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„Manchmal hat man eine sehr lange Straße vor
sich. Man denkt, die ist so schrecklich lang; das
kann man niemals schaffen, denkt man. Und
dann fängt man an, sich zu eilen. Und man eilt
sich immer mehr. Jedes Mal, wenn man
aufblickt, sieht man, dass es gar nicht weniger
wird, was noch vor einem liegt.
Und man strengt sich noch mehr an, man
kriegt es mit der Angst zu tun und zum Schluss
ist man ganz außer Puste und kann nicht mehr.
Und die Straße liegt immer noch vor einem. So
darf man es nicht machen. Man darf nie an die
ganze Straße auf einmal denken, verstehst du?
Man muss immer nur an den nächsten Schritt
denken, an den nächsten Atemzug, an den
nächsten Besenstrich. Dann macht es Freude;
das ist wichtig, dann macht man seine Sache
gut. Und so soll es sein.
Auf einmal merkt man, dass man Schritt für
Schritt die ganze Straße gemacht hat. Man hat
gar nicht gemerkt wie, und man ist nicht außer
Puste. Das ist wichtig.

— Michael Ende
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Abstract
Neurons in layer II of the rodent medial entorhinal cortex (MEC) encode spatial
information. One particular type, grid cells, tends to fire at specific spatial
locations that form hexagonal lattices covering the explored environment. Within
these firing fields grid cells frequently show short high-frequency spike sequences.
Such bursts have received little attention but may contribute substantially to
encoding spatial information. On the other hand, in vitro recordings of MEC
principal cells have revealed that action potentials are followed by prominent
depolarizing afterpotentials (DAP). Their biophysical foundation and function,
however, are poorly understood.

The objective of this study is to understand the mechanism behind the DAP by
creating a biophysical realistic model of a stellate cell and to draw a connection
between DAPs and burst firing in vivo.

The developed single-compartment model reproduced the main electrophysi-
ological characteristics of stellate cells in the MEC layer II, that are a DAP, sag,
tonic firing in response to positive step currents and resonance. Using virtual
blocking experiments, it was found that for the generation of the DAP only a NaP,
KDR and leak current were necessary whereby the NaP current also exhibited a
resurgent component. This suggests that for the generation of the DAP a balance
between several currents is needed. In addition, the persistent and resurgent
sodium current might play an important role.

We analyzed the relevance of DAPs in vivo using whole-cell recordings of grid
cells from Domnisoru et al. (2013). We found that around 20% of the cells
exhibited a DAP. However, the percentage of cells was much lower than estimates
from in vitro recordings. We showed that this is partly due to the quality of the
recording as selecting APs from presumably good parts of the recording improved
the visibility of DAPs. To investigate the relationship between DAPs and burst
firing all cells were classified into bursty and non-bursty based on the spike-time
autocorrelation. All cells with a DAP were bursty except the cell with the smallest
DAP. Moreover, taking the mean of the spike-triggered average of the membrane
potential for all bursty and non-bursty cells respectively showed a clear DAP for
bursty but not for non-bursty cells.

In summary, we found that the DAP can be realized in a single-compartment
model by a NaP, KDR and leak current and provided evidence for the relevance of
DAPs for burst firing in vivo.
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List of Abbreviations

AEA Anandamide
AP Action potential
CaLVA Low-voltage activated calcium channel
DAP Depolarizing afterpotential
EC Entorhinal cortex
EPSP Excitatory postsynaptic potential
fAHP Fast afterhyperpolarization
HCN Hyperpolarization-activated cation channel
HDR High density region (definition in Sec. 4.4.2)
ISI Interspike interval
KA A-type potassium channel
KDR Delayed-rectifier potassium channel
KM M-type potassium channel
L-BFGS-B Limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno)

algorithm for bound constrained optimization
LEC Lateral entorhinal cortex
LTP Long term potentiation
mAHP Medium afterhyperpolarization
MEC Medial entorhinal cortex
MECIIDAP Cells of the medial entorhinal cortex layer II with a

depolarizing afterpotential (definition in Sec. 4.4.1)
NaT Transient sodium channel
NaP Persistent sodium channel
NaR Resurgent sodium channel
PCA Principal component analysis
PC Principal component
PDF Probability density function
RMSE Root mean square error
SEM Standard error of the mean
STAV Spike-triggered average of the membrane potential
TTX Tetrodotoxin
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1Introduction

You arrived for a trip in a new city and need to find the way to your accommoda-
tion. You take out your smartphone, open the navigation app of your choice and
it shows you a map with the shortest route from your current location to your
accommodation. After several days of running around in the city you will not
need your smartphone anymore for finding the accommodation. Your brain will
have built up a map itself. But how is this map realized and represented in the
brain?

1.1 Coding of space in the brain
1.1.1 Place cells
First indications of how space is coded in the brain came from O’Keefe and
Dostrovsky (1971). They found cells in the hippocampus that had an increased
firing rate when the animal was at a certain position of the environment (Fig. 1.1)
(for a review see E. I. Moser, Kropff, et al., 2008; Best et al., 2001). These
so-called place cells were hypothesized to form a map of a given environment
whereby each cell represents a specific part (O’Keefe, 1976).

Fig. 1.1: Examples of different types of spatially modulated cells and their occurrence.
Adopted from M. Brandon et al. (2014). In the left column for each cell type is shown: i)
The running trajectory (black) of the animal in a square-shaped environment with the
spikes (red) superimposed. ii) The color-coded firing rate map (red: high firing rate,
blue: low firing rate). iii) A polar plot of the firing rate as function of the head direction
of the animal. The right columns indicate the brain areas where each cell type was found.
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1.1.2 Grid cells
Already Ramon y Cajal noted in his studies of the nervous system that the
entorhinal cortex (EC) is strongly connected to the hippocampus and suggested
that their functions are related (Ramon y Cajal, 1902). Indeed, Fyhn et al.
(2004) discovered that cells in the medial entorhinal cortex (MEC) are spatially
modulated. These cells fire when the animal’s position coincides with any vertex
of a hexagonal lattice spanning the ground of the environment (Fig. 1.1) (Hafting
et al., 2005; for a review see E. I. Moser, Kropff, et al., 2008).

Grid cells are hypothesized to play a role in mammalian path integration
(Hafting et al., 2005; McNaughton et al., 2006; E. I. Moser and M.-B. Moser,
2008). This is the ability of an animal to keep track of its location relative to an
initial reference point using self-motion information and to determine a direct
return path. Behavioral experiments on path integration have been carried out
on many species, most notably on desert ants (Fig. 1.2).

In mammals, a connection between grid cell activity and path integration was
established by two studies. Parron and Save (2004) showed that finding the re-
turn path is impaired when the EC is lesioned. More specifically, Gil et al. (2018)
demonstrated that removing NMDA glutamate receptors leads to disrupted grid
cell activity and path integration that correlates in degree.

Fig. 1.2: Path integration in the desert ant. Adopted from Müller and Wehner (1988).
Outbound (solid line) and inbound (stippled line) path of an individual desert ant
between the nest (N) and a food location (F) with time marks (small circles) every 60 s.
Note that the desert ant is able to find a direct return path from the food location to the
nest.
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1.1.3 Other spatially modulated cells
To complete the list, a few other spatially modulated cells have to be mentioned
(Fig. 1.1). Head direction cells increase their firing rate when the animal’s head
points into the preferred direction of the cell (Taube et al., 1990; Taube, 1998).
The borders of an environment are represented by border cells (Solstad et al.,
2008; Lever et al., 2009). Another type are conjunctive cells. These cells combine
a hexagonal grid firing pattern with head-direction preference (Sargolini et al.,
2006). Object-vector cells, recently discovered by Hoydal et al. (2018), fire when
the animal is at a specific distance and direction from an object.

In addition, there are also cells that are modulated by the animal’s running
speed (Kropff, Carmichael, et al., 2015) as well as neurons that encode the
elapsed time (MacDonald et al., 2011; Kraus, Robinson II, et al., 2013; Kraus,
M. P. Brandon, et al., 2015; Tsao, Sugar, et al., 2018).

1.2 Connectivity of the entorhinal cortex
Spatially modulated cells are found in the hippocampal formation and parahip-
pocampal region (Fig. 1.3). The hippocampal formation comprises the dentate
gyrus (DG), the areas CA3, CA2, CA1 and the subiculum (Sub). The parahip-
pocampal region consists of the pre- and parasubiculum, the entorhinal, perirhi-
nal and postrhinal cortex. This distinction is based on the laminar organization
whereby the hippocampal formation is three-layered and the parahippocampal
region six-layered (Witter et al., 2000).

The EC connects to the hippocampal formation through the perforant path.
The perforant path is constituted by two pathways (see inset of Fig. 1.3). One
pathway projects from layer II of the EC to the dentate gyrus and CA3 that,
in turn, has forward connections to CA1 (Andersen et al., 1971; Steward and
Scoville, 1976; Yeckel and Berger, 1990). The other pathway begins in layer

Fig. 1.3: Illustration of a horizontal section of the hippocampal formation (Dentate gyrus
(DG), CA1, CA3 and Subiculum (Sub)) by Ramon y Cajal (1909). The inset shows major
pathways between different layers of the entorhinal cortex (EC) and the hippocampal
formation.
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III of the EC and connects directly to CA1 (Steward and Scoville, 1976; Yeckel
and Berger, 1990; Brun et al., 2008). The output of CA1 is relayed back to the
deep layers of the EC partially mediated by the subiculum (Tamamaki and Nojyo,
1995; Amaral et al., 1991). Naturally, many more connections exist (Witter et al.,
2000; Van Strien et al., 2009).

The medial and lateral region of the EC are usually considered separately
as they do have different connectivity and functionality (Canto, Wouterlood,
et al., 2008; Knierim et al., 2014). A major difference in connectivity is that the
MEC receives input from the postrhinal cortex and the pre- and parasubiculum
whereas the lateral entorhinal cortex (LEC) receives input from the perirhinal
cortex (Suzuki and Amaral, 1994; Burwell, 2000; Groen and Wyss, 1990; Canto,
Wouterlood, et al., 2008).

This stands in connection with their different functional roles. In the pre- and
parasubiculum spatially modulated cells were found (Fig. 1.1) that could forward
spatial information to the MEC (M. Brandon et al., 2014; Boccara et al., 2010).
In fact, cells in the MEC are strongly spatially modulated in contrast to cells in
the LEC (Hargreaves et al., 2005). As the MEC is strongly involved in processing
spatial information (Fyhn et al., 2004; Hafting et al., 2005; Sargolini et al., 2006)
it is seen as part of the where pathway (Ungerleider and Haxby, 1994) or as
providing the hippocampus with spatial context information (Knierim et al., 2014,
Norman and Eacott, 2005).

The LEC, on the other hand, is modulated by the perirhinal region that is
involved in object recognition (Murray, T. Bussey, et al., 2000; Murray and
Mishkin, 1998; Murray, Baxter, et al., 1998, Norman and Eacott, 2005; Winters
et al., 2006) and perceptual processing of complex stimuli (T. J. Bussey et al.,
2002; Buckley et al., 2001; Eacott et al., 2001). The LEC is associated with
processing object-related information (Tsao, M.-B. Moser, et al., 2013; Deshmukh
and Knierim, 2011) and is thus considered part of the what pathway (Ungerleider
and Haxby, 1994) or as providing the hippocampus with content information
(Knierim et al., 2014).

The extrinsic connectivity of the EC includes connections to olfactory-related
structures (Kosel et al., 1981; Krettek and Price, 1977). Furthermore, there is cor-
tical connectivity with multimodal association areas as the parietal, temporal and
prefrontal cortex (Swanson and Kohler, 1986; Burwell, 2000; Canto, Wouterlood,
et al., 2008) and subcortical connectivity with the basal forebrain, claustrum,
amygdala, basal ganglia, thalamus, hypothalamus and brainstem (Beckstead,
1978; Insausti et al., 1987; Canto, Wouterlood, et al., 2008).
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1.3 Morphology, electrophysiology and
immunohistochemistry of principal cells in MEC
layer II
We concentrated our investigations on layer II of the MEC as it constitutes a major
input source of the hippocampal formation and contains grid cells.

The MEC contains two principal cell types: Stellate cells, making up about
70% and pyramidal cells, making up about 20% of the whole cell population
whereby the remainder is comprised of horizontal and small round cells (Klink
and Alonso, 1997; Gatome et al., 2010). Morphologically, stellate cells can be
recognized by: i) their multiple, thick primary dendrites, ii) a widely spreading
dendritic tree close to the pial surface and iii) a thick axon emerging from a
primary dendrite. Pyramidal cells on the other hand have: i) usually only one
principal apical dendrite, ii) more confined dendritic trees and iii) a thin axon
emerging from the base of the soma (Fig. 1.4) (Klink and Alonso, 1997; Canto
and Witter, 2012).

Electrophysiologically the two cell types differ, too. Subthreshold behavior
can be tested by inserting a long step current of small amplitude (Fig. 1.5 B, F).
Stellate cells respond with a sag, i.e. shortly after current onset the membrane
potential attains a peak and then settles at a lower voltage deflection (Alonso
and Klink, 1993; Alessi et al., 2016; Dickson et al., 2000). In pyramidal cells
only weak sags are visible (Alonso and Klink, 1993; Alessi et al., 2016). The sag
was shown to be mediated by HCN channels as it can be abolished by blocking
HCN channels with Cs+ or ZD7288 and reduced by deletion of HCN1 channels
(Dickson et al., 2000; Jones, 1994; Nolan et al., 2007).

By testing increasingly positive amplitudes of the step current, one can inves-
tigate the superthreshold behavior (Fig. 1.5 C, G). Stellate cells often show a
doublet shortly after current injection followed by moderately adapting tonic
firing whereas pyramidal cells can have a long latency till the first single spike

Fig. 1.4: Morphology of a stellate (A) and pyramidal (B) cell by Alonso and Klink (1993).
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that is followed by adapting tonic firing (Alonso and Klink, 1993; Alessi et al.,
2016).

Another defining characteristic of stellate cells is resonance. When given a ZAP
current, an oscillatory input whose frequency increases over time, the membrane
potential has the highest impedance for frequencies in the theta range (5-11 Hz)
(Fig. 1.5 D, H) (Canto and Witter, 2012; Erchova et al., 2004; Haas and White,
2002). Pyramidal cells, on the other hand, show no or weak resonance (Canto
and Witter, 2012; Erchova et al., 2004; Haas and White, 2002). Resonance in
stellate cells is also dependent on HCN channels as blocking HCN or deleting
HCN1 channels led to a decrease of the resonance frequency (Nolan et al., 2007;
Heys et al., 2010).

Another resonance phenomenon becomes apparent when stellate cells are
depolarized close to the spike threshold by constant current injection. Subthresh-
old oscillations in the theta range emerge that are interrupted by spike clusters
with a firing frequency in the high theta range (Nolan et al., 2007; Engel et al.,
2008). In contrast to resonance in response to a ZAP current these oscillations are
hypothesized to be caused by stochastic ion channel gating (Dorval and White,
2005; Dudman and Nolan, 2009; Engel et al., 2008).

Fig. 1.5: Comparison of stellate cell (first row) and pyramidal cell (second row) elec-
trophysiology. A, E: Stimulation with a triangular pulse elicits an AP at 3.5 nA in the
putative stellate and at 7 nA in the putative pyramidal cell. The DAP is more pronounced
in the putative stellate cell. B, F: The putative stellate cell shows a sag in response to a
negative step current (and likewise an overshoot at the end of the stimulus) whereas
the putative pyramidal cell shows no sag. C, G: A superthreshold step current elicits an
initial doublet (shown in the inset) followed by regular spiking in the putative stellate
cell. The putative pyramidal cell shows tonic firing after a long initial latency. D, H: The
putative stellate cell exhibits resonance at a stimulation frequency of 7 Hz in response to
a ZAP current in contrast to the putative pyramidal cell, which acts as a low-pass filter.
The data for these figures were recorded by Kümpfbeck (2019).
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The action potential (AP) of layer II MEC cells has a special shape as the spike
is often followed by a depolarizing afterpotential (DAP), a depolarization in the
membrane potential with a clearly visible maximum around 4 ms after the AP
and an amplitude of about 14.5 mV (Fig. 1.5 A, E). The DAP is more pronounced
in stellate than in pyramidal cells (Alonso and Klink, 1993; Alessi et al., 2016;
Canto and Witter, 2012).

Besides these two principal cell types, there are also intermediate cell types
with morphologies close to pyramidal or between stellate and pyramidal cells.
These intermediate cell types have electrophysiological characteristics similar to
stellate or pyramidal cells (Canto and Witter, 2012; Fuchs et al., 2016).

Another means to distinguish between stellate and pyramidal cells is immuno-
histochemistry. It was proposed that cells that express reelin are stellate cells and
that cells that express calbindin are pyramidal cells (Kitamura et al., 2014; Ray
et al., 2014; Fuchs et al., 2016; Winterer et al., 2017).

Although these characterizations provide a nice picture of what a typical stellate
and pyramidal cell is, the boundaries are not that clear. For instance, when looking
at the relation between electrophysiology and morphology, it appears that, firstly,
electrophysiological characteristics do not fall into two or more classes but are
distributed continuously (see e.g. Fig. 2.4 D, Fig. 2.6 D) and, secondly, that
only a majority but not all cells show the typical characteristics so that there
is considerable overlap between cell types (Alonso and Klink, 1993; Canto and
Witter, 2012). For example, 80% of all stellate cells and 41% of all pyramidal
cells have a prominent sag ratio (the ratio of the maximal voltage deflection
and the mean steady state membrane potential in response to a subthreshold
step current) (Canto and Witter, 2012). Comparing immunohistochemistry
with electrophysiology leads to inconsistencies, too. For example, a majority of
calbindin+, putative pyramidal, cells had a resonance frequency higher than 2 Hz
and a pronounced sag - electrophysiological characteristics typical for stellate
cells (Kümpfbeck, 2019). The problem of clear-cut classification of stellate and
pyramidal cells is also reflected in the fact that each paper introduces its own
classification method instead of using a single generally accepted method (Couey
et al., 2013; Alessi et al., 2016; Fuchs et al., 2016; Winterer et al., 2017; Justus
et al., 2017).

1.4 Local connectivity in the MEC layer II
The function of stellate cells depends strongly on the local connectivity. For
instance, continuous attractor networks, a current model to explain grid cell
firing, often require inhibitory connections (Burak and Fiete, 2009; Couey et al.,
2013; Pastoll et al., 2013).

In the MEC layer II stellate cells have many connections with inhibitory in-
terneurons (Couey et al., 2013; Fuchs et al., 2016). They connect to fast-spiking
interneurons, however, receive few inputs from low-threshold spiking or 5-HT3A+
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interneurons (Couey et al., 2013; Fuchs et al., 2016). Pyramidal cells, on the other
hand, are not connected to fast-spiking and low-threshold spiking interneurons
but get innervated by 5-HT3A+ interneurons (Fuchs et al., 2016).

Excitatory connections inside MEC layer II are very sparse. This includes
recurrent connections of stellate and pyramidal cells and connections between
stellate and pyramidal cells (Dhillon and Jones, 2000; Couey et al., 2013; Fuchs
et al., 2016; Winterer et al., 2017). Furthermore, the number of excitatory
connections between MEC layer II and layer III is low (Winterer et al., 2017).

In summary, local connectivity in the MEC layer II is dominated by inhibition.

1.5 The biophysical foundation and function of
the DAP
In this study we focused on the phenomenon of the DAP because in vitro it is
seen in the majority, approximately 85% of stellate cells in the MEC (Canto and
Witter, 2012; Alonso and Klink, 1993) and is highly likely to have an impact on
the firing behavior and hence function of the cell (Alessi et al., 2016; Kümpfbeck,
2019; Navratilova et al., 2012; Mishra et al., 2016).

Biophysical foundation
At least five mechanism are conceivable to form the biophysical foundation of the
DAP (later referred to as hypothesis 1-5):

1. Hypothesis: A back-propagating AP eliciting a dendritic spike that re-
depolarizes the soma (Turner et al., 2002; Izhikevich, 2007)

2. Hypothesis: A slow inward current caused by low-voltage activated calcium
channels (CaLVA) or persistent sodium channels (NaP) (Azouz et al., 1996;
L. Zhang et al., 1993)

3. Hypothesis: A resurgent sodium channel (NaR) that is open after the spike
due to the inability of persistent inactivation (Castelli et al., 2007)

4. Hypothesis: The window current of a transient sodium channel (NaT)
(Magistretti and Alonso, 1999; Alessi et al., 2016)

5. Hypothesis: The interplay of several currents as shown, for instance, for the
AP in the squid axon by Hodgkin and Huxley (1952)

The first mechanism is different from the rest as it involves the morphology of
the cell. By means of simultaneous recordings from the soma and dendrite it was
shown that the AP elicited in the soma propagates into the dendrite potentially
eliciting a dendritic spike that in turn re-depolarizes the soma (Stuart and Häusser,
2001; Häusser et al., 2000). It was furthermore shown that the dendritic spike
can result in a DAP in the soma (Turner et al., 2002; Izhikevich, 2007). Stellate
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cells in the MEC layer II can generate dendritic spikes that depend on voltage-
gated sodium and NMDA receptor channels (Schmidt-Hieber, Toleikyte, et al.,
2017). But it seems unlikely that the returning dendritic spikes result in a DAP as
stellate cells have multiple primary dendrites so that timing differences between
the different back-propagating APs could easily lead to a rather blurred DAP,
when measured at the soma. In addition, it was shown that the DAP in CA1
cells does not depend on the back-propagating AP as the DAP remained after
truncating the apical dendrite (Yue et al., 2005).

The other mechanisms are all possible as the required ion channels are known
to be present in stellate cells (CaLVA: Bruehl and Wadman, 1999; NaP: Magistretti
and Alonso, 1999; NaR: Castelli et al., 2007; NaT: Magistretti and Alonso, 1999).

We do not assume that the DAP could be caused by network mechanisms
because in vitro long-range connections are severed by the slicing procedure but
local connections are mostly inhibitory (Sec. 1.4) so that network interactions
would lead to inhibition rather than excitation.

Function
Because the DAP is a depolarization of the membrane potential close to spike
threshold, it was hypothesized to facilitate burst firing. Indeed, Alessi et al.
(2016) showed that the current threshold needed to elicit an AP was on average
42% smaller during the DAP compared to the resting potential. In a parallel
dissertation project, Franziska Kümpfbeck corroborated this finding and addition-
ally showed that the current threshold at different time points during the DAP
reflects the DAP shape and that the current threshold is influenced by previous
hyper-/depolarization (Fig. 1.6) (Kümpfbeck, 2019). On the other hand, Canto
and Witter (2012) found that neurons without a prominent DAP do not burst at
the onset of a step current whereas most principal cells do.

Bursting could support neural processing, for instance, by inducing long term
potentiation (LTP) (Pike et al., 1999), more reliable transmission at synapses
(Lisman, 1997) or the selective excitement of connected cells due to high-, low- or
bandpass filtering properties of synapses or the post-synaptic neuron (Izhikevich
et al., 2003). This could play a role in learning spatial representations of the
environment or navigational planning as implemented by replay events (Skaggs
and McNaughton, 1996; Wilson and McNaughton, 1994; Ólafsdóttir et al., 2018)
that are associated with increased burst firing (Skaggs, McNaughton, et al., 2007;
Staba et al., 2002).

The DAP could also directly influence spatial coding. In the model by Navratilova
et al. (2012) grid field size and the spatial period of the grid depended on the
time between the AP peak and the DAP maximum, however, this time was an
order of magnitude longer than observed in vitro. Furthermore, learning could be
influenced directly because the DAP, traveling into the dendrites, can potentiate
the effect of excitatory postsynaptic potentials (EPSP) and thereby induce LTP
(Mishra et al., 2016).
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Fig. 1.6: Reduction of the current threshold during the DAP. A: Membrane potential of
a MEC layer II cell in response to the injected current shown in B. As control an AP is
elicited in the beginning. The baseline is set to -0.05 nA to keep the effect of the baseline
and the hyperpolarization (blue), no polarization (black) and depolarization (red) apart.
In the inset the experiment’s main part is shown. The 1st triangular pulse is used to elicit
an AP. The 2nd triangular pulse is used to test how much current is needed to elicit an
AP at different time points during the DAP. C: Current threshold, i.e. the least amount
of current needed to elicit an AP, for previous hyper-, no- and depolarization. The data
point at 0 ms shows the current threshold at rest. The dashed lines indicate the range
of amplitudes tested for this cell. The dotted line depicts the shape of the AP and DAP.
D: Percentage of the decrease in current threshold from rest compared to the lowest
threshold during the DAP for all cells plotted for previous hyper-, no- and depolarization.
Next to it, the mean and standard deviation over cells is shown respectively. The decrease
in current threshold was significantly different from zero in all three cases (t-test: *
p < 0.01, ** p < 0.001, *** p < 0.0001). It was also significantly different between
hyperpolarization and depolarization (paired t-test with Bonferroni-correction: * p <
0.01, ** p < 0.001, *** p < 0.0001). However, compared to no polarization significance
was not reached. This is likely because not always the lowest possible current amplitude
was tested so that at the minimum the points overlap as seen in C. The data for these
figures were recorded by Kümpfbeck (2019).

1.6 Outlook
Grid cells in the MEC layer II encode spatial information. However, the code they
are using, especially the role of frequently occurring bursts, is not understood.
In vitro recordings of principal cells in MEC layer II have revealed that the
AP is followed by a prominent DAP that could be the cause of such bursts,
but its biophysical foundation and relation to burst firing in vivo has not been
investigated yet.

The objective of this study is to understand the mechanism behind the DAP by
creating a biophysical realistic model of a typical stellate cell in the MEC layer II
and to draw a connection between DAPs and burst firing in vivo.

Firstly, it was investigated if the developed single-compartment model repro-
duced the main electrophysiological characteristics of stellate cells (Sec. 2.1.1).
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In the model we studied which ion channels are necessary for the generation
of the DAP by means of virtual blocking experiments (Sec. 2.1.2). Furthermore,
a sensitivity analysis was conducted to find out which parameters in the model
influence DAP characteristics (Sec. 2.1.3).

In vitro experiments showed that the DAP can facilitate burst firing by lowering
the current threshold. We investigated whether DAPs occur in vivo (Sec. 2.2.1)
and if there is a relationship between having a DAP and being classified as a
bursty cell (Sec. 2.2.2).
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2Results

2.1 Biophysical foundation: Single-compartment
model of the DAP
To investigate the biophysical foundation of the DAP, we created a single-compart-
ment model of a typical MEC layer II stellate cell. We analyzed the mechanism
behind the DAP by determining which ion channels are necessary for the genera-
tion of the DAP using virtual blocking experiments. Furthermore, a sensitivity
analysis was conducted to investigate the influence of the model parameters on
the DAP shape.

In the future, the model could be used to investigate the firing behavior of
stellate cells under conditions closer to in vivo, for instance, by inserting synaptic
input. Furthermore, the model could be easily included into network models
of grid formation as continuous attractor networks (Burak and Fiete, 2009;
Fuhs and Touretzky, 2006; McNaughton et al., 2006) or feed-forward models
(Kropff and Treves, 2008; D’Albis and Kempter, 2017; Monsalve-Mercado and
Leibold, 2017). This would allow to test whether network models still function
with a biophysically realistic cell model and which effect electrophysiological
characteristics as the DAP have on burst firing, phase precession, grid scaling etc.

2.1.1 Reproduction of the DAP and other stellate cell
characteristics
The single-compartment model shown here includes four ion channels modeled
according to the Hodgkin-Huxley formalism: a NaT, NaP, KDR and HCN channel
(model description in Sec. 4.1). The only correspondence between modeled
and real ion channels before parameter fitting is the number of activation and
inactivation gates and the equilibrium potential. The parameters of the model
were iteratively fit using the L-BFGS-B algorithm with the root mean squared
error (RMSE) between the membrane potential of the real and simulated cell
as error function. For the training the triangular pulse experiment (Sec. 4.3.1)
was applied as it displays the AP and DAP most clearly. The double triangular
pulse, step current and ZAP protocol were used as validation set. The models that
generalized the best on these protocols were used to narrow down the parameter
range for the next optimization. This was repeated until a satisfactory model
was obtained. The double-sine protocol was not included in the optimization
procedure and could therefore be used for testing the model (see Sec. 4.2 for the
optimization procedure).

In the following, we will show how well the model reproduces the stellate cell
characteristics introduced in Sec. 1.3. The model shown is the same for all plots
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and analyses, however, variations of the model can be found in the Suppl. Sec.
5.1.

The experimental data of the MEC layer II cells, that were used to test the
model, were provided by Franziska Kümpfbeck (Kümpfbeck, 2019). The real cell
used for the fit and the comparison had a drift in the resting potential over the
whole recording, therefore all voltage traces are shown with the resting potential
subtracted. For Fig. 2.3 and Fig. 2.7 a different cell is shown as not all protocols
were conducted for this cell.

To quantify how well the model accords to the distribution of MEC layer II
cells that have a DAP (MECIIDAP) (definition in Sec. 4.4.1), we estimated high-
est density regions (HDR) with respect to the main stellate cell characteristics
(details in Sec. 4.4.2) (Hyndman, 1996). A HDR measures how many percent
of the sample space have a higher or equal probability density than a specific
value. This means, if a model characteristic has a 75% HDR with respect to
the MECIIDAP distribution, on average 25% of newly recorded MECIIDAP cells
will have lower probability density of that characteristic than the model. HDRs
have an advantage over standard deviations, as they can be used for any, also
multimodal and asymmetric distributions.

Reproduction of the DAP
To investigate AP and DAP generation a triangular pulse was injected into the
cell to elicit a spike (Fig. 2.1). The simulated cell qualitatively reproduced the
afterspike dynamics of the real cell as it showed a distinctive fast afterhyperpo-
larization (fAHP), DAP and medium afterhyperpolarization (mAHP). The RMSE
between the voltage trace of the real and simulated cell in Fig. 2.1 was 3.5 mV,
mainly because the model had a higher AP amplitude than the real cell. The DAP
also deviated in amplitude, but the RMSE starting after the fAHP amounted only
to 0.8 mV.

Fig. 2.1: Reproduction of the DAP. Membrane potential of the real (blue) and simulated
cell (black) in response to a short triangular pulse (bottom plot).

13



Fig. 2.2: DAP characteristics of the model in comparison to the MECIIDAP population. A:
Illustration of the different DAP characteristics. B: Distribution of the DAP characteristics
for MECIIDAP cells (blue), the values for the model (black) and the target cell (magenta)
to which the model was fit.

When comparing different characteristics of the DAP (Fig. 2.2 A, definitions
in Sec. 4.4.3) between the model and MECIIDAP cells, the model lay within the
MECIIDAP distribution for DAP deflection (34% HDR), DAP amplitude (29% HDR)
and DAP width (72% HDR), but lay at the outer range for TimeAP-DAP (98% HDR)
(Fig. 2.2 B). Looking at the distributions in 2D scatter plots, that visualize the
interdependence of the characteristics, the model was also within the MECIIDAP

population but on the edge if plotted against TimeAP-DAP (Suppl. Fig. 5.1).
One of the putative functions of the DAP is the reduction of the current thresh-

old needed to elicit an AP during the DAP as demonstrated by the double tri-

Fig. 2.3: Reproduction of the reduction in current threshold during the DAP. The model
is compared to the recorded cell using the same protocol as in Fig. 1.6. A: Membrane
potential of the real (blue) and simulated cell (black) in response to the double triangular
pulse (bottom plot) with no step current applied (compared to the -0.05 nA baseline
current) from 222 to 472 ms. B: Current threshold at rest (black and blue dot at 0 ms)
and during the DAP for different amplitudes of the preceding step current (N: 0.1 nA,
•: 0 nA, H: -0.1 nA). Dotted lines indicate the shape of the AP and DAP for the real
and simulated cell, respectively. Dashed lines indicate the range of amplitudes tested in
case of the experimental data. C: Percentage of the decrease in current threshold from
rest compared to the lowest threshold during the DAP of real cells (blue) and the model
(black). Next to it, the mean and standard deviation over real cells.
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angular pulse experiment (Fig. 1.6). The model, tested on the same protocol
(Fig. 2.3), also showed a reduction in the current threshold. However, the current
threshold curve was shifted to the right, probably because the time span between
the AP and the DAP maximum was higher in the model. Overall, the current
threshold was lower in the simulated compared to the real cell but within the
normal range of MECIIDAP cells. In the model it can be seen that the current
threshold was above the resting level when stimulating closer to the AP. The
same could occur in real cells if stimulation would be done closer to the AP as
expected from extrapolating the recorded data. Note also that a different cell is
shown here than the one the model was fit to as the double ramp protocol was
not conducted on that cell. The percentage of the decrease in current threshold
(Fig. 2.3 C) in the model was similar to real cells for different amplitudes of the
preceding step current.

Reproduction of the sag
In Fig. 2.4 A the real and simulated cell in response to a negative step current are
shown. Both exhibited a sag, i.e. after attaining a peak at step current onset the
membrane potential settles at a lower voltage deflection.

Looking at the sag over different amplitudes of the step current (Fig. 2.4 B), it
can be seen that the model reproduced the under- and overshoot of the membrane
potential at the sag for negative and positive step currents, respectively.

To quantify the sag, two measures were used: The steady state amplitude,
defined as the difference between the voltage at steady state and the resting
potential, and the sag deflection, that is the difference between the minimum
of the sag and the voltage at steady state. The model had a similar steady state
amplitude as the MECIIDAP population (13% HDR). The sag deflection was at the
lower range of the distribution (88% HDR).
Blocking the HCN channel by Cs+ or ZD7288 in MEC layer II cells strongly re-
duced the sag (Dickson et al., 2000, Jones, 1994, Nolan et al., 2007). Replicating
the effect of Cs+ and ZD7288 by setting the conductance of the HCN channel in
the model to zero also caused a strong decrease of the sag (Fig. 2.4 C).

Reproduction of the firing behavior
The firing behavior of the model was examined by inserting positive step currents
of increasing amplitude. In response to a step current with an amplitude of 0.4 nA
(Fig. 2.5 A) the simulated and real cell both showed tonic spiking. However, the
model did not have a doublet at current onset as would be typical for stellate
cells.

The spiking behavior was quantified by ISI1/2 and the latency of the first spike.
ISI1/2 is the ratio between the 1st and 2nd ISI computed from the trace with the
lowest step amplitude having at least four APs. (Three APs would be enough in
principle, however, voltage traces with four APs exhibited more representative
firing patterns.) The latency of the first spike is the time between the onset of
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Fig. 2.4: Reproduction of the sag. A: Membrane potential of the recorded (blue) and
simulated cell (black) in response to a negative step current. For the recorded cell, the
sag deflection and steady state amplitude are indicated. The dashed lines mark from top
to bottom the resting potential, the voltage at steady state and the sag peak, respectively.
B: Comparison of the voltage at steady state versus the sag peak for the experimental
data (blue) and the model (black). C: Membrane potential of the model without (black)
and with 100% block (yellow) of the HCN channel. D: Sag deflection (difference between
the sag peak and the voltage at steady state) and steady state amplitude (difference
between the voltage at steady state and the resting potential) of the MECIIDAP population
(blue), the model (black) and the target cell (magenta).

the stimulus and the peak of the first spike. It was determined from the trace
with the lowest step amplitude that had at least one AP. Fig. 2.5 B shows that the
model lay within the MECIIDAP population for ISI1/2 (9% HDR) and the latency
of the first spike (1% HDR).

The F-I curve (Fig. 2.5 C) shows the firing rate as function of the current
amplitude. In the simulated cell the slope of the F-I curve was higher than for
the real cell. Furthermore, the simulated cell showed a kink at the start of the
F-I curve, which is an indicator of class 2 behavior (Izhikevich, 2007). This is
consistent with the hypothesis that stellate cells in the MEC layer II undergo a
subcritical Andronov-Hopf bifurcation (Izhikevich, 2007). In this bifurcation a
transition from a stable resting state equilibrium to a stable limit cycle takes place
whereby the period of the limit cycle determines the firing frequency causing a
jump in the F-I curve. The kink could be smaller or not visible in real cells due to
ion channel noise.
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Fig. 2.5: Reproduction of the firing behavior. A: Membrane potential of the recorded
(blue) and simulated cell (black) in response to a positive step current (bottom plot).
The inset shows spiking at step onset. B: Latency of the first spike (when at least 1 spike
was present) and ISI1/2 (ratio between the first and second ISI when at least 4 spikes
were present) in the MECIIDAP population (blue), the model (black) and the target cell
(magenta). C: F-I curve of the recorded (blue) and simulated cell (black). In dotted lines
the fit of the F-I curve to Eq. 2.1 is shown. D: 2D plots for a (scaling), b (shift) and c
(exponent) obtained by fitting the F-I curve to Eq. 2.1 for the MECIIDAP population (blue)
(where RMSE≤20 Hz), the model (black) and the target cell (magenta).

The F-I curve was quantified by fitting the following function to it:

f(x) =

a · (x− b)
c if x ≥ b

0 else
(2.1)

whereby f(x) was given in Hz and x in nA. As already assumed, the scaling
parameter (a) lay outside the MECIIDAP population (97% HDR) as the F-I curve
of the model had a higher slope than most real cells (Fig. 2.5 D). The shift (b)
was well within the MECIIDAP population (35% HDR) indicating that the firing
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threshold was similar to real cells. The exponent (c) was at the higher end of
the MECIIDAP population (89% HDR) because the F-I curve of the model was
rather straight. All MECIIDAP cells had an exponent smaller than one. This is an
indication for class 2 behavior as a jump in the F-I curve leads to a high slope at
the onset of firing followed by a slow rise in the F-I curve, which is better fit by
exponents less than one. In the figure only cells with RMSE ≤ 20 Hz are shown
so that the distribution was not dictated by bad fits.

Reproduction of the resonance
Fig 2.6 A shows the simulated and real cell in response to a ZAP current, a
sinusoid increasing in frequency, commonly used to examine resonance behavior
(Eq. 4.10). The simulated and real cell resonated with the stimulus for certain
frequencies which is reflected in the increased amplitude of the membrane
potential oscillations.

The impedance curve (Eq. 4.16) was used to compute the resonance frequency
determined as the frequency where the impedance is maximal and the Q-value,
the ratio between the maximal impedance and the impedance at frequency
zero (Fig. 2.6 B). The resonance frequency was 6 Hz for the model. This is in
accordance with MEC layer II stellate cells that are known to resonate in the

Fig. 2.6: Reproduction of the resonance. A: Membrane potential of the recorded (blue)
and simulate (black) cell in response to a ZAP current (bottom plot). B: Impedance
computed from the traces shown in A. C: Membrane potential of the model without
(black) and with 100% block (yellow) of the HCN channel. D: Resonance frequency
and Q-value of the MECIIDAP population (blue), the model (black) and the target cell
(magenta).
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theta range (5-11 Hz) (Canto and Witter, 2012; Erchova et al., 2004; Haas and
White, 2002). The Q-value was 1.3 in the model. Both values were within
the distribution of MECIIDAP cells (Res. freq.: 21% HDR; Q-value: 79% HDR)
(Fig. 2.6 D).

Setting the conductance of the HCN channel to zero reduces the resonance in
the model (Fig. 2.6 C). This is similar to the response of MEC layer II stellate cells
in HCN1 knock-out mice or when HCN channels are blocked (Nolan et al., 2007;
Heys et al., 2010).

Testing the model on a new stimulus
The double-sine experiment was designed to emulate the input to a grid cell
when the animal traverses a firing field. It was based on the observation of
Schmidt-Hieber and Häusser (2013) and Domnisoru et al. (2013) that during a
firing field crossing the membrane potential slowly ramps up and down and is
superimposed by theta oscillations. We imitated this activity pattern by injecting
a ramp plus theta oscillation as input stimulus. The ramp was modeled as the
upper half of a sine with a frequency of 0.1 Hz. The theta oscillation was realized
by a sine with a frequency of 5 Hz (Fig. 2.7 A).

Fig. 2.7: Testing the model on a new stimulus. A: Membrane potential of the recorded
(blue) and simulated cell (black) in response to the double-sine stimulus (bottom plot).
B: Phase histogram of the APs with respect to the theta oscillation for the traces shown
in A. C: Phases of the AP peaks with respect to the theta oscillation as a function of time
and the linear regression lines fit to them. D: Mean and standard deviation of the phase
histogram for the MECIIDAP population (blue) and the model (black).
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The firing behavior encountered in vitro was different to what was found in
vivo as, for instance, fewer bursts were present in vitro. Those differences are
likely to be caused by the lack of synaptic inputs. Nevertheless, the experiment is
a good test set for the model as it was not used for the optimization.

To evaluate the model performance the distribution of the phases of the AP
peak with respect to the theta oscillation was examined (Fig. 2.7 B). APs of
the simulated and real cell preferably occurred during the up-phase of the sine
whereby the circular mean phase was slightly before the peak of the sine. The
circular mean phase differed only by 4 deg. between the simulated and real
cell. The peaks in the distribution arise from the fact that towards the middle
of the ramp several spikes are fired at a certain interval. In the model, the
position of the first spike varied less than in the data (mean ± std., model:
108 ± 15 deg.; data: 126 ± 20 deg.), so that the first peak in the distribution
was higher. Comparing the performance of the model with an inhomogeneous
Poisson process (see Sec. 4.4.5 for details), where the input stimulus scaled to
the average firing rate of the data was used as firing rate, showed that the RMSE
between the phase distribution of the model and the data was significantly lower
(p-val.<0.001). The model deviated on average 1 AP/bin less from the data than
the inhomogeneous Poisson process.

Looking at the distribution of the mean and standard deviation of AP phases
(Fig. 2.7 D), the model exhibited similar values as MECIIDAP cells (Mean phase:
43% HDR; Std. phase: 17% HDR). Note that in this plot the amplitude of the two
sines varies since each cell was tested on a different set of amplitudes.

Fig. 2.7 C depicts the AP phase in dependence of the time of occurrence. It
shows that with increasing ramp more APs were fired within one theta oscillation
and APs occurred progressively earlier. The reverse happened for decreasing
ramp so that on average no phase precession occurred with respect to the intrinsic
theta oscillation. Phase precession was quantified by linear regression on the
AP phases. The slope of the linear regression line was 0.4 deg./s in the model
and 2.1 deg./s in the data. As the emulated firing field in this experiment had a
duration of 5 s, these values correspond to a change of 2.0 deg. per field in the
model and 10.5 deg. per field in the data. In Schmidt-Hieber and Häusser (2013)
the slope was 4 deg. per field with respect to the intrinsic and -137 deg. per field
with respect to the extracellularly measured theta oscillation. Domnisoru et al.
(2013) reported that the phase difference between the first and last eighth of a
field amounted to -1.1 ± 43.2 deg. with respect to the intrinsic and 76.2 ± 50.5
deg. with respect to the extracellularly measured theta oscillation (note that with
this measure the sign is reversed). The slope of the AP phases with respect to the
intrinsic theta oscillation found in the model and the data in this study are thus
within the variance found in vivo consistent with an absence of phase precession.
However, the distribution of phases is much more structured in vitro due to the
absence of synaptic noise and the regularity of the theta oscillation.
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2.1.2 The mechanism behind the DAP
Having confirmed that the model reproduces the DAP and the main stellate cell
characteristics, the mechanism behind the DAP could be investigated. Firstly, the
relationship between the ion channels in the model and real ion channels was
explored. Secondly, we investigated which ion channels are necessary for the
generation of the DAP by virtual blocking experiments. Finally, the influence of
the model parameters on DAP characteristics was examined using a sensitivity
analysis.

Identifying ion channels in the model
The parameters of the ion channels in the model were completely determined
by the optimization algorithm (only the number of activation and inactivation
gates and the equilibrium potential had been set beforehand). As the parameter
ranges (shown in Tab. 4.4) were not tailored to specific ion channels but only
required to agree with the orders of magnitude of physiological data, fitting the
parameters does not necessarily generate known ion channels. In fact, we do not
expect a one-to-one mapping of fit to real ion channels for the following reasons:
i) The fit ion channels could be a combination of several real ion channels. ii)
Similar ion channel behavior could have different implementations. iii) The
model has to compensate for all the deviations from real cells that are relevant for
the voltage response as the morphology, the presence or absence of ion channels,
the complexity of the ion channels etc. Nevertheless, there should be some
correspondence between fit and real ion channels because of the prescribed
structure and the similar functionality that is achieved at the cell level.

A legend of the parameters and the corresponding model equations can be
found in Tab. 4.1 and Eq. 4.1-4.9. Comparing the parameters of fit and real ion
channels based on their assumed type (Tab. 2.1) shows that Vh (besides Vh of
NaP) and the range of the time constant are similar. Vh deviates on average by
10.2 mV and the time constant by 2.58 ms. These numbers are comparable to
variations between different recordings. For instance Vh,h was reported to be
-59.8 mV by Magistretti and Alonso (1999), but -69.0 mV by Hargus et al. (2011)
which is a difference of 9.2 mV. Vs,m was stated to be 3.6 ms by Magistretti and
Alonso (1999), but 6.6 ms by Hargus et al. (2011) differing by 3.0 ms. It should
also be noted that the recorded data was not corrected for the liquid junction
potential which means that Vh might be shifted. Furthermore, the recordings
were made at a lower temperature, so that the recorded time constants should
be considered as a lower bound (Q10 values were not estimated so that the time
constants could not be corrected). NaP Vh,h might be more negative in the model
because of one of the reasons i), ii), iii) stated above. For instance, the NaP

channel might had to compensate for the absence of a NaR channel (consistent
with the NaP channel having a resurgent component as shown below). The
parameter Vs tended to higher values in the fit ion channels. It deviated on
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NaT KDR
m h m

Vh (mV ) -32.5 ± 6.5|-30.94 -59.8 ± 5.2|-60.44 -74.3 ± n.a.|-68.29
Vs (mV ) 3.6 ± 0.9|11.99 -4.5 ± 0.9|-13.17 15.0 ± n.a.|18.84
min τ (ms) n.a.|0.00 n.a.|0.19 n.a.|0.714
max τ (ms) n.a.|0.12 n.a.|4.40 n.a.|12.201

NaP HCN
m h h

Vh (mV ) -44.4|-52.82 -48.8|-82.54 -67.4|-77.9
Vs (mV ) 5.2|16.11 -10.0|-19.19 -12.66|-20.54
min τ (ms) n.a.|1.17 1.53|0.83 2.68|4.342
max τ (ms) n.a.|7.68 6.48|7.05 74.14|81.523

Tab. 2.1: Parameters of experimentally recorded (left value) and fit ion channels (right
value) of MEC layer II stellate cells. A legend of the parameters and corresponding model
equations can be found in Tab. 4.1 and Eq. 4.1-4.9. For the recorded values either the
mean ± standard deviation over cells are given or the value obtained from averaged
data. Note that the recorded data is not corrected for the liquid junction potential so that
Vh might be shifted and that the data was measured at a lower temperature resulting in
higher time constants (Q10 values were not estimated so that the time constants could
not be corrected). For the time constants the global minimum and maximum in the range
[-95, 30] (mV) are reported. The references for the different ion channels are: NaT:
(Magistretti and Alonso, 1999), NaP: (Magistretti and Alonso, 1999), KDR: (Eder and
Heinemann, 1996), HCN (fast component): (Dickson et al., 2000).

average by 8.2 mV. The reason might be that Vs not only sets the slope for the
steady state curve, but also determines the width of the bell-shaped time constant
curve, so that there is a trade-off between the two.

In the following, the type of each ion channel in the model will be analyzed
further by virtual voltage clamp experiments (Fig. 2.8, protocols described in Sec.
4.4.6).

NaT

To visualize NaT currents (Fig. 2.8 E) the ion channel has to be brought into a
closed and non-inactivated state by clamping at a sufficiently negative potential.
From there different voltages can be tested. NaT channels would respond to more
positive potentials with a transient response, i.e. a negative current that peaks
within a few milliseconds and then decays to zero (Magistretti and Alonso, 1999;
Hargus et al., 2011; Nigro et al., 2012). This is caused by the fast opening of the
sodium channel followed by inactivation.

The NaT channel in the model exhibited a transient response. However, the
current decayed to a constant, non-zero value showing that the NaT channel
also had a persistent component. Persistent activity is not completely avoidable
with the Hodgkin-Huxley formalism as it occurs as soon as the activation and
inactivation steady state curve overlap. The current caused by this overlap is also
called window current. Experiments that isolate the NaT current by subtracting
traces without TTX from traces with TTX applied also displayed a window current
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(Magistretti and Alonso, 1999). However, single-channel recordings showed that
NaT channels do not have late opening (Magistretti, Ragsdale, et al., 1999) so
that this current has to arise from other ion channels.

In summary, the NaT channel in the model reflects the recorded NaT channels
(Magistretti and Alonso, 1999). But both are probably a conglomerate of different
sodium channel subtypes as indicated by the persistent activity.

Fig. 2.8: Characterization of the ion channels in the model. Steady state curve (solid
lines) and time constants (dotted lines) of the activation and inactivation gate of the NaT

(A), NaP (B), KDR (C) and HCN channel (D). E, F, G, H: Ionic current flow in response to
a standard voltage clamp protocol (described in Sec. 4.4.6) for the same channels as on
the left.

NaP

As the NaP channel is involved in the generation of the DAP (see virtual blocking
experiments below) we wanted to examine more closely to which type of sodium
channel it corresponds, which was not prescribed by the optimization procedure.
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In particular, sodium channels can show transient, persistent and/or resurgent
components that can all be visualized by the following voltage clamp protocol
(Fig. 2.8 F) (Lewis and Raman, 2014).

The protocol starts with a step hold at -80 mV for 10 ms bringing the sodium
channel to a closed, non-inactivated state. Then a step to 0 mV continuing for
20 ms is applied. A negative current during this step indicates the transient
component that is caused by fast opening of the sodium channel followed by
inactivation. The third step iterates over several voltages and lasts 100 ms. As NaT

channels are inactivated from the previous step, they show no response. However,
NaR channels cause a negative current due to fast de-inactivation (Hargus et al.,
2011; Nigro et al., 2012). Subsequently, the current can approach a constant
value representing the persistent component.

The NaP channel in the model showed all three components. The transient
response was smaller in the simulated compared to real recordings probably,
because in the experiments not only the resurgent current was recorded but all
ion channels affected by TTX. Single-channel recordings showed that transient
and resurgent activity can occur in the same ion channel (Raman and Bean,
1997), but this was not investigated for persistent activity.

It can be concluded that the NaP channel in the model shows both, resurgent
and persistent components. However, it is not known whether it is one or several
sodium channel subtypes causing it.

The resurgent component in the NaP channel of the model critically depends
on τmax,m. This is because stepping from 0 mV to a more negative potential
causes ion channel closing and slight release from inactivation. If τmax,m is large
enough, ion channel closing will be slower than de-inactivation so that for a short
amount of time current flow is increased creating the resurgent component. The
parameter τmax,m was also shown to correlate significantly with DAP characteris-
tics (see Sec. 2.1.3) indicating that the resurgence is important.

KDR

To investigate the kinetics of the KDR channel (Fig. 2.8 G) it is first brought into
a closed, non-inactivated state by clamping the voltage at -110 mV for 150 ms.
The fast transient current of A-type potassium channels (KA) was inactivated
by stepping to -50 mV for 50 ms. The current flow of KDR channels was then
measured by clamping at different voltages for 150 ms. KDR channels would
respond with a sustained positive current with slow inactivation (Eder and
Heinemann, 1996).

The KDR channel in the model showed a persistent current similar to exper-
imentally recorded channels (Eder and Heinemann, 1996). However, no slow
inactivation was seen as an inactivation gate was not included in the ion channel.

The stellate cell model only needed KDR but not KA channels. This is consistent
with the fact that stellate cells in the MEC layer II exhibit prominent KDR but only
small KA currents (Eder and Heinemann, 1994).
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HCN
The voltage protocol for the HCN channel (Fig. 2.8 H) starts with a voltage step to
-60 mV for 20 ms so that the HCN channel is in a non-inactivated state. With the
second step different voltages can be tested. As the HCN channel has a high time
constant it was made to last 1500 ms. For potentials below -60 mV experimentally
recorded HCN channels showed an increase in current flow due to release from
inactivation and approximated a constant value within a time scale of hundreds
of milliseconds (Dickson et al., 2000).

The HCN channel in the model also rose slowly to a constant value. The time
constant was similar to the one reported for the fast component of the H-current
by Dickson et al. (2000).

Virtual blocking of ion channels
Not all ion channels in the model have to contribute to the generation of the DAP.
To find out which ion channels are necessary and therewith which hypothesis for
DAP generation holds (Sec. 1.5), we simulated the blocking of ion channels. In
these experiments a triangular pulse was injected into the model as it elicits an
AP with a prominent DAP.

At first, each ion channel was blocked separately by different degrees during the
whole experiment (Fig. 2.9 A, B, C). This was realized in the model by reducing
the maximal conductance by a given percentage. However, blocking during
the whole experiment also leads to changes of the AP so that it is impossible
to distinguish whether the blocking of the ion channel or the changed voltage
trace affected the DAP. In the worst case, there is not even an AP elicited as, for
instance, with 100% block of the NaT and NaP channel (Fig. 2.9 C). Alessi et al.
(2016) tried to minimize the effect of the reduced sodium influx on the AP by
manually adjusted current injection. This can preserve the AP, but the shape will
not be the same. In the model it is possible to apply blocking starting from a
specific point in time. In Fig. 2.9 D, E, F ion channel blocking was started after
the AP at the fAHP minimum.

Blocking the NaT channel led to a slight reduction of the DAP, but the DAP was
still present under 100% block. Reducing the maximal conductance of the NaP

channel decreased the DAP more strongly. At 100% block the simulated cell even
exhibited an afterhyperpolarization. When blocking the KDR channel, the model
went into a high-frequency discharge for 50% block and a depolarization block for
100% block. This inability to go down to the resting potential was expected as the
KDR channel is responsible for AP repolarization. The HCN channel caused only a
minor reduction in the DAP when it was blocked, but the resting potential was
greatly reduced. This is because the HCN channel is open for negative potentials
but inactivates upon depolarization (Fig. 2.8 D). Removing the leak current also
led to a high-frequency discharge when the conductance was decreased as it is
responsible for keeping the membrane potential more negative.
These results show that it is possible to remove the HCN or NaT channel without
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Fig. 2.9: Effect of blocking ion channels on the DAP when stimulating with a triangular
pulse. Blocking a certain ion channel (NaT: red, NaP: blue, KDR: green, HCN: yellow) by
10%, 50% or 100% during the whole recording (A, B, C) or only after the fAHP minimum
(D, E, F).

destroying the DAP. They are therefore not necessary for DAP generation and
hypothesis 4 (the window current of the NaT channel causes the DAP) can be
refuted. Instead, the DAP is the effect of balancing NaP, KDR and leak currents
corresponding to hypothesis 5. Furthermore, resurgent and persistent currents
were involved caused by the NaP channel. This means that hypothesis 2 and 3
also could play a role. Hypothesis 1 was excluded from the outset as we did not
take the morphology into account showing that in principle a DAP is possible
without dendrites.

The results we obtained here are consistent with blocking experiments in real
cells. Alessi et al. (2016) showed that the DAP is reduced by blocking with TTX
or AEA, a more selective blocker of NaP and NaR channels. As TTX blocks several
subtypes of sodium channels, it can only be derived from the experiments that
some sodium channel was involved. The more selective blocker AEA on the
other hand indicates a role for the NaP and NaR channel. This concurs with the
necessity of the NaP channel in our model. The DAP was also shown to depend
on Kv2 channels that underlie KDR currents (Hönigsperger et al., 2017). This
accords with the fact that KDR was necessary in the model to elicit a DAP.

Ionic currents during the DAP
An advantage of the model is that the different ionic currents can easily be
visualized. In Fig. 2.10 the flow of ionic currents during the AP and DAP is
shown. The AP upstroke is caused by the influx of sodium ions due to the NaT

channel. The downstroke of the AP is driven by the KDR channel. For the DAP only
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Fig. 2.10: Ionic currents flowing during the DAP. Ionic currents (A, C) and opening of ion
channel gates (B, D) during the DAP. In C and D the NaT and HCN channel were blocked
completely after the fAHP minimum (indicated by the dashed lines). The membrane
potential is shown as reference by a black, dotted line.

the NaP channel, the KDR channel and the leak current are necessary, therefore,
in Fig. 2.10 C the ionic currents are shown when the NaT and HCN channel
are blocked after the fAHP minimum. The DAP seems to arise from the slight
difference in the decay of the NaP and the KDR channel, so that the currents
do not cancel completely. In Fig 2.10 A, B it can be seen that the NaT channel
reopens around the peak of the DAP and so contributes to it.

2.1.3 The effect of model parameters on DAP
characteristics
In vitro there is a lot of variation in the shape of the DAP between cells (Fig. 2.2).
We were interested how the DAP shape is influenced by the model parameters
and therefore conducted a sensitivity analysis.

For the sensitivity analysis one million models were generated by randomly
sampling parameters one order of magnitude around the original parameters.
The sampled models were simulated given a triangular pulse as input. From their
response the AP amplitude, AP width, fAHP amplitude and DAP characteristics
(DAP deflection, DAP amplitude, DAP width and TimeAP-DAP) were computed.
For all models for which the characteristics were available and within the valid
ranges defined in Tab. 4.5 (3 587/1 000 000 models) a correlation analysis was
performed between each model parameter and DAP characteristic. Correlations
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were computed by Kendall’s tau, as it is a robust, non-parametric method (Knight,
1966). However, Spearman’s and Pearson’s correlation coefficient gave similar
results (Suppl. Fig. 5.2).

Two analyses were conducted on the models. Firstly, it was tested whether the
data set was large enough to estimate correlations. This was done by dividing the
data set into 35 subsets with 102 models each. For every subset the correlations
between model parameters and DAP characteristics were computed and it was
checked whether the standard deviation of the correlations over data sets were
low. Secondly, it was investigated whether strong and significant correlations exist
in the whole data set. For the significance test the p-values derived from Kendall’s
tau were adjusted using the Bonferroni correction to account for multiple testing.

The first analysis (Fig. 2.11 A) revealed that the standard deviations of the
correlations over data sets were low. The highest standard deviation was 0.1
which, compared to the scale of correlation coefficients [−1, 1], is small. This
means that the original data set was large enough to obtain reliable correlations.

The second analysis (Fig. 2.11 B) showed that there were significant cor-
relations between the parameters and the DAP characteristics. The strongest
correlations had the parameter Vs,m/h of the NaT, NaP and KDR channel and
τmax,m/h of the NaP channel. However, even the strongest correlation, that was
between the DAP amplitude and NaP Vs,m, amounted only to -0.3 suggesting that
it is difficult to shape the DAP by only one parameter. Note that the NaT channel
can influence the DAP although it is not necessary for its generation as parameter

Fig. 2.11: Sensitivity analysis. A: One standard deviation around the mean of the
correlations (Kendall’s tau) between the model parameters and DAP characteristics when
the data set was divided into 35 subsets with 102 candidates each. B: Correlations
(Kendall’s tau) between the model parameters and DAP characteristics over the whole
data set with Bonferroni corrected p-values (p-val. < 0.1, 0.01, 0.001 = *, **, ***).
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changes can cause an increase or decrease of current flow during the DAP. The
results should be taken with a grain of salt, because even though the models were
filtered for showing a reasonable AP and DAP, they could fail to reproduce other
stellate cell characteristics.

All in all, the results corroborate the finding that the NaP and KDR channel are
important for the DAP mechanism. The significant correlations with τmax,m of the
NaP channel (whose role was explained in Sec. 2.1.2) indicates that the resurgent
sodium current is necessary for DAP generation. The NaT channel can influence
the DAP shape, probably by increasing or decreasing the current flow during the
DAP as seen in Fig. 2.10 A. These findings could be used to guide fitting the model
to stellate cells with differently shaped DAPs by concentrating the optimization
on the significant and most strongly correlated parameters. Furthermore, they
predict causes for the variations in the DAP shape of MEC layer II cells.

2.2 DAPs in vivo: Analysis of the data from
Domnisoru et al. (2013)
DAPs have been found in the majority of principal cells in the MEC layer II in
vitro (Canto and Witter, 2012). However, it was not investigated so far whether
DAPs occur and if they are relevant for the firing behavior in vivo.

To address these questions, we examined the data set from Domnisoru et al.
(2013) that contained in vivo whole-cell recordings of grid cells (Sec. 4.3.2).

2.2.1 Do DAPs occur in vivo?
In Fig. 1e of the paper by Schmidt-Hieber and Häusser (2013) a cell exhibiting
a presumable DAP in vivo was shown. In vivo it is not possible to distinguish
unambiguously between the intrinsic subthreshold activity of the cell and any
kind of noise based on a single observation. Therefore, to detect whether a cell
exhibited a DAP we averaged over all APs in the recording so that the noise was
canceled out. We refer to the averaged membrane potential trace around an AP
as the spike-triggered average (STAV) of the cell.

Spike-triggered average of the membrane potential (STAV)
In the data set from Domnisoru et al. (2013) 5 of 26 cells (s79_0003, s104_0007,
s109_0002, s110_0002, s119_0004) showed a DAP in the STAV (Fig. 2.12). A
DAP was said to be present if the DAP deflection exceeded the standard error
of the mean (SEM) at the time point of the DAP maximum. A time-resolved
histogram over voltages was computed for each cell to check if there were several
modes in the distribution. This was not the case (Fig. 2.13).

DAPs occurred in three stellate and two non-identified cells. When only APs
from a presumably good part of the recording were included in the STAV (as
shown in the next section), one pyramidal cell (s73_0004) and one non-identified
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cell (s85_0007) also showed a DAP. However, the pyramidal cell had very few
dendrites, so that the classification was not as clear as for the other cells.

For the cells with a DAP the DAP deflection and TimeAP-DAP were determined
(Fig. 2.14). DAP amplitude and DAP width could not be computed because in vivo
there is no resting potential that could serve as a reference value. Cells with large
theta oscillations (large-theta cells) had a higher DAP deflection and TimeAP-DAP

than other cells.

Fig. 2.14: DAP deflection as a function of TimeAP-DAP for each cell with a DAP in the STAV.
The symbol indicates the cell type (star: stellate cell, triangle: pyramidal cell, circle: cell
type not identified), whether the cell exhibited large theta oscillations (vertically striped)
and whether the cell had a DAP detectable in the STAV (horizontally striped).

Why are there so few cells with a DAP?
From in vitro recordings we know that around 85% of stellate and 73% of pyra-
midal cells in the MEC layer II have a DAP (Canto and Witter, 2012). However,
by means of the STAV we found that only 5 of 26 (around 20%) of cells in vivo
had a DAP regardless of the cell type. Why was the percentage so much lower?

One reason might be that the DAP is suppressed by synaptic input. Another
reason could be that the quality of the recording was lower, as recording in vivo
is more difficult than in vitro. Especially the series resistance, i.e. the sum of the
pipette resistance and the resistance at the pipette-cell junction, was found to be
increased in vivo (Wang et al., 2016; Margrie et al., 2002). The series resistance
together with the pipette capacitance act as a low pass filter on the voltage signal.
An increased series resistance leads to a decrease in the passband of the filter
which causes, for instance, APs to be smaller and wider.

To test whether the quality of the recording had an influence on the after-spike
dynamics we recomputed the STAV using only APs that came from a presumably
good part of the recording. As both AP width and amplitude are affected by the
quality of the recording, they were used to decide whether an AP was accepted
or not. The AP width and amplitude were computed from the STAV for each
cell whereby the membrane potential 5 ms before the AP peak was used as a
reference value for the AP amplitude (Fig. 2.15).
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Fig. 2.15: Recognition of good recordings by means of AP amplitude and width computed
from the STAV. Division into good (red symbols) and bad recordings (yellow symbols) by
taking the middle between the outermost cell with a DAP (horizontally striped symbols)
and the closest cell without DAP for AP width (vertical line at 0.72 ms) and amplitude
(horizontal line at 51.8 mV) respectively. The symbol indicates the cell type (star: stellate
cell, triangle: pyramidal cell, circle: cell type not identified), whether the cell exhibited
large theta oscillations (vertically striped) and whether the cell had a DAP detectable in
the STAV (horizontally striped) or in the STAV from selected APs (diagonally striped).

All cells that showed a DAP had low AP widths and high AP amplitudes. But,
there were also two cells without a DAP that were in the same area. Cell s74_0006
likely had no DAP as will be affirmed below. For cell s82_0002 we suppose that
the DAP was suppressed by synaptic input as the cell had the highest firing rate
of all bursty cells.

The decision threshold for AP width and amplitude was set to the middle
between the outermost cell with a DAP and the closest cell without a DAP,
respectively. This means that an AP was accepted if its AP width was smaller than
0.72 ms and its AP amplitude larger than 51.8 mV. These thresholds were only
approximate as there are variations in AP width and amplitude between cells.
Nevertheless, they can serve to test whether after-spike dynamics become more
visible when only presumably well-recorded APs are used for the STAV.

In Fig. 2.16 the STAV without and with selection of APs can be seen. A DAP
became visible in cell s73_0004 and also a very small DAP in cell s85_0007. In
both cases the DAP deflection was larger than the SEM of the voltage at the DAP
maximum. For 10 cells no APs meeting the criteria were found. In total 7 out of
16 cells (around 44%) were classified to have a DAP. This is closer to what was
measured in vitro but still a lower bound estimate.

For most cells it is easier to spot the difference in the after-spike dynamics in
the derivative of the STAV (Fig. 2.17). In particular, the global maximum in the
derivative of the STAV within 3.5 ms after the AP peak will be used to quantify
how pronounced a DAP of a cell is for the following reasoning. Case 1: If there is
a DAP in the STAV, the derivative of the STAV should cross zero at the time point
of the fAHP minimum and the DAP maximum. In between the fAHP minimum
and the DAP maximum there is an inflection point in the STAV that is reflected
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in a local maximum in the derivative of the STAV. Case 2: If in the STAV of a
cell an inflection point but no DAP is present, there will still be a local maximum
in the derivative, but it will be below zero. Case 3: If the STAV of a cell only
declines after the AP peak without change of curvature, there will be no local
maximum and the global maximum will be the latest point within the given range.
The range was chosen short enough such that the maximum in the case of an
inflection point (case 1 and 2) was more prominent than the maximum of a noisy
voltage trace of case 3. Therefore, the global maximum in the derivative of the
STAV will be higher the more pronounced the DAP of a cell is. The difference
between the maximum in the STAV from selected and all APs is used as a measure
of the improvement in DAP recognizability (upper right value in Fig. 2.17).

For all but four cells the global maximum within 3.5 ms from the AP peak
increased when selecting for presumably well-recorded APs. Cell s104_0007,
s109_0002 and s110_0002 already had a prominent DAP and therefore did
not increase. For cell s74_0006 it was assumed that it had no DAP which was
affirmed by the slight decrease in the maximum. The cell with the highest
increase, s73_0004, showed a prominent DAP in the STAV with selection but not
in the STAV without confirming the validity of the quantification.

In Fig. 2.18 the DAP deflection and TimeAP-DAP computed from the STAV with
selection is shown for all cells with a DAP. Both, DAP deflection and TimeAP-DAP,
increased or stayed the same compared to the values without selection for all
cells. Cell s73_0004, as the other large theta cells, also had a high DAP deflection
and TimeAP-DAP. Cell s85_0007 had very small values for both characteristics.

The influence of the quality of the recording on the visibility of DAPs suggests
that better recordings are needed to make reliable statements as to whether a
cell has a DAP.

Fig. 2.18: DAP deflection as a function of TimeAP-DAP. The symbol indicates the cell type
(star: stellate cell, triangle: pyramidal cell, circle: cell type not identified), whether the
cell exhibited large theta oscillations (vertically striped) and whether the cell had a DAP
detectable in the STAV (horizontally striped) or in the STAV from selected APs (diagonally
striped).
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2.2.2 DAP function: Burst firing
In Fig. 1.6 it was shown that the DAP reduces the current threshold for eliciting
an AP during the DAP and therewith facilitates burst firing. In the following, it
was investigated whether cells with a DAP in vivo are more likely to fire bursts
than cells without.

Cells were first classified into bursty and non-bursty based on the spike-time
autocorrelation. The classification was confirmed by testing the consistency with
other characterizations of the firing behavior. In the end, the classification was
used to study the relationship between DAPs and burst firing.

Classification into bursty and non-bursty
To investigate whether cells with a DAP are more likely to fire bursts, we classified
all cells into bursty and non-bursty following the example of Latuske et al. (2015)
with adjusted settings (Sec. 4.4.9). To quantify the firing behavior, the spike-time
autocorrelation was computed up to 50 ms. Then, a principal component analysis
(PCA) was performed on the spike-time autocorrelation from all cells to identify
the directions of highest variance. The first two principal components were used
for the classification. A k-means cluster algorithm was applied to split cells into
bursty and non-bursty.

The outcome of the classification is shown in Fig. 2.19 (see Fig. 2.20 for the
spike-time autocorrelations of all cells and Suppl. Fig. 5.10 for the principal
components). Bursty and non-bursty cells could be split perfectly along the
first principal component (PC1). The cells with the lowest PC1 values had a
higher spike-time autocorrelation for long time lags, whereas cell s118_0002

Fig. 2.19: Division of grid cells into bursty (red) and non-bursty (blue) based on the
dimensionality reduced spike-time autocorrelation. The axes are the first two principal
components obtained by PCA. The symbol indicates the cell type (star: stellate cell,
triangle: pyramidal cell, circle: cell type not identified), whether the cell exhibited large
theta oscillations (vertically striped) and whether the cell had a DAP detectable in the
STAV (horizontally striped) or in the STAV from selected APs (diagonally striped).
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and s76_0002, that had the highest PC1 values, exhibited high peaks for short
time lags (≤8 ms). Cell s120_0023 that marked the border between bursty and
non-bursty cells also showed an intermediate spike-time autocorrelation, but was
non-bursty as confirmed later. Thus, the burstiness of a cell was well represented
by the PC1.

There were also two cells that stood out from the others. Cell s110_0002, that
had the highest second principal component (PC2), was an outlier because it only
had few spikes. Cell s82_0002 was considered bursty due to the peak at a short
time lag, but it was the only cell with this shape of spike-time autocorrelation. It
may had stronger synaptic input, so that the average firing rate was increased.

All stellate cells were labeled bursty. This deviates from the findings of Latuske
et al. (2015) who reported that 73% of putative calbindin− cells (presumable
stellate cells) were bursty. The disagreement likely arose from the small sample
size (n=6) in the data set by Domnisoru et al. (2013). Additionally, the cell type
classification methods, based on morphology (Domnisoru et al., 2013) versus
indirect immunohistochemistry following the method by Tang et al. (2014) (La-
tuske et al., 2015), might have made a difference. Of the pyramidal cells from
MEC layer II around 67% were bursty. Given the small sample size (n=3), this
is consistent with the 63% of putative calbindin+ cells (presumable pyramidal
cells) found by Latuske et al. (2015).

Consistency of the classification with other characterizations of the firing
behavior
To investigate the firing behavior of bursty and non-bursty cells in more detail for
each cell an ISI histogram, the frequency of spike events and an ISI return map
were computed.

An ISI histogram is a specialization of the spike-time autocorrelation. The
spike-time autocorrelation is based on the time intervals between all pairs of
spikes, whereas the ISI histogram is based only on the time intervals between
successive spikes. For short spike intervals the ISI histogram and the spike-time
autocorrelation are nearly identical. Hence, it was expected that the classification
into bursty and non-bursty is clearly visible for short ISIs. In particular, the
fraction of ISIs ≤ 8 ms from all ISIs was compared between bursty and non-bursty
cells (Fig. 2.21 A). Both groups did not overlap and the difference was highly
significant (t-test: p < 0.0001). In the cumulative ISI histogram (Fig. 2.22, for
each cell see Fig. 2.23) it can be seen that bursty cells had the highest slope at
about 4 ms. Then, the slope decreased to zero, crossing around 30 ms the value
1/200, i.e. the slope corresponding to a uniform ISI distribution. Large-theta
cells, part of the bursty cells, showed a renewed increase in the slope at 120 ms
(~8 Hz). For non-bursty cells the slope was low for short ISIs, rose until around
30 ms and then declined to zero.

The frequency of spike events depicts how many spike sequences (where ISIs
were ≤8 ms) with a certain number of spikes occurred. It is useful to determine
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Fig. 2.21: Bursty (red) and non-bursty cells (blue) are significantly different (t-test with
p-val. < 0.01, 0.001, 0.0001 = *, **, ***) for the following measures. A: The fraction of
ISIs ≤ 8 ms from all ISIs. B: The fraction of single spike from all spike events. C: The
fraction of ISI[n], ISI[n+1] pairs where ISI[n] or ISI[n+1] is ≤ 8 ms from all pairs. The
symbol indicates the cell type (star: stellate cell, triangle: pyramidal cell, circle: cell type
not identified), whether the cell exhibited large theta oscillations (vertically striped) and
whether the cell had a DAP detectable in the STAV (horizontally striped) or in the STAV

from selected APs (diagonally striped).

Fig. 2.22: Cumulative ISI histogram for all grid cells. The cells were classified into bursty
(red) and non-bursty (blue) according to Fig. 2.19. The thick lines are the cumulative
ISI histograms for ISIs from all bursty and non-bursty cells respectively. ISIs longer than
200 ms were taken out as those time scales are irrelevant for distinguishing burst and
non-burst behavior.
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which kind of burst (doublet, triplet, etc.) bursty and non-bursty cells exhibited.
Furthermore, it was used to ascertain that bursty cells had a higher proportion
of burst events than non-bursty cells and not only a higher number of spikes per
burst. In Fig. 2.24 the frequency of spike events for all cells is shown. Bursty
cells had spike events with up to six spikes per event and higher. There was
an approximately exponential decay in the number of spikes per event until it
dropped to zero. Non-bursty cells, on the other hand, had a high number of
single spikes and few doublets or triplets. Cell s104_0007 and s110_0002 did
not follow the rule as they were bursty but mainly had single spikes. The reason
might be that they had too little synaptic input leading to a low average firing
rate and less spikes per event. To quantify the difference between bursty and
non-bursty cells the fraction of single spikes with respect to all spike events was
computed (Fig. 2.21 B). Non-bursty cells had a fraction of single spikes close to
1.0, whereas bursty cells had lower values spread between 0.5 and 1.0. Bursty
cells were significantly different (t-test: p < 0.0001) from non-bursty cells.

ISI return maps show the relationship between successive ISIs (Fig. 2.25). They
are useful to detect patterns in the firing behavior. Bursty cells had many points
close to the edges which means that burst-like ISIs (~3-15 ms) were followed by
an ISI of any length and that longer ISIs were succeeded by burst-like behavior.
Furthermore, there was a high density of points in the lower left corner showing
that the cell often stayed inside the burst. Non-bursty cells only infrequently
showed points at the edges as they rarely fired bursts. In three of the large-
theta cells (s67_0000, s73_0004, s109_0002) spike firing was affected by the
theta oscillations as points aggregated around ISIs of 120 ms (~8 Hz). For cell
s104_0007 and s110_0002 there were too few points to determine whether they
fired at theta frequencies. The difference between the ISI return maps of bursty
versus non-bursty cells was quantified by estimating the number of ISIs that fall
within the region close to the edges, i.e. when ISI[n] or ISI[n+1] ≤ 8 ms with
respect to all ISI[n], ISI[n+1] pairs (Fig. 2.21 C). Non-bursty cells had a low
fraction of pairs where ISI[n] or ISI[n+1] was ≤ 8 ms compared to bursty cells.
The difference was highly significant (t-test: p < 0.0001).

Relationship of DAPs and burst firing
Having the classification into bursty and non-bursty cells confirmed, the relation-
ship between DAPs and burst firing can be elucidated.

All cells with a DAP besides one were classified as bursty supporting the
hypothesis that the DAP enhances burst firing (Fig. 2.19). Cell s85_0007 might be
non-bursty because the DAP was too small. Furthermore, burst timing coincided
with the time of the DAP maximum (besides for cell s85_0007) consistent with
the idea that the subsequent spike is fired on the DAP (Fig. 2.26).

To investigate the other direction, whether being classified as a bursty cell
involves having a DAP, we took the mean of the STAV with selection over all
bursty and non-bursty cells, respectively. The mean STAV of bursty cells showed
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a clear DAP, whereas the mean STAV of non-bursty cells only had an inflection
point (Fig. 2.27).

These analyses provide evidence towards a relationship between the DAP and
burst firing in vivo, but higher sampling sizes and high quality recordings are
needed to confirm these results.

Fig. 2.26: Peak of the ISI histogram (1 ms bins) as a function of TimeAP-DAP. The dashed
line marks the identity. The symbol indicates the cell type (star: stellate cell, triangle:
pyramidal cell, circle: cell type not identified), whether the cell exhibited large theta
oscillations (vertically striped) and whether the cell had a DAP detectable in the STAV

(horizontally striped) or in the STAV from selected APs (diagonally striped).

Fig. 2.27: Mean and standard deviation of the STAV of selected APs over all bursty (red)
and non-bursty (blue) cells.
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3Discussion

In this work we analyzed the phenomenon of the depolarizing afterpotential
(DAP) by creating a biophysically realistic cell model and investigated the rela-
tionship between DAPs and burst firing in vivo.

For the first part, we created a single-compartment model of a typical stellate
cell in the MEC layer II that reproduced the main electrophysiological characteris-
tics (DAP, sag, tonic firing and resonance). The mechanism behind the DAP was
analyzed using virtual voltage clamp and blocking experiments. In the model a
NaP channel, KDR channel and a leak current were necessary to generate a DAP
whereby the NaP current also exhibited a resurgent component. This suggests
that for the generation of a DAP a balance between several currents is needed. In
addition, the persistent and resurgent sodium current might play an important
role. The effect of model parameters on the DAP shape was examined with a
sensitivity analysis. Vs,m/h of the NaT, NaP, KDR channel and τmax,m/h of the NaP

channel had significant correlations with DAP characteristics.
For the second part, we tested whether DAPs occur in vivo. We found that

around 20% of grid cells in the data set from Domnisoru et al. (2013) exhibited
a DAP. However, the percentage of cells was much lower than in vitro. We
showed that this is partly due to the quality of the recording, as selecting APs
from presumably good parts of the recording improved the visibility of DAPs. To
investigate the relationship between DAPs and burst firing all cells were classified
into bursty and non-bursty based on the spike-time autocorrelation. All cells with
a DAP were bursty besides the cell with the smallest DAP. Moreover, averaging
over the STAV of all bursty and non-bursty cells respectively, showed a clear DAP
for the bursty but not for the non-bursty cells.

3.1 Reproduction of the DAP and other stellate
cell characteristics
3.1.1 Model design
The stellate cell model we wanted to create should be simple and easy to under-
stand. Therefore, we chose a single-compartment model. Literature research on
ion channels in MEC layer II stellate cells showed that data on ion channels was
sparse. Furthermore, existing ion channel models were not able to fit the DAP.
This is elaborated in the next two paragraphs.

Sparse experimental data
One reason why we did not use experimental data to model ion channels was
that usually not all parameters of an ion channel are estimated. For instance,
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Magistretti and Alonso (1999) recorded sodium channels in stellate cells of the
MEC layer II but did not measure the time constant for the activation and in-
activation of the NaT channel. Furthermore, the recordings were not corrected
for the liquid junction potential, so that for example the half-activation of the
steady state curve could be shifted by tens of millivolts. There was also variation
between different recordings. For instance, the half-activation values of the
steady state inactivation curve of the NaT channel differed by 9.2 mV between
the measurements of Magistretti and Alonso (1999) and Hargus et al. (2011).

Existing ion channel models
To check out existing ion channel models, we searched on ModelDB (https:
//senselab.med.yale.edu/modeldb/), a widely used platform for making com-
putational neuroscience models accessible. When looking for the keyword "En-
torhinal cortex stellate cell" and the simulation environment NEURON, three
entries showed up: i) (Schmidt-Hieber and Häusser, 2013) (ModelDB 150239)
ii) (Justus et al., 2017) (ModelDB 222359) and iii) (Schmidt-Hieber, Toleikyte,
et al., 2017) (ModelDB 237326). The ion channel models in those three entries
were mostly derived from recordings from different brain areas and cell types.
For instance, KDR and KAP were based on recordings from CA1 pyramidal cells.

Furthermore, it can be shown that fitting the DAP is not possible with these
ion channels using a linear regression method developed by Huys et al. (2006)
(Fig. 3.1).

The unavailability of complete information on the kinetics of ion channels in
MEC layer II stellate cells and the impossibility to fit the DAP with existing ion
channel models led to the conclusion that the ion channel kinetics should be
determined by the optimization algorithm. To keep the model simple only four
different types of ion channels were included in the model. They were chosen to
test different hypotheses of DAP generation and every channel was known to be
present in MEC layer II stellate cells (for details see Sec. 4.1).

3.1.2 Quality of the model
In Sec. 2.1.1 it was shown how well the model reproduces stellate cell character-
istics. This was evaluated qualitatively by comparing the behavior of the real and
simulated cell and quantitatively by testing how well the model lies within the
distribution of the MECIIDAP population.

The model was able to reproduce all characteristics qualitatively as it showed a
DAP, reduction in current threshold during the DAP, a sag, tonic firing in response
to positive step currents, resonance and theta modulated spike firing in the
double-sine experiment. But, for some experiments it deviated from the range
exhibited by experimentally measured cells.

TimeAP-DAP of the model was at the higher end of the distribution of MECIIDAP

cells which likely caused the current threshold curve to be shifted to the right.
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Fig. 3.1: The DAP could not be fit by existing ion channel models. In the method by
Huys et al. (2006) the maximal conductance gmax of each ion channel is determined by
linear regression so that cm

dV
dt − Iinj = −gmax

∑
ion channel Iion channel whereby dV

dt is
the numerical derivative of the recorded voltage trace (black line in C) and Iion channel is
the current trace obtained by simulating each ion channel given the recorded voltage
trace. A: Linear combination of the current traces with maximal conductances set to
the best fit (red line) and the trace that should be fit cm

dV
dt − Iinj (black line). The gray

dashed line marks zero current. B: Current traces of all ion channels used for the fit
(colored lines). C: Comparison of the recorded voltage trace (black line) and the fit
model (red line). The deviation is stronger than seen in A, because here the ion channels
are simulated with the model voltage and not given the recorded voltage trace.

Furthermore, the sag deflection was at the lower range of the MECIIDAP popu-
lation. The F-I curve had a stronger kink, was steeper (high value for a) and
ascended more linearly (high value for c) than for most MECIIDAP cells.

That the model was unable to fit those characteristics closer to the experi-
mental data, might be, because the model was too inflexible or not complex
enough. For instance, the parameter Vs controls both the steady state and time
constant equation and thus has to be a trade-off between the two. Furthermore,
the Hodgkin-Huxley formalism might be insufficient to model, for example, the
resurgent sodium current, so that more complex models as Markov models might
be needed. In addition, it cannot be excluded that better models exist in the
parameter space that the optimization algorithm did not find. But, as other
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models found (Sup. 5.1) show similar limitations, new strategies should be tried.

Existing models of stellate cells
Previous models on stellate cells of the MEC layer II concentrate mostly on res-
onance, sag and subthreshold oscillations leading to spike clustering (Erchova
et al., 2004; Fransén et al., 2004; Rotstein et al., 2006; Izhikevich, 2007) or the
rebound phenomenon (Hasselmo, 2014; Ferrante et al., 2016). Furthermore,
biophysical stellate cell models have been used to explain grid cell firing (Schmidt-
Hieber and Häusser, 2013; Schmidt-Hieber, Toleikyte, et al., 2017). However, to
our knowledge no model exists so far that reproduces the DAP. Generally, there
is no model that reproduces all typical stellate cell characteristics. As the model
presented here was thoroughly tested on a diverse set of stimuli and compared to
experimentally recorded cells, it could be used as a benchmark case for stellate
cell models to come.

3.2 The mechanism behind the DAP
3.2.1 Identifying ion channels in the model
As the ion channels in the model were almost completely determined by the
optimization algorithm, the correspondence to real ion channels had to be estab-
lished. By parameter comparison and voltage clamp experiments it was shown,
that the ion channels were similar to experimentally measured ion channels.

The NaP channel deviated from recorded ion channels as it had a much lower
value for Vh,h and showed both persistent and resurgent components in the
voltage clamp experiment. This suggests that either the NaP channel in the model
was not complex enough to faithfully reproduce both, the persistent and resurgent
component, or a further ion channel is needed to fit the resurgent sodium current.
In any case, further experiments should be conducted to disentangle the ion
channel subtypes responsible for the persistent and resurgent component in real
cells.

The parameter Vs was generally higher in the model compared to the exper-
imental recordings. This might be due to the use in the steady state and time
constant equation. In the future, different equations for the time constant should
be tested that do not depend on Vs.

3.2.2 Virtual blocking of ion channels
Blocking ion channels in the model showed that only three ion channels were
necessary for DAP generation: the NaP channel, the KDR channel and the leak
current. The DAP was reduced when the NaT channel was blocked. Blocking the
HCN channel had almost no effect on the DAP.

These results are consistent with blocking experiments in real cells. Alessi
et al. (2016)) showed that the DAP is reduced by blocking with TTX or AEA. As
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TTX blocks several subtypes of sodium channels, it can only be derived from the
experiments that some sodium channel was involved. The reduction by the more
selective blocker AEA, on the other hand, indicated a role for the NaP and NaR

channel. This accords with the necessity of the NaP channel in our model.
Alessi et al. (2016) also discovered an influence of extracellular calcium re-

moval on the DAP that depended on hyperpolarization. As no calcium currents
were present in the model, this could not be shown. However, the effect of
calcium channels could be similar to NaP channels as suggested by hypothesis 2
of DAP generation.
Hönigsperger et al. (2017) showed that the DAP depends on Kv2 channels that
are known to underlie KDR currents. This accords with the fact that the KDR

channel was necessary in the model to elicit a DAP.
The DAP amplitude was also shown to be significantly increased by blocking the
M(Kv7) current with linopirdine (Yoshida and Alonso, 2007). As Kv7 channels
were not included in the model, it cannot reproduce the effect. We suggest that,
similar to the NaT channel, Kv7 channels are not essential for DAP generation,
but by removing potassium outflow the membrane potential is increased.

3.3 The effect of model parameters on DAP
characteristics
Before analyzing the correlations between model parameters and DAP characteris-
tics we ensured that the data set was large enough to obtain reliable correlations.
Then, the significance of the correlations over the whole data set was determined.
There were significant correlations between Vs,m/h of the NaT, NaP, KDR chan-
nel and τmax,m/h of the NaP channel. However, even the strongest correlation
amounted only to -0.3 suggesting that it is difficult to shape the DAP by only one
parameter. Note also that even though the models were filtered for showing a
reasonable AP and DAP, they could fail to reproduce other stellate cell character-
istics. Nevertheless, these findings provide a starting point for fitting differently
shaped DAPs and hint towards causes for the variations in the DAP shape of MEC
layer II cells.

3.4 Future directions of the stellate cell model
There are at least three different possibilities to continue research with the model.
The first possibility is the further improvement of the model with the suggestions
made above. That are: i) Using a different equation for the time constant where
the parameters are independent from the steady state curve; ii) Markov models
for (some of) the ion channels; iii) adding a separate NaR channel; iv) fitting
real cells with differently shaped DAPs guided by the results from the sensitivity
analysis.

The second possibility is to test predictions of the model experimentally. This
would provide further evidence for or against the model and more information
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could be gained on MEC layer II stellate cells. For instance, in a dynamic clamp
setup specific ion currents could be removed by pharmacological blockers and
replaced by ion channels from the model while recording the membrane potential
(for examples see Ma and Koester, 1996; Hutcheon et al., 1996). If the membrane
potential is similar, when recorded with or without the replacement of the real
ionic currents by model currents, it can be concluded that the ion channels in
the model are equivalent to the real ion channels for the range tested. Another
example concerns bistability in MEC layer II stellate cells. In the model, we
observed a kink at the start of the F-I curve indicating that it underwent a
subcritical Andronov-Hopf bifurcation. A better test for bistability, i.e. the co-
existence of a resting and spiking state, is to perform the following experiment:
In one run a current is injected that slowly ramps up and in another run a current
that slowly ramps down, so that in both cases a switch between resting and
spiking behavior occurs (Izhikevich, 2007). If there is bistability, the switch
between resting and spiking behavior occurs at a higher input current when
ramping up than when ramping down which was shown to be the case in the
model (Suppl. Fig. 5.11).

The third possibility is to use the model, for instance, to analyze the firing
behavior of stellate cells under different conditions or to include the model into
network models of grid formation as continuous attractor (Burak and Fiete, 2009;
Fuhs and Touretzky, 2006; McNaughton et al., 2006) or feed-forward models
(Kropff and Treves, 2008; D’Albis and Kempter, 2017; Monsalve-Mercado and Lei-
bold, 2017). In these studies, the effect of electrophysiological characteristics as
the DAP on burst firing, phase precession, grid scaling etc. could be investigated.

3.5 Do DAPs occur in vivo?
To investigate whether DAPs occur in vivo we analyzed 26 grid cells of the
data set from Domnisoru et al. (2013). We found that around 20% of the cells
exhibited a DAP in the STAV - a percentage much lower than estimates from in
vitro recordings. Whole-cell recordings are more difficult to obtain in vivo, so
that the quality of the recording can be reduced. We found that by selecting
APs from presumably good parts of the recording the visibility of DAPs could be
improved, however, only a little in most cells. Therefore, we suggest that in future
experiments further protocols should be run during the recording, for instance,
the triangular pulse protocol that was used in vitro to detect DAPs. The visibility
of DAPs could also be influenced by synaptic input. In the future, synaptic input
of grid cells should be quantified and then could be used as input to the presented
stellate cell model in order to test effects on the DAP.

3.6 DAP function: Burst firing
To investigate the relationship between DAPs and burst firing all cells were
classified as bursty or non-bursty based on the spike-time autocorrelation. The
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classification was confirmed by other measures of spike firing (ISI histogram,
frequency of spike events and ISI return map) that showed a significant difference
between bursty and non-bursty cells.

The percentage of stellate and pyramidal cells classified as bursty varied be-
tween studies. Latuske et al. (2015) classified cells into putative calbindin− cells
(presumable stellate cells) and putative calbindin+ cells (presumable pyramidal
cells) based on theta strength and phase angle following the method by Tang
et al. (2014). They found that 55% of putative calbindin− cells and 38% of
putative calbindin+ cells were bursty. Ebbesen et al. (2016) used either immuno-
histochemistry or the method by Tang et al. (2014) to classify their cells. They
reported that 13% of putative calbindin− and 48% of putative calbindin+ cells
were bursty. The difference might be because Latuske et al. (2015) recorded
in mice and Ebbesen et al. (2016) in rats or because of the slightly different
classification methods used. More evidence is needed to clarify the results.

The data set from Domnisoru et al. (2013) consisted only of grid cells. There-
fore, we compared it to the findings from Latuske et al. (2015) confined to grid
cells. We found that all stellate cells and 67% of the pyramidal cells from the
MEC layer II were bursty (none of the three pyramidal cells from layer III were
bursty). The percentage of bursty stellate cells was higher than the 73% found by
Latuske et al. (2015). The disagreement likely arose from the small sample size
(n=6) in the data set from Domnisoru et al. (2013). Additionally, the cell type
classification methods, based on morphology (Domnisoru et al., 2013) versus
indirect immunohistochemistry (Latuske et al., 2015), might have also made a
difference. The percentage of pyramidal cells, that were classified as bursty, was
close to the 63% reported by Latuske et al. (2015) given the small sample size
(n=3).

For cells with a DAP we found that all cells besides one were classified as bursty.
Furthermore, taking the mean of the STAV over all bursty and non-bursty cells
respectively showed a clear DAP for bursty but not for non-bursty cells. These
analyzes provide evidence towards a relationship between the DAP and burst
firing in vivo.

3.7 Future directions: DAP function
This study gave a first impression of the relationship between DAPs and burst
firing, but more experiments are needed to confirm the results.

One approach is to extend the characterization of DAPs in vitro, for instance,
by applying the double triangular pulse protocol to cells with differently shaped
DAPs and also to cells with no DAP. This could be used to analyze the effect of
the DAP shape on spike firing and to quantify the difference between cells with
and without DAP.

Another approach is to close the gap between in vitro and in vivo results by
applying the triangular pulse and double triangular pulse protocol in vivo. The
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triangular pulse protocol could improve the identification of cells with DAPs and
therewith further the analyzes on the relationship between DAPs and burst firing.
The double triangular pulse protocol could help to clarify whether DAPs also
facilitate burst firing under in vivo conditions.
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4Materials and methods

4.1 Single-compartment model
A single-compartment model was used to model a typical MEC layer II stellate cell
(Eq. 4.1, Fig. 4.1). This keeps the model simple as the distribution of ion channels
in the dendrites has not to be taken into account and allows to investigate whether
a DAP is possible without dendrites (Hypothesis 1, Sec. 1.5). The ion channels
were modeled using the Hodgkin-Huxley formalism (Eq. 4.2, 4.4, 4.7) whereby
the functions for the steady state (Eq. 4.5, 4.8) and the time constant (Eq. 4.6,
4.9) were adopted from Vavoulis et al. (2012). The model can be described by
the following set of equations:

cm
dV

dt
= −

∑
ion channel

Iion channel − ILeak + Iinj (4.1)

Iion channel = gmax ·mp · hq · (V − Eion) (4.2)

ILeak = gLeak · (V − ELeak) (4.3)

dm

dt
= m∞ −m

τm
(4.4)

m∞(V ) = 1
1 + exp((Vh,m − V )/Vs,m) (4.5)

τm(V ) = τmin,m + (τmax,m − τmin,m) ·m∞(V )

· exp(τdelta,m · (Vh,m − V )/Vs,m) (4.6)

dh

dt
= h∞ − h

τh
(4.7)

h∞(V ) = 1
1 + exp((Vh,h − V )/Vs,h) (4.8)

τh(V ) = τmin,h + (τmax,h − τmin,h) · h∞(V )

· exp(τdelta,h · (Vh,h − V )/Vs,h) (4.9)

A legend of all symbols can be found in Tab. 4.1.
Four different types of ion channels were included in the model. Two sodium

channels, one potentially for the AP upstroke and to test hypothesis 4 (window
current of the NaT channel) of DAP generation (Sec. 1.5), which will be referred
to as NaT. The other to test hypothesis 2 and 3 (NaP or NaR current) of DAP
generation that will be called NaP. Furthermore, a delayed-rectifier potassium
channel (KDR) for the AP downstroke is included into the model and a HCN chan-
nel (HCN) that is known to influence the sag and resonance behavior (Dickson
et al., 2000; Nolan et al., 2007).

The correspondence between the ion channels in the model and real channels
before parameter fitting only consists of the number of activation and inactivation
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gates and the equilibrium potential. How well the ion channels match the role
suggested here, is investigated in Sec. 2.1.2.
The model was fit to experimental data recorded at around 35°C, so that the ion
channel parameters correspond to that temperature. The parameters of the model
were optimized as described in the next section. The final set of parameters can
be seen in Tab. 4.2 and 4.3. Ion channels with their activation and inactivation
curves for the steady state and time constant are plotted in Fig. 2.8.

Fig. 4.1: Schematic of the single-compartment model.

Variable (base unit) Description
cm (F) Capacitance
V (V) Membrane potential
Iion channel (A) Current flowing through the ion channel
ILeak (A) Leak current
Iinj (A) Injected current
Eion (V) Equilibrium potential of the ion
ELeak (V) Equilibrium potential of the leak current
gmax (S) Maximal conductance
gLeak (S) Maximal conductance of the leak current
m/h (1) Degree of opening of the activation/inactivation

gate of an ion channel
p/q (1) Number of gates of type m/h
m∞/h∞ (1) Steady state
τm/h (s) Time constant
Vh,m/h (V) Shift of V in m∞/h∞ and τm/h
Vs,m/h (V) Scale of V in m∞/h∞ and τm/h
τmin,m/h (s) Smallest possible value of τm/h
τmax,m/h (s) Scale of the maximum value of τm/h
τdelta,m/h (1) Skewness of τm/h

Tab. 4.1: Description of the variables in the model equations.

55



NaT NaP KDR HCN
m h m h m h

gmax (S/cm2) 0.14194 0.01527 0.00313 0.00005
p/q (1) 3 1 3 1 4 1
Vh (mV) -30.94 -60.44 -52.82 -82.54 -68.29 -77.9
Vs (mV) 11.99 -13.17 16.11 -19.19 18.84 -20.54
τmin (ms) 0 0.001 0.036 0.336 0.286 2.206
τmax (ms) 0.193 8.743 15.332 13.659 21.286 137.799
τdelta (1) 0.187 0.44 0.505 0.439 0.746 0.21

Tab. 4.2: Parameters of all ion channels in the model.

General Parameter
cm (µF/cm2) 0.63
length (µm) 100.00
diameter (µm) 50.00
gLeak (S/cm2) 0.00043
ELeak (mV) -86.53
EHCN (mV) -29.46
ENa (mV) 60.00
EK (mV) -110.00

Tab. 4.3: General parameters of the model.

4.2 Optimization procedure
4.2.1 Parameters
For the optimization the geometry of the cell body and the equilibrium potentials
of sodium and potassium were fixed. The geometry was not fit because changing
the length or diameter of the cell body is equivalent to changing the capacitance.
The equilibrium potentials can be calculated from the solutions used in the
experiment and therefore should not be changed.

The ion channels were modeled as templates of which all parameters besides
the number of activation and inactivation gates and the equilibrium potential
had to be optimized (see also Sec. 3.1.1). The parameter ranges were based on
the order of magnitudes of experimentally measured ion channels, but were not
tailored to specific ion channels. All optimized parameters and their range are
shown in Tab. 4.4.

4.2.2 Error function
As error function the root mean squared error (RMSE) of the membrane potential
between the experimentally recorded cell and the model of the triangular pulse
experiment (Fig. 2.1; Sec. 4.3.1) was used, as the DAP is most pronounced there.
A feature-based approach was not chosen, because it requires to assign a weight
to each feature adding hyper-parameters and because the linear combination of
different errors is more likely to introduce local minima.
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Parameter Lower bound Upper bound
cm (µF/cm2) 0.3 2
ELeak (mV) -100 -75
EHCN (mV) -30 -10
gmax (S/cm2) 0 0.5
Vh,m (mV) -100 0
Vh,h (mV) -100 0
Vs,m (mV) 1 30
Vs,h (mV) -30 -1
τmin,m (ms) 0 50
τmin,h (ms) 0 50
τmax,m (ms) 0 100
τmax,h (ms) 0 100
HCN τmax,h (ms) 0 500
τdelta,m (1) 0 1
τdelta,h (1) 0 1

Tab. 4.4: Lower and upper bounds for the parameters. The parameter ranges of the ion
channel templates were the same for all types of ion channels besides τmax,h of the HCN
channel.

4.2.3 Optimization algorithm
The optimization algorithm was chosen based on a comparison of six different
optimization algorithms (differential evolutionary algorithm (DEA), simulated
annealing (SA), particle swarm optimization (PSO), limited memory BFGS algo-
rithm for bound constrained optimization (L-BFGS-B), Nelder-Mead and random
drawing as control). The optimization algorithms had to fit an increasing number
of parameters of the standard Hodgkin-Huxley model (Fig. 4.2) (Hodgkin and
Huxley, 1952). L-BFGS-B had the best performance and was thus chosen for the
optimization of the stellate cell model. This algorithm belongs to the family of
quasi-Newton methods that perform line search using the Newton direction, but
utilize an approximation instead of the true Hessian (Nocedal and Wright, 2006).

4.2.4 Model selection
To obtain a model that not only fits the DAP as seen in Fig. 2.1 but also the other
characteristics of stellate cells, the optimization algorithm was applied repeatedly
whereby the parameter ranges for the generation of the initial candidates was
narrowed towards good solutions from the last run. Good solutions were selected
by hand based on the performance of the model on the protocols: double trian-
gular pulse, step current and ZAP (Sec. 4.3.1). The double-sine protocol was
unseen during the fitting process and therefore could be used as test set.

4.3 Data sets used
Two different experimental data sets were analyzed, one carried out in vitro
(Kümpfbeck, 2019), one in vivo (Domnisoru et al., 2013). I am grateful to the
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Fig. 4.2: Performance of six different optimization algorithms on fitting parameters of
the standard Hodgkin-Huxley model. The algorithms tested are differential evolutionary
algorithm (DEA), simulated annealing (SA), particle swarm optimization (PSO), limited
memory BFGS algorithm for bound constrained optimization (L-BFGS-B), Nelder-Mead
and random drawing as control. All algorithms had the same constraints: # trials: 100,
# candidates: 250, # iterations: 250, started from the same initial parameters and
had the same parameter bounds (where applicable). For the algorithms DEA and PSO
all candidates are optimized simultaneously in one population whereas for all other
algorithms candidates are optimized one by one. In the left plot, the error in the
parameters computed as the RMSE between the parameters of the best candidate and
the true values normalized by the parameter bounds is shown. In the right plot, the
RMSE between the membrane potential trace of the best candidate and the true trace is
depicted. The lines and shaded regions are the mean and standard error of the mean
over trials.

researchers to provide their data to me. In what follows, key information is
provided. For details, see the respective publications.

4.3.1 Data set from Kümpfbeck (2019)
Franziska Kümpfbeck obtained whole-cell recordings in vitro from the MEC layer
II in Long-Evans rats and Mongolian gerbils (Kümpfbeck, 2019). For the present
study only the recordings from Long-Evans rats were used. The liquid junction
potential (LJP = 16 mV) was corrected for. The behavior of the cells was investi-
gated by applying different sets stimuli that are explained below.

Protocols
Triangular pulse
Injection of a short triangular pulse that started at 10 ms, rose for 0.8 ms and
descended for 1.2 ms with a given peak amplitude. A triangular pulse instead
of a square-shaped pulse was used for more continuous and therewith natural
stimulation of the cell.

Double triangular pulse
As control an AP was elicited in the beginning of the experiment by injection
of a triangular pulse at 20 ms. The baseline was set to -0.05 nA to keep the
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effect of the baseline and hyperpolarization, no polarization and depolarization
apart. At 222 ms a hyper-/no-/depolarizing step current with an amplitude of
-0.1/0/0.1 nA respectively was injected that continued for 125 ms (in Fig. 2.3 C)
or 250 ms (in Fig. 2.3 A, B). The 1st triangular pulse of the experiment’s main
part is inserted 12, 15 or 20 ms after the step to elicit a spike followed by a DAP.
The 2nd triangular pulse is used to test how much current is needed to elicit a
second spike at different time points during the DAP (starting 3, 7, 9, 11, 13, 15,
17, 19, 21 ms after the onset of the 1st triangular pulse). The amplitude of the
2nd triangular pulse was raised in steps of 0.05 nA. All triangular pulses have a
rise of 0.8 ms and a descend of 1.2 ms.

Step current
A step current with a duration of 500 ms is injected between 250 and 750 ms.
The amplitude starts at -0.15 nA and is increased by increments of 0.05 nA.

ZAP
The ZAP stimulus was an oscillatory current whose frequency linearly increased
over time. The formula is as follows:

ZAP (t) = a · sin(2π(f0 · t+ 1
2
f1 − f0
T

· t2)) (4.10)

The frequency in this case changed from 0 to 20 Hz within 30 s and the amplitude
was set to 0.1 nA. There was an offset of 2 s before and after the ZAP stimulus.

Double-sine
The double-sine stimulus consisted of a ramp modeled as the upper half of a sine
with a low frequency (f1 = 0.1 Hz) superimposed by a sine with a frequency in
the theta range (f2 = 5 Hz):

Double-sine(t) = a1 · sin(2π · t · f1) + a2 · sin(2π · t · f2) (4.11)

Before and after the double-sine stimulus was an offset of 0.5 s.

4.3.2 Data set from Domnisoru et al. (2013)
Domnisoru et al. (2013) obtained whole-cell recordings from cells in the mouse
MEC in vivo. During the recording the mice were running on a cylindrical
treadmill navigating through a virtual linear track. 27 of the recorded cells were
identified as grid cells. 26 of those cells are investigated in this study, as the data
for one cell got corrupted.

From the identified grid cells 12 were filled with biocytin. Based on the
morphology the cells were classified as stellate or pyramidal and depending on
the location of the soma assigned to layer II or III of the MEC.
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Another division of the cells could be made based on the theta resonance.
Large-theta cells could be distinguished by having a mean theta envelope higher
than 4.7 mV.

4.4 Analyses
4.4.1 Identification of cells with a DAP in vitro
To determine the quality of the model we examined whether the model lied
within the distribution of real MEC layer II cells from the data set recorded by
Kümpfbeck (2019). Because the model was specifically designed to fit cells with
a DAP, the real cells used for the comparison were filtered for having a DAP. Only
those cells where accepted where the AP and DAP characteristics (computed as
described in Sec. 4.4.3) lied within the ranges stated in Tab. 4.5. The MEC layer
II cells that had a DAP will be referred to as MECIIDAP cells. The total number of
cells was 385, however, the number of cells varies between plots as only those
cells are shown for which the respective protocol was conducted. The MECIIDAP

population includes both stellate and pyramidal cells.

Lower bound Upper bound
AP amplitude (mV) 50 150
AP width (ms) 0.1 2.0
fAHP amplitude (mV) 0 40
DAP amplitude (mV) 0 40
DAP deflection (mV) 0 20
DAP width (ms) 0 70
TimeAP-DAP (ms) 0 20

Tab. 4.5: Valid ranges for AP and DAP characteristics.

4.4.2 Determination of highest density regions (HDR)
To quantify how well the model accords to the distribution of MECIIDAP cells, we
estimated highest density regions (HDR) with respect to the main stellate cell
characteristics (Hyndman, 1996). A HDR measures how many percent of the
sample space X have a higher or equal probability density than a specific value
xs. It can be defined as:

HDR(xs) = {x ∈ X : PDF(x) ≥ PDF(xs)} (4.12)

The probability of this region is p = p[x ∈ HDR(xs)], so that xs has a p·100% HDR.
For example, if a model characteristic has a 75% HDR with respect to the
MECIIDAP distribution, on average 25% of newly recorded MECIIDAP cells will
have lower probability density of that characteristic than the model. HDRs
have an advantage over standard deviations, as they can be used for any, also
multimodal and asymmetric distributions.
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To compute HDRs, firstly, the probability density from the MECIIDAP population
has to be estimated. A common method is to use kernel density estimation with
a Gaussian kernel. In this method a Gaussian is placed over each data point
xn from the data set XN . The probability density is obtained by summing all
Gaussians and dividing by the number of data points N , so that the probability
density is normalized to an area of one (Bishop, 2006):

PDF(x) = 1
N

N∑
n=1

1√
2πσ2

exp
(
−(x− xn)2

2σ2

)
(4.13)

where σ was estimated using Scott’s rule: σ2 = σ2
XN
·N−

2
5 (Scott, 2015).

Then, the HDR can be estimated by drawing a set of samples XM from this
distribution. The probability of the largest region including xs is the number of
samples xm that have a higher or equal probability density than xs divided by
the total number of samples M :

p[x ∈ HDR(xs)] = # [xm ∈ XM : PDF(xm) ≥ PDF(xs)]
M

(4.14)

We used 1 000 000 samples to estimate the HDR.

4.4.3 Determination of DAP characteristics
To compute the DAP characteristics as shown in Fig. 2.2 A, Fig. 2.14 and Fig. 2.18
the resting potential as well as the following three points were needed: The AP
peak, the fAHP minimum and the DAP maximum.

The AP peak was determined as the maximum of the membrane potential
within 2.5 ms after crossing the AP threshold at -10 mV. To detect the fAHP mini-
mum and the DAP maximum in the in vitro recordings the membrane potential
was interpolated using cubic splines. Interpolation was not done in the case of the
model (contained no noise) or in vivo recordings (averaged data was sufficiently
smooth). The fAHP minimum was then set to the lowest local minimum in the
4 ms following the AP peak. The DAP maximum was determined as the highest
local maximum within 0.5 ms to 10 ms after the fAHP minimum. The local mini-
mum/maximum had to fulfill the condition that points within 1 ms to each side
had to be higher/lower than the point in the middle. If no minimum/maximum
fulfilling the condition could be found, the cell was assumed to have no DAP.

From these reference points, together with the resting potential, the DAP
characteristics can be computed. The DAP deflection is the difference of the
membrane potential between the DAP maximum and the fAHP minimum. The
DAP amplitude is the difference of the DAP maximum to the resting potential. The
DAP width is the time interval from the fAHP minimum until the crossing of the
membrane potential at half the fAHP height (the voltage at the fAHP minimum
minus the resting potential). The TimeAP-DAP is the time period between the AP
peak and the DAP maximum.
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In vitro and for the model the resting potential was computed as the mean of the
membrane potential before current injection. However, in vivo no resting potential
could be computed, as the membrane potential was constantly fluctuating, and
therefore only DAP deflection and TimeAP-DAP were used.

4.4.4 Determination of other characteristics
To compare the model to experimental data in Sec. 2.1.1 some characteristics
were introduced that will be defined here.

To quantify the response of a cell to a negative step current the steady state
amplitude and sag deflection were computed. The steady state amplitude is the
difference between the voltage at steady state and the resting potential whereby
the voltage at steady state is determined as the mean of the membrane potential
over the last fourth of the step current. The sag deflection is the distance between
the voltage at steady state and the minimum of the membrane potential within
the first fourth of the step current.

Step currents eliciting superthreshold responses were characterized by the
latency of the first spike, ISI1/2 and by fitting the F-I curve with a power function.
ISI1/2 is the ratio between the 1st and 2nd ISI computed from the trace with the
lowest step amplitude having at least four APs. Three APs would be enough in
principle, however, voltage traces with four APs exhibited more representative
firing patterns. The latency of the first spike is the time between the onset of the
stimulus and the peak of the first spike. It was determined from the trace with the
lowest step amplitude that had at least one AP. The F-I curve was approximated
by the following function:

f(x) =

a · (x− b)
c if x ≥ b

0 else
(4.15)

whereby f(x) was given in Hz and x in nA. The parameters a, b, c were fit using
non-linear least squares with the initial values: a0 = 50, b0 = highest current
where the F-I curve was still zero, c0 = 0.5.

To quantify the resonance behavior the impedance was computed as:

Z =
∣∣∣∣FFT (V )
FFT (I)

∣∣∣∣ (4.16)

and then smoothed using LOWESS (locally weighted scatterplot smoothing).
The resonance frequency is the frequency where the impedance is maximal.
The Q-value is defined as the maximal impedance divided by the impedance at
frequency 0.

For the evaluation of the sine stimulus the spike phases were determined. The
spike phase is the position of the AP peak with respect to the theta oscillation
of the input stimulus. From the spike phases the circular mean and standard
deviation were computed.
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4.4.5 Comparison of the model with an inhomogeneous
Poisson process
To quantify the performance of the model on the double-sine protocol, it was
compared to an inhomogeneous Poisson process. The probability of a spike train
with the ordered spike times t1, t2, ..., tn can be described by an inhomogeneous
Poisson process as follows (Dayan and Abbott, 2001):

p[t1, t2, ..., tn] = exp
(
−
∫ T

0
r(t)dt

)
n∏
i=1

r(ti) (4.17)

where r(t) is the time-dependent firing rate that was set to the double-sine input
stimulus scaled to the average firing rate of the experimentally measured cell.

Firstly, 1 000 000 spike trains were generated using the inhomogeneous Poisson
process (Dayan and Abbott, 2001). For each spike train the phase distribution
with respect to the intrinsic theta oscillation was determined. The similarity to
the phase distribution of the real cell was computed by the RMSE between both
distributions. The distribution of the RMSE from all Poisson-generated spike
trains was used to built a test statistic for the model. The p-value for the null
hypothesis that the RMSE of the model (RMSEmodel) is equal or higher than the
RMSE of the inhomogeneous Poisson process (RMSEPoisson), i.e. that the model
performs worse than the inhomogeneous Poisson process in reproducing the data,
can be approximated as

p [RMSEmodel ≥ RMSEPoisson] = #[RMSEmodel ≥ RMSEPoisson]
#RMSEPoisson

(4.18)

where #[RMSEmodel ≥ RMSEPoisson] is the number of Poisson-generated spike
trains which have smaller or equal RMSE than the model and #RMSEPoisson is
the total number of Poisson-generated spike trains. The null hypothesis can be
rejected if the p-value is small.

4.4.6 Voltage clamp protocols
NaT

The voltage clamp protocol for investigating NaT channels consisted of two volt-
age steps. The first step was hold at -80 mV for 10 ms. This enforces NaT channels
to be closed and non-inactivated. The second step iterates over different voltages
and is hold for 50 ms. NaT channels would respond to more positive potentials
with a negative current that peaks within a few milliseconds and then decays to
zero (Magistretti and Alonso, 1999, Hargus et al., 2011, Nigro et al., 2012). This
is caused by the fast opening of NaT channels followed by inactivation.

NaR

The voltage clamp protocol for NaR channels visualizes not only resurgent, but
also transient and persistent activity (Lewis and Raman, 2014). It is therefore
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especially suited to investigate the presence of a certain sodium channel. The
protocol starts with a step hold at -80 mV for 10 ms bringing sodium channels to a
closed, non-inactivated state. Then a step to 0 mV continuing for 20 ms is applied.
A negative current during this step indicates the transient component that is
caused by fast opening of NaT channels followed by inactivation. The third step
iterates over several voltages and lasts 100 ms. As NaT channels are inactivated
from the previous step, they show no response. However, NaR channels cause
a negative current due to fast de-inactivation (Hargus et al., 2011, Nigro et al.,
2012). Subsequently, the current can approach a constant value representing the
persistent component.

KDR

To bring potassium channels to a closed, non-inactivated state the cell was
clamped to -110 mV for 150 ms. The second step was used to inactivate the fast
transient current of KA channels by stepping to -50 mV for a duration of 50 ms.
The current flow of KDR channels was then measured by clamping at different
voltages for 150 ms. KDR channels show a sustained positive current with slow
inactivation (Eder and Heinemann, 1996).

HCN
The voltage protocol for HCN channels starts with a voltage step to -60 mV for
20 ms so that HCN channels are in a non-inactivated state. The second step
lasts 1500 ms and iterates over several voltages. For more negative potentials
HCN channels are released from inactivation causing an increase in current flow
within a time scale of hundreds of milliseconds that approximates a constant
value (Dickson et al., 2000).

4.4.7 Sensitivity analysis
In order to investigate the effect of the model parameters on DAP characteristics
a sensitivity analysis was conducted. For this purpose one million models were
generated by randomly sampling parameters one order of magnitude around the
original parameters (Tab. 4.2, 4.3). The sampled models were simulated given a
triangular pulse as input. From their response the AP amplitude, AP width, fAHP
amplitude and DAP characteristics (DAP deflection, DAP amplitude, DAP width
and TimeAP-DAP) were computed. For all models for which the characteristics
were available and within the valid ranges defined in Tab. 4.5 (3 587/1 000 000
models) a correlation analysis was performed. Correlations were computed by
Kendall’s tau, as it is a robust, non-parametric method (Knight, 1966). However,
Spearman’s and Pearson’s correlation coefficient gave similar results (Fig. 5.2).

Two analyses were performed on the models. Firstly, it was tested whether the
data set was large enough to estimate correlations. This was done by dividing
the data set into 35 subsets with 102 models, respectively. For each subset the
correlations between model parameters and DAP characteristics were computed
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and it was checked whether the standard deviations of the correlations over
subsets were low. Secondly, it was investigated whether strong and significant
correlations exist in the whole data set. For the significance test the p-values
derived from Kendall’s tau were adjusted using the Bonferroni correction to
account for multiple testing.

4.4.8 Spike-triggered average of the membrane potential
(STAV)
For the computation of the STAsV in Sec. 2.2 the AP peak indices provided with
the dataset by Domnisoru et al. (2013) were used. For each AP peak a window
was drawn around the spike ranging from 10 ms before until 25 ms after the AP
peak. The window was discarded if another AP peak lay inside. To compute the
STAV for a cell the mean over all its AP windows was taken.

Selection of APs
In Sec. 2.2 it was reasoned that the quality of the recording determines how
well DAPs can be recognized in the STAV. In order to test that prediction it was
necessary to distinguish at which times a recording was good.

In vivo the quality of the recording is reduced due to an increased series
resistance (the sum of the pipette resistance and the resistance at the pipette-cell
junction) (Wang et al., 2016; Margrie et al., 2002). The series resistance together
with the pipette capacitance act as a low pass filter on the voltage signal. An
increased series resistance leads to a decrease in the passband of the filter which
causes, for instance, APs to be smaller and wider. Therefore, as an approximation
for the quality of the recording, the AP amplitude and width were used.

The threshold for the AP amplitude and width was chosen so that all cells
for which a DAP could already be recognized in the STAV lay within the region
classified as good recording. In particular, the threshold was set to the middle
between the outermost cell with a DAP and the closest cell without a DAP for
AP amplitude and width, respectively. The thresholds (AP width < 0.72 ms and
AP amplitude > 51.8 mV) were then used to select those APs that enter the
computation of the STAV.

4.4.9 Classification into bursty and non-bursty
Grid cells were classified into bursty and non-bursty cells based on the spike-
time autocorrelation (1 ms/bin) up to 50 ms. The spike-time autocorrelation
was set to zero for no time lag and normalized to an area of one. A principal
component analysis (PCA) (Pearson, 1901) was performed on the spike-time
autocorrelations from all cells to identify the directions of highest variance. The
first two principal components were used for the classification. A k-means cluster
algorithm (MacQueen et al., 1967) with the number of clusters set to two was
applied to split the cells into bursty and non-bursty. Inspecting examples from
each cluster confirmed that bursty cells had a higher spike-time autocorrelation
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for short time lags than non-bursty cells (Fig. 2.19). Accordingly, cumulative ISI
histograms had higher slopes for short ISIs for bursty compared to non-bursty
cells (Fig. 2.22).

4.4.10 Other characterizations of the firing behavior
For the ISI histogram and ISI return map only ISIs ≤ 200 ms were used as longer
time scales are irrelevant for distinguishing burst and non-burst behavior. The ISI
histogram had a bin width of 1 ms/bin and was normalized to an area of one.

To compute the frequency of spike events a spike event was defined as a
sequence of APs where the time interval between each pair of spikes had to be
≤ 8 ms. The frequency of each spike event was normalized by dividing by the
total number of spike events. The relative frequency was then plotted on a linear
and logarithmic scale.
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5Supplement

Fig. 5.1: 2D scatter plots of the distribution of DAP characteristics of the model (black)
in comparison to the MECIIDAP population (blue) and the target cell (magenta).

Fig. 5.2: Comparison of different correlation measures for the sensitivity analysis.
Kendall’s tau (A), Spearman’s (B) and Pearson’s (C) correlation between the parameters
and DAP characteristics of the model with Bonferroni corrected p-values (p-val. < 0.1,
0.01, 0.001 = *, **, ***).
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5.1 Comparison of five different models
In this section the model analyzed in Sec. 2.1 (here model 1) and four other
models are shown to visualize the similarities and differences of models built
with the same structure and optimization procedure.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
cm (µF/cm2) 0.627407659 0.673718623 0.507550843 0.691542 0.640349
length (µm) 100 100 100 100 100
diameter (µm) 50 50 50 50 50
ELeak (mV) -86.531398343 -86.793412589 -88.055860574 -84.3537 -88.2075
EHCN (mV) -29.456682181 -27.596796283 -29.779735489 -29.307 -26.7741
ENa (mV) 60 60 60 60 60
EK (mV) -110 -110 -110 -110 -110
gLeak (S/cm2) 0.000430117 0.000779596 0.000485971 0.000558033 0.00160234
NaP gmax (S/cm2) 0.015272213 0.012113085 0.024674905 0.0100557 0.0379042
NaT gmax (S/cm2) 0.141941547 0.103247371 0.248356679 0.100142 0.222564
KDR gmax (S/cm2) 0.003125397 0.003686712 0.010919816 0.00263726 0.0120953
HCN gmax (S/cm2) 5.322·10−5 0.0001323 3.242·10−5 0.000119098 0.000115592
NaP Vh,m (mV) -52.81768 -55.353542478 -53.77269401 -53.3938 -53.3628
NaP Vh,h (mV) -82.54144 -79.631236292 -80.612595471 -78.3584 -81.5975
NaT Vh,m (mV) -30.93933 -32.913369899 -33.055814114 -34.3547 -31.6806
NaT Vh,h (mV) -60.44199 -72.08832547 -59.17759006 -74.6419 -68.0021
KDR Vh,m (mV) -68.28729 -67.715013369 -67.263599118 -67.0344 -66.2632
HCN Vh,h (mV) -77.90055 -84.54277025 -85.746567678 -78.2075 -80.6636
Nap Vs,m (mV) 16.107894681 16.387992168 16.150191811 14.7591 17.1306
Nap Vs,h (mV) -19.193893103 -21.41013122 -22.844222479 -19.3687 -19.1157
Nat Vs,m (mV) 11.986102516 14.457205652 12.742500305 13.5563 15.0649
Nat Vs,h (mV) -13.174636462 -14.042680864 -13.631565851 -13.5885 -12.7681
Kdr Vs,m (mV) 18.844244474 18.797037815 18.16355694 18.5827 17.9354
HCN Vs,h (mV) -20.535609569 -19.347698213 -20.441746416 -20.3833 -18.2677
Nap τmin,m (ms) 0.035622452 0.016143355 0.084659847 0.0216391 0.276214
Nap τmin,h (ms) 0.335862929 0.514528052 0.574603314 0.398175 0.67264
Nat τmin,m (ms) 3·10−9 0 1·10−9 0.0326277 0.0246678
Nat τmin,h (ms) 0.000919782 5.717·10−5 0.243969122 0.0296275 0.0890201
Kdr τmin,m (ms) 0.2857844 0.446112614 0.228334006 0.2552 0.688191
HCN τmin,h (ms) 2.206156686 4.668802614 4.257724746 3.0777 6.01924
Nap τmax,m (ms) 15.331610852 17.103786642 17.427725129 17.187 18.1061
Nap τmax,h (ms) 13.658651289 18.368726696 16.276107748 15.6257 16.3773
Nat τmax,m (ms) 0.193252151 0.156283577 0 0.186841 0.164704
Nat τmax,h (ms) 8.743416128 8.413102152 10.574012247 10.1194 8.979
Kdr τmax,m (ms) 21.285696736 21.116372985 21.457143615 22.5133 22.02
HCN τmax,h (ms) 137.799112777 135.216196588 137.204896694 133.712 128.051
Nap τdelta,m (1) 0.505477008 0.434638993 0.57090503 0.469318 0.400833
Nap τdelta,h (1) 0.439179987 0.722164327 0.380378834 0.422425 0.953268
Nat τdelta,m (1) 0.187070568 0.24005087 0.146145937 0.313401 0.305363
Nat τdelta,h (1) 0.439803428 0.330430454 0.359211676 0.43633 0.287004
Kdr τdelta,m (1) 0.746024007 0.706951349 0.628309909 0.657289 0.611571
HCN τdelta,h (1) 0.210320088 0.164162369 0.372886626 0.253464 0.0459246

Tab. 5.1: Parameter values for the five different models.
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Fig. 5.3: Membrane potential of the real (blue) and simulated cell (black) in response
to a short triangular pulse (bottom plot) for five different models.

Fig. 5.4: Performance of the five different models for the double ramp protocol. A:
Membrane potential of the real (blue) and simulated cell (black) in response to the
double triangular pulse (bottom plot). B: Current threshold at rest (black and blue dot at
0 ms) and during the DAP for different amplitudes of the preceding step current (N: 0.1
nA, •: 0 nA, H: -0.1 nA) applied from 222 to 472 ms. Dotted lines indicate the shape
of the AP and DAP for the real and simulated cell, respectively. Dashed lines indicate
the range of amplitudes tested in case of the experimental data. C: Percentage of the
decrease in current threshold from rest compared to the lowest threshold during the DAP
of real cells (blue) and the model (black). Next to it, the mean and standard deviation
over real cells.
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Fig. 5.5: Performance of the five different models for negative step currents. A: Mem-
brane potential of the recorded (blue) and simulated cell (black) in response to a negative
step current. B: Comparison of the voltage at steady state versus the sag peak for the
experimental data (blue) and the model (black). C: Membrane potential of the model
without (black) and with 100% block (yellow) of the HCN channel.

Fig. 5.6: Performance of the five different models for positive step currents. A: Membrane
potential of the recorded (blue) and simulated cell (black) in response to a positive step
current (bottom plot). B: F-I curve of the recorded (blue) and simulated cell (black).
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Fig. 5.7: Performance of the five different models for a ZAP current. A: Membrane
potential of the recorded (blue) and simulated (black) cell in response to a ZAP current
(bottom plot). B: Impedance computed from the traces shown in A. C: Membrane
potential of the model without (black) and with 100% block (yellow) of the HCN
channel.
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Fig. 5.8: Performance of the five different models for the double-sine stimulus. A:
Membrane potential of the recorded (blue) and simulated cell (black) in response to the
double-sine stimulus (bottom plot). B: Phase histogram of the APs with respect to the
theta oscillation for the traces shown in A. C: Phase of the AP peaks with respect to the
theta oscillation as a function of time and the linear regression lines fit to them.
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Fig. 5.9: Comparison of the five models (black with model number) to the MECIIDAP

population (blue) and the target cell (magenta) to which the model was fit. A: Distribu-
tion of DAP deflection, DAP amplitude, TimeAP-DAP and DAP width. The numbers indicate
the order in which the values of the models appear. B: Sag deflection and amplitude at
steady state. The inset enlarges the region around the models. C: Latency of first spike
and ISI1/2. D, E, F: 2D plots for a (scaling), b (shift) and c (exponent) obtained by fitting
the F-I curve to Eq. 2.1 requiring RMSE≤20 Hz. G: Q-value and resonance frequency. H:
Mean and standard deviation of the phase histogram.
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Fig. 5.10: First two principal components of the PCA of the spike-time autocorrelations.
The value in the upper right is the percentage of the variance explained by the respective
component.

Fig. 5.11: Bistability in the model when a slow ramp current is injected. A: The
membrane potential in response to a slowly upwards ramping current (lower plot) is
shown. B: The membrane potential in response to a slowly downwards ramping current
(lower plot) is shown. The membrane potential is plotted with reversed time to visualize
the difference in the onset of spiking that is indicated by the gray dashed lines in both
plots.
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