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Summary 

Bottom-up reconstituting well-characterized functional molecular entities, parts and modules 

towards a synthetic cell will give new insights into the general mechanisms and molecular origins 

of life. However, a remaining central challenge is how to organize cellular processes 

spatiotemporally from their component parts in vitro.  

To this end, we developed a 4D regulation toolbox to facilitate a bottom-up reconstitution in both 

time and space. The spatiotemporal regulation of the 4D toolbox covers the aspects from dynamic 

gene transcription & translation, reversible protein interaction, spatially protein positioning, 

sequential protein assembly, extends to defining geometrical membrane boundaries and 

mimicking cellular anisotropic microenvironment.   

Firstly, we developed a thermo-genetic regulation toolbox based on synthetic RNA thermometers, 

for temporally controlling protein expression in vitro. We validated RNA thermometers from in 

vivo to in vitro and tuned RNA thermometers through utilizing cell free protein synthesis system. 

Then we generated the thermo-sensitive protocell by encapsulating thermo-regulated transcription 

and translation machine in water-in-oil droplets. With the temperature sensing devices, the 

protocells can be operated with logic AND gates, differentially processing temperature stimuli into 

biological signals. 

Secondly, we engineered the PhyB-PIF6 system to spatiotemporally target proteins by light onto 

model membranes and thus sequentially guide protein pattern formation and structural assembly 

in vitro from the bottom up. We show that complex micrometer-sized protein patterns can be 

printed on timescales of seconds. Moreover, when printing self-assembling proteins such as the 
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bacterial cytoskeleton protein FtsZ, the targeted assembly into filaments and large-scale structures 

such as artificial rings can be accomplished.  

To develop an artificial anisotropic membrane environment, we introduced a 3D printed protein 

hydrogel device to induce pH-stimulated reversible shape changes in trapped vesicles. 

Deformations towards unusual quadratic or triangular shapes can be accomplished. Mechanical 

force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape 

deformations. Moreover, the shape-tunable vesicle provides a spatially well-defined 

microenvironment for reconstituting shape-dependent protein systems, such as reaction-diffusion 

system that request explicitly non-spherical geometries.  

By taking advantages of the 3D printed hydrogel, we programmably engineered contractible 

scaffolds for actin-myosin motor reconstitution in 3D space. Nanoscale actomyosin motor as a 

bio-actuator could generate, transmit active contraction and then drive large-scale shape-morphing 

of complex 3D hydrogel scaffolds.   

In summary, by developing the spatiotemporal toolbox, this thesis introduces a promising step 

towards establishing bottom-up reconstitution in space and time, which could also guide future 

efforts in hierarchically building up the next level of complexity towards a minimal cell. 
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1 Introduction 

The material in the introduction section draws heavily on the author's previously published 

literature review, “Jia, H., Schwille, P. (2019). Bottom-up synthetic biology: reconstitution in 

space and time. Current opinion in biotechnology, 60:179–187.”.  

Source online: https://doi.org/10.1016/j.copbio.2019.05.008 

Reprinted with permission have been granted by the publisher.

 

Bottom-up reconstituting well-characterized functional molecular entities, parts and modules 

towards a synthetic cell will give new insights into the mechanisms and origin of life. However, a 

remaining central challenge is how to organize cellular processes spatiotemporally from their 

component parts in vitro. To archive the end towards a fully functional synthetic cell, cutting edge 

tools and technologies have been developed to facilitate such a bottom-up reconstitution in space 

and time, particularly with regard to the following aspects:  

(1) Reliable model membrane- and microenvironments;

(2) Dynamic genetic regulation and self-sustaining transcription and translation machinery;

(3) Spatial organized cytoskeleton that supports the biological architecture and cellular self-

reproduction in space.
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1.1 The prospect of building a synthetic cell 

The hierarchical order of cellular structures and processes arises from the self-assembly and self-

organization of mutually interdependent species of molecules, molecular complexes, and 

supramolecular entities in space and time. Molecular and cell biology has made tremendous 

progress in characterizing the various components and compartments of the cell independently; 

however, the remaining central challenge is to understand how cellular processes can generally 

emerge by spatiotemporal organization from such a variety of components. In vivo, many cellular 

factors co-affect these spatiotemporal dynamics by modifying spatial structures, such as cell size 

and shape, membrane surfaces, cytoskeleton networks, scaffolding proteins, and the location of 

intracellular organelles. Moreover, the redundancy and complexity of molecular function elements 

seriously limits the dissection of cellular networks.  

To approach a holistic understanding of biological processes, a promising strategy is the 

abstraction from full cellular complexity, in favor of the definition of a minimal system that could 

reproduce in essence the same functionality. This systematic reconstitution of cellular functions 

module by module is called bottom-up synthetic biology. Through recombining these well-

characterized functional molecular entities, parts and modules towards a synthetic cell, one ideally 

also gains new insights into the general mechanisms and molecular origins of life as a whole. 

Successful examples of functional bottom-up reconstitution comprise various cytoskeletal, 

molecular motors, and membrane trafficking systems. In order to accomplish large-scale 

biomimetic behavior and realize the vision of a fully functional synthetic cell beyond the molecular 

or subcellular scale, a large number of cutting-edge tools or technologies, like cell free protein 

synthesis technology, genetic regulation, micro- and nano-packaging, micropatterning technology, 

DNA/RNA nanotechnology, microfabrication and microfluidic technology, have been developed 

or favorably employed to this end. In this section, we will focus on summarizing these advanced 

approaches that, in principle, facilitate the bottom-up reconstitution in time and space, with 

particular focus on the following aspects: cell membrane and microenvironments, 

transcription/translation, as well as cytoskeleton organization and cell division (Figure 1). 
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Figure 1. Schematic overview of the multiple aspects, tools and technologies that facilitate the 

spatiotemporal assembly of functional modules and parts towards a synthetic cell from the bottom 

up, as discussed in this article.  
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1.2 Membranes and microenvironments 

Phospholipid membranes act as a boundaries and interfaces between the cells and their 

environments, maintain stable inner microenvironments with distinct compositions and functions, 

control the exchange of substances between the inside and the outside, template the cytoskeleton 

to provide distinct cell shapes and shape transformations, and harbor the many protein machineries 

that help carrying out all of these functionalities efficiently. Similar to the natural cell, membranes 

usually represent the most basic compartmentation units for synthetic cells.  

To create cell-like microenvironments, plasma membranes are mimicked by more or less 

heterogeneous assemblies of synthetic or natural lipids. So far, diverse model membranes have 

been developed and tuned with respect to composition, asymmetry, structure and other mechanical 

properties1. For different aspects of spatial control, model membranes with different 

dimensionalities were constructed, ranging from two-dimensional supported lipid bilayers (SLBs) 

to three-dimensional giant unilamellar vesicles (GUVs)(Figure 2).  

1.2.1 2D model membrane 
Solid supported lipid bilayers, featuring many properties of biological membranes, but with a 

simplified and well-controlled topology, have recently received great interest in bottom-up 

synthetic biology in spite of their technical limitations. The SLBs are stable and particularly well 

accessible to surface probe techniques; however, the static support limits their application with 

regard to all machineries that induce membrane transformation. In order to customize them for 

proteins that sense geometry or particular cues, such as membrane composition or specific 

receptors the substrate surfaces need to be functionalized. This can be done by directly patterning 

membrane or proteins on the surfaces with high spatial precision. For spatially confining two-

dimensional membrane structures, micro-structured layers of gold can be deposited on glass 

substrates, to create flat membranes of defined dimensions and geometries on the non-coated area2. 

Such patterned membranes enable the definition of well-defined 2D membrane boundaries; 

however, because of the much larger scale of the patterned membrane patches compared to the 

scale of lipids or proteins, it is not suitable for applications that require specific molecular control. 

To accomplish protein localization on membrane with spatial accuracy on the single molecule 
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level, light based optochemical and optogenetic tools have thus been utilized to regulate protein 

properties and functions spatiotemporally. The attractivity of these approaches are particularly 

their specificity, ease of use, and the high application precision of light. The tools, such as light-

inducible chemically modified phospholipid anchors3 or photoactivatable chemical dimerization4, 

can be made biorthogonal for protein targeting on membrane. Compared with synthetic chemicals 

introduced to the biological system, optogenetic tools based on proteins in the visible spectral 

range are comparably specific, while more biologically compatible and reversibly applicable. 

Because of their low phototoxicity, protein based optogenetic tools are thus very promising in 

physiologically relevant studies. Diverse light-inducible protein interaction pairs were developed 

for controlling protein binding to membranes in vivo.  Recently, the engineered LOV proteins 

(iLID and Nano) have been applied to pattern proteins on GUVs; however, they have been operated 

monodirectionally, that is, controlled by just one wavelength, and spontaneously switch off in the 

dark5. Therefore, validating the tunable and reversible optogenetic tools in vitro are still under 

quest.  

With these patterning tools in hands, the boundaries of supported lipid membrane can be defined 

precisely and proteins can be localized spatially well-defined; however, due to neglect of 

information in Z axis, such a 2D supported membrane cannot implement the structural complexity 

of a real 3D cell microenvironment.   

1.2.2 2.5D and 3D model membrane 
For better mimicking the 3D features of cells, with respect to their particular shapes and scales, 

polydimethylsiloxane (PDMS) as soft polymer support can be templated with various topologies 

using microfabrication6. Microfabricated chambers functionalized by model membranes were 

developed as reaction compartments with restricted sample volumes (Figure 2). The 

microfabricated compartments are more closely resembling the rod-like shapes of, e.g., E.coli, and 

thus provide a better environment for reconstituting volume-dependent functions of proteins of 

that organism 7-8. However, regardless of whether glass, mica or PDMS are used to support a 

membrane, they all face the problem that a such defined model membrane is non-contractible and 

the compartments are usually not fully closed. To overcome these limitations, spherical and closed 

giant vesicles (liposomes) were created from cholesterol and natural non-toxic phospholipids. 



Introduction 

6 

Other concepts for building closed 3D compartments involve water droplets in oil phase, colloidal 

particles (colloidosomes), fatty acid vesicles, amphiphilic block copolymers (ploymersomes) and 

protein-lipid-systems (proteoliposomes) 9. Liposomes can be produced in bulk in different ways, 

like hydration, electroporation, extrusion, and solvent evaporation methods.  

Unfortunately, these bulk techniques offer a low degree of control, producing, e.g. liposomes with 

a large size range, typically low efficiency of encapsulation, and are sometimes incompatible with 

specific cellular modules 10. Recently, microfluidic technologies were thus employed, which 

dramatically improve encapsulation efficiency and homogenize the size range by generating and 

manipulating droplets and liposomes with high throughput on chip 11. Microfluidic devices were 

also used for implementing mechanical division of cell-sized liposomes 12; controlling liposome 

fusion, trapping 13, real-time analysis, sorting 14 and pico-injection of substrates into vesicles 

through the application of short electric pulses 15.  

Due to their high reproducibility, automation, and manifold of different manipulation features, 

microfluidic technologies provide a powerful toolkit for the bottom up reconstitution of biological 

systems in space and time. However, to yield an even higher precision of control on smaller spatial 

scales, DNA nanotechnology has recently been employed to develop fully new generations of 

artificial tools, mimicking natural objects that are otherwise hard to obtain in vitro at the nanometer 

scale. Prominent examples are DNA origami templates for controlling liposomes size 16; DNA 

nano-poles mediating substrates exchange 17-18, DNA scaffolds for membrane sculpting 19-20, 

functionalized DNA-based membrane anchors 21, DNA-programmed membrane adhesion 22, 

fusion 23 and liposome self-assembly. Such artificial DNA nano-devices will provide the synthetic 

cell with programmable parts through which preexisting biological components can be controlled 

to mimic natural components. Spherical vesicles are attractive starting points for constructing 

minimal living cells from the bottom-up. However, their spherical shape renders them rather 

inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell 

division. So far, several methods to template membrane vesicles and induce anisotropic structure 

in vitro have been developed, like microfluidics13, micropipette aspiration, optical tweezers, and 

dielectrophoretic field cages24. However, most of them require sophisticated technology or are 

unable to dynamically control the membrane geometry in a well-defined, i.e., precise and 
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programmable, manner. On the other hand, cell biology-derived tools like 2D micro-patterning 25 

and 3D soft lithography of hydrogel26 have been successfully applied to control interfacial 

geometry in order to define the extracellular environment. Since the development of 3D printing 

technology, rationally designed 3D objects can be produced from various materials on different 

scales. In future, 3D printed microniches or molds with smart materials would provide a proper 

way for rationally shaping vesicle and mimicking the dynamic native cell matrix, allowing us to 

create a spatially well-defined microenvironment.  

In cell biology, compartmentalization and organelle formation represent another level of 

spatiotemporal regulation. By separating and confining particular reaction volumes, the diffusion 

of the enzymes and substrates are limited, and thus, their efficiency can be optimized to promote 

specific enzymatic reactions even at low overall concentrations. Meantime, the reactions can be 

separated from each other, product can be dissipated and inhibitors kept away. Thus, in order to 

engineer a synthetic cell, uncoupling enzymatic reactions is an invaluable requirement for 

constructing higher-order functions in space. To address this aspect, synthetic multicompartment 

vesicles were generated by surfactant-assisted microfluidic strategies27. Concentric and/or 

pericentric monodisperse multi-compartments can be prepared at controlled sizes by assembling 

them hierarchically. Uniform multi-compartments result from de-wetting of double emulsion 

templates in a multi-step procedure28. Light-triggered enzymatic reactions have already been 

assembled in nested multi-compartment vesicles, which as reactors show promising application 

from bio-catalysis through to drug delivery29. Recently, photosynthetic artificial organelles were 

built in a proto-cellular system to mimic “chloroplasts”, in order to create a self-sustaining 

synthetic cell that provides an energy source and means of directing intra-vesicular reactions30. 

Instead of membrane organelles, synthetic membrane-less organelles were generated by fluid 

phase separation with intrinsically disordered protein domains, suggesting promising applications 

for packaging collections of proteins in engineered cells and protocells31. 

Such reproducibly engineered membrane systems provide stable inner microenvironments and 

basic spatial architectures, laying the technological foundation of building a synthetic cell from 

the bottom up.  In order to build a fully active cellular system, two essential factors need be 

considered: (1) a dynamic genetic regulation, i.e., a self-sustaining transcription and translation 
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machinery; (2) a spatially organized cytoskeleton that mechanically supports the biological 

architecture and enables cellular self-reproduction in space. 

Figure 2. 2D and 3D model membranes defined microenvironments in different dimensions.  

1.3 Cell free transcription-translation machinery 

In nature, cells can respond to external stimuli and self-regulate homeostasis by the conversion 

of DNA to RNA (transcription), then to protein (translation), thereby orchestrating diverse 

8 
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cellular processes at distinct time points, in which the various biological components are 

involved, in particular: the genome, the transcription-translation machinery, and sensory/

signal transduction modules.  

1.3.1 Transcription and translation regulation tools 
In vitro, various cell free protein synthesis (CFPS) systems have been implemented as a 

transcription-translation platform for genetic regulation tools that allow dynamic control of protein 

production and function in vitro. CFPS systems harness the core transcription and translation 

machinery from a living organism source, via either purified biomolecules or crude cell lysates. 

The advances in CFPS are reviewed elsewhere 32. In order to supplement the regulation for CFPS 

as in vivo, E. coli sigma factors, different RNA polymerases (T7, SP6 and bacterial E. coli RNA 

polymerases), and a set of repressors were adapted and used for controlling CFPS transcription 

rates 33. In addition to proteins regulators, RNA molecules themselves can provide regulation with 

respect to transcription (RNA transcriptional attenuators 34, toehold switches35) and translation 

(riboswitches 36, RNA thermometers 37). Due to their small sizes, structural flexibility, 

programmability and directly controllability, RNA tools represent an attractive alternative toolbox 

of regulatory elements for engineering a minimal system in vitro.  

1.3.2 Cell free genetic circuits 
Based on these basic tools, elementary circuit motifs were constructed for a more rational and logic 

operator-based controlling, e.g. feedback loops 33 38, feed-forward loops 39 and in vitro ring 

oscillators 40. Such in vitro gene circuits can process logically within the cell free synthetic 

environment, allowing us to rationally define systems-level behavior over time. Yet, controlling 

expression of one or only a few proteins, as it is so far possible in vitro, cannot achieve the 

complexity of even a minimal cell, in which thousands of different proteins should be produced 

and organized hierarchically. In contrast using a top-down approach, minimal genomes can be 

rationally designed, chemically synthesized and successfully established in living cells 41-42. 

Although it has so far not be achieved, it is conceivable to combine a minimal genome and CFPS 

to arrive at a fully active synthetic cell in the future. To reach this highly ambitious long-term goal 

of a synthetic cell, relying on the time-dependent genetic regulations only, without engineering 

their spatial topology, seem not to be sufficient. 

9 
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1.3.3 Compartmentalized cell free system towards a synthetic cell 
In cells, the spatial organization of the transcription-translation machinery can additionally rely on 

the modulations of diffusion in crowded and small-volume microenvironments. To mimic such 

small and crowded environments, CFPS was encapsulated into cell-sized microcompartments. The 

transcription and translation efficiency can be enhanced by such a micro-compartmentalization, 

due to more frequent collisions of the functional elements, while the crowded environment may 

limit the diffusion rates 43; in fact, the encapsulated CFPS appears to show stochastic behavior. 

The gene expression noise in the crowded environment could be quantified using high throughput 

droplet microfluidics, enabling us to take into account the influence of stochasticity when 

reconstituting CFPS in a picoliter volume environment 44.  

Self-sustainment represents an essential property of an autonomous living cell, which again relies 

crucially on the spatial self-organization within cell or with environment. DNA replication and the 

production of sufficient amounts of functional proteins for the daughter cells are the key 

requirements to sustain the cell cycle. In a recent effort towards a synthetic minimal cell, the DNA 

replication machinery of the Φ29 virus was reconstituted in a cell-free gene expression system. 

The self-replicated genetic information could encode specific proteins in liposome-based synthetic 

cells, providing the chassis for evolving functions in a prospective synthetic cell 45. Metabolism, 

i.e., substrate cycling between the cell and its environment, needs to provide the required energy

and building blocks in order to sustain the three- and four dimensional self-assembly and self-

organization of cellular structures and dynamics. Up to now, different functional metabolic

pathways have been rebuilt in CFPS (reviewed elsewhere46). In the presence of  membrane

nanopores 47, either natural transporters or artificial pores, new substrates can pass the membrane,

feed and sustain a long-term biological process in vitro. In such self-renewing systems, it is

possible to engineer genetic circuit interactions within and even between synthetic minimal cells48.

Via exchanging the quorum sensing signals, chemical communication and unidirectional signaling

pathways can be processed between protocell-protocell, even protocell-cell49-51. Through

electrostatic binding based interaction, the predatory behavior was investigated in synthetic

protocell communities52. Mediating with micro-pores, molecules transfer, artificial signaling and

differentiation processes were demonstrated for realizing spatiotemporal dynamics in artificial

multicellular systems53-54. Another virtue of living cells and minimal cell models is their capacity
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to responding to external stimuli and self-regulation of homeostasis32, which is crucial for 

surviving adverse and fluctuating environment. So far, however, few experimental examples 

achieved protocells that could convert environmental stimuli, such as heat, into biological signals. 

Figure 3. Cell free protein synthesis (CFPS) components and their application in minimal cell 

models. CFPS contain a core transcription/translation machinery that can interface with a 

large range of genetic tools and regulatory elements to control and program protein 

production. New metabolic pathways can increase the productivity of the CFPS, thereby 

mimicking the high protein production efficiency of a cellular system. In addition, deletion 

or repression of unrelated metabolic pathways can further increase efficiency by funneling 

energy consumption into protein expression. Generating micro-compartments with microfluidic 

devices has pushed CFPS towards ultra-high throughput applications. Accurate computational 

modeling of the various functional bio bricks will help to improve their robustness, utility and 

assist in their integration. Collectively, these methods can be used to construct model systems 

to investigate in depth genetic circuits or fundamental aspects of self-organization that are 

difficult to investigate in vivo, and ultimately 

11 
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facilitate engineering of artificial cell factories. 

1.4 Cytoskeleton for spatial control and support 

In vitro, model membranes can be precisely shaped in two and three dimensions in different ways, 

as described above. In biological cells, their shape is usually inferred by protein assemblies outside 

(as often the case for bacteria) or inside of the membrane. These internal structures of mostly 

eukaryotic cells are consequently called cytoskeleton, and built up by several species of filament-

forming proteins. Their self-organization in space and time does not only form static support and 

maintains a certain cellular shape, but also plays indispensable roles in many active processes, like 

intracellular cargo delivery, cell division, and cell movement. To accomplish these functions, the 

cytoskeleton must be permanently restructured, based on the activity of a multitude of cytoplasmic 

proteins. So far, many minimal building blocks of both prokaryotic and eukaryotic cytoskeletons 

have been identified, abstracted and reconstituted functionally in vitro. For the bacterial 

cytoskeleton, the cell division-related cytoskeletal tubulin homolog protein, FtsZ, was 

reconstituted onto model membrane through the actin-related protein FtsA or artificial membrane 

anchors. It has been shown to self-organize into complex patterns, such as fast-moving filament 

bundles and chirally rotating rings 55-56. Additionally, its spatial modulators, the oscillating Min 

CDE system, were reconstituted into self-organizing waves and oscillations, which act as spatial 

cues to dynamically control the positioning of FtsZ networks in vitro 57. Intriguingly, the Min 

system has recently been shown to act as a generic cue for spatially regulating completely unrelated 

membrane proteins, far beyond FtsZ and other divisome components. It thus opens up exciting 

perspectives for organizing reaction networks, but also non-bacterial cytoskeleton elements, into 

defined patterns and gradients on membranes 58. 

To mimic cortical actin present in eukaryotic cells, a minimal system consisting of filamentous 

actin (F-actin) and myosin-II motors was reconstituted on the SLBs 59. Together with the synthetic 

myofilaments formed from the actin motor myosin-II in vitro, force can be generated upon ATP 

addition, leading to rapid actomyosin contractions in the form of asters that are able to introduce 

changes in the membrane lateral structure 59. To control the dynamics of the actin cortices, other 

actin-associated proteins were introduced into the minimal system, e.g. anchor proteins, nucleation 

factors, elongation factors, stabilizing cap protein and signaling factors.  
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The mechanisms underlying these minimal cytoskeleton systems can be quantitatively elucidated 

by biochemical reconstitution of the network assembly and remodeling, in bulk solution or within 

biomimetic devices. It can be investigated how geometrical boundaries affect the dynamic self-

organization and contractions of the highly ordered network 2, 60. The minimal FtsZ cell division 

system and its spatial cues have been reconstituted within patterned membranes featuring  artificial 

space boundaries, like 2D patterned membrane 2 or 2.5D PDMS-supported microchambers 8. To 

emphasize the polarity of actin networks, micropatterning technologies were employed to spatially 

control the nucleation of actin filament architecture in certain geometries with two dimensions 60 

and investigate the  force generation 61-62. Through both, micropatterning of actin nucleation 

factors and biochemical control of actin filament polymerization, it becomes possible to 

reconstitute the assembly of complex branched actin architectures in 3D 63.   

2D DNA origami scaffolds were also used to precisely pattern myosin and systematically dissect 

the role of motor-motor interactions in the collective behavior 64. As classical micropatterning is 

limited to two-dimensional surfaces, 3D devices, like microfabricated chambers 65, microfluidics 

chips 66, water-in-oil droplets 67 and cell-sized liposomes 68-69 were used to mimic cell size, shape 

and microenvironment in 3D. Artificial cytoskeletons with diverse programmable features were 

created by DNA nanotechnology. For example, a Y-shaped DNA cytoskeleton can form a dense 

network structure in the gel phase, which can be used as artificial cytoskeleton for stabilizing 

liposomes 70. Even synthetic nucleic acid walkers 71-72 were engineered for long-term tunable cargo 

transportation in space. Myosin-patterned DNA nanotube rings were created for engineering 

circular gliding of actin filaments 73. Artificial myosin filaments were functionalized with DNA 

nanotube scaffolds to enable large-scale movement and force generation, representing the first step 

towards reconstituting muscle activity 74.  

Last but not least, division is one of the most obvious and distinctive features of living cells. In 

modern cells, large protein machineries are devoted to the spatial organization and orchestration 

of the division process. In order to approach synthetic cell division, a minimal E. coli divisome 

based on FtsZ and some of its regulators was encapsulated into the lipid vesicles, to particularly 

attempt the induction of membrane deformation, with the final goal of budding or fission. FtsZ 

with either natural or artificial membrane anchors has been found to form curved filaments or 

proto-rings inside or outside liposomes, which can deform soft giant vesicle membranes 
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reminiscent of the induction of Z-ring constriction, resulting in concave depressions, convex 

bulges, of membrane tubulation 75. Although some liposomes have apparently even undergone 

fission based on FtsZ activity, quantification of results has been difficult because of the low 

reproducibility of well-defined Z rings assembled within liposomes. Even though Z-rings can 

definitely form inside liposomes, their localizations were so far randomly distributed, due to their 

highly dynamic properties, and their sizes too small to induce large-scale spatial modulations of 

giant vesicles.  

Likewise, the reconstituted actomyosin cortices could generate tension and drive shape changes of 

cell-sized liposomes 76. Actomyosin was reconstituted as a contractile ring inside the cell sized 

liposome, but without membrane deformation activity reported 69. Although in some cases, the 

membrane has been shown to be deformed by a cytoskeleton mimicry, it still remains a grand 

challenge to fully reconstitute an active division machinery in vitro that can mediate a mother cell 

to spontaneously or controllably divide into two daughter cells. Due to the sophisticated 

spatiotemporal regulation of the cell division process in nature, it will be one the key challenges 

for bottom-up synthetic biology to actually define and bring together a simplified set of functional 

modules to accomplish this task. Recently, by help of microfluidic pico-injection technology, 

purified transmembrane and cytoskeleton proteins could be sequentially loaded in stabilized GUVs, 

which shows great promise at least for the efficient assembly of functional parts in suitable 

compartments 15.  



Objective of this thesis 

1.5 Objective of this thesis 

The bottom-up reconstitution of functional parts towards a minimal living system is a great 

challenge of modern synthetic biology, which will likely persist for many more years to come, but 

deliver not only fully new insights into the fundamental properties of life, but also into many still 

hidden or insufficiently understood cellular mechanisms. Of particular interest is the hierarchical 

assembly and spatiotemporal connection between the many fundamental parts that have already 

been, or await to be, identified and successfully reconstituted in simplified environments.  

Ideally, genetic parts and circuits provide a temporal regulation for the biological processes in 

vitro, either in bulk environment or in crowded microcompartments. Until now, the in vitro 

developed functional parts are still the tip of the iceberg, compared with the many different cellular 

functionalities in nature. Moreover, to render various different tools to function compatibly in the 

same compartment and to sustain thousands of reactions over extended periods of time are still 

crucial challenges for any cell-free technology. Another key issue is the efficient regulation of 

“cells” by their environment, and the respective communication with it. With regard to proper 

compartmentation, two- and three-dimensional model membrane systems have been shown to 

maintain stable microenvironments and provide biocompatible spatial boundaries with potentially 

tunable permeability. Supported by polymers or protein-based coats and filaments, these model 

membranes can be designed to resemble natural cell membranes in topology and composition, but 

are still far from active cellular membranes that can regulate their own transformation. Artificial 

tools enabling cell-shape mimicries in 3D and controlling the localization of cytoskeleton elements 

on a microcompartment are still required to aid the functional reconstitution and the orchestration 

of individual parts into regulatory networks, in which some reactions serve as spatiotemporal cues 

for others.   

This thesis therefore has distinct objectives to develop the methodological tools and technologies 

that facilitate a bottom-up reconstitution from different dimensions, both in time and space.  

Time: 

1) To generate self-sustaining protocells by encapsulating transcription and translation 

machinery in droplets. To engineer a synthetic genetic regulation toolbox for rationally

15 
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controlling transcription and translation in protocells, and enabling protocells logically sense 

and respond to environment stimuli, such as heat.  

Space:  

2) To spatiotemporally position and pattern protein on 2D and 3D model membrane and

sequentially instruct cytoskeleton protein self-assembly in cell free system, such as E. coli cell

division primary factor FtsZ.

3) To reversibly shape and program freestanding membrane vesicles in order to mimicking

the spatial anisotropic microenvironment. To explore the boundary geometry effect of the

shaped vesicles to the membrane dynamics and the molecular reaction-diffusion.

4) To engineer contractible artificial scaffolds with biocompatible soft materials. To

reconstitute minimal cytoskeleton, such as actin-myosin system, on the scaffolds

for active contraction investigation.
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2 Results 

This cumulative thesis consists of two published papers and two manuscripts. 

Jia, H., Heymann, M., Härtel, T., Kai, L., & Schwille, P. (2019). Temperature-sensitive protein 
expression in protocells. Chemical communications, DOI: 10.1039/c9cc02734c. (First Author) 

Jia, H., Kai, L., Heymann, M., García-Soriano, D. A., Härtel, T., & Schwille, P. (2018). Light-
induced Printing of Protein Structures on Membranes in vitro. Nano letters, 18(11), 7133-7140. 
(First Author) 

Jia, H., Litschel, T., Heymann, M., Eto, H., Franquelim, Henri G., & Schwille, P. Shaping 
membrane vesicles in 3D-printed protein hydrogel cages, submitted.(First Author) 

Jia, H., et. al., Active forces driving 4D protein hydrogel origami, in preparation. (First Author) 



18 

Publications 

Time dimensional regulation tools: 

2.1 Temperature-sensitive protein expression in protocells 

In this manuscript, we engineered a synthetic RNA thermometers based temperature regulation 
toolbox, which enables protocells selectively sense and respond to heat. Based on the logic 
temperature-sensing genetic devices, the protocells can differentially process temperature stimuli 
into biological signals. Additionally, with respect to bottom-up reconstitution, temperature 
dependent differential regulation of protein expression will enable us to establish reaction schemes 
that require a delicate concentration ratio and dynamic expression in time.  

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. 

Source online: DOI: 10.1039/c9cc02734c 
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Temperature-sensitive protein expression
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We engineered a synthetic temperature regulation toolbox to enable

protocells to sense and respond to heat, utilizing RNA thermometers.

The thermo-sensitive protocells were generated by encapsulating

temperature feedback transcription/translation machinery in droplets.

Based on these temperature-sensing devices, the protocells can be

operated with logic AND gates, differentially processing temperature

stimuli into biological signals.

The construction of a minimal cell or protocell from the
bottom-up may deepen our understanding of the essence of
cellular life and its origin on earth.1 It also offers new avenues
for applications in biotechnology, medicine, and environmental
engineering.2 Recent advances in protocell design also reinvigo-
rated interest and improvements of cell-free protein synthesis
(CFPS).3 CFPS reconstitutes the components of the cellular
transcription and translation machinery for protein synthesis
de novo, thus avoiding purification. Encapsulated into emulsion
droplets or lipid vesicles, CFPS provides a versatile platform to
specifically utilize protein functionality, ultimately paving the way
for the construction of complex living systems from the bottom
up.4 A variety of synthetic biological circuits have been adapted
for dynamically controlling transcription and translation of
protocells, such as negative/positive feedback loops.4,5 These
have been used to regulate different components within a
protocell, but also to achieve global communication between
protocell communities.6–9 Addition of micro-pores, molecule
transfer, artificial signalling and differentiation cascades achieved
and improved spatiotemporal dynamics in multicellular artificial
cell models.10,11 However, one key virtue of living cells and
minimal cell models is their capacity to selectively respond to
external stimuli and to self-regulate homeostasis,12 which is
crucial for surviving adverse and fluctuating environments.
With regard to the aspects of resilience and adaptation to the

environment, protocells are still much inferior to the standards
of nature. In particular, few experimental studies achieved
protocells that could convert physical stimuli, such as heat,
into biological signals. In living bacteria, e.g., stress response to
heat is essential for effective adaptation to environmental
fluctuations.13 On the other hand, with regard to biotechno-
logical applications, a temperature-sensitive model system
would be ideally poised for efficient control. Thus, implementing
a temperature-sensing module for converting temperature
stimuli into biological signals would greatly improve the design
of protocells, mimicking natural stress responses, or establishing
an easy to operate control element. Temperature serves as a well-
defined signal that could be used by engineered protocell or
bacterial therapeutics to detect and respond to host conditions, or
spatially targeted external triggers such as focused ultrasound.14

Here we describe the engineering of a protocell that can
respond to temperature stimuli, using temperature sensitive
non-coding RNA sequences that we refer to as RNA thermo-
meters (RNATs). Natural as well as artificial RNATs have been
discovered in vivo15 and designed in vitro.16,17 Most commonly,
these RNATs are located in the 50-untranslated region of the
messenger RNA, and fold into secondary structure to control
translation by blocking ribosome binding sites (RBS) at low
temperature. The RNAT loop unfolds when temperatures
exceed a defined threshold, to release the RBS for subsequent
gene expression.18

We designed synthetic RNATs based on a simple RNA-melting
mechanism.19 Accordingly, we implemented a suite of synthetic
RNATs to form a single stem-loop structure, which is composed of
three elements: a RBS sequence, a complementary anti-RBS (ARBS)
sequence and the loop sequence (Fig. 1a). A reporter gene cassette
containing a T7 promoter, RNAT, and red fluorescent protein (RFP)
was used to validate various constructs (Fig. 1b). Transcription of
mRNA was driven by T7 promoter and its translation was subse-
quently controlled by the RNA thermometer. We selected the well-
established RNAT3 thermometer15 to validate the functionality of
our gene cassette using the in vitro PURE reaction20 by quantifying
RFP fluorescence at 37 1C and 42 1C. At 37 1C, RNAT3 inhibited the
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PURE reaction from expressing RFP (‘‘off’’ state), analogous to
previous in vivo results.15 At temperatures of 42 1C, a ‘‘jump’’ in
expression could be observed (‘‘on’’ state). At 42 1C the PURE
reaction under RNAT3 regulation yielded 3.3 times higher RFP
yields compared to 37 1C. Switching from ‘‘off’’ to ‘‘on’’, the relative
expression ability compared to a control has been increased about
sevenfold (Fig. 1c). Ionic strength influences the stability of RNA
secondary structure.21 The higher Mg2+ concentration can stabilize
the RNAT3 structure; consequently, inhibit its switching in the
PURE system (Fig. S1, ESI†).

We tuned RNATs activation temperatures by utilizing a cell-
free transcription/translation system in the test tube (Fig. S2,
ESI†). A series of RNATs with different minimum free energies
was designed through the RNAfold Web Server and inserted
into the reporter gene cassette. New RNATs contained the
introduced base pair mismatches into the stem. Their melting
temperatures were verified through coupled cell-free transcription
and translation at different temperatures, while monitoring RFP
synthesis by a fluorescence plate reader assay. By avoiding the need
for cell culturing, this screening approach can be at least three days
shorter in comparison to conventional in vivo approaches. This
significantly accelerates the design and validation process.

The screen obtained three excellent candidates derived from
the original RNAT3 (Fig. 1d and e). While RNAT3 dehybridized
at 40 1C15, the RNAT3-1 mutant sequence had a threshold
temperature of 37 1C, while the final RFP expression yield
was unaffected. RNAT3-2 had a transition temperature of
35 1C. The switching behaviour of RNAT3-3 was similar to
RNAT3, but with overall reduced expression. Considering the

sequence of the RNATs, since the bond strength of C–G pair is
stronger than U–G, mutation from C to U in the mismatch of
the RBS region would make the stem-loop easier to open.
Therefore, the switching temperature of RNAT3-2 was reduced,
while the expression was enhanced. Conversely, the RNAT3-3
mutation of (G to A) stabilized the loop structure, resulting in
the lowest observed expression level. RNAT3-1 contained both
mutations, thus featured with all the factors of RNAT3, RNAT3-2
and RNAT3-3. Owing to the balance effects of the two sites, RNAT3-1
could maintain similar expression ability with the original RNAT3;
meanwhile it switched on at lower temperature and yielded 30%
weaker expression level compared with RNAT3-2. This toolbox of
different RNTAs provides us with a variety of different expression
control modules in dependence of temperature (temperature
sensors). In vitro designed RNATs could also work in vivo, and
showed similar ‘‘on’’ and ‘‘off’’ manners (Fig. S3, ESI†).

Based on these results, we then prototyped a temperature
sensitive protocell model by co-encapsulating the thermometer
controlled gene circuits and the PURE transcription/translation
machinery in picoliter emulsion droplet compartments (Fig. 2a).
Emulsion droplets were formed through mechanical agitation, to
disperse the aqueous phase into HFE7500 fluorinated oil with a
PFPE-PEG-PFE biocompatible surfactant.22 The resulting micro-
emulsion droplets are stable against coalescence for days and can
tolerate temperature fluctuations. We encapsulated the RNAT3-1
controlled cell-free protein synthesis system into water-in-oil
droplets (Fig. 2b). Protocells programmed with RNAT3 expressed
RFP (red) signal at 40 1C, but were insensitive to 35 and 37 1C
(Fig. 2d). In turn, RNAT3-1 protocells were activated by lower
temperature around 37 1C. Both did not express RFP (‘‘off’’)
at 35 1C incubation. Thus, consistent with our previous bulk

Fig. 1 Validating RNATs for cell free protein synthesis. (a) RNA thermo-
meter and stem loop secondary structure simulated with RNAfold. Bottom:
Mountain plot and positional entropy plot of RNAT3, in which the height
indicates the number of base pairs enclosing the base at position 0. (b) Scheme
of cell free protein synthesis test-tube reaction used to validate RNA thermo-
meter construct. (c) Relative function of RNAT3 was verified by PURE cell free
protein synthesis at 37 1C and 42 1C. (d and e) Tuning RNATs in cell free system.
(d) Sequence changing and structure simulation of three good candidates after
cycling improvement. (e) Functional investigation at different temperatures.

Fig. 2 (a) Scheme of temperature sensitive protocell created by encap-
sulating transcription/translation machinery into emulsion droplets. (b)
Fluorescence intensity of RFP synthesized in thermal protocell at different
temperatures. (c and d) Droplet protocell variants with different RNATs can
sense and respond to specific temperatures. Scale bar, 20 mm.

Communication ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
M

ay
 2

01
9.

 D
ow

nl
oa

de
d 

on
 5

/1
7/

20
19

 1
0:

11
:0

8 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9cc02734c


This journal is©The Royal Society of Chemistry 2019 Chem. Commun.

experiments, RNATs laden protocells responded specifically to
different temperatures. The results confirm that synthetic RNATs
endowed the protocells with the ability to convert ambient
temperature into a specific biological response, demonstrating
a direct connection between the protocell and environmental
temperature cues.

Dynamic logic circuits capable of controlling multiple gene
functions at different temperatures are required to further
integrate thermal protocell responses with other metabolic
cues. Such genetic logic circuits would enable a synthetic cell
to initiate different biological functions in a defined workflow
to ultimately connect a functional biological network to specific
thermal cues in vitro. In particular, differential expression of
proteins in response to defined environmental settings is an
elegant way of titrating intracellular reactions. Towards this
goal, we engineered a multiplexed protocell capable of reporting
metabolic activity through EGFP fluorescence, while simulta-
neously reporting temperature through RFP fluorescence. Expres-
sion levels of enhanced green fluorescent protein (EGFP) and RFP
in picoliter droplets under constitutively active T7 promoters were
identical for all investigated temperatures (Fig. S4, ESI†). We then
combined constitutively active EGFP expression with RFP expres-
sion under RNAT3-1 control (Fig. 3b). As expected, only EGFP was
detected for low temperature of 35 1C. Although the stretch of
DNA transcribed into an RNA molecule, the translation of RFP
was blocked by RNAT3-1. When the temperature was shifted to
42 1C (above the 37 1C threshold), co-expression of RFP and EGFP
inside of microcompartments was observed (Fig. 3c and Fig. S4,
ESI†), demonstrating that the thermal genetic multiplexer can

enable the protocells to selectively transform expression of differ-
ent genes in response to a changing environment.

Controlled microfluidic encapsulation into identically sized
protocell droplets was then carried out in order to access
response fluctuations. We measured the fluorescence intensity
of EGFP (pCoofy1-T7-RBS-EGFP) and RFP (pCoofy1-T7-RNAT3-
1-E1010) per droplet for a population of 43000 droplets every
10 min, allowing us to track the behaviour of protocell popula-
tions with thermal multiplexer. Intriguingly, in the initial half
hour, the protocell population showed almost homogeneous
expression for both independent genes, egfp and rfp (Fig. 3d).
Afterwards, the protocell population started to differentiate
over time, especially RFP expression noise accumulated over time
(Fig. 3d, e and Fig. S5a, ESI†). This may be due to stochastic on/off
switching of the RNATs that leads to slight differences in expres-
sion rates (Fig. S5b, ESI†). Such stochasticity is inherent to bio-
chemical gene expression,23 and may further be amplified through
inhomogeneous distributions of materials among different
bioreactors.23,24 The long-time moderate heat stress (42 1C) may
reduce the maturation rate and decrease fluorescence,25 which may
also be reason of the overtime change.

In a next step, we extended our protocell expression control
architecture to implement a temperature sensitive AND gate,
enabling protocells sensing both chemical and thermal signals
(Fig. 4). Different published logic gates have been implanted as
gene circuits.26,27 We design our thermo-responsive AND gate to
function on both, the transcription and translation level (Fig. 4a).
The AND gate utilized chemical inducer and temperature as the
two independent inputs. A T7 promoter with a lac operon as
regulator was used to control transcription of the RFP, to respond
to the chemical inducer (IPTG). LacI repressor was constitutively
controlled by another T7 promoter (without lac operon). There-
fore, the transcription was kept off in the absence of IPTG. IPTG
mediated inhibition of the LacI repressor in turn activated mRNA
synthesis. After mRNA expression, our RNA thermometer inhibits

Fig. 3 Thermal-controlled multiplexer. (a) Droplet microfluidics used to
create protocells of identical size. (b) Design of the thermal-gene circuit
and the expected multiplexed thermal activation at different temperature.
(c) Representative images of thermal-multiplexer controlled protocell at
35 and 42 1C. Scale bar, 50 mm. (d) Microscopy images and intensity line
plots of droplets expressing slightly different amounts of EGFP and RFP.
Scale bar, 50 mm. The white dash line in the micrographs indicate the
position of measured curves. (e) Normalized EGFP versus normalized RFP
intensities of the whole population of droplets.

Fig. 4 Thermal mini-logic AND gate. (a) Illustration shows the design of
AND gate circuit. (b) Truth table and the output (RFP signal) of the thermal
mini-logic AND gate. Right: Time course curve of the AND gate outputs in
buck reaction. (c) The images show the thermal mini-logic AND gated
protocell preformed with different behaviours according to the truth table,
scale bar, 50 mm.
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translation at low temperature. This combined transcriptional
and translational based AND gate could produce different reporter
outputs according to different input combinations: the two input
signals temperature and IPTG (Fig. 4b). We validated the function
of this circuit in a bulk assay in test tube. Compared with the
highest background, the expression was increased about fourfold
(Fig. 4b). We then encapsulated the mini-AND into our water-in-
oil emulsion droplets to generate protocells that can integrate the
different signals. The compartmentalized protocells can perform
logic as well as the AND gate in the bulk reaction, by responding
to the chemical environment and temperature (Fig. 4c). This
minimal AND gate only required one inducible promoter, one
constitutive promoter, one repressor and one RNA thermometer.
Compared with other transcription based genetic AND gates,28

our approach reduced the amount of required gene parts by half.
The mini-AND gates would thus be more flexible for the applica-
tion of protocell engineering.

Artificial cells or protocells, which can be built by top-down
or bottom-up methods, have attracted much attention as sub-
stitutes for natural cells mimicking some of their essential
properties. However, despite the impressive progress to date,
there is still a wide gap between artificial cells and biological
cells. To fill this gap, several issues remain to be solved. A key
issue is the efficient regulation of ‘‘cells’’ by their environment,
and the respective communication with it.2 Our study
addressed this problem by developing a synthetic temperature
feedback regulation toolbox to render protocells responsive to
heat. We validated our RNA thermometer in vitro and developed
an in vitro strategy for tuning the thermal response rapidly and
simply. As a translation level regulator, RNA thermometers can
minimize the transcriptional redundancy of the genetic circuits
to make them easier to be implanted in a minimal cell model.

We generated protocells from the bottom-up by encapsulating
a temperature feedback transcription/translation machinery into
picoliter emulsion droplets. With these temperature sensitive
devices, the protocells can process different inputs in a determi-
nistic way. We demonstrated a thermally driven gene multiplexer
and a logic AND gate, capable of processing both thermal and
chemical signals. Such tunable temperature sensitive protocells
will enable a variety of applications in biotechnology, medicine,
and industry. For example, by their ability to detect temperature
changes, respectively optimized medical protocells may at some
point replace microbial therapy as a much safer way to produce
and deliver pharmaceuticals by sensing the fever of host. Alter-
natively, drug synthesis and release from protocells may be
controlled by focused ultrasound heating, potentially targeting
drugs directly to the specific sites in the host. With respect to
fundamental research, temperature dependent differential regu-
lation of protein expression, as shown here, will enable us to
establish reaction schemes that require a delicate concentration
ratio, such as the self-organization of MinDE proteins,29 in cell
free expression schemes. Undoubtedly, further development of
environment sensitive logics as shown here within artificial cells
or protocells will bring attractive opportunities to many fields.
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Methods 

Plasmid construction 

Plasmid constructions and DNA manipulations were performed as the standard molecular biology 

techniques. RNAT3-E1010 (E1010: http://partsregistry.org) was cloned from the plasmid 

(pSB1K3-J23119-RNAT3-E10101) and was inserted into pCoofy1 vectors (Life Technologies) 

with Xba-I at the 5’end of the coding sequence (CDS) and a Xho-I restriction site at the 3’end of 

the CDS. The mutants of RNA Thermometers were constructed with the whole plasmid 

mutagenesis method2. All the plasmid used in the cell free reaction were extracted from E. coli 

(TOP10) with the QIGEN medium plasmid extract kit. The investigation of the RNATs in vivo 

were performed in the E. coli(BL21DE3) strain as the reported method1. 

In vitro transcription/translation mixture. 

PURExpress® In Vitro Protein Synthesis Kit (NEB) was used in all the cell free reactions. The 

reactions were performed as 10µl Buffer A, 7.5µl Buffer B, 300ng DNA and the ddH2O, then 

incubated at 30°C, 35°C, 37°C, 40°C, 42°C for 2 hours using incubators or Thermomixer 

C(Eppendorf) and stopped by placing the tube(s) on ice. Then the fluorescence of the reactions 

were tested by the Infinite M200 PRO plate reader (TECAN). The controls used in the experiment 

were the black control and the positive control(Pcoofy1-T7-RBS-E1010) All experiments were 

performed in triplicate, and differences between the mean values were considered as significant at 

p<0.05 with T-test.

Droplet generation

Droplet produced with ‘shaken-not-stirred’ method

Different radii droplets were generated with the ‘shaken-not-stirred’ method. We mixed 5 µL cell 

free transcription/translation reaction mix with 25µL HFE7500 fluorinated oil with 1.8 % (w/w) 

PFPE-PEG-PFE biocompatible surfactant in PCR tubes (Eppendorf) using a benchtop vortex 

mixer for 60 s at maximum speed. Then the top droplets were absorbed in the 1.1*0.5mm glass 

vocabulary and the vocabulary was immobilized onto the glass slide for microscope 

measurements. This technique offers the possibility to generate a big range of different sized 

compartments in a very short time. 



Microfluidic method

Microfluidic chip based droplets were generated according to the published protocol3. Briefly, all 

fluids were loaded into syringes (BD Luer-Lock™ 1-mL syringe) mounted onto high precision 

syringe pumps (neMESYS base 120 with neMESYS 290N). We formed micro-droplets by 

injecting PURE system as the inner phase and HFE7500 fluorinated oil with 1.8 % (w/w) PFPE-

PEG-PFE biocompatible surfactant as the outer phase. 

Imaging and image analysis

Imaging was taken by confocal microscopy(LSM780) equipped with an argon laser, C-

Apochromat 40x/1.20 water-immersion objective and a incubation chamber. Laser lines 488nm, 

and 561nm lasers were used for fluorescence imaging. Image analysis and processing was carried 

out with Fiji4. The frames of time-lapse movies were normalized to have a constant overall 

intensity. Representative micrographs and intensity curves correspond to at least three successfully 

repeated experiments. Fluorescene intensities of droplets were quantified by Analyze Particles 

Plugins.



Supplement Figure S1. Mg2+ concentration influences the functionality of RNAT3 in PURE. 
Compared to the 13 mM Mg2+ reference concentration, adding more Mg2+ (Magnesium acetate, ≤ 
1–2mM (inhibition concentration)) drastically inhibited the switching-on behavior of RNAT3 at 
42°C. The possible reason could be that high concentrations of magnesium ions mediate the RNA 
secondary structure stabilization 5.



Supplement Figure S2. Tuning RNA thermometers in cell free system. Illustration of in vitro 

design and investigation process: (1-2) RNA thermometers sequence design and simulation with 

online tool; (3) Plasmid construction with site mutation or fragment changing. (4) Cell free reaction 

setup at different temperature; (5) Fast fluorescence measurement by plate reader. Then according 

to the results, the RNATs will be kept as candidates or redesigned for next round



Supplement Figure S3. In vitro screened RNA thermometers function in vivo. The represent 

fluorescence images show RFP expression controlled with RNATs at different temperature. Scale 

bars, 20 µm. The right column charts show the quantified fluorescence intensity of the whole 

population of E. coli at different temperature with image J. The sensing temperature slightly shifted 

to lower temperature in vivo. The temperature threshold of RNAT3-1 and RNAT3-2 in vivo were 

35°C and 30°C (in vitro 37°C and 35°C), respectively. It seems that their secondary structures in 

vitro were more stable than in vivo. Intriguingly, RNAT3 and RNAT3-3 remained comparable in 

vitro and in vivo. Compared the sequence between RNAT3 and RNAT3-2, only one site is 

different, but their switching manners showed significant different both in vitro and in vivo. This 

variability may arise from mRNA secondary structure. Several factors in vitro may be more 

susceptible to effect the secondary structure compared with the natural biological system. Firstly, 

the PURE system lacks RNA helicases that utilize the energy from ATP hydrolysis to unwind 

RNA6. Secondly, Magnesium ions play an important role in maintaining the secondary structure 



during translation. The concentration of Mg2+ in PURE system is  13mM6, which is much higher 

than in E. coli (5 mM). High concentration of magnesium ions will stabilize the RNA secondary 

structure 7, 8.   

Supplement Figure S4. Thermal controlled multiplexer. a.-d.) The diagrams show the design of 

thermos-gene circuits and the multiplexed thermal activation with different temperature. T7-RBS-

EGFP, T7-RBS- RFP and the T7-RBS-EGFP-T7-RBS- RFP (on two plasmids) were regarded as 

the control constructions.  In the multiplexer, RFP is gated by RNA thermometer (RNAT3-1) and 

T7 promoter. EGFP is gated by T7 promoter and an unblocked ribosome binding site on another 

plasmid. Right: represent images of thermal-multiplexer controlled protocell at 35 and 42 °C. The 

images were analysed by colocalization for demonstrating the two-colour fluorescence proteins 

expression in the droplets. Scale bar, 20µm. 



Supplement Figure S5. a.)Normalized EGFP versus normalized RFP intensities of the whole 
population of droplets after the start of expression. b.) Fluorescence time courses of EGFP and 
RFP in a single droplet. Scale bar, 50 µm. ① and ② are two respective droplets that showed 
different expression ability of RFP. 



Supplement TableS1

Name Sequence 
RNAT3 TACTAGAGCTCTTTAAAAAAAAAAAGTACTAAGGAGTACTAG
RNAT3-1 TACTAGAACTTTTTAAAAAAAAAAAGTACTAAGGAGTACTAG
RNAT3-2 TACTAGAGCTTTTTAAAAAAAAAAAGTACTAAGGAGTACTAG
RNAT3-3 TACTAGAACTCTTTAAAAAAAAAAAGTACTAAGGAGTACTAG

Supplement TableS2 list of vectors genes

Pcoofy1-RNAT3-E1010
TTGACAGCTAGCTCAGTCCTAGGTATAATGCTAGCTACTAGAGCTCTTTAAAAAAAAAAAGTACTAAGGAGTAC
TAGATGGCTTCCTCCGAAGACGTTATCAAAGAGTTCATGCGTTTCAAAGTTCGTATGGAAGGTTCCGTTAACGG
TCACGAGTTCGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAACTGAAAGTT
ACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAGTTCCAGTACGGTTCCAAAGCTTACGT
TAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCCTTCCCGGAAGGTTTCAAATGGGAACGTGTTATGA
ACTTCGAAGACGGTGGTGTTGTTACCGTTACCCAGGACTCCTCCCTGCAAGACGGTGAGTTCATCTACAAAGTT
AAACTGCGTGGTACCAACTTCCCGTCCGACGGTCCGGTTATGCAGAAAAAAACCATGGGTTGGGAAGCTTCCA
CCGAACGTATGTACCCGGAAGACGGTGCTCTGAAAGGTGAAATCAAAATGCGTCTGAAACTGAAAGACGGTG
GTCACTACGACGCTGAAGTTAAAACCACCTACATGGCTAAAAAACCGGTTCAGCTGCCGGGTGCTTACAAAACC
GACATCAAACTGGACATCACCTCCCACAACGAAGACTACACCATCGTTGAACAGTACGAACGTGCTGAA.GGTC
GTCACTCCACCGGTGCTTAATAACGCTGATAGTGCTAGTGTAGATCGC

LacI-RBS-T7-T7-lacO-RNAT3-1-E1010
tcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgccag
ggtggtttttcttttcaccagtgagacgggcaacagctgattgcccttcaccgcctggccctgagagagttgcagcaagcggtccacgctggtttgc
cccagcaggcgaaaatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgtatcccactaccgagatatccgcac
caacgcgcagcccggactcggtaatggcgcgcattgcgcccagcgccatctgatcgttggcaaccagcatcgcagtgggaacgatgccctcattc
agcatttgcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtgagatatttatgcca
gccagccagacgcagacgcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgccc
agtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaagaaataacgccggaacattagtgcaggcagc
ttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgctttacaggct
tcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcggcgcgagatttaatcgccgcgacaatttgcgacggcgcgtgc
agggccagactggaggtggcaacgccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaattcagctccgccatc
gccgcttccactttttcccgcgttttcgcagaaacgtggctggcctggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcga
catcgtataacgttactggtttcacggtatatctccttcttaaagttaaacaaaattattcctatagtgagtcgtattacgggatctcgacgctctccct
tatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcc
caacagtcccccggccacggggcctgccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtg
atgtcggcgatataggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcg
aaattaatacgactcactataggggaattgtgagcggataacaattcccctctagaTACTAGAACTTTTTAAAAAAAAAAAGTACTA
AGGAGTACTAGATGGCTTCCTCCGAAGACGTTATCAAAGAGTTCATGCGTTTCAAAGTTCGTATGGAAGGTTCC
GTTAACGGTCACGAGTTCGAAATCGAAGGTGAAGGTGAAGGTCGTCCGTACGAAGGTACCCAGACCGCTAAAC
TGAAAGTTACCAAAGGTGGTCCGCTGCCGTTCGCTTGGGACATCCTGTCCCCGCAGTTCCAGTACGGTTCCAAA
GCTTACGTTAAACACCCGGCTGACATCCCGGACTACCTGAAACTGTCCTTCCCGGAAGGTTTCAAATGGGAACG
TGTTATGAACTTCGAAGACGGTGGTGTTGTTACCGTTACCCAGGACTCCTCCCTGCAAGACGGTGAGTTCATCT
ACAAAGTTAAACTGCGTGGTACCAACTTCCCGTCCGACGGTCCGGTTATGCAGAAAAAAACCATGGGTTGGGA
AGCTTCCACCGAACGTATGTACCCGGAAGACGGTGCTCTGAAAGGTGAAATCAAAATGCGTCTGAAACTGAAA



GACGGTGGTCACTACGACGCTGAAGTTAAAACCACCTACATGGCTAAAAAACCGGTTCAGCTGCCGGGTGCTT
ACAAAACCGACATCAAACTGGACATCACCTCCCACAACGAAGACTACACCATCGTTGAACAGTACGAACGTGCT
GAAGGTCGTCACTCCACCGGTGCTTAAgcggccgcactcgagcaccaccaccaccaccactgagatccggctgctaacaaagcccg
aaaggaagctgagttggctgctgccaccgctgagcaataactagcataaccccttggggcctctaaacgggtcttgaggggttttttg
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2D space regulation tools: 

2.2 Light-induced Printing of Protein Structures on Membrane in 
vitro 

In this manuscript, we engineered the light switchable dimerization system to spatiotemporally 
target protein on model membrane, and sequentially mediate protein assembly in cell free systems. 

The results discussed in this section have been published as: “Jia, H., Kai, L., Heymann, M., 
García-Soriano, D. A., Härtel, T., & Schwille, P. (2018). Light-induced Printing of Protein 
Structures on Membranes in vitro. Nano letters, 18(11), 7133-7140.” 

Source online: DOI: 10.1021/acs.nanolett.8b03187 

Reprinted with permission have been granted by the publisher. 



Light-Induced Printing of Protein Structures on Membranes in Vitro
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‡Graduate School for Quantitative Biosciences (QBM), Ludwig-Maximillians-University, Munich, Germany

*S Supporting Information

ABSTRACT: Reconstituting functional modules of biological
systems in vitro is an important yet challenging goal of bottom-
up synthetic biology, in particular with respect to their precise
spatiotemporal regulation. One of the most desirable external
control parameters for the engineering of biological systems is
visible light, owing to its specificity and ease of defined
application in space and time. Here we engineered the PhyB-
PIF6 system to spatiotemporally target proteins by light onto
model membranes and thus sequentially guide protein pattern
formation and structural assembly in vitro from the bottom up.
We show that complex micrometer-sized protein patterns can be
printed on time scales of seconds, and the pattern density can be
precisely controlled by protein concentration, laser power, and
activation time. Moreover, when printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ, the targeted
assembly into filaments and large-scale structures such as artificial rings can be accomplished. Thus, light mediated sequential
protein assembly in cell-free systems represents a promising approach to hierarchically building up the next level of complexity
toward a minimal cell.

KEYWORDS: Photoactivation, pattern formation, membranes, bottom-up, synthetic biology, FtsZ

The systematic construction of cellular functions module
by module from the bottom up is a painstaking but

valuable exercise for understanding biological systems,
particularly with respect to revealing a minimal essence of
life and its origin on earth.1 In fact, even the smallest system
that could be identified by abstraction from existing life forms
still appears to be highly complex.2 Thus, constructing essential
modules from the bottom up will potentially benefit from the
substitution of some subsystems with simpler analogs that
could be addressed by external cues.1 Until now, some minimal
systems such as actomyosin structures3 and parts of the
bacterial cell division machinery4,5 have been successfully
studied in vitro by reconstitution on biological mimicries of
cellular membranes both in 2D on supported lipid bilayers and
in 3D within membrane-clad soft polymer microcompartments
or giant unilamellar vesicles. These model membranes provide
a versatile platform to quantitatively study protein-induced
patterns and transformations that are hardly discernible in vivo.
However, because of the spatial homogeneity of the model
membrane, the formation of protein structures solely relies on
the self-assembly properties of the protein themselves and
leaves little room for precise large-scale regulation of processes
in space and time compared to cellular membranes.6

Therefore, to quickly move on to more globally regulated
mimicries of cellular processes, external spatiotemporal control
elements should be introduced, which will help to boost

functionality while still keeping the compositional complexity
of a bottom-up assembled synthetic biological system minimal.
Utilizing light to regulate protein properties and functions

represents a powerful approach both in vivo and in vitro due to
its specificity, ease of use, and spatiotemporal control of
application.7−9 So far, various optochemical and optogenetic
tools for patterning protein have been developed, which can
control protein assembly in different dimensions.10−13

Optochemical approaches, such as chemically modified
phospholipid anchors for applications with membrane
proteins14 or photoactivatable chemical dimerization,15

provide high spatial control and biorthogonality for membrane
targeting; however, many of them rely on cytotoxic UV light
activation and function only irreversibly.16 Some promising
optochemical approaches using nontoxic light, like two photon
activation, have not yet been made compatible for membrane
applications.11 Compared with synthetic chemicals introduced
to the biological system, optogenetic tools based on proteins in
the visible spectral range are comparably specific, while more
biologically compatible and reversibly applicable. Because of
their low phototoxicity, protein based optogenetic tools are
thus very promising in physiologically relevant studies. Diverse
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light-inducible protein interaction pairs were developed for
controlling protein binding to membranes including the
cryptochrome 2 (CRY2) and cryptochrome-interacting basic
helix−loop−helix 1 (CIB1);17 flavin-binding kelch repeat f-box
(FKF1) and GIGANTEA (GI);18,19 engineered photoreactive
light oxygen-voltage domains (LOV and LOV2);16,20 engi-
neered vivid (VVD, pMag/nMag);21 bacterial phytochrome
photoreceptors (BphPs) and their natural binding partner
(PpsR2);22 a plant phytochrome B (PhyB); and the
phytochrome-interacting factors (PIF).23,24 The engineered
LOV proteins (iLID and Nano) have been applied to pattern
proteins on GUVs; however, they have been operated
monodirectionally, that is, controlled by just one wavelength,
and spontaneously switch off in the dark.16 Currently, the
phytochrome B (PhyB)−phytochrome interacting factor (PIF)
is the only light-induced dimerization system that operates at

long wavelength light.17 It detects red and near-infrared light
through the photoisomerization of a covalently bound
tetrapyrrole chromophore such as phycocyanobilin (PCB).
The plant PhyB can be photoconverted between two
conformational states called Pr (red-absorbing) and Pfr (far-
red-absorbing). The active form of PhyB is able to interact
with its nuclear signaling partner phytochrome interacting
factor (PIF), forming a dimer that is red/far-red light-
dependent (Figure 1a). In previous work, the PhyB and PIF
light-dependent interactions have been utilized for gene
transcription regulation in Yeast and mammalian cells,25,26

protein−protein interaction regulation,27,28 and controlling
signaling processes in vivo.17,23,29

So far, however, none of the reported systems based on light
induced protein interactions has been employed to enable
precise spatiotemporal control of protein self-assembly on

Figure 1. Light controlled bottom-up protein assembly in cell-free systems. (a) PhyB covalently binding to the chromophore phycocyanobilin
(PCB) can be targeted to the model membrane with a His6 membrane anchor. Upon red or infrared light illumination, PhyB undergoes
conformational switching between the Pr and Pfr states and reversibly associates with the PIF6 domain. The PIF6 domain as a ligand can thus be
used to target any protein of interest (POI) to the membrane. (b) Sequentially assembling proteins unit by unit into intrinsic (left) or artificial
(right) ring structures.

Figure 2. Reversible PhyB-PIF photoswitching in vitro. (a) PhyB−PIF6 photoinduced recruitment to the surface of Ni-NTA agarose beads. (b)
Fitting exponentials to the fluorescence intensity rise and decay of EYFP reveals typical kon/koff constants (n = 3). The black error bars represent the
standard deviations of the fluorescence intensity. (c) Recruitment cycles of EYFP-PIF6 by alternating between 660 and 740 nm illumination.
Normalized fluorescence intensity of EYFP on the beads for this series was plotted. EYFP-PIF6 concentration: 8 μM. Scale bars in panels a and c
are 20 μm.
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model membranes in vitro. Here, we engineered the PhyB-PIF
system to selectively target proteins onto model membranes
and spatiotemporally guide large-scale protein self-assembly in
a cell free system, representing a promising approach to
building up the next level of complexity toward a minimal
synthetic cell (Figure 1).
To engineer a robust light-induced targeting system in vitro,

we first confirmed that the in vitro purified PhyB-PIF sensor
pairs can function as well as in vivo. Multiple potential
phytochrome-PIF pairs were chosen as candidates. The wild-
type (residues 1−908),30,31 photosensory core (residues 1−
650),32,33 and the minimal photosensory core (residues 1−
621)17 have been reported to function as light sensors
responding to red light for interaction with their respective
binding partners (PIF3/6).17,23 However, the interaction
between the PhyB photosensory core (residues 1−650) and
PIFs is irreversible under infrared light.23 Additionally, full-
length wild type PhyB (residues 1−908) is hard to purify even
if using double tags (N-terminal streptag and C-terminal His6
tags). Of the previously reported PIF domains, only the N
terminus of PIF6 (residues 1−100) is sufficient to cause
significant translocation of protein to the membrane.31 Finally,
we chose the PhyB (residues 1−621) and PIF6 (residues 1−
100) pair as our optical tool to induce reversible interactions.
The PhyB was labeled by fusing it to the mCherry by a 15

AAs long flexible linker. A C-terminal His6 tag of PhyB was
used as an anchor to target the protein to the Ni-NTA
functionalized surface. PIF6 as the ligand, which can carry any
protein of interest to the membrane when interacting with
PhyB, was labeled with the enhanced yellow fluorescence
protein (EYFP) (Figure 1a). To verify their function, we
immobilized PhyB on the surface of Ni-NTA agarose beads
and then incubated with soluble PIF6 protein (without His
tag). Their light-dependent interaction was measured by the
fluorescence translocation assay.17,31 The ligand PIF6 was
rapidly recruited to the beads upon red light illumination (660
nm, light intensity: ∼0.386 mW cm−2) and disassociated under
far-red light illumination (740 nm, light intensity: ∼0.304 mW
cm−2) (Figure 2a and Supplement Movie S1). The “on” and
“off” switching can be robustly repeated by switching between
two wavelengths (Figure 2c). The PhyB induced recruitment
of EYFP-PIF6 reveals fast association (kon660 nm = 0.62 ±
0.02 min−1; t1/2: 1.17 min) and dissociation (koff740 nm = 0.97
± 0.0 min−1; t1/2: 0.72 min) (Figure 2a,b). We observed that
increasing the EYFP-PIF6 concentration from 0.25 μM to 4
μM increased the association rates and dissociation rates
(Supplement Figure S10).
We also measured the absorbance spectrum of the purified

PhyB-mCherry-His6 protein charged with 1.5 mM PCB in
vitro. When irradiated under continuous red light (660 nm),
the in vitro absorbance peak at around 725 nm is reduced and
a second peak at 650 nm can be observed. Upon 740 nm light
illumination, the absorbance can be switched back (Supple-
ment Figure S1a). Remarkably, not only 660 nm can activate
PhyB-mCherry, but also other wavelengths like green light at
550 nm can induce the conformational switch of PhyB
(Supplement Figure S1b), according to the reported results.20

Thus, the more widespread 561 nm laser line can be used to
activate the PhyB/PIF6 pair interaction and target protein
precisely to Ni-NTA beads (Supplement Figure S2a). In the
same way as for red light (660 nm), the 561 nm laser activation
can be reversed dynamically by far-red light (Supplement
Figure S2b,c and Supplement Movie S2).

The rapid forward and reverse kinetics of the PhyB-PIF
system allow us to dynamically control protein association and
dissociation in vitro by switching between the two wave-
lengths. To obtain maximum spatial control, we chose a planar
supported lipid bilayer (SLB) as model membrane and applied
the above validated PhyB-PIF pair onto the SLB, which
generated light controlled 2D patterns.
First, to check whether the PhyB-mCherry-His6/EYFP-PIF6

pair works equally well as on beads, we investigated the global
light-induced on- and off-recruitment to the SLB. Different
concentrations of DOGS-NTA(Ni) lipid mixed with DOPC
were used to establish homogeneous PhyB-mCherry-His6
layers. Bilayer fluidity ensures that even at low chelator lipid
densities, the His tag can frequently interact with potential
binding sites, forming multivalent protein−lipid complexes and
greatly stabilizing the surface species.34 After immobilization,
the excess soluble PhyB-mCherry-His6 protein was carefully
washed away using a pipet. Although His tag and Ni-NTA
binding is reversible,35 the slow transition from multivalent to
monovalent will make the polyvalently bound protein remain
stable on the SLB surface over 23 h.34 Such multivalent
immobilization36 provides us a stable microenvironment for
light-induced patterning. Upon incubation with PIF6-EYFP in
the dark, only a small amount of protein was recruited to the
membrane after washing. Upon 660 nm light illumination, an
EYFP-PIF6 layer was formed on the SLB by interacting with
PhyB. The fluorescence of the EYFP-PIF6 increased about
five-fold compared with the dark condition control (Supple-
ment Figure S3b). The resulting layer of recruited PIF6-EYFP
was rapidly released back to the solution by continuous
exposure with inactivating far-red light (740 nm, light
intensity: ∼0.304 mW cm−2) (Supplement Figure S3). With
similar EYFP-PIF6 concentration, the light controlled on and
off dynamics on SLBs are similar to that on agarose beads
(Supplement Figure S10e,f). Protein localized at a membrane
may undergo lateral diffusion,37 which limits the spatial
precision of membrane targeting.15 Thus, the mobility of
PhyB-mCherry-His6 was checked by fluorescence recovery
after photobleaching (FRAP). When the mCherry was
bleached with the 561 nm laser, the signal in the bleached
area (mobile fraction: 7.3 ± 3.5%) showed a negligible
recovery compared to fluorescent lipids (mobile fraction: 92.0
± 8%). PhyB-mCherry-His6 itself has slow mobility, even at
low membrane protein densities, and the slow mobility is
independent of NTA-lipid density (Supplement Figure S4c).
However, the rather immobile PhyB-mCherry-His6 does not
affect membrane fluidity itself (Supplement Figure S4c,d).
Compared with PhyB-mCherry-His6, His6-EGFP showed a
high mobile fraction of 90.4 ± 6% on high concentration
NTA(Ni) lipid (34 mol % DOGS-NTA(Ni); 66 mol %
DOPC), demonstrating that the static behavior is not a
membrane artifact (Supplement Figure S4a) but rather
induced by protein properties. Any interaction with another
protein may affect the lateral diffusion of a membrane
protein.38 In our case, PhyB monomers can form head-to-
head dimers.39 Each monomer contains one His6 tag as
membrane anchor that interacts with NTA lipid. This
multivalency leads to protein−lipid complexes that greatly
stabilize the surface binding. This may affect the lateral
diffusion on membrane and finally make the protein nearly
static. Because of the low mobility of the first protein layer, all
subsequently recruited binding partners can also be considered

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b03187
Nano Lett. 2018, 18, 7133−7140

7135

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_002.avi
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_003.avi
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.8b03187


as nearly static. This renders PhyB-mCherry-His6 an excellent
primer for stable protein patterns on the lipid bilayer.
To improve the spatial precision of light-printed protein

patterns on the membrane, we utilized the custom mode of a
confocal microscope for photobleaching predefined regions
with high optical resolution. This allowed us to print a defined
protein pattern on the SLB (Figure 3a and Supplement Figure
S5). In the same way as for the global activation on Ni-NTA
SLBs, PhyB-mCherry-His6 was incubated with the Ni-NTA-
SLB to form a homogeneous protein layer. Then the unbound
protein was washed away to avoid undesired light-induced
interactions in the solution above the membrane. Owing to the
flexibility of confocal illumination, we can design nearly any
pattern by the “region of interest” function. For activation and
transfer of a specific pattern to the membrane, the 561 or 633
nm laser lines can be employed (Supplement Figure S6). To
decrease the amount of unspecific activation by reflected or
scattered light, a continuous isotropic “protecting” illumination
by infrared light from a simple LED source (2% 740 nm) was
applied. The rapid “off” kinetics of the PhyB−PIF interaction
traps the membrane-recruited EYFP-PIF6 pool to the pattern,
as any EYFP diffusing away is dissociated from the membrane
by the surrounding far-red light.23 This light-induced painting
is PCB dependent. In the control experiment where PCB was
missing, no binding was detected (Supplement Figure S5). The
active state of PhyB(Pfr) slowly converts back to inactive Pr
state by spontaneous thermal reversion.39 Therefore, the
protein pattern persisted much longer in the dark than under
illumination (Supplement Figure S10g,h). Because of the
nearly static behavior of PhyB, the protein patterns were still
visible for at least 4 h (Supplement Figure S10i).
Protein densities of the patterns were determined by

quantitative epifluorescence microscopy.40 Naturally, the
adsorbed protein density depends strongly on the NTA lipid

fraction and the protein concentration in solution (Figure
3b,c). Additionally, after activating pattern formation on the
membrane, the density of adsorbed molecules is regulated by
the intensity of laser light and the activation time (Figure 4a).
Under 1.6 mW laser power, the binding ratio of PhyB-PIF is
around 10:1, calculated by the protein densities in the patterns.
Here, the EYFP-PIF6 density in the pattern can reach up to
about 800 molecules per μm2. Strong laser light and longer
activation time will accelerate and enhance the protein
recruitment, respectively. By controlling the protein concen-
tration, laser power, and activation time, the protein density on
the membrane can be controlled from 100 to 1000 molecules
per μm2.
The pattern formation relies on the photoactivation;

therefore, the smallest scale of possible features in the pattern
depends on the resolution of the scanning laser. Two printed
lines with distances about 1 and 0.5 μm resolution in x and y
direction, respectively, can still be visibly resolved (Supplement
Figure S9). Additionally, single protein line with lowest
thickness of about 0.56 μm can be printed (Figure 4b).
Because of the high resolution illumination, complex patterns
with features ranging from 500 nm to 1 mm can be printed in
one step within seconds like the logo of MaxSynBio (Max
Planck Research Network in Synthetic Biology) (Figure 4c).
To generate patterns with more than two brightness values
(“grey scales”), like the pixel picture of Albert Einstein, the
printing can be done sequentially by varying laser intensity
(Figure 4d). The two-color printing can also be successfully
processed with two different proteins (EYFP-PIF6 and EYFP-
PIF6 labeled with Alexa Fluor 405 NHS ester) (Supplement
Figure S11). In principle, the dual-color printing may even be
extended to additional colors in the future. Our current setup
is limited by loading different proteins manually. This can
cause laser focus shifts; therefore, custom-made microfluidics

Figure 3. Light-printing protein patterns on supported lipid bilayers. (a) Schematic of the patterning principle. (1) Preparation of glass cover slides
by plasma cleaning. (2) Generation of a uniform supported DOPC lipid bilayer containing DOGS-NTA(Ni) lipid. (3, 4) Immobilization of PhyB-
mCherry-His6 protein on the membrane and rinsing away excess soluble protein. (5, 6) Incubation with the ligand EYFP-PIF6 and photo
activating a pattern by 561 or 633 nm laser illumination. After activation, the protein pattern can be polished by washing. (b) Defined protein
patches printed on different DOGS-NTA(Ni) lipid fractions from 0.05 mol % to 34 mol % (1 μM phyB-mCherry-His6, 8 μM EYFP-PIF6 in
solution), scale bar 10 μm. (c) Dependence of printed protein density (i.e., fluorescence intensity) on EYFP-PIF6 concentration in solution (SLB:
34 mol % DOGS-NTA(Ni) and 64%mol DOPC), scale bar 10 μm. Protein densities were determined by quantitative epifluorescence
microscopy.40 For the plots, each data point was generated from at least three different protein patterns in the sample chamber. Error bars represent
the mean value and standard deviation of the three independent experiments. The plots were fitted with BoxLucas model.
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will be needed for such extended multicolor patterns in the
future to render loading and rising more precise. Besides the
2D SLB, our approach can also be applied to 3D micro-
compartments, like GUVs, showing great promise for a
sequential and spatially well-defined bottom-up protein
assembly on membranes in vitro.
Having shown that a precise spatial targeting of proteins to

membranes can be achieved, we aim to transfer large-scale
protein self-assemblies to selected loci by light. The final goal is
to bottom-up assemble functional protein machineries with
membrane activity such as contractile rings for enforced
membrane fission. Consequently, the self-assembly prone
protein we chose here for being templated by light is the
primary factor of the bacterial Z ring, FtsZ.
During bacterial cell division, the tubulin homologue FtsZ is

the first protein positioned to the division site. It is essential for
recruiting other proteins that produce a new cell wall between
the dividing cells.41 Purified FtsZ assembles into polar, straight,
or gently curved proto-filaments in the presence of GTP.
Lateral interactions between FtsZ proto-filaments can lead to
higher-ordered structures such as tubules, bundles, circles, and
sheets.42,43 In Escherichia coli, FtsZ is recruited to the
membrane by FtsA, which binds to the membrane through a

C-terminal amphipathic helix,44,45 and the transmembrane
protein ZipA.46 The precise targeting of the Z ring to the
middle of the long cell axis is accomplished by several
biochemical cues, of which the Min protein oscillations and
nucleoid occlusion are the most prominent.47,48 However,
positioning by these factors is strongly dependent on
compartment geometry as well as the exact concentrations of
proteins and nucleotides. Thus, we here explore the ability to
circumvent the biochemically regulated positioning by selective
light-induced targeting of FtsZ structures to predefined
positions.
To this end, FtsZ (1−366)-YFP, a truncated FtsZ-construct5

but without a membrane targeting sequence, was fused to the
PIF6 ligand by a 19 amino acid flexible linker. We refer to this
construct as “FtsZ-YFP-PIF6”. Through the light induced
recruitment of FtsZ to the membrane, FtsZ can self-assemble
into ring structures (0.727 ± 0.209 μm, n = 96) with a similar
diameter as the E. coli cell (0.7−1.4 μm49). Although the rings
do not appear to perform dynamic treadmilling as observed in
direct membrane-attached FtsZ,4 a progressive growth
dynamics can be observed. After local activation by red light
(660 nm, light intensity 2% 193 mW, time point: 0 min), short
intrinsically curved filaments of FtsZ started to appear on the
membrane, forming a nucleation point to steadily grow in
width and length by recruiting new FtsZ protofilaments for
lateral assembly. Thus, they self-organized into a rapidly
reorganizing structure that matured into a cell-sized ring
(Figure 5a and Supplement Movie S4 for single ring and
Supplement Movie S4 for overview of rings). The ring
diameter continued to grow for about 25 min (Figure 5a
right). Comparable growth in size has also been reported in

Figure 4. Light induced arbitrary patterns on supported lipid bilayers.
(a) Protein gradient printing by varying laser intensity and incubation
time (left, protein pattern; right, heat map plot of EYFP-PIF6 density
on the patterns induced with different laser intensity and activation
time), scale bar 20 μm. (b) Printed protein lines with thickness values
from eight micrometers to half micrometer, scale bar 20 μm. The right
panel shows the intensity distribution of the eight lines. (c) Two-
dimensional MaxSynBio protein logo printed on the membrane, scale
bar 50 μm. (d) Gray-scale picture of Albert Einstein printed
sequentially with two densities pattern of EYFP-PIF6, scale bar 20
μm. Green signals represent the localization of EYFP-PIF6.

Figure 5. (a) Nucleation of FtsZ protein self-assembly on SLB. FtsZ
was recruited to the membrane through interaction of PhyB and PIF6,
when activated with 660 nm light. The middle images show typical
ring patterns of FtsZ emerging from nucleation points locally selected
through light-sensitive interaction (FtsZ-YFP-PIF6, 4 μM; 5 mM
Mg2+, 4 mM GTP). The images were taken by total internal reflection
fluorescence microscopy (TIRFM). Scale bar: 0.5 μm. Right figure:
maturation time course curve of FtsZ ring diameter. Diameters were
determined by measuring the peak-to-peak distance in the intensity
plot profile (yellow line shown in the middle images). Black error
bars: standard deviations of ring diameters. (b) Spatial templating of
large-scale FtsZ networks. Ring patterns were obtained by 561 nm
illumination on SLB (2 mol % DOGS-NTA(Ni), 98 mol % DOPC).
After incubation with soluble FtsZ protein (1.6 μM FtsZ (Alexa fluor
488 dye), 5 mM Mg2+, 4 mM GTP), the light induced template ring
(FtsZ-YFP-PIF6) recruited further FtsZ into a ring-shaped
cytoskeletal network. Scale bars in the middle and zoom-in image:
10 and 4 μm, respectively. The network was analyzed with stretching
open active contours (SOAX).51

Nano Letters Letter

DOI: 10.1021/acs.nanolett.8b03187
Nano Lett. 2018, 18, 7133−7140

7137

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_005.avi
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.8b03187/suppl_file/nl8b03187_si_005.avi
http://dx.doi.org/10.1021/acs.nanolett.8b03187


vitro with natural anchor protein FtsA4 and artificial membrane
targeting motifs to FtsZ.50 In all cases, FtsZ forms growing ring
patterns, indicating that the light-initiated growth observed
here is supported by the intrinsic self-assembly properties of
the protein. We also tested the reversibility of FtsZ ring
assembly and confirmed that the rings can be reversibly
removed from the membrane upon 740 nm (deactivation
light) (Supplement Movie S5).
The demonstrated ability to spatiotemporally target

nucleation sites for protein self-assembly is the starting point
for a more elaborate design of functional 3D protein structures.
FtsZ’s structural features have so far been reported to promote
the assembly of rings on membranes in only a small range of
curvatures,4 with an upper limit of about one micrometer (see
above), close to the resolution limit of standard microscopes.
To evaluate whether considerably larger FtsZ structures can be
templated, rings with diameters around 20 μm were patterned
by light. The preseeding FtsZ-YFP-PIF6 can be organized into
an unsmooth ring structure with many single nucleation points
for FtsZ self-assembly, as shown above. In a second step, wild-
type FtsZ labeled with Alexa fluor 488 dye was incubated with
the light patterned ring-shaped seed (Figure 5b). FtsZ-YFP-
PIF6 recruited FtsZ monomers into the template ring, forming
bundles toward a 3D ring mimicry of a bacterial cytoskeleton
(Figure 5b).
In conclusion, we have developed an in vitro protein

patterning assay on membranes based on the reversible and
light-switchable interaction PhyB-PIF6 that can enable
spatiotemporal control for bottom-up protein self-assembly.
The range of potential and desired applications extends from
dynamically controlling local protein interactions in well-
defined regions to spatially targeting the self-assembly of larger
protein structures on membranes, which may selectively induce
local membrane transformations. To this end, the optical
templating will have to be adapted to support 3D illumination
of transformable free-standing membranes, as in giant
unilamellar vesicles (GUVs). Compared with the classical
chemis t ry -based prote in pat tern ing methods in
vitro,10,11,13,52−58 our assay has shown to be compatible with
model membranes, allowing us to largely reduce diffusive
spreading by using patterned light (Supplement Table S1)
while mimicking natural biological regulation processes, not
relying on unspecific chemical binding, thus preserving
physiological properties. The method can function without
special hardware besides widely available confocal micro-
scopes. The high spatial and temporal specificity of light
activation establishes this system as a useful tool for local
control of protein patterns in two and three dimensions on
model membranes. For bottom-up synthetic biology, the
ability to guide large-scale and reversible self-assembly of
functional protein structures by light can tremendously help in
designing minimal cellular systems with desired properties,
without having to rely entirely on biochemical cues. In
summary, our method provides a promising tool for the design
of biomolecular systems composed of proteins and model
membranes. Fast patterning of proteins provides a promising
tool to track many interactions and activities of proteins on
membranes in parallel, representing a new design option for
protein microarrays. In the future, approaches like this will
greatly help the reconstitution of biological systems from the
bottom-up, with a wide range of potential applications from
fundamental protocell research to tissue engineering.
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Materials and Methods 

Protein Expression and Purification 

Pcoofy12-onestrep-PhyB621-mcherry-His6(PhyB genebank id: NC_003071.7; pCoofy12 

plasmid1) encodes the PhyB(1-621)-mCherry construct bearing N-streptag and C-terminal His6 

tags was transformed into Escherichia coli BL21-star cells. Cells were induced with 1mM IPTG 

at OD600nm = 0.6 and cultured overnight at 18°C. Cell pellets were collected via centrifugation at 

6000g for 15 min and washed 3 times with buffer PBS(pH7.4). The resulting pellet was 

resuspended with lysis buffer, which included 50mM HEPES-NaOH (pH 7.8), 500mM NaCl, 10% 

glycerol, 30mM imidazole, 1mM phenylmethanesulfonyl fluoride(PMSF), 1mM 2-

Mercaptoethanol, 1 tablet/liter Roche EDTA-free complete protease inhibitor. Then the cells were 

lysed with French press(G.HEINEMANN, ) at 17,000 psi.  Lysates were clarified by centrifugation 

(20000g) and the supernanat was filtered through a 0.22 µm membrane. The resulting filterd 

sample was loaded onto a Ni2+ affinity chromatography(GE Healthcare, HisTrap HP 5 ml) that 

was pre-equilibrated with washing buffer(50mM HEPES-NaOH (pH 7.8), 500mM NaCl, 10% 

glycerol, 30mM imidazole, 1mM 2-Mercaptoethanol, 1 tablet/liter Roche EDTA-free complete 

protease inhibitor). The protein was eluted with Lysis buffer supplemented with 300mM imidazole. 

Then the eluate was loaded onto the StrepTrap HP column(1 ml, GE Healthcare). Protein was 

eluted using a strep elusion buffer containing 50mM HEPES-NaOH (pH 7.8), 500mM NaCl, 10% 

glycerol, 0.25mM desthiobiotin, 1mM 2-Mercaptoethanol, 1 tablet/liter Roche EDTA-free 

complete protease inhibitor. The eluate from the strep affinity purification was dialyzed into a 

buffer containing 50mM HEPES-NaOH (pH 7.8), 500mM NaCl, 10% glycerol, 1mM 2-

Mercaptoethanol. Then the protein was stored with 50% glycerol at -80°C.  

Pcoofy1-His6-HRV-EYFP-PIF6 (PIF6 genebank id: NC_003074) encodes EYFP-PIF6 with N-

terminal His-tag  was transformed into Escherichia coli BL21-star cells. The culture condition and 

the buffers for Ni2+-NTA affinity purification are the same as that of PhyB (1-621)-mCherry. After 

affinity purification, the eluate was polished by the HiLoadtm 16/600 SuperdexTm 75pg (GE) 

column. Then the purified protein was incubated with the His-PreScission (3C) protease (in house 

prep.) to remove the N-terminal histidine tag. The sample mixture was passed through a Ni-NTA 

column again to remove uncleaved and protease. The purified protein without His tag was frozen 

with liquid nitrogen and stored at -80°C. 
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FtsZ (1-366)-YFP-PIF6, and wild type FtsZ were purified as previously described2. Briefly, 

overexpressed cells were lysed and separated by centrifugation. Protein was precipitated from the 

supernatant by adding 30% saturated ammonium sulfate(4°C) and incubated for 20 min at 4°C 

(slow shaking). After centrifugation and resuspension of the pellet, the protein was purified by 

anion exchange chromatography using a 5x 5ml Hi-Trap Q-Sepharose column (GE Healthcare). 

Wild type FtsZ was labeled with Alexa fluor 488 according to the protocol provided by Thermo 

Fisher.  

In vitro spectroscopy of phyB 

Spectra of dark-adapted and red-light irradiated PhyB-mCherry-His6(PCB) were collected using 

UV/VIS-Spectraphotometer V650. Samples were irradiated from the top by different wavelengths. 

The approximate intensity at the cuvette window was 0.3 mW. cm-2. A single cuvette was used for 

all measurements, and was loaded with 200μl of PhyB-mCherry-His6 solution charged with 

1.5µM phycocyanobilin(PCB: supply by Santa Cruz Biotechnology, Inc.). The PCB concentration 

was quantified by absorbance spectroscopy at 680nm diluting the DMSO stock 1:100 into 1mL 

MeOH:HCl(95%:5%) solution . The concentration in mM was calculated as A680 *2.64. Typical 

stock concentrations were diluted to 1.5mM. Aliquots can be stored at -20oC for at least one year, 

when protected from light.  

Preparation of liposomes. 

Different concentration (0.05mol% to 34mol%) of DOGS-NTA(Ni) lipid with DOPC dissolved in 

chloroform were transferred into a glass vial and the solvent was evaporated under a gentle stream 

of nitrogen. All the lipids were purchased from Avanti Polar Lipids, Inc. Any residual solvent was 

further removed by drying the lipid film in a vacuum for 30 min. The lipids were then rehydrated 

in SLB buffer (50mM HEPES-NaOH at pH7.5, 500mM NaCl) to a lipid concentration of 4mgml-

1 and incubated at 37°C for 30 min. The lipid film was then completely resuspended by vortexing 

rigorously to obtain multilamellar vesicles of different sizes. This mixture was then placed in a 

bath sonicator where shear forces help to reduce the size of the vesicles, giving rise to small 

unilamellar vesicles (SUVs). The SUV dispersion were stored at -20°C as 20µl aliquots. In the 

paper, if without specifing, the composition of the SLB is 34mol% DOGS-NTA(Ni) and 66 mol% 

DOPC.  
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Preparation of supported lipid bilayers. 

Glass coverslips (1.5#, 24x24mm) were cleaned by piranha solution overnight, followed by 

extensive washing with milliQ H2O. Then glass coverslips were blown dry with compressed air 

and cleaned in an air plasma for 10 min. The reaction chamber was prepared by attaching a plastic 

ring on a cleaned glass coverslip using ultraviolet glue (Thorlabs No. 68). For supported lipid 

bilayer formation, the SUV dispersion was diluted in SLB buffer to 0.5mgml-1, of which 75µl was 

added to the reaction chamber. Adding CaCl2 to a final concentration of 3mM induced fusion of 

the vesicles and the formation of a lipid bilayer on coversilde. After 20 min of incubation at 37°C, 

the sample was rinsed with 2ml pre-warmed SLB buffer.  

Measurement of protein pattern density on the membrane 

The surface density of protein on supported membranes was measured using quantitative 

fluorescence microscopy3.  First, 1mg/ml vesicles containing fluorescent lipids (BODIPYDHPE 

/R-DHPE, Invitrogen Corp.) at various concentrations (0.01-0.8 mol%) and DOPC (Avanti Polar 

Lipids) were generated by extrusion through 100-nm pore membrane. Average diameters of the 

resulting suspensions were typically within 5% of 100 nm as measured by dynamic light scattering. 

Supported bilayers for calibration standards were formed in self-made chambers that had been 

plasma cleaned. Vesicle suspensions at 1 mg/ml in  sample buffer (50 mM HEPES, 500 mM NaCl, 

pH 7.5) were added to an equal volume of buffer in the chamber. SLBs were generated following 

the normal protocol. For fluorescence intensity measurement, the microscope was focused on the 

surface of the SLB where intensity was maximal and images were taken at different areas (n>4). 

The same experiments were repeated with different bilayers at least three times. Bilayer 

fluorescence was plotted against the molecular density of fluorescent lipids per μm2 that is 

calculated by using a DOPC lipid footprint in supported bilayers of 0.72 nm24. These data were fit 

to a straight line with a y-intercept of 0; see supplement Figure S7: 

Dlipid= Ibilayer(lipid)  * I                                            E.1 

Where Dlipid is the area density of fluorescent lipid.  Ibilayer(lipid)  is the slope of the fitting curve. I is 

the measured lipid fluorescence intensity. The Equation E1 is only directly applicable to similar 

supported bilayers containing BODIPY-DHPE. Therefore, the calibration must be corrected for 
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different dyes to render them comparable to the standards. We can calibrate the intensity of the 

sample fluorophore to the bilayer standard fluorophore as:  

 Ibilayer(lipid) = Ibilayer(sample)/F                          E.2 

where Ibilayer(sample) is the calibrated and observed sample intensity, and F is a unitless scaling factor 

that represents the strength of the sample fluorophore versus the lipid-linked standard fluorophore. 

F for a pair of fluorophores can be measured by the microscope as: 

  F= Isolution(sample)/ Isolution(lipid) E.3

where Isolution(sample) and Isolution(lipid) are the concentration-normalized intensities of the sample and 

lipid vesicle standard solutions, respectively. Isolution(sample) and Isolution(lipid) can be measured from a 

serial dilution of samples and lipid vesicle.  The fluorescence signals were plotted against the 

concentration. The data were fit to a straight line with a y-intercept of 0 and the slopes were 

designated as Isolution(sample) and Isolution(lipid). Background signal was measured from solutions of 

nonfluorescent vesicles.  

Global Recruitment Assays. 

Global recruitment assays were performed at room temperature on a Zeiss LSM780 confocal. 

Images were captured with a CCD camera. The assays were done by exposing to activating (660nm) 

or deactivating (740nm) wavelengths by CoolLED PE4000. The Ni-NTA agarose beads (Qiagen) 

were blocked with 1% w/v BSA for more than 1 h. To measure kinetics of recruitment and release, 

the PhyB-mCherry-His6 was immobilized on the blocked Ni-NTA agarose beads (Qiagen) for 1 h 

and later incubated with 1.5µM PCB for another 1 h. Then the unbinding protein was washed away 

and incubated with EYFP-PIF6 in Biotek chamber. The chamber was exposed to fixed periods of 

red or infrared light, while the EYFP-PIF6 distribution was imaged. The PhyB-PIF6 pool was 

returned to equilibrium (fully recruited or released) by exposure to the respective wavelengths in 

a loop. Such iterative measurements are necessary to eliminate the strong activating perturbations 

induced by the imaging light. Using red light mediated activation is highly sensitive and about 

0.3mWcm-2 at 660nm (2% 193mW) (measured with optical power meter PM100D, Thorlabs), is 

sufficient to drive rapid protein-to-protein interaction. The on and off plots of the fluorescence 

translocation assay were fitted with mono-exponential equation using Originpro 2017: 

Y=Ae-kt + B, E.4
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where Y represents fluorescence intensity at time t, A and B are parameters, and k represents the 

rate constant. The half-life, t1/2, was determined using the following equation:  

t1/2=ln2 k-1 E.5

Protein Patterning on SLB 

Printing protein patterns on SLB was performed at room temperature using confocal microscopy 

equipped with an argon laser and C-Apochromat 40x/1.20 water-immersion objective. Laser lines 

488nm, and 514nm and 561nm lasers were used for fluorescence imaging. To produce patterns on 

the membrane, alternating 561nm and 633nm laser were used  for photoactivation. The 

deactivation light (740nm) was provided with CoolLED. Images were collected with the CCD 

camera. The light pattern used for activation were drawn with the ZEN software. The Einstein’s 

template pattern was modified from the pixel picture (http://lego-art-studio.blogspot.com/) with 

ZEN software. 

Image analysis and Repeatability of experiments. 

Image analysis and processing was carried out with Fiji5. The frames of time-lapse movies were 

normalized to have a constant overall intensity. The number of replicated experiments is given in 

the respective figure captions. Representative micrographs and intensity curves correspond to at 

least four successfully repeated experiments. The FtsZ network was analyzed with Stretching Open 

Active Contours (SOAX)6. In order to analyze the architecture of the network, thresholds for FtsZ 

filament length (from 100nm to persistence length of 1.15µm7) and fluorescence intensity 

thresholds were introduced to decrease the noise caused by unspecfic binding and aggregrates. 

Large clusters of aggregrates (diameter 1>µm) 8 were not considered in the analysis.  
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Supplement figures 

Supplement figure S1. a) The absorbance spectra of the PhyB-mCherry-His6(PCB) samples that 

were incubated in darkness, exposed to continuous red light (660nm) and far red light (740nm) to 

reach a steady state. b) The absorbance of PhyB-mCherry-His6 (PCB), after activation with 490nm, 

525nm, 500nm, 550nm, 595nm, 660nm and 740nm. c) The spectra of mCherry, EYFP and PCB. 

Supplement figure S2. a.) Reversible spatial recruitment of EYFP-PIF6 protein to the specific 

localization on the beads with 561 nm laser and 740nm LED light source. b) Time lapse images 

of reversible spatial recruitment c) Quantification of the fluorescence changing on the bead during 

activation and deactivation.  The scale bar is 50µm. For a full sequence, see Supplementary Movie 

S2. 
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Supplement figure S3.  Global light induced on- and off- recruitment on the SLB a) Illustration 

of the global activation process. Firstly, Ni-NTA lipid SLB was blocked with 1% w/v BSA for 1h. 

After washing with the SLB buffer, SLB was saturated with PhyB-mCherry-His6 protein and 

incubated with 1.5µM PCB for another 1h in the dark environment. The fluorescence images were 

taken after washing in a z-stack, showing in the b (left). A few EYFP proteins bound to the 

membrane, because the incubation process was not completely in dark environment. When the 

incubation was under red light (660nm), after washing, the homogeneous EYFP-PIF6 protein layer 

was recruited to the membrane (Figure b, middle). Followed by deactivation with far-red light 

(740nm), all the recruited protein was released to the bulk solution. c) Plots of fluorescence 

intensity for all the activation and deactivation processes in z-stack.  
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Supplement figure S4. Nearly static PhyB-mCherry-His6 layer on the membrane does not affect 

the fluidity of the membrane. a-b.) Immobilizing EGFP on SLBs that were composed of different 

mole fractions of DOGS-NTA(Ni) lipid from 1mol% to 34mol% (1µM EGFP for incubation). The 

results show that although high concentrations of NTA lipid reduces their mobility, EGFP on SLBs 

maintains a high mobile fraction.  c-e.) Immobilization of PhyB-mCherry-His6 on SLBs composed 

of different mole fractions of DOGS-NTA(Ni) lipid from 0.05% to 34% (1µM PhyB-mCherry-

His6 for incubation). The immobilized PhyB-mCherry-His6 layer showed low mobile behavior, 

even at low protein density (< 150 molecules/µm2) on the membrane, controlled either with low 

concentration NTA(Ni) lipid (0.05%) or low protein concentration (5nM PhyB-mCherry-His6). 

To confirm whether the PhyB-mCherry-His6 layer will affect the fluidity, the normal SLB 

composition (DOPC and DOGS-NTA(Ni)) was mixed with 0.01mol% Fast DiO.  Scale bar, 5µm. 

Fluorescence recovery after photobleaching data (FRAP) on the SLB were evaluated by choosing 
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two separately circle areas (r= 4µm). One circle was taken as a reference. Another one was 

photobleached by 20 iterations of 488nm and 561nm, respectively, laser under 100% laser power. 

Their fluorescence recovery in the red and green channels, respectively, was monitored. Intensity 

traces were collected using Fiji, corrected for photobleaching and normalized with the pre-

bleaching intensity and the reference intensity. The fluorescence recovery curves were then fitted 

by:   

F(t)=y0+A(e-2T/t)[I0(2T/t)+I1(2T/t)]                  E.6 

Here, I0, I1 are modified Bessel functions, y0 sets the fluorescence directly after bleaching and y0+A 

determines the mobile fraction.  

 

 

Supplement figure S5. Protein pattern printing on SLB with 561nm laser. a) The light induced 

printing was verified by multiple control experiments. The top row is the control experiment 

without light sensitive chemical (PCB). The middle row shows how different laser intensity and 

different bleaching change the amount of protein recruitment. The bottom row experiment was 

done without ligand protein (EYFP-PIF6). Only when PhyB-mCherry-His6 was charged with PCB 

and incubated with EYFP-PIF6 can the protein printing be performed on the SLB. b) 

Quantification of the printed pattern. The fluorescence intensity was measured and normalized 

with Fiji. 
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Supplement figure S6. a-b.) Both 561nm and 633 nm laser can be used for protein printing. c.) 

Protein density of patterns printed with 561nm and 633nm laser. Because the energy of 633nm 

laser is lower than the 561nm laser, longer activation was needed for printing for the former. 
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Supplement figure S7. Fluorescence calibration. a.) Fluorescence measured by confocal 

microscope in the green channel with increasing amounts of BODIY-DHPE in solution. b.) A 

calibration plot indicating the fluorescence intensities in solutions containing EYFP-PIF6. c.)  SLB 

containing BODIY-DHPE was used as a surface density calibration standard. d.) Fluorescence in 

green channel with increasing amount of Texas RedTM in solution. e.) A calibration plot 

indicating the fluorescence intensities in solution containing PhyB-mCherry-His6. f.) SLB 

containing Texas RedTM was used as a surface density calibration standard. 

Supplement figure S8. Plots of molecular density when SLBs were incubated with different 

concentrations of PhyB-mCherry-His6. The SLB composition used in the experiment was 

34mol%DOGS-NTA and 66mol%DOPC. The error bars represent the mean value and standard 

deviation of the three independent experiments. The plots were fitted with BoxLucas model. The 

scale bar of the representative image is 50µm. 
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Supplement figure S9. Image of a resolution target produced by confocal microscopy with a 

Zeiss C-Apochromat 40x/1.20 water-immersion objective. The 6 lines were separated by about 

1.5 µm, 3 µm, 4 µm, 6 µm and 12µm in zoom 1.  The line groups were printed in X or Y 

direction to evaluate the lateral resolution. Then the printing was performed with zoom 1, 1.5, 2 

and 3. Average linear profiles of this region show that it is possible to resolve individual lines 

separated by about 0.5 µm (X) and 1 µm (Y).  
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Supplement Figure S10. Light induced dynamics on NTA-Agarose beads and SLBs. a.) Real-

time light induced responses of PhyB-mCherry-His6 and EYFP-PIF6 association on beads. The 

measured fluorescence was normalized by subtracting the original fluorescence before light 

activation and then all the data of curves were further normalized to [0, 1]. b.) Association rates 

versus EYFP-PIF6 concentration. c.) Real-time light induced responses of PhyB-mCherry-His6 
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and EYFP-PIF6 dissociation. The measured fluorescence was normalized to [0, 1]. d.) Dissociation 

rates versus EYFP-PIF6 concentration. In a. and c., each curve represents the measurement of a 

different EYFP-PIF6 concentration from the same batch of PhyB-mCherry-His6 coating beads. 

The binding curves were fitted with equation E.4. Dashed lines represent the fits. e-f.) Light 

induced activation PhyB-mCherry-His6 and EYFP-PIF6 association on SLB (34mol%DOGS-

NTA(Ni), 66mol%DOPC). g.-h.) Pattern dissociation on SLB under 740nm and dark environment. 

EYFP-PIF6: 8µM. Scale bar, 20µm. i.) The persistence of the light-printed pattern on SLB 

(34mol%DOGS-NTA(Ni), 66mol%DOPC), scale bar, 20 µm. The pattern can be maintained 

without obvious blur for at least four hours. 

Supplement figure S11. Dual-color & multi-color printing. The dual-color template was split by 

ZEN software routine into two sequentially printed patterns. After each printing step (A,B), the 

unbound proteins were removed by rising. After the different printing steps, an integrated dual-

color pattern could be obtained. In principle, the two-color printing can be further extended to 

multi-color. Different protein patterns may have regions of overlap; however, the first pattern will 

occupy the binding sites first. The density of either protein in the overlap region can be regulated 

by laser intensity and protein concentration.  EYFP-PIF6: 4µM. EYFP-PIF6(Alexa fluor 405 NHS 

Ester): 4µM. Laser power: 100% 561nm laser(1.6mW). Activation time: 10s. Scale bar: 50µm. 
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Supplement figure S12. Controlling protein localization on GUVs with light. a.) Reversibly 

positioning EYFP-PIF6 on the GUV with 561nm illumination. The patterns can be dissolved with 

740nm light. b.) Schematic of the patterning principle. c.) Line plots of the patterns on GUV. 

GUVs were prepared according to the published protocol9. GUVs (30mol%DOGS-NTA(Ni), 

70mol%DOPC) were incubated with PhyB-mCherry-His6 (2µM) and PCB(1.5µM) for 1h. After 

coating the GUVs with PhyB-mCherry-His6(PCB), the buffer was diluted about 100 times, in 

order to decrease the concentration of the free PhyB-mCherry-His6(PCB) in the solution. Further, 

the patterns were printed by incubating with 1µM EYFP-PIF6. Scale bars in a. and c., 5µm.  
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Supplementary Table 

Supplementary Table 1: Overview of the performances of protein surface patterning methods. 

Reference Light sensitive 
substrate 

Multi-
protein 

Light 
(nm) 

Resolution 
(µm) 

membrane 
compatibility 

Reversible 
Dynamics  

Special 
Hardware 

Binding approach 

Bélisle 
200810 

biotin-4-fluorescein no 473 1 no no laser and mask photobleaching based 
Biotin absorbance  

Bélisle 
200911 

biotin-4-fluorescein yes 473 ;6
71 

1.5 no no laser and mask photobleaching based 
Biotin absorbance 

Walbour 
201212 

biotin–5- 
fluorescein 

no 490 2.5 no no digital mirror 
device 

photobleaching based 
Biotin absorbance 

Scott 
201213 

biotin-4-fluorescein no 780 1 no no laser and mask photobleaching based 
Biotin absorbance 

Labòria 
201314 

photoactivatable 
trisNTAs (PA-
trisNTAs) 

yes 366; 
405 

z: 50; x: 2 no no laser and mask NTA and His tag 

Gatterdam 
201415 

The pseudo 
tripeptide glutathione 
(GSHNDBF)  

yes 365;7
30 

z: 8; x: 2 not show Yes laser and mask pseudo tripeptide 
glutathione (GSH) and 
glutathione S-transferase 
(GST) interaction 

Reuther 
201416 

By heating 
thermoresponsive 
poly(N-
isopropylacrylamide) 

yes _ unknown no no laser 

Rudd 
201517 

DSPE-PEG lipid 
anchor with 
benzylguanine (BG) 
and 
photocaged 
benzylguanine (BG-
NPE) head groups. 

no 405 unknown yes no laser benzylguanine (BG)- 
 and  SNAP-tag interaction 

Strale 
201618 

photoinitiator (4-
benzoylbenzyl-
trimethylammonium 
chloride 

yes 375 0.5 no no UV Projection 
System 

Photo drive the Molecular 
adsorption 

This paper PhyB(PCB) yes 561 0.5-1 yes yes laser Protein to protein 
interaction(PhyB-PIF6) 

Supplementary Table 2: list of vectors, proteins and genes 

Vector 1: Pcoofy12-onestrep-PhyB621-mCherry-His6 
Protein 1 name: PhyB-mCherry-His6 
Gene sequence: 
taatacgactcactataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatataccatggggagc
gctTGGAGCCACCCGCAGTTCGAAAAAGGTGGAGGTTCTGGCGGTGGATCGGGAGGTTCAGCGTGGAGCCACC
CGCAGTTCGAGAAAaCcgcgggtctggaagttctgttccaggggcccatggtttccggagtcgggggtagtggcggtggccgtggcggtgg
ccgtggcggagaagaagaaccgtcgtcaagtcacactcctaataaccgaagaggaggagaacaagctcaatcgtcgggaacgaaatctctcag
accaagaagcaacactgaatcaatgagcaaagcaattcaacagtacaccgtcgacgcaagactccacgccgttttcgaacaatccggcgaatca
gggaaatcattcgactactcacaatcactcaaaacgacgacgtacggttcctctgtacctgagcaacagatcacagcttatctctctcgaatccagc
gaggtggttacattcagcctttcggatgtatgatcgccgtcgatgaatccagtttccggatcatcggttacagtgaaaacgccagagaaatgttagg
gattatgcctcaatctgttcctactcttgagaaacctgagattctagctatgggaactgatgtgagatctttgttcacttcttcgagctcgattctactc
gagcgtgctttcgttgctcgagagattaccttgttaaatccggtttggatccattccaagaatactggtaaaccgttttacgccattcttcataggatt
gatgttggtgttgttattgatttagagccagctagaactgaagatcctgcgctttctattgctggtgctgttcaatcgcagaaactcgcggttcgtgcg
atttctcagttacaggctcttcctggtggagatattaagcttttgtgtgacactgtcgtggaaagtgtgagggacttgactggttatgatcgtgttatg
gtttataagtttcatgaagatgagcatggagaagttgtagctgagagtaaacgagatgatttagagccttatattggactgcattatcctgctactg
atattcctcaagcgtcaaggttcttgtttaagcagaaccgtgtccgaatgatagtagattgcaatgccacacctgttcttgtggtccaggacgatag
gctaactcagtctatgtgcttggttggttctactcttagggctcctcatggttgtcactctcagtatatggctaacatgggatctattgcgtctttagca
atggcggttataatcaatggaaatgaagatgatgggagcaatgtagctagtggaagaagctcgatgaggctttggggtttggttgtttgccatcac
acttcttctcgctgcataccgtttccgctaaggtatgcttgtgagtttttgatgcaggctttcggtttacagttaaacatggaattgcagttagctttgc
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aaatgtcagagaaacgcgttttgagaacgcagacactgttatgtgatatgcttctgcgtgactcgcctgctggaattgttacacagagtcccagtat
catggacttagtgaaatgtgacggtgcagcatttctttaccacgggaagtattacccgttgggtgttgctcctagtgaagttcagataaaagatgttg
tggagtggttgcttgcgaatcatgcggattcaaccggattaagcactgatagtttaggcgatgcggggtatcccggtgcagctgcgttaggggatg
ctgtgtgcggtatggcagttgcatatatcacaaaaagagactttcttttttggtttcgatctcacactgcgaaagaaatcaaatggggaggcgctaa
gcatcatccggaggataaagatgatgggcaacgaatgcatcctcgttcgtcctttcaggcttttcttgaagttgttaagagccggagtcagccatgg
gaaactgcggaaatggatgcgattcactcgctccagcttattctgagagactcttttaaagaatctgaattcgatagtgctggtagtgctggtagtg
ctggtggtagttccctagtgagcaagggcgaggaggataacatggccatcatcaaggagttcatgcgcttcaaggtgcacatggagggctccgtg
aacggccacgagttcgagatcgagggcgagggcgagggccgcccctacgagggcacccagaccgccaagctgaaggtgaccaagggtggccc
cctgcccttcgcctgggacatcctgtcccctcagttcatgtacggctccaaggcctacgtgaagcaccccgccgacatccccgactacttgaagctg
tccttccccgagggcttcaagtgggagcgcgtgatgaacttcgaggacggcggcgtggtgaccgtgacccaggactcctccctgcaggacggcga
gttcatctacaaggtgaagctgcgcggcaccaacttcccctccgacggccccgtaatgcagaagaagaccatgggctgggaggcctcctccgagc
ggatgtaccccgaggacggcgccctgaagggcgagatcaagcagaggctgaagctgaaggacggcggccactacgacgctgaggtcaagacc
acctacaaggccaagaagcccgtgcagctgcccggcgcctacaacgtcaacatcaagttggacatcacctcccacaacgaggactacaccatcgt
ggaacagtacgaacgcgccgagggccgccactccaccggcggcatggacgagctgtacaagggtagcgatagcgcaggcagtgctggtaaggc
tagcggtaaaaagaagaaaaagaagtcaaagacaaagtgtgtaattagccagttttacctggatgagcaccaccaccaccaccactga 
 
Vector 2: Pcoofy1-His6-HRV-EYFP-PIF6  
Protein2 name: EYFP-PIF6 
Gene sequence: 
Taatacgactcactataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatataccatgaaa 
catcaccatcaccatcactccgcgggtctggaagttctgttccaggggcccATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGG
TGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGG
GCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACC
CTCGTGACCACCTTCGGCTACGGCCTGCAGTGCTTCGCCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTC
AAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCC
GCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGG
ACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCA
GAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCAC
TACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCTACCAGTCCGC
CCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACT
CTCGGCATGGACGAGCTGTACAAGggatccATGATGTTCTTACCAACCGATTATTGTTGCAGGTTAAGCGATCAA
GAGTATATGGAGCTTGTGTTTGAGAATGGCCAGATTCTTGCAAAGGGCCAAAGATCCAACGTTTCTCTGCATAA
TCAACGTACCAAATCGATCATGGATTTGTATGAGGCAGAGTATAACGAGGATTTCATGAAGAGTATCATCCATG
GTGGTGGTGGTGCCATCACAAATCTCGGGGACACGCAGGTTGTTCCACAAAGTCATGTTGCTGCTGCCCATGAA
ACAAACATGTTGGAAAGCAATAAACATGTTGACTAA 
 
 
Vector 3: Pcoofy1-His6-HRV-FtsZ(1-366)-YFP-PIF6 
Protein3 name: FtsZ-YFP-Pif6 
Gene sequence: 
taatacgactcactataggcatcaccatcaccatcactccgcgggtctggaagttctgttccaggggcccatgtttgaaccaatggaacttaccaat
gacgcggtgattaaagtcatcggcgtcggcggcggcggcggtaatgctgttgaacacatggtgcgcgagcgcattgaaggtgttgaattcttcgcg
gtaaataccgatgcacaagcgctgcgtaaaacagcggttggacagacgattcaaatcggtagcggtatcaccaaaggactgggcgctggcgcta
atccagaagttggccgcaatgcggctgatgaggatcgcgatgcattgcgtgcggcgctggaaggtgcagacatggtctttattgctgcgggtatgg
gtggtggtaccggtacaggtgcagcaccagtcgtcgctgaagtggcaaaagatttgggtatcctgaccgttgctgtcgtcactaagcctttcaactt
tgaaggcaagaagcgtatggcattcgcggagcaggggatcactgaactgtccaagcatgtggactctctgatcactatcccgaacgacaaactgc
tgaaagttctgggccgcggtatctccctgctggatgcgtttggcgcagcgaacgatgtactgaaaggcgctgtgcaaggtatcgctgaactgattac
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tcgtccgggtttgatgaacgtggactttgcagacgtacgcaccgtaatgtctgagatgggctacgcaatgatgggttctggcgtggcgagcggtga
agaccgtgcggaagaagctgctgaaatggctatctcttctccgctgctggaagatatcgacctgtctggcgcgcgcggcgtgctggttaacatcac
ggcgggcttcgacctgcgtctggatgagttcgaaacggtaggtaacaccatccgtgcatttgcttccgacaacgcgactgtggttatcggtacttctc
ttgacccggatatgaatgacgagctgcgcgtaaccgttgttgcgacaggtatcggcatggacaaacgtcctgaaatcactctggtgaccaataagc
aggttcagcagccagtgatggatcgctaccagcagcatgggatggctccgctgacccaggagcagaagccggttgctaaagtcgtgaatgacaat
gcgccgcaaactgcgccccctcgacctgcaggcggccgcatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagct
ggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagctgatctgcacc
accggcaagctgcccgtgccctggcccaccctcgtgaccaccctgggctacggcctgcagtgcttcgcccgctaccccgaccacatgaagcagcac
gacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaa
gttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaac
tacaacagccacaacgtctatatcaccgccgacaagcagaagaacggcatcaaggccaacttcaagatccgccacaacatcgaggacggcggc
gtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccct
gagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaag 
ggatccATGATGTTCTTACCAACCGATTATTGTTGCAGGTTAAGCGATCAAGAGTATATGGAGCTTGTGTTTGAGA
ATGGCCAGATTCTTGCAAAGGGCCAAAGATCCAACGTTTCTCTGCATAATCAACGTACCAAATCGATCATGGAT
TTGTATGAGGCAGAGTATAACGAGGATTTCATGAAGAGTATCATCCATGGTGGTGGTGGTGCCATCACAAATCT
CGGGGACACGCAGGTTGTTCCACAAAGTCATGTTGCTGCTGCCCATGAAACAAACATGTTGGAAAGCAATAAA
CATGTTGACTAA 

Vector 4: pQE80L-FtsZ 
Protein4 name: FtsZ 
atgtttgaaccaatggaacttaccaatgacgcggtgattaaagtcatcggcgtcggcggcggcggcggtaatgctgttgaacacatggtgcgcga
gcgcattgaaggtgttgaattcttcgcggtaaataccgatgcacaagcgctgcgtaaaacagcggttggacagacgattcaaatcggtagcggtat
caccaaaggactgggcgctggcgctaatccagaagttggccgcaatgcggctgatgaggatcgcgatgcattgcgtgcggcgctggaaggtgca
gacatggtctttattgctgcgggtatgggtggtggtaccggtacaggtgcagcaccagtcgtcgctgaagtggcaaaagatttgggtatcctgaccg
ttgctgtcgtcactaagcctttcaactttgaaggcaagaagcgtatggcattcgcggagcaggggatcactgaactgtccaagcatgtggactctct
gatcactatcccgaacgacaaactgctgaaagttctgggccgcggtatctccctgctggatgcgtttggcgcagcgaacgatgtactgaaaggcgc
tgtgcaaggtatcgctgaactgattactcgtccgggtttgatgaacgtggactttgcagacgtacgcaccgtaatgtctgagatgggctacgcaatg
atgggttctggcgtggcgagcggtgaagaccgtgcggaagaagctgctgaaatggctatctcttctccgctgctggaagatatcgacctgtctggc
gcgcgcggcgtgctggttaacatcacggcgggcttcgacctgcgtctggatgagttcgaaacggtaggtaacaccatccgtgcatttgcttccgac
aacgcgactgtggttatcggtacttctcttgacccggatatgaatgacgagctgcgcgtaaccgttgttgcgacaggtatcggcatggacaaacgtc
ctgaaatcactctggtgaccaataagcaggttcagcagccagtgatggatcgctaccagcagcatgggatggctccgctgacccaggagcagaa
gccggttgctaaagtcgtgaatgacaatgcgccgcaaactgcgaaagagccggattatctggatatcccagcattcctgcgtaagcaagctgatT
AA 

Supplementary Movies 

Supplement Movie S1. PhyB–PIF6 photoswitchable global recruitment in vitro were tested 

on the surface of Ni-NTA agarose beads. 

Supplement Movie S2. Reversibly spatial activating recruitment of EYFP-PIF6 protein to 

the specific localization on the beads with 561 nm laser and 740nm LED light source. 
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Supplement Movie S3. Single FtsZ ring emerging from its recruitment to a supported 

membrane by the light sensitive interaction. 

Supplement Movie S4. TIRF monitored global view of the rings developing on the SLB 

controlled with light sensitive interaction. 

Supplement Movie S5. FtsZ rings dissociated from a supported membrane under 740nm 

light. 
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Manuscript
3D space regulation tools: 

2.3 Shaping membrane vesicles in 3D-printed protein hydrogel cages 

In this manuscript, we introduce a microscale device based on 3D printed protein hydrogel that 
can induce reversible shape changes in trapped vesicles without compromising their free-standing 
membranes. The tunable shaped vesicles are particularly desirable for reconstituting membrane 
polarity- or shape-dependent protein systems that request explicitly non-spherical geometries.  The 
spatially well-defined microenvironment can mimic the dynamic native cell matrix, allowing us to 
investigate how synthetic cells react to and interact with external mechanical cues. 

The results discussed in this section are currently under review. 
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Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal 

living cells from the bottom-up. Their membranes are compatible with many physiologically 

functional modules and act as selective barriers, while retaining a high morphological flexibility. 

However, their spherical shape renders them rather inappropriate to study phenomena that are 

based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 

3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in 

trapped vesicles without compromising their free-standing membranes. Deformations of spheres 

to at least twice their aspect ratio, but also towards unusual quadratic or triangular shapes can be 

accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can 

lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved 

necks between domains to full budding of membrane domains as separate vesicles. Moreover, 

shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein 

networks, such as reaction-diffusion systems. In particular, vesicle shape changes by swelling of 

the hydrogel cages allow to induce different modes of self-organized protein oscillations, and thus, 

to influence reaction networks directly by external mechanical cues. 

1. Introduction
64 

Results
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Bottom-up reconstitution of well-characterized functional biomaterials, such as molecular entities, 

parts and modules, with the final goal of constructing a synthetic cell, is a fascinating variant of 

Synthetic Biology. Although this goal may not easily be within reach in the next years and 

potentially decades, cell-free reconstitution of fundamental biological functions has interesting 

implications for research on the origin of life[1] on one hand, and may open up new potential 

applications from medicine to technology on the other hand.[2] In order to accomplish large-scale 

biomimetic behavior and realize the vision of a fully functional synthetic cell, a large number of 

cutting-edge tools or technologies inspired by nanotechnology and material science have been 

developed and favorably employed to this end. [3]With regard to providing a maximally 

biocompatible and biomimetic compartment as a first step towards a cell-like reaction space, giant 

unilamellar vesicles (GUVs) composed of phospholipids have in the past years gained great 

attention.[4] GUV membranes mimic cellular membranes in many relevant aspects, their lipid 

composition can be tuned over a wide range,[5] they can be supported by a minimal cortex,[6] and 

even large transmembrane proteins can be reconstituted into them.[7] However, many advanced 

protein functionalities like cell division, differentiation, migration and signaling require the 

establishment of spatial anisotropy, or in other words, polarization,[8] which is hard to realize in 

spherical vesicles. In particular, reconstituted bacterial cell division machineries that are supposed 

to ultimately induce controlled vesicle splitting have been shown to require elongated geometries 

with distinct symmetry axes.[9]  

Thus, developing ways for a controlled deformation of GUVs into desired shapes, resulting in an 

anisotropic membrane or a polar physical microenvironment, will greatly improve our toolbox for 

the bottom-up reconstitution of biological functionality towards a synthetic cell. So far, several 

methods to template membrane vesicles and induce anisotropic structure in vitro have been 

developed, like microfluidics,[10] micropipette aspiration, optical tweezers, and dielectrophoretic 

field cages.[11] However, most of them require sophisticated technology or are unable to 

dynamically control the membrane geometry in a well-defined, i.e., precise and programmable, 

manner. On the other hand, cell biology-derived tools like 2D micro-patterning[12] and 3D soft 

lithography of hydrogel[13] have been successfully applied to control interfacial geometry in order 

to define the extracellular environment. Since the development of 3D printing technology, 

rationally designed 3D objects can be produced from various materials on different scales. In this 
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context, stimuli-responsive hydrogels, which can cycle between expanded and condensed states in 

response to environmental triggers (e.g., pH, ionic strength), could constitute an attractive material 

for 3D or 4D Printing.[14] In fact, pH-responsive BSA hydrogels are already widely used to 

fabricate 3D tissue scaffolds[15] and generating smart 4D stimuli-responsive micro-actuators.[14, 16] 

Here, we varied and expanded this technology towards the goal of selectively trapping GUVs 

within a customized 3D printed BSA hydrogel chip, and dynamically inducing structural 

anisotropy by applying external pH stimuli to the gel. The basic working principle is illustrated in 

Figure 1. 3D printed protein hydrogel can be designed as micro-chambers in appropriate sizes for 

capturing GUVs. The variable protein hydrogel structure acts as a geometrical cue to establish 

synthetic cell polarity in vitro by compressing vesicles into different shapes upon pH stimuli. This 

spatially well-defined microenvironment can mimic the dynamic native cell matrix, allowing us to 

investigate how synthetic cells react to and interact with external mechanical cues. 

Figure1. Concept of 3D-printed protein hydrogel trapping and templating giant vesicles (GUVs) 

2. Results and Discussion

GUVs themselves can be generated either by electroformation, gentle hydration of dehydrated

lipids, inverted emulsion transfer or by microfluidic jetting. Procedures to handle these delicate

objects are still not consummate.[17] They encompass sedimentation with high density fluids,

immobilization on functionalized surfaces,[18] manipulation by micropipette aspiration[19], or

microfluidic systems.[11, 17] As an alternative, but still being compatible with these established

protocols, our 3D BSA protein hydrogel GUVs traps were fabricated in a layer-by-layer procedure

Results



Shaping membrane vesicles in 3D-printed protein hydrogel cages 

67 

via two-photon polymerization process, using Rose bengal as the photoinitiator for BSA 

monomers. In contrast to other trapping approaches, surface functionalization for avoiding GUV-

surface adhesion is not required for the 3D printed hydrogel chips. GUVs filled with high density 

solution, like sucrose, can spontaneously sink down into the hydrogel micro-chambers. Trapping 

in the chambers prevents GUVs from being flushed away and from being mechanically deformed 

by applied flow. To rationally design a trap that can be easily adapted to different sizes of GUVs, 

we chose a simple module consisting of a solid cube (14x14x14μm) extrude-cut by half-cylinders 

(Diameter: 10μm) on both sides (Supplement Figure S3a). These GUV traps were then arranged 

into a 10x10-module array. Through controlling the distance of rows and columns in the array, we 

can generate two different types of trap chips: individual traps, or group traps. With 1μm distance 

for both rows and columns, the individual trap chip can be used to capture GUVs one by one within 

81 separated cylinder wells (Figure 2a and Supplement Figure S1a). The GUVs here utilized were 

obtained through electroformation[20], composed of DOPC(1,2-dioleoyl-sn-glycero-3-

phosphocholine) and doped with 0.5 mol% Atto655-DOPE(1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine) for fluorescence detection. By extending the row distance to 15μm, groups 

of GUVs can be trapped between two full rows (Figure 2b and Supplement Figure S1b), in order 

to manipulate many vesicles at once, or to enforce their communications and interactions. The 

sizes of GUVs to be trapped depend on the diameters or distances, respectively (Figure 2c). GUVs 

with diameters larger than the gap distance are filtered out. The selective trapping of GUVs by the 

hydrogel chip, either as individuals or in groups, allows their size to be roughly controlled, as a 

first criterion towards establishing geometric anisotropy of vesicles.    
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Figure 2. 3D-printed protein hydrogel chips filtering and trapping different-sized vesicles. a.) chip 

design for trapping individual GUVs, scale bar 20μm. Left (top): All micro-chambers were 

integrated in one chip. Left (bottom): top view. Right: trapping individual GUVs in separated 

hydrogel chambers. b.) chip design for group trapping, scale bar 20μm. Left (top): The chip was 

combined with separated units as barriers with certain distance. Left (bottom): top view. Right: 

trapping GUVs in between the hydrogel barriers. c.) 3D printed hydrogel traps as GUV filters with 

different row distances. n: number of trapped GUV numbers. D: distance. 

In addition to allowing for a flexible size-filtering design, BSA hydrogel also shows tremendous 

potential in generating smart pH stimuli-responsive micro-devices that can be used to dynamically 

mimic the native cellular microenvironment in vitro. The isoelectric point of BSA is close to pH 

5, where a protein has no net charge and fewer ion-dipole interactions. Therefore, the structures 

absorb less water than at higher pH and thus cover the smallest area at pH 5[16a, 21] Due to the larger 

number of ionized amino acids in BSA, swelling of the structures can be induced at higher pH. 

However, precisely controlling pH can be difficult. To improve controllability, the swelling 
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capability can be effectively tuned by fabrication parameters such as slicing distance (layer 

distance), laser power, and laser scan speed, shown in Figure 3 and Supplement Figure S2. The 

area swelling ratios of 14x14x15μm cubes can be tuned from 1.1 to 1.7 (Figure 3b-d). A larger 

slicing distance results in lower crosslinking density and allows more water to enter inside the 

hydrogel, which in turn increases the swelling ability. Similarly, lower laser power also increases 

the swelling ratio to 1.7 (Figure 3c), but loses spatial resolution of printing. Because of the lower 

crosslinking degree under low laser power, the structures printed with 30mW laser power are 

approximately 30% larger than that printed with 50mW (supplement Figure S2d). When varying 

the scan speed, structures at pH between 5 and 8 have weak swelling capability and the maximal 

swelling ratio at pH 11 can only reach a factor of 1.5(Figure 3d).  

The controllable swelling ratios of 3D printed hydrogel structures enable a programmable 

templating of GUV geometries with pH-stimuli GUVs traps. Due to the swelling effect of the traps, 

the total structure occupies more volume, which should in turn shrink the free inner volume of the 

chambers. The swelling behavior of a square-frame trap was first investigated. It was designed by 

extruding cut 15x15x15μm square wells in the center of 45x45x15μm cuboid (Figure 3e). The 

hydrogel frame can swell 1.57±0.15 fold (mean ± s.d.) at pH 11 compared to pH 5; however, no 

shrinking of the inner area was observed. The potential reason is the increased surface tension at 

the inner side of the hydrogel frame, scaling inversely with radius. To improve the design towards 

a truly contractible and at the same time anisotropic trap, the structure was divided into eight 

separate small rectangular modules (Figure 3f). Allowing 2μm distance between the modules in 

the relaxed state should support swelling in all directions. Because there exists no physical 

interaction between the module surfaces as in the previous design, the section area of the inner free 

space could be decreased to 75% (±2.2%) in the swollen state, when the pH was changed from 5 

to 11 (Figure 3f, bottom right). Another advantage of the modular design is that the distance 

between the modules can be varied, in order to accommodate a larger growth regime and 

anisotropic compression. Small distances may lead to surface contact between the modules during 

swelling, which induces shape changes and restricts the overall compression effect (Supplement 

Figure S4).  
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Figure 3. pH-stimuli responsive protein hydrogel. a.) Laser fabrication of hydrogel layer by layer 

with two-photon excitation. b-d.) Tuning pH-stimuli swelling ratio by varying slicing distance (b.), 

laser power (c.), and laser scan speed (d.). Printing parameters: (b) laser power: 50mW, Scan 

speed: 30000μm s-1; (c) Slicing distance: 0.5μm, Scan speed: 30000μm s-1; (d): Slicing distance: 

0.5μm; laser power: 50mW. e-f.) pH-dependent swelling of integrated chip and the combined chip 

(Slicing distance: 0.5μm; laser power: 50mW; Scan speed: 30000μm s-1), scale bar 20μm. Top: 

confocal imaging of the swelling effect under different pH. Bottom (left): swelling ratios of outer 
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and inner area. Bottom (right): directional swelling. Area swelling ratio is defined as A / A0, where 

A0 is the area of the structure at pH 5, printed under slicing distance: 0.5μm, laser power: 50mW, 

scan speed: 30000μm s-1. 

In order to evaluate the mechanical effects of compression on the trapped vesicles, the pH stimuli-

responsive hydrogel chambers were now applied to deform membrane vesicles. The basic module 

of the group trap can swell in both x- and y- directions and thus occupies free space between 

modules after shifting pH from 5 to 11 (Figure 4a). In the rows, the distance between the modules 

was significantly reduced. Perpendicularly to this, two neighboring modules fused to yield a lens-

shaped well, but with larger diameter than the half-cylinder at pH5. The channels between the 

individual barriers were also narrowed to about 50% (Figure 4a). In response to the pH stimuli, 

the hydrogel can process fast swelling within one minute, supporting a dynamic mimicry of the 

cell microenvironment in vitro (Figure 4b and Supplement movie S1). The trapped GUVs were 

now investigated by optical microscopy (Figure 4c). After shifting the pH to 11, the spherical 

vesicles were compressed by the closing walls, flattening them and forcing them into non-spherical 

symmetry (Figure 4d, e). The distance between the two rows was 11.97 ± 0.34 µm at pH 11, so 

that vesicles larger than ∼12 µm in diameter were compressed. With increasing confinement under 

swelling conditions over a time course of 6 minutes, the curvature became anisotropic, with flat 

areas facing the hydrogel and increased curvatures in the free zone (Figure 4d). At the same time, 

the membrane tension was increased, due to the loss of spherical symmetry and the volume 

conservation, which imposes some constraints on the aspect ratio σ (length vs. width) of the 

vesicles that can be reached by this procedure without compromising membrane integrity. An 

aspect ratio of up to about twofold (length vs. width) could however be easily reached in this setup 

(Supplement Figure S5). Importantly, the hydrogel swelling is reversible, and the vesicle shapes 

can thus be switched between spherical and elongated by alternating between the two pH values 

(Figure 4e). 
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Figure 4. Reversibly deforming membrane vesicles by pH. a) Swelling effect of group trap at 

increased pH, scale bar 20μm. The line plots demonstrate the swelling in both x- and y-axis, 

respectively. b.) Response of geometry factors area and distance when transitioning to pH 11 

solution. c.) Swelling chip deforming DOPC GUV, scale bar 10μm. Right: top and side view of 

deformed GUVs. d.) Dynamic deformation of GUV by exchanging pH from 5 to 11, scale bar 

10μm. e.) Reversibility of GUV aspect ratio (σ) by alternating pH, scale bar 10μm. 

Furthermore, different designs of the hydrogel structures allow us to induce unusual shapes of the 

GUVs, and thus, membrane geometries, by varying the contact zones between the hydrogel and 
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the vesicles. The cylindrical chip was designed by extruding a cylinder (diameter, 15 µm) in the 

center of cube (20x20x20 µm) (Figure 5a and Supplement Figure S3d). Then the cube with the 

cylindrical well was quartered. This chip was used to trap vesicles of ∼15 µm diameter. When the 

pH was increased from 5 to 11, the four separated modules swelled centripetally and compressed 

the captured membrane vesicle. The area of the cross section was reduced, in turn the height was 

increased. Similarly, with alternative designs, GUVs can be deformed to other shapes like cross 

prisms, cubes, and triangular prisms (Figure 5 b-c). Due to the surface tension of membrane 

vesicles, the templated cross-prismatic, cubic and triangular prismatic vesicles all formed curved 

corners and spherical domes.  

Figure 5. Various 3D hydrogel designs for templating DOPC vesicles into different shapes: a.) 

cylinder, b.) cross prism, c.) cube, d.) triangular prism. The schemes in the first row show the 3D 

geometries of trap wells. Below the schemes are the top views of the chips in response to different 

pH, scale bar 5μm. Third row from top: confocal imaging of the middle cross section of vesicles, 
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scale bar 5μm. The bottom two rows represent the 3D z-stack reconstitution of different 

geometrical vesicles.  

Having shown that GUVs can not only be reversibly compressed, but also molded into arbitrary 

non-spherical shapes by our laser-printed BSA pH responsive hydrogel structures, we next aim to 

demonstrate how these mechanical constraints may influence membrane structure and dynamics 

in the shaped vesicles. In particular, GUVs have long been used to elucidate the molecular details 

of lipid phase separation; however, their usually spherical symmetry and isotropic structure have 

significantly limited the comparability of these model membranes with biological ones. In 

physiological environments, cells acquire and maintain spatial and functional asymmetry of their 

plasma membrane[22] in response to external mechanical cues. Similarly, in model membrane 

systems exhibiting visible lipid domains enriched in cholesterol and saturated lipids, strong 

correlations between membrane composition and 3D vesicle shape could be observed, which 

suggest that in turn, mechanical constraints will lead to significant membrane transformations. [22-

23]

The phase separated GUVs we investigated in our stimuli responsive hydrogel cages consisted of 

ternary lipid mixtures composed of cholesterol (Ch), sphingomyelin (SM), and the unsaturated 

phospholipid DOPC, with a molar ratio of 2:2:1 at room temperature.[24] The mixture can separate 

into two co-existing membrane phases: a liquid-ordered phase (Lo) enriched in SM and Ch; and a 

liquid-disordered (Ld) phase consisting primarily of DOPC. To discriminate between the Lo and 

Ld phases by fluorescence microscopy, we used 0.3%NBD-DSPE and 0.2% Atto655-DOPE, 

respectively. The spherical phase-separated GUVs were trapped in the triangular prismatic 

hydrogel chips (Supplement Figure S3c). When the GUVs were compressed by the swelling 

hydrogel chamber under pH stimuli, the vesicles deformed to fit the diminished inner area, often 

accompanied by a large-scale reorganization and fusion of the domains on their membrane surface 

(Supplement Figure S6). In several cases, particularly for vesicles with large domains, the 

spherical vesicle was transiently deformed upon compression into a dumbbell geometry, due to 

line tension between Lo-Ld domains,[25] acquiring a clear curved neck at the domain boundary. 

Typically, the dumbbell-shaped phase-separated vesicle then rotated within the contracted 

hydrogel cavity, in order to adapt the space change and relax back into a spherical (yet compacted) 
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energetically favorable shape (Figure 6b and S7, Supplement Movie S2 for top view of 3D 

imaging, S3 for orthogonal view). Occasionally, however, the compression could lead to the 

fission of a Lo domain away from the trapped GUV membrane (i.e. budding as a way to overcome 

line tension,[26] ultimately changing the overall membrane composition of the remaining “mother” 

vesicle (Figure 6c and Supplement movie S4). In the control experiment without the swelling traps, 

no triggered deformation events were detected upon pH change from 5 to 11 (Supplement figure 

S8). Thus, the ability to exert gentle but significant mechanical pressure on GUVs in our custom-

designed protein hydrogel cages opens up a new way of manipulating vesicle model systems, 

inducing features that could be of great relevance in the design of cellular mimicries, such as shape 

and differential membrane curvature, respectively tension. 
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Figure 6. a.) Scheme of dynamic lipid phase reorganization adapting to the space-induced 

membrane deformation. b.) Dynamic membrane domain reorganization under pH-induced 

compression in the hydrogel chambers, scale bar 5μm. c.) Membrane budding driven by the 

compression of the hydrogel chambers, scale bar 5μm. GUVs were produced from 
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DOPC:SM:cholesterol (2:2:1) and labelled with NBD-DSPE (green) and Atto655-DOPE (red). 

The 3D projections of 3D images were compiled from Z-stack confocal images with ZEN software. 

The boundary geometry that determines membrane dynamics, also affects the spatiotemporal 

patterns and oscillations formed by reaction-diffusion systems.[27] A striking example of a reaction-

diffusion system is the Min protein system, consisting of the proteins MinC, MinD, and MinE, 

which oscillate between the cell poles and spatially position the bacterial cell division machinery 

in Escherichia coli.[28] In vitro reconstitution of the Min system on micropatterned surfaces or in 

microcompartments has shown that the geometry of the boundaries plays a pivotal role in its 

pattern formation and pace-making.[9, 29] Recently, the Min system has been encapsulated into 3D 

spherical compartments, motivated by the long-term goal of creating a self-reproducible synthetic 

cell.[30] Unlike in vivo, this reconstituted reaction-diffusion system reveals several distinct 

oscillation modes, namely pulsing oscillations, pole-to-pole oscillations and circling and trigger 

waves.[30b] Reasons for such diverse behaviours are differences in protein concentration, vesicle 

size, proteins ratio or the isotropic geometry. Here, we aim to use the 3D hydrogel shaped vesicles 

to demonstrate how the anisotropy of microenvironment influences the reaction-diffusion system. 

We encapsulated the oscillating Min system (MinD (50% EGFP-MinD) & MinE) in negatively 

charged GUVs (DOPC:DOPG (1,2-dielaidoyl-sn-glycero-3-phospho-(1’-rac-glycerol); molar 

ratio, 4:1) with an inverted emulsion method (cDICE method[31]). Subsequently, the vesicles were 

trapped within the 3D printed protein hydrogel chips. Similar to what has been reported before33, 

the majority of the uncompressed vesicles were showing pulsing oscillations, for which all proteins 

simultaneously oscillated between the vesicle inside and the inner membrane leaflet (Figure 7a). 

After the pH change from 5 to 11, vesicles that did not get deformed by the hydrogel structures, 

approximately maintained their frequency (Figure 7b and c). However, for vesicles that were 

compressed, due to the hydrogel swelling we observed an increase in oscillation frequency 

compared with their uncompressed state (Figure 7 d-f, Supplement Movie S5), which is basically 

related to the changing aspect ratio (Supplement Figure S9). Larger aspect ratios switching would 

result in shorter diffusion paths from within the vesicle to the membrane and shorten the period 

per oscillation. Intriguingly, in some cases the oscillation mode could transit into a different mode 

in response to the geometry changing (Figure 7g-i). In a vesicle with the pole-to-pole mode, Min 
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protein initially accumulated on one pole of vesicle. Because of the isotropic property, the wave 

impartially travelled from two sides and then re-accumulated on another pole. Obviously, pH 

stimuli compression would trigger the oscillation transiting from pole-to-pole mode to circling 

(Figure 7g-i, Supplement Movie S6). Min waves never travelled on two sides, but continuously 

revolved in a single direction on the inside surface of the GUV. The vesicle geometry 

transformation brought about a protein diffusion mode switching on membrane. Thus, dynamically 

regulating the anisotropy of spherical vesicles with pH-stimuli 3D hydrogel chip provides us with 

new mechanical cues for the investigation of reaction-diffusion systems in three-dimensional 

artificial microenvironments.   
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Figure 7. Protein oscillation modes transition in response to change in vesicle geometry. a.) 

Schematic of Min protein oscillations in vesicles. b-c.) Pulsing oscillation in a spherical vesicle 

under different pH conditions. d-f.) Pulsing oscillation acceleration during vesicles compression. 

g-i.) Min oscillation modes transition from pole-to-pole to circling. d., g. and j. show imaging

frames from the confocal time series of oscillation (1.5µM MinD, 1.5µM eGFP-MinD, 3µM MinE,

5mM ATP). Scale bar: 10μm. b., e. and h. demonstrate the kymograph of the oscillation. The white
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dash lines on the vesicles indicate the position for the kymograph analysis. c., f. and i. either 

describe the fluorescence oscillation inside vesicles (green) or on the membrane (purple). The 

green and purple dash box show the position for measuring the oscillation curves.  

3. Conclusion

We have developed a new toolbox for mechanical manipulation of GUVs - model membrane

vesicles, which constitute the basis for the engineering of advanced protocells and that should

ideally be subject to defined shape transformations. This is particularly desirable when

reconstituting membrane polarity- or shape-dependent protein systems, such as bacterial cell

division machineries that request explicitly non-spherical geometries.[9] Our hydrogel devices are

based on custom-printed BSA protein that can be switched by pH, and are thus fully biocompatible.

Their dimensions are limited only by the optical resolution of the two-photon laser used for

printing. We demonstrated that the swelling ratio depends on the laser power used for printing,

such that even more complex designs with differential volume expansion could in principle be

realized. This opens up a fully new way of using GUVs as custom-made platforms to probe the

functionality of reconstituted cellular modules in bottom-up synthetic biology.
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Experimental Procedures 

Preparation of BSA Solution 

4.2g bovine serum albumin (BSA) (Lyophilized powder, A7030, Sigma Aldrich) and 1.62 mL of 

DMSO (18v/v%) were added to 20 mM HEPES buffer to make up a total volume of 9 mL solution. 

The mixture was centrifuged (20000g) for 15min to remove impurities and foam before use. 85mM 

rose bengal (Sigma Aldrich, 330000) was prepared separated. The BSA photoresist (420g L-1) was 

prepared by mixing BSA resin and rose bengal at the ratio of 9:1v/v.  

3D BSA Hydrogel printing 

3D BSA hydrogel printing was processed with the Nanoscribe Photonic Professional (Nanoscribe 

GmbH). 3D structures were design with Solidwork. The parameters were defined with Describe. 

If without specifying, the following parameters were used, laser power: 50mW (100%), scan 

speed: 30000μm s-1, slicing distance: 0.5μm, hatching distance: 0.2μm. All structures were printed 

with 63x NA1.4 objective in silicone isolator chamber (Thermo Fisher Scientific, 0717104) pasted 

on round glass coverslip (Diameter= 30mm, thickness #1.5). During printing, the chambers were 

covered a small coverslip to avoid strong evaporation. After fabrication, structures were rinsed 

with Phosphate Buffered Saline (PBS) buffer (pH7) to remove the excess BSA resin and 

photoresist.   

Swelling Studies 

Five repeat free-form solid cuboids (14x14x15μm) with slicing distance 0.2–0.8μm were 

fabricated with different laser power (30mW-50mW) and scan speed (10000-30000μm s-1). The 

swelling of structures were observed at different pHs (5-11) using confocal microscope. Structures 

swelling were studied from low pH to high pH. Structures were equilibrated in different pH 

solution for 10 minutes before they were transferred for imaging. Areas of the cubes were measure 

with Fiji (Analyze particles). Then the swelling ratios were calculation as ApH/ApH5, where A means 

area. Confocal imaging was performed on a commercial Zeiss LSM 780 laser scanning microscope, 

using a water immersion objective (C-Apochromat, 40 × /1.2W, Zeiss). Samples were excited with 

the 561 nm laser.  
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GUVs preparation 

Giant unilamellar vesicles (GUVs) were produced by electroformation in PTFE chambers with Pt 

electrodes according to the published protocol[20] with minor changes. Six microliter of lipid 

mixture (1mg/mL in chloroform) was spread onto two Pt wires and dried in a desiccator for 30 min. 

The chamber was filled with 350μL of an aqueous solution of sucrose (~ 300mOsm kg-1). An AC 

electric field of 1.5 V (RMS) was applied at a frequency of 10Hz for 1.5h, followed by 2Hz for 

0.25 h. Unless otherwise stated, vesicles composed of DOPC, containing additional 0.5mol% 

Atto655-DOPE, were electroformed in an aqueous solution of sucrose iso-osmolar compared to 

imaging buffer (~ 300mOsm kg-1). For the phase separation, GUVs were prepared from mixtures 

of DOPC, SM (18:0), and cholesterol (2:2:1) plus 0.2mol% Atto655-DOPE and 0.3mol%NBD-

DSPE.  

GUVs trapping and shaping 

3D structures were exchanged into pH5 PBS buffer (~294mOsm kg-1) for 10min. Then, 20 µL or 

more of the GUV suspension (without-diluted) were added on top of the printed structures in the 

imaging chambers. Samples were incubated for at least 0.5 h at room temperature. After GUVs 

sinking down and diffusing inside the traps, samples were transferred for imaging. Then, samples 

were gently equilibrated into pH11 PBS buffer for 10min to reach the maximal swelling. The 

deformation of the trapped GUVs were imaged with confocal microscopy. To avoid bursting the 

GUVs during deformation, the osmolality of pH11 PBS buffer (~307mOsm kg-1) was slightly 

higher than sucrose solution inside GUVs.  

Min oscillation in vesicles 

1. Proteins

The plasmids for the expression of His-MinD[28], His-EGFP-MinD[32] and His-MinE[28] have been

described previously. His-MinD, His-EGFP-MinD and His-MinE were purified according to the

published protocols. In brief, proteins were expressed in E. coli BL21 (DE3) pLysS and further

were purified via Ni-NTA affinity purification. Then proteins were further purified using gel

filtration chromatography in storage buffer (50mM HEPES, pH 7.25, 150mM KCl, 10% Glycerol,

0.1mM EDTA). Proteins were quick-frozen and stored in aliquots at -80°C until further use.
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2. Proteins Encapsulation in vesicles

Min system was encapsulated in vesicles by emulsion transfer (the cDICE method[31]) according

to the published protocol[30b]. Briefly, both inner and outer solution contain Min protein buffer

(25mM tris-HCl (pH 7.5), 150mMKCl and 5mM MgCl2). In addition, the solution encapsulated

in the GUVs contained 1.5µM MinD, 1.5µM eGFP-MinD, 3µM MinE, 5mM ATP, v/v 15%

iodixanol (from OptiPrep™, Sigma Aldrich) and an oxygen scavenger system (3.7U ml-1 pyranose

oxidase, 90U/ml catalase, 0.8% glucose. Osmolarity of encapsulated solution was about 560mOsm

kg-1, measured with Fiske® Micro-Osmometer Model 210). As the GUV-surrounding solution,

Min protein reaction buffer and 200 mM glucose were used to match the osmolarity of the inner

solution.

The lipid we used is DOPC (1,2-Dioleoyl-sn-glycero-3-phosphocholine, Avanti Polar Lipids, Inc.) 

and DOPG (1,2-Dioleoyl-sn-glycero-3-phosphoglycerol, Avanti Polar Lipids, Inc.) (Both 25mg 

ml-1 in chloroform) in a ratio of 4:1. The lipids were mixed in a silicon oil (5 cST) and mineral oil

(sigma-aldrich. M5904) mixture (ratio, 4:1).

Then the inner solution was loaded into a 1 mL syringe, which was then placed into a syringe 

pump system (neMESYS base 120 with neMESYS 290N) and connected through tubing to a glass 

capillary (100µm inner diameter). 700µl of outer solution was pipetted into a spinning cDICE 

chamber, followed by approximately 5ml of the lipid-in-oil mixture. The capillary tip was then 

immersed in the oil phase and the inner phase injected at a flow rate of 50µl h-1 for 15 minutes. 

The vesicles were withdrawn from the cDICE chamber with a micropipette. 
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Supplement figures 

Figure S1. Overviews of the GUVs trapped in a.) The individual trap chip (22x 25 array) and b.) 

The group trap chip (11 channels), scale bar 50μm. GUVs were produced with DOPC and 

labelled with 0.5mol% Atto655-DOPE. 
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Figure S2. pH-dependent swelling of 3D printed cubic hydrogels fabricated with different 

fabrication parameters  a.) pH responsive swelling of hydrogel cube with different slicing distances 

from 0.2 to 0.8μm (Laser power: 50mW, Scan speed: 30000μm s-1), scale bar 10μm. b.) relative 

area of structures printed with different slicing distance at pH7. The slicing distance will not 

influence printing size of the structures. c.) pH responsive swelling of hydrogel cube with different 

laser power from 30 to 50mW (Slicing distance: 0.5μm, Scan speed: 30000μm s-1). d.) Relative 

area of structures printed with different laser power at pH7. Printing with laser power lower than 

40mW increased structure size.  e.) pH responsive swelling of hydrogel cube with different laser 

scan speed from 10000 to 30000μm s-1 (Slicing distance: 0.5μm; laser power: 50mW). f.) Relative 

area of structures printed with different scan speed at pH7. The relative area calculated with A/A0, 

where A0 means the area of structure printed with fabrication parameters (Slicing distance: 0.5μm, 

Laser power: 50mW, Scan speed: 30000μm s-1).  
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Figure S3. Schematic designs and dimensions of 3D protein hydrogel traps a.) Individual traps 

with 10x10 array in Fig. 1a. and group traps in Fig. 1b ,c, Fig.3 . b. and Fig.6.) Cubic traps with a 

10x10 array in Fig.2f and Fig. 4. c.) Triangular prismatic traps with a 10x10 array in Fig. 4 and 

Fig. 5. d.) 10x10 cylindrical traps array in Fig. 4. If without specifying, all the structures used in 

this research are freestanding designs with pillars as supports (Diameters 2μm, Height 2μm) 
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Figure S4. Distances between modules influence structure swelling capability. a.) pH responsive 

swelling of cubic traps with different distances between modules, scale bar, 10μm. b.) Area 

swelling of different regions in the cubic trap with different distances, when pH was changed from 

5 to 11. Module b and c are freestanding structures with pillar supports. Module a were cuboid 

without pillar supports.  
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Figure S5. Swelling hydrogel compressing GUVs with different aspect ratios σ (width compared 

to length), scale bar 10μm. The deformation of GUVs were processed in the group trap chip. Due 

to the size difference, GUVs with different aspect ratio can be obtained from the swelling 

compression. * GUV (Diameter>15μm) trapped in the chip had been compressed at pH5. 
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Figure S6. Dynamic lipid domain fusion and reorganization adapting to the space-induced 

membrane deformation, Scale bar, 10μm. Top: confocal imagines of middle plane of the vesicle. 

Bottom: top view of the 3D z-stack reconstitution. The numbers show the domain numbers of Lo 

and Ld phase. GUVs were produced from DOPC:SM:cholesterol (2:2:1). GUV in the images was 

labelled with Atto655-DOPE (blue). 

Figure S7. Dynamic membrane domain reorganization under pH-induced compression in the 

hydrogel chambers, scale bar 5μm. GUVs were produced from DOPC:SM:cholesterol (2:2:1) and 

labelled with NBD-DSPE(green) and Atto655-DOPE (red). The top views of 3D images were 

compiled from Z-stack confocal images with ZEN software. 

Figure S8.  Free standing phase-separated GUVs upon pH stimuli, scale bar, 10μm. GUV in the 

images was labelled NBD-DSPE (green) and Atto655-DOPE (red). 

Results



Supporting Information 

95 

Figure S9. Pulsing oscillation acceleration during vesicles compression (1.5µM MinD, 1.5µM 

eGFP-MinD, 3µM MinE, 5mM ATP). Pulsing frequency change versus aspect ratio (W/H) change 

of vesicles that were before- and after- compressed.  

Supplement Movies 

Supplement Movie S1. pH responsive swelling of group trap, when pH was shift from 5 to 11. 

Supplement Movie S2. Dynamic membrane phase separation and reorganization in pH-stimuli 

3D hydrogel chamber (top view) 

Supplement Movie S3. Dynamic membrane phase separation and reorganization in pH-stimuli 

3D hydrogel chamber (orthogonal view) 

Supplement Movie S4. Membrane budding driven by the space compression of the pH-stimuli 

3D hydrogel chambers (top view) 

Supplement Movie S5. Pulsing oscillation acceleration during vesicles compression 

Supplement Movie S6. Min oscillation modes transition from pole-to-pole to circling. 
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Manuscript

3D space regulation tools: 

2.4 Active forces driving 4D protein hydrogel origami 

The results discussed in this section are unsubmitted manuscript. 

In this manuscript, we engineered nanoscale actomyosin motor system to drive rapid microscale 

transformation between complex 3D printed hydrogel scaffolds by active contraction. 

This is a research project in collaboration with Dr. Michael Heymann, Dr. Sven Vogel, Dr. Henri 

Franquelim, Dr. Frank Siedler, Hiro Eto in Schwille group, and Johannes Flommersfeld, David 

Brueckner in Prof. Chase Broedersz’ group(LMU). Haiyang Jia is only first author for this 

manuscript. The author list and contributions will be determined when we are ready for submission. 

https://www.biochem.mpg.de/en/rd/schwille/people/eto-hiro
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Active forces driving 4D protein hydrogel origami 

Haiyang Jia et.al. 

 
  Four-dimensional (4D) printing with soft materials capable of self-actuating and stimuli-actuating 

shape-morphing have applications in diverse areas, such as flexible electronics(1, 2), smart 

textiles(3), soft robotics(4, 5), biomedical devices(6), drug delivery(7) and tissue engineering(8). 

Rationally actuating shape transforming is essential for all such applications to accomplish the 

functions for which they are designed. Over the past few decades, there has been considerable 

progress in developing new actuation technologies, including those based on electrostatic forces(9, 

10), thermal expansion(11), magnetostriction(12), and pressure. Most artificial actuators are easy 

to modulate remotely with external stimuli and enable miniaturization down to microscale; 

however, are considerably limited by either spatial scale, accurately control, triggering efficiency, 

or biocompatibility(13).  

  The natural analogues of active actuators are exemplified by nanoscale molecular motors, which 

are assembled into multiscale ensembles with integrated control systems. These systems can scale 

force production from piconewtons up to kilonewtons to govern active motion of cells, tissues and 

organs. By leveraging the performance of living cells and tissues and directly interfacing them 

with biocompatible soft materials, biohybrid and bioinspired robots were created from top-down 

to perform behaviors like natural systems, such as cellular micropump(14), a crab-like 

microrobot(15), myopod(16), “jellyfish”(17) and soft-robotic ray(5). Due to the scale limitation of 

cell or tissue, bio-hybrid actuators with living materials still represent a considerable bottleneck 

for many applications and hampers the development of advanced robots at nanometer- and 

micrometer-scale. Compared with the top down approaches, recently the emerged bottom-up 

reconstitution of well-characterized functional biomaterials, provide new chance to engineer 

nanoscale biohybrid actuators from molecular entities, parts and modules in a simple way. So far, 

a minimal system consisting of filamentous actin (F-actin) and myosin-II motors was reconstituted 

in vitro system(18). Active forces can be generated upon energy suppling, resulting in rapid 

actomyosin contractions that are able to introduce deformation in soft materials such as model 

membrane. The ability to efficiently produce detectable forces at molecular scales is the most 

exciting feature, which makes them as attractive biohybrid actuators candidates for all the 
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applications in which microrobots/nanorobots endowed with onboard propulsion systems are 

desirable.  

  Here we engineered nanoscale actomyosin motor system to drive rapid microscale transformation 

between complex 3D printed hydrogel scaffolds by active contraction. Our 3D hydrogel structures 

composed of photo-crosslinked protein were fabricated in a two-photon polymerized layer-by-

layer procedure from photoresist resin containing bovines serum albumin (BSA) and rose bengal 

as photoinitiator (Figure1a). By varying the fabrication laser power and scan speed, the elastic 

modulus of the resulting protein hydrogel structures could be tuned from 10kPa to 250kPa, a range 

that encompasses modulus values for a number of biological tissues, such as basement membrane 

and mammalian muscle (19, 20). To immobilize actomyosin motor system, the active surface of 

the protein hydrogel was accomplished by mixing biotinylated BSA into the photoresist resin. 

  Then we developed an actin network consisting of Alexa488-phalloidin stabilized actin filaments 

coupled onto the biotinylated hydrogel microstructures via biotin-neutravidin bonds (Figure 1a). 

Free form neutravidin (neutravidin/biotin-actin; 1:20) served as crosslinker to integrate individual 

actin filaments into mesh network, which endures the proper self-organization of our actin cortex 

in 3D space volumes. Actin networks as a spatial cue connected different parts of 3D structures 

and further supported the contractility of myosin motor on 3D hydrogel structures. By varying the 

amount of biotinylated BSA present in the photoresist resin, we could control over the density of 

the immobilized actin on the 3D scaffolds (Figure1b). To demonstrate the ability to actuate the 

shape-morphing of 3D hydrogel structures, a soft pillar ring containing ten standing pillars was 

designed and printed with elastic modulus about 57kPa (Figure1b). Three dimensional actin 

network crosslinked with neutravidin was reconstituted onto the biotinylated pillar ring. We then 

tested the response of the pillar supported actin network upon addition of myosin motors. 

Subsequently, pillars were almost homogeneously bended immediately to the center in an ATP-

dependent manner, showing the diameter decreasing on tip of the pillar ring (Figure 1c, d), with 

the varied contraction velocity (Figure 1e). As a force motor, myofilaments slid on actin filaments, 

contracted the actin network, and collectively leaded to material response. During this progress, 

forces generated at the molecular level by motor proteins were transmitted by actin networks, 

resulting in large-scale active stresses on 3D microstructures. We then tuned the stiffness of pillar 

ring to further investigate the contractility of our motor system in response to the material elasticity 

changes (Figure1f-g). Pillar rings with different elastic modulus showed different bending 
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curvatures (Figure1g). In experiments, large displacements were detected in the pillar rings with 

elastic modulus under 100kPa. Through fitting structural curvatures with the elastic model, the 

force on the each pillar was about 200±25pN. We employed the finite-element analysis of the 

commercial software Solidworks to understand the large-scale force transition coordinated with 

the 3D structure transformation. The simulation conducted under the same conditions, including 

the hydrogel properties and generated force in the experiments, is in good agreement with the 

experimental results, which provides the possibility to program complex 3D structures by utilizing 

finite-element simulation (Figure1g). Through changing material properties, we rationally turned 

the actuated displacements, laying the ground for designing complex 3D structure with 

controllable transformation.  
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Figure 1 Validating actin-myosin actuator on 3D printed BSA hydrogel. a.) Illustration depicting 

3D protein hydrogel printing procedure and the coupling of actin network to 3D scaffold. b.) Top: 

Scanning electron microscope (SEM) imaging of pillar ring and effect of the biotin-BSA ratio on 

the immobilized actin density. Bottom: z projection of actin network organization on pillar ring, 

scale bar 5µm. c.) Contractile dynamics of pillar ring in response to the motor addition. Scale bar, 

5µm. d.)  Pillar ring contraction analysis. Each circle represents a time point. e.) Pillar bending 

displacement and motion velocity during contraction. f.) Young’s modulus map of the hydrogel 
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structures by varying printing parameters. g.) Simulation of the finite-element model and 

experiments results. Scale bar, 5µm.  

 

  Actin network architecture, such as size of and distance between nucleation points, can influence 

actomyosin contractility (22, 23). In our setup, individual pillars can be considered as a nucleation 

cluster. In order to program large-scale hydrogel contraction with the actomyosin actuator, we 

further investigated the effect of the geometrical boundaries, such as distances. To evaluate the 

respective contribution of distance to the contractility, we varied the ring diameter (D) and pillars’ 

distance (d) (Figure 2a-b). When D and d increased equally, uniform contraction can only be 

performed on the rings with diameters ≤26μm (Figure 2a). For the ring with larger diameters, pillar 

contraction will differentiate into different groups, not integrate as a whole, meaning distance 

either the ring diameter or pillars’ distance will influence integrity and consistency of the 

contractility. Additionally, the amount of the contracted pillar-clusters increased along with d 

increasing, demonstrating larger distance between neighbor pillars would amplify the 

differentiation. Intriguingly, when d was kept constant and D was increased by varying pillar 

number, a similar threshold was detected in the ring with diameter around 26μm (Figure 2b). All 

the results demonstrate that unanimous contraction of the protein hydrogel structures is determined 

by the distance of actin supporting sites.  

  Another factor needed to be considered is torque that was determined by the angle between the 

force vector and the lever arm vector. To characterize the effect of angle on the actomyosin based 

active contraction, we designed a free-standing V structure with two stiff arms that were connected 

with a soft joint in the middle. One arm was fixed with a solid support, leaving the only freedom 

for another arm. When the actin-myosin network contracted and transmitted force to the arms. The 

force would prefer bending the soft joint, than the stiff arm, resulting in the folding movement of 

the freeform arm about the joint towards the fixed arm. The results show the active force based V 

structure folding can be accomplished from 45o up to 160o (Figure 2c).  
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Figure 2 Geometrical properties determine active contraction of 3D printed structures. a.) Distance 

of nucleation sites and b.) size of pillar rings limit unanimous contraction. Scale bar, 5µm. Pillar 

number was kept constant at 10 in a. Distance of nucleation sites was fixed at 5µm in b. c.) The 

active contraction of V structures. Scale bar, 5µm. All structures were printed with laser power 

about 35mW and scan speed around 30000μm/s, resulting in elastic modulus around 57kPa.  

 

  Active contraction of simple 3D hydrogel units was determined by the geometrical boundaries, 

such as size and angle, but not limited to them. Large-scale and intricate active contraction can be 

amplified by rationally assembling simple modules, the unit coordination of which would yield a 

high efficient and programmable shape-morphing under active force. As Fig. 3a illustrated, by 

combining V units that generate small scale folding, we created a series of functional folding 

architectures to demonstrate the programmable capabilities of large-scale folding.  Basic V units 

were combined to be a V-wave and their connection sites were fixed to permit folding only on the 
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joints. The actomyosin actuator would simultaneously drive all the independent V units folding, 

resulting in rapid upwards curling (Figure 3a). Instead of using a large angle hinge with low folding 

ability, 90 o and 135 o angle folding can be accomplished alternatively by assembling two or three 

45 o V-unit (Figure 3a). Additionally, impossible large angle folding with the simple unit, such as 

180o and 360o, can also be successfully accomplished by the unit combination. Complex 

combination such as two W structure assembled with four 45o V-unit in a row could rapidly 

transform into its contractile state within four minutes. V-wave combined with 6 V-unit could 

revolve about the first joint on the right, coil up its long V-chain and final turn 360o  to form a 

closed hexagonal star (Figure 3a). Through combination, large 3D hydrogel structures with up to 

60µm in length can still be successfully contracted without limitation, showing the possibility for 

programming large structural transformation. We further demonstrate actomyosin actuator render 

other capabilities to 3D hydrogel structures such as spring-like contraction. As another form of V-

unit combination, hydrogel spring with more freedom was contracted along its axis under myosin 

trigging (Figure 3b).  

  Our method can be further extended to more intricate origami-like shape-morphing, such as self-

folding a hydrogel box. The cruciform precursor was created by using a combination of flat panels 

and hinges. The solid supported central face was connected to the other five free-standing faces 

with inner hinges (Figure 3c). An extra rigid block was placed between the two hinging faces to 

serve as a sill for controlling folding-angle. Additionally, the flat panels and the rigid block formed 

a 90o angle, which allowed a simple self-folding sheet efficiently yield a complex 3D cube under 

active contraction.  

  The ideas presented here combine 3D printing biocompatible soft materials with bottom-up 

reconstituted nanoscale bio-motors to enable large scale shape-morphing of complex 3D 

microstructures. Our study is but a first step in engineering and programing bio-motor based 

actuator that are compatible and can be implemented with other soft materials, suggesting new 

possibilities for applications in biomedical devices and soft robotics.  
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Figure 3 Large-scale and intricate transformations of 3D structures programed with active 

contraction. a.) Schematic design and experimental results of V-unit combination demonstrating 

complex coiling dynamics under applied active force. Scale bar, 20µm. b.) Schematic design and 

experimental results of a contractile protein hydrogel spring. The plot represents the spring 

contraction along its axis before and after trigging. c.) An intricate cube self-folding from its 

cruciform precursor. The orthogonal view and 3D imaging reconstitution demonstrate the closed 

cube under active force actuating. Scale bar, 20µm.  
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Materials and Methods 
Preparation of BSA Solution 

3.8g bovine serum albumin (BSA) (Sigma Aldrich) and 1% Biotinylated-BSA(ThermoFisher) and 

1.62 mL of DMSO (18v/v%) were added to 20 mM HEPES buffer to make up a total volume of 9 

mL solution. The mixture was centrifuged (20000g) for 15min to remove impurities and foam 

before use. 85mM rose bengal (Sigma Aldrich, 330000) was prepared separated. The BSA 

photoresist (380g L-1) was prepared by mixing BSA resin and rose bengal at the ratio of 9:1v/v.  

 

3D BSA Hydrogel printing 

3D BSA hydrogel printing was processed with the Nanoscribe Photonic Professional (Nanoscribe 

GmbH). 3D structures were design with Solidwork. The parameters were defined with Describe. 

If without specifying, the following parameters were used, laser power: 35mW (70%), scan speed: 

30000μm s-1, slicing distance: 0.3μm, hatching distance: 0.2μm. All structures were printed with 

63x NA1.4 objective in silicone isolator chamber (Thermo Fisher Scientific, 0717104) pasted on 

round glass coverslip (Diameter=30mm, thickness #1.5). During printing, the chambers were 

covered a small coverslip to avoid strong evaporation. After fabrication, structures were rinsed 

with Phosphate Buffered Saline (PBS) buffer (pH7) to remove the excess BSA resin and 

photoresist.   

 

Young’s modulus measurement with  Atomic Force Microscopy(AFM) 
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AFM was performed on a JPK Instruments Nanowizard III BioAFM mounted on a Zeiss LSM510 

Meta laser scanning confocal microscope (Jena, Germany). Non-coating silicon cantilevers 

(XNC12/CR-AU B, MikroMasch) were used for the quantitative imaging (QI) mode and force 

spectroscopy. Data was analyzed using JPK data processing software Version 5.1.4 (JPK 

Instruments). The modulus was obtained by fitting the extended part of the force−penetration 

curves with a simple Hertz model (JPK data analysis software).  

Scanning Electron Microscopy (SEM) imaging of hydrogel  

To prepare sample for SEM imaging, BSA microstructures were exchanged into acetone 

sequentially with increasing serial concentrations (20%, 40%, 60%, and 100%).  The samples were 

then dried with Leica EM CPD300 Automated Critical Point Dryer after immersing in pure 

acetone. Samples were sputter coated with platinum at 40 mV or 30 s using a Cressington Sputter 

Coater 208HR. Coated surfaces were viewed using a Mira3 SEM operating at an accelerating 

voltage of 4.5kV and beam current of 5 in SEI mode. 

F-actin preparation  

Actin filaments were prepared according to the published protocol (Vogel S K, Elife, 2013). 

Briefly, rabbit skeletal muscle actin monomers (Molecular Probes) and biotinylated rabbit actin 

monomers (tebu-bio [Cytoskeleton Inc.]) were mixed in a 5:1 (actin:biotin-actin) ratio. 

Polymerization of the mixture (39.6 µM) was induced in F-Buffer containing 50mM KCl, 2mM 

MgCl2, 1mM DTT, 1mM ATP,10mM Tris–HCl buffer (pH 7.5). The biotinylated actin filaments 

were labeled and stabilized with Alexa-Fluor 488 Phalloidin (Molecular Probes) according to the 

manufacturer protocol. Finally, 2µM (refers to monomers) of Alexa-488-Phalloidin labeled 

biotinylated actin filaments were obtained. 

Myofilaments preparation 

Myosin was purified from rabbit skeletal muscle tissue as previously described (Smith et al., 2007). 

Myofilament assembly was induced in reaction buffer containing 50mM KCl, 2mM MgCl2, 1mM 

DTT and 10mM Tris–HCl buffer (pH 7.5). Equilibration of the mixture for approximately 30 min 

gave us a median length of 560nm in our system. If without specifying, myosin concentration 

(refer to the monomers) used in the experiments was 0.3µM.  

Active contraction on 3D printed hydrogel structures 
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Biotinylated 3D hydrogel structures were incubated with 1mg/ml Neutravidin for at least half an 

hour. Then, the free flowing neutravidin in solution were gently washed away with washing buffer 

containing 50mM KCl, 2 mMMgCl2, 10 mMTris–HCl buffer (pH 7.5). Then the microstructures 

were further incubated with 0.3µM (refer to the monomers) actin pre-formed filaments and 

2.25nM neutravidin (neutravidin: biotin-actin, 1:20) for about 2h, following by carefully washing 

with buffer. For Active contraction, 100µl pre-formed myofilaments with 0.5mM ATP were added 

in the reaction chamber.  

Finite-element analysis 

The shapes deformed by actomyosin motor system in Figure1 were simulated using the simulation 

function of Solidworks. For all the simulation, the elastic modulus of the structures printed with 

different parameters were input into the software. The applied external force were in accordance 

to the force that can be generated with our actin-myosin system. 
 
  



3 Discussion and Perspective 

Bottom-up reconstitution as a powerful shortcut afford us to explore the mysteries of 

the mechanisms and molecular origins of life. So far, functional and fundamental biological 

units, comprised various membrane systems, transcription/translation modules, 

cytoskeletal, and molecular motors, have already been identified and successfully 

reconstituted in simplified environments. After all, the secret of life does not only lie in these 

separated building blocks, but even more in their particular interactions and compatible self-

organization in space and time. Towards this end, hierarchical assembly and spatiotemporal 

connection are being awaited for identification and development. In this thesis, to address 

the demands, we developed various spatiotemporal methodological tools and 

technologies to integrate different functional components compatibly in space and time.  

Firstly, we have developed a synthetic temperature feedback regulation toolbox based on RNA 

thermometer elements, aiming to manipulate protein production temporally in cell free protein 

synthesis system. We tuned the thermal response of the thermal-sensor rapidly and simply by an 

in vitro strategy, and finally adapted RNA thermometers for the PURE system84. We explored 

new functional genetic parts of RNA thermometers with broad switching range from 35 to 42 
oC, being useful for diverse requirements of gene circuits engineering in vitro. Since ionic 

strength strongly influences the stability of RNA secondary structure85, ionic condition change 

will affect the switching behaviors of RNA Thermometers in cell free system. Therefore, to 

extend the application to other cell-extract based systems with different iron concentrations, 

the melting temperature of the same sequence need to be re-adjusted.  
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Instead of simple regulation of single gene, the next level of applications was extended from 

thermal genetic circuits to in vitro compartmentalized cell free reactions towards artificial cells. 

As translation level regulators, RNA thermometers can minimize the transcriptional redundancy 

of the genetic circuits, making them attractive to a minimal cell model. We generated protocells 

from bottom-up by encapsulating a temperature feedback transcription/translation machinery into 

picoliter emulsion droplets. Rationally designed synthetic temperature feedback regulation tools 

could render protocells response to heat, and the capability to convert the environment stimulus 

into biological signals. With these temperature sensitive devices, the protocells can process 

different inputs in a deterministic way. We demonstrated a thermally driven gene multiplexer and 

a logic AND gate, which are capable of processing both thermal and chemical signals. As shown, 

thermal regulation show promising applications, such as establishing reaction schemes that require 

a delicate concentration ratio and sequential expression. Dynamic thermal logic circuits capable 

of compatibly controlling multiple genes provide the logical control of different biological 

functions in a defined workflow. Although genetic circuits could handle different components 

working in the same system, the inherent stochasticity noises still cannot be ignored. In this thesis, 

we have demonstrated that the expression of RFP controlled with RNATs differentiated over time 

in microcompartment population, which may be due to the stochastic on/off switching of the 

RNATs, inhomogeneous distributions of materials among different bioreactors or heat damage. 

Despite the progress we made in understanding the differentiation, how to minimize and control 

expression differentiation are still open questions in the field and needs to be performed in the 

future. 

Notwithstanding that, the thermo-sensors are not consummate; such tuneable temperature 

sensitive protocells show new light on a variety of applications in biotechnology, medicine, and 

industry. For example, by their ability to detect temperature changes, protocells based therapy 

could be applied to produce, deliver and release pharmaceuticals by sensing the fever of host 

or artificially focused ultrasound heating. Undoubtedly, further development of environment 

sensitive logics as shown here within artificial cells or protocells will bring attractive 

opportunities to many fields.  
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Having shown, we can program protein production temporally in microcompartments with genetic 

regulation tools. Secondly, we have developed an in vitro protein patterning assay on membranes 

based on the reversible and light-switchable interaction PhyB-PIF6, that can enable spatiotemporal 

control for bottom-up protein self-assembly. The range of potential and desired applications 

extends from dynamically controlling local protein interactions in well-defined regions to spatially 

targeting the self-assembly of larger protein structures on both solid supported and free-standing 

membranes.  

Compared with the classical chemistry-based protein patterning methods in vitro 86-95, our assay 

has shown to be compatible with model membranes, allowing us to mimic natural biological 

regulation processes by utilizing patterned light. The method does not relies on unspecific 

chemical binding, thus preserves physiological properties. Additionally, optogenetic tools based 

patterning techniques also show superiority in the aspect of reversible operation, allowing dynamic 

protein localization. The method can function without special hardware besides widely available 

confocal microscopes. The high spatial and temporal specificity of light activation establishes this 

system as a useful tool for local control of protein patterns in two and three dimensions on model 

membranes. We also demonstrated the generality and orthogonal protein alignment of the 

approach for sequentially patterning different proteins. Multi-proteins printing can also be 

successfully processed with our approaches. Our current setup is limited by loading different 

proteins manually. This can cause laser focus shifts; therefore, custom-made microfluidics will be 

needed for such extended multicolor patterns in the future to render loading and rinsing more 

precise. So far, diverse light-inducible protein interaction pairs operating in the visible spectral 

range have been developed in vivo and applied in physiologically relevant studies. Validating the 

different wavelengths sensitive tools in vitro will simplify the multi-printing procedures by 

switching different wavelengths, and will further facilitate the biorthogonal operation of 

independent components in large-scale system.   

For bottom-up synthetic biology, the ability to guide large-scale and reversible self-assembly of 

functional protein structures by light can tremendously help in designing minimal cellular systems 

with desired properties, without having to rely entirely on biochemical cues. We demonstrated 

printing self-assembling proteins such as the bacterial cytoskeleton protein FtsZ. The targeted 

assembly into filaments and artificial ring structures can be accomplished, showing promising 
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applicable potential for large-scale assembly of cell divisome96-97. However, large-scale bottom-

up reconstitution could be limited by heavy workload of purification and systematic compatibility. 

Therefore, it could be interesting to integrate the light targeting system with genetic controllable 

cell-free protein synthesis system to achieve one-step production and localization. In summary, 

our light patterning method provides a promising tool for the design of bio-molecular systems 

composed of proteins and model membranes. Fast patterning of proteins provides a promising tool 

to track many interactions and activities of proteins on membranes in parallel, representing a new 

design option for protein microarrays. In the future, approaches like this will greatly help the 

spatial reconstitution of biological systems from the bottom-up, with a wide range of potential 

applications from fundamental protocell research to tissue engineering.  

Micro-compartments as spatial boundaries represent the most basic unit for synthetic cells. 

However, the spherical shape of microcompartments, such as giant unilamellar vesicles, renders 

them rather inappropriate to study phenomena that are based on distinct cell shape and polarity.  

Thirdly, we have developed a new toolbox for mechanical manipulation of GUVs - model 

membrane vesicles, which constitute the basis for the engineering of advanced protocells and 

should thus be subject to defined shape transformations. We introduced a microscale device based 

on 3D printed protein hydrogel to induce pH-stimulated reversible shape changes in trapped 

vesicles without compromising their free-standing membranes. Our hydrogel devices are based on 

custom-printed BSA protein are thus fully biocompatible. Their dimensions are limited only by 

the optical resolution of the two-photon laser used for printing. We demonstrated that the swelling 

ratio depends on the laser power used for printing, such that even more complex designs with 

differential volume expansion could in principle be realized.  

The selective trapping of GUVs by the hydrogel chip allows their size to be roughly controlled, as 

a first criterion towards establishing geometric anisotropy of vesicles. The trapped GUVs can not 

only be reversibly compressed, but also molded into arbitrary non-spherical shapes by our laser-

printed BSA pH responsive hydrogel structures. Such spatially well-defined microenvironment 

can mimic the dynamic native cell matrix, allowing us to investigate how synthetic cells react to 

and interact with external mechanical cues. 

Moreover, mechanical force induced by the cages to phase-separated membrane vesicles can lead 

to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks 
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between domains to budding of membrane domains as separate vesicles. Thus, the ability to exert 

gentle but significant mechanical pressure on GUVs in our custom-designed protein hydrogel 

cages opens up a fully new way of manipulating vesicle model systems, inducing features that 

could be of great relevance in the design of cellular mimicries, such as shape and differential 

membrane curvature. 

Additionally, the shape-tunable vesicles are particularly desirable when reconstituting membrane 

polarity- or shape-dependent protein systems, such as the spatiotemporal patterns and oscillations 

formed by reaction-diffusion of Min systems that request explicitly non-spherical geometries. Our 

platform opens up a fully new way of using GUVs as custom-made platforms to probe the 

functionality of reconstituted cellular modules in bottom-up synthetic biology.  

In the last section, we programmably engineered and functionalized the contractible 3D 

hydrogel scaffolds for actin-myosin motor reconstitution. The controllable and contractible 

scaffolds provide an outstanding in vitro platform for investigation of the active contraction, 

which can be further extended to study cell spreading and migration. Moreover, nanoscale 

actomyosin motor as a bio-actuator could generate, transmit active contraction and then drive 

large-scale shape transformation of complex 3D hydrogel scaffolds. Our study shows new light 

on engineering and programing nano-motor based actuator that are compatible and could be 

implemented with other soft materials, suggesting new possibilities for applications in 

biomedical devices and soft robotics.

Overall, we developed a 4D regulation toolbox to facilitate a bottom-up reconstitution both 

in time and in space. The spatiotemporal regulation of 4D toolbox cover the aspects from 

dynamic gene transcription & translation, reversible protein interaction, spatially protein 

positioning, sequentially protein assembly, extend to defining geometrical membrane 

boundaries and mimicking cellular anisotropic microenvironment.  The 4D regulation toolbox 

presented here is a big step towards achieving the main objectives; however, the non-

trivial explorations of hierarchical assembly and spatiotemporal connection are still the tip of 

iceberg.  In this regard, the quest for assembling a synthetic cell from modules in space and time 

will continue to require great efforts and inspirations from a wider community of biologists, 

chemists, physicists, biotechnologists as well as micro- and nanotechnologists. 
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