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Abstract 

Platelets are anucleated cell fragments, generated from megakaryocytes in the 

bone marrow and cleared in the spleen and liver. They are central players in haemo-

stasis and thrombosis. Once the vessel wall is injured, circulating platelets are at-

tached to the exposed sub endothelial matrix via glycoproteins receptors on the mem-

brane, aggregate and form a hemostatic plug. Although the role of platelets in haemo-

stasis and thrombosis has been intensely investigated, the cellular biology of platelets 

motility remains elusive. More recently, Gaertner et al. in our group provided the first 

in depth analysis of the biomechanical principles underlying platelet migration. Alt-

hough these studies show that mouse platelets migrate autonomously in vivo and re-

veal the characteristics of human platelets motility in vitro, how mouse platelets mi-

grate in vitro has not been addressed. On the basis of this work, my experiments 

demonstrate that similar to human platelets, mouse platelets are able to migrate within 

mouse plasma in vitro. Furthermore, Gaertner et al. identified that albumin in the 

plasma was an essential factor for human platelet migration on fibrinogen substrate 

by reducing substrate adhesiveness. However, my studies show that unlike human 

platelets, albumin alone is not capable of supporting mouse platelets motility. Instead, 

casein, poly lysine-albumin conjugates and pluronic trigger mouse platelet migration 

by regulating calcium oscillations with the involvement of mechanosensitive ion chan-

nels. Interestingly, these proteins -- casein, PLL-g-PEG, and pluroinc -- do not affect 

platelets aggregation or secretion. Then by investigating the role of calcium ion chan-

nels in platelets function, my results reveal that platelet migration and aggregation are 

dependent on distinct calcium entry channels on plasma membrane. STIM-mediated 

SOCE is important in platelet aggregation and secretion but not in platelet migration; 

on the contrary, mechanosensitive ion channels are critically implicated in platelet mo-

tility but not in platelet aggregation or secretion.  In summary, my studies demonstrate 

that mouse and human platelets need different requirements for migration, which shed 

light to disparities between human and mouse platelets. Then my results reveal that 

platelets aggregation and migration are mediated by different calcium ion channels. 

These findings provide a deeper understanding of the cellular mechanisms involved 

in platelets function. 
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1 Introduction 

1.1 Platelets in haemostasis and thrombosis  

Human platelets are anucleated cell fragments with 2-3 µm diameters in circu-

lating blood, generated from megakaryocytes in the bone marrow with an average life 

span of 10 days and cleared in the spleen and liver (Kaplan and Saba 1978, Patel, 

Hartwig et al. 2005). Platelets are central players in haemostasis and thrombosis. 

Resting disc-like platelets are rolling in the direction of blood flow in the vessel. Once 

the vessel wall is injured, circulating platelets are attached to the exposed sub endo-

thelial matrix via glycoproteins receptors on the membrane. Ligands binding initially 

trigger platelets activation, which cause cytoskeleton re-arrangement and extensive 

formation of pseudopodia originating from the plasma membrane (Jurk and Kehrel 

2005, Ghoshal and Bhattacharyya 2014). Activated platelets release components from 

granules in a process called platelet degranulation. Platelets have two major granules, 

namely 𝛼 granules and dense granules that are comprised of biologically active mole-

cules (Rendu and Brohard-Bohn 2001). The more prevalent 𝛼 granules secret proteins 

like P selectin, integrin, vWF, fibrinogen, fibronectin, platelet factor that are involved in 

the coagulation cascades (Blair and Flaumenhaft 2009). Dense granules release ser-

otonin, calcium, ADP and ATP (McNicol and Israels 1999). It is notable that although 

ADP is a weak agonist, it triggers platelets shape change, granule release and ampli-

fies the activation cascade (Kahner, Shankar et al. 2006). These secretion events in 

turn attract more circulating platelets for activation and adhesion at the site of injury. 

 Following platelets stimulation, the major platelets receptor GPIIbIIIa (integrin 

αⅡbβ3) binds to fibrinogen in plasma, which leads to platelets aggregation and form a 

hemostatic plug. For quite a long time fibrinogen was considered to be essential for 

platelets aggregation. However, more substantial studies demonstrate fibrinogen-in-

dependent way of platelets aggregation exists (Ni, Denis et al. 2000, Jackson 2007, 

Hou, Carrim et al. 2015). Besides their critical roles in aggregation, platelets contribute 

to coagulation pathway. Activated platelets express a negatively charged surface 

phosphatidylserine (PS), which increases thrombin generation and harbours the co-

agulation factors (Lentz 2003). Thrombin is a serine protease that converts fibrinogen 
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to fibrin that is the end product of coagulation. At the same time, thrombin robustly 

stimulates platelets via protease activated receptors (PARs) and provides a positive 

feedback for blood coagulation (Coughlin 2000).  

The process of haemostasis is beneficial for the body to prevent blood loss. 

However, when it occurs in ruptured arterial lesion, platelets aggregation and blood 

coagulation cause thrombus formation and subsequent vessel occlusion that is the 

main reason of heart attack and stroke (Packham 1994).  

1.2 Platelet migration 

Although platelets have been demonstrated to play crucial roles in haemostasis 

and thrombosis, platelets function on a cellular level are still not completely understood. 

For example the fundamental question that whether platelets have the ability to mi-

grate autonomously still needs to be solved in detail. In 1970s, Lowenhaupt et al. first 

discovered that human platelet motility in vitro was an active biological process instead 

of passive diffusion or Brownian movement. Within autologous platelet poor plasma 

as medium platelets were capable of migrating from packed capillary tube toward col-

lagen, indicating the chemotactic response of platelets (Lowenhaupt, Miller et al. 1973). 

Later on, the authors revealed that anticoagulants, temperature and pH could modu-

late platelet motility. Furthermore, platelet migration was impaired by metabolic inhib-

itor and actin polymerization inhibitor, providing more convincing evidence that platelet 

movement was an autonomous process (Lowenhaupt, Glueck et al. 1977). Duques-

noy et al. and Kakoma et al. reported that platelet migration from capillary tube was 

inhibited by sera from patients of idiopathic thrombocytopenic purpura (ITP) and sera 

from dog infected with Ehrlichia, respectively (Duquesnoy, Lorentsen et al. 1975, 

Kakoma, Carson et al. 1978). In addition, Valone et al. investigated the optimal condi-

tions for random platelet locomotion using a Boden chamber and demonstrated that 

platelet spontaneous mobility was increased by the cholinomimetic agent carbachol, 

but inhibited by the adrenergic agonist-epinephrine (Valone, Austen et al. 1974). 

In 1990s, the physiological significance of platelet migration in vivo was emerg-

ing. Feng et al. reported that after injection of N-formyl-methionyl-leucyl-phenylalanine 

(fMLP) in guinea pig skin, individual intact platelets crossed undamaged vascular en-

dothelium by engulfing into large endothelial vacuoles. Subsequently, these platelets 
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moved across the basal lamina toward dermal connective tissue without displaying 

secretory morphological changes (Feng, Nagy et al. 1998). Nakamura et al. found that 

in mice treated with lipopolysaccharide (LPS) platelets translocated from sinusoidal 

into Disse spaces and some of them entered into hepatocytes with the aid of Kupffer 

cells (Endo and Nakamura 1992, Nakamura, Shibazaki et al. 1998). Later, Pitchford 

et al. discovered that platelets migrated extravascularly into lung parenchyma in aller-

gen-sensitized mice via IgE--FcεRIγ receptor mediated mechanism in vivo. Moreover, 

platelets from allergen-sensitized mice or patients with allergic asthma migrated in 

vitro toward the relevant allergen or anti-IgE antibodies (Pitchford, Momi et al. 2008). 

Czapiga et al. reported that human platelets expressed functional formyl peptide re-

ceptor (FPR), and exhibited chemotactic migration toward formyl peptides released 

from necrotic cells (Czapiga, Gao et al. 2005).  Recently, Kraemer et al. discovered 

stromal cell-derived factor 1 (SDF-1) induced chemotaxis of platelets via C-X-C chem-

okine receptor type 4 (CXCR4), a process dependent on phosphoinositol 3-kinase (PI3 

kinase) (Kraemer, Borst et al. 2010). Schmidt et al. identified that Oria1 and Ca2+ acti-

vated K+ channels were involved in SDF-induced platelet chemotaxis (Schmidt, 

Munzer et al. 2011). More recently, Gaertner et al. in our group provided the first in 

depth analysis of the biomechanical principles underlying platelet migration. By using 

two-photon microscopy, Gaertner et al. established a novel approach to visualize in-

dividual platelets during thrombus formation and discovered autonomous platelets lo-

comotion in vivo. Then in vitro studies reveal that platelets polarize, form half-moon 

like shape and adapt the typical pattern of cell migration. Furthermore, Gaertner et al. 

found that platelet migration was integrin αⅡbβ3 dependent and identified that albumin 

and calcium in the plasma were essential factors for human platelet migration on fi-

brinogen substrate (Gärtner, Engelhardt et al. 2015).  

1.3 Calcium homeostasis in platelets 

Calcium as a ubiquitous second messenger play crucial roles in a large variety 

of biological activities (Berridge, Bootman et al. 2003, Clapham 2007).  Although var-

ious agonists, such as collagen (Roberts, McNicol et al. 2004), thrombin (Heemskerk, 

Feijge et al. 1997), ADP (Daniel, Dangelmaier et al. 1998), thromboxane A2 (Paul, Jin 
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et al. 1999) evoke platelets activation through different pathways, they all cause ele-

vation of cytoplasmic calcium (［Ca2+］i). The increase of intracellular calcium derives 

from two sources, the release of calcium from internal pools, and calcium influx from 

extracellular department (Rink and Sage 1990, Varga-Szabo, Braun et al. 2009). Ag-

onist-induced stimulation of various receptors results in activation of phospholipase C 

(PLC) isoforms, which hydrolyse phosphoinositide-4, 5-bisphosphate (PIP2) to inosi-

tol-1, 4, 5-trisphosphate (IP3) and 1, 2-idacyl-glycerol (DAG). IP3 directly activates IP3 

receptors (IP3R) in the endoplasmic reticulum (ER), which triggers calcium release 

from ER. Meanwhile, exogenous calcium influx into platelets is mediated by calcium 

ion channels on the plasma membrane. To maintain the equilibrium of cytoplasmic 

calcium,［Ca2+］i is pumped back by the sarco/endoplasmic reticulum Ca2+-ATPase 

(SERCA) (Enouf, Bredoux et al. 1992, Cavallini, Coassin et al. 1995) to the ER, and 

by plasma membrane Ca2+-ATPase (PMCA) (Dean, Chen et al. 1997, Paszty, Kovacs 

et al. 1998) to the extracellular space (Fig.1.1).  

 

Fig. 1.1 Schematic of calcium homeostasis in platelets. The release of calcium from internal pools and calcium 

influx from outside department cause the elevation of cytoplasmic calcium. The elevated cytoplasmic calcium is 
pumped out by SERCA and PMCA to keep the equilibrium of intracellular calcium. 
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1.4 Calcium channels in platelets membrane 

Extracellular calcium enters into platelets via calcium ion channels on the 

plasma membrane. A variety of ion channels are reported to be expressed in platelets, 

although the evidence for some of these channels are relied upon a small number of 

studies (Mahaut-Smith 2012, Wright, Amisten et al. 2016). In this introduction, a few 

of these channels that have been demonstrated to be crucial in platelets function are 

summarized (Fig.1.2). 

  

Fig. 1.2 Ion channels on platelets membrane. Platelets activation by GPCR agonists results in the calcium re-

lease from ER via IP3 receptor (IP3R). The depletion of calcium in ER is sensed by STIM on the ER membrane that 
transfers the signal to Orai channels on the plasma membrane, then extracellular calcium enters into platelets from 
Orai channels, which is referred to as SOCE. Ca2+ activated K+ channels are activated by the elevation of cytosolic 
free calcium; P2X1 channels are gated directly by ATP; TRP channels can be activated by both physical and chem-
ical stimuli.  

P2X1 channels 

P2X1 channels belong to the large P2 purinoreceptors for extracellular nucleo-

tides that include two subgroups: P2X receptors and P2Y receptors (Gachet 2008). 

Although several subtypes of P2X and P2Y receptor have been identified, only P2X1, 

P2Y1 and P2Y12  are expressed in significant level in platelets (Wang, Ostberg et al. 

2003). Dense granules of platelets secret both ADP and ATP: ADP binds to P2Y1 and 

P2Y12 receptors that are G protein-coupled receptors (GPCR) (Gachet 2001); ATP 

directly activates P2X1 channels, which results in rapid calcium influx (Mahaut-Smith, 
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Jones et al. 2011). The generation of P2X1 transgenic mice provides convincing evi-

dence for an important role of P2X1 channels in platelets function. P2X1 deficient plate-

lets display impaired aggregation upon to lower dose of GPVI agonist collagen, while 

they respond to GPCR agonists and higher dose of collagen as well as wild type plate-

lets. Furthermore, P2X1 knockout mice exhibit reduced thrombus formation at higher 

arterial shear rates (Hechler, Lenain et al. 2003). Conversely, overexpression of P2X1 

in mice results in enhanced platelets aggregation stimulated by lower dose of collagen 

and thromboxane A2  mimetic-- U46619 in vitro and increased thrombotic tendency in 

vivo (Oury, Kuijpers et al. 2003). 

Store-operated calcium entry (SOCE) 

In non-excitable cells, calcium release from intracellular stores triggers calcium 

entry from the extracellular department, a process referred to as store-operated cal-

cium entry (SOCE) (Patterson, van Rossum et al. 1999, Parekh and Putney 2005, 

Smyth, Hwang et al. 2010). Recent studies have established stromal interaction mol-

ecule 1 (STIM1) and Orai1 as the key players of SOCE in platelets, with STIM1 as the 

senor of calcium release from internal stores and Oria1 as the major SOC channels 

on platelets membrane (Bergmeier and Stefanini 2009, Varga-Szabo, Braun et al. 

2011). STIM1 is a single transmembrane protein containing two N-terminal EF hand 

domains that are situated in the ER lumen and detecting calcium levels. Consequently, 

EF hand mutants lead to continuous calcium influx from the extracellular space 

(Grosse, Braun et al. 2007). Platelets lacking STIM1 aggregate normally to GPCR 

agonists, such as thrombin, ADP and thromboxane A2, but exhibit diminished aggre-

gation in response to GPVI agonists collagen, or convulxin.  In vivo, STIM1 deficient 

mice display unstable arterial thrombi and are protected from cerebral ischemia 

(Varga-Szabo, Braun et al. 2008, Ahmad, Boulaftali et al. 2011). Similar to SITM1, 

STIM1 isoform STIM2 is able to trigger Orial1 mediated calcium influx on plasma mem-

brane but is activated by small reduction of Ca2+ in ER. Moreover, SITM2 functions as 

primary regulator of basal cytosolic calcium (Brandman, Liou et al. 2007, 

Gruszczynska-Biegala, Pomorski et al. 2011). Orai1, also called calcium-release acti-

vated calcium modulator 1 (CRACM1) was first discovered to be the SOC channels in 

T cells and mast cell (Prakriya, Feske et al. 2006, Vig, Peinelt et al. 2006, Vig, 
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DeHaven et al. 2008). Then Orai1 was found to be expressed and identified as the 

principle SOC channel in platelets plasma membrane. Orai1 deficient platelets show 

similar defects to platelets devoid of STIM1 (Braun, Varga-Szabo et al. 2009) .  

Transient receptor potential (TRP) channels 

TRP channels are six transmembrane non-selective cation channels permeable 

for both monovalent and divalent ions that are divided into six subfamilies, TRPC (ca-

nonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin) 

and TRPA (ankyrin) (Clapham, Runnels et al. 2001, Clapham 2003). TRP channels 

are able to be activated by both chemical and physical stimuli, such as PIP2, cyclin 

nucleotides, pH, heat, temperature (Clapham, Runnels et al. 2001, Zheng 2013). Hu-

man platelets have been reported to express TRPC1, TRPC3, TRPC4, TRPC5 and 

TRPC6 (Brownlow and Sage 2005). TRPC1 is proposed to mediate SOCE in platelets 

based on the evidence that inhibiting TRPC1 reduces SOCE response to thrombin 

and thapsigargin (Rosado and Sage 2000, Rosado and Sage 2001, Rosado, 

Brownlow et al. 2002). However, whether TRPC1 is SOCE channel still remains con-

troversial. Some studies reveal that SOCE is independent of TRPC1, since TRPC1 is 

only expressed in ER membrane (Hassock, Zhu et al. 2002), and TRPC1 deficient 

platelets exhibit completely intact SOCE (Varga-Szabo, Authi et al. 2008). TRPC6 is 

expressed at high levels on platelet plasma membrane and is regarded to be a non-

SOCE channel on platelet membrane (Hassock, Zhu et al. 2002). Platelets in the ab-

sence of TRPC6 do not show an altered calcium response and granule release in 

agonist-evoked activation. Furthermore, TRPC6 deficient mice form arterial thrombus 

normally, which indicates a minor role of TRPC6 in platelets function (Ramanathan, 

Gupta et al. 2012). 

Calcium activated potassium (KCa) channels 

KCa channels are a large family of potassium channels activated by the eleva-

tion of cytosolic free calcium. According to the single channel conductance, KCa are 

divided into small conductance KCa (SK), intermediate conductance KCa (IK) and big 

conductance KCa (BK) (McManus 1991, Vergara, Latorre et al. 1998). Platelets have 
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been shown to express a small number of IKs, which determine the membrane poten-

tial based on the evidence that platelets are sensitive to IK blocker-carybdotoxin, but 

not to SK inhibitor- apamin (Fine, Hansen et al. 1989, Mahaut-Smith 1995). Recently, 

Wright et al. used quantitative polymerase chain reaction (PCR) to analyse the ex-

pression of ion channels on human platelets and reported that BK also existed in plate-

lets  (Wright, Amisten et al. 2016). KCa in platelets is suggested to regulate cell volume 

(Sullivan, Koliwad et al. 1998), migration (Schmidt, Munzer et al. 2011), and procoag-

ulant activity (Wolfs, Wielders et al. 2006).  

1.5 Mechanosensitive (MS) ion channels   

MS channels are transmembrane proteins that are involved in mechanotrans-

duction - the conversion of mechanical stimuli to biological signals. Mechanotransduc-

tion is essential for a large variety of biological processes in humans, such as hearing, 

touching, temperature and pain sensation. The question how MS channels respond to 

mechanical stimuli is still under debate, but two models have been proposed so far 

(Hamill and Martinac 2001, Martinac 2004). One is the lipid bilayer model. In this model, 

it is perceived that mechanical deformation of the bilayer membrane triggers the con-

formational change of the channels, which results in activation of MS channels. A 

number of studies support this model. For instance, amphiphiles are reported to gate 

MS by inserting into the membrane bilayer and changing the membrane curvature 

(Martinac, Adler et al. 1990, Perozo, Kloda et al. 2002, Qi, Chi et al. 2005). Further-

more, MS channels are able to be activated by membrane tension in cytoskeleton free 

membrane blebs or liposomes, which provide more evidence to this model (Zhang, 

Gao et al. 2000, Kloda and Martinac 2001, Perozo and Rees 2003). The other model 

is the tethered model. In this model, MS channels are connected extracellular matrix 

and/or the cytoplasmic skeleton. These tethers convey the exogenous or endogenous 

mechanical forces and then trigger opening of the MS channels (Gillespie and Walker 

2001). For example, in auditory and vestibular hair cells MS channels are connected 

to extracellular tip links and to intracellular cytoskeleton through the adaptation motor, 

thereby transduce the mechanical stimuli (Pickles, Comis et al. 1984, Corey 2003, 

Chalfie 2009). Till now, a large amount of ion channels have been proposed to be 

candidates of MS channels. 
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Epithelial sodium channel/degenerin (eNaC/DEG) 

The eNaC/DEG gene family represents a class of sodium channels comprised 

of two transmembrane domains. ENaC is located on the apical surface of epithelia 

and contributes to salt and water homeostasis (Butterworth 2010). DEG family are 

able to be activated by mechanical forces like shear stress, and are involved in touch 

sensation, blood pressure regulation and hypertension (Kellenberger and Schild 2002).  

TRP channels 

TRP family of ion channels are implicated in a wide variety of mechanical trans-

duction processes, like taste, vision, olfaction, and heat sensation (Clapham 2003, 

Corey 2003, Christensen and Corey 2007). A number of TRP channels are implicated 

in mechanotransduction. To name only a few. TRPC1 is reported to be the component 

of MS channels in Xenopus oocytes and gated by lipid bilayer tension (Maroto, Raso 

et al. 2005). TRPC6 functions as a direct sensor of mechanically and osmotically in-

duced membrane stretch (Spassova, Hewavitharana et al. 2006).TRPV1 was origi-

nally regarded as the receptor of capsaicin, the component of hot chili pepper, and 

later was demonstrated to be gated by mechanical stimuli, like noxious heat (Pingle, 

Matta et al. 2007).  TRPM3 and TRPM7, members of melastatin TRP subgroup are 

both mechanically activated ion channels in that TRPM3 can be evoked by osmotic 

swelling (Grimm, Kraft et al. 2003) and TRPM7 is activated by membrane stretch as 

well as osmotic swelling (Numata, Shimizu et al. 2007). 

Two pore domain potassium channels 

Two-pore domain potassium channels are a novel class of potassium channels 

that comprise four transmembrane segments (Lesage and Lazdunski 2000). The first 

identified K2p is tandem of P domains in a weakly inward-rectifying K channel (TWIK) 

by gene cloning (Lesage, Guillemare et al. 1996). Subsequently, more mammalians 

K2p channels have been discovered, but only TREK-1 (TWIK-1 related K channel) 

(Fink, Duprat et al. 1996), TREK-2 (Lesage, Terrenoire et al. 2000) and TRAAK (TWIK 

open by arachidonic acid) (Fink, Lesage et al. 1998) are shown to be mechanically 
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gated. TREK and TRAAK channels are polymodal potassium channels that are 

opened by both physical stimuli (stretch, cell swelling, heat, voltage) and chemical 

stimuli (poly unsaturated fatty acid, lysophosholipids) (Dedman, Sharif-Naeini et al. 

2009, Brohawn, Su et al. 2014).  

PIEZO 

PIEZO1 and PIEZO2 are more recently identified mechanically activated ion 

channels permeant to Na+, K+, Ca2+ , and Mg2+ with a preference to Ca2+ (Coste, 

Mathur et al. 2010, Coste, Xiao et al. 2012). Different from other MS channels contain-

ing two, four or six transmembrane domains, PIEZO channels are assumed to consist 

of 24-40 transmembrane domains and the largest ion channels on plasma membrane 

identified so far  (Bagriantsev, Gracheva et al. 2014, Ranade, Syeda et al. 2015, 

Volkers, Mechioukhi et al. 2015). PIEZO1 is widely distributed in bladder, skin, lung, 

kidney, and colon and plays important roles in cellular biology and physiology 

(Bagriantsev, Gracheva et al. 2014).  To name only a few. PEIZO1 on bladder urothe-

lium is activated by stretch stimulus, resulting in potent ATP release (Miyamoto, 

Mochizuki et al. 2014). PIEZO1 on embryonic endothelia, gated by fluid shear stress 

is responsible for vascular development (Ranade, Qiu et al. 2014). PIEZO1 on smooth 

muscle cell is involved in remodelling of arterial walls upon hypertension (Retailleau, 

Duprat et al. 2015). PIEZO2 is abundantly expressed in dorsal root ganglion and tri-

geminal ganglia sensory neurons, Merkel cells and is involved in mechanosensory 

transduction (Ranade, Woo et al. 2014, Woo, Ranade et al. 2014). 

 1.6 Aims of the thesis 

1. Our previous studies show that mouse platelets migrate autonomously in vivo 

and reveal the characteristics of human platelets motility in vitro, but how mouse plate-

lets migrate in vitro has not been addressed. Therefore, I will investigate the require-

ments for mouse platelet migration in vitro and explore the underlying molecular mech-

anism. 

2. The above introduction suggest that calcium signaling is crucial in platelets 

activation. Our previous studies reveal that extracellular calcium is required for platelet 
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migration, therefore I will work on identifying the calcium ion channels that mediate 

platelet migration. Based on the identified channels involved in platelets mobility, I will 

compare the role of MS channels and SOCE channels in different platelet functions 

and reveal the molecular differences among platelet aggregation, secretion and mi-

gration.   
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2  Materials and methods 

2.1 Mouse strains 

C57/Bl6 mice, Pf4-Cre mice (Tiedt, Schomber et al. 2007), albumin deficient 

mice (Roopenian, Low et al. 2015), RAG1-deficient mice (Mombaerts, Iacomini et al. 

1992) , GPIbα/IL4R transgenic mice (Bergmeier, Piffath et al. 2006) , PC::G5-tdT mice 

(Gee, Smith et al. 2014), P2X1 knockout mice (Hechler, Lenain et al. 2003) were ob-

tained from the Jackson laboratory. Stim1floxl/flox mice (Ahmad, Boulaftali et al. 2011), 

Stim1/2flox/flox mice, TRPC1/6 knockout mice (Ramanathan, Gupta et al. 2012) were 

gifts of Prof. Michael Mederos y Schnitzler and Prof. Alexander Dietrich. Stim1floxl/flox, 

Stim1/2flox/flox mice, or PC::G5-tdT mice were crossed with Pf4-Cre mice to obtain the 

magakaryocyte-platelets specific gene knockout mice. Experiments were performed 

on 8-10 weeks old mice and approved by the local animal protection law.  

2.2 Materials 

ACD buffer: 85 mM Na3Citrate, 65 mM Citric acid monohydrate, and 111 mM 

glucose. 

Modified Tyrode’s buffer: 136.9 mM NaCl, 12.1 mM NaHCO3, 2.6 mM KCl, 5.5 

mM glucose, and 10 mM HEPES. 

Factors tested in mouse platelet migration are listed in table 2-1 and table 2-2, 

calcium channel inhibitors are summarized in table 2-3. 



                                                                                                  Materials and methods 

14 
 

Table 2-1 factors tested in mouse platelet migration 

Reagents Solvent Company 

Albumin from mouse serum H2O Sigma 

Albumin human, recombinant H2O Sigma  

Annexin V, unlabeled recombinant protein H2O Ebioscience 

Bovine albumin fraction V H2O Roche 

Casein fluorescein isothiocyanate from bovine milk H2O Sigma 

Casein from bovine milk PBS Sigma 

Casein, bovine milk, carbohydrate and fatty acid free PBS Millipore 

Casein, dephosphorylated from bovine milk PBS Sigma 

Chondroitinase ABC from Proteus vulgaris H2O Sigma 

Complement C1, human NaCl Millpore 

Complement C1q, human NaCl Millpore 

Complement C3 from human serum PBS Sigma 

Complement Factor H from human plasma PBS Sigma 

C-reactive protein, human NaCl Millpore 

Epsilon-aminocaproic acid H2O Sigma 

Heparinase II from Flavobacterium heparinum H2O Sigma 

Neuraminidase (Sialidase) from Clostridium perfringens H2O Roche 

Plasminogen human NaCl Biopur 

PLL-g-PEG H2O Susos 

Pluronic F127  H2O Thermofisher 

Poly L arginine, MW 15,000-70,000 H2O Sigma 

Poly L lysine,  MW 30,000-70,000 H2O Sigma 

Poly L lysine, MW 1,000-5,000 H2O Sigma 

Poly L ornithine,  MW 30,000-70,000 H2O Sigma 

Protamine from salmon H2O Sigma 

Recombinant Human Transforming Growth Factor-beta 1 
 (rh TGF-β 1) H2O Immunotools 

Recombinant Mouse Beta Defensin-1 (rm BD-1) H2O Immunotools 

Recombinant Mouse Beta Defensin-2 (rm BD-2) H2O Immunotools 

Recombinant Mouse Epidermal Growth Factor 
 (rm EGF) H2O Immunotools 

Recombinant Mouse Fibroblast Growth Factor-basic 
 (rm FGF-b) H2O Immunotools 

Recombinant Mouse Heparin Binding EGF-like Growth 
Factor (rm HB-EGF) H2O Immunotools 

Recombinant Mouse Midkine (rm MK) H2O Immunotools 

Recombinant Mouse Platelet-derived Growth Factor AA 
(rm PDGF-AA) H2O Immunotools 

Recombinant Mouse Platelet-derived Growth Factor BB 
(rm PDGF-BB) H2O Immunotools 
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 Table 2-2 factors tested in mouse platelet migration 

Reagents Solvent Company 

Recombinant Mouse Vascular Endothelial Growth Factor 
A (rm VEGF-A) H2O Immunotools 

Recombinant Murine Insulin-Like Growth Factor 1 (rm 
IGF-1) H2O Immunotools 

Spermine H2O Sigma 

α-Casein from bovine milk H2O Sigma 

β-Casein from bovine milk PBS Sigma 

κ-Casein from bovine milk H2O Sigma 

 

Table 2-3 list of calcium channel inhibitors 

Inhibitor Company Solvent Description 

Thapsigargin Sigma DMSO SERCA inhibitor 

Caloxin2A1 Anaspec peptide DMSO PMCA inhibitor 

A23187 Sigma DMSO Calcium ionophore 

EGTA Bioworld H2O Extracellular calcium chelator 

LOE908 Tocris H2O Broad spectrum cation inhibitor 

NF449 Tocris H2O P2X1 inhibitor 

BTP2 Tocris DMSO SOC inhibitor 

LaCl3 Sigma H2O Mechanosensitive ion channel inhibitor 

GsMTx4 Abcam H2O Mechanosensitive ion channel inhibitor 

Amiloride Sigma H2O eNaC, TREK, TRAAK inhibitor 

Larixol Sequoia research DMSO TRPC6 inhibitor 

NS8593 Gift of Prof. Schnitzler DMSO TRPM7 inhibitor 

 

2.3 Isolation of washed human platelets  

Human blood was drawn from cubital vein by safety multifly-needle (Sarstedt) 

on volunteers who did not take any drugs in the last two weeks. The first 1 ml blood 

was discarded and the next 5 ml was taken into a syringe with one seventh volume of 

ACD inside. Then the blood was mixed with equal volume of modified Tyrode’s buffer 

(pH6.5) in 15 ml falcon.  Platelet rich plasma (PRP) was obtained by centrifuging the 

mixture of blood and Tyrodes buffer with 70 g (Eppendorf 5804) for 35 min without 

brake at room temperature. Then 3 ml PRP was mingled with 7 ml Tyrode’s buffer 

(pH6.5) in the presence of 0.1% HSA (w/v) and 100 ng/mg prostaglandin I2  sodium 

salt (PGI2 , Abcam), and centrifuged at 1200 g for 10 min. Finally, the supernatant was 
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discarded and the pellet was carefully suspended in 1 ml Tyrode’s buffer (pH6.5). 

Platelet concentration was measured on an automated hematology counter (ABX Mi-

cros ES60, Horiba Medical). 

2.4 Isolation of washed mouse platelets 

Mouse was anesthetized by MMF (fentanyl 0.5 mg/kg, midazolam 5 mg/kg, 

medetomidine 0.05 mg/kg). Thoracic skin was removed by scissors and blood was 

drawn intra caridially by a syringe in the presence of 145 ul ACD. Then mouse blood 

was mixed with 1 ml Tyrode’s buffer (pH6.5) and centrifuged at 70 g for 20 min without 

brake. Then PRP was blended with 3 ml of Tyrode’s buffer in presence of 100 ng/ml 

PGI2 and centrifuged 1200 g for 10 min. The supernatant was discarded and pellet 

was suspended in 500 ul modified Tyrodes buffer (pH6.5).   

2.5 Preparation of mouse plasma and serum 

Mouse blood was obtained as above, diluted with equal volume of modified 

Tyrodes buffer (pH6.5) and centrifuged at 1500 g for 15 min at RT. The supernatant 

was taken as mouse plasma. 

Mouse plasma was incubated with 1 U/ml bovine thrombin (Sigma) for 20 min 

to initiate coagulation, then thrombin activity was ceased by 40 µM PPACK (D-Phe-

Pro-Arg-chloromethylketone, Enzo Life Science). Serum was obtained by centrifuga-

tion of the plasma at 2000 g for 15 min. 

2.6 Platelet migration assay 

Glass coverslips (24 mmX24 mm, Schott nexterion) were washed with 20% 

HNO3 for 1 hour, then rinsed with distilled water (ddH2O) for 1 hour at RT. Freshly 

cleaned coverslips were air-dried at 90 rps for 10 sec and silanized with hex-

amethydisilazane (HDMS, Sigma) at 80 rps for 30 sec by a KLM spin coater (Schaefer) 

to ensure homogeneous silanization. 

In some experiments, the original glass bottom (14 mM diameter) of the dish 

(MatTek) was removed and replaced with silanized coverslips via melted paraffin. If 
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not otherwise stated, 10×103/µl human platelets were reconstituted with 1500 µg/ml 

HSA, while 10×103/µl mouse platelets were reconstituted with 30 µg/ml casein, along 

with 38 µg/ml human fibrinogen (Sigma), 200 µM CaCl2, 2 µM U46619 (Enzo life sci-

ence) and 4 µM ADP (Sigma) in a total volume of 240 µl modified Tyrodes buffer 

(pH7.2) in the MatTek dish. Then the dish was mounted on an inverted microscope 

described below to record the motility of platelets. 

In some experiments, the silanized coverslip was sticky to the chamber (Ibidi 

sticky slides VI0.4). Then chamber was filled with 37.5 µg/ml Alexa Fluor® 488 Conju-

gate fibrinogen (Thermofisher) and 2000 µg/ml HSA in modified Tyrodes buffer for 15 

min, then washed with Tyrodes buffer. If not otherwise stated, 10×103/µl human plate-

lets were reconstituted with 1000 µg/ml HSA, while 10×103/µl mouse platelets were 

reconstituted with 30 µg/ml casein, together with 200 µM CaCl2, 2 µM U46619 and 4 

µM ADP in a total volume of 240 µl Tyrodes buffer (pH7.2) in the chamber. The Ibidi 

chamber was incubated at 37℃ for 1 hour and then images were taken at fluorescent 

microscope described below.  

2.7 Time-lapse microscope  

Differential interference contrast (DIC) movies (1 frame/ 12 sec) were recorded 

on an inverted microscope (Olympus IX83) with an 40x/NA1.00 oil objective or 60x/ 

NA1.35 oil objective with cooled CCD (charged couple device) camera (Olympus 

XM10). Phase contrast (PH) (1 frame / 20 sec) movies were recorded on the same 

microscope with 100x/NA1.40 oil objective. The microscope was equipped with a 

stage incubator (37 ℃, humidified) (Tokai Hit) and objective heater. Images were ac-

quired by Cellsense software (Olympus) installed in a computer connected to the mi-

croscope.  

2.8 Quantification of the velocity and percentage of migrat-

ing platelets 

To quantify cell velocity from DIC or PH movies, frames were extracted every 2 

min in Cellsense software, then stacks were imported to ImageJ. The central area of 

the movie was taken as area of interest (ROI). The platelets whose migrating paths 
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are more than one of their diameters were defined as migrating cells. The number of 

spreading platelets in the ROI which include both the non-migrating and migrating 

platelets were manually counted. The trajectories of mobile platelets was manaully 

tracked using the ‘‘ Manual tracking’’ plugin in ImageJ with the pseudonucleus of the 

platelets as the morphologcial tracking marker (Fig.2.1). Cell velocity was obtained by 

the accumulating distances divided by the migrating time. The percentage of migrating 

platelets was calculated by the total number of spreading platelets divided by the num-

ber of migrating platelets.  

 

Fig. 2.1 Quantification of the velocity of migrating platelets in DIC stacks. The trajectories were manaully 

tracked using the’’ Manual tracking’’ Plugin in ImageJ with the pseudonucleus of the platelets as the morphologcial 
tracking marker. Cell velocity was obtained by the accumulating distances divided by the migrating time. The 
colorful lines indicate the the trajectories manaually tracked. Scale bar=5 µm. 

Our previous studies revealed that platelets removed fibrinogen from the sub-

strate during migration (Gärtner, Engelhardt et al. 2015). Because of this feature, 

platelets migrating paths in Alexa488-conjugated fibrinogen coated surface were 

manually drawn through ‘‘freehand line’’ in Fiji (Fig.2.2). The velocity of the cell was 

calculated by the total length measured divided by the migrating time. The percentage 

of migrating platelets was calculated in the same way as above. 
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Fig. 2.2 Velocity calculation of migrating platelets on Alexa488-conjugated fibrinogen coated substrate. 

Left: fluorescent images taken after platelet migration in the Ibidi chamber with Alexa488-conjugated fibrinogen 
coated surface. The back area indicates that fibrinogen was removed away by mobile platelets. Right: The migrat-
ing paths (yellow lines) was manually drawn through ‘’freehand line’’ in Fiji, scale bar= 5 µm. 

2.9 Intracellular calcium measurement by flow cytometry 

Fluo4-AM (Thermofisher) powder was dissolved in DMSO as 5 mM stock solu-

tion at -20℃. Washed platelets prepared as above were loaded Fluo4-AM with 5 µM 

final concentration in an Eppendorf tube, then the tube was inverted a few times to 

thoroughly mix the suspension. Platelets were incubated with Fluo4-AM for 20 min at 

RT in the dark, and then centrifuged at 1200 g for 3 min in the presence of 100 ng/ml 

PGI2. The supernatant was removed and the pellet was gently suspended in modified 

Tyrodes buffer (pH6.5). Then Fluo4-AM loaded platelets remained for 20 min at RT 

for complete de-esterification of AM esters before experiments and were used within 

up to 2 hours.  

          Fluo4-AM loaded platelets were reconstituted in Tyrodes buffer (pH7.2) at the 

final concentration of 10×103/µl in the presence of 1 mM CaCl2 in the FACS tube. 

Fluo4 intensity was recorded in FL1 channel on the flow cytometer (BD LSRFortessa) 

for 30 sec to obtain the resting calcium level. Then the FACS tube was moved away 

from the flow cytometer, agonist was quickly added and mixed. Finally the tube was 

put back to flow cytometer and Fluo4 intensity was recorded for another 150 sec. 

 Data from flow cytometry were analysed on Flowjo. The basal calcium level 

was quantified as the MFI of 30 sec before activation. The cytosolic calcium after ag-

onist-induced stimulation was calculated as the MFI of the 30 sec after activation. El-

evated cytosolic calcium was calculated as the intracellular calcium after activation 

subtracted by basal calcium level. 
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2.10 Calcium oscillations recorded at fluorescent micro-

scope 

5uM Fluo4-AM loaded washed platelets were supplemented with the migration 

buffer described above in the MatTek dish. The fluorescent light engine Lumencor 

SOLAR SE II was connected to the microscope (Olmpus IX83) with CCD camera 

(Olympus XM10).The MatTek dish was mounted on 60x/NA1.35 oil objective at the 

microscope equipped with an autofocus function of ZDC ( Z-drift compensation). The 

lumencor intensity was set properly to minimize the phototoxic to platelets meanwhile 

to acquire strong enough fluorescent intensity. Frames from the green fluorescent 

channel (excitation 488 nM) were recorded every 5 sec to record the calcium intensi-

ties of platelets. 

2.11 Quantification of calcium oscillations 

Fluorescent stacks recorded at florescent microscope were imported to Fiji 

(Schindelin, Arganda-Carreras et al. 2012). Singe platelet migration area was carefully 

selected by ‘‘rectangular selection’’ that did not include any other cells, and added to 

the ROI manager (Kardash, Bandemer et al. 2011). Then the background of the stack 

was subtracted with rolling ball method. Image type was changed to 8 bit and platelets 

in the stacks were identified by auto threshed with black object on white background 

(Fig.2.3). Platelets fluorescent intensity was obtained by subtracting the auto-thresh-

old stacks from background corrected stacks by ‘‘image calculator’’. Finally mean flu-

orescent intensity over time was calculated by ‘‘stack-plot Z profile’’ in Fiji. The sche-

matic steps for quantifying calcium oscillations was shown in Fig.2.4. 
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Fig. 2.3 Motile platelets were identified by auto threshold in Fiji. The black objects in each frame represents 

the mobile platelets. 

 

Fig. 2.4 Steps for quantification of calcium oscillations in platelets. 
 

2.12 Platelets aggregation and ATP release measurement  

Washed platelets were prepared as above and adjusted to 200 ×103/µl. The 

Lumi-aggregometer (Chrono-log 700 Series) with AGGRO/LINK8 software was turned 

on and warmed up to 37℃. 

 Luciferin-luciferase kit (CHRONO-LUME™)  was used to measure ATP re-

leased by platelets dense granules (Beigi, Kobatake et al. 1999). Tyrodes buffer 250µl 

in glass cuvette was prewarmed for 5 min in the incubation well, then placed in PPP 

well of the Lumi-aggregometer. 225 µl washed platelets was pipetted in another cu-

vette with a stir bar inside and prewarmed for 5 min, then 25 µl CHRONO-LUME was 
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added, the glass cuvette was transferred to the PRP well. After incubation for 2 min, 

5 µl of ATP standard that contains 2 nM ATP was added. The curve whose peak signal 

is between 20%-60% was saved as the standard ATP curve.  

The aggregation of washed platelets was performed with optical mode on ag-

gregometer (Fig.2.5). Washed platelets along with 38 µg/ml fibrinogen, 200 µM CaCl2 

in a total volume of 225 µl in a glass cuvette with a stir bar inside was incubated for 5 

min in the incubation well, then 25 µl of CHRONO-LUME was added into the cuvette 

that was transferred to the PRP well. After incubation for 2 min, agonists were added 

to induce platelets aggregation and granule release. Aggregation and ATP release 

curve were recorded simultaneously for 6 min. Aggregation amplitude and ATP re-

lease were calculated by ‘‘calculate results’’ in AGGRO/LINK 8 software. 

 

Fig. 2.5 Principe of platelets aggregation by light transmission. Before activation, resting washed platelets 

were distributed homogenously in the suspension. After addition of agonists, platelets become aggregated, result-
ing in the changes of light transmission that was recorded by the aggregometer.  

2.13 αⅡbβ3 activation and P selectin measurement by flow 

cytometry 

Mouse platelets were obtained as previously. Equal volume of PE-labeled 

JON/A antibody (Emfret) that selectively binds to high affinity of mouse α Ⅱ bβ3 

(Ingerman-Wojenski and Silver 1984) and FITC-labeled Wug.E9 antibody that reacts 

with P-selectin on mouse platelets (Emfret) were mixed and stored on ice before use. 

Agonists were added along with 5 µl of the antibody mixture in 240 µl Tyrodes buffer 

(pH7.2) which contains 10×103/µl platelets and 1 mM CaCl2 in an Eppendorf tube. The 
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suspension was incubated for 20 min at RT in the dark, then transferred to FACS tube 

and immediately analysed on flow cytometer. 

Voltages of forward light scatter (FSC) and side light scatter (SSC) were set 

properly to bring the platelets population toward the centre of the plot on the flow cy-

tometer (BD LSRFortessa). Cell debris were removed by adjusting the threshold. Non-

stained platelets were served as negative control in the lower left of the plot and single 

stain of JON/A-PE and Wug.E9-FITC to activated platelets were used to adjust com-

pensation. Flow rate was set as low to minimize coincident events. 30 000 individual 

platelets were collected in each experiment. Acquired data were analysed via Flowjo. 

2.14 Statistics 

 T-test or one way ANOVA were performed if data fulfil normal distribution with 

Kolmogorov-Smirnov-test, otherwise Mann-Whitney test or Kruskal-Wallis tests were 

applied. P<0.05 was defined as statistical significance. If overall ANOVA or Kruskal-

Wallis tests were significant, post hoc test were performed. All data were presented 

as mean ± SEM, unless otherwise stated. Analysis were performed within Prism6. 
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3  Results 

3.1 Casein proteins trigger platelet migration by regulating 

calcium oscillations with the involvement of mechano-

sensitive ion channels. 

3.1.1 Mouse platelets are able to migrate in the presence of mouse 

plasma or serum in vitro.  

 Very recently, Gaertner et al. in our group observed autonomous mouse plate-

lets locomotion in thrombus formation in vivo and identified the requirements for hu-

man platelet migration in vitro (Gärtner, Engelhardt et al. 2015). However, whether 

mouse platelets are motile or not in vitro is still unknown. To address this question, 

mouse platelets were reconstituted in plasma along with fibrinogen and were activated 

by both U46619 and ADP, as a results, 50.18±3.00% of spreading mouse platelets 

migrate (Fig.3.1). To further characterize the plasma components that facilitate platelet 

movement, mouse serum that does not contain fibrinogen and clotting factors was 

substituted for plasma. Consequently, 42.14±8.54% of spreading mouse platelets are 

motile (Fig.3.1). The percentage of mobile platelets in plasma and serum are not dif-

ferent (p=0.68), but the velocity of migrating platelets are higher in serum than in 

plasma (0.43±0.06 vs18±0.02, p<0.001) (Fig.3.1), which may be explained by the 

stronger substrate adhesiveness resulting from fibrinogen content in mouse plasma. 

Overall, these experiments demonstrate that mouse platelets are able to migrate in 

vitro within plasma or serum. 
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Fig. 3.1 Mouse platelets are able to migrate within mouse plasma or serum in vitro. Mouse platelets were 

reconstituted in plasma or serum along with 38 µg/ml fibrinogen, activated by 2 µM U46619 and 4 µM ADP, and 
observed at time-lapse DIC microscope.  Upper panel: representative time series of migrating mouse platelets 
within mouse plasma or serum. The colourful lines indicate accumulated migrating paths of platelets at different 
time points. Scale bar= 5 µm. Lower panel: quantification of the fraction (left) and velocity (right) of migrating plate-
lets. Platelets were pooled from n=4 experiments; red bars indicate the mean velocity; error bars=SEM; t-test. 

3.1.2 Casein but not albumin triggers mouse platelet migration.   

 Previous study in our group showed that human platelets were capable of mi-

grating in serum. After systematic analysis of serum components, albumin and calcium 
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were identified as two factors that promote human platelet motility on fibrinogen sub-

strate with the underlying mechanism that albumin reduced the adhesiveness of fibrin-

ogen on the surface and extracellular calcium was required for platelet polarization 

(Gärtner, Engelhardt et al. 2015). Nevertheless, when human albumin and extracellu-

lar calcium were applied on mouse platelets in the same manner as human platelets, 

mouse platelets are not mobile (Fig.3.2). Because of distinctive species which human 

and mouse belong to, mouse albumin instead of human albumin could be physiologi-

cal for mouse platelets. However, mouse platelets are still stationary after human al-

bumin replacement with mouse albumin (Fig.3.2). Bovine albumin is widely used to 

block unspecific area and thereby reduces substrate adhesiveness, but it does not 

facilitate mouse platelet movement (Fig.3.2). Since extracellular calcium is required 

for platelet migration and the percentage of migrating platelets rises as the concentra-

tion of extracellular calcium is increased (Gärtner, Engelhardt et al. 2015), higher ex-

tracellular calcium concentration was applied on mouse platelets in the presence of 

various kinds of albumin, but mouse platelets remain immobile in each condition 

(Fig.3.2). At the same concentration of albumin along with 200 µM calcium, the number 

of spreading platelets in the presence of human albumin is lowest among of human 

albumin, bovine albumin and mouse albumin, which indicates that human albumin ex-

hibits stronger anti-adhesiveness effect than others, although it could not promote 

mouse platelet migration. Taken together, none of the human albumin, bovine albumin, 

and mouse albumin are able to promote mouse platelet locomotion. 
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Fig. 3.2 Albumin alone does not facilitate mouse platelet migration.  Mouse platelets were reconstituted with 

indicated albumin, CaCl2, fibrinogen and U46619/ADP in modified Tyrode’s buffer, and observed at time-lapse DIC 
microscope. Upper panel: representative time series at DIC microscope of mouse platelets in the presence of 0.25% 
MSA and 200 µM CaCl2. Note, during 30 min spreading mouse platelets do not move for more than one of their 
diameters. Scale bar=5 µm. Lower panel: quantification of the number of spreading and migrating platelets in each 
experiment. Note, the number of migrating platelets are zero in each experiment. Error bars=SEM, n=3, ANOVA. 
HSA: human serum albumin; BSA: bovine serum albumin; MSA: mouse serum albumin. 

Although albumin is able to facilitate human platelet migration, it is not the only 

anti-adhesive protein that triggers platelet migration. Casein, a common blocking 

agent in immunochemistry was capable of being substituted for albumin to promote 

human platelet motility (Gärtner, Engelhardt et al. 2015). Thus, casein was replaced 

of albumin on mouse platelets. Surprisingly, mouse platelets are able to migrate in the 

presence of casein in a concentration dependent manner (Fig.3.3). At 15 µg/ml of 

casein, mouse platelets spread, but only 4.98±3.63% of spreading platelets migrate. 

With 30 µg/ml casein, 54.23±4.49% of spreading mouse platelets are motile with the 

velocity of 0.42±0.02 µM/min. When casein concentration is increased to 60 µg/ml, the 

percentage of migrating cell rises to 63.24±2.94%, and the cell velocity grows up to 

0.70±0.05 µm/min. Overall, the results demonstrate that casein is able to trigger 

mouse platelet migration and with the elevation of casein concentration, the fraction 

and velocity of migrating mouse platelets grow up.  
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Fig. 3.3 Casein is able to trigger mouse platelet migration. Mouse platelets were reconstituted with indicated 

concentration of casein, 200 µM CaCl2, 38 µg/ml fibrinogen and U46619/ADP, and observed at time-lapse DIC 
microscope. The upper panel: representative time series of mouse platelets at indicated casein concentration. The 
colourful lines indicate the accumulated migrating paths of mouse platelets at different time points. Note, at 15 
µg/ml casein, platelets spread but do not migrate. Scar bar=5 µm. The lower panel:  quantification of the total 
number of spreading and migrating platelets middle (left), the percentage of migrating platelets (middle), the veloc-
ity of single migrating platelets (right). Platelets were pooled from n=4 experiments; red bars indicate the mean 
velocity; error bars= SEM; one way ANOVA. 

Casein proteins constitute approximately 80% of total proteins in bovine milk 

and exist as large colloidal particles called casein micelles.   Casein micelles are com-

prised mainly of  α-casein (αs1-casein and αs2- casein), β-casein, and κ-casein (Bhat, 

Dar et al. 2016). Which type of casein is the essential part of casein micelles for platelet 

migration? To elucidate this question, α- casein, β-casein or κ-caseins was applied on 

mouse platelets separately. Interestingly, each kind of casein is capable of promoting 
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mouse platelet migration. The minimal concentration to facilitate mouse platelet mi-

gration of α-, β-and κ-casein is 30 µg/ml, 30 µg/ml and 120 µg/ml, respectively; 

whereas the percentages of migrating platelets in the presence of them are not differ-

ent (p=0.47, Fig.3.4). Compared with α casein monomer which possesses 8–12 

phosphate residues, or β-casein monomer with five phosphate residues, κ-casein con-

tains one phosphate residues per monomer (Horne 2006). Furthermore, k-casein is 

the only casein type that is glycosylated (Eigel, Butler et al. 1984). Therefore, the 

higher concentration of κ-casein to promote migration is possibly due to its different 

properties from other caseins.   

 

Fig. 3.4 α-, β- and κ-casein trigger mouse platelet migration. 30 µg/ml α-casein, 30 µg/ml β-casein, or 120 

µg/ml κ-casein was applied on mouse platelets along with 38 µg/ml fibrinogen, 200 µM CaCl2, U46619/ADP. Left: 
quantification of the number of spreading and migrating platelets in each experiment. Right: quantification of the 
percentage of migrating platelets in each experiment. Error bars=SEM, n=3, one way ANOVA. 

Since casein micelles are phosphoproteins and glycosylated (Bhat, Dar et al. 

2016), it is interesting to know whether the carbohydrate chains or the phosphate res-

idues are the functional parts of caseins to trigger platelet migration. To that end, either 

dephosphorylated casein or fatty acid/carbohydrate free casein was applied on mouse 

platelets, consequently both of them trigger mouse platelet migration and the minimal 

concentration for them to facilitate motility are both 30 µg/ml, which are the same con-

centration as casein (Fig.3.5). The percentage of migrating platelets in the presence 

of dephosphorylated casein and fatty acid/carbohydrate free casein are 83.09±2.76%, 

72.26±1.03%, respectively (Fig.3.5). Together, the results indicate that the phosphor-

ylation residues or carbohydrate chain are not essential parts of caseins that trigger 

platelet migration. 
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Fig. 3.5 Dephosphorylated casein, fatty acid/carbohydrate free casein trigger mouse platelet migration. 30 

µg/ml dephosphorylated casein, 30 µg/ml fatty acid/carbohydrate free casein were applied on mouse platelets in 
the presence of 38 µg/ml fibrinogen, 200 µM calcium and U46619/ADP.  Left: quantification of the number of 
spreading and migrating platelet in each experiment. Right: quantification of the percentage of migrating platelets 
in each experiment. Error bars=SEM; n=3; t-test. De-casein: dephosphorylated casein; ff-casein: fatty acid/carbo-
hydrate free casein.  

Our previous study on human platelets revealed that human platelet migration 

is integrin αⅡbβ3 dependent, moreover, fibrinogen was removed from the substrate by 

motile platelets and accumulated within invaginations of the open canalicular system 

(OCS) on platelets surface (Gärtner, Engelhardt et al. 2015). To examine whether 

mouse platelets also remove fibrinogen during migration, Alexa488-conjugate fibrino-

gen was used. The results show that mouse platelets also ripped away fibrinogen from 

the substrate during migration, and we use this feature for tracking migrating platelets 

(Fig.3.6).  

 

Fig. 3.6 Mouse platelets remove fibrinogen from the substrate during migration. Washed mouse platelets 

was reconstituted with 30 µg/ml casein, 200 µM CaCl2 and U46619/ADP in the chamber with HSA/Alexa488-fbg 
coated surface. The figure shows images of HSA/Alexa488-fbg coated surface after washed platelets incubation 
for 1 hour. The black area in Alexa488-fbg images indicate the area where Alexa488-fbg was removed from the 
substrate. Scale bar=5 µm. Fbg: fibrinogen. 

How do casein proteins facilitate platelet migration? To investigate whether ca-

sein proteins are merely working on the substrate or interacting with platelets, FITC 
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(fluorescein-isothiocyate)-casein is substituted for casein.  The results show that FITC-

caseins are distributed both on the substrate and on platelets membrane (Fig.3.7), 

which indicate that casein proteins function on the glass surface as well as on platelets 

plasma membrane. Surprisingly, mouse platelets do not migrate in the presence of 

FITC-casein (Fig.3.7), which implies that interaction points between caseins and plate-

lets are occupied by FITC.  

 

Fig. 3.7 FITC-casein does not trigger mouse platelet migration. 300 µg/ml FITC-casein was applied on mouse 

platelets in the presence of 38 µg/ml fibrinogen, 200 µM CaCl2 and U46619/ADP. Left: representative time series 
of mouse platelets at indicated time points. Note, platelets spread but do not migrate. Right: representative images 
of platelets and FITC-casein after 30 min. Scale bar=5 µm. 

To further confirm that casein is functioning both on the substrate and interact-

ing with platelets, the glass surface was coated with Alexa488-conjugated fibrinogen 

alone or with casein proteins, then washed platelets were reconstituted in the super-

natant in the presence or absence of casein. Our results show that when casein is 

present both on the substrate and supernatant, 81.61±1.76% of spreading platelets 

are mobile (Fig.3.8). When casein is only in the supernatant but not on the substrate, 

mouse platelets are immobile, indicating that the effect of casein on the substrate is 

necessary for platelet migration. Conversely, when casein is only on the surface but 

not in the supernatant, 81.11± 7.78% of spreading platelets are migrating (Fig.3.8). 
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However, when casein is present on the substrate, it is still able to interact with plate-

lets.  Next, casein on the substrate is substituted by albumin, as a results, mouse 

platelets are motile with casein in the supernatant. Nevertheless, when casein on the 

substrate and the supernatant are both replaced by albumin, mouse platelet are not 

mobile (Fig.3.8). Together, these data suggest that casein proteins play two roles in 

platelet migration. One is that casein is working on the substrate which can be replaced 

by albumin, suggesting its effect of reducing the fibrinogen adhesiveness on the sub-

strate. The other role is the interaction with platelets, but the reaction between casein 

and platelets cannot be substituted by albumin on mouse platelets.  

 

Fig. 3.8 Casein proteins are functioning both on the substrate and interacting with platelets. The glass 

surface was coated with 38 µg/ml Alexa488-fibrinogen alone, with 30 µg/ml casein or with 1000 µg/ml HSA, washed 
platelets were constituted in modified Tyrodes buffer in the presence or absence of 30 µg/ml casein, or 1000 µg/ml 
HSA, along with 200 µM CaCl2, 2 µM U46619/ 4 µM ADP and incubated for 1 hour. The figure shows the quantifi-
cation of the number of spreading and migrating platelets (left) and the percentage of migrating platelets (right). 
Error bars= SEM, n=3, Kruskal-Wallis test. --- indicates no casein and no HSA. 

3.1.3 Poly lysine-albumin conjugates promote mouse platelet mi-

gration.  

FITC is a fluorescein molecular with functional group of isothiocyanate, which 

reacts towards free amines in protein molecules (Hermanson 2013) (Fig.3.9). Since 

casein proteins are not able to trigger platelet motility when their amine groups interact 

with isothiocyanate, amine groups of amino acids that contain positive charges might 

be the essential parts for facilitating platelet migration. To demonstrate this assump-

tion, poly-L-arginine (MW 15,000-70,000), poly-L-lysine (MW 30,000-70,000), or poly-

L-ornithine (MW 30,000-70,000) that possess free amine groups (Fig.3.10) was re-

placed of casein, however, none of them promote platelets motility (Fig.3.11). Never-

theless, when these cationic polyamino acids were applied in combination with human 

albumin in the supernatant, mouse platelets are able to migrate. The percentage of 
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migrating platelets in the presence of poly-L-arginine, poly-L-lysine or poly-L-ornithine 

along albumin are 14.02±0.61%, 57.25±1.15%, 50.98±0.97%, respectively (Fig.3.12). 

Taken together, our results show that the conjugations of poly-arginine, poly-lysine, or 

poly- ornithine and albumin trigger mouse platelet migration, which indicate that the 

positive charges in casein proteins are functional parts for their roles in promoting 

platelet motility.  

 

Fig. 3.9  Fluorescein isothiocyanate reacts with amine groups in proteins to produce an isothiourea linkage. 

Adaped from (Hermanson 2013). The green dashed rectangles show reacting groups. 

 

Fig. 3.10 Structure of poly-arginine, poly-lysine, and poly-ornithine. The free amine group in pH neutral 

solution contain postive charges.  

 

 

Fig. 3.11 Ploy-arginine, poly-lysine or poly-ornithine in the absence of albumin in the supernatant do not 
trigger mouse platelet migration. 50 µg/ml ploy-arginine, 50 µg/ml poly-lysine, 50 µg/ml poly-ornithine, or 30 

µg/ml casein was applied in the presence of 200 µM CaCl2 and U46619/ADP on washed mouse platelets in the 
chamber with HSA/Alexa488-fbg coated surface. The figure shows representative images of HSA/Alexa488-fibrin-
ogen coated surface after washed platelets incubation for 1 hour in the presence of indicated substances. Note, in 
the presence of casein, the migrating area of platelets is black. Scale bar=5 µm. 
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Fig. 3.12 Conjugations of ploy-arginine, poly-lysine, poly-ornithine and albumin promote mouse platelet 
migration. 25 µg/ml ploy-arginine, 25 µg/ml poly-lysine, or 25 µg/ml poly-ornithine was applied in the presence of 

1000 µg/ml albumin, 200 µM CaCl2, U46619/ADP on washed mouse platelets in the chamber with HSA/Alexa488-
fbg coated surface. Upper panel: representative images of HSA/Alexa488-fbg coated surface after platelets migra-
tion in the presence of indicated substances. The yellow arrows in PH images indicate the aggregates formed by 
positively charged amino acids and HSA. The green and black area in Alexa488- fbg images indicate non-migrating 
and migrating area, respectively. Scale bar=10 µm. Lower panel: quantification of the number spreading (left), the 
number of migrating (middle) and the percentage of migrating platelets (right) in each experiment. Error bars=SEM, 
n=4, ANOVA. Fbg: fibrinogen. Arginine: poly-arginine; ornithine: poly-ornithine; lysine: poly-lysine. 

 Cationic polypeptides react with albumin to form conjugates and thus trigger 

platelet migration, raising the possibility that similar positively charged polymers could 

have the same effect on platelet locomotion. PEG (poly ethylene glycol)-peptides con-

jugates are the combination of PEG to peptides or proteins (Canalle, Lowik et al. 2010, 

Hamley 2014), and  poly (L-lysine)-graft-poly (ethylene glycol) (PLL-g-PEG), is a graft 
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copolymer with positively charged PLL backbone and PEG side chains (Fig.3.13) (Lee 

and Spencer 2008, Bergstrand, Rahmani-Monfared et al. 2009). Interestingly, 

51.77±3.10% of spreading mouse platelets are motile in the presence of PLL-g- PEG 

(Fig.3.14).  

 

Fig. 3.13 Structure of PLL-g-PEG. Adapted from (Lee and Spencer 2008).Inert PEG side chains are attached 

positively charged PLL backbone. 
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Fig. 3.14 Mouse platelets migrate in the presence of PLL-g-PEG. 25 µg/ml PLL-g-PEG was applied in the 

presence of 200 µM CaCl2, U46619/ADP on mouse platelets in the chamber with HSA/Alexa488-fbg coated surface. 
Upper panel: representative images of HSA/Alexa488-fbg coated surface after platelets migration. The green and 
black area in Alexa488-fbg images indicate non-migrating and migrating area, respectively. Scale bar=10 µm. 
Lower panel: (left) quantification of the number of spreading and migrating platelet in each experiment. (Right) 
quantification of the percentage of migrating platelet. Error bars=SEM, n=3. Fbg: fibrinogen. 

Since positively charged polypeptides-albumin conjugates are able to promote 

platelet migration, we speculate that similar cationic proteins might have the same 

effect. 6-aminocaproic acid (EACA) is a lysine analogue that inhibits plasminogen ac-

tivation and subsequent fibrolysis (Griffin and Ellman 1978, Krishnamurti, Vukelja et 

al. 1994). However, when EACA was applied along with albumin, mouse platelets are 

not able to migrate (Fig.3.15). Protamine is in high content of arginine amino acids and 

present in the form of nuclear protein by binding to DNA (Aoki and Carrell 2003, 

Balhorn 2007), but it was unable to promote mouse platelet motility either (Fig.3.15). 

Spermine is a polyamine that plays crucial roles in a variety of cell physiology (Pegg 

2009, Pegg 2014), but it does not facilitate mouse platelet migration (Fig.3.15). Simi-

larly, growth factors (Schlessinger and Ullrich 1992) do not induce mouse platelet mi-

gration (Table 3-1). Since those cationic proteins have lower molecular weight than 

poly-L-lysine (PLL) we used, we postulate that the molecular weight affects the func-

tion of PLL on platelet locomotion. For that reason PLL with MW 1,000 to 5,000 was 

applied, the results show that low MW PLL is unable to trigger platelets migration along 

with albumin (Fig.3.16). Furthermore, the number of spreading platelets is lower in the 

presence of low MW PLL than high MW PLL (Fig.3.17), which is due to less positive 
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charges in each lower MW PLL molecular. Taken together, EACA, protamine, sperm-

ine, growth factors and low MW PLL are not able to promote mouse platelet migration. 

 

 

Fig. 3.15 EACA, protamine, spermine are not able to promote platelet migration. EACA, protamine, or sperm-

ine at indicated concentration was applied in the presence of 1000 µg/ml albumin, 200 µM CaCl2, U46619/ADP on 
washed mouse platelets in the chamber with HSA/Alexa488-fbg coated surface. The figure shows the quantification 
of the number of spreading and migrating platelet in each experiment. Note, the number of migrating platelets in 
each experiment is zero. Error bars=SEM, n=3. Kruskal-Wallis test on the spreading platelets in the presence of 
EACA and protamine, Mann-Whitney test on the spreading platelets in the presence of spermine. 

 

Table 3-1 growth factors do not promote mouse platelet migration 

 Growth factors Spreading  Migrating 

BD-1(1 µg/ml) +BD-2+(100 ng/ml) 23.67±0.23 0 

VEGF(10 ng/ml )+ PDGF-BB(100 ng/ml) 21.00±0.51 0 

rmFGF-b(100 ng/ml) 18.50±0.18 0 

rmIGF-1(100 ng/ml) + rhTGF-ß(10 ng/ml) 21.33±0.45 0 

MK(100 ng/ml) 21.00±0.22 0 

HB-EGF(100 ng/ml) + rmEGF-1(10 ng/ml) 23.33±0.61 0 

 

Growth factors at indicated concentration were applied on washed mouse platelets in the presence of 1000 µg/ml 
HSA, 200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa488-fbg coated surface. Then the number of 
spreading and migrating platelet in each experiment were quantified. BD-1: recombinant mouse beta defensin-1; 
BD-2:recombinant mouse beta defensin-2; VEGF: recombinant mouse vascular endothelial growth factor A; PDGF-
BB: recombinant mouse platelet-derived growth factor-BB; rmFGF-b: recombinant mouse fibroblast growth factor-
basic;  rmIGF-1: recombinant murine insulin-like growth factor1; rhTGF-ß: recombinant human transforming growth 
factor-beta1;  MK: recombinant mouse midkine; HB-EGF: recombinant mouse heparin binding EGF-like growth 
factor;  rmEGF-1: recombinant mouse epidermal growth factor-1 
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Fig. 3.16 Low MW PLL does not trigger platelet migration.  PLL with MW 1,000 to 5,000 was applied in the 

presence of 1000 µg/ml albumin, 200µM CaCl2, U46619/ADP on washed mouse platelets in the chamber with 
HSA/Alexa488-fbg coated surface. The figure shows the quantification of the number of spreading and migrating 
platelet. Note, the number of migrating platelets in each experiment is zero. Error bars=SEM, n=3, ANOVA on the 
spreading platelets. 
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Fig. 3.17 The number of spreading platelets is less in the presence of low MW PLL than that of high MW 
PLL. 25 µg/ml PLL with MW 1,000 to 5,000 (low MW), or MW 30, 000 to 70, 000 (high MW) was applied in the 

presence of 1000 µg/ml HSA, 200 µM CaCl2, U46619/ADP on washed mouse platelets in the chamber with 
HSA/Alexa488-fbg coated surface. The figure shows the quantification of the number of spreading platelets. Error 
bars=SEM, n=3, t-test. 
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3.1.4 Reducing negative charges on plasma membrane does not in-

itiate platelet migration. 

How are polycationic proteins interacting with platelets? Basic polyamino acids, 

like poly-lysine are usually treated on glass surfaces for cell attachment because of 

the electrostatic attraction between cationic charges on the peptides and anionic 

charges on the cell membrane (Nevo, De Vries et al. 1955, Yavin and Yavin 1974). 

Thus, one possible mechanism by which cationic polypeptides facilitate platelet migra-

tion is that they neutralize anionic charges on platelets surfaces. Therefore, we as-

sume that removing the negative charges on platelet membrane might promote migra-

tion (Fig.3.18). 

 

Fig. 3.18 Hypothesis of the mechanism by which cationic proteins trigger platelet migration. We hypothesize 

that cationic polypeptides facilitate platelet migration by neutralizing anionic charges on platelets surfaces. And 
negative charges on platelets membrane impede platelet motility, therefore, removing the negative charges on 
platelet membrane might promote migration. 

The anionic charges on the cell surface are conveyed by the extracellular car-

bohydrate chains of glycoproteins on the plasma membrane. Salic acids, also named 

neuraminic acids attached to glycoproteins are largely responsible for the negative 

charges on the cell membrane (Eylar, Madoff et al. 1962, Traving and Schauer 1998). 

However, enzymatic removal of sialic acid by neuraminidase does not initiate platelet 

locomotion (Fig.3.19). Besides sialic acids,  heparan sulfate and chondroitin sulfate 

contribute to the anionic charges on cell membrane due to the sulfate group (Honke 

and Taniguchi 2002, Tan, Poh et al. 2013). Nevertheless, eliminating the sulfate group 

by heparinase and chondroitinase does not trigger platelet migration (Fig.3.19).  Sur-

prisingly, we found that the number of spreading platelets was increased, and the per-

centage of platelet migration was diminished in the presence of neuraminidase 

(Fig.3.20), which indicates that sialic acids on glycoproteins affect platelets spreading 

and migrating. 
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Fig. 3.19 Enzymatic removal of negative charges on platelet membrane do not initiate migration. Vehicle, 

100 mU/ml neuraminidase, 25 mU/ml heparinise II, 50 mU/ml chondroitinase ABC, the combination of 25 mU/ml 
heparinise II and 50 mU/ml chondroitinase ABC, or 30 µg/ml casein was applied on mouse platelets in the presence 
of 1000 µg/ml HSA, 200 µM CaCl2 and U46619/ADP in the chamber with HSA/Alexa488-fbg coated surface. The 
figure shows representative images of HSA/Alexa488-fbg coated surface after washed platelets incubation for 1 
hour in the presence of indicated substances. Scale bar=5 µm. 
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Fig. 3.20 Enzyme treatment impairs platelet spreading and migrating in the presence of calcium . 200 mU/ml 

chondroitinase ABC, 200 mU/ml heparinise II, or 200 mU/ml neuraminidase was applied on mouse platelets in the 
presence of plasma, 38 µg/ml fibrinogen and U46619/ADP.  Vehicle or indicated concentration of enzymes were 
applied on human platelets in the presence of 1000 µg/ml HSA, 200 µM CaCl2 and U46619/ADP on HAS/Alexa488-
coated surface. The figure shows the quantification of the number of spreading (upper), the number of migrating 
(middle) and the percentage of migrating platelets (lower) on human and mouse platelets. Error bars=SEM, n=3, 
ANOVA. **indicate p<0.01 (compared with control group). ChonABC: chondroitinase ABC; HepII: heparinise II; 
Neu: neuraminidase. 

 GPIbα are transmembrane glycoproteins whose N- and O-linked carbohydrate 

chains are decorated with sialic acid, and constituted major sialic acid content on plate-

let membrane (Solum, Hagen et al. 1980, Li, van der Wal et al. 2015). GPIbα/IL4R 

mice are transgenic mice in which the extracellular domain of GPIb on platelets mem-

brane is replaced by human IL-4 receptor (Bergmeier, Piffath et al. 2006). Our results 

show that in the absence of casein, GPIbα/IL4R platelets are not mobile (Fig.3.21). 

Therefore, reducing negative charges by decreasing the sialic acids on platelet surface 

does not initiate platelet migration. 
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Fig. 3.21 Decreasing the sialic acids on platelet surface does not initiate platelet migration. Platelets from 

control or GPIbα/IL4R mice were reconstituted with 30 µg/ml casein, 0.1% HSA, or neither of them in the presence 
of 200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa-488fbg coated surface. The figure shows the quan-
tification of the number of spreading (left) and migrating (right) platelets in each experiment. Note: the number of 
migrating platelets in the presence of 0.1% HSA or no casein no HSA are zero. Error bars=SEM, n=3, t-test. 

Agonist-induced procoagulant platelets expose negatively charged phosphati-

dylserine (PS) which is a key event in blood coagulation (Lentz 2003, Schoenwaelder, 

Yuan et al. 2009). Annexin V preferentially binds to PS and abolishes the negative 

charges on platelets membrane (Thiagarajan and Tait 1990, Sun, Bird et al. 1993).  

However, when poly-L- lysine is replaced by annexin V, mouse platelets are not motile 

(Fig.3.22). Overall, these experiments demonstrate that reduction of negative charges 

on platelets membrane do not trigger platelet migration, which implies that cationic 

proteins do not neutralize anionic charges on platelet surface to facilitate locomotion. 

 

 

Fig. 3.22 Annexin V is unable to facilitate platelet migration. Annexin V was applied in the presence of 1000 

µg/ml HSA, 200 µM CaCl2, U46619/ADP on washed mouse platelets in the chamber with HSA/Alexa488-fbg coated 
surface. The figure shows the quantification of the number of spreading and migrating platelet in each experiment.  
Error bars=SEM, n=3, t-test. 
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3.1.5 Casein proteins trigger platelet migration by regulating cal-

cium oscillations. 

In the presence of casein proteins, we observed blebs formation prior to platelet 

death (Fig.3.23). The percentage of blebbing platelets in the presence of α-, β-, κ-

casein, fatty acid and carbohydrate free casein is 32.31±1.18%, 11.71±0.34%, 

24.81±1.15%, 9.37±0.71%, respectively (Fig.3.23). However, platelets do not form the 

blebs in the presence of dephosphorylated casein (Fig.3.23), which suggests that the 

phosphorylation level of casein influences platelets viability.  

 

 

Fig. 3.23 Mouse platelets form blebs in the presence of casein proteins. Upper panel:  representative time 

series of one platelet that forms blebs in the presences of casein. Scale bar=2 µm. Lower panel: Left: quantification 
of the number of blebbing platelets in each experiment. Right: quantification of percentage of blebbing platelet in 
each experiment. Note: the number and percentage of blebbing platelets in the presence of de-casein is zero. Error 
bars=SEM, n=3, ANOVA. De-casein: dephosphorylated casein; ff-casein: fatty acid and carbohydrate free casein 

Cell blebbing is balloon-like membrane protrusion that occurs in cell movement, 

cytokinesis, and apoptosis (Charras 2008, Bovellan, Fritzsche et al. 2010). In zebrafish 

germ cells, blebs form at the site of high intracellular calcium that depends on the 

activation of SDF receptor (Blaser, Reichman-Fried et al. 2006). To examine whether 

blebs of platelets have increased cytosolic calcium in the presence of casein proteins, 

platelets were loaded with calcium sensitive dye-Fluo4 AM and observed at fluores-

cent microscope. Our results show that platelets with blebs formation exhibit sustained 

elevated cytoplasmic calcium (Fig.3.24), which implies that casein proteins influence 
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the calcium signaling in platelets.  Previous study in our group revealed that platelets 

migrate with calcium oscillations, giving a cue that casein may regulate calcium fluc-

tuations in mobile platelets. We first examined calcium oscillations of platelets in the 

absence of casein proteins or albumin. Although platelets are stationary, they show 

frequent and transient calcium spikes (Fig.3.25). In the presence of albumin, platelets 

exhibit less frequent calcium oscillation without locomotion (Fig.3.26). In contrast, in 

the presence of casein proteins platelets migrate with less frequency but prolonged 

duration of calcium oscillations. More importantly, the elevated calcium level sustains 

for longer time at the initial phase of migration (Fig.3.26).  Taken together, these find-

ings suggest that casein proteins trigger platelet motility by modulating calcium signals 

in platelets.  

 

 

Fig. 3.24  Platelets with blebs formation exhibit sustained elevated intracellular calcium. Washed platelets 

were loaded with 5 uM Fluo4-AM, and then reconstituted in 30 µg/ml casein, 200 µM CaCl2, 38 µg/ml fibrinogen 
and U46619/ADP, then Fluo4 intensity was recorded at time-lapse fluorescent microscope with 5 sec interval. Left 
panel shows the pseudocolor frame images of Fluo4 intensity of one platelet that forms bleb at different time points 
(bluered, low calcium level high calcium level), scale bar= 2 µm. Right panel shows the quantification of Fluo4 
MFI in time course. Red dashed rectangle indicate the elevated cytosolic calcium level when bleb forms in platelets.  
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Fig. 3.25 Platelets show frequent calcium oscillations in the absence of proteins. Washed platelets from 

PC::G5-tdT; Pf4 cre mouse were reconstituted in tyrodes buffer with 200 µM CaCl2, 38 µg/ml fibrinogen and 
U46619/ADP, then observed at time-lapse fluorescent microscope with 5 sec interval. The images show the quan-
tification of fluorescent changes from one representative platelet. 

 

 

 



                                                                                                                           Results 

46 
 

 

 

Fig. 3.26 Casein and albumin proteins modulate calcium oscillations of platelets on fibrinogen substrate. 

Washed platelets from PC::G5-tdT; Pf4 cre mouse were reconstituted with 200 µM CaCl2, 38 µg/ml fibrinogen, 
U46619/ADP and 1000 µg/ml HSA or 30 µg/ml casein, then observed at time-lapse fluorescent microscope with 5 
sec interval. The figures show the quantification of the calcium signals in representative platelets in each condition. 
The red dashed rectangle indicate the sustained cytosolic calcium in the initial phase of migrating platelets in the 
presence of casein, which is different from calcium signals in the absence of proteins and in the presence of albumin.  

Our experiments reveal that albumin is able to trigger human platelet not mouse 

platelet migration, suggesting the different properties of human and mouse platelets. 

To examine whether human platelets show different calcium oscillations from mouse 

platelets in the presence of casein, human platelets were loaded with Fluo4-AM and 

then observed at fluorescent microscope. Consistent with previous results, human 

platelets exhibit different patterns of calcium oscillations from mouse platelets in the 

presence of casein (Fig.3.27). Particularly, at the initial phase of migration, human 

platelets do not exhibit sustained elevated cytoplasmic calcium, which further confirms 

that human and mouse platelets behave differently in migration. 
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Fig. 3.27 Human platelets exhibit different patterns of calcium oscillations from mouse platelets in the 
presence of casein. Human platelets were loaded with 5 µM Fluo4-AM and reconstituted in modified tyrodes 

buffer with 200 µM CaCl2, 38 µg/ml fibrinogen and U46619/ADP, then observed at time-lapse fluorescent micro-
scope with 5 sec interval. Left panel shows the pseudocolorful frame images of Fluo4 intensity of one representative 
migrating human platelet in the presence of casein  at different time points (bluered, low calcium level high 
calcium level), scale bar= 5 µm. Right panel (upper) shows the quantification of Fluo4 MFI of migrating human 
platelet shown in the left. Right panel (lower) shows the quantification of Fluo4 MFI of one representative migrating 
mouse platelet in the presence of casein. The red dashed rectangles indicate the initial phase of migrating platelets, 
which are different between human and mouse platelets.  

           Since caseins proteins regulate calcium oscillations in platelets, we speculate 

that compounds that affect calcium signals could have the same targets as casein on 

platelets.  A23187, a calcium ionophore, disturbs the calcium gradient by forming com-

plex with divalent cation ions and crossing cell membranes (Reed and Lardy 1972). 

However, A23187 does not facilitate platelet migration (Fig.3.28), which suggests that 

caseins do not function in the same way as calcium ionophore. 

 

Fig. 3.28 A23187 does not trigger platelet migration. Vehicle control, 10 nM A23187, 100 nM A23187, or 30 

µg/ml casein was applied in the presence of 200 µM CaCl2, U46619/ADP on washed mouse platelets in the cham-
ber with HSA/Alexa488-fbg coated surface. The figure shows representative images of HSA/Alexa488-fbg coated 
surface after washed platelets incubation for 1 h in the presence of indicated substances. Note, platelets do not 
migrate in the presence of vehicle control or A23187, but platelets are migrating in the presence of casein, the 
migrating area of platelets is black. Scale bar=10 µm. 
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Pluronic F127 is nonionic surfactant that is used to increase the loading effi-

ciency of the calcium acetoxymethyl (AM) ester dyes into live cells (Hamad, Krause et 

al. 2015). Surprisingly, pluronic F127 triggers platelet locomotion with minimal concen-

tration of 5 µg/ml. In the presence of 5 µg/ml pluronic F127, 39.91± 2.11% of spreading 

platelets are mobile (Fig.3.29), which implies that the functional target of pluronic could 

be the interaction part of caseins on platelets.   
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Fig. 3.29 Pluronic F127 triggers platelet migration. Pluronic F127 was applied at indicated concentrations in the 

presence of 200 µM CaCl2, U46619/ADP on washed mouse platelets in the chamber with HSA/Alexa488-fbg 
coated surface. The figure shows the quantification of the number of spreading and migrating platelet (left) and the 
percentage of migrating platelets (right) in each experiment.  Note, the number and percentage of migrating plate-
lets at 2 µg/ml pluronic F127 are zero. Error bars=SEM, n=3. 

         Given that pluronic F127 is an amphiliphic triblock copolymer (Kabanov, Lemieux 

et al. 2002), we are searching for the possible targets of amphilphilies on cell mem-

brane. Due to hydrophilic character, amphiphilies are able to insert into plasma mem-

brane, modulate the membrane stretch and activate the mechanosensitive (MS) ion 

channels (Martinac, Adler et al. 1990, Qi, Chi et al. 2005). We speculate that if pluronic 

F127 promotes platelet locomotion by activating MS ion channels, blocking these 

channels could inhibit platelet migration. As expected, MS ion channel inhibitor 

GsMTx4 (Bowman, Gottlieb et al. 2007, Gnanasambandam, Ghatak et al. 2017) abol-

ishes platelet motility in the presence of pluronic (Fig.3.30). In line with these results, 

GsMTx4 inhibits platelet migration in the presence of casein, PLL-g-PEG or plasma 

(Fig.3.30. Taken together, these results indicate that pluronic, casein, PLL-g-PEG are 

likely to function on the MS ion channels on platelets.  
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Fig. 3.30 GsMTx4 inhibits platelet migration in the presence of pluronic, PLL-g-PEG, casein or plasma. 5 

µg/ml pluornic F127, 25 µg/ml PLL-g-PEG, 30 µg/ml casein or plasma from wild type mouse was applied in the 
presence of 10 µM GsMTx4 or vehicle control (ddH2O) along with CaCl2 and U46619/ADP on washed mouse 
platelets in the chamber with HSA/Alexa488-fbg coated surface. The figure shows representative images of 
HSA/Alexa488-fbg coated surface after washed platelets incubation for 1 hour in the presence of indicated sub-
stances, scale bar=10 µm. 

The present study demonstrate that casein proteins, polycation peptides-albu-

min conjugates and pluronic are able to trigger platelet migration, then we are inter-

ested whether they influence other platelets functions, such as platelets aggregation 

and secretion. Intriguingly, none of casein proteins, PLL-g-PEG and pluronic trigger 

platelets aggregation and ATP secretion in the absence of agonists (Fig.3.31). Fur-

thermore, these proteins do not affect platelets aggregation or secretion upon agonist-

induced activation (Fig.3.32).   

The above findings also suggest that casein proteins regulate calcium signal 

with the involvement of mechanical force in platelet locomotion. To investigate whether 

casein proteins, pluornic, or PLL-g-PEG influence the calcium response in platelets in 

the absence of mechanical forces, we measured the intracellular calcium in platelets 

upon activation by flow cytometry. The results reveal that none of these proteins influ-

ence the calcium level of platelets after stimulation (Fig.3.33). Taken together, these 

data show that although casein proteins, PLL-g-PEG and pluronic trigger platelet mi-

gration, they do not influence platelets aggregation or secretion.  
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Fig. 3.31 Casein, PLL-g-PEG, albumin do not induce platelets aggregation or ATP release in the absence 
of activators. Washed platelets (200 ×103/µl) were stimulated by 2 µM U46619/4 µM ADP,  vehicle control, 30 

µg/ml casein, 25 µg/ml PLL-g-PEG or 1500 µg/ml HSA in the presence of 38 µg/ml fibrinogen and 200 µM CaCl2, 
then aggregation transmission was recorded by Lumi-aggregometer, meanwhile ATP release were measured by 
firefly luciferin- luciferase. Note, ATP release of platelets stimulated by vehicle, casein, PLL-g-PEG, or HSA is zero.  
Error bars= SD, n=4, ANONA. U4: U46619; PEG: PLL-g-PEG. 
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Fig. 3.32 Casein, PLL-g-PEG, pluronic127 do not affect platelets aggregation or ATP release after activation. 

Washed mouse platelets (200 ×103/µl) were stimulated by 2 µM U46619/ 4 µM ADP in the presence vehicle control, 
30 µg/ml casein, 25 µg/ml PLL-g-PEG, or 5 µg/ml pluronic F127 along with 38 µg/ml fibrinogen and 200 µM CaCl2, 
then aggregation transmission was recorded by Lumi-aggregometer, meanwhile ATP release were measured by 
firefly luciferin- luciferase. Error bars= SD, n=4, ANONA. PEG: PLL-g-PEG. 
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Fig. 3.33 Albumin, casein, PLL-g-PEG, Pluornic F127 do not affect calcium influx in platelets after activation 
in absence of mechanical forces. 5 µM Fluo4-AM loaded platelets (10×103/µl) were stimulated by 2 µMU46619/4 

µM ADP in the presence of 1 mMCaCl2 along with vehicle control,1500 µg/ml HSA, 30 µg/ml casein, 25 µg/ml PLL-
g-PEG, or 5 µg/ml pluronic F127. Fluo4 intensity was recorded on the flow cytometer before and after addition of 
the activators. The graphs show the increased Fluo4 intensity after activation by U46619/ADP. Error bars= SEM, 
n=3, t-test. PEG: PLL-g-PEG.  

3.1.6 Mouse albumin and plasminogen in the plasma are involved in 

promoting platelet migration. 

Although casein proteins, cationic polypeptides-albumin conjugates, and plu-

ronic are able to trigger platelet migration, they do not physiologically exist in plasma. 

What are the essential factors in plasma that promote mouse platelet motility? The 

above experiments show that mouse platelets migrate within plasma, but mouse albu-

min alone did not trigger platelet migration. To further examine whether albumin in 

plasma plays a role in platelet motility, albumin deficient mouse was employed. Albu-

min deficient mice are lack of serum albumin, but they have increased level of total 

bilirubin, high density lipoprotein (HDL), low density lipoprotein (LDL), alanine ami-

notransferase (ALT) and aspartate aminotransferase (AST), which are similar to hu-

man analbuminermia (Roopenian, Low et al. 2015).  Our results show that platelets 

show strikingly impaired mobility within albumin deficient plasma and if albumin was 
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reconstituted in albumin deficient plasma, the reduction of platelets migration was re-

covered (Fig.3.34). These data indicate that mouse albumin is one of the critical fac-

tors in plasma involved in platelet migration.  

 

Fig. 3.34 Platelets show impaired migration within albumin deficient plasma. Mouse platelets were reconsti-

tuted within plasma along with fibrinogen and U46619/ADP. Left: quantification of the number of spreading and 
migrating platelet in each experiment. Right: quantification of percentage of migrating platelets in each experiment. 
Error bars=SEM, n=3, ANOVA. 

 In addition to albumin, plasma contains immunoglobins and a wide variety of 

regulatory proteins. Do immunoglobins play a role in platelet locomotion?  RAG 1 de-

ficient mice do not have mature B and T lymphocytes and thereby are lack of immu-

noglobins in plasma (Mombaerts, Iacomini et al. 1992). Our results show that platelets 

display enhanced motility within RAG1 deficient mouse plasma than wild type mouse 

plasma, which implies that instead of promoting migration, immunoglobins could hin-

der platelets locomotion (Fig.3.35). 

 

Fig. 3.35 Mouse platelets display enhanced migration in RAG1 deficient mouse plasma. Mouse platelets 

were reconstituted within plasma from wild type or RAG1 deficient mice in the presence of fibrinogen and 
U46619/ADP. Left: quantification of the number of spreading and migrating platelet in each experiment. Right: 
quantification of percentage of migrating platelets in each experiment. Error bars=SEM, n=3, ANOVA, plt: platelets; 
WT: wild type. 

Platelets are capable of migrating within the wild type mouse plasma, but albu-

min alone is not sufficient to support migration, which indicate that other factors in 
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plasma are required for platelet motility. The above experiments suggest that conju-

gation of cationic proteins and albumin are able to promote migration, raising the pos-

sibility that positively charged factors in plasma could be the candidates. Plasminogen, 

the precursor of plasma fibrinolytic enzyme-plasmin is activated by tissue-type plas-

minogen activator (t-PA), or urokinase-type plasminogen activator(u-PA) and involved 

in degradation of fibrin and fibrinogen during thrombolysis (Castellino and Ploplis 

2005). The results show that plasminogen-albumin conjugates are able to promote 

platelet migration. With 10 µM plasminogen, the percentage of migrating platelets is 

31.44± 1.43% (Fig.3.36). Plasminogen activation can be inhibited by EACA through 

interacting with the kringle domains of plasminogen (Castellino and Ploplis 2005). In-

terestingly, EACA also abolishes plasminogen induced platelet migration 

(Fig.33.37).These data suggest plasminogen are able to induce platelets motility, how-

ever, the effect of plasminogen in platelet migration can be abolished by EACA.  
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Fig. 3.36 Plasminogen-albumin conjugates promote mouse platelet migration. Plasminogen along with 1000 

µg/ml HSA was applied on washed mouse platelets in the presence of 200 µM CaCl2 and U46619/ADP in the 
chamber with HSA/Alexa488-fbg coated surface. Left: quantification of the number of spreading and migrating 
platelet in each experiments.  Right: quantification of the percentage of migrating platelet. Error bars=SEM, n=3, 
ANOVA. 
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Fig. 3.37 EACA inhibits plasminogen induced platelet migration. 40 mM EACA or vehicle control was applied 

on mouse platelets in the presence of 10 µM plasminogen, 1000 µg/ml HSA, 200 µM CaCl2, U46619/ADP in the 
chamber with HSA/Alexa488-fbg coated surface. Left: quantification of the number of spreading and migrating 
platelet in each experiment. Right: quantification of the percentage of migrating platelet in each experiment. Error 
bars=SEM, n=2. Plg: plasminogen. 

Does EACA also inhibit platelet motility triggered by casein or plasma? Our re-

sults show that EACA does not diminish platelet motility in the presence of casein 

(Fig.3.38). Furthermore, EACA does not inhibit platelet migration within plasma 

(Fig.3.38), indicating that plasminogen is not the only factor in plasma that promotes 

migration. Therefore, some factors in plasma were examined on mouse platelets, but 

none of them trigger platelet migration (Table 3-2). Together, these results suggest 

that plasminogen are capable of facilitating platelet migration, but does not function 

the same way as casein or plasma.  
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Fig. 3.38 EACA does not inhibit platelet migration in the presence of casein or plasma. 40 mM EACA or 

vehicle control was applied on mouse platelets in the presence of plasma from wild type mice or 30 µg/ml casein, 
200 µMCaCl2, U46619/ADP in chamber with HSA/Alexa488-fbg coated surface. Left: quantification of the number 
of spreading and migrating platelet in each experiment. Right: quantification of the percentage of migrating platelet 
in each experiment. Error bars=SEM, n=2. 
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Table 3-2 factors in plasma that do not facilitate platelet migration 

Factors Concentration( µg/ml) Spreading Migrating 

Complement C3 150 + - 

Complement C3 250 + - 

Complement C3 500 + - 

Complement C1q 50 + - 

Complement C1q 100 + - 

Complement C1q 200 + - 

Complement C1 10 - - 

Complement C1 20 - - 

Complement C1 40 - - 

C-reactive protein 25 + - 

C-reactive protein 50 + - 

C-reactive protein 100 + - 

Complement factor H 25 + - 

Complement factor H 50 + - 

Complement factor H 100 + - 

Complement factor H 500 + - 

  

Plasma factors at indicated concentrations were applied on washed mouse platelets in the presence of1000 µg/ml 
HSA, 200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa488-fbg coated surface.  + indicates there are 
spreading platelets, - indicates there is not migrating platelets.  
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3.2 Comparison of the role of SOC and MS channels in   

platelet migration and aggregation 

3.2.1 Calcium release from internal stores is insufficient to support 

platelet migration. 

 Previous study in our group showed that human platelets migrated with calcium 

oscillations. The elevation of cytosolic free Ca2+ (［Ca2+］i) in platelets upon agonist-

induced activation derives from two sources: Ca2+ release from intracellular stores (in 

platelets they are referred as dense tubular system (DTS), and Ca2+ influx from outside 

via plasma membrane. Meanwhile, the ［Ca2+］i are pumped out by the sarco/endo-

plasmic reticulum Ca2+-ATPase (SERCA) and plasma membrane Ca2+-ATPase 

(PMCA) (Varga-Szabo, Braun et al. 2009). Although external calcium was demon-

strated to increase ［ Ca2+ ］ i   and then initiate platelet locomotion (Gärtner, 

Engelhardt et al. 2015), it is still a question whether calcium release from internal pools 

is sufficient for platelet locomotion. Thapsigargin specifically inhibits the ubiquitous 

SERCA, leading to the rise of ［Ca2+］I (Thastrup, Cullen et al. 1990, Lytton, Westlin 

et al. 1991).  However, our results show that in the absence of extracellular calcium 

thapsigargin increases the number of spreading platelets, but is not able to initiate 

platelet migration (Fig.3.39). Caloxin 2A1 is the PMCA inhibitor which selectively binds 

to the extracellular domains of PMCA (Chaudhary, Walia et al. 2001, Szewczyk, 

Pande et al. 2008). When caloxin2A1 was applied without extracellular calcium, it does 

not affect the number of spreading platelets, moreover, it does not promote platelet 

migration (Fig.3.39). A23187, a calcium ionophore that facilitates the transportation of 

calcium ions across biological membranes, disturbs the intracellular calcium gradient 

which results in the elevation of［Ca2+］ I(Reed and Lardy 1972). Nevertheless, 

A23187 modulates neither the number of spreading platelets nor the number of mi-

grating platelets (Fig.3.39). Taken together, these results reveal that intracellular cal-

cium is insufficient for platelet migration, which suggests the indispensable role of ex-

ternal calcium.  
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Fig. 3.39 Calcium release from internal stores is insufficient for supporting platelet migration. Thapsigargin, 

caloxin, or A23187 at indicated concentrations was applied on human platelets in the absence of external calcium 
in chamber with HSA/Alexa488-fbg coated surface.  The figure shows quantification of the total number of spread-
ing and migrating platelet in each experiment. Error bars=SEM, n=3, ANOVA on thaspigargin and A23187, t-test 
on caloxin. 

To examine whether external calcium is required for the whole process of plate-

let motility, we first applied external calcium to initiate platelet migration, then added 

EGTA to chelate extracellular calcium. Subsequently, platelet motility was immediately 

abolished (Fig.3.40). The results further demonstrate that extracellular calcium is es-

sential for initiation and maintenance of platelet locomotion.  

 

 

Fig. 3.40 Extracellular calcium is required for platelet migration. Human platelets are migrating in the presence 

of 200 µM CaCl2, then 3 mM EGTA or vehicle control (H2O) is added. The upper panel: representative time series 
of one migrating platelet before and after the addition of EGTA at 18 min. The blue line indicates the accumulating 
migrating path. Scale bar= 5 µm. The lower panel: quantification of the spreading and migrating platelets number 
(left) and the percentage of migrating platelets (right) before and after addition of vehicle or EGTA. Note: the number 
and percentage of migrating platelets after EGTA is zero. Error bar=SEM, n=4, t-test. 



                                                                                                                           Results 

59 
 

3.2.2 P2X1 channels, SOC channels do not play major roles in plate-

let migration.  

External calcium enters into platelets via calcium ion channels on plasma mem-

brane. Since extracellular calcium is indispensable for platelet mobility, blocking cal-

cium ion channels on plasma membrane is supposed to diminish platelet migration. 

Pinokalant (LOE908) is a broad spectral cation channel blocker, which inhibits both 

the monovalent and divalent cation channels, including Na+ channels, K+ channels, 

SOC channels, and voltage-operated calcium channels (Christensen, Wienrich et al. 

2005). Our results show that LOE908 diminishes both mouse and human platelet mi-

gration, with IC50 of 10.71 µM on mouse platelets and IC50 of 9.96 µM on human plate-

lets (Fig.3.41). However, LOE908 reduces human platelet migration in a different man-

ner from mouse platelets: it inhibits mouse platelet migration gradually, but human 

platelets abruptly. LOE908 does not affect human platelet motility below the concen-

tration of 10 µM, whereas it abolishes platelet migration at 25 µM. 
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Fig. 3.41 Broad spectrum cation channel blocker LOE908 inhibits platelet migration. LOE908 was applied 

on human or mouse platelets in the chamber with HSA/Alexa488-fibrinogen coated surface. Upper panel: the rep-
resentative images of HSA/Alexa488-fbg coated surface after human platelets migration in the presence of vehicle 
control or LOE908.The green and black area on Alexa488-fbg image indicate the non-migrating and migrating area, 
respectively. Scale bar=10 µm. Middle and lower panel: quantification of platelet count and the percentage of mi-
grating platelets in each experiment. Error bars=SEM, n=4. 
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A wide variety of cation ion channels have been identified on platelet plasma 

membrane (Rink and Sage 1990,Varga-Szabo, Braun et al. 2009, Mahaut-Smith 

2012), which of them are involved in calcium entry into platelets that mediate mobility 

remains elusive. To address this question, calcium channel blockers and genetic 

knockout mouse platelets were employed to examine the role of ion channels in plate-

let migration. 

P2X1, a receptor-gated ion channel is the only P2X family expressed on plate-

lets and exclusively evoked by ATP (Mahaut-Smith, Jones et al. 2011, Oury, Lecut et 

al. 2015). Upon stimulation calcium from outside rapidly enters into platelets via P2X1 

channels, which leads to the rise of［Ca2+］i.  P2X1 receptors play important roles in 

platelets aggregation and secretion to low concentration of collagen and protease ac-

tivated receptor activation (Oury, Kuijpers et al. 2003, Erhardt, Toomey et al. 2006).  

However, our experiments reveal that P2X1 ion channel inhibitor NF449 does not de-

crease human platelet migration (Fig.36).  Furthermore, platelets from P2X1 knockout 

mice do not exhibit lower percentage of locomotion than platelets from wild type mice 

(Fig.3.42).  Overall, these results suggest that  P2X1 channels do not play a significant 

role in platelet migration. 

 

Fig. 3.42 P2X1 channels do not play significant roles in platelet migration1. Left: quantification of the percent-

age of migrating platelets in the presence of 10 µM NF449 or vehicle control on human platelets. n=3.  Right:  
quantification of the percentage of migrating platelets from P2X1 knockout and control mice. n=4,   Error bars= 
SEM, t-test. 

Stored operated calcium entry (SOCE) is recently of great interest due to its 

crucial roles in platelets function in vitro and in vivo (Grosse, Braun et al. 2007, Varga-

Szabo, Braun et al. 2011). Agonist-evoked activation on platelets results in the activa-

tion of phospholipase C (PLC), and subsequently the production of diacylglycerol 

(DAG) and inositol 1, 4, 5-triphosphate (IP3). IP3 induces the release of Ca 2+ from the 

                                            
1  Experiments were performed by Zerkah Ahmad.  
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sarcoplasmatic reticulum, thus triggers the influx of extracellular Ca 2+ known as SOCE 

(Parekh and Putney 2005). Pyrazole derivative BTP2, a potent SOC channel blocker 

(Ishikawa, Ohga et al. 2003, Zitt, Strauss et al. 2004) inhibits SOC mediated calcium 

influx in platelets with IC50 of 0.5 µM (Harper and Poole 2011). Our results reveal that 

BTP2 slightly diminishes the percentage and velocity of migrating platelets (Fig.3.43). 

 

Fig. 3.43 BTP2 diminishes human platelet migration. Human platelets were incubated with indicated concen-

trations of BTP2 or vehicle control, then reconstituted with 1000 µg/ml HSA, 200 µM CaCl2, U46619/ADP in the 
chamber with HSA/Alexa488 fibrinogen coated surface. The figure shows quantification of the number of spreading 
and migrating platelets (left), the percentage (middle) and velocity of migrating platelets (right) in each experiment. 
Error bars= SEM, n=3, red stars indicate p<0.05, t-test (compared with vehicle control). 

Stromal interaction molecule 1 (STIM1) is a SR/ ER resident protein identified 

as the sensor for detecting Ca 2+ depletion that activates SOC mediated calcium entry 

in platelets(Ahmad, Boulaftali et al. 2011). STIM1-deficient platelets are defective in 

agonist-induced Ca 2+ response and STIM1 knockout mice exhibit unstable arterial 

thrombi (Varga-Szabo, Braun et al. 2008). However, our results show that STIM1 de-

ficient platelets do not have any defect in migration compared with platelets from con-

trol mice (67.83 ± 5.073 vs72.24± 2.61, p=0.46) (Fig.3.44). SITM2, the isoform of 

STIM1 is also able to trigger SOC mediated calcium influx on plasma membrane. 

Moreover, SITM2 is crucial in regulating basal cytosolic calcium concentration 

(Brandman, Liou et al. 2007, Gruszczynska-Biegala, Pomorski et al. 2011).  To deplete 

both STIM1 and STIM2 in platelets, STIM1/2 flox/flox mice were crossed with PF4cre 

mice. In line with the results from platelets lacking STIM1, the percentage of migrating 

STIM1/2 deficient platelets are not different from control wild type platelets (66.31 

±3.91% vs 65.78± 7.93%, p=0.94) (Fig.3.44). 
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Fig. 3.44 STIM1 deficient and STIM1/2 deficient platelets do not have defects in migration. Washed platelets 

were reconstituted in Tyrodes buffer with 30 µg/ml casein, 200 µM CaCl2, U46619/ADP in the chamber with 
HSA/Alexa488 fibrinogen coated surface. The figure shows quantification of the number of spreading and migrating 
platelets (left) and the percentage of migrating platelets (right) in each experiment. n=6, error bar=SEM, t-test.  

3.2.3 STIM1/2 deficient platelets exhibit impaired aggregation and 

secretion upon activation.  

To determine the significance of STIM1/2 in calcium response upon activation 

in platelets, platelets devoid of STIM1/2 were labeled with Fluo4-AM and the intensity 

of Fluo4 were recorded before and after stimulation by flow cytometry. Interestingly, 

the STIM1/2 deficient platelets display lower basal intracellular calcium than wild type 

control platelets (Fig.3.45), furthermore after activation by agonists, STIM1/2 deficient 

platelets show dramatically impaired intracellular calcium elevation (Fig.3.46). To-

gether, these results indicate the crucial role of STIM1 and STIM2 in regulating the 

basal intracellular calcium and the calcium influx after activation in platelets. 
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Fig. 3.45 STIM1/2 deficient platelets show lower basal intracellular calcium. Washed platelets were loaded 

with 5 µM Fluo4-AM, and Fluo4 intensity was recorded before and after the addition of U46619/ADP in real time 
on flow cytometer in the presence of 1 mM CaCl2. Left: the representative Fluo4 MFI changes in real time. Arrow 
indicates the addition of agonists. Right: quantification the MFI of Fluo4 before adding agonists. n=5, error 
bars=SEM, t-test. 
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Fig. 3.46 STIM1/2 deficient platelets are defective in intracellular calcium elevation upon activation. 5 µM 

Fluo4 loaded platelets were activated by indicated agonists in the presence of 1 mM CaCl2.  Fluo4 intensity was 
recorded before and after the addition of agonists in real time on flow cytometer. The graph shows the increased 
Fluo4 intensity after activation by indicated agonists. n=5, error bars=SEM, t-test.  

To investigate the functional consequence of defective calcium response in 

STIM/2 deficient platelets,  in vitro platelets aggreation experiments were performed. 

Interestingly, upon activation by U46619 or ADP, STIM1/2 deficient platelets show 

strkingly impaired aggregtion compared with control platelets (Fig.3.47). Upon 

activation by the combination of U46619 and ADP, platelets lack of STIM1/2 display 

slight but signficiant reduction of platelets aggreagtion (84.75±4.65% vs 73.00±5.42%, 

p=0.01). In contrast, they exhibit dramatically diminished aggregation after stiumation 

by collagen (Fig.3.47). Platelets aggregate via fibrinogen and α2bβ3 integrin on the 

plasma membrane, to confirm the defects of STIM1/2 deficient platelets in aggregation,  

the level of integrin α2bβ3 activation was assesed by flow cytometry. Consistent with 

the results from platelets aggregation, STIM1/2 deficient platelets display impaired 

activation of α2bβ3 (Fig.3.47).  
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Fig. 3.47 STIM1/2 deficient platelets show impaired aggregation and α2bβ3 activation upon stimulation. Left:  

washed platelets aggregation were induced by 2 µM U46619, 4 µM ADP, 2 µM U46619/ 4 µM ADP, or 2 µg/ml 
collagen in the presence of 38ug/ml fibrinogen and 200 µM CaCl2.  Light transmission of platelets aggregation was 
recorded by Lumi-aggregomteter. Scale bars=SD, n=4 per group, t-test. Right: Flow cytometric analysis of α2bβ3 
activation (binding by JonA-PE) on platelets in response to 2 µM U46619/ 4 µM ADP in the presence of 1 mM 
CaCl2. Scale bar=SD, n=5, t-test. 

Platelets contain two major storage graunles, namely α  granules and dense 

granules (McNicol and Israels 1999,Blair and Flaumenhaft 2009,Ghoshal and 

Bhattacharyya 2014). P selectin, a transmembrane protein contained in α granules is  

translocated to plasma membrane after platelets activation which is able to be meas-

ured by fluorescent-labeled antibody (Koedam, Cramer et al. 1992). Beside, upon ac-

tivation dense granules of platelets release ATP that can be detected by surface at-

tached-firefly luciferase (Beigi, Kobatake et al. 1999). Our results reveal that STIM1/2 

deficient platelets exhibit marked defects in P selectin expression and ATP release 

upon stimulation (Fig.3.48). Taken together, these findings demonstate the crucial 

contribution of STIM1/2 to platelets aggregation and degranulation upon activation, 

although STIM1/2 is not important in platelet migration. 
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Fig. 3.48 STIM1/2 deficient platelets display impaired P selectin expression and ATP release after agonist-
induced activation. Left: washed platelets were stimulated by 2µM U46619, 2 µM U46619 and 4 µM ADP, or 2 

µg/ml collagen in the presence of 38 µg/ml fibrinogen and 200 µM CaCl2, then ATP release were measured by 
firefly luciferin- luciferase. Scale bar=SD, n=4 per group, t-test. Right: flow cytometric analysis of P selectin expres-
sion (binding by Wug.E9-FITC) on washed platelets in response to 2 µM U46619 and 4 µM ADP in the presence 
of 1 mM CaCl2. Scale bars=SD, n=5, t-test. 
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3.2.4 MS ion channels are critical, whereas eNaC, TREK, TRAAK, 

TRPC1/6, TRPM7 channels are not important in platelet migra-

tion. 

Stretch activated ion channels are implicated in cell migration (Lee, Ishihara et 

al. 1999, Munevar, Wang et al. 2004). LaCl3, a general stretch activated ion inhibitor 

abolishes mouse platelets migration at 10 µM (Fig.3.49), however, it does not supress 

human platelet migration even when the concentration is increased to 50 µM (Fig.3.49). 

GsMTx4, a peptide MS channels blocker extracted from spider venom (Bowman, 

Gottlieb et al. 2007, Gnanasambandam, Ghatak et al. 2017) diminishes platelet mi-

gration in a concentration dependent manner, with IC50 of 4.89 µM (Fig.3.50). 
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Fig. 3.49 LaCl3 inhibits mouse platelet but not human platelet migration. LaCl3 or vehicle was applied on 

mouse platelets in the presence of 30 µg/ml casein (or on human platelets in the presence of 1000 µg/ml HSA), 
200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa488-fbg coated surface. Upper panel: representative 
images of HSA/Alexa488-fbg coated surface after platelets migration in the presence of vehicle or LaCl3 on mouse 
platelets and human platelets. The green and black area indicate the non-migrating and migrating area of platelets, 
respectively. Lower panel: quantification of the number the spreading, migrating and the percentage of migrating 
platelets in each experiment. Scale bar= 10 µm, error bars=SEM, n=3, t-test on mouse platelets, one way ANOVA 
on human platelets. 
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Fig. 3.50 GsMTx4 inhibits platelet migration. Different concentrations of GsMTx4 was applied on mouse plate-

lets in the presence of 30 µg/ml casein, 200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa488-fbg coated 
surface. Upper panel: representative images of HAS/Alexa488-fbg coated surface after platelets migration in the 
presence of indicated concentration of GsMTx4. The green and black area indicate the non-migrating and migrating 
area of platelets, respectively. Scale bar=10 µM. Lower panel: quantification of the number of spreading, migrating 
platelets, the percentage of migrating platelets. n=4, error bars= SEM. 

MS ion channels are non-selective cation channels that are involved in mecha-

notransduction - the conversion of mechanical stimuli to biological signals. Till now, a 

large number of ion channels have been proposed to be MS ion channels, which of 

these channels medicate platelet migration is a question. Epithelium sodium channels 

(eNaC) are highly selective Na+ channels that are involved in mechanotransduction 

and associated with collagen activation in platelets (Cerecedo, Martinez-Vieyra et al. 
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2014).  TREK, TRAAK are two pore (2P) domain mechano-gated K channels (Patel, 

Honore et al. 1998). Amiloride inhibits eNaC as well as TREK channels (Maingret, 

Patel et al. 2000), but does not diminish platelet migration (Fig.3.51). Overall, these 

results suggest that eNaC and TREK, TRAA channels do not play major roles in plate-

let motility. 
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Fig. 3.51 Amiloride does not inhibit mouse or human platelet migration. 10 µM amiloride or vehicle (ddH2O) 

was applied on mouse platelets in the presence of 30 µg/ml casein (or on human platelets in the presence of 1000 
µg/ml HSA), 200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa488-fbg coated surface. Then the number 
of spreading, migrating platelets, the fraction of migrating platelets were quantified. Error bars =SEM, n=3, t –test. 

Transient receptor potential (TRP) superfamily are subdivided into several sub-

families on the basis of sequence similarity (Zheng 2013). TRP channels are widely 

expressed on platelets (Brownlow and Sage 2005). TRPC6 is reported to be a direct 

sensor of mechanically and osmotically induced membrane stretch (Spassova, 

Hewavitharana et al. 2006).  Our results show that Larixol, an inhibitor of TRPC 6 

channels does not supress platelet migration (Fig.3.52). Furthermore, TPRC1/6 defi-

cient mouse platelets do not display impaired motility compared with control platelets 
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(Fig.3.52). TRPM7, a Ca2+ and Mg2+ permeant cation channel is implicated in actomy-

osin contractility and cell migration (Clark, Langeslag et al. 2006, Gao, Chen et al. 

2011), however, the TRPM7 inhibitor NS8593 does not reduce human platelet mobility 

(Fig.3.53). Taken together, these results suggest that TRPC1/6, TRPM7 are not im-

portant in platelet migration.  

 

 

Fig. 3.52 TRPC1/6 channels are not important in platelet migration. 5 µM Larixol or vehicle control was applied 

on human platelets in the presence of 1000 µg/ml HSA, 200 µM CaCl2, U46619/ADP in the chamber with 
hsa/Alexa488-fbg coated surface. Control or TRPC1/6 deficient platelets were reconstituted with 30 µg/ml casein, 
200 µM CaCl2, U46619/ADP in the chamber with HSA/Alexa488-fbg coated surface. The number of spreading, 
migrating platelets (left), the fraction (middle) and the velocity (right) of migrating platelets were quantified. Error 
bars =SEM, n=3, t –test. 

 

Fig. 3.53 TRPM7 inhibitor NS8593 does not diminish human platelet migration. 30 µM NS8593 or vehicle was 

applied on human platelets in the presence of 1000 µg/ml HSA, 200 µM CaCl2, U46619/ADP in the chamber with 
HSA/Alexa488-fbg coated surface. The number of spreading, migrating platelets and the fraction of migrating plate-
lets were quantified. Error bars =SEM, n=4, t-test. 
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3.2.5 GsTMx4 does not inhibit platelets aggregation or secretion 

upon activation. 

 Till now our results show that eNaC, TREK, TRAAK, TRPM7 and TRPC1/6 

channels do not play major roles in platelet locomotion, but the general MS ion channel 

blocker GsMTx4 completely inhibit platelet migration. To examine the effect of MS ion 

channel blockers on other platelets function, in vitro platelets aggregation and secre-

tion experiments were performed.  Surprisingly, GsMTx4 but not LaCl3 induces plate-

lets aggregation in the absence of agonists, however, neither LaCl3 nor GsMTx4 trig-

ger ATP release without agonist-evoked activation (Fig.3.54). Upon activation by 

U46619/ADP, LaCl3 or GsMTx4 do not affect platelets aggregation or ATP release 

(Fig.3.55). Then to further investigate whether GsMTx4 influence calcium response in 

platelets in the absence of mechanical forces, washed platelets were loaded with 

Fluo4-AM and the Fluo4 intensity was recorded in flow cytometer. Interestingly, 

GsMTx4 does not affect calcium response in platelets in the absence of mechanical 

force (Fig.3.56). Together, although GsMTx4 abolishes platelet motility, it does not 

inhibit platelets aggregation or secretion upon agonist-evoked activation.  

 

 

Fig. 3.54 GsMTx4 but not LaCl3 induces platelets aggregation, but neither LaCl3 nor GsMTx4 induces ATP 
release. Washed mouse platelets (200x103/µl) were activated by vehicle control (ddH2O), 10 µM LaCl3, 5 µM 

GsMTx4 or U46619/ADP in the presence of 38 µg/ml fibrinogen and 200 µM CaCl2, then aggregation transmission 
was recorded by Lumi-aggregaometer, meanwhile ATP release were measured by firefly luciferin- luciferase. Error 
bars= SD, n=3, ANOVA on aggregation, Kruskal-Wails test on ATP release.  
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Fig. 3.55 LaCl3 and GsMTx4 do not inhibit platelet aggregation or ATP release after U46619/ADP activation. 

Washed mouse platelets (200x103/µl) were stimulated by 2 µM U46619 and 4 µM ADP in the presence of 38 µg/ml 
fibrinogen and 200 µM CaCl2, then aggregation light transmission was recorded by Lumi-aggregometer, meanwhile 
ATP release were measured by firefly luciferin- luciferase. Error bars= SD, n=3, ANONA. 

 

 

Fig. 3.56 GsMTx4 does not affect calcium response of platelets in the absence of mechanical force. 5 µM 

Fluo4-AM loaded platelets (10×103/µl) in the presence of 1 mM CaCl2 were stimulated by GsMTx4 or vehicle 
(ddH2O), or by the combination of  U46619/ADP and vehicle or 10 µM GsMTx4. Fluo4 intensity was recorded on 
the flow cytometer before and after addition of the activators. The upper panel shows the representative flou4 
intensity changes in real-time. The arrows indicate the addition of activators. The lower panel shows the quantifi-
cation of the Fluo4 intensity before or after activation. Error bars= SEM, n=2. 
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4 Discussion 

Although the role of platelets in haemostasis and thrombosis has been intensely 

investigated, the cellular biology of platelets motility remains elusive. More recently, 

our group has discovered a yet undefined manner of platelet locomotion and further 

revealed that human platelets migrate in the presence of plasma on fibrinogen coated 

surfaces with albumin and calcium as essential factors that facilitate migration (Gärtner, 

Engelhardt et al. 2015). On the basis of this work, my experiments demonstrate that 

similar to human platelets, mouse platelets are able to migrate within mouse plasma 

in vitro. However, albumin alone is not capable of supporting mouse platelets motility. 

Instead, casein, poly lysine-albumin conjugates and pluronic trigger mouse platelet 

migration by regulating calcium oscillations with the involvement of MS ion channels. 

Interestingly, these proteins -- casein, PLL-g-PEG, and pluroinc -- do not affect plate-

lets aggregation or secretion. Then by investigating the role of calcium ion channels in 

platelets function, my results reveal that platelet migration and aggregation are de-

pendent on distinct calcium entry channels on plasma membrane. STIM-mediated 

SOCE is crucial in platelet aggregation and secretion but not in platelet migration; on 

the contrary, MS channels are critically implicated in platelet motility but not in platelets 

aggregation or secretion (Fig.4.1). 
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Fig. 4.1 Schematic of major calcium ion channels involved in platelet aggregation, secretion and migration.  

STMI-mediated basal calcium level and calcium influx is crucial for platelets aggregation and secretion, whereas 
MS channels are critical for platelet migration.  

Our previous study suggested that albumin as well as casein proteins facilitated 

human platelets motility by decreasing the substrate adhesiveness of fibrinogen. How-

ever, my results show that casein proteins but not albumin are able to trigger mouse 

platelet migration. What are disparities between albumin and casein? Albumin, pro-

duced by hepatocytes is the most abundant and a heart-shaped tertiary protein in se-

rum and play multiple roles, such as carrying fatty acid, steroids, ions and drugs, main-

taining colloidal osmotic pressure and scavenging free radicals (Evans 2002, Quinlan, 

Martin et al. 2005). Unlike albumin, casein proteins are little in serum, secreted by 

mammalian cells and constitute the major proteins in milk. Casein is important nutrition 

for new-borns due to its high content of calcium phosphate and lysine, an essential 

amino acid for humans (Bhat, Dar et al. 2016). Casein exists in milk as colloidal parti-

cles, called casein micelles (Horne 2006, Dalgleish and Corredig 2012,Hristov, Mitkov 

et al. 2016). One unique feature of casein is that it is naturally unfolded protein, that is 

to say, casein processes little second or tertiary structure (Redwan, Xue et al. 2015, 

Thorn, Ecroyd et al. 2015). How these differences in structure between casein and 
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albumin affect their roles on platelet migration is still a question and required to be 

further investigated.  

By exploring the functional parts of casein proteins, we found that positive 

charges of casein are likely to explain its effect in triggering platelet migration, since 

cationic proteins such as poly lysine - albumin conjugate and PLL-g-PEG are also able 

to induce platelet motility. However, the effect of casein cannot be simply explained by 

neutralizing negative charges on platelet membrane, because removal of negative 

charges on platelet membrane does not facilitate platelet migration. Surprisingly, we 

observe that in the presence of casein some platelets form balloon like blebs prior to 

death and these blebbing formation is accompanied with the elevation of intracellular 

calcium. Then our study further reveals that casein proteins reduce the frequency but 

prolong the duration of calcium oscillations in migrating platelets. More strikingly, the 

elevated cytosolic calcium sustains for a long time at the initial phase of platelet mi-

gration. Calcium oscillation--transient elevated cytoplasmic calcium is a co-ordinated 

process between calcium release from intracellular stores and calcium influx from out-

side department and involved in various biological processes, such as cell growth, 

gene expression, fertilization (Uhlen and Fritz 2010, Parekh 2011). Moreover, calcium 

oscillations play critical roles in migration of various cell types. For example, transient 

calcium increase is observed in migrating neutrophils during both chemokinesis and 

chemotaxis, but the amplitude and duration of calcium oscillations were variable within 

a given cell as well as different cells (Marks and Maxfield 1990). For another instance, 

the amplitude and frequency of calcium oscillations were positively correlated with the 

speed of neuronal cell movement (Komuro and Rakic 1996). In addition, mobile astro-

cytes (Rondé, Giannone et al. 2000, Hamadi, Giannone et al. 2014) and smooth vas-

cular cells (Scherberich, Campos-Toimil et al. 2000) also exhibit spontaneous calcium 

transient spikes. In agreement with these studies, our experiments show that migrating 

platelets display calcium oscillations, moreover casein proteins are involved in regu-

lating these calcium fluctuations.   

 How does casein proteins affect calcium oscillations? Substrate or extracellular 

matrix have been demonstrated to modulate calcium oscillations. For example, sub-

strate rigidity affected the calcium oscillations in human mesenchymal stem cells 

(HMSCs), and lowering the substrate stiffness inhibited both the amplitude and fre-

quency of calcium oscillations (Kim, Seong et al. 2009). Later studies on HMSC 

showed that matrix protein mediated calcium oscillation regulated the differentiation of 
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HMSC (Franz, Karagaraj et al. 2014). In addition to HMSCs, calcium oscillations in 

fibroblast and neurons were regulated by mechanical environment, and increasing the 

stiffness of substrate enhanced the frequency of calcium oscillations (Godbout, 

Follonier Castella et al. 2013, Zhang, Zhang et al. 2014, Josephine, Benedikt et al. 

2017). Consistent with these studies, our experiments show that platelets exhibit more 

frequent calcium oscillations in the absence of any proteins on the substrate than in 

the presence of casein proteins, which raises the possibility that those proteins mod-

ulate mechanical properties of the surface.  

Although a number of studies show that the substrate stiffness regulates cal-

cium oscillations, the underlying molecular mechanism by which mechanical proper-

ties of the environment affect the calcium signal is much unknown. Interestingly, we 

find that calcium permeant MS channel inhibitor GsMTx4 abolishes platelet motility in 

the presence of casein, PLL-g-PEG and pluronic, which suggest that these proteins 

may activate MS channels on platelet membrane and thereby modulate calcium oscil-

lations. How does casein activate MS channels on platelets? Currently, two models 

regarding the gating of mechanically activated ion channels emerge. One is the lipid 

bilayer model, and the other is the tethered model (Martinac 2004, Ranade, Syeda et 

al. 2015). In the lipid bilayer, it is perceived that the membrane deformation is sufficient 

to activate MS channels. In the tethered model, it is assumed that the extracellular 

matrix or the cytoskeleton inside the cells are coupled to MS channels, mechanical 

forces function on the tethers and then gate MS channels. Our results show that 

mouse platelets are able to migrate when casein proteins and fibrinogen are coated 

on the substrate, which imply that casein proteins might modulate the extracellular 

matrix that is connected to MS channels, resulting in the changes of calcium signals 

in platelets.  

What would be the differences between mouse and human platelets that cause 

their distinct requirements for migration? Generally, mouse and human platelets func-

tion similarly in haemostasis and thrombosis, but mouse platelets are smaller in size, 

more numerous in count and have more heterogeneous α-granules (Schmitt, Guichard 

et al. 2001, Jirouskova, Shet et al. 2007). The striking differences between mouse and 

human platelets are glycoprotein receptors on plasma membrane. First, one well-

known dissimilarity is the thrombin receptor- protease activated receptors (PARs) on 

human and mouse platelets. Human platelets express thrombin receptors PAR1 and 

PAR4, whereas mouse platelets express PAR3 and PAR4 (Coughlin 2000, Nakanishi-
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Matsui, Zheng et al. 2000). However, our results reveal that both human and mouse 

platelet are capable of migrating in the absence of thrombin, which suggest that PARs 

are not essential for platelets motility. Therefore, the differences of PARs on human 

and mouse platelets cannot explain their distinct requirements for migration. 

Second, the receptor for the constant Fc region of immunoglobulins (Ig) - Fc 

receptor (FcR) is one distinct feature between mouse and human platelets. Human 

platelets express the immunoglobulin G (IgG) Fc receptor- FcγRⅡA that belongs to 

the class II of FcγRs (Rosenfeld, Looney et al. 1985, Kelton, Smith et al. 1987). On 

the contrary, mouse platelets are devoid of any FcγRs (McKenzie, Taylor et al. 1999). 

FcγRⅡA are activated by aggregated IgGs, IgG-opsonized pathogens and implicated 

in thrombosis and immunity (Arman and Krauel 2015). Recent studies reveal that FcγR

ⅡA amplifies integrin αⅡbβ3 mediated outside-in signaling in platelets (Boylan, Gao et 

al. 2008, Zhi, Rauova et al. 2013). Our results show that IgGs are neither required for 

the migration of human nor mouse platelets, which suggest that the differences of 

FcRs on human and mouse platelets are not likely to account for their distinct require-

ments for migration.  

Last, but not least, our results suggest that MS channels are crucial in platelet 

migration. MS channels are conserved proteins expressed both in prokaryotes and 

eukaryotes (Martinac 2004). So far, the expression or function of MS channels on 

platelets are not reported. However, one study on embryonic stem cells (ESCs) by 

inside-out clamp patch recordings shows that mouse ESCs exhibit a higher density of 

MS channels than human MSCs (70% vs 3% of patches), whereas large conductance 

Ca2+ activated K+ channels (BK) are highly expressed in human ESCs compared with 

mouse ESCs (50% vs 1% of patches) (Soria, Navas et al. 2013). This report provides 

a helpful cue that the mechanically gated ion channels on human and mouse platelets 

could be distinct from each other, which may count for their different responses to 

mechanical forces. Therefore, in future we will explore the dissimilarities of MS chan-

nels on mouse and human platelets. 

Calcium, as the second messenger plays crucial roles in platelet functions, like 

shape change, secretion, and aggregation. The increase of cytoplasmic Ca2+ are de-

rived from the internal calcium pools and the extracellular space. Our previous exper-

iments showed that platelets were able to spread in the absence of extracellular cal-

cium (Gärtner, Engelhardt et al. 2015), which was consistent with earlier study that 
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platelets shape change could occur in calcium free medium (Rink, Smith et al. 1982). 

Substantial studies supported that platelet secretion was also independent of extra-

cellular calcium. For example, calcium ionophore - A23187 induced platelets ATP re-

lease in the absence of exogenous calcium (Feinman and Detwiler 1974). For another 

instance, thrombin or calcium ionophore - ionomyosin evoked 5-seritonin secretion 

with little increase of cytosolic free calcium (Rink, Smith et al. 1982). Platelets aggre-

gation is dependent on the increase of intracellular calcium that is partly due to the 

calcium influx from extracellular department, but to a large extent the release of inter-

nal calcium stores in platelets (White, Rao et al. 1974, Feinstein and Fraser 1975). 

Our results suggest endogenous calcium is insufficient to support platelet migration 

and platelets motility is strikingly enhanced with the rise of exogenous calcium con-

centration. This feature differentiates platelet motility from other platelets functions, 

including shape change, secretion and aggregation. Moreover, our studies that casein 

proteins, PLL-g-PEG and pluronic that trigger platelet migration do not affect platelet 

aggregation or secretion provide more evidence that platelet locomotion is distinct 

from platelets aggregation. 

Our results demonstrate that extracellular calcium is indispensable for platelet 

migration. Besides platelets, exogenous calcium are demonstrated to be crucial for 

migration of other cell types. For example, extracellular calcium is required for neutro-

phils chemotaxis, removal of exogenous calcium by EGTA or inhibiting calcium influx 

by lanthanum chloride reduced neutrophil migration (Boucek and Snyderman 1976, 

Marks and Maxfield 1990). In fibroblast, the rise of cytosolic calcium from calcium in-

flux instead of calcium release from internal stores is essential for growth factor-in-

duced migration (Yang and Huang 2005). Moreover, nerve growth cone migrate is 

also dependent on the calcium influx through non-voltage gated calcium channels 

(Gomez, Snow et al. 1995). Therefore, my results that platelet migration relies on ex-

tracellular calcium provides more evidence that exogenous calcium is critical for cell 

migration.  

Exogenous calcium enters into cells via ion channels on plasma membrane, 

which of these channels are important for platelet migration is an interesting question. 

SOCE, the major calcium influx way on platelets is mediated by both STIM1, the Ca2+ 

sensor in ER membrane and Orai1, the SOC channel in plasma membrane and con-

tributes significantly to platelets activation (Varga-Szabo, Braun et al. 2011). STIM1 

and Orai1 are crucial in breast cancer cell migration by modulating local focal adhesion 
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turnover. SOCE blocker as well as knocking down of STIM1 or Orai1 inhibit breast 

tumour metastasis (Yang, Zhang et al. 2009). Besides breast cancer, STIM1 and Orai1 

are highly expressed in renal carcinoma and cervical cancer cell and play important 

roles in cancer cell proliferation and migration (Chen, Chiu et al. 2011, Kim, 

Lkhagvadorj et al. 2014). However, my results show that platelets in the absence of 

STIM1 platelets do not display any defects in migration, indicating that STIM1 is not 

crucial in platelet migration.  

          STIM2, the isoform of STIM1 is also a single transmembrane proteins located 

in endoplasmic reticulum (ER) (Liou, Kim et al. 2005). Nevertheless, in contrary to 

STIM1 that triggers calcium influx in response to calcium depletion of internal pools, 

STIM2 induces calcium influx upon smaller reduction in ER calcium and functions pri-

marily as the regulator of the basal cytosolic calcium. Consequently, selectively knock 

down of STIM2 results in lower resting cytosolic calcium concentration (Brandman, 

Liou et al. 2007, Gruszczynska-Biegala, Pomorski et al. 2011). To further investigate 

the effect of STIM in platelet migration, platelets in the absence of STIM1/2 were ex-

amined in our experiments, but they migrate as well as control platelets, suggesting 

that neither SOCE activated by STIM1 nor basal calcium contributed by STIM2 are 

important for platelet migration.  

              Although the functional defects of STIM1 deficient platelets have been thor-

oughly investigated, the phenotypes of platelets devoid of both STIM1 and STIM2 

have not been reported so far. First, our study reveals that STIM1/2 deficient platelets 

display both lower resting calcium level and strikingly reduced calcium influx upon ac-

tivation than wild type control platelets. Then our studies show that different from 

STIM1 deficient platelets that exhibit normal aggregation to GRCR agonists but im-

paired aggregation to GPVI agonists (Varga-Szabo, Braun et al. 2008), STIM1/2 

knockout platelets display supressed aggregation to GPCR agonists as well as GPVI 

receptor agonist. Furthermore, ATP secretion upon agonists-evoked activation is 

markedly diminished in platelets lack of STIM1/2. Since previous study demonstrated 

that ATP secretion is mediated by intracellular calcium rather than extracellular cal-

cium (Feinman and Detwiler 1974), we could conclude that the impaired ATP release 

is due to the lower basal calcium level regulated by STIM2 instead of defective calcium 

influx mediated by STIM1. Taken together, compared with the impaired functions in 

STIM1 deficient platelets (Varga-Szabo, Braun et al. 2008, Ahmad, Boulaftali et al. 
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2011), STIM1/2 knockout platelets display more striking defects in secretion and ag-

gregation in vitro. Mice with STIM1 deficient platelets show unstable arterial thrombi 

(Varga-Szabo, Braun et al. 2008), whether STIM1/2 deficient mice have defects in 

thrombus formation in vivo needs to be investigated in future.  

Mechanosensitive ion channels, particularly stretch activated ion channels play 

crucial roles in cell migration. Lee et al. demonstrated that the calcium transient in 

migrating fish keratocytes arised from activation of stretched activated channels, which 

triggered the calcium influx and subsequently rear retraction (Lee, Ishihara et al. 1999). 

Fibroblast motility was also regulated by stretch activated channels and inhibited by 

the heavy metal blocker gadolinium (Munevar, Wang et al. 2004). Furthermore, MS 

ion channels are expressed in prostate tumour cells, gadolinium or GsMTx4 impaired 

MS activity and suppressed prostate tumour cell migration (Maroto, Kurosky et al. 

2012). My results show the MS channel inhibitor GsMTx4 abolishes platelets motility 

in the presence of casein, PLL-g-PEG, plurionic and plasma, which strongly suggest 

that mechanosensitive ion channels mediate platelet migration. 

 MS channels are non-selective cation channels and consisted of a large quan-

tity of ion channels, we are interested to identify which of these channels are involved 

in platelet migration. ENaCs are sodium permeable, amiloride-sensitive cation chan-

nels that mediate mechanotransduction (Goodman and Schwarz 2003), it is also ex-

pressed on platelets and contributes to collagen activation (Cerecedo, Martinez-Vieyra 

et al. 2014). However, my experiments show that amiloride does not inhibit platelet 

migration. In addition to eNaC, amiloride is reported to inhibit mechano-gated TREK-

1 and TRAAK channels (Maingret, Patel et al. 2000).  Therefore, eNaC or K2p do not 

play significant roles in platelet migration.  

Since quite a few TRP channels are mechanically activated, we would like to 

investigate their roles in platelet migration. TRPC6 is expressed in high levels in plate-

lets (Hassock, Zhu et al. 2002) and can be activated by diacylglycerol as well as mem-

brane stretch (Spassova, Hewavitharana et al. 2006). TRPC1 is also reported to be 

MS channel that is gated by membrane tension (Maroto, Raso et al. 2005). However, 

platelets deficient in TRPC1/6 do not show impaired migration, which indicates that 

TRPC1 or TRPC6 are not critical in platelets motility.  

PIEZO1 (Fam38A) is a recently identified mechanically activated ion channel 

and plays crucial roles in numerous biological processes (Bagriantsev, Gracheva et 

al. 2014). To name only a few samples regarding the role of PIEZO1 in cell migration. 
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MS channels in breast cancer cells is formed by PIEZO1 protein and inhibiting PIEZO1 

by GsMTx4 results in decreased motility of breast cancer cells. Furthermore, breast 

cancer patients with high expression of PEIZO1 have reduced overall survival (Li, 

Rezania et al. 2015). PIEZO1 responds to physical confinement in melanoma cancer 

cells and GsMTx4 treatment supresses confined migration of melanoma cells (Hung, 

Yang et al. 2016). It is worth noting that although GsMTx4 is capable of inhibiting PI-

EZO1 channels (Bae, Sachs et al. 2011), it is regarded as a general blocker of MS 

channels (Bowman, Gottlieb et al. 2007, Gnanasambandam, Ghatak et al. 2017). For 

example, GsMTx4 is also able to suppress mechanical activity of TRPC1 and TPPC6 

channels (Spassova, Hewavitharana et al. 2006). My results show the GsTMx4 com-

pletely inhibits platelets motility, but the contribution of TRPC1/6 can be ruled out by 

TRPC1/6 deficient platelets that do not display impairment in migration, therefore, PI-

EZO1 will be a possible candidate of MS channels in platelets that mediates migration. 

In future, platelets from PIZEO1 knockout mouse will be employed to examine the role 

of PIEZO1 in platelet motility. Intriguingly, although GsMTx4 abolishes platelets motil-

ity, it does not affect platelets aggregation or secretion upon activation. Moreover, 

GsMTx4 does not calcium influx in the absence of mechanical forces. These results 

provide further evidence that platelet migration differs from other platelet functions and 

mechanically activated ion channels are critical in platelet migration but not in aggre-

gation or secretion. 

In summary, my studies demonstrate that mouse and human platelets need dif-

ferent requirements for migration, which shed light to disparities between human and 

mouse platelets. Then my results reveal that mechanosensitive ion channels are crit-

ical for platelet migration and STIM1/2 are important for platelets aggregation and se-

cretion. These findings provide a deeper understanding of the cellular mechanisms 

involved in platelet functions. 
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