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Abstract 

 

CRISPR-Cas systems provide prokaryotic adaptive immunity against invading agents, which 

also stimulated the development of indispensable tools in biological research. CRISPR-Cas 

systems show remarkable diversity and encompass two classes, six types and 16 subtypes. 

Among these six computationally classified CRISPR-Cas types, type IV CRISPR-Cas 

systems remained the only one without experimental data. In this study, we provide the first 

experimental characterization of a type IV CRISPR-Cas system using Aromatoleum 

aromaticum EbN1 as a model organism. 

The cas genes and a minimal CRISPR array of the A. aromaticum EbN1 (type IV CRISPR-

Cas system) were transferred into Escherichia coli BL21 AI to uncover the RNA and protein 

components of this CRISPR-Cas type. Type IV crRNAs were shown to yield unusually short 

7 nucleotide 5′-repeat tags and stable 3′ hairpin structures. A unique Cas6 variant (Csf5) was 

identified that generates crRNAs that are specifically incorporated into type IV CRISPR–

ribonucleoprotein (crRNP) complexes. Structures of RNA-bound Csf5 were obtained and the 

active site of the enzyme was determined. Recombinant production and purification of the 

type IV Cas proteins, together with electron microscopy, revealed that Csf2 acts as a helical 

backbone for type IV crRNPs that include Csf5, Csf3 and a large subunit (Csf1). Mass 

spectrometry analyses identified the cRNPs’ protein–protein and protein–RNA contact sites. 

A possible PAM-sequence dependent DNA targeting mechanism of this complex and the 

involvement of a type IV CRISPR-Cas associated DinG helicase are discussed. 
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1. Introduction 

1.1 Defense Systems in Prokaryotes 

The most abundant biological entities on earth are viruses, which outnumber prokaryotes by a 

magnitude of 10-100. Prokaryotes have evolved diverse and elaborate antiviral defense 

systems in order to protect themselves from these parasitic agents. The co-evolution of host 

and viral genomes promotes their genetic diversification and the emergence of efficient 

defense strategies in prokaryotes. Beside parasitic agents, the compact genomes of bacteria 

and archaea are also under constant attack by mobile genetic elements (MGE), such as 

transposons. Therefore, defense mechanisms also support the survival of the cell by 

maintaining host genomes [2] [3] [4, 5] [6] [7]. 

To date, identified prokaryotic defense systems can be grouped into four categories based on 

targeting stage of the phage infection. These categories include (i) immunity by surface 

modification, (ii) blockage of phage genome injection, (iii) inactivation of injected phage 

genomes and [8] dormancy induction or programmed cell death (figure 1). In addition, recent 

and new discoveries about prokaryotic defense systems are also discussed.  
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Figure 1: Overview of bacterial defense strategies. Defense strategies target different stages of the 

phage life cycle and can be classified into four groups: inhibition of attachment, blocking of phage 

genome injection, inactivation of injected phage genomes and cell dormancy or programmed cell 

death. 

 

1.1.1   Immunity by surface modification and blocking of phage genome injection: 

The first step in infection is the attachment of the phage to bacterial surface receptors. 

Bacteria have developed several strategies to prevent phage absorption which includes the 

physical masking of receptors by biofilm formation and the loss or downregulation of host 

receptors to block phage entry points. Another similar strategy is the blocking of the phage 

genome injection after attachment. An example is the superinfection exclusion systems which 

utilize membrane-associated proteins to block phage DNA injection after virus attachment [4, 

6, 9] [10, 11] [12] [13] [8]. 
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1.1.2 Inactivation of injected phage genomes: 

Phage genomes that were injected into cells can be cleaved or modified by intracellular 

immune mechanisms. These defense mechanisms aim to prevent phage replication or release 

by inactivating its genetic material. Prime examples in this category are the CRISPR-Cas 

systems (detailed description in section 1.2), restriction-modification (R-M), DISARM, 

BREX and Argonaute proteins (pAgos) [9] [14, 15].  

1.1.2.1 Restriction-Modification, DISARM and BREX 

Restriction-modification (R/M) systems consist of a restriction endonuclease that cleaves 

specific sequences within foreign DNA molecules and a DNA methyltransferase that modifies 

the target sequences in the host genome to prevent self-cleavage. Invading nucleic acids are 

degraded by restriction enzymes as they lack methylated sequences.  Some viruses evade this 

process by encoding their own methyltransferase or blocking active sites of the restriction 

enzymes necessitating the evolution of diversified R/M systems [16-21] [22]. 

A recently discovered defense system named DISARM (Defense island system associated 

with restriction-modification) includes restriction-modification systems, which deviate from 

other known R/M systems by their module composition and additional putative components. 

DISARM is suggested to provide protection against diverse phages while allowing phage 

absorption [14, 23]. However, its mechanism of action still remains to be elucidated. Another 

newly discovered phage defense system, named BREX (Bacteriophage Exclusion), also acts 

after phage absorption by targeting the phage replication pathways. The BREX system 

includes a set of genes, which exhibit protease, alkaline phosphatase, RNA binding, DNA 

methylase, and ATPase domains. Unlike R/M systems, the BREX system does not degrade 

the phage nucleic acids suggesting a novel type of activity. Self/non-self-discrimination was 
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found to exist via methylation of specific sequence patterns (TAGGAG) of the bacterial 

genome. However, the exact mechanism of BREX system is not understood [15] [8]. 

Interestingly, a recent study from Doron et al., 2018 revealed new defense systems. In this 

study, over 45.000 bacterial and archaeal genomes and more than 120 million genes were 

analyzed in the microbial pan-genomes. Using a guilt-by-association approach, nine 

previously unknown anti-phage systems and one anti-plasmid system were detected.These 

systems were named based on Greek mythology (Thoeris, Hachiman, Shedu, Gabija, Septu, 

Lamassu, Zarya, Kiwa, and Drunantia). However, their complete mechanism of action is not 

yet characterized [23]. 

1.1.2.2 Prokaryotic Argonaute proteins 

Argonaute proteins are present in all domains of life and are key enzymes in the RNA 

interference pathways in eukaryotes. It has been found that genes encoding for Argonaute 

proteins also exist in the defense islands of prokaryotic genomes and play a role in innate 

immunity. Many prokaryotic Argonaute proteins preferentially bind DNA guides and direct 

the degradation of nucleic acids by their catalytic domains.  In rare cases, DNAse activity 

without a DNA guide has been reported and the self-genome is protected by chromatinization 

of DNA. Plasmids have been shown to be potential targets of prokaryotic Argonaute proteins 

[24-27] [28] [29]. 

1.1.3 Dormancy induction and programmed cell death 

Suicidal response to infection is an altruistic behavior following phage infection in cells. Cell 

death prevents phage replication and inhibits the spread of phages to neighboring cells. The 

toxin-antitoxin (TA) systems and abortive infection (Abi) systems cause cell suicide or 

dormancy in response to a virus infection. In TA systems, a toxin remains reversibly 

inactivated by an antitoxin component under normal growth conditions. However, the 
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antitoxin is deactivated under stress conditions. Unlike the toxins, antitoxins are metabolically 

unstable, thereby allowing sufficient amount of free toxin to accumulate and resulting in cell 

death [30, 31] [32].  

Another phage resistance based cell suicide strategy is abortive infection system (Abi). Upon 

phage infection, the intracellular sensor molecule RexA is activated in the host. RexA 

subsequently activates the membrane-anchored ion channel protein RexB, which results in a 

sudden drop in cellular ATP levels. This aborts ATP-dependent cellular processes and leads 

to cellular suicide [33, 34] [35, 36]. 

1.2 Prokaryotic Adaptive Immunity: The CRISPR-Cas System 

Unusual repetitive sequences of the CRISPR-Cas system were initially recognized by Ishino 

et al. in the late 1980s, but their function in the system was described six years later by F. 

Mojica in Haloferax mediterranei [37] [38]. The discovery of the CRISPR-Cas system as an 

adaptive immune system led to the realization that adaptive immunity is not only a feature of 

higher organisms but potentially an ancient mode of defense system found in prokaryotes [39] 

[40, 41] [42]. Compared to other defense systems, the most remarkable feature of the 

CRISPR-Cas system is its ability to store information of past infections and the capacity to 

use them when necessary. Stored infection memory hereby enables the detection and 

degradation of foreign nucleic acids of invading agents (such as viruses, plasmids, 

transposons) in order to defend the integrity of the prokaryotic genomes [43] [44]. 

CRISPR-Cas systems are found in around 90% of all archaea and in about 50% of all 

bacterial species. Almost all CRISPR-Cas systems share a two component architecture on 

their genomes, a CRISPR-array (Clustered Regularly Interspaced Short Palindromic Repeats) 

and a set of cas genes (CRISPR associated genes) that is usually found in close proximity. 

CRISPR arrays consist of an AT-rich leader sequence, a series of palindromic DNA segments 
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(repeats), which are interspaced by variable DNA sequences (spacers). The source of the 

spacers are often previously encountered MGEs (virus, plasmids, transposons) [45-47].  

 CRISPR-Cas mediated adaptive immunity consists of three connected stages: adaptation 

(acquisition), expression and interference. In adaptation, a new spacer derived from an 

invading sequence is inserted into CRISPR array (figure 2). PAM (protospacer adjacent motif: 

2-7 nucleotide long motifs) initiate recognition of protospacers in foreign DNA by Cas 

proteins that catalyze their excision and integration in a CRISPR array between the leader and 

the first repeat sequence of the CRISPR array. The proteins Cas1, Cas2, and Cas4 were shown 

to be the main proteins involved in this adaptation process. Two dimers of the Cas1 integrase 

are complexed by a central Cas2 dimer, creating a hetero-hexameric complex that catalyzes 

(proto) spacer integration [47] [48-53] [54]. Recent studies demonstrated that the protein Cas4 

also plays a role in adaptation by adding PAM specificity during protospacer selection by the 

Cas1-Cas2 complex. Therefore, the presence of Cas4 ensures the acquisition of functional 

spacers [55] [54, 56] [57, 58].  

 During expression, the CRISPR array is transcribed into long precursor CRISPR RNAs (pre-

crRNAs) and subsequently processed by different RNA processing enzymes that vary 

between CRISPR-Cas types (see section 1.3). The pre-crRNA transcript can be processed by 

cellular RNAses (RNase III in type II) or dedicated Cas proteins (Cas6 family 

endoribonucleases in type I). Mature crRNAs, consist of a single spacer flanked by partial 

repeats [59] [60].  

In the interference stage, mature crRNAs interact with Cas proteins and form a CRISPR 

ribonucleoprotein complex (crRNP). Depending on the class of the CRISPR-Cas system, 

single or multiple Cas proteins interact with a single crRNA. Even within types of the same 

family, crRNP arrangements vary. However, they exhibit a common mechanistic role, which 

is the identification and degradation of foreign genetic elements [61]. Individual crRNPs scan 
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DNA strands for the presence of PAM sequences and interrogate adjacent sequences for 

complementary to the crRNA spacer which defines a bona fide target. Binding of crRNPs to 

the targeted region creates a DNA-RNA hetero-duplex, termed R-loop. R-loop formation 

subsequently triggers either internal nuclease activity (Cas9) or the recruitment of Cas 

nucleases (Cas3) in order to destroy foreign mobile genetic elements [62-65] (figure 2). 

 

Figure 2: Three stages of the CRISPR-Cas mediated adaptive immunity. At the stage of adaptation, 

the proteins Cas1 (blue) and Cas2 (yellow) recognize the PAM sequence (purple) of foreign DNA and 

excise the protospacer to integrate it as a new spacer into the growing CRISPR array. During 

expression, the CRISPR array is transcribed, processed into small crRNAs, loaded onto Cas complex 

proteins (pink) which results in the formation of a crRNP complex. At the stage of interference, the 

crRNP complex scans DNA for PAM sequences (purple). Adjacent dsDNA sequences are interrogated 

for complementarity to the crRNA spacer, which creates an R-loop structure. The formation of the R-

loop structure recruits cellular nucleases, which then degrade the foreign DNA. Figure modified from 

[68]. 
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1.3 CRISPR-Cas Diversity and Classification 

In the current classification scheme, CRISPR-Cas systems are divided into two classes, six 

types, and 33 subtypes. This classification is based on the genome architecture of the 

CRISPR-Cas loci and the presence of signature proteins that are associated with each type 

[66] [67]. 

The two major classes are established based on the architecture of the effector complex. Class 

I features multi-domain protein crRNPs, whereas Class II is distinguished by a crRNP 

containing a single effector protein (figure 3). Class I is further subdivided into types I, III and 

IV and their effector complexes are composed of four to seven different Cas proteins 

assembled around a central crRNA skeleton with a varying stoichiometry (figure 4). Class II 

effector complex functions are carried out by a single multi-domain protein (e.g. Cas9) and 

further subdivided into types II, V and IV [68] [66] [67] [58]. 

Figure 3: Simplified representation of the two major CRISPR-Cas classes based on the architecture of 

the effector complexes. Class I (Type I, III, IV effector complexes are formed by multiple proteins, 

whereas Class II complexes (Type II, V, VI) are only composed of a single effector protein. Similar 

functional roles of the effector complexes are achieved by varying target strand and PAM sequence 

location and the different structure of the RNA guide. Figure modified from [66]. 
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Figure 4: Classification of the Class I CRISPR-Cas systems. Class1 systems contains three types 

(type I, III and IV) and various subtypes. Effector complex modules are shaded in light red. Figure 

taken from [67]. 

The structural composition of the Class I effector complexes, which mediate the interference 

stage of the CRISPR-Cas defense, features common similarities among different types (type I, 

type III and type IV). In type I systems, the effector complex is known as CRISPR-associated 

complex for antiviral defense (Cascade), whereas in type III-A  and type III-B systems 

effector complexes are known as Csm and Cmr complexes. The core Cas proteins found in 

class I effector complexes share a common structural feature, which is the presence of an 
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RNA recognition motif. In type I systems, the core complex proteins are Cas7, Cas5, and 

Cas6.  

Cas5 and Cas7 are non-catalytic RNA binding proteins. Cas5 is responsible for 5'-repeat tag 

capping of the crRNA and Cas7 is responsible for multi-subunit backbone formation. Cas6 is 

an endoribonuclease that is responsible for crRNA processing with an exception of the type I-

C system where crRNA processing is catalyzed by Cas5 [61, 69]. In addition to core effector 

complex components, two additional proteins named large subunit and small subunit are 

designated to the crRNP complexes. The large subunit is mostly present in type I and type III 

crRNPs (exception for type I-fv) and responsible for PAM recognition, whereas the presence 

of a small subunit, which is responsible for non-target strand stabilization, is rarer [67] [61]. 

Type I Cascade complexes identify foreign DNA and subsequently recruit the signature 

protein Cas3 nuclease/helicase in order to degrade foreign DNA. In type III systems, the 

interference process is coupled to transcription in a PAM independent manner. The 

multiprotein type III complexes target the nascent mRNA and then degrades DNA nearby 

[70] [71] [72-74] [61] [75] [76]. 

Electron microscopy images of type I-E Escherichia coli Cascade and type III Thermus 

thermophilus complexes show remarkable similarities based on their shape and Cascade 

architecture (figure5). Therefore, it is suggested that multi-subunit effector complexes 

evolved before the separation of Type I and Type III CRISPR-Cas branches [77] [78]. 
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Figure 5: Representation of the basic architecture of the E.coli Type I-E Cascade based on its crystal 

structure. Cas proteins assemble around a single crRNA with an uneven stoichiometry of five different 

proteins. The backbone protein (Cas7e) wraps spacer of the crRNA with 6-nt intervals. Cas5e and 

Cas6e proteins hold the 5' handle and 3' hairpin structures of the crRNA, respectively. Figure adapted 

from [79]. 
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1.4 The Type IV CRISPR-Cas System 

Among 47 % of analyzed bacterial and archaeal genomes possessing CRISPR-Cas loci, less 

than 1% carry the rare type IV system [67] [80]. The minimalistic architecture of type IV loci 

is distinct from all type I and type III subtypes by lacking adaptation and target cleavage 

genes, thereby justifying its classification as a new type. The protein Csf1 (large subunit) was 

assigned as a signature protein for this distinct type [67] [80, 81] (Figure 6).  

 

Figure 6: General scheme of the organization of the CRISPR-Cas systems: Cas proteins are classified 

based on their general function. Type IV CRISPR-Cas (indicated in red)  interference complexes are 

proposed to be composed of Cas7, Cas5, small subunits, and a large subunit. Adaptation proteins 

Cas1, Cas2, and target cleavage proteins (e.g.Cas3) are missing in this system. The presence of a small 

subunit (SS) and a DinG protein are optional (shaded line). Figure adapted from [68]. 

There are unique features of the type IV system which deviate from other known CRISPR-

Cas systems. These include its nearly universal localization on plasmids, the apparent loss of 

Cas1, and Cas2 adaptation genes and the presence of signature large subunit protein. Type IV 

systems are also often not found in close proximity to a CRISPR array or even encoded in a 

genome entirely lacking CRISPR arrays [67]. 

Type IV systems are predicted to encode minimal multi-subunit crRNA-effector complexes 

that consist of a large subunit protein [82], Cas5 (Csf3), Cas7 (Csf2) and occasionally a 
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putative small subunit or Cas6 family endoribonuclease (Csf5). There are two variants of type 

IV CRISPR-Cas systems, which are distinguished by the presence of the DinG helicase. The 

genomic architecture of type IV-A CRISPR-Cas systems contains additional putative genes 

for DinG and a type IV repeat specific Cas6 homolog (Csf5). However, type IV-B systems 

lack additional genes and a uniform CRISPR locus. Our model organism Aromatoleum 

aromaticum EbN1 possesses a type IV-A CRISPR-Cas locus on one of the two megaplasmids 

with a complete set of cas genes (csf1, csf2, csf3, csf4, and csf5) and a regular CRISPR-array. 

Additionally, A. aromaticum EbN1 contains a type I-C CRISPR-Cas system on the genome 

and DinG (Csf4); which is localized adjacent to the type IV CRISPR-Cas locus [67] [82].  
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1.5 Type IV associated DinG helicase (Csf4) 

DinG (damage-inducible helicase G) is classified into the superfamily 2 (SF2) helicases in the 

sub-branch of the XPD family, which feature non-ring-formation, ATP dependency and 

translocation on single stranded or double stranded nucleic acids [83-85]. Most of the XPD 

family DNA helicases comprise an iron-sulfur cluster, which is represented as four cysteine 

residues located between two conserved Walker A and Walker B motifs. However, not all 

DinG proteins possess iron-sulfur clusters [86].   

DinG helicase activity has been studied in various organisms. The deletion of dinG in E. coli 

did not create a severe phenotype, but a slight reduction of UV resistance was reported. The 

enzyme was characterized as a DNA dependent ATPase and 5'-3' DNA helicase.[87]. Further 

characterization suggests that DinG unwinds DNA-RNA hybrid duplexes, is active on D-

loops and R-loops, and on forked structures. It was also shown that 5'-ss tails 11-15 

nucleotide length are sufficient to initiate DNA duplex unwinding [88]. Similar results were 

also observed in Mycobacterium tuberculosis, where DinG exhibited an unwinding activity of 

substrates with 3'-overhangs [89]. 

Interestingly, the DinG helicase in Staphylococcus aureus was shown to lack an iron-sulfur 

cluster and to exhibit fused N-terminal exonuclease activity in the 3'-5' direction, but lacks 

unwinding activity [90]. The biological function of DinG in bacterial lineages is not fully 

understood.  It is proposed that its function is dissolving R-loops in during the removal of the 

RNA transcripts from (stalled) replication forks. Interestingly, DinG helicases appear in 

bacterial lineages in association with CRISPR-Cas systems. The function of the DinG 

helicases in type IV CRISPR-Cas system is proposed to provide a helper role, however, 

experimental and functional data related to type IV CRISPR-Cas associated DinG helicases is 

lacking to date [81]. 
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1.6 CRISPR-Cas Systems with Functions Beyond Defense  

The main known function of the CRISPR-Cas system is RNA-guided nucleic acid detection 

and degradation, i.e. its role as an adaptive immune system. However, some CRISPR-Cas 

systems suggest to have functions beyond their canonical adaptive immune function (e.g. 

oxidative stress tolerance, DNA repair, host-microbe interactions or transposon guidance) [91, 

92] [93] [94].  

The Cas9 protein of type II systems was shown to modulate virulence and pathogenicity of 

the bacterial cells by regulating bacterial lipoprotein (BLP) expression at the mRNA level in 

Francisella novicida. Reduced BLP expression at the membrane protects pathogens against 

host immunity [95]. Similarly, in a separate study, the absence of the cas9 gene resulted in 

increased swarming and reduced cytotoxic activity during infection of Campylobacter jejuni 

in human cells [96]. Another example of function beyond immunity is the involvement of 

CRISPR-Cas systems in DNA repair and recombination pathways. The type I-E CRISPR-Cas 

system of E. coli has been reported to be involved in DNA repair. Here, Cas1 nuclease of E. 

coli was shown to interact with various DNA recombination and DNA repair enzymes: RecB, 

RecC, RuvB, and UvrC. Deletion of the cas1 was shown to increase sensitivity to DNA 

damage and defects in chromosome segregation [92]. Several studies have shown that abiotic 

stress also activates the transcription of cas genes in prokaryotes (Thermoproteus tenax, 

Methanococcus jannaschii, Pyrococcus furious and Sulfolobus solfataricus) [97, 98] [99] 

[100] [101].  

Comparative genomic and phylogenetic analysis of minimal CRISPR-Cas systems proposed 

an association with distinct families of transposable elements. It was hypothesized that 

minimal CRISPR-Cas systems could be repurposed as a mechanism that helps transposable 

elements to propagate via RNA-guided transposition [102]. A minimal subtype of a type I-F 

CRISPR-Cas systems, which lacks the adaptation module or target cleavage Cas3 protein, 
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consists of only three effector proteins: a fusion protein of the large subunit (LS) with Cas5f, 

Cas6f, and a transposon-associated Cas7f. This minimal system is predicted to process 

generate mature crRNAs but lack the cas3 target cleavage gene, which prevents a 

conventional RNA guided adaptive immune function. Comprehensive in-silico analysis shows 

that site-specific specialized group of Tn7 transposon family is linked to these minimal 

CRISPR-Cas systems (figure 6). 

 

Figure 6: Schematic representation of Tn7-like transposons associated with cas genes (cas6, cas5, 

cas7, cas8). Components of the Tn7-like transposons (TnsA, TnsB, TnsC, TnsD, TniQ) are linked to 

cas genes (in a distance of 10 kb up or downstream in a genomic neighborhood). L: left flanking 

region, R: right flanking region. Figure adapted from [102].  
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1.6.1 Tn7 Based Transposition Mechanism 

Bacterial Tn7 based transposition is distinguished from other transposons by having tight 

control over target site selection. Due to the specific site selection mechanism, Tn7 

transpositions are usually not harmful to the hosts, as transposition is directed toward specific 

neutral sites (attTn7) which do not affect survival. A second pathway directs transposition 

into conjugal plasmids which helps facilitating the horizontal transfer of the elements to new 

host cells [103-105]. 

Mechanistically, transposition is carried out by five proteins; TnsA, TnsB, TnsC, TnsD, and 

TnsE. TnsA and TnsB provide the main transposase function when an appropriate site for 

insertion is identified. TnsD and Tns E are target site specifying proteins and TnsC functions 

as a regulator protein for communication between the transposase and targeting proteins. 

TnsD is a DNA binding protein and recognizes attTn7 sites, whereas TnsE recognizes specific 

structures on the DNA. These include replication forks which directs the core complex to 

replication-associated conjugal plasmids. The orientation of Tn7 transpositions is controlled 

by an unknown mechanism [105] [104] [106] [107] [108] (figure 7). 
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Figure 7: Schematic representation of the Tn7 transposon gene structure and transposition 

mechanisms. The genomic architecture of the Tn7 transposon includes left (L) and right (R) flanking 

sequences (depicted as triangles), a variable region which contains genes that likely benefit the host 

and tnsA, B, C, D, E site-specific transposition genes. Transposition is catalyzed by the TnsABC core 

complex and either TnsD or TnsE. The first pathway directs transposition to neutral attTn7 sites by 

Tns ABC + TnsD complex. Contrarily, the second pathway directs transposition to mobile plasmids 

and is accomplished by Tns ABC + TnsE. Neither pathway is likely to disrupt host genes. Figure 

adapted from [102]. 
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1.6.2 Proposed Model for Tn7 Based Transposition with CRISPR-Cas Systems 

Minimal subtype I-F and I-B CRISPR-Cas systems lacking adaptation and target nuclease 

genes (cas3), were identified to be associated with Tn7 transposons. These CRISPR-Cas 

associated transposons encode the protein TnsD which drives the transposon to attTn7 

specific sites, but they were found to lack TnsE-like proteins. These proteins mediate 

transposition to specific structures of DNA during replication and direct Tn7 insertion into 

plasmids and bacteriophages. Therefore, it was proposed that minimal CRISPR-Cas systems 

can take the role of TnsE to enable crRNA-guided Tn7 transposition (Figure 8). Furthermore, 

CRISPR array analysis of Tn7 associated CRISPR-Cas systems also supported the proposed 

hypothesis. Some spacer matches were found inside the transposon boundaries. 

 

 

Figure 8: Proposed model for CRISPR-Cas system guided transposition. Cas genes and a short 

CRISPR array link to Tn7 transposon components. The CRISPR-Cas system replaces the TnsE 

function and drives transposons to mobile genetic elements by crRNA guided targeting. Figure 

adapted from [102]. 
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Previously, it was shown that the gain of function mutations of TnsC regulator protein directs 

transposition to specific DNA structures (distorted B-form DNA). Furthermore, TnsABC+E 

based transposition was proposed to be induced by distortions in the target DNA. In the 

model, crRNP complexes induce DNA distortions, by forming R-loops during crRNA and 

protospacer duplex formation [102]. 
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1.7 Aims of the Study 

 

The functionality of type IV CRISPR-Cas systems has not been characterized experimentally 

and the possible roles of type IV Cas proteins have only been predicted using computational 

methods. Therefore, the aim of this study is to biochemically characterize the components of 

the type IV CRISPR-Cas system of the model organism A. aromaticum EbN1. Recombinant 

production of the A. aromaticum EbN1 Cas proteins Csf1, Csf2, Csf3, Csf5 (Cas6-like) and 

Csf4 (DinG helicase) is enabled in E. coli strains in the presence of minimal CRISPR arrays. 

This approach allows for insights into the mechanisms of (i) crRNA maturation and (ii) 

crRNP formation. First, the crRNA maturation pathway and the role of Csf5 should be 

identified. Second, it should be investigated if crRNAs are forming complexes with Cas 

proteins to generate Type IV-specific crRNPs that facilitates RNA-guided target searching. 

The presence of PAM motifs and an association with DinG proteins will be investigated for 

known Type IV CRISPR-Cas systems. 
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 2. Results 

2.1 Gene organization and biogenesis of crRNAs in Aromatoleum aromaticum EbN1 

To study the composition and functionality of a model type IV CRISPR-Cas system, two 

model organisms were selected: Methylobacterium extorquens AM1 and Aromatoleum 

aromaticum EbN1. Due to observed limitations of M. extorquens AM1 Cas protein 

production and the apparent absence of a uniform CRISPR array, most of the data presented 

in this thesis focuses on the type IV system of A. aromaticum EbN1.  

The model organism A. aromaticum EbN1 possesses a regular CRISPR array with associated 

Type IV cas genes (csf1, csf2, csf3, csf5) and DinG helicase (csf4) on one of its 

megaplasmids. In addition to the type IV CRISPR-Cas system on the megaplasmid, A. 

aromaticum possesses a type I-C CRISPR-Cas system on its chromosome. 

Illumina RNA-sequencing was used to investigate the biogenesis of crRNAs in a type IV 

CRISPR-Cas system. Small RNAs (< 200 nt) were isolated from A. aromaticum EbN1 and 

subjected to 5′-phosphorylation and 3′-dephosphorylation established for compatibility with 

Illumina library preparation. Over 11 million reads were sequenced and mapped to the A. 

aromaticum EbN1 genome. Mapped reads suggest that the type IV CRISPR array was 

successfully transcribed and processed into small crRNAs. Interestingly, type IV crRNAs 

were shown to contain an unusual 5´-terminal 7-nt tag with the sequence 5´- GUUGAAG-3´. 

The 3´-termini of mature crRNAs were not trimmed and contained a sequence that can form a 

hairpin structure (figure 9).  
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Additionally, RNA-Seq verified crRNA processing in the subtype I-C CRISPR-Cas cluster on 

the chromosome. It was observed that the I-C CRISPR array is also transcribed and processed 

into small crRNAs. In agreement with previous studies on subtype I-C systems, crRNAs with 

an 11 nt 5´- terminal tag with a sequence of 5´-UGGAUUGAAAC-3` were observed. This tag 

is generated by an unusual, catalytically active Cas5 enzyme variant [68] [113]. RNA-Seq 

analysis of Aromatoleum aromaticum EbN1 also revealed few reads indicating low expression 

of cas genes. Transcriptional activation of the cas genes might require specific conditions 

such as stress, virus infection or external signals. 

 

 Figure 9: Maturation of A. aromaticum EbN1 crRNAs. Depicted are gene organization and RNA-

seq coverage of the two CRISPR-Cas systems of A. aromaticum. Gene names and suggested Cas gene 
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families (LS (large subunit) of type IV CRISPR-Cas systems are given. a. The type IV CRISPR-Cas 

system contains two split CRISPR arrays with 9 and 15 spacers, respectively, which are separated by a 

mobile genetic element. RNA-Seq reads indicate crRNA maturation and generation of a 5′-terminal 5′-

GUUGAAG-tag. Cleavage occurs at the base of the hairpin structure of the 29 nt repeats (bottom 

right). b. The type I-C CRISPR-Cas systems contain three CRISPR arrays that are interspersed with 

three antisense transposon sequences. RNA-Seq reads covering the indicated genomic repeat region 

reveal that type I-C crRNAs exhibit a 5′-terminal 5′-UGGAUUGAAAC-tag and cleavage occurs at the 

base of the hairpin structure of the 37 nt repeats (bottom right). 

2.2 Csf5 is responsible for type IV crRNA maturation 

Observation of crRNA processing yielding a unique 7 nt 5′-terminal tag raised the question of 

which Cas protein is responsible for crRNA maturation in type IV systems. To address this 

question, in vivo cleavage assays were conducted. All type IV cas genes (csf1, csf2, csf3 & 

csf5) from A. aromaticum were codon optimized and expressed in E.coli. Beside the cas 

genes, a mini CRISPR array, consisting of a single repeat-spacer-repeat unit was expressed in 

the same strain. Pre-crRNA production and crRNA maturation was detected by northern blot 

analysis using a probe against the spacer sequence of the mini-array (figure 10). 

Different Cas proteins were provided with the mini-CRISPR array in in-vivo cleavage assays, 

to identify protein responsible for crRNA maturation in type IV. A 62 nt mature and stable 

crRNA were observed only in the presence of Csf5 and the mini CRISPR array this suggests 

that Csf5 acts as crRNA endonuclease of the Cas6 family, responsible for generating the 

unusual 7 nt 5'-terminal repeat tag. Additionally, the hypothesis of whether Csf5 interferes 

with the crRNA maturation of the type I-C CRISPR array was tested. Therefore, a subtype I-C 

mini CRISPR array was provided with Csf5 in vivo. However, mature crRNA formation from 

the type I-C mini CRISPR array was not observed. The in vivo cleavage assays suggest that 

Csf5 is a Cas6-like endoribonuclease, which specifically processes type IV CRISPR-Cas 

system associated CRISPR arrays. 
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Figure 10: In-vivo cleavage assays via northern blot. Respective Cas proteins and a type IV 

repeat-spacer-repeat-array were produced in E. coli BL21-AI. Northern blots were performed 

with a probe against the spacer. (a) Mature crRNA is detected in the presence of Csf5. (b) 

Respective Cas proteins (Csf3, Csf5) and a Type IV repeat-spacer-repeat-array were produced 

in E. coli BL21-AI (Wild type (Wt)). Northern blots were performed with a probe against the 

spacer. Repeat-spacer-repeat transcripts with identical spacers were produced either with type 

IV or type I-C repeats in E. coli BL21-AI together with the Cas proteins (indicated in figure). 

Mature crRNAs were only detected with type IV repeats together with Csf5 or a crRNP 

complex (Csf1, Csf2, Csf3 and Csf5). 
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2.3 Structure of Csf5 in complex with a processed crRNA 3`-tag  

Additionally, in vitro maturation assays were attempted with Csf5 and crRNA. However, 

purification of soluble Csf5 was not achieved. Soluble Csf5 could only be produced in the 

presence of bound crRNA, and purification by affinity and gel filtration chromatography 

yielded milligram amounts of recombinant Csf5 proteins in complex with a crRNA 

component. Purified Csf5 was therefore subjected to structure determination by X-ray 

crystallography, using single anomalous dispersion (SAD) due to lack of suitable search 

models for molecular replacements. The crystal structure revealed two monomers of the Csf5 

protein associated with the crRNA 3`- repeat tag with a 1.75 Å resolution. Electron density for 

nucleotides 14 and 15 of the crRNA hairpin was missing in the electron density map, 

suggesting a degraded hairpin loop. The degraded hairpin structure was assumed to be the 

result of RNases during the 20°C purification procedure. This changed the purification 

conditions to 4°C, in order to reduce potential RNase activity. Similarly, Csf5-crRNA 

complex revealed two monomers of Csf5 in complex with the intact crRNA repeat tag at a 

resolution of 2.3 Å (figure 11).  

The crystal structure of the Csf5 showed that it is not only a functional but also a structural 

homolog of the Cas6 superfamily. In brief, features of Csf5 exhibit common similarities to the 

Cas6 family endoribonucleases. Two positively charged RNA recognition motifs (i.e. the N-

terminal RRM and C-terminal RRM') largely accommodate RNA contacts and enclose the 

endonuclease active site. Additionally, Csf5 exhibits a glycine-rich loop (G-loop) and shows a 

characteristic β2' and β3' hairpin structure (β-HP) that assists in positioning the scissile 

phosphate. The groove-binding element (GBE) was identified, which recognizes the major 

groove of the crRNA hairpin. Apart from highly conserved Cas6 features, Csf5 uniquely 

features an α-helical finger domain that connects β1 and β2 of the N-terminal RRM and 
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interacts with the crRNA hairpin via the crRNA repeat hairpin minor groove. This likely 

contributes to the specificity and stability of crRNA binding. 

 

Figure 11: Crystal structures of Csf5. Crystal structures of Csf5 (grey cartoon) associated with a 

degraded (a) or an intact (b) crRNA 3'-repeat tag hairpin (orange cartoon). The conserved elements of 

the Cas6 family, GBE [92], G-loop (yellow) and β-HP (turquoise) are labeled accordingly. (c) 

Electrostatic charge distribution of Csf5 surface (intact hairpin). Blue surfaces indicate positively 
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charged and red surfaces indicate negatively charged regions. (d) Close-up view of the active site. The 

crRNA is shown in an orange stick representation. Csf5 is represented as a grey cartoon. Sidechains in 

proximity to the 2', 3' cyclic phosphate are shown in stick representation and the distances are 

indicated by dotted lines and labeled accordingly. The tartrate ligand is shown in a salmon-colored 

stick representation. 

2.4 Identification of active site residues of the Csf5 

The structure of the Csf5-crRNA also revealed a 2', 3' cyclic phosphate as the reaction product 

of the endonucleolytic crRNA repeat cleavage. Therefore, the nucleophilic attack of the 

scissile phosphate is more likely to be facilitated by the 2' hydroxyl group of the 5' upstream 

nucleotide (G22) as observed for other Cas6 endonucleases. Alanine scanning assays (figure 

12a-c) revealed that the active site is mainly shaped by three arginine residues (i.e. R23, R38, 

and R242) that surround the 2', 3' cyclic phosphate and might participate in the   

i. activation of the 2' hydroxyl group,  

ii.  protonation of the leaving group and  

iii. stabilization of the transition state.  

Among the three single mutants, R23A demonstrated the strongest effect, where double 

mutants of R23A with either of the other Arg residues, resulted in a complete loss of pre-

crRNA processing. Serine 209 and 241 of the β-HP and the G-loop, respectively, might 

further contribute to the positioning of the scissile phosphate and binding of the crRNA repeat 

at the active site. We further identified tartrate, originating from the crystallization solution, 

bound in close proximity to G22 and histidine 44 (figure 11d). Hence, the tartrate ligand 

might affect the position of histidine 44.  However, Csf5 with an H44A mutation still 

produces mature crRNA in vivo which suggest that a catalytic histidine is not required for 

cleavage activity of Csf5 (figure 12b). 
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2.5 Csf2 (Cas7) oligomerizes and binds RNA 

The most abundant protein in type I and type III effector complexes are the Cas7 family 

backbone proteins. Cas7 family proteins unspecifically oligomerize around mature crRNA 

and constitute a central backbone of the surveillance complexes [109, 110]. To investigate the 

backbone forming protein in the type IV CRISPR-Cas system, recombinant Csf2 protein was 

over-expressed in E.coli and purified by affinity chromatography followed by size exclusion 

chromatography. In size exclusion chromatography (SEC), high molecular weight structures 

were observed at the void volume and analyzed by various methods: RNase and DNase 

assays, SDS and Urea-PAGE and transmission electron microscopy (TEM). These void 

volume fractions were also observed to contain RNA bound Csf2 oligomers. Transmission 

electron microscopy revealed long helical filament structures of variable length (figure 13a). 

In type I systems, Cas7 proteins were shown  build similar unspecific RNA wrapped helical 

filaments and to bind to the spacer component of the crRNA in the Cascade (e.g. analyzed for 

type I-E, type I-A, type I-Fv) complexes[109, 110] [79].  

Therefore, it is possible that Csf2 is a Cas7-family protein which exhibits unspecific binding 

to the crRNA spacer regions and forms the backbone of the type IV crRNP complex. 

2.6 Formation of a type IV crRNP Complex 

Observation of crRNA transcription and maturation suggests crRNA guided protein complex 

formation. In order to test formation of type IV crRNP complex formation, all Cas proteins 

produced from the type IV loci (Csf1, Csf2, Csf3 and Csf5) were co-produced with the mini-

CRIPSR array in E. coli BL21-AI and purified by affinity purification of the his-tagged Csf5 

followed by SEC. A central peak fraction was observed to contain a stable complex with all 

Cas proteins with increased abundance of Csf2 (Cas7-like) protein and a single mature crRNA 

(figure 13b). Our results indicate that the type IV cas7-like variant is represented by several 
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subunits in a type IV crRNP, which is in an agreement with its proposed role as a backbone-

forming protein that mediates crRNA spacer binding. Protein and RNA components of the 

purified complexes were identified via mass spectrometry (Cas proteins) and northern blot 

analyses (crRNA). Negative staining transmission electron microscopy analysis of these 

samples revealed crescent-shaped structures with dimensions similar to the size of previously 

identified Cascade complexes (figure 13b) (ie. type I-E, type I-C) [111]. 

Additionally, the first peak was identified as Csf2 (Cas7-like) filaments and the third peak 

was observed to represent the Csf5 endoribonuclease. It was attempted to produce type IV 

crRNP complex with crRNA of the A. aromaticum type I-C mini-CRISPR array. Csf5 and 

crRNP stability was observed to rely on the presence of the type IV crRNAs. Type I-C pre-

crRNA appeared to be not processed by Csf5 (figure 10b). Therefore, type IV CRISPR-Cas 

activity is proposed to rely on Cascade-like complexes and guidance by a specific type IV-

associated crRNA component. 

 

 



33 

 

 

 

Figure 13: A. aromaticum Type IV Cas protein production in E. coli. Cas proteins were purified 

via affinity and gel-filtration chromatography. The peak fractions (PF, arrow) of the gel-filtration 

chromatograms were loaded onto an SDS-PAGE to detect purified Cas proteins and onto Urea-PAGE 

to identify RNA components. (a) Csf2 purification depicted large helical filaments in TEM (scale bars, 

50 nm). Co-purified RNAs were detected with urea–PAGE and ethidium bromide staining (b) A 

crRNP complex was purified and visualized by TEM (scale bar: 50 nm). Mature crRNAs were 

detected via Northern blot analyses. TEM revealed crescent-shaped complexes (arrows). 

Approximately 5400 particles were used for 2D averaging 10 classes (scale bar: 20 nm). The results 

are representatives of three experiments. 
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2.7 Protein-protein and protein-RNA interaction sites in Type IV crRNPs 

To gain more insights into the type IV crRNP complex formed by Csf1, Csf2, Csf3, Csf5 and 

crRNA, protein-protein crosslinking and protein-RNA crosslinking approaches followed by 

mass spectrometry was used to identify interaction sites based on structural composition of 

the complex. Protein-protein interactions were identified by applying the BS3 chemical cross-

linker, which creates covalent bonds between adjacent lysine residues of proteins located in 

close proximity (figure 14). BS3 cross-linked complexes were then tryptically digested and 

crosslinked peptides were analyzed via mass spectrometry. Highest enrichment of intra-

protein (homo-multimeric links) crosslinks in Csf2 was observed suggesting that Csf2 occurs 

in multiples in type IV surveillance complexes. Csf2 was also the only identified protein in 

the complex to interact with all other Cas proteins (Csf 1,2,3,5). This observation further 

strengthens the observation that Csf2 acts backbone in the complex. Surprisingly, no inter-

crosslinks between Csf1 and Csf3 were detected, which suggests that these proteins are not in 

close proximity with other in the assembled type IV crRNP complex architecture. However, 

crosslinks between Csf1 and Csf5 what suggests a localization near the 3′ end of the crRNA in 

the complex. In summary, protein-protein crosslinks further verify the structural composition 

of the type IV crRNP complex in vitro. 
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Figure 14: Type IV crRNP complex protein-protein crosslinking. Purified type IV crRNP 

complexes were crosslinked by a BS3 chemical cross-linker followed by mass spectrometry. Observed 

intra-protein (red), inter-protein (blue) and homomultimeric (loops) crosslinks are indicated. The 

results are from a single HPLC-MS measurements. 

Interaction sites between crRNA and Cas protein components were further identified. Purified 

type IV crRNP complexes were identified by UV irradiation of type IV crRNP complexes. 

Tryptically, digested peptide-oligonucleotide crosslinks were enriched and analyzed by 

HPLC-mass spectrometry (Table 1). Csf2, Csf3 and Csf5 were found to interact with the 

crRNA. Among crosslinked residues, the crystal structure indicated that the amino acid K157 

interacts with U2 of the repeat sequence. Additional crosslinking sites of Csf5, S134, K142, 

Y144, K157 are located within the RRM’ and RRM motif, suggesting Csf2 and Csf5 

interactions with the spacer (figure 15). 

 

 



36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peptide Protein Adduct 

kTNPYDIAR Csf3 (Cas5) U-H2O 

GLDDPkR Csf5 (Cas6) U-H2O 

GLTkTAENTTQVASR Csf5 (Cas6) U-H2O 

FALPAGKk Csf5 (Cas6) U-H2O 

ALPLSNGSEAVESGDGyK Csf2 (Cas7) U 

ASkHVYM(ox)GLFGGGTR Csf2 (Cas7) U-H2O 

GVGVELEQHTLsIK Csf5 (Cas6) U 

GLLLcALR Csf2 (Cas7) U 

cELAALTVPSLMEFFTGK Csf2 (Cas7) U 

RyFVR Csf5 (Cas6) CU 

hIvRVDDVTR Csf2 (Cas7) U 

GyIEQHGHEPPPPTEEQR Csf5 (Cas6) U 

IIADHpAMSTGR Csf5 (Cas6) U 

GLDDPkR Csf5 (Cas6) U-H2O 

LTEVrHIVR Csf2 (Cas7) U 

m(Ox)GQQHLLR Csf5 (Cas6) U-H2O 

IADEIAkAAEK Csf1 (LS) U-H2O 

LTAPM(ox)HVADSIQYSLDDKGyVVR Csf2 (Cas7) U 

GyWFAGNLTSR Csf5 (Cas6) AU 

VkIPYFPANDLR Csf2 (Cas7) U-H2O 

YkPLLEAATLPAIQIVTQR Csf5 (Cas6) U-H2O 

kSDLANVVSVQSIIAGTELYVR Csf2 (Cas7) U-H2O 
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Table 1: Type IV crRNA interacting Cas protein residues. Recombinant Type IV crRNP 

complexes were subjected to ultraviolet light crosslinking, followed by HPLC-MS. Specific amino 

acid residues (red) of the Cas proteins were found to interact with the indicated crRNA bases (adduct). 

 

  

Figure 15: Csf5 – crRNA interactions. Mapping of elucidated cross-links (yellow) in UV irradiation 

of crRNP-crRNA onto the crystal structure of Csf5. 

2.8 Investigation of the nuclease activity of the type IV crRNP complex 

Nuclease activity of the type IV ribonucleoprotein complex was tested via in-vitro nuclease 

assays. Various concentrations (0-200 nM) of the purified type IV crRNP complex were 

incubated with 43 nt long 5′-terminal radiolabeled complementary ssDNA, RNA and non-

complementary ssDNA substrates. The nuclease activity of substrates was then checked with 

a 10% native denaturing gel and visualized using a Phosphor-Imager. Under in-vitro 

conditions, no nuclease activity of the native type IV crRNP complex was detected (figure 

16). Different metal ions were also tested for the activation of nucleases (Mg
+2

, Ca
+2

, Mn
+2

). 

However, cleavage activity remained undetectable in the presence of these metal ions. 
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Figure 16: Type IV crRNP complex nuclease activity test in vitro. Nuclease activity of the crRNP 

complex (increasing amounts) with 5´-terminal radiolabeled complementary ssDNA, RNA, and non-

complementary DNA was tested. Cleavage activity of the type IV crRNP complex was not observed 

under the tested conditions in vitro. 
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2.9 Type IV CRISPR-Cas protospacers suggest PAM sequence conservation 

Initially, the conservation of the PAM sequence in the type IV system was addressed in-situ 

via computational detection. Type IV spacers from various microbial organisms which have 

matching homologous sequences, were previously identified [112]. Matching spacers of type 

IV systems from various organisms were kindly shared by Sergei Shmakov. Identified spacer 

hits were mainly located in viral genomes and ORFs of prokaryotic genomes. In order to 

detect the PAM sequence from matching protospacers, the computation programs 

CRISPRDetect and CRISPRTarget were used [113]. Surrounding sequences from matching 

protospacers were then plotted in a sequence logo structure (figure 17). The combined 

analysis demonstrated no consensus PAM sequence. However, a species-based analysis 

identified a species-specific type IV PAM sequence conservation (Detailed PAM analysis of 

all type IV organisms were investigated in the thesis of Marcus Ziemann).  

  

  

Figure 17: Conservation of PAM sequences in type IV CRISPR-related protospacers. 

Protospacer targets (mainly phage genomes) of various species with Type IV-associated CRISPR 

arrays were analyzed computationally. Sequence logos of the protospacer-adjacent sequences were 

constructed, depicting conservation of nucleotides adjacent to the protospacers (position 0). 

(Bioinformatic analyses were performed by Marcus Ziemann).  
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2.10 Type IV CRISPR-Cas PAM identification in A. aromaticum EbN1 

Different screening methods were applied to identify possible PAMs for the type IV CRISPR-

Cas system of A. aromaticum EbN1. Both computational and experimental methods were 

applied to detect the type IV PAM sequence from A. aromaticum EbN1. Similar to the 

previous approach, type IV spacer targets of A. aromaticum EbN1 were detected by 

CRISPRTarget [113]. Spacer 10 was identified to target a plasmid from Thauera sp. (figure 

18). 

 

Figure 18:  A. aromaticum EbN1 protospacer targets. Spacer 10 was found to have matching 

sequence to a plasmid of Thauera sp. The three nucleotide motif at the location of the 5′ crRNA 

handle (5′-GUUGAAG3′) is observed to be 5′GAC-3′ indicated in red.  

PAM depletion assays were designed to detect a variety of PAM sequences of A. aromaticum 

EbN1 in vivo. The assay aimed to deplete the correct PAM containing plasmids based upon 

crRNP targeting, which could interfere plasmid replication. In this respect, the first spacer of 

A. aromaticum EbN1 was inserted between the ribosome binding site (RBS) and promoter of 

the chloramphenicol resistance gene (CmR) with 5 nucleotides of randomized upstream and 

downstream sequences. Two plasmids pACYC-X5 (upstream) and pACYC-X3 (downstream) 

were designed as plasmid libraries to test different experimental conditions (figure 19) .These 

libraries were verified by Illumina HiSeq3000 sequencing and the original distribution of 

randomized nucleotides was then used for normalization of the depletion assays.  
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Figure 19: PAM depletion assay experimental design. A 5 nucleotide randomized library with a 

targeting protospacer was cloned between the promoter and the ribosome binding site of the 

chloramphenicol resistance gene on the pACYC duet vector. Randomized libraries were incubated 

with type IV pre-crRNA, type IV crRNP complexes and type IV crRNP complexes in the presence of 

either DinG or Cas3 nuclease of the type I-C system of A. aromaticum EbN1. Depleted motifs were 

detected by Illumina HiSeq3000 sequencing. 

Verified libraries were then co-transformed into E.coli BL21-AI with the following 

experimental conditions: type IV pre-crRNA, type IV crRNP, type IV crRNP with DinG 

helper protein, type IV crRNP with type I-C Cas3 from the genome. The transformants were 

harvested after 6 hours of incubation. Strong PAM depletion was only observed for the 

individual type IV crRNP complex in presence of associated DinG helicase or Cas3c of the 

type I-C CRISPR-Cas locus. Significant reduction of certain motifs (GvR: V: not thymine; R: 

purine) was observed downstream of protospacers which correspond to opposite strand of the 

5´ handle of crRNA (GUUGAAG). A strong selection on the G at the first position was 

observed. 
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2.11 DinG (Csf4) helicase is not a stable component of the type IV crRNP complex 

PAM depletion assays suggest that the presence of DinG helicase affects type IV CRISPR-

Cas activity, indicating a potential functional role of the DinG helicase. To investigate its 

potential role with type IV crRNP, his-tagged DinG was heterologously co-expressed in E. 

coli  BL21-AI  with type IV crRNP components (Csf1, Csf2 his-tagged, Csf3 & Csf5 his-

tagged and CRISPR-miniarray), and purified via affinity chromatography and SEC. Without 

DinG, a central peak fraction was identified to contain stable type IV crRNP. It was observed 

that the location of the central peak did not move to higher molecular weight fractions when 

DinG helicase was co-expressed (figure 20). For this reason, DinG helicase is suggested to be 

an unstable component of the type IV crRNP complex.  
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Figure 20: A. aromaticum Type IV Cas protein production with DinG helicase in E. coli. Cas 

proteins were purified and separated via gel-filtration chromatography. The peak fractions of the gel-

filtration chromatograms were analyzed via SDS-PAGE to detect purified Cas proteins and DinG 

helicase. (a) N-terminally His-tagged (yellow) DinG helicase purification. (b) Type IV crRNP 

complex purification. Type IV crRNP was observed in fraction of the middle peak (peak 2). (c) Type 

IV crRNP complex with DinG helicase purification. The middle peak (peak 2) did not shift to higher 

molecular weight fractions.  
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2.12 DinG (Csf4) helicase interactions with type IV crRNP components 

To test possible transient interactions of DinG with type IV CRISPR-Cas components, 

untagged DinG was co-expressed with his-tagged type IV crRNP complex components 

followed by gradient affinity chromatography (Ni-NTA). Untagged DinG was mainly 

observed in the fractions containing type IV crRNP components (figure 21). 

 

 

Figure 21: DinG (Csf4) helicase pulled down with type IV crRNP components during Ni-NTA 

affinity purification. Untagged DinG helicase was co-expressed with type IV crRNP components and 

purified with gradient Ni-NTA purification. The fractions were analyzed via SDS-PAGE. Hereby, 

DinG helicase observed to co-migrate with type IV crRNP components. The results are representative 

of three independent purifications. 

It is important to note that Ni-NTA affinity chromatography not only elutes the pure type IV 

crRNP complex, but also Csf2-filaments and Csf5 dimers. Therefore, it is possible that the 

helicase DinG interacts with sub-complexes of the type IV crRNP. Elution fractions of the 

affinity chromatography were concentrated and subjected to chemical cross-linking with 

disuccinimidyl dibutyric urea (DSBU), followed by HPLC-MS. Fragmentation patterns of the 

mass spectrometry demonstrated that the DinG helicase exclusively interacts with Csf5 in the 

presence of all type IV crRNP components (figure 22). In comparison to previous 
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crosslinking-MS experiments (figure 5) with BS3, interacting crRNP proteins demonstrated a 

similar cross-linking architecture, including a lack of interactions with Csf1. Interacting 

amino acid residues were mapped onto the crystal structure of Csf5 and the computationally 

constituted structure of the DinG helicase (figure 23). Mapped peptide fragments suggest that 

interaction points of Csf5 are closer to both 3´ and 5´ endpoints of the crRNA, whereas 

identified peptides on DinG are distributed all over the protein and more peptides observed at 

the DNA funneling hole (Table 2). 

 

 Figure 22: Protein-protein crosslinking of type IV crRNP complex and DinG helicase. Affinity 

purified Type IV crRNP components together with DinG were crosslinked by a DSBU chemical cross-

linker followed by HPLC-MS. Observed intra-protein (purple), inter-protein (blue) and homo-

multimeric (loops) crosslinks are indicated (Cross-linking and mass spectrometry analysis were 

performed by Lyle Kroell). 
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Figure 23: Csf5 – DinG helicase interactions by protein-protein crosslinking. Amino acids that 

were identified interact are indicated in violet on the crystal structure of Csf5 (left) and the structure 

model of DinG (Csf4) (DinG structure computationally built with Phyre 2  [51].  

 

 

 

 

 

 

 

Table 2: Csf5-DinG interacting protein residues. Recombinant type IV crRNP complex 

components and DinG helicase were subjected to DSBU chemical cross-linker, followed by mass 

spectrometry. Specific amino acid residues of the DinG helicase with Csf5 were found to interact with 

the indicated peptides.  
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2.13 Type IV CRISPR-Cas associated DinG helicase (Csf4) retains ssDNA in vivo 

Recombinant type IV associated DinG (Csf4) helicase was soluble and it was possible to 

purify milligram amounts of DinG. Therefore, different tagged versions of the DinG helicase 

were created to obtain pure DinG for biochemical and structural analyses. The employed two-

step purification strategy included affinity (Ni-NTA) chromatography followed by SEC 

purification. It was observed that C-terminally his-tagged DinG retained high amounts of 

nucleic acids after purification. Eluted fractions were analyzed by SDS and Urea-PAGE. 

DinG was co-purified with transcription and translation coupled proteins and nucleic acids 

(figure 24). To obtain insights about the composition of the nucleic acids that were bound to 

DinG, they were purified by phenol-chloroform extraction and ethanol precipitation and 

subjected to nuclease assays using DNase-free RNase and RNase-free DNase. 
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Degradation was only observed with DNase1, confirming that DNA was co-purified. Further 

analysis included S1 nuclease digestion to specifically target ssDNA. S1 nuclease was 

observed to degrade most of the eluted DNA, suggesting that the nucleic acid content was 

largely single stranded DNA (figure 25).  

  

Figure 25: DinG helicase bound nucleic acid detection assays. a. Purified DinG bound nucleic 

acids were treated with DNase1 and RNase1 overnight at 37°C. Degradation was detected only with 

DNase1. b. Purified DinG bound nucleic acids were treated with DNase1 (D1), S1 nuclease (S1) and 

RNase1 (R1). DNase1 and S1 nuclease degrade completely. (U) Untreated sample. (The second Urea-

PAGE was generated by Eva Grümpel) 
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3.Discussion 

Among the six computationally classified CRISPR-Cas types, members of the type IV 

CRISPR-Cas system remained without experimental support [80].In this thesis, we provide 

the first experimental characterization of a model type IV CRISPR-Cas system that is located 

on a megaplasmid of Aromatoleum aromaticum EbN1. The system is characterized by 

conserved cas genes, encoding effector module forming proteins, a uniform CRISPR array 

and a dinG gene upstream of the cas gene operon. 

3.1 Type IV crRNA biogenesis and maturation 

The maturation of crRNAs is critical for the activity of CRISPR-Cas systems. Different types 

of CRISPR-Cas systems have evolved distinct crRNA biogenesis pathways that suggest 

diversified processing mechanisms. In type I and type III systems, Cas6 family 

endoribonucleases (or alternatively Cas5d) cleave the pre-crRNA at the stem-loop structured 

repeat regions. In type II systems, the trans-activating CRISPR RNA (tracrRNA) base pairs 

with each repeat of the pre-crRNA to form a RNA duplex region that is cleaved by RNase III 

in the presence of the Cas9 protein [59, 114] [60]. CRISPR RNA processing was not observed 

for Type IV CRISPR arrays. Our observation of a uniform CRISPR array in the type IV-A 

system of A. aromaticum suggested the presence of a dedicated crRNA processing mechanism 

for this system. Therefore, we analyzed its crRNA maturation process. RNA-Seq analysis of 

the small RNome of A. aromaticum revealed that crRNA processing occurs in its repeat 

regions, creating a unique 7 nt-5´-terminal tag (5´- GUUGAAG-3´) and a stable stem-loop 

structure at the 3´-terminus of the crRNA. In this regard, crRNA maturation of the type IV-A 

system of A. aromaticum is similar to most type I CRISPR-Cas system`s crRNA maturation 

process. One major difference is that the common 8 nt tag was shortened by one nucleotide. 

Cleavage occurs at the base of a hairpin structure within the repeat, which is also commonly 
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observed for type I pre-crRNA processing. In addition, crRNA processing was also 

investigated for the second, subtype I-C CRISPR-Cas system of A. aromaticum. 11 nt-5´-

terminal repeat tags were observed, which is in agreement with other well characterized type 

I-C systems [114]. 

The observation of type IV crRNA processing activity stimulated our search for the 

responsible RNA nuclease. We identified that Csf5 acts as a Cas6-family endoribonuclease. A 

crystal structure of this enzyme was obtained which provided further evidence for its cleavage 

activity at the base of the stem-loop of the crRNA repeat. Additionally, crystal structures of 

RNA-bound Csf5 suggest a single turnover cleavage mechanism, during which Csf5 stays 

bound to the crRNA and assembles into a complex with other Cas proteins for downstream 

targeting. This mode of cleavage is also common in type I-B, I-C, I-E and I-F systems [115] 

[60, 114].  

Despite considerable sequence variations, all Cas6 enzymes show similar structural features 

that are important for pre-crRNA binding. Structural features of Csf5 were shown to coincide 

with Cas6 family endoribonucleases with very limited sequence homology. Moreover, most 

of the Cas6 enzymes utilize catalytic histidine residues for crRNA cleavage. However, alanine 

scanning assays of Csf5 revealed that the mutation of the closest histidine at the active site 

does not abolish cleavage activity, supporting the absence of a canonical catalytic histidine 

residue. Instead, the active site of Csf5 is rather composed of three arginine residues that are 

important for cleavage to occur [114]. 

In vivo cleavage assays of Csf5 with a subtype I-C repeat did not yield mature crRNA, 

showing that Csf5 is specific for the repeats of the type IV CRISPR-Cas system. A crosstalk 

between type I-C and type IV crRNA maturation processes does not exist. This observation 

further supports the notion of co-evolution between diversified Cas6 enzymes and cognate 

repeat sequences [116]. 
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Csf5 was observed to occur as a homodimer with its bound crRNA. During size exclusion 

chromatography, Csf5 eluted in a fraction that corresponds to a molecular weight of 80 kDa, 

suggesting a dimerization of proteins with a bound RNA component. The obtained crystal 

structures also indicated dimerization. Similar dimerization patterns were observed in other 

Cas6 enzymes of mostly thermophilic organisms. The Cas6 enzyme of Sulfolobus solfataricus 

was also shown to form dimers in order to structure crRNA before cleavage. However, in the 

case of Csf5, it remains unclear whether dimerization has a functional role during the 

structuring of RNA [117] [1, 118-121]. 

In summary, we elucidated the crRNA maturation of the type IV CRISPR-Cas system and 

identified Csf5 as a Cas6 family protein. However, several questions still remain. It is not 

clear how Csf5 achieves the delivery of mature crRNAs to the type IV interference machinery 

while protecting the crRNA during assembly. In addition, it is of interest to determine an 

explanation as to why Csf5 proteins dimerize in the presence of a structured crRNA substrate 

and how dimerization might affect crRNA processing.  

3.2 Formation of the type IV crRNP complex and its features 

In type I CRISPR-Cas systems, individually processed crRNAs are incorporated into multi-

protein complexes to carry out anti-viral defense [108] [45]. In diverse type I CRISPR-Cas 

families, the composition and the architecture of the crRNA bound multiprotein effector 

complexes vary, whereas their biological function is conserved. Multiple copies of Cas7 

proteins assemble around the crRNA during or after Cas6 family mediated crRNA maturation 

[108]. Structural and mass spectrometry-based studies have shown that type I and type III 

CRISPR-Cas interference complexes employ conserved building blocks. The presence of a 

protein backbone remains central to all multi-subunit crRNP protein assemblies [79, 110, 

122]. Structural studies of type I-E Cascade demonstrated the formation of Cas7 multimers, 

which non-specifically wrap around RNA [78]. Consistent with this observation, the protein 
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Csf2 of the type IV system was observed to form helical filaments around RNA molecules. 

Mass spectrometry based crosslinking analyses further strengthen its backbone function due 

to the presence of multiple copies of Csf2 in type IV crRNP assemblies.  

Previous studies on type I Cascade revealed that Cas proteins bound to a crRNA formed a 

crescent-shaped structure [79, 110, 122]. In this study, we demonstrated that the type IV 

crRNP complex is similarly composed of a mature crRNA and four different types of Cas 

proteins (Csf1, Csf2, Csf3, Csf5). Mass-spectrometric and biochemical analyses provided first 

insights into the stoichiometry and the arrangement of the proteins in a type IV effector 

complex. To obtain detailed insights, we attempted to crystallize the type IV crRNP complex. 

However, this attempt failed due to a low yield of purified proteins. Cryogenic electron 

microscopy (cryo-EM) analysis may provide a viable alternative method for further structural 

analysis of the type IV crRNP complex.  
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3.3 Investigation of PAM requirements for the type IV CRISPR-Cas system of A. 

aromaticum 

The activity of most CRISPR-Cas systems requires recognition of short sequence motifs 

(PAM, PFS). DNA targeting CRISPR-Cas systems rely on the recognition of a PAM 

sequence prior to crRNA mediated target binding. In this study, we provide a first description 

of the involvement of PAM sequences for type IV CRISPR-Cas systems. Previous 

computational analyses identified protospacer targets for type IV CRISPR-arrays from nine 

organisms [112].Using these identified protospacers, we analyzed upstream and downstream 

sequences and demonstrated the presence and conservation of species-specific PAMs for type 

IV CRISPR-Cas systems (Ziemann et al., unpublished).  

In addition, in-vivo PAM depletion assays were conducted to gain a deeper understanding of 

the type IV PAM sequence of our model organism A. aromaticum. Thereby, randomized 

PAM depletion libraries were created and tested with type IV CRISPR-Cas components in 

heterologous E.coli BL21-AI system. Significant reduction of certain motifs (GVR: V: not 

thymine; R: purine) was obtained downstream of the protospacers, which corresponds to the 

opposite strand of the 5′-handle of the crRNA. The lack of complementarity for PAM regions 

and 5′-crRNA repeat handles for this type IV crRNP is in agreements with other type I 

CRISPR-Cas systems that rely on perfect pairing of the handle to avoid self-targeting [123]. 

To our surprise, the most significant effects were obtained when DinG or Cas3c was present. 

The depletion of specific PAM sequences suggests that the type IV crRNP complex, together 

with either DinG or Cas3c, is able to reduce the transformation efficiency of targeted 

plasmids. It remains to be investigated how increased helicase activity, provided either by 

DinG or Cas3c aids in type IV crRNP functionality. 
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3.4 Putative functional roles of type IV CRISPR-Cas systems 

Our results show that the type IV CRISPR-Cas system of A. aromaticum generates mature 

crRNAs and consequently forms a crRNP complex which has PAM sequence conservation. 

Based on our current data and previous computational studies on nuclease and adaptation unit 

free CRISPR-Cas systems, we hypothesize several possibilities related to the functional role 

of the type IV CRISPR-Cas system.  

First, type IV CRISPR-Cas systems might function as adaptive immune function like other 

CRISPR-Cas systems. This possibility is supported by a previous study which showed the 

highest protospacer hits on viral genomes [112]. In addition, PAM depletion assays provided 

further proof that the type IV crRNP complex, together with either DinG or Cas3c, could 

provide a defense against mobile genetic elements. In the case of an adaptive immune 

function, the type IV CRISPR-Cas system of A. aromaticum highlights a unique mechanism 

of interference due to the absence of any assigned nucleases. Therefore, the involvement of 

additional host proteins is possible. 

A second hypothesis is that some crRNPs are capable of transposon guidance. Minimal  

CRISPR-Cas systems without adaptation unit and DNA nucleases were suggested to guide 

Tn7 transposons[114] [102]. In this regard, type IV CRISPR-Cas systems might function in a 

similar way, which is supported by a high number of mobile genetic elements in the A. 

aromaticum EbN1 genome. 

Third, a crRNA-guided protein complex can be used for the specific control of gene 

expression. As an example, the mutation of Cas9 to generate a nuclease-deficient deadCas9 

(dCas9) variant was used to control of gene expression (CRISPRi). Our system might 

constitute a natural "dead" Cascade system that can be employed to control of gene 

expression [124]. 
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In future experiments, we need to do phage plaque assays, transposition assays and GFP 

protein based gene repression assays to investigate if any of these hypothesis is true. It is also 

noteworthy that type IV CRISPR-Cas systems localize mainly on plasmids thereby, it is 

possible to have a function in maintenance of the plasmids (Newire et al.,2019, Bioarchive) . 

  3.5 Putative functional roles of type IV CRISPR-Cas associated DinG helicases  

Finally, the function of the DinG helicase, encoded by a conserved gene upstream of the cas 

gene operon, remained unclear and its association with the type IV crRNP complex was 

analyzed. Initially, we investigated if DinG is a stable component of the crRNP complex. In-

vitro purification results demonstrated that the DinG helicase is neither a component of the 

type IV crRNP complex nor does it interfere with the complex stability. Cross-linking 

coupled mass spectrometry analysis demonstrated that DinG exclusively interacts with Csf5. 

This observation suggests that transient interactions of DinG with the type IV crRNP are 

possible. In addition, expression of the DinG helicase with the type IV crRNP complex 

resulted in a strong depletion of functional PAM sequences. Therefore, we hypothesize 

multiple possible functions of DinG together with type IV crRNP complex. 

The first hypothesis of DinG is to provide effective interference activity. The type IV crRNP 

complex accomplishes PAM specific DNA interactions and creates an R-loop based on 

sequence complementarity at the target region. R-loop formation could consequently recruit 

DinG and resulting in defense against MGEs. This hypothesis is supported by our 

experimental PAM depletion assays. On the contrary to our proposed hypothesis, type I-Fv 

CRISPR-Cas associated DinG helicase from Shewanella putrefaciens strain CN32 

demonstrated that DinG does not have an effect on interference activity [125]. However, the 

I-Fv CRISPR-Cas system possesses an assigned target cleavage nuclease (Cas3) which results 

in efficient interference activity. Considering that type IV CRISPR-Cas systems are deficient 

of any assigned target cleavage protein, it is possible that the type IV CRISPR-Cas specific 
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DinG has evolved to fulfil a similar function which is also exemplified in DinG of S. aureus 

[90]. 

DinG might also play a helper role for transposon guidance. Considering that DinG is active 

on R-loops, a similar function to TnsE can be attributed to DinG. The type IV crRNP complex 

is responsible for R-loop formation and might recruit DinG to the target region. This process 

can result in distortions on double stranded DNA which, in turn, could create hot spots for the 

dissemination of transposable elements. 

In addition, type IV CRISPR-Cas systems are categorized into two groups based on the 

presence of dinG. In type IV-A CRISPR-Cas systems, a regular CRISPR array, dinG and csf5 

occurrence are noteworthy as compared to type IV-B gene cluster. Hence, it is possible that 

DinG might indirectly play a role in adaptation of the type IV-A CRISPR-Cas systems. 

Finally, DinG was proposed to dissolve R-loops by removal of the RNA transcripts to restore 

collapsed replication forks. Therefore, a similar role could be suggested in the context of R-

loops created by crRNP complexes. Thus, DinG might remove crRNA-DNA interactions to 

recycle crRNP complexes. Regarding a CRISPRi function, such scenario would suggests a 

tunable gene regulation effect. A detailed understanding of DinG functionality will require (i) 

understanding of the functional role of type IV crRNP (ii) knowledge of DinG substrate 

specificity and (iii) structural insights. 
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4. Material and Methods 

4.1 Materials, instruments and source of supplies 

4.1.1 Chemicals, kits and enzymes 

The chemicals, kits and enzymes used in this work were obtained from companies listed in 

Table 4.1. 

Table 4.1: List of chemicals, enzymes, kits and consumables used in this study. 

Chemicals Company 

Acrylamid/Bisacrylamid (29:1 und 37.5:1) Carl Roth GmbH, Karlsruhe 

Amicon ® Ultra Centrifugal Filters Merck Millipore KGaA, Darmstadt 

Antarctic Phosphatase  New England Biolabs GmbH, Frankfurt 

Antibiotics (Ampicillin, Chloramphenicol, 

Kanamycin, Spectinomycin)  

Carl Roth GmbH, Karlsruhe; Sigma- 

Aldrich, Taufkirchen 

Bovine Serum Albumin (BSA) Sigma-Aldrich, Taufkirchen 

Bradford Reagent BioRad Laboratories GmbH, Munich 

ColorPlus Prestained Protein Ladder, Broad 

Range (10-230 kDa) 

New England Biolabs GmbH, Frankfurt 

Diethylpyrocarbonate (DEPC)  AppliChem GmbH, Darmstadt 

DNaseI  Thermo Fisher Scientific Germany Ltd. & 

Co. KG, Bonn 

dNTPs New England Biolabs GmbH, Frankfurt 

Gelrite Carl Roth GmbH, Karlsruhe 
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Gene Pulser ® Cuvette, 0.1 cm gap BioRad Laboratories GmbH, Munich 

Glycogen  Roche Diagnostics GmbH, Mannheim 

Instant Blue Sigma-Aldrich, Taufkirchen (Expedeon) 

Isopropyl-β-D-thiogalactopyranosid (IPTG) Carl Roth GmbH, Karlsruhe 

Low Molecular Weight Ladder New England Biolabs GmbH, Frankfurt 

Low Range ssRNA Ladder New England Biolabs GmbH, Frankfurt 

Lysozym  Sigma-Aldrich, Taufkirchen 

mirVana
TM

 miRNA Isolation Kit Applied Biosystems, Darmstadt 

NTPs Jena Bioscience GmbH, Jena 

Phenol (Roti-Phenol & Roti-Aqua-Phenol) Carl Roth GmbH, Karlsruhe 

Phusion ® High-Fidelity DNA Polymerase Thermo Fisher Scientific Germany Ltd. & 

Co. KG, Bonn 

QIAGEN Plasmid Plus Maxi Kit  Qiagen GmbH, Hilden 

QIAprep Spin Miniprep Kit Qiagen GmbH, Hilden 

QIAquick Gel Extraction Kit Qiagen GmbH, Hilden 

Quick-Load ® 2-Log DNA Ladder  

(0.1-10.0 kb) 

New England Biolabs GmbH, Frankfurt 

Restriction endonucleases New England Biolabs GmbH, Frankfurt 

RNase Exitus Plus
TM

   Applichem GmbH, Darmstadt 

RNase Inhibitor  New England Biolabs GmbH, Frankfurt 
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RNaseR Epicentre, Madison, USA 

Roti ®-Nylon plus, pore size 0.45 μm Carl Roth GmbH, Karlsruhe 

SDS Carl Roth GmbH, Karlsruhe 

SYBR Gold ® Nucleic acid stain Thermo Fisher Scientific Germany Ltd. & 

Co. KG, Bonn 

T4-DNA-Ligase New England Biolabs GmbH, Frankfurt 

T4-Polynucleotide-Kinase New England Biolabs GmbH, Frankfurt 

T7-RNA-Polymerase  New England Biolabs GmbH, Frankfurt 

Taq DNA Polymerase  New England Biolabs GmbH, Frankfurt 

Topo ® TA cloning ® Thermo Fisher Scientific Germany Ltd. & 

Co. KG, Bonn 

TRIzol Reagent Ambion, Darmstadt 

ULTRAhyb-Oligo hybridization buffer Ambion, Darmstadt 

Whatman GB004, 3MM Schleicher & Schuell, Dassel 

 

4.1.2. Instruments 

Table 4.2: Instruments used in this study.  

Agarose gel electrophoresis  

 

Chambers and Casting tray: company 

technician Philipps-University Marburg; 

Power supply: Consort E835; MS 

Laborgeräte, Dielheim 
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Aqua bidest. water system  PURELAB Plus, ELGA LabWater, Celle 

Autoclave 5075 EL, Tuttnauer Europe B.V., Breda 

Semi-dry transfer cell Trans-Blot
®
 SD Semi-Dry Transfer Cell, 

BioRad Laboratories GmbH, Munich   

Centrifuges Centrifuge 5424, Eppendorf AG, Hamburg; 

Sorvall RC5B Plus, Thermo Fisher 

Scientific Germany Ltd. & Co. KG, Bonn 

Chromatography columns HisTrap HP 1 ml/ MonoQ 5/50 GL/ 

Superdex 200 10/300 GL/HiTrap Heparin 

HP 1 ml/ MonoS 5/50 GL; GE Healthcare 

Europe GmbH, Freiburg 

FPLC Äkta-System: Pump P-900, Monitor UV-

900, Monitor UPC-900, Valve INV-907, 

Mixer M-925; GE Healthcare Europe 

GmbH, Freiburg 

Denaturing polyacrylamide gel chambers PROTEAN II Electrophoresis Chamber, 

BioRad Laboratories GmbH, Munich 

Gene Pulser Gene Pulser ® Electroporation System, 

Pulse Controller Plus, Capacitance Extender 

Plus; BioRad Laboratories GmbH, Munich 

Hybridization oven Hybaid Shake 'n' Stack, Thermo Fisher 

Scientific Germany Ltd. & Co. KG, Bonn 

Incubators  Thermotron, Infors AG, Bottmingen, 
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Switzerland 

Magnetic stirrer IKA
®
 RCT Standard, IKA

®
-Werke GmbH 

& Co. KG, Staufen 

Nanodrop NanoDrop
®
 ND-1000 Spectrometer, 

Thermo Fisher Scientific Germany Ltd. & 

Co. KG, Bonn 

PCR-Cycler C1000
TM

 Thermal Cycler, BioRad 

Laboratories GmbH, Munich 

Phosphorimager Storm 840 phosphorimager, Molecular 

Dynamics 

Polyacrylamide gel electrophoresis  

 

Mini-PROTEAN Tetra Cell,Bio-Rad  

Laboratories GmbH, Munich; Power supply 

PowerPac Basic, Bio-Rad Laboratories 

GmbH, Munich 

Scintillation counter Beckmann LS 6500, Beckman Coulter, 

Krefeld  

Spectrophotometer Ultrospec 3000 pro, GE Healthcare Europe 

GmbH, Freiburg 

Thermomixer Thermomixer Comfort 5350, Eppendorf 

AG, Hamburg 

UV-Crosslinker UV Stratalinker ® 1800, Stratagene, La 

Jolla, USA 
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UV-Transilluminator  BioDocd-IT system, UVP, Upland, USA 

 

4.2 Strains and culture conditions 

4.2.1. Strains 

Table 4.3: Bacterial and archaeal strains used in this study. 

Strain Relevant genotype Reference 

Escherichia coli K12  

DH5α 

F
–
Φ80lacZΔM15Δ(lacZYA-

argF)U169recA1endA1hsdR17(rK
–
, 

mK
+
)phoA supE44λ–thi-1gyrA96relA1 

 

[126] 

Escherichia coli 

 BL21-AI 

F
–
 ompT hsdSB (rB

–
, mB

–
) gal 

 dcm araB::T7RNAP-tetA 

Thermo Fisher 

Scientific 

Germany Ltd. 

&Co. KG, 

Bonn 

 

Aromatoleum 

aromaticum EbN1 

 AGHeider-

Philipps 

University, 

Marburg 

 

4.2.2. Escherichia coli growth conditions 

E. coli cultures were grown in LB medium (1 % tryptone (w/v), 0.5 % yeast extract, 1 % 

NaCl (w/v), pH 7.2) in a rotatory shaker at 200 rpm at 37°C or on solid medium plates (LB 

medium containing 1.5 % (w/v) agar-agar). Single colonies were inoculated with a pre-culture 

(2% (v/v)) which contain LB medium with appropriate antibiotics (spectinomycin, kanamycin 

50 μg/ml and ampicillin 100 μg/ml) based on plasmid encoded antibiotic resistance gene. 

Expression of recombinant proteins were induced at growth phase (OD600:0.6) with 1 mM 

IPTG and 20% L-arabinose and grown for 3-4h. Cells were subsequently harvested by 

centrifugation (6000g, 4°C). The E. coli strain K12 DH5α was used for cloning, storage and 

preparation of plasmid DNA.  
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4.2.3 Aromatoleum aromaticum EbN1 growth conditions  

Aromatoleum aromaticum strain EbN1 was grown anaerobically in a 30 liters fed-batch 

fermenter culture on minimal medium with benzoate (3 mM) as sole carbon source and nitrate 

(10 mM) as electron acceptor. Cells were harvested in exponential growth phase at optical 

densities (OD: 578 nm) of 3.5-4 [127]. 

4.3 Oligonucleotides, plasmids and constructed recombinant vectors 

4.3.1 Plasmids and constructed recombinant vectors 

Table 4.4: Plasmids used in this study. 

Vector Features Application       Source 

pUC19 lacZ, Amp
r 

Transcription of               NEB 

 pre-crRNA 

 

pET-Duet1 

 

 

pRSF-

Duet1                  

 

 

pCDF-

Duet1                 

Amp
r
 

 

 

Kan
r
 

 

 

Spec
r
 

Heterologous gene  

expression                       Novagen 

 

Heterologous gene  

expression                        Novagen 

 

 

Heterologous gene            Novagen 

expression                         

 

 

 

Table 4.5: Constructed recombinant plasmids for recombinant protein production  

Plasmid + Insert Description of the insert 

pCDF + Csf1 E.coli codon optimized large subunit (Csf1) protein from 

A.aromaticum EbN1.Csf1 cloned in MCS2 (Nde1 cut site). 
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pCDF+Csf5-Csf1 

 

 

pRSF+Csf3 

 

pRSF+Csf2-Csf3 

 

 

pRSF +Csf3  

 

pRSF +Csf2 

 

 

pCDF +Csf5 

 

 

pRSF +Csf2 

 

E.coli codon optimized large subunit and Csf5 (C-terminal 

histag).Csf5 cloned in MCS1 (Nco1 cut site), Csf1 cloned in 

MCS2 (Nde1 cut site). 

E.coli codon optimized Csf3 protein from A.aromaticum EbN1. 

Csf3 cloned in MCS2 (Nde1 cut site). 

 

E.coli codon optimized Csf2 (N-terminal his-tag) and Csf3 protein 

from A.aromaticum EbN1. Csf2 cloned in MCS1 (Nco1 cut site), 

Csf3 cloned in MCS2 (Nde1 cut site). 

 

E.coli codon optimized Csf3 with  (C-terminal his-tag) protein 

from A.aromaticum EbN1. Csf3 cloned in MCS2 (Nde1 cut site). 

 

E.coli codon optimized Csf2 protein from A.aromaticum EbN1. 

Csf2 cloned in MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 (C-terminal his-tag) protein from 

A.aromaticum EbN1. His-tagged Csf5 cloned in MCS1 (Nco1 cut 

site). 

 

E.coli codon optimized Csf2 protein from A.aromaticum EbN1. 

Csf2 cloned in MCS1 (Nco1 cut site). His-tag was removed. 

 

E.coli codon optimized Csf2 and Csf3 protein from A.aromaticum 
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pRSF+Csf2+Csf3 

 

 

pCDF +Csf1 

 

 

pCDF+Csf5-Csf1 

 

 

pCDF+Csf5-Csf1 

 

 

pRSF+Csf2-Csf3  

 

 

pCDF+Csf5-Csf2-

Csf3-Csf1    

 

 

EbN1. Csf2 cloned in MCS1 (Nco1 cut site), Csf3 cloned in 

MCS2 (Nde1 cut site). His-tags were removed. 

 

E.coli codon optimized large subunit protein (Csf1 with C-

terminal his-tag) from A.aromaticum EbN1.Csf1 cloned in MCS2 

(Nde1 cut site). 

 

E.coli codon optimized large subunit (Csf1 with C-terminal his-

tag) and Csf5 protein from A.aromaticum EbN1. Csf5 cloned in 

MCS1 (Nco1 cut site), large subunit cloned in MCS2 (Nde1 cut 

site). 

 

E.coli codon optimized large subunit Csf1 and Csf5 protein from 

A.aromaticum EbN1. Csf5 cloned in MCS1 (Nco1 cut site), large 

subunit cloned in MCS2 (Nde1 cut site). His-tags were removed. 

 

E.coli codon optimized Csf2 and Csf3 (C-terminal his-tag) protein 

from A.aromaticum EbN1. Csf2 cloned in MCS1 (Nco1 cut site), 

Csf3 cloned in MCS2 (Nde1 cut site). 

 

E.coli codon optimized Csf5 (C-terminal his-tag), Csf2 (N-

terminal his-tag), Csf3 and Csf1 (large subunit) proteins from 

A.aromaticum EbN1. Csf5 cloned in MCS1 (Nco1 cut site) and 

rbs sequence inserted before Csf2. Csf3 cloned in MCS2 (Nde1 

cut site) and rbs sequences were inserted before Csf1. This 
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pRSF + DinG 

 

 

pRSF+DinG -FLAG 

 

 

pRSF+DinG 

plasmid was created together with Xiohan Guo. 

 

E.coli codon optimized Csf4 (DinG) protein from A.aromaticum 

EbN1. Csf4 (DinG) cloned in MCS1 (Nco1 cut site). Affinity tags 

were removed. 

 

E.coli codon optimized Csf4 (DinG) protein from A.aromaticum 

EbN1. N-terminal his-tag, C-terminal FLAG tag was inserted. 

Csf4 (DinG) cloned in MCS1 (Nco1 cut site) 

 

E.coli codon optimized Csf4 (DinG with C-terminal his-tag) 

protein from A.aromaticum EbN1. Csf4 (DinG) cloned in MCS1 

(Nco1 cut site).  

 

 

Table 4.6: Constructed recombinant plasmids for pre-crRNA production 

 

Plasmid + Insert Description of the insert 

pUC19 + type IV  

miniCRISPR 

 

type IV repeat-spacer-repeat  from A.aromaticum  was 

cloned with T7 promoter, restriction sites BamHI/HindIII. 

Based on RNA-Seq data. 

  

pUC19 + type I-C  

miniCRISPR 

 

Type I-C repeat-spacer-repeat  from A.aromaticum  was 

cloned with T7 promoter, restriction sites BamHI/HindIII. 

Based on RNA-Seq data 
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Table 4.7: Constructed recombinant plasmids for alanine scanning assays 

Plasmid + Insert & 

Mutation 

Description of the insert 

pCDF + Csf5 H44A  

 

E.coli codon optimized Csf5 with H44A replacement at 

MCS1 (Nco1 cut site). 

pCDF + Csf5 S209A  

 

pCDF + Csf5 R38A 

 

pCDF + Csf5 R23A 

 

pCDF + Csf5 S241A 

 

pCDF + Csf5 R242A 

 

 

pCDF + Csf5 R23A+ R38A 

 

pCDF + Csf5 R23A+ R242A 

 

E.coli codon optimized Csf5 with S209A replacement at 

MCS1 (Nco1 cut site). 

E.coli codon optimized Csf5 with R38A replacement at 

MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with R23A replacement at 

MCS1 (Nco1 cut site). 

E.coli codon optimized Csf5 with S241A replacement at 

MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with R242A replacement at 

MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with R23A+ R38A double 

replacement at MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with R23A+ R242A double 

replacement at MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with H44A+S209A double 
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pCDF + Csf5 H44A+S209A  

 

 

pCDF + Cas6 H44A+R38A 

 

pCDF + Cas6 R38A+S209A  

replacement at MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with H44A+ R38A double 

replacement at MCS1 (Nco1 cut site). 

 

E.coli codon optimized Csf5 with R38A+S209A double 

replacement at MCS1 (Nco1 cut site). 

 

4.3.2 Oligonucleotides 

All oligonucleotides were synthesized from Eurofins MWG Operon. RNA oligonucleotide 

was synthesized by Sigma.-Aldrich.  

Table 4.8: Oligonucleotides used for northern blot, nuclease assays and mini-CRISPR 

array formation. 

Name Sequence (5′-3′) 

Type IV 

mini-

CRISPR 

array F 

GATCCTAATACGACTCACTATAGGGGTGTTCCCCGCGCATCGCG

GGGGTTGAAGCGTCAGGTCTGCAACAAAGATCAACCCTACTCG

GTGTTCCCCGCGCATCGCGGGGGTTGAAGA 

Type IV 

mini-

CRISPR 

array R 

AGCTTCTTCAACCCCCGCGATGCGCGGGGAACACCGAGTAGGG

TTGATCTTTGTTGCAGACCTGACGCTTCAACCCCCGCGATGCGC

GGGGAACACCCCTATAGTGAGTCGTATTAG 

TypeI-C 

mini-

CRISPR 

array F 

GAT CCT AAT ACG ACT CAC TAT AGG GGC ATC GCC CCT CGG 

TGA CGG GGG GCG TGG ATT GAA ACC GTC AGG TCT GCA ACA 

AAG ATC AAC  

TypeI-C 

miniCRISPR 

array R 

 

AAT CCA CGC CCC CCG TCA CCG AGG GGC GAT GCC CCT ATA 

GTG AGT CGT ATT AG 

TypeI-C 

mini-

CRISPR 

array F 

CCT ACT CGG CAT CGC CCC TCG GTG ACG GGG GGC GTG GAT 

TGA AAC A  

TypeI-C AGC TTG TTT CAA TCC ACG CCC CCC GTC ACC GAG GGG CGA 
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mini-

CRISPR-

array R 

TGC CGA GTA GGG TTG ATC TTT GTT GCA GAC CTG ACG GTT 

TC 

5SrRNA 

compl. 

sequence 

DIG - GGGGTCAGGTGGGACCACCGCGCTACGGCCGCC 

TypeIV 

compl. 

spacer 

DIG - CGTCAGGTCTGCAACAAAGATCAACCCTACTCG 

 

Table 4.9: Oligonucleotides used for site directed mutagenesis. 

Agilent site Quick change primer design tool was used for site directed mutagenesis primer 

design. 

Name Sequence 5' → 3' 

Csf5 H44A F CGG GTG ATC GCA GCA CCG GTC TGC GGA TCA C  

Csf5 H44A R GTG ATC CGC AGA CCG GTG CTG CGA TCA CCC G  

Csf5 S209A F GGT CGC ACC GGT GGC GGT CAC CAG ACG C  

Csf5 S209A R GCG TCT GGT GAC CGC CAC CGG TGC GAC C  

Csf5 R38A F CCG GTC TGC GGA TCA GCG CTA AAG AAC AGC GG  

Csf5 R38A R CCG CTG TTC TTT AGC GCT GAT CCG CAG ACC GG  

Csf5 R23A F CGC CAG CGC CTC AGC CAG ATC ATT CGG C 

Csf5 R23A R GCC GAA TGA TCT GGC TGA GGC GCT GGC G  

Csf5 S241A F GAC CGT AGC CAC GGG CGG TCA GGT TAC CCG    

Csf5 S241A R CGG GTA ACC TGA CCG CCC GTG GCT ACG GTC  

Csf5 R242A F ATA CGA CCG TAG CCA GCG CTG GTC AGG TTA CC  
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Csf5 R242A R GGT AAC CTG ACC AGC GCT GGC TAC GGT CGT AT  

 

4.4 Working with DNA 

4.4.1 Preparation of plasmid DNA from E. coli 

E. coli (2-5 ml) overnight cell cultures were pelleted and plasmid DNA isolation performed 

by using the QIAprep Spin Miniprep Kit or the QIAGEN Plasmid Plus Maxi Kit according to 

the manufacturer’s instructions. 

4.4.2 Phenol/chloroform extraction of DNA and nucleic acid precipitation 

To extract bound nucleic acids from DinG protein, phenol-chloroform extraction followed by 

nucleic acid precipitation was applied. C-terminally tagged purified DinG was mixed with 1 

volume of phenol/chloroform (1:1) pH 8.0. After centrifugation (15,000 x g, 1 min, RT), the 

upper aqueous phase was transferred into a fresh tube and 1 volume of chloroform was added 

and mixed with the sample. After centrifugation (15,000 x g, 1 min, RT), the upper aqueous 

phase was transferred into a fresh tube and DNA precipitation was performed via ethanol 

precipitation. 0.3 M Na-acetate and two volumes of 100 % ethanol (v/v) were added to the 

sample and incubated for 30 min at -20°C. The sample was centrifuged at 12,000 x g for 10 

min at RT. Afterwards, the supernatant was removed and the DNA pellet was washed with 70 

% ethanol (v/v) (12,000 x g, 2 min, RT). The supernatant was discarded and the DNA pellet 

was dried and resuspended in ddH2O.  

4.4.3 Spectrophotometric and Fluorometric quantitation of DNA 

Concentration and the purity of DNA was controlled with a spectrophotometer. The Qubit 

fluorometer was also used for high sensitivity quantification. Quantification of isolated small 

RNAs of A.aromaticum EbN1, cDNA libraries for RNA-Seq and DinG bound nucleic acids 

were quantified by Qubit fluorometer. Prior to measurements Qubit fluorometer was 

calibrated with corresponding kit.  
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4.4.4 Agarose gel electrophoresis of DNA 

Different lengths of the DNA fragments were separated by agarose gels. Depending on the 

length of the DNA, different concentrations of agarose gels were made. 0.8-2 % (w/v) agarose 

in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, 20 mM acetic acid pH 8.0) and 0.1 μl/ml 

ethidium bromide (10 mg/ml) were used. Before loading onto the gel, samples were mixed 

with 6x loading dye (40 % (v/v) sucrose, 0.25 % (w/v) bromophenol blue, 0.25 % (w/v) 

xylene cyanol. Electrophoresis was performed at 90-120 V in TAE buffer. As size marker the 

2-log DNA Ladder was used. After the electrophoresis the DNA was visualized by UV 

irradiation at 254 nm.  

4.4.5 Amplification of plasmid DNA, genomic DNA or cDNA 

PCR reactions were performed by mixing 50-100 ng of template DNA (genomic, plasmid or 

cDNA). 0.5 μM of each oligonucleotide, 200 μM dNTPs and the 10x reaction buffer of the 

suitable polymerase. 1 U of the Phusion polymerase or 2 U of the Taq polymerase were used. 

The PCR reactions were carried out in a thermal cycler. Standard cycling conditions are 

shown in table 4.10.  

Table 4.10: Standard-PCR program using Phusion polymerase  

 Step 1 Step 2-35 Step 36 

Denaturation 98°C, 30 s 98°C  10 s  

Annealing  45-72°C 30 s  

Elongation  72°C 30 s/kb 72°C, 10 min 
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4.4.6 Site-directed mutagenesis PCR 

Site directed mutagenesis PCR was used to introduce mutations. Agilent Quick change primer 

design tool was used to design site directed mutagenesis DNA oligos. Based on 

manufacturer`s instructions, PCR reaction was performed to obtain mutagenized plasmids and 

subjected to subsequent kinase, ligase and DpnI treatments (Site-Directed Mutagenesis Kit, 

NEB). Transformation of mutagenized plasmids were performed to chemically competent 

E.coli DH5α cells and selected based on the appropriate antibiotics. Plasmids from growing 

colonies were isolated by mini-prep plasmid isolation kit (Qiagen). Mutagenized plasmids 

were verified by Sanger sequencing. 

4.4.7 PCR purification and gel extraction from agarose gels 

PCR reactions were purified using QIAquick Gel extraction kit according to manufacturer´s 

protocol. DNA fragments after PCR or treatment with restriction endonucleases were 

separated by agarose gel electrophoresis. Corresponding DNA band was excised and gel 

extracted by using QIAquick Gel extraction kit based on manufacturer`s protocol. 

4.4.8 Phosphorylation and hybridization of DNA oligonucleotides 

Prior to hybridization, 1 nmol of each oligonucleotide was 5'-phosphorylated in separate 

reactions. Reaction mixture contains 50 U of T4-Polynucleotide Kinase (PNK), 1x of the 

corresponding reaction buffer, and 20 mM ATP together with oligonucleotide in a 20 μl 

reaction volume. The reaction mixture was incubated at 37°C for 1 h. Phosphorylated 

complementary DNA oligos were hybridized by mixing 1 nmol of each oligonucleotide with 

T4 DNA ligase buffer (10x) and ddH2O in a reaction volume of 10 μl. Heating the reaction 

for 5 min at 95°C and gradual cool down to RT for 1-2 h. trigger hybridization. After the 

hybridization, the mixture was ligated into appropriate plasmids. 
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4.4.9 Restriction enzyme modification of DNA 

The DNA was mixed with 10-20 U restriction enzyme/μg DNA and incubated at 37°C for 2 h. 

or overnight with appropriate buffer based on the manufacturer`s protocol. 

4.4.10 5'-dephosphorylation of linearized vector 

In order to avoid re-ligation of the restriction enzyme digested plasmid DNA, antarctic 

phosphatase treatment was used to remove the 5'-end phosphoryl groups. 0.5 U/ pmol of 

antarctic phosphatase, DNA and the corresponding buffer were added to mixture and then 

further incubated at 37°C for 1 h. before ligation reaction.         

4.4.11 Ligation 

T4 DNA ligase was used to catalyze phosphodiester bond formation between 3' hydroxyl and  

5' phosphate groups of DNA molecules. 3:1 molar ratio of PCR fragment to plasmid DNA 

was used for the ligation reaction in a volume of 10 μl. A reaction mixture was incubated at 

45°C for 5 min to dissolve secondary structures then 1 μl T4 DNA ligase and the appropriate 

ligation buffer (10x) was added and incubated overnight at 16°C. T4 DNA ligase was 

inactivated by incubating at 70°C for 10 min. Reaction mixture were then used for 

transformation. 

4.4.12 Sequencing 

Cloned constructs were verified by Sanger sequencing performed by Eurofins MWG Operon 

(Ebersberg). For the sequencing reaction standard primers were used. 

4.4.13 5'- terminal radioactive labeling  

Single-stranded DNA and RNA oligonucleotides were synthesized by MWG or SIGMA-

Aldrich. 100 pmol of the oligonucleotides were mixed with 5 pmol of γ[
32

P]-ATP (Hartmann 

Analytic), 10 U of T4 PNK and the corresponding reaction buffer (10x) and then incubated at 

37°C for 1 h.  
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4.4.14 Denaturing polyacrylamide gel electrophoresis of radiolabeled DNA 

Electrophoretic separation of the radiolabeled DNA was performed with (8 -12 %) of the 

polyacrylamide stock solution containing acrylamide and bisacrylamide in a ratio of 29:1, 

depending on the size of the oligonucleotide. Additionally the gels contained 8 M urea, TBE 

buffer (90 mM Tris, 2 mM EDTA pH 8.0, 90 mM boric acid), 0.1 % (v/v) APS und 0.1 % 

(v/v) TEMED were prepared. Prior to loading on the gel the samples were mixed with 2x 

formamide loading buffer (95 % (v/v) formamide, 0.025 % (w/v) bromophenol blue,  0.025% 

(w/v) xylene cyanol, 5 mM EDTA pH 8.0) and incubated at 95°C for 5 min. Separation was 

carried out at 12W.  

4.4.15 Detection of radiolabeled DNA by phosphorimaging 

Gels or blots were exposed to phosphor screens overnight. The bands on the phosphor screen 

were visualized with a phosphoimager. 

4.4.17 Extraction of radiolabeled DNA from urea-polyacrylamide gels 

The radiolabeled DNA visualized by phosphorimager and then excised from the gel. Excised 

gel pieces dissolved in 500 μl of gel elution buffer (20 mM Tris/HCl pH 7.5, 250 mM sodium 

acetate, 1 mM EDTA pH 8.0). Samples were placed at -20°C for 30 min and then shaked on 

ice overnight. The supernatant was ethanol precipitated (section 4.4.2) with glycogen addition 

(1:100 ratio). The radioactivity was measured in a scintillation counter.  

4.5 Working with RNA 

4.5.1 Treatment of solutions, glassware and equipment 

RNases were inactivated from all buffers and solutions by treatment of 0.1 % (v/v) 

diethylpyrocarbonate (DEPC), stirred overnight at RT and autoclaved. Reusable plastic ware 

was treated with RNase Exitus Plus
TM

. 
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4.5.2 Small RNA isolation from A.aromaticum EbN1 with mirVana
TM

 miRNA Isolation 

Kit (Ambion) 

For the isolation of small RNAs (< 200 nt), the mirVana
TM

 Isolation Kit was used. The 

isolation was performed according to the manufacturer’s instructions. The homogenization of 

5 g cells of A. aromaticum EbN1 was carried out in 1 ml lysis/binding buffer using a glass 

Teflon homogenizer for 3 min on ice. After the addition of 100 µl miRNA Homogenate 

Additive
TM

 and 10 min incubation on ice, the RNAs were phenol/chloroform extracted. To 

enrich for small RNAs the sample was brought to an ethanol concentration of 25 % to 

immobilize large RNAs on a glass-fiber filter. Small RNAs were collected in the filtrate. The 

ethanol concentration in the filtrate was increased to 55 % and the filtrate was applied to a 

second glass-fiber filter to immobilize small RNAs. Both RNA fractions were washed and 

eluted in 100 µl elution solution.  

4.5.3 TRIzol Reagent (Ambion) 

For clean northern blot analysis, total RNA was isolated for cleavage and alanine scanning 

assays. E.coli cultures with corresponding plasmids were harvested at exponential growth 

phase (OD600nm 0.4-0.6). The cell pellet was re-suspended in 1 ml TRIzol Reagent and lysed 

for 5 min at room temperature. After addition of 200 μl chloroform, mixing and incubation at 

room temperature for 10 min, the solution was centrifuged (16,000xg, 5 min, 4°C). The upper 

aqueous phase was transferred to a fresh tube and the RNA precipitated by the addition of 500 

μl isopropanol and incubation at -20°C for 10 min. The RNA was pelleted by centrifugation 

(16.000g,10 min,4°C).Then washed two times with 1ml 70% ethanol, dried at room 

temperature and re-suspended in  50 μl of H2ODEPC. 

4.5.4 Small RNA Sequencing  

Total RNA isolated from A. aromaticum EbN1 5 g of cell pellets were purified using 

mirVana RNA extraction kit (Ambion) with an enrichment of small RNAs (<250 nt). 3 μg 
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of isolated small RNA from both A. aromaticum EbN1 were phosphorylated with T4 PNK 

to allow for termini ligation: RNA was incubated at 37°C for 6 h with 10 U of T4 PNK 

(Ambion) and 10 μl 5x T4 PNK buffer (0.5 M Tris-HCI pH 6.5, 0,5 m MgAc, 25 mM β-

mercaptoethanol) in a total volume of 50 μl. 1 mM ATP was added and the reaction 

mixture was incubated for 1 h at 37°C to obtain mono-phosphorylated 5′-termini. 

Afterwards, RNA library constructions with adaptors were prepared with an Illumina 

TruSeq RNA Sample Prep Kit and sequencing on an Illumina HiSeq2000 sequencer was 

performed at the Max-Planck Genomecentre Cologne. 

  4.5.5 Northern Blot Analysis 

2 μg of total RNA was loaded onto a 8 M urea 10% denaturing polyacrylamide gel. A 

semidry electrophoretic transfer system was used to transfer RNA bands onto a positively 

charged membrane (Roti-Nylon plus, pore size 0.45 μm) for 2 h at 20 V and crosslinked 

with UV cross linker (120 seconds). After the transfer, the membrane was pre-hybridized 

for 30 min at 55°C in ULTRAhyb-Oligo hybridization buffer and non-specific binding was 

blocked. The membrane was incubated with 30 to 50 ng/μl of a DIG labeled probes in 8 ml 

of hybridization buffer overnight at 55°C. DIG bound antibodies were detected by X-ray 

imager film processor (Agfa-CP1000). 

4.6 Biochemical methods 

4.6.1 Cloning of expression constructs 

Type IV CRISPR-Cas loci cas genes and were codon optimized and synthesized by 

Genescript and cloned into the two multiple cloning sites of pCDFDuet-1 (csf1 and csf5, 

pCsf1-Csf5) and pRSFDuet-1 (csf2 and csf3, pCsf2-Csf3) vectors (Novagen). In addition, 

csf5 and csf1 were cloned individually into pCDFDuet-1 to yield pCsf5 and pCsf1 

plasmids and csf2 and csf3 were cloned individually into pRSFDuet-1 to yield pCsf2 and 
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pCsf3 plasmids. A hexa-histidine tag was included at the 5′ end of csf5 for Ni-NTA affinity 

chromatography of recombinant complexes. The repeat-spacer1-repeat sequence was 

placed under control of a T7 RNA polymerase promoter cloned into the pUC19 vector 

(NEB) BamHI and HindIII restriction sites using two with annealed oligonucleotides 

(pminiCRISPR, Table 4.8). QuikChange site-directed mutagenesis (Agilent) was applied 

to obtain plasmids for the expression of Csf5 mutants. Wildtype and Csf5 mutant plasmids 

were verified by sequencing. dinG (csf4) gene was also codon optimized and synthesized 

by Genescript and cloned into multiple cloning site of pRSF-Duet1. Type IV cas genes 

were cloned into pCDFDuet-1 multiple cloning site by inserting rbs site in between the cas 

genes (pCsf2-rbs-Csf3, Csf5-rbs-Csf1). 

4.6.2 Production and purification of recombinant proteins 

E. coli BL21-AI (Invitrogen) was transformed with the indicated expression plasmids (pCsf2-

Csf3, pCsf1-Csf5 and pminiCRISPR were used to obtain the crRNP, pCsf5 and 

pminiCRISPR were used to purify RNA-bound Csf5). The expression cultures were grown at 

37 °C in 1 liter LB medium with appropriate antibiotics (50 μg/ml kanamycin and 

spectinomycin and 100 μg/ml ampicillin) under rigorous shaking (200 r.p.m.) to an OD600 of 

0.6 - 0.8. Expression was induced with 1 mM IPTG and 20% L-arabinose for 3-4 h. Cells 

were subsequently harvested by centrifugation (6000g, 4°C). Cell pellets were re-suspended 

in lysis buffer (20 mM HEPES pH 7.5, 300 mM NaCI and 10 mM imidazole). Cells were 

lysed by addition of lysozyme for 30 min on ice and subsequently sonified (8 x 30 s: Branson 

Sonifier 250). The cell lysate was clarified by centrifugation (18.000 r.p.m., 30 min, 4°C) and 

the supernatant was applied to a 5 ml HisTrap HP column (GE Healthcare). The column was 

washed with 10 column volumes of washing buffer (20 mM HEPES pH 7.5, 300 mM NaCI, 

20 mM imidazole) before elution of bound proteins by an imidazole gradient (20 mM-500 

mM). Eluates were concentrated to a final volume of 2 ml and injected on a HiLoad 16/600 
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Superdex 200 column (GE Healthcare) equilibrated in SEC buffer (20 mM HEPES pH 7.5, 

300 mM NaCl) for size exclusion chromatography. Peak fractions were analyzed by SDS and 

urea-polyacrylamide gel electrophoresis. Csf5-crRNA complexes were purified by the same 

protocol and size-exclusion chromatography was either performed at room temperature or 

4°C yielding two different substrates for crystallization. DinG + type IV crRNP purifications 

were performed at 4°C. After cell lysis, supernatant was applied to 1 ml HisTrap HP column. 

Ni-NTA purification performed as described above. Eluates were concentrated to a final 

volume of 500 μl and injected to Superose 6 Increase 10/300 column equilibrated in SEC 

buffer (20 mM HEPES pH 7.5, 150 mM NaCl) for size exclusion chromatography.  Untagged 

DinG + type IV crRNP cross-linking samples were only purified by Ni-NTA purification and 

concentrated to final volume of 1 ml before chemical cross-linker was applied. 

4.6.3 Electron microscopy  

Carbon coated copper grids (400 mesh) were hydrophilized by glow discharging (PELCO 

easiGlow, Ted Pella, USA). 5 μl of a 13.7 μg/ml protein suspension was applied onto the 

hydrophilized grids and stained with 2% uranyl acetate after a short washing step with 

double-distilled H2O. Samples were analyzed with a JEOL JEM-2100 transmission 

electron microscope using an acceleration voltage of 120 kV. A F214 FastScan CCD 

camera (TVIPS, Gauting) was used for image acquisition. For 2D class averaging, a 

sample with a concentration of 0.4 mg/ml was diluted in H2Obidest to a final 

concentration of 20 µg/ml and prepared as described above. 30 montages (2x2 to 6x6 

stitched single 2k images) were taken at 200 kV and processed with cisTEM. For particle 

picking the cisTEM ab initio algorithm was used before manual editing (i.e. 

adding/deleting particles from the dataset). A total of ~5400 particles were used for 

averaging 10 classes (20 cycles) [128].  
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4.6.4 Crystallization and vaporizing iodine labeling 

Purified Csf5 bound to the recognized crRNA repeat was concentrated to an absorbance at 

280 nm of 50 AU (NanoDrop Lite Spectrophotometer) and subjected to crystallization by 

vapor diffusion at 20 °C. Crystals for vaporizing iodine labeling (VIL) were generated by 

combining 1 µL protein solution, containing at 20 °C purified Csf5 preparations, with 1 µL 

crystallization solution (0.16 M di-ammonium tartrate, 16% w/v PEG3350, 200 mM NaCl). 

Elongated block shaped crystals appeared after 2-3 days and were subsequently transferred 

into crystallization solution containing 20% glycerol for cryoprotection. The crystals were 

then incubated for 1.5 h in the presence of a 0.5 µl drop of KI/I2 solution (0.67 M KI and 0.47 

M I2) for VIL according to [129]. Crystals were subsequently flash frozen and stored in liquid 

nitrogen. Native crystals of the 20°C preparations were generated by combining 1 µL protein 

solution with 1 µL crystallization solution (0.18 M di-ammonium tartrate, 18% w/v PEG3350, 

3% glycerol). Crystals appeared after 2-3 days and were subsequently transferred into 

crystallization solution containing 20% glycerol for cryoprotection. Crystals were then flash 

frozen and stored in liquid nitrogen. Crystals of the 4°C preparations were generated by 

combining 1 µL protein solution with 1 µL crystallization solution (0.2 M di-sodium tartrate, 

20% w/v PEG3350). Block shaped crystals appeared after 4 days and were subsequently 

transferred into crystallization solution containing 20 % glycerol for cryoprotection. Crystals 

were then flash frozen and stored in liquid nitrogen. 

4.6.5 Protein-protein and protein-RNA crosslinking  

To identify amino acids that interact with the crRNAs, 100 µg of RNA-bound Type IV 

crRNPs was UV-irradiated at 254 nm for 10 min, while a second sample served as a non-

irradiated control. The protein-RNA samples were loaded onto a pre-packed C18 column 

(Harvard Apparatus, Microspin C18 Column, Massachusetts, United States), mounted to a 

Dionex UltiMate 3000 UHPLC
+ 

focused (Thermo Scientific), equipped with an analytical 
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column (75 μm x 300 mm, ReproSil-Pur 120 C18-AQ, 1.9 μm, Dr. Maisch GmbH, packed 

in-house). Peptides were separated by reverse-phase chromatography on a 58 min multi-

step gradient (flow rate of 0.3–0.4 µl/min) before entering the mass spectrometer 

(QExactive HF-X, Thermo Scientific). MS1 spectra were recorded in profile mode 

(resolution of 120k), and MS2 spectra were recorded in centroid mode (resolution of 30k); 

isolation window set to 1.6 m/z and dynamic exclusion set to 7 s. Raw data of RNA-

protein heteroconjugates were analysed and manually validated with the OpenMS pipeline 

RNP xl as previously described by (Kramer et al., 2014).  For protein-protein crosslinking, 

10 µg-aliquots of the complex were incubated with either 0.05, 0.1, 0.25, 0.5 or 1 mM of 

bis (sulfosuccinimidyl) suberate (BS3, Thermo Scientific). For DinG interaction analysis, 

DSBU chemical cross-linker was applied. Each of the samples were incubated at room 

temperature for 30 min and subsequently quenched by a final concentration of 50 mM Tris. 

Proteins were then separated by PAGE using a 4-12% gradient gel (NuPAGE, Invitrogen). 

The upper quarter of the lanes containing the complex crosslinked with 0.5 mM and 1 mM 

BS3 were cut into four equally sized slices and proteins were in-gel digested. Briefly, 

proteins were reduced and alkylated by 10 mM dithiotreitol and 55 mM iodoacetamide, 

respectively, and finally digested with trypsin at 37°C for 18 h. Extracted and dried 

peptides were dissolved in 2% ACN/0.05% TFA and subjected to LC-MS using the above 

mentioned setup with the following changes: an Orbitrap Fusion Lumos Tribrid mass 

spectrometer (Thermo Scientific) was used with a dynamic exclusion of 10 s and technical 

duplicates were measured. Raw files were converted to mgf format with 

ProteomeDiscoverer 1.4 (Thermo Scientic) and analysed with the software pLink (v. 1.23, 

pFind group for identification of crosslinked peptides. Here, default settings were applied 

with carbamidomethylation of cysteines as fixed and oxidation of methionines as variable 

modification, FDR was set to 0.01. Results were filtered by excluding crosslinks supported 
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by only one spectrum and additionally by applying a score cut-off value of 3. Interaction 

networks were visualised by xiNET. 
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Csf5. 

Andreas Linden (AG Urlaub, MPI-Göttingen) 

Protein-protein cross-linking:  I purified the type IV crRNP complex. Mass spectrometry 

analyses were performed by Andreas Linden. 

Alexander Wulf (AG Urlaub, MPI-Göttingen) 

Protein-RNA cross-linking: I purified the type IV crRNP complex. Alexander Wulf carried 

mass spectrometry analysis of RNA-protein cross-links. 
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Thomas Heimerl (AG Bange, Philipps University, Marburg) 

Electron Microscopy: Type IV crRNP complexes and Csf2 filaments were purified by me 

and Thomas Heimerl generated electron microcopy images, 2D classes and 3D construction 

of the type IV crRNP complex. 

Karola Schühle (AG Heider) kindly shared A.aromaticum EbN1 pellet with me. This pellet 

was used for small RNA isolation and further RNA-Seq analysis. 

UNPUBLISHED RESULTS  

The following section lists contribution by master students that worked under my supervision 

and collaboration partners for unpublished results that are described in this thesis: 

Marcus Ziemann (Master Student) 

Philipps University, Marburg, May 2017-March 2019   

I supervised the work performed by Marcus Ziemann during his master thesis study on the 

`` Analysis of PAM recognition by the type IV CRISPR-Cas system of Aromatoleum 

aromaticum``. Marcus Ziemann established PAM depletion assays for type IV CRISPR-Cas 

system and performed most of the PAM associated bioinformatic analyses.  

Sergei Shmakov (National Institute of Health-Koonin Group) kindly shared type IV 

protospacers with targets. These protospacers were used for computational determination of 

PAM sequence conservation of the Type IV CRISPR-Cas system by Marcus Ziemann.  

Eva Grümpel (Master Student) 

Philipps University, Marburg, since October 2018 

I supervised the initial work performed by Eva Grümpel during her master studies on the 

´´Biochemical & Functional Characterization of the Type IV CRISPR-Cas associated DinG 

helicase (Csf4) of Aromatoleum aromaticum EbN1´´. 
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I designed and cloned multiple constructs with different tags of the DinG helicase and 

performed initial purification and nucleic acid detection analyses. Constructs and initial 

purification conditions were established and provided to Eva Grümpel. 

Lyle Kroell (Master Student,): I purified type IV CRISPR-Cas complexes and following 

protein-protein crosslinking titrations and HPLC-MS were performed by Lyle Kroell.  

Jörg Kahnt (Mass Spectrometry and Proteomics Facility, MPI, Marburg) 

Jörg Kahnt performed the mass spectrometry analysis of purified proteins. 
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Abbreviations 
 

ad   add to the volume  

APS   ammonium persulfate 

ATP   adenosine triphosphate 

β-Me   β-mercaptoethanol 

bp   basepair 

BSA   bovine serum albumin 

cDNA  complementary DNA 

C-terminal  carboxy-terminal 

cpm   counts per minute 

CV   column volume 

kDa   Kilo Dalton 

ddH2O   two times destilled water 

DEPC   diethylpyrocarbonate 

DMSO  dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

DNase   desoxyribonuclease 

dNTP    deoxyribonucleotide triphosphate 

ds   downstream 

dsDNA double-stranded DNA 

DTT dithiothreitol 

e.g.   for example 

EDTA   ethylene-diamine-tetraacetic acid 

EM    electron microscopy 

EMSA   electrophoretic mobility shift assay 

et al.   et alteri = and others 

HPLC             High-performance liquid chromatography 

g   gram 

x g   gravitational acceleration 
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h   hour 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  

His-tag  histidine tag 

IPTG   isopropyl β-D-1-thiogalactopyranoside 

kb   kilobase 

l    liter 

LB   lysogeny broth 

M   molar (mol/l) 

min   minutes 

MW   molecular weight 

μ    micro (10
-6

) 

n   nano (10
-9

) 

Ni
2+

-NTA  nickel nitriloacetic acid 

nt   nucleotides 

N-terminal  amino-terminal 

NTP   nucleoside triphosphate 

OD600nm   optical density at 600 nm 

ORF   open reading frame  

PAGE polyacrylamide gel electrophoresis 

PCR   polymerase chain reaction 

pH   negative logarithm of the hydrogen ion (H+) concentration 

RNA   ribonucleic acid 

RNase  ribonuclease 

RNP   ribonucleoprotein complex 

rpm   rounds per minute 

rRNA   ribosomal RNA 

RT   room temperature  

s   seconds 

SANS   small-angle neutron scattering 

SAXS   small-angle X-ray scattering 
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SDS  sodium dodecyl sulfate 

crRNA  CRISPR RNA 

ssDNA  single-stranded DNA 

ssRNA  single stranded RNA 

TAE   tris-acetate-EDTA-buffer 

TBE   tris-borate-EDTA-buffer 

TEMED  N,N,N’;N’-tetramethylethylenediamide 

Tris    tris-(hydroxymethyl)-aminomethane 

U    unit (enzyme activity) 

us   upstream 

UTR   untranslated region 

UV   ultraviolet 

W   watt 

w/o   without 

% (v/v)   percent by volume  

% (w/v)    percent by weight 

>   higher than 

<    lower than 

Δ   deletion 
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