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Zusammenfassung

Seit der mechanischen Isolierung von Graphen faszinieren atomar dünne zweidi-

mensionale Materialien die Festkörperphysik. Eine interessante Gruppe der Dünn-

schichtmaterialien sind die halbleitenden Übergangsmetalldichalkogenide (TMDs)

MoS2, MoSe2, WS2 und WSe2, die sich durch ihre besonderen optischen und elek-

tronischen Eigenschaften auszeichnen. Im Grenzfall der TMD Einzellage kommt es

an den Bandkanten der ungleichen K und K′ Randpunkte des reziproken Gitters zu

einem Übergang von einer indirekten zu einer direkten Bandlücke. An diesen Rand-

punkten, die auch als Valleys bezeichnet werden, finden die optischen Übergänge

statt. Durch ausgeprägte Licht-Materie-Wechselwirkung werden relaxierte Leitungs-

bandelektronen mit Leerstellen im Valenzband korreliert, die robuste und stark ge-

bundene Exzitonen bilden. Diese Exzitonen sind energetisch zweifach entartet und

weisen Valley-spezifische optische Auswahlregeln auf.

Im Rahmen dieser Arbeit wurden einzel- und doppellagige TMDs mit konfokaler

Spektroskopie untersucht. Zunächst wurde die optische Anregung und Detektion der

Valley-Quantenfreiheitsgrade an einzelnen MoS2 Lagen erforscht. Der binäre Frei-

heitsgrad wurde durch Materialqualität als auch Phononen-Streuung beeinflusst,

die sich auf den Relaxationsprozess optisch angeregter Exzitonen auswirken. In die-

sem Zusammenhang wurde, durch Störstellen begünstigte, verbotene Streuung zwi-

schen Exzitonen und longitudinal optischen Phononen mit Raman-Spektroskopie

identifiziert. In Kombination mit hyperspektralen Profilen der Raman-Intensitäten

in externen Magnetfeldern wurden räumliche Veränderungen der Exziton-Phonon

Wechselwirkung abgebildet.

Darüber hinaus zeigte sich die Exziton-Phonon Kopplung in den reich struk-

turierten Photolumineszenzspektren der TMDs. Die Zuordnung exzitonischer Merk-

male ist allerdings umstritten, insbesondere wenn keine Kontrolle über das Ladungs-

niveau vorliegt. Im Ergebnis wurde zur Erklärung unbekannter Photolumineszenzli-

nien von TMD Einzellagen ein durch indirekte Übergänge erweitertes Modell entwi-

ckelt. Hierbei wurde unbekannte Emission mit akustischen und optischen Phononen-

Seitenbanden von indirekten Exzitonen in Verbindung gebracht und durch umfang-

reiche Experimente unterstützt. Motiviert durch das Modell der TMD Einzellagen

wurde außerdem ein detailliertes Verständnis der spektralen Signaturen von WSe2
Doppellagen erarbeitet. Das Aufweichen strikter Impulserhaltung durch Verspan-

nungen und Unordnung im Kristall ermöglichte ein Aufhellen indirekter Übergänge,

wodurch die exzitonische Bandstruktur der WSe2 Doppellage rekonstruiert werden

konnte. Die zusätzliche Kontrolle über das Ladungsniveau bestätigte die Zuord-

nung der niederenergetischen indirekten Exzitonen. Diese Erkenntnisse tragen zum

Verständnis der Materialeigenschaften von TMD Kristallen und zur Realisierung

opto-valleytronischer Anwendungen bei.
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Abstract

Two-dimensional layered materials have attracted much attention in condensed mat-

ter physics. Inspired by the mechanical exfoliation of graphene, a broad range of

atomically thin materials are being explored today. A prominent class with intrigu-

ing optical and electronic properties includes the semiconducting transition metal

dichalcogenides (TMDs) MoS2, MoSe2, WS2, and WSe2. They exhibit a crossover

from an indirect band gap for multilayers to a direct band gap in the monolayer

limit, with optical transitions in the visible to the near-infrared spectral range. At

the energy minima of inequivalent K and K′ valleys of monolayered TMDs, pro-

nounced light-matter interactions correlate conduction band electrons and empty

valence states to form robust and tightly bound excitons. These band-edge excitons

are degenerate in energy and exhibit valley-dependent optical selection rules.

In the framework of this thesis, properties of TMD monolayers and bilayers were

studied with optical spectroscopy. By this means, optical initialization and detection

of valley pseudospins was demonstrated in monolayer MoS2, as a representative

material. The valley degree of freedom of photoexcited excitons was found to be

influenced by relaxation processes that were strongly dependent on material quality

and affected by phonon scattering. In this context, impurity-mediated forbidden

scattering between excitons and longitudinal optical phonons was identified with

Raman spectroscopy. These studies, combined with hyperspectral profiles of Raman

mode intensities in external magnetic fields, revealed unexpected spatial variations

of exciton-phonon interactions.

The role of exciton-phonon coupling was also established in the photolumine-

scence spectra of TMDs with rich excitonic signatures. Photoluminescence features

are, however, controversial in their assignment, especially if doping control is unavail-

able. While dipole-allowed emission in monolayered TMDs is commonly attributed

to momentum-direct transitions, lowest-energy emission in bilayer TMDs arises from

momentum-indirect states. In this work, a model of momentum-indirect transitions

was developed to explain previously unidentified photoluminescence peaks of mono-

layer TMDs. Their emission features were related to acoustic and optical phonon

sidebands of momentum-indirect excitons and confirmed in comprehensive experi-

ments. Motivated by the model for monolayer TMDs, a detailed understanding of

spectral signatures of bilayer WSe2 was also developed. Brightening of momentum-

dark transitions by breaking strict momentum conservation with strain and dis-

order allowed to identify the bilayer excitonic band structure. Control of doping

confirmed the assignment of low-energy momentum-dark states and allowed to de-

termine their binding energy to an excess electron. The findings shed light on the

origin of quantum dot formation in bilayer TMDs and facilitate advances directed

towards opto-valleytronic device applications.
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Förg, J. Kim, G. Berghäuser, T. Taniguchi, K. Watanabe, F. Wang, E. Malic,
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Chapter 1

Introduction

New inventions are often triggered by curiosity, a basic instinct of mankind. De-

spite challenges, the path of research allows to follow new ways of thinking that

lead to scientific breakthroughs and discoveries. The first approach to a profound

understanding of nature was based on the inspection of the environment with light.

Ever since, instruments and techniques were developed to discover physical laws at

small and large dimensions. At the nanoscale, material properties are fundamentally

different than at macroscopic dimensions and valuable for the development of novel

technologies. This is reflected by the growing demand for new materials with ver-

satile characteristics. As one example, the electronic and mechanical properties of

graphene provide opportunities for flexible and wearable devices, data and energy

storage, photodetectors, and batteries [1].

Following the footsteps of graphene [2, 3], new atomically thin materials featuring

promising physical phenomena have emerged. Part of that class are the semiconduct-

ing transition metal dichalcogenides (TMDs) which include MoS2, MoSe2, WS2, and

WSe2 in the hexagonal H phase. Their diverse optical characteristics were studied

in this thesis. In the monolayer (ML) limit, they exhibit a direct band gap in the

visible to the near-infrared spectral range at the K and K′ points of their hexago-

nal Brillouin zone (BZ) [4, 5]. These low-energy pockets or valleys are degenerate

in energy but not equivalent. Broken inversion symmetry of the crystal lattice in

combination with strong spin-orbit coupling lead to coupled spin and valley degrees

of freedom of band-edge charge carriers [6]. Strong light-matter coupling facilitates

pronounced absorption, where Coulomb interactions correlate electrons and empty

valence band states to form tightly bound excitons. While optical dipole transitions

of lowest-energy excitons in molybdenum-based MLs are spin-allowed, the exciton

ground state of ML tungsten dichalcogenides WSe2 and WS2 is spin-dark [7–14].

This difference stems from a reversed energetic ordering of spin-polarized conduc-

tion subbands in molybdenum and tungsten dichalcogenide MLs [15–19]. Despite
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2 1. Introduction

this distinction, the K and K′ valleys of both material subclasses can be conve-

niently addressed with circularly polarized light of opposite helicity [20–28]. These

binary states therefore have promising potential for atomically thin optoelectronic

and opto-valleytronic applications [29, 30]. As such, successful conversion of electri-

cal information to optical polarization was demonstrated with chiral light emitting

diodes [31, 32] and the reversed transformation by the valley Hall effect in ML MoS2

[33]. Apart from ML TMDs, bilayers (BLs) are also relevant for technological ap-

plications due to their significance as hosts for single photon sources [34, 35], finite

valley polarization [36], and potential utilization of the spin-layer locking effect [37].

They exhibit a momentum-indirect band gap and their properties are tunable by

the alignment angle between the two layers [38, 39].

TMD MLs and BLs can be mechanically exfoliated from bulk crystals similar

to the first isolation of graphene [40], or grown macroscopically by molecular beam

epitaxy or chemical vapor deposition (CVD) [41–43]. While exfoliation often re-

sults in highest quality samples, the latter growth techniques are relevant for large

scale commercial applications. CVD-grown crystals, in particular, are susceptible

to molecular adsorption and crystal defects such as grain boundaries, which lead

to rapid valley decoherence of excitons and therefore reduce the material quality.

The exposed crystal surface is furthermore susceptible to fast nonradiative decay

mechanisms that cause spectrally broad luminescence with reduced photon emis-

sion. On the other hand, defects and strain can induce useful single photon emission

with properties known from self-assembled quantum dots (QDs) [34, 44–49], and

deterministic formation of TMD QDs may provide new avenues towards scalable

quantum arrays [35].

In this work, confocal photoluminescence (PL) and Raman spectroscopy were

used to study TMD MLs and BLs. Basic material properties were investigated by

analyzing Raman modes of the crystal which are sensitive to the number of lay-

ers [50], temperature [51], strain [52, 53], adsorbate deposition [54], and charge

doping [55]. In MoS2 MLs defect-mediated forbidden scattering between excitons

and in-plane optical phonons was examined for excitation near-resonant with the

fundamental exciton. Enhanced exciton-phonon interactions were accompanied by

valley depolarization and valley decoherence of excitons [22, 23]. With cryogenic

mapping of Raman mode intensities in magnetic fields, spatial variations of crystal

quality and local environment were identified. Field-dependent correlations between

Raman scattering intensities and polarization-resolved PL indicated that exciton

valley dynamics are linked to Raman processes and their optical selection rules.

Complementary to Raman spectroscopy, band-edge excitons were characterized

with PL spectroscopy and differential reflectivity (DR). In the presence of additional

charges, excitons [56–58] can form charged three-particle complexes or trions with
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binding energies of roughly 30 meV [59, 60]. Owed to the coincidence of almost

identical trion binding and optical phonon energies in TMD MLs [61, 62], spectral

signatures of samples even with active charge control remain controversial to date

[63]. In this work, unidentified peaks in charge-controlled cryogenic PL spectra were

explained in terms of phonon sideband replicas of momentum-dark excitons. The

concept of theoretically predicted momentum-indirect excitons in MLs was further

investigated with experiments. To support our model, these included studies of the

exciton PL excitation (PLE) power dependence, polarization properties, radiative

lifetime, and measurements of exciton g-factors.

As opposed to the direct electronic band gap in MLs, the indirect band gap of

BL crystals results in reduced PL with richly structured spectra [64]. Despite intense

research the intricate signatures in PL and absorption of BL MoSe2, WS2, and WSe2
remain only insufficiently explained. A closed interpretation of emission spectra of

BL WSe2 as arising from both momentum-bright and momentum-dark exciton man-

ifolds was developed in this work. Moreover, a microscopic understanding of bright

QD emission arising from strained defect sites was acquired. These localized QD

excitons in WSe2 BL were used as sensors for the intrinsic material properties of the

host crystal. Furthermore, the spectral evolution with doping was used to verify the

hierarchy of lowest-energy excitons and allowed to determine trion binding energies

of momentum-dark excitons in BL WSe2. The conclusions apply to the entire class

of BL TMDs and are not specific to WSe2.

Scope of the thesis

Within the framework of this thesis, optical properties of TMD MLs and BLs were

studied with optical spectroscopy. The main experimental results are either pub-

lished or in preparation for publication.

First, basic theoretical concepts of the electronic and optical properties of TMDs

are introduced (Chapter 2). Interband optical selection rules and the role of spin- and

momentum-dark excitons in ML and BL TMDs are discussed. The latter excitons

require interactions with phonons for emission. Phonon selection rules and their

modification as a result of interactions with electrons or excitons are elaborated.

The performance of the confocal microscope was characterized with nitrogen-va-

cancy (NV) color centers in diamond as reference quantum emitters (Chapter 3).

Fundamental PL and Raman characteristics of ML MoS2, as a representative TMD,

are described in Chapter 4. The degree of circular and linear polarization of the PL

and Raman scattering was analyzed for excitation resonant with the fundamental
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exciton. Mapping of Raman mode intensities was then used to characterize crystal

quality and exciton-phonon interactions influenced by an external magnetic field.

A model to identify spectral PL signatures of TMD MLs based on momentum-

dark excitons is introduced in Chapter 5 and substantiated with experiments on

charge-tunable ML WSe2 in Chapter 6. The discussion is followed by a comprehen-

sive interpretation for BL WSe2 emission spectra on the basis of both momentum-

bright and momentum-dark excitons (Chapter 7). Strain- and defect-induced bright-

ening of momentum-dark excitons in BL WSe2 was used to identify the excitonic

band structure. Finally, Chapter 8 provides a summary and perspectives of this

work.



Chapter 2

Theoretical aspects of transition
metal dichalcogenides

This chapter provides an overview of the electronic and optical properties of semi-

conducting atomically thin TMDs. In the monolayer form, they feature a direct

band gap in the visible to the near-infrared spectral range at the K and K′ points or

valleys of their hexagonal Brillouin zone. Due to the presence of spin-orbit coupling,

this valley pseudospin of band-edge states is coupled to their spin degree of free-

dom and leads to valley-dependent optical selection rules of interband transitions.

Based on a lattice symmetry analysis, we derive these optical selection rules and

discuss the fundamental characteristics of valley excitons that are formed by strong

Coulomb interactions. Finally, we introduce interactions of excitons and electrons

with phonons, that give rise to photoluminescence features and anomalous Raman

selection rules.

5



6 2. Theoretical aspects of transition metal dichalcogenides

2.1 Crystal structure and electronic properties

This section is partly based on the manuscript P4:

J. Lindlau, R. Cedric, V. Funk, J. Förste, M. Förg, L. Colombier, A. Neumann, E. Cour-

tade, S. Shree, M. Manca, T. Taniguchi, K. Watanabe, M. M. Glazov, X. Marie, B. Ur-

baszek, and A. Högele. Identifying optical signatures of momentum-dark excitons in mono-

layer transition metal dichalcogenides. ArXiv e-prints (2017). arXiv:1710.00988.

TMDs are layered materials of MX2 sheets bound together by van der Waals

forces, where M are transition metal atoms and X are chalcogen atoms. From this

family, we study atomically thin crystals of the semiconducting group-VIB TMDs

MoS2, MoSe2, WS2, and WSe2 [30, 65–67]. Similar to graphene [40], they can be

mechanically exfoliated from bulk crystals, or grown by either CVD [41, 42] or

molecular beam epitaxy [43]. The crystal structure of single layers can exhibit three

different phase configurations 1H, 1T, and 1T′ [68]. In the hexagonal 1H arrange-

ment, the individual layers consist of three covalently bonded atomic planes X-M-X

in ABA stacking without a center of inversion (Figs. 2.1a and 2.1b). The 1T phase

with rhombohedral (ABC) stacking is typically unstable and transforms into the 1T′

form with 1D zigzag chains of M atoms [68]. This rare 1T′ phase is interesting for

quantum spin Hall physics and is naturally formed by WTe2 MLs [69, 70]. In this

thesis, we focus on the properties of group-VIB TMDs with the 1H lattice.

In bulk form, the crystals exhibit an indirect band gap which increases in energy

when the number of layers is reduced and transforms to a direct band gap in the

visible to the near-infrared spectral range for MLs. For this limit, band extrema are

found at the K and K′ points of the hexagonal BZ (Fig. 2.1c) of the honeycomb

lattice [4, 5]. At these points, the main contributions to the conduction band (CB)

and valence band (VB) states stem from dz2 and dxy, dx2−y2 orbitals of the transi-

tion metal atoms, respectively [15, 71]. The degenerate energy minima or valleys are

related by time-reversal symmetry, that combined with missing inversion symme-

try imposes valley-contrasting out-of-plane Berry curvatures and orbital magnetic

moments on band-edge states [6, 30]. Together with strong spin-orbit coupling, VB

states exhibit large spin splittings ∆SO of several hundreds of meV as estimated

from first-principles calculations [15–17, 19, 71] and determined experimentally [36,

43]. The pronounced spin polarization of the VB is mainly attributed to chiral or-

bital compositions dx2−y2 + idxy (dx2−y2 − idxy) with a magnetic quantum number of

m = +2 (m = −2) for the K (K′) valley. The CB spin splitting on the order of a few

tens of meV [15–17, 19] is much smaller. It originates from minor band contribu-

tions of chalcogen p-orbitals and transition metal dxz, dyz orbitals to the dominant

http://arxiv.org/abs/1710.00988
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a

b

c
K'K

Figure 2.1: a and b, Real space lattice schematics of a MX2 transition metal dichalco-
genide monolayer in the 1H phase: side and top views, respectively, with transition metal
(chalcogen) atoms in red (cyan). c, Schematic of the first Brillouin zone with hyperbolic
band dispersions at the K and K′ points. For simplicity, spin-orbit splitting is shown only
for the valence subbands, that give rise to X and B excitons. Note that the spin-polarized
subbands at K and K′ are related by time reversal.

 ΔKQ 

K K Q 



a 

CB 

VB 

WSe2 

ΔSO 

X 
X D 

MoSe2 

K' K' 

K 

Γ 

K' 

K K 

ΔSO 

b 

Figure 2.2: a and b, Schematic band structure in the first Brillouin zone (inset with
high-symmetry points Γ, K and K′, and six inequivalent Q pockets) of molybdenum and
tungsten dichalcogenide monolayers, respectively. Conduction band (CB) and valence band
(VB) with spin-up and spin-down electron subbands (shown in black and gray, respec-
tively), spin-orbit splitting ∆SO, and the energy separation ∆KQ between the conduction
band minima at K and Q. Momentum-direct spin-bright and spin-forbidden excitons (X
and D, indicated by ellipses shaded in red and gray) are formed by electrons and unoc-
cupied states in the K valley. Momentum-dark excitons (dashed ellipses) with the empty
state at K can be formed with electrons at Q or K′.



8 2. Theoretical aspects of transition metal dichalcogenides

dz2 character of the band with m = 0 [15, 17]. The interplay of their competing

coupling to spin leads to reversed ordering of conduction subbands between ML

molybdenum and tungsten dichalcogenides (Figs. 2.2a and 2.2b). In addition to the

K and K′ valleys, the CB of TMD MLs exhibits local minima at six nonequivalent Q

pockets related pairwise by time-reversal symmetry (Fig. 2.2) [64, 72]. Depending on

the specific material, the Q-valley band edges can be as far as ∆KQ ' 160 meV above

the CB minimum as in MoSe2, or in the range of ∼ 0–80 meV in tungsten-based

MLs [19, 61, 73].

The photophysics of ML TMDs are dominated by strong Coulomb interactions

that correlate band-edge CB electrons with empty states in the VB to form tightly

bound excitons. They are commonly categorized according to their spin-polarized

VB states into the lower-energy X excitons and their excited B counterparts. Each

complex furthermore exhibits spin-bright and spin-dark electron-hole configura-

tions arising from the conduction subbands. At the K and K′ points, the excitons

are valley-degenerate and are characterized by optical selection rules with valley-

contrasting circular dichroism (see Section 2.2). This valley degeneracy of optical

transitions can be lifted by a perpendicular magnetic field, which relies on an asym-

metry of the orbital magnetic moments in the conduction and valence subbands

with the same spin for a given valley [74–77]. The resulting valley Zeeman splitting

between the K′- and K-valley excitons can be quantified by an effective exciton g-

factor, with g ≈ 4 for spin-bright X states [74–77] that are the lowest-energy excitons

in MoS2 and MoSe2. For tungsten dichalcogenide MLs the exciton ground state is

spin-forbidden [7–14] (Figs. 2.2a and 2.2b) and exhibits an exciton g-factor of ∼ 9.4

as determined for ML WSe2 [78, 79]. Beside spin-bright and spin-forbidden excitons,

tungsten-based TMD MLs feature momentum-dark excitons with the empty state

at K and electrons at K′ or Q (Fig. 2.2).

2.2 Symmetry and optical selection rules

Optical selection rules for interband transitions in TMD MLs can be derived with

group theory analysis. For an odd number of layers, inversion symmetry is broken

and the space group symmetry reduces from D4
6h for bulk crystals to D1

3h for MLs.

The subgroup C3h of the ML D1
3h symmetry forms the group of the wavevector at

the K and K′ points. The two main symmetry operations of C3h are C3 and σh,

which represent a 2π/3 rotation around the z axis and horizontal reflection at the

plane of transition metal atoms, respectively. Using these symmetry properties and

k · p perturbation theory, a two-band Hamiltonian of the form [6, 18]

Ĥ = at(τkxσ̂x + kyσ̂y) +
∆

2
σ̂z − λvτ

σ̂z − 1

2
ŝz + λcτ

σ̂z + 1

2
ŝz (2.1)
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can be obtained to describe band-edge states with small wavevectors k around the

K and K′ points. Here, a is the lattice constant, ∆ the energy gap (without spin-

orbit coupling), and t the effective hopping integral between the d-orbitals of the

transition metal atoms including indirect interactions mediated by p-orbitals of the

chalcogen atoms [15, 80]. The Pauli matrices σ̂ act on the basis states, that are

constructed with dz2 , dx2−y2 , and dxy orbitals of the transition metal atoms and are

given by

|ψc〉 = |dz2〉 , (2.2a)

|ψτv 〉 =
1√
2

(|dx2−y2〉+ iτ |dxy〉), (2.2b)

where the subscript c (v) indicates the CB (VB) and τ = ±1 is the valley index

(+1 for K and −1 for K′) [6]. The basis states are adapted to the symmetry of

the system at K and K′, where the Bloch amplitudes correspond to the irreducible

representations (IRs) Γ1 in Eq. 2.2a and Γ2 (Γ3) in Eq. 2.2b for τ = +1 (τ = −1).

The IRs are given in the Koster notation [81] and a transition metal atom is chosen

to be the origin of point transformations. The second to last term in Eq. 2.1 accounts

for spin-orbit coupling in the VB and stems from transition metal dx2−y2 and dxy
orbitals. The VB spin splitting is given by 2λv and ŝz denotes the third Pauli matrix

for spin. The last term of Eq. 2.1 is a phenomenological correction to the two-band

model and accounts for the CB spin splitting (2λc). It corrects for coupling to remote

transition metal dxz and dyz orbitals, and contributions from chalcogen p-orbitals

[66].

In the two-band framework, where distant bands are ignored, the spin z compo-

nent sz is a good quantum number. The spin parts recast the Bloch amplitudes as

additional products with spinors corresponding to sz = ±1/2 with IRs Γ7(↑) and

Γ8(↓) [82]. This results in K and K′ IRs of Γ1 × Γ7 = Γ7(↑) and Γ1 × Γ8 = Γ8(↓) for

the spin-polarized conduction subbands, and Γ2 × Γ7 = Γ10(↑) and Γ3 × Γ8 = Γ9(↓)
for the upper valence subbands, respectively. In general, spin-orbit coupling intro-

duces admixing of remote subbands that exhibit the same IR and different spins

[14]. This becomes relevant for optical transitions among subbands with antiparallel

spins (spin-dark transitions).

The optical selection rules for dipole-allowed interband transitions at K and K′

are derived according to the transformation Γc × Γ∗v, where Γc (Γv) is the IR of

the conduction (valence) subband and T̂ Γv = Γ∗v is the time-reversed IR in the

C3h group [82]. The bright transitions involving the upper valence subbands and

conduction subbands with the same spin are characterized by

Γ7 × Γ∗10 = Γ2 and Γ8 × Γ∗9 = Γ3, (2.3)
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for τ = +1 and τ = −1, and transform as x+iy and x−iy, respectively. They describe

dipoles of 1s-type X excitons (see next section) that are addressed by σ+ and σ−

circularly polarized light with the electric field in the ML plane. In PL experiments,

these selection rules are probed by the degree of circular and linear polarization,

Pc and Pl, measured as the ratio of emission intensities (Ico − Icr)/(Ico + Icr) that

are detected in co-polarized (Ico) and cross-polarized (Icr) configurations with a

circularly or linearly polarized excitation laser. While Pc provides a direct measure

of valley polarization [20–22], Pl quantifies coherent superpositions of K and K′

transitions [23, 36] (see Section 4.2).

In contrast to the spin-bright transitions, the class of spin-dark transitions cou-

ples to light with out-of-plane polarization. Their IRs are determined by

Γ8 × Γ∗10 = Γ4 and Γ7 × Γ∗9 = Γ4. (2.4)

These transitions are forbidden for excitation or detection at normal incidence but

can be observed in experiments with a high numerical aperture (NA) objective [14].

2.3 Fundamentals of valley excitons

Excitons in ML TMDs exhibit an exceptionally large binding energy of roughly

0.5 eV. It arises from spatial confinement of out-of-plane motion, reduced screening

of the dielectric environment, and large effective masses of band-edge states [83].

The excitons are largely of Wannier-Mott type as their wave functions extend over

several unit cells with a Bohr radius of ∼ 1 nm [84].

An exciton state |SQ〉, labeled by index S and center-of-mass momentum Q, can

be expanded as [85, 86]

|SQ〉 =
∑
vck

ASvcQ(k) |vckQ〉 . (2.5)

In a two-band model, c = {sc, τc} and v = {sv, τv} denote the spin and valley

indices of CB and VB single-particle states with wave vectors around K or K′. The

states |vckQ〉 are free electron-hole pairs consisting of an electron in |ck + Q〉 and

an empty state T̂ |vk〉, and the amplitudes ASvcQ(k) are Fourier transforms of the

exciton envelope functions. The energy difference ES
Q between an excited eigenstate

and the crystal ground state is obtained by solving a set of simultaneous equations

[86, 87]

[Ec(k + Q)−Ev(k)]ASvcQ(k)+
∑
v′c′k′

〈vckQ| K̂d+K̂x |v′c′k′Q〉ASv′c′Q(k′) = ES
QA

S
vcQ(k),

(2.6)
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where Ec(k + Q) and Ev(k) are single-electron CB and VB energies. The terms K̂d

and K̂x denote the direct and exchange parts of the electron-hole interaction kernel

with

〈vckQ| K̂d |v′c′k′Q〉

= −
∫

dredrhψ
∗
c,k+Q(re)ψc′,k′+Q(re)V (re − rh)[T̂ ψv,k(rh)]∗[T̂ ψv′,k′(rh)], (2.7a)

〈vckQ| K̂x |v′c′k′Q〉

=

∫
dredrhψ

∗
c,k+Q(re)[T̂ ψv,k(re)]V (re − rh)ψc′,k′+Q(rh)[T̂ ψv′,k′(rh)]∗. (2.7b)

The wave functions ψc,k+Q and ψv,k are eigenfunctions of the Hamiltonian in Eq. 2.1

and V (re − rh) = e2/(κ|re − rh|) is the electron-hole interaction potential modified

by the effective dielectric constant κ of the crystal (e is the elementary charge).

If the electron-hole exchange interaction K̂x is neglected, the exciton envelope

functions and eigenenergies of exciton states in the effective-mass theory satisfy the

hydrogen-like wave equation [87](
− ~2

2µ
∇2

r −
~2

2M
∇2

R −
e2

κr

)
ASvcQ(r,R) = εSQA

S
vcQ(r,R), (2.8)

where ~ is the reduced Planck constant, r = re − rh is the electron-hole separation,

R = (mere +mhrh)/(me +mh) with electron and hole effective masses me and mh,

and εSQ = ES
Q−Eg with the band gap Eg. The reduced and total exciton masses are

given by µ = memh/(me + mh) and M = me + mh, respectively. The solutions of

Eq. 2.8 with only in-plane motion form valley-degenerate excitonic bands

εSQ =
~2Q2

2M
−

Ry

(n− 1/2)2
, (2.9)

with Ry = µe4/(2~2κ2) and the principle quantum number n ∈ N+ describing the

states 1s, 2s, etc. In absorption experiments, the exciton series of energy levels

within the light cone deviates from the two-dimensional (2D) hydrogenic model

due to nonlocal dielectric screening of Coulomb interactions induced by the strong

dependence of κ = κ(r) on the electron-hole separation of the exciton state [56, 57].

We continue with the main effects arising from the exchange term in Eq. 2.6 for

lower-energy excitons associated with the upper valence subband. To this end, we

construct an orthonormal basis set of Bloch-type valley excitons (with valley indices
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a b K K' K K' 

Figure 2.3: Schematic band structure at high-symmetry points K and K′ in the first
Brillouin zone of tungsten dichalcogenide monolayers. a and b, Mechanisms for electron-
hole exchange interactions with intravalley and intervalley coupling, respectively.

τ = +1 and −1) from K and K′ states at Q = 0 to expand eigenstates |SQ〉 with

small Q. These basis states can be written as [86, 88]:

|SτQ〉 ≈ |eiQ·RSτ0〉 =
∑
vck

AS
τ

vc0(k) |vckQ〉 . (2.10)

For spin-dark valley excitons the exchange term is negligible and zero if spin states

are pure [86]. Thus, with the basis of spin-bright (X) excitons given above, Eq. 2.6

reduces to a 2×2 matrix. The corresponding matrix elements of the exchange inter-

action can be separated into long and short range parts, each including intravalley

and intervalley components, J intra
Q and J inter

Q , respectively. For TMD MLs, the short

range intervalley part is zero due to the threefold rotational symmetry of the lat-

tice [89]. Up to the leading order in Q, the terms J intra
Q and J inter

Q , corresponding to

an interaction between the exciton momentum Q = (Q cos θ,Q sin θ) and its valley

pseudospin τ , are given by [86, 89]:

〈SτQ| K̂x |Sτ ′Q〉τ=τ ′ = J intra
Q ≈ V (Q)

Q2D2

2e2aB
+ C, (2.11a)

〈SτQ| K̂x |Sτ ′Q〉τ 6=τ ′ = J inter
Q ≈ V (Q)

Q2D2

2e2aB
ei(τ

′−τ)θ, (2.11b)

where V (Q) = 2πe2/(Qκ) is the 2D Coulomb interaction in momentum space, aB
is the exciton Bohr radius, and the constant term C is the matrix element of the

short range intravalley exchange interaction. The quantity D2 = 2(eat/Eg)
2, with

a and t defined in Eq. 2.1, is the squared modulus of the electric-dipole transition

matrix element for electron-hole pair creation at the K or K′ point [89, 90]. The

two processes, J intra
Q and J inter

Q (Figs. 2.3a and 2.3b), give rise to an overall energy

shift and coupling of the two valley configurations for the bright X exciton, causing

valley depolarization on fast timescales [82, 91, 92].
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Modified by the exchange interaction, the bright 1s X exciton with mass M and

energy E1s
0 at Q = 0 splits into two branches of equal superpositions of the two

valleys. It is characterized by the dispersion [83, 86]

E1s
Q = E1s

0 +
~2Q2

2M
+ J intra

Q ± |J inter
Q |, (2.12)

with eigenstates |SL〉 and |SU〉 for the lower and upper branches

|SL〉 =
1√
2

(
e−iθ |S+1

Q 〉 − eiθ |S−1Q 〉
)
, (2.13a)

|SU〉 =
1√
2

(
e−iθ |S+1

Q 〉+ eiθ |S−1Q 〉
)
. (2.13b)

Within the light cone, the lower (upper) branch couples to linearly polarized light

with longitudinal (transverse) electric-field orientation along Q. The upper branch

shows close to linear dispersion of a massless Dirac particle with chirality 2 due to

the threefold rotational symmetry of the lattice [83, 86, 93]. At the edge of the light

cone, the splitting of the two branches is estimated to be on the order of a few meV

and around 12 meV under a moderate strain of 1% for zero momentum [89].

2.4 Phonons and Raman scattering

Beside momentum-direct interband transitions, momentum-dark excitons also con-

tribute to the optical signatures of molybdenum dichalcogenide MLs and even dom-

inate the PL of tungsten-based ML and BL crystals at low temperatures (see Chap-

ters 5–7). Radiative relaxation of momentum-dark excitons requires either localiza-

tion of the exciton wavefunction or scattering with a phonon to fulfill momentum-

conservation which is discussed in the following. The phonons relevant for exciton-

phonon interactions in TMD MLs and BLs are the in-plane transverse and longi-

tudinal acoustic (TA, LA) and analogous optical phonon modes (TO, LO) with E ′

symmetry, and the out-of-plane A1 optical vibration with A′ symmetry [61]. The

normal displacements of the optical modes in a ML are sketched in Figs. 2.4a and

2.4b for the out-of-plane and in-plane vibrations, respectively. Note that we use the

common molecular notation to describe phonon scattering processes.

For phonon-assisted recombination of a Q-momentum-indirect exciton (Q-valley

electron and K-valley empty state, see Fig. 2.2), the CB electron can scatter a phonon

to compensate for the momentum mismatch. The symmetry of the participating

phonon is determined by the IRs of the initial (Γi) and final (Γf) electron state as

Γ∗f × Γi. Therefore, the intersection between the symmetry groups Cs and C3h of

initial and final electron states at the Q and K points needs to be considered, which
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X
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a b

A' Eꞌ

Figure 2.4: a and b, Schematics of normal displacements for the out-of-plane (A′) and
in-plane (E′) optical vibration modes in monolayer MX2. The labels in molecular notation
A′ and E′ indicate the symmetry at the K and K′ points.

is Cs. In this symmetry group, subband states are represented by Γ3(↑) and Γ4(↓).
With this considered, spin-conserving electron scattering with the IR Γ1 is mediated

by A′ phonons. The analogue of these phonons in C3h corresponds to acoustic E ′ and

optical E ′ and A1 phonons [81]. Provided that momentum conservation is fulfilled,

combinations of these phonons are also allowed. Spin-conserving scattering processes

of spin-like indirect excitons with Q momentum ensure photon emission with the

polarization defined by the valley of the empty state. Transitions between the K and

K′ valleys can be considered analogously. For spin-conserving scattering they are

enabled by phonon modes with E ′ symmetry (Γ2), and for spin-flip transitions they

are induced by A′′ (Γ4) or by E ′′ (Γ5) phonons. Note that these spin-flip processes

are possible due to a finite admixture of bands, with opposite spin orientations, that

increases for momenta away from high symmetry points. Real intervalley spin flips

can, however, be mediated by chiral phonons [94].

While optical selection rules of excitonic transitions mediated by phonons are

determined by the symmetries of electron states, Raman scattering is governed by

the lattice symmetry if Fröhlich interactions are negligible [95]. These interactions

describe the coupling between electrons and the crystal polarization field induced

by LO phonons. In the unperturbed limit, the scattered Raman intensity Is is pro-

portional to the Raman tensor R:

Is ∝ |ei · R · es|2, (2.14)

where ei and es are unity polarization vectors of the incident and scattered radi-

ation, respectively. The Raman tensor expresses the modifications of the electric

susceptibility (χ) induced by atomic vibrations:

R = (∂χ/∂u)u=0 · eu(ω0), (2.15)
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where u is the vector displacement of a given lattice atom, eu = u/|u| is a unit

vector parallel to the phonon displacement, and ω0 the phonon frequency. For A′

and E ′ vibrations in a lattice with D3h symmetry, R is given by [96]:

A′ :

a 0 0

0 a 0

0 0 b

 , (2.16a)

E ′(LO) :

0 d′ 0

d′ 0 0

0 0 0

 , E ′(TO) :

d 0 0

0 −d 0

0 0 0

 . (2.16b)

With this, it is straightforward to derive the selection rules of the respective Raman

processes. For circularly or linearly polarized incident fields, A′ scattering is co-

polarized with the initial polarization state. Both LO and TO components of E ′ are

cross-polarized under circular excitation, whereas the TO (LO) component exhibits

co-polarized (cross-polarized) scattering under linear excitation. Thus, unpolarized

E ′ Raman scattering is observed for linearly polarized excitation of LO and TO

components that are degenerate in energy.

In the presence of charge carriers or excitons, the scattering process of phonons

can be described with Feynman diagrams. A representative Feynman diagram of

a one-phonon Stokes Raman process is shown in Fig. 2.5. An initial photon with

frequency ωi interacts with an electron via excitation of a virtual exciton state X with

energy EX which is characterized by the electron-radiation interaction Hamiltonian

ĤeR (filled sphere). Subsequently, the virtual exciton state X couples to a phonon

via the electron-phonon interaction Hamiltonian Ĥe-ion (open square). The emitted

phonon is described by the Stokes Raman process and the virtual state X transforms

to X′ with energy EX′ . In the last step, the virtual exciton state X′ interacts with

the radiation field, scattering a photon with energy ~ωs. The scattering probability

(P) from the initial state |i〉 with energy Ei as given by Fermi’s golden rule can be

written as [95]

P =
2π

~

∣∣∣∣∑
XX′

〈i| ĤeR(ωs) |X′〉 〈X′| Ĥe-ion |X〉 〈X| ĤeR(ωi) |i〉
[~ωi − (EX − Ei)] [~ωi − ~ω0 − (EX′ − Ei)]

∣∣∣∣2δ(~ωi − ~ω0 − ~ωs).

(2.17)

Here, we assume that the Raman scattering leaves the final electronic state un-

changed from the initial state |i〉. In the limit of the electric-dipole approximation,

the interaction Hamiltonian between the radiation and an electron is given by

ĤeR = −er · E, (2.18)
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Figure 2.5: Feynman diagram of the one-phonon Stokes scattering process (see Ref. 95).
The frequencies of the initial and scattered photons are denoted by ωi and ωs. X and X′

are the excited and transformed virtual exciton states. Filled spheres mark the electron-
radiation interaction Hamiltonian ĤeR and the open square denotes the electron-phonon
interaction Hamiltonian Ĥe-ion.

with the electric field E and the relative coordinate vector r between the electron

and hole.

The electron-phonon interaction Hamiltonian, Ĥe-ion, can have different contribu-

tions. Acoustic phonons interact with electrons via piezoelectric coupling associated

with strain induced to the crystal, and long-wavelength optical phonons involve rel-

ative displacements of atoms regarded as microscopic distortions. In polar crystals,

deformation-potential interactions of LO phonons induce an oscillating macroscopic

polarization leading to an electric field ELO, which couples to electrons through

Fröhlich interactions as [95]

ELO = −FuLO with F =
[
4πNµpω

2
LO

(
ε−1∞ − ε−10

)]1/2
. (2.19)

The phonon amplitude uLO is the relative displacement of the negative to the positive

ion, N is the number of unit cells per unit volume, µp is the reduced mass of the

primitive cell defined as µ−1p = M−1
1 + M−1

2 (M1 and M2 are the masses of the two

atoms in the cell), ωLO is the LO phonon frequency, and ε∞ and ε0 are the high- and

low-frequency dielectric constants, respectively. The Fröhlich Hamiltonian for this

interaction is given by [95]

ĤFr = (ieF/q)uLO, (2.20a)

uLO =

(
~

2NµpωLO

)1/2

{ĉ+q exp[i(q · r− ωLOt)] + c.c.}. (2.20b)

Here, q is the phonon wavevector, ĉ+q is the phonon creation operator, and c.c. stands

for the complex conjugate.
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The Fröhlich Hamiltonian for exciton-phonon interactions (ĤFr,X) follows similar

considerations. For a 1s hydrogenic exciton state with Bohr radius aB, the matrix

element of ĤFr,X is given by [95]∣∣∣〈1s| ĤFr,X |1s〉
∣∣∣ =

CF

q

(
1[

1 + (phaBq/2)2
]2 − 1[

1 + (peaBq/2)2
]2), (2.21a)

CF = e

(
2π~ωLO

NVp

(
ε−1∞ − ε−10

))1/2

, (2.21b)

where pe and ph are defined as me/(me + mh) and mh/(me + mh), respectively,

and Vp is the primitive cell. When excitons form resonant intermediate states, the

wavevector dependence of the matrix element has strong influence on the selection

rule for LO phonons as was shown in Ref. 97 for bulk CdS. This work confirmed

large enhancement of forbidden scattering with polarization parallel to the incident

radiation, independent of the crystal symmetry. For near-resonant Raman scattering

with the 1s X exciton in ML MoS2, we observed similar results (see Section 4.3 and

Ref. P2).





Chapter 3

Experimental setup for cryogenic
optical spectroscopy

Parts of this chapter are adapted with permission from Ref. P8:

T. Zhang, A. Neumann, J. Lindlau, Y. Wu, G. Pramanik, B. Naydenov, F. Jelezko, F.

Schüder, S. Huber, M. Huber, F. Stehr, A. Högele, T. Weil, and T. Liedl. DNA-Based

Self-Assembly of Fluorescent Nanodiamonds. J. Am. Chem. Soc. 137, 9776–9779 (2015).

Copyright 2015 American Chemical Society.

This chapter describes the confocal microscope used for room-temperature and cryo-

genic hyperspectroscopy. The optical resolution of the system at room temperature

was sufficient to discern individual fluorescent nanodiamonds in dimer assemblies

with ∼ 400 nm separation. The collection efficiency of the microscope was bench-

marked with a reference single-photon emitter, a nitrogen-vacancy center in bulk

diamond. In comparison with the room-temperature performance, 67% of the fluo-

rescence intensity was detected with low-temperature optics.

19
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3.1 Optical setup

Measurements of PL, DR, and Raman spectroscopy were conducted at room and

low temperatures with a home-built fiber-based confocal microscope (Fig. 3.1). The

microscope was operated in back-scattering geometry and connected to a spectrom-

eter1 with a liquid nitrogen-cooled silicon charge-coupled device2 (CCD) for spec-

troscopy with a resolution ranging from 0.5 meV to 0.05 meV. A combination of

linear polarizers3 (LPOs) and achromatic quarter- and half-wave plates4 (QWPs

and HWPs) in the excitation and detection optical paths enabled full polarization

analysis. Optionally, the wave plates were mounted on piezo rotators5 for automated

polarization-resolved spectroscopy (see Section 4.4). For cryogenic studies, the mi-

croscope was mounted in liquid helium at 4.2 K or in a closed-cycle cryostat6 with

a base temperature of 3.1 K. The cryostat was equipped with a solenoid providing

magnetic fields up to ±9 T. Time-resolved studies were conducted with an avalanche

photodiode7 (APD) or a streak camera8 (temporal resolution of ∼ 0.3 ns or ∼ 6 ps,

respectively). Measurements of photon statistics were accomplished with two APDs

in a Hanbury Brown and Twiss configuration [98].

For optical characterization of samples, a variety of laser sources was required.

A 532 nm continuous-wave (CW) laser9,10 or a diode laser11 tunable between 635–

639 nm were used for PL and Raman spectroscopy. PL studies were also conducted

with a home-built CW diode laser at 670 nm, a ps-pulsed diode laser12 at 630 nm,

or a Ti:sapphire laser13 operated either in CW mode or ps-pulsed mode in com-

bination with a synchronously pumped optical parametric oscillator14. The latter

configuration was used for subnanosecond time-resolved measurements. A ps-pulsed

supercontinuum laser15 was used for DR measurements and to measure nanosec-

ond PL lifetimes. Spectral filtering was accomplished with suitable combinations of

short-pass filters (SPFs), long-pass filters (LPFs), and tunable band-pass filters16.

1PI, Acton SP-2558
2PI, Spec-10:100BR/LN
3Thorlabs, LPVIS and LPVISB series
4B. Halle, RAC 3 series
5attocube systems, ANR240/RES
6attocube systems, attoDRY1000
7PicoQuant, τ -SPAD
8Hamamatsu, C5680-24S
9Coherent, Verdi G15
10CNI, MLL-III-532-50-1
11New Focus, Velocity TLB-6704
12PicoQuant, LDH-P-C-630
13Coherent, Mira 900
14Coherent, Mira-OPO
15NKT Photonics, SuperK EXW-12
16Semrock, RazorEdge and VersaChrome series
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Figure 3.1: Schematic of the fiber-based confocal setup used for photoluminescence,
differential reflectance, and Raman spectroscopy. Laser light collimated from a single-mode
fiber was passed through a short-pass filter (SPF) and linear polarizer (LPO) before it was
reflected off a beam splitter (BS) and guided to the sample through a focusing objective.
In between, quarter- and half-wave plates (QWP and HWP) were used for polarization
control. Signal collected by the objective was transmitted through the same wave plates, a
polarization-maintaining BS pair, and was analyzed with a HWP or QWP and a LPO for
polarization-resolved detection. Before being coupled into a single-mode fiber, the signal
was spectrally filtered with a long-pass filter (LPF). Reflected laser light at the upper BS
was imaged with a charge-coupled device (CCD) camera for microscope adjustment and
sample orientation. The detection fiber was either coupled to a spectrometer, a single-
photon counting avalanche photodiode (APD), a Hanbury Brown and Twiss (HBT) setup
for autocorrelation experiments, or a streak camera. Samples were positioned in x, y, and
z directions with a piezo scanner and piezo steppers into the focal spot of the objective.
The microscope was operated either at room or low temperature in a helium bath or a
closed-cycle cryostat (indicated by the blue box) with a base temperature of 3.1 K and
capable of magnetic fields of up to ±9 T. Modified from Ref. 99.

At low temperatures, the samples were positioned with piezo steppers and a

piezo scanner17 into the diffraction-limited full-width at half-maximum (FWHM)

spot of 0.6 µm diameter of an apochromatic objective18 with a NA of 0.82. High-

resolution room-temperature experiments were performed with another objective19

17attocube systems, ANP101 series and ANSxy100/lr
18attocube systems, LT-APO/VISIR/0.82
19Olympus, UMPlanFl 100x/0.90 BD
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Figure 3.2: a and b, Color-coded optical transmission maps of a gold grid with 2 µm pe-
riodicity. The data were used for calibration of the x, y piezo scanner at room temperature
for applied voltages of 15 V and 3 V, respectively.
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Figure 3.3: a, Color-coded confocal fluorescence map of nanodiamond dimer assemblies;
the data was obtained at room temperature and 532 nm excitation. The dimers were as-
sembled with DNA-origami nanotechnology and appear as pairs or individual fluorescence
hotspots in the confocal map (scale bar is 2 µm). b and c, Zoom-in on nanodiamond
dimers with corresponding line scans fitted with two Gaussians (scale bar is 400 nm).

(NA of 0.90). Prior to raster-scan measurements with high spatial precision, piezo

scanner nonlinearities were determined as a function of applied voltage. Figs. 3.2a

and 3.2b show optical transmission maps through a gold grid with 2 µm periodicity

on fused silica for travel ranges of 15 V and 3 V, respectively. From Fig. 3.2a we

obtained mean x and y expansions of 840 nm and 930 nm per applied volt. Within

the first three volts the piezo scanner, however, exhibited smaller values of 710 nm/V

in x and 870 nm/V in y (Fig. 3.2b).

Combined with the room-temperature objective (NA of 0.90), the setup enabled

confocal fluorescence (FL) imaging at the limit of diffraction. This allowed to identify
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individual fluorescent nanodiamond (ND) dimers assembled with DNA nanotechnol-

ogy (see Ref. P8 for details on sample fabrication). Fluorescent NDs emerge as a

class of biocompatible markers with stable and robust optical characteristics due

to their inert surface. They host several color centers including NV centers with a

characteristic zero-phonon line (ZPL) at 637 nm accompanied by Stokes and anti-

Stokes phonon sidebands between 600 nm and 700 nm. A room-temperature FL

raster scan of fluorescent ND dimers on quartz, excited at 532 nm and with collec-

tion above 575 nm, is shown in Fig. 3.3a. With a spatial resolution of ∼ 355 nm,

the data revealed ND separations of 451 nm and 406 nm for two representative

dimers (Figs. 3.3b and 3.3c). The measured values were well within the limits of the

expected maximum center-to-center distance of 476 nm (see Ref. P8).

3.2 Collection efficiency

Apart from the spatial resolution given by the diffraction-limited excitation and

detection spots, the collection efficiency is another key property of the setup. We

estimate it by benchmarking an emitter of well known optical properties, a single

NV color center in bulk diamond. A representative room-temperature FL spectrum

of a single NV center is shown in Fig. 3.4a. The spectrum exhibited a ZPL at

637 nm and typical Raman signal of bulk diamond around 610 nm for excitation

at 532 nm [100]. The single-photon statistics in the second-order coherence of the

FL (inset of Fig. 3.4a) confirmed that only a single NV center was recorded. The

histogram obtained at 330 kW/cm2 and an acquisition time of 1000 s exhibited

pronounced antibunching well below 0.5 at zero time delay, with overlaid bunching

that is characteristic for high excitation powers [100].

Fig. 3.4b shows the excitation power dependence of the dipole orientation aver-

aged NV center for circularly polarized excitation and detection with a fiber-coupled

silicon APD. The NV FL (brown) was cleared from background emission of contam-

inant FL and Raman scattered photons (gray), that was separately measured away

from the NV center. The fits to the data indicate a linear response of the background

intensity and a saturation behavior for the NV center with maximum intensity (Imax)

of ∼ 77 kcts/s. Compared to Ref. 101, the measured intensity was about a factor of

2.5 lower, if differences in collection angles of the objectives are accounted for. The

losses likely occurred at the coupling interface to the single-mode detection fiber.

A more quantitative estimate of the collection efficiency using the NV center can

be obtained by considering its radiative lifetime and FL quantum yield (QY), given

by the ratio of emitted photons to absorbed photons per unit time. Time-resolved

measurements of a representative NV center revealed biexponential decay with a FL

lifetime of ∼ 13 ns (Fig. 3.5a). The second decay contribution of ∼ 3.3 ns stemmed
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Figure 3.4: Optical properties of a nitrogen-vacancy (NV) center in bulk diamond, for
room-temperature setup calibration using an Olympus, UMPlanFl 100x/0.90 BD, objec-
tive. a, Normalized fluorescence of an NV center with a characteristic zero-phonon line
(ZPL) at 637 nm. The labeled Raman signal is characteristic for bulk diamond under the
used 532 nm excitation. Inset: Second-order coherence as a function of delay time τ for
a single NV center showing pronounced antibunching. The fit (red trace) yields a fluores-
cence lifetime of ∼ 12 ns. b, Fluorescence power dependence under circularly polarized
excitation of the same emitter (brown) with a saturation intensity maximum of ∼ 73 kcts/s
above the background signal (gray). The data was collected with a fiber-coupled avalanche
photodiode.
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Figure 3.5: a, Temporal evolution of the fluorescence intensity for a single nitrogen-
vacancy (NV) center in bulk diamond, red line is a biexponential fit to the data. The
two transients stem from the radiative decay of the NV center (τNV = 12.9± 0.3 ns) and
background signal (τBG = 3.3±0.3 ns) b, Fluorescence power dependence under circularly
polarized excitation of the same emitter (brown) with a maximum intensity (Imax) of
∼ 52 kcts/s above the background signal (gray). All measurements were conducted at room
temperature with an apochromatic objective (attocube systems, LT-APO/VISIR/0.82)
and a fiber-coupled avalanche photodiode.
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from background contaminant FL and was weak in magnitude (8%). The NV FL

lifetime corresponds to a maximum photon emission rate of ∼ 5.4 × 107 s−1 if the

QY of 70% for NV centers in bulk diamond is taken into account [102]. Thus, the

measured Imax corresponds to 0.2% of the maximum photon emission rate.

The collection efficiency of the apochromat20 used for low-temperature spec-

troscopy was determined at room temperature. Using this objective, the excitation

power dependence of a single NV center (brown) and the background signal (gray)

were again measured with circularly polarized excitation at 532 nm (Fig. 3.5b). The

maximum FL intensity at saturation of the NV center was with 52 kcts/s a factor

of 1.2 lower than for the high-performance room-temperature objective21 if the dif-

ferent of collection angles are considered (Fig. 3.4). The drawback of this reduced

collection efficiency is, however, outbalanced by the benefits of the low-temperature

applicability.

20attocube systems, LT-APO/VISIR/0.82
21Olympus, UMPlanFl 100x/0.90 BD





Chapter 4

Optical properties of transition
metal dichalcogenides

This chapter is partly based on the publication P7 and the manuscript P2:

A. Neumann, J. Lindlau, L. Colombier, M. Nutz, S. Najmaei, J. Lou, A. D. Mohite, H.

Yamaguchi, and A. Högele. Opto-valleytronic imaging of atomically thin semiconductors.
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and U. Wurstbauer. Tuning the Fröhlich exciton-phonon scattering in monolayer MoS2.

ArXiv e-prints (2018). arXiv:1811.09320.

In this chapter, optical selection rules in monolayer MoS2 as a representative material

are explored at cryogenic temperatures and excitation resonant with the blue shoul-

der of the ground-state exciton. For this resonance condition, we find symmetry-

forbidden Raman scattering of longitudinal optical phonons in the limit of Fröhlich

interactions. Moreover, crystal inhomogeneities caused by local strain and grain

boundaries are visualized with macroscopic mapping of Raman scattered photons.

In external magnetic fields of up to 9 T applied perpendicular to the crystal surface,

our results indicate a dependence of Raman mode intensities on the valley Zeeman

effect and exciton-phonon interactions.

27
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4.1 Introduction

The valley degree of freedom manifests itself as the quantized angular motion of

crystal electrons near the band edges. In analogy to spin it represents a resource for

quantum information in conventional semiconductors such as aluminum arsenide

[103] and silicon [104], or in atomically thin materials including graphene [105] and

TMDs [6, 30]. Direct band-gap ML TMDs [4, 5] are particularly viable for practical

realizations of valleytronic concepts as they enable initialization [6], manipulation

[24], and detection [20–22] of the valley pseudospin by all-optical means. For excita-

tion in resonance with the blue shoulder of the ground-state exciton, we study the

valley pseudospin in ML MoS2 with PL experiments at cryogenic temperatures.

Complementary to PL, Raman spectroscopy provides versatile and powerful

means for the inspection of material quality being sensitive to the number of layers

[50], charge doping [55], and strain fields [52] in TMD semiconductors. Moreover, ex-

citon photophysics are connected to Raman scattering probabilities. Exciton-phonon

interactions strongly influence phonon scattering and limit valley polarization and

valley coherence of excitons [22, 23]. In our studies, Raman selection rules for ML

MoS2 are characterized at room and cryogenic temperatures under nonresonant and

near-resonant excitation conditions with respect to the fundamental exciton. Addi-

tionally, we implement cryogenic 2D mapping of Raman mode intensities for MoS2

ML crystals grown by CVD and transferred onto silicon oxide substrates. By raster-

scanning the sample with respect to the confocal excitation and detection spots of

∼ 0.7 µm in diameter, we acquired spatial maps of MoS2 flakes at 3 K and magnetic

fields of up to 9 T. We observed significant inhomogeneities in the characteristics of

Raman modes and interpret our findings on the basis of Raman scattering proba-

bilities influenced by the exciton-laser detuning and exciton-phonon interactions.

4.2 Photoluminescence and Raman spectroscopy

of MoS2

A representative cryogenic PL spectrum of ML MoS2 recorded with nonresonant

excitation at 2.33 eV (532 nm) is shown in Fig. 4.1a. It features fundamental X and

excited B exciton resonances around 1.9 eV and 2.0 eV, characteristic of MLs on

SiO2 [4, 5]. Additionally, the PL exhibited a redshifted peak near 1.7 eV stemming

from localized excitons L. In contrast to a linear response of X excitons to excitation

power, L excitons exhibited saturation [P7, 106].

In the following, we discuss the valley photophysics of X excitons. The valley

degree of freedom of these band-edge excitons is conveniently addressed with PL po-

larimetry [30]. The degrees of circular and linear PL polarization, Pc and Pl, defined
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Figure 4.1: a, Cryogenic photoluminescence spectrum of monolayer MoS2 under non-
resonant excitation at 2.33 eV showing X, B, and low-energy (L) exciton features. b,
Photoluminescence spectra recorded in co-polarized (solid trace, Ico) and cross-polarized
(dashed trace, Icr) configurations with circularly polarized excitation near-resonant with
X. c, Corresponding degree of circular polarization Pc. d, Co- and cross-polarized pho-
toluminescence spectra under linearly polarized near-resonant excitation and e, degree
of linear polarization Pl. The red bands of same width indicate the PL maximum of X
excitons. All measurements were recorded at 3 K on a regular monolayer region. For b–e
an excitation laser at 1.95 eV and a long-pass filter at 1.90 eV were used; sharp features
correspond to Raman scattered photons.

as the ratio of emission intensities P = (Ico− Icr)/(Ico + Icr) detected in co-polarized

(Ico) and cross-polarized (Icr) configurations with a circularly or linearly polarized

excitation laser, are direct measures of valley polarization [20–22] and valley coher-

ence [23, 36] (Figs. 4.1b–4.1e). Most values reported for degrees of circular and linear

PL polarization in ML TMDs are below unity, and vary significantly with material

quality, underlying substrate, and the excitation energy with respect to the ground-

state exciton [20–22, 37, 92, 107–109]. Moreover, long-range exchange interactions

between the electron and correlated empty state forming an exciton with finite mo-

mentum within the light cone give rise to exciton depolarization (see Section 2.3) [82,

91, 92]. In our experiments with excitation near-resonant with X, typical values for

Pc reached up to 0.8 for X and decreased continuously below 1.8 eV, where emission

from localized excitons became dominant (Fig. 4.1c). Note that the sharp spectral

features (Figs. 4.1b–4.1e) stemming from Raman scattered photons exhibited differ-

ent polarization selection rules. In contrast to Pc, the value of Pl was more sensitive

to the spectral detuning from the excitation laser (Fig. 4.1e). Emission of localized
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Figure 4.2: Raman spectra of monolayer and bilayer MoS2 recorded at regular defect-
free positions. a, Spectrum for near-resonant excitation at 1.95 eV with Raman modes
assigned according to the MoS2 bulk notation of Ref. 112. b, Spectra of the E1

2g(Γ) and
A1g(Γ) Raman modes for near-resonant excitation at 1.95 eV on representative monolayer
(ML) and bilayer (BL) positions; data were offset for clarity and dashed lines are guides
to the eye. The splitting of the A1g(Γ) mode is characteristic of bilayer transition metal
dichalcogenides under resonant excitation [113]. All measurements were obtained at 3 K.

excitons below 1.8 eV as well as of excitons bound to excess charges (trions) that

were spectrally overlapped with X excitons (see the Supplementary Information of

Ref. P7) reduced Pl already for small redshifts away from X. Charged excitons are

especially susceptible to fast optical decoherence [110] and effects of electron-hole

exchange [23]. The robustness of the valley degree of freedom in our measurements

was therefore impaired by trion emission as well as disorder-induced localization of

excitons at crystal defects or trapped charges [85, 111]. In addition, scattering of

excitons with phonons also influence valley polarization and coherence [22, 23].

We studied the latter interactions with Raman spectroscopy in resonance with

the blue shoulder of the ground-state exciton. A representative Raman spectrum

obtained at a regular ML position with mode assignments given in bulk notation

[112] is shown in Fig. 4.2. The two most pronounced peaks at 386 cm−1 and 407 cm−1

correspond to the in-plane E1
2g LO mode and the out-of-plane A1g homopolar mode

(see Fig. 2.4) [50]. The splitting of ∼ 21 cm−1 between the two modes is typical for

low temperatures [51]. For basic characterizations, the Raman spectra were useful to

identify BL regions, where the A1g(Γ) mode exhibited a characteristic splitting [113]

shown in Fig. 4.2b. A comprehensive discussion of the A1g, E1
2g, and other modes is

provided in the following two sections.
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Figure 4.3: a, Evolution of monolayer MoS2 Raman mode intensities for temperatures
ranging from 3 K to 300 K under near-resonant excitation at 1.95 eV. b, Intensities of the
E′ (red), A′1 (brown), and silicon (Si, gray) Raman modes as a function of temperature. A
sharp decrease in intensity is observed above 30 K for all MoS2 Raman features, that was
less pronounced for the silicon line. c, Temperature-induced redshift of the X resonance
with respect to the 3 K energy of 1.864 eV (the data was acquired with excitation at
2.33 eV).

4.3 Fröhlich interactions in monolayer MoS2

Raman spectroscopy is a major tool to identify and characterize materials. Raman

scattered photons exhibit polarization-dependent optical selection rules, where their

radiation inherits the symmetry of the crystal (see Section 2.4). Exciton-phonon in-

teractions can, however, modify these optical selection rules. Here, we used Raman

spectroscopy to study the temperature dependence of exciton-phonon coupling in

MoS2. Additionally, Raman selection rules were studied at room and cryogenic tem-

peratures for nonresonant and near-resonant excitation with respect to the funda-

mental exciton. In the following, we limit our discussion to ML spectra and therefore

use the ML mode notations at the Γ point of the BZ, A1g → A′1 and E1
2g → E′.

Fig. 4.3a shows the evolution of Raman spectra for a MoS2 ML from cryogenic to

room temperature at near-resonant excitation. The mode intensities of E′, A′1, and

the silicon (Si) line of the substrate are plotted in Fig. 4.3b for reference. The sharp

intensity decrease of MoS2 related Raman modes for temperatures above ∼ 30 K,

that was accompanied by a redshift of the X resonance (Fig. 4.3c), is attributed to

the nonlinear dependence of the scattering probability on the exciton-laser detuning

[114, 115] (see Eq. 2.17). From the data we extract an intensity change of about

13.5% (12.4%) for 1 meV decrease (increase) of the exciton-laser detuning at 3 K.

In contrast, the silicon line exhibited less pronounced sensitivity.
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Figure 4.4: Polarization analysis of MoS2 monolayer A′1 and E′ Raman modes under cir-
cularly and linearly polarized excitation. a, Room-temperature (300 K) and b, cryogenic-
temperature (3 K) spectra in co- and cross-circularly polarized analysis (σ+/σ+, blue and
σ+/σ−, yellow) for nonresonant excitation at Elaser(σ

+) = 2.33 eV. c and d, Same as a
and b but for near-resonant excitation at Elaser(σ

+) = 1.94 eV. e–h, Analogous set of
Raman spectra as in a–d but for linear excitation with co- and cross-linearly polarized
analysis (πH/πH, green and πH/πV, yellow). Note the polarization change of the E′ mode,
which follows the laser polarization for near-resonant excitation in the limit of Fröhlich
interactions. The filled Lorentzian distributions are model fits of A′1 and E′, where con-
tributions from the E2

1u mode (378 cm−1) and the dispersive ’b’ mode (418 cm−1) were
taken into account (both labeled with a gray star).

An increasing variation of the exciton-laser detuning will first reduce the Raman

scattering intensity (Fig. 4.3) and for larger detunings, the optical selection rules

of Raman modes can be modified. As such, for nonresonant excitation (2.33 eV)

the E′ and A′1 modes of ML MoS2 exhibited polarization properties dictated by the

D3h symmetry of the crystal. This is shown in Figs. 4.4a (4.4b) and 4.4e (4.4f) for

circularly and linearly polarized excitation, at 300 K (3 K), respectively. The E′ mode

showed cross-polarized response for circularly polarized excitation (yellow traces in

Figs. 4.4a and 4.4b), while A′1 showed higher intensity for co-circularly polarized

detection (blue traces). For nonresonant linearly polarized excitation (Figs. 4.4e
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and 4.4f), unpolarized scattering was observed for E′, whereas A′1 was co-linearly

polarized (green traces).

As opposed to nonresonant excitation, for excitation on the blue shoulder of X

at 1.94 eV we observed symmetry-forbidden Raman scattering of E′ phonons due

to impurity-enhanced Fröhlich interactions (see Section 2.4 and Ref. P2). Figs. 4.4c

(4.4d) and 4.4g (4.4h) show pronounced co-polarized scattering of A′1 and E′ Raman

mode intensities at 300 K (3 K) for excitation in the circular and linear bases.

For clarity, the scattered intensities of A′1 and E′ in Fig. 4.4 are indicated by filled

Lorentzians obtained from model fits that correct for contributions from the E2
1u

mode at 378 cm−1 and the dispersive ’b’ mode at 418 cm−1. These modes become

dominant for near-resonant excitation at room temperature due to a significant

decrease of E′ and A′1 Raman mode intensities (see Fig. 4.3).

4.4 Magneto-Raman imaging of mode intensities

in monolayer MoS2

In this section spatially mapped Raman mode intensities of ML MoS2 at cryogenic

temperatures and magnetic fields perpendicular to the crystal surface were used

to study the influence of excitons at different crystal sites on phonon scattering

processes. The data presented here were obtained using excitation resonant with

the blue shoulder of the fundamental exciton X.

Fig. 4.5a shows an optical image of an MoS2 ML polycrystal grown by CVD

and transferred onto Si/SiO2 (see Ref. P7 for sample preparation). The star-shaped

geometry of the flake corresponds to a cluster of single-crystal domains separated

by grain boundaries [41, 42]. At these linear defects, the PL intensity of the fun-

damental exciton (X) was enhanced as shown in the raster-scan map of Fig. 4.5b.

The single crystal areas between the grain boundaries exhibited weaker and spa-

tially homogeneous intensity distributions. Variations in the optical properties of

the crystal were also observed with Raman spectroscopy. We employed polarization-

resolved Raman intensity mapping of the E1
2g and A1g modes (Figs. 4.5c and 4.5d)

to probe exciton-phonon interactions [116]. The measurements were performed with

co-circularly σ+ polarized excitation and detection. While the A1g mode exhibited

co-polarized scattering according to the lattice symmetry, Fröhlich interactions en-

hanced co-polarized forbidden scattering of the E1
2g mode (see Section 4.3). The

MoS2 crystal exhibited comparable intensity distributions for the two modes that

deviated significantly from the exciton PL map, particularly around grain bound-

aries. In these areas enhanced Raman intensities for E1
2g and less so for A1g were
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Figure 4.5: a, Optical image of a monolayer MoS2 polycrystal grown by chemical vapor
deposition and transferred onto Si/SiO2; scale bar is 5 µm. b, c, and d, Raster-scan
maps of the ground-state exciton (X) photoluminescence intensity, and the E1

2g and A1g

Raman mode intensities, respectively. The data were recorded at 3 K with a near-resonant
(1.95 eV) circularly polarized laser and co-circularly polarized detection (σ+/σ+). Note
that the grain boundaries of the flake are visible in b as red-colored regions.

possibly induced by local strain [41], with stronger coupling to in-plane than to

out-of plane vibrations [52, 53, 117, 118].

As discussed previously, exciton-resonant excitation of a Raman process strongly

influences the scattered intensity. In general, a Raman process can be enhanced if the

initial photon, the scattered photon, or both are in resonance with an intermediate

exciton state [95]. To tune the resonance condition of Raman scattering through the

excitonic valley Zeeman effect, we applied a magnetic field in Faraday geometry to

the sample. Figs. 4.6b and 4.6c show co-polarized intensity differences between right-

handed and left-handed circularly polarized excitation (σ+ and σ−), normalized to

their total intensity, of the E1
2g and A1g modes at 9 T. At the same time, circularly

polarized excitation also selectively generated either K (σ+) or K′ (σ−) valley Zeeman

split excitons (Fig. 4.6d). While green-colored ML areas are dominated by scattered

radiation that is co-polarized in the σ− basis, orange-colored domains occurring

mainly at grain boundaries exhibited preferential scattering in the σ+ basis. In the

presence of a positive out-of-plane magnetic field, X excitons at K′ are shifted to

higher energies [77] and therefore reduce the separation to a blueshifted excitation

laser (Fig. 4.6d). From temperature-dependent measurements (Fig. 4.3), we estimate

an average Raman intensity change of 13% for a 1 meV decrease (increase) of the K′-

valley (K-valley) exciton-laser detuning at 9 T and 3 K [119]. This agrees reasonably

well with green-colored areas away from the edges (Figs. 4.6b and 4.6c) with an

intensity enhancement of 5–12% for Raman scattering in the σ− basis. Deviations

from the expected changes to enhancements of about 27% at crystal edges (dark

green) as well as pronounced scattering in the σ+ basis for regions around grain

boundaries (orange), however, escape our current understanding.
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Figure 4.6: a, Changes in the degree of circular polarization (Pc) for the ground-state
exciton (X) at 9 T and 3 K. The data was computed as the difference ∆Pc = Pc(σ

+) −
Pc(σ

−) between measurements in the σ+ and σ− bases, scale bar is 5 µm. b and c,
Maps of normalized differences ∆IcoRaman = (Iσ

+/σ+ − Iσ−/σ−)/(Iσ
+/σ+

+ Iσ
−/σ−) between

σ+ and σ− polarized intensities for the E1
2g mode and the A1g mode, measured with

co-polarized excitation at 9 T and 3 K. d, Schematic of the Stokes Raman scattering
process in monolayer MoS2 with the crystal vacuum state |0〉 and an excited exciton state
|1〉. Initial (scattered) laser photon energies are indicated by arrows and labeled with
~ωi (~ωs). Note the reduced energy of ~ωs by ~ω0 with respect to ~ωi due to phonon
emission. A positive external magnetic field applied perpendicular to the layer surface lifts
(reduces) the exciton ground state in the K′ valley (K valley) and modifies the resonance
condition of the Raman process. e, Feynman diagram of the one-phonon Stokes scattering
process with phonon-exciton interaction, reproduced from Ref. 95. The frequencies of
the initial and scattered photons are denoted by ωi and ωs; X and X ′ are the excited
and transformed virtual exciton states, respectively. The filled sphere marks the electron-
radiation interaction Hamiltonian HeR and the open square denotes the electron-phonon
interaction Hamiltonian He-ion.

An out-of-plane magnetic field also changes the crystal symmetry of a ML from

D3h to C3h and additionally modifies the Raman tensor R through the field depen-

dence of the second-order electron susceptibility α(B) [120]. These effects influence

the lattice contribution to the Raman scattering intensity and conserve the Raman

selection rules. Our observations of differences between intensities excited with op-

posite circular polarization (Figs. 4.6b and Fig. 4.6c) are therefore not explained by

the magnetic-field dependence of the lattice contribution to the Raman tensor.
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Figure 4.7: a, Raman spectrum of a MoS2 monolayer under near-resonant circularly
polarized excitation and cross-polarized detection (σ+/σ−) with the E2

1u mode at 378 cm−1

and the dispersive ’b’ mode at 424 cm−1. b, Schematic of the ’b’ mode scattering process,
where an exciton-polariton scatters a longitudinal quasi-acoustic (QA) and an E2

1u phonon
as proposed by Sekine et al. [121]. c and d, Raster-scan intensity maps of the ’b’ and E2

1u

Raman modes, respectively, with the same excitation and detection polarization as in a
(σ+/σ−). e and f, ’b’ and E2

1u Raman mode maps showing normalized intensity differences
∆IcrRaman = (Iσ

+/σ−− Iσ−/σ+
)/(Iσ

+/σ−+ Iσ
−/σ+

) between σ+ and σ− polarized excitation
with cross-polarized detection at 9 T. Note the similarities in color contrast among the
two maps. All data were recorded at 3 K and with a laser at 1.95 eV.

Hence, we speculate that Raman scattering in our samples was influenced by

the magnetic field dependence of exciton-phonon interactions in the Fröhlich limit

(Fig. 4.6e). Fig. 4.6a shows a map of differences in Pc between σ+ and σ− po-

larized excitation at 9 T for X excitons. The blue domains at regular ML posi-

tions in Fig. 4.6a exhibited higher valley polarization at K′, whereas light red areas

around grain boundaries showed mainly K-valley polarization. The intensity distri-

bution was remarkably similar to the pattern obtained for the map of the E1
2g mode

(Fig. 4.6b). Our findings suggest that studies of exciton-phonon interactions in ex-

ternal magnetic fields may provide new insights into excitonic valley phenomena of

TMD crystals.

Finally, we address two additional Raman modes. Figure 4.7a shows a representa-

tive Raman spectrum from a regular ML position for circularly polarized excitation

and cross-polarized detection (σ+/σ−). With this polarization configuration, the

E2
1u at 378 cm−1 and the dispersive ’b’ mode at 424 cm−1 were most pronounced.
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Sekine et al. [121] predicted that the two modes are correlated, as the ’b’ mode

results from two-phonon scattering of an exciton-polariton by a longitudinal quasi-

acoustic (QA) phonon and an E2
1u phonon (Fig. 4.7b). The dependence of the ’b’

mode on temperature, pressure, and the excitation energy have been used to study

the electronic band structure and the role of intermediate exciton states [114]. In the

following, we present indications for the involvement of E2
1u phonons in the proposed

scattering mechanism of the ’b’ mode.

Figs. 4.7c and 4.7d show intensity landscapes of the ’b’ and E2
1u modes, respec-

tively. Both modes exhibited spatially uniform intensity distributions at regular ML

regions (note that the enhanced intensity at the center stems from a multilayer).

However, at grain boundaries the intensities were reduced in the polarization con-

figuration that maximized scattering in regular ML regions. This observation stands

in contrast to the maps for the E1
2g and A1g modes (Figs. 4.5c and 4.5d). The simi-

lar intensity distributions of the ’b’ and E2
1u modes speak in favor of the scattering

process proposed by Sekine et al.

A peculiar characteristic of the ’b’ mode intensity is that it exhibits enhancement

only if the scattered photon (~ωs in Fig. 4.6d) is in resonance with an intermediate

exciton state [121]. We study this condition for the ’b’ and the related E2
1u mode by

analyzing normalized intensity differences between σ+ and σ− polarized excitation

with cross-polarized detection (Iσ
+/σ− − Iσ

−/σ+
)/(Iσ

+/σ− + Iσ
−/σ+

) in a magnetic

field of 9 T (Figs. 4.7e and 4.7f). If comparable Raman enhancement due to the

incident and scattered resonances is assumed, the maps would show no contrast.

This was not the case at regular crystal positions (cyan domains in Figs. 4.7e and

4.7f), where both modes exhibited intensity enhancement for scattered photons with

σ− polarization (Iσ
+/σ− is larger than Iσ

−/σ+
). At these regions, the average changes

of 10 ± 1% for the ’b’ mode and 14 ± 2% for the E2
1u mode of their normalized

intensity differences, however, exceeded the estimated enhancement of 5% for the

outgoing resonance condition (obtained from the data of Fig. 4.3). Similar to our

previous observations for the E1
2g and A1g modes (Figs. 4.6b and 4.6c), areas around

grain boundaries showed reversed patterns which are not explained by the resonance

condition. Despite this, we emphasize that our measurements away from defects

suggest that the E2
1u mode, just like the ’b’ mode, exhibits intensity enhancement

for exciton-resonant scattered photons.

4.5 Conclusions

In summary, we studied optical generation and detection of K- and K′-valley excitons

in CVD-grown MoS2 MLs. The valley degree of freedom was susceptible to exciton

localization and trion formation. Furthermore, we identified pronounced exciton-



38 4. Optical properties of transition metal dichalcogenides

phonon interactions that modify Raman selection rules of LO phonons. The signal

of Raman mode intensities was most pronounced at cryogenic temperatures and

exhibited spatial inhomogeneities for excitation resonant with band-edge excitons.

At regular crystal positions, a perpendicular magnetic field enabled tuning of Raman

intensities in accord with the resonance to valley Zeeman split excitons. Finally, our

data signifies a connection of the E2
1u Raman mode to the two-phonon scattering of

the ’b’ mode for ML MoS2 with similar intensity enhancement with respect to the

outgoing resonance.



Chapter 5

Momentum-dark excitons in
monolayer semiconductors

This chapter is based on the manuscript P4:

J. Lindlau, R. Cedric, V. Funk, J. Förste, M. Förg, L. Colombier, A. Neumann, E. Cour-

tade, S. Shree, M. Manca, T. Taniguchi, K. Watanabe, M. M. Glazov, X. Marie, B. Ur-

baszek, and A. Högele. Identifying optical signatures of momentum-dark excitons in mono-

layer transition metal dichalcogenides. ArXiv e-prints (2017). arXiv:1710.00988.

TMD monolayers exhibit rich photoluminescence spectra associated with interband

optical transitions of direct-gap semiconductors. Upon absorption of photons, di-

rect excitons with zero center-of-mass momentum are formed by photoexcited elec-

trons in the conduction band and the respective unoccupied states in the valence

band of the same valley. The corresponding spectral signatures, however, are insuf-

ficient to explain the main characteristic peaks observed in the photoluminescence

spectra of monolayer TMDs on the basis of momentum-direct band-edge excitons

alone. In this chapter, we present a model including momentum-indirect excitons for

the understanding of the versatile photoluminescence features. Taking into account

phonon-assisted radiative recombination pathways for electrons and holes from dis-

similar valleys, we interpret unidentified peaks in the emission spectra as acoustic

and optical phonon sidebands of momentum-dark excitons. Our approach represents

a crucial step towards a unified understanding of TMD photophysics and will facili-

tate the interpretation of optical, valley, and spin phenomena in TMDs arising from

bright and dark exciton manifolds.
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5.1 Introduction

While early PL spectroscopy studies have established elementary signatures of bright

excitons in neutral [56–58] and charged TMD MLs [59, 60, 122], the emission from

spin-forbidden excitons has been identified only recently [7, 10–14]. The observations

of lowest-lying momentum-bright yet spin-forbidden states in tungsten dichalcogen-

ide MLs explain some of the differences between the rich structure in the PL spectra

of tungsten-based MLs and the rather simple one- or two-peak PL of ML molyb-

denum dichalcogenides [123]. Some of the main PL peaks that can be more intense

than the bright exciton, however, have escaped unambiguous assignment and are

thus commonly attributed to defect-localized excitons. Recently, the peaks with en-

ergy close to the trion energy were alternatively attributed to excitons bound to

localized charges [124]. Moreover, unequivocal deconvolution of individual PL con-

tributions from neutral and charged excitons has been compromised by the lack of

control over the charge doping level in most samples and impeded further by the

conspiracy of similar energy scales of optical phonons [61, 62] and trion binding ener-

gies [23, 60, 125]. In the following, we discuss a unifying explanation for unidentified

PL features in the spectra of TMD MLs by expanding the realm of momentum-

direct excitons with their momentum-indirect counterparts. This analysis benefits

from the greatly improved optical quality of TMD MLs encapsulated in hexagonal

boron nitride (hBN) [13, 123, 126–128] in charge-tunable structures.

5.2 Spectral decomposition of monolayer

photoluminescence

As initially proposed by Dery and Song for combinations of electrons in K with

empty VB states in K′ in tungsten-based MLs [62], the rich PL spectra of TMD

MLs are interpreted in the following by including indirect transitions associated

with electrons and holes in dissimilar valleys [62, 86, 129–131] (see Section 2.1 and

Fig 2.2). To this end, excitons are constructed by forming an empty state in the

upper valence subband at the K valley and the Coulomb-correlated electron at the

K′ or, alternatively, at one of the Q points. Note that the hole state is formally

associated with the time-reversal of the unoccupied state in the VB [85]. Neglecting

the upper subband at the Q points due to sizable spin-orbit splittings of the order

of 100 meV [19] and omitting electron-hole exchange for simplicity (energy scale of

a few meV), the exciton spectrum is obtained as shown schematically in Fig. 5.1a.

Two zero-momentum configurations with both electron and hole at K correspond to

the well studied spin-allowed and spin-forbidden exciton (X and D) [10–12, 14, 84,

129].
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Figure 5.1: Basic concepts for the spectral decomposition of photoluminescence from
monolayer transition metal dichalcogenides of direct and phonon-assisted radiative pro-
cesses. a and b, Construction of a conceptual photoluminescence spectrum as the sum of
the zero-phonon lines of X and D excitons (red and gray bars) and the phonon sidebands
of momentum-dark excitons (colored bars). The energy position of the latter (black bars)
can be reconstructed from their respective phonon replicas (green and orange bars) by
considering in-plane transverse acoustic (TA) and longitudinal acoustic (LA) phonons as
well as in-plane TO(E′), LO(E′), and out-of-plane A1 optical phonon modes, and side-
bands resulting from higher-order decay processes (purple bars) assisted by combinations
of multiple phonons.

In addition to direct excitons, also excitons with finite center-of-mass momenta

can be constructed from electrons in valleys other than the unoccupied state in

K. They do not recombine directly via photon emission but require the assistance

of acoustic or optical phonons. These momentum-dark excitons are labeled with

capital letters denoting the electron valley with the subscript l (u) for spin-like (spin-

unlike) configurations of the electron and hole spins (in electron spin notation). By

neglecting electron-hole exchange, two pairs of degenerate states with electrons and

holes in K (D and K′l as well as X and K′u), and degenerate spin-like and spin-unlike

Q-excitons with electrons in six inequivalent Q pockets are obtained. The energetic

ordering in Fig. 5.1a corresponds to tungsten-based MLs. In the presence of time-

reversal symmetry, all states have their counterparts with the unoccupied state at

the K′ valley and reversed spin orientation.

As the manifold of momentum-dark excitons, shown encaged in Fig. 5.1a, has no

dipolar radiative pathways due to momentum conservation constraints, the states

do not appear directly in PL or reflection spectroscopy. However, in analogy to

indirect band-gap bulk semiconductors such as silicon [132] or hBN [133], finite-

momentum excitons can decay radiatively via simultaneous emission of phonons.
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Such decay channels, indicated schematically in Figs. 5.1a and 5.1b by colored arrows

and enabled by acoustic and optical phonons as well as higher-order combinations of

multiphonon processes, will give rise to phonon replicas of momentum-dark excitons

in the PL emission. Once the energy positions of all states are determined from

spectral decomposition, the splittings ∆XD and ∆XQ are obtained as indicated in

Fig. 5.1b.

5.2.1 Analysis of MoSe2 emission

First, the analysis is applied to ML MoSe2 encapsulated in hBN with active doping

control. The cryogenic PL spectrum shown in Fig. 5.2a features two bright PL

peaks, commonly attributed to the emission from neutral and charged excitons. In

high signal-to-noise DR measurements in the gated structure, however, no trion

signature was detected in addition to the solitary resonance of the neutral exciton

(Fig. 5.2b) in contrast to doped samples [134]. Therefore, the intensive PL peak

∼ 30 meV below X could also be interpreted as an optical phonon sideband of

the momentum-dark exciton state K′u that is set resonant with the bright exciton

by neglecting electron-hole exchange. The respective acoustic sidebands would then

contribute weak yet finite PL in between the two intensive peaks.

To obtain a model fit of the neutral ML MoSe2 spectrum in the framework of this

analysis shown by the red solid line in Fig. 5.2a, the ZPLs of resonant momentum-

bright and momentum-dark states X and K′u were modeled by homogeneously broad-

ened Lorentzians with the joint FWHM linewidths γX and γM. Moreover, the phonon

replicas of K′u were restricted to first-order processes. By taking the corresponding

phonon modes calculated in Ref. 61 (recapitulated in Table 5.1 for convenience) with

explicit phonon energies of 16.6 and 19.9 meV for the TA and LA acoustic phonons,

and 35.5, 37.4, and 25.6 meV for TO(E′), LO(E′), and A1 optical phonons available

for the scattering of the electron from the K′ into the K valley, the fitting procedure

determined the best-fit energy position (indicated by the dashed line) and linewidth

γX = 2.3 meV for the ZPL of X and thus of K′u.

Remarkably, the correspondence between the spectrum and the model fit in

Fig. 5.2a was obtained with vanishing contributions from TO and LO phonons, and

thus the lower-energy peak can be ascribed entirely to the A1 optical sideband of

K′u. For phonon replicas to be as intense in emission as the bright exciton emission in

the PL of neutral ML MoSe2, long-lived population of dark states without efficient

decay channels must be present. Such population can be provided by the reservoir

of momentum-dark K′u excitons, or by momentum-dark Q states if the value of

28 meV [61] instead of the much higher prediction of 137 meV [19] is anticipated for

the splitting ∆KQ in ML MoSe2.
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Figure 5.2: a, Spectral decomposition of cryogenic photoluminescence from monolayer
MoSe2. Basic model fit (red solid line) with first-order phonon replicas of momentum-
dark K′u excitons resonant with the bright exciton state X in the absence of electron-hole
exchange. The best-fit energy position indicated by the dashed line was obtained with γX
as fit parameter and γM set identical to γX. The green and orange arrows indicate phonon
sidebands of momentum-dark excitons associated with acoustic and optical phonons with
respective energies taken from Ref. 61. b, Corresponding reflectivity at gate voltage of
+10 V. Note the absence of trion-related features. c, Same as a but for a monolayer
MoSe2 without active control of charge doping. d, Refined model fit (red solid line) with
variable energy positions and linewidths of X and K′u states and up to fourth-order phonon
replicas with variable phonon energies bound by ±2 meV around the values of Ref. 61.
Free (fixed) fit parameters are given in the legends in black (gray).

The same analysis was also applied to ML MoSe2 encapsulated in hBN without

active doping control. As in Fig. 5.2a, the PL spectrum in Fig. 5.2c features two

bright PL peaks. In addition, the PL exhibits an extended red wing with some

structure commonly ascribed to localized excitons in potentials of unintentional

disorder [135]. Again, it is assumed that the intensive PL peak ∼ 30 meV below X

is not related to trions but is instead composed of optical phonon sidebands of the

momentum-dark exciton state K′u resonant with the bright exciton in the absence

of electron-hole exchange.
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MoSe2 WS2 WSe2

Mode Γ K Q Γ K Q Γ K Q

TA 0 16.6 13.3 0 17.4 15.9 0 15.6 11.6
LA 0 19.9 16.9 0 23.6 19.5 0 18.0 14.3

TO(E′) 36.1 35.5 36.4 44.4 43.8 45.3 30.5 26.7 27.3
LO(E′) 36.6 37.4 37.5 44.2 43.2 42.3 30.8 31.5 32.5

A1 30.3 25.6 27.1 51.8 48.0 50.0 30.8 31.0 30.4

Table 5.1: Phonon mode energies at the high-symmetry points of the first Brillouin zone
for monolayer MoSe2, WS2, and WSe2 used in the model fits. Higher-order scattering
processes with phonon energies equal to the energy of LO(E′) within 1 meV (listed in the
table in gray) were discarded from our analysis for simplicity. All energies are given in
meV and reproduced from Ref. 61.

The model fit to the ML MoSe2 spectrum of Fig. 5.2c was obtained with ZPLs of

momentum-bright and momentum-dark excitons modeled by homogeneously broad-

ened Lorentzians at the same energy and with the same FWHM linewidth γX.

Analogous to Fig. 5.2a, first-order scattering processes by acoustic and optical

phonons with energies from Ref. 61 yield the two peaks as the main PL features

with γX = 5.9 meV and best-fit energy positions indicated by the dashed lines.

To improve the fit up to the striking correspondence with the spectrum in

Fig. 5.2d, the phonon energies were allowed to vary by ±2 meV around their theo-

retical values. Such small variation of phonon energies account for sample-to-sample

variations in the dielectric environment or strain and are well within the range of

quantitative observations with Raman spectroscopy [136]. Moreover, phonon pro-

cesses of up to fourth order were included (the cutoff to the model spectrum around

1.48 eV is because processes beyond fourth order were truncated), and the energy

positions and the linewidths were allowed to vary for both X and K′u states. Remark-

ably, all intricate features of the PL spectrum are well reproduced by the model fit

without significant changes to the ZPL energies and linewidths, and with higher-

order phonon processes improving the correspondence between the fit and the intri-

cate spectral details of the extended red tail of the PL spectrum. The bright peak

below X is interpreted as composed of optical phonon sidebands of the momentum-

dark state K′u that also gives rise to broad lower-energy PL peaks via its higher-order

phonon replicas. In contrast, the emission from disorder-localized excitons [48], char-

acterized by narrow spectral features in Fig. 5.2d, is not captured by the present

model.
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Figure 5.3: a, Photoluminescence spectrum of a neutral monolayer WSe2 b, Correspond-
ing differential reflectivity. Note the absence of trion-related features.

5.2.2 Analysis of WSe2 and WS2 emission

The analysis of the simple MoSe2 emission has served as an illustration of the possible

involvement of phonon-assisted recombination of momentum-dark excitons. In the

next step the decomposition analysis was applied to ML WSe2 with a rich spectrum

of unidentified peaks [23] as in Fig. 5.3a (reproduced in Fig. 5.4a) recorded on ML

WSe2 encapsulated in hBN and tuned to the point of charge neutrality [137]. It

features narrow spectral lines characteristic of high-quality MLs with PL close to

the homogeneous limit [14, 123, 127] and a negligible contribution from trions was

assumed, again based on the absence of a trion resonance in high signal-to-noise DR

(see Fig. 5.3b). As discussed previously, the PL signatures of ML WSe2 in Fig. 5.4a

differ significantly from the PL of ML MoSe2 in Fig. 5.2 because of the reversed

ordering of spin-polarized subbands in tungsten and molybdenum dichalcogenides.

To model the PL spectrum of WSe2, one has to include the spin-forbidden exciton

state D redshifted by 40 meV from the ZPL of the bright state X in this specific

sample [14, 137]. In order to obtain the best model fit shown as the red solid line in

Fig. 5.4a, not only the phonon energies were allowed to vary around the values given

for ML WSe2 in Ref. 61 but also the energies and linewidths of the Lorentzian ZPLs
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Figure 5.4: Spectral decomposition of cryogenic photoluminescence from monolayer WSe2
and WS2. a, Refined model fit (red solid line) to the spectrum of neutral monolayer
WSe2 including momentum-dark state K′l resonant with D at a fixed bright-dark splitting
∆XD = 40 meV and all other parameters determined from the best fit. b, Same for
monolayer WS2 without active charge control. Free (fixed) fit parameters are given in the
legends in black (gray).

of D, K′l, K′u, and X states. Assuming similar timescales for phonon-assisted decay

and transform-limited broadening of momentum-dark states, a joint linewidth γM
was used for K′l and K′u.

The best-fit model spectrum of Fig. 5.4a with up to third-order processes was

obtained with γX = 5.0 meV and comparable linewidths of ∼ 2.5 meV for both spin-

forbidden and momentum-dark states at the respective energy positions of the ZPLs

indicated by the dashed lines. The overall correspondence between the measured

spectrum and the model is again compelling. It interprets the bright-most peak in

between the bright and dark exciton ZPLs as composed of optical phonon replicas

of the momentum-dark state K′u, and the peak below D as acoustic sidebands of K′l.

Again, the peak 32 meV below the bright exciton is not attributed to trion emission

for two reasons: First, the gated sample shows only one solitary resonance of the

neutral exciton without additional trion features in DR. Second, this sample tuned
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into the n-type regime exhibits a pronounced fine-structure splitting both in PL and

reflectivity as a hallmark of negative trions (see Ref. 137). Without the ambiguity of

unintentional doping, the electron-hole exchange splittings ∆(K′u−X) and ∆(K′l−D)

are of the order of a few meV.

The analogous spectral decomposition was also carried out for ML WS2 sand-

wiched in hBN without means of field-effect charge control. The best fit to the PL

spectrum of Fig. 5.4b was obtained according to the refined fitting procedure used

for ML WSe2 in Fig. 5.4a with a fixed bright-dark splitting of 55 meV derived from

experiment [14] and similar values for the linewidths of bright and dark excitons

in the range of 4–5 meV. It is worth pointing out the main similarities and differ-

ences in the PL spectra for the two tungsten-based MLs. For the WS2 spectrum,

only second-order processes were required since the absolute energies are larger as

compared to WSe2 [61]. Moreover, the phonon modes exhibit larger splittings (see

Table 5.1). The LA-TA splitting at the K point of WS2, for example, exceeds the

value in WSe2 by ∼ 4 meV. More significantly, the optical phonon energies differ by

∼ 15 meV and up to ∼ 20 meV at the Γ and K points, respectively.

Among the similar PL signatures is the weak peak below D and the intense peak

between X and D with fine structure due to the specific optical phonon spectrum of

WS2. Akin to WSe2, the former and the latter are assigned to acoustic and optical

phonon replicas of momentum-dark states K′l and K′u, respectively. Surprisingly, the

best fit suggests an exchange splitting of ∆(K′u − X) = 11.4 meV in contrast to

2.7 meV for WSe2 in Fig. 5.4a. The fit to WS2 PL requires a significant upshift of

the state K′u in order to optimally accommodate the optical phonon sidebands into

the intense and complexly structured PL peak between X and D. This could be an

artifact of the nonquantified contribution from trions in this sample, or indicate that

the set of involved momentum-dark excitons could be expanded by the Q-exciton

manifold as will be discussed in the next section.

5.2.3 Momentum-indirect excitons in WSe2 and WS2

For WSe2 MLs the Q-momentum excitons can play an important role, since the

Q valley is in close proximity to the lowest CB minimum at K according to single-

particle calculations [19, 61, 73]. Excitonic corrections have been predicted to reduce

the energy level of Q-excitons well below the energy of the lowest spin-forbidden

state D both in WSe2 and WS2 MLs [130, 131, 138]. This, however, is in contra-

diction to the analysis developed so far that explains the lowest-energy PL peak

in terms of acoustic phonon replicas of the momentum-dark reservoir K′l. Any

deeper momentum-dark state should exhibit large population with pronounced PL

phonon sidebands as in the case of BL WSe2 with momentum-indirect band gap (see
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Figure 5.5: Decomposition of monolayer WSe2 and WS2 spectra including Q-momentum
excitons. a and b, Same as Figs. 5.4a and 5.4b but with involvement of the Q-exciton
manifold placed in between the states X and D in a, and above the state X in b. Free
(fixed) fit parameters are given in the legends in black (gray).

Ref. P3). The only two remaining scenarios for the energy position of the Q-exciton

level is in between D and X or above X (apart from placing it in resonance with K′u
or K′l with trivial implications).

The analysis of best fits shown in Fig. 5.5 suggests that the first scenario is bet-

ter suited to model the spectrum of ML WSe2. Note that second- and higher-order

phonon-assisted processes were restricted to combinations of multiple phonons with

total phonon momentum of Q or K depending on the respective initial valley of the

electron. For example, the scattering of the electron from the Q valley into the K val-

ley and subsequent emission of an optical phonon would involve an LA or TA phonon

at the Q point and a zero-momentum optical phonon at the Γ point of the first BZ.

With this approach to the best fit, the energy position of the Ql state in Fig. 5.5a

is identified at ∆XQ ' 19 meV below the bright exciton with marginal variations

in other fit parameters as compared to Fig. 5.4a. The corresponding energy-level

hierarchy would assign the bright-most PL peak now to acoustic phonon replicas



5.3 Conclusions 49

of the Q-exciton manifold with contributions to the lowest-energy peak via optical

sidebands.

In the case of ML WS2 in Fig. 5.5b, on the other hand, the second scenario

performed better. It adds an explanation to the first weak PL peak below X as

an acoustic sideband of Ql with its respective optical sidebands merging into the

most intense PL peak between X and D. Moreover, this configuration reduced the

conspicuously large exchange splitting between X and K′u found in the fit of Fig. 5.4b,

and is at least qualitatively in line with theoretical calculations that predict a small

separation between Q- and K-excitons in WS2 rather than in WSe2 MLs [138].

5.3 Conclusions

Overall, within the suggested approach good qualitative and satisfactory quantita-

tive description of the spectra were found. Its quantitative validity is limited by

the assumption of identical linewidths for all momentum-dark excitons which is not

necessarily the case since different phonon-assisted pathways determine the effective

lifetimes of momentum-dark excitons. Moreover, as opposed to the inclusion of both

in-plane and out-of-plane optical phonon modes, the out-of-plane acoustic phonon

mode ZA was discarded. The experimental precision limited by the spectral broad-

ening even in best samples [14, 123, 127] currently provides an upper bound of a

few meV on these effects.

Even with the current uncertainty in the values of exchange interaction and the

energetic splittings between the valleys, the model highlights the importance of the

role played by momentum-dark excitons in the elementary optical response of ML

TMDs. The conclusions are fully in line with the interpretation of cryogenic spectra

from BL WSe2 [P3] and MoSe2-WSe2 heterostructures [P5] (Chapter 7). Based on

the findings, further experimental work (Chapter 6) and more precise theoretical

calculations of the single-particle band structure and phonon modes will finally

consolidate a quantitative understanding of excitons in TMD MLs. Placed into a

broader perspective of prevalent puzzles in TMD spectroscopy [63], the analysis

provides sufficient guidelines for new interpretations.





Chapter 6

Exciton photoluminescence from
monolayer tungsten diselenide

In the previous chapter a model was developed to interpret the photoluminescence

of monolayer TMDs on the basis of momentum-indirect exciton transitions. Here,

phonon-assisted emission of momentum-indirect excitons in monolayer WSe2 is reex-

amined with comprehensive spectroscopy experiments and compared to alternative

interpretations based on exciton localization. The studies include the analysis of

power dependence, degree of polarization, decay dynamics, and g-factors of the low-

energy excitons with controlled doping level. The data in this chapter were obtained

from an electrostatically-tunable WSe2 crystal encapsulated in hexagonal boron ni-

tride.

51
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6.1 Introduction

In contrast to spin-allowed lowest-energy exciton transitions in molybdenum based

ML TMDs, the ground-state exciton for WS2 and WSe2 is spin-forbidden [7–14].

Therefore, emission spectra of ML WS2 and WSe2 are more complex. Apart from

neutral excitons [56–58] and their charged counterparts referred to as trions [59, 60,

122], the PL signatures are complemented by emission from spin-dark excitons [7,

10–14]. The photophysics of unidentified peaks, however, remain puzzling [63]. An

uncontrolled charge environment in most samples, in combination with similar scales

of optical phonon [61, 62] and trion binding [23, 60, 125] energies, complicate the

analysis. Unidentified spectral resonances have been attributed to defect-localized

excitons [92, 139–141] and to excitons bound to localized charges at extrinsic defects

in the substrate [124]. An alternative interpretation based on momentum-indirect ex-

citons was discussed in the previous chapter. The experimental data presented in the

following provides additional evidence in favor of this framework. Within a charge-

controlled environment, absorption and PL measurements of an hBN-encapsulated

WSe2 ML were characterized as a function of the excitation power, lifetime, polar-

ization, and magnetic field. The data indicate that momentum-indirect excitons are

indeed the origin of unidentified peaks.

6.2 Charge-tunable reflectance and

photoluminescence

The spectral signatures of excitons in ML WSe2 undergo substantial changes upon

doping. To discuss exciton specific properties, it is therefore beneficial to provide

stable and well-defined charge doping. Fig. 6.1a shows the evolution of DR for an

hBN-encapsulated ML WSe2 incorporated in a field effect device. The data were

measured as (RML − RBG)/RBG, where RML and RBG are the reflectivities on and

off the ML, for gate voltages ranging from +17 V to −15 V. The false-color plot

shows pronounced neutral exciton X0 absorption at 1.72 eV for gate voltages around

+14 V. For negative gate voltages, X0 exhibited a blueshift with reduced contrast

in agreement with the repulsive polaron branch of excitons coupled to a Fermi sea

of electrons [122]. For simplicity, we restrict our analysis in the following discussion

to doping regimes where bound trion states are formed among excitons and excess

charges.

At +2 V, the Fermi energy was lifted above the lowest conduction spin-subband

at K (K′) as confirmed by the appearance of negatively charged trion peaks T1 and

T2. An extra electron in the lower subband at K or K′ can bind to an exciton in the

K valley to form an intra- or intervalley trion. These trions exhibit a fine-structure
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Figure 6.1: Field-effect control of reflectivity and photoluminescence for monolayer WSe2
encapsulated in hexagonal boron nitride. a, Differential reflectivity evolution with gate
voltage from +17 V to −15 V, measured as (RML −RBG)/RBG, where RML and RBG are
reflectivities on and off the monolayer. The energy of the neutral exciton (X0) exhibited
a blueshift at negative gate voltages, where negatively charged trion peaks (T1 and T2)
emerge. b, Differential reflectivity spectra extracted from a for neutral (+14 V) and elec-
tron doped (−13 V) conditions. c, Photoluminescence evolution for gate voltages ranging
from +17 V to −15 V shown on a logarithmic color scale. The spectra feature additional
peaks R1 and R2 at charge neutrality, and R3 and T3 at increasing electron concentrations.
d, Spectra extracted from c for gate voltages of +14 V, −4 V, and −14 V (star marks Ra-
man scattered photons). All data were recorded at 3.1 K. In a and b ps-pulsed white light
excitation at 0.9 µW and 80 MHz repetition rate was used, in c and d a continuous-wave
laser at 1.85 eV and 5 µW was employed.

splitting of 6 meV as a consequence of short-range Coulomb exchange between charge

carriers in intra- and intervalley trion configurations [13, 137]. Representative DR

spectra from the charge-neutral regime at +14 V (blue trace) and the electron-

doped regime at −13 V (red trace) are shown in Fig. 6.1b. Note that resonances are

modified by interference effects in the hBN-encapsulated heterostructure [142–144].

Complementary information was obtained from the spectrally-resolved PL evo-

lution upon doping. Three different doping regimes can be identified from the loga-

rithmic plot shown in Fig. 6.1c: charge neutrality at +14 V, the first electron-doped

regime below −4 V with T1 and T2 trion emission, and a second electron-doped

regime below −14 V where another peak T3 appeared. The latter regime could be
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associated with the point where the Fermi energy is lifted above the lowest con-

duction spin-subband at Q, providing a new reservoir of excess charges that enable

formation of T3 trions. This agrees with the analysis of the previous chapter that

identified the energy of Q-excitons between the spin-dark and spin-bright excitons

at K and K′. For direct comparison, spectra of each doping regime are shown in

Fig. 6.1d. In addition to X0 and trions, PL measurements revealed three new peaks

labeled R1, R2, and R3, which were not observed in DR. In other studies, the peaks

R2 and R3 were attributed to defect-localized excitons [92, 139–141], and R1 was

assigned to excitons bound to localized charges in the substrate as it is found at

the same energy as the trion [124]. The latter scenario would result in an inho-

mogeneously broadened PL peak that reflects the distance variation of localized

charges with respect to the exciton wavefunction in the TMD ML and contradict

experimental observations. A common crystal defect class that forms well-defined

sub-band-gap energy levels could in principle result in the observed PL peaks R1 to

R3 [145]. These peaks were, however, absent in DR (Figs. 6.1a and 6.1b) providing

an upper limit for the defect density. An alternative model with two scenarios based

on phonon-assisted recombination of momentum-indirect excitons explaining these

peaks was presented in the previous chapter. For the more probable case, R1 was

identified as an acoustic phonon sideband of momentum-indirect excitons with an

electron in the Q valley and the correlated empty state in the K or K′ valley. The

peaks R2 and R3 were attributed to higher-order phonon replica of Q-excitons as well

as acoustic (R2) and optical (R3) phonon sidebands from K′l, the momentum-dark

counterpart of lowest-energy spin-dark excitons.

In the following, we present experimental data acquired in a doping-controlled

environment tuned to charge neutrality to reveal the nature of R1 to R3. Within the

analysis, evidence is provided in support of the model of phonon-assisted recombi-

nation of momentum-indirect excitons in ML WSe2.

6.3 Photoluminescence evolution with excitation

energy and power

Increased PL from semiconducting TMDs can be obtained by tuning the excitation

laser to an excitonic absorption resonance. In Fig. 6.2a we show the evolution of

the PL as a function of the excitation wavelength for ML WSe2, where maximum

intensities were obtained for excitation at 669 nm (1.85 eV). In analogy to the excited

state of the hydrogen atom [56], this energy corresponds to the 2s resonance of the

neutral exciton X0 [146]. The resonance effect was also observed for Raman scattered

photons [95] labeled with white stars in Fig. 6.2a. Note that by coincidence one of
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Figure 6.2: a, Photoluminescence evolution as a function of excitation wavelength for
monolayer WSe2 encapsulated in hexagonal boron nitride. b, Extracted total intensities
of the peaks labeled X0, Q, R1, and R2 in a showing enhancement when the excitation
was tuned over the excitonic 2s resonance of X0 at 669 nm (1.85 eV); solid lines are
Gaussian fits to the data. The dim peaks marked with white stars in a correspond to
Raman scattered photons. All data were recorded at 3.1 K with a ps-pulsed laser at 3 µW
and 76 MHz repetition rate.

the Raman modes crosses the PL of X0, suggesting a redshift of X0 for increased

excitation wavelengths [128, 146]. The PLE data is evaluated in Fig. 6.2b for all

labeled PL peaks, including the dim feature between X0 and R1, that matched

the energy of the momentum-indirect Q-exciton (see Chapter 5). The emission of

this momentum-dark state was probably brightened by strain [147] induced by the

sample fabrication process.

Alternatively, this peak could be related to the formation of biexcitons, a four-

particle complex of two electrons and two holes that is expected to appear at higher

laser powers [148–151]. A signature of biexcitons is their superlinear response with

excitation power [152]. Fig. 6.3 shows PL spectra of ML WSe2 for laser powers tuned

from 0.02 to 800 µW (Fig. 6.3a) with peak intensities for X0, Q and R1, R2, QD

(Figs. 6.3b and 6.3c, respectively). X0 and Q exhibited a linear power dependence

that evolved into a sublinear response above 30 µW. The absence of superlinear

growth contradicts the assignment of Q to biexciton emission.

In contrast to X0 and Q, the replica peaks R1 and R2 showed a change in their PL

growth from slope 1.0 to 0.6 above 0.5 µW. The sublinear slope indicates the presence

of competing nonradiative recombination such as exciton-exciton annihilation [153–

156]. In this regime, an exciton density of 5.8 ± 0.5 × 1012 cm−2 corresponding

to an average exciton separation of about 4 nm was experimentally determined in

ML MoSe2 [154]. By assuming a similar exciton density at the onset of R1 and R2
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Figure 6.3: a, Photoluminescence spectra of monolayer WSe2 encapsulated in hexagonal
boron nitride for excitation powers tuned from 0.02 µW to 800 µW. The artificial cutoff
at 1.77 eV was induced by an optical filter. b and c, Integrated intensities of the peaks
in a labeled as X0, Q, R1, R2, and QD. X0 and Q exhibited linear response (slope m =
1.0, indicated by dashed and solid lines) at excitation powers below 30 µW, where the
intensities started to saturate with slope m = 0.5. A change in slope from m = 1.0 to 0.6
at 0.5 µW for R1 and R2 indicates the onset of nonradiative recombination (solid lines are
fits to the data). Spectrally narrow quantum dot (QD) emission saturated at excitation
powers above 0.1 µW and photobleached above 70 µW. All data were recorded at 3.1 K
with a ps-pulsed laser at 1.85 eV and 76 MHz repetition rate.

annihilation processes with defect localization as their origin, we estimate a defect

density of about 0.35% in the WSe2 ML. This, however, would result in a low-energy

absorbance of about 0.75% [145] not observed in our DR measurements (Fig. 6.1).

In our samples, defect-localized emission from QDs was found at 1.59 eV. These

emitters are known for their antibunched photon statistics and, as opposed to the

short lifetimes of a few picoseconds for delocalized excitons in TMD MLs [139],

they feature extended lifetimes in the nanosecond range [34, 44–47]. Fig. 6.4a shows

a zoom into the PL spectrum of a QD, where the ZPL featured no fine-structure

splitting. The PL dynamics of the ZPL (measured in the spectral band indicated

in Fig. 6.4a) exhibited monoexponential decay with a lifetime of 127 ns (Fig. 6.4b),

which is about a factor of 100 longer than the typical values reported for WSe2 MLs

[34, 44–47, 49].

In our experiments, most QDs saturated at excitation powers of roughly 0.1 µW

and photobleached at powers above 70 µW (Fig. 6.3c). The different power depen-

dence of R1 and R2 combined with their absence in reflection measurements suggests

that localization is not their origin. The lifetime study of different PL peaks in the
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Figure 6.4: a, Photoluminescence spectrum of a quantum dot in monolayer WSe2. b,
Time-correlated photoluminescence of the quantum dot zero-phonon line (ZPL) measured
in the spectral window indicated by the gray dashed lines in a; gray solid line is a mono-
exponential fit to the data with decay constant τ of 127 ns. All data were recorded at
3.1 K with a ps-pulsed laser at 1.85 eV, 0.5 µW, and 2 MHz repetition rate.

next section further supports our analysis that R1 and R2 are related to momentum-

indirect excitons.

6.4 Exciton decay dynamics

To obtain nonradiative contributions to the decays of X0, R1, and R2, we performed

time-resolved PL measurements as a function of the excitation power. Fig. 6.5a

shows a representative WSe2 ML PL spectrum (gray), where spectral bands (blue,

orange, and red) were used to filter the X0, R1, and R2 resonances. Representative

PL decay traces of the X0 and R1 bands at 1 µW, 10 µW, and 300 µW excitation

are shown in Figs. 6.5b and 6.5c. The instrument response (gray trace) of 5.5 ps

was limited by the detector (streak camera) resolution and pulse dispersion in our

fiber-coupled microscope. For analysis, the data were fitted with incomplete bi- (X0)

or triexponential (R1 and R2) decay functions given by

I(t) = y0+
2∑

n=0

3∑
i=1

√
πaiT

2

[
1+erf

(
2ti(t+ ntrep)− T 2

2tiT

)]
exp

(
T 2 − 4ti(t+ ntrep)

4t2i

)
, (6.1)

where I(t) is the time-resolved PL intensity, t the time delay, T is the laser pulse

duration, trep the laser repetition rate, and y0 the detection background. The time

constants t1, t2, and t3 for triexponential decay were fixed to 5.5 ps (resolution limit),

19.5 ps, and 60 ps, respectively, while the amplitudes ai were varied, with a3 set to

zero for biexponential fits of X0. In our experiments, both the fast radiative decay
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Figure 6.5: a, Photoluminescence spectrum (gray trace) of monolayer WSe2 encapsulated
in hexagonal boron nitride. Spectral bands for time-correlated measurements of the neutral
exciton X0, and replica peaks R1 and R2 are shown in blue, orange, and red, respectively.
b, PL decay of the X0 band for excitation powers of 1 µW, 10 µW, and 300 µW; the
instrument response (IR) is shown in gray. c, Same as b for the R1 band and including the
decay trace at 0.1 µW. All data were recorded at 3.1 K with a ps-pulsed laser at 1.85 eV
and 76 MHz repetition rate.

time of X0 [139] and the nonradiative recombination time [154] for all spectral bands

were restricted by the resolution limit t1.

We attribute the slower decay component t2, that was required for the biexpo-

nential fit of X0, to recombination of momentum-indirect excitons. Similar decay

times on the order of 25 ps have been reported for momentum-indirect excitons in

BL WSe2 at low temperatures [36]. Fig. 6.6b shows the evolution of fit components

a1 and a2 with excitation power for the X0 band. Fast radiative PL with amplitude a1
dominates over the component a2 for low excitation powers in the regime of linear re-

sponse (Fig. 6.6a). At higher powers, resolution-limited nonradiative recombination,

that is also captured by a1, outcompetes the radiative PL. This change is discernible

in the sublinear growth of the PL intensity with excitation power (Fig. 6.6a). The

relative increase of a2 with respect to a1 around ∼ 10 µW was likely due to spectral

leakage from power-broadened momentum-indirect excitons (R1) into the band of X0

(compare to Fig. 6.3a). Alternatively, the increase of the 19.5 ps decay component

in the spectral band of X0 could stem from contributions of momentum-dark K′u
excitons (see Chapter 5) brightened by strain-induced relaxation of optical selection

rules. This hypothesis was tested with polarization-resolved measurements and is

discussed at a later point.

Fig. 6.6d shows the intensity ratio between the nonradiative (a1) and the ra-

diative (a2 and a3) decay contributions to R1 and R2. At low excitation powers,

where nonradiative recombination is negligible, the decay of the R1 and R2 bands

was governed by the timescale t2 and contributions from t3 at longer time delays.
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Figure 6.6: a, Excitation power dependence of the X0 PL intensity (data reproduced from
Fig. 6.3). b, Ratio a1/a2 between fast (t1 = 5.5 ps) and slow (t2 = 19.5 ps) amplitude
components of X0 decay traces (shown in Fig. 6.5b) with respect to the excitation power.
c, Same as a for R1 and R2 resonances. d, Ratio a1/(a2 + a3) between nonradiative
(t1 = 5.5 ps) and radiative (t2 = 19.5 ps, t3 = 60 ps) amplitude components of R1 and
R2 decay traces (Fig. 6.5c) with respect to the excitation power. Note that the onset of
a1/(a2 + a3) is correlated with the decrease in slope m at 1 µW from 1.0 to 0.6 for R1

and R2. All data were recorded at 3.1 K with a ps-pulsed laser at 1.85 eV and 76 MHz
repetition rate.

The vanishing contribution of the slow time constant t3 above 1 µW is indicative for

exciton localization at lower excitation powers [139]. For higher excitation powers,

the increasing ratio of a1/(a2 + a3) together with the simultaneous sublinear power

dependence of the R1 and R2 PL intensities signify a superlinear increase of nonra-

diative exciton recombination (Figs. 6.6d and 6.6c). From this we conclude that fast

nonradiative processes are indeed captured by the resolution-limited t1 decay.

We now return to the spectral band of X0. As mentioned above, we studied

polarization-resolved PL spectra to identify contributions from momentum-indirect

K′u excitons. Fig. 6.7 shows the degrees of circular (Pc) and linear (Pl) polariza-

tion, quantified as P = (Ico − Icr)/(Ico + Icr), of emission intensities detected in

co-polarized (Ico) and cross-polarized (Icr) configurations for circularly or linearly
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Figure 6.7: Photoluminescence of monolayer WSe2 encapsulated in hexagonal boron ni-
tride. Spectra in the upper and lower panels (gray traces) were taken at different positions
with a spectral shift by 4 meV due to sample inhomogeneities. Labeled peaks are indicated
by dashed lines and described in the main text. Blue and green traces in the upper and
lower panels show spectrally-resolved degrees of circular and linear polarization (Pc and
Pl, respectively). Note that X0 maxima of Pc and Pl appear blueshifted to the photolumi-
nescence at the dashed line. All data were recorded at 3.1 K with excitation at 1.85 eV
and 3 µW.

polarized excitation. The Pc and Pl spectra (blue and green traces) exhibited maxima

that were blue-detuned from the X0 resonance in PL (gray traces). This observation

indicates that decay components in the red wing of X0 are not valley-conserving,

as expected for K′u excitons. Moreover, for the used excitation in resonance with

the 2s exciton state of X0, the detected PL polarization of excitons was modified

by spectrally overlapping Raman scattered photons that exhibited co-polarization

with respect to the excitation light [128, 146]. These features are labeled with a gray

star in Fig. 6.7 and have been identified previously (Fig. 6.2a). Meaningful spectral

analysis can therefore only be performed with an excitation laser away from any

exciton resonance to prevent Raman features from interfering with PL emission.

Apart from the substructure at X0, Pc exhibited narrow-lined dips at the emission

of R1, R2, and R3. These dips of exciton recombination in the opposite valley might

result from phonon replicas of momentum-dark excitons. For initial K′u excitons,

scattering of VB (CB) states for intervalley spin-flip transitions necessitates Γ5 (Γ4)
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phonon symmetry exhibited by E′′ (A′′) modes (see Section 2.4). In other words,

the scattering of empty states of momentum-dark K′u excitons into the K′ valley

would facilitate σ− polarized emission. The involved in-plane optical phonon mode

E′′, where two selenium atoms vibrate out of phase and the tungsten atom is static,

exhibits a longitudinal and a transverse component that could be related to the

split-peak feature at R1. While these particular processes have not been considered

in our spectral analysis, they provide indications for phonon-mediated scattering in

the PL of ML TMDs.

6.5 Exciton g-factors in WSe2 monolayers and

bilayers

In this section, we compare the g-factors of low-energy excitons in hBN-encapsulated

ML WSe2 and BL WSe2. Figs. 6.8a and 6.8b show PL spectra of a ML and BL for

linearly polarized excitation and valley-selective circularly polarized detection at

−8 T. For the ML X0 exciton, we obtained a g-factor of 4.3± 0.2 which agrees well

with literature [76, 77]. The peaks R1 and R2 exhibited g-factors of 11.5 ± 0.2 and

11.5±1.5, respectively. Large g-factors of unidentified ML peaks have been reported

previously and were attributed to localized excitons [157]. According to our model,

the high g-factors of R1 and R2 are related to momentum-indirect excitons with

electrons in the Q valley and empty states in K or K′. To test this assumption, we

compare the g-factors of ML WSe2 to the g-factors of momentum-indirect excitons

P1 to P4 in BL WSe2. For these peaks we obtained g-factors ranging from 10± 2 to

12 ± 2 that were similar to the values found for R1 and R2 in ML crystals. In the

following chapter, we identify the peaks P1 to P4 as excitons constructed with an

electron residing in the Q valley. It is therefore tempting to relate the high g-factors

of 11± 1 in MLs to momentum-indirect excitons of a similar type.
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Figure 6.8: a and b, Photoluminescence spectra of monolayer (ML) and bilayer (BL)
WSe2 encapsulated in hexagonal boron nitride in an external magnetic field of −8 T per-
pendicular to the crystal surfaces. The data were recorded at 3.1 K with linearly polarized
(π) excitation at 1.85 eV and 3 µW, and detected in circularly polarized bases. Red (blue)
and orange (cyan) traces in a and b correspond to σ+ (σ−) circularly polarized detection,
probing the population and energy of excitons in the K (K′) valley. Exciton g-factors of
labeled peaks are given in parentheses. Note the similar g-factors for monolayer exciton
replica peaks R1 and R2 of 11.5± 1.5 and bilayer peaks P1 to P4 ranging from 10± 2 to
12± 2.

6.6 Conclusions

Absorption and PL characteristics for doping-controlled ML WSe2 were studied

to identify signatures of momentum-dark excitons. In agreement with our previous

analysis, PL peaks R1, R2, and R3 assigned to phonon sidebands of momentum-dark

excitons were absent in reflectance measurements. The sublinear power dependence

of R1 and R2, without saturation at high laser fluences, contradicted signatures

expected for exciton localization. Time-resolved measurements revealed resolution-

limited nonradiative decay processes for replica peaks and X0 excitons with lifetimes

below 5.5 ps. Moreover, emission peaks associated with phonon replicas exhibited

remarkably similar characteristics with momentum-indirect excitons of BL crystals,

such as radiative lifetimes of ∼ 20 ps and large excitonic g-factors of around 11.



Chapter 7

Momentum-dark excitons in
bilayer systems

This chapter is adapted from the publication P3 and the manuscript P5:

J. Lindlau, M. Selig, A. Neumann, L. Colombier, J. Förste, V. Funk, M. Förg, J. Kim,

G. Berghäuser, T. Taniguchi, K. Watanabe, F. Wang, E. Malic, and A. Högele. The

role of momentum-dark excitons in the elementary optical response of bilayer WSe2. Nat.

Commun. 9, 2586 (2018). Licensed under a Creative Commons Attribution 4.0 Interna-

tional (CC BY 4.0) License.

M. Förg, L. Colombier, R. Patel, J. Lindlau, A. D. Mohite, H. Yamaguchi, D. Hunger,

and A. Högele. Cavity-control of bright and dark interlayer excitons in van der Waals

heterostructures. ArXiv e-prints (2017). arXiv:1710.00990.

Monolayer TMDs undergo substantial changes in the single-particle band structure

and excitonic optical response upon the addition of just one layer. As opposed to

the single-layer limit, the band gap of bilayer TMD semiconductors is indirect which

results in reduced photoluminescence with richly structured spectra that have eluded

a detailed understanding to date. In this chapter, we provide a closed interpretation

of the elementary optical responses of bilayer WSe2 as a representative material for

the wider class of TMD semiconductors. By combining theoretical calculations with

comprehensive spectroscopy experiments, we identify the crucial role of momentum-

indirect excitons for the understanding of basic absorption and emission spectra

ubiquitously exhibited by various TMD bilayers. Our results shed light on the origin

of quantum dot formation in monolayer and bilayer crystals and will facilitate further

advances directed at optoelectronic applications of layered TMD semiconductors in

van der Waals heterostructures and devices.
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7.1 Introduction

As opposed to MLs, in BL TMDs, the single-particle band gap is indirect because of

a downshift of the CB energy at Q well below K and an upshift of the VB edge at the

Γ point upon the addition of a second layer [4, 158–160]. In the specific case of BL

WSe2 crystals, the lowest CB minimum is located at Q, while the VB maximum at K

exceeds the one at Γ only by 40±30 meV according to angle-resolved photoemission

spectroscopy [161]. The associated PL spectra are thus dominated by momentum-

indirect transitions interconnecting electrons and holes in dissimilar valleys [36, 64,

140, 159, 162–165]. The BL emission is consistently less efficient, with PL from

short-lived direct excitons [36] redshifted by a few tens of meV from the ML peak

emission, and a second peak with larger redshift and longer lifetimes [36] attributed

to momentum-indirect excitons composed of electrons in the K or Q valleys and holes

in the K or Γ valleys [36, 64, 140, 164, 165]. A detailed understanding of both peaks,

however, has remained elusive [63] despite the significance of BL TMDs as hosts

of novel single-photon sources [34, 35], finite valley polarization [36], or potential

utilization of the spin-layer locking effect in charged BLs [37].

In the following, a comprehensive study is presented of exciton manifolds in BL

WSe2. Using cryogenic spectroscopy of BL regions subjected to strain at uninten-

tional disorder, brightening of momentum-indirect excitons is identified that in many

cases is accompanied by the formation of QDs with intense emission of nonclassical

light. Complementary experiments reveal the energy-level hierarchy of all excitons

involved in determining the fundamental optical response of BL WSe2. These find-

ings, in good quantitative agreement with theoretical calculations, not only explain

the intricate details of the BL PL spectra and the origin of the QD PL, they can be

also generalized to other representatives of TMD materials to facilitate a detailed

understanding of optoelectronic properties of BL and multilayer semiconductors.

7.2 Photoluminescence spectroscopy of bilayer

WSe2

Cryogenic spectroscopy of ML and BL WSe2 was carried out on a flake shown in

Fig. 7.1a obtained by standard exfoliation onto a Si/SiO2 substrate (see Chapter 3

for details on the experimental setup). Extended ML and BL regions (marked with

arrows) were identified by their respective contrast in the optical micrograph of

Fig. 7.1a and by Raman spectroscopy. The dashed square indicates the region of the

cryogenic hyperspectral raster-scan PL map recorded with a home-built confocal

microscope. The false-color map in Fig. 7.1b shows PL peak maxima in the spectral

range of 1.43–1.59 eV, highlighting extended homogeneous regions of bright ML and
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Figure 7.1: a, Optical micrograph of a WSe2 flake exfoliated onto Si/SiO2 with mono-
layer (ML) and bilayer (BL) regions indicated by the arrows (the scale bar is 15 µm).
b, Cryogenic raster-scan photoluminescence map of the upper corner indicated by the
dashed square in a. False-color plot of the photoluminescence maxima in the spectral
range of 1.43–1.59 eV. The bilayer exhibits extended and punctual regions of brightening
attributed to strain at local folds. c, Normalized photoluminescence spectrum (brown,
magnified by a factor of 20 in the range of 1.62–1.82 eV) at a representative bilayer po-
sition away from defects with model fit shown as red solid line. The energy positions of
momentum-bright (X and D) and momentum-dark BL excitons (Q↑Γ , Q↑K, K↓Γ , K ′↑K,
K↑Γ , and K ′↓K, labeled by the capital letters of electron and empty state valleys and the
electron out-of-plane spin as subscript) are indicated by dashed lines. All spectroscopy
measurements were performed at 4.2 K with excitation at 1.95 eV.

dim BL luminescence, as well as distinct BL regions of unintentional disorder with

PL brightening due to local strain [34, 35].

A characteristic PL spectrum of BL WSe2 on SiO2, recorded at 4.2 K on a repre-

sentative position away from disorder, is shown in Fig. 7.1c. The PL exhibits a weak

peak around 1.71 eV and a stronger peak around 1.55 eV consistent with previous

PL studies of BL WSe2 [36, 64, 140, 164]. Based on comprehensive experiments

described in the following, we develop a model to interpret the PL of WSe2 BLs

as originating from both momentum-direct and momentum-indirect excitons with

energy positions indicated by the dashed lines in Fig. 7.1c.
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7.3 Excitons in bilayer WSe2

To identify all relevant excitons that contribute to cryogenic PL and to interpret the

model fit to the lower-energy PL peak shown as the red solid line in Fig. 7.1c, it is

instructive to consider first the single-particle band structure of BL WSe2 in Fig. 7.2a

and the associated exciton dispersions plotted in Fig. 7.2b. The relevant states for

the construction of excitons (indicated by ellipses in Fig. 7.2a) with an empty state

located at the VB maxima in the K or Γ valley are the spin-polarized subband

minima near K, Q, and K′ valleys of the CB, with out-of-plane spin projections

indicated by the arrows. We take the spin-degenerate VB maximum at Γ to be

40 meV below the energy of the spin-polarized band edge at K [161], and the energies

of the CB at K, Q, and K′ from density functional theory calculations [166, 167].

The excitonic dispersions, shown in Fig. 7.2b, were computed using the Wan-

nier equation [168, 169] within the Keldysh formalism [170–172], taking explicitly

the dielectric environment of the TMD material into account. The corresponding

excitons, all of which have their counterparts with the empty VB state at K′, can

be separated into the class of zero-momentum excitons with spin-allowed and spin-

forbidden configuration (labeled as X and D, respectively), and finite-momentum

excitons involving Coulomb-correlated electrons and unoccupied VB states from dis-

similar valleys (labeled in Fig. 7.2b according to the valleys of the CB electron and

the VB unoccupied state as capital letters with the electron out-of-plane spin as sub-

script). All excitons but X are dipole-forbidden, either due to spin or momentum

conservation constraints.

Energy minima of the branches are given in eV with respect to the bright exci-

ton X (see Ref. P3 for the details of theoretical calculations). Consistent with the

downshift (upshift) of the Q (Γ) valley in the CB (VB) of BL WSe2, we found the

smallest exciton gap for finite-momentum Q↑Γ and Q↑K excitons, followed by six

branches involving an electron in K or K′ (two energy-degenerate branches of D and

K ′↑K, and X and K ′↓K excitons with the unoccupied state at K, as well as exciton

branches K↑Γ and K↓Γ with the empty VB state at Γ), and two branches of excitons

at highest energies with electrons in one of the three spin-down polarized Q valleys

forming Q↓Γ and Q↓K with the unoccupied states in Γ and K valleys, respectively.

We emphasize that although we use a spin-tagged notation for Q-momentum exci-

tons consistent with the schematics in Fig. 7.2a, there are energetically degenerate

excitons composed of electrons from the other three inequivalent Q pockets with

opposite spin.

Out of this set of excitons, spin-bright X states emit PL along the detection axis

of our microscope, and the PL from spin-dark D excitons with in-plane emission is

detected due to the high NA of the objective as well [14]. In contrast, all momentum-
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Figure 7.2: a, Schematic single-particle band diagram of the conduction and the valence
bands of bilayer WSe2 along high symmetry lines of the hexagonal Brillouin zone shown
on the right. Zero-momentum spin-bright (X) and spin-dark (D) excitons are formed in
the K valley by electrons from spin-up and spin-down conduction subbands indicated in
black and gray, respectively, paired with a spin-up valence band empty state. Momentum-
indirect excitons with electrons and unoccupied states in dissimilar valleys are indicated
by dashed ellipses. b, Calculated dispersions of lowest-energy exciton manifolds in bilayer
WSe2 with energy minima given in eV with respect to the bright exciton X.

indirect excitons appear exclusively as phonon replicas of their optically dark ZPL

as they emit photons only with the assistance of acoustic or optical phonons. With

this constraint in mind, we note that the higher-energy peak of the BL spectrum in

Fig. 7.1c is dominated by the ZPL of X (in accord with the onset of DR, shown in

Fig. 7.3a) with a weak contribution from D to the red wing, while the lower-energy

PL peak is a superposition of phonon sidebands of momentum-dark excitons Q↑Γ ,

Q↑K, and K↓Γ .

Postponing a detailed explanation for the energy ladder of all relevant exciton

states indicated by the dashed lines in Fig. 7.1c, we first discuss the model fit of the

lower-energy peak in the BL spectrum. For the decomposition of the peak (red solid
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line in Fig. 7.1c) into the PL contributions from Q↑Γ , Q↑K, and K↓Γ , we set the

energy positions of the respective dark ZPLs to the experimentally determined values

and modeled the phonon replicas by inhomogeneously broadened Gaussians with a

FWHM linewidth γ. For simplicity, we involved only one branch of acoustic and

optical phonons (the LA and LO phonon branch) with energies given in Ref. 61. Best

fit to the spectrum was obtained with the inhomogeneous linewidth γ = 21 meV.

The inclusion of up to sixth-order scattering processes was required to reproduce

the extended low-energy tail of the spectrum.

Same fitting procedure, applied to the PL spectrum of another sample of BL

WSe2 on SiO2 shown in Fig. 7.3b, was obtained with γ = 25 meV and a global

blueshift of momentum-dark exciton energies by 6 meV. The difference in the FWHM

linewidths as well as the overall blueshift reflect differences in the effective dielectric

environments of BL flakes for the two samples which in turn stem from variations in

the exfoliation process. In both cases, second- and third-order scattering from K↓Γ

and Q↑K, respectively, and up to sixth-order scattering from the lowest state Q↑Γ

were included to reproduce the red-most wing of the PL spectrum. The presence of

phonon scattering processes of such high order out of Q↑Γ is consistent with efficient

relaxation and trapping of exciton population in this lowest-energy momentum-dark

state.

We used the same approach to model the PL spectra (brown) of two different

samples of BL WSe2 encapsulated in between two layers of hBN (Figs. 7.3c and

7.3d). The corresponding DR spectra (black), shown in Figs. 7.3c and 7.3d, respec-

tively, highlight interference effects in reflectivity due to multiple reflection planes.

To determine the energy position of momentum-indirect excitons referenced to the

energy of the bright exciton, we used the respective PL data of each sample and

kept all energy spacings constant. Best model fits to the data in Figs. 7.3c and 7.3d

(red traces) were obtained for inhomogeneous linewidths of 21 meV and 8 meV,

respectively. Despite the nominally identical procedures used in the fabrication of

the two samples, the difference in the sample quality reflected by the different in-

homogeneous broadenings is noticeable but not surprising. These differences in the

spectral widths necessitated up to third-order phonon scattering in the model fit in

Fig. 7.3c and only first-order (second-order) scattering from K↓Γ and Q↑K (Q↑Γ )

were required for the model fit in Fig. 7.3d.

At the level of theory, the energetic ordering of Q↑Γ and Q↑K states is ambigu-

ous given the small difference of 2 meV in the energy minima of the two branches

(Fig. 7.2b). However, complementary spectroscopy experiments on strained BL re-

gions and QDs discussed in the following remove this ambiguity and establish the

energy-scale hierarchy for all excitons responsible for the elementary optical response
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Figure 7.3: a, Photoluminescence spectrum (brown) with the respective model fit (red)
duplicated from Fig. 7.1c, and differential reflectivity (black). b, Normalized photolumine-
scence (brown) and model fit (red) for a bilayer WSe2 on Si/SiO2 from a different sample.
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were obtained for inhomogeneous linewidths of 21, 25, 21, and 8 meV in a, b, c, and d.
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of BL WSe2 with Q↑Γ as the lowest-energy exciton branch, followed by Q↑K, K↓Γ ,

degenerate D and K ′↑K states, K↑Γ , and degenerate X and K ′↓K manifolds.

7.4 Effects of strain and local disorder

The first input to the experimental determination of the exciton energies is pro-

vided by the PL spectroscopy of QDs distributed randomly along the lines of dis-

order (Fig. 7.1b). BL QDs, with intense and spectrally narrow PL emission as in

Fig. 7.4a, emerge as a result of local strain [34, 35]. Akin to ML QDs [34, 44–49],

the QDs in disordered BL regions were characterized by strong antibunching signa-

tures in the second-order correlation function g(2)(τ) of their PL emission [34, 35],

as demonstrated exemplarily by the inset data of Fig. 7.4a recorded on a different

QD with a dip of 0.2 at τ = 0 and an exponential rise to 1 on a timescale of ∼ 10 ns.

By plotting the PL intensity as a function of the respective energy maximum for

all QDs of the hyperspectral map of Fig. 7.1b, we identify a sharp cutoff to the QD

emission energy at 1.584 eV (indicated by the left-most dashed line in Fig. 7.4b),

which we assign to the state Q↑Γ (see Fig. 7.5 for assignment).

The energy position of the next higher-energy momentum-dark state is revealed

by the PL spectroscopy of strained BL regions. The PL spectrum on a strained

position features characteristic blue- and redshifts of a few meV for the upper and

lower PL peaks (compare red and brown traces in Fig. 7.4a) consistent with ∼
0.1% of tensile strain which lowers (raises) the CB energy minimum at the K (Q)

points [173]. In addition, a shoulder at 1.615 eV, indicated by the dashed line in

Fig. 7.4a, becomes apparent due to strain-induced brightening of this momentum-

dark transition [147]. The energy position of this shoulder reappears as a resonance

in the PLE spectrum of a strained BL spot (open red circles in Fig. 7.4b). The

resonance, marked by the dashed line and assigned to Q↑K, is even more pronounced

in the PLE spectrum of the QD from the same spot position (with the spectrum in

Fig. 7.4a) shown by open orange circles in Fig. 7.4b. We note that the PLE spectrum

is not QD-specific, it rather represents generic BL resonances in the PLE of QDs

emitting at different observation sites with different energies (see Fig. 7.6 for PLE

spectra of other QDs).

The third successive energy level of momentum-dark states, identified at 1.624 eV

by the resonance and the shoulder of the QD and strained BL PLE spectra of

Fig. 7.4b, respectively, is ascribed to K↓Γ . With this energy, the experimental values

of the three lowest-energy momentum-dark exciton states can now be hierarchically

ordered with respect to the energy of the bright exciton X at 1.710 eV deduced

from the peaks of both PLE spectra of Fig. 7.4b and from PL in Fig. 7.1c (and

DR shown in Fig. 7.3a). Referencing all energies to that of X, we note first that
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Figure 7.4: a, Photoluminescence from a strained bilayer (BL) region without (red) and
with (orange) spectrally narrow and intense quantum dot (QD) emission recorded at a
factor of 1000 lower excitation power. The bilayer spectrum away from strained regions
(brown) is shown for reference. Note the strain-induced emergence of the shoulder at
1.615 eV labeled as Q↑K. Inset: typical second-order coherence of a single quantum dot
with pronounced antibunching on ∼ 10 ns time scale. b, Distribution of quantum dot
intensities as a function of their peak emission energies (filled circles, extracted from the
map of Fig. 7.1b), and photoluminescence excitation spectra of the quantum dot and
strained bilayer emission in a (orange and red open circles, respectively). The dashed lines
mark the energy positions of the relevant exciton states.

the lowest momentum-forbidden state Q↑Γ is redshifted by 126 meV instead of the

calculated value of 163 meV, while the second-lowest state Q↑K exhibits a redshift

of 95 meV instead of 161 meV expected from theory. Provided that the effective

masses used in the calculations of exciton energies were correct, these quantitative

discrepancies between theory and experiment convert into an upshift of the CB

minimum at the Q valley by 66 meV and a downshift of the VB at the Γ point

by 29 meV. Given the uncertainties in band structure calculations [166, 167] and
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Figure 7.5: Data duplicated from Fig. 7.4b. Upper panel: energy positions and peak
assignments of dark-exciton states according to the theoretically predicted energy-scale
hierarchy. Lower panel: energy positions of momentum-dark excitons according to the
reversed ordering of the two lowest-energy states. Note the missing peak assignment in
the lower panel indicated by the arrow.

angle-resolved photoemission [161] used to calculate the exciton dispersion minima,

these corrections of a few tens of meV seem reasonable.

Finally, with the energies of X and K↓Γ at hand, we estimate the energies of D

and K↑Γ in Fig. 7.4b by using the respective spin-orbit splittings of 51 meV and

57 meV from Fig. 7.2b. While the energy level of K↑Γ has no compelling signature

in the PLE spectra of Fig. 7.4b, the D state coincides with a clearly pronounced

shoulder in the PLE spectrum of the QD. To complete the energetic ordering of all

lowest-lying excitons in BL WSe2, the states K ′↑K and K ′↓K are placed in resonance

with D and X by omitting electron-hole exchange.

In order to rationalize the energetic ordering of momentum-dark excitons, the

data Fig. 7.4b is reproduced in both panels of Fig. 7.5. The energies identified from

the cutoff to the QD PL as well as from QD and BL PLE spectra were referenced

to the energy of the bright exciton X at EX = 1.710 eV that lies 51 meV above its

spin-orbit split momentum-direct spin-dark counterpart D according to theory. The

energies of the two lowest-energy dark-exciton states were identified as E1 = 1.584 eV
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Figure 7.6: Photoluminescence excitation spectra (open circles) of quantum dot and
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panels, respectively) of disorder-strained bilayer WSe2 with photoluminescence spectra
shown in orange (filled traces). The exciton energies marked by the dashed lines are the
same as in the upper panel of Fig. 7.5 and in Fig. 7.4b.

and E2 = 1.615 eV, yielding experimental shifts of ∆exp
1−X = E1 − EX = −126 meV

and ∆exp
2−X = E2 − EX = −95 meV with respect to the energy of X. According

to theoretical calculations, the two lowest-energy states Q↑Γ and Q↑K, separated

by ∆th
QΓ−X = −163 meV and ∆th

QK−X = −161 meV, respectively, compete for the

assignment to the lowest-energy states.

First, we test the scenario of preserved energy-scale hierarchy with Q↑Γ state

being lowest in energy (with energy E1), followed by the state Q↑K (with energy

E2). We note that the states Q↑K and X share their unoccupied state in the K

valley and thus the energy difference can be entirely attributed to the electron in

the CB minimum at Q. With ∆exp
2−X − ∆th

QK−X = 66 meV, we thus directly obtain

the upshift of the exciton energy with the unoccupied state in K and the electron

in Q. For the state Q↑Γ we obtain the difference between the experimental and

theoretical values as ∆exp
1−X − ∆th

QΓ−X = 37 meV, which implies a downshift of the

VB maximum at Γ by 29 meV by using the upshift of the CB minimum at Q

calculated above. The energy of the state K↑Γ , which shares with X the electron in
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the spin-up polarized subband at K, computes by including the downshift of Γ to

1.681 eV. Finally, the energy of the state K↓Γ is obtained as 1.624 eV by taking into

account the theoretically calculated spin-orbit splitting of 57 meV between K↑Γ and

K↓Γ .

The second scenario probes the reversed ordering, where the state Q↑K is lowest

(with energy E1) and Q↑Γ is second-lowest state (with energy E2). Calculations

of the respective energies for all relevant momentum-dark states along the lines of

arguments given above yields an upshift of the Q valley by 35 meV and an upshift

of the Γ valley by 33 meV. Accordingly, the energies of K↑Γ and K↓Γ states are

obtained as 1.743 eV and 1.686 eV, respectively.

The energy positions for all relevant excitons obtained from the two competing

assignment scenarios are plotted as dashed lines in Fig. 7.5. The upper panel shows

the energetic ordering in accord with preserved hierarchy, while the lower panel shows

the results of reversed ordering. The failure of the latter to predict the resonance

in PLE at 1.624 eV (indicated by the black arrow in the lower panel), which is

consistently ascribed in the framework of the former to the state K↓Γ , provides

strong evidence for Q↑Γ being the lowest and Q↑K being the second-lowest state.

Remarkably, all PLE resonances appeared at the same energy positions for dif-

ferent BL regions subjected to unintentional strain (PLE spectra in Fig. 7.6) with

confocal PL from QDs emitting at different PL energies (orange spectra in Fig. 7.6).

This observation indicates that the PLE resonances are not QD-specific (e.g. due to

excited QD states that would differ from dot to dot because of different confinement

potentials) but indeed probe the absorption of BL WSe2.

7.5 Field-effect control of doping in bilayer WSe2

The set of exciton energies obtained from the analysis of PL signatures of BL WSe2
on SiO2 in Fig. 7.1c was tested on narrow spectra of a gate-tunable WSe2 BL en-

capsulated in hBN (see section 7.3). Fig. 7.7a shows the normalized PL spectrum

(brown) under charge neutrality conditions with the corresponding model fit (same

PL data as in Fig. 7.3d). Remarkably, the intricate spectral features of the spec-

trum can be reproduced with the set of exciton energies established above with an

overall redshift of 2 meV. The spectrally narrow inhomogeneous linewidths down to

∼ 8 meV required a refined model fit with all phonon modes included and variations

of ±2 meV around the values calculated for ML WSe2 in Ref. 61.

Including first-order scattering from K↓Γ and Q↑K exciton manifolds, and up

to second-order scattering from Q↑Γ , our model identifies the blue-most peak at

∼ 1.6 eV out of the three strong peaks in the spectrum of Fig. 7.7a in the range

1.61–1.57 eV as optical and acoustic phonon replica of K↓Γ and Q↑K, respectively,
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Figure 7.7: Field-effect control of bilayer WSe2 photoluminescence. a, Normalized pho-
toluminescence (brown) of a bilayer WSe2 encapsulated in hexagonal boron nitride and
tuned towards charge neutrality with positive gate voltages. Best fit to the spectrum (red)
was obtained with the same set of exciton energies as in Fig. 7.1c and an overall redshift
of 2 meV. b, Evolution of the photoluminescence with gate voltage from −30 V to 30 V.
Note the crossover to the charged regime below −20 V signified by a simultaneous redshift
of 22 meV for all peaks as indicated by the red arrows below the dashed line.

the central peak as an optical sideband of Q↑K, and the red-most peak as an acoustic

sideband of Q↑Γ . The consecutive peak towards lower energies around 1.56 eV is

an optical sideband of Q↑Γ that merges with the extended red wing composed of

higher-order phonon replicas from all the above mentioned momentum-dark states.

Interestingly, the ambiguity with respect to the origin of the blue-most peak

as being composed of acoustic or optical sidebands of K↓Γ and Q↑K momentum-

dark states is removed by the observation of a simultaneous shift of all three peaks

upon negative doping at gate voltages below −20 V in Fig. 7.7b. At this voltage,

finite electron population of the Q pockets favors the formation of BL trions with
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Figure 7.8: Field-effect control of differential reflectivity and photoluminescence for a
second WSe2 bilayer encapsulated in hexagonal boron nitride. a, Evolution of differen-
tial reflectivity with gate voltage from +17 V to −15 V. The data was measured as
(RBL − RBG)/RBG, where RBL and RBG are reflectivities on and off the bilayer. Charge
neutrality signified by X excitons occurred for gate voltages above 9 V; for smaller voltages
in the electron-doped regime, formation of T trions was favored. b, Spectra extracted from
a at neutral (n0, blue trace) and electron-doped conditions (n−, red trace). c, Photolumi-
nescence evolution for gate voltages ranging from +17 V to −15 V. The spectral region
(similar to Fig. 7.7b) shows phonon-assisted emission of momentum-indirect excitons. d,
Neutral (n0, blue trace) and electron-doped (n−, red trace) photoluminescence spectra
from the evolution in c with peaks labeled P1 to P4.

electrons forced to reside in different Q valleys by the Pauli exclusion principle.

Thus, all sideband replicas associated with Q↑K and Q↑Γ sates are expected to

shift simultaneously. This is exactly what we observe upon negative doping with a

redshift by the trion binding energy of ∼ 22 meV for all three peaks. The shift of

the blue-most peak implies that it originates from the Q↑K rather than the K↓Γ

state, as the latter is insensitive to the increasing doping level at Q.

Similar results were obtained from a second hBN-encapsulated WSe2 BL. For

this sample, the evolution of DR with gate voltage clearly shows a transition from

charge neutrality to an electron-doped regime below 9 V (Fig. 7.8a). Representative
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DR spectra at charge neutrality (n0) and electron-doped regime (n−) with neutral

(X) and trion (T ) resonances, respectively, are shown in Fig. 7.8b. Note that the high

reflection intensity at energies below 1.68 eV is an artifact due to interference effects

at the hBN layers and the Si/SiO2 substrate. The PL of the low-energy WSe2 BL

spectrum showed a similar evolution with gate voltage as the first sample (compare

Figs. 7.8c and 7.7b). With doping (red trace in Fig. 7.8d), the intensity of peaks

labeled P1 to P3 decreased, while P4 became more pronounced.

7.6 Magneto-optical properties of bilayer

quantum dots

The notion of momentum-dark exciton states provides a new perspective on the ori-

gin of QDs in ML [34, 44–49] and BL [34, 35] TMDs. In addition to spectrally nar-

row and bright PL with antibunched photon emission statistics discussed above, BL

QDs share all main signatures of localized excitons with ML QDs. In high-resolution

micro-PL spectroscopy, they exhibit a doublet of states with orthogonal linear po-

larization (Figs. 7.9a and 7.9b), which evolves into a pair of circularly polarized

Zeeman-split peaks with increasing magnetic field (Figs. 7.9a and 7.9c). The disper-

sion of the Zeeman splitting ∆ between the blue and red QD branches with out-of-

plane magnetic field B according to the hyperbolic function ∆ =
√

(gµBB)2 + ∆2
0

(solid line in Fig. 7.9c) is a hallmark of QDs with anisotropic fine-structure splitting

∆0 [174]. At large enough fields, the linear asymptote of the Zeeman splitting is

determined by the exciton g-factor scaled by the Bohr magneton µB.

By applying this analysis to ten randomly selected QDs on strained BL positions,

we extracted g and ∆0 from the hyperbolic fit to the Zeeman splitting as for the

QD of Figs. 7.9a and 7.9c with g = 9.5± 0.1 and ∆0 = 500± 10 µeV. Remarkably,

as evidenced from Fig. 7.9d, the g-factor of all ten QDs shows only minor variations

around the average value of 9.5 independent of the QD PL energy and despite the

spread in the fine-structure splittings in the range of ∼ 400–900 µeV [34, 35, 44–47,

49]. This observation suggests that QD excitons relate to momentum-dark excitons

that inherit their g-factor from the delocalized continuum state (i.e. Q↑Γ in the case

of BL WSe2) and exhibit significant brightening due to their spread in momentum

space upon spatial localization. This picture is further supported by the sharp cutoff

to the emission energy of BL QDs at the energy of Q↑Γ momentum-dark excitons

in Fig. 7.4b as well as in previous studies [34, 35].

For QDs in ML WSe2 with similarly sharp cutoff energies at ∼ 20–25 meV below

the bright state X [34, 35, 44, 46, 47, 49] and surprisingly large g-factors in the

range of 6–12 [34, 35, 44–47], this insight suggests the presence of a momentum-
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Figure 7.9: Quantum dots in bilayer WSe2. a, False-color plot of quantum dot magneto-
luminescence under σ+ (σ−) polarized excitation for positive (negative) magnetic fields in
Faraday geometry. b, The quantum dot emission doublet (upper panel) is characterized
by linearly polarized peaks with orthogonal polarization axes (lower panel; note the anti-
correlation in the intensities of the higher- and lower-energy peaks shown in red and blue
together with squared sine and cosine fits). c, Energy dispersion of the doublet splitting ∆
in magnetic field. Best fit to the data with a hyperbolic function (solid line) was obtained
for a zero-field fine-structure splitting ∆0 of 500 µeV and an exciton g-factor of 9.5. d,
Distribution of exciton g-factors around the mean value of 9.5 plotted for ten quantum
dots with respect to their zero-field splitting.

dark reservoir between the bright and dark ML excitons X and D (see Chapter 5).

In ML MoSe2 void of momentum-dark states below the bright exciton, on the other

hand, no cutoff energy to the QD emission was observed and similar values for the

g-factors of QD excitons and the bright X exciton were found [48]. To leverage this

speculation, theoretical calculations of exciton g-factors are required for all excitons

constructed from CB electrons and VB unoccupied states in valleys other than K.
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7.7 Spectral signatures in MoSe2-WSe2

heterobilayers

In the following, we discuss optical signatures of TMD heterobilayers (HBL) formed

by two different materials as counterparts to BLs consisting of same layers. With

intrinsic type-II band alignment, they feature both intralayer excitons and spa-

tially indirect (interlayer) excitons as lowest-energy states in their PL spectra. The

interlayer excitons constructed with electrons and holes from different layers, ex-

hibit a permanent electric dipole moment. Here, we study the main signatures of

intralayer and interlayer excitons in a CVD-grown HBL with cryogenic PL spec-

troscopy. Our van der Waals heterostructure was synthesized by overgrowth of ML

MoSe2 with a ML of WSe2 (Fig. 7.10a). Upon optical excitation, photogenerated

electrons and holes relax into the CB minima and VB maxima of MoSe2 and WSe2
MLs, respectively [175]. After relaxation, zero-momentum excitons are formed with

layer-separated electrons and holes, while excitons with finite momentum emerge

from Coulomb correlations among electrons and holes in dissimilar valleys.

As opposed to exfoliation-stacking, CVD realizes inherently aligned TMD het-

erostructures with atomically sharp interfaces both in lateral and vertical geometries

[176, 177]. However, even in the presence of inherent angular alignment, excitons in

van der Waals stacks of incommensurate layers with dissimilar lattice constants are

subject to moiré effects [178–182], just like twisted HBL systems [183]. In CVD-

grown MoS2-WSe2 HBLs, moiré patterns with a period of ∼ 10 nm emerge from

a lattice mismatch of 3.7% [180]. In MoSe2-WSe2 heterostructures, on the other

hand, the strain resulting from a lattice mismatch of 0.1% can be accommodated

by atomic vacancies to yield a fully commensurate HBL system free of moiré effects

[184]. Such commensurate van der Waals HBL realize ideal R- and H-type stacking

geometries, respectively [185]. Here, we focus on systems with the latter geometry.

The interlayer excitonic band structure of H-type HBLs features momentum-

bright XB (bright) and lower-lying XG (gray) excitons with equal and unequal spin

configurations of CB and empty VB states. Their counterparts of K-momentum exci-

tons are referred to as XU and XL for spin-unlike and spin-like configurations. Both

the ZPL of momentum-bright excitons and the phonon sidebands of momentum-

dark excitons contribute to the intense red-most peak around 1.4 eV in the PL

spectrum of our as-grown MoSe2-WSe2 HBLs shown in Fig. 7.10b. In addition to

this low-energy HBL peak arising from interlayer excitons as in exfoliation-stacked

heterostructures [175, 186–188], intralayer MoSe2 excitons contribute a pair of blue

peaks to the PL around 1.65 eV [175]. Commonly, the higher- and lower-energy ML

peaks are assigned to neutral and charged excitons in MoSe2, respectively [60].
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citon states with respect to MoSe2 intralayer neutral excitons (X at 1.67 eV) are indicated
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With this notion of the interlayer exciton manifold, we decompose the HBL peak.

Bright and gray excitons emit PL directly into ZPLs at their bare energy, indicated

by the orange and gray solid lines in Fig. 7.10b. Momentum-indirect excitons, on

the other hand, contribute to the PL spectrum as phonon sidebands (Refs. P4 and

P3) downshifted from their bare energies XU and XL by the energy of acoustic

or optical phonons that compensate for momentum mismatch in the light-matter

coupling and thus promote radiative decay. The energies of XB and XU as well as

XG and XL, degenerate in the absence of electron-hole exchange and indicated by

the dashed lines in Fig. 7.10b, were determined from the best fit of the spectrum (red

solid line) using inhomogeneously broadened Gaussians with one global linewidth

γ of 18 meV and phonon energies of MoSe2. The model fit includes one acoustic

(LA) and two optical phonon modes (LO, A1) with respective energies of 19.9 meV,

37.4 meV, and 25.6 meV [61]. For interlayer XB excitons we obtained a redshift

of 218 ± 8 meV with respect to the neutral ML X exciton. The energy separation

between XB and XG, which accounts for the spin-orbit splitting of ∼ 30 meV in ML

MoSe2 is difficult to determine with our fit, due to similar energies of optical phonon

sidebands of XU excitons combined with inhomogeneous broadening. However, the

spectral analysis showed that dark excitons contribute to a large extend to the optical

properties of MoSe2-WSe2 HBLs. Moreover, the model predicts different timescales

for bright, gray, and momentum-dark interlayer excitons that were determined with

time-resolved measurements (see Ref. P5).
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7.8 Conclusions

Following the analysis developed for ML TMDs in Chapter 5, PL emission from

BL and HBL systems was interpreted on the basis of spin- and momentum-dark

interlayer excitons. This approach was used to qualitatively reconstruct spectra of

BL samples in an uncontrolled charge environment. In our analysis, BL momentum-

dark excitons were observed as absorption resonances in spectra of localized QD

states, which offer large uncertainty in momentum for optical transitions. Apart

from the microscopic understanding of QD formation in TMD crystals, our exper-

iments revealed promising features of BL QDs for quantum information technol-

ogy. Additional charge control of samples encapsulated in hBN allowed to identify

momentum-dark BL trions with a binding energy of 22 meV. Furthermore, the low-

est momentum-dark exciton state was found to be constructed with Q-valley CB

states.





Chapter 8

Summary and perspectives

Within this thesis, optical properties of ML and BL TMDs were studied with con-

focal optical spectroscopy ranging from ambient to cryogenic environments and in

magnetic fields of up to 9 T. The photophysics of TMDs are dominated by excitonic

effects at the K and K′ valleys of their hexagonal BZ, with unique optical selection

rules [30]. In the exciton PL of CVD-grown ML MoS2, optically initialized valley

pseudospins were detected as a high degree of polarization. The robustness of this

valley degree of freedom for excitons strongly depended on material quality and was

influenced by exciton-phonon interactions [22, 23]. These properties were imaged

with Raman spectroscopy and revealed spatial inhomogeneities across the crystal.

Exciton-resonant Raman scattering was employed to identify defect-mediated for-

bidden scattering between excitons and LO phonons in MoS2 MLs. Moreover, Ra-

man intensities at regular crystal positions were tuned by perpendicular magnetic

fields in accord with the resonance condition of valley Zeeman split excitons. This

technique provided experimental support for the theoretically proposed scattering

mechanism of the dispersive ’b’ mode that involves E2
1u phonons [121]. Our studies

identify magneto-Raman hyperspectroscopy as a valuable method to examine valley

photodynamics in TMD crystals.

Apart from Raman spectroscopy, the focus of this thesis was directed towards the

identification of low-temperature spectral signatures in the PL of ML and BL crys-

tals. The interpretation of PL features was complicated by the ambiguity of similar

trion binding energies and optical phonon energies. A model based on momentum-

indirect excitons was developed to assign unidentified peaks in the emission spectra.

An essential aspect for the study was the high material quality and control of doping

provided by hBN-encapsulated samples with field-effect tunability. The samples al-

lowed to assign unidentified PL peaks to acoustic and optical phonon replicas of

momentum-dark excitons. We identified momentum-dark excitons in ML WSe2 that

reside 19 meV below the spin-bright fundamental exciton and are constructed with

83
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an electron in the Q valley and an empty state in the K valley. Acoustic phonon

replicas of these dark excitons were responsible for the most intense emission peak

in low-temperature spectra.

Complementary optical experiments supported the model of momentum-indirect

excitons in ML WSe2. These include the absence in reflectance measurements of PL

peaks assigned to phonon sidebands of momentum-indirect excitons. Their emission

exhibited a sublinear power dependence without saturation at higher laser fluences

and a dominant decay component of 20 ps, that was also found for momentum-

indirect excitons in BLs [36]. In addition, exciton g-factors of phonon replicas ranging

from 11 to 14 were also almost identical to the values obtained for BL WSe2. While

our model provides an indication for the large excitonic g-factors in TMD MLs,

theoretical calculations are required to leverage our assignments.

Our analysis furthermore contributes to the discussion on conduction subband

separations between the Q and K valley in tungsten-based MLs, which have been

theoretically calculated in the range of 0–80 meV [19, 61, 73]. One route to resolve

the energy of the lowest spin-subband at the Q points could be via the aid of charge-

stability diagrams for PL and absorption spectra. This approach allows to deduce

energies of different charged states of the system with respect to their doping as was

successfully applied to self-assembled QDs [189]. In combination with experimen-

tally determined g-factors of PL peaks in electron- and hole-doped regimes, charge

stability diagrams could contribute to a comprehensive understanding of emission

features in TMD MLs.

In analogy to the model developed for ML TMDs, spectral signatures of low-

energy excitons in indirect band-gap BL WSe2 were also identified. Theoretical

calculations of the exciton band structure combined with elaborate experiments

allowed to determine exciton states in BL WSe2 that give rise to phonon-assisted

emission. In our samples, unintentional strain and disorder induced brightening of

momentum-dark excitons as well as narrow-lined QD emission. These single-photon

emitters were used to sense low-energy excitons. Spectroscopy in a charge-controlled

environment signified that lowest-energy BL excitons are constructed with an elec-

tron in the Q valley and an empty state in the K (K′) or Γ valley. The experiments

revealed momentum-indirect trions in BLs WSe2 with binding energy of 22 meV.

Our findings provide a detailed understanding of PL signatures and QD formation in

WSe2 BLs and can be generalized to other representative TMD BL and multilayer

crystals. Furthermore, the QDs hosted by BL crystals showed promising features

for quantum information technology such as a prolonged nanosecond lifetime. For

commercial applications, strain landscapes provide an option to deterministically

arrange QDs [35, 49, 190], plasmonic nanocavities could be used to enhance their

QY [190], and active charge control would offer access to individual spins [191].
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Having identified the spectral characteristics of ML and BL TMDs with em-

phasis on tungsten-based crystals, we combined MLs of nonequivalent TMDs to

create HBLs with novel physical properties. HBLs are known for the formation of

spatially indirect excitons hosting electrons and correlated empty states in different

layers. In analogy to the model pioneered for ML and BL TMDs, the complex emis-

sion spectra of HBLs have been complemented by the realm of interlayer spin-dark

and momentum-indirect excitons. Similar to intralayer excitons, interlayer excitons

also memorize valley pseudospin information but in contrast exhibit extended life-

times of up to hundreds of nanoseconds [175, 186–188] and suppressed electron-hole

exchange interactions [192]. Incorporated in optical cavities, their inherent static

dipole moment offers a playground to study collective coupling phenomena medi-

ated among excitons and photons. One example, that could be realized even at

room temperature, is Bose-Einstein condensation of interlayer exciton-polaritons

[193] owed to their long lifetimes and repulsive dipolar interactions preventing a

collapse to an electron-hole plasma at high densities [194]. Moreover, interactions of

exciton-polariton condensates with a 2D electron system may provide new pathways

towards high-temperature superconductivity [195–197].

In addition, HBLs form moiré patterns due to a lattice mismatch of dissimilar

TMDs [178–182] or a twist angle between individual layers [183]. The moiré pattern

causes a locally varying interlayer registry with a periodic modulation of the band

gap across the HBL [198] as revealed by scanning tunneling microscopy [180]. These

atomic registries form sequentially at high symmetry points of the moiré supercell,

where the threefold rotational symmetry is preserved. As a consequence they invoke

spatially alternating optical selection rules at the band extrema and may realize QD-

like confinement potentials for interlayer excitons [182, 198]. Recent experimental

approaches indicated trapped interlayer excitons with narrow PL peaks that exhib-

ited strong valley polarization [199]. Moreover, it has been proposed that band gaps

of different registries are electrically tunable by a perpendicular field, enabling a

position switch for exciton confinement and inversion of optical selection rules [198].

This may offer new opportunities towards switchable single-photon emitter arrays

and a platform to manipulate the properties of moiré excitons after fabrication. Ex-

citing effects of moiré superlattices also appear in other van der Waals materials. In

twisted BL graphene, for example, triangular networks of one-dimensional solitons

can form at domain walls between different stacking configurations that exhibit dis-

tinct electrical and optical properties [200, 201]. At magic twist angles, interlayer

orbital hybridization induces flat bands near zero Fermi energy with periodic lo-

calization of the real-space wavefunction [202]. These flat energy bands exhibit a

correlated insulating phase at half-filling that is indicative for a phase transition to

a Mott insulator [203]. Upon electrostatic doping away from the insulating phases,
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the strongly correlated system becomes superconducting [204]. The pronounced pair-

ing strength among electrons combined with their vanishing Fermi velocity provides

unique possibilities to explore exotic phases of matter in van der Waals materials

[205]. Analogously, rotational control of individual layers in semiconducting TMDs

can create flat excitonic bands and enhance exciton-exciton interactions to explore

and manipulate optically nonlinear effects [206]. In addition, a periodic moiré po-

tential together with a Zeeman field are expected to create excitonic topological

bands [181, 198]. These bands support chiral edge states that protect unidirectional

exciton transport and can be exploited for topologically protected photonic circuitry

[181].



References

[1] F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff,
and V. Pellegrini. Graphene, related two-dimensional crystals, and hybrid systems
for energy conversion and storage. Science 347, 1246501 (2015).

[2] A. K. Geim. Nobel Lecture: Random walk to graphene. Rev. Mod. Phys. 83, 851–
862 (2011).

[3] K. S. Novoselov. Nobel Lecture: Graphene: Materials in the Flatland. Rev. Mod.
Phys. 83, 837–849 (2011).

[4] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F.
Wang. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271–
1275 (2010).

[5] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz. Atomically Thin MoS2: A
New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

[6] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao. Coupled Spin and Valley Physics
in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett.
108, 196802 (2012).

[7] X.-X. Zhang, Y. You, S. Y. F. Zhao, and T. F. Heinz. Experimental Evidence for
Dark Excitons in Monolayer WSe2. Phys. Rev. Lett. 115, 257403 (2015).

[8] G. Wang, C. Robert, A. Suslu, B. Chen, S. Yang, S. Alamdari, I. C. Gerber, T.
Amand, X. Marie, S. Tongay, and B. Urbaszek. Spin-orbit engineering in transition
metal dichalcogenide alloy monolayers. Nat. Commun. 6, 10110 (2015).

[9] F. Withers, O. Del Pozo-Zamudio, S. Schwarz, S. Dufferwiel, P. M. Walker, T.
Godde, A. P. Rooney, A. Gholinia, C. R. Woods, P. Blake, S. J. Haigh, K. Wa-
tanabe, T. Taniguchi, I. L. Aleiner, A. K. Geim, V. I. Fal’ko, A. I. Tartakovskii,
and K. S. Novoselov. WSe2 Light-Emitting Tunneling Transistors with Enhanced
Brightness at Room Temperature. Nano Lett. 15, 8223–8228 (2015).

[10] M. R. Molas, C. Faugeras, A. O. Slobodeniuk, K. Nogajewski, M. Bartos, D. M.
Basko, and M. Potemski. Brightening of dark excitons in monolayers of semicon-
ducting transition metal dichalcogenides. 2D Mater. 4, 021003 (2017).

[11] X.-X. Zhang, T. Cao, Z. Lu, Y.-C. Lin, F. Zhang, Y. Wang, Z. Li, J. C. Hone,
J. A. Robinson, D. Smirnov, S. G. Louie, and T. F. Heinz. Magnetic brightening
and control of dark excitons in monolayer WSe2. Nat. Nanotechnol. 12, 883–888
(2017).

87

http://dx.doi.org/10.1126/science.1246501
http://dx.doi.org/10.1103/RevModPhys.83.851
http://dx.doi.org/10.1103/RevModPhys.83.851
http://dx.doi.org/10.1103/RevModPhys.83.837
http://dx.doi.org/10.1103/RevModPhys.83.837
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/physrevlett.108.196802
http://dx.doi.org/10.1103/physrevlett.108.196802
http://dx.doi.org/10.1103/physrevlett.115.257403
http://dx.doi.org/10.1038/ncomms10110
http://dx.doi.org/10.1021/acs.nanolett.5b03740
http://dx.doi.org/10.1088/2053-1583/aa5521
http://dx.doi.org/10.1038/nnano.2017.105
http://dx.doi.org/10.1038/nnano.2017.105


88 References

[12] Y. Zhou, G. Scuri, D. S. Wild, A. A. High, A. Dibos, L. A. Jauregui, C. Shu, K. d.
Greve, K. Pistunova, A. Joe, T. Taniguchi, K. Watanabe, P. Kim, M. D. Lukin,
and H. Park. Probing dark excitons in atomically thin semiconductors via near-
field coupling to surface plasmon polaritons. Nat. Nanotechnol. 12, 856–860 (2017).

[13] Z. Wang, L. Zhao, K. F. Mak, and J. Shan. Probing the Spin-Polarized Electronic
Band Structure in Monolayer Transition Metal Dichalcogenides by Optical Spec-
troscopy. Nano Lett. 17, 740–746 (2017).

[14] G. Wang, C. Robert, M. M. Glazov, F. Cadiz, E. Courtade, T. Amand, D. Lagarde,
T. Taniguchi, K. Watanabe, B. Urbaszek, and X. Marie. In-Plane Propagation
of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules.
Phys. Rev. Lett. 119, 047401 (2017).

[15] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao. Three-band tight-binding
model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B
88, 085433 (2013).
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Park, and D. C. Ralph. Breaking of Valley Degeneracy by Magnetic Field in Mono-
layer MoSe2. Phys. Rev. Lett. 114, 037401 (2015).

[76] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D.
Cobden, W. Yao, and X. Xu. Magnetic control of valley pseudospin in monolayer
WSe2. Nat. Phys. 11, 148–152 (2015).

[77] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu.
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[101] A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. v. Bor-
czyskowski. Scanning Confocal Optical Microscopy and Magnetic Resonance on
Single Defect Centers. Science 276, 2012–2014 (1997).

[102] F. Jelezko and J. Wrachtrup. Single defect centres in diamond: A review. Phys.
Status Solidi A 203, 3207–3225 (2006).

[103] O. Gunawan, E. P. De Poortere, and M. Shayegan. AlAs two-dimensional electrons
in an antidot lattice: Electron pinball with elliptical Fermi contours. Phys. Rev. B
75, 081304 (2007).

[104] D. Culcer, A. L. Saraiva, B. Koiller, X. Hu, and S. Das Sarma. Valley-Based Noise-
Resistant Quantum Computation Using Si Quantum Dots. Phys. Rev. Lett. 108,
126804 (2012).

[105] A. Rycerz, J. Tworzyd lo, and C. W. J. Beenakker. Valley filter and valley valve in
graphene. Nat. Phys. 3, 172–175 (2007).

[106] S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R.
Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu. Defects
activated photoluminescence in two-dimensional semiconductors: interplay between
bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

[107] G. Sallen, L. Bouet, X. Marie, G. Wang, C. R. Zhu, W. P. Han, Y. Lu, P. H. Tan, T.
Amand, B. L. Liu, and B. Urbaszek. Robust optical emission polarization in MoS2

monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

[108] D. Lagarde, L. Bouet, X. Marie, C. R. Zhu, B. L. Liu, T. Amand, P. H. Tan, and
B. Urbaszek. Carrier and Polarization Dynamics in Monolayer MoS2. Phys. Rev.
Lett. 112, 047401 (2014).

[109] S. Wu, J. S. Ross, G.-B. Liu, G. Aivazian, A. Jones, Z. Fei, W. Zhu, D. Xiao, W.
Yao, D. Cobden, and X. Xu. Electrical tuning of valley magnetic moment through
symmetry control in bilayer MoS2. Nat. Phys. 9, 149–153 (2013).

[110] K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. Mac-
Donald, G. Moody, and X. Li. Trion valley coherence in monolayer semiconductors.
2D Mater. 4, 025105 (2017).

[111] K. Tran, A. Singh, J. Seifert, Y. Wang, K. Hao, J.-K. Huang, L.-J. Li, T. Taniguchi,
K. Watanabe, and X. Li. Disorder-dependent valley properties in monolayer WSe2.
Phys. Rev. B 96, 041302 (2017).

http://dx.doi.org/10.1103/PhysRevLett.26.86
http://dx.doi.org/10.1103/PhysRevLett.85.290
http://dx.doi.org/10.1126/science.276.5321.2012
http://dx.doi.org/10.1002/pssa.200671403
http://dx.doi.org/10.1002/pssa.200671403
http://dx.doi.org/10.1103/PhysRevB.75.081304
http://dx.doi.org/10.1103/PhysRevB.75.081304
http://dx.doi.org/10.1103/PhysRevLett.108.126804
http://dx.doi.org/10.1103/PhysRevLett.108.126804
http://dx.doi.org/10.1038/nphys547
http://dx.doi.org/10.1038/srep02657
http://dx.doi.org/10.1103/PhysRevB.86.081301
http://dx.doi.org/10.1103/PhysRevLett.112.047401
http://dx.doi.org/10.1103/PhysRevLett.112.047401
http://dx.doi.org/10.1038/nphys2524
http://dx.doi.org/10.1088/2053-1583/aa70f9
http://dx.doi.org/10.1103/PhysRevB.96.041302


References 95
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Vielen Dank für die finanzielle Unterstützung, die es mir auch ermöglicht hat, an
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Lebenslagen und Korrekturlesen meiner Arbeit.
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rung von Tieftemperatur-Objektiven. Besonderer Dank geht auch an Victor Funk,



Jonathan Förste und Michi Förg für die Herstellung qualitativ hochwertiger, la-

dungsdurchstimmbarer TMD Proben und entscheidender Beiträge zum Bilagenpro-
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Altpeter im Reinraum und Stefan Manus bei elektronischen Fragen war immer sehr

hilfreich. Vielen Dank der Werkstatt mit Jürgen Aust und Thomas Großhauser für

die Herstellung einiger mechanischer Komponenten.
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