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1. Introduction 
 

1.1 Overview 

 
The ability to learn and form memory is of vital importance, not only for basic 

survival, but also as a basis for higher cognitive functions. This ability is attributed to 

the cells of the nervous system that comprise the brain, i.e. neurons and glial cells. It 

is well established today that neurons possess the ability to form special functional 

connections, termed synapses, that are used to transmit directional signals such as 

action potentials form one cell to the next (Albright et al., 2000). In addition, glia have 

a vital role in the maintenance and regulation of synaptic strength (Allen and Lyons, 

2018; Eroglu and Barres, 2010). Various anatomical regions of the brain and the 

neuronal connections between them have been linked to learning and memory. A 

core role is attributed to the hippocampus, which has been shown to be essential for 

the retention of new information and the formation of long-term memory (Albright et 

al., 2000). Long-term memory goes hand in hand with long lasting synaptic 

strengthening or weakening based on previous electrophysiological activity patterns, 

called long-term potentiation (LTP) and long-term depression (LTD). The ability of 

synapses to change their transmission strength is termed synaptic plasticity. On a 

molecular level, we can distinguish (at least) two phases in this process: an early 

phase over the first few hours (1-3 h), which is protein-synthesis independent and a 

late phase (up to 24 h), which depends on new protein synthesis (Bailey and Chen, 

1983; Bailey et al., 2015; Frey et al., 1988; Stanton and Sarvey, 1984; Sutton and 

Schuman, 2006). Therefore, the synthesis of new protein is essential for the 

development of long-term memory. Moreover, it is understood today that new protein 

synthesis can occur locally at active synapses (Kang and Schuman, 1996; Yoon et 

al., 2016). This is accomplished by the translation of locally available messenger 

ribonucleic acid (mRNA), which would allow the synthesis of the encoded protein and 

its direct integration into the synapse, changing the synaptic proteome, and directly 

affecting synaptic plasticity (Doyle and Kiebler, 2011).  

However, the biological relevant processes enabling local protein synthesis are 

not well known. How is mRNA made readily available at synapses and how is it 

regulated in the complex morphological structure of a neuron? This dissertation aims 

to characterize mRNA transport processes in living neurons and to understand how 
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neuronal activity and RNA-binding proteins (RBPs) regulate the subcellular 

localization of two different types of RNA granules (RNA-protein complexes), i.e. 

dendritic transport granules and processing bodies (P-bodies). These processes are 

the foundation of synaptic plasticity, and therefore, essential for learning and memory 

formation.  

 
 
1.2 mRNA and RBPs in learning and memory formation  

 

1.2.1 mRNA transport, localized translation and synaptic plasticity 

 

The translation of localized mRNA is a critical process, by which cells can 

target protein expression to certain intracellular subcompartments (Buxbaum et al., 

2015a; Medioni et al., 2012). Thereby, a protein can be synthesized by ribosomes at 

a defined subcellular location, restricting its function both in space and time. This is 

an essential mechanism for many biological processes, such as embryonic axis 

formation, cell division or cell migration (St Johnston, 2005). In neurons, mRNA 

localization has been implicated in several processes such as axonal outgrowth and 

regeneration, dendritic branching, synapse morphology and in higher order functions 

such as learning and the formation of memory (Klann and Dever, 2004; Sahoo et al., 

2018; Willis et al., 2005; Yoon et al., 2016).  

Previous work in multiple model systems has demonstrated how mRNA 

localization governs these essential processes, and its miss-localization can have 

severe impact at the cellular level or on the entire organism. For instance, in the 

oocyte of the fruit fly Drosophila melanogaster the correct spatial and temporal 

regulation of key mRNAs such as oskar, bicoid or gurken are essential in axis 

formation and the further body patterning of the animal (Riechmann and Ephrussi, 

2001). Previous studies have shown that the mechanisms used to achieve precise 

transcript localization are diverse and that mRNA distribution patterns can appear 

strictly ordered or more intricate (Lecuyer et al., 2007; St Johnston, 2005). For 

instance, mRNA can be diffusely localized to one cellular pole, it can be found in 

discrete mRNA granules or be localized in different cellular compartments. These 

findings indicate that mRNA localization is not random, but highly regulated and 

dependent on the transcript itself. Furthermore, the localization of an mRNA usually 



3	

coincides with a similar localization pattern of the equivalent protein, and the 

disruption of mRNA localization in turn also disrupts the localization of the protein 

(Lecuyer et al., 2007; Riechmann and Ephrussi, 2004). Therefore, initial protein 

localization is often directly linked to the localization of its mRNA. After translation 

however, a protein can undergo its own transport, or be degraded, altering its 

distribution independent of the original transcript.  

To achieve proper localized protein expression, mRNA might be tightly regulated 

throughout its lifetime: during transcription, splicing, nuclear export, transport, 

translation and ultimately degradation. All these processes are accomplished by the 

combination of cis-acting factors such as mRNA sequences and/or structures, trans-

acting factors such as RBPs or microRNAs (miRNAs), and intra- or extracellular cues 

(Huang et al., 2003; Rook et al., 2000; Zhang et al., 1999). The processes leading up 

to localized translation, are illustrated in a neuron in Fig. 1.1, based on previously 

proposed models (Doyle and Kiebler, 2011; Wilhelm and Vale, 1993). Particularly, 

RBPs play an essential role in regulating important processes involved in 

posttranscriptional gene regulation such as mRNA transport or translation 

(Fernandez-Moya et al., 2014). It is proposed that an mRNA is exported from the 

nucleus after transcription and splicing, where it is packaged into ribonucleoprotein 

particles (RNPs), also termed RNA granules, via the binding of RBPs and associated 

factors (Fig. 1.1A). The presence of certain trans-acting factors may depend on 

mRNA sequence or structure, providing specific binding sites, or the cooperative and 

competitive binding of additional factors, e.g. adaptors or motor proteins. In addition, 

extracellular cues will have an effect as well. Upon packaging, the RNPs are 

transported along cytoskeletal structures by motor proteins. Multiple lines of evidence 

suggest, that RNPs are not simply transported directly to one pre-determined 

destination, but that they can be dynamically transported in multiple directions 

(Knowles et al., 1996; Köhrmann et al., 1999; Tübing et al., 2010). In neurons, for 

instance, this behavior has been proposed to resemble a sushi-belt like transport in 

dendrites, as an anecdotal comparison to the transport of sushi on a circulating 

conveyor belt to the customers in a restaurant (Doyle and Kiebler, 2011). The sushi-

belt model suggests that RNPs (the sushi) patrol dendrites in multiple directions and 

that they are not irreversibly anchored at one destination (the synapse, here being 

the customer), allowing multiple transport phases (Fig. 1.1B). A specific cue, such as 

synaptic activity, would result in the local capture of an RNP, where the mRNA  
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Figure 1.1: Model of neuronal mRNA transport and local translation 

at synapses. Insets A and B represent the soma (A) and dendritic 

compartment (B) of a schematic neuron. Neuronal mRNA transport, 

processing and translation is illustrated step by step by numbered 

green arrows. In B, synaptic signaling is signified via lightning bolts. 

This model is based on Doyle and Kiebler, EMBO Journal, 2011. 
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may be released from associated factors to permit translation by localized ribosomes. 

After translation the mRNA might eventually be repackaged and transported to a new 

destination for another round of translation. This model of mRNA transport and 

translation would be an efficient and economical way for a cell to rapidly deal with 

local protein demand at sites far from the soma. 

The following chapters will take a closer look at relevant scientific insight into 

mRNA transport and translation, and its regulation.  

 

 

1.2.2 mRNA transport is a motor-driven process 

 

The first report of intracellular mRNA transport of a specific transcript in living 

cells was made by Ainger et al. (Ainger et al., 1993). The authors injected in vitro 

transcribed fluorescently labeled myelin basic protein (MBP) mRNA into cultured 

oligodendrocytes and observed that the initially diffuse mRNA eventually formed 

distinct granules, which moved along microtubules. In neurons, the use of the cell-

permeable RNA dye SYTO14 first showed the transport of RNA granules along 

dendrites of cortical neurons (Knowles et al., 1996). Multiple types of transport 

behaviors can be observed in cells in vivo (Ainger et al., 1993; Fusco et al., 2003; 

Knowles et al., 1996; Park et al., 2014). These are classically categorized as 

stationary (no displacement over a define threshold), diffusive (displacement in line 

with Brownian motion or random walk), corralled (confined movement in a small 

restricted area) or directed transport (unidirectional transport over a threshold). The 

occurrence of these categories has been analyzed in different organisms and for 

different mRNA molecules. Importantly, a single transcript may undergo multiple 

transitions between these transport behaviors upon sufficiently long observation time 

(Monnier et al., 2015). Although the process of diffusion and local anchoring has also 

been proposed as a method to achieve specific mRNA localization patterns (St 

Johnston, 2005), it is the motor-driven directed transport in neurons, which is 

understood to be the basis of regulated dendritic localization. This motor-driven 

transport occurs by the displacement of motor proteins along cytoskeletal structures 

(Ainger et al., 1993; Knowles et al., 1996; Köhrmann et al., 1999), as microtubule-

depolymerizing drugs reduce the transport of mRNAs and RBPs in dendrites 

(Knowles et al., 1996; Köhrmann et al., 1999; Rook et al., 2000). The motor proteins 
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kinesin and dynein have been implicated in this process (Gagnon and Mowry, 2011; 

Kanai et al., 2004; Ma et al., 2011; McClintock et al., 2018; McKenney et al., 2014). 

For instance, knock-down of the kinesin heavy chain KIF5B disrupts the transport of 

MBP mRNA into processes of oligodendrocytes (Ainger et al., 1993), or Arc and 

CaMKIIα mRNAs in dendrites (Kanai et al., 2004), while KIF5B overexpression has 

the opposing effect, i.e. an increase in dendritic mRNA localization (Kanai et al., 

2004). Furthermore, KIF5B is found in RNA granules together with the dendritic 

mRNAs Arc and CaMKIIα. In addition, the observed velocities of RNPs in various 

publications are all consistent with motor-driven transport (Köhrmann et al., 1999 6.4 

µm/min; Park et al., 2014, 1.3 µm/s). If dependent on motor proteins, the directed 

displacement of RNPs along microtubules is an ATP dependent process and must be 

regulated on a cellular level. To date it is yet unknown, how a motor protein is linked 

to an RNP and which factors mediate the association. The study of this process is 

complicated in dendrites, which have microtubules of mixed polarity, making it 

difficult to easily discern plus- or minus-end directed transport (Baas et al., 1988; 

Burton, 1988; Kanai et al., 2004).  

 

 

1.2.3 Regulation of mRNA localization by RNA-binding proteins 

 

Multiple studies have demonstrated the displacement of RNPs via the 

visualization of fluorescently tagged RBPs, such Staufen2 (Stau2), the Zipcode-

Binding Protein 1 (ZBP1) or heterogeneous nuclear ribonucleoprotein A2 (hnRNP 

A2) (Han et al., 2010; Köhrmann et al., 1999; Tang et al., 2001; Zhang et al., 1999). 

However, it is essential to identify the individual components of these granules, and 

to investigate how they interact with each other. The biochemical purification of RNPs 

has brought more detailed insight into the composition of these RNA granules. For 

instance, Kanai et al. characterized Activity-regulated cytoskeleton-associated 

protein (Arc) and Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) mRNA 

granules, and found that the associated proteins Staufen1 (Stau1), Purine-rich 

element binding protein α  (Purα), heterogeneous nuclear Ribonucleoprotein U 

(hnRNP U) and polypyrimidine tract binding protein-associated splicing factor (PSF) 

are involved in their dendritic localization (Kanai et al., 2004). Moreover, the proteins 

Synaptotagmin Binding Cytoplasmic RNA Interacting Protein (SYNCRIP, hnRNP-Q1) 
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and Fragile X Mental Retardation Protein (FMRP) were identified as well. This study 

proved that transport RNPs can be composed of many trans-acting factors, some of 

which are necessary for proper mRNA transport. Another study isolated ß-actin 

mRNA granules from the developing rat brain and identified a large number of 

associated proteins (Elvira et al., 2006), including RBPs such Staufen2 (Stau2). The 

RBP ZBP1, previously shown to be involved in the localization of ß-actin mRNA was 

identified as well (Zhang et al., 2001). In addition, ß-actin mRNA granules contained 

stalled ribosomes, indicating that translation is stopped in motile granules (Elvira et 

al., 2006). Both aforementioned screenings identified a quantity of overlapping 

proteins, such as SYNCRIP or the family of DEAD box helicases, but differed in 

others such as ZBP1 (Elvira et al., 2006; Kanai et al., 2004). Taken together, these 

publications provided first evidence that RNPs might be composed of different 

proteins depending on the presence of specific mRNAs, tissue specificities or 

developmental variations. Moreover, aside of transport RNPs, which deliver 

transcripts to specific subcellular locations in a translationally silent state, there are 

other types of RNA granules, which are distinct in their protein composition, function, 

localization and morphology, such as processing bodies (P-bodies), stress granules 

or the RNA-induced silencing complex (RISC) (Fig. 1.2) (Fernandez-Moya et al., 

2014; Kiebler and Bassell, 2006; Kosik, 2006), that can be categorized by the 

presence or absence of certain proteins. Recent studies have contributed to our 

understanding of RNP composition under different conditions or in different cellular 

compartments (Cajigas et al., 2012; Fontes et al., 2017; Schanzenbacher et al., 

2018), showing that RNP composition does not only vary across different cell types 

or conditions, but also within the same system. Although many components of RNPs 

are conserved across species, a comparison of neuronal Staufen2 (Stau2) and 

Barentsz (Btz) containing granules has shown that these RNPs are more 

heterogeneous than expected, with only about a third of common proteins (Fritzsche 

et al., 2013; Kiebler and DesGroseillers, 2000). Similarly, a recent study explored the 

protein composition of different axonal RNPs, dependent on mRNAs and 

heterogeneous nuclear ribonucleoproteins (hnRNPs) (Lee et al., 2018). The authors 

found that RNPs form distinct functional groups dependent on their interaction with 

different hnRNPs. Together, these studies indicate that different RNPs have different 

biological functions, suggesting that RNA granules are highly dynamic in their  
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Figure 1.2: Schematic overview of representative examples of 

known mRNA granules in neurons. For simplicity, only soma, a 

dendrite and mushroom-shaped spines are shown. Types of mRNA 

granules are color coded: stress granules (orange), transport RNPs 

(green), translating RNPs (red), P-bodies (blue) and RISC (purple). 

Physiological relevant interplay resulting in mRNA or protein 

reorganization between granule types are indicated, with a focus on 

transport RNPs. RNPs = ribonucleoprotein particles, LTP = long-

term potentiation, LTD = long-term depression, RISC = RNA- 

induced silencing complex. 
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composition. Importantly, in neurons, neuronal activity can have an effect on RNP 

composition (Fontes et al., 2017; Schanzenbacher et al., 2018). 

Certain RBPs regulate the transport and localization of their target mRNAs, as 

mentioned above for Arc, CaMKIIα and ß-actin mRNA (Kanai et al., 2004). To 

mediate localization, RBPs recognize and bind RNA sequences or structures termed 

cis-elements or zip codes, often, but not exclusively located in the 3´-untranslated 

region (3´-UTR) of mRNA (Jambhekar and Derisi, 2007). For instance, the 

cytoplasmic polyadenylation element binding protein 1 (CPEB1) binds the 

cytoplasmic polyadenylation elements (CPEs) located in the 3´-UTR of CaMKIIα 

mRNA to mediate dendritic localization (Huang et al., 2003). Neurons cultured from 

mice deficient for CPEB1 display a decrease in dendritic localization of mRNA 

reporters carrying CPEs in their 3´-UTRs. Additionally, CaMKIIα and Microtubule-

associated protein 2 (MAP2) mRNAs are reduced in synaptosomal preparations of 

neurons expressing a dominant negative CPEB protein. Such RNA zip codes or 

localization elements have been identified for other mRNAs as well (Heraud-Farlow 

et al., 2013; Rook et al., 2000; Zhang et al., 2001).  

The interaction of specific RBPs with their target mRNAs might be an essential 

part of correct RNP assembly. Little is still known about the regulation and 

maintenance of RNP assembly. However, examples of individual proteins and 

mRNAs suggest this process is essential, as in the case of survival of motor neuron 

protein (SMN) and ß-actin mRNA. SMN is involved in the assembly of spliceosomal 

RNPs (Monani, 2005). The neuromuscular disorder spinal muscular atrophy is a 

consequence of the hereditary loss of SMN. A mouse model of this disease shows 

the mislocalization of ß-actin mRNA in axonal growth cones (Rossoll et al., 2003).  

To ultimately modify the local proteome and exert a spatially restricted function, 

RNPs need to regulate the translatability of the transcripts they carry. The possibility 

of local translation came up with the discovery of factors related to the translation 

machinery in dendritic processes (Klann and Dever, 2004; Tiedge et al., 1993). 

Therefore, the regulation of translation during RNP transport and localization has 

been of increasing interest. Multiple lines of evidence have shown that local 

translation is related to signaling activity in neurons (Krichevsky and Kosik, 2001; 

Sutton and Schuman, 2006; Yoon et al., 2016). Moreover, local neuronal translation 

is involved in long-term potentiation (LTP) and long-term depression (LTD), which are 
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considered the basis for learning and memory formation (Sutton and Schuman, 

2006).  

In conclusion, previous research has established that RBPs play a key role in the 

processing and regulation of their target RNA, and that their absence or dysfunction 

can have severe consequences for an organism, including learning and memory 

impairments. As highlighted here, one aspect of this regulation is the targeting and 

transport of RNA to a specific subcellular location. However, how specific RBPs 

achieve this and which other factors determine their function are less known.  

 

 

1.3 The Staufen2 protein in mRNA transport, learning and memory formation  

 

1.3.1 Staufen structure and RNA-binding 

 

The double-strand RBP (dsRBP) Staufen2 (Stau2) is a trans-acting factor that 

has been identified in multiple studies and shown to play a vital role in neurons 

(Duchaine et al., 2002; Goetze et al., 2006; Heraud-Farlow and Kiebler, 2014; 

Heraud-Farlow et al., 2013). Staufen was first described in Drosophila (St Johnston 

et al., 1991), and is highly conserved across species. Vertebrates carry two 

homologs, termed Stau1 and Stau2. Stau1 is ubiquitously expressed, while Stau2 is 

highly enriched in the nervous system and only present at low levels in other tissues 

(Duchaine et al., 2002). Mammalian Stau2 consist of five RNA-binding domains 

(RBDs) (Fig. 1.3A). However, RBD5 is inverted in Stau2, but not Stau1, compared to 

the Drosphila staufen homolog. Interestingly, it is generally assumed that the RNA-

binding capability of RBD5 is compromised, though it plays a role in oskar mRNA 

translation initiation at the posterior pole of the Drosophila oocyte, but not in the 

transport of the transcript (Micklem et al., 2000). Moreover, RBD5 has been shown to 

bind the Miranda protein in Drosophila, an interaction important for prospero and 

bicoid mRNA localization (Irion et al., 2006; Schuldt et al., 1998). In addition to the 

five RBDs, mammalian Staufen proteins contain a tubulin-binding domain (TBD) and 

a nuclear localization signal (NLS), which are not present in Drosophila staufen 

(Macchi et al., 2004). In addition, the 52 kD and 59 kD isoforms contain a nuclear 

export signal (NES), generated by alternative splicing (Miki and Yoneda, 2004). 

Interestingly, point mutations of the dsRBD3, which disrupt RNA binding,   
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Figure 1.3: The role of the double-stranded RNA-binding protein 

Staufen2 (Stau2) in mRNA localization and dendritic spine 

morphogenesis. (A) Schematical representation of the domains of the 

62 kD Stau2 isoform. RBD = RNA-binding domain, NLS= nuclear 

localization signal, TBD = tubulin binding domain. Mirrored RBD5 

indicates inversion of mammalian Stau2 compared to Drosophila 

staufen. (B) Illustration of staufen dependent bicoid and oskar mRNA 

localization (green gradient) in the development of Drosophila. Based 

on Ferrandon et al., Cell, 1994. (C) Illustration of Stau2 dependent 

dendritic spine morphology and actin (green dots) network 

remodeling. Based on Goetze et al., JCB, 2006. (D) Illustration of 

Stau2-dependent Rgs4, Calm3 (intron containing, + intron),  

CaMKII  (intron containing, + intron) and ß-actin mRNA granules 

(green dots) localization to neuronal dendrites. shNTC = short hairpin 

non-targeting control, shStau2 = short hairpin Stau2. Based on 

Heraud-Farlow et al., Cell Rep., 2013, Sharangdhar et al., EMBO 

Rep., 2017, Ortiz et al., Cell Rep., 2017, and Goetze et al, JCB, 2006. 
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cause Stau2 to accumulate almost exclusively in the nucleolus (Macchi et al., 2004). 

Mammalian Stau2 expresses four isoforms of 52 kD, 56 kD, 59 kD, and 62 kD, that 

vary in their N- and C-terminal domains, i.e. truncations of RBD1 and RBD5, due to 

alternative splicing. It is thought that these isoforms have different functions in the 

cell. A study investigating the developing chicken eye found that the knock-down of 

Stau2 leads to a reduction in eye size (Cockburn et al., 2012). Interestingly, different 

Stau2 isoforms rescued the phenotype to a varying degree, where the longest 62 kD 

isoform performed a full rescue and the smallest 51 kD isoform a partial rescue. 

Together, these findings indicate possible different regulatory roles for the isoforms 

during eye development.  

In contrast to most RBPs, which bind RNA in a sequence specific manner, 

double-strand RBPs (dsRBPs), such as Staufen, recognize double-stranded RNA 

and are reported to bind primarily to the sugar-phosphate backbone rather than a 

specific nucleotide sequences (Ryter and Schultz, 1998). A conserved αβββα 

structure in the dsRBD is responsible for this interaction. In the case of the 

Drosophila staufen dsRDB3, a 12 bp stem-loop with no unpaired bases and a 

tetraloop presents the ideal binding site (Ramos et al., 2000). Analysis by 

mutagenesis revealed five conserved amino acids necessary for RNA binding and a 

region in the α1 helix that might facilitate the interaction via a UUCG tetraloop. A 

recently developed computational algorithm has been used to successfully identify 

staufen binding sites by structure in Drosophila (Laver et al., 2013) and to define 

Stau2 binding sites in the mammalian nervous system (Heraud-Farlow et al., 2013). 

Interestingly, one study found the formation of a Stau1-binding site, via the base-pair 

interaction of a long non-coding RNA (lncRNA) with the 3´-UTR of an mRNA, 

streamlining the mRNA for Stau1-mediated RNA decay (Gong and Maquat, 2011). 

This finding presents an intriguing cooperative mechanism, which could regulate 

Staufen binding. Moreover, a recent study identified intramolecular long-range RNA 

duplexes that act as binding sties for Stau1 (Sugimoto et al., 2015). These duplexes 

can have loop lengths longer than 100 (57% of identified duplexes) or 500 base pairs 

(20% of identified duplexes). Interestingly, these long-range duplexes were often 

formed between the beginning and end of the coding sequence (CDS) or 3´-UTR, 

possibly enabling the interaction of factors bound to these regions. These examples 

emphasize the importance to consider mRNA structure in vivo and to development of 

new techniques, such as hiCLIP (RNA hybrid and individual-nucleotide resolution UV 
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cross-linking and immunoprecipitation), to reliably identify dsRNA-binding sites. 

However, the apparent lack of sequence specificity and the possibility of long-range 

RNA duplexes make the prediction of local binding sites difficult.  

 

 

1.3.2 The role of Staufen in mRNA localization 

 

Both Stau1 and Stau2 localize in distinct cytoplasmic RNPs in the soma and 

dendrites of neurons (Duchaine et al., 2002; Kiebler et al., 1999). The mRNA 

composition of such Stau2-containg granules has been described in the developing 

rat brain (Heraud-Farlow et al., 2013), including the regulator of G protein signaling 4 

(Rgs4) mRNA. Furthermore, Stau1 and Stau2 have been implicated in the 

localization of mRNA transcripts (Heraud-Farlow et al., 2013; Ortiz et al., 2017; 

Sharangdhar et al., 2017; Tang et al., 2001). Staufen is required for the localization 

of oskar, bicoid, and prospero mRNAs in the developing Drosophila oocyte and 

embryo (St Johnston, 2005) (Fig. 1.3B). Staufen knock-down leads to mislocalization 

of these mRNAs and their encoding proteins (Ephrussi et al., 1991; Ferrandon et al., 

1994; Kim-Ha et al., 1991; Li et al., 1997). Mammalian Stau1 and Stau2 form 

granules that are dynamically transported in dendrites of hippocampal neurons in 

culture (Köhrmann et al., 1999; Zeitelhofer et al., 2008) and localize close to 

synapses (Stau1 Kiebler et al. 1999; Stau2: Duchaine et al., 2002). The 

overexpression of a dominant-negative Stau2, lacking the microtubule-binding 

domain and the inverted RBD5, decreases the amount of global RNA located in 

dendrites, visualized by ethidium bromide staining (Tang et al., 2001). Similarly, 

Stau2 depletion results in the reduction of multiple mRNAs in dendrites (Goetze et 

al., 2006; Heraud-Farlow et al., 2013; Ortiz et al., 2017; Sharangdhar et al., 2017) 

(Fig. 1.3D). This data points to a conserved role for the Staufen proteins in the 

spatial regulation of their target-RNAs. It is intriguing to consider how the 

predominantly neuronal mammalian Stau2 might act in mRNA transport in neurons.  
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1.3.3 The role of Staufen2 in learning and memory 

 

Importantly, Stau2 has been implicated in neuronal signaling, synaptic plasticity 

and memory. Stau2 is required for DHPG-induced protein synthesis depended long-

term depression (LTD) via mGluR, linking it directly to learning and memory (Lebeau 

et al., 2011). Here, the lack of Stau2 results in transport defects of Map1b mRNA via 

its 3´-UTR, and a reduction of the encoding protein necessary for the maintenance of 

metabotropic Glutamate Receptor (mGluR)-LTD. Furthermore, Stau2 knock-down 

results in a reduction of the amplitude of miniature excitatory postsynaptic currents 

(mEPSCs) in young neurons, along with a reduction in the number of dendritic spines 

and synapses, and an altered dendritic actin network (Fig. 1.3C) (Goetze et al., 

2006). A recent study observed additional electrophysiological defects in vivo, 

including favored LTP and impaired LTD in Stau2 deficient rats (Berger et al., 2017). 

The role of Stau2 in synaptic plasticity and memory formation in vivo is corroborated 

by behavioral studies in rats and mice. The forebrain specific knock-down of Stau2 in 

a transgenic rat resulted in defects in spatial working memory, spatial novelty 

detection and associative learning and memory (Berger et al., 2017). Furthermore, 

mice with a reduction in Stau2 protein levels display reduced locomotion, and the 

inability to distinguish between familiar and novel objects (Popper et al., 2018). 

Another study investigating olfactory memory identified transcriptionally regulated 

genes, including staufen, during memory formation in Drosophila (Dubnau et al., 

2003), raising the question if the Staufen proteins might have a conserved role in 

memory. Together, these studies show that Stau2 is not only essential in the 

expression and spatial regulation of its target mRNAs, but also has a fundamental 

impact on synaptic plasticity, learning and memory formation.  

 

 

1.4 Rgs4 and receptor mediated signaling in the central nervous system 

 

1.4.1 G-protein coupled receptor signaling in the central nervous system 

 

The Kiebler lab has previously identified the regulator of G protein signaling 4 

(Rgs4) mRNA as a high confidence target of the double-stranded RNA-binding 
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protein Stau2 in the E17 rat brain (Heraud-Farlow et al., 2013). This was 

accomplished by immunoprecipitation of endogenous Stau2-containing RNA 

granules followed by microarray analysis and independent verification via qRT-PCR. 

Further analysis revealed that Rgs4 was one of eight significantly enriched Stau2 

target-mRNAs that function in the G protein-coupled receptor (GPCR) signaling 

pathway. This data indicates that Stau2 might regulate the production of proteins of 

common function. At neuronal synapses, the GPCR signaling pathway regulates 

neurotransmitter release and synaptic transmission, playing a role in both pre- and 

postsynaptic regulation (Betke et al., 2012; Rojas and Dingledine, 2013; Tedford and 

Zamponi, 2006). The ligand-dependent activation of the receptor of heterotrimeric G 

proteins (Gαβγ) leads to the exchange of GDP to GTP at the Gα subunit, which 

results in the release of Gα from Gβγ, both of which can affects downstream second 

messengers (Fig. 1.4) (Bourne et al., 1990; Hamm, 1998; Simon et al., 1991). 

Importantly, Gβγ activates G protein-coupled inwardly rectifying potassium (GIRK) 

channels, which leads to cell hyperpolarization, affecting the excitability of the neuron 

(Dascal, 1997). The Rgs4 protein and other members of the regulator of G protein 

family act as negative regulators of the GPCR pathway (Abramow-Newerly et al., 

2006; Gerber et al., 2016). Here they function as GTPase activating proteins (GAPs), 

facilitating the hydrolysis of GTP to inactive GDP on the Gα subunit (Gq and Gi α-

subunits), terminating downstream signaling of both Gα and Gβγ (Fig. 1.4) 

(Abramow-Newerly et al., 2006; Berman et al., 1996; De Vries et al., 2000; Hepler et 

al., 1997; Huang et al., 1997; Ross and Wilkie, 2000; Willars, 2006). The regulation 

by Rgs4 affects multiple receptors, such as glutamate, serotonin and dopamine 

receptors (Gu et al., 2007; Saugstad et al., 1998; Taymans et al., 2004). In the 

hippocampus, Rgs4 inhibits neuronal signaling through group I metabotropic 

glutamate receptors (mGluRs), by blocking the inhibition of potassium currents by 

mGluR5 in neurons of the CA1 region (Saugstad et al., 1998). These receptors have 

been linked to Stau2 during protein synthesis-dependent LTD (Lebeau et al., 2011). 

In addition, the Rgs4 gene is linked to neurodegenerative diseases, such as 

schizophrenia or Parkinson’s disease and neuropathic pain (Ding et al., 2006; Erdely 

et al., 2006; Garnier et al., 2003; Harrison and Weinberger, 2005).  
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Figure 1.4: Schematically representation of G-protein 

coupled receptor (GPCR) activation and its regulation by 

Rgs4 at the postsynaptic site. Ligand activation (purple 

hexagons) of GPCRs results in the exchange of guanosin 

diphosphate (GDP) to guanosin triphosphate (GTP) at the G-

protein α-subunit, leading to the dissociation of Gα and Gβγ 

and the activation of downstream signaling pathways. Rgs4 

inhibits Gαβγ dissociation at group I metabotropic glutamate 

receptors (mGluRs) by activating Gα GTPase activity and the 

hydrolysis of GTP to GDP. Thereby, Rgs4 blocks activation of 

phospholipase C (PLC) and the downstream release of 

intracellular Ca2+ ([Ca2+]i) and the stimulation of protein 

kinase C (PKC). Pi = Phosphate. Modified from Heraud-

Farlow et at., Cell Reports, 2013. 
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1.4.2 Staufen2 regulates Regulator of G-protein signaling 4 mRNA 

 

Rgs4 is a ~24 kD protein with a single RGS domain and is expressed in multiple 

brain regions including the hippocampus (Gold et al., 1997; Heraud-Farlow et al., 

2013; Saugstad et al., 1998). Among the RGS proteins, Rgs4 has the highest 

expression in the brain (Larminie et al., 2004). Investigation into the subcellular 

localization of Rgs4 mRNA in hippocampal neurons via fluorescence in situ 

hybridization (FISH) shows that endogenous Rgs4 mRNA is present in distinct 

granules in both the cell body and neurites (Heraud-Farlow et al., 2013). Knock-down 

of Stau2 results in a reduction of total Rgs4 mRNA levels, both in vitro and in vivo 

(Berger et al., 2017; Heraud-Farlow et al., 2013). FISH experiments revealed that 

Stau2 silencing induced a strong reduction in fluorescence intensity in the cell body 

and a near complete depletion of Rgs4 mRNA granules from dendrites (Fig. 1.3) 

(Heraud-Farlow et al., 2013). Importantly, the depletion of Stau2 from primary cortical 

neurons, results in a significant down regulation of Rgs4 mRNA as well. Additionally, 

a translation assay using an Rgs4 3´-UTR luciferase reporter in cortical neurons 

revealed that Stau2 regulates Rgs4 mRNA via its 3´-UTR. Stau2 knock-down 

significantly decreases the expression of the luciferase reporter, indicating that Stau2 

may indeed regulate Rgs4 mRNA stability via its 3´-UTR.  

Computational analysis previously used to identify Staufen-recognizing structures 

(SRSs) in Drosophila revealed an enrichment of type III SRSs (stem consisting of at 

least 10 of 12 paired bases and no more than 2 unpaired bases) in the 3´-UTR of 

identified Stau2-target mRNAs (Heraud-Farlow et al., 2013; Laver et al., 2013). 

Stau2-regulated mRNAs have significantly larger 3´-UTRs than the median rat 3´-

UTR. The 3´-UTR of Rgs4 has a length of 2.2 kb, making it much longer than the 

median rat 3´-UTR of 496 bases, and contains two Type III SRSs (Heraud-Farlow et 

al., 2013). In addition, the Rgs4 3´-UTR contains several in vivo cross-linking sites for 

Stau2 (Sharangdhar et al., 2017). The presence of multiple binding sites raises the 

question, whether Stau2 might regulate other aspects of the Rgs4 mRNA lifecycle via 

its 3´-UTR. A recent study reported a significant increase in Rgs4 protein in response 

to the induction of chemical long-term potentiation (LTP) by forskolin and high 

concentrations of calcium and potassium in acute mouse hippocampal slices (Fontes 

et al., 2017). Taken together, this data argues that Rgs4 might have an essential role 

in the regulation of synaptic plasticity, learning and memory.  
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1.5 P-bodies and the RNA-helicase Rck in the central nervous system 

 

1.5.1 P-bodies and mRNA regulation 

 

Transport RNPs, which deliver transcripts to specific subcellular locations in a 

translationally silent state, interact with other types of mRNA granules and share 

functional protein components with them. Such mRNA granules include P-bodies, 

stress granules or the RNA-induced silencing complex (RISC) (Fig. 1.2) (Balagopal 

and Parker, 2009; Fernandez-Moya et al., 2014). Although such RNA granules have 

overlapping components and functions, they can be categorized by the presence or 

absence of specific proteins, which will determine whether they are marked for 

transport, translation, storage or degradation. In their physiological state, all such 

granules can be both stable or have a high turnover of their components (Barbee et 

al., 2006; Kedersha et al., 2000). This dynamicity is related to the phenomenon of 

phase separation, as researched extensively in previous years (Brangwynne et al., 

2009; Hyman et al., 2014; Molliex et al., 2015). By phase separation a cell can 

separate molecular processes in membrane-less droplets with liquid properties, 

based on the local concentration of the involved components. Physiological phase 

separation can be perturbed by the formation of aberrant solid-state aggregates, 

which have been linked to neurological pathologies such as amyotrophic lateral 

sclerosis (ALS) or frontotemporal dementia (FTD).  

P-bodies, also termed GW- or DCP-bodies, are large granules that appear as 

distinct cytoplasmic foci, clustered more densely in the perinuclear region and less in 

distal parts of the cell (Aizer et al., 2008; Bashkirov et al., 1997; Yang et al., 2004). In 

neurons, P-bodies are predominantly present in the soma, but can also be found in 

dendrites (Vessey et al., 2006; Zeitelhofer et al., 2008). P-bodies are composed of a 

number of proteins, including (i) components of the mRNA decay machinery (e.g. 

Dcp1, Dcp2, Xrn1, Lsm1p-7p complex), (ii) translational regulators (e.g. Rck, Dhh1p) 

and (iii) components of the RISC complex (e.g. Argonaute1, Argonaute2) (Behm-

Ansmant et al., 2006; Chu and Rana, 2006; Ding et al., 2005; Liu et al., 2005; Parker 

and Sheth, 2007). P-bodies are considered sites of transient mRNA storage and 

degradation, and therefore have a key role in regulating the degradation and 

translatability of mRNA (Cougot et al., 2004; Lian et al., 2006; Liu et al., 2005; Parker 

and Sheth, 2007; Sheth and Parker, 2003). These functions suggest an essential role 
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for P-bodies in neuronal development, synaptic plasticity, learning and memory 

(Ashraf et al., 2006; Schratt et al., 2006). Previous research has shown that P-bodies 

are localized to dendrites of rat hippocampal neurons, but are distinct from transport 

mRNPs and are not co-transported together (Vessey et al., 2006; Zeitelhofer et al., 

2008). However, the observation of docking events between the P-body marker 

DCP1a and the mRNP marker Stau2 suggests an interaction between these two 

RNA-carrying granules. Importantly in the context of neurons, chemical stimulation of 

neuronal activity results in a reduction in dendritically localized P-bodies (Zeitelhofer 

et al., 2008). Taken together, this data shows that P-bodies are an essential RNA 

granule and are expected to have a profound impact on other types of RNA granules 

and their regulation in the cell.  

 

 

1.5.2 The Rck protein and its function in the central nervous system 

 

One key component of P-bodies is the ATP-dependent RNA helicase Rck, also 

termed DDX6, p54 or HLR2 (Lu and Yunis, 1992) . Rck is a member of the DEAD 

box protein family, characterized by a conserved Asp-Glu-Ala-Asp (DEAD) motif. 

Though DEAD box proteins are a family of putative RNA helicases, Rck has been 

shown to be a true ATP-dependent helicase (Akao et al., 2003; Lu and Yunis, 1992). 

As an RNA helicase, Rck has been linked to processes involving changes in RNA 

structure, such as translation initiation, splicing or mRNA degradation and stability 

(Broytman et al., 2009; Fenger-Gron et al., 2005; Smillie and Sommerville, 2002; 

Zhang and Wu, 1996). In neuronal stem cells, Rck induces neuronal differentiation by 

activating the miRNA Let-7 (Nicklas et al., 2015). Furthermore, Rck is required for 

translationally regulated dendrite morphogenesis in Drosophila (Barbee et al., 2006). 

Rck has been identified in complexes together with Stau2 in the rodent brain 

(Fritzsche et al., 2013), suggesting a role for Rck independent from P-bodies. Further 

research on Rck relevant to the data presented in this dissertation will be discussed 

in chapter 3.2.  
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1.6 RNA live cell imaging and the MS2 system  

 

1.6.1 An overview of mRNA imaging techniques and challenges 

 

The imaging of RNA expression in fixed cells or tissue is traditionally achieved by 

in situ hybridization (ISH) of the endogenous RNA with a labeled-antisense probe 

(Hougaard et al., 1997). The method can be applied as whole-mount ISH on small 

organisms, on tissue slices or single cells. The sensitivity of this approach was 

further improved by methods such as fluorescence in situ hybridization (FISH), single 

molecule fluorescence in situ hybridization (smFISH) or single molecule inexpensive 

fluorescence in situ hybridization (smiFISH) (Levsky and Singer, 2003), that all allow 

the quantification of individual RNA molecules. Additional adaptations of these 

methods have made it possible not only to image endogenous mRNAs, but also 

miRNAs or long-noncoding RNAs (Tsanov et al., 2016). The exposure of biological 

replicates to different conditions (e.g. chemical treatments) or the fixation of samples 

at different time-points has made this method a powerful tool in the field of cell and 

molecular biology.  

However, many essential biological questions require to be addressed in living 

cells or organisms. It is in this aspect that the imaging of RNA presents a 

comparative challenge. To achieve the imaging of RNA in living samples, some 

hurdles must be overcome. Most importantly, (i) the applied method may not destroy, 

damage or affect the sample in a way that would influence the biological readout, but 

(ii) needs to introduce a detectable reporter into the cell, which (iii) specifically labels 

an RNA. Multiple methods have been developed, that meet these criteria to a varying 

degree. Some successfully applied examples are cell permeable RNA-binding 

agents, molecular beacons, pre-labeled in vitro transcribed mRNAs, genetically 

encoded systems such as the MS2-system or recently even the CRISPR-Cas system 

(reviewed in Bauer et al., 2017 or Mikl et al., 2010; Fig. 1.5). A system for the live 

visualization of endogenous mRNA, which has been employed successfully over the 

past years, is the use of molecular beacons, which recognize RNA by antisense and 

only emit fluorescence upon binding (Turner-Bridger et al., 2018). Importantly, such 

methods display a varying success rate dependent on the sample they are applied 

to. An especially limiting factor is the means of delivery of the reporter system to the 

cell or organism. This is particularly relevant when working with neurons, which 
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Figure 1.5: Methods to study mRNA granule transport and local translation. 

Schematic representation of a neuron, showing the soma (left panels) and a 

dendritic segment (right panels), indicating cytoplasmic mRNA molecules (grey) (A) 
that can be detected with a sequence unspecific dye for nucleic acids such as SYTO 

14 (B) or, alternatively, by sequence specific fluorescent in situ hybridization (FISH) 

(C). (D) Schematic representation of the MS2-MCP system to visualize pre-labeled 

mRNAs. (E) Schematic representation of RNA granule visualization by FP-tagged 

RBP (in red). (F) Schematic representation of the SunTag system to visualize local 

protein synthesis. Modified from Bauer et al., Methods, 2017.  
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are extremely susceptible to cellular stress. Methods that rely on the microinjection of 

individual cells to deliver probes or other agents can be tedious and harmful to 

neurons (Tübing et al., 2010). Conversely, cell permeable nucleic acid dyes are not 

specific in labeling single mRNA transcripts. A more suitable approach for neurons is 

the use of genetically encoded systems, such as the MS2-, PP7- or λN/BoxB-system, 

which rely on similar principles (Bauer et al., 2017; Mikl et al., 2010). Such methods 

allow the use of classical transfection based delivery methods to generate transient 

expression in cells, such as calcium phosphate co-precipitation or viral transduction, 

or even the generation of transgenic cell lines or animals. This approach based on 

genetically encoded systems causes low cellular stress, while still labeling specific 

single transcripts. Moreover, it allows further flexibility in addressing biological 

questions by e.g. introducing mutations to the genetically encoded reporter. The MS2 

system has been well established and greatly improved upon in the last decades 

(Bauer et al., 2017; Bertrand et al., 1998). To date, the system has been modified to 

address multiple biological questions, presenting a flexible toolbox to inquire multiple 

aspects of mRNA metabolism in the living cell.   

 

 

1.6.2 The MS2 system for mRNA live cell imaging 

 

The MS2-system is derived from the MS2 bacteriophage. It makes use of a 19 

nucleotide RNA stem-loop structure and the MS2-coat protein (MCP), which binds to 

this stem-loop with high specificity and affinity (Fig. 1.6A). The MCP can be fused to 

a fluorescent protein such as GFP (Fig. 1.6B). Thereby, it will fluorescently mark the 

RNA stem-loop when binding to it. The stem-loops are introduced as an array of 

multiple repetitive stem-loops, and can be introduced into an mRNA sequence of 

interest to generate a reporter mRNA. It is usually added to the 3´-UTR, to avoid 

disrupting the open reading frame or impairing translation initiation. When both the 

mRNA reporter and the fluorescently tagged MCP (MCP-FP) are co-expressed 

together in the same cell, the MCP-FP will recognize and specifically bind to the RNA 

stem-loops, marking the mRNA reporter for direct inspection under the microscope 

(Fig. 1.6C). By using an array of multiple RNA stem-loop repeats, the number of 

MCP-FP molecules that can bind to the RNA reporter increases, resulting in more 
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Figure 1.6: The MS2-system for RNA live-cell imaging. (A) Wilde-type and 

consensus sequence of the 19 nucleotide MS2 RNA stem-loop. A = 

Adenosine, U = Uracil, C = Cytosine, G = Guanine, N = nucleotide, R = 

Purine, Y = Pyrimidine. Modified from Schneider et al., J. Mo. Bio.,1992. (B) 
Schematic representation of conventional DNA expression cassettes making 

use of the MS2-system for RNA live-cell imaging and the corresponding 

mRNA MS2 reporter and fluorescently labeled proteins (MCP-GFP for 

mRNA, and RBP-FP for protein visualization). ORF = open reading frame, 

UTR = untranslated region, NLS = nuclear localization signal, tdMCP = 

tandem MS2 coat protein, RBP = RNA-binding protein, (G)FP = (green) 

fluorescent protein. (C) Illustration of the MS2-system for simultaneous 

imaging of mRNA and a bound RBP. AAAA indicates polyA-tail. 
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MCP-GFP recruitment and therefore in an improved detectable signal. Importantly, 

the MCP has a high specificity in recognizing the RNA stem-loop and a high affinity 

for binding to it (Horn et al., 2004; Schneider et al., 1992; Stockley et al., 1995). As 

both the stem-loop and the MCP originate from the MS2 phage, the MCP should not 

bind to other nucleotide sequences in e.g. mammalian cells, which are often the 

focus of research.  

The MS2-system was first used in 1998 to investigate the intracellular transport 

of an ASH1 mRNA reporter in the budding yeast Saccharomyces cerevisiae 

(Bertrand et al., 1998). Using this method, the authors were able to demonstrate the 

3´-UTR dependent transport of this mRNA from the mother to the daughter cell 

during bugging. In addition, this transport was impaired in strains deficient for the 

She1 and Myo4 proteins. This example nicely illustrates the strength of live cell 

imaging in addressing relevant biological questions, which cannot be answered by 

other means. Over the years, additions and modifications have been made to the 

components of the MS2 system, to enhance detectability or address new biological 

questions. The most important of these adaptations will be discussed for the MCP 

and the stem-loop array below.  

 

1.6.3 Advancement of the MS2 RNA imaging system 

 

In respect to the MCP, it is important to consider that unbound, diffusing MCP-

GFP in the cell will significantly increase background fluorescence, making the 

detection of individual MS2 RNA granules challenging. To address this issue, nuclear 

localization signals (NLS) have been added to the protein sequence to shuttle 

unbound MCP-GFP to the nucleus, thereby reducing fluorescent background in the 

cytoplasm. Such an NLS can be added or omitted, dependent on the compartment of 

interest. Another important advance was developed based on the fact that the MCP 

binds to the MS2 stem-loops as a dimer (Wu et al., 2012). The DNA sequence for the 

MCP was cloned twice in frame to create a single-chain tandem dimer (tdMCP), with 

increased labeling efficiency and uniformity (Wu et al., 2012). The development of 

the tdMCP was an essential step in reducing fluorescent background and increasing 

the detectability of the MS2 reporter, and greatly facilitated the research presented in 

this dissertation.  
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On the RNA side, the array of repetitive RNA stem-loops is used to recruit 

multiple GFP-molecules to the reporter mRNA via the GFP-tagged MCP. To increase 

the GFP signal bound to the mRNA the number of stem-loops can simply be 

increased, thereby providing additional binding sites for MCP-GFP. Following this 

strategy, various numbers of stem-loops, including 6, 24, 32 or even 132 MS2 

hairpins have been integrated into the reporter mRNA, ultimately increasing the GFP 

signal intensity and signal to noise ratio (Bertrand et al., 1998; Park et al., 2014; 

Pichon et al., 2016; Tantale et al., 2016; Wu et al., 2015). However, it is important to 

note that a full coverage of all stem-loops cannot be expected. For instance, when 24 

stem-loops are used, on average only 13 were found to be bound by tdMCP in the 

cell (Wu et al., 2012).  

Another aspect to consider is that repetitive sequences, as present in the stem-

loop array, are prone to recombination, resulting in a possible loss of stem-loops 

during the cloning process. This may affect proper detection of the reporter mRNA 

and affect the biological readout of an experiment. To circumvent this issue, such 

sequences are often cloned in stable high-efficiency competent cells with reduced 

recombination activity and optimal growth at lower temperatures, such as the Stabl2 

cells available from Invitrogen. An alternative approach is to alter the sequence of the 

MS2 array to make it less repetitive. The consensus sequence of the MS2 RNA 

stem-loop shows that parts of the hairpin head, as well as an unbound nucleotide in 

the stem are necessary for MCP binding, while other nucleotides need to conserve 

the hairpin structure but are not sequence specific (Horn et al., 2004; Schneider et 

al., 1992; Wu et al., 2012) (Fig. 1.6A). To reduce repetitiveness, the consensus 

sequence was used to design sequence optimized MS2 arrays of either 24 or even 

128 repeats (Pichon et al., 2016; Wu et al., 2015). These sequences can now be 

cloned in classical competent cells, with little to no complications. Another alteration 

to the MS2 sequence that has been reported is a mutation to the hairpins loop 

(AUUA à AUCA), which causes increased binding stability of the MCP (Rowsell et 

al., 1998). In addition, the MS2 system has been combined with the PP7 system, 

where different fluorescent proteins visualize the respective stem-loops, allowing the 

visualization of mRNA translation and mRNA degradation in localized transcripts 

(Halstead et al., 2016; Horvathova et al., 2017). To detect the first round of 

translation, an array of PP7 stem-loops was designed that could be translated and 

placed in frame with the ORF. In addition, an MS2 array was placed in the 3´-UTR. 
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During translation, the ribosome would knock-off the PCP-FP from the in frame PP7 

stem-loops, thereby only leaving the MCP-FP to be detected (Halstead et al., 2016). 

RNA degradation was visualized by placing both an array of PP7 and MS2 repeats in 

the 3´-UTR, which are separated by two viral pseudo-knots which block 5´-3´ 

exoribonuclease 1 (Xrn1). Blocking of Xrn1 would prevent further degradation 

beyond this point (Horvathova et al., 2017). Therefore, degradation fragments 

blocked by the pseudo-knots would only carry the PCP-FP, indicating degradation 

was initiated. These examples illustrate how these genetically encoded systems can 

be used to address essential biological questions. Similar approaches could for 

instance address alternative splicing or simply visualize two mRNAs in the same cell.  

In summary, the MS2 system has proven itself to be flexible and applicable to 

answer diverse research questions. It has been successfully used in multiple 

systems and is the method of choice for the live visualization of mRNA today. 

Especially in the recent past, multiple alterations have been made to the system to 

improve its applicability and the biological readout. It will be interesting to see which 

future applications will be developed.  
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1.7 Aims 

 

Based on current scientific knowledge and the extensive previous work by the 

Kiebler lab as outlined in preceding chapters, two separate projects were designed to 

address the intracellular sorting of both mRNA and RBPs. The first project aimed to 

investigate intracellular 3´-UTR dependent mRNA transport via the neuronal Stau2-

target mRNA Rgs4. The second project is based on my own previous work in the 

Kiebler lab (master’s thesis available from the University of Vienna; 

http://othes.univie.ac.at/29195/), where a number of RBPs were screened and their 

localization was investigated during aging/maturation in cell culture. Investigating 

RBPs allows to address how different types of RNA granules behave in the cell, 

complementing the approach taken in the first project. Therefore, this second project 

aspired to unravel changes in subcellular RNP granule localization of the RBP Rck, 

which is also found in neuronal Stau2 granules and P-bodies.  

Specific aims for each project are defined as follows.  

 

 

Aims Project 1 
 

1.1 Is mRNA transported in a sushi-belt like fashion? 

1.2 Does the 3´-UTR of Rgs4 mediate sequence specific mRNA 

transport dynamics and localization?  

1.3 Does neuronal activity influence Rgs4 3´-UTR mediated transport 

dynamics and localization?  

1.4 Does Staufen2 regulate Rgs4 transport via its 3´-UTR?  

 

 

Aims Project 2  
 

2.1 Does the localization of Rck change during neuronal maturation 

in culture?  

2.2 Does neuronal activity play a role in age-dependent alterations in 

Rck localization?  

2.3 Does helicase activity affect Rck localization?  
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2.1 Abstract  

 

mRNA transport restricts translation to specific subcellular locations, which is 

the basis for many cellular functions. However, the precise process of mRNA sorting 

to synapses in neurons remains elusive. Here, we used Rgs4 mRNA as a model to 

investigate 3´-UTR-dependent transport by MS2 live-cell imaging. The majority of 

RNA granules displayed bidirectional transport in dendrites, independent of the 3´-

UTR. Importantly, the Rgs4 3´-UTR caused an anterograde transport bias, which 

required the Staufen2 protein. Moreover, the 3´-UTR mediated dynamic, sustained 

mRNA recruitment to synapses. Visualization of these processes at high temporal 

resolution enabled us to show that mRNA patrols dendrites allowing transient 

interaction with multiple synapses, in agreement with the sushi-belt model. 

Modulation of neuronal activity by chemical silencing or local glutamate uncaging 

regulated both the 3´-UTR-dependent transport bias and synaptic recruitment. This 

dynamic and reversible mRNA recruitment to active synapses would allow translation 

and synaptic remodeling in a spatially and temporally adaptive manner. 
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2.2 Introduction 

	
Messenger RNAs (mRNAs) display a variety of subcellular localization 

patterns in a plethora of model systems (Buxbaum et al., 2015b; Holt and Bullock, 

2009; Palacios and St Johnston, 2001), including the dendritic compartment of the 

hippocampus (Cajigas et al., 2012). Several distinct mechanisms have been 

proposed to explain how the sorting of specific mRNAs to subcellular locations can 

be achieved (Andreassi and Riccio, 2009; Holt and Bullock, 2009; Palacios and St 

Johnston, 2001), from simple diffusion to the more complex sushi-belt model of 

dendritic mRNA trafficking (Doyle and Kiebler, 2011). The latter proposes that mRNA 

granules patrol dendrites in a highly dynamic multidirectional fashion, without being 

irreversibly anchored at a single specific location. Multiple approaches demonstrated 

that specific transcripts can be actively transported along cytoskeletal structures 

(Dynes and Steward, 2007; Saxton, 2001; Tübing et al., 2010). Such active and 

directed transport has been hypothesized to be the driving force that mediates mRNA 

sorting to specific distal locations in neurons, such as postsynaptic sites or axonal 

growth cones, where it may become available for local translation (Dictenberg et al., 

2008; Dynes and Steward, 2012; Eliscovich et al., 2017; Terenzio et al., 2018; Wu et 

al., 2016; Yoon et al., 2016). This allows the tightly regulated production of the 

resulting protein, both spatially and temporally. Localization of mRNA and 

subsequent local translation are particularly important in neurons, where synapses 

containing a specific proteome can be located at distal dendrites far from the site of 

transcription. Ultimately, local protein synthesis at synapses is fundamental for 

learning and the formation of long-term memory (Doyle and Kiebler, 2011; Jung et 

al., 2014; Palacios and St Johnston, 2001; St Johnston, 2005). 

Previous studies investigated the role of neuronal stimulation on these 

processes and reported the activity-induced unpacking of mRNAs, allowing local 

translation in dendrites of primary hippocampal neurons (Buxbaum et al., 2014; 

Cougot et al., 2008; Wang et al., 2016; Wu et al., 2016). In addition, Singer and 

colleagues showed that glutamate uncaging induced ß-actin mRNA recruitment in 

dendrites, where it is eventually translated and the newly produced actin participates 

in dendritic spine remodeling (Yoon et al., 2016). However, we are only beginning to 

understand how mRNA sorting to synapses takes place.  
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Sorting signals, usually within the 3´-untranslated region (3´-UTR) of the 

mRNA, play a crucial role in mRNA localization (Holt and Bullock, 2009; Martin and 

Ephrussi, 2009; Mayr, 2017; Meer et al., 2012). Such signals are able to interact with 

specific RNA binding proteins (RBPs), such as ZBP1, FMRP or Staufen2 (Stau2), to 

form neuronal RNA granules (Dictenberg et al., 2008; Fernandez-Moya et al., 2014; 

Kiebler and Bassell, 2006). Thereby, Stau2 and ZBP1 regulate the dendritic 

localization of Calm3 and ß-actin mRNA, respectively (Eom et al., 2003; 

Sharangdhar et al., 2017). Through these processes RBPs significantly contribute to 

synaptic function (Dictenberg et al., 2008; Goetze et al., 2006; Kao et al., 2010).  

The negative regulator of G protein signaling 4 (Rgs4) mRNA is a previously 

identified physiological target mRNA of Stau2 in the brain (Heraud-Farlow et al., 

2013). It encodes a GTPase activating protein of the G protein-coupled receptor 

(GPCR) pathway, and therefore modulates receptor mediated neuronal signaling at 

the synapse (Gerber et al., 2016; Pacey et al., 2011; Saugstad et al., 1998). 

Fluorescent in situ hybridization (FISH) has shown that Rgs4 mRNA is present in 

cytosolic RNA granules localized in distal dendrites. Further analysis confirmed the 

presence of Rgs4 mRNA in Stau2 granules (Heraud-Farlow et al., 2013). As the long 

Rgs4 3´-UTR contains in vivo cross-linking sites for Stau2 (Sharangdhar et al., 2017), 

it might provide key binding sites for a direct interaction with Stau2. Silencing of 

Stau2 induces a reduction of endogenous Rgs4 mRNA both in vitro and in vivo, 

suggesting an involvement of Stau2 in the regulation of Rgs4 mRNA levels (Berger et 

al., 2017; Heraud-Farlow et al., 2013).  

To evaluate the role of the 3´-UTR in mediating proper subcellular sorting in 

mature neurons, we used Rgs4 as a model, and generated an mRNA reporter 

combining the Rgs4 3´-UTR with an improved MS2 RNA live-cell imaging system 

(Bertrand et al., 1998; Pichon et al., 2016). This reporter system allowed us to 

perform long-term mRNA tracking in dendrites and to (i) unravel the underlying 

mRNA transport dynamics mediated by a specific 3´-UTR and investigate (ii) 

neuronal activity and (iii) Stau2 dependency. Together, our results support a model of 

active, directed mRNA trafficking in a sushi-belt like fashion promoting synaptic 

recruitment of mRNA, which would lead to activated translation. This in turn may 

trigger synaptic remodeling, which ultimately impacts synaptic function.  
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2.3 Results 

 

2.3.1 The Rgs4 3´-UTR localizes an MS2 reporter mRNA to distal dendrites 

	
To test whether the 3´-UTR of Rgs4 is sufficient for dendritic localization and 

to unravel the underlying dynamics of subcellular mRNA sorting, we employed the 

MS2 system (Bertrand et al., 1998) in cultured rat hippocampal neurons. This system 

makes use of the high affinity and specificity interaction of the MS2 coat protein 

(MCP) with the MS2 RNA stem-loop structure. We designed reporters containing the 

LacZ open reading frame that includes a stop codon followed by an array of either 32 

or 128 MS2 stem-loops(Pichon et al., 2016) and the Rgs4 3´-UTR (Fig. 2.1A). A 

second MS2 reporter mRNA lacking the Rgs4 3´-UTR was generated (termed ‘MS2 

only’ throughout). Together, these reporter mRNAs allowed us to assess the specific 

contribution of the Rgs4 3´-UTR to dendritic mRNA transport. To visualize these 

reporter mRNAs in living cells, we co-transfected the reporter plasmid with an 

expression vector encoding a C-terminally green fluorescent protein (GFP)-tagged 

tandem MCP (tdMCP-GFP) (Wu et al., 2012), containing a nuclear localization signal 

(NLS) sequestering excess tdMCP-GFP into the nucleus (Bertrand et al., 1998; 

Dynes and Steward, 2007; Park et al., 2014; Rook et al., 2000; Wu et al., 2012) (Fig. 
2.1A; Supplementary Fig. 1A). Single molecule FISH (smFISH) (Fusco et al., 2003), 

targeting the MS2 repeats, demonstrated that the MS2+Rgs4 3´-UTR reporter mRNA 

localized to dendrites (Supplementary Fig. 2.1B), resembling the pattern of 

endogenous Rgs4 mRNA (Heraud-Farlow et al., 2013). Control reporter mRNAs with 

no known function in dendrites, i.e. MS2 only or MS2+histone-3.3 3´-UTR, all 

displayed dendritic localization (Supplementary Fig. 2.1C). This suggests that 

dendritic localization is not exclusively dependent on the 3´-UTR, but that other 

sequences or different expression levels might possibly contribute as well. Therefore, 

we inquired how specific subcellular sorting within dendrites might be achieved. To 

further validate the MS2-MCP system in neurons, we co-transfected both the 

MS2+Rgs4 3´-UTR MS2 reporter and tdMCP-GFP plasmids. GFP fluorescence was 

clustered in discrete cytoplasmic granules that colocalized with the MS2 smFISH 

signal (Fig. 2.1B, Supplementary Fig. 2.1D), confirming that we reliably detected 

reporter mRNAs, thereby allowing the visualization of intracellular mRNA transport in 

living cells.  
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Figure 2.1: Reporter mRNAs display directed dendritic transport dynamics in 

primary hippocampal neurons. (A) Scheme of both MS2 only and MS2+Rgs4 MS2 

reporter constructs and tdMCP-GFP expression cassettes (upper) and the MS2 

system (lower). Abbreviations: pRSV = Rous sarcoma virus promoter, pUBC = 

Ubiquitin C promoter, ORF = open reading frame, NLS = nuclear localization signal, 

tdMCP = tandem MS2 coat protein, UTR = untranslated region. (B) Phase contrast, 

GFP fluorescence (reporter), MS2 single molecule FISH and overlay in a rat 

hippocampal neuron expressing both tdMCP-GFP and MS2+Rgs4 MS2 reporter 

mRNA (scheme). Arrowheads indicate overlapping tdMCP-GFP bound MS2 reporter 

mRNA and MS2 smFISH. Fluorescent images were deconvolved to assess overlap 

(for unprocessed images see Supplementary Fig. 1C). Scale bar 20 µm. Boxed 

region is magnified in right panels. (C-F) Representative kymographs (left) and 

extracted tracks (right) illustrating differences in unidirectional MS2+Rgs4 3´-UTR 

mRNA granule transport speed, displacement and directionality (C), as well as 

interrupted (D) and multidirectional transport (E). Anterograde and retrograde 

transport are indicated in green or red arrowheads and lines, respectively. (F) 

Quantification of relative transport dynamics of MS2 only and MS2+Rgs4 3´-UTR 

reporter mRNAs in 1 and 10 minute time-series acquisitions, respectively. 

 

 

 

2.3.2 The Rgs4 3´-UTR mediates an anterograde transport bias to distal dendrites 

	
To investigate the underlying transport dynamics, time-lapse imaging of single 

neurons expressing the MS2 system was performed for 1 minute at 15.3 fps (frames 

per second) with a spinning disk microscope. To analyze the characteristics of single 

RNA granule trafficking, we generated kymographs of dendritic regions at a minimal 

distance of 20 µm from the soma and traced single trajectories (Fig. 2.1C-E; 2.2A-C; 
movies 2.1-2.8). This revealed diverse RNA transport patterns, independent of a 3´-

UTR. We observed mobile mRNA granules with differences in transport speed, 

displacement length and directionality (Fig. 2.1C, movies 2.1-2.3). Furthermore, two  
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Figure 2.2: Rgs4 3´-UTR mediates an anterograde transport bias. (A) 

Representative phase contrast and GFP fluorescence of hippocampal neuronal 

culture co-transfected with the MS2+Rgs4 3´-UTR reporter and tdMCP-GFP 

constructs. Scale bar 20 µm. Asterisk denotes GFP positive cell. (B) Time series of 

the dendritic boxed region in A. Representative anterograde (black arrowheads) and 

retrograde (white arrowheads) moving mRNA granules are indicated. (C) 

Kymograph of the dendritic region in B. Arrowheads indicate mRNA granules 

signified in B. (D-I) Dot plots (D,F,H) and histograms (E,G,I) displaying percentage 

of anterograde moving granules (D-E), percentage of total anterograde travel 

distance (F-G) and average speed (H-I) for MS2 only or MS2+Rgs4 3´-UTR reporter 

mRNAs, detected by tdMCP-GFP. In (I), positive values indicate anterograde and 

negative values indicate retrograde transport. Data represents mean ± standard 

deviation of three independent experiments (individual experiments shown as gray 

dots). Asterisks represent p-values obtained by Student’s t-test (*p < 0.05, **p < 

0.01). Data was obtained from 40 µm dendritic segments at a minimal distance of 20 

µm from the cell body. At least 10 dendrites/condition/experiment were analyzed. 

Total number of dendrites (nd) and tracks (nt) analyzed per condition are indicated. 

Only displacements ≥ 1.5 µm were considered for analysis.  

 

 

 

additional distinct types of mRNA granule mobility were detected. We found that 

mRNA granules may undergo interruptions in their movement before reinitiating 

transport (Fig. 2.1D, movie 2.4, interrupted) or may display multiple changes in 

direction without interrupting transport (Fig. 2.1E, movies 2.5-2.6, multidirectional). 

Additionally, we observed mRNA granules that reversed direction at branch points to 

move between different dendritic segments (movie 2.7). Such transport behaviors 

support the sushi-belt model of dendritic mRNA trafficking, which proposed that 

mRNA granules patrol dendrites in a highly dynamic multidirectional fashion, without 

being irreversibly anchored at a single specific location (Doyle and Kiebler, 2011). 

We quantified the frequencies of these transport behaviors and found that half of the 

mRNA granules remained stationary during the one-minute acquisition period. In 
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contrast, the mobile fraction of granules traversed the dendrites in a highly dynamic 

way, including unidirectional, interrupted and multidirectional movements, 

independent of the 3´-UTR present (Fig. 2.1F). Increasing the acquisition time to 10 

minutes reduced the fraction of stationary and unidirectional granules in favor of 

interrupted and multidirectional movements, demonstrating that a large fraction of 

RNA granules indeed undergo transport in a sushi-belt like fashion. The fraction of 

the stationary population is consistent with previously published data for the ß-actin 

mRNA as well as for Staufen1 granules in the time frames analyzed (Köhrmann et 

al., 1999; Yoon et al., 2016). Statistical analysis by Chi-squared test could not 

establish any difference in the frequency of these events between MS2 only or 

MS2+Rgs4 3´-UTR reporter mRNAs, suggesting that the 3´-UTR of the transcript 

does not regulate the types of motility exhibited by the reporters. 

As both MS2+Rgs4 and MS2 only reporter mRNAs were found to be localized 

in dendrites, we decided to reinvestigate the underlying regulation of dendritic mRNA 

sorting, which ultimately fine-tunes trafficking to achieve specific localization upon 

demand. We investigated multiple parameters of 3´-UTR-dependent mRNA granule 

transport, including speed, displacement and directionality in dendrites (Fig. 2.2; 
Supplementary Fig. 2.2; movie 2.8). When exploring transport directionality, the 

MS2 only mRNA displayed an equal number of mRNA granules moving in the 

anterograde (48.9 ± 1.2 %) or retrograde direction (Fig. 2.2D-E). Interestingly, the 

MS2+Rgs4 3´-UTR mRNA mediated a significant anterograde transport bias, with 

58.8 ± 2.9 % of mRNA granules moving towards more distal dendritic regions (Fig. 
2.2D-E; p = 0.0056). Moreover, when the percentage of total anterograde travel 

distance of all mRNA granules was investigated, we observed a similar transport bias 

for the MS2+Rgs4 3´-UTR (59.1 ± 2.5 %) compared to the MS2 only (52.8 ± 2.6 %) 

mRNA reporter (Fig. 2.2F-G; p = 0.0399). Directional transport has previously been 

observed for other mRNAs, such as ß-actin, Arc, and CaMKIIα, in hippocampal 

neurons or oskar in the Drosophila oocyte, with a preferential transport direction 

towards the distal or the posterior part of the cell, respectively (Dynes and Steward, 

2007; Park et al., 2014; Rook et al., 2000; Zimyanin et al., 2008). In contrast, we 

observed no differences in either average transport speed or in average 

displacement length of single events, indicating that the Rgs4 3´-UTR did not affect 

these parameters of mRNA transport (Fig. 2.2H-I; Supplementary Fig. 2.2A-B). The 

distribution of single data points showed that most RNA granules underwent short 



39	

displacement events and only few particles traveled long distances at a time, often 

longer than the 40 µm analyzed (Supplementary Fig. 2.2B). To exclude that the 

NLS included in the tdMCP protein might potentially affect transport as previously 

reported (Salman et al., 2005), we generated a tdMCP lacking the NLS and repeated 

the previous experiment. Although the fluorescent signal had higher background, we 

still observed an anterograde transport bias mediated by the Rgs4 3´-UTR 

(Supplementary Fig. 2.2C,D), showing that the NLS did not affect trafficking in our 

hands. 

In conclusion, our live cell imaging data suggests that the Rgs4 3´-UTR was 

responsible for the observed anterograde transport bias, affecting both anterograde 

moving mRNA granule number and anterograde travel distance in dendrites. 

Importantly, the results establish the 3´-UTR as a key determinant as the bias was 

not observed in the absence of the Rgs4 3´-UTR.  

 

2.3.3 Inhibition of neuronal activity abolishes the Rgs4 3´-UTR dependent 

anterograde transport bias 

	
Next, we asked whether neuronal activity might regulate dendritic mRNA 

transport. As mature neurons display endogenous neuronal activity in culture, we 

chemically silenced activity by simultaneously inhibiting AMPA receptors, NMDA 

receptors and voltage-gated sodium channels via bath application of CNQX, AP5 and 

TTX, respectively (Sharangdhar et al., 2017). Neurons transfected with either MS2 

only or MS2+Rgs4 3´-UTR reporters were left untreated or pre-incubated for 1 h with 

either vehicle or CNQX/AP5/TTX, and then imaged during continuous treatment (Fig. 
3A). No differences in speed, displacement or transport directionality were observed 

for the MS2 only mRNA reporter, independent of the treatment (Fig. 2.3B-C, 
Supplementary Fig. 2.3A,B,G,H and data not shown). However, the anterograde 

transport bias mediated by the MS2+Rgs4 3´-UTR was completely abolished when 

neuronal activity was inhibited (46.7 ± 2.3 %), compared to vehicle treated (55.1 ± 

2.9 %, p = 0.00431) or untreated neurons (56.3 ± 2.3 %, p = 0.00187) (Fig. 2.3D-E; 
F2,9 = 0.00136). Moreover, the inhibition of neuronal activity alleviated the 

anterograde bias observed in respect to total travel distance (50.2 ± 2.5 %), 

compared to vehicle treated samples (56.0 ± 3.0 %, p = 0.02884) (Supplementary 

Fig. 2.3C-D). Importantly, these effects were not due to neuronal toxicity, as 1h 
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Figure 2.3: Chemical inhibition of neuronal activity abolishes Rgs4 3´-UTR 

dependent transport bias. (A) Scheme of experimental outline. (B-G) Dot plots 

(B,D,F) and histograms (C,E,G) displaying percentage of anterograde moving MS2 

only (B-C) or MS2+Rgs4 3´-UTR (D-G) reporter mRNA granules in rat hippocampal 

neurons, untreated, vehicle treated (DMSO) or silenced (100µM CNQX, 50µM AP5, 

1µM TTX) and after 1 hour recovery. Data represents mean ± standard deviation of 

3-4 independent experiments (individual experiments shown as gray dots). Asterisks 

represent p-values assessed by Tukey’s test post-hoc to one-way ANOVA analysis 

(* p < 0.05, **p < 0.01, ***p < 0.001). Data was obtained from 40 µm dendritic 

segments at a minimal distance of 20 µm from the cell body. At least 10 

dendrites/condition/experiment were analyzed. Total number of dendrites (nd) and 

tracks (nt) analyzed per condition are indicated. Only displacements ≥ 1.5 µm were 

considered for analysis.  

 

 

 

 wash-off of chemical inhibition induced recovery of the transport bias (F2,9 = 0.00093, 

p = 0.01456 for silenced vs wash-off, p = 0.00074 for silenced vs untreated, Fig. 
2.3F-G). Displacement of anterograde movements of MS2+Rgs4 3´-UTR mRNA 

granules partially recovered after 1h wash-off (F2,9 = 0.021, p = 0.424 for silenced vs 

wash-off, p = 0.017 for silenced vs untreated, Supplementary Fig. 2.3E-F). 

Moreover, fractions of mRNA granule mobility, categorized as stationary, 

unidirectional, interrupted and multidirectional, remained unaffected by inhibition of 

neuronal activity (Supplementary Fig. 2.3I-J). Together, this data demonstrates that 

the transport bias of the reporter mRNAs not only depended on the Rgs4 3´-UTR, but 

on neuronal activity as well. Importantly, the movement of the MS2 only mRNA 

reporter remained unaffected by synaptic inhibition, suggesting that neuronal 

silencing did not reduce the mRNA transport bias in general, but that the effect was 

indeed dependent on the Rgs4 3´-UTR. 
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2.3.4 Rgs4 3´-UTR dependent mRNA sorting to synapses  

	
As inhibition of neuronal activity abolished the Rgs4 3´-UTR dependent 

anterograde transport bias in distal dendrites, we next investigated whether mRNA 

was recruited to dendritic synapses. To visualize endogenous excitatory synapses in 

dendrites, we generated a fluorescent synaptic marker by tagging the postsynaptic 

density protein 95 kD (PSD-95) with tagRFP-t (PSD-95−RFP). Mature neurons were 

co-transfected with PSD-95−RFP, tdMCP-GFP and either MS2 only or MS2+Rgs4 

3´-UTR mRNA reporters. To analyze whether synapses might affect mRNA granule 

transport, we co-imaged both mRNA reporters and the synaptic marker by time-lapse 

dual-color microscopy in single cells for one minute. We generated kymographs for 

each separate channel and created dual-color overlays (Fig. 2.4A; movies 2.9-2.10). 

We identified the positions, where mRNA granules were found to either interrupt 

(termed docking) or reinitiate transport (termed undocking), and measured the 

distance to the closest PSD-95−RFP positive cluster. Importantly, co-expression of 

the fluorescent reporters together with either MS2 only or MS2+Rgs4 3´-UTR 

reporter mRNA did not modify synaptic density (Supplementary Fig. 2.4A). 

Moreover, we found no difference in the ratio of mRNA granules docking or 

undocking between MS2 only and MS2+Rgs4 3´-UTR reporter mRNAs, respectively 

(Supplementary Fig. 2.4B). While both reporter mRNAs were recruited to synapses, 

MS2+Rgs4 3´-UTR reporter mRNAs on average docked closer than MS2 only 

reporter mRNAs (1.11 ± 0.01 µm for MS2 only vs. 0.67 ± 0.02 µm for MS2+Rgs4 3´-

UTR; p = 4.25E-6, Fig. 2.4B-C). Similar results were obtained for mRNA granules 

undocking after a previous stationary phase (Supplementary Fig. 2.4C-D). 

Together, these results suggest a dynamic sorting process as the Rgs4 3´-UTR 

mediated mRNA recruitment and eventual release close to synapses.  

To further investigate how MS2 only and MS2+Rgs4 3´-UTR RNA reporters 

behave at the synapse, we acquired longer dual-color videos (3.5 minute, at ~ 4.7 

fps) of neurons co-transfected with either MS2 only or the MS2+Rgs4, tdMCP-GFP 

and the synaptic marker PSD-95−RFP. We tracked PSD-95−RFP positive clusters 

over time and measured GFP fluorescence of reporter mRNAs in equivalent areas. 

This allowed us to specifically analyze dynamic changes in GFP fluorescence 

intensity caused by docking or undocking reporter mRNAs at single synapses (see 

Methods for details). During the time analyzed, we observed at least one docking or  
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Figure 2.4: Rgs4 3´-UTR mediates mRNA recruitment to synapses dependent on 

neuronal activity. (A) Representative dual-color kymograph showing MS2+Rgs4 3´-

UTR reporter mRNA (green) and TagRFPt tagged PSD-95 (magenta) from a 

dendrite of a rat hippocampal neuron. First and last frames are shown at top and 

bottom. Extracted track (right) for an mRNA granule docking at a PSD-95 positive 

area is indicated by arrowheads. (B-C) Distance between MS2 only or MS2+Rgs4 

3´-UTR reporter mRNA docking events and closest PSD-95 positive cluster in co-

transfected rat hippocampal neurons is displayed as dot plot (B) and density plot 

(C). (D) Distribution of MS2 only or MS2+Rgs4 reporter mRNA-positive (estimated 

RNA number ≥ 1) and -negative (RNA < 1) PSD-95-TagRFPt clusters in soma and 

dendrites. P-values of Chi2 tests against the control are indicated. (E) Integrated 

frequency of reporter docking and undocking events in dendritic synapses per min. 

Number of observations and population means are indicated. (F) Average net 

change of MS2 only or MS2+Rgs4 mRNA content at mRNA reporter-positive or -

negative synapses per min, calculated from the estimated reporter molecules that 

dock or undock at synapses per event, respectively. Numbers indicate mean value 

of net RNA level change. Error bars represent 95% confidence intervals. ** indicates 

significant (p<0.01) difference compared to zero (no net flux, null hypothesis). (G-H) 

Distance between MS2 only and MS2+Rgs4 3´-UTR reporter mRNA docking events 

and closest PSD-95 positive cluster displayed as dot plot (G) and density plot (H). 

Plots display MS2+Rgs4 3´-UTR reporter mRNA under untreated, vehicle (DMSO) 

or silenced (100 µM CNQX, 50 µM AP5, 1 µM TTX) conditions (G-H). Data 

represents mean ± standard deviation of three independent experiments (individual 

experiments shown as gray dots; B,G). Dashed lines represent mean values of 

single data points (C,H). Asterisks represent p-values obtained by Student’s t-test 

(B), Mann Whitney U test (E) or Tukey’s test post-hoc to one-way ANOVA analysis 

(G) (**p < 0.01, ***p < 0.001). Data was obtained from 40 µm dendritic segments at 

a minimal distance of 20 µm from the cell body. At least 10 

dendrites/condition/experiment (A-C, G-H) or 12 neurons/condition (D-F) from 3 

independent biological replicates were analyzed. Total number of dendrites (nd), 

events (ne) and synapses (n) analyzed per condition are indicated.  
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undocking event of either MS2 only or MS2+Rgs4 reporter mRNAs at ~ 34 % vs ~ 

21% of dendritic synapses, respectively (Supplementary Fig. 2.4E). This represents 

a ~30% significant reduction in the frequency of these events for the MS2+Rgs4 3´-

UTR reporter mRNA (p < 0.0001; Supplementary Fig. 2.4F,M). We found that the 

number of these events showed a moderate correlation (R ~ 0.5) with the estimated 

mRNA copy number within PSD-95−RFP positive synapses (Supplementary Fig. 
2.4G). This suggests that the number of docking/undocking events are related with 

the total number of mRNA particles at synapses. Analysis of the postsynaptic sites 

revealed that mRNA positive synapses were both larger (data not shown) and 

brighter in their mean PSD-95 signal intensity than mRNA negative synapses (p < 

0.0001; Supplementary Fig. 2.4H). We found that the fraction of MS2+Rgs4 3´-UTR 

positive synapses in dendrites was significantly lower than that of MS2 only (57.1 % 

vs 73.9 %; p < 0.0001; Fig. 2.4D). However, when we focused on mRNA reporter 

positive synapses, we found a significant difference between the frequency of total 

docking/undocking events of MS2 only and MS2+Rgs4 3´-UTR reporter mRNAs at 

synapses (p = 0.002; Fig. 2.4E). 

Subsequently, we analyzed the net directionality of reporter mRNA 

docking/undocking at postsynaptic densities. We found that the frequency of docking 

events was significantly higher for the MS2+Rgs4, compared to the MS2 only 

reporter (~0.9 min-1 vs 0.79 min-1, p = 0.005), whereas there was no substantial 

difference in the frequency of undocking events (~0.99 min-1 vs 0.97 min-1 in MS2 

only RNA positive synapses). In agreement with these results, we found a net influx 

(p = 0.009, α = 0.01) of MS2+Rgs4 into mRNA positive synapses, in contrast to the 

MS2 only reporter mRNA (Fig. 2.4F, Supplementary Fig. 2.4I), which was not 

significantly different from zero (p = 0.043, α = 0.01). In general, synapses contained 

mRNA both at the beginning and during the experiment regardless of their location 

and reporter mRNA (Supplementary Fig. 2.4J-L).  

In summary, this data demonstrates that the MS2+Rgs4 3´-UTR mediated 

docking in closer proximity to synapses, compared to the MS2 only 3´-UTR. 

Furthermore, although the MS2+Rgs4 reporter interacted with fewer synapses, it 

displayed a net increase at synapses, while the MS2 only reporter did not. These 

findings suggest that dendritically localized MS2+Rgs4 mRNA was probably 

associated with a specific subset of synapses.  
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2.3.5 Neuronal activity induces the recruitment of Rgs4 3´-UTR mRNA to synapses 

	
Next, we investigated whether inhibition of neuronal activity affected 

recruitment of Rgs4 3´-UTR mRNA to synapses in addition to its effect on transport 

directionality. Therefore, we chemically inhibited neuronal activity in mature rat 

hippocampal neurons transiently co-transfected with either the MS2 only or the 

MS2+Rgs4 3´-UTR mRNA, tdMCP-GFP and the synaptic marker PSD-95−RFP. 

Neither synaptic density nor the ratio of docking to undocking events was altered 

when silenced cells were compared with vehicle or untreated controls 

(Supplementary Fig. 2.4P-Q). Additionally, MS2 only mRNA granules did not exhibit 

any significant change in their distance to PSD-95−RFP synapses upon inhibition of 

neuronal activity when compared to vehicle or untreated cells (Supplementary Fig. 
2.4R-S). However, the inhibition of neuronal activity increased the docking/undocking 

distance of MS2+Rgs4 mRNA close to synapses, to values comparable to that of 

MS2 only mRNA (F2,6 = 0.001, p = 0.004 for silencing vs vehicle, p = 0.001 for 

silencing vs untreated, Fig. 2.4G-H; F2,6 = 0.001, p = 0.003 for silencing vs vehicle, p 

= 0.00162 for silencing vs untreated, Supplementary Fig. 2.4T-U). Next, we 

performed local two-photon glutamate uncaging at individual dendritic spines to 

evaluate whether the stimulation of single spines would be sufficient to recruit mRNA 

granules. Either the MS2 only or the MS2+Rgs4 reporter mRNAs were co-

transfected together with tdMCP-GFP and tandem Tomato (tdTomato). Upon 

glutamate uncaging adjacent to individual spines, we observed an increase in spine 

size by the volume marker (tdTomato) (Supplementary Fig. 2.5A). The mRNA 

granule number before and after uncaging was quantified within a 5µm radius along 

dendrites centered at the stimulated spine. We observed an average increase of ~ 3 

RNA granules for the MS2+Rgs4 reporter mRNA, while there was no increase of 

MS2 only reporter granules (Fig. 2.5A-B, Supplementary Fig. 2.5B, movie 2.11). 

Together, this data demonstrates that neuronal activity is not only necessary to 

mediate the Rgs4 3´-UTR dependent mRNA transport bias, but is also required to 

recruit its mRNA to activated synapses. Furthermore, we provide further 

experimental evidence that it is the Rgs4 3´-UTR that has a direct influence on the 

activity-dependent mRNA docking/undocking, as the MS2 only reporter mRNA 

remained unaffected by neuronal inhibition or local stimulation of dendritic spines.  
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Figure 2.5: Local glutamate uncaging at individual dendritic spines triggers Rgs4 3´-

UTR dependent mRNA recruitment. (A) Representative GFP fluorescence of a 

hippocampal neuron co-transfected with the MS2+Rgs4 3´-UTR reporter and 

tdMCP-GFP constructs before (left panel) and after (middle, right panels) local 

glutamate uncaging. Black dot denotes the uncaging spot at dendritic spine. 

Arrowheads indicate GFP positive MS2 reporter mRNA granules. Scale bar 2 µm. 

(B) Dot plot displaying the change in RNA granule number 40-45 min after uncaging 

compared to the RNA granule number before uncaging within 5 µm of the stimulated 

spine. Data represents mean ± standard deviation (individual neurons shown as 

gray dots). Asterisks represent p-values obtained by Student’s t-test (***p < 0.001). 

Data was obtained from 6 dendrites (5 neurons of 4 biological replicates) and 5 

dendrites (5 neurons of 5 biological replicates) for MS2 only and MS2+Rgs4 reporter 

mRNAs, respectively. 
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2.3.6 Stau2 regulates the transport of Rgs4 3´-UTR mRNA in dendrites 

	
Finally, we investigated whether the RBP Stau2, which is known to bind Rgs4 

mRNA (Heraud-Farlow et al., 2013; Sharangdhar et al., 2017), was required for the 

transport of MS2+Rgs4 granules. To investigate whether mRNA is co-transported 

with Stau2, we co-transfected the MS2+Rgs4 reporter together with tdMCP-GFP and 

TagRFPt tagged Stau2 (RFP-Stau2). We observed multiple instances, where the 

MS2+Rgs4 reporter mRNA granules were co-transported with Stau2 (Fig. 2.6A, 
movies 12-13).  Moreover, overexpression of Stau2 resulted in an increase of 

dendritic MS2+Rgs4 reporter density, while the MS2 only mRNA was unaffected 

(Supplementary Fig. 2.6A). Additionally, we performed a pilot experiment involving 

MS2 RNA-mediated tethering of Stau2 to the MS2 only reporter mRNA. When we co-

transfected both tdMCP-Stau2 and tdMCP-GFP together with the MS2 only reporter, 

we observed that the tethering of Stau2 tended to recruit the control mRNA closer to 

the synaptic marker vesicular glutamate transporter 1 (VGLUT1) (Supplementary 
Fig. 2.6B). Together, our data suggest that Stau2 might indeed regulate Rgs4 3´-

UTR dependent recruitment to synapses. However, further work is clearly necessary 

to substantiate these findings in the future.  

To further investigate the involvement of Stau2 in dendritic mRNA transport, 

we transduced neurons with lentiviral particles expressing either a short hairpin non-

targeting control (shNTC) or a short hairpin specific for Stau2 (shStau2-2) (Goetze et 

al., 2006) 4 days prior to co-transfection with tdMCP-GFP and MS2 only or 

MS2+Rgs4 3´-UTR reporter mRNAs. Time-lapse imaging revealed that the MS2 only 

reporter mRNA remained unaffected by Stau2 knock-down (Fig. 2.6B-C, 
Supplementary Fig. 2.6C-D). In contrast, Stau2 knock-down abolished the 

anterograde transport bias of MS2+Rgs4 3´-UTR mRNA granules in distal dendrites 

(p = 0.012, Fig. 6D-E). Total anterograde displacement remained unaffected for MS2 

only mRNA, but showed a non-significant reduction for the MS2+Rgs4 3´-UTR 

reporter in Stau2 deficient neurons (Supplementary Fig. 2.6E-F). Different types of 

MS2+Rgs4 3´-UTR mRNA granule mobility, categorized as stationary, unidirectional, 

interrupted and multidirectional, as well as speed and displacement length were 

unaffected by Stau2 knock-down (Supplementary Fig. 2.6G and data not shown). 

The reduction of Stau2 expression was verified in the imaged samples by 

immunostaining (Supplementary Fig. 2.6H). In conclusion, this data provides direct 
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experimental evidence that Stau2, which is co-transported together with Rgs4 

reporter mRNA in distinct RNA granules, is responsible for the observed 3´-UTR-

dependent transport bias. 
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ß  
Figure 2.6: Stau2 regulates Rgs4 3´-UTR dependent transport. (A) Representative 

dual-color kymograph showing MS2+Rgs4 3´-UTR reporter mRNA (green) and 

tagRFPt-tagged Stau2 (magenta) from a dendrite of a rat hippocampal neuron. First 

and last frames are shown at top and bottom. Arrowheads indicate an MS2+Rgs4 

reporter and Stau2 positive RNA granule undergoing co-transport. (B-E) Dot plots 

(B,D) and histograms (C,E) displaying percentage of anterograde moving MS2 only 

or MS2+Rgs4 3´-UTR reporter mRNA granules in shNTC and shStau2 transduced 

hippocampal neurons. Abbreviation: NTC = non-targeting control. Data represents 

mean ± standard deviation of three independent experiments (individual 

experiments shown as gray dots). Asterisks represent p-values obtained by 

Student’s t-test (*p < 0.05). Data was obtained from 40 µm dendritic segments at a 

minimal distance of 20 µm from the cell body. Total number of dendrites (nd) and 

tracks (nt) analyzed per condition are indicated. Only displacements ≥ 1.5 µm were 

considered for analysis.  
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2.4 Discussion 

	
	

Here, we show that mRNAs travel along dendrites in a dynamic and 

multidirectional fashion, a process that does not exclusively require a specific 3´-UTR 

sequence for this dendritic localization. The presence of the Rgs4 3´-UTR, however, 

conveyed key properties to the reporter mRNA, which fine-tune transport as (i) it 

introduced a transport bias directed towards distal dendrites, and (ii) regulated the 

spatio-temporal association to synapses. These effects were dependent on neuronal 

activity and the RBP Stau2. Together, our data not only provide experimental support 

for the sushi-belt model of dendritic mRNA transport (Doyle and Kiebler, 2011), in 

which mRNAs dynamically patrol synapses, but also allow us to substantially 

advance this model by the introduction of a regulated transport bias giving 

mechanistic insight into global RNA sorting processes including recruitment by 

individual, stimulated synapses in polarized neurons. 

  

2.4.1 Localized mRNAs traverse the dendrite in a sushi-belt-like fashion  

	
We present evidence that mRNA granules traverse distal dendrites in a 

directed manner, independently of the presence of a specific 3´-UTR. All MS2 only, 

MS2+Rgs4 and MS2+histone-3.3 3´-UTR mRNA reporters formed dendritic mRNA 

granules, suggesting that additional factors other than 3´-UTR sequences contribute 

to dendritic localization. For instance, the poly-A-tail or other mRNAs contained in the 

same granule (Palacios and St Johnston, 2001) might be involved. However, 

independently of the 3´-UTR sequence, a proportion of the observed RNA granules 

remained stationary, while others showed variability in speed, displacement length 

and directionality of transport. In addition to both simple anterograde and retrograde 

transport, some mRNA granules displayed more complex dynamics. Indeed, some 

granules interrupted and subsequently reinitiated transport or even switched direction 

without interruption. This interrupted transport has recently been investigated and 

computationally modeled, providing a basis for future functional studies (Song et al., 

2018). Additionally, we show here that longer observation time revealed an increase 

in interrupted movements and a decrease in unidirectional or stationary phases, 

demonstrating that a majority of mRNA granules may undergo multiple transport 
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phases in different directions. This observation expands our current understanding of 

mRNA sorting beyond local recruitment, as it experimentally proves that mRNA 

granules are not irreversibly anchored, but are dynamic, can be targeted to specific 

sites upon demand, and be released from them later on. Together, we provide 

experimental evidence that the sushi-belt model indeed accurately describes 

dendritic mRNA transport in live neurons. However, we do not exclude that other 

factors/mechanisms might contribute as well. Interestingly, a recent computational 

study provided evidence that the sushi-belt model can achieve complex spatial 

distribution of cargo in neurons (Williams et al., 2016).  

 

2.4.2 The Rgs4 3´-UTR mediates an anterograde transport bias dependent on 

neuronal activity and the Stau2 protein  

	
A key finding of this study is that the 3´-UTR of Rgs4 mRNA mediated an 

anterograde transport bias in dendrites, i.e. a preferential transport directionality 

towards distal regions. In contrast, neither the MS2 only nor the MS2+histone-3.3 

reporter mRNAs displayed this bias (Fig. 2.2D and data not shown). Previous studies 

have observed both anterograde and retrograde mRNA transport. Moreover, a 

directional bias in transport has not been so frequently reported. It has been shown 

for oskar mRNA in the Drosophila oocyte, and for ß-actin and Arc mRNAs in mouse 

hippocampal neurons (Das et al., 2018; Dynes and Steward, 2007; Park et al., 2014; 

Zimyanin et al., 2008). It is worth mentioning that these studies observed a bias of 

similar magnitude as we report here (~ 60% towards distal regions), indicating that 

the dendritic bias of the MS2+Rgs4 3´-UTR reporter is within a physiological range.  

Interestingly, silencing of neuronal activity abolished the MS2+Rgs4 3´-UTR 

specific transport bias, while the transport of the MS2 only reporter remained 

unaffected. Endogenous neuronal signaling in culture restored the bias, 

demonstrating its physiological pertinence. In contrast with our observations, Arc 

mRNA transport bias was not affected by neuronal activity (Das et al., 2018). This 

suggests that anterograde transport is differentially regulated depending on mRNA 

sequence and that distinct RNA granules may be differently regulated by neuronal 

activity. Furthermore, we show that knock-down of Stau2 abolished the Rgs4 3´-UTR 

dependent anterograde transport bias as well. As the MS2 only reporter mRNA 

remained unaffected by Stau2 knock-down, the loss of the anterograde transport bias 



54	

is specific to the Rgs4 3´-UTR and might be caused by the absence of Stau2 in Rgs4 

containing mRNA granules. Therefore, we hypothesize that Stau2 might be recruited 

in conjunction with neuronal activity to modulate dendritic Rgs4 mRNA transport. 

Similarly, previous research has shown how Staufen and other RBPs are not 

necessary for general transport, but can facilitate or modulate it (Brendza et al., 

2000; Yoon and Mowry, 2004). Along this line, Staufen has been implicated in 

kinesin-1 dependent posterior localization of oskar mRNA in Drosophila and has 

been found in a complex with kinesin-1 in Xenopus (Brendza et al., 2000; Yoon and 

Mowry, 2004). In line with this finding, we observed directed co-transport of 

MS2+Rgs4 granules together with Stau2 in neurons. Importantly, Stau2 depletion 

results in both morphological and physiological synaptic phenotypes (Goetze et al., 

2006; Lebeau et al., 2011). Therefore, it is tempting to speculate that Stau2 might not 

only regulate the expression of proteins relevant at synapses as previously shown 

(Heraud-Farlow et al., 2013), but also the transport and recruitment of their mRNAs. 

In turn, deregulation of synaptic proteins, resulting in aberrant synaptic remodeling, 

might render a synapse incapable of proper recruiting of relevant transcripts. 

Together, our data gives functional insight into the regulation of 3´-UTR dependent 

mRNA transport. We show that it is the Rgs4 3´-UTR that facilitates dendritic 

localization via the anterograde transport bias. Although dendritic sorting might be 

affected by other factors such as regulated mRNA degradation, this transport bias 

might enable fast and efficient mRNA recruitment to specific regions such as 

synapses as needed. Future studies will have to unravel the detailed molecular 

mechanisms of how Stau2, neuronal activity and 3´-UTR sequences cooperate to 

mediate this anterograde bias in neurons. 

 

2.4.3 Rgs4 mRNA is recruited to synapses dependent on its specific 3´-UTR and 

neuronal activity  

	
We observed that the MS2+Rgs4 3´-UTR facilitated mRNA docking and 

undocking in closer proximity to synapses compared to the MS2 only. Upon silencing 

of endogenous neuronal activity, the distance of docking/undocking was increased 

for the MS2+Rgs4 3´-UTR, while the MS2 only reporter remained unaffected. 

Conversely, local stimulation of individual dendritic spines by glutamate uncaging 

resulted in increased recruitment of MS2+Rgs4 granules, but not MS2 only mRNAs. 
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Furthermore, the MS2+Rgs4 3´-UTR reporter interacted with fewer synapses and 

displayed more docking events at dendritic synapses than the MS2 only reporter. 

This led to a slower turnover of MS2+Rgs4 mRNA content at synapses compared to 

MS2 only, indicating MS2+Rgs4 is more stably associated and might remain longer 

at synapses. We propose that the presence of MS2 only mRNA at synapses might 

represent a state of non-specific, default localization. These effects, along with the 

observed differences in the brightness of PSD-95 clusters could reflect differences in 

either synaptic activity or in the subtype of the synapse. As the Rgs4 protein is a 

negative regulator of synaptic activity, we speculate that its mRNA is transported to a 

subtype of synapses, where it might be regulated in situ. Here, the mRNA could be 

unpacked and locally translated by polysomes localized close to PSD-95 clusters 

(Ostroff et al., 2002), where the newly synthesized Rgs4 protein would modulate G 

protein-coupled receptor mediated neuronal signaling. Our findings are in agreement 

with a study by the Singer lab that showed that endogenous ß-actin mRNA is 

recruited to glutamate-stimulated dendritic spines, where it is locally translated (Yoon 

et al., 2016). Using a similar approach, we now show that glutamate stimulation of 

individual spines results in 3´-UTR dependent recruitment of Rgs4 mRNA, as the 

MS2 only reporter displayed no variation in recruitment.  

Taking together, we hypothesize that the observed anterograde transport bias 

contributes to synaptic recruitment of mRNAs. As both the transport bias and 

synaptic recruitment are modulated by the 3´-UTR and neuronal activity, anterograde 

transport might indeed facilitate synaptic recruitment, especially under endogenous 

mRNA expression levels. Future work will aim to understand how neuronal activity 

affects the organization of key cytoskeletal components to mediate Rgs4 mRNA 

recruitment and whether it affects their capture on ribosomes at synapses.  

 

2.4.4 A model of dynamic dendritic Rgs4 mRNA sorting and synaptic recruitment  

	
Based on our findings, we propose a model of Rgs4 trafficking in neuronal 

Stau2 mRNA granules, in which its 3´-UTR specifically mediates sorting to distal 

dendrites. The Rgs4 mRNA might patrol the dendrite in a dynamic fashion in 

accordance with the sushi-belt model (Doyle and Kiebler, 2011). Neuronal activity 

can result in the docking of this mRNA at specific postsynaptic sites and is thought to 

cause unpacking of the mRNA from transport granules. There, the mRNA may be 
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subjected to local translation, making the encoded Rgs4 protein available in a 

spatially and temporally restricted manner. After the mRNA has fulfilled its function at 

the synapse, it may undock and reinitiate transport until it is degraded or recruited for 

a new round of translation. Such processes are the basis of cellular mechanisms in 

polarized cells involved in, e.g. dendritic arborization, long-term potentiation and 

synaptic plasticity and are indispensable for neuronal development, learning and 

memory formation.  
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2.5 Methods 

 

2.5.1 Neuronal Cell Culture, Transfection and Transduction 

	
Primary rat hippocampal neuronal cell cultures were generated as previously 

described (Goetze et al., 2003). In short, hippocampi of embryonic day 17 (E17) 

embryos of timed pregnant Sprague-Dawley rats (Charles River Laboratories) were 

isolated, cells dissociated and plated on poly-L-lysine coated cover slips or glass 

bottom dishes (WillCo Wells) and cultured in NMEM+B27 medium (Invitrogen). 

Experiments were performed with cultured neurons between 10-16 days in vitro 

(DIV). Neurons were transiently transfected by calcium phosphate co-precipitation at 

10-15 DIV as previously described (Goetze et al., 2004) and imaged at 11-16 DIV. 

For experiments involving glutamate uncaging, neurons were plated on poly-L-lysine 

and laminin (Invitrogen) coated 12-mm diameter glass coverslips, at a density of 600 

cells/mm2. Cells were transfected at 15-17 DIV by calcium phosphate co-precipitation 

and imaged the following day. To knock-down Stau2 expression, 10-11 DIV neurons 

were transduced overnight with lentiviral suspension, transfected with MCP-GFP and 

MS2 mRNA reporter constructs at 14-15 DIV and imaged at 15-16 DIV. All animals 

were used according to the German Welfare for Experimental Animals (LMU-Munich, 

Regierung von Oberbayern).  

 

2.5.2 Plasmids 

	
RNA reporter constructs were placed under the control of an RSV promoter, 

contained LacZ as open reading frame, a stop codon, and an array of either 32 

unique MS2 hairpins or a quadruplication of this array, i.e. 128 MS2 hairpins (Pichon 

et al., 2016). The 3´-UTR was either omitted (pRSV-LacZ-MS2) or included (pRSV-

LacZ-MS2-Rgs4 3´-UTR or pRSV-LacZ-MS2-H3.3 3´-UTR) prior to the polyA signal. 

The sequences of the 3´-UTRs correspond to the positions 728-2919 nt of rat Rgs4 

mRNA (NM_017214.1) or 537-1087 nt of rat Histone3.3 mRNA (X73683.1). To 

generate the pUBC-NLS-ha-tdMCP-GFP plasmid, the nls-HA-tdMCP-gfp sequence 

from the phage-ubc-nls-ha-tdMCP-gfp construct (Addgene #40649) (Wu et al., 2012) 

was cloned into the pEGFP-C1 vector (Clontech). The pUBC-ha-tdMCP-GFP 
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plasmid was generated by removing the NLS from the original vector. The pUBC-

NLS-ha-tdMCP and pUBC-NLS-ha-tdMCP-Stau2 vectors were generated by 

extracting the UBC-NLS-ha-tdMCP sequence from the original vector and cloning the 

62kD isoform of mouse Stau2 in frame in the pEGFP-C1 vector (Clontech) in place of 

the EGFP. The CMV-PSD95-tagRFPt vector was generated by cloning the PSD-95 

open reading frame into the ptagRFPt-N1 vector (Robert H. Singer, USA). The 

pCMV-tagRFPt-Stau2 vector was generated by cloning the open reading frame of the 

62kD isoform of mouse Stau2 into the ptagRFPt-C1 vector (Robert H. Singer, USA). 

The pCMV-tdTomato vector was generated by cloning the open reading frame of 

tdTomato (Dieter Edbauer) into the ptagRFPt-C1 vector (Robert H. Singer, USA) in 

place of tagRFPt. The lentiviral packaging plasmids psPAX2 and pcDNA3.1-VSV-G 

have previously been reported (Heraud-Farlow et al., 2013). Lentiviral plasmids 

pFu3a-H1-sh-NTC-pCaMKIIα-tagRFP and pFu3a-H1-sh-Stau2-2-pCaMKIIα-tagRFP 

were generated by exchanging the UBC promoter for the CaMKIIα promoter from the 

previously published FUW based vectors (Heraud-Farlow et al., 2013).  

 

2.5.3 Lentivirus production  

	
Control sh-NTC and sh-Stau2-2 lentiviral particles were obtained from 

HEK293 cells co-transfected with the plasmids psPAX2, pcDNA3.1-VSV-G and either 

pFu3a-H1-sh-NTC-pCaMKIIα-tagRFP or pFu3a-H1-sh-Stau2-2-pCaMKIIα-tagRFP, 

respectively, using calcium phosphate co-precipitation. Supernatants were filtered 

(0.45 µm RVDF Millex-HV; Millipore), concentrated by ultracentrifugation (23,000 

rpm, 140 min, SW 32 Ti rotor; Beckman Coulter) and resuspended in Opti-MEM™ 

(Life Technologies) (Heraud-Farlow et al., 2013).  

 

2.5.4 Single molecule fluorescent in situ hybridization 

	
Single molecule fluorescent in situ hybridization (smFISH) was performed as 

previously described (Fusco et al., 2003), with slight modifications. Briefly, cells were 

fixed in 4% PFA for 20 min and permeabilized in 70% ethanol overnight at 4°C, 

followed by two rounds of DNase treatment for 1 hour each at 37°C to remove 

plasmid DNA. Hybridization of 10 unique Cy3-labelled antisense-MS2 probes was 
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performed overnight at 37°C. Coverslips were mounted using Prolong Gold anti-fade 

mounting medium (Invitrogen). Sequences of probes are available upon request.  

 

2.5.5 Immunostaining 

	
Neurons were immunostained as previously described (Goetze et al., 2006). 

The following antibodies were used: (i) polyclonal antibodies, i.e. selfmade rabbit 

anti-Stau2 (Fritzsche et al., 2013), guinea pig anti-VGLUT1 (Synaptic Systems, 

419005); (ii) secondary antibodies, i.e. donkey anti-rabbit and goat anti-guinea pig 

Alexa 555 or Alexa647 conjugated (Life Technologies, A31570, A31573, A21450).  

 

2.5.6 Chemical treatments  

	
To inhibit neuronal activity, cells were pre-incubated with 100 µM 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX; Sigma, #C127), 50 µM 2-amino-5-

phosponopentanoic acid (AP5; Sigma, #A8054) and 1 µM tetrodotoxin (TTX; Abcam, 

#ab120055) in NMEM+B27 for 1 hour at 37°C. Media was exchanged for HBSS 

supplemented with 20 mM HEPES pH=7.3, 100 µM CNQX, 50 µM AP5 and 1 µM 

TTX prior to imaging at the microscope. Vehicle treated cells were incubated with 

equivalent amount of DMSO.  

 

2.5.7 Microscopy 

	
Live cell imaging was performed on a Zeiss Cell Observer spinning disk 

system. The setup consisted of a Zeiss Z1 Axio Observer microscope including a 

Plan-Apochromat 63x objective, a Yokogawa CSU-X1 spinning disk unit with 4 laser 

lines (405 nm 20 mW; 488 nm 50 mW, 561 nm 75 mW and 638 nm 75 mW) and an 

Evolve 512 Delta EMCCD Camera. For temperature control, a custom made EMBL 

environmental chamber (EMBLEM) was constructed for this setup. A 523/610 HC 

dual-band filter AHF was applied to reduce acquisition delay between channels 

during dual-color imaging. Hippocampal neurons were imaged at 36°C in HBSS (Life 

Technologies) supplemented with 20 mM HEPES buffer pH=7.3 (Sigma Aldrich). 

Time-lapse images were acquired for the duration of 1, 3.5 or 10 minutes, with an 
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approximate frame rate of ~ 15.3 fps for single channel acquisitions and ~ 4.7 fps for 

two-channel acquisitions with a 80 ms delay between channels. Cells were selected 

for proper expression of plasmids as well as for cell morphology and cell viability. 

Imaging of fixed cells was performed on a Zeiss Z1 Axio Observer microscope 

including a Plan-Apochromat 63x objective, a COLIBRI.2 LED or a HXP 120 C light 

source and the Axiocam 506 mono camera.  

Two-Photon Imaging and Glutamate Uncaging were carried out as described 

previously (Meyer et al., 2014; Scheuss and Bonhoeffer, 2014) except that a single 

laser (Mai Tai HP; Newport-Spectra Physics, Santa Clara, CA, USA) was used and 

tuned to 930 nm excitation wavelength for 2-photon imaging and 720 nm for 

uncaging. In brief, recordings were performed at 35°C in ACSF (in mM: 127 NaCl, 

2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 4 CaCl2, 25 D-glucose; in µM: 1 TTX, 10 D-

serine; pH 7.4; saturated with carbogen) on a custom two-photon laser-scanning 

microscope (objective: 60x, 0.9 numerical aperture; Olympus, Tokyo, Japan). In 

some experiments the ACSF contained 2 mM CaCl2, 1 mM MgCl2 and no TTX and 

D-serine. The data obtained under these conditions was similar and pooled. MNI-

caged L-glutamate was applied in the bath solution at 1.25 or 2.5 mM. Uncaging 

protocol: 30 pulses at 0.5 Hz, 4 ms pulse duration, wavelength 720 nm, 20 mW at the 

objective back aperture). At least 6 baseline image stacks (256 x 256 pixel, pixel size 

0.105 or 0.125 µm) were recorded every 30 s on two channels (GFP, tdTomato) 

before glutamate uncaging was performed close to the spine to be stimulated. 120 s 

or 150 s after stimulation, time-lapse imaging was resumed every 30 s until 5 min 

after stimulation, then every 60 s until 30 min and continued every 5 min until 60 min 

after stimulation. 

 

2.5.8 Image Data Analysis 

	
Time-series image data of reporter mRNAs was analyzed by kymographs. 

Dendritic 40 µm segments at ≥ 20 µm from the cell body were selected and 

straightened in ImageJ. The KymographTracker plugin of the ICY Bioimaging 

software (Chenouard, 2010; de Chaumont et al., 2012) was used to generate 

kymographs and to trace and extract single tracks. Only movements longer than 1.5 

µm were considered for analysis. Tracks were terminated when a particle stopped, 
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changed direction or left the region of interest. Average speed and displacement 

were obtained by calculating the mean. Anterograde and retrograde tracks were 

counted to calculate the percent of anterograde transport. The sum of anterograde 

and retrograde displacement lengths were used to calculate the percent of total 

anterograde displacement. Dual-color kymographs were generated by overlaying 

kymographs of the identical region of interest from two separate channels. Events in 

dual-color kymographs were manually selected and distances were manually 

measured in ImageJ, aided by a custom written ImageJ macro script (available upon 

request). Data was processed and subjected to statistical analyses in R (R-Core-

Team, 2016).   

The RNA signal intensity of PSD-95 labelled postsynaptic densities was 

analyzed within the synaptic masks generated by the xsParticle Tracker ImageJ 

plugin (Gaspar and Ephrussi, 2017; Gaspar et al., 2014).The time series of the 

measured, background corrected reporter RNA signal was fitted with a series of 

constants using the rpart package of R (Therneau, 2018). The minimum duration of a 

single constant fit was set to 5 frames (~ 1 s). The 5th percentile of the RNA signal 

intensity distribution measured in every 100 frames (for correction of photobleaching, 

Supplementary Fig. 2.4N-O) was used as the signal corresponding to a single 

reporter RNA molecule. Changes between two adjacent fitted constants whose 

absolute value exceeded this threshold were quantified as docking and undocking 

events, depending on the sign of the change.  

For deconvolution, z-stacks with 25 images at an interval of 0.26 µm were 

acquired, covering a total distance of 6.24 µm. Z-stacks were subjected to 

deconvolution using the constrained iterative quantitative restoration method of the 

Zeiss ZEN software deconvolution module.  

For analysis of time-lapse series with glutamate uncaging, individual frames 

from image stacks were median filtered (5 x 5 pixel window) and maximum intensity 

projections generated. Spine size (tdTomato fluorescence) was determined as 

integrated fluorescence within a region of interest (ROI) containing the spine and 

subtracting integrated background signal from a ROI of the same size placed outside 

of any structure. To control for stimulus specific changes in spine size, the size of 

neighboring unstimulated spines or of an adjacent dendritic region was determined in 

the same way. Data were analyzed with custom routines written in MATLAB (version 
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R2018b, MathWorks, Natick, MA, USA). mRNA granules were manually quantified in 

a 5 µm dendritic radius centered at the stimulated spine. To compensate for 

fluctuations due to ongoing transport two time points before (~ 7-4 and ~ 2 min) and 

after (40 and 45 min) uncaging were averaged respectively. 

 

2.5.9 Statistical Analysis 

	
The R software was used for all data processing, plotting and statistical 

analysis (R-Core-Team, 2016; Wickham, 2009; Wickham, 2011; Wickham, 2016). 

Figures represent mean ± standard deviation of at least 3 independent biological 

replicates, unless otherwise stated. Asterisks represent p-values obtained by either 

Student’s t-test, Tukey’s test post-hoc to one-way ANOVA analysis using the average 

values per experiment or pairwise Mann Whitney U tests (*p < 0.05, **p < 0.01, ***p < 

0.001), as indicated. The F-value evaluates whether the variance between the means 

of populations is significantly different (Fisher-Snedecor’s F distribution). The 

degrees of freedom are indicated as subscript. Significant levels (α) are provided for 

Fig. 4F and Supplementary Fig.4I.  
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ß  
Supplementary Figure 2.1: tdMCP-GFP positive granules contain MS2 reporter 

mRNA and localize to dendrites. (A) Phase contrast and GFP fluorescence of rat 

hippocampal neurons expressing tdMCP-GFP (scheme top right). Asterisks denote 

transfected cells. (B) Phase contrast, GFP fluorescence and MS2 single molecule 

FISH of rat hippocampal neurons co-expressing control GFP (not fused to MCP) and 

the MS2+Rgs4 reporter mRNA (scheme top right). (C) Straightened dendritic 

segments, 60 µm from soma expressing tdMCP-GFP and either MS2 only, 

MS2+histone-3.3 or MS2+Rgs4 3´-UTR reporter mRNAs. (D) GFP fluorescence, 

MS2 single molecule FISH and overlay in a rat hippocampal neuron co-transfected 

with tdMCP-GFP and MS2+Rgs4 reporter mRNA. Unprocessed image of 

deconvolved data shown in Fig. 1B. Scale bars 20 µm. Related to Figure 1.  
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ß  
Supplementary Figure 2.2: Displacement of mRNA granules. (A-B) Dot plot (A) 

and histogram (B) showing transport displacement of MS2 only or MS2+Rgs4 3´-

UTR reporter mRNAs, detected by tdMCP-GFP in co-transfected rat hippocampal 

neurons. (C) Representative kymographs of GFP fluorescence of hippocampal 

neuronal culture co-transfected with the MS2+Rgs4 3´-UTR reporter and tdMCP-

GFP constructs either with (+NLS) or without (-NLS) a nuclear localization signal 

(NLS). (D) Dot plot displaying percentage of anterograde moving granules for MS2 

only or MS2+Rgs4 3´-UTR reporter mRNAs, detected by tdMCP-GFP. Data 

represents mean ± standard deviation of independent experiments (individual 

experiments shown as gray dots). Data was obtained from 40 µm dendritic 

segments at a minimal distance of 20 µm from the cell body. Total number of 

dendrites (nd) and tracks (nt) analyzed per condition are indicated. Only 

displacements ≥ 1.5 µm were considered for analysis. Related to Figure 2. 
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ß  
Supplementary Figure 2.3: Chemical inhibition of neuronal activity affects Rgs4 3´-

UTR dependent total anterograde travel distance. (A-H) Dot plots (A,C,E, G, H) and 

histograms (B,D,F) displaying the percentage of total anterograde travel distance (A-

F) and average speed (G,H) of MS2 only (A,B,G) or MS2+Rgs4 3´-UTR (C-F, H) 

reporter mRNAs in rat hippocampal neurons, under untreated, vehicle (DMSO) or 

silenced (100 µM CNQX, 50 µM AP5, 1 µM TTX) conditions and after recovery for 1 

hour. Data represents mean ± standard deviation of 3-4 independent experiments 

(individual experiments shown as gray dots). Asterisks represent p-values assessed 

by Student’s t-test (C) or Tukey’s test post-hoc to one-way ANOVA analysis (E) (* p 

< 0.05). Data was obtained from 40 µm dendritic segments at a minimal distance of 

20 µm from the cell body. At least 10 dendrites/condition/experiment were analyzed. 

Total number of dendrites (nd) and tracks (nt) analyzed per condition are indicated. 

Only displacements ≥ 1.5 µm were considered for analysis. (I-J) Quantification of 

relative transport dynamics of MS2 only (I, 9-10 dendrites per condition) and 

MS2+Rgs4 3´-UTR (J, 35-38 dendrites per condition) reporter mRNA under 

untreated, vehicle (DMSO) or silenced (100 µM CNQX, 50 µM AP5, 1 µM TTX) 

conditions in 1 minute time-series acquisitions. Related to Figure 3.  
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ß  
Supplementary Figure 2.4: Rgs4 3´-UTR mRNA undergoes docking and undocking 

in the proximity of synapses, dependent on neuronal activity. (A) Boxplot displaying 

synaptic density measured as number of PSD-95 positive clusters per 40 µm 

dendritic segment in hippocampal neurons co-transfected with either MS2 only or 

MS2+Rgs4 3´-UTR reporters and PSD-95-TagRFPt. (B) Bar plot showing the 

fraction of docking to undocking events in MS2 only or MS2+Rgs4 3´-UTR reporter 

transfected hippocampal neurons. (C,D) Dot plot (C) and density plot (D) displaying 

the distance between undocking events and the closest PSD-95 positive cluster in 

co-transfected rat hippocampal neurons. Data displays both MS2 only and 

MS2+Rgs4 3´-UTR reporter mRNAs. (E) Distribution of dynamic (at least one 

docking and/or undocking event of the reporter RNA) and non-dynamic PSD-95-

tagRFPt positive structures in the soma and in the dendrites. P-values of Chi2 tests 

against the control are indicated. (F) Integrated frequency of the reporter docking 

and undocking events in somatic and dendritic synapses within one minute. Number 

of observations and the population mean are indicated above boxplots, respectively. 

(G) Integrated number of docking and undocking events as a function of estimated 

RNA copy number per synapse. Fitted lines and goodness of fit (R) are indicated. 

(H) PSD-95-TagRFPt signal intensity over synaptic area in presence or absence of 

RNA.  (I) Average net change of MS2 only or MS2+Rgs4 mRNA content in somatic 

and dendritic synapses. Numbers indicate the mean value of net RNA level change. 

Error bars represent the 95% confidence intervals. (**p < 0.01; difference compared 

to zero (no net flux, null hypothesis)). (J-K) Estimated MS2 only and MS2+Rgs4 

reporter mRNA copy number in dynamic or non-dynamic (J) and somatic or dendritic 

(K) synapses. Numbers indicate the mean value of estimated RNA levels. (L-M) 

Representative detection masks of PSD-95-RFP clusters, color-code indicating 

estimated mRNA content (L) or number of docking/undocking events (M) with MS2 

only or MS2+Rgs4 reporter mRNA. Gray areas indicate cell soma. (N-O) Intensity of 

reporter RNA (red – MS2 only, blue – MS2+Rgs4) at synapses normalized to the 

first frame to correct the effects of photobleaching (N). (***p < 0.0001) difference 

between the first and last data points of corresponding experiments (MS2 only or 

MS2+Rgs4). Photobleaching was compensated by adjusting the unit threshold in 
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 100 frame increments (O, see also Methods). ns indicates non-significant (p > 0.05) 

between the first and last data points of corresponding experiments. (P) Bar plot 

showing the fraction of docking to undocking events in MS2 only or MS2+Rgs4 3´-

UTR reporter transfected hippocampal neurons under untreated, vehicle (DMSO) or 

silenced (100 µM CNQX, 50 µM AP5, 1 µM TTX) conditions. (Q) Boxplots displaying 

synaptic density measured as number of PSD-95-RFP positive clusters per 40µm 

dendritic segment in hippocampal neurons co-transfected with either MS2 only (top) 

or MS2+Rgs4 3´-UTR (down) reporters and PSD-95-TagRFPt. (R-U) Dot plots (R,T) 

and density plots (S,U) displaying the distance between docking (R,S) or undocking 

(R-U) events to the closest PSD-95 positive cluster in co-transfected rat 

hippocampal neurons with MS2+Rgs4 3´-UTR reporter and PSD-95-TagRFPt, under 

untreated, vehicle (DMSO) and silenced (100 µM CNQX, 50 µM AP5, 1 µM TTX) 

conditions. Data represents mean ± standard deviation of 3-4 independent 

experiments in dot plots (C,R,T; individual experiments shown as gray dots). 

Dashed lines represent mean of individual data points (D,S,U). Asterisks represent 

p-values obtained by Student’s t-test (C), Mann Whitney U (F,H, K, L, I, ), or Tukey’s 

test post-hoc to one-way ANOVA analysis (T) (** p < 0.01, *** p < 0.001). Data was 

obtained from 40 µm dendritic segments at a minimal distance of 20 µm from the cell 

body. At least 10 dendrites/condition/experiment (A-D, P-U) or 12 neurons/condition 

(E-O) from 3 independent biological replicates were analyzed. Total number of 

dendrites (nd), events (ne) and synapses (n) analyzed per condition are indicated.  

Related to Figure 4.  
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Supplementary Figure 2.5: Local Glutamate uncaging at individual dendritic spines 

triggers Rgs4 3´-UTR dependent mRNA recruitment. (A) Fluorescent intensity of 

volume marker (tdTomato) in stimulated dendritic spines (red) or control regions 

(adjacent to unstimulated spine or dendritic segment, blue) over time, normalized to 

first measurement, in neurons transfected with tdTomato, tdMCP-GFP and either 

MS2 only or MS2+Rgs4 reporter mRNA. Data represents mean ± standard error of 

the mean (B) Dot plot displaying the number of RNA granules of MS2 only or 

MS2+Rgs4 3´-UTR reporter mRNAs pre (2-7 min before) and post (40-45 min after) 

uncaging in rat hippocampal neurons within 5 µm of the stimulated spine. Data 

represents mean ± standard deviation (individual neurons shown as gray dots linked 

by gray lines). Data was obtained from 6 dendrites (from 5 neurons of 4 biological 

replicates) and 5 dendrites (from 5 neurons of 5 biological replicates) for MS2 only 

and MS2+Rgs4 reporter mRNAs respectively. Asterisks represent p-values obtained 

by paired Student’s t-test (** p < 0.01).  
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Supplementary Figure 2.6: Effects of Stau2 on Rgs4 3´-UTR dependent mRNA 

localization and transport. (A) Boxplot displaying number of dendritic MS2 only or 

MS2+Rgs4 3´-UTR reporter mRNA granules co-transfected with either RFP or RFP-

Stau2. Asterisks represent p-values obtained by Student’s t-test (* p < 0.05). (B) Dot 

plot displaying percent of dendritic MS2 only reporter mRNA granules in co-clusters 

with Stau2 and vesicular glutamate transporter 1 (VGLUT 1), in hippocampal 

neurons co-transfected with MS2 only mRNA, tdMCP-GFP and either tdMCP only or 

tdMCP-Stau2 and stained with anti-Stau2 and anti-VGLUT 1 antibodies. Data 

represents mean ± standard deviation (individual neurons shown as gray dots). (C-
F) Dot plots (C,E) and histograms (D,F) displaying the percentage of total 

anterograde travel distance of MS2 only or MS2+Rgs4 3´-UTR reporter mRNA 

granules in shNTC and shStau2 transduced hippocampal neurons. NTC = non-

targeting control. Data represents mean ± standard deviation of three independent 

experiments (individual experiments shown as gray dots). Data was obtained from 

40 µm dendritic segments at a minimal distance of 20 µm from the cell body. Only 

displacements ≥ 1.5 µm were considered for analysis. (G) Quantification of relative 

transport dynamics of MS2+Rgs4 3´-UTR reporter mRNA in shNTC and shStau2 

transduced neurons, in 1 minute time-series acquisitions. (H) Representative 

neurons transduced with either shNTC or shStau2 lentiviral particles and transfected 

with MS2+Rgs4 3´-UTR reporter and MCP-GFP, were fixed after imaging and 

stained with anti-Stau2 antibodies (left). Relative Stau2 intensity quantification (right) 

in rat hippocampal neurons 5 days after viral transduction with either shNTC or 

shStau2 lentiviral particles. Asterisks denote MCP-GFP positive cells. Scale bar 10 

µm. Related to Figure 5.
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Movie 2.1: Representative time-lapse movie of MS2+Rgs4 3´-UTR reporter mRNA 

granules moving at different speed (arrowheads) in a dendrite of a 15 DIV 

hippocampal neuron. Green arrowheads indicate anterograde movement. Playback 

speed 2x real time. Scale bar 10 µm. Related to Fig. 1C.  

 

Movie 2.2: Representative time-lapse movie of MS2+Rgs4 3´-UTR reporter mRNA 

granules moving different displacement lengths (arrowheads) in a dendrite of a 14 

DIV hippocampal neuron. Red arrowheads indicate retrograde movement. Playback 

speed 2x real time. Scale bar 10 µm. Related to Fig. 1D.  

 

Movie 2.3: Representative time-lapse movie of MS2+Rgs4 3´-UTR reporter mRNA 

granules moving in different directions (arrowheads) in a dendrite of a 15 DIV 

hippocampal neuron. Green arrowhead indicates anterograde movement, red 

arrowhead indicates retrograde movement. Playback speed 2x real time. Scale bar 

10 µm. Related to Fig. 1E.  

 

Movie 2.4: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA granule interrupting movement (arrowhead) in a dendrite of a 15 DIV 

hippocampal neuron. Playback speed 2x real time. Scale bar 10 µm. Related to Fig. 

1F.  

 

Movie 2.5: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA granule moving in an uninterrupted multidirectional fashion (arrowhead) in a 

dendrite of a 14 DIV hippocampal neuron. Playback speed 2x real time. Scale bar 10 

µm. Related to Fig. 1G.  

 

Movie 2.6: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA granule moving in an uninterrupted multidirectional fashion (arrowhead) in a 

dendrite of a 14 DIV hippocampal neuron. Playback speed 4x real time. Scale bar 10 

µm. Related to Fig. 1.  
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Movie 2.7: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA granule moving in a multidirectional fashion between dendrites at a branching 

point (arrowhead) in a 12 DIV hippocampal neuron. Playback speed 2x real time. 

Scale bar 10 µm. Related to Fig. 1.  

 

Movie 2.8: Representative time-lapse movie of MS2+Rgs4 3´-UTR reporter mRNA 

granules moving in different directions (arrowheads) in a dendrite of a 14 DIV 

hippocampal neuron. Green arrowhead indicates anterograde movement, red 

arrowheads indicate retrograde movement. Playback speed 2x real time. Scale bar 

10 µm. Related to Fig. 2A-C.  

 

Movie 2.9: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA granule (green fluorescence and arrowhead) moving to a PSD-95-TagRFPt 

positive cluster (magenta fluorescence and arrowhead) in a dendrite of a 15 DIV 

hippocampal neuron. Playback speed 2x real time. Scale bar 10 µm. Related to Fig. 

4A.  

 

Movie 2.10: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA granule (green fluorescence and arrowhead) moving to a PSD-95-TagRFPt 

positive cluster (magenta fluorescence and arrowhead) in a dendrite of a 15 DIV 

hippocampal neuron. Playback speed 2x real time. Scale bar 10 µm. Related to Fig. 

4.  

 

Movie 2.11: Representative time-lapse movie of MS2+Rgs4 3´-UTR reporter mRNA 

granules in a dendrite of an 18 DIV hippocampal neuron upon glutamate uncaging. 

Green arrowheads indicate examples of GFP positive MS2+Rgs4 3´-UTR reporter 

mRNA granules, red dot indicates uncaging spot. Playback pre uncaging indicated by 

negative time, playback post uncaging indicated by positive time. Playback speed 

variable (increased over time). Scale bar 5 µm. Related to Fig. 5.  
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Movie 2.12: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA (green fluorescence and arrowhead) and TagRFPt-Stau2 (magenta 

fluorescence and arrowhead) positive RNA granule undergoing co-transport in a 

dendrite of a 15 DIV hippocampal neuron. Playback speed 2x real time. Scale bar 10 

µm. Related to Fig. 6A.  

 

Movie 2.13: Representative time-lapse movie of an MS2+Rgs4 3´-UTR reporter 

mRNA (green fluorescence and arrowhead) and TagRFPt-Stau2 (magenta 

fluorescence and arrowhead) positive RNA granule undergoing co-transport in a 

dendrite of a 15 DIV hippocampal neuron. Playback speed 2x real time. Scale bar 10 

µm. Related to Fig. 6.   
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3.1 Abstract 

 

The assembly and disassembly of RNA granules is suggested to be a key 

mechanism by which various cellular processes are regulated, including the 

morphology and function of neurons. Here we showed that neuronal P-bodies, 

containing the RNA-helicase Rck, changed in morphology during neuronal 

maturation in culture. Rck granules in the soma of hippocampal neurons were 

prominent in early stages of development (8 day in vitro, DIV), but disassembled and 

reduced in size during maturation (22-29 DIV). This change in granule morphology 

was dependent on synaptic activity, as neuronal inhibition led to the formation of 

prominent P-body structures, while N-Methyl-D-Aspartate (NMDA) receptor activation 

resulted in their quick dispersal. However, the dispersal of P-bodies induced by the 

stalling of ribosomes with cycloheximide was not affected by neuronal signaling, 

suggesting that neuronal maturation and ribosome stalling induce P-body dispersal 

by different mechanisms. Moreover, the depletion of the RNA-binding protein 

Staufen2, which localizes with Rck-containing RNA granules, had no effect on P-

body morphology. Finally, the expression of a dominant negative RNA-helicase Rck 

mutant (E247Q) had a diffuse cytoplasmic localization, but did not result in the 

complete disassembly of P-bodies, suggesting that either Rck or its helicase activity 

were not required for morphological P-body maintenance. This diffuse localization 

pattern could not be rescued by neuronal inhibition, indicating that helicase activity 

acts upstream of neuronal signaling. Taken together, this data provides a unique 

insight into the mechanisms of neuronal P-body assembly, dependent on cellular 

maturation, synaptic activity and Rck helicase activity. Moreover, this study provides 

the basis for further research into the assembly of different types of neuronal RNA 

granules. The data presented here suggests that P-bodies might be uniquely 

regulated in neurons, which would have significant impact on synaptic plasticity and 

the processes of learning and memory formation.  
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3.2 Introduction 

 

The subcellular localization of RNA-binding proteins (RBPs) is a key factor in 

the spatial regulation of mRNA translation. By binding to specific cis-acting elements 

within the 3´-UTR of mRNAs, RBPs form ribonucleoprotein particles (RNPs), also 

termed neuronal RNA granules (Kiebler and Bassell, 2006). These RNPs can exert 

various functions and show distinct localization patterns. Moreover, RNPs are 

dynamic in their composition and can assemble or disassemble, dependent on 

specific cellular cues, such as neuronal activity or stress. Thereby, they govern 

mRNA metabolism through the regulation of post-transcriptional gene expression, 

e.g. mRNA splicing, nuclear export, transport, translation and degradation 

(Fernandez-Moya et al., 2014; Hentze et al., 2018; Hutten et al., 2014).  

One well-studied subtype of a cytoplasmic RNP is the processing body (P-

body), also referred to as GW- (Glycine-Tryptophan) or DCP- (mRNA decapping 

enzyme) body. P-bodies appear as large, distinct, cytoplasmic granules and are sites 

of mRNA storage, degradation and translation control (Cougot et al., 2004; 

Hubstenberger et al., 2017; Liu et al., 2005; Sheth and Parker, 2003). Moreover, they 

have been implicated in mRNA degradation by the regulation of microRNAs 

(Jakymiw et al., 2007; Lian et al., 2006; Parker and Sheth, 2007). They contain (i) 

components of the mRNA decay machinery, (ii) translational regulators and (iii) 

components of the RNA-induced silencing complex (RISC) (Behm-Ansmant et al., 

2006; Chu and Rana, 2006; Ding et al., 2005; Liu et al., 2005; Parker and Sheth, 

2007). Therefore, P-bodies have a key role in regulating the degradation and 

translational activity of mRNAs. In neurons, these functions are crucial for neuronal 

development and synaptic plasticity (Ashraf et al., 2006; Schratt et al., 2006). Indeed, 

the P-body component Rck (also known as Dead box helicase 6 or DDX6) is required 

for translationally regulated dendrite morphogenesis in Drosophila (Barbee et al., 

2006). Previous research has shown that P-bodies are localized in dendrites of rat 

hippocampal neurons and that chemical stimulation of neuronal activity results in a 

reduction in dendritically localized P-bodies (Vessey et al., 2006; Zeitelhofer et al., 

2008). These dendritic P-bodies are distinct from transport mRNPs and are not co-

transported with them. However, the frequent observation of docking events between 

the P-body marker Decapping mRNA 1 (DCP1) and the mRNP marker Staufen2 
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(Stau2) suggest an interaction between these two subtypes of RNA-carrying 

granules. Moreover, the dendritic P-bodies marked Rck have been shown to 

associate with ribosomes (Elvira et al., 2006).  

We have recently identified Rck, a core P-body protein, as a component of 

neuronal Stau2 transport granules (Fritzsche et al., 2013), indicating a function for 

Rck outside of P-bodies. Additionally, the 3´-UTR of Rck mRNA contains in vivo 

cross-linking sites for Stau2 (Sharangdhar et al., 2017). Rck is an ATP-dependent 

RNA helicase involved in mRNA decapping during mRNA decay, as well as in 

translational control (Fenger-Gron et al., 2005; Ladomery et al., 1997). This helicase 

has a key function in the formation of P-bodies, by binding to Protein Associated with 

Topoisomerase II Homolog 1 (Pat1b) (Ozgur and Stoecklin, 2013; Serman et al., 

2007), and by the recruitment of RNA degradation factors (Andrei et al., 2005). Other 

neuronal RNPs, such as Staufen and FMRP granules in Drosophila have been 

shown to contain P-body components as well (Barbee et al., 2006). Moreover, Stau2 

has been implicated in multiple aspects of mRNA metabolism, including the 

regulation of mRNA transport, stability and translation, raising the possibility that 

neuronal transport granules work in conjunction with P-body components to achieve 

translational control (Heraud-Farlow et al., 2013; Sharangdhar et al., 2017).  

In the current study, we investigated the subcellular localization of Rck in 

maturing neurons, and addressed the question, which cellular processes can lead to 

alterations in its localization and disassembly from P-bodies.  
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3.3 Results 

 

3.3.1 Somatic Rck granules partially disassemble during hippocampal neuronal 

maturation in culture 

 

To investigate whether the subcellular sorting of Rck changes during neuronal 

maturation, we evaluated Rck localization in rat primary hippocampal neurons that 

were isolated from E17 rat brains and were kept in culture up to 29 days.  Neurons 

were allowed to mature in culture, fixed at different time points during maturation (8, 

14, 22 and 29 days in vitro, DIV) and immunostained for Rck (Fig. 3.1A). We were 

able to detect Rck expression at all time points analyzed, however, the pattern of Rck 

localization varied between the different developmental stages. A striking observation 

was that both neurons with large or small somatic Rck granules were present during 

maturation. These somatic Rck granules, which resemble P-bodies were reduced in 

size, but appeared in higher number in more mature neurons (22 and 29 DIV). This 

observation was quantified by assessing the percentage of neurons that contained 

large or small Rck granules in the total population. We found that in young neurons 

(8 DIV) nearly the entire population contained large Rck granules in the soma (Fig. 
3.1B). However, in mature neurons (29 DIV) the large majority of the population 

lacked these large granules, in favor of smaller clusters (Student’s t-test, p = 6.113e-

05). Interestingly, intermediate time points during maturation (14 DIV and 22 DIV) 

contained more mixed P-body populations with both neurons containing large or 

small Rck granules in the soma (Supplementary Fig. 3.1A; F3,8 = 0.0044), 

suggesting a gradual transition from neurons with large to small somatic Rck 

granules during maturation. To assess whether the observed phenotype might be 

associated with a change in Rck protein levels during maturation, we collected 

neuronal protein lysates at different time points during maturation in culture and 

analyzed these samples by Western blot. Overall, Rck protein levels showed a 

modest decline in cortical neurons during maturation (Supplementary Fig. 3.1B). 

Therefore, it cannot be excluded that the change in Rck granules size might be 

exaggerated by a reduction in intracellular protein concentration, in addition to a 

change in localization. To confirm that the observed Rck granules belonged to the  
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Figure 3.1: Cytoplasmic Rck granules disassemble during neuronal maturation in 

culture. (A) Representative examples of phase contrast (PC) and Rck 

immunostaining of 8 days in vitro (DIV) and 29 DIV hippocampal neurons in culture. 

(B) Bar plot displaying quantification of cell population by fraction of cells containing 

either large or small Rck granules as exemplified in (A), at 8 and 29 DIV, 

respectively. Data represents mean ± standard deviation of three independent 

experiments. Asterisks represent p-values obtained by Student’s t-test (*** p < 

0.001). At least 100 cells/condition/experiment were quantified. (C) Representative 

examples of phase contrast, Rck and DCP1a immunostaining and overlay of 8 DIV 

or 22 DIV hippocampal neurons in culture. Fluorescent images in (C) were 

deconvolved to assess overlap. Boxed regions in images are displayed as magnified 

insets. Arrowhead indicates colocalization. Scale bars 10 µm (A,C).  

 

 

 

population of P-bodies, we performed co-immunostainings with a second P-body 

marker, such as DCP1a, which has been previously shown to interact with Rck in 

yeast (Coller et al., 2001). Indeed, DCP1a localized in distinct cytoplasmic granules 

that overlapped with Rck granules (Fig. 3.1C). In contrast, Rck granules only partially 

overlapped with cytoplasmic Polyadenylate-binding protein 1 (PABP1) granules, a 

protein reported to be involved in translation initiation as well as mRNA decay 

(Supplementary Fig. 3.1C) (Behm-Ansmant et al., 2007; Derry et al., 2006; Gray et 

al., 2000).  

Taken together, neuronal maturation causes a significant alteration in somatic 

Rck localization, showing a shift in the ratio of neuronal population from cells with 

large granules to cells with small granules.  
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3.3.2 Somatic Rck granules in mature neurons reversibly reassemble after inhibition 

of neuronal activity 
	

As neuronal maturation progresses together with synaptic development and 

an increase in neuronal signaling activity, we evaluated whether these processes 

may lead to the observed reduction in Rck granule size in mature neurons. To test 

this hypothesis we investigated mature neurons (22 DIV), where a majority of the 

neuronal population contained small Rck granules in the soma, and silenced 

neuronal activity by simultaneously inhibiting AMPA receptors, NMDA receptors and 

sodium channels via combined bath application of CNQX, AP5 and TTX, respectively 

(Sharangdhar et al., 2017). The inhibition of neuronal activity resulted in the 

reassembly of large Rck granules in the soma of these neurons, resulting in a shift of 

approximately 45 percent in the neuronal population (Fig. 3.2A-B; Student’s t-test, p 

= 0.0001). P-bodies are known to have overlapping components with stress granules 

(Decker and Parker, 2012; Youn et al., 2018). Both proteins and mRNAs are 

dynamically exchanged between P-bodies and stress granules (Kedersha et al., 

2005; Mollet et al., 2008).  Importantly, the large Rck granules induced by neuronal 

silencing were not stress granules, as assessed by co-immunostaining with the 

stress granule marker G3BP (Supplementary Fig. 3.2A) and remained associated 

with DCP1a (data not shown). The size of large Rck granules observed in young 

neurons (8 DIV) was not affected by neuronal inhibition (data not shown). 

Furthermore, the reassembly of large Rck granules in mature neurons (22 DIV) was 

quickly reversible by 15 min wash off of the CNQX/AP5/TTX mix (p = 0.028) or was 

even opposed by a short wash off and 15 min stimulation by 100 µM NMDA (p < 

0.0000001 for untreated vs NMDA, p = 0.00001 for recovery vs NMDA) (Fig. 3.2C; 

F2,22 = 1.59e-05; F2,22 = 2.38e-11). Indeed, stimulation by NMDA induced the 

disassembly of large Rck granules independent of the prior treatment, resulting in 

small Rck granules in the large majority of the population, as observed in more 

mature neurons. These findings suggest that neuronal activity via the activation of 

NMDA-receptors could regulate the disassembly of Rck granules. Vehicle treatment 

had no effect in any of the conditions.  

Together, these findings suggest that changes in neuronal activity in mature 

neurons can lead to the accumulation of Rck in large somatic granules, as observed 

in developing neurons (8 DIV), an effect that is quickly reversible by reinstating 

endogenous neuronal signaling. 
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Figure 3.2: Chemical inhibition of neuronal activity results in the reassembly 

of large cytoplasmic Rck granules. (A) Representative examples of phase contrast 

(PC) and Rck immunostaining of 22 DIV hippocampal neurons in culture under 

vehicle (DMSO) treated or silenced (100µM CNQX, 50µM AP5, 1µM TTX) 

conditions, immunostained for Rck. Boxed regions in images are displayed as 

magnified insets. Scale bar 10 µm. (B-C) Bar plots displaying quantification of cell 

population by fraction of cells containing either large or small Rck granules as 

exemplified in (A) under untreated, vehicle treated or silenced conditions (B-C), 

followed by recovery or NMDA treatment (C). Data represents mean ± standard 

deviation of three independent experiments. Asterisks represent p-values obtained 

by Student’s t-test (B) or Tukey’s test post-hoc to one- or two-way ANOVA analysis 

(C-D) (*** p < 0.001). Hashtags represent p-values obtained by Tukey’s test 

compared to untreated conditions (C-D) (### p < 0.001). At least 100 

cells/condition/experiment were quantified.  

 

 

 

3.3.3 Translation activity control Rck granule size upstream of neuronal activity 

 

It has previously been shown that short treatment with the translation inhibitor 

cycloheximide (CHX) leads to the disassembly of P-bodies (Cougot et al., 2004; 

Eulalio et al., 2007; Sheth and Parker, 2003), similar to the effect we observed during 

neuronal maturation for Rck. To evaluate whether CHX treatment was able to induce 

the disassembly of Rck as well, we incubated mature neurons (22 DIV) with 7 µM 

CHX for 4 hours. Here, we found a drastic reduction in somatic Rck granules size 

(data not shown). We next tested whether the inhibition of synaptic transmission, 

which led to the formation of large Rck granules, could inhibit the disassembly of Rck 

granules in response to CHX in neurons. We inhibited neuronal activity by application 

of the CNQX/AP5/TTX mix over night and followed up by a 4 h incubation of these  
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Figure 3.3: Chemical inhibition of neuronal activity does not counteract the 

disassembly of large cytoplasmic Rck granules upon cycloheximide treatment. (A) 
Experimental outline. (B) Representative examples of phase contrast and Rck 

immunostaining of 22 DIV hippocampal neurons in culture under vehicle treated or 

silenced (100µM CNQX, 50µM AP5, 1µM TTX) conditions, followed by 4h additional 

silencing or silencing + CHX. Abbreviations: CHX= cycloheximide. Boxed regions in 

images are displayed as magnified insets. Scale bars 10 µm. (C) Bar plot displaying 

quantification of cell population by fraction of cells containing either large or small 

Rck granules as exemplified in (A). Data represents mean ± standard deviation of 

three independent experiments. Asterisks represent p-values obtained by Student’s 

t-test (B) (*** p < 0.001). At least 100 cells/condition/experiment were quantified.  
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cells with a new batch of the CNQX/AP5/TTX mix and 7 µM CHX (Fig. 3.3A-C; F2,5 = 

0.0002). As previously observed, the inhibition of neuronal activity resulted in the 

formation of large Rck granules in the soma. However, the prior inhibition of neuronal 

activity had no effect on the disassembly of Rck granules by CHX (p = 0.0003 for 

untreated vs silenced + CHX, p = 0.0005 for silenced vs silenced + CHX).  

This data confirms that P-body disassembly by CHX is independent of 

signaling activity in neurons.   

 

3.3.4 Disassembly of Rck granules in mature neurons is independent of Stau2 

 

Previous research has shown that the knock-down of the RBP Stau2 leads to 

aberrant dendritic spine morphology and changes in electrophysiology (Berger et al., 

2017; Goetze et al., 2006). Additionally, a role in neurogenesis and neuronal 

maturation has been attributed to Stau2 (Heraud-Farlow et al., 2013). We have 

previously identified Rck as a component of neuronal Stau2 granules and reported in 

vivo cross-linking sites for Stau2 in the 3´-UTR of Rck mRNA (Fritzsche et al., 2013; 

Sharangdhar et al., 2017). Therefore, we next asked whether depletion of Stau2 

might result in a similar phenotype for somatic Rck granules as neuronal inhibition. 

As Rck displayed an age dependent phenotype during maturation in neuronal cell 

culture, we made use of a transgenic rat line that expressed a siRNA for Stau2 and 

the green fluorescent protein (GFP) under the ubiquitous P-CAG promoter (Berger et 

al., 2017). E17 rat hippocampal cell cultures were prepared from mixed GFP positive 

and negative embryos, resulting in a mixed culture containing both Stau2 deficient 

and Stau2 wild type neurons. Neurons were allowed to mature in culture, fixed at 

different time points and immunostained for Rck (Fig. 3.4A). We found no differences 

in Rck granule size when comparing wild type to knock-down neurons at any of the 

time points. In addition, Rck localization was not significantly altered in cryosections 

of 3-month-old Stau2 deficient rats, compared to wild type littermates 

(Supplementary Fig. 3.3A).  

This data indicates that Stau2 levels do not affect Rck granule size during 

neuronal maturation, or the general Rck distribution throughout the brain.  
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Figure 3.4: Knock-down of Stau2 does not affect the assembly of Rck granules. (A) 

Representative examples of phase contrast, GFP fluorescence (labeling Stau2-

knock-down cells) and Rck immunostaining of 10 DIV, 18 DIV and 25 DIV 

hippocampal neurons in mixed culture from wild type and Stau2 knock-down E17 rat 

embryos. Neurons from Stau2 knock-down embryos are reported by GFP (denoted 

by asterisks in PC). Boxed regions in images are displayed as magnified insets. WT 

indicates wild type, KD indicates Stau2 knock-down neurons. Scale bar 10 µm.  
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3.3.5 The expression of a helicase deficient Rck mutant disrupts endogenous Rck 

granules independent of neuronal inhibition in mature neurons 

 

The Rck protein is an ATP-dependent RNA helicase (Akao et al., 2003). A 

previous publication has shown that the introduction of a point mutation causing a 

change in the amino acid sequence from glutamic acid to glutamine (E247Q), which 

leads to a loss of helicase activity, results in diffuse mislocalization of the protein in 

FT3-7 cells, a clonal derivate of the Huh-7 cell line (Jangra et al., 2010). As this 

diffuse localization may give insight into the disassembly of Rck from larger granules, 

we generated expression vectors with C-terminally GFP-tagged Rck carrying the 

point mutation (termed Rck-E247Q) or wild type Rck (Rck-wt) as control. These 

vectors were transiently transfected in hippocampal neurons and expressed 

overnight. Rck-wt localized in large granules in the soma and proximal dendrites, 

comparable to the localization of the endogenous protein (Fig. 3.5A, top panels). 

Live imaging of these granules demonstrated that they moved in a restricted diffusive 

manner over short distances in the cell’s soma, and were able to fuse or split (movie 
3.1). In contrast, Rck-E247Q did not localize in granules, but was diffuse and present 

throughout the cell (Fig. 3.5A, bottom panels). In addition, the expression of Rck-

E247Q had a dominant effect on the endogenous Rck protein, leading to a diffuse 

mislocalization of endogenous Rck as well. Inhibiting neuronal activity, did not affect 

the localization of either this mutant or endogenous Rck in neurons co-expressing 

Rck-E247Q (Supplementary Fig. 3.4A). Next, we asked the question whether this 

mislocalization of Rck caused by the expression of Rck-E247Q might have an effect 

on other P-body components. Therefore, we tested the localization of DCP1a and 

PABP under these conditions. We found that Rck-wt localized with DCP1a in 

cytoplasmic granules (Fig. 3.5B, top panel). Importantly, upon expression of Rck-

E247Q, DCP1a retained its granular structure (Fig. 3.5B, bottom panel), as did 

PABP (Supplementary Fig. 3.4B).  

Interestingly, the mutation in the helicase domain of Rck affects the 

localization pattern of endogenous Rck, but not endogenous DCP1a, indicating it 

does not disrupt P-bodies entirely. Together, these findings confirmed that the Rck-

E247Q mutant displayed the same diffuse localization in neurons as previously show 

in the FT3-7 cell line. 
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Figure 3.5: Disruption of helicase activity leads to mislocalization of cytoplasmic 

Rck. (A-B) Representative examples of phase contrast (PC), GFP fluorescence, Rck 

(A) or DCP1a (B) immunostaining and overlay of 11 DIV hippocampal neurons in 

culture transfected with either GFP-Rck-wt or GFP-Rck-E247Q. Boxed regions in 

images are displayed as magnified insets. Fluorescent images were deconvolved to 

assess overlap. Arrowheads indicate colocalization. Scale bars 10 µm.  
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3.4 Discussion  

 

In the current study, we show that large Rck granules in the cell body 

disassemble during the maturation of hippocampal neurons in culture. These 

granules are very likely P-bodies, as they contain DCP1a, and therefore have an 

essential function in the regulation of mRNA decay and storage. A similar 

disassembly of DCP1a granules can be observed during in vitro meiotic maturation of 

the mouse oocyte  (Swetloff et al., 2009). P-bodies marked by EGFP-hDCP1a are 

present in the germinal vesicle stage (arrested prophase I) and disassemble 

completely during maturation to metaphase II arrested secondary oocytes. However, 

in this case the authors found only a modest degree of colocalization (29%) between 

small EGFP-hDCP1a granules and endogenous Rck, and no colocalization with large 

EGFP-hDCP1a granules. A study in somatic cells show that P-bodies disassemble 

during mitosis and reassemble in the G1 phase (Yang et al., 2004). Together with our 

data, these observations suggest P-bodies might be comprised differently, 

dependent on cell type, cell cycle stage or intracellular subpopulations of granules, 

inferring that these granules can be highly dynamic in their composition. As neuronal 

maturation goes hand in hand with the development of synapses, we inquired 

whether an increase in signaling activity might be responsible for the disassembly of 

Rck granules that we observed. We showed that this is the case, by inhibiting 

neuronal activity in mature (22 DIV) neurons, which caused the reassembly of Rck 

granules in the cell body. This reassembly was dependent on maturation, as large 

Rck granules present at 8 DIV did not further increase in size. Importantly, the effect 

was quickly reversible by reinstating endogenous signaling activity or by stimulation 

of the NMDA receptor. Together, these findings are in line with previous research, 

which shows that stimulation by glutamate, NMDA or BDNF leads to a decrease of 

dendritic granules identified by P-body markers (Zeitelhofer et al., 2008). The same 

publication of our lab, however, did not identify any change in the localization of 

dendritic P-bodies upon neuronal silencing. As we show that large Rck granules in 

the cell soma of mature neurons reliably reassemble upon neuronal silencing, we 

propose that P-bodies may be differently regulated in different cellular compartments, 

such as the soma and dendrites in mature neurons. Additionally, different size or 

protein compositions of these P-bodies in the soma or dendrites may also impose a 
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different mode of regulation by neuronal activity. A recent publication showed that 

NMDA receptor activation leads to Ago2 phosphorylation and an increased 

interaction between Ago2 and Rck (Rajgor et al., 2018). It is possible that synaptic 

activity regulates P-bodies by a similar mechanism, as we show that NMDA receptor 

activation quickly disassembles somatic Rck granules.  

As P-bodies are sites of storage for translationally repressed mRNAs, their 

disassembly during maturation or neuronal activity might also reflect a state of 

translational control (Brengues et al., 2005). It is noteworthy to mention that 

translational regulation as well as mRNA degradation does not depend on the 

presence of detectable P-bodies, as shown by the disruption of P-bodies in yeast 

(Decker et al., 2007; Tritschler et al., 2007). The disassembly of P-bodies upon CHX 

treatment was unaffected in silenced neurons, indicating that neurons cannot 

counteract this effect, by modulating activity and therefore act as other cell types in 

this context. Another explanation for the observed effect might be that the stalling of 

ribosomes by CHX block mRNAs, which are required for the formation of P-bodies 

(Brengues et al., 2005; Teixeira et al., 2005). Taken together, this data points to a 

unique regulation of P-bodies by neuronal activity, which is absent in other cell types. 

In addition to the regulation already present in developing neurons or neuronal 

precursors, mature neurons appear to regulate P-bodies by neuronal activity.  

Previous research indicates that the neuronal RBP Stau2 might interact with 

P-bodies and that it regulates the Rck mRNA (Sharangdhar et al., 2017; Zeitelhofer 

et al., 2008). However, in the current study we found no evidence that the assembly 

or localization of Rck granules depends on the RBP Stau2. Conversely, the 

disassembly of Rck from granules by the introduction of a point mutation disrupting 

its helicase activity (E247Q) did not alter Stau2 localization (data not shown). These 

observations indicate that distinct neuronal granules can function independently. 

However, interactions such as the docking of DCP1 granules with Stau2 granules in 

dendrites, as previously observed (Zeitelhofer et al., 2008) would be hindered and 

possibly disrupt various aspects of mRNA regulation. Moreover, Stau2 might regulate 

P-bodies and Rck on other levels. For instance, Stau2 might regulate Rck translation, 

via the binding to its 3´-UTR (Sharangdhar et al., 2017). Future research will need to 

investigate whether this is indeed the case.  
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Finally, we show that the introduction of a point mutation disrupting helicase 

activity (E247Q) leads to diffuse mislocalization of Rck in neurons. This phenotype is 

comparable to the previously observed localization in FT3-7 cells (Jangra et al., 

2010). This suggests that the helicase activity is required for the localization of Rck in 

P-bodies or smaller granules. Importantly, DCP1a remained clustered in P-body like 

granules in the presence of the diffusely localized Rck mutant, while endogenous 

Rck was mislocalized, suggesting proper Rck localization and its helicase activity 

might not be required for the formation and maintenance of P-bodies. A study in 

HeLa cells demonstrated that Rck, eIF4E-T, LSm1 and Ccr4, but not Dcp2, require 

one another to accumulate in P-bodies (Andrei et al., 2005). As the absence of Dcp2 

did not disrupt the assembly of other proteins in P-bodies, and we show that DCP1a 

is unaffected by Rck mislocalization, it is tempting to speculate that these RNA-

decapping enzymes are distinctly regulated in P-bodies, possibly linked to their 

function in 5´ to 3´ degradation.  

In conclusion we show that the assembly of Rck into P-bodies is uniquely 

regulated in neurons. The process depends on neuronal maturation, neuronal 

signaling activity and the helicase activity of Rck itself. It is likely that these 

mechanisms affect the manner by which Rck interacts with other RNP components, 

both RNA and protein. The regulation of RNAs by P-bodies is proposed to play an 

essential role in the regulation of protein expression. This process is particularly 

important in neurons, where de novo protein synthesis is required for lasting synaptic 

strengthening by long-term potentiation, the basis of learning and memory. 

Therefore, regulation by P-bodies can have a significant impact on the modification of 

higher order synaptic networks. Future research needs to determine the effects of P-

body assembly and disassembly on synaptic plasticity, learning and memory 

formation.  
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3.5 Materials and Methods  

 

3.5.1 Neuronal Cell Culture, Transfection and Transduction 

	
Primary rat hippocampal neuronal cell cultures were generated as previously 

described (Goetze et al., 2003). In short, hippocampi of embryonic day 17 (E17) 

embryos of timed pregnant Sprague-Dawley rats (Charles River Laboratories) or 

Stau2 deficient rats (Berger et al., 2017) were isolated, cells dissociated and plated 

on Poly-L-Lysine coated cover slips or glass bottom dishes (WillCo Wells) and 

cultured in NMEM+B27 medium (Invitrogen). Experiments were performed with 

cultured neurons between 8-29 days in vitro (DIV). All animals were used according 

to the German Welfare for Experimental Animals (LMU-Munich, Regierung von 

Oberbayern).  

 

3.5.2 Cryosections 

 

Adult rats (3 months old) were perfused intracranially with 4% PFA. Brains 

were removed and postfixed in 4% PFA o/n, and then placed in 30% sucrose till they 

sunk down. Samples were embedded in OCT (Tissue-Tek) and cryopreserved. 

Sagittal cryosections (20 µm thick) were permeabilized with PBS-0.1% Triton X-100 

(PBT) and then blocked with 5% BSA in PBT. Primary antibody rabbit-anti-RCK 

(MBL; #PD009) was incubated o/n at 4ºC. Secondary antibody donkey-anti-rabbit 

A657-conjugated (Molecular Probes) was incubated for 2h at RT, and then counter 

stained with DAPI (4',6-Diamidine-2'-phenylindole dihydrochloride). Slides were 

mounted with Prolong-Diamond (Invitrogen). 

 

3.5.3 Plasmids 

	
The Rck sequence was obtained by PCR amplification from rat cDNA. The 

Rck E247Q mutant was generated by primer mutagenesis. These sequences were 
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cloned without a functional stop codon and placed in frame with GFP in the pEGFP-

C1 vector (Clontech). 

 

3.5.4 Chemical treatments  

	
To inhibit neuronal activity, cells were incubated with 100 µM 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX; Sigma, #C127), 50 µM 2-amino-5-

phosponopentanoic acid (AP5; Sigma, #A8054) and 1 µM tetrodotoxin (TTX; Abcam, 

#ab120055) in NMEM+B27 over night at 37°C, unless otherwise stated. Vehicle 

treated cells were incubated with equivalent amount of DMSO. Wash off experiments 

were performed by a short wash in pre-warmed HBSS and subsequent 15 min 

recovery in NMEM+B27 at 37°C. Stimulation by NMDA was done by a quick wash 

pre-warmed HBSS and 15 min incubation with 100 µM NMDA in NMEM+B27. 

Cycloheximide (CHX, 7 µM, Roth) was incubated for 4 h in NMEM+B27 before 

fixation.  

 

3.5.5 Immunostaining 

	
Neurons were fixed for 10 min with 4% paraformaldehyde (PFA) and 

immunostained as previously described (Goetze et al., 2006). The following 

antibodies were used in this study: polyclonal rabbit anti-Rck (MBL), polyclonal goat 

anti-DDX6 (Abnova), polyclonal mouse anti-DCP1a (Abnova), polyclonal rabbit anti-

PABP1 (Cell Signaling) and polyclonal rabbit anti-G3BP (Proteintech) antibodies 

together with the following secondary antibodies: donkey anti-rabbit or donkey anti-

mouse Alexa488, Alexa555 or Alexa647 conjugated antibodies (Life Technologies).  

 

3.5.6 Microscopy 

	
Imaging of fixed cells was performed on a Zeiss Z1 Axio Observer microscope 

including a Plan-Apochromat 63x objective, a COLIBRI.2 LED light source and the 

Axiocam 506 mono camera.  
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Live cell imaging was performed on a Zeiss Cell Observer spinning disk 

system. The setup consisted of a Zeiss Z1 Axio Observer microscope including a 

Plan-Apochromat 63x objective, a Yokogawa CSU-X1 spinning disk unit with 4 laser 

lines (405 nm 20 mW; 488 nm 50 mW, 561 nm 75 mW and 638 nm 75 mW) and an 

Evolve 512 Delta EMCCD Camera. For temperature control, a custom made EMBL 

environmental chamber (EMBLEM) was constructed for this setup. Hippocampal 

neurons were imaged at 36°C in HBSS (Life Technologies) supplemented with 20 

mM HEPES buffer pH=7.3 (Sigma Aldrich). Time-lapse images were acquired for the 

duration of 120 minutes, with an approximate frame interval of 30 sec. Cells were 

selected for proper expression of plasmids as well as for cell morphology and cell 

viability. 

 

3.5.7 Image Data Analysis 

	
Assessments of neuronal population with the observed phenotypes was done 

by manually scoring >100 cells/condition/experiment.  

For deconvolution, z-stacks with 50 images at an interval of 0.26 µm were 

acquired, covering a total distance of 13 µm. Z-stacks were subjected to 

deconvolution using the constrained iterative quantitative restoration method of the 

Zeiss ZEN software deconvolution module.  

 

3.5.8 Statistical Analysis 

	
The R software was used for all data processing, plotting and statistical 

analysis (R-Core-Team, 2016; Wickham, 2009; Wickham, 2011; Wickham, 2016). 

Figures represent mean ± standard deviation of at least 3 independent experiments, 

unless otherwise stated. Asterisks represent p-values obtained by either Student’s t-

test or Tukey’s test post-hock to one-way ANOVA analysis (* p < 0.05, ** p < 0.01, *** 

p < 0.001), as indicated. The subscript of F values denotes the degrees of freedom.  
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Supplementary Figure 3.1: Cytoplasmic Rck granules during neuronal maturation in 

culture. (A) Bar plot displaying quantification of cell population by fraction of cells 

containing either large or small Rck granules, at 8, 14, 22 and 29 DIV. Data 

represents mean ± standard deviation of three independent experiments. Asterisks 

represent p-values obtained by Tukey’s test post-hoc to one-way ANOVA analysis (* 

p < 0.05, ** p < 0.01). At least 100 cells/condition/experiment were quantified. (B-C) 
Representative western blot (B) and quantification (C) of Rck protein levels and actin 

(loading control) in 2, 7, 14, 21 and 29 DIV rat cortical neurons in culture. Data 

represents mean ± standard deviation of two independent experiments with two 

technical replicates each. Hashtag (#) indicates uncharacterized small band. (D) 
Representative examples of phase contrast (PC), Rck and PABP immunostaining 

and overlay of 8 DIV and 22 DIV hippocampal neurons in culture. Boxed regions in 

images are displayed as magnified insets. Fluorescent images were deconvolved to 

assess overlap. White arrowheads indicate colocalization, black arrowheads indicate 

no colocalization. Scale bars 10 µm. Related to Figure 1.  
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Supplementary Figure 3.2: Large Rck granules 

induced by chemical inhibition of neuronal activity are 

not stress granules. (A) Representative examples of 

phase contrast, Rck and G3BP immunostaining of 22 

DIV hippocampal neurons in culture under untreated, 

vehicle treated or silenced (100µM CNQX, 50µM 

AP5, 1µM TTX) conditions. Boxed regions in images 

are displayed as magnified insets. Scale bars 10 µm. 

Related to Figure 2.  
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Supplementary Figure 3.3: Localization of Rck in the 

dentate gyrus upon Stau2 knock-down. (A) Representative 

examples of Rck immunostaining, GFP (transgenic) and 

DAPI in whole brain sagittal cryosections of 3-month-old wild 

type or Stau2 knock-down rats. Region of the dentate gyrus 

magnified in lower panels. Abbreviations: WT = wild type, 

KD = knock-down, Tg = transgenic.  

Related to Figure 3.  
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Supplementary Figure 3.4: Mislocalization of the Rck-E247Q helicase mutant is 

not affected by neuronal inhibition and does not affect cytoplasmic PABP. (A) 
Representative examples of phase contrast (PC), GFP fluorescence, Rck 

immunostaining and overlay of 15 DIV hippocampal neurons in culture transfected 

with GFP-Rck-E247Q under untreated, vehicle treated or silenced (100µM CNQX, 

50µM AP5, 1µM TTX) conditions. Boxed regions in images are displayed as 

magnified insets. Fluorescent images were deconvolved to assess overlap. White 

arrowheads indicate colocalization, black arrowheads indicate no colocalization. 

Scale bar 10 µm. (B) Representative examples of phase contrast (PC), GFP 

fluorescence, PABP immunostaining and overlay of 11 DIV hippocampal neurons in 

culture transfected with either GFP-Rck-wt or GFP-Rck-E247Q.  

Related to Figure 4.  

 

 

 

Movie 3.1: Representative time-lapse movie of GFP-Rck in the soma of a 11 DIV 

hippocampal neuron. Boxed region magnified in right panel. Green arrowheads 

indicate fusing and red arrowheads splitting GFP-Rck granules. Time indicates 

hours:minutes. Scale bar 10 µm. Related to Figure 3.5.  
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4. Discussion 

 

The individual findings of the two studies presented here are discussed 

separately in previous chapters (see chapters 2.4 and 3.4). This section aims to 

provide a more general and comprehensive discussion together with an outlook for 

future research in the field, on the basis of the results reported in this dissertation.  

 

4.1 Summary 

 

The two studies presented here address the intracellular sorting of mRNAs 

together with their RBPs and its regulation in hippocampal neurons in culture. The 

aims outlined in the introduction (chapter 1.7) were addressed from multiple angels 

by fluorescent microscopy, both in fixed and living neurons.  

The first study investigated dendritic mRNA transport and sorting to synapses. 

Time-lapse live-cell imaging in combination with the MS2 RNA imaging system 

revealed that a majority of mRNA was dynamically transported in a multidirectional 

manner in accordance with the previously proposed sushi-belt model (Aim 1.1) 
(Doyle and Kiebler, 2011). Furthermore, the 3´-UTR of Rgs4 was sufficient to 

mediate an anterograde transport bias (Aim 1.2). This anterograde transport bias 

was not only dependent on the Rgs4 3´-UTR, but also on neuronal activity and the 

dsRBP Stau2 (Aims 1.3 and 1.4). In addition, the recruitment of Rgs4 mRNA to 

synapses was dependent on its 3´-UTR and synaptic activity, which resulted in a 

dynamic but sustainable association of the mRNA at synapses (Aims 1.2 and 1.3).  

The second study addressed the sorting of RBPs, using the dissociation of the 

ATP-dependent helicase Rck from P-bodies as a model. Immunolabeling of Rck 

demonstrated, that P-bodies disassembled in the cell body of hippocampal neurons 

during neuronal maturation in culture (Aim 2.1). This effect was reversed in mature 

neurons by the inhibition of neuronal activity, while it was potentiated by neuronal 

stimulation of the NMDA receptor (Aim 2.2). The translation inhibitor cycloheximide 

disassembled P-bodies, hence Rck clusters, independent of neuronal activity, while 

Stau2 knock-down had no effect on the age-dependent disassembly of Rck. 

However, the overexpression of a helicase deficient Rck mutant resulted in the 
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mislocalization of endogenous Rck protein and in the loss of large Rck granules in 

the soma (Aim 2.3).  

Together, these studies provide new insight into how intracellular sorting of 

mRNA and RBPs can be achieved, and highlight how hippocampal neurons regulate 

these processes by synaptic activity.  

 

4.2 Advancement of the MS2 system 

 

Multiple improvements have been made to the MS2 system, with the ultimate 

goal to provide a better signal-to-noise ratio for the live imaging of RNA. Some of 

these improvements have already been presented in the introduction, including the 

generation of the MS2 coat protein tandem dimer tdMCP and the sequence 

optimization of the MS2 stem-loop array (Pichon et al., 2016; Wu et al., 2012; Wu et 

al., 2015) (see chapter 1.6.3). Initially, an increase in binding stability was considered 

favorable, as it would result in a higher specificity and reduced fluorescence 

background. However, in yeast under metabolic stress conditions it has been 

reported that MS2-MCP binding might stall RNA degradation, resulting in 3´- or 5´- 

degradation fragments (Garcia and Parker, 2015; Garcia and Parker, 2016; 

Haimovich et al., 2016; Heinrich et al., 2017). Although this effect has not been 

observed in mammalian cells, it might be a drawback of the system, as degradation 

fragments would therefore still be fluorescently marked by MCP-FP and 

indistinguishable from non-degraded mRNA at the microscope. It is especially 

important to consider this possibility for the binding of MCP to the mutated stem-loop 

optimized for increased affinity. Moreover, if we consider that several studies, 

including this dissertation, have reported differences between 3´-UTRs containing 

only MS2 stem-loops or containing additional 3´-UTR sequences (Fusco et al., 2003), 

it would suggest that if degradation occurs in mammalian cells, it would either not or 

only marginally affect the biological readout of mRNA transport in vivo. Indeed, the 

analysis of mRNA degradation would be faulty with such a system. Therefore, the 

Singer lab recently generated yet another version of an MS2 array with stem-loops of 

reduced binding affinity to the MCP, separated by longer linkers (Tutucci et al., 

2018a; Tutucci et al., 2018b). In addition, the expression levels of the MCP-FP were 

optimized to decrease an excess of coat-protein. This allows a more dynamic 
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interaction of the reporter mRNA with endogenous factors, enabling the degradation 

machinery to displace bound MCP and properly degrade the reporter mRNAs. These 

examples demonstrate nicely how the MS2-system can be flexibly adapted, 

depending on the biological inquiry. It will be interesting if this new MS2-system will 

hold up to previous version in terms of RNA detectability, or if other workarounds can 

be developed to circumvent aberrant processing of reporter mRNA in vivo.  

 

4.3 How is anterograde transport regulated via the 3´-UTR?  

 

One of the key findings presented in this dissertation is that the Rgs4 3´-UTR 

mediated an anterograde transport bias in dendrites of hippocampal neurons. 

Furthermore, this transport bias was dependent on neuronal activity and on the 

dsRBP Stau2. An anterograde transport bias of similar magnitude (~ 60 vs. 40 %) 

has previously been reported for other mRNAs and in different model systems (Konig 

et al., 2009; Park et al., 2014; Zimyanin et al., 2008). Similarly, a recent publication 

reports an anterograde speed bias, where ß-actin mRNA travels faster in the 

anterograde direction along growing axons of Xenopus retinal ganglion cells (Turner-

Bridger et al., 2018). These examples point to a global mechanism across cell types 

and species, by which the directionality of mRNA transport is regulated to achieve 

correct subcellular sorting and localization. However, detailed mechanistic insight into 

this regulation is currently not available. To unravel the process of directional 

transport, it will be essential to investigate the involved motor proteins and their 

movement along cytoskeletal structures. A recent publication compared the transport 

of kinesin-1 (KIF5) and kinesin-3 (KIF1A) membrane associated protein cargo in 

dendrites and axons of rat hippocampal neurons (Karasmanis et al., 2018). The 

authors report that the kinesin-3 motor domain and kinesin-3 cargo display an 

anterograde transport bias and higher mobility in the initial segment of dendrites, 

while the kinesin-1 motor domain displays a stronger anterograde transport and more 

mobility than the kinesin-3 motor domain in axons. This study demonstrates that 

different motor proteins can act differently, dependent on the cellular compartment. In 

addition, dendritic anterograde transport is promoted by the microtubule-associated 

protein (MAP) Septin 9 (SEPT9). The authors suggest that SEPT9 distinguishes 

between kinesin-1 and kinesin-3, imparting the directional bias during entry into 
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dendrites. This data provides a new viewpoint on dendritic cargo sorting, via the 

differential regulation of motor proteins by a MAP.  

If such a transport model would hold true for mRNPs as well, distinct mRNA 

cargoes enriched in different cellular compartments should be found in mRNPs 

associated with different motor proteins. The direct imaging of fluorescently-labeled 

motor proteins or their chemical inhibition during the imaging of MS2 mRNA reporters 

should provide additional insights into mRNA cargo specific transport and a putative 

involvement in a directional bias. However, additional articles report that different 

motor proteins can be associated with the same mRNP (Messitt et al., 2008; 

Vershinin et al., 2007). Here it will be essential to define the necessary components 

of a functional mRNP and how mRNAs are differentially packaged in different 

granules. Interestingly, a recent publication attempted to define the minimal 

components of an mRNA transport granule for Drosophila in vitro (McClintock et al., 

2018), reporting that the adaptor protein Bicaudal-D (BicD), the RBP Egalitarian 

(Egl), dynein and dynactin are sufficient to form a functional transport mRNP that is 

transported along microtubules towards the minus end in vitro. The presence of 

mRNA strongly promotes this transport. Furthermore, the interaction of BicD and Egl 

is triggered by an RNA localization signal, which would result in the subsequent 

recruitment of dynein and dynactin. This data suggests that mRNPs might be 

assembled by initial protein interactions dependent on specific RNA localization 

sequences or structures, which is followed by the association of specific motor 

proteins. As data presented in this study suggest that the lack of Stau2 results in the 

loss of a 3´-UTR dependent anterograde transport bias in dendrites, Stau2 might be 

involved in mediating the assembly of its target mRNAs with specific factors 

necessary to promote anterograde transport. This would allow these mRNAs to 

predefine their subcellular localization via the 3´-UTR. However, the assembled 

mRNPs might not be finite, and able to adapt their composition on the go as required, 

e.g. in response to a change in synaptic activity. The association of a cis-acting 

zipcode element and an RBP has been demonstrated by multiple examples 

(Jambhekar and Derisi, 2007; Mayr, 2017; Sharangdhar et al., 2017). In the case of 

Stau2, which is involved not only in mRNA transport, but also in mRNA stability and 

translational control, it will be interesting to identify specific structural RNA-binding 

sites, and investigate if and how they promote different Stau2 functions and how 

external factors might regulate these functions. Previous publications demonstrate 
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how competitive or cooperative mRNA binding can regulate different aspects of RNA 

metabolism (Gong and Maquat, 2011; Liu et al., 2006). If Stau2 can regulate its 

target mRNAs, and its subcellular sorting via such mechanisms, will be a key 

question for future research.  

 

4.4 What are the molecular mechanisms governing mRNA localization and 
local translation?  

 

Data reported in this dissertation show that mRNA is actively recruited to 

subcellular locations, specifically the synapses of hippocampal neurons. This process 

depends on both the 3´-UTR of the transcript and on synaptic activity. In addition, the 

influx/efflux of mRNA at the synapse was 3´-UTR dependent as well. As discussed 

above, a specific 3´-UTR might be responsible for recruiting factors to the mRNA, 

which conveys key properties for transport and regulation via cis-acting elements. 

The 3´-UTR dependent recruitment to synapses reported here suggest that such 

factors might be involved in mediating synaptic localization as well. It will be 

interesting to see whether a specific mRNA localization element can be identified that 

would regulate this process by the binding of trans-acting factors such as Stau2. 

However, it will be more challenging to pinpoint how mRNPs are ultimately anchored 

and released at synapses. This could be achieved via the stalling of motor proteins or 

possibly even via changes to the cytoskeleton and/or its associated proteins. In this 

respect it is of note that MAPs have been proposed to act as “speed-bumps” at 

microtubules. In addition, it has been reported that microtubules can enter dendritic 

spines upon neuronal stimulation (Gu et al., 2008; Jaworski et al., 2009) and that 

local actin filaments can be reorganized via their associated proteins (Goetze et al., 

2006; Yoon et al., 2016). A recent study in axons of hippocampal neurons found that 

GTP-rich microtubule plus ends accumulate at en passant synapses and that weak 

interactions of kinesin-3 with such regions allow the motor protein to readily detach 

(Guedes-Dias et al., 2019). However, key components at or close to synapses must 

recognize factors on specific mRNPs to trigger 3´-UTR dependent capture and 

anchoring. The identification of the molecular mechanism governing mRNP capture, 

according to the synaptic tagging and capture hypothesis, (Doyle and Kiebler, 2011; 

Wilhelm and Vale, 1993) would be a significant advance in the field, opening up the 
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possibility to investigate subcellular mRNA localization in different cellular 

compartments or cell types and under different conditions in detail.  

Once localized, mRNA has been proposed to be unpacked, at least in part, 

from its associated mRNPs, making the transcripts available for the binding of 

ribosomes and subsequent translation (Buxbaum et al., 2014). Various methods 

have been employed to visualize local translation of nascent protein (Halstead et al., 

2016; Morisaki and Stasevich, 2018; Pilaz et al., 2016; tom Dieck et al., 2015; Yoon 

et al., 2016). However, the use of the SunTag- or FLAG- system, as recently 

proposed in five independent publications (Morisaki et al., 2016; Pichon et al., 2016; 

Wang et al., 2016; Wu et al., 2016; Yan et al., 2016), has been shown to be highly 

promising in visualizing live translation with high temporal and spatial sensitivity. In 

short, multiple repeats of the SunTag-coding sequence are cloned in frame of the 

ORF in a reporter mRNA. Once translated by ribosomes, the repetitive Suntag 

epitopes can be recognized intracellularly and bound by a specific nanobody tagged 

with a fluorescent protein. Thereby, upon translation of the SunTag epitope the 

nanobody clusters in distinct fluorescent punctae. This reporter mRNA could be 

eventually combined with the MS2-system, using a second spectrally distinct 

fluorescent protein to visualize both mRNA and translated protein simultaneously. 

The publications mentioned above have modified the SunTag-system to, e.g. reduce 

fluorescent background (using an NLS), increase temporal sensitivity (introduction of 

an auto cleavage site to rapidly degrade nascent protein) or reduce protein mobility 

for easier tracking (tethering the nascent chain to membrane compartments) (Pichon 

et al., 2016; Wang et al., 2016; Yan et al., 2016). As this system has been shown to 

be reliable in the quantification of local translation, it will be interesting to see how 

future applications will address more distinct questions, such as investigating 

differences in translation dependent on 3´-UTR sequences, associated factors (e.g. 

Stau2), or subcellular localization (e.g. different synaptic types). Although the 

molecular mechanism of translation itself is well established, the precise processes 

that result in mRNP unpacking, as well as how translation initiation and termination 

are locally triggered by synaptic activity are not fully known. In addition, the process 

of active translation itself may affect mRNA transport, such as the Rgs4 3´-UTR 

dependent anterograde transport bias or its local recruitment. A detailed insight could 

be achieved by the general chemical inhibition of translation (i.e. by cycloheximide or 

puromycin) during the imaging of MS2-SunTag mRNA dual reporters. Indeed, a 
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recent publication shows that mRNA granules associated with nascent protein travel 

slower on average and interact only transiently with stress granules (Moon et al., 

2019). Such experiments represent a first important step towards tying mRNA 

transport to its translation in defined subcellular compartments.  

 

4.5 How does neuronal activity regulate mRNA and protein sorting?  

 

As presented in both studies here, neuronal activity is one key factor 

controlling both mRNA and RBP sorting in hippocampal neurons in culture. Although 

other cell types show some form of electrophysiology, electro-chemical transmission 

and the ability to produce an action potential is the hallmark of neurons that sets 

them apart from other cell types. It is well established that neurons use this ability to 

modulate various aspects of cell morphology and function, such as the regulation of 

branching or local translation, and moreover even require these inputs for survival 

(Pfisterer and Khodosevich, 2017). Data presented here, provides additional insight 

and shows how physiological neuronal activity is required for a 3´-UTR dependent 

anterograde mRNA transport bias, the 3´-UTR dependent sorting of mRNA towards 

synapses and the disassembly of large Rck granules during neuronal maturation. 

This data opens the question which specific signal transduction pathways or synaptic 

types might be involved in each of these processes and how they are regulated and 

integrated. Indeed, the detailed analysis of mRNA sorting at synapses reported here 

showed how an MS2-tagged Rgs4 3´-UTR mRNA reporter interacts with fewer 

synapses in dendrites than an MS2 only reporter, while the number of synapses 

visited in the somatic area are equal. As a consequence, fewer dendritic synapses 

contained the MS2-tagged Rgs4 reporter and more contained the MS2 only control 

reporter. This apparently stricter regulation of synaptic mRNA sorting via the Rgs4 3´-

UTR, suggest a 3´-UTR dependent mechanism linked to neuronal activity. However, 

this data may also indicate that different 3´-UTRs might regulate the sorting to 

different synaptic types. This is partially supported by the fact that synapses 

containing a reporter mRNA had a higher mean signal intensity of tagRFP-tagged 

PSD-95 fusion protein than synapses lacking any reporter mRNA. Studies on how 

neuronal signaling through different pathways might impose sorting of mRNA in a 3´-

UTR dependent manner would be of great interest. The labeling of synapses by 



118	

receptor specific molecular markers combined with the chemical inhibition or 

activation of specific membrane receptors or channels, would be a first step to 

address this important question. There are of course indications of how different 

mRNAs might play a role at specific subcellular locations upon neuronal signaling. 

For instance, it has been shown that ß-actin mRNA is recruited to dendrites of 

hippocampal neurons and nascent ß-actin is incorporated into the dendritic spine 

cytoskeleton upon local glutamate uncaging (Yoon et al., 2016). This nicely 

exemplifies how the recruitment of a specific mRNA has local consequences, which 

are regulated by synaptic activation. It is known that the Rgs4 protein plays an 

inhibitory role in receptor mediated neuronal signaling through G-protein coupled 

receptors (GPCRs) (Abramow-Newerly et al., 2006; Gerber et al., 2016). Therefore, it 

is to be expected that Rgs4 mRNA would be recruited to synapses when this signal 

transmission is activated. As a consequence, changes in signaling through the 

GPCR pathway itself would regulate the recruitment of Rgs4. However, this remains 

to be proven experimentally. It is possible that more global synaptic signaling events 

result in the regulation of mRNA transport to dendrites, where individual transcripts 

can respond to specific cues as proposed by the sushi-belt model (Doyle and Kiebler, 

2011). Additionally, it would be interesting to see if other mRNAs, encoding proteins 

of the GPCR pathway, would also be recruited to the same synapses as Rgs4 and if 

their recruitment would be mediated by Stau2, as previously proposed (Heraud-

Farlow et al., 2013). The idea that the localization and expressions of proteins of the 

same pathway might be regulated by the same RBP is intriguing. Future research 

might determine such a role for Stau2 in mRNA transport and recruitment. Indeed, 

Stau2 depletion results in the dendritic reduction of the Rgs4, a Calm3 intron-

containing and a CaMKIIα intron-containing mRNAs (Heraud-Farlow et al., 2013; 

Ortiz et al., 2017; Sharangdhar et al., 2017; Figure 1.3D).  

Another example of subcellular mRNA targeting is recruitment of mRNA 

granules to P-bodies. As shown in this dissertation, these mRNA containing granules 

change their assembly dependent on neuronal signaling. It would be interesting to 

assess how this flexibility is achieved on a molecular level, and determine a possible 

involvement of helicase activity, as suggested by the data presented here. Moreover, 

as it has been shown that neuronal stimulation leads to an increase of local mRNA 

recruitment and translation at synapses (Yoon et al., 2016), it would be interesting to 

see how mRNA sorting to P-bodies would be affected by synaptic activity. Would 
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differently localized mRNAs be sorted to or released from P-bodies upon neuronal 

inhibition or activation? Or, would mRNAs even be released from P-bodies and 

recruited to synapses upon a specific stimulus? It is of course tempting to speculate 

that change in P-body size observed upon neuronal inhibition, might be a direct 

reflection of translational repression and mRNA degradation, opposing mRNA 

recruitment and translation at synapses. Therefore, it would be interesting to follow a 

single mRNA transcript and determine its lifetime at synapses and P-bodies.  

 

4.6 Outlook 

 

The data provided in this dissertation give unique and novel insight into the 

processes of mRNA and RBP sorting. The experimental techniques applied here, 

along with further advancements of the past years, demonstrate the importance of 

fluorescent microscopy and well-constructed image analysis as a tool, to address 

questions, which cannot be answered by other means. It will be interesting to see 

further technical advancements to come in this field. The past years have shown that 

research can greatly benefit from new technologies, such as two-photon or light 

sheet microscopy, or the development of new fluorescent reporters such as split GFP 

or photoactivatable proteins. Ultimately it will be the combination of microscopy along 

with biochemical and molecular biological techniques, which will answer the 

questions outlined above. The comprehensive understanding of mRNA and RBP 

sorting and its regulation in the single neuron will be an essential advance in our 

understanding of many cellular processes, such as neurite outgrowth, regeneration 

or branching, subcellular proteome regulation and synaptic plasticity. The inclusive 

viewpoint of these processes will refine our understanding of how individual 

synapses undergo alterations and how cells modulate their synaptic connections, 

affecting higher order networks and ultimately enabling learning and the formation of 

memory.  
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