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Abstract 

Metastatic cancer accounts for 90% of all cancer related deaths and is still considered incurable by 

reason of insufficient antimetastatic drugs and absence of therapeutically addressable targets. Specific 

therapeutic targeting of tumor cell motility could present a promising strategy to limit metastasis of 

solid tumors, considering that cell migration is a crucial step in the metastatic cascade. 

 

The natural compound Neocarzilin A (NCA) was discovered decades ago, but so far no mode of 

action studies have been performed. Within the framework of this thesis, we elucidated the antitumor 

effects of NCA and identified the compound as potent inhibitor of cancer cell motility (Figure 1). By 

applying activity-based protein profiling (ABPP) using in situ labeling of proteins with the specifically 

designed activity-based probe NC-1 and subsequent LC-MS/MS analysis, we identified the synaptic 

vesicle membrane protein 1 (VAT-1) as target of NCA in cooperation with the group of 

Prof. Dr. Stephan Sieber (Chair of Organic Chemistry II, Technical University (TU) of Munich, 

Germany). A functional role of VAT-1 in cancer cell migration was confirmed by knockdown and 

CRISPR-Cas9 knockout studies. In depth investigation revealed that VAT-1 interacts with a complex 

network of key migration mediators, involved in extracellular matrix (ECM) composition, regulation 

of cell migration, and cell-ECM adhesion. Talin-1, the main activator of integrins and important 

mediator of adhesion, was identified as most prominent binding partner of VAT-1, providing a link 

between the antimigratory phenotype and the integrin mediated cell adhesion process. Consequently, 

we hypothesize that binding of NCA to its target VAT-1 influences its interaction with Talin-1, 

resulting in alternation of integrin mediated adhesion leading to impaired cell detachment and reduced 

migration.  

 

In conclusion, we introduce the natural compound NCA as promising novel antimigratory drug and 

potential lead compound and VAT-1 as an innovative target for the development of cancer cell 

migration inhibitors for treatment of metastatic tumors. 
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Figure 1. The project at a glance.  
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1 Introduction 

1.1 Metastatic breast cancer – an overview  

1.1.1 Facts and figures 

The global cancer burden continues to increase with 18.1 million new cases and 9.6 million cancer 

related deaths in 2018, primarily attributed to aging and growth of the population as well as adoption 

of a cancer promoting lifestyle.[1] Together with lung cancer, breast cancer shows the highest number 

of new cases worldwide with approximately 2.1 million diagnoses in 2018 (Figure 2) and presents the 

leading cause of cancer related death in women of all races.[1]  

 

 

 

Figure 2. Global cancer burden in 2018. Data for all ages and both sexes is shown. Adapted from Bray et al.[2] 
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1.1.2 Classification of breast cancer 

Breast cancer can be divided into a non-invasive and an invasive subclass.[3] Non-invasive breast 

cancer is localized either at the ducts or the lobules and therefore termed ductal carcinoma in situ 

(DCIS) or lobular carcinoma in situ (LCIS). These types of breast cancer are characterized by 

proliferation of malignant epithelial cells, but do not invade through the basal membrane.[3] In contrast, 

invasive breast cancer spreads into the breast tissue and in the worst case, metastasizes to lymph nodes 

and other parts of the body by cancer cells disseminating from the primary tumor.[4] Metastatic breast 

cancer is still considered incurable[5] and circulating tumor cells can already be detected in early stages 

of tumor development[6]. In metastatic cancer, mortality rates are primarily driven by metastases and 

invasion of migrating tumor cells into the surrounding tissue instead of the primary tumor itself.[4]  

 

Breast cancer can be further classified according to the size of a tumor, whether it has invaded 

adjacent organs, if and how many regional lymph nodes it has spread to, and whether it has 

metastasized to distant locations. This classification is referred to as cancer staging in agreement with 

the TNM Classification of Malignant Tumors (TNM).[7] Whereas stage 0 describes DCIS and LCIS as 

pre-cancerous or marker conditions, tumors of stages 1-3 are located within the breast or regional 

lymph nodes. Stage 4 describes metastatic cancer, the most severe form with the least favorable 

prognosis.[7] A very aggressive and complex subtype of metastatic breast cancer is triple negative 

breast cancer, which is characterized by a lack of estrogen receptors, progesterone receptors and HER2 

overexpression making therapeutic targeting particularly difficult.[8]  
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1.1.3 Treatment options for metastatic cancer 

Cancer treatment can generally be divided in local and systemic treatment. Local cancer treatment 

comprises surgical removal of tumors and regional radiotherapy.[9] However, metastatic cancer calls 

for systemic treatment strategies to treat tumors which have spread throughout the body. In systemic 

cancer treatment cytotoxic chemotherapy, hormonal therapy, targeted therapy, and immunotherapy are 

used[10]: 

 

o Cytotoxic chemotherapeutics: intervene with the cell division process leading to reduced 

proliferation and cell death. Well-known representatives are Doxorubicin, Paclitaxel and 

5-Fluorouracil.[10, 11] 

 

o Hormonal therapeutics: selective estrogen receptor modulators (SERMs) which specifically 

antagonize estrogen action leading to suppression of estrogen-stimulated tumor growth as 

present in estrogen-positive invasive breast cancer. This substance class includes e.g. 

Tamoxifen and Fulvestrant.[12, 13] 

 

o Targeted and immunotherapeutics: block the growth of cancer cells by interfering with 

specific molecular targets that are involved in growth, progression, and spread of cancer, 

e.g. overexpressed oncogenes. Most targeted and immunotherapeutics are either small 

molecule drugs (e.g. Gefitinib) or monoclonal antibodies (e.g. Trastuzumab) which show less 

severe side effects as conventional chemotherapeutics due to directed targeting of cancer 

cells.[10, 14]  

 

The success of each therapeutic option varies in between tumor types and depends on previous 

treatments. Moreover, current systemic therapy is often accompanied by severe short and long term 

side effects or becomes ineffective through development of chemoresistance of the cancer cells.[10] 

Considering that 90% of all cancer related deaths are caused by metastasizing tumors, targeting the 

process of metastasis could emerge as valuable additional treatment option to control metastatic spread 

of aggressive cancers and enhance overall survival of affected patients.[15] However, most of the so far 

investigated therapeutics targeting cancer cell metastasis have failed in clinical research. Therefore, up 

to date systemic chemotherapy targeting cancer cell proliferation remains the treatment option of 

choice despite its shortcomings.[16]  
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1.2 Shedding light on cancer cell migration and metastasis  

1.2.1 Metastasis and the cell migration process  

The formation of metastasis is a highly complex process in which cancer cells leave the primary tumor 

and invade into the surrounding tissue. For this purpose, loss of cellular adhesion, increased tumor cell 

motility and invasiveness, entry and survival in circulation, exit into new tissue, and colonization at a 

distant site are required.[17, 18]  A schematic overview of the metastasis model is presented in Figure 3. 

 

 

Figure 3. Schematic representation of the metastatic process. Tumor cells disseminate from the primary 

tumor by invading into the surrounding stroma and the blood vessel. Following circulation, the cells extravasate 

into a distant organ where they colonize and form macroscopic metastasis after proliferation. Adapted from 

Saxena et al.[19] 

 

To achieve metastasis, cancer cells must show increased motility. Cell migration is a multi-step 

process which is initiated by the polarization of the cell including the formation of lamellipodia and 

filopodia at the leading edge of the migrating cell. Lamellipodia are broad membrane protrusions 

which are assembled of condensed F-actin initiated by the small Rho GTPase Rac1. In contrast, the 

small Rho GTPase Cdc42 stimulates filopodia formation, thin protrusions that act as antennae for the 

cell to probe the surrounding environment and establish the directionality of the movement. After 

polarization, activation of transmembrane receptors named integrins at the leading edge leads to 
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formation of focal adhesion complexes which attach the cell to the extracellular matrix (ECM) and 

allow extension of the cell body and translocation of the nucleus in the direction of migration. In the 

final step of the migration process, myosin II and the Rho GTPase RhoA trigger the contraction of 

actin stress fibers leading to retraction of the cell rear and forward movement. Simultaneously, focal 

adhesions at the rear are disassembled to allow detachment from the ECM. After contraction, the cycle 

starts again with the polarization and formation of the leading edge.[20, 21] The cell migration process is 

depicted in Figure 4. 

 

 

Figure 4. Cell migration process. Reorganization of the actin cytoskeleton leads to formation of lamellipodia 

and filopodia resulting in polarization of the cell. Focal adhesions are assembled at the leading edge to attach the 

cell to the extracellular matrix (ECM). Contraction of actin stress fibers via myosin II leads to forward 

movement of the cell with simultaneous disassembly of focal adhesions and detachment of the cell rear. Adapted 

from Weinberg[20] 
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1.2.2 Integrins and Talin-1: key regulators of cell adhesion and migration 

Cell adhesion to the ECM plays a pivotal role in the cell migration process, turning it into a critical 

parameter in the progression of metastatic cancers. The ECM is an intricate network of various 

proteins with distinct physical and biochemical properties.[22] Some major components of the ECM are 

collagens, fibronectin, laminin glycoproteins, and vitronectin. The interaction of cells with these 

proteins determines multiple cellular functions and alternations in the ECM structure can contribute to 

pathological conditions.[23] For example, the high density of collagen fibers in breast tissue is 

associated with increased cancer cell migration and promotion of invasive behavior.[24] 

 

Cell adhesion to the ECM is mediated by specific cell surface receptors. The most common and best 

characterized cell adhesion receptors are the integrins, which are bidirectional transmembrane 

receptors composed of an α and β subunit which connect the ECM to the cytoskeleton. In mammals 

18 α and 8 β subunits can be combined to build 24 different heterodimers, each with specific 

ligand-binding properties.[25, 26] As typical transmembrane receptors, integrins feature an extracellular 

domain which is responsible for ligand binding, as well as an intracellular domain which binds to 

cytoskeletal proteins. The extracellular domain additionally possesses a metal ion dependent adhesion 

site (MIDAS) which is capable of binding divalent cations required for binding of glycoproteins.[26] 

 

Integrins exist in two different conformational states which define their affinity for ECM proteins. 

They are inactive when being in a closed (bend) conformation showing low affinity for ECM ligands. 

In contrast, in their extended (open) conformation integrins are activated, able to engage with ligands, 

and capable of signal transduction.[25, 26] The signaling of integrins is bidirectional, which means that 

they can transfer signals from inside the cell to the extracellular environment (inside-out signaling) 

and vise versa (outside-in signaling) (Figure 5).[25]   
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Figure 5. Bidirectional integrin signaling. Integrins can switch between an inactive (closed) and an active 

(open) conformational state. Activation is mediated by Talin-1 which itself is recruited to the plasma membrane 

and activated by the small GTPase RAP1A and RAP1-GTP-interacting adapter molecule (RIAM). Upon 

activation, integrins can engage with proteins of the ECM resulting in signal transduction. In the case of 

inside-out signaling, intracellular signals are transmitted to the extracellular environment upon binding of 

Talin-1 to the integrin β subunit. After ligand binding and adhesion, extracellular signals can be transferred into 

the cell via the assembly of the adhesome complex comprising focal adhesion kinase (FAK) and Src family 

kinases (outside-in signaling). Subsequently, the downstream effectors paxillin and p130Cas are phosphorylated 

which promote the activity of the small Rho GTPases Rac1, RhoA, and Cdc42 resulting in regulation of cell 

migration. Adapted from Hamidi et al.[25] 

 

Inside-out signaling – Talin-1 as a key player 

Many integrins need to be activated by inducing a conformational change from the closed to the 

opened conformation prior to binding to the ECM.[27] For this purpose, the small GTPase RAP1A 

recruits RAP1-GTP-interacting adapter molecule (RIAM) to the plasma membrane in order to activate 

Talin-1. Talin-1 is a well characterized cytoplasmic protein which shows three actin binding sites by 

which the protein can link integrins to actin filaments.[28] Talin-1 can thereby serve as adaptor protein 

which passes on signals, caused by changes in the cytoskeletal structure, to integrins, resulting in 

modulation of ECM-ligand binding and cell adhesion.[29, 30] In particular, activated Talin-1 binds to the 

integrin β subunit and induces a conformational change to generate the active high affinity state.[31] In 
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contrast, inactivating proteins such as integrin cytoplasmic domain-associated protein 1 (ICAP-1), 

filamin A and proteins of the SH3 family can counterbalance this activation.[32] 

 

Outside-in signaling – induction of Rho GTPase signaling cascades 

Upon ECM-ligand binding and adhesion, integrins cluster on the plasma membrane provoking the 

assembly of the adhesome, a multimeric integrin adhesion complex which triggers downstream 

adhesion signaling (outside-in signaling). The transmitted signals depend on the engaged integrin 

heterodimer, the ECM ligands involved, and also on the cell type.[25] In the context of cell migration, 

outside-in signaling results in recruitment and autophosphorylation of focal adhesion kinase (FAK) 

which itself recruits Src family kinases. The FAK-Src complex has two main phosphorylation targets, 

namely the adaptor proteins paxillin and p130Cas. Both proteins serve as downstream effectors by 

promoting the activity of the small Rho GTPases Rac1, RhoA, and Cdc42. Rac1 plays a key role in 

actin polymerization during lamellipodia formation and initiates the assembly of focal adhesions at the 

leading edge of the cell.[33] RhoA induces the formation of stress fibers during the contraction process, 

whereas Cdc42 regulates filopodia formation.[34] It has been shown that abnormal regulation of Rho 

GTPase signaling can severely impact the cell migration process and Rac1 and RhoA were found to be 

overexpressed or hyperactive in breast cancer tissue.[35, 36] In pathological conditions, Rac1 can induce 

invasion and metastasis by upregulating cell migration via increased actin polymerization and 

lamellipodia formation.[37] Overexpression or hyperactivation of RhoA leads to increased activation of 

the downstream effector kinase ROCK, which promotes migration by triggering stress fiber and focal 

adhesion formation.[38] 

 

Taken together, cell adhesion to the ECM plays a crucial role in the cell migration process. 

Therapeutic targeting of adhesion mediating proteins could therefore protrude as promising option to 

prevent cancer metastasis and improve overall survival rates, considering that 90% of all cancer 

related deaths are caused by metastasizing tumors.[15] 
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1.3 Neocarzilins: a promising natural compound class in cancer therapy? 

Natural products remain an important source of biologically active compounds for modern drug 

development.[39] In cancer medicine, for example, almost 50% of all anticancer drugs approved 

between 1981 and 2014 are either unaltered natural products or natural product derived.[40] These 

compounds, derived from plants, microorganisms or marine organisms, include various structural 

classes like isoprenoids, alkaloids, non-ribosomal peptides or polyketides.[39, 41] Besides functioning as 

lead structures in drug development, one major advantage of natural products is their use as chemical 

tools to understand biological and pharmacological systems. 

 

The natural products Neocarzilin A (NCA) and Neocarzilin B (NCB) were first isolated by Nozoe et 

al. in 1992 from an extract of the mycelium of the actinomycete Streptomyces carzinostaticus 

var. F41.[42] The structures were determined by mass spectrometry and nuclear magnetic resonance 

(NMR) spectroscopy (Figure 6). Neocarzilins are long chain polyenones bearing a terminal 

chloromethyl group. The enolic hydroxyl group, which is stabilized by an intramolecular hydrogen 

bond, grants them a slightly acidic character. In 2004, years after the first total synthesis by Nozoe 

et al.[43], the biosynthetic pathway, involving a novel type I polyketide synthase system, was elucidated 

by analysis of the responsible gene cluster.[44] In course of the investigation, a third Neocarzilin 

derivative, named Neocarzilin C (NCC), containing a dichloromethyl instead of a trichloromethyl 

group, was identified and proposed to be a biosynthetic precursor (Figure 6).  

 

First investigations into the biological activity of NCA, the only compound tested so far, revealed a 

potent cytotoxic activity against K562 chronic myelogenous leukemia cells with an IC50 of 

0.06 μg/mL (185 nM).[42] NCA can therefore be considered to be as potent as neocarzinostatin 

(IC50 0.09 µg/mL), a highly potent DNA damage agent derived from the same actinomycete which 

was used in Japan as anticancer agent to treat liver cancer until 2009.[44, 45] Up to date, no 

structure-activity relationship (SAR) studies of Neocarzilins in human cancer cells have been 

published. However, the acidic hydroxyl group seems to be crucial for the biological activity of NCA, 
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since the corresponding methylether showed only moderate cytotoxic activity with an IC50 of 2 μg/mL 

(6 μM).[42] Due to its potent cytotoxic activity and its good synthetic accessibility the natural 

compound NCA protrudes as interesting object for further research.  

 

Figure 6. Structures of Neocarzilins A-C.  

 

1.4 The synaptic vesicle membrane protein 1 (VAT-1)  

1.4.1 Origin of VAT-1 and function in T. californica 

The synaptic vesicle membrane protein 1 (VAT-1) was first discovered in the electric organ of the 

marine ray Torpedo californica (T. californica) by Linial et al. in 1989.[46] The 42 kDa protein was 

isolated from synaptic vesicle membranes and proposed to be an integral membrane protein due to its 

copurification with vesicles and its hydrophobic character.[46] During further investigations, 

Linial et al. discovered an ATPase activity for VAT-1 which was supported by divalent cations like 

Mg2+ and Ca2+.[47] Moreover, they revealed that VAT-1 forms a high-molecular-mass complex of 

170-180 kDa consisting of 3-4 VAT-1 homomers within the synaptic vesicle membrane.[48] Due to 

partial dissociation of VAT-1 subunits from the complex upon chelating Ca2+ ions, it was proposed 

that the stability of the complex is Ca2+ dependent[48]. Supporting this, Levius et al. discovered that 

VAT-1 overexpressed in E.coli binds Ca2+ with low affinity.[49] Although computational homology 

studies did not lead to the discovery of a relationship between VAT-1 and other proteins concerning 

ancestry and function, sequence similarities for the protein were found with the highest scores in 

translocases, protein kinase C, nucleotide binding proteins, ATPases, and especially alcohol 

dehydrogenase.[46] In addition, VAT-1 showed properties of oxidoreductases as a member of a 

reductase subgroup of the same protein super-family of medium-chain dehydrogenases/reductases 

(MDR). Interestingly, a homology to ζ-crystallin, a major protein in the lens of guinea pig which is 

included in the same subgroup of the MDR super-family, was found.[50, 51] Although VAT-1 had been 
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reported to be an integral membrane protein by Linial et al. upon its discovery, Persson et al. 

challenged this assumption based on conducted homology studies. The authors identified the 

suggested membrane bound segment as the coenzyme region of VAT-1, which makes it highly 

unlikely for this region to be membrane associated.[50] Furthermore the authors claimed that the 

corresponding region of alcohol dehydrogenase had possibly been detected as false positive when 

predicting membrane-spanning segments due to its hydrophobic character.[50] However, membrane 

binding of VAT-1 could also be explained by a possible interaction with other membrane bound 

proteins.  

 

1.4.2 The function of VAT-1 in mammals  

In 1998, the mammalian homolog of VAT-1 was first isolated from the murine breast cancer cell line 

Ehrlich ascites carcinoma and additionally detected in human T47D breast cancer cells.[52] Research 

has been focused on the human VAT-1 homolog because its gene has been localized on chromosome 

locus 17q21 neighboring the breast cancer gene BRCA1.[53] Chromosomal instability and inherited 

predisposition for breast and ovarian cancer are characteristic for this gene region giving rise to the 

question, whether VAT-1 as well might feature critical mutations with possible implications for 

cancer.[54] However, first studies on the expression pattern of VAT-1 in normal and malignant 

epithelial cells of the mammary gland and ovary found no dysregulation of VAT-1.[55]  

 

Although VAT-1 was originally described as an integral membrane protein by Linial et al., the 

localization of the mammalian VAT-1 homolog is still unclear. Recent studies showed that the protein 

is mainly localized in the cytoplasm[55, 56, 57] and to a small extend also associated with the 

endoplasmatic reticulum (ER) and the outer mitochondrial membrane[57]. Eura et al. proposed that 

both, hydrophobic and ionic interactions are involved in membrane association.[57] In conclusion, the 

localization of VAT-1 in mammalian cells is not limited to a single cell compartment.    

 

Regarding the function of VAT-1 in mammals only limited data is available so far. Koch et al. showed 

that human VAT-1 is involved in calcium regulated processes in keratinocyte physiology.[55] 
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Moreover, they discovered that VAT-1 expression is decreased with increasing Ca2+ concentration in 

the human keratinocyte cell line HaCaT, supporting the finding of Linial et al. that the function of 

VAT-1 from T. californica is calcium dependent.[55, 58] Eura et al. suggested an involvement of VAT-1 

in the regulation of mitochondrial dynamics.[57] They identified the VAT-1 rat homolog mitofusin 

binding protein (MIB) as binding partner of mitofusin protein 1 (Mfn1)[57], which is a key driver of 

mitochondrial fusion located at the outer mitochondrial membrane[59]. Knockdown of MIB led to large 

extension of mitochondrial network structures and exogenous expression of MIB induced 

mitochondrial fragmentation, which was prevented by coexpression of Mfn1.[57] On the assumption 

that the rat homolog MIB features the same functions as human VAT-1, a role of the protein in 

mitochondrial processes could be presumed. This hypothesis was also supported by Junker et al. 

which showed that VAT-1 is involved in the transport of phosphatidylserine (PS) from the ER to 

mitochondria where it can be decarboxylated to phosphatidylethanolamine (PE).[56]  

1.4.3 The role of VAT-1 in cancer: status quo  

Taking into consideration that the VAT-1 gene is located on chromosome locus 17q21 in direct 

proximity to the breast cancer gene BRCA1[53], it is of interest to investigate VAT-1’s implication in 

cancer. Mori et al. demonstrated an influence of VAT-1 on proliferation of normal prostatic stromal 

cells (PrSC) and prostate cancer cells (PCa), since knockdown of VAT-1 inhibited proliferation of 

both, normal and cancerous cell lines.[60] Moreover, the protein was upregulated in benign prostatic 

hyperplasia (BPH) indicating that VAT-1 could be a pathogenic factor in BPH associated with cell 

proliferation.[60] In contrast, Mertsch et al. found no antiproliferative effect of VAT-1 knockdown in 

different glioma cell lines, but observed significant reduction of cell migration and general 

upregulation of VAT-1 in glioblastoma tissue.[61]  However, the mode of action has remained unknown 

up to date.  

 

Taken together, VAT-1 displays interesting functions in both normal as well as cancerous tissue. 

Considering its effects on cancer cells, VAT-1 emerges as interesting subject for further 

investigations.  
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1.5 Aims of the study 

The natural compound Neocarzilin A (NCA) was discovered decades ago, but despite its potent 

cytotoxic effect no mode of action studies have been performed up to date. Considering the emergence 

of proteomic methods for target identification, we aimed to unravel its mode of action by identifying 

cellular interaction partners and investigate its antitumor effects to decipher its potential as anticancer 

lead structure.   

 

The precise goals of this thesis can be summarized as follows: 

 

1. assess the antitumor effects of NCA on cell proliferation, apoptosis, and migration 

 

2. identify the cellular target protein of NCA by proteomic activity-based protein profiling 

(ABPP) in cooperation with Carolin Gleißner (Sieber Research Group, Department of 

Chemistry, Technical University of Munich, Germany) 

 

3. validate the identified target protein and decipher its physiological role in cancer cells by 

investigating its protein interaction network 

 

4. elucidate the mode of action of NCA by examining its effect on the target protein interaction 

network 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Compounds 

All members of the Neocarzilin family (NCA, NCA', NCB, NCC) as well as the activity-based probe 

NC-1 were synthesized and kindly provided by the lab of Prof. Dr. Stephan Sieber (Chair of Organic 

Chemistry II, Technical University of Munich, Germany) (Figure 7). All compounds were dissolved in 

DMSO to 10 mM stock solutions, aliquoted á 2 µL, and stored at -20 °C. For experimental use, 

compounds were diluted to the appropriate concentration in growth medium, containing DMSO at a 

maximum of 0.1% (v/v) to prevent side effects. 

 

Figure 7. Chemical structure of Neocarzilins and the activity-based probe NC-1. 
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2.1.2 Chemicals and reagents 

Table 1. Chemicals, reagents, dyes, and kits 

Reagent Source 

5x siRNA buffer Dharmacon, Lafayette, CO, USA 

Active Rac1 pull-down and detection kit (16118) Thermo Scientific, Waltham, MA, USA 

Adenosine triphosphate (ATP) 25 mM  Epicentre, Madison, WI, USA 

Agarose VWR, Radnor, PA, USA 

Ammoniumpersulfate (APS) Sigma Aldrich, Taufkirchen, Germany 

Ampicillin Sigma Aldrich, Taufkirchen, Germany 

BC assay reagent A Interchim, Mannheim, Germany 

BC assay reagent B Interchim, Mannheim, Germany 

Blasticidin S HCl Thermo Scientific, Waltham, MA, USA 

Bovine serum albumin (BSA) Anprotec, Bruckberg, Germany 

Bradford reagent Roti® Quant Bio-Rad, Munich, Germany 

Calcein-AM Santa Cruz, Dallas, TX, USA 

Calcium chloride dihydrate (CaCl2 x 2 H2O)  Sigma Aldrich, Taufkirchen, Germany 

CellTiter-Blue® reagent Promega, Mannheim, Germany 

Collagen G Biochrom AG, Berlin, Germany 

Complete® protease inhibitor  Roche Diagnostics, Basel, Switzerland 

Coumaric acid Fluka, Buchs, Switzerland 

Crystal violet Carl Roth, Karlsruhe, Germany 

Dimethylsulfoxide (DMSO) AppliChem, Darmstadt, Germany 

Di-sodiumhydrogenphosphate (Na2HPO4) VWR, Radnor, PA, USA 

Dithiothreitol (DTT) Molekula, Munich, Germany 

dNTPs mix MP Biomedicals, Santa Ana, CA, USA 

Dulbecco’s Modified Eagle Medium (DMEM) PAN Biotech, Aidenbach, Germany 

ECL Plus WB detection reagent GE Healthcare, Munich, Germany 

EndoFree plasmid maxi kit  QIAGEN, Hilden, Germany 

Epidermal growth factor (EGF) Peprotech, Rocky Hill, NJ, USA 

Ethylene diamine tetraacetic acid (EDTA) Carl Roth, Karlsruhe, Germany 

Ethylene glycol tetraacetic acid (EGTA) Sigma Aldrich, Taufkirchen, Germany 

FACS flow BD Biosciences, Franklin Lakes, NJ, USA 

FACS rinse BD Biosciences, Franklin Lakes, NJ, USA 

FACS shutdown solution BD Biosciences, Franklin Lakes, NJ, USA 

FastDigest Bpil   Thermo Scientific, Waltham, MA, USA 

FastDigest green buffer (10x) Thermo Scientific, Waltham, MA, USA 

Fetal calf serum (FCS) PAN Biotech, Aidenbach, Germany 

Fibronectin Corning, New York, NY, USA 

FluorSave™ reagent mounting medium Merck, Darmstadt, Germany 
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Formaldehyde 16% Polysciences, Eppelheim, Germany 

GeneRuler 1 kb Plus DNA ladder Thermo Scientific, Waltham, MA, USA 

Gibco® Versene solution Thermo Scientific, Waltham, MA, USA 

Glutaraldehyde 50% Fluka Biochem, Taufkirchen, Germany 

Glycerol  Applichem, Darmstadt, Germany 

Hoechst 33342 Sigma Aldrich, Taufkirchen, Germany 

Hydroxyethyl-piperazineethane-sulfonic acid buffer 

(HEPES)  

AppliChem, Darmstadt, Germany 

Igepal CA 630 (Nonidet P 40) Sigma Aldrich, Taufkirchen, Germany 

Kolliphor® EL   Sigma Aldrich, Taufkirchen, Germany 

LB agar powder Invitrogen, Carlsbad, CA, USA 

LB broth powder Invitrogen, Carlsbad, CA, USA 

Lipofectamine™ 3000 transfection reagent Thermo Scientific, Waltham, MA, USA 

Luminol Carl Roth, Karlsruhe, Germany 

Magnesium chloride (MgCl2) Applichem, Darmstadt, Germany 

Magnesium chloride hexahydrate (MgCl2 x 6 H2O) Grüssing, Filsum, Germany 

Matrigel® VWR, Radnor, PA, USA 

Methanol Fisher Scientific, Waltham, MA, USA 

Mitomycin C Sigma Aldrich, Taufkirchen, Germany 

Mitotracker® Green FM Molecular Probes, Darmstadt, Germany 

Non-fat dry milkpowder (Blotto) Carl Roth, Karlsruhe, Germany 

PAGE GelRed® nucleic acid gel stain 10,000x Biotium, Fremont, CA, USA 

Page Ruler™ Plus prestained protein ladder Thermo Scientific, Waltham, MA, USA 

Page Ruler™ prestained protein ladder Thermo Scientific, Waltham, MA, USA 

Penicillin/Streptomycin 100x PAN Biotech, Aidenbach, Germany 

Phenylmethylsulfonyl fluoride (PMSF) Sigma Aldrich, Taufkirchen, Germany 

Phusion Hot Start II DNA polymerase (2 U/µL) Thermo Scientific, Waltham, MA, USA 

Piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES) Sigma Aldrich, Taufkirchen, Germany 

PlasmidSafe buffer (10x) Epicentre, Madison, WI, USA 

PlasmidSafe™ ATP-dependent DNase Epicentre, Madison, WI, USA 

Potassium chloride (KCl) VWR, Radnor, PA, USA 

Potassium dihydrogen phosphate (KH2PO4) Merck, Darmstadt, Germany 

Primers Metabion, Planegg, Germany 

Propidium iodide Carl Roth, Karlsruhe, Germany 

Protein A/G PLUS-agarose Santa Cruz, Dallas, TX, USA 

Puromycin Sigma Aldrich, Taufkirchen, Germany 

Pyronin Y Sigma Aldrich, Taufkirchen, Germany 

QIAGEN plasmid maxiprep kit QIAGEN, Hilden, Germany 

QIAprep spin miniprep kit QIAGEN, Hilden, Germany 
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QIAquick gel extraction kit QIAGEN, Hilden, Germany 

QuickExtract™ DNA extraction solution Epicentre, Madison, WI, USA 

Rhodamine/Phalloidin Sigma Aldrich, Taufkirchen, Germany 

Roswell Park Memorial Institute Medium 

(RPMI-1640) 

PAN Biotech, Aidenbach, Germany 

Rotiphorese® Gel 30 Carl Roth, Karlsruhe, Germany 

Sodium borohydride (NaBH4) Carl Roth, Karlsruhe, Germany 

Sodium chloride (NaCl) Sigma Aldrich, Taufkirchen, Germany 

Sodium deoxycholate Carl Roth, Karlsruhe, Germany 

Sodium dihydrogen phosphate dihydrate  

(NaH2PO4 x H2O) 

Grüssing, Filsum, Germany 

Sodium fluoride (NaF) Merck, Darmstadt, Germany 

Sodium glycerophosphate (C3H7Na2O6P) Sigma Aldrich, Taufkirchen, Germany 

Sodium glycerophosphate pentahydrate                 

(Na2C3H7O6 x 5 H2O) 

Merck, Darmstadt, Germany 

Sodium orthovanadate (Na3VO4) ICN Biomedicals, Aurora, CO, USA 

Sodium pyrophosphate decahydrate  

(Na4P2O7 x 10 H2O) 

Sigma Aldrich, Taufkirchen, Germany 

Sodiumdodecylsulfate (SDS) Carl Roth, Karlsruhe, Germany 

T4 DNA ligase Thermo Scientific, Waltham, MA, USA 

T4 ligation buffer (10x) Thermo Scientific, Waltham, MA, USA 

T7 Endonclease New England Biolabs, Ipswich, MA, USA 

Tetramethylethylenediamine (TEMED) Thermo Scientific, Waltham, MA, USA 

Trichloroethylene (TCE) Sigma Aldrich, Taufkirchen, Germany 

Tris/HCl Carl Roth, Karlsruhe, Germany 

Tri-sodium citrate Carl Roth, Karlsruhe, Germany 

Triton-X 100 Merck, Darmstadt, Germany 

Trypsin PAN Biotech, Aidenbach, Germany 

Tween 20 Carl Roth, Karlsruhe, Germany 

 

All commonly used acids, bases, buffer salts and organic solvents were either purchased from Merck 

(Darmstadt, Germany) or Sigma Aldrich (Taufkirchen, Germany). 
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2.1.3 Technical equipment 

Table 2. Technical devices and lab equipment 

Device Source 

C10 immersion thermostat with water bath Thermo Haake, Waltham, MA, USA 

Canon Eos 450 C camera Canon, Krefeld, Germany 

ChemiDoc™ touch imaging system Bio-Rad, Munich, Germany 

Clay adams nutator mixer Marshall Scientific, Hampton, NH, USA 

FACS Canto™ II BD Biosciences, Franklin Lakes, NJ, USA 

HBT 130-2 thermoblock Haep Labor Consult, Bovenden, Germany 

HeraCell 150i incubator Heraeus, Hanau, Germany 

HeraSafe laminar flow Heraeus, Hanau, Germany 

IVIS® Spectrum in vivo imaging system PerkinElmer, Waltham, MA, USA 

Leica DMi1 Leica, Wetzlar, Germany 

Leica TCS SP8 confocal laser scanning microscope Leica, Wetzlar, Germany 

Megafuge 1.0 RS centrifuge Thermo Scientific, Waltham, MA, USA 

Mikro 22R microcentrifuge Hettich, Tuttlingen, Germany 

Mini PROTEAN 3 electrophoresis chambers Bio-Rad, Munich, Germany 

Mini Trans-Blot® system Bio-Rad, Munich, Germany 

MR 3001 K magnetic stirrer Heidolph Instruments, Schwabach, 

Germany 

Nanodrop® ND-100 spectrophotometer PEQLAB Biotechnologie GmbH, Erlangen, 

Germany 

Nikon Eclipse Ti inverted microscope Nikon, Düsseldorf, Germany 

Olympus CK30 inverted microscope Olympus, Tokyo, Japan 

Pipettes (0.5-10 µL, 10-100 µL, 100-1,000 µL,  

500-5,000 µL) 

Eppendorf, Hamburg, Germany 

Power Pac 300 blotting device Bio-Rad, Munich, Germany 

Primus 25 advanced® thermocycler PEQLAB Biotechnologie GmbH, Erlangen, 

Germany 

Reax top vortex Heidolph Instruments, Schwabach, 

Germany 

Rotina 46R centrifuge Hettich, Tuttlingen, Germany 

SpectraFluor Plus™ plate reader Tecan, Crailsheim, Germany 

Vibrax VXR basic shaker IKA, Staufen, Germany 

Vi-Cell™ XR Beckmann Coulter, Krefeld, Germany 

xCELLigence dual purpose system Roche Diagnostics, Penzberg, Germany 

Zeiss LSM 510 Meta confocal laser scanning 

microscope 

Zeiss, Oberkochen, Germany 
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2.1.4 Consumables 

Table 3. List of consumables 

Product Source 

Cell culture flasks, tubes, and plates Sarstedt, Nümbrecht, Germany 

Disposable plastic pipettes (5 mL, 10 mL, 25 mL) Greiner Bio, Frickenhausen, Germany 

Eppendorf tubes (0.5 mL, 1.5 mL, 2 mL) Eppendorf, Hamburg, Germany 

FACS tubes (5 mL) Sarstedt, Nümbrecht, Germany 

Falcon tubes (15 mL, 50 mL) Greiner Bio, Frickenhausen, Germany 

ibidi chemotaxis μ-slide ibidi GmbH, Gräfelfing, Germany 

ibiTreat µ-slides 8-well ibidi GmbH, Gräfelfing, Germany 

Nitrile gloves VWR, Radnor, PA, USA 

Pipette tips (10 µL, 100 µL, 1,000 µL) Sarstedt, Nümbrecht, Germany 

Polyvinylidene difluoride (PVDF) membrane (0.2 µm) Amersham Bioscience, Freiburg, Germany 

Transwell Boyden chamber inserts 8 µm pore size Corning, New York, NY, USA 

xCELLigence CIM-plates 16 ACEA Biosciences, San Diego, CA, USA 

xCELLigence E-plates 16 ACEA Biosciences, San Diego, CA, USA 

 

2.1.5 Software 

Table 4. Software tools used for data acquisition and analysis   

Software Supplier 

Adobe Creative Cloud Adobe, San José, CA, USA 

BD FACSDiva™  BD Biosciences, Franklin Lakes, NJ, USA 

Chemotaxis and migration tool version 4.3.2 ibidi GmbH, Gräfelfing, Germany 

FlowJo 7.6.5 Tree Star, Ashland, OR, USA 

GraphPad Prism 7 GraphPad Software, San Diego, CA, USA 

Image Lab 5.2 Bio-Rad, Hercules, CA, USA 

ImageJ NIH, Bethesda, MD, USA 

Leica LAS X Leica, Wetzlar, Germany 

Living Image 4.4 PerkinElmer, Waltham, MA, USA 

Microsoft Office 2010 Microsoft, Redmont, WA, USA 

RTCA software 2.0 ACEA Biosciences, San Diego, CA, USA 

Zeiss LSM image Browser Zeiss, Oberkochen, Germany 
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2.2 Cell culture 

2.2.1 Solutions and reagents 

The following solutions were used for the cultivation of MDA-MB-231, 4T1-luc2, T24, HEK293, and 

CRISPR VAT-1 knockout (k.o.) clones. 

Table 5. Commonly used media, solutions, and buffers for cell culture 

PBS (pH 7.4)   
 

PBS+Ca2+/Mg2+ (pH 7.4)   

NaCl 132.2 mM  NaCl 137 mM 

Na2HPO4 10.4 mM  KCl 2.68 mM 

KH2PO4 3.2 mM  Na2HPO4 8.10 mM 

H2O    KH2PO4 1.47 mM 

   MgCl2 0.25 mM 

   CaCl2 0.5 mM 

   H2O  

     

     

1x Trypsin/EDTA (1x T/E) 
 

2x Trypsin/EDTA (2x T/E) 

Trypsin 0.05% (w/v)  Trypsin 0.1% (w/v) 

EDTA 0.02% (w/v)  EDTA 0.02% (w/v) 

PBS  
 PBS  

     

     

Growth medium  
  

Growth medium  

DMEM 500 mL 
 

RPMI-1640 500 mL 

FCS 10% (v/v) 
 

FCS 10% (v/v) 

Penicillin/Streptomycin 100x 1% (v/v)  Penicillin/Streptomycin 100x 1% (v/v) 

     

     
Starvation medium  

DMEM 

   Starvation medium 

RPMI-1640 
  

DMEM 500 mL  RPMI-1640 500 mL 

Penicillin/Streptomycin 100x 1% (v/v)  Penicillin/Streptomycin 100x 1% (v/v) 

   
  

     

Collagen G     

Collagen G 0.001% (v/v)    

PBS     
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2.2.2 Cell lines 

Highly invasive human triple negative breast adenocarcinoma MDA-MB-231 cells, human urinary 

bladder carcinoma T24 cells, and human embryonic kidney HEK293 cells were obtained from the 

German Collection of Microorganisms and Cell Cultures GmbH (DSMZ, Braunschweig, Germany) 

and cultured in Dulbecco´s Modified Eagle´s Medium (DMEM) supplemented with 10% (v/v) fetal 

calf serum (FCS) and 1% (v/v) penicillin/streptomycin (P/S) (100 U/mL penicillin and 100 µg/mL 

streptomycin). The murine breast carcinoma cell line 4T1-luc2 was purchased from PerkinElmer 

(Waltham, MA, USA) and maintained in Roswell Park Memorial Institute Medium (RPMI-1640). 

RAEW glioblastoma multiforme cells established from a patient isolate in Linz were kindly provided 

by the MedUni Vienna and cultivated in RPMI-1640 medium supplemented with 10% (v/v) FCS and 

1% (v/v) P/S. U87 human primary glioblastoma cells were kindly provided by the Weatherall Institute 

of Molecular Medicine of the University of Oxford and cultivated in RPMI-1640 medium 

supplemented with 10% (v/v) FCS and 1% (v/v) P/S. The HEK293-derived VAT-1 knockout (k.o.) 

cell lines were generated as described in section 2.4 and cultivated in DMEM medium supplemented 

with 10% (v/v) FCS and 1% (v/v) P/S. All cells were cultured at 37 °C with 5% CO2 in constant 

humidity in an incubator and routinely tested for mycoplasma contamination. Before cell seeding of 

HEK293 or HEK293-derived clonal cell lines, all culture flasks, multiwell-plates, and dishes were 

coated with 0.001% (v/v) collagen G in PBS for 30 min. 

2.2.3 Passaging 

Cells were cultivated in growth medium until reaching 90% confluence and subsequently either 

seeded for experimental purposes or passaged every three to four days. For this purpose, the medium 

was removed, and the cells were washed twice with pre-warmed PBS. To detach the adherent cells, 

1.0 mL 2x trypsin/EDTA (2x T/E) was added for all cell lines except HEK293 cells and 

HEK293-derived clonal cell lines which were detached with 1x T/E. After 3-5 min of incubation at 

37 °C tryptic digestion was stopped by the addition of growth medium containing 10% (v/v) FCS and 

1% (v/v) P/S. Cells were counted using a ViCell® XR Cell Viability Analyzer (Beckman Coulter, 
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Fullerton, CA, USA). For sub-cultivation, appropriate cell numbers were seeded in 75 cm2 culture 

flasks adding 10.0 mL growth medium. 

2.2.4 Freezing and thawing 

For long term storage, cells were detached as described previously and resuspended in ice cold 

freezing medium (Table 6). Aliquots of 1.5 mL (equal to 2x106
 cells) were added to cryovials. After an 

initial storage at -80 °C for 24 h, cryovials were transferred to liquid nitrogen for long term storage. 

For thawing, the content of a cryovial was dissolved in prewarmed culture medium. Through 

centrifugation (1,000 rpm, 5 min, 20 °C) excessive DMSO was removed by replacing freezing 

medium with fresh growth medium. Finally, the cell suspension was transferred to a culture flask and 

the medium was exchanged 24 h after thawing.  

 

Table 6. Media for cell freezing 

Freezing medium  

 

MDA-MB-231, T24, 

HEK293, CRISPR VAT-1 k.o. clones   

Freezing medium 

 

4T1-luc2, RAEW, U87 

 

DMEM  70% (v/v)  RPMI-1640  70% (v/v) 

FCS 20% (v/v)  FCS 20% (v/v) 

DMSO 10% (v/v)  DMSO 10% (v/v) 

 

2.3 Transient transfection with small-interfering RNA (siRNA) 

For silencing experiments, MDA-MB-231 and 4T1-luc2 cells were transfected with ON-TARGETplus 

SMARTpool small interfering RNA (siRNA) targeting human VAT-1 protein (Dharmacon, GE 

Healthcare, Munich, Germany) for 48 h using DharmaFECT™ transfection reagent according to 

manufacturer’s protocol (Dharmacon, GE Healthcare, Munich, Germany). ON-TARGETplus 

non-targeting control siRNA (nt siRNA) served as control to determine baseline cellular responses in 

RNA interference experiments. siRNAs were resuspended according to Dharmacon instructions in 

1x siRNA buffer (diluted from Dharmacon 5x siRNA buffer in RNase-free water) to a stock 

concentration of 20 µM and stored at -20 °C. 
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2.4 Genome editing using the CRISPR-Cas9 system  

The CRISPR-Cas9 system was used to knock out VAT-1 in HEK293 cells by removing exon 2 of the 

gene following the procedure described by Ran et al.[62] using plasmid-based sgRNA delivery 

technique. 

2.4.1 Guide RNA design 

For the generation of single guide RNAs (sgRNAs) the CRISPOR-Tefor online designing tool was 

used as described previously.[63, 64] For experiments, the two highest ranked sgRNAs were used   

(Table 7). 

Table 7. sgRNA sequences  

sgRNA Sequence 

sgRNA-5’_1 top 5’-CACCGAAAGCACTTGAAATCGGGCT-3’ 

sgRNA-5’_1 bottom 5’-AAACAGCCCGATTTCAAGTGCTTTC-3’ 

sgRNA-5’_2 top 5’-CACCGTAGGGCAGCATGAAGTATTG-3’ 

sgRNA-5’_2 bottom 5’-AAACCGGCAACTACACAGCAGAGGC-3’ 

sgRNA 3’ top 5’-CACCGCCTCTGCTGTGTAGTTGCCG-3’ 

sgRNA 3’ bottom 5’-AAACCGGCAACTACACAGCAGAGGC-3’ 

 

2.4.2 Cloning and transformation of E.coli 

To prepare the sgRNA-delivery plasmid construct, the sgRNAs were cloned into the eCas9_Puro2.0 

plasmid (c = 455.9 ng/µL), which was kindly provided by Dr. Phuong Nguyen, via the BbsI restriction 

site using T4 DNA ligase according to the manufacturer’s instructions (Thermo Scientific, Waltham, 

MA, USA). For this purpose, sgRNA oligomers were annealed using a PCR cycler (5 min at 95 °C, 

ramp down to 25 °C) and diluted 1:200 (v/v) in H2O for further use (Table 8). 

Table 8. sgRNA oligomer annealing mix 

Reagent Volume [µL] 

sgRNA_top (100 µM) 1 

sgRNA_bottom (100 µM) 1 

T4 ligation buffer (10x) 1 

H2O 7 
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To insert the annealed sgRNA oligomers into the eCas9_Puro2.0 plasmid, the plasmid was digested 

for 30 min at 37 °C using a restriction enzyme mix (Table 9). 

Table 9. Restriction enzyme mix 

Reagent Volume [µL] 

eCas9_Puro2.0 plasmid (150 ng) 0.329  

FastDigest green buffer (10x) 1.5 

FastDigest Bpil restriction enzyme 1 

H2O ad 15 

 

For ligation of annealed sgRNA oligomers and digested plasmid, a ligation mix containing T4 DNA 

ligase was prepared and incubated at RT for 30 min (Table 10). Non-ligated plasmid was removed 

with PlasmidSafe™ ATP-Dependent DNase according to the manufacturer’s protocol (Epicentre, 

Madison, WI, USA) by incubation at 37 °C for 30 min and 70 °C for 30 min (Table 11). Obtained 

plasmids were stored at -20 °C before transformation of E.coli. 

Table 10. Ligation mix 

Reagent Volume [µL] 

Restricted eCas9_Puro2.0 plasmid  10  

Annealed sgRNA oligomers (diluted 1:200) 2 

T4 ligation buffer (10x) 2 

T4 DNA ligase 1 

H2O 5 

 

Table 11. PlasmidSafe™ ATP-Dependent DNase mix 

Reagent Volume [µL] 

Ligation product  11  

PlasmidSafe buffer (10x) 1.5 

ATP (25 mM) 0.6 

PlasmidSafe™ ATP-dependent DNase 1 

H2O ad 15 

 

In order to replicate plasmid-DNA, competent DH5α-E.coli were transformed with the respective 

sgRNA plasmids. In brief, 3 µL of plasmid-DNA were added and E.coli were first kept on ice for 

10 min before being heat-shocked at 42 °C for 45 s and returned to ice for 2 min. The bacterial 
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suspension was then plated on an agar plate with ampicillin and stored at 37 °C overnight. Afterwards, 

3-5 colonies per plasmid were picked and amplified in 5 mL LB medium supplemented with 

100 μg/mL ampicillin. Subsequently, plasmids were isolated using the QIAprep Spin Miniprep Kit 

(Qiagen, Hilden, Germany) according to the manufacturer’s instructions. To validate correct 

insertion, plasmids were sequenced starting from the U6 promotor (U6-F-primer: 

5’-GAGGGCCTATTTCCCATGATTCC-3’) before selected plasmids were amplified and isolated 

using the QIAGEN plasmid Maxiprep Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

protocol. 

2.4.3 Transfection and evaluation of genome targeting efficiency 

HEK293 were cultured in 6-well plates to a confluency of 70-80% before being transfected with 

respective plasmids using Lipofectamine™ 3000 (Thermo Scientific, Waltham, MA, USA) as 

described by the manufacturer. Transfection efficiency was monitored after 48 h using eGFP-plasmid, 

before puromycin (0.6 μg/mL) and blasticidin S (8.0 μg/mL) were added for another 72 h. After 

removal of selection media, cells were cultured in growth medium and allowed to recover. After 

reaching sufficient confluency, genome targeting efficiency of the different sgRNA pairs was assessed 

using T7 Endonuclease I (New England Biolabs, Ipswich, MA, USA) according to the manufacturer’s 

instructions. Cells transfected with the sgRNA plasmid with the highest genome targeting efficiency 

were subjected to clonal selection. 

2.4.4 Selection of clonal cell lines and knockout verification 

To isolate clonal cell lines, single-cell dilution was performed by dissociation of cells via a cell 

strainer and dilution to a final concentration of 0.5 cells per 100 µL. Cells were plated in multiple 

96-well plates and allowed to grow for 7 days. Wells were inspected under a microscope and wells 

that had been seeded with multiple cells were marked off. After expansion of colonies for 2-3 weeks 

they were transferred to 12-well plates and a sample of each colony was collected for DNA and whole 

cell protein isolation for verification of successful knockout. DNA was isolated with QuickExtract™ 

DNA Extraction Solution (Epicentre, Madison, WI, USA) according to the manufacturer’s protocol. 
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Subsequently, successful deletion of exon 2 was verified by PCR product size analysis using primer 

pairs in which either both primers anneal outside of the deleted region, yielding a PCR product of 

specific length in case of successful knockout, or one primer anneals outside and one within the 

deleted region (no PCR product is to be expected) (Table 12). Knockout of VAT-1 in identified clones 

was additionally confirmed by sequencing and Western blot. Sequencing services, sequencing primers, 

cloning oligomers and PCR primers were provided by Eurofins Genomics GmbH (Ebersberg, 

Germany). Additionally to HEK293 WT cells, the clone cell line CRISPR control was isolated which 

was subjected to the complete CRISPR-Cas9 procedure, but did not result in successful knockout of 

VAT-1 and used as control in all experiments.   

Table 12. Primers used for PCR product size analysis and sequencing 

Primer Sequence 

Out-fwd primer 5’-GCTCAAACACACTTCTCCCG-3’  

Out-rev primer 5’-CTCCCTACCCCCTCCCATAT-3’ 

In-fwd primer 5’-ATGTGGCAGGAAGAGGTGAC-3’ 

Out-rev primer 5’-CCATTCTCCTTCAGTGCCTC- 3’ 

Sequencing primer 5’-AACTGGAGCTGGAAAAGTGG-3’ 

 

2.5 Proliferation and viability assays 

Depending on the cell line and purpose of the experiment different proliferation or viability assays 

were conducted and listed below. 

2.5.1 Crystal violet proliferation assay 

To determine the antiproliferative effect of Neocarzilins, 5.0 x 103 (MDA-MB-231, 4T1-luc2, T24) or 

1.0 x 104 (RAEW, U87) cells were incubated in triplicate with the indicated concentrations of 

compounds for 72 h and stained with 0.5% crystal violet solution (Table 13) for 10 min. After careful 

washing with water to remove excess staining solution the plate was allowed to dry. Afterwards, 

crystal violet was redissolved with trisodium citrate solution (Table 13) to measure absorption at 

550 nm at a SpectraFluor Plus™ plate reader (Tecan, Crailsheim, Germany). For statistical analysis, 
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values of the day zero control were subtracted, and results of each biological replicate were 

normalized to the corresponding DMSO control which was set to 100% proliferation. 

Table 13. Solutions for crystal violet assay 

Crystal violet solution 
 

Trisodium citrate solution 

Crystal violet 0.5% (w/v)  0.1 M Trisodium citrate dihydrate 50% (w/v) 

Methanol 20% (v/v)  Ethanol (95-98%) 50% (v/v) 

H2O  
 H2O  

 

2.5.2 CellTiter-Blue® (CTB) viability assay 

The metabolic activity of cells can be employed as an indicator for their viability. Therefore, 

CellTiter-Blue® (CTB) cell viability assay (Promega, Mannheim, Germany), which uses the indicator 

dye resazurin (Figure 8), was performed to measure the influence of NCA on the viability of HEK293 

cells and CRISPR-Cas9 VAT-1 k.o. clones. CTB assay was chosen in the first place, since HEK293 

cells are fairly adherent and therefore very sensitive to the washing protocol applied in crystal violet 

proliferation assay.  

 

Figure 8. CellTiter-Blue® cell viability assay reaction. In viable cells resazurin is reduced to resorufin which 

emits fluorescence at 590 nm.   

 

Experiments were carried out following the manufacturer’s protocol (Promega, Mannheim, Germany). 

Therefore, 5.0 x 103 cells per well were seeded in 96-well plates and allowed to adhere overnight. 

Before cells were treated with NCA or DMSO for controls for 72 h, the initial metabolic activity was 

determined (day zero control). On day three, CellTiter-Blue® reagent was added 3 h before terminating 

the experiment to allow reduction of the indicator dye. Fluorescence at 590 nm was measured using a 

SpectraFluor Plus™ (Tecan, Crailsheim, Germany). For statistical analysis, values of the day zero 
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control were subtracted, and results of each biological replicate were normalized to the corresponding 

DMSO control which was set to 100% viability. 

2.5.3 xCELLigence proliferation assay 

To monitor the time-dependent effect of silencing of VAT-1 on cell proliferation, cellular growth was 

investigated using real-time impedance measurements performed on a xCELLigence dual purpose 

system (Roche Diagnostics, Penzberg, Germany) according to the manufacturer’s instructions. 

MDA-MB-231 cells were silenced with siRNA targeting VAT-1 for 48 h as described in section 2.3. 

Prior to addition of cells, a background measurement was performed. Subsequently, 5.0 x 103 cells 

were seeded in triplicate in 100 µL growth medium in equilibrated 16-well E-plates                   

(ACEA Biosciences, San Diego, CA, USA) and proliferation was monitored over 72 h. Through 

impedance measurement, the xCELLigence system evaluates the cell index, a dimensionless 

parameter, which is proportional to the cell number and recorded every hour. For interpretation of 

results, background values were subtracted, and data was normalized to the cell index at the starting 

point of treatment. Further data evaluation was performed with the RTCA xCELLigence software 

(ACEA Biosciences, San Diego, CA, USA). For statistical analysis, results of each biological replicate 

were normalized to the corresponding nt siRNA control which was set to 100% proliferation. 

 

2.6 Migration and invasion assays 

To measure the effect of Neocarzilins or silencing of VAT-1 protein on cell migration and invasion, 

different assays for endpoint- and time-dependent analysis of directed migration were performed.   

2.6.1 Boyden chamber assay 

To investigate the migratory potential of different cell lines after treatment with Neocarzilins or 

knockdown of VAT-1 protein via silencing, transwell migration/invasion assays using Boyden 

chamber inserts were performed. The assay uses a chemoattractant gradient and inserts with a 

permeable membrane of defined pore size which can be penetrated by migrating cells either directly 
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(migration assay) or after successful invasion into a layer of Matrigel® (VWR, Radnor, PA, USA) on 

top of the membrane (invasion assay). In detail, 4.0 x 105 cells were seeded in 6-well plates, allowed 

to adhere overnight and subsequently treated with indicated concentrations of compounds for 24 h or 

silenced with siRNA targeting VAT-1 under nutrient deprivation. HEK293 CRISPR-Cas9 VAT-1 k.o. 

clones were additionally treated with 10 µg/mL mitomycin for 2 h prior to harvest to inhibit 

proliferation. 1.6 x 105 cells (MDA-MB-231, 4T1-luc2) or 1.4 x 105 cells (HEK293, CRISPR-Cas9 

VAT-1 k.o. clones) were resuspended in media without FCS and added on top of the Boyden chamber 

membrane (8 µm; Corning, New York, NY, USA) in duplicate. Culture medium containing 10% FCS 

(MDA-MB-231, 4T1-luc2) or fibroblast-conditioned medium (HEK293, CRISPR-Cas9 VAT-1 k.o. 

clones) was used as chemoattractant. After 4 h (MDA-MB-231), 6 h (4T1-luc2) or 42 h (HEK293, 

CRISPR-Cas9 VAT-1 k.o. clones) migrated cells were fixed and stained with crystal violet solution 

(Table 14) for 10 min. Non-migrated cells on top of the membrane were removed with a cotton swab. 

For invasion assays, membranes were coated with Matrigel® (VWR, Radnor, PA, USA) according to 

manufacturer’s instructions. For every condition 5 pictures of the membrane were taken with an 

Axiovert 25 microscope (Zeiss, Oberkochen, Germany) and a Canon Eos 450 C camera             

(Canon, Krefeld, Germany) and cells were counted manually using ImageJ software (NIH, Bethesda, 

MD, USA). For statistical analysis, results of each biological replicate were normalized to the 

corresponding DMSO control which was set to 100% migration. 

Table 14. Staining solution for Boyden chamber assay 

Crystal violet solution 
 

 

Crystal violet 0.5% (w/v)    

Methanol 20% (v/v)    

H2O  
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2.6.2 Chemotaxis assay 

Chemotaxis describes the directed migration of cells towards a chemoattractant. By seeding cells in an   

ibidi chemotaxis μ-slide (ibidi GmbH, Gräfelfing, Germany) the motility of living single cells can be 

monitored in real time by using inverted microscopy. Chemotaxis assay allows the investigation of 

general forward migration as well as its directness and velocity. In detail, 4.0 x 105 MDA-MB-231 

cells were seeded in 6-wells, allowed to attach overnight and treated with NCA for 24 h in serum-free 

DMEM medium. Afterwards cells were detached and seeded in ibidi Chemotaxis μ-Slides 

(ibidi GmbH, Gräfelfing, Germany) at a concentration of 3.0 x 106 cells/mL in DMEM medium 

containing FCS for better adhesion. After cell attachment, channels were washed with serum-free 

DMEM medium and a FCS-gradient was established by filling one reservoir of the slide with FCS 

negative medium and the other with medium containing 10% FCS. Images were taken every 10 min 

for 20 h using a Nikon Eclipse Ti inverted microscope (Nikon, Düsseldorf, Germany) and the 

indicated migration parameters were calculated using the chemotaxis and migration tool Open Source 

Edition version 4.3.2 (ibidi GmbH, Gräfelfing, Germany).   

2.6.3 xCELLigence migration assay 

For real time monitoring of cell migration, a xCELLigence CIM-plate 16 was assembled and 

equilibrated according to manufacturer’s protocol (ACEA Biosciences, San Diego, CA, USA). 

MDA-MB-231 cells were transfected with nt siRNA or siRNA targeting VAT-1 for 48 h as described 

in section 2.3. Cells were starved overnight, resuspended in medium without FCS and 4.0 x 104 cells 

were seeded in triplicate per 100 µL in the equilibrated CIM-plate. After cells were allowed to settle 

onto the bottom for 30 min at RT, the CIM-plate was placed into the xCELLigence instrument and 

migration towards growth medium containing 10% FCS as chemoattractant was monitored over 16 h. 

By impedance measurement, the xCELLigence device evaluates the cell index, a dimensionless 

parameter, which is proportional to the number of migrated cells. Data evaluation was performed with 

the RTCA xCELLigence software (ACEA Biosciences, San Diego, CA, USA). For statistical analysis, 
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results of each biological replicate were normalized to the corresponding nt siRNA control which was 

set to 100% migration 

 

2.7 Plate-and-wash adhesion assay 

To investigate the impact of NCA on cell adhesion of MDA-MB-231 cells to collagen I and 

fibronectin a plate-and-wash adhesion assay was performed. For this purpose, the protocol for 

cell-substrate adhesion assays by Martin J. Humphries[65] was adapted and optimized for 

MDA-MB-231 cells as well as for the used extracellular matrix ligands. In detail, 4.0 x 105 cells were 

seeded in 6-wells, allowed to attach overnight and subsequently treated with NCA for 24 h. On the day 

of stimulation an untreated 96-well plate was coated with 100 µL collagen I (5 µg/mL) or fibronectin 

(10 µg/mL) diluted in coating buffer (Table 15) overnight at 4 °C. Afterwards, the coating solution 

was removed, and the wells were washed with 100 µL PBS. Non-specific binding sites were blocked 

with 100 µL of 3% (w/v) BSA in PBS for 30-60 min at RT. Simultaneously, treated cells were washed 

once with PBS and incubated with 1 mL of a 2 µM calcein acetoxymethyl ester (calcein-AM) solution 

in PBS at 37 °C for 30 min. Calcein-AM is a cell-permeant non-fluorescent dye which is converted to 

green-fluorescent calcein in living cells by hydrolysis of acetoxymethyl ester through intracellular 

esterases. In this assay setup, calcein-AM staining was used for quantification of living cells. After 

incubation, suspensions of cells were centrifuged (1,000 rpm, 5 min, RT), the supernatants were 

discarded and the pellets once washed with PBS. After removal of PBS by another centrifugation step 

the cell pellets were resuspended in 1.5 mL FCS reduced medium (Table 15) and the cell density was 

adjusted to 4.0 x 104 cells/100 µL. To ensure optimal CO2 equilibration as well as a recovery from the 

detachment and centrifugation process, cells were incubated for 10 min at 37 °C in falcon tubes 

without lid. Meanwhile, the previously coated and blocked 96-well plate was prepared for cell 

addition. The blocking solution was aspirated, and the wells were washed once with 100 µL PBS. 

Prior to cell addition, 100 µL PBS per well were added to minimize the formation of a meniscus, 

which leads to uneven distribution of cells on the bottom of the well. Subsequently, 4.0 x 104 cells in 
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100 µL were rapidly transferred to the coated wells in triplicate with a multichannel pipette and 

fluorescence of calcein at 485 nm was measured immediately for quantification of initial seeding 

density using a SpectraFluor Plus™ (Tecan, Crailsheim, Germany). Afterwards plates were incubated 

at 37 °C without lid for 25 min. Subsequently, medium containing non-adherent cells was carefully 

removed with a multichannel pipette and wells were washed twice with 100 µL PBS+Ca2+/Mg2+. To 

prevent attached cells from being detached due to an increased force of the stream of liquid in regular 

pipet tips with narrow bores, cut-off pipet tips were used. Finally, fluorescence of calcein at 485 nm 

was measured again using a SpectraFluor Plus™ (Tecan, Crailsheim, Germany). For statistical 

analysis, the fluorescent signal obtained for each well was normalized to the initial signal detected 

after plating and obtained values were normalized to the DMSO control which was set to 100%. 

Table 15. Buffers and medium for plate-and-wash adhesion assay 

Coating buffer 
 

FCS reduced medium  

Tris-HCl (pH 9.0) 20 mM  FCS 0.1% (v/v) 

NaCl 150 mM  HEPES buffer 25 mM 

MgCl2 2 mM  DMEM  

H2O  
 

  

     

HEPES buffer    

NaCl 125 mM    

KCl 3 mM    

NaH2PO4 x H2O 1.25 mM    

CaCl2 x 2 H2O 2.5 mM    

MgCl2 x 6 H2O 1.5 mM    

Glucose 10 mM    

HEPES 10 mM    

H2O     

A 

2.8 Active Rac1 pulldown 

To evaluate the effect of NCA-treatment on the activation level of the small Rho GTPase Rac1, the 

Active Rac1 Pull-Down and Detection Kit #16118 (Thermo Scientific, Waltham, MA, USA) was used 

according to the manufacturer’s instructions. In detail, per condition 2.5 x 106 MDA-MB-231 cells 
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were seeded in 100 mm dishes, allowed to adhere overnight and treated with NCA for 24 h. Rac1 

activation was induced by adding 100 ng/mL epidermal growth factor (EGF) for 5 min prior to 

harvest. Afterwards, the medium was removed, and cells were washed with ice-cold PBS before 

addition of the provided Lysis/ Binding/ Wash Buffer. Cells were scraped off, centrifuged (14,000 x g, 

4° C, 15 min) and the supernatant was collected. After protein quantification by Pierce BCA assay as 

described in section 2.13.1, 1.5 mg of total protein were incubated with glutathione resin and 

GST-Pak1-PBD, which specifically binds to active (GTP-bound) Rac1. The reaction mixture was 

transferred to the provided spin cup with collection tube and incubated at 4 °C for 1 h under constant 

agitation. After three washing steps reducing sample buffer was added to the resin and the eluted 

samples were subjected to SDS-PAGE and Western blot analysis as described in section 2.13 using a 

Rac1 mouse monoclonal antibody provided by the manufacturer of the kit. Anti-mouse IgG2b, 

HRP-linked antibody (1090-05; Southern Biotec, Birmingham, AL, USA) diluted 1:1,000 (v/v) in 

1% (w/v) non-fat dry milkpowder (Blotto) was used as secondary antibody. For statistical analysis, 

results of each biological replicate were normalized to the corresponding DMSO control which was set 

to 1.0-fold Rac1 activation. 

2.9 In vivo dissemination assay 

The in vivo animal experiment was approved by the District Government of Upper Bavaria in 

accordance with the German animal welfare and institutional guidelines and performed by 

Dr. C. Atzberger and K. Loske. 16 female Balb/c “Balb/cOlaHsd” mice, six weeks old, purchased 

from Envigo (Huntingdon, Cambridgeshire, United Kingdom) were used. The mice were pretreated 

intraperitoneally with 10 mg/kg NCA or solvent (5% DMSO, 10% Kolliphor® EL, 85% PBS) three 

times (48, 24, and 0.5 h) before 1.0 x 105 4T1-luc2 cells were injected into the tail vein. Imaging of the 

mice after intraperitoneal injection of 6 mg luciferin/mouse was performed on day five after cell 

injection using the IVIS® Spectrum In Vivo Imaging System (PerkinElmer, Waltham, MA, USA). The 

tumor signal per defined region of interest was calculated with the Living Image 4.4 software 

(PerkinElmer, Waltham, MA, USA) as photons/second/cm2 (total flux/area). 
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2.10 Confocal imaging 

2.10.1 Microtubule staining 

For microtubule staining 1.0 x 104 MDA-MB-231 cells were seeded in 8-well ibiTreat μ-slides (ibidi 

GmbH, Gräfelfing, Germany) and allowed to adhere overnight. Cells were stimulated with the 

indicated concentration of NCA for designated periods of time. Subsequently, cells were washed once 

with ice-cold PBS+Ca2+/Mg2+ and extraction buffer (Table 16) was added for 2 min prior to the 

addition of 5% glutaraldehyde. After 10 min incubation, the suspension was discarded and a 

0.1% (w/v) NaBH4 in PBS solution was added for 7 min. Cells were washed three times with PBS, 

blocked for 10 min with 0.2% (w/v) BSA in PBS and incubated for 30 min with anti-α-tubulin 

antibody (ab18251; Abcam, Cambridge, UK) diluted 1:400 in 0.2% (w/v) BSA in PBS. Thereafter, 

cells were washed three times with PBS and incubated with AlexaFluor® 488 secondary antibody 

(A-11001; Molecular Probes, Eugene, OR, USA) diluted 1:200 (v/v) in 0.2% (w/v) BSA in PBS for 

2 h at RT in the dark. For nuclei staining, Hoechst 33342 was added at a final concentration of 

5 µg/mL for 30 min and cells were finally washed three times with PBS for 10 min and one time with 

H2O to remove access antibody solution. Each well was sealed with FluorSave™ reagent mounting 

medium (Merck, Darmstadt, Germany) and glass coverslips. Images were taken with a Zeiss LSM 510 

Meta confocal laser scanning microscope (Zeiss, Oberkochen, Germany) and analyzed using Zeiss 

LSM Image Browser software (Zeiss, Oberkochen, Germany) and Image J (NIH, Bethesda, MD, 

USA). 

Table 16. Extraction buffer for microtubule staining 

Extraction buffer 5x    

PIPES 400 mM    

MgCl2 5 mM    

EGTA 5 mM    

Triton-X 0.5% (v/v)    

H2O      
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2.10.2 Immunofluorescence staining of migrating cells 

Immunofluorescence staining of migrating cells was performed for localization of the small Rho 

GTPase Rac1 as well as investigation of colocalization of VAT-1 and Talin-1. For this purpose, 

7.5 x 104 T24 cells per well were seeded in 8-well ibiTreat μ-slides (ibidi GmbH, Gräfelfing, 

Germany) and allowed to adhere overnight. After treatment of cells with NCA for 24 h, confluent cells 

were wounded with a pipette tip, washed twice with PBS and treated as indicated for additional 8 h 

with NCA. Afterwards, cells were fixed with 4% (v/v) paraformaldehyde in PBS for 10 min, 

permeabilized with 0.2% (v/v) Triton X-100 in PBS for 10 min and blocked with 1% (w/v) BSA in 

PBS for 2 h at RT. Depending on the experimental purpose, cell were either incubated with a 

1:200 (v/v) dilution of Rac1 antibody (05-389; Upstate, Lake Placid, NY, USA) in 1% (w/v) BSA in 

PBS or with a mixture of VAT-1 (sc-515705; Santa Cruz, Dallas, TX, USA) and Talin-1 (#4021, Cell 

Signaling, Danvers, MA, USA) primary antibodies diluted 1:100 (v/v) in 1% (w/v) BSA in PBS 

overnight at 4 °C under gentle agitation. Subsequently, cells were washed three times with PBS and 

incubated with AlexaFluor® 647 and/or 488 (647: A-21443; 488: A-11001, Thermo Scientific, 

Waltham, MA, USA) secondary antibodies diluted 1:200 (v/v) together with rhodamine/phalloidin 

diluted 1:300 (v/v) in 1% (w/v) BSA in PBS for 2 h at RT in the dark. To stain nuclei, Hoechst 33342 

was added at a final concentration of 5 µg/mL for 30 min and cells were finally washed three times 

with PBS for 10 min and one time with H2O. Cells were covered with FluorSave™ reagent mounting 

medium (Merck, Darmstadt, Germany) and glass coverslips. Images were taken with a Leica SP8 

confocal laser scanning microscope (Leica, Wetzlar, Germany) and analyzed using Leica LAS X 

software (Leica, Wetzlar, Germany) and Image J (NIH, Bethesda, MD, USA). 
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2.11 Flow cytometry 

All FACS experiments were performed on a FACS Canto™ II instrument (BD Biosciences, Franklin 

Lakes, NJ, USA) using BD FACSDiva™ software (BD Biosciences, Franklin Lakes, NJ, USA) 

measuring 1.0 x 104 events per sample with medium flow rate.  

2.11.1 Apoptosis and cell cycle assay 

Apoptosis rate and cell cycle analysis were determined by propidium iodide (PI) staining and flow 

cytometry according to Nicoletti et al.[66, 67] In brief, 4.0 x 104 cells (MDA-MB-231 cells) or 

2.0 x 104 cells (4T1-luc2, HEK293, CRISPR VAT-1 k.o. clones) were seeded in 24-well plates and 

allowed to adhere overnight. For determination of apoptosis cells were treated with indicated 

concentrations of NCA for 24 h or 72 h or transfected with nt siRNA or siRNA targeting VAT-1 for 

48 h as described in section 2.3, whereas cells for cell cycle analysis were treated for 48 h. Cells were 

harvested on ice and permeabilized in fluorochrome solution (Table 17) for at least 30 min at 4 °C. 

The fluorescence intensity was recorded at Ex 488 nm/ Em 585 nm and is indicative for the extent of 

DNA fragmentation of the cells, which can be used to determine the rate of apoptosis. PI intercalates 

in intact DNA structures, however, in apoptotic cells the DNA is fragmented, therefore less PI is taken 

up resulting in lower fluorescence signals (sub-G1 peak). For the determination of the percentage of 

apoptotic cells and the populations in different cell cycle phases the FlowJo 7.6.5 analysis software 

using the Watson pragmatic model for cell cycle analysis (Tree Star, Ashland, OR, USA) was used. 

Table 17. Fluorochrome solution 

Fluorochrome solution    

Propidium iodide 50 µg/mL    

Sodium citrate 0.1% (w/v)    

Trition-X 100 0.1% (v/v)    

PBS      
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2.11.2 Assessment of integrin expression and activation  

To investigate the influence of NCA on the surface expression of integrin β1, β3, and α5 as well as the 

activation level of integrin β1 in MDA-MB-231 cells antibody staining and FACS analysis was 

performed. In detail, 2.0 x 104 MDA-MB-231 cells were seeded in 12-well plates, allowed to adhere 

overnight and treated with indicated concentrations of NCA for 24 h. For harvesting, cells were 

washed once with PBS and subsequently incubated with 1 mL Gibco® Versene solution 

(Thermo Scientific, Waltham, MA, USA) at 37 °C for 30 min for non-enzymatic cell detachment. 

Subsequently, the cell suspension was transferred to FACS tubes and incubated with 500 µL 4% PFA 

in PBS for 10 min for fixation. Cells were washed twice by adding 1 mL FACS staining buffer   

(Table 18), centrifugation (400 x g, 4° C, 5 min) and removal of the supernatant. Primary antibodies 

against total integrin β1, α2β1, β3, and α5 as well as active integrin β1 were added according to    

Table 19 and incubated for 45 min at RT while gently shaking. Excess primary antibody was removed 

by washing twice with 1 mL FACS staining buffer, subsequent centrifugation (400 x g, 4° C, 5 min) 

and removal of the supernatant. Appropriate AlexaFluor® 488-conjugated secondary antibody was 

added according to Table 19 and samples were incubated for 45 min at 4 °C protected from light. 

Afterwards, cells were washed twice with 1 mL FACS staining buffer as described above and 

resuspended in 250 µL FACS staining buffer. FACS analysis was directly performed by measuring the 

fluorescence intensity at Ex 488 nm/ Em 530 nm. Data was analyzed using the FlowJo 7.6.5 analysis 

software (Tree Star, Ashland, OR, USA). 

Table 18. FACS staining buffer 

FACS staining buffer    

EDTA 20 mM    

FCS 2% (v/v)    

PBS      
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Table 19. Antibodies used for FACS analysis of integrins 

Name Catalogue Manufacturer Concentration 

Integrin α2β1 ab30483 Abcam 5 µg/mL 

Integrin α5 ab23589 Abcam 5 µg/mL 

Integrin β1 - active ab30394 Abcam 5 µg/mL 

Integrin β1 - total sc-53711 Santa Cruz 2 µg/mL 

Integrin β3 555752 BD Biosciences 2 µg/mL 

AlexaFluor® 488, goat anti-mouse IgG  A-11001 Molecular Probes 5 µg/mL 

Mouse IgG1 kappa light chain isotype 

control 

ab18443 Abcam 5 µg/mL 

f 

2.12 Co-Immunoprecipiation (co-IP) 

For investigation of protein-protein interaction of VAT-1 and Talin-1, co-immunoprecipiation (co-IP) 

experiments were performed. In detail, 2.0 x 106 MDA-MB-231 cells were seeded in 100 mm dishes, 

allowed to adhere overnight and treated with NCA for 24 h. Subsequently, cells were washed with 

ice-cold PBS and lysed by incubation with co-IP lysis buffer (Table 20) for 30 min at 4 °C under 

constant agitation. After centrifugation (10,000 x g, 4° C, 10 min) the supernatant was collected, and 

the protein amount was quantified by Pierce BCA assay as described in section 2.13.1. Next, 1 mg of 

total protein was adjusted to 1 mL final volume with co-IP lysis buffer and pre-incubated with 2 µg 

VAT-1 pull-down antibody (ABIN2443750; antibodies online, Aachen, Germany) for 2 h at 4 °C 

under constant agitation before 40 µL of resuspended protein A/G PLUS-Agarose (sc-2003; Santa 

Cruz, Dallas, TX, USA) were added. Samples were incubated overnight at 4 °C and co-IP was 

subsequently performed according to the manufacturer’s instructions (sc-2003; Santa Cruz, Dallas, 

TX, USA) using PBS for washing. A specific isotype control antibody served as control of heavy and 

light chains (#2729; Cell Signaling, Danvers, MA, USA). The amount of VAT-1 (antibody 

ABIN2443750; antibodies online, Aachen, Germany) and Talin-1 (antibody 4021; Chemicon 

International, Temecula, CA, USA) in eluted fractions was analyzed via SDS-PAGE and Western blot 

as described in section 2.13. For statistical analysis, results of each biological replicate were 

normalized to the corresponding DMSO control which was set to 1.0-fold VAT-1:Talin-1 ratio. 
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Table 20. Co-IP lysis buffer 

Co-IP lysis buffer 
 

 

Tris HCl (pH 8.0) 50 mM 
   

NaCl 150 mM 
   

Triton-X 1% (v/v)    

Igepal CA-630 (NP-40) 1% (v/v)    

H2O 
 

   

Before use:     

PMSF 1 mM    

Complete® protease inh. 1:10    

 

2.13 Immunoblotting 

2.13.1 Sample preparation and protein quantification 

To analyze cellular protein levels SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and Western 

blot was performed. For sample preparation cells were washed with ice-cold PBS prior to addition of 

NP-40 lysis buffer or phospho lysis buffer for investigation of phosphorylated proteins (Table 21). 

Samples were frozen at -80 °C for a minimum of 30 min. Subsequently, cells were scraped off, 

transferred to an Eppendorf tube and centrifuged (14,000 rpm, 10 min, 4 °C) for removal of cell 

debris. To ensure equal amount of protein during further investigation, the protein concentration was 

measured using bicinchoninic acid (BCA) assay as described previously[68]. In brief, 10 µL of protein 

sample as well as bovine serum albumin (BSA) standards (0-2,000 µg/mL) were transferred to a 

96-well plate in triplicate and diluted with 190 µL BC assay reagent. The reduction of Cu2+ to Cu+ 

leading to BCA chelate formation and a purple-colored product is proportional to the amount of 

protein. After incubation at 37 °C for 30 min absorbance at 550 nm was measured using a 

SpectraFluor Plus™ (Tecan, Crailsheim, Germany). Sample protein concentration was determined by 

linear regression using BSA standards. Western blot samples were prepared by mixing a lysate volume 

corresponding to 30-40 µg protein with 1:5 (v/v) of 5x SDS sample buffer and 1x SDS sample buffer 

(Table 21) to a total volume of 40 μl. Samples were boiled at 95 °C for 5 min and stored at -20 °C 

until further use.  
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Table 21. Buffers for cell lysis and sample preparation used for Western blot  

NP-40 lysis buffer 
 

Phospho lysis buffer 

NaCl 150 mM  NaCl 137 mM 

Igepal CA-630 (NP-40) 1% (v/v)  Triton-X 1% (v/v) 

Tris HCl 50 mM  Tris Base 20 mM 

Sodium deoxycholate 0.25% (w/v)  Na4P2O7 x 10 H2O 2 mM 

EGTA 1 mM  EDTA 2 mM 

H2O    Na-Glycerolphosphate 20 mM 

Before use:   NaF 10 mM 

PMSF 1 mM 
 H2O   

Complete® protease inh. 1:10 
 Before use:  

   PMSF 1 mM 

   Complete® protease inh. 1:10 

   Na3VO4 
2 mM 

 

5x SDS sample buffer     
 

1x SDS sample buffer   

Tris HCl (pH 6.8) 3.125 M 
 

5x SDS sample buffer 20% (v/v) 

Glycerol 50% (v/v) 
 

H2O  

SDS 5% (w/v)    

DTT 2% (w/v)    

Pyronin Y 0.025% (w/v)    

H2O     

b 

2.13.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

For protein separation by molecular weight, discontinuous SDS-PAGE was performed as described by 

Laemmli[69]. In brief, equal amounts of adjusted protein samples were loaded on discontinuous 

polyacrylamide gels, which consist of a separation and a stacking gel (Table 22) and separated using a 

Mini PROTEAN 3 electrophoresis chamber (Bio-Rad, Munich, Germany). The polyacrylamid 

concentration was typically 12% but was adjusted in a range of 10-15% according the molecular 

weight of the protein of interest to guarantee optimal separation. At the start of the electrophoresis the 

proteins were stacked at a current of 100 V for 21 min before being separated at 200 V for 45 min in 

the second step. The total protein amount of each lane was quantified using stain-free technology[70] 

using a ChemiDoc™ touch imaging system (Bio-Rad, Munich, Germany). The molecular weight of the 
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resulting protein bands was assessed by comparison with the Page Ruler™ Prestained Protein Ladder 

or the PageRuler™ Plus Prestained Protein Ladder (Thermo Scientific, Waltham, MA, USA). 

Table 22. Gels and buffer for SDS-PAGE 

Stacking gel   
 

Separation gel 12%   

Rotiphorese® Gel 30 17% (v/v)  Rotiphorese® Gel 30 40% (v/v) 

Tris HCl (pH 6.8) 125 mM  Tris HCl (pH 8.8) 375 mM 

SDS 0.1% (w/v)  SDS 0.1% (w/v) 

TEMED 0.2% (v/v)  TEMED 0.1% (v/v) 

APS 0.1% (w/v)  APS 0.05% (w/v) 

H2O    TCE 0.05% (v/v) 

    H2O   

     

     

Electrophoresis buffer    

Tris base 4.9 mM    

Glycin 38 mM    

SDS 0.1% (w/v)    

H2O      

 

2.13.3 Protein transfer and detection 

After separation, proteins were transferred to 0.2 µm polyvinylidene difluoride (PVDF) membranes 

(Amersham Bioscience, Freiburg, Germany) by electro tank blotting[71] after activation of membranes 

with methanol. Protein transfer was performed at 100 V and 4 °C for 90 min using a Mini Trans-Blot® 

system (Bio-Rad, Munich, Germany) filled with 1x tank buffer (Table 23). To block unspecific 

binding sites, membranes were incubated with 5% non-fat dry milkpowder (Blotto) for 2 h before 

incubation with the primary antibody (Table 24) overnight at 4 °C. Subsequently, membranes were 

washed four times with TBS-T (Table 26) in order to remove excess primary antibody solution, before 

incubation with an appropriate HRP-conjugated secondary antibody (Table 25) for 2 h at RT. 

Membranes were washed three times with TBS-T and once with H2O before chemiluminescence was 

detected using ECL solution (Table 26) and a ChemiDoc™ touch imaging system (Bio-Rad, Munich, 

Germany). Western blot data was analyzed using Image Lab 5.2 (Bio-Rad, Hercules, CA, USA). 
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Table 23. Tank buffer used for proteins transfer 

5x Tank buffer   

 
1x Tank buffer   

Tris base 240 mM  5x Tank buffer 20% (v/v) 

Glycin 195 mM  Methanol 20% (v/v) 

H2O   H2O  
 

Table 24. Primary antibodies for Western blot 

Name Species Catalogue Manufacturer Dilution 

Gelsolin Rabbit IgG 12953 Cell Signaling Technologies 1:1,000 

Rac1 Mouse IgG2b 05-389 Upstate 1:1,000 

Talin-1 Mouse IgG1 MAB1676 Chemicon International 1:1,000 

Talin-1 Rabbit IgG 4021 Cell Signaling Technologies 1:1,000 

Thrombospondin-1 Rabbit IgG 37879 Cell Signaling Technologies 1:1,000 

VAT-1 Mouse IgG2a ab89138 Abcam 1:1,000 

VAT-1 Mouse IgG2b sc-515705 Santa Cruz 1:500 

VAT-1 Rabbit IgG SAB1100727 Sigma Aldrich 1:1,000 

VAT-1 Goat polycl. sc-107348 Santa Cruz 1:200 

VAT-1 Rabbit polycl. ABIN2443750 Antibodies online 1:1,000 

Vinculin Mouse IgG2a sc-25336 Santa Cruz 1:1,000  

 

Table 25. Secondary antibodies for Western blot  

Name/Species Catalogue Manufacturer Dilution 

HRP, donkey-anti-goat IgG ab97120 Abcam  1:1,000 

HRP, goat-anti-mouse IgG1 ab97240 Abcam 1:1,000 

HRP, goat-anti-mouse IgG2a 1080-05 Southern Biotec 1:1,000 

HRP, goat-anti-mouse IgG2b 1090-05 Southern Biotec 1:1,000 

HRP, goat-anti-rabbit IgG 172-1019 Bio-Rad 1:1,000 

 

Table 26. Solutions for protein visualization 

ECL solution   

 
TBS-T   

Tris (pH 8.5) 100 mM  Tris base (pH 8.0) 24.8 mM 

Luminol 2.5 mM  Glycin 190 mM 

Coumaric acid 1 mM  Tween 20 0.1% (v/v) 

H2O2 17 µM  H2O  

H2O     
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2.14 Statistical analysis 

Results of at least three independent experiments (biological replicates, each performed in two or three 

technical replicates) are expressed as mean ± SEM or as percentage value. Statistical analysis was 

performed using GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA) using either 

two-tailed unpaired Student’s t test *P < 0.033, **P < 0.002, ***P < 0.001, or one-way ANOVA, 

Dunnett’s test, *P < 0.033, **P < 0.002, ***P < 0.001 compared with DMSO control.  
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3 Results 

3.1 Neocarzilins reduce cancer cell proliferation in various cell lines  

In 1992 Nozoe et al. revealed a potent cytotoxic activity for NCA against K562 chronic myelogenous 

leukemia cells (IC50 of 185 nM).[42] However, up to date no further investigations into the antitumor 

activity of the Neocarzilins have been pursued. To gain more insight into the potential of this 

interesting compound class we performed crystal violet assays to determine the antiproliferative effect 

of all members of the Neocarzilin family (NCA, NCA’, NCB, NCC) as well as the activity-based 

probe NC-1 (Figure 9) used for target identification experiments in a panel of cancer cell lines. NCA 

showed IC50 values ranging from about 300 to 800 nM for different cancer cell lines, affirming 

previous literature data (Figure 10 A-C).[42] In comparison, NCA’, NCB, and NCC showed less 

pronounced effects with IC50 values ranging from about 1-6 µM for human MDA-MB-231 cells 

(Figure 10 A) and murine 4T1-luc2 cells (Figure 10 B). Whereas NCA’ and NCB showed comparable 

potency, NCC emerged as the least active compound. The antiproliferative activity of the Neocarzilin 

probe NC-1 was significantly reduced in MDA-MB-231 and 4T1-luc2 cells (IC50’s of 24-34 µM) 

compared to NCA (Figure 10 D).   

 

Figure 9. Chemical structure of Neocarzilins and the activity-based probe NC-1 used for ABPP. 
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Figure 10. Antiproliferative effects of Neocarzilins in different cancer cell lines. (A, B) Proliferative capacity 

of human breast adenocarcinoma MDA-MB-231 cells (A) and murine breast cancer 4T1-luc2 cells (B) treated 

with NCA, NCA’, NCB and NCC and IC50 values determined by crystal violet staining after 72 h. (C) The 

antiproliferative effect of NCA on T24 human bladder carcinoma cells and the glioblastoma cell lines RAEW 

and U87 was determined by crystal violet staining after 72 h. (D) Proliferative capacity of human MDA-MB-231 

and murine 4T1-luc2 breast cancer cells treated with the activity-based probe NC-1 determined by crystal violet 

staining after 72 h. (A-D) Bars represent the mean ± SEM of at least three independent experiments performed in 

triplicate. 

3.2 Neocarzilin A induces apoptosis without influencing the cell cycle  

Since NCA showed the strongest antiproliferative effect, we further characterized it by investigating 

its capability to induce apoptosis in human MDA-MB-231 and murine 4T1-luc2 cells according to 

Nicoletti et al.[66, 67] After 24 h and 48 h treatment, NCA induced apoptosis only at high concentrations 

in MDA-MB-231 cells (Figure 11 A). However, incubation for 72 h resulted in strong induction of 

apoptosis starting around 2.0 µM NCA (Figure 11 A). 4T1-luc2 cells generally showed a higher 

sensitivity towards NCA treatment indicated by elevated apoptosis starting already around 1.5 µM 

NCA after 24 h and a strong increase of apoptotic cells at 3.0 µM NCA after 48 h and 72 h incubation 

(Figure 11 B). In contrast, the probe NC-1 had no apoptotic effect on MDA-MB-231 cells after 24 h 

and 48 h incubation with concentrations up to 10 µM (Figure 11 C). Of note, NCA had no effect on 

cell cycle progression and microtubule network organization in MDA-MB-231 cells (Figure 11 D, E).  
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Figure 11. Effect of NCA on apoptosis and cell cycle. (A-B) MDA-MB-231 (A) or 4T1-luc2 cells (B) were 

treated with indicated concentrations of NCA for 24 h, 48 h or 72 h. Cells were permeabilized and stained with 

propidiumiodide using the method described by Nicoletti et al.[66, 67]. The percentage of dying cells was 

determined by flow cytometry. (C) The apoptotic effect of NC-1 on MDA-MB-231 cells was analyzed using 

propidiumiodide using the method described by Nicoletti et al.[66, 67] after 24 h and 48 h. The percentage of dying 

cells was determined by flow cytometry. (A-C) Bars represent the mean ± SEM of at least three independent 

experiments performed in triplicate, one-way ANOVA, Dunnett’s test, *P < 0.033, **P < 0.002, ***P < 0.001 

compared with DMSO control. (D) The effect of NCA on the cell cycle progression of MDA-MB-231 cells was 

determined by propidiumiodide staining using the method described by Nicoletti et al.[66, 67] The cell cycle 

analysis was performed with the FlowJo 7.6.5 program using the Watson pragmatic model. (E) Confocal images 

of MDA-MB-231 cells stimulated with NCA or DMSO as indicated. α-Tubulin (green) and nuclei (blue) were 

visualized by immunocytochemistry. Representative images out of three independent experiments are shown. 
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3.3 Neocarzilin A significantly reduces cancer cell motility  

3.3.1 Cell migration and invasion are inhibited upon Neocarzilin A treatment 

Targeting cell viability to fight cancer presents the major approach in cancer medicine. However, 

targeting cancer cell migration can present a supportive strategy to control metastatic spread of cancer. 

Therefore, we have investigated the effect of the Neocarzilins on cell migration and invasion in vitro 

as well as tumor cell dissemination in vivo. NCA significantly reduced the migration capacity of 

highly invasive human triple negative breast adenocarcinoma MDA-MB-231 cells, whereas NCA’, 

NCB, and NCC only showed minor antimigratory effects (Figure 12 A, B). In murine 4T1-luc2 cells 

the same trend was observed although migration was inhibited less effectively compared to 

MDA-MB-231 cells (Figure 12 C). In contrast to proliferation inhibition, where the activity-based 

probe NC-1 showed strongly reduced activity, its effect on cell migration of MDA-MB-231 cells was 

only slightly reduced compared to NCA (Figure 12 D). Moreover, the antimigratory effect of NCA 

was confirmed in a Chemotaxis assay in which the motility of single cells can be monitored in real 

time by using inverted microscopy. NCA significantly reduced the directed migration of 

MDA-MB-231 cells towards FCS as chemoattractant which is defined by the forward migration index 

(Figure 12 E). Furthermore, the treatment resulted in less directed cell migration towards FCS   

(Figure 12 E).  

 

The inhibitory effect of NCA was not only limited to cell migration, but was also present in cell 

invasion experiments. NCA reduced the invasiveness of highly invasive MDA-MB-231 cells in a 

Boyden chamber assay setup using Matrigel® coated transwell inserts (Figure 13 A). For investigation 

of the in vivo efficacy of NCA, a tumor cell dissemination assay was performed by Dr. Carina 

Atzberger and Kerstin Loske by injecting 4T1-luc2 cells into the tail vein of Balb/c mice as previously 

described.[72]  After 5 days, luciferase tagged cells were located by bioluminescent imaging of the 

mice. Treatment with 10 mg/kg of NCA led to a clear trend towards reduced tumor cell dissemination 

into the mouse lungs compared to solvent control treated animals (Figure 13 B). However, due to two 

outliers within the control group, results were not significant. Of note, a suitable safety profile of NCA 
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can be presumed, since the body weight of the mice increased evenly in both groups throughout the 

experiment (Figure 13 B). 

 

 

Figure 12. Inhibitory effect of NCA on cancer cell migration. (A, B) Transwell migration (4 h) of 

MDA-MB-231 cells pretreated with NCA (A), NCA’, NCB or NCC (B) for 24 h determined by Boyden 

chamber assay. (C) Antimigratory effect of NCA, NCB or NCC on 4T1-luc2 cells after pretreatment for 24 h 

and migration time of 6 h determined by Boyden chamber assay. (D) Inhibition of transwell migration (4 h) of 

MDA-MB-231 cells pretreated with NC-1 for 24 h determined by Boyden chamber assay. (A-D) Bar diagrams 

showing the number of migrated cells normalized to the control as mean ± SEM of at least three independent 

experiments performed in duplicate are presented, one-way ANOVA, Dunnett’s test, *P < 0.033, **P < 0.002, 

***P < 0.001 compared with DMSO control. (E) Trajectory blots and forward migration index as measure of 

directed chemotactic migration of MDA-MB-231 cells towards FCS as chemoattractant as well as directness of 

migration after preincubation with NCA for 24 h determined by Chemotaxis assay. 30 cells per condition were 

monitored over 20 h. Bars represent the mean ± SEM of four independent experiments, two-tailed unpaired 

Student’s t test, *P < 0.033. 
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Figure 13. Reduction of cell invasion and tumor cell dissemination by NCA. (A) The effect of NCA on the 

invasiveness of MDA-MB-231 cells was determined via Boyden chamber assay using Matrigel®-coated 

membrane inserts. The bar diagram shows the number of invasive cells normalized to the control. Bars represent 

the mean ± SEM of at least three independent experiments performed in duplicate, one-way ANOVA, Dunnett’s 

test, ***P < 0.001 compared with DMSO control. (B) Dissemination of 4T1-luc2 cells injected into the tail vein 

of control and NCA-treated Balb/c mice into the lungs and bodyweight changes in control and NCA-treated 

mice. Representative in vivo bioluminescent images on day 5 are shown. Bar diagram shows corresponding 

signal intensities with bars representing the mean ± SEM of 8 mice, two-tailed unpaired Student’s t test, not 

significant. 

 

3.3.2 Rac1 activation and localization in migrating cells is altered by Neocarzilin A  

The small Rho GTPase Rac1 is a key player in cell migration by triggering actin polymerization and 

formation of lamellipodia at the leading edge of migrating cells.[73] Under pathological conditions 

activation of Rac1 can induce invasion and metastasis by augmenting migration. To investigate the 

effect of NCA on the activation of Rac1, which is active in the GTP-bound state, we performed a 

Rac1-GTP pulldown assay after inducing Rac1 activation via epidermal growth factor (EGF) addition. 

We were able to show that NCA treatment significantly reduced Rac1 activation (Figure 14 A). 

Moreover, confocal imaging revealed that fewer lamellipodia were formed and that Rac1 was no 

longer localized at the leading edge of migrating cells upon NCA treatment (Figure 14 B).  
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Figure 14. Influence of NCA on Rac1 activation and localization in migrating cells. (A) Active Rac1 

pulldown assay was conducted upon 5 min EGF stimulation (100 ng/mL). A representative experiment out of 

three independent experiments is shown. Amount of Rac1-GTP determined by Western blot was normalized to 

total Rac1 and results were normalized to the DMSO control. Bars represent the mean ± SEM of three 

independent experiments, two-tailed unpaired Student’s t test, **P < 0.002. (B) T24 cells treated with NCA were 

engaged in a Scratch assay and stained for Rac1 and F-actin. Nuclei were stained with Hoechst 33342. 

Representative images out of three independent experiments are shown. 

 

3.3.3 Neocarzilin A activates integrin β1 and enhances cell-matrix adhesion 

Adhesion of cells to the ECM via integrins plays a crucial role in cell migration and metastasis. To 

observe the effect of NCA on the surface expression of integrin β1, β3, and α5 and the activation level 

of integrin β1 in MDA-MB-231 cells, we performed antibody staining with subsequent FACS 

analysis. NCA significantly increased the cell surface expression of all investigated integrins in a dose 

dependent matter (Figure 15 A). Since integrin expression on the cell surface alone is no reliable 

indicator for adhesion strength, we additionally examined the activation status of integrin β1 by 

immunostaining with a primary antibody specifically detecting the activated form. We were able to 

show that NCA treatment led to a significant activation of integrin β1 in MDA-MB-231 cells        

(Figure 15 B). Integrin β1 is the most abundant β integrin and associates with a total of ten α integrin 

subunits.[74] Due to its high abundance and importance in cell adhesion we investigated whether 

activation of integrin β1 via NCA has an effect on cell adhesion to collagen I and fibronectin in a 

plate-and-wash adhesion assay. We were able to show that NCA treatment significantly increased cell 

adhesion of MDA-MB-231 cells to both extracellular ligands (Figure 15 C, D). 

 



Results 

 

 

53 

 

 

Figure 15. Impact of NCA on integrin expression and cell-matrix adhesion. (A) Surface expression of total 

integrin β1, β3, and α5 was determined via antibody staining and FACS analysis in MDA-MB-231 cells after 

24 h treatment with NCA. (B) The effect of NCA on the activation of integrin β1 in MDA-MB-231 was analyzed 

by immunostaining and FACS analysis in MDA-MB-231 cells after 24 h. (A, B) Data was analyzed using 

FlowJo 7.6.5 software. (C, D) Influence of NCA on the adhesion of MDA-MB-231 cells to collagen I (C) and 

fibronectin (D) determined via plate-and-wash adhesion assay. (A-D) Bar diagrams showing results normalized 

to the DMSO control as mean ± SEM of at least three independent experiments performed in triplicate are 

presented, one-way ANOVA, Dunnett’s test, *P < 0.033, **P < 0.002, ***P < 0.001 compared with DMSO 

control. 
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3.4 Chemical proteomics identify VAT-1 as cellular target of Neocarzilin A 

To elucidate the mode of action of NCA, target identification and validation experiments were 

performed by Carolin Gleißner (Sieber Research Group, Department of Chemistry, TU Munich, 

Germany) using MS-based activity-based protein profiling (ABPP). Via ABPP the whole complement 

of target proteins of a compound can be identified in living cells by introducing only slight 

modifications to the initial structure.[75, 76, 77] ABPP has therefore become a widely applied method in 

cancer therapy to unravel targets of natural compounds.[78] For ABPP experiments the activity-based 

probe NC-1 (Figure 9) was synthesized according to Supplementary Scheme 4 starting from a NCA 

analog featuring a terminal alkyne at the polyene tail. This alkyne serves as important moiety for 

identification of protein targets enabling click chemistry to biotin azide, avidin enrichment, and 

quantitative LC-MS/MS analysis upon in situ protein binding and cell lysis (Figure 16 A). Before 

conducting MS studies, appropriate conditions for labeling of the target protein with NC-1 were 

established by SDS-PAGE analysis. Labeling yielded one intense band of approximately 40 kDa after 

1 h, 24 h and 48 h incubation indicating sufficient stability upon protein binding (Supplementary 

Figure 1 A). To identify the targets of NCA in MDA-MB-231 cells using the probe NC-1, two 

proteomics-based methods were applied, namely stable isotope labeling of amino acids in cell culture 

(SILAC) and label-free quantification (LQF). Both methods revealed the synaptic vesicle membrane 

protein 1 (VAT-1) as most significant and highly enriched target, indicating reproducible readout of 

both methods (Figure 16 B, C and Supplementary Figure 1 B). Competitive studies with an excess of 

5-fold NCA over NC-1 using LFQ further verified the result. VAT-1 still emerged as most prominent 

hit when plotting samples of competitive labeling experiments against NC-1 treated samples      

(Figure 16 D). This result and the decreasing VAT-1 band detected in competitive analytical labeling 

experiments (Figure 16 E) indicate that the probe NC-1 and the natural compound NCA compete for 

the same target. Of note, most of the other hits of the target identification experiments are proteins 

present in high concentration within the cell and show highly electrophile-sensitive cysteine residues 

(e.g. heme oxygenase HMOX2) or displayed insufficient competition (Supplementary Figure 1 C).  
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Figure 16. Identification of VAT-1 as cellular target protein of NCA. (A) Schematic overview of in situ 

ABPP approach with LFQ in cancer cells with MS/MS-based read-out. (B) Volcano plot of in situ SILAC ABPP 

experiment with 500 nM NC-1(n=6). (C) Volcano plot of in situ LFQ ABPP experiment with 100 nM NC-1 

(n=5). (B, C) Hits (log2(enrichment) > 2, p-value < 0.05) are highlighted and the protein with the highest 

enrichment factor (VAT-1) is shown in blue. Hits of volcano plots highlighted in dark grey are listed in the 

Supplementary Table 1 and Supplementary Table 2 in the Appendix. (D) Volcano plot of in situ competitive 

label-free ABPP experiment (n=5) ((log2(enrichment) > 1.5, p-value < 0.05). Hits of volcano plots highlighted in 

dark grey are listed in Supplementary Table 4 in the Appendix. (E) SDS-PAGE of competitive analytical 

labeling for 1 h in MDA-MB-231 cells with natural product NCA and probe NC-1 in concentration ratios 1:1 

and 5:1 (natural product:probe). (performed by Carolin Gleißner, Technical University of Munich) 
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For direct target validation VAT-1 was knocked down in MDA-MB-231 cells via transfection with 

siRNA prior to in situ labeling with NC-1 and subsequent cell lysis. Fluorescent SDS-PAGE did not 

show the characteristic 40 kDa band in siVAT-1 treated cells confirming VAT-1 as target protein of 

NCA (Figure 17 A, successful knockdown of VAT-1 in siRNA transfected cells is shown in        

Figure 18 A). To unravel the binding mode of NCA an ABPP-based approach was applied that uses 

click chemistry to label NC-1 with desthiobiotin after in situ probe labeling of cells, subsequent tryptic 

protein digestion, and enrichment on avidin beads to narrow down the binding site peptide 

(Supplementary Figure 2 A). For closer investigation, all nucleophilic amino acids within the peptide 

sequence were mutated and the resulting His-TEV-VAT-1 constructs were tested for labeling with 

NC-1 (Supplementary Figure 2 B). Only in the case of the E113Q mutant labeling failed, confirming 

correct identification of the binding position and importance of E113 for binding of NCA to VAT-1 

(Figure 17 B). All describes experiments were performed by Carolin Gleißner (Sieber Research 

Group, Department of Chemistry, Technical University of Munich, Germany). 

 

 

Figure 17. Validation of VAT-1 as cellular target protein of NCA. (A) Analytical labeling of siVAT-1 

knockdown cells in comparison to control-treated cells. (B) In situ labeling of MDA-MB-231 which were 

transfected with His-TEV-VAT-1 construct expressing wildtype (WT) or the point mutant E113Q. (performed 

by Carolin Gleißner, Technical University of Munich) 
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3.5 VAT-1 plays an essential role in cancer cell migration 

To provide a functional link between VAT-1 and the observed antitumor effects of NCA, migration, 

proliferation, and apoptosis experiments were performed in cells after knockdown or knockout (k.o.) 

of VAT-1. Successful knockdown of VAT-1 in MDA-MB-231 and 4T1-luc2 was achieved using 

siRNA (Figure 18 A). Additionally, we generated VAT-1 k.o. clones by deleting exon 2 of VAT-1 in 

HEK293 cells using the CRISPR-Cas9 method (Figure 18 B). Knockdown of VAT-1 caused 50-80% 

inhibition of migration in both cell lines compared to cells transfected with non-targeting (nt) siRNA 

(Figure 18 C, D). In contrast to wildtype (WT) HEK293 cells and mock-transfected CRISPR control 

cells, knockout of VAT-1 resulted in inhibition of migration to a comparable extent as observed with 

NCA (Figure 18 E). While these results indicate that the inhibitory effect of NCA on cell motility is 

predominantly mediated by VAT-1, proliferation and apoptosis were not affected by knockdown or 

knockout of the protein (Figure 18 F-H). This provides evidence that the antiproliferative and 

apoptotic effect of NCA could be attributed to a different target.  
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Figure 18. Functional link between VAT-1 and antitumor effects of NCA. (A, B) Western blot of VAT-1 

protein levels in non-targeting (nt) and VAT-1 siRNA MDA-MB-231 and 4T1-luc2 cells after 48 h transfection 

(A) or in HEK293 WT cells and HEK293 VAT-1 k.o. clones generated via the CRISPR-Cas9 method (B). 

(C) Transwell migration of nt and VAT-1 siRNA transfected MDA-MB-231 and 4T1-luc2 cells determined by 

Boyden chamber assay. (D) Dynamic real time monitoring of migration of nt and VAT-1 siRNA transfected 

MDA-MB-231 cells using the xCELLigence migration assay. Representative graph out of three independent 

experiments is shown. (E) Transwell migration of HEK293 CRISPR-Cas9 VAT-1 k.o. clones determined by 

Boyden chamber assay. Unsuccessfully altered WT cells were included as additional control (CRISPR control). 

(F) Proliferation of nt and VAT-1 siRNA transfected MDA-MB-231 cells determined by crystal violet staining 

after 72 h (left) and dynamic real time xCELLigence proliferation assay (right). Representative xCELLigence 

graph out of three independent experiments is shown. (G) Proliferative capacity of WT and VAT-1 k.o. clones 

determined by CellTiter-Blue® viability assay after 72 h. Unsuccessfully altered WT cells were included as 

additional control (CRISPR control). (H) Apoptosis of nt and siVAT-1 MDA-MB-231 or 4T1-luc2 cells after 

48 h transfection was measured as described by Nicoletti et al.[66, 67]. The percentage of dying cells was 

determined by flow cytometry. (C-G) Bar diagrams show results normalized to nt siRNA cells (C, D, F) or WT 

HEK293 cells (E, G). (C-H) Bars represent the mean ± SEM of at least three independent experiments 

performed in duplicate/triplicate, two-tailed unpaired Student’s t test, **P < 0.002, ***P < 0.001 (C, D, F, H), 

one-way ANOVA, Dunnett’s test, **P < 0.002, ***P < 0.001 compared with DMSO control (E, G). 
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3.6 VAT-1 interaction partners are involved in cell adhesion and migration 

To unravel the functional role of VAT-1 in cell migration, proteomics-based co-immunoprecipitation 

(co-IP) experiments were performed by Carolin Gleißner (Sieber Research Group, Department of 

Chemistry, Technical University of Munich, Germany). VAT-1 was immunoprecipitated from 

MDA-MB-231 whole cell lysates with an immobilized anti-VAT-1 antibody together with the use of a 

disuccinimidyl sulfoxide (DSSO) crosslinker for detection of transient protein-protein interactions as 

shown by Fux et al.[79] Pulled down proteins were analyzed via LC-MS/MS and several significantly 

enriched hits were obtained (Figure 19). Strikingly, Gene Ontology (GO) enrichment analysis 

performed with the Cytoscape[80] BINGO app[81] revealed that many identified hits are involved in cell 

adhesion (e.g. gelsolin, GSN; fibronectin, FN1), integrin activation (e.g. Talin-1, TLN), and 

lamellipodium organization (e.g. RAC2), all playing a crucial role in the cell migration process 

(Figure 20).  

 

 

Figure 19. Interaction partners of VAT-1 identified by co-IP. Volcano plot of co-IP of VAT-1 with 2 mM 

DSSO in MDA-MB-231 (n=3). Hits of volcano plot are listed in Supplementary Table 5 in the Appendix. 

(performed by Carolin Gleißner, Technical University of Munich)  
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Figure 20. GO enrichment analysis of co-IP hits. GO enrichment analysis of hits ((log2(enrichment) > 1, 

p-value < 0.05) was performed with Cytoscape[80] BINGO app[81] whereas frequencies of enriched GO terms are 

compared between the co-IP and the global proteome. (performed by Carolin Gleißner, Technical University of 

Munich) 

 

To verify the overall effect of NCA on protein regulation, global proteome analysis was performed. 

However, the effect of NCA on the total proteome was rather limited and NCA treatment did not result 

in significant regulation of the expression of co-IP hits (Figure 21 A). This result was verified by 

Western blot analysis of selected interaction partners of VAT-1 after different time points of 

incubation (Figure 21 B, C).  
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Figure 21. Influence of NCA on total proteome and selected co-IP hits. (A) Volcano plot of global proteome 

analysis with LFQ in MDA-MB-231 treated with 500 nM NCA for 24 h (n=6). Proteins identified in the co-IP 

are shown in the same color code (Figure 19). Hits of volcano plots are listed in Supplementary Table 6 in the 

Appendix. (Carolin Gleißner, Technical University of Munich) (B, C) MDA-MB-231 cells were treated with the 

indicated concentrations of NCA for 4 h (B) or 24 h (C). Cellular protein levels were detected by Western blot 

analysis and results normalized to DMSO treated cells. Bars represent the mean ± SEM of three independent 

experiments, one-way ANOVA, Dunnett’s test, *P < 0.033 compared with DMSO control.  
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3.6.1 Neocarzilin A enhances the interaction of VAT-1 with Talin-1 

The protein Talin-1 was identified as one of the strongest hits in MS-based co-IP experiments. The 

cytoplasmic protein regulates integrin adhesion to the ECM by linking integrins directly to the actin 

cytoskeleton and mediating integrin activation, which is a crucial step of cell migration and 

metastasis.[28, 29] To investigate the influence of NCA on the interaction of VAT-1 with Talin-1, 

Western blot-based co-IP was performed after NCA treatment with the same anti-VAT-1 antibody as 

used for MS-based co-IP. We were able to reproduce the results obtained by MS-based co-IP and 

moreover showed that NCA significantly enhanced the interaction of VAT-1 with Talin-1          

(Figure 22 A). Furthermore, immunostaining revealed a colocalization of both proteins in lamellipodia 

at the leading edge of migrating cells, indicating that the interaction of both proteins could be 

important for cell migration (Figure 22 B, exemplarily indicated with white arrows). However, upon 

NCA treatment no colocalization of VAT-1 and Talin-1 was observed at the leading edge 

contradicting the results obtained by co-IP. Crystallography or computational studies will help to 

further elucidate and interpret the effect of NCA on the interaction of VAT-1 and Talin-1. 

 

 

Figure 22. Effect of NCA on the interaction of VAT-1 with Talin-1. (A) Co-IP of VAT-1 and Talin-1. VAT-1 

was precipitated from MDA-MB-231 cell lysates after 24 h stimulation with NCA. Amount of Talin-1 

determined by Western blot was normalized to VAT-1 and results were normalized to the DMSO control. Bars 

represent the mean ± SEM of three independent experiments, two-tailed unpaired Student’s t test, *P < 0.033. 

(B) T24 cells treated with NCA were engaged in a Scratch assay and co-stained for VAT-1 (green), Talin-1 

(cyan) and actin (red). Nuclei were stained with Hoechst 33342. White arrows exemplarily indicate areas of 

colocalization. (A, B) A representative experiment out of three independent experiments is shown. 
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3.7 Summary 

The main finding of this work is the identification of NCA as an inhibitor of tumor cell motility by 

interacting with VAT-1 protein, which was identified as cellular target of Neocarzilins via 

proteomics-based ABPP experiments. In summary, NCA reduced directed migration and invasion 

in vitro as well as cell dissemination in vivo. Moreover, treatment with NCA led to impaired activation 

of Rac1 and lamellipodia formation in migrating cells, while upregulating integrin surface expression 

and activation and increasing cell adhesion to collagen I and fibronectin. Facilitating these results, 

proteomics-based co-IP experiments identified an intricate network of key migration mediators, such 

as Talin-1, as interaction partners of VAT-1. While we were able to attribute the strong antimigratory 

effect of NCA to its interaction with VAT-1, the responsible target for antiproliferative and apoptotic 

effects still needs to be defined, leaving room for further investigations of this promising newly 

defined potent therapeutic lead structure. 
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4 Discussion 

4.1 Neocarzilins as structure-dependent antitumor agents  

Since their discovery in the 1990s by Nozoe et al., the Neocarzilins have attracted only little attention. 

Only Neocarzilin A (NCA) was shown to exhibit potent cytotoxic activity against K562 chronic 

myelogenous leukemia cells.[42] To gain more insight into this interesting natural compound class, we 

performed detailed analysis of their antitumor activities and recognized them as antitumor agents 

showing the most prominent effects on inhibition of cell migration, invasion, and tumor cell 

dissemination. Strikingly, the Neocarzilins showed diverse potency depending on their chemical 

structure and stereochemistry. Comparison of the effects of NCA with its opposite enantiomer NCA’ 

and NCB revealed that changes in the stereochemistry of NCA result in reduced antiproliferative and 

antimigratory effects. Moreover, exchange of the trichloromethyl group with a dichloromethyl group 

in NCC resulted in an even more radical drop of potency. This suggests that both, stereochemistry and 

the trichloromethyl group with its electrophilic character, determine the biological activity by 

interacting with the target protein.  

 

Moreover, it is worth mentioning that the Neocarzilins not only stand out due to their strong 

antimigratory and antiproliferative effects, but that they also distinguish themselves from other 

therapeutically active natural compounds through their comparably simple chemical structure as well 

as synthesis. Many natural products are structurally complex making total synthesis extremely 

challenging, resulting in low yields and supply problems.[82] Due to their simple structure, Neocarzilins 

can easily be chemically modified. Based on further investigations of the binding mode of NCA to its 

target VAT-1, NCA can therefore be undertaken further optimization to increase its pharmacological 

activity and selectivity towards its target. Considering that NCA additionally fulfills Lipinski's rule of 
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five for prediction of drug-likeness and estimation of the potential as orally active drug in humans[83], 

it emerges as promising new drug lead compound. 

 

Taken together, the Neocarzilins were identified as a promising natural compound family and potential 

drug leads exhibiting structure-dependent antitumor effects with great potential in inhibition of cell 

migration and proliferation. In all conducted experiments, NCA protruded as the most active 

compound and was therefore chosen for in depth investigations. 

 

4.2 Chemical proteomics as powerful tool in the target identification of 

Neocarzilin A 

Over the last decades, natural products have emerged as valuable source of biologically active 

compounds for drug discovery.[40, 84] However, in numerous cases the cellular target and mode of 

action of the compound are not identified, which is even the case for natural products in clinical trials 

or approved pharmaceuticals.[85] The same applies for the natural compound NCA, which up to date 

was not undertaken any mode of action studies, despite its early discovery. With the advent of 

chemical proteomics-based methods for drug target identification, readdressing of previously 

identified, but so far neglected structures has evolved as viable strategy for the identification of new 

anticancer leads and enables detailed mode of action studies. One major strategy applied is 

activity-based protein profiling (ABPP).[86, 87] The key component to successful target identification 

via ABPP is the design of an activity-based probe based on the original structure of the natural product 

which is used for in situ labeling of target proteins in living cells.[78] ABPP using the activity-based 

probe NC-1 resulted in identification of the synaptic vesicle membrane protein 1 (VAT-1) as target 

protein of NCA. The result was further verified by competitive labeling approaches with NCA and 

NC-1, which underline the high specificity of NCA to its target VAT-1. Moreover, the nucleophilic 

amino acid E113 of the VAT-1 sequence was identified as the likely point of drug attachment by point 

mutation and labeling experiments, supporting the assumption that the electrophilic trichloromethyl 



Discussion 

 

 

67 

 

group of NCA determines the biological activity by interacting with the target protein. As discussed by 

Gersch et al., electrophilic natural products are typically characterized by covalent interaction with 

their target protein.[76] Therefore, we suggest that NCA covalently attaches to VAT-1, however, this 

remains to be elucidated. 

 

The other hits identified via ABPP either represented proteins known to be often targeted by 

electrophilic compounds which are present in great abundance (e.g. heme oxygenase HMOX2) or 

showed insufficient competition. For this reason, these proteins were not included in further 

investigations.  

 

The identification of VAT-1 as target protein of NCA decades after its discovery, illustrates the power 

of chemical proteomics in drug target identification. However, chemical proteomics-based drug target 

identification methods also show certain limitations. During the design of the activity-based probe 

NC-1, the methyl stereocenter was removed, which was proven to have an impact on the biological 

activity of NCA. Indeed, the antiproliferative capacity of NC-1 was drastically reduced compared to 

NCA whereas the antimigratory potential was only slightly decreased. This result suggests that the 

probe NC-1 is suitable for binding the NCA target protein VAT-1, which is involved in the mediation 

of the antimigratory effect, but that supposedly one or more other proteins are responsible for the 

antiproliferative effect which cannot interact with NC-1 due to the loss of the stereocenter. This 

hypothesis is also supported by our finding that the antiproliferative effect could not be attributed to 

VAT-1 as shown in knockdown and knockout experiments. This leads to the conclusion that NCA 

most likely has multiple cellular targets which mediate the different antitumor effects of the 

compound. However, up to date we were not able to identify the responsible target for proliferation 

inhibition, since VAT-1 was presented as the only prominent hit in target identification experiments, 

showing the limitations of proteomics-based ABPP in drug target identification. To overcome this 

deficit, an alternative method for target identification which does not require chemical modification of 

the natural compound could be applied to identify so far unknown target proteins of NCA. One 
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possible option is mass spectrometry-based cellular thermal shift assay (MS-CETSA), which is 

modification-independent, works in live cells and determines target proteins by stabilizing effects on 

proteins upon compound binding resulting in a change in thermal denaturation temperature.[88] 

 

4.3 Targeting tumor cell motility as a strategy against metastasis    

In detailed investigations of its antitumor effects, we identified NCA as potent inhibitor of cell 

migration, a key element of cancer cell metastasis. By causing 90% of all cancer related deaths, 

metastasis is the major contributor to patient mortality and still considered incurable due to deficient 

treatment options.[15, 89] The development of antimetastatic drugs has therefore emerged as one of the 

main prospects of cancer therapy with the central goal to identify potent therapeutics and 

therapeutically viable targets. Nguyen et al. presented that the molecular mechanisms of cell migration 

and the progression of cancer to a systemic disease are strongly connected.[90] Specific therapeutic 

targeting of tumor cell motility therefore presents a promising strategy to limit metastasis of solid 

tumors, considering that cell migration is a crucial step in the metastatic cascade.[91] It also aims at 

reducing the need for aggressive cytotoxic therapy with strong side effects, which is currently used to 

avoid the risk of metastatic spread of tumors, to increase survival rates and quality of life of 

patients.[89]  

 

4.3.1 The status quo of metastatic cancer treatment 

Up to date, no therapeutics targeting cell motility have entered the market, however several promising 

candidates are in clinical trial targeting different elements of the cell migration process like actin 

polymerization, cell contractility, cell-ECM adhesion or matrix remodeling enzymes[92, 93, 94]. The 

regulation of the actin cytoskeleton was shown to play a crucial role in cancer cell migration.[95] Actin 

targeting substances like latrunculins[96] or chondramide A[97], showing either actin destabilizing or 

stabilizing properties, inhibit migration and invasion in highly invasive MDA-MB-231 breast cancer 

cells. By interfering with cell contractility, the myosin inhibitor blebbistatin was shown to inhibit 
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invasiveness in a panel of cancer cell lines in vitro [92], whereas the specific ROCK inhibitor Y-27632 

inhibited tumor invasion in vivo[98]. However, targeting the actin cytoskeleton remains challenging, 

due to its high abundance and involvement in numerous important processes like gene expression and 

cell division. Moreover, matrix metalloproteinases (MMPs), which are capable of cleaving 

components of the ECM, contributing to metastatic progression, have emerged as interesting 

addressable targets.[94] Endostatin[99] and curcumin[100], two MMP targeting compounds, are currently 

in phase II clinical trials. Another strategy in the development of antimetastatic drugs is addressing of 

the cell-ECM interface. As main mediators of cell adhesion, integrins have protruded as potential 

therapeutic targets.[93] The monoclonal antibodies abituzumab and intetumumab as well as the cyclic 

peptide cilengitide are the most advanced molecules studied in clinical trials. However, they show 

only moderate efficacy and none of them have been approved for cancer treatment, emphasizing the 

persistent need for novel antimetastatic drugs.[101]  

 

4.3.2 Neocarzilin A as novel antimetastatic drug targeting the cell-ECM interface 

In depth investigation of the antitumor effects of NCA presented the compound as an inhibitor of cell 

migration, invasion, and tumor cell dissemination. Strikingly, NCA showed an upregulating effect on 

integrin surface expression and activation, as well as on cell adhesion to collagen I and fibronectin. 

Integrin-mediated cell adhesion is a highly dynamic process which plays a key role in cancer cell 

migration by linking the cell to the ECM.[25] It has previously been shown that overexpression and 

increased activation of integrins can reduce cell motility. Palecek et al. discovered that the cell 

migration rate is strongly determined by both, ECM ligand and integrin expression levels. Already 

small changes in these two parameters resulted in significant changes in migration speed.[102] 

Investigations by Huttenlocher et al. revealed that stable artificial activation of integrin α2bβ3 via 

mutation or antibody-based activation results in a significant drop of the cell migration speed.[103] Both 

groups claim that the reduced migration rate can be attributed to inhibited release of adhesion at the 

cell rear during the migration process, preventing cell contraction for forward movement.[102, 103] 

Consequently, cell detachment protrudes as limiting factor of cell migration speed under conditions of 
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high cell-ECM adhesiveness. Based on these findings we propose that NCA has a high potential as 

antimetastatic drug lead by increasing cell adhesion strength due to upregulation of integrin expression 

and activity, leading to impaired detachment of the cell’s rear and finally resulting in reduced 

migration.  

 

However, a major challenge which must be overcome during the development of novel antimetastatic 

drugs is toxicity. According to Steeg et al., the most promising treatment outcome can be expected 

when antimetastatic drugs are given continuously and at an early stage of tumor progression.[104] 

Palmer et al. also call for continuous antimetastatic treatment, since it is currently not predictable 

when a tumor becomes metastatic.[89] Therefore, low toxicity of antimetastatic drugs is an 

indispensable requirement to prevent cytotoxic side effects during long-term treatment of patients. In 

the case of NCA, no induction of apoptosis was observed at concentrations and time points relevant 

for migration inhibition and a suitable safety profile was confirmed in vivo by a comparable increase 

of the bodyweight of mice of the control and NCA-treated group. However, investigations of the toxic 

effects of NCA on non-tumorous cells and long-term cytotoxicity studies are urgently needed to 

evaluate its potential as cancer therapeutic.  

 

Besides its prominent antimigratory effect, NCA also showed antiproliferative activity in a panel of 

different cancer cell lines. As discussed by Gandalovičová et al., synergy of antimigratory and 

antiproliferative cancer therapeutics evolves as promising approach for treatment of metastasis, 

emphasizing the great potential of NCA as treatment option of metastatic cancer.[92]  

 

Taken together, targeting cell migration and metastasis has become a major interest of cancer research, 

showing great potential as supportive strategy to conventional antiproliferative treatment. However, 

most of the so far investigated therapeutics and target pathways have failed in clinical research 

resulting in the urgent need of novel therapeutics and target strategies. Therefore, we here introduce 

the natural compound NCA as promising novel antimetastatic drug and potential lead compound 

which significantly reduces cell migration and proliferation in invasive breast cancer cell lines.   
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4.3.3 VAT-1 as innovative drug target for therapy of metastatic cancer  

In context of this thesis, we present the synaptic vesicle membrane protein 1 (VAT-1) as novel drug 

target for cell migration inhibition in the fight against metastatic cancer. Proteomics-based target 

identification methods have identified VAT-1 as target of NCA, mediating the antimigratory effect of 

the novel drug. A role of VAT-1 in cell migration has further been confirmed by siRNA knockdown 

and CRISPR-Cas9 mediated knockout studies, resulting in impaired migration. In accordance, Mertsch 

et al. showed that VAT-1 knockdown significantly reduced glioma cell migration.[61]  

 

Proteomics-based co-IP experiments identified a complex network of VAT-1 interaction partners 

associated with cell motility. For example, the interaction partners gelsolin[105], vitronectin[106], and 

fibronectin[107] are directly involved in regulation of ECM composition. Cdc42 and Rac2 are key 

players in the migration process, whereas CD44 and integrin β1 present important glycoproteins, 

involved in the cell adhesion process.[108] Strikingly, Talin-1 was identified as most prominent binding 

partner of VAT-1 and both proteins were shown to colocalize at the leading edge of migrating cells. 

Upon activation, Talin-1 binds to the integrin β subunit and induces a conformational change to 

generate the active high affinity state of the integrin, enabling interaction with ECM ligands.[29, 31] This 

link between VAT-1 and the cell adhesion process suggests that the involvement of VAT-1 in cell 

migration could be mediated by direct interaction with Talin-1 and alternation of integrin balance. 

Incubation with NCA led to a significant enhancement of the interaction of VAT-1 with Talin-1, most 

likely resulting in increased activation of integrins and strengthened cell adhesion to collagen I and 

fibronectin, as determined during in depth analysis of cell adhesion parameters. Further investigations 

including crystallography and computational modeling will have to elucidate how NCA influences the 

interaction of VAT-1 with the cell adhesion network on a molecular level.  

 

In summary, VAT-1 was identified as so far unknown player in regulation of cancer cell migration 

with possible impact in tumor metastasis by direct interaction with key migration mediators such as 

Talin-1. Moreover, the identification of NCA as potent inhibitor of migration opens the door to 
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chemically easily accessible VAT-1 probes allowing further in depth analysis of its physiological 

function and exploitability in antimetastatic cancer research. Hence, VAT-1 is set on stage as 

innovative anticancer drug target preventing migration and metastasis.  
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4.4 Summary and Conclusion 

Metastatic cancer remains the primary cause of cancer related deaths[2]. Metastasis is strongly driven 

by tumor cell migration and specific targeting of this cellular process could significantly improve 

cancer treatment. However, up to date there are only limited therapeutic options available. Therefore, 

the identification of novel antimigratory drugs and therapeutically addressable targets has evolved as 

urgent need for treatment of metastatic cancer and attracted the attention of researchers in this field.  

 

Within the framework of this thesis, we propose the natural compound Neocarzilin A (NCA) as potent 

inhibitor of cancer cell motility. By activity-based protein profiling (ABPP) we identified the synaptic 

vesicle membrane protein 1 (VAT-1) as target of NCA in cooperation with the group of 

Prof. Dr. Stephan Sieber (Chair of Organic Chemistry II, Technical University of Munich, Germany). 

In depth investigation revealed that VAT-1 interacts with an intricate network of key migration 

mediators such as Talin-1, the main activator of integrins. Moreover, VAT-1’s involvement in the 

cancer cell migration process was confirmed by knockdown and knockout studies (Figure 23). We 

suggest that binding of NCA to its target VAT-1 alters its interaction with Talin-1, resulting in 

increased integrin-mediated adhesion strength leading to impaired cell detachment and reduced 

migration.  

 

In conclusion, we introduce the natural compound NCA as potent antimigratory drug and potential 

lead compound and VAT-1 as a promising novel target for development of cancer cell migration 

inhibitors for treatment of metastatic tumors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Summary and conclusion. 
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6 Appendix  

6.1 Supplementary Material 

6.1.1 Supplementary Figures 

 

Supplementary Figure 1. Analytical probe labeling, target identification, and competitive labeling of 

VAT-1. (A) SDS-PAGE of time dependent analytical in situ labeling with NC-1 for 1 h, 24 h and 48 h in 

MDA-MB 231 cells. (B) Volcano plot of in situ label-free ABPP experiment in MDA-MB-231 cells which were 

incubated for 24 h with 500 nM NC-1 (n=4). Hits matching the criteria ((log2(enrichment) > 2, p-value < 0.05) 

highlighted in dark grey are listed in Supplementary Table 3 in the Appendix. (performed by Carolin Gleißner, 

Technical University of Munich) 
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Supplementary Figure 2. Binding site peptide identification. (A) Schematic overview of ABPP based 

approach to identify binding site peptides. After protein digestion, only peptides bound to the probe are enriched 

on avidin beads and eluted with acetonitrile (MeCN) and formic acid (FA) for MS/MS detection. (B) Identified 

binding site peptide (aa 103-128) in NC-1 treated cells and location of the peptide in the part of VAT-1 which is 

unique to isoform 1. Mutated residues are shown in red. (performed by Carolin Gleißner, Technical University of 

Munich) 

 

 

6.1.2 Supplementary Tables 

Supplementary Table 1. Hits matching the criteria ((log2(enrichment) > 2, p-value < 0.05) of SILAC targetID 

with 500 nM NC-1 in MDA-MB-231 

Protein name Gene name Enrichment p-value Sequence 

coverage [%] 

Synaptic vesicle membrane protein 

VAT-1 homolog 

VAT1 4.49 5.19 57 

Reticulon RTN3 4.23 3.16 22 

Heme oxygenase 2 HMOX2 3.68 3.85 66.8 

Redox-regulatory protein FAM213A FAM213A 2.97 3.37 29.3 

Transcriptional enhancer factor TEF-1 TEAD1 2.65 4.65 23 

Glutathione S-transferase omega-1 GSTO1 2.55 4.36 49 

Endonuclease domain-containing 1 

protein 

ENDOD1 2.55 4.76 16.2 

Cytochrome b5 type B CYB5B 2.29 4.13 50.7 
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Supplementary Table 2. Hits matching the criteria ((log2(enrichment) > 2, p-value < 0.05) of LFQ targetID 

with 100 nM NC-1 in MDA-MB-231 

Protein name Gene name Enrichment p-value Sequence 

coverage [%] 

Synaptic vesicle membrane protein 

VAT-1 homolog 

VAT1 5.77 5.00 27 

Heme oxygenase 2 HMOX2 5.07 4.67 34.5 

Cytochrome b5 type B CYB5B 2.58 3.00 18 

Mitochondrial antiviral-signaling 

protein 

MAVS 2.52 2.32 19.8 

 

Supplementary Table 3. Hits matching the criteria ((log2(enrichment) > 2, p-value < 0.01) of LFQ targetID 

with 500 nM NC-1 for 24 h in MDA-MB-231 

Protein name Gene name Enrichment p-value Sequence 

coverage [%] 

Titin TTN 6.05 6.95 0.2 

Dolichyl-phosphate beta-

glucosyltransferase 

ALG5 3.69 3.96 18.3 

Splicing factor U2AF 26 kDa 

subunit 

U2AF1L4 3.68 1.68 44.4 

Protein transport protein Sec61 

subunit gamma 

SEC61G 3.64 1.43 23.5 

Synaptic vesicle membrane protein 

VAT-1 homolog 

VAT1 3.41 4.49 45.5 

Hyccin FAM126A 3.26 1.57 6.5 

Vesicular integral-membrane protein 

VIP36 

LMAN2 2.97 1.53 11.2 

Tubulin alpha-4A chain TUBA4A 2.85 1.66 43.8 

RAD50-interacting protein 1 RINT1 2.84 1.46 5.7 

Alpha/beta hydrolase domain-

containing protein 17A 

ABHD17A 2.50 3.08 6.1 

Transmembrane protein 256 TMEM256 2.43 3.62 22 

Signal peptidase complex subunit 1 SPCS1 2.35 1.55 26.5 

Metalloproteinase inhibitor 2 TIMP2 2.32 1.45 11.7 

Pleckstrin homology domain-

containing family A member 5 

PLEKHA5 2.26 2.86 9.5 

Queuine tRNA-ribosyltransferase 

subunit QTRTD1 

QTRTD1 2.26 3.88 8.4 

E3 ubiquitin-protein ligase TRIM32 TRIM32 2.20 3.51 5.1 

Peptidyl-prolyl cis-trans isomerase PPIF 2.16 1.62 32.4 

Axin interactor, dorsalization-

associated protein 

AIDA 2.10 2.46 23 

39S ribosomal protein L24, 

mitochondrial 

MRPL24 2.02 1.48 28.7 
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Supplementary Table 4. Hits matching the criteria ((log2(enrichment) > 1.5, p-value < 0.05) for competition 

with 500 nM NCA in MDA-MB-231 

Protein name Gene name Enrichment p-value Sequence 

coverage [%] 

Synaptic vesicle membrane protein 

VAT-1 homolog 

VAT1 2.98 2.23 27 

Heme oxygenase 2 HMOX2 1.82 2.16 34.5 

 

Supplementary Table 5. Hits matching the criteria ((log2(enrichment) > 1, p-value < 0.05) of VAT-1 co-IP with 

DSSO crosslinker in MDA-MB-231 

Protein name Gene name Enrichment p-value Sequence 

coverage [%] 

Synaptic vesicle membrane protein 

VAT-1 homolog 

VAT1 10.03 3.33 70.5 

Gelsolin GSN 9.17 2.89 37.2 

Talin-1 TLN1 7.19 3.32 44.6 

Complement C5 C5 7.13 2.24 5.4 

Alpha-2-macroglobulin A2M 7.11 2.31 6 

Aspartate--tRNA ligase, 

mitochondrial 

DARS2 7.10 2.32 44.7 

Complement C4-A C4A 7.01 2.20 7.5 

Thrombospondin-1 THBS1 6.67 2.01 15.9 

Inter-alpha-trypsin inhibitor heavy 

chain H2 

ITIH2 6.62 2.33 9.4 

Serum paraoxonase/arylesterase 1 PON1 6.34 2.20 8.5 

UTP--glucose-1-phosphate 

uridylyltransferase 

UGP2 6.33 2.39 46.7 

L-lactate dehydrogenase LDHA 6.13 2.62 74.7 

Peroxisomal multifunctional enzyme 

type 2 

HSD17B4 6.02 2.08 53.4 

Complement C3  C3 5.60 1.99 4.6 

Heat shock protein 75 kDa, 

mitochondrial 

TRAP1 5.52 3.16 27.5 

Histidine-rich glycoprotein HRG 5.52 1.83 1.9 

Fibronectin FN1 5.44 1.86 6.4 

Succinate dehydrogenase 

[ubiquinone] flavoprotein subunit, 

mitochondrial 

SDHA 5.33 3.11 47.9 

L-lactate dehydrogenase LDHB 5.32 3.34 46.4 

Complement component 1 Q 

subcomponent-binding protein, 

mitochondrial 

C1QBP 5.27 4.12 33.7 

Inter-alpha-trypsin inhibitor heavy 

chain H1 

ITIH1 5.25 1.81 3.6 

Ceruloplasmin CP 5.20 2.00 14.1 

Glutathione peroxidase GPX3 5.20 1.78 10.7 

Cofilin-1 CFL1 5.20 2.29 61.4 
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Endoplasmin TRA1 5.16 1.92 67 

Inter-alpha-trypsin inhibitor heavy 

chain H3 

ITIH3 4.93 1.62 13.4 

Serpin H1 SERPINH1 4.78 1.62 40.2 

Polyribonucleotide 

nucleotidyltransferase 1, 

mitochondrial 

PNPT1 4.69 2.09 32.6 

Monofunctional C1-tetrahydrofolate 

synthase, mitochondrial 

MTHFD1L 4.63 2.44 23.7 

Complement component C8 beta 

chain 

C8B 4.44 2.09 14.4 

Vinculin VCL 4.22 2.95 17.8 

Filamin-A FLNA 4.21 1.99 39.6 

Cytochrome b-c1 complex subunit 2, 

mitochondrial 

UQCRC2 4.17 1.55 44.2 

Pyruvate carboxylase PC 4.12 1.91 40.7 

Nucleoside diphosphate kinase NME2 4.10 3.33 55.1 

Malate dehydrogenase MDH2 4.06 1.85 64.6 

Alkyldihydroxyacetonephosphate 

synthase, peroxisomal 

AGPS 4.03 3.10 34.5 

 
MYL6 4.01 2.19 65.1 

Complement factor B CFB 3.96 1.59 4.8 

Procollagen galactosyltransferase 1 COLGALT1 3.88 2.03 17.7 

Leucine-rich PPR motif-containing 

protein, mitochondrial 

LRPPRC 3.87 1.39 49 

Fructose-bisphosphate 

aldolase;Fructose-bisphosphate 

aldolase A 

ALDOA 3.87 1.80 54.4 

Glutaminase kidney isoform, 

mitochondrial 

GLS 3.78 1.91 39.5 

Ras-related protein Rab-1B RAB1B 3.78 2.58 66.2 

Procollagen-lysine,2-oxoglutarate 5-

dioxygenase 3 

PLOD3 3.65 1.57 33.9 

Transmembrane protein 33 TMEM33 3.63 2.42 26.3 

Plastin-2 LCP1 3.54 1.90 15.6 

Tropomyosin alpha-4 chain TPM4 3.46 2.46 52.4 

Serum paraoxonase/lactonase 3 PON3 3.46 1.99 11 

Succinate dehydrogenase 

[ubiquinone] iron-sulfur subunit, 

mitochondrial 

SDHB 3.45 1.77 20 

GDP-fucose protein O-

fucosyltransferase 1 

POFUT1 3.45 1.51 11.9 

Acyl-coenzyme A thioesterase 8 ACOT8 3.42 1.84 25.7 

Aconitate hydratase, mitochondrial ACO2 3.41 2.51 18.8 

Aldehyde dehydrogenase, 

mitochondrial 

ALDH2 3.32 1.56 29.8 

Medium-chain specific acyl-CoA 

dehydrogenase, mitochondrial 

ACADM 3.31 3.21 30.9 
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Serotransferrin TF 3.26 1.33 7.5 

Proteasome subunit alpha type PSMA5 3.15 2.61 17 

Mitochondrial import receptor 

subunit TOM70 

TOMM70A 3.02 1.84 20.7 

Mitochondrial dicarboxylate carrier SLC25A10 2.99 2.67 16.7 

60S ribosomal protein L28 RPL28 2.87 1.31 32.9 

Adipocyte plasma membrane-

associated protein 

APMAP 2.82 1.77 21.8 

Proteasome subunit alpha type PSMA7 2.78 1.80 28.2 

Cell division control protein 42 

homolog 

CDC42 2.60 1.56 52.4 

Sodium/potassium-transporting 

ATPase subunit alpha-1 

ATP1A1 2.60 1.84 34.6 

60S ribosomal protein L27 RPL27 2.59 1.69 22.2 

CD44 antigen CD44 2.57 1.74 29.1 

Acetyl-CoA acetyltransferase, 

mitochondrial 

ACAT1 2.56 2.26 25.1 

Solute carrier family 2, facilitated 

glucose transporter member 1 

SLC2A1 2.53 2.30 8.4 

Tyrosine-protein phosphatase non-

receptor type 

PTPN1 2.49 1.47 16.8 

ATP-dependent Clp protease ATP-

binding subunit clpX-like, 

mitochondrial 

CLPX 2.48 2.53 22.7 

Ras-related C3 botulinum toxin 

substrate 2 

RAC2 2.44 2.75 31.2 

Procollagen-lysine,2-oxoglutarate 5-

dioxygenase 1 

PLOD1 2.38 1.53 18.2 

Glutamate dehydrogenase GLUD1 2.26 1.64 52.3 

Elongation factor Tu, mitochondrial TUFM 2.21 1.73 43.6 

Integrin beta-1 ITGB1 2.20 2.95 8.3 

Isoleucine--tRNA ligase, 

mitochondrial 

IARS2 2.19 1.97 13.6 

Ras-related protein Rab-11B RAB11B 2.16 1.31 50 

Voltage-dependent anion-selective 

channel protein 1 

VDAC1 2.12 1.32 67.5 

Hypoxia up-regulated protein 1 HYOU1 1.84 2.89 20.4 

Neutral alpha-glucosidase AB GANAB 1.83 1.97 32.8 

Microtubule-associated protein 

RP/EB family member 1 

MAPRE1 1.77 1.61 31.5 

Transferrin receptor protein 1 TFRC 1.75 2.16 33.2 

10 kDa heat shock protein, 

mitochondrial 

HSPE1 1.74 1.54 55.9 

Protein disulfide-isomerase A6 PDIA6 1.52 1.73 35.5 

Endoplasmic reticulum resident 

protein 29 

HEL-S-107 1.49 1.84 14.6 

60 kDa heat shock protein, 

mitochondrial 

HSPD1 1.43 2.90 79.8 
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Supplementary Table 6. Hits matching the criteria ((log2(t-test difference) > 1, p-value < 0.05) of LFQ global 

proteome with 500 nM NCA in MDA-MB-231 

Protein name Gene name Enrichment p-value Sequence 

coverage [%] 

depleted 
    

Prostaglandin reductase 2 PTGR2 -6.01 3.02 26.5 

Proteasome subunit beta type-10 PSMB10 -3.64 1.96 23.4 

Tetratricopeptide repeat protein 17 TTC17 -5.41 2.78 3.8 

Prenylated Rab acceptor protein 1 RABAC1 -8.35 3.80 19.2 

Vacuolar protein sorting-associated 

protein 37C 

VPS37C -2.56 1.37 33.8 

Tubulin beta-4A chain TUBB4A -2.62 1.40 57 

[3-methyl-2-oxobutanoate 

dehydrogenase [lipoamide]] kinase, 

mitochondrial 

BCKDK -2.63 1.41 19.2 

Guanine nucleotide exchange factor 

MSS4 

RABIF -3.80 2.05 29.3 

Delta-like protein JAG1 -2.79 1.50 4.5 

WD repeat-containing protein 43 WDR43 -2.55 1.36 8.3 

Bcl2-associated agonist of cell death BAD -4.47 2.37 69.1 

28S ribosomal protein S18c, 

mitochondrial 

MRPS18C -2.68 1.44 16.8 

Molybdenum cofactor sulfurase MOCOS -2.52 1.34 8.7 

Mannose-P-dolichol utilization defect 

1 protein 

MPDU1 -3.78 2.04 20.6 

enriched 
    

Rab GTPase-binding effector protein 1 RABEP1 1.64 1.32 10.7 

cAMP-dependent protein kinase 

catalytic subunit beta 

PRKACB 1.33 1.80 40.7 

Ribonuclease T2 RNASET2 1.29 1.59 17.9 

Cytosolic Fe-S cluster assembly factor 

NUBP1 

NUBP1 1.21 2.08 11.2 

Suppressor of tumorigenicity 7 

protein-like 

ST7 1.17 1.62 7.1 

Protein Njmu-R1 C17orf75 1.17 2.52 12.6 

Rho-related GTP-binding protein 

RhoF 

RHOF 1.05 1.49 46 
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6.1.3 Supplementary Schemes 

Neocarzilin A and C 

 

Supplementary Scheme 1. Synthesis of Neocarzilins A and C: a) TEMPO (1 mol-%), KBr (0.10 eq), NaOCl 

(2.00 eq), CH2Cl2/carbonate-buffer pH = 8.6, 0 °C, 45 min, 85%; b) 1. LiHMDS (1.00 eq), 2. ethyl (E)-4-

(diethoxyphosphoryl)-but-2-enoate (1.00 eq), THF, -78 °C → -40 °C, 3 h, 76%; c) DIBAL-H (2.10 eq) MnO2 

(20.0 eq), THF, hexane, -78 °C → rt, 5 h, 72% over 2 steps; d) 1-(Triphenylphosphoranylidene)-2-propanone 

(2.00 eq), toluene, 100 °C, 16 h, 59%; e) 1. LiHMDS (1.05 eq); 2. Trichloroacetic anhydride (2.00 eq), THF, -78 

°C, 3 h, 71%; f) 1. LiHMDS (1.05 eq), 2. Dichloroacetic anhydride (2.00 eq), THF, -78 °C, 3 h, 44%. 

 

Neocarzilin A’ 

 

Supplementary Scheme 2. Synthesis of Neocarzilin A’: a) 1.) n-BuLi (1.10 eq), THF, -78 °C, 0.5 h, 2.) butyryl 

chloride, -78 °C, 0.5 h, -78 °C – rt, 0.5 h, 68%; b) 1.) NaHMDS (1.20 eq), THF, -78 °C, 1 h, 2.) MeI (2.50 eq), -

78 °C, 2.5 h, 77%; c) LiBH4 (0.70 eq), MeOH (1.48 eq), Et2O, -20 °C → rt, 5 h, 66%; d) (COCl)2 (1.50 eq), 

DMSO (2.50 eq), NEt3 (5.00 eq), CH2Cl2, -78 °C, 0.5 h, rt, 2 h, 56%; e) 1. LiHMDS (1.50 eq), 2. ethyl (E)-4-

(diethoxyphosphoryl)-but-2-enoate (1.50 eq), THF, -78 °C → -40 °C, 3 h, 30%; f) DIBAL-H (2.50 eq) MnO2 

(20.0 eq), THF, hexane, -78 °C → rt, 5 h, 78% over 2 steps; g) 1-(Triphenylphosphoranylidene)-2-propanone 

(2.00 eq), toluene, 100 °C, 16 h, 77%; h) 1. LiHMDS (1.10 eq); 2. Trichloroacetic anhydride (2.00 eq), THF, -78 

°C, 3 h, 60%. 
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Neocarzilin B 

 

Supplementary Scheme 3. Synthesis of Neocarzilin B: a) LiHMDS (1.00 eq) ethyl (E)-4-

(diethoxyphosphoryl)-but-2-enoate (1.00 eq), THF, -78 °C → rt, 4 h, 51%; b) DIBAL-H (2.10 eq), MnO2 (20.0 

eq), THF, hexane, -78 °C → rt, 5 h, 83% over 2 steps; c) 1-(Triphenylphosphoranylidene)-2-propanone (2.00 

eq), toluene,100 °C, 16 h, 60%; d) 1. LiHMDS (1.00 eq), 2. trichloroacetic anhydride (2.00 eq), THF, -78 °C, 3 

h, 83%. 

 

Activity-based probe NC-1 
 

 

Supplementary Scheme 4. Synthesis of probe NC-1: a) 1. DMSO (2.22 eq), (COCl)2 (1.11 eq), NEt3 (4.50 eq); 

2. LiHMDS (1.00 eq), ethyl (E)-4-(diethoxyphosphoryl)-but-2-enoate (4.15) (1.00 eq), CH2Cl2, THF, -78 °C → 

rt, 4 h, 38% over 2 steps; b) DIBAL-H (2.10 eq), MnO2 (20.0 eq), THF, hexane, -78 °C → rt, 5 h, 54% over 2 

steps; c) 1-(Triphenyl-phosphoranylidene)-2-propanone (2.00 eq), toluene, 100 °C, 16 h, 54%; d) 1. LiHMDS 

(2.00 eq); 2. trichloroacetic anhydride (1.00 eq), THF, -78 °C, 3 h, 45%. 
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6.2 Abbreviations 

ABPP Activity-based protein profiling 

AM Acetoxymethyl 

APS Ammonium persulfate 

ATP Adenosine triphosphate 

BCA Bicinchoninic acid 

BPH Benign prostatic hyperplasia 

BRCA Breast cancer susceptibility protein 

BSA Bovine serum albumin 

Cdc42 Cell division control protein 42 homolog 

Co-IP Co-immunoprecipitation 

CRISPR Clustered regularly interspaced short palindromic repeats 

CTB CellTiter-Blue® 

DCIS Ductal carcinoma in situ 

DMEM Dulbecco´s modified eagle´s medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DSSO Disuccinimidyl sulfoxide 

DTT Dithiothreitol 

E.coli Escherichia coli 

ECL Enhanced chemiluminescence 

ECM Extracellular matrix 

EDTA Ethylene diamine tetraacetic acid 

EGF Epidermal growth factor 

EGTA Ethylene glycol tetraacetic acid 

Em Emission 

ER Endoplasmatic reticulum 

Ex Excitation 

FACS Fluorescence-activated cell sorting 

FAK Focal adhesion kinase 

FCS Fetal calf serum 

GFP Green fluorescent protein  

GO Gene ontology 

GTP Guanosine-5'-triphosphate 

HEPES Hydroxyethyl-piperazineethane-sulfonic acid buffer 

HER2 Human epidermal growth factor receptor 2 

HMOX2 Heme oxygenase 

HRP Horseradish peroxidase 

IC50 Half maximal inhibitory concentration 

ICAP-1 Integrin cytoplasmic domain-associated protein 1 

k.o. Knockout 

LC Liquid chromatography 
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LCIS Lobular carcinoma in situ 

LQF Label-free quantification 

MDR Medium-chain dehydrogenases/reductases 

Mfn1 Mitofusin 1 

MIB Mitofusin binding protein 

MIDAS Metal ion dependent adhesion site 

MMP Matrix metalloproteinase 

MS Mass spectrometry 

MS-CETSA Mass spectrometry-based cellular thermal shift assay 

NCA/A’/B/C Neocarzilin A/A’/B/C 

NMR Nuclear magnetic resonance 

P/S Penicillin/streptomycin 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction  

PE Phosphatidylethanolamine 

PFA Paraformaldehyde 

PI Propidium iodide 

PMSF Phenylmethylsulfonyl fluoride 

PS Phosphatidylserine 

Rac1/2 Ras-related C3 botulinum toxin substrate 1/2 

RAP1A-GTP Ras-related protein Rap-1A-Guanosin triphosphate 

Rho Ras homologous protein 

RIAM RAP1-GTP-interacting adapter molecule 

RNA Ribonucleic acid 

ROCK Rho-associated protein kinase 

RPMI Roswell park memorial institute medium 

RT Room temperature  

SAR Structure-activity relationship 

SDS-PAGE SDS-polyacrylamide gel electrophoresis 

SEM Standard error of the mean 

SERM Selective estrogen receptor modulator 

sgRNA Single guide RNA 

SH3 Src-homology 3 

SILAC Stable isotope labeling of amino acids in cell culture 

siRNA Small interfering RNA 

TBS-T Tris-buffered saline - Tween20 

TCE Trichloroethylene 

TEMED Tetramethylethylendiamin 

TEV Tobacco etch virus 

TNM TNM Classification of Malignant Tumors 

Tris Tris(hydroxymethyl)aminomethane 

VAT-1 Synaptic vesicle membrane protein 1 

WT Wild type 
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6.3 Symbols and Units 

% Percent 

% (m/v) Mass percent 

% (v/v) Volume percent 

°C Degree Celsius 

µg Microgram [10-6 g] 

µL Microliter [10-6 L] 

µM Micromolar [10-6 M] 

cm2 Square centimeter  

g Gram  

h Hour 

kDa Kilodalton 

kg Kilogram [103 g] 

M Molar concentration 

mg Milligram [10-3 g] 

min Minute 

mL Milliliter [10-3 L] 

mM Millimolar [10-3 M] 

mm Millimeter [10-3 m] 

ng Nanogram [10-9 g] 

nM Nanomolar [10-9 M] 

nm Nanometer [10-9 m] 

rpm Rounds per minute 

s Second 

U Enzyme unit 

V Volt 

α Alpha 

β Beta 

ζ Zeta 
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