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Introduction  
 

Atherothrombosis and current standard antiplatelet therapy 
 
Myocardial infarction and ischemic stroke are leading causes of mortality and morbidity 

worldwide [1]. A critical step precipitating these ischemic events is the erosion or rupture of 

atherosclerotic plaques that exposes thrombogenic material to the bloodstream [2, 3]. 

Atherosclerosis is a systemic disease characterized by intimal thickening due to cell and lipid 

accumulation leading to plaque formation and eventually plaque disruption [4, 5]. As a result of 

plaque rupture or erosion, platelets become activated, aggregate and form intravascular 

thrombi—a pathological process referred to as atherothrombosis [2-4]. In contrast, the 

physiological platelet activation during primary hemostasis is initiated in response to endothelial 

injury of the healthy vessel wall and prevents hemorrhage and blood loss [6]. Drug therapies 

aiming to prevent atherothrombotic events target platelet activation and aggregation and are 

commonly used to lower the vascular risk in patients suffering from coronary or cerebrovascular 

disease [7]. 

 

Antiplatelet therapy is generally conducted either as a single drug application of acetylsalicylic 

acid (ASA) alone or as dual anti-platelet therapy (DAPT) by combining the former with an 

antagonist of the ADP-receptor P2Y12 [8-10]. ASA inhibits the formation of the prothrombotic 

thromboxane A2 (TxA2) by irreversible inhibition of the platelet cyclooxygenase I (COX I) [11]. 

The P2Y12-receptor antagonists inhibit platelet activation by adenosine diphosphate (ADP). 

ADP is released from dense platelet granules at sites of platelet adhesion and aggregation 

accompanied by different cytokines and other biologically active substances [8, 11]. Released 

ADP then activates additional platelets via the P2Y12- and P2Y1-receptors and leads to further 

platelet aggregation and secretion via feedback amplification and, hence, to thrombus 

propagation [8]. The substances cangrelor and ticagrelor—the latter was used as a 

representative of the P2Y12-receptor antagonists in the conducted studies—act as direct and 

reversible P2Y12-receptor antagonist, while clopidogrel, prasugrel and ticlopidine irreversibly 

block the P2Y12-receptor after being transformed into their active metabolite via hepatic 

metabolism [8, 11].  
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DAPT and heparin is the standard therapy in patients with acute coronary syndromes (ACS) 

and myocardial infarction undergoing percutaneous coronary intervention (PCI) [12-15]. In 

certain high risk patients undergoing PCI an even stronger antiplatelet medication with 

glycoprotein IIbIIIa (GPIIbIIIa) inhibitors can be indicated: GPIIbIIIa inhibitors such as abciximab, 

eptifibatide or tirofiban are then applied intravenously in addition to unfractionated heparin 

(UFH) and pretreatment with or without clopidogrel [8, 12-19]. By blocking the platelet integrin 

αIIbβ3, GPIIbIIIa inhibitors act as fibrinogen-receptor antagonists and thereby strongly inhibit 

platelet aggregation [11]. 

 

All mentioned drugs target and inhibit platelet activation and aggregation at the cost of an 

increased bleeding risk, ranking from minor bleeding to fatal intracranial bleeding [9, 10, 20, 21]. 

While the pathological thrombus formation is inhibited by these antiplatelet drugs, the 

physiological process of primary hemostasis that prevents hemorrhage and blood loss, is 

affected as well. Severe bleedings occur especially when drug combinations are applied [10]. 

However, the combination of antiplatelet drugs is more effective in preventing ischemic events 

compared to single drug therapy [9, 10]. Although the current standard antiplatelet therapies 

provide an improved treatment of cardio- and cerebrovascular diseases, atherothrombosis is 

still a problem [22]. On the other hand, an improvement or increase in the antithrombotic 

effect—for example by combining different antiplatelet drugs—can lead to an increased 

bleeding risk [10, 21, 22]. This explains the need and search for novel antiplatelet drugs that 

might complement or even replace the currently used antiplatelet therapies. Ideally, these novel 

drugs should have no or little effect on physiological hemostasis while effectively inhibiting the 

pathological thrombus formation found in atherothrombosis.  

 

One of these novel strategies in antiplatelet therapy is the targeting of platelet glycoprotein VI 

(GPVI). GPVI, a 60-65 kDa type I transmembrane glycoprotein of the immunoglobulin 

superfamily, contains two immunoglobulin-like loops (D1 and D2) in its extracellular domains, 

which are crucial for collagen-binding [23, 24]. It is co-expressed on platelets with the Fc 

receptor γ-chain (FcRγ). The latter is crucial for surface expression of GPVI as well as for 

signaling through the receptor [25, 26]. GPVI associates with the Src family kinases Fyn and 

Lyn as well as with calmodulin [27, 28]. Ligand binding to GPVI leads to cross-linking and 

clustering of the receptor and activation of Fyn and Lyn which phosphorylate immunoreceptor 

tyrosine-based activation motifs (ITAM) within the cytoplasmic tail of FcRγ. The phosphorylated 

ITAMs in turn bind to the tandem SH2 domains of Syk leading to its activation [28]. These initial 
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signaling steps lead to the assemblance and phosphorylation of downstream adapters, the 

activation of phospholipase Cγ2 (PLCγ2) with the subsequent increase in cytosolic calcium and 

protein kinase C activation. The latter signals ultimately lead to activation of platelets [26, 29, 

30].  

 

GPVI is present on the platelet surface both as monomer and dimer [31, 32]. While the 

monomeric form predominates on resting platelets, the expression of the dimeric form on the 

platelet surface increases when platelets are stimulated [32]. Only the dimeric form of GPVI is 

important for platelet activation and aggregation as it shows high affinity binding to glycine-

proline-hydroxyproline (GPO) sequence repeats in collagen fibers [24, 33-35]. The described 

process is crucial in plaque-induced thrombus formation [36]. 

 

 

The importance of GPVI in atherothrombosis  
 

The main thrombogenic components of atherosclerotic plaques are collagen type I and III. [36, 

37]. The interaction of platelet GPVI with these collagenous plaque components was shown to 

be crucial in plaque-induced platelet activation [36, 38]. Binding of GPVI to these collagen 

structures initiates platelet activation via the mentioned intracellular signaling: Shape change 

and adhesion of platelets are induced, followed by activation of fibrinogen receptors and 

secretion of the secondary platelet agonists TxA2 and ADP, subsequently leading to thrombus 

formation [7, 36]. The former is contrasted by the coordinated interaction via two platelet surface 

collagen receptors—GPVI and integrin α2ß1—stimulated by collagen from healthy vessel walls 

[39]. The two collagen receptors play an important role in stable platelet adhesion to normal 

collagen, and upon collagen-interaction individual platelets appear to use either of them [39]. 

Hence, individual platelets become activated via GPVI either before or after integrin α2ß1-

mediated stable platelet adhesion. So, while both platelet collagen receptors are essential for 

platelet interaction with collagen from healthy vessel walls, GPVI alone is sufficient for platelet 

interaction with and activation by plaque-derived collagen [36].  

 

The structure of the plaque-derived collagen differs greatly from the structure of collagen found 

in healthy vessel walls. This indicates that the interaction with and activation of platelets is 

influenced by aspects of the collagen structure [36, 40, 41]. Both enzymatic and non-enzymatic 

processes may be involved in the evolvement of these differences in collagen structure. Plaque-
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collagen is known to be cleaved by proteolytic enzymes, primarily by specific matrix 

metalloproteinases (MMPs) that are overexpressed in atherosclerotic plaques due to 

inflammation [42-45]. The resulting small and diffuse cross-linked collagen fragments 

nevertheless retain their ability to activate platelet GPVI or might even have an increased 

capacity to activate platelets [36]. Further, adjacent collagen molecules become linked non-

enzymatically by advanced glycation end products (AGEs) that accumulate during ageing and 

diabetes and provoke changes in the fibrillar collagen structure [46, 47]. These changes in 

collagen structure might explain why GPVI is responsible for plaque-induced platelet 

aggregation while the second platelet collagen receptor—the integrin α2ß1—seems to play an 

only minor role in atherothrombosis [36, 48].  

 

 

GPVI in hemostasis  
 

Since GPVI plays an important role in platelet activation, it could be expected that its deficiency 

would have a severe impact on normal hemostasis [22]. However, patients with GPVI deficiency 

present an only mild bleeding tendency [26, 49-55]. GPVI deficiency is most frequently found in 

acquired immune thrombocytopenia: Patients commonly present mild to severe 

thrombocytopenia accompanied by a lack of collagen-induced platelet activation due to 

antibody-induced GPVI depletion [49-52]. In response to ligand binding, GPVI is proteolytically 

cleaved from the platelet surface mediated prominently by members of the a disintegrin and 

metalloproteinase (ADAM) family: ADAM10 and ADAM17. [56-62]. Activating as well as non-

activating anti-GPVI antibodies, collagen and fibrin as well as inhibitors of GPVI-related 

signaling proteins–such as Syk, Src family kinases and calmodulin–lead to the release of 

soluble GPVI fragments [56, 57, 60, 63-65]. Patients with anti-GPVI auto-antibodies may also 

have thrombocytopenia which is explained by increased phagocytosis, sequestration and 

clearance of antibody-bound platelets [51]. Further, signaling through the FcRγ-chain seems to 

play an essential part in the signaling process leading to thrombocytopenia since mice bearing a 

mutant variant of the FcRγ-chain did not develop detectable thrombocytopenia [66]. In contrast, 

a normal platelet count is found in patients with congenital GPVI deficiency, and a compound 

heterozygous GPVI mutation was identified in two of these cases [53-55]. Bleeding tendency in 

all these patients were described as mild, although the acquired condition can bear the risk of 

severe bleeding complications if combined with thrombocytopenia [26].  
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These findings are confirmed by studies in GPVI deficient mice. In knock-out mice GPVI 

deficiency is obtained by gene knock-out of the genes coding for GPVI or FcRγ—since the co-

receptor FcRγ is necessary for GPVI surface expression [25, 67, 68]. An acquired deficiency in 

GPVI in mice can also be induced via the injection of anti-GPVI antibodies leading to transient 

thrombocytopenia and GPVI depletion: The injection of rat anti-murine GPVI antibodies—

termed JAQ1, JAQ2 and JAQ3 which are directed to different epitopes of GPVI—into mice 

resulted in a prolonged GPVI depletion in circulating murine platelets [63, 69, 70]. In vitro 

antibody treatment did not achieve the same depletion, and the existence of a pathway 

downstream of GPVI—leading to internalization and irreversible loss of murine GPVI—was 

proposed [58, 66]. Whether a similar internalization process occurs in human platelets treated 

with anti-GPVI antibodies in vitro or in vivo has not yet been established [58, 71]. However, anti-

GPVI antibody treatment of human platelets can induce GPVI shedding in vitro, probably by 

metalloproteolysis [71]. As well as for patients with GPVI deficiency no serious hemorrhagic 

impact was observed in GPVI deficient mice. The longer bleeding time occasionally observed 

may be associated with modifier genes [72]. In summary, these observations indicate an only 

minor role of GPVI in normal hemostasis [22, 73].  

 

 

GPVI as a target in antiplatelet therapy 
 

Since GPVI is the most important collagen-receptor in atherothrombosis, while only being of 

minor importance in hemostasis, it is an ideal target in antiplatelet therapy [36, 74]. Targeting 

GPVI allows to preferentially inhibit atherosclerotic plaque-induced platelet aggregation while 

systemic bleeding tendencies are not likely to become severely altered and physiologic 

hemostasis should be preserved. Further, a good antithrombotic efficacy can be expected due 

to the early inhibition of platelet activation combined with an additional reduction in thrombin 

generation—probably by inhibiting its interaction with fibrin polymers [22, 75]. Furthermore, 

GPVI expression is restricted to platelets and megakaryocytes and its inhibition should have no 

effect on other cells [76, 77].  

 

Of note, platelet GPVI expression varies dependent on the GPVI-genotype and is higher in 

patients with transient ischemic attack and stroke [78, 79]. Accordingly, patients with acute 

stroke and large artery disease presented elevated levels of plasma soluble GPVI (sGPVI) 

suggesting an association between metalloproteinase-mediated shedding of platelet GPVI and 
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atherothrombotic disease [62, 80]. In mice depletion of GPVI significantly reduced the infarct 

volume in acute experimental stroke without any increase in bleeding complications. The latter 

indicates both the involvement of GPVI in stroke development and a favorable safety profile 

concerning its inhibition [81].  

 

An enhanced GPVI expression was further displayed in patients with ACS as an independent 

marker of myocardial ischemia [82]. Several studies indicate that allelic differences in GPVI alter 

platelet function and that polymorphic variations at the GPVI locus effect the susceptibility for 

myocardial infarction [83-85]. Possession of the C-allele of the GPVI T13254C polymorphism 

showed an association with coronary thrombosis [85]. An increased risk for myocardial 

infarction was further described for the GPVI 13254CC genotype [83]. These observations 

further indicate that GPVI might be an ideal therapeutic target when aiming to prevent cardio- 

and cerebrovascular events.  

 

 

GPVI targeting strategies 
 

The GPVI pathway may be targeted via different strategies. One approach is to inhibit the 

platelet GPVI-collagen-interaction. This can be achieved either by GPVI-mimics competing with 

platelet GPVI for collagen binding or by anti-GPVI antibodies blocking platelet GPVI—without 

effecting GPVI expression [74]. Since anti-GPVI-antibodies act systemically and inhibit GPVI on 

all circulating platelets, they are potent inhibitors of platelet aggregation and might increase 

bleeding tendencies as observed in some patients with anti-GPVI auto-antibodies [26, 86]. 

Some anti-GPVI antibodies like JAC-1 in mice induce platelet GPVI depletion [63, 87, 88]. This 

second strategy would most likely provide a prolonged antithrombotic effect [69, 89]. However, 

GPVI depletion might influence the platelet count and provoke thrombocytopenia [26, 69]. Its 

mechanism and the activation signals involved are so far only poorly characterized [89]. A third 

approach might be the use of signaling inhibitors such as kinase-targeting drugs to inhibit 

collagen-triggered platelet responses via the GPVI signaling pathway [89]. The lack of specificity 

presented by the targeted kinases might though lead to a wide range of possible adverse effects 

[89]. Hence, targeting the GPVI-collagen-interaction might be the most promising approach.  
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Advantages of GPVI targeting via GPVI-Fc 
 

Inhibition of platelet GPVI binding to collagen can be achieved by the dimeric GPVI-Fc fusion 

protein revacept®—in the following referred to as GPVI-Fc [86, 90]. The soluble fusion protein, 

of approximately 150 kDa molecular mass, comprises two extracellular domains of human 

GPVI–each linked to the Fc of human IgG1 by a 3-amino acid linker sequencen—and the 

resulting dimere structure shows high affinity to collagen typ I and III [24, 33, 86, 90].  

 

GPVI-Fc does not act systemically: it binds to vascular collagen only when it is exposed after 

atherosclerotic plaque rupture/erosion or injury of healthy vessels [86]. Further, GPVI-Fc did not 

increase bleeding in mice and humans. [90, 91]. In a phase 1 study a single intravenous GPVI-

Fc application was shown to be safe and well tolerated without affecting hemostasis in healthy 

human volunteers [90]. Long-term application of GPVI-Fc in mice also attenuated 

atheroprogression by inhibiting GPVI-mediated platelet adhesion to atherosclerotic vessel walls 

[48, 92]. Additionally, prolonged GPVI-Fc-administration showed favorable effects on vascular 

remodeling after wire injury of murine carotid arteries [93]. Hence, GPVI-Fc administration might 

provide beneficial effects beyond short term application [90].  

 

GPVI-Fc furthermore showed a more potent inhibition of platelet thrombus formation onto 

atherosclerotic plaques at high shear flow, as found in stenotic vessels, compared to arterial 

flow at lower shear rates [94]. The latter suggests—in addition to the lesion-focused mechanism 

of action of GPVI-Fc—a rather localized antithrombotic efficacy at stenotic atherosclerotic 

lesions that have a high risk to rupture [2, 94]. The possibility of a localized antiplatelet therapy 

at sites of plaque rupture and erosion combined with the absence of noticeable effects on 

hemostasis is the reason why in the dissertation GPVI-Fc was favored over anti-GPVI 

antibodies.  
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Objectives  
 

I. GPVI-Fc in combination with standard antiplatelet drugs in plaque-
induced thrombus formation in vitro 
 

The primary purpose of this dissertation was to study the potential of GPVI-Fc as an adjunct to 

current standard antiplatelet therapy and to deduce its possible effect when applied on top of 

these drugs in clinical settings caused by atherothrombotic events—as found in myocardial 

infarction, ischemic stroke or PCI [95]. Toward that end, GPVI-Fc was combined with ASA, the 

P2Y12-receptor-antagonist ticagrelor, alone or in combination (DAPT), or the anti-GPIIbIIIa 

antibody abciximab in an experimental setting mimicking atherosclerotic plaque-induced 

atherothrombosis in vitro [95].  

 

Both static assays and dynamic experiments under arterial flow conditions were conducted 

comparing the different single drugs and their combinations [95]. GPVI-Fc or buffer control was 

added to blood from healthy human volunteers anticoagulated with hirudin—in order not to 

disturb the physiological blood concentrations of Ca2+ and Mg2+ both important in platelet 

adhesion and aggregation to collagen [95-97]. The blood contained additionally ASA, ticagrelor, 

both antiplatelet drugs, or abciximab alone or combined with ASA and/or ticagrelor [95]. Static 

platelet aggregation was determined by multiple electrode aggregometry (MEA) using the 

Multiplate® device. Dynamic experiments were performed to simulate platelet activation by 

plaque rupture or erosion: Blood was perfused over human atherosclerotic plaque homogenate 

at a shear rate of 600/s representing the approximate mean physiological wall shear rate of 

carotid and coronary arteries and, subsequently, platelet deposition to plaque-collagen was 

measured and analyzed via fluorescent microscopy [95, 98-100].  

 

Effects on platelet aggregation were examined as well as effects on platelet adhesion. The latter 

was studied in the presence of the fibrinogen receptor antagonist abciximab, that is clinically 

used in PCI and blocks platelet aggregation [12, 19]. Stable and total platelet adhesion were 

compared since subsequent platelet aggregation—in the natural setting with undisturbed 

platelet fibrinogen receptor binding—may be determined rather by stable than by transient 

platelet adhesion to plaque-collagen [95]. Stable platelet adhesion was therefore measured after 

stopping blood flow and rinsing off rolling or loosely attached platelets [95]. In vitro bleeding 
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times for each drug or combination were further measured by the PFA-200 device simulating 

primary hemostasis ex vivo [95].  

 

The results were published in the paper “Recombinant GPVI-Fc added to single or dual anti-

platelet therapy in vitro prevents plaque-induced platelet thrombus formation” [95].  

 

 

II. Enhancing the antithrombotic potential of GPVI-Fc by fusion to CD39 
 

A second approach aimed at increasing the antithrombotic potential and therapeutic efficiency 

of GPVI-Fc [101]. To target both GPVI-mediated and ADP-enforced platelet aggregation GPVI-

Fc was linked to the extracellular domain of the ecto-ADPase CD39 that splits prothrombotic 

extracellular ADP into AMP and Pi [101-103]. The enzyme is amongst others expressed by 

endothelial cells and is important to keep platelets non-activated while they pass through intact 

blood vessels [102]. Recombinant soluble CD39 (sCD39) might hence serve as an effective 

inhibitor of platelet reactivity by inhibiting ADP-mediated platelet recruitment without any direct 

effect on platelets [101, 103].  

 

General CD39 activation has shown an increase in bleeding in different murine models—when 

applied intravenously as well as in CD39-transgenic mice [104, 105]. Since GPVI-Fc acts locally 

at sites of plaque rupture and erosion and is more potent at high shear flow found at stenoses, 

the linker molecule is expected to turn the systemic action of sCD39 into a localized action 

focused to the lesion site [94, 101]. Consequently, the effective doses of CD39 should be 

perceivably lower and systemic bleeding complications should be reduced compared to the 

application of sCD39 [101, 104, 106].  

In conclusion, the bifunctional fusion protein GPVI-CD39 was designed as a lesion-directed dual 

antiplatelet therapy expected to lack systemic bleeding complications [101]. The cDNA coding 

for the fusion protein was established by gene synthesis: The extracellular domain of platelet 

GPVI and the Fc part of human IgG2 were connected by a 15-amino acid linker to the 

extracellular domain of human CD39 [101]. While the original GPVI-Fc revacept® comprises the 

Fc of human IgG1, the fusion protein is—for steric reasons—composed of the Fc derived from 

human IgG2 [86, 90, 101]. The Fc domain facilitates dimerization of the fusion molecule while 

the flexible amino acid linker enables proper folding of the CD39 domain [101]. Doxycycline-
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inducible, stably transfected CHO cells successfully expressed the fusion protein which was 

subsequently purified from the cellular supernatant by protein G affinity chromatography [101]. 

The fusion molecule was evaluated regarding its inhibitory potential on collagen- and plaque-

induced platelet thrombus formation in vitro and arterial thrombus formation after vascular injury 

in mice in vivo [101]. Effects on platelet aggregation under static conditions were analyzed by 

MEA in human blood using collagens from different sources as well as human atherosclerotic 

plaque material and the secondary agonist ADP [101]. To simulate plaque-induced 

atherothrombosis blood was perfused over atherosclerotic plaque homogenate at different 

shear rates: Shear rates of 600/s and 1500/s were chosen to represent the mean physiological 

wall shear rate in carotid and coronary arteries and the shear rate at mildly stenotic coronary 

lesions, respectively [98, 101, 107]. Furthermore, pulsatile flow conditions were applied to mimic 

the stop-and-go blood flow found in coronary arteries [101, 108, 109]. The antithrombotic effects 

of GPVI-CD39 was additionally studied in vivo in a murine vascular injury model monitoring the 

time to vessel-occlusion after local application of 15% ferric chloride onto the common carotid 

artery [101]. To estimate bleeding tendencies in vitro closure times were measured with the 

PFA-200 device after adding GPVI-CD39 to citrated blood [101]. Pharmacokinetics and in vivo 

bleeding time were further studied in mice to determine the hazard potential of GPVI-CD39, 

since effective doses of sCD39 provoked a higher bleeding risk in different animal models [101, 

104, 105].   

The obtained results were published in the paper “ADPase CD39 Fused to Glycoprotein VI‐Fc 

Boosts Local Antithrombotic Effects at Vascular Lesions” [101]. The author’s contribution as co-

author consisted in the planning, realization, analysis and presentation of the static and flow 

experiments—represented in Figure 3 and Figure 4—as well as in the drafting of the respective 

paragraphs of the paper (methods and results). 
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Summary 
 

The dimeric fusion protein GPVI-Fc acts as a lesion-focused antiplatelet drug. It binds to plaque- 

collagen and conceals binding sites for platelet GPVI [86, 90]. Consequently, it inhibits platelet 

GPVI-mediated platelet activation and aggregation and therefore thrombus formation. The main 

purpose of this dissertation was to study the potential of GPVI-Fc as a possible clinical adjunct 

to ASA, a P2Y12-receptor-antagonist (ticagrelor), both (DAPT), or a GPIIbIIIa inhibitor 

(abciximab) in an experimental setting of plaque-induced atherothrombosis relevant for ischemic 

stroke, myocardial infarction or during PCI [95]. We investigated whether the addition of GPVI-

Fc on top of these antiplatelet drugs in vitro could further suppress plaque-induced platelet 

thrombus formation without untoward effects on primary hemostasis [95].  

 

Under static conditions, GPVI-Fc restrained plaque-induced platelet aggregation by 53 %, and 

enhanced platelet inhibition by ASA (51 %) and ticagrelor (64 %) to 66 % and 80 %, respectively 

[95]. Under arterial flow, GPVI-Fc reduced plaque-induced platelet aggregation by 57 %, and 

significantly increased platelet inhibition by ASA (28 %) and ticagrelor (47 %) to about 81 % 

each [95]. The triple combination of GPVI-Fc, ASA and ticagrelor resulted in a virtually complete 

inhibition of plaque-induced platelet aggregation (93 %) [95].  

 

In conclusion, GPVI-Fc added on top of ASA, ticagrelor or both provided superior inhibition of 

plaque-induced platelet aggregation as compared to the respective drugs alone or in 

combination [95]. These findings were particularly pronounced under arterial flow conditions 

[95]. The latter might be due to the strong inhibition of platelet adhesion to plaque-collagen by 

GPVI-Fc under flow [95]. In contrast to ASA and ticagrelor, GPVI-Fc directly inhibits the platelet-

collagen-interaction [95]. Furthermore, GPVI-Fc acts as a lesion-focused antiplatelet drug, 

whereas ASA and P2Y12-receptor-antagonists act systemically and suppress TxA2- or ADP-

mediated activation in all circulating platelets [86, 94]. Probably due to this mechanism of action 

which is restricted to the collagen exposed after rupture or erosion of atherosclerotic lesions, 

GPVI-Fc seems safe concerning bleeding risks [95]. Indeed, when added on top of ASA or 

ticagrelor, GPVI-Fc did not alter the PFA-200 closure time [95]. The latter is in accordance with 

previous findings in mice in vivo: GPVI-Fc did not prolong tail bleeding time when combined with 

ASA or a P2Y12-receptor-antagonist [91]. These results suggest that GPVI-Fc added to current 

single or dual antiplatelet therapy with ASA and/or P2Y12-receptor-antagonists might provide a 

superior protection against acute atherothrombotic events while bleeding risks are not increased 
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[95]. This rationale is supported by the increased platelet GPVI-expression in patients with ACS 

or ischemic stroke [80, 82, 95].  

In combination with the GPIIbIIIa antibody abciximab GPVI-Fc very strongly inhibited total 

(81 %) and stable (89 %) platelet adhesion to plaque under flow [95]. GPIIbIIIa inhibitors, which 

block platelet aggregation via fibrinogen-receptor-binding, are clinically used during PCI to 

prevent acute thrombotic complications and are known to increase bleeding risks [21, 110]. 

These findings suggest that the combination of GPIIbIIIa inhibitors with GPVI-Fc in patients 

could be harmful [95]. In conclusion, our study provides experimental evidence that the short-

term addition of GPVI-Fc to ASA and/or P2Y12-receptor-antagonists might provide a safe and 

superior anti-atherothrombotic protection during interventions and might replace the addition of 

GPIIbIIIa blockers [95]. 

To further enhance the antithrombotic potential of GPVI-Fc the recombinant fusion protein 

GPVI-CD39 was created and analyzed [101]. The fusion molecule efficiently degraded 

exogenous ADP and inhibited ADP-, collagen- and atherosclerotic plaque-induced platelet 

aggregation under static conditions as well as plaque-triggered thrombus formation under 

arterial flow [101]. The effect was dose and shear dependent: inhibition was more pronounced 

at high shear (1500/s) compared to low shear (600/s) [101]. GPVI-CD39 exhibited stronger 

potency than GPVI-Fc to inhibit aggregate formation when tested at concentrations of 

150 nmol/L at continuous flow at a shear rate of 600/s [101]. The difference was larger and 

significant when pulsatile flow was applied [101].  

GPVI-CD39 did not increase closure times in an in vitro assay simulating primary hemostasis 

using either COL/ADP or COL/EPI cartridges [101]. As expected, closure time increased 

significantly at higher GPVI-CD39 concentrations using P2Y cartridges—which allow for 

sensitive detection of P2Y antagonism—confirming effective inhibition of the secondary agonist 

ADP by the fusion molecule [101]. In a murine model of ferric chloride–induced carotid arterial 

thrombosis, GPVI-CD39 did not increase tail bleeding time in vivo while effectively delaying 

vascular thrombosis [101]. In accordance to previous data on sCD39 the respectively low 

concentrations of GPVI-CD39 applied suggest that the combination of CD39 with GPVI in a 

single molecule offers a favorable risk–benefit ratio when compared to sCD39 [101, 104, 106]. 

These findings suggest that the fusion protein GPVI-CD39 is an attractive strategy for lesion-

directed antiplatelet therapy: It inhibits collagen-induced platelet adhesion and aggregation at 

sites of plaque rupture and erosion and subsequently local platelet recruitment by the released 
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ADP without relevantly increasing systemic bleeding [101]. This local enrichment of CD39 

might, further, offer an attractive therapeutic option in arterial diseases since reduced CD39 

activity was shown to be associated with disease progression in patients with peripheral arterial 

disease [101, 111]. In addition, the frequently applied P2Y12-receptor antagonist clopidogrel and 

ticlopidine were shown to inhibit as prodrugs vascular CD39 activity in vitro [112]. Hence, short-

term intravenous GPVI-CD39 administration might result beneficial especially in acute vascular 

syndromes and emergency conditions [101]. In conclusion, the GPVI-CD39 fusion protein might 

be an effective and safe molecule for the treatment of acute atherothrombotic events and should 

be further investigated in clinical trials [101].  

 

 

Zusammenfassung 
 

Das dimere Fusionsprotein GPVI-Fc entfaltet seine antithrombozytäre Wirkung an athero-

sklerotischen Gefäßläsionen. Hier bindet es an Plaquekollagen und verbirgt so Bindungsstellen 

für GPVI auf Thrombozyten [86]. Dies führt zur Hemmung der GPVI-vermittelten Thrombozyten-

aktivierung und -aggregation und der Entstehung von Thromben. Das primäre Ziel dieser 

Dissertation lag in der Beantwortung der Frage, inwiefern GPVI-Fc als Zusatztherapie zu 

Acetylsalicylsäure (ASA), einem P2Y12-Rezeptor-Antagonisten (wie beispielsweise Ticagrelor), 

dualer Thrombozytenaggregationshemmung (DAPT) oder einem GPIIbIIIa-Rezeptor-

Antagonisten (wie beispielsweise Abciximab) klinisch sinnvoll sein könnte [95]. Die 

Durchführung der Versuche erfolgte in vitro in einem Modell der Plaque-induzierten 

Thrombozyten-aggregation, um die atherothrombotischen Ereignisse nach Ruptur oder Erosion 

atherosklerotischer Plaques – wie sie beim ischämischen Schlaganfall, beim Myokardinfarkt 

oder während perkutaner transluminaler Angioplastie auftreten – wiederzuspiegeln [95]. 

Untersucht wurde, ob sich durch Zusatz von GPVI-Fc eine zur bisherigen antithrombozytären 

Therapie zusätzliche Hemmung der Plaque-induzierten Thrombozytenaggregation – ohne 

negative Auswirkungen auf die primäre Hämostase – erreichen lässt [95]. 

 

Unter statischen Versuchsbedingungen bewirkte GPVI-Fc eine Reduktion der Plaque-

induzierten Thrombozytenaggregation von 53 % sowie eine Steigerung der Hemmung durch 

ASA (51 %) und Ticagrelor (64 %) von 66 % beziehungsweise von 80 % [95]. Unter arteriellen 

Flussbedingungen hemmte GPVI-Fc die Plaque-induzierten Thrombozytenaggregation mit 57 % 
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und führte zu einer signifikanten Steigerung der Hemmung durch ASA (28 %) und Ticagrelor 

(47 %) auf jeweils etwa 81 % [95]. Die Dreifachkombination von GPVI-Fc, ASA and Ticagrelor 

bewirkte eine beinahe vollständige Hemmung der Plaque-induzierten Thrombozytenaggregation 

(93 %) [95].  

 

Zusammenfassend bot die Zugabe von GPVI-Fc zu ASA, Ticagrelor oder beiden 

Aggregationshemmern eine überlegene Hemmung der Plaque-induzierten Thrombozyten-

aggregation im Vergleich zu den jeweils einzelnen Medikamenten oder deren Kombination [95]. 

Dies war insbesondere unter arteriellen Flussbedingungen ausgeprägt [95]. Letzteres beruht 

möglicherweise auf der spezifischen Hemmung der Thrombozytenadhäsion an Plaquekollagen 

durch GPVI-Fc unter Flussbedingungen [95]. Denn im Gegensatz zu ASA und Ticagrelor 

hemmt GPVI-Fc die Thrombozyten-Kollagen-Interaktion direkt [95]. Darüber hinaus wirkt GPVI-

Fc gezielt an Gefäßläsionen, während ASA und P2Y12-Rezeptor-Antagonisten eine 

systemische Wirkung zeigen und die TxA2- oder ADP-vermittelte Aktivierung aller zirkulierender 

Thrombozyten hemmen [86, 94]. Möglicherweise aufgrund dieses gezielten, auf das exponierte 

Kollagen an atherosklerotischen Gefäßläsionen begrenzten, Wirkmechanismus zeigt sich GPVI-

Fc sicher hinsichtlich Blutungsrisiken [95]. Übereinstimmend führte der Zusatz von GPVI-Fc zu 

ASA oder Ticagrelor nicht zu einer Veränderung der PFA-Verschlußzeit [95]. Letzteres steht in 

Einklang mit früheren Ergebnissen in vivo in Mäusen: GPVI-Fc führte nicht zu einer 

verlängerten Blutungszeit nach Verletzung der Schwanzspitze – auch nicht in Kombination mit 

ASA oder P2Y12-Rezeptor-Antagonisten [91]. Diese Ergebnisse legen nahe, dass der Zusatz 

von GPVI-Fc zur gängigen Thrombozytenaggregationshemmung mit ASA und/oder P2Y12-

Rezeptor-Antgonisten einen überlegenen Schutz vor akuten atherothrombotischen Ereignissen 

zu leisten vermag – ohne dabei eine Erhöhung des Blutungsrisikos zu bewirken [95]. Diese 

Argumentation wird ebenfalls gestützt durch das Vorliegen einer erhöhten GPVI-Expression bei 

Patienten mit ACS oder ischämischem Schlaganfall [80, 82, 95]. 

 

In Kombination mit dem GPIIbIIIa-Antikörper Abciximab führte GPVI-Fc zu einer sehr starken 

Hemmung der totalen (81 %) sowie der stabilen (89 %) Thrombozytenadhesion unter Fluss-

bedingungen [95]. GPIIbIIIa-Hemmer blockieren die Fibrinogen-Rezeptor-vermittelte Thrombo-

zytenaggregation und werden klinisch während perkutaner transluminaler Angioplastie zur 

Verhinderung akuter thrombotischer Komplikationen eingesetzt, wobei sie bekanntermaßen das 

Blutungsrisiko erhöhen [21, 110]. Die Ergebnisse legen nahe, dass die Kombination von 

GPIIbIIIa-Hemmern mit GPVI-Fc für Patienten von Nachteil sein könnte [95]. Die starke 
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Hemmung der Thrombozytenadhesion durch Kombination von GPVI-Fc und Abciximab deutet 

darauf hin, dass das gesteigerte Blutungsrisiko – welches nach Verabreichung von GPIIbIIIa-

Hemmern beobachtet wurde – durch Zusatz von GPVI-Fc verstärkt werden könnte [95]. 

Zusammenfassend liefert die Untersuchung experimentellen Anhalt dafür, dass der kurzzeitige 

Zusatz von GPVI-Fc zu ASA und/oder P2Y12-Rezeptor-Antagonisten einen sicheren und 

überlegeneren anti-atherothrombotischen Schutz während angioplastischer Eingriffe bieten 

könnte als die Zugabe von GPIIbIIIa-Hemmern [95]. 

 

Um das antithrombotische Potential von GPVI-Fc weiterzuentwickeln, wurde das rekombinante 

Fusionsprotein GPVI-CD39 entwickelt und analysiert [101]. Das Fusionsmolekül führte zu einem 

effizienten Abbau exogenen ADPs sowie zur Hemmung sowohl der ADP-, Kollagen- und 

Plaque-induzierten Thrombozytenaggregation unter statischen Bedingungen als auch der 

Plaque-induzierten Thrombusbildung unter arteriellen Flussbedingungen [101]. Der Effekt war 

scherraten- und dosisabhängig: Bei hoher Scherrate (1500/s) zeigte sich eine ausgeprägtere 

Hemmung im Vergleich zur niedrigeren Scherrate (600/s) [101]. GPVI-CD39 bewirkte eine 

stärkere Aggregationshemmung als GPVI-Fc bei einer Konzentration von 150 nmol/L und 

kontinuierlichem Fluss bei einer Scherrate von 600/s [101]. Dieser Unterschied war größer und 

signifikant unter pulsatilem Blutfluss [101]. 

 

GPVI-CD39 führte nicht zu einer Verlängerung der Verschlusszeit in einem in vitro Modell der 

primären Hämostase unter Verwendung von COL/ADP oder COL/EPI Testkartuschen [101]. 

Erwartungsgemäß zeigte sich eine signifikante Verlängerung der Blutungszeit bei höheren 

GPVI-CD39 Konzentrationen unter Verwendung von P2Y Testkartuschen [101]. Letztere 

erlauben einen sensitiven Nachweis eines P2Y Antagonismus und ihre Verwendung bestätigte 

eine effektive Hemmung des sekundären Agonisten ADP durch das Fusionsmolekül [101]. 

GPVI-CD39 verzögerte effektiv die Gefäßthrombosierung und führte nicht zu einer verlängerten 

Blutungszeit nach Verletzung der Schwanzspitze in vivo in einem Mausmodell der Eisen-

chlorid-induzierten Carotisarterien-Thrombose [101]. In Übereinstimmung zu früheren 

Ergebnissen zu sCD39 legen die vergleichsweise niedrigen GPVI-CD39 Konzentrationen nahe, 

dass die Kombination von CD39 und GPVI in einem Molekül ein günstigeres Risiko-Nutzen-

Verhältnis bietet im Vergleich zu sCD30 [101, 104, 106].  

 

Diese Ergebnisse zeigen, dass das rekombinante Fusionsprotein GPVI-CD39 eine attraktive 

Strategie für eine lokalisierte Thrombozytenaggregationshemmung an atherosklerotischen 
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Plaqueläsionen sein könnte: GPVI-CD39 hemmt die durch Plaque-Kollagen induzierte 

Thrombozytenadhesion und -aggregation und anschliessend lokal die durch sezerniertes ADP 

vermittelte Thrombozytenrekrutierung, ohne dabei eine Erhöhung der systemischen Blutungs-

neigung zu bewirken [101]. Eine solch lokale Anreicherung von CD39 könnte eine attraktive 

Therapieoption bei Patienten mit peripherer arterieller Verschlusskrankheit sein, da sich hier ein 

Zusammenhang zwischen reduzierter CD39 Aktivität und dem Fortschreiten der Erkrankung 

zeigte [101, 111]. Die diesen Patienten häufig verabreichten P2Y12-Rezeptor Antagonisten 

Clopidogrel und Ticlopidine bewirken als prodrugs zudem eine Hemmung der vaskulären CD39-

Aktivität in vitro [112]. Folglich könnte die kurzzeitige intravenöse Applikation von GPVI-CD39 

besonders vorteilhaft sein bei akuten atherothombotischen Ereignissen sowie in 

Notfallsituationen [101]. Zusammenfassend bietet sich mit dem GPVI-CD39 Fusionsprotein ein 

vielversprechendes Molekül für die Behandlung akuter atherothrombotischer Ereignisse, 

welches in klinischen Studien weiter untersucht werden sollte [101].  
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ADPase CD39 Fused to Glycoprotein VI-Fc Boosts Local
Antithrombotic Effects at Vascular Lesions
Heidrun Degen, PhD; Oliver Borst, MD; Melanie Ziegler, PhD; Ann-Katrin Mojica Munoz, MS; Janina Jamasbi, PhD; Britta Walker, VetD;
Silvia G€obel, VetD; Julia Fassbender, VetD; Kristin Adler, PhD; Richard Brandl, MD; G€otz M€unch, MD; Reinhard Lorenz, MD;
Wolfgang Siess, MD; Meinrad Gawaz, MD;* Martin Ungerer, MD*

Background-—GPVI (Glycoprotein VI) is the essential platelet collagen receptor in atherothrombosis. Dimeric GPVI-Fc (Revacept)
binds to GPVI binding sites on plaque collagen. As expected, it did not increase bleeding in clinical studies. GPVI-Fc is a potent
inhibitor of atherosclerotic plaque-induced platelet aggregation at high shear flow, but its inhibition at low shear flow is limited. We
sought to increase the platelet inhibitory potential by fusing GPVI-Fc to the ectonucleotidase CD39 (fusion protein GPVI-CD39),
which inhibits local ADP accumulation at vascular plaques, and thus to create a lesion-directed dual antiplatelet therapy that is
expected to lack systemic bleeding risks.

Methods and Results-—GPVI-CD39 effectively stimulated local ADP degradation and, compared with GPVI-Fc alone, led to
significantly increased inhibition of ADP-, collagen-, and human plaque–induced platelet aggregation in Multiplate aggregometry
and plaque-induced platelet thrombus formation under arterial flow conditions. GPVI-CD39 did not increase bleeding time in an
in vitro assay simulating primary hemostasis. In a mouse model of ferric chloride–induced arterial thrombosis, GPVI-CD39
effectively delayed vascular thrombosis but did not increase tail bleeding time in vivo.

Conclusions-—GPVI-CD39 is a novel approach to increase local antithrombotic activity at sites of atherosclerotic plaque rupture or
injury. It enhances GPVI-Fc–mediated platelet inhibition and presents a potentially effective and safe molecule for the treatment of
acute atherothrombotic events, with a favorable risk–benefit ratio. ( J Am Heart Assoc. 2017;6:e005991. DOI: 10.1161/JAHA.
117.005991.)

Key Words: glycoprotein • platelet • thrombosis

I schemic stroke is the most frequent disabling disease.
Stroke and myocardial infarction are leading causes of

death.1 Frequently, the underlying alteration is the rupture or
erosion of atherosclerotic plaques, leading to platelet

adhesion and thrombus formation and to embolization, as
observed in cerebral arteries.2 Platelet adhesion and activa-
tion mediated by GPVI (glycoprotein VI) and dependent on
collagen-bound von Willebrand factor play important roles in
human plaque-triggered thrombus formation and subsequent
development of cardiovascular syndromes such as stroke and
could be a target for pharmacological inhibition of patholog-
ical thrombus formation.3–6 The alternative collagen receptor,
a2b1-integrin, is not involved in plaque-induced platelet
aggregation.4,6 Targeting collagen-induced activation of GPVI
should allow preferential inhibition of atherosclerotic plaque-
induced thrombosis without affecting systemic hemostasis.
GPVI expression is specifically observed in platelets and
megakaryocytes.7,8

The interaction of GPVI with collagen can be inhibited
competitively by a dimeric GPVI-Fc fusion protein (Re-
vacept)9,10 or by antibodies that have been developed to
block GPVI.11–13 Whereas anti-GPVI antibodies are systemic
and potent inhibitors of plaque- and collagen-induced
platelet aggregation in static and dynamic models, GPVI-
Fc acts locally at the site of plaque rupture and is most
effective under high shear flow.12 Anti-GPVI antibodies
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might increase bleeding propensity, as observed in some
patients with anti-GPVI autoantibodies,13 whereas GPVI-Fc
does not interact directly with platelets, did not increase
bleeding times in clinical studies, and thus may be safer.10

Consequently, this drug circumvents important shortcom-
ings of existing platelet inhibitors and antithrombotics,
which all incur a moderately to greatly increased bleeding
risk.14,15

Sites of platelet adhesion and aggregation are also
characterized by local release of ADP, several cytokines,
and other biologically active substances from these plate-
lets.16 Released ADP activates additional platelets and leads
to further platelet aggregation and secretion and thrombus
propagation.16 The endothelial ecto-ADPase CD39
(ENTPDase1) degrades ADP to AMP and inorganic phosphate
(Pi) and thus locally inactivates an important platelet stimulus
that may cause occlusive thrombi.17–19 Gayle et al developed
a soluble form of CD39 that can inhibit platelet function
in vitro20 and in vivo.17,21 Hence, the potential of each, soluble
CD39 and soluble GPVI (GPVI-Fc) alone, to inhibit platelet
function has been characterized appropriately. General,
nonspecific CD39 activation, however, results in bleeding
propensity in CD39-transgenic mice22 and after systemic
application of soluble CD39 in vivo.23

In this study, we combined soluble CD39 and GPVI-Fc to
form a recombinant, bifunctional fusion protein (GPVI-CD39)
and showed that this molecule potently inhibits collagen- and
plaque-induced platelet thrombus formation in vitro and
arterial thrombus formation after vascular injury in vivo. Tail
bleeding time in mice was not prolonged. GPVI-CD39 can bind
to vascular lesions locally and concentrate in plaques, which

should allow for markedly lower effective doses than soluble
CD39, thus minimizing its bleeding propensity.

Methods

Reagents and Antibodies
Standard laboratory chemicals were purchased from Carl
Roth. Ham’s F-12 growth medium, fetal bovine serum, PBS,
and glutamine were from Biochrom. Blasticidin S was
obtained from InvivoGen. Hygromycin B came from Carl Roth.
ProCHO4 growth medium was from Lonza. All enzymes for
cloning were bought from New England Biolabs. Doxycycline
hydrochloride, ADP sodium salt, and ATP disodium salt
hydrate were purchased from Sigma-Aldrich. Part of the
recombinant hirudin was a kind gift from Prof. Christian P.
Sommerhoff (University of Munich), and another part was
purchased from Celgene. Collagen-related peptide was syn-
thesized at AnaSpec and chemically cross-linked. DiOC6 (3,30-
dihexyloxacarbocyanine iodide) was from Life Technologies.
midazolam (Dormicum; Roche) was purchased from Roche,
and medetomidine (Dormitor; Pfizer) and fentanyl were both
from Janssen-Cilag. Recombinant soluble human CD39
(solCD39) was obtained from R&D Systems. Goat–antihuman
Fcc and goat–antihuman IgG (H+L)-POD (peroxidase) were
purchased from Jackson ImmunoResearch.

Cloning and Protein Production
GPVI-Fc was taken from existing stocks. The cDNA coding for
the fusion protein (GPVI-CD39), consisting of the extracellular
domain of platelet GPVI, Fc (partial hinge region, CH2 and
CH3 domain) of human IgG2, and the extracellular domain of
human CD39, which was connected by a 15-amino acid linker,
was established by gene synthesis. For steric reasons, the
sequence coding for the Fc part of human IgG2 was inserted
into the GPVI-CD39 fusion protein, whereas the original GPVI-
Fc (also termed Revacept, which is currently in clinical
investigation) is composed of the Fc derived from human
IgG1. The cDNA was cloned into the mammalian expression
vector pcDNA5/FRT/TO using HindIII and BamHI sites. Flp-In-
CHO cells (Life Technologies) that had been genetically
modified to harbor the cDNA for a Tet repressor protein were
stably transfected with the expression construct and pOG44
helper plasmid using Lipofectamine 2000 (Thermo Fisher
Scientific) transfection reagent according to the instructions
of the supplier (Life Technologies). Stable adherent cells were
adapted to growth in suspension in the chemically defined
growth medium ProCHO4 supplemented with 4 mmol/L
glutamine, 600 lg/mL hygromycin B, and 20 lg/mL blasti-
cidin S. Recombinant protein expression was induced in
dense cultures by addition of 30 ng/mL doxycycline followed

Clinical Perspective

What Is New?

• Dimeric glycoprotein VI (GPVI-Fc; Revacept) binds to
collagen in atherothrombosis, GPVI. GPVI-Fc is a potent
inhibitor of atherosclerotic plaque-induced platelet aggre-
gation at high shear flow, but its inhibition at low shear flow
is limited.

• Fusing GPVI-Fc to the ectonucleotidase CD39, which
inhibits local ADP accumulation at vascular plaques, creates
a lesion-directed dual antiplatelet therapy that is expected
to lack systemic bleeding risks.

What Are the Clinical Implications?

• The fusion of GPVI-Fc and CD39 potently reduces intravas-
cular thrombus formation, adding to the therapeutic potency
of GPVI-Fc.

• Further development should investigate optimal dosing to
prepare clinical trials.
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by incubation at 31°C and 5% CO2 for 6 to 7 days in a
humidified atmosphere. The construct for the control protein
was produced by gene synthesis, accordingly. Expression of
Fc(IgG2) control proteins was performed in stably transfected
Flp-In-CHO cells grown at 37°C, 5% CO2 for 3 to 4 days in
Ham’s F-12 medium with 2% fetal bovine serum that had been
depleted for bovine IgG in advance. Recombinant proteins
were purified from cell culture supernatants using HiTrap
Protein G HP affinity chromatography columns (VWR),
according to the manufacturer’s manual. All proteins were
dialyzed against PBS. Purified GPVI-CD39 protein was sepa-
rated in nonreducing and reducing sample buffer in a Tris-
HEPES NH 4% to 20% gradient gel that was stained with
Coomassie Brilliant Blue G250.

ADPase Activity
Various concentrations of GPVI-CD39 or solCD39 protein or
plasma samples from the pharmacokinetic study diluted
1:500 to 1:2000 in assay buffer were incubated in 25 mmol/
L Tris-HCl, 5 mmol/L CaCl2, pH 7.5, with 200 lmol/L ADP in
a total volume of 100 lL for 30 minutes or 5 minutes at
37°C. Enzymatically released Pi was detected using the
Malachite Green phosphate detection kit, according to the
supplier’s manual (R&D Systems). A serial dilution of Pi
standard was analyzed in parallel, which facilitates quantifi-
cation of released Pi. Absorbance was measured at a wave
length of 630 nm using a Tecan Infinite 200 ELISA reader.
Enzymatic activity of purified protein was calculated taking
incubation time and protein amount into account and
expressed as units per milligram of protein.

Blood Collection
Blood was withdrawn from healthy volunteers who did not
take any anticoagulative medication within the past 14 days
with either recombinant hirudin (200 U/mL; 13 lg/mL) or
citrate as anticoagulant. Informed consent was obtained, as
approved by the local ethics committee. In total, 58 healthy
volunteers were included into the study: Blood samples from
39 participants were taken for in vitro experiments using
vascular agonists, and blood samples from 19 participants
were used for experiments involving human plaque material.

Human Carotid Atherosclerotic Plaque Material
Atherosclerotic plaques were donated from patients under-
going endarterectomy for high-grade carotid artery stenosis.24

Patients’ informed consent was obtained, as approved by the
ethics committee of the Faculty of Medicine of the University
of Munich, in accordance with the Declaration of Helsinki.
Plaque material from 10 patients was included. The carotid

plaque tissue was processed and preserved, as described.12

Plaque homogenates from 5 patients were mixed to obtain
plaque pools that were kept in aliquots at �80°C. Plaque
homogenates were used to stimulate platelets in blood under
static conditions or coated onto glass coverslips for flow
studies.12

Platelet Aggregation
The effect of GPVI-CD39 and control proteins on platelet
aggregation was analyzed using the Multiplate (Roche)
device.25 1:1 diluted hirudin-anticoagulated blood was prein-
cubated with antagonist for 3 minutes in the test cell without
stirring to avoid platelet preactivation.26 Agonist was added,
and samples were incubated for 6 minutes at 37°C with
stirring. The following agonists were used: 6.5 lmol/L ADP,
12 lg/mL collagen isolated from rabbit aorta, 103 lg/mL
collagen type I secreted by human fibroblasts (VitroCol;
Advanced BioMatrix), or 333 lg/mL pooled human plaque
homogenate. Platelet aggregation was measured in arbitrary
units over the time period (arbitrary units9minutes; cumula-
tive aggregation values).

Platelet Aggregation Under Flow Conditions
Glass coverslips were coated with pooled human plaque
homogenates, as described,12 and mounted into parallel plate
flow chambers using sticky slides (0.1 Luer sticky slides; ibidi)
previously blocked with 4% human serum albumin in PBS. The
flow chamber was then mounted on the stage of a fluores-
cence microscope (TE2000-E; Nikon) within an incubation
chamber (37°C). The flow chamber was rinsed with PBS and
blocked with 4% human serum albumin in PBS and subse-
quently perfused with hirudin-anticoagulated human blood
from healthy donors that had been preincubated for 10 min-
utes at 37°C with DiOC6 (1 lmol/L) to stain platelets and
with an antagonist or control protein. Blood was perfused with
continuous flow at shear rates of 600/s and 1500/s or with
pulsatile flow (60 pulses/min, 0.5 seconds: shear rate 0/s;
0.5 seconds: shear rate 1000/s; resulting in a mean shear
rate of about 600/s) using a withdrawal syringe pump.
Fluorescence of adhering platelets and platelet aggregates
was continuously recorded and quantified, as described in
detail.12

In Vivo Thrombus Formation After Ferric Chloride
Injury in Carotid Arteries
For examination of arterial thrombus formation in vivo,
C57BL/6J wild-type mice aged 6 to 8 weeks were anes-
thetized by injection of midazolam (5 mg/kg body weight),
medetomidine (0.5 mg/kg body weight), and fentanyl
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(0.05 mg/kg body weight). In the ferric chloride model, 21
mice were studied.

The common carotid artery was dissected free, and the
mice were injected intravenously 30 minutes before carotid
injury with GPVI-CD39 (3 mg/kg body weight) or its control
and with GP1ba-488 for platelet visualization. The carotid was
exteriorized and injured by topical application of a filter paper
saturated with 15% ferric chloride for 1 minute. Thrombus
formation in arteries was monitored for 20 minutes or until
complete occlusion (stop of blood flow for >1 minute). Digital
films and images were recorded with a Nikon Eclipse intravital
microscope and analyzed off-line.

Pharmacokinetic Analysis
Male and female wild-type C57BL/6J mice aged 12 to
22 weeks were used in this small-scale study. Nine mice were
investigated. GPVI-CD39 or solCD39 was applied at a volume
of 5 mL/kg into the right tail vein. At time points indicated in

the figure7C, blood sampling was performed by incision of the
left tail vein using 25 lL heparinized capillaries. Blood
samples were recovered by centrifugation at 2400g for
10 minutes. The upper plasma phase was transferred to fresh
tubes and stored frozen at �20°C.

Determination of Protein Concentration in Plasma
Samples of Mice
The concentration of GPVI-CD39 or Fc control protein in
plasma samples was determined by Fc-specific sandwich
ELISA. Wells of a MaxiSorp 96-well plate (Thermo Fisher
Scientific) were coated with 0.1 lg per well of goat–
antihuman Fcc antibody. Wells were washed 3 times with
PBST (PBS and Tween-20) between incubations. After block-
ing with 3% skimmed milk in PBST, wells were incubated for
1 hour with 50 lL plasma from mice treated with GPVI-CD39
(1:200) or Fc (1:500) diluted in PBST. Wells were incubated
for 1 hour with 100 lL of 80 ng/mL goat–antihuman IgG
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Figure 1. Structure scheme and biochemical characterization of bifunctional, recombinant GPVI-CD39 compared to GPVI-Fc. A, Structure
(left panel) and putative 3D-modeling (right panel) of bifunctional, recombinant GPVI-CD39 compared with GPVI-Fc. The 3D model shows the
extracellular GPVI domains in blue, the Fc part in green, and the CD39 domain in light red. The N-terminal leader peptides of each protein are
cleaved before secretion of each protein. B, Coomassie staining of GPVI-CD39 as purified from supernatants of GPVI-CD39–expressing cells.
C, Specific ADPase activity of recombinant GPVI-CD39 (333 nmol/L) in comparison to that of commercially available soluble CD39
(666 nmol/L; n=3, mean�SEM). Both specific activities were determined at other enzyme molarities and did not differ, as expected, because
substrate concentrations were not limiting. GPVI indicates glycoprotein VI; GPVI-CD39, dimeric glycoprotein VI and CD39 fusion protein; GPVI-
Fc, dimeric glycoprotein VI; nr, nonreducing conditions; r, reducing conditions.
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(H+L)-POD detection antibody. POD activity was visualized
using 100 ll of Ultra TMB-ELISA substrate (Thermo Fisher
Scientific), and signal intensities were read with a Tecan
Infinite F200 ELISA reader.

Analysis of In Vivo Tail Bleeding Time in Mice
Test or control substances were applied into the tail vein of
C57BL/6J mice. Animals were anesthetized by intraperitoneal
injection of 0.5 mg/kg medetomidine, 5 mg/kg midazolam,
and 0.05 mg/kg fentanyl. At 10 minutes after protein
delivery, a blood sample of 20 lL was drawn for analysis of
recombinant protein content and ADPase activity using a

heparinized capillary. At 15 minutes after protein application,
the distal 2 mm of the tail were cut off, and the tail was
immediately immersed in prewarmed PBS (37°C) and time-
monitored until bleeding stopped for at least 30 seconds. The
process was standardized to yield comparable results over
time, and results were reproducible. Animals were euthanized,
and a final blood sample was stored for analysis.

Determination of In Vitro Closure Time
Citrated blood of healthy donors was mixed with antagonist in
concentrations indicated in the figures 6 and added to Dade
PFA collagen/epinephrine, Dade PFA collagen/ADP, or
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Figure 2. Effects of GPVI-CD39 and GPVI-Fc fusion proteins and of control proteins on static platelet aggregation in blood after stimulation
with collagen or ADP. Platelet aggregation was determined by impedance aggregometry. Values are mean�SEM. A, Platelet aggregation after
stimulation with 12 lg/mL collagen extracted from rabbit aorta. Preincubation with increasing concentrations of GPVI-CD39 reduces platelet
aggregation more strongly than GPVI-Fc alone (n=5; **P<0.01 and ***P<0.001, compared with GPVI-Fc). B, Platelet aggregation after
stimulation with 103 lg/mL collagen from cultured human fibroblasts (VitroCol; Advanced BioMatrix), as determined by impedance
aggregometry. Preincubation with increasing concentrations of GPVI-CD39 reduces platelet aggregation more strongly than GPVI-Fc alone
(n=5; *P<0.05 and **P<0.01, compared with GPVI-Fc). C, Platelet aggregation after stimulation with 6.5 lmol/L ADP. Preincubation with
increasing concentrations of either GPVI-CD39 (n=8) or of soluble CD39 markedly reduces ADP-induced platelet aggregation, whereas GPVI-Fc
alone has no effect (**P<0.01 and ***P<0.001). AU indicates arbitrary unit; GPVI-CD39, dimeric glycoprotein VI and CD39 fusion protein;
GPVI-Fc, dimeric glycoprotein VI; solCD39, soluble CD39.

DOI: 10.1161/JAHA.117.005991 Journal of the American Heart Association 5

GPVI-CD39 Fusion Protein as Antithrombotic Agent Degen et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

 by guest on A
ugust 30, 2017

http://jaha.ahajournals.org/
D

ow
nloaded from

 

31

http://jaha.ahajournals.org/


Innovance PFA P2Y test cartridges (Siemens Healthcare).
Blood was aspirated under high shear conditions (>5000/s)
through a capillary onto a membrane with a small aperture
coated with substances that activate platelets and lead to
closure of this aperture. The time until closure of this aperture
is monitored and expressed as in vitro closure time with a
maximum closure time of 300 seconds.

Statstical Analysis
Normal distribution of all analyzed parameters was verified
and confirmed by Kolmogorov–Smirnov testing. Differences
between ≥2 experimental groups were analyzed by ANOVA
using SPSS software (version 19; IBM Corp), followed by
Fisher least significant difference post hoc testing. Specifi-
cally, 2-way repeated-measures ANOVA was used as indi-
cated. The Student t test with Bonferroni method was also
used when absence of differences in ADPase activity was
investigated.

Results

Description of GPVI-CD39 Protein and its
Properties
To enhance the antithrombotic potential of GPVI-Fc, we
created a fusion protein that combines the extracellular

collagen binding domain of GPVI with the extracellular domain
of CD39 harboring enzymatic ADPase activity (Figure 1A). The
Fc domain in between facilitates dimerization of the molecule,
as was confirmed by nonreducing polyacrylamide gel analysis
(Figure 1B). A flexible linker of 15 amino acids facilitates
proper folding of the CD39 domain. The protein was
successfully expressed by doxycycline-inducible, stably trans-
fected CHO cells and was purified from cellular supernatants
by protein G affinity chromatography. At various concentra-
tions, the fusion protein exhibited mean ADPase activity of
11.2�4.0 U/mg, which was similar to that of commercially
available solCD39 (12.5�3 U/mg).27 These results are shown
in Figure 1C. Statistical comparison of GPVI-CD39 with
solCD39 activities (equal amounts) yielded no significant
difference by either Student t testing or ANOVA.

Effect of GPVI Fusion Proteins on Collagen-, ADP-,
or Plaque-Induced Platelet Aggregation in Human
Blood Under Static Conditions
The effect of GPVI-CD39 on collagen-induced aggregation of
human platelets was analyzed in blood using collagens from
different sources as well as human plaque material and the
secondary agonist ADP. GPVI-CD39 exhibited a highly signif-
icant, dose-dependent inhibition of platelet aggregation
induced by 12 lg/mL collagen isolated from rabbit aorta
(Figure 2A). Similarly, using 103 lg/mL collagen secreted by
human fibroblasts (VitroCol; mainly type I collagen) as agonist,
GPVI-CD39 inhibited platelet aggregation significantly,
whereas GPVI-Fc resulted in only minor inhibition at the
same concentration (Figure 2B). Effective inhibition of ADP-
induced platelet aggregation occurred by GPVI-CD39 as well
as by equimolar concentrations of solCD39, using 6.5 lmol/L
ADP, whereas GPVI-Fc lacking the CD39 component displayed
no inhibitory effect (Figure 2C). Adding GPVI-CD39 to platelet
aggregation triggered by human plaque material (333 lg/mL)
also resulted in dose-dependent inhibition with an approxi-
mate IC50 value of 30 nmol/L (Figure 3). GPVI-Fc tested at
the same concentrations was markedly and significantly less
effective than GPVI-CD39.

Effect of GPVI Fusion Proteins on Plaque-Induced
Platelet Aggregate Formation Under Flow
Conditions
To mimic the situation found in arteries after human carotid
plaque rupture in vivo, pooled human plaque homogenates
from samples taken during carotid surgery were coated onto
glass coverslips, and human blood was perfused in a parallel
flow chamber over the coated surface at various arterial
shear rates in the presence or absence of GPVI fusion
proteins.
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Figure 3. GPVI-CD39 inhibits static platelet aggregation in
blood stimulated by human plaque more potently than GPVI-Fc.
Blood samples were preincubated for 3 min with increasing
concentrations of GPVI-CD39 or GPVI-Fc before stimulation with
plaque homogenate (333 lg/mL) for 10 min. Values are mean
�SEM (n=8). ***P<0.001 by 2-way ANOVA for factor concen-
tration and drug and secondary pairwise comparisons of isomolar
GPVI-CD39 vs GPVI-Fc by Fisher least significant difference. The
asterisks indicate significant differences between the 2 drugs at
isomolar concentrations. In addition, direct-pair comparisons
between isomolar drug concentrations by Student t testing
resulted in the same significance levels. AU indicates augmented
unit; GPVI-CD39, dimeric glycoprotein VI and CD39 fusion protein;
GPVI-Fc, dimeric glycoprotein VI.
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A shear rate of 600/s was selected to represent the
mean physiological wall shear rates in carotid and
coronary arteries, whereas a mean shear rate of
�1500/s has been described to prevail in mildly stenotic
coronary lesions.28 In addition, pulsatile flow conditions
were tested to simulate the stop-and-go blood flow in
coronary arteries. GPVI-CD39 exhibited stronger potency
than GPVI-Fc to inhibit aggregate formation when tested

at concentrations of 150 nmol/L at continuous flow at a
shear rate of 600/s (Figure 4A and 4B). The difference
was larger and significant when pulsatile flow was applied
(Figure 4B, right panel).

At the shear rate of 1500/s, the effects of GPVI-CD39
were more pronounced compared with its effects at the lower
shear rate. GPVI-CD39 at 150 nmol/L led to nearly complete
inhibition (�97%) of plaque-induced platelet aggregation.
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Figure 4. Effects of GPVI-CD39 and GPVI-Fc on plaque-induced platelet deposition from flowing blood at 2 arterial shear
rates. A, Representative micrographs display platelet coverage of pooled plaque homogenate at different times after start of
blood flow at 600/s. Blood was preincubated for 10 min with DiOC6 for platelet visualization in the absence (control) or
presence of GPVI-CD39 (150 nmol/L) or GPVI-Fc (150 nmol/L). B, Effects of GPVI-Fc and GPVI-CD39 on the kinetics of
platelet deposition onto human plaques from flowing blood at constant (shear rate 600/s) or pulsatile flow (60 pulses/min,
mean shear rate 600/s). The binary fluorescent area fraction (1.0=total area) was quantified, as detailed in Methods. Values
are mean�SEM of 8 experiments performed in parallel with the same blood donors. *P<0.05, by repeated-measures ANOVA
at 300 s and secondary pairwise comparison by Fisher least significant difference. Repeated measures refer to the
comparison of aliquots from samples of each donor under different concurrent experimental conditions at the same time. C,
Comparison of the effects of either 75 or 150 nmol/L GPVI-CD39 on plaque- induced platelet deposition from flowing blood
at low and high arterial shear rates. Blood was preincubated with DiOC6 for platelet visualization in the absence (control) or
presence of GPVI-CD39 (75 or 150 nmol/L) for 10 min at 37°C before start of flow at shear rates of 600/s or 1500/s.
Values are mean�SEM (n=6). *P<0.05 and **P<0.01 by repeated-measures ANOVA at 300 s and secondary pairwise
comparison by Fisher least significant difference. DiOC6 indicates 3,30-dihexyloxacarbocyanine iodide; GPVI-CD39, dimeric
glycoprotein VI and CD39 fusion protein; GPVI-Fc, dimeric glycoprotein VI.
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GPVI-CD39 at 75 nmol/L still significantly inhibited plaque-
induced platelet aggregation (Figure 4C).

Antithrombotic Effects of GPVI-CD39 In Vivo in a
Ferric Chloride Model
To investigate the antithrombotic effects of GPVI-CD39 in vivo
in mice, the common carotid artery was injured using 15%
ferric chloride, and the time to occlusion of the vessel was
monitored. In wild-type mice, the mean time to vessel
occlusion was 480 seconds (not shown). Intravenous admin-
istration of either vehicle (NaCl) or 1.5 mg/kg (10 nmol/kg)
GPVI-Fc resulted in similar occlusion times, whereas 3 mg/kg
(10 nmol/kg) GPVI-CD39 significantly delayed vessel occlu-
sion to 1083 seconds (Figure 5).

Assessment of Closure Times
The efficacy of GPVI-CD39 was also analyzed by measuring
closure times in response to various agonists with a platelet
function analyzer (Innovance PFA-200). Four different con-
centrations of GPVI-CD39 were tested, ranging from 21.7 to
217 nmol/L. Using either COL/ADP or COL/EPI cartridges,
no significant increase in closure times of the aperture
compared with the buffer control (PBS) was observed
(Figure 6A and 6B). Using the COL/EPI cartridges, only
acetylsalicylic acid, used as a positive control, inhibited the
closure of the aperture completely over the analyzed time
period. As expected, P2Y cartridges, which allow for sensitive
detection of P2Y antagonism, showed a statistically

significant increase in closure time using 47 to 217 nmol/L
GPVI-CD39 but not with 21 nmol/L (Figure 6C). The prolon-
gations with higher concentrations of GPVI-CD39 corre-
sponded to those observed with 1.9 lmol/L of the P2Y12
inhibitor ticagrelor (Figure 6C). These results confirmed
effective inhibition of the secondary agonist ADP by GPVI-
CD39.

Pharmacokinetic Analysis and Determination of
In Vivo Bleeding Time in Mice
Because the application of effective doses of solCD39 in
various animal models of thrombosis caused higher bleed-
ing risks, the hazard potential of GPVI-CD39 was analyzed
by measuring in vivo bleeding times in mice. To determine
a proper time point after protein application for an in vivo
bleeding study, a pharmacokinetic study of GPVI-CD39
plasma concentrations was performed. Mice were injected
with 4 mg/kg GPVI-CD39 or 2 mg/kg solCD39; these
doses relate to 26.6 nmol of the CD39 moieties of both
agents.

Blood sampling was performed at intervals indicated in
Figure 7A, and both the content of Fc-containing protein
(GPVI-CD39) and ADPase activity in plasma were determined.
At 5 minutes after protein application, a mean concentration
of GPVI-CD39 of 95 lg/mL was detected. The solCD39 could
not be analyzed because of the lack of an Fc portion.
Concentration of the protein decreased rapidly in the course
of 2 hours. After 48 hours, GPVI-CD39 was still detectable at
a low concentration of 6 lg/mL.
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Figure 4. Continued.
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ADPase activity was measured in the same plasma
samples for solCD39 and was comparable to that of GPVI-
CD39 (Figure 7B). ADPase activity diminished rapidly during
the first 60 minutes but was still detectable at very low levels
after 2 days.

The analysis of tail bleeding time 15 minutes after
intravenous administration showed no differences for 4 mg/
kg (13 nmol/kg) GPVI-CD39 compared with 2 mg/kg
(13 nmol/kg) GPVI-Fc or vehicle or buffer controls (Fig-
ure 7C).

Discussion
In the present study, we generated a recombinant fusion
protein consisting of a GPVI domain coupled to the ecto-
ADPase CD39 that degrades prothrombotic extracellular
ADP.17,18 We found that this fusion molecule efficiently
inhibits ADP-, collagen- and human plaque–induced platelet
aggregation under static conditions and plaque-triggered
platelet adhesion and thrombus formation under arterial flow
at clinically relevant concentrations. In contrast, collagen/
epinephrine-triggered closure times, as measured in an
Innovance PFA-200 device, were unchanged because epi-
nephrine is a sufficiently strong agonist. Moreover, GPVI-
CD39 markedly delayed ferric chloride–induced thrombus
formation in mice in vivo but did not prolong tail bleeding
times in vivo at any doses.

Our findings imply that the fusion protein GPVI-CD39 is an
attractive strategy for a lesion-directed dual antiplatelet
therapy (inhibition of collagen- and ADP-induced platelet
adhesion/aggregation) at sites of arterial vulnerability (eg
plaque ruptures and erosions, stented lesions) but may not

incur a relevant systemic bleeding risk. So far, dual
antiplatelet therapy, which typically combines acetylsalicylic
acid with an ADP receptor antagonist such as clopidogrel, is
the standard therapy for patients with acute vascular lesions
treated by coronary stenting, and its major limitation is
increased bleeding risk.

The endothelial ecto-ADPase CD39/ENTPDase1 degrades
ADP to AMP and Pi and thus inactivates an important agent
that may cause occlusive thrombi.17–19 Transgenic mice that
overexpressed CD39 showed impaired platelet aggregation
and resistance to thrombogenic stimuli but also markedly
prolonged tail bleeding time that led to death when
unchecked.22 Similarly, these CD39-transgenic mice were
also resistant to ferric chloride–induced thrombus forma-
tion,27 and to myocardial injury.29 CD39-transgenic pigs were
also generated and underwent a model of myocardial
ischemia-reperfusion injury by left anterior descending artery
balloon inflation.30 These pigs showed markedly reduced
infarct sizes compared with wild-type controls. In contrast,
CD39�/� knockout mice were characterized by increased
cerebral infarct volumes and reduced postischemic cerebral
perfusion.31 These knockout mice also developed increased
atherosclerotic plaque burden when cross-bred with
apolipoprotein E�/� knockouts, with especially low CD39
expression in atheroprone regions.32

Gayle et al developed a soluble form of CD39 that can
inhibit platelet function in vitro20 and in vivo18,21,31: Admin-
istration of 4 mg/kg soluble CD39 led to clearly reduced
infarct sizes and improved neurological function in exper-
imental mouse stroke (whereas 1 mg/kg had no effects). In
this study, bleeding time was prolonged only after adminis-
tration of ≥8-mg/kg doses of solCD39 in mice. In addition,
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Figure 5. Effect on thrombus formation after ferric chloride injury: mean times to
occlusion after administration of vehicle (NaCl), GPVI-Fc, or GPVI-CD39. Administration of
3 mg/kg (10 nmol/kg) GPVI-CD39 strongly delayed ferric chloride–induced thrombus
formation in vivo compared with administration of 1.5 mg/kg (10 nmol/kg) GPVI-Fc or
vehicle only. Mean values of 7 independent experiments are shown with SEM. **P<0.01
by ANOVA. GPVI-CD39 indicates dimeric glycoprotein VI and CD39 fusion protein; GPVI-
Fc, dimeric glycoprotein VI.

DOI: 10.1161/JAHA.117.005991 Journal of the American Heart Association 9

GPVI-CD39 Fusion Protein as Antithrombotic Agent Degen et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H

 by guest on A
ugust 30, 2017

http://jaha.ahajournals.org/
D

ow
nloaded from

 

35

http://jaha.ahajournals.org/


Hohmann et al reported markedly increased bleeding time
after 8 mg/kg but not after 0.8 mg/kg23; however, this lower
dose did not have a beneficial effect on occlusion time in a
ferric chloride–induced carotid thrombosis model.23 In pigs,
700 lg/kg solCD39 increased bleeding times but achieved
only a nonsignificant trend to attenuate platelet and fibrin
deposition after coronary balloon injury.21

In our study, we combined soluble forms of CD39 and
GPVI-Fc to form a recombinant, bifunctional protein, GPVI-
CD39, to investigate platelet-mediated thrombus formation.
We showed previously that GPVI-Fc inhibits platelet-induced
thrombus formation at sites of vascular injury.9 Administra-
tion of GPVI-Fc improved myocardial ischemia 33 and cerebral
infarction 34 without affecting bleeding time35 and inhibited

progression of atherosclerosis.36 GPVI-Fc also inhibited
collagen-induced aggregation in humans in a phase 1 study.10

The combination of GPVI-Fc with CD39 potentiates the
antithrombotic effect of GPVI-Fc by blocking not only the
primary platelet agonist collagen but also the secondary
agonist ADP. Local platelet release of ADP is an important
mediator of atherosclerotic plaque-stimulated platelet aggre-
gation at static and flow conditions.19 GPVI-coupled CD39
should concentrate specifically at collagen fibers within
vascular lesions and atherosclerotic plaques and thus act at
lower local concentrations in response to lower systemic
concentrations than soluble recombinant CD39. Conse-
quently, bleeding risk that results from recombinant CD39
should be minimized.20,23

A B

C

0

50

100

150

200

250

300

350

in
 v

itr
o 

cl
os

ur
e 

�m
e 

[s
] ******

**
***

***

0
20
40
60
80

100
120
140
160
180
200

in
 v

itr
o 

cl
os

ur
e 

�m
e 

[s
]

0

50

100

150

200

250

300

in
 v

itr
o 

cl
os

ur
e 

�m
e 

[s
]

Figure 6. Effects on Innovance PFA-200 closure times of human blood ex vivo. A, Effects of ticagrelor, GPVI-CD39, GPVI-Fc, or ASA at the
indicated concentrations on closure times in collagen/ADP cartridges (n=8 samples from independent donors). No significant differences
between groups occurred. B, Effects of ticagrelor, GPVI-CD39, GPVI-Fc, or ASA at the indicated concentrations on closure times in collagen/
epinephrine cartridges (n=8 samples from independent donors). No significant differences between results for GPVI-CD39 and GPVI-Fc
occurred. Closure time was significantly (P=0.04) prolonged after addition of ASA compared with PBS only. C, Effects of ticagrelor, GPVI-CD39,
GPVI-Fc at the indicated concentrations on closure times in specific P2Y cartridges (n=8 samples from independent donors; **P<0.01 and
***P<0.001 vs PBS only). ASA indicates acetylsalicylic acid; GPVI-CD39, dimeric glycoprotein VI and CD39 fusion protein; GPVI-Fc, dimeric
glycoprotein VI.
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Under flow, platelet inhibition by GPVI-CD39 was more
pronounced than adding a full ex vivo dose of the ADP receptor
inhibitor ticagrelor to GPVI-Fc: Comparing the results of the
current study with those of our previous results,37,38 150 nmol/
L GPVI-CD39 was equally effective in inhibiting plaque-induced
platelet aggregation (81% inhibition) as the combination of
150 nmol/L GPVI-Fc with 3.82 lmol/L of the ADP receptor
antagonist ticagrelor (79% inhibition). This comparison under-
scores the relative potency of the GPVI-CD39 fusion protein
compared with existing antiplatelet drugs. Similar to previous
reports on solCD39,21,23 the fairly low dose of GPVI-CD39 used
in this study had no effect on systemic bleeding times; however,
GPVI-CD39 was fully effective in inhibiting arterial thrombosis in

response to a ferric chloride challenge. This finding implies that
the combination of CD39 with GPVI in a single molecule offers a
favorable risk–benefit ratio.

The concept of a fusion protein has been developed in
parallel with another interesting fusion concept, namely, the
combination of CD39 with an activation-specific anti-GPIIb/
IIIa single-chain antibody,22,39 which also allowed reduction of
the systemic doses of applied CD39 due to local enrichment.
Both approaches are complementary insofar as this
ScFvSCE5-CD39 fusion protein23 targets growing thrombi,
whereas the approach to use GPVI-CD39 focuses on local
enrichment at high-risk arterial lesion before a full thrombus
has evolved.
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Figure 7. Pharmacokinetic and pharmacodynamic evaluation in mice in vivo; bleeding times in vivo. A, Plasma concentrations in mice up to
48 hours after administration of GPVI-CD39 or Fc control protein. Blood samples were taken at the indicated times after IV administration of
4 mg/kg (13 nmol/kg) GPVI-CD39, and plasma levels were detected by ELISA. Mean�SEM is shown.(n=3 animals). B, ADPase activities in
mice up to 48 hours after administration of GPVI-CD39 or Fc controls. Blood samples were taken at the indicated times after IV administration
of either 4 mg/kg GPVI-CD39 (13 nmol/kg, corresponding to 26 nmol/kg ADPase moieties) or 26 nmol/kg solCD39, and ADP turnover
(mean�SEM) was measured by using a Malachite Green phosphate detection kit. Time is shown at a logarithmic scale to visualize decrease in
activity during early time points (n=3 animals). C, Tail bleedings times. Tails were incised 15 minutes after IV administration of the indicated
doses of GPVI-CD39, GPVI-Fc, or buffer, and tail bleeding times were determined. Mean values of 8 independent experiments are shown with
SEM. No significant differences between groups occurred. GPVI-CD39 indicates dimeric glycoprotein VI and CD39 fusion protein; GPVI-Fc,
dimeric glycoprotein VI; IV, intravenous; solCD39, soluble CD39.
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Such local enrichment of CD39 might provide an attractive
alternative therapeutic option in arterial diseases. Reduced
CD39 activity was recently shown to be associated with
disease progression in patients with peripheral arterial
disease.40 However, the frequently used ADP receptor
antagonist drug clopidogrel and ticlopidine further inhibit
CD39 activity, especially at the beginning (the first few days)
of the respective therapies,41 so that in comparison, short-
term rapid intravenous administration of GPVI-CD39 might be
particularly beneficial for acute vascular syndromes and
emergency conditions. A schematic overview of the mode of
action of GPVI-CD39 is shown in Figure 8.

Generally, CD39 fusion proteins offer perspectives in several
regards and indications.42 CD39 has been proposed as an
approach to widen the cardiovascular therapeutic window.43

We demonstrated in this study that the antiatherosclerotic
properties of blocking GPVI binding sites and promoting CD39
activity add up at the site of atherothrombosis when combined
in a bifunctional molecule, but this fusion protein does not
compromise systemic hemostasis.

Limitations of the Study
The antithrombotic effects of the fusion proteins have been
studied in vivo in murine arterial thrombosis models and
ex vivo in human atherothrombosis models but not in vivo in
cardiovascular patients after plaque ruptures or erosions.
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