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Über das klinische Potenzial von Ionen
Computertomographie mit verschiedenen Detektor

Konfigurationen und Ionentypen

Zusammenfassung

Strahlentherapie mit schweren energetischen Ionen ist eine sich schnell entwickelnde Form
der Krebstherapie, denn Ionenstrahlen ermöglichen aufgrund ihrer endlichen Eindring-
tiefe eine sehr konforme Anpassung der abgegebenen Dosis an das Tumorvolumen. Die
Ausschöpfung des vollen Potenzials der Ionentherapie ist jedoch nach wie vor durch
eine erhöhte Anfälligkeit für Unsicherheiten in der geschätzten Ionenstrahl-Reichweite
eingeschränkt. Eine der Hauptquellen für diese Unsicherheit, die der aktuellen Form
der Bestrahlungsplanung innewohnt, ist die semiempirische Umrechnung von Röntgen-
Computertomographie Informationen in das relative (bezüglich Wasser) Bremsvermögen
(RSP) der Ionen. Die Ionen Computertomographie (iCT) eliminiert potenziell diese Unge-
nauigkeit durch eine direkte Rekonstruktion der RSP-Verteilung innerhalb eines Patienten
aus einer Reihe von lonenradiographien. Dies könnte letztlich die Verbesserung des klini-
schen Ergebnisses für Patienten, die Ionentherapie erhalten, ermöglichen und neue Wege
für adaptive Behandlungskonzepte eröffnen.

Diese Arbeit zielte darauf ab, das Potenzial und die Auswirkungen von iCT mit ver-
schiedenen Ionenarten und zwei Detektor-Konfigurationen, einem kostengünstigen und ei-
nem komplexen hochmodernen System, für klinische Anwendungen zu untersuchen. Dazu
wurde eine entsprechende FLUKA Monte Carlo (MC) Simulationsumgebung entwickelt,
welche eine akkurate Beschreibung der aktiven Dosisapplikation und der Strahleigenschaf-
ten von klinischen Therapiezentren beinhaltet. Darüber hinaus wurden verschiedene Me-
thoden der iterativen tomographischen Bildrekonstruktion untersucht. Basierend auf ei-
nem Prototyp eines am Heidelberger Ionenstrahl-Therapiezentrum untersuchten Detektor-
Systems wurden die Möglichkeiten des Integrationsmodus untersucht, welcher potenziell
eine leichtere klinische Umsetzung erlaubt. Insbesondere Kohlenstoff-iCT ermöglichte eine
durchschnittliche RSP-Genauigkeit von besser als 1% in experimentellen und simulier-
ten Phantomstudien. Die entwickelte Signalverarbeitungsmethode erzielte eine erhebliche
Verbesserung der Bildqualität. Allerdings wurde das begrenzte räumliche Auflösungsver-
mögen aufgrund von intrinsischen Ungenauigkeiten durch Reichweitenvermischung als we-
sentliche Einschränkung für eine Anwendung in der klinischen Bestrahlungsplanung iden-
tifiziert. Einzelteilchen-iCT erzielte unter idealen Bedingungen eine bessere Bildqualität
bei geringerer physikalischer Strahlenexposition im Vergleich zum Integrationsmodus, ins-
besondere Helium-iCT. Das klinische Potenzial von iCT wurde quantitativ an Hand der
Genauigkeit der Dosisberechnung bewertet. Dabei konnte aufgezeigt werden, dass gene-
rell verringerte Reichweitenunsicherheiten in der Protonentherapie-Bestrahlungsplanung
im Vergleich zur aktuellen klinisch angewandten Methode erzielt werden können. Um
eine erste detaillierte Abschätzung der biologischen Auswirkungen klinisch relevanter
iCT-Aufnahmebedingungen zu ermöglichen, wurde das mechanistische ’repair-misrepair-
fixation’ Modell und der ’Monte Carlo damage simulation’ Algorithmus in die FLUKA
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MC-Simulation integriert. Die Ergebnisse zeigten, dass iCT im Vergleich zu diagnostischen
Röntgenspektren, welche für die Bestrahlungsplanung verwendet werden, potenziell redu-
zierte biologische DNA Schädigungen hervorruft. Um die Lücke zur klinischen Umsetzung
der Ionenbildgebung zu schließen, wurde ein zur Bildgebung von Kleintieren bestimmtes
Protonen-iCT System untersucht und optimiert. Basierend auf MC-Simulationen der opti-
mierte Detektor Konfiguration wurde ein räumliches Auflösungsvermögen von rund 3mm−1

und ein RSP Genauigkeit von besser als 0.5% erreicht. Dies erlaubt eine präzisere Bild-
gebung als derzeitige Röntgen-Computertomographie für die Bestrahlungsplanung in der
präklinischen Forschung.



On the Clinical Potential of Ion Computed Tomography
with Different Detector Systems and Ion Species

Abstract
External beam radiotherapy with energetic heavy charged particles is a rapidly emerging
form of cancer therapy. Ion beams enable a highly conformal shaping of the delivered
dose to the tumor volume due to their finite penetration depth. However, exploiting
the full potential of ion beam therapy is still constrained by an increased sensitivity to
potential uncertainties in the estimated ion beam range. One major source of uncertainty
inherent in the current clinical practice of ion therapy treatment planning is the semi-
empirical conversion of X-ray CT information to ion Relative Stopping Power (RSP) (with
respect to water). Ion Computed Tomography (iCT) potentially eliminates this inaccuracy
by enabling a direct reconstruction of patients’ RSP distributions from a series of ion
radiographies. This could ultimately improve the clinical outcome of patients receiving ion
therapy and open new pathways for in-room adaptive treatment concepts.

This thesis aims at investigating the potential and implications of iCT for clinical appli-
cations with different ion species and two detector configurations: cost-effective integration-
mode and state-of-the-art single-particle tracking. Therefore, a customized FLUKA Monte
Carlo (MC) simulation framework is developed to mimic the scanned ion beam delivery
and beam characteristics of clinical facilities. Moreover, different methodologies of it-
erative tomographic image reconstruction are explored. Based on a prototype detector
system under investigation at the Heidelberg Ion-Beam Therapy Center, the capabilities of
an integration-mode instrumentation, which potentially enables an easier translation into
clinical realization, are examined. In particular, carbon iCT enables an average RSP accu-
racy better than 1% in experimental and simulation-based phantom studies. The developed
signal-processing strategy demonstrates a substantial gain in image quality. However, the
limited spatial resolution due intrinsic range mixing effects is identified as a major con-
straint for an imaging application in treatment planning. Single-particle tracking iCT,
particularly helium iCT, yields superior image quality at lower physical dose exposure for
an ideal detector compared to integration-mode. The clinical potential of single-particle
tracking iCT is quantitatively evaluated by assessing the dose calculation accuracy, demon-
strating reduced range uncertainties in proton therapy treatment planning with respect to
current clinical practice. In order to provide first detailed estimations on the radiobiolog-
ical implications related to clinical-like iCT acquisition conditions, the FLUKA MC code
is coupled to the mechanistic repair-misrepair-fixation model and the Monte Carlo dam-
age simulation algorithm. Findings indicate that iCT potentially causes reduced biological
DNA damage compared to diagnostic X-ray CT spectra used for treatment planning imag-
ing. To bridge the gap toward the potential clinical realization of ion imaging, a proton
iCT scanner dedicated to small animal imaging is characterized and optimized. Based
on MC simulations for the proposed layout improvements, a spatial resolution of around
3mm−1 and sub-0.5% RSP accuracy is obtained for phantom reconstructions. The system
enables accurate imaging capabilities for treatment planning in pre-clinical research, which
is expected to provide superior range accuracy compared to the current state-of-the-art.





“It is not possible to be a scientist unless you believe that it is good to learn. It is not
good to be a scientist, and it is not possible, unless you think that it is of the highest value
to share your knowledge, to share it with anyone who is interested. It is not possible to
be a scientist unless you believe that the knowledge of the world, and the power which this
gives, is a thing which is of intrinsic value to humanity, and that you are using it to help
in the spread of knowledge, and are willing to take the consequences.”

J. Robert Oppenheimer





“The saddest aspect of life right now is that science gathers
knowledge faster than society gathers wisdom.”

Isaac Asimov

1
Introduction

1.1 Radiation Therapy: from X-rays to Particle Beams

In cancerous cells the orderly process of cell division and death fails, resulting in uncon-
trolled proliferation. This can cause severe damage to adjacent tissue and organs, or spread
to other body parts with life threatening consequences for the patient. Nowadays, cancer is
the second leading cause of death globally, and incidence and mortality are rapidly growing,
accounting for around 9.6 million deaths in 2018 as estimated by the WHO [2014]. The
reasons for this trend are complex but reflect the inevitable population aging, as well as
changes in the prevalence and distribution of the main risk factors [Bray et al., 2018]. The
earliest written reference to cancer1 is the ancient Egyptian Edwin Smith Papyrus, written
approximately 3000B.C. [Hajdu, 2011]. Even though the author concluded at this time
that ’there is no treatment’ [Breasted, 1930], nowadays modern medicine offers various
patient-tailored treatment forms. These encompass among others chemotherapy, surgery,
immunotherapy and radiation therapy. The latter has become a standard for most cases
and is received by around two-thirds of cancer patients [Durante and Paganetti, 2016].

1The word cancer was not explicitly mentioned since it dates back to the Greek physician Hippocrates
at around 400B.C.
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The foundation of the field of radiation science dates back to the discovery of X-rays by
Wilhelm Conrad Röntgen in 1895, the natural radioactivity by Henri Becquerel in 1896,
and the isolation of radium and polonium by Marie and Pierre Curie in 1898. Those trans-
formative moments made modern radiation oncology possible so it could benefit mankind
[Das and Paganetti, 2015]. More than 100 years of experience established radiation ther-
apy as one of the main treatment modalities in oncology. Technological advances like
computerized treatment planning, the introduction of non-coplanar mega-voltage X-rays
and dynamic geometrical field shaping significantly improved the therapeutic effectiveness
of electromagnetic radiation. However, due to its physical and radiobiological properties
the application of conventional photon irradiation is intrinsically constrained, especially
for radio-resistant tumors.

The use of energetic charged particles like protons or carbon ions to overcome afore-
mentioned limitations of conventional radiation was first outlined in a seminal article by
Robert Wilson [1946]. The favorable depth-dose distribution is characterized by a steep
increase close to the end of the range, the so-called Bragg peak (cf. figure 1.1), which
can be exploited to obtain highly conformal dose distributions. Additionally, heavy ions
experience reduced lateral and longitudinal scattering, complemented with a beneficial dif-
ferential biological effect [Amaldi and Kraft, 2005]. Those properties can be exploited to
achieve an excellent conformation of the dose to the distal and lateral side of the target.
Wilson’s idea was picked up few years later by Cornelius A. Tobias at the Lawrence Berke-
ley Laboratory, California, pioneering the medical use of accelerated particle beams in first
biology experiments and clinical trials [Tobias et al., 1952, 1958]. In the next decades
ion therapy development continued in various research facilities worldwide like the Gustav
Werner Institute, Sweden [Larsson, 1961], the Harvard Cyclotron Laboratory in Cambridge,
Massachusetts [Kjellberg et al., 1962] or the National Institute of Radiological Sciences,
Japan [Kanai et al., 1980]. With the first dedicated hospital-based particle therapy facility
starting operation in 1990 at the Loma Linda Medical Center [Slater et al., 1992], particle
therapy finally moved from nuclear physics laboratories into health care environment. This
was a crucial step since dedicated patient care within a hospital-based ion therapy center
is a prerequisite for the treatment of pediatric patients requiring anesthetics [Goitein et al.,
2002]. Nowadays, the use of Two-Dimensional (2D) intensity-modulated raster scanning
[Haberer et al., 1993] with active energy variation allows dose conformity to the tumor
with a spatial precision never observed until then [Debus et al., 2000]. By December 2018
around 70 proton and 11 carbon ion therapy centers are operational in 17 countries with
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many more under construction or in planning stage [PTCOG], demonstrating the emerging
role of ion therapy in modern radiation oncology. However, its undeniable potential comes
at the burden of an increased sensitivity to any source of uncertainty between planned and
delivered dose application (cf. figure 1.1, red lines).

Figure 1.1: Depth-dose distribution for a Spread Out Bragg Peak (SOBP) (black solid), its
constitute pristine Bragg peaks (gray solid), and a 10MV photon beam (gray dashed). The
individual pristine Bragg peaks are modulated in energy to match the tumor extent in depth.
Longitudinal shifts in the dose distributions (red) can be caused by unaccounted uncertainties or
anatomical variations along the beam path.

1.2 Imaging with Ion Beams

The use of ion beams for imaging is not a new idea, it dates back almost sixty years. The
theoretical conception was A.M. Cormack’s work on the ’Representation of a Function
by Its Line Integrals, with Some Radiological Applications’ [Cormack, 1963, 1964]. The
noble laureate already recognized that his method has strong potential for proton imaging
and proton therapy treatment planning in order to ’produce the high ionization at just the
right place’. The surprising fact that exactly this problem is still a remaining challenge in
modern particle therapy, demonstrates that it is highly non-trivial.
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The experimental landmark studies were conducted by A.M. Koehler [1968] at the
Cyclotron Laboratory of Harvard university, obtaining the very first proton radiography
(cf. figure 1.2a). Steward and Koehler [1973] demonstrated that proton radiography pro-
vides superior visualization of the internal structures and tumors within specimens com-
pared to X-ray imaging. The first to apply charged particles to tomographic imaging was
Goitein [1972] based on projection data measured using an alpha particle beam. His work
demonstrated the potential of iterative image reconstruction algorithms and evaluated in
detail image resolution and artifacts. Conceptual and experimental advances were achieved
by the pioneering work of Hanson et al. [1981] (cf. figure 1.2b) at Los Alamos Laboratory,
as nowadays state-of-the-art single-particle tracking approach [Hanson et al., 1982].

The use of heavy ions was explored at the Bevatron accelerator at Lawrence Berkeley
Laboratory [Benton et al., 1973]. Tobias et al. [1977] showed the elimination of motion
artifacts and the detection of tissue stopping power differences as small as 0.2% for the
use of carbon ion beams. Those studies were supported by findings of Sommer et al.
[1978], demonstrating superior density resolution of ion imaging for tumors in pathological
specimens compared with X-rays even at low radiation dose.

Due to technical limitations at that time, for example the sparse availability of dedicated
particle accelerators, ion-based imaging could not keep up with the rapid development of
X-ray imaging. However, the up-rise of proton therapy as a new treatment modality in
the 1990s also revived the interest in ion imaging. The work of Schneider and Pedroni
[1995] at the Paul Scherrer institute in Switzerland demonstrated the potential of proton
radiography for range verification. They also acquired images of a living animal patient
[Schneider et al., 2004] and later on established the usefulness of proton imaging as a tool
for patient-specific quality control of ion therapy treatment plans [Schneider et al., 2005].
Recent developments in detector and accelerator technology together with the clinical need
for improved range accuracy initiated the foundation of the Proton Computed Tomography
(pCT) collaboration in 2003 [Schulte and Wroe, 2012]. Even though ion imaging has not
yet reach clinical application the topic is gaining increased attention from the medical
physics research community.

From a technological point of view, experimental limitations of the complex detector
systems are still challenging a clinical realization. This initiated the revived interest in
simplified integration-mode systems, especially for carbon ions [Telsemeyer et al., 2012;
Rinaldi et al., 2013]. Furthermore, promising results for helium ions [Gehrke et al., 2018b;
Piersimoni et al., 2018] have been recently published, once again indicating that the chosen
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ion type has strong impact on the final image quality. However, a significant gain in
treatment planning quality relative to single and dual energy X-ray Computed Tomography
(xCT) still needs to be demonstrated [Johnson, 2018].

(a) (b)

Figure 1.2: (a) First published proton radiography by Koehler [1968]. (b) pCT image of a
29.5 cm diameter polyethylene phantom by Hanson et al. [1981].

1.3 Aim and Outline of this Thesis

This thesis contributes to the development of ion imaging in the following topics:

• Performance comparison of different ion species for integrating and single-particle
tracking detector systems.

• Demonstration of a gain in treatment plan quality compared to xCT.

• First insights on radiobiological implications of ion imaging irradiation scenarios.

• Development and optimization of a pre-clinical pCT setup for small-animal imaging.

The aim is to compare and further improve ion imaging for different detector systems and
ion species in order to demonstrate a gain in treatment planning quality without exceeding
dosimetric constraints, ultimately bringing Ion Computed Tomography (iCT) closer to a
clinical realization.
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The first part contributes to the ongoing search for the ideal iCT detector system
and particle species with the final goal of improving the treatment plan quality. Hence,
the second part aims at demonstrating the gain in range accuracy for proton therapy
treatment planning associated with iCT for realistic clinical cases in direct comparison
to xCT. Since future patient applications put forward dosimetric constraints, the third
part provides the first dedicated investigation of the biological implications related to
high-energy low-dose iCT irradiation scenarios. While various phantom investigations have
been performed, the final piece for bringing ion imaging into the clinical environment might
be the demonstration of its capabilities in pre-clinical applications. Therefore, the last part
of this work reports on the optimization and performance of a dedicated pCT system for
pre-clinical research currently under development at our department within the European
Research Council funded Small animal proton Irradiator for Research In Molecular Image-
guided radiation-Oncology (SIRMIO) project.

This thesis is organized as follows. In chapter two a comprehensive overview on the
main physical and radiobiological aspects of ion beam interactions with tissue is given.
Chapter three introduces the principles of ion-based transmission imaging within the con-
text of ion therapy, emphasizing the peril and origins of range uncertainties. Chapter four
presents the necessary techniques of iCT simulation and reconstruction required for the
following investigations. The fifth chapter contains an experimental and simulation-based
investigation of a cost-effective integration-mode detector system, encompassing advanced
post-processing and potential detector upgrades. Chapter six presents the evidence that
iCT can reduce range uncertainties in proton therapy treatment planning for cranial cases.
Chapter seven introduces the results for estimating the radiobiological implications of typ-
ical iCT irradiation scenarios using a coupling between the FLUKA Monte Carlo (MC)
code and the Repair-Misrepair Fixation (RMF) model. The eighth chapter describes the
development and optimization of a pCT system for pre-clinical research within the SIRMIO
project. Finally, conclusions and future perspectives are summarized in the last chapter.



“No one any longer pays attention to - if I may call
it - the spirit of physics, the idea of discovery, the
idea of understanding. I think it’s difficult to make
clear to the non-physicist the beauty of how it fits
together, of how you can build a world picture, and
the beauty that the laws of physics are immutable.”

Hans Bethe

2
Basic Principles of Ion Beam Interaction

with Matter

The treatment of deep-seated tumors with 15-30 cm penetration depth requires
mildly-relativistic (up to β ≈ 0.6 − 0.7) ion beams with initial energies of around
150-430AMeV (A - mass number) [Durante and Paganetti, 2016]. However, the clinical
implementation typically demands precision in the order of a few millimeters, which re-
quires accurate knowledge of all involved physical and biological processes. Therefore, this
chapter features the description of the most important interaction mechanisms of charged
particles with matter. The differences arising for proton, helium and carbon ion beams
will be highlighted and the consequences for the clinical implementation of ion therapy are
outlined, ultimately constituting the rationale of iCT.

2.1 Physical Properties of Ion Beams

In order to understand the capabilities and limitations of ion-based transmission imaging,
it is necessary to review the basic physics principles of charged particle interaction with
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matter. Ions quasi-continuously slow down (and finally come to rest) by a very large num-
ber of Coulomb (or electromagnetic) interactions with atomic electrons. Charged particles
can also be scattered and deflected by multiple Coulomb interactions with atomic nuclei.
Additionally, they can undergo nuclear reactions causing the production of secondary par-
ticles. Schematics of the interaction mechanisms are shown in figure 2.1 for the case of
protons. These three distinct processes, stopping, scattering and nuclear reactions, primar-
ily determine the characteristics of the different ion species for iCT and strongly influence
design concepts of detector systems.

p
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p p

(b)

γ

p
p

n

Recoil nucleus

(c)

Figure 2.1: Schematics of the main interaction processes of charged particles with matter in the
case of protons: Coulomb interaction with atomic electrons (a) and nuclei (b), nuclear interaction
with atomic nuclei (c). Figure redrawn from Newhauser and Zhang [2015].

2.1.1 The Stopping of Ions

The dominant energy loss mechanism for ions in the therapeutic energy regime1 is excita-
tion and ionization of atomic orbital electrons via inelastic Coulomb interaction (cf. figure
2.1a). Intuitively, the amount of energy loss depends on the interaction time, hence, the
energy loss rate of ions is expected to increase gradually in the process of slowing down.
Above 1AMeV the average rate of kinetic energy loss dE per unit path length dx, called
stopping power S, can be described by an analytic expression derived by Bethe [1930] and
Bloch [1933a]. The first-order relativistic version of this so-called Bethe-Bloch equation is

S = −
〈
dE
dx

〉
= 4π r2

e mec
2 ρe

Z2

β2

[
ln

(
2mec

2 β2

1− β2

)
− β2 − C

Zt
− ln 〈I〉 − δ

2

]
, (2.1)

where re andme are the classical electron radius and rest mass, respectively, Z and β = v/c

are the charge and velocity (relative to the speed of light) of the incident particle, respec-
1The energy regime of interest in ion therapy is around 3-300MeV for protons [Gottschalk, 2012],

corresponding to approximately 0.01-51.45 cm penetration depth in water [Berger et al., 2005].
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tively. ρe and 〈I〉 are the electron density and mean excitation energy of the traversed
material with atomic number Zt, respectively. The shell correction C [Fano, 1963] ac-
counts for the invalid assumption that the orbital electrons of the absorber are at rest
(relative to the projectile), being a prerequisite of the Bethe-Bloch theory. This effect can
be up to 6% for protons in the energy regime of 1-100MeV [Ziegler, 1999]. The density cor-
rection δ includes the stopping power reduction due to polarization effects in the medium,
which reaches the 1% level only above 500MeV [Berger et al., 1993].

At energies of around 10AMeV the projectile velocity becomes comparable to the or-
bital electron velocity (≈ 0.008 c). This causes a mean charge state reduction due to a
dynamic interplay of energy loss and recombination effects. Thus, the projectile charge
Z in equation (2.1) must be replaced by an effective charge Zeff, which can be calculated
from the empirical formula of Barkas [1963]:

Zeff = Z
(

1− e−125β Z− 2
3

)
. (2.2)

Higher-order Born corrections terms (i.e., Barkas et al. [1963] and Bloch [1933b] cor-
rections) are generally of minor importance for therapeutic energies and can be safely
neglected for protons above 100 keV [Emfietzoglou et al., 2009]. While equation (2.1) de-
scribes only interactions with atomic electrons (the so-called electronic stopping power),
it is permissible to neglect contributions from interactions with atomic nuclei or inelastic
radiative interactions (Bremsstrahlung) in the clinically relevant energy regime. The spe-
cific energy loss of 1H, 4He and 12C ions in water is compared in figure 2.2, exemplifying
the substantial increment in stopping power for heavier particles.

From the perspective of the material traversed by a charged particle beam, two im-
portant quantities are of substantial impact for the stopping power: the electron density
ρe and the mean ionization potential 〈I〉. Since equation (2.1) primarily determines how
an ion beam will dissipate its energy, the knowledge of those parameters is fundamental
for properly planning tumor therapy with ion beams. Section 3.2 will review how this is
typically performed in current clinical practice and discuss the associated uncertainties.

It should be kept in mind that the concept of stopping power as presented in
equation (2.1) expresses the mean energy loss for a large number of particles of identi-
cal energy. Nonetheless, each individual ion will experience a slightly different energy loss
throughout the slowing down process due to the stochastic nature of the interaction. This
phenomenon is called energy loss straggling and will be of considerable importance for iCT,
representing an intrinsic accuracy limitation as it will be outlined in detail in section 3.4.3.
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Figure 2.2: Total (unrestricted) stopping power for 1H, 4He and 12C ions in a water target. Data
obtained from the FLUKA [Ferrari et al., 2005; Böhlen et al., 2014] MC code.

Within the central limit theorem (i.e., for many collision events), energy loss fluctuations
can be described by a Gaussian probability density function for which only the first two
moments are non-zero. Using the theory of Bohr [1915, 1948], the variance of the energy
loss distribution for particles of atomic number Z and initial energy E0 passing through
material of thickness x is represented by [Scheidenberger et al., 1996]:

σ2
E(x) = 4π Z2 ρe

(
e2

4π ε0

)2 ∫ x

0

1− 1
2
β2(E(E0, x

′))

1− β2(E(E0, x′))
dx′ , (2.3)

where ε0 is the vacuum permittivity. For energy losses exceeding 20% of the original beam
energy, Bohr’s theory becomes inaccurate since higher order moments can have substantial
contributions causing a skewed non-Gaussian distribution. In this case, representing also
the iCT scenario, a more accurate description is given by the theory of Tschalär and
Maccabee [1970], as it was demonstrated by Schulte et al. [2005].

As a consequence of energy straggling, particles of the same initial energy will have
a slightly different penetration depth or range, called range straggling. To estimate this
distribution of path lengths, ’range’ needs to be defined. While there is not a general
concept of range, most commonly one refers to the so-called Continuous Slowing-Down
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Approximation (CSDA) range, which is defined for an ion of initial energy E0 by:

RCSDA(E0) =

∫ 0

E0

(
dE

dx

)−1

dE = −
∫ 0

E0

dE

S
, (2.4)

where S is the stopping power of the traversed material according to equation (2.1). There-
fore, the range of charged particles in a certain medium is determined by the initial beam
energy as it is shown in figure 2.3. One should keep in mind that RCSDA does not necessar-
ily represent the penetration depth in beam direction, since equation (2.4) solely takes into
account the energy loss while neglecting deflection due to scattering. However, for protons
and especially heavier ions of clinically relevant energies, the ratio between projected and
CSDA range (also known as detour factor) is close to 1.
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Figure 2.3: Range of 1H, 4He and 12C ion pencil beams in a water target. Data obtained from
dedicated FLUKA [Ferrari et al., 2005; Böhlen et al., 2014] MC simulations to reproduce the beam
line of the Heidelberg Ion-Beam Therapy Center (HIT) [Bauer et al., 2014].

The range straggling variance σ2
R can be computed from the energy loss straggling by

[Schardt et al., 2010]

σ2
R =

∫ E0

0

(
dσE
dx

)(
dE
dx

)−3

dE , (2.5)

which leads to the following dependency of the straggling width σR on the beam range R:

σR =
R√
m

f

(
E

mc2

)
, (2.6)
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where m and E are the projectile mass and energy, respectively, and f is a slowly varying
absorber specific function [Rossi, 1952].

According to equation (2.6), range straggling is reduced for heavier ions. Experimental
measurements by Tessonnier et al. [2017] demonstrated that protons and helium ions ex-
hibit a 3.3 and 1.7 times larger straggling than carbon ions in water, respectively, which is
only slightly inferior to the 1/

√
m scaling. In tissue range straggling corresponds to around

1.1% of the mean range for protons, while being only 0.5% and 0.3% for helium and carbon
ions, respectively [Linz, 2012].

2.1.2 Multiple Coulomb Scattering

When passing through material, ions will be deflected laterally (cf. figure 2.1b). This is
mainly caused by a large number of elastic and semi-elastic Coulomb interactions with
atomic nuclei causing an accumulated effect called Multiple Coulomb Scattering (MCS).

The most comprehensive theoretical approach to MCS was developed by Moliére [1948].
Since the rigorous calculation can be algebraically complex and cumbersome, Fermi and
Eyges [Eyges, 1948] developed a Gaussian theory for the transport of particles in matter.
A very practical formula for the scattering angle standard deviation θ0 after traversing a
material slab of thickness x has been proposed by Highland [1975]2:

θ0 = 14.1MeV
Z

p v

√
x

X0

[
1 +

1

9
log10

(
x

X0

)]
, (2.7)

where X0 is the radiation length of the material and p and v are momentum and velocity
of the projectile with atomic charge number Z, respectively.

From the θ0 ∝ Z/(p v) proportionality in equation (2.7) conclusions can be drawn about
the scattering behavior of different ion species. Considering the same range, the angular
spread of protons and helium ions is around 3.6 and 1.8 times larger than pertains to carbon
ions [Gehrke et al., 2018a], being in good agreement with experimental measurements by
Tessonnier et al. [2017]. The lateral spread of ion pencil beams due to MCS in water can
be seen in figure 2.4.

The original Highland formalism has been generalized by Gottschalk et al. [1993] for
thick targets and when using the refinements proposed by Lynch and Dahl [1991] one
obtains the following expression for the moments An(x1, x2) (n = 0, 1, 2) of the projected

2The exact energy constant from Highland’s original publication is 17.5 MeV× 1.125/
√

2 = 13.92MeV.
However, nowadays 14.1MeV is normally used as standard.
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angular-spatial distribution at depth x2, assuming an entry depth x1:

An(x1, x2) = E2
0

[
1 + 0.038 ln

(
x2 − x1

X0

)]2

×
∫ x2

x1

(
Z

p v

)2
(x1 − x′)n

X0

dx′ , (2.8)

where E0 = 14.1MeV is an empirical energy constant (cf. equation 2.7).
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Figure 2.4: Lateral scattering of 1H, 4He and 12C ion pencil beams in a water target. The initial
beam spot size is 0.5 cm Full Width at Half Maximum (FWHM). Data obtained from FLUKA
[Ferrari et al., 2005; Böhlen et al., 2014] MC simulations.

2.1.3 Nuclear Reactions

In addition to electromagnetic processes, there is a finite probability that charged particles
directly interact via the nuclear force (cf. figure 2.1c). These interactions can be elastic (ki-
netic energy is conserved and internal states of target nucleus and projectile are unchanged)
or inelastic (kinetic energy is not conserved and nuclei may undergo fragmentation). Nu-
clear reactions of helium/carbon ions (nucleus-nucleus) and protons (nucleon-nucleus) are
conceptually different since the incoming nucleons are not free [Kraan, 2015].

Nucleus-nucleus collision reactions can be described by the two-step abrasion-ablation
model [Hüfner et al., 1975] illustrated in figure 2.5. In the rapid (∼ 10−22 − 10−21 s)
abrasion stage, nucleons are striped off in the overlapping reaction zone (fireball) forming
pre-fragments. During the ablation stage, which proceeds on a much slower time scale
(∼ 10−18 − 10−16 s), remaining fragments decay by evaporation into the observed stable



14 2. Basic Principles of Ion Beam Interaction with Matter

nuclei under emission of γ-rays, neutrons, protons, leptons or light fragments. Concluding,
reactions at several hundreds of MeV can cause a complete disintegration of projectile and
target. A description of the nuclear interaction models implemented within the FLUKA
MC code is presented in section 4.1.1.

Figure 2.5: Illustration of the abrasion-ablation model for a peripheral nucleus-nucleus collision
with overlap factor b. A fireball is formed in the central region by partial particle removal (abrasion
stage). Afterwards, the created fragments and the fireball will de-excite (ablation stage). Figure
adapted from Gunzert-Marx et al. [2008] and Durante and Paganetti [2016].

The nucleus-nucleus reaction cross-section σR exhibits a strong energy dependence be-
low 20AMeV [Parodi, 2004] causing distinct maxima. However, for higher energies the
dependence vanishes and geometrical factors become decisive since peripheral collisions
prevail. The cross-section can be parameterized by the energy-independent Bradt-Peters
formula [Bradt and Peters, 1950]:

σR = π r2
0

(
A1/3
p + A

1/3
t − b

)2

, (2.9)

where Ap and At are mass number of projectile and target, respectively, b is the overlap
or transparency factor (cf. figure 2.5) and r0 the nucleon radius. Nuclear reactions have
important practical consequences, affecting ion therapy and ion imaging. First, the primary
particle fluence Φ decreases exponentially as a function of depth x inside the target:

Φ(x) = Φ0 e
−Nσx , (2.10)

where N is the atomic density of target nuclei in the material, σ is the total reaction
cross-section and Φ0 is the initial fluence. Accordingly, approximately 20% of all protons
in a typical treatment scenario will undergo inelastic nuclear interactions [Durante and
Paganetti, 2016] and only around 50% of all 12C ions actually reach the designated depth.
A comparison of the primary particle fluence reduction for protons, helium and carbon
ions is shown in figure 2.6 for the case of a water target.
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For protons, only target fragmentation can occur. While the contribution of nuclear
recoils is mostly negligible since they remain approximately at rest at the interaction point
[Paganetti, 2002], the spatial pattern of energy deposition is considerably affected [Parodi,
2004]. This is predominantly due to the liberation of secondary protons and neutrons, since
light nuclei do not undergo fission. Additionally, the neutron contamination has a non-
negligible biological impact causing an increased risk for radiogenic late effects [Newhauser
and Zhang, 2015]. Interestingly, neutron contributions inevitably produced inside a patient
are comparable for carbon ion and proton therapy at the same treatment dose [Schardt
et al., 2010]. The reduced number of 12C ions required for the same energy deposition
compensates for the higher neutron yield per primary ion. Projectile fragmentation is one
of the major reasons why ions beyond oxygen are no longer considered for particle therapy.

For helium and carbon ions projectile fragmentation is the dominant contribution to
secondary particle build-up along the penetration depth (cf. figure 2.7). Fragments are
mostly forward emitted in the laboratory frame with nearly the original velocity [Greiner
et al., 1975], creating a mixed radiation field. Light fragments with Z < Zp travel be-
yond the initial primary range due to the A/Z2 range dependence at the same velocity
(cf. equation (2.4)), causing an energy deposition tail. Additionally, the energy deposition
is deteriorated by an enhanced lateral spread compared to MCS [Schardt et al., 2010].
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Figure 2.6: Fluence attenuation of 1H, 4He and 12C ion pencil beams in a water target. Data
obtained from FLUKA [Ferrari et al., 2005; Böhlen et al., 2014] MC simulations.
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Figure 2.7: Attenuation of 200MeV/u 12C ions and build-up of secondary fragments in a water
target. Data obtained from FLUKA [Ferrari et al., 2005; Böhlen et al., 2014] MC simulations.

Secondary particles and photons originating from nuclear interactions inside the irradia-
tion target can be exploited for image-guidance by means of Positron Emission Tomography
(PET) [Parodi et al., 2008], prompt gamma imaging [Polf et al., 2009] or interaction vertex
imaging [Henriquet et al., 2012]. Thereby, the ion beam range can in principle be inferred
in vivo [Parodi and Polf, 2018].

2.2 The Depth-Dose Distribution of Ion Beams

In the previous sections, the energy loss mechanisms of ions were described. However,
the most important physical quantity in radiation therapy is dose [Schardt et al., 2010].
Following the ICRU [2011] report, absorbed dose is defined as the ratio of the mean energy
dε imparted by ionizing radiation to matter of mass dm and has the unit Gray (Gy). For
a mono-energetic ion beam of fluence Φ, the absorbed dose D in a thin slice of absorbing
material with mass density ρ is related to the stopping power S by:

D [Gy] = 1.6× 10−9 × S
[
keV
µm

]
× Φ

[
1

cm2

]
× 1

ρ

[
cm3

g

]
. (2.11)

The final Three-Dimensional (3D) dose distribution of charged particle beams results
from a combination of the different physical interaction mechanisms (i.e., stopping, scatter-
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ing and nuclear reactions). The main characteristic feature is a steep dose increase toward
the end of the ion beam range (cf. S ∝ β−2 in equation (2.1)), the so-called Bragg peak
[Bragg and Kleeman, 1905], since the energy loss increases as the ions slow down. The
longitudinal and lateral spread is enhanced for lighter ions (cf. σR ∝ 1/

√
m in equation

(2.6) and θ0 ∝ Z/(pv) in equation (2.7)). For heavier ions a dose tail due to light nuclear
fragments appears beyond the Bragg peak as shown in figure 2.8.
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Figure 2.8: Dose distributions of 1H, 4He and 12C ion pencil beams in a water target. The beams
have approximately the same range and an initial Gaussian beam spot size of 1 cm FWHM. Data
obtained from FLUKA [Ferrari et al., 2005; Böhlen et al., 2014] MC simulations.

2.3 Biological Aspects of Ionizing Radiation

In addition to the aforementioned enticing physical properties originating from the
depth-dose distribution, the use of ions for tumor therapy can relate to more favorable
biological effects than it pertains to sparsely ionizing radiation3. In contrast, this ad-
vantage can potentially cause undesired side effects for iCT, which might constrain the
tolerable imaging dose, ultimately limiting the achievable image quality.

3Photons (i.e., X-rays or γ-rays) are generally considered sparsely ionizing radiation.
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2.3.1 Response of Cells to Radiation

The discrete energy depositions associated with charged particles can cause radio-toxic
damage sites within cellular structures. The most deleterious lesion is thought to be the
Double-Strand Break (DSB), a break in the backbone of each of the opposite DNA strands
causing high cytotoxicity [Lomax et al., 2013]. Differences in the biological response be-
tween different radiation qualities mainly reflect variations in the microscopic spatial dis-
tribution (clustering) of damage along the radiation track. Since the proximity of DNA
lesions relates to the damage severity, clustering may be considered as a signature of ion-
izing radiation in contrast with endogenously induced lesions [Lomax et al., 2013].

Coulomb interactions of heavy charged particles liberate electrons of sufficient energy to
generate further ionization, so-called δ-electrons. Consequently, a radial dose distribution
is created around the primary ion track. The concept of Linear Energy Transfer (LET) was
introduced to quantify the local concentration of energy deposition, taking into account
the residual range spectrum of secondary electrons. The ICRU [2011] defines LET as the
mean energy lost by charged particles due to electronic interactions in traversing a distance
dx excluding the kinetic energies of all electrons released by charged particles above ∆ (not
excluding the binding energy):

LET =
dE∆

dx
, (2.12)

becoming numerically equal to stopping power in the limit of ∆→∞ and is conventionally
used in radiobiology. Hence, the LET is correlated with the ionization density along a
particle track for a certain ion. However, different ions of the same LET have different
ionization density due to the energy dependence of the track diameter [Fokas et al., 2009].

Low energy ions create a dense emission pattern of slow δ-electrons below 100 eV
[Krämer and Durante, 2010], as illustrated in figure 2.9. Those electrons have a mean
free path of a few nm, bearing a high probability for ionization events in each of the 2 nm
separated DNA strands. High-LET radiation enhances the complexity of clustered dam-
age sites, which have reduced repairability, since lesions are increasingly concentrated in
space. By contrast, the energy of secondary electrons from photon beams is much higher
than for ions [Paganetti, 2015]. Therefore, high-LET radiation gives rise to a substantially
larger number and higher complexity of aberrations compared to low-LET radiation, even
for the same number of ionization events per cell [Nikjoo et al., 1998]. Due to the energy
dependence, the LET at the end of the particle range is much larger than in the entrance
channel creating a differential effect which is compelling for ion therapy.
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Figure 2.9: TRAX (http://bio.gsi.de/DOCS/trax.html) [Krämer] simulations of δ-electrons
from 1H and 12C ions of various energies. Adapted from Krämer and Durante [2010].

Generally, the interaction of radiation with living cells is a complex sequence involv-
ing physical, biochemical and physiological processes [Paganetti, 2012a]. A simplified
schematic of the biological manifestation of DNA damage is shown in figure 2.10. The
secondary electrons liberated by the primary radiation can either directly create DNA
damage or indirectly via the formation of highly reactive radicals. The contribution of
direct damage increases for high-LET radiation. DNA lesions can be chemically repaired
under hypoxia but can also become permanently fixated (i.e., being lethal) by oxygen radi-
cals [Carlson, 2006]. Additionally, damage can be repaired by the cells to their original state
via enzymatic repair. Unrepaired or misrepaired cells will either die or form mutations.

2.3.2 The Relative Biological Effectiveness

The repair capability of a cellular system can be parameterized by a linear-quadratic re-
lationship. According to the Linear-Quadratic (LQ) model [Kellerer and Rossi, 1978] the

http://bio.gsi.de/DOCS/trax.html
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Figure 2.10: Schematic illustrating the biological manifestation of DNA damage and the corre-
sponding time scales. Redrawn from Frese [2011].

cell survival S following the exposure of a dose D is expressed through

− lnS = αD + β D2 , (2.13)

where α and β are damage coefficients for lethal lesions made by one-track and two-track
action, respectively. Both depend on cell type, biological endpoint and radiation quality.

As discussed in the previous section, ion beams have a drastically different biological
response compare to photons. This is quantified by the Relative Biological Effectiveness
(RBE), which is defined as the ratio of the low-LET reference radiation dose DX (typically
MV X-rays or γ-rays from 60Co) and the charged particle radiation dose Dion required to
generate the same biological effect. The RBE is a versatile weighting factor, depending
among others on the reference radiation quality, the radiosensitivity of the irradiated cell
line or tissue (i.e., α and β), the level of biological effect (i.e., the biological endpoint) and
dose (cf. figure 2.11a) as well as the LET and particle type (cf. figure 2.11b).

Within the framework of the LQ model the RBE for reproductive cell death due to the
particle irradiation of dose Dion is given by

RBELQ (αX , βX , αion, βion, Dion) =

√
α2
X + 4βXDion(αion + βionDion)− αX

2βXDion
, (2.14)

where αX/βX and αion/βion are the tissue radiosensitivity parameters for the reference
radiation and the considered (particle) radiation, respectively.

In order to calculate the RBE for a specific irradiation scenario, biophysical models are
required. Those models aim at relating the biological effect of ionizing radiation to the
physical properties of the incident radiation field.
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Figure 2.11: (a) Schematic of the RBE definition for the endpoint of 10% and 1% cell survival.
(b) Dependence of the RBE on LET for 1H, 4He and 20Ne ion beams. Experimental data from
Belli et al. [1992] and Furusawa et al. [2000]. Redrawn from Schardt et al. [2010].

For protons simplified LET-based models can be used, since the relevant proton LET
range is low enough to show a linear relationship with dose-response parameters [Paganetti
et al., 2015]. However, in clinical practice a single value of 1.1 is widely used. Even though
there is strong evidence that the RBE is not constant, clinical data can neither indicate that
a generic value of 1.1 is unreasonable, nor that it is correct [Paganetti, 2012a]. For heavier
ions, modeling radiation action mechanistically is complicated because the radiation field
can be complex due to nuclear fragmentation reactions (cf. section 2.1.3).

Various phenomenological [Wilkens and Oelfke, 2004; Cárabe-Fernández et al., 2007;
Wedenberg et al., 2013] and mechanistic [Hawkins, 1998; Friedrich et al., 2012] biophysical
models have been proposed by several groups worldwide. The selected approach in this
thesis is the RMF model [Carlson et al., 2008], which will be presented in chapter 7.1.

2.4 Conclusions

This chapter provided the basic macroscopic quantities relevant for the physical description
of ion therapy and particle imaging. The interaction mechanisms (stopping, scattering and
nuclear reactions) of heavy charged particles with matter determine the depth-dose distri-
bution, characterized by a steep gradient at the end of the particle range, the Bragg peak.
While ions heavier than protons are benefiting from reduced MCS and range straggling,
they also deliver an increased physical dose per particle and suffer from an elevated loss of
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primaries in depth due to nuclear fragmentation.
From a radiobiological point of view, ionization processes causing DNA lesions are

responsible for cell killing. The DNA damage response pathway is a complex multistep
process involving various mechanisms like damage recognition, cell cycle regulation and the
activation of appropriate repair systems [Karger and Peschke, 2018]. The biological impact
is quantified by the RBE, which is a multivariate weighting factor being typically larger
for heavier ions than for protons. Furthermore, the biological dose computation requires
sophisticated biophysical models.



“We must not forget that when radium was discov-
ered no one knew that it would prove useful in hos-
pitals. The work was one of pure science. And this
is a proof that scientific work must not be considered
from the point of view of the direct usefulness of it.
It must be done for itself, for the beauty of science,
and then there is always the chance that a scientific
discovery may become like the radium a benefit for
humanity.”

Marie Curie 3
Ion Imaging in the Context of Tumor Therapy

with Charged Particles

The aim of radiation therapy, in conjunction with other treatment modalities, is to deprive
cancer cells of their uncontrolled proliferation potential and ideally kill all cancer cells
while avoiding damage to healthy tissue. Since the discovery of X-rays by W. C. Röntgen
in 1895, this lead to a quest for the ’magic bullet’ [Durante and Paganetti, 2016] to cure
cancer. Through their favorable physical and biological properties outlined in chapter 2,
ion beams are generally a promising candidate. On paper the superiority of ions over
X-rays is uncontroversial. Especially heavy ions could enable better biological dose to the
tumor, improved sparing of healthy tissue and allow to overcome anatomical constraints
due to adjacent sensitive structures as illustrated in figure 3.1. However, reality is different
and some argue that this superiority is solely ’theoretical’ [Zietman, 2015].

Putting aside the cost ratio of 4.8 and 3.2 for a combined (i.e., carbon ion and proton)
and proton-only facility compared to photons, respectively [Peeters et al., 2010], a main
allegation is the absence of clear evidence for the magnitude of clinical benefit. A general
consensus however is the usefulness for the treatment of pediatric cases because the risk for
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secondary malignancies is expected to be lower due the reduced integral dose. Nevertheless,
most proton therapy treatments for example in the United States are not pediatric but
for prostate cancer, which showed very small benefit, if there is any, over photons [Schulz-
Ertner and Tsujii, 2007]. However, there is an expectation that a meaningful clinical
superiority of ion beam therapy will be demonstrated on the long term for many indications
via controlled clinical trials and large patient cohorts [Zietman, 2015].

A more immanent issue is the susceptibility of ion therapy to range uncertainties and its
impact, which is intrinsically related to the implemented ion therapy workflow in clinical
practice. This currently imposes a major constraint in exploiting the full potential of ion
therapy. In order to understand these limitations, the next two sections will outline the
ion therapy workflow with a dedicated focus on the appearing uncertainties, the current
clinical solutions and how modern imaging technology like iCT can contribute.

Figure 3.1: Comparison of photon, proton and carbon ion treatment plans for the same histology
at different sites such as glioblastoma multiforme (intracranial), lung (thoracic region), and rectal
carcinoma (abdominal/pelvic). Extracted from Schlaff et al. [2014].

3.1 Clinical Implementation of Ion Beam Delivery

Producing ion beams of energies up to 430AMeV requires a powerful and dedicated ac-
celerator, the ’engine’ of a treatment facility [Goitein, 2008]. Nowadays, synchrotron and
cyclotron are the two types of commercially available particle accelerators. A cyclotron
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is a fixed energy machine with a variable-thickness degrader (typically made of carbon or
beryllium) downstream for adjusting the beam energy. Conventional cyclotrons are until
now only used for protons since carbon ions exhibit a three times larger magnetic rigid-
ity making the machine excessively large [Schippers, 2009]. In contrast, synchrotrons are
typically used for heavier ions and allow the generation of a variable energy by extracting
the increasingly accelerated beam at the right moment. An important consequence is the
intrinsically bunched macroscopic beam structure (with gaps of few seconds).

The generated unmodified beam is typically not confined to the extent of the target
region. Hence, the dose spread of the particle beam, laterally and in depth, has to be
modified while being transported toward the patient, ideally from an arbitrary direction
using a rotating gantry. A gantry is a mechanical system that rotates the magnets of
the last part of the beam line system around the patient [Schippers, 2015]. Generally
one distinguishes two different approaches of beam delivery: passive scattering and active
pencil beam scanning. The description will be restricted to the latter since all studies
presented within this thesis use the state-of-the-art scanning technique.

3.1.1 Pencil Beam Scanning

In pencil beam scanning, ion beams are magnetically displaced using two sets of fast dipoles
located several meters upstream the isocenter in order to control the lateral position and
scan the target region. This can be performed as discrete step-and-shoot approach (spot
scanning) or in continuous fashion (raster scanning). In order to obtain a reasonable
treatment duration, the ion beam is deflected with a velocity of approximately 1 cm/ms at
the isocenter [Schippers, 2009]. Furthermore, the depth (i.e., the Bragg peak location) is
dynamically modulated by varying the beam energy. The basic principle of pencil beam
scanning is indicated in figure 3.2.

This technique enables to ’paint’ basically any arbitrary dose distribution, enabling ex-
cellent dosimetric conformity even for complex geometries. In addition, ions are used more
efficiently with only few being lost during the delivery and no patient-specific hardware
like apertures or compensators are required (except for shallow tumors). Consequently,
the secondary neutron background is substantially reduced [Goitein, 2008]. The scanning
technique also allows the irradiation of a relatively large field of view of up to around
40 × 40 cm2 [Smith, 2009]. Certainly, the most important advantage of active beam de-
livery lies in the possibility to simultaneously modulate the cross-field fluence and the
depth-dose curve of the radiation. This so-called Intensity-Modulated Particle Therapy
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Figure 3.2: Basic principle of active pencil beam scanning: the accelerated ion beam is deflected
by two sets of dipole magnets in order to scan a layer of the target region. By dynamically
varying the beam energy the Bragg peaks can be located at variable depths. Furthermore, the
beam intensity can be individually adjusted to allow full degrees of freedom in modulation.

(IMPT) is the true equivalent of intensity-modulated radiotherapy with photons [Lomax
et al., 2015] and provides additional degrees of freedom for treatment planning.

Among the disadvantages of this technique are interplay effects induced by organ and
tumor motion [Schippers and Lomax, 2011]. This increased sensitivity demands complex
safety mechanisms to accurately control the beam intensity since the parameter values can
be time-driven for raster scanning [Schippers, 2009].

3.1.2 Discrepancies Between Planned and Delivered

Dose Distribution

An obviously crucial task is the accurate application of the dose distribution to the patient.
However, there are several sources for uncertainties solely from the dose delivery itself, i.e.,
independent of dose calculation or treatment planning.

These uncertainties are for example related to the measurement uncertainty for commis-
sioning in water and the beam reproducibility [Paganetti, 2012b]. Another major source of
uncertainties are geometric changes due to patient-tissue variability. Two factors contribute
to range degradation in patients [Palta and Yeung, 2012]. First, the patient setup inside
the treatment room. Any discrepancy in the patient alignment relative to the planned
beam direction is directly translated into range degradation, which can be up to several
millimeters [Liebl et al., 2014]. This can be caused by tissue heterogeneities, high-Z re-
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gions or air cavities which can shift tangential to the patient surface. Nevertheless, even
for perfect external patient setup the internal structures can change due to inter-fractional
anatomic variations like tumor shrinkage, weight gain/loss or filling up of sinuses.

Finally, any material present in the beam potentially represents an additional source
of errors. The impact of materials in terms of their Water-Equivalent Thickness (WET)
needs to be determined precisely. Non-uniformity of accessories like immobilization masks
or tabletops can introduce uncertainties in the energy loss [Palta and Yeung, 2012]. This
becomes even more important for compensator and apertures used in passive (but occa-
sionally also in active) beam delivery. Additional issues arise for respiration and other
intra-fractional motions, which demand dedicated strategies like rescanning, gating or a
combination thereof as reviewed by Mori et al. [2018].

3.2 Treatment Planning for Ion Beam Therapy

Treatment planning describes the process of designing a patient-specific plan of the beam
arrangement by tweaking various beam-specific and treatment plan-specific parameters.
The final goal of a treatment plan is to fulfill the clinical goals set by the radiation oncologist
while providing the best trade-off between tumor coverage and sparing of sensitive healthy
tissue. The decision about the plan goodness is based on the inspection and quantitative
evaluation (e.g., using dose-volume histograms) of the predicted dose distribution that will
be (ideally) delivered to the patient during the treatment.

Three different treatment planning concepts can be distinguished: for the Single Field
Uniform Dose (SFUD) method, each individual beam angle is optimized in a way to deliver
the prescribed homogeneous dose to the target by using Spread Out Bragg Peaks (SOBPs).
In contrast, for field patching each single patch field covers only partially the tumor with
the distal end of one or more fields being directly abutted against the lateral edge of another
field to obtain a nearly uniform dose profile along the junction [Goitein et al., 2002]. The
aforementioned IMPT method delivers individually inhomogeneous dose distributions from
various directions to yield the desired homogeneous combined dose [Trofimov et al., 2007].

3.2.1 Calculation of an Optimized Patient Dose Distribution

A prerequisite for treatment planning is clinical information in terms of a collection of
imaging data along with the experience and expertise of a radiation oncologist. The three
main roles of treatment planning are [Lomax et al., 2015]: (1) identification and delin-
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eation of the target volume and critical Organs At Risk (OARs), (2) treatment design and
(3) definition of machine control data.

The first task is typically supported by various co-registered complementary imaging
modalities (e.g., contrast enhanced xCT, magnetic resonance imaging or PET). The treat-
ment design requires imaging data providing information about the expected ion beam
energy loss within the patient. However, during the facility commissioning, dosimetric
basic data (i.e., laterally integrated depth-dose distributions, fragment spectra (for heav-
ier ions) and lateral dose parametrization) are only measured in water for different beam
energies, supported by dedicated MC simulations [Parodi et al., 2012]. Since a patient is
made up of various different tissues, the ion beam range must be scaled according to the
Relative Stopping Power (RSP) of the traversed materials. The RSP is defined as the ratio
of the electronic stopping power for the specific material and water. Using the Bethe-Bloch
equation (cf. equation (2.1)) without correction terms, one obtains for a material m:

RSP = ηe ×
ln
(
2mec

2 β2/ 〈Im〉 (1− β2)
)
− β2

ln
(
2mec

2 β2/ 〈Iw〉 (1− β2)
)
− β2 = ηe ×K , (3.1)

where ηe = ρe,m/ρe,w is the relative electron density (with respect to water), cβ is the
particle velocity, me is the electron mass and 〈Im〉 and 〈Iw〉 are the mean ionization energies
for material m and water, respectively. Schneider et al. [1996] investigated different tissue
substitutes and found that the parameter K varies between 0.975 and 1.025, but is rather
insensitive to the value of 〈I〉. This demonstrates that relative electron density and RSP
are closely related but neither is the ratio unity nor is it constant [Langen et al., 2015].
In current clinical practice, the RSP map of a patient is derived via a semi-empirical
conversion from the Hounsfield Unit (HU) values of a (single energy) xCT.

In order to make judicious decisions about a treatment plan, one needs to accurately
predict the dose distribution finally received by the patient. For this calculation two
fundamentally different computational approaches exist: semi-empirical analytical dose
calculation algorithms and MC-based techniques.

Analytical algorithms for particle therapy treatment planning were first developed by
Chen et al. [1979] using a broad-beam ray casting technique and are now universally used
in routine practice. They are considerably faster than MC methods by making numer-
ous simplifying approximations; nevertheless, they are still accurate enough in most cases.
However, particularly simple ray-casting methods have limited capabilities in modeling
the disturbance of the dose distribution behind complex heterogeneities causing a change
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of the energy spectrum (so-called range dilution). This is incorporated in more advanced
analytical pencil beam methods [Schaffner et al., 1999]. Here, the beam is modeled as a su-
perposition of various individual narrow beamlets, referred to as pencil beams, with weights
directly proportional to the particle fluence. This conceptual assumption is suitable since
narrow ion beams are pencil beams by themselves, but with an extended phase space. Sim-
ply speaking, the general formalism for calculating the energy released within the patient
is a convolution of the modeled fluence along the pencil beam axis with a lateral energy
diffusion kernel [Clasie et al., 2012]. However, the accuracy of the implementation highly
depends on the mathematical description of the involved physical interactions. Advances
of the original concept, especially for the use in IMPT were provided by the algorithm of
Soukup et al. [2005] introducing beamlet decomposition into sub-spots to better account
for the finite extent of lateral heterogeneities and an accurate incorporation of the nuclear
beam halo. All these improvements are very important for active scanning beam delivery
since small discrepancies significantly accumulate for several thousands of beamlets. An
example for analytical pencil beam algorithms is the dose engine of the Treatment Plan-
ning System (TPS) RayStation (RaySearch Laboratories, Stockholm, Sweden), which was
used for the work presented in chapter 6.

MC transport techniques are still considered as gold standard for dose calculation since
they are more accurate than analytical models in that they take into account the physical
interaction processes during the transport [Newhauser and Zhang, 2015]. MC methods
employ repeated random sampling of the interaction probability density function to math-
ematically create the particle transport. The general concept of this technique for particle
interaction simulation will be outlined in chapter 4.1. The main dosimetric difference com-
pared to analytic algorithms is the adequate handling of MCS, which becomes particularly
important at high-density gradients in the beam direction like tissue-lung interfaces [Pa-
ganetti et al., 2015]. A drawback of MC methods is the long computational time, since
the statistical uncertainty of the dose calculation depends on the number of simulated
particle histories. While this is currently limiting the use in clinical routine [Knopf and
Lomax, 2013], recently developed GPU-based MC approaches have already demonstrated
a significant gain in speed [Jia et al., 2014].

A crucial step in treatment planning is the optimization of the plan itself, aiming at the
best possible treatment plan for the patient. For the case of active scanning, this requires to
determine the pencil beam intensities that result in a dose distribution as close as possible
to the desired one. Forward planning or ’manual optimization’ (even though in a strict
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mathematical sense it can not be termed optimization since it neither involves an iterative
adjustment nor is it systematic [Trofimov et al., 2012]) is normally too complicated if the
irradiation scenario allows for several degrees of freedom. Hence, the optimization problem
is mathematically formulated as an inverse problem within the TPS solved by minimizing
or maximizing an objective function while satisfying a set of constraints. This represents a
typical large-scale optimization problem, particularly if convex objectives and constraints
are used [Unkelbach et al., 2015]. Commercial systems typically solve the treatment plan
optimization problem with a single-criterion approach [Trofimov et al., 2012], i.e., using a
composite objective function as overall estimate of the plan quality.

One should keep in mind the importance of the underlying imaging data of the patient.
Independent of the selected planning strategy, dose calculation engine or optimization
algorithm, any variations between the planning data and the actual patient will cause
changes in the dose distribution delivered to the patient.

3.2.2 Range Calculation Uncertainties

Range calculation uncertainties can be divided in two groups: those from the patient model
based on volumetric Computed Tomography (CT) data and those from the dose calculation
algorithm itself. Since most uncertainties do actually depend on the beam energy or range
it is appropriate to give uncertainties in % rather than mm [Paganetti, 2012b].

As previously mentioned, the image data plays a crucial role since it defines the ions’
energy loss assumed by the TPS, consequently defining the dose distribution. Current clin-
ical practice in treatment planning relies on the use of tomographic images obtained with
X-rays. Here one has to distinguish between two approaches, since they provide different
accuracy in estimating the required RSP. Single energy xCT (normally simply referred to
as xCT) is the commonly used system. In contrast, Dual Energy Computed Tomography
(DECT) is a modern approach; however, already being commercially available.

Single energy xCT
Single energy xCT images contain information on the photon attenuation coefficient µ
relative to water expressed in the HU scale:

HU =
µm − µw
µw

× 1000 =

(
µm
µw
− 1

)
× 1000 , (3.2)

where µm and µw are the attenuation coefficients for the specific material m and water,
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respectively. Since there is no functional relationship between the measured HU values
and the required RSP because photons and ions interact in a substantially different way,
semi-empirical calibration methods are commonly employed. In the most straightforward
approach called ’tissue substitute’ calibration, tissue substitutes of known density and
chemical composition are imaged [Chen et al., 1979]. Afterwards a direct calibration of the
HU values is performed by either calculating or measuring the corresponding RSP values
and assuming a bi-linear relationship.

The stoichiometric calibration proposed by Schneider et al. [1996] allows a more precise
conversion and is widely adopted in the ion therapy community. This method is based on
the dependence of the photon attenuation on the electron density ρe:

µ = ρe
(
σpe + σcoh + σincoh

)
, (3.3)

where σpe, σcoh and σincoh are the cross sections (per electron) for the photo electric ef-
fect, coherent (Rayleigh) and incoherent (Compton) scattering, respectively. For a poly-
energetic X-ray beam with a peak energy less than 1.02MeV, the cross sections can be
parametrized by their dependence on the effective atomic number:

µ = ρe

(
KpeZ̃3.62 +KcohẐ1.86 +KKN

)
, (3.4)

where Kpe, Kcoh and KKN are constants which characterize the relative contribution of
photoelectric interaction, coherent and incoherent scattering for the used xCT energy spec-
trum, respectively. Z̃ and Ẑ are the effective atomic numbers for composite materials,
calculated according to Jackson and Hawkes [1981].

Using the parametrization of equation (3.4) for water and a certain material m,
equation (3.2) becomes a function of three scanner-specific parameters (Kpe, Kcoh and
KKN) and three object-related parameters (ρe,m, Z̃m and Ẑm):

HU
1000

+ 1 = ηe

[
KpeZ̃3.62

m +KcohẐ1.86
m +KKN

]
[
KpeZ̃3.62

w +KcohẐ1.86
w +KKN

] . (3.5)

The stoichiometric calibration procedure can be separated into four steps [Yang et al.,
2012]: (1) imaging of tissue substitutes of known density and elemental composition using
the treatment planning xCT scanner; (2) calculation of the scanner-specific K parameters
using the measurements of step 1; (3) calculation of ’virtual’ (i.e., theoretical) HU/RSP
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pairs for typical human tissues based on the density and elemental composition recom-
mended in the literature using equations (3.1) and (3.5); (4) derivation of the calibration
curve using a linear regression within each tissue group and connecting them piece-wise.

An exemplary stoichiometric calibration curve is shown in figure 3.3. The range uncer-
tainties related to the RSP estimation with this method were comprehensively reviewed
by Yang et al. [2012], who separated the following uncertainty categories:

• Uncertainties inherent to the xCT imaging of the patient (e.g., scatter conditions and
beam-hardening effects).

• Uncertainties in the parametrization of the stoichiometric formula (i.e., parameters
Kpe, Kcoh and KKN in equation (3.4)).

• Uncertainties due to the use of ICRU standard tissues, which do not reflect tissue
variations of individual patients (e.g., due to age or health).

• Uncertainties in the mean excitation energies.

• Uncertainties from the assumption of an energy-independence of the RSP by the dose
calculation algorithm.

The composite range uncertainty (95th percentile) for different treatment sites was
3.0− 3.4% due to the large abundance of soft tissue [Yang et al., 2012].

Dual energy xCT
DECT exploits, in contrast to single energy xCT, scans at two different photon energy
spectra (typically 100 kVp and 140 kVp). This is currently implemented in several differ-
ent ways in commercial scanners [Siegel et al., 2016; Albrecht et al., 2018]: Source-based
solutions include dual-source (two X-ray tubes and two corresponding detector rows), dual-
spin (one X-ray tube acquiring two consecutive spiral scans at different kVp), rapid kVp
switching (alternation between different kVp energies within the same gantry rotation),
and twin-beam (one X-ray spectrum that is separated in two energy spectra by using a
split-filter). Detector-based DECT solutions include dual-layer ’sandwich’ detectors (two-
layered detector separating the high- and low-energy photons) and photon counting xCT.

The additional information gathered by a DECT system can be used to separate the
material contributions of the measured attenuation coefficient. Using the material decom-
position approach, the material of every voxel imaged can be separated into its constituent
elements expressed in terms of two basis materials (e.g., soft tissue and calcium). Al-
ternatively, and more important for RSP estimation, the spectral decomposition enables
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Figure 3.3: Stoichiometric calibration curve and calculated HU-RSP pairs for various biological
tissues. Image redrawn from Schaffner and Pedroni [1998].

a transformation of the attenuation maps into relative (to water) electron density (ηe )
and effective atomic number (Zeff). In contrast to the stoichiometric parametrization, not
the relative contribution of the different interactions mechanisms (i.e., the K parameters)
have to be determined, but their energy dependency using measurements with two dif-
ferent photon spectra. Various methods [Alvarez and Macovski, 1976; Heismann et al.,
2003; Saito, 2012; Landry et al., 2013] have been proposed for spectral decomposition ei-
ther in projection-domain (i.e., in pre-reconstruction space) or in image-domain (i.e., in
post-reconstruction space).

Yang et al. [2010] first proposed the use of DECT for reducing RSP uncertainties with
respect to the stoichiometric calibration for single energy xCT. They found an empirical
linear relationship between the logarithm of the mean excitation energy and the effective
atomic number of human tissues. Hence, DECT provides basically by design the possibility
to calculate RSP directly from equation (3.1), which makes the DECT method more robust
against tissue variations in density and elemental composition [Langen et al., 2015].
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Theoretical RSP improvements of up to 2% were observed for selected materials using
DECT images for proton range calculation in MC simulations [Hünemohr et al., 2014].
Hudobivnik et al. [2016] and a retrospective clinical study by Wohlfahrt et al. [2017]
demonstrated the improved range accuracy for DECT-based treatment planning. Water-
equivalent range variations with respect to single energy xCT were mostly 1.5% for cranial
tumors, putting forward some design goals for iCT as it will be discussed in chapter 6.

Besides the HU-RSP conversion, the HU values themselves have intrinsic uncertainties
arising from noise, beam-hardening and the tomographic image reconstruction (e.g., partial
volume effects from density heterogeneities).

Furthermore, non-organic high-Z materials like dental fillings, hip prosthesis or ortho-
pedic hardware cause extremely high X-ray absorption outside the HU range of clinical
scanners. Direct beam paths through implants can create range underestimation of up to
77% [Jäkel, 2006], which can be significantly reduced by using empirical range relations
[Jäkel et al., 2001]. Furthermore, the strong attenuation causes ’streak artifacts’ during
the tomographic reconstruction that can severely deteriorate the image quality and cause
large uncertainties in the ion beam range [Jäkel and Reiss, 2007].

Regarding the dose calculation, density heterogeneities can be difficult to handle cor-
rectly by pencil beam algorithms (predominantly for protons, depending on the distribution
of the inhomogeneities relative to the treatment field [Bauer et al., 2014]). This is mainly
caused by range degradation effects due to MCS. For small fields, analytical calculations
in patients might misevaluate the dose in the target volume by several percent when the
ion beam is traversing a highly inhomogeneous region [Bueno et al., 2013].

3.3 Managing Range Uncertainties in Clinical Practice

Particle therapy can be considered a double-edged sword. On the one hand it allows a
potentially high dose conformity to the target region being one key benefit. However, on
the other hand, this also entails the peril of inflicting severe damage to undesired locations
if the particle range is not precisely known and accurately delivered. This is schematically
illustrated in figure 3.4. The depth-dose distribution of protons (and ions in general) is
more susceptible to range uncertainties than for photons. This can cause a considerable
dose to an OAR (e.g., the brainstem) behind the target. Consequently, exploiting the full
potential of particle therapy is challenged by uncertainties appearing in just about every
link of the radiotherapy chain [Mohan et al., 2015], as outlined in previous sections.
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Figure 3.4: Potential dosimetric benefit of a treatment with protons compared to photons and
the impact of range uncertainties on the depth-dose distribution. Idea of the illustration adapted
from Knopf and Lomax [2013].

There are several sources of evidence that those uncertainties can affect the clinical
outcome. An investigation of the effective dose level by Herring and Compton [1971] con-
cluded that a therapeutic dose should be administered with a precision of 3.5% expressed
as one relative standard deviation in the combined uncertainty, which resulted in the nowa-
days accepted standard of 5% (as a 1.5 standard deviation) [Mijnheer et al., 1987]. This
corroborates that uncertainties have to be adequately considered in the treatment planning
and delivery stage for mitigating complications. In order to manage range uncertainties
in clinical practice, the following general strategy is adopted [Mohan et al., 2015]: one
tries to minimize uncertainties as much as possible and residual uncertainties need to be
incorporate in the planning and delivery process.

Minimize range uncertainties
Reducing geometric uncertainties requires special care and adequate immobilization dur-
ing the treatment process. This is necessary to ensure stability of the patient’s external
contour throughout the treatment and hence a reproducible water-equivalent target depth
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to minimize inter-fractional variations [Wroe et al., 2015]. For head and neck or CNS
(central nervous system) tumors, fiberplast masks, bite blocks and stereotactic frames can
be used to guarantee a consistent patient pose. The use of those devices requires accurate
characterization and incorporation into the treatment plan. Furthermore, they have to
undergo regular quality assurance checks to verify variations with respect to the initial
commissioning, for example from mishandling or aging. In addition to external anatomy
uncertainties, also inter- and intra-fractional variations of internal structures should be
minimized. For prostate cancer treatments for example, endorectal balloons or spacer gels
can be utilized to hold the prostate gland against the bony pelvic anatomy [Kruse, 2015].

In order to guarantee a precise positioning of the immobilized patient with respect
to the isocentric treatment room coordinate system, image guidance is required. One
common solution is the alignment of orthogonal kV setup images with planned digitally
reconstructed radiographs relative to skeletal features or implanted fiducials. Recent com-
mercially available Cone Beam Computed Tomography (CBCT) or xCT on rails opened
the door to volumetric and even time-resolved in-room imaging in ion therapy (but not
always at the treatment isocenter) [Landry and Hua, 2018]. However, the use of CBCT
brings technological and workflow challenges. Low image quality due to spatially varying
artifacts from increased scattering and truncation impedes the use for treatment plan-
ning. Using dedicated correction methods [Landry et al., 2015; Park et al., 2015], CBCT
represents the first step toward implementing adaptive ion therapy.

Generally, it would be desirable to acquire a new treatment planning CT if image
guidance reveals anatomical changes and adaptation is deemed necessary. However, this
needs to be balanced against the additional imaging dose [Mohan et al., 2015].

In order to cope with metal artifacts, software-based correction methods have been
proposed and are on the verge of becoming commonly available in clinical practice [Schwarz,
2011]. However, studies on their actual usefulness in clinical proton therapy treatment
planning are scarce [Langen et al., 2015].

Incorporating residual uncertainties
It is crucial to maintain the designated dose level within the whole target region for a treat-
ment to be effective. Thus, the radiation oncologist will delineate the visible tumor tissue
(the so-called gross tumor volume) and based on his/her experience generally expand it to
the clinical target volume to account for the suspected invisible spread of the tumor [En-
gelsmann and Bert, 2012]. Finally, in a similar manner to photon therapy, systematical and
random errors are combined into an additional margin, defining the Planning Target Vol-
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ume (PTV). This margin is typically around 3.5% of the prescribed range plus a constant
setup uncertainty, which turns out to be relatively conservative [Paganetti, 2012b].

It might appear tempting to aim an ion beam directly against a critical OAR as indi-
cated in figure 3.5(a). However, this is typically avoided in clinical practice due to range
uncertainties and potential complications. Hence, intrinsically robust treatment plans are
desired, for instance by applying fields tangentially to the OAR (cf. figure 3.5(b) and (c)).
Yet this comes at the cost of compromising the dosimetric conformity, since the lateral
edge is less sharp than the distal falloff (in particular for proton beams).

Figure 3.5: Different ion therapy planning strategies and their potential sensitivity to uncer-
tainties in the ion beam range. Idea of the illustration adapted from Knopf and Lomax [2013].

Additionally, the plan robustness can be included in the plan optimization procedure
by integrating various uncertainty scenarios in the objective function. Thereby, potential
dosimetric effects of delivery and positioning uncertainties can be directly considered, for
instance by finding a treatment plan which is as good as possible for the worst case scenario
[Trofimov et al., 2012]. Ideally, the optimization should automatically yield a solution to the
planning problem, which is intrinsically robust to the considered uncertainties. However, if
one tries to ensure adequate target coverage under all likely uncertainties, it will inevitably
lead to unwanted over irradiation of neighboring normal tissues [Lomax, 2018]. Thus, it is
desirable to interactively explore different trade-off scenario, for instance by using multi-
criteria optimization techniques like Pareto surface navigation [Wedenberg et al., 2018].

The quantitative impact of remaining uncertainties on the ion beam range inside the patient
was evaluated in the exceptional articles by Paganetti [2012b] and Yang et al. [2012].
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3.4 Medical Imaging with Ion Beams

Despite extensive efforts to reduce the origins and consequences of range uncertainties,
the clinical implementation of ion beam therapy still faces limitations from remaining
uncertainties. It was shown that imaging plays a crucial role for obtaining the patient’s
RSP map, accurate positioning and to establish an adaptive workflow. Since the current
X-ray imaging technology has its limitations in physics and implementation, one might ask:
Why not image the patient with the radiation quality available in any treatment room,
i.e., the ion beam itself? In contrast to therapeutic applications, ion imaging requires
higher energies capable of fully traversing the patient in order to measure changes in the
transmitted ion range. It turns out that iCT indeed represents an intuitive solution to
significantly reduce or rule out most sources of range uncertainties.

The basic idea of transmission imaging is to infer the internal structure of an imaged ob-
ject from changes in the transmitted radiation quality due to physical interactions within
the object itself. In this sense iCT and xCT are the same. However, there are funda-
mental differences between the use of X-rays and ion beams. Neutral particles will either
interact with the traversed tissue or not and consequently the number of X-rays exponen-
tially decreases, providing information about the photon attenuation within the imaged
object. In contrast, charged particles will interact in various substantially different ways
as reviewed in chapter 2. This allows to distinguish four different ways of using ions for
imaging depending on the selected observable [Bopp et al., 2013].

The commonly used energy loss iCT exploits the residual energy or range of par-
ticles, which can be related to the RSP as it will be discussed in detail in the following
section. Since mono-energetic particles undergo various interactions within the imaged
object, statistical fluctuations cause an energy loss dispersion. Consequently, the outgoing
particles are characterized by an energy distribution (cf. equation (2.3)), which could be
exploited in the reconstruction of energy straggling (or range dilution) iCT. Fur-
thermore, particles passing through an object undergo attenuation1 in much the same way
as X-rays, except that the underlying mechanism is nuclear interaction, as discussed in
section 2.1.3. In attenuation iCT the measured fluence reduction can be related to the
inelastic nuclear cross section [Quinones, 2016]. In a similar manner as energy loss, ions
experience an increase in deflection with depth due to MCS as explain in section 2.1.2.

1It should be noted that there is some inconsistency in the literature about attenuation and scattering
imaging, since there is a certain interplay between both mechanisms.
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The total mean-square angular deflection of exiting ions after traversing the imaged object
can be used to reconstruct the relative scattering power in the so-called scattering iCT
[Taylor et al., 2016].

The work of this thesis will solely focus on energy loss iCT, referred to as simply iCT
from now on, since the reconstructed RSP represents the most important quantity for ion
therapy treatment planning.

3.4.1 Motivation and Rationale

The main rationale for pursuing the development of ion transmission imaging is established
by four key advantages over xCT:

• Reduced physical dose exposure to the patient [Schulte et al., 2005].

• Improved ion therapy treatment plan accuracy due to reduced RSP uncertainties.

• Absence of artifacts from high-Z materials appearing during the tomographic image
reconstruction [Oancea et al., 2018].

• Iso-centric imaging within the treatment room enables new pathways in image-guided
and adaptive ion therapy [Landry and Hua, 2018].

Not all points have been equally addressed in the literature so far, especially the second
one. Hence, the treatment planning accuracy will be subject of this thesis.

The reduced RSP uncertainty is a consequence of iCT facilitating a direct RSP recon-
struction. Following the Bethe-Bloch equation (cf. equation (2.1)), the energy loss rate (or
stopping power) can be express as:

− dE
dx

(r) = S (I(r), E(r)) = ηe(r)F (I(r), E(r)) , (3.6)

where ηe is the relative electron density. F is a function of the mean excitation energy (I)
and particle energy (E) for an ion of charge Z:

F (I(r), E(r)) = C
Z2

β2(E)

[
ln

(
2mec

2

I(r)

β2(E)

1− β2(E)

)
− β2(E)

]
, (3.7)

where C = 4π r2
e mec

2 ρe,w ≈ 0.170MeV/cm combines various physical constants, me is the
electron mass and β is the ion velocity relative to the speed of light. The dependence on r
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indicates that all quantities are varying with the position inside the patient. In addition,
F is also energy dependent; hence, the differential equation (3.6) does not represent a
variable separable form. Dividing equation (3.6) by the stopping power of water (Sw) and
rearranging the terms one obtains

− 1

Sw(Iw, E)
dE =

S(I(r), E)

Sw(Iw, E)
dx , (3.8)

where the right-hand side contains the RSP. Under the assumption that RSP is energy-
independent, which holds within 0.7 % for tissue-equivalent materials in the energy range
of 80MeV to 300MeV [Arbor et al., 2015], the energy and position dependent variables
can be separated. This allows to perform the integration along the 3D ion trajectory Γ of
length L. The left-hand side yields the amount of water corresponding to the measured
energy loss, also called Water-Equivalent Path Length (WEPL):

WEPL = −
Eout∫
Ein

dE
Sw(Iw, E)

≈
∫
L

RSP (Γ(l)) dΓ(l) . (3.9)

Mathematically, equation (3.9) describes a Radon transform, representing the basis for
reconstructing tomographic images. Hence, iCT allows to directly relate the required RSP
to measured WEPL values, which are either calculated from the energy loss (requiring
knowledge of Iw) or obtained by calibrating the detector response to material of known RSP
and thickness [Bashkirov et al., 2016]. It should also be noted that the use of equation (3.9)
demands an estimation of the ion path Γ through the object.

3.4.2 Principle of Ion-Based Transmission Imaging and Contem-

porary Instrumentation Designs

After the mathematical and theoretical foundation of ion imaging, this section discusses
the implemented imaging procedures and state-of-the-art systems. Most systems currently
under development by various groups worldwide are focused on proton imaging due to the
sparse availability of heavy ion accelerators. iCT systems have to be distinguished in two
conceptually different approaches: single-particle tracking and integration-mode.
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Single-particle tracking

State-of-the-art single-particle tracking requires tracking of individual ions through the
imaged object and a measurement of the associated residual energy or range. The typi-
cal imaging system as illustrated in figure 3.6 contains two pairs of 2D position-sensitive
tracking detectors before and behind the patient, providing information on the ion position
and direction required for the path integral in equation (3.9). Additionally, this enable to
take into account the MCS inevitably occurring during the passage through the imaged
object. The second component of the detector is a calorimeter or range telescope (or a
hybrid system) to measure the residual energy or range of ions, respectively, which can be
correlated with the required WEPL information.

The most complete ion imaging system is the phase-II scanner of the US pCT collabora-
tion. Each tracker module consists of two paired 0.4mm thick silicon strip detectors with a
strip pitch of 0.228mm [Giacometti et al., 2017]. The residual energy is obtained from a fast
polystyrene-based scintillator divided in five stages to reduce requirements on the energy
resolution [Bashkirov et al., 2016]. With the detection rate of the current system a full scan
of half of a human head can be completed in less than 10 minutes [Johnson et al., 2016].

The British PRaVDA (Proton Radiotherapy Verification and Dosimetry Applications)
consortium initiated a project to develop the first fully solid-state imaging system for
pCT. Their tracker system, composed of silicon strip detectors originally developed for
the ATLAS experiment at CERN, provides an active area of around 10 × 10 cm2 and a
strip pitch of 90.8 µm [Taylor et al., 2016]. The unique feature of this system is to use a
stack of the same silicon strip detectors interleaved with absorbers for the range telescope,
working as range counter. This allows to cope with an extremely high proton fluence
of 2 × 108 protons/second [Esposito et al., 2018]. Recently, a research collaboration in
Norway proposed a similar high granularity digital tracking calorimeter based on CMOS
active pixel sensors [Pettersen, 2018].

The iMPACT (innovative Medical Protons Achromatic Calorimeter & Tracker) project
has the ambitious goal of achieving a global proton rate of 1 GHz [Mattiazzo et al., 2018],
thereby reducing the scanning time to a few seconds. CMOS active pixel sensors embedding
an innovative compression readout scheme are foreseen for the tracking system [Giubilato
et al., 2015]. For theWEPL information a range calorimeter is proposed, which is assembled
of up to 64 detection planes segmented into 16 fast (decay time <2ns) plastic scintillating
fingers arranged in orthogonal layers [Mattiazzo et al., 2017].



42 3. Ion Imaging in the Context of Tumor Therapy with Charged Particles

A rather different approach is pursued by a group at the German Cancer Research
Center in Heidelberg for helium ions; however, currently only in radiography domain.
They employ a setup of three parallel Timepix detectors downstream of the imaged object
[Gehrke et al., 2018b]. These semiconductor pixel detectors can be operated either in time
mode for tracking or in energy mode to obtain the image contrast (based on the deposited
energy). Information from an additional pair of tracking detectors upstream of the imaged
object allows to calculate more sophisticated trajectory models [Gehrke et al., 2018a].

Figure 3.6: Schematic of a single-particle tracking iCT detector system. Position and direction
of individual particles from a highly energetic ion beam are measured before and behind the object
of interest. The residual range or energy is obtained from a range telescope or calorimeter.

Integration-mode

Integration-mode systems use the accumulated signal from a finite number of particles
downstream of the imaged object. Hence, no position-sensitive tracking detectors are in
principle required. This enables simplified and cost-effective configurations with easier
operation and reduced technological requirements. Consequently, a variety of detector
instrumentation designs have been demonstrated for integration-mode, being especially
suitable for heavier ions, since they benefit from a smaller beam spot size and reduced
MCS. However, for the currently available technology and computational methodology
the dose exposure is typically several orders of magnitude larger than for single-particle
tracking, thus, potentially restricting the application to radiographic imaging.

At Massachusetts General Hospital Zygmanski et al. [2000] developed a pCT system
using a scattered broad beam, modulated in energy, irradiating a Gd2O2S:Tb intensifying
screen viewed by a cooled CCD camera. The measured intensity was calibrated to WEPL
based on a correlation between detector response and beam penetration depth by placing
absorbers of various thicknesses. Despite the implementation of a dedicated correction
strategy, reconstructed pCT images were severely degraded by MCS edge artifacts.
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A similar system was employed for Carbon Computed Tomography (cCT) at the Na-
tional Institute for Radiological Sciences in Japan [Abe et al., 2002]. Their experiments
demonstrated that the reduced MCS of heavier ions significantly improves blurring effects
[Muraishi et al., 2009]. An upgraded instrumentation which was extended to human head
sized objects achieved a spatial resolution of 1mm [Muraishi et al., 2016].

Telsemeyer [2012] investigated the suitability of a commercial amorphous silicon flat-
panel detector with 800×800 µm2 pixel size for cCT. The WEPL information was obtained
from a repeated irradiation sequence with pencil beams of different energies. This com-
mercial system enabled a promising RSP accuracy of 0.01; however, the clinical realization
was still constrained by an excessive imaging dose of 8Gy [Telsemeyer et al., 2012].

Additionally, the energy modulation technique has been proposed in the context of
passively scatted proton beams degraded by a range modulator wheel [Testa et al., 2013].
Due to the time-controlled irradiation with known time-energy relationship, a time-resolved
dose measurement is encrypting the WEPL information of the traversed tissue. Proton
radiographies acquired with this technique for an amorphous silicon flat panel detector with
0.388mm pixel pitch demonstrated a WEPL accuracy of better than 1% [Zhang et al.,
2018]. For state-of-the-art active pencil beam scanning, energy-resolved dose functions
have been proposed as an alternative [Bentefour et al., 2016].

An advancement in order to reduce the dose required with aforementioned
single-detector systems is a multi-layer approach providing an immediate residual range
measurement without active (or passive) energy variation. Rinaldi et al. [2013] and Ma-
gallanes [2017] investigated a multi-layer ionization chamber for carbon ion transmission
imaging. A detailed explanation of this system will be given in chapter 5. For protons, this
approach has been pursued with a commercial quality assurance detector [Farace et al.,
2016; Krah et al., 2018b]. Besides imaging applications, such instrumentation has also
been investigated in the context of patient positioning verification [Hammi et al., 2018].

3.4.3 Physical Limitations and Technological Challenges

The quality of an iCT image predominantly depends on equation (3.9), i.e., the accuracy
of the WEPL measurement and path estimation, both being intrinsically limited by the
physical interaction processes taking place. The RSP accuracy is mainly constrained by the
WEPL resolution of the residual range/energy detector. However, since particles traversing
material encounter statistical energy loss fluctuations a certain residual energy distribution
occurs even for mono-energetic particles passing trough the same material. Thus the
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achievable WEPL resolution is intrinsically constrained by range straggling according to
equation (2.6). This corresponds to around 2.8mm for 200MeV protons and represents
an important design criteria for new detector instrumentation [Bashkirov et al., 2016]. An
additional uncertainty originates from the energy spread of the accelerator since no energy
measurement is performed upstream of the imaged object.

The ion path estimation precision strongly determines the spatial resolution of the re-
constructed image. For single-particle tracking, the accuracy is limited by the statistical
uncertainty of the used mathematical path model which will be discussed in section 4.2.
Furthermore, the accuracy depends on the tracker system characteristics [Bopp et al.,
2014]: (1) the spatial resolution of the position-sensitive trackers; (2) the material budget
of the innermost (i.e., closest to the imaged object) tracker half due to MCS in the mate-
rial; (3) the spacing between the two tracker halves and (4) the distance between object
and tracker causing an amplification of uncertainties in position and direction estimation.
Integration-mode systems are limited by the absence of direct position information since
neither trackers are typically employed nor can the integrated signal be correlated with a
single trajectory. Range dilution effects from lateral tissue heterogeneities can cause signal
ambiguities of difficult interpretation due to the finite dimension of ion beams [Meyer et al.,
2017]. Impact and potential solutions for this problem are investigated in chapter 5.

From a technological point of view, it is very demanding to develop detector instrumen-
tation operating close to the aforementioned intrinsic accuracy limits. In particular, it is
not straightforward to achieve the required energy resolution of 1% (for 200MeV protons)
over the whole range of expected residual energy using a direct residual energy calorimeter
[Bashkirov et al., 2016]. Hence, hybrid detector systems [Giacometti et al., 2017] poten-
tially offer better WEPL resolution, but at the cost of a more complex instrumentation.
In general, it is very crucial to achieve excellent detector efficiency for a system involving
a set of measurements for each individual ion, since a single failure will cause the event to
be completely lost or at least substantially compromised [Johnson, 2018].

At high particle rates strip-based detectors can cause pattern-ambiguities due to the
one-dimensional segmentation. Furthermore, the good spatial resolution of the double-layer
design comes at the cost of an increased material budget. An alternative are pixel matrix
detectors providing 2D position information from a single sensor approach [Mattiazzo et al.,
2017]; however, further increasing the complexity of the system.

Keeping in mind the foreseen clinical application, a potential iCT system needs to work
at sufficient detection rate to achieve a reasonable acquisition time. This is important for
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economical advantages and patient comfort. Scan times of around six minutes have been
already demonstrated with current prototypes [Johnson et al., 2016] being close to the
design specification for the data acquisition of less than five minutes originally proposed
by Schulte et al. [2004a].

Another issue is that modern ion therapy systems are not designed for ion imaging
applications. Typical beam intensities are several orders of magnitude larger than the
MHz acquisition rate of current detector system. Nonetheless, manually reducing the
beam current using the beam line’s research-mode typically causes the intensity to drop
below the sensitivity threshold of beam monitoring systems, implemented in the nozzle of
therapeutic ion therapy beam lines [Langen et al., 2015]. This can create system interlocks
or compromise the beam steering accuracy of the scanning delivery.

Furthermore, the maximum beam energy provided by current accelerator technol-
ogy typically corresponds to around 30 cm of water, except for the synchrotron-based
Radiance 330 proton therapy system (ProTom International, Inc., Flower Mound, TX,
USA) which enables up to 330MeV (i.e., around 60 cm range in water) [Owen et al., 2016].
While this allows imaging for cranial locations and upper abdominal regions, it is insuffi-
cient to fully penetrate the hip region of a typical adult from all directions, and far short
of the shoulder-to-shoulder distance through a human male [Johnson, 2018].

As mentioned previously, time is a crucial aspect for clinical realization. This does not
only affect the acquisition itself but also the whole treatment planning workflow. A gantry
for rotating the ion beam around the patient to acquire the projection images, as well as
modern GPU implementations for dose calculation [Jia et al., 2012] and tomographic image
reconstruction [Schultze et al., 2018] are required to perform the whole treatment workflow
(i.e., imaging, treatment planning and delivery) inside the treatment room without re-
positioning of the patient or additional imaging technology.

Last, and maybe most importantly there is the question about the price. Systems
fulfilling all aforementioned criteria typically employ detector instrumentation (especially
semiconductor technology) from high-energy physics laboratories making them rather ex-
pensive. Thus, future clinical systems need to be affordable in order to avoid that ultimately
economical limitations prevent iCT to be an option for healthcare providers.
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3.5 Conclusions

Ion beam therapy has reached the stage of a widely adopted clinical tool. It has moved
from the laboratory to the clinic, and from an obscure activity to a real possibility for
healthcare professionals [Goitein et al., 2002]. The particular benefit of ion therapy is still
partially limited by uncertainties which are an inevitable part of the planning and delivery
stages. Understanding and managing uncertainties are of extreme importance in order to
obtain good tumor control and reduce complications [Palta and Yeung, 2012].

Modern analytic dose calculation engines contain an accurate and realistic description
of the physical processes undergone by ion beams within the patient. Nonetheless, MC dose
calculation is expected to provide a significant accuracy gain in complex geometries where
local range uncertainties due to MCS limit analytic algorithms, especially for light ions.
Independent of the dose calculation engine, the underlying imaging data impose limitations
on the accuracy of TPS predictions. The current clinical practice of deriving the RSP maps
of patients from single energy xCT information via stoichiometric or empirical calibration
introduces range uncertainties of around 3%. Practically speaking, this means that ’what
you see in the treatment plan is not what you get in the patient’ [Palta and Yeung, 2012].

This intrinsic uncertainty when relying on xCT motivates the perspective use of iCT
to enable a direct reconstruction of RSP maps from measured WEPL information, thereby
eliminating range uncertainties inherent in the aforementioned calibration procedure. This
is expected to enhance the treatment planning accuracy, allowing a reduction of the related
safety margins for improving clinical outcome of patients receiving ion therapy.

However, currently no iCT system is commercially available or has been integrated into
the clinical environment for patient applications. The optimal configuration, in terms of
detector instrumentation and particle type, is still under investigation. Besides technologi-
cal obstacles, the integrability into clinical practice with a dedicated and adjusted workflow
still has to be addressed. Nevertheless, iCT has strong potential to be a imaging paradigm
shift in ion therapy, facilitating an image-guided and adaptive treatment workflow.



”There is also hope that even in these days of in-
creasing specialization there is a unity in the human
experience.”

Allan McLeod Cormack

4
Computational Methods for Ion Imaging

Investigations

As already indicated by the name ’computed tomography’, computational methods are an
integral part of iCT. This does not only concern the tomographic image reconstruction
problem, but also the trajectory simulation and estimation. A key concept for the fol-
lowing iCT studies are MC methods. The FLUKA MC code [Böhlen et al., 2014; Ferrari
et al., 2005] was used to benchmark and support the experimental investigations, study
the image quality for clinical scenarios under controlled conditions and provide insight on
radiobiological aspects at iCT acquisition scenarios. This chapter will introduce the most
important concepts of the implemented simulation framework, trajectory estimation and
tomographic image reconstruction methods.

4.1 Monte Carlo Simulations

MC techniques are a broad class of computational methods used to determine the average
or probable behavior of a system based on the outcome of a large number of trials of
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processes that simulate physical events. Each trial is simulated according to a sequence
of random (or pseudo-random) numbers based on the known probability distribution of
the underlying phenomenon. Due to the statistical sampling, these methods are eminently
suitable for the stochastic process of radiation transport [Hendricks, 1994].

MC simulations have been used for a variety of applications in particle therapy, includ-
ing the calculation of irradiation-induced positron emitter distributions for clinical cases
[Parodi et al., 2007], biological dose calculation [Mairani et al., 2010] or treatment planning
[Mairani et al., 2013]. Furthermore, MC simulations offer valuable and flexible support for
the start-up and clinical operation of particle therapy facilities [Parodi et al., 2012] and
the development and optimization of pCT systems [Giacometti et al., 2017].

Compared to traditional analytical methods [Gianoli et al., 2019], MC simulations have
the advantage of considering the detailed structure and elemental composition of the human
body [Parodi et al., 2007]. Moreover, they fully account for the 3D particle fluence spread
and complexity of the mixed radiation field [Böhlen et al., 2010].

In the context of iCT, MC simulations play an important role in understanding the
intrinsic limitations of the technique itself, for optimizing the system performance and
to test new reconstruction algorithms or data processing methods. This is of particular
interest for aspects that are difficult (or even impossible) to address experimentally.

4.1.1 The FLUKA Monte Carlo Code

FLUKA (www.fluka.org), which stands for FLUktuierende KAskade, is a FORTRAN-
based fully integrated general purpose MC code for the calculation of particle transport
and interaction with matter. In the scope of medical physics research it has been applied
to various aspects related to particle therapy [Battistoni et al., 2016]. The code is jointly
developed and distributed by the European Organization for Nuclear Research (CERN)
and the Italian National Institute for Nuclear Physics (INFN).

FLUKA includes a combinatorial geometry package, which allows to model complex
geometries, for example, detector systems and objects of interest. The user input files for
FLUKA are standard ASCII files containing a sequence of options (often called cards for
historical reasons). This is used to tailor the simulation to the need of the user, offering a
huge variety of standardized options without requiring programming from the user. How-
ever, for more complex or unusual problems not covered by the standard settings, users can
further interface the simulation with self-written ’user routines’. Different templates are
already available in the FLUKA library, but have to be modified according to the problem

www.fluka.org
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and the user needs. A graphical user interface called FLAIR (www.fluka.org/flair/)
[Vlachoudis, 2009] facilitates the preparation, error-free editing and debugging of simula-
tion input files. Furthermore, it contains an advanced geometry editor and an interface for
importing DICOM files, which is important for simulations based on clinical xCT data.

FLUKA can handle transport and interaction calculations for around 60 different parti-
cles plus heavy ions in an energy range from few keV up to cosmic ray energies. The charged
particle transport is performed through an original MCS algorithm based on Molière’s the-
ory [Ferrari et al., 1992], supplemented by an optional single scattering method.

At energies relevant for particle therapy and ion imaging, hadron-nucleus reaction
mechanisms are provided by the PEANUT (Pre-Equilibrium Approach to NUclear Ther-
malization) interaction environment [Ferrari and Sala, 1993]. This model includes a so-
phisticated Generalized Intra-Nuclear Cascade (GINC) stage, coupled to an exiton based
pre-equilibrium and equilibrium particle emission phase. For higher energies, the multi-
ple collisions within the nuclear constituents are considered by means of Gribov-Glauber
calculus within a less refined GINC [Fassò et al., 1995].

Nucleus-nucleus interactions from few GeV/u down to around 0.1GeV/u are handled
in FLUKA via an interface to a modified version of the Relativistic Quantum Molecular
Dynamics model (RQMD-2.4) [Sorge et al., 1989]. At lower energies, FLUKA switches
gradually to an event generator based on the Boltzmann Master Equation (BME) the-
ory [Cavinato et al., 1996; Battistoni et al., 2016]. Above the clinically relevant energies
(>5GeV/u) the DPMJET-III (Dual Parton Model and JETs) [Roesler et al., 2000] event
generator is used, which is based on the two component dual parton model in connection
with the Glauber formalism [Mairani, 2007].

Within this work the standard FLUKA version 2011.2c with pre-defined
’HADROTHErapy’ defaults was used, setting the thresholds for particle transport at
100 keV and for MCS at the minimum allowed energy. In order to reduce the computational
time a CSDA without explicit δ-ray production by charged hadrons was employed. For
several reasons it is desirable to implement a realistic description of the beam parameters
(i.e., energy and momentum distribution, shape and divergence) as produced by a clinical
accelerator. First, this is mandatory to ensure good agreement with experimental measure-
ments. Second, the accelerator’s energy spread imposes an additional intrinsic limitation
on the achievable WEPL resolution. And third, the beam shape is of major importance
for the overall integration-mode performance, especially at lateral heterogeneities.

www.fluka.org/flair/
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4.1.2 Simulation Model for the HIT Beam Line

An accurate beam model would require a detailed geometrical description of all beam line
elements. However, due to confidentiality issues concerning proprietary details of the exact
nozzle geometry, this information is not available for external users’ applications at HIT.
For this reason, Tessonnier et al. [2016] developed phase-space files providing accurate
models of the different HIT particle beams without disclosing confidential components of
the beam line. A phase-space characterizes the beam by scoring the beam properties of
each individual particle crossing a plane perpendicular to the beam direction at a certain
location. In this case, the phase-space files contain information on charge, mass, energy,
generation (i.e., primary or secondary), coordinates and direction cosines of each particle
at the exit of the Beam Application and Monitoring System (BAMS), i.e., downstream of
the last element of the HIT beam line about 112 cm before the isocenter.

Tessonnier et al. [2016] used an original narrow-beam approach by simulating the propa-
gation of a central infinitely narrow (’zero-width’ ) beam through the beam line. Therefore,
this model can be adapted to any desired beam focus (i.e., beam size in air at isocenter) by
convolving it with the estimated beam size in vacuum before entering the beam line. For
each energy and particle type ten million primaries were simulated, resulting in phase-space
files of around 500MB, split in primary and secondary particles.

The initial beam generation performed through particle-by-particle sampling of pri-
maries and secondaries from the phase-space files is fully implemented within the source.f
user routine. Briefly, the primary beam generation works in the following way. Prior to
the simulation, the user needs to define an irradiation plan with the desired beam pa-
rameters like ion type, energy and focus number, and the locations to be irradiated, the
so-called Raster Points (RPs). The selected beam characteristics are specified according to
the LIBC (List of Ion Beam Characteristics), which contains the different available initial
beam energies (E1-255), foci (F1-6) and intensities (I1-15).

During the initialization phase, the beam plan is read and the first requested
phase-space file is loaded. Subsequently, the simulation loops over all requested primaries
for the given irradiation position. In this process, a deflection of individual pencil beams
is implemented to mimic the active raster scanning technique [Marcelos, 2014]. According
to the required deflection angle θ for the selected RP location, the position and direction
vector of each particle have to be adjusted individually. For the 3D rotation of the direction
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cosine vectors d ∈ R3 the rotation formula of Rodrigues [1840] is implemented:

d′ = d cos(θ) + (k× d) + k (k · d) (1− cos(θ)) , (4.1)

where k ∈ R3 is a unity vector describing the axis of rotation and d′ ∈ R3 is the direction
cosine rotated by an angle θ being handed to FLUKA, as sketched in figure 4.1. The
starting position for the particle transport simulation is derived by adding the individual
particle position (randomly sampled from the phase-space file and adjusted according to
the selected focus) to the requested RP location (specified at isocenter) at BAMS level,
obtained by back-projection along the deflected beam. Once all requested particles for
the desired RP are delivered, the beam location and deflection angle will be automatically
updated. If necessary, the simulation will loop over all requested energies.

This phase-space approach demonstrated excellent accuracy for several cases (e.g.,
depth-dose distributions and lateral dose profiles) [Tessonnier et al., 2016] and has been
used in various publications in literature [Meyer et al., 2017; Kelleter et al., 2017; Gehrke
et al., 2018a]. The results presented in chapters 5, 6 and 7 rely on this beam model and
all use the smallest available beam focus (F1).

Figure 4.1: The principle of simulating active raster scanning at HIT using phase-space files
[Tessonnier et al., 2016]. Cosine director and position at the BAMS level are sampled from the
phase-space and adjusted according to the deflection angle of the requested RP and a random
spread reflecting the finite beam size.
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4.1.3 Simulation Model for the RPTC Beam Line

The pCT system developed and optimized in chapter 8 is foreseen to be experimentally
investigated at a ProBeam R© beam line (Varian Medical Systems, Inc., Palo Alto, CA,
USA) based on an example of the Rinecker Proton Therapy Center (RPTC) in Munich.

Consequently, the beam characteristics were implemented following the approach pre-
viously developed by Englbrecht [2014]. The initial beam momentum spread and virtual
source extension were independently adjusted in an iterative trial and error procedure
to best reproduce measured dose distributions. The optimal parameters are stored in a
database, which is read during the initialization phase of the simulation to obtain the ideal
source parameters for the requested beam energy.

In contrast to the HIT beam line, geometrical dimensions and material compositions
of treatment nozzle elements were provided by the vendor. Hence, the simulation model
explicitly contains the beam line nozzle including vacuum window, multi-strip and trans-
mission ionization chamber. Particle sampling and active scanning are implemented in
a similar manner as for the aforementioned HIT phase-space file approach [Würl, 2014].
Excellent agreement was found between measured dose distributions and MC simulation
results also for extended target volumes [Würl et al., 2016].

4.1.4 Implementation of Phantom Geometries

In order to benchmark the achievable image quality, phantoms of different geometry and
complexity are required. The in silico object geometries were modeled directly within
FLUKA according to the known physical dimensions. This is done by using the combi-
natorial geometry feature, which allows to create complex geometries by combining basic
convex shapes using Boolean operations (i.e., union, intersection and subtraction). All
material properties were implemented according to the manufacturer specifications.

4.1.5 Implementation of Clinical and Pre-Clinical Data

In order to import clinical and pre-clinical xCT data, voxelized geometries are available
in FLUKA, which can be created via an interface in FLAIR. Since it is neither memory-
nor CPU-efficient to implement separate materials for each HU value, ranges of HUs are
grouped into intervals (also called organs) via the ’MATERIAL’ and ’COMPOUND’ cards.
The HU scale is segmented into 24 different materials of defined elemental composition and
nominal mean density (i.e., mass density corresponding to the HU value at the center of
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the considered interval), based on the work of Schneider et al. [2000] and an extrapolation
to include metallic implants of titanium (i.e., HU ≥ 3060) [Parodi et al., 2007].

However, the real mass density, influencing nuclear and electromagnetic interaction
processes, continuously varies with the HU values within each material sharing a single
nominal mean density in the MC simulation. In order to account for this, HU dependent
scaling correction factors are applied for each interval [Parodi et al., 2007], as originally
proposed by Jiang and Paganetti [2004]. Nuclear processes are adjusted only using the ratio
between the mass density and the nominal mean density. In addition, electromagnetic
processes are also rescaled to match a bijective clinical-like HU-RSP conversion curve,
reproducing a similar curve as implemented at HIT for cranial applications.

In contrast to real patient scenarios, MC simulations enable an ideal HU-RSP conversion
curve, since uncertainties due to the stoichiometric calibration are not present. Thus, the
ground truth RSP distribution of the patient anatomy, for which the iCT acquisition is
simulated, is precisely known. The only remaining uncertainty in the presented approach
originates from the energy dependency of RSP, which is negligible for the used energies
[Meyer et al., 2019].

4.2 Trajectory Estimation

As a consequence of MCS, ion trajectories are not straight lines. Many small-angle de-
flections when passing through material cause stochastic path variations. Hence, a curved
path has to be implemented in single-particle tracking image reconstruction to avoid sub-
stantial degradation of the spatial resolution in iCT images, predominantly for protons.
Two mathematical concepts have been established in the ion imaging community: the Most
Likely Path and the Cubic Spline Path.

4.2.1 Most Likely Path Formalism

The Most Likely Path (MLP) concept was originally introduced by Schneider and Pedroni
[1994]. They developed a formalism to calculate the most probable proton trajectory
through an object based on the generalized Fermi-Eyges theory of MCS. Williams [2004]
derived a more convenient closed-form representation assuming knowledge of entry and
exit position and exit direction by using X 2 statistics. The superior spatial resolution in
pCT obtained by Williams’s MLP method compared to a Straight Line Path (SLP) was
demonstrated by Li et al. [2006].
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The MLP expressions of aforementioned articles require the computation of compli-
cated ratios of polynomials. More recently, Schulte et al. [2008] proposed a more elegant
and compact matrix-based MLP formalism employing Bayesian statistics to calculate the
intermediate positions and directions of maximum likelihood along an ion path. The de-
scription of the MLP calculation presented in this section will follow this formalism.

Without loss of generality the MLP derivation will be restricted to a single plane (e.g.,
the z− y plane) since MCS in lateral and vertical direction can be treated as two indepen-
dent statistical processes. Let Y1 be the parameter vector at a certain depth z1:

Y1 =

(
y1

θ1

)
, (4.2)

where y1 and θ1 are the corresponding coordinate and direction angle at the given depth,
respectively. In the same way one can define the 2D parameter vector at entrance (Y0) and
exit point (Y2) of the traversed object of interest.

Simply speaking, the MLP formalism aims at determining the most probable state vec-
tor of a particle at any depth using a Bayesian framework, given the measured information
at entry and exit location. In Bayesian statistics, the posterior likelihood that a particle at
depth z1 had a state vector Y1 for the obtained exit information, L (Y1|exit data), is related
to the prior probability of finding the particle at depth z1 in the state Y1 given knowledge
on its initial state Y0, L (Y1|entry data), and the likelihood of observing the particle with
the exit information given Y1 at depth z1, L (exit data|Y1):

L (Y1|exit data) = L (exit data|Y1)L (Y1|entry data) . (4.3)

In the following, the Gaussian approximation of the generalized Fermi-Eyges theory for
MCS (cf. equation (2.8)) will be used to describe the scattering process. Since the object
composition is typically unknown, a common approach consists in assuming scattering in
homogeneous water. Hence, the likelihood functions will be expressed by bi-variate Gaus-
sian distributions. For instance, the prior likelihood for a particle with zero displacement
and angle, can be written in the following compact matrix notation:

L

(
Y1|Y0 =

(
0

0

))
= exp

(
−1

2
Y T

1 Σ−1
1 Y1

)
, (4.4)

where the scattering matrix Σ1 contains the variances and covariances acquired between
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z0 and z1, given by the first three Eyges moments (cf. equation (2.8)):

Σ1 =

(
A2 (z0, z1) A1 (z0, z1)

A1 (z0, z1) A0 (z0, z1)

)
. (4.5)

In order to calculate the likelihood, the measurement point must be directed toward
the reconstruction point at depth z1, i.e., one needs to change the local coordinate system
of the particle. Since angles in typical iCT scenarios are relatively small, i.e., limited to a
few degrees, it is reasonable to apply a small-angle approximation (sin θ ≈ θ). Therefore,
the propagation matrix is defined as

R0 =

(
1 z1 − z0

0 1

)
, (4.6)

which directs the probability originating from Y0 along its path without changing the initial
angle. This yields the following notation for the prior probability of obtaining Y1 given Y0:

L (Y1|Y0) = exp

(
−1

2

(
Y T

1 − Y T
0 R

T
0

)
Σ−1

1 (Y1 −R0Y0)

)
. (4.7)

Following the same procedure, one can define the likelihood of the exit parameter vector
Y2 at depth z2 given the measurement of Y1 at depth z1 as

L (Y2|Y1) = exp

(
−1

2

(
Y T

2 − Y T
1 R

T
1

)
Σ−1

2 (Y2 −R1Y1)

)
, (4.8)

where the scattering matrix Σ2 and propagation matrix R1 for the transition from z1 to z2

are defined analogous to equation (4.5) and (4.6):

Σ2 =

(
A2 (z1, z2) A1 (z1, z2)

A1 (z1, z2) A0 (z1, z2)

)
and R1 =

(
1 z2 − z1

0 1

)
. (4.9)

By combing equation (4.7) and (4.8) according to equation (4.3), the posterior likelihood
becomes

L (Y1|Y2) = exp

(
−1

2

((
Y T

1 − Y T
0 R

T
0

)
Σ−1

1 (Y1 −R0Y0) +
(
Y T

2 − Y T
1 R

T
1

)
Σ−1

2 (Y2 −R1Y1)
))

≡ exp
(
−X 2

)
.

(4.10)
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In order to derive the MLP one needs to maximize the likelihood, which corresponds
to minimizing X 2. Carrying out the differentiation with respect to z1 and θ1 yields

∇X 2 =
(
Σ−1

1 +RT
1 Σ−1

2 R1

)
Y1 − Σ−1

1 R0Y0 −RT
1 Σ−1

2 Y2 . (4.11)

Setting this equal to zero and solving for Y1 results in the following expression for the MLP:

YMLP =
(
Σ−1

1 +RT
1 Σ−1

2 R1

)−1 (
Σ1R0Y0 +RT

1 Σ−1
2 Y2

)
, (4.12)

which can be understood as an average path of the projection of the entry and exit position,
weighted by the scattering to the point of interest [Collins-Fekete, 2017].

Since the distribution of possible trajectories is known due to the Gaussian approxima-
tion of MCS, the error matrix can be calculated as the inverse of the curvature matrix:

εy1,θ1 = 2
(
Σ−1

1 +RT
1 Σ−1

2 R1

)−1
, (4.13)

where the element in the first row and first column returns the variance of the lateral
displacement at depth z1.

Based on strict Bayesian theory, Collins-Fekete et al. [2017b] demonstrated that the
MLP framework is usable for every ion in the same way, i.e., independent of the ion mass
and charge. However, the Gaussian standard deviation of the statistical error envelope
(cf. equation (4.13)) has to be scaled by the factor (Z/A)2.

For calculating the MLP according to equation (4.12) one needs to evaluate the scat-
tering matrix, whose elements require knowledge on the ions energy loss within the object
(i.e., 1/β(z1)2p(z1)2 in equation (2.8)). A common approach is an approximation by a
fifth-degree polynomial using MC simulations to obtain the necessary fitting parameters
[Williams, 2004]. For the MLP results presented in this work the term was directly calcu-
lated from a numerical integration of the Bethe-Bloch formula using the measured energy
at the tracking detectors before and behind the imaged object.

Finally, it should be noted that the MLP calculation assumes an object of homogeneous
water rather than the real patient/phantom. Theoretically, the concept can be extended to
heterogeneous objects based on prior knowledge on the local particle energy and material
radiation length. However, this drastically increases the complexity of the calculation and
showed only little improvement in the path estimation error [Collins-Fekete et al., 2017a].
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4.2.2 Cubic Spline Path Formalism

The MLP calculation is mathematically complex and computationally demanding. Given
four variables, i.e., data on entry and exit position and direction, the highest degree poly-
nomial with a unique solution is the cubic spline. Li et al. [2006] first introduced the Cubic
Spline Path (CSP) concept for estimating proton trajectories. The CSP between a given
entry (X0) and exit (X1) position is represented by

X(t) = (2t3 − 3t2 + 1) X0 + (t3 − 2t2 + t) P0 + (−2t3 + 3t2) X1 + (t3 − t2) P1 , (4.14)

where X(t) represents the 3D position vector at a given depth defined by the temporal
parameter t ∈ [0, 1], representing the fraction of crossed CSP. P0 and P1 are the entrance
and exit direction vectors (i.e., at t = 0 and t = 1 respectively).

While the particle angle sets the initial CSP direction, the magnitude of the direction
vector defines how strongly the curve converges to a straight line. Hansen et al. [2014]
applied a scaling according to the physical thickness between exit and entry position:

P{0,1} = P̂{0,1} · |X1 −X0| . (4.15)

Collins-Fekete et al. [2015] proposed a more sophisticated phenomenological approach to
accurately define the direction vector magnitude based on energy loss information. Here,
they introduced two scaling factors Λ{0,1} aiming at minimizing the Root Mean Square
(RMS) error of the path estimation:

P{0,1} = P̂{0,1} · Λ{0,1} · |X1 −X0| . (4.16)

The Λ factors are parameterized by the ratio of WEPL over CSDA range in water.
In order to obtain the optimal parameters, MC simulations were performed over a wide
range of energy values and for different materials (cf. figure 4.2). Fitting the data with a
quadratic law yielded the following relationships:

Λ0 = 1.01 + 0.43

(
WEPL
RCSDA

)2

and Λ1 = 0.99− 0.46

(
WEPL
RCSDA

)2

. (4.17)

Based on a rigorous Bayesian formalism Collins-Fekete et al. [2017b] found that the
phenomenological approximation and the theoretical model agree well within uncertainties.
While CSP and MLP appear to be two completely different approaches, recent work showed
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Figure 4.2: Optimal Λ factors minimizing the path estimation error. Shaded areas represent
the standard deviation between the fit and the data. Please note that WET and WEPL in the
notation of Collins-Fekete et al. [2015] correspond to WEPL and RCSDA in the notation used in
this work, respectively. Extracted from Collins-Fekete et al. [2015].

that there is certain connection between both formalism and that the phenomenological
model can be described theoretically [Rädler, 2017; Collins-Fekete et al., 2017b]. Using the
optimized scaling factors, CSP and MLP yield the same path estimation accuracy. Hence,
the CSP is assumed to provide the best compromise between an accurate estimate of ion
trajectories and reasonable calculation time [Collins-Fekete et al., 2015]. Finally, it should
be noted that the CSP formalism is also independent of the ion type.

4.3 Tomographic Image Reconstruction for Ion CT

The task of tomographic image reconstruction is to obtain information about the nature
of material occupying exact positions inside an object based on specific cross section mea-
surements [Herman, 2009]. For the case of iCT this means solving the inverse problem of
equation (3.9) in order to obtain the RSP distribution from measured RSP line integrals.

Analytic methods, like the widely-used Filtered Back Projection (FBP) employ continu-
ous mathematical models of the inverse problem which are solved with integral transforms.
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In contrast, iterative algorithms follow a fully-discretized modeling approach wherein both
the object and the external source distribution are discretized at the beginning, which leads
to finite-dimensional vector space formulations [Penfold and Censor, 2015].

4.3.1 The Concept of Iterative Image Reconstruction

Iterative reconstruction methods involve three iteratively repeated steps [Beister et al.,
2012]: (1) forward projection of the current object estimate to obtain artificial raw data;
(2) comparison of estimated artificial and measured projection data to obtain a correction
term; (3) backprojection of the correction term into image domain.

Recalling equation (3.9), the measured WEPL is given by the line integral through the
3D RSP distribution of the object along the ion trajectory:∫

L

RSP (Γ(l)) dΓ(l) = WEPL . (4.18)

For iterative reconstruction algorithms, the continuous model is transformed into a
fully-discretized representation, typically written in compact matrix notation:

Ax = b , (4.19)

where the system matrix A is an N × M matrix containing the length of intersection
(or chord length) {aij} of the ith particle history with the jth voxel of the image space as
schematically indicated in figure 4.3 for the case of a straight trajectory. b = {b1, b2, ..., bN}
is an N -dimensional vector whose elements bi represent the WEPL measured for the ith

particle and x = {x1, x2, ..., xM} is the M -dimensional image vector of unknown RSP
values, which needs to be determined. The system of equations represented by equation
(4.19) will be inconsistent and very large; however, the matrix A is rather sparse.

In order to efficiently compute the matrix elements {aij}, a CPU-based raytracing algo-
rithm was implemented [Siddon, 1985; Jacobs et al., 1998]. Since ions do not follow straight
trajectories, discrete points were sampled along the estimated curved path (cf. section 4.2)
and joined with straight line segments. In order to minimize inaccuracies, the step size was
set equal to half the voxel size of the reconstruction space. Penfold et al. [2009] proposed
the use of an effective chord length assigned to all pixels intersected by a certain particle
in order to reduce the raytracing time. Since the computational cost was not of major
importance in this study this simplified approach was not pursued.
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Figure 4.3: System matrix definition for a straight trajectory in 2D using a pixel basis rep-
resentation. The color-coded chord length qualitatively indicates the values obtained from the
raytracing algorithm. The individual matrix elements can be calculated by the euclidean norm as
indicated in the zoom-in view.

4.3.2 Ordered Subset Simultaneous Algebraic Reconstruction

Technique

Solving equation (4.19) is not straightforward since the problem is ill-posed and the mea-
sured projections contain noise. Mathematically, the individual linear equations describe
hyperplanes in an M -dimensional Euclidean space, i.e., they represent convex sets. Hence,
the modeling approach leads to the convex feasibility problem of finding a point in the
non-empty intersection of a family of closed convex sets [Censor et al., 2012].

A common approach for solving feasibility-seeking problems are iterative projection
methods. These algorithms offer computational advantages and can handle huge-sized
problems of dimensions beyond which more sophisticated methods cease to be efficient or
even applicable due to memory requirements [Censor et al., 2010]. In order obtain the
subsequent iterate xk+1 from a given image estimate xk, the algorithm’s update step can
be simply written as

xk+1 = PQ x
k , (4.20)

where PQ is the projection operator of the chosen algorithm. In this work, the Ordered
Subset Simultaneous Algebraic Reconstruction Technique (OS-SART) algorithm [Wang
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and Jiang, 2004] was employed, which has a block-iterative projection algorithmic scheme:

xk+1 = xk + λk

(
1∑

i∈Bt(k)
aij

) ∑
i∈Bt(k)

bi −
〈
ai, xk

〉∑M
l=1 a

i
l

aij , (4.21)

where
〈
ai, xk

〉
is the inner product of the ith column vector of AT (i.e., the transpose of

A) with the current image estimate. Here, iterations are only performed with respect to
the constraints set by indices i in a certain block Bt(k) (also called subset), obtained by
partitioning the data into K blocks. The algorithm selects blocks according to a control
sequence (t (k))∞t=0, which is cyclic in this work, i.e., t(k) = k mod K+ 1. For the case of a
single subset, which means that the image update considers all equations simultaneously,
the algorithm simplifies to the standard Simultaneous Algebraic Reconstruction Technique
(SART) algorithm of Andersen and Kak [1984].

The iterative image update procedure is schematically illustrated in figure 4.4. First,
the current image estimate xk is projected onto all hyperplanes representing the current
subset. The consecutive image xk+1 is obtained by forming a convex combination of those
projections. This already indicates that the construction of the subsets, i.e., the angles
between the hyperplanes considerably influence the convergence rate toward the solution
[Kak and Slaney., 1988]. In order to obtain an efficient convergence, this work used 36
blocks consisting of an equal number of events randomly selected from all projections.

It is important to notice that the (mathematically) optimal solution of equation (4.19)
might actually not be desired because it does not represent the true data of interest due
to noise and inconsistent projection data. Hence, the algorithm was stopped if a certain
number of iteration cycles was completed or the change of the data fidelity per iteration
number k was below an user-defined threshold ε [Meyer et al., 2017], which is expressed as∣∣∣∣∣∂D

(
xk
)

∂k

∣∣∣∣∣ < ε , (4.22)

using the following formulation for the data fidelity from Bian et al. [2014]:

D
(
xk
)

= ‖Axk − b‖/N . (4.23)

The value of ε depends on the accepted data inconsistency which is influenced by the noise
condition, system configuration and data quality [Sidky and Pan, 2008]. Hence, it has to
be adjusted accordingly to achieve proper convergence without noise break-up.
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Figure 4.4: Iterative image update from projection algorithms of block-iterative structure. The
consecutive image xk+1 is estimated by projecting the current estimate xk onto all hyperplanes H
of the current subset and forming a convex combination. Adapted from Penfold [2010].

4.3.3 Total Variation Superiorization

The projection algorithms introduced in the previous section can be computationally ef-
ficient and less demanding methods for solving convex feasibility problems. The reason
is that projections onto the individual sets are easier to perform than projections onto
other sets (e.g., the intersection of the sets) that are derived from the given individual
sets [Davidi et al., 2009]. It is important to notice that feasibility-seeking is fundamentally
different from optimization (as for example used in treatment planning), which aims at
finding the best possible solution by minimizing an objective function while satisfying a
set of typically convex constraints. However, in iCT reconstruction the minimum of the
cost function is often not the best representative of the true data, due to inconsistencies
in the acquired data [Penfold, 2010].

The novel idea of superiorization conceptually lies in between feasibility-seeking
for the constraints and full-fledged constrained minimization of the objective function
subject to these constraints. This means, one aims at a solution that is not only
constraints-compatible, but is also desirable according to a specified optimization crite-
rion. This is done by proactively interlacing perturbations into the original algorithm in
order to reduce (not necessarily minimize) a given merit function.

The key to superiorization lies in the ’bounded perturbation resilience’ of the original
algorithm, meaning that certain kinds of changes (i.e., perturbations) in each iterative step
of the algorithm still lead to a constraints-compatible solution [Herman et al., 2012]. It was
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proven by Davidi et al. [2009] that the general class of block-iterative projection methods
is indeed resilient to bounded perturbations.

A very popular merit function is total variation, since the image solution is assumed
to be piece-wise constant. To this end, the Total Variation Superiorization (TVS) scheme
proposed by Penfold et al. [2010]1 was implemented. Briefly, the proposed algorithm works
in the following way. Compared to the original projection algorithm (cf. equation (4.20)),
the current image iteration is proactively perturbed by a bounded perturbation βkvk in a
way that the algorithm is steered toward a feasible solution encompassed with a reduced
value of the target/merit function:

xk+1 = PQ

(
xk + βkv

k
)
, (4.24)

where ’bounded perturbation’ means that βk are real non-negative numbers such that∑∞
k=0 βk < ∞ and the sequence

(
vk
)∞
k=0

is bounded [Penfold et al., 2010]. As merit
function Φ, which needs to be reduced during the reconstruction, the total variation was
used. For a 2D image represented by a J × J pixel array, the total variation is defined as

Φ(pk) =
J−1∑
g=1

J−1∑
l=1

√(
pkg+1,l − pkg,l

)2
+
(
pkg,l+1 − pkg,l

)2
, (4.25)

where pk is the 2D image representation of the image vector xk. The normalized
non-ascending perturbation vector vk is calculated as the negative of the normalized sub-
gradient sk of the total variation for the current image estimate xk:

vk =

−
sk

‖sk‖
, if sk 6= 0,

0, otherwise,
(4.26)

where the subgradient is computed according to the method of Combettes and Luo [2002].
A pseudocode definition of the TVS scheme implemented in MATLAB R© (MathWorks, Inc.,
Natick, Massachusetts, USA) is written as:

1The chosen algorithm was originally denoted as ’TVS2-DROP*’ in the publication of Penfold et al.
[2010]. In this thesis, the superiorization scheme was implemented for the OS-SART/SART algorithm.
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set k = 0, l = 0, βk = 1;
while repeat for each subset over the requested number of cycles do

if ‖sk‖ ≥ 0 then
vk = − sk

‖sk‖ ;
else

vk = sk;
end
while loop do

set yk = xk + βkv
k;

if Φ(yk) ≤ Φ(xk) then
xk = yk;
set loop = false;

end
βk = βk/2 ;

end
xk+1 = PQx

k;
k = k + 1;

end

Figure 4.5: TVS scheme for the block-iterative OS-SART/SART algorithm.

4.4 Image Reconstruction Workflow

The main methodologies of image reconstruction have been introduced in the previous
sections. Here, an overview is given on how the different parts are implemented in
the combined workflow for tomographic iCT reconstruction. The complete process for
single-particle tracking and integration-mode reads as follows:

Single-particle tracking

1) Data import
In the first step, the binary output data obtained from the MC simulation are read. These
data entail kinetic energy, upstream and downstream 3D position and direction, along with
the projection angle for each particle history. Relying on the scored data, the individual
WEPL values are derived. Those are either computed from the Bethe-Bloch formula using
the recorded kinetic energy loss between front and rear tracker (chapter 6) or are directly
obtained from the detector signal (chapter 8)
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2) Spatial filter
For reducing the computational cost, particles missing the reconstruction volume are sorted
out a priori by assuming a straight line connection between the simulated entry and exit
coordinates.

3) Data binning
Next, the particle histories are grouped into parallel-ray projection bins. To this end, the
remaining events from step 2 are projected onto the reconstruction volume using a straight
path along the recorded entry and exit directions. This is reasonable, since particles will
scatter far less per unit length in the surrounding air compared to the actual object of
interest. Then, the derived intersection points are joined via a straight line. The angle
with respect to the beam-axis (i.e., z-direction) defines the detector rotation bin whereas
the intersection with the central reconstruction plane containing the axis of rotation defines
the lateral and vertical displacement bins.

4) Statistical 3σ-filter
For each bin, a statistical 3σ-filter originally proposed by Schulte et al. [2008] was applied
in order to minimize the effects of nuclear reactions and large-angle MCS events. Particles
with a relative exit angle (i.e., difference between exit and entry angle) or WEPL outside
3σ around the mean value of the corresponding bin are not further processed.

5) Initial FBP reconstruction
The binned data derived in step 3 are converted into a conventional (parallel-ray) WEPL
sinogram representation. An analytical FBP reconstruction is employed to obtain an initial
image estimation. A Ram-Lak filter was applied to avoid a degradation of the edges, since
the image is solely used for the patient contour estimation.

6) Object boundary estimation
Based on the initial FBP estimate, the object mask is derived by thresholding the recon-
structed RSP map (i.e., RSP>0.2). To avoid ambiguities, a convex hull of the mask is
derived. Alternatively, the mask can be directly obtained from prior information, e.g., the
xCT used for treatment panning (as performed in chapter 6).

7) Path and system matrix computation
Each individual particle is forward- and backprojected onto the object boundary (of step 6 )
based on the measured entry and exit position and direction. The ion path calculation
according to the selected path model (i.e., either SLP, CSP or MLP) is bound by the
intersection points with the contour. By performing a piece-wise raytracing the individual
chord lengths are computed and stored in the system matrix.
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8) Iterative TVS OS-SART reconstruction
In the last step, the large scale inverse problem is iteratively solved by a TVS OS-SART
algorithm (cf. equation (4.21) and scheme 4.5) using the system matrix derived in step 7
and the WEPL values calculated in step 1.

Integration-mode

1) Data import
First, the binary output data of the MC simulation are read. These data contain the
integrated detector information for each specific pencil beam and the corresponding RP
location according to the irradiation plan. From the obtained residual range signal of the
particle ensemble, the most probable WEPL value (which is more commonly termed WET
in the context of integration-mode, where no individual ion trajectory can be computed)
can be directly derived based on dedicated calibrations (cf. chapter 5).
2) Sinogram binning
Next, the WET information is binned into a sinogram representation based on the object
rotation angle (angular bin) and the RP location (projection displacement bin).
3) System matrix computation
The system matrix is generated by applying a SLP raytracing based on the geometrical
information from step 1. This procedure is performed along the central beam axis, since
it represents the most probably path of the finite-width pencil beam.
4) Iterative TVS SART reconstruction
In the last step, the TVS SART algorithm is employed to iteratively solve the inverse
problem, using the system matrix of step 3 and the WET values obtained in step 1.

4.5 Quantitative Image Quality Evaluation

4.5.1 Image Accuracy and Noise

The WET or RSP accuracy and noise were evaluated for homogeneous regions within
the investigated objects. For this assessment, a Region of Interest (ROI) of reduced size
with respect to the original region within the phantom was applied to avoid inaccuracies
originating from range mixing and partial volume effects at the material borders. The
accuracy was calculated by the mean value of the relative error distribution based on the
known ground truth reference images. The noise within the same region was evaluated in
terms of the corresponding standard deviation.
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In order to quantify the overall Ion Radiography (iRAD) and iCT image quality with
respect to the known ground truth, the RSP/WET (total image) relative error εrel [Penfold,
2010] was employed, which is defined as

εrel =

∑
i |x′i − xi|∑

i x
′
i

, (4.27)

where xi and x′i are the RSP/WET values of the i-th voxel of the obtained and ground
truth image, respectively. Voxels only containing air according to the ground truth image
were excluded from the quantification. For reconstructed 3D RSP maps of clinical and
pre-clinical data sets, the relative error was evaluated on a slice-by-slice basis and the
RSP ground truth was obtained from the ground truth patient anatomy of the xCT and
the HU-RSP conversion of the MC simulation. Furthermore, the joint histogram of the
reconstructed iCT and the corresponding ground truth HU values enabled the calculation
of the RSP precision as a measure of noise of the iCT images [Meyer et al., 2019].

4.5.2 Spatial Resolution

In this work, the Modulation Transfer Function (MTF) was used to characterize the loss
of spatial resolution for a certain imaging system due to the attenuation of high spatial
frequencies. This degradation is mainly due to uncertainties in the estimated ion path
employed in the tomographic system matrix, the tomographic image reconstruction algo-
rithm and the finite discretization of the image volume. In order to determine the MTF in
tomographic image domain, the ’slanted-edge method’ of Mori and Machida [2009] was im-
plemented. A high-density block phantom was placed at a small angle (∼ 2◦) with respect
to the vertical and horizontal axis of the image reconstruction grid. The angle does not
have to be precisely known but should be sufficiently small in order to reduce blurring from
the spread of the edge position within the pixel pitch. Different profiles crossing the edge
will provide a sampling at varying intervals, as schematically indicated in figure 4.6. By
recombining the individual profiles with the proper phase alignment [Fujita et al., 1992]
(cf. figure 4.6) a composite high-resolution oversampled Edge Spread Function (ESF) is
produced, which provides the ability to overcome the Nyquist limitation imposed by the
pixel dimension within the reconstructed image.
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Figure 4.6: Generation of a composite oversampled ESF from a slanted-edge image. The phase
alignment of the individual profiles is performed using the method of Fujita et al. [1992]. The
composite ESF exhibits a high resolution, which is beyond the original pixel resolution.

The line spread function (LSF) is derived by analytical differentiation of the ESF:

LSF =
dESF(x)

dx
, (4.28)

where x is the position along the edge profile. Finally, the MTF is obtained by performing
the Fourier transform of the blurring-corrected line spread function:

MTF = F (LSF(x)) . (4.29)

In this work, the absolute spatial resolution limit of the reconstructed image for a certain
system is given by the frequency where the MTF is reduced to 10% intensity (MTF10%).
This is a common choice to represent the limit of visual detail.

4.6 Conclusions

In this chapter the computational methods required for the iCT investigations presented
in this thesis have been reviewed: MC simulations and tomographic image reconstruction
for curved ion paths with iterative methods.
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MC simulations are an extremely useful tool to investigate the performance of detector
systems and imaging applications. The implemented MC simulation framework was based
on the FLUKA code. This platform included experimentally validated beam models for
two particle therapy centers, HIT and RPTC, in order to accurately reproduce real beam
properties, ensuring a reliable comparison with experimental measurement.

Due to the inevitable MCS of ions experienced while traversing matter, their trajecto-
ries are not straight. For single-particle tracking the CSP and MLP have been proposed
to provide an analytic approximation to the MCS deflected path. While the Bayesian
formalism of the MLP can be extended by additional prior information, e.g., about the
actual composition of the object [Collins-Fekete et al., 2017a], the CSP has computational
advantages. First, it provides both lateral displacements simultaneously and second it is
rapidly adjustable for different energies. It is important to keep in mind that both models
are calculated in water and consequently do not consider heterogeneities encountered in
a real patient. For this work, the presented image reconstruction workflow for the SLP
[Siddon, 1985; Jacobs et al., 1998], CSP [Collins-Fekete et al., 2015] and MLP [Schulte
et al., 2008] has been implemented in MATLAB R©.

Due to advances in modern computing technology, limitations of iterative reconstruction
algorithms like computational time and memory usage are becoming less and less a concern
for the application in clinical scenarios. Hence, a state-of-the-art OS-SART algorithm
coupled with a TVS scheme was implemented. The superiorization methodology enables
improved results with approximately the same computational cost as the unperturbed
version. This can be achieved if the original algorithm is useful for the applied problem
and computationally efficient perturbation steps are implemented [Censor, 2015]. While
one might intuitively assume that TVS causes a degraded spatial resolution due to the
intrinsic smoothing, the algorithm actually yields equal or even better spatial resolution.
This is attributed to the possibility of performing a greater number of iteration cycles
before reaching the noise break-up limit [Penfold et al., 2010].

It should be noted that also analytical image reconstruction methods, like the distance-
driven binning approach of Rit et al. [2013] or the backprojection-then-filtering method from
Poludniowski et al. [2014], have been applied in iCT. Those techniques require considerably
less computing power but do not offer the flexibility of iterative methods. Future work
should compare the different reconstruction algorithms used within the iCT community
regarding image quality and computational time.





“It doesn’t matter how beautiful your theory is, it
doesn’t matter how smart you are. If it doesn’t agree
with experiment, it’s wrong.”

Richard P. Feynman

5
Integration-Mode Ion Imaging Using

Active Beam Delivery

In this chapter, a comparative study of ion imaging with different ion beams using an
integration-mode range telescope prototype is presented. Compared to previous prelimi-
nary work, the novelty lies in the rigorous comparison of proton, helium and carbon ions for
various indications using a realistic simulation model. Integration-mode detection allows
ion imaging with relatively cost-effective systems which are easy to operate; however, the
absence of direct position information can cause signal ambiguities due to range mixing
effects. In order to make the most of the investigated integration-mode system, a dedicated
post-processing method, called Bragg Peak Decomposition, was developed. The method-
ology and application to experimental and simulated data is presented. Furthermore, a
performance comparison between the integration-mode functionality with the currently
available prototype and potential improvements resulting from an envisioned detector up-
grade in terms of improved range resolution (using thinner absorbers) is carried out. In the
last part, the imaging capabilities for clinical-like data are investigated. Parts of this chap-
ter have been published in Meyer et al. [2016, 2017] and recently submitted for publication
in another manuscript Magallanes et al. [2019].
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5.1 Experimental Setup

This section will review the necessary iCT system constituents and how they have to
work in synchronization to generate accurate experimental ion images with the prototype
integration-mode range telescope.

5.1.1 The Heidelberg Ion-Beam Therapy Center

HIT is a state-of-the-art 119-million euro multi-ion particle therapy facility located in
Heidelberg, Germany. Building upon the initial experience of the pilot project at the GSI
Helmholzzentrum für Schwerionenforschung (GSI, Darmstadt, Germany) the active clinical
operation began in November 2009. HIT is the first hospital-based combined particle
therapy center for protons and heavier ions in Europe and the worldwide first for heavy
ions with entirely active beam delivery and a rotating gantry [Haberer et al., 2004].

The ions are extracted from three dedicated ECR (electron cyclotron resonance) ion
sources and pre-accelerated in a two stage LINAC (linear accelerator) before being in-
jected into the synchrotron ring. The beam energy can be varied between 48MeV/u and
430MeV/u in 255 discrete steps, corresponding to a range in water of 2-30 cm1 [Ondreka
and Weinrich, 2008]. 3D intensity-modulated active raster scanning [Haberer et al., 1993],
combined with the world’s first 360◦ heavy ion gantry, enables dose conformity to the tumor
with extremely high spatial selectivity. The facility itself was designed for the therapeutic
irradiation with proton, helium, carbon and oxygen ions, even though only protons and
carbon ions are currently used clinically for patient treatment.

All those technological aspects make HIT ideally suited for ion imaging investigations.
An essential device for ion therapy (but also for the presented imaging application) is
the BAMS, a beam-verification system consisting of three ionization and two multi-wire
proportional chambers. It is mounted in the nozzle at the exit of the vacuum beam line
and continuously monitors (with a minimum sampling time of 1.7ms [Magallanes, 2017])
important beam properties (e.g., position, size and fluence). This is required to verify
the accurate application of the irradiation plan in order to achieve the prescribed dose
distribution. A sketch of the HIT accelerator complex including the main components of
the beam line is shown in figure 5.1.

1The corresponding maximum penetration depth in water for oxygen ions is around 20 cm.
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Figure 5.1: Overview of the HIT accelerator complex. Ions extracted from ion sources are
pre-accelerated in the linear accelerator (LINAC) before being injected into the synchrotron ring.
The high energy beam transport line guides the ions to the two horizontal treatment rooms, the
gantry or the experimental area. Adapted from Schoemers et al. [2015].

5.1.2 Multi-Layer Ionization Chamber

The used prototype detector has been originally developed at the GSI Helmholzzentrum
für Schwerionenforschung (GSI, Darmstadt, Germany) [Voss et al., 2010] and the feasi-
bility of such a system for the 3D reconstruction of relative depth-dose distributions has
been demonstrated by Brusasco et al. [2000]. The proof-of-principle studies of carbon ion
imaging with this prototype were performed by Rinaldi et al. [2014]; however, at rather
high doses [Rinaldi, 2011]. More recently, Magallanes [2017] characterized the system for
low-dose irradiation schemes, i.e., below 2mGy per full radiography.

Only a brief review on the working principle of the detector configuration will be given.
For more detailed information the reader is referred to Magallanes [2017]. The residual
range detector, as it can be seen in figure 5.2, is assembled from 61 Parallel-Plate Ionization
Chambers (PPICs) interleaved with Poly(Methyl Methacrylate) (PMMA) absorber plates.
Due to the large active area of 30×30 cm2 the whole isocentric scanning field of 20×20 cm2

available at HIT can be exploited for imaging. The active volume of the individual PPICs
is filled with air and has a thickness of 6mm. This yields essentially the same performance
as other gases (e.g., N2), but at easier operation conditions [Brusasco et al., 2000]. The
PMMA slabs have a thickness of 3mm. This granularity sets the WET resolution of the
detector system to approximately 3mm and the dynamic range to around 21 cm WET.
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Figure 5.2: Range telescope detector without shielding box. The individual channels (consisting
of a PMMA absorber and a PPIC) can be seen. The beam is entering from the right-hand side.

In the application of ion-based transmission imaging, the detector functions as a range
telescope, meaning that the integrated signal is represented by the measured PPIC charge
within each channel. This results in a discretized Bragg curve for each individual RP.
Furthermore, the absolute value of PPIC charge is irrelevant, while the maximum signal
conveying the WET information of the traversed material can be clearly identified.

For the image acquisition process it is essential that the detector readout electron-
ics acquire and stream the integrated charge measured by the PPICs in synchronization
with the active beam delivery, as schematically indicated in figure 5.3. To this end, the
detector system is equipped with a I128 multi-channel electrometer (Pyramid Technical
Consultants, Inc., Lexington, MA, USA). The Siemens therapy control system provides a
transistor-transistor logic signal, the so-called Next-Point trigger, indicating the irradiation
of a successive RP within the scanning sequence monitored by the BAMS. This prompts
a second trigger in the electrometer, initializing the charge integration within all PPICs
simultaneously. It should be noted that the current system only accommodates fixed inte-
gration periods, which have to be matched to the minimal irradiation time between RPs in
order to avoid missing scanning steps. However, this restriction heavily compromises the
detection efficiency and signal quality since the dwell time of the beam varies by around
0.3ms (as 1σ), due to beam intensity fluctuations [Magallanes, 2017].
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Figure 5.3: Schematic of the ion transmission imaging setup located at HIT. A high-energy
ion beam coming from the accelerator leaves the beam line through the BAMS, fully penetrates
a phantom located at isocenter on a motor controlled rotating stage and is stopped inside the
range telescope. Each PPIC measures the charge due to the energy deposition after the beam is
degraded by the upstream 3mm PMMA. The colorbar indicates the amount of energy deposition
in each PPIC and the integrated signal for a single RP is shown above the detector. A 2D ion
radiography is obtained by scanning the beam across the object using the active beam delivery.

5.1.3 Phantoms

In this study, three phantoms (shown in figure 5.4) have been adopted to investigate dif-
ferent geometries: A ’slab phantom’ consisting of six plates of tissue-like materials (Gam-
mex, Inc., Middleton, WI, USA), a PMMA ’rod phantom’ using seven cylindrical inserts of
tissue-equivalent materials (CIRS, Inc., Norfolk, VA, USA) and a ’stepped wedge phantom’
machined from PMMA. Table 5.1 lists the properties of all investigated tissue-equivalent
materials. The RSP of the individual materials was experimentally determined at HIT
from carbon ion beam range measurements with a precision of 10 µm and an accuracy
of 100 µm, using an adjustable water column system named Peakfinder (PTW, Freiburg,
Germany). The exact procedure is outlined in Parodi et al. [2012] and the associated RSP
measurement uncertainty was 0.2%. The rod phantom was exploited to investigate iCT,
whereas the slab and stepped wedge phantom were only used for iRAD studies, since the
present high spatial frequencies along specific dimensions represent a worst-case (and clini-
cally unrealistic) scenario for tomographic image reconstruction. As indicated in figure 5.4,
the slab phantom iRADs were acquired by irradiating parallel to the long slab interfaces.
The stepped wedge phantom was irradiated from the side (configuration 1; as shown in fig-
ure 5.4) to produce an image of the step-like shape and also from behind (configuration 2)
to obtain WET images of the thicknesses of the individual PMMA steps.
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Figure 5.4: Physical dimensions [mm], geometry and insert arrangement for the rod (left), slab
(middle) and stepped wedge phantom (right). In the pictures the phantoms can be seen in the
irradiation position in front of the range telescope. The rod phantom is located on a motor
controlled rotating stage for tomographic acquisition.

Material Manufacturer
Density
[g/cm3]

RSP
Elemental Composition [%]

H C N O Mg Si P S Cl Ca Ba

Muscle CIRS 1.062 1.057 9.1 69.7 2.1 16.8 0 0 0 0 0.1 2.2 0
Bone 400 1.260 1.215 8.1 57.63 1.28 18.87 0 0 4.32 0.08 0.04 9.31 0.35
Adipose 0.960 0.970 10 71.3 1.8 16.4 0 0 0 0 0.2 0.3 0
Breast 50/50 0.991 0.989 9.6 70.3 1.9 17 0 0 0 0 0.2 0.9 0
Trabecular bone 200 1.161 1.117 7 56.3 2 22.7 0 0 3.3 0 0.2 8.5 0
Cortical bone 1.910 1.688 3.3 25.37 0.91 35.28 3.36 0 8.82 0 0.03 22.91 0
Liver 1.072 1.064 9.0 69.4 2.1 17.1 0 0 0 0 0.1 2.2 0

Muscle Gammex 1.049 1.036 8.1 67.17 2.42 19.85 0 0 0 0 0.14 2.32 0
Cortical bone 1.834 1.618 3.41 31.41 1.84 36.50 0 0 0 0 0.04 26.81 0
Adipose 0.946 0.948 9.06 72.30 2.25 16.27 0 0 0 0 0.13 0 0
Lung 0.282 0.284 8.46 59.38 1.96 18.14 11.19 0.78 0 0 0 0.10 0
Inner Bone 1.152 1.104 6.67 55.64 1.96 23.52 0 0 3.23 0 0.11 8.86 0

Table 5.1: Mass density and elemental composition of the Gammex and CIRS phantom
materials used in this work. The RSP was experimentally measured using the Peakfinder
(PTW, Freiburg, Germany) water column system [Parodi et al., 2012].
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5.2 Monte Carlo Model

The detector geometry was modeled by alternating homogeneous PMMA blocks of 3mm
thickness with 6mm air regions; thus, neglecting the electrodes compared to the actual
range telescope configuration. Hence, the density of the absorber material was tuned to
1.216 g/cm3 in order to match the experimentally determined RSP value of 1.192 [Meyer
et al., 2017]. The detector signal, i.e., the energy deposition in each air region resembling
the active volume, was scored using themgdraw.f routine2. As in the experimental scenario,
the energy depositions were accumulated in each detector channel (i.e., air regions) for all
(primary and secondary) particles belonging to the pencil beam of the corresponding RP.

The in silico phantom geometries were directly modeled in FLUKA, as explained in
section 4.1.4. In addition, the ionization potentials of the individual compounds, calculated
by FLUKA according to the Bragg additivity rule, were manually adjusted in a trial and
error procedure to ensure an agreement with the experimentally measured RSP of better
than 0.3%. For evaluating the imaging performance in more realistic scenarios, the DICOM
xCT data of a left frontobasal anaplastic astrocytoma case were imported in FLUKA as
voxel geometry. The conversion of HUs into RSP was embedded by forcing the MC code to
follow a bijective and error-free clinical-like HU-RSP conversion curve (cf. section 4.1.5).

5.3 Data Processing

The detector signal for every RP is given by a Bragg curve discretized into the 61 PPICs
carrying information on the energy loss of the particles within the material traversed before
impinging on the detector. The WET of the imaged object is encoded in the location of
the largest PPIC signal and can be directly obtained by means of dedicated detector
calibrations, as explained in the following.

5.3.1 Formation of Projection Data

In order to correlate the location of maximum signal with the traversed WET, the
peak-signal position has to be parametrized as a function of the initial beam energy and

2In previous work [Meyer, 2015; Meyer et al., 2017] the scoring was implemented in the comscw.f
routine. The applied change makes the implementation more convenient without influencing the result.
mgdraw.f provides a general event interface to the whole FLUKA particle transport process, which allows
to directly access for example energy deposition, boundary crossing or trajectory drawing. comscw.f allows
to interface and weight the energy/stars/residual nuclei obtained via the standard FLUKA scoring cards.
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the thickness of a material with known RSP [Rinaldi et al., 2013]. Without any object
inside the beam path, the location of the maximum signal exclusively depends on the ini-
tial beam energy, i.e., higher energetic ion beams will be stopped in a more distal part of
the range telescope. For the first calibration, the peak position of the detector signal was
determined for a series of experimentally validated MC simulations with varying initial
beam energy. The results are shown in figure 5.5. In order to improve the accuracy for
very low (<100MeV/u) and high (>350MeV/u) energies a 2nd-degree polynomial fit was
employed instead of the semi-empirical Bragg-Kleeman rule applied in a previous study
[Rinaldi et al., 2013]. Hence, the parametrization of the peak location N0

max in dependence
of the initial beam energy is given by

N0
max(E) = a1 · E2 + a2 · E + a3 . (5.1)

Here, a1, a2 and a3 are ion-dependent fitting parameters listed in table 5.2, E is the initial
beam energy in MeV/u and the superscript 0 denotes that no material was placed within
the beam path.
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Figure 5.5: Energy calibration curves using a 2nd-degree polynomial fit for simulated 1H, 4He
and 12C ion beams. The corresponding fit parameters are listed in table 5.2.

In a second step, the location of the maximum PPIC signal for a certain amount of
material traversed by the beam (Nmax) was parametrized as a function of known PMMA
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Particle
Fit parameter

a1 [(MeV/u)−2] a2 [(MeV/u)−1] a3

1H 0.001348 0.1154 -4.197
4He 0.001341 0.1151 -4.310
12C 0.000311 0.0805 -5.488

Table 5.2: Parameters of the 2nd-degree polynomial fit for the channel-to-WET conversion.
In all cases R2 values and RMS errors were better than 0.999 and 0.33, respectively.

absorber thickness for a fixed beam energy E. This yields a linear relationship of the form

Nmax(E,∆xobject) = −c ∆xobject +N0
max(E) , (5.2)

where ∆xobject is the absorber thickness placed in front of the detector and c is a fitting pa-
rameter. Since the used absorbers were of the same material as the absorber slabs of the de-
tector, c represents the inverse absorber plate thickness, i.e., c = 1/3mm−1. This was con-
firmed with an accuracy of 0.25% by simulations for different absorber thicknesses. By sub-
stituting N0

max(E) in equation (5.2) with expression (5.1) and using ∆xobject = WET/1.192,
where 1.192 is the experimentally determined RSP of the PMMA absorbers, one obtains

Nmax(E,WET) = −1

3

WET
1.192

+ a1 · E2 + a2 · E + a3 . (5.3)

Finally, the WET (given in mm) of an unknown object imaged with an ion beam of initial
energy E (given in MeV/u) can be derived by rearranging equation (5.3), which yields the
following channel-to-WET conversion formula:

WET = 1.192 · 3 ·
(
a1 · E2 + a2 · E + a3 −Nmax

)
. (5.4)

In order to further validate the simulation model, the same parametrization as in Rinaldi
et al. [2013] was tested in addition. Only minor variations in the deduced fitting parameters
and consequently the reconstructed WET values were observed.
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5.3.2 Bragg Peak Decomposition

In presence of material interfaces or inhomogeneities perpendicular to the pencil beam
axis, the detector signal contains distinct multiple WET information due to range mixing
effects. As a consequence, the maximum signal location may not always coincide with
the most relevant WET contribution [Krah et al., 2015]. The integrated detector signal is
therefore described as a linear combination of different pristine Bragg peaks. Accordingly, a
RP-wise decomposition strategy called Bragg Peak Decomposition (BPD) was implemented
to disentangle each individual component of the mixed Bragg curve and identify the main
WET contribution [Meyer et al., 2017].

The method relies on a MC-based lookup-table BCLUT of pristine Bragg curve signals,
shown in figure 5.6. This energy dependent database was created by simulating PMMA
absorbers of varying thicknesses in steps of 0.1mm in front of the detector. A thickness
sampling finer than the intrinsic WET resolution of the detector was chosen for two reasons.
First, to account for possible peak shape changes of the detected signal, which depends on
the actual Bragg peak position relative to the PPIC. And second, to increase the degree
of freedom of the purely mathematical optimization [Meyer et al., 2017].

Figure 5.6: MC-based lookup-table (for a 12C ion beam of 344.94MeV/u initial energy) display-
ing the vertically organized pristine Bragg peak signals for various PMMA absorber thicknesses.
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The signal component weights are derived from the following linear least-squares prob-
lem with bound constraints, solved by means of Euclidean distance minimization:

min
w

1

2
‖BCLUT · w −BC‖2

2 for 0 ≤ wi ≤ 1 ∀i , (5.5)

where BC is a vector containing the 61 PPIC signals for the specific RP and w is the
weight-coefficient vector to be determined. BCLUT is the lookup-table matrix including
the column-wise organized detector signals for pristine Bragg peaks, while the individual
columns represent cases of various different absorber thicknesses (cf. figure 5.6).

To ultimately derive the WET information by applying equation (5.4), the obtained
weight-coefficient vector was re-binned to the actual detector resolution by adding up the
weights of all pristine Bragg peaks having the same maximum location. The most dominant
component, i.e., the channel of largest weight, is identified as Nmax for the specific RP.

5.3.3 Tomographic Image Reconstruction

The tomographic image reconstruction is implemented as explained in section 4.4, using
a geometrical system matrix considering parallel integration-lines. This is justified by
the quasi-parallel beam geometry due to the large distance of around 6.5m between the
scanning magnets and isocenter at HIT, resulting in a divergence of less than 1mrad for
typical irradiation scenarios [Parodi et al., 2012].

5.4 Results

5.4.1 Impact of Data Post-Processing

This section investigates the impact of the proposed BPD method on the overall
integration-mode imaging performance. Figure 5.7 exemplary shows the BPD application
for the signal of a RP located beside the rod phantom, however, still close to the air-PMMA
interface. The broad peak signal component originates from the rounded boundary of the
cylinder, whereas the more narrow peak at channel 50 corresponds to 12C ions not inter-
secting the phantom. This ’double peak’ causes ambiguities in the WET conversion since
the largest signal is found at channel 36, while the RP is geometrically located next to the
phantom, i.e., channel 50 would be correct for the employed parallel-beam system matrix.
Using the developed BPD method resolves this issue and correctly determines the weights
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of the individual Bragg peak components within the integrated signal.
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Figure 5.7: BPD for the signal of a RP close to the air-PMMA interface occurring at the
boarder of the rod phantom. The top panel shows the detector signal (red dots), the individual
weighted signal components (colored) obtained from the BPD and their summation (black). The
lower panel shows the weights assigned to the corresponding pristine Bragg peak signal, which are
drawn in the same color.

Additional simulation studies indicated that the increase in RSP accuracy from full
(360◦) angular coverage is relatively small compared to a partial tomographic coverage of
180◦ and does not justify the double dose exposure. This is expected due to the linearity of
WET combinations, causing a redundant sampling of the same information in the second
half [Meyer et al., 2017]. The only difference is ascribed to MCS and nuclear interaction
processes. Hence, in the following only 180◦ angular coverage will be considered for iCT.
In order to quantitatively assess the impact of the BPD on the RSP accuracy, a pCT,
Helium Computed Tomography (heCT) and cCT of the rod phantom were simulated with
10000 1H, 2500 4He and 500 12C ions per RP and 1mm spacing, yielding a comparable
dose of ∼190mGy for the 200 radiographic projections. The selected number of simulated
primaries was sufficient to obtain a stable detector signal for each RP without substantially
altering the image quality. A value of ε = 5× 10−4 was selected as stopping criteria for all
iCT reconstructions (cf. equation (4.22)). The obtained RSP accuracy for the individual
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phantom inserts is summarized in table 5.3. Applying the developed BPDmethod improved
the RSP accuracy substantially for almost all materials, predominantly for pCT. The
average RSP relative error reduction was 3.93%, 2.74% and 1.72% for pCT, heCT and
cCT, respectively. Based on this outcome, all following results presented in this chapter
use the BPD method.

Bottom insert row Middle insert row Top insert row

Adipose Bone400 Muscle Breast Bone200 PMMA Cort. bone Liver PMMA

Proton CT

Without BPD -3.47% -10.52% -4.28% -2.95% -11.54% -4.82% -10.09% -6.93% -4.93%
With BPD 3.15% -1.06% 2.87% 3.80% -2.89% 3.44 % 2.54% 1.18% 3.31%

Helium CT

Without BPD -2.45% -5.29% -3.02% -2.50% -6.42% -3.82% -7.79% -1.07% -3.83%
With BPD 2.05% 0.31% 1.11% 1.87% -0.30% 0.34% -1.20% 4.11% 0.27%

Carbon CT

Without BPD -1.77% -2.94% -2.07% -1.97% -0.87% -2.34% -5.05% -4.71% -2.24%
With BPD 0.42% -1.16% -0.10% 0.15% 0.82% -0.47% -2.41% -2.59% -0.39%

Table 5.3: Mean RSP relative errors of the individual insert materials and PMMA for the
simulated rod phantom pCT, heCT and cCT with or without applying the BPD method.

5.4.2 Experimental Phantom Investigations

Experimental Proton Radiographies (pRADs), Helium Radiographies (heRADs) and Car-
bon Radiographies (cRADs) were acquired for the slab and stepped wedge phantom [Kopp,
2017]. For all acquisitions, the phantoms were set up manually in the HIT experimental
room using the in-room isocentric positioning laser system. Moreover, the images were ac-
quired on the same day and in succession to each other without repositioning the phantoms
in order to enable a consistent comparison between the different iRADs.

In order to obtain approximately the same imaging dose of around 9.5mGy for all
iRADs (estimated from MC simulations), the delivered number of particles per RP was
scaled accordingly. Thus, 100000 protons, 25000 helium ions and 4000 carbon ions were
irradiated per RP, all using the nominal beam energy E152 which corresponds to a range
in water of around 17.2 cm. For comparison purposes, MC simulations [Kopp, 2017] were
performed for this setup, however, using only 50% of the actually delivered particles due
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to computational reasons. Nevertheless, the statistics were sufficient to yield a stable
(simulated) detector signal, considering the limited particle collection efficiency of the
experimental prototype.

The experimentally acquired and simulated iRADs for the slab phantom are shown in
figure 5.8. Qualitatively all images accurately resemble the phantom geometry and the
correct WET of the individual slabs. However, the pRADs exhibit an increased sensitivity
to signal fluctuations at material interfaces compared to heavier ions. The WET of most
materials in the experimental images was retrieved with an accuracy of better than 2.1%
for all ions, demonstrating good agreement with simulation results. Only the relative
error for lung exceeded 5% for the pRAD and heRAD. The relative error for the complete
radiographic image (cf. equation (4.27)) was 13.8%, 7.1%, and 4.2% for the experimentally
acquired pRAD, heRAD and cRAD, respectively.
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Figure 5.8: Comparison of experimental and simulated integration-mode iRADs for the slab
phantom. The ground truth (A) is shown along with the experimental (left column) and simulated
(right column) pRADs (B & C), heRADs (D & E) and cRADs (F & G).

Figure 5.9 displays the experimental and simulated iRADs for the stepped wedge phan-
tom in configuration 1. As for the slab phantom, all images demonstrate very good agree-
ment with the ground truth. At the physically straight sides of the phantom rounded
artifacts in between the steps are visible, predominantly for protons and helium ions.
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However, in all images the individual steps are sharply resolved. The overall relative error
for the experimental images was 5.9% for the pRAD, 4.3% for the heRAD and 4.1% for the
cRAD. The simulated data exhibited similar image quality as the experimental acquisitions
with corresponding relative errors of 4.4%, 3.4% and 2.7%.
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Figure 5.9: Comparison of experimental and simulated integration-mode iRADs for the stepped
wedge phantom (configuration 1). The ground truth (A) is shown along with the experimental
(top row) and simulated (bottom row) pRADs (B & C), heRADs (D & E) and cRADs (F & G).

Experimental and simulated iRADs for the stepped wedge phantom (configuration 2)
are shown in figure 5.10, again demonstrating good visual agreement with the ground truth
WET image. However, the step-like shape appears blurred for the heRADs, while for the
pRADs the individual steps are barely visible. This is reflected in the overall image relative
error, which was 5.5% for the experimental pRAD, 2.4% for the heRAD and 3.7% for the
cRAD. The corresponding errors for the simulated iRADs were 2.2%, 1.3% and 0.8%.

In addition, full iCTs were performed for the rod phantom. Due to the inferior quality
already observed for the acquired pRADs, only a heCT and cCT were acquired. In contrast
to the radiography study, both tomographies were not acquired consecutively, since a single
iCT acquisition takes several hours with the current systems. A total of 25000 helium ions
and 5000 carbon ions were delivered per RP at 163.25MeV and 310.58MeV respectively
(nominal beam energy E162), which corresponds to a range in water of around 18.2 cm.
The resulting full tomography dose for 200 projections with 1mm isotropic RP spacing was
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Figure 5.10: Comparison of experimental and simulated integration-mode iRADs for the stepped
wedge phantom (configuration 2). The ground truth (A) is shown along with the experimental
(top row) and simulated (bottom row) pRADs (B & C), heRADs (D & E) and cRADs (F & G).

around 1.9Gy. Since the noise conditions in the experimental campaigns were comparable,
ε = 5× 10−4 (cf. equation (4.22)) was chosen for the stopping criterion in both cases.

Exemplary reconstructed transaxial slices are shown in figure 5.11. Due to the mal-
function (i.e., under-response or extreme sensitivity to noise) of detector channels relevant
to large WET values in the considered experimental run, slices reconstructed for the up-
per part of the phantom suffered from substantial artifacts and distortions, making those
images not usable for RSP accuracy assessment. Visually, all displayed images exhibit
relatively similar image quality, whereas ring artifacts are slightly more pronounced in the
heCT reconstructions. The RSP relative error distributions for both iCTs are displayed
as box plots in figure 5.12. Strong ring artifacts extending into the insert locations within
the heCT image caused the considerably large RSP error for bone200 and bone400, which
are placed in the center of the phantom. The average RSP relative error for the cCT was
(0.34± 1.44)%, being marginally better than for the heCT, which yielded (2.15± 1.85)%.
In agreement with the qualitative evaluation, the noise for both acquisitions is comparable.
The corresponding results from MC simulations (for 10% of the original primaries) were
(0.50± 1.41)% and (0.89± 1.02)%.
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Figure 5.11: Reconstructed experimental transaxial integration-mode heCT (A & B) and cCT
(C & D) slices for the bottom (A & C) and middle (B & D) insert row of the rod phantom.

Figure 5.12: Box plot comparison of the RSP relative error distributions obtained for the
experimental heCT and cCT acquisitions of the rod phantom. The median of the distribution is
represented by the central white line, the box corresponds to the 25th and 75th percentiles, and
whiskers indicate the last point within 25th-1.5×(75th-25th) and 75th+1.5×(75th-25th).

5.4.3 Potential Detector Upgrades

Besides efficiency shortcomings and noise issues related to the electronics, the current sys-
tem performance is limited by the coarse range detector segmentation due to the 3mm
PMMA tiles. In order to improve the WET resolution, an upgraded system with reduced
absorber thickness of 1mm was proposed and investigated using MC simulations. For
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this setting new fitting parameters of the channel-to-WET conversion (cf. equation (5.4))
were derived: a1 = 0.0009489 (MeV/u)−2, a2 = 0.2321 (MeV/u)−1, a3 = −14.59 and
c = 1mm−1. Moreover, a dedicated lookup-table for the BPD method was created.

This investigation solely focused on cCT since it is most suited for integration-mode
imaging due to reduced MCS as demonstrated in the previous sections. Furthermore,
carbon ions are more sensitive to an improved WET resolution compared to lighter ions,
due to the reduced range straggling (cf. equation (2.6)). Acquisitions of 500 12C/RP, 2mm
RP spacing and 1.5◦ angular sampling were simulated. This configuration demonstrated
substantial dose reduction (by a factor of ∼ 67 compared to the experimental cCT scenario
using the current prototype) with only slightly degraded RSP accuracy [Meyer et al.,
2017]. Exemplary slices of the three different insert rows are shown in figure 5.13 for the
current and the upgraded system. The reduced absorber thickness visually improves the
homogeneity of the circular inserts and reduces ring artifacts. Figure 5.14 displays a box
plot comparison of the RSP relative error distributions for both detector configurations.
The reduced absorber thickness enhanced the RSP accuracy for most materials, showing
improvements in the RSP relative error of up to 2.17%. While the average error reduction
was only 0.36%, the standard deviation of the inserts RSP relative error distributions was
substantially improved by 0.95%.

5.4.4 Imaging of Clinical-Like Data

Based on the aforementioned results, the potential of integration-mode imaging for
clinical-like data was investigated for carbon ions using an upgraded range telescope with
1mm absorber thickness. To this end, DICOM xCT data were imported in FLUKA as out-
lined in section 5.2. Nevertheless, the expected range of WET values across all projections
exceeded the dynamic range of the detector. In order to artificially enhance the dynamic
range by limiting the residual range of carbon ions, an algorithm was developed to derive
a multi-energy irradiation plan based on prior knowledge of the digitally reconstructed
WET radiographs and the initial beam shape (neglecting MCS). For anatomical regions of
large WET carbon ions of 399.04MeV/u (HIT nominal beam energy E232) were selected,
whereas all other RPs were simulated with a nominal energy of 344.94MeV/u (HIT nom-
inal beam energy E194). Furthermore, the large irradiated field of view of up to 15 cm
pencil beam deflection in the isocenter plane caused image reconstruction artifacts, since
the original assumption of a parallel-beam geometry is not fully valid anymore. Hence, a
3D cone-beam geometry system matrix was implemented by straight line raytracing from
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Figure 5.13: Reconstructed transaxial cCT slices for the rod phantom using a simulated
integration-mode detector with 3mm (A, B and C) and 1mm (D, E and F) absorber thickness.
Left, middle and right column correspond to the bottom, middle and top insert rows, respectively.

the position of the scanning magnet (0 cm, 0 cm, -650.6 cm) through the individual RP lo-
cations. A value of ε = 5×10−5 (cf. equation (4.22)) was selected as stopping criterion and
the physical imaging dose (mean ± standard deviation) to the patient scored in FLUKA
was (51± 2)mGy.

Two exemplary slices of the reconstructed cCT are displayed in figure 5.15a in compar-
ison with the ground truth images. While the overall anatomical geometry is retrieved, the
images suffer from substantial distortion artifacts, which strongly degrade the image qual-
ity. In particular, structures within the homogeneous brain tissue are not visible, due to the
deteriorated contrast. Furthermore, the limited spatial resolution does not allow to recon-
struct small-sized details, e.g., in the nasal cavities. Figure 5.15b shows the corresponding
RSP relative errors for all reconstructed slices, being on average (4.64± 1.38)%.

5.5 Discussion

The developed BPD method demonstrated a clear benefit for the image quality achiev-
able with the considered integration-mode range telescope by resolving ambiguities in the
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Figure 5.14: Box plot comparison of the RSP relative error distributions obtained with a simu-
lated detector configuration (integration-mode) of 3mm and 1mm absorber thickness for the rod
phantom. The same representation as in figure 5.12 is used.

maximum signal identification in tissue heterogeneities and interfaces [Meyer et al., 2017].
Without post-processing, lateral interfaces increase the integrated detector signal of more
proximal channels due to an overlap of the signal components (cf. figure 5.7). This general
bias toward larger WET values potentially causes distortions of the actual object geom-
etry and size within the iRADs. Hence, the BPD also helps to preserve the accurate
object shape. The reduced amount of inconsistencies in the projection data substantially
enhanced the RSP accuracy in tomographic image reconstruction (cf. table 5.3).

The implemented simulation model demonstrated generally very good agreement with
experimental results, due to an accurate modeling of the beam properties as well as phan-
tom and detector composition, RSP and geometry. Variations in the obtained WET accu-
racy between experimental and simulated data for lung tissue originate from neglecting the
porous material structure within the MC simulations, thus, not considering the additional
Bragg peak degradation [Titt et al., 2015; Magallanes et al., 2019]. The slightly increased
WET error observed in the stepped wedge phantom (configuration 2) for the experimental
cRAD image compared to the heRAD image, is only attributed to an unfavorable carbon
ion Bragg peak position within the range telescope for the WET value of the phantom.
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(a) (b)

Figure 5.15: (a) Exemplary reconstructed transaxial cCT slices in comparison to the ground
truth images. (b) RSP relative error for the reconstructed images as a function of the transaxial
slice location. The corresponding anatomical regions for selected slices are shown above the plot.

Since this is the only WET value within the image other than air, it dominates the er-
ror, even though cRAD yields a better geometrical agreement with the reference. For the
presented range telescope design, the general WET resolution is limited by the detector
granularity of 3mm PMMA-equivalent thickness. This value exceeds the intrinsic range
straggling limit of around 2mm, 0.9mm and 0.5mm (water-equivalent) for the used ener-
gies of the simulated clinical-like proton, helium and carbon ion beams, respectively. Since
the individual ion beams also have approximately the same range (within less than 2mm
in water), a comparable WET accuracy for the pRADs, heRADs and cRADs was observed.

Due to the comparable WET accuracy at the same imaging dose for all investigated ion
species, the superior image quality obtained for carbon ions reflects the reduced MCS and
beam spot size (e.g., 3.8mm FWHM in air at isocenter for around 18.2 cm range in water
compared to 6.1mm and 10.4mm for the corresponding helium ion and proton beams,
respectively). Potential differences in the biological damage between the investigated ions
are discussed in chapter 7. Remaining uncertainties at material boundaries or defective
(i.e., consistently under- or over-responsive) channels can cause inaccuracies in the projec-
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tion data. Those effects are translated into centered ring artifacts in the reconstructed iCT
images (cf. figure 5.11) due to the rotational symmetry [Boas and Fleischmann, 2012].

In order to reduce the observed immanent noise issue in experimental acquisitions, the
detector signal strength needs to be further improved, either by increasing the thickness
of the PPICs active volume or by enhancing the particle collection efficiency. The latter
can be potentially achieved by using electronics with adaptive gated trigger capability.
This would enable a matching between the integration period and the fluctuating dwell
times of individual RPs. Preliminary investigations of adaptive gating using an I4000
multi-channel electrometer (Pyramid Technical Consultants, Inc., Lexington, MA, USA)
connected to four detector channels indicated a potentially substantial improvement in the
measured integrated current [Magallanes et al., 2019].

The proposed BPD method also entails the possibility of supporting the experimental
data reconstruction with prior information [Magallanes, 2017]. Using an accurate and ex-
perimentally validated MC framework for iCT simulations like the one developed in this
thesis and available prior knowledge of the object, e.g., from xCT data, the decomposed
simulated detector signal can be used to facilitate the BPD for experimental data. By
accounting for a potential misalignment between experimental scenario and MC simula-
tion, this method can further enhance the image quality even in the presence of channel
malfunctioning.

While simulated iCTs do not considerably benefited from full angular coverage [Meyer
et al., 2017], experimental acquisitions can yield further improved image quality [Magal-
lanes et al., 2019]. The reason is that the additional information from more projections
can be used to compensate the noise inherent in the individual radiographies, however, at
the cost of an increased dose exposure to the imaged object of interest. Moreover, full an-
gular coverage can be of value for strongly asymmetric cases, i.e., where MCS and nuclear
reactions are considerably different for two opposite projections.

In comparison to the currently in-use prototype detector, the performance of a setup
with a reduced absorber thickness of 1mm demonstrated a clear benefit for the RSP
accuracy of cCT, due to an improved WET resolution. This quantitatively underlines the
usefulness of the envisioned detector upgrade [Meyer et al., 2017]. However, the achievable
image quality for the presented integration-mode system lacks of sufficient spatial resolution
to be useful for ion therapy treatment planning, as indicated by the the poor image quality
for clinical-like data (cf. figure 5.15). While the developed BPD strategy and the proposed
system upgrade present promising approaches to enhance the system performance, further
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improvement is required.
One potential approach is to fully embed each individual signal component from the

BPD into the tomographic image reconstruction [Seller Oria et al., 2018]. Therefore, the
integration-lines have to be substituted by cones representing the initial beam spot size
convolved with a pre-calculated scattering contribution for the corresponding WET value.
Moreover, the iterative image update formula has to be modified accordingly.

Another possibility is to optimize the images in radiographic domain before the tomo-
graphic image reconstruction. The inferior spatial resolution limited by the RP spacing can
be potentially restored by exploiting the redundant information encoded in the overlap of
neighboring beam spots. Such enhancement or reassignment strategies have already been
proposed by using additional prior information [Krah et al., 2015] and also without [Gianoli
et al., 2016]. These methods yielded an improved image quality for the more challenging
proton imaging and could possibly also enable an increased RP spacing and consequently
imaging dose reduction.

Due to the statistical distribution of ions within a pencil beam, the presented
integration-mode configuration requires certain statistics for obtaining a meaningful repre-
sentation of the WET distribution for each RP position [Meyer et al., 2017]. This limitation
can be eluded with single-particle tracking, since the information available for each particle
is processed individually. Therefore, this configuration enables substantially better spatial
resolution [Krah et al., 2018a] and lower imaging doses. However, these benefits come at
the cost of a more complex detector instrumentation and increased computational time
due to the enormous amount of data and the required path estimation.





”All of physics is either impossible or trivial. It is im-
possible until you understand it, and then it becomes
trivial.”

Sir Ernest Rutherford

6
Single-Particle Tracking Ion CT for Clinical

Treatment Planning

Heavier ions can yield improved image quality by benefiting from reduced MCS in the path
estimation for single-particle tracking. However, they also exhibit an increased physical
dose (per particle) and suffer from an elevated loss of primaries due to fragmentation,
ultimately affecting the noise present in reconstructed images. In this chapter the first
comparison of different ion species for iCT, including image quality and range accuracy
for proton therapy treatment planning in realistic scenarios is presented. The quality of
simulated pCT, heCT and cCT images was assessed for clinical cases of cranial locations.
Moreover, the associated range prediction and dose calculation accuracy was quantitatively
evaluated using the RayStation TPS. All investigated scenarios were compared to the
established clinical practice of deriving RSP maps via a stoichiometric calibration from
single energy xCT data. Parts of the results presented in this chapter have been published
in Meyer et al. [2019].
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6.1 Monte Carlo Model

6.1.1 Simulation of Detection and Data Acquisition

An ideal iCT detector system was simulated, which is represented by solely two scoring
planes recording position, direction and energy of each individual ion prior and posterior to
the imaged patient volume, 45 cm from the isocenter as in a realistic clinical scenario. Each
tracker covered an active area of 30× 30 cm2. The initial beam energy was set to the nom-
inal beam energy E222 available at HIT, which corresponds to 199.44MeV, 199.03MeV/u
and 385.18MeV/u for protons, helium and carbon ions, respectively. These energies are
equivalent to a range in water of around 26 cm for each ion species, making them hypo-
thetically detectable with the dynamic WEPL range of existing prototype detector systems
[Giacometti et al., 2017]. 400 primary protons, 100 helium ions and 20 carbon ions were
simulated per RP for a total of 180 projections, resulting in a physical dose of ∼ 1.9mGy
for each full tomography. This value is much lower than the typical dose exposure in xCT
of 10 to 100mGy [Murphy et al., 2007]. The individual RP locations were aligned with
the voxels of the simulated patient xCT data imported into the FLUKA MC simulation
framework, i.e., 1.074mm and 3mm spacing in horizontal and vertical direction, respec-
tively. For single-particle tracking, the spacing can in principle be selected independently
of the imported xCT data granularity, however, this is useful for a direct comparison with
integration-mode, since the sinogram binning is given by the RP spacing.

6.1.2 Clinical Patient Data Sets

The import of the clinical data was implemented in the same way as for the integration-
mode study (cf. section 4.1.5). It should be kept in mind that inaccuracies due to the
stoichiometric calibration occurring for real patient scenarios are not present when using
MC simulations, since the conversion is defined by the user. Thus, simulations allow a
consistent and error-free comparison of the reconstructed images with the ground truth.
Three representative cranial patient cases were investigated: a left frontobasal anaplastic
astrocytoma (patient 1; as used in chapter 5), a nasopharynx cancer (patient 2) and a left
sided glioblastoma (patient 3). These patients were originally treated with photons, but
also represent common indications for ion therapy. Exemplary xCT slices overlaid with
the contours of the PTV and relevant OARs are shown in figure 6.1.
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6.2 Treatment Planning

All treatment plan optimizations and dose calculations were performed with a research
version of the commercial (analytic) TPS RayStation (RaySearch Laboratories, Stockholm,
Sweden). Since the current version does not feature a direct import of 3D RSP maps, the
reconstructed iCT images were back-converted into HUs prior to the data import using
the inverse of the HU-RSP conversion curve applied in the FLUKA MC simulations. Due
to the imposed bijectivity of that function, no uncertainty or ambiguity is introduced in
this process. The data import into the TPS was performed in the same way for all images,
i.e., using the same internal conversion to density and subsequently RSP. This eliminates
uncertainties and enables a consistent comparison between the dose distributions calculated
on different image sets, independent of the fact that the conversion exploited in the MC
simulation is different from the one of the TPS [Meyer et al., 2019].

In order to emulate the typical uncertainties encountered for the HU-RSP conversion
based on the stoichiometric calibration approach for single energy xCT data, an additional
xCT image set (hereafter referred to as xCTstoi) was imported into the TPS by randomly
introducing an error (using a continuous distribution from -3% to +3%) to the RSP values
of the conversion curve [Meyer et al., 2019]. In agreement with the findings of Wohlfahrt
et al. [2017] for a comparison study between DECT and single energy xCT, the chosen
conversion curve resembled a systematic overestimation of the RSP for soft tissue while
underestimating it for bony materials.

For each patient case, individual IMPT (cf. figure 6.1) and SFUD proton therapy treat-
ment plans using pencil beam scanning were designed. The reference scenario is given
by the dose distribution optimized on the RSP ground truth images obtained from the
imported original xCT anatomy (from hereon referred to as xCTGT). Subsequently, the
derived treatment plans were recalculated in RayStation on the reconstructed iCTs and
the xCTstoi images without re-optimization of the plan.

For SFUD plans, the recalculated dose distributions were compared to the original
(planned) reference by means of beam’s-eye view range difference maps. While these plans
were not designed to yield clinically optimal results, the field directions were selected to
represent cases of large heterogeneities (0◦, patient 1) as well as more homogeneous beam
paths with long (90◦, patient 2) and short penetration depth (90◦, patient 3). The beam
range was defined as the 80% distal dose falloff along the original field direction. For
quantitative comparison with safety margins and range uncertainties in current clinical
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practice, the obtained range differences were converted into water-equivalent range. In
order to compute the correct scaling, raytracing [Siddon, 1985] was performed on the
RSP ground truth between both distal dose falloff locations (evaluated and reference plan)
[Wohlfahrt et al., 2017]. To obtain relative range shifts, the results were divided by the
corresponding water-equivalent range of the distal falloff location in the reference scenario
[Meyer et al., 2019]. Multi-field IMPT plans (shown in figure 6.1) were evaluated based
on dose-volume histograms and a global 3D gamma criterion [Podesta et al., 2014] (using
a 10% low-dose threshold).

Figure 6.1: PTV and OAR contours for the investigated patient cases. The overlaid (ground
truth) relative dose distributions (normalized to the prescribed target dose) are obtained for the
indicated beam arrangements of the IMPT plans.

6.3 Results

6.3.1 Comparison of the Path Estimation Models

In order to benchmark the implemented path estimation models, proton, helium and car-
bon ion beams were simulated in FLUKA to traverse a water phantom of 20 cm, starting
from the initial nominal HIT energy E222, corresponding to around 26 cm range in water.
The individual ion trajectories were reconstructed by exploiting the information on the
ideal particle entrance and exit positions and directions at the surface of the water block
available from the MC simulation. This approach enables a quantification of the intrinisc
inaccuracies of the employed path estimation models in a homogeneous medium. Exem-
plary ion trajectories and the corresponding path estimates are shown in figure 6.2 (a, c
and e). In all cases, the MLP can be reproduced by the implemented refined CSP model
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of Collins-Fekete et al. [2015]. The simple SLP generally provides a less accurate path
estimation, however, the differences reduce for heavier particles since MCS is suppressed.
Nevertheless, the SLP remains inferior even for carbon ions.

The RMS deviation between the MC particle paths and the estimated SLPs, CSPs
and MLPs was calculated for 105 events at 201 equally spaced points along the paths.
Figure 6.2 (b, d and f) shows the RMS deviation as a function of depth for the three ion
types. In agreement with the exemplary ion paths, carbon ions offer the best accuracy.
The maximum RMS errors for the CSP observed slightly downstream of the object’s center
were 0.52mm, 0.28mm and 0.17mm for protons, helium and carbon ions, respectively.

Subsequently, the impact of the observed path estimation variations on the RSP accu-
racy was evaluated for the tomographic image reconstructions of patient case 1. For all
reconstructions presented in this chapter, an ε value of 1 × 10−8, 1 × 10−7 and 2 × 10−6

was selected as stopping criteria for pCT, heCT and cCT, respectively. The chosen val-
ues yield the best compromise between convergence and noise, reflecting the differences
in particle statistics. Additionally, the benefit of coupling the TVS scheme (cf. section
4.3.3) to the OS-SART algorithm was quantified. Table 6.1 summarizes the RSP relative
errors averaged over all obtained slices for the different reconstruction scenarios. Using
the MLP or CSP yielded almost the same image quality in all cases. Compared to the
SLP reconstruction, the RSP error was reduced, predominantly for pCT. The implemented
TVS scheme enhanced the RSP accuracy substantially for all ion types with an average
relative error reduction of 0.42%, 0.49% and 1.02% for pCT, heCT and cCT, respectively.
Consequently, from now on all reconstructions are based on the TVS OS-SART algorithm
and the CSP model.

Proton CT Helium CT Carbon CT

SLP CSP MLP SLP CSP MLP SLP CSP MLP

Without TVS 2.25% 1.68% 1.68% 1.73% 1.48% 1.47% 2.66% 2.18% 2.23%
With TVS 1.83% 1.26% 1.26% 1.22% 1.00% 1.00% 1.45% 1.30% 1.30%

Table 6.1: Average RSP relative error for the pCT, heCT and cCT images of patient 1
obtained with different path estimation models and with or without including TVS.
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Figure 6.2: Exemplary SLP, CSP and MLP trajectory estimations for simulated (a) 1H, (c)
4He and (e) 12C ions of the initial HIT nominal beam energy E222 along with the corresponding
RMS deviation between MC particle trajectories and path estimations (b, d and f) in 20 cm of
water. The real path is obtained from the information of the MC simulation. The gray shaded
area represents the ±1σ statistical uncertainty of the MLP model (cf. equation (4.13)).
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6.3.2 Image Quality Comparison

Figure 6.3 shows exemplary slices of the reconstructed iCTs. Qualitatively, the displayed
cCT images exhibit superior spatial resolution, indicated by an improved visibility of
small-sized bony structures. In contrast, brain tissue appears less noisy in the pCT images
enhancing the contrast (e.g., for the visibility of the lateral ventricle). The RSP relative
errors are plotted in figure 6.4 for all transaxial slices. In general, heCT exhibits superior
image quality in terms of a reduced RSP error, being on average 0.2% and 0.3% lower
than for pCT and cCT, respectively. In case of highly heterongeous anatomy like the
paranasal sinuses or nasal cavities (e.g., figure 6.4: slice 1-10 for patient 1), the relative
error is considerably increased. For slices mainly containing homogeneous brain tissue,
(e.g., figure 6.4: slice 18-35 for patient 1), the RSP accuracy of pCT surpasses the one
of the cCT and yields similar relative error values as heCT. When reducing the particle
statistics used in the tomographic image reconstruction for pCT and heCT to match the
particle number of 20 ions per RP used for the presented cCT images, the average RSP
relative error considering all slices was 6.6%, 1.7% and 1.3% for pCT, heCT and cCT.

Figure 6.3: Comparison of exemplary reconstructed iCT images at approximately the same
imaging dose for patient case 1 and the corresponding ground truth (top row: slice 8; bottom row:
slice 25).

The reconstructed RSP distribution for patient 3 is displayed in figure 6.5 as a function
of the original HU values, demonstrating good agreement with the ground truth HU-RSP
conversion curve used for importing the patient anatomy into the MC simulation. pCT
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Figure 6.4: Comparison of the RSP relative error for pCT, heCT and cCT at the same imaging
dose as a function of the transaxial slice location. The corresponding anatomical regions for
selected slices are shown above the plots as reference.

and cCT show worse RSP precision in terms of an increased standard deviation, being 1.3
times higher than for heCT. In the zoom-in plots of figure 6.5, the reconstructed mean RSP
underestimates the correct value for bony materials (-2.1%, -1.2% and -0.4% at 1500 HU
for pCT, heCT and cCT, respectively) and overestimates it for fat and soft tissue (+0.5%,
+0.9% and +1.2% at 0 HU) [Meyer et al., 2019].

6.3.3 Range Calculation Accuracy for SFUD Plans

Figure 6.6 exemplary shows the optimized SFUD dose distribution (i.e., xCTGT reference)
along with the results for plan recalculations on the reconstructed iCTs and the xCTstoi

images. In all cases the dose deposition inside the PTV is slightly overestimated, predomi-
nantly for cCT and xCTstoi. This overestimation in turn results in an under-dosage behind
the PTV due to a reduced residual range caused by the increased energy loss within the
upstream anatomy. Dose differences of up to 0.4%, 1.0% and 2.8% were observed for pCT,
heCT and cCT, respectively, compared to 8.5% for the xCTstoi data.

Figure 6.7 shows the observed SFUD range variations across the projected target vol-
ume, calculated as water-equivalent difference in the position of the 80% distal dose falloff
in beam’s-eye view between planned (i.e., xCTGT) and recalculated (i.e., iCTs and xCTstoi)
dose distributions. All iCTs enabled sub-millimeter accuracy with an average (±1σ) rel-
ative proton-beam range error of (+0.09± 0.33)%, (−0.08± 0.24)% and (−0.35± 0.26)%
for pCT, heCT and cCT, respectively. This corresponds to a water-equivalent range error
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Figure 6.5: Joint histogram of the reconstructed iCTs and the original HU values, shown in steps
of 20 HU values. The colored solid lines correspond to the mean value while partially-transparent
shaded areas represent the ±3σ interval. An outline is added for improving the visibility of
overlapping regions. The black line indicates the ground truth conversion curve being used to
import the initial xCT data into the simulation. Figure taken from Meyer et al. [2019].

of (+0.07 ± 0.18)mm, (−0.08 ± 0.14)mm and (−0.29 ± 0.18)mm. For the pCT data set
of patient 2, over-ranging above 1% was observed for pencil beams traversing the nasal
cavities. The corresponding range error for the xCTstoi data was (−1.00 ± 0.43)% and
(−0.84± 0.32)mm [Meyer et al., 2019].

6.3.4 Dosimetric Comparison of IMPT Plans

The dosimetric comparison based on clinical multi-field IMPT plans is presented in fig-
ure 6.8. The obtained iCT dose-volume histograms were in notable agreement with the
reference and variations in D2% and D98% (i.e., the dose received by 2% and 98% of con-
toured volumes, respectively) were not exceeding 15 cGy for OARs. By contrast, variations
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Figure 6.6: Relative dose distributions for patient case 1 (normalized to the prescribed PTV dose)
for the optimized reference (xCTGT) plan and the recalculated (iCTs and xCTstoi) plans along
with the corresponding relative dose differences. Positive and negative dose difference indicated
an over- and under-dosage with respect to the ground truth, respectively.
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Figure 6.7: Beam’s-eye view water-equivalent proton beam range variations for recalculation
based on (single-particle tracking) iCTs and xCTstoi with respect to the optimized dose using
the reference plan. On the left, the 80% isodose contours are overlaid with the ground truth
radiographies. Positive and negative differences indicate an over- and under-ranging, respectively.

of up to 200 cGy were observed for the xCTstoi images [Meyer et al., 2019]. This result
was corroborated by an additional global 3D 0.5%/0.5mm gamma-evaluation, demonstrat-
ing excellent dosimetric and spatial agreement between recalculated and reference IMPT
dose distributions. The average passing rate for all dose distributions recalculated on iCT
images exceeded 99%, whereas xCTstoi only exhibited an average passing rate of 83%.

6.4 Discussion

The implemented CSP offers similar accuracy as the computationally more demanding
MLP and is superior to a SLP even for cCT, despite the substantially reduced MCS com-
pared to lighter ions. Furthermore, carbon ions demonstrated the best path estimation
accuracy and smallest instrinsic statistical model uncertainty (cf. gray shaded area in fig-
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Figure 6.8: Dose-volume histograms for the optimized (ground truth) and recalculated (iCTs
and xCTstoi) IMPT dose distributions for the three investigated patient cases.

ure 6.2) being in agreement with findings of Collins-Fekete et al. [2017b]. It should be kept
in mind that the CSP and MLP formalism are assuming scattering in a homogenous water
medium. Collins-Fekete et al. [2017a] demonstrated that an extension of the underlying
Fermi-Eyges formalism to the actual material composition and particle energy does not
substantially improve the path accuracy. However, the use of a hull contour to restrict the
beginning and end of the CSP estimation is of fundamental importance, since the surround-
ing air is a major contribution to the path uncertainty. Although the selected approach in
this work exploited prior knowledge of the patient anatomy, an approximated image based
on SLPs [Shrestha et al., 2018] or analytical reconstruction [Giacometti et al., 2017] could
be alternatively used. The implemented TVS scheme demonstrated a substantial benefit
for the quality of reconstructed iCT images. Largest improvements were obtained for cCT,
since the tomographic image reconstruction employed the fewest amount of particle histo-
ries (as a consequence of a reduced number of primary particles at the same imaging dose
and an increased nuclear fragmentation). Due to the assumed ideal iCT system, the TVS
method is expected to be even more useful in realistic noisy scenarios.

While all iCTs provided accurate RSP values (cf. figure 6.4), differences between the
three ion species mainly represent variations in the path estimation accuracy and the
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number of particles used in the image reconstruction at the investigated dose level. While
carbon ions offer the most accurate path estimate (cf. figure 6.2), cCT reconstructions
employ reduced statistics due to nuclear fragmentation and less primary ions compared to
heCT and pCT in order to match the imaging dose. This results in an increased noise for
the reconstructed cCT images as it can be see in figure 6.3.

The reduced RSP accuracy for bony materials and low-HU regions (cf. figure 6.5) results
in an increased RSP relative error for slices containing highly heterogeneous anatomy
(cf. figure 6.4: slice 1-10 for patient 1). This is caused by partial volume effects during
the tomographic image reconstruction and inaccuracies in the path estimation. The latter
originates from assuming scattering in a homogeneous water material instead of the actual
patient anatomy within the path estimation model and the intrinsic statistical uncertainty
of the model itself [Collins-Fekete et al., 2015]. Both effects are enhanced for pCT due to
an increased MCS compared to heavier ions.

In contrast, for soft tissue the path estimation is relatively accurate for all investi-
gated ion species since the scattering condition is comparable to water and the anatomy
is largely homogeneous. Here, pCT provides superior image quality due to less noise from
an increased number of particle histories at the same imaging dose. This is supported by
the large RSP error of pCT compared to heCT and cCT observed at the same particle
statistics. The remaining RSP inaccuracy introduced by the reconstruction demonstrates
the current limitation of iCT even for an ideal detector configuration [Meyer et al., 2019].

Figures 6.6 and 6.7 illustrate the influence of remaining RSP uncertainties in iCT on
the dose calculation accuracy for SFUD proton therapy plans for cranial treatment sites.
Overall, superior performance was observed for heCT, demonstrating better spatial resolu-
tion at heterogeneities than pCT and less RSP uncertainty and noise for soft tissue regions
compared to cCT. pCT provides better range accuracy than cCT since brain and soft tissue
represent the main penetration medium, thus, limiting the impact of the enhanced spatial
resolution of cCT. For the considered anatomical locations, the achieved range agreement
with the reference of better than 0.4% for all simulated iCTs substantially surpasses the
accuracy of the current clinical practice of deriving RSP maps from single energy xCT
data based on a stoichiometric calibration procedure, which is assumed to introduce un-
certainties of 1-3% [Yang et al., 2012]. The observed range accuracy of (−1.00 ± 0.43)%
for the xCT data with artificially added uncertainty (i.e., xCTstoi) is similar to the re-
sults of Wohlfahrt et al. [2017] for a comparison between single energy and DECT based
RSP estimation. The authors of that study reported mean water-equivalent relative range
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shifts significantly larger than 1% for a head-tumor patient cohort. This underlines the
plausibility of the artificially added inaccuracies to mimic the uncertainties of the stoi-
chiometric conversion method. The general range underestimation (i.e., negative values in
figure 6.7) is expected due to the systematic RSP overestimation in soft and brain tissue
compared with the ground truth reference. This effect dominates the range inaccuracies in
the considered scenarios since the beam mainly penetrates brain tissue. However, it should
be kept in mind that current pCT prototypes are being optimized for cranial indications
[Sadrozinski et al., 2013].

Nevertheless, the presented theoretical MC study using an ideal iCT detector system
does not address challenges and limitations related to the experimental realization of iCT.
A realistic detector configuration potentially deteriorates the estimated gain in treatment
planning accuracy due to a degraded image quality in terms of spatial resolution and
RSP accuracy. The latter is mainly determined by the WEPL resolution of the residual
range/energy detector which is intrinsically restricted by the particles’ range straggling
limit and the actual detector configuration (e.g., the energy resolution for a calorimeter
or the absorber thickness for a range telescope). For the investigated scenarios, the range
straggling related to completely stopping protons of 200MeV initial energy corresponds
to around 2.8mm (water-equivalent), in addition to the initial energy spread of the ac-
celerator. The latter is almost negligible, since the initial momentum spread of the HIT
synchroton in the relevant energy range is around 0.05% (FWHM) [Parodi et al., 2012],
corresponding to a range straggling (σ) of less than 0.2mm. Both contributions (except
for range straggling within the detector itself) are intrinsically embedded in the MC simu-
lations and therefore also the impact on the RSP accuracy. The range straggling of helium
and carbon ions is reduced by approximately 33% and 50%, respectively, corresponding to
around 1.0mm and 1.5mm. The currently most complete iCT prototype system (based on
a five-stage plastic scintillator WEPL detector) achieves an average WEPL resolution of
3mm for 200MeV proton beams [Bashkirov et al., 2016]. Since the system is a combination
of both energy (i.e., ion type independent) and range detector (i.e., ion type dependent),
the WEPL resolution can not be directly translated to other ions species.

The spatial resolution substantially depends on accuracy of the ion trajectories imple-
mented within the tomographic system matrix. The intrinsic statistical uncertainties of
the path estimation models are fully accounted for in this study. However, compared to
the presented ideal iCT system, a real detector will have limited precision in measuring
the individual particle positions due to the employed tracker configuration and its char-
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acteristics (i.e., material budget and spatial resolution). For a typical pCT system, the
intrinsic uncertainty of the path estimation is around 0.723mm, while the contribution
from the tracking system is 0.356mm, resulting in a total uncertainty of 0.805mm [Bopp
et al., 2014]. Compared to protons, heavier ions will benefit from reduced MCS in the
innermost part of the tracker unit, hence, reducing the uncertainty in the estimated par-
ticle direction. This represents a further argument in favor of helium ions compared to
protons. Additionally, nuclear fragmentation within the detector material can introduce
inaccuracies in the measured WEPL (typically an overestimation) or further degrade the
available particle statistics for the tomographic image reconstruction, thus increasing the
necessary imaging dose in order to safeguard the same image quality [Meyer et al., 2019].

The observed general range underestimation for SFUD plans is related to an average
RSP overestimation (predominantly for soft and brain tissue), which in turn might have
two potential underlying causes. First, the conversion of the energy loss of each individual
ion into WEPL is based on the Bethe-Bloch formula, neglecting energy loss due to other
interaction types (e.g., nuclear reactions). However, the resulting overestimation effect
is small, since the applied 3σ data cuts [Schulte et al., 2008] should have removed the
vast majority of events with nuclear collisions and large-angle MCS. Secondly, the fit
factors of the employed CSP model have some uncertainty and simply assume scattering in
uniform homogenous material [Collins-Fekete et al., 2015]. Therefore, the scattering and
consequently the path segment length in bony material can be underestimated, causing
an RSP overestimation for the considered anatomical location (neglecting partial volume
effects). Generally, the RSP overestimation for very small HU values seems to be mostly
compensated by the underestimation for bony anatomy [Meyer et al., 2019].

Figure 6.8 demonstrates the very promising dosimetric accuracy for clinical IMPT plans,
which is furthermore confirmed by high gamma passing-rates at a very stringent criteria
of 0.5%/0.5mm. The variations between the individual iCTs were not substantial due to
a comparable RSP accuracy (cf. figure 6.4). Additionally, the designed treatment plans
turned out to be relatively robust, nevertheless, iCT yielded clearly superior outcome
compared to xCTstoi. The presented results underline the potential of iCT as a replacement
for xCT imaging in order to reduce range uncertainties in ion therapy treatment planning.
Moreover, ion imaging can be employed for in-room position verification and to establish
adaptive treatment workflows [Cassetta et al., 2019]. However, various clinical studies have
already demonstrated that recent developments in X-ray imaging technology like DECT
can also provide improved treatment planning accuracy compared to conventional single
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energy xCT [Wohlfahrt et al., 2017]. While those devices already exist as commercial
clinical products, they are typically not integrated at the treatment room isocenter and
the RSP accuracy should still be theoretically inferior to the one enabled by iCT [Hansen
et al., 2015].



“Science is not everything, but science
is very beautiful.”

J. Robert Oppenheimer

7
Radiobiological Implications of Ion CT

While iCT potentially offers improved treatment planning accuracy at lower physical dose
exposure, ion beams can have elevated LET spectra compared to sparsely ionizing X-rays.
This calls for a careful consideration of potential biological effects. Hence, in this chap-
ter the radiobiological implications encountered at typical iCT acquisition conditions are
investigated in a first theoretical study. Changes in the RBE with iCT particle type and
spectrum were considered by incorporating the mechanistic RMF model into the FLUKA
MC code. The RMF model estimates are based on radiation quality dependent parameters
which are calculated as function of particle type and kinetic energy from the independently
developed Monte Carlo Damage Simulation (MCDS) algorithm. The derivation of relevant
radiobiological quantities within the framework of the RMF model and its implementation
in FLUKA are described. The results regarding the RBE for cell death and DSB induction
at typical low-dose iCT irradiation scenarios are presented. Parts of the results shown in
this chapter have been published in Meyer et al. [2019].
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7.1 Biological Damage Prediction Using the RMF

Model

The RMF model, developed by Carlson et al. [2008], is a mechanistic radiobiological model.
It explicitly links the time-dependent kinetics of DSB induction and processing with re-
productive cell death via a coupled system of non-linear ordinary differential equations.
Compared to the earlier lethal and potentially lethal model of Curtis [1986] and the repair-
misrepair model of Tobias [1985], the RMF model treats initial DSB formation as a com-
pound Poisson process [Paganetti et al., 2019]. A review on the main concepts of the RMF
model and its relation with the LQ formalism will be given. For further details the reader
is referred to Carlson et al. [2008] and references therein.

An important physical parameter in the RMF model is the yield of initial DSBs. There
is strong theoretical and experimental evidence of a linear relationship between DSB in-
duction and dose between approximately 1mGy and up to several hundred Gy [Rothkamm
and Löbrich, 2003]. Moreover, the induction of DNA damage by ionizing radiation is simi-
lar among all eukaryotes [Carlson, 2006]. Therefore, DSB yield represents an ideal measure
for the radiation-induced damage as it depends only on the radiation quality and not on
the irradiated cell type [Frese, 2011].

Figure 7.1 summarizes the different pathways of cellular DNA DSB processing, which
are explicitly considered within the RMF model. Following the original derivation of
Carlson [2006], the expected rate of change in the average number of lethal forms of DNA
damage per cell at time t (dF/dt) due to exposure of ionizing radiation is expressed through

dF (t)

dt
= (1− fR) Σ Ḋ(t) + [(1− a)ϕλR + λF + γ η ε]L(t) + γ η L2(t) , (7.1)

where Ḋ(t) and L(t) are the time-dependent dose rate and average number of DSBs per cell,
respectively. λR and λF are the rates of first-order repair and damage fixation, respectively.

Out of the nine potential pathways for the removal of radiation-induced DSBs, five
cause lethal forms of DNA damage (cf. figure 7.1). The number of intrinsically unrejoin-
able DSBs (pathway 4 in figure 7.1) is given by (1− fR) Σ Ḋ(t) where fR is the fraction of
potentially rejoinable DSBs and Σ is the initial number of DSBs per Gray and cell or giga
base pair. However, the assumption that all DSBs are potentially rejoinable (i.e., fR = 1)
demonstrated the best agreement between model predictions and experimental data [Carl-
son et al., 2008]. The fraction of DSBs that undergoes lethal first-order misrepair (pathway
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2 in figure 7.1) is given by (1− a)ϕλR L(t), where (1− a) and ϕ are the probabilities that
a single DSB is misrepaired and that a misrepaired DSB is actually lethal, respectively.
λF L(t) (pathway 5 in figure 7.1) represents DSB fixation by extrinsic processes.

In addition, there can be misrejoining of break-ends associated with two different DSBs.
Lethal misrejoining of two DSBs created by the same radiation track (so-called intra-
track binary misrepair; pathway 6 in figure 7.1) is expressed through γ η εL(t), where
ε = z̄F fR Σ is the average number of potentially rejoinable DSBs formed per track and η is
the probability that break-ends interact in a pairwise fashion. γ is the fraction of pairwise
DSBs being lethal and z̄F is the frequency-mean specific energy, which can be approximated
for a spherical water target of diameter dtar, assumed to be 5 µm, by [Carlson et al., 2008]

z̄F [Gy] = 0.204
LET
d2
tar

[
keV
µm3

]
. (7.2)

Finally, lethal misrejoining of DSBs created by two different radiation tracks (so-called
inter-track binary misrepair; pathway 8 in figure 7.1) corresponds to the term γ η L2(t).

Figure 7.1: Potential pathways for the cellular processing of DSBs by one-track (red arrows)
and two-track (blue arrows) mechanisms. Adapted from Carlson [2006] and Frese [2011].
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In the limit of small doses and dose-rates, the cell survival according to the widely used
LQ model can be obtained as an approximate time-integrated solution of equation (7.1).
The detailed derivation can be found in Carlson [2006]. In conclusion, the RMF model
predictions for the contributions of one-track (α) and two-track (β) interactions are

α = θΣ + κ z̄F Σ2 and β =
κ

2
Σ2 , (7.3)

where the fraction of initial DSBs undergoing first-order misrepair and damage fixation (θ)
and pairwise damage interaction (κ) are given by

θ =
(1− a)ϕλR + λF

λR + λF
and κ =

η

λR + λF
(γ − θ) . (7.4)

Within the framework of the RMF model, the radiation response characteristics of a cell
exposed to an ion beam (αion,βion) can be calculated from a set of known LQ tissue ra-
diosensitivity parameters of a low-LET reference radiation (αX ,βX) based on the formalism
presented by Frese et al. [2012] and Kamp et al. [2015]:

αion =
Σ

ΣX

[
αX + 2

βX
ΣX

(Σ z̄F − ΣX z̄F,X)

]
and βion =

(
Σ

ΣX

)2

βX , (7.5)

using the DSB induction (Σ) and the frequency-mean specific energy (z̄F ) for the considered
particle radiation (Σ, z̄F ) and the reference radiation quality (ΣX , z̄F,X). Substituting the
LQ radiosensitiviy parameters in the original RBE formula (cf. equation (2.14)) by the
derived parameters of equation (7.5), yields the following expression for the RBE for cell
death according to the RMF model:

RBERMF

((
α

β

)
X

,ΣX , z̄F,X ,Σ, z̄F , Dion

)
=

1

2Dion

√[(α
β

)
X

+ 2Dion
Σ

ΣX

]2

+
8Dion

Σ2
X

(z̄F Σ2 − z̄F,X ΣX Σ)−
(
α

β

)
X

 . (7.6)

Moreover, one can directly estimate the RBE for DSB induction defined as the ratio of
DSB induction by the ion irradiation and the reference radiation:

RBEDSB =
Σ

ΣX

=

√
βion
βX

. (7.7)
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7.1.1 Parameter Estimation Using the MCDS Algorithm

As introduced in the previous section, within the framework of the RMF model the pro-
cessing of initial DSBs into lethal forms of DNA damage is governed by two cell-specific
adjustable biological parameters, θ and κ, which are independent or a weak function of
radiation quality. Furthermore, one requires the DSB yield, Σ, which is a strong function
of radiation quality but is approximately the same in vitro and in vivo and among all
mammalian cells [Frese et al., 2012], along with the well-defined physical parameter z̄F,X ,
also being the same in vitro and in vivo.

By using the independently developed MCDS algorithm (available at http://faculty.
washington.edu/trawets/mcds/) [Semenenko and Stewart, 2004; Stewart et al., 2011] for
predicting the impact of changes in radiation quality on DSB induction, the number of ad
hoc adjustable parameters required to compute the RBE can be reduced. Briefly, the
MCDS algorithm simulates damage induction in a small uniformly irradiated segment of a
DNA molecule using a two-step approach with four adjustable parameters [Semenenko and
Stewart, 2004]. First, the expected number of lesions produced in a cell per Gy of radiation
is randomly distributed in the DNA segment of a given length. The length is defined by an
ad hoc model parameter, which depends on particle type and kinetic energy and should not
be considered equivalent to the DNA content of a specific chromosome or cell [Semenenko
and Stewart, 2006]. In the second step, the distribution of lesions is subdivided into clusters
and grouped into base damages, single-strand breaks and DSBs. Cellular and genetic
damage in adjacent or nearby cells with respect to irradiated ones arising from extracellular
signals, the so-called bystander effect [Wright, 2010], are not explicitly distinguished from
physiochemical mechanisms. However, these effects are implicitly embedded in the values
of the selected parameters of the MCDS algorithm [Stewart et al., 2015].

In this work MCDS version 3.10A with default settings [Stewart et al., 2011] was used to
predict αion and βion (by means of Σ and z̄F ) as a function of particle type and energy under
normoxic conditions (i.e., O2 concentration greater than about 21% [Stewart et al., 2011]).
The corresponding parameters for the reference radiation were obtained by simulating the
secondary electron energy spectrum of a 60Co source [Hsiao and Stewart, 2008] (ΣX =

8.2706 Gbp−1Gy−1, z̄F,X = 0.0019Gy). The resulting radiosensitivity parameters as a
function of particle type and energy can be seen in figure 7.2. For very low energies the
results become inaccurate, since the LET prediction disagreement between FLUKA and
MCDS increases. The αion/βion database is the main input for biological dose calculations
using FLUKA as it will be presented in the subsequent section.

http://faculty.washington.edu/trawets/mcds/
http://faculty.washington.edu/trawets/mcds/


116 7. Radiobiological Implications of Ion CT

10
-1

10
0

10
1

10
2

10
3

Energy [MeV/u]

0

0.5

1

1.5

2

2.5

io
n

 [
G

y
-1

]

Proton
Helium
Lithium
Beryllium
Boron
Carbon

(a)

10
-1

10
0

10
1

10
2

10
3

Energy [MeV/u]

0

0.02

0.04

0.06

0.08

0.1

0.12

io
n

 [
G

y
-2

]

Proton
Helium
Lithium
Beryllium
Boron
Carbon

(b)

Figure 7.2: MCDS predictions for (a) αion and (b) βion for particles from protons up to 12C ions
using a reference tissue radiosensitivity of αX = 0.1Gy−1 and βX = 0.01Gy−2. The reference
radiation quality was 60Co (ΣX = 8.2706Gbp−1Gy−1, z̄F,X = 0.0019Gy).

7.1.2 Incorporating the RMF Model in the FLUKA Code

The MCDS algorithm or event-by-event track structure simulations (which reproduce single
energy depositions on a nanometer scale) allow to predict the radiation action in biological
targets for a given particle type and energy. However, for ion imaging (and the clinical
application of particle beams in general) these approaches are not feasible due to strong
variations of radiation quality and the unsustainable amount of required computational
resources. Hence, a common approach consists in using a combined multiscale model by
incorporating radiobiological information (e.g., results of calculations carried out using the
MCDS algorithm) in condensed history MC codes such as FLUKA [Mairani et al., 2010].

Energy loss and nuclear fragmentation will generate a complex spectrum of different
particles types and energies contributing to the total physical dose deposited at any given
point (voxel) inside the patient. According to the theory of dual radiation action [Kellerer
and Rossi, 1978], which is applied in the presented implementation, pairwise interplay
between sub-lesions produced by different interactions can cause non-linear effects. Hence,
the total number of lesions is larger than the sum of the individual lesions produced by each
particle. For a biological system irradiated by different radiation types these synergistic
effects of radiation can be incorporated into the total effect calculation by computing dose-
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weighted average values of α and
√
β [Zaider and Rossi, 1980]. In the case of contributions

from n dose depositions originating from different radiation types (each characterized by a
certain value of αion,i and

√
βion,i) the dose-averaged LQ parameters can be calculated as

αD =

n∑
i=1

αion,iDi

D
and

√
βD =

n∑
i=1

√
βion,iDi

D
, (7.8)

where D =
n∑
i=1

Di is the total dose of the irradiation in each individual voxel.

The implemented FLUKA-RMF coupling is based on the approach presented by
Mairani et al. [2010] for the local effect model. This method relies on previous work by
Ballarini et al. [2003] for investigating chromosome aberration induction in human cells by
neutrons and in turn was an extension of a method originally developed for dose equivalent
calculations [Ferrari and Pelliccioni, 1994]. At the initialization stage, an interface reads
the tabulated RMF estimates, i.e., αion and βion for the requested cell line and reference
radiation quality as a function of particle type and energy (see figure 7.3, panel 1). During
the runtime of the simulation FLUKA provides information on the mixed radiation field
in terms of particle type (Z and A), kinetic energy and unrestricted LET in water for all
primary and secondary (Z = 1...6) particles. This enables an ’on-the-fly’ calculation of
αion and βion (see figure 7.3, panel 2 and 3) by interpolating the radiosensitity parameters
of the corresponding RMF tabulation according the actual particle energy. Based on the
standard FLUKA scoring capabilities, the physical dose Di, αion,i × Di and

√
βion,i × Di

are stored for each i-th energy deposition (see figure 7.3, panel 3). In a similar manner,
the unrestricted LET (in water) is scored. The whole procedure is implemented within the
comscw.f and fluscw.f user routines. The scoring grid is aligned with the xCT voxels and
rotated in synchronization with the patient anatomy according to the simulated projection,
since the beam direction is fixed. At the end of the simulation, dose-weighted average LQ
parameters can be computed according to equation (7.8) (see figure 7.3, panel 4). Inserting
these quantities into equations (2.14) and (7.7) finally enables to calculate the RBE for
DSB induction and reproductive cell death, respectively.

7.1.3 Decoupling of Biological Modeling and Physical Dose

The presented FLUKA implementation requires a pre-calculated RMF database which in
turn depends on the radiosensitivity of the investigated cell line (αX and βX) and the
reference radiation quality (z̄F,X and ΣX). Kamp et al. [2017] realized that the RMF
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Figure 7.3: Schematic of the coupling between FLUKA MC simulations and the RMF model
with MCDS DNA damage estimates for biological dose computation.

model exhibits the favorable property of enabling a complete disentanglement of physical
beam properties from biological radiosensitivity parameters. Based on equation (7.5) one
can rewrite the dose-weighted tissue radiosensitivity parameters as

αD = αX c1 + βX c2 and βD = βX (c1)2 , (7.9)

where c1 and c2 are the so-called decoupling parameters [Kamp et al., 2017]. Hence, αX
and βX can always be factored out, which enables separating the physical properties of the
ion beam irradiation (i.e., the physical dose and averaging of particle and energy spectrum)
from the biological tissue radiosensitivity parameters. Two important aspects should be
noted. First, those changes can be performed for every voxel independently, for instance
allowing to variably adjust the radiosensitivity for different organs. Second, the c1 − c2

formalism does not require an adjustment of the FLUKA-RMF coupling, since a conversion
to αD and βD (and back) is possible at any time.

In addition to the aforementioned online adaptation of the radiosensitivity parameters
developed by Kamp et al. [2017], it was discovered that a similar formalism can be employed
to change the reference radiation quality parameters (i.e., ΣX and z̄F,X). However, the
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formalism is not as compact as for the radiosensitivity due to the more complex dependency
of αion on ΣX and z̄F,X . Inserting the dose-averaged LQ parameters in equation (7.5) one
can obtain the following expression for the DSB yield:

Σ =

√
βD
βX

ΣX . (7.10)

The same procedure can be applied to the frequency-mean specific energy:

z̄F =

(
αD

(
ΣX

Σ

)2

− αX
ΣX

Σ

)
1

2βX
+

ΣX

Σ
z̄F,X , (7.11)

which can be further simplified by inserting ΣX/Σ according to equation (7.10):

z̄F =
αD
2βD

− αX

2
√
βX βD

+

√
βX
βD

z̄F,X . (7.12)

Hence, the simulation-derived values of αD and βD can be converted at any time into
z̄F and Σ. Consequently, one can re-calculate αD and βD according to equation (7.5) for
a different reference radiation simply by inserting the new values for z̄F,X and ΣX . This
decoupling feature was exploited to calculate the biological dose response relative to a
200 kVp X-ray energy spectrum (ΣX = 8.68Gbp−1Gy−1, z̄F,X = 0.012Gy) [Frese et al.,
2012] for a tungsten anode with 0.5mm copper and 4mm aluminum filtration. Moreover,
a diagnostic 130 kVp X-ray energy spectrum (ΣX = 10.4749Gbp−1Gy−1, z̄F,X = 0.0392Gy)
obtained for a tungsten anode with 0.8mm beryllium filtration [Stewart et al., 2015] was
used as reference radiation. This previously investigated setting can serve as best case
reference scenario for xCT treatment planning, yielding slightly reduced biological effects
in comparison to the more typically chosen tube voltage of 120 kVp [Meyer et al., 2019].

Theoretically, it is possible to implement both decoupling approaches directly into the
MC simulations by adjusting the RMF input tables accordingly. However, this was not
pursued in order to keep the format of the user routines in compliance with the structure
required by other radiobiological models (which do not offer the RMF-specific decoupling
features), as it is also foreseen to be implemented in a future public FLUKA release.
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7.2 Results

7.2.1 Verification of the Implementation for a SOBP

The coupling of radiobiological models to general purpose MC codes has been investi-
gated in various studies [Mairani et al., 2010, 2016; Guan et al., 2018]. Furthermore, the
combination of RMF model and MCDS algorithm has been previously applied by Kamp
et al. [2015] in combination with nuclear fragmentation spectra obtained from FLUKA MC
simulations. However, no references, neither simulated nor experimental, for the radiobio-
logical implications at iCT irradiation conditions exist at the moment. Hence, in order to
verify the developed implementation of the FLUKA-RMF coupling, a typical 3D carbon
ion SOBP (3× 3× 3 cm3 at a depth of 11 cm to 14 cm) in a water phantom was simulated.

Figure 7.4a shows the physical dose profile along the central axis of the SOBP and the
corresponding DSB yield. The RBE for cell death according to the RMF model (relative
to 60Co for (α/β)X = 10Gy) is presented in figure 7.4b. As expected, the yield of DSBs
and consequently the RBE rise after the proximal edge where the first Bragg peak is lo-
cated. Across the width of the SOBP both quantities demonstrate an increasing slope,
which results in a sharp peak toward the distal edge of the SOBP, dominated by the most
energetic Bragg peak. A similar behavior has been observed by analytical [Frese et al.,
2012] and other MC-based studies [Kamp et al., 2015; Guan et al., 2018]. Within the frag-
mentation tail proximal to the target region, the RBE is dominated by secondary particles
and varies only slowly between 1.7 and 1.4, being roughly in agreement with findings for
a similar scenario by Guan et al. [2018]. It should be kept in mind that a detailed quan-
titative comparison is not possible due to differences in irradiation scenario and reference
condition. However, the results qualitatively demonstrate the correct implementation of
the FLUKA-RMF coupling.

7.2.2 RBE for DNA Double-Strand Break Induction

In the following, the dosimetric results for the imaging scenario presented in chapter 6
will be reported, i.e., a total of 400 protons, 100 helium ions or 20 carbon ions were
simulated per RP for 180 projections. The RP spacing was 3mm in vertical and 1.074mm
in horizontal direction, resulting in a physical dose of ∼ 1.9mGy for the full tomography.

Figure 7.5a shows the spatial RBEDSB distributions according to the MCDS algorithm
obtained for the different iCT scenarios, overlaid with the patient anatomy. The results
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(a) (b)

Figure 7.4: Physical and biological properties of a 12C ion SOBP in a water target. The gray
shaded area indicates the proximal (z = 11 cm) and distal (z = 14 cm) part of the target region. (a)
Dose-averaged DSB yield based on DNA damage estimates from the MCDS algorithm. (b) RBE
values for reproductive cell death according to the RMF model computed by equation (7.6) using
(α/β)X = 10Gy for a 60Co reference radiation.

are expressed relative to the 130 kVp xCT spectrum. Overall, the RBE distributions across
the whole patient are largely homogeneous. For the heCT and cCT cases a slightly in-
creased RBE toward the left side of the patient (i.e., bottom part of the image) can be
observed. The corresponding RBE histograms for pCT, heCT and cCT simulations are
displayed in figure 7.5b. Table 7.1 summarizes the RBEDSB predictions (i.e., mean ±
standard deviation) obtained for the different iCT types and reference conditions. On
average, the RBEDSB estimations for heCT and cCT simulations exhibited a 3.0% and
16.8% larger mean value compared to pCT, respectively. The corresponding unrestricted
dose-averaged LET values (in water) [Bauer et al., 2014] were 2.33 keV/µm, 4.00 keV/µm

and 11.85 keV/µm for pCT, heCT and cCT, respectively.

7.2.3 RBE for Reproductive Cell Death

The estimated spatial distributions of RBE for reproductive cell death according to
the RMF model are displayed in figure 7.6a relative to 130 kVp X-rays assuming
(α/β)X = 10Gy, overlaid with the anatomy of patient case 1. Besides slightly larger RBE
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(a)

(b)

Figure 7.5: (a) RBEDSB distributions relative to 130 kVp X-rays overlaid with the anatomy of
patient case 1. (b) Histogram of the corresponding RBEDSB distributions for pCT, heCT and
cCT simulations. The shaded areas represent the ±1 standard deviation interval.

values, the spatial pattern shows strong similarities to the RBEDSB results of the previous
section. Figure 7.6b shows the corresponding RBE histograms for the pCT, heCT and
cCT scenarios. The RBERMF predictions (i.e., mean ± standard deviation) obtained for
the different iCT types and reference conditions are summarized in table 7.2. The RBERMF
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Patient
Proton CT Helium CT Carbon CT

RBEDSB RBEDSB RBEDSB

Reference radiation: 60Co γ-rays

Patient 1 1.034± 0.004 1.064± 0.008 1.205± 0.008

Patient 2 1.032± 0.004 1.065± 0.009 1.208± 0.011

Patient 3 1.032± 0.004 1.063± 0.008 1.205± 0.009

Reference radiation: 200 kVp X-rays

Patient 1 0.986± 0.004 1.013± 0.007 1.148± 0.008

Patient 2 0.984± 0.004 1.015± 0.009 1.151± 0.010

Patient 3 0.984± 0.004 1.013± 0.008 1.148± 0.008

Reference radiation: 130 kVp X-rays

Patient 1 0.816± 0.003 0.840± 0.006 0.951± 0.006

Patient 2 0.815± 0.003 0.841± 0.008 0.954± 0.009

Patient 3 0.815± 0.003 0.839± 0.007 0.952± 0.007

Table 7.1: Summary of the RBE results (i.e., mean ± standard deviation) for different ref-
erence conditions, estimated in the total imaging volume of the iCT simulations. RBEDSB

is the RBE for DNA DSB induction predicted by the MCDS algorithm.

predictions (i.e., mean value over all investigated reference radiations) for (α/β)X = 10Gy
were 1.4%, 1.8% and 2.4% larger than the corresponding RBEDSB estimates for pCT, heCT
and cCT, respectively. On average (including all presented biological modeling), the RBE
for pCT was 3.8% lower than for heCT and 18.9% lower than for cCT.

7.3 Discussion

Besides the improved RSP accuracy at lower physical dose exposure compared to X-rays,
it also has to be considered that ions, in particular heavy charged particles like carbon
ions, can potentially have high LET. Hence, in this work variations in the RBE with ion
type and spectrum were quantified by coupling the FLUKA MC code to the RMF model.

The used RMF model estimations implicitly included δ-rays since the MCDS algorithm
is tuned to experimental data and track structure simulations [Stewart et al., 2011]. There-
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(a)

(b)

Figure 7.6: (a) RBERMF distributions relative to 130 kVp X-rays for (α/β)X = 10Gy overlaid
with the anatomy of patient case 1. (b) Histogram of the corresponding RBERMF distributions for
pCT, heCT and cCT simulations. The shaded areas represent the ±1 standard deviation interval.

fore, a CSDA without explicit δ-ray production (for all energies) was implemented for the
conducted MC simulations by using an appropriate production threshold. For typical clin-
ical energies, the presented approach results in dose variations below 0.7% compared to the
explicit tracking of secondary electrons above 100 keV [Mairani et al., 2010]. Even though
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Patient
Proton CT Helium CT Carbon CT

RBE2Gy
RMF RBE10Gy

RMF RBE2Gy
RMF RBE10Gy

RMF RBE2Gy
RMF RBE10Gy

RMF

Reference radiation: 60Co γ-rays

Patient 1 1.138± 0.021 1.055± 0.001 1.192± 0.030 1.089± 0.011 1.381± 0.024 1.240± 0.011

Patient 2 1.126± 0.020 1.051± 0.007 1.188± 0.032 1.090± 0.013 1.386± 0.030 1.243± 0.014

Patient 3 1.126± 0.020 1.052± 0.007 1.182± 0.031 1.087± 0.012 1.379± 0.024 1.240± 0.011

Reference radiation: 200 kVp X-rays

Patient 1 1.070± 0.020 1.002± 0.007 1.119± 0.028 1.035± 0.011 1.297± 0.022 1.178± 0.010

Patient 2 1.059± 0.018 0.999± 0.006 1.116± 0.030 1.035± 0.013 1.301± 0.027 1.181± 0.013

Patient 3 1.059± 0.018 0.999± 0.006 1.111± 0.028 1.032± 0.011 1.295± 0.022 1.178± 0.011

Reference radiation: 130 kVp X-rays

Patient 1 0.850± 0.014 0.823± 0.005 0.888± 0.020 0.849± 0.008 1.026± 0.016 0.966± 0.008

Patient 2 0.843± 0.013 0.821± 0.005 0.886± 0.021 0.850± 0.010 1.029± 0.020 0.969± 0.011

Patient 3 0.843± 0.013 0.821± 0.005 0.882± 0.020 0.848± 0.009 1.024± 0.016 0.966± 0.008

Table 7.2: Summary of the RBE results (i.e., mean± standard deviation) for different refer-
ence conditions, estimated in the total imaging volume of the iCT simulations. RBERMF is
the RBE for reproductive cell death predicted by the RMF model for an assumed reference
tissue radiosensitivity of (α/β)X=2Gy and (α/β)X=10Gy.

the range of δ-rays in the high energy iCT regime can be up to several millimeters, the
observed dose discrepancy was still small, with maximum variations of around 0.2mGy for
the cCT case.

Using a diagnostic xCT spectrum as reference radiation enables evaluating the radiobio-
logical implications encountered when replacing conventional xCT for treatment planning
imaging with iCT. The considerable changes in RBEDSB with reference radiation are in
agreement with a previously reported value of 1.259 for the RBEDSB of 130 kVp X-rays rel-
ative to 60Co γ-rays [Stewart et al., 2015]. In general, all reported RBEDSB values (cf. table
7.1) relative to the 130 kVp X-ray spectrum were below 1, indicating reduced radiobiologi-
cal implications compared to X-ray imaging, since the dose received by the patients solely
originates from the low-LET plateau region of the Bragg curve. The processing of DSBs
into chromosome aberrations is widely considered a dominant mechanism for radiation
induced carcinogenesis [Byrne et al., 2014], which is considered as important biological
endpoint for imaging applications [Meyer et al., 2019].

In addition, RBERMF (cf. table 7.2) directly provides an estimate of the RBE for re-
productive cell death based on the RMF and LQ models. However, the LQ formalism is



126 7. Radiobiological Implications of Ion CT

typically only valid at treatment doses, i.e., from around 1Gy to 10Gy (depending on the
biological end point), and when fitting α and β to a response curve [Paganetti, 2012a]. At
the investigated dose level of ion imaging applications, an underestimation of the radiation
effects, the so-called low-dose hyper-radiosensitivity [Marples et al., 2004; Marples and Col-
lis, 2008], may occur. Besides for photons, the hyper-radiosensitivity survival response was
experimentally observed after π-meson and proton irradiation [Marples and Joiner, 1993;
Marples and Skov, 1996; Marples et al., 1997], as well as for charged-particle microbeams
[Schettino et al., 2001], helium ions [Tsoulou et al., 2001] and high-LET neutron exposure
at low dose-rate [Dionet et al., 2000]. In contrast, the inflection in the survival curve
caused by the induced increased radioradioresistance (following the hyper-radiosensitivity)
is considered a phenomenon specific to low-LET radiation injury [Marples et al., 2004].
Therefore, these biological effects might be less important for high-LET particle radiation,
even though a LET dependence of hyper-radiosensitivity related parameters can neither
be confirmed nor disproved at this time [Heuskin et al., 2013].

The increased spread of RBE values obtained for the heCT and cCT simulations, as
indicated by a larger RBE standard deviation compared to the pCT results, is most likely
attributed to projectile fragmentation which cannot occur for protons. Nuclear interactions
can create low energy (i.e., high LET) fragments of elevated RBE. Since all acquired 180
projections were entering from the right hemisphere of the patients (i.e., the upper halves
in figures 7.5b and 7.6b) an increased RBE is visually evident in the left hemisphere due
to the increasing LET and build-up of secondary fragments. However, this effect is rather
small, since the energies of primary particles are sufficiently high to locate the increasing
RBE occurring toward the Bragg peak mostly outside the patient.

The experimental data used for validating the MCDS algorithm indicate that the num-
ber of DSBs as measured by the γ-H2AX assay is a linear function of absorbed doses as
low as 1mGy [Stewart et al., 2011; Rothkamm and Löbrich, 2003]. Even though those
measurements have not been confirmed for every ion type in this dose regime, there is
strong experimental and theoretical evidence that DNA damage is linearly correlated with
physical doses from around 1mGy to 1000Gy for all types of ions and energies. Under the
investigated iCT imaging conditions (i.e., mGy physical doses), the absolute cell survival
might be considerably affected by aforementioned low-dose hyper-radiosensitivity which
has been observed for low- and high-LET radiation [Marples and Collis, 2008]. However,
in this study the particular interest is in relative biological effects between different parti-
cles at the same dose level, rather than absolute cell survival. The relative yield of damage
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(i.e., RBEDSB) is less sensitive to factors such as low-dose hyper-radiosensitivity, cell pro-
liferation, cycle effects or measurement artifacts. Furthermore, it is the relative DSB yield
that plays a significant role in the RMF model rather than the absolute number of DSBs
per cell [Meyer et al., 2019].

While this theoretical study provides first insights into the expected radiobiological im-
plications of iCT, further studies are required for future patient application. Nevertheless,
these initial investigations and considerations support iCT as promising low-dose modality
for treatment planning and frequent isocentric imaging in adaptive ion therapy.





“What we usually consider as impossible are simply
engineering problems... there’s no law of physics pre-
venting them.”

Michio Kaku

8
Toward a Small Animal Proton CT System

In this chapter, a MC-based design optimization and performance study for a single-particle
tracking pCT system will be presented. The proposed configuration is based on gaseous
Micromegas detectors and a Time-Projection-Chamber (TPC) dedicated to pre-clinical
research with small animals. For the envisaged construction of the detector system, a
geometrical optimization of the individual detector components is conducted based on a
realistic implementation in FLUKA in order to enable an operation close to the intrinsic
physical performance limits. The overall image quality in terms of RSP accuracy and
spatial resolution is evaluated. Moreover, a first demonstration of pCT for small animal
imaging is presented along with a quantitative evaluation of the achievable RSP accuracy
and noise. This work has been performed within the European Research Council funded
project Small animal proton Irradiator for Research In Molecular Image-guided radiation-
Oncology (SIRMIO) (PI: Prof. Katia Parodi).
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8.1 The SIRMIO Project

Pre-clinical small animal radiotherapy studies are a crucial component of radiobiological
and translational cancer research. This is of paramount importance to unravel the funda-
mental in vivo characteristics of cancer and normal tissue response to radiation exposure.
In particular, the orthotopic xenotransplantation of patient-derived tumors can serve as
a realistic model for clinical scenarios, since it retains the interplay between tumor cells,
normal tissue and the tumor microenvironment [Baumann et al., 2012]. For photon-based
pre-clinical irradiation studies, several research groups have developed dedicated platforms
over the last years (see Verhaegen et al. [2011, 2018] and references therein). Furthermore,
two small animal irradiators with on-board image-guidance are commercially available: the
SARRP system [Wong et al., 2008] (Xstrahl Ltd., Camberley, UK ) and the X-RAD 225Cx
[Clarkson et al., 2011] (Precision X-Ray Inc., North Branford, CT, USA). Nowadays ion
therapy emerges as a state-of-the art treatment modality for humans due to its superior
dose conformity, however, most small animal irradiators are not suitable for ion beam
irradiations except for rare cases [Ford et al., 2017].

To bridge the gap between ion therapy and pre-clinical research, the SIRMIO project
aims to develop an adequate and portable prototype system for high precision small animal
proton irradiation based on existing experimental beam lines at clinical facilities [Parodi
et al., 2019]. The modular configuration will feature a dedicated passive and active mag-
netic focusing system to provide enhanced beam quality (in terms of size and transmission)
required for the irradiation of small scale structures in orthotopic murine cancer models.
The platform will be equipped with novel image-guidance systems including tomographic
proton transmission imaging (for treatment planning and position verification) and ionoa-
coustics (for online range monitoring) in combination with established ultrasound (for
real-time morphological imaging) and PET imaging (for functional information).

SIRMIO aims at realizing the first dedicated, compact and cost-effective small animal
precision proton irradiator (shown in figure 8.1) for advancing molecular oncology and
animal-based proton therapy research. This will provide new possibilities to gain insight
in the in situ biological response of cancerous and normal tissue to proton irradiation.
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(a)

(b)

Figure 8.1: Sketch of the individual components of the SIRMIO platform for image-guided pre-
clinical proton irradiation. The mouse is located at isocenter in a dedicated, sterile and motor-
controlled holder (containing temperature control and oxygen/anesthesia supply). (a) Treatment
planning imaging configuration: for imaging the clinical proton beam as provided by the accel-
erator of the facility is used. The single-particle tracking pCT system consists of two tracking
detector doublets located upstream and downstream of the imaged object and a range telescope.
(b) Irradiation configuration: the clinical proton beam is degraded and collimated before entering
the focusing beam line optics (a system of movable magnets). Beam parameters are verified using
a permanently installed ionization chamber. Online image-guidance will be provided by a PET
and ultrasound system. Adapted from a figure courtesy of Dr.Matthias Würl [Parodi et al., 2019].

8.2 Proton CT Detector System

The proposed pCT system is based on planar gaseous particle detectors of the Micromegas
(MICRO-MEsh GASeous) type [Giomataris et al., 1996]. Micromegas are asymmetric
parallel plate avalanche chambers with a several millimeter wide drift region and a sub-
millimeter amplification region, separated by a thin conductive micro-mesh which is held
by supportive pillars. Charged particles traversing the sensitive detector volume ionize the
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gas mixture inside the drift region, producing electron-ion pairs. The ionization electrons
are separated by the drift field (which is of the order 0.2 kV/cm [Bortfeldt et al., 2017])
and guided within 100 ns into the high-field amplification region between micro-mesh and
anode structure [Bortfeldt, 2014]. Here, the electrons are amplified by triggering Townsend
avalanches detected at the charge-sensitive readout strips, which are individually connected
to high-voltage and capacitively coupled to the electronics (so-called ’floating strips’ ).

Due to the finely segmented anode structure and the fast signal generation process,
an excellent spatial resolution and a good multi-hit resolution can be achieved [Bortfeldt
et al., 2017]. Moreover, Micromegas can reliably detect individual particles at fluxes of up
to 60MHz/cm2 [Bortfeldt et al., 2016], since positive ions are drained fast thus avoiding the
creation of space charge. Efficiency and spatial resolution deterioration originating from
nondestructive discharges between micro-mesh and anode strips are massively suppressed
by the floating strip design [Bortfeldt et al., 2016]. During a discharge, affected strips will
’float’, meaning that the potential difference between mesh and strips quickly levels, which
will disrupt the discharge [Bortfeldt, 2014]. Since other strips are unaffected by the local
discharge, the detector itself remains efficient.

Within this work, Micromegas detectors in two different functionalities are investigated.
The tracking systems located upstream and downstream with respect to the imaged ob-
ject each consist of a doublet of novel 2D position sensitive Micromegas tracking detectors
[Bortfeldt et al., 2017; Klitzner, 2019], schematically shown in figure 8.2a. Here, the beam
enters perpendicularly to the x − y readout structure, hence, directly providing 2D po-
sition information. 10 µm thin Kapton foils are used for the gas window and the drift
electrode. The micro-mesh is made from woven stainless steel and consists of 18 µm thick
wires, exhibiting around 50% optical transparency. The two sub-detectors are shielded
from each other by a 30 µm thin aluminum foil. Since the overall proton scattering within
the detectors is dominated by the metallic strips of the readout structure, three different
configurations are investigated: two realizations of copper-based floating strip Micromegas
and a novel aluminum-based design. In the conventional approach, the anode consists
of 33 µm thick copper strips (photo-lithographically etched), of 250 µm width and 500 µm

pitch, individually connected to high-voltage. In order to obtain 2D position information,
signals are registered via two additional 33 µm thick layers of copper strips (one perpendic-
ular and one parallel with respect to the floating strips), each separated by a 25 µm thin
layer of insulating Kapton. While a bipolar signal is directly induced in the perpendicular-
oriented strips, the signal on parallel strips is dominantly capacitively coupled from the
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anode floating strips [Klitzner, 2019]. In an attempt to reduce the material budget, two
modifications of this configuration are proposed. First, the parallel position information
can be directly retrieved from the floating strips by photo-lithographically produced capac-
itors outside the active volume. Consequently, the parallel copper layer can be removed,
approximately reducing the total material budget by 30%. Additionally, the copper strips
are replaced by 9 µm thick aluminum strips which are glued (12 µm epoxy) onto 10 µm

insulating Kapton. Due to the reduced overall thickness and the about six times larger
radiation length for aluminum compared to copper (8.897 cm and 1.436 cm respectively
[Groom]), MCS is expected to be substantially reduced (cf. equation (2.7)).

The residual range detector functions as a range counter and is based on a TPC with
Micromegas readout structure and integrated Mylar field-shaping absorbers placed parallel
to the electric field, as schematically shown in figure 8.2b. Protons enter the sensitive gas
volume, which has a readout structure located at the bottom of the detector (i.e., y − z
plane; cf. figure 8.2b); thus, only the particle position in the horizontal plane (i.e., y and z) is
directly measured, whereas the vertical one (i.e., x) is indirectly inferred from the measured
drift time relative to a reference signal provided by the rear tracker. In between each
absorber pair, the TPC readout structure contains 2×2 readout strips providing redundant
position information to reconstruct the proton trajectory within the TPC. Furthermore,
small readout pads are placed on both sides in order to identify particles escaping in
lateral (i.e., y) direction from the range telescope. The WEPL information is derived
from the individual proton’s residual range inside the detector system, i.e., the TPC stage
(in between two absorbers) in beam (i.e., z) direction where the last energy deposition is
detected, based on a dedicated calibration. All detectors contained an 80:20 vol% mixture
of Ne:CF4 at atmospheric pressure.

Both components of the pCT system are currently under development and will be
built in-house. The aim of this work is to provide MC simulation support in order to
optimize the detector configuration and quantify the expected performance with respect
to the requirements for pre-clinical small animal research.

8.3 Monte Carlo Model

The in silico model of the Micromegas tracking detector system explicitly considers the used
materials and geometries (cf. section 8.2), except for neglecting the optical transparency
of the micro-mesh by assuming a homogeneous iron layer. In order to incorporate the
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Figure 8.2: (a) Micromegas doublet tracking detectors using copper readout strips (3 layer
design). (b) TPC-based range telescope design. Drawings are not to scale.

expected spatial resolution of the tracking detectors, an uncertainty (randomly sampled
from a normal distribution with conservatively chosen σ=80 µm) was added to the obtained
lateral position values.

The range telescope is modeled as alternating structures of 5mm wide, gas-filled active
regions and homogeneous Mylar absorbers of thickness d = {250, 500, 750, 1000} µm. For
each proton, the integrated energy deposition within each gas gap in between two absorbers
was scored through dedicated FLUKA user routines. It was assumed that the correct track
of each event (i.e., the correct sequence of energy depositions within the TPC regions) was
recorded and solely the residual range information is later used.

Simulations were performed with scanned proton beams of 75MeV nominal energy (i.e.,
a range in water of around 46.2mm), implemented using the beam model approach intro-
duced in section 4.1.3. All active regions of the detectors contained the 80:20 vol% mixture
of Ne:CF4 as planned for the experimental setup. Additionally, the ionization chamber
model was included as it is foreseen to be permanently installed in the SIRMIO system
for beam quality assurance and reference measurements. The entire FLUKA simulation
geometry is depicted in figure 8.3.

In order to evaluate the imaging performance of the pCT system for typical pre-clinical
scenarios, the anatomy of a dead mouse was imported into the MC simulation framework
(cf. section 4.1.5). The data was obtained from a high resolution X-ray micro-CT and
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Figure 8.3: Simulation geometry of the SIRMIO pCT system implemented in FLUKA.

down-sampled by cubic-spline interpolation to an isotropic resolution of 0.2mm (voxel
size), comparable to conventional CBCT systems for pre-clinical research.

8.4 System Performance Characterization

The intrinsic performance of an iCT system can be characterized by its image quality,
which is determined by the achievable RSP accuracy and spatial resolution of the recon-
structed image. The latter is mainly restricted by the path estimation embedded within
the tomographic system matrix, which in turn has two main sources of potential inaccu-
racies. First, the models employed to estimate the ion trajectories within the object of
interest (cf. section 4.2) have intrinsic uncertainties due to their statistical nature and the
assumption of uniform water as scattering medium. Second, the precision in the measure-
ment of the particle positions as well as the subsequent calculation of their directions is
restricted by four extrinsic factors related to the tracker configuration and its characteris-
tics [Bopp et al., 2014]. The latter are given by: (1) the spatial resolution of the tracking
system; (2) the material budget x/X0 (i.e., the ratio between the material thickness and
its radiation length; cf. equations (2.7) and (2.8)) of the innermost part of the Micromegas
doublet, which determines the amount of scattering a particle undergoes without the possi-
bility to measure it. The limitations due to the tracker configuration can be characterized
by: (3) the spacing between the individual planes within one Micromegas doublet; (4) the
distance between tracking module and the object of interest. For all studies, the spacing
between the tracker frontfaces and the isocenter was 4 cm in order to guarantee sufficient
space for the mouse-holder system. As final characterization of the tracker performance,
a slanted-edge phantom (i.e., a water phantom with a square insert of 8mm side length
and 2◦ inclination) was simulated in order to quantify the spatial resolution (cf. section
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4.5.2). Due to the symmetry of the phantom, an average composite ESF was obtained by
combining the oversampled ESFs from each side of the insert.

The RSP accuracy strongly depends on the WEPL resolution, which for the presented
range counter configuration is determined by the detector granularity, i.e., the thickness
of the Mylar absorber foils. However, the achievable accuracy is intrinsically limited by
the total range straggling, causing particles of the same nominal beam energy to stop
at different depth inside the detector. The range straggling of a mono-energetic proton
beam due to energy loss fluctuations (σR; cf. equation (2.6)) is roughly 1.1% of the mean
range. Based on the analytical relationship between initial energy E0 and the range R
according to Bortfeld [1997] (R = α Ep

0 with α = 0.0022 cm/MeVp, p = 1.77), the addi-
tional range straggling due to the initial Gaussian momentum spread of around 1% FWHM
[Englbrecht, 2014] (which corresponds to σE=0.61MeV) can be derived through error prop-
agation. Thus, the total range straggling σR,tot is given by combining both uncertainties
in quadrature:

σR,tot =

√
σ2
R + (∂R/∂E)2 σ2

E

=

√
(1.1% R)2 +

(
α p Ep−1

0

)2
σ2
E

=
√

(0.50mm)2 + (0.66mm)2

= 0.83mm .

(8.1)

In order to quantitatively evaluate the achievable RSP accuracy, the pCT acquisition
of a cylindrical water phantom (∅ 30mm) with five tissue-equivalent insert rods (∅ 6mm;
muscle, liver, adipose, trabecular bone 200 and bone 400 from CIRS ; cf. table 5.1) was
simulated. The results were assessed on a ROI-basis as explained in section 4.5.1.

8.5 Contrast Enhancement

In order to exploit the potentially improved dose calculation accuracy enabled by pCT, a
crucial prerequisite is the visibility of the target volume within the images to perform the
structure delineation for treatment planning. For this purpose, current practice in clinical
and pre-clinical radiation therapy relies on contrast enhanced xCT images (possibly sup-
ported by magnetic resonance imaging or PET). However, due to the weak dependence
of stopping power on the material atomic number (cf. equation (2.1)) in comparison to
X-ray attenuation (cf. equation (3.4)) conventional diagnostic contrast agents will be less
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effective for iCT imaging. Since stopping power scales linearly with mass density a very
dense contrast agent containing heavy elements would be favorable. Hence, gold (particu-
larly in the form of Gold-Nanoparticles (GNPs) [Hainfeld et al., 2006]) is a very promising
candidate due to the high mean density compared to common contrast agents based on
iodine or barium. GNPs have diameters in the range of 2 nm to 100 nm [Cole et al., 2015]
and can be functionalized by conjugating them with cancer-specific antibodies to enhance
the targeting efficacy and tumor uptake [Nakagawa et al., 2016].

The feasibility of using GNPs to enhance the visibility of features in pCT images was
investigated for a cylindrical water phantom (∅ 30mm) with eight circular inserts (∅ 4mm)
containing a varying additional amount of homogeneously distributed gold to approximate
a uniform distribution of GNPs. The concentration of gold within the inserts (specified
as mass percentage 100wt%×mgold/mtotal) was ranging from 1wt% to 8wt%. In order
to reflect the added weight of gold inside each gold-loaded insert, the density of the gold-
water mixture in the MC simulation was increased with respect to the unity density of water
(e.g., 1.05 g cm−3 for a concentration of 5wt%) [Cho et al., 2009]. pCT acquisitions were
simulated at 50mGy and 100mGy dose exposure. RSP images were reconstructed on a
0.2×0.2×0.2mm3 voxel grid as it will be required for pre-clinical investigations. Moreover,
simulations were conducted with an additional 2mgAu/g background concentration, i.e.,
within the phantom volume surrounding the insert regions, in order to investigate the
potential effect of GNPs present in tissue surrounding a tumor [Cho et al., 2009].

The impact of the gold-enrichment on the inserts’ visibility was quantitatively assessed
based on the Contrast-to-Noise Ratio (CNR) being defined as

CNR =
|µROI − µBG|√
σ2
ROI + σ2

BG

(8.2)

where µROI and µBG are the mean RSP values of the ROI (i.e., within the inserts) and
background, respectively, and σROI and σBG are the corresponding standard deviations.
According to the Rose criterion [Burgess, 1999], the CNR should be at least 3 ∼ 5 in order
to guarantee a reliably differentiation between the background and the feature of interest.
In the following, the (quite strict) requirement of CNR≥ 5 will be employed as a measure
for 100% detectability.
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8.6 Optimization and Results

8.6.1 Tracking System Optimization

For all investigations regarding the tracker optimization, the range telescope was neglected
and the ideal WEPL was directly computed from the particles’ kinetic energy loss in
between the trackers as in chapter 6. The path estimation accuracy enabled by the proposed
detector configurations was investigated in simulations of a 2 cm thick water phantom. The
RMS deviation between the MC proton trajectories and the estimated paths was calculated
for 105 events at 41 equally spaced points along the paths.

Figure 8.4a shows the different contributions of uncertainty sources for the RMS path
deviation of a SLP and CSP estimation for the case of a three-layer copper configuration.
The overall path error is largely dominated by uncertainties originating from the tracking
detector system (i.e., finite spatial resolution and MCS within the material). While the
intrinsic model uncertainty is smaller for the CSP compared to the SLP (maximum RMS
path deviation of 0.04mm and 0.07mm respectively), the overall contribution is rather
small considering an object of 2 cm water. As expected, the error due to the straight pro-
jection through air onto the object surface is almost identical for the SLP and CSP, since it
does not depend on the path model. The current detector performance at the investigated
proton beam energy of 75MeV resulted in a worse performance of the CSP compared to
the SLP (average RMS path deviation of 0.44mm and 0.39mm respectively). For 3 cm
water the mean path accuracy for the SLP and CSP was almost identical. Since the most
dominant WEPL values for imaging of pre-clinical data (except for the surrounding air)
are in the range of 2 cm to 3 cm, in the following only SLP reconstructions are considered.
The total RMS path estimation deviation for the three different readout structure config-
urations is shown in figure 8.4b as a function of depth. The average RMS path deviation
for the configuration with aluminum strips was 0.29mm, and thus 0.07mm and 0.10mm
smaller than for the copper-based designs with two and three layers of strips in the readout
structure, respectively.
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Figure 8.4: (a) Uncertainty sources contributing to the total RMS path error for a SLP and
CSP estimation for the case of a three-layer copper configuration. (b) Comparison of the total
RMS SLP estimation error for the three different readout structure designs.

The distance between the inner and outer detector of each Micromegas doublets in-
fluences the precision of the track angle measurement. Hence, the distance between the
layers in the upstream and downstream tracker doublets was varied from 1 cm to 10 cm
in 0.5 cm increments independent of one another. For the detector system with aluminum
strip readout, the resulting surface plot of the average RMS path estimation error is shown
in figure 8.5a and exemplary profiles are displayed in figure 8.5b. Increasing upstream
and downstream tracker spacing to more than 7 cm did not considerably improve the path
accuracy. This configuration yielded an average RMS path deviation of 0.18mm. The cor-
responding ideal separation for the two-layer copper-based configuration was around 6 cm
for the upstream and downstream tracker. It is important to note that the value for the
separation of the upstream tracker planes will depend on the absolute angular value (i.e.,
the divergence of the incident proton beam) since the angular uncertainty decreases with
increasing absolute angular value. Furthermore, the downstream value will vary according
to the particles’ residual energy (i.e., shape and WET of the object). As a cautious choice
to avoid potential spatial resolution degradation, 10 cm spacing of tracker sub-systems will
be used for both detectors.
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Figure 8.5: (a) Surface plot of the average RMS path estimation error for the aluminum-based
readout structure configuration as a function of upstream and downstream detector separation.
(b) Corresponding RMS path deviation profiles for exemplary downstream tracker separations.

For the aluminum-based design, the reconstructed pCT image of the slanted-edge phan-
tom and the ROIs used for the construction of the oversampled ESF can be seen in figure
8.6a. The resulting MTF curves for the different tracker configurations are shown in fig-
ure 8.6b. The obtained spatial resolution (at 10% MTF) was 1.9mm−1, 2.2mm−1 and
2.8mm−1 for the copper-based designs with three and two layers, and the aluminum strips
configuration. The results are close to the performance of an ideal tracker system (obtained
by using the MC information on the particles’ position and direction at the entrance/exit
of the tracking detectors), which enabled a spatial resolution of 3.4mm−1. Additional
simulation studies with an incorporated range telescope model confirmed that the spatial
resolution is not substantially affected by the performance of the WEPL detector.

8.6.2 Range Telescope Optimization

For the range telescope performance investigation, the optimized model of the aluminum-
based tracking detectors was employed in the simulation framework. In order to enable a
direct correlation between the proton range inside the TPC and the corresponding WEPL,
configuration-specific calibration simulations were conducted in a similar way as proposed
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Figure 8.6: (a) Reconstructed pCT image of the slanted-edge phantom using an optimized
aluminum-based tracker system. The red rectangles are the ROIs used for the ESF construction
and the viewing window is set between RSP values of 0.7 (black) and 1.7 (white). (b) Comparison
of the corresponding MTF curves for the different tracker configurations along with an ideal
system.

by Bashkirov et al. [2016]. A series of MC simulations was performed for a water column
phantom of varying length and the response of the complete detector system was recorded.
The water thickness was varied from 0mm to 45mm. In order to establish the calibration
function, the data are processed in a three-step procedure: (1) the path length of each
individual proton within the water phantom and surrounding air is computed based on the
tracker information; (2) the WEPL of each recorded proton is calculated by multiplying the
material RSP (known from the MC simulation) with the corresponding intersection lengths;
(3) the estimated WEPL is stored together with the response of the range telescope (i.e.,
the range within the TPC (RTPC) in terms of the stage where the last energy deposition is
detected). This procedure was conducted for detector configurations with Mylar absorber
thicknesses of 250 µm, 500 µm, 750 µm and 1000 µm.

The pre-processed data were used to generate the RTPC distribution for each WEPL
value, which was fitted with a Gaussian function. To obtain the RTPC to WEPL conversion
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in analytical form, the mean values in turn are fitted with a simple first order polynomial:

WEPL = p0 + p1 RTPC , (8.3)

where p0 and p1 are fit parameters (similar to the integration-mode calibration in chapter 5).
p0 represents the energy-dependent maximum WEPL that can be resolved (i.e., traversed
by the beam), while p1 corresponds to the configuration-dependent inverse of the water-
equivalent absorber foil thickness. The calibration curves are shown in figure 8.7a. Based
on the established calibration function, the standard deviation of the detector response can
be converted into WEPL resolution by using Gaussian error propagation. The resulting
WEPL resolutions as a function of WEPL being imaged are shown in figure 8.7b. As
expected, the WEPL resolution improves for thinner absorbers and is mostly constant
except for statistical fluctuations. For increasing absorber thicknesses a systematically
deteriorated performance toward lower WEPL values can be observed.
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Figure 8.7: (a) Simulated calibration plot for the different TPC-based range telescope config-
urations: WEPL value versus range inside the detector obtained as mean value of the Gaussian
fit. The 95% confidence level is within ±<0.01 channels and thus not shown. The black lines
are first order polynomial fits used to extract the calibration functions. (b) WEPL resolution for
the different TPC-based range telescope configurations as a function of WEPL being imaged: the
total range straggling limit indicated by the dashed gray line is given by equation (8.1) and the
shaded area represents the 95% confidence interval obtained from the Gaussian fits.
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An exemplary reconstructed pCT slice of the rod phantom for the TPC with 500 µm

thick Mylar absorbers is shown in figure 8.8a. The corresponding RSP accuracy for the
insert materials achieved for different absorber thicknesses is displayed as bar plot in fig-
ure 8.8b, reflecting the improved WEPL resolution for thinner absorber slabs. Overall,
sub-1% RSP accuracy was demonstrated; however, results for 1000 µm absorber thickness
resulted in image artifacts of slightly distorted insert geometries. The mean RSP accuracy
was 0.53%, 0.27%, 0.24% and 0.22% for the designs with a granularity of 1000 µm, 750 µm,
500 µm and 250 µm Mylar slabs, respectively. Hence, an absorber thickness between 500 µm

and 750 µm represents the best compromise between achievable RSP accuracy and detec-
tor complexity, since an increased amount of thinner absorbers (and readout channels) is
required to safeguard the same dynamic WEPL range.
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Figure 8.8: (a) Reconstructed pCT image of the cylindrical water phantom used for RSP ac-
curacy evaluation obtained with a range telescope of 500 µm thick Mylar absorbers. The viewing
window is set between RSP values of 0.7 (black) and 1.7 (white). (b) RSP relative error distribu-
tions for different absorber thicknesses displayed as bar plot. The bars correspond to the mean
relative error values and whiskers represent the ±1σ intervals.
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8.6.3 Contrast Enhancement

For the optimized detector configuration with aluminum-based trackers and the TPC with
500 µm absorber thickness, the reconstructed pCT images at 50mGy and 100mGy physical
dose (without background concentration) are presented in figure 8.9a and 8.9c, respectively.
The corresponding CNR values are shown in figure 8.9b and 8.9d as a function of gold
concentration along with the linear regression (using a fixed intercept at zero CNR). Qual-
itatively, inserts of more than 7wt% start to become visually recognizable. Based on the
linear regression model, concentrations of 10.4wt% and 7.8wt% are required to effectively
distinguish the insert from the background (i.e., CNR≥ 5) at 50mGy and 100mGy, respec-
tively. The corresponding values for simulations with the additional 2mgAu/g background
concentration were 10.8wt% and 8.0wt%.

8.6.4 Imaging of Pre-Clinical Data

Figure 8.10 shows the reconstructed pCT images of a cranial mouse anatomy for detector
systems with 500 µm and 750 µm absorbers along with the ground truth and the result
for an ideal detector as used in chapter 6. The images were obtained for (93 ± 5)mGy
dose exposure and using the aluminum-based tracking detectors. The mouse ears were
excluded from the FBP-derived contour since they would incorrectly enlarge the mask,
which is required to be convex in order to avoid ambiguities. Since the ears are rather
thin, it is reasonable to neglect the scattering and assume a straight proton path. For
both absorber thicknesses, the images accurately represent the reference anatomy at a
low noise level. However, the limited spatial resolution causes a blurring of the small
bony anatomy. The corresponding RSP relative errors were 2.6%, 4.6% and 4.8% for
the ideal detector and the TPC with 500 µm and 750 µm absorber thickness, respectively.
The corresponding RSP distributions are displayed as joint histogram in figure 8.11. In
particular for the reconstruction with the real detector model, the mean RSP for bone-like
materials (HU>1200) and soft tissue-tissue (-500<HU<0) is underestimated by up to 0.15.

8.7 Discussion

The observed superiority of the SLP over the CSP is at first glance contradictory to previous
findings; however, this result reflects differences in the irradiation condition and detector
modeling. Compared to the ideal detector system employed in chapter 6, the pre-clinical
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Figure 8.9: (a)/(c) Reconstructed pCT images for the cylindrical phantom with gold-loaded
inserts obtained at 50mGy and 100mGy dose exposure, respectively. The viewing window is set
between RSP values of 1.01 (black) and 1.05 (yellow). (b)/(d) Mean (markers) and standard
deviation (whiskers) of computed CNR values for three slices (0.2mm thickness) obtained at
50mGy and 100mGy dose exposure respectively. The dashed lines represent the corresponding
linear regressions of the original data and the solid gray line indicates the Rose criterion.
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Figure 8.10: Comparison of exemplary reconstructed pCT images obtained with different de-
tector configurations for the mouse xCT data along with the corresponding ground truth.

(a) (b)

Figure 8.11: Joint histogram of the reconstructed pCTs (for an (a) ideal detector and (b) an
aluminum-based tracker and TPC with 500 µm thick absorber slabs) and the original HU values.
The red line indicates the ground truth conversion curve being used to import the initial xCT
data into the MC simulation. The curve below shows the corresponding RSP error (mean±1σ).

investigation differs in two points: first, the realistic modeling of the complete tracker sys-
tem reveals inaccuracies in the proton direction estimation, particularly due to the MCS
in the readout strips. Second, the shallow penetration depth of 2 cm substantially limits
the amount of MCS within the object, which reduces the impact of the intrinsic path
uncertainty. Consequently, uncertainties introduced into the CSP formalism by inaccu-
rate direction vectors are mitigating the theoretically reduced intrinsic path uncertainties,
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causing an overall superior accuracy for the SLP.

Theoretical investigations regarding the path estimation accuracy at clinical energies
typically evaluate the maximum RMS path deviation (e.g., in chapter 6), occurring slightly
downstream the object center due to the intrinsic path model uncertainty [Schulte et al.,
2008]. However, for tomographic imaging it is more appropriate to use the center of the
imaged object, since it is the expected location of poorest spatial resolution due to the
intersection of multiple projection angles [Penfold et al., 2011]. For the pre-clinical system
investigated in this chapter, slightly better resolution is expected in the center of the
object. Nevertheless, this might be misleading for the general performance quantification
since murine tumors are typically shallow-seated or superficial; hence, the mean RMS error
was chosen as a conservative measure to reflect the overall path estimation accuracy.

The obtained spatial resolution of around 2-3mm−1 for the optimized pCT system is
comparable to the performance of CBCT systems commonly used in pre-clinical research
[Song et al., 2010]. However, the level of detail visible in the presented pCT reconstructions
for realistic small animal data (cf. figure 8.10) appears slightly inferior to the estimated
spatial resolution based on phantom simulations. This in turn can have two reasons: first,
the slanted-edge method is highly sensitive to noise (due to the differentiation operation;
cf. equation (4.28)), possibly introducing some uncertainty. Second, the mouse data contain
highly heterogeneous 3D anatomy, which creates additional path uncertainties compared
to the rotationally symmetric homogeneous 2D phantom case. On the other hand, pCT is
expected to provide considerably better RSP accuracy than xCT systems. In particular, the
elemental composition of murine tissues is substantially different from human tissue [Schyns
et al., 2019], demonstrating a large intra-tissue variability. This fact might introduce
further uncertainties in the stoichiometric calibration method, which is based on a limited
number of reference tissues. In contrast, pCT represents the most intuitive solution in
order to ideally completely elude those uncertainties.

The degraded WEPL resolution toward smaller WEPL values (cf. figure 8.7b) might
be a consequence of the large residual range within the TPC of the corresponding pro-
tons. MCS and the initial particle direction could accumulate to a detectable difference
between the CSDA range within the detector and the actually measured projected range
in z-direction, resulting in an increased standard deviation of the Gaussian fit, particularly
for configurations with thicker absorbers. This effect can potentially be compensated by
exploiting the available proton track information within the TPC, even though the contri-
bution is of minor impact. The RSP underestimation observed for phantom simulations
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(cf. figure 8.8b) is also reflected in the reconstructions for pre-clinical data (cf. figure 8.11b).
Since this effect persists even for an ideal tracker system, it must be intrinsically related to
the range telescope performance. Future work should investigate more elaborated calibra-
tion procedures embedding the available proton track and energy deposition information
in order to enhance the achievable RSP accuracy.

The implemented macroscopic modeling of GNPs as a homogeneous gold concentration
for computational purposes is a reasonable assumption and has been previously applied
to estimate the physical dose enhancement for γ- and X-rays [Cho et al., 2009], as well
as the contrast enhancement in fluorescence CT [Jones and Cho, 2011], spectral xCT
[Müllner et al., 2015] and pCT [Schulte et al., 2004b]. The feasibility of the estimated gold
concentrations in real pre-clinical scenarios can be gauged with the following back-of-the-
envelope calculation: a 1% density enhancement requires 10mg of gold within 1 g of tumor
with unity density, which corresponds to around 3× 1019 gold atoms. Since gold forms an
fcc structure (i.e., 4 gold atoms per unit cell of volume) with a lattice constant of 0.408 nm,
the total number of gold atoms in a spherical GNP of 50 nm radius can be approximated by
4× 4/3 π (50 nm)3

(0.408nm)3
≈ 3× 107. Consequently, one would require 1012 GNPs per gram of tumor

(with unity density). Assuming that 1 g of tumor tissue contains around 109 cells [Monte,
2009], 8wt% of gold therefore corresponds to 8 × 103 GNPs per cell. Considering data
available in current literature (see Cole et al. [2015] and references therein), the required
concentration seems rather high, but feasible.

While the Rose criterion is based on the assumption of white noise, noise in tomographic
imaging is typically correlated due to the reconstruction [Toth, 2012]. Nevertheless, the
performed CNR quantification still represents an adequate measure as demonstrated by the
good agreement with the visual perception of the inserts. In comparison to pCT, DECT
enables imaging of substantially lower GNP concentrations, e.g., Badea et al. [2011] report
a limit of detectability at around 15mg/ml (i.e., 1.5wt%), while Clark et al. [2013] even
state values ranging from 4mg/ml down to 1mg/ml. It should be noted that in pCT
imaging the total amount of gold per unit volume (voxel) is the only important parameter
regardless of the actual particle shape (as it is also the case for xCT [Popovtzer et al., 2008]).
However, high GNP concentration can cause cytotoxicity due to necrosis and apoptosis.
Pan et al. [2007] observed that particularly large GNPs are nontoxic up to relatively high
concentrations, which is beneficial for imaging applications since the maximum gold mass
delivered per cell increases with the size of GNPs [Cole et al., 2015].

GNPs typically exhibit a long retention in blood [Nakagawa et al., 2016] and can be de-
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tected up to several hours after injection. Furthermore, work by Lin et al. [2015] based on
dedicated microscopic TOPAS MC simulations demonstrated that the radio-enhancement
(using the dose response predicted by the local effect model) of GNPs depends on the ra-
diation quality. Hence, GNPs might compromise comparison studies between photon and
proton irradiations as foreseen within the SIRMIO project. Furthermore, one also needs
to consider that contrast agents can introduce ion beam range shifts. While this effect
was found to be negligible for iodine-based agents in humans [Wertz and Jäkel, 2004], the
impact for GNPs in small animals might be more critical since generally higher precision
is demanded. An alternative approach to GNPs for tumor localization is the use of an
in-house developed pre-clinical ultrasound system [Lascaud et al., 2019] in conjunction
with a short-lived micro bubbles [Stride and Saffari, 2003]. However, this requires a pre-
cise co-registration between pCT and non-Cartesian ultrasound images, currently under
investigation.

For the study of pre-clinical small animal data, the in-house developed mouse holder
was not included in the simulation. It consists of a rigid fixation system, heating and
connections for air and anesthesia supply. In order to guarantee a sterile environment for
immunodeficient mice, the chamber is sealed with a 150 µm thin Kapton foil. To further
reduce MCS for ultra-precise irradiation, the support layer on the backside will contain
cutouts (sealed with a 50 µm thin Kapton foil) at irradiation locations of foreseen appli-
cations. In order to compensate the potential deterioration of the pCT spatial resolution
due to additional material budget, the tracking system could be moved slightly closer to
the holder.

Finally, all presented simulations employed the implemented active pencil beam scan-
ning, which might not be available at every proton therapy facility. However, the use of
scattering foils in order to create a broad proton beam for imaging is not expected to sub-
stantially alter the image quality if the divergence is limited, since the image formation is
based on the measurement of individual protons. Moreover, the use of a double-scattering
system could be required to match the MHz detector readout in facilities with too high
instantaneous beam intensity.





“You know how some people fuss about the high cost
of CT-scanners, so you can imagine what they would
say if one suggested that the X-ray tube in the scan-
ner should be replaced by a much more expensive
cyclotron!”

Allan M. Cormack

9
Conclusions and Perspectives

In the following, the most important conclusions of this work are summarized and the
future perspectives are discussed. This thesis is divided in four main parts. The first part
is focused on the performance of integration-mode ion imaging. In the second and third
part, the achievable gain in treatment planning accuracy for single-particle tracking iCT
and the associated radiobiological implications expected in clinical scenarios are studied. In
the last part, a novel pCT system for pre-clinical research with small animals is investigated
and the performance is optimized.

The performance of integration-mode ion imaging using a range telescope prototype
under investigation at HIT is presented in chapter 5. Both, simulated and experimental
phantom studies demonstrate a good image quality and an accurate WET and RSP re-
trieval. Particularly carbon ions yield superior performance in integration-mode imaging
compared to protons or helium ions, reflecting the reduced sensitivity to MCS and the
smaller pencil beam size. While the developed BPD strategy enables a clear benefit for
integration-mode imaging, the image quality for highly heterogeneous clinical-like data
remains limited, due to prevailing signal ambiguities from range dilution effects.
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In order to address the observed shortcomings, future work needs to aim at develop-
ing advanced computational strategies for fully utilizing the sparse amount of information
retrieved with integration-mode data. In this context, two different directions can be pur-
sued. First, improvements within the tomographic image reconstruction could incorporate
the entire WET histogram obtained from the BPD along with information on MCS and
the finite beam spot size [Seller Oria et al., 2018]. Alternatively, the redundant information
encoded in the overlap of neighboring pencil beams could be exploited, since the RP sep-
aration is typically smaller than the pencil beam size. Based on a dedicated optimization
procedure, it is possible to redistribute the individual WET components in radiography
domain to improve the spatial resolution [Krah et al., 2015; Gianoli et al., 2016].

The improvements compared to previous work [Rinaldi et al., 2013; Magallanes, 2017]
obtained within this thesis and the observed limitations will bolster the future develop-
ment of integration-mode transmission ion imaging. Since an implementation can be ob-
tained with rather unsophisticated detector instrumentation, commercial and cost-effective
imaging systems may be employed, which will facilitate the transition of ion imaging (in
particular using iRADs for position verification [Farace et al., 2016; Hammi et al., 2018])
toward clinical routine.

The clinical potential of single-particle tracking iCT was studied in chapter 6. Com-
pared to integration-mode imaging, a substantially better image quality is achieved, since
blurring induced by ambiguities from MCS and the finite beam spot size are compensated.
At the investigated dose level of around 2mGy and for the considered ideal detector, heCT
offers superior RSP accuracy for clinical-like data compared to pCT and cCT. In addition,
the associated treatment planning comparison demonstrates improved range accuracy for
all ions with respect to uncertainties inherent in the stoichiometric HU-RSP conversion
employed in current clinical practice. For the investigated cranial sites, in particular pCT
and heCT demonstrate very good dosimetic agreement with the ground truth reference.

Future work needs to assess to which extent realistic detector instrumentation can en-
able results close to the presented intrinsic capabilities. Furthermore, the dosimetric impact
of possibly reduced tumor safety margins stemming from the reduced range uncertainties
as enabled by iCT needs to be investigated. In order to integrate iCT into clinical practice,
a dedicated treatment workflow must be developed. If fast solutions for image reconstruc-
tion (e.g., GPU-based implementations of iterative algorithms [Karonis et al., 2013]), as
well as for delineation and treatment planning (e.g., based on machine learning techniques
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[Feng et al., 2018]) are available, iCT will potentially enable performing treatment plan-
ning, delivery and verification inside the treatment room without requiring repositioning
of the patient or additional imaging technologies.

This work underlines the usefulness of iCT for potentially reducing range uncertainties
in ion therapy treatment (re-)planning with respect to single energy xCT. The reduction
of the related tumor safety margins will ultimately limit normal tissue damage, improving
the dose conformality for patient receiving ion therapy treatments.

The radiobiological implications related to iCT are estimated in chapter 7. To this
end, the mechanistic RMF model with MCDS DNA damage predictions was integrated into
the FLUKA MC simulation framework. As expected, the RBE of pCT for the irradiation
scenario of chapter 6 (i.e., for the same physical dose) is generally lower than for heCT
and cCT. The RBE predictions for all considered biological endpoints indicate that iCT
generates potentially reduced radiobiological effects compared to typical xCT spectra used
for treatment planning imaging.

An important limitation for the presented radiobiological investigation is the sparse
availability of experimental data on biological effects for typical iCT irradiation condi-
tions, i.e., ion beams of very high energy delivering imaging doses of a few mGy. Clinical
applications of iCT for human patients demand a careful experimental investigation and
validation. Future work should aim at dedicated cell line experiments in order to quantita-
tively evaluate the potentially unfavorable radiobiological implications and relevant effects
like low-dose hyper-radiosensitivity.

The performed theoretical analysis of this study represents an important step to gain
first insights into the biological effects of low-dose iCT imaging. Besides the improved RSP
accuracy and the reduced physical imaging dose, the results potentially provide a further
argument in favor of iCT over conventional xCT; not only for treatment planning and
adaptive strategies but also for daily isocentric image guidance for patient positioning.

The optimization of a pCT system for small animal imaging is the aim of chapter 8.
The system consists of planar Micromegas detectors as tracker system and a segmented
TPC with vertical absorber foils functioning as a range telescope. Based on MC simu-
lations of a realistic detector implementation, a novel readout structure with aluminum
electrodes promises superior performance due to the reduced material budget. For the
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range telescope, a Mylar absorber thickness between 500 µm and 750 µm is found to yield
the best compromise between WEPL resolution and complexity of the detector instrumen-
tation. In the subsequent in silico study of pCT, the optimized detector system enabled
accurate imaging for pre-clinical data. Relying on this pCT system, an investigation on the
use of GNPs as pCT contrast agent for improving tumor visibility for target delineation
determined a required concentration of around 8mg gold per gram of imaged tissue to
provide a detectable contrast enhancement.

The next task will be to investigate the treatment planning accuracy enabled by the
reconstructed pCT images, as it has been done for clinical-like data in chapter 6. Due
to the required high resolution for small animal irradiation, a dedicated MC dose engine
is necessary. Therefore, the prototype TPS µ-RayStation (RaySearch Laboratories, Stock-
holm, Sweden), which was developed particularly for pre-clinical small animal irradiation,
will be used within a license (signed) and research collaboration (under negotiation) agree-
ment within the SIRMIO project. The general functioning principle of the proposed TPC
configuration for a reliable electron extraction over wide drift distances has been already
demonstrated using a small-scale prototype [Lämmer, 2019]. The investigation of an op-
timal experimental realization is currently ongoing. The photo-lithographic structuring
of the aluminum-based 2D Micromegas tracking detector has been mastered in-house and
future work will investigate the capabilities and aging characteristics of this novel design.

The pCT system thoroughly characterized and optimized in silico within this thesis
might not only enable a deeper investigation of ion imaging but also provide an in-room
image-guidance system for position verification and treatment planning, potentially im-
proving the range accuracy in pre-clinical research. This opens new pathways for high-
precision proton irradiation studies of tumor-bearing small animal models in a controlled
and well defined environment.

~

The development of ion imaging has come a long way since the days of Cormack and
Koehler. Due to great advances in methodology, hardware and image reconstruction, iCT
has evolved from an obscure activity at physics laboratories into the potentially most
intuitive solution for eliminating range uncertainties in ion therapy. The findings of this
thesis underline that iCT could indeed hold the promise of providing superior treatment
planning accuracy at lower patient dose exposure compared to current clinical practice.
This also makes it an attractive modality for emerging small animal precision ion irradiation
platforms. Thus, ion imaging can play an important role in the ongoing fight against cancer.
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