the OH-group in 

gauche position to the amno group and thus accounts for the weaker reduction of 

nucleophilic reactivity of A26 (Fig. 34). 
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The imidazolidinones A29–A32 can be looked at as 2-amido substituted pyrrolidines 

(Scheme 12). 

Scheme 12. Comparison of Brønsted basicities and rate constants (M
–1

s
–1

) of the reactions of A16 and 
A29–A32 with E11 in acetonitrile at 20 °C  

 

Scheme 12 illustrates that the marked in-plane dialkylamido group in the 

imidazolidinones A29–A32 reduces basicity by 7–8 pKa units and nucleophilic reactivity 

by 6–9 orders of magnitude compared to A16, which indicates that the in plane 

N,N-dialkylamido group in the imidazolidinones is a much stronger electron acceptor than 

the N,N-dialkylamido group in 2-position of the pyrrolidine A16.  

 

Figure 37. Crystal structure of protonated A29 

The planar arrangement of the amido group may lead to an interaction of the nitrogen 

lone pair of the NH group with the π
*
 orbital of the carbonyl group and thus reduce 

basicity and nucleophilicity of imidazolidinones (Crystal structure of A29H
+
 in Fig. 37 

shows the angle between N1–H1 and the plane N2–C4–O1 is 88.7° and the distance 

from N1 to N2–C4 is 2.2 Å). In addition, the two nitrogen atoms in A29–A32 are in 

geminal position and may undergo different anomeric interactions in the nonprotonated 

and protonated imidazolidinones. 
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Figure 38 shows the intersection of the extrapolated correlation lines of Figure 19 with the 

horizontal line at lgk2 = 9, i.e. where the reactions become diffusion–controlled (called 

Ediff). One can see that the ordering of these intersections reflects the relative pKaH values 

of the amines.  
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Figure 38. Extrapolations of the lgk2 vs E correlations to the diffusion limit (k2 = 10
9
 Lmol

−1
s

−1
)  

 
A plot of these intersections (Ediff) against the Brønsted basicities of pyrrolidines and 

imidazolidinones (Fig. 39) shows a much better correlation than the analogous plot in 

Figure 21, from which only C2-disubstituted compounds (A5, A29) and the amines with 

small sN parameter (0.56 for A26, 0.53 for A21) deviate. The origin of this correlation has 

so far not been understood. 
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Ediff = −0.643pKaH + 8.4
R² = 0.926
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Figure 39. Correlation between Brønsted basicity of secondary amines and their Ediff values 
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Chapter 6: Conclusion  

 

The kinetic and thermodynamic data presented in this investigation can be used for 

optimizing the conditions for reactions catalyzed by secondary amines. The low 

nucleophilicities of the imidazolidinones, shown in Fig. 20 explain, for example, why they 

generally do not react with nonactivated carbonyl groups and require the presence of 

Brønsted acids, most commonly trifluoroacetic acid. Fine-tuning of the Brønsted acids is 

now possible by consideration of the pKa values of the cocatalyzing Brønsted acids and 

the electrophilicity of the carbonyl substrate. On the other hand, many pyrrolidines are 

much more nucleophilic than the imidazolidinones and may react with carbonyl 

compounds without Brønsted acid activation. Brønsted acids may even be detrimental 

because they deactivate the pyrrolidines by protonation. 

 

The analysis of steric and electronic substituent effects on nucleophilicity and basicity 

presented in this work can furthermore be used as a guide for designing organocatalysts 

with new structural motives. 
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Chapter 7 Experiment 

7.1 Synthesis and Analytics 

7.1.1 General 

7.1.1.1 Analytics  

1
H NMR and 

13
C NMR spectra were measured on Bruker Avance 400 MHz, Varian 600 

MHz, or Bruker Avance 800 MHz spectrometers. The 
1
H and 

13
C NMR chemical shifts (δ) 

are given in ppm and calibrated to residual solvent peaks. Coupling constants are given in 

Hz. Multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, 

pent = pentet, sext = sextet, m = multiplet and br = broad. The assignments of individual 

NMR signals were based on additional 2D-NMR experiments (gHSQC, gHMBC, and 

NOESY). HRMS spectra were determined on a Finnigan MAT 95 mass spectrometer. IR 

spectra were recorded on a FTIR Spectrometer SPECTRUM BX II (Perkin Elmer). 

 

7.1.1.2 Synthesis  

Flash column chromatography was performed on Merck silica gel 60 (0.040–0.063 mm) or 

Sigma-Aldrich aluminium oxide 90 active neutral (0.063–0.200 mm) using compressed 

air. Thin layer chromatography (TLC) was performed using Merck silica gel 60 F254 

aluminum plates. Eluted plates were visualized using a 254 nm UV lamp and/or by 

treatment with a suitable stain followed by heating. Concentration under reduced pressure 

was performed on a rotary evaporator with a water bath temperature of 40 °C. Starting 

materials and reagents were purchased from Sigma-Aldrich or ABCR and were used as 

supplied or, in the case of some liquids, distilled. Solvents were distilled or dried prior to 

use over appropriate drying agents: dichloromethane (calcium hydride), diethyl ether 

(sodium/benzophenone), tetrahydrofuran (sodium/benzophenone), toluene (sodium 

hydride), and acetonitrile (phosphorus pentoxide). Solvents for filtration, chromatography, 

and recrystallization were purchased from Fisher and used as received. 

Pyrrolidine (A2) was purchased (ABCR) and freshly distillated over calcium hydride. 

Pyrrolidine A6 was purchased (ABCR) and used as received. 

L-Valinol was synthesized by a procedure reported by Mckennon.
[44]

  

N-Boc-L-prolinol and 1-Boc-2-(S)-pyrrolidinylmethyl p-toluenesulfonate were prepared 

according to a literature procedure.
[34]

  

1-Benzyl 2-(4-nitrophenyl) (S)-pyrrolidine-1,2-dicarboxylate was synthesized by a 

procedure reported by Diakos.
[42]  
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tert-Butyl pyrrolidine-1-carboxylate (N-Boc pyrrolidine) was prepared following the 

literature procedure by Kerrick.
[46]

  

 

7.1.2 Syntheses of Secondary Amines 

 

Preparation of Potassium L-prolinate (A1) 

L-Proline (0.890 g, 7.73 mmol) was loaded into a 25 ml Schlenk flask, which was 

subsequently dried by high vacuum, filled with nitrogen atmosphere and cooled with ice 

bath. A saturated solution of potassium tert-butoxide (1.30 g, 11.6 mmol) in anhydrous 

tetrahydrofuran was added. The mixture was intensely stirred for 2 hrs at 45 °C. The 

suspension was filtrated and the residue was washed with anhydrous tetrahydrofuran 

under nitrogen atmosphere. 1.07 g white solid (93%, decomposed at 214 °C) as product 

was obtained after high-vacuum drying.  

1
H NMR (400 MHz, DMSO-d6) δ 2.96 (dd, J = 8.5, 5.7 Hz, 1H), 2.88 (ddd, J = 

10.4, 7.1, 5.0 Hz, 1H), 2.46 (dt, J = 10.3, 7.0 Hz, 1H), 1.72 (dq, J = 12.0, 7.6 Hz, 

1H), 1.57 (ddt, J = 11.8, 8.1, 5.7 Hz, 1H), 1.54–1.40 (m, 1H), 1.44–1.31 (m, 1H).  

13
C NMR (101 MHz, DMSO-d6) δ 176.8, 62.8, 47.1, 31.3, 26.2.  

 

Preparation of 2-Methylpyrrolidine (A3) 

 

Compound A3-OH was prepared according to the modified procedure by Cicchi.
[43]

 

1,4-Dibromopentane (5.25 ml, 38.5 mmol) and dimethylamine hydrochloride (14.6 g, 179 

mmol) were dissolved in 180ml trimethylamine. The solution was refluxed for 16 h at 90 °C. 

The residue, from removing the solvent under vacuum, was purified by column 

chromatography on silica gel (EtOAc/MeOH 10:1) to afford A3-OH, which was mixed with 

palladium on carbon (1.70 g) in 160 ml of acetic acid under hydrogen atmosphere. The 

suspension was kept stirring for 24 h at ambient temperature and then filtrated through 

celite. The filtrate was mixed with 20 ml of trifluoroacetic acid and the whole was 

concentrated. The residue was dissolved in 55 ml of 6 M NaOH solution. The aqueous 

phase was extracted with diethyl ether (2 × 60 ml) and dichloromethane (2 × 60 ml). The 

organic phases were combined and the solvent was removed under reduced pressure to 
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provide the crude product, which was distilled (1 bar, 8890 °C) to afford A3 (2.43 g, 28.5 

mmol, 74.1%) as a colorless oil.  

1
H NMR (300 MHz, CDCl3) δ 3.08–2.94 (m, 2H), 2.85–2.72 (m, 1H), 1.91–1.62 (m, 

3H), 1.24–1.13 (m, 1H), 1.11 (d, J = 6.3 Hz, 3H). 

13
C NMR (75 MHz, CDCl3) δ 54.7, 46.9, 33.8, 25.9, 21.4. 

HRMS (EI): m/z calculated for C5H12N
+
 (M + H

+
): 86.0964, found: 86.0964.  

 

Preparation of (R)-2-Isopropylpyrrolidine (A4) 

 

Amine A4 was prepared by a modified procedure described by Tseng.
[45]

 L-Valinol (11.8 g, 

114 mmol) was dissolved in 200 ml of pyridine. p-Toluenesulfonyl chloride (87.5 g, 459 

mmol) was added in portions under ice cooling bath. The mixture was stirred at ambient 

temperature for 24 h and then was poured onto an ice-water mixture (300 ml). The 

aqueous phase was extracted with dichloromethane (4 × 200 ml). The combined organic 

phase was successively with 10% HCl (3 × 200 ml), saturated copper sulfate solution (2 × 

200 ml), water (1 × 200 ml), saturated bicarbonate solution (2 × 200 ml) and brine (4 × 100 

ml). After drying (MgSO4) and removal of the solvent under vacuum, the residue was 

purified by column chromatography on silica gel (pentane/ethyl acetate 2:1 to 3:2). The 

obtained compound (S)-3-methyl-2-((4-methylphenyl)sulfonamido)butyl p-tosylate (26.0 g, 

63.2mmol) was mixed with diethyl malonate (30.4 g, 190mmol) and potassium 

tert-butoxide (21.3 g, 190mmol) in 600 ml of tetrahydrofuran. The solution was refluxed for 

1 h and the solvent was removed under vacuum. The residue was mixed with 100 ml of 

brine. The aqueous phase was extracted with ethyl acetate. The combined organic phase 

was concentrated.  

The residual mixture was mixed with 100 ml of 48% HBr aqueous solution and the whole 

mixture was refluxed for 18 h.  

After removal of the solvent under reduced pressure, the residue was dissolved in 250 ml 

of pyridine. The solution was refluxed for 24 h and the concentrated to provide the crude 

product of (R)-5-isopropylpyrrolidin-2-one, which was first purified by column 

chromatography on silica gel (chloroform/methanol 5:1) and then by a quick distillation (2 

× 10
-3

 mbar, 120 °C) as a colorless oil. 
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The obtained (R)-5-isopropylpyrrolidin-2-one (4.90 g, 38.5 mmol) was mixed with lithium 

aluminium hydride (2.20 g, 58.0 mmol) in 70 ml of anhydrous tetrahyrofuran. After 18 h 

refluxing, 10 ml of 20% KOH solution was dropped into the mixture under ice cooling bath. 

The suspension was filtrated and the filtrate was dried and concentrated to afford the 

crude product, which was distilled (48 mbar, 62 °C) to provide A4 (1.89 g, 16.7 mmol, 

14.6%) as a colorless oil. 

1
H NMR (400 MHz, CDCl3) δ 2.99 (ddd, J = 10.2, 7.3, 5.4 Hz, 1H), 2.81 (dt, J = 

10.2, 7.4 Hz, 1H), 2.60 (td, J = 8.4, 6.8 Hz, 1H), 1.88–1.78 (m, 1H), 1.77–1.64 (m, 

2H), 1.56 (br, 1H), 1.57–1.40 (m, 1H), 1.27 (dtd, J = 12.0, 9.1, 7.6 Hz, 1H), 0.96 (d, J = 6.6 

Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H). 

13
C NMR (101 MHz, CDCl3) δ 66.2, 47.0, 34.2, 29.9, 25.7, 20.8, 20.1. 

HRMS (EI): m/z calculated for C7H16N
+
 (M + H

+
): 114.1277, found: 114.1278. 

 

Preparation of 2,2-Dimethylpyrrolidine (A5)  

Method 1 

 

5-Nitropentan-2-one was synthesized following the procedure by Alderson.
[48]

 

5-Methyl-3,4-dihydro-2H-pyrrole 1-oxide was prepared from 5-nitropentan-2-one 

according to the procedure by Pou.
[49]

 Compound A5-OH was synthesized by treatment of 

nitrone with methylmagnesium bromide following the procedure by Ali.
[50]

 

The obtained A5-OH (4.50 g, 39.1 mmol) and palladium on carbon (450 mg) were mixed 

in 60.0 ml of acetic acid. The mixture was stirred overnight under hydrogen atmosphere at 

ambient temperature, filtrated through celite and concentrated. The residue was dissolved 

in 3.00 ml of water. The solution was dropped into 200 g potassium hydroxide in a closed 

250 ml flask. Amine A5 was collected by a quick distillation (1 × 10
-3 

mbar, rt, distillate 

condensed under liquid nitrogen cooling bath) to afford A5 (810 mg, 8.17 mmol, 20.9%) as 

a colorless oil.  

    

Method 2 
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Methyl 4-nitropentanoate was synthesized following the procedure by Leinisch.
[51]

 

5,5-Dimethylpyrrolidin-2-one was prepared from methyl 4-nitropentanoate according to 

the procedure by Osby.
[52] 

5,5-Mimethylpyrrolidin-2-one was reduced by lithium aluminium 

hydride following the procedure by Moffett.
[53]

  

1
H NMR (400 MHz, CDCl3) δ 3.00–2.94 (m, 2H), 1.85–1.73 (m, 2H), 1.56–1.45 (m, 

2H), 1.14 (s, 6H). 

13
C NMR (101 MHz, CDCl3) δ 59.0, 46.2, 39.7, 29.0, 26.3. 

HRMS (EI): m/z calculated for C6H13N
+ (M+): 99.1043, found: 99.1043. 

 

Preparation of (S)-2-Benzhydrylpyrrolidine (A7) 

Amine A7 was prepared according to the procedure by Claudio.
[41]

  

1
H NMR (400 MHz, CD3CN) δ 7.40–7.32 (m, 4H), 7.31–7.24 (m, 4H), 7.19–7.13 

(m, 2H), 3.91–3.84 (m, 1H), 3.72 (d, J = 10.3 Hz, 1H), 2.90 (dtd, J = 10.0, 5.1, 2.4 

Hz, 1H), 2.82–2.75 (m, 1H), 1.85 (br, 2H), 1.78–1.58 (m, 3H), 1.34–1.20 (m, 1H).  

13
C NMR (101 MHz, CD3CN) δ 145.7, 145.5, 129.4, 129.3, 129.1, 129.0, 127.1, 127.0, 

62.7, 59.4, 47.1, 31.7, 26.0. 

HRMS (EI): m/z calculated for C17H20N
+
 (M + H

+
): 238.1590, found: 238.1589. 

 

Preparation of (S)-Pyrrolidin-2-ylmethanamine (A8) 

 

Compound A8-Boc was synthesized following the procedure reported by Cao.
[33]

 

Compound A8-Boc (2.90 g, 14.5 mmol) was dissolved in a mixture of trifluoroacetic acid 

(10 ml) and dichloromethane (20 ml). The solution was stirred overnight at ambient 

temperature. The residue, from removing the solvent under reduced pressure, was mixed 

at 0 °C with 20 ml NaOH solution (6 M). The aqueous phase was extracted with 

dichloromethane (5 × 20 ml). The combined organic phases were dried (MgSO4) and 

concentrated. The crude product was distilled (20 mbar, 7375 °C) to provide A8 (500 mg, 

4.99 mmol, 34.4%) as a colorless oil.  

1
H NMR (400 MHz, CDCl3) δ 3.06 (m, 1H), 2.96–2.82 (m, 2H), 2.68 (ddd, J = 

12.4, 4.9, 0.9 Hz, 1H), 2.59 (ddd, J = 12.4, 7.5, 0.9 Hz, 1H), 1.90–1.58 (m, 3H), 

1.35 (br, 2H), 1.35–1.21 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 61.3, 47.4, 46.8, 29.3, 26.0. 
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Preparation of (S)-N,N-Dimethyl-1-(pyrrolidin-2-yl)methanamine (A9) 

The crude product of Amine A9 was synthesized following the procedure reported by 

Diakos,
[42]

 which was kept in vacuum (1.1 mbar) for 1 h at 0 °C. A quick distillation (rt, 

1 × 10
–3 

mbar, distillate condensed under liquid nitrogen cooling bath) was proceeded to 

provide A9 as a colorless oil. 

1
H NMR (400 MHz, CD3CN) δ 3.10 (p, J = 6.9 Hz, 1H), 2.86 (ddd, J = 10.0, 7.2, 

5.8 Hz, 1H), 2.72 (dt, J = 9.9, 7.2 Hz, 1H), 2.23–2.16 (m, 1H), 2.16 (s, 6H), 2.10 

(dd, J = 11.9, 5.8 Hz, 1H), 1.83–1.57 (m, 3H), 1.27 (ddt, J = 12.0, 8.6, 6.8 Hz, 1H).  

13
C NMR (101 MHz, CD3CN) δ 66.4, 57.1, 46.8, 46.2, 30.8, 25.8. 

IR (neat, ATR probe, cm
-1

): 3335, 2945, 2864, 2823, 2774, 1633, 1530, 1458, 1396, 1342, 

1261, 1195, 1168, 1149, 1100, 1033, 908, 841, 812, 731. 

HRMS (EI): m/z calculated for C7H17N2
+
 (M + H

+
): 129.1386, found: 129.1385.  

 

Preparation of (S)-2-((Dimethylamino)methyl)pyrrolidin-1-ium 

trifluoromethanesulfonate (A9H
+
OTf

−
) 

 

Amine A9 (0.236 g, 1.84 mmol) was dissolved in 5 ml of anhydrous diethyl ether. Triflic 

acid (0.207 g, 1.38 mmol) was dissolved in 5 ml of anhydrous diethyl ether. The triflic acid 

solution was dropped into the solution of A9 under ice cooling bath. The precipitate was 

filtrated and dried under vacuum to afford product A9H
+
 with quantitative yield as a 

colorless solid (mp 107.0–109.0 °C). 

1
H NMR (400 MHz, CDCl3) δ 7.49 (br, 2H), 3.94–3.81 (m, 1H), 3.40 (tt, J = 8.4, 

4.2 Hz, 2H), 2.62–2.39 (m, 2H), 2.27–2.14 (m, 1H), 2.14–2.01 (m, 2H), 1.68 (ddt, 

J = 12.5, 7.2, 6.1 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 59.9, 57.4, 45.6, 45.2, 28.1, 23.8. 

 

Preparation of (S)-1-(Pyrrolidin-2-ylmethyl)pyrrolidine (A10) 

 

Compound A10-Boc was synthesized in analogy to the reported procedure by Hendrie.
[35]

 

1-BOC-2-(S)-pyrrolidinylmethyl p-toluenesulfonate (3.04 g, 8.55 mmol) and pyrrolidine 

(2.67 g, 37.5 mmol) were dissolved in 30 ml of anhydrous DMSO. The solution was kept 
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overnight at 50 °C. After mixing with 50 ml of water, the mixture was extracted with diethyl 

ether (3 × 50 ml). The residue, resulting from removal of the solvent in vacuo, was purified 

by column chromatography on silica gel (EtOAc/MeOH 4:1) to afford A10-Boc (2.14 g, 

8.41 mmol, 98.4%). The obtained A10-Boc (2.14 g, 8.41 mmol) was dissolved in a mixture 

of dichloromethane (30 ml) and 10 ml of trifluoroacetic acid. The solution was stirred 

overnight at ambient temperature. After removing the solvent under reduced pressure, 

diethyl ether was added into the residue. The mixture was filtrated and the residue was 

washed with diethyl ether to provide A10H
+
 with quantitative yield, which was dissolved in 

10 ml of 1M NaOH solution at 0 °C. The aqueous phase was extracted with 

dichloromethane (5 × 30 ml). The combined organic phase was dried (MgSO4) and 

concentrated. The residue was first kept under vacuum (1 mbar) at 0 °C for 1 h and then a 

quick distillation (60 °C, 4 × 10
–3 

mbar, distillate condensed under liquid nitrogen cooling 

bath) was proceeded to provide A10 (725 mg, 4.70 mmol, 58.1%) as a colorless oil.  

1
H NMR (400 MHz, CDCl3) δ 3.20 (dtd, J = 8.3, 7.0, 5.2 Hz, 1H), 2.97 (ddd, J = 

10.1, 7.3, 5.9 Hz, 1H), 2.83 (ddd, J = 10.1, 7.7, 6.6 Hz, 1H), 2.59–2.43 (m, 5H), 

2.37–2.29 (m, 1H), 1.95 (br, 1H), 1.87 (dddd, J = 12.4, 8.6, 7.3, 5.5 Hz, 1H), 1.80–1.63 (m, 

6H), 1.32 (ddt, J = 12.2, 8.7, 6.9 Hz, 1H).  

13
C NMR (101 MHz, CDCl3) δ 62.4, 57.6, 54.8, 46.3, 30.3, 25.2, 23.6. 

 

Preparation of (S)-2-(Azidomethyl)pyrrolidine (A11) 

 

Following the procedure by Dahlin crude A11-Boc was prepared,
[36]

 which was purified by 

column chromatography on silica gel (n-pentane/ethyl acetate 10:1). Ammonium A11H
+
 

was synthesized from A11-Boc according to the reported method by Luo.
[25]

 The obtained 

A11H
+
 (1.85 g, 7.70 mmol) was mixed with 25 ml of 6 M NaOH solution under ice cooling 

bath. The aqueous phase was extracted with dichloromethane (3 × 30 ml). The organic 

phase was dried and concentrated. The residue was purified by a quick distillation (4 × 

10
−3

 mbar, rt, distillate condensed under liquid nitrogen cooling bath) to afford A11 (560 

mg, 4.44 mmol, 57.6%) as a colorless oil. 

1
H NMR (400 MHz, CDCl3) δ 3.35–3.12 (m, 3H), 3.02–2.85 (m, 2H), 1.95 – 1.64 

(m, 4H), 1.42 (ddt, J = 12.2, 8.6, 6.5 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 57.9, 56.4, 46.8, 29.2, 25.7. 

HRMS (EI): m/z calculated for C5H11N4
+
 (M + H

+
): 127.0978, found: 127.0980. 
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Preparation of (S)-Pyrrolidin-2-ylmethanol (A12) 

Amine A12 was synthesized by direct reduction of L-proline with lithium aluminium 

hydride as a colorless oil, which was pioneered by Vogl.
[31]

  

1
H NMR (400 MHz, CD3CN) δ 3.38 (dd, J = 10.7, 4.7 Hz, 1H), 3.30 (br, 2H), 3.27 

(dd, J = 10.8, 6.9 Hz, 1H), 3.09 (qd, J = 7.0, 4.8 Hz, 1H), 2.90–2.71 (m, 2H), 

1.82–1.54 (m, 3H), 1.33 (ddt, J = 11.9, 8.5, 6.9 Hz, 1H). 

13
C NMR (101 MHz, CDCl3) δ 65.4, 60.9, 47.0, 28.5, 26.4. 

1
H NMR (599 MHz, CDCl3) δ 3.51 (dd, J = 9.9, 3.7 Hz, 1H), 3.34–3.26 (m, 2H), 2.99–2.92 

(m, 1H), 2.86 (dt, J = 10.5, 6.7 Hz, 1H), 2.20 (br, 2H), 1.88–1.74 (m, 2H), 1.74–1.64 (m, 

1H), 1.48–1.40 (m, 1H). 

13
C NMR (151 MHz, CDCl3) δ 64.9, 59.3, 46.6, 27.8, 26.3. 

 

Preparation of (S)-2-(Methoxymethyl)pyrrolidine (A13) 

 

The preparation of A13-Boc from N-Boc-L-Prolinol follows the procedure described by 

Krishna.
[32]

 Compound A13-Boc (11.6 g, 53.9 mmol) was mixed with 10 ml of 

trifluoroacetic acid and 100 ml of dichloromethane. The solution was stirred overnight at 

ambient temperature and concentrated. The residue was mixed with 20 ml of 2.5 M HCl 

solution. The aqueous phase was washed with diethyl ether (2 × 30 ml) and neutralized 

with 4 M NaOH solution till pH value of the solution was above 10. The aqueous phase 

was then extracted with dichloromethane (5 × 30 ml). The combined organic phase was 

dried (Na2SO4) and concentrated. The rude product was distilled (52 mbar, 7080 °C) to 

afford A13 (4.47 g, 40.2 mmol, 74.6%) as a colorless oil. 

1
H NMR (400 MHz, CDCl3) δ 3.35–3.25 (m, 1H), 3.31 (s, 3H), 3.26–3.18 (m, 

2H), 2.91 (ddd, J = 10.2, 7.1, 5.8 Hz, 1H), 2.82 (ddd, J = 9.9, 7.4, 6.4 Hz, 1H), 

1.93 (br, 1H), 1.83–1.58 (m, 3H), 1.41–1.27 (m, 1H).  

13
C NMR (101 MHz, CDCl3) δ 76.4, 59.0, 57.8, 46.6, 27.9, 25.4. 

1
H NMR (400 MHz, CD3CN) δ 3.28 (s, 3H), 3.26–3.09 (m, 3H), 2.84 (ddd, J = 9.8, 7.0, 5.7 

Hz, 1H), 2.76 (ddd, J = 9.9, 7.3, 6.6 Hz, 1H), 1.82 (br, 1H), 1.80–1.55 (m, 3H), 1.38–1.24 

(m, 1H). 

13
C NMR (101 MHz, CD3CN) δ 77.5, 58.9, 58.5, 47.1, 29.0, 26.0. 
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Preparation of 2-(Trifluoromethyl)pyrrolidine (A14) 

The preparation of A14 was following the procedure by Schevchenko.
[56]

  

1
H NMR (400 MHz, CD3Cl) δ 3.70–3.59 (m, 1H), 3.05–2.97 (m, 2H), 2.08–1.82 

(m, 4H), 1.81–1.68 (m, 1H). 

13
C NMR (101 MHz, CD3Cl) δ 127.1 (q, J = 279.2 Hz), 58.8 (q, J = 29.6 Hz), 47.3, 26.0 (q, 

J = 1.8 Hz), 25.7. 

19
F NMR (376 MHz, Chloroform-d) δ −76.90 (d, J = 8.1 Hz). 

 

Preparation of Methyl L-prolinate (A15) 

 

Amine A15 was synthesized through direct esterification of amino acid in analogy to the 

documented method by Brenner.
[30]

 Thionylchloride (2.50 ml, 34.5 mmol) was dropped 

into a solution of L-proline (2.48 g, 21.5 mmol) in 20 ml of MeOH under ice cooling bath. 

The mixture was refluxed for 4 h and concentrated under vacuum. The residue was 

neutralized with saturated K2CO3 solution, and the aqueous phase was extracted with 

chloroform. The organic phase was concentrated to afford the crude product, which was 

first purified by column chromatography on silica gel (chloroform/methanol 10:1) and then 

by a quick distillation (1 × 10
−3 

mbar, rt, distillate condensed under liquid nitrogen cooling 

bath) to afford A15 (1.65 g, 12.8 mmol, 59.4%) as a colorless oil. 

1
H NMR (400 MHz, CD3CN) δ 3.66 (dd, J = 8.6, 5.6 Hz, 1H), 3.65 (s, 3H), 2.95 

(dt, J = 9.9, 6.6 Hz, 1H), 2.80 (dt, J = 10.1, 6.6 Hz, 1H), 2.27 (s, 1H), 2.08–1.97 

(m, 1H), 1.82–1.64 (m, 3H).  

13
C NMR (101 MHz, CD3CN) δ 176.7, 60.5, 52.3, 47.7, 30.8, 26.4. 

 

Preparation of (S)-N,N-Dimethylpyrrolidine-2-carboxamide (A16) 

The crude product of A16 was synthesized by the procedure reported by Diakos,
[42]

 which 

was kept in vacuum (1 × 10
−3

 mbar) at 0 °C for 30 mins. A quick distillation (60 °C, 1 × 10
−3 

mbar, distillate condensed under liquid nitrogen cooling bath) was proceeded to provide 

A16 (2.85 g, 20.0 mmol, 71.2%) as a colorless oil. 

1
H NMR (400 MHz, CDCl3) δ 3.83 (dd, J = 8.5, 6.1 Hz, 1H), 3.13 (ddd, J = 10.7, 

7.1, 5.3 Hz, 1H), 2.98 (s, 3H), 2.92 (s, 3H), 2.85–2.75 (m, 1H), 2.75 (br, 1H), 
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2.10–1.99 (m, 1H), 1.80–1.52 (m, 3H).  

13
C NMR (101 MHz, CDCl3) δ 174.3, 58.3, 47.9 36.5, 35.8, 30.8, 26.6.  

IR (neat, ATR probe, cm
-1

): 3410, 2950, 2874, 1624, 1504, 1394, 1257, 1153, 1086, 1059, 

883.  

HRMS (EI): m/z calculated for C7H14N2O
+ (M+): 142.1101, found: 142.1099.  

HRMS (ESI): m/z calculated for C7H15N2O
+
 (M + H

+
): 143.1179, found: 143.1178. 

 

Preparation of (S)-N-propylpyrrolidine-2-carboxamide (A17) 

 

Amine A17 was synthesized in analogy to the procedure reported by Diakos.
[42] 

1-Benzyl 

2-(4-nitrophenyl) (S)-pyrrolidine-1,2-dicarboxylate (2.00 g, 5.40 mmol) and propylamine 

(1.00 g, 12.2 mmol) were dissolved in 30 ml chloroform. TLC was used to monitor the 

reaction till no starting material was left. The solvent was removed under reduced 

pressure. The residue was purified by column chromatography on aluminium oxide with 

chloroform (1% NEt3) as eluent to afford A17-Cbz as a colourless solid. The obtained 

A17-Cbz and palladium on carbon (330 mg) were mixed in 25 ml of acetic acid under 

hydrogen atmosphere. The suspension was stirred for 24 h at ambient temperature and 

then was filtrated through celite. The filtrate was concentrated and the residue was 

dissolved in 20 ml of 6 M HCl solution, which was firstly washed with ethyl acetate and 

then neutralized with 8 M NaOH to pH > 10. The aqueous phase was extracted with 

chloroform (3 × 30 ml) and ethyl acetate (2 × 30 ml). The combined organic phase was 

dried (MgSO4) and concentrated. The residue was kept in vacuum (1 × 10
−3

 mbar) at 0 °C 

for 30 mins. A quick distillation (110 °C, 1 × 10
−3 

mbar, distillate condensed under liquid 

nitrogen cooling bath) was proceeded to provide A17 (700 mg, 4.48 mmol, 83.0%) as a 

colorless oil. 

1
H NMR (300 MHz, CDCl3) δ 7.59 (br, 1H), 3.66 (dd, J = 9.1, 5.3 Hz, 1H), 3.14 

(dtd, J = 8.3, 6.7, 1.3 Hz, 2H), 2.96 (dt, J = 10.2, 6.8 Hz, 1H), 2.84 (dt, J = 10.1, 

6.3 Hz, 1H), 2.11 (br, 1H), 2.16–1.98 (m, 1H), 1.84 (dt, J = 12.5, 6.1 Hz, 1H), 1.72–1.58 (m, 

2H), 1.47 (h, J = 7.4 Hz, 2H), 0.86 (td, J = 7.4, 0.7 Hz, 3H).  

13
C NMR (75 MHz, CDCl3) δ 175.0, 60.7, 47.3, 40.5, 30.8, 26.2, 22.9, 11.4. 

IR (neat, ATR probe, cm
-1

): 3301, 3080, 2960, 2933, 2873, 2363, 1643, 1523, 1458, 1439, 

1381, 1344, 1254, 1150, 1100, 905, 816. 
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HRMS (EI): m/z calculated for C8H17N2O
+
 (M + H

+
): 157.1335, found: 157.1334. 

HRMS (ESI): m/z calculated for C8H17N2O
+
 (M + H

+
): 157.13354, found: 157.13350. 

 

Preparation of (S)-2-((1,3-Dioxoisoindolin-2-yl)methyl)pyrrolidin-1-ium 

2,2,2-trifluoroacetate (A18H
+
) 

 

Compound A18-Boc was synthesized following the reported method by Cao.
[33]

 A18-Boc 

(3.00 g, 9.08 mmol) was dissolved in a mixture of 10 ml trifluoroacetic aced and 25 ml of 

dichloromethane. The solution was stirred overnight at ambient temperature. The residue, 

from removing the solvent under reduced pressure, was mixed with 15ml diethyl ether. A 

colorless crystalline solid was formed, which was filtrated and dried under vacuum to 

provide A18H
+
 with quantitative yield (mp 181.3–182.4 °C). 

1
H NMR (400 MHz, CD3CN) δ 7.88–7.76 (m, 4H), 4.05–3.92 (m, 3H), 3.87 

(dtd, J = 9.9, 6.9, 5.2 Hz, 1H), 3.39 (ddd, J = 11.7, 8.2, 6.9 Hz, 1H), 3.26 

(ddd, J = 11.7, 9.0, 6.0 Hz, 1H), 2.24–2.13 (m, 1H), 2.13–1.89 (m, 2H), 

1.81 (ddt, J = 12.8, 9.8, 8.7 Hz, 1H).  

13
C NMR (101 MHz, CD3CN) δ 169.5, 161.4 (q, JC,F = 33.3 Hz, CO2 ), 135.3, 133.0, 124.1, 

118.0 (q, JC,F = 295.0 Hz, CF3), 60.5, 46.1, 39.2, 28.4, 23.6. 

Preparation of (S)-4-Phenyl-1-(pyrrolidin-2-ylmethyl)-1H-1,2,3-triazole (A19) 

 

Amine A19 was synthesized according to a modified procedure by Luo.
[25]

 Compound 

A11-Boc (1.00 g, 4.42 mmol), phenylacetylene (600 mg, 5.87 mmol), copper (I) iodide 

(130 mg, 0.683 mmol) and DIPEA (0.77 ml, 4.53 mmol) were dissolved in a mixture of 40 

ml of toluene and 20 ml of tert-buthanol. The mixture was stirred under oxygen 

atmosphere for 48 h at ambient temperature. The suspension was filtrated and the filtrate 

was concentrated. The residue was purified by column chromatography on silica gel 

(n-penthane/ethyl acetate 3:1 to 2:3). 

The obtained A19-Boc was dissolved in a mixture of 4.6 ml of trifluoroacetic acid and 16 

ml of dichloromethane. The solution was stirred overnight at ambient temperature. After 
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removal of the solvent under vacuum, the residue was neutralized with saturated K2CO3 

solution (20 ml) and extracted with ethyl acetate (3 × 40 ml). The combined organic 

phases were dried (NaSO4) and concentrated to provide crude A19, which was purified by 

column chromatography on silica gel (methanol/ethyl acetate 1:10 to 1:1) to afford A19 

(500 mg, 2.19 mmol, 49.6%) as a white solid. 

1
H NMR (599 MHz, CDCl3) δ 7.93 (s, 1H), 7.86–7.80 (m, 2H), 7.47–7.38 (m, 

2H), 7.35–7.29 (m, 1H), 4.46 (dd, J = 13.6, 4.5 Hz, 1H), 4.24 (dd, J = 13.6, 7.9 

Hz, 1H), 3.65 (m, 1H), 2.96 (t, J = 6.8 Hz, 2H), 2.69 (br, 1H), 1.97 (dddd, J = 

12.9, 8.5, 7.5, 5.4 Hz, 1H), 1.85–1.66 (m, 2H), 1.51 (ddt, J = 12.7, 8.7, 7.0 Hz, 1H).  

13
C NMR (151 MHz, CDCl3) δ 147.7, 130.9, 128.9, 128.2, 125.8, 120.7, 58.1, 55.5, 46.7, 

29.2, 25.6. 

IR (neat, ATR probe, cm
-1

): 3329, 3130, 2959, 2871, 1609, 1555, 1483, 1464, 1439, 1403, 

1367, 1225, 1189, 1076, 1047, 973, 916, 810, 765, 695.  

HRMS (ESI): m/z calculated for C13H17N4
+
 (M + H

+
): 229.1448, found: 229.1446. 

 

Preparation of (S)-1-(Pyrrolidin-2-ylmethyl)-1H-imidazole (A20) 

 

The crude product of A20-Boc was synthesized following the reported method by Luo
[28]

,
 

which was purified by column chromatography on silica gel (ethyl 

acetate/methanol/trimethylamine 10:1:0.01). The obtained A20-Boc (1.00 g, 3.98 mmol) 

was added into a mixture of 10 ml of ethyl acetate, 1.2 ml of ethanol (20.3 mmol) and 

acetyl chloride (0.85 ml, 12.0 mmol). The solution was stirred overnight at ambient 

temperature. The formed precipitate was filtrated and dissolved in 20 ml of saturated 

Na2CO3 solution. The aqueous phase was extracted with chloroform (5 × 30 ml). The 

combined organic phase was concentrated to afford A20 (200 mg, 1.32 mmol, 33.2%) as 

a slightly yellow oil.  

1
H NMR (599 MHz, CDCl3) δ 7.51 (s, 1H), 7.03 (s, 1H), 6.97 (s, 1H), 3.94 (dd, 

J = 13.7, 5.0 Hz, 1H), 3.84 (dd, J = 13.8, 7.8 Hz, 1H), 3.38 (m, 1H), 2.98–2.87 

(m, 2H), 1.89 (dddd, J = 12.5, 8.6, 7.4, 5.2 Hz, 1H), 1.83–1.68 (m, 2H), 1.40 (ddt, J = 12.6, 

9.0, 7.2 Hz, 1H). 

13
C NMR (151 MHz, CDCl3) δ 137.5, 129.5, 119.4, 59.0, 52.7, 46.6, 29.2, 25.3. 

IR (neat, ATR probe, cm
-1

): 3303, 3112, 2962, 2872, 2190, 1646, 1552, 1507, 1443, 1402, 

1365, 1284, 1231, 1107, 1077, 1030, 910, 814, 725, 662. 
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HRMS (ESI): m/z calculated for C8H14N3
+
 (M + H

+
): 152.11822, found: 152.11822. 

 

Preparation of (S)-3-Butyl-1-(pyrrolidin-2-ylmethyl)-1H-imidazol-3-ium 

trifluoromethanesulfonate (A21 OTf
−
)  

 

The mixture of A20-Boc (1.00 g, 3.98 mmol) and n-butyl bromide (3.70 g, 27.0 mmol) was 

stirred for 1 h at 90 °C. The residue from removal of volatiles under vacuum was dissolved 

in 20.0 ml of 0.6 M HCl solution in methanol. The solution was stirred overnight at ambient 

temperature and concentrated. The residue was diluted with 100 ml saturated sodium 

bicarbonate solution under ice cooling bath. The mixture was stirred for 2 h at 0 °C. The 

volatiles were removed under reduced pressure. 150 ml of acetonitrile was added into the 

residue. The suspension was filtrated and the filtrate was concentrated. The residue was 

mixed with 50 ml of dichloromethane. The whole mixture was filtrated and the solvent was 

removed under reduced pressure to afford A21 Br
−
.  

The obtained A21 Br
−
 (200 mg, 0.694 mmol) was mixed with silver tosylate (200 mg, 0.778 

mmol) in 8.00 ml of acetonitrile. The mixture was stirred for 5 h at ambient temperature, 

filtrated and concentrated. The residue was mixed with 10.0 ml dichloromethane. The 

mixture was filtrated and concentrated to afford A21 OTf
−
 (255 mg, 0.714 mmol, 17.9%) 

as brown oil.  

1
H NMR (400 MHz, CD3CN) δ 8.65 (s, 1H), 7.48 (t, J = 1.8 Hz, 1H), 7.43 (t, J = 

1.8 Hz, 1H), 4.27 (qd, J = 14.3, 6.7 Hz, 2H), 4.15 (t, J = 7.3 Hz, 2H), 3.71 (qd, J 

= 7.8, 5.2 Hz, 1H), 3.19–3.03 (m, 2H), 2.15 – 2.00 (m, 1H), 1.91–1.79 (m, 4H), 

1.57 (dq, J = 12.8, 8.0 Hz, 1H), 1.34 (dq, J = 14.8, 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H).  

13
C NMR (101 MHz, CD3CN) δ 136.8, 123.8, 123.5, 121.3 (q, J = 320.3 Hz), 60.0, 52.7, 

50.4, 48.1, 32.4, 29.0, 25.0, 19.9, 13.6. 

IR (neat, ATR probe, cm
-1

): 3471, 3142, 2961, 2922, 2852, 1632, 1565, 1467, 1251, 1225, 

1162, 1028, 758. 

HRMS (ESI): m/z calculated for C12H22N3
+
 (M): 208.18082, found: 208.18077; calculated 

for CF3O3S
− 

(OTf
−
): 148.95257, found: 148.95237. 
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Preparation of 

(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea (A22) 

Compound A22H
+
CF3CO2

−
 was synthesized following the procedure described by Cao.

[37] 

The obtained A22H
+
CF3CO2

−
 was deprotonated with 25% ammoniac solution and 

extracted with ethyl acetate. The crude product from removal of the solvent was purified 

by column chromatography on silica gel (methanol) to provide A22 as a white solid.  

1
H NMR (599 MHz, CDCl3) δ 8.04 (s, 2H), 7.57 (s, 1H), 7.40 (br, 1H), 

3.59–3.52 (m, 1H), 3.45–3.36 (m, 1H), 3.35–3.26 (m, 1H), 3.16–3.09 

(m, 1H), 2.92–2.81 (m, 1H), 2.01–1.87 (m, 2H), 1.79–1.68 (m, 1H), 

1.65–1.55 (m, 1H).  

13
C NMR (151 MHz, CDCl3) δ 183.8, 142.3, 131.7 (q, J = 35.8 Hz), 123.4 (q, J = 272.7 Hz), 

122.7, 117.4, 59.6, 51.0, 46.3, 28.6, 27.4. 

IR (neat, ATR probe, cm
-1

): 3241, 2966, 2877, 1610, 1538, 1472, 1381, 1273, 1169, 1125, 

1107, 1005, 949, 908, 883, 847, 727, 699, 682. 

HRMS (EI): m/z calculated for C14H15N3F6S
+ (M+): 371.0885, found: 371.0885. 

HRMS (ESI): m/z calculated for C14H16N3F6S
+
 (M + H

+
): 372.09636, found: 372.09626; 

calculated for C14H14N3F6S
−
 (M – H

+
): 370.08181, found: 370.08222. 

 

Preparation of 

(S)-2-((3-(3,5-Bis(trifluoromethyl)phenyl)ureido)methyl)pyrrolidin-1-ium 

2,2,2-trifluoroacetate (A23H
+
) 

 

The crude product of A23-Boc was prepared following the reported procedure by Cao,
[37]

 

which was purified by column chromatography on silica gel (n-pentane/ethyl acetate 6:1 to 

3:2) to afford A23-Boc as a white solid. The obtained A23-Boc (1.70 g, 3.73 mmol) was 

dissolved in a mixture of 10 ml of trifluoroacetic acid and 40 ml of dichloromethane. The 

mixture was stirred for 2 h at ambient temperature. The crude product after removal of the 

solvent was recrystallized (ethyl acetate/ dichloromethane) to afford A23H
+
 (980mg, 2.09 

mmol, 56.2%) as a white solid (mp 183.0–184.4 °C).  
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 1
H NMR (400 MHz, CD3OD) δ 8.07 (s, 2H), 7.50 (s, 1H), 3.73 (ddt, J = 

8.9, 7.5, 3.8 Hz, 1H), 3.62–3.44 (m, 2H), 3.42–3.22 (m, 2H), 2.24–1.95 

(m, 3H), 1.80 (dq, J = 12.6, 8.4 Hz, 1H).  

13
C NMR (101 MHz, CD3OD) δ 163.1 (q, J = 34.6 Hz, CF3CO2

−
), 158.5, 143.2, 133.1 (q, J 

= 33.1 Hz), 124.8 (q, J = 272.2 Hz), 119.4–119.1 (m), 118.2 (q, J = 293.0 Hz, CF3CO2
−
), 

115.8 (t, J = 4.0 Hz), 62.8, 46.6, 42.1, 28.3, 24.4. 

 

Preparation of 2-Tritylpyrrolidine (A24) 

Amine A24 was synthesized according to the procedure by Kano.
[23a]

  

1
H NMR (599 MHz, CDCl3) δ 7.36–7.32 (m, 6H), 7.29–7.23 (m, 6H), 7.21–7.16 

(m, 3H), 4.73 (dd, J = 8.3, 6.7 Hz, 1H), 2.78–2.65 (m, 2H), 2.05 (dtd, J = 12.8, 8.2, 

6.9 Hz, 1H), 1.63–1.56 (m, 1H), 1.56 – 1.49 (m, 1H), 1.46 (br, 1H), 1.09 (ddt, J = 15.8, 

11.7, 7.4 Hz, 1H).
 

13
C NMR (151 MHz, CDCl3) δ 146.4 (br), 130.3 (br), 127.7, 126.1, 64.1, 61.4, 46.8, 29.2, 

25.9. 

 

Preparation of (S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (A25) 

Amine A25 was synthesized following the procedure reported by Marigo.
[11a]

  

1
H NMR (400 MHz, CD3CN) δ 7.52–7.46 (m, 2H), 7.38–7.33 (m, 2H), 7.32–7.15 

(m, 6H), 4.19–4.07 (m, 1H), 2.89 (ddd, J = 9.7, 7.8, 6.4 Hz, 1H), 2.77 (ddd, J = 

9.8, 7.0, 4.9 Hz, 1H), 1.61–1.45 (m, 2H), 1.44–1.31 (m, 2H), −0.08 (s, 9H). 

13
C NMR (101 MHz, CD3CN) δ 148.8, 147.6, 128.9, 128.5, 128.4, 127.8, 127.6, 127.4, 

83.7, 65.4, 47.5, 27.6, 25.3, 2.6. 

 

Preparation of (S)-Diphenyl(pyrrolidin-2-yl)methanol (A26) 

Amine A26 was synthesized according to the method of Kanth.
[39]

  

1
H NMR (400 MHz, CD3CN) δ 7.55–7.50 (m, 2H), 7.44–7.37 (m, 2H), 7.37–7.24 

(m, 5H), 7.23–7.16 (m, 1H), 4.60–4.52 (m, 1H), 3.06–2.94 (m, 1H), 2.86–2.77 

(m, 1H), 2.23 (br, 1H), 1.75–1.54 (m, 3H), 1.52–1.43 (m, 1H).  

13
C NMR (101 MHz, CD3CN) δ 144.4, 144.1, 129.5, 129.1, 128.8, 128.2, 127.8, 127.3, 

76.2, 65.7, 48.1, 28.9, 27.4. 

1
H NMR (599 MHz, CDCl3) δ 7.59–7.55 (m, 2H), 7.52–7.48 (m, 2H), 7.32–7.27 (m, 4H), 

7.20–7.14 (m, 2H), 4.60 (br, 1H), 4.26 (t, J = 7.7 Hz, 1H), 3.04 (ddd, J = 9.2, 6.8, 4.8 Hz, 

1H), 2.95 (dt, J = 9.2, 7.6 Hz, 1H), 1.80–1.53 (m, 5H). 
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13
C NMR (151 MHz, CDCl3) δ 148.3, 145.6, 128.4, 128.1, 126.6, 126.5, 126.0, 125.7, 

77.2, 64.6, 46.9, 26.4, 25.7. 

 

Preparation of (S)-2-(Azidodiphenylmethyl)pyrrolidine (A27) 

Amine A27 was prepared following the procedure by Shi.
[40]

  

1
H NMR (400 MHz, CDCl3) δ 7.53–7.47 (m, 2H), 7.42–7.27 (m, 7H), 7.27–7.21 

(m, 1H), 4.35 (t, J = 7.1 Hz, 1H), 3.03–2.93 (m, 2H), 2.11 (br, 1H), 1.79–1.55 (m, 

4H).  

13
C NMR (101 MHz, CDCl3) δ 142.8, 142.3, 128.6, 128.3, 128.1, 127.6, 127.3, 127.1, 

75.3, 65.4, 47.3, 28.1, 26.2. 

HRMS (ESI): m/z calculated for C17H19N4
+
 (M + H

+
): 279.16042, found; 279.16032. 

 

Preparation of 2-(Triphenylsilyl)pyrrolidine (A28) 

 

2-(Triphenylsilyl)pyrrolidin-1-ium chloride (A28H) was synthesized by the modified 

procedure reported by Bauer.
[47]

 To a stirred solution of N-Boc-pyrrolidine (10.0 g, 58.4 

mmol) and freshly distilled TMEDA (10.6 ml, 70.2 mmol) in diethylether (100 ml) at −78 °C 

was added s-BuLi (60.0 ml, 70.2 mmol; 1.17 M solution in cyclohexane). The reaction 

mixture was stirred for 6 h at −78 °C and then dimethoxydiphenylsilane (17.1 g, 70.0 

mmol) was added at −78 °C. The stirring solution was allowed to slowly warm to room 

temperature overnight. Then, phenyllithium (137 ml, 70.6 mmol; 0.515 M solution in 

dibutylether) was added at −78 °C. The stirring reaction mixture was warmed to 0 °C over 

a period of 6 h. After water (80 ml) had been added, the organic layer was separated and 

the aqueous phase was extracted with diethyl ether (3 × 100 ml). The combined ether 

extracts were dried (Na2SO4) and all volatiles were removed under reduced pressure. The 

residue was purified by column chromatography on silica gel (n-pentane/diethyl ether 9:1) 

to provide A28-Boc (15.0 g, 34.9 mmol, 59.8%) as a white solid.   

To a stirred solution of A28-Boc (1.00 g, 2.33 mmol) and ethanol (500 μl, 8.56 mmol) in 

ethyl acetate (10.0 ml) at ambient temperature was added acetyl chloride (560 μl, 

7.84 mmol) dropwise. The reaction mixture was then stirred overnight. The precipitate 

was filtrated and washed with ethyl acetate to provide A28H
+
Cl

−
 as a white solid, which 

was deprotonated with saturated potassium carbonate solution (20 ml) and extracted with 
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chloroform (3 × 30 ml). The organic phase was dried (MgSO4) and concentrated to afford 

A28 (528 mg, 1.35 mmol, 57.7%) as white solid. 

1
H NMR (599 MHz, CDCl3) δ 7.6 –7.60 (m, 6H), 7.44–7.40 (m, 3H), 7.39–7.35 

(m, 6H), 3.11 (dd, J = 10.6, 7.6 Hz, 1H), 3.01 (ddd, J = 10.7, 7.6, 4.5 Hz, 1H), 

2.76 (dt, J = 10.7, 7.7 Hz, 1H), 2.08 (ddt, J = 12.5, 8.0, 4.1 Hz, 1H), 1.80–1.65 (m, 2H), 

1.60–1.52 (m, 1H), 1.42 (br, 1H). 

13
C NMR (151 MHz, CDCl3) δ 136.2, 134.1, 129.8, 128.1, 49.3, 46.8, 29.2, 26.9. 

 

Preparation of (S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (A29) 

The crude product of A29 was prepared following the reported procedure by Ahrendt,
[5a,5b]

 

which was purified by column chromatography on silica gel (ethyl acetate) to afford A29 as 

a clear oil. 

1
H NMR (400 MHz, CD3CN) δ 7.33–7.19 (m, 5H), 3.67 (ddd, J = 8.7, 3.9, 0.7 Hz, 

1H), 3.11 (dd, J = 14.1, 3.9 Hz, 1H), 2.71 (dd, J = 14.1, 8.7 Hz, 1H), 2.69 (d, J = 

0.6 Hz, 3H), 1.21 (s, 6H).  

13
C NMR (101 MHz, CD3CN) δ 174.0, 139.8, 130.3, 129.2, 127.2, 76.3, 60.3, 38.8, 27.5, 

25.3, 25.2. 

 

Preparation of (2S,5S)-5-Benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one (A30) 

The crude product of A30 was synthesized according to the procedure by Paras,
[5d]

 which 

was purified by column chromatography on silica gel (ethyl acetate) to afford A30 as 

colorless solid. 

1
H NMR (400 MHz, CD3Cl) δ 7.33–7.16 (m, 5H), 4.06–4.01 (m, 1H), 3.73–3.63 

(m, 1H), 3.14 (dd, J = 13.7, 4.0 Hz, 1H), 2.92 (dd, J = 13.8, 7.7 Hz, 1H), 2.90 (s, 

3H), 1.68 (br, 1H), 0.82 (s, 9H). 

13
C NMR (101 MHz, CD3Cl) δ 175.4, 138.1, 129.8, 128.7, 126.8, 82.6, 59.6, 38.4, 35.1, 

30.8, 25.5. 

 

Preparation of (2S,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one 

(A31) and (2R,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A32) 

The crude product of the mixture of A31 and A32 was prepared following the reported 

procedure by Northrup,
[5c]

 which was purified by column chromatography on silica gel 

(ethyl acetate/n-pentane 1:1 – 2:1) to afford A31 as a clear oil and A32 as a colorless 

solid. 
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1
H NMR (400 MHz, CD3Cl) δ 7.33–7.19 (m, 5H), 6.09 (d, J = 3.2 Hz, 1H), 

5.88 (dt, J = 3.2, 1.1 Hz, 1H), 5.18 (d, J = 1.4 Hz, 1H), 3.78 (dd, J = 7.7, 4.3 

Hz, 1H), 3.25 (dd, J = 14.3, 4.2 Hz, 1H), 3.08 (dd, J = 14.3, 7.6 Hz, 1H), 2.63 

(s, 3H), 2.20 (s, 3H), 2.08 (br, 1H). 

13
C NMR (101 MHz, CD3Cl) δ 174.0, 153.5, 148.7, 137.3, 129.6, 128.8, 126.9, 111.0, 

106.6, 71.1, 60.3, 37.6, 27.1, 13.7. 

1
H NMR (400 MHz, CD3Cl) δ 7.31–7.17 (m, 5H), 6.16 (d, J = 3.1 Hz, 1H), 

5.88 – 5.86 (m, 1H), 4.93 (d, J = 1.4 Hz, 1H), 4.02 (dd, J = 7.7, 4.0 Hz, 1H), 

3.13 (dd, J = 13.8, 4.0 Hz, 1H), 2.93 (dd, J = 13.8, 7.4 Hz, 1H), 2.63 (s, 3H), 2.30 (br, 1H), 

2.22 (d, J = 1.1 Hz, 3H). 

13
C NMR (101 MHz, CD3Cl) δ 173.9, 153.5, 149.3, 137.8, 129.8, 128.6, 126.8, 110.4, 

106.4, 71.1, 59.8, 38.4, 27.2, 13.7. 
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7.1.3 Preparation of Indicators 

 

Preparation of 2-(4-Nitrophenyl)malononitrile (C6H) 

C5H was synthesized following the literature procedure.
[61]

  

1
H NMR (400 MHz, Chloroform-d) δ 8.51–8.20 (m, 2H), 7.78–7.64 (m, 2H), 

5.26 (s, 1H).  

13
C NMR (101 MHz, Chloroform-d) δ 149.2, 132.8, 128.7, 125.3, 110.8, 28.0. 

 

Preparation of 2-(Perfluorophenyl)malononitrile (C5H) 

The Crude product of C5H was synthesized following the procedure by Hull,
[60]

 which was 

purified by recrystallization first from ethanol/water mixture and then from 

benzene/n-Pentane mixture. 

1
H NMR (400 MHz, Chloroform-d) δ 5.32 (s, 1H).  

13
C NMR (101 MHz, CDCl3) δ 144.9 (dtdd, J = 255.7, 8.5, 5.8, 4.5 Hz), 143.7 

(dtt, J = 261.9, 13.2, 5.2 Hz), 139.9–136.9 (m), 108.8, 101.9 (td, J = 15.7, 4.6 Hz), 16.9–

16.7 (m).  

19
F NMR (377 MHz, CDCl3) δ −138.6–−138.8 (m), −146.3 (tt, J = 20.9, 3.9 Hz), −157.2–

−157.4 (m). 

HRMS (EI): m/z calculated for C9H1N2F5
+ (M+): 232.0054, found: 232.0052.  

 

Preparation of Ethyl 2-(4-chloro-2,3,5,6-tetrafluorophenyl)-2-cyanoacetate (C4H) 

C4H was synthesized according to the procedure by Vlasov.
[59]

  

1
H NMR (599 MHz, CDCl3) δ 5.10 (s, 1H), 4.42–4.32 (m, 2H), 1.36 (t, J = 7.2 

Hz, 3H).  

13
C NMR (151 MHz, CDCl3) δ 162.1, 144.9 (dd, J = 253.5, 14.6 Hz), 144.5 (dd, J = 252.7, 

15.5 Hz), 115.0 (t, J = 18.9 Hz), 112.5, 108.9 (t, J = 16.4 Hz), 64.7, 32.0, 14.0.  

19
F NMR (377 MHz, Chloroform-d) δ −138.5–−138.6 (m), −139.5–−139.7 (m). 

 

Preparation of Potassium 

1-(4-chloro-2,3,5,6-tetrafluorophenyl)-1-cyano-2-ethoxy-2-oxoethan-1-ide (C4K) 
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To a stirred saturated solution of tert-butoxide (124 mg, 1.11 mmol) in diethyl ether, C4H 

(259 mg, 0.876 mmol) was dropped inside at 0 °C under nitrogen atmosphere. The 

precipitate was filtrated under nitrogen atmosphere and dried under vacuum to give C4K 

(218 mg, 0.653 mmol, 74.5%) as a white solid. 

 

Preparation of Ethyl 2-cyano-2-(perfluorophenyl)acetate (C3H) 

C3H was synthesized following the procedure by Hull.
[60]

  

1
H NMR (400 MHz, CDCl3) δ 5.09 (s, 1H), 4.39 (qq, J = 7.2, 3.6 Hz, 2H), 1.38 

(t, J = 7.2 Hz, 3H). 

13
C NMR (101 MHz, CDCl3) δ 162.2, 147.2–136.3 (m, 5C), 112.6, 105.86–

105.31 (m, 1C), 64.7, 31.8, 14.0. 

19
F NMR (376 MHz, Chloroform-d) δ −139.91– −140.05 (m), −150.00 (tt, J = 20.8, 2.8 Hz), 

−159.47–−159.67 (m). 

 

Preparation of Potassium 1-cyano-2-ethoxy-2-oxo-1-(perfluorophenyl)ethan-1-ide 

(C3K) 

 

To a stirred saturated solution of tert-butoxide (124 mg, 1.11 mmol) in diethyl ether, C3H 

(248 mg, 0.888 mmol) was dropped inside at 0 °C under nitrogen atmosphere. The 

precipitate was filtrated under nitrogen atmosphere and dried under vacuum to give C3K 

(120 mg, 0.376 mmol, 42.3%) as a white solid. 
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7.1.4 Copies of NMR and IR spectra 

 

Potassium L-prolinate (A1) 
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2-Methylpyrrolidine (A3) 
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(R)-2-Isopropylpyrrolidine (A4) 
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2,2-Dimethylpyrrolidine (A5) 

  



 

85 

 

(S)-2-Benzhydrylpyrrolidine (A7) 

 

  



 

86 

 

(S)-Pyrrolidin-2-ylmethanamine (A8) 

  



 

87 

 

(S)-N,N-Dimethyl-1-(pyrrolidin-2-yl)methanamine (A9) 
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89 

 

(S)-2-((Dimethylamino)methyl)pyrrolidin-1-ium trifluoromethanesulfonate 

(A9H
+
OTf

−
) 

 

  



 

90 

 

(S)-1-(pyrrolidin-2-ylmethyl)pyrrolidine (A10) 

 

  



 

91 

 

(S)-2-(Azidomethyl)pyrrolidine (A11) 

 

  



 

92 

 

(S)-Pyrrolidin-2-ylmethanol (A12) 

 

 



 

93 

 

 

  



 

94 

 

(S)-2-(Methoxymethyl)pyrrolidine (A13) 

 

 



 

95 

 

 

 

  



 

96 

 

2-(Trifluoromethyl)pyrrolidine (A14) 

 

 



 

97 

 

  

  



 

98 

 

Methyl L-prolinate (A15) 

  

 

  



 

99 

 

(S)-N,N-Dimethylpyrrolidine-2-carboxamide (A16) 

  

 



 

100 

 

 

  



 

101 

 

(S)-N-propylpyrrolidine-2-carboxamide (A17) 

 

 



 

102 

 

 

  



 

103 

 

(S)-2-((1,3-Dioxoisoindolin-2-yl)methyl)pyrrolidin-1-ium 2,2,2-trifluoroacetate 

(A18H
+
) 

 

 

  



 

104 

 

(S)-4-Phenyl-1-(pyrrolidin-2-ylmethyl)-1H-1,2,3-triazole (A19) 

 

 



 

105 

 

 

  

  



 

106 

 

(S)-1-(Pyrrolidin-2-ylmethyl)-1H-imidazole (A20) 

  

 



 

107 

 

 

  



 

108 

 

(S)-3-Butyl-1-(pyrrolidin-2-ylmethyl)-1H-imidazol-3-ium trifluoromethanesulfonate 

(A21 OTf
−
) 
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110 

 

(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea (A22) 
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112 

 

(S)-2-((3-(3,5-Bis(trifluoromethyl)phenyl)ureido)methyl)pyrrolidin-1-ium 

2,2,2-trifluoroacetate (A23H
+
) 

 

  



 

113 

 

2-Tritylpyrrolidine (A24) 

 

  



 

114 

 

(S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (A25) 

 

  



 

115 

 

(S)-Diphenyl(pyrrolidin-2-yl)methanol (A26) 
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117 

 

(S)-2-(Azidodiphenylmethyl)pyrrolidine (A27) 

  



 

118 

 

2-(Triphenylsilyl)pyrrolidine (A28) 

 

  



 

119 

 

(S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (A29) 

 

 

  



 

120 

 

(2S,5S)-5-Benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one (A30) 

  



 

121 

 

(2S,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A31) 

 

  



 

122 

 

(2R,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A32) 

 

  



 

123 

 

2-(4-Nitrophenyl)malononitrile (C6H) 

 

  



 

124 

 

2-(Perfluorophenyl)malononitrile (C5H) 
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126 

 

Ethyl 2-(4-chloro-2,3,5,6-tetrafluorophenyl)-2-cyanoacetate (C4H) 
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128 

 

Ethyl 2-cyano-2-(perfluorophenyl)acetate (C3H) 
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7.2 Experimental Section for Kinetic Measurements 

7.2.1 General 

 

Measurements with the Stopped-Flow UV-Vis Spectrometer 

The kinetics of the fast reactions (t1/2 < 40 s) of amines A with benzhydrylium ions 

(E8E17) and quinone methides (E1–E7) were followed by UV/vis spectroscopy by using 

a stopped-flow spectrophotometer system (Applied Photophysics SX.18MV-R or SX20 

Stopped Flow Spectrometers; 5 or 10 mm light path). Stock solutions were prepared in 

anhydrous acetonitrile, freshly distilled over phosphorus pentoxide. Alternatively, stock 

solutions in dichloromethane were prepared, which was freshly distilled from calcium 

hydride. The kinetic runs were initiated by mixing equal volumes of acetonitrile (or 

dichloromethane) solutions of the amines and the electrophiles. The temperature of the 

solutions during the kinetic studies was maintained to 20 ± 0.2 °C by using circulating bath 

cryostats. 

 

Measurement with Conventional UV-Vis Spectroscopy 

Anhydrous acetonitrile was freshly distilled from phosphorus pentoxide under an 

atmosphere of dry nitrogen. The rates of slow reactions of amines A with electrophiles E 

(t1/2 > 40 s) were determined by using a J&M TIDAS diode array spectrophotometers 

controlled by Labcontrol Spectacle or TidasDAQ 3.8.1 software and connected to Hellma 

661.502-QX quartz Suprasil immersion probe (5 mm light path) via fiber optic cables and 

standard SMA connectors. The temperature of the solutions during the kinetic studies was 

maintained to 20 ± 0.1 °C by using circulating bath cryostats. 
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7.2.2 Kinetics in Acetonitrile 

 

Potassium L-prolinate (A1) 

 

Table 5. Kinetics of the reaction of A1 with E3 (stopped-flow method, detection at 346 nm) 

[A1] / M
 

[E3] / M kobs / s
−1 

 

3.84 × 10
−4

 

2.30 × 10
−5

 

2.20 

5.38 × 10
−4

 2.53 

6.92 × 10
−4

 2.92 

8.45 × 10
−4

 3.32 

9.99 × 10
−4

 3.75 

k2 = 2.53 × 10
3
 M

−1
s

−1
 

 

Table 6. Kinetics of the reaction of A1 with E4 (stopped-flow method, detection at 368 nm) 

[A1] / M [E4] / M kobs / s
−1 

 

2.56 × 10
−4

 

1.54 × 10
−5

 

1.50 

3.84 × 10
−4

 2.13 

7.68 × 10
−4

 3.91 

8.97 × 10
−4

 4.59 

k2 = 4.77 × 10
3
 M

−1
s

−1
 

  

kobs = 2.53 × 103 [A1] + 1.19 

R² = 0.9978 

0

1

2

3

4

5

0 0.0005 0.001
k o

b
s 

/ 
s-1

 
[A1] / M 

kobs = 4.77 × 103 [A1] + 0.28 

R² = 0.9996 

0

2

4

6

0 0.0005 0.001

k o
b
s 

/ 
s-1

 

[A1] / M 
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Table 7. Kinetics of the reaction of A1 with E5 (stopped-flow method, detection at 512 nm) 

[A1] / M
 

[E5] / M kobs / s
−1 

 

2.05 × 10
−4

 

1.34 × 10
−5

 

1.00 × 10
1
 

3.06 × 10
−4

 1.45 × 10
1
 

4.10 × 10
−4

 1.88 × 10
1
 

5.12 × 10
−4

 2.30 × 10
1
 

6.15 × 10
−4 

7.17 × 10
−4

 

2.70 × 10
1 

3.10 × 10
1
 

k2 = 4.09 × 10
4
 M

−1
s

−1
 

 
Table 8. Kinetics of the reaction of A1 with E6 (stopped-flow method, detection at 412 nm) 

[A1] / M
 

[E6] / M kobs / s
−1 

 

2.05 × 10
−4

 

1.93 × 10
−5

 

2.25 × 10
1
 

3.06 × 10
−4

 3.66 × 10
1
 

4.10 × 10
−4

 4.98 × 10
1
 

5.12 × 10
−4

 6.49 × 10
1
 

6.15 × 10
−4 

7.17 × 10
−4

 

7.97 × 10
1 

9.32 × 10
1
 

k2 = 1.39 × 10
5
 M

−1
s

−1
 

 
Table 9. Kinetics of the reaction of A1 with E7 (stopped-flow method, detection at 376 nm) 

[A1] / M
 

[E7] / M kobs / s
−1 

 

2.05 × 10
−4

 

2.09 × 10
−5

 

3.80 × 10
1
 

3.06 × 10
−4

 6.01 × 10
1
 

4.10 × 10
−4

 8.55 × 10
1
 

5.12 × 10
−4

 1.07 × 10
2
 

6.15 × 10
−4 

7.17 × 10
−4

 

1.31 × 10
2 

1.57 × 10
2
 

k2 = 2.31 × 10
5
 M

−1
s

−1
 

  

kobs = 4.09 × 104 [A1] + 1.86 

R² = 0.9994 

0
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0 0.0002 0.0004 0.0006 0.0008

k
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b
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s-1

 

[A1] / M 

kobs = 1.39 × 105 [A1] 

− 6.25 

R² = 0.9996 

 

0

50

100

150

0 0.0002 0.0004 0.0006 0.0008

k o
b
s 

/ 
s-1

 

[A1] / M 

kobs = 2.31 × 105 [A1] 

− 10.17 

R² = 0.9994 

0
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150
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k o
b
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/ 

s-1
 

[A1] / M 
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Table 10. Kinetics of the reaction of A1 with E8 (stopped-flow method, detection at 632 nm) 

[A1] / M
 

[E7] / M kobs / s
−1 

 

4.16 × 10
−5

 

4.04 × 10
−6

 

1.65 × 10
2
 

6.66 × 10
−5

 3.30 × 10
2
 

9.15 × 10
−5

 4.94 × 10
2
 

1.16 × 10
−4

 6.40 × 10
2
 

k2 = 6.41 × 10
6
 M

−1
s

−1
 

 

Table 11. Determination of the parameters N and sN for A1 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E3 −15.03 2.53 × 10
3
 

E4 −14.36 4.77 × 10
3 

E5 −13.39 4.09 × 10
4 

E6 −12.18 1.39 × 10
5 

E7 

E8 

−11.87 

−10.04 

2.31 × 10
5 

6.41 × 10
6
 

N = 19.95 sN = 0.68 

 

  

kobs = 6.41 × 106 [A1] − 

98.30 

R² = 0.9994 

0

200

400

600

800

0 0.00004 0.00008 0.00012

k o
b
s 

/ 
s-1

 

[A1] / M 

lg k2 = 0.68E + 13.49 

R² = 0.9885 

3
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7

8
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lg
 k

2
 

E 
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Pyrrolidine (A2) 

 

Table 12. Kinetics of the reaction of A2 with E3 (conventional UV-Vis method, detection at 346 nm) 

[A2] / M
 

[E3] / M kobs / s
−1 

 

1.63 × 10
−4

 

2.38 × 10
−4

 

3.33 × 10
−4

 

4.23 × 10
−4

 

5.16 × 10
−4 

5.90 × 10
−4

 

1.54 × 10
−5

 

1.46 × 10
−5

 

1.52 × 10
−5

 

1.53 × 10
−5

 

1.55 × 10
−5 

1.51 × 10
−5

 

4.30 × 10
−3

 

8.04 × 10
−3

 

1.33 × 10
−2

 

1.92 × 10
−2

 

2.54 × 10
−2 

3.09 × 10
−2

 

 
Table 13. Kinetics of the reaction of A2 with E4 (stopped-flow method, detection at 368 nm) 

[A2] / M
 

[E4] / M kobs / s
−1 

 

2.36 × 10
−4

 

2.06 × 10
−5

 

7.98 × 10
−3

 

3.54 × 10
−4

 1.60 × 10
−2

 

4.72 × 10
−4

 2.43 × 10
−2

 

5.91 × 10
−4

 3.34 × 10
−2

 

7.09 × 10
−4 

4.45 × 10
−2 

  
Table 14. Kinetics of the reaction of A2 with E5 (stopped-flow method, detection at 512 nm) 

[A2] / M
 

[E5] / M kobs / s
−1 

 

1.65 × 10
−4

 

1.59 × 10
−5

 

2.85 × 10
−1

 

2.48 × 10
−4

 4.59 × 10
−1

 

3.31 × 10
−4

 6.23 × 10
−1

 

4.13 × 10
−4

 8.07 × 10
−1

 

5.31 × 10
−4

 1.06 

k2 = 2.12 × 10
3
 M

−1
s

−1
 

  

0

0.01

0.02
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0.04

0 0.0002 0.0004 0.0006 0.0008

k o
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1
 

[A2] / M 

0
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k o
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1
 

[A2] / M 

kobs  = 2.12 × 103 [A2]  

− 6.81 × 10−2  

R² = 0.9996 
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1
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Table 15. Kinetics of the reaction of A2 with E6 (stopped-flow method, detection at 412 nm) 

[A2] / M
 

[E6] / M kobs / s
−1 

 

1.65 × 10
−4

 

1.65 × 10
−5

 

9.45 × 10
−1

 

2.48 × 10
−4

 1.48 

3.31 × 10
−4

 2.01 

4.13 × 10
−4

 2.55 

4.96 × 10
−4

 3.02 

k2 = 6.31 × 10
3
 M

−1
s

−1
 

 
Table 16. Kinetics of the reaction of A2 with E7 (stopped-flow method, detection at 376 nm) 

[A2] / M
 

[E7] / M kobs / s
−1 

 

1.65 × 10
−4

 

1.64 × 10
−5

 

1.56 

2.48 × 10
−4

 2.41 

3.31 × 10
−4

 3.32 

4.13 × 10
−4

 4.28 

4.96 × 10
−4

 5.14 

k2 = 1.09 × 10
4
 M

−1
s

−1
 

 
Table 17. Kinetics of the reaction of A2 with E10 (stopped-flow method, detection at 616 nm) 

[A2] / M
 

[E10] / M kobs / s
−1 

 

4.72 × 10
−5

 

4.70 × 10
−6

 

4.09 × 10
1
 

7.09 × 10
−5

 6.63 × 10
1
 

9.45 × 10
−5

 9.08 × 10
1
 

1.18 × 10
−4

 1.16 × 10
2
 

1.42 × 10
−4

 1.42 × 10
2
 

k2 = 1.06 × 10
6
 M

−1
s

−1
 

  

kobs  = 6.31 × 103 [A2] −  

8.57 × 10−2 

R² = 0.9994 

0
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k o
b
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1
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Table 18. Kinetics of the reaction of A2 with E11 (stopped-flow method, detection at 620 nm) 

[A2] / M
 

[E11] / M kobs / s
−1 

 

2.36 × 10
−5

 

2.29 × 10
−6

 

5.47 × 10
1
 

3.54 × 10
−5

 8.74 × 10
1
 

4.72 × 10
−5

 1.19 × 10
2
 

5.91 × 10
−5

 1.56 × 10
2
 

7.09 × 10
−5

 1.85 × 10
2
 

k2 = 2.78 × 10
6
 M

−1
s

−1
 

 

Table 19. Determination of the parameters N and sN for A2 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E1 −16.38 3.25 × 10
1 [a]

 

E2 −16.11 4.82 × 10
1 [a]

 

E3 −15.03 - 

E4 −14.36 - 

E5 

E6 

E7 

E8 

E9 

E10 

E11 

−13.39 

−12.18 

−11.87 

−10.04 

−9.45 

−8.76 

−8.22 

2.12 × 10
3 

6.31 × 10
4 

1.09 × 10
4 

1.18 × 10
5 [a] 

3.50 × 10
5 [a] 

1.06 × 10
6 

2.78 × 10
6 

N =18.58 sN = 0.61 

[a]
 Second-order rate constants k2 were taken from literature 

[63]  

  

kobs  = 2.78 × 106 [A2]  
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2-Methylpyrrolidine (A3) 

 
Table 20. Kinetics of the reaction of A3 with E8 (stopped-flow method, detection at 632 nm) 

[A3] / M
 

[E8] / M kobs / s
−1 

 

4.49 × 10
−4

 

1.59 × 10
−5

 

1.89 × 10
1
 

8.98 × 10
−4

 4.52 × 10
1
 

1.35 × 10
−3

 6.90 × 10
1
 

1.80 × 10
−3

 9.29 × 10
1
 

2.25 × 10
−3 

2.70 × 10
−3

 

1.21 × 10
2 

1.43 × 10
2
 

k2 = 5.53 × 10
4
 M

−1
s

−1
 

 
Table 21. Kinetics of the reaction of A3 with E9 (stopped-flow method, detection at 635 nm) 

[A3] / M
 

[E9] / M kobs / s
−1 

 

2.25 × 10
−4

 

1.62 × 10
−5

 

2.63 × 10
1
 

4.49 × 10
−4

 6.25 × 10
1
 

6.74 × 10
−4

 9.70 × 10
1
 

8.98 × 10
−4

 1.36 × 10
2
 

1.12 × 10
−3 

1.35 × 10
−3

 

1.72 × 10
2 

2.16 × 10
2
 

k2 = 1.67 × 10
5
 M

−1
s

−1
 

 
Table 22. Kinetics of the reaction of A3 with E10 (stopped-flow method, detection at 616 nm) 

[A3] / M
 

[E10] / M kobs / s
−1 

 

1.35 × 10
−4

 

 1.35 × 10
−5

 

3.61 × 10
1
 

2.25 × 10
−4

 7.08 × 10
1
 

3.14 × 10
−4

 1.11 × 10
2
 

4.04 × 10
−4

 1.48 × 10
2
 

4.94 × 10
−4 

5.84 × 10
−4

 

1.86 × 10
2 

2.25 × 10
2
 

k2 = 4.22 × 10
5
 M

−1
s

−1
 

kobs  = 5.53 × 104 [A3] 

− 5.42 

R² = 0.9993 
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Table 23. Kinetics of the reaction of A3 with E11 (stopped-flow method, detection at 620 nm) 

[A3] / M
 

[E11] / M kobs / s
−1 

 

1.35 × 10
−4

 

5.10 × 10
−6

 

1.11 × 10
2
 

2.25 × 10
−4

 2.04 × 10
2
 

3.14 × 10
−4

 3.11 × 10
2
 

4.04 × 10
−4

 4.04 × 10
2
 

4.94 × 10
−4 

5.84 × 10
−4

 

5.21 × 10
2 

6.24 × 10
2
 

k2 = 1.15 × 10
6
 M

−1
s

−1
 

 

Table 24. Determination of the parameters N and sN for A3 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 5.53 × 10
4
 

E9 −9.45 1.67 × 10
5
 

E10 −8.76 4.22 × 10
5
 

E11 −8.22 1.15 × 10
6 

N = 16.78  sN = 0.71  

  

kobs  = 1.15 × 106 [A3] 

− 50.3 

R² = 0.9990 
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(R)-2-Isopropylpyrrolidine (A4) 

 

Table 25. Kinetics of the reaction of A4 with E8 (stopped-flow method, detection at 632 nm) 

[A4] / M
 

[E8] / M kobs / s
−1 

 

7.47 × 10
−5

 

 5.41 × 10
−6

 

2.25 

1.12 × 10
−4

 3.51 

1.49 × 10
−4

 4.81 

1.87 × 10
−4

 6.08 

2.24 × 10
−4 

7.35
 

k2 = 3.42 × 10
4
 M

−1
s

−1
 

 
Table 26. . Kinetics of the reaction of A4 with E9 (stopped-flow method, detection at 635 nm) 

[A4] / M
 

[E9] / M kobs / s
−1 

 

7.47 × 10
−5

 

 3.56 × 10
−6

 

6.29 

1.12 × 10
−4

 1.01 × 10
1
 

1.49 × 10
−4

 1.33 × 10
1
 

1.87 × 10
−4

 1.70 × 10
1
 

2.24 × 10
−4 

2.14 × 10
1 

k2 = 9.94 × 10
4
 M

−1
s

−1
 

 
Table 27. . Kinetics of the reaction of A4 with E10 (stopped-flow method, detection at 616 nm) 

[A4] / M
 

[E10] / M kobs / s
−1 

 

4.98 × 10
−5

 

 5.00 × 10
−6

 

1.01 × 10
1
 

7.47 × 10
−5

 1.70 × 10
1
 

9.96 × 10
−5

 2.33 × 10
1
 

1.25 × 10
−4

 2.93 × 10
1
 

1.49 × 10
−4 

3.56 × 10
1 

k2 = 2.55 × 10
5
 M

−1
s

−1
 

kobs  = 3.42 × 104 [A4] − 0.30 

R² = 1.000 

0

5

10

0 0.00008 0.00016 0.00024
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Table 28. Kinetics of the reaction of A4 with E11 (stopped-flow method, detection at 620 nm) 

[A4] / M
 

[E11] / M kobs / s
−1 

 

4.98 × 10
−5

 

 5.00 × 10
−6

 

2.76 × 10
1
 

7.47 × 10
−5

 4.54 × 10
1
 

9.96 × 10
−5

 6.38 × 10
1
 

1.25 × 10
−4

 8.08 × 10
1
 

1.49 × 10
−4 

9.92 × 10
1 

k2 = 7.18 × 10
5
 M

−1
s

−1
 

 

Table 29. Determination of the parameters N and sN for A4 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 3.42 × 10
4
 

E9 −9.45 9.94 × 10
4
 

E10 −8.76 2.55 × 10
5
 

E11 −8.22 7.18 × 10
5 

N = 16.44 sN = 0.71  

 

  

kobs  = 7.18 × 105 [A4] − 

8.17 

R² = 0.9997 
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2,2-Dimethylpyrrolidine (A5) 

 
Table 30. Kinetics of the reaction of A5 with E9 (stopped-flow method, detection at 635 nm) 

[A5] / M
 

[E9] / M kobs / s
−1 

 

5.60 × 10
−4

 

 1.52 × 10
−5

 

1.44 

9.33 × 10
−4

 2.41 

1.31 × 10
−3

 3.46 

1.68 × 10
−3

 4.44 

2.05 × 10
−3 

2.43 × 10
−3 

5.47
 

6.52
 

k2 = 2.72 × 10
3
 M

−1
s

−1
 

 
Table 31. Kinetics of the reaction of A5 with E10 (stopped-flow method, detection at 616 nm) 

[A5] / M
 

[E10] / M kobs / s
−1 

 

3.73 × 10
−4

 

 1.93 × 10
−5

 

2.34 

5.60 × 10
−4

 4.13 

7.46 × 10
−4

 5.46 

9.33 × 10
−4

 6.77 

1.12 × 10
−3 

1.31 × 10
−3 

8.51
 

9.79
 

k2 = 7.89 × 10
3
 M

−1
s

−1
 

 
Table 32. Kinetics of the reaction of A5 with E11 (stopped-flow method, detection at 620 nm) 

[A5] / M
 

[E11] / M kobs / s
−1 

 

1.87 × 10
−4

 

 1.28 × 10
−5

 

3.00 

3.36 × 10
−4

 6.56 

4.85 × 10
−4

 1.03 × 10
1
 

6.34 × 10
−4

 1.37 × 10
1
 

7.83 × 10
−3 

9.33 × 10
−3 

1.74 × 10
1 

2.15 × 10
1 

k2 = 2.46 × 10
4
 M

−1
s

−1
 

kobs  = 2.72 × 103 [A5] − 0.11 

R² = 0.9999 
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Table 33. Kinetics of the reaction of A5 with E12 (stopped-flow method, detection at 612 nm) 

[A5] / M
 

[E12] / M kobs / s
−1 

 

1.87 × 10
−4

 

 1.53 × 10
−5

 

8.83 

3.36 × 10
−4

 1.94 × 10
1
 

4.85 × 10
−4

 3.14 × 10
1
 

6.34 × 10
−4

 4.10 × 10
1
 

7.83 × 10
−3 

9.33 × 10
−3 

5.12 × 10
1 

6.28 × 10
1 

k2 = 7.18 × 10
4
 M

−1
s

−1
 

 
Table 34. Kinetics of the reaction of A5 with E13 (stopped-flow method, detection at 605 nm) 

[A5] / M
 

[E13] / M kobs / s
−1 

 

1.87 × 10
−4

 

 9.56 × 10
−6

 

2.18 × 10
1
 

3.36 × 10
−4

 4.88 × 10
1
 

4.85 × 10
−4

 7.25 × 10
1
 

6.34 × 10
−4

 1.00 × 10
2
 

7.83 × 10
−3 

9.33 × 10
−3 

1.24 × 10
2 

1.57 × 10
2 

k2 = 1.78 × 10
5
 M

−1
s

−1
 

  

kobs = 7.18 × 104 [A5] − 

4.42 
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Table 35. Kinetics of the reaction of A5 with E14 (stopped-flow method, detection at 613 nm) 

[A5] / M
 

[E14] / M kobs / s
−1 

 

1.12 × 10
−4

 

 1.12 × 10
−5

 

8.60 × 10
1
 

1.49 × 10
−4

 1.49 × 10
2
 

1.87 × 10
−4

 1.96 × 10
2
 

2.24 × 10
−4

 2.48 × 10
2
 

2.61 × 10
−3 

2.98 × 10
−3 

2.88 × 10
2 

3.40 × 10
2 

k2 = 1.33 × 10
6
 M

−1
s

−1
 

 

Table 36. Determination of the parameters N and sN for A5 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E9 −9.45 2.72 × 10
3
 

E10 −8.76 7.89 × 10
3
 

E11 

E12 

E13 

E14 

−8.22 

−7.69 

−7.02 

−5.89 

2.46 × 10
4
 

7.18 × 10
4 

1.78 × 10
5 

1.33 × 10
6 

N = 13.96 sN = 0.76 

 

  

kobs = 1.33 × 106 [A5] − 

56.0 

R² = 0.9966 
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2-Benzylpyrrolidine (A6) 

 
Table 37. Kinetics of the reaction of A6 with E8 (stopped-flow method, detection at 632 nm) 

[A6] / M
 

[E8] / M kobs / s
−1 

 

7.60 × 10
−5

 

5.29 × 10
−6

 

5.57 

1.52 × 10
−4

 1.07 × 10
1
 

2.28 × 10
−4

 1.59 × 10
1
 

3.04 × 10
−4

 2.16 × 10
1
 

3.80 × 10
−4 

4.56 × 10
−4

 

2.75 × 10
1 

3.27 × 10
1
 

k2 = 7.21 × 10
4
 M

−1
s

−1
 

 
Table 38. Kinetics of the reaction of A6 with E9 (stopped-flow method, detection at 635 nm) 

[A6] / M
 

[E9] / M kobs / s
−1 

 

7.60 × 10
−5

 

5.06 × 10
−6

 

1.70 × 10
1
 

1.52 × 10
−4

 3.30 × 10
1
 

2.28 × 10
−4

 5.01 × 10
1
 

3.04 × 10
−4

 6.75 × 10
1
 

3.80 × 10
−4 

4.56 × 10
−4

 

8.65 × 10
1 

1.03 × 10
2
 

k2 = 2.29 × 10
5
 M

−1
s

−1
 

 
Table 39. Kinetics of the reaction of A6 with E10 (stopped-flow method, detection at 616 nm) 

[A6] / M
 

[E10] / M kobs / s
−1 

 

7.60 × 10
−5

 

4.67 × 10
−6

 

2.77 × 10
1
 

1.52 × 10
−4

 6.13 × 10
1
 

2.28 × 10
−4

 9.30 × 10
1
 

3.04 × 10
−4

 1.30 × 10
2
 

3.80 × 10
−4 

4.56 × 10
−4

 

1.65 × 10
2 

1.98 × 10
2
 

k2 = 4.51 × 10
5
 M

−1
s

−1
 

kobs  = 7.21 × 104 [A6] 

− 0.18 

R² = 0.9994 
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Table 40. Kinetics of the reaction of A6 with E11 (stopped-flow method, detection at 620 nm) 

[A6] / M
 

[E11] / M kobs / s
−1 

 

4.75 × 10
−5

 

4.78 × 10
−6

 

4.80 × 10
1
 

7.12 × 10
−5

 8.23 × 10
1
 

9.50 × 10
−5

 1.15 × 10
2
 

1.19 × 10
−4

 1.45 × 10
2
 

1.42 × 10
−4 

1.66 × 10
−4

 

1.76 × 10
2 

2.06 × 10
2
 

k2 = 1.33 × 10
6
 M

−1
s

−1
 

 

Table 41. Determination of the parameters N and sN for A6 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 7.21 × 10
4
 

E9 −9.45 2.29 × 10
5
 

E10 −8.76 4.51 × 10
5
 

E11 −8.22 1.33 × 10
6 

N = 17.43 sN = 0.66 

 

  

kobs  = 1.33 × 106 [A6] 

− 13.1 

R² = 0.9994 
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(S)-2-Benzhydrylpyrrolidine (A7) 

 

Table 42. Kinetics of the reaction of A7 with E8 (stopped-flow method, detection at 632 nm) 

[A7] / M
 

[E8] / M kobs / s
−1 

 

2.70 × 10
−4

 

 4.62 × 10
−6

 

6.73 

4.04 × 10
−4

 1.02 × 10
1
 

5.39 × 10
−4

 1.38 × 10
1
 

8.09 × 10
−4

 2.06 × 10
1
 

1.08 × 10
−3 

1.35 × 10
−3 

2.80 × 10
1 

3.57 × 10
1 

k2 = 2.67 × 10
4
 M

−1
s

−1
 

 
Table 43. Kinetics of the reaction of A7 with E9 (stopped-flow method, detection at 635 nm) 

[A7] / M
 

[E9] / M kobs / s
−1 

 

1.35 × 10
−4

 

 4.73 × 10
−6

 

9.60 

2.02 × 10
−4

 1.34 × 10
1
 

2.70 × 10
−4

 1.77 × 10
1
 

3.37 × 10
−4

 2.17 × 10
1
 

4.04 × 10
−4 

2.59 × 10
1 

k2 = 6.08 × 10
4
 M

−1
s

−1
 

 
Table 44. Kinetics of the reaction of A7 with E10 (stopped-flow method, detection at 616 nm) 

[A7] / M
 

[E10] / M kobs / s
−1 

 

8.09 × 10
−5

 

 6.60 × 10
−6

 

1.12 × 10
1
 

1.21 × 10
−4

 1.78 × 10
1
 

1.62 × 10
−4

 2.42 × 10
1
 

2.02 × 10
−4

 3.04 × 10
1
 

2.43 × 10
−4 

2.83 × 10
−4 

3.68 × 10
1 

4.31 × 10
1 

k2 = 1.57 × 10
5
 M

−1
s

−1
 

kobs  = 2.67 × 104 [A7] 

− 0.63 

R² = 0.9995 
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Table 45. Kinetics of the reaction of A7 with E11 (stopped-flow method, detection at 620 nm) 

[A7] / M
 

[E11] / M kobs / s
−1 

 

5.39 × 10
−5

 

 4.49 × 10
−6

 

1.97 × 10
1
 

8.09 × 10
−5

 2.97 × 10
1
 

1.08 × 10
−4

 4.10 × 10
1
 

1.35 × 10
−4

 5.24 × 10
1
 

1.62 × 10
−4 

1.89 × 10
−4 

6.47 × 10
1 

7.78 × 10
1 

k2 = 4.30 × 10
5
 M

−1
s

−1
 

 
Table 46. Kinetics of the reaction of A7 with E12 (stopped-flow method, detection at 612 nm) 

[A7] / M
 

[E12] / M kobs / s
−1 

 

4.04 × 10
−5

 

 4.36 × 10
−6

 

2.58 × 10
1
 

6.74 × 10
−5

 5.03 × 10
1
 

9.44 × 10
−5

 7.61 × 10
1
 

1.21 × 10
−4

 1.04 × 10
2
 

1.48 × 10
−4 

1.75 × 10
−4 

1.30 × 10
2 

1.57 × 10
2 

k2 = 9.80 × 10
5
 M

−1
s

−1
 

 

Table 47. Determination of the parameters N and sN for A7 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 2.67 × 10
4
 

E9 −9.45 6.08 × 10
4
 

E10 −8.76 1.57 × 10
5
 

E11 

E12 

−8.22 

−7.69 

4.30 × 10
5 

9.80 × 10
5 

N = 16.61 sN = 0.67 

 

  

kobs = 4.30 × 105 [A7] − 
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(S)-Pyrrolidin-2-ylmethanamine (A8) 

 

Table 48. Kinetics of the reaction of A8 with E7 (stopped-flow method, detection at 376 nm) 

[A8] / M
 

[E7] / M kobs / s
−1 

 

1.93 × 10
−4

 

1.61 × 10
−5

 

6.43 × 10
−1

 

2.89 × 10
−4

 1.07 

3.85 × 10
−4

 1.44 

4.82 × 10
−4

 1.77 

5.78 × 10
−4 

2.18
 

k2 = 3.92 × 10
3
 M

−1
s

−1
 

 

Table 49. Kinetics of the reaction of A8 with E8 (stopped-flow method, detection at 632 nm) 

[A8] / M
 

[E8] / M kobs / s
−1 

 

5.78 × 10
−5

 

5.29 × 10
−6

 

2.69 

8.67 × 10
−5

 4.46 

1.16 × 10
−4

 6.19 

1.45 × 10
−4

 8.00 

1.73 × 10
−4 

9.62
 

k2 = 6.03 × 10
4
 M

−1
s

−1
 

 
Table 50. Kinetics of the reaction of A8 with E9 (stopped-flow method, detection at 635 nm) 

[A8] / M
 

[E9] / M kobs / s
−1 

 

5.78 × 10
−5

 

5.67 × 10
−6

 

8.31 

8.67 × 10
−5

 1.28 × 10
1
 

1.16 × 10
−4

 1.74 × 10
1
 

1.45 × 10
−4

 2.29 × 10
1
 

1.73 × 10
−4 

2.78 × 10
1 

k2 = 1.70 × 10
5
 M

−1
s

−1
 

kobs  = 3.92 × 103 [A8]  

− 8.97 × 10−2  

R² = 0.9982 
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Table 51. Kinetics of the reaction of A8 with E10 (stopped-flow method, detection at 616 nm) 

[A8] / M
 

[E10] / M kobs / s
−1 

 

3.85 × 10
−5

 

3.84 × 10
−6

 

1.24 × 10
1
 

5.78 × 10
−5

 2.03 × 10
1
 

7.71 × 10
−5

 2.81 × 10
1
 

9.63 × 10
−5

 3.65 × 10
1
 

1.16 × 10
−4 

4.44 × 10
1 

k2 = 4.14 × 10
5
 M

−1
s

−1
 

 

 

Table 52. Kinetics of the reaction of A8 with E11 (stopped-flow method, detection at 620 nm) 

[A8] / M
 

[E11] / M kobs / s
−1 

 

3.85 × 10
−5

 

3.82 × 10
−6

 

3.17 × 10
1
 

5.78 × 10
−5

 5.46 × 10
1
 

7.71 × 10
−5

 7.53 × 10
1
 

9.63 × 10
−5

 9.70 × 10
1
 

1.16 × 10
−4 

1.19 × 10
2 

k2 = 1.12 × 10
6
 M

−1
s

−1
 

 

Table 53. Determination of the parameters N and sN for A8 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E7 

E8 

−11.87 

−10.04 

3.92 × 10
3
 

6.03 × 10
4
 

E9 −9.45 1.70 × 10
5
 

E10 −8.76 4.14 × 10
5
 

E11 −8.22 1.12 × 10
6 

N = 17.24 sN = 0.67 

 

  

kobs  = 4.14 × 105 [A8] 

− 3.63 

R² = 0.9998 
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(S)-N,N-Dimethyl-1-(pyrrolidin-2-yl)methanamine (A9) 

 
Table 54. Kinetics of the reaction of A9 with E8 (stopped-flow method, detection at 632 nm) 

[A9] / M
 

[E8] / M kobs / s
−1 

 

1.04 × 10
−4

 

8.86 × 10
−6

 

8.09 

1.56 × 10
−4

 1.31 × 10
1
 

2.08 × 10
−4

 1.85 × 10
1
 

3.12 × 10
−4

 2.69 × 10
1
 

4.16 × 10
−4 

5.21 × 10
−4

 

3.69 × 10
1 

4.71 × 10
1
 

k2 = 9.25 × 10
4
 M

−1
s

−1
 

 
Table 55. Kinetics of the reaction of A9 with E9 (stopped-flow method, detection at 635 nm) 

[A9] / M
 

[E9] / M kobs / s
−1 

 

7.81 × 10
−5

 

6.48 × 10
−6

 

2.01 × 10
1
 

1.30 × 10
−4

 3.80 × 10
1
 

1.82 × 10
−4

 5.43 × 10
1
 

2.34 × 10
−4

 7.10 × 10
1
 

3.38 × 10
−4 

1.07 × 10
2 

k2 = 3.32 × 10
5
 M

−1
s

−1
 

 
Table 56. Kinetics of the reaction of A9 with E10 (stopped-flow method, detection at 616 nm) 

[A9] / M
 

[E10] / M kobs / s
−1 

 

1.04 × 10
−4

 

5.49 × 10
−6

 

5.87 × 10
1
 

1.56 × 10
−4

 9.33 × 10
1
 

2.08 × 10
−4

 1.24 × 10
2
 

2.60 × 10
−4

 1.63 × 10
2
 

3.12 × 10
−4 

1.95 × 10
2 

k2 = 6.58 × 10
5
 M

−1
s

−1
 

  

kobs = 9.25 × 104 [A9] 

− 1.37 

R² = 0.9992 
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Table 57. Kinetics of the reaction of A9 with E11 (stopped-flow method, detection at 620 nm) 

[A9] / M
 

[E11] / M kobs / s
−1 

 

4.16 × 10
−5

 

4.21 × 10
−6

 

5.73 × 10
1
 

5.10 × 10
−5

 7.64 × 10
1
 

6.25 × 10
−5

 9.98 × 10
1
 

8.33 × 10
−5

 1.34 × 10
2
 

1.04 × 10
−4 

1.25 × 10
−4

 

1.71 × 10
2 

2.16 × 10
2
 

k2 = 1.86 × 10
6
 M

−1
s

−1
 

 

Table 58. Determination of the parameters N and sN for A9 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 9.25 × 10
4
 

E9 −9.45 3.32 × 10
5
 

E10 −8.76 6.58 × 10
5
 

E11 −8.22 1.86 × 10
6 

N = 17.41 sN = 0.68 

 

  

kobs = 1.86 × 106 [A9] − 

19.2 

R² = 0.9984 
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(S)-1-(Pyrrolidin-2-ylmethyl)pyrrolidine (A10) 

 

Table 59. Kinetics of the reaction of A10 with E7 (stopped-flow method, detection at 376 nm) 

[A10] / M
 

[E7] / M kobs / s
−1 

 

1.66 × 10
−4

 

1.61 × 10
−5

 

1.79 

2.49 × 10
−4

 2.83 

3.32 × 10
−4

 3.90 

4.15 × 10
−4

 5.03 

4.98 × 10
−4

 6.13 

k2 = 1.31 × 10
4
 M

−1
s

−1
 

 
Table 60. Kinetics of the reaction of A10 with E8 (stopped-flow method, detection at 632 nm) 

[A10] / M
 

[E8] / M kobs / s
−1 

 

4.98 × 10
−5

 

4.89 × 10
−6

 

7.25 

7.47 × 10
−5

 1.16 × 10
1
 

9.96 × 10
−5

 1.60 × 10
1
 

1.24 × 10
−4

 2.01 × 10
1
 

1.49 × 10
−4

 2.43 × 10
1
 

k2 = 1.72 × 10
5
 M

−1
s

−1
 

 
Table 61. Kinetics of the reaction of A10 with E9 (stopped-flow method, detection at 635 nm) 

[A10] / M
 

[E9] / M kobs / s
−1 

 

3.32 × 10
−5

 

3.31 × 10
−6

 

1.56 × 10
1
 

4.98 × 10
−5

 2.43 × 10
1
 

6.64 × 10
−5

 3.27 × 10
1
 

8.30 × 10
−5

 4.16 × 10
1
 

9.96 × 10
−5

 5.24 × 10
1
 

k2 = 5.48 × 10
5
 M

−1
s

−1
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Table 62. Kinetics of the reaction of A10 with E10 (stopped-flow method, detection at 616 nm) 

[A10] / M
 

[E10] / M kobs / s
−1 

 

3.32 × 10
−5

 

3.29 × 10
−6

 

2.78 × 10
1
 

4.98 × 10
−5

 4.52 × 10
1
 

6.64 × 10
−5

 6.28 × 10
1
 

8.30 × 10
−5

 8.00 × 10
1
 

9.96 × 10
−5

 9.75 × 10
1
 

k2 = 1.05 × 10
6
 M

−1
s

−1
 

 

Table 63. Kinetics of the reaction of A10 with E11 (stopped-flow method, detection at 620 nm) 

[A10] / M
 

[E11] / M kobs / s
−1 

 

3.32 × 10
−5

 

3.35 × 10
−6

 

7.80 × 10
1
 

4.98 × 10
−5

 1.28 × 10
2
 

6.64 × 10
−5

 1.79 × 10
2
 

8.30 × 10
−5

 2.22 × 10
2
 

9.96 × 10
−5

 2.74 × 10
2
 

k2 = 2.93 × 10
6
 M

−1
s

−1
 

 

Table 64. Determination of the parameters N and sN for A10 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E7 −11.87 1.31 × 10
4
 

E8 −10.04 1.72 × 10
5
 

E9 −9.45 5.48 × 10
5
 

E10 −8.76 1.05 × 10
6
 

E11 −8.22 2.93 × 10
6 

N = 18.33 sN = 0.64 
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− 7.02 
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(S)-2-(Azidomethyl)pyrrolidine (A11) 

 

Table 65. Kinetics of the reaction of A11 with E8 (stopped-flow method, detection at 632 nm) 

[A11] / M
 

[E8] / M kobs / s
−1 

 

6.08 × 10
−5

 

 5.29 × 10
−6

 

5.84 × 10
−1

 

9.12 × 10
−5

 7.97 × 10
−1

 

1.22 × 10
−4

 1.02 

1.52 × 10
−4

 1.27 

1.82 × 10
−4 

1.49
 

k2 = 7.54 × 10
3
 M

−1
s

−1
 

 
Table 66. Kinetics of the reaction of A11 with E9 (stopped-flow method, detection at 635 nm) 

[A11] / M
 

[E9] / M kobs / s
−1 

 

6.08 × 10
−5

 

 5.91 × 10
−6

 

2.00 

9.12 × 10
−5

 2.65 

1.22 × 10
−4

 3.34 

1.52 × 10
−4

 4.14 

1.82 × 10
−4 

4.94
 

k2 = 2.43 × 10
4
 M

−1
s

−1
 

 
Table 67. Kinetics of the reaction of A11 with E10 (stopped-flow method, detection at 616 nm) 

[A11] / M
 

[E10] / M kobs / s
−1 

 

6.08 × 10
−5

 

 5.93 × 10
−6

 

3.38 

9.12 × 10
−5

 5.37 

1.22 × 10
−4

 7.23 

1.52 × 10
−4

 9.27 

1.82 × 10
−4 

1.11 × 10
1 

k2 = 6.38 × 10
4
 M

−1
s

−1
 

  

kobs = 7.54 × 103 [A11] + 0.12 

R² = 0.9991 
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Table 68. Kinetics of the reaction of A11 with E11 (stopped-flow method, detection at 620 nm) 

[A11] / M
 

[E11] / M kobs / s
−1 

 

6.08 × 10
−5

 

 5.93 × 10
−6

 

1.01 × 10
1
 

9.12 × 10
−5

 1.58 × 10
1
 

1.22 × 10
−4

 2.16 × 10
1
 

1.52 × 10
−4

 2.75 × 10
1
 

1.82 × 10
−4 

3.33 × 10
1 

k2 = 1.92 × 10
5
 M

−1
s

−1
 

 
Table 69. Kinetics of the reaction of A11 with E12 (stopped-flow method, detection at 612 nm) 

[A11] / M
 

[E12] / M kobs / s
−1 

 

4.05 × 10
−5

 

 3.19 × 10
−6

 

1.71 × 10
1
 

6.08 × 10
−5

 2.69 × 10
1
 

8.11 × 10
−5

 3.61 × 10
1
 

1.01 × 10
−4

 4.63 × 10
1
 

1.22 × 10
−4 

5.58 × 10
1 

k2 = 4.76 × 10
5
 M

−1
s

−1
 

 
Table 70. Kinetics of the reaction of A11 with E13 (stopped-flow method, detection at 605 nm) 

[A11] / M
 

[E13] / M kobs / s
−1 

 

2.03 × 10
−5

 

 2.01 × 10
−6

 

1.81 × 10
1
 

3.04 × 10
−5

 2.90 × 10
1
 

4.05 × 10
−5

 4.03 × 10
1
 

5.07 × 10
−5

 5.15 × 10
1
 

6.08 × 10
−5 

6.39 × 10
1 

k2 = 1.13 × 10
6
 M

−1
s

−1
 

  

kobs = 1.92 × 105 [A11] 

− 1.64 
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Table 71. Determination of the parameters N and sN for A11 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 7.54 × 10
3
 

E9 −9.45 2.43 × 10
4
 

E10 −8.76 6.38 × 10
5
 

E11 

E12 

E13 

−8.22 

−7.69 

−7.02 

1.92 × 10
5 

4.76 × 10
5 

1.13 × 10
6 

N = 15.43 sN = 0.73 

 

  

lg k2 = 0.73E + 11.22 

R² = 0.9961 
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(S)-Pyrrolidin-2-ylmethanol (A12) 

 

Table 72. Kinetics of the reaction of A12 with E8 (stopped-flow method, detection at 632 nm) 

[A12] / M
 

[E8] / M kobs / s
−1 

 

6.29 × 10
−5

 

 5.41 × 10
−6

 

1.31 

9.43 × 10
−5

 2.17 

1.26 × 10
−4

 3.11 

1.57 × 10
−4 

1.89 × 10
−4

 

4.05
 

4.93 

k2 = 2.90 × 10
4
 M

−1
s

−1
 

 
Table 73. Kinetics of the reaction of A12 with E9 (stopped-flow method, detection at 635 nm) 

[A12] / M
 

[E9] / M kobs / s
−1 

 

6.29 × 10
−5

 

 5.45 × 10
−6

 

4.51 

9.43 × 10
−5

 6.72 

1.26 × 10
−4

 9.28 

1.57 × 10
−4 

1.89 × 10
−4

 

1.18 × 10
1 

1.44 × 10
1
 

k2 = 7.89 × 10
4
 M

−1
s

−1
 

 
Table 74. Kinetics of the reaction of A12 with E10 (stopped-flow method, detection at 616 nm) 

[A12] / M
 

[E10] / M kobs / s
−1 

 

5.24 × 10
−5

 

 5.00 × 10
−6

 

8.96 

7.34 × 10
−5

 1.32 × 10
1
 

9.43 × 10
−5

 1.72 × 10
1
 

1.15 × 10
−4 

1.36 × 10
−4

 

2.20 × 10
1 

2.57 × 10
1
 

k2 = 2.02 × 10
5
 M

−1
s

−1
 

 

  

kobs  = 2.90 × 104 [A12] 

− 0.53 
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Table 75. Kinetics of the reaction of A12 with E11 (stopped-flow method, detection at 620 nm) 

[A12] / M
 

[E11] / M kobs / s
−1 

 

4.19 × 10
−5

 

 4.35 × 10
−6

 

1.70 × 10
1
 

7.34 × 10
−5

 2.97 × 10
1
 

9.43 × 10
−5

 3.99 × 10
1
 

1.15 × 10
−4 

1.36 × 10
−4

 

5.16 × 10
1 

6.37 × 10
1
 

k2 = 4.98 × 10
5
 M

−1
s

−1
 

 

Table 76. Determination of the parameters N and sN for A12 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 2.90 × 10
4
 

E9 −9.45 7.89 × 10
4
 

E10 −8.76 2.02 × 10
5
 

E11 −8.22 4.98 × 10
5 

N = 16.74 sN = 0.67 

  

kobs  = 4.98 ×105 [A12] − 
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(S)-2-(Methoxymethyl)pyrrolidine (A13) 

 

Table 77. Kinetics of the reaction of A13 with E8 (stopped-flow method, detection at 632 nm) 

[A13] / M
 

[E8] / M kobs / s
−1 

 

4.49 × 10
−5

 

 4.42 × 10
−6

 

1.70 

6.74 × 10
−5

 2.41 

8.99 × 10
−5

 3.20 

1.12 × 10
−4

 4.00 

1.35 × 10
−4 

4.95
 

k2 = 3.60 × 10
4
 M

−1
s

−1
 

 
Table 78. Kinetics of the reaction of A13 with E9 (stopped-flow method, detection at 635 nm) 

[A13] / M
 

[E9] / M kobs / s
−1 

 

4.49 × 10
−5

 

 4.28 × 10
−6

 

5.41 

6.74 × 10
−5

 7.74 

8.99 × 10
−5

 1.02 × 10
1
 

1.12 × 10
−4

 1.28 × 10
1
 

1.35 × 10
−4 

1.53 × 10
1 

k2 = 1.10 × 10
5
 M

−1
s

−1
 

 
Table 79. Kinetics of the reaction of A13 with E10 (stopped-flow method, detection at 616 nm) 

[A13] / M
 

[E10] / M kobs / s
−1 

 

4.49 × 10
−5

 

 4.32 × 10
−6

 

1.09 × 10
1
 

6.74 × 10
−5

 1.65 × 10
1
 

8.99 × 10
−5

 2.26 × 10
1
 

1.12 × 10
−4

 2.85 × 10
1
 

1.35 × 10
−4 

3.45 × 10
1 

k2 = 2.63 × 10
5
 M

−1
s

−1
 

 

  

kobs  = 3.60 × 104 [A13] 

+ 1.84× 10−2 

R² = 0.9975 
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Table 80. Kinetics of the reaction of A13 with E11 (stopped-flow method, detection at 620 nm) 

[A13] / M
 

[E11] / M kobs / s
−1 

 

3.59 × 10
−5

 

 3.56 × 10
−6

 

2.36 × 10
1
 

5.39 × 10
−5

 3.71 × 10
1
 

7.19 × 10
−5

 5.00 × 10
1
 

8.99 × 10
−5

 6.46 × 10
1
 

1.08 × 10
−4 

7.91 × 10
1 

k2 = 7.69 × 10
5
 M

−1
s

−1
 

 

Table 81. Determination of the parameters N and sN for A13 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 3.60 × 10
4
 

E9 −9.45 1.10 × 10
5
 

E10 −8.76 2.63 × 10
5
 

E11 −8.22 7.69 × 10
5 

N = 16.50 sN = 0.71  

 

  

kobs  = 7.69 × 105 [A13] 

− 4.40 
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2-(Trifluoromethyl)pyrrolidine (A14) 

 

Table 82. Kinetics of the reaction of A14 with E13 and D1 ([D1] = 2.46 mM, stopped-flow method, 
detection at 605 nm) 

[A14] / M
 

[E13] / M kobs / s
−1 

 

9.33 × 10
−5

 

 4.85 × 10
−6

 

8.82 × 10
−3

 

1.87 × 10
−4

 1.92 × 10
−2

 

2.80 × 10
−4

 3.72 × 10
−2

 

3.73 × 10
−4 

4.67 × 10
−4 

5.60 × 10
−4 

5.11 × 10
−2 

7.54 × 10
−2 

1.00 × 10
−1 

 

Table 83. Kinetics of the reaction of A14 with E13 and D1 ([D1] = 4.92 mM, stopped-flow method, 
detection at 605 nm) 

[A14] / M
 

[E13] / M kobs / s
−1 

 

3.39 × 10
−4

 

 4.85 × 10
−6

 

4.65 × 10
−2

 

6.79 × 10
−4

 1.37 × 10
−1

 

1.01 × 10
−3

 2.82 × 10
−1

 

1.36 × 10
−3 

1.70 × 10
−3 

2.04 × 10
−3 

4.72 × 10
−1 

6.94 × 10
−1 

9.73 × 10
−1 
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Table 84. Influence of the concentration of the base D2 on the kinetics of the reaction of A14 with E13 
([A14] = 2.12 × 10

−4
 M, [E13] = 4.85 × 10

−6
 M,

 
stopped-flow method, detection at 605 nm) 

Entr

y 
[D2] / M 

 

1 1.12 × 10
−4

 

2 2.81 × 10
−4

 

3 5.61 × 10
−4

 

5 2.25 × 10
−3

 

6 4.49 × 10
−3

 

 

Table 85. Kinetics of the reaction of A14 with E13 and D2 ([D2] = 1.12 mM, stopped-flow method, 
detection at 605 nm) 

[A14] / M
 

[E13] / M kobs / s
−1 

 

1.70 × 10
−4

 

 4.85 × 10
−6

 

8.09 × 10
−2

 

3.39 × 10
−4

 1.79 × 10
−1

 

5.09 × 10
−4

 3.13 × 10
−1

 

6.79 × 10
−4 

8.48 × 10
−4 

1.02 × 10
−3 

4.28 × 10
−1 

5.89 × 10
−1 

7.19 × 10
−1 
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Table 86. Kinetics of the reaction of A14 with E13 and D2 ([D2] = 2.25 mM, stopped-flow method, 
detection at 605 nm) 

[A14] / M
 

[E13] / M kobs / s
−1 

 

1.70 × 10
−4

 

 4.85 × 10
−6

 

1.42 × 10
−1

 

3.39 × 10
−4

 2.86 × 10
−1

 

5.09 × 10
−4

 4.58 × 10
−1

 

6.79 × 10
−4 

8.48 × 10
−4 

1.02 × 10
−4 

6.31 × 10
−1 

8.43 × 10
−1 

1.13
 

 

Table 87. Kinetics of the reaction of A14 with E13 and D2 ([D2] = 4.49 mM, stopped-flow method, 
detection at 605 nm) 

[A14] / M
 

[E13] / M kobs / s
−1 

 

1.70 × 10
−4

 

 4.85 × 10
−6

 

2.28 × 10
−1

 

3.39 × 10
−4

 4.41 × 10
−1

 

5.09 × 10
−4

 6.95 × 10
−1

 

6.79 × 10
−4 

8.48 × 10
−4 

9.48 × 10
−1 

1.20
 

k2 = 1.45 × 10
3
 M

−1
s

−1
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Table 88. Kinetics of the reaction of A14 with E15 (stopped-flow method, detection at 612 nm) 

[A14] / M
 

[E15] / M kobs / s
−1 

 

4.76 × 10
−5

 

 4.62 × 10
−6

 

2.88 × 10
−1

 

9.33 × 10
−5

 6.98 × 10
−1

 

1.34 × 10
−4

 1.03 

1.87 × 10
−4 

2.33 × 10
−4 

2.80 × 10
−4 

1.69
 

2.27
 

3.37
 

 
Table 89. Kinetics of the reaction of A14 with E15 and D1 ([D1] = 2.46 mM, stopped-flow method, 
detection at 612 nm) 

[A14] / M
 

[E15] / M kobs / s
−1 

 

9.33 × 10
−5

 

 4.67 × 10
−6

 

1.10 

1.40 × 10
−4

 1.91 

1.87 × 10
−4

 2.82 

2.33 × 10
−4 

2.80 × 10
−4 

3.72
 

4.66
 

k2 = 1.91 × 10
4
 M

−1
s

−1
 

 

Table 90. Kinetics of the reaction of A14 with E17 (stopped-flow method, detection at 586 nm) 

[A14] / M
 

[E17] / M kobs / s
−1 

 

5.60 × 10
−5

 

 5.51 × 10
−6

 

5.31 

8.40 × 10
−5

 9.83 

1.12 × 10
−4

 1.47 × 10
1
 

1.40 × 10
−4 

1.68 × 10
−4 

1.96 × 10
−4 

1.98 × 10
1 

2.51 × 10
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3.16 × 10
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Table 91. Kinetics of the reaction of A14 with E17 and D1 ([D1] = 1.23 mM, stopped-flow method, 
detection at 586 nm) 

[A14] / M
 

[E17] / M kobs / s
−1 

 

9.33 × 10
−5

 

 4.62 × 10
−6

 

1.28 × 10
1
 

1.40 × 10
−4

 2.25 × 10
1
 

1.87 × 10
−4

 3.23 × 10
1
 

2.33 × 10
−4 

2.80 × 10
−4 

4.39 × 10
1 

5.50 × 10
1 

k2 = 2.27 × 10
5
 M

−1
s

−1
 

 

Table 92. Kinetics of the reaction of A14 with E18 (stopped-flow method, detection at 592 nm) 

[A14] / M
 

[E18] / M kobs / s
−1 

 

4.66 × 10
−5

 

 4.66 × 10
−6

 

4.83 × 10
1
 

7.00 × 10
−5

 8.01 × 10
1
 

9.33 × 10
−5

 1.06 × 10
2
 

1.17 × 10
−5 

1.40 × 10
−4 

1.37 × 10
2 

1.61 × 10
2 

k2 = 1.21 × 10
6
 M

−1
s

−1
 

 

Table 93. Determination of the parameters N and sN for A14 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E13 

E15 

E17 

E18 

−7.02 

−5.53 

−3.85 

−3.14 

1.45 × 10
3 

1.91 × 10
4 

2.27 × 10
5 

1.21 × 10
6 

N = 11.34 sN = 0.73  

  

kobs = 2.27 × 105 [A14] 

− 8.98 

R² = 0.9983 
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Methyl L-prolinate (A15) 

 

Table 94. Kinetics of the reaction of A15 with E8 (stopped-flow method, detection at 632 nm) 

[A15] / M
 

[E8] / M kobs / s
−1 

 

1.34 × 10
−4

 

 1.34 × 10
−5

 

2.14 

2.67 × 10
−4

 2.74 

4.01 × 10
−4

 3.68 

5.35 × 10
−4

 4.56 

6.68 × 10
−4 

5.62
 

k2 = 6.57 × 10
3
 M

−1
s

−1
 

 
Table 95. Kinetics of the reaction of A15 with E9 (stopped-flow method, detection at 635 nm) 

[A15] / M
 

[E9] / M kobs / s
−1 

 

1.34 × 10
−4

 

 1.35 × 10
−5

 

7.97 

2.67 × 10
−4

 1.04 × 10
1
 

4.01 × 10
−4

 1.35 × 10
1
 

5.35 × 10
−4

 1.70 × 10
1
 

6.68 × 10
−4 

2.12 × 10
1 

k2 = 2.47 × 10
4
 M

−1
s

−1
 

 
Table 96. Kinetics of the reaction of A15 with E10 (stopped-flow method, detection at 616 nm) 

[A15] / M
 

[E10] / M kobs / s
−1 

 

1.34 × 10
−4

 

 1.34 × 10
−5

 

8.36 

2.67 × 10
−4

 1.75 × 10
1
 

4.01 × 10
−4

 2.61 × 10
1
 

5.35 × 10
−4

 3.59 × 10
1
 

6.68 × 10
−4 

4.59 × 10
1 

k2 = 7.00 × 10
4
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−1
s

−1
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Table 97. Kinetics of the reaction of A15 with E11 (stopped-flow method, detection at 620 nm) 

[A15] / M
 

[E11] / M kobs / s
−1 

 

1.34 × 10
−4

 

 1.26 × 10
−5

 

2.55 × 10
1
 

2.67 × 10
−4

 5.42 × 10
1
 

4.01 × 10
−4

 8.12 × 10
1
 

5.35 × 10
−4

 1.12 × 10
2
 

6.68 × 10
−4 

1.44 × 10
2 

k2 = 2.21 × 10
5
 M

−1
s

−1
 

 

Table 98. Determination of the parameters N and sN for A15 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 6.57 × 10
3
 

E9 −9.45 2.47 × 10
4
 

E10 −8.76 7.00 × 10
4
 

E11 −8.22 2.21 × 10
5 

N = 14.75 sN = 0.82 

 

  

kobs = 2.21 × 105 [A15] 

− 5.10 
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(S)-N,N-Dimethylpyrrolidine-2-carboxamide (A16) 

 

Table 99. Kinetics of the reaction of A16 with E8 (stopped-flow method, detection at 632 nm) 

[A16] / M
 

[E8] / M kobs / s
−1 

 

1.08 × 10
−4

 

8.00 × 10
−6

 

1.32 × 10
1
 

2.16 × 10
−4

 2.39 × 10
1
 

3.24 × 10
−4

 3.60 × 10
1
 

4.32 × 10
−4

 4.47 × 10
1
 

5.41 × 10
−4

 6.14 × 10
1
 

k2 = 1.08 × 10
5
 M

−1
s

−1
 

 

Table 100. Kinetics of the reaction of A16 with E9 (stopped-flow method, detection at 635 nm) 

[A16] / M
 

[E9] / M kobs / s
−1 

 

1.08 × 10
−4

 

5.63 × 10
−6

 

4.23 × 10
1
 

2.16 × 10
−4

 7.91 × 10
1
 

3.24 × 10
−4

 1.22 × 10
2
 

4.32 × 10
−4

 1.66 × 10
2
 

5.41 × 10
−4

 1.99 × 10
2
 

k2 = 3.70 × 10
5
 M

−1
s

−1
 

 

Table 101. Kinetics of the reaction of A16 with E10 (stopped-flow method, detection at 616 nm) 

[A16] / M
 

[E10] / M kobs / s
−1 

 

1.08 × 10
−4

 

8.94 × 10
−6

 

5.55 × 10
1
 

2.16 × 10
−4

 1.30 × 10
2
 

3.24 × 10
−4

 2.17 × 10
2
 

4.32 × 10
−4

 3.01 × 10
2
 

5.41 × 10
−4

 3.85 × 10
2
 

k2 = 7.67 × 10
5
 M

−1
s

−1
 

 

kobs = 1.08 × 105 [A16]  

+ 0.68 

R² = 0.9903 

0

20

40

60

80

100

0 0.0003 0.0006

k o
b
s 

/ 
s−

1
 

[A16] / M 

kobs  = 3.70 × 105 [A16]   

+ 1.59 

R² = 0.9979 

0

100

200

300

0 0.0003 0.0006

k o
b
s 

/ 
s−

1
 

[A16] / M 

kobs  = 7.67 × 105 [A16]  

− 31.0 

R² = 0.9995 

0

200

400

600

0 0.0003 0.0006

k o
b

s 
/ 

s−
1
 

[A16] / M 



 

169 

 

 

Table 102. Kinetics of the reaction of A16 with E11 (stopped-flow method, detection at 620 nm) 

[A16] / M
 

[E11] / M kobs / s
−1 

 

1.08 × 10
−4

 

9.67 × 10
−6

 

1.74 × 10
2
 

2.16 × 10
−4

 4.29 × 10
2
 

3.24 × 10
−4

 6.53 × 10
2
 

4.32 × 10
−4

 8.33 × 10
2
 

k2 = 2.04 × 10
6
 M

−1
s

−1
 

 

Table 103. Determination of the parameters N and sN for A16 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 1.08 × 10
5
 

E9 −9.45 3.70 × 10
5
 

E10 −8.76 7.67 × 10
5
 

E11 −8.22 2.04 × 10
6 

N = 17.61 sN = 0.67 

  

kobs  = 2.04 × 106 [A16] 

− 28.0 

R² = 0.9942 
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(S)-N-Propylpyrrolidine-2-carboxamide (A17) 

 

Table 104. Kinetics of the reaction of A17 with E9 (stopped-flow method, detection at 635 nm) 

[A17] / M
 

[E9] / M kobs / s
−1 

 

1.20 × 10
−4

 

 1.13 × 10
−5

 

3.01 

2.39 × 10
−4

 4.73 

3.59 × 10
−4

 6.71 

4.78 × 10
−4

 8.82 

5.98 × 10
−4 

1.10 × 10
1 

k2 = 1.68 × 10
4
 M

−1
s

−1
 

 
Table 105. Kinetics of the reaction of A17 with E10 (stopped-flow method, detection at 616 nm) 

[A17] / M
 

[E10] / M kobs / s
−1 

 

1.20 × 10
−4

 

 8.51 × 10
−6

 

3.76 

2.39 × 10
−4

 8.71 

3.59 × 10
−4

 1.26 × 10
1
 

4.78 × 10
−4

 1.75 × 10
1
 

5.98 × 10
−4 

2.25 × 10
1 

k2 = 3.87 × 10
4
 M

−1
s

−1
 

 
Table 106. Kinetics of the reaction of A17 with E11 (stopped-flow method, detection at 620 nm) 

[A17] / M
 

[E11] / M kobs / s
−1 

 

1.20 × 10
−4

 

 1.20 × 10
−5

 

1.18 × 10
1
 

2.39 × 10
−4

 2.52 × 10
1
 

3.59 × 10
−4

 3.92 × 10
1
 

4.78 × 10
−4

 5.28 × 10
1
 

5.98 × 10
−4 

6.79 × 10
1 

k2 = 1.17 × 10
5
 M

−1
s

−1
 

  

kobs = 1.68 × 104 [A17] 

+ 0.83 

R² = 0.9980 
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Table 107. Kinetics of the reaction of A17 with E12 (stopped-flow method, detection at 612 nm) 

[A17] / M
 

[E12] / M kobs / s
−1 

 

1.20 × 10
−4

 

 1.20 × 10
−5

 

2.93 × 10
1
 

2.39 × 10
−4

 6.45 × 10
1
 

3.59 × 10
−4

 9.98 × 10
1
 

4.78 × 10
−4

 1.38 × 10
2
 

5.98 × 10
−4 

1.74 × 10
2 

k2 = 3.04 × 10
5
 M

−1
s

−1
 

 

Table 108. Determination of the parameters N and sN for A17 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E9 −9.45 1.68 × 10
4
 

E10 −8.76 3.87 × 10
4
 

E11 

E12 

−8.22 

−7.69 

1.17 × 10
5
  

3.04 × 10
5 

N = 15.20 sN = 0.73 

 

  

kobs = 3.04 × 105 [A17] − 

7.84 

R² = 0.9998 
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(S)-2-(Pyrrolidin-2-ylmethyl)isoindoline-1,3-dione (A18) 

 

The stock solution of A18 was achieved by quantitative deprotonation of A18H with DBU 

base (na11H/nDBU = 1.15 : 1). 

 

Table 109. Kinetics of the reaction of A18 with E8 (stopped-flow method, detection at 632 nm) 

[A18] / M
 

[E8] / M kobs / s
−1 

 

7.76 × 10
−5

 

 4.88 × 10
−6

 

3.77 

1.03 × 10
−4

 4.60 

1.29 × 10
−4

 5.53 

1.55 × 10
−4

 6.33 

k2 = 3.33 × 10
4
 M

−1
s

−1
 

 
Table 110. Kinetics of the reaction of A18 with E9 (stopped-flow method, detection at 635 nm) 

[A18] / M
 

[E9] / M kobs / s
−1 

 

7.76 × 10
−5

 

 4.83 × 10
−6

 

1.13 × 10
1
 

1.03 × 10
−4

 1.33 × 10
1
 

1.29 × 10
−4

 1.55 × 10
1
 

1.55 × 10
−4

 1.75 × 10
1
 

k2 = 8.06 × 10
4
 M

−1
s

−1
 

  

kobs  = 3.33 × 104 [A18] + 

1.18 

R² = 0.9992 
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Table 111. Kinetics of the reaction of A18 with E10 (stopped-flow method, detection at 616 nm) 

[A18] / M
 

[E10] / M kobs / s
−1 

 

5.17 × 10
−5

 

 3.79 × 10
−6

 

1.40 × 10
1
 

6.47 × 10
−5

 1.80 × 10
1
 

7.76 × 10
−5

 2.10 × 10
1
 

9.05 × 10
−5

 2.54 × 10
1
 

1.03 × 10
−4 

1.16 × 10
−4 

2.84 × 10
1 

3.18 × 10
1 

k2 = 2.77 × 10
5
 M

−1
s

−1
 

 
Table 112. Kinetics of the reaction of A18 with E11 (stopped-flow method, detection at 620 nm) 

[A18] / M
 

[E11] / M kobs / s
−1 

 

3.88 × 10
−5

 

5.17 × 10
−5

 

 3.88 × 10
−6

 

2.48 × 10
1 

3.49 × 10
1
 

6.47 × 10
−5

 4.50 × 10
1
 

7.76 × 10
−5

 5.22 × 10
1
 

9.05 × 10
−5

 6.35 × 10
1
 

1.03 × 10
−4 

1.16 × 10
−4 

7.32 × 10
1 

8.13 × 10
1 

k2 = 7.35 × 10
5
 M

−1
s

−1
 

  

kobs  = 2.77 × 105 [A18]  

− 0.17 

R² = 0.9979 

0

10

20

30

40

50

0 0.00004 0.00008 0.00012

k o
b
s 
/ 

s−
1
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Table 113. Kinetics of the reaction of A18 with E12 (stopped-flow method, detection at 612 nm) 

[A18] / M
 

[E12] / M kobs / s
−1 

 

3.88 × 10
−5

 

5.17 × 10
−5

 

 3.67 × 10
−6

 

6.16 × 10
1 

9.51 × 10
1
 

6.47 × 10
−5

 1.16 × 10
2
 

7.76 × 10
−5

 1.47 × 10
2
 

9.05 × 10
−5

 1.70 × 10
2
 

1.03 × 10
−4 

1.16 × 10
−4 

1.98 × 10
2 

2.22 × 10
2 

k2 = 2.06 × 10
6
 M

−1
s

−1
 

 

Table 114. Determination of the parameters N and sN for A18 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 3.33 × 10
4
 

E9 −9.45 8.06 × 10
4
 

E10 −8.76 2.77 × 10
5
 

E11 

E12 

−8.22 

−7.69 

7.35 × 10
5 

2.06 × 10
6 

N = 15.90 sN = 0.77  

 

  

kobs  = 2.06 × 106 [A18] 

− 15.2 

R² = 0.9980 
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(S)-4-Phenyl-1-(pyrrolidin-2-ylmethyl)-1H-1,2,3-triazole (A19) 

 
Table 115. Kinetics of the reaction of A19 with E8 (stopped-flow method, detection at 632 nm) 

[A19] / M
 

[E8] / M kobs / s
−1 

 

3.89 × 10
−5

 

 3.89 × 10
−6

 

4.03 × 10
−1

 

5.96 × 10
−5

 5.26 × 10
−1

 

7.95 × 10
−5

 6.53 × 10
−1

 

9.94 × 10
−5

 7.79 × 10
−1

 

1.19 × 10
−4 

8.92 × 10
−1 

k2 = 6.16 × 10
3
 M

−1
s

−1
 

 
Table 116. Kinetics of the reaction of A19 with E9 (stopped-flow method, detection at 635 nm) 

[A19] / M
 

[E9] / M kobs / s
−1 

 

5.30 × 10
−5

 

 3.78 × 10
−6

 

1.35 

7.95 × 10
−5

 1.71 

1.06 × 10
−4

 2.08 

1.33 × 10
−4

 2.54 

1.59 × 10
−4 

2.98
 

k2 = 1.54 × 10
4
 M

−1
s

−1
 

 
Table 117. Kinetics of the reaction of A19 with E10 (stopped-flow method, detection at 616 nm) 

[A19] / M
 

[E10] / M kobs / s
−1 

 

3.98 × 10
−5

 

 3.91 × 10
−6

 

1.81 

5.96 × 10
−5

 2.60 

7.95 × 10
−5

 3.50 

9.94 × 10
−5

 4.31 

1.19 × 10
−4 

5.34
 

k2 = 4.42 × 10
4
 M

−1
s

−1
 

kobs = 6.16 × 103 [A19] 

+ 0.16 

R² = 0.9997 
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Table 118. Kinetics of the reaction of A19 with E11 (stopped-flow method, detection at 620 nm) 

[A19] / M
 

[E11] / M kobs / s
−1 

 

3.98 × 10
−5

 

 3.81 × 10
−6

 

4.75 

5.96 × 10
−5

 7.23 

7.95 × 10
−5

 9.89 

9.94 × 10
−5

 1.27 × 10
1
 

1.19 × 10
−4 

1.50 × 10
1 

k2 = 1.31 × 10
5
 M

−1
s

−1
 

 

Table 119. Kinetics of the reaction of A19 with E12 (stopped-flow method, detection at 612 nm) 

[A19] / M
 

[E12] / M kobs / s
−1 

 

3.98 × 10
−5

 

 3.81 × 10
−6

 

1.22 × 10
1
 

5.96 × 10
−5

 1.84 × 10
1
 

7.95 × 10
−5

 2.47 × 10
1
 

9.94 × 10
−5

 3.18 × 10
1
 

1.19 × 10
−4 

3.89 × 10
1 

k2 = 3.37 × 10
5
 M

−1
s

−1
 

 

Table 120. Kinetics of the reaction of A19 with E13 (stopped-flow method, detection at 605 nm) 

[A19] / M
 

[E13] / M kobs / s
−1 

 

2.65 × 10
−5

 

 2.62 × 10
−6

 

1.89 × 10
1
 

3.98 × 10
−5

 2.87 × 10
1
 

5.30 × 10
−5

 3.92 × 10
1
 

6.63 × 10
−5

 5.00 × 10
1
 

7.95 × 10
−5 

6.00 × 10
1 

k2 = 7.81 × 10
5
 M

−1
s

−1
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Table 121. Determination of the parameters N and sN for A19 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 6.16 × 10
3
 

E9 −9.45 1.54 × 10
4
 

E10 −8.76 4.42 × 10
4
 

E11 

E12 

E13 

−8.22 

−7.69 

−7.02 

1.31 × 10
5 

3.37 × 10
5 

7.81 × 10
5 

N = 15.32 sN = 0.72 

 

  

lg k2 = 0.72E + 10.96 

R² = 0.9966 
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-10.5 -9.5 -8.5 -7.5 -6.5

lg
 k

2
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(S)-1-(Pyrrolidin-2-ylmethyl)-1H-imidazole (A20) 

 

Table 122. Kinetics of the reaction of A20 with E8 (stopped-flow method, detection at 632 nm) 

[A20] / M
 

[E8] / M kobs / s
−1 

 

2.35 × 10
−4

 

 6.75 × 10
−6

 

1.41 

3.52 × 10
−4

 2.00 

4.70 × 10
−4

 2.60 

5.87 × 10
−4

 3.26 

7.04 × 10
−4 

3.94
 

k2 = 5.39 × 10
3
 M

−1
s

−1
 

 
Table 123. Kinetics of the reaction of A20 with E9 (stopped-flow method, detection at 635 nm) 

[A20] / M
 

[E9] / M kobs / s
−1 

 

2.35 × 10
−4

 

 5.81 × 10
−6

 

4.74 

3.52 × 10
−4

 6.82 

4.70 × 10
−4

 8.77 

5.87 × 10
−4

 1.12 × 10
1
 

7.04 × 10
−4 

1.33 × 10
1 

k2 = 1.83 × 10
4
 M

−1
s

−1
 

 
Table 124. Kinetics of the reaction of A20 with E10 (stopped-flow method, detection at 616 nm) 

[A20] / M
 

[E10] / M kobs / s
−1 

 

9.39 × 10
−5

 

 8.35 × 10
−6

 

3.98 

1.41 × 10
−4

 5.08 

1.88 × 10
−4

 6.94 

2.35 × 10
−4

 8.49 

2.82 × 10
−4 

3.29 × 10
−4 

1.06 × 10
1 

1.24 × 10
1 

k2 = 3.66 × 10
4
 M

−1
s

−1
 

kobs = 5.39 × 103 [A20] + 0.11 

R² = 0.9989 
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Table 125. Kinetics of the reaction of A20 with E11 (stopped-flow method, detection at 620 nm) 

[A20] / M
 

[E11] / M kobs / s
−1 

 

7.04 × 10
−5

 

 6.12 × 10
−6

 

7.29 

1.17 × 10
−4

 1.24 × 10
1
 

1.64 × 10
−4

 1.85 × 10
1
 

2.11 × 10
−4

 2.38 × 10
1
 

2.58 × 10
−4 

3.05 × 10
−4 

2.91 × 10
1 

3.51 × 10
1 

k2 = 1.18 × 10
5
 M

−1
s

−1
 

 
Table 126. Kinetics of the reaction of A20 with E12 (stopped-flow method, detection at 612 nm) 

[A20] / M
 

[E12] / M kobs / s
−1 

 

7.04 × 10
−5

 

 5.30 × 10
−6

 

1.70 × 10
1
 

1.17 × 10
−4

 2.91 × 10
1
 

1.64 × 10
−4

 4.25 × 10
1
 

2.11 × 10
−4

 5.53 × 10
1
 

2.58 × 10
−4 

3.05 × 10
−4 

6.89 × 10
1 

8.16 × 10
1 

k2 = 2.77 × 10
5
 M

−1
s

−1
 

 
Table 127. Kinetics of the reaction of A20 with E13 (stopped-flow method, detection at 605 nm) 

[A20] / M
 

[E13] / M kobs / s
−1 

 

9.39 × 10
−5

 

 8.00 × 10
−6

 

5.15 × 10
1
 

1.41 × 10
−4

 8.45 × 10
1
 

1.88 × 10
−4

 1.11 × 10
2
 

2.35 × 10
−4

 1.39 × 10
2
 

2.82 × 10
−4 

1.72 × 10
2 

k2 = 6.28 × 10
5
 M

−1
s

−1
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Table 128. Determination of the parameters N and sN for A20 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 5.39 × 10
3
 

E9 −9.45 1.83 × 10
4
 

E10 −8.76 3.66 × 10
4
 

E11 

E12 

E13 

−8.22 

−7.69 

−7.02 

1.18 × 10
5
 

2.77 × 10
5
 

6.28 × 10
5 

N = 15.55 sN = 0.69 

  

lg k2 = 0.69E + 10.66 

R² = 0.9917 
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(S)-3-Butyl-1-(pyrrolidin-2-ylmethyl)-1H-imidazol-3-ium trifluoromethanesulfonate 

(A21) 

 
Table 129. Kinetics of the reaction of A21 with E13 (stopped-flow method, detection at 605 nm) 

[A21] / M
 

[E13] / M kobs / s
−1 

 

1.75 × 10
−4

 

 6.82 × 10
−6

 

4.54 × 10
−1

 

2.62 × 10
−4

 6.69 × 10
−1

 

3.50 × 10
−4

 9.21 × 10
−1

 

4.37 × 10
−4 

5.25 × 10
−4 

1.24
 

1.47
 

k2 = 2.97 × 10
3
 M

−1
s

−1
 

 
Table 130. Kinetics of the reaction of A21 with E14 (stopped-flow method, detection at 613 nm) 

[A21] / M
 

[E14] / M kobs / s
−1 

 

1.05 × 10
−4

 

 1.05× 10
−5

 

1.62 

1.57 × 10
−4

 2.66 

2.10 × 10
−4

 3.54 

2.62 × 10
−4 

6.30 × 10
−4 

4.82
 

1.26 × 10
1 

k2 = 2.11 × 10
4
 M

−1
s

−1
 

 
Table 131. Kinetics of the reaction of A21 with E15 (stopped-flow method, detection at 612 nm) 

[A21] / M
 

[E15] / M kobs / s
−1 

 

1.05 × 10
−4

 

 9.90 × 10
−6

 

1.18 

1.57 × 10
−4

 2.00 

2.10 × 10
−4

 2.53 

2.62 × 10
−4 

3.15 × 10
−4 

3.40
 

4.38
 

k2 = 1.49 × 10
4
 M

−1
s

−1
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R² = 0.9959 

0

0.5

1

1.5

2

2.5

0 0.0002 0.0004 0.0006

k o
b
s 

/ 
s−

1
 

[A21] / M 

kobs = 2.11 × 104 [A21] 

− 0.69 

R² = 0.9994 

0

5

10

15

20

0 0.0002 0.0004 0.0006 0.0008

k o
b
s 

/ 
s−

1
 

[A21] / M 

kobs = 1.49 × 104 [A21] 

− 0.42 

R² = 0.9906 

0

2

4

6

0 0.00011 0.00022 0.00033

k o
b

s 
/ 

s−
1
 

[A21] / M 
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Table 132. Kinetics of the reaction of A21 with E16 (stopped-flow method, detection at 645 nm) 

[A21] / M
 

[E16] / M kobs / s
−1 

 

1.75 × 10
−4

 

 8.78 × 10
−6

 

1.52 × 10
1
 

2.62 × 10
−4

 2.41 × 10
1
 

3.50 × 10
−4

 3.43 × 10
1
 

4.37 × 10
−4 

5.25 × 10
−4 

4.55 × 10
1 

5.68 × 10
1 

k2 = 1.20 × 10
5
 M

−1
s

−1
 

 

Table 133. Kinetics of the reaction of A21 with E17 (stopped-flow method, detection at 586 nm) 

[A21] / M
 

[E17] / M kobs / s
−1 

 

7.00 × 10
−5

 

 4.84 × 10
−6

 

7.18 

1.05 × 10
−4

 1.12 × 10
1
 

1.40 × 10
−4

 1.58 × 10
1
 

1.75 × 10
−4 

2.10 × 10
−4 

2.02 × 10
1 

2.60 × 10
1 

k2 = 1.33 × 10
5
 M

−1
s

−1
 

 

Table 134. Kinetics of the reaction of A21 with E18 (stopped-flow method, detection at 592 nm) 

[A21] / M
 

[E18] / M kobs / s
−1 

 

7.00 × 10
−5

 

 7.00 × 10
−6

 

1.81 × 10
1
 

1.05 × 10
−4

 2.72 × 10
1
 

1.40 × 10
−4

 3.73 × 10
1
 

1.75 × 10
−4 

2.10 × 10
−4 

4.87 × 10
1 

6.15 × 10
1 

k2 = 3.09 × 10
5
 M

−1
s

−1
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− 6.64 
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Table 135. Determination of the parameters N and sN for A21 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E13 

E14 

E15 

E16 

E17 

E18 

−7.02 

−5.89 

−5.53 

−4.72 

−3.85 

−4.14 

2.97 × 10
3 

2.11 × 10
4* 

1.49 × 10
4 

1.20 × 10
5* 

1.33 × 10
5 

3.09 × 10
5 

N = 13.57 sN = 0.53 

* Second-order rate constants k2 for the reactions of A21 with E14 and E16 are not used for the 

determination of the N and sN parameters. 

 

  

lg k2 = 0.53E + 7.132 

R² = 0.9984 
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(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea (A22) 

 

Table 136. Kinetics of the reaction of A22 with E8 (stopped-flow method, detection at 632 nm) 

[A22] / M
 

[E8] / M kobs / s
−1 

 

1.11 × 10
−4

 

 5.29 × 10
−6

 

5.73 × 10
−1

 

1.66 × 10
−4

 6.81 × 10
−1

 

2.21 × 10
−4

 8.26 × 10
−1

 

2.76 × 10
−4

 9.36 × 10
−1

 

3.31 × 10
−4 

4.42 × 10
−4 

1.09
 

1.37
 

k2 = 2.42 × 10
3
 M

−1
s

−1
 

 
Table 137. Kinetics of the reaction of A22 with E9 (stopped-flow method, detection at 635 nm) 

[A22] / M
 

[E9] / M kobs / s
−1 

 

1.66 × 10
−4

 

 6.08 × 10
−6

 

2.06 

2.21 × 10
−4

 2.45 

2.76 × 10
−4

 2.87 

3.86 × 10
−4

 3.65 

k2 = 7.25 × 10
3
 M

−1
s

−1
 

 
Table 138. Kinetics of the reaction of A22 with E10 (stopped-flow method, detection at 616 nm) 

[A22] / M
 

[E10] / M kobs / s
−1 

 

6.62 × 10
−5

 

 4.86 × 10
−6

 

1.13 

9.94 × 10
−5

 1.69 

1.32 × 10
−4

 2.30 

1.66 × 10
−4

 2.85 

1.99 × 10
−4 

3.48
 

k2 = 1.76 × 10
4
 M

−1
s

−1
 

kobs = 2.42 × 103 [A22] 

+ 0.29 

R² = 0.9976 
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Table 139. Kinetics of the reaction of A22 with E11 (stopped-flow method, detection at 620 nm) 

[A22] / M
 

[E11] / M kobs / s
−1 

 

4.42 × 10
−5

 

 4.28 × 10
−6

 

2.19 

6.62 × 10
−5

 3.02 

8.83 × 10
−5

 3.96 

1.10 × 10
−4

 4.76 

1.32 × 10
−4 

5.83
 

k2 = 4.11 × 10
4
 M

−1
s

−1
 

 
Table 140. Kinetics of the reaction of A22 with E12 (stopped-flow method, detection at 612 nm) 

[A22] / M
 

[E12] / M kobs / s
−1 

 

4.42 × 10
−5

 

 4.41 × 10
−6

 

4.65 

6.62 × 10
−5

 7.07 

8.83 × 10
−5

 9.56 

1.10 × 10
−4

 1.24 × 10
1
 

1.32 × 10
−4 

1.45 × 10
1 

k2 = 1.14 × 10
5
 M

−1
s

−1
 

 

Table 141. Determination of the parameters N and sN for A22 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 

E9 

−10.04 

−9.45 

2.42 × 10
3
 

7.25 × 10
3
 

E10 −8.76 1.76 × 10
3
 

E11 

E12 

−8.22 

−7.69 

4.11 × 10
4
  

1.14 × 10
5 

N = 14.97 sN = 0.69 
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(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)urea (A23) 

 

The stock solution of A23 was prepared by quantitative deprotonation of A23H with DBU 

base (na13H/nDBU = 1.2 : 1). 

 

Table 142. Kinetics of the reaction of A23 with E8 (stopped-flow method, detection at 632 nm) 

[A23] / M
 

[E8] / M kobs / s
−1 

 

4.48 × 10
−5

 

  4.32 × 10
−6

 

1.69 

6.72 × 10
−5

 2.67 

8.95 × 10
−5

 3.93 

1.12 × 10
−4

 5.19 

1.34 × 10
−4 

6.50
 

k2 = 5.44 × 10
4
 M

−1
s

−1
 

 
Table 143. Kinetics of the reaction of A23 with E9 (stopped-flow method, detection at 635 nm) 

[A23] / M
 

[E9] / M kobs / s
−1 

 

4.48 × 10
−5

 

 4.28 × 10
−6

 

4.88 

6.72 × 10
−5

 7.65 

8.95 × 10
−5

 1.07 × 10
1
 

1.12 × 10
−4

 1.47 × 10
1
 

k2 = 1.45 × 10
5
 M

−1
s

−1
 

  

kobs = 5.44 × 104 [A23] 
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Table 144. Kinetics of the reaction of A23 with E10 (stopped-flow method, detection at 616 nm) 

[A23] / M
 

[E10] / M kobs / s
−1 

 

4.48 × 10
−5

 

 4.12 × 10
−6

 

9.16 

6.72 × 10
−5

 1.61 × 10
1
 

7.84 × 10
−5

 2.06 × 10
1
 

8.96 × 10
−5

 2.45 × 10
1
 

1.23 × 10
−4 

3.77 × 10
1 

k2 = 3.68 × 10
5
 M

−1
s

−1
 

 
Table 145. Kinetics of the reaction of A23 with E11 (stopped-flow method, detection at 620 nm) 

[A23] / M
 

[E11] / M kobs / s
−1 

 

3.36 × 10
−5

 

 3.67 × 10
−6

 

1.56 × 10
1
 

4.48 × 10
−5

 2.40 × 10
1
 

5.60 × 10
−5

 3.21 × 10
1
 

6.72 × 10
−5

 4.25 × 10
1
 

8.96 × 10
−5 

6.07 × 10
1 

k2 = 8.11 × 10
5
 M

−1
s

−1
 

 

Table 146. Determination of the parameters N and sN for A23 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E8 −10.04 5.44 × 10
4
 

E9 −9.45 1.45 × 10
5
 

E10 −8.76 3.68 × 10
5
 

E11 −8.22 8.11 × 10
5 

N = 17.50 sN = 0.64 

  

kobs  = 3.68 × 105 [A23] 

− 8.03 

R² = 0.9971 

0
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40

50
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(S)-2-Tritylpyrrolidine (A24) 

 

Table 147. Kinetics of the reaction of A24 with E11 and D1 ([D1] = 5.83 mmolL
−1

, stopped-flow method, 
detection at 620 nm) 

[A24] / M
 

[E11] / M kobs / s
−1 

 

3.23 × 10
−4

 

 5.61 × 10
−6

 

2.67 × 10
−2

 

5.02 × 10
−4

 2.97 × 10
−2

 

6.82 × 10
−4

 3.37 × 10
−2

 

8.61 × 10
−4 

1.04 × 10
−3 

3.71 × 10
−2 

4.07 × 10
−2 

k2 = 1.97 × 10
1
 M

−1
s

−1
 

 

Table 148. Kinetics of the reaction of A24 with E12 and D1 ([D1] = 5.83 mmolL
−1

, stopped-flow method, 
detection at 612 nm) 

[A24] / M
 

[E12] / M kobs / s
−1 

 

2.06 × 10
−4

 

 4.59 × 10
−6

 

3.89 × 10
−2

 

3.43 × 10
−4

 5.46 × 10
−2

 

4.80 × 10
−4

 7.05 × 10
−2

 

6.17 × 10
−4 

7.55 × 10
−4 

8.86 × 10
−2 

1.09 × 10
−1 

k2 = 1.27 × 10
2
 M

−1
s

−1
 

  

kobs = 1.97 × 101 [A24] + 

2.01 × 10−2 

R² = 0.9987 

0

0.02

0.04

0.06

0 0.0004 0.0008 0.0012

k o
b
s 

/ 
s−

1
 

[A24] / M 

kobs = 1.27 × 102 [A24] + 

1.13 × 10−2 

R² = 0.9968 

0

0.05

0.1

0.15

0.2

0 0.0004 0.0008

k o
b
s 

/ 
s−

1
 

[A24] / M 
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Table 149. Kinetics of the reaction of A24 with E13 and D1 ([D1] = 5.83 mmolL
−1

, stopped-flow method, 
detection at 605 nm) 

[A24] / M
 

[E13] / M kobs / s
−1 

 

1.37 × 10
−4

 

 4.70 × 10
−6

 

8.80 × 10
−2

 

2.06 × 10
−4

 1.40 × 10
−1

 

2.74 × 10
−4

 1.92 × 10
−1

 

3.43 × 10
−4 

4.12 × 10
−4 

2.50 × 10
−1 

3.05 × 10
−1 

k2 = 7.92 × 10
2
 M

−1
s

−1
 

 

Table 150. Kinetics of the reaction of A24 with E15 (stopped-flow method, detection at 612 nm) 

[A24] / M
 

[E15] / M kobs / s
−1 

 

9.97 × 10
−5

 

 9.19 × 10
−6

 

8.83 

1.50 × 10
−4

 1.46 × 10
1
 

1.99 × 10
−4

 1.95 × 10
1
 

2.49 × 10
−4 

2.99 × 10
−4 

3.49 × 10
−4 

2.58 × 10
1 

3.22 × 10
1 

3.66 × 10
1 

k2 = 1.14 × 10
5
 M

−1
s

−1
 

 

  

kobs = 7.92 × 102 [A24] 

− 2.23 × 10−2 

R² = 0.9996 

0
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0.2

0.3

0.4

0 0.00015 0.0003 0.00045

k o
b
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[A24] / M 

kobs = 1.14 × 105 [A24] 

− 2.54 

R² = 0.9979 
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Table 151. Kinetics of the reaction of A24 with E15 and D1 ([D1] = 4.66 mmolL
−1

, stopped-flow method, 
detection at 612 nm) 

[A24] / M
 

[E15] / M kobs / s
−1 

 

4.12 × 10
−5

 

 4.24 × 10
−6

 

5.04 

6.86 × 10
−5

 8.10 × 10
5
 

9.60 × 10
−5

 1.10 × 10
1
 

1.23 × 10
−4

 1.42 × 10
1
 

1.51 × 10
−4 

1.78 × 10
−4 

1.76 × 10
1 

2.10 × 10
1 

k2 = 1.16 × 10
5
 M

−1
s

−1
 

 

Table 152. Determination of the parameters N and sN for A24 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E11 

E12 

E13 

E15 

−8.22 

−7.69 

−7.02 

−5.53 

1.97 × 10
1 

1.27 × 10
2 

7.92 × 10
2 

1.16 × 10
5 

N = 9.16 sN = 1.39 

  

kobs = 1.16 × 105 [A24] 

+ 6.58 × 10−2  

R² = 0.9990 
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20

30
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lg k2 = 1.39E + 12.73 
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(S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (A25) 

 
Table 153. Kinetics of the reaction of A25 with E9 and D1 ([D1] = 4.86 mmolL

−1
, stopped-flow method, 

detection at 635 nm) 

[A25] / M
 

[E9] / M kobs / s
−1 

 

5.93 × 10
−4

 

 4.68 × 10
−6

 

2.07 × 10
−1

 

8.89 × 10
−4

 2.71 × 10
−1

 

1.19 × 10
−3

 3.29 × 10
−1

 

1.78 × 10
−3

 4.57 × 10
−1

 

2.37 × 10
−3

 5.96 × 10
−1

 

2.96 × 10
−3 

7.44 × 10
−1 

k2 = 2.26 × 10
2
 M

−1
s

−1
 

 
Table 154. Kinetics of the reaction of A25 with E10 and D1 ([D1] = 4.86 mmolL

−1
, stopped-flow method, 

detection at 616 nm) 

[A25] / M
 

[E10] / M kobs / s
−1 

 

3.92 × 10
−4

 

 7.25 × 10
−6

 

8.98 × 10
−1

 

5.22 × 10
−4

 1.24 

6.53 × 10
−4

 1.57 

7.83 × 10
−4

 1.91 

1.04 × 10
−3 

1.31 × 10
−3 

2.80
 

3.26
 

k2 = 2.67 × 10
3
 M

−1
s

−1
 

  

kobs = 2.26 × 102 [A25] 

+ 6.61 × 10−2 

R² = 0.9984 

0

0.2

0.4

0.6

0.8

1

0 0.001 0.002 0.003

k o
b
s 

/ 
s−

1
 

[A25] / M 

kobs = 2.67 × 103 [A25] − 0.15 

R² = 0.9907 

0

1

2

3

4

5

0 0.0005 0.001 0.0015

k o
b
s 

/ 
s−

1
 

[A25] / M 
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Table 155. Kinetics of the reaction of A25 with E11 and D1 ([D1] = 4.86 mmolL
−1

, stopped-flow method, 
detection at 620 nm) 

[A25] / M
 

[E11] / M kobs / s
−1 

 

2.40 × 10
−4

 

 4.97 × 10
−6

 

1.44 

3.59 × 10
−4

 1.93 

4.79 × 10
−4

 2.52 

5.99 × 10
−4

 3.13 

8.39 × 10
−4 

1.08 × 10
−3 

4.35
 

5.91
 

k2 = 5.30 × 10
3
 M

−1
s

−1
 

 
Table 156. Kinetics of the reaction of A25 with E12 and D1 ([D1] = 4.86 mmolL

−1
, stopped-flow method, 

detection at 612 nm) 

[A25] / M
 

[E12] / M kobs / s
−1 

 

1.11 × 10
−4

 

 5.16 × 10
−6

 

1.31 

2.21 × 10
−4

 2.92 

3.32 × 10
−4

 4.87 

4.42 × 10
−4

 6.50 

5.53 × 10
−4 

6.64 × 10
−4 

8.39
 

1.03 × 10
1 

k2 = 1.63 × 10
4
 M

−1
s

−1
 

 
Table 157. . Kinetics of the reaction of A25 with E13 (stopped-flow method, detection at 605 nm) 

[A25] / M
 

[E13] / M kobs / s
−1 

 

1.10 × 10
−4

 

 4.41 × 10
−6

 

8.32 

1.65 × 10
−4

 1.32 × 10
1
 

2.20 × 10
−4

 1.88 × 10
1
 

2.75 × 10
−4 

3.30 × 10
−4 

2.43 × 10
1 

2.93 × 10
1 

k2 = 9.65 × 10
4
 M

−1
s

−1
 

kobs = 5.30 × 103 [A25] 

+ 3.5 × 10−2  

R² = 0.9952 

0
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k o
b
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kobs = 1.63 × 104 [A25] 

− 0.59 

R² = 0.9993 
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Table 158. Kinetics of the reaction of A25 with E15 (stopped-flow method, detection at 612 nm) 

[A25] / M
 

[E15] / M kobs / s
−1 

 

4.40 × 10
−5

 

 4.29 × 10
−6

 

7.27 × 10
1
 

6.60 × 10
−5

 1.22 × 10
2
 

8.80 × 10
−5

 1.61 × 10
2
 

1.10 × 10
−4

 2.10 × 10
2
 

k2 = 2.05 × 10
6
 M

−1
s

−1
 

 

Table 159. Determination of the parameters N and sN for A25 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E9 −9.45 2.26 × 10
2
 

E10 −8.76 2.67 × 10
3
 

E11 

E12 

E13 

E15 

−8.22 

−7.69 

−7.02 

−5.53 

5.30 × 10
3 

1.63 × 10
4 

9.65 × 10
4 

2.05 × 10
6 

N = 12.03 sN = 0.98 

  

kobs = 2.05 × 106 [A25] − 

16.4 

R² = 0.9980 

0

100

200
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0 0.00004 0.00008 0.00012
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lgk2 = 0.98E + 11.79 
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(S)-Diphenyl(pyrrolidin-2-yl)methanol (A26) 

 
Table 160. Kinetics of the reaction of A26 with E9 (stopped-flow method, detection at 635 nm) 

[A26] / M
 

[E9] / M kobs / s
−1 

 

4.42 × 10
−4

 

 4.39 × 10
−6

 

5.40 

6.63 × 10
−4

 6.62 

8.84 × 10
−4

 7.38 

1.33 × 10
−3

 9.78 

1.77 × 10
−3 

1.28 × 10
1 

k2 = 5.48 × 10
3
 M

−1
s

−1
 

 
Table 161. Kinetics of the reaction of A26 with E10 (stopped-flow method, detection at 616 nm) 

[A26] / M
 

[E10] / M kobs / s
−1 

 

2.31 × 10
−4

 

 4.67 × 10
−6

 

2.91 

3.46 × 10
−4

 4.19 

4.62 × 10
−4

 5.57 

6.93 × 10
−4

 8.44 

9.24 × 10
−4 

1.13 × 10
1 

k2 = 1.22 × 10
4
 M

−1
s

−1
 

 
Table 162. Kinetics of the reaction of A26 with E11 (stopped-flow method, detection at 620 nm) 

[A26] / M
 

[E11] / M kobs / s
−1 

 

1.15 × 10
−4

 

 3.25 × 10
−6

 

4.72 

2.31 × 10
−4

 8.37 

3.46 × 10
−4

 1.20 × 10
1
 

4.62 × 10
−4

 1.62 × 10
1
 

6.93 × 10
−4 

9.24 × 10
−4 

2.45 × 10
1 

3.35 × 10
1 

k2 = 3.57 × 10
4
 M

−1
s

−1
 

 

kobs = 5.48 × 103 [A26] 

+ 2.82 

R² = 0.9907 
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[A26] / M 
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Table 163. Kinetics of the reaction of A26 with E12 (stopped-flow method, detection at 612 nm) 

[A26] / M
 

[E12] / M kobs / s
−1 

 

5.77 × 10
−5

 

 4.08 × 10
−6

 

4.45 

1.15 × 10
−4

 7.73 

2.31 × 10
−4

 1.52 × 10
1
 

3.46 × 10
−4

 2.43 × 10
1
 

4.62 × 10
−4 

6.93 × 10
−4 

9.24 × 10
−4 

3.32 × 10
1 

5.05 × 10
1 

6.90 × 10
1 

k2 = 7.50 × 10
4
 M

−1
s

−1
 

 
Table 164. Kinetics of the reaction of A26 with E13 (stopped-flow method, detection at 605 nm) 

[A26] / M
 

[E13] / M kobs / s
−1 

 

4.62 × 10
−5

 

 4.85 × 10
−6

 

6.27 

9.24 × 10
−5

 1.35 × 10
1
 

1.39 × 10
−4

 2.09 × 10
1
 

1.85 × 10
−4

 2.95 × 10
1
 

2.31 × 10
−4 

2.77 × 10
−4 

3.75 × 10
1 

4.58 × 10
1 

k2 = 1.72 × 10
5
 M

−1
s

−1
 

 
Table 165. Kinetics of the reaction of A26 with E15 (stopped-flow method, detection at 612 nm) 

[A26] / M
 

[E15] / M kobs / s
−1 

 

4.04 × 10
−5

 

 3.89 × 10
−6

 

2.51 × 10
1
 

5.77 × 10
−5

 3.86 × 10
1
 

7.50 × 10
−5

 5.27 × 10
1
 

9.24 × 10
−5

 6.41 × 10
1
 

1.10 × 10
−4 

1.27 × 10
−4 

7.80 × 10
1 

9.20 × 10
1 

k2 = 7.64 × 10
5
 M

−1
s

−1
 

 

kobs = 7.50 × 104 [A26] 

− 1.12 

R² = 0.9989 
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R² = 0.9990 

0

20

40

60

0 0.0001 0.0002 0.0003
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Table 166. Kinetics of the reaction of A26 with E15 and D1 ([D1] = 4.66 mM, stopped-flow method, 
detection at 612 nm) 

[A26] / M
 

[E15] / M kobs / s
−1 

 

6.41 × 10
−5

 

 3.54 × 10
−6

 

4.35 × 10
1
 

1.28 × 10
−4

 9.32 × 10
1
 

1.92 × 10
−4

 1.44 × 10
2
 

2.57 × 10
−4

 1.98 × 10
2
 

3.21 × 10
−4 

2.49 × 10
2 

k2 = 8.02 × 10
5
 M

−1
s

−1
 

 

Table 167. Determination of the parameters N and sN for A26 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E9 −9.45 5.48 × 10
3
 

E10 −8.76 1.22 × 10
4
 

E11 

E12 

E13 

E15 

−8.22 

−7.69 

−7.02 

−5.53 

3.57 × 10
4
 

7.50 × 10
4 

1.72 × 10
5 

8.02 × 10
5 

N = 16.18 sN = 0.56 

 

  

kobs = 8.02 × 105 [a21] 

− 8.87 

R² = 0.9999 
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lg k2 = 0.56E + 9.11 
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(S)-2-(Azidodiphenylmethyl)pyrrolidine (A27) 

 

Table 168. Kinetics of the reaction of A27 with E11 and D2 ([D2] = 5.08 mM, stopped-flow method, 
detection at 620 nm) 

[A27] / M
 

[E11] / M kobs / s
−1 

 

5.39 × 10
−4

 

 5.10 × 10
−6

 

1.51 × 10
−1

 

8.08 × 10
−4

 1.96 × 10
−1

 

1.08 × 10
−3

 2.25 × 10
−1

 

1.35 × 10
−3

 2.55 × 10
−1

 

1.62 × 10
−3 

2.92 × 10
−1 

k2 = 1.26 × 10
2
 M

−1
s

−1
 

 
Table 169. Kinetics of the reaction of A27 with E12 and D2 ([D2] = 5.08 mM, stopped-flow method, 
detection at 612 nm) 

[A27] / M
 

[E12] / M kobs / s
−1 

 

8.98 × 10
−5

 

 4.97 × 10
−6

 

6.61 × 10
−2

 

1.80 × 10
−4

 9.79 × 10
−2

 

2.69 × 10
−4

 1.31 × 10
−1

 

3.69 × 10
−4

 1.54 × 10
−1

 

4.49 × 10
−4 

5.39 × 10
−4 

1.81 × 10
−1 

2.19 × 10
−1 

k2 = 3.29 × 10
2
 M

−1
s

−1
 

  

kobs = 1.26 × 102 [A27] + 

8.77 × 10−2 

R² = 0.9938 

0
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0.4

0.5
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k o
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1
 

[A27] / M 

kobs = 3.29 × 102 [A27] + 

3.77 × 10−2 

R² = 0.9944 
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k o
b
s 

/ 
s−

1
 

[A27] / M 
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Table 170. Kinetics of the reaction of A27 with E13 (stopped-flow method, detection at 605 nm) 

[A27] / M
 

[E13] / M kobs / s
−1 

 

2.12 × 10
−5

 

 2.35 × 10
−6

 

1.40 × 10
−1

 

3.18 × 10
−5

 2.13 × 10
−1

 

4.24 × 10
−5

 1.98 × 10
−1

 

5.30 × 10
−5

 1.98 × 10
−1

 

6.36 × 10
−5 

8.48 × 10
−5 

1.06 × 10
−4 

1.59 × 10
−4 

2.12 × 10
−4 

3.18 × 10
−4 

5.30 × 10
−3 

1.06 × 10
−2 

2.59 × 10
−1 

2.92 × 10
−1 

3.26 × 10
−1 

5.05 × 10
−1 

6.44 × 10
−1 

9.45 × 10
−1 

2.36
 

5.09
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4

6

0 0.0004 0.0008 0.0012
k o

b
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/ 
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1
 

[A27] / M 
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Table 171. Kinetics of the reaction of A27 with E13 and D2 ([A27] = 7.67 × 10

−5
 mmolL

−1
, ([E13] = 7.06 

× 10
−6

 mmolL
−1

,
 
stopped-flow method, detection at 605 nm) 

Entr

y 
[D2] / M 

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

A

t / s
 

1 0 

2 1.89 × 10
−5

 

3 3.78 × 10
−5

 

4 7.55 × 10
−5

 

5 1.51 × 10
−4

 

6 3.78 × 10
−4

 

7 1.89 × 10
−3

 

8 3.78 × 10
−3

 

9 7.29 × 10
−3

 

10 1.02 × 10
−2

 

11 2.03 × 10
−2

 

12 3.05 × 10
−2

 

13 4.06 × 10
−2

 

 
Table 172. Kinetics of the reaction of A27 with E13 and D2 ([D2] = 5.08 mM, stopped-flow method, 
detection at 605 nm) 

[A27] / M
 

[E13] / M kobs / s
−1 

 

7.67 × 10
−5

 

 5.10 × 10
−6

 

3.45 × 10
−1

 

1.53 × 10
−4

 6.56 × 10
−1

 

2.30 × 10
−4

 9.87 × 10
−1

 

5.37 × 10
−4

 2.33 

k2 = 4.33 × 10
3
 M

−1
s

−1
 

  

 

 

kobs = 4.33 × 103 [A27]  

− 3.61 × 10−4  

R² = 0.9998 

0

1

2

3

4

0 0.0002 0.0004 0.0006

k
o
b
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/ 
s−

1
 

[A27] / M 
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Table 173. Kinetics of the reaction of A27 with E13 and D1 ([D1] = 5.13 mmolL
−1

, stopped-flow method, 
detection at 605 nm) 

[A27] / M
 

[E13] / M kobs / s
−1 

 

1.44 × 10
−4

 

 5.29 × 10
−6

 

4.09 × 10
−1

 

2.87 × 10
−4

 9.75 × 10
−1

 

4.31 × 10
−4

 1.60 

5.75 × 10
−4 

7.18 × 10
−4 

2.27
 

2.90
 

k2 = 4.37 × 10
3
 M

−1
s

−1
 

 
Table 174. Kinetics of the reaction of A27 with E15 (stopped-flow method, detection at 612 nm) 

[A27] / M
 

[E15] / M kobs / s
−1 

 

6.36 × 10
−5

 

 6.13 × 10
−6

 

8.59 

8.48 × 10
−5

 1.32 × 10
1
 

1.06 × 10
−4

 1.61 × 10
1
 

1.27 × 10
−4 

1.48 × 10
−4 

2.03 × 10
1 

2.55 × 10
1 

k2 = 1.94 × 10
5
 M

−1
s

−1
 

 

Table 175. Determination of the parameters N and sN for A27 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E11 

E12 

E13 

E15 

−8.22 

−7.69 

−7.02 

−5.53 

1.26 × 10
2 

3.29 × 10
2 

4.33 × 10
3 

1.94 × 10
5 

N = 9.90 sN = 1.22 

 

  

kobs = 4.37 × 103 [A27] 

− 0.25 

R² = 0.9993 

0

1

2

3

4

5

0 0.00025 0.0005 0.00075

k o
b
s 

/ 
s−

1
 

[A27] / M 

kobs = 1.94 × 105 [A27] − 

3.79 

R² = 0.9918 

0
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20

30

0 0.00005 0.0001 0.00015

k o
b
s 

/ 
s−

1
 

[A27] / molL−1 

lgk2 = 1.22E + 12.05 

R² = 0.9916 

0

2

4

6

-9 -8 -7 -6 -5

lg
k 2

 

E 
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2-(Triphenylsilyl)pyrrolidine (A28) 

 
Table 176. Kinetics of the reaction of A28 with E9 (stopped-flow method, detection at 635 nm) 

[A28] / M
 

[E9] / M kobs / s
−1 

 

3.16 × 10
−4

 

 5.18 × 10
−6

 

2.50 

4.73 × 10
−4

 2.88 

6.31 × 10
−4

 3.59 

7.89 × 10
−4

 4.32 

9.47 × 10
−4 

1.03 × 10
−3 

5.28
 

6.30
 

 
Table 177. Kinetics of the reaction of A28 with E9 using D1 (([D1] = 5.13 mM, stopped-flow method, 
detection at 635 nm) 

[A28] / M
 

[E9] / M kobs / s
−1 

 

2.09 × 10
−4

 

 4.73 × 10
−6

 

2.04 

4.19 × 10
−4

 3.09 

5.23 × 10
−4

 3.60 

6.28 × 10
−4

 4.14 

7.33 × 10
−4 

4.59
 

k2 = 4.90 × 10
3
 M

−1
s

−1
 

 
Table 178. Kinetics of the reaction of A28 with E10 (stopped-flow method, detection at 616 nm) 

[A28] / M
 

[E10] / M kobs / s
−1 

 

2.37 × 10
−4

 

 5.77 × 10
−6

 

10.1 

3.55 × 10
−4

 14.7 

4.73 × 10
−4

 19.9 

7.10 × 10
−4

 2.91 

8.28 × 10
−4 

3.48 
 

k2 = 4.14 × 10
4
 M

−1
s

−1
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Table 179. Kinetics of the reaction of A28 with E10 and D1 ([D1] = 2.57 mmolL

−1
, stopped-flow method, 

detection at 616 nm) 

[A28] / M
 

[E10] / M kobs / s
−1 

 

6.98 × 10
−5

 

 5.49 × 10
−6

 

3.11 

1.40 × 10
−4

 5.34 

2.09 × 10
−4

 8.50 

2.79 × 10
−4

 1.10 × 10
1
 

3.49 × 10
−4 

4.19 × 10
−4 

1.41 × 10
1 

1.67 × 10
1 

k2 = 3.96 × 10
4
 M

−1
s

−1
 

 

Table 180. Kinetics of the reaction of A28 with E10 and D1 ([D1] = 5.13 mmolL
−1

, stopped-flow method, 
detection at 616 nm) 

[A28] / M
 

[E10] / M kobs / s
−1 

 

6.98 × 10
−5

 

 5.49 × 10
−6

 

2.67 

1.40 × 10
−4

 5.26 

2.09 × 10
−4

 8.34 

2.79 × 10
−4

 1.10 × 10
1
 

3.49 × 10
−4 

4.89 × 10
−4 

1.37 × 10
1 

1.95 × 10
1 

k2 = 4.02 × 10
4
 M

−1
s

−1
 

 
Table 181. Kinetics of the reaction of A28 with E11 (stopped-flow method, detection at 620 nm) 

[A28] / M
 

[E11] / M kobs / s
−1 

 

1.49 × 10
−4

 

 5.10 × 10
−6

 

9.28 

2.23 × 10
−4

 1.43 × 10
1
 

2.97 × 10
−4

 1.98 × 10
1
 

3.72 × 10
−4

 2.56 × 10
1
 

4.46 × 10
−4 

3.07 × 10
1 

k2 = 7.29 × 10
4
 M

−1
s

−1
 

kobs = 3.96 × 104 [A28] 

+ 0.12 

R² = 0.9984 
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Table 182. Kinetics of the reaction of A28 with E12 (stopped-flow method, detection at 612 nm) 

[A28] / M
 

[E12] / M kobs / s
−1 

 

7.44 × 10
−5

 

 5.61 × 10
−6

 

1.03 × 10
1
 

1.16 × 10
−4

 1.54 × 10
1
 

1.49 × 10
−4

 2.02 × 10
1
 

1.86 × 10
−4

 2.70 × 10
1
 

2.23 × 10
−4 

2.60 × 10
−4 

3.34 × 10
1 

3.94 × 10
1 

k2 = 1.60 × 10
5
 M

−1
s

−1
 

 

Table 183. Kinetics of the reaction of A28 with E13 (stopped-flow method, detection at 605 nm) 

[A28] / M
 

[E13] / M kobs / s
−1 

 

5.95 × 10
−5

 

 5.88 × 10
−6

 

3.54 × 10
1
 

8.92 × 10
−5

 5.67 × 10
1
 

1.19 × 10
−4

 7.55 × 10
1
 

1.49 × 10
−4

 9.79 × 10
1
 

1.78 × 10
−4 

2.08 × 10
−4 

1.21 × 10
2 

1.41 × 10
2 

k2 = 7.15 × 10
5
 M

−1
s

−1
 

 

Table 184. Determination of the parameters N and sN for A28 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E9 −9.45 4.90 × 10
3
 

E10 −8.76 3.96 × 10
4
 

E11 

E12 

E13 

−8.22 

−7.69 

−7.02 

7.29 × 10
4
  

1.60 × 10
5 

7.15 × 10
5 

N = 14.00 sN = 0.84 

 

  

kobs = 1.60 × 105 [A28] − 

2.66 

R² = 0.9956 
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(S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (A29) 

 

Table 185. Kinetics of the reaction of A29 with E15 and D2 ([D2] = 2.80 mM, conventional UV-Vis 
method, detection at 612 nm) 

[A29] / M
 

[E15] / M kobs / s
−1 

 

3.03 × 10
−4

 

 2.17 × 10
−5

 

2.71 × 10
−3

 

6.05 × 10
−4

 3.47 × 10
−3

 

9.08 × 10
−4

 4.42 × 10
−3

 

1.21 × 10
–3 

1.51 × 10
−3 

5.37 × 10
−3 

6.27 × 10
−3 

k2 = 2.99 M
−1
s

−1
 

 

Table 186. Kinetics of the reaction of A29 with E17 and D1 ([D1] = 0.966 mM, conventional UV-Vis 
method, detection at 586 nm) 

[A29] / M
 

[E17] / M kobs / s
−1 

 

1.24 × 10
−4

 1.01 × 10
−5

 7.07 × 10
−4

 

2.48 × 10
−4

 1.01 × 10
−5

 1.67 × 10
−3

 

4.96 × 10
−4

 1.26 × 10
−5

 4.89 × 10
−3

 

7.42 × 10
−4 

9.91 × 10
−4 

1.24 × 10
−3 

1.26 × 10
−5 

1.26 × 10
−5 

1.01 × 10
−5

 

9.38 × 10
−3 

1.56 × 10
−2 

2.25 × 10
−2 

  

kobs = 2.99 [A29] 

+ 1.74 × 10−3  

R² = 0.9985 

0

0.005

0.01

0 0.0008 0.0016

k o
b
s 

/ 
s−

1
 

[A29] / M 

0

0.01

0.02

0.03

0 0.0008 0.0016

k o
b
s 

/ 
s−

1
 

[A29] / M 
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Table 187. Kinetics of the reaction of A29 with E17 and D2 ([D2] = 1.18 mM, conventional UV-Vis 
method, detection at 586 nm) 

[A29] / M
 

[E17] / M kobs / s
−1 

 

1.44 × 10
−4

 1.33 × 10
−5

 6.91 × 10
−3

 

2.87 × 10
−4

 1.33 × 10
−5

 1.46 × 10
−2

 

4.31 × 10
−4

 1.33 × 10
−5

 3.10 × 10
−2

 

7.19 × 10
−4 

1.33 × 10
−5 

6.45 × 10
−2 

 

Table 188. Kinetics of the reaction of A29 with E17 and D2 ([D2] = 2.33 mM, conventional UV-Vis 
method, detection at 586 nm) 

[A29] / M
 

[E17] / M kobs / s
−1 

 

1.42 × 10
−4

 

 1.33 × 10
−5

 

1.75 × 10
−2

 

2.85 × 10
−4

 3.51 × 10
−2

 

4.27 × 10
−4

 5.05 × 10
−2

 

5.70 × 10
−4 

6.96 × 10
−2 

k2 = 1.20 × 10
2
 M

−1
s

−1
 

 

Table 189. Kinetics of the reaction of A29 with E18 (conventional UV-Vis method, detection at 592 nm) 

[A29] / M
 

[E18] / M kobs / s
−1 

 

8.99 × 10
−5

 8.10 × 10
−6

 1.32 × 10
−2

 

1.33 × 10
−4

 7.98 × 10
−6

 1.61 × 10
−2

 

1.77 × 10
−4

 7.95 × 10
−6

 2.50 × 10
−2

 

2.18 × 10
−4 

2.60 × 10
−4 

2.97 × 10
−4 

7.84 × 10
−6 

7.81 × 10
−6 

1.02 × 10
−5 

3.36 × 10
−2 

4.58 × 10
−2 

5.46 × 10
−2 

0
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Table 190. Kinetics of the reaction of A29 with E18 and D1 ([D1] = 0.99 mM, conventional UV-Vis 
method, detection at 586 nm) 

[A29] / M
 

[E18] / M kobs / s
−1 

 

1.29 × 10
−4

 1.17 × 10
−5

 1.79 × 10
−2

 

1.95 × 10
−4

 1.17 × 10
−5

 4.24 × 10
−2

 

2.60 × 10
−4

 1.18 × 10
−5

 6.68 × 10
−2

 

3.24 × 10
−4 

3.89 × 10
−4 

1.17 × 10
−5

 

1.76 × 10
−5

 

8.99 × 10
−2 

1.17 × 10
−1 

k2 = 3.79 × 10
2
 M

−1
s

−1
 

 

Table 191. Kinetics of the reaction of A29 with E19 (stopped-flow method, detection at 523 nm) 

[A29] / M
 

[E19] / M kobs / s
−1 

 

9.62 × 10
−4

 

 9.61 × 10
−6

 

1.15 × 10
1
 

1.28 × 10
−3

 1.77 × 10
1
 

1.60 × 10
−3

 2.48 × 10
1
 

1.92 × 10
−3 

3.21 × 10
1 

k2 = 2.16 × 10
4
 M

−1
s

−1
 

 

Table 192. Determination of the parameters N and sN for A29 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E15 

E17 

E18 

E19 

−5.53 

−3.85 

−3.14 

−1.36 

2.99
 

1.20 × 10
2 

3.79 × 10
2 

2.16 × 10
4 

N = 6.04 sN = 0.92  

  

kobs = 3.79 × 102 [A29] 

− 3.14 × 10−2 

R² = 0.9994 
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(2S,5S)-5-Benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one (A30) 

 

Table 193. Kinetics of the reaction of A30 with E13 and D2 ([D2] = 11.4 mmolL
−1

, conventional UV-Vis 
method, detection at 605 nm) 

[A30] / M
 

[E13] / M kobs / s
−1 

 

3.18 × 10
−4

 

 1.86 × 10
−5

 

1.44 × 10
−5

 

5.44 × 10
−4

 1.76 × 10
−5

 

9.13 × 10
−4

 2.25 × 10
−5

 

1.56 × 10
−3 

3.10 × 10
−5 

k2 = 1.33 × 10
−2

 M
−1
s

−1
 

 

Table 194. Kinetics of the reaction of A30 with E15 and D2 ([D2] = 3.25 mmolL
−1

, conventional UV-Vis 
method, detection at 612 nm) 

[A30] / M
 

[E13] / M kobs / s
−1 

 

1.97 × 10
−4

 1.86 × 10
−5

 6.42 × 10
−4

 

3.04 × 10
−4

 2.24 × 10
−5

 7.74 × 10
−4

 

3.94 × 10
−4

 1.86 × 10
−5

 8.95 × 10
−4

 

7.88 × 10
−4 

2.24 × 10
−5

 1.45 × 10
−3 

k2 = 1.38 M
−1
s

−1
 

  

kobs = 

1.33 × 10−2[A30] 

+ 1.03 × 10−5 

R² = 0.9998 
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0 0.0008 0.0016
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1
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kobs = 1.38[A30] 

+ 3.61 × 10−4 

R² = 0.9994 
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1
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Table 195. Kinetics of the reaction of A30 with E17 and D2 ([D2] = 2.71 mmolL
−1

, conventional UV-Vis 
method, detection at 586 nm) 

[A30] / M
 

[E13] / M kobs / s
−1 

 

1.56 × 10
−4

 

1.53 × 10
−5

 

3.06 × 10
−3

 

2.35 × 10
−4

 5.46 × 10
−3

 

3.12 × 10
−4

 9.39 × 10
−3

 

3.88 × 10
−4 

6.24 × 10
−4 

1.19 × 10
−2 

2.13 × 10
−2 

k2 = 3.94 × 10
1
 M

−1
s

−1
 

 

Table 196. . Kinetics of the reaction of A30 with E18 and D1 ([D1] = 1.37 mmolL
−1

, stopped-flow 
method, detection at 592 nm) 

[A30] / M
 

[E13] / M kobs / s
−1 

 

1.36 × 10
−4

 

1.04 × 10
−5

 

4.39 × 10
−2

 

2.73 × 10
−4

 9.28 × 10
−2

 

4.09 × 10
−4

 1.46 × 10
−1

 

5.46 × 10
−4 

6.82 × 10
−4 

2.13 × 10
−1 

2.73 × 10
−1 

k2 = 4.24 × 10
2
 M

−1
s

−1
 

 

Table 197. Determination of the parameters N and sN for A30 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E13 

E15 

E17 

E19 

−7.02 

−5.53 

−3.85 

−3.14 

1.33 × 10
−2 

1.38
 

3.94 × 10
1 

4.24 × 10
2 

N = 5.44 sN = 1.12  

 

  

kobs = 3.94 × 101 [A30] − 

3.30 × 10−3 

R² = 0.9977 

0

0.01

0.02

0 0.00022 0.00044 0.00066

k o
b
s 
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s−

1
 

[A30] / M 

kobs = 4.24 × 102 [A30] 

− 1.97 × 10−2  

R² = 0.9964 
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1
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lg k2 = 1.12E + 6.08 

R² = 0.9907 
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(2S,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A31) 

 

Table 198. Kinetics of the reaction of A31 with E13 and D2 ([D2] = 11.3 mM, conventional UV-Vis 
method, detection at 586 nm) 

[A31] / M
 

[E13] / M kobs / s
−1 

 

2.07 × 10
−4

 

 1.84 × 10
−5

 

5.09 × 10
−3

 

4.15 × 10
−4

 9.76 × 10
−3

 

6.23 × 10
−4

 1.60 × 10
−2

 

8.31 × 10
−4 

2.16 × 10
−2 

k2 = 2.68 × 10
1
 M

−1
s

−1
 

 

Table 199. Kinetics of the reaction of A31 with E15 and D2 ([D2] = 2.99 mM, stopped-flow method, 
detection at 612 nm) 

[A31] / M
 

[E15] / M kobs / s
−1 

 

1.47 × 10
−4

 

 9.49 × 10
−6

 

1.67 × 10
−1

 

2.94 × 10
−4

 3.28 × 10
−1

 

4.41 × 10
−4

 5.05 × 10
−1

 

5.88 × 10
−4 

7.35 × 10
−4 

7.31 × 10
−1 

9.40 × 10
−1 

k2 = 1.33 × 10
3
 M

−1
s

−1
 

  

kobs = 2.68 × 101 [A31] 

− 8.03 × 10−4 

R² = 0.9970 
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Table 200. Kinetics of the reaction of A31 with E17 and D2 ([D2] = 1.98 mM, stopped-flow method, 
detection at 586 nm) 

[A31] / M
 

[E17] / M kobs / s
−1 

 

9.80 × 10
−5

 

 9.45 × 10
−6

 

1.18 

1.96 × 10
−4

 2.34 

2.94 × 10
−4

 4.25 

3.92 × 10
−4 

4.90 × 10
−4 

5.70
 

7.51
 

k2 = 1.63 × 10
4
 M

−1
s

−1
 

 

Table 201. Kinetics of the reaction of A31 with E18 and D1 ([D1] = 1.21 mM, stopped-flow method, 
detection at 592 nm) 

[A31] / M
 

[E18] / M kobs / s
−1 

 

1.11 × 10
−4

 

 9.60 × 10
−6

 

1.04 × 10
1
 

1.66 × 10
−4

 1.96 × 10
1
 

2.22 × 10
−4

 2.32 × 10
1
 

3.33 × 10
−4 

4.44 × 10
−4 

5.55 × 10
−4 

3.53 × 10
1 

4.92 × 10
1 

5.99 × 10
1 

k2 = 1.10 × 10
5
 M

−1
s

−1
 

 

Table 202. Determination of the parameters N and sN for A31 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E13 

E15 

E17 

E18 

−7.02 

−5.53 

−3.85 

−3.14 

2.68 × 10
1 

1.33 × 10
3 

1.63 × 10
4 

1.10 × 10
5 

N = 8.76 sN = 0.89  

 

 

kobs = 1.63 × 104 [A31] 

− 0.61 

R² = 0.9952 
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(2R,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A32) 

 

Table 203. Kinetics of the reaction of A32 with E13 and D2 ([D2] = 7.68 mM, conventional UV-Vis 
method, detection at 605 nm) 

[A32] / M
 

[E13] / M kobs / s
−1 

 

1.98 × 10
−4

 

 1.83 × 10
−5

 

5.24 × 10
−4

 

3.97 × 10
−4

 7.64 × 10
−4

 

5.57 × 10
−4

 1.17 × 10
−3

 

7.16 × 10
−4 

1.40 × 10
−3 

k2 = 1.76 M
−1
s

−1
 

 

Table 204. Kinetics of the reaction of A32 with E15 and D2 ([D2] = 3.01 mM, conventional UV-Vis 
method, detection at 612 nm) 

[A32] / M
 

[E15] / M kobs / s
−1 

 

2.15 × 10
−4

 

 2.06 × 10
−5

 

3.84 × 10
−2

 

3.59 × 10
−4

 5.69 × 10
−2

 

5.02 × 10
−4

 8.09 × 10
−2

 

6.46 × 10
−4 

9.18 × 10
−2 

k2 = 1.28 × 10
2
 M

−1
s

−1
 

  

kobs = 1.76 [A32] 

+ 1.42× 10−4  

R² = 0.9801 

0

0.0005
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0.0015

0.002

0 0.0004 0.0008

k o
b
s 

/ 
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1
 

[A32] / M 

kobs = 1.28 × 102 [A32] 

+ 1.18 × 10−2  

R² = 0.9814 

0
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0 0.00022 0.00044 0.00066
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1
 

[A32] / M 
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Table 205. Kinetics of the reaction of A32 with E17 and D2 ([D2] = 1.98 mM, stopped-flow method, 
detection at 586 nm) 

[A32] / M
 

[E17] / M kobs / s
−1 

 

1.97 × 10
−4

 

 1.01 × 10
−5

 

3.48 × 10
−1

 

2.75 × 10
−4

 4.90 × 10
−1

 

4.32 × 10
−4 

5.11 × 10
−4 

9.14 × 10
−1 

1.11
 

k2 = 2.48 × 10
3
 M

−1
s

−1
 

 
Table 206. Kinetics of the reaction of A32 with E18 and D2 ([D2] = 1.33 mM, stopped-flow method, 
detection at 592 nm) 

[A32] / M
 

[E18] / M kobs / s
−1 

 

1.18 × 10
−4

 

 1.02 × 10
−5

 

1.62 

1.97 × 10
−4

 3.00 

2.75 × 10
−4

 4.77 

3.54 × 10
−4 

4.32 × 10
−4 

6.21
 

7.45
 

k2 = 1.89 × 10
4
 M

−1
s

−1
 

 

Table 207. Determination of the parameters N and sN for A32 in acetonitrile 

Electrophile E k2 / M
−1
s

−1 

 

E13 

E15 

E17 

E18 

−7.02 

−5.53 

−3.85 

−3.14 

1.76
 

1.28 × 10
2 

2.48 × 10
3 

1.89 × 10
4 

N = 7.39 sN = 1.00  

 

  

kobs = 2.48 × 103 [A32] 

− 0.16 

R² = 0.9963 
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7.2.3 Kinetics in Dichloromethane 

Pyrrolidine in CH2Cl2 (A2) 

 

Table 208. Kinetics of the reaction of A2 with E8 in dichloromethane (stopped-flow method, detection at 639 
nm) 

[A2] / M
 

[E8] / M kobs / s
−1 

 

8.33 × 10
−5

 

5.94 × 10
−6

 

7.16 

1.25 × 10
−4

 8.17 

1.67 × 10
−4

 9.43 

2.08 × 10
−4

 1.07 × 10
1
 

2.50 × 10
−4

 1.28 × 10
1
 

[A2]
2
 / mol

2
 L

−2 [E8] / M kobs / s
−1 

 

6.34 × 10
−9

 

5.94 × 10
−6

 

7.16 

1.56 × 10
−8

 8.17 

2.79 × 10
−8

 9.43 

4.33 × 10
−8

 1.07 × 10
1
 

6.25 × 10
−8

 1.28 × 10
1
 

 

Table 209. Kinetics of the reaction of A2 with E9 in dichloromethane (stopped-flow method, detection at 643 
nm) 

[A2] / M
 

[E9] / M kobs / s
−1 

 

8.33 × 10
−5

 

4.00 × 10
−6

 

1.42 × 10
1
 

1.25 × 10
−4

 1.70 × 10
1
 

1.67 × 10
−4

 2.14 × 10
1
 

2.08 × 10
−4

 2.64 × 10
1
 

2.50 × 10
−4

 3.32 × 10
1
 

[A2]
2
 / mol

2
 L

−2 
[E9] / M kobs / s

−1 

 

6.34 × 10
−9

 

4.00 × 10
−6

 

1.42 × 10
1
 

1.56 × 10
−8

 1.70 × 10
1
 

2.79 × 10
−8

 2.14 × 10
1
 

4.33 × 10
−8

 2.64 × 10
1
 

0
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kobs = 9.93 × 107 [A2]2  

+ 6.55 

R² = 0.9976 
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6.25 × 10
−8

 3.32 × 10
1
 

 

Table 210. Kinetics of the reaction of A2 with E10 in dichloromethane (stopped-flow method, detection at 
625 nm) 

[A2] / M
 

[E9] / M kobs / s
−1 

 

8.33 × 10
−5

 

8.19 × 10
−6

 

2.13 × 10
1
 

1.25 × 10
−4

 3.33 × 10
1
 

1.67 × 10
−4

 4.63 × 10
1
 

2.08 × 10
−4

 5.84 × 10
1
 

2.50 × 10
−4

 7.09 × 10
1
 

 

  

kobs = 2.99 × 105 [A2]  

− 3.71 

R² = 0.9999 
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7.3 Experimental Section for pKaH Measurements 

 

General for Titration 

 

The amines A and protonated indicators CH were stored under an atmosphere of dry 

argon (glove box). Stock solutions of A (or CH) were prepared in anhydrous acetonitrile, 

which was freshly distilled from phosphorus pentoxide.  

Diode array spectrophotometers (J&M TIDAS) controlled by Labcontrol Spectacle or 

TIDASDAQ 3 (v3.8.1) software and connected to Hellma 661.502-QX quartz Suprasil 

immersion probes (5 mm light path) via fiber optic cables and standard SMA connectors 

were used for all measurements of equilibrium constants. The temperature of the 

solutions during the titration was maintained to 20 ± 0.1 °C by using circulating bath 

cryostats. 

For the titrations, a known volume of CH stock solutions was injected into a known (by 

weight) amount of acetonitrile (step 0). Small volumes (V+) of A stock solution were 

added into the acetonitrile solution to reach the proton transfer equilibrium step by step. In 

the final step (step f), quantitative deprotonation of CH was accomplished by adding an 

excess amount of DBU dissolved in acetonitrile. TBD was used in step f for the 

quantitative deprotonation of C1 (pKaH titration of A1) and A22 (pKaH titration of A22
−
). 

Pyrrolidine was used in step f for the pKaH titration of A22. 

During the titrations, the UV-vis spectra of the solutions were recorded. A wavelength, 

where only the indicator C
−
 absorbs light, was chosen to monitor the reactions by following 

the changes in the absorbance A of the acetonitrile solutions. The final absorbance Af was 

applied to calculate the concentration of the indicator [C
−
] at each step of the titration. 

Together with known initial concentrations of the amines ([A]0) and protonated indicators 

([CH]0), the equilibrium constants K are described by equation 2 for each step in a titration: 

𝐾 =  
[C−]2

([A]0−[𝐂−])([𝐂H]0−[C−])
    (2) 

The pKaH of the colored anion A22
−
 was determined without adding an indicator by 

direct titration with DBU (pKaH 24.31 in MeCN, from literature
[62]

). For the pKaH 

determination of A18 and A23, proton transfer was reversed and solutions of 

deprotonated indicators [C3
−
] or [C4

−
] and protonated amines [A18H

+
] or [A23H

+
], 

respectively, were used for the titrations. 
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Potassium L-prolinate (A1) 

 
Table 211. Determination of the pKaH for A1 with C1H in acetonitrile at 20 °C (detection at 407 nm). Stock solutions: A1K (5.0 mg) and 18-crown-6 (17.3 mg) in 

25.0 mL MeCN; C1H (13.2 mg) in 10.0 mL MeCN; [TBD] = 6.58 × 10
−2

 mol L
−1

. Step 0: 0.900 mL C1H stock solution in 19.3 g MeCN. 

step V+ / mL V / mL [C1H]0 / M [A1]0 / M A [C1
−
] / M [C1H] / M [A1] / M 

0 - 25.455 2.08 × 10
−4

 0 0 0 2.08 × 10
−4

 0 

1 0.500 25.955 2.04 × 10
−4

 2.51 × 10
−5

 0.046 2.48 × 10
−5

 1.79 × 10
−4

 3.79 × 10
−7

 

2 1.000 26.455 2.00 × 10
−4

 4.93 × 10
−5

 0.087 4.66 × 10
−5

 1.54 × 10
−4

 2.75 × 10
−6

 

3 1.500 26.955 1.97 × 10
−4

 7.26 × 10
−5

 0.120 6.45 × 10
−5

 1.32 × 10
−4

 8.14 × 10
−6

 

4 2.000 27.455 1.93 × 10
−4

 9.51 × 10
−5

 0.147 7.92 × 10
−5

 1.14 × 10
−4

 1.59 × 10
−5

 

5 2.500 27.955 1.90 × 10
−4

 1.17 × 10
−4

 0.169 9.08 × 10
−5

 9.87 × 10
−5

 2.60 × 10
−5

 

6 3.000 28.455 1.86 × 10
−4

 1.38 × 10
−4

 0.187 1.01 × 10
−4

 8.54 × 10
−5

 3.69 × 10
−5

 

7 3.500 28.955 1.83 × 10
−4

 1.58 × 10
−4

 0.202 1.09 × 10
−4

 7.40 × 10
−5

 4.88 × 10
−5

 

f - 31.055 1.71 × 10
−4

 2.10 × 10
−4

 0.317 1.71 × 10
−4

 0 2.10 × 10
−4

 

0

0.1

0.2

0.3

0 2 4 6

A

t / min
 

 

 

K = 3.05 ± 0.07 

Owing to the low solubility of L-proline (A1H
+
) in MeCN, only first 7 steps of the titration were used for the determination of the pKaH. 

  

[C1−]2 = 

3.05[A1][C1H]  

+ 6.78 × 10−10 

R² = 0.9972 

0

5E-09

1E-08

0 1E-09 2E-09 3E-09 4E-09

[C
1

−
]2

 /
 m

o
l2

L
−

2
 

[A1][C1H] / mol2L−2 
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Table 212. Determination of the pKaH for A1 with C1H in acetonitrile at 20 °C (detection at 407 nm). Stock solutions: A1K (5.0 mg) and 18-crown-6 (17.3 mg) in 

25.0 mL MeCN; C1H (13.2 mg) in 10.0 mL MeCN; [TBD] = 6.58 × 10
−2

 mol L
−1

. Step 0: 0.700 mL C1H stock solution in 19.6 g MeCN. 

step V+ / mL V / mL [C1H]0 / M [A1]0 / M A [C1
−
] / M [C1H] / M [A1] / M 

0 - 25.636 1.61 × 10
−4

 0 0 0 1.61 × 10
−4

 0 

1 1.000 26.636 1.55 × 10
−4

 4.90 × 10
−5

 0.084 4.45 × 10
−5

 1.10 × 10
−4

 4.53 × 10
−6

 

2 1.500 27.136 1.52 × 10
−4

 7.22 × 10
−5

 0.113 6.02 × 10
−5

 9.16 × 10
−5

 1.19 × 10
−5

 

3 2.000 27.636 1.49 × 10
−4

 9.45 × 10
−5

 0.137 7.28 × 10
−5

 7.63 × 10
−5

 2.17 × 10
−5

 

4 2.500 28.136 1.46 × 10
−4

 1.16 × 10
−4

 0.155 8.26 × 10
−5

 6.38 × 10
−5

 3.33 × 10
−5

 

5 3.000 28.636 1.44 × 10
−4

 1.37 × 10
−4

 0.170 9.03 × 10
−5

 5.35 × 10
−5

 4.64 × 10
−5

 

f - 31.136 1.32 × 10
−4

 2.10 × 10
−4

 0.248 1.32 × 10
−4

 0 2.10 × 10
−4

 

0

0.1

0.2

0.3

1 3 5 7

A

t / min
 

 

 

K = 3.09 ± 0.09 

Owing to the low solubility of L-proline (A1H
+
) in MeCN, only first 5 titrations were used for the determination of the pKaH. 

 

K̅ = 3.07 ± 0.02 

pKaH(A1) = 24.02 

  

[C1−]2 = 

3.09[A1][C1H]  

+ 3.15 × 10−10 

R² = 0.9974 

0

2E-09

4E-09

6E-09

8E-09

1E-08

0 1.25E-09 2.5E-09

[C
1

−
]2

 /
 m

o
l2

L
−

2
 

[A1][C1H] / mol2L−2 
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Pyrrolidine (A2) 

 

Table 213. Determination of the pKaH for A2 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A2 (16.8 mg) in 10.0 mL MeCN; C2H (15.2 

mg) in 10.0 mL MeCN; [DBU] = 2.52 × 10
–2

 mol L
−1

. Step 0: 0.900 mL C2H stock solution in 24.4 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A2]0 / M A [C2
−
] / M [C2H] / M [A2] / M 

0 - 31.943 2.24 × 10
−4

 0 0.000 0 2.239 × 10
−4

 0 

1 0.250 32.193 2.22 × 10
−4

 1.83 × 10
−4

 0.034 3.04 × 10
−5

 1.918 × 10
−4

 1.53 × 10
−4

 

2 0.500 32.443 2.21 × 10
−4

 3.64 × 10
−4

 0.048 4.29 × 10
−5

 1.776 × 10
−4

 3.21 × 10
−4

 

3 0.750 32.693 2.19 × 10
−4

 5.42 × 10
−4

 0.057 5.16 × 10
−5

 1.672 × 10
−4

 4.90 × 10
−4

 

4 1.000 32.943 2.17 × 10
−4

 7.17 × 10
−4

 0.065 5.85 × 10
−5

 1.587 × 10
−4

 6.59 × 10
−4

 

5 1.250 33.193 2.16 × 10
−4

 8.90 × 10
−4

 0.071 6.42 × 10
−5

 1.513 × 10
−4

 8.25 × 10
−4

 

6 1.500 33.443 2.14 × 10
−4

 1.06 × 10
−3

 0.077 6.91 × 10
−5

 1.448 × 10
−4

 9.90 × 10
−4

 

f 2.200 34.143 2.10 × 10
−4

 1.04 × 10
−3

 0.232 2.10 × 10
−4

 0 1.04 × 10
−3

 

0

0.05

0.1

0.15

0.2

0.25

50 150 250

A

t / s
  

K = (3.37 ± 0.02) × 10
−2

 

  

  

[C2−]2 = 

 3.37 × 10−2 [A2][C2H]   

− 8.37 × 10−11 

R² = 0.9998 

0

2E-09

4E-09

6E-09
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Table 214. Determination of the pKaH for A2 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A2 (16.8 mg) in 10.0 mL MeCN; C2H 

(15.2 mg) in 10.0 mL MeCN; [DBU] = 2.52 × 10  mol L
−1

. Step 0: 0.900 mL C2H stock solution in 21.6 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A2]0 / M A [C2
−
] / M [C2H] / M [A2] / M 

0 - 28.381 2.52 × 10
−4

 0 0 0 2.52 × 10
−4

 0 

1 0.250 28.631 2.50 × 10
−4

 2.06 × 10
−4

 0.036 3.38 × 10
−5

 2.16 × 10
−4

 1.72 × 10
−4

 

2 0.500 28.881 2.48 × 10
−4

 4.09 × 10
−4

 0.051 4.75 × 10
−5

 2.00 × 10
−4

 3.61 × 10
−4

 

3 0.750 29.131 2.46 × 10
−4

 6.08 × 10
−4

 0.062 5.74 × 10
−5

 1.88 × 10
−4

 5.51 × 10
−4

 

4 1.000 29.381 2.43 × 10
−4

 8.04 × 10
−4

 0.070 6.51 × 10
−5

 1.78 × 10
−4

 7.39 × 10
−4

 

5 1.250 29.631 2.41 × 10
−4

 9.96 × 10
−4

 0.077 7.14 × 10
−5

 1.70 × 10
−4

 9.25 × 10
−4

 

6 1.500 29.881 2.39 × 10
−4

 1.19 × 10
−3

 0.083 7.69 × 10
−5

 1.62 × 10
−4

 1.11 × 10
−3

 

f 2.200 30.581 2.34 × 10
−4

 1.16 × 10
−3

 0.251 2.34 × 10
−4

 0 1.16 × 10
−3

 

0

0.1

0.2

0.3

50 150 250

A

t / s
  

K = (3.34 ± 0.03) × 10
−2

 

 

K̅ = (3.35 ± 0.02) × 10−2 

pKaH(A2) = 19.89 

   

  

  [C2−]2 = 

3.34 × 10−2 [A2][C2H] 

− 1.37 × 10−10 

R² = 0.9997 

0

2E-09

4E-09

6E-09
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2-Methylpyrrolidine (A3) 

 

Table 215. Determination of the pKaH for A3 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A3 (22.0 mg) in 10.0 mL MeCN; C2H (11.0 

mg) in 10.0 mL MeCN; [DBU] = 4.77 × 10
–2

 mol L
−1

. Step 0: 0.900 mL C2H stock solution in 20.9 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A3]0 / M A [C2
−
] / M [C2H] / M [A3] / M 

0 - 27.490 1.88 × 10
−4

 0 0 0 1.88 × 10
−4

 0 

1 0.250 27.740 1.87 × 10
−4

 2.33 × 10
−4

 0.025 2.29 × 10
−5

 1.64 × 10
−4

 2.10 × 10
−4

 

2 0.500 27.990 1.85 × 10
−4

 4.62 × 10
−4

 0.034 3.20 × 10
−5

 1.53 × 10
−4

 4.29 × 10
−4

 

3 0.750 28.240 1.83 × 10
−4

 6.86 × 10
−4

 0.041 3.85 × 10
−5

 1.45 × 10
−4

 6.48 × 10
−4

 

4 1.000 28.490 1.82 × 10
−4

 9.07 × 10
−4

 0.047 4.35 × 10
−5

 1.38 × 10
−4

 8.63 × 10
−4

 

5 1.250 28.740 1.80 × 10
−4

 1.12 × 10
−3

 0.051 4.75 × 10
−5

 1.33 × 10
−4

 1.08 × 10
−3

 

6 1.500 28.990 1.79 × 10
−4

 1.34 × 10
−3

 0.055 5.08 × 10
−5

 1.28 × 10
−4

 1.29 × 10
−3

 

f 1.800 29.290 1.77 × 10
−4

 1.32 × 10
−3

 0.190 1.77 × 10
−4

 0 1.32 × 10
−3

 

0

0.05

0.1

0.15

0.2

0 200

A

t / s
  

K = (1.59 ± 0.01) × 10
−2

 

  

  

  

[C2−]2  = 

1.59 × 10−2 [A3][C2H]   

− 1.25 × 10−11 

R² = 0.9998 

0
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Table 216. Determination of the pKaH for A3 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A3 (22.0 mg) in 10.0 mL MeCN; C2H (11.0 

mg) in 10.0 mL MeCN; [DBU] = 4.77 × 10
–2

 mol L
−1

. Step 0: 1.000 mL C2H stock solution in 22.7 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A3]0 / M A [C2
−
] / M [C2H] / M [A3] / M 

0 - 29.880 1.93 × 10
−4

 0 0 0 1.93 × 10
−4

 0 

1 0.250 30.130 1.91 × 10
−4

 2.14 × 10
−4

 0.025 2.29 × 10
−5

 1.68 × 10
−4

 1.91 × 10
−4

 

2 0.500 30.380 1.89 × 10
−4

 4.25 × 10
−4

 0.035 3.18 × 10
−5

 1.58 × 10
−4

 3.93 × 10
−4

 

3 0.750 30.630 1.88 × 10
−4

 6.33 × 10
−4

 0.042 3.82 × 10
−5

 1.50 × 10
−4

 5.94 × 10
−4

 

4 1.000 30.880 1.86 × 10
−4

 8.37 × 10
−4

 0.047 4.31 × 10
−5

 1.43 × 10
−4

 7.94 × 10
−4

 

5 1.250 31.130 1.85 × 10
−4

 1.04 × 10
−3

 0.052 4.73 × 10
−5

 1.37 × 10
−4

 9.90 × 10
−4

 

6 1.500 31.380 1.83 × 10
−4

 1.24 × 10
−3

 0.055 5.07 × 10
−5

 1.33 × 10
−4

 1.18 × 10
−3

 

f 1.800 31.680 1.82 × 10
−4

 1.22 × 10
−3

 0.198 1.82 × 10
−4

 0 1.22 × 10
−3

 

0

0.05

0.1

0.15

0.2
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− 2.37E-12 
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2-Isopropylpyrrolidine (A4) 

 

Table 217. Determination of the pKaH for A4 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A4 (17.4 mg) in 10.0 mL MeCN; C2H (13.2 

mg) in 10.0 mL MeCN; [DBU] = 2.38 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C2H stock solution in 22.3 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A4]0 / M A [C2
−
] / M [C2H] / M [A4] / M 

0 - 29.072 1.66 × 10
−4

 0 0 0 1.66 × 10
−4

 0 

1 0.250 29.322 1.65 × 10
−4

 1.31 × 10
−4

 0.014 1.24 × 10
−5

 1.52 × 10
−4

 1.19 × 10
−4

 

2 0.500 29.572 1.63 × 10
−4

 2.60 × 10
−4

 0.020 1.75 × 10
−5

 1.46 × 10
−4

 2.42 × 10
−4

 

3 0.750 29.822 1.62 × 10
−4

 3.87 × 10
−4

 0.025 2.12 × 10
−5

 1.41 × 10
−4

 3.65 × 10
−4

 

4 1.000 30.072 1.61 × 10
−4

 5.11 × 10
−4

 0.028 2.42 × 10
−5

 1.36 × 10
−4

 4.87 × 10
−4

 

5 1.250 30.322 1.59 × 10
−4

 6.34 × 10
−4

 0.031 2.67 × 10
−5

 1.33 × 10
−4

 6.07 × 10
−4

 

6 1.500 30.572 1.58 × 10
−4

 7.54 × 10
−4

 0.033 2.88 × 10
−5

 1.29 × 10
−4

 7.25 × 10
−4

 

f 1.900 30.972 1.56 × 10
−4

 7.44 × 10
−4

 0.180 1.56 × 10
−4

 0 7.44 × 10
−4
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− 8.45 × 10−12 
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Table 218. Determination of the pKaH for A4 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A4 (17.4 mg) in 10.0 mL MeCN; C2H (13.2 

mg) in 10.0 mL MeCN; [DBU] = 2.38 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 22.3 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A4]0 / M A [C2
−
] / M [C2H] / M [A4] / M 

0 - 29.172 1.89 × 10
−4

 0 0 0 1.89 × 10
−4

 0 

1 0.500 29.672 1.86 × 10
−4

 2.59 × 10
−4

 0.020 1.78 × 10
−5

 1.68 × 10
−4

 2.41 × 10
−4

 

2 1.000 30.172 1.83 × 10
−4

 5.09 × 10
−4

 0.028 2.50 × 10
−5

 1.58 × 10
−4

 4.84 × 10
−4

 

3 1.500 30.672 1.80 × 10
−4

 7.52 × 10
−4

 0.034 3.02 × 10
−5

 1.50 × 10
−4

 7.21 × 10
−4

 

4 2.000 31.172 1.77 × 10
−4

 9.86 × 10
−4

 0.039 3.41 × 10
−5

 1.43 × 10
−4

 9.52 × 10
−4

 

5 2.500 31.672 1.74 × 10
−4

 1.21 × 10
−3

 0.042 3.73 × 10
−5

 1.37 × 10
−4

 1.18 × 10
−3

 

f 3.000 32.172 1.72 × 10
−4

 1.19 × 10
−3

 0.194 1.72 × 10
−4

 0 1.19 × 10
−3
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K̅ = (8.92 ± 0.04) × 10−3 

pKaH(A4) = 19.31 

  

  
  

[C2−]2 = 

8.88 × 10−3 [A4][C2H] 

− 4.66 × 10−11 

R² = 0.9999 
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2,2-Dimethylpyrrolidine (A5) 

 

Table 219. Determination of the pKaH for A5 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A5 (13.4 mg) in 5.0 mL MeCN; C2H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.69 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 20.4 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A5]0 / M A [C2
−
] / M [C2H] / M [A5] / M 

0 - 26.754 1.78 × 10
−4

 0 0 0 1.78 × 10
−4

 0 

1 0.250 27.004 1.77 × 10
−4

 2.50 × 10
−4

 0.023 2.01 × 10
−5

 1.57 × 10
−4

 2.30 × 10
−4

 

2 0.500 27.254 1.75 × 10
−4

 4.96 × 10
−4

 0.033 2.83 × 10
−5

 1.47 × 10
−4

 4.67 × 10
−4

 

3 0.750 27.504 1.73 × 10
−4

 7.37 × 10
−4

 0.040 3.41 × 10
−5

 1.39 × 10
−4

 7.03 × 10
−4

 

4 1.000 27.754 1.72 × 10
−4

 9.74 × 10
−4

 0.045 3.87 × 10
−5

 1.33 × 10
−4

 9.35 × 10
−4

 

5 1.250 28.004 1.70 × 10
−4

 1.21 × 10
−3

 0.050 4.27 × 10
−5

 1.28 × 10
−4

 1.16 × 10
−3

 

6 1.500 28.254 1.69 × 10
−4

 1.43 × 10
−3

 0.054 4.60 × 10
−5

 1.23 × 10
−4

 1.39 × 10
−3

 

f 1.900 28.654 1.66 × 10
−4

 1.41 × 10
−3

 0.194 1.66 × 10
−4

 0 1.41 × 10
−3
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  [C2−]2  = 

1.27 × 10−2 [A5][C2H]  

− 6.98 × 10−11 

R² = 0.9996 

0

8E-10

1.6E-09

2.4E-09

0 6E-08 1.2E-07 1.8E-07

[C
2

−
]2

 /
 m

o
l2

L
−

2
 

[A5][C2H] / mol2L−2 



 

225 

 

Table 220. Determination of the pKaH for A5 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A5 (13.4) mg in 5.0 mL MeCN; C2H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.69 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 20.8 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A5]0 / M A [C2
−
] / M [C2H] / M [A5] / M 

0 - 27.263 1.75 × 10
−4

 0 0 0 1.75 × 10
−4

 0 

1 0.500 27.763 1.72 × 10
−4

 4.87 × 10
−4

 0.033 2.76 × 10
−5

 1.44 × 10
−4

 4.59 × 10
−4

 

2 1.000 28.263 1.69 × 10
−4

 9.56 × 10
−4

 0.045 3.78 × 10
−5

 1.31 × 10
−4

 9.18 × 10
−4

 

3 1.500 28.763 1.66 × 10
−4

 1.41 × 10
−3

 0.053 4.49 × 10
−5

 1.21 × 10
−4

 1.36 × 10
−3

 

4 2.000 29.263 1.63 × 10
−4

 1.85 × 10
−3

 0.060 5.04 × 10
−5

 1.13 × 10
−4

 1.80 × 10
−3

 

5 2.500 29.763 1.60 × 10
−4

 2.27 × 10
−3

 0.065 5.48 × 10
−5

 1.05 × 10
−4

 2.22 × 10
−3

 

f 2.900 30.163 1.58 × 10
−4

 2.24 × 10
−3

 0.187 1.58 × 10
−4

 0 2.24 × 10
−3
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[C2−]2  = 

1.34 × 10−2 [A5][C2H]  

− 1.52 × 10−10 

R² = 0.9988 
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2-Benzylpyrrolidine (A6) 

 

Table 221. Determination of the pKaH for A6 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A6 (10.3 mg) in 10.0 mL MeCN; C2H (12.9 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 20.6 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A6]0 / M A [C2
−
] / M [C2H] / M [A6] / M 

0 - 27.009 2.00 × 10
−4

 0 0 0 2.00 × 10
−4

 0 

1 0.500 27.509 1.96 × 10
−4

 1.16 × 10
−4

 0.008 6.55 × 10
−6

 1.90 × 10
−4

 1.10 × 10
−4

 

2 1.000 28.009 1.93 × 10
−4

 2.28 × 10
−4

 0.011 9.13 × 10
−6

 1.84 × 10
−4

 2.19 × 10
−4

 

3 1.500 28.509 1.89 × 10
−4

 3.36 × 10
−4

 0.013 1.10 × 10
−5

 1.78 × 10
−4

 3.25 × 10
−4

 

4 2.000 29.009 1.86 × 10
−4

 4.40 × 10
−4

 0.015 1.24 × 10
−5

 1.74 × 10
−4

 4.28 × 10
−4

 

5 2.500 29.509 1.83 × 10
−4

 5.41 × 10
−4

 0.016 1.36 × 10
−5

 1.69 × 10
−4

 5.28 × 10
−4

 

f 3.500 30.509 1.77 × 10
−4

 5.23 × 10
−4

 0.210 1.77 × 10
−4

 0 5.23 × 10
−4
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− 2.29 × 10−13 
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Table 222. Determination of the pKaH for A6 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A6 (10.3 mg) in 10.0 mL MeCN; C2H (12.9 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 21.0 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A6]0 / M A [C2
−
] / M [C2H] / M [A6] / M 

0 - 27.518 1.96 × 10
−4

 0 0 0 1.96 × 10
−4

 0 

1 0.500 28.018 1.93 × 10
−4

 1.14 × 10
−4

 0.007 5.93 × 10
−6

 1.87 × 10
−4

 1.08 × 10
−4

 

2 1.000 28.518 1.89 × 10
−4

 2.24 × 10
−4

 0.010 8.52 × 10
−6

 1.81 × 10
−4

 2.15 × 10
−4

 

3 2.000 29.518 1.83 × 10
−4

 4.33 × 10
−4

 0.014 1.17 × 10
−5

 1.71 × 10
−4

 4.21 × 10
−4

 

4 3.000 30.518 1.77 × 10
−4

 6.28 × 10
−4

 0.016 1.39 × 10
−5

 1.63 × 10
−4

 6.14 × 10
−4

 

5 4.000 31.518 1.71 × 10
−4

 8.11 × 10
−4

 0.018 1.56 × 10
−5

 1.56 × 10
−4

 7.95 × 10
−4

 

f 4.900 32.418 1.66 × 10
−4

 7.88 × 10
−4

 0.196 1.66 × 10
−4

 0 7.88 × 10
−4
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= 2.00 × 10−3[A6][C2H]  

− 5.63 × 10−12 
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(S)-2-Benzhydrylpyrrolidine (A7) 

 

Table 223. Determination of the pKaH for A7 with C2H in acetonitrile (detection at 420 nm). Stock solutions: A7 (14.4 mg) in 10.0 mL MeCN; C2H (12.9 mg) in 

10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 18.7 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A7]0 / M A [C2
−
] / M [C2H] / M [A7] / M 

0 - 24.591 2.19 × 10
−4

 0 0 0 2.19 × 10
−4

 0 

1 0.500 25.091 2.15 × 10
−4

 1.21 × 10
−4

 0.005 4.06 × 10
−6

 2.11 × 10
−4

 1.17 × 10
−4

 

2 1.000 25.591 2.11 × 10
−4

 2.37 × 10
−4

 0.007 5.51 × 10
−6

 2.05 × 10
−4

 2.32 × 10
−4

 

3 2.000 26.591 2.03 × 10
−4

 4.56 × 10
−4

 0.009 7.25 × 10
−6

 1.96 × 10
−4

 4.49 × 10
−4

 

4 3.000 27.591 1.96 × 10
−4

 6.60 × 10
−4

 0.010 8.40 × 10
−6

 1.87 × 10
−4

 6.51 × 10
−4

 

5 4.000 28.591 1.89 × 10
−4

 8.49 × 10
−4

 0.011 9.36 × 10
−6

 1.79 × 10
−4

 8.39 × 10
−4

 

f 4.500 29.091 1.86 × 10
−4

 8.34 × 10
−4

 0.224 1.86 × 10
−4

 0 8.34 × 10
−4
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[C2−]2 

= 5.59 × 10−4[A7][C2H] 

+ 3.15 × 10−12 

R² = 0.9997 
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Table 224. Determination of the pKaH for A7 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A7 (23.0 mg) in 10.0 mL MeCN, then 1.000 

mL solution diluted in 10.0 mL MeCN; C3H (11.2 mg) in 10.0 mL MeCN; [DBU] = 4.05 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C3H stock solution in 17.8 g MeCN. 

step V+ / mL V / mL [C3H]0 / M [A7]0 / M A [C3
−
] / M [C3H] / M [A7] / M 

0 - 23.446 1.37 × 10
−4

 0 0 0 1.37 × 10
−4

 0 

1 0.300 23.746 1.35 × 10
−4

 2.45 × 10
−5

 0.059 2.16 × 10
−5

 1.14 × 10
−4

 2.93 × 10
−6

 

2 0.400 23.846 1.35 × 10
−4

 3.25 × 10
−5

 0.076 2.79 × 10
−5

 1.07 × 10
−4

 4.66 × 10
−6

 

3 0.500 23.946 1.34 × 10
−4

 4.05 × 10
−5

 0.093 3.39 × 10
−5

 1.00 × 10
−4

 6.57 × 10
−6

 

4 0.600 24.046 1.33 × 10
−4

 4.84 × 10
−5

 0.108 3.97 × 10
−5

 9.38 × 10
−5

 8.70 × 10
−6

 

5 0.700 24.146 1.33 × 10
−4

 5.62 × 10
−5

 0.123 4.50 × 10
−5

 8.79 × 10
−5

 1.12 × 10
−5

 

f 0.900 24.346 1.32 × 10
−4

 5.57 × 10
−5

 0.360 1.32 × 10
−4

 0 5.57 × 10
−5
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Table 225. Determination of the pKaH for A7 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A7 (23.0 mg) in 10.0 mL MeCN, then 1.000 

mL solution diluted in 10.0 mL MeCN; C3H (11.2 mg) in 10.0 mL MeCN; [DBU] = 4.05 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 17.2 g MeCN. 

step V+ / mL V / mL [C3H]0 / M [A7]0 / M A [C3
−
] / M [C3H] / M [A7] / M 

0 - 22.583 1.24 × 10
−4

 0 0 0 1.24 × 10
−4

 0 

1 0.300 22.883 1.23 × 10
−4

 2.54 × 10
−5

 0.061 2.20 × 10
−5

 1.01 × 10
−4

 3.37 × 10
−6

 

2 0.400 22.983 1.22 × 10
−4

 3.37 × 10
−5

 0.078 2.84 × 10
−5

 9.38 × 10
−5

 5.32 × 10
−6

 

3 0.500 23.083 1.22 × 10
−4

 4.20 × 10
−5

 0.095 3.44 × 10
−5

 8.72 × 10
−5

 7.56 × 10
−6

 

4 0.600 23.183 1.21 × 10
−4

 5.02 × 10
−5

 0.110 4.01 × 10
−5

 8.11 × 10
−5

 1.01 × 10
−5

 

5 0.700 23.283 1.21 × 10
−4

 5.83 × 10
−5

 0.125 4.55 × 10
−5

 7.52 × 10
−5

 1.28 × 10
−5

 

f 0.900 23.483 1.20 × 10
−4

 5.78 × 10
−5

 0.328 1.20 × 10
−4

 0 5.78 × 10
−5
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K = 2.53 ± 0.13 

 For A7 + C3H: K̅ = 2.47 ± 0.05 

pKaH = 18.14 

 

pKaH(A7) = 18.13 (average)  
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= 2.53[A7][C3H] 

− 4.26 × 10−10 

R² = 0.9927 
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(S)-Pyrrolidin-2-ylmethanamine (A8) 

 

Table 226. Determination of the pKaH for A8 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A8 (19.3 mg) in 10.0 mL MeCN; C2H (15.8 

mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 21.1 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A8]0 / M A [C2
−
] / M [C2H] / M [A8] / M 

0 - 27.645 2.39 × 10
−4

 0 0 0 2.39 × 10
−4

 0 

1 0.250 27.895 2.37 × 10
−4

 1.73 × 10
−4

 0.033 2.94 × 10
−5

 2.08 × 10
−4

 1.43 × 10
−4

 

2 0.500 28.145 2.35 × 10
−4

 3.42 × 10
−4

 0.047 4.14 × 10
−5

 1.93 × 10
−4

 3.01 × 10
−4

 

3 0.750 28.395 2.33 × 10
−4

 5.09 × 10
−4

 0.057 5.02 × 10
−5

 1.83 × 10
−4

 4.59 × 10
−4

 

4 1.000 28.645 2.31 × 10
−4

 6.73 × 10
−4

 0.065 5.69 × 10
−5

 1.74 × 10
−4

 6.16 × 10
−4

 

5 1.250 28.895 2.29 × 10
−4

 8.34 × 10
−4

 0.071 6.25 × 10
−5

 1.66 × 10
−4

 7.71 × 10
−4

 

6 1.500 29.145 2.27 × 10
−4

 9.92 × 10
−4

 0.077 6.73 × 10
−5

 1.59 × 10
−4

 9.24 × 10
−4

 

f 1.700 29.345 2.25 × 10
−4

 9.85 × 10
−4

 0.256 2.25 × 10
−4

 0 9.85 × 10
−4
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Table 227. Determination of the pKaH for A8 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A8 (19.3 mg) in 10.0 mL MeCN; C2H (15.8 

mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.900 mL C2H stock solution in 21.0 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A8]0 / M A [C2
−
] / M [C2H] / M [A8] / M 

0 - 27.618 2.69 × 10
−4

 0 0 0 2.69 × 10
−4

 0 

1 0.500 28.118 2.64 × 10
−4

 3.43 × 10
−4

 0.050 4.37 × 10
−5

 2.21 × 10
−4

 2.99 × 10
−4

 

2 1.000 28.618 2.60 × 10
−4

 6.73 × 10
−4

 0.069 6.05 × 10
−5

 1.99 × 10
−4

 6.13 × 10
−4

 

3 1.500 29.118 2.55 × 10
−4

 9.93 × 10
−4

 0.082 7.17 × 10
−5

 1.84 × 10
−4

 9.21 × 10
−4

 

4 2.000 29.618 2.51 × 10
−4

 1.30 × 10
−3

 0.092 8.04 × 10
−5

 1.71 × 10
−4

 1.22 × 10
−3

 

5 2.500 30.118 2.47 × 10
−4

 1.60 × 10
−3

 0.099 8.72 × 10
−5

 1.60 × 10
−4

 1.51 × 10
−3

 

6 3.000 30.618 2.43 × 10
−4

 1.89 × 10
−3

 0.105 9.25 × 10
−5

 1.50 × 10
−4

 1.80 × 10
−3

 

f 3.300 30.918 2.41 × 10
−4

 1.87 × 10
−3

 0.274 2.41 × 10
−4

 0 1.87 × 10
−3
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K̅ = (3.19 ± 0.07) × 10−2 

pKaH(A8) = 19.86  

  

[C2−]2 = 

3.27 × 10−2[A8][C2H] 

− 3.05 × 10−10 

R² = 0.9996 
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(S)-N,N-Dimethyl-1-(pyrrolidin-2-yl)methanamine (A9) 

 

Table 228. Determination of the pKaH for A9 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A9 (21.9 mg) in 10.0 mL MeCN; C2H (12.9 

mg) in 10.0 mL MeCN; [DBU] = 1.75 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C2H stock solution in 18.6 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A9]0 / M A [C2
−
] / M [C2H] / M [A9] / M 

0 - 24.264 1.67 × 10
−4

 0 0 0 1.67 × 10
−4

 0 

1 0.250 24.514 1.65 × 10
−4

 1.74 × 10
−4

 0.025 2.08 × 10
−5

 1.44 × 10
−4

 1.53 × 10
−4

 

2 0.500 24.764 1.63 × 10
−4

 3.45 × 10
−4

 0.036 3.04 × 10
−5

 1.33 × 10
−4

 3.14 × 10
−4

 

3 1.000 25.264 1.60 × 10
−4

 6.76 × 10
−4

 0.050 4.24 × 10
−5

 1.18 × 10
−4

 6.34 × 10
−4

 

4 1.500 25.764 1.57 × 10
−4

 9.94 × 10
−4

 0.060 5.04 × 10
−5

 1.07 × 10
−4

 9.44 × 10
−4

 

5 2.000 26.264 1.54 × 10
−4

 1.30 × 10
−3

 0.067 5.60 × 10
−5

 9.81 × 10
−4

 1.24 × 10
−3

 

f 2.900 27.164 1.49 × 10
−4

 1.26 × 10
−3

 0.177 1.49 × 10
−4

 0 1.26 × 10
−3
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  [C2−]2 = 

2.71 × 10−2[A9][C2H]  

− 1.95 × 10−10 

R² = 0.9995 
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Table 229. Determination of the pKaH for A9 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A9 (21.9 mg) in 10.0 mL MeCN; C2H (12.9 

mg) in 10.0 mL MeCN; [DBU] = 1.75 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 18.3 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A9]0 / M A [C2
−
] / M [C2H] / M [A9] / M 

0 - 24.082 2.24 × 10
−4

 0 0 0 2.24 × 10
−4

 0 

1 0.500 24.582 2.20 × 10
−4

 3.47 × 10
−4

 0.042 3.56 × 10
−5

 1.84 × 10
−4

 3.12 × 10
−4

 

2 1.000 25.082 2.15 × 10
−4

 6.81 × 10
−4

 0.059 5.01 × 10
−5

 1.65 × 10
−4

 6.31 × 10
−4

 

3 1.500 25.582 2.11 × 10
−4

 1.00 × 10
−3

 0.071 6.00 × 10
−5

 1.51 × 10
−4

 9.41 × 10
−4

 

4 2.500 26.582 2.03 × 10
−4

 1.61 × 10
−3

 0.086 7.29 × 10
−5

 1.30 × 10
−4

 1.53 × 10
−3

 

5 3.500 27.582 1.96 × 10
−4

 2.17 × 10
−3

 0.095 8.11 × 10
−5

 1.15 × 10
−4

 2.09 × 10
−3

 

f 4.400 28.482 1.89 × 10
−4

 2.10 × 10
−3

 0.223 1.89 × 10
−4

 0 2.10 × 10
−3
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K = (2.92 ± 0.06) × 10
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K̅ = (2.82 ± 0.10) × 10−2 

pKaH(A9) = 19.81  

  
  [C2−]2 = 

2.92 × 10−2[A9][C2H]  

− 4.82 × 10−10 

R² = 0.9989 
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(S)-2-((Dimethylamino)methyl)pyrrolidin-1-ium trifluoromethanesulfonate (A9H
+
) 

 

Table 230. Determination of the pKaH for A9H
+
 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A9H

+
 TfO

–
 (19.8 mg) in 10.0 mL MeCN; 

C6H (8.9 mg) in 10.0 mL MeCN; [DBU] = 1.27 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 18.1 g MeCN. 

step V+ / mL V / mL [C6H]0 / M [A9H
+
]0 / M A [C6

−
] / M [C6H] / M [A9H

+
] / M 

0 - 23.228 4.09 × 10
−5

 0 0 0 4.09 × 10
−5

 0 

1 0.600 23.828 3.99 × 10
−5

 1.79 × 10
−4

 0.029 1.68 × 10
−6

 3.82 × 10
−5

 1.77 × 10
−4

 

2 1.100 24.328 3.91 × 10
−5

 3.22 × 10
−4

 0.037 2.18 × 10
−6

 3.69 × 10
−5

 3.20 × 10
−4

 

3 1.600 24.828 3.83 × 10
−5

 4.59 × 10
−4

 0.042 2.48 × 10
−6

 3.58 × 10
−5

 4.56 × 10
−4

 

4 2.100 25.328 3.76 × 10
−5

 5.90 × 10
−4

 0.047 2.75 × 10
−6

 3.48 × 10
−5

 5.87 × 10
−4

 

5 2.600 25.828 3.68 × 10
−5

 7.16 × 10
−4

 0.051 2.99 × 10
−6

 3.38 × 10
−5

 7.13 × 10
−4

 

f 4.200 27.428 3.47 × 10
−5

 6.74 × 10
−4

 0.589 3.47 × 10
−5

 0 6.74 × 10
−4
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K = (3.46 ± 0.06) × 10−4 

pKaH = 8.15 

    

[C6−]2 = 

3.46 × 10−4[A9H+][C6H]  

+ 5.37 × 10−13 

R² = 0.9990 
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 (S)-1-(Pyrrolidin-2-ylmethyl)pyrrolidine (A10) 

 

Table 231. Determination of the pKaH for A10 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A10 (25.6 mg) in 10.0 mL MeCN; C2H 

(11.0 mg) in 10.0 mL MeCN; [DBU] = 4.77 × 10
–2

 mol L
−1

. Step 0: 0.900 mL C2H stock solution in 20.5 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A10]0 / M A [C2
−
] / M [C2H] / M [A10] / M 

0 - 26.981 1.92 × 10
−4

 0 0 0 1.92 × 10
−4

 0 

1 0.250 27.231 1.90 × 10
−4

 1.53 × 10
−4

 0.033 3.23 × 10
−5

 1.58 × 10
−4

 1.20 × 10
−4

 

2 0.500 27.481 1.88 × 10
−4

 3.02 × 10
−4

 0.046 4.44 × 10
−5

 1.44 × 10
−4

 2.58 × 10
−4

 

3 0.750 27.731 1.87 × 10
−4

 4.49 × 10
−4

 0.054 5.28 × 10
−5

 1.34 × 10
−4

 3.96 × 10
−4

 

4 1.000 27.981 1.85 × 10
−4

 5.93 × 10
−4

 0.061 5.91 × 10
−5

 1.26 × 10
−4

 5.34 × 10
−4

 

5 1.250 28.231 1.83 × 10
−4

 7.35 × 10
−4

 0.066 6.41 × 10
−5

 1.19 × 10
−4

 6.71 × 10
−4

 

6 1.500 28.481 1.82 × 10
−4

 8.74 × 10
−4

 0.070 6.82 × 10
−5

 1.14 × 10
−4

 8.06 × 10
−4

 

f 1.800 28.781 1.80 × 10
−4

 8.65 × 10
−4

 0.184 1.80 × 10
−4

 0 8.65 × 10
−4
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[C2−]2 = 

4.97 × 10−2[A10][C2H]  

+ 1.26 × 10−10 

R² = 0.9997 
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Table 232. Determination of the pKaH for A10 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A10 (25.6 mg) in 10.0 mL MeCN; C2H 

(10.7 mg) in 10.0 mL MeCN; [DBU] = 4.77 × 10
–2

 mol L
−1

. Step 0: 0.900 mL C2H stock solution in 19.5 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A10]0 / M A [C2
−
] / M [C2H] / M [A10] / M 

0 - 25.709 1.96 × 10
−4

 0 0 0 1.96 × 10
−4

 0 

1 0.250 25.959 1.94 × 10
−4

 1.60 × 10
−4

 0.035 3.16 × 10
−5

 1.62 × 10
−4

 1.28 × 10
−4

 

2 0.500 26.209 1.92 × 10
−4

 3.17 × 10
−4

 0.048 4.39 × 10
−5

 1.48 × 10
−4

 2.73 × 10
−4

 

3 0.750 26.459 1.90 × 10
−4

 4.70 × 10
−4

 0.058 5.25 × 10
−5

 1.38 × 10
−4

 4.18 × 10
−4

 

4 1.000 26.709 1.89 × 10
−4

 6.21 × 10
−4

 0.065 5.89 × 10
−5

 1.30 × 10
−4

 5.62 × 10
−4

 

5 1.250 26.959 1.87 × 10
−4

 7.69 × 10
−4

 0.070 6.41 × 10
−5

 1.23 × 10
−4

 7.05 × 10
−4

 

6 1.500 27.209 1.85 × 10
−4

 9.15 × 10
−4

 0.075 6.83 × 10
−5

 1.17 × 10
−4

 8.47 × 10
−4

 

f 1.800 27.509 1.83 × 10
−4

 9.05 × 10
−4

 0.201 1.83 × 10
−4

 0 9.05 × 10
−4
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K = (4.71 ± 0.02) × 10
−2 

  

[C2−]2 = 

4.71 × 10−2[A10][C2H]  

+ 2.44 × 10−11 

R² = 0.9999 
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Table 233. Determination of the pKaH for A10 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A10 (25.6 mg) in 10.0 mL MeCN; C2H 

(10.7 mg) in 10.0 mL MeCN; [DBU] = 4.77 × 10
–2

 mol L
−1

. Step 0: 1.000 mL C2H stock solution in 19.9 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A10]0 / M A [C2
−
] / M [C2H] / M [A10] / M 

0 - 26.318 2.13 × 10
−4

 0 0 0 2.13 × 10
−4

 0 

1 0.250 26.568 2.11 × 10
−4

 1.56 × 10
−4

 0.036 3.35 × 10
−5

 1.77 × 10
−4

 1.23 × 10
−4

 

2 0.500 26.818 2.09 × 10
−4

 3.09 × 10
−4

 0.049 4.60 × 10
−5

 1.63 × 10
−4

 2.63 × 10
−4

 

3 0.750 27.068 2.07 × 10
−4

 4.60 × 10
−4

 0.059 5.48 × 10
−5

 1.52 × 10
−4

 4.05 × 10
−4

 

4 1.000 27.318 2.05 × 10
−4

 6.07 × 10
−4

 0.066 6.15 × 10
−5

 1.43 × 10
−4

 5.46 × 10
−4

 

5 1.250 27.568 2.03 × 10
−4

 7.52 × 10
−4

 0.072 6.69 × 10
−5

 1.36 × 10
−4

 6.86 × 10
−4

 

6 1.500 27.818 2.01 × 10
−4

 8.95 × 10
−4

 0.077 7.13 × 10
−5

 1.30 × 10
−4

 8.24 × 10
−4

 

f 1.800 28.118 1.99 × 10
−4

 8.85 × 10
−4

 0.214 1.99 × 10
−4

 0 8.85 × 10
−4
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[C2−]2 = 

4.67 × 10−2[A10][C2H]  

+ 1.16 × 10−10 

R² = 0.9999 
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Table 234. Determination of the pKaH for A10 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A10 (25.6 mg) in 10.0 mL MeCN; C2H 

(10.7 mg) in 10.0 mL MeCN; [DBU] = 4.77 × 10
–2

 mol L
−1

. Step 0: 0.900 mL C2H stock solution in 20.5 g MeCN. 

step V+ / mL V / mL [C2H]0 / M [A10]0 / M A [C2
−
] / M [C2H] / M [A10] / M 

0 - 26.981 1.87 × 10
−4

 0 0 0 1.87 × 10
−4

 0 

1 0.250 27.231 1.85 × 10
−4

 1.52 × 10
−4

 0.034 3.20 × 10
−5

 1.53 × 10
−4

 1.20 × 10
−4

 

2 0.500 27.481 1.83 × 10
−4

 3.02 × 10
−4

 0.046 4.36 × 10
−5

 1.40 × 10
−4

 2.58 × 10
−4

 

3 0.750 27.731 1.82 × 10
−4

 4.49 × 10
−4

 0.055 5.17 × 10
−5

 1.30 × 10
−4

 3.97 × 10
−4

 

4 1.000 27.981 1.80 × 10
−4

 5.93 × 10
−4

 0.061 5.78 × 10
−5

 1.22 × 10
−4

 5.35 × 10
−4

 

5 1.250 28.231 1.78 × 10
−4

 7.35 × 10
−4

 0.066 6.27 × 10
−5

 1.16 × 10
−4

 6.72 × 10
−4

 

6 1.500 28.481 1.77 × 10
−4

 8.74 × 10
−4

 0.070 6.67 × 10
−5

 1.10 × 10
−4

 8.07 × 10
−4

 

f 1.800 28.781 1.75 × 10
−4

 8.65 × 10
−4

 0.185 1.75 × 10
−4

 0 8.65 × 10
−4
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K = (4.87 ± 0.03) × 10
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K̅ = (4.81 ± 0.12) × 10−2 

pKaH(A10) = 20.04  

  

[C2−]2 = 

4.87 × 10−2[A10][C2H]  

+ 1.43 × 10−10 

R² = 0.9998 
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(S)-2-(Azidomethyl)pyrrolidine (A11) 

 
Table 235. Determination of the pKaH for A11 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A11 (26.1 mg) in 10.0 mL MeCN; C3H 

(25.4 mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C3H stock solution in 21.9 g MeCN. 

step V+ / mL V / mL [C3H]0 / M [A11]0 / M A [C3
−
] / M [C3H] / M [A11] / M 

0 - 28.363 1.60 × 10
−4

 0 0 0 1.60 × 10
−4

 0 

1 0.050 28.413 1.60 × 10
−4

 3.64 × 10
−5

 0.072 2.61 × 10
−5

 1.34 × 10
−4

 1.03 × 10
−5

 

2 0.100 28.463 1.60 × 10
−4

 7.27 × 10
−5

 0.121 4.41 × 10
−5

 1.16 × 10
−4

 2.86 × 10
−5

 

3 0.150 28.513 1.60 × 10
−4

 1.09 × 10
−4

 0.159 5.76 × 10
−5

 1.02 × 10
−4

 5.12 × 10
−5

 

4 0.200 28.563 1.59 × 10
−4

 1.45 × 10
−4

 0.188 6.81 × 10
−5

 9.12 × 10
−5

 7.68 × 10
−5

 

5 0.250 28.613 1.59 × 10
−4

 1.81 × 10
−4

 0.211 7.65 × 10
−5

 8.25 × 10
−5

 1.04 × 10
−4

 

6 0.300 28.663 1.59 × 10
−4

 2.17 × 10
−4

 0.230 8.34 × 10
−5

 7.53 × 10
−5

 1.33 × 10
−4

 

7 0.350 28.713 1.58 × 10
−4

 2.52 × 10
−4

 0.246 8.94 × 10
−5

 6.91 × 10
−5

 1.63 × 10
−4

 

8 0.400 28.763 1.58 × 10
−4

 2.88 × 10
−4

 0.260 9.44 × 10
−5

 6.37 × 10
−5

 1.93 × 10
−4

 

9 0.450 28.813 1.58 × 10
−4

 3.23 × 10
−4

 0.272 9.88 × 10
−5

 5.91 × 10
−5

 2.24 × 10
−4

 

10 0.500 28.863 1.58 × 10
−4

 3.58 × 10
−4

 0.282 1.03 × 10
−4

 5.51 × 10
−5

 2.56 × 10
−4

 

f 0.800 29.163 1.56 × 10
−4

 3.55 × 10
−4

 0.430 1.56 × 10
−4

 0 3.55 × 10
−4
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7.76 × 10−1[A11][C3H] 

− 6.47 × 10−10 

R² = 0.9978 
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Table 236. Determination of the pKaH for A11 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A11 (26.1 mg) in 10.0 mL MeCN; C3H 

(25.4 mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C3H stock solution in 21.6 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A11]0 / M A [C3
−
] / M [C3H] / M [A11] / M 

0 - 27.981 1.63 × 10
−4

 0 0 0 1.63 × 10
−4

 0 

1 0.100 28.081 1.62 × 10
−4

 7.37 × 10
−5

 0.121 4.37 × 10
−5

 1.18 × 10
−4

 3.00 × 10
−5

 

2 0.150 28.131 1.62 × 10
−4

 1.10 × 10
−4

 0.159 5.74 × 10
−5

 1.04 × 10
−4

 5.29 × 10
−5

 

3 0.200 28.181 1.61 × 10
−4

 1.47 × 10
−4

 0.188 6.82 × 10
−5

 9.33 × 10
−5

 7.87 × 10
−5

 

4 0.250 28.231 1.61 × 10
−4

 1.83 × 10
−4

 0.212 7.68 × 10
−5

 8.43 × 10
−5

 1.06 × 10
−4

 

5 0.300 28.281 1.61 × 10
−4

 2.19 × 10
−4

 0.231 8.38 × 10
−5

 7.71 × 10
−5

 1.36 × 10
−4

 

6 0.350 28.331 1.61 × 10
−4

 2.56 × 10
−4

 0.249 8.99 × 10
−5

 7.06 × 10
−5

 1.66 × 10
−4

 

f 0.650 28.631 1.59 × 10
−4

 2.53 × 10
−4

 0.439 1.59 × 10
−4

 0 2.53 × 10
−4

 

0

0.1

0.2

0.3

0.4

0.5

0 100 200

A

t / s
 

 

 

K = (7.55 ± 0.11) × 10
−1 

  

For A11 + C3H: K̅ = (7.65 ± 0.10) × 10
−1 

pKaH(A11) = 17.63 

 

 

  

  
  [C3−]2 = 

7.55 × 10−1[A11][C3H]  

− 8.38 × 10−10 

R² = 0.9992 
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Table 237. Determination of the pKaH for A11 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A11 (26.1 mg) in 10.0 mL MeCN; C4H 

(15.3 mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 24.5 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A11]0 / M A [C4
−
] / M [C4H] / M [A11] / M 

0 - 31.670 8.17 × 10
−5

 0 0 0 8.17 × 10
−5

 0 

1 0.100 31.770 8.15 × 10
−5

 6.51 × 10
−5

 0.281 3.78 × 10
−5

 4.36 × 10
−5

 2.73 × 10
−5

 

2 0.150 31.820 8.13 × 10
−5

 9.75 × 10
−5

 0.356 4.78 × 10
−5

 3.35 × 10
−5

 4.97 × 10
−5

 

3 0.200 31.870 8.12 × 10
−5

 1.30 × 10
−4

 0.404 5.43 × 10
−5

 2.69 × 10
−5

 7.55 × 10
−5

 

4 0.250 31.920 8.11 × 10
−5

 1.62 × 10
−4

 0.438 5.89 × 10
−5

 2.22 × 10
−5

 1.03 × 10
−4

 

5 0.300 31.970 8.09 × 10
−5

 1.94 × 10
−4

 0.462 6.22 × 10
−5

 1.88 × 10
−5

 1.32 × 10
−4

 

6 0.350 32.020 8.08 × 10
−5

 2.26 × 10
−4

 0.481 6.47 × 10
−5

 1.61 × 10
−5

 1.61 × 10
−4

 

f 0.650 32.320 8.01 × 10
−5

 2.24 × 10
−4

 0.595 8.01 × 10
−5

 0 2.24 × 10
−4
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K = 1.93 ± 0.05 

pKaH(A11) = 17.68
 

 

pKaH (A11) = 17.66 (average) 

 

    
[C4−]2 = 

1.93[A11][C4H] 

− 9.13 × 10−10 

R² = 0.9976 
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(S)-Pyrrolidin-2-ylmethanol (A12) 

 

Table 238. Determination of the pKaH for A12 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A12 (19.2 mg) in 10.0 mL MeCN; C2H 

(13.2 mg) in 10.0 mL MeCN; [DBU] = 2.38 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C2H stock solution in 19.4 g MeCN.
 

step V+ / mL V / mL [C2H]0 / M [A12]0 / M A [C2
−
] / M [C2H] / M [A12] / M 

0 - 25.382 1.90 × 10
−4

 0 0.000 0 1.90 × 10
−4

 0 

1 0.250 25.632 1.89 × 10
−4

 1.85 × 10
−4

 0.013 1.14 × 10
−5

 1.77 × 10
−4

 1.74 × 10
−4

 

2 0.500 25.882 1.87 × 10
−4

 3.67 × 10
−4

 0.018 1.58 × 10
−5

 1.71 × 10
−4

 3.51 × 10
−4

 

3 0.750 26.132 1.85 × 10
−4

 5.45 × 10
−4

 0.022 1.91 × 10
−5

 1.66 × 10
−4

 5.26 × 10
−4

 

4 1.000 26.382 1.83 × 10
−4

 7.20 × 10
−4

 0.025 2.17 × 10
−5

 1.61 × 10
−4

 6.98 × 10
−4

 

5 1.250 26.632 1.81 × 10
−4

 8.91 × 10
−4

 0.027 2.39 × 10
−5

 1.57 × 10
−4

 8.67 × 10
−4

 

6 1.500 26.882 1.80 × 10
−4

 1.06 × 10
−3

 0.029 2.59 × 10
−5

 1.54 × 10
−4

 1.03 × 10
−3

 

f 1.900 27.282 1.77 × 10
−4

 1.04 × 10
−3

 0.201 1.77 × 10
−4

 0 1.04 × 10
−3
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K = (4.23 ± 0.02) × 10
−3

 

  

[C2−]2 = 

4.23 × 10−3[A12][C2H] 

− 2.18 × 10−12 

R² = 0.9999 
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Table 239. Determination of the pKaH for A12 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A12 (19.2 mg) in 10.0 mL MeCN; C2H 

(13.2 mg) in 10.0 mL MeCN; [DBU] = 2.38 × 10
–2

 mol L
−1

. Step 0: 0.470 mL C2H stock solution in 21.4 g MeCN.
 

step V+ / mL V / mL [C2H]0 / M [A12]0 / M A [C2
−
] / M [C2H] / M [A12] / M 

0 - 27.696 1.17 × 10
−4

 0 0 0 1.17 × 10
−4

 0 

1 0.250 27.946 1.16 × 10
−4

 1.70 × 10
−4

 0.010 9.05 × 10
−6

 1.07 × 10
−4

 1.61 × 10
−4

 

2 0.500 28.196 1.15 × 10
−4

 3.37 × 10
−4

 0.014 1.23 × 10
−5

 1.03 × 10
−4

 3.24 × 10
−4

 

3 1.000 28.696 1.13 × 10
−4

 6.61 × 10
−4

 0.019 1.65 × 10
−5

 9.66 × 10
−5

 6.45 × 10
−4

 

4 1.500 29.196 1.11 × 10
−4

 9.75 × 10
−4

 0.023 1.96 × 10
−5

 9.15 × 10
−5

 9.56 × 10
−4

 

5 2.000 29.696 1.09 × 10
−4

 1.28 × 10
−3

 0.025 2.19 × 10
−5

 8.73 × 10
−5

 1.26 × 10
−3

 

6 2.500 30.196 1.07 × 10
−4

 1.57 × 10
−3

 0.027 2.38 × 10
−5

 8.36 × 10
−5

 1.55 × 10
−3

 

f 2.900 30.596 1.06 × 10
−4

 1.55 × 10
−3

 0.122 1.06 × 10
−4

 0 1.55 × 10
−3
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K = (4.34 ± 0.02) × 10
−3

 

 

K̅ = (4.28 ± 0.05) × 10−3 

pKaH(A12) = 18.99  

  

[C2−]2 = 

4.34 × 10−3[A12][C2H] 

+ 5.32 × 10−12 

R² = 0.9999 
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(S)-2-(Methoxymethyl)pyrrolidine (A13) 

 

Table 240. Determination of the pKaH for A13 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A13 (15.7 mg) in 10.0 mL MeCN; C2H 

(11.4 mg) in 10.0 mL MeCN; [DBU] = 3.69 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 20.2 g MeCN.
 

step V+ / mL V / mL [C2H]0 / M [A13]0 / M A [C2
−
] / M [C2H] / M [A13] / M 

0 - 26.500 1.80 × 10
−4

 0 0 0 1.80 × 10
−4

 0 

1 0.250 26.750 1.78 × 10
−4

 1.27 × 10
−4

 0.009 7.88 × 10
−6

 1.70 × 10
−4

 1.20 × 10
−4

 

2 0.500 27.000 1.77 × 10
−4

 2.52 × 10
−4

 0.013 1.11 × 10
−5

 1.66 × 10
−4

 2.41 × 10
−4

 

3 0.750 27.250 1.75 × 10
−4

 3.75 × 10
−4

 0.016 1.35 × 10
−5

 1.62 × 10
−4

 3.62 × 10
−4

 

4 1.000 27.500 1.73 × 10
−4

 4.96 × 10
−4

 0.018 1.54 × 10
−5

 1.58 × 10
−4

 4.80 × 10
−4

 

5 1.250 27.750 1.72 × 10
−4

 6.14 × 10
−4

 0.020 1.71 × 10
−5

 1.55 × 10
−4

 5.97 × 10
−4

 

6 1.500 28.000 1.70 × 10
−4

 7.30 × 10
−4

 0.022 1.85 × 10
−5

 1.52 × 10
−4

 7.12 × 10
−4

 

f 1.900 28.400 1.68 × 10
−4

 7.20 × 10
−4

 0.197 1.68 × 10
−4

 0 7.20 × 10
−4
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K = (3.21 ± 0.01) × 10
−3

 

  

[C2−]2 = 

3.21 × 10−3[A13][C2H] 

− 4.54 × 10−12 

R² = 0.9999 
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Table 241. Determination of the pKaH for A13 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A13 (15.7 mg) in 10.0 mL MeCN; C2H 

(11.4 mg) in 10.0 mL MeCN; [DBU] = 3.69 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C2H stock solution in 19.7 g MeCN.
 

step V+ / mL V / mL [C2H]0 / M [A13]0 / M A [C2
−
] / M [C2H] / M [A13] / M 

0 - 25.864 1.84 × 10
−4

 0 0 0 1.84 × 10
−4

 0 

1 0.500 26.364 1.81 × 10
−4

 2.59 × 10
−4

 0.013 1.12 × 10
−5

 1.70 × 10
−4

 2.47 × 10
−4

 

2 1.000 26.864 1.78 × 10
−4

 5.07 × 10
−4

 0.019 1.58 × 10
−5

 1.62 × 10
−4

 4.92 × 10
−4

 

3 1.500 27.364 1.74 × 10
−4

 7.47 × 10
−4

 0.022 1.89 × 10
−5

 1.55 × 10
−4

 7.28 × 10
−4

 

4 2.000 27.864 1.71 × 10
−4

 9.78 × 10
−4

 0.025 2.15 × 10
−5

 1.50 × 10
−4

 9.57 × 10
−4

 

5 2.500 28.364 1.68 × 10
−4

 1.20 × 10
−3

 0.028 2.35 × 10
−5

 1.45 × 10
−4

 1.18 × 10
−3

 

6 3.000 28.864 1.65 × 10
−4

 1.42 × 10
−3

 0.030 2.52 × 10
−5

 1.40 × 10
−4

 1.39 × 10
−3

 

f 3.400 29.264 1.63 × 10
−4

 1.40 × 10
−3

 0.192 1.63 × 10
−4

 0 1.40 × 10
−3
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K = (3.35 ± 0.02) × 10
−3

 

 

K̅ = (3.28 ± 0.07) × 10−3 

pKaH(A13) = 18.88  

  

[C2−]2 = 

3.35 × 10−3[A13][C2H] 

− 1.67 × 10−12 

R² = 0.9998 
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2-(Trifluoromethyl)pyrrolidine (A14) 

 

Table 242. Determination of the pKaH for A14 with C5H in acetonitrile at 20 °C (detection at 330 nm). Stock solutions: A14 (8.1 mg) in 10.0 mL MeCN; C5H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.99 × 10
–2

 mol L
−1

. Step 0: 1.000 mL C5H stock solution in 20.8 g MeCN.
 

step V+ / mL V / mL [C5H]0 / M [A14]0 / M A [C5
−
] / M [C5H] / M [A14] / M 

0 - 27.463 1.85 × 10
−4

 0 0 0 1.85 × 10
−4

 0 

1 0.250 27.713 1.83 × 10
−4

 5.25 × 10
−5

 0.078 2.91 × 10
−5

 1.54 × 10
−4

 2.34 × 10
−5

 

2 0.500 27.963 1.82 × 10
−4

 1.04 × 10
−4

 0.127 4.75 × 10
−5

 1.34 × 10
−4

 5.66 × 10
−5

 

3 0.750 28.213 1.80 × 10
−4

 1.55 × 10
−4

 0.162 6.07 × 10
−5

 1.19 × 10
−4

 9.40 × 10
−5

 

4 1.000 28.463 1.79 × 10
−4

 2.05 × 10
−4

 0.189 7.08 × 10
−5

 1.08 × 10
−4

 1.34 × 10
−4

 

5 1.250 28.713 1.77 × 10
−4

 2.53 × 10
−4

 0.210 7.88 × 10
−5

 9.82 × 10
−5

 1.75 × 10
−4

 

6 1.500 28.963 1.76 × 10
−4

 3.02 × 10
−4

 0.227 8.51 × 10
−5

 9.04 × 10
−5

 2.16 × 10
−4

 

7 1.750 29.213 1.74 × 10
−4

 3.49 × 10
−4

 0.241 9.04 × 10
−5

 8.36 × 10
−5

 2.58 × 10
−4

 

8 2.000 29.463 1.73 × 10
−4

 3.95 × 10
−4

 0.253 9.48 × 10
−5

 7.78 × 10
−5

 3.00 × 10
−4

 

f 2.200 29.663 1.71 × 10
−4

 3.93 × 10
−4

 0.457 1.71 × 10
−4

 0 3.93 × 10
−4
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K = (4.15 ± 0.07) × 10
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[C5−]2 = 

4.15 × 10−1[A14][C5H] 

− 8.43 × 10−10 

R² = 0.9984 
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Table 243. Determination of the pKaH for A14 with C5H in acetonitrile at 20 °C (detection at 330 nm). Stock solutions: A14 (8.1 mg) in 10.0 mL MeCN; C5H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.99 × 10  mol L
−1

. Step 0: 0.800 mL C5H stock solution in 18.5 g MeCN.
 

step V+ / mL V / mL [C5H]0 / M [A14]0 / M A [C5
−
] / M [C5H] / M [A14] / M 

0 - 24.337 1.67 × 10
−4

 0 0 0 1.67 × 10
−4

 0 

1 0.250 24.587 1.65 × 10
−4

 5.92 × 10
−5

 0.082 3.07 × 10
−5

 1.35 × 10
−4

 2.85 × 10
−5

 

2 0.500 24.837 1.64 × 10
−4

 1.17 × 10
−4

 0.132 4.91 × 10
−5

 1.15 × 10
−4

 6.81 × 10
−5

 

3 0.750 25.087 1.62 × 10
−4

 1.74 × 10
−4

 0.166 6.19 × 10
−5

 1.00 × 10
−4

 1.12 × 10
−4

 

4 1.000 25.337 1.61 × 10
−4

 2.30 × 10
−4

 0.191 7.11 × 10
−5

 8.94 × 10
−5

 1.59 × 10
−4

 

5 1.250 25.587 1.59 × 10
−4

 2.84 × 10
−4

 0.210 7.83 × 10
−5

 8.07 × 10
−5

 2.06 × 10
−4

 

6 1.500 25.837 1.57 × 10
−4

 3.38 × 10
−4

 0.225 8.39 × 10
−5

 7.35 × 10
−5

 2.54 × 10
−4

 

7 1.750 26.087 1.56 × 10
−4

 3.91 × 10
−4

 0.238 8.85 × 10
−5

 6.74 × 10
−5

 3.02 × 10
−4

 

8 2.000 26.337 1.54 × 10
−4

 4.42 × 10
−4

 0.247 9.21 × 10
−5

 6.23 × 10
−5

 3.50 × 10
−4

 

f 2.200 26.537 1.53 × 10
−4

 4.39 × 10
−4

 0.411 1.53 × 10
−4

 0 4.39 × 10
−4
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K = (4.23 ± 0.06) × 10
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[C5−]2 = 

4.23  × 10−1[A14][C5H] 

− 8.34 × 10−10 

R² = 0.9987 
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Table 244. Determination of the pKaH for A14 with C5H in acetonitrile at 20 °C (detection at 330 nm). Stock solutions: A14 (8.1 mg) in 10.0 mL MeCN; C5H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.99 × 10  mol L
−1

. Step 0: 0.800 mL C5H stock solution in 21.3 g MeCN.
 

step V+ / mL V / mL [C5H]0 / M [A14]0 / M A [C5
−
] / M [C5H] / M [A14] / M 

0 - 27.899 1.46 × 10
−4

 0 0 0 1.46 × 10
−4

 0 

1 0.250 28.149 1.44 × 10
−4

 5.17 × 10
−5

 0.072 2.67 × 10
−5

 1.18 × 10
−4

 2.50 × 10
−5

 

2 0.500 28.399 1.43 × 10
−4

 1.03 × 10
−4

 0.115 4.29 × 10
−5

 1.00 × 10
−4

 5.96 × 10
−5

 

3 0.750 28.649 1.42 × 10
−4

 1.52 × 10
−4

 0.146 5.43 × 10
−5

 8.77 × 10
−5

 9.81 × 10
−5

 

4 1.000 28.899 1.41 × 10
−4

 2.01 × 10
−4

 0.168 6.24 × 10
−5

 7.83 × 10
−5

 1.39 × 10
−4

 

5 1.250 29.149 1.40 × 10
−4

 2.50 × 10
−4

 0.185 6.88 × 10
−5

 7.08 × 10
−5

 1.81 × 10
−4

 

6 1.500 29.399 1.38 × 10
−4

 2.97 × 10
−4

 0.198 7.38 × 10
−5

 6.45 × 10
−5

 2.23 × 10
−4

 

7 1.750 29.649 1.37 × 10
−4

 3.44 × 10
−4

 0.209 7.80 × 10
−5

 5.92 × 10
−5

 2.66 × 10
−4

 

8 2.000 29.899 1.36 × 10
−4

 3.89 × 10
−4

 0.219 8.14 × 10
−5

 5.46 × 10
−5

 3.08 × 10
−4

 

f 2.200 30.099 1.35 × 10
−4

 3.87 × 10
−4

 0.363 1.35 × 10
−4

 0 3.87 × 10
−4
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K = (4.26 ± 0.07) × 10
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K̅ = (4.21 ± 0.05) × 10−1 

pKaH(A14) = 12.63 

  

  
[C5−]2 = 

4.26 × 10−1[A14][C5H] 

− 6.59 × 10−10 

R² = 0.9985 
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Methyl L-prolinate (A15) 

 

Table 245. Determination of the pKaH for A15 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A15 (35.6 mg) in 10.0 mL MeCN; C3H 

(18.9 mg) in 10.0 mL MeCN; [DBU] = 3.69 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C3H stock solution in 20.3 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A15]0 / M A [C3
−
] / M [C3H] / M [A15] / M 

0 - 26.327 1.29 × 10
−4

 0 0 0 1.29 × 10
−4

 0 

1 0.050 26.377 1.28 × 10
−4

 5.22 × 10
−5

 0.046 1.65 × 10
−5

 1.12 × 10
−4

 3.57 × 10
−5

 

2 0.100 26.427 1.28 × 10
−4

 1.04 × 10
−4

 0.068 2.43 × 10
−5

 1.04 × 10
−4

 8.00 × 10
−5

 

3 0.150 26.477 1.28 × 10
−4

 1.56 × 10
−4

 0.084 2.99 × 10
−5

 9.79 × 10
−5

 1.26 × 10
−4

 

4 0.200 26.527 1.28 × 10
−4

 2.08 × 10
−4

 0.097 3.44 × 10
−5

 9.32 × 10
−5

 1.73 × 10
−4

 

5 0.260 26.587 1.27 × 10
−4

 2.70 × 10
−4

 0.109 3.89 × 10
−5

 8.85 × 10
−5

 2.31 × 10
−4

 

6 0.300 26.627 1.27 × 10
−4

 3.11 × 10
−4

 0.116 4.14 × 10
−5

 8.58 × 10
−5

 2.69 × 10
−4

 

7 0.350 26.677 1.27 × 10
−4

 3.62 × 10
−4

 0.124 4.42 × 10
−5

 8.27 × 10
−5

 3.17 × 10
−4

 

8 0.400 26.727 1.27 × 10
−4

 4.13 × 10
−4

 0.131 4.67 × 10
−5

 8.00 × 10
−5

 3.66 × 10
−4

 

f 0.600 26.927 1.26 × 10
−4

 4.09 × 10
−4

 0.352 1.26 × 10
−4

 0 4.09 × 10
−4

 

0

0.1

0.2

0.3

0.4

0 200 400

A

t / s

 

 

K = (7.56 ± 0.01) × 10
−2 

pKaH(A15) = 16.63 
 

  

[C3−]2 = 

7.56 × 10−2[A15][C3H] 

− 3.44 × 10−11 

R² = 1.000 
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Table 246. Determination of the pKaH for A15 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A15 (35.6 mg) in 10.0 mL MeCN; C4H 

(13.1 mg) in 10.0 mL MeCN; [DBU] = 2.76 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 20.8 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A15]0 / M A [C4
−
] / M [C4H] / M [A15] / M 

0 - 26.963 8.22 × 10
−5

 0 0 0 8.22 × 10
−5

 0 

1 0.050 27.013 8.20 × 10
−5

 5.10 × 10
−5

 0.143 1.87 × 10
−5

 6.34 × 10
−5

 3.24 × 10
−5

 

2 0.100 27.063 8.19 × 10
−5

 1.02 × 10
−4

 0.203 2.66 × 10
−5

 5.53 × 10
−5

 7.53 × 10
−5

 

3 0.150 27.113 8.17 × 10
−5

 1.52 × 10
−4

 0.245 3.20 × 10
−5

 4.97 × 10
−5

 1.20 × 10
−4

 

4 0.200 27.163 8.16 × 10
−5

 2.03 × 10
−4

 0.276 3.60 × 10
−5

 4.55 × 10
−5

 1.67 × 10
−4

 

5 0.250 27.213 8.14 × 10
−5

 2.53 × 10
−4

 0.300 3.93 × 10
−5

 4.21 × 10
−5

 2.14 × 10
−4

 

6 0.300 27.263 8.13 × 10
−5

 3.03 × 10
−4

 0.321 4.20 × 10
−5

 3.93 × 10
−5

 2.61 × 10
−4

 

f 0.500 27.463 8.07 × 10
−5

 3.01 × 10
−4

 0.617 8.07 × 10
−5

 0 3.01 × 10
−4
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K = (1.72 ± 0.00) × 10
−1

 

pKaH(A15) = 16.63 
 

 

pKaH(A15) = 16.63 

  

[C4−]2 = 

1.72 × 10−1[A15][C4H] 

− 6.98 × 10−12 

R² = 1.000 
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(S)-N,N-Dimethylpyrrolidine-2-carboxamide (A16) 

 

Table 247. Determination of the pKaH for A16 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A16 (30.3 mg) in 10.0 mL MeCN; C2H 

(12.9 mg) in 10.0 mL MeCN; [DBU] = 1.72 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C2H stock solution in 18.6 g MeCN.
 

step V+ / mL V / mL [C2H]0 / M [A16]0 / M A [C2
−
] / M [C2H] / M [A16] / M 

0 - 24.264 1.67 × 10
−4

 0 0 0 1.67 × 10
−4

 0 

1 0.500 24.764 1.63 × 10
−4

 4.30 × 10
−4

 0.008 6.78 × 10
−6

 1.57 × 10
−4

 4.23 × 10
−4

 

2 1.000 25.264 1.60 × 10
−4

 8.43 × 10
−4

 0.012 1.02 × 10
−5

 1.50 × 10
−4

 8.33 × 10
−4

 

3 1.500 25.764 1.57 × 10
−4

 1.24 × 10
−3

 0.015 1.26 × 10
−5

 1.44 × 10
−4

 1.23 × 10
−3

 

4 2.000 26.264 1.54 × 10
−4

 1.62 × 10
−3

 0.017 1.47 × 10
−5

 1.39 × 10
−4

 1.61 × 10
−3

 

5 2.500 26.764 1.51 × 10
−4

 1.99 × 10
−3

 0.019 1.62 × 10
−5

 1.35 × 10
−4

 1.97 × 10
−3

 

f 3.400 27.664 1.46 × 10
−4

 1.93 × 10
−3

 0.171 1.46 × 10
−4

 0 1.93 × 10
−3
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K = (1.09 ± 0.03) × 10
−3

 

  

  

[C2−]2 = 

1.09 × 10−3[A16][C2H] 

− 3.02 × 10−11 

R² = 0.9983 
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Table 248. Determination of the pKaH for A16 with C2H in acetonitrile at 20 °C (detection at 420 nm). Stock solutions: A16 (30.3 mg) in 10.0 mL MeCN; C2H 

(12.9 mg) in 10.0 mL MeCN; [DBU] = 1.72 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C2H stock solution in 18.1 g MeCN.
 

step V+ / mL V / mL [C2H]0 / M [A16]0 / M A [C2
−
] / M [C2H] / M [A16] / M 

0 - 23.628 1.71 × 10
−4

 0 0 0 1.71 × 10
−4

 0 

1 1.000 24.628 1.64 × 10
−4

 8.65 × 10
−4

 0.012 9.78 × 10
−6

 1.55 × 10
−4

 8.55 × 10
−4

 

2 2.000 25.628 1.58 × 10
−4

 1.66 × 10
−3

 0.017 1.44 × 10
−5

 1.44 × 10
−4

 1.65 × 10
−3

 

3 3.000 26.628 1.52 × 10
−4

 2.40 × 10
−3

 0.021 1.75 × 10
−5

 1.34 × 10
−4

 2.38 × 10
−3

 

4 4.000 27.628 1.46 × 10
−4

 3.08 × 10
−3

 0.024 1.98 × 10
−5

 1.27 × 10
−4

 3.07 × 10
−3

 

5 5.000 28.628 1.41 × 10
−4

 3.72 × 10
−3

 0.026 2.16 × 10
−5

 1.20 × 10
−4

 3.70 × 10
−3

 

f 6.000 29.628 1.37 × 10
−4

 3.60 × 10
−3

 0.162 1.37 × 10
−4

 0 3.60 × 10
−3
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K = (1.20 ± 0.03) × 10
−3

 

  
For A16 + C2H: K̅ = (1.14 ± 0.05) × 10

−3
  

pKaH = 18.42 
  

  

[C2−]2 = 

1.20 × 10−3[A16][C2H] 

− 6.93 × 10−11 

R² = 0.9979 

0

2E-10

4E-10

0 2.25E-07 4.5E-07

[C
2

−
]2

 /
 m

o
l2

L
−

2
 

[A16][C2H] / mol2L−2 



 

254 

 

 
Table 249. Determination of the pKaH for A16 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A16 (30.3 mg) in 10.0 mL MeCN; C3H 

(12.6 mg) in 10.0 mL MeCN; [DBU] = 1.72 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C3H stock solution in 19.7 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A16]0 / M A [C3
−
] / M [C3H] / M [A16] / M 

0 - 25.664 1.06 × 10
−4

 0 0 0 1.06 × 10
−4

 0 

1 0.050 25.714 1.05 × 10
−4

 4.14 × 10
−5

 0.101 3.68 × 10
−5

 6.86 × 10
−5

 4.67 × 10
−6

 

2 0.100 25.764 1.05 × 10
−4

 8.27 × 10
−5

 0.177 6.40 × 10
−5

 4.11 × 10
−5

 1.87 × 10
−5

 

3 0.150 25.814 1.05 × 10
−4

 1.24 × 10
−4

 0.221 8.02 × 10
−5

 2.47 × 10
−5

 4.36 × 10
−5

 

4 0.200 25.864 1.05 × 10
−4

 1.65 × 10
−4

 0.244 8.83 × 10
−5

 1.64 × 10
−5

 7.65 × 10
−5

 

5 0.250 25.914 1.05 × 10
−4

 2.06 × 10
−4

 0.255 9.24 × 10
−5

 1.21 × 10
−5

 1.13 × 10
−4

 

6 0.300 25.964 1.04 × 10
−4

 2.46 × 10
−4

 0.262 9.49 × 10
−5

 9.45 × 10
−6

 1.51 × 10
−4

 

7 0.400 26.064 1.04 × 10
−4

 3.27 × 10
−4

 0.269 9.73 × 10
−5

 6.59 × 10
−6

 2.30 × 10
−4

 

8 0.500 26.164 1.04 × 10
−4

 4.07 × 10
−4

 0.272 9.84 × 10
−5

 5.09 × 10
−6

 3.09 × 10
−4

 

f 1.000 26.664 1.02 × 10
−4

 4.00 × 10
−4

 0.280 1.02 × 10
−4

 0 4.00 × 10
−4
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K = 6.88 ± 0.13 

  
[C3−]2 = 

6.88[A16][C3H] 

− 9.57 × 10−10 

R² = 0.9978 
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Table 250. Determination of the pKaH for A16 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A16 (30.3 mg) in 10.0 mL MeCN; C3H 

(12.6 mg) in 10.0 mL MeCN; [DBU] = 1.72 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C3H stock solution in 19.4 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A16]0 / M A [C3
−
] / M [C3H] / M [A16] / M 

0 - 25.282 1.07 × 10
−4

 0 0 0 1.07 × 10
−4

 0 

1 0.020 25.302 1.07 × 10
−4

 1.68 × 10
−5

 0.043 1.56 × 10
−5

 9.14 × 10
−5

 1.23 × 10
−6

 

2 0.040 25.322 1.07 × 10
−4

 3.37 × 10
−5

 0.082 3.01 × 10
−5

 7.69 × 10
−5

 3.59 × 10
−6

 

3 0.060 25.342 1.07 × 10
−4

 5.04 × 10
−5

 0.117 4.30 × 10
−5

 6.39 × 10
−5

 7.49 × 10
−6

 

4 0.080 25.362 1.07 × 10
−4

 6.72 × 10
−5

 0.149 5.46 × 10
−5

 5.21 × 10
−5

 1.26 × 10
−5

 

5 0.100 25.382 1.07 × 10
−4

 8.39 × 10
−5

 0.175 6.42 × 10
−5

 4.25 × 10
−5

 1.98 × 10
−5

 

f 0.600 25.882 1.05 × 10
−4

 8.23 × 10
−5

 0.286 1.05 × 10
−4

 0 8.23 × 10
−5
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K = 5.34 ± 0.29 

 For A16 + C3H: K̅ = 6.11 ± 0.77 

pKaH = 18.34 

 

pKaH(A16) = 18.38 (average) 

 

  

  

[C3−]2 = 

5.34[A16][C3H] 

− 5.07 × 10−10 

R² = 0.9913 
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(S)-N-Propylpyrrolidine-2-carboxamide (A17) 

 

Table 251. Determination of the pKaH for A17 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A17 (20.6 mg) in 10.0 mL MeCN; C3H 

(12.6 mg) stock solution in 10.0 mL MeCN; [DBU] = 1.75 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C3H stock solution in 19.3 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A17]0 / M A [C3
−
] / M [C3H] / M [A17] / M 

0 - 25.155 1.08 × 10
−4

 0 0 0 1.08 × 10
−4

 0 

1 0.025 25.180 1.08 × 10
−4

 1.31 × 10
−5

 0.026 9.35 × 10
−6

 9.82 × 10
−5

 3.74 × 10
−6

 

2 0.050 25.205 1.07 × 10
−4

 2.62 × 10
−5

 0.042 1.54 × 10
−5

 9.20 × 10
−5

 1.07 × 10
−5

 

3 0.100 25.255 1.07 × 10
−4

 5.22 × 10
−5

 0.067 2.44 × 10
−5

 8.29 × 10
−5

 2.79 × 10
−5

 

4 0.150 25.305 1.07 × 10
−4

 7.82 × 10
−5

 0.085 3.08 × 10
−5

 7.62 × 10
−5

 4.74 × 10
−5

 

5 0.200 25.355 1.07 × 10
−4

 1.04 × 10
−4

 0.099 3.60 × 10
−5

 7.09 × 10
−5

 6.81 × 10
−5

 

6 0.250 25.405 1.07 × 10
−4

 1.30 × 10
−4

 0.110 4.00 × 10
−5

 6.66 × 10
−5

 8.98 × 10
−5

 

f 0.750 25.905 1.05 × 10
−4

 1.27 × 10
−4

 0.287 1.05 × 10
−4

 0 1.27 × 10
−4
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K = (2.72 ± 0.02) × 10
−1 

pKaH  = 17.18 

  

[C3−]2 = 

2.72 × 10−1[A17][C3H] 

− 2.47 × 10−11 

R² = 0.9998 
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Table 252. Determination of the pKaH for A17 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A17 (20.6 mg) in 10.0 mL MeCN; C4H 

(10.3 mg) in 10.0 mL MeCN; [DBU] = 1.75 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 19.1 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A17]0 / M A [C4
−
] / M [C4H] / M [A17] / M 

0 - 24.800 7.02 × 10
−5

 0 0 0 7.02 × 10
−5

 0 

1 0.025 24.825 7.02 × 10
−5

 1.33 × 10
−5

 0.076 1.02 × 10
−5

 6.00 × 10
−5

 3.11 × 10
−6

 

2 0.050 24.850 7.01 × 10
−5

 2.65 × 10
−5

 0.126 1.68 × 10
−5

 5.33 × 10
−5

 9.68 × 10
−6

 

3 0.075 24.875 7.00 × 10
−5

 3.98 × 10
−5

 0.165 2.20 × 10
−5

 4.80 × 10
−5

 1.77 × 10
−5

 

4 0.100 24.900 7.00 × 10
−5

 5.30 × 10
−5

 0.196 2.62 × 10
−5

 4.37 × 10
−5

 2.67 × 10
−5

 

5 0.125 24.925 6.99 × 10
−5

 6.61 × 10
−5

 0.222 2.97 × 10
−5

 4.02 × 10
−5

 3.64 × 10
−5

 

6 0.150 24.950 6.98 × 10
−5

 7.93 × 10
−5

 0.243 3.26 × 10
−5

 3.73 × 10
−5

 4.67 × 10
−5

 

f 0.550 25.350 6.87 × 10
−5

 7.80 × 10
−5

 0.514 6.87 × 10
−5

 0 7.80 × 10
−5
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K = (6.19 ± 0.10) × 10
−1 

pKaH  = 17.18 

 

pKaH(A17) = 17.18 (average)  

  

[C4−]2 = 

6.19 × 10−1[A17][C4H] 

− 2.79 × 10−11 

R² = 0.9991 
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(S)-2-(Pyrrolidin-2-ylmethyl)isoindoline-1,3-dione (A18) 

 
Table 253. Determination of the pKaH for A18 with C3

−
 in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A18H

+
CF3CO2

−
 (10.3 mg) in 10.0 mL 

MeCN; C3
–
K

+
 (5.4 mg) in 25.0 mL MeCN. Step 0: 2.000 mL C3

–
K

+
 stock solution in 17.7 g MeCN.

 

step V+ / mL V / mL [C3
–
]0 / M [A18H

+
]0 / M A [C3

−
] / M [C3H] / M [A18H

+
] / M 

0 - 24.519 5.55 × 10
−5

 0 0.167 5.55 × 10
−5

 0 0 

1 0.100 24.619 5.53 × 10
−5

 1.22 × 10
−5

 0.141 4.69 × 10
−5

 8.45 × 10
−6

 3.71 × 10
−6

 

2 0.200 24.719 5.51 × 10
−5

 2.42 × 10
−5

 0.123 4.11 × 10
−5

 1.40 × 10
−5

 1.02 × 10
−5

 

3 0.300 24.819 5.49 × 10
−5

 3.62 × 10
−5

 0.110 3.67 × 10
−5

 1.82 × 10
−5

 1.80 × 10
−5

 

4 0.400 24.919 5.46 × 10
−5

 4.80 × 10
−5

 0.101 3.36 × 10
−5

 2.11 × 10
−5

 2.69 × 10
−5

 

5 0.500 25.019 5.44 × 10
−5

 5.98 × 10
−5

 0.093 3.10 × 10
−5

 2.34 × 10
−5

 3.63 × 10
−5

 

6 0.600 25.119 5.42 × 10
−5

 7.15 × 10
−5

 0.087 2.90 × 10
−5

 2.52 × 10
−5

 4.63 × 10
−5

 

7 0.700 25.219 5.40 × 10
−5

 8.30 × 10
−5

 0.082 2.73 × 10
−5

 2.67 × 10
−5

 5.63 × 10
−5

 

8 0.800 25.319 5.38 × 10
−5

 9.45 × 10
−5

 0.078 2.58 × 10
−5

 2.79 × 10
−5

 6.66 × 10
−5

 

9 0.900 25.419 5.36 × 10
−5

 1.06 × 10
−4

 0.074 2.46 × 10
−5

 2.90 × 10
−5

 7.69 × 10
−5

 

10 1.000 25.519 5.34 × 10
−5

 1.17 × 10
−4

 0.071 2.35 × 10
−5

 2.98 × 10
−5

 8.74 × 10
−5
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K = 2.28 ± 0.07
 

pKaH  = 18.11 

    

[A18H+][C3−] = 

2.28[C3H]2  

− 5.95 × 10−11 

R² = 0.9931 
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Table 254. Determination of the pKaH for A18 with C4
−
 in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A18H

+
CF3CO2

−
 (10.3 mg) in 10.0 mL 

MeCN; C4
−
K

+
 (5.1 mg) in 25.0 mL MeCN. Step 0: 1.000 mL C4

–
K

+
 stock solution in 18.8 g MeCN.

 

step V+ / mL V / mL [C4H]0 / M [A18H
+
]0 / M A [C4

−
] / M [C4H] / M [A18H

+
] / M 

0 - 24.919 2.45 × 10
−5

 0 0.204 2.45 × 10
−5

 0 0 

1 0.100 25.019 2.44 × 10
−5

 1.20 × 10
−5

 0.161 1.93 × 10
−5

 5.13 × 10
−6

 6.83 × 10
−6

 

2 0.250 25.169 2.43 × 10
−5

 2.97 × 10
−5

 0.131 1.57 × 10
−5

 8.56 × 10
−6

 2.12 × 10
−5

 

3 0.500 25.419 2.40 × 10
−5

 5.88 × 10
−5

 0.106 1.27 × 10
−5

 1.13 × 10
−5

 4.75 × 10
−5

 

4 0.750 25.669 2.38 × 10
−5

 8.74 × 10
−5

 0.091 1.10 × 10
−5

 1.28 × 10
−5

 7.46 × 10
−5

 

5 1.000 25.919 2.36 × 10
−5

 1.15 × 10
−4

 0.082 9.82 × 10
−6

 1.38 × 10
−5

 1.02 × 10
−4

 

6 1.250 26.169 2.34 × 10
−5

 1.43 × 10
−4

 0.075 8.95 × 10
−6

 1.44 × 10
−5

 1.28 × 10
−4
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K = 5.53 ± 0.30
 

pKaH  = 18.13 

 

pKaH(A18) = 18.12 (average)  

  

[A18H+][C4−] = 

5.53[C4H]2  

− 5.56 × 10−11 

R² = 0.9883 
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(S)-4-Phenyl-1-(pyrrolidin-2-ylmethyl)-1H-1,2,3-triazole (A19) 

 

Table 255. Determination of the pKaH for A19 with C3H in acetonitrile at 20 °C (detection at 350 nm). Stock solutions: A19 (12.1 mg) in 10.0 mL MeCN; C3H 

(25.4 mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 21.2 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A19]0 / M A [C4
−
] / M [C4H] / M [A19] / M 

0 - 27.672 2.30 × 10
−4

 0 0 0 2.30 × 10
−4

 0 

1 0.500 28.172 2.26 × 10
−4

 9.41 × 10
−5

 0.028 3.17 × 10
−5

 1.94 × 10
−4

 6.23 × 10
−5

 

2 0.750 28.422 2.24 × 10
−4

 1.40 × 10
−4

 0.038 4.26 × 10
−5

 1.81 × 10
−4

 9.72 × 10
−5

 

3 1.000 28.672 2.22 × 10
−4

 1.85 × 10
−4

 0.045 5.14 × 10
−5

 1.71 × 10
−4

 1.33 × 10
−4

 

4 1.250 28.922 2.20 × 10
−4

 2.29 × 10
−4

 0.052 5.89 × 10
−5

 1.61 × 10
−4

 1.70 × 10
−4

 

5 1.500 29.172 2.18 × 10
−4

 2.73 × 10
−4

 0.058 6.53 × 10
−5

 1.53 × 10
−4

 2.07 × 10
−4

 

6 1.750 29.422 2.16 × 10
−4

 3.15 × 10
−4

 0.063 7.10 × 10
−5

 1.45 × 10
−4

 2.44 × 10
−4

 

f 2.040 29.712 2.14 × 10
−4

 3.12 × 10
−4

 0.189 2.14 × 10
−4

 0 3.12 × 10
−4

 

0

0.05

0.1

0.15

0.2

0 2 4

A

t / min
 

 

 

K = (1.72 ± 0.05) × 10
−1 

pKaH  = 16.99 

 

  

  

[C3−]2 = 

1.72 × 10−1[A19][C3H] 

− 1.19 × 10−9 

R² = 0.9965 
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Table 256. Determination of the pKaH for A19 with C4H in acetonitrile at 20 °C (detection at 350 nm). Stock solutions: A19 (12.1 mg) in 10.0 mL MeCN; C4H 

(15.3 mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 22.5 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A19]0 / M A [C4
−
] / M [C4H] / M [A19] / M 

0 - 29.126 8.88 × 10
−5

 0 0 0 8.88 × 10
−5

 0 

1 0.250 29.376 8.81 × 10
−5

 4.51 × 10
−5

 0.065 1.42 × 10
−5

 7.39 × 10
−5

 3.09 × 10
−5

 

2 0.500 29.626 8.73 × 10
−5

 8.94 × 10
−5

 0.119 2.60 × 10
−5

 6.13 × 10
−5

 6.34 × 10
−5

 

3 0.750 29.876 8.66 × 10
−5

 1.33 × 10
−4

 0.152 3.33 × 10
−5

 5.34 × 10
−5

 9.98 × 10
−5

 

4 1.000 30.126 8.59 × 10
−5

 1.76 × 10
−4

 0.175 3.85 × 10
−5

 4.74 × 10
−5

 1.37 × 10
−4

 

5 1.250 30.376 8.52 × 10
−5

 2.18 × 10
−4

 0.194 4.25 × 10
−5

 4.27 × 10
−5

 1.76 × 10
−4

 

6 1.500 30.626 8.45 × 10
−5

 2.60 × 10
−4

 0.208 4.56 × 10
−5

 3.89 × 10
−5

 2.14 × 10
−4

 

f 1.800 30.926 8.37 × 10
−5

 2.57 × 10
−4

 0.382 8.37 × 10
−5

 0 2.57 × 10
−4
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K = (3.11 ± 0.04) × 10
−1 

 

  

  
[C4−]2 = 

3.11 × 10−1[A19][C4H] 

− 5.28 × 10−10 

R² = 0.9993 
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Table 257. Determination of the pKaH for A19 with C4H in acetonitrile at 20 °C (detection at 350 nm). Stock solutions: A19 (12.1 mg) in 10.0 mL MeCN; C4H 

(15.3 mg) in 10.0 mL MeCN; [DBU] = 8.50 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 23.5 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A19]0 / M A [C4
−
] / M [C4H] / M [A19] / M 

0 - 30.398 8.51 × 10
−5

 0 0 0 8.51 × 10
−5

 0 

1 0.500 30.898 8.38 × 10
−5

 8.58 × 10
−5

 0.111 2.43 × 10
−5

 5.94 × 10
−5

 6.15 × 10
−5

 

2 0.750 31.148 8.31 × 10
−5

 1.28 × 10
−4

 0.142 3.12 × 10
−5

 5.19 × 10
−5

 9.64 × 10
−5

 

3 1.000 31.398 8.24 × 10
−5

 1.69 × 10
−4

 0.166 3.64 × 10
−5

 4.60 × 10
−5

 1.32 × 10
−4

 

4 1.250 31.648 8.18 × 10
−5

 2.09 × 10
−4

 0.184 4.03 × 10
−5

 4.15 × 10
−5

 1.69 × 10
−4

 

5 1.500 31.898 8.11 × 10
−5

 2.49 × 10
−4

 0.198 4.34 × 10
−5

 3.78 × 10
−5

 2.06 × 10
−4

 

f 1.800 32.198 8.04 × 10
−5

 2.47 × 10
−4

 0.367 8.04 × 10
−5

 0 2.47 × 10
−4

 

0
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t / min

 

 

 

K = (3.14 ± 0.06) × 10
−1 

 For A19 + C4H: K̅ = (3.13 ± 0.02) × 10
−1 

 
pKaH = 16.89 

 

    pKaH(A19) = 16.94 (average) 

  

  

[C4−]2 = 

3.14 × 10−1[A19][C4H] 

− 5.77 × 10−10 

R² = 0.9989 
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(S)-1-(Pyrrolidin-2-ylmethyl)-1H-imidazole (A20) 

 

Table 258. Determination of the pKaH for A20 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A20 (5.3 mg) in 10.0 mL MeCN; C3H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 4.70 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 19.8 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A20]0 / M A [C3
−
] / M [C3H] / M [A20] / M 

0 - 25.891 1.10 × 10
−4

 0 0 0 1.10 × 10
−4

 0 

1 0.100 25.991 1.10 × 10
−4

 1.35 × 10
−5

 0.018 6.52 × 10
−6

 1.03 × 10
−4

 6.96 × 10
−6

 

2 0.200 26.091 1.10 × 10
−4

 2.69 × 10
−5

 0.030 1.05 × 10
−5

 9.91 × 10
−5

 1.64 × 10
−5

 

3 0.300 26.191 1.09 × 10
−4

 4.01 × 10
−5

 0.039 1.38 × 10
−5

 9.53 × 10
−5

 2.63 × 10
−5

 

4 0.400 26.291 1.09 × 10
−4

 5.33 × 10
−5

 0.047 1.66 × 10
−5

 9.22 × 10
−5

 3.68 × 10
−5

 

5 0.600 26.491 1.08 × 10
−4

 7.94 × 10
−5

 0.059 2.10 × 10
−5

 8.69 × 10
−5

 5.84 × 10
−5

 

6 0.800 26.691 1.07 × 10
−4

 1.05 × 10
−4

 0.069 2.46 × 10
−5

 8.25 × 10
−5

 8.05 × 10
−5

 

7 1.000 26.891 1.06 × 10
−4

 1.30 × 10
−4

 0.078 2.75 × 10
−5

 7.88 × 10
−5

 1.03 × 10
−4

 

f 1.300 27.191 1.05 × 10
−4

 1.29 × 10
−4

 0.297 1.05 × 10
−4

 0 1.29 × 10
−4
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K = (9.78 ± 0.19) × 10
−2 

pKaH = 16.74 

  

[C3−]2 = 

9.78 × 10−2[A20][C3H] 

− 4.70 × 10−11 

R² = 0.9981 
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Table 259. Determination of the pKaH for A20 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A20 (5.3 mg) in 10.0 mL MeCN; C4H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 4.70 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 18.5 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A20]0 / M A [C4
−
] / M [C4H] / M [A20] / M 

0 - 24.037 8.30 × 10
−5

 0 0 0 8.30 × 10
−5

 0 

1 0.100 24.137 8.27 × 10
−5

 1.45 × 10
−5

 0.060 7.95 × 10
−6

 7.47 × 10
−5

 6.57 × 10
−6

 

2 0.200 24.237 8.23 × 10
−5

 2.89 × 10
−5

 0.098 1.29 × 10
−5

 6.94 × 10
−5

 1.60 × 10
−5

 

3 0.300 24.337 8.20 × 10
−5

 4.32 × 10
−5

 0.129 1.70 × 10
−5

 6.50 × 10
−5

 2.62 × 10
−5

 

4 0.400 24.437 8.17 × 10
−5

 5.74 × 10
−5

 0.154 2.03 × 10
−5

 6.14 × 10
−5

 3.70 × 10
−5

 

5 0.500 24.537 8.13 × 10
−5

 7.14 × 10
−5

 0.175 2.31 × 10
−5

 5.82 × 10
−5

 4.83 × 10
−5

 

6 0.600 24.637 8.10 × 10
−5

 8.54 × 10
−5

 0.193 2.56 × 10
−5

 5.55 × 10
−5

 5.98 × 10
−5

 

7 0.700 24.737 8.07 × 10
−5

 9.92 × 10
−5

 0.209 2.77 × 10
−5

 5.30 × 10
−5

 7.15 × 10
−5

 

8 0.800 24.837 8.04 × 10
−5

 1.13 × 10
−4

 0.224 2.96 × 10
−5

 5.08 × 10
−5

 8.33 × 10
−5

 

9 0.900 24.937 8.00 × 10
−5

 1.26 × 10
−4

 0.236 3.13 × 10
−5

 4.87 × 10
−5

 9.52 × 10
−5

 

10 1.000 25.037 7.97 × 10
−5

 1.40 × 10
−4

 0.248 3.28 × 10
−5

 4.69 × 10
−5

 1.07 × 10
−4

 

f 1.200 25.237 7.91 × 10
−5

 1.39 × 10
−4

 0.598 7.91 × 10
−5

 0 1.39 × 10
−4

 

0

0.2

0.4

0.6

0.8

0 200 400

A

t / s
 

 

 

K = (2.26 ± 0.04) × 10
−1 

pKaH = 16.75 

 

pKaH(A20) = 16.74 (average) 

  

[C4−]2 = 

2.26 × 10−1[A20][C4H] 

− 8.37 × 10−11 

R² = 0.9972 

0

4E-10

8E-10

1.2E-09

0 2.75E-09 5.5E-09

[C
4

−
]2

/ 
m

o
l2

L
−

2
 

 

[A20][C4H] / mol2L−2 



 

265 

 

(S)-3-Butyl-1-(pyrrolidin-2-ylmethyl)-1H-imidazol-3-ium trifluoromethanesulfonate (A21) 

 

Table 260. Determination of the pKaH for A21 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A21TfO
–
 (4.9 mg) in 25.0 mL MeCN; C6H 

(6.0 mg) in 10.0 mL MeCN; [DBU] = 1.48 × 10
–2

 mol L
−1

. Step 0: 0.100 mL C4H stock solution in 18.6 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A21]0 / M A [C6
−
] / M [C6H] / M [A21] / M 

0 - 23.764 1.35 × 10
−5

 0 - - 1.35 × 10
−5

 0 

1 0.200 23.964 1.34 × 10
−5

 4.58 × 10
−6

 0.039 2.33 × 10
−6

 1.11 × 10
−5

 2.25 × 10
−6

 

2 0.250 24.014 1.33 × 10
−5

 5.71 × 10
−6

 0.045 2.69 × 10
−6

 1.07 × 10
−5

 3.02 × 10
−6

 

3 0.300 24.064 1.33 × 10
−5

 6.84 × 10
−6

 0.051 3.02 × 10
−6

 1.03 × 10
−5

 3.81 × 10
−6

 

4 0.350 24.114 1.33 × 10
−5

 7.96 × 10
−6

 0.056 3.36 × 10
−6

 9.93 × 10
−6

 4.60 × 10
−6

 

5 0.400 24.164 1.33 × 10
−5

 9.08 × 10
−6

 0.062 3.70 × 10
−6

 9.57 × 10
−6

 5.38 × 10
−6

 

6 0.450 24.214 1.32 × 10
−5

 1.02 × 10
−5

 0.067 4.03 × 10
−6

 9.21 × 10
−6

 6.16 × 10
−6

 

f 0.550 24.314 1.32 × 10
−5

 1.01 × 10
−5

 0.220 1.32 × 10
−5

 0 1.01 × 10
−5
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K = (3.36 ± 0.22) × 10
−1 

 

[C6−]2 = 

3.36 × 10−1[A21][C6H] 

− 3.51 × 10−12 

R² = 0.9826 
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Table 261. Determination of the pKaH for A21 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A21TfO
–
 (4.9 mg) in 25.0 mL MeCN; C6H 

(6.0 mg) in 10.0 mL MeCN; [DBU] = 1.48 × 10
–2

 mol L
−1

. Step 0: 0.100 mL C4H stock solution in 18.5 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A21]0 / M A [C6
−
] / M [C6H] / M [A21] / M 

0 - 23.637 1.36 × 10
−5

 0 - - 1.36 × 10
−5

 0 

1 0.200 23.837 1.34 × 10
−5

 4.60 × 10
−6

 0.039 2.33 × 10
−6

 1.11 × 10
−5

 2.28 × 10
−6

 

2 0.250 23.887 1.34 × 10
−5

 5.74 × 10
−6

 0.045 2.70 × 10
−6

 1.07 × 10
−5

 3.04 × 10
−6

 

3 0.300 23.937 1.34 × 10
−5

 6.87 × 10
−6

 0.051 3.03 × 10
−6

 1.04 × 10
−5

 3.85 × 10
−6

 

4 0.350 23.987 1.34 × 10
−5

 8.00 × 10
−6

 0.056 3.38 × 10
−6

 9.98 × 10
−6

 4.62 × 10
−6

 

5 0.400 24.037 1.33 × 10
−5

 9.13 × 10
−6

 0.062 3.72 × 10
−6

 9.61 × 10
−6

 5.40 × 10
−6

 

6 0.450 24.087 1.33 × 10
−5

 1.02 × 10
−5

 0.068 4.05 × 10
−6

 9.26 × 10
−6

 6.20 × 10
−6

 

f 0.550 24.187 1.33 × 10
−5

 1.02 × 10
−5

 0.221 1.33 × 10
−5

 0 1.02 × 10
−5
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K = (3.39 ± 0.21) × 10
−1 

 

K̅ = (3.38 ± 0.02) × 10
−1

 

pKaH(A21) = 11.14  

[C6−]2 = 

3.39 × 10−1[A21][C6H] 

− 3.74 × 10−12 

R² = 0.9842 
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(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)thiourea (A22) 

 

Table 262. Determination of the pKaH for A22 with C3H in acetonitrile at 20 °C (detection at 350 nm); Stock solutions: A22 (9.3 mg) in 10.0 mL MeCN; C3H (12.6 

mg) in 10.0 mL MeCN; [pyrrolidine] = 7.02 × 10
–2

 mol L
−1

. Step 0: 0.800 mL C3H stock solution in 20.7 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A22]0 / M A [C3
−
] / M [C3H] / M [A22] / M 

0 - 27.136 1.33 × 10
−4

 0 0 0 1.33 × 10
−4

 0 

1 1.000 28.136 1.28 × 10
−4

 8.90 × 10
−5

 0.034 3.72 × 10
−5

 9.11 × 10
−5

 5.18 × 10
−5

 

2 1.300 28.436 1.27 × 10
−4

 1.14 × 10
−4

 0.039 4.30 × 10
−5

 8.40 × 10
−5

 7.15 × 10
−5

 

3 1.600 28.736 1.26 × 10
−4

 1.39 × 10
−4

 0.044 4.79 × 10
−5

 7.77 × 10
−5

 9.15 × 10
−5

 

4 1.900 29.036 1.24 × 10
−4

 1.64 × 10
−4

 0.047 5.20 × 10
−5

 7.24 × 10
−5

 1.12 × 10
−4

 

5 2.200 29.336 1.23 × 10
−4

 1.88 × 10
−4

 0.050 5.53 × 10
−5

 6.78 × 10
−5

 1.32 × 10
−4

 

f 2.300 29.436 1.23 × 10
−4

 1.87 × 10
−4

 0.112 1.23 × 10
−4

 0 1.87 × 10
−4
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K = (3.97 ± 0.07) × 10
−1 

pKaH = 17.35 

 

  

  
[C3−]2 = 

3.97 × 10−1[A22][C3H] 

− 5.13 × 10−10 

R² = 0.9992 
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Table 263. Determination of the pKaH for A22 with C4H in acetonitrile at 20 °C (detection at 350 nm). Stock solutions: A22 (9.3 mg) in 10.0 mL MeCN; C4H (11.9 

mg) in 10.0 mL MeCN; [pyrrolidine] = 7.02 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C4H stock solution in 21.1 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A22]0 / M A [C4
−
] / M [C4H] / M [A22] / M 

0 - 27.545 1.02 × 10
−4

 0 0 0 1.02 × 10
−4

 0 

1 1.000 28.545 9.87 × 10
−5

 8.77 × 10
−5

 0.178 4.39 × 10
−5

 5.48 × 10
−5

 4.38 × 10
−5

 

2 1.500 29.045 9.70 × 10
−5

 1.29 × 10
−4

 0.212 5.23 × 10
−5

 4.47 × 10
−5

 7.71 × 10
−5

 

3 2.000 29.545 9.54 × 10
−5

 1.70 × 10
−4

 0.233 5.75 × 10
−5

 3.79 × 10
−5

 1.12 × 10
−4

 

4 2.500 30.045 9.38 × 10
−5

 2.08 × 10
−4

 0.249 6.13 × 10
−5

 3.25 × 10
−5

 1.47 × 10
−4

 

5 3.000 30.545 9.23 × 10
−5

 2.46 × 10
−4

 0.259 6.38 × 10
−5

 2.85 × 10
−5

 1.82 × 10
−4

 

f 3.200 30.745 9.17 × 10
−5

 2.44 × 10
−4

 0.372 9.17 × 10
−5

 0 2.44 × 10
−4
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K = (7.64 ± 0.09) × 10
−1 

pKaH = 17.27 

 

pKaH(A22) = 17.31 (average) 

  

  
[C4−]2 = 

7.64 × 10−1[A22][C4H] 

+ 8.97 × 10−11 

R² = 0.9996 
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(S)-(3,5-Bis(trifluoromethyl)phenyl)((pyrrolidin-2-ylmethyl)carbamothioyl)amide (A22
−
) 

 
Table 264. Determination of the pKaH for A22-H

+
 with DBU in acetonitrile at 20 °C (detection at 350 nm); Stock solutions: A22 (8.0 mg) in 10.0 mL MeCN; 

DBU (22.5 mg) in 10.0 mL MeCN; [TBD] = 7.33 × 10  mol L
−1

. Step 0: 1.000 mL A22 stock solution in 18.5 g MeCN.  

step V+ / mL V / mL [A22]0 / M [DBU]0 / M A [A22
–
] / M [A22] / M [DBU] / M 

0 - 24.537 8.78 × 10
−5

 0 0 0 8.78 × 10
−5

 0 

1 0.100 24.637 8.74 × 10
−5

 6.00 × 10
−5

 0.039 1.82 × 10
−5

 6.93 × 10
−5

 4.18 × 10
−5

 

2 0.200 24.737 8.71 × 10
−5

 1.19 × 10
−4

 0.057 2.66 × 10
−5

 6.05 × 10
−5

 9.29 × 10
−5

 

3 0.300 24.837 8.67 × 10
−5

 1.79 × 10
−4

 0.069 3.25 × 10
−5

 5.42 × 10
−5

 1.46 × 10
−4

 

4 0.400 24.937 8.64 × 10
−5

 2.37 × 10
−4

 0.078 3.68 × 10
−5

 4.95 × 10
−5

 2.00 × 10
−4

 

5 0.500 25.037 8.60 × 10
−5

 2.95 × 10
−4

 0.086 4.03 × 10
−5

 4.57 × 10
−5

 2.55 × 10
−4

 

6 0.600 25.137 8.57 × 10
−5

 3.53 × 10
−4

 0.092 4.31 × 10
−5

 4.26 × 10
−5

 3.10 × 10
−4

 

7 0.700 25.237 8.54 × 10
−5

 4.10 × 10
−4

 0.097 4.53 × 10
−5

 4.00 × 10
−5

 3.65 × 10
−4

 

8 0.800 25.337 8.50 × 10
−5

 4.67 × 10
−4

 0.101 4.72 × 10
−5

 3.78 × 10
−5

 4.19 × 10
−4

 

9 0.900 25.437 8.47 × 10
−5

 5.23 × 10
−4

 0.104 4.89 × 10
−5

 3.58 × 10
−5

 4.74 × 10
−4

 

10 1.000 25.537 8.44 × 10
−5

 5.79 × 10
−4

 0.107 5.03 × 10
−5

 3.41 × 10
−5

 5.28 × 10
−4

 

f 1.400 25.937 8.31 × 10
−5

 5.70 × 10
−4

 0.177 8.31 × 10
−5

 0 5.70 × 10
−4
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K = 6.79 ± 0.04
 

[A22][DBU] = 

6.79[A22−]2  

+ 6.99 × 10−10 

R² = 0.9998 
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Table 265. Determination of the pKaH for A22-H
+
 with DBU in acetonitrile at 20 °C (detection at 350 nm). Stock solutions: A22 (8.0 mg) in 10.0 mL MeCN; 

DBU (22.5 mg) in 10.0 mL MeCN; [TBD] = 7.33 × 10  mol L
−1

. Step 0: 1.000 mL A22 stock solution in 18.3 g MeCN.  

step V+ / mL V / mL [A22]0 / M [DBU]0 / M A [A22
–
] / M [A22] / M [DBU] / M 

0 - 24.282 8.87 × 10
−5

 0 0 0 8.87 × 10
−5

 0 

1 0.100 24.382 8.84 × 10
−5

 6.06 × 10
−5

 0.039 1.84 × 10
−5

 6.99 × 10
−5

 4.22 × 10
−5

 

2 0.200 24.482 8.80 × 10
−5

 1.21 × 10
−4

 0.058 2.68 × 10
−5

 6.11 × 10
−5

 9.39 × 10
−5

 

3 0.300 24.582 8.76 × 10
−5

 1.80 × 10
−4

 0.070 3.25 × 10
−5

 5.52 × 10
−5

 1.48 × 10
−4

 

4 0.400 24.682 8.73 × 10
−5

 2.40 × 10
−4

 0.079 3.68 × 10
−5

 5.05 × 10
−5

 2.03 × 10
−4

 

5 0.500 24.782 8.69 × 10
−5

 2.98 × 10
−4

 0.086 4.01 × 10
−5

 4.69 × 10
−5

 2.58 × 10
−4

 

6 0.600 24.882 8.66 × 10
−5

 3.56 × 10
−4

 0.092 4.28 × 10
−5

 4.38 × 10
−5

 3.14 × 10
−4

 

7 0.700 24.982 8.62 × 10
−5

 4.14 × 10
−4

 0.097 4.51 × 10
−5

 4.12 × 10
−5

 3.69 × 10
−4

 

8 0.800 25.082 8.59 × 10
−5

 4.71 × 10
−4

 0.101 4.70 × 10
−5

 3.89 × 10
−5

 4.24 × 10
−4

 

9 0.900 25.182 8.55 × 10
−5

 5.28 × 10
−4

 0.104 4.86 × 10
−5

 3.69 × 10
−5

 4.80 × 10
−4

 

10 1.000 25.282 8.52 × 10
−5

 5.85 × 10
−4

 0.107 5.00 × 10
−5

 3.52 × 10
−5

 5.35 × 10
−4

 

f 1.400 25.682 8.39 × 10
−5

 5.75 × 10
−4

 0.178 8.39 × 10
−5

 0 5.75 × 10
−4
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K = 7.29 ± 0.03
 

 

K̅ = 7.04 ± 0.25 

pKaH(A22−) = 25.16  

[A22][DBU] = 

7.29[A22−]2 

+ 4.34 × 10−10 

R² = 0.9998 
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(S)-1-(3,5-Bis(trifluoromethyl)phenyl)-3-(pyrrolidin-2-ylmethyl)urea (A23) 

 

Table 266. Determination of the pKaH for A23 with C3
−
 in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A23H

+
CF3CO2

−
 (8.4 mg) in 10.0 mL MeCN; 

C3
–
K

+
 (5.4 mg) in 25.0 mL MeCN. Step 0: 2.000 mL C3

–
K

+
 stock solution in 18.0 g MeCN.

 

step V+ / mL V / mL [C3
−
]0 / M [A23H

+
]0 / M A [C3

−
] / M [C3H] / M [A23H

+
] / M 

0 - 24.901 5.47 × 10
−5

 0 0.164 5.47 × 10
−5

 0 0 

1 0.100 25.001 5.45 × 10
−5

 7.16 × 10
−6

 0.155 5.15 × 10
−5

 3.01 × 10
−6

 4.15 × 10
−6

 

2 0.200 25.101 5.42 × 10
−5

 1.43 × 10
−5

 0.149 4.94 × 10
−5

 4.82 × 10
−6

 9.44 × 10
−6

 

3 0.400 25.301 5.38 × 10
−5

 2.83 × 10
−5

 0.140 4.67 × 10
−5

 7.15 × 10
−6

 2.11 × 10
−5

 

4 0.600 25.501 5.34 × 10
−5

 4.21 × 10
−5

 0.134 4.47 × 10
−5

 8.69 × 10
−6

 3.34 × 10
−5

 

5 0.800 25.701 5.30 × 10
−5

 5.57 × 10
−5

 0.130 4.32 × 10
−5

 9.81 × 10
−6

 4.59 × 10
−5

 

6 1.000 25.901 5.26 × 10
−5

 6.91 × 10
−5

 0.126 4.19 × 10
−5

 1.07 × 10
−5

 5.84 × 10
−5
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K = (2.10 ± 0.08) × 10
1 

 

 

  

[A23H+][C3−] = 

2.10 × 101 [C3H]2 

− 3.00 × 10−11 

R² = 0.9959 
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Table 267. Determination of the pKaH for A23 with C3
−
 in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A23H

+
CF3CO2

−
 (8.4 mg) in 10.0 mL MeCN; 

C3
–
K

+
 (5.4 mg) in 25.0 mL MeCN. Step 0: 2.000 mL C3

–
K

+
 stock solution in 19.7 g MeCN.

 

step V+ / mL V / mL [C3
−
]0 / M [A23H

+
]0 / M A [C3

−
] / M [C3H] / M [A23H

+
] / M 

0 - 27.064 5.03 × 10
−5

 0 0.149 5.03 × 10
−5

 0 0 

1 0.200 27.264 4.99 × 10
−5

 1.31 × 10
−5

 0.135 4.56 × 10
−5

 4.33 × 10
−6

 8.80 × 10
−6

 

2 0.400 27.464 4.96 × 10
−5

 2.61 × 10
−5

 0.127 4.31 × 10
−5

 6.47 × 10
−6

 1.96 × 10
−5

 

3 0.600 27.664 4.92 × 10
−5

 3.88 × 10
−5

 0.122 4.13 × 10
−5

 7.88 × 10
−6

 3.09 × 10
−5

 

4 0.800 27.864 4.89 × 10
−5

 5.14 × 10
−5

 0.118 3.99 × 10
−5

 8.98 × 10
−6

 4.24 × 10
−5

 

5 1.000 28.064 4.85 × 10
−5

 6.38 × 10
−5

 0.114 3.87 × 10
−5

 9.81 × 10
−6

 5.40 × 10
−5

 

0
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K = (2.17 ± 0.06) × 10
1
 

 

 

For A23H
+
 + C3

–
: K̅ = (2.14 ± 0.04) × 10

1
 

pKaH = 19.08 

  

  
[A23H+][C3−] = 

2.17 × 101[C3H]2 

− 4.06 × 10−11 

R² = 0.9976 
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Table 268. Determination of the pKaH for A23 with C4
−
 in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A23H

+
CF3CO2

−
 (8.4 mg) in 10.0 mL 

MeCN; C4 K
+
 (5.1 mg) in 25.0 mL MeCN. Step 0: 1.000 mL C4 K

+
 stock solution in 19.4 g MeCN.

 

step V+ / mL V / mL [C4
−
]0 / M [A23H

+
]0 / M A [C4

−
] / M [C4H] / M [A23H

+
] / M 

0 - 25.682 2.38 × 10
−5

 0 0.198 2.38 × 10
−5

 0 0 

1 0.250 25.932 2.36 × 10
−5

 1.73 × 10
−5

 0.175 2.11 × 10
−5

 2.50 × 10
−6

 1.48 × 10
−5

 

2 0.500 26.182 2.33 × 10
−5

 3.42 × 10
−5

 0.165 1.98 × 10
−5

 3.53 × 10
−6

 3.07 × 10
−5

 

3 0.750 26.432 2.31 × 10
−5

 5.08 × 10
−5

 0.158 1.90 × 10
−5

 4.15 × 10
−6

 4.66 × 10
−5

 

4 1.000 26.682 2.29 × 10
−5

 6.71 × 10
−5

 0.152 1.83 × 10
−5

 4.61 × 10
−6

 6.25 × 10
−5

 

5 1.250 26.932 2.27 × 10
−5

 8.31 × 10
−5

 0.147 1.77 × 10
−5

 4.96 × 10
−6

 7.81 × 10
−5

 

6 1.500 27.182 2.25 × 10
−5

 9.88 × 10
−5

 0.143 1.73 × 10
−5

 5.24 × 10
−6

 9.35 × 10
−5
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K = (6.14 ± 0.29) × 10
1 

 

  

  
[A23H+][C4−] = 

6.14 × 101[C4H]2 

− 1.28 × 10−10 

R² = 0.9912 
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Table 269. Determination of the pKaH for A23 with C4
−
 in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A23H

+
CF3CO2

−
 (8.4 mg) in 10.0 mL 

MeCN; C4 K
+
 (5.1 mg) in 25.0 mL MeCN. Step 0: 1.000 mL C4 K

+
 stock solution in 19.1 g MeCN.

 

step V+ / mL V / mL [C4
−
]0 / M [A23H

+
]0 / M A [C4

−
] / M [C4H] / M [A23H

+
] / M 

0 - 25.300 2.42 × 10
−5

 0 0.199 2.42 × 10
−5

 0 0 

1 0.250 25.550 2.39 × 10
−5

 1.75 × 10
−5

 0.177 2.15 × 10
−5

 2.43 × 10
−6

 1.51 × 10
−5

 

2 0.500 25.800 2.37 × 10
−5

 3.47 × 10
−5

 0.167 2.02 × 10
−5

 3.46 × 10
−6

 3.12 × 10
−5

 

3 0.750 26.050 2.35 × 10
−5

 5.15 × 10
−5

 0.160 1.94 × 10
−5

 4.08 × 10
−6

 4.74 × 10
−5

 

4 1.000 26.300 2.32 × 10
−5

 6.81 × 10
−5

 0.154 1.87 × 10
−5

 4.55 × 10
−6

 6.35 × 10
−5

 

5 1.250 26.550 2.30 × 10
−5

 8.43 × 10
−5

 0.149 1.81 × 10
−5

 4.92 × 10
−6

 7.94 × 10
−5
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K = (6.09 ± 0.25) × 10
1
 

 

K̅ = (6.12 ± 0.03) × 10
1
 

pKaH  = 19.18 

 

 

pKaH(A23) = 19.13 (average) 

 

  

  

[A23H+][C4−] = 

6.09 × 101[C4H]2 

− 6.76 × 10−11 

R² = 0.9948 
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(S)-2-Tritylpyrrolidine (A24) 

 

Table 270. Determination of the pKaH for A24 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A24 (7.1 mg) in 10.0 mL MeCN; C3H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 18.4 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A24]0 / M A [C3
−
] / M [C3H] / M [A24] / M 

0 - 24.110 1.19 × 10
−4

 0 0 0 1.19 × 10
−4

 0 

1 0.500 24.610 1.16 × 10
−4

 4.60 × 10
−5

 0.047 1.66 × 10
−5

 9.96 × 10
−5

 2.94 × 10
−5

 

2 1.000 25.110 1.14 × 10
−4

 9.02 × 10
−5

 0.070 2.44 × 10
−5

 8.95 × 10
−5

 6.58 × 10
−5

 

3 1.500 25.610 1.12 × 10
−4

 1.33 × 10
−4

 0.084 2.96 × 10
−5

 8.21 × 10
−5

 1.03 × 10
−4

 

4 2.000 26.110 1.09 × 10
−4

 1.74 × 10
−4

 0.095 3.34 × 10
−5

 7.61 × 10
−5

 1.40 × 10
−4

 

5 2.500 26.610 1.07 × 10
−4

 2.13 × 10
−4

 0.104 3.64 × 10
−5

 7.10 × 10
−5

 1.76 × 10
−4

 

6 3.000 27.110 1.05 × 10
−4

 2.51 × 10
−4

 0.111 3.88 × 10
−5

 6.67 × 10
−5

 2.12 × 10
−4

 

7 4.000 28.110 1.02 × 10
−4

 3.22 × 10
−4

 0.121 4.24 × 10
−5

 5.93 × 10
−5

 2.80 × 10
−4

 

8 5.000 29.110 9.82 × 10
−5

 3.89 × 10
−4

 0.128 4.48 × 10
−5

 5.34 × 10
−5

 3.44 × 10
−4

 

f 5.300 29.410 9.72 × 10
−5

 3.85 × 10
−4

 0.277 9.72 × 10
−5

 0 3.85 × 10
−4
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K = (1.12 ± 0.01) × 10
−1 

pKaH = 16.80 

  

[C3−]2 = 

1.12 × 10−1[A24][C3H] 

− 6.64 × 10−11 

R² = 0.9996 
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Table 271. Determination of the pKaH for A24 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A24 (7.1 mg) in 10.0 mL MeCN; C4H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 18.9 g MeCN. 
 

step V+ / mL V / mL [C4H]0 / M [A24]0 / M A [C4
−
] / M [C4H] / M [A24] / M 

0 - 24.546 8.13 × 10
−5

 0 0 0 8.13 × 10
−5

 0 

1 0.250 24.796 8.05 × 10
−5

 2.28 × 10
−5

 0.091 1.20 × 10
−5

 6.85 × 10
−5

 1.08 × 10
−5

 

2 0.500 25.046 7.97 × 10
−5

 4.52 × 10
−5

 0.143 1.89 × 10
−5

 6.08 × 10
−5

 2.63 × 10
−5

 

3 0.750 25.296 7.89 × 10
−5

 6.72 × 10
−5

 0.180 2.37 × 10
−5

 5.52 × 10
−5

 4.35 × 10
−5

 

4 1.000 25.546 7.81 × 10
−5

 8.87 × 10
−5

 0.206 2.72 × 10
−5

 5.09 × 10
−5

 6.15 × 10
−5

 

5 1.250 25.796 7.74 × 10
−5

 1.10 × 10
−4

 0.227 3.00 × 10
−5

 4.74 × 10
−5

 7.98 × 10
−5

 

6 1.500 26.046 7.66 × 10
−5

 1.30 × 10
−4

 0.244 3.23 × 10
−5

 4.44 × 10
−5

 9.82 × 10
−5

 

7 1.750 26.296 7.59 × 10
−5

 1.51 × 10
−4

 0.259 3.41 × 10
−5

 4.18 × 10
−5

 1.17 × 10
−4

 

8 2.000 26.546 7.52 × 10
−5

 1.71 × 10
−4

 0.271 3.58 × 10
−5

 3.94 × 10
−5

 1.35 × 10
−4

 

9 2.500 27.046 7.38 × 10
−5

 2.09 × 10
−4

 0.290 3.83 × 10
−5

 3.55 × 10
−5

 1.71 × 10
−4

 

f 2.800 27.346 7.30 × 10
−5

 2.07 × 10
−4

 0.553 7.30 × 10
−5

 0 2.07 × 10
−4
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K = (2.47 ± 0.01) × 10
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pKaH = 16.78 

 

pKaH(A24) = 16.79 (average) 

  

[C4−]2 = 

2.47 × 10−1[A24][C4H] 

− 3.62 × 10−11 

R² = 1.000 
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(S)-2-(Diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (A25) 

 

Table 272. Determination of the pKaH for A25 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A25 (7.1 mg) in 10.0 mL MeCN; C3H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 19.1 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A25]0 / M A [C3
−
] / M [C3H] / M [A25] / M 

0 - 25.000 1.14 × 10
−4

 0 0 0 1.14 × 10
−4

 0 

1 1.000 26.000 1.10 × 10
−4

 8.39 × 10
−5

 0.112 3.92 × 10
−5

 7.08 × 10
−5

 4.47 × 10
−5

 

2 1.500 26.500 1.08 × 10
−4

 1.23 × 10
−4

 0.138 4.84 × 10
−5

 5.95 × 10
−5

 7.51 × 10
−5

 

3 2.000 27.000 1.06 × 10
−4

 1.62 × 10
−4

 0.157 5.50 × 10
−5

 5.09 × 10
−5

 1.07 × 10
−4

 

4 2.500 27.500 1.04 × 10
−4

 1.98 × 10
−4

 0.170 5.96 × 10
−5

 4.44 × 10
−5

 1.39 × 10
−4

 

5 3.000 28.000 1.02 × 10
−4

 2.34 × 10
−4

 0.180 6.30 × 10
−5

 3.90 × 10
−5

 1.71 × 10
−4

 

6 3.500 28.500 1.00 × 10
−4

 2.68 × 10
−4

 0.187 6.55 × 10
−5

 3.48 × 10
−5

 2.02 × 10
−4

 

7 4.000 29.000 9.86 × 10
−5

 3.01 × 10
−4

 0.192 6.72 × 10
−5

 3.14 × 10
−5

 2.34 × 10
−4

 

f 4.300 29.300 9.76 × 10
−5

 2.98 × 10
−4

 0.279 9.76 × 10
−5

 0 2.98 × 10
−4
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K = (7.21 ± 0.17) × 10
−1 

pKaH = 17.61 

  

[C3−]2 = 

7.21 × 10−1[A25][C3H] 

− 8.27E-10 

R² = 0.9971 
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Table 273. Determination of the pKaH for A25 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A25 (7.1 mg) in 10.0 mL MeCN; C4H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 19.0 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A25]0 / M A [C4
−
] / M [C4H] / M [A25] / M 

0 - 24.673 8.09 × 10
−5

 0 0 0 8.09 × 10
−5

 0 

1 0.500 25.173 7.93 × 10
−5

 4.33 × 10
−5

 0.203 2.69 × 10
−5

 5.24 × 10
−5

 1.64 × 10
−5

 

2 0.750 25.423 7.85 × 10
−5

 6.43 × 10
−5

 0.269 3.56 × 10
−5

 4.29 × 10
−5

 2.87 × 10
−5

 

3 1.000 25.673 7.77 × 10
−5

 8.50 × 10
−5

 0.316 4.19 × 10
−5

 3.59 × 10
−5

 4.31 × 10
−5

 

4 1.250 25.923 7.70 × 10
−5

 1.05 × 10
−4

 0.351 4.65 × 10
−5

 3.04 × 10
−5

 5.86 × 10
−5

 

5 1.500 26.173 7.63 × 10
−5

 1.25 × 10
−4

 0.377 5.00 × 10
−5

 2.62 × 10
−5

 7.50 × 10
−5

 

6 1.750 26.423 7.55 × 10
−5

 1.44 × 10
−4

 0.397 5.27 × 10
−5

 2.29 × 10
−5

 9.18 × 10
−5

 

7 2.000 26.673 7.48 × 10
−5

 1.64 × 10
−4

 0.412 5.46 × 10
−5

 2.02 × 10
−5

 1.09 × 10
−4

 

f 2.300 26.973 7.40 × 10
−5

 1.62 × 10
−4

 0.558 7.40 × 10
−5

 0 1.62 × 10
−4
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K = 1.68 ± 0.05
 

pKaH = 17.62 

 

pKaH(A25) = 17.61 (average)  

  

[C4−]2 = 

1.68[A25][C4H] 

− 7.82E-10 

R² = 0.9961 
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(S)-Diphenyl(pyrrolidin-2-yl)methanol (A26) 

 

Table 274. Determination of the pKaH for A26 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A26 (9.7 mg) in 10.0 mL MeCN; C3H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 20.7 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A26]0 / M A [C3
−
] / M [C3H] / M [A26] / M 

0 - 27.036 1.06 × 10
−4

 0 0 0 1.06 × 10
−4

 0 

1 0.250 27.286 1.05 × 10
−4

 3.51 × 10
−5

 0.061 2.17 × 10
−5

 8.31 × 10
−5

 1.34 × 10
−5

 

2 0.500 27.536 1.04 × 10
−4

 6.95 × 10
−5

 0.093 3.32 × 10
−5

 7.06 × 10
−5

 3.63 × 10
−5

 

3 0.750 27.786 1.03 × 10
−4

 1.03 × 10
−4

 0.115 4.10 × 10
−5

 6.19 × 10
−5

 6.23 × 10
−5

 

4 1.000 28.036 1.02 × 10
−4

 1.37 × 10
−4

 0.131 4.65 × 10
−5

 5.54 × 10
−5

 9.00 × 10
−5

 

5 1.250 28.286 1.01 × 10
−4

 1.69 × 10
−4

 0.143 5.08 × 10
−5

 5.02 × 10
−5

 1.18 × 10
−4

 

6 1.500 28.536 1.00 × 10
−4

 2.01 × 10
−4

 0.152 5.42 × 10
−5

 4.60 × 10
−5

 1.47 × 10
−4

 

7 1.750 28.786 9.93 × 10
−5

 2.33 × 10
−4

 0.160 5.69 × 10
−5

 4.24 × 10
−5

 1.76 × 10
−4

 

8 2.000 29.036 9.84 × 10
−5

 2.64 × 10
−4

 0.166 5.91 × 10
−5

 3.93 × 10
−5

 2.05 × 10
−4

 

f 2.300 29.336 9.74 × 10
−5

 2.61 × 10
−4

 0.274 9.74 × 10
−5

 0 2.61 × 10
−4
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K = (4.36 ± 0.01) × 10
−1 

pKaH = 17.39 

  

[C3−]2 = 

4.36 × 10−1[A26][C3H] 

− 1.08 × 10−11 

R² = 1.000 
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Table 275. Determination of the pKaH for A26 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A26 (9.7 mg) in 10.0 mL MeCN; C4H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 19.8 g MeCN. 
 

step V+ / mL V / mL [C4H]0 / M [A26]0 / M A [C4
−
] / M [C4H] / M [A26] / M 

0 - 25.691 7.77 × 10
−5

 0 0 0 7.77 × 10
−5

 0 

1 0.200 25.891 7.71 × 10
−5

 2.96 × 10
−5

 0.163 2.14 × 10
−5

 5.57 × 10
−5

 8.16 × 10
−6

 

2 0.400 26.091 7.65 × 10
−5

 5.87 × 10
−5

 0.255 3.34 × 10
−5

 4.31 × 10
−5

 2.53 × 10
−5

 

3 0.600 26.291 7.59 × 10
−5

 8.74 × 10
−5

 0.310 4.06 × 10
−5

 3.53 × 10
−5

 4.68 × 10
−5

 

4 0.800 26.491 7.53 × 10
−5

 1.16 × 10
−4

 0.348 4.57 × 10
−5

 2.97 × 10
−5

 7.00 × 10
−5

 

5 1.000 26.691 7.48 × 10
−5

 1.43 × 10
−4

 0.375 4.92 × 10
−5

 2.56 × 10
−5

 9.43 × 10
−5

 

6 1.250 26.941 7.41 × 10
−5

 1.78 × 10
−4

 0.399 5.22 × 10
−5

 2.19 × 10
−5

 1.25 × 10
−4

 

7 1.500 27.191 7.34 × 10
−5

 2.11 × 10
−4

 0.415 5.44 × 10
−5

 1.90 × 10
−5

 1.57 × 10
−4

 

8 1.750 27.441 7.27 × 10
−5

 2.44 × 10
−4

 0.427 5.59 × 10
−5

 1.68 × 10
−5

 1.88 × 10
−4

 

9 2.000 27.691 7.21 × 10
−5

 2.77 × 10
−4

 0.436 5.71 × 10
−5

 1.50 × 10
−5

 2.19 × 10
−4

 

f 2.300 27.991 7.13 × 10
−5

 2.74 × 10
−4

 0.544 7.13 × 10
−5

 0 2.74 × 10
−4
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K = (9.82 ± 0.04) × 10
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pKaH = 17.38 

 

pKaH(A26) = 17.39 (average)  

  
[C4−]2 = 

9.82 × 10−1[A26][C4H] 

+ 2.91 × 10−11 

R² = 0.9999 
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(S)-2-(Azidodiphenylmethyl)pyrrolidine (A27) 

 
Table 276. Determination of the pKaH for A27 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A27 (9.6 mg) in 10.0 mL MeCN; C3H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 20.8 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A27]0 / M A [C3
−
] / M [C3H] / M [A27] / M 

0 - 27.163 1.05 × 10
−4

 0 0 0 1.05 × 10
−4

 0 

1 0.500 27.663 1.03 × 10
−4

 6.23 × 10
−5

 0.021 7.31 × 10
−6

 9.60 × 10
−5

 5.50 × 10
−5

 

2 1.000 28.163 1.01 × 10
−4

 1.22 × 10
−4

 0.029 1.03 × 10
−5

 9.12 × 10
−5

 1.12 × 10
−4

 

3 1.500 28.663 9.97 × 10
−5

 1.80 × 10
−4

 0.036 1.24 × 10
−5

 8.73 × 10
−5

 1.68 × 10
−4

 

4 2.000 29.163 9.80 × 10
−5

 2.37 × 10
−4

 0.040 1.41 × 10
−5

 8.39 × 10
−5

 2.22 × 10
−4

 

5 2.500 29.663 9.64 × 10
−5

 2.91 × 10
−4

 0.044 1.55 × 10
−5

 8.09 × 10
−5

 2.75 × 10
−4

 

6 3.000 30.163 9.48 × 10
−5

 3.43 × 10
−4

 0.048 1.66 × 10
−5

 7.81 × 10
−5

 3.26 × 10
−4

 

7 3.500 30.663 9.32 × 10
−5

 3.94 × 10
−4

 0.051 1.76 × 10
−5

 7.56 × 10
−5

 3.76 × 10
−4

 

8 4.000 31.163 9.17 × 10
−5

 4.43 × 10
−4

 0.053 1.85 × 10
−5

 7.32 × 10
−5

 4.24 × 10
−4

 

9 4.500 31.663 9.03 × 10
−5

 4.90 × 10
−4

 0.055 1.93 × 10
−5

 7.10 × 10
−5

 4.71 × 10
−4

 

10 5.000 32.163 8.89 × 10
−5

 5.36 × 10
−4

 0.057 2.00 × 10
−5

 6.89 × 10
−5

 5.16 × 10
−4

 

f 5.300 32.463 8.81 × 10
−5

 5.31 × 10
−4

 0.252 8.81 × 10
−5

 0 5.31 × 10
−4
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[C3−]2 = 

1.14 × 10−2[A27][C3H] 

− 1.18 × 10−11 

R² = 0.9993 
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Table 277. Determination of the pKaH for A27 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A27 (9.6 mg) in 10.0 mL MeCN; C4H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 20.2 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A27]0 / M A [C4
−
] / M [C4H] / M [A27] / M 

0 - 26.200 7.62 × 10
−5

 0 0 0 7.62 × 10
−5

 0 

1 0.250 26.450 7.55 × 10
−5

 3.26 × 10
−5

 0.050 6.65 × 10
−6

 6.88 × 10
−5

 2.59 × 10
−5

 

2 0.500 26.700 7.48 × 10
−5

 6.46 × 10
−5

 0.071 9.42 × 10
−6

 6.53 × 10
−5

 5.52 × 10
−5

 

3 0.750 26.950 7.41 × 10
−5

 9.60 × 10
−5

 0.087 1.15 × 10
−5

 6.26 × 10
−5

 8.45 × 10
−5

 

4 1.000 27.200 7.34 × 10
−5

 1.27 × 10
−4

 0.099 1.30 × 10
−5

 6.03 × 10
−5

 1.14 × 10
−4

 

5 1.250 27.450 7.27 × 10
−5

 1.57 × 10
−4

 0.109 1.43 × 10
−5

 5.84 × 10
−5

 1.43 × 10
−4

 

6 1.500 27.700 7.21 × 10
−5

 1.87 × 10
−4

 0.117 1.55 × 10
−5

 5.66 × 10
−5

 1.71 × 10
−4

 

7 1.750 27.950 7.14 × 10
−5

 2.16 × 10
−4

 0.124 1.64 × 10
−5

 5.50 × 10
−5

 1.99 × 10
−4

 

8 2.000 28.200 7.08 × 10
−5

 2.45 × 10
−4

 0.131 1.73 × 10
−5

 5.35 × 10
−5

 2.27 × 10
−4

 

9 2.250 28.450 7.02 × 10
−5

 2.73 × 10
−4

 0.137 1.81 × 10
−5

 5.21 × 10
−5

 2.55 × 10
−4

 

10 2.500 28.700 6.95 × 10
−5

 3.00 × 10
−4

 0.142 1.88 × 10
−5

 5.08 × 10
−5

 2.82 × 10
−4

 

f 2.800 29.000 6.88 × 10
−5

 2.97 × 10
−4

 0.521 6.88 × 10
−5

 0 2.97 × 10
−4
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2.46 × 10−2[A27][C4H] 

+ 4.60 × 10−13 

R² = 1.000 
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2-(Triphenylsilyl)pyrrolidine (A28) 

 

Table 278. Determination of the pKaH for A28 with C3H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A28 (9.9 mg) in 10.0 mL MeCN; C3H (11.4 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.700 mL C3H stock solution in 18.8 g MeCN.
 

step V+ / mL V / mL [C3H]0 / M [A28]0 / M A [C3
−
] / M [C3H] / M [A28] / M 

0 - 24.619 1.16 × 10
−4

 0 0 0 1.16 × 10
−4

 0 

1 0.250 24.869 1.15 × 10
−4

 3.02 × 10
−5

 0.066 2.34 × 10
−5

 9.16 × 10
−5

 6.82 × 10
−6

 

2 0.500 25.119 1.14 × 10
−4

 5.98 × 10
−5

 0.110 3.91 × 10
−5

 7.47 × 10
−5

 2.08 × 10
−5

 

3 0.750 25.369 1.13 × 10
−4

 8.88 × 10
−5

 0.142 5.04 × 10
−5

 6.23 × 10
−5

 3.84 × 10
−5

 

4 1.000 25.619 1.12 × 10
−4

 1.17 × 10
−4

 0.164 5.83 × 10
−5

 5.33 × 10
−5

 5.90 × 10
−5

 

5 1.250 25.869 1.11 × 10
−4

 1.45 × 10
−4

 0.180 6.42 × 10
−5

 4.63 × 10
−5

 8.10 × 10
−5

 

6 1.500 26.119 1.09 × 10
−4

 1.73 × 10
−4

 0.193 6.86 × 10
−5

 4.08 × 10
−5

 1.04 × 10
−4

 

7 1.750 26.369 1.08 × 10
−4

 1.99 × 10
−4

 0.202 7.20 × 10
−5

 3.64 × 10
−5

 1.27 × 10
−4

 

8 2.000 26.619 1.07 × 10
−4

 2.26 × 10
−4

 0.210 7.47 × 10
−5

 3.27 × 10
−5

 1.51 × 10
−4

 

f 2.290 26.909 1.06 × 10
−4

 2.23 × 10
−4

 0.299 1.06 × 10
−4

 0 2.23 × 10
−4

 

0

0.1

0.2

0.3

0.4

0 200

A

t / s
 

 

 

K = 1.17 ± 0.01
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R² = 0.9995 
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Table 279. Determination of the pKaH for A28 with C4H in acetonitrile at 20 °C (detection at 333 nm). Stock solutions: A28 (9.9 mg) in 10.0 mL MeCN; C4H (11.8 

mg) in 10.0 mL MeCN; [DBU] = 3.26 × 10
–2

 mol L
−1

. Step 0: 0.500 mL C4H stock solution in 21.0 g MeCN.
 

step V+ / mL V / mL [C4H]0 / M [A28]0 / M A [C4
−
] / M [C4H] / M [A28] / M 

0 - 27.218 7.33 × 10
−5

 0 0 0 7.33 × 10
−5

 0 

1 0.100 27.318 7.31 × 10
−5

 1.10 × 10
−5

 0.077 1.01 × 10
−5

 6.30 × 10
−5

 9.00 × 10
−7

 

2 0.200 27.418 7.28 × 10
−5

 2.19 × 10
−5

 0.144 1.88 × 10
−5

 5.40 × 10
−5

 3.10 × 10
−6

 

3 0.300 27.518 7.25 × 10
−5

 3.28 × 10
−5

 0.201 2.63 × 10
−5

 4.62 × 10
−5

 6.44 × 10
−6

 

4 0.400 27.618 7.23 × 10
−5

 4.35 × 10
−5

 0.248 3.24 × 10
−5

 3.98 × 10
−5

 1.11 × 10
−5

 

5 0.500 27.718 7.20 × 10
−5

 5.42 × 10
−5

 0.287 3.75 × 10
−5

 3.45 × 10
−5

 1.67 × 10
−5

 

6 0.600 27.818 7.17 × 10
−5

 6.48 × 10
−5

 0.318 4.16 × 10
−5

 3.02 × 10
−5

 2.32 × 10
−5

 

7 0.700 27.918 7.15 × 10
−5

 7.53 × 10
−5

 0.344 4.49 × 10
−5

 2.65 × 10
−5

 3.04 × 10
−5

 

8 0.800 28.018 7.12 × 10
−5

 8.58 × 10
−5

 0.364 4.76 × 10
−5

 2.37 × 10
−5

 3.82 × 10
−5

 

f 1.100 28.318 7.05 × 10
−5

 8.49 × 10
−5

 0.539 7.05 × 10
−5

 0 8.49 × 10
−5
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K = 2.57 ± 0.02
 

pKaH = 17.80 

pKaH(A28) = 17.81 (average) 

  

[C4−]2 = 

2.57[A28][C4H] 

− 6.64 × 10−11 

R² = 0.9997 

0

1E-09

2E-09

3E-09

0 5.5E-10 1.1E-09

[C
4

−
]2

 /
 m

o
l2

L
−

2
 

[A28][C4H] / mol2L−2 



 

285 

 

(S)-5-Benzyl-2,2,3-trimethylimidazolidin-4-one (A29) 

 

Table 280. Determination of the pKaH for A29 with C5H in acetonitrile at 20 °C (detection at 330 nm). Stock solutions: A29 (8.2 mg) in 10.0 mL MeCN; C5H (20.5 

mg) in 10.0 mL MeCN; [DBU] = 4.62 × 10
–2

 mol L
−1

. Step 0: 1.000 mL C5H stock solution in 21.3 g MeCN.
 

step V+ / mL V / mL [C5H]0 / M [A29]0 / M A [C5
−
] / M [C5H] / M [A29] / M 

0 - 28.099 3.14 × 10
−4

 0 - - - 0 

1 0.250 28.349 3.12 × 10
−4

 3.31 × 10
−5

 0.049 1.86 × 10
−5

 2.93 × 10
−4

 1.45 × 10
−5

 

2 0.500 28.599 3.09 × 10
−4

 6.57 × 10
−5

 0.073 2.75 × 10
−5

 2.81 × 10
−4

 3.82 × 10
−5

 

3 0.750 28.849 3.06 × 10
−4

 9.77 × 10
−5

 0.091 3.44 × 10
−5

 2.72 × 10
−4

 6.33 × 10
−5

 

4 1.000 29.099 3.04 × 10
−4

 1.29 × 10
−4

 0.106 4.00 × 10
−5

 2.64 × 10
−4

 8.91 × 10
−5

 

5 1.500 29.599 2.98 × 10
−4

 1.90 × 10
−4

 0.129 4.89 × 10
−5

 2.50 × 10
−4

 1.42 × 10
−4

 

6 2.000 30.099 2.93 × 10
−4

 2.50 × 10
−4

 0.148 5.59 × 10
−5

 2.38 × 10
−4

 1.94 × 10
−4

 

f 2.500 30.599 2.89 × 10
−4

 2.46 × 10
−4

 0.763 2.89 × 10
−4

 0 2.46 × 10
−4
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K = (6.64 ± 0.04) × 10
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[C5−]2 = 

6.64 × 10−2[A29][C5H] 

+ 4.90 × 10−11 

R² = 0.9999 
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Table 281. Determination of the pKaH for A29 with C5H in acetonitrile at 20 °C (detection at 330 nm). Stock solutions: A29 (8.2 mg) in 10.0 mL MeCN; C5H (20.5 

mg) in 10.0 mL MeCN; [DBU] = 4.62 × 10
–2

 mol L
−1

. Step 0: 0.600 mL C5H stock solution in 18.4 g MeCN.
 

step V+ / mL V / mL [C5H]0 / M [A29]0 / M A [C5
−
] / M [C5H] / M [A29] / M 

0 - 24.010 2.21 × 10
−4

 0 - - - 0 

1 c 24.510 2.16 × 10
−4

 7.66 × 10
−5

 0.069 2.64 × 10
−5

 1.90 × 10
−4

 5.02 × 10
−5

 

2 1.000 25.010 2.12 × 10
−4

 1.50 × 10
−4

 0.097 3.71 × 10
−5

 1.75 × 10
−4

 1.13 × 10
−4

 

3 1.500 25.510 2.08 × 10
−4

 2.21 × 10
−4

 0.117 4.46 × 10
−5

 1.63 × 10
−4

 1.76 × 10
−4

 

4 2.000 26.010 2.04 × 10
−4

 2.89 × 10
−4

 0.132 5.02 × 10
−5

 1.54 × 10
−4

 2.39 × 10
−4

 

5 2.500 26.510 2.00 × 10
−4

 3.54 × 10
−4

 0.144 5.48 × 10
−5

 1.45 × 10
−4

 2.99 × 10
−4

 

f 2.800 26.810 1.98 × 10
−4

 3.50 × 10
−4

 0.519 1.98 × 10
−4

 0 3.50 × 10
−4
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Table 282. Determination of the pKaH for A29 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A29 (8.2 mg) in 10.0 mL MeCN; C6H (9.3 

mg) in 10.0 mL MeCN; [DBU] = 4.62 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 19.3 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A29]0 / M A [C6
−
] / M [C6H] / M [A29] / M 

0 - 24.755 4.01 × 10
−5

 0 - - - 0 

1 0.250 25.005 3.97 × 10
−5

 3.76 × 10
−5

 0.361 2.12 × 10
−5

 1.86 × 10
−5

 1.64 × 10
−5

 

2 0.500 25.255 3.94 × 10
−5

 7.44 × 10
−5

 0.483 2.84 × 10
−5

 1.10 × 10
−5

 4.60 × 10
−5

 

3 0.750 25.505 3.90 × 10
−5

 1.10 × 10
−4

 0.533 3.13 × 10
−5

 7.70 × 10
−6

 7.92 × 10
−5

 

4 1.000 25.755 3.86 × 10
−5

 1.46 × 10
−4

 0.557 3.27 × 10
−5

 5.91 × 10
−6

 1.13 × 10
−4

 

5 1.250 26.005 3.82 × 10
−5

 1.81 × 10
−4

 0.570 3.34 × 10
−5

 4.78 × 10
−6

 1.47 × 10
−4

 

6 1.500 26.255 3.79 × 10
−5

 2.15 × 10
−4

 0.577 3.39 × 10
−5

 4.00 × 10
−6

 1.81 × 10
−4

 

7 1.750 26.505 3.75 × 10
−5

 2.48 × 10
−4

 0.581 3.41 × 10
−5

 3.43 × 10
−6

 2.14 × 10
−4

 

8 2.000 26.755 3.71 × 10
−5

 2.81 × 10
−4

 0.582 3.41 × 10
−5

 3.00 × 10
−6

 2.47 × 10
−4

 

f 2.100 26.855 3.70 × 10
−5

 2.80 × 10
−4

 0.631 3.70 × 10
−5

 0 2.80 × 10
−4
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K = 1.64 ± 0.03
 

pKaH = 11.83 

pKaH(A29) = 11.83 (average)  
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(2S,5S)-5-Benzyl-2-(tert-butyl)-3-methylimidazolidin-4-one (A30) 

 

Table 283. Determination of the pKaH for A30 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A30 (8.4 mg) in 10.0 mL MeCN; C6H (9.3 

mg) in 10.0 mL MeCN; [DBU] = 4.62 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 21.9 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A30]0 / M A [C6
−
] / M [C6H] / M [A30] / M 

0 - 28.063 3.54 × 10
−5

 0 - - - 0 

1 0.250 28.313 3.51 × 10
−5

 3.01 × 10
−5

 0.154 9.01 × 10
−6

 2.61 × 10
−5

 2.11 × 10
−5

 

2 0.500 28.563 3.48 × 10
−5

 5.97 × 10
−5

 0.203 1.19 × 10
−5

 2.29 × 10
−5

 4.78 × 10
−5

 

3 0.750 28.813 3.45 × 10
−5

 8.88 × 10
−5

 0.235 1.37 × 10
−5

 2.08 × 10
−5

 7.50 × 10
−5

 

4 1.000 29.063 3.42 × 10
−5

 1.17 × 10
−4

 0.260 1.52 × 10
−5

 1.90 × 10
−5

 1.02 × 10
−4

 

5 1.500 29.563 3.36 × 10
−5

 1.73 × 10
−4

 0.294 1.71 × 10
−5

 1.65 × 10
−5

 1.56 × 10
−4

 

6 2.000 30.063 3.31 × 10
−5

 2.27 × 10
−4

 0.318 1.85 × 10
−5

 1.45 × 10
−5

 2.08 × 10
−4

 

f 2.100 30.163 3.29 × 10
−5

 2.26 × 10
−4

 0.565 3.29 × 10
−5

 0 2.26 × 10
−4
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Table 284. Determination of the pKaH for A30 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A30 (8.4 mg) in 10.0 mL MeCN; C6H (9.3 

mg) in 10.0 mL MeCN; [DBU] = 4.62 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 20.3 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A30]0 / M A [C6
−
] / M [C6H] / M [A30] / M 

0 - 26.027 3.82 × 10
−5

 0 - - - 0 

1 1.000 27.027 3.68 × 10
−5

 1.26 × 10
−4

 0.278 1.60 × 10
−5

 2.08 × 10
−5

 1.10 × 10
−4

 

2 1.500 27.527 3.61 × 10
−5

 1.86 × 10
−4

 0.315 1.81 × 10
−5

 1.80 × 10
−5

 1.68 × 10
−4

 

3 2.000 28.027 3.55 × 10
−5

 2.43 × 10
−4

 0.341 1.96 × 10
−5

 1.58 × 10
−5

 2.24 × 10
−4

 

4 2.500 28.527 3.48 × 10
−5

 2.99 × 10
−4

 0.359 2.07 × 10
−5

 1.42 × 10
−5

 2.78 × 10
−4

 

5 3.000 29.027 3.42 × 10
−5

 3.52 × 10
−4

 0.372 2.14 × 10
−5

 1.28 × 10
−5

 3.31 × 10
−4

 

f 3.100 29.127 3.41 × 10
−5

 3.51 × 10
−4

 0.593 3.41 × 10
−5

 0 3.51 × 10
−4
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Table 285. Determination of the pKaH for A30 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A30 (8.4 mg) in 10.0 mL MeCN; C6H (9.3 

mg) in 10.0 mL MeCN; [DBU] = 4.62 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 19.2 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A30]0 / M A [C6
−
] / M [C6H] / M [A30] / M 

0 - 24.627 4.04 × 10
−5

 0 - - - 0 

1 1.000 25.627 3.88 × 10
−5

 1.33 × 10
−4

 0.280 1.63 × 10
−5

 2.25 × 10
−5

 1.17 × 10
−4

 

2 1.500 26.127 3.80 × 10
−5

 1.96 × 10
−4

 0.320 1.87 × 10
−5

 1.94 × 10
−5

 1.77 × 10
−4

 

3 2.000 26.627 3.73 × 10
−5

 2.56 × 10
−4

 0.347 2.03 × 10
−5

 1.71 × 10
−5

 2.36 × 10
−4

 

4 2.500 27.127 3.66 × 10
−5

 3.14 × 10
−4

 0.367 2.14 × 10
−5

 1.52 × 10
−5

 2.93 × 10
−4

 

5 3.000 27.627 3.60 × 10
−5

 3.70 × 10
−4

 0.381 2.22 × 10
−5

 1.37 × 10
−5

 3.48 × 10
−4

 

f 3.100 27.727 3.58 × 10
−5

 3.69 × 10
−4

 0.615 3.58 × 10
−5

 0 3.69 × 10
−4
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1.06 × 10−1[A30][C6H] 

− 1.35 × 10−11 

R² = 0.9995 
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(2S,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A31) 

 

Table 286. Determination of the pKaH for A31 with C6H in acetonitrile at 20°C (detection at 478 nm). Stock solutions: A31 (13.8 mg) in 10.0 mL MeCN; C6H (8.9 

mg) in 10.0 mL MeCN; [DBU] = 1.27 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 19.5 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A31]0 / M A [C6
−
] / M [C6H] / M [A31] / M 

0 - 25.009 3.80 × 10
−5

 0 - - - 0 

1 0.500 25.509 3.73 × 10
−5

 1.00 × 10
−4

 0.231 1.33 × 10
−5

 2.40 × 10
−5

 8.68 × 10
−5

 

2 0.750 25.759 3.69 × 10
−5

 1.49 × 10
−4

 0.270 1.55 × 10
−5

 2.14 × 10
−5

 1.33 × 10
−4

 

3 1.000 26.009 3.66 × 10
−5

 1.96 × 10
−4

 0.299 1.71 × 10
−5

 1.95 × 10
−5

 1.79 × 10
−4

 

4 1.250 26.259 3.62 × 10
−5

 2.43 × 10
−4

 0.320 1.84 × 10
−5

 1.79 × 10
−5

 2.25 × 10
−4

 

5 1.500 26.509 3.59 × 10
−5

 2.89 × 10
−4

 0.338 1.94 × 10
−5

 1.65 × 10
−5

 2.69 × 10
−4

 

6 2.000 27.009 3.52 × 10
−5

 3.78 × 10
−4

 0.365 2.09 × 10
−5

 1.43 × 10
−5

 3.57 × 10
−4

 

f 2.200 27.209 3.50 × 10
−5

 3.75 × 10
−4

 0.610 3.50 × 10
−5

 0 3.75 × 10
−4
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Table 287. Determination of the pKaH for A31 with C6H in acetonitrile at 20°C (detection at 478 nm). Stock solutions: A31 (13.8 mg) in 10.0 mL MeCN; C6H (8.9 

mg) in 10.0 mL MeCN; [DBU] = 1.27 × 10
–2

 mol L
−1

. Step 0: 0.245 mL C6H stock solution in 20.0 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A31]0 / M A [C6
−
] / M [C6H] / M [A31] / M 

0 - 25.690 4.54 × 10
−5

 0 - - - 0 

1 0.500 26.190 4.45 × 10
−5

 9.75 × 10
−5

 0.253 1.48 × 10
−5

 2.97 × 10
−5

 8.27 × 10
−5

 

2 1.000 26.690 4.37 × 10
−5

 1.91 × 10
−4

 0.326 1.90 × 10
−5

 2.46 × 10
−5

 1.72 × 10
−4

 

3 1.500 27.190 4.28 × 10
−5

 2.82 × 10
−4

 0.371 2.16 × 10
−5

 2.12 × 10
−5

 2.60 × 10
−4

 

4 2.000 27.690 4.21 × 10
−5

 3.69 × 10
−4

 0.402 2.35 × 10
−5

 1.86 × 10
−5

 3.45 × 10
−4

 

5 2.500 28.190 4.13 × 10
−5

 4.53 × 10
−4

 0.426 2.48 × 10
−5

 1.65 × 10
−5

 4.28 × 10
−4

 

f 2.750 28.440 4.10 × 10
−5

 4.49 × 10
−4

 0.702 4.10 × 10
−5

 0 4.49 × 10
−4
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(2R,5S)-5-Benzyl-3-methyl-2-(5-methylfuran-2-yl)imidazolidin-4-one (A32) 

 

Table 288. Determination of the pKaH for A32 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A32 (9.4 mg) in 10.0 mL MeCN; C6H (8.9 

mg) in 10.0 mL MeCN; [DBU] = 1.27 × 10
–2

 mol L
−1

. Step 0: 0.200 mL C6H stock solution in 20.1 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A32]0 / M A [C6
−
] / M [C6H] / M [A32] / M 

0 - 25.773 3.69 × 10
−5

 0 - - - 0 

1 0.500 26.273 3.62 × 10
−5

 6.62 × 10
−5

 0.223 1.27 × 10
−5

 2.35 × 10
−5

 5.35 × 10
−5

 

2 0.750 26.523 3.59 × 10
−5

 9.83 × 10
−5

 0.261 1.48 × 10
−5

 2.10 × 10
−5

 8.35 × 10
−5

 

3 1.000 26.773 3.55 × 10
−5

 1.30 × 10
−4

 0.288 1.64 × 10
−5

 1.91 × 10
−5

 1.13 × 10
−4

 

4 1.500 27.273 3.49 × 10
−5

 1.91 × 10
−4

 0.327 1.86 × 10
−5

 1.63 × 10
−5

 1.73 × 10
−4

 

5 2.000 27.773 3.42 × 10
−5

 2.50 × 10
−4

 0.352 2.00 × 10
−5

 1.42 × 10
−5

 2.30 × 10
−4

 

f 2.200 27.973 3.40 × 10
−5

 2.49 × 10
−4

 0.598 3.40 × 10
−5

 0 2.49 × 10
−4
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Table 289. Determination of the pKaH for A32 with C6H in acetonitrile at 20 °C (detection at 478 nm). Stock solutions: A32 (9.4 mg) in 10.0 mL MeCN; C6H (8.9 

mg) in 10.0 mL MeCN; [DBU] = 1.27 × 10
–2

 mol L
–1

. Step 0: 0.250 mL of C6H stock solution stock solution in 22.0 g MeCN.
 

step V+ / mL V / mL [C6H]0 / M [A32]0 / M A [C6
−
] / M [C6H] / M [A32] / M 

0 - 28.240 4.21 × 10
−5

 0 - - - 0 

1 0.500 28.740 4.14 × 10
−5

 6.05 × 10
−5

 0.215 1.26 × 10
−5

 2.88 × 10
−5

 4.79 × 10
−5

 

2 1.000 29.240 4.07 × 10
−5

 1.19 × 10
−4

 0.288 1.68 × 10
−5

 2.38 × 10
−5

 1.02 × 10
−4

 

3 1.500 29.740 4.00 × 10
−5

 1.75 × 10
−4

 0.333 1.95 × 10
−5

 2.05 × 10
−5

 1.56 × 10
−4

 

4 2.000 30.240 3.93 × 10
−5

 2.30 × 10
−4

 0.364 2.12 × 10
−5

 1.81 × 10
−5

 2.09 × 10
−4

 

5 2.500 30.740 3.87 × 10
−5

 2.83 × 10
−4

 0.387 2.26 × 10
−5

 1.61 × 10
−5

 2.60 × 10
−4

 

f 2.750 30.990 3.84 × 10
−5

 2.81 × 10
−4

 0.657 3.84 × 10
−5

 0 2.81 × 10
−4
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− 1.81 × 10−11 
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–Experimental Section– 

 

Reaction products 

 

Preparation of the iminium hexafluorophosphates 3a–c 

To a solution of (S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one·HPF6 (1b·HPF6) (364 mg, 

1.00 mmol) in methanol (5 mL), cinnamaldehyde 2a (dissolved in 2 mL of CH2Cl2) or 2b,c 

(1.50 equiv) was added dropwise at ambient temperature. The mixture was stirred for 2 

days to obtain the title iminium salts as mixtures with the starting materials. 

Recrystallizations from first dichloromethane and then MeCN-Et2O, yielded pure iminium 

hexafluorophosphates 3a–c. 

Preparation of the iminium hexafluorophosphate 3d 

To a solution of (S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one·HPF6 (1b·HPF6) (364 mg, 

1.00 mmol) in methanol (5 mL), aldehyde 2d (1.05 equiv) was added dropwise at ambient 

temperature. The mixture was stirred overnight at ambient temperature and the 

precipitate was isolated by filtration, washed (on the filter) with cold methanol (10 mL), 

diethylether (10 mL), and dried in the vacuum. Single crystals were obtained by the 

diffusion method (acetonitrile/diethylether). 

Preparation of the iminium hexafluorophosphates 3e,f 

To a solution of (S)-5-benzyl-2,2,3-trimethylimidazolidin-4-one·HPF6 (1b·HPF6) (364 mg, 

1.00 mmol) in methanol (5 mL), aldehyde 2 (1.05 equiv) was added dropwise at ambient 

temperature. The mixture was stirred overnight at ambient temperature. After evaporation 

the crude product was recrystallized from dichloromethane/diethyl ether. Single crystals 

were obtained by the diffusion method (acetonitrile/diethylether). 

3a: Yield: 413 mg (0.789 mmol), 79 %. 
1
H NMR (400 MHz, CD2Cl2): δ = 8.87 (dd, J = 

10.6, 1.8 Hz, 1 H, 1-H), 8.40 (d, J = 15.2 Hz, 1 H, 3-H), 8.28 (d, J = 8.8 Hz, 2 H, Ar), 7.93 

(d, J = 8.8 Hz, 2 H, Ar), 7.32–7.22 (m, 3 H, Ar), 7.15 (dd, J = 15.2, 10.6 Hz, 1 H, 2-H), 

7.07–7.05 (m, 2 H, Ar), 5.20 (br t, J = 4–5 Hz, 1 H, 8-H), 3.55 (d, J = 4.8 Hz, 2 H, 9-H), 

2.84 (s, 3 H, 16-H), 1.76 (s, 3 H, 4-H), 0.96 (s, 3 H, 5-H); 
13

C NMR 

(100.6 MHz, CD2Cl2): δ = 168.1 (d, C-1), 164.1 (s, C-7), 164.0 (d, 

C-3), 151.3 (s), 138.7 (s), 133.5 (s), 132.6 (d), 130.4 (d), 130.1 (d), 

129.4 (d), 125.0 (d), 120.1 (d, C-2), 87.0 (s), 65.1 (d, C-8), 37.9 (t, 

C-9), 27.5 (q, C-4), 26.3 (q, C-6), 24.9 (q, C-5); HRMS (ESI+): calcd 

for C22H24N3O3
+
 [M

+
] 378.1812, found 378.1810. 
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3b: Yield: 366 mg (0.699 mmol), 70 %. 
1
H NMR (400 MHz, CD3CN): δ = 8.78 (dd, J = 

10.5, 2.0 Hz, 1 H, 1-H), 8.73-8.72 (m, 1 H, Ar), 8.47-8.44 (m, 1 H, Ar), 8.21-8.16 (m, 2 H, 

Ar and 3-H), 7.83 (t, J = 8.0 Hz, 1 H, Ar), 7.39–7.22 (m, 5 H, Ar and 2-H), 7.13–7.11 (m, 2 

H, Ar), 5.25 (br t, J = ca. 5 Hz, 1H, 8-H), 3.60 (dd, J = 14.7 Hz, 5.7 Hz, 1 H, 9-H), 3.48 (dd, 

J = 14.7 Hz, 4.2 Hz, 1 H, 9-H), 2.81 (d, J = 0.5 Hz, 3 H, 6-H), 1.73 (s, 

3 H, 4-H), 0.89 (s, 3 H, 5-H); 
13

C NMR (100.6 MHz, CD3CN): δ = 

168.7 (d, C-1), 165.0 (s, C-7), 162.9 (d, C-3), 150.0 (s), 138.1 (d), 

135.6 (s), 134.7 (s), 131.9 (d), 131.2 (d), 130.2 (d), 129.3 (d), 129.2 

(d), 125.8 (d), 120.8 (d, C-2), 87.2 (s), 65.6 (C-8), 37.7 (C-9), 27.5 

(C-4), 26.2 (C-6), 24.9 (C-5); HRMS (ESI+): calcd for C22H24N3O3
+
 

[M
+
] 378.1812, found 378.1810. 

3c: Yield: 258 mg (0.512 mmol), 51 %. 
1
H NMR (400 MHz, CD3CN): δ = 8.77 (dd, J = 

10.5, 2.0 Hz, 1 H, 1-H), 8.12 (d, J = 15.2 Hz, 1 H, 3-H), 8.00–7.98 (m, 2 H, Ar), 7.94–7.91 

(m, 2 H, Ar), 7.35–7.23 (m, 4 H, Ar and 2-H), 7.11–7.08 (m, 2 H, Ar), 5.22 (br t, J = ca. 5 

Hz, 1 H, 8-H), 3.57 (dd, J = 14.7 Hz, 5.7 Hz, 1 H, 9-H), 3.48 (dd, J = 14.7 Hz, 4.1 Hz, 1 H, 

9-H), 2.80 (s, 3 H, 16-H), 1.72 (s, 3 H, 4-H), 0.87 (s, 3 H, 5-H); 
13

C NMR 

(100.6 MHz, CD3CN): δ = 168.6 (d, C-1), 165.0 (s, C-7), 163.2 (d, C-3), 

137.9 (s), 134.6 (s), 134.2 (d), 132.3 (d), 131.2 (d), 130.2 (d), 129.3 (d), 

121.2 (d, C-2), 118.9 (s), 117.6 (s), 87.2 (s), 65.6 (d, C-8), 37.7 (t, C-9), 

27.5 (q, C-4), 26.2 (q, C-6), 24.9 (q, C-5); HRMS (ESI+): calcd for 

C23H24N3O
+
 [M

+
] 358.1914, found 358.1912. 

3d: Yield: 477 mg (0.969 mmol), 97 %. 
1
H NMR (400 MHz, CD3CN): δ = 8.65 (dd, J = 

10.8, 1.9 Hz, 1 H, 1-H), 8.14 (d, J = 14.9 Hz, 1 H, 3-H), 7.82 (d, J = 8.3 Hz, Ar), 7.45 (d, J 

= 8.0 Hz, Ar), 7.33-7.21 (m, 4 H, Ar and 2-H), 7.10–7.07 (m, 2 H, Ar), 5.16 (br t, J = ca. 5 

Hz, 1 H, 8-H), 3.57 (dd, J = 14.7 Hz, 5.6 Hz, 1 H, 9-H), 3.48 (dd, J = 

14.7 Hz, 3.6 Hz, 1 H, 9-H), 2.78 (s, 3 H, 10-H), 2.47 (s, 3 H, 16-H), 1.69 

(s, 3 H, 4–H), 0.79 (s, 3 H, 5–H); 
13

C NMR (100.6 MHz, CD3CN): δ = 

167.7 (d, C-1), 166.9 (d, C-3), 165.3 (s, C-7), 148.4 (s), 134.9 (s), 132.8 

(d), 131.9 (s), 131.5 (d), 131.1 (d), 130.0 (d), 129.2 (d), 117.4 (d, C-2), 

86.3 (s), 65.0 (d, C-8), 37.1 (t, C-9), 27.5 (q, C-10), 26.1 (q, C-4), 24.8 

(q, C-6), 22.2 (q, C-5); HRMS (ESI+): calcd for C23H27N2O
+
 [M

+
] 347.2118, found 

347.2115. 

3e: Yield: 508 mg (0.999 mmol), quantitative. 
1
H NMR (400 MHz, CD3CN): δ = 8.55 (dd, J 

= 10.9, 1.9 Hz, 1 H, 1-H), 8.09 (d, J = 14.7 Hz, 1 H, 3-H), 7.94–7.90 (m, 2 H, Ar), 7.33–

7.27 (m, 3 H, Ar), 7.17-7.07 (m, 5 H, Ar and 2-H), 5.11 (br t, J = ca. 5 Hz, 1 H, 8-H), 3.95 
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(s, 3 H, 10-H), 3.57 (dd, J = 14.7 Hz, 5.7 Hz, 1 H, 9-H), 3.45 (dd, J = 14.7 Hz, 3.5 Hz, 1 H, 

9-H), 2.77 (s, 3 H, 10-H), 1.66 (s, 3 H, 4-H), 0.75 (s, 3 H, 5-H); 
13

C 

NMR (100.6 MHz, CD3CN): δ = 167.1 (s), 166.6 (d, C-1 and C-3), 

165.5 (s, C-7), 135.6 (d), 135.0 (d), 131.1 (s), 130.0 (d), 129.1 (d), 

127.5 (s), 116.5 (d), 115.5 (d, C-2), 85.8 (s), 64.7 (d, C-8), 56.9 (t, 

C-9), 36.9 (q, C-10), 27.5 (q, C-4), 26.0 (q, C-6), 24.8 (q, C-5); HRMS 

(ESI+): calcd for C23H27N2O2
+
 [M

+
] 363.2067, found 363.2063. 

3f: Yield: 521 mg (0.997 mmol), quantitative. 
1
H NMR (400 MHz, CD3CN): δ = 8.20 (d, J = 

11.3 Hz, 1 H, 1-H), 7.88 (d, J = 13.9 Hz, 1 H, 3-H), 7.80 (s, 2 H, Ar), 7.31–7.24 (m, 3 H, 

Ar), 7.08–7.06 (m, 2 H, Ar), 6.89–6.83 (m, 3 H, Ar and 2-H), 4.92 (br s, 1 H, 8-H), 3.56 

(dd, J = 14.5 Hz, 5.7 Hz, 1 H, 9-H), 3.36 (dd, J = 14.5 Hz, 2.9 Hz, 1 

H, 9-H), 3.21 (s, 6 H, 10-H), 2.74 (s, 3 H, 6-H), 1.59 (s, 3 H, 4-H), 

0.67 (s, 3 H, 5-H); 
13

C NMR (100.6 MHz, CD3CN): δ = 166.3 (s, C-7), 

165.2 (d, C-3), 161.4 (d, C-1), 157.3 (s), 135.6 (s), 131.1 (d), 129.7 

(d), 128.8 (d), 122.8 (s), 113.8 (d, C-2), 110.1 (d), 84.1 (s), 63.6 

(C-8), 40.9 (q, C-10), 36.1 (t, C-9), 27.5 (C-4), 25.8 (C-6), 24.7 (C-5); 

HRMS (ESI+): calcd for C24H30N3O
+
 [M

+
] 376.2383, found 376.2379. 

 

3-(4-Nitrophenyl)-3-(2-oxotetrahydro-2H-pyran-3-yl)propanal (7). 

Silyl ketene acetal 4b (352 mg, 2.04 mmol) was added to a mixture of 3a (717 mg, 1.37 

mmol) in CH2Cl2 (20 mL) under nitrogen atmosphere. After stirring for 15 min, the 

reaction mixture was poured into 20 mL water and extracted with CH2Cl2 (2 × 20 mL). 

The combined organic phases were washed with brine, dried (MgSO4) and filtered. After 

evaporation of solvent under reduced pressure, components were separated by column 

chromatography (silica gel, EtOAc/n-pentane 50/50 v/v): 7 (338 mg, 89 %); viscous liquid; 

5:1 mixture of diastereoisomers. 

1
H-NMR (300 MHz, CDCl3): δ = 9.71 (major) and 9.67 (minor) (s, 1 

H, CHO), 8.19–8.14 (m, 2 H, Ar), 7.48–7.43 (m, 2 H, Ar), 4.35-4.07 

(m, 2 H), 3.94–3.88 (m, 1 H), 3.34-3.07 (m, 2 H), 2.86–2.93 (m, 1 

H), 1.97–1.52 (m, 4 H); 
13

C-NMR of major diastereomer (75.5 MHz, 

CDCl3): δ = 200.0 (CHO), 172.1, 148.5, 147.2, 129.7, 124.0, 68.9, 

45.8, 44.6, 40.3, 22.6), 22.4; HRMS (EI): calcd for C14H15O5N [M
+
] 277.0950, found 

227.0952. 
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Kinetics 

 

Kinetics of the reaction of the iminium triflate 3a with the silyl ketene acetal 4a 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 350 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

6.25 × 10
–5 

2.20 × 10
–3

 35.2 312 

6.25 × 10
–5

 2.75 × 10
–3

 44.0 403 

6.25 × 10
–5

 4.39 × 10
–3

 70.3 529 

6.25 × 10
–5
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–3
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 6.59 × 10
–3

 105 726 

6.25 × 10
–5

 7.69 × 10
–3

 123 848 

6.25 × 10
–5

 8.79 × 10
–3

 141 955 

 

y = 94322x + 119.74

R2 = 0.9966
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Kinetics of the reaction of the iminium triflate 3a with the silyl ketene acetal 4b 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 350 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

5.38 × 10
–5

 5.54 × 10
–4

 10.3 7.45 

5.38 × 10
–5

 1.11 × 10
–3

 20.6 9.65 

5.38 × 10
–5

 1.66 × 10
–3

 30.9 13.1 

5.38 × 10
–5

 2.21 × 10
–3

 41.1 15.8 

5.38 × 10
–5

 2.77 × 10
–3

 51.5 19.7 

5.38 × 10
–5

 3.22 × 10
–3

 61.7 22.8 

5.38 × 10
–5

 3.88 × 10
–3

 72.1 25.7 

 

y = 5718x + 3.7314

R2 = 0.9952
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Kinetics of the reaction of the iminium triflate 3b with the silyl ketene acetal 4a 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 343 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

6.15 × 10
–5

 5.11 × 10
–4

 8.31 34.3 

6.15 × 10
–5

 7.67 × 10
–4

 12.5 49.1 

6.15 × 10
–5

 1.02 × 10
–3

 16.6 67.3 

6.15 × 10
–5

 1.53 × 10
–3

 24.9 101 
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–3

 33.3 133 

 

y = 64844x + 0.7093
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Kinetics of the reaction of the iminium triflate 3b with the silyl ketene acetal 4b 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 343 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

6.12 × 10
–5

 2.52 × 10
–3

 41.2 14.0 

6.12 × 10
–5

 3.78 × 10
–3

 61.7 18.3 

6.12 × 10
–5

 5.04 × 10
–3

 82.4 23.9 

6.12 × 10
–5

 7.56 × 10
–3

 124 34.4 

6.12 × 10
–5

 1.01 × 10
–2

 165 44.3 

6.12 × 10
–5

 1.51 × 10
–2

 247 65.2 

6.12 × 10
–5

 2.02 × 10
–2

 330 83.3 
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Kinetics of the reaction of the iminium triflate 3c with the silyl ketene acetal 4a 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 352 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

5.09 × 10
–5

 5.11 × 10
–4

 10.0 35.5 

5.09 × 10
–5

 7.67 × 10
–4

 15.1 59.0 

5.09 × 10
–5

 1.02 × 10
–3

 20.0 75.9 

5.09 × 10
–5

 1.53 × 10
–3

 30.1 114 

5.09 × 10
–5

 2.05 × 10
–3

 40.3 153 

 

y = 75293x - 1.0347

R2 = 0.9989
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Kinetics of the reaction of the iminium triflate 3c with the silyl ketene acetal 4b 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 352 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

4.13 × 10
–5

 2.04 × 10
–3

 49.4 14.3 

4.13 × 10
–5

 3.06 × 10
–3

 74.1 19.6 

4.13 × 10
–5

 4.08 × 10
–3

 98.8 24.8 

4.13 × 10
–5

 6.12 × 10
–3

 148 36.5 

4.13 × 10
–5

 8.16 × 10
–3

 198 47.3 

4.13 × 10
–5

 1.22 × 10
–2

 295 67.9 

4.13 × 10
–5

 1.60 × 10
–2

 387 88.0 

 

y = 5284.3x + 3.6304

R2 = 0.9998
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Kinetics of the reaction of the iminium triflate 3d with the the silyl ketene acetal 4a 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 388 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

3.13 × 10
–5

 2.38 × 10
–3

 76.3 20.9 

3.13 × 10
–5

 2.98 × 10
–3

 95.2 25.7 

3.13 × 10
–5

 3.58 × 10
–3
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3.13 × 10
–5
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–3
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Kinetics of the reaction of the iminium triflate 3d with silyl ketene acetal 4b 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 388 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

3.41 × 10
–5

 5.92 × 10
–3

 174 3.43 

3.41 × 10
–5

 8.88 × 10
–3

 260 5.23 

3.41 × 10
–5

 1.15 × 10
–2
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3.41 × 10
–5
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–2
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 2.66 × 10
–2

 781 16.0 
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Rate constants for the reaction of Tributylphosphine 8 with 3d (precursor: 9d) 

(in MeCN, 20 °C, laser flash photolysis, λ = 388 nm) 

 

 

 

 

[Nu] (M) kobs (s
–1

) 

1.47 × 10
–2

 2.76 × 10
3
 

3.09 × 10
–2

 6.45 × 10
3
 

4.84 × 10
–2

 1.10 × 10
4
 

6.29 × 10
–2

 1.43 × 10
4
 

8.02 × 10
–2

 1.86 × 10
4
 

 

 

 

 

k2 = 2.42 × 10
5
 M

–1
 s

–1
 

 

0.0E+00

2.0E+03

4.0E+03

6.0E+03

8.0E+03

1.0E+04

1.2E+04

1.4E+04

1.6E+04

1.8E+04

2.0E+04

0 0.02 0.04 0.06 0.08 0.1

[Nu] / M

k
o

b
s 

/ 
s

-1

R
2
 = 0.9997

k obs = 2.42 × 10
5
 [Nu] – 8.73 × 10

2



 

317 

 

Kinetics of the reaction of the iminium triflate 3e with the silyl ketene acetal 4a 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 426 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

3.4 × 10
–5

 2.38 × 10
–3

 70.1 5.58 

3.4 × 10
–5

 2.98 × 10
–3

 87.6 6.85 

3.4 × 10
–5

 3.58 × 10
–3

 105 8.19 

3.4 × 10
–5

 4.77 × 10
–3

 140 10.7 

3.4 × 10
–5

 5.96 × 10
–3

 175 14.1 

3.4 × 10
–5
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–3
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 8.94 × 10
–3

 262 21.1 
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Kinetics of the reaction of the iminium triflate 3e with the silyl ketene acetal 4b 

(in CH2Cl2, 20 °C, conventional UV–Vis method, detection at 426 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

2.48 × 10
–5

 4.36 × 10
–3

 176 6.51 × 10
–1

 

2.48 × 10
–5

 6.55 × 10
–3

 264 9.23 × 10
–1

 

2.48 × 10
–5

 8.73 × 10
–3

 352 1.24 

2.48 × 10
–5

 1.09 × 10
–2
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–2
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Rate constants for the reaction of Tributylphosphine 8 with 3e (precursor: 9e) 

(in MeCN, 20 °C, laser flash photolysis, λ = 426 nm) 

 

 

 

[Nu] (M) kobs (s
–1

) 

1.85 × 10
–2

 1.55 × 10
3
 

3.03 × 10
–2

 2.46 × 10
3
 

4.54 × 10
–2

 4.45 × 10
3
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Kinetics of the reaction of the iminium triflate 3fwith silyl ketene acetal 4a 

(in CH2Cl2, 20 °C, conventional UV–Vis method, detection at 510 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

1.08 × 10
–5

 8.25 × 10
–4

 76.1 3.89 × 10
–2

 

1.07 × 10
–5

 1.09 × 10
–3

 102 4.46 × 10
–2
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Kinetics of the reaction of the iminium triflate 3f with silyl ketene acetal 4b 

(in CH2Cl2, 20 °C, stopped-flow method, detection at 510 nm) 

 

 

 

[El] (M) [Nu] (M) [Nu]/[El] kobs (s
–1

) 

1.09 × 10
–5

 2.22 × 10
–3

 204 3.71 × 10
–3

 

1.06 × 10
–5

 2.59 × 10
–3

 245 4.27 × 10
–3

 

1.05 × 10
–5

 3.44 × 10
–3

 326 5.26 × 10
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–5

 4.33 × 10
–3
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–5

 5.28 × 10
–3
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– Experimental Section– 

 

Reaction products 

 

(E)-1-((E)-3-phenylallylidene)-2-tritylpyrrolidin-1-ium hexafluorophosphate 

(rac-7a-PF6) 

 

The amine rac-1a (332 mg, 1.06 mmol) and triethylammonium hexafluorophosphate 

(0.26 g, 1.1 mmol) were dissolved in anhydrous methanol (3 mL), then cinnamaldehyde 

(0.15 mL, 1.2 mmol) was added. After stirring the resulting mixture for 1 h at ambient 

temperature the precipitated powder was filtrated, washed with diethyl ether and dried in 

the vacuum to give 7a-PF6 (430 mg, 0.750 mmol, 71 %) as a pale yellow powder.  

1
H NMR (400 MHz, CD3CN): δ 8.09 (d, J = 10.0 Hz, 1 H), 7.75–7.78 (m, 2 H), 7.60–7.65 

(m, 1 H), 7.51–7.55 (m, 2 H), 7.47 (d, J = 15.3 Hz, 1 H), 7.32–7.43 (m, 15 H), 7.06 (dd, J = 

15.2 Hz, J = 10.5 Hz, 1 H), 6.11 (d, J = 8.6 Hz, 1 H), 3.79–3.87 (m, 1 H), 3.30–3.38 (m, 1 

H), 2.65–2.76 (m, 1 H), 2.25–2.32 (m, 1 H), 1.67–1.77 (m, 1 H), 0.34–0.46 (m, 1 H). 

13
C NMR (100.6 MHz, CD3CN): δ 168.1 (d), 162.8 (d), 143.3 (s), 135.2 (s), 134.5 (d), 

131.6 (d), 131.1 (d), 130.5 (d), 129.7 (d), 128.4 (d), 119.3 (d), 73.5 (d), 64.0 (s), 55.9 (t), 

29.9 (t), 22.3 (t). 

HRMS (ESI): m/z calculated for C32H30N
+
 (7a): 428.2373; found: 428.2379. 

 

3-(2-Oxotetrahydrofuran-3-yl)-3-phenylpropanal (11) 

The iminium salt rac-7a-PF6 (50.0 mg, 87.2 µmol) was dissolved in anhydrous 

dichloromethane (5 mL) under inert gas atmosphere, then the silyl ketene acetal 8a (20.0 

mg, 126 µmol) was added. After stirring the resulting mixture over night at ambient 

temperature, deionized water was added. The organic layer was separated and the 

aqueous one extracted with dichloromethane. The organic layers were combined, dried 

(Na2SO4), the volatiles were evaporated and the residue was purified by flash column 

chromatography on silica gel (pentane/ethyl acetate 10:1→2:1) to give rac-11 (13.5 mg, 

61.9 µmol, 71 %) as a viscous yellow liquid in a mixture of two diastereomers in the ratio 

of 1:1. 
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1
H NMR (400 MHz, CDCl3): δ (9.73–9.74, 9.67–9.68) (m, 1 H), 7.21–7.34 (m, 5 H), (4.01–

4.16, 3.47–3.79) (m, 2 H), 3.59–3.69 (m, 1 H), (3.34–3.46, 2.81–3.09) (m, 3 H), (2.25–

2.33, 1.99–2.11, 1.83–1.93) (m, 2 H). 

13
C NMR (100.6 MHz, CDCl3): δ 200.8, 200.4, 177.9, 177.8, 140.7, 140.0, 129.2, 129.1, 

128.4, 128.2, 127.8, 127.7, 66.7, 66.4, 47.7, 45.8, 43.9, 43.5, 39.9, 39.5, 27.3, 26.2. 

HRMS (EI): m/z calculated for C13H14O3
•+

 (M
•+

): 218.0937; found: 218.0947 

 
 

Kinetics 

 

 Kinetics of the reaction of the enamine 3c with 4c-BF4 

(CH2Cl2, 20°C, stopped-flow, detection at 622 nm) 

 

Experiment [3c]0 

(mol L
–1

) 

[4c]0 

(mol L
–1

) 

k2 

(L mol
–1

 s
–1

) 

A 3.13 × 10
–5

  1.18 × 10
–5

 8.37 × 10
5
 

B 3.66 × 10
–5

 1.19 × 10
–5

 8.45 × 10
5
 

C 4.18 × 10
–5

 1.17 × 10
–5

 8.30 × 10
5
 

D 4.70 × 10
–5

 1.22 × 10
–5

 8.55 × 10
5
 

E 1.04 × 10
–4

 1.18 × 10
–5

 8.71 × 10
5
 

k2 = 8.48 × 10
5
 M

–1 
s

–1 
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All kinetic measurements of the reaction of 3c with 4c were performed under 

second-order conditions. [4c]t was derived from the absorbance at 622 nm assuming the 

validity of the Lambert-Beer law according to the relation [4c]t = A/(εd) with ε(4c-BF4) 

=1.42 × 10
5
 L mol

–1
 cm

–1
 and d = 0.5 cm. 
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Kinetics of the reaction of the iminium salt 7a-PF6 with the ketene acetal 8a (CH2Cl2, 

20°C, stopped-flow, λ = 359 nm) 

 

[7a] 

(mol L
–1

) 

[8a] 

(mol L
–1

) 

[7a]/[8a] kobs 

(s
–1

) 

3.33 × 10
–5

 1.22 × 10
–3

 36.6 1.40 

3.33 × 10
–5

 1.46 × 10
–3

 43.8 1.63 

3.33 × 10
–5

 1.94 × 10
–3

 58.3 2.11 

3.33 × 10
–5

 2.44 × 10
–3 

37.2 2.62 
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 Kinetics of the reaction of the iminium salt 7a-PF6 with the ketene acetal 8b (CH2Cl2, 

20°C, stopped-flow, λ = 359 nm) 

 

[7a] 

(mol L
–1

) 

[8b] 

(mol L
–1

) 

[7a]/[8b] kobs 

(s
–1

) 

3.33 × 10
–5

 4.97 × 10
–4

 14.9 2.82 × 10
–2

 

3.33 × 10
–5

 7.45 × 10
–4

 22.4 3.99 × 10
–2

 

3.33 × 10
–5

 9.94 × 10
–4

 29.8 5.15 × 10
–2

 

3.33 × 10
–5

 1.24 × 10
–3

 37.2 6.39 × 10
–2

 

3.33 × 10
–5

 1.49 × 10
–3

 44.7 7.56 × 10
–2

 

3.33 × 10
–5

 1.73 × 10
–3

 52.0 8.75 × 10
–2

 

3.33 × 10
–5

 1.99 × 10
–3

 59.8 9.97 × 10
–2
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UV/vis spectrum of the iminium hexafluorophosphate 7a-PF6 

 

Table S14. Determination of the absorption coefficient of 7a-PF6 

(5 mm light path, CH2Cl2, 20 °C). 

[7a] 

(mol L
-1

) 

A 

 

λmax = 359 nm 

1.12 × 10
–5

 0.24  

2.23 × 10
–5

 0.48 

3.32 × 10
–5

 0.69 

4.41 × 10
–5

 0.90 

5.49 × 10
–5

 1.10 

  ε = 20385 L mol
–1

/0.5 cm
–1

 = 40770 L mol
–1

 cm
–1
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Org. Lett. 2016, 18, 3566–3569. 
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– Experimental Section– 

 

Kinetics 

 

Kinetics of the reaction of 1a with 4 at 20°C in THF (diode array, λ = 492 nm) 

 

[1a] (mol L
–1

) [4] (mol L
–1

) kobs (s
–1

) 

 

5.90 × 10
–4

 3.67 × 10
–5 

1.05 × 10
–1

 

8.84 × 10
–4

 3.67 × 10
–5

 1.64 × 10
–1

 

1.20 × 10
–3

 3.64 × 10
–5

 2.51 × 10
–1

 

1.78 × 10
–3

 3.58 × 10
–5

 3.71 × 10
–1

 

k2 = 2.27 × 10
2
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1a with 3c at 20°C in THF (stopped-flow, λ = 430 nm) 

 

[1a] (mol L
–1

) [3c] (mol L
–1

) kobs (s
–1

) 

 

9.11 × 10
–4

 9.55 × 10
–5

 1.15 

1.21 × 10
–3

 9.55 × 10
–5

 1.71 

1.82 × 10
–3

 9.55 × 10
–5

 2.77 

2.13 × 10
–3 

9.55 × 10
–5

 3.11 

2.43 × 10
–3

 9.55 × 10
–5

 3.65 

k2 = 1.62 × 10
3
 L mol

–1
 s

–1 

 

kobs = 2.266 × 102[1a] − 2.955 × 10-2 
R² = 0.9968 
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Kinetics of the reaction of 1a with 2c at 20°C in THF (stopped-flow, λ = 499 nm) 

 

[1a] (mol L
–1

) [2c] (mol L
–1

) kobs (s
–1

) 

 

4.79 × 10
–4

 2.74 × 10
–5 

5.71
 

7.19 × 10
–4

 2.74 × 10
–5 

1.06 × 10
1
 

9.58 × 10
–4

 2.74 × 10
–5 

1.60 × 10
1
 

1.20 × 10
–3

 2.74 × 10
–5 

2.22 × 10
1
 

1.68 × 10
–3

 2.74 × 10
–5 

3.06 × 10
1
 

k2 = 2.11 × 10
4
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1a with 2b at 20°C in THF (stopped-flow, λ = 450 nm) 

 

[1a] (mol L
–1

) [2b] (mol L
–1

) kobs (s
–1

) 

 

6.02 × 10
–4

 5.30 × 10
–5 

5.28 × 10
1
 

9.02 × 10
–4

 5.30 × 10
–5 

8.79 × 10
1
 

1.50 × 10
–3

 5.30 × 10
–5 

1.47 × 10
2
 

1.80 × 10
–3

 5.30 × 10
–5 

1.94 × 10
2 

2.11 × 10
–3

 5.30 × 10
–5 

2.29 × 10
2
 

k2 = 1.16 × 10
5
 L mol

–1
 s

–1 

 

Determination of the parameters N and sN for 1a in THF 

Electrophile E k2 (L mol
–1

 s
–1

) 

 

2b –12.18 1.16 × 10
5 

2c –13.39 2.11 × 10
4
 

3c –16.11 1.62 × 10
3
 

4 –17.90 2.27 × 10
2
 

N = 23.00 

sN = 0.46 

kobs = 2.108 × 104[1a] − 4.211 
R² = 0.9954 
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Kinetics of the reaction of 1b with 4 at 20°C in THF (diode array, λ = 490 nm) 

 

[1b] (mol L
–1

) [4] (mol L
–1

) kobs (s
–1

) 

 

6.53 × 10
–4 

5.49 × 10
–5

 3.52 × 10
–2

 

8.00 × 10
–4

 4.48 × 10
–5

 4.25 × 10
–2

 

1.04 × 10
–3

 4.37 × 10
–5

 5.63 × 10
–2

 

1.47 × 10
–3

 4.94 × 10
–5

 8.61 × 10
–2

 

1.71 × 10
–3

 4.80 × 10
–5 

9.44 × 10
–2

 

k2 = 5.86 × 10
1
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1b with 3d at 20°C in THF (stopped-flow, λ = 486 nm) 

 

[1b] (mol L
–1

) [3d] (mol L
–1

) kobs (s
–1

) 

 

2.43 × 10
–3

 6.32 × 10
–5

 1.31 × 10
–1

 

3.65 × 10
–3

 6.32 × 10
–5

 2.28 × 10
–1

 

4.86 × 10
–3

 6.32 × 10
–5

 3.04 × 10
–1

 

6.08 × 10
–3

 6.32 × 10
–5

 3.76 × 10
–1

 

7.29 × 10
–3

 6.32 × 10
–5

 4.42 × 10
–1

 

k2 = 6.34 × 10
1
 L mol

–1
 s

–1 

 

kobs = 5.863 × 101[1b] − 3.625 × 10-3 
R² = 0.9929 
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Kinetics of the reaction of 1b with 3c at 20°C in THF (stopped-flow, λ = 390 nm) 

 

[1b] (mol L
–1

) [3c] (mol L
–1

) kobs (s
–1

) 

 

1.70 × 10
–3

 6.90 × 10
–5

 4.85 × 10
–1

 

2.55 × 10
–3

 6.90 × 10
–5

 7.61 × 10
–1

 

3.41 × 10
–3

 6.90 × 10
–5

 1.03 × 10
–1

 

4.26 × 10
–3

 6.90 × 10
–5

 1.30 × 10
–1

 

5.11 × 10
–3

 6.90 × 10
–5

 1.56 × 10
–1

 

k2 = 3.15 × 10
2
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1b with 3b at 20°C in THF (stopped-flow, λ = 375 nm) 

 

[1b] (mol L
–1

) [3b] (mol L
–1

) kobs (s
–1

) 

 

1.32 × 10
–3

 7.56 × 10
–5

 5.92 × 10
–1

 

1.98 × 10
–3

 7.56 × 10
–5

 8.85 × 10
–1

 

2.65 × 10
–3

 7.56 × 10
–5

 1.25 

3.31 × 10
–3

 7.56 × 10
–5

 1.58 

k2 = 5.01 × 10
2
 L mol

–1
 s

–1 

 

kobs = 3.152 × 102[1b] − 4.651 × 10-2 
R² = 0.9999 
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Kinetics of the reaction of 1b with 3a at 20°C in THF (stopped-flow, λ = 375 nm) 

 

[1b] (mol L
–1

) [3a] (mol L
–1

) kobs (s
–1

) 

 

9.79 × 10
–4

 9.43 × 10
–5

 4.89 

1.47 × 10
–3

 9.43 × 10
–5

 7.68 

1.96 × 10
–3

 9.43 × 10
–5

 10.3 

2.45 × 10
–3

 9.43 × 10
–5

 13.4 

2.94 × 10
–3

 9.43 × 10
–5

 15.8 

k2 = 5.62 × 10
3
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1b with 2c at 20°C in THF (stopped-flow, λ = 499 nm) 

 

[1b] (mol L
–1

) [2c] (mol L
–1

) kobs (s
–1

) 

 

9.74 × 10
–4

 5.51 × 10
–5

 2.47 

1.46 × 10
–3

 5.51 × 10
–5

 4.04 

1.95 × 10
–3

 5.51 × 10
–5

 5.46 

2.43 × 10
–3

 5.51 × 10
–5

 6.93 

2.92 × 10
–3

 5.51 × 10
–5

 8.37 

k2 = 3.02 × 10
3
 L mol

–1
 s

–1 

 

kobs = 5.618 × 103[1b] − 5.964 × 10-1 
R² = 0.9989 
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Kinetics of the reaction of 1b with 2b at 20°C in THF (stopped-flow, λ = 411 nm) 

 

[1b] (mol L
–1

) [2b] (mol L
–1

) kobs (s
–1

) 

 

7.99 × 10
–4

 6.86 × 10
–5

 1.10 × 10
1
 

1.20 × 10
–3

 6.86 × 10
–5

 1.74 × 10
1
 

1.60 × 10
–3

 6.86 × 10
–5

 2.32 × 10
1
 

2.00 × 10
–3

 6.86 × 10
–5

 2.92 × 10
1
 

2.40 × 10
–3

 6.86 × 10
–5

 3.55 × 10
1
 

k2 = 1.52 × 10
4
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1b with 2a at 20°C in THF (stopped-flow, λ = 375 nm) 

 

[1b] (mol L
–1

) [2a] (mol L
–1

) kobs (s
–1

) 

 

6.04 × 10
–4

 6.44 × 10
–5

 1.98 × 10
1
 

9.06 × 10
–4

 6.44 × 10
–5

 3.11 × 10
1
 

1.21 × 10
–3

 6.44 × 10
–5

 4.18 × 10
1
 

1.51 × 10
–3

 6.44 × 10
–5

 5.27 × 10
1
 

1.81 × 10
–3

 6.44 × 10
–5

 6.11 × 10
1
 

k2 = 3.46 × 10
4
 L mol

–1
 s

–1 

 

kobs = 1.519 × 104[1b] − 1.045 
R² = 0.9998 
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Determination of the parameters N and sN for 1b in THF 

Electrophile E k2 (L mol
–1

 s
–1

) 

 

2a –11.87 3.46 × 10
4 

2b –12.18 1.52 × 10
4
 

2c –13.39 3.02 × 10
3
 

3a –14.36 5.62 × 10
3
 

3b –15.83 5.01 × 10
2
 

3c –16.11 3.15 × 10
2
 

3d –17.29 6.34 × 10
1
 

4 –17.90 5.86 × 10
1
 

N = 21.50 

sN = 0.45 

 

Kinetics of the reaction of 1c with 4 at 20°C in THF (diode array, λ = 492 nm) 

 

[1c] (mol L
–1

) [4] (mol L
–1

) kobs (s
–1

) 

 

6.57 × 10
–4

 3.58 × 10
–5 

9.02 × 10
–3

 

9.86 × 10
–4

 3.52 × 10
–5

 1.39 × 10
–2

 

1.41 × 10
–3

 3.54 × 10
–5

 1.91 × 10
–2

 

2.11 × 10
–3

 3.49 × 10
–5

 2.93 × 10
–2

 

2.62 × 10
–3

 3.54 × 10
–5

 3.68 × 10
–2

 

k2 = 1.41 × 10
1
 L mol

–1
 s

–1 

 

log k2 = 0.4470E + 9.6727 
R² = 0.9839 
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Kinetics of the reaction of 1c with 2c at 20°C in THF (stopped-flow, λ = 499 nm) 

 

[1c] (mol L
–1

) [2c] (mol L
–1

) kobs (s
–1

) 

 

6.08 × 10
–4

 3.86 × 10
–5 

5.56 × 10
–1 

9.12 × 10
–4

 3.86 × 10
–5 

9.25 × 10
–1

 

1.22 × 10
–3

 3.86 × 10
–5 

1.29 

1.52 × 10
–3

 3.86 × 10
–5 

1.78 

1.82 × 10
–3

 3.86 × 10
–5 

2.21 

2.13 × 10
–3

 3.86 × 10
–5 

2.85 

k2 = 1.37 × 10
3
 L mol

–1
 s

–1 

 

Kinetics of the reaction of 1c with 2b at 20°C in THF (stopped-flow, λ = 411 nm) 

 

[1c] (mol L
–1

) [2b] (mol L
–1

) kobs (s
–1

) 

 

5.92 × 10
–4

 2.34 × 10
–5 

1.99 

8.89 × 10
–4

 2.34 × 10
–5 

3.57 

1.18 × 10
–3

 2.34 × 10
–5 

5.70 

1.48 × 10
–3

 2.34 × 10
–5 

7.41 

1.78 × 10
–3

 2.34 × 10
–5 

1.00 × 10
1
 

2.07 × 10
–3

 2.34 × 10
–5 

1.30 × 10
1
 

k2 = 6.70 × 10
3
 L mol

–1
 s

–1 

 

Determination of the parameters N and sN for 1c in THF 

Electrophile E k2 (L mol
–1

 s
–1

) 

 

2b –12.18 6.70 × 10
3 

2c –13.39 1.37 × 10
3
 

4 –17.90 1.41 × 10
1
 

N = 20.41 

sN = 0.46 

kobs = 1.373 × 103[1c] − 3.169 × 10-1 
R² = 0.9959 

0

0.5

1

1.5

2

2.5

0 0.0005 0.001 0.0015 0.002

k
o
b

s 
(s

-1
) 

[1c] (mol L−1) 

kobs = 6.695 × 103[1c] − 2.194 
R² = 0.9936 

0

2

4

6

8

10

12

0 0.0005 0.001 0.0015 0.002

k
o
b

s 
(s

-1
) 

[1c] (mol L−1) 

log k2 = 0.4611E + 9.3877 
R² = 0.9977 

0

1

2

3

4

5

-19 -17 -15 -13 -11

lo
g
 k

2
 

E 



 

347 
 

Kinetics of the reaction of 1d with 4 at 20°C in THF (diode array, λ = 492 nm) 

 

[1d] (mol L
–1

) [4] (mol L
–1

) kobs (s
–1

) 

 

3.86 × 10
–3

 5.04 × 10
–5 

8.05 × 10
–4

 

5.97 × 10
–3

 8.18 × 10
–5

 1.21 × 10
–3

 

6.87 × 10
–3

 5.44 × 10
–5

 1.35 × 10
–3

 

8.47 × 10
–3

 5.82 × 10
–5

 1.79 × 10
–3

 

k2 = 2.10 × 10
–1

 L mol
–1

 s
–1 

 

Kinetics of the reaction of 1d with 3c at 20°C in THF (diode array, λ = 384 nm) 

 

[1d] (mol L
–1

) [3c] (mol L
–1

) kobs (s
–1

) 

 

3.50 × 10
–4

 4.08 × 10
–5 

1.16 × 10
–3

 

9.51 × 10
–4

 6.79 × 10
–5

 2.97 × 10
–3

 

1.40 × 10
–3

 6.66 × 10
–5

 4.50 × 10
–3

 

1.77 × 10
–3

 5.79 × 10
–5

 5.52 × 10
–3

 

k2 = 3.10 L mol
–1

 s
–1 

 

Kinetics of the reaction of 1d with 2c at 20°C in THF (diode array, λ = 499 nm) 

 

[1d] (mol L
–1

) [2c] (mol L
–1

) kobs (s
–1

) 

 

7.30 × 10
–4

 4.48 × 10
–5 

1.68 × 10
–2 

1.02 × 10
–3

 5.38 × 10
–5

 2.04 × 10
–2

 

1.24 × 10
–3

 4.91 × 10
–5

 2.98 × 10
–2

 

1.84 × 10
–3

 5.80 × 10
–5

 4.39 × 10
–2

 

1.99 × 10
–3

 5.25 × 10
–5

 4.73 × 10
–2

 

k2 = 2.42 × 10
1
 L mol

–1
 s

–1 

kobs = 2.099 × 10-1[1d] − 3.199 × 10-5 
R² = 0.9871 
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Kinetics of the reaction of 1d with 2b at 20°C in THF (stopped-flow, λ = 411 nm) 

 

[1d] (mol L
–1

) [2b] (mol L
–1

) kobs (s
–1

) 

 

7.49 × 10
–4

 4.46 × 10
–5 

6.94 × 10
–2

 

1.12 × 10
–3

 4.46 × 10
–5

 1.30 × 10
–1

 

1.50 × 10
–3

 4.46 × 10
–5

 1.77 × 10
–1

 

1.87 × 10
–3

 4.46 × 10
–5

 2.45 × 10
–1

 

2.25 × 10
–3

 4.46 × 10
–5

 2.91 × 10
–1

 

2.62 × 10
–3

 4.46 × 10
–5

 3.42 × 10
–1

 

k2 = 1.46 × 10
2
 L mol

–1
 s

–1 

 

Determination of the parameters N and sN for 1d in THF 

Electrophile E k2 (L mol
–1

 s
–1

) 

 

2b –12.18 1.46 × 10
2 

2c –13.39 2.42 × 10
1
 

3c –16.11 3.10 

4 –17.90 2.10 × 10
–1

 

N = 16.54 

sN = 0.47 
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– Experimental Section– 
 

Reaction Products 
 

(E)-2-(1-Hydroxy-3-phenylallylidene)malononitrile (10a) 

 

Acyl fluoride 1 (10 mg, 0.067 mmol) and malodinitrile potassium salt 9a (14 mg, 0.13 mmol) 

were mixed in d6-DMSO (0.6 mL) at room temperature. Trifluoroacetic acid (20 mg, 0.18 

mmol) was added to the mixture. The 1H and 13C NMR spectra showed the formation of 10a 

and 9a-H. 

10a: 1H NMR (400 MHz, d6-DMSO) δ 7.56–7.54 (m, 2 H), 7.41–7.32 (m, 4 H), 7.00 (d, J = 

15.6 Hz, 1 H). 13C NMR (100 MHz, d6-DMSO) δ 181.7, 136.9, 135.3, 129.3, 129.0, 127.6, 

121.5, 120.3, 120.0, 50.7.  

9a-H: 1H NMR (400 MHz, d6-DMSO) δ 4.44 (s, 2 H). 13C NMR (100 MHz, d6-DMSO) δ 112.1, 

8.5. 

 

 

Acyl fluoride 1 (10 mg, 0.067 mmol) and malodinitrile potassium salt 9a (20.8 mg, 0.2 mmol) 

were mixed in d6-DMSO (0.6 mL) at room temperature. The 1H NMR and 13C-NMR spectra 

showed the formation of 10a.  

1H NMR (400 MHz, d6-DMSO) δ 7.55–7.53 (m, 2 H), 7.41–7.32 (m, 3 H), 7.29 (d, J = 15.6 Hz, 

1 H), 6.99 (d, J = 15.6 Hz, 1 H). 13C NMR (100 MHz, d6-DMSO) δ 181.7, 136.1, 135.4, 129.1, 

128.9, 127.5, 123.9, 122.2, 121.0, 49.3. 

 

Potassium (E)-5-ethoxy-4-(ethoxycarbonyl)-5-oxo-1-phenylpenta-1,3-dien-3-olate 

(11c-K) 
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Acyl fluoride 1 (10 mg, 0.067 mmol) and diethylmalonate potassium salt (26 mg, 0.13 mmol) 

were mixed in d6-DMSO (6 mL) at room temperature. The 1H and 13C NMR spectra showed 

the formation of compounds 10c-K and 9c-H.  

10c-K: 1H NMR (400 MHz, d6-DMSO) δ 7.82 (d, J = 15.7 Hz, 1 H), 7.47–7.45 (m, 2 H), 7.37–

7.33 (m, 2 H), 7.28–7.24 (m, 1 H), 7.14 (d, J = 15.7 Hz, 1 H), 3.94 (q, J = 7.1 Hz, 4 H), 1.13 (t, 

J = 7.1 Hz, 6 H). 13C-NMR (101 MHz, d6-DMSO) δ 178.2, 169.4, 137.2, 132.4, 130.0, 128.6, 

127.8, 126.9, 95.6, 57.4, 14.6.  

9c-H: 1H NMR (400 MHz, d6-DMSO) δ 4.11 (q, J = 7.1 Hz, 4 H), 3.47 (s, 2 H), 1.19 (t, J = 7.1 

Hz, 6 H). 13C NMR (101 MHz, d6-DMSO) δ 166.5, 60.8, 41.2, 13.9.  

 

 
Acyl fluoride 1 (10 mg, 0.067 mmol) and diethylmalonate potassium salt 9c (40 mg, 0.20 

mmol) were mixed in d6-DMSO (6 mL) at room temperature, The 1H and 13C NMR spectra 

showed the formation of compounds 10c-K, 9c-H and the remaining 9c.  

10c-K: 1H NMR (400 MHz, d6-DMSO) δ 7.81 (d, J = 15.7 Hz, 1 H), 7.46–7.44 (m, 2 H), 7.36–

7.32 (m, 2 H), 7.27–7.23 (m, 1 H), 7.13 (d, J = 15.7 Hz, 1 H), 3.93 (q, J = 7.1 Hz, 4 H), 1.13 (t, 

J = 7.1 Hz, 6 H). 13C-NMR (101 MHz, d6-DMSO) δ 178.7, 169.6, 137.3, 132.3, 130.4, 128.7, 

127.7, 126.9, 95.4, 57.3, 14.6. 

9c-H: 1H NMR (400 MHz, d6-DMSO) δ 4.11 (q, J = 7.1 Hz, 4 H), 3.47 (s, 2 H), 1.19 (t, J = 7.1 

Hz, 6 H). 13C NMR (101 MHz, d6-DMSO) δ 166.6, 60.8, 41.2, 13.9. 

9c: 1H NMR (400 MHz, d6-DMSO) δ 3.76 (q, J = 7.1 Hz, 4 H), 3.54 (s, 1 H), 1.04 (t, J = 7.1 Hz, 

6 H). 13C NMR (101 MHz, d6-DMSO) δ 169.5, 61.2, 55.1, 15.4. 
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Kinetics 
 

Kinetics of the reactions of acyl fluoride 1 with nucleophiles 9a,c in DMSO 

 

[1] / mol·L
–1

 [9a] / mol·L
–1

 kobs / s
–1

 λ = 348 nm 

7.06 × 10
–5 

 

 

1.25 × 10
–3

 

1.87 × 10
–3

 

2.50 × 10
–3

 

3.12 × 10
–2

 

3.75 × 10
–2

 

4.68 × 10
–1

 

7.07 × 10
–1

 

9.72 × 10
–1

 

1.24 

1.53 

 k2 = 4.25 × 10
2
 L·mol

–1
·s

–1
 

[1] / mol·L
–1

 [9c] / mol·L
–1

 kobs / s
–1

 λ = 364 nm 

5.08 × 10
–5 

 

5.65 × 10
–4 

8.47 × 10
–4

 

1.13 × 10
–3 

1.41 × 10
–3 

1.70 × 10
–3 

1.98 × 10
–3

 

2.54 × 10
–3 

3.11 × 10
–3

 

3.75 × 10
–2

 

6.08 × 10
–2

 

7.98 × 10
–2

 

1.04 × 10
–1

 

1.26 × 10
–1 

1.47 × 10
–1 

1.93 × 10
–1 

2.39 × 10
–1

  

k2 = 7.9 × 10
1
 L·mol

–1
·s

–1
 

[1] / mol·L–1 [9c] / M kobs / s
–1 λ = 312 nm 

5.08 × 10–5 

 

5.65 × 10–4 

8.47 × 10–4 

1.13 × 10–3 

1.41 × 10–3 

1.70 × 10–3 

1.98 × 10–3 

2.54 × 10–3 

3.11 × 10–3 

3.21 × 10–2 

5.03 × 10–2 

6.57 × 10–2 

8.32 × 10–2 

1.01 × 10–1 

1.19 × 10–1 

1.54 × 10–1 

1.86 × 10–1 
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Kinetics of the reactions of acyl azoliums 4b with nucleophiles 9d–f 

 
[4b] / mol·L

–1
 [9d] / mol·L

-1
 kobs / s

–1
 λ = 350 nm 

1.38 × 10
–4

 

 

1.44 × 10
–3

 

1.92 × 10
–3

 

2.40 × 10
–3

 

2.88 × 10
–3

 

3.36 × 10
–3

 

3.84 × 10
–3

 

2.66 × 10
2
 

3.09 × 10
2
 

3.71 × 10
2
 

4.69 × 10
2
 

5.23 × 10
2
 

6.22 × 10
2
 

 
k2 = 1.5 × 10

5
 L·mol

–1
·s

–1
 

 

[4b] / mol·L
–1

 [9e] / mol·L
–1

 kobs / s
–1

 λ = 350 nm 

1.25 × 10
–4

 

 

1.77 × 10
–3

 

2.65 × 10
–3

 

3.53 × 10
–3

 

4.42 × 10
–3

 

5.30 × 10
–3

 

6.18 × 10
–3

 

4.61 

6.96 

9.55 

1.12 × 10
1
 

1.32 × 10
1
 

1.56 × 10
1
 

 
k2 = 2.44 × 10

3
 L·mol

–1
·s

–1
 

[4b] / mol·L
–1

 [9f] / mol·L
–1

 kobs / s
–1

 λ = 335 nm 

1.13 × 10
–4 

1.12 × 10
–4

 

1.11 × 10
–4

 

1.10 × 10
–4

 

1.07 × 10
–4

 

1.88 × 10
–3

 

2.81 × 10
–3

 

3.71 × 10
–3

 

4.59 × 10
–2

 

5.37 × 10
–2

 

1.15 × 10
–3

 

1.82 × 10
–3

 

2.29 × 10
–3

 

2.84 × 10
–3

 

3.42 × 10
–3

 

 k2 = 6.34 × 10
–1

 L·mol
–1

·s
–1
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Determination of E of azolium 4b 

Electrophiles N (sN) k2 / L·mol
–1

·s
–1

 (lg k2)/sN 

9f 

9e 

9d 

10.52 (0.78) 

13.91 (0.86) 

16.27 (0.77) 

6.34 × 10
-1 

2.44 × 10
3
 

1.50 × 10
5
 

–2.54 × 10
-1

 

3.94 

6.72 

 

E = –10.09 

 

  

(log k2) / sN = N − 10.09 
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s N
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Kinetics of the reactions of acyl azoliums 4c with nucleophiles 9a,b,d–f 

 

[4c] / mol·L
–1

 [9a] / mol·L
–1

 kobs / s
–1

 λ = 350 nm 

1.47 × 10
–4

 

1.64 × 10
–3

 3.16 × 10
2
 

 

2.19 × 10
–3

 4.31 × 10
2
 

2.74 × 10
–3

 5.51 × 10
2
 

3.28 × 10
–3

 6.62 × 10
2
 

k2 = 2.12 × 10
5 
L mol

–1
·s

–1
 

[4c] / mol·L
–1

 [9b] / mol·L
–1

 kobs / s
–1

 λ = 350 nm 

1.63 × 10
–4

 

1.76 × 10
–3

 5.81 × 10
1
 

 

2.65 × 10
–3

 9.27 × 10
1
 

3.63 × 10
–3

 1.20 × 10
2
 

4.41 × 10
–3

 1.50 × 10
2
 

5.30 × 10
–3

 1.74 × 10
2
 

6.18 × 10
–3

 1.98 × 10
2
 

k2 = 3.15 × 10
4 
L mol

-1
·s

–1
 

[4c] / mol·L
–1

 [9d] / mol·L
–1

 kobs / s
–1

 λ = 350 nm 

1.63 × 10
–4

 

2.14 × 10
–3

 1.88 × 10
1
 

 

3.21 × 10
–3

 2.89 × 10
1
 

4.27 × 10
–3

 3.81 × 10
1
 

5.34 × 10
–3

 4.52 × 10
1
 

6.41 × 10
–3

 5.39 × 10
1
 

7.48 × 10
–3

 6.05 × 10
1
 

k2 = 7.78 × 10
3 
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–1
·s

–1
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[4c] / mol·L
–1

 [9e] / mol·L
–1

 kobs / s
–1

 λ = 350 nm 

1.47 × 10
–4

 

2.00 × 10
–3

 3.48 × 10
–1

 

 

3.01 × 10
–3

 5.30 × 10
–1

 

4.01 × 10
–3

 6.91 × 10
–1

 

5.01 × 10
–3

 8.53 × 10
–1

 

6.01 × 10
–3

 9.94 × 10
–1

 

k2 = 1.61 × 10
2 
L mol

–1
·s

–1
 

[4c] / mol·L
–1

 [9f] / mol·L
–1

 kobs / s
–1

 λ = 350 nm 

1.52 × 10
–4

 2.72 × 10
–3

 2.18 × 10
–4

 

 

1.83 × 10
–4

 4.03 × 10
–3

 2.95 × 10
–4

 

1.73 × 10
–4

 5.38 × 10
–3

 4.07 × 10
–4

 

1.70 × 10
–4

 6.60 × 10
–3

 5.12 × 10
–4

 

1.58 × 10
–4

 7.85 × 10
–3

 5.90 × 10
–4

 

1.55 × 10
–4

 8.96 × 10
–3

 6.68 × 10
–4

 

k2 = 7.39 × 10
–2 

L mol
–1

·s
–1

 

 

Determination of E of azolium 4c 

Nucleophiles N (sN) k2 / L· mol
–1

·s
–1

 (log k2)/sN 

9f 
9e 
9d 
9b 
9a 

10.52 (0.78) 
13.91 (0.86) 
16.27 (0.77) 
17.64 (0.73) 
19.36 (0.67) 

7.39 × 10
–2 

1.61 × 10
2
 

7.78 × 10
3
 

3.15 × 10
4
 

2.12 × 10
5
 

–1.45 
2.57 
5.05 
6.16 
7.95 

 

E = –11.48 
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Kinetics of the reactions of acyl azoliums 4d with nucleophiles 9a,b,d-f 

 

[4d] / mol·L
–1

 [9a] / mol·L
–1

 kobs / s
–1

 λ = 355 nm 

1.54 × 10
–4

 

1.53 × 10
–3

 

2.05 × 10
–3

 

2.56 × 10
–3

 

3.07 × 10
–3

 

3.58 × 10
–3

 

4.09 × 10
–3

 

1.55 × 10
2
 

2.07 × 10
2
 

2.58 × 10
2
 

2.96 × 10
2
 

3.38 × 10
2 

3.90 × 10
2
 

 
k2 = 8.97 × 10

4 
L mol

–1
·s

–1
 

[4d] / mol·L
–1

 [9b] / mol·L
–1

 kobs / s
–1

 λ = 355 nm 

2.28 × 10
–4

 

1.92 × 10
–3

 

2.89 × 10
–3

 

3.85 × 10
–3

 

4.81 × 10
–3

 

5.77 × 10
–3

 

6.74 × 10
–3

 

4.81 × 10
1
 

6.10 × 10
1
 

7.94 × 10
1
 

9.53 × 10
1
 

1.14 × 10
2
 

1.27 × 10
2
 

 
k2 = 1.78 × 10

4 
L mol

–1
·s

–1
 

[4d] / mol·L
–1

 [9d] / mol·L
–1

 kobs / s
–1

 λ = 355 nm 

1.37 × 10
–4

 

1.75 × 10
–3

 

2.63 × 10
–3

 

3.50 × 10
–3

 

4.38 × 10
–3

 

5.25 × 10
–3

 

6.13 × 10
–3

 

1.20 × 10
1
 

1.73 × 10
1
 

2.35 × 10
1
 

2.82 × 10
1
 

3.32 × 10
1
 

3.75 × 10
1
 

 

k2 = 5.87 × 10
3 
L mol

–1
·s

–1
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[4d] / mol·L
–1

 [9e] / mol·L
–1

 kobs / s
–1

 λ = 330 nm 

1.54 × 10
–4

 

1.94 × 10
–3

 

2.91 × 10
–3

 

3.87 × 10
–3

 

4.84 × 10
–3

 

5.81 × 10
–3

 

2.69 × 10
–1

 

3.95 × 10
–1

 

5.26 × 10
–1

 

6.28 × 10
–1

 

7.42 × 10
–1

 

 k2 = 1.22 × 10
2 
L mol

–1
·s

–1
 

[4d] / mol·L
–1

 [9f] / mol·L
–1

 kobs / s
–1

 λ = 325 nm 

1.14 × 10
–4 

1.14 × 10
–4

 

1.14 × 10
–4

 

1.11 × 10
–4

 

1.10 × 10
–4

 

5.10 × 10
–3

 

6.34 × 10
–3

 

7.61 × 10
–3

 

8.71 × 10
–3

 

9.86 × 10
–3

 

1.98 × 10
–4

 

2.40 × 10
–4

 

2.65 × 10
–4

 

3.23 × 10
–4

 

3.63 × 10
–4

 

 k2 = 3.47 × 10
–2 

L mol
–1

·s
–1

 

 

Determination of E of azolium 4d 

Nucleophiles N (sN) k2 / L mol
–1

·s
–1

 (log k2)/sN 

9f 

9e 

9d 

9b 

9a 

10.52 (0.78) 

13.91 (0.86) 

16.27 (0.77) 

17.64 (0.73) 

19.36 (0.67) 

3.47 × 10
–2 

1.22 × 10
2
 

5.87 × 10
3
 

1.78 × 10
4
 

8.97 × 10
4
 

–1.87 

2.43 
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7.39 

 

E = –11.79 
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Kinetics of the reactions of acyl azoliums 4e with nucleophiles 9a,b,d–f 

 

[4e] / mol·L
–1

 [9a] / mol·L
–1

 kobs / s
–1

 λ = 345 nm 

1.64 × 10
–4

 

 

 

1.52 × 10
–3

 

2.03 × 10
–3

 

2.53 × 10
–3

 

3.04 × 10
–3

 

3.55 × 10
–3

 

4.05 × 10
–3

 

1.16 × 10
2
 

1.52 × 10
2
 

2.08 × 10
2
 

2.50 × 10
2
 

2.81 × 10
2 

3.22 × 10
2
 

 
k2 = 8.23 × 10

4 
L mol

–1
·s

–1
 

[4e] / mol·L
–1

 [9b] / mol·L
–1

 kobs / s
–1

 λ = 345 nm 

1.68 × 10
–4

 

2.03 × 10
–3

 

3.04 × 10
–3

 

4.05 × 10
–3

 

5.06 × 10
–3

 

6.08 × 10
–3

 

7.09 × 10
–3

 

3.98 × 10
1
 

5.66 × 10
1
 

7.48 × 10
1
 

9.20 × 10
1
 

1.07 × 10
2
 

1.22 × 10
2
 

 
k2 = 1.64 × 10

4 
L mol

–1
·s

–1
 

[4e] / mol·L
–1

 [9d] / mol·L
–1

 kobs / s
–1

 λ = 345 nm 

1.68 × 10
–4

 

1.87 × 10
–3

 

2.81 × 10
–3

 

3.75 × 10
–3

 

4.68 × 10
–3

 

5.62 × 10
–3

 

6.56 × 10
–3

 

1.19 × 10
1
 

1.74 × 10
1
 

2.33 × 10
1
 

2.79 × 10
1
 

3.31 × 10
1
 

3.83 × 10
1
  

k2 = 5.60 × 10
3 
L mol

–1
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[4e] / mol·L
-1

 [9e] / mol·L
–1

 kobs / s
–1

 λ = 345 nm 

1.64 × 10
–4

 

 

1.77 × 10
–3

 

2.65 × 10
–3

 

3.53 × 10
–3

 

4.42 × 10
–3

 

5.30 × 10
–3

 

6.18 × 10
–3

 

3.42 × 10
–1

 

5.27 × 10
–1

 

6.72 × 10
–1

 

8.33 × 10
–1

 

9.89 × 10
–1

 

1.11 
 

k2 = 1.74 × 10
2 
L mol

–1
·s

–1
 

[4e] / mol·L
–1

 [9f] / mol·L
–1

 kobs / s
–1

 λ = 320 nm 

8.70 × 10
–5 

8.79 × 10
–5

 

8.62 × 10
–5

 

8.34 × 10
–5

 

9.27 × 10
–5

 

3.29 × 10
–3

 

4.34 × 10
–3

 

5.37 × 10
–3

 

6.64 × 10
–3

 

7.85 × 10
–3

 

8.59 × 10
–5

 

1.17 × 10
–4

 

1.41 × 10
–4

 

1.69 × 10
–4

 

2.06 × 10
–4

 

 k2 = 2.56 × 10
–2 

L·mol
–1

·s
–1

 

 
 
 

Determination of E of azolium 4e 

Nucleophiles N (sN) k2 / L· mol
-1

·s
–1

 (log k2)/sN 

9f 

9e 

9d 

9b 

9a 

10.52 (0.78) 

13.91 (0.86) 

16.27 (0.77) 

17.64 (0.73) 

19.36 (0.67) 

2.56 × 10
–2 

1.74 × 10
2
 

5.60 × 10
3
 

1.64 × 10
4
 

8.23 × 10
4
 

–2.04 
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E = –11.80 
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Kinetics of the reactions of acyl azoliums 4f with nucleophiles 9a, b, d–f 

 

[4f] / mol·L
–1

 [9a] / mol·L
–1

 kobs / s
–1

 λ = 345 nm 

1.70 × 10
–4

 

1.77 × 10
–3

 

2.36 × 10
–3

 

2.95 × 10
–3

 

3.54 × 10
–3

 

4.13 × 10
–3

 

4.72 × 10
–3

 

1.41 × 10
2
 

1.95 × 10
2
 

2.37 × 10
2
 

2.91 × 10
2
 

3.35 × 10
2 

3.88 × 10
2
 

 
k2 = 8.28 × 10

4 
L mol

–1
·s

–1
 

[4f] / 

mol·L
-1

 
[9b] / mol·L

-1
 kobs / s

–1
 λ = 345 nm 

1.69 × 10
-4

 

1.98 × 10
-3

 

2.97 × 10
-3

 

3.96 × 10
-3

 

4.96 × 10
-3

 

5.95 × 10
-3

 

6.94 × 10
-3

 

2.85 × 10
1
 

4.15 × 10
1
 

5.18 × 10
1
 

6.32 × 10
1
 

7.28 × 10
1
 

8.53 × 10
1
 

 k2 = 1.12 × 10
4 
L mol

-1
·s

–1
 

[4f] / 

mol·L
-1

 
[9d] / mol·L

-1
 kobs / s

–1
 λ = 345 nm 

1.69 × 10
-4

 

1.76 × 10
-3

 

2.63 × 10
-3

 

3.51 × 10
-3

 

4.39 × 10
-3

 

5.27 × 10
-3

 

6.15 × 10
-3

 

7.25 

1.08 × 10
1
 

1.36 × 10
1
 

1.74 × 10
1
 

2.05 × 10
1
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1
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[4f] / mol·L
–1

 [9e] / mol·L
–1

 kobs / s
–1

 λ = 345 nm 

1.70 × 10
–4

 

1.88 × 10
–3

 

2.82 × 10
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3.76 × 10
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–3

 

6.59 × 10
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Determination of E of azolium 4f 
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Appendix 5 Correlation between the change of activation 

energy and free energy change 

 

Equation (4) and equation (5)
†
 are two empirical equations which are developed based 

on numerous kinetic and equilibrium measurements at 20 °C. 

 

lg𝑘2(20 °C) = 𝑠𝑁(𝑁 + 𝐸)  (4) 

 

lg𝐾 (20 °C) = 𝐿𝐵 + 𝐿𝐴     (5) 

 

The rate constant k and equilibrium constant K can be described with equation (6) and 

equation (6). 

 

𝑘 =  
𝜅𝑘B𝑇

ℎ
𝑒

−Δ𝐺‡

RT                     (6)  

          

                           𝐾 =  𝑒−
𝛥𝐺0

RT                               (7) 

If we transform equation (6) and (7) into common logarithm form, we get equation (8) and 

equation (9).  

 

lg𝑘 =  −
Δ𝐺‡

2.303RT
+ lg

𝜅𝑘B𝑇

ℎ
   (8) 

 

lg𝐾 =  −
Δ𝐺0

2.303RT
                  (9) 

 

If we apply equation (8) for the reactions following second order kinetic and combine with 

equation (4), we get equation (10). 

 

Δ𝐺‡ =  −2.303RT𝑠𝑁(𝑁 + 𝐸) + 2.303RTlg
𝜅𝑘B𝑇

ℎ
   (10) 

 

                                                   
†
 Mayr, H.; Ammer, J.; Baidya, M.; Maji, B.; Nigst, T. A.; Ofial, A, R.; Singer, T. J. Am. Chem. Soc. 

2015, 137, 2580–2599. 
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If we apply equation (9) for the reactions following second order kinetic and combine with 

equation (5), we get equation (11). 

  

Δ𝐺0 =  −2.303RT(𝐿𝐵 + 𝐿𝐴)   (11) 

The Gibbs energy diagram for the reactions of a certain nucleophile Nu with different 

electrophiles E1 and E2 is shown in figure App. 5-1.  

 
Figure App. 5-1. Gibbs free energy diagram of the comparison for the reactions of one nucleophile Nu1 
with different electrophiles E1 and E2 

According to equation (10):  

 

Δ(Δ𝐺‡) =  −2.303RT𝑠𝑁(𝐸1 − 𝐸2) (12) 

 

According to equation (11): 

 

Δ(Δ𝐺0) =  −2.303RT(𝐿𝐴1 − 𝐿𝐴2) (13) 

 

Equation (12) divided by equation (13): 

 

𝑑𝛥𝐺‡

𝑑𝛥𝐺0
=  𝑠𝑁

𝑑𝐸

𝑑𝐿𝐴
    (14) 

 

Because ΔE/ΔLA is constant for the reactions with different nucleophiles, sN reveals the 

relative change between the Gibbs energy of activation and Gibbs energy of reaction 

when a certain nucleophile reacts with different electrophiles. Because the change of 

Gibbs energy of reaction between any nucleophile with two certain electrophiles keeps 

constant according to equation (20), sN indicates also the change of Gibbs energy of 

activation when a certain nucleophile reacts with different electrophiles. 
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The correlation between the electrophilicity parameter and the Lewis acidity parameter of 

benzhydrylium ions E8 to E18 is depicted in Figure App. 5-2. 
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Figure App. 5-2. Correlation between the electrophilicity parameter and the Lewis acidity parameter of 
benzhydrylium ions E8 to E18 

The slope of the correlations of the electrophilicity versus Lewis acidity of benzhydrylium 

ions in acetonitrile at 20 °C is around 0.8. On average, the change of the Gibbs free 

energy of activation is about half of the change of the the Gibbs free energy of reaction 

when sN parameter is about 0.65 and the change of the Gibbs free energy of activation 

approximately equals the change of the Gibbs free energy of reaction when sN parameter 

is 1.2. 


