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Uber das klinische Potenzial von Ionen
Computertomographie mit verschiedenen Detektor
Konfigurationen und Ionentypen

Zusammenfassung

Strahlentherapie mit schweren energetischen Ionen ist eine sich schnell entwickelnde Form
der Krebstherapie, denn Ionenstrahlen ermoglichen aufgrund ihrer endlichen Eindring-
tiefe eine sehr konforme Anpassung der abgegebenen Dosis an das Tumorvolumen. Die
Ausschépfung des vollen Potenzials der Ionentherapie ist jedoch nach wie vor durch
eine erhohte Anfélligkeit fiir Unsicherheiten in der geschéitzten Ionenstrahl-Reichweite
eingeschrénkt. Eine der Hauptquellen fiir diese Unsicherheit, die der aktuellen Form
der Bestrahlungsplanung innewohnt, ist die semiempirische Umrechnung von Réntgen-
Computertomographie Informationen in das relative (beziiglich Wasser) Bremsvermogen
(RSP) der Ionen. Die Tonen Computertomographie (iCT) eliminiert potenziell diese Unge-
nauigkeit durch eine direkte Rekonstruktion der RSP-Verteilung innerhalb eines Patienten
aus einer Reihe von lonenradiographien. Dies konnte letztlich die Verbesserung des klini-
schen Ergebnisses fiir Patienten, die Ionentherapie erhalten, erméglichen und neue Wege
fiir adaptive Behandlungskonzepte eroffnen.

Diese Arbeit zielte darauf ab, das Potenzial und die Auswirkungen von iCT mit ver-
schiedenen Ionenarten und zwei Detektor-Konfigurationen, einem kostengiinstigen und ei-
nem komplexen hochmodernen System, fiir klinische Anwendungen zu untersuchen. Dazu
wurde eine entsprechende FLUKA Monte Carlo (MC) Simulationsumgebung entwickelt,
welche eine akkurate Beschreibung der aktiven Dosisapplikation und der Strahleigenschaf-
ten von klinischen Therapiezentren beinhaltet. Dariiber hinaus wurden verschiedene Me-
thoden der iterativen tomographischen Bildrekonstruktion untersucht. Basierend auf ei-
nem Prototyp eines am Heidelberger Ionenstrahl-Therapiezentrum untersuchten Detektor-
Systems wurden die Moglichkeiten des Integrationsmodus untersucht, welcher potenziell
eine leichtere klinische Umsetzung erlaubt. Insbesondere Kohlenstoff-iCT ermdéglichte eine
durchschnittliche RSP-Genauigkeit von besser als 1% in experimentellen und simulier-
ten Phantomstudien. Die entwickelte Signalverarbeitungsmethode erzielte eine erhebliche
Verbesserung der Bildqualitit. Allerdings wurde das begrenzte rdumliche Auflésungsver-
mogen aufgrund von intrinsischen Ungenauigkeiten durch Reichweitenvermischung als we-
sentliche Einschrankung fiir eine Anwendung in der klinischen Bestrahlungsplanung iden-
tifiziert. Einzelteilchen-iCT erzielte unter idealen Bedingungen eine bessere Bildqualitat
bei geringerer physikalischer Strahlenexposition im Vergleich zum Integrationsmodus, ins-
besondere Helium-iC'T. Das klinische Potenzial von iCT wurde quantitativ an Hand der
Genauigkeit der Dosisberechnung bewertet. Dabei konnte aufgezeigt werden, dass gene-
rell verringerte Reichweitenunsicherheiten in der Protonentherapie-Bestrahlungsplanung
im Vergleich zur aktuellen klinisch angewandten Methode erzielt werden kénnen. Um
eine erste detaillierte Abschatzung der biologischen Auswirkungen klinisch relevanter
iCT-Aufnahmebedingungen zu erméglichen, wurde das mechanistische 'repair-misrepair-
fixation” Modell und der 'Monte Carlo damage simulation’ Algorithmus in die FLUKA



XX Zusammenfassung

MC-Simulation integriert. Die Ergebnisse zeigten, dass iC'T im Vergleich zu diagnostischen
Rontgenspektren, welche fiir die Bestrahlungsplanung verwendet werden, potenziell redu-
zierte biologische DNA Schadigungen hervorruft. Um die Liicke zur klinischen Umsetzung
der Tonenbildgebung zu schliefen, wurde ein zur Bildgebung von Kleintieren bestimmtes
Protonen-iCT System untersucht und optimiert. Basierend auf MC-Simulationen der opti-
mierte Detektor Konfiguration wurde ein rdumliches Aufldsungsvermoégen von rund 3 mm !
und ein RSP Genauigkeit von besser als 0.5% erreicht. Dies erlaubt eine préizisere Bild-
gebung als derzeitige Rontgen-Computertomographie fiir die Bestrahlungsplanung in der
préaklinischen Forschung.



On the Clinical Potential of Ion Computed Tomography
with Different Detector Systems and Ion Species

Abstract

External beam radiotherapy with energetic heavy charged particles is a rapidly emerging
form of cancer therapy. Ion beams enable a highly conformal shaping of the delivered
dose to the tumor volume due to their finite penetration depth. However, exploiting
the full potential of ion beam therapy is still constrained by an increased sensitivity to
potential uncertainties in the estimated ion beam range. One major source of uncertainty
inherent in the current clinical practice of ion therapy treatment planning is the semi-
empirical conversion of X-ray CT information to ion Relative Stopping Power (RSP) (with
respect to water). Ion Computed Tomography (iCT) potentially eliminates this inaccuracy
by enabling a direct reconstruction of patients’ RSP distributions from a series of ion
radiographies. This could ultimately improve the clinical outcome of patients receiving ion
therapy and open new pathways for in-room adaptive treatment concepts.

This thesis aims at investigating the potential and implications of iCT for clinical appli-
cations with different ion species and two detector configurations: cost-effective integration-
mode and state-of-the-art single-particle tracking. Therefore, a customized FLUKA Monte
Carlo (MC) simulation framework is developed to mimic the scanned ion beam delivery
and beam characteristics of clinical facilities. Moreover, different methodologies of it-
erative tomographic image reconstruction are explored. Based on a prototype detector
system under investigation at the Heidelberg Ion-Beam Therapy Center, the capabilities of
an integration-mode instrumentation, which potentially enables an easier translation into
clinical realization, are examined. In particular, carbon iCT enables an average RSP accu-
racy better than 1% in experimental and simulation-based phantom studies. The developed
signal-processing strategy demonstrates a substantial gain in image quality. However, the
limited spatial resolution due intrinsic range mixing effects is identified as a major con-
straint for an imaging application in treatment planning. Single-particle tracking iCT,
particularly helium iCT, yields superior image quality at lower physical dose exposure for
an ideal detector compared to integration-mode. The clinical potential of single-particle
tracking iC'T is quantitatively evaluated by assessing the dose calculation accuracy, demon-
strating reduced range uncertainties in proton therapy treatment planning with respect to
current clinical practice. In order to provide first detailed estimations on the radiobiolog-
ical implications related to clinical-like iCT acquisition conditions, the FLUKA MC code
is coupled to the mechanistic repair-misrepair-fixation model and the Monte Carlo dam-
age simulation algorithm. Findings indicate that iC'T potentially causes reduced biological
DNA damage compared to diagnostic X-ray CT spectra used for treatment planning imag-
ing. To bridge the gap toward the potential clinical realization of ion imaging, a proton
iCT scanner dedicated to small animal imaging is characterized and optimized. Based
on MC simulations for the proposed layout improvements, a spatial resolution of around
3mm~! and sub-0.5% RSP accuracy is obtained for phantom reconstructions. The system
enables accurate imaging capabilities for treatment planning in pre-clinical research, which
is expected to provide superior range accuracy compared to the current state-of-the-art.






“It is not possible to be a scientist unless you believe that it is good to learn. It is not
good to be a scientist, and it is not possible, unless you think that it is of the highest value
to share your knowledge, to share it with anyone who is interested. It is not possible to
be a scientist unless you believe that the knowledge of the world, and the power which this
gives, 1s a thing which is of intrinsic value to humanity, and that you are using it to help
wn the spread of knowledge, and are willing to take the consequences.”

J. Robert Oppenheimer






“The saddest aspect of life right now is that science gathers

knowledge faster than society gathers wisdom.”

Isaac Asimov

Introduction

1.1 Radiation Therapy: from X-rays to Particle Beams

In cancerous cells the orderly process of cell division and death fails, resulting in uncon-
trolled proliferation. This can cause severe damage to adjacent tissue and organs, or spread
to other body parts with life threatening consequences for the patient. Nowadays, cancer is
the second leading cause of death globally, and incidence and mortality are rapidly growing,
accounting for around 9.6 million deaths in 2018 as estimated by the WHO [2014]. The
reasons for this trend are complex but reflect the inevitable population aging, as well as
changes in the prevalence and distribution of the main risk factors [Bray et al., 2018|. The
earliest written reference to cancer! is the ancient Egyptian Edwin Smith Papyrus, written
approximately 3000 B.C. [Hajdu, 2011|. Even though the author concluded at this time
that “there is no treatment’ |Breasted, 1930, nowadays modern medicine offers various
patient-tailored treatment forms. These encompass among others chemotherapy, surgery,
immunotherapy and radiation therapy. The latter has become a standard for most cases

and is received by around two-thirds of cancer patients [Durante and Paganetti, 2016].

!The word cancer was not explicitly mentioned since it dates back to the Greek physician Hippocrates
at around 400 B.C.
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The foundation of the field of radiation science dates back to the discovery of X-rays by
Wilhelm Conrad Rontgen in 1895, the natural radioactivity by Henri Becquerel in 1896,
and the isolation of radium and polonium by Marie and Pierre Curie in 1898. Those trans-
formative moments made modern radiation oncology possible so it could benefit mankind
[Das and Paganetti, 2015]. More than 100 years of experience established radiation ther-
apy as one of the main treatment modalities in oncology. Technological advances like
computerized treatment planning, the introduction of non-coplanar mega-voltage X-rays
and dynamic geometrical field shaping significantly improved the therapeutic effectiveness
of electromagnetic radiation. However, due to its physical and radiobiological properties
the application of conventional photon irradiation is intrinsically constrained, especially

for radio-resistant tumors.

The use of energetic charged particles like protons or carbon ions to overcome afore-
mentioned limitations of conventional radiation was first outlined in a seminal article by
Robert Wilson [1946]. The favorable depth-dose distribution is characterized by a steep
increase close to the end of the range, the so-called Bragg peak (cf. figure 1.1), which
can be exploited to obtain highly conformal dose distributions. Additionally, heavy ions
experience reduced lateral and longitudinal scattering, complemented with a beneficial dif-
ferential biological effect [Amaldi and Kraft, 2005]. Those properties can be exploited to
achieve an excellent conformation of the dose to the distal and lateral side of the target.
Wilson’s idea was picked up few years later by Cornelius A. Tobias at the Lawrence Berke-
ley Laboratory, California, pioneering the medical use of accelerated particle beams in first
biology experiments and clinical trials [Tobias et al., 1952, 1958]. In the next decades
ion therapy development continued in various research facilities worldwide like the Gustav
Werner Institute, Sweden |Larsson, 1961|, the Harvard Cyclotron Laboratory in Cambridge,
Massachusetts [Kjellberg et al., 1962] or the National Institute of Radiological Sciences,
Japan [Kanai et al., 1980]. With the first dedicated hospital-based particle therapy facility
starting operation in 1990 at the Loma Linda Medical Center [Slater et al., 1992], particle
therapy finally moved from nuclear physics laboratories into health care environment. This
was a crucial step since dedicated patient care within a hospital-based ion therapy center
is a prerequisite for the treatment of pediatric patients requiring anesthetics [Goitein et al.,
2002]. Nowadays, the use of Two-Dimensional (2D) intensity-modulated raster scanning
[Haberer et al.; 1993] with active energy variation allows dose conformity to the tumor
with a spatial precision never observed until then [Debus et al., 2000]. By December 2018

around 70 proton and 11 carbon ion therapy centers are operational in 17 countries with
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many more under construction or in planning stage [PTCOG]|, demonstrating the emerging
role of ion therapy in modern radiation oncology. However, its undeniable potential comes
at the burden of an increased sensitivity to any source of uncertainty between planned and

delivered dose application (cf. figure 1.1, red lines).
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Figure 1.1: Depth-dose distribution for a Spread Out Bragg Peak (SOBP) (black solid), its
constitute pristine Bragg peaks (gray solid), and a 10 MV photon beam (gray dashed). The
individual pristine Bragg peaks are modulated in energy to match the tumor extent in depth.
Longitudinal shifts in the dose distributions (red) can be caused by unaccounted uncertainties or
anatomical variations along the beam path.

1.2 Imaging with Ion Beams

The use of ion beams for imaging is not a new idea, it dates back almost sixty years. The
theoretical conception was A.M. Cormack’s work on the ’Representation of a Function
by Its Line Integrals, with Some Radiological Applications’ |Cormack, 1963, 1964]. The
noble laureate already recognized that his method has strong potential for proton imaging
and proton therapy treatment planning in order to ‘produce the high ionization at just the
right place’. The surprising fact that exactly this problem is still a remaining challenge in

modern particle therapy, demonstrates that it is highly non-trivial.



4 1. Introduction

The experimental landmark studies were conducted by A.M. Kochler [1968] at the
Cyclotron Laboratory of Harvard university, obtaining the very first proton radiography
(cf. figure 1.2a). Steward and Koehler [1973] demonstrated that proton radiography pro-
vides superior visualization of the internal structures and tumors within specimens com-
pared to X-ray imaging. The first to apply charged particles to tomographic imaging was
Goitein [1972] based on projection data measured using an alpha particle beam. His work
demonstrated the potential of iterative image reconstruction algorithms and evaluated in
detail image resolution and artifacts. Conceptual and experimental advances were achieved
by the pioneering work of Hanson et al. [1981] (cf. figure 1.2b) at Los Alamos Laboratory,

as nowadays state-of-the-art single-particle tracking approach [Hanson et al., 1982].

The use of heavy ions was explored at the Bevatron accelerator at Lawrence Berkeley
Laboratory [Benton et al., 1973|. Tobias et al. [1977] showed the elimination of motion
artifacts and the detection of tissue stopping power differences as small as 0.2% for the
use of carbon ion beams. Those studies were supported by findings of Sommer et al.
[1978], demonstrating superior density resolution of ion imaging for tumors in pathological

specimens compared with X-rays even at low radiation dose.

Due to technical limitations at that time, for example the sparse availability of dedicated
particle accelerators, ion-based imaging could not keep up with the rapid development of
X-ray imaging. However, the up-rise of proton therapy as a new treatment modality in
the 1990s also revived the interest in ion imaging. The work of Schneider and Pedroni
[1995] at the Paul Scherrer institute in Switzerland demonstrated the potential of proton
radiography for range verification. They also acquired images of a living animal patient
[Schneider et al., 2004] and later on established the usefulness of proton imaging as a tool
for patient-specific quality control of ion therapy treatment plans [Schneider et al., 2005].
Recent developments in detector and accelerator technology together with the clinical need
for improved range accuracy initiated the foundation of the Proton Computed Tomography
(pCT) collaboration in 2003 [Schulte and Wroe, 2012]. Even though ion imaging has not
yet reach clinical application the topic is gaining increased attention from the medical

physics research community.

From a technological point of view, experimental limitations of the complex detector
systems are still challenging a clinical realization. This initiated the revived interest in
simplified integration-mode systems, especially for carbon ions [Telsemeyer et al., 2012;
Rinaldi et al., 2013]. Furthermore, promising results for helium ions [Gehrke et al.; 2018b;

Piersimoni et al., 2018] have been recently published, once again indicating that the chosen
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ion type has strong impact on the final image quality. However, a significant gain in
treatment planning quality relative to single and dual energy X-ray Computed Tomography
(xCT) still needs to be demonstrated [Johnson, 2018].

FRRARERS {11 P08

(a) (b)
Figure 1.2: (a) First published proton radiography by Koehler [1968]. (b) pCT image of a
29.5 cm diameter polyethylene phantom by Hanson et al. [1981].

1.3 Aim and Outline of this Thesis

This thesis contributes to the development of ion imaging in the following topics:

Performance comparison of different ion species for integrating and single-particle

tracking detector systems.

Demonstration of a gain in treatment plan quality compared to xCT.

First insights on radiobiological implications of ion imaging irradiation scenarios.

Development and optimization of a pre-clinical pCT setup for small-animal imaging.

The aim is to compare and further improve ion imaging for different detector systems and
ion species in order to demonstrate a gain in treatment planning quality without exceeding
dosimetric constraints, ultimately bringing Ion Computed Tomography (iCT) closer to a

clinical realization.
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The first part contributes to the ongoing search for the ideal iCT detector system
and particle species with the final goal of improving the treatment plan quality. Hence,
the second part aims at demonstrating the gain in range accuracy for proton therapy
treatment planning associated with iCT for realistic clinical cases in direct comparison
to xCT. Since future patient applications put forward dosimetric constraints, the third
part provides the first dedicated investigation of the biological implications related to
high-energy low-dose iCT irradiation scenarios. While various phantom investigations have
been performed, the final piece for bringing ion imaging into the clinical environment might
be the demonstration of its capabilities in pre-clinical applications. Therefore, the last part
of this work reports on the optimization and performance of a dedicated pCT system for
pre-clinical research currently under development at our department within the European
Research Council funded Small animal proton Irradiator for Research In Molecular Image-
guided radiation-Oncology (SIRMIO) project.

This thesis is organized as follows. In chapter two a comprehensive overview on the
main physical and radiobiological aspects of ion beam interactions with tissue is given.
Chapter three introduces the principles of ion-based transmission imaging within the con-
text of ion therapy, emphasizing the peril and origins of range uncertainties. Chapter four
presents the necessary techniques of iCT simulation and reconstruction required for the
following investigations. The fifth chapter contains an experimental and simulation-based
investigation of a cost-effective integration-mode detector system, encompassing advanced
post-processing and potential detector upgrades. Chapter six presents the evidence that
iC'T can reduce range uncertainties in proton therapy treatment planning for cranial cases.
Chapter seven introduces the results for estimating the radiobiological implications of typ-
ical iCT irradiation scenarios using a coupling between the FLUKA Monte Carlo (MC)
code and the Repair-Misrepair Fixation (RMF) model. The eighth chapter describes the
development and optimization of a pC'T' system for pre-clinical research within the SIRMIO

project. Finally, conclusions and future perspectives are summarized in the last chapter.



“No one any longer pays attention to - if I may call
it - the spirit of physics, the idea of discovery, the
idea of understanding. I think it’s difficult to make
clear to the non-physicist the beauty of how it fits
together, of how you can build a world picture, and

the beauty that the laws of physics are immutable.”
Hans Bethe

Basic Principles of Ion Beam Interaction
with Matter

The treatment of deep-seated tumors with 15-30cm penetration depth requires
mildly-relativistic (up to § ~ 0.6 — 0.7) ion beams with initial energies of around
150-430 AMeV (A - mass number) [Durante and Paganetti, 2016]. However, the clinical
implementation typically demands precision in the order of a few millimeters, which re-
quires accurate knowledge of all involved physical and biological processes. Therefore, this
chapter features the description of the most important interaction mechanisms of charged
particles with matter. The differences arising for proton, helium and carbon ion beams
will be highlighted and the consequences for the clinical implementation of ion therapy are

outlined, ultimately constituting the rationale of iCT.

2.1 Physical Properties of Ion Beams

In order to understand the capabilities and limitations of ion-based transmission imaging,

it is necessary to review the basic physics principles of charged particle interaction with
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matter. Ions quasi-continuously slow down (and finally come to rest) by a very large num-
ber of Coulomb (or electromagnetic) interactions with atomic electrons. Charged particles
can also be scattered and deflected by multiple Coulomb interactions with atomic nuclei.
Additionally, they can undergo nuclear reactions causing the production of secondary par-
ticles. Schematics of the interaction mechanisms are shown in figure 2.1 for the case of
protons. These three distinct processes, stopping, scattering and nuclear reactions, primar-
ily determine the characteristics of the different ion species for iCT and strongly influence

design concepts of detector systems.

Recoil nucleus

(a) (b) (c)

Figure 2.1: Schematics of the main interaction processes of charged particles with matter in the
case of protons: Coulomb interaction with atomic electrons (a) and nuclei (b), nuclear interaction
with atomic nuclei (¢). Figure redrawn from Newhauser and Zhang [2015].

2.1.1 The Stopping of Ions

The dominant energy loss mechanism for ions in the therapeutic energy regime' is excita-
tion and ionization of atomic orbital electrons via inelastic Coulomb interaction (cf. figure
2.1a). Intuitively, the amount of energy loss depends on the interaction time, hence, the
energy loss rate of ions is expected to increase gradually in the process of slowing down.
Above 1 AMeV the average rate of kinetic energy loss dE per unit path length dz, called
stopping power S, can be described by an analytic expression derived by Bethe [1930] and
Bloch [1933a]. The first-order relativistic version of this so-called Bethe-Bloch equation is

_JdEN\ ., o, 7 2mec? B , C )
S——<dx>—47rremec ,0652 [ln( T - B —Zt—ln(1'>—2 : (2.1)

where r, and m, are the classical electron radius and rest mass, respectively, Z and 8 = v/c

are the charge and velocity (relative to the speed of light) of the incident particle, respec-

!The energy regime of interest in ion therapy is around 3-300 MeV for protons |Gottschalk, 2012],
corresponding to approximately 0.01-51.45 cm penetration depth in water [Berger et al., 2005].
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tively. p. and (/) are the electron density and mean excitation energy of the traversed
material with atomic number Z;, respectively. The shell correction C' [Fano, 1963| ac-
counts for the invalid assumption that the orbital electrons of the absorber are at rest
(relative to the projectile), being a prerequisite of the Bethe-Bloch theory. This effect can
be up to 6% for protons in the energy regime of 1-100 MeV [Ziegler, 1999]. The density cor-
rection o includes the stopping power reduction due to polarization effects in the medium,
which reaches the 1% level only above 500 MeV [Berger et al., 1993].

At energies of around 10 AMeV the projectile velocity becomes comparable to the or-
bital electron velocity (a~ 0.008c¢). This causes a mean charge state reduction due to a
dynamic interplay of energy loss and recombination effects. Thus, the projectile charge
Z in equation (2.1) must be replaced by an effective charge Zeg, which can be calculated

from the empirical formula of Barkas [1963]:
2
Zoy =7 (1 _ 13582 3’) . (2.2)

Higher-order Born corrections terms (i.e., Barkas et al. [1963] and Bloch [1933b] cor-
rections) are generally of minor importance for therapeutic energies and can be safely
neglected for protons above 100keV |[Emfietzoglou et al., 2009]. While equation (2.1) de-
scribes only interactions with atomic electrons (the so-called electronic stopping power),
it is permissible to neglect contributions from interactions with atomic nuclei or inelastic
radiative interactions (Bremsstrahlung) in the clinically relevant energy regime. The spe-
cific energy loss of 'H, “He and '2C ions in water is compared in figure 2.2, exemplifying
the substantial increment in stopping power for heavier particles.

From the perspective of the material traversed by a charged particle beam, two im-
portant quantities are of substantial impact for the stopping power: the electron density
pe and the mean ionization potential (I). Since equation (2.1) primarily determines how
an ion beam will dissipate its energy, the knowledge of those parameters is fundamental
for properly planning tumor therapy with ion beams. Section 3.2 will review how this is
typically performed in current clinical practice and discuss the associated uncertainties.

It should be kept in mind that the concept of stopping power as presented in
equation (2.1) expresses the mean energy loss for a large number of particles of identi-
cal energy. Nonetheless, each individual ion will experience a slightly different energy loss
throughout the slowing down process due to the stochastic nature of the interaction. This
phenomenon is called energy loss straggling and will be of considerable importance for iCT,

representing an intrinsic accuracy limitation as it will be outlined in detail in section 3.4.3.
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Figure 2.2: Total (unrestricted) stopping power for 'H, *He and '2C ions in a water target. Data
obtained from the FLUKA [Ferrari et al., 2005; Bohlen et al., 2014] MC code.

Within the central limit theorem (i.e., for many collision events), energy loss fluctuations
can be described by a Gaussian probability density function for which only the first two
moments are non-zero. Using the theory of Bohr [1915, 1948], the variance of the energy
loss distribution for particles of atomic number Z and initial energy F, passing through

material of thickness x is represented by [Scheidenberger et al., 1996]:

o2 )2 /w 1— 3 B%(E(Eo, "))

4T € 1 — B2(E(Ep, 2')) da’, (23)

@mzmﬁ&(
where € is the vacuum permittivity. For energy losses exceeding 20% of the original beam
energy, Bohr’s theory becomes inaccurate since higher order moments can have substantial
contributions causing a skewed non-Gaussian distribution. In this case, representing also
the iCT scenario, a more accurate description is given by the theory of Tschalar and
Maccabee [1970], as it was demonstrated by Schulte et al. [2005].

As a consequence of energy straggling, particles of the same initial energy will have
a slightly different penetration depth or range, called range straggling. To estimate this
distribution of path lengths, range’ needs to be defined. While there is not a general

concept of range, most commonly one refers to the so-called Continuous Slowing-Down
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Approximation (CSDA) range, which is defined for an ion of initial energy FEy by:

0 7ap\ ! 0 dE
E,) = = E=—[| == 2.4
fesoa (£0) /E(d:z:> ! /E S 0

where S is the stopping power of the traversed material according to equation (2.1). There-
fore, the range of charged particles in a certain medium is determined by the initial beam
energy as it is shown in figure 2.3. One should keep in mind that Rcspa does not necessar-
ily represent the penetration depth in beam direction, since equation (2.4) solely takes into
account the energy loss while neglecting deflection due to scattering. However, for protons
and especially heavier ions of clinically relevant energies, the ratio between projected and

CSDA range (also known as detour factor) is close to 1.
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Figure 2.3: Range of 'H, “He and '2C ion pencil beams in a water target. Data obtained from
dedicated FLUKA [Ferrari et al., 2005; Bohlen et al., 2014] MC simulations to reproduce the beam
line of the Heidelberg Ion-Beam Therapy Center (HIT) [Bauer et al., 2014].

The range straggling variance o% can be computed from the energy loss straggling by

[Schardt et al., 2010]
Bo (dop\ (dE\ T
2 E
= —_— — dE 2.
o /0 ( du > <dx> ’ 29

which leads to the following dependency of the straggling width o on the beam range R:

on = % / (%) , (2.6)
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where m and E are the projectile mass and energy, respectively, and f is a slowly varying
absorber specific function [Rossi, 1952].

According to equation (2.6), range straggling is reduced for heavier ions. Experimental
measurements by Tessonnier et al. [2017] demonstrated that protons and helium ions ex-
hibit a 3.3 and 1.7 times larger straggling than carbon ions in water, respectively, which is
only slightly inferior to the 1/y/m scaling. In tissue range straggling corresponds to around
1.1% of the mean range for protons, while being only 0.5% and 0.3% for helium and carbon
ions, respectively [Linz, 2012].

2.1.2 Multiple Coulomb Scattering

When passing through material, ions will be deflected laterally (cf. figure 2.1b). This is
mainly caused by a large number of elastic and semi-elastic Coulomb interactions with
atomic nuclei causing an accumulated effect called Multiple Coulomb Scattering (MCS).
The most comprehensive theoretical approach to MCS was developed by Moliére [1948].
Since the rigorous calculation can be algebraically complex and cumbersome, Fermi and
Eyges [Eyges, 1948] developed a Gaussian theory for the transport of particles in matter.
A very practical formula for the scattering angle standard deviation 6, after traversing a

material slab of thickness = has been proposed by Highland [1975]%:

7 €T 1 €T
= 14.1MeV = | — |1+ =1 — 9.
0o eva X, [ + 51081 (Xo)] , (2.7)

where X is the radiation length of the material and p and v are momentum and velocity
of the projectile with atomic charge number Z, respectively.

From the 6y < Z/(pv) proportionality in equation (2.7) conclusions can be drawn about
the scattering behavior of different ion species. Considering the same range, the angular
spread of protons and helium ions is around 3.6 and 1.8 times larger than pertains to carbon
ions |Gehrke et al., 2018a], being in good agreement with experimental measurements by
Tessonnier et al. [2017]. The lateral spread of ion pencil beams due to MCS in water can
be seen in figure 2.4.

The original Highland formalism has been generalized by Gottschalk et al. [1993] for
thick targets and when using the refinements proposed by Lynch and Dahl [1991] one

obtains the following expression for the moments A, (z1,z2) (n = 0,1,2) of the projected

2The exact energy constant from Highland’s original publication is 17.5 MeV x 1.125/v/2 = 13.92 MeV.
However, nowadays 14.1 MeV is normally used as standard.
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angular-spatial distribution at depth x5, assuming an entry depth z;:

An(ar, ) = E2 |1 400381 (221 QX/“ EANCETI (2.8)
n\+1,42) — L¥ . X(] o v XO ) .

where Ey = 14.1 MeV is an empirical energy constant (cf. equation 2.7).
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Figure 2.4: Lateral scattering of 'H, He and '2C ion pencil beams in a water target. The initial
beam spot size is 0.5 cm Full Width at Half Maximum (FWHM). Data obtained from FLUKA
[Ferrari et al., 2005; Bohlen et al.; 2014] MC simulations.

2.1.3 Nuclear Reactions

In addition to electromagnetic processes, there is a finite probability that charged particles
directly interact via the nuclear force (cf. figure 2.1c¢). These interactions can be elastic (ki-
netic energy is conserved and internal states of target nucleus and projectile are unchanged)
or inelastic (kinetic energy is not conserved and nuclei may undergo fragmentation). Nu-
clear reactions of helium/carbon ions (nucleus-nucleus) and protons (nucleon-nucleus) are
conceptually different since the incoming nucleons are not free [Kraan, 2015].
Nucleus-nucleus collision reactions can be described by the two-step abrasion-ablation
model |[Hiifner et al., 1975] illustrated in figure 2.5. In the rapid (~ 10722 — 1072!5s)
abrasion stage, nucleons are striped off in the overlapping reaction zone (fireball) forming
pre-fragments. During the ablation stage, which proceeds on a much slower time scale

(~ 1071 — 10710 s), remaining fragments decay by evaporation into the observed stable
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nuclei under emission of y-rays, neutrons, protons, leptons or light fragments. Concluding,
reactions at several hundreds of MeV can cause a complete disintegration of projectile and
target. A description of the nuclear interaction models implemented within the FLUKA

MC code is presented in section 4.1.1.

Collision Abrasion Ablation
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Figure 2.5: Illustration of the abrasion-ablation model for a peripheral nucleus-nucleus collision
with overlap factor b. A fireball is formed in the central region by partial particle removal (abrasion
stage). Afterwards, the created fragments and the fireball will de-excite (ablation stage). Figure
adapted from Gunzert-Marx et al. [2008] and Durante and Paganetti [2016].

The nucleus-nucleus reaction cross-section g exhibits a strong energy dependence be-
low 20 AMeV [Parodi, 2004] causing distinct maxima. However, for higher energies the
dependence vanishes and geometrical factors become decisive since peripheral collisions
prevail. The cross-section can be parameterized by the energy-independent Bradt-Peters

formula [Bradt and Peters, 1950]:
2
o = w12 (A;/?’ + AV b) , (2.9)

where A, and A; are mass number of projectile and target, respectively, b is the overlap
or transparency factor (cf. figure 2.5) and 7y the nucleon radius. Nuclear reactions have
important practical consequences, affecting ion therapy and ion imaging. First, the primary

particle fluence ® decreases exponentially as a function of depth z inside the target:
d(x) = OgeNoT | (2.10)

where N is the atomic density of target nuclei in the material, o is the total reaction
cross-section and P, is the initial fluence. Accordingly, approximately 20% of all protons
in a typical treatment scenario will undergo inelastic nuclear interactions [Durante and
Paganetti, 2016] and only around 50% of all >C ions actually reach the designated depth.
A comparison of the primary particle fluence reduction for protons, helium and carbon

ions is shown in figure 2.6 for the case of a water target.



2.1 Physical Properties of Ion Beams 15

For protons, only target fragmentation can occur. While the contribution of nuclear
recoils is mostly negligible since they remain approximately at rest at the interaction point
[Paganetti, 2002], the spatial pattern of energy deposition is considerably affected [Parodi,
2004]. This is predominantly due to the liberation of secondary protons and neutrons, since
light nuclei do not undergo fission. Additionally, the neutron contamination has a non-
negligible biological impact causing an increased risk for radiogenic late effects [Newhauser
and Zhang, 2015]. Interestingly, neutron contributions inevitably produced inside a patient
are comparable for carbon ion and proton therapy at the same treatment dose [Schardt
et al., 2010]. The reduced number of 2C ions required for the same energy deposition
compensates for the higher neutron yield per primary ion. Projectile fragmentation is one
of the major reasons why ions beyond oxygen are no longer considered for particle therapy.

For helium and carbon ions projectile fragmentation is the dominant contribution to
secondary particle build-up along the penetration depth (cf. figure 2.7). Fragments are
mostly forward emitted in the laboratory frame with nearly the original velocity |Greiner
et al., 1975], creating a mixed radiation field. Light fragments with Z < Z, travel be-
yond the initial primary range due to the A/Z? range dependence at the same velocity
(cf. equation (2.4)), causing an energy deposition tail. Additionally, the energy deposition
is deteriorated by an enhanced lateral spread compared to MCS [Schardt et al., 2010].

100

B (2] [0}
o o o
T T T

Normalized fluence [%]
N
o

O L L L L L
0 5 10 15 20

Depth in water [cm]

Figure 2.6: Fluence attenuation of 'H, *He and '?C ion pencil beams in a water target. Data
obtained from FLUKA [Ferrari et al., 2005; Bohlen et al., 2014] MC simulations.
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Figure 2.7: Attenuation of 200 MeV /u '2C ions and build-up of secondary fragments in a water
target. Data obtained from FLUKA [Ferrari et al., 2005; Bohlen et al., 2014] MC simulations.

Secondary particles and photons originating from nuclear interactions inside the irradia-
tion target can be exploited for image-guidance by means of Positron Emission Tomography
(PET) [Parodi et al., 2008|, prompt gamma imaging [Polf et al., 2009] or interaction vertex
imaging [Henriquet et al., 2012|. Thereby, the ion beam range can in principle be inferred
in vivo |[Parodi and Polf, 2018].

2.2 The Depth-Dose Distribution of Ion Beams

In the previous sections, the energy loss mechanisms of ions were described. However,
the most important physical quantity in radiation therapy is dose [Schardt et al., 2010].
Following the ICRU [2011] report, absorbed dose is defined as the ratio of the mean energy
de imparted by ionizing radiation to matter of mass dm and has the unit Gray (Gy). For
a mono-energetic ion beam of fluence ®, the absorbed dose D in a thin slice of absorbing

material with mass density p is related to the stopping power S by:

3
D[Gy| =1.6x 107" x S [@} x O [%] 1 {ﬂ] . (2.11)
nm CcIm 1% g

The final Three-Dimensional (3D) dose distribution of charged particle beams results

from a combination of the different physical interaction mechanisms (i.e., stopping, scatter-
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ing and nuclear reactions). The main characteristic feature is a steep dose increase toward
the end of the ion beam range (cf. S oc 572 in equation (2.1)), the so-called Bragg peak
[Bragg and Kleeman, 1905], since the energy loss increases as the ions slow down. The
longitudinal and lateral spread is enhanced for lighter ions (cf. o  1/y/m in equation
(2.6) and 6y < Z/(pv) in equation (2.7)). For heavier ions a dose tail due to light nuclear
fragments appears beyond the Bragg peak as shown in figure 2.8.
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Figure 2.8: Dose distributions of 'H, “He and '2C ion pencil beams in a water target. The beams
have approximately the same range and an initial Gaussian beam spot size of 1 cm FWHM. Data
obtained from FLUKA [Ferrari et al., 2005; Bohlen et al., 2014] MC simulations.

2.3 Biological Aspects of Ionizing Radiation

In addition to the aforementioned enticing physical properties originating from the
depth-dose distribution, the use of ions for tumor therapy can relate to more favorable
biological effects than it pertains to sparsely ionizing radiation®. In contrast, this ad-
vantage can potentially cause undesired side effects for iCT, which might constrain the

tolerable imaging dose, ultimately limiting the achievable image quality.

3Photons (i.e., X-rays or y-rays) are generally considered sparsely ionizing radiation.
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2.3.1 Response of Cells to Radiation

The discrete energy depositions associated with charged particles can cause radio-toxic
damage sites within cellular structures. The most deleterious lesion is thought to be the
Double-Strand Break (DSB), a break in the backbone of each of the opposite DNA strands
causing high cytotoxicity [Lomax et al., 2013]. Differences in the biological response be-
tween different radiation qualities mainly reflect variations in the microscopic spatial dis-
tribution (clustering) of damage along the radiation track. Since the proximity of DNA
lesions relates to the damage severity, clustering may be considered as a signature of ion-

izing radiation in contrast with endogenously induced lesions [Lomax et al., 2013].

Coulomb interactions of heavy charged particles liberate electrons of sufficient energy to
generate further ionization, so-called d-electrons. Consequently, a radial dose distribution
is created around the primary ion track. The concept of Linear Energy Transfer (LET) was
introduced to quantify the local concentration of energy deposition, taking into account
the residual range spectrum of secondary electrons. The ICRU [2011] defines LET as the
mean energy lost by charged particles due to electronic interactions in traversing a distance
dz excluding the kinetic energies of all electrons released by charged particles above A (not

excluding the binding energy):
dEa
LET = — 2.12
dz ’ (2.12)
becoming numerically equal to stopping power in the limit of A — oo and is conventionally
used in radiobiology. Hence, the LET is correlated with the ionization density along a
particle track for a certain ion. However, different ions of the same LET have different

ionization density due to the energy dependence of the track diameter [Fokas et al., 2009].

Low energy ions create a dense emission pattern of slow J-electrons below 100eV
[Krdmer and Durante, 2010], as illustrated in figure 2.9. Those electrons have a mean
free path of a few nm, bearing a high probability for ionization events in each of the 2nm
separated DNA strands. High-LET radiation enhances the complexity of clustered dam-
age sites, which have reduced repairability, since lesions are increasingly concentrated in
space. By contrast, the energy of secondary electrons from photon beams is much higher
than for ions [Paganetti, 2015]. Therefore, high-LET radiation gives rise to a substantially
larger number and higher complexity of aberrations compared to low-LET radiation, even
for the same number of ionization events per cell [Nikjoo et al., 1998]. Due to the energy
dependence, the LET at the end of the particle range is much larger than in the entrance

channel creating a differential effect which is compelling for ion therapy.
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Figure 2.9: TRAX (http://bio.gsi.de/DOCS/trax.html) [Krdmer| simulations of d-electrons
from 'H and '2C ions of various energies. Adapted from Krimer and Durante [2010].

Generally, the interaction of radiation with living cells is a complex sequence involv-
A simplified

schematic of the biological manifestation of DNA damage is shown in figure 2.10. The

ing physical, biochemical and physiological processes |[Paganetti, 2012a].

secondary electrons liberated by the primary radiation can either directly create DNA
damage or indirectly via the formation of highly reactive radicals. The contribution of
direct damage increases for high-LET radiation. DNA lesions can be chemically repaired
under hypoxia but can also become permanently fixated (i.e., being lethal) by oxygen radi-
cals [Carlson, 2006]. Additionally, damage can be repaired by the cells to their original state

via enzymatic repair. Unrepaired or misrepaired cells will either die or form mutations.

2.3.2 The Relative Biological Effectiveness

The repair capability of a cellular system can be parameterized by a linear-quadratic re-
lationship. According to the Linear-Quadratic (LQ) model [Kellerer and Rossi, 1978| the


http://bio.gsi.de/DOCS/trax.html

20 2. Basic Principles of Ion Beam Interaction with Matter

Correct

Chemical Repair Enzymatic Repair . ¢
103s v 10%to 10% s epair

. direct
Radiation >
—o—> lonization
& —3 Cell death <@— Misrepair
Excitation 10°s Isrepal
10%s 10°s ol ns
indirect 10°%-10°s
® @ @ > OH*=J»
1018 to 1010 s )
Mutations
DNA damage

Figure 2.10: Schematic illustrating the biological manifestation of DNA damage and the corre-
sponding time scales. Redrawn from Frese [2011].

cell survival S following the exposure of a dose D is expressed through
—InS=aD+ pD?, (2.13)

where o and § are damage coefficients for lethal lesions made by one-track and two-track

action, respectively. Both depend on cell type, biological endpoint and radiation quality.

As discussed in the previous section, ion beams have a drastically different biological
response compare to photons. This is quantified by the Relative Biological Effectiveness
(RBE), which is defined as the ratio of the low-LET reference radiation dose Dy (typically
MV X-rays or y-rays from ®°Co) and the charged particle radiation dose D, required to
generate the same biological effect. The RBE is a versatile weighting factor, depending
among others on the reference radiation quality, the radiosensitivity of the irradiated cell
line or tissue (i.e., a and [3), the level of biological effect (i.e., the biological endpoint) and
dose (cf. figure 2.11a) as well as the LET and particle type (cf. figure 2.11b).

Within the framework of the L.QQ model the RBE for reproductive cell death due to the

particle irradiation of dose Dj,, is given by

a? 4 48x Dion(ction + BionDion) — @
RBELq (ax, Bx, ®ions Bions Dion) = \/ X X 2é = ) X’
X ion

(2.14)

where ax/fx and Qion/Pion are the tissue radiosensitivity parameters for the reference
radiation and the considered (particle) radiation, respectively.

In order to calculate the RBE for a specific irradiation scenario, biophysical models are
required. Those models aim at relating the biological effect of ionizing radiation to the

physical properties of the incident radiation field.
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Figure 2.11: (a) Schematic of the RBE definition for the endpoint of 10% and 1% cell survival.
(b) Dependence of the RBE on LET for 'H, “He and ?°Ne ion beams. Experimental data from
Belli et al. [1992] and Furusawa et al. [2000]. Redrawn from Schardt et al. [2010].

For protons simplified LET-based models can be used, since the relevant proton LET
range is low enough to show a linear relationship with dose-response parameters [Paganetti
et al., 2015]. However, in clinical practice a single value of 1.1 is widely used. Even though
there is strong evidence that the RBE is not constant, clinical data can neither indicate that
a generic value of 1.1 is unreasonable, nor that it is correct [Paganetti, 2012a|. For heavier
ions, modeling radiation action mechanistically is complicated because the radiation field
can be complex due to nuclear fragmentation reactions (cf. section 2.1.3).

Various phenomenological [Wilkens and Oelfke, 2004; Carabe-Fernandez et al., 2007,
Wedenberg et al.; 2013] and mechanistic [Hawkins, 1998; Friedrich et al., 2012] biophysical
models have been proposed by several groups worldwide. The selected approach in this
thesis is the RMF model [Carlson et al., 2008], which will be presented in chapter 7.1.

2.4 Conclusions

This chapter provided the basic macroscopic quantities relevant for the physical description
of ion therapy and particle imaging. The interaction mechanisms (stopping, scattering and
nuclear reactions) of heavy charged particles with matter determine the depth-dose distri-
bution, characterized by a steep gradient at the end of the particle range, the Bragg peak.
While ions heavier than protons are benefiting from reduced MCS and range straggling,

they also deliver an increased physical dose per particle and suffer from an elevated loss of
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primaries in depth due to nuclear fragmentation.

From a radiobiological point of view, ionization processes causing DNA lesions are
responsible for cell killing. The DNA damage response pathway is a complex multistep
process involving various mechanisms like damage recognition, cell cycle regulation and the
activation of appropriate repair systems [Karger and Peschke, 2018]. The biological impact
is quantified by the RBE, which is a multivariate weighting factor being typically larger
for heavier ions than for protons. Furthermore, the biological dose computation requires

sophisticated biophysical models.



“We must not forget that when radium was discov-
ered no one knew that it would prove useful in hos-
pitals. The work was one of pure science. And this
is a proof that scientific work must not be considered
from the point of view of the direct usefulness of it.
It must be done for itself, for the beauty of science,
and then there is always the chance that a scientific
discovery may become like the radium a benefit for

humanity.”

Marie Curie

fon Imaging in the Context of Tumor Therapy
with Charged Particles

The aim of radiation therapy, in conjunction with other treatment modalities, is to deprive
cancer cells of their uncontrolled proliferation potential and ideally kill all cancer cells
while avoiding damage to healthy tissue. Since the discovery of X-rays by W. C. Rontgen
in 1895, this lead to a quest for the 'magic bullet’ [Durante and Paganetti, 2016] to cure
cancer. Through their favorable physical and biological properties outlined in chapter 2,
ion beams are generally a promising candidate. On paper the superiority of ions over
X-rays is uncontroversial. Especially heavy ions could enable better biological dose to the
tumor, improved sparing of healthy tissue and allow to overcome anatomical constraints
due to adjacent sensitive structures as illustrated in figure 3.1. However, reality is different

and some argue that this superiority is solely ‘theoretical’ [Zietman, 2015].

Putting aside the cost ratio of 4.8 and 3.2 for a combined (i.e., carbon ion and proton)
and proton-only facility compared to photons, respectively [Peeters et al., 2010], a main
allegation is the absence of clear evidence for the magnitude of clinical benefit. A general

consensus however is the usefulness for the treatment of pediatric cases because the risk for
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secondary malignancies is expected to be lower due the reduced integral dose. Nevertheless,
most proton therapy treatments for example in the United States are not pediatric but
for prostate cancer, which showed very small benefit, if there is any, over photons [Schulz-
Ertner and Tsujii, 2007]. However, there is an expectation that a meaningful clinical
superiority of ion beam therapy will be demonstrated on the long term for many indications
via controlled clinical trials and large patient cohorts [Zietman, 2015].

A more immanent issue is the susceptibility of ion therapy to range uncertainties and its
impact, which is intrinsically related to the implemented ion therapy workflow in clinical
practice. This currently imposes a major constraint in exploiting the full potential of ion
therapy. In order to understand these limitations, the next two sections will outline the
ion therapy workflow with a dedicated focus on the appearing uncertainties, the current

clinical solutions and how modern imaging technology like iC'T can contribute.

Photons Protons Caron

0 4%

Photons Carbon

Protons Carbon

Figure 3.1: Comparison of photon, proton and carbon ion treatment plans for the same histology
at different sites such as glioblastoma multiforme (intracranial), lung (thoracic region), and rectal
carcinoma (abdominal/pelvic). Extracted from Schlaff et al. [2014].

3.1 Clinical Implementation of Ion Beam Delivery

Producing ion beams of energies up to 430 AMeV requires a powerful and dedicated ac-
celerator, the ’engine’ of a treatment facility [Goitein, 2008]. Nowadays, synchrotron and

cyclotron are the two types of commercially available particle accelerators. A cyclotron
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is a fixed energy machine with a variable-thickness degrader (typically made of carbon or
beryllium) downstream for adjusting the beam energy. Conventional cyclotrons are until
now only used for protons since carbon ions exhibit a three times larger magnetic rigid-
ity making the machine excessively large [Schippers, 2009]. In contrast, synchrotrons are
typically used for heavier ions and allow the generation of a variable energy by extracting
the increasingly accelerated beam at the right moment. An important consequence is the
intrinsically bunched macroscopic beam structure (with gaps of few seconds).

The generated unmodified beam is typically not confined to the extent of the target
region. Hence, the dose spread of the particle beam, laterally and in depth, has to be
modified while being transported toward the patient, ideally from an arbitrary direction
using a rotating gantry. A gantry is a mechanical system that rotates the magnets of
the last part of the beam line system around the patient [Schippers, 2015]. Generally
one distinguishes two different approaches of beam delivery: passive scattering and active
pencil beam scanning. The description will be restricted to the latter since all studies

presented within this thesis use the state-of-the-art scanning technique.

3.1.1 Pencil Beam Scanning

In pencil beam scanning, ion beams are magnetically displaced using two sets of fast dipoles
located several meters upstream the isocenter in order to control the lateral position and
scan the target region. This can be performed as discrete step-and-shoot approach (spot
scanning) or in continuous fashion (raster scanning). In order to obtain a reasonable
treatment duration, the ion beam is deflected with a velocity of approximately 1 cm/ms at
the isocenter [Schippers, 2009]. Furthermore, the depth (i.e., the Bragg peak location) is
dynamically modulated by varying the beam energy. The basic principle of pencil beam
scanning is indicated in figure 3.2.

This technique enables to ‘paint’ basically any arbitrary dose distribution, enabling ex-
cellent dosimetric conformity even for complex geometries. In addition, ions are used more
efficiently with only few being lost during the delivery and no patient-specific hardware
like apertures or compensators are required (except for shallow tumors). Consequently,
the secondary neutron background is substantially reduced [Goitein, 2008]. The scanning
technique also allows the irradiation of a relatively large field of view of up to around
40 x 40 cm? [Smith, 2009]. Certainly, the most important advantage of active beam de-
livery lies in the possibility to simultaneously modulate the cross-field fluence and the

depth-dose curve of the radiation. This so-called Intensity-Modulated Particle Therapy
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Figure 3.2: Basic principle of active pencil beam scanning: the accelerated ion beam is deflected
by two sets of dipole magnets in order to scan a layer of the target region. By dynamically
varying the beam energy the Bragg peaks can be located at variable depths. Furthermore, the
beam intensity can be individually adjusted to allow full degrees of freedom in modulation.

(IMPT) is the true equivalent of intensity-modulated radiotherapy with photons [Lomax
et al., 2015] and provides additional degrees of freedom for treatment planning.

Among the disadvantages of this technique are interplay effects induced by organ and
tumor motion [Schippers and Lomax, 2011]. This increased sensitivity demands complex
safety mechanisms to accurately control the beam intensity since the parameter values can

be time-driven for raster scanning [Schippers, 2009].

3.1.2 Discrepancies Between Planned and Delivered

Dose Distribution

An obviously crucial task is the accurate application of the dose distribution to the patient.
However, there are several sources for uncertainties solely from the dose delivery itself, i.e.,
independent of dose calculation or treatment planning.

These uncertainties are for example related to the measurement uncertainty for commis-
sioning in water and the beam reproducibility [Paganetti, 2012b]. Another major source of
uncertainties are geometric changes due to patient-tissue variability. Two factors contribute
to range degradation in patients [Palta and Yeung, 2012|. First, the patient setup inside
the treatment room. Any discrepancy in the patient alignment relative to the planned
beam direction is directly translated into range degradation, which can be up to several

millimeters [Liebl et al., 2014]. This can be caused by tissue heterogeneities, high-Z re-
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gions or air cavities which can shift tangential to the patient surface. Nevertheless, even
for perfect external patient setup the internal structures can change due to inter-fractional
anatomic variations like tumor shrinkage, weight gain/loss or filling up of sinuses.

Finally, any material present in the beam potentially represents an additional source
of errors. The impact of materials in terms of their Water-Equivalent Thickness (WET)
needs to be determined precisely. Non-uniformity of accessories like immobilization masks
or tabletops can introduce uncertainties in the energy loss [Palta and Yeung, 2012|. This
becomes even more important for compensator and apertures used in passive (but occa-
sionally also in active) beam delivery. Additional issues arise for respiration and other
intra-fractional motions, which demand dedicated strategies like rescanning, gating or a

combination thereof as reviewed by Mori et al. [2018].

3.2 Treatment Planning for Ion Beam Therapy

Treatment planning describes the process of designing a patient-specific plan of the beam
arrangement by tweaking various beam-specific and treatment plan-specific parameters.
The final goal of a treatment plan is to fulfill the clinical goals set by the radiation oncologist
while providing the best trade-off between tumor coverage and sparing of sensitive healthy
tissue. The decision about the plan goodness is based on the inspection and quantitative
evaluation (e.g., using dose-volume histograms) of the predicted dose distribution that will
be (ideally) delivered to the patient during the treatment.

Three different treatment planning concepts can be distinguished: for the Single Field
Uniform Dose (SFUD) method, each individual beam angle is optimized in a way to deliver
the prescribed homogeneous dose to the target by using Spread Out Bragg Peaks (SOBPs).
In contrast, for field patching each single patch field covers only partially the tumor with
the distal end of one or more fields being directly abutted against the lateral edge of another
field to obtain a nearly uniform dose profile along the junction [Goitein et al., 2002]. The
aforementioned IMPT method delivers individually inhomogeneous dose distributions from

various directions to yield the desired homogeneous combined dose [Trofimov et al., 2007].

3.2.1 Calculation of an Optimized Patient Dose Distribution

A prerequisite for treatment planning is clinical information in terms of a collection of
imaging data along with the experience and expertise of a radiation oncologist. The three

main roles of treatment planning are [Lomax et al.,, 2015]: (1) identification and delin-
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eation of the target volume and critical Organs At Risk (OARs), (2) treatment design and

(3) definition of machine control data.

The first task is typically supported by various co-registered complementary imaging
modalities (e.g., contrast enhanced xCT, magnetic resonance imaging or PET). The treat-
ment design requires imaging data providing information about the expected ion beam
energy loss within the patient. However, during the facility commissioning, dosimetric
basic data (i.e., laterally integrated depth-dose distributions, fragment spectra (for heav-
ier ions) and lateral dose parametrization) are only measured in water for different beam
energies, supported by dedicated MC simulations [Parodi et al., 2012]. Since a patient is
made up of various different tissues, the ion beam range must be scaled according to the
Relative Stopping Power (RSP) of the traversed materials. The RSP is defined as the ratio
of the electronic stopping power for the specific material and water. Using the Bethe-Bloch

equation (cf. equation (2.1)) without correction terms, one obtains for a material m:

In (2mec® %/ (In) (1= B%)) — B

RSP =ne x4 Cm.2 B (L) 1-F) -5 " A (3.1)

where 7. = pem/pew is the relative electron density (with respect to water), ¢f is the
particle velocity, m, is the electron mass and (/,,,) and (I,,) are the mean ionization energies
for material m and water, respectively. Schneider et al. [1996] investigated different tissue
substitutes and found that the parameter K varies between 0.975 and 1.025, but is rather
insensitive to the value of (/). This demonstrates that relative electron density and RSP
are closely related but neither is the ratio unity nor is it constant |[Langen et al., 2015].
In current clinical practice, the RSP map of a patient is derived via a semi-empirical

conversion from the Hounsfield Unit (HU) values of a (single energy) xCT.

In order to make judicious decisions about a treatment plan, one needs to accurately
predict the dose distribution finally received by the patient. For this calculation two
fundamentally different computational approaches exist: semi-empirical analytical dose

calculation algorithms and MC-based techniques.

Analytical algorithms for particle therapy treatment planning were first developed by
Chen et al. [1979] using a broad-beam ray casting technique and are now universally used
in routine practice. They are considerably faster than MC methods by making numer-
ous simplifying approximations; nevertheless, they are still accurate enough in most cases.
However, particularly simple ray-casting methods have limited capabilities in modeling

the disturbance of the dose distribution behind complex heterogeneities causing a change
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of the energy spectrum (so-called range dilution). This is incorporated in more advanced
analytical pencil beam methods [Schaffner et al., 1999]. Here, the beam is modeled as a su-
perposition of various individual narrow beamlets, referred to as pencil beams, with weights
directly proportional to the particle fluence. This conceptual assumption is suitable since
narrow ion beams are pencil beams by themselves, but with an extended phase space. Sim-
ply speaking, the general formalism for calculating the energy released within the patient
is a convolution of the modeled fluence along the pencil beam axis with a lateral energy
diffusion kernel [Clasie et al., 2012|. However, the accuracy of the implementation highly
depends on the mathematical description of the involved physical interactions. Advances
of the original concept, especially for the use in IMPT were provided by the algorithm of
Soukup et al. [2005] introducing beamlet decomposition into sub-spots to better account
for the finite extent of lateral heterogeneities and an accurate incorporation of the nuclear
beam halo. All these improvements are very important for active scanning beam delivery
since small discrepancies significantly accumulate for several thousands of beamlets. An
example for analytical pencil beam algorithms is the dose engine of the Treatment Plan-
ning System (TPS) RayStation (RaySearch Laboratories, Stockholm, Sweden), which was

used for the work presented in chapter 6.

MC transport techniques are still considered as gold standard for dose calculation since
they are more accurate than analytical models in that they take into account the physical
interaction processes during the transport [Newhauser and Zhang, 2015]. MC methods
employ repeated random sampling of the interaction probability density function to math-
ematically create the particle transport. The general concept of this technique for particle
interaction simulation will be outlined in chapter 4.1. The main dosimetric difference com-
pared to analytic algorithms is the adequate handling of MCS, which becomes particularly
important at high-density gradients in the beam direction like tissue-lung interfaces [Pa-
ganetti et al.; 2015]. A drawback of MC methods is the long computational time, since
the statistical uncertainty of the dose calculation depends on the number of simulated
particle histories. While this is currently limiting the use in clinical routine [Knopf and
Lomax, 2013], recently developed GPU-based MC approaches have already demonstrated
a significant gain in speed [Jia et al., 2014].

A crucial step in treatment planning is the optimization of the plan itself, aiming at the
best possible treatment plan for the patient. For the case of active scanning, this requires to
determine the pencil beam intensities that result in a dose distribution as close as possible

to the desired one. Forward planning or 'manual optimization’ (even though in a strict
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mathematical sense it can not be termed optimization since it neither involves an iterative
adjustment nor is it systematic |[Trofimov et al.; 2012]) is normally too complicated if the
irradiation scenario allows for several degrees of freedom. Hence, the optimization problem
is mathematically formulated as an inverse problem within the TPS solved by minimizing
or maximizing an objective function while satisfying a set of constraints. This represents a
typical large-scale optimization problem, particularly if convex objectives and constraints
are used |[Unkelbach et al.,; 2015]. Commercial systems typically solve the treatment plan
optimization problem with a single-criterion approach |Trofimov et al., 2012], i.e., using a
composite objective function as overall estimate of the plan quality.

One should keep in mind the importance of the underlying imaging data of the patient.
Independent of the selected planning strategy, dose calculation engine or optimization
algorithm, any variations between the planning data and the actual patient will cause

changes in the dose distribution delivered to the patient.

3.2.2 Range Calculation Uncertainties

Range calculation uncertainties can be divided in two groups: those from the patient model
based on volumetric Computed Tomography (CT) data and those from the dose calculation
algorithm itself. Since most uncertainties do actually depend on the beam energy or range
it is appropriate to give uncertainties in % rather than mm |[Paganetti, 2012b)].

As previously mentioned, the image data plays a crucial role since it defines the ions’
energy loss assumed by the TPS, consequently defining the dose distribution. Current clin-
ical practice in treatment planning relies on the use of tomographic images obtained with
X-rays. Here one has to distinguish between two approaches, since they provide different
accuracy in estimating the required RSP. Single energy xCT (normally simply referred to
as xCT) is the commonly used system. In contrast, Dual Energy Computed Tomography

(DECT) is a modern approach; however, already being commercially available.

Single energy xCT
Single energy xC'T images contain information on the photon attenuation coefficient pu

relative to water expressed in the HU scale:

HU = “’”M;“w x 1000 = <’;—m - ) x 1000, (3.2)

where p,, and p, are the attenuation coeflicients for the specific material m and water,
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respectively. Since there is no functional relationship between the measured HU values
and the required RSP because photons and ions interact in a substantially different way,
semi-empirical calibration methods are commonly employed. In the most straightforward
approach called ’tissue substitute’ calibration, tissue substitutes of known density and
chemical composition are imaged [Chen et al., 1979]. Afterwards a direct calibration of the
HU values is performed by either calculating or measuring the corresponding RSP values

and assuming a bi-linear relationship.

The stoichiometric calibration proposed by Schneider et al. [1996] allows a more precise
conversion and is widely adopted in the ion therapy community. This method is based on

the dependence of the photon attenuation on the electron density p.:

U= pe (Upe _'_acoh + O_incoh) : (33)

co incoh

where 0P, 0% and o are the cross sections (per electron) for the photo electric ef-
fect, coherent (Rayleigh) and incoherent (Compton) scattering, respectively. For a poly-
energetic X-ray beam with a peak energy less than 1.02 MeV, the cross sections can be

parametrized by their dependence on the effective atomic number:
5= p, <er23.62 | eoh 5186 KKN) 7 (3.4)

where KP¢, K°P and KXY are constants which characterize the relative contribution of
photoelectric interaction, coherent and incoherent scattering for the used xC'T" energy spec-
trum, respectively. Z and Z are the effective atomic numbers for composite materials,

calculated according to Jackson and Hawkes [1981].

Using the parametrization of equation (3.4) for water and a certain material m,
equation (3.2) becomes a function of three scanner-specific parameters (KP°, K" and

K®N) and three object-related parameters (pe n, 7, and Zm)

HU [KPGZ%GQ I Kcth}ﬁSG I KKN]
—+1=n, - - . (3.5)
1000 [erzf,um + [ coh 7186 +KKN]

The stoichiometric calibration procedure can be separated into four steps [Yang et al.,
2012]: (1) imaging of tissue substitutes of known density and elemental composition using
the treatment planning xCT scanner; (2) calculation of the scanner-specific K parameters

using the measurements of step 1; (3) calculation of "wirtual’ (i.e., theoretical) HU/RSP
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pairs for typical human tissues based on the density and elemental composition recom-
mended in the literature using equations (3.1) and (3.5); (4) derivation of the calibration
curve using a linear regression within each tissue group and connecting them piece-wise.
An exemplary stoichiometric calibration curve is shown in figure 3.3. The range uncer-
tainties related to the RSP estimation with this method were comprehensively reviewed

by Yang et al. [2012], who separated the following uncertainty categories:

e Uncertainties inherent to the xCT imaging of the patient (e.g., scatter conditions and

beam-hardening effects).

e Uncertainties in the parametrization of the stoichiometric formula (i.e., parameters
KPe, Kt and KXN in equation (3.4)).

e Uncertainties due to the use of ICRU standard tissues, which do not reflect tissue

variations of individual patients (e.g., due to age or health).
e Uncertainties in the mean excitation energies.

e Uncertainties from the assumption of an energy-independence of the RSP by the dose

calculation algorithm.

The composite range uncertainty (95™ percentile) for different treatment sites was
3.0 — 3.4% due to the large abundance of soft tissue [Yang et al., 2012].

Dual energy xCT
DECT exploits, in contrast to single energy xCT, scans at two different photon energy
spectra (typically 100kVp and 140kVp). This is currently implemented in several differ-
ent ways in commercial scanners [Siegel et al., 2016; Albrecht et al., 2018]: Source-based
solutions include dual-source (two X-ray tubes and two corresponding detector rows), dual-
spin (one X-ray tube acquiring two consecutive spiral scans at different kVp), rapid kVp
switching (alternation between different kVp energies within the same gantry rotation),
and twin-beam (one X-ray spectrum that is separated in two energy spectra by using a
split-filter). Detector-based DECT solutions include dual-layer ’sandwich’ detectors (two-
layered detector separating the high- and low-energy photons) and photon counting xCT.
The additional information gathered by a DECT system can be used to separate the
material contributions of the measured attenuation coefficient. Using the material decom-
position approach, the material of every voxel imaged can be separated into its constituent
elements expressed in terms of two basis materials (e.g., soft tissue and calcium). Al-

ternatively, and more important for RSP estimation, the spectral decomposition enables
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Figure 3.3: Stoichiometric calibration curve and calculated HU-RSP pairs for various biological
tissues. Image redrawn from Schaffner and Pedroni [1998].

a transformation of the attenuation maps into relative (to water) electron density (7. )
and effective atomic number (Z.g). In contrast to the stoichiometric parametrization, not
the relative contribution of the different interactions mechanisms (i.e., the K parameters)
have to be determined, but their energy dependency using measurements with two dif-
ferent photon spectra. Various methods [Alvarez and Macovski, 1976; Heismann et al.,
2003; Saito, 2012; Landry et al., 2013] have been proposed for spectral decomposition ei-
ther in projection-domain (i.e., in pre-reconstruction space) or in image-domain (i.e., in

post-reconstruction space).

Yang et al. [2010] first proposed the use of DECT for reducing RSP uncertainties with
respect to the stoichiometric calibration for single energy xCT. They found an empirical
linear relationship between the logarithm of the mean excitation energy and the effective
atomic number of human tissues. Hence, DECT provides basically by design the possibility
to calculate RSP directly from equation (3.1), which makes the DECT method more robust

against tissue variations in density and elemental composition |[Langen et al., 2015].
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Theoretical RSP improvements of up to 2% were observed for selected materials using
DECT images for proton range calculation in MC simulations [Hiinemohr et al., 2014].
Hudobivnik et al. [2016] and a retrospective clinical study by Wohlfahrt et al. [2017]
demonstrated the improved range accuracy for DECT-based treatment planning. Water-
equivalent range variations with respect to single energy xCT were mostly 1.5% for cranial
tumors, putting forward some design goals for iCT as it will be discussed in chapter 6.

Besides the HU-RSP conversion, the HU values themselves have intrinsic uncertainties
arising from noise, beam-hardening and the tomographic image reconstruction (e.g., partial
volume effects from density heterogeneities).

Furthermore, non-organic high-Z materials like dental fillings, hip prosthesis or ortho-
pedic hardware cause extremely high X-ray absorption outside the HU range of clinical
scanners. Direct beam paths through implants can create range underestimation of up to
77% [Jikel, 2006], which can be significantly reduced by using empirical range relations
[Jékel et al., 2001|. Furthermore, the strong attenuation causes ’streak artifacts’ during
the tomographic reconstruction that can severely deteriorate the image quality and cause
large uncertainties in the ion beam range [Jikel and Reiss, 2007].

Regarding the dose calculation, density heterogeneities can be difficult to handle cor-
rectly by pencil beam algorithms (predominantly for protons, depending on the distribution
of the inhomogeneities relative to the treatment field [Bauer et al., 2014]). This is mainly
caused by range degradation effects due to MCS. For small fields, analytical calculations
in patients might misevaluate the dose in the target volume by several percent when the

ion beam is traversing a highly inhomogeneous region [Bueno et al.; 2013].

3.3 Managing Range Uncertainties in Clinical Practice

Particle therapy can be considered a double-edged sword. On the one hand it allows a
potentially high dose conformity to the target region being one key benefit. However, on
the other hand, this also entails the peril of inflicting severe damage to undesired locations
if the particle range is not precisely known and accurately delivered. This is schematically
illustrated in figure 3.4. The depth-dose distribution of protons (and ions in general) is
more susceptible to range uncertainties than for photons. This can cause a considerable
dose to an OAR (e.g., the brainstem) behind the target. Consequently, exploiting the full
potential of particle therapy is challenged by uncertainties appearing in just about every

link of the radiotherapy chain [Mohan et al., 2015], as outlined in previous sections.
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Figure 3.4: Potential dosimetric benefit of a treatment with protons compared to photons and
the impact of range uncertainties on the depth-dose distribution. Idea of the illustration adapted
from Knopf and Lomax [2013].
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There are several sources of evidence that those uncertainties can affect the clinical
outcome. An investigation of the effective dose level by Herring and Compton [1971] con-
cluded that a therapeutic dose should be administered with a precision of 3.5% expressed
as one relative standard deviation in the combined uncertainty, which resulted in the nowa-
days accepted standard of 5% (as a 1.5 standard deviation) [Mijnheer et al., 1987]. This
corroborates that uncertainties have to be adequately considered in the treatment planning
and delivery stage for mitigating complications. In order to manage range uncertainties
in clinical practice, the following general strategy is adopted [Mohan et al.; 2015]: one
tries to minimize uncertainties as much as possible and residual uncertainties need to be

incorporate in the planning and delivery process.

Minimize range uncertainties

Reducing geometric uncertainties requires special care and adequate immobilization dur-
ing the treatment process. This is necessary to ensure stability of the patient’s external

contour throughout the treatment and hence a reproducible water-equivalent target depth
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to minimize inter-fractional variations [Wroe et al., 2015]. For head and neck or CNS
(central nervous system) tumors, fiberplast masks, bite blocks and stereotactic frames can
be used to guarantee a consistent patient pose. The use of those devices requires accurate
characterization and incorporation into the treatment plan. Furthermore, they have to
undergo regular quality assurance checks to verify variations with respect to the initial
commissioning, for example from mishandling or aging. In addition to external anatomy
uncertainties, also inter- and intra-fractional variations of internal structures should be
minimized. For prostate cancer treatments for example, endorectal balloons or spacer gels

can be utilized to hold the prostate gland against the bony pelvic anatomy [Kruse, 2015].

In order to guarantee a precise positioning of the immobilized patient with respect
to the isocentric treatment room coordinate system, image guidance is required. One
common solution is the alignment of orthogonal kV setup images with planned digitally
reconstructed radiographs relative to skeletal features or implanted fiducials. Recent com-
mercially available Cone Beam Computed Tomography (CBCT) or xCT on rails opened
the door to volumetric and even time-resolved in-room imaging in ion therapy (but not
always at the treatment isocenter) |[Landry and Hua, 2018]. However, the use of CBCT
brings technological and workflow challenges. Low image quality due to spatially varying
artifacts from increased scattering and truncation impedes the use for treatment plan-
ning. Using dedicated correction methods [Landry et al., 2015; Park et al., 2015], CBCT

represents the first step toward implementing adaptive ion therapy.

Generally, it would be desirable to acquire a new treatment planning CT if image
guidance reveals anatomical changes and adaptation is deemed necessary. However, this

needs to be balanced against the additional imaging dose [Mohan et al., 2015].

In order to cope with metal artifacts, software-based correction methods have been
proposed and are on the verge of becoming commonly available in clinical practice [Schwarz,
2011]. However, studies on their actual usefulness in clinical proton therapy treatment

planning are scarce [Langen et al., 2015].

Incorporating residual uncertainties

It is crucial to maintain the designated dose level within the whole target region for a treat-
ment to be effective. Thus, the radiation oncologist will delineate the visible tumor tissue
(the so-called gross tumor volume) and based on his/her experience generally expand it to
the clinical target volume to account for the suspected invisible spread of the tumor [En-
gelsmann and Bert, 2012|. Finally, in a similar manner to photon therapy, systematical and

random errors are combined into an additional margin, defining the Planning Target Vol-



3.3 Managing Range Uncertainties in Clinical Practice 37

ume (PTV). This margin is typically around 3.5% of the prescribed range plus a constant
setup uncertainty, which turns out to be relatively conservative [Paganetti, 2012b)].

It might appear tempting to aim an ion beam directly against a critical OAR as indi-
cated in figure 3.5(a). However, this is typically avoided in clinical practice due to range
uncertainties and potential complications. Hence, intrinsically robust treatment plans are
desired, for instance by applying fields tangentially to the OAR (cf. figure 3.5(b) and (c)).
Yet this comes at the cost of compromising the dosimetric conformity, since the lateral

edge is less sharp than the distal falloff (in particular for proton beams).

(a) "optimal" single- (b) "robust" multi- (c) "robust" patched-
field plan field plan field plan

[ soft tissue [ |Bone [ JTumor [ ]Brainstem

Figure 3.5: Different ion therapy planning strategies and their potential sensitivity to uncer-
tainties in the ion beam range. Idea of the illustration adapted from Knopf and Lomax [2013].

Additionally, the plan robustness can be included in the plan optimization procedure
by integrating various uncertainty scenarios in the objective function. Thereby, potential
dosimetric effects of delivery and positioning uncertainties can be directly considered, for
instance by finding a treatment plan which is as good as possible for the worst case scenario
[Trofimov et al., 2012]. Ideally, the optimization should automatically yield a solution to the
planning problem, which is intrinsically robust to the considered uncertainties. However, if
one tries to ensure adequate target coverage under all likely uncertainties, it will inevitably
lead to unwanted over irradiation of neighboring normal tissues [Lomax, 2018]. Thus, it is
desirable to interactively explore different trade-off scenario, for instance by using multi-

criteria optimization techniques like Pareto surface navigation [Wedenberg et al., 2018].

The quantitative impact of remaining uncertainties on the ion beam range inside the patient

was evaluated in the exceptional articles by Paganetti [2012b] and Yang et al. [2012].
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3.4 Medical Imaging with Ion Beams

Despite extensive efforts to reduce the origins and consequences of range uncertainties,
the clinical implementation of ion beam therapy still faces limitations from remaining
uncertainties. It was shown that imaging plays a crucial role for obtaining the patient’s
RSP map, accurate positioning and to establish an adaptive workflow. Since the current
X-ray imaging technology has its limitations in physics and implementation, one might ask:
Why not image the patient with the radiation quality available in any treatment room,
i.e., the ion beam itself? In contrast to therapeutic applications, ion imaging requires
higher energies capable of fully traversing the patient in order to measure changes in the
transmitted ion range. It turns out that iC'T indeed represents an intuitive solution to

significantly reduce or rule out most sources of range uncertainties.

The basic idea of transmission imaging is to infer the internal structure of an imaged ob-
ject from changes in the transmitted radiation quality due to physical interactions within
the object itself. In this sense iCT and xCT are the same. However, there are funda-
mental differences between the use of X-rays and ion beams. Neutral particles will either
interact with the traversed tissue or not and consequently the number of X-rays exponen-
tially decreases, providing information about the photon attenuation within the imaged
object. In contrast, charged particles will interact in various substantially different ways
as reviewed in chapter 2. This allows to distinguish four different ways of using ions for

imaging depending on the selected observable [Bopp et al., 2013].

The commonly used energy loss iCT exploits the residual energy or range of par-
ticles, which can be related to the RSP as it will be discussed in detail in the following
section. Since mono-energetic particles undergo various interactions within the imaged
object, statistical fluctuations cause an energy loss dispersion. Consequently, the outgoing
particles are characterized by an energy distribution (cf. equation (2.3)), which could be
exploited in the reconstruction of energy straggling (or range dilution) iCT. Fur-
thermore, particles passing through an object undergo attenuation' in much the same way
as X-rays, except that the underlying mechanism is nuclear interaction, as discussed in
section 2.1.3. In attenuation iCT the measured fluence reduction can be related to the
inelastic nuclear cross section [Quinones, 2016]. In a similar manner as energy loss, ions

experience an increase in deflection with depth due to MCS as explain in section 2.1.2.

Tt should be noted that there is some inconsistency in the literature about attenuation and scattering
imaging, since there is a certain interplay between both mechanisms.
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The total mean-square angular deflection of exiting ions after traversing the imaged object
can be used to reconstruct the relative scattering power in the so-called scattering iCT
[Taylor et al., 2016].

The work of this thesis will solely focus on energy loss iCT, referred to as simply iCT
from now on, since the reconstructed RSP represents the most important quantity for ion

therapy treatment planning.

3.4.1 Motivation and Rationale

The main rationale for pursuing the development of ion transmission imaging is established

by four key advantages over xCT:
e Reduced physical dose exposure to the patient [Schulte et al., 2005].
e Improved ion therapy treatment plan accuracy due to reduced RSP uncertainties.

e Absence of artifacts from high-Z materials appearing during the tomographic image

reconstruction [Oancea et al., 2018].

e [so-centric imaging within the treatment room enables new pathways in image-guided

and adaptive ion therapy [Landry and Hua, 2018|.

Not all points have been equally addressed in the literature so far, especially the second
one. Hence, the treatment planning accuracy will be subject of this thesis.

The reduced RSP uncertainty is a consequence of iCT facilitating a direct RSP recon-
struction. Following the Bethe-Bloch equation (cf. equation (2.1)), the energy loss rate (or

stopping power) can be express as:

N % (r) = S (I(r), E(r)) = n(r) F(I(r), B(r)), (3.6)

where 7. is the relative electron density. F'is a function of the mean excitation energy (1)

and particle energy (F) for an ion of charge Z:

B Z* " 2m.c®  B*(E) e
FI(0.50) = C s | (T 25y ) - #) &7

where C' = 4n 7’3 MeC? Pew =~ 0.170 MeV /cm combines various physical constants, m, is the

electron mass and [ is the ion velocity relative to the speed of light. The dependence on r
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indicates that all quantities are varying with the position inside the patient. In addition,
F is also energy dependent; hence, the differential equation (3.6) does not represent a
variable separable form. Dividing equation (3.6) by the stopping power of water (S,,) and
rearranging the terms one obtains

1 S(I(r), E)

Su(lu, E) Sw(l,, E) dz, (3.8)

where the right-hand side contains the RSP. Under the assumption that RSP is energy-
independent, which holds within 0.7 % for tissue-equivalent materials in the energy range
of 80 MeV to 300 MeV [Arbor et al., 2015], the energy and position dependent variables
can be separated. This allows to perform the integration along the 3D ion trajectory I' of
length L. The left-hand side yields the amount of water corresponding to the measured
energy loss, also called Water-Equivalent Path Length (WEPL):

Eout

dE
WEPL — — / it /L RSP (T(1)) dT(1). (3.9)
Ein
Mathematically, equation (3.9) describes a Radon transform, representing the basis for
reconstructing tomographic images. Hence, iCT allows to directly relate the required RSP
to measured WEPL values, which are either calculated from the energy loss (requiring
knowledge of I,,) or obtained by calibrating the detector response to material of known RSP
and thickness [Bashkirov et al., 2016]. It should also be noted that the use of equation (3.9)

demands an estimation of the ion path I" through the object.

3.4.2 Principle of Ion-Based Transmission Imaging and Contem-

porary Instrumentation Designs

After the mathematical and theoretical foundation of ion imaging, this section discusses
the implemented imaging procedures and state-of-the-art systems. Most systems currently
under development by various groups worldwide are focused on proton imaging due to the
sparse availability of heavy ion accelerators. iCT systems have to be distinguished in two

conceptually different approaches: single-particle tracking and integration-mode.
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Single-particle tracking

State-of-the-art single-particle tracking requires tracking of individual ions through the
imaged object and a measurement of the associated residual energy or range. The typi-
cal imaging system as illustrated in figure 3.6 contains two pairs of 2D position-sensitive
tracking detectors before and behind the patient, providing information on the ion position
and direction required for the path integral in equation (3.9). Additionally, this enable to
take into account the MCS inevitably occurring during the passage through the imaged
object. The second component of the detector is a calorimeter or range telescope (or a
hybrid system) to measure the residual energy or range of ions, respectively, which can be
correlated with the required WEPL information.

The most complete ion imaging system is the phase-II scanner of the US pCT collabora-
tion. Each tracker module consists of two paired 0.4 mm thick silicon strip detectors with a
strip pitch of 0.228 mm |Giacometti et al., 2017|. The residual energy is obtained from a fast
polystyrene-based scintillator divided in five stages to reduce requirements on the energy
resolution |Bashkirov et al., 2016]. With the detection rate of the current system a full scan
of half of a human head can be completed in less than 10 minutes [Johnson et al., 2016].

The British PRaVDA (Proton Radiotherapy Verification and Dosimetry Applications)
consortium initiated a project to develop the first fully solid-state imaging system for
pCT. Their tracker system, composed of silicon strip detectors originally developed for
the ATLAS experiment at CERN, provides an active area of around 10 x 10cm? and a
strip pitch of 90.8 pm [Taylor et al., 2016]. The unique feature of this system is to use a
stack of the same silicon strip detectors interleaved with absorbers for the range telescope,
working as range counter. This allows to cope with an extremely high proton fluence
of 2 x 10® protons/second [Esposito et al., 2018]. Recently, a research collaboration in
Norway proposed a similar high granularity digital tracking calorimeter based on CMOS
active pixel sensors [Pettersen, 2018].

The iMPACT (innovative Medical Protons Achromatic Calorimeter & Tracker) project
has the ambitious goal of achieving a global proton rate of 1 GHz [Mattiazzo et al., 2018],
thereby reducing the scanning time to a few seconds. CMOS active pixel sensors embedding
an innovative compression readout scheme are foreseen for the tracking system [Giubilato
et al., 2015]. For the WEPL information a range calorimeter is proposed, which is assembled
of up to 64 detection planes segmented into 16 fast (decay time <2ns) plastic scintillating

fingers arranged in orthogonal layers [Mattiazzo et al., 2017].
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A rather different approach is pursued by a group at the German Cancer Research
Center in Heidelberg for helium ions; however, currently only in radiography domain.
They employ a setup of three parallel Timepix detectors downstream of the imaged object
[Gehrke et al., 2018b]. These semiconductor pixel detectors can be operated either in time
mode for tracking or in energy mode to obtain the image contrast (based on the deposited
energy). Information from an additional pair of tracking detectors upstream of the imaged

object allows to calculate more sophisticated trajectory models [Gehrke et al., 2018a].

t ™\ 7 t

. . 2D position-sensitive .
High energy ion beam tracking detectors Calorimeter or range telescope

Beam energies of up to 400 MeV/u Position and direction of individual particles Residual energy or range of individual particles

Figure 3.6: Schematic of a single-particle tracking iCT detector system. Position and direction
of individual particles from a highly energetic ion beam are measured before and behind the object
of interest. The residual range or energy is obtained from a range telescope or calorimeter.

Integration-mode

Integration-mode systems use the accumulated signal from a finite number of particles
downstream of the imaged object. Hence, no position-sensitive tracking detectors are in
principle required. This enables simplified and cost-effective configurations with easier
operation and reduced technological requirements. Consequently, a variety of detector
instrumentation designs have been demonstrated for integration-mode, being especially
suitable for heavier ions, since they benefit from a smaller beam spot size and reduced
MCS. However, for the currently available technology and computational methodology
the dose exposure is typically several orders of magnitude larger than for single-particle
tracking, thus, potentially restricting the application to radiographic imaging.

At Massachusetts General Hospital Zygmanski et al. [2000] developed a pCT system
using a scattered broad beam, modulated in energy, irradiating a Gd>O,S:Tb intensifying
screen viewed by a cooled CCD camera. The measured intensity was calibrated to WEPL
based on a correlation between detector response and beam penetration depth by placing
absorbers of various thicknesses. Despite the implementation of a dedicated correction

strategy, reconstructed pC'T images were severely degraded by MCS edge artifacts.
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A similar system was employed for Carbon Computed Tomography (cCT) at the Na-
tional Institute for Radiological Sciences in Japan [Abe et al., 2002]. Their experiments
demonstrated that the reduced MCS of heavier ions significantly improves blurring effects
[Muraishi et al., 2009]. An upgraded instrumentation which was extended to human head
sized objects achieved a spatial resolution of 1 mm |[Muraishi et al., 2016].

Telsemeyer [2012] investigated the suitability of a commercial amorphous silicon flat-
panel detector with 800 x 800 pm? pixel size for cCT. The WEPL information was obtained
from a repeated irradiation sequence with pencil beams of different energies. This com-
mercial system enabled a promising RSP accuracy of 0.01; however, the clinical realization
was still constrained by an excessive imaging dose of 8 Gy [Telsemeyer et al., 2012].

Additionally, the energy modulation technique has been proposed in the context of
passively scatted proton beams degraded by a range modulator wheel [Testa et al., 2013].
Due to the time-controlled irradiation with known time-energy relationship, a time-resolved
dose measurement is encrypting the WEPL information of the traversed tissue. Proton
radiographies acquired with this technique for an amorphous silicon flat panel detector with
0.388 mm pixel pitch demonstrated a WEPL accuracy of better than 1% [Zhang et al.,
2018]. For state-of-the-art active pencil beam scanning, energy-resolved dose functions
have been proposed as an alternative [Bentefour et al., 2016].

An advancement in order to reduce the dose required with aforementioned
single-detector systems is a multi-layer approach providing an immediate residual range
measurement without active (or passive) energy variation. Rinaldi et al. [2013] and Ma-
gallanes [2017] investigated a multi-layer ionization chamber for carbon ion transmission
imaging. A detailed explanation of this system will be given in chapter 5. For protons, this
approach has been pursued with a commercial quality assurance detector [Farace et al.,
2016; Krah et al., 2018b]. Besides imaging applications, such instrumentation has also

been investigated in the context of patient positioning verification [Hammi et al.; 2018].

3.4.3 Physical Limitations and Technological Challenges

The quality of an iCT image predominantly depends on equation (3.9), i.e., the accuracy
of the WEPL measurement and path estimation, both being intrinsically limited by the
physical interaction processes taking place. The RSP accuracy is mainly constrained by the
WEPL resolution of the residual range/energy detector. However, since particles traversing
material encounter statistical energy loss fluctuations a certain residual energy distribution

occurs even for mono-energetic particles passing trough the same material. Thus the
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achievable WEPL resolution is intrinsically constrained by range straggling according to
equation (2.6). This corresponds to around 2.8 mm for 200 MeV protons and represents
an important design criteria for new detector instrumentation [Bashkirov et al., 2016]. An
additional uncertainty originates from the energy spread of the accelerator since no energy

measurement is performed upstream of the imaged object.

The ion path estimation precision strongly determines the spatial resolution of the re-
constructed image. For single-particle tracking, the accuracy is limited by the statistical
uncertainty of the used mathematical path model which will be discussed in section 4.2.
Furthermore, the accuracy depends on the tracker system characteristics [Bopp et al.,
2014]: (1) the spatial resolution of the position-sensitive trackers; (2) the material budget
of the innermost (i.e., closest to the imaged object) tracker half due to MCS in the mate-
rial; (3) the spacing between the two tracker halves and (4) the distance between object
and tracker causing an amplification of uncertainties in position and direction estimation.
Integration-mode systems are limited by the absence of direct position information since
neither trackers are typically employed nor can the integrated signal be correlated with a
single trajectory. Range dilution effects from lateral tissue heterogeneities can cause signal
ambiguities of difficult interpretation due to the finite dimension of ion beams [Meyer et al.,

2017]. Impact and potential solutions for this problem are investigated in chapter 5.

From a technological point of view, it is very demanding to develop detector instrumen-
tation operating close to the aforementioned intrinsic accuracy limits. In particular, it is
not straightforward to achieve the required energy resolution of 1% (for 200 MeV protons)
over the whole range of expected residual energy using a direct residual energy calorimeter
[Bashkirov et al., 2016]. Hence, hybrid detector systems [Giacometti et al., 2017] poten-
tially offer better WEPL resolution, but at the cost of a more complex instrumentation.
In general, it is very crucial to achieve excellent detector efficiency for a system involving
a set of measurements for each individual ion, since a single failure will cause the event to

be completely lost or at least substantially compromised [Johnson, 2018].

At high particle rates strip-based detectors can cause pattern-ambiguities due to the
one-dimensional segmentation. Furthermore, the good spatial resolution of the double-layer
design comes at the cost of an increased material budget. An alternative are pixel matrix
detectors providing 2D position information from a single sensor approach [Mattiazzo et al.,

2017]; however, further increasing the complexity of the system.

Keeping in mind the foreseen clinical application, a potential iCT system needs to work

at sufficient detection rate to achieve a reasonable acquisition time. This is important for
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economical advantages and patient comfort. Scan times of around six minutes have been
already demonstrated with current prototypes [Johnson et al., 2016] being close to the
design specification for the data acquisition of less than five minutes originally proposed
by Schulte et al. [2004a].

Another issue is that modern ion therapy systems are not designed for ion imaging
applications. Typical beam intensities are several orders of magnitude larger than the
MHz acquisition rate of current detector system. Nonetheless, manually reducing the
beam current using the beam line’s research-mode typically causes the intensity to drop
below the sensitivity threshold of beam monitoring systems, implemented in the nozzle of
therapeutic ion therapy beam lines [Langen et al.,; 2015]. This can create system interlocks

or compromise the beam steering accuracy of the scanning delivery.

Furthermore, the maximum beam energy provided by current accelerator technol-
ogy typically corresponds to around 30cm of water, except for the synchrotron-based
Radiance 330 proton therapy system (ProTom International, Inc., Flower Mound, TX,
USA) which enables up to 330 MeV (i.e., around 60 cm range in water) [Owen et al., 2016].
While this allows imaging for cranial locations and upper abdominal regions, it is insuffi-
cient to fully penetrate the hip region of a typical adult from all directions, and far short

of the shoulder-to-shoulder distance through a human male [Johnson, 2018].

As mentioned previously, time is a crucial aspect for clinical realization. This does not
only affect the acquisition itself but also the whole treatment planning workflow. A gantry
for rotating the ion beam around the patient to acquire the projection images, as well as
modern GPU implementations for dose calculation [Jia et al., 2012] and tomographic image
reconstruction [Schultze et al., 2018| are required to perform the whole treatment workflow
(i.e., imaging, treatment planning and delivery) inside the treatment room without re-

positioning of the patient or additional imaging technology.

Last, and maybe most importantly there is the question about the price. Systems
fulfilling all aforementioned criteria typically employ detector instrumentation (especially
semiconductor technology) from high-energy physics laboratories making them rather ex-
pensive. Thus, future clinical systems need to be affordable in order to avoid that ultimately

economical limitations prevent iCT to be an option for healthcare providers.
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3.5 Conclusions

Ion beam therapy has reached the stage of a widely adopted clinical tool. It has moved
from the laboratory to the clinic, and from an obscure activity to a real possibility for
healthcare professionals [Goitein et al., 2002|. The particular benefit of ion therapy is still
partially limited by uncertainties which are an inevitable part of the planning and delivery
stages. Understanding and managing uncertainties are of extreme importance in order to
obtain good tumor control and reduce complications [Palta and Yeung, 2012].

Modern analytic dose calculation engines contain an accurate and realistic description
of the physical processes undergone by ion beams within the patient. Nonetheless, MC dose
calculation is expected to provide a significant accuracy gain in complex geometries where
local range uncertainties due to MCS limit analytic algorithms, especially for light ions.
Independent of the dose calculation engine, the underlying imaging data impose limitations
on the accuracy of TPS predictions. The current clinical practice of deriving the RSP maps
of patients from single energy xCT information via stoichiometric or empirical calibration
introduces range uncertainties of around 3%. Practically speaking, this means that what
you see in the treatment plan is not what you get in the patient’ |[Palta and Yeung, 2012].

This intrinsic uncertainty when relying on xCT motivates the perspective use of iCT
to enable a direct reconstruction of RSP maps from measured WEPL information, thereby
eliminating range uncertainties inherent in the aforementioned calibration procedure. This
is expected to enhance the treatment planning accuracy, allowing a reduction of the related
safety margins for improving clinical outcome of patients receiving ion therapy.

However, currently no iC'T system is commercially available or has been integrated into
the clinical environment for patient applications. The optimal configuration, in terms of
detector instrumentation and particle type, is still under investigation. Besides technologi-
cal obstacles, the integrability into clinical practice with a dedicated and adjusted workflow
still has to be addressed. Nevertheless, iC'T has strong potential to be a imaging paradigm

shift in ion therapy, facilitating an image-guided and adaptive treatment workflow.



"There is also hope that even in these days of in-
creasing specialization there is a unity in the human

experience.”

Allan McLeod Cormack

Computational Methods for Ion Imaging

Investigations

As already indicated by the name ‘computed tomography’, computational methods are an
integral part of iCT. This does not only concern the tomographic image reconstruction
problem, but also the trajectory simulation and estimation. A key concept for the fol-
lowing iCT studies are MC methods. The FLUKA MC code [Bohlen et al., 2014; Ferrari
et al.,; 2005] was used to benchmark and support the experimental investigations, study
the image quality for clinical scenarios under controlled conditions and provide insight on
radiobiological aspects at iCT acquisition scenarios. This chapter will introduce the most
important concepts of the implemented simulation framework, trajectory estimation and

tomographic image reconstruction methods.

4.1 Monte Carlo Simulations

MC techniques are a broad class of computational methods used to determine the average

or probable behavior of a system based on the outcome of a large number of trials of
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processes that simulate physical events. Each trial is simulated according to a sequence
of random (or pseudo-random) numbers based on the known probability distribution of
the underlying phenomenon. Due to the statistical sampling, these methods are eminently
suitable for the stochastic process of radiation transport [Hendricks, 1994].

MC simulations have been used for a variety of applications in particle therapy, includ-
ing the calculation of irradiation-induced positron emitter distributions for clinical cases
[Parodi et al., 2007], biological dose calculation [Mairani et al., 2010] or treatment planning
[Mairani et al., 2013]. Furthermore, MC simulations offer valuable and flexible support for
the start-up and clinical operation of particle therapy facilities [Parodi et al., 2012] and
the development and optimization of pCT systems |Giacometti et al., 2017].

Compared to traditional analytical methods |Gianoli et al., 2019], MC simulations have
the advantage of considering the detailed structure and elemental composition of the human
body [Parodi et al., 2007|. Moreover, they fully account for the 3D particle fluence spread
and complexity of the mixed radiation field [Bohlen et al.; 2010].

In the context of iCT, MC simulations play an important role in understanding the
intrinsic limitations of the technique itself, for optimizing the system performance and
to test new reconstruction algorithms or data processing methods. This is of particular

interest for aspects that are difficult (or even impossible) to address experimentally.

4.1.1 The FLUKA Monte Carlo Code

FLUKA (www.fluka.org), which stands for FLUktuierende KAskade, is a FORTRAN-
based fully integrated general purpose MC code for the calculation of particle transport
and interaction with matter. In the scope of medical physics research it has been applied
to various aspects related to particle therapy [Battistoni et al., 2016]. The code is jointly
developed and distributed by the European Organization for Nuclear Research (CERN)
and the Italian National Institute for Nuclear Physics (INFN).

FLUKA includes a combinatorial geometry package, which allows to model complex
geometries, for example, detector systems and objects of interest. The user input files for
FLUKA are standard ASCII files containing a sequence of options (often called cards for
historical reasons). This is used to tailor the simulation to the need of the user, offering a
huge variety of standardized options without requiring programming from the user. How-
ever, for more complex or unusual problems not covered by the standard settings, users can
further interface the simulation with self-written ‘user routines’. Different templates are

already available in the FLUKA library, but have to be modified according to the problem
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and the user needs. A graphical user interface called FLAIR (www.fluka.org/flair/)
[Vlachoudis, 2009] facilitates the preparation, error-free editing and debugging of simula-
tion input files. Furthermore, it contains an advanced geometry editor and an interface for

importing DICOM files, which is important for simulations based on clinical xCT data.

FLUKA can handle transport and interaction calculations for around 60 different parti-
cles plus heavy ions in an energy range from few keV up to cosmic ray energies. The charged
particle transport is performed through an original MCS algorithm based on Moliére’s the-

ory |Ferrari et al.; 1992], supplemented by an optional single scattering method.

At energies relevant for particle therapy and ion imaging, hadron-nucleus reaction
mechanisms are provided by the PEANUT (Pre-Equilibrium Approach to NUclear Ther-
malization) interaction environment [Ferrari and Sala, 1993]. This model includes a so-
phisticated Generalized Intra-Nuclear Cascade (GINC) stage, coupled to an exiton based
pre-equilibrium and equilibrium particle emission phase. For higher energies, the multi-
ple collisions within the nuclear constituents are considered by means of Gribov-Glauber
calculus within a less refined GINC [Fasso et al., 1995].

Nucleus-nucleus interactions from few GeV/u down to around 0.1 GeV/u are handled
in FLUKA via an interface to a modified version of the Relativistic Quantum Molecular
Dynamics model (RQMD-2.4) [Sorge et al., 1989]. At lower energies, FLUKA switches
gradually to an event generator based on the Boltzmann Master Equation (BME) the-
ory [Cavinato et al., 1996; Battistoni et al., 2016]. Above the clinically relevant energies
(>5GeV /u) the DPMJET-III (Dual Parton Model and JETs) [Roesler et al., 2000] event
generator is used, which is based on the two component dual parton model in connection
with the Glauber formalism [Mairani, 2007].

Within this work the standard FLUKA version 2011.2¢ with pre-defined
"HADROTHErapy’ defaults was used, setting the thresholds for particle transport at
100 keV and for MCS at the minimum allowed energy. In order to reduce the computational
time a CSDA without explicit d-ray production by charged hadrons was employed. For
several reasons it is desirable to implement a realistic description of the beam parameters
(i.e., energy and momentum distribution, shape and divergence) as produced by a clinical
accelerator. First, this is mandatory to ensure good agreement with experimental measure-
ments. Second, the accelerator’s energy spread imposes an additional intrinsic limitation
on the achievable WEPL resolution. And third, the beam shape is of major importance

for the overall integration-mode performance, especially at lateral heterogeneities.
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4.1.2 Simulation Model for the HIT Beam Line

An accurate beam model would require a detailed geometrical description of all beam line
elements. However, due to confidentiality issues concerning proprietary details of the exact
nozzle geometry, this information is not available for external users’ applications at HIT.
For this reason, Tessonnier et al. [2016] developed phase-space files providing accurate
models of the different HI'T particle beams without disclosing confidential components of
the beam line. A phase-space characterizes the beam by scoring the beam properties of
each individual particle crossing a plane perpendicular to the beam direction at a certain
location. In this case, the phase-space files contain information on charge, mass, energy,
generation (i.e., primary or secondary), coordinates and direction cosines of each particle
at the exit of the Beam Application and Monitoring System (BAMS), i.e., downstream of

the last element of the HIT beam line about 112 cm before the isocenter.

Tessonnier et al. [2016] used an original narrow-beam approach by simulating the propa-
gation of a central infinitely narrow (’zero-width’) beam through the beam line. Therefore,
this model can be adapted to any desired beam focus (i.e., beam size in air at isocenter) by
convolving it with the estimated beam size in vacuum before entering the beam line. For
each energy and particle type ten million primaries were simulated, resulting in phase-space

files of around 500 MB, split in primary and secondary particles.

The initial beam generation performed through particle-by-particle sampling of pri-
maries and secondaries from the phase-space files is fully implemented within the source.f
user routine. Briefly, the primary beam generation works in the following way. Prior to
the simulation, the user needs to define an irradiation plan with the desired beam pa-
rameters like ion type, energy and focus number, and the locations to be irradiated, the
so-called Raster Points (RPs). The selected beam characteristics are specified according to
the LIBC (List of Ion Beam Characteristics), which contains the different available initial
beam energies (E1-255), foci (F1-6) and intensities (I1-15).

During the initialization phase, the beam plan is read and the first requested
phase-space file is loaded. Subsequently, the simulation loops over all requested primaries
for the given irradiation position. In this process, a deflection of individual pencil beams
is implemented to mimic the active raster scanning technique [Marcelos, 2014]. According
to the required deflection angle 6 for the selected RP location, the position and direction

vector of each particle have to be adjusted individually. For the 3D rotation of the direction
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cosine vectors d € R? the rotation formula of Rodrigues [1840] is implemented:
d' =dcos(f) + (k xd)+k(k-d)(1—cos(d)), (4.1)

where k € R? is a unity vector describing the axis of rotation and d’ € R? is the direction
cosine rotated by an angle 6 being handed to FLUKA, as sketched in figure 4.1. The
starting position for the particle transport simulation is derived by adding the individual
particle position (randomly sampled from the phase-space file and adjusted according to
the selected focus) to the requested RP location (specified at isocenter) at BAMS level,
obtained by back-projection along the deflected beam. Once all requested particles for
the desired RP are delivered, the beam location and deflection angle will be automatically

updated. If necessary, the simulation will loop over all requested energies.

This phase-space approach demonstrated excellent accuracy for several cases (e.g.,
depth-dose distributions and lateral dose profiles) [Tessonnier et al., 2016] and has been
used in various publications in literature [Meyer et al., 2017; Kelleter et al., 2017; Gehrke
et al., 2018al]. The results presented in chapters 5, 6 and 7 rely on this beam model and

all use the smallest available beam focus (F1).

Raster point
deflection angle

Scanning magnets

-650.6 cm Central beam
BAMS

(Phase-space plane) X z
-112.6 cm

Isocenter
0cm

Figure 4.1: The principle of simulating active raster scanning at HIT using phase-space files
[Tessonnier et al., 2016]. Cosine director and position at the BAMS level are sampled from the
phase-space and adjusted according to the deflection angle of the requested RP and a random
spread reflecting the finite beam size.
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4.1.3 Simulation Model for the RPTC Beam Line

The pCT system developed and optimized in chapter 8 is foreseen to be experimentally
investigated at a ProBeam® beam line (Varian Medical Systems, Inc., Palo Alto, CA,
USA) based on an example of the Rinecker Proton Therapy Center (RPTC) in Munich.

Consequently, the beam characteristics were implemented following the approach pre-
viously developed by Englbrecht [2014]. The initial beam momentum spread and virtual
source extension were independently adjusted in an iterative trial and error procedure
to best reproduce measured dose distributions. The optimal parameters are stored in a
database, which is read during the initialization phase of the simulation to obtain the ideal
source parameters for the requested beam energy.

In contrast to the HIT beam line, geometrical dimensions and material compositions
of treatment nozzle elements were provided by the vendor. Hence, the simulation model
explicitly contains the beam line nozzle including vacuum window, multi-strip and trans-
mission ionization chamber. Particle sampling and active scanning are implemented in
a similar manner as for the aforementioned HIT phase-space file approach [Wiirl, 2014].
Excellent agreement was found between measured dose distributions and MC simulation

results also for extended target volumes [Wiirl et al., 2016].

4.1.4 Implementation of Phantom Geometries

In order to benchmark the achievable image quality, phantoms of different geometry and
complexity are required. The in silico object geometries were modeled directly within
FLUKA according to the known physical dimensions. This is done by using the combi-
natorial geometry feature, which allows to create complex geometries by combining basic
convex shapes using Boolean operations (i.e., union, intersection and subtraction). All

material properties were implemented according to the manufacturer specifications.

4.1.5 Implementation of Clinical and Pre-Clinical Data

In order to import clinical and pre-clinical xCT data, voxelized geometries are available
in FLUKA, which can be created via an interface in FLAIR. Since it is neither memory-
nor CPU-efficient to implement separate materials for each HU value, ranges of HUs are
grouped into intervals (also called organs) via the '"MATERIAL’ and "COMPOUND’ cards.
The HU scale is segmented into 24 different materials of defined elemental composition and

nominal mean density (i.e., mass density corresponding to the HU value at the center of
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the considered interval), based on the work of Schneider et al. [2000] and an extrapolation
to include metallic implants of titanium (i.e., HU > 3060) [Parodi et al., 2007].

However, the real mass density, influencing nuclear and electromagnetic interaction
processes, continuously varies with the HU values within each material sharing a single
nominal mean density in the MC simulation. In order to account for this, HU dependent
scaling correction factors are applied for each interval [Parodi et al., 2007|, as originally
proposed by Jiang and Paganetti [2004]. Nuclear processes are adjusted only using the ratio
between the mass density and the nominal mean density. In addition, electromagnetic
processes are also rescaled to match a bijective clinical-like HU-RSP conversion curve,
reproducing a similar curve as implemented at HIT for cranial applications.

In contrast to real patient scenarios, M C simulations enable an ideal HU-RSP conversion
curve, since uncertainties due to the stoichiometric calibration are not present. Thus, the
ground truth RSP distribution of the patient anatomy, for which the iCT acquisition is
simulated, is precisely known. The only remaining uncertainty in the presented approach
originates from the energy dependency of RSP, which is negligible for the used energies
[Meyer et al., 2019].

4.2 Trajectory Estimation

As a consequence of MCS, ion trajectories are not straight lines. Many small-angle de-
flections when passing through material cause stochastic path variations. Hence, a curved
path has to be implemented in single-particle tracking image reconstruction to avoid sub-
stantial degradation of the spatial resolution in iCT images, predominantly for protons.
Two mathematical concepts have been established in the ion imaging community: the Most
Likely Path and the Cubic Spline Path.

4.2.1 Most Likely Path Formalism

The Most Likely Path (MLP) concept was originally introduced by Schneider and Pedroni
[1994]. They developed a formalism to calculate the most probable proton trajectory
through an object based on the generalized Fermi-Eyges theory of MCS. Williams [2004]
derived a more convenient closed-form representation assuming knowledge of entry and
exit position and exit direction by using X? statistics. The superior spatial resolution in
pCT obtained by Williams’s MLP method compared to a Straight Line Path (SLP) was
demonstrated by Li et al. [2006].
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The MLP expressions of aforementioned articles require the computation of compli-
cated ratios of polynomials. More recently, Schulte et al. [2008] proposed a more elegant
and compact matrix-based MLP formalism employing Bayesian statistics to calculate the
intermediate positions and directions of maximum likelihood along an ion path. The de-

scription of the MLP calculation presented in this section will follow this formalism.

Without loss of generality the MLP derivation will be restricted to a single plane (e.g.,
the z — y plane) since MCS in lateral and vertical direction can be treated as two indepen-

dent statistical processes. Let Y; be the parameter vector at a certain depth z;:

m:<2), (4.2)

where y; and 6, are the corresponding coordinate and direction angle at the given depth,
respectively. In the same way one can define the 2D parameter vector at entrance (Y;) and

exit point (Y3) of the traversed object of interest.

Simply speaking, the MLP formalism aims at determining the most probable state vec-
tor of a particle at any depth using a Bayesian framework, given the measured information
at entry and exit location. In Bayesian statistics, the posterior likelihood that a particle at
depth z; had a state vector Y] for the obtained exit information, £ (Y7|exit data), is related
to the prior probability of finding the particle at depth z; in the state Y; given knowledge
on its initial state Y, £ (Yi|entry data), and the likelihood of observing the particle with
the exit information given Y7 at depth 21, £ (exit datal|Y}):

L (Yi|exit data) = L (exit data|Y7) £ (Y:|entry data) . (4.3)

In the following, the Gaussian approximation of the generalized Fermi-Eyges theory for
MCS (cf. equation (2.8)) will be used to describe the scattering process. Since the object
composition is typically unknown, a common approach consists in assuming scattering in
homogeneous water. Hence, the likelihood functions will be expressed by bi-variate Gaus-
sian distributions. For instance, the prior likelihood for a particle with zero displacement

and angle, can be written in the following compact matrix notation:

L (Yl\Yo - ( 8 )) = exp (—%Yf&*lﬁ) : (4.4)

where the scattering matrix >; contains the variances and covariances acquired between
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2o and z1, given by the first three Eyges moments (cf. equation (2.8)):

Y, = ( Ay (20,21) A (2’072’1) ) . (4'5)
Ay (20721) Ag (20721)

In order to calculate the likelihood, the measurement point must be directed toward
the reconstruction point at depth zq, i.e., one needs to change the local coordinate system
of the particle. Since angles in typical iCT scenarios are relatively small, i.e., limited to a
few degrees, it is reasonable to apply a small-angle approximation (sin# = 6). Therefore,

the propagation matrix is defined as

1 21— 2
Ry = , 4.6
: (0 1 ) (16)

which directs the probability originating from Y{ along its path without changing the initial
angle. This yields the following notation for the prior probability of obtaining Y; given Yj:

1
L (Y1]Yy) = exp (—5 (Y =Yy Ry) B (V- ROYO)) : (4.7)

Following the same procedure, one can define the likelihood of the exit parameter vector

Y5 at depth z; given the measurement of Y] at depth z; as
1
£Oa) = exp (5 O0F = YTRD) 57 (- v ) (18)

where the scattering matrix Y, and propagation matrix R; for the transition from z; to 2o

are defined analogous to equation (4.5) and (4.6):

y, = A, (Zl, ZQ) Ay (217 ZZ) and R, = 1 % —= . (49)
Ay (z1,22) Ag (21, 22) 0 1

By combing equation (4.7) and (4.8) according to equation (4.3), the posterior likelihood

becomes

1
L (Y1]Y2) = exp (—5 (" = Y{RE) 57" (v = RoYo) + (Y5 — Y RY) 53 (va — Rm)))

= exp (—XQ) .
(4.10)
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In order to derive the MLP one needs to maximize the likelihood, which corresponds

to minimizing X2. Carrying out the differentiation with respect to z; and 6, yields
VX = (S + RIS 'R V) — 57 RoYo — RIS, Yo (4.11)
Setting this equal to zero and solving for Y; results in the following expression for the MLP:
Y = (57 + RIS;'Ry) ™ (S1RoYs + RIS 'Y)) | (4.12)

which can be understood as an average path of the projection of the entry and exit position,

weighted by the scattering to the point of interest [Collins-Fekete, 2017].

Since the distribution of possible trajectories is known due to the Gaussian approxima-

tion of MCS, the error matrix can be calculated as the inverse of the curvature matrix:

e =2 (ST + RIS 'Ry) (4.13)
where the element in the first row and first column returns the variance of the lateral

displacement at depth z;.

Based on strict Bayesian theory, Collins-Fekete et al. [2017b] demonstrated that the
MLP framework is usable for every ion in the same way, i.e., independent of the ion mass

and charge. However, the Gaussian standard deviation of the statistical error envelope
(cf. equation (4.13)) has to be scaled by the factor (Z/A)>.

For calculating the MLP according to equation (4.12) one needs to evaluate the scat-
tering matrix, whose elements require knowledge on the ions energy loss within the object
(i.e., 1/B(21)*p(z1)? in equation (2.8)). A common approach is an approximation by a
fiftth-degree polynomial using MC simulations to obtain the necessary fitting parameters
[Williams, 2004|. For the MLP results presented in this work the term was directly calcu-
lated from a numerical integration of the Bethe-Bloch formula using the measured energy

at the tracking detectors before and behind the imaged object.

Finally, it should be noted that the MLP calculation assumes an object of homogeneous
water rather than the real patient /phantom. Theoretically, the concept can be extended to
heterogeneous objects based on prior knowledge on the local particle energy and material
radiation length. However, this drastically increases the complexity of the calculation and

showed only little improvement in the path estimation error [Collins-Fekete et al., 2017a].
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4.2.2 Cubic Spline Path Formalism

The MLP calculation is mathematically complex and computationally demanding. Given
four variables, i.e., data on entry and exit position and direction, the highest degree poly-
nomial with a unique solution is the cubic spline. Li et al. [2006] first introduced the Cubic
Spline Path (CSP) concept for estimating proton trajectories. The CSP between a given
entry (Xo) and exit (X;) position is represented by

X(t) = (2t =3t + 1) X + (£ — 26 + 1) Py + (=28 + 3t ) Xy + (£* = *) Py,  (4.14)

where X(t) represents the 3D position vector at a given depth defined by the temporal
parameter ¢ € [0, 1], representing the fraction of crossed CSP. Py and P; are the entrance
and exit direction vectors (i.e., at ¢ = 0 and ¢ = 1 respectively).

While the particle angle sets the initial CSP direction, the magnitude of the direction
vector defines how strongly the curve converges to a straight line. Hansen et al. [2014]

applied a scaling according to the physical thickness between exit and entry position:
Ploay = Proay - [X1 = Xl - (4.15)

Collins-Fekete et al. [2015] proposed a more sophisticated phenomenological approach to
accurately define the direction vector magnitude based on energy loss information. Here,
they introduced two scaling factors Ayp;y aiming at minimizing the Root Mean Square
(RMS) error of the path estimation:

P{O,l} - 15{0,1} . A{O,l} . ’XI - Xo‘ . (416)

The A factors are parameterized by the ratio of WEPL over CSDA range in water.
In order to obtain the optimal parameters, MC simulations were performed over a wide
range of energy values and for different materials (cf. figure 4.2). Fitting the data with a

quadratic law yielded the following relationships:

WEPL

CSDA

WEPL)Q . (4.17)

Ao = 1.01 + 0.43 (
CSDA

2
) and Ay =0.99 —0.46 <

Based on a rigorous Bayesian formalism Collins-Fekete et al. [2017b] found that the
phenomenological approximation and the theoretical model agree well within uncertainties.

While CSP and MLP appear to be two completely different approaches, recent work showed
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Figure 4.2: Optimal A factors minimizing the path estimation error. Shaded areas represent
the standard deviation between the fit and the data. Please note that WET and WEPL in the
notation of Collins-Fekete et al. [2015] correspond to WEPL and Rcspa in the notation used in
this work, respectively. Extracted from Collins-Fekete et al. [2015].

that there is certain connection between both formalism and that the phenomenological
model can be described theoretically [Rédler, 2017; Collins-Fekete et al., 2017b]. Using the
optimized scaling factors, CSP and MLP yield the same path estimation accuracy. Hence,
the CSP is assumed to provide the best compromise between an accurate estimate of ion
trajectories and reasonable calculation time |Collins-Fekete et al.; 2015]. Finally, it should

be noted that the CSP formalism is also independent of the ion type.

4.3 Tomographic Image Reconstruction for Ion CT

The task of tomographic image reconstruction is to obtain information about the nature
of material occupying exact positions inside an object based on specific cross section mea-
surements [Herman, 2009]. For the case of iCT this means solving the inverse problem of
equation (3.9) in order to obtain the RSP distribution from measured RSP line integrals.

Analytic methods, like the widely-used Filtered Back Projection (FBP) employ continu-

ous mathematical models of the inverse problem which are solved with integral transforms.
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In contrast, iterative algorithms follow a fully-discretized modeling approach wherein both
the object and the external source distribution are discretized at the beginning, which leads

to finite-dimensional vector space formulations [Penfold and Censor, 2015].

4.3.1 The Concept of Iterative Image Reconstruction

Iterative reconstruction methods involve three iteratively repeated steps [Beister et al.,
2012]: (1) forward projection of the current object estimate to obtain artificial raw data,;
(2) comparison of estimated artificial and measured projection data to obtain a correction
term; (3) backprojection of the correction term into image domain.

Recalling equation (3.9), the measured WEPL is given by the line integral through the
3D RSP distribution of the object along the ion trajectory:

/ RSP (T'(1)) dI'(1) = WEPL . (4.18)

For iterative reconstruction algorithms, the continuous model is transformed into a

fully-discretized representation, typically written in compact matrix notation:
Az =0, (4.19)

where the system matrix A is an N x M matrix containing the length of intersection
(or chord length) {a;'-} of the i particle history with the ;' voxel of the image space as
schematically indicated in figure 4.3 for the case of a straight trajectory. b = {by,bs,...,bn }
is an N-dimensional vector whose elements b; represent the WEPL measured for the ‘"
particle and x = {z1,x9,...,xp} is the M-dimensional image vector of unknown RSP
values, which needs to be determined. The system of equations represented by equation
(4.19) will be inconsistent and very large; however, the matrix A is rather sparse.

In order to efficiently compute the matrix elements {aé-}, a CPU-based raytracing algo-
rithm was implemented [Siddon, 1985; Jacobs et al., 1998]. Since ions do not follow straight
trajectories, discrete points were sampled along the estimated curved path (cf. section 4.2)
and joined with straight line segments. In order to minimize inaccuracies, the step size was
set equal to half the voxel size of the reconstruction space. Penfold et al. [2009] proposed
the use of an effective chord length assigned to all pixels intersected by a certain particle
in order to reduce the raytracing time. Since the computational cost was not of major

importance in this study this simplified approach was not pursued.
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Figure 4.3: System matrix definition for a straight trajectory in 2D using a pixel basis rep-
resentation. The color-coded chord length qualitatively indicates the values obtained from the
raytracing algorithm. The individual matrix elements can be calculated by the euclidean norm as
indicated in the zoom-in view.

4.3.2 Ordered Subset Simultaneous Algebraic Reconstruction

Technique

Solving equation (4.19) is not straightforward since the problem is ill-posed and the mea-
sured projections contain noise. Mathematically, the individual linear equations describe
hyperplanes in an M-dimensional Euclidean space, i.e., they represent convex sets. Hence,
the modeling approach leads to the conver feasibility problem of finding a point in the

non-empty intersection of a family of closed convex sets [Censor et al., 2012].

A common approach for solving feasibility-seeking problems are iterative projection
methods. These algorithms offer computational advantages and can handle huge-sized
problems of dimensions beyond which more sophisticated methods cease to be efficient or
even applicable due to memory requirements [Censor et al., 2010]. In order obtain the
subsequent iterate z¥*! from a given image estimate x*, the algorithm’s update step can

be simply written as
" =Pyt (4.20)

where P is the projection operator of the chosen algorithm. In this work, the Ordered

Subset Simultaneous Algebraic Reconstruction Technique (OS-SART) algorithm [Wang
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and Jiang, 2004] was employed, which has a block-iterative projection algorithmic scheme:

i .k
L _ ok gy 1 bi — (a’,2*) .
R bt D Dl e E
€Byk) T ) i€By Zl:l a

where (a’, z*) is the inner product of the i column vector of AT (i.e., the transpose of

(4.21)

A) with the current image estimate. Here, iterations are only performed with respect to
the constraints set by indices 7 in a certain block By (also called subset), obtained by
partitioning the data into K blocks. The algorithm selects blocks according to a control
sequence (t (k));2,, which is cyclic in this work, i.e., t(k) = k mod K + 1. For the case of a
single subset, which means that the image update considers all equations simultaneously,

the algorithm simplifies to the standard Simultaneous Algebraic Reconstruction Technique
(SART) algorithm of Andersen and Kak [1984].

The iterative image update procedure is schematically illustrated in figure 4.4. First,
the current image estimate z* is projected onto all hyperplanes representing the current
subset. The consecutive image ¥! is obtained by forming a convex combination of those
projections. This already indicates that the construction of the subsets, i.e., the angles
between the hyperplanes considerably influence the convergence rate toward the solution
[Kak and Slaney., 1988]. In order to obtain an efficient convergence, this work used 36

blocks consisting of an equal number of events randomly selected from all projections.

It is important to notice that the (mathematically) optimal solution of equation (4.19)
might actually not be desired because it does not represent the true data of interest due
to noise and inconsistent projection data. Hence, the algorithm was stopped if a certain
number of iteration cycles was completed or the change of the data fidelity per iteration

number &k was below an user-defined threshold e [Meyer et al., 2017], which is expressed as

oD (x’“)

4.22

using the following formulation for the data fidelity from Bian et al. [2014]:
D (z*) = |Az" — b||/N . (4.23)

The value of € depends on the accepted data inconsistency which is influenced by the noise
condition, system configuration and data quality [Sidky and Pan, 2008|. Hence, it has to

be adjusted accordingly to achieve proper convergence without noise break-up.
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xk

xk+1

xk+2

H1

Figure 4.4: Iterative image update from projection algorithms of block-iterative structure. The
consecutive image z**! is estimated by projecting the current estimate ¥ onto all hyperplanes H
of the current subset and forming a convex combination. Adapted from Penfold [2010].

4.3.3 Total Variation Superiorization

The projection algorithms introduced in the previous section can be computationally ef-
ficient and less demanding methods for solving convex feasibility problems. The reason
is that projections onto the individual sets are easier to perform than projections onto
other sets (e.g., the intersection of the sets) that are derived from the given individual
sets [Davidi et al., 2009]. It is important to notice that feasibility-seeking is fundamentally
different from optimization (as for example used in treatment planning), which aims at
finding the best possible solution by minimizing an objective function while satisfying a
set of typically convex constraints. However, in iC'T reconstruction the minimum of the
cost function is often not the best representative of the true data, due to inconsistencies
in the acquired data [Penfold, 2010].

The novel idea of superiorization conceptually lies in between feasibility-seeking
for the constraints and full-fledged constrained minimization of the objective function
subject to these constraints. This means, one aims at a solution that is not only
constraints-compatible, but is also desirable according to a specified optimization crite-
rion. This is done by proactively interlacing perturbations into the original algorithm in
order to reduce (not necessarily minimize) a given merit function.

The key to superiorization lies in the ’bounded perturbation resilience’ of the original
algorithm, meaning that certain kinds of changes (i.e., perturbations) in each iterative step

of the algorithm still lead to a constraints-compatible solution [Herman et al., 2012]. It was
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proven by Davidi et al. [2009] that the general class of block-iterative projection methods

is indeed resilient to bounded perturbations.

A very popular merit function is total variation, since the image solution is assumed
to be piece-wise constant. To this end, the Total Variation Superiorization (TVS) scheme
proposed by Penfold et al. [2010]" was implemented. Briefly, the proposed algorithm works
in the following way. Compared to the original projection algorithm (cf. equation (4.20)),
the current image iteration is proactively perturbed by a bounded perturbation 3,v* in a
way that the algorithm is steered toward a feasible solution encompassed with a reduced

value of the target/merit function:
" =Pg (2" + Bro”) | (4.24)

where ’bounded perturbation’ means that [, are real non-negative numbers such that
Y reoBr < oo and the sequence (vk)Zozo is bounded [Penfold et al., 2010]. As merit
function ®, which needs to be reduced during the reconstruction, the total variation was

used. For a 2D image represented by a J x J pixel array, the total variation is defined as

‘I’(pk) = \/(P§+1,z - Plg,z)Q + (plg,z+1 - Pl;,z)Qa (4.25)

where p* is the 2D image representation of the image vector z¥. The normalized

non-ascending perturbation vector v¥ is calculated as the negative of the normalized sub-

gradient s* of the total variation for the current image estimate z*:

ek £0
Ty S )
o = 4 T (4.26)

0, otherwise,

where the subgradient is computed according to the method of Combettes and Luo [2002].
A pseudocode definition of the TVS scheme implemented in MATLAB® (Math Works, Inc.,
Natick, Massachusetts, USA) is written as:

!The chosen algorithm was originally denoted as 'TVS2-DROP*’ in the publication of Penfold et al.
[2010]. In this thesis, the superiorization scheme was implemented for the OS-SART /SART algorithm.
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set k=0,1=0, By =1;
while repeat for each subset over the requested number of cycles do
if ||s*|| > 0 then

k

Uk::_|s

K
else

‘ vk = sk
end

while loop do

set y¥ = oF + Bpok;
if ®(y*) < ®(2*) then
ok = ¥
set loop = false;
end
Bre = Br/2;
end
2 = Poat;
k=k+1,;
end

Figure 4.5: TVS scheme for the block-iterative OS-SART /SART algorithm.

4.4 Image Reconstruction Workflow

The main methodologies of image reconstruction have been introduced in the previous
sections. Here, an overview is given on how the different parts are implemented in
the combined workflow for tomographic iCT reconstruction. The complete process for

single-particle tracking and integration-mode reads as follows:

Single-particle tracking

1) Data import

In the first step, the binary output data obtained from the MC simulation are read. These
data entail kinetic energy, upstream and downstream 3D position and direction, along with
the projection angle for each particle history. Relying on the scored data, the individual
WEPL values are derived. Those are either computed from the Bethe-Bloch formula using
the recorded kinetic energy loss between front and rear tracker (chapter 6) or are directly

obtained from the detector signal (chapter 8)
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2) Spatial filter

For reducing the computational cost, particles missing the reconstruction volume are sorted
out a prior: by assuming a straight line connection between the simulated entry and exit
coordinates.

3) Data binning

Next, the particle histories are grouped into parallel-ray projection bins. To this end, the
remaining events from step 2 are projected onto the reconstruction volume using a straight
path along the recorded entry and exit directions. This is reasonable, since particles will
scatter far less per unit length in the surrounding air compared to the actual object of
interest. Then, the derived intersection points are joined via a straight line. The angle
with respect to the beam-axis (i.e., z-direction) defines the detector rotation bin whereas
the intersection with the central reconstruction plane containing the axis of rotation defines

the lateral and vertical displacement bins.

4) Statistical 30 -filter
For each bin, a statistical 3o-filter originally proposed by Schulte et al. [2008] was applied

in order to minimize the effects of nuclear reactions and large-angle MCS events. Particles
with a relative exit angle (i.e., difference between exit and entry angle) or WEPL outside

30 around the mean value of the corresponding bin are not further processed.

5) Initial FBP reconstruction

The binned data derived in step 3 are converted into a conventional (parallel-ray) WEPL

sinogram representation. An analytical FBP reconstruction is employed to obtain an initial
image estimation. A Ram-Lak filter was applied to avoid a degradation of the edges, since

the image is solely used for the patient contour estimation.

6) Object boundary estimation

Based on the initial FBP estimate, the object mask is derived by thresholding the recon-
structed RSP map (i.e., RSP>0.2). To avoid ambiguities, a convex hull of the mask is
derived. Alternatively, the mask can be directly obtained from prior information, e.g., the

xCT used for treatment panning (as performed in chapter 6).

7) Path and system matriz computation

Each individual particle is forward- and backprojected onto the object boundary (of step 6)
based on the measured entry and exit position and direction. The ion path calculation
according to the selected path model (i.e., either SLP, CSP or MLP) is bound by the
intersection points with the contour. By performing a piece-wise raytracing the individual

chord lengths are computed and stored in the system matrix.
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8) Iterative T'VS OS-SART reconstruction
In the last step, the large scale inverse problem is iteratively solved by a TVS OS-SART

algorithm (cf. equation (4.21) and scheme 4.5) using the system matrix derived in step 7
and the WEPL values calculated in step 1.

Integration-mode

1) Data import

First, the binary output data of the MC simulation are read. These data contain the
integrated detector information for each specific pencil beam and the corresponding RP
location according to the irradiation plan. From the obtained residual range signal of the
particle ensemble, the most probable WEPL value (which is more commonly termed WET
in the context of integration-mode, where no individual ion trajectory can be computed)
can be directly derived based on dedicated calibrations (cf. chapter 5).

2) Sinogram binning

Next, the WET information is binned into a sinogram representation based on the object
rotation angle (angular bin) and the RP location (projection displacement bin).

3) System matriz computation

The system matrix is generated by applying a SLP raytracing based on the geometrical
information from step 1. This procedure is performed along the central beam axis, since
it represents the most probably path of the finite-width pencil beam.

4) Iterative TVS SART reconstruction

In the last step, the TVS SART algorithm is employed to iteratively solve the inverse

problem, using the system matrix of step & and the WET values obtained in step 1.

4.5 Quantitative Image Quality Evaluation

4.5.1 Image Accuracy and Noise

The WET or RSP accuracy and noise were evaluated for homogeneous regions within
the investigated objects. For this assessment, a Region of Interest (ROI) of reduced size
with respect to the original region within the phantom was applied to avoid inaccuracies
originating from range mixing and partial volume effects at the material borders. The
accuracy was calculated by the mean value of the relative error distribution based on the
known ground truth reference images. The noise within the same region was evaluated in

terms of the corresponding standard deviation.
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In order to quantify the overall Ton Radiography (iRAD) and iCT image quality with
respect to the known ground truth, the RSP/WET (total image) relative error e, |Penfold,
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