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Abstract 

 

 

Animals are able to accumulate sensory evidence over considerable timescales in 

order to select behaviors fundamental for their survival. Despite the importance and 

ubiquity of this phenomenon, how activity in different brain regions contributes to this 

process is not understood. In this study, I develop a novel perceptual decision making assay 

in the larval zebrafish, based on whole-field visual motion of varying strength. Upon 

presentation of motion, fish integrate this noisy sensory evidence in time before swimming 

in the direction of perceived motion, a behavior known as the optomotor response. 

Behavioral parameters such as the latency to initiate swimming and the fraction of correct 

turns are modulated by motion strength. Whole-brain functional imaging experiments with 

single-cell resolution enable identification of almost all neural activity relevant to the 

different stages of the decision making process, including evaluation of momentary sensory 

input, accumulation of this sensory evidence, and behavioral output. Fitting a generalized 

integrator model to every neuron reveals a wide range of time constants, which are 

distributed in functional clusters across different brain regions. Based on the behavior and 

the imaging data, a model is proposed where integrating units set the left and right turning 

rates. An unbiased whole-brain analysis revealed that the interpeduncular nucleus, a 

circular structure located ventrally on the midline of the brain, reliably encodes these rates. 
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1. Introduction 
 

 

1.1 Perceptual decision making  
 

In making behavioral choices, animals combine sensory information and internal 

states to maximize benefits from their interaction with the external environment. As 

momentary sensory cues are often noisy and uncertain, in order to properly infer the state 

of the world, animals need to integrate sensory evidence such that it can be evaluated over 

longer timescales, and use this valuation to plan the appropriate motor actions. In contrast 

to simple reflexive behaviors, in which motor responses are immediately elicited following 

sensory stimuli, the process of sensory integration – the core of perceptual decisions, takes 

course over timescales that are orders of magnitude longer than action potentials. How such 

a computation is implemented at the neural level remains largely unknown.  

A conceptually simple model that can describe both behavioral and 

neurophysiological data underlying decision processes is that of evidence accumulation 

(Ratcliff, 1978; Laming, 1968): in selecting a particular choice, evidence for or against 

different alternatives is gradually increasing, and the final value of this accumulated 

evidence will drive the decision outcome. The difficulty of the task is proportional with the 

time course of the decision process: the stronger the evidence for a particular alternative is, 

the faster it will reach a value that can lead to a choice selection. This ‘evidence 

accumulation’ model describes very well behavioral and neurophysiological results in 

many perceptual decision paradigms involving multiple sensory modalities, in various 

model organisms, including non-human primates (Newsome et al., 1989; Shadlen and 

Newsome, 1996; Hanes and Schall, 1996), rodents (Brunton et al., 2013; Scott,  

Constantinople et al., 2017; Licata et al., 2017), humans (O’Connell et al., 2012; Wyart et 

al., 2012), and fruit flies (Das Gupta et al., 2014; Groshner et al., 2018).  
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1.1.1 Neural basis of perceptual decision making 

 

One of the most widely used paradigms in perceptual decision making studies is 

the random dot motion discrimination task (RDM), first used in non-human primates 

(Newsome and Pare, 1988; Newsome et al., 1989). In a typical experiment, subjects are 

trained to indicate the net direction of motion of dots moving on a screen, a fraction of 

which moves either to the left or the right. The difficulty of this task is varied by adjusting 

the coherent motion fraction. The subjects indicate their decision by making a saccade 

towards a target located in the corresponding motion direction (Figure 1.1a). Two variants 

of these tasks have been developed. In the fixed duration task (Newsome et al., 1989; 

Shadlen and Newsome, 1996), the subject has a limited viewing duration followed by a 

brief delay, after which it indicates its decision with a saccade. In the reaction time task 

(Roitman and Shadlen, 2002) the subject controls the viewing period duration, by 

performing a saccade whenever ready to commit to one of the alternatives. Behaviorally, 

the difficulty of the task is reflected in decision accuracy, and the reaction time, 

respectively (Figure 1.1b).  

 

 

 

Figure 1.1 The RDM paradigm and behavioral characteristics  

a. Choice-reaction time version of the task: the subject looks at a screen 

containing dots moving at varying coherence fractions, and decides the net 

direction of motion. The subject controls the viewing time and indicates the 
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decision by making a saccade to a peripheral target whenever ready. b. 

Effect of stimulus difficulty on accuracy and decision time. Figure taken 

from Gold and Shadlen (2007), with permission. 

 

Seminal studies from the Newsome and Shadlen labs have first indicated a link 

between neural responses and evidence accumulation, based on single unit 

electrophysiological recordings in non-human primates. As the subjects were performing 

the RDM task, the firing rate of neurons in the lateral intraparietal area (LIP) of the 

posterior parietal cortex (PPC) was ramping up in time, in a graded manner according to 

the strength of the motion stimulus (Shadlen and Newsome, 1996; Shadlen and Newsome, 

2001; Roitman and Shadlen, 2002) (Figure 1.2). LIP neurons were reflecting the temporal 

integration of noisy sensory evidence, which was encoded in the activity of direction- tuned 

neurons in the middle temporal area (MT) (Newsome et al., 1989, Salzman et al., 1990) 

(Figure 1.2, inset).  

 

 

Figure 1.2 LIP firing rates approximate the integral of a difference in 

firing rate between MT neurons with opposite direction preferences. 

Average firing rate from 54 LIP neurons during the reaction time version of 



Introduction 

4 

 

the RDM task is shown for three levels of difficulty. One of the choice 

targets (Tin) is in the response field of the LIP neuron, while the other target 

(Tout) is outside of this field. Responses are grouped by motion strength and 

direction of choice. Left: responses are aligned to onset of random dot 

motion, truncated at the median reaction time or 100 ms before eye 

movement. Shaded insert shows average responses from direction selective 

neurons in area MT to motion in the preferred and non-preferred direction. 

Right: the responses are aligned to the eye movement. Figure taken from 

Gold and Shadlen, 2007, with permission.  

 

Similar responses to LIP neurons have also been found in other brain regions 

involved with selection and preparation of eye movements, including the superior 

colliculus (Horwitz and Newsome, 1999, 2001; Ratcliff et al., 2003), frontal eye field 

(FEF) (Hanes and Schall, 1996; Gold and Shadlen, 2000, 2003; Ding and Gold, 2012; 

Mante et al., 2013), dorsolateral prefrontal cortex (dlPFC) (Kim and Shadlen, 1999), and 

the striatum (Ding and Gold, 2010) (Figure 1.3). It was not immediately obvious why the 

activity in all these brain regions correlated so well with the neural equivalent of an 

evidence accumulator, and what specific contribution each of these areas had to the 

decision making process. While microstimulation studies in the area MT could causally 

relate the activity here to the encoding of sensory evidence (Newsome et al., 1989, Salzman 

et al., 1990), similar perturbations in area LIP led to less conclusive results (Ditterich et al., 

2003; Hanks et al.; 2006; Katz et al., 2016).  

In recent studies, perceptual decision tasks have been successfully developed in 

rodents, facilitating experimental approaches to delineate the relevant causal circuit of 

evidence accumulation. In the ‘Poisson clicks’ task (Brunton et al., 2013) for example, rats 

are presented with randomly timed auditory pulses on both left and right side 

simultaneously, and are trained to orient themselves to the side that contained more clicks 

during a trial. The difficulty of the task here can be varied by changing the number of pulses 

presented on each side. This particular stimulation paradigm provided an opportunity to 

observe the effect of each auditory pulse in the neural activity encoding integrating 
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evidence. Firing rate patterns that correlate with evidence accumulation were observed in 

the rat PPC and the frontal orienting field (FOF) (Hanks et al., 2015), areas thought to be 

analogous to primate PPC and FEF, respectively (Brody and Hanks, 2016). A more careful 

analysis of the neural data suggested that the PPC was involved with a graded 

representation of the accumulator value, while the FOF turns this value into a more 

categorical representation (Hanks et al., 2015), implying more specific roles of these areas 

in the decision making process. However, similar to primate microstimulation studies in 

area LIP, optogenetic perturbations in rat PPC had almost no effect in the decision making 

performance. Brody and Hanks (2016) propose that in order to be part of the evidence 

accumulation circuit, a brain region should satisfy three initial criteria: (i) inactivation of 

the area should have a behavioral effect; (ii) perturbations during time specific windows 

corresponding to evidence accumulation should impact the behavior; (iii) the graded value 

of the accumulator should be encoded in the brain region’s neural activity.  In a recent  

study investigating the role of the striatum in the Poisson clicks task, Yartsev, Hanks et al. 

(2018) show that neural activity recorded here represents the graded value of accumulated 

evidence, inactivation of the striatum leads to deficits in task performance, and that 

perturbations at specific times during the accumulation process affects the decision 

outcome. While these results indeed conform with the suggested criteria for being part of 

of the evidence accumulation circuit (Brody and Hanks, 2016), it remains unclear what are 

the specific contributions of other areas that correlate with evidence accumulation, if 

perhaps other brain regions not yet investigated are also involved, or the direction of 

information flow shaping the circuit of this computation.  
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Figure 1.3 Brain regions with response profiles that correlate with 

accumulating evidence during decision making. PFC - prefrontal cortex; 

PPC - parietal cortex; FEF - frontal eye field; FOF - frontal orienting field. 

Figure taken from Hanks and Brody, 2016, with permission. 

 

 

1.1.2 Theoretical models describing decision making processes 

 

Within the framework of evidence accumulation, two main models have been 

proposed in terms of terminating the accumulation process and initiate the behavioral 

choice. In the simplest case, the ‘race model’, a decision is made as soon as the evidence 

supporting one alternative exceeds a threshold (Vickers, 1970). In the ‘diffusion model’, 

the difference between the accumulated evidence supporting one alternative as opposed to 

another needs to reach a threshold in order for the decision to be made (Ratcliff, 1978; 

Laming, 1968; Stone, 1960). As the diffusion model implements an efficient test called the 

sequential probability ratio test (SPRT), which optimizes decision reaction time for a 

required accuracy (Wald and Wolfowitz, 1948), the accumulated evidence will reach the 

correct decision boundary faster than the race model (Bogacz, 2007). Indeed, from several 

studies analyzing reaction time in various decision tasks, as well as neuronal responses, the 
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diffusion model could better predict behavioral data than the race model (Ratcliff and 

Smith, 2004; Smith and Ratcliff, 2004; Ratcliff et al., 2003). 

Extensions to these evidence accumulation models have been proposed, leading to 

architectures that can better predict both the behavioral data as well as the neural responses 

underlying the process of decision making (Shadlen and Newsome, 2001; Usher and 

McClelland, 2001; Mazurek et al., 2003). The models involve two integrators, which 

accumulate evidence corresponding to each of the possible alternatives, and assume that 

commitment to a behavioral choice occurs when one of the integrators reaches a threshold. 

If the integrators solely accumulate ipsilateral sensory evidence, the model is analogous to 

the race model (Bogacz, 2007) (Figure 1.4, left). The integrators may additionally receive 

inhibitory connections, either from contralateral sensory input, as in the feedforward 

inhibition model (FFI) (Shadlen and Newsome, 2001; Mazurek et al., 2003), or from the 

opposing integrator, in the leaky competing accumulator model (LCA) (Usher and 

McClelland, 2001; Teodorescu and Usher, 2013) (Figure 1.4). In both of these cases, for 

specific parameter values adjusting the weights of the inhibition, these architectures can be 

effectively reduced to the diffusion model. Different architectures of the diffusion model 

can lead to slightly different predictions regarding the firing rate of the integrators. For 

example, in the FFI model, the integrator firing rate depends only on the difference between 

the two sensory inputs, while in the LCA model, the firing rate will be dependent on the 

total sensory input. By carefully analyzing which of the models better fits the 

neurophysiological data, specific predictions can be made about the functional connectivity 

of the integrating circuit underlying the decision making process.   

 

 

Figure 1.4 Proposed decision making model architectures. Left: the race 

model, comprising of two integrators that independently accumulate 
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evidence. Middle: the FFI model, where the two integrators receive 

inhibitory connections from the sensory input. Right: the LCA model, 

where the integrators receive contralateral inhibition coming from the 

opposing integrator.     

 

 

1.2 The larval zebrafish as a model organism in systems neuroscience 
 

The larval zebrafish (Danio rerio) has recently emerged as a powerful model 

organism in the study of systems neuroscience. Its small size, translucent brain, and rich 

genetic and molecular tools, have made it particularly appealing for the investigation of 

neural circuits underlying behavior. Zebrafish exhibit a rich behavioral repertoire, ranging 

from innate reflexive behaviors such as the optomotor response (OMR) (Orger et al, 2008), 

the optokinetic response (OKR) (Easter and Nicola, 1997), phototaxis (Wolf et al., 2017), 

to more complex behaviors such as prey capture (Bianco et al., 2011), learned motor 

adaptation (Portugues and Engert, 2011, Ahrens et al., 2012) and associative learning 

(Aizenberg and Schuman, 2011). Given the powerful optical methods available for 

recording and manipulating brain activity (Kerr and Denk, 2008; Ahrens et al., 2013; 

Panier et al., 2013; Portugues et al., 2013), significant advances have been made in 

deciphering the sensorimotor processing and functional circuits underlying these 

behaviors.  

 

 

1.2.1 Zebrafish neuroanatomy 

 

The larval zebrafish brain contains about 100,000 neurons (Naumann et al., 2010), 

distributed into 3 main regions: the forebrain, midbrain and hindbrain (Figure 1.3). The 

forebrain (comprising of the telencephalon and diencephalon) contains nuclei analogous to 

the mammalian basal ganglia, amygdala, hippocampus, habenula and thalamus, among 

other structures (Mueller and Wullimann, 2016). Several studies have implicated these 
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brain areas in complex cognitive functions, involving motivation, emotion and memory 

related processes (Aoki et al., 2013; Amo et al., 2014; Cheng et al., 2014; Chen et al., 

2019). Dorsally located in the midbrain is the optic tectum, homolog of the mammalian 

superior colliculus, and immediately ventral, the pretectum, analogous to the nucleus of the 

optic tract (NOT). Both structures are directly involved with visual processing and have 

been implicated in a variety of visually mediated behaviors (Gahtan et al., 2005; Kubo et 

al., 2014; Portugues, Feierstein et al., 2014; Naumann et al., 2016). The hindbrain, 

containing the cerebellum, reticular formation, dorsal and medial raphe nuclei, and clusters 

of reticulospinal premotor neurons, is mostly involved in modulating motor activity (Orger 

et al., 2008; Severi, Portugues et al., 2014; Dunn et al., 2016; Kawashima et al., 2016; 

Knogler et al., 2019). 

Many transgenic lines are available, generated either by random enhancer trapping 

(Scott et al., 2007) or by labeling populations expressing particular genetic markers (Suster 

et al., 2009), allowing for the expression of specific genes in genetically defined neuronal 

populations. For example, Figure 1.5 shows the distribution of particular neurotransmitter 

classes throughout the entire brain of a 6 days post fertilization (dpf) zebrafish, highlighting 

the dorsal raphe serotonergic neurons (DRN), or various dopaminergic clusters, including 

the caudal and ventral hypothalamus or the posterior tuberculum in the midbrain.  
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Figure 1.5 Brain of a 6 dpf zebrafish. Top: Lateral and dorsoventral 

projections of an elavl3:GCaMP6f zebrafish larva. Bottom: Dorsoventral 

projections of sections labeled in the lateral view in the top panel, marking 

glutamatergic, GABAergic, serotonergic and dopaminergic neuronal 

populations (markers are expressed under the vglut2, gad1b, tph2 and th 

promoters). Te: telencephalon; Ha: habenula; OT: optic tectum; Cb: 

cerebellum; Hb: hindbrain.    
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1.2.2 Optical tools for dissecting behavioral neural circuits  

 

The transparency of the zebrafish larva offers unparalleled advantages for 

functional imaging: combining two-photon microscopy (Denk et al., 1990) with expression 

of genetically encoded calcium indicators enables visualization of whole brain activity at 

single cell resolution in the intact, behaving animal. This technique has been successfully 

used in a number of studies probing different behaviors, such as the OKR (Portugues, 

Feierstein et al., 2014), motor adaptation (Ahrens et al., 2012), phototaxis (Wolf et al., 

2017) or the OMR (Naumann et al., 2016). As these studies have shown, the neural activity 

underlying these behaviors is distributed in several clusters throughout the brain (Figure 

1.6), highlighting the great advantage of having access to the whole brain activity.  

Additionally, optical control of specific neuronal populations can be achieved remotely in 

a completely non-invasive manner, by targeted expression of  light-gated ion channels such 

as channelrhodopsin or halorhodopsin (Portugues et al., 2013). Studies using optogenetic 

loss- and gain-of-function manipulations have been successful in identifying a hindbrain 

area involved in saccadic eye movements (Schoonheim et al., 2010), a role for the DRN in 

mediating motor learning (Kawashima et al., 2016), eliciting an escape response by 

inducing single spikes in sensory neurons (Douglass et al., 2008), among others. Targeted 

ablations of specific neurons or populations using high power lasers have also contributed 

to establishing causality of particular brain areas to specific behaviors - for example, a 

subset of hindbrain neurons involved in an escape response (Liu and Fetcho, 1999), or 

selective impairment of prey capture behavior following retinotectal ablations (Roeser and 

Baier, 2003; Gahtan et al, 2005). The effect of these manipulations can then be 

simultaneously investigated at the level of behavior and its underlying neural activity or 

functional circuit.    
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Figure 1.6 Comprehensive map of brain areas that are active during 

the OKR behavior. ROIs are color-coded depending on the specific phase 

within a periodic sensory stimulus at which they are activated. Features 

highlighted are the oculomotor nucleus (solid line), the interpeduncular 

nucleus/median raphe (dashed line), the pretectum (arrowheads), and retinal 

ganglion cell arborization fields (arrows). Figure taken from Portugues, 

Feierstein et al. (2014), with permission. 

 

 

1.2.3 The zebrafish optomotor response  

 

In the optomotor response (OMR), fish use whole-field visual motion cues to align 

themselves and swim in the direction of perceived motion, ensuring they maintain a stable 

position in relation to their environment (Portugues and Engert, 2009). This behavior has 

an important ethological function, helping fish maintain their location in a water flow, and 

preventing them from being carried downstream. Zebrafish larvae begin responding to 

moving stimuli shortly after hatching, and by 6-7 dpf, the OMR can be reliably evoked 
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(Neuhauss et al., 1996). In the laboratory setup, the OMR can be elicited by displaying 

whole-field moving gratings from below (Orger et al., 2000, 2008), even as the larva is 

head-restrained agarose, with only the tail free to move (Portugues and Engert, 2011).  Fish 

swim in discrete bouts, comprised of multiple tail oscillations, which are separated by brief 

periods of inactivity (Budick and O’Malley, 2000), and specific locomotor parameters such 

as bout duration, or inter-bout interval are modulated depending on the strength of the 

visual motion (controlled in turn by parameters such as speed, spatial and temporal 

frequency of the gratings presented) (Severi, Portugues et al., 2014; Maaswinkel and Li, 

2003). As opposed to other visually driven reflexive behaviors, the OMR exhibits a 

relatively long latency to swim initiation, and this latency is further modulated by the speed 

of the visual motion stimulus (Portugues et al., 2015).  

In terms of underlying neural activity, bilateral tectal ablation did not abolish the 

OMR (Roeser and Baier, 2003), implying a non-tectal visual processing path in controlling 

this behavior. Several studies focused on the role of reticulospinal neurons in the OMR, 

especially in the nucleus of the medial longitudinal fasciculus (nMLF), showing that 

distinct clusters correlate with various locomotor kinematics, including speed and duration 

of swim bouts (Orger et al., 2008; Huang et al., 2013; Thiele et al., 2014; Severi et al., 

2014). Finally, using a whole brain imaging approach, Naumann et al. (2016) show that 

diverse neural responses underlying the OMR are distributed across the brain, from 

integration of binocular and direction-specific visual streams in the pretectum, to signals 

acutely related to directional turning and forward swims in the anterior hindbrain, nMLF 

and ventromedial spinal neurons.   
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1.3 Thesis objectives 
 

This study aims to investigate the neural correlates underlying a perceptual decision 

making task. Previous studies identified neural activity related to decision-making 

mechanisms in a number of brain regions, however, their explicit contributions to this 

process is controversial and the precise flow of information throughout these regions 

remains unclear (Katz et al., 2016; Hanks et al., 2005; Brody and Hanks, 2016). One of the 

main limitations comes from the restricted access to the brain areas involved: most 

neurophysiological insights are from single unit recordings or calcium imaging over a 

limited field of view. In this study, I attempted to circumvent some of these limitations by 

developing a perceptual decision-making assay in the larval zebrafish, and using its unique 

features that enable brain wide interrogation of neural activity during behavior.  

I first adapted the classic RDM paradigm to the zebrafish, using the left/right OMR 

as a decision readout. In the typical RDM paradigms, animals are first trained using reward 

reinforcement during the acquisition phase to perform the task. When performance stops 

improving, testing occurs: this latter phase allows the study of perceptual decision making 

irrespective of reward. In the assay presented here, zebrafish larvae use noisy sensory cues 

to estimate the state of their visual environment and update this estimate with the 

continuous inflow of sensory evidence. This assay does not involve operant conditioning, 

therefore the neuronal correlates of pure perceptual decision making can be isolated, 

independently from reward related activity. I show that fish modulate their turning behavior 

depending on the visual motion strength as well as the sensory and motor history, in a 

similar way to how these parameters affect decision making in the primate RDM tasks, 

thus validating this assay for investigation of neural correlates of decision making circuits.  

After adapting this assay in a head restrained paradigm, I used cellular resolution 

whole-brain imaging in intact, behaving animals to identify all neural signals relevant to 

the different stages of the decision-making process, from momentary sensory evaluation, 

accumulation of this sensory evidence and behavioral output. These neural correlates are 

localized in several anatomical clusters distributed across the brain, and are lateralized 

based on stimulus direction. Within the framework of a generalized sensory integrator 

model, the identified neural responses representing accumulating sensory evidence exhibit 
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a continuous distribution of time constants, with different units integrating evidence over 

varying time windows, reminiscent of neural activity representing sensory history found in 

other decision-making studies (Akrami et al., 2018; Scott, Constantinople et al., 2017). 

These identified integrating units are also distributed across different regions, suggesting 

that decision-making activity is represented broadly across the brain.  

In order to link this integrated sensory evidence with the behavioral output, a 

turning rate model was established, based on a probabilistic readout of the sensory evidence 

variable, which is derived from bidirectional integration. An unbiased whole-brain analysis 

reveals that the majority of turning rate encoding units are located in the interpeduncular 

nucleus (IPN), a circular structure in the ventral midbrain-hindbrain boundary, which has 

been previously shown to correlate with locomotor and navigation related variables (Sharp 

et al., 2006; Clark and Taube, 2009).  

 

 

 

 



Methods 

16 

 

 

 

2. Materials and Methods 
 

 

2.1 Zebrafish husbandry 

 

All experiments were performed with 6-7 days post fertilization (dpf) zebrafish 

larvae (Danio rerio). The Tuepfel long-fin (TL) wild type strain was used for freely 

swimming behavioral experiments. The nacre (mitfa-/-) transgenic zebrafish lines 

Tg(elavl3:GCaMP6s+/+) (Kim et al., 2017) and Tg(elavl3:GCaMP6f+/+) (Wolf et al., 

2017) were used for functional imaging experiments. Zebrafish larvae were obtained by 

mating three adult pairs in one mating tank simultaneously.  Larvae were kept in 8.8 cm 

Petri dishes (about 25 larvae per dish) half filled with Danieau buffer (17 mM NaCl, 2 mM 

KCl, 0.12 mM MgSO2, 1.8 mM Ca(NO3)2, 1.5 mM HEPES) for the first day of 

development, and water from the fish facility starting from the second day. Fish and larvae 

were maintained at 28 degrees on a 14h-10h light-dark cycle. All animal experimental 

procedures were approved by the Max Planck Society and the local government (Regierung 

von Oberbayern).  

 

 

2.2 Freely-swimming behavioral experiments 

 

2.2.1 Behavioral Setup 

 

Larval zebrafish were placed in an 8.8 cm Petri dish half filled with fish water, on 

top of a diffusive screen mounted on a clear acrylic support, and illuminated from below 

using an array of IR LEDs (Fig 1). Freely swimming larvae were monitored using a high 

speed camera (Mikrotron) running at 200 fps, equipped with a lens (Edmund Optics) and 
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a IR band pass filter. The visual stimuli were displayed from below using an Asus P2E 

microprojector and a cold mirror (Edmund Optics).  

    

  

 

 

Figure 2.1 Freely swimming behavioral setup  

a. Schematic of the behavioral closed-loop setup used for freely swimming 

experiments. b. Freely swimming fish with the random dot motion stimulus 

projected from below. Figure adapted from Dragomir et al. (under review) 

 

   

 

2.2.2 Visual motion stimulus  

 

The stimulus consisted of randomly moving dots, a fraction of which moved 

coherently to the left or to the right of the fish (Figure 2.2). The stimulus was constructed 

such that dots had a limited lifetime of 50 ms, to prevent fish from following individual 

dots. Custom written software in LabView was used for tracking of the fish swim dynamics 

and for generating the closed loop random dot motion stimulus. Fish orientation was 
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constantly monitored and after each turn, the direction of the coherent dot motion was 

immediately updated, such that its direction remained constant with respect to the axis of 

the fish. If the fish approached the edges of the dish (less than 1 cm away, as shown in 

Figure 2.3), the coherence stimulus was interrupted and replaced with a concentric inward 

moving circular grating stimulus, meant to bring the fish back into the center of the dish 

and thus avoid wall following behavior (thigmotaxis). The coherence stimulus that was 

shown previously was restarted as soon as the fish was in the inner part of the dish again. 

Only complete trials of coherence stimulus (uninterrupted by moving concentric circles) 

were further used for behavioral analysis.   

                   

Figure 2.2 Schematic of visual motion stimulus, displaying 3 different 

examples of motion strengths: 0, 0.5 and 1 coherence. Figure adapted 

from Dragomir et al. (under review) 

                                     

 

Figure 2.3 Freely swimming area is restricted to the inner part of the 

dish (delineated by the red dotted line, invisible to the fish) 
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2.2.3 Stimulus protocol 

 

Three different protocols were used in the freely swimming behavior experiments. 

In the randomized coherence experiments, the coherence fraction ranged from -1 (left) to 

+1 (right), in increments of 0.1, and was maintained constant for the 12 second time interval 

that constitutes a trial, before being immediately changed to a new value in a next trial. A 

set of stimuli consisted of 22 trials, containing coherences of all magnitudes in both 

directions, and presented in a randomized order. In a given experiment, fish had to 

complete at least five sets of stimuli.  

In the varying pulse duration experiments, trials contained only coherences of 

magnitude 0.3, 0.6 and 1, in both directions. Trials were presented as pulses of 1, 2, 3, 4, 

6, 8 and 10 s coherence motion, preceded and followed by 6 s of coherence 0. The sequence 

of coherence magnitudes and direction was randomized, and one experiment contained all 

possible combinations of stimulus magnitude, direction and spurt duration.  

In the fixed transition experiments, trials contained only coherences of magnitude 

0.3, 0.6 and 1, in both directions, immediately following one another. A set of stimuli 

contained all possible combinations of transition involving coherence magnitude and 

coherence direction, and all possible transitions were probed an equal number of times. In 

a given experiment, fish had to complete at least five sets of stimuli in order to be included 

into the dataset.   

 

 

2.2.4 Behavioral tracking 

 

For generating the closed loop stimulation, fish position and orientation was 

computed in real time with custom written software in LabView. Fish position was detected 

using background subtraction, which was calculated as an average of the frames captured 

in the first 10 s of the experiment. To eliminate point pixel noise, a morphological open 

operation was applied, and the fish was detected as the particle with the largest area in the 

frame. The orientation of the fish was expressed as the angular coordinate of the heading 

vector in relation to a polar coordinate system. The end point of the heading vector was 
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identified as the darkest pixel in the fish (the head), while the initial point of the vector was 

calculated as the darkest pixel in a circle around the head (which corresponded with the tail 

of the fish).  

Further behavioral analysis was carried out with custom written software in 

MATLAB. For swim bout detection, the displacement in the fish position coordinates was 

calculated and then filtered with a low pass filter to eliminate high frequency noise. The 

distance moved was then computed as the square root of the sum of the displacements 

squared. A bout was identified by peak finding in the swimming velocity trace obtained 

from the smoothed frame by frame position of the fish. Bouts during which displacement 

was smaller than 1 mm were considered noise. This was checked by looking at the video. 

 

                                                               

2.3 Head-restrained behavioral experiments 

 

 

2.3.1 Behavioral setup  

 

Larvae were placed individually in 3.5 cm Petri dishes and embedded in 1.5 % low 

melting agarose. The agarose around the tail, caudal to the pectoral fins was cut away with 

a fine scalpel to allow for tail movement. The fish were then placed on top of a diffusive 

screen mounted on a clear acrylic support, and illuminated from below using an IR LED. 

Embedded larvae were monitored using a high speed camera (Pike F032B, Allied Vision 

Technologies) running at 200 fps, equipped with a lens (Edmund Optics) and an IR band 

pass filter. The visual stimuli were displayed from below using an Asus P2E microprojector 

and a cold mirror (Edmund Optics).  

 

 

2.3.2 Visual motion stimulus 

 

The visual motion stimulus (as described above in Methods section 2.2.2) was 

implemented in an open loop fashion with custom written software in Python. 
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2.3.3 Stimulus protocol  

 

For the head embedded behavioral experiments, a full experiment consisted of 30 

trial sets. Each set consisted of 7 trials, probing coherence magnitudes of 0, 0.3, 0.6 and 1 

in both directions, and presented in a randomized order. Each coherence was presented 

during a 20 s trial, and was preceded and followed by a 5 s pause of no motion (with dots 

remaining on the screen).  

 

 

 

2.3.4 Behavioral tracking and bout categorization 

 

Custom written software in Python was used for tracking tail movement of the fish. 

The start and end position of the tail was first manually indicated for each fish. Following 

tail segmentation based on centers of mass of sampling windows (Stih, Petrucco et al., 

2019), the total curvature was calculated as the difference in angle between the first and 

last tail segment. 

Further behavioral analysis was done with custom written software in MATLAB. 

For each bout, a laterality index was computed by adding the cumulative tail angle recorded 

for the first 60 ms of the bout (Figure 3.8a), as this is the time frame over which forward 

swims and turns differ most prominently (Huang et al., 2013).  For every fish, the histogram 

of laterality indices across all bouts in all conditions was plotted and fit with the sum of 

three Gaussian distributions (Figure 3.8b). This ensures that differences in the embedding 

and preparation are accounted for in a fish by fish basis. The two minima between the three 

peaks were chosen as the thresholds to distinguish between the three types of swim bout: 

forward and left and right turns.  
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2.4 Whole-brain imaging experiments 

 

2.4.1 Two-Photon Calcium Imaging setup and acquisition  

 

Larvae were placed in 3.5 cm Petri dishes and embedded in 1.5-2% agarose prior 

to imaging. The agarose around the tail, caudal to the pectoral fins was cut away with a 

fine scalpel to allow for tail movement. The dish was placed onto an acrylic support with 

a light-diffusing screen and imaged on a custom-built two-photon microscope. A 

TiSapphire laser (Spectra Physics Mai Tai) tuned to 905 nm was used for excitation. Larval 

brains were imaged while being presented the random dot motion visual stimuli. Visual 

stimuli (see above in Methods section 2.2.2) were generated using a custom written Python 

script, and were projected at 60 frames per second using an Asus P2E microprojector and 

a red long-pass filter (Kodak Wratten No.25) to allow for simultaneous imaging and visual 

stimulation. Full frames were acquired every 334.51 ms in four, 0.83-µm-spaced interlaced 

scans, which resulted in x and y pixel dimension between 0.51 and 1 µm (varying 

resolutions depended on field of view covered). Imaging stacks were mostly acquired in 

the dorsal to ventral direction, and for some fish (covering deep hindbrain areas) in the 

ventral to dorsal direction. In order to track the behavior, fish were illuminated from above 

using an infrared LED (850 nm wavelength) and the fish was imaged from below at 200 

frames per second using an infrared-sensitive charge-coupled device camera (Pike F032B, 

Allied Vision Technologies). Tail movement was monitored using custom written software 

in Python. 

 

 

2.4.2 Stimulus protocol 

 

Two types of experimental paradigms were used: one in which the stimulus 

sequence was randomized and coherences were separated by pauses of no dot motion, and 
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another in which coherences directly followed one another, with no pauses, in a 

nonrandomized fashion. In the randomized paradigm, the set of stimuli used in imaging 

experiments consisted of coherences 0, 0.3, 0.6, and 1, in both directions, with a duration 

of 30 s, and separated by 10 s of pause (dots remained on the screen but were static). In the 

direct transition paradigm, coherences 0.8, 0.3 and 0 were probed, with no break in 

between, and sampling every possible transition between direction and coherence 

magnitude. After all stimuli were shown in one plane, the focal plane was shifted ventrally 

or dorsally by 2 µm (for some fish 1 µm) and the process was repeated, with either the 

randomized sequence or direct transition of stimuli in each plane.  

 

 

2.4.3 Image analysis 

 

Image analysis was performed with custom written scripts in MATLAB, as 

previously described in Portugues, Feierstein et al. (2014). To correct for motion during 

imaging, the imaged frames were first aligned to the average image of the corresponding 

plane, followed by alignment across all z-planes. Automated algorithms were used for ROI 

segmentation, based on local pixel correlations. First, a three dimensional anatomical stack 

of correlation values was obtained by finding voxels whose activity correlates closely with 

that of neighboring ones. ROI segmentation begins with selecting the voxel with the 

highest local correlation value (the seed of the ROI). Then, all the neighboring voxels 

whose activity correlation with the seed voxel exceeds a threshold value of 0.5 are added 

to the ROI. The process is then repeated with the neighboring voxels of the newly expanded 

ROI. To ensure there are no holes within the ROIs, a morphological close operation was 

applied, incorporating any voxels that were not yet included in the ROI, but whose 

neighboring voxels were. If no more voxels are added, the current ROI segmentation is 

complete, and a new seed is picked for the next ROI to be segmented (the next highest 

correlation value in the anatomical correlation stack). To minimize the possibility of 

constructing ROIs from noise, ROIs smaller than 50 voxels were discarded. When ROIs 

reached a size of 300 voxels (the approximate size of a neuron cell body) the process was 

stopped and segmentation of a new ROI began.  
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The fluorescence activity trace for the ROI was the sum of the fluorescence of the 

individual pixels belonging to the ROI. The activity was normalized by z-scoring 

(subtracting the mean and dividing by the standard deviation). 

 

 

2.4.4 Anatomical registration 

 

Image registration for two-photon imaging was performed using the free 

Computational Morphometry Toolkit (CMTK; http://www.nitrc.org/projects/cmtk/) 

(Rohlfing and Maurer, 2003), as previously described in Portugues, Feierstein et al. (2014). 

Anatomical stacks were made by summing the fluorescence in all the planes. The affine 

function was used to align each fish’s anatomical stack to a lab reference brain. The 

transformation computed following this alignment were then used to morph individual 

ROIs from each fish into the reference brain.   

 

 

2.4.5 Regressors and correlation analysis 

 

Regressors for correlation analysis (as described in Portugues, Feierstein et al., 

2014) were constructed from a set of sensory stimulus and motor related variables, such as 

presence of motion stimulus, integration of motion stimulus (uni- and bi-directional), acute 

motor responses (forward swims and lateralized turns), among others (full list is displayed 

in Figure 3.11). These were convolved with a kernel with an exponential decay based on 

the measured half-decay time for GCaMP6s (1.796 s) and GCaMP6f (0.4 s) (Chen et al., 

2013) to produce a set of predicted fluorescence traces, and were correlated with the 

measured fluorescence traces. Correlation analysis was performed for automatically 

segmented ROIs to identify the variable that best described the signal of individual 

neurons. To assign voxels to a particular functional group, a threshold of at least 0.5 for 

the best absolute correlation coefficient was required (except for the all motion and 

unilateral integration regressors, which had a correlation threshold value of 0.3), as 

indicated from previous studies and shuffled controls not shown.  

http://www.nitrc.org/projects/cmtk/


   Methods 
 

25 

 

 

 

2.4.6 Computation of motor triggers 

 

Motor related analysis during the imaging experiments was performed as described 

above (Methods section 2.3.4). In addition, the fluorescence of ROIs triggered on motor 

events, referred to as motor triggers, was also computed. A set of interesting features of 

neuronal activity that could be associated with motor activity was defined. This set 

comprised of the triggers shown in Figure 3.20, including the additive inverse of the trigger 

in 3.20d. The motor event can be a leftward turn, a rightward turn or a forward swim. All 

ROIs with a correlation value with the motor trigger greater than 0.7 were included.   

 

 

2.5 Model fitting 

 

2.5.1 Logistic multivariate regression model  

 

In order to identify the dependence of the turning behavior on the current stimulus, 

the stimuli being presented during previous bouts and the motor output of the previous 

bouts, a logistic multivariate regression model was implemented. This expresses the 

likelihood odds ratio as a sum: 

 

  

 

where Ci labels the stimulus being presented, Bi the motor output of the previous i-th bout, 

K represents the bias and up to the k-th previous bout is considered. Rightwards bouts were 

set to belong to category 2, leftwards bouts to belong to category 1, rightwards coherences 

were set as negative, and leftwards ones positive. A dataset comprising 126754 total bouts 

across 5688 trials (lasting 30 seconds each) was collected across 37 fish and the model was 

fit using the mrnfit function in Matlab for each fish and then averaged across fish. 

https://www.codecogs.com/eqnedit.php?latex=%20/log/left(%20/frac%7bP_L%7d%7bP_R%7d/right)%20%3D%20K%20%2B%20/sum_%7bi%3D0%7d%5e%7bk%7d%20/alpha_i%20C_i%20%2B/sum_%7bi%3D1%7d%5e%7bk%7d%20/beta_i%20B_i%20%250
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Significant coefficients were determined by testing whether the distribution of the 

particular coefficient (across fish) was significantly different from zero. The results are 

shown in Figure 3.7.  

 

 

2.5.2 Generalized integrator model 

(contribution of Vilim Štih) 

 

To explain the stimulus-related responses a model based on the feedforward inhibition 

integrator (FFI) (Shadlen and Newsome, 2001) was constructed. As responses were 

frequently observed with different time constants for ipsi and contralateral excitation, 

independent integration of motion to both sides was allowed for, and a weighted sum was 

computed. The model is depicted in Figure 3.14a and is described by the following 

equations: 

 

𝜏𝐿
d𝐼𝐿
d𝑡

= 𝐿𝑠𝐿
𝑃 − 𝐼𝐿 

𝜏𝑅
d𝐼𝑅
d𝑡

= 𝑅𝑠𝑅
𝑃 − 𝐼𝑅 

𝑎 = 𝐼𝐿 + 𝐼𝑅 

 

where IL and IR are the levels of integrators, τL and τR their respective time constants, L and 

R the input stimulus weights, SL and SR the current coherences to the left and right side, P 

the power of the nonlinearity and a the level of activity of the modeled unit. 

Within the parameter space of this model are responses which are driven purely by 

momentary evidence, and no integration takes place (both τL and τR are around 0), 

responses which can be explained as a single integrator (τL and τR are equal) and responses 

to a single motion direction (either R or L weights are 0). The model allows for a nonlinear 

response to motion coherence, however by regularized fitting almost no units where this 

nonlinearity is present were found. This model was fitted to all ROIs spanning more than 

one plane and retained those whose unexplained variance was smaller than 0.4 of the 

variance of the trace. The model was implemented as a function in the Julia language, with 
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exact integration (as the system is linear after the input nonlinearity) and application of an 

exponential kernel with the GCaMP6s time constant. The model fit was optimized using 

the gradient-based BFGS method, as implemented in the Optim.jl Julia package (Mogensen 

et al., 2018). 3-fold cross validation was used determine the regularization parameter λ 

which weighted a sum of the absolute values of the model features (weights, time constants, 

difference of time constants and the logarithm of the power of the nonlinearity). 

Significance was determined by leave-one-out cross-validation.  

 

 

2.5.3 Poisson model for generation of turns 

(contribution of Vilim Štih) 

 

The proposed integrator model architecture can be extended to explain the turning 

behavior: the output of two symmetrically built modules (as in Figure 3.14a) modulates 

linearly the deviation from the baseline rate of a Poisson process that initiates turns. All the 

parameters for this model were determined from behavioral experiments: first, the data of 

turn rates for each coherence (Figure 3.3a) was used to determine the steady-state 

parameters and the baseline rate of turns. This fixes the nonlinearity power P and the 

relative weights of inputs to the integrators in the contra or ipsilateral side. Then, from the 

transition experiments in Figure 3.5, the three remaining free parameters were determined: 

the angle of a turn, and the time constants τI (for ipsilateral input) and τC (for contralateral 

input). Equally good fits can be obtained for different choices of τI and τC, so the point in 

parameter space where they are equal was decided for. This results in a simpler model of 

turn generation, where instead of two Figure 3.14a modules there is only one, with 

additional inhibitory connection to the contralateral integrator, and where both of the 

integrators have the same time constant and directly modify the Poisson rate for the 

respective side.  
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2.5.4 Generation of synthetic freely-swimming behavior  

 

In the freely swimming experiments, all stimulus coherences from -1 to +1 in 0.1 steps 

were tested with random transitions.  In order to generate the traces shown in Figure 3.17-

iii the transitions which appear in the stimulus sequence shown in Figure 3.17-i were 

identified, and 10 s of the pre-transition behavior and 10 s of the post-transition behavior 

were selected. This allowed for constructing an estimate of the expected behavior to this 

stimulus sequence for every fish tested.
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3. Results 
 

 

3.1 The optomotor response as a function of coherence 
 

In order to investigate whether larval zebrafish modulate their behavior when 

exposed to visual motion of varying strength, freely swimming larval zebrafish were 

presented with a coherent dot motion stimulus projected from below. The coherence of the 

stimulus was controlled such that a fraction of dots, ranging from 0 to 1, moved either to 

the left or the right of the fish, with the remaining fraction moving randomly (see Methods 

section 2.2.2 for details). The fish were tracked in real time and a closed-loop assay (Orger 

et al., 2008) was implemented such that the direction of the stimulus relative to the fish’s 

orientation remained constant in time throughout a twelve-second trial despite the fish 

turning (Methods section 2.2.1 and Figure 2.1). 

Turning behavior was quantified by plotting the cumulative angle turned during 

individual trials, and then averaging for all coherences across all fish probed (Figure 3.1). 

Over a twelve-second trial, the total angle turned by larvae depended on the stimulus 

coherence, and was larger in magnitude with increasing coherence (Figure 3.1b). All 

swimming bouts were next divided into left turns, right turns and forward swims: plotting 

the distance moved and angle turned in each bout (Figure 3.2) indicated a separation 

between lateralized turns (which usually occurred around 25 degrees) and forward swims 

(centered around 0 degrees). While the number of forward swims did not change across 

different coherences, there were more left and right turns for higher coherences in the left- 

and right-ward direction, respectively (Figure 3.3a). Defining a correct turn to be one in 

the direction of the effective stimulus direction, the fraction of correct turns increased from 

0.5 for no coherence to 0.8 for a fully coherent stimulus (Figure 3.3b, top). In addition, the 

latency to the first correct turn from stimulus onset became shorter as the coherence fraction 

increased, from over 4 seconds at low coherences to just over 3 seconds for high ones 
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(Figure 3.3b, bottom). Improved turning accuracy was also apparent as the time and bout 

number progressed within the trial (Figure 3.3c), suggesting fish are accumulating evidence 

to enhance their behavior.  

 

       

 

Figure 3.1 Turning behavior in freely swimming experiments 

a. Left: swimming trajectories from all trials of leftwards 0.6 coherence 

during a freely swimming experiment shown in the dish; the highlighted 

trajectory is recorded during one trial and its cumulative angle turned is 

displayed. Right: Cumulative angle turned for all the trajectories shown in 

the dish on the left (for leftwards 0.6 coherence). The red line represents the 

average cumulative angle turned for this coherence in one fish. b. Left: 

average cumulative angle turned across all fish, for all coherences (N=55 

fish, comprising of a total of 11733 trials, 95981 bouts). Right: average of 

total angle turned across all fish during all trial coherences. Bars and shaded 
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intervals represent SEM. Figure adapted from Dragomir et al. (under 

review) 

 

 

 

 

Figure 3.2 Categorization of a turn  

Two-dimensional contour plot showing the distance moved and angle 

turned averaged across all fish when presented with coherence > 0.5. Most 

swim bout events are clustered around 0 degrees, and represent forward 

swims, while lateralized turns begin after 15 degrees. Figure taken from 

Dragomir et al. (under review)   
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Figure 3.3 Coherence-dependent turning behavior in freely swimming 

experiments 

a. Number of left, right and forward swims as a function of stimulus 

coherence. b. Top: Fraction of correct turns (in the direction of presented 

coherence). Bottom: Latency (time from stimulus onset) to first correct turn 

as a fraction of stimulus coherence. c. Fraction of correct turns as a function 
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of time (top) and trial bout number (bottom), for different coherence 

categories, averaged across all fish (N=55 fish, 11733 trials, 95981 bouts). 

All error bars and shaded intervals denote SEM. Figure adapted from 

Dragomir et al. (under review) 

 

 

3.2 Effect of motion stimulus duration on behavior 
 

To investigate whether short bursts of stimulus presentations induces a motion 

percept with behavioral consequences, random dot motion of a reduced set of coherences 

(0.3, 0.6 and 1) were presented as pulses of  varying durations, ranging from 1 s to 10 s 

(Figure 3.4a and Methods section 2.2.3). Each stimulus was preceded and followed by 6 s 

of coherence 0 (random motion), to prevent any potential influences from previous trial 

coherences. As shown in Figures 3.4b and 3.4c, turning rate depends on the time that the 

coherence-based stimulus has been shown: 1 s of coherent motion stimulus is enough to 

induce an increase in fish turning rate in the direction of the perceived motion. This is 

apparent both in the 1 s pulse duration trial, as well as in the longer duration trials, where 

turning rate increase starts around 1 second following trial onset.  As opposed to the 

randomized coherence experiment where different coherences immediately followed one 

another, here, the turning rate increase could be attributed only to the current trial coherence 

(since the trial was preceded by random motion). Following trial end, the increased turning 

rate persists for at least 1 s for shorter pulse durations (Figure 3.4b, for example, coherence 

0.6, 2 s pulse). With increasing pulse duration, the turning rate increase is enhanced, and 

prolonged throughout the duration of the stimulus, including up to 2 seconds following the 

coherent motion stimulus (for example, coherence 0.6, 10 s pulse). This effect is more 

pronounced with coherences 0.6 and 1, however, the same pattern is apparent with 

coherence 0.3 as well. This behavior is consistent with a temporal accumulation of 

evidence but is not consistent with a fixed time delay between sensory stimulus and motor 

output: even if the stimulus set a stochastic mechanism to generate bouts, one would 

observe a discrete jump in the behavioral turning rate occurring when the rate parameter 
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change was implemented, and not a gradual change in turning rates. These results also 

show that the evidence accumulated is not reset when performing a bout, suggesting that 

sensory and/or motor history affect behavioral performance. 

 

 

Figure 3.4 Turning behavior with various stimulus duration   
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a, Schematic of experimental paradigm involving stimulus pulses. 6 

seconds of coherence 0 were followed by a pulse coherence 0.3, 0.6 or 1. 

The stimulus pulse lasted 1, 2, 3, 4, 6, 8 or 10 seconds. After the pulse is 

over, 6 seconds of coherence 0 were presented again. b, Forward swimming 

and turning rates for the three different coherences and the seven different 

pulse durations presented. The vertical gray lines denote pulse start and end. 

Instantaneous rates were computed by averaging over a 200 ms window. c, 

Average behavioral rates for forward swimming (black), turning in the 

direction of the stimulus (red) and against the stimulus (blue) averaged over 

the whole pulse as a function of the total pulse duration. In dotted lines the 

average baseline rates are shown computed over the 5 second window from 

second 1 to second 6 right before pulse onset (see panel a). Error bars denote 

SEM (N=54 fish). Figure adapted from Dragomir et al. (under review) 

 

 

3.3 Sensory and motor history affect behavioral choice 

 

Having observed that turning rate increase is persistent following trial offset, 

turning behavior was further analyzed to investigate whether it depended only on the 

current stimulus or whether it displayed any dependence on either the previous stimulus 

shown or the previous motor output produced. Fixed transition experiments were acquired 

with a reduced set of coherences (0.3, 0.6 and 1) - with trials such that every coherence 

transition was probed an equal number of times (see Methods section 2.2.3 for details). 

Dividing all trials for a given coherence according to the previous coherence showed that 

the turning behavior depends not only on the current coherence, but also on the direction 

(and not the magnitude), of the previous coherence (Figure 3.5a). This effect is particularly 

noticeable after trial transitions of opposite direction coherences, where fish exhibit an 

inertia like behavior and only start turning in the correct direction after about two seconds. 

This could be due partly to a delayed initiation of turning in the current trial, and as Figure 

3.5b shows, the latency to the first correct turn in the current trial is indeed higher for the 
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trials in which the previous coherence was in the opposite direction. The inertia following 

trial transitions of opposite coherence directions could also arise due to increased 

likelihood to turn in the direction of the previous coherence (Figue 3.6b).  

 

              

Figure 3.5 Turning behavior is dependent on sensory history  
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a. Turning behavior during trials of coherence 0.6, 0.3 and 1 as a function 

of the coherence presented during the preceding trial. Trajectories are split 

by both magnitude and direction of the preceding trial. b. Latency to first 

correct turn in trials of coherence 0.6, 03 and 1, as a function of the 

coherence of the preceding trial. Negative coherences indicate previous 

coherence in the opposite direction and positive coherences indicate 

previous coherences in the same direction as the current trial coherence. 

(N=50 fish, 18964 trials, 166059 bouts). All error bars and shaded intervals 

denote SEM. Figure adapted from Dragomir et al. (under review) 

 

 

To investigate whether this history dependence comprised both a sensory and a 

motor effect, trials were further divided in which the current coherence was the same into 

four categories depending on whether the coherence and the last bout  in the previous trial 

was in the same or opposite direction. Trajectories elicited by the same stimulus transition 

differed significantly from each other during the current trial, depending on whether the 

previous motor output had been in one or the other direction. The same inertia-like behavior 

was also present if only the turn preceding the stimulus transition was in the opposite 

direction, even if the stimulus direction remained the same (see for example red solid and 

dotted lines in Figure 3.6a). In addition, the fraction of correct first turns showed a similar 

dependency on previous motor output (Figure 3.6b). To describe and quantify the sensory 

and motor influences, a multivariate logistic regression model was constructed that defines 

the likelihood of observing a left versus a right turn based on both the coherence shown 

during previous bouts and the direction turned (see Methods section 2.5.1 for details). As 

shown in Figure 3.7, the significant sensory coefficients extended from the current to the 

previous three bouts, while the significant motor coefficients included the previous four 

bouts (this was consistent across fish, data not shown). Overall, the analysis shows that 

both sensory and motor history influence the current behavioral choice, corroborating 

results found in other decision making studies using primates and rodents (Gold et al., 

2008; Roitman and Shadlen, 2002; Hwang et al., 2017; Akrami et al., 2018; Scott, 

Constantinople et al., 2017). 
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Figure 3.6 Turning behavior is dependent on motor history.  

a. Turning behavior during trials of coherence 0.6 as a function of both the 

direction of the coherence presented during the preceding trial and the 
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direction of the last turn in the preceding trial. Only preceding trials with 

coherence of magnitude 0.6 were included. b. Fraction of correct first turns 

during trials of coherence 0.6 as a function of both the direction of the 

coherence of the preceding trial and the direction of the last turn in the 

preceding trial. Only preceding trials with coherence the same magnitude 

as the current trials were included. (N=50 fish, 18964 trials, 166059 bouts). 

All error bars and shaded intervals denote SEM. Figure adapted from 

Dragomir et al. (under review) 

 

 

                             

Figure 3.7 Sensory and motor history effects on behavior 

Values of coefficients for multivariate logistic regression model averaged 

across fish (see Methods for details). αn corresponds to the coherence 

presented during the n-th previous bout and βn to the behavior of that bout. 

Red lines denote medians, boxes encompass 25th and 75th percentiles and 

crosses denote outliers. Asterisks denote the coefficient is significantly 

different from 0 (Wilcoxon signed rank test p<0.05 and p<0.001). (N=37 

fish, 5688 trials, 126754 bouts). Red lines denote medians, shaded regions 

encompass from the 25th to the 75th percentile, whiskers encompass all 

non-outlier points and red crosses denote outliers. The only significant 
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values found were K=2.76, α0=1.96, α-1=0.36, α-2=-0.22, α-3=-0.17, β-1=-

0.97 and β-2=-0.34, β-3=-0.20, β-4=-0.09 (these medians are: 2.66, 2.01, 

0.40, -0.22, -0.18, -0.97, -0.42, -0.22, -0.10). The motor coefficients were 

multiplied by -1 to coincide with the direction of the sensory coefficients. 

Figure adapted from Dragomir et al. (under review) 

 

 

3.4 Whole-brain imaging uncovers neuronal correlates  

 

In order to locate the neural correlates related to the decision making process underlying 

turning, the freely swimming assay was adapted to a preparation in which the larval 

zebrafish was head restrained yet able to move its tail (Portugues, Feierstein et al., 2014), 

while it was being shown a reduced set of coherence stimuli (see Methods section 2.4.2 for 

details). This allowed for monitoring both neuronal activity and behavioral output in a trial-

by-trial basis. Although the behavior observed was not as reliable as in the freely swimming 

assay, it still showed a clear lateralization dependent on the stimulus shown (Figure 3.8c), 

and the psychometric curves for both the fraction of correct turns as well as the latency to 

the first correct turn (Figure 3.9), mimics the ones observed in the freely swimming setup 

(Fig. 3.3b).  

 



  Results 

41 

 

 

Figure 3.8 Tail tracking and bout categorization in head restrained 

experiments  

a. Average tail traces of all bouts elicited during presentation of stimuli with 

coherence +1 (red), 0 (black) and -1 (green) for one example fish. Leftward 

turns, forward swims and rightward turns, which are the predominant 

behaviors during these stimuli presentations, can be clearly distinguished 

by computing the sum of the cumulative tail angle during the first 60 ms of 

the bout, which is referred to as the laterality index. b. Histogram of all 

laterality indices for the example fish in a, showing a distribution with three 

peaks corresponding to left- and right-ward turns and forward swims. 

Thresholds can be imposed to distinguish between these behaviors, in this 

case -7.34 separates rightward and forward swims and 2.61 separates 
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forward swims and left-ward turns. c. Individual histograms for all bouts 

elicited during stimulus presentations of the different coherences for the 

sample fish in a. Figure taken from Dragomir et al. (under review) 

 

 

 

 

Figure 3.9 Head restrained turning behavior depending on coherence  

Left: Average fraction of correct turns (in the direction of presented 

coherence). Right: Average latency (time from stimulus onset) to first 

correct turn as a fraction of stimulus coherence. Averages over N=18 fish; 

error bars denote SEM. Figure adapted from Dragomir et al. (under review) 

 

 

The brains of 22 animals were imaged comprehensively under a scanning two photon 

microscope (Figure 3.10). The raw data was processed to remove motion artifacts, identify 

and segment active neurons based on local correlations in an unbiased way (see Methods 

section 2.4). All units were registered to a reference brain and their ROIs included in all 

further analysis (a total of 2,170,552 ROIs in 22 fish).  
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Figure 3.10 Brain regions sampled during imaging experiments 

Sum of projection footprints along the three axes for all brains that were imaged 

and could be registered to the reference brain. Figure adapted from Dragomir 

et al. (under review) 

 

 

Regressors were built to identify whether any of the neurons had signals that could 

be associated to the decision making process, which was regarded as a three step process 

consisting of: (i) the transformation of the sensory stimulus into a momentary sensory 

drive, (ii) the integration of this sensory drive in time as accumulation of evidence and (iii) 

a threshold-crossing stage resulting in the behavioral choice (Figure 3.11a). For signals that 

correlated with the presence of visual motion (irrespective of the direction), the coherence 

(motion strength) of the stimulus, and the integration of this sensory evidence in time, 

either unilaterally or bilaterally, regressors were built from the sequence of the coherence 

stimulus. For motor related signals, regressors were built from the analysis of the recorded 
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tail motion (for details see Methods section 2.3.4). The full list of regressors is displayed 

in Figure 3.11b. 

 

              

Figure 3.11 Regressors used in whole brain imaging experiments 

a. Schematic of the decision making steps, and some potential corresponding 

regressor examples. b. full list of regressors; the regressors are constructed from 



  Results 

45 

 

the stimulus coherence shown and the tail movement recorded (both 

underlined) Figure adapted from Dragomir et al. (under review) 

 

 

Interestingly, neural activity in the majority of the brain regions imaged were found 

to correlate with a particular variable of the decision making process. Figure 3.12 shows 

the ROIs that correlate above a set threshold with the regressors analyzed, and Figure 3.13 

displays some example traces of ROIs, whose activity correlates well with the regressors 

indicated. The ROI traces are taken from different brain areas (displayed in the reference 

brain projection in figure 3.13a) and all traces belong to ROIs that span at least 5 planes, 

therefore they were exposed to 5 repetitions of each coherence stimulus. The anatomical 

distribution of ROI types displayed in Figure 3.12 was very consistent across all the fish.    

The presence of visual motion, irrespective of direction or stimulus magnitude, was 

almost exclusively represented in the activity of the optic tectum neuropil area (Figures 

3.12 and 3.13b, top fluorescence trace).   

Signals that were graded according to the coherence magnitude were found in 

multiple areas, including the dorsal left habenula, pretectum, dorsal thalamus, tegmentum,  

reticular formation and DRN (Figures 3.12 and 3.13). Except for the habenula and optic 

tectum, left- and rightward visual motion was lateralized and located on the left and right 

side of the brain, respectively. 

In addition to typically fast rising responses that are graded by coherence, present 

mostly in the pretectum and reticular formation, some ROIs show integrating-like activity 

patterns, with slower rises, that are also dependent on the coherence magnitude. These tend 

to be clustered more medially and dorsal in the pretectum, dorsal thalamus and torus 

longitudinalis in the midbrain, habenula in the forebrain, and more laterally in the reticular 

formation, DRN and IPN in the hindbrain (Figures 3.12 and 3.13). Interestingly, the 

habenula, DRN and IPN, which are anatomically connected (reviewed in Bianco and 

Wilson, 2009), also show a different category of stimulus related responses, integrating 

activity in a bidirectional manner: excitation for the preferred direction and inhibition for 

the opposite direction. As shown explicitly in Figure 3.13b, the integrating signals 
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described do not arise from averaging step responses across multiple trials, but are already 

present at the level of individual trials. 

Motor related ROIs corresponding to acute directional turns were also lateralized, 

and found in the reticular formation, lateral parts of the dorsal raphe nucleus, tegmentum, 

and in the caudal part of the hindbrain (Figures 3.12 and 3.13b, bottom traces).   

It is interesting to note that several of these areas contain multiple types of ROIs. 

In the anterior hindbrain region of the reticular formation for example, there were signals 

with both fast rising activity profiles and integrating ones, depending on the coherence 

magnitude and direction showed, as well as acute motor responses correlated with 

directional turning behavior. In the dorsal left habenula, DRN and IPN, ROIs with 

integrating activity display various ratios of excitation and inhibition. For example, the first 

traces from the habenula and DRN  (from the integrated graded signals category) show 

mostly excitation during rightward motion coherence, while the second traces (from the 

bidirectional integration category) have a combined activity pattern, with excitation to 

rightward motion and a more pronounced inhibition from leftward motion. In a similar 

way, the first example trace from the IPN shows mostly inhibitory activity during 

rightwards motion, while the second trace has a combined excitation during rightward 

motion and inhibition during leftwards motion.  

While these directional visual motion signals were expected in some of these areas, 

for example in the pretectum, in agreement with previous studies that have shown similar 

activation in response to wholefield visual motion (Portugues, Feierstein et al., 2014; Kubo 

et al., 2014; Naumann et al.,2016), in regions such as the dorsal left habenula, DRN, IPN, 

no such neural responses have been previously identified. In the medial anterior region of 

the hindbrain, graded sensory responses were found in regions previously identified with 

turning motor activity (Huang et al., 2013; Dunn et al., 2016; Wolf et al. 2016).  
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Figure 3.12 Whole-brain ROI maps color coded according to various 

sensory and motor related regressors  

a. Top: views from lateral left (left), dorsoventral (central) and lateral right 

(right) ROI projections. i) and ii) show medial views corresponding to rostral 

and caudal parts of the zebrafish brain, respectively. Each regressor and 

corresponding correlation thresholds for ROIs shown here are displayed at the 

bottom. b. ROI maps color coded according to individual sensory and motor 

related regressors displayed in a. Each map has views from lateral left (left), 

dorsoventral (top central), lateral right (right) and rostro-caudal (bottom) ROI 

projections. Figure adapted from Dragomir et al. (under review) 

 

 

 

Figure 3.13 Neural correlates of the decision making process and their 

anatomical distribution (continued on next page) 

a. Reference brain with location of each anatomical inset and its representative 

trace displayed in b; b. ROI types in six different brain regions with 

representative raw traces (in black) spanning at least five planes. For the motor 

ROIs, the corresponding regressor (right and left turns in blue and orange, 

respectively) and tail trace (arbitrary units with positive upward deflections 

denoting leftward turns) are also displayed. Shaded intervals throughout denote 

SEM. Figure adapted from Dragomir et al. (under review) 
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3.5 Mapping a decision making model to the neuronal data 

 

Theoretical frameworks proposed to understand this decision making process 

involve two integrators, one for each of the possible behavioral choices, which accumulate 

corresponding evidence in support of that particular choice (Bogacz, 2007). These 

integrators may solely accumulate ipsilateral momentary sensory evidence or in addition, 

may be inhibited by either contralateral momentary sensory evidence (the feed-forward 

inhibition model or FFI, Shadlen and Newsome, 2001) or the opposing integrator (leaky 

competing accumulator model or LCA, Usher and McClelland, 2001). A reliable 

distinction between these two architectures is not possible within the experimental 

paradigm used (both models fit the data equally well), so a general model architecture 

based on FFI was defined to describe individual ROI responses. The model describes the 

activity of an ROI as the sum of leftward and rightward sensory streams. In each stream, 

the visual processing that leads from partially coherently moving dots to momentary 

sensory evidence is modeled as a power nonlinearity. This is subsequently integrated by 

units with time-constants that are independent for the left and right streams and summed 

with weights that can be either positive or negative (Figure 3.14a and Methods section 

2.5.2). This model can describe units that respond equally to all motion directions, units 

that respond to unidirectional motion in either a graded or an ungraded way, and units that 

integrate either uni- or bi-directional motion positively and/or negatively (Figure 3.14b). 

This model was fitted to the activity of every individual ROI, and the goodness of fit was 

used to identify all brain regions that were correlated with the decision making process 

(Figure 3.14d).  Notably, this analysis was able to pinpoint relevant neuronal activity to a 

few anatomical locations that are described below. 
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Figure 3.14 Fitting a general integrator model to the neural data  

a. Schematic depicting model architecture, incorporating previously suggested 

models within its parameter space. b. Sample traces showing fits to neural 

activity from different parts of the model parameter space; the explained 

variance for each trace is (in order): 0.612, 0.813, 0.734, 0.790, 0.827. c. 

Variance of ROIs explained by the model. The orange line is the cut of threshold 

for ROIs displayed in d, chosen empirically to discard spurious fits due to 

artifacts. d. Out of the 1,142,100 units, over 70% of the variance in the activity 

of 8953 is described by the model. Figure adapted from Dragomir et al. (under 

review) 
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From the five parameters (the power of the nonlinearity, the weight and time 

constant for each side), two derived parameters were investigated, namely the relationship 

between response to the two motion directions, expressed as an angle in the weight plane 

and the dominant time constant (defined as the sum of the two integrator time constants 

weighted by the input weights) (Figure 3.15a). This analysis revealed a continuum of time 

constants that extended all the way into the tens of second.  Interestingly, the widest range 

of time constants, including the longest ones, belonged to ROIs that were strongly excited 

by motion in one direction and slightly inhibited by motion in the opposite direction 

(between π/2 and 3π/4).   

As each ROI was fitted independently, the anatomical distribution of the fitting 

parameters throughout the brain of the larval zebrafish was also analyzed. As shown in 

Figure 3.15 b-d, most units of relevance were found in the pretectum, thalamus, the 

hindbrain region around the reticular formation and the ventral hindbrain corresponding to 

the DRN and the IPN, in agreement with the regression based analysis shown in Figure 

3.13. Responses dominated by contralateral inhibition were located almost exclusively in 

the DRN, IPN and dorsal left habenula (pink ROIs in Figure 3.15 b-d). As shown in Figure 

3.15d- ii, responses in the pretectal region exhibit a continuous gradation from 

lateral/ventral responses corresponding to some bidirectional but mostly unidirectional 

excitation, to medial and dorsal responses that include modest contralateral inhibition. In 

agreement with Figure 3.12, units that were more excited by right- or leftwards motion 

were almost uniquely found on the right/left hand side of the brain, respectively (Figure 

3.15c).  

ROIs with long time constants (> 5 s) were located in several brain regions (Figure 

3.15e), including the dorsal and lateral hindbrain around the reticular formation and more 

ventrally in the DRN and IPN (Figure 3.15e- i), the dorsal pretectum (corresponding to 

those units that included slight contralateral inhibition), torus longitudinalis and habenula 

(Figure 3.15e- ii). Notably, this is a comprehensive map: no other units throughout the 

brain exhibited activity related to visual motion in this experimental paradigm. These ROIs 

must therefore underlie the coherence-dependent behavior observed and described in 

Figures 3.1 - 3.9. 
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Figure 3.15 Model characteristics and anatomical distribution of fitted 

ROIs 

a. Characterization of the resulting model fits. The x-axis is a sum of the time 

constants weighted by the absolute values of the left and right weights, and the 
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y-axis is the amount of inhibition vs. excitation for the dominant side (for details 

see Methods section 2.5.2). The parameters for the ROI traces shown in Figure 

3.12 b are labeled 1 through 5. b. 3D anatomical map of model parameters: the 

colors are from panel a, showing regions where ipsilateral excitation or 

contralateral inhibition dominate. Two transversal slices of the brain volume 

containing most of the relevant ROIs are displayed below: (i) part of anterior 

hindbrain and (ii) midbrain regions. c. Transversal slices already shown in 

panels d (i) and d (ii), but here ROIs are split into those for which the input 

when presented with a leftwards stimulus produces more excitation than a 

rightward stimulus (L>R) and vice-versa to depict the pronounced 

lateralization. d. Anatomical map of model characteristics, with same 

transversal slices displayed in b. e, Anatomical map of model time constants, 

with same transversal slices displayed in b. Figure adapted from Dragomir et 

al. (under review) 

 

 

 

3.6 Generation of motor output 

 

The ROIs described up to now relate to sensory evidence and its integration.  As 

shown in Figure 3.3c and expanded upon in Figure 3.4, the evidence integrator is not reset 

upon performing a turn. The question remains as to how the integrated evidence actually 

influences turning. It has been shown before (Portugues et al., 2015) that the initiation of 

forward swims when presented with optomotor stimuli of varying speeds can be to a certain 

extent modeled as a Poisson process, whose rate is a function of the stimulus speed. In the 

present behavioral paradigm, a similar mechanism was tested by using the left and right 

integrator values as linear modulation of the rate of two independent Poisson processes that 

generate left and right turns respectively. As shown in Figure 3.16a, two integrator units 

(already described in Figure 3.14a, but now setting τL and τR to be equal) were combined 

to encode the left and right turning rates respectively (λL and λR), superimposed on a tonic 

baseline turning rate λB (0.11 Hz). The model was fit to reproduce the behavior observed 
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during one of the two behavioral paradigms tested and the synthetic trajectories generated 

show both qualitative and quantitative similarities to those found experimentally (see 

Methods section 2.5.2  and Figure 3.16b). The values obtained for the model were a time 

constant, τ = 0.96 seconds and a turning angle per bout = 58.27 degrees (although this value 

is relatively large compared to an usual turning angle, in this way forward turns that are 

slightly biased to one direction or another are also accounted for, while keeping the 

behavioral rate consistent with other experiments). This same model was then applied to 

predict the turning rate expected during the stimulus sequence (Figure 3.17-i) presented in 

the imaging setup during which the larvae were head restrained (Figure 3.17-ii) (see 

Methods section 2.5.3 for details). The freely swimming behavior expected when this 

stimulus sequence is presented showed a very close agreement with the model (compare 

Fig 3.17 ii and iii) with very similar deviations from baseline occurring as a function of the 

coherence presented. For the head-restrained behavior (Figure 3.17-iv) salient behavioral 

features were also similar, such as the predominant turning direction during each stimulus 

and relative turning frequencies. Nevertheless, the swimming in head-restrained zebrafish 

larvae is known to occur at a much decreased rate, which in this model could correspond 

to a decrease in λB and/or a reduced input to the turning integrators. This would result in 

an overall homogeneous decrease of turning rates (see gray line in Figure 3.17-ii). In 

addition, the proposed mechanism can also explain why, even for high coherences, fish 

will sometimes perform an incorrect turn. This is due to the stochasticity of the model and 

the fact that the baseline turning rate, determined by λB, is non-zero for both freely 

swimming and head-restrained behavior. 
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Figure 3.16 Behavioral predictions of motor output generation model 

a. Version of the model that relates the evidence integration process to bout 

generation. b. Simulated behavioral response of the integrator model (dashed 

line) to transitions in coherence and direction superimposed on data shown in 

Figure 3.5a (for coherence 0.6). The relative weights of excitation and 

inhibition and the nonlinearity P where extracted from data presented in Figure 

3.3a, whereas the time constant was extracted from behavioral data presented 

in Figure 3.5a. Figure adapted from Dragomir et al. (under review) 
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Figure 3.17 Relation of turning rate with model fitted fluorescence                        

(i) Direction and coherence of the stimulus sequence; (ii) the turning rates 

predicted in by the model fitted on data from Fig 3.3 and Fig 3.5a; gray line 

denotes threshold below which turns are not expressed in the head-restrained 

preparation; (iii) turning behavior in freely swimming fish and (iv) embedded 

fish; (v) fluorescence traces reproduced from figure 3.14b with similar 

parameters as the behavioral model. Figure adapted from Dragomir et al. 

(under review) 
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As shown in Figure 3.17-ii, these units representing the turning rate display positive 

and negative deviations from a baseline activity depending on whether the sensory 

evidence coincides or not with the turning behavior they encode. In the parametrization 

from Figure 3.15a, they must therefore lie around the value 3π/4 and should appear pink in 

Figure 3.15 b-d, such as ROIs 3 and 4 from Figure 3.14b, which are reproduced at the 

bottom of Figure 3.17-v. The majority of these ROIs are found in the hindbrain (Figure 

3.15d-i). In addition, as already shown in Figure 3.15c, all ROIs that are predominantly 

excited by leftward coherence are almost uniquely located on the left side of the brain, and 

similarly for the rightwards coherence.  This allows for establishing a functional circuit 

model (Figure 3.18) where rate encoding units in the anterior hindbrain receive ipsilateral 

excitatory and contralateral inhibitory inputs that must originate in the pretectum, the only 

visual sensory region that is active in a coherence-graded fashion. Notably, the circuit 

model presented in Figure 3.18 is not an anatomical model but a functional one, and that 

inhibitory inputs to the turning rate encoding neurons could also anatomically arise from 

neurons in the contralateral hindbrain. 

 

 

Figure 3.18 Mapping of brain areas to parts of the evidence integration 

process. Figure adapted from Dragomir et al. (under review) 
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Using the whole-brain imaging dataset as a functional screen, the regions in the 

medial ventral anterior hindbrain (colored pink in Figure 3.15d-i) were further investigated, 

since, as pointed out above, they could correspond to the turning rate encoding units. The 

IPN, a structure located on the midline of the larval zebrafish brain contained the majority 

of these units. The neural responses in this region were correlated with the left turning rate, 

and activity was markedly lateralized: in the caudal IPN, activity on each side was highly 

correlated for ipsiversive turns and anticorrelated for contraversive ones, whereas this 

pattern was switched in the more rostral IPN (Figure 3.19). This is confirmed by 

partitioning this region into six segments: deviations from baseline in the activity in the 

pink segment closely tracks the deviations from baseline in right turning rate (cf with 

Figure 3.17 ii-iv), and similarly for the green segment and left turns.  
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Figure 3.19 Activity in the IPN correlates with the integrated sensory 

evidence and directional turning rate 

The anatomy showing the location of the IPN (top); 6 regions selected from 

the pixel-wise correlation (middle) with modeled left turning rate (the pink 

trace in Figure 3.17-ii). Bottom: example traces from the 6 segments 

selected in the above panels. Figure adapted from Dragomir et al. (under 

review) 

 

 

To further investigate how turning rates are transformed into motor output, motor-

triggered neuronal activity averages (MTNAs) were computed for all the ROIs identified 

in the behavioral analysis from the imaging experiments. A set of activity profiles of 

interest were defined for the three behaviors observed, namely left and right turns and 

forward swims, referred to as motor triggers (Figure 3.20 - for simplicity only left turns are 

displayed, except in e). For example, the triggers in Figure 3.20a correspond to neuronal 

activity that increases or decreases in a step-up fashion upon motor output. The trigger in 

Figure 3.20d corresponds to neuronal activity that starts ramping down several tens of 

seconds before a motor event after which it is instantaneously reset, while the trigger in 

Figure 3.20e corresponds to neuronal activity concurrent with a motor event, such as would 

be expected from a motor neuron. The activity of each individual MTNA was correlated 

with these motor triggers and only ROIs that had a high correlation coefficient (> 0.7) were 

selected. The motor trigger corresponding to integrated activity that is reset upon motor 

output was omitted, as no significant number of ROIs with such MTNAs patterns were 

found (this would correspond to the inverse of the trigger in Figure 3.20d). Analyzing ROIs 

with significant leftward turning MTNAs (Figure 3.20a-d), revealed functional classes 

corresponding to different activity patterns, which were anatomically lateralized: for each 

pair, the ROIs with the green trigger were mainly located on the right side of the brain 

while those with the magenta trigger, which perfectly anticorrelates with the green trigger, 

were located on the left side of the brain. The motor triggers displayed correspond to 

leftward turns, a mirror symmetric configuration was also observed for rightward turns 

(data not shown). The pronounced lateralization of functional types suggests that an 
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intricate interplay of cross-midline excitation and inhibition is behind the translation of the 

behavioral turning rates observed in the IPN into locomotor output. Interestingly, ROIs 

with significant MTNAs are enriched in the telencephalon, which contains among other 

structures, the homologs of the basal ganglia. In addition, a majority of these ROIs were 

located in the regions already identified as being of interest in Figures 3.12-3.13, namely 

the reticular formation and the DRN, suggesting that these regions are involved not only in 

the integration of sensory evidence, but also the generation of motor output.  

 

 

      

  

 

Figure 3.20 Motor-triggered neuronal activity 

a. Left: motor triggers corresponding to stepwise increases (green) and 

decreases (magenta) concurrent with leftward turns. The average activity of 

all ROIs with correlation > 0.7 with the corresponding motor trigger is 

superimposed in black. Right: anatomical location of the motor triggers 

throughout the brain. Ro– rostral, c – caudal, l – left, r – right and scale bar 

= 300 microns. b, c. Similar to a but for neuronal activity which ramps up 
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or down after a left turn (b) or neuronal activity which has a maximum or 

minimum coincident with the left turn (c). d. Motor trigger corresponding 

to neuronal activity that decreases steadily and is reset upon a left turn. The 

number of ROIs with activity that increased steadily and was reset upon a 

left turn was negligible. e. All ROIs with activity coincident with a forward 

swim. Figure taken from Dragomir et al. (under review) 
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4. Discussion 
 

 

In this thesis, I present a novel perceptual decision making assay in the larval 

zebrafish, based on the classic RDM paradigm. Taking advantage of the reflexive OMR, 

the binary choice of either left or right turning was used as a decision readout, following 

accumulation of noisy whole field motion. Several behavioral characteristics including 

latency, turn rate and accuracy were modulated depending on the strength of the visual 

stimulus, and both sensory and motor history affected the selection of the current 

behavioral choice. Whole brain functional imaging experiments, combined with an 

unbiased analysis and modeling approach allowed for a comprehensive identification of 

almost all neural activity relevant to the various stages of the decision making process and 

uncovered the IPN as strongly correlating with the turning rate of the fish, potentially 

deriving from the bidirectional integration of the sensory evidence.  

 

 

4.1 The OMR as a perceptual decision task  
 

In the classic RDM paradigms used in perceptual decision making studies, there 

are two phases, the initial one during training or acquisition, and the second proficient one 

during which testing normally occurs. In this second phase evidence is accumulated and 

an action is selected irrespective of training: the task becomes one of perceptual decision 

making in which the integration of sensory evidence is decoupled from any reward signal. 

The OMR is an innate reflexive behavior: the fish will turn in the direction of perceived 

motion after integrating incoming sensory evidence without the incentive of an extra 

reward, therefore this task is analogous to the second proficient phase mentioned above. 

Additionally, the absence of these reward signals in the OMR makes it easier to isolate 

the neuronal correlates of pure perceptual decision-making. 
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The psychometric curves in Figures 3.3b and 3.9  are reminiscent of those obtained 

in primate perceptual decision making experiments presented with a similar stimulus in 

either forced-choice or response-time tasks (Gold and Shadlen, 2007) (Figure1.1b) and 

indicate that larval zebrafish react to random dot motion stimuli of increasing coherence 

as motion percepts of increasing strength. Additionally, as the stimulus progresses, the 

behavior is becoming more robust, both in terms of increased turning rate (Figure 3.3a) as 

well as turn accuracy (Fig 3.3b and 3.3c), indicating they are accumulating evidence to 

improve their behavior. In most perceptual decision making assays in primates and 

rodents, the behavior arises from training aimed to obtaining a reward, after which the 

accumulation of evidence has no subsequent importance and is automatically reset (Gold 

and Shadlen, 2007). In contrast, accumulation of evidence is not reset here; one possible 

interpretation could be that larvae are trying to continuously estimate the state of their 

visual surroundings to behave accordingly, and evidence accumulated before a bout will 

still be relevant in estimating the state following the bout. In essence, the external state or 

evidence variable is encoded in behavioral space as the most appropriate turning rate that 

should result given current evidence and beliefs. 

The freely swimming behavioral analysis indicates that there is a clear dependency 

to previous sensory stimulus, as well as previous motor choices, a bias that can be 

extended up to the last 4 motor bouts and their corresponding motion stimulus (Figures 

3.5 - 3.7). This is similar to results found by Dunn et al. (2016), which show that in absence 

of any stimulation, fish do not turn at random, but tend to string together repeated 

ipsilateral turns before stochastically changing their turning direction. This also connects 

well with the proposed turn generation stochastic model (Figure 3.16a), where behavioral 

responses are executed based on a rate that although modulated by evidence, is not 

updated instantaneously. The history dependence arises because the decision readout 

mechanism does not reset the integrated evidence, as shown in Figures 3.3c or the inertia-

like behavior in Figure 3.5. This effect of sensory and motor history on current choice has 

also been previously described in several decision making studies in humans, primates 

and rodents, in paradigms using different sensory modalities (Akrami et al., 2018, Hwang 

et al, 2017, Fassihi et al., 2014,  Gold et al., 2008, Romo and Salinas, 2017).  
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Swimming in a head fixed preparation is known to occur at a lower rate than in a 

freely swimming setup (Severi, Portugues et al., 2014; Dunn et al., 2016), and while this 

is also observed here, turning behavior improves with increased motion coherence in a 

similar way in both setups (cf. Figures 3.3 and 3.9), validating the use of the head 

restrained setup in the whole brain functional imaging experiments.  

 

 

4.2 Neural activity underlying decision making steps 
 

In previous studies, investigation of neural correlates of the decision making 

process implied a priori knowledge about specific brain areas targeted. These typically 

focused on parts of the brain involved with preparation and selection of eye movements 

such as LIP, superior colliculus, FEF (or FOF in rodents), dPFC (Shadlen and Newsome, 

1996, 2001; Horwitz and Newsome 1999; Kim and Shadlen 1999; Hanks et al. 2015). 

Even if the activity recorded here correlated well with accumulated evidence, it remains 

unclear whether these areas are responsible for this computation, or merely reflect input 

from different areas. Another limitation was the restricted number of neurons that could 

be interrogated during a decision task to the potential brain areas involved: in primates, 

most neurophysiological insights come from single unit recordings, and in rodents, 

imaging experiments have quite a limited field of view.  

This study uses the power of whole brain functional imaging at single cell 

resolution, which combined with regression analysis and modeling allows for establishing 

a comprehensive map of all the areas relevant to the various stages of the decision making 

process. One caveat that is valid in all calcium imaging studies relates to differences in 

calcium dynamics and calcium indicator concentrations between different neurons, which 

could result in the different temporal dynamics across the ROIs identified here with both 

the regression analysis and modeling. While small differences between time constants 

would indeed be difficult to resolve, their broad distribution, up to tens of seconds (Figure 

3.15a), does indicate the presence of both momentary graded and integrated activity 

patterns in the identified ROIs.  
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Two main regions emerged from this analysis where sustained and integrated 

activity in response to different coherences is present: the pretectal/thalamic region and 

the rostral hindbrain region. The functional model presented in Figure 3.18 proposes that 

the pretectal/thalamic areas in the diencephalon are more likely to be involved in the visual 

encoding part of the task while the hindbrain is likely to be directly responsible for turning 

and swim generation, in agreement with previous findings supporting these roles to these 

brain regions (Naumann et al., 2016; Dunn et al., 2016; Wolf et al., 2017). This modular 

architecture could easily accommodate the addition of more turn-inducing stimuli from 

multiple modalities; the sensory drive, from regions analogous to the pretectum, will then 

converge onto the same hindbrain turn generator.  

The pretectum, the analog of the mammalian nucleus of the optic tract, has been 

previously described to contain diverse responses to whole-field visual motion in the 

context of OMR, including monocular, binocular, coherent and conflicting motion, with 

neurons tuned to a particular direction of the visual motion (Naumann et al., 2016; Kubo 

et al., 2014). Other studies also indicated the pretectum’s contribution to another 

stabilizing reflex in response to visual motion, the OKR, showing that cells are classified 

into distinct response profiles, and that many combine inputs from both eyes to process 

and distinguish between rotational and translational whole-field motion (Kubo et al., 

2014; Portugues, Feierstein et al., 2014). These results indicate that different inputs 

carrying specific characteristics of the visual stimuli converge in the pretectum, and that 

this area is an important node in the complex sensorimotor transformations underlying 

visually guided behaviors. Interestingly, this study shows that neurons in the dorsal region 

of the pretectum are also able to integrate visual sensory drive in time, a feature that has 

not been previously described.  

In addition to activity correlated with directional turning (Figures 3.12 and 3.13), 

the reticular formation in the anterior hindbrain region showed integrating graded 

responses that were lateralized depending on visual motion direction, a newly identified 

response to a region previously known to correlate mostly with motor behavior. This 

sensory integration response extended from the very rostral region (rhombomere 1) to 

rhombomeres 2-3, more caudally, which also contained more motor related responses. In 

absence of any sensory stimulus, Dunn et al. (2016) showed that responses in the more 
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caudal part of the reticular formation region (which they call the anterior rhombencephalic 

turning region, ARTR) correlate with direction of turning. Optogenetic perturbations 

biased swimming direction, while ablation of ARTR resulted in loss of turn bias during 

the turning history. It would be interesting to investigate whether similar perturbations 

would likely result in a decreased motor or sensory history effect in this RDM assay, or if 

optogenetic manipulations would offset the accumulated sensory evidence for turning 

choice. Wolf et al. (2017) also showed that activity in this hindbrain region (referred to as 

the hindbrain oscillator) correlated not only with swim bout direction, but also with 

direction of ocular saccades, linking these behavioral roles to oscillating activity 

previously found without stimulation or behavioral readout (Ahrens et al., 2013). Swim 

bout orientation could be reliably predicted by gaze dynamics in the majority of the swim 

bouts, indicating these distinct motor behaviors could be partly implemented via a 

common circuit mechanism. In this study, eye movements are not monitored, but it would 

be interesting to see whether additional behavioral parameters coming from eye 

movements would help to further explain specific activity patterns observed here. While 

previous studies focused more on the caudal part of the reticular formation in the 

hindbrain, not much is known regarding specific neuronal characteristics present in the 

more rostral part, which concentrates more of the sensory integration responses, or the 

flow of information between these two subpopulations. Dunn et al. (2016) report the 

presence of both glutamate and GABA distributed medial-laterally, suggesting the 

presence of a mutual inhibitory motif underlying the selection of turning direction. 

Projections to adjacent to reticulospinal neurons, which have been shown to be tuned to 

the specific directionality of the OMR (Orger et al., 2008), could subsequently exert the 

choice of turn direction onto premotor neurons, but this remains to be tested. Future 

experiments clarifying neurotransmitter identity in the more rostral hindbrain region as 

well, together with afferent and efferent projections would further help to identify specific 

contributions of this area to the choice of turn direction. 

Integrating activity graded on coherence magnitude, uni- and bi-directional, was 

also found in the left dorsal habenula, the zebrafish homolog of the mammalian medial 

habenula (Amo et al., 2010). The habenulo-IPN pathway has been shown to regulate 

experience-dependent modification of fear conditioned behavior in zebrafish (Agetsuma 
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et al., 2010), and in general, the habenula is considered to have an important role in the 

motivational control of behavior (Hikosaka, 2010). Several studies report responses to 

ambient light in the left dorsal habenula in zebrafish (Dreosti et al., 2014; Cheng et al., 

2017), including a role mediating light preference behavior (Zhang et al., 2017). The RDM 

assay in this study reveals habenular responses to visual motion, and potential 

involvement in a perceptual decision task. Responses representing integrating activity to 

either left or right visual motion, or displaying a bidirectional excitation inhibition pattern 

(Figure 3.13) were distributed throughout the left dorsal habenula without any particular 

spatial organization. It is unclear from where these visual inputs arrive, but one possibility 

would be the bilateral eminentia thalami, which has been shown to relay visual input from 

retinal ganglion cells to the left dorsal habenula (Zhang et al., 2017), and which also shows 

neural activity in response to visual motion (Figure 3.10). Similar activity patterns were 

also observed in the IPN, the main efferent target of the dorsal habenula, where axons 

terminate in a laterotopic way: left dorsal habenula neurons project mainly to the dorsal 

and intermediate IPN, while the right dorsal habenula neurons innervate the ventral IPN 

region (Aizawa et al., 2005; Bianco and Wilson, 2009). 

The DRN emerged as another region with multiple types of responses, including 

uni- and bi-directional integration in response to sensory motion (similar to the habenula 

and IPN signals), a type of activity not been previously described in this structure. These 

responses were clustered both along the midline, where the serotonergic cells of the DRN 

reside, as well as more laterally, overlapping with the GABAergic population.  

Kawashima et al. (2016) report phasic DRN activity in response to swim-induced visual 

motion, however, the majority of these neurons did not respond to motion that was not 

self-generated. They also suggest the involvement of the DRN in motor learning, based 

on persistent activity following swimming bouts. This type of response is similar to some 

of the motor correlated responses observed here, where following a swim bout, DRN 

neurons exhibit a slow rise in activity, which is sustained for up to 3 minutes, before it 

slowly decays (Figure 3.13, motor output). This activity pattern could be a candidate 

underlying the motor history effect on behavior, as the observed turning bias can extend 

to in the order of minutes. Testing this hypothesis with pharmacological ablations or 
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optogenetic perturbations should help in further elucidating the role of this structure in the 

turning behavior. 

The whole-brain functional screen, together with the modeling approach, 

uncovered the IPN as a site whose activity strongly correlates with the turning rate of the 

fish.  This nucleus is important integrative center of the limbic system (Morley, 1986), 

interconnected with the dorsal habenula and the DRN, structures that also contained 

similar response patterns, and which have been shown to be involved in experience 

dependent modulation of behavior (Amo et al., 2014, Agetsuma et al., 2010, Chen et al., 

2019). The primary input to the IPN comes from the dorsal habenula, which sends axonal 

projections that wrap multiple times around its center and arborize over a considerable 

dorsoventral extent (Bianco et al., 2008). Given this particular arrangement, and the fact 

that the IPN structure itself is composed mostly of neuropil, it is not immediately obvious 

how the spatially segmented activity pattern presented in Figure 3.19 emerges. Additional 

inputs come from numerous structures in the brainstem and forebrain, and a wide range 

of neurotransmitter types are expressed in a spatially organized manner within its 

subnuclei (Bianco and Wilson, 2009; Morley, 1986), which could contribute to the 

specific activity pattern observed. Although the left dorsal habenula innervates the dorsal 

and intermediate pattern of the IPN (Aizawa, 2005), the responses observed here extend 

to the most ventral planes of the IPN, which should mostly receive input from the right 

habenula, however, no responses have been identified here that correlate with any of the 

sensory or motor part of the task.  Notably, the IPN has also been implicated in a variety 

of deficits observed in navigation-based assays in rodents (Sharp et al., 2006; Clark and 

Taube, 2009). Given its particular circular structure, the fact that activity integrates left 

and right visual motion as well as reliably tracking directional turning in a stereotyped 

spatiotemporal profile, certain comparisons can be made with the Drosophila ellipsoid 

body, where navigational cues such as angular path integration and heading are encoded 

(Seelig and Jayaraman, 2015; Green et al., 2017). Future work on efferent projections 

should help in elucidating how the directional turning rate encoding units present here 

relay into motor output.    
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4.3 Temporal dynamics underlying integrating activity   

 

The imaging analysis together with the integrator model revealed integrating units 

in multiple clusters of the brain, with a wide range of time constants, which encompass 

up to tens of seconds. This is comparable with findings from Scott, Constantinople et al. 

(2017) that show extensive heterogeneity in the dynamics of neuronal responses to 

sensory stimulation (in the context of a decision making task) in a population of neurons 

in the frontal and parietal cortex. Neuronal responses could predict the animal’s previous 

and upcoming choice, suggesting influence of sensory and motor history in addition to 

current sensory variables represented. This was also supported by Akrami et al. (2018), 

who showed that the current behavioral choice had a substantial sensory history effect, 

and neural activity in the posterior parietal cortex represented more information about 

previous-trial sensory stimuli than about current trial stimuli. These findings support a 

model of evidence accumulation in which a network of heterogeneous neuronal dynamics 

represents the memory of sensory events during decision-making, as opposed to the 

typical homogenous dynamics model, in which neurons integrate evidence with a 

stereotyped temporal waveform representing the latent variable of the accumulator (Scott, 

Constantinople et al., 2017). This heterogenous dynamics model underlying sensory 

history or working memory connects well with the idea of an effective time constant 

matching behavior that comes from a continuum within a network. This has been 

previously described in the oculomotor network in the prepositus-vestibular complex 

neurons (reviewed in Robinson, 1989), which can encode a variety of velocity and 

position combinations with heterogeneous individual time-constants. These oculomotor 

integrators of neuronal activity have been well studied in fish (Aksay et al., 2007; Miri et 

al., 2011; Daie et al., 2015), however, the neuronal activity observed here reflects the 

temporal integration of external sensory evidence that directly drives behavior and may 

precede it by many seconds, as opposed to an internally generated efferent signal.  

Temporal integration could arise due to cellular biophysical properties, such as 

specific time constants of the cell membrane or recurrent excitation mediated by NMDA 

receptor activation, which can account for the slow integration of synaptic inputs (Tank 

and Hopfield, 1987; Wang, 2002). Regulation of ion channel abundance that leads to 
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specific membrane voltage dynamic properties has been recently shown to be essential in 

the integration properties of specific cells involved in a olfactory perception decision task 

in fruit flies, for example (Groshner, 2018).  Alternatively, theoretical models have also 

demonstrated that integration can be produced from networks with recurrent architecture, 

which have been proposed to underlie working memory (Major and Tank, 2004; Machens 

et al., 2005).   

 

 

4.4 Concluding remarks and future directions  
 

The data presented here indicates that decision-making activity is broadly 

distributed across different brain regions, underlining the importance of access to whole 

brain activity in establishing a comprehensive analysis of behavior. Nevertheless, the vast 

complexity of this whole brain data makes it difficult to outline specific circuit 

mechanisms regarding the behavior. While this study represents a foundational inquiry 

into the sensorimotor processing underlying this decision making assay, many open 

questions remain to be addressed, that will hopefully bolster the proposed model 

assumptions and shape a functional circuit of the behavior.  

In terms of behavior, the freely swimming experiments were performed in a closed 

loop fashion, such that the direction of visual motion perceived by the fish was always 

perpendicular to its axis, including right after a turn. This particular construction 

disregards a potential internal model that would allow the fish to predict the sensory 

consequences of its own behavior. If such an internal model is present, the sensory 

reafference experienced by the fish would contradict its predicted sensory feedback, 

which can result in alterations of the behavior, such as increased latency to turning, or 

diminished accuracy. Testing the same RDM paradigm in an open loop fashion (allowing 

the fish to experience the consequences of its directional turning) could help establish 

whether expected reafference driven by efference copies interferes with the evidence 

accumulation process and alters certain behavioral parameters. This paradigm can then be 

extended in the imaging setup as well, and potentially allow for the identification of 

integrating units that combine sensory evidence with internal efference copy signals.  
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   Testing the effect of the open vs. closed loop scenario could be particularly 

appropriate to consider in relation to the IPN neural activity representation. Given its 

particular characteristics that link this structure with potential navigation related 

properties, it would be interesting to investigate whether motor related cues are integrated 

together with sensory evidence, as has been shown in the fruit fly ellipsoid body (Seelig 

and Jayaraman, 2015). This would be further encouraged by previous findings indicating 

deficits in path integration in a navigational assay following IPN lesions (Clark and Taube, 

2009). While the motor triggered analysis (Figure 3.20) also indicates that the IPN is 

acutely related to motor output, further in depth analysis of motor signals combined with 

the sensory representation would be required to establish if the specific activity pattern is 

also altered by motor output, and if both responses contribute to shaping the turning rate 

observed in behavior.  

The generation of motor output model (Figure 3.16) proposes that the IPN reliably 

encodes behavioral turning rate, through bidirectional integration of sensory evidence. 

Causal testing of this model could be implemented through optogenetic perturbations or 

targeted ablations, however, a particular difficulty in targeting this structure stems from 

its anatomical position: the IPN is located ventrally in the brain, and optogenetic access 

could be very limited. Employing more advanced techniques such as two-photon 

holographic optogenetics (dal Maschio et al., 2017) could circumvent this problem, 

however, this would still require transgenic lines that restrict photostimulation to the 

neurons of interest. Since the dorsal habenula is the main source of input to the IPN 

(Morley, 1986) and similar reponses have been observed here (in the left dorsal habenula), 

optogenetic stimulation could also be targeted here, and coupled with calcium imaging to 

see if these perturbations lead to any changes in the neural activity patterns in the IPN. 

Evaluating behavior following these perturbations would also be of interest, however, as 

the habenula has been implicated in several motivation related behavioral modulations 

(Hikosaka, 2010), the interpretation of these experiments may not be straightforward.  

Investigating how a different sensory modality influences neural activity in the 

IPN, or other regions in the hindbrain likely to be involved in the turning rate 

representation could further provide support for the proposed generation of motor output 

model (Figure 3.18). For example, rheotaxis behavior can be induced by non-laminar 
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water flow around the fish (Oteiza, Odstrcil et al., 2017). Titrating the strength of these 

mechanical stimulations and monitoring neural activity in the IPN or hindbrain areas 

while fish modulate their turning behavior should indicate whether these structures encode 

turning rate irrespective of the engaged sensory modality.   

The results presented in this thesis provide an exciting perspective into the 

investigation of brain wide sensorimotor processing underlying a complex behavior, and 

hopefully future research will further help in unravelling how sensory integration and 

internal states shape the functional circuits that form behavioral representations and 

actions. 
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5. Appendix  
 

 

5.1 Abbreviations 
 

ARTR      anterior rhombencephalic turning region 

dlPFC      dorsolateral prefrontal cortex 

dpf           days post fertilization 

DRN        dorsal raphe nucleus 

IPN          interpeduncular nucleus 

FEF         frontal eye field 

FFI          feedforward inhibition model  

FOF         frontal orienting field 

LCA        leaky competing accumulator model  

LIP          lateral intraparietal area 

MT          medial termporal area 

MTNA    motor-triggered neuronal activity averages  

nMLF      nucleus of the medial longitudinal fasciculus 

NOT        nucleus of the optic tract  

OMR       optomotor response 

OKR        optokinetic response 

PPC         posterior parietal cortex  

RDM       random dot motion  

SD           standard deviation 

SEM        standard error of the mean 

SPRT       sequential probability ratio test 
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