Investigation of neuronal activity in a murine model of Alzheimer’s disease using \textit{in vivo} two-photon calcium imaging

Viktoria Korzhova
Supervisor
Prof. Dr. Jochen Herms
DZNE-Munich
Translational Brain Research
Feodor-Lynen-Strasse 17
D-81377 München

First Reviewer: Prof. Dr. Jochen Herms
Second Reviewer: Dr. Dr. Sabine Liebscher
External Reviewer Prof. Dr. Albrecht Stroh

Date of Defense: 11 September 2019
Thesis Advisory Committee (TAC)

Prof. Dr. Jochen Herms
Dr. Dr. Sabine Liebscher
Prof. Dr. Armin Giese
Prof. Dr. Stefan Lichtenthaler
Summary

Alzheimer’s disease (AD) is one of the biggest challenges for biomedical research nowadays as with the growth of life span more and more people are affected by this disorder. Etiology of AD is unknown, yet growing evidence identifies alterations in neuronal activity as of the great importance for pathology. Although several significant studies of neuronal activity alteration in AD were done during the last decade, none of them addressed the question of the time course of these changes over the disease progression.

Alzheimer’s disease (AD) is characterized by impairments of brain neurons that are responsible for the storage and processing of information. Studies have revealed decrease in the activity of neurons (Silverman et al., 2001; Prvulovic et al., 2005) and it was proposed that generalized hypoactivity and silencing of brain circuits takes place as formulated in the synaptic failure hypothesis (Selkoe, 2002). However, more recent studies also reported opposite effects – hyperexcitability and hyperactivity of neurons in the AD models (Busche et al., 2008; Sanchez et al., 2012; Liebscher et al., 2016). It still remains unclear if these are two sides of the same coin or if these are two stages, that follow each other. Moreover, it is not clear if observed neuronal activity alterations are caused by the dysfunction of individual neurons or if overall circuitry is disturbed because the crucial “activity controllers” (most probably - inhibitory neurons) alter their activity.

This project aimed to examine spontaneous neuronal activity in the murine model of AD at the early stages of disease progression using chronic in vivo imaging to address the character and the stability of neuronal activity alterations as well relation of the activity alterations to amyloid plaque proximity. Compared to earlier studies the approach of in vivo awake calcium imaging used in the current study has many benefits for brain research. The main advantage is that brain activity can
be measured without artifacts generated by anesthesia, which can exaggerate or mitigate experimental readouts.

In this project, I used genetically encoded calcium indicator GCaMP6 that enables prolonged repetitive imaging of the same neurons in an intact environment. Recording of calcium transients in cell bodies of neurons was accompanied by *in vivo* imaging of Aβ plaques and followed by immunohistochemical staining of GCaMP6-expressing neurons to investigate how activity changes are correlated with proximity to the plaque. All the experiments were done in awake mice to ensure the absence of anesthesia-derived impact on spontaneous neuronal activity.

My results support previously published reports of the increased proportion of hyperactive excitatory neurons in the AD mouse model. Importantly, my results also demonstrate that this increased activity is present in the awake state, is stable over a longer period of time (one month) and does not depend on the distance to the closest plaque. These findings support the hypothesis of permanent network alterations driving aberrant activity patterns that appear early in the disease progression, resulting in a chronic excitation/inhibition disbalance.

Another important finding of my project is that individual neurons do not stay in the silent state and most of them remain functional demonstrating normal activity at the later time points. This finding requires further research as it has important implication for the development of the AD treatment, as in case many neurons remain functional and their normal neuronal activity can be recovered by addressing the cause of the circuit dysfunction with treatment.

To summarize, the study presented in this PhD thesis is the first longitudinal study of neuronal activity changes in an AD mouse model, and while it provides important insight into pathology, it also emphasizes the importance of chronic *in vivo* studies to investigate neuronal activity and its role in the disease progression.
Content

Summary .. iv
Content .. vi
Figures .. viii
Abbreviations .. x

1 **Introduction** ... 1
 1.1 Alzheimer's disease .. 1
 1.1.1 Amyloid-β and the amyloid hypothesis .. 6
 1.1.2 The onset of pathology and clinical symptoms ... 13
 1.1.3 Mouse models of amyloid-associated AD pathology 15
 1.2 *In vivo* two-photon imaging in AD .. 18
 1.2.1 *In vivo* two-photon microscopy ... 18
 1.2.2 *In vivo* imaging of neuronal activity ... 21
 1.2.3 *In vivo* microscopy in AD .. 28
 1.3 Neuronal activity in AD ... 32
 1.3.1 Synaptic dysfunction ... 32
 1.3.2 Neuronal activity and circuit dysfunction ... 35
 1.3.3 Role of amyloid plaques in neuronal dysfunction in AD 42

2 **Objectives** ... 46

3 **Material and Methods** ... 47
 3.1 Animals ... 47
 3.2 Genotyping .. 48
Figures

Figure 1. Microscopic preparations of brain tissue of the first AD case..2
Figure 2. Amyloid plaques and neurofibrillary tangles are the hallmarks of AD.........................3
Figure 3. Progressive amyloid-β accumulation in the brain of AD patients observed with PET. ...4
Figure 4. Production of amyloid-β. ..7
Figure 5. Pathways leading to plaques and tangles form the basis of the amyloid-β theory of Alzheimer's disease. ..10
Figure 6. Age-related amyloid deposition in APPPS1 mice. ..18
Figure 7. Comparison of scattering in confocal microscopy and two-photon microscopy.20
Figure 8. Calcium in the neuron. ...22
Figure 9. Structure of GCaMP6m monomer in a cartoon scheme..24
Figure 10. Two-photon in vivo imaging of structural alterations in AD model mice.31
Figure 11. Model of molecular mechanisms involved in spine pathology in Alzheimer's disease. ..35
Figure 12. Proposed by Busche and Konnerth (Busche and Konnerth, 2015) model of the sequence of events that may underlie the progression of neuronal dysfunction in Alzheimer's disease. 38
Figure 13. Neural circuits and synapses during the progression of AD – possible time course of events. ..38
Figure 14. Types of amyloid plaques..43
Figure 15. Time line of the in vivo imaging experiments..50
Figure 16. Preparation of experimental animals to in vivo two-photon imaging. 50
Figure 17. Measurements of plaque to neuron distances in 3D space. 56
Figure 18. Improvement of the head-fixation bar. .. 59
Figure 19. Exemplary traces of neuronal activity of individual neurons recorded with in vivo two-photon imaging. .. 60
Figure 20. Active periods distinguished by the whiskers movements are not influencing activity of neurons in the recorded areas. .. 61
Figure 21. Color-coded neuronal activity of individual neurons (ROI) over time in each of the individual experiments (fov - field of view). ... 64
Figure 22. Immunostaining of Ruby-expressing neurons against GAD67 to identify inhibitory neurons. ... 65
Figure 23. Three neuronal activity types in transgenic and non-transgenic mice. 67
Figure 24. The activity of individual neurons over time.. 68
Figure 25. The activity of individual neurons over time according to three activity categories. .. 69
Figure 26. Distribution of plaque to neuron distances at three different imaging time points. ... 70
Figure 27. The fraction of hyperactive and silent neurons in APPPS1 mice for close and distant neurons in individual experiments. Horizontal line denotes the mean. 71
Figure 28. Changes in neuronal activity with respect to plaque proximity. 72
Figure 29. Distribution of plaques distances. ... 72
Figure 30. Cumulative distribution of the change in neuronal activity for neurons in different plaque-distance bins. ... 73
Abbreviations

2P imaging/microscopy
two-photon imaging/microscopy

ADAM9 and ADAM10
A Disintegrin And Metalloproteinase domain-containing proteins 9 and 10

AAV
adeno-associated virus

AMPA
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APLP1/2
amyloid-like protein 1/2

Apo ε4
apolipoprotein ε4

APP
amyloid precursor protein

AICD
APP intracellular domain

Aβ
amyloid-beta

BACE
beta-secretase

BAPTA
1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid

CCD camera
charge-coupled device camera

CAA
cerebral amyloid angiopathy

CMRO2
cerebral metabolic rate of oxygen
CSF cerebrospinal fluid
CT computed tomography
CTF C-terminal fragment
CX3CR1 CX3C chemokine receptor 1
DMN default mode network
DIAN Dominantly Inherited Alzheimer Network
EEG electroencephalogram
EGTA ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
FAD familial AD
FDG-PET fludeoxyglucose F 18 - positron emission tomography
fMRI functional magnetic resonance imaging
GABA γ-aminobutyric acid
GAD67 glutamic acid decarboxylase 67
GCaMP6s, GCaMP6f type of genetically encoded calcium indicator, created from a fusion of green fluorescent protein (GFP), Calmodulin, and M13; s and f indicate variants of GCaMP6 (slow and fast, respectively) that have different calcium-binding kinetics
GECIs genetically encoded calcium indicators
GWAS genome-wide association studies
GFP green fluorescent protein
Iba1 ionized calcium binding adaptor molecule 1
LTP long-term potentiation
MRI magnetic resonance imaging
mGluR metabotropic glutamate receptor
MCI mild cognitive impairment
SCN1A Nav1.1 sodium channel subunit
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDMA</td>
<td>N-Nitrosodimethylyamine</td>
</tr>
<tr>
<td>NPY</td>
<td>neuropeptide Y</td>
</tr>
<tr>
<td>NFTs</td>
<td>neurofibrillary tangles</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>OGB-1</td>
<td>Oregon Green BAPTA-1</td>
</tr>
<tr>
<td>PET</td>
<td>positron emission tomography</td>
</tr>
<tr>
<td>PFA</td>
<td>paraformaldehyde</td>
</tr>
<tr>
<td>PMT</td>
<td>photomultiplier tubes</td>
</tr>
<tr>
<td>PS or PSEN</td>
<td>presenilin</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>sAD</td>
<td>sporadic form</td>
</tr>
<tr>
<td>TACE</td>
<td>TNF alpha converting enzyme</td>
</tr>
<tr>
<td>TBOA</td>
<td>threo-β-benzylxyaspartate</td>
</tr>
<tr>
<td>WT</td>
<td>wild type</td>
</tr>
</tbody>
</table>
Alzheimer's disease (AD) has become an extremely important healthcare problem in the last decades as with the increase in lifespan the number of people suffering from AD is growing. In the century that passed since Alois Alzheimer discovered the disease, scientists have made remarkable advancement in understanding the illness. Nevertheless, despite tremendous investments in basic and clinical research, no cure or preventive treatment for AD exists, because the underlying pathological mechanisms remain elusive. Therefore, it is of great importance to investigate the pathology further. Changes in neuronal activity are thought to be among the first steps of cognitive decline in affected humans; however, it is still unclear what is the degree and the time course of these changes.

The aim of this thesis was to investigate the activity of the cortical neurons in the AD mouse model using the in vivo two-photon microscopy. The specific focus of this study was to follow neuronal activity over time: from early stages of the disease to the stage where amyloid plaque load is high and advanced axonal pathology is present.

The introduction chapter provides background information that was the basis of the study, and that is helpful to present the results described in chapter 3. Introduction is divided into three sections. Section 1.1 introduces the necessary basics of Alzheimer's disease pathology. Section 1.2 describes in vivo two-photon microscopy and its applications to AD research. Finally, section 1.3 gives an overview of the up-to-date research on the neuronal activity in the AD.

1.1 Alzheimer's disease

On November 3, 1906, Alois Alzheimer presented at the Meeting of the Psychiatrists of South West Germany and described the case of one of his patients, Auguste Deter, who had died of a dementing illness at the age of 55 (Alzheimer, 1907; Hardy, 2006a). He shortly discussed clinical
features of the case and described the pathological features he observed in her brain (Figure 1). These included the presence of plaques (miliary foci) and tangles (fibrils). Alzheimer was not the first to describe the clinical features of dementia (they have been documented in the elderly patients since the ancient times), as well as he was not the first to describe the plaques (Redlich, 1898). However, he was the first to describe the tangles (Perusini, 1991). Detection of the tangles was made possible due to the histological advances in the development of silver stains (Bielschowsky, 1902). The disease was named after Alois Alzheimer later by his senior colleague Emil Kraepelin (Kraepelin, 1910). For a while, the term was only used for the cases with a presenile onset age (with the onset at the age less than 65 years). The modern era of Alzheimer's research started with the finding that the majority of cases with senile dementia had Alzheimer's pathology, which meant Alzheimer's disease was not a rare neurological curiosity but a major research priority (Hardy, 2006a). An important step in this direction was made by Blessed, Tomlinson, and Roth in a series of papers, in which they reported that the majority of cases of “senile dementia” also had the plaque and tangle pathology of Alzheimer's disease and thus can be seen as the same disease as presenile dementia (Blessed, Tomlinson and Roth, 1968).

Figure 1. Microscopic preparations of brain tissue of the first AD case.

Preparations are done from brain autopsies of Auguste D. by Alois Alzheimer (left). Characteristic hallmarks of the AD, amyloid plaques and neurofibrillary tangles, are well visible in the slices (right). Source: Archives of Center of Neuropathology and Prion Research, LMU Munich.

Nowadays Alzheimer's disease is known to be the most common form of dementia in elderly with AD patients suffering from a progressive decline in memory and cognition (Blennow, de Leon and Zetterberg, 2006). In 2010, a meta-analysis, which combined data from multiple studies, estimated 35.6 million dementia cases worldwide (Prince et al., 2013), including 21–25 millions of AD cases (60–70% of dementia cases are classified as AD). The study also implied an annual growth in prevalence of 1½ million, which thus creates a growing burden to the society. In the USA, where more than 5 million people live with AD, Alzheimer's and other dementias cost the nation $259 billion. By 2050, these costs could rise as high as $1.1 trillion (http://www.alz.org). In Germany,
approximately 1.5 million people are affected by AD, and the number is increasing by 40,000 each year (www.deutsche-alzheimer.de).

![Figure 2. Amyloid plaques and neurofibrillary tangles are the hallmarks of AD.](image)

A. Images on A are from Spielmeyer's classic textbook 'Histopathologie des Nervensystems' using the Bielschowsky method of silver impregnation to visualize amyloid plaques and neurofibrillary tangles (Spielmeyer, 1922). B. In typical cases of Alzheimer's disease, amyloid-β deposition precedes neurofibrillary and neuritic changes starting from the frontal and temporal lobes, hippocampus and limbic system (top row). Less commonly, the disease seems to emerge from other regions of the cerebral neocortex (parietal and occipital lobes) with relative sparing of the hippocampus. The neurofibrillary tangles and neuritic degeneration start in the medial temporal lobes and hippocampus and progressively spread to other areas of the neocortex (bottom row). With the advent of molecular imaging techniques for Aβ and tau, the longitudinal dispersal of pathological changes will become amenable to real-time in vivo study and will not be reliant on post-mortem reconstructions as depicted here. Aβ deposition (stages A, B, and C) and neurofibrillary tangles (stages I–VI) are adapted from Braak and Braak (Ball et al., 1997). Reprinted from (Masters et al., 2015).

Unfortunately, current treatments provide only symptomatic relief and are only effective in a subset of AD patients and for a limited period of time (Golde, Schneider and Koo, 2011). The reason behind treatment difficulties is that even though AD is associated with clear pathological hallmarks, there is still no clear understanding of how and why the pathology develops, neither there are means of early diagnosis. The hallmarks of AD pathology are the generation of amyloid plaques, consisting of the amyloid-β peptide (Aβ), and formation of neurofibrillary tangles by the accumulation of hyperphosphorylated microtubule-associated protein Tau (Figure 2). Structural changes in the AD brain were classified into two categories – “positive” lesions (plaques, tangles, neuropil threads, dystrophic neurites, cerebral amyloid angiopathy (CAA)) and “negative” lesions (massive atrophy of the brain tissue due to neuron loss, degeneration of neurites and synapses) (Serrano-Pozo, Frosch, et al., 2011). Each of these lesions is present in a characteristic pattern in AD, providing a clue that there is a relationship between the lesions and disease progression. Neuronal loss and synapse loss in most cases appear in parallel to tangle formation, although
whether tangles are the cause of neuronal and synaptic loss remains uncertain (Gómez-Isla et al., 1997; Iqbal and Grundke-Iqbal, 2002; Bussire et al., 2003; Hof et al., 2003; Yoshiyama et al., 2007; de Calignon et al., 2009; De Calignon et al., 2010).

Amyloid-β lesions will be discussed in more details later as they are currently seen as a main pathogenic agent, while the role of Tau aggregates stays cryptic. Tau pathology can manifest within neuronal somata, referred to as tangles, or within neurites, called neuropil threads (Serrano-Pozo, Frosch, et al., 2011). Tangles emerge in a spatiotemporal manner, allowing for categorization into Braak stages (I-VI) (Braak and Braak, 1991). The hierarchical pattern of neurofibrillary degeneration among brain regions is so consistent that a staging scheme is well accepted as part of the 1997 NIA-Reagan diagnostic criteria (Ball et al., 1997). This scheme implies early lesions in the entorhinal/ perirhinal cortex, then hippocampal subfields, then association cortex, and finally primary neocortex (Figure 3).

Figure 3. Progressive amyloid-β accumulation in the brain of AD patients observed with PET.

PET scans for amyloid-β using 18F-NAV4694 PET in two patients with mild cognitive impairment. The scan showed normal, nonspecific white matter binding, and the patient remained stable >4.5 years after the scan (part a). The second patient’s scan showed extensive binding to Aβ plaques in the frontal, parietal, lateral temporal, posterior cingulate cortex and striatum as typically seen in patients with Alzheimer’s disease. The patient progressed to dementia due to Alzheimer’s disease three years after the scan (part b). Reprinted from (Masters et al., 2015).
Clinical symptoms of AD are characterized by a progressive decline in memory function and cognition that can be classified into three distinct yet continuous stages: preclinical AD, mild cognitive impairment (MCI) and dementia due to Alzheimer's disease (Albert et al., 2011; McKhann et al., 2011; Sperling et al., 2011). AD patients in Braak stages II and III typically demonstrate cognitive impairments in different domains, such as memory (in particular episodic memory), executive function, attention, language or visuospatial skills, all of which can be assessed by clinical tests (Albert et al., 2011). The inability to pursue common daily activities marks the conversion from MCI to dementia (McKhann et al., 2011). The terminal phase is characterized by a complete dependence on caregiving and eventual death occurring on average 4-8 years after diagnosis (Brookmeyer et al., 2002; Larson et al., 2004; Helzner et al., 2008), most commonly caused by pneumonia or dehydration (Ganguli et al., 2005). Conclusive AD diagnosis, however, can only be made upon neuropathological examination (Hyman and Trojanowski, 1997; McKhann et al., 2011).

As mentioned earlier, the pathological events leading to the development of AD remain largely unknown. Hereditary familial AD (FAD) only accounts for approx. 1% of all cases (Mayeux and Stern, 2012). Most AD cases occur in a sporadic form (sAD) without a clear cause for pathology. There are many environmental and genetic factors that have been shown to increase the risk for AD, but understanding the interplay between these risk factors and their contribution to the etiology of AD is an ongoing process (Bertram and Tanzi, 2012; Dong Hee et al., 2014). Genome-wide association studies (GWAS) have identified over 20 loci that are connected to increased risk for sAD, including genes involved in innate immunity, cholesterol metabolism, and synaptic/neuronal membrane function, suggesting that the pathogenesis of sAD is quite heterogeneous (Davis et al., 2004; Guerreiro and Hardy, 2014; Karch and Goate, 2015).

Overall, there are over 250 genetic alterations that have been linked to FAD. Those alterations that have been tested for effects on APP metabolism increase the overall production of amyloid-β or the amyloid-β1–42/amyloid-β1–40 ratio (Gómez-Isla et al., 1999; Steiner and Haass, 2000; Jankowsky et al., 2004; Karch, Cruchaga and Goate, 2014), or promote the accumulation of pathogenic amyloid-β assemblies (Nilsberth et al., 2001; Tsubuki, Takaki and Saido, 2003; Shimada et al., 2011). But still, the only well-established mutation associated with the late-onset form of AD (between 60 and 80 years of age) is the genetic variant encoding apolipoprotein (Apo) ε4. A recent study suggested a possible mechanism of this risk factor involvement by demonstrating that ApoE secreted by glia stimulates neuronal Aβ production with an ApoE4 > ApoE3 > ApoE2 potency rank order (Huang et al., 2017). Interestingly, whole-genome data from almost 1800 Icelanders also revealed a protective APP mutation (A673T) that reduces the β-secretase-mediated cleavage of
APP and, consequently, amyloid-β levels and thus decreases the risk of late-onset sporadic AD (Jonsson et al., 2012; Maloney et al., 2014).

Less than 1% of familial cases of AD are represented by the families with the autosomal dominant inheritance of AD, when disease develops between the ages of 30 and 50 years. Approximately half of those cases are results of mutations in genes encoding amyloid precursor protein (APP) and proteins involved in APP processing – presenilins 1 and 2 (PS1 and PS2). Mutations in those genes lead to an increased generation and further aggregation of Aβ, which predisposes to the formation of plaques (Mayeux and Stern, 2012). These discoveries are in line with the decades-old observation that AD neuropathology almost invariably develops in patients with trisomy 21 (Down’s syndrome), in which the extra copy of APP leads to increases in the expression of APP and in the deposition of Aβ (Wisniewski et al., 1985).

Basic research advances in recent years have furthered our understanding of the natural history of Alzheimer’s disease; a body of data was gathered to describe the pathology and underlying mechanisms. There are however two main difficult questions in the AD research nowadays. The first one is the exact mechanism of pathology and its association with Aβ aggregates. The second one is poor correlation of clinical symptoms of cognitive decline with the onset of brain pathology, that apparently starts decades earlier. These two points will be discussed in the following subchapters.

1.1.1 Amyloid-β and the amyloid hypothesis

The senile plaques, characteristically found in patients with AD, consist of Aβ peptides and thus Aβ have been a natural starting point for the research attempting to understand the disease. The two major genetic risks of FAD, presenilin and APP, are main players in the production of Aβ and thus support the leading role of Aβ in AD and the dominating paradigm of AD, the amyloid cascade hypothesis (Hardy, 2006b; Rosenblum, 2014). Aβ is produced from the membrane-bound protein amyloid precursor protein (APP) upon protein cleavage by β- and γ-secretases (Vassar et al., 1999; Wolfe, 2012). And presenilin is the catalytic unit of the γ-secretase complex that cuts APP to produce Aβ (De Strooper et al., 1998).

1.1.1.1 APP and Aβ in normal physiology

Amyloid precursor protein is type I transmembrane glycoprotein with a single membrane-spanning domain, a large extracellular glycosylated N-terminus and a small intracellular C-terminus (Dyrks et al., 1988). APP is located at the cell surface (alternatively – on the luminal side of endoplasmic reticulum or Golgi membranes) and part of the peptide is embedded in the membrane. It is widely
introduction

expressed in cells in various tissues of the body with different levels at different developmental and physiological states. The APP gene is localized on chromosome 21 in humans, and its expression produces three major isoforms (APP695, APP751, APP770; all around 170 kDa) generated via alternative splicing. APP695 is the predominant isoform of APP in neurons (Robakis et al., 1987; Yoshikai et al., 1990).

Full-length APP can be processed by α-, β-, γ-, and η-secretes in three different pathways starting. η-secretase cleavage releases the soluble APPsη, while CTFη remains embedded in the membrane (Figure 4). CTFη is further processed by α- or β-secretase at the extracellular side generating Λη-α or Λη-β. Cleavage of CTFγ within the transmembrane domain by γ-secretase produces the APP intracellular domain (AICD) containing the highly conserved interaction motif (YENPTY) and one of the two – the short extracellular peptides Aβ in the amyloidogenic pathway or p3 peptide within the non-amyloidogenic pathway. The non-amyloidogenic pathway is driven by the α-secretase liberating APPsα in the extracellular space (for review see Selkoe and Schenk, 2003). In the majority of cases, the γ-cleavage produces Aβ40, although it also generates a more toxic variant, Aβ42 (De Strooper, Vassar and Golde, 2010).

The identity of α-secretase remains unclear although TACE (an enzyme responsible for cleavage of the TNF receptor family proteins at the cell surface) and ADAM9 and ADAM10 are candidates (Buxbaum et al., 1998; Asai et al., 2003).

The physiological role of APP, its various proteolytic products and the two other members of the protein family - amyloid precursor-like proteins 1 and 2 (APLP1/2) - are still not fully clarified.

Research shows that learning and memory processes manifested by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants (Fanutza et al., 2015;
Among those, it is known that APP and its fragments are implicated in regulating synaptic strength. Interestingly, while APLP2 and APP are functionally redundant, APLP1 exclusively expressed in CNS, might have distinctives roles within the synaptic network, but these functions still remain to be elucidated. Several mechanisms by which APP could modulate spine plasticity were proposed. Firstly, structural properties of the full-length protein may help to stabilize synapses, while binding of ligands to the extracellular part may trigger intracellular cascades, as in case of the classical receptor molecules. Additionally, recent findings revealed that APP play a role in modulating astrocytic D-serine homeostasis, while D-serine is an important component of synaptic function modulation due to its interactions with NMDA receptors. Lastly, it is possible that APP fragments trigger or alleviate the pathophysiological mechanisms involved in neurodegenerative diseases. Taken together, APP seems to regulate synaptic plasticity at several levels (Zou et al., 2016, for review see Montagna, Dorostkar and Herms, 2017).

Interestingly, APPα, one of the proteolytic products of non-amyloidogenic APP processing., was found to be a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. At the same time, the newly discovered η-secretase cleavage product, Aη-α acts in the opposite direction, namely decreasing LTP (Willem et al., 2015; for the review see Ludewig and Korte, 2016). Another recent study demonstrates that even Aβ can be “good” for the organism, as it can function as an antimicrobial peptide, and additional data show that bacteria and yeast can seed Aβ into amyloid depositions. These data suggest a complex interplay between the normal function of Aβ, its accumulation in the brain, and host immune defense (for the review see Golde, 2016; Kumar et al., 2016).

Aβ is a small hydrophobic peptide that occurs, as mentioned above, in two principal lengths: Aβ40 and Aβ42. The Aβ region of APP includes first 12–14 residues of the transmembrane domain and the 28 residues outside the transmembrane domain (for review see Selkoe and Schenk, 2003). Looking at this constitution, Aβ was originally assumed to arise only under pathological circumstances, as it was thought that the second cleavage should require prior membrane disruption to allow access of γ-secretase to the intramembranous region. This hypothesis was disproved in 1992 when Aβ was shown to be constitutively secreted by different mammalian cells throughout life and it was proven that Aβ occurs normally in plasma and cerebrospinal fluid (CSF) (Haass et al., 1992; Seubert et al., 1992; Shoji et al., 1992). This discovery enabled studies of Aβ production in cell culture and animal models, as well as high-throughput screenings on cultured cells to identify Aβ-lowering compounds and determine their mechanism.
1.1.1.2 Amyloid cascade hypothesis

Aβ molecules tend to aggregate to form oligomers, protofibrils, and mature fibrils. The early experiments demonstrating that synthetic fragments of Aβ can kill cultured neurons (Yankner, Duffy and Kirschner, 1990), led to a series of further studies that have revealed the effects of Aβ on the synaptic dysfunction and death of neurons in AD.

According to these studies, Aβ may be most toxic in the form of soluble oligomers at the earliest stages of aggregation (Lambert et al., 1998; Kayed et al., 2003). Synapses are particularly susceptible to the adverse effects of aggregated forms of Aβ as it was found that Aβ can impair synaptic ion and glucose transporters, and electrophysiological studies demonstrated that Aβ impairs synaptic plasticity (Mattson, 1997; Chapman et al., 1999). Moreover, Aβ can damage neurons by inducing oxidative stress and disrupting cellular calcium homeostasis (Mattson, 1997). Additionally, lack of sAPPα may contribute to the death of neurons: sAPPα is known to increase the resistance of neurons to oxidative and metabolic insults and coincident with the increased production of Aβ in AD here is a decrease in the amount of sAPPα produced (Mattson, 1997). In APP transgenic mice memory deficits become apparent early in the process of Aβ deposition, consistent with the timeline of neurotoxic effects of Aβ occurring during the formation of oligomers (Koistinaho et al., 2001).

Further evidence that Aβ deposition seems to be a crucial event in AD is the remarkable finding that immunization of APP mutant mice with human Aβ42 results in the removal of Aβ deposits from the brain (Schenk et al., 1999) which may lead even to recovery of cognitive deficits (Morgan et al., 2000). Based on the above-mentioned genetic evidence, biochemical data, and animal models, Aβ has been suggested to be responsible for the pathogenesis of AD. This suggestion was called the amyloid hypothesis of AD.

The most common version of the amyloid hypothesis often referred to as the amyloid cascade hypothesis (Hardy and Higgins, 1992; Hardy, 2006b), asserted that toxic Aβ overload is the cause of AD (Figure 5). One possible explanation of this overload is the impaired Aβ clearance. Vascular transport of Aβ across the blood-brain barrier can control Aβ brain levels, and the Aβ clearance is indeed shown to be impaired upon aging (Shibata et al., 2000; Deane et al., 2003; Deane and Zlokovic, 2007) and in AD (Mawuenyega et al., 2010). This impairment is thought to gradually increase steady-state levels of toxic Aβ leading to the build-up of plaques (Hardy, 2006b). This version of the hypothesis was a quantitative gain of toxic function (or “toxic by degree”) mechanism. The amount of Aβ was seen as a defining cause of disease. This hypothesis has support
from a recent finding that Aβ is cleared from the brain during sleep and disturbed sleep leads to a pathological build-up of the amyloid (L. Xie et al., 2013).

![Figure 5. Pathways leading to plaques and tangles form the basis of the amyloid-β theory of Alzheimer's disease.](image)

Amyloid-β (Aβ) is cleaved from amyloid precursor protein (APP; step 1) and is released into the extracellular milieu as diffusible oligomers (Aβo). Aβo can be cleared by mechanisms that involve APOE or can be taken up by astrocytes via low-density lipoprotein receptor-related protein 1 (LRP1; step 2). Aβo can also aggregate in the intercellular space to form fibrillary constructs, which in turn assemble into plaques (step 3). Aβ plaques can be cleared from the brain via degradation by endocytic or phagocytic clearance (in macrophages and microglia), or by endoproteases from astrocytes (such as an insulin-degrading enzyme (IDE), neprilysin (NEP) and matrix metalloproteinase (MMP); step 4). However, some conformational oligomers that dissociate from Aβ fibrils and plaques may not be cleared and are toxic to adjacent synapses (step 5), and induce tau aggregation. Tau damage occurs in neurons and is mediated by the development of tau-positive neurofibrillary tangles (which extend into the dendrites; step 6). Fibrillar tau can be released and taken up by healthy neurons, triggering tau damage in the uptaking cell (step 7). Reprinted from (Masters et al., 2015).

There are several infirmities in the amyloid hypothesis of AD. Firstly, recent neuropathological studies did not find correlation between amyloid plaque density in the brain and the severity of dementia (Teich and Arancio, 2012; Sorrentino et al., 2014). Moreover, 20–40% of non-demented elderly subjects have amyloid plaques in the brain in post-mortem examination; strikingly, in some cases, plaque density in non-demented individuals is comparable to that of AD patients (Lippa and Morris, 2006; Aizenstein et al., 2008).
Secondly, most of anti-amyloid based therapeutic strategies researched so far failed to show clinically relevant results in improving cognitive performance or in halting the clinical progression of dementia in humans, even though they were effective in mice models (Cummings, 2006; Lippa and Morris, 2006).

Thirdly, the cellular and animal models of AD are based mostly on the genetic mutation associated with the early-onset AD. Nevertheless, as described earlier FAD accounts for the minority of the cases of AD dementia, whereas late-onset AD is far more common and is not associated with the mutations characteristic to the cases of FAD. On the opposite, sporadic AD has a complex etiology, involving multiple genetic polymorphisms with minor risk-effects and other pathological mechanisms. Surprisingly, many FAD-causing mutations in PS1 do not generally increase Aβ production but often lower it (Chávez-Gutiérrez et al., 2012; Wolfe, 2012).

These findings led to modification of the amyloid paradigm to imply that not the total Aβ levels, but the ratio between long and short forms of Aβ (mostly Aβ42/Aβ40) are molecular determinants of disease (Jan et al., 2008; Karran, Mercken and Strooper, 2011); Aβ42 is well-established to be more toxic than Aβ40 (Hardy and Selkoe, 2002; Tiwari and Kepp, 2016), so this argument had support. Soluble oligomers of Aβ, as first reported by Yankner et al. (Yankner et al., 1989), are currently seen as more cytotoxic than the fibrils making up the major Aβ plaques (Kayed et al., 2003; Lesné et al., 2006) (for review see Ono, 2017).

The toxic mechanism of Aβ42-enriched oligomers supposedly causing AD remains highly debated, and several toxic modes of action have been suggested (Götz et al., 2011): oligomers may lead to impairment of long-term potentiation (Walsh et al., 2002), permeabilization of cell membranes (Glabe, 2006; Sciacca et al., 2012), oxidative stress (Lecanu, Greeson and Papadopoulos, 2005), and calcium dyshomeostasis (Arispe, Rojas and Pollard, 1993; Bhatia, Lin and Lal, 2000). Aβ has a hydrophilic and a hydrophobic part well-suited for membrane interaction, and multiple studies have documented interaction with membranes (Quist et al., 2005; Glabe, 2006; Sciacca et al., 2012) and disruption of prion-protein interaction with NMDA receptors (You et al., 2012) and of the respiratory chains of mitochondria (Lustbader et al., 2004; Caspersen et al., 2005; Manczak et al., 2006).

However, the assignment of a single pathogenic form of Aβ remains elusive (Haass and Selkoe, 2007; Balch et al., 2008). Many researchers even started to doubt if the Aβ-related effects are the cause of AD, suggesting alternative mechanisms of the pathology.
INTRODUCTION

Alternatives to the amyloid hypothesis include consideration of other APP cleaving products and even versions that see amyloid plaques as a consequence rather than a reason for AD pathology. Uncertainties in this area also arise from the unknown physiological function of APP and its cleavage fragments that are produced and released under physiological conditions as discussed earlier. Some studies suggest loss of normal Aβ function as a main cause of AD, as oligomerization implies a depletion of the pool of potentially functional Aβ monomers. This etiology centers on the identification of the normal physiological function of the APP/Aβ system and PSEN all related to maintaining relative metal ion levels within the neuron (for the review see Kepp, 2016).

Other hypotheses are based on the findings, that not only plaques are characteristic to AD pathology. Other biomolecular changes were found to be present during the progression of AD. These have led to several the suggestion of other causes of AD, focusing on the protein tau (Ballatore, Lee and Trojanowski, 2007; Ittner and Götz, 2011; Fu et al., 2017), metal ion metabolism (for review see Mathys and White, 2017; Adlard and Bush, 2018), cholinergic dysfunction (for review see Hampel et al., 2017), and oxidative stress (for review see Tönnies and Trushina, 2017; Tramutola et al., 2017) hypotheses. Another hypothesis proposes that chronic inflammatory conditions cause dysregulation of mechanisms normally clearing misfolded or damaged neuronal proteins and this leads to accumulation of tau and tau-associated impairments of axonal integrity and transport (for review see Brunden et al., 2017). This has several neuropathological consequences: induction of axonal swelling and leakage, followed by disruption of synaptic contacts; accumulation of mitochondria, resulting in metabolic impairments; deposition of APP in swollen neurites, and generation of aggregation-prone peptides of Aβ; further tau hyperphosphorylation, ultimately resulting in neurofibrillary tangle formation and neuronal death (for review see Krstic and Knuesel, 2013; Heppner, Ransohoff and Becher, 2015).

The amyloid hypothesis has recently been reviewed and arguments in its favor have been compiled by Selkoe and Hardy (Selkoe and Hardy, 2016). They concluded that that definitive proof of this controversial concept could only come from clinical trials that selectively target Aβ. To prove the hypothesis this treatment in typical AD patients should produce slowing and ultimately suspension of cognitive decline. Indeed, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in subjects with mild AD in post hoc analyses (Cummings, Morstorf and Zhong, 2014; Doody et al., 2014; Sevigny et al., 2015). However, another antibody, Bapineuzumab, has been found not to improve cognition (Salloway et al., 2014) and produce adverse effects (Castellani and Perry, 2012) even though it does lower Aβ levels (Blennow et al., 2012). Clearly, scientists need to understand better these different
outcomes, specifically how the various antibodies bind and modify the conformations and properties of $\text{A}$$\beta$, as the various conformations of $\text{A}$$\beta$ that are targeted affect pathology differently (Rosenblum, 2014; Somavarapu and Kepp, 2015). In many of these cases, the human clinical data were substantially less encouraging than the mouse and cell data used to research new treatments (Karran and Hardy, 2014; De Strooper and Chávez Gutiérrez, 2015). This troubling finding is, nevertheless, consistent with the poor correlations between human and cell and mouse data from the meta-analysis (Tiwari and Kepp, 2016).

Amyloid cascade hypothesis is still the leading hypothesis of AD pathology nowadays. Despite many contradictions raised by the experimental observations it still holds its place as $\text{A}$$\beta$ is still considered a leading cause of pathological events. However, unsuccessful so far therapy trials point out that more research should be done in order to better understand the initial steps of pathology.

1.1.2 The onset of pathology and clinical symptoms

It is becoming increasingly obvious that the pathogenic events in AD begin decades before the first clinical symptoms become evident (Jansen et al., 2015; Ossenkoppele et al., 2015). For example, in people at high risk of AD abnormal accumulation of $\text{A}$$\beta$ and amyloid deposition, measured by $\text{A}$$\beta$ levels in CFS and amyloid-PET, were detected 25 years before symptoms onset (Bateman et al., 2012). Moreover, the Dominantly Inherited Alzheimer Network (DIAN) consortium found that pathophysiological brain changes, including changes in cerebrospinal fluid (CSF) biomarkers, cerebral amyloid deposition and brain metabolism, in people carrying autosomal dominant FAD mutations begin at least two decades before the predicted onset of clinical symptoms (Bateman et al., 2012). Studies on the patients with genetic risk for AD (Bookheimer et al., 2000; Quiroz et al., 2010; Machulda et al., 2011), cognitively normal individuals with evidence for $\text{A}$$\beta$ accumulation (Hedden et al., 2009; Sperling et al., 2009; Sheline et al., 2010) and people with early AD (Dickerson et al., 2005; Sorg et al., 2007; Bakker et al., 2012) reveal neural circuit impairments – hippocampal hyperactivation and impaired deactivation of the default-mode network during memory encoding. At the same time, the elderly without dementia or those clinically diagnosed with MCI can harbor AD pathology that may be quite indistinguishable from that of persons with dementia (Rentz et al., 2010).

The fact that it takes many years for AD to develop may explain varying degrees of pathological alterations that appear before subjects start to present clinical symptoms, especially if we take into account that different factors, including environmental, may interfere with the development of the
INTRODUCTION

disease. This becomes particularly evident in the overlap of neuropathological alterations in patients who are still regarded as MCI and patients with diagnosed AD dementia.

Data from CSF and molecular imaging studies add to the body of evidence that the accumulation of Aβ in the brain precedes the onset of functional and structural pathological changes characteristic of AD (Fellgiebel et al., 2004; Bouwman et al., 2007; Mattsson et al., 2009; Petersen et al., 2009). These observations lead to the assumption of a hypothetical cascade of biological events of the pathology events. It begins by the production and accumulation of Aβ42 (in the brain revealed by reduced CSF Aβ42 and increased amyloid tracer Pittsburgh compound B retention), this triggers secondary events culminating in synaptic dysfunction and regional hypometabolism (found in FDG-PET studies), neurodegeneration (i.e., increased CSF Tau and phospho-Tau proteins) and structural changes (hippocampal and other regional atrophy). Finally, subjects start experiencing cognitive and functional difficulties, reaching the threshold for dementia diagnosis (Petersen et al., 2009; Forlenza, Diniz and Gattaz, 2010). However, other studies suggest that neuronal activity alteration is the earliest pathological event that leads to the accumulation of Aβ42 and synaptic dysfunction. This data will be discussed in more details in chapter 1.3.

Animal models are employed to investigate the relationship of the amyloid plaques and morphological and functional changes in AD-affected brain. However, the results of these studies did not provide a clear description of the chain of events. On the one hand, there is an evidence of the pathological influence of Aβ oligomers on the neurons and their neurites; on the other hand, it is debated if direct vicinity to the plaque is required for the pathological effects to occur. It has been shown that Aβ oligomer administration (Shankar et al., 2007, 2008) and virally induced overexpression of mutated APP (Hsieh et al., 2006; Wei et al., 2010) led to a reduced dendritic spine density in hippocampal slice cultures. Research results demonstrated that a decline in the density of the synapses and dendritic spine density in the hippocampus can be already detected at a time, when only soluble Aβ but no amyloid plaques were present (Hsia et al., 1999; Mucke et al., 2000; Lanz, Carter and Merchant, 2003; Jacobsen et al., 2006).

On the other hand, studies of the cerebral cortex discovered that there is an instability of pre- and postsynaptic structures within the vicinity of amyloid plaques (Liebscher et al., 2014) and spine loss occurs shortly but with a significant time delay, after the birth of new plaques, and persists in the vicinity of amyloid plaques over many months (Bittner et al., 2012), but spine loss also occurs in areas apart from amyloid plaques (Bittner et al., 2010). One possible explanation of these discrepancies is that several spatiotemporally independent events contribute to a net loss of dendritic spines. It was suggested that these events coincided either with the occurrence of
intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau (Bittner et al., 2010).

As for other pathological changes observed in the AD brain, some of them show a clear association with the plaque vicinity, while others do not. Neuritic changes and dystrophies are observed, and they are accompanied by dendritic spine loss in the peri-plaque region (Gruetzendler et al., 2007). The vast majority of axonal dystrophies, characteristic to AD brains, are associated with Aβ plaques, and in all these cases the formation of dystrophies was observed after the appearance of the Aβ plaques (Blazquez-Llorca et al., 2017a). In early studies, plaques were associated with substantial inflammatory responses including activation of microglia and astrocytes (Lue et al., 1996; for review see Thal et al., 2006). However, other researchers observed no correlation of morphological microglia activation with plaque volume or plaque lifetime, suggesting that amyloid deposits by themselves are not sufficient to attract and activate microglia in vivo (Jung et al., 2015).

The results of neuronal activity investigation in relation to plaque distances are also inconclusive. Early study by Busche et al., that for the first time reported activity changes in the AD mice also reported that most of the affected neurons are located in the direct vicinity of the amyloid plaques, thus proposing that pathological conditions of the plaque surrounding are the main cause of the activity changes (Busche et al., 2008). Nevertheless, some of the later studies did not find a correlation of neuronal activity changes with the vicinity of the plaque (Liebscher et al., 2016).

There is strong evidence that pathological events leading to AD start decades before the clinical symptoms appear. However, it remains unclear which of these events are the case rather than a consequence of excessive Aβ generation. Even though amyloid plaques were long seen as one of the early disease hallmarks producing pathological environment, it remains unclear if their presence in the tissue leads to pathological events, or most of the other pathological sings develop independently of plaques. For this reason, more intensive research of the early phases of AD is needed, which nowadays can only be done in animal models of AD as early enough diagnosis is still lacking in humans.

1.1.3 Mouse models of amyloid-associated AD pathology

As evident from the previous chapters there are many unresolved questions in the field of AD research, and long progression of the disease with a hidden onset presents researchers with additional challenges. That is why experimental models of AD are crucial for gaining a better understanding of pathogenesis and to explore the potential of novel therapeutic approaches. It is
especially important if we want to study the early stages of disease progression that are extremely
difficult to diagnose in humans.

To date, the dominant majority of AD experimental models are animal models, represented by
transgenic mouse lines that express human genes responsible for the formation of amyloid plaques
(by expression of human APP alone or in combination with human PS1) and neurofibrillary tangles
(by expression of human Tau protein) (Wisniewski and Sigurdsson, 2010; Boutajangout and
Wisniewski, 2014; Dujardin, Colin and Buée, 2015; Puzzo et al., 2015a). Other models include
invertebrate animals such as *Drosophila melanogaster* and *Caenorhabditis elegans* and vertebrates such as
zebrafish. The disadvantage of non-mouse models is distance of their physiology from human
physiology, so they are less extensively used (Newman, Ebrahimie and Lardelli, 2014; Bouleau and
Tricoire, 2015; Hannan et al., 2016). Starting from the time of the development of the first
transgenic mouse model with prominent Aβ plaque pathology in 1995 (Games et al., 1995), many
more transgenic models were established, each with a different phenotype of AD-associated
pathology (Wisniewski and Sigurdsson, 2010; Dujardin, Colin and Buée, 2015; Puzzo et al., 2015b).

Expression of FAD-mutant human or humanized APP (with or without co-expression of FAD-
mutant PSEN1 or PSEN2) in the neurons of transgenic mice simulates key aspects of AD
following the amyloid hypothesis, including elevated levels of human amyloid-β, amyloid plaques,
neuritic dystrophy, synaptodendritic impairments, astrogliosis, microgliosis, vasculopathy,
network dysfunction, cognitive deficits and behavioural alterations (Ashe and Zahs, 2010).
Unfortunately, none of the models can completely recapitulate AD in its entirety, and this could
explain very high failure rate of clinical trials of AD therapeutics (of ~99.6%), many of which were
successful in preclinical testing employing these animal models (Cummings, Morstorf and Zhong,
2014; Schneider et al., 2014; Banik et al., 2015). However, animal models still represent a valuable
tool to closely study key aspects of AD, including the occurrence and growth of amyloid plaques,
the onset, and progression of dendritic spine pathology, neuronal dysfunction and the induction
of neuronal apoptosis (Radde et al., 2008).

While animal models have been instrumental in studying the impact and mechanism of cerebral
amyloidosis and in developing therapeutic strategies (Selkoe and Schenk, 2003), many of them have
significant limitations such as the late onset of the pathology, gender differences in the pathology,
effects of mixed genetic backgrounds, difficulties with breeding, and high variability in Aβ levels.
Therefore, researchers in the laboratory of Prof. M. Jucker developed a transgenic mouse model
APPPS1 that addresses most of these issues. This was the model I used in my thesis due to several
advantages that are discussed in the next chapter.

1.1.3.1 APPPS1 model

APPPS1 mice bear human transgenes for APP with the Swedish mutation and PS1 with an L166P mutation, both controlled by the Thy1 promoter. Expression of the human APP transgene in these mice is approximately 3-fold higher than the expression of endogenous murine APP. Human Aβ42 is generated preferentially compared to Aβ40, but levels of both increase peptides with age. In the brain, the Aβ42/Aβ40 ratio decreases with the onset of amyloid plaque deposition (Radde et al., 2006; Maia et al., 2013). This deposition starts in the neocortex at approximately six weeks of age (Figure 6. Age-related amyloid deposition in APPPS1 mice.), it then appears in the hippocampus at about 3-4 months, and in the striatum, thalamus, and brainstem at 4-5 months. The first paper characterizing this mouse model reported that mice exhibited impaired reversal learning of a food-rewarded four-arm spatial maze task at eight months of age (Radde et al., 2006). Other publications reported also earlier observations of cognitive impairment, including deficits in the Morris Water maze at seven months of age (Serneels et al., 2009). Impairments in hippocampal LTP in the CA1 region have also been reported to also start around the age of seven months (Gengler, Hamilton and Hölscher, 2010).

The APPPS1 mouse line combines several advantages of previous transgenic lines. (1) These mice have been created on a pure C57BL/6J background that is known to reduce the variability of Aβ metabolism and deposition (Lehman et al., 2003). (2) No gender effects in Aβ level and amyloid deposition have been noted (Radde et al., 2006). (3) It was shown that APPPS1 mice breed well, similar to wild-type C57BL/6J mice (Radde et al., 2006). (4) The early onset of amyloid pathology has several advantages for research practice, including possibility for rapid readouts and testing of therapeutic amyloid-targeting strategies. Due to all these reasons, the APPPS1 mouse model presents a great tool to study pathological processes in chronic experiments. The fast pathology progression is especially handy for chronic in vivo microscopic imaging of the brain, as this can only be done within a timeframe of a few months – as long as the cranial window can remain clear and transparent allowing good imaging quality.
1.2 **In vivo two-photon imaging in AD**

In vivo approaches have special value in disease research as they help scientists to better recapitulate main pathological features in the physiological environment of the organism and dynamics, while traditional histological analyses of affected brains only allow for a static assessment of pathology. Among different *in vivo* methods in vivo imaging has one of the leading roles, allowing less invasive and longitudinal experiments. The techniques used in this thesis, namely two-photon microscopy, has its advantages and limitations, which are discussed in more detail in the following subchapter. Also, the necessary background and settings of this experimental approach are explained.

1.2.1 **In vivo two-photon microscopy**

Classical fluorescence techniques, including confocal microscopy, cannot provide high-resolution deep imaging within the tissue which is especially important for *in vivo* experiments. Two-photon microscopy is able to overcome this limitation because of the special properties of two-photon excitation. Main advantages of two-photon microscopy are decreased scattering, good penetration into biological tissue and high contrast due to virtually excluded background fluorescence.

Two-photon excitation occurs when two near-infrared photons are simultaneously absorbed (typically within less than 10^{-15} s) by a fluorophore. This promotes an electronic transition that would otherwise require a single photon of approximately twice the energy (Helmchen and Denk,
Two-photon absorption occurs only with very high intensities of light (in general > 10^17 W/m^2), which provide a high density of photons (Denk and Svoboda, 1997). This high density can only be achieved by using a pulsed laser source with short high energy pulses emitted in a form of spatially focused laser beam passing through a high numerical aperture (NA) microscope lens. Lasers for two-photon microscopy provide laser pulses of about 100 fs width and with repetition rates of approximately 100 MHz. Mostly used type of laser is the Ti:sapphire laser with 700 – 1100 nm tunable output and high average power capability of 1 W.

Due to the longer wavelength, the excitation light is less susceptible to scattering and absorption in biological tissue. Thus, light can penetrate further in the tissue compared to other fluorescent microscopy methods. Moreover, in case of two-photon excitation fluorescence generation is confined to the focal region (as only here two photons have high chances to meet) and out-of-focus fluorescence is very low. As a consequence of this, two-photon microscopy has inherent optical sectioning without the need for a spatial filter, as the exact place of origin of fluorescence photons is well-defined at each point in time. Accordingly, all fluorescence photons (also scattered photons) that enter the objective and are passed by the detection filter are collected (Figure 7).

Emitted photons are collected by photomultiplier tubes (PMT). PMTs rely on the photoelectric effect, meaning that when incoming photons reach a photocathode it releases an electron, which is then amplified by a set of dynodes. Eventually, electrons will reach the anode, and each of the incoming photons will be converted into a pulse of current.

Both the detection of scattered fluorescence and better penetration of the longer excitation wavelength light contribute to the capability of two-photon microscopy to provide high-resolution images from deep layers of living tissue (several hundred micrometers). Moreover, confining excitation to the focal region is not only important to allow for a significant increase in detection efficiency with increasing contrast but also it reduces photobleaching and damage in the out-of-focus tissue. These features make two-photon microscopy an invaluable tool for in vivo imaging applications.

Applying two-photon imaging in living mouse is only feasible after creating the optical access to the imaging tissue. To image the brain a so-called cranial window is used, which requires either open scull or thinned skull preparation. The open skull preparation (the technique of choice in this thesis project) is made by a circular craniotomy after which the exposed cortex is covered by a glass coverslip, and the window is sealed with dental acrylic (Holtmaat et al., 2009). The alternative, thinned closed skull preparation can be performed by thinning the skull above the cortical region of interest (Yang et al., 2010).
Both techniques have their strong and weak sides. With skull thinning the area of the cortex accessible to imaging is very small, and thinning procedure needs to be executed repeatedly when long imaging intervals are planned, as the bone grows back. Re-thinning is time-consuming, it requires additional anesthesia and the resulting bone layer might vary in thickness, thereby altering imaging quality. In contrast, open skull preparations allow longitudinal imaging without additional interventions after the initial surgery. There is, however, a major concern regarding the open skull preparation, that is the induction of an inflammatory response. Accordingly, immunohistochemical analysis at different time points after window implantation revealed that within the window region there is an initial increase in the number of glial fibrillary acidic protein (GFAP) positive cells, representing activated astrocytes, which was normalized 30 days after implantation (Holmzaat et al., 2009). However, open skull preparation remains the method of choice for longitudinal imaging as it enables stable preparation that can provide good imaging quality for over a year (Burgold et al., 2014). As open skull preparation is also a well-established technique in our lab and as I was aiming at longer imaging period, for this thesis I implemented the open skull preparation with a four-week recovery period before imaging.
Two-photon imaging provides a possibility to study not only morphology but also functioning of the neurons \textit{in vivo}. Conventional electrophysiological approaches to study the functional properties of neurons produce either a low spatial resolution (by recordings groups of neurons, e.g., in field recordings or EEG) or only for single-cell observations (e.g., patch clamp). Thus \textit{in vivo} two-photon imaging using calcium indicators came about as an elegant way of analyzing the spatiotemporal dynamics of cell populations, with single cell resolution. Calcium indicators are based on the fact that the electrical activity of an excitable cell is tightly coupled to changes in intracellular calcium concentration (Tsien, 1981; Stosiek \textit{et al.}, 2003).

\subsection*{1.2.2 \textit{In vivo} imaging of neuronal activity}

\textit{In vivo} imaging has become an irreplaceable tool in neuroscience research, as well as clinical trials, and medical practice. Consequently, in recent years it helped scientists to fundamentally increase our understanding of the morphological and functional changes in AD. Imaging techniques can be grouped by the type of energy used to obtain visual information (X-rays, positrons, photons or sound waves), the spatial resolution that is achieved (macroscopic or microscopic) or the type of information that is obtained (structural, functional, cellular or molecular) (Linden, 2012).

Macroscopic imaging methods include computed tomography scan (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET), and they are currently in routine clinical and preclinical use. Microscopic imaging is used in clinical practice and in research to examine the structure and function of biological tissues with cellular and subcellular resolution. As discussed above, the microscopy techniques that use one-photon absorption processes are restricted for the use near the tissue surface for high-resolution imaging because at greater depths light scattering blurs the images (Helmchen and Denk, 2005; Kerr and Denk, 2008; Lichtman and Denk, 2011). The development of two-photon microscopy in combination with advances in fluorescence labeling techniques has allowed for \textit{in vivo} imaging on the depth of several hundreds of micrometers in intact tissue with spatial resolution sufficient to distinguish individual neurons, dendrites, and even synapses. Combined with of transgenic animal models, two-photon imaging offers numerous possibilities in the investigation of the development, progression and potential treatment of brain diseases including AD research.

\subsubsection*{1.2.2.1 Calcium imaging}

Synaptic inputs and action potentials lead to the opening of voltage-sensitive calcium channels, release of calcium from internal stores or influx of it via glutamate receptors and thus create an increase in intraneuronal calcium concentrations (Figure 8) (reviewed by Higley and Sabatini, 2008).
This creates a basis for the development of calcium imaging, which involved two parallel processes: the development of calcium sensors, and the development and the implementation of the appropriate instrumentation, including experimental setups and data analysis approaches.

Among the first calcium indicators used for detection of the dynamics of calcium signaling in cells were bioluminescent calcium-binding photoproteins, such as aequorin (Shimomura, H. Johnson, and Saiga, 1962; Ashley and Ridgway, 1968). The next important step was the development of more sensitive and versatile fluorescent calcium indicators by Roger Tsien (Tsien, 1980). These indicators were created as the combination of highly calcium-selective chelators like EGTA or BAPTA with a fluorescent chromophore. The first generation of fluorescent calcium indicators included quin-2, fura-2, indo-1, and fluo-3. Out of dyes of that family fura-2 (Gryniewicz, Poenie and Tsien, 1985) became very popular among neuroscientists, because it allowed for quantitative calcium measurements by the rationing of the signals obtained with alternating the excitation wavelengths (Neher, 1995). In the following years, many more calcium indicators have been...
introduced, providing a wide range of excitation spectra and affinities for calcium. These include, among others, the Oregon Green BAPTA and fluo-4 dye families (Paredes et al., 2008), which are widely used in neuroscience as they are easy to implement and at the same time they provide large signal-to-noise ratio. The major disadvantage of these chemical calcium indicator was the fact that they can only be used in acute experiments. So the next breakthrough, again from the laboratory of Roger Tsien (Miyawaki et al., 1997), was the introduction of protein-based genetically encoded calcium indicators (GECIs), which now could be expressed in the cells of interest for longer periods of time and thus be used in chronic experiments. While the early types of GECIs had relatively limited areas of application due to their slow response kinetics and low signal-to-noise ratios there had been tremendous progress in recent years. GECIs will be described in more details in the next section.

The creation and development of the fluorescent indicators went along with the development of new imaging instrumentation. Among those – the implementation of video imaging (Smith and Augustine, 1988; Swandulla et al., 1991), of CCD cameras (Connor, 1986; Lasser-Ross et al., 1991), and high-speed confocal microscopy (Eilers et al., 1995) for calcium imaging. The high signal strength of the fluorescent indicators in combination with these new technologies allowed for real-time fluorescence observations of biological processes at the single-cell level. A key advance was the introduction of above described two-photon microscopy by Winfried Denk and colleagues (Denk, Strickler and Webb, 1990) and its use for calcium imaging in the nervous system (Yuste and Denk, 1995). Two-photon imaging has revolutionized the field of calcium imaging (Helmchen and Denk, 2005; Svoboda and Yasuda, 2006) and is now used worldwide.

As an important additional tool during the last years powerful computational tools have been developed to derive spiking activity from calcium transients coming from calcium imaging (Greenberg, Houweling and Kerr, 2008; Mukamel, Nimmerjahn and Schnitzer, 2009; Vogelstein et al., 2010; Cheng et al., 2011; Goltstein, Montijn and Pennartz, 2015).

1.2.2.1.1 Genetically encoded calcium indicators

A major advantage of GECIs compared to small molecule indicators is the possibility of performing long-term calcium imaging in vivo, and not only at the cellular level but also in specific subcellular compartments (Holtmaat and Svoboda, 2009; Holtmaat et al., 2012). GECIs are based on autofluorescent proteins such as the green fluorescent protein (GFP) combined with calcium-sensitive proteins such as calmodulin or Troponin C (Mank and Griesbeck, 2008).
There are two commonly used classes of GECIs – the single-fluorophore GECIs GCaMP family and several families of Förster resonance energy transfer-based sensors (Miyawaki *et al.*, 1997; Nagai *et al.*, 2004; Palmer *et al.*, 2006; Mank *et al.*, 2008; Horikawa *et al.*, 2010). GCaMPs consist of a circularly permuted enhanced green fluorescent protein (EGFP), which is connected on one side to the calcium-binding protein calmodulin and the other side to the calmodulin-binding peptide M13 (Nakai, Ohkura and Imoto, 2001). In the presence of calcium, calmodulin-M13 interactions undergoes conformational changes in the fluorophore environment and it leads to an increase in the emitted fluorescence (Nakai, Ohkura and Imoto, 2001; Tian *et al.*, 2009). After characterization of the structure of the GCaMP2, GCaMP3 was developed by protein engineering with the improved signal-to-noise ratio, dynamic range, and response kinetics (Tian *et al.*, 2009; Yamada and Mikoshiba, 2012). However, GCaMP2 does not show reliable single action-potential-associated calcium signals. This was a major disadvantage of protein-based indicators for several years when comparing to sensitivity and speed of commonly used small molecule calcium indicators. However, recently a new class of genetically encoded indicators with greatly improved properties was developed (Chen *et al.*, 2013). Family of GCaMP6 (Figure 9) has higher sensitivity than commonly used synthetic calcium dyes (such as OGB1-AM) and detects individual action potentials with high reliability at reasonable microscope magnifications.

![Figure 9. Structure of GCaMP6m monomer in a cartoon scheme.](image)

Functional domains M13, cpEGFP and CaM are colored in yellow, green and cyan, respectively; the chromophore (CRO) is shown as stick models and colored in magentas; the four Ca2+ bound to the CaM are shown as grey spheres. Reprinted from (Ding *et al.*, 2014).

Three main variants of GCaMP6 (slow, medium, and fast) were developed, they have different calcium-binding kinetics and, thus, they temporally filter intracellular Ca2+ dynamics to different
degrees (Chen et al., 2013). The slow variant, GCaMP6s, binds calcium more tightly than the fast variant, GCaMP6f. Because of this GCaMP6s has greater Ca2+ sensitivity, but lower signaling speed and lower ability to distinguish action potentials appearing as a quick sequence. For GCaMP6s, the fluorescence signals have a rise time constant of 180 msec and a decay time constant of 580 msec, whereas, for GCaMP6f, these values are 30 msec and 150 msec, respectively (Chen et al., 2013). These sensors found widespread applications for diverse problems in brain research and calcium signaling, now GCaMP6 family is commonly used as a GECIs of choice. They can be used over multiple imaging sessions separated by months to image large groups of neurons as well as small synaptic compartments.

In contrast to the small molecule indicators GECIs cannot be directly applied to the tissue of interest. Instead, the genetic vector that codes for the indicator should be delivered into the cells of interest and the cellular transcription and translation machinery will produce the final protein. Vector in the form of DNA plasmids can be electroporated (commonly, \textit{in utero}) into cells by application of brief electric pulses (Hires, Tian and Looger, 2008; Mank et al., 2008). An alternative method of vector delivery that allows for much higher transfection rates is viral vector-mediated delivery (Lütcke, 2010). In recent years, viral transfection by adeno-associated virus (AAV) has become a method of choice for delivering the genetically encoded calcium indicators into the mouse brains in many laboratories. This is also a method implemented in the thesis project.

During the last 5 years several transgenic GECI mice have been developed, that possess certain advantages over viral delivery of GECIs (Hasan et al., 2004; Diez-García et al., 2005; Tallini et al., 2006, 2007; Heim et al., 2007; Atkin et al., 2009; Direnberger et al., 2012; Zariwala et al., 2012; Dana et al., 2014). However, they also present limitation due to the nature of the transgenes, namely, in most cases lower expression levels compared to viral delivery, requiring higher laser power. Another possible drawback is that many transgenic lines are based on the use of Thy-1 promoter, that has mosaic expression and is not functional in inhibitory neurons.

As a final note on the method, it is important to point out that calcium indicators measure changes in the cytosolic free calcium concentration and that calcium indicators can influence calcium homeostasis of the cell. In normal state, calcium ions in the cytosol are in equilibrium with the calcium ions that are bound to endogenous calcium buffers (Baimbridge, Celio and Rogers, 1992). When calcium indicator is added in calcium imaging experiments, it behaves as exogenous calcium buffer and thereby it contributes to the total amount of cellular calcium buffer molecules (Helmchen, Imoto and Sakmann, 1996), and thus changes the intracellular calcium dynamics (Augustine and Neher, 1992). Therefore, choosing the appropriate indicator in the appropriate
concentration is crucial for the interpretation of the experimental results. For example, fluorescent signals observed with low-affinity indicators reflect more accurately the change in the free cytosolic calcium concentration, as these indicators add little buffer capacity to the cell (Helmchen, Borst and Sakmann, 1997). However, the use of such indicators is limited by the need for sufficient sensitivity, especially when imaging in the noisy in vivo condition or when imaging small structures, such as dendritic spines.

In this thesis, I used one of the latest GCaMP versions (GCaMP6s) available at the time the experiments were conducted. Delivery of the genetic construct into the cell of interest was achieved by virally mediated expression employing an AAV1-hSyn1-mRuby2-GCaMP6s- construct (for a detailed description of the construct see Material and Methods).

1.2.2.2 Awake imaging versus anaesthetized imaging

Anesthesia is widely used in animal research to provide immobilization of animals and to conduct the procedures not possible in awake animals. For example, chemical calcium indicators can only be used in acute experiments and thus their use is restricted to working with anaesthetized animals. Even though very handy for researchers this approach has disadvantages - it does not allow for chronic studies of the same brain areas/neurons over prolonged periods. At the same time, chronic studies are especially important to study disease progression. Another disadvantage of anesthesia is even more important to note when implementing calcium imaging - it can significantly alter neuronal activity thus producing artifacts or hindering pathological activity alterations.

General anesthesia has multiple physiological effects as it induces pronounced changes in the receptor, ion channel, single neuron and network functions (Rudolph and Antkowiak, 2004; Franks, 2008). From the molecular level point of view, a common characteristic od most anesthetics is potentiation of GABAA receptor activity and inhibition of potassium channels and AMPA- and NMDA receptors (Vahle-Hinz et al., 2001, 2006; Franks, 2008). One of the striking features of the neocortex under deep levels of anesthesia is the presence of slow rhythm of alternating depolarized (UP) and hyperpolarized (DOWN) states that take advantage of spontaneous action potential firing and result in strongly synchronized activity patterns (Steriade, Nuñez and Amzica, 1993; Ecker et al., 2014).

Moreover, the local dynamics of cortical spontaneous activity have been shown to differ between the awake and anesthetized state (Steriade, Nuñez and Amzica, 1993; De Kock and Sakmann, 2008; Greenberg, Houweling and Kerr, 2008; Kreuzer et al., 2010), even under light levels of anaesthesia, in the absence of clear-cut UP/DOWN states, correlations between spontaneous activity patterns
of individual neurons increase (Greenberg, Houweling and Kerr, 2008; Golshani et al., 2009). During wakefulness, the inhibitory drive in the cortex is much higher compared to anesthesia (Haider, Häusser and Carandini, 2013), which makes the overall activity in the cortex very different between these two states. The study of the rat visual cortex showed ketamine anesthesia modulated population-wide synchronization and the relationship between firing rate and correlation at the same time decreasing firing rates and spike bursting (Greenberg, Houweling and Kerr, 2008). Similar results of increased correlations in spontaneous neuronal spiking activity under isoflurane anesthesia accompanied by reduced direction selectivity were observed in mice (Goltstein, Montijn and Pennartz, 2015).

Moreover, anesthesia changes the metabolism and oxygenation of the tissue. Comparison of the awake and anesthetized brains reveals that isoflurane induces arterial dilation, elevates blood flow, and reduced oxygen extraction fraction in a dose-dependent manner. As a result of the combined effects, the cerebral metabolic rate of oxygen (CMRO$_2$) is reduced in the anesthetized brain under both normoxia and hypoxia (Cao et al., 2017). These changes may differentially affect healthy and diseased brains, thus making it difficult to discriminate differences occurring due to the pathology from those occurring due to the anesthesia-related stress.

Another problem of the studies in anaesthetized animals is that the mode and deepness of anesthesia are rarely monitored and even if it was monitored it is very vaguely reported in the research papers. This not only makes it difficult to reproduce the study design in another lab and compare the results of different research groups but also raises the concerns that in some case animal is not adequately anaesthetized but rather just immobilized. The lack of the proper anesthesia level may reveal the effects of pain or other symptoms caused by the experimental set-up instead of answering the initial research question.

All in all, however, anesthesia is a powerful and sometimes inevitable research tool; it comes with many drawbacks. Luckily, in the area of calcium imaging, significant progress in the development of GECIs make the awake imaging available and more and more widely used.

Calcium imaging studies in awake rodents generally use one of two main types of optical instrumentation. One option is that the animal is head-fixed under the objective lens of a conventional upright two-photon fluorescence microscope (Dombeck et al., 2007; Nimmerjahn, Mukamel and Schnitzer, 2009). This head-restrained imaging format is compatible with conventional two-photon microscopy and is also well suited for use with custom-designed fluorescence microscopy setups that provide novel imaging capabilities (Horton et al., 2013; Heys,
Rangarajan and Dombeck, 2014; Lecoq et al., 2014; Low, Gu and Tank, 2014; Quirin et al., 2014; Stirman et al., 2014; Bouchard et al., 2015) or combine two-photon Ca2+ imaging and two-photon optogenetic capabilities in behaving mammals (Packer et al., 2012, 2015; Rickgauer, Deisseroth and Tank, 2014). An alternative approach is that the animal carries a miniature fluorescence microscope on its head, allowing calcium imaging studies during unconstrained animal behavior (Helmchen et al., 2001; Flusberg et al., 2008). Both these approaches allow long-term imaging over weeks (Komiyama et al., 2010; Huber et al., 2012; Ziv et al., 2013; Peters, Chen and Komiyama, 2014).

Head fixation allows cellular level brain imaging using conventional optics while constraining and enhancing experimental control over the behavioral repertoire (Andermann, 2010). The head-fixed format for optical brain imaging allows the use of conventionally sized optical instrumentation, typically a two-photon microscope residing on a vibration-isolation table. Initial Ca2+ imaging studies in awake head-restrained rodents involved relatively simple behaviours such as quiet wakefulness (Greenberg, Houweling and Kerr, 2008; Bathellier, Ushakova and Rumpel, 2012; Kato et al., 2012) and grooming or locomotion (Dombeck et al., 2007; Dombeck, Graziano and Tank, 2009; Nimmerjahn, Mukamel and Schnitzer, 2009). Behavioural assays have since progressed, making use of the head-fixed preparation suitability for controlled delivery of sensory stimuli (Verhagen et al., 2007; Carey et al., 2009; Andermann et al., 2011; Blauvelt et al., 2013; Patterson, Lagier and Carleton, 2013; Miller et al., 2014). A key consideration is whether limiting an animal’s range of behavior via head fixation will be a benefit or a drawback. To address many scientific questions, it is crucial to gather data from a large set of stereotyped trials, and the behavioral constraints imposed by head fixation can facilitate both the controlled delivery of sensory stimuli and behavioral stereotypy in an animal’s responses.

To summarise, even though anaesthetized imaging has several advantages and sometimes is the only possible approach, awake imaging is certainly beneficial for brain research. The main advantage is that the brain activity can be measured in the intact state without artifacts generated by anesthesia which can exaggerate or mitigate experimental readouts, e.g., pathological signs when studying brain diseases. For this reason, anaesthetized imaging with head-fixation was the approach chosen in this thesis.

1.2.3 In vivo microscopy in AD

Traditional histological analyses only allow for a static assessment of pathology. The appearance of two-photon microscopy (Denk, Strickler and Webb, 1990) has enabled in vivo long-term imaging studies (Holtmaat and Svoboda, 2009), from which the field of AD research has benefited
tremendously. *In vivo* imaging of transgenic mice through a cranial window not only allows to monitor general neuropathological features of AD-like lesions, but also to address questions regarding the kinetics and temporal sequence of pathological events and facilitates direct observation of the effects of new treatment approaches (Bacskai *et al.*, 2001; Spires, 2005; Spires-Jones *et al.*, 2011).

1.2.3.1 Imaging of senile plaques

Amyloid-β plaques have been studied extensively as one of the major hallmarks of AD, and as a consequence, many treatment studies are aimed at reducing the formation of plaques (Shah *et al.*, 2008; Chopra, Misra and Kuhad, 2011; Kurz and Pernezky, 2011). *In vivo* imaging of amyloid plaques is possible thanks to the existence of dyes binding to β-sheet protein structures. These dyes, such as Thioflavin S or Methoxy-XO4, are applied either topically or peripherally, as some of the dyes can cross the blood-brain-barrier (Christie *et al.*, 2001; Klunk *et al.*, 2002; Bacskai *et al.*, 2003). As an addition to such dyes, which only allow for the visualization of the compact forms of plaques, fluorescently labeled antibodies against Aβ additionally mark diffuse plaques.

Senile plaques were first studied in living animals by B. Hyman’s group (Christie *et al.*, 2001). In this early study, the authors utilized *in vivo* two-photon imaging of the fluorescent plaque-binding substance Thioflavin S in the Tg2576 mouse model of AD (Hsiao *et al.*, 1996). Further work of this group identified additional fluorescent plaque markers, such as Thioflavin T, Thiazine Red, Pittsburgh compound B (PIB) (Bacskai *et al.*, 2003; McLellan *et al.*, 2003), suitable for in vivo two-photon microscopy. Of great value was the introduction of Methoxy-X04 by Klunk *et al.* (Klunk *et al.*, 2002) in 2002. This lipophilic Congo red derivative is capable of crossing the blood-brain barrier and, thus, allows easy staining of cerebrovascular as well as plaque-bound amyloid via intravenous or even intraperitoneal injection. During the last decade, Methoxy-X04 has become a standard tool for *in vivo* visualization of the plaques. It is especially beneficial for longitudinal imaging experiments due to its easy administration (i.p.), brightness and efficient binding to plaques. However, while using plaque dyes in experiments, it should be bared in mind, that some of them possess certain anti-amyloidogenic properties by physically blocking amyloidogenic sites of the plaques (Cohen, Ikonomovic, *et al.*, 2009; Pratim Bose *et al.*, 2010).

Two-photon microscopy allows for simultaneous imaging of multiple fluorescent markers as it is possible to separate different emitted wavelengths with filters on the detection side. This approach is beneficial for AD research, because it allows for simultaneous imaging of well-known pathological signs, such as plaque, in parallel to imaging something else in a different channel.
For example, viral transfer of GFP into cortical neurons in APP transgenic mice, that also received an injection of Methoxy-X04, enabled to image the detrimental effects of plaques on adjacent dendrites and spines (Spires, 2005). Another possible approach is to cross AD transgenic mice with mouse lines containing fluorescent markers (Brendza et al., 2003; Tsai et al., 2004; Meyer-Luehmann et al., 2008). With this approach, it has been shown that anti-Aβ antibody treatment leads to a decrease in the number of plaques and a rapid reduction in the number and size of dystrophic neurites in AD transgenic mice (Brendza et al., 2005; Rozkalne et al., 2009). Furthermore, by crossing transgenic Iba1-GFP (Bolmont et al., 2008) or CX3CR1-GFP mice (Davalos et al., 2005; Koenigsknecht-Talbooo et al., 2008) with AD transgenic mice the dynamic interaction between plaques and microglia have been imaged in vivo.

Crucial aspects addressed by longitudinal two-photon imaging are the process of de novo plaque formation as well as the kinetics of cerebral amyloidosis (Bittner et al., 2012; Burgold et al., 2014). In addition to plaque formation, the aggregation of Aβ results in widespread cerebral amyloid angiopathy (CAA), which is the aggregation of Aβ in cerebral vessel walls. Formation of CAA can lead to a loss of smooth muscle cells (Mandybur, 1975; Vinters, 1987), disruption of vessels (Greenberg, 2002), and even parenchymal hemorrhage (Kalyan-Raman and Kalyan-Raman, 1984; Mott and Hulette, 2005). The application of two-photon microscopy and plaque dyes helped to study the initiation and progression of methoxy-X04 labeled CAA in APP transgenic mice (Robbins et al., 2006). Traditional methods that have previously examined histological sections from animals and humans at single time points were not able to monitor those sequential events during the formation of CAA, which are important for treatment development.
INTRODUCTION

Experiments with transcranial in vivo two-photon microscopy on transgenic mouse models of AD has shed some light on the temporal sequence and kinetics of AD hallmarks development and structural and functional alterations associated with them (Figure 10). In vivo imaging data supports amyloid cascade hypothesis, stressing the relevance of amyloid plaques as a focal source of neurotoxicity, because numerous pathological features, like the occurrence of dystrophic neurites, neurite breakage, spine loss are tightly spatially and temporally linked to plaque deposition. Furthermore, two-photon imaging can provide not only morphological but also functional insights into AD pathology.

Recently, researchers have begun to use two-photon microscopy in combination with calcium-sensitive fluorescent indicators to explore functioning of neurons and glia in AD transgenic mouse models in vivo. These studies have revealed significant functional impairments for both, that neuronal and astrocytic populations in plaque-depositing AD transgenic mice. Neuronal activity
aberrations will be discussed in more detail later. It was found that glial cells near amyloid plaques become hyperactive (that is, they exhibit an increased number of Ca2+-transients) in response to Aβ-induced pathology, and this can have multiple effects (Delekate et al., 2014). Since astrocytes can secrete gliotransmitters (e.g., adenosine triphosphate, glutamate, D-serine) in a calcium-dependent manner (Allen, 2014), hyperactive astrocytes may directly enhance neuronal activity. Furthermore, they may release proinflammatory factors and induce microglial activation, which may contribute further to neurotoxicity through excessive cytokine release (Chung et al., 2015). Moreover, other functions of astrocytes, including buffering of extracellular potassium during neuronal activity and the uptake of neurotransmitters (e.g., glutamate, GABA) from the extracellular space may also be disturbed. Overall, these observations and considerations suggest that glial cells contribute significantly to various aspects of brain dysfunction in AD (Heneka et al., 2015; De Strooper and Karran, 2016; Pekny et al., 2016).

1.3 Neuronal activity in AD

Alzheimer’s disease (AD) is associated with functional impairments of brain neurons that are responsible for the storage and processing of information. Early studies revealed a massive decrease in the activity of neurons (Silverman et al., 2001; Prvulovic et al., 2005) and the idea of a generalized silencing of brain circuits found strong support in the synaptic failure hypothesis (Selkoe, 2002). However, more recent studies also reported opposite effects - hyperexcitability and hyperactivity of neurons in the AD models (Busche et al., 2008, 2015; Sanchez et al., 2012; Liebscher et al., 2016). It remains unclear if these are two sides of the same coin or if these are two stages, that follow each other. While the final answer requires more research, the data acquired so far helps to specify several hypotheses to be tested. To give an overview of this current knowledge, the neuronal dysfunction observed both in AD patients and AD model animals is described in this chapter on several levels starting from the morphology of synapses through neuronal activity to wide-range circuit function.

1.3.1 Synaptic dysfunction

Amyloid-β peptides can exert numerous adverse effects on different cells of the brain (De Strooper and Karran, 2016), including effects on the neurons and synapses. As a peptide species with acute toxicity, oligomeric amyloid-β directly can induce neuronal apoptosis through interactions with cell-surface receptors. Moreover, longer-term accumulation of toxic amyloid-β species in the parenchyma also leads to oxidative damage of DNA and proteins, to physical injury of cellular organelles and dysregulation of intracellular calcium levels, and each of those can provoke cell
INTRODUCTION

dead (Kayed and Lasagna-Reeves, 2012). Exposure to amyloid-β under in vitro conditions can
induce neuronal dysfunction and cause cell death within hours, but it takes years for amyloid
accumulation to have detectable consequences in vivo. Despite these differences in timescale, the
brains of people with AD show alterations similar to those seen in neurons in vitro and patience
neuronal death accompanies the onset of cognitive decline (Jack et al., 2009).

However, amyloid-β-induced deficits in synaptic plasticity, circuit function, and cognition develop
before cell loss occurs (Jorge J. Palop and Mucke, 2010). Neurons exposed to pathologically
-elevated levels of amyloid-β in vitro or in vivo show signs of atrophy, including lower dendritic spine
density and shorter dendrites (Spires and Hyman, 2004; Koffie et al., 2009), alterations that can
increase intrinsic cellular excitability (Šišková et al., 2014) and may explain the hyperactivity of some
excitatory neurons. In addition to the loss of spines, studies in mouse AD models also revealed
various structural pathological changes in neurites, i.e., axons and dendrites (Bittner et al., 2012;
Zou et al., 2016; Blazquez-Llorca et al., 2017b). Neurites show curvature changes and are prone to
develop dystrophies and to eventually break (D’Amore et al., 2003; Tsai et al., 2004; Spires, 2005;
Garcia-Alloza et al., 2006; Meyer-Luehmann et al., 2008).

Synaptic loss can precede the existing neuronal loss within a particular cortical area. Moreover, the
degree of region-specific synapse loss is a stronger correlate of cognitive decline in AD than counts
of plaques, tangles and neuronal loss (DeKosky and Scheff, 1990; Terry et al., 1991). The loss of
the synapses has been shown to contribute to circuit dysfunction and cognitive decline in mouse
models of AD (Palop et al., 2007; Šišková et al., 2014). Because of this remaining neurons become
less well connected to their synaptic partners and likely this is why synaptic density is the best
correlate of cognitive decline (DeKosky and Scheff, 1990; Scheff, DeKosky and Price, 1990; Scheff
and Price, 1993; Scheff et al., 2007). Worth noting, an inverse correlation has been observed
between synaptic density and the size of the remaining synapses measured by the length of the
postsynaptic density. This enlargement of remaining synapses has been interpreted as a
compensatory response (DeKosky and Scheff, 1990; Scheff, DeKosky and Price, 1990; Scheff
and Price, 1993).

The role of A-β aggregates in the synaptic pathology is not entirely clear. However, several studies
reported brain areas close to plaques to be the most affected. Using in vivo imaging, it was found
that spine loss in the hippocampus and frontal cortex became apparent only after plaques were
deposited, and was most pronounced in the vicinity of plaques (Bittner et al., 2010, 2012). Also,
other studies found that degenerative changes happen in close relationship to amyloid plaques
further underlying a key role of plaques in AD pathology (Grutzendler et al., 2007; Penzes et al.,
Another recent study by Liebscher et al. revealed a pronounced instability of pre- and postsynaptic structures within the vicinity of amyloid plaques. Treatment with a γ-secretase inhibitor (GSI) attenuated the formation and growth of new plaques and led to a normalization of the dynamics of synaptic structures close to plaques (Liebscher et al., 2014).

If the synapses are not lost, they are still likely to be affected by the pathological environment in the two main directions - neuronal hyperexcitability and synaptic depression.

The molecular changes on the synaptic level seem to cause hyperexcitability in vitro and in vivo (Palop et al., 2007; Sanchez-Mejia et al., 2008; Minkeviciene et al., 2009; Harris et al., 2010; Morris et al., 2011; Um et al., 2012; Busche et al., 2012; A. Ittner et al., 2014; Born et al., 2014; Kurdenkandy et al., 2014; Bezzina et al., 2015). Acute amyloid-β application initially and transiently (10–20 minutes) increases the levels of surface AMPA-type glutamate receptors and GluN2B-containing NMDA-type glutamate receptors (NMDARs) (Sanchez-Mejia et al., 2008; Um et al., 2012) and the frequency of spontaneous excitatory postsynaptic currents in primary neuronal cultures (Sanchez-Mejia et al., 2008; Um et al., 2012). In brain slices, the amyloid-β application also acutely increases the rate of action potential firing by hippocampal pyramidal cells (Kurdenkandy et al., 2014). In FAD mice (lines hAPP-J20, hAPP-J9, APP23xPS45 and APP/PSEN1dE9) both hyperactive and hypoactive neurons were discovered — observed in abnormally high or low rates of action potential-dependent calcium transients or levels of transcripts for the immediate early genes Arc and Fos — both before (Chin et al., 2005; Palop et al., 2007) and after (Busche et al., 2008; Grienberger et al., 2012; Rudinskiy et al., 2012) amyloid deposition becomes detectable.

Amyloid-β can also induce synaptic depression (Chapman et al., 1999; Kamenetz et al., 2003; Hsieh et al., 2006; Shankar et al., 2007; Jorge J. Palop and Mucke, 2010). For example, amyloid-β blocks neuronal glutamate uptake at synapses, which could result in glutamate spillover around the synaptic cleft (Lì et al., 2009) and Aβ1–40 monomers and dimers were found to enhance the presynaptic release of glutamate (Fogel et al., 2014). The rise in glutamate may desensitize synaptic NMDARs and aberrantly activate extra- or perisynaptic GluN2B-containing NMDARs and metabotropic glutamate receptors (mGluRs), and both GluN2B-containing NMDARs and mGluRs can promote long-term synaptic depression retraction (Liu et al., 2004; Hsieh et al., 2006; Li et al., 2009). Amyloid-β-induced NMDAR- and mGluR-dependent long-term depression can be prevented by lowering extracellular glutamate (Li et al., 2009) and can be mimicked by application of the glutamate reuptake inhibitor threo-β-benzylxoxyspartate (TBOA), which can also trigger epileptiform discharges in wild-type brain slices (Campbell, Hablitz and Olsen, 2014). These events,
leading to synaptic depression, might lead to network hypersynchrony, which was reported in AD mouse models (Roberson et al., 2011).

![Model of molecular mechanisms involved in spine pathology in Alzheimer’s disease.](image)

Figure 11. Model of molecular mechanisms involved in spine pathology in Alzheimer’s disease.

Aβ oligomers disrupt synaptic plasticity mechanisms and induce spine dysgenesis, likely by interfering with NMDAR-dependent regulation of the spine cytoskeleton, causing synapse loss and decreased connectivity with nearby axons (blue lines) later in life. Reprinted from (Penzes et al., 2011).

To summarise, AD is accompanied by a range of synaptic dysfunction signs, from synaptic depression and hyperexcitability to eventual synapse loss (Figure 11). Results obtained in various animal models of the disease show Aβ–mediated inhibition of synaptic currents (Hsia et al., 1999; Kamenetz et al., 2003; Chang et al., 2006), disruption of synaptic plasticity (Walsh et al., 2002; Jacobsen et al., 2006), as well as endocytosis of glutamate receptors (Kamenetz et al., 2003; Oddo et al., 2003; Snyder et al., 2005; Hsieh et al., 2006; Shankar et al., 2007; Nimmrich et al., 2008). These findings are summarized in the synaptic failure hypothesis suggesting that “AD represents, at least initially, an attack on synapses” (Selkoe, 2002). At the same time, different dysfunctional states were observed in different experimental approaches, which makes it difficult to put these events together in one scheme and see their relationship. It is still an open question of how these low-level synaptic changes are connected to overall circuit dysfunction, which will be described in more details in the following subchapter.

1.3.2 Neuronal activity and circuit dysfunction

In general, it is difficult to extrapolate the pathology of synapses and neurons to the overall effects on the microcircuits and complex networks level. However, the structural changes, described in
the previous chapter, undoubtedly contribute to the brain circuit dysfunction in AD, which can be detected both in patients and AD mouse models.

Although AD is viewed as a heterogeneous, multicausal syndrome, its fMRI signature seems to be remarkably consistent, particularly during the early stages of the disease. The results from longitudinal human fMRI imaging show hyperactivation of the hippocampal region and increased medial temporal lobe activation during an associative memory paradigm. These symptoms are present even before the appearance of severe clinical AD symptoms and with time progress to a massive loss of hippocampal activity (Dickerson et al., 2005; O’Brien et al., 2010). Hippocampal hyperactivation and reduced deactivation of default-mode network (DMN) components during memory-encoding tasks have been also observed in cognitively normal individuals with cerebral amyloid deposits (Sperling et al., 2009) (a potential trigger of AD), cognitively normal carriers of the APOE ε4 allele (Filippini et al., 2009) (the major genetic risk factor for AD), presymptomatic carriers of FAD-causing mutations (Quiroz et al., 2010; Sepulveda-Falla, Glatzel and Lopera, 2012) and patients with MCI (Dickerson et al., 2005; Celone et al., 2006; Bakker et al., 2012), which often develops into AD. In later stages of AD, the hippocampal formation is hypo-active during memory encoding, whereas the reduced deactivation of the DMN persists (Celone et al., 2006; Persson et al., 2008; Sperling et al., 2009). However, accumulating evidence suggests that this hyperactivation might be pathogenic and may impair learning and memory (Putcha et al., 2011; Bakker et al., 2012, 2015).

Also, evidence from human FDG-PET imaging indicates that increased glucose metabolism in brain regions with high amyloid plaque burden can precede a cognitive and metabolic decline in later disease stages (Cohen, Price, et al., 2009; Johnson et al., 2014; Oh et al., 2014). Interestingly, FDG-PET in combination with 3D-microscopic autoradiography in an AD mouse model (the APPswe/ PS1M146L model) revealed that the glucose hypermetabolism is most pronounced in the direct vicinity of amyloid plaques (Poinsel et al., 2012).

In FAD mice models researchers also found alterations of normal neuronal function and ability to adequately respond to the stimuli. Recent studies indicate that neurons of visual cortex experience functional impairments, represented by a progressive deterioration of neuronal tuning for the orientation of visual stimuli that occurs in parallel with the age-dependent increase of the amyloid-β load (Grienberger et al., 2012). In this study, deterioration was present only in neurons that are hyperactive during spontaneous activity. The impairment of visual cortical circuit function also correlates with pronounced deficits in visual-pattern discrimination. Another study revealed that sensorimotor signals in old AD mice are differentially affected (Liebscher et al., 2016). Visually-
driven and motor-related signals are strongly reduced, but neuronal responses signaling a mismatch between expected and actual visual flow are selectively spared. Researchers also observed an increase in aberrant activity during quiet states. However, in this study, no correlation with plaque proximity was observed (Liebscher et al., 2016). Jointly, results indicate a decline of sensory processing in the visual cortex. However, the role, played by amyloid aggregates in this process remains controversial. In both of these studies, the functional alterations came in hand with increased neuronal activity, appearing during quiet states (spontaneous activity).

In line with these observations in cortical neurons, hippocampal neuronal hyperactivity in pre-accumulating AD mouse brains was observed (Busche et al., 2012) which was shown to be associated with a profound impairment of place cell function (Wilson et al., 2005; Koh et al., 2010; Mably et al., 2017). As a specific reason, disturbed coordination of place cell firing by hippocampal rhythms in AD model mice was reported. Remarkably, these disturbances were observed at an age before detectable Aβ pathology had developed (Mably et al., 2017). Interestingly, fMRI imaging revealed that in humans at risk of AD (APOE4 allele carriers), hyperactivity of the hippocampus was associated with diminished grid-cell-like representations in the entorhinal cortex during a virtual reality spatial memory task (Kunz et al., 2015).

Additionally, by employing large-scale calcium fluorescence imaging of the mouse cortical surface, it was revealed that the long-range coherence of slow-wave oscillations across neocortical areas was impaired in amyloid plaques-bearing APP23 and APP23 x PS45 mouse models when compared with wild-type littermates. This impairment could be restored by the normalization of the excitatory/inhibitory balance, through the application of a low dose of a benzodiazepine that enhances GABAAergic inhibition. This restoration also resulted in the improvement of memory deficits of APP23 x PS45 mice (Busche et al., 2015).

To summarise, there is abundant evidence that neuronal activity is disturbed under AD pathological conditions, which leads to disturbed neuronal circuit function. However, the details of these dysfunctions, as the specific role of Aβ aggregates in these dysfunctions, remain controversial and the underlying mechanism is not deciphered (Figure 12; Figure 13). To tackle this question more animal studies are being done aiming for better characterization of the neuronal activity dysfunction. An important consideration is also that according to the recent research not only Aβ can influence the neuronal activity but also the other way around.
INTRODUCTION

According to this hypothesis, during early stages of AD, elevated levels of soluble amyloid-β (Aβ) promote the occurrence of hyperactivity. This is followed by progressive neuronal silencing and cell death through unknown mechanisms. Both tonic and phasic hyperactivity contribute to cognitive impairments seen in AD patients. Reprinted from (Busche and Konnerth, 2015).

It was observed that neural activity could regulate local concentrations of Aβ in the interstitial fluid that surrounds neurons (Cirrito et al., 2005). Amyloid-β levels are higher during wakefulness than during sleep (Kang et al., 2009; Xie et al., 2013). In mice, sleep promotes amyloid-β clearance (Xie et al., 2013), whereas sleep deprivation increases amyloid-β levels and amyloid deposition (Kang et al., 2009), suggesting that brain states can modulate amyloid deposition. In young FAD mice (line
Tg2576), interstitial levels of soluble amyloid-β vary markedly in different regions and relate closely to regional differences in metabolic activity (Bero et al., 2011). Higher levels of metabolic activity are associated with higher levels of soluble amyloid-β and predict the regional amyloid burden in older mice. Thus, networks with higher metabolic rates may be more prone to amyloid deposition. Also, experimental increases in neuronal activity by chronic optogenetic activation promote amyloid deposition and trigger epileptiform activity in FAD mice (line APP-A7) (Yamamoto et al., 2015).

Subsequently, the topography of neural connections was shown to direct the spread of tau, and Aβ protein aggregates in mouse models of neurodegenerative disease (Pooler et al., 2013; Brettschneider et al., 2015). Additionally, circuit connectivity between the hippocampus and the cortex has been proposed to be a primary driver of the stepwise spread of intracellular tau aggregates between these brain regions in people with Alzheimer’s (Yankner, Lu and Loerch, 2008). In a recent paper, Iaccarino and colleagues suggest that not only connectivity but also patterns of neural activity — in particular, gamma oscillations — play a part. According to their hypothesis, dysfunctional neural-network activity promotes the accumulation and spread of misfolded proteins that, in turn, cause further circuit disruption in a harmful positive feedback loop (Iaccarino et al., 2016).

The possible high importance of neural activity changes to overall AD pathology is supported by the many-years notion, that there are signs of neuronal hyperactivity in AD patients and mouse models. The incidence of epileptic activity is increased in sporadic AD (Amatniek et al., 2006) but is particularly high in humans with early-onset autosomal dominant AD (Snider et al., 2005; Cabrejo et al., 2006; Larner and Doran, 2006; Palop and Mucke, 2009). Mice overexpressing FAD-mutant genes have spontaneous epileptiform discharges (“spikes”) and/or seizures detectable by EEG recordings (Lalonde et al., 2005; Palop et al., 2007; Harris et al., 2010; Roberson et al., 2011; Vogt et al., 2011; A. A. Ittner et al., 2014; Born et al., 2014; Bezzina et al., 2015; Yamamoto et al., 2015; Kam et al., 2016). Furthermore, chronic video-EEG monitoring revealed that APP transgenic mice exhibited aberrant excitatory nonconvulsive seizure activity in cortex and hippocampus that was counteracted by a compensatory inhibitory response in the hippocampus, including altered levels of neuropeptide Y (NPY) receptors, ectopic NPY expression, GABAergic sprouting, and increased synaptic inhibition (Palop et al., 2007; Minkeviciene et al., 2009). People with AD who have seizures exhibit worse cognitive outcomes (Volcer, Smith and Volcer, 1995), and the cognition of individuals with mild cognitive impairment is restored temporarily when they are treated with the anti-epileptic drug levetiracetam to reduce abnormal activity (Bakker et al., 2015). The correlation
between altered activity and cognitive performance suggests that these aberrant patterns of activity might be directly related to memory impairment. Counteracting hyperactivity in mouse models of AD not only rescues local circuit dynamics (Sanchez et al., 2012) but also reestablish long-range network coherence to repair learning (Busche et al., 2012).

However, until now the question of whether the hyperactivity is a consequence, or a cause of pathology remains open. On the one hand, Aβ is known to disturb synaptic function which leads to neuronal activity changes. On the other hand, as described above, in AD patients and nondemented humans, amyloid deposits are predominantly distributed along with networks with aberrant neuronal activity (Buckner, 2005; Sperling et al., 2009), suggesting activity-driven pathology (Bero et al., 2011). It all shows, however, that network abnormalities leading to or induced by Aβ accumulation may be a relatively early pathogenic event in AD (Sperling et al., 2009).

The collective results from the last decade of research have led to two main hypothetical mechanisms by which neuronal pathology in AD develops. It is also likely that they jointly promote pathology. The one side of the coin is represented by the molecular and morphological changes that increase neuronal excitability and hyperactivity, the other side – by disruption of the inhibitory network, that should coordinate the normal circuit function.

Synaptic changes leading to neuronal hyperexcitability and synaptic depression are discussed in more details the previous section. Shortly, it was shown that Aβ mediates hyperexcitability by disruption of synaptic plasticity and endocytosis of glutamate receptors (Palop et al., 2007; Minkeviciene et al., 2009; Roberson et al., 2011; Sanchez et al., 2012; Verret et al., 2012). At the same time, Aβ has an inhibitory impact on synaptic transmission by impairing long-term potentiation (Walsh et al., 2002; Klyubin et al., 2014) and enhancing long-term depression (Kim et al., 2001; Hsieh et al., 2006; Li et al., 2009).

Loss of synaptic inhibition can occur through numerous pathways, including the downregulation of cell-surface voltage-gated sodium channels. Several laboratories have provided evidence for a potential contribution of reduced GABAergic inhibition, mainly via a functional impairment of inhibitory interneurons (Verret et al., 2012) and a decline of GABA currents (Limon, Reyes-Ruiz and Miledi, 2012). Reduced expression of the Nav1.1 sodium channel subunit (SCN1A) in a mouse model of AD hinders the propagation of action potentials through inhibitory parvalbumin-expressing interneurons, which results in a reduction of the primary inhibitory neurotransmitter, GABA (γ-aminobutyric acid), release and the loss of inhibition on excitatory neurons (Verret et al., 2012) — restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory
syaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality (Sanchez et al., 2012).

Long-term amyloid-β accumulation, disinhibition of excitatory cells and synaptic loss add up to molecular reasons for hyperexcitability and lead to neuronal hyperactivity, which occurs in brain regions associated with learning and memory (such as the hippocampus) in some presymptomatic individuals (Vossel et al., 2013). In time, this can lead to epileptiform activity. In a mouse model of AD-like amyloid-β accumulation, such activity induces the compensatory sprouting of inhibitory axons that can impair learning processes (Palop et al., 2007).

Important to note is that a disruption in the balance of excitation and inhibition may underlie both the functional impairment of local neuronal circuits as well as that of large-scale networks in the amyloid-depositing brain. Apparently, there is a mix of both hypoactivity and hyperactivity at the level of neurons, circuits and wider networks (Jorge J Palop and Mucke, 2010), even though some of the experimental results suggest that hyperactivity seen in AD mice is unrelated to increased intrinsic neuronal excitability (Busche et al., 2008).

The relation between synaptic/neuronal activity and AD pathology is complex and of high interest for AD research, since it affects the homeostasis of APP, Aβ and tau, and since functional alterations can be detected very early in subjects at risk for AD. Overall, the classic view that the structural damage by amyloid plaques and the loss of neurons underlies cognitive impairment in AD through a reduced cortical activity (synaptic failure hypothesis of AD) is challenged by recent findings from animal and human studies showing that, in fact, excess neuronal activity, hypersynchrony and altered brain oscillations are also key features of the disease. However, even though abundant, the data provided by different labs does not seem to come to a consensus, some pointing to the direction of hyperexcitability, others - impaired inhibitory networks. Most probably, synaptic depression and excess neuronal activity coexist in an unknown manner in AD transgenic mice as well as in humans with AD, leading to overall functional distortion of the circuits and networks.

Some researchers hypothesize that physiologic synaptic activation (without induction of epileptic seizure) might be protective for neuronal preservation, and persistence of normal cognitive functions during aging (Tampellini, 2015). In this case, the higher activity observed in preclinical or early MCI patients might be a compensatory response attempting to promote survival pathways, and preventing Aβ accumulation within neurons by maintaining its degradation and physiological secretion. Indeed, one of the recent experimental findings supports this hypothesis by providing
evidence that optogenetic activation of excitatory cortical neurons restored slow oscillations by synchronizing neuronal activity, halted the accumulation of amyloid plaques and prevented calcium overload in neurons (Kastanenka et al., 2017). Another recent study demonstrated that Nav1.1-overexpressing interneuron transplants enhance behavior-dependent gamma oscillatory activity, reduce network hypersynchrony, and improve cognitive functions in human amyloid precursor protein (hAPP)-transgenic mice (Martinez-Losa et al., 2018), which again points out that normalization of the aberrant neuronal activity is beneficial for the AD symptoms.

While it is difficult to uncover what is the cause of the functional changes, even more, basic questions remain unanswered. It is entirely unclear what comes first, neuronal silencing or hyperactivity, and whether plaques or soluble Aβ are directly involved in the initiation of neuronal dysfunction. From this point of view, studying the progress of the pathology on the early stages of the disease and the involvement of the amyloid aggregates is an important step to be done, before assessing the underlying cause of the disrupted activity.

1.3.3 Role of amyloid plaques in neuronal dysfunction in AD

Senile plaques, described in detail by Alzheimer using Bielchowsky silver staining on brain sections from a patient with dementia, were determined in the early 1980s to be largely composed of the amyloid-β peptide (Glenner and Wong, 1984; Masters and Selkoe, 2012). Neuritic, or dense-cored, plaques have a dense center of amyloid surrounded by a halo of silver positive neurites (Figure 14). After the sequencing of Aβ and development of Aβ-specific antibodies, it was discovered that Aβ also aggregates in “diffuse” plaques of several different morphologies (Dickson and Vickers, 2001; Gomez-Isla et al., 2008; Serrano-Pozo, Frosch, et al., 2011). There is no conclusive link between observations of these different plaque morphologies and the cognitive symptoms (Hyman et al., 2012).

Cross-sectional studies of postmortem human brain showed that senile plaque deposition occurs early in the disease progression, beginning in the neocortex and progressing slowly through the allocortex, then to the diencephalon, striatum, and basal forebrain cholinergic nuclei, followed by the development of depositions brainstem nuclei and finally in the cerebellum (Thal et al., 2002). Watching plaques appear in real time in the brains of mice that overexpress AD-associated APP and PS1 mutations with in vivo multiphoton imaging revealed further details of plaque development. According to some of the recent studies plaques form within 24 hours, and the effects on surrounding neurites occur within days after plaque formation (Meyer-Luehmann et al., 2008). This
observation is however heavily debated and more recent in vivo multiphoton studies show that the growth of plaques is slow and takes weeks to months (Burgold et al., 2014; Peters et al., 2018).

![Figure 14. Types of amyloid plaques.](image)

(A-B) Dense-core plaques and (C) diffuse plaques immunostained with anti-Aβ antibody (4G8). Figure adapted from (Rak et al., 2007).

It was reported that dense plaques are particularly toxic to the surrounding brain parenchyma, contributing to synapse dysfunction and loss. In many cases neurites surrounding plaques exhibit swollen, dystrophic morphologies and they often contain aggregates of phospho-tau and multiple cellular components that likely accumulate due to disrupted cellular transport (Woodhouse et al., 2005; Serrano-Pozo, Frosch, et al., 2011). The trajectories of axons and dendrites are usually fairly straight, in mouse models of AD are disrupted in the vicinity of amyloid plaques, and this may impact synaptic integration of signal (Le et al., 2001; Urbanc et al., 2002; Spires, 2005). Moreover, gliosis and related oxidative stress were revealed around plaques, which are likely to contribute to synaptic changes (McLellan et al., 2003; Ingelsson et al., 2004; Serrano-Pozo, Mielke, et al., 2011). However, the evidence cannot establish if there is a causative link between these plaques and surrounding pathology or if these events just go in parallel. These doubts are intensively investigated by animal AD research.

Due to the obvious neuropil disruption sings surrounding dense-core plaques, fibrillar Aβ was long assumed to be the toxic kind of aggregates. However, results of studies obtained over the past decade strongly suggest that soluble forms of Aβ which accumulate around dense plaques are more toxic than fibrils. Series of experiments by several groups over the late 1990s and 2000s revealed that soluble forms of Aβ cause loss of dendritic spines in cultured neurons, while fibrils and monomers are comparatively inert (Lambert et al., 1998; Klein, 2006). Further research demonstrated that oligomeric forms of Aβ produced by cultured cells or extracted from human AD brain are toxic to synaptic function, including disrupting LTP in brain slices and impairing cognition when injected into healthy rodents in vivo (Walsh et al., 2002; Cleary et al., 2005; Walsh, 2005; Shankar et al., 2007, 2008). There is also an association of dimers of Aβ with dementia in the
human brain (McDonald et al., 2010). In vivo imaging studies in plaque-bearing mice revealed a loss of dendritic spines around plaques due to altered structural plasticity (Spires, 2005; Spires-Jones et al., 2009; Rozkalne, Hyman and Spires-Jones, 2011). Removing soluble Aβ with topical application of antibody results in increased formation of dendritic spines in vivo and long-lasting increases in synaptic markers (Rozkalne et al., 2009; Spires-Jones et al., 2009), supporting the idea that soluble forms of Aβ are toxic to synapses. These studies suggest that whereas the plaques themselves consist of inert Aβ fibrils the surrounding environment of the plaque bears pathological Aβ species and/or other abnormal biochemical substances (like proinflammatory proteins or enzymes, released from glia or distorted neurites), that can disrupt neuronal morphology and activity. In this case, pathology is mediated by soluble amyloid-β and plaques are not an essential requirement.

Three papers recently addressed the relationship between amyloid plaques and either intracellular calcium concentration or spontaneous neuronal activity (Busche et al., 2008, 2012; Kuchibhotla et al., 2008). Busche and co-workers for the first time described aberrant neuronal activity in the immediate proximity of amyloid plaques in the cortex of APP23xPS45 mice while pre-depositing mice had no neurons with aberrant activity (Busche et al., 2008). Consistent with these findings, a study using an adenoviral-based expression of the genetically encoded calcium indicator Yellow Cameleon 3.6 in combination with two-photon microscopy demonstrated that resting calcium levels in cortical dendrites of AD transgenic mice were abnormally increased in the area surrounding plaques (Kuchibhotla et al., 2008). This calcium overload was associated with morphological neuritic alterations mediated, at least in part, by activation of the calcium/calmodulin-dependent phosphatase calcineurin. Furthermore, the study provided a link between structural and functional alterations, since more than half of the neurites with elevated calcium concentration were beaded, i.e., dystrophic (Kuchibhotla et al., 2008). Surprisingly, there is also evidence that the changes in neuronal activity in the visual cortex are not correlated with plaque proximity (Liebscher et al., 2016). Another study by Busche et al. revealed that in the hippocampus of APP transgenic mice increase in hyperactive neurons’ fraction appears already before the formation of the plaques in contrast to cortical neurons that were normally active in pre-depositing brain in the earlier study (Busche et al., 2012). This controversy is important to study in more details, since previous in vitro studies provided clear evidence that structural hippocampal abnormalities can occur at very early stages of the disease, long before the emergence of plaques (Hsia et al., 1999; Moechars et al., 1999; Mucke et al., 2000). The controversial data could be explained by the different susceptibility of neurons and neuronal circuits in different brain areas or by different levels of
soluble Aβ in different mouse AD models. However, experiments are to be done to favor one of these possibilities.

Some studies suggest that existence of plaques is not necessary for the activity alterations and, thus, that soluble Aβ, rather than plaques themselves, may be causally related to the functional alterations of neurons and circuits. There is experimental evidence suggesting that soluble species of Aβ, particularly oligomers, may be the disease-causing entity in AD (Shankar et al., 2008). In the study by Busche et al., a single oral dose of a gamma-secretase inhibitor (GS-inhibitor), which significantly reduced the concentrations of soluble amyloid-β (Abramowski et al., 2008), was sufficient to rescue hyperactivity (Busche et al., 2012). Also, local application of soluble amyloid-β oligomers in the form of synthetic dimers mimicked hyperactivity of CA1 neurons and disrupt the slow-wave activity of the frontal and occipital cortex in wild-type mice (Busche et al., 2012, 2015).

However, there is a possibility for another explanation of observed phenomena, suggesting that Aβ aggregation is a consequence of altered neuronal activity, rather than a cause. This can explain both the appearance of activity alterations before plaque deposition and more obvious alterations of activity around the plaques that appear later. As also described in the previous section, in humans and mice, soluble amyloid-β levels in the interstitial fluid of different brain regions fluctuate with the brain state and depend on the neuronal activity. Thus, the causal relationship might be exactly the opposite with increased activity being responsible for further plaque accumulation around hyperactive neurons and circuits. However, this can additionally add up to pathology and cause further circuit disruption in a harmful positive feedback loop (Iaccarino et al., 2016).

To summarize, many evidences point out that the vicinity of the plaque creates the most pathological environment, that leads to neuronal activity alterations. However, it remains unclear whether these alterations appear due to the presence of the fibrillar Aβ, direct effect of Aβ oligomers or other factors such as proinflammatory substances released from activated microglia (Heneka et al., 2012) and astrocytes (Kuchibhotla et al., 2009), that surround the plaque.

To better understand the intricate relationship between neuronal activity changes and amyloid aggregate formation, more studies are needed, that will focus on longitudinal measurements of both parameters. Especially important is to move the focus from the late pronounced stages of the disease to the early and prodromal stages to catch the first pathological events. Observing the early stages of AD progression was exactly the motivation behind this PhD project, which will be presented in the further chapters.
Objectives

Alzheimer’s disease is associated with functional alterations of brain neurons, represented both as hyperactivity and hypoactivity (as reviewed in Introduction). Understanding activity alterations has important therapeutic implications since pathological changes of neuronal and network function is one of the very early events in a disease progression and it determines the level of cognitive impairment in patients. However, the nature, stability as well as the mechanisms driving these neuronal activity aberrations remain poorly understood.

This project aimed to examine spontaneous neuronal activity in the murine model of AD at the early stages of disease progression using chronic in vivo and by following single neurons over extended periods of time. This allowed to investigate the character and the stability of neuronal activity alterations as well relation of those changes to amyloid plaque proximity.

To achieve this, I for the first time longitudinally monitored the activity of individual neurons in layer 2/3 of the frontal cortex using calcium imaging in awake AD transgenic mice.

Specifically, the aims of this project were:

1. Examine neuronal activity of individual neurons in the frontal cortex of young AD transgenic mice over 4 weeks.

2. Analyze the stability of neuronal activity in the AD mouse model over the 4 weeks of amyloid pathology development.

3. Establish whether amyloid plaque proximity has influence on neuronal activity and its changes.
Material and Methods

This chapter provides detailed information on the methodological aspects of the thesis. All experimental procedures complied with institutional animal welfare guidelines and were approved by the state government of Upper Bavaria, Germany (Regierung von Oberbayern).

3.1 Animals

The studies were carried out in accordance with an animal protocol approved by the Ludwig-Maximilians-University Munich and the government of Upper Bavaria (ref number GZ: 55.2-1-54-2532-163-13). The cranial window preparation was performed under anesthesia, and all efforts were made to minimize the suffering of the animals.

As an AD model, the double transgenic mouse line APPPS1 (Radde et al., 2006) on a C57BL/6J genetic background was used. These mice coexpress mutated amyloid precursor protein (APP, Swedish double-mutation KM670/671NL) and mutated presenilin 1 (PS1, L166P) under the control of a neuron-specific Thy-1 promoter element. Cerebral amyloidosis in this mouse model starts at 6–8 weeks of age. The line is hemizygous for transgenes so as a control in all experiments the non-transgenic (wild type) littermates were used (referred to as WT), both male and female mice were used. In total, the data from 9 APPPS1 and 5 WT mice were included in the final dataset for analyses. The exclusion criteria were: deterioration of the cranial window quality or imaging artifacts (described in the Data analysis subchapter).

Mice were kept under a 14/10-hr light/dark cycle. Food and water were provided ad libitum. Before the cranial window implantation surgery mice were housed in groups of three to six individuals in...
standard cages, with standard bedding and additional nesting material. After the surgery, mice were singly housed in standard cages.

3.2 Genotyping

A small section of the tail was removed from each mouse for genotyping. First, the DNA was extracted following instructions of the Invisorb® DNA Tissue HTS 96 Kit/C (Stratec molecular). The tissue was incubated in 400 µl Lysis Buffer G (inclusive Proteinase K) at 52°C under continuously shaking until lysis is completed and centrifuge at 1.700 x g (4.000 rpm) for 10 min and RT. The supernatant was carefully transferred into a 2 ml Collection Plate, and 200 µl Binding Buffer A was added to each well of the 2 ml Collection Plate and mixed it by pipetting up and down. The plate was centrifuged at 1.700 x g (4.000 rpm) for 5 min at RT. The filtrated was discarded and the plate air-dried. The pellet was re-suspended in 550 µl of Wash Buffer and centrifuged at 1.700 x g (4.000 rpm) for 5 min at RT followed by another centrifugation for at least 15 min at max. 1.700 x g (4.000 rpm). To finalize the DNA extraction, 100 µl prewarmed elution buffer (52°C) was added in each well and centrifuged for 5 min at 1.700 x g (4.000 rpm).

The extracted DNA was subjected to a polymerase chain reaction (PCR) to amplify PSEN1 gene - if present. The PCR solution consisted of: 12,5 µl OneTaq HotStart QuickLoad, 0,5 µl of each forward primer (CTA GGC CAC AGA ATT GAA AGA TCT; AAT AGA GAA CGG CAG GA), 0,5 µl of each reverse primer (GTA GGT GGA AAT TCT AGC ATC ATC C; GCC ATG AGG GCA CTA AT), 0,5 µl template DNA and 10 µl distilled water. This solution was placed in a thermocycler, and the following PCR program was used:

<table>
<thead>
<tr>
<th>STEP</th>
<th>TEMPERATURE (°C)</th>
<th>TIME (SEC)</th>
<th>REPEAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94</td>
<td>180</td>
<td>1x</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>54</td>
<td>60</td>
<td>27x</td>
</tr>
<tr>
<td>4</td>
<td>68</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>68</td>
<td>300</td>
<td>1x</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>∞</td>
<td>1x</td>
</tr>
</tbody>
</table>

The PCR samples were separated by gel electrophoresis using a 1,5% agarose containing SYBR® Gold Nucleic Acid Gel Stain in TAE buffer as the running buffer. Between 120-195 V was applied
for approximately 60-90 minutes and the gel imaged with a UV light source. A photograph was taken for documentation.

3.3 Cranial window

For allow for *in vivo* two-photon imaging, a cranial window was implanted as described previously (Fuhrmann *et al.*, 2007; Holtmaat *et al.*, 2009) at the age of 3.5 months (Figure 15; Figure 16, A; B). Mice were anesthetized with an intraperitoneal injection of ketamine/xylazine mixture (14 mg/kg body weight; WDT/Bayer Health Care). Additionally, dexamethasone (6 mg/kg body weight; Sigma) was intraperitoneally administered immediately before surgery.

In the beginning, a round craniotomy of 3 mm in diameter was made above the right hemisphere frontal to bregma (coordinates of the center of the craniotomy: 1.5 mm anterior, 1.75 mm lateral to bregma) using a dental drill (Schick-Technikmaster C1; Pluraden; Offenbach, Germany). Then the virus injection was performed approximately around the center of the craniotomy excluding areas of big blood vessels to prevent their damage.

The virus AAV2.1.hSyn1.mRuby2.GSG.P2A.GCaMP6s.WPRE.SV4 (Rose *et al.*, 2016; Cat.No 50942-AAV1 Penn Vector Core) was injected at 1:50 dilution of the original stock (final virus titer 0.33×10^{13} GC/ml). The injection was of a volume of 300 µl and 3-5 injections at a depth of 0.8 mm were performed for each cranial window. Injection speed was set at 33 nl/min and was controlled by the NANOLITER 2010 Injector with Micro4 Controller (World Precision Instruments). Immediately, after all the injections were done, the cranial window was covered with a round coverslip (3mm, 0.16 - 0.19 mm thickness, World Precision Instruments). The coverslip was sealed using dental acrylic resin (Cyano-Veneer fast; Schein). A custom-made small metal bar was attached next to the coverslip to allow for a stable head fixation during training and awake imaging sessions. After surgery, mice received subcutaneous doses of the analgesic Carprofen (7.5 mg/kg; Pfizer) and the antibiotic Cefotaxime (5 mg/kg; Pharmore) and were daily monitored until recovery.

3.4 Longitudinal awake *in vivo* two-photon imaging

In vivo two-photon imaging was performed in awake, head-fixed mice as described previously (Andermann, 2010). Mice were trained to accommodate head fixation for 14-21 days before imaging (adjusted individually to the pace of each mouse’s habituation). On the first 2-3 days of the training, mice were handled to habituate to researcher and setup noise, and they were allowed to explore and habituate to the holder.
MATERIAL AND METHODS

Figure 15. Time line of the in vivo imaging experiments.

The holder consists of a cardboard tube and metal frame (Figure 16, B, C). The metal bar connected to the mouse head can be fixed on the metal frame with the screw. Separate holding cardboard tube was assigned to each mouse.

Figure 16. Preparation of experimental animals to in vivo two-photon imaging.

A, B. Cranial window is implanted over mouse frontal cortex. B. Cortical neurons of layers 2/3 are labelled with expression of GCaMP6-Ruby construct. C. During the imaging session head-fixed mouse is sitting in the cardboard tube under the microscope objective. In addition to microscopic imaging whisking movements are monitored with the webcam. D. Custom-made metal bar is used to head-restrain the experimental animal during imaging sessions.

After initial 2-3 days of training, mice were occasionally head-fixed after passing through the holding tube for a brief period (10s-30s) for the next two days. In the following days, periods of head fixation were gradually increased up to 1 hour at the end of the training. Care was taken that the mice feel comfortable in the holding tube and individual adjustments of the tube height and width were made for each mouse if necessary.
Weekly imaging sessions started at earliest four weeks after surgery to allow mice to recover and cranial windows to become transparent and not earlier than the mouse successfully underwent required training. If the mouse was not getting habituated to the setup and showed signs of distress during fixation after the training period, this animal was removed from the experimental group.

Around 5-15 hours before imaging, Methoxy-X04 (Xcessbio, San Diego, CA, USA, 3.3% vol. of 10 mg/ml stock solution in DMSO (light-shielded), 6.66% vol. Cremophore EL (Sigma Aldrich) in 90% vol. PBS), a dye that readily crosses the blood-brain-barrier and binds to fibrillary Aβ, was intraperitoneally injected to stain amyloid plaques (Klunk et al., 2002).

Before each imaging session, mice were head-fixed and placed under the microscope for 5 min to habituate. Imaging was performed in the dark without any stimuli. In each mouse, two to six regions of the frontal cortex were imaged. The imaging regions were selected at a depth of 120 – 200 µm below the pial surface (referring to the cortex layer 2/3). In vivo, time-lapse image series of GCaMP6 and mRuby2 fluorescence were acquired using the LaVision Trim Scope microscope equipped with two tunable Ti:sapphire two-photon lasers (Coherent Chameleon and Mai Tai Spectra Physics). The setup was controlled using LaVision Inspectior software (LaVision Biotech, Germany). The imaging frequency was set up to the frame rate of 10 Hz.

To enable simultaneous excitation of mRuby2 and GCaMP6s the Chameleon laser was tuned to 940nm. As an objective, A 25x, NA 1.05 water-immersion objective (Olympus) was used. There were two cohorts of experiments included in the data analysis. For the first cohort the imaging dimensions were 173 × 173 pixels; corresponding to 151 µm x 151 µm, for the second cohort – 223 × 223 pixels and 220 µm x 220 µm. At each of the weekly session, the same cells for each area of interest were imaged over 5000 frames (8.3 min of continuous imaging time).

To the analysis of the distances between the neurons and the amyloid plaques, z-stacks images of the surrounding tissue around the area with imaged neurons were acquired, with each z-stack covering 250-350 µm in depth (520 × 520 pixels; x,y dimensions: 350 µm, z increments 0.5µm). The simultaneous excitation of Methoxy-X04 and mRuby2 was achieved by the Mai Tai laser tuned to 750 nm. During the z-stack acquisition, mice were anesthetized by isoflurane (0.5 vol. %), this was done after the awake imaging session.

Emitted fluorescence light was split at 495 nm and 560nm, to separate the emitted light into three channels corresponding to the fluorescence from Methoxy-X04, GCaMP6s, and mRuby2 and detected by photomultiplier tubes.

At all times laser power was kept under 80mW measured at the back-focal plane of the objective.
During head-fixation, mice typically showed long episodes of quiet wakefulness (quiet) interrupted by brief episodes of intensive whisking and movement (active). Therefore, we used the whisking movement monitored with the webcam as an indicator of behavioral state (quiet vs. active). A web camera was controlled by LaVison Inspector software which allowed synchronous recordings with the same frame rate for mouse whisking behavior (via web camera) and GCaMP6 and mRuby2 fluorescence (via microscope). Active epochs were not considered in the further analysis of neuronal activity.

Mice were imaged in repetitive weekly sessions for 3-10 weeks after the first imaging session. Only data sets from mice with more than five weeks of imaging span in total were further analyzed. Single imaging session would typically last around 60-80 min. In such period images from 2-6 areas of interest were acquired (~9 min per area, 50-150 cells per area) and in case of transgenic animals 2-6 z-stacks representing each of the imaged areas were additionally taken (~5 min per area).

3.5 Tissue preparation, immunohistochemistry, and confocal microscopy

3.5.1 Transcardial perfusion of mice

After the final in vivo imaging session mice were sacrificed and perfused allowing for post mortem analysis of brain tissues.

For the transcardial perfusion mice were first lethally anesthetized with ketamine/xylazine mixture (14 mg/Kg body weight; WDT/Bayer Health Care), and fixed with the needles to Styrofoam plate. With the large medical scissors, two incisions were made parallel to the lower edge of the rib cage. Next, the abdominal wall was opened and incisions parallel to the rib cage to the vertebral column were performed. The diaphragm was cut open just below the xiphoid cartilage and then dissected off along its costal insertions. The right and left ribs were cut off the vertebral column, as close as possible to their insertions. Two cuts converged above the heart level to the manubrium sterni. The hypodermic needle attached to the perfusion pump tubing was later inserted into the left ventricle. The left ventricle comprises the cardiac apex and can be recognized by its lighter color (compared with the dark red of the right ventricle). Next, the right atrium was opened with spring scissors, and the perfusion pump was started (Ismatec, ISM796B). The animal was perfused with 1x PBS at ~5 mL/min for approximately 1 min (until the liver turned from dark red to clay-like brown). Then the pump was turned off, the tubing end was put in the tube with 4% PFA, and the perfusion was restarted with the same speed as above until the mouse was perfused with ~25 mL of 4% PFA. Then the brain was removed from the skull and postfixed in 4% PFA for 48h. After the post-
fixation period of 48h, the brain was rinsed with 1x PBS and stored in 0.01% NaN₃ (#13412, Riedel de Häen) in 1x PBS.

3.5.2 Immunohistochemical identification of inhibitory neurons

They PFA fixed brains were cut on the vibratome (Leica VT 1000S) into coronal sections of 50 µm thickness. Immunohistochemistry was performed on free-floating sections. Firstly, sections were incubated overnight in 2% Triton X-100 in PBS at room temperature to increase permeabilization. Secondly, they were blocked for 2 hours at room temperature with 3% I-Block™ Protein-Based Blocking Reagent (Thermo Fisher Scientific) containing 0.2% Triton X-100 in PBS. Then sections were incubated with the primary antibodies (mouse anti-GAD67 in 1:500 dilution (Millipore, catalogue number MAB5406B)) overnight. The following incubation with secondary antibodies (goat anti-mouse Alexa Fluor 647 1:500, Life Technologies, catalogue number A21236) lasted for two days at room temperature.

Next, confocal stacks (Zeiss LSM 780) were acquired. In the beginning, images were acquired at low magnification (10x objective) to allow for the identification of virus-transfected regions. Confocal stacks of re-identified transfected spots were then acquired with a 40x magnification.

Analysis of images was performed using ZEN software (Zeiss). For this, raw z-stacks were manually scrolled through and mRuby2- and GAD67-positive neurons were marked in respective frames.

3.6 Imaging data processing and analysis

Collected two-photon images of GCaMP6 and mRuby2 combined with web camera images were processed and analyzed with the use of custom written codes in MATLAB (The MathWorks, Inc.) and semi-automatically in ImageJ (http://rsb.info.nih.gov/ij/). Standard recording consisted of three series of images. The first series of images, recorded by two-photon microscope on the red channel, represented cell bodies labeled with mRuby2 (calcium insensitive). The second series of images coming from the green channel was a representation of calcium concentration changes reported by changes in fluorescence of GCaMP6s in neuronal cytoplasm. The third series of images were recorded by the camera focused on the mouse whiskers and represented the behavioral time-series.

For the analysis, two-photon imaging series were aligned, then ROI was drawn around the neuronal cell bodies using MATLAB and at the next step corresponding traces of neuronal activity were
extracted and analyzed. Behavioral data of whiskers movement was used to identify quiet (no whisking) and active (movements of whiskers) phases.

3.6.1 **Calcium imaging data pre-processing**

Image pre-processing for calcium imaging data was done using a custom-made script written by Dr. Pieter M. Goltstein (Goltstein, Montijn and Pennartz, 2015). Brief description of the image pre-processing is below.

A number of previous studies have shown that there is a strong correlation between ΔF/F, relative fluorescence change over baseline, responses in somatic calcium recording (using OGB as fluorescent calcium indicator) and individual neurons spiking activity (Kerr, Greenberg and Helmchen, 2005; Ohki et al., 2005; Greenberg, Houweling and Kerr, 2008). Thus, analysis of the ΔF/F time series proved to reproduce several previously reported electrophysiological findings, which supports the validity of the calcium imaging approach that was used in this study.

Collected by the microscope and web camera images were processed and analyzed using custom-written codes in MATLAB and semi-automatically in ImageJ software. A typical neuronal recording consisted of two series of images recorded using two-photon microscopy. One series contained fluorescence in neuronal cell bodies labeled with mRuby2 (calcium-insensitive, red channel, >560nm). The other series contained fluorescence of the cytoplasmic calcium indicator GCaMP6s (green channel, 495-560nm). The behavioral state was recorded by a camera focused at the whiskers and classified as active or quiet using custom-written MATLAB code.

Small movement artifacts in the x-y plane were corrected for by realigning the images (Guizar-Sicairos, Thurman and Fienup, 2008). Recordings with clear movement artifacts along the z-axis observed during manual check were excluded from further analysis. Then, regions of interest (ROIs) were outlined semi-automatically with the help of custom-made GUI based on a maximum projection of all frames for all neurons for each repetition block separately. Indicator-filled cells were identified visually as bright cells in the green (GCaMP6 fluorescent) channel that did not have nucleus visible during the neuronal activity calm phase. These indicator-filled neurons were excluded from the analysis.

3.6.2 **Analysis of spontaneous calcium activity**

Further analysis was performed using custom-written MATLAB code kindly provided by Dr. Sabine Liebscher. As a first step individual images from each of the time series were aligned to each other in the x-y plane. Image alignment parameters (x/y shift) were estimated using a Fourier transform-based approach (Guizar-Sicairos, Thurman and Fienup, 2008) on image data from the
mRuby2 channel (Rose et al., 2016) that represents stable fluorescent within cell bodies. Next, the same imaging alignment parameters were applied to the GCaMP6 recording and for each ROI a raw GCaMP6s fluorescence time series was constructed. For this, the pixel values were averaged within the region of interest for each imaging frame.

As the following step, a region surrounding the selected ROI was considered, and the average fluorescent intensity within that area was calculated for each frame to allow for the correction of possible neuropil contamination (Chen et al., 2013). The corrected ROI signal was computed based on the equation (Chen et al., 2013; Liebscher et al., 2016):

$$F_{ROI_comp} = F_{ROI} + 0.7 \times (\text{median}(F_{neuropil}) - F_{neuropil})$$

where F_{ROI_comp} is the actual signal within the selected ROI after compensating for neuropil contamination, while F_{ROI} reflects the signal within the initially selected ROI; $F_{neuropil}$ represents the signal within the surrounding neuropil.

Traces representing neuronal activity were then low pass filtered at 5Hz. Slow fluctuations were removed by subtracting the 8th percentile within a window of +/−15 seconds (Dombeck et al., 2007). For the estimation of F_0, the 8th percentile was subtracted in a window of +/−15 seconds and the median of all values below the 60th percentile of this ‘noise band’ was then used as F_0. This approach allowed for detection of F_0 for both highly active and silent cells.

In the end, traces were smoothed over five frames, and then transients were identified. To be considered individual transients peaks in the traces had to have a minimum distance of 15 frames (1.5 seconds) and a minimum height of 3x standard deviation of the noise band. The classification into activity groups was based on the frequency of transients according to earlier described groups (Busche et al., 2008): silent and hypoactive neurons < 0.25 transients/min; normoactive neurons 0.25 - 4 transients/min; hyperactive > four transients/min.

3.6.3 Plaque distance analysis

Plaque distance analysis was carried out in MATLAB (MathWorks) using custom-written routines, kindly provided by Dr. Sabine Liebscher (Figure 17).

The position and size of the ROIs were projected into the 3D rendered overview stack semi-manually. The two channels carrying either the Ruby2 or the Methoxy-XO4 signal were background-subtracted. Subsequently, the GCaMP6m (green) channel was subtracted from the Methoxy-XO4 (blue) channel to remove slight bleed-through. Then, each frame of the Methoxy XO4 channel was median-filtered and binarized with the threshold being the background
fluorescence level plus 3x standard deviation. Distance between the neurons and the plaques was measured as the 3D Euclidean distance between the centroid of the respective neuronal ROI and the nearest Methoxy-XO4 positive voxel.

In parallel, all overview stacks were visually checked, and 3D rendered stacks were inspected for accurate neuron and plaque detection and assignment. This helped to rule out accidental measuring of the distances between neurons and voxels carrying signal from the dura. The distances from those incorrect assignments of plaque voxels were exchanged for the manually measured distances. Manual measurement was done with manual measurement tool in ImageJ (http://rsb.info.nih.gov/ij/), the distance between the centroid of the respective ROI and the nearest was measured Methoxy-positive voxel taking into account Pythagorean theorem in case the nearest plaque was not in the same plane as the ROI.

![Figure 17. Measurements of plaque to neuron distances in 3D space.](image)

A. Representative in vivo two-photon image, showing the location of a Ca\(^{2+}\) imaging field of view (dashed rectangle) within the single plane of a z-stack (GCaMP6s green, mRuby2 red). Selected regions of interest (ROIs) and amyloid plaques are marked by solid and dashed lines, respectively. Example ROIs marked by numbers 1-5 correspond to neurons 1-5 in (B). The arrow indicates the viewing angle in (B).

B. 3D reconstruction of the z-stack of the imaged area shown in (A) with the location and distances between amyloid plaques (blue) and the selected ROIs (green). ROIs numbers correspond to the ones in (A). Lines connecting the ROIs and the plaques represent the shortest distance from a given neuron to its nearest plaque border.

3.7 Statistics

Neuronal activity and fractions of different activity categories and their changes over time were compared using a two-way repeated measure ANOVA. Distributions of activity changes were
compared using a Kolmogorov-Smirnov (KS) test. P-values are reported as follows: *P < 0.05, **P < 0.01 and ***P < 0.001.
In order to characterize the activity of neurons in the frontal cortex of AD model mice, I performed longitudinally in vivo two-photon imaging in APPPS1 transgenic mice and their non-transgenic littermates at the age of 4-5 months. The establishment of the method and the results of the measurements are described in this chapter.

4.1 Method establishment

To investigate the neuronal activity of the neurons in the frontal cortex of the AD transgenic mice I used in vivo two-photon microscopy in awake animals. The technique was implemented in the chronic approach, allowing for repetitive measurements of the same set of neurons.

One of the major challenges of this thesis was that the method was not fully established in the lab at the beginning of the project. Therefore, together with Dr. Marinkovic, I invested significant time in the initial phase of the project to establish the methodology and adjust it to AD transgenic line. As first steps, we adjusted virus injection titre to avoid toxic effects, and further setup the imaging parameters to follow cells and plaques (found suitable laser power to avoid cell damage and bleaching). Next crucial step in the establishment of this method was working out the parameters for awake imaging, including habituation and suitable holder. Successful habituation helps provides stability of the visual plane which is necessary for the good quality recordings.

According to the literature reports at the beginning of the project habituation and training time was planned to be one week with daily trials. However, the APPPS1 mice proved to be more difficult to train compared to the other mouse lines used in our laboratory. After one-week training, the APPPS1 mice were still not ready and kept moving under the microscope, which
created too many artifacts in the imaging data. The imaging data for these mice thus had to be excluded. To solve the problem of artifacts in the following experiments, two solutions were implemented. The first one was a longer training period (up to three weeks), the second one – improved holder with a longer head-attached bar that provided stronger hold for the head-fixation.

The final settings for training were two- to three-week training with a very slow increase in the time of head-fixation. These settings proved to be appropriate for this mouse line and helped to reduce the amount of excluded trials in the following experiments.

![Figure 18. Improvement of the head-fixation bar.](image)

Improved holder (on the right) has a longer head-attached bar that provides stronger hold for the head-fixation.

Overall, in the final dataset, only the mice that had three imaging time points with the total span of 4 weeks were included. This represents 9 APPPS1 mice and 5 control non-transgenic littermates. In the following sections, the imaging time points will be referred to as time points 1, 2 and 3 (tp1, tp2, tp3) or weeks 0, 2, 4.

The microscopic imaging was accompanied by the imaging of the whiskers with the web camera to distinguish active awake and quiet awake behavioral states. The reasoning behind this discrimination was the hypothesis that different behavioral states could create different brain dynamics and thus drive neuronal activity in different directions. Additionally, monitoring the mouse with the web camera during the imaging session allowed me to make sure it does not fall asleep and does not express signs of distress.

The active states were defined as the periods, in which the mouse moves the whiskers. These periods lasted for 1-10 sec each and comprised 5-30% of the whole imaging session time. The rest of the imaging time, when the mouse did not actively move was defined as quiet time.
RESULTS

Figure 19. Exemplary traces of neuronal activity of individual neurons recorded with in vivo two-photon imaging.

A, B. Representative average projections of a recorded field of view (FOV) in the frontal cortex of both a WT (upper panel) and an APPPS1 (lower panel) mouse (mRuby2 expression shown in red, GCaMP6s in green). Example traces of neurons labeled within the projections are shown below. Dashed lines denote the location of amyloid plaques.

However, contrary to my hypothesis I could not find any difference in neuronal activity in my areas of interest in active and quiet states. Neither there was any correlation between average neuronal activity and fraction of whisking time in the total imaging time (Figure 20, A; week 0: WT – p=0.72556 R=−0.13683, APPPS1 – p=0.63586 R=0.091778; week 2: WT – p=0.077792
R = 0.5816, APPPS1 – p = 0.70965 R = 0.07226; week 4: WT – p = 0.30385 R = −0.34161, APPPS1 – p = 0.35949 R = −0.17658), nor excluding the active state could change the overall activity distribution (Figure 20, B, C). Since during active state frequent imaging artifacts occur, for the further analysis only the data from the quiet state was included.

Figure 20. Active periods distinguished by the whiskers movements are not influencing activity of neurons in the recorded areas.

A. There is no correlation between average neuronal activity and fraction of whisking time in the total imaging time.

B. Cumulative distribution of neuronal activity if the whole imaging period is included.

C. Cumulative distribution of neuronal activity if whisking periods are excluded.

In total in the neuronal activity analysis 14 mice were included, 9 transgenic mice of APPPS1 line and 5 of their non-transgenic littermates as a control (WT), with 38 individual experiments (fovs)
and 2253 neurons (APPS1: 29 fovs, 1691 neurons; WT: 9 fovs, 562 neurons) analysed (Figure 21).
RESULTS

Figure 21. Color-coded neuronal activity of individual neurons (ROI) over time in each of the individual experiments (fov - field of view).

4.2 Identity of the imaged neurons

Neocortex consists of two major populations of neurons, that have very different influence on the overall neuronal circuit dynamics - excitatory and inhibitory neurons. It is thus important to distinguish these two populations when looking at the neuronal activity. It was earlier reported that high titer of AAV2/1 efficiently transduces both cortical excitatory and inhibitory neuronal populations, but the use of lower virus titers leads a strong preference for transduction of cortical inhibitory neurons and layer 5 pyramidal neurons (Nathanson et al., 2009). However, other studies reported equal expression of the virus construct carried by AAV2 (Aschauer, Kreuz and Rumpel, 2013). Thus, it was important for me to determine which neurons are expressing the viral construct in my experimental settings and which neurons – excitatory or inhibitory – were preferentially imaged.

To probe the identity of neurons that were imaged in vivo, post-hoc immunochemical stainings against GAD67, inhibitory neurons marker, were performed on the brain slices from the imaged area of frontal cortex. Fluorescence of the Ruby protein was used as a marker of virus-transfected cells, as the respective gene was carried by our virus construct and thus is only expressed in the transfected neurons.

After the staining, the number of GAD67-positive, Ruby-positive and GAD67-Ruby double-positive neurons were included in the analysis (n=3 mice). Out of these neurons, expressing Ruby and GCaMP6 in layer 2/3, only 3.57% (SD 1.14) were stained against GAD67. This means that most of the imaged neurons (>95%) are excitatory neurons and the contribution of the inhibitory neurons impact on the resulting neuronal activity can be neglected (Figure 22).
RESULTS

Figure 22. Immunostaining of Ruby-expressing neurons against GAD67 to identify inhibitory neurons.

A. Immunohistochemical analysis of GCaMP6s-mRuby2-expressing neurons. Left, middle and right panels represent confocal images of mRuby2, Gad67 immunohistochemical staining and merged image, respectively. The white arrowhead marks a Gad67 positive neuron, cyan arrowhead points to a mRuby2 positive, Gad67 positive neuron.

B. Quantification of the relative proportion of Gad67 positive, mRuby2-expressing neurons. 3.57% of the mRuby2 expressing neurons (which co-express GCaMP6s) were positive for Gad67 (760 mRuby2-positive neurons, three mice, data are mean +/- SD).

4.3 Frontal cortex neurons in the AD transgenic mice have increased activity

For the assessment of the activity of cortical neurons in APPPS1, we analysed the spontaneous ongoing cortical activity, which is known to be an important determinant of information processing in the brain (Arieli et al., 1996; Anderson et al., 2000; Ferezou, Bolea and Petersen, 2006; Marshall et al., 2006; Ji and Wilson, 2007). Importantly, mice were awake so that no artifacts of anesthesia would hinder the activity. I simultaneously monitored spontaneously occurring somatic Ca\(^{2+}\) transients in many individual cells. Such Ca\(^{2+}\) transients directly reflect the firing of action potentials in neurons (Kerr, Greenberg and Helmchen, 2005; Sato et al., 2007). The calcium imaging data was then processed and analyzed with the help of the custom-written MATLAB scripts, kindly provided by Dr. Gotlstein (pre-processing) and Dr. Liebscher (frequency analysis) (for a detailed description see Material and Methods).

APPPS1 mice demonstrated the higher average activity of cortical neurons at all three time points compared to the control. However, there was no significant difference of average activity between the three time points in each of the groups (Figure 23, A). Average neuronal activity of layer 2/3 neurons in the frontal cortex of WT and APPPS1 mice was measured as transients per minute and as the area under the curve per minute. The frequency of transients (effect of group: \(F_{1,72} = 6.07, p = 0.02\); effect of time: \(F_{2,72} = 2.23, p = 0.12\); group-by-time interaction effect: \(F_{2,72} = 0.91, p = 0.41\)) increased in APPPS1 mice throughout the experimental period and the same is
true for the area under the curve (effect of group: $F_{1,72} = 4.58, p = 0.04$; effect of time: $F_{2,72} = 9.72, p = 0.0002$; group-by-time interaction effect: $F_{2,72} = 1.67, p = 0.2$) are. These results are in agreement with the previous publications, reporting increased activity of the neurons in AD mice (Busche et al., 2008, 2012, 2015; Keskin et al., 2017).

Previous publications reported that AD mice exhibit increased number of hyperactive neurons (Busche et al., 2008). This finding was based on the division of all the neurons into three groups, according to their activity. So, we next also classified all the imaged neurons into three categories (the same classification as in Busche et al., 2008): silent and hypoactive neurons – less than 0.25 transients per minute, normally active neurons – 0.25-4 transients per minute and hyperactive neurons – more than 4 transients per minute. Both APPPS1 transgenic mice and their non-transgenic littermates had all three types of neurons, but in the transgenic mouse the pattern of activity was distinctly different from that in the non-transgenic control animals (Figure 23, B). APPPS1 mice have a significantly higher fraction of hyperactive neurons (week 0: WT 16 +/- 3%, APPPS1 27 +/- 3%, week 2: WT 14 +/- 3%, APPPS1 28 +/- 3%, week 4: WT 11 +/- 2%, APPPS1 28 +/- 3%, data are mean +/- SEM, plotted is only the mean; effect of group: $F_{1,72} = 7.55, p = 0.009$, effect of time: $F_{2,72} = 0.15, p = 0.86$, group-by-time interaction effect: $F_{2,72} = 0.84, p = 0.43$). The fraction of normoactive neurons is higher in WT mice (week 0: WT 67 +/- 4%, APPPS1 61 +/- 2%, week 2: WT 76 +/- 3%, APPPS1 65 +/- 2%, week 4: WT 74 +/- 3%, APPPS1 63 +/- 2%, effect of group: $F_{1,72} = 6.08, p = 0.019$, effect of time: $F_{2,72} = 3.35, p = 0.041$, group-by-time interaction effect: $F_{2,72} = 0.88, p = 0.42$). The fraction of silent and hypoactive neurons does not differ between genotypes (week 0: WT 17 +/- 4%, APPPS1 11 +/- 2%, week 2: WT 10 +/- 2%, APPPS1 7 +/- 1%, week 4: WT 14 +/- 3%, APPPS1 8 +/- 2%, effect of group: $F_{1,72} = 3.71, p = 0.062$, effect of time: $F_{2,72} = 5.06, p = 0.009$, group-by-time interaction effect: $F_{2,72} = 0.45, p = 0.64$, WT n = 9, APPPS1 n = 29 experiments, two-way repeated measures ANOVA).
RESULTS

Figure 23. Three neuronal activity types in transgenic and non-transgenic mice.

A. Average neuronal activity of layer 2/3 neurons in the frontal cortex of WT and APPPS1 mice, measured as transients per minute (left) and as the area under the curve per minute (right). Thin lines represent the averages of individual FOVs (same set of neurons imaged over three consecutive time points), thick lines represent the mean ± SEM for each time point.

B. Alluvial plots representing the relative proportion as well as the fractional change of hyperactive (>4 transients/min), normoactive (0.25-4 transients/min) and silent (<0.25 transients/min) neurons in WT (left) and APPPS1 (right) mice.

4.4 Aberrant activity of neurons in the AD mouse model represents a stable pattern

Comparing the activity of neurons over time, we have noticed that while the activity of individual neurons can change between three analyzed time points, the composition of different activities stayed stable (Figure 24). Specifically, similarity index of neuronal activity (Figure 24, A) did not differ between WT and APPPS1 both for week 0-2 and week 0-4 (effect of group: F1,72 = 0.27, p = 0.6; effect of time: F2,72 = 195.5, p < 10^-9; group-by-time interaction effect: F2,72 = 0.27, p = 0.8). Moreover, the distribution of activity changes (Figure 24, B) does not differ between week 0 and 2 and slightly increases in APPPS1 mice from week 0 – 4 (week 0 – 2: p = 0.08, week 0 – 4: p = 0.03, KS test, WT n = 562 neurons, APPPS1 n = 1691 neurons).
4.5 Only 5% of neurons stay hypoactive in the AD mouse model

Based on the published data on the activity of neurons in AD mouse models, the hypothesis of the stepwise dysfunction of the neurons in AD cortex was proposed (Busche and Konnerth, 2015, 2016). According to this model, as the first step, cortical neurons increase their activity (possibly, due to dysfunction of inhibitory circuitry). This can happen even before the plaque accumulation as a very early step of the disease progression. As the second step of the pathology, neurons, especially those close to the plaques, “turn off” – lose their activity and become silent, which later can lead to neuronal loss according to this model.

The investigation of the neuronal activity in my project confirms an early increase in the activity of neurons. Is it, however, true that the neurons stay in the same level of activity forever? Do the silent and hypoactive neurons lose their activity once and for all?

To address this question, we analyzed the activity of individual neurons and their development over three time points (Figure 25). Interestingly, results demonstrate that only around 5% of all the neurons both in transgenic and control mice stay in the “hypoactive” category. Less than 20% of the neurons change their activity over time both in WT and APPPS1 mice, going from hyperactive or hypoactive to normal activity and vice versa. The fraction of stably hyperactive neurons, i.e., neurons being hyperactive at all three imaging time points, is significantly higher in APPPS1 mice (WT 20% (0 – 21.43 % CI), APPPS1 33.3% (27.3 – 47.2 % CI), p = 0.03, Mann-Whitney U test). Significantly fewer neurons remain normoactive in APPPS1 mice throughout.
the whole imaging period (WT 68.75% (63.89 – 79.1 % CI), APPPS1 57.89 % (48.72 – 67.71% CI), p = 0.02). The fraction of continuously silent neurons does not differ between the genotypes (WT 12.5 % (11.35 -18.2% CI), APPPS1 6.67 % (0 – 13.81% CI), p = 0.18, WT n = 9 experiments, APPPS1 n = 29 experiments, data are median +/- the 95 % confidence interval).

Many of the neurons that change their activity probably have the activity very close to the thresholds of 0,25 and 4 transients per minutes, thus easily changing their category. Only 2% of neurons change dramatically from hyperactivity to hypoactive or the other way around (WT: 9 neurons and 5 neurons change from hyperactivity to hypoactive or vice versa between week 0 and 2 and 0 and 4, respectively, out of 562 neurons; APPPS1: 17 neurons and 21 neurons change from hyperactivity to hypoactive or vice versa between week 0 and 2 and 0 and 4, respectively, out of 1691 neurons).

Figure 25. The activity of individual neurons over time according to three activity categories.

These results demonstrate that categorization of the neuronal activity is not a robust approach, as there will always be some borderline values and thus neurons that can easily change the category. This also demonstrates the advantages of the chronic measurements that provide researchers with more robust information compared to single time point snapshots.

Importantly, the proportion of three groups and overall activity distribution stays stable for each genotype and stably different between them for the whole month of observations. The proportion of stably hyperactive neurons is significantly increased in AD transgenic mice compared to WT mice (WT 20% (0 – 21.43 % CI), APPPS1 33.3% (27.3 – 47.2 % CI), p = 0.03, Mann-Whitney U test). This suggests that however individual neurons can change their activity and even sometimes dramatically, overall circuit composition stays stable.
4.6 Influence of plaque distance on neuronal activity

Aβ plaques are a hallmark of AD and it is well established that the local plaque environment is associated with several pathological features, like dystrophic neurites, synapse loss, and instability, reactive microglia and astrocytes, while the role plaques play in the development of those features is still debated. In some of the previous studies, altered neuronal activity patterns in anesthetized mice were linked to the amyloid plaque proximity (Busche et al., 2008), while in others no dependency of pathological activity alteration from the plaque proximity was found (Liebscher et al., 2016). So, it remains a controversial question whether the direct proximity of the plaque and the factors associated with the plaques can play an important role in the development of the pathological neuronal activity.

We, therefore, analyzed the plaque distance for each neuron and asked if the neuronal activity is different on the different distances to plaques or if neurons close to plaques would present more changes in their activity than neurons further away from plaque.

![Figure 26. Distribution of plaque to neuron distances at three different imaging time points.](image)

For plaque distance-dependent activity analysis, we used 653 neurons from 6 APPPS1 transgenic mice, which comprise 15 individual experiments (individual neuronal activity imaging areas). To allow for reliable results, only experiments, in which it was possible to track the distance to the
RESULTS

nearest plaque for all neurons at all imaging time points were included. Included neurons were also included in the overall activity analysis discussed in the previous sections. Distance to the closest plaque, visualized by the Methoxy-XO4 staining, was measured in the 3D space, thus providing a real-life estimation of this distance as compared to the 2D space measurements performed in the earlier studies (Busche et al., 2008).

We have observed that most neurons are located within 100µm from the closest plaque with over half of neurons located in the 40µm vicinity to the plaque. Median plaque distance at the first time point (week 0) was 39.9µm, week 2 – 36.8µm, week 4 – 34.9 µm. As seen from Figure 26 with time plaque distances get smaller, which is natural as the plaques grow.

![Figure 27. The fraction of hyperactive and hypoactive neurons in APPPS1 mice for close and distant neurons in individual experiments. Horizontal line denotes the mean.](image)

Based on the above stated median neuron-to-plaque distances, we divided neurons into close (< 40 µm form the plaque border) and distant (> 40µm from plaque border) from the nearest plaque, respectively. The fraction of hyperactive or silent neurons did not significantly differ between close and distant neurons at the level of individual experiments (Figure 27; week 0: fraction silent close 7 +/- 8%, distant 13 +/- 12%, p = 0.15, fraction hyperactive close 28 +/- 21%, distant 25 +/- 20%, p = 0.62, week 2: fraction silent close 6 +/- 7%, distant: 7 +/- 7%, fraction hyperactive close 32 +/- 22%, distant 24 +/- 17%, week 4: fraction silent neurons close 10 +/- 12%, distant 10 +/- 12%, close n = 15 experiments, distant n = 15 experiments, Students’ t-test).

Relative proportions of hyperactive, normoactive and silent neurons in APPPS1 mice were stable for both close and distant neurons (Figure 28, A; fraction silent neurons: effect of group: $F_{1,56} = 0.68, p = 0.41$, effect of time: $F_{2,56} = 2.62, p = 0.08$, group-by-time interaction effect: $F_{2,56} = 1.16, p = 0.32$; fraction hyperactive neurons: effect of group: $F_{1,56} = 0.44, p = 0.51$, effect of time: $F_{2,56} = 0.13, p = 0.88$, group-by-time interaction effect: $F_{2,56} = 0.78, p = 0.46$, two-way repeated measures
ANOVA, close $n = 15$, distant $n = 15$ experiments; 326 neurons close, 326 neurons distant. However, we also noted that silent or hyperactive neurons were more likely to maintain their activity level from one imaging time point to another if they were close to plaques than if they were further away from plaques (Figure 28, B).

We then divided the neuronal population into plaque distance bins: neurons located within 0-20 µm, 20-40 µm, 40-60 µm, 60-80 µm to the closest plaque (Figure 29) and analyzed changes of neuronal activity in these bins.

Figure 28. Changes in neuronal activity with respect to plaque proximity.

A. The relative proportion of hyperactive, normoactive and silent neurons and their fractional change over time in APPPS1 mice for close (< 40 µm, left panel) and distant (> 40 µm, right panel) neurons.

B. The fraction of neurons with stable neuronal activity category over the whole imaging period for each of the three neuronal activity types for neurons close (striped) and distant (filled) from plaques. Bootstrapped median +/- the 95% confidence interval of the median are presented.

Figure 29. Distribution of plaques distances.

A. Distribution of the absolute number of neurons of the three neuronal activity categories as a function of plaque distance.

B. Distribution of the relative fraction of neurons for the three activity categories as a function of plaque distance (data is based on pooled neurons from 15 experiments). Important to note, beyond 100 µm very few cells were found, which affects the proportional abundance of the three categories.
We have found that the majority of neurons preserve their activity. Most of neurons (week 0 – 2: 79%, 82%, 78%, 80%; week 0 – 4: 76%, 81%, 81%, 86%) of the respective bins 0-20, 20-40, 40-60, 60-80μm distance change their activity within a range of +/- 2 transients/min, and this change was independent of the plaque proximity (Figure 30).

Figure 30. Cumulative distribution of the change in neuronal activity for neurons in different plaque-distance bins.

Activity changes are calculated from the first imaging time point to the second (upper panel) and from the first to the third (lower panel). The vast majority of neurons change its activity within a range of +/- 2 transients/min (gray box).
The aim of this thesis was to investigate the activity of the cortical neurons in the Alzheimer’s disease model mouse in the early stages of pathology progression with the use of in vivo two-photon microscopy. The specific focus of this study was to follow neuronal activity over time: from an early stage of the disease to the stage where amyloid plaque load is high and advanced axonal pathology is present.

Alzheimer’s disease is accompanied by a range of synaptic dysfunction signs, from synaptic depression and hyperexcitability to eventual synapse loss. Despite decades of research, the pathological triggers behind these alterations remain poorly understood and thus hinder the development of effective treatment. Moreover, it is unclear what is the sequence of pathological events and their relation to amyloid-β (Aβ) and amyloid plaque deposition.

Results obtained in various animal models of the disease show Aβ–mediated inhibition of synaptic currents (Hsia et al., 1999; Kamenetz et al., 2003; Chang et al., 2006), disruption of synaptic plasticity (Walsh et al., 2002; Jacobsen et al., 2006), as well as endocytosis of glutamate receptors (Kamenetz et al., 2003; Oddo et al., 2003; Snyder et al., 2005; Hsieh et al., 2006; Shankar et al., 2007; Nimmrich et al., 2008). These findings are summarized in the synaptic failure hypothesis suggesting that “AD represents, at least initially, an attack on synapses” (Selkoe, 2002). At the same time, different dysfunctional states were observed in different experimental approaches, which makes it difficult to put these events together in one timeline and see their relationship. It is still an open question of how these low-level synaptic changes are connected to overall circuit dysfunction.

The classic view is that the structural damage by amyloid plaques and the loss of neurons underlie cognitive impairment in AD through a reduced cortical activity (synaptic failure hypothesis of AD). However, this hypothesis is challenged by recent findings from animal and human studies showing...
that excessive neuronal activity, hypersynchrony and altered brain oscillations are also key features of the disease. However, even though abundant, the data provided by different laboratories does not seem to come to a consensus, some pointing to the direction of hyperexcitability of individual neurons, others seeing the cause in impaired inhibitory networks activity. Most probably, synaptic depression and excessive neuronal activity coexist in an unknown manner in AD transgenic mice as well as in humans with AD, leading to overall functional distortion of the circuits and networks.

Another controversial point in understanding Alzheimer’s disease neuronal activity pathology is the relationship between amyloid plaques and neuronal activity alterations. On the one hand, many evidence suggests that the vicinity of the plaque creates the pathological environment, that leads to neuronal activity alterations (Busche and Konnerth, 2015). However, it remains unclear whether these alterations appear due to the presence of the fibrillar Aβ, direct effect of Aβ oligomers or other factors such as proinflammatory substances released from activated microglia and astrocytes, that surround the plaque. On the other hand, some other researchers found no correlation between the vicinity of the plaque and neuronal activity (Liebscher et al., 2016).

To better understand the intricate relationship between neuronal activity changes and amyloid aggregate formation, more studies are needed, that will focus on longitudinal measurements of both parameters. Especially important is to move the focus from the late advanced stages of the disease to the early and prodromal stages to catch the first pathological events. Observing the early stages of AD progression was exactly the motivation behind my PhD project, the results of which were presented in the previous chapters.

My results support previously published reports of the increased proportion of hyperactive neurons in the AD mouse model. Importantly, my results also demonstrate that this increased activity is present in an awake state and is stable over a longer period (one month).

Compared to earlier studies the approach of in vivo awake calcium imaging used in the current study has many benefits for brain research. The main advantage is that the brain activity can be measured in the intact state without artefacts generated by anesthesia, which can exaggerate or mitigate experimental readouts. Thus, it is very valuable that in my project I could support earlier published anaesthetized data with awake imaging.

My PhD project presented in this thesis is the first ever longitudinal study investigating the activity of individual neurons in AD. This was possible thanks to the implementation of the two-photon in vivo microscopy with genetically-encoded calcium indicators, which, despite having certain limitations, presents a robust tool for this kind of studies. The result, briefly commented in this
chapter will be further discussed in the following chapters 4.1-4.45, while specifics of further application of two-photon calcium imaging in awake mice will be discussed in chapter 4.1.

5.1 Chronic awake calcium imaging as a tool to further investigate AD pathology

An additional advantage of the presented study is longitudinal imaging approach for the first time applied to investigate the neuronal activity of frontal cortex neurons in AD. This approach allowed for the investigation of neuronal activity of individual neurons over a period of time. By taking advantage of the two-photon microscopy approach and use of genetically-encoded calcium indicators in this study I imaged a large set of individual neurons over a prolonged period and without artifacts of the anesthesia. This provided me with a robust dataset that allows for making solid conclusions.

Nevertheless, the current approach has some limitation, and certain results should be interpreted with care.

The first limitation that comes with calcium imaging is calcium buffering by the calcium indicators. Since calcium indicator like GCAMP6, that was used in the currents study, bind intracellular calcium it can modify calcium concentrations in the cell and thus affect signaling pathways, in which calcium is involved. To mitigate this risk, I have adjusted the titer of GCAMP6-coding virus to still have the required level of GCAMP6 expression but reduce the toxic effects. Further, I have carefully chosen the imaging areas and analyzed neurons. Very bright neurons that did not show fluorescence dynamics were excluded from the dataset. These measures helped to minimize toxic buffering effects of GCAMP6 while providing a stable expression of the indicator.

Another concern that was noted in earlier studies is that the plaque-staining dye Methoxy X-100 can influence and decrease the plaque growth (Cohen, Ikonomovic, et al., 2009; Pratim Bose et al., 2010). Even though, complete elimination of this effect is not possible and should be carried in mind, to decrease this effect Methoxy concentration was possibly low, based on the earlier studies in the lab. Moreover, it should be noted that even if slight alterations in plaque dynamics occurred this should not have influenced the main outcomes of the study, as plaque growth was still observed.

Also, in vivo brain microscopy is an invasive technique where inflammation occurs after the surgery due to exposure of the brain and virus injections. Inflammation can influence many signaling pathways in the tissue and have diverse effects on cell behavior, including the activity of neurons (Zhang and An, 2007). However, earlier studies have shown (Holtmaat et al., 2009) that after the
recovery period levels of inflammation in the brain tissue goes to normal, and thus I used the recovery period of 1 month before the start of the imaging session.

Moreover, the nature of the animal experiments limits the number of animals that can be taken into study. The number of mice used for the plaque distance measurements limits the interpretation power of this part of the study, suggesting that future research should be done to access this question in more details.

Although my study provides new insights into the characterization of the neuronal activity in the AD-affected brain, further work is needed to pinpoint the exact cause of the activity dysregulations. Do alterations in neuronal activity lead to cognitive impairment or are they merely by-products of disease-induced cellular dysfunction? Do alterations in network synchrony cause the dysfunction of microcircuits, larger distributed networks, or both?

Chronic awake calcium imaging used in this project proved to be an invaluable tool to further investigate these questions. Usage of awake and chronic experiments allows to mitigate anesthesia-related artifacts and ensures a more robust readout due to repetitive measurements of the same neurons. Moreover, it provides a robust readout to investigate possible therapeutic interventions, as network activities can be experimentally or behaviorally manipulated.

Having in mind all the benefits of in vivo awake calcium imaging several features of this approach should be taken into account. An important consideration for the usage of in vivo awake imaging is that more consistency needs to be gained in the methodology so that different research groups would use the same approach to the imaging, data analysis, and classification of the activity readouts. Since division into separate activity groups is by definition arbitrary, it is very important to use the same thresholds throughout different studies.

Hopefully, in the coming year's researchers will further apply chronic awake in vivo calcium imaging as a tool to investigate AD pathology, at the same time paying more attention to consistency and accuracy of the experiments, and through this providing a better understanding of the pathology and possible therapeutic approaches.

5.2 AD model mice demonstrate neuronal hyperactivity

Growing evidence from cellular-level recordings, as well as brain-wide monitoring of activity with blood oxygen level-dependent functional magnetic resonance imaging and electroencephalography, suggest that neuronal hyperactivity is a key pathophysiological feature in AD-like mouse models and humans with early-stage AD, underlying behavior-relevant local and
long-range circuit dysfunctions (for the review see Jorge J Palop and Mucke, 2010; Busche and Konnerth, 2016). In my work I conducted two-photon calcium imaging, employing the genetically encoded calcium indicator GCaMP6 (Chen et al., 2013) in APPPS1 transgenic mice and age-matched transgene negative siblings (WT) during four weeks period (4;5-5,5 months of age) to assess AD-related changes of neuronal activity. APPPS1 mice demonstrated the higher average activity of cortical neurons at all three time points compared to control (p=0,03), however, there was no significant difference of average activity between the three time points (p=0,23).

These results provide supportive evidence for the hyperactivity in AD mice in the longitudinal study, that was earlier shown only in acute experiments (Busche et al., 2008). This is valuable support since the chronic imaging approach helps to exclude many factors that usually accompany acute 2P in vivo imaging, such as inflammatory response, naturally occurring as a result of craniotomy and calcium indicator injection. In chronic studies, several weeks pass after the surgery, thus providing more stable and physiologically relevant result. Moreover, the fact that these results are in accordance with the acute experiments data provide a strong support to the earlier results. This spontaneous activity could reflect the described hyperexcitability in AD transgenic mice, which was suggested to be based on impaired inhibition (Palop et al., 2007; Busche et al., 2008; Garcia-Marin et al., 2009; Jorge J. Palop and Mucke, 2010; Limon, Reyes-Ruiz and Miledi, 2012; Verret et al., 2012).

My results add to the previous observation made mostly in the anesthetized mice. Previous studies in the frontal and visual cortex, demonstrating hyperactivity in AD mice, were only done in anesthetized mice (Busche et al., 2008; Grienberger et al., 2012). Moreover, this is an important finding as studies made in awake mice that overexpress a human mutant form of tau (P301L) and develop cortical NFTs showed no functional changes compared to the healthy neurons (Kuchibhotla et al., 2014).

In that study, researchers used awake in vivo two-photon calcium imaging to monitor neuronal function in adult rTg4510 mice. Unexpectedly, NFT-bearing neurons in the visual cortex appeared to be completely functionally intact, to be capable of integrating dendritic inputs and effectively encoding orientation and direction selectivity, and of having a stable baseline resting calcium level (Kuchibhotla et al., 2014).

At the same time, my results agree with another awake study conducted by Liebscher et al. (Liebscher et al., 2016), in which researchers observed increased spontaneous activity during quiescent states when neuronal activity is typically strongly reduced.
The discrepancy with some of the earlier studies potentially results from the different experimental conditions, as in these studies researchers conducted their experiments in anesthetized mice, employing the synthetic calcium indicator Oregon Green BAPTA-1 (OGB-1) (Busche et al., 2008; Grienberger et al., 2012). Moreover, experiments using OGB-1 are performed acutely, shortly after the craniotomy and indicator injection. Conversely, experiments employing virus-mediated expression of genetically encoded calcium indicators are performed at least 4 weeks post-injection and window implantation, allowing for complete recovery time from potential tissue damage.

Thus, my results provide strong support for the findings of hyperactivity in AD mice. This also suggests that this line of research should be continued further to identify the underlying cause of the activity changes.

Surprisingly, according to my results, there is no progress in the activity changes throughout these four weeks. One could expect to observe the change from normal activity to hyperactivity and further change from hyperactivity to hypoactivity according to the model proposed by Konnerth and Busche based on the acute experiments data comparing young and old AD mice (Busche and Konnerth, 2016). In the APPPS1 model, the age between two to four months is a time of fast development of the pathology, manifested in increasing plaque load (Radde et al., 2006) and increasing malfunction in behavioral tests (Radde et al., 2006; Serneels et al., 2009). One could expect that neuronal activity changes would follow the development of the pathology; however, this was not observed in my experiments.

This discrepancy with previously published data and proposed hypothesis can be due to several reasons. Firstly, possibly the imaging period was not long enough to see the changes in the activity. Secondly, maybe at this age there are no changes of activity anymore, as the neuronal activity is altered but stabilized by this time point. Thirdly, it is possible that in this mouse line neuronal activity is altered from a very early age due to the transgene expression and this the controversy with published data could be connected to the mouse line differences. Mouse line differences exist both due to the different nature of the transgene (APP or PS mutation, promoter, insertion site) and due to the differences in line background (Võikar et al., 2001).

To summarize, the results of my study do not only provide strong support to the earlier findings of neuronal hyperactivity in AD but also point out to the need of further chronic studies in AD models. One-time snapshots gained with the use of acute experiments do not provide us with extensive data on neuronal activity changes development. There is a clear need in further longitudinal studies that will allow for recording the development of the changes and deciphering
details of how individual cells change their activity. These studies should both approach the early and late stages of AD progression, and presented study provided first hints in this direction.

5.3 The altered pattern of neuronal activity is stable

Earlier studies demonstrated that AD mice exhibit changed proportion of hyperactive and silent neurons compared to healthy mice (for the review see Jorge J Palop and Mucke, 2010; Busche and Konnerth, 2016), however, as earlier studies were done acutely, it was not possible to find out whether this altered activity pattern is transient or a stable.

To address this question, I researched neuronal activity in the early stage of AD over four weeks. My hypothesis was based on the fact that Aβ oligomers were soluble and might spread throughout the brain, thus if they affect neuronal activity, these effects would be transient, and the pattern of neuronal activity would not be stable. However, if some early pathological events influence neuronal circuits, we would observe a stable pattern of altered neuronal activity. To this end, I utilized an approach of in vivo two-photon calcium imaging of the cortical neurons in transgenic mouse models of AD. This method allows functional, cellular-resolution imaging of neuronal populations in the cortex over a prolonged period of time.

According to my data, in the transgenic mice a larger proportion of neurons were hyperactive and a smaller proportion – hypoactive, compared to the control non-transgenic mice. In the transgenic mice, hyperactive neurons represent 20% of all the neurons, hypoactive – 10% and normoactive – 70%. These results are comparable to published reports, but are not completely equal (Busche et al., 2008; Greenberg, Houweling and Kerr, 2008). In these earlier studies, in transgenic mice, only 50% of the neurons were active in the normal frequency range, whereas the remaining neurons were at roughly equal proportions, either silent or hyperactive. Busche et al. observed a 16-fold increase in the fraction of hyperactive neurons and a threefold increase in the fraction of silent neurons compared to the healthy mouse brain (Busche et al., 2008).

Why the proportion of normally active neurons is higher in my experiments can be explained by the differences between transgenic lines and the age difference. The mice examined by Busche and colleagues were of the age 6-10 months, while my experiment lasted from 4 months to 5 months of age, which means my mice were younger and maybe had less pronounced pathology of the neuronal activity.

My results indicate that there is indeed a bigger proportion of very active neurons which is caused either by the disturbed properties of the neurons or by the disbalance of underlying circuitry. To
address the question of the underlying cause of the activity alterations we analyzed the activity of individual neurons and its development over three time points.

Importantly, the proportion of three groups and overall activity distribution stays stable for each genotype and stably different between them for the whole month of observations, meaning that most of the neurons stay in the same type of activity (hyper-, normo- or silent) throughout this month. If we exclude all the neurons that change between the groups, the proportion of stably hyperactive neurons is still increased in AD transgenic mice compared to control mice (15% in APPPS1 mice and 10% in control mice). This suggests that even though individual neurons can change their activity and sometimes dramatically, overall circuit composition stays stable. This is an important finding as the stability of the altered circuitry in AD mice was not investigated so far in the experimental work since no chronic experiments were done.

While overall circuitry stays stable, almost a quarter of the neurons change their activity over time, going from hyperactive or hypoactive to normal activity and vice versa. However, most of these neurons have the activity very close to the thresholds of 0,25 and 4 transients per minutes, thus easily changing their category. Only 2% of neurons change dramatically from hyperactivity to hypoactive or the other way around. This observation demonstrates that categorisation of the neuronal activity is not a robust approach, as there will always be some borderline values and thus neurons that can easily change the category. This also demonstrates the advantages of the chronic measurements that provide researchers with more robust information compared to single time point snapshots.

Overall, my results suggest that early pathological events influence the whole neuronal circuitry rather than individual neurons, and for this reason, we observe a stable pattern of altered neuronal activity.

5.4 Hypoactive neurons might still be functional

As mentioned in the previous chapter, a prominent proportion of neurons changes their activity between three activity groups, and main changes happen in the hypoactive and silent group, distinguished by the activity level of 0-0,25 transients per minute. Interestingly, my results demonstrate that only around 5% of all the neurons both in transgenic and control mice stay in this hypoactive category. This is an interesting finding that has important implications for how hypoactivity of neurons in AD is interpreted.
According to the earlier reports, based on the acute experiments, researchers suggested that hypoactivity leads to silencing of neurons and is one of the pathological features of AD, that causes neurons to later degenerate. However, my results point out that most of the observed neurons did not stay in hypoactive state for all the 4 weeks of observation. This suggests, that the hypoactivity and silencing of the neurons can be reversed at least at the early stages of the disease.

My observations correspond well to the recent study by Keskin et al. in which researchers were able to revert hyperactivity with BACE inhibition (Keskin et al., 2017). Authors mention that this finding was unexpected in regard to previous evidence indicating that at such advanced disease stages, many pathological and cellular processes are chronic and mostly irreversible. On the contrary, they found that most dysfunctional neurons in the amyloid-plaque bearing neocortex are still viable and that their “hyperactive phenotype” can be reversed by reducing Aβ in the brain. Moreover, this correction of excess neuronal activity correlated with both a recovery of long-range circuits and memory functions. My results support the interesting finding of Keskin and colleagues, as my study also shows that indeed most of the silent and hypoactive neurons are still functional, suggesting that also the hyperactive neurons might not be fully dysfunctional. Moreover, if the alterations in neuronal activity are mainly due to the circuit dysfunction and not the alterations of individual neurons as suggested in the section 4.2., one could expect that these changes are more easily reversed.

Discussing the work of Keskin et al. it is also worth mentioning that there is a significant inconsistency in how researchers use neuronal activity categories even within the same research group, shifting the threshold for hyperactive neurons from 4 transients per minute in the earlier studies (Busche et al., 2008) to 6 transients per minute in more recent studies (Keskin et al., 2017). In my opinion, it is important to gain more consistency in the experiments and reporting of the neuronal activity changes in AD, that would allow for more precise comparison of the different studies. It also points out the importance of longitudinal studies as they help to gain more reliable results. Acute studies provide a chance for bigger sample groups but are more prone to outside factors that can contribute to the data fluctuations.

To summarize, results of my project together with another recent study by Keskin et al. (Keskin et al., 2017) suggest that activity alteration of neurons, both in the direction of hypo- and hyperactivity can be reversed as the neurons are still functional. This funding has important implications for the potential treatment of AD, as it points out that interventions can stabilize and revert activity alterations and even if not cure at least prevent worsening of the cognitive symptoms. Recently, increasing evidence from animal and human studies indicated that along with contributing to
memory impairment, neuronal hyperactivity can worsen Aβ plaque deposition (Bero et al., 2011; Yamamoto et al., 2015; Yuan and Grutzendler, 2016; Leal et al., 2017), and even neurodegeneration (Putcha et al., 2011); thus, the normalization of neuronal activity levels may directly modify disease progression.

5.5 Distance to the plaques does not affect aberrant neuronal activity

Amyloid plaques have been intensively studied over decades, however, as discussed in the chapter 1.1.2. Their role in the pathology is still debated. Several studies reported that direct vicinity to the plaques influences the stability of synapses leading to the elimination of spines (Bittner et al., 2012; Liebscher et al., 2014). However, some other studies suggest that spines loss can occur even before plaque deposition (Hsia et al., 1999; Mucke et al., 2000; Lanz, Carter and Merchant, 2003; Jacobsen et al., 2006) and also in the areas far away from plaques (Bittner et al., 2010).

The results of neuronal activity investigation in relation to plaque distances are also inconclusive. Early study by Busche et al. for the first time reported activity changes in the AD mice and also reported that most of the affected neurons are located in the direct vicinity of the amyloid plaques, proposing that pathological conditions around the plaque are the main cause of the activity changes (Busche et al., 2008). Nevertheless, some of the later studies did not find a correlation of neuronal activity changes with the vicinity of the plaque (Liebscher et al., 2016).

The study by Busche et al. (Busche et al., 2008) was performed implementing acute calcium imaging, and plaque distances were only calculated within the 2D space of the imaging plane. To perform a more robust measurement of plaque influence on the neuronal activity in my study, I imaged neuronal plaques repeatedly at all three time points along with activity measurements and also imaged tissue in 3D. Surprisingly, my data suggested that distance to the plaque is not a factor impacting activity changes of affected neurons, as the majority of the neurons preserve their activity during 4 weeks of imaging independent of plaque proximity.

One of the possible explanations of the contradiction with previous literature could be the difference in methodological approach. In my study, the distance to the plaque was assessed in the 3D space, while in the earlier publication by Busche, which established the connection between the plaque and the activity changes, distance measurement was done in the 2D plane. According to my experimental experience 3D assessment is indeed crucial, as in many cases the closest plaque was situated right above or below the imaging plane. Simply visually examining the planes above and below the imaging plane as reported by Busche and colleagues (Busche et al., 2008) is not enough for reliable measurements of plaque distances.
However, my results are in agreement with the recent paper by Liebscher et al. (Liebscher et al., 2016), where authors found no indication that neurons close to plaques are affected differently by neurodegenerative processes than those being further away. This finding at first glance seems to contradict other results of the structural alterations (reduced spine density and synaptic instability) tightly linked spatially to amyloid plaques (Liebscher et al., 2014). A neuron’s activity can, however, be dysregulated at multiple levels and while structural changes only occur close to the plaque, the consequences of these changes also affect the neuronal soma that is not in the direct vicinity of the plaque.

The earlier studies propose that there is something particularly toxic in the direct vicinity of the plaque, e.g., toxic Aβ species or some mediators of inflammation. However, my results indicate that a more plausible explanation would be the overall circuit dysfunction in the AD mice, as also discussed in the previous sections. In this case, the distance to the closest plaque is not expected to have a big impact on the neuronal activity. This does not mean though that the vicinity of the plaque is not toxic, but rather that it is not adding more to the activity changes. At the same time, this activity can be toxic to the spines or microglia as was pointed out in the earlier studies to find the closest plaque and thus precise measurements in 3D space are required.
References

Gómez-Isla, T. et al. (1999) ‘The impact of different presenilin 1 and presenilin 2 mutations on

Hick, M. et al. (2015) ‘Acute function of secreted amyloid precursor protein fragment APPsζ in...

Acknowledgment

I would like to express my sincerest gratitude to the people who supported me in the completion of this PhD thesis.

I would like to thank my supervisor, Prof. Dr. Jochen Herms, for offering me the opportunity to carry out my PhD research in his lab, providing funding, equipment and other resources and members of my TAC, Dr. Dr. Sabine Liebscher, Prof. Dr. Armin Giese, Prof. Dr. Stefan Lichtenthaler, for their time and advice for my project.

I am grateful to all the lab members of Herms working group who helped me through my experimental work in the laboratory as well as while writing of this thesis. I am especially thankful to Dr. Petar Marinković for teaching me everything I know about the two-photon microscopy, for his support and encouragement and the suggestions and corrections of this thesis. I am thankful to Dr. Sonja Blumenstock, Dr. Mario Dorostkar, Dr. Severin Filser and Dr. Lidia Blazquez-Llorca for helping me learn cranial window implantations and other experimental techniques and Dr. Finn Peters for the support with MatLab, their advice and support. I would also like to thank peer PhD students Elena Montagna, Hazal Salihouglu, and Sophie Crux for their engagement, advice, and friendship that immensely helped me through hard times. I also thank Eric Grießinger, Sarah Hanselka, and Nadine Lachner for excellent technical support.

I am very grateful to the GSN for providing guidance and training, and for a chance to be part of a thriving, enthusiastic, and talented group of PhD students and faculty. Many of the fellow students who I met through GSN became dear friends, whose passion and dedication inspired me and served as an example. And I am especially grateful to Dian Anggraini (now Dr. Dian
Anggraini) for being there for me in difficult times, for seeing the best in me in my times of doubt and for literally contributing to the realization of this thesis through our writing sessions.

Moreover, I owe to GSN a prominent role in bringing this PhD project to life, as through GSN, I met two collaborators who immensely helped me with data processing and analysis. In this regard, I am thankful to Dr. Pieter Goltstein, who shared and adapted his MatLab scripts for my calcium data processing. And I am deeply grateful to Dr. Sabine Liebscher for her crucial help with data analysis, for fruitful discussions of the project’s results, advice and her immense support and patience that helped me to finalize the project and this thesis.

Additionally, I want to express my gratitude to the people in my personal life for their unconditional support and love. I am incredibly grateful to my parents Liudmila and Valery and my sister Yana for always being on my side and supporting my decisions in life. I am thankful to the students I have the luxury to meet through coaching and to the English-speaking science communication community of Munich (and especially to 15x4 Munich) for a feeling of self-worth I gained through my extracurricular activities. I thank Daniil Pokrovsky, Anastasia Andrushenko, Ivan Timofeev, Evgeny Resnik and Russian Lunch group for making my time in Munich such a great experience and for their understanding and manifold support. And I am immensely grateful to Evgeny Labzin who every day inspires me to be myself and always strive for bringing my dreams to life.

And last but not least, I want to thank my colleagues at the IMPRS-LS coordination office, Dr. Hans-Joerg Schaeffer, Dr. Ingrid Wolf, and Maxi Reif, for their help, advice, support in finishing of this thesis and their patience for my German skills. It was a great pleasure to be a part of IMPRS-LS team and to get to know so many talented people during my time in the coordination office.

My road to this point was longer than I anticipated, and during the last six years, many more people, directly and indirectly, contributed to this PhD thesis. They helped me to find a new home in Munich, but at the same time to stay in touch with my native land and language, to find my strengths and grow points, to stay sane even in the hardest times and enjoy the little things. And I am sincerely grateful for this support!
Curriculum Vitae
Viktoria Korzhova

Education

PhD student, Ludwig Maximilian University
Graduate school of Systemic Neuroscience
Nov 2013 – Dec 2019
Munich, Germany

MSc, St. Petersburg State University
Major – Physiology. Diploma summa cum laude
Sep 2011 – Jul 2013
St. Petersburg, Russia

BSc, St. Petersburg State University
Major – Genetics. Diploma summa cum laude
Sep 2007 – Aug 2011
St. Petersburg, Russia

Research experience

PhD student, German Center for Neurodegenerative Diseases (DZNE)
Supervisor – Prof. Jochen Herms
PhD research project: Investigation of neuronal activity in a murine model of Alzheimer’s disease using in vivo two-photon calcium imaging
Nov 2013 – Oct 2017
Munich, Germany

Weizmann Institute of Science, Department of Biochemistry
Supervisor – Prof. Tony Futerman
Summer research project: cerebellar involvement in pathology of neuropathic Gaucher disease
Jul – Aug 2013
Rehovot, Israel

University of Texas, Southwestern Medical Center
Supervisor – Prof. Ilya Bezprozvanny
Master research project: synaptic dysfunction in a mouse model of Huntington's disease
Sep 2012 – Dec 2012
Dallas, USA

Lausanne University (UNIL)
Supervisor – Prof. Luc Pellerin
Summer research project: localization of monocarboxylate transporter MCT2 in lipid rafts
Jul 2012 – Aug 2012
Lausanne, Switzerland

Sechenov Institute of Evolutionary Physiology and Biochemistry
Supervisor – Dr. Yury Pastukhov
Research project: protective effects of heat shock protein Hsp70 in rat model of Parkinson’s disease
Sep 2011 – Jun 2012
St. Petersburg, Russia

St. Petersburg State University, Department of Genetics
Supervisor – Dr. Alexander Rubel
Bachelor research project: development of experimental system to investigate the direct interactions of Aβ peptide and Prion Protein using fluorescent microscopy
Sep 2008 – Jun 2011
St. Petersburg, Russia
Professional and volunteer experience

Neurotar Oy Ltd
Application Specialist
Jun 2019 – current
Munich, Germany
- Sales and interaction with prospective clients
- Client support
- Social media and website management

IMPRS-LS Coordination Office, Max Planck Institute for Biochemistry
scientific coordinator
Nov 2017 – Jun 2019
Munich, Germany
- Organization and management of soft skill courses for PhD students
- Evaluating the application of incoming PhD students and organizing the recruitment and selection of PhD students during the interview week
- Designing the career development program for the PhD students

Science communication and public outreach activities
Organizer, speaker
2012 – current
Germany and Russia
- Organizer of the 15x4, science communication lectures, since 2017
- Director and organizer at the German chapter of the annual science festivals Pint of Science and Soapbox Science in Munich, since 2016
- Speaker at the Bavaria finals of science communication competition FameLab, Regensburg, 2016
- Organizing team of Kids Brain Day at Ludwig-Maximilians University, Munich, 2016
- Author and editor of the Russian science communication website Biomolecula.ru, since 2012

Languages

English (fluent), *Russian* (native), *German* (conversational, B2), *French* (beginner)
List of Publications

Eidesstattliche Versicherung
Affidavit

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation:

selbständig angefertigt habe, mich außer der angegebenen keiner weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachgewiesen habe.

I hereby confirm that the dissertation “Investigation of neuronal activity in a murine model of Alzheimer's disease using in vivo two-photon calcium imaging” is the result of my own work and that I have only used sources or materials listed and specified in the dissertation.

Munich, 04.06.2019

Viktoria Korzhova, M.Sc.
Declaration of Author Contributions

Viktoria Korzhova and Petar Marinković conceived and planned the project. Viktoria Korzhova performed *in vivo* two-photon experiments and analyzed the data. Petar Marinković helped with in cranial window implantation surgeries and imaging. Sabine Liebscher and Pieter Goltstein wrote data analysis scripts. Viktoria Korzhova and Sabine Liebscher performed data analysis and interpreted the data. Viktoria Korzhova wrote the manuscript. Jochen Herms designed the study and supervised the research.

I hereby confirm the specified contributions for the preparation of the manuscripts.

Munich, 04.06.2019

Viktoria Korzhova, M.Sc. Prof. Dr. Jochen Herms