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Abstract

This thesis consists of three parts.
In the first part the problem of lifting holomorphic projective bundles to holomorphic

vector bundles is considered. Namely, we give a criterion to ensure the existence of a
holomorphic lift in terms of the existence of a smooth lift and a holomorphic structure
on the determinant bundle of the lift. The solution of the lifting problem is then applied
in two settings: to obtain a classification of Kähler contact 3-folds and certain Kähler
string manifolds. The fact that both types of spaces are spin allows us to make use of a
consequence (due to Schreieder-Tasin) of the minimal model program for Kähler 3-folds.

In the second part, we study the geometry of holomorphic Engel structures on the
complex space C4. Applying certain methods due to Forstneric, we are able to produce
uncountably infinitely many non-isomorphic Engel structures.

In the third part some partial results concerning holomorphic domination by a product
manifold are discussed. We obtain non-domination results from certain negativity properties
of the tangent bundle. This is subsequently applied to the case of a Fano surface of lines.

Zusammenfassung

Diese Arbeit besteht aus drei Teilen.
Im ersten Teil wird die Hochhebung eines holomorphen projektiven Bündels zu einem

holomorphen Vektorbündel betrachet. Es wird im Besonderen ein Kriterium angegeben,
das die Existenz einer holomorphen Hochhebung sichert, wenn zugleich eine differenzierbare
Hochhebung und eine holomorphe Struktur auf dem Determinantenbündel des hochgehobe-
nen Bündels existieren. Die Chararakterisierung der Existenz einer Hochhebung wird auf
zwei Arten verwendet: um Kähler 3-Mannigfaltigkeiten mit holomorphen Kontaktstruk-
turen zu klassifizieren und um Kähler String-Mannigfaltigkeiten zu untersuchen. In beiden
Fälle lassen die Räume Spinstrukturen zu, was die Verwendung einer Konsequenz des Mori
Programs für Kähler 3-Faltigkeiten zulässt, die von Schreider-Tasin angegeben wurde.

Im zweiten Teil wird die Geometrie von holomorphen Engel Strukturen auf C4 untersucht.
Mit Methoden, die auf Forstneric zurück gehen, wird die Konstruktion von überabzählbar
vielen unterschiedlichen Engel Strukturen ausgeführt.

Im dritten Teil werden gewisse Resultate über dominante Abbildungen von kartesischen
Produkten auf komplexe Mannigfaltigkeiten bewiesen. Es wird untersucht, wie gewisse
Negativitätseigenschaften des Tangentialbündels das Dominieren durch ein kartesiches
Produkt ausschließen. Nachfolgend wird damit bewiesen, dass Fano Flächen sich nicht
durch ein Produkt dominieren lassen.
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Chapter 1

Introduction

“... l’élément ne préexiste pas à l’ensemble, il n’est ni plus immédiat ni plus
ancien, ce ne sont pas les éléments qui déterminent l’ensemble, mais l’ensemble
qui détermine les éléments: la connaissance du tout et de ses lois, de l’ensemble
et de sa structure, ne saurait être déduite de la connaissance séparée des parties
qui le composent: cela veut dire qu’on peut regarder une pièce d’un puzzle pendant
trois jours et croire tout savoir de sa configuration et de sa couleur sans avoir le
moins du monde avancé: seule compte la possibilité de relier cette pièce à d’autres
pièces ...”

– Georges Perec. La Vie. Mode d’emploi.

This thesis discusses three rather unrelated topics. First, the problem of lifting a
holomorphic projective bundle to a holomorphic vector bundle, with a view to certain
applications for 3-dimensional string and contact manifolds. Second, the study and
construction of non-standard holomorphic Engel structures on C4. Third, obstructions to
domination by products by means of negativity conditions on the tangent bundle. We start
with an overview of the main ideas and results for each of these topics.

1.1 Lifts of projective bundles

The work described in this section, and included in Chapters 2, 3 and 4, represents previously
unpublished joint work with D. Kotschick.

Given a vector bundle, one can projectivize each fiber to obtain a bundle of projective
spaces, the projectivization. The lifting problem for projective bundles is the problem of
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8 1. Introduction

writing a projective bundle, i.e. a bundle of projective spaces1, as the projectivization
of a vector bundle. This cannot be done in general. Indeed, in algebraic geometry this
observation leads one to define the Brauer group of a variety, which endows the projective
bundles modulo projectivizations with a group structure. The Brauer group is the subject
of active research and generally a delicate object to study.

We pursue here the more practical question of deciding for a given holomorphic projective
bundle whether the lifting problem can be solved. To obtain a usable criterion, the idea is
to separate the topological and the holomorphic sides of the problem. One attempts first to
lift the projective bundle topologically to a complex vector bundle. If this is possible, one
then applies a differential geometric criterion to decide whether the complex vector bundle
can be endowed with a holomorphic structure. The main result is the following theorem.

Theorem 2.1. Let X −→ B be a holomorphic CPk−1-bundle over a complex manifold B.
Then there is a holomorphic rank k vector bundle E −→ B with X = P(E) if and only if
the smooth projective space bundle underlying X lifts to a smooth rank k vector bundle
E −→ B for which the determinant bundle det(E) admits the structure of a holomorphic
line bundle.

In the special case where the total space is a spin manifold and the fibers of the
projective bundle are one-dimensional, Theorem 2.1 has the following corollary:

Corollary 2.7. Let X −→ B be a holomorphic CP1-bundle over a complex manifold B.
If X is a spin manifold, there exists a holomorphic rank 2 vector bundle E −→ B with
X = P(E).

In other words, the lifting problem can always be solved in this instance.
We now explain our interest in the specific assumptions employed in the corollary.

The minimal model program was recently extended to Kähler threefolds by Höring and
Peternell [36, 37]. In analogy to the 2-dimensional phenomenon that a spin complex surface
is automatically minimal, Schreieder-Tasin observed in [69] that for spin Kähler threefolds,
the steps necessary to get to the minimal model are greatly simplified. More concretely,
a spin Kähler threefold is, up to a sequence of blow-downs to smooth points, either a
Mori fibre space or a minimal model (that is, it has a pseudo-effective canonical bundle).
Moreover, in the former case, it is one of the following three: a Fano manifold, a CP1

bundle over a Kähler surface, or a quadric bundle over a complex curve. Corollary 2.7
allows us to obtain a slight refinement of the second possibility in this list. We use this fact
to investigate string Kähler threefolds and contact Kähler threefolds.

String Kähler threefolds

A spin manifold is called string if its first Pontryagin class vanishes. The condition
p1(M) = 0 arose first in string theory, as the condition for having a spin structure on the
loop space of the manifold. It has since been studied extensively in the context of elliptic

1 In the smooth case, one requires also that the structure group be the projective general linear group.



1.1. Lifts of projective bundles 9

cohomology, see for example [71]. We apply the methods and results of [69], together with
some additional arguments, to analyze Kähler structures on threefolds which are not just
spin, but string.

While a spin structure rules out blowdowns to smooth points in even complex dimensions
(since CP2n is not spin), in odd complex dimensions CP2n+1 is spin, but is not string.
Therefore, for string manifolds there can be no blowdowns to smooth points in odd
dimensions, although the spin condition alone is not sufficient for this conclusion. We will
prove the following result.

Theorem 3.2. Let X be a string Kähler threefold. If χ(OX) > 0, then b2(X) ≥ 2. If
furthermore b2(X) > 2, then X is the projectivisation of a holomorphic rank 2 vector bundle
over a projective surface S with χ(OS) > 0.

Conversely, every projective surface S with χ(OS) > 0 arises in this way from a string
threefold.

The fact that non-projective Kähler surfaces cannot occur for S in this theorem came
as a surprise. This part of the conclusion arises from non-existence results for certain
holomorphic rank two vector bundles on non-projective surfaces initiated by Elencwajg
and Forster [22] and developed further by Bănică and Le Potier [54, 7].

The proof of this theorem has the following further consequence, the last part of which
relates to the scarcity of spin threefolds of general type discussed in [69, Subsection 1.2].
That many Kähler threefolds are in fact (close to) projective is one of the major themes in
extending Mori theory to the Kähler setting [36, 37, 16].

Corollary 3.3. If X is a string Kähler threefold with χ(OX) > 0, then X is projective,
with negative Kodaira dimension.

The assumption χ(OX) > 0 is trivially satisfied whenever X has no odd-degree coho-
mology. In contrast to this corollary, there are string projective manifolds of general type
with no odd-degree cohomology in all even complex dimensions. Without the assumption
χ(OX) > 0 Kähler but non-projective string threefolds do exist, as shown by the product
T × C, where T is a non-projective complex torus of complex dimension two, and C is a
curve.

Contact Kähler threefolds

A holomorphic contact structure on a complex manifold X of dimension 2n + 1 is a rank
2n holomorphic subbundle F of the tangent bundle TX which is maximally non-integrable.
Putting L = TX/F and denoting by α : TX −→ L the quotient projection, one can restate
this condition as saying that the Ln+1-valued form α ∧ (dα)n is everywhere non-zero, that
is, it defines an isomorphism det(TX) � Ln+1. If X is 3-dimensional, this implies that its
first Chern class is even, thus X is a spin manifold.

The canonical examples of contact manifolds are CP2n+1 with L = OCP2n+1(2) and the
projectivization P(T ∗S) of the cotangent bundle of a complex surface S, with L = OP(T ∗S)(1).
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We will give a quick proof of the classification of compact Kähler threefolds admitting
holomorphic contact structures, stating that these two examples are exhaustive.

Theorem 4.1. Let X be a compact Kähler threefold with a holomorphic contact struc-
ture. Then X is CP3 or the projectivization of the cotangent bundle of a Kähler surface.
Conversely, both CP3 and the projectivizations of cotangent bundles have standard contact
structures.

For X projective, Theorem 4.1 was proved by Ye [79]; see also [42]. However, in his
proof, Ye does not explain why a certain CP1-bundle over a projective surface is the
projectivization of a vector bundle,2 which is something that does not hold in general.

As explained above, a threefold with a contact structure is spin, so we are in a position
to use the results of Schreieder-Tasin [69], which together with Corollary 2.7 lead to a proof
of Theorem 4.1. Modulo [69], this gives both a self-contained proof of Ye’s original result,
and its extension from projective to Kähler threefolds. This extension was also carried
out by Frantzen and Peternell [28], completing an earlier result of Peternell [64]. However,
those papers appeal to Ye’s [79] arguments, without addressing the issue we found with
the latter.

1.2 Holomorphic Engel structures

The content of chapter 5 is joint work with N. Pia and was published in the Journal of
Geometric Analysis, Volume 28(3) (2018) [18].

An Engel structure is a 2-distribution D on a smooth 4-dimensional manifold M with
the property that E := [D, D] has constant rank equal to 3 and [E, E] = TM (so E is an
even contact structure). Associated to an Engel structure there exists also a canonical line
field W ⊂ D, the characteristic foliation, so that D comes with an associated canonical
flag W ⊂ D ⊂ E ⊂ TM .

These structures sit in the rather restrictive class of topologically stable distributions,3

which besides Engel structures, contains only line fields, contact structures and even
contact structures. This very same classification holds true in the holomorphic case as
well (see [65]), which makes Engel structures natural objects to study in complex geometry.
Nevertheless, unlike contact structures, this study has only relatively recently been started
by Presas-Solá Conde in [65], who studied Engel structures in compact projective manifolds.
They show among other things, that if a certain weak positivity condition holds, then
an Engel structure on a projective manifold is a so-called prolongation of a holomorphic
contact structure on a 3-fold.

By contrast, we will be interested here in the study of holomorphic Engel structures on
C4, specifically with the following: are there holomorphic Engel structures on C4 which
are not isomorphic to the standard one? This question is essentially motivated by the

2See the middle of p. 313 in [79].
3This means that the set of Engel structures on M is open within the space of distributions in TM , and

that there is a universal model to which any Engel structure is locally isomorphic.
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analogous one for contact structures on C2n+1, which was studied by Forstnerič in [25].
There he constructs non-standard contact structures which are distinguishable from the
standard one because they enjoy a certain type of directed hyperbolicity. More specifically,
the contact structures of Forstnerič admit no Legendrian complex lines, that is, non-constant
holomorphic maps C −→ C2n+1 which are everywhere tangent to the contact distribution.

Forstnerič’s construction can be described as follows: one starts by proving certain
estimates that Legendrian complex lines with respect to the standard contact structure
must fulfill. One then constructs a certain subset K of C2n+1 which is shown, by means of
the previously computed estimates, to intersect every Legendrian complex line. Finally, a
proper subset Ω ⊂ C2n+1 biholomorphic to C2n+1 and disjoint from K is shown to exist.
Therefore a non-standard contact structure is obtained by restricting the standard one to
Ω. It is not clear at present whether one can obtain different contact structures by varying
the parameters in the construction.

We will use similar methods to Forstnerič to construct Engel structures on C4 which
are non-isomorphic to the standard model. A stark difference between the Engel and the
contact settings is the flag that comes with an Engel structure. This will allow us to use
the configuration of complex lines tangent to each of the distributions in the flag as an
invariant:

Theorem 5.1. On C4 there are Engel structures DE , DD and DW with the following
properties

1. DE admits no lines tangent to its associated even contact structure;

2. DD admits no DD-lines but does admit lines tangent to its associated even contact
structure;

3. DW admits no lines tangent to its characteristic foliation but does admit DW-lines.

In particular these Engel structures are pairwise non-isomorphic and not isomorphic to the
standard Engel structure (C4, Dst).

Moreover a theorem of Fornæss-Buzzard will provide fine control on the complex lines
tangent to the characteristic foliation of the so-called Cartan prolongation of contact
structures on C3 without Legendrian complex lines as constructed by Forstnerič, and lead
to the construction of two infinite families of holomorphic Engel structures.

Theorem 5.2. For every n ∈ N∪ {∞} there exists an Engel structure Dn on C4 for which
the only Dn-lines are tangent to the characteristic foliation Wn, and such that

Ln := {p ∈ C4 : ∃f : C → C4 Dn-line with f(0) = p}

is a proper subset of C4 which has exactly n connected components for n ∈ N, and L∞ = C4.

In the above, we use the number of connected components of Ln as an invariant; it
turns out one can also use a modulus given by the relative position of such components
and obtain a family of uncountably many pairwise non-isomorphic Engel structures on C4.
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Theorem 5.3. For every R ∈ R \ {0} there exists an Engel structure DR for which the
only DR-lines are tangent to the characteristic foliation WR, and such that the set of points
which admit such WR-lines is exactly C × {0, 1, R

√
−1} × C2 ⊂ C4

(w,x,y,z). Moreover DR is

isomorphic to DR� if and only if R = R�.

1.3 Domination by products in the holomorphic setting

In the last chapter, we will be concerned with the following question: given Y a complex
manifold, does there exist a dominant map X −→ Y from a product X = X1 × · · · × Xk,
where dim(Xi) < dim(Y )?

This problem is treated systematically by Schoen [67] in the context of algebraic varieties
and rational maps. There, a birational invariant τ coming from Hodge theory is defined,
which is monotonic under the rational dominance relation: if X rationally dominates Y ,
then τ(X) ≥ τ(Y ). Schoen gives numerous examples where τ obstructs rational domination
by a product.

We take a (complex) geometric perspective and seek negativity conditions on the tangent
bundle of complex manifolds that obstruct holomorphic domination by products. There are
two basic heuristics that suggest that a negativity condition is a fruitful one to consider:
the first is that products of complex manifolds cannot be too negative. The second is that
in order to dominate a negative space, the domain tends to need some negativity as well.
The tension between these two sides is where we look for our obstruction.

One elementary but instructive observation is that if a manifold Y is dominated
by a product, there are non-trivial continuous families of holomorphic maps into Y ,
simply by viewing factors in the product as parameters. Conditions that ensure the
discreteness of spaces of holomorphic maps are known, and have been studied among others
by Noguchi-Sunada [61] and Kalka-Shiffman-Wong [41]. One such condition is p–negativity.
A holomorphic vector bundle E −→ X is p–negative if it admits a non-negative continuous
real valued function f : E −→ R such that f vanishes exactly along the zero section of E,
and elsewhere it is of class C2 with a Hessian ∂∂f that has dim(X) + p positive eigenvalues
at each point. Kalka-Shiffman-Wong [41] prove that, if X is a compact space and Y a
complex manifold with p–negative tangent bundle, then the space of holomorphic maps
X −→ Y of rank greater than dim(Y ) − p is finite. For instance, if Y admits a Hermitian
metric with strictly negative bisectional curvature, then TY is n-negative, and therefore Y
not dominated by a product.

To obtain stronger results, we localize the notion of p–negativity to a condition we
call quasi p–negativity. As an example, the tangent bundle of a Hermitian manifold with
holomorphic bisectional curvature nonpositive everywhere and negative at one point is
quasi n-negative. The main result in this chapter is the following theorem:

Theorem 6.25. Let Y be a complex manifold of dimension n. Let l > 1 be an integer
and let X = X1 × · · · × Xl, where Xi are compact complex manifolds of dimension mi < n.
Further let k = mini(mi) and p an integer satisfying p > k. Assume that TY is quasi
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p–negative, and let ϕ : X −→ Y be a holomorphic map such that ϕ does not factor through
X1 × · · · × �Xj × · · · × Xl ⊂ X for any j. Then ϕ is not dominant.

As a corollary, we obtain:

Corollary 6.27. Let Y be a projective variety which admits a metric with quasi-negative
bisectional curvature. Then Y is not rationally dominated by a product.

Natural candidates to which the corollary applies are submanifolds of complex tori:
since the bisectional curvature is non-increasing on submanifolds, non-positivity of the
bisectional curvature is automatic, and one need only find a point where it is negative. We
show in this way that the Fano surface of lines in a cubic is not rationally dominated by a
product of curves. This was proved via different methods by Schreieder in [68].





Chapter 2

Lifts of Projective Bundles

This chapter deals with the lifting problem for projective bundles, that is, the question
of deciding for a given PGL(k, C)–bundle whether it comes from the projectivization of a
vector bundle.

Although we are especially interested in the holomorphic setting, our approach is to
consider the topological side first. This will allow us to split the holomorphic problem into
two steps: after deciding whether a certain projective bundle admits – topologically – a
lift to a complex vector bundle, we can study the obstruction to endowing the lift with
a holomorphic structure. The topological lifting problem is treated in Subsection 2.2.1.
While the discussion is at first carried out in full generality, we then focus in the special
case where the fiber is a 2-sphere, where a particularly simple criterion arises in terms of
the Euler class of the sphere bundle.

In the holomorphic setting, we will prove the following theorem:

Theorem 2.1. Let X −→ B be a holomorphic CPk−1–bundle over a complex manifold B.
Then there is a holomorphic rank k vector bundle E −→ B with X = P(E) if and only if
the smooth projective space bundle underlying X lifts to a smooth rank k vector bundle
E −→ B for which the determinant bundle det(E) admits the structure of a holomorphic
line bundle.

Thus if a holomorphic CPk−1–bundle lifts smoothly to a complex vector bundle, the
condition that it lifts holomorphically is simply that the determinant of some smooth lift
admits a holomorphic structure. The proof of Theorem 2.1 is carried out through somewhat
classical methods: the condition that a complex bundle projectivizes to a holomorphic one
will be seen in Theorem 2.13 to be equivalent to the existence of a certain type of connection,
which we name projective. When the determinant bundle has a holomorphic structure –
and therefore admits a connection whose curvature form has vanishing (0, 2) part – it is

15



16 2. Lifts of Projective Bundles

possible to modify the projective connection to one whose curvature has vanishing (0, 2)
part, thus endowing the vector bundle with a holomorphic structure.

2.1 Projective bundles

We start with the notion of a projective bundle and recall the standard construction of the
simplest projective bundles: projectivizations of vector bundles.

Definition 2.2. Let M be a smooth manifold. A smooth projective bundle on M is a
smooth fiber bundle with fiber CPk and structure group PGL(k + 1, C).

Remark 2.3. In the special case where k = 1, the fiber is CP1 ∼= S2. By a result of Smale
(see [73]), the orientation preserving diffeomorphism group of S2 deformation retracts to
SO(3). Thus a smooth orientable projective bundle with fiber CP1 is in fact the sphere
bundle of a rank 3 vector bundle.

Since the group of holomorphic automorphisms of CPk is PGL(k + 1, C), it is not
necessary to assume that a holomorphic CPk-bundle has structure group PGL(k + 1, C).
Rather, this is an immediate consequence of having holomorphic trivializations, and we
omit the structure group in the holomorphic counterpart to Definition 2.2.

Definition 2.4. Let X be a complex manifold. A holomorphic projective bundle on X is
a holomorphic fiber bundle with fiber a complex projective space CPk.

The first example of a projective bundle is the projectivization of a vector bundle, the
bundle whose fiber over a point consists of the lines in the corresponding fiber of the vector
bundle. We review the construction in the subsequent examples.

Example 2.5 (Smooth projectivizations). Let M be a smooth manifold and let π : E −→
M be a complex vector bundle of rank k + 1 on M . Denote by E× the total space of E
with its zero section removed. The group C∗ acts freely on E× by multiplication on the
fibers yielding a quotient space P(E) = E×/C∗ called the projectivization of the vector
bundle E. Denote by p : E× −→ P(E) the quotient map. With the projection induced by
π, P(E) −→ M is a fiber bundle over M with fiber CPk. Concretely, the trivializations of
E restrict to E× to fit into a diagram

E×
U U × Ck+1\{0}

P(E)U U × CPk,

ψ

p

where for x ∈ M the map on the bottom sends a line in Ex to the corresponding line in the
trivialization, and the map on the right is the obvious one making the diagram commute.
The cocycle of P(E) is therefore given by the image of the cocycle of E under the quotient
map GL(k + 1, C) −→ PGL(k + 1, C). This is the first example of a projective bundle.
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It is a matter of convention that we defined P(E) as the bundle of lines in E. The
projectivization of E is sometimes defined instead as the bundle Pquot(E) of rank 1 quotients
of E; the resulting projective bundle is not in general isomorphic to P(E), although the
total spaces are diffeomorphic. The two are related by P(E) = Pquot(E

∗).

Example 2.6 (Holomorphic projectivizations). The preceding example works mutatis
mutandis in the holomorphic setting, yielding in this case a holomorphic projective bundle.

A construction of a smooth projective bundle which does not come from a vector bundle
is given below in Example 2.8.

2.2 The lifting problem

We now begin the study of the lifting problem for projective bundles. This will lead in
particular to Theorem 2.1 stated in the introduction and to the following corollary:

Corollary 2.7. Let X −→ B be a holomorphic CP1-bundle over a complex manifold B.
If X is a spin manifold, then there is a holomorphic rank 2 vector bundle E −→ B with
X = P(E).

2.2.1 Smooth projective bundles

Let B be a smooth manifold and M −→ B a smooth projective bundle. Since PU(k) sits
in PGL(k, C) as a maximal compact subgroup, the structure group of a PGL(k, C)-bundle
can be reduced to PU(k, C), and isomorphism classes of PGL(k, C)-bundles are in bijection
with isomorphism classes of PU(k)-bundles. We will consider the latter.

One has the following commutative diagram of Lie groups with exact rows:

1 U(1) U(k) PU(k) 1

1 Zk SU(k) PU(k) 1.

The induced long exact sequences in Čech cohomology give rise to the following commutative
diagram of pointed sets:

Ȟ1(B; U(1)) Ȟ1(B; U(k)) Ȟ1(B; PU(k)) Ȟ2(B; U(1))

Ȟ1(B, Zk) Ȟ1(B; SU(k)) Ȟ1(B; PU(k)) Ȟ2(B; Zk).

δ

β

δ̃

Here we denote by the same symbol a Lie group G and the corresponding sheaf of smooth
functions on B with values in G.
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For a given isomorphism class [M ] ∈ Ȟ1(B; PU(k)), the obstruction to lifting [M ] to a
U(k) bundle is δ([M ]). Since the sheaf of smooth functions is fine, the exponential sequence
identifies Ȟ i(B; U(1)) with H i+1(B; Z), so δ([M ]) can be seen as an element in H3(M ; Z).
Moreover, under this identification β is the Bockstein homomorphism, as can be seen by
considering the sequence

1 −→ Zk −→ U(1)
×k−→ U(1) −→ 1

where the group Zk is viewed as the subgroup of kth roots of unity.
By naturality, the map δ factors through H2(B; Zk), which implies that the obstruction

class δ([M ]) is an element of order (at most) k in H3(B; Z). Moreover, the PU(k)-bundle
M lifts to a U(k)-bundle if and only if the obstruction to lifting M to an SU(k)-bundle
lies in the kernel of the Bockstein homomorphism β.

When k = 2, the obstruction class has a particularly simple interpretation which we
now explain. First we have that PU(2) = SU(2)/±1 = SO(3), which means that an
element [M ] ∈ Ȟ1(B;PU(2)) can be viewed as the sphere bundle of an orientable rank
3 real vector bundle V over B. The element δ([M ]) ∈ H3(B; Z) is a characteristic class
of V in degree 3, which implies already that it must be the Euler class of V . This can
also be seen directly. Lifting M to an SU(2)-bundle is the same as endowing V with a
spin structure, the obstruction to which is the second Stiefel-Whitney class w2(V ). By the
previous paragraph, M lifts to a U(2)-bundle if and only if this obstruction is killed by the
Bockstein homomorphism. But β(w2(V )) = W3(V ) is exactly the Euler class of V , since V
has rank 3.

We conclude that a smooth CP1-bundle with structure group PU(2) is the projectiviza-
tion of a complex rank 2 vector bundle if and only if e(V ) = 0. In fact, this holds for any
orientable smooth CP1-bundle, without any assumption on the structure group, due to
remark 2.3.

Example 2.8 (A projective bundle which is not a projectivization). Let M be a 4 di-
mensional manifold on which there exists a class x ∈ H2(M, Z2) which does not lift to
H2(M, Z). Let f be a map to an Eilenberg-MacLane space K(Z2, 2)

f : M −→ K(Z2, 2)

representing x under the correspondence between H2(M ; Z2) and homotopy classes of maps
M −→ K(Z2, 2). In the same manner, represent the second Stiefel-Whitney class w2 of
the universal bundle on the classifying space BSO(3) of SO(3) bundles by h : BSO(3) −→
K(Z2, 2). Since πi(BSO(3)) = πi(K(Z2, 2)) for 0 ≤ i ≤ 3 and π4(K(Z2, 2)) = 0, h is a
4-equivalence. It follows that (see for example Theorem 11.12, p. 485 in [9]) the map f
factors through BSO(3) for some map g:

f : M
g−−→ BSO(3)

h−−→ K(Z2, 2).

Denoting by α ∈ H2(K(Z2, 2), Z2) the fundamental class of K(Z2, 2), we have

x = f∗(α) = g∗h∗(α) = g∗(w2),
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so the pull-back of the universal bundle on BSO(3) to M , yields a rank 3 real oriented
vector bundle E on M with w2(E) = x. Since x does not lift to H2(M, Z), it has non-trivial
image under the Bockstein homomorphism β : H2(M, Z2) −→ H3(M, Z). But as mentioned
above, this is exactly the Euler class e(E) = β(w2(E)).

For instance, we may consider the 4-dimensional manifold M = RP3 × S1, whose
cohomology with integer coefficients is given in degree 2 by H2(M ; Z) = Z2. On the other
hand, we compute from the Künneth formula H2(M ; Z2) = Z2 ⊕ Z2. Thus there is a class
in H2(M ; Z2) which does not lift to H2(M ; Z) and hence a CP1-bundle on M , namely
the sphere bundle of a vector bundle E of rank 3, which does not lift to a complex rank
2 bundle. In this case one can also explicitly write down such an E. Let L1 and L2 be
(the) non-orientable real line bundles on RP3 and S1, respectively. Let L3 be the line
bundle on M with first Stiefel-Whitney class given by w1(L3) = w1(L1) + w1(L2) and put
E = (L1 ⊕ L2 ⊕ R) ⊗ L3. Then

w1(E) =w1(L1) + w1(L2) + 3w1(L3) = 0

w2(E) =w1(L1) ∪ w1(L2).

Since the class w1(L1) ∪ w1(L2) does not lift to an integral class, we conclude that E is
orientable with non-trivial Euler class.

One instance where the lift exists is given in the following lemma, which will be useful
later.

Lemma 2.9. Let π : M −→ B be a smooth orientable 2-sphere bundle over an orientable
manifold B. If M is a spin manifold and B admits a Spinc-structure, then there exists a
complex vector bundle E −→ B such that M = P(E) as an oriented 2-sphere bundle.

The assumption about the existence of a Spinc-structure on B is always satisfied if
dim(B) ≤ 4, or if B admits an almost complex structure.

Proof. Let π : V −→ B be an orientable real rank 3 vector bundle whose sphere bundle is
isomorphic to M . Notice that

TM ⊕ R = π∗(V ) ⊕ π∗(TB) ,

so w2(TM) = π∗(w2(V ) + w2(TB)). This must vanish since M is assumed to be spin.
Since π∗ is injective in degree 2, we conclude w2(V ) = w2(TB). Now β(w2(TB)) = 0 is
exactly the condition that B admits a Spinc-structure.

One has the following well known (see [35]) relation between the characteristic classes
of V and E.

Lemma 2.10. Let V −→ B be an orientable rank 3 real vector bundle. Suppose there
exists a complex vector bundle E −→ B of rank 2 such that P(E) and S(V ) are isomorphic
as SO(3) bundles. Then p1(V ) = c1(E)2 − 4c2(E).
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Proof. Note first that the expression for p1(V ) remains unchanged under tensoring E with
a complex line bundle L:

c1(E ⊗ L)2 − 4c2(E ⊗ L) = (c1(E) + 2c1(L))2 − 4
�
c2(E) + c1(E)c1(L) + c1(L)2

�

=c1(E)2 − 4c2(E).

By the splitting principle, we may assume that

E = L1 ⊕ L2 = L1 ⊗
�
C ⊕ (L−1

1 ⊗ L2)
�
.

Putting L := L−1
1 ⊗L2 we now have P(E) = P (C ⊕ L). The transition maps of V are given

by composing the transition maps of C ⊕ L with the morphism

µ : U(2) −→ SU(2)
φ−→ SO(3),

where φ is defined by identifying an element α ∈ SU(2) with a unit quaternion qα and
taking φ(α) to be the element of SO(3) defined by letting qα act by conjugation on the
imaginary quaternions. Restricting µ to 1 × U(1) ⊂ U(2) we see that

µ

�
1 0
0 eiθ

�
=




1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)


 ,

so V ∼= R⊕L. Since L is a complex line bundle we have p1(V ) = p1(R)+p1(L) = 0+c1(L)2.
Carrying on the computation we obtain

p1(V ) =(c1(L1) − c1(L2))
2

=(c1(L1) + c1(L2))
2 − 4c1(L1)c1(L2)

=c1(E)2 − 4c2(E),

which is the claim of the lemma.

Returning to the general case, if a projective bundle can be lifted to a vector bundle,
then it is natural to ask about the (non-)uniqueness of the lift. Two elements in Ȟ1(B; U(k))
whose projectivizations are isomorphic differ by the tensor product with a complex line
bundle.

2.2.2 Holomorphic projective bundles

We now discuss the problem of lifting a holomorphic projective bundle X −→ B over a
complex manifold B to a holomorphic vector bundle. This is completely analogous to the
previous discussion, but considering instead the sequence of algebraic groups

1 C∗ GL(k, C) PGL(k, C) 1

1 Zk SL(k, C) PSL(k, C) 1
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and replacing sheaves of smooth functions by sheaves of holomorphic functions with values
in these groups. The corresponding exact sequences in cohomology give rise to the following
commutative diagram:

Ȟ1(B; O∗) Ȟ1(B; GL(k, O)) Ȟ1(B; PGL(k, O)) Ȟ2(B; O∗)

Ȟ1(B; Zk) Ȟ1(B; SL(k, O)) Ȟ1(B; PGL(k, O)) Ȟ2(B; Zk) .

For a given holomorphic projective bundle X −→ B we again find that the obstruction
class c ∈ H2(B; O∗) to lifting X to a holomorphic vector bundle E is an element of order
(at most) k.

We can now isolate the holomorphic part of the problem from its topological part.
Namely, we assume that the obstruction to lifting X to a smooth complex vector bundle
vanishes, and ask what obstruction remains to lifting X to a holomorphic vector bundle.
Requiring that a smooth lift exists implies that the holomorphic obstruction is in the kernel
of the map

ϕ : H2(B; O∗) −→ Ȟ2(B; C∗) = Ȟ2(B, U(1)) = H3(B; Z)

induced by the forgetful sheaf homomorphism O∗ −→ C∗. Here C∗ denotes the sheaf of
nowhere vanishing smooth C-valued functions on B. But ϕ is in fact, under the above
identification of Ȟ2(B; C∗) with H3(B; Z), the connecting homomorphism in the long
exact sequence coming from the exponential sequence, as can be seen by considering the
commutative diagram of sheaves

0 Z O O∗ 1

0 Z C C∗ 1

where the vertical maps are forgetful morphisms.

Considering now

· · · −→ H2(B; Z) −→ H2(B, O) −→ H2(B; O∗)
ϕ−→ H3(B; Z) −→ · · ·

we see that if the smooth obstruction vanishes, i.e. ϕ(c) = 0, then there exists a lift
c̃ ∈ H2(B;O) of c. Moreover, c itself vanishes if and only if there exists an element in
L ∈ H2(B; Z) which maps to c̃ ∈ H2(B; O) ∼= H0,2(B), by the Dolbeault theorem.

Proposition 2.11. Let E −→ B be a complex vector bundle of rank k which is a smooth lift
of the holomorphic projective bundle X −→ B. Let α be the curvature form of a connection
on det(E). Then [α0,2/k] ∈ H0,2(B) is in the image of H2(B, Z) −→ H2(B, O) if and only
if X lifts to a holomorphic vector bundle.

We postpone the proof of this proposition to Subsection 2.2.4 below.
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2.2.3 Projective connections

In this section we will think of the lifting problem in a more differential-geometric way. It
is well known that connections whose curvature has no (0, 2)-component correspond to
holomorphic structures on complex vector bundles, cf. [44, Ch. 1]. We will, in parallel with
this standard fact, establish a correspondence between certain projective connections on
vector bundles and holomorphic structures on their projectivizations.

Definition 2.12. Let B be a complex manifold and E a smooth complex vector bundle
over B. Suppose that there is an isomorphism of smooth projective bundles P(E) ∼= X,
where X is a holomorphic projective bundle. Then E is said to be projectively holomorphic.

Our aim is to prove the following:

Theorem 2.13. A projectively holomorphic vector bundle E admits a holomorphic structure
if and only if det(E) admits a holomorphic structure.

The theorem will follow from the Lemmata 2.16 and 2.17 below. In order to state them
conveniently, we introduce the following terminology:

Definition 2.14. Suppose that E is projectively holomorphic. A (local) non-vanishing
section of E is called a projectively holomorphic section if it projectivizes to a holomorphic
(local) section of P(E).

Definition 2.15. Let E −→ B be a smooth complex vector bundle over a complex manifold
B. A connection ∇ on E is called projective if its curvature F∇ satisfies F 0,2

∇ = α0,2⊗IdE ∈
Ω0,2(End(E)) for some smooth 2–form α.

Lemma 2.16. If E is projectively holomorphic, then it admits a projective connection.

Proof. Suppose that E is projectively holomorphic of rank k. Then P(E) has the structure
of a holomorphic projective bundle. We fix a local holomorphic trivialization for P(E) over
some trivializing open set U ⊂ B, which we lift to obtain a local trivialization of E. In
such trivializations the projectivization map is given by

U × Ck \ 0 −→ U × CPk−1

(x, v) �−→ (x, [v]) .

Fix the frame si(x) = (x, (. . . , 0, 1, 0, . . . )) on E|U . The si are obviously projectively
holomorphic. Let s be a local smooth non-vanishing section of E over U , s =

�
i λisi. Then

s is projectively holomorphic if and only if there exists a smooth, non-vanishing C-valued
f such that fλi is holomorphic for all i.

Denote by ∇U the flat connection on E|U defined by declaring the frame {si} to be
parallel. Let s = f

�
i λisi with λi holomorphic and f smooth. Then

∇0,1
U (s) = ∂f

f ⊗ s = ∂ log(f) ⊗ s.
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Gluing such locally defined connections ∇U by a partition of unity yields a projective
connection on E, as we will now see.

Put ∇ =
�

U ρU∇U for a partition of unity {ρU} subordinate to an open covering of
B by trivializing open sets for the holomorphic structure of P(E). Let s be a projectively
holomorphic section defined over an open set V . We have F∇(s) = ∇̄ ◦ ∇(s), where ∇̄
denotes the covariant derivative on E-valued 1-forms determined by ∇, i.e.

∇̄(η ⊗ s) = dη ⊗ s − η ∧∇s

for any 1-form η. Since s is projectively holomorphic, we have ∇0,1
U (s) = ∂(log(fU )) ⊗ s.

Now we can compute the curvature applied to the projectively holomorphic section s via

F 0,2
∇ (s) =

�
∇̄ ◦ ∇(s)

�0,2
=
�
∇̄ ◦ ∇0,1(s)

�0,2

=

�
∇̄
��

U

ρU ∂ log(fU ) ⊗ s

��0,2

=
�

U

�
∂ρU ∧ ∂ log(fU )

�
⊗ s

= α⊗ s ,

where in the third line, the second term in the definition of ∇̄ vanishes since we obtain
the square of a one-form. We have thus F 0,2

∇ = α ⊗ IdE with α =
�

U ∂ρU ∧ ∂ log(fU ) a

(0, 2)-form as required.

Lemma 2.17. Let E be a projectively holomorphic vector bundle. Suppose that det(E) is
holomorphic. Then there exists a projective connection ∇ on E which induces a connection
on det(E) compatible with its holomorphic structure.

Proof. We proceed as in the proof of Lemma 2.16, obtaining a projectively holomorphic
frame {si}i. Since det(E) is holomorphic, there exists a non-vanishing f ∈ C∞

C (U) such
that fs1 ∧ · · ·∧ sk is a local holomorphic section of det(E). Then consider s̃i = n

√
fsi (after

possibly restricting U to a smaller set). This is a projectively holomorphic frame which
induces a holomorphic frame in the determinant bundle. Let ∇U denote the flat connection
on EU for which the frame {s̃i}i is parallel. Fix a partition of unity {ρU} subordinate
to an open covering of X by open sets as above. Then the connection ∇ =

�
U ρU∇U is

projective and induces on det(E) a connection compatible with its holomorphic structure.

The following lemma is not necessary to prove Theorem 2.13, but it is the converse of
Lemma 2.16 and we include the statement here for completeness.

Lemma 2.18. Let E be a smooth complex vector bundle over a complex manifold B. If E
admits a projective connection, then it is projectively holomorphic.
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Remark 2.19. Recall that the total space of a complex vector bundle π : E −→ X always
admits an almost complex structure, but it is not canonical. One would like to use the
fact TE ∼= V ⊕ π∗(TB), where V = ker(Dπ) ⊂ TE, and take the direct sum of the
almost complex structures on the summands. However, there is a choice allowed for the
isomorphism between TE and V ⊕ π∗(TB), upon which the almost complex structure on
E does depend. Specifying a connection ∇ on E determines a horizontal subbundle H on
TE and this determines the isomorphism.

Proof. We use a projective connection on E to obtain an almost complex structure on the
total space of E, as mentioned in the above remark (and hence on E×, the total space of
E without the zero section). This almost complex structure will pass to the quotient P(E),
and we will show directly that it is integrable.

Step 1: construction of the almost complex structure on E. The vertical bundle
V = ker(Dπ) is canonically isomorphic to π∗(E). Namely, for e ∈ E, an element in Ve is
represented by a path γ(t) = e + te�, which can be identified with (e, e�) ∈ π∗(E). In this
way, V is naturally a complex bundle, and its complex structure restricts to the (integrable,
standard) almost complex structure on the fibers of E.

Let ∇ be a projective connection on E. Recall that the horizontal subbundle H ⊂ TE
associated to ∇ is given as follows: for e ∈ E, the fiber He is the image of the differential
Ds : TB −→ TE of a section s : B −→ E with s(π(e)) = e and (∇s)(π(e)) = 0. On the
other hand, the connection ∇ is recovered via

∇s : TB
Ds−−−→ s∗(TE)

pV−−−→ s∗(V ) = s∗π∗(E) = E,

where pV denotes the projection to the vertical bundle. The map Ds can be extended
i-linearly to the complexifications TB ⊗ C = T 1,0B ⊕ T 0,1B and TE ⊗ C. Set H1,0 =
Ds(TB1,0), and similarly for H0,1.

A choice of ∇ on E thus defines an almost complex structure on E via the splitting

TE ⊗ C = (V ⊕ H) ⊗ C = (V 1,0 ⊕ H1,0) ⊕ (V 0,1 ⊕ H0,1).

Step 2: computing Lie brackets of complex valued vector fields on E. The Lie bracket of
(0, 1) vector-fields X, Y in E with respect to the almost complex structure defined above
will now be computed. For this purpose, we will take the vector fields X, Y to lie completely
along one of the subbundles V ⊗ C, H ⊗ C of TE ⊗ C, and do the computation of the
bracket for each of the 3 possible configurations separately.

Note that for every vector field X̂ ∈ Γ(TB) on B there exists a unique horizontal
lift X ∈ Γ(TE). This remains true on the respective complexifications of TB and TE.
Moreover, Γ(H ⊗ C) is locally generated as a C∞

C (E)-module by such lifts. This fact will
be useful in what follows.

Consider first the case where X = XV and Y = YV are both vertical, i.e. XV , YV ∈
Γ(V 0,1). Then the bracket can be computed on a fiber Ex of E, where the almost complex
structure is known to restrict to an integrable one. Thus [XV , YV ] ∈ Γ(V 0,1).
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Suppose now that X = XH is horizontal and Y = YV is vertical. We may without loss
of generality assume that XH is the horizontal lift of a vector field X̂ in B. Then

Dπ ([XH , YV ]) = [Dπ(XH), Dπ(YV )] = 0,

so [XH , YV ] ∈ V ⊗ C. It follows that [XH , YV ] is of type (0, 1) if and only if it evaluates
to zero on smooth functions E −→ C which are holomorphic along the fibers of E. Let f
be such a function. We have XH(YV (f)) = 0, since YV is of type (0, 1). It is now enough
to show a function f on a neighbourhood of e ∈ Ex which is holomorphic along Ex can
be extended so that the restriction of XH(f) to Ex is holomorphic; if that is the case,
then YV (XH(f)) = 0 and hence [XH , YV ] is of type (0, 1). To show that such an extension
exists, we can work on a trivialization U × Ck of E. Given f0 : Ck −→ C a holomorphic
map, consider f : U × Ck −→ C given by f(x, v) = f0(v). If XH is the horizontal lift of
X̂ ∈ Γ(TU), we will have

XH(x, v) = FI(x)
∂

∂xI
+ FĪ(x)

∂

∂xI
+ GJ(x)

∂

∂vJ
+ GJ̄(x)

∂

∂vJ
,

where the components of XH only depend on x ∈ U . Therefore the restriction of the
function XH(f) to any fiber Ex remains holomorphic.

Finally, let X = XH and Y = YH both be horizontal. We again assume that they
are horizontal lifts of X̂ and Ŷ . The horizontal part of [XH , YH ] is of type (0, 1) since
Dπ([XH , YH ]) has type (0, 1) in B. For the vertical part we have, from the usual relation
between the curvature of the Ehresmann connection and that of its corresponding covariant
derivative, that

pV ([XH , YH ])(e) = F∇(X̂, Ŷ )e,

where F∇ denotes the curvature of ∇. On the other hand, the assumption that ∇ is
projectively holomorphic implies

pV ([XH , YH ])(e) = α(X̂, Ŷ )e,

where α is as in Definition 2.15.
Denote by ν ∈ Γ(TE) the vertical vector field on E given tautologically by e �−→ e

(this is sometimes called the Euler vector field). Since pV ([XH , YH ])(e) lies along the line
spanned by ν, the arguments laid out so far prove that

[T 0,1E, T 0,1E] ⊂ T 0,1E ⊕ �ν�.
Step 3: almost complex structure on P(E) and integrability. We now consider E×,

i.e. the vector bundle E with its 0 section removed. The almost complex structure on E
restricts to E× and since it is compatible with the C∗ action on the fibers, it passes to the
quotient P(E).

Let p : E× −→ P(E) denote the quotient map. By definition, this map is compatible
with the almost complex structures on both spaces. Given a point e ∈ E× we have the
exact sequence of vector spaces

0 −→ ker(Dep) = �νe� −→ TeE −→ Tp(e)P(E) −→ 0.
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Let now X̃ and Ỹ be (0, 1) vector fields on P(E). If X and Y are their respective lifts to
E×, we have

Dp([X, Y ]) = Dp(α(X̂, Ŷ )ν) = 0,

and therefore [X̃, Ỹ ] = 0.

2.2.4 The conclusions about the lifting problem

We now use the tools developed above to prove the advertised solution to the lifting problem
for holomorphic projective bundles.

Proof of Theorem 2.13. If E has a holomorphic structure, then it is projectively holo-
morphic and its determinant is holomorphic. Conversely, suppose that E is projectively
holomorphic and that its determinant bundle is holomorphic. Let ∇ be the connection
obtained in Lemma 2.17. Recall that the curvature of the connection induced on the
determinant is given by the trace.

Let k be the rank of E. Since F 0,2
∇ = α0,2 ⊗ IdE and tr(F ) = Fdet(E), we have

α0,2 =
1

k
tr(F )0,2 =

1

k
F 0,2

det(E) = 0 ,

where the last equality comes from the holomorphicity of det(E). Thus ∇ induces a
holomorphic structure on E, since the (0, 2) part of its curvature vanishes.

Theorem 2.1 is just an elaboration on Theorem 2.13.

Proof of Theorem 2.1. If a given holomorphic projective bundle X −→ B lifts to a
holomorphic vector bundle E −→ B, then the smooth vector bundle underlying E provides
a lift of X as a smooth projective bundle to a vector bundle whose determinant has a
holomorphic structure given by E .

Conversely, suppose that X admits a smooth lift E for which det(E) admits a holo-
morphic structure. By Lemma 2.17 there is a projective connection on E which induces a
connection on det(E) compatible with its holomorphic structure. By the proof of Theo-
rem 2.13 this connection induces a holomorphic structure E on E, which, by construction,
has the property that P(E) is isomorphic to X as a holomorphic projective bundle.

Proof of Corollary 2.7. If X −→ B is a holomorphic CP1-bundle whose total space is
spin, then Lemma 2.9 shows that X lifts smoothly to a rank 2 vector bundle E. Moreover,
by the proof of that lemma, the first Chern class of E is an integral lift of w2(B). By
twisting with a line bundle any such lift can be realised as c1(E). Thus we may assume
c1(E) = −c1(B). In this case the determinant bundle of E has a holomorphic structure
given by the canonical line bundle of B. The conclusion now follows from Theorem 2.1.

Proof of Proposition 2.11. There exists a smooth complex vector bundle E to which
X lifts, i.e. E is projectively holomorphic. By Theorem 2.13, E admits a holomorphic
structure if and only if det(E) does. If α is the curvature form of a connection ∇ on
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det(E), then ∇ induces a holomorphic structure if and only if α0,2 = 0. We can change the
connection and curvature forms by twisting E by a complex line bundle L and a connection
on it1. This twisting replaces det(E) by det(E) ⊗ Lk, and α0,2 by α0,2 + kβ0,2, where β is
the curvature of L. This can be made to vanish, equivalently the determinant of the twisted
vector bundle can be given a holomorphic structure, if and only if 1

kα
0,2 is the image of some

L ∈ H2(B; Z) under the map H2(B; Z) −→ H0,2(B) in the exact cohomology sequence of
the exponential sequence.

1This includes the possibility of twisting by a connection on the trivial line bundle.





Chapter 3

String Manifolds

In this and the subsequent chapter, we shall give two applications of Theorem 2.1, specifically
of Corollary 2.7. Here we will focus on string Kähler threefolds.

Definition 3.1. A smooth manifold M is called string if it satisfies w2(M) = 0 and
p1(M) = 0.

Some authors use the potentially stronger condition 1
2p1(M) = 0, but we will not do

this here. The condition p1(M) = 0 arose first in string theory, as the condition for having
a spin structure on the loop space of the manifold. It has since been studied extensively
in the context of elliptic cohomology, see for example [71]. We apply the methods and
results of [69], together with some additional arguments, to analyze Kähler structures on
threefolds which are not just spin, but string.

After some preliminaries and examples of string manifolds, we will give a proof of the
following characterization theorem for string Kähler threefolds with positive holomorphic
Euler characteristic.

Theorem 3.2. Let X be a string Kähler threefold. If χ(OX) > 0, then b2(X) ≥ 2. If
furthermore b2(X) > 2, then X is the projectivization of a holomorphic rank 2 vector bundle
over a projective surface S with χ(OS) > 0.

Conversely, every projective surface S with χ(OS) > 0 arises in this way from a string
threefold.

The proof appears in Section 3.3. As a corollary, we obtain:

Corollary 3.3. If X is a string Kähler threefold with χ(OX) > 0, then X is projective,
with negative Kodaira dimension.
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3.1 Basics on string manifolds

To begin with, we note that orientable manifolds of dimension strictly smaller than 4
are spin and therefore string. Moreover, it is obvious that Cartesian products of string
manifolds are string.

In dimension 4 a closed oriented manifold is string if and only if it is spin with vanishing
signature. The standard arguments showing that every finitely presentable group is the
fundamental group of a smooth closed oriented four-manifold can be carried out in this
category, showing that the string condition does not impose restrictions on the fundamental
group.

The following lemma follows from the additivity of w2 and of p1 in connected sums.

Lemma 3.4. If a manifold M of dimension > 4 decomposes as a smooth connected sum
M = M1#M2, then M is string if and only if both Mi are string.

While a connected sum of string manifolds is string in any dimension, the converse does
not hold in dimension 4, as shown by the connected sum of two copies of the K3 surface
with opposite orientations.

We will use the lemma in order to rule out splittings of string manifolds M with
M2 = CP3, using the fact that although CP3 is spin, it is not string.

Recall that due to Remark 2.3 every oriented smooth S2-bundle can be thought of as
the unit sphere bundle of a rank 3 oriented vector bundle. Continuing the discussion in
Lemma 2.9, we have the following.

Lemma 3.5. Let X −→ B be the unit sphere bundle of the oriented rank 3 vector bundle
V −→ B. Then X is string if and only if w2(V ) = w2(B) and p1(V ) = −p1(B).

Proof. Note that

TX ⊕ R = π∗(V ) ⊕ π∗(TB) ,

so w2(TX) = π∗(w2(V ) + w2(TB)) and p1(X) = π∗(p1(V ) + p1(TB)). Therefore the claim
follows from the injectivity of π∗ in cohomology.

3.2 Kähler examples

As observed in the previous section, every complex curve is string, and a compact complex
surface is string if and only if it is spin and its signature vanishes, equivalently if the
canonical class is even and c2

1 = 2c2.

Example 3.6 (String surfaces of general type). There exist simply connected string surfaces
of general type. For example, Moishezon and Teicher [58] constructed simply connected
surfaces of general type of both positive and zero signature. It was observed in [48] that
these surfaces are spin. Therefore, the ones of zero signature are string.
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Example 3.7 (Even-dimensional examples of general type). Taking products of the surfaces
from the previous example, we see that in every even complex dimension there are projective
string manifolds of general type with no odd-degree cohomology.

This is in sharp contrast with what happens for threefolds, see Corollary 3.3. We now
check some other potential sources of examples, showing that it is hard to find string
projective manifolds from these constructions.

Example 3.8 (String hypersurfaces). A hypersurface Xd of degree d in CPn+1 has p1(Xd) =
0 if and only if d2 = n + 2. Therefore, for every d ≥ 2 there is one example. By adjunction
such a hypersurface has c1(Xd) = (n+2−d)x = d(d−1)x, where x is the positive generator
of H2(CPn+1; Z). Since c1(Xd) is even, Xd is automatically string.

These examples are all Fano, and for d = 2, 3, 4, . . . they are quadrics in CP3, cubics in
CP8, quartics in CP15,. . . In particular there are no such threefolds.

Example 3.9 (String complete intersections). A smooth complete intersection X ⊂ CPn+r

of codimension r and multidegree (d1, . . . , dr) has p1(X) = 0 if and only if

r�

i=1

d2
i = n + 1 + r .

Again there are no solutions for n = 3, so we do not find threefold examples this way. By
adjunction such a complete intersection has c1(X) = (n + 1 + r −�

i di)x =
�

i di(di − 1)x,
where x is the positive generator of H2(CPn+1; Z). Since c1(X) is even, X is automatically
string, and since c1(X) is positive, X is Fano.

Example 3.10 (Projectivised vector bundles). Let S be a compact complex manifold
and E −→ S a holomorphic rank 2 vector bundle. By Lemma 3.5 the projectivization
X = P(E) is string if c1(E) = c1(S) (mod 2) and c2

1(E) − 4c2(E) = 2c2(S) − c2
1(S). In the

special case c1(E) = c1(S) the first condition is automatic, and the second one reduces to
c2(E) = 1

2(c2
1(S) − c2(S)).

Example 3.11 (Projectivised tangent bundles of surfaces). Let S be a compact complex
surface satisfying c2

1(S) = 3c2(S). Then either the two sides of the equation vanish, or
they are positive and S is CP2 or a ball quotient. Let X = P(TS) be the projectivization
of the holomorphic tangent bundle. This is a complex threefold, which is Kähler if and
only if S is. Moreover, X is string by the previous example. For S = CP2 we find
X = P(TCP2) = F (1, 2), the (complete) flag manifold of C3.

Proposition 3.12. Let S be any projective surface. Then there is a holomorphic rank 2
bundle E −→ S such that X = P(E) is a string projective threefold.

Proof. By a result of Wu [76, p.68], the total Chern class defines a bijective correspondence
between the isomorphism classes of complex vector bundle of rank 2 over a smooth 4-
manifold M and the set H2(M, Z) × H4(M, Z). Then let E −→ S be the smooth complex
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vector bundle of rank 2 with1 det(E) = det(TS) and c2(E) = 1
2(c2

1(S) − c2(S)). The
determinant bundle det(E) carries the holomorphic structure given by the dual of the
canonical bundle of S. Therefore, by the result of Schwarzenberger [70, Theorem 9], E has
a holomorphic and hence algebraic structure E . Its projectivization P(E) is a projective
threefold, which is string by Lemma 3.5.

The results of [22, 54, 7] show that the proposition becomes false if one replaces the
projective surface S by an arbitrary Kähler surface. The reason is that Schwarzenberger’s
theorem fails for non-projective surfaces.

Note that S and X have the same fundamental group. Therefore, we have the following
conclusion for the possible fundamental groups of Kähler string threefolds, showing that
certain aspects of the topology of threefolds are not constrained by the string condition.

Corollary 3.13. If Γ is the fundamental group of any smooth Kähler threefold, then it is
also the fundamental group of a string Kähler, and, in fact, projective, threefold.

Proof. A recent theorem of Claudon, Höring and Lin [16, Theorem 1.2], shows that
fundamental groups of Kähler threefolds are projective. So Γ is a projective fundamental
group, and, by the Lefschetz hyperplane theorem, the fundamental group of a smooth
projective surface S, to which the proposition applies.

3.3 The main theorem on string manifolds

We now show that many string threefolds must be ruled, and so in particular are not of
general type.

Proof of Theorem 3.2. Since CP3 is not string, Lemma 3.4 tells us that X does not
split off a copy of CP3 in a connected sum. In particular, X does not allow blowdowns to
smooth points. Therefore, by [69, Theorem 10] we know that X has KX nef, or is Fano, or
is a smooth CP1-bundle or a quadric bundle over a curve. In the case of quadric bundles
one also knows that the relative Picard number must be one, which implies b2(X) = 2. So
there is nothing to prove in that case.

The string assumption implies that c2
1(X) = 2c2(X), and so by the Riemann–Roch

theorem

χ(OX) =
1

24
c1(X)c2(X) =

1

48
c3
1(X) .

Since this is assumed to be positive, we conclude c3
1(X) ≥ 48, equivalently K3

X ≤ −48.
This means in particular that KX cannot be nef.

If X is Fano, we write c1(X) = d · c1(L), with L ample and c1(L) indivisible in integral
cohomology. Since X is string and therefore spin, the divisibility d must be even. By
the work of Kobayashi–Ochiai [47] we know that d ≤ 4, with equality only if X is CP3.

1Such a vector bundle can also be constructed without appealing to Wu’s result by taking the fiber
connected sum of TS with sufficiently many copies of the complex rank 2 vector bundles F± over S4 with
c2(F±) = ±1.
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This is impossible, since CP3 is not string. Thus we conclude that d = 2. In this case the
inequality c3

1(X) ≥ 48 becomes c3
1(L) ≥ 6. The classification of del Pezzo threefolds, see for

example [30, Theorem 8.11], together with the fact that CP3 and its blowups are not string,
tell us that X must be P(TCP2) = F (1, 2) from Example 3.11 or CP1 × CP1 × CP1, which
is the projectivization of the trivial rank 2 holomorphic vector bundle over CP1 × CP1.

Finally, if X is a smooth CP1-bundle, then because the total space is spin, it is in fact
the projectivization of a holomorphic rank 2 vector bundle E −→ S by Corollary 2.7. It
remains to show that S is not just Kähler, but must in fact be projective.

Note first that we assumed that X = P(E) has χ(OX) > 0. The multiplicativity of χ
then implies that χ(OS) > 0. Since χ is a birational invariant, it is also positive on the
minimal model of S. Thus S is a Kähler surface with positive Todd genus, and so by the
Enriques–Kodaira classification is a blowup of one of the following: a rational surface, an
Enriques surface, a K3 surface, a minimal elliptic surface of Kodaira dimension one, or a
surface if general type. These surfaces are all projective, except in the cases of K3 surfaces
and of elliptic surfaces, so we assume from now on that S is a blowup of a non-projective
elliptic or K3 surface.

For elliptic surfaces we have c2
1 ≤ 0, and so by Riemann–Roch the condition χ(OX) > 0

becomes c2 > 0. This condition is of course also valid for K3 surfaces, and for all the
blowups.

So suppose now that we have a holomorphic rank two bundle E over such a surface S,
so that X = P(E) is string. By Lemma 3.5 this gives the equation

c2
1(E) − 4c2(E) = 2c2(S) − c2

1(S),

where the left hand side is from Lemma 2.10. By the above discussion of the numerical
constraints, the right hand side is in fact positive. However, for E to exist as a holomorphic
bundle over a non-projective S, the left hand side must be non-positive by a result of
Bănică and Le Potier [7, Théorème (0.3)]. This contradiction rules out non-projective
surfaces S in the conclusion of Theorem 3.2. That all projective surfaces with χ(OS) > 0
do arise follows from Proposition 3.12. This completes the proof of Theorem 3.2.

Proof of Corollary 3.3. The proof of Theorem 3.2 has shown that any Kähler threefold
with χ(OX) > 0 is P(E) for a holomorphic bundle over a projective surface S, or else has
b2(X) = 2. In the first case X is projective because S is projective and E is algebraic by
GAGA. In the second case we have h0,2(X) = 0, again giving the conclusion that X is
projective. Both the projective bundles and the additional quadric bundles appearing in
the second case are uniruled and hence of negative Kodaira dimension.





Chapter 4

Contact Structures on Threefolds

We present here the second application of Theorem 2.1. The main goal is to give the
following classification of compact contact Kähler threefolds:

Theorem 4.1. Let X be a compact Kähler threefold with a holomorphic contact struc-
ture. Then X is CP3 or the projectivization of the cotangent bundle of a Kähler surface.
Conversely, both CP3 and the projectivizations of cotangent bundles have standard contact
structures.

This theorem was proved initially by Ye in [79] for X a projective threefold, and
extended to the Kähler case by Peternell [64] and Frantzen-Peternell [28].

After an exposition of the basic theory of contact complex threefolds, we will give a proof
of the theorem in section 4.3. Our proof relies on the simplification of the minimal model
program for spin Kähler threefolds obtained by Schreieder-Tasin in [69], and addresses a
point that is omitted in previously existing proofs, namely why a certain CP1–bundle over
a surface can be lifted to a holomorphic vector bundle. This is done by means of Corollary
2.7 of Theorem 2.1.

In contrast, Theorem 4.1 does not remain true for complex threefolds. To get a grasp
on the extent to which the theorem breaks down, we will present a number of examples in
Section 4.4.

4.1 Preliminaries on holomorphic contact structures

Although the emphasis is on contact Kähler threefolds, we will start with a general overview
of holomorphic contact structures on complex manifolds of arbitrary dimension.
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In this section, X will be a complex manifold and F ⊂ TX will be a holomorphic
distribution of codimension one. We will also denote by L the holomorphic line bundle
TX/F , and write α : TX −→ L for the quotient projection.

Lemma 4.2. There is a well-defined vector bundle morphism (not necessarily of constant
rank) φ : Λ2nF −→ L⊗n given by

φ(X1 ∧ · · · ∧ X2n) =
�

σ∈S2n

(−1)|σ|
n�

i=1

α([Xσ2i−1 , Xσ2i ]),

where the Lie brackets are computed by taking vector field extensions along F .

Proof. Fix p ∈ X. Suppose that φ has been computed using extensions X̃i of Xi ∈ TpX.
Since the vector fields X̃i span F around p, it is enough to show that the right-hand side
remains the same after replacing X1 by X1 + fXi where f is a holomorphic function with
f(p) = 0. Then the general case will follow. But

[X̃1 + fX̃i, X̃j ] = [X1, Xj ] + f [Xi, Xj ] − Xj(f)Xi,

so at the point p we have the equality

αp([X1 + fXi, Xj ]) = αp([X1, Xj ] + f [Xi, Xj ] − Xj(f)Xi) = αp([X1, Xj ]),

because f(p) = 0 and Xi(p) ∈ Fp = ker(αp). It is clear that a permutation σ of the Xi on

the left-hand side changes the right-hand side by (−1)|σ|.

We can now introduce the notion of a holomorphic contact structure.

Definition 4.3. Let X be a complex manifold of dimension 2n + 1. A distribution F
of codimension 1 on X is a holomorphic contact structure if φ is an isomorphism of line
bundles. A complex manifold X equipped with a holomorphic contact structure is called a
(complex) contact manifold. The induced exact sequence of vector bundles

0 −→ F −→ TX −→ L := TX/F −→ 0

is called the contact sequence.

As an immediate consequence of Lemma 4.2 we have the following topological constraint
on the canonical bundle of a contact manifold, originally due to Kobayashi [43].

Corollary 4.4. Let X be a complex contact manifold. Then the canonical bundle KX is
divisible by n + 1. In particular, a complex contact manifold of dimension 3 is spin.

Proof. From the contact sequence it follows immediately that K−1
X = det(TX) = det(F )⊗

L. On the other hand, det(F ) � L⊗n since F is a contact structure. It follows that
K−1

X � L⊗n+1.
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To clarify the semantics, the following definition draws the parallel between the notions
of real and complex contact manifolds, while establishing also the relation between Definition
4.3 and Kobayashi’s original definition in [43].

Proposition 4.5. Let X be a (2n + 1)–dimensional complex manifold and let F be a
holorphic codimension 1 distribution on X. The distribution F is a contact structure if and
only if for every point p ∈ X there exists an open neighbourhood U of p and a holomorphic
1-form θ on U with θ ∧ (dθ)n �= 0 such that F |U = ker θ.

Proof. Suppose F is a contact structure and let α : TX −→ L := TX/F be the quotient
map. Let {Ui}i be a trivializing open covering for L. Using the local trivializations of L
we obtain αi : TUi −→ C, that is, for each i a holomorphic 1-form on Ui. Let X0, . . . , X2n

be pointwise linearly independent local holomorphic vector fields around p ∈ Ui such that
Xj ∈ Γ(F |Ui

) for j > 0. Then

αi ∧ (dαi)
n(X0, . . . , X2n) =αi(X0)(dαi)

n(X1, . . . , X2n)

=αi(X0)


 �

σ∈S2n

(−1)|σ|
n�

j=1

dαi(Xσ2j−1 , Xσ2j )




=αi(X0)


 �

σ∈S2n

(−1)|σ|
n�

j=1

αi([Xσ2j−1 , Xσ2j ])




�=0,

where the first and third inequalities are due to Xj ∈ ker(αj) for j > 0, the second is the
Cartan formula, and the inequality is the contact condition written on Ui.

Conversely, let {Ui}i be an open covering of X and αi holomorphic 1-forms on Ui such
that F |Ui

= ker(αi). Then on Ui ∩ Uj we also have ker(αi) = ker(αj), whence it follows
that αi = fijαj for some fij ∈ O∗(Ui ∩ Uj). The fij define a 1-cocycle with values on O∗,
hence a holomorphic line bundle L on F . Then the αi glue to a vector bundle morphism
α : TX −→ L with ker(α) = F . The same above computation shows that the vector bundle
morphism φ defined in Lemma 4.2 is therefore an isomorphism.

Recall that in the real case, one defines a contact structure ξ on a smooth (2n + 1)–
manifold as a codimension 1 distribution which is locally given as the kernel of a local
1-form with θ ∧ (dθ)n �= 0. Proposition 4.5 remains valid, and when ξ is co-orientable (i.e.
TM/ξ is orientable, hence trivial), the TM/ξ-valued 1-form α becomes simply a 1-form on
M . In general, the line bundle TX/ξ is defined by a homomorphism π1(M) −→ Z2, so one
may always pass to a 2-covering of M where the pulled-back contact structure is defined
by a global contact form.

In summary, while in the real case no generality is lost by assuming that the contact
structure is the kernel of a global 1-form, in the complex setting the situation is starkly
different. For instance, the kernel of a global holomorphic 1-form on a compact Kähler
manifold defines a foliation outside of the zero set.
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Nevertheless, locally one has the same Darboux theorem as in the real case. This has
been known since the beginnings of the holomorphic theory; a proof can be found in [2,
Appendix A].

Theorem 4.6 (Darboux theorem for holomorphic contact structures). Let X be a complex
contact manifold of dimension 2n + 1. Then around every p ∈ X there exist coordinates
z0, . . . , z2n such that the contact structure F is given locally as the kernel of the 1-form

dz0 +

n�

i=1

z2i−1dz2i.

4.2 Complex contact threefolds

In this section we make some simple remarks particular to the three-dimensional case, with
which we will be concerned for the remainder of this chapter. We start with the following
elementary lemma relating the characteristic classes of the bundles TX, F and L.

Lemma 4.7. Let X be a contact threefold with contact distribution F given as the kernel
of a homomorphism TX −→ L. Then the following relations between the Chern classes of
TX, F and L hold:

c1(X) = c1(F ) + c1(L) = 2c1(L) ,

c2(X) = c2(F ) + c1(L)2 ,

c3(X) = c2(F )c1(L) .

Proof. This is a direct consequence of the isomorphism as complex bundles TX � F ⊕ L
implied by the contact sequence, together with the fact that det(F ) is isomorphic to L,
which holds by definition for a contact structure.

We will use the following remark:

Lemma 4.8. Let X be a complex manifold with a contact structure F given as the kernel of
a homomorphism φ : TX −→ L. Let C ⊂ X be a smooth rational curve with C · c1(L) ≤ 1.
Then C is tangent to the contact distribution.

Proof. The restriction of φ to TC ⊂ TX|C gives a morphism TC −→ L|C . Since C is a
rational curve, we have TC = OC(2). But OC(2) −→ L|C ∼= OC(k) is trivial for k < 2.

The two standard examples of contact threefolds are the following:

Example 4.9. Consider the complex projective space CP3 with homogeneous coordinates
[z0 : · · · : z3]. Then the kernel of the 1-form

z0dz1 − z1dz0 + z2dz3 − z3dz2

defines a contact structure. In this case the contact line bundle L is OCP3(2).
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Example 4.10. Let S be any complex surface. Then X = P(T ∗S) has a tautological
contact structure F . At a point (x, [α]) ∈ P(T ∗S) it is defined as the kernel of π∗(α). Note
that this means that the fibers of the projection π : X −→ S are tangent to F . In this case
the contact line bundle L is OX(1).

4.3 Proof of Theorem 4.1

We are now ready to prove the classification of contact Kähler threefolds. Example 4.9 shows
that CP3 has a contact structure. Example 4.10 shows that the projectivized cotangent
bundle X of a surface S has a contact structure. Clearly X is Kähler if and only if S is.

For the proof of Theorem 4.1 we need to show that no other Kähler threefold can have
a contact structure. So let X be a compact Kähler threefold with a holomorphic contact
structure. Then X is spin by Lemma 4.7, and so we can apply the classification result of
Schreieder and Tasin [69, Theorem 10]. The conclusion is that X admits a finite sequence
of blowdowns to smooth points f : X −→ Y onto a manifold Y which is either a Mori fiber
space or has KY nef.

Let E be an exceptional divisor contracted by f . Since KX = KY + 2E, any contracted
rational curve C ⊂ E must have KX · C = −2 (and hence L · C = 1 by Lemma 4.7). By
Lemma 4.8 it follows that C is contact. Since E is swept out by such rational curves C,
it is tangent to the contact distribution, which is a contradiction to the non-integrability.
We conclude that X itself is a Mori fiber-space or has nef canonical bundle. However, the
latter cannot occur, by a result of Demailly [20]. It then follows from [69, Theorem 10]
that X is a quadric bundle over a smooth curve, a Fano threefold, or a CP1-bundle over a
Kähler surface S.

If X is a quadric bundle q : X −→ C over a curve C, then the generic fiber is a smooth
quadric in CP3, which is isomorphic to CP1 × CP1. If Q = q−1(x) is any such fiber, then
c1(X|Q) = c1(Q). Then for any leaf C of the foliations corresponding to the factors of Q,
we have KX · C = −2. As above, this implies that Q is tangent to the contact distribution,
which is again a contradiction.

If X is Fano, then χ(OX) = 1. By Hirzebruch-Riemann-Roch, it follows that 24 =
c1(X)c2(X), while by Lemma 4.7 we have

c1(X)c2(X) = 2c1(L)
�
c2(F ) + c2

1(L)
�

= 2c3
1(L) + 2c3(X).

Since in this case b1(X) = 0, we have c3(X) = χtop(X) = 2+2b2(X)− b3(X), and it follows
that

b3(X) = 2b2(X) + c3
1(L) − 10 ,

in particular c3
1(L) = d is even. An argument due to Fujita (see [29]) shows that d ≤ 8,

with equality if and only if (X, L) = (CP3, O(2)). Therefore, if b2 = 1, it follows that d = 8
and hence X = CP3. Moreover, if b2 ≥ 2, then

c3
1(X) = b3(X) − 2b2(X) + 10 ≤ b3(X) + 6.
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It follows that X is isomorphic to either CP1 × CP1 × CP1 or to the projectivization of the
cotangent bundle of the complex projective plane, see the table in [29, p. 710]. However,
CP1 × CP1 × CP1 is not contact, by the argument for quadric bundles given above.

We may then assume that X is a holomorphic CP1-bundle π : X −→ S over a Kähler
surface. It remains to show that X is isomorphic to the projectivization of the cotangent
bundle of S. By Corollary 2.7 there is a holomorphic rank 2 bundle E such that X = P(E).
Moreover, we may assume that det(E) is the canonical bundle KS of S. That E ∼= T ∗S
follows by the same argument as in [79], which we now summarise.

We have KX = π∗(KS) ⊗ Tπ∗, where Tπ is the tangent bundle along the fibers of π.
The Euler sequence of the projectivization

0 −→ OX(−1) −→ π∗E −→ Tπ ⊗ OX(−1) −→ 0 (4.1)

implies that OX(−2) ⊗ Tπ ∼= π∗(det(E)) ∼= π∗(KS). Then KX = OX(−2), so L ∼= OX(1).
Lemma 4.8 implies that the fibers of π are tangent to the contact distribution. This implies
that the contact sequence descends to an exact sequence of vector bundles

0 −→ F/Tπ −→ TX/Tπ −→ L −→ 0 , (4.2)

and using that TX/Tπ ∼= π∗(TS) and that L ∼= OX(1) we get by taking the determinant
that

F/Tπ ∼= π∗(K∗
S) ⊗ OX(−1) ∼= Tπ∗ ⊗ OX(1) .

Using this and passing to the dual of (4.2), we obtain the exact sequence of holomorphic
vector bundles

0 −→ OX(−1) −→ π∗(T ∗S) −→ Tπ ⊗ OX(−1) −→ 0 . (4.3)

Comparing (4.1) and (4.3), we see that both π∗E and π∗(T ∗S) are extensions of Tπ⊗OX(−1)
by OX(−1). Now we have

Ext1OX
(Tπ ⊗ OX(−1), OX(−1)) ∼= Ext1OX

(OX , Tπ∗) ∼= H1(X; Tπ∗)

and the group H1(X; Tπ∗) is isomorphic to H2(X;π∗(KS)), which is just a copy of C by
the Leray spectral sequence E of X → S and the sheaf π∗(KS), as we now explain. Recall
that E converges to Hp+q(X;π∗(KS)) and has as its second page E2

Ep,q
2 = Hp(S, Rqπ∗(π∗(KS))).

By the projection formula, Rqπ∗(π∗(KS)) = Rqπ∗(OX) ⊗ KS . Moreover, the higher direct
images Rqπ∗(OX) are given by the sheafification of the presheaf U �−→ Hq(π−1(U), OX).
Since X −→ S is a CP1–bundle, we have Hq(π−1(U), OX) = 0 for q > 0 and U in
trivializing good cover; it follows that Rq(π∗(OX)) = 0 for q > 0. The Leray spectral
sequence degenerates at E2 and we have

H2(X,π∗(KS)) = H2(S, KS) ∼= C.

Since neither sequence splits, we conclude that π∗E ∼= π∗(T ∗S), and then E ∼= T ∗S as
well. This completes the proof of Theorem 4.1.
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4.4 Non-Kähler examples

There are many constructions of compact complex threefolds with holomorphic contact
structures, which are non-Kähler and also have other properties which are very different
from those in Examples 4.9 and 4.10.

The existence of these other constructions is often overlooked in the algebraic geometry
literature. For example, Beauville [4, pp. 60,61] explicitly states that the only known
compact contact manifolds are either homogeneous (and hence projective and even Fano),
or projectivised cotangent bundles. Similar statements appear implicitly in other places,
e.g. [28]. On the other hand, these constructions are more familiar to differential geometers,
as exemplified by the survey in Blair’s book [6, Chapter 12]. They include (compact
quotients of) the complex Heisenberg group and of SL(2, C), certain holomorphic fiber
bundles with fiber an elliptic curve over holomorphic symplectic manifolds (the holomorphic
analogs of the so-called Boothby–Wang construction in real contact geometry), and twistor
spaces of self-dual Einstein four-manifolds with non-zero scalar curvature.

In this section, several of these complex non-Kähler examples will be considered, some
of which illustrate the failure of Theorem 4.1 in the complex case. We start with the simple
remark that the construction from Example 4.10 already yields several non-Kähler contact
manifolds.

Example 4.11 (Non-Kähler projectivizations). As explained in example 4.10, we may take
the projectivization of the cotangent bundle of a non-Kähler surface to obtain a complex
threefold X with a contact structure. Recall that Kähler surfaces are characterized among
complex surfaces, as those whose first Betti number is even (see e.g. [11] or [52]). Since
X is the projectivization of a vector bundle over a surface with odd first Betti number,
it follows e.g. by the Leray-Hirsch theorem that b1(X) is also odd. Therefore X is not a
Kähler manifold.

Another important example is the Iwasawa manifold, a compact quotient of C3, where
the contact structure is induced by the standard one in C3.

Example 4.12 (Iwasawa manifold). Let HC denote the Lie group

HC =








1 x y
0 1 z
0 0 1



������
x, y, z ∈ C



 .

The form 1-form α = dy − xdz (which satisfies α ∧ dα �= 0) is left invariant in HC, hence it
passes to the quotient Z = HC/HZ[i], where HZ[i] denotes the lattice

HZ[i] =








1 x y
0 1 z
0 0 1



������
x, y, z ∈ Z[i]



 ⊂ HC.

The threefold Z thus admits a contact structure defined by the kernel α.
Notice the contact structure on Z is given as the kernel of a globally defined holomorphic

1-form, which means that Z is not Kähler, as remarked in Section 4.1.
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4.4.1 Twistor Spaces

Let (M, g) be a 4-dimensional oriented Riemannian manifold. The twistor space Z of M is,
as a smooth manifold, the total space of the 2-sphere bundle π : S(

�−(M)) −→ M , where�−(M) denotes the bundle of anti-selfdual 2-forms on M . One may as well view Z as the
fiber bundle on M whose fiber at each point p ∈ M consists of those complex structures on
TpM which are compatible with the metric g on M and induce the opposite orientation.
The Levi-Civita connection on M induces a connection on the bundle of 2-forms, which
then defines a splitting of the tangent bundle of Z, TZ = V ⊕ H, where V is the kernel of
Dπ and H is isomorphic to π∗(TM). There is a canonical almost-complex structure J on
TZ, which restricts to the usual complex structure on the 2-sphere along the fibers, and
which acts tautologically on the horizontal distribution H.

Recall that in dimension 4 the curvature tensor splits into four pieces, viz. the selfdual
and anti-selfdual Weyl tensors, the traceless Ricci tensor and the scalar curvature. These
pieces are given by the Ricci decomposition into irreducible representations for the orthogo-
nal group. The integrability of the almost complex structure J turns out to be equivalent
to the vanishing of the anti-selfdual Weyl tensor, by a result of Atiyah-Hitchin-Singer
(see e.g. [5] chapter 13 or the original [3]). In particular, since the Weyl tensor is a
conformal invariant, a locally conformally flat manifold will have vanishing Weyl tensor.
The corresponding twistor space therefore has a complex structure.

By definition of J , both V and H are complex subbundles of TZ. Since V restricts on
each fiber of Z −→ M to the tangent bundle, the fibers become rational curves with respect
to J . While V is not a holomorphic subbundle of TZ, H turns out to be holomorphic and
if (M, g) be a self-dual Einstein manifold of dimension 4 with non-zero scalar curvature, H
becomes a holomorphic contact structure on Z (see e.g. [5, chapter 14] or [23]) 1. Twistor
spaces have in common with the projective bundles from Example 4.10 the feature that they
are both covered by a family of rational curves. However, while in projective bundles the
rational curves are tangent to the contact distribution, in twistor spaces they are transverse.

Proposition 4.13. Let X be the twistor space of a hyperbolic manifold M . Then X admits
a holomorphic contact structure, but X is not homotopy equivalent to the projectivization
of the cotangent bundle of a complex surface.

Proof. It is enough to consider the fundamental group of M . The exact sequence in
homotopy induced by the fibration X −→ M yields π1(X) ∼= π1(M). Such a group cannot
arise as the fundamental group of a complex surface by a result of Carlson-Toledo (see [12]
for the Kähler case and [13] for the general statement; see also Subsection 3.2 of Chapter 1
in [1] for a simpler argument in dimension ≤ 4, due to Kotschick).

In particular, there exist infinitely many homotopy classes of complex contact threefolds
which are not of the form P(T ∗S) for a complex surface S.

1This is also a special case of a result of Salamon stating that any quaternionic twistor space admits a
holomorphic contact structure [66], since self-dual Einstein 4-manifolds are the 4-dimensional analogues of
quaternionic Kähler manifolds.
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4.4.2 Holomorphic Boothby-Wang

The following construction is due to Foreman [24]. Let Y be a compact complex manifold
with a holomorphic symplectic structure ω ∈ H0(X,Ω2

X). Denote by α, resp. β, the
real, resp. imaginary, part of ω. An easy computation shows that α and β are both
symplectic forms on Y . Suppose additionally that α and β both determine integral classes
in cohomology. Then one can construct (principal) U(1)–bundles A −→ S and B −→ Y
with c1(A) = [α] and c1(B) = [β] with connection forms ηA and ηB fulfilling dηA = π∗

A(α)
and dηB = π∗

B(β). Then ηA and ηB are (real) contact forms on A and B which yield
Reeb vector fields RA and RB, i.e. ηA(RA) = 1 and RA ∈ ker(dηA), and similarly for B.
Note moreover that the connections ηA and ηB define a connection on the fiber product
X = A ×Y B, with corresponding vertical and horizontal bundles V and H. One can
define on X an almost complex structure as follows. On the vertical bundle V of X we
put J(RA) = −RB and J(RB) = RA. On the horizontal bundle H we use the isomorphism
H ∼= π∗(TY ) given by the connection to pull-back the almost complex structure on TY .

This almost complex structure is in fact integrable (see [24]), so X is a complex manifold.
Moreover, the projection π : X −→ Y is a holomorphic map, and the form ηA + iηB on X
is holomorphic and therefore defines a global holomorphic contact form on X.

One can use the above construction to obtain non-Kähler simply connected contact
manifolds. We will need the following lemma.

Lemma 4.14. Let M −→ B be a principal U(1)–bundle. Then the connecting homo-
morphism δ : π2(B) −→ π1(S

1) in the long exact sequence in homotopy of the fibration
S1 −→ M −→ B factors through H2(M, Z) as

π2(B) −→ H2(B, Z) −→ π1(S
1) ∼= Z

the map on the left is the Hurewicz morphism and the map on the right evaluates the Euler
class of M −→ B in homology.

Proof. Consider S∞ as the universal U(1)–bundle S∞ −→ CP∞ over the classifying space
BU(1) � CP∞. Then M is isomorphic to f∗(S∞) for some f : B −→ CP∞. We have the
natural maps

S1 S∞ CP∞

S1 M B

between the fibrations, and thus obtain corresponding maps in the long exact sequences in
homotopy:
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0 = π2(S
∞) π2(CP∞) π1(S

1) π1(S
∞) = 0

H2(CP∞, Z)

π2(M) π2(B) π1(S
1) π1(M)

H2(B, Z)

h �u,−�

f∗

f∗

h

∼=

Here u ∈ H2(CP∞, Z) denotes the Euler class of the universal bundle. Note also that the
isomorphism π1(S

1) ∼= Z is natural, since we have a U(1)-principal bundle.

We need to show that the lower triangle in the diagram commutes. This follows by
naturality if the upper triangle commutes. To show that this is the case, notice that since
CP∞ is simply connected, the Hurewicz map is an isomorphism. On the other hand, the
Euler class u of the universal bundle evaluates to 1 on the generator of H2(CP∞, Z), because
u generates the cohomology ring H∗(CP∞, Z) and CP∞ is simply connected, so there is no
torsion in degree 1.

The lemma implies in particular that if the Euler class is spherical (i.e. it evaluates
non-trivially on the image of the Hurewicz map) and is sent to the generator in π1(S

1), the
fundamental group of the total space of the fiber bundle is isomorphic to that of the base.

Example 4.15 (Holomorphic Boothby-Wang on K3–surfaces). Let S be a K3–surface.
Such surfaces are by definition simply connected and have trivial canonical bundle. That
they are simply connected implies by the Hurewicz theorem that every class in H2(S, Z) can
be represented by an element in π2(S). On the other hand, the triviality of the canonical
bundle says exactly that S admits a holomorphic symplectic form.

In order to carry out the holomorphic Boothby-Wang construction explained above,
it is necessary to produce K3–surfaces which admit holomorphic symplectic forms whose
real and imaginary parts determine integral cohomology classes. While one can produce
concrete examples where this is the case (for example, the standard quartic

�
i x

4
i = 0 in

CP3), one can give a more systematic account using the known theory on K3–surfaces (a
detailed reference is [40]).

Recall first that b2(S) = 22 and since S is simply connected H2(S) ∼= Z22. Moreover,
the lattice (H2(S, Z), QS), where QS : H2(S, Z) × H2(S, Z) −→ Z denotes the intersection
form of S, is isomorphic to Λ := (Z22, Q). Here Q is the unimodular form 2E8 ⊕ 3H , where
E8 denotes the negative of the Cartan matrix of the E8 root system and H denotes the
matrix of the standard non-trivial involution on Z2 fixing the diagonal. The period domain
D is defined by

D = {x ∈ P(ΛC) | x2 = 0 and x · x > 0}.

This space parametrizes Hodge structures with underlying Z-module Λ such that for all
type (2, 0) elements 0 �= α ∈ Λ2,0 ⊂ Λ⊗Z C we have α2 = 0, α · α and Λ1,1 ⊥ α.
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On the other hand, one has the moduli space M of marked2K3 surfaces and the period
map P : M −→ D given by

(S,ϕ) �−→ [ϕC(H2,0(S))].

A far-reaching result in the theory of K3–surfaces states that the period map is surjective.
In other words, given an admissible (in the above sense) Hodge structure on Λ, there exists
a K3–surface realizing it; namely, if the Hodge structure is given by x ∈ ΛC, there exists an
S and an isomorphism ϕ : H2(S, Z)Λ such that ϕ−1

C (x) spans H2,0(X).
We now conclude the following lemma from the above discussion.

Lemma 4.16. Let S be a smooth manifold diffeomorphic to a K3–surface. For every
x ∈ (Z[i])22 satisfying the relations

xT · Q · x > 0 and xT · Q · x = 0,

there exists a complex structure on S and an isometry ϕ : H2(S, Z) −→ Z22 such that
ϕ−1

C (x) ∈ H2,0(X) can be represented by a non-vanishing holomorphic 2-form whose real
and imaginary parts are integral in cohomology.

Let ω = α+ iβ be a holomorphic symplectic form as obtained in the lemma on some K3–
surface S. From inspection of the conditions in the lemma, it is clear we may take [α] and
[β] to be indivisible classes in integral cohomology. Let πA : MA −→ S and πB : MB −→ B
be the S1-bundles corresponding to α and β. We may view X as π∗

B(MA) = π∗
A(MB). The

manifold MA is simply connected by Lemma 4.14, and applying the same lemma again
shows that X is also simply-connected.

We have thus obtained a simply connected complex contact threefold X which fibers
holomorphically over a K3–surface with elliptic fibers. Notice that the fibers of X are
null-homologous, and therefore X cannot be Kähler.

While there seems to be a lot of freedom in picking α and β, we remark here that for
indivisible α and β the resulting manifold X will have the same diffeomorphism type. This
can be seen by computing the cohomology ring and Chern classes of X and verifying that
the invariants are independent of α and β. By virtue of X being spin and simply connected,
these invariants determine the diffeomorphism type by a theorem of Wall (see [75] or [62]
for more detailed results). In fact, we have

X � �k−1(S
3 × S3)�k−2(S

2 × S4)

as a smooth manifold, where k = b2(S) = 22. It is evident from this description that
X does not have the cohomology ring of a Kähler manifold, so it is not even homotopy
equivalent to a Kähler manifold.

2 A marking is an isomorphism ϕ : (H2(S, Z), QS) −→ (Λ, Q).





Chapter 5

Holomorphic Engel Structures

The content of this chapter is joint work with Nicola Pia and was published in the Journal
of Geometric Analysis, Volume 28(3) (2018) [18]. The contribution of both authors to this
work is equal. In comparison with the published article, section 5.2 explaining the proof of
a theorem of Forstnerič was added to make the exposition more self-contained.

A holomorphic Engel structure on a complex manifold M of complex dimension 4 is a
holomorphic subbundle D �→ TM of complex rank 2 which is maximally non-integrable.
More precisely [D, D] = E has constant rank 3 and satisfies [E , E ] = TM (a 3-distribution
satisfying this condition is called a holomorphic even contact structure). Every holomorphic
even contact structure E admits a unique holomorphic line field W ⊂ E such that [W, E ] ⊂ E .
This line field W is called characteristic foliation. If D is an Engel structure and E = [D, D]
is its associated even contact structure then the characteristic foliation W satisfies W ⊂ D.
Hence an Engel structure D determines a flag of distributions W ⊂ D ⊂ E .

Every holomorphic Engel structure (M, D) is locally isomorphic to the complex Euclidean
space C4 with coordinates (w, x, y, z) and the Engel structure given by

Dst = ker(dy − zdx) ∩ ker(dz − wdx).

The associated even contact structure is Est = ker(dy− zdx) and the characteristic foliation
is Wst = ker(dxdydz).

These structures are the holomorphic analogues of the usual Engel structures. Together
with line fields, contact structures and even contact structures, these are the only topo-
logically stable distributions (see [14]). The existence of an orientable Engel structure on
a closed orientable (real) 4-manifold M implies that M is parallelizable. Conversely the
existence of Engel structures on parallelizable 4-manifolds was established in [74]. The
geometry of these structures is closely related to even contact structures, which are known

47
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to satisfy a complete h-principle (see [57]). An existence h-principle has been established
for Engel structures in [15].

Holomorphic Engel structures on closed complex 4-manifolds have been studied in
[65]. The only known constructions are the Cartan prolongation of a holomorphic contact
structure and the Lorentz tube of a holomorphic conformal structure on a 3-manifold.
These two families of structures are classified in the projective case, and the main result
in [65] is a partial classification of Engel structures on closed projective manifolds. The
existence of a holomorphic Engel structure on a closed complex manifold which is not a
Cartan prolongation or a Lorentz tube remains an open problem.

We are interested in constructing non-standard holomorphic Engel structures on C4.
Forstnerič constructed non-standard holomorphic contact structures on C2n+1 in [25]. There
the idea is to find a Fatou-Bieberbach domain where the standard holomorphic contact
structure is hyperbolic in a directed sense, as explained below. One of the aims of this
note is to use the same method to prove the analogous statement for holomorphic Engel
structures. In what follows, given a distribution H −→ TC4, we will use the terms H-line
or line tangent to H to designate a non-constant holomorphic map f : C −→ C4 such that
f �(ζ) ∈ Hf(ζ) for all ζ ∈ C. If no ambiguity concerning the distribution may arise, we also
use horizontal line as a synonym for H-line.

Theorem 5.1. On C4 there are Engel structures DE , DD and DW with the following
properties

1. DE admits no lines tangent to its associated even contact structure;

2. DD admits no DD-lines but does admit lines tangent to its associated even contact
structure;

3. DW admits no lines tangent to its characteristic foliation but does admit DW-lines.

In particular these Engel structures are pairwise non-isomorphic and not isomorphic to the
standard Engel structure (C4, Dst).

As we verify below, the standard Engel structure admits many Dst-lines, including
many tangent to the characteristic foliation.

Controlling the geometry of the characteristic foliation, we are able to construct infinite
families of non-isomorphic holomorphic Engel structures.

Theorem 5.2. For every n ∈ N∪ {∞} there exists an Engel structure Dn on C4 for which
the only Dn-lines are tangent to the characteristic foliation Wn, and such that

Ln := {p ∈ C4 : ∃f : C −→ C4 Dn-line with f(0) = p}
is a proper subset of C4 which has exactly n connected components for n ∈ N, and L∞ = C4.

We first construct D∞ using an open set in the Cartan prolongation of a Kobayashi
hyperbolic contact structure in C3. This will admit very few D∞-lines by construction.
Then we use a result, due to Buzzard and Fornæss (Theorem 5.10, for a proof see [10]) that
allows one to control the set of points in C4 which admit such horizontal lines. A more
careful analysis leads to
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Theorem 5.3. For every R ∈ R \ {0} there exists an Engel structure DR for which the
only DR-lines are tangent to the characteristic foliation WR, and such that the set of points
which admit such WR-lines is exactly C × {0, 1, R

√
−1} × C2 ⊂ C4

(w,x,y,z). Moreover DR is

isomorphic to DR� if and only if R = R�.

5.1 Hyperbolicity and holomorphic Engel structures

For the proof of Theorem 5.1 we will need the notion of hyperbolicity on a complex directed
manifold. Recall that the Kobayashi pseudo-distance dM on a complex manifold M may
be written in terms of the Finsler pseudo-metric

F (vp) = inf

�
1

|λ| : ∃ a holomorphic f : D −→ M s.t. f(0) = p, f �(0) = λv

�
, (5.1)

by integration. Explicitly,

d(p, q) = inf

�� 1

0
F (γ�(t))dt : γ piecewise smooth, γ(0) = p and γ(1) = q

�
. (5.2)

Given a holomorphic subbundle H ⊂ TM , a disc D −→ M is called horizontal if it is
tangent to H. The Finsler pseudo-metric FH directed by H is defined by requiring that
the infimum in (5.1) be taken only over horizontal discs. Likewise, the Kobayashi pseudo-
distance dH on the directed manifold (M, H) is defined by requiring that the infimum in
(5.2) be taken only over paths γ that are tangent to H. This is finite because, by Chow’s
theorem, these paths always exist if the distribution is bracket generating. This is the case,
by definition, for an Engel structure. The directed manifold (M, H) is said to be Kobayashi
hyperbolic if dH is a genuine distance. Note that if (M, H) is Kobayashi hyperbolic, there
can be no H-line.

Remark 5.4. Notice that the standard Engel structure is not hyperbolic, since it admits many
horizontal lines f : C −→ C4. For instance, one can take the leaves of the characteristic
foliation W of Dst. In fact, given a point p = (w0, x0, y0, z0) ∈ C4 and a vector v =
(vw, vx, vy, vz) ∈ Dp (hence vz = w0vx and vw = z0vx) the map

f(ζ) =

�
w0 + vwζ, x0 + vxζ, y0 + vyζ + vxvz

ζ2

2
+ v2

xvw
ζ3

6
, z0 + vzζ + vxvw

ζ2

2

�

is a horizontal line with f(0) = p and f �(0) = v.

The idea for proving Theorem 5.1 is to construct certain (directed) hyperbolic subsets
of C4 and look for biholomorphic copies of C4 inside these domains.

Definition 5.5. A Fatou-Bieberbach domain is a proper subset Ω ⊂ Cn such that Ω is
biholomorphic to Cn.
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Following [25] we let {cn}n∈N, {dn}n∈N and {en}n∈N be positive diverging monotonic
sequences. Denote with Dy (resp. Dz) the unit disc in the y (resp. z) direction, with
∂D2

(w,x) the boundary of the unit polydisc in the (w, x)-plane in C4 and with ∂D3
(w,x,z) the

boundary of the unit polydisc in the (w, x, z)-plane in C4. Let

A =
∞�

i=1

2i−1∂D3
(w,x,z) × ciDy. (5.3)

B =
∞�

i=1

2i−1∂D2
(w,x) × diDy × eiDz. (5.4)

By a direct adaptation of lemma 2.1 in [25], we can prove the following:

Lemma 5.6. Assume dn ≥ 25n+2 and en ≥ 23n+1 for every n ∈ N. Let N0 ∈ N and
f : D −→ C4 \ B be a Dst-horizontal embedding of a disc with f(0) ∈ 2N0D4. Then we
have the estimates

|w�(0)| < 2N0+1, |x�(0)| < 2N0+1, |y�(0)| < 23N0+2, |z�(0)| < 22N0+1.

Proof. We may assume without loss of generality that f is holomorphic on D (replace f
by ζ �−→ f(rζ) for some r < 1). This gives N ∈ N such that |x(ζ)| < 2N and |w(ζ)| < 2N

for all ζ ∈ D. The Cauchy integral formula for a circle centered at ζ = 0 of ray r = 1− 2−N

gives

|x�(ζ)| < 22N and |w(ζ)x�(ζ)| < 23N

for |ζ| ≤ r. Since f is horizontal, we have the conditions

y�(ζ) = z(ζ)x�(ζ) and z�(ζ) = w(ζ)x�(ζ) (5.5)

which in turn give

|z(ζ)| ≤ |z(0)| +

����
� ζ

0
wdx

���� < 2N0 + 23N < 23N+1 ≤ dN

|y(ζ)| ≤ |y(0)| +

����
� ζ

0
zdx

���� < 2N0 + 25N+1 < 25N+2 ≤ cN

for |ζ| ≤ r. From these estimates, the definition of B, and the fact that f(D) does not
intersect B, it follows that (w(ζ), x(ζ)) does not intersect 2N−1∂D2 for |ζ| ≤ r. Since
2N−1∂D2 disconnects 2ND2 and (w(0), x(0)) ∈ 2N0D2 ⊂ 2N−1D2, we conclude that

(w(ζ), x(ζ)) ∈ 2N−1D2 for |ζ| ≤ 1 − 2−N .

If N − 1 > N0, we can repeat the same argument to get

(w(ζ), x(ζ)) ∈ 2N−2D2 for |ζ| ≤ 1 − 2−N − 2−(N−1),
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and after finitely many repetitions

(w(ζ), x(ζ)) ∈ 2N0D2 for |ζ| ≤ 1 − 2−N − . . . − 2−(N0+1) ≤ 1

2
.

Applying the Cauchy estimate now gives |x�(0)| ≤ 2N0+1 and |w�(0)| ≤ 2N0+1, while using
equation (5.5) we get

|z�(0)| = |w(0)x�(0)| ≤ 22N0+1 and |y�(0)| = |z(0)x�(0)| ≤ 23N0+2,

completing the proof of the lemma.

The following lemma has a completely analogous proof.

Lemma 5.7. Assume cn ≥ 23n+1 for every n ∈ N. Let N0 ∈ N and f : D −→ C4 \ A be a
Dst-horizontal embedding of a disc with f(0) ∈ 2N0D4. Then we have the estimates

|w�(0)| < 2N0+1, |x�(0)| < 2N0+1, |y�(0)| < 22N0+1, |z�(0)| < 2N0+1.

5.2 A theorem of Forstnerič

The following theorem was proved by Forstnerič in [25]. Due to its central importance in
our constructions, we will now sketch its proof.

Theorem 5.8 (Forstnerič). Let 0 < a1 < b1 < a2 < b2 < . . . and ci > 0 be sequences of
real numbers such that limn−→∞ an = limn−→∞ bn = +∞. Let n > 1 be an integer and

K =
∞�

i=1

�
biD

n−1 \ aiD
n−1

�
× ciD ⊂ Cn. (5.6)

Then there exists a Fatou-Bieberbach domain Ω ⊂ Cn \ K.

The proof of the theorem relies on the pushout method. Loosely, one constructs a
sequence of automorphisms of C2 which progressively push the set K further away to
infinity; at the same time, one ensures that each successive automorphism is close to the
identity on increasingly larger polydisks: this will imply that the composition of the infinite
sequence of automorphisms converges to a bijective map defined on the whole C2 onto a
Fatou-Bieberbach domain Ω with K ∩ Ω = ∅.

Lemma 5.9. Let l > 0 and 0 < l < s1 < t1 < s2 < t2 < . . . be a sequence of real numbers
diverging to ∞. Moreover let {ui}i∈N be a sequence of positive reals and δ > 0. Then there
exists an entire holomorphic map f : C −→ C and a sequence 0 < l + 1 < µ1 < ν1 < µ2 <
ν2 < . . . of real numbers diverging to ∞ such that if si ≤ |z| ≤ ti and |w| ≤ ui for some
i ∈ N, then

µi < |f(z)| − ui ≤ |w + f(z)| ≤ ui + |f(z)| < νi.

Furthermore, for all z ∈ C with |z| ≤ l, |z − f(z)| < δ.
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Sketch of proof. Let t0 = l and pick for each i ∈ N a real number ri such that ti−1 <
ri < si. We make the ansatz

f(z) =

∞�

i=1

�
z

ri

�Ni

.

For sufficiently large Ni, the corresponding summand of f is arbitrarily small in the disc of
radius ti−1 and arbitrarily large on the annulus {z ∈ C | si ≤ |z| ≤ ti}. One uses this fact
to inductively pick Ni, µi and νi. We refer to [25] for details.

Sketch of proof of Theorem 5.8. For conciseness, we give the argument for n = 2; the
generalization is straighforward. For each i ∈ N pick �i ∈ (0, 1) such that

�∞
i=1 �i < ∞.

In the course of the proof we will construct families of sequences {ai,k}i, {bi,k}i, {ci,k}i,
{αi,k}i, {βi,k}i and {γi,k}i indexed in k, given which we construct the sets

Kj =
∞�

i=1

�
bi,kD \ ai,kD

�
× ci,kD and

Lj =
∞�

i=1

γi,kD ×
�
βi,kD \ αi,kD

�
.

We start with k = 1. Put ai,1 = ai, bi,1 = bi and ci,1 = ci. Let f1 be the holomorphic
map obtained from Lemma 5.9 with the data l = 1, si = ai,1, ti = bi,1, ui = ci,1, δ = �1 and
let αi,1 = µi, βi,1 = νi and γi,1 = bi,1. In the same way, let g1 be the holomorphic map
obtained from the lemma with the data l = 1, si = αi,1, ti = βi,1, ui = γi,1, δ = �1 and let
ai,2 = µi, bi,2 = νi and ci,2 = βi,1.

We define two shear-like automorphisms ϕ1 and ψ1 of C2 via

ϕ1(z, w) = (z, w + f1(z)) and ψ1(z, w) = (z + g1(w), w).

Now ϕ1(K1) ⊂ L1 and L1 ∩ (C × 2D) = ∅ by the Lemma. In the same way, ψ1(L1) ⊂ K2

and K2 ∩ (2D × C) = ∅. Putting θ1 = ψ1 ◦ ϕ1 we have

θ1(K1) ⊂ K2, K2 ∩ 2D2 = ∅ and sup
z∈D

2

|θ1(z) − z| < �1.

Working inductively on k, we obtain a sequence of sets Kk and automorphisms θk with

θk(Kk) ⊂ Kk+1, Kk+1 ∩ (k + 1)D2 = ∅ and sup
z∈kD

2

|θk(z) − z| < �k.

By standard arguments [26, pp. 114–115], the sequence of automorphisms Θk := θk ◦ · · ·◦θ1

converges to an injective holomorphic map Θ : C2 → C2 which is onto a Fatou-Bieberbach
domain Ω ⊂ C2.
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ϕ1 ψ1

Figure 5.1: The action of the automorphism θ1 on the component (b1D \ a1D) × c1D (in
black) of the set K1 = K is depicted above. The dark, respectively light, gray area is the
corresponding component of L1, respectively K2.

5.3 Proof of Theorem 5.1

In what follows fix 0 < ε < 1 and consider the real sequences

ai = 2i−1 − ε, bi = 2i−1 + ε.

To construct DE we fix ci = 23i+1 and let A be the set determined by ci according to
(5.3). Lemma 5.7 ensures that (C4 \ A, Est) is hyperbolic, moreover Theorem 5.8 gives a
Fatou-Bieberbach map Φ : C4 −→ Ω ⊂ C4 \ A. We set DE := Φ∗Dst so that its associated
even contact structure is Φ∗Est. Lemma 5.7 furnishes a lower bound for the Finsler metric,
whence it follows that the Φ∗Est-directed Kobayashi pseudo-distance on Ω is a genuine
distance, i.e. the restriction of the standard even contact structure to Ω is hyperbolic.

To construct DD we fix di = 25i+2 and ei = 23i+1 and let K be the set determined
by n = 3, ai, bi and ci = di according to (5.6). Let B be the set determined by di and ei

according to (5.4), and notice that B ⊂ K × C. By Theorem 5.8 there exists a Fatou-
Bieberbach domain Ω ⊂ C3 with Ω ∩ K = ∅. Define Ξ = Ω × C. The subset Ξ ⊂ C4 is a
Fatou-Bieberbach domain in C4 which fulfills Ξ ∩ (K × C) = ∅; in particular, Ξ ∩ B = ∅.
Let Φ : C4 −→ Ξ be the Fatou-Bieberbach map. We define DD = Φ∗(Dst). Lemma 5.6
furnishes a lower bound for the Finsler metric, whence it follows that the Dst-directed
Kobayashi pseudo-distance on Ξ is a genuine distance, i.e. the restriction of the standard
Engel structure to Ξ is hyperbolic. Notice that in this construction the associated even
contact structure E is not hyperbolic. Indeed we have many Est-lines f : C −→ Ξ of the
form

f(ζ) = (w0, x0, y0, ζ)

where (w0, x0, y0) is not contained in A, which can be pulled-back.
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To construct DW consider the set

K =

∞�

i=1

2i−1∂D2
(w,y) × 2iDz

contained in the (w, y, z)-plane in C4. All W-horizontal holomorphic copies of C are of
the form f(ζ) = (w(ζ), x0, y0, z0) for some w holomorphic and hence they will intersect K
for some ζ. Indeed if N0 ∈ N is such that |z0| < 2N0 then f does not intersect K only if
|w(ζ)| < 2N0−1 for all ζ ∈ C, which is not true. Theorem 5.8 ensures the existence of a
Fatou-Bieberbach map Φ̃ : C3 −→ Ω ⊂ C3 \K so that also Φ = Φ̃× id : C4 −→ Ω×C ⊂ C4

is a Fatou-Bieberbach map. By the above discussion there are no copies of C tangent to
the characteristic foliation of the standard Engel structure restricted to Ω. We then define
DW := Φ∗Dst, this structure does not have lines tangent to the characteristic foliation,
nevertheless C4 is not DW -hyperbolic, since the pull-back of the Dst-line

f : C �→ C4 f(ζ) = (0, ζ, 0, 0).

is a DW -line.

5.4 Construction of the infinite families

In this section we will prove theorems 5.2 and 5.3.

5.4.1 Proof of Theorem 5.2

We use Forstnerič’s hyperbolic contact structure on C3, which is the pull-back α = Φ∗αst of
the restriction of the standard contact structure on a hyperbolic Fatou-Bieberbach domain
in C3 \ K (see [25]). Consider the Cartan prolongation1 M = P(ξh) of ξh = kerα with its
Engel structure D(ξh). Since kerαst is trivial as a holomorphic bundle, M is biholomorphic
to C3 × CP1. Given p ∈ CP1, consider in M the open set C4 = C3 × CP1 \ (C3 × {p}) and
the restriction of the Engel structure D∞ = D(ξh)|C4 . We claim that this structure has the
properties stated in Theorem 5.2.

Indeed suppose that f : C −→ C4 is a D∞-line. Then if we denote by π : M −→ C3

the canonical projection of the projectivisation, the composition π ◦ f is tangent to ξh in
C3. Since (C3, ξh) is hyperbolic, π ◦ f must be constant, so f is tangent to the fibers. This
proves that the only D∞-lines are tangent to the characteristic foliation W∞.

Fix n ∈ N. In order to construct Dn, we use the following result

Theorem 5.10 (Buzzard and Fornæss, [10]). Let L be a closed, 1-dimensional, complex
subvariety of C2, and B0 a ball with B0 ∩ L = ∅. Then there exists a Fatou-Bieberbach
domain Ω ⊂ C2 \ B0 with L ⊂ Ω and a biholomorphic map Ψ from Ω onto C2 such that
C2 \ Ψ(L) is Kobayashi hyperbolic. Moreover, all nonconstant images of C in C2 intersect
Ψ(L) in infinitely many points.

1Explicitly, after fixing an affine chart w �−→ [(1, w)] on the fibers of the projectivization, we have for
(x, y, z) in the Fatou-Bieberbach domain and αst = dz + xdy, D(ξh)(w,x,y,z) = � ∂

∂w
, w(x ∂

∂z
− ∂

∂y
) + ∂

∂x
�.
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CR

ΩR

Figure 5.2: The Fatou-Bieberbach domain ΩR in Theorem 5.3.

Now we choose

L̃n =

n�

k=1

C × {k} ⊂ C2
(w,x) .

Then Theorem 5.10 gives a Fatou-Bieberbach map Φn : C2 −→ Ωn ⊂ C2 such that Ωn \ L̃n

is Kobayashi hyperbolic and the w-curves fi : C −→ C2 s.t. ζ �−→ (ζ, i) are still contained
in Ωn. Now take the Fatou-Bieberbach map Ψn = Φn × id : C4 −→ Ωn × C2 ⊂ C4 and the
Engel structure Dn = Ψ∗

nD∞. By construction Dn only admits Dn-lines on the points

Ln = L̃n × C2 =
�
(w, x, y, z) ∈ C4 : x ∈ {1, ..., n}

�

hence completing the proof of Theorem 5.2.

5.4.2 Proof of Theorem 5.3

For some R ∈ R \ {0}, we will consider the subvariety CR =
�
C × {0, 1, R

√
−1}

�
∪

({0} × C) ⊂ C2. By Theorem 5.10, there exists a Fatou-Bieberbach domain ΩR ⊂ C2 which
contains CR, and such that the complement ΩR\CR is Kobayashi hyperbolic. Moreover, any
curve C −→ ΩR intersects CR an infinite number of times. Denote by WR, resp. WR� , the
1-foliation on ΩR × C2, resp. Ω�

R × C2, determined by the projections p : ΩR × C2 −→ C3,
resp. p� : ΩR� × C2 −→ C3, given by (w, x, y, z) �−→ (x, y, z). We introduce also the
projections π : ΩR × C2 −→ C and π� : ΩR� × C2 −→ C given by (w, x, y, z) �−→ x and the
notation VR = π−1{0, 1, R

√
−1} and V �

R� = π�−1{0, 1, R�√−1}. Notice that VR, resp. V �
R� ,

consists exactly of the points of ΩR, resp. ΩR� through which a WR-line, resp. WR�-line,
passes.
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Lemma 5.11. Suppose that R, R� ∈ R\{0} and R �= R�. Then there exists no biholomorphic
map Φ : ΩR × C2 −→ ΩR� × C2 such that Φ∗(WR) = WR�.

Proof. Suppose such a Φ exists and consider the map h : C −→ C given by h = π� ◦ Φ ◦ ι,
where ι is the inclusion ι(ζ) = (0, ζ, 0, 0) ∈ ΩR × C2. Notice that horizontal curves
in WR must map to horizontal curves in WR� . Moreover, we have h−1{0, 1, R�√−1} =
{0, 1, R

√
−1}. It follows that we have a biholomorphic map Φ|VR

: VR −→ V �
R� . This implies

in particular that h : {0, 1, R
√
−1} −→ {0, 1, R�√−1} is bijective. Since h is non-constant,

it either has an essential singularity or a pole at infinity.
If h has an essential singularity at infinity, then by the big Picard theorem h takes every

value in C infinitely many times, with one possible exception. This contradicts the fact
that h : {0, 1, R

√
−1} −→ {0, 1, R�√−1} is bijective.

Otherwise, h is a polynomial with exactly one zero, so it must be linear. On the other
hand, h({0, 1, R

√
−1}) = {0, 1, R�√−1}, which is impossible for R �= R�.

Now given the Fatou-Bieberbach map ΦR : C4 −→ ΩR×C2 ⊂ C4 we define DR := Φ∗
RDst

and Theorem 5.3 is a direct consequence of Lemma 5.11.



Chapter 6

Domination by Products

Let X and Y be complex manifolds. A holomorphic or meromorphic map X −→ Y is called
dominant if it has dense image in Y . We write X ≥ Y to indicate that a dominant map
from X to Y exists, and say that X dominates Y . In this chapter, we consider a geometrical
approach to the problem of determining whether a complex manifold is dominated by a
product.

Definition 6.1. Let Y be a complex manifold. Y is said to be (holomorphically) dominated
by a product if there exist compact complex manifolds X1, . . . , Xk such that dim(Xi) <
dim(Y ) and a dominant holomorphic map X1 × · · · × Xk −→ Y .

Similarly, if a dominant meromorphic map from a product exists, we say that Y is
meromorphically dominated by a product. In the algebraic setting, we say also that Y is
rationally dominated by a product.

Developing an idea of Deligne, Schoen introduced in [67] a Hodge theoretic integer
valued birational invariant τ for algebraic varieties which is monotonic under the rational
dominance relation, that is, if X ≥ Y rationally, then τ(X) ≥ τ(Y ). Very roughly, τ is a
measure of how complicated the irreducible Hodge substructures in the cohomology of a
given variety are. It has good properties under taking products, so it provides obstructions
to being rationally dominated by a product. Schoen proves in [67] among other things that,
for varieties X over C:

• if X = X1 × · · · × Xk, then τ(X) = max{τ(Xi) | 1 ≤ i ≤ k};

• if X is an Abelian variety, τ(X) = 0 if X is of CM type, and τ(X) = 1 otherwise;

• if X is a smooth projective curve, τ(X) = τ(Jac(X));

• if X ⊂ CPN is a sufficiently general complete intersection of degree > N + 1,
τ(X) = dim(X);

57



58 6. Domination by Products

• if X is a sufficiently ample, sufficiently general smooth divisor on a smooth projective
variety of dimension n + 1, then τ(X) = n.

On the other hand, for τ to be non-trivial, the Hodge structure of the underlying variety
cannot be too simple. For instance, τ vanishes when there are no holomorphic forms, which
occurs for example in certain complex ball quotients. This shortcoming is noted in [67],
where it is also remarked that a result due to Zheng precludes the rational domination of a
complex variety with ample cotangent bundle by a product. That is indeed the case on a
compact ball quotient.

Our point of view is that of complex (differential) geometry: we obtain obstructions
from certain types of negativity of the tangent bundle of a manifold, which are geometric
(or directly motivated by geometric notions) in the sense that they come from properties of
the curvature of the Chern connection with respect to a Hermitian structure on the tangent
bundle. We review known notions of negativity in Section 6.1; the results obstructing
domination by products are discussed in Section 6.2. In Section 6.3, we apply the results of
Section 6.2 to show that that the Fano surface of lines in a cubic is not rationally dominated
by a product. This was previously proved by Schreieder in [68].

In the topological world, domination (meaning the existence of a continuous map of
non-zero degree) by a product manifold has been studied in [49], where certain obstructions
coming from the fundamental group can be found. Any topological obstruction obviously
applies to holomorphic domination by products in the same dimension, but it turns out that
the results in [49] can sometimes be applied to the rational case, without the assumption
on dimension [50].

6.1 Negativity Notions

We start by recalling notions of negativity for the tangent bundle of a complex manifold,
as well as some of their consequences. The content in this section is standard. We start in
6.1.1 with some basic curvature properties of Hermitian vector bundles, as can be found
in any introductory textbook (e.g. [39] or [32]). In 6.1.2 we specialize to the case of the
tangent bundle, recalling the notion of bisecional curvature and collecting a number of
consequences of its negativity. Finally, 6.1.3 contains an analytic counterpart to the notion
of negative bisectional curvature. The material therein can be found e.g. in [45, Ch. 6].

6.1.1 Curvature on Hermitian bundles

Let X be a complex manifold and E −→ X a holomorphic vector bundle with a Hermitian
metric h. The pair (E, h) is called a Hermitian vector bundle. Denote by ∇ the Chern
connection of h, that is, the unique connection on E which is compatible with the holomor-
phic structure ∂E and the metric h. Let d∇ be the exterior derivative associated to ∇ and
F∇ = d2

∇ ∈ A1,1(End(E)) the curvature. When no confusion may arise, we will drop the
reference to the connection and the bundle in our notation.



6.1. Negativity Notions 59

Definition 6.2. A Hermitian vector bundle (E, h) over X is called Griffiths-positive if for
every p ∈ X and every non-zero v ∈ TpX and e ∈ Ep we have h(F (v, v)e, e) > 0.

We define Griffiths negative (semi-positive, etc.) Hermitian vector bundles in the same
manner. When E is a line bundle, positivity of E is the same as positivity of its real
first Chern class c1(E) = i

2π [FE ] ∈ H2(X; R) in the usual sense. As for line bundles,
it makes sense to define positivity for holomorphic vector bundles. Namely, we say a
holomorphic vector bundle is Griffiths positive when it admits a metric which makes it a
positive Hermitian vector bundle.

If S ⊂ E is a holomorphic subbundle, the quotient bundle Q = E/S is also holomorphic.
Furthermore, we have (smoothly, but not necessarily holomorphically) E = S ⊕Q. In what
follows, we implicitly identify Q with S⊥. Let ∇S , resp. ∇Q, be the Chern connection of
the induced metric on S, resp. Q, and set

λS = ∇E |S −∇S ∈ A1,0(Hom(S, Q))

λQ = ∇E |Q −∇Q ∈ A0,1(Hom(Q, S)).

We call λS the second fundamental form of S. Let {si} be a local unitary frame for S, which
we complete to a local unitary frame for E. Denote by WE , WS and WQ the corresponding
connection matrices of ∇E , ∇S and ∇Q, all skew-hermitian, since the frame was picked
unitary. Similarly, let LS , LQ be the matrices of λS , λQ. Then

WE =

�
WS LS

LQ WQ

�
.

We have LS = −L†
Q, where † denotes the conjugate transpose. The curvature matrix ΩE

of ∇E is given in terms of the Cartan formula by ΩE = dWE − WE ∧ WE , so

ΩE |S =ΩS − LS ∧ LQ = ΩS + LS ∧ L†
S

ΩE |Q =ΩQ − LQ ∧ LS = ΩQ + LQ ∧ L†
Q.

On the other hand, LS ∧ L†
S ≥ 0, since LS is a matrix of (1, 0)-forms. We conclude that

FS ≤ FE |S and FQ ≥ FE |Q, i.e. curvature decreases on subbundles and increases on
quotient bundles.

Remark 6.3. Let E, E1 and E2 be Hermitian vector bundles on X with Chern connections
∇, ∇1 and ∇2. Recall that the curvature of a connection has the following naturality
properties:

(i) the curvature of induced connection ∇∗ on the dual E∗ is given by F∇∗
= −(F∇)T ;

(ii) the curvature of induced connection ∇⊗ on the tensor product E1 ⊗ E2 is given by
F∇⊗

= F∇1 ⊗ IdE2 + IdE1 ⊗ F∇2 ;

(iii) the curvature of induced connection ∇⊕ on the direct sum E1 ⊕ E2 is given by
F∇⊕

= F∇1 ⊕ F∇2 .
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In all the above, the induced connections are the Chern connections of the respective
induced Hermitian metrics. It follows that Griffiths positivity (semi-positivity, negativity,
semi-negativity) is preserved under tensor products and direct sums. On the other hand,
E is Griffiths (semi-)positive if and only if its dual is (semi-)negative. Moreover, since
ΛkE is a direct summand of E⊗k (hence both a quotient and a subbundle), it is Griffiths
(semi-)positive, respectively (semi-)negative, if E is Griffiths (semi-)positive, respectively
(semi-)negative.

We prove now the following well known Bochner type formula for later use:

Lemma 6.4. Let X be a complex manifold and (E, h) a Hermitian vector bundle on X
with associated Chern connection ∇. Let s be a section of E, f : X −→ R the function
f(x) = h(s, s)(x) and α = ∂∂f . Then we have

α(w, w) = �∇ws�2 − h(F∇(w, w)s, s).

Proof. Recall that the exterior derivative d∇ induced on A∗(E), the exterior algebra of
the smooth forms with values in E fulfills dh(ψ1,ψ2) = h(d∇ψ1,ψ2) + (−1)kh(ψ1, d∇ψ2)
for ψi ∈ Ak(E), and that on decomposable elements ψi = βi ⊗ ei ∈ Aki(E) we have
h(ψ1,ψ2) = (β1 ∧ β2)h(e1, e2). Then

α = − ∂∂h(s, s) = −d∂h(s, s) = −d(dh(s, s))1,0

= − d(h(∇s, s) + h(s,∇s))1,0

= − d(h(∇1,0s, s) + h(s,∇0,1s)).

Using the fact that ∇ is the Chern connection, so that ∇0,1 = ∂E , we see that

α = − dh(∇1,0s, s) = −dh(∇s, s)

= − (h(F∇s, s) − h(∇s,∇s))

=h(∇s,∇s) − h(F∇s, s).

Therefore, for w ∈ TX, we have

α(w, w) = h(∇ws,∇ws) − h(F∇(w, w)s, s)

as claimed.

This lemma has the following consequence for the sections of a Griffiths semi-negative
vector bundle:

Proposition 6.5. Let X be a compact complex manifold and E −→ X a vector bundle
with a Griffiths semi-negative Hermitian metric h. Then every section s ∈ H0(X, E) of E
is parallel with respect to the Chern connection of h. If moreover E is Griffiths negative
around a point, then H0(X, E) = 0.

Proof. Let s ∈ H0(X, E). The form α from Lemma 6.4 is then semi-positive, so f is
plurisubharmonic on X and therefore constant, so α vanishes identically. This implies that
∇s = 0. Suppose that E is also Griffiths negative around a point. Were s not to vanish
identically, then α would be non-zero. Therefore s = 0.
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6.1.2 Holomorphic bisectional curvature

We now consider the case where E = TX, keeping the notation as in the previous section.

Definition 6.6. Let X be a Hermitian manifold, p ∈ X and 0 �= v, w ∈ TpX. Denote by
F the curvature of the Chern connection on TX. The holomorphic bisectional curvature B
between v and w is

B(v, w) =
h(F (v, v)w, w)

�v�2�w�2
.

The holomorphic sectional curvature H of v is H(v) = B(v, v).

The holomorphic bisectional curvature is thus a curvature between complex lines in
each complex tangent space. Due to the principle of decreasing curvature on subbundles,
the holomorphic bisectional curvature BY of a submanifold Y ⊂ X fulfills BY ≤ B|TY .

Lemma 6.7. Let X be a complex manifold, viewed as an (integrable) almost complex
manifold (X, J) with a Kähler metric g. Let p ∈ X and let A, B ∈ TpX be two vectors with
unit length in the (real) tangent bundle of X. Then the holomorphic bisectional curvature
between the J-invariant planes defined by A and B is B(A, B) = g(R(A, JA)JB, B), where
R is the Riemann tensor of the metric g.

Proof. The Riemannian metric g in TX extends sesquilinearly to TCX. Denote this
extension also by g. We can identify (TX, h, J) with (T 1,0X, g|T 1,0X , i) ⊂ TCX. Moreover,
a unit vector v ∈ T 1,0X is written uniquely in terms of a unit real vector A ∈ TX via
v = 2−

1
2 (A− iJA). Since X is a Kähler manifold, the Chern connection (on T 1,0X) and the

Levi-Civita connection (on TX) are identified, and the curvature of the Chern connection
is given by the restriction to T 1,0X of the complex linear extension of the Riemann tensor
R. Setting w = 2−

1
2 (B − iJB) we have

B(A, B) := B(v, w) =h(F (v, v)w, w)

=1
4g(R(A − iJA, A + iJA)(B − iJB), B − iJB))

=1
4g((R(A, iJA) − R(iJA, A))(B − iJB), B − iJB)

= i
2g(R(A, JA)(B − iJB), B − iJB)

= i
2 (g(R(A, JA)B,−iJB) − g(R(A, JA)iJB, B)))

= i
2 (ig(R(A, JA)B, JB) + ig(R(A, JA)B, JB)))

= − g(R(A, JA)B, JB) = g(R(A, JA)JB, B),

as claimed.

Remark 6.8. This relation between B and R suggests a different way to define a curvature
between complex lines, which makes sense even in the almost complex case – in fact, this is
the definition of Goldberg and Kobayashi in [31]. When the metric is not Kähler, there
several distinct connections (and curvatures) one can consider, all natural in a certain
sense, which capture different aspects of the underlying Hermitian structure. Consequently,
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the curvature should be chosen in terms of the properties one wants to study. The way
we defined the holomorphic bisectional curvature makes it especially suitable to study
questions pertaining to complex objects. Losing the Riemannian picture is the price we
have to pay when we don’t have the Kähler condition to connect the Riemannian and the
complex world.

Due to the symmetries of a Kähler curvature tensor, the holomorphic bisectional
curvature of a Kähler metric is symmetric in its entries, and it can be related to the
sectional curvature by the following lemma, in which we keep the notation of Lemma 6.7.

Lemma 6.9. The holomorphic bisectional curvature of a Kähler metric is given in terms
of the sectional curvature by B(A, B) = K(A, B)(1− g(A, B)2)+K(A, JB)(1− g(A, JB)2).

Proof. By Lemma 6.7, for A,B unit vectors in the real tangent bundle of X, we have

B(A, B) =g(R(A, JA)JB, B)

= − g(R(JA, JB)A, B) − g(R(JB, A)JA, B)

= − g(R(A, B)A, B) − g(R(JB, A)JJA, JB)

=g(R(A, B)B, A) + g(R(JB, A)A, JB)

=K(A, B)(1 − g(A, B)2) + K(A, B)(1 − g(A, JB)2),

where we used the Bianchi identity in the second equality, and a symmetry of the Kähler
curvature tensor in the third. In particular, if A and B are orthonormal, B(A, B) =
K(A, B) + K(A, JB).

Remark 6.10. On a Kähler manifold, the holomorphic sectional curvature determines
completely the curvature tensor (see e.g. [46]).

As in the Riemannian setting, it is interesting to study conditions on the sign of B; of
course due to Lemma 6.9, given any Kähler metric, a sign condition on K implies the same
sign condition on B.

For a compact complex manifold X admitting a Hermitian metric with B > 0, Mori [60]
proved using algebraic methods that X is isomorphic to the complex projective space
(the Frankel conjecture). Yau-Siu also gave a differential geometric argument proving the
same result in [72]. A generalization to non-negative bisectional curvature in the form of a
uniformization theorem (the generalized Frankel conjecture) was later given by Mok in [59].

In the case B < 0, note that, because of Remark 6.3, X has an ample canonical bundle
(and is in particular projective of general type), since K∗

X is an exterior power of the tangent
bundle, and therefore negative. When X is Kähler, one has the following theorem, proved
by Wu-Zheng for analytic metrics, and extended by Liu to an arbitrary Kähler metric.

Theorem 6.11 (Wu-Zheng [77], Liu [55]). Let X be a compact Kähler manifold of dimen-
sion n with non-positive bisectional curvature. Then there exists a finite covering X � of X
such that X � is a metric and holomorphic fiber bundle over a compact Kähler manifold N
of dimension k with non-positive bisectional curvature, and fiber a complex torus. Moreover,
N has c1(N) < 0 (in particular, X has Kodaira dimension k).
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The following Lemma 6.12 computes the holomorphic bisectional curvature of a convex
linear combination of metrics. This kind of control of the curvature of a sum of metrics
allows us to deduce the well known Proposition 6.13. We provide a detailed proof of the
lemma, since we will need it in the subsequent section.

Lemma 6.12. Let g, h be Hermitian (not necessarily Kähler) metrics on a complex manifold
X and denote by k the Hermitian metric k = g + h. Let {si}i be a local holomorphic frame
on the tangent bundle of X, and let G, H, K denote the matrices of g, h, k, respectively, in
this frame. Let Wg and Wh denote the connection matrices of the Chern connections of
g and h, and let Bg, Bh, Bk denote the matrices Bg = ΩgG, Bh = ΩhH and Bk = ΩkK,
where Ωg, Ωh, Ωk denote the curvature matrices of g, h, k on the frame {si}i. Then

Bk = Bg + Bh − (Wh − Wg)(G
−1 + H−1)−1(Wh − Wg)

†. (6.1)

Proof. Let g, h be as above. We compute the holomorphic bisectional curvature of k = g+h.
We have Gij = g(si, sj), Hij = h(si, sj) and K = G + H. Since our frame is holomorphic,
WgG = ∂G and WhH = ∂H, where Wg and Wh denote the connection matrices of g and h.
Taking the conjugate transpose of these equations and noting that G and H are Hermitian,
we see that GW †

g = ∂G and HW †
h = ∂H. Then the matrix of the Chern connection of k is

Wk = ∂(G + H)(G + H)−1. On the other hand, we have

∂(WkK) = ∂WkK − Wk ∧ ∂K =∂∂(G + H)

=∂∂G + ∂∂H

=∂WgG − Wg ∧ ∂G + ∂WhH − Wh ∧ ∂H.

Note now that the holomorphic bisectional curvature is given by the matrix Bk = ΩkK,
where Ωk = ∂Wk is the curvature matrix of the Chern connection. By this we mean that if
v, w ∈ TpX are a unit vectors, with v expressed in terms of our frame by v =

�
i λisi(p),

then (λ† · ΩkK · λ)(w, w) = k(Ωk(w, w)v, v). So we find

Bk = Bg + Bh − Wg ∧ GW †
g − Wh ∧ HW †

h + Wk ∧ ∂K. (6.2)

For the last term, omitting the wedge for a cleaner notation,

Wk∂K =∂KK−1∂K

=(WgG + WhH)K−1(GW †
g + HW †

h)

=(WgK + WhH)K−1(GW †
g + HW †

h) − WgHK−1(GW †
g + HW †

h)

=(Wg + (Wh − Wg)HK−1)(GW †
g + HW †

h)

=Wg(GW †
g + HW †

h) + (Wh − Wg)HK−1(GW †
g + HW †

h)

=Wg(GW †
g + HW †

h) + (Wh − Wg)HK−1(GW †
g + KW †

h)+

− (Wh − Wg)HK−1GW †
h

=WgGW †
g + (Wh − Wg)HK−1GW †

g + WhHW †
h − (Wh − Wg)HK−1GW †

h

=WgGW †
g + WhHW †

h + (Wh − Wg)HK−1G(W †
g − W †

h).
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Replacing this term in (6.2), and using the identity H(G + H)−1G = (G−1 + H−1)−1, we
finally get

Bk = Bg + Bh − (Wh − Wg)(G
−1 + H−1)−1(Wh − Wg)

†,

which is the expression in (6.1).

Since the inverse of a positive definite matrix is positive definite, Proposition 6.13
follows from (6.1),

Proposition 6.13. Let g, h be Hermitian (not necessarily Kähler) metrics with nonpositive
holomorphic bisectional curvature on a complex manifold. Then g +h is a Hermitian metric
with nonpositive holomorphic bisectional curvature. If in addition g has strictly negative
holomorphic bisectional curvature, then g + h is a Hermitian metric with strictly negative
holomorphic bisectional curvature.

Corollary 6.14. The set F(X) of Hermitian metrics on X with nonpositive holomorphic
bisectional curvature forms a convex cone in the space of sections of TX ⊗ TX.

6.1.3 Analytic Negativity

We now come to a more flexible notion of negativity for vector bundles, which we will see
generalizes Griffiths negativity.

Definition 6.15. Let r, p be integers with 0 ≤ p ≤ n and let X be a complex manifold of
dimension n. A holomorphic vector bundle E −→ X of rank r is said to be p–negative if
there exists a continuous function f : E −→ R, f ≥ 0, such that:

(i) f−1(0) is the zero section of E,

(ii) f is of class C2 on E×, the complement of the zero section of E, and

(iii) the complex Hessian i∂∂f of the restriction of f to E× has at least r + p positive
eigenvalues.

We say that a complex manifold is p–negative if its tangent bundle is p–negative.

In particular, if E is p–negative, then it is l-negative for all 0 ≤ l ≤ p. The following
examples show that p–negativity encompasses both algebraic and differential geometric
notions of negativity.

Example 6.16 (Griffiths negative bundles). Let E be a Hermitian bundle of rank r. Define
on E a function f : E −→ R by f(e) := h(e, e). On a trivialization (x, u) �−→ �

i uisi

given by r pointwise linearly independent local holomorphic sections si, f is given by
f(x, u) =

�
i,j h(si, sj)uiuj so that, by Lemma 6.4,

∂∂f =
�

i,j

h(si, sj)dui ∧ duj +
�

i

�
h(ui∇si, ui∇si) − h(F∇(uisi), uisi)

�
.
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The number of positive eigenvalues of i∂∂f is invariant under a biholomorphism.
Therefore, if E admits a metric h such for each x ∈ X and e ∈ Ex the Hermitian form
v �−→ h(F∇(v, v)e, e) on TxX has p negative eigenvalues, then E is p–negative.

Therefore a Griffiths negative vector bundle E of rank r is n-negative. In particular, a
complex manifold with negative holomorphic bisectional curvature is n-negative.

Example 6.17 (The dual of an ample vector bundle). Let E −→ X be a holomorphic vector
bundle on a compact complex manifold X, and let π : P(E) −→ X be its projectivization.
On P(E) one can consider the tautological bundle line bundle

OP(E)(−1) := {([e], e) ∈ π∗(E) | e ∈ E},

as well as its dual OP(E)(1). Recall E is called ample1 if OP(E∗)(1) is ample as a line bundle
over P(E∗).

Assume then that E∗ is ample. Then OP(E)(−1) admits a Hermitian metric h with
strictly negative curvature. The metric h defines a function f : E× −→ R

f(e) := h[e](e, e).

Note that f extends, by setting f ≡ 0 on the zero section of E, to a continuous function
E −→ R, which we continue to denote by f .

Note that OP(E)(−1) is the total space of the blow-up of E along its zero section, with
exceptional divisor the zero section of OP(E)(−1). Thus the natural map OP(E)(−1)× −→
E× is a biholomorphism. Now on a local trivialization ([e],λ) �−→ λs([e]) for OP(E)(−1)
given by a local non-vanishing holomorphic section s, the metric h is given by �λ�2h(s, s).
Moreover, due to Lemma 6.4,

∂∂(|λ|2h(s, s)) = h(s, s)dλ ∧ dλ + |λ|2 (h(∇s,∇s) − h(s, s)Ω) ,

where ∇ denotes the Chern connection of h and Ω its curvature, which is strictly negative if
E is ample. We conclude that i∂∂f is positive definite on E× so that E is n-negative. More
generally, whenever OP(E)(−1) admits a metric whose curvature has k negative eigenvalues,

E is (k + 1)-negative.

The concept of p–negativity appears in connection with discreteness and finiteness
results for spaces of holomorphic (and meromorphic) maps between complex manifolds, for
instance in [41] and [61]. This is relevant to us due to the following reason: suppose that a
complex manifold Y is given, and that one knows a priori that the space of holomorphic
maps

Holk(X,Y ) := {ϕ : X −→ Y |ϕ holomorphic and dim(ϕ(X)) = k}
is discrete for arbitrary X with dim(X) < dim(Y ) and arbitrary k < dim(Y ). Then Y is not
holomorphically dominated by a product. Indeed, if Y is dominated by a product X1 × X2

1 This definition of ampleness for vector bundles may seem strange; this is due to our convention for the
projectivization.
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with dim(Xi) < dim(Y ), take a dominant map f : X1 × X2 −→ Y and pick a regular
point (x1, x2) of f . The restrictions fx := f |{x}×X2

, where x lies in a sufficiently small
neighbourhood of x1, therefore form a non-trivial continuous family of maps X2 −→ Y .

Information about the finiteness of Holk(X, Y ) is provided by the following:

Theorem 6.18 (Kalka-Schiffman-Wong [41]). Let X be a compact connected complex
space and let Y be a connected n-dimensional manifold, not necessarily compact. If TY is
p–negative, then Holn−p+1(X, Y ) is discrete.

A similar result due to Noguchi and Sunada is the following.

Theorem 6.19 (Noguchi-Sunada [61]). Let X and Y be algebraic varieties, with Y smooth
and complete of dimension n. If the k-th exterior power Λk(TY ) of TY is n-negative, then
the space Merk(X, Y ) of meromorphic maps of rank k is finite.

By the remarks above, these theorems have in particular the following corollaries:

Corollary 6.20. Let Y be a complex manifold.

(i) If Y admits a metric with negative bisectional curvature, then Y is not holomorphically
dominated by a product.

(ii) Suppose that Y is compact and projective with ample cotangent bundle. Then Y is
not rationally dominated by a product.

6.2 Quasi-negativity and domination by products

In order to get more general domination results than Corollary 6.20, we wish to consider
weaker notions of negativity on the tangent bundle. The idea is that, in contrast to
imposing conditions on the tangent bundle which prescribe negativity everywhere, like
Griffiths negativity, p–negativity or ampleness of the dual, it should suffice to prescribe it
at a single point, provided one has non-positivity everywhere2. This is partly motivated by
the Bochner type formula in Lemma 6.4 and the subsequent Proposition 6.5.

Going in this direction, the following is a natural geometric condition to consider on
the holomorphic bisectional curvature:

Definition 6.21. A Hermitian manifold X has quasi-negative holomorphic bisectional
curvature if B ≤ 0 and there exists a point p ∈ X such that Bp < 0.

For the reasons explained in section 6.1.1, quasi-negativity of the holomorphic bisectional
curvature is inherited by submanifolds. A direct application of Proposition 6.5 yields:

Corollary 6.22. Let X be a Hermitian manifold and Y ⊂ X a compact complex submani-
fold. If the holomorphic bisectional curvature of X is quasi-negative along Y , a holomorphic
vector field on X must vanish along Y .

2It is manifestly not enough to impose negativity at a point without global non-positivity: due to Lemma
6.12, it is always possible to make the bisectional curvature arbitrarily negative at a point.
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Proof. This follows from Proposition 6.5 with E = TX|Y .

Therefore a complex manifold X = X1 × X2 where one of the factors, say X1, is
compact admits no metric with quasi-negative bisectional curvature, as one can apply the
above corollary to X1 × U for a sufficiently small open set U ⊂ X2. A modification of
this argument can be used to show that if dim(X) = dim(Y ), and Y has a metric with
quasi-negative bisectional curvature, then no dominant holomorphic map X −→ Y exists:

Proposition 6.23. Let Y be a compact complex manifold with a Hermitian metric of
quasi-negative holomorphic bisectional curvature. Then Y is not holomorphically dominated
by a product X = X1 × X2, where X1 is compact and dim(X) = dim(Y ).

Proof. Suppose such a map ϕ : X1 × X2 −→ Y exists. Since ϕ is surjective, the regular
point set R of ϕ is open and dense in X1 × X2.

We consider on X an arbitrary product metric g and on Y a Hermitian metric h
with quasi-negative holomorphic bisectional curvature. Then we can define a new metric
k := g +ϕ∗h on X. Notice that ϕ∗h defines a metric on R with quasi-negative holomorphic
bisectional curvature.

Let then (x1, x2) ∈ R be a point where ϕ∗h has negative holomorphic bisectional
curvature. Let v2 be a non-vanishing vector field defined on a neighbourhood U2 ⊂ X2 of
x2, and consider f : X1 −→ R defined by f(x) = h(v2, v2)(x, x2). By Lemma 6.4 we have
for α = −∂∂f

α(w, w) = �∇wv2�2 − B(v2, w)�v2�2�w�2,

where w ∈ TxX1.
On the other hand, by virtue of g being a product metric, we have Bg(v2, w) = 0.

Therefore we can use Lemma 6.12 to conclude that Bk(v2, w) ≤ 0, and moreover, for all
w ∈ Tx1X1, Bk(v2, w) < 0. Then iα is an exact semi-positive 2-form on the compact
manifold X1 which is strictly positive at a point, which is a contradiction.

The proof of the above proposition gives some direct geometric insight concerning the
role the quasi-negativity condition plays in obstructing domination by products. We aim
now to prove a more general result, where however this role will become in some ways
less apparent. We begin by weakening the notion of n–negativity to quasi -p–negativity, in
such a way that the notion of quasi-n-negativity becomes a generalization of the notion of
quasi-negative holomorphic bisectional curvature.

Definition 6.24. Let 0 ≤ p ≤ n and let X be a complex manifold of dimension n. A
holomorphic vector bundle E −→ X of rank r is said to be quasi p–negative if there exists
a continuous function f : E −→ R, f ≥ 0 such that:

(i) f−1(0) is the zero section of E,

(ii) f is of class C2 on E×, the complement of the zero section of E,

(iii) there exists a point x ∈ X and a neighbourhood U ⊂ X of x such that the restriction
of the complex Hessian i∂∂f to E×

U has at least r + p positive eigenvalues and
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(iv) i∂∂f is non-negative on E× (i.e. f is plurisubharmonic).

Then we can adapt the methods in [41] to derive the following theorem (see also [45,
Ch. 7]).

Theorem 6.25. Let Y be a complex manifold of dimension n. Let l > 1 be an integer
and let X = X1 × · · · × Xl, where Xi are compact complex manifolds of dimension mi < n.
Further let k = mini(mi) and p an integer satisfying p > k. Assume that TY is quasi
p–negative, and let ϕ : X −→ Y be a holomorphic map such that ϕ does not factor through
X1 × · · · × �Xj × · · · × Xl ⊂ X for any j. Then ϕ is not dominant.

Proof. For a contradiction, suppose that such a ϕ exists. Without loss of generality,
assume m1 = k and define Z = X2 × · · · × Xl.

Let f be as in Definition 6.24, let W ⊂ Y be such that i∂∂h has n+p positive eigenvalues
on TY |W , and put V = ϕ−1(W ). There exists a regular point x = (x1, . . . , xl) ∈ V ⊂ X of
ϕ and a vector v1 ∈ Tx1X1 such that v = (v1, 0, . . . , 0) ∈ TxX has Dϕ(v) �= 0 (otherwise, ϕ
would not depend on X1, and thus factor through Z contradicting our assumption).

Now consider the embedding ψ : Z �→ TX given by taking Z to the product of
v1 ∈ Tx1X1 with the zero section of TZ, that is

(z2, . . . , zl)
ψ�−−−−→ (v1, 0, . . . , 0) ∈ Tx1X1 × Tz2X2 × · · · × Tzl

Xl.

Note that the image of Z̃ := ψ(Z) under Dϕ is not contained in the zero section of
TY , and the dimension of Dϕ(Z̃) is at least n − m1. Now f̃ := f ◦ ϕ is continuous and
plurisubharmonic, therefore constant on Z̃. On the other hand, consider the point w =
Dxϕ(v) ∈ ϕ(Z̃). Since w ∈ TY |W , i∂∂h has n+p positive eigenvalues at w. Therefore there
exists through w a local n + p complex submanifold S where h is strictly plurisubharmonic.
Comparing dimensions, we see that dim(S ∩ ϕ(Z̃)) ≥ (n + p) + (n − m1) − 2n = p − k > 0.
It follows that f cannot be constant on Dϕ(Z̃), so f̃ is not constant on Z̃, which is a
contradiction.

Our notion of quasi p–negativity has obvious minimality implications for projective
varieties:

Lemma 6.26. Let Y be quasi p–negative for some p ≥ 0. Then every map ϕ : CPm −→ Y
is constant.

Proof. The tangent bundle of CPm is globally generated, so for every x ∈ CPm and
v ∈ TCPm there exists a holomorphic vector field V with V (x) = v. Let f : TY −→ R be
plurisubharmonic with f−1(0) equal to the zero section of TY . The map f◦Dϕ◦V : X −→ R
takes the value 0 on a zero of V , and since f is plurisubharmonic it must be constant equal
to zero. Hence Dϕ(v) vanishes for every v ∈ TCPm.

Thus Theorem 6.25 yields also the following corollary.
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Corollary 6.27. Let Y be a projective variety which admits a metric with quasi-negative
bisectional curvature. Then Y is not rationally dominated by a product.

Proof. Suppose there exists a rational map ϕ : X −→ Y , where X = X1 × · · · × Xk is
compact with dim(Xi) < Y . After a finite sequence of blow-ups

X̃N −→ . . . −→ X̃1 −→ X

along subvarieties, one obtains from X a smooth projective subvariety X̃ = X̃N and a
holomorphic map ϕ̃ : X̃ −→ Y which factorizes through ϕ and the blowdown to X. At
each stage X̃i −→ X̃i−1, the exceptional divisor fibers over the blow-up locus with fiber
a projective space of dimension at least one. On the other hand, by Lemma 6.26, the
composition of the blowdown to X̃N −→ X with ϕ has to be constant along each such fiber.
Proceeding inductively from N to 1, we conclude that the rational map ϕ was holomorphic
after all.

Since Y admits a metric with quasi-negative bisectional curvature, its tangent bundle
is quasi n-negative, and we obtain a contradiction to Theorem 6.25.

6.3 Examples

In this section we give two examples that illustrate our results.

6.3.1 Immersions in the Albanese torus

Given a Kähler manifold which is immersed by its Albanese map, we want to understand
under what conditions the induced metric has quasi-negative holomorphic bisectional
curvature.

Recall that the Albanese torus Alb(X) of a Kähler manifold X is given by

Alb(X) =
H0(X;Ω1)∗

H1(X; Z)
,

where a class l ∈ H1(X; Z) is identified with
�
l ∈ H0(X;Ω1)∗. Fix x ∈ X. Then

p �−→ (α �−→
� p

x
α) ∈ H0(X;Ω1)∗

is defined up to a translation l ∈ H1(X; Z), so it defines a map

αX : X −→ Alb(X),

the Albanese map of X with basepoint x. Its differential at p is

DpAlb : TpX −→ TpAlb(X) ∼= H0(X;Ω1)∗

v �−→ (α �−→ αp(v)) = Evv.
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Clearly, when Alb is an immersion, Ω1(X) is globally generated. The converse is also true,
as can be seen by taking the dual of the exact sequence

0 −→ TX −→ TAlb|X −→ NX −→ 0.

Assume now that αX is an immersion. Let q = h1,0 and n = dim(X) ≤ q. Let p ∈ X and
define

Ep = {V ∈ H0(X,Ω1)∗ | ∃ v ∈ TpX s.t. V (α) = α(v), ∀α ∈ H0(X,Ω1)},

so that Ep is the image of TpX under the Albanese map αX . Define in addition

Fp =H0(X,Ω1)∗/Ep, and

Zp = {α ∈ H0(X,Ω1) |αp = 0}.

Then we have Fp
∼= Z∗

p via the non-degenerate natural pairing V ⊗α �−→ V (α). Now recall
from section 6.1.1 that the holomorphic bisectional curvature of a submanifold of a flat
manifold is (up to normalization) −L†∧L, where L is the matrix of the second fundamental
form λ. Therefore, the holomorphic bisectional curvature is negative at p if and only if for
every v ∈ TpX, �

L† ∧ L
�

(v, v̄) > 0,

which is to say that the matrix L(v) has maximal rank.

In the present case, we can write λ as

λp : TpX −→ Hom(TpX, Z∗
p)

v �−→ (w �−→ (α �−→ (Lvα)(w))) ,

where Lvα denotes the Lie derivative of α in the direction of v. Note that since holomorphic
1-forms on Kähler manifolds are closed, we have that (Lvα)(w) = w(α(v)) by the Cartan
formula, and w(α(v)))p does not depend on the local extension one takes for v, because α
vanishes at p. Hence the holomorphic bisectional curvature is negative at p if, and only if,
for every nonzero v ∈ TpX the map

λp(v) : TpX −→ Z∗
p

w �−→ (Lv · )(w)

is injective. Note that w ∈ ker(λp(v)) if and only if (Lvα)(w) = 0 for every α ∈ Zp. We
have proved

Proposition 6.28. Let X be a compact Kähler manifold with globally generated cotangent
bundle. Then the metric induced by the immersion αX : X �→ Alb(X) has negative
holomorphic bisectional curvature at p if, and only if, for every 0 �= v, w ∈ TpX there exists
a holomorphic 1-form α which vanishes at p with 0 �= (Lvα)(w).
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6.3.2 Fano Surfaces

Now we will apply Corollary 6.27 to Fano surfaces of lines in a cubic, namely we will show
that such surfaces are not rationally dominated by a product by showing that they admit a
metric with quasi-negative holomorphic bisectional curvature.

Let V be a cubic threefold in 4-dimensional projective space, with at most one nodal
singularity. We consider the surface S of lines in V , concretely

S = {L ⊂ V | L is a line.}.

These surfaces are extensively studied in [17], where they are used in the proof of the
non-rationality of V . A crucial ingredient in that proof is the following:

Theorem 6.29 (Tangent bundle theorem, [17]). There is a commutative diagram

S αS(S) ⊂ Alb(S)

Gr(2, 5) Gr(2, T0Alb(S))

αS

ι g

ρ̃

where ι : S −→ Gr(2, 5) is the natural embedding one gets from sending a line L ⊂ V ⊂ CP4

to the 2-plane it defines in C5, α is the Albanese map (which for Fano surfaces is an
embedding), g is the Gauss map, and ρ̃ is the isomorphism induced on the Grassmannians
by an isomorphism ρ : C5 −→ T0Alb(S).

We make use of the fact that Fano surfaces embed in their Albanese tori, whose flat
metric then restricts to a metric of non-positive holomorphic bisectional curvature on the
Fano surface.3 Our task is thus to prove the existence of a point where the holomorphic
bisectional curvature is strictly negative. The idea is the following. To find a point where
the holomorphic bisectional curvature is negative is to find a point where the second
fundamental form is non-degenerate. But the second fundamental form is given by the
derivative of the Gauss map g ◦ αS . The commutativity of the diagram in the tangent
bundle theorem says that the second fundamental form of the embedding in the Albanese
variety is given by the differential of the natural embedding of the Fano surface in Gr(2, 5).

The holomorphic bisectional curvature is therefore negative (with respect to the metric
induced by the Albanese) at a point s ∈ S if, and only if, for every v ∈ TsS ⊂ TsGr(2, 5)
the map λv : Ls −→ C5/Ls defined by the identification TKGr(k, n) ≡ Hom(K, Cn/K) is
injective. We will now determine the maps λv for v ∈ TsS when Ls is a line of first type
(see [17, Def. 6.6]). We may assume that Ls is given by [x0 : x1] �−→ [x0 : x1 : 0 : 0 : 0].
After a linear change of coordinates in x2, x3, x4, we can, as in [17, p. 308 (6.9)] write the
defining polynomial F for V as

F (x0, . . . , x4) = x2x
2
0 + x3x0x1 + x4x

2
1 +

�

i>1

O(x2
i ).

3 One should bear in mind that, while our argument is differential-geometric, the metric we chose is
canonical and depends only on algebraic-geometric properties of Fano surfaces.
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Now we consider the chart around Ls for the Grassmannian Gr(2, 5)

(u2, u3, u4, z2, z3, z4) �−→ span{(1, 0, u2, u3, u4), (0, 1, z2, z3, z4)}.

In this chart, S is given by

u2 + O(u2
i , z

2
i ) = 0

u3 + z2 + O(u2
i , z

2
i ) = 0

u4 + z3 + O(u2
i , z

2
i ) = 0

z4 + O(u2
i , z

2
i ) = 0.

Let G : C6 −→ C4 be the function determined by the expression above. Then

ker(D0G) = ker




1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 0 0 1


 ,

so in terms of the coordinate basis, the tangent space to S at s is given by

TsS = span{(0, 1, 0,−1, 0, 0)� �� �
e1

, (0, 0, 1, 0,−1, 0)}� �� �
e2

.

In terms of the coordinate basis, the identification TLsGr(2, 5) ≡ Hom(Ls, C5/Ls) is

(v1, v2, v3, w1, w2, w3) �−→
�
∗ ∗ v1 v2 v3

∗ ∗ w1 w2 w3

�t

,

and it follows that for v = a1e1 + a2e2 ∈ TsS,

λv =

�
∗ ∗ 0 a1 a2

∗ ∗ −a1 −a2 0

�t

.

It is then clear that λv is injective for any v �= 0 ∈ TsS, so the holomorphic bisectional
curvature at s is negative.
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Verlag Basel 2001.

[64] T. Peternell, Towards a Mori theory on compact Kähler threefolds III,
Bull. Soc. math. France 129 (2001), 339–356.
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