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Zusammenfassung

Es gibt nicht die eine Erarbeitung des kleinen Einmaleins, vielmehr können meh-
rere verschiedene Wege der unterrichtlichen Behandlung unterschieden werden. In 
der Mathematikdidaktik herrscht derzeit allerdings weitgehend Konsens hinsicht-
lich einer Erarbeitung, die dem zeitgemäßen Verständnis von Lehren und Lernen 
im Mathematikunterricht entspricht: Eine verständnisbasierte Erarbeitung, die vor-
sieht, mithilfe bereits bekannter Einmaleinssätze und basierend auf Einsicht in ope-
rative Beziehungen noch unbekannte Einmaleinssätze zu erschließen (z. B. KRAUT-
HAUSEN & SCHERER, 2007; PADBERG & BENZ, 2011; WITTMANN & MÜLLER, 
1990). Die Wirksamkeit dieser verständnisbasierten Erarbeitung ist bislang aller-
dings nur in vereinzelten nationalen sowie internationalen Studien analysiert wor-
den (GASTEIGER & PALUKA-GRAHM, 2013; WOODWARD, 2006; KROESBER-
GEN, VAN LUIT & MAAS,  2004). Von den aktuellen didaktischen Empfehlungen 
bzw. Vorgaben abweichend, lassen ältere fachdidaktische Publikationen alternative 
Zugänge zum Einmaleins erkennen, die einen großen Fokus auf das reine Einschlei-
fen von Einmaleinsreihen legen (z. B. JUNKER & SCZYRBA, 1964; KOLLER, 1958). 
Hinweisen aus der Unterrichtspraxis zufolge fi nden diese alternativen Vorgehenswei-
sen, die man als eher traditionell bezeichnen kann, allerdings nach wie vor Anwen-
dung. Inwiefern Lehrkräft e bei der Erarbeitung des kleinen Einmaleins aktuelle Vor-
gaben umsetzen oder tatsächlich auf alternative Vorgehensweisen zurückgreifen, ist 
bisher in Deutschland kaum untersucht worden.

Das Hauptziel der vorliegenden Arbeit ist somit, verschiedene Herangehenswei-
sen von Kindern bei Aufgaben des kleinen Einmaleins im 3. Schuljahr zu erfassen. 
Ein weiterer Schwerpunkt dieser Arbeit liegt auf Erkenntnissen, ob und inwiefern 
sich unterschiedliche unterrichtliche Vorgehensweisen auf die Strategieverwendung 
von Kindern auswirken. Die Untersuchung der Strategieverwendung erfolgt zusätz-
lich auch unter Berücksichtigung eines weiteren möglichen Einfl ussfaktors, der indi-
viduellen Leistungsfähigkeit eines Kindes.

Anhand einer der Hauptstudie vorgeschalteten Vorstudie konnten verschiede-
ne unterrichtliche Vorgehensweisen bei der Erarbeitung des kleinen Einmaleins er-
mittelt werden. Neben einer verständnisbasierten Erarbeitung, die durch das Entde-
cken und Anwenden von Rechenstrategien gekennzeichnet ist und den Vorgaben des 
zum Zeitpunkt der Untersuchung gültigen Lehrplans entspricht, konnte als alterna-
tive Vorgehensweise eine Erarbeitung identifi ziert werden, die sich durch eine eher 
traditionelle Erarbeitungsweise auszeichnet. Diese legt den Fokus des unterrichtli-
chen Vorgehens weniger auf die Strategieerarbeitung bzw. -thematisierung als auf die 
Automatisierung von Einmaleinsaufgaben. Die Hauptstudie sah basierend auf den 
Ergebnissen der Vorstudie demnach zusätzlich die Prüfung der Wirksamkeit zweier 
grundsätzlich gegensätzlicher unterrichtlicher Vorgehensweisen vor – einer verständ-
nisbasierten und der bereits angesprochenen eher traditionellen Erarbeitung des 
kleinen Einmaleins. Neben der separaten Betrachtung der Einfl ussfaktoren Unter-
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richt und Individuum wurde der kindliche Lernerfolg in den verschiedenen Lehr-
kraft -Gruppen auch unter dem Einfl uss des individuellen Leistungsvermögens unter-
sucht.

Die verschiedenen Herangehensweisen an Aufgaben des kleinen Einmaleins wur-
den anhand einer empirischen Studie basierend auf zwei entwickelten Testinstru-
menten evaluiert – eine Reaktionszeittestung wurde insbesondere eingesetzt, um 
Aussagen zum Faktenabruf aus dem Gedächtnis tätigen zu können, ein Strategie-
interview, um Erkenntnisse hinsichtlich des Einsatzes von verschiedenen Herange-
hensweisen an Einmaleinsaufgaben zu gewinnen.

Die statistischen Daten der Auswertung weisen darauf hin, dass Kinder verschie-
denen Leistungsvermögens sich hinsichtlich der Strategieverwendung unterscheiden: 
Je leistungsstärker die Kinder sind, desto erfolgreicher wird der Strategieeinsatz bzw. 
die Strategiewahl bewältigt. Eine verständnisbasierte Erarbeitung des kleinen Ein-
maleins beeinfl usst darüber hinaus die kindliche Strategieverwendung positiv und 
macht sich im Lernerfolg der Kinder deutlicher bemerkbar als eine Erarbeitung, die 
den überwiegenden Fokus auf die Automatisierung von Einmaleinsaufgaben legt. 
Der positive Einfl uss einer verständnisbasierten Erarbeitung wird zudem auch im di-
rekten Vergleich der Kinder gleicher Leistungsfähigkeit ersichtlich. Insbesondere für 
die leistungsschwachen Kinder ist erkennbar, dass sie von einer verständnisbasierten 
Erarbeitung in jeglicher Hinsicht profi tieren und den Strategieeinsatz bzw. die Stra-
tegiewahl erfolgreicher bewältigen als die leistungsschwachen Kinder der Vergleichs-
gruppe.

Eine unterrichtliche Behandlung des kleinen Einmaleins, die verschiedene Re-
chenstrategien des kleinen Einmaleins basierend auf Einsicht und Verständnis er-
arbeitet, ermöglicht es, Kinder im ganzen Leistungsspektrum zu fördern.
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Abstract

Th ere is defi nitely not only one correct or appropriate way to teach students multi-
plication facts; multiplication can surely be taught and learned in diff erent ways. In 
the fi eld of mathematical didactics a broad consensus has been reached on an ap-
proach in unison with the current understanding of teaching and learning math-
ematics: Following this approach, students should be taught to use basic multipli-
cation facts to derive unknown facts (e.g. KRAUTHAUSEN & SCHERER, 2007; 
PADBERG & BENZ, 2011; WITTMANN & MÜLLER, 1990). However, the eff ec-
tiveness of this approach, which enables students to gain a deeper understanding of 
the operation, has been analysed only in a small number of national and interna-
tional studies so far (GASTEIGER & PALUKA-GRAHM, 2013; WOODWARD, 2006; 
KROESBERGEN, VAN LUIT & MAAS, 2004). Additionally, it seems that traditional 
ways to teach multiplication, which place the main focus on single sequences of mul-
tiples diff er considerably from the current didactical recommendations (e.g. JUN-
KER & SCZYRBA, 1964; KOLLER, 1958). According to teaching experiences these 
more traditional approaches are still widely used. However, it has hardly been ana-
lyzed in Germany so far to which extent multiplication facts are taught in line with 
current curricular standards or whether alternative ways are being used.

Th erefore, the primary goal of this study is to collect data about diff erent multi-
plication strategies taught to and used by students attending grade 3 in elementary 
schools. Furthermore, this study focuses on proving whether diff erent approaches of 
teaching multiplication facts aff ect the strategy chosen by students. Th e study analy-
ses whether there is a link between the strategy used by the respective students and 
their individual capabilities as well.

Th e main study used was partly based on a pre-study analyzing and evaluating 
diff erent instructional approaches used by elementary school teachers to teach mul-
tiplication. Two diff erent approaches were identifi ed: Firstly, an approach which is in 
line with current standards of teaching multiplication where unknown facts are de-
rived from basic multiplication facts. Secondly, an alternative approach which can be 
described as the more traditional one – where single sequences of multiples are usu-
ally taught in isolated ways. Th e results of the main study are based on the eff ect of 
these two opposite teaching approaches. Th e main study analyses the infl uence of the 
instructional approach and the individual student’s capability on strategy choice and 
strategy use. In addition to this, the study measured how these two factors interact 
with each other.

It is important to mention that the use of diff erent multiplication strategies was 
examined by developing and subsequently using two testing instruments: a reaction 
time test and an interview (following a standardized questionnaire) to examine dif-
ferent multiplication strategies used by the students.

Th e fi ndings of this main study indicate that strategy use and strategy choice defi -
nitely diff er based on the students’ individual capabilities: Students are more success-
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ful or show an higher competence in strategy use or strategy choice if the individu-
al capability of the respective students is higher. Additionally, teaching multiplication 
based on a deeper understanding of the operation defi nitely infl uences students pos-
itively compared to teaching only single sequences of multiplies in isolated ways – 
this applies also to students with comparable individual capabilities. 

And just as important – especially, students with a lower individual capability 
benefi t most from an approach gaining a deeper understanding.

Leading to the fi nal conclusion that teaching multiplication facts through strate-
gies focusing on a deeper understanding makes it possible for all students to achieve 
an optimal or at least a better learning success.



Einleitung

„Das Ergebnis habe ich schon, jetzt brauche 
ich nur noch den Weg, der zu ihm führt.“

(CARL FRIEDRICH GAUß, 1777–1855)

Mindestens von genauso bedeutender Relevanz wie das im Zitat von Carl Friedrich 
Gauß angeführte Ergebnis, ist aus heutiger Sicht der beschrittene Weg, der zu diesem 
Ergebnis führt. Die Intention eines gegenwärtigen Mathematikunterrichtes lautet 
demnach: „Der Weg ist das Ziel“1 (HECKMANN & PADBERG, 2014, S.  30). Auch 
in dieser Arbeit wird dem beschrittenen Weg ein großer Stellenwert zuteil, geht es 
doch, wie dem Titel der Arbeit zu entnehmen ist, insbesondere um mathematische 
Herangehensweisen beim Lösen von Einmaleinsaufgaben.

Einmaleinsaufgaben, wie die Aufgabe 6 x 7 können auf  verschiedene Art und 
Weise gelöst werden – zur Lösung kann z. B. auf einen  Faktenabruf aus dem Ge-
dächtnis (6 x 7 = 42) zurückgegriff en werden, es können Heran gehens weisen basie-
rend auf operativen Beziehungen zum Einsatz kommen (6 x 7 = 6 x 6 + 6) oder die 
wiederholte Addition gleicher Summanden (7 + 7 + 7 + 7 + 7 + 7 = 42). 

Die verschiedenen Herangehensweisen könnte man dabei mit dem Erklimmen 
eines Berggipfels vergleichen. Man kann den Gipfel mit einer Seilbahnfahrt errei-
chen, man kann hinaufwandern oder beispielsweise einen Klettersteig gehen. Dabei 
kann man auf dem einem Weg schnell an sein Ziel gelangen, manch anderer mag 
sich eher als mühsam und schwer erweisen. 

Einmaleinsaufgaben können nicht nur auf verschiedenen Wegen, sondern auch 
– wie in dem bildhaft en Vergleich angedeutet – auf (vermeintlich) leichten oder 
schweren, langsamen oder schnellen, mehr oder weniger geeigneten Wegen gelöst 
werden. Aber wie sich ein Weg darstellt, variiert von Kind zu Kind und ist von ver-
schiedenen Faktoren abhängig. Das individuelle Leistungsvermögen spielt hierbei 
sicherlich eine wesentliche Rolle. Wie geeignet ein gewählter Lösungsweg im All-
gemeinen ist, dazu gibt es in der Mathematikdidaktik eine überwiegend einhelli-
ge Meinung. In der deutschen Fachdidaktik herrscht weitgehend Konsens darüber, 
noch unbekannte Einmaleinsaufgaben basierend auf operativen Beziehungen und 
dem Einsatz von Rechenstrategien zu lösen. In diesem Kontext wird von einer ver-
ständnisbasierten Erarbeitung des kleinen Einmaleins gesprochen, die dem aktuellen 
Lehr-/Lernverständnis folgend die Automatisierung von Einmaleinsaufgaben auf Ba-
sis von Einsicht anstrebt. Eine verständnisbasierte Erarbeitung zielt insbesondere auf 
das – nicht nur in Grundschulen – zentrale Ziel des Mathematikunterrichts: Rechen-
anforderungen mit einem gewissen Maß an Flexibilität zu bewerkstelligen. Ange-

1 Dieses Zitat wird häufi g mit dem chinesischen Philosophen Konfuzius (551 v. Chr.–479 v. 
Chr.) in Verbindung gebracht – die Herkunft  ist allerdings nicht endgültig geklärt. 
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strebt wird ein refl ektierter Umgang mit Zahlen, verbunden mit der Entwicklung fl e-
xibler Rechenkompetenzen.

Nicht nur Rechenaufgaben können auf verschiedenen Wegen gelöst werden, son-
dern auch die Erarbeitung von Lösungswegen kann auf unterschiedliche Art und 
Weise erfolgen. Trotz weitestgehend einheitlicher Empfehlungen der Mathematik-
didaktik lässt eine verständnisbasierte Erarbeitung beispielsweise unterschiedliche 
Schwerpunktsetzungen in der konkreten Umsetzung der Empfehlungen erkennen 
(z. B. KRAUTHAUSEN & SCHERER, 2007; PADBERG & BENZ, 2011; RADATZ, 
SCHIPPER, EBLING & DRÖGE, 1998; SCHIPPER, EBLING & DRÖGE, 2015; 
WITTMANN & MÜLLER, 1990). Neben einer aktuell empfohlenen, verständnis-
basierten Erarbeitung sind in älteren didaktischen Empfehlungen bzw. fachdidakti-
schen Publikationen auch alternative Vorgehensweisen zur Erarbeitung des kleinen 
Einmaleins zu erkennen (z. B. JUNKER & SCZYRBA, 1964; KOLLER, 1985). Diese 
alternativen Zugänge scheinen auf die damalige Sichtweise von Lehren und Lernen 
zurückzuführen zu sein. Die behavioristische Grundauff assung stellt beispielswei-
se eine Erarbeitung des kleinen Einmaleins Reihe für Reihe in den Fokus, die sich 
durch das Lernen von Einmaleinsreihen bzw. einem Vorgehen, was umgangssprach-
lich auch als Pauken von Einmaleinsreihen bezeichnet wird, auszeichnet. Dieser al-
ternative Zugang stellt eine grundsätzlich gegensätzliche unterrichtliche Vorgehens-
weise zu einer verständnisbasierten Erarbeitung des kleinen Einmaleins dar. 

Einer Vielzahl an theoretischen Erkenntnissen sowie einer Reihe empirischer Stu-
dien zufolge scheint sich allerdings gerade eine verständnisbasierte Erarbeitung als 
geeigneter Weg zu empfehlen, um den Berggipfel, also die verfolgten Ziele der Er-
arbeitung des Einmaleins zu erreichen. Eine auf Einsicht und Verständnis basierende 
Erarbeitung folgt nicht nur den Grundsätzen des aktuellen Lehr- und Lernverständ-
nisses, sondern auch einem zeitgemäßen Mathematikunterricht. Als Argument einer 
verständnisbasierten Erarbeitung können darüber hinaus auch die in vereinzelten 
empirischen Studien ermittelten positiven Auswirkungen auf den Lern- und Wis-
sensprozess des kleinen Einmaleins selbst angeführt werden. Mithilfe einer verständ-
nisbasierten Erarbeitung kann demnach nicht nur das grundlegende Verständnis der 
Rechenoperation gesichert werden, sondern eine auf Einsicht und Verständnis basie-
rende Erarbeitung erleichtert auch das Erkennen, Behalten und Verinnerlichen sowie 
den erfolgreichen Abruf von Aufgaben aus dem Gedächtnis. Zusätzlich kann eine 
Vielzahl an positiven Auswirkungen einer verständnisbasierten Erarbeitung im All-
gemeinen für leistungsschwache Schülerinnen und Schüler ermittelt werden. Vor al-
lem die propädeutische Funktion einer verständnisbasierten Erarbeitung des kleinen 
Einmaleins lässt die Relevanz dieser Art der Erarbeitung ersichtlich werden. Einige 
theoretische und empirische Erkenntnisse sehen in alternativen Erarbeitungen, die 
einer behavioristischen Auff assung von Lehren und Lernen folgen und dem reinen 
Einschleifen von Einmaleinsreihen eine wichtige Rolle zuteilwerden lassen, zwangs-
läufi g nicht zielführende alternative Wege der Erarbeitung des kleinen Einmaleins. 

Auch wenn in der Th eorie weitestgehend Konsens hinsichtlich einer empfehlens-
werten Erarbeitung des kleinen Einmaleins besteht, diese Art der Erarbeitung auch 
weitestgehend als verpfl ichtender Lerninhalt in Lehr- Bildungs- und Rahmenplänen 
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vorgeschrieben ist sowie einige Forschungsergebnisse für eine verständnis basierte 
Erarbeitung im Allgemeinen aber auch im Hinblick auf das kleine Einmaleins 
 sprechen, muss eine verständnisbasierte Erarbeitung nicht zwingend von allen Lehr-
kräft en in der Unterrichtspraxis umgesetzt werden. Es gibt Hinweise aus der Praxis 
da rüber, dass das kleine Einmaleins nach wie vor von den Empfehlungen bzw. Vor-
gaben abweichend – mit einem großen Fokus auf dem Auswendiglernen von Reihen 
– erarbeitet wird (vgl. SCHERER & MOSER OPITZ, 2010). 

Inwiefern Lehrkräft e bei der Erarbeitung des kleinen Einmaleins in der Unter-
richtspraxis tatsächlich auf alternative Vorgehensweisen zurückgreifen oder aktuel-
le Vorgaben umsetzen, kann bisher nicht sicher konstatiert werden. Denn bis heute 
wurden in Deutschland kaum empirische Studien durchgeführt, die die unterricht-
lichen Vorgehensweisen bei der Erarbeitung des kleinen Einmaleins in den Blick 
nehmen. Für die Rechenoperation der Multiplikation kann zusätzlich festgehalten 
werden, dass sich nur ein geringer Prozentsatz nationaler sowie internationaler Stu-
dien detailliert mit der Verwendung von Herangehensweisen, den sogenannten Re-
chenstrategien beschäft igt, die basierend auf Einsicht in operative Beziehungen zur 
Aufgabenlösung führen. Das gleiche gilt für die Anzahl an Studien, die die Strate-
gieverwendung beim kleinen Einmaleins gekoppelt mit der unterrichtlichen Vorge-
hensweise der Lehrkräft e betrachtet: Auch hier ist die Anzahl eher gering, da der 
Einsatz von Rechenstrategien bisher kaum unter Berücksichtigung der expliziten 
unterrichtlichen Erarbeitung von Lehrpersonen analysiert wurde.

Das Hauptziel dieser Arbeit sind Erkenntnisse in den beschriebenen Forschungs-
lücken. Deshalb untersucht sie verschiedene Herangehensweisen von Kindern bei 
Aufgaben des kleinen Einmaleins im 3.  Schuljahr. Es soll grundsätzlich analysiert 
werden, ob sich im Strategieeinsatz bei Kindern nach der Erarbeitung des kleinen 
Einmaleins Herangehensweisen zeigen, die basierend auf Einsicht in operative Be-
ziehungen zur Aufgabenlösung führen. Mit Blick auf die enorme gegenwärtige Be-
deutung sollen darüber hinaus Erkenntnisse gewonnen werden hinsichtlich fl exibler 
Rechenkompetenzen bei dieser Rechenoperation. Ein Fokus der vorliegenden Arbeit 
liegt auch auf der Frage, ob und inwieweit sich verschiedene unterrichtliche Vor-
gehensweisen der Lehrpersonen in der Strategieverwendung und im Lernerfolg der 
Kinder bemerkbar machen. Hierbei soll die Strategieverwendung diff erenziert unter 
Berücksichtigung eines weiteren möglichen Einfl ussfaktors, der individuellen Leis-
tungsfähigkeit, untersucht werden.

Mithilfe einer der Hauptstudie vorgeschalteten Vorstudie konnte analysiert wer-
den, dass verschiedene unterrichtliche Vorgehensweisen bei der Erarbeitung des 
kleinen Einmaleins vorliegen. Diese ging der off enen Frage nach, inwiefern eine 
verständnisbasierte Erarbeitung des kleinen Einmaleins in der Praxis tatsächlich 
Umsetzung fi ndet. Eine Klassifi zierung von Lehrpersonen und ihren unterschiedli-
chen Vorgehensweisen bei der unterrichtlichen Erarbeitung wurde ebenfalls in dieser 
Vorstudie realisiert. Die Forschungsergebnisse dieser Vorstudie zeigen, dass in der 
Unterrichtspraxis verschiedene Ansätze der Erarbeitung des kleinen Einmaleins vor-
herrschen. Neben einer Erarbeitung, die sich durch ein Entdecken und Anwenden 
von Rechenstrategien auszeichnet, die auf Zusammenhängen zwischen verschiede-
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nen Einmaleinssätzen basieren, sind, wie Erfahrungen aus der Praxis bereits vermu-
ten ließen, auch Vorgehensweisen zu erkennen, die man als eher traditionell bezeich-
nen kann, da sie den Hauptfokus auf das Auswendiglernen von Reihen legen. 

Basierend auf den Erkenntnissen der Vorstudie wurde in der Hauptstudie an-
gestrebt, die Einfl üsse einer verständnisbasierten Erarbeitung im Vergleich zu einer 
eher traditionellen Erarbeitungsweise auf die Strategieverwendung zu überprüfen. 

Steht die Erarbeitung eines mathematischen Inhaltes im Fokus einer Arbeit, ist es 
fast zwingend notwendig, sich auch mit dem Verständnis von Lehren und Lernen im 
Allgemeinen sowie dem Lehren und Lernen im Mathematikunterricht zu beschäf-
tigen. Da die beiden gegensätzlichen Erarbeitungsweisen auf jeweils unterschiedli-
chen Sichtweisen von Lehren und Lernen begründet zu liegen scheinen, soll in die-
ser Arbeit das aktuell konstruktivistische Verständnis von Lehren und Lernen einer 
behavioristischen Grundauff assung gegenübergestellt werden. Dies passiert in Kapi-
tel  1. Ein weiteres Hauptaugenmerk dieses Kapitels liegt auf der Abgrenzung einer 
konstruktivistischen Sichtweise auf das Lehren und Lernen im Mathematikunterricht 
von einer behavioristischen Sichtweise sowie den Anforderungen und Zielsetzungen 
des Mathematikunterrichts, wie sie heute vorherrschen. 

Das zweite Kapitel widmet sich im Anschluss der Erarbeitung der Einmaleins-
sätze in der Grundschule. Neben einem Überblick über die fachlichen Grundlagen 
der Multiplikation wird der Strategiebegriff  in der nationalen und internationalen Li-
teratur geklärt sowie die Vielfalt an verschiedenen Herangehensweisen zur Lösung 
von Einmaleinsaufgaben aus mathematiktheoretischer Sicht präsentiert. In diesem 
Kapitel wird zusätzlich herausgearbeitet, dass es nicht nur die eine Erarbeitung des 
Einmaleins gibt, sondern vielmehr verschiedene Wege der Erarbeitung unterschie-
den werden müssen. Neben einer verständnisbasierten Erarbeitung und theoreti-
schen sowie empirischen Argumenten, die für diese Art der Erarbeitung sprechen, 
stehen auch weitere, alternative Vorgehensweisen im Fokus des zweiten Kapitels. Zu-
dem sollen aktuelle Rahmenvorgaben historisch eingeordnet werden. 

Das Hauptaugenmerk des dritten und zugleich letzten Th eoriekapitels liegt auf 
gesicherten Erkenntnissen zur Entwicklung kindlicher Strategien beim kleinen Ein-
maleins und Forschungsergebnissen hinsichtlich der kindlichen Strategieverwen-
dung. Die Ergebnisse nationaler sowie internationaler Studien verweisen dabei auf 
den bestehenden Forschungsbedarf in diesem Th emengebiet. Darüber hinaus werden 
die bisherigen Forschungsergebnisse dargelegt, die die Abhängigkeit der Strategiever-
wendung vom Unterricht und dem Individuum aufzeigen. Voraussetzungen für eine 
erfolgreiche Strategiewahl bzw. Merkmale, die diese charakterisieren, werden in die-
sem Kapitel thematisiert und anhand eines Modells zur Kompetenz der Strategie-
wahl beim kleinen Einmaleins resümierend illustriert. 

Im Kapitel 4 dieser Arbeit wird die erwähnte Vorstudie präsentiert, in der die Er-
kenntnisse hinsichtlich der off enen Frage gewonnen werden, ob und in welcher Aus-
prägung ein verständnisbasiertes Vorgehen in der Unterrichtspraxis in Deutschland 
tatsächlich umgesetzt wird. Alternative unterrichtliche Vorgehensweisen der Erarbei-
tung werden ebenfalls identifi ziert und charakterisiert. 
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Die zentralen Fragestellungen der Hauptstudie werden anschließend im Kapitel 5 
umfassend beschrieben. Zusätzlich werden das Studiendesign, die Erhebungsinstru-
mente, die Kodierung sowie die für die Auswertung der Daten verwendeten statisti-
schen Methoden skizziert.

Im Kapitel 6 wird über die Ergebnisse dieser Hauptstudie berichtet, getrennt nach 
den verschiedenen Zielsetzungen. Der Fokus liegt hierbei auf den durchgeführten 
Unterschiedsanalysen, die den Einfl uss verschiedener unterrichtlicher Erarbeitungen 
sowie der individuellen Leistungsfähigkeit eines Kindes auf die Strategieverwendung 
untersuchen. 

Im fi nalen siebten Kapitel werden die Ergebnisse der vorliegenden Untersuchung 
zusammengefasst und auf Basis theoretischer Grundlagen kritisch refl ektiert. Auch 
die Grenzen der vorliegenden Arbeit sollen dargelegt sowie weitere Forschungsper-
spektiven verdeutlicht werden. Abschließend sollen basierend auf den gesamten ge-
wonnenen Erkenntnissen zentrale Punkte aufgezeigt werden, wie Schülerinnen und 
Schüler unterschiedlichen Leistungsvermögens die Erarbeitung des kleinen Einmal-
eins so erfolgreich wie möglich bewältigen können. 
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1. Aktuelles Verständnis von Lehren und Lernen

„Die Mathematik ist mehr ein Tun als eine Lehre.“

(LUITZEN EGBERTUS JAN BROUWER, 1881–1966)

Beschäft igt man sich mit der Erarbeitung eines mathematischen Inhaltes, ist es un-
umgänglich, sich auch mit dem aktuellen Verständnis von Lehren und Lernen im 
Allgemeinen zu befassen und sich im Speziellen mit dem Lehren und Lernen im 
Mathematikunterricht auseinanderzusetzen. Wie das Zitat von Luitzen E. J. Brouwer 
(1881–1966) bereits verdeutlicht, wird dem Tun im mathematischen Lehr- und Lern-
prozess eine bedeutende Rolle zuteil. Das aktuelle konstruktivistische Verständnis 
von Lehren und Lernen soll in Gegenüberstellung zu einer behavioristischen Auf-
fassung von Lehren und Lernen in diesem ersten Kapitel erläutert werden, bevor ein 
Hauptaugenmerk dieses Kapitels auf der Sichtweise des Lehrens und Lernens im Ma-
thematikunterricht liegt, wie sie heute vorherrscht.

1.1 Konstruktivistische Grundannahmen und konstruktivistisches 
Lernverständnis

„Menschenwürdiges Lernen ist nicht passiver Nachvollzug fremder 
Gedanken, sondern aktive Erzeugung eigener Sinnstrukturen.“

(SCHULZ, 1989, S. 36)

Das aktuelle Verständnis von Lehren und Lernen zeichnet sich durch eine konst-
ruktivistische Grundposition aus (VON GLASERSFELD, 1994). John Dewey (1859– 
1952), Jean Piaget (1896–1980) und Lev S. Wygotski (1896–1934) können als theo-
retische Vordenker einer konstruktivistisch orientierten Didaktik angesehen werden. 
Ihre Ansätze sind gegenwärtig immer noch wichtige Impulsgeber eines Verständnis-
ses von Lehren und Lernen, das die aktive Rolle des Individuums beim Lernprozess 
betont (REICH, 2008, S. 71 ff .). 

Dem Konstruktivismus kann keine einheitliche Defi nition zugrunde gelegt wer-
den – in der Literatur sind vielschichtige, vielfältige und teilweise uneinheitliche Ver-
wendungen des Begriff es vorzufi nden (GERSTENMAIER & MANDL, 1995, S.  869; 
REINMANN-ROTHMEIER & MANDL, 1997, S.  367). Die nachfolgenden Ausfüh-
rungen spiegeln Grundzüge konstruktivistischer Erkenntnistheorien wider, die sich 
auf die Gemeinsamkeiten verschiedener Ansätze, denen ein konstruktivistisches 
Lernverständnis zugrunde liegt, beschränken. 

Den verschiedenen konstruktivistischen Auff assungen gemeinsam ist das Ver-
ständnis, dass Lernende ihr Wissen selbst konstruieren (HOOPS, 1998, S. 233). Ler-
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nen wird demnach als konstruktiver Prozess verstanden und zeichnet sich nach 
REINMANN-ROTHMEIER und MANDL (1997) durch „das Primat der Konstruk-
tion aus“ (ebd., S. 366, Hervorhebung im Original).

Der Lerner steht mit seinen Lernprozessen im Zentrum des Unterrichts und 
„dessen Gestaltung ist vordringlich eine Frage der Konstruktion“ (BENDORF, 2002, 
S.  127 f.). Fragestellungen, mit denen sich die einzelnen konstruktivistischen Ansät-
ze beschäft igen, widmen sich demnach weniger der Wissensvermittlung als vermehrt 
der Wissenskonstruktion2 (REINMANN-ROTHMEIER & MANDL, 1997, S.  366). 
Der Wissenserwerb stellt eine konstruktive Aufb auleistung dar, die sich nicht durch 
passive Aufnahme und Reproduktion kennzeichnet, sondern vielmehr durch ein 
Lernen, das sich durch einen aktiven Aufb au und die Rekonstruktion von Wissen 
auszeichnet (vgl. FREUDENTHAL, 1991; PIAGET, 1999, S.  180; TREFFERS,  1991, 
S. 24). „Th e common conviction is that knowledge can not simply be transferred rea-
dy-made […] from teacher to student but has to be actively built up by each learner 
in his or her own mind (VON GLASERSFELD, 1991, xiii).“

Die Ausbreitung des konstruktivistischen Denkens hat nach REUSSER (2006) zu 
einer veränderten Sicht auf schulisches Lernen geführt:

Nicht zuletzt unter dem Eindruck der modernen Entwicklungspsychologie und 
der Lernforschung hat sich die Perspektive auf schulisches Lernen zunehmend 
von den Methoden und Sozialformen des Lehrerhandelns zu den Tiefenstruktu-
ren des Schülerlernens, von einer […] Interventionssicht des didaktischen Han-
delns zu einer Fokussierung auf die bei Schülern ablaufenden psychologischen 
Lern- und Verstehensprozesse verlagert. (REUSSER, 2006, S. 160)

Diese Verlagerung hin zu kindlichen Verstehensprozessen ist auf die – aus konstruk-
tivistischer Sicht – wichtige Bedeutung des Verstehens beim Lernen zurückzuführen. 
Einem konstruktivistischen Verständnis zufolge besteht das Ziel darin, „über die blo-
ße Beherrschung von Fertigkeiten hinaus Verstehen beim Lernenden zu ermöglichen 
und zu fördern“ (DINTER, 1998, S. 272). Verstehen wird nach STEBLER, REUSSER 
und PAULI (1994, S.  228 f.) je nach theoretischer Ausrichtung vielschichtig aufge-
fasst – beispielsweise als Einsicht in Zusammenhänge (WERTHEIMER, 1964), opera-
torische Beweglichkeit (AEBLI, 1951), Assimilation neuer Inhalte an bestehende Struk-
turen (PIAGET, 1976), Begriff sbildung (AEBLI, 1980, 1981) oder als Problemlösen 
(REUSSER & REUSSER-WEYENETH, 1994). Verstehen kann somit als Prozess oder 
als Verstehensprodukt bezeichnet werden. Wobei Verstehen laut AESCHENBACHER 
(1994) nicht mehr als „Endprodukt eines erfolgreichen Unterrichts“ (ebd., S.  128) 
bzw. nicht ausschließlich als Ziel und Ergebnis eines Kompetenzerwerbs am Ende 

2 An dieser Stelle sei erwähnt, dass der Konstruktivismus eine Erkenntnistheorie ist. Die er-
kenntnistheoretischen Grundlagen dienen weder dazu, didaktische Ansätze zu begründen 
noch Unterrichtsmethoden aus ihnen abzuleiten. Laut REUSSER (1999b) können „aus radi-
kalisierten grundlagentheoretischen Positionsbezügen [nicht] […] in direkter Weise Orien-
tierungen für didaktisches Handeln abgeleitet bzw. pädagogisch-didaktische Folgerungen 
gezogen werden“ (ebd., S. 7, Ergänzung der Autorin). Im Zuge einer gründlichen pädagogi-
schen Refl exion können erkenntnistheoretische Grundlagen verschiedene didaktische Ansät-
ze bestenfalls untermauern (DINTER, 1998, S. 268 f.; ERNEST, 1994, S. 338).
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eines Lernprozesses angesehen wird – in den Mittelpunkt rückt vermehrt der Pro-
zess des Kompetenzerwerbs.

Mit dem folgenden Zitat verweisen REUSSER und REUSSER-WEYENETH 
(1994) ebenfalls darauf, dass Verstehen als kognitive Konstruktion sowohl als Pro-
dukt als auch als Prozess zu sehen ist und betonen im Besonderen, dass Verstehen 
der Eigenaktivität des Lernenden bedarf und nicht von einer Person auf die andere 
übertragen werden kann:

Wer versteht, kopiert nicht Wirklichkeit, entschlüsselt nicht eine Struktur mit 
gegebenem, festem Sinnbestand […], sondern schafft   immer auch neue Infor-
mation, stift et oder erzeugt Sinn. Eine konstruktivistische Erkenntnisauff as-
sung […] nimmt daher Abschied von der Vorstellung, dass es ein Beobachten 
ohne einen Beobachter, ein Feststellen von Wahrheit ohne einen Wahrnehmen-
den bzw. ein Verstehen von etwas oder von jemand ohne die aktive, strukturbil-
dende Leistung einer Person gibt. (REUSSER & REUSSER-WEYENETH, 1994, 
S. 16 f.)

Verstehen heißt nicht nur „eigenständig erfahren, erkennen und begreifen, wie Ele-
mente zueinander in Beziehung stehen“ (BECK, GULDIMANN & ZUTAVERN, 
1994, S.  207), sondern umfasst auch, diese Erfahrungen in das bereits bestehen-
de Wissensnetz zu integrieren, sie zu erweitern oder umzustrukturieren. So spricht 
VON GLASERSFELD (1997b) auch von einer „aktiven Konstruktion viabler begriff -
licher Netzwerke“3 (ebd., S. 190), um seine Auff assung von Verständnis darzulegen. 
Wissen ist ein „Repertoire an Begriff en, begriffl  ichen Beziehungen und Handlungen 
oder Operationen, die sich in der Verfolgung unserer Ziele als viabel erwiesen ha-
ben“ (VON GLASERSFELD, 1997b, S.  202). Lernen aus konstruktivistischer Sicht 
stellt somit die aktive Aufnahme neuer Wissenselemente in ein bereits bestehendes 
Wissensnetz dar (SIEBERT, 1999, S. 20) und Verstehen kann dabei laut HÖRMANN 
(1983) als das „Schaff en neuer, weiter als bisher greifender Zusammenhänge“ (ebd., 
S. 18) gesehen werden.

Ein Verständnis von Lehren und Lernen, das durch eine konstruktivistische 
Grundposition gekennzeichnet ist und die Eigenaktivität des Lernenden in den Mit-
telpunkt stellt, fordert auch Eigenverantwortung sowie Selbstorganisation von jedem 
Individuum. Als „Produkt von Selbstorganisation“ (VON GLASERSFELD, 1997b, 
S. 191) wird Lernen dabei nach VON GLASERSFELD (1997b) beschrieben. Der Be-
griff  Eigenverantwortung ist eng mit den Begriff en Selbstständigkeit, Selbststeue-
rung, Selbsttätigkeit, Aktivität und Autonomie verwandt (HUBER, 2004, S. 25). Stellt 
Lernen einen aktiven, individuellen Prozess dar, der nicht von außen zu steuern ist, 
dann muss Lernen im engeren Sinne immer selbstgesteuert erfolgen (HUßMANN, 

3 Die Begriff e viabel und Viabilität wurden von ERNST VON GLASERSFELD aus der Biologie 
übernommen und ersetzen in der Th eorie des Radikalen Konstruktivismus den Begriff  der 
Wahrheit. „Handlungen, Begriff e und begriffl  iche Operationen sind dann viabel, wenn sie 
zu den Zwecken oder Beschreibungen passen, für die wir sie benutzen. Nach konstruktivis-
tischer Sichtweise ersetzt der Begriff  der Viabilität im Bereich der Erfahrung den traditionel-
len philosophischen Wahrheitsbegriff , der eine ‚korrekte‘ Abbildung der Realität bestimmt“ 
(VON GLASERSFELD, 1996, S. 43, Hervorhebungen im Original).
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2004, S.  6). Die Selbststeuerung kann dabei von Seiten der Lehrkraft  nur angeregt 
werden. Wobei KONRAD und TRAUB (1999) die Notwendigkeit dieser Anregungen 
explizit hervorheben: „Wenn Lernen ein individueller Prozess ist, sind Anregungen 
unausweichlich, die die Lernenden dazu befähigen über den herkömmlichen Unter-
richt hinaus ihr Lernen selbst in die Hand zu nehmen“ (ebd., S. 24). Selbstgesteuer-
tes Lernen lässt sich nur schrittweise aufb auen (HUßMANN, 2004, S. 6), muss auch 
erst gelernt werden und bewegt sich demnach nach KONRAD und TRAUB (1999) 
etwas weiter gefasst auf einem Kontinuum zwischen Selbststeuerung und Fremd-
steuerung (ebd., S.  30 ff .). Detaillierte Erkenntnisse im Hinblick auf den Grad der 
Fremdsteuerung bzw. die Lehrerrolle in einer konstruktivistischen Grundauff assung 
von Lehren und Lernen werden im Abschnitt 1.3 aufgeführt.

1.2 Abgrenzung zu einer behavioristischen Auff assung von 
Lehren und Lernen

„Sag mir, was ich wissen muss; verlang aber nicht von mir, 
dass ich denke!“

(WHITNEY, 1973, S. 285)

Die Kernidee konstruktivistischer Ansätze wird im folgenden Abschnitt einem beha-
vioristischen Verständnis von Lehren und Lernen gegenübergestellt. Die grundsätz-
lich verschiedenen Positionen des Lehrens und Lernens gehen aus der Gegenüber-
stellung der beiden Grundauff assungen besonders deutlich hervor.

Während den konstruktivistischen Ansätzen die individuelle Konstruktion der Er-
kenntnis gemeinsam ist, wird in der abbildtheoretischen Erkenntnisauff assung4 die 
Erkenntnis als ein Spiegelbild der erkannten Wirklichkeit angesehen. Man geht von 
der Überzeugung aus, dass der Gegenstand der Erkenntnis unabhängig vom erken-
nenden Individuum existiert (im Sinne einer objektiven Erkenntnis) und nicht erst 
von diesem im Erkenntnisprozess konstruiert wird. Die Abbildtheorie stellte eine er-
kenntnistheoretische Grundlage des Behaviorismus5 im 20. Jahrhundert dar (FATKE, 
1979, S.  299). Der Behaviorismus liefert als Erklärung für die Entstehung von Wis-
sen die mechanische Wirkung äußerer Ursachen: Von außen werden an den Lernen-
den Sinneseindrücke herangetragen, die sich als Ergebnis von ständiger Wiederho-
lung und dabei erfolgender Bestärkung in besonderem Maße einprägen.

Kontrastiert man die Grundzüge konstruktivistischer Erkenntnistheorien mit ab-
bildtheoretischen und behavioristischen Auff assungen, liegt demnach laut REIN-
MANN-ROTHMEIER und MANDL (1997) ein Hauptunterschied in der Tatsache, 
dass Lernen nach einem konstruktivistischen Verständnis aktiv erfolgt (siehe Ab-

4 Begründer der abbildtheoretischen Erkenntnisauff assung ist John Locke (1632–1704) 
(FATKE, 1979, S. 299).

5 Die Hauptvertreter des Behaviorismus waren Edwald L. Th orndike (1874–1949), Ivan P. 
Pawlow (1849–1936) und Burrhus F. Skinner (1904–1990) (SKINNER, 1978). 
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schnitt 1.1) – wohingegen Lernen nach einem behavioristischen Verständnis als 
weitgehend rezeptiver 6 Prozess verstanden wird (ebd., S. 359):

Das erkennende und lernende Subjekt bleibt passiv und gelangt durch einen re-
zeptiven Vorgang – im Sinne eines Einbrennens oder Einprägens – zu Erkennt-
nis. Da die äussere [sic] sinnliche Erfahrung die einzige Quelle des Wissens ist, 
spielt die Reizvermittlung die entscheidende Rolle für das geistige Wachstum 
des Lerners. (HESS, 2002, S. 14)

Da die Reizvermittlung nach behavioristischer Grundauff assung von bedeutender 
Relevanz beim Lehren und Lernen ist und der Erkenntnisvorgang weitgehend auf 
die passive Reizaufnahme und ein assoziatives Verknüpfen in der Vorstellung re-
duziert zu sein scheint (HESS,  2002, S.  14), wird Unterricht demnach als Ort der 
Belehrung gesehen. Lernenden wird eine passive Rolle zuteil, die Wissensvermitt-
lung sowie die Kontrolle über den kindlichen Lernprozess liegt ausschließlich in den 
Händen von Lehrkräft en (vgl.  DEWEY, 1976; HOLT, 2003). Neben einem Lernen 
über Sinnesreize, einer Fremdsteuerung des Lernprozesses und einem assoziativen 
Lernen7 erfolgt Lernen nach behavioristischer Auff assung auch durch mechanische 
Wiederholung von Wissensinhalten sowie dem Lernen durch Verstärkung bzw. Ler-
nen am Erfolg (vgl. PAWLOW, BAADER, SCHNAPPER & DRISCHEL, 1972; SKIN-
NER, 1978).

Im Folgenden wird ein Unterrichtsbeispiel aus der Mathematik zur Erarbeitung 
des kleinen Einmaleins in der Grundschule angeführt. STEINER (2008) veranschau-
licht an diesem unterrichtspraktischen Beispiel zur Einführung der Einmaleinsreihe 
mit 8 den didaktischen Ansatz einer Lehrkraft , die das assoziative Verknüpfen und 
die Vermittlung von wahrnehmbaren Sinnesreizen in den Mittelpunkt stellt.8 Die 
Lehrkraft  hat für die Erarbeitung Honigbiskuits mitgebracht, von denen 8 Stück im-
mer in eine vorbereitete Schachtel passen. Jede gefüllte Schachtel wird von den Schü-
lerinnen und Schülern mit einem Kärtchen versehen, auf dem die Gesamtzahl der 
Honigbiskuits festgehalten wird:

Die erste Schachtel enthielt 8 Stück, die zweite natürlich auch, aber wenn man 
die beiden zusammenfasste, waren das im ganzen schon 16. 2 x 8 = 16. Drei 
Schachteln enthielten 8 mehr, also 24. Sicherheitshalber wurde noch abgezählt, 
bevor man «24» als dritte Station der Reihe auf ein Kärtchen schrieb: 24, und 
man sagte dazu oder dachte dabei: 3 x 8 = 24. Die drei Schachteln sollten zu 

6 Unter dem Begriff  rezeptiv wird die Bereitschaft  oder die Fähigkeit zur Aufnahme von Sin-
neseindrücken verstanden (HESS,  2002, S.  14) – der Begriff  wird im Folgenden auf einen 
Reizempfänger oder passiven Lerner bezogen.

7 Assoziationslernen lässt sich durch die Bildung von Assoziationen zwischen Reizgegebenheit 
und bestimmten Reaktionsweisen erklären. Zwei Formen des assoziativen Lernens werden 
unterschieden: die klassische Konditionierung und die operante Konditionierung. Die klassi-
sche Konditionierung zeichnet sich durch die Verknüpfung von zwei Umgebungsreizen aus, 
während ein Organismus bei der operanten Konditionierung lernt, „bestimmte Verhaltens-
weisen mit bestimmten Konsequenzen zu assoziieren“ (MIETZEL, 2007, S. 140).

8 Die teilweise überspitzten Formulierungen, die STEINER (2008) bei der Beschreibung des 
unterrichtspraktischen Beispiels gewählt hat, verdeutlichen bzw. deuten an, dass er diesem 
Ansatz kritisch gegenübersteht.
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einem Block, jede neue unterhalb der vorangegangenen, auf den Tisch gelegt 
und nebendran jeweils mit dem richtigen Ergebnis markiert werden: 8, 16, 24 
usw. Als man bei 80 angelangt war, konnte man die ganze Reihe hersagen. Ein-
zelne Kinder sprachen sie vor, dann wurde sie auch an die Tafel und von dort 
ins Heft  geschrieben, und wer jedesmal [sic] leise mitgesprochen hatte, der 
konnte mit Sicherheit schon die Hälft e der Reihe auswendig, so bis 5 x 8 oder 
6 x 8! Die Lehrerin, Frau Braun, legte Wert darauf, dass auch mit den Schachteln 
geübt wurde: Immer wieder durft e ein Kind die Schachteln hinlegen und dazu 
sprechen: «1 x 8 = 8, 2 x 8 = 16» usw., bis alle 10 schön dalagen. Die Schachteln 
sollten nicht aufeinandergetürmt, sondern untereinander gelegt werden, weil 
das die Übersicht erhöhte. Dann durft en alle ein vorbereitetes Blatt bemalen, 
auf dem die 10 Schachteln mit den je 8 Biskuits vorgedruckt waren. Die ersten 
8 wurden dunkelbraun, die zweiten hellbraun angemalt, damit man die 8er-Pa-
kete deutlich voneinander unterscheiden konnte. Frau Braun hatte dazu eigens 
neue hellbraune Farbstift e verteilt; die Freude der Kinder war groß, konnte man 
die Farbe doch auch für das Kolorieren anderer Dinge gut gebrauchen. Natür-
lich musste zu jeder der bemalten Schachteln die passende Rechnung mit dem 
entsprechenden dunkel- oder hellbraunen Stift  geschrieben werden. Die letzten 
fünf Minuten dieser Einführungslektion galten einer, wie man sagt, spielerischen 
Vertiefung: Die Kinder begannen zunächst im Chor noch einmal: «1  x  8  = 8, 
2  x  8 = 16, 3  x  8  =  24, 4 x 8 = 32», und so weiter, bis «10 x 8 = 80». Dann 
machte es die Lehrerin schwieriger: Sie wischte an der Wandtafel, wo alle Rech-
nungen standen, das Ergebnis von 3 x 8, also 24, aus, und wieder begannen die 
Schüler im Chor: «1 x 8 = 8, 2 x 8 = 16, 3 x 8 = 24 … » – «Das könnt ihr schon 
wunderbar», lobte Frau Braun und wischte zwei weitere Resultate, nämlich 40 
und 72 weg. Lautstark ging es los: «1 x 8 = 8», nur bei 9 x 8 wurde die Laut-
stärke und das Unisono des jungen Arithmetikerchores etwas schwächer. Die 
einen zogen es vor, lieber nichts Lautes zu sagen, andere entschieden sich für 74 
und wieder andere zogen durch mit 9 x 8 = 72! Genau dann läutete die Pausen-
glocke, und das war nicht einmal die größte Belohnung; es gab nämlich für je-
den der famosen Rechner ein Biskuit, eine positive Verstärkung für 9 x 8 = 72 
oder 74 oder auch «Mhm?», je nachdem, wofür man sich gerade hatte entschlie-
ßen können, und da in der Pause ein spannendes Spiel die Hauptbeschäft igung 
war, war auch dafür gesorgt, dass die letzte arithmetische Reaktion, eben das 
Resultat für die 9  x 8-Rechnung mit keiner andern arithmetischen Überlegung 
mehr interferierte und so mit dem zuletzt gewussten, erahnten oder auch ver-
schwiegenen Ergebnis assoziiert blieb. (STEINER, 2008, S. 274 f., Hervorhebun-
gen im Original)

Der didaktische Ansatz der Lehrerin besteht im angeführten Unterrichtsbeispiel 
auf der assoziativen Verknüpfung als Grundlage des Rechenlernens und entstammt 
demnach der klassischen bzw. behavioristischen Lerntheorie. Bei der gewählten Vor-
gehensweise des Aufb aus der 8er-Reihe werden die ersten beiden Zahlen (Fakto-
ren einer Aufgabe) mit einer dritten, dem Ergebnis assoziiert. Derjenige, der dabei 
das Ergebnis nicht mit den beiden Faktoren der Aufgabe abgespeichert hat und so-
mit auch nicht abrufen kann, „ist eben kein guter Rechner; umgekehrt gilt als gu-
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ter Rechner, wer die richtigen Assoziationen rasch und korrekt abruft “ (STEINER, 
2008, S. 276 f.). Merkmale dieses Ansatzes sind eine mechanische Wiederholung bei 
angemessener Verstärkung und einer von Seiten der Lehrkraft  als günstig angesehe-
nen Segmentierung des Unterrichtsstoff es (ebd., S.  277). SKINNER (1958) spricht 
von Lehrkräft en als Lehrmaschinen, die herangezogen wurden, um einen klein- und 
gleichschrittigen, produktorientierten Unterricht zu gestalten: „Each step must be so 
small that it can always be taken, yet in taking it the student moves somewhat closer 
to fully competent behavior. Th e machine must make sure that these steps are taken 
in a carefully prescribed order“ (SKINNER, 1958, S. 970).

Einer behavioristischen Auff assung von Lehren und Lernen folgend zeichnet sich 
ein fully competent behavior nicht – wie in konstruktivistischen Ansätzen – durch 
ein Verständnis des Lerninhaltes aus. Im Mathematikunterricht, wie im vorherigen 
Unterrichtsbeispiel dargestellt, kann die bloße Assoziation eines Zahlenpaares mit 
dem Ergebnis auch nicht zum Aufb au eines Verständnisses der Rechenoperation bei-
tragen. Dies ist aber aus behavioristischer Sicht auch nicht zwingend nötig bzw. er-
strebenswert, da das am Ende stehende korrekte Endprodukt des Lernprozesses (im 
angeführten Beispiel das Beherrschen der Einmaleinsaufgaben) als Ziel der Erarbei-
tung angegeben wird (AESCHBACHER, 1994, S.  128). Verstehensbasierte Lernpro-
zesse, wie sie im Konstruktivismus angebahnt und angestrebt werden, spielen in der 
Reinform der Lehr-/Lerntheorie des Behaviorismus keine Rolle – man orientiert sich 
am korrekten Ergebnis des Lernprozesses, nicht am beschrittenen Lernweg.

1.3 Auswirkungen des Verständnisses von Lehren und Lernen 
auf die Rolle der Lehrperson

„Wir Lehrer – wahrscheinlich alle Menschen – werden von einer 
erstaunlichen Täuschung genarrt. Wir glauben, wir könnten ein Bild, 

eine Struktur oder ein funktionstüchtiges Modell einer Sache, die 
wir in unserem Geiste aufgrund langer Erfahrung und Vertrautheit 

zusammengesetzt haben, in den Geist einer anderen Person 
übertragen, indem wir es in ein langes Band aneinandergereihter 

Worte verwandeln.“

(HOLT, 1979, S. 167)

Das zugrundeliegende Verständnis von Lehren und Lernen wirkt sich auch auf die 
Rolle der Lehrperson aus. Während die Aufgabe einer Lehrkraft  nach behavioristi-
scher Auff assung von Lehren und Lernen in der Vermittlung von Wissen liegt, steht 
bei Lehrkräft en, die einer konstruktivistischen Grundauff assung folgen, das Schaff en 
von Lernumgebungen im Vordergrund, die gute Bedingungen für die Anregung in-
dividueller Konstruktionen bieten (TERHART, 1999, S. 636 f.). In einem behavioris-
tischen Rollenverständnis wird dem Lerner eine passive Rolle zuteil, der Lehrende 
übernimmt die alleinige Lernverantwortung, indem er die Segmentierung des Lern-



27    

stoff s vornimmt und je nach Leistungsvermögen eines Kindes Aufgabenschwierig-
keit bzw. -umfang variiert. Lernen erfolgt demnach durch die Belehrung von Sei-
ten der Lehrkraft  nach dem Prinzip der kleinen und kleinsten Schritte, die von der 
Lehrkraft  isoliert dargeboten werden, und durch die wiederholte Einforderung eines 
Übens isolierter Schwierigkeiten. Der Lernerfolg wird von der Lehrkraft  am richti-
gen Ergebnis gemessen und nicht am eingeschlagenen Lernweg des Lerners – der 
Lehrer selbst gibt den Lernweg vor, er vermittelt Rezepte (HESS,  2002, S.  42 ff .) als 
„fertigen Stoff “ (REUSSER, 2006, S. 161).

BRUNER kehrt sich bereits 1971 von diesem Rollenverständnis ab und betont:
To instruct someone in these disciplines is not a matter of getting him to com-
mit results to mind. Rather, it is to teach him to participate in the process that 
makes possible the establishment of knowledge. We teach a subject not to pro-
duce little living libraries on that subject, but rather to get a student to think 
mathematically for himself, to consider matters as an historian does, to take part 
in the process of knowledge-getting. Knowing is a process, not a product. (BRU-
NER, 1971, S. 72)

Die Vertreter bzw. Fürsprecher einer konstruktivistischen Grundposition distanzie-
ren sich ebenfalls von dem behavioristischen Rollenverständnis der Lehrperson und 
setzen dabei nach VON GLASERSFELD (1996) auf ein anderes Hauptaugenmerk: 
„Die Kunst des Lehrens hat wenig mit der Übertragung von Wissen zu tun, ihr 
grundlegendes Ziel muss darin bestehen, die Kunst des Lernens auszubilden“ (ebd., 
S. 309). Laut HESS (2002) übernimmt die Lehrkraft  dabei im Laufe des Lernprozes-
ses einer jeden Schülerin und eines jeden Schülers die Funktion eines Lernbegleiters 
mit zunehmend geringerer Lenkungsfunktion. Durch die anfängliche Unterstützung 
beim Aufb au eines zielgerichteten Lernverhaltens soll Lernen auf Schülerseite zuneh-
mend selbstorganisiert funktionieren (ebd., S.  44 f.). REUSSER (2006) betont eben-
falls die Wichtigkeit der Zurücknahme „der Dominanz der Steuerung“ (ebd., S. 165) 
und plädiert für einen, die Verantwortung abgebenden, „adaptiven Lernhelfer“ (ebd., 
S. 165).

Sowohl für die Beschreibung der Schüler- als auch der Lehrerrolle der beiden 
unterschiedlichen Ansätze von Lehren und Lernen setzt KÜHNEL (1916) auf die 
beiden gegensätzlichen Begriff spaare „Leitung und Rezeptivität“ vs. „Organisation 
und Aktivität“ (ebd., S.  70). Die konkrete Gegenüberstellung der konträren Rollen 
von Lehrkräft en eines behavioristisch orientierten im Vergleich zu einem konstruk-
tivistisch gestalteten Unterricht ist dabei auch in einigen Veröff entlichungen der letz-
ten Jahre aufgeführt (GALLIN & RUF, 1990, S.  19; HESS,  2002, S.  45; WINTER, 
1984a, S.  26; WINTER, 2016, S.  4 f.; WITTMANN, 1997, S.  28). In Tabelle 1 wird 
eine Gegenüberstellung – in ihren Extremausprägungen – in gekürzter Form darge-
boten.
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 Tabelle 1: Gegenüberstellung  der behavioristischen und der konstruktivistischen Lehrkraft-Rolle

Behavioristische Lehrkraft -Rolle Konstruktivistische Lehrkraft -Rolle

Lehrperson als Belehrer, Leiter, Instrukteur Lehrperson als Lernbegleiter, Organisator, 
Konstrukteur

Belehren nach dem Prinzip der kleinen und 
kleinsten Schritte

Anregen individueller Konstruktionen mithilfe 
von Lernumgebungen

Reduzieren der Schwierigkeit der Lerninhalte Beibehalten der Komplexität der Lerninhalte

Vermitteln von isolierten Einzelfakten Anregen verständnisbasierter Lernprozesse

Der Konstruktivismus hat ein nach REUSSER (2006) „für die Pädagogik attraktives, 
empirisch verankertes Lernparadigma hervorgebracht“ (ebd., S.  161, Hervorhebung 
im Original) und dabei den Blick auf die Lernwelten der Schülerinnen und Schüler 
gerichtet. Evident erscheint, dass sich damit auch ein Wandel der Lehrerrolle vollzo-
gen hat – von einer direkten zu einer eher indirekten Instruktion. Dieser Wandel des 
Rollenverständnisses geht mit der neuen Aufgabe der Lehrkraft  einher, eine Lernum-
gebung zu schaff en, die einer konstruktivistischen Auff assung von Lehren und Ler-
nen Rechnung trägt:

Das Handeln von Lehrpersonen vermag zwar günstige Bedingungen für ver-
ständnisvolles Lernen zu schaff en und damit das Lernfeld abzustecken, das Ler-
nen von individuellen Schülern aber kann es weder zwingend in Gang setzen 
noch sicher zum Erfolg führen. Das heisst [sic], keine Lehrperson kann einem 
Lernenden den Vollzug einer gedanklichen Verknüpfung abnehmen. (REUSSER, 
2006, S. 160 f.)

Welche Bedingungen allerdings eine gute Lernumgebung für die Anregung subjek-
tiver Konstruktionen erfüllen muss, geht nicht einheitlich aus der Literatur hervor 
(TERHART, 1999, S. 637). Je nach zugrunde liegender konstruktivistischer Position 
– von radikal bis hin zu gemäßigt – unterscheiden sich die Sichtweisen der jeweili-
gen Ansätze, indem sie einerseits vermehrt die Selbsttätigkeit der Schülerinnen und 
Schüler hervorheben oder andererseits die gezielte Anleitung durch die Lehrkraft  be-
tonen (DUIT, 1995, S. 916). Aus diesen verschiedenen Ansätzen innerhalb des kons-
truktivistischen Verständnisses geht bereits hervor, dass Unterricht nach aktuellem 
Verständnis von Lehren und Lernen immer eine Balance zwischen Konstruktion und 
Instruktion darstellt – das ausgewogene Maß an Instruktion für den individuellen 
Lernprozess allerdings nicht klar formuliert zu sein scheint.

Nach REUSSER (1994) lässt sich die Rolle der Lehrkraft  weder „auf einfache 
Metaphern des Typs ‚der Lehrer als x oder als y‘ reduzieren, noch der Wandel sich 
durch simplifi zierende Formeln des Typs ‚von der Rolle x zur Rolle y‘ qualifi zie-
ren“ (ebd., S.  34, Hervorhebungen im Original). Er sieht die beiden Lernkulturen, 
die behavioristische und die konstruktivistische, nicht schwarz/weiß, sondern eher 
im Sinne einer Schwerpunktverlagerung, die noch auf der Suche nach der entspre-
chenden Balance zu sein scheint (HESS,  2002; REUSSER, 1999a). Seiner Meinung 
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nach schlägt der Wandel des Rollenverständnisses von einem „direkt instruieren-
den Stoff darsteller, Unterweiser und Lektionengeber [zu einem] indirekt arrangieren-
den Lerndesigner, […] Moderator, Lernberater und Coach“ (REUSSER, 2006, S. 161, 
Ergänzung der Autorin) zwar eine positive Richtung ein, aber Folgerungen für die 
didaktische Rolle von Lehrern bzw. eine Th eorie des Lehrerhandelns sind nur un-
zureichend gegeben. Die Schwierigkeit besteht nach REUSSER (2006) darin, einen 
Unterricht zu konzipieren, der gründliches, in die Tiefe gehendes, fachliches Ver-
stehen und Autonomisierung jedes Lernenden zugleich anstrebt – denn individuelle 
Lernwege den Kindern zu ermöglichen und die Konstruktion von Wissen anzutrei-
ben, geht immer auch damit einher, dieses Freisetzen von Subjektivität wieder zu be-
grenzen (ebd., S.  161ff .). Es geht nicht um die „totale Selbststeuerung, sondern um 
eine Integration von Anleitung und Selbstständigkeit, Instruktion und Konstruktion 
(GUDJONS, 2006, S. 17). Doch wann, wie und wie stark Lehrpersonen unterstützen, 
anleiten oder instruieren sollen, sind off ene Fragen, welche die Unterrichtsforschung 
noch nicht detailliert geklärt hat (REUSSER, 2006, S. 164 ff .).

1.4 Historischer Abriss und gegenwärtige Aktualität behavioristischer und 
konstruktivistischer Auff assungen von Lehren und Lernen

„Wer sich zum Konstruktivismus bekennt, ist nicht nur ‚in‘, er darf 
sich auch eines weitläufi gen Kreises (scheinbar) Gleichgesinnter 

erfreuen.“

(REUSSER, 1999b, S. 1, Hervorhebung im Original)

Nicht die ausschließliche Selbststeuerung, sondern eine Integration fordert GUD-
JONS (2006) in seinem Zitat im vorausgehenden Abschnitt, das zugleich als ein In-
diz angeführt werden kann, dass aktuelle Lehr-/Lerntheorien durchaus sowohl kons-
tituierende Elemente des Behaviorismus als auch des Konstruktivismus einschließen. 
Die Begriff e Anleitung und Instruktion können als kennzeichnende Merkmale einer 
behavioristischen Grundauff assung geführt sowie Selbstständigkeit und Konstruk-
tion unter der konstruktivistischen Sichtweise subsumiert werden (siehe Abschnit-
te 1.1 und 1.2). Der folgende Abschnitt soll einen kleinen historischen Abriss der be-
havioristischen und konstruktivistischen Sicht auf Lehren und Lernen skizzieren und 
die gerade angesprochene, aktuelle Gegenwärtigkeit behavioristischer und konstruk-
tivistischer Auff assungen von Lehren und Lernen aufzeigen.

Die Wurzeln des Konstruktivismus liegen weit in der Vergangenheit, sie gehen 
zurück auf den Philosophen Xenophanes (570 v. Chr.–470 v. Chr.), der sich als einer 
der ersten mit dem Begriff  des Wissens philosophisch auseinandersetzte. Xenopha-
nes betonte, „dass wir es nur mit Erfahrung zu tun haben und nie mit Dingen an 
sich“ (VON GLASERSFELD, 1997a, S. 9) und bereitete damit „unwillkürlich den Bo-
den […], aus dem zweieinhalb Jahrtausende später die konstruktivistische Denk-
weise sprießen konnte“ (ebd., S.  9). Richtig durchgesetzt und präzisiert wurde die-
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se philosophische Position – wie man dem Zitat von VON GLASERSFELD (1997a) 
entnehmen kann – zunächst allerdings nicht. Die „Machthaber in allen Sparten“ 
(VON GLASERSFELD, 1997a, S. 9) beruhten lange Zeit auf dem Standpunkt, „sie al-
lein hätten Zugang zur endgültigen Wahrheit gefunden, und darum müsse man ih-
nen folgen“ (ebd., S. 9). Lehr- und Lerntheorien wurden vornehmlich von den Ideen 
des Behaviorismus geprägt, Unterricht wurde demnach als Ort der Belehrung ver-
standen und Lernen als passivistisch angesehen (vgl. DEWEY, 1976; HOLT, 2003). 
Gerade für Didaktiker und Pädagogen gestaltete sich diese Th eorie des Lernens als 
besonders ansprechend, sicherte sie doch die „Berechenbarkeit von Lernen sowie 
die suggerierte Kontrollierbarkeit von Unterricht und seinen Wirkungen“ (BRÜGEL-
MANN, 2005, S.  61 f., Hervorhebungen im Original). Diese behavioristische Sicht 
auf Lehren und Lernen konnte weit bis ins 20. Jahrhundert aufrecht erhalten wer-
den – bis zu diesem Zeitpunkt bestand kein Anreiz, sich mit den Denkprozessen 
der Kinder auseinanderzusetzen. Alles Wissen, über das Kinder verfügen, wurde den 
Kindern eingefl ößt oder wie die Metapher des Nürnberger Trichters (als rein mecha-
nische Wissensvermittlungsmethode) sehr treff end bildlich veranschaulicht, in den 
Kopf der Kinder hinein geschüttet (ANDRESEN & DIEHM, 2006, S.  263 f.). Es gab 
einzelne frühe Bewegungen, die das Lernen unter konstruktivistischer Perspektive 
betrachtet haben und den Versuch unternommen haben, diese Perspektive auf den 
Unterricht zu übertragen. Aber erst Anfang des 20. Jahrhunderts wurde der Grund-
gedanke des Konstruktivismus durch die Reformpädagogik und ihre Forderungen 
nach einer aktiven Rolle der Kinder im Lernprozess aufgegriff en und die konstruk-
tivistisch ausgerichtete Erkenntnistheorie erfuhr einen stärkeren Einfl uss. Mitte des 
20. Jahrhunderts wurde demnach immer deutlicher, dass sich Verhaltensweisen der 
Menschen und Prozesse nicht rein mit behavioristischen Mitteln erklären lassen. Der 
Konstruktivismus ist ab diesem Zeitpunkt auf dem Vormarsch und ist aus heutiger 
Sicht nicht mehr wegzudenken – „konstruktivistisches Denken scheint ‚im Trend‘ zu 
liegen“ (SIEBERT, 1999, S. 5, Hervorhebung im Original). „Es ist jedoch eine Tatsa-
che, dass die behavioristische Bewegung nicht nur vor einigen Jahrzehnten außer-
ordentlich einfl ussreich war; ihre Schlüsselbegriff e sind heute noch lebendig und in 
den Vorstellungen vieler Erzieher wirksam“ (VON GLASERSFELD, 1996, S.  287). 
Dies ist sicherlich auch darauf zurückzuführen, dass dem Behaviorismus laut HESS 
(2002) vereinzelt auch Positives abgewonnen werden kann: Verhaltensweisen oder 
-muster können angebahnt und gefestigt, vermittelte Fertigkeiten ausgebildet werden 
(ebd., S. 19). Einzelne Ansichten eines behavioristischen Verständnisses von Lehren 
und Lernen nehmen auch in der aktuellen Lehr-/Lerntheorie bzw. der gegenwärtigen 
Diskussion eine nicht zu vernachlässigende Rolle ein.

Nach diesen vorgeschalteten, allgemeinen und nicht explizit mathematikspezifi -
schen Ausführungen zum Lehren und Lernen wird im folgenden Abschnitt die Be-
deutsamkeit der Diskussion um verschiedene Lerntheorien (Abschnitt 1.1 bis 1.4) 
auf die Mathematik-Didaktik in den Blick genommen. Die Mathematik-Didaktik be-
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ruft  sich auf verschiedene wissenschaft liche Bezugsdisziplinen9, „eine interdisziplinär 
angelegte Leitschiene“ (HESS,  2002, S.  8, Hervorhebung im Original) verläuft  da-
bei von einer behavioristischen zu einer konstruktivistischen Auff assung von Lehren 
und Lernen. Welche fachdidaktischen Auswirkungen einer gewissen Tragweite die 
veränderte Sichtweise auf das Lehren und Lernen im Mathematikunterricht hat, soll 
im Folgenden näher ausgeführt werden.

1.5 Veränderte Sichtweise auf das Lehren und Lernen im 
Mathematikunterricht

„Learning mathematics is a constructive activity. Something which 
contradicts the idea of learning as absorbing knowledge which is 

presented or transmitted.“

(TREFFERS, 1991, S. 24)

Die Entwicklung des Mathematikunterrichts der Grundschule Ende des letzten Jahr-
hunderts bis in die Gegenwart ist nach KRAUTHAUSEN (2000) dem Paradigmen-
wechsel von einer behavioristischen zu einer konstruktivistischen Sichtweise auf das 
Lehren und Lernen geschuldet (siehe Abschnitt 1.1 bis 1.3) (ebd., S. 13). In diesem 
Abschnitt soll präzisiert werden, inwieweit bzw. inwiefern sich die veränderte Sicht-
weise bezogen auf die Lehr- und Lernprozesse im Allgemeinen auf das Lehren und 
Lernen im Fach Mathematik widerspiegelt. Der Abschnitt 1.5 bietet zu Beginn einen 
historischen Abriss, der im Vergleich zum vorherigen Abschnitt die historische Ent-
wicklung des Lehr- und Lernverständnisses im Mathematikunterricht in den Fokus 
stellt und einen Blick auf die gegenwärtige Aktualität der beiden Grundauff assun-
gen von Lehren und Lernen in diesem Fach richtet. Im Zentrum der Ausführungen 
steht die Auseinandersetzung mit einem – vor dem Hintergrund des sogenannten 
Paradigmenwechsels – revidierten Verständnisses von Mathematikunterricht, welches 
das Lernen und nicht mehr das Lehren in den Mittelpunkt stellt, die aktive Rolle 
des Lernenden betont sowie dem Verstehensprozess im Mathematikunterricht eine 
zentrale Rolle zuteilwerden lässt. Wie eine konkrete, konzeptuelle Vorgehensweise in 
einem Mathematikunterricht, der auf einem konstruktivistischen Lehr-Lernverständ-
nis beruht, aussehen kann, wird zum Abschluss dieses Abschnittes diskutiert.

9 Als bedeutendste Bezugsdisziplinen der Mathematikdidaktik führt z. B. WITTMANN 
(1995b) die verschiedenen Bereiche der Mathematik, die Pädagogik, die Allgemeine Didak-
tik, die Lernpsychologie, die Pädagogische Psychologie, die Kognitionspsychologie, die Ent-
wicklungspsychologie, die Neurophysiologie sowie die Philosophie an (ebd., S. 1 f.).
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1.5.1 Historische Entwicklung zweier miteinander konkurrierender Ansätze 
des Lehrens und Lernens im Mathematikunterricht

Laut WITTMANN (1990) sind die konstruktivistische und die behavioristische 
Grundauff assung von Lehren und Lernen zwei Ansätze, die sich auch auf das Leh-
ren und Lernen von Mathematik ausgewirkt haben. Insbesondere seit Beginn des 20. 
Jahrhunderts konkurrieren diese beiden Ansätze miteinander und werden in der ein-
schlägigen fachdidaktischen Diskussion des Öft eren als Idealtypen10 gegenübergestellt 
(vgl. z. B. AHMED, 1987; GALLIN & RUF, 1990; KRAUTHAUSEN, 2000; KÜH-
NEL, 1916; WINTER, 2016; WITTMANN, 1990). Historisch betrachtet war „die 
Praxis des Unterrichts [bis weit ins 20. Jahrhundert] durchwegs von der passivisti-
schen Sichtweise beherrscht, obwohl es immer Einzelgänger gegeben hat, die für ak-
tives Lernen eingetreten sind“ (WITTMANN, 1990, S. 153, Ergänzung der Autorin). 
So plädierte der bedeutende Rechendidaktiker Johannes Kühnel (1869–1928) bereits 
Anfang des 20.  Jahrhunderts für eine notwendige Veränderung der Schüler- und 
Lehrerrolle im Mathematikunterricht und reihte sich damit in eine frühe Bewegung 
ein, die der Forderung nach einer aktiven Rolle der Kinder bezogen auf Lernprozes-
se im Allgemeinen nachkam (siehe Abschnitt 1.4). Die Hauptintention KÜHNELS 
(1916) bestand bereits zu diesem frühen Zeitpunkt darin, Kinder angemessen zu för-
dern und eff ektives Lernen zu erzielen – KÜHNEL (1916) formulierte diese Inten-
tion in seinem Werk Neubau des Rechenunterrichts wie folgt: 

Beibringen, darbieten, vermitteln sind vielmehr Begriff e der Unterrichtskunst ver-
gangener Tage und haben für die Gegenwart geringeren Wert; denn der pädago-
gische Blick unserer Zeit ist nicht mehr stoffl  ich eingestellt. Wohl soll der Schü-
ler auch künft ig Kenntnisse und Fertigkeiten gewinnen – wir hoff en sogar noch 
mehr als früher, aber wir wollen sie ihm nicht beibringen, sondern er soll sie 
sich erwerben. (KÜHNEL, 1916, S. 136, Hervorhebungen im Original)

Diese Sichtweise konnte sich allerdings lange Zeit auch in der Mathematikdidaktik 
nicht durchsetzen (vgl. KRAUTHAUSEN, 2000; SCHIPPER, 2009) – wurden doch 
die didaktischen Möglichkeiten des Lehrers dauerhaft  überschätzt und das geistige 
Potential der Schülerinnen und Schüler unterschätzt (WITTMANN, 1995a, S.  12). 
Zudem war die Vorstellung allgegenwärtig, dass die starke Fachstruktur der Mathe-
matik11 nur als Folge kleiner und kleinster Schritte vermittelt werden konnte, da „für 
die Mathematik [ein] kleinschrittiger hierarchischer Aufb au aus Elementen gera-
dezu als naturgemäß“ (WITTMANN, 1995a, S.  13, Ergänzung der Autorin) ange-
sehen wurde. Fachspezifi sch betrachtet für das Fach Mathematik vollzog sich erst 
gegen Ende des letzten Jahrhunderts die konstruktivistische Wende mit dem unauf-

10 Die beiden Positionen dieser Dichotomie – der belehrende Unterricht im Zuge der beha-
vioristischen Position und ein aktiv-entdeckender Unterricht im Sinne einer konstruktivisti-
schen Auff assung – werden teilweise mit unterschiedlichen Begriffl  ichkeiten beschrieben, in 
ihren Grundaussagen herrscht allerdings Einigkeit.

11 Unter Fachstruktur der Mathematik wird nach BUSCHKÜHLE, DUNCKER & OSWALT 
(2009) die „Fachsystematik der Wissenschaft sdisziplin Mathematik“ (ebd., S. 48) verstanden.
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haltsamen Aufstieg aktivistischer und dem gleichzeitigen Rückgang passivistischer 
Th eorien. Die konstruktivistische Wende stellte dabei nach KRAUTHAUSEN (2000) 
für den Mathematikunterricht allerdings nur eine – wenn auch extreme – Akzent-
verschiebung dar, die nicht mit dem „Absolutheitsanspruch des einen oder ande-
ren Typs“ (KRAUTHAUSEN, 2000, S.  18) einherging. Für die Mathematikdidaktik 
und den Mathematikunterricht läutete die konstruktivistische Sichtweise auf das Ma-
thematiklernen einen mit der Formel „Mathematik entdecken“ (WINTER, 1987) ge-
kennzeichneten Umbruch ein, der für einen Mathematikunterricht plädierte, der den 
Kindern das Lernen auf eigenen Wegen ermöglicht (SCHIPPER, 2009, S. 66).

Das von STEINER (2008) bereits im Jahr 1988 in seiner Erstaufl age illustrierte 
Beispiel zur Einführung der Einmaleinsreihe mit 8 in der Grundschule (siehe Ab-
schnitt 1.2) aus dem Buch Lernen – 20 Szenarien aus dem Alltag scheint auch noch 
heute eine mögliche Alltagssituation zu veranschaulichen – abbildtheoretische und 
behavioristische Annahmen gehören nicht vergangenen Tagen an, sondern scheinen 
didaktisch gegenwärtig zu sein (HESS,  2002, S.  16). Auch KRAUTHAUSEN (2000, 
S. 13 ff .) verweist darauf, dass behavioristische Vorstellungen von Lernen und Lehren 
von Mathematik nicht an Aktualität in der Unterrichtsrealität bzw. -praxis verloren 
haben (ebd., S.  13 ff .; FREESEMANN, 2014, S.  17; KRAUTHAUSEN & SCHERER, 
2007, S. 103).12 Nach BAUER (1995) besteht in der pädagogisch-didaktischen Litera-
tur weitgehend Konsens bezüglich einer veränderten Sichtweise auf das Lehren und 
Lernen von Mathematik. Die „Realisierung [in der Unterrichtspraxis] ist allerdings 
schwierig und anstrengend“ (ebd., 1995, S. 15, Ergänzung der Autorin). Auch in den 
Niederlanden, die bezüglich dieser veränderten Sichtweise in der Mathematikdidak-
tik eine führende Rolle innehatte, wurden Schwierigkeiten in der Umsetzung eines 
konstruktivistisch orientierten Mathematikunterrichts wahrgenommen – die Praxis 
spiegelte auch dort ein anderes Bild wider als die Fachdidaktik und die Lehrbücher. 
TREFFERS (1997) betont, dass die „Erneuerung, die gegenwärtig in den Lehrbü-
chern erkennbar wird, in der Praxis noch lange nicht umgesetzt wird“ (ebd., S. 21). 
WITTMANN (1990) sieht eine ähnliche Entwicklung, wenn er davon spricht, dass 
vermehrt Stimmen gegen die behavioristische Sichtweise laut werden und gleichzei-
tig die Akzentverschiebung zu einer konstruktivistischen Auff assung von Lehren und 
Lernen einen sehr breiten Konsens gefunden hat. Auch in den Lehrplänen verdich-
ten sich zunehmend die Anzeichen für ein konstruktivistisches Verständnis von Ler-
nen und Lehren. „Trotzdem ist nicht zu erwarten, dass sich die Schulwirklichkeit 
in kurzer Zeit von selbst auf die didaktischen Prinzipien der neuen Richtlinien und 
Lehrpläne einstellen wird“ (ebd., S. 154). Verwunderlich scheint dies nicht, bedenkt 
man, dass laut KUHN (1993) ein Paradigmenwechsel, wie der skizzierte, durchaus 
20–25 Jahre benötigt, um breite Anerkennung zu erlangen.

12 Nach KRAUTHAUSEN (2000) gibt es dafür auch einige Gründe, die durchaus nachvollzieh-
bar erscheinen, „u. a. die eigene Lernbiographie, [die] Altersstruktur und [der] Aus- und 
Fort bildungsstand der Kollegen […] – abgesehen vom prinzipiellen Zeitbedarf eines Para-
digmenwechsels“ (ebd., S. 13, Ergänzungen der Autorin), der im weiteren Verlauf dieses Ab-
schnittes auch von KUHN (1993) beschrieben bzw. aufgezeigt wird.
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Einer Aussage von PLANCK (1948) zufolge, scheint ein aufgrund eines Paradig-
menwechsels wünschenswerter Umbruch in der Unterrichtspraxis bezogen auf das 
Lehren und Lernen im Allgemeinen nur unter drastischen Voraussetzungen von-
stattengehen zu können: „Eine neue wissenschaft liche Wahrheit pfl egt sich nicht 
in der Weise durchzusetzen, daß [sic] ihre Gegner überzeugt werden, sondern viel 
mehr dadurch, daß [sic] die Gegner allmählich aussterben und daß [sic] die her-
anwachsende Generation von vorneherein mit der Wahrheit vertraut gemacht ist“ 
(PLANCK, 1948, S. 22).

Was man nach derzeitigem Verständnis als neue wissenschaft liche Wahrheit – wie 
es PLANCK (1948) in seinem angeführten Zitat genannt hat – im Hinblick auf das 
Lehren und Lernen von Mathematik versteht, soll im folgenden Abschnitt einer de-
taillierten Betrachtung unterzogen werden. Das Hauptaugenmerk liegt dabei auf dem 
Primat des Verstehens. Darüber hinaus soll einerseits die konstruktivistische Sicht-
weise auf das Lehren und Lernen im Mathematikunterricht von einer behavioristi-
schen Sichtweise abgegrenzt und andererseits aufgezeigt werden, inwiefern behavio-
ristische Elemente Bestandteil einer konstruktivistischen Auff assung von Lehren und 
Lernen im Mathematikunterricht aus heutiger Sicht sind.

1.5.2 Primat des Verstehens im Mathematikunterricht

Einem behavioristischen Verständnis von Lehren und Lernen zufolge wird Erkennt-
nis von außen an den Lernenden herangetragen und durch wiederholtes Üben und 
damit einhergehender Bestärkung eingeprägt (siehe Abschnitt 1.2). Die ursprünglich 
behavioristische Position sah die Schule demnach als „Ort [an], an dem kenntnis-
reiche Lehrkräft e dafür sorgten, dass die Lebenserfahrungen und Denkprodukte an-
derer Leute in wohlproportionierten Häppchen der nächsten Generation vermittelt 
wurden“ (BECK et al., 1992, S. 9, Ergänzung der Autorin). Diese Unterrichtsauff as-
sung, die auch den Mathematikunterricht entscheidend geprägt hat, konnte in ers-
ter Linie aufgrund der starken Fachstruktur der Mathematik im Fach Mathematik 
lange nicht überwunden werden. Die Fachstruktur verlangte nach damaliger Vor-
stellung von Natur aus die Übersetzung in „eine methodisch gestuft e Folge «klei-
ner und kleinster Schritte», die unter «Isolierung der Schwierigkeit» vom «Leichten 
zum Schweren» und vom «Einfachen zum Zusammengesetzten» durchlaufen“ wird 
(WITTMANN, 1995a, S.  13, Hervorhebungen im Original). In Anlehnung an den 
Behaviorismus avancierte Lernen im eigentlichen Sinne auch im Mathematikunter-
richt zum Nebenprodukt, von zentraler Bedeutung war das Einüben eines richtigen 
Lösungsweges bzw. das Anwenden eines Verfahrens, um schnellstmöglich zum rich-
tigen Ergebnis zu gelangen (KRAUTHAUSEN, 2000, S. 14 f.). Wird Mathematik die-
ser behavioristischen Auff assung zufolge „als Fertigprodukt verstanden, dann kann 
ein Unterrichtsziel als erreicht gelten, wenn der angebotene Inhalt adäquat <über-
nommen> wurde, d. h. das Kind ein für geeignet erachtetes Endverhalten zeigt“ 
(ebd., S.  16, Hervorhebungen im Original). FREUDENTHAL beschreibt die Gege-
benheiten 1973 mit folgenden Worten: „Die Mathematik ist bis heute nur als Fertig-
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produkt analysiert worden, und wenn dann auf die Analyse eine formalisierte Syn-
these folgt, so wird das Ergebnis als Fertigprodukt präsentiert“ (ebd., S. 110). Dieses 
Lern- bzw. Unterrichtsverständnis stimmt mit dem teilweise auch noch gegenwär-
tigen Bild von der Mathematik als einem Anhäufen von Defi nitionen, Regeln und 
Verfahren im Umgang mit Zahlen überein. Schülerinnen und Schüler eignen sich 
einen sogenannten Königsweg, eine aus Sicht der Lehrkraft  elegante Vorgehenswei-
se zur Lösung von Aufgaben, an und führen diese ohne jegliches mathematisches 
Denken – wie ein Rezept – durch (GALLIN, RUF & SITTA, 1985). Es erweckt den 
Anschein, als würden feste Methoden bzw. Prozeduren oder Formeln als Ersatz für 
Denkleistungen zum Einsatz kommen (BENEZET, 1988, S. 363). 

Die folgende Zusammenschau (siehe Tabelle 2) kontrastiert pointiert angelehnt 
an FREESEMANN (2014) die charakteristischen Merkmale eines rezeptiv gestalteten 
Mathematikunterrichts und seines Pendants, eines konstruktivistischen Mathematik-
unterrichts (ebd., S. 17 f.).

 Tabelle 2:  Zusammenfassende Gegenüberstellung von Merkmalen eines rezeptiv gestalteten und konst-
ruktivistisch orientierten Mathematikunterrichts (in Anlehnung an FREESEMANN, 2014, S. 17 f.)

Rezeptiv gestalteter Mathematikunterricht Mathematikunterricht orientiert am 
konstruktivistischen Lernen

Mathematik wird auf das Rechnen verkürzt Verständnis von Zusammenhängen, von Zahl-
beziehungen und arithmetischen Operationen

Betonung der (schrift lichen) Algorithmen; 
Einüben von Rechenschritten

Einsicht ist wichtiger als Automatisieren; 
„Inhaltliches Denken vor Kalkül“ (PREDIGER, 
2009)

Kleinschrittigkeit, didaktisches Vereinfachen; 
geringeres Anspruchsniveau

Lernen in komplexen Problemstellungen; hohes 
Anspruchsniveau

Lehrperson als Belehrer Lehrperson als Lernbegleiter

Belehrung durch die Lehrperson im Sinne des 
Vormachens und Nachmachens

Mathematiktreiben als aktives Entdecken durch 
die Schülerinnen und Schüler

Vorgabe fester Rechenwege Schülerinnen und Schüler entwickeln eigene 
Lösungen

Auswendiglernen und mechanisches Üben Von- und miteinander lernen; begründen, 
argumentieren, vergleichen, nachvollziehen

Mit dem Paradigmenwechsel von einer behavioristischen Sichtweise zu einer kons-
truktivistischen Sicht wird gerade dem Verstehen der Lern- und Denkprozesse eine 
besondere Bedeutung zuteil – geht man doch heute davon aus, dass Lernen zentral 
darin besteht, dass von jedem Individuum kognitive Strukturen aufgebaut werden 
(siehe Abschnitt 1.1). Die folgenden Ausführungen widmen sich ausführlich dem 
Primat des Verstehens der konstruktivistischen Grundauff assung von Lehren und 
Lernen.
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Das konstruktivistische Lehr-/Lernverständnis wirkt sich ebenso wie die beha-
vioristische Auff assung von Lehren und Lernen auf die Gestaltung des Mathematik-
unterrichtes aus. Die Vorstellung, dass die starke Fachstruktur der Mathematik kei-
ne Öff nung des Unterrichtes zulässt, wurde in den 70er Jahren aufgelöst, „als neue 
Erkenntnisse und Entwicklungen in der Wissenschaft sgeschichte, Wissenschaft stheo-
rie und Philosophie der Mathematik“ (WITTMANN, 1995a, S. 13) einhergehend mit 
dem aufk ommenden Konstruktivismus zu einem vollkommen neuen Verhältnis von 
Wissenschaft  und Unterricht führten. WITTMANN (1995a) beschreibt die neue Be-
ziehung von mathematischer Wissenschaft  und dem Mathematikunterricht wie folgt:

Lernprozesse [werden] nicht mehr von den logischen Begriff sstrukturen der 
Mathematik bestimmt. Maßgebend sind vielmehr die mathematischen Erkennt-
nisprozesse, die in sinnvollen Problemsituationen nach ihrer eigenen Logik ab-
laufen. Mathematik wird vorrangig als Tätigkeit gesehen, die gekennzeichnet ist 
durch die mathematische Beschreibung von problemhaltigen Situationen, durch 
das Entdecken und Begründen von Beziehungen sowie durch die mündliche 
und schrift liche Mitteilung der Lösungswege und Ergebnisse. (WITTMANN, 
1995a, S. 13, Hervorhebungen im Original, Ergänzung der Autorin)

Dass Schülerinnen und Schüler ihr Wissen individuell konstruieren müssen bzw. 
mathematische Konzepte entwickeln müssen, indem sie sich auf mathematische 
Aktivitäten einlassen, ist mittlerweile weit verbreitet und allgemeiner Konsens der 
Mathematikdidaktik (vgl. KÄPNICK, 2014, S.  36 ff .; KRAUTHAUSEN, 2000, S.  28; 
SCHERER & MOSER OPITZ, 2010, S. 17 ff .; SCHIPPER, 2009, S. 32 ff .; SCHÜTTE, 
2008, S. 45 ff .; WINTER, 2016; WITTMANN, 1990, 1995a). Nach WINTER (1984b) 
wird Lernen demnach als ein „aktiver, schöpferischer Prozess, den man zwar durch 
eine geeignete Lernumgebung von außen begünstigen kann und freilich auch muss, 
den man aber nicht einfach (durch gutes Erklären) beliebig herbeiführen kann“ 
(WINTER, 1984b, S.  27), verstanden. Wissen ist nach heutiger Auff assung prinzi-
piell nicht vermittelbar – wie TRIVETT (1977, S. 41 f., übersetzt nach E. CH. WITT-
MANN) bereits 1977 in folgendem Zitat betont:

Es kann sehr leicht sein, dass Kinder von Natur aus so leistungsfähige Lerner 
sind, dass das Rechnen, das wir ihnen beizubringen versuchen, viel leichter von 
ihnen gelernt werden könnte, wenn wir als Lehrer nicht so darauf fi xiert wären, 
es ihnen beibringen zu wollen. (TRIVETT, 1977, S. 41 f., übersetzt nach E. CH. 
WITTMANN)

REVUZ (1980) weist darüber hinaus darauf hin: „On ne peut comprendre les ma-
thématiques qu’en les faisant soi-même, en n’admettant rien de quelque autorité que 
cela provienne […] Dans un sens, on ne peut enseigner véritablement les mathé-
matiques qu’à soi-même“13 (ebd., S.  140). Verstehen wird dabei nach CARPENTER 
und LEHRER (1999) nicht als „static attribute of an individual’s knowledge“ (ebd., 

13 Man kann die Mathematik nur verstehen, indem man sie selbst erschafft   und autonom be-
wertet […]. In einem bestimmten Sinn kann man sich die Mathematik nur selbst beibringen 
(Übersetzung der Autorin).
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S. 20) beschrieben, sondern als „mental activity that contributes to the development 
of understanding“ (ebd., S. 20). HIEBERT und CARPENTER (1992) führen folgen-
de Defi nition von Verstehen von Mathematik an, die durch ein konstruktivistisches 
Lernverständnis geprägt ist: „Understanding in mathematics is making connections 
between ideas, facts or procedures“ (ebd., S.  67). Verstehen bedeutet demnach das 
Herstellen von Verknüpfungen, Beziehungen oder Zusammenhängen zwischen ma-
thematischen Ideen, Prozeduren und Konzepten – die zu umso tieferem Verständnis 
führen, je zahlreicher und ausgedehnter die mentalen Verbindungen sind (HIEBERT 
& GROUWS, 2007, S. 380). Tiefes Verstehen erzeugt Strukturen, die sich durch Fle-
xibilität und Beweglichkeit auszeichnen und den Transfer erleichtern bzw. begüns-
tigen. Verstehen trägt aber auch zum Erinnern bei und reduziert somit das, was er-
innert werden muss. Wer auf ein tiefes Verständnis zurückgreifen kann, dem dürft e 
auch das weitere Verstehen mühelos von der Hand gehen – kann dieses doch in 
ein strukturiertes und verknüpft es Netzwerk leichter integriert werden (DROLLIN-
GER-VETTER, 2011, S. 28 f.).

Es sei an dieser Stelle allerdings nach FREUDENTHAL (1973) auf die Notwen-
digkeit hingewiesen, dass nicht die fertige Mathematik als Ausgangspunkt für Verste-
hensprozesse anzusehen ist (ebd., S.  100 f.), sondern ein Begriff  bzw. die Mathema-
tik als verstanden betrachtet werden kann, wenn man an der Erschaff ung auch selbst 
mitwirkt (REVUZ, 1980, S.  140 f.). Verstehen kann demnach in Anlehnung an eine 
konstruktivistische Auff assung (siehe Abschnitt 1.1) auch im Mathematikunterricht 
als (Verstehens-) Prozess oder aber als Produkt bzw. Ziel dieses Prozesses angesehen 
werden (STEBLER et al., 1994, S. 228 f.). Nach DROLLINGER-VETTER (2011) soll-
te beides „in der Mathematik vor allem in Bezug auf die Darstellung von mathemati-
schen Objekten und Zusammenhängen deutlich voneinander getrennt werden“ (ebd., 
S. 29). Bei einer korrekt angewandten Prozedur kann beispielsweise nicht zwangsläu-
fi g auf ein Verständnis dieser Prozedur geschlossen werden, da diese auch auswen-
dig gelernt korrekt durchgeführt werden kann. Das Verständnis einer Prozedur stellt 
allerdings auch keine notwendige Voraussetzung für deren fehlerfreie Durchführung 
dar.

SCHOENFELD (1988) spricht in dieser Diskussion von der Diskrepanz zwischen 
der instrumentellen Rechenfertigkeit, einer Fertigkeit, Regeln auch ohne Einsicht an-
zuwenden und dem wirklichen Verstehen der zugrunde liegenden mathematischen 
Konzepte. Während in der Vergangenheit ein häufi ger Diskussionsbedarf bestand, ob 
die Aneignung von Fertigkeiten oder das Verstehen beim Mathematiklernen prio-
risiert werden soll bzw. nach behavioristischer Auff assung von Lehren und Lernen 
ausschließlich Fertigkeiten angestrebt werden sollen, wird in der aktuellen Diskus-
sion vermehrt die Beziehung zwischen prozeduralem und konzeptuellem Wissen in 
den Blick genommen und als Schlüssel zum Verständnis vieler Lernprozesse ange-
sehen (HIEBERT, 1986, S.  2 ff .; HIEBERT & LEFEVRE, 1986, S. 1 ff .). Konzeptuel-
les Wissen wird als Wissen aufgefasst, das reich an Beziehungen ist. Es wird defi niert 
als zusammenhängendes Netz von Wissensbestandteilen, das sich aus Einzelfakten 
und ihren Beziehungen zueinander zusammensetzt und sich durch eine Verknüp-
fung bzw. Verbindung alter und neuer Informationen entwickelt (BAROODY, 2003, 
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S. 12). Durch eine Verbindung dieser alten und neuen Wissensbausteine oder einer 
kognitiven Neuorganisation entsteht Einsicht bzw. Verständnis. Konzeptuelles Wis-
sen kann demnach nur zusammen mit Einsicht und Verständnis entwickelt werden. 

Der Grad des Verständnisses wird bestimmt durch die Anzahl und die Stär-
ke der Verbindungen in einem Netzwerk von Informationsbestandteilen. Ein 
mathematisches Konzept oder eine mathematische Prozedur ist um so bes-
ser verstanden, je zahlreicher und stärker die Verbindungen sind zu bereits im 
Individuum etablierten Netzwerken. (GERSTER & SCHULZ, 1998, S.  32, Her-
vorhebungen im Original)

Während das konzeptuelle Wissen, das BAROODY (2003) mit „knowledge that in-
volves understanding why“ (ebd., S.  12, Hervorhebung im Original) beschreibt, auf 
Verständnis basiert, kann prozedurales Wissen abgekoppelt vom Verständnis ange-
eignet werden und stellt Wissen dar, das aus der Kenntnis über Symbole und den 
Regeln, die den Umgang mit diesen Symbolen regeln, besteht. Es handelt sich dem-
nach um Wissen, „that involves knowing how“ (ebd., S.  12, Hervorhebung im Ori-
ginal). Das auswendige Beherrschen von prozeduralem Wissen setzt eine kleine An-
zahl an verknüpft en Verbindungen voraus, genauer gesagt die Anzahl an Schritten, 
die zur Durchführung einer Prozedur vonnöten sind. Der Sinn der aufeinanderfol-
genden Schritte bzw. ein Verständnis des mathematischen Konzeptes kann dabei 
vollkommen unbeachtet bleiben (GERSTER & SCHULZ, 1998, S. 32).

Mit der Ausbildung von Rechenfertigkeiten und der Entwicklung mathemati-
schen Denkens und Verstehens existieren in der Literatur somit zwei zunächst kom-
plementäre Vorstellungen in Hinblick auf das verfolgte Ziel des Mathematikunter-
richts (COWAN, 2003, S. 35 ff .). Dabei erfährt das Ausführen von Rechenprozeduren 
oder das Verinnerlichen von Einzelfakten einer Rechenoperation, wie beispielswei-
se das Abspeichern der Aufgaben des kleinen Einmaleins, sowie der damit einherge-
hende Aufb au von Rechenfertigkeiten im Sinne eines prozeduralen Wissens oft  eine 
größere Bedeutung im Mathematikunterricht als eine verständnisbasierte Erarbei-
tung der Inhalte (GERSTER & SCHULZ, 1998, S. 31). Diese Erkenntnis nach GERS-
TER und SCHULZ (1998) zeigt – wie bereits im Abschnitt 1.4 für das Verständnis 
von Lehren und Lernen im Allgemeinen dargelegt – auch für den Mathematikunter-
richt die Aktualität konstituierender behavioristischer Elemente auf. Das folgende 
Zitat aus den Bildungsstandards (KMK, 2004) verdeutlicht allerdings, dass eine aus-
schließliche Beschränkung des Mathematikunterrichts auf die Entwicklung und An-
eignung von prozeduralem Wissen nicht als wünschenswert angesehen wird: „Das 
Mathematiklernen in der Grundschule darf nicht auf die Aneignung von Kenntnis-
sen und Fertigkeiten reduziert werden. Das Ziel ist die Entwicklung eines gesicher-
ten Verständnisses mathematischer Inhalte“ (ebd., S. 6, Hervorhebung im Original).

Aus fachdidaktischer Perspektive werden für ein erfolgreiches Mathematiklernen 
beide Wissensaspekte (ein konzeptuelles und prozedurales Wissen) gleichermaßen 
verfolgt und gekoppelt angestrebt: Der Erwerb von Rechenfertigkeiten erfolgt dabei 
auf der Basis mathematischer Einsicht (BAROODY, 2003, S.  8; HIEBERT & WE-
ARNE, 1986, S. 201). Wenngleich nach BAROODY noch Uneinigkeit über die Rei-
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henfolge und den eingeschlagenen Weg besteht (2003, S. 10 ff .), sprechen zahlreiche 
Untersuchungen jedoch für eine Vorgehensweise, bei der zunächst Verständnis für 
die Symbole und ihre Prozeduren entwickelt und erst anschließend das Einüben der 
Regeln in den Blick genommen wird (vgl. HIEBERT, 1986; WEARNE & HIEBERT, 
1988).

Die bisherigen Ausführungen dieses Abschnittes haben deutlich gezeigt, dass 
das zugrundeliegende Lehr-/Lernverständnis mit zentralen Folgen für den Mathe-
matikunterricht einhergeht. Wie bereits im historischen Abriss des Abschnittes 1.5.1 
dargestellt und in diesem Abschnitt präzisiert, kann das aktuelle Verständnis von 
Mathematikunterricht als Akzentverschiebung zwischen den Extremen einer be-
havioristischen und konstruktivistischen Grundauff assung von Lehren und Lernen 
charakterisiert werden. Die Unterrichtspraxis durchlief aber nicht nur aufgrund des 
Wandels des Lehr-/Lernverständnisses weitreichende Veränderungen. Weitere den 
Mathematikunterricht bzw. die Unterrichtspraxis beeinfl ussende Faktoren, die auch 
im weiteren Verlauf der Arbeit von Relevanz sind, werden im Folgenden angeführt.

1.5.3 Aktuelle Anforderungen und Zielsetzungen des 
Mathematikunterrichtes

Insbesondere die Ergebnisse der internationalen Vergleichsstudien wie TIMMS 
(Th ird International Mathematics and Science Study) und PISA (Programme for 
International Student Assessment), die Schwächen deutscher Kinder bei Aufga-
ben zum Vorschein brachten, die über die Anwendung von Routinen hinausge-
hen, führten zu zentralen Veränderungen der Vorgaben für die Unterrichtspraxis. 
Wie bereits in den bisherigen Ausführungen aufgezeigt, wird in einem gegenwärti-
gen Mathematikunterricht nicht mehr ausschließlich der korrekten Lösung, sondern 
verstärkt dem Prozess, der zur Lösung führt, die zentrale Rolle zuteil. Die stärkere 
Betonung des Lernprozesses geht auch auf die Verabschiedung der KMK-Bildungs-
standards zurück, die als Folge des schlechten Abschneidens der Kinder bei den 
Vergleichsstudien beschlossen wurden. Besonders das explizite Ausweisen und die 
stärkere Akzentuierung allgemeiner bzw. in der Literatur häufi g auch als prozessbe-
zogen bezeichneten Kompetenzen, verdeutlicht die Intention des Mathematikunter-
richts aus heutiger Sicht: „Der Weg ist das Ziel“ (HECKMANN & PADBERG, 2014, 
S.  30). Fünf prozessbezogene Kompetenzen, die für den Mathematikunterricht als 
wichtig erachtet und auf deren stärkere Berücksichtigung in der Unterrichtspraxis 
abgezielt wird, werden häufi g – unter Rückgriff  auf die Bildungsstandards – unter-
schieden: das Problemlösen, das Argumentieren, das Kommunizieren, das Model-
lieren sowie das Darstellen. LEUDERS (2007b) führt vier verschiedene Prozesskon-
texte auf, in denen die prozessbezogenen Kompetenzen im Unterricht Anwendung 
fi nden. Er unterscheidet dabei den Prozesskontext des Erfi ndens und Entdeckens, den 
des Prüfens und Beweisens, den Prozesskontext des Überzeugens und Darstellens so-
wie den des Vernetzens und Anwendens. Betonung fi ndet nach HECKMANN UND 
PADBERG (2014) in den didaktischen Veröff entlichungen dabei häufi g die Phase des 
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Erfi ndens und Entdeckens (ebd., S.  30). Was die konkrete Umsetzung im Mathema-
tikunterricht betrifft  , erfahren die verschiedenen Kontexte unterschiedliche Bedeu-
tung (LEUDERS, 2007b, S. 268 ff .).

Nimmt die Phase des Erfi ndens und Entdeckens im Mathematikunterricht viel 
Raum ein bzw. werden konkrete Entdeckungen in der Unterrichtspraxis unternom-
men, dann sollte diesen Entdeckungen nach HECKMANN und PADBERG (2014) 
immer auch eine Phase des Beweisens und Prüfens nachfolgen, in der sich den Kin-
dern die Möglichkeit bietet, ihre gemachten Entdeckungen auch zu überprüfen. Da 
die kognitiven Voraussetzungen in der Grundschule allerdings noch keine formalen 
Beweise ermöglichen, werden allenfalls beispielgebundene Beweisstrategien zum Ab-
sichern der Entdeckungen angestrebt. Der Prozesskontext des Überzeugens und Dar-
stellens zielt im Anschluss darauf ab, die erworbenen Erkenntnisse auch für andere 
korrekt und verständlich zu präsentieren, schlüssige Argumente darzubieten. Dabei 
ist „das Bewusstsein [wichtig], dass diese Unterrichtsphasen anders als die des Ent-
deckens nicht mehr durch Off enheit, sondern durch Konvergenz und Zielgerichtet-
heit gekennzeichnet sind“ (HECKMANN & PADBERG, 2014, S. 30, Ergänzung der 
Autorin), strebt man doch neben einem korrekten Ergebnis und einem verständ-
lich bestrittenen Lösungsweg auch eine prägnante Argumentation an. Zu guter Letzt 
soll auch den Kontexten des Vernetzens und Anwendens, in denen überwiegend die 
Prinzipien der Anwendungs- und Strukturorientierung (siehe nachfolgenden Absatz) 
zum Tragen kommen, im Mathematikunterricht eine zentrale Rolle zuteilwerden 
(HECKMANN & PADBERG, 2014, S.  31 f.). Diese vier von LEUDERS (2007b) be-
schriebenen Prozesskontexte, in denen die prozessbezogenen Kompetenzen Anwen-
dung fi nden, dienen „als Interpretationsrahmen für eine Unterrichtsgestaltung, die 
mathematische Prozesse in den Fokus rückt“ (ebd., S. 272) und stellen – wie bereits 
erwähnt – ein verfolgtes aktuelles Ziel des Mathematikunterrichtes dar.

Veränderungen in den Vorgaben für die Unterrichtspraxis sind unter anderem 
auch dem Anliegen der Bildungsstandards im Fach Mathematik geschuldet, ver-
mehrt Anwendungs- und Strukturorientierung im Unterricht zu ermöglichen. Unter-
richt soll der Umwelterschließung, „also der Aneignung von Fähigkeiten und Kennt-
nissen zum Leben in der Umwelt dienen bzw. signalisieren, dass mathematische 
Fragestellungen aus Problemen der Lebenswelt entstanden sind“ (HECKMANN & 
PADBERG, 2014, S.  21). Kinder sollen den Nutzen der Mathematik, die Legitimie-
rung der Unterrichtsinhalte erfahren, der Unterricht anwendungsorientiert erfolgen. 
Anknüpfen soll der Mathematikunterricht demnach also nicht nur an den Vorkennt-
nissen, dem Wissen und bereits vorhandenen Fähigkeiten der Kinder, sondern auch 
an ihrer Lebenswelt. Nach KRAUTHAUSEN (2012) wird unter einem anwendungs-
orientierten Unterricht zweierlei gefasst:

Einerseits wird vorhandenes Alltagswissen aufgegriff en und genutzt, um mathe-
matische Ideen aufzuklären, zu konkretisieren, anzuwenden. Andererseits aber 
kann und soll auch mit Hilfe der Mathematisierung – also gerade und spezifi sch 
durch den mathematischen Blick, durch den Einsatz mathematischer Ideen oder 
Verfahren – neues Fachwissen (außerhalb der Mathematik) entstehen können. 
(KRAUTHAUSEN, 2012, S. 99 f.)
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Strukturorientierung nimmt im Vergleich dazu nach HECKMANN und PADBERG 
(2014) „die innermathematischen Strukturen des Unterrichtsinhaltes, d. h. Regelmä-
ßigkeiten, Beziehungen und Gesetzmäßigkeiten“ (ebd., S. 23) in den Blick. Die For-
derung nach einem strukturorientierten Mathematikunterricht, der auf dem Aufb au 
mathematischer Erkenntnisse auf Basis des Entdeckens und Nutzens der zugrun-
deliegenden Strukturen abzielt, deckt sich im Kern mit einer konstruktivistischen 
Lehr-/Lernauff assung und ihren verfolgten Zielen in der Unterrichtspraxis (HECK-
MANN & PADBERG, 2014, S.  23). KRAUTHAUSEN (2007) betont in diesem Zu-
sammenhang: „Strukturen und Gesetzmäßigkeiten gilt es zum einen in der Welt der 
Zahlen und Formen aufzudecken, zum anderen und insbesondere aber auch in der 
Lebenswelt“ (S. 300, Hervorhebungen im Original). Während man in der Geschichte 
des Mathematikunterrichts „eine immer wieder wechselnde Polarisierung zwischen 
diesen beiden Richtungen“ (KRAUTHAUSEN, 2007, S.  300) feststellen konnte, ist 
man sich heute über die fundamentale Notwendigkeit einer engen Verknüpfung zwi-
schen Struktur- und Anwendungsorientierung, zwischen mathematischer Ebene und 
Sachebene uneingeschränkt bewusst. Dabei bleibt nach PESCHEL (2009) festzuhal-
ten:

Mathematik ist ein faszinierendes Gebilde von Strukturen und Beziehungen, 
das in sich noch nicht mit Lebenswirklichkeitsorientierung o. Ä. zu tun hat. Die 
Entwicklung eines Zahl- und Zahlraumverständnisses, der Aufb au von Zahlbe-
ziehungen, Rechenstrategien und Rechenfertigkeiten usw. kann in Sachsituatio-
nen veranschaulicht werden, ist aber eigentlich ein Vorgang, der losgelöst von 
diesen innerhalb der Mathematik selbst stattfi ndet und gerade durch diese Abs-
traktion seinen eigenen Reiz erhalten kann. (PESCHEL, 2009, S. 120 f.)

Die in diesem Abschnitt beschriebenen Anforderungen sowie die Zielsetzungen des 
Hinterfragens von Prozeduren bzw. des Erforschens von Zusammenhängen werden 
in einem modernen Mathematikunterricht dadurch umgesetzt, dass Kindern Gele-
genheiten gegeben werden, Mathematik selbst zu entdecken. „Ausgehend von ihren 
Entdeckungen sollen sie dann die Konventionen der Mathematik lernen“ (SCHIP-
PER, 2009, S.  33). Da aber nicht alle mathematischen Inhalte durch Entdeckungen 
erarbeitet werden können, kann Mathematikunterricht bzw. -lernen auch nicht nur 
auf dem Weg „von Invention zur Konvention“ stattfi nden, sondern muss vielmehr 
als Lernen „zwischen Invention und Konvention“ verstanden werden (ebd., S. 34 ff .; 
LEUDERS,  2007a, S.  222). In diesem Sinne muss auch die aufgelistete Tabelle 2 als 
Gegenüberstellung von Extremausprägungen betrachtet werden, die in der Praxis, 
aber auch in der Th eorie – wie gerade geschildert – mit großer Wahrscheinlichkeit 
nicht in Reinform Anwendung fi nden.



   42  

1.5.4 Aktiv-entdeckendes Lernen im Mathematikunterricht

In den Ausführungen des folgenden Abschnittes soll ein konzeptioneller Weg vor-
gestellt werden, der den aktuellen Anforderungen und Zielsetzungen des Mathema-
tikunterrichtes (siehe Abschnitt 1.5.3) gerecht wird: das aktiv-entdeckende Lernen. 
„I am not quite sure I understand anymore what discovery is and I don’t think it 
matters very much. But a few things can be said about how people can be helped 
to discover things for themselves“ (BRUNER, 1966, S.  101). Wenn sogar ein Ver-
fechter des entdeckenden Lernens wie BRUNER (1966), Schwierigkeiten besitzt, den 
Begriff  discovery für sich richtig zu fassen, scheint eine Begriff sklärung des (aktiv-) 
entdeckenden Lernens zu Beginn dieses Abschnittes umso mehr von Relevanz zu 
sein. Erst vor dem Hintergrund dieser Begriff sklärung wird es anschließend möglich 
sein, die Kritik aber vor allem den Zuspruch, den dieser konzeptionelle Weg im Ma-
thematikunterricht in den letzten Jahren erfahren hat, zu begründen.

Zum Begriff  (aktiv-)entdeckendes Lernen
Entdeckendes Lernen ist kein neuer Begriff  in der Mathematikdidaktik, trotz-
dem kann „eine endgültige und formal befriedigende Defi nition“ (WINTER, 2016, 
S. 1) dieses Begriff es nicht in Aussicht gestellt werden. Die Wurzeln des entdecken-
den Lernens gehen auf Johannes Kühnel und den Beginn des 20.  Jahrhunderts zu-
rück (RATZ, 2009, S.  41). Auch bezogen auf Lernprozesse im Allgemeinen liegen 
die Wurzeln weit in der Vergangenheit und stehen für weitere bekannte Pädagogen 
oder namhaft e Vertreter der sogenannten reformpädagogischen Bewegung wie z. B. 
Johann A. Comenius (1592–1670), Jean-Jacques Rousseau (1712–1778), Johann H. 
Pestalozzi (1746 – 1827), Adolph Diesterweg (1790–1866), Maria Montessori (1870–
1852), John Dewey (1859–1952) oder Martin Wagenschein (1896–1988). Fachspe-
zifi sch betrachtet für das Fach Mathematik ging die Präzisierung des Begriff es ent-
deckendes Lernen auf aktiv-entdeckendes Lernen und die zunehmende Ausrichtung 
des Mathematikunterrichts auf aktiv-entdeckendes Lernen mit dem Paradigmen-
wechsel des Lehr-/Lernverständnisses und dem damit einhergehenden veränderten 
Verständnis von Mathematikunterricht einher. Der Entwurf des entdeckenden Ler-
nens nach Heinrich Winter wurde dabei um das Präfi x aktiv14 ergänzt, um die eige-
ne Aktivität, das Aktive, augenscheinlich hervorzuheben (RATZ, 2009, S. 41 ff .). Für 
die Mathematikdidaktik haben vor allem Hans Freudenthal (vgl. z. B. FREUDEN-
THAL, 1973), Heinrich Winter (vgl. z. B. WINTER, 2016) sowie Erich C. Wittmann 
und Gerhard N. Müller (vgl. z. B. WITTMANN & MÜLLER, 1994a,b)15 zur Konzep-
tion des aktiv-entdeckenden Lernens beigetragen (HESS, 2002, S. 39), wobei vor al-

14 Der Begriff  aktiv-entdeckendes Lernen ist aus dem Programm Mathe 2000 heraus entstan-
den, einem im Jahre 1987 ins Leben gerufenen Projekt der Universität Dortmund, das auf 
die Ausarbeitung eines konkreten Konzeptes von Mathematiklernen hinzielte (RATZ, 2009, 
S. 41 ff .).

15 Bei der Begründung des aktiv-entdeckenden Lernens berufen sich beispielsweise WINTER 
(1984b, 2016) und WITTMANN (1995a) insbesondere auf Johannes Kühnel, dessen Ideen 
bis heute noch fortbestehen (HASEMANN & GASTEIGER, 2014, S. 82).
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lem die drei letztgenannten Personen dem aktiv-entdeckenden Lernen zum Durch-
bruch in Deutschland verholfen haben.

WINTER (2016) vertritt folgende Hauptthese:
Das Lernen von Mathematik ist umso wirkungsvoller – sowohl im Hinblick auf 
handfeste Leistungen, speziell Transferleistungen, als auch im Hinblick auf mög-
liche schwer fassbare bildende Formung –, je mehr es im Sinne eigener aktiver 
Erfahrungen betrieben wird, je mehr der Fortschritt im Wissen, Können und 
Urteilen des Lernenden auf selbständigen entdeckerischen Unternehmungen be-
ruht. (WINTER, 2016, S. 1)

Mit der Ausarbeitung einer Reihe von Argumenten für das entdeckende Lernen im 
Mathematikunterricht stützt WINTER (2016) seine aufgestellte Th ese und liefert 
neben didaktischen und lernpsychologischen Gründen zudem sogar eine fachinhä-
rente Begründung des entdeckenden Lernens (ebd., S. 1):

Die spezifi sche Wissensstruktur mathematischer Inhalte erlaubt grundsätzlich das 
Lernen durch eigenes Erfahren, da diese Inhalte einerseits eine denkbar helle in-
nere logische Verfl echtung besitzen – und somit vielfältig intern kontrollierbar 
sind – und andererseits in vielen anschaulich zugänglichen Situationen reprä-
sentiert sein können, die die Möglichkeit eigenständigen Erkundens – oft  aus 
dem Alltagswissen heraus – zulassen. (WINTER, 2016, S.  2, Hervorhebungen 
im Original)

WINTER (2016) beschreibt entdeckendes Lernen wie folgt: 
‚Entdeckendes Lernen‘ ist […] ein theoretisches Konstrukt, die Idee nämlich, 
dass Wissenserwerb, Erkenntnisfortschritt und die Ertüchtigung in Problemlö-
sefähigkeiten nicht schon durch Informationen von außen geschieht, sondern 
durch eigenes aktives Handeln unter Rekurs auf die schon vorhandene kognitive 
Struktur, allerdings in der Regel angeregt und somit erst ermöglicht durch äuße-
re Impulse. (ebd., S. 3, Hervorhebung im Original)

Dass entdeckendes Lernen „weniger die Beschreibung einer Sorte von beobachteten 
Lernvorgängen“ (WINTER, 2016, S. 3) ist, stellt auch HENGARTNER (1992) heraus, 
indem er den Begriff  folgendermaßen beschreibt: „Entdeckendes Lernen […] ist eher 
eine umfassende Idee vom Lernen und Lehren und weniger ein eindeutig bestimm-
barer, beobachtbarer Lernvorgang“ (HENGARTNER, 1992, S. 19).

KÄPNICK (2014) spricht in diesem Zusammenhang von einem Konzept des ak-
tiv-entdeckenden Lernens, das sich durch die folgenden aufgelisteten, allgemeinen 
Merkmale charakterisieren lässt:
• „die Förderung der Eigenaktivität jedes Kindes,
• eine ganzheitliche Erschließung größerer Stoff einheiten […],
• ein Anknüpfen und Nutzen der jeweiligen Vorkenntnisse der Kinder […],
• Freiräume für die Eigendynamik kindlicher Lernprozesse und die Realisierung 

einer natürlichen Diff erenzierung vom Kinde aus […],
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• eine veränderte Rolle des Lehrers,
• gründlich erprobte und vielseitig einsetzbare Lernmittel […]“ (KÄPNICK, 2014, 

S. 37).

FREUDENTHAL (1991) hebt ebenso wie KÄPNICK (2014) hervor, dass sich das 
aktiv-entdeckende Lernen nicht in einem isolierten, kleinschrittigen Vorgehen äu-
ßert, sondern komplexer Situationen bedarf (ebd., S. 28). Unterricht muss demnach 
„ganzheitliche Kontexte bereitstellen, in denen die größeren Zusammenhänge der In-
halte, ihre strukturellen Beziehungen erkennbar bleiben“ (KRAUTHAUSEN, 2000, 
S.  35, Hervorhebungen im Original). Die Forderung nach inhaltlicher Ganzheitlich-
keit16 stellt – im Gegensatz zu einem kleinschrittigen Vorgehen – den übergeordneten 
Zusammenhang des Inhaltes in den Mittelpunkt und ermöglicht es, die so erlangten 
Fertig keiten und Kenntnisse in möglichen Anwendungskontexten auch wahr zu neh-
men (SCHERER, 1999, S. 9).

In einem aktiv-entdeckenden Unterricht besteht die Aufgabe der Lehrkraft  in 
der „Veranlassung der Gelegenheit und […] [in der] Anregung [der Schülerin und 
des Schülers] zu eigener Entwicklung“ (KÜHNEL, 1916, S.  70, Hervorhebungen im 
Original, Ergänzungen der Autorin). Die zu bewältigende Aufgabe der Praxis ist es 
dabei, Unterricht so zu konzipieren, dass Entdeckungen bei möglichst vielen Schü-
lerinnen und Schülern in Gang gesetzt und aufrechterhalten werden. Dies erweist 
sich aber laut WINTER (2016) als schwieriges Unterfangen, wenn man davon aus-
geht, dass „sich ein entdecken lassender Unterricht in der Regel nicht selbst trägt.[17] 

Es bedarf des planmäßigen, professionellen Angebots an Erfahrungs- und Übungs-
möglichkeiten“ (WINTER, 2016, S. 4, Ergänzung der Autorin). Laut WINTER (2016) 
wird in diesem Zusammenhang von einem Lernen durch gelenktes Entdecken ge-
sprochen, was allerdings eine sehr unpräzise bzw. ungenaue Formulierung darstellt, 
wenn das Ausmaß und die Art der Lenkung ungewiss bleiben (ebd., S. 4). LEUDERS 
(2007a) hebt in diesem Kontext hervor, dass aktiv-entdeckendes Lernen „nicht das 
ausschließlich entdeckenlassende Lernen“ (ebd., S.  222, Hervorhebung im Original) 
impliziert. Was einen Unterricht, der Lernen auf Basis von Entdeckungen anstrebt, 
kennzeichnet, versucht WINTER (2016, S.  4 f.) in einer Gegenüberstellung des Ler-
nens durch Entdeckenlassen und dem Gegenpart, einem Lernen durch Belehren 
(siehe Abschnitte 1.1 bis 1.3), zu verdeutlichen. Diese „gewollt idealtypische Polari-
sierung“ (WINTER, 2016, S. 6), die in einigen aktuellen Veröff entlichungen für eine 
vermeintliche Begriff sklärung eines entdeckenden Unterrichts publiziert wird, ähnelt 
der im Abschnitt 1.5.2 aufgeführten zusammenfassenden Gegenüberstellung von 

16 Diese inhaltliche Ganzheitlichkeit ist abzugrenzen von einem ganzheitlichen Ansprechen 
der Person des Kindes und dem Anspruch, „die verschiedenen Aspekte der schwerpunktmä-
ßig ins Blickfeld gerückten Sache aufzuschließen (anschaulich, erlebnismäßig, muttersprach-
lich, rechnerisch, musisch-prakt.)“ (BACH, 1969, zit. nach SCHERER, 1995, S. 53 f., Hervor-
hebungen im Original). Ganzheitlichkeit wird an dieser Stelle nicht im Sinne eines Lernens 
auf verschiedenen „Kanälen“ (SCHÜTTE, 2008, S. 60) verstanden.

17 Entdeckendes Lernen stellt hohe Anforderungen an die oder den Lehrenden – nach WIN-
TER (2016) zeigt sich die „Professionalität des Lehrenden gerade darin, […] durch gekonn-
tes Unterrichten zu führen“ (ebd., S. 4).



45    

Merkmalen eines rezeptiv gestalteten und eines konstruktivistisch orientierten Ma-
thematikunterrichts. Laut WINTER (2016) wird insbesondere durch den Vergleich 
ersichtlich, wie viel mehr Voraussetzungen ein Unterricht zu erfüllen hat, der Entde-
ckungen der Kinder in den Mittelpunkt stellt im Vergleich zu seinem Pendant, dem 
belehrenden Unterricht (ebd., S.  6). Nach WITTMANN (1995a) stellt sich in die-
sem Kontext die Frage, inwiefern ein mehr an Voraussetzungen für Kinder unter-
schiedlichen Leistungsvermögens geeignet ist. Häufi g werden Zweifel und Vorbehal-
te von Seiten einiger Skeptikerinnen und Skeptiker gegenüber der Praktikabilität des 
aktiv-entdeckenden Lernens bei leistungsschwachen Schülerinnen und Schülern ge-
äußert – der folgende Abschnitt soll Aufschluss darüber geben, inwieweit diese Skep-
sis Berechtigung hat bzw. entkräft et werden kann.

Zuspruch zum und Kritik am (aktiv-)entdeckenden Lernen
Obwohl die Forderung nach einem aktiv-entdeckenden Mathematikunterricht plau-
sibel und überzeugend wirkt und das aktiv-entdeckende Lernen im Zuge eines 
konstruktivistischen Lehr- und Lernverständnisses in den letzten Jahren im Ma-
thematikunterricht eine stärkere Ausrichtung erfahren hat, ist die Praxis – wie die 
Ausführung der vorangegangenen Abschnitte 1.5.1 und 1.5.2 dargelegt haben – teil-
weise noch geprägt von einem reglementierten, kleinschrittigen Unterricht. Laut 
WITTMANN (1990) würden viele Praktikerinnen bzw. Praktiker der Auff assung des 
Lernens nach den Prinzipien des aktiven und entdeckenden Lernens „zwar ‚theore-
tisch‘ zustimmen und sie ‚im Prinzip‘ gerne übernehmen […], dann aber doch eine 
Reihe gewichtiger Einwände und Vorbehalte gegen ihre unterrichtliche Realisierung 
erheben“ (ebd., S.  159, Hervorhebungen im Original). Ein Einwand, der von Seiten 
der Skeptikerinnen und Skeptiker häufi g genannt wird, liegt darin begründet, dass 
kleinschrittiger Mathematikunterricht auch Erfolge aufzuweisen hat (ebd., S.  159). 
Des Weiteren scheint es eine weit verbreitete Meinung zu sein, „man dürfe die 
Kinder anfangs nicht mit der Komplexität des zu lernenden Systems konfrontieren, 
da sie zur Bewältigung derart komplizierter Sachverhalte nicht in der Lage wären“ 
(DONALDSON, 1982, S.  117). Dieser Kritikpunkt wird vor allem im Hinblick auf 
lernschwache Schülerinnen und Schüler angeführt, die beim entdeckenden Lernen 
durch die Komplexität der Lerninhalte überfordert zu sein scheinen (KRAUTHAU-
SEN, 2000, S. 31 ff .).

Zweifel und Vorbehalte bezüglich des aktiv-entdeckenden Lernens können nach 
WITTMANN (1995a) durch eine Reihe von Befunden entkräft et werden, die beto-
nen, dass gerade die leistungsschwache Personengruppe von einem auf Verständnis 
angelegten Lernen profi tiert (ebd., S.  17 ff .). Schwierigkeiten für leistungsschwache 
Kinder entstehen laut TRIKETT und SULKE (1993) in erster Linie durch Maßnah-
men, die ursprünglich als Hilfen angedacht waren, wie beispielsweise die Zerlegung 
des Unterrichts in kleinste Segmente, das Entfernen möglicher Stolpersteine und 
das ausschließliche bzw. bevorzugte Üben von Rechenfertigkeiten. LORENZ (1992) 
kommt nach einer intensiven und langjährigen Arbeit mit leistungsschwachen Kin-
dern zu der Erkenntnis, dass dem Verständnisaufb au im Mathematikunterricht ge-
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rade bei diesen Kindern höchste Bedeutung zugemessen werden muss. Nach SCHE-
RER (1995) profi tieren sogar lernbehinderte Schülerinnen und Schülern von einem 
aktiv-entdeckenden Ansatz, der im Gegensatz zu einem engmaschigen, gelenkten 
Mathematikunterricht mehr Spielraum für alle Beteiligten ermöglicht. Auch MO-
SER OPITZ (2001) bestätigt einen Lerngewinn im heilpädagogischen Umfeld, der 
aus einem aktiv-entdeckenden Unterricht resultiert. HECKMANN und PADBERG 
(2014) messen dem Aufb au von Verständnis bei leistungsschwachen Kindern eben-
falls wie die bereits zitierten Autoren eine enorme Bedeutung zu. Sie verweisen ex-
plizit darauf, dass Lernwege, die zum Verständnis führen sollen, individuell verschie-
den sein können, nicht nur ein Weg als zielführend angesehen wird und das Kind 
den für sich optimalen Weg beschreiten kann (siehe Abschnitt 1.5.2). Dabei dürfen 
ihren Vorstellungen zufolge leistungsschwache Kinder auch sehr kleinschrittige Wege 
für ihre eigenen Entdeckungen gehen (ebd., S.  31) – in erster Linie von Relevanz, 
„ist das Verständnis für den Weg, um ihn auf ähnliche Probleme übertragen zu kön-
nen“ (HECKMANN & PADBERG, 2014, S. 31).

WITTMANN (1995a), der die Förderung aller Kinder – der leistungsstarken und 
der leistungsschwachen – als übergeordnetes Ziel tituliert, betont im Hinblick auf 
einen aktiv-entdeckenden Mathematikunterricht für alle und folglich auch für die 
leistungsschwachen Schülerinnen und Schüler: „Es ist […] festzuhalten, daß [sic] 
es das Konzept des aktiv-entdeckenden Lernens ermöglicht, Kinder im gesamten 
Leistungsspektrum zu fördern und in den Unterricht zu integrieren – ein klarer 
Beweis für die pädagogische Leistungsfähigkeit dieses Konzepts“ (WITTMANN, 
1995a, S. 20, Hervorhebungen im Original).

WINTER (2016) betont, dass entdeckender Unterricht allerdings „keineswegs ein 
Königsweg zur Mathematik“ (ebd., S. 6) ist und auch ein „pädagogisches Schlüssel-
problem“ (ebd., S.  6) anspricht – das der „Doppelnatur pädagogischer Kompetenz“ 
(ebd., S. 6):

Einerseits soll der Lehrer (gekonnt) auf das Kind einwirken, es verändern. Und 
er lebt von dem Glauben, dass dies auch möglich ist, wie und in welchem Maße 
auch immer. Andererseits soll er […] die Individualität und individuelle Würde 
des Kindes einfühlend und hingebend respektieren. (WINTER, 2016, S. 6)

Eine mögliche Lösung dieses von WINTER (2016) bezeichneten Schlüsselprob-
lems kann in der Integration von Entdeckungen in geleitete Lernphasen, wie bei-
spielsweise dem fragend-entdeckenden Unterrichtsgespräch, gesehen werden (VON 
HOFE, 2001, S.  7 f.). Nach HECKMANN und PADBERG (2014) sind diese „fron-
talen, lehrerzentrierten Phasen grundsätzlich [nicht] zu verdammen […]; auch sie 
haben durchaus ihre Berechtigung“ (ebd., S.  35, Ergänzung der Autorin), wenn sie 
nicht als rein darbietender Unterricht verstanden werden. Dies bestätigen auch For-
schungsergebnisse, die der direkten Instruktion nicht nur negative Wirkung bezogen 
auf die Leistung der Schülerinnen und Schüler zuschreiben. Ein Zuviel an off enen 
Lernformen scheint sich im Gegensatz dazu als eher nicht positiv bzw. optimal he-
rauszukristallisieren (WALTHER, VAN DEN HEUVEL-PANHUIZEN, GANZER & 
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KÖLLER, 2011). Es scheint alles in allem also entscheidend zu sein, off ene und ge-
leitete Unterrichtsphasen, die sich durch konstruktive, aktive Phasen der Lernenden 
und der expliziten Instruktion durch die Lehrperson charakterisieren lassen, zu ver-
binden.

In Ergänzung zu den bisherigen Ausführungen einer veränderten Sichtweise auf 
das mathematische Lehren und Lernen in diesem Abschnitt soll allerdings abschlie-
ßend explizit auf Folgendes verwiesen werden: Der Wandel des Lehr-/Lernverständ-
nisses im Fach Mathematik stellt kein Indiz dafür dar, dass die Unterrichtspraxis im 
Mathematikunterricht der aktuellen Auff assung von Lehren und Lernen, wie in den 
vorherigen Ausführungen beschrieben, entspricht bzw. folgt. Ebenso trifft   dies auch 
auf den breiten Konsens, der diesem aktuellen Lehr-/Lernverständnis in der Didak-
tik entgegengebracht wird, zu – in den Abschnitten 1.4 sowie 1.5.1 wurde darauf 
bereits durch einen historischen Abriss und die gegenwärtige Aktualität der beiden 
konkurrierenden Sichtweisen verwiesen.

In Kapitel 2 dieser Arbeit wird nach diesem vorgeschalteten Einführungskapitel 
das Hauptaugenmerk auf das kleine Einmaleins und deren Erarbeitung im Unter-
richt gelegt. Die Umsetzung dieses konkreten mathematischen Inhaltes nach ak-
tuellem Verständnis von Lehren und Lernen und der Versuch einer Balance zwi-
schen „Invention und Konvention“ (SCHIPPER, 2009, S.  33), zwischen „Anleitung 
und Selbstständigkeit, Instruktion und Konstruktion“ (GUDJONS, 2006, S. 17) bzw. 
„Selbststeuerung und Fremdsteuerung“ (HUßMANN, 2004, S. 13) soll im folgenden 
Kapitel aufgezeigt werden.

Zusammenfassung
Die konstruktivistische und die behavioristische Grundauff assung von Lehren und 
Lernen im Allgemeinen repräsentieren zwei Ansätze, die sich auf das Lehren und 
Lernen von Mathematik ausgewirkt haben und auswirken. In der Mathematikdidak-
tik herrscht gemäß dem aktuellen konstruktivistischen Lehr- und Lernverständnis 
der allgemeine Konsens, dass Schülerinnen und Schüler, indem sie sich auf mathe-
matische Aktivitäten einlassen, ihr Wissen individuell konstruieren und mathema-
tische Konzepte entwickeln sollen. Das aktuelle Verständnis von Lehren und Ler-
nen setzt sich allerdings nicht ausschließlich aus Elementen des Konstruktivismus 
zusammen, sondern schließt auch konstituierende Elemente des Behaviorismus 
ein. Vor allem in der Unterrichtspraxis scheinen behavioristische Ansätze von Leh-
ren und Lernen von Mathematik nicht an Aktualität verloren zu haben. Nach VON 
GLASERSFELD (1996) sind – wie in den Ausführungen des ersten Kapitels erwähnt 
– „ihre Schlüsselbegriff e […] heute noch lebendig und in den Vorstellungen vieler 
Erzieher wirksam“ (ebd., S. 287).

Dem Verstehen der Lern- und Denkprozesse wird im Mathematikunterricht 
gemäß der aktuellen Sichtweise auf Lehren und Lernen eine besondere Bedeu-
tung zuteil. Oberstes Ziel des Mathematikunterrichtes ist das gesicherte Verständnis 
mathematischer Inhalte. Nicht ausschließlich prozedurales Wissen ist somit von be-
deutender Relevanz, vielmehr zeichnet sich erfolgreiches Mathematiklernen durch 
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beide Wissensbestandteile – das konzeptuelle und das prozedurale Wissen – aus, die 
gleichermaßen angestrebt werden sollen. Der Erwerb von Rechenfertigkeiten erfolgt 
somit auf Basis von Verständnis bzw. der Einsicht beim Mathematiklernen.

Einen konzeptionellen Weg, der den aktuellen Anforderungen und Zielsetzungen 
im Mathematikunterricht gerecht wird, stellt das aktiv-entdeckende Lernen dar. Im 
Fokus des entdeckenden Lernens stehen eigenständige entdeckerische Unternehmun-
gen, die bei möglichst allen Schülerinnen und Schülern in Gang gesetzt und auf-
rechterhalten werden sollen. In dieser Arbeit wird unter einem aktiv-entdeckenden 
Lernen nicht ein rein entdeckenlassendes Lernen verstanden, sondern ein gelenkt-ent-
deckendes Lernen. Das gelenkte Lernen zeichnet sich durch teils geleitete und teils 
off ene Unterrichtsphasen aus. Konstruktive, aktive Phasen der Lernenden werden er-
gänzt durch die expliziten Instruktionen der Lehrenden. Die Art und das Ausmaß 
der geeigneten Lenkung scheinen bisher allerdings eher ungewiss bzw. nicht klar for-
muliert zu sein.

An dieser Stelle soll – auch im Hinblick auf die Bedeutung für die weitere Arbeit 
– explizit hervorgehoben werden: Ob und inwiefern Verstehensprozesse beim Kind 
angeleitet werden bzw. inwieweit diese gekoppelt mit dem Erwerb von Rechenfer-
tigkeiten ausgebildet werden und welche Rolle dabei das Entdecken und Entwickeln 
mathematischer Konzepte einnimmt, ist abhängig von der Vorstellung der Lehrkraft , 
wie Lernen und Lehren beim Individuum vor sich geht. Empirische Ergebnisse zei-
gen nach STAUB und STERN (2002), dass sich vor allem Vorstellungen der Lehr-
kraft  von Lernen und Lehren im Allgemeinen (siehe Abschnitte 1.1 bis 1.3), aber im 
Besonderen auch fachspezifi sch von Mathematiklernen (siehe Abschnitt 1.5) auf den 
Unterricht auswirken (ebd., S. 354).

Die in diesem ersten Kapitel angerissene Debatte zwischen einem behavioristi-
schen und dem konstruktivistischen Lehr-/Lernverständnis sowie die damit einher-
gehende Veränderung des aktuellen Verständnisses von Mathematikunterricht mit 
der stärkeren Ausrichtung auf ein aktiv-entdeckendes Lernen, soll dazu dienen, die 
Ausführungen der folgenden Kapitel zum kleinen Einmaleins besser verstehen und 
auch historisch einordnen zu können.
 



2. Einmaleinssätze und ihre Erarbeitung nach einem aktuellen 
Verständnis von Mathematikunterricht

„Mathematik ist eine Geistesverfassung, die man sich handelnd 
erwirbt, und vor allem die Haltung, keiner Autorität zu glauben, 

sondern immer wieder ‚warum‘ zu fragen […] Warum ist 3 x 4 
dasselbe wie 4 x 3? Warum multipliziert man mit 100, indem man 

zwei Nullen anhängt?“

(FREUDENTHAL, 1982, S. 140, Hervorhebung im Original)

Die Multiplikation stellt eine der vier Grundrechenarten der Arithmetik dar, die in 
der Grundschule eingeführt und erarbeitet wird. Der Aufb au bzw. die Entwicklung 
grundlegender mathematischer Kompetenzen in diesem Inhaltsbereich – sowie in 
den anderen Grundrechenarten – schafft   „die Grundlage für das Mathematiklernen 
in den weiterführenden Schulen und für die lebenslange Auseinandersetzung mit 
mathematischen Anforderungen des täglichen Lebens“ (KMK, 2004, S.  6). Das Ka-
pitel 2 thematisiert die Erarbeitung der Einmaleinssätze18 in der Grundschule nach 
aktuellem Verständnis von Lehren und Lernen – wie in Kapitel 1 ausführlich ausge-
führt. Als Einstieg in dieses 2. Kapitel wird ein Überblick über die fachlichen Grund-
lagen der Multiplikation gegeben, indem die Multiplikation defi niert sowie die zen-
tralen Rechengesetze der Multiplikation aufgeführt werden. Es folgt ein Abschnitt, 
in dem verschiedene Herangehensweisen zur Lösung von Einmaleinssätzen aufge-
zeigt und skizziert werden. Im Anschluss wird die verständnisbasierte Erarbeitung 
des kleinen Einmaleins beschrieben, die in der deutschen Fachdidaktik auf weite Zu-
stimmung stößt. Unterschiedliche Nuancen der Erarbeitung sollen herausgearbeitet 
sowie die gemeinsamen Grundgedanken aufgezeigt werden. Es wird anschließend 
kritisch hinterfragt, ob und inwieweit empirische Argumente vorliegen, die für die 
in der Fachdidaktik in Deutschland auf weiten Konsens treff ende, verständnisbasier-
te Erarbeitung des kleinen Einmaleins sprechen. Da aber nicht nur eine bzw. nur die 
in der Th eorie empfohlene Erarbeitung in der Unterrichtspraxis existiert bzw. in der 
Vergangenheit existierte, soll als Abschluss dieses Kapitels ein Überblick über alter-
native Vorgehensweisen bei der unterrichtlichen Behandlung gegeben werden. Dies 
ist in erster Linie im Hinblick auf die später vorgestellte Studie dieser Arbeit von 
Relevanz, in der ebenfalls unterschiedliche Vorgehensweisen der Erarbeitung ermit-
telt werden konnten. Dabei werden diese Vorgehensweisen unter historischen Ge-
sichtspunkten betrachtet. Dazu wird exemplarisch die Lehrplanentwicklung des Bun-
deslandes Bayern (dort wurde auch die Studie durchgeführt) vorgestellt. Aktuelle, 
weitere Lehr- und Bildungspläne in Deutschland sollen im Hinblick auf ihre ver-
pfl ichtenden Inhalte bezüglich des kleinen Einmaleins ebenfalls Th ema dieses Kapi-
tels sein.

18 Unter Einmaleinssätzen werden in den folgenden Ausführungen Zahlensätze des kleinen 
Einmaleins verstanden wie beispielsweise x x 2 oder 2 x x. Als exemplarisches Beispiel einer 
Einmaleinsaufgabe des Einmaleinssatzes x x 2 kann die Aufgabe 3 x 2 angeführt werden.
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2.1 Fachliche Grundlagen – Multiplikation

„Neben der inhaltlichen Kompetenz oder Fertigkeit des 
Rechnenkönnens spielt die Sicht auf die Operation selbst und 

die Entdeckung der Eigenschaft en dieser Operation […] eine 
wesentliche Rolle.“

(STEINWEG, 2013, S. 123, Hervorhebungen im Original)

Die im Folgenden angeführte Defi nition der Multiplikation sowie das Darstellen 
und beispielgebundene Beweisen der zentralen Rechengesetze dient als mathemati-
scher Einstieg in das Inhaltsgebiet und stellt zugleich die Grundlage für ein tieferes 
Verständnis der unterrichtlichen Behandlung des kleinen Einmaleins dar: Rechen-
strategien zur Lösung von Aufgaben zum kleinen Einmaleins beruhen auf Rechen-
gesetzen, die Kinder in der Grundschulzeit als Rechenvorteile kennenlernen. Die Re-
chengesetze können anhand von Punktemustern auch bereits für Grundschulkinder 
anschaulich erläutert und somit einsichtig gemacht werden – wie die Ausführungen 
der Abschnitte 2.1.1 und 2.1.2 veranschaulichen.

2.1.1 Defi nition und Rechengesetze

Die Einführung der Multiplikation natürlicher Zahlen kann unter Rückgriff  auf 
Mengenoperationen auf zwei unterschiedlichen Wegen erfolgen: über die „Vereini-
gung paarweise elementfremder, gleichmächtiger Mengen (kurz: über die Mengen-
vereinigung), d. h. auf der Zahlenebene über die wiederholte Addition gleicher Sum-
manden (kurz: wiederholte Addition)“ (PADBERG & BÜCHTER, 2015, S.  204 ff ., 
Hervorhebungen im Original) oder über das Kreuzprodukt bzw. das kartesische Pro-
dukt zweier Mengen.19 Da die Mengenvereinigung bzw. die wiederholte Addition 
„für die Schule der natürlichere“ (GRAUMANN, 2002, S.  45) Zugang ist und den 
Haupteinführungsweg der Multiplikation in der Grundschule darstellt (PADBERG, 
2007, S. 199 f.), wird im Folgenden nach einigen Vorbemerkungen die Multiplikation 
der natürlichen Zahlen als Mengenvereinigung defi niert.

Bei der Einführung über die Mengenvereinigung bzw. die wiederholte Addition 
müssen die Summanden jeweils gleichgroß bzw. die Mengen, die vereinigt werden 
sollen, die gleiche Mächtigkeit besitzen. Eine weitere Voraussetzung besteht darin, 
dass die gegebenen Mengen insgesamt über kein gemeinsames Element verfügen 
bzw. mathematisch formuliert, disjunkt sind. PADBERG und BÜCHTER (2015) hal-
ten eine zusätzliche Bedingung fest:

19 Die Einführung der Multiplikation erfolgte in den 70er Jahren kurzzeitig, wie einigen 
Grundschulwerken zu entnehmen ist, über das Kreuzprodukt. In der Grundschule fi ndet der 
Ansatz über das Kreuzprodukt in der Regel nur ergänzend – anhand einiger ausgewählter 
Sachaufgaben – Berücksichtigung (PADBERG & BÜCHTER, 2015, S. 211 f.) bzw. „nur noch 
implizit bei kombinatorischen Aufgaben“ (GRAUMANN, 2002, S. 46).
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Da […] jedoch zwei oder auch (viel) mehr Mengen vorliegen, reicht es nicht aus 
zu verlangen, dass die gegebenen Mengen insgesamt disjunkt sind, also insge-
samt kein gemeinsames Element besitzen, sondern wir müssen verlangen, dass 
schon jeweils zwei Mengen nie ein gemeinsames Element besitzen, dass die ge-
gebenen Mengen also paarweise disjunkt sind. (ebd., S.  205, Hervorhebungen 
im Original)

PADBERG und BÜCHTER (2015) defi nieren die Multiplikation natürlicher Zahlen 
wie folgt:20

Das Produkt a x b zweier natürlicher Zahlen a und b (mit a ≠ 0 und a ≠ 1) er-
halten wir folgendermaßen: 

Wir wählen a paarweise disjunkte Mengen B1, B2, . . . , Ba als Repräsentanten der 
Zahl b, also mit card B1 = card B2 =  ··· = card Ba = b. Dann ist das Produkt a x b 
die Kardinalzahl der Vereinigungsmenge B1  ∪ B2 ∪ ··· ∪ Ba. (PADBERG & 
BÜCHTER, 2015, S. 206, Hervorhebungen im Original)

PADBERG und BÜCHTER (2015, S. 206 ff .) ergänzen ihre vorgenommene Defi nition 
durch folgende Bemerkungen:

 – Als Kurzschreibweise der aufgelisteten Defi nition kann formuliert werden:
a x b := card (B1  ∪ B2  ∪ ··· ∪ Ba) mit card B1 =  card B2 =  ···  =  card Ba  =  b 
und B1, B2, . . ., Ba paarweise disjunkt bzw. kürzer Bi ∩ Bj = {} für i ≠ j mit i, 
j ∈ {1, 2, . . . , a}.

 – Die Produkte 0 x b und 1 x b werden in der Defi nition der Multiplikation als 
Mengenvereinigung nicht defi niert, da eine Vereinigungsmenge von keiner 
oder einer Menge nicht gebildet werden kann.
Sie werden separat defi niert: 0 x b := 0 und 1 x b := b.

 – Der Zusammenhang zwischen Multiplikation und wiederholter Addition 
gleicher Summanden wird bei der Defi nition deutlich ersichtlich wie am Bei-
spiel 2 x b für die paarweise disjunkten Mengen B1, B2 mit card B1  =  card 
B2 = b aufgezeigt werden kann:21

2 x b = card (B1 ∪ B2) = b + b.
 – Bei der Einführung der Multiplikation über die Mengenvereinigung ist die 

Unterscheidung der beiden Faktoren des Produktes a x b als Multiplikator 
(a) und Multiplikand (b) von Bedeutung (a gibt die Anzahl der Mengen glei-

20 Für die Defi nition der Multiplikation wird die Defi nition der Kardinalzahl vorausgesetzt: 
„Die Kardinalzahl einer Menge M (kurz card M) ist die Äquivalenzklasse aller zu M 
gleichmächtigen Mengen“ (PADBERG & BÜCHTER, 2015, S.  193, Hervorhebungen im 
Original).

21 „Die Summe a + b zweier natürlicher Zahlen a und b erhalten wir folgendermaßen: Wir 
wählen einen Repräsentanten A von a und einen dazu disjunkten Repräsentanten B von b. 
Die Kardinalzahl von A ∪ B, also card (A ∪ B), ist dann die Summe a + b“ (PADBERG 
& BÜCHTER, 2015, S. 196, Hervorhebung im Original). Die Defi nition der Addition kann 
wie folgt festgehalten werden: „a + b := card (A ∪ B) mit a = card A, b = card B und A ∩ 
B = {}“ (PADBERG & BÜCHTER, 2015, S. 196).



   52  

cher Mächtigkeit wieder, b die Anzahl der Elemente in diesen gleichmächti-
gen Mengen).22 

 – Der Zusammenhang zwischen Multiplikation und wiederholter Addition 
gleicher Summanden lässt sich anschaulich durch rechteckig angeordnete 
Punktmuster darstellen (siehe Abbildung 1), im Folgenden am Produkt 2 x 4 
verdeutlicht:

Abbildung 1: Punktemuster des Produktes 2 x 4.23

Der Einführungsweg über die Mengenvereinigung bzw. die wiederholte Addition 
bietet die Möglichkeit, Rechengesetze bzw. Eigenschaft en24 der Multiplikation mithil-
fe beispielgebundener Beweisstrategien (siehe Abschnitt 2.1.2) zu begründen und in 
etwas adaptierter oder vereinfachter Form im Unterricht der Grundschule zu behan-
deln (PADBERG & BÜCHTER, 2015, S.  204 ff .). Dieser Einführungsweg stellt nicht 
zuletzt aus diesem Grund den wichtigsten Weg zur Einführung der Operation dar. 
SCHIPPER (2009) beschreibt die Multiplikation über die wiederholte Addition als 
die „erste und wichtigste Grundvorstellung der Multiplikation“ (ebd., S. 147).

Im Folgenden werden die Rechengesetze der Multiplikation angeführt und im 
darauff olgenden Abschnitt erfolgt die Begründung anhand beispielgebundener Be-
weisstrategien.

Für die Multiplikation gelten drei zentrale Rechengesetze (PADBERG & BÜCH-
TER, 2015, S. 207 ff .):

22 Zur Beschreibung des Vereinigungsprozesses verschiedener Mengen ist die Unterscheidung 
der beiden Faktoren von Relevanz, zur Ermittlung des Produktes ist diese aufgrund der 
vorliegenden Kommutativität der Multiplikation und der damit gegebenen gleichen Be hand-
lung der Faktoren nicht mehr zwingend erforderlich.

23 Auf die in Abbildung 1 im Kontext der mathematischen Beweisführung veranschaulichte 
Darstellung der vorausgesetzten disjunkten Mengen wird in den folgenden Abbildungen 
dieser Arbeit bewusst verzichtet.

24 Rechengesetze stellen wesentliche Eigenschaft en einer Operation dar (LEUDERS, 2016, S. 6). 
Die Begriffl  ichkeit Gesetz kann dabei nach LEUDERS (2016) missverstanden werden, „denn 
eigentlich handelt es sich ja nicht um eine Verhaltensvorschrift , sondern um Eigenschaft en, 
die Operationen besitzen – oder eben nicht“ (ebd., S.  6, Hervorhebung im Original). Nach 
STEINWEG (2013) wird in Schulbüchern und im unterrichtlichen Diskurs für Eigenschaft en 
der Begriff  Gesetz verwendet (ebd., S.  124, Hervorhebung im Original). In den folgenden 
Ausführungen dieser Arbeit werden die Begriffl  ichkeiten Gesetz und Eigenschaft  synonym 
verwendet.

2 x 4 = 4 + 4 
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1) das Kommutativgesetz (oder Vertauschungsgesetz): Für alle natürlichen 
Zahlen a, b gilt:

a x b = b x a

2) das Assoziativgesetz (oder Verbindungsgesetz): Für alle natürlichen Zahlen a, 
b, c gilt:

(a x b) x c = a x (b x c)

3) das Distributivgesetz (Verteilungsgesetz):
a) Für alle natürlichen Zahlen a, b, c gilt:

(1) a x (b + c) = a x b + a x c

(2) (a + b) x c = a x c + b x c

b) Für alle natürlichen Zahlen a, b, c mit b > c bzw. a > b gilt:

(3) a x (b – c) = a x b – a x c

(4) (a – b) x c = a x c – b x c

Auf ein weiteres Rechengesetz der Multiplikation soll in dieser Arbeit ebenfalls verwiesen 
werden:

4) das Gesetz der Konstanz des Produktes (Ausgleichsgesetz): Für alle natürlichen 
Zahlen a, b und 1

n · b gilt:

(n x a) x (1
n · b) = (n x1

n ) x (a x b) = a x b

2.1.2 Beispielgebundene Beweisstrategien zu den Eigenschaften

Wie im Abschnitt 2.1.1 bereits erläutert, kann die Multiplikation natürlicher Zahlen 
als mehrfach hintereinander ausgeführte Addition angesehen werden.

Für alle natürlichen Zahlen a, b gilt:
a x b = card (B1 ∪  B2 ∪···∪ Ba) = card (B1) + card (B2) + ··· + card (Ba) =

b + b + …+ b.

Dabei ermöglicht der Einführungsweg über die Mengenvereinigung bzw. die wie-
derholte Addition Kindern – wie bereits im Abschnitt 2.1.1 erwähnt – Rechenge-
setze bzw. Eigenschaft en der Multiplikation, die bei der Nutzung von Rechenstrate-
gien bzw. Rechenvorteilen eingesetzt werden, bereits im Grundschulalter auf Basis 
von Verständnis und Einsicht kennenzulernen. REISS und SCHMIEDER (2014) ver-
weisen in ihrem Fachbuch Basiswissen Zahlentheorie auf einen kleinen Trick, der an-
schaulich verdeutlich, warum beispielsweise anstelle der Ausgangsaufgabe a x b auch 

a-mal
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die Tauschaufgabe b x a zur Lösung herangezogen werden kann. Die natürlichen 
Zahlen a und b müssen in diesem Zusammenhang als „Rasterpunkte eines zweidi-
mensionalen Gitters“ (REISS & SCHMIEDER, 2014, S. 24) angesehen werden (siehe 
Abbildung 2).

Abbildung 2:  Veranschaulichung der Aufgabe a x b bzw. b x a anhand von Rasterpunkten eines 
zweidimensionalen Gitters (angelehnt an REISS & SCHMIEDER, 2014, S. 25).

Für die Begründung der Kommutativität a x b  =  b x a ist es hilfreich, die Produkte 
über die mehrfach hintereinander ausgeführte Addition – wie die Multiplikation ein-
leitend defi niert wurde – auszudrücken:

a x b = b + b + … + b = a + a + … + a = b x a.

 
Ermittelt man zunächst die Anzahl b der Punkte in den einzelnen Zeilen und ad-
diert das Ergebnis wiederholt so oft , wie es Zeilen gibt, also a-mal, erhält man die 
gleiche Anzahl an Rasterpunkten, als ob man umgekehrt mit der Bestimmung der 
Anzahl a der Punkte in den einzelnen Spalten beginnt und das Ergebnis wiederum 
so oft  addiert, wie es die b Spalten vorsehen (REISS & SCHMIEDER, 2014, S.  25). 
Damit gilt für alle natürlichen Zahlen a und b das Kommutativgesetz a x b = b x a.

REISS und SCHMIEDER (2014) halten bezugnehmend auf diese graphische Re-
präsentation fest: „Selbstverständlich kann diese anschauliche Betrachtung nicht den 
formalen Beweis ersetzen, aber sie kann sicherlich zum Verständnis beitragen“ (ebd., 
S. 25).

Von der Grundidee, angelehnt an die anschauliche Betrachtung an Rasterpunk-
te eines zweidimensionalen Gitters von REISS und SCHMIEDER (2014), werden in 
den folgenden Ausführungen die zentralen Rechengesetze der Multiplikation – inso-
fern möglich – mithilfe von Punktefeldern bzw. angeordneten Punktemustern (siehe 
Abschnitt 2.1.1) beispielgebunden bewiesen. „Diese Form des Begründens [das bei-
spiel- bzw. anschauungsgebundene Begründen] ist bei der Behandlung von Rechen-
gesetzen eff ektiv, da sich solche Begründungen bzgl. der Logik der Argumentation 
nicht vom Beweis der allgemeinen Aussage unterscheiden und dabei an einem Spe-

a

b

a-mal b-mal
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zialfall der allgemeine Fall deutlich wird“ (KÄPNICK, 2014, S.  105, Ergänzung der 
Autorin).

Kommutativgesetz
Die Grundvorstellung, die der Kommutativität der Multiplikation zugrunde liegt, ist 
die „Möglichkeit, zwei oder mehrere Dinge in unterschiedlicher Reihenfolge mitei-
nander […] zu einem Produkt zu verknüpfen, […] das trotz der unterschiedlichen 
Reihenfolge unverändert bleibt […]“ (STEINWEG, 2013, S.  126). In der Variablen-
darstellung kann das Kommutativgesetz verkürzt für alle natürlichen Zahlen a, b wie 
bereits in Abschnitt 2.1.1 angeführt, wie folgt dargestellt werden:

a x b = b x a.

Die Kommutativität der Multiplikation ist gut an Punktemustern – wie die graphi-
sche Repräsentation zu Beginn dieses Abschnittes von REISS und SCHMIEDER 
(2014) veranschaulicht hat – nachzuvollziehen. Anhand folgender beispielgebunde-
ner Beweisstrategie soll dies erneut verdeutlicht werden:

Die Betrachtung ein und desselben Punktemusters bzw. Punktefeldes aus ver-
schiedenen Blickwinkeln (siehe Abbildung 3) ermöglicht je nach eingenommener 
Perspektive das Erkennen eines 3 x 4-Feldes oder eines 4 x 3-Feldes. Je nach Blick-
winkel werden drei Zeilen mit je vier Punkten (3 x 4 Punkte) oder vier Zeilen mit je 
drei Punkten (4 x 3 Punkte) wahrgenommen, wobei sich die Gesamtanzahl der abge-
bildeten Punkte nicht ändert. Demnach gilt für das konkrete Beispiel: 3 x 4 = 4 x 3.

Abbildung 3:  Interpretation des Punktemusters bzw. Punktefeldes als 3 x 4-Feld (links) oder 
4 x 3-Feld (rechts).

Dieser am Beispiel veranschaulichte Beweis ist nicht auf die speziell verwendeten 
Zahlen 3 und 4 beschränkt, sondern kann für beliebige natürliche Zahlen a, b un-
gleich 0 geführt werden. Unabhängig von der Blickrichtung bleibt die Gesamtzahl 
der Punkte gleich, es gilt somit auch für alle natürlichen Zahlen a und b (ungleich 
0) a x b = b x a. Für die Sonderfälle a = 0 und a = 125 kann ebenfalls auf die Gültig-
keit der Kommutativität verwiesen und a x b = b x a festgehalten werden (PADBERG 
& BÜCHTER, 2015, S. 208). Nach REISS und SCHMIEDER (2014) ist die „beschrie-
bene Methode zur Erklärung der Kommutativität durchaus geeignet […], auch jün-

25 Die beiden Fälle a  =  0 und a  =  1 werden von PADBERG und BÜCHTER (2015) 
erneut als Sonderfälle aufgeführt basierend auf der Defi nition der Multiplikation als 
Mengenvereinigung (siehe Abschnitt 2.1.1), welche die Produkte 0 x a und 1 x a nicht erklärt 
(siehe Bemerkung im Abschnitt 2.1.1).

3 x 4 4 x 3
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geren Kindern eine Vorstellung davon zu vermitteln (und natürlich ist bei so klei-
nen konkreten Zahlen alles ganz einfach und das Bild schon der Beweis)“ (ebd., 
S. 26). Die Entdeckung und Begründung der Assoziativität, der Distributivität sowie 
des Gesetzes der Konstanz des Produktes wird anhand der folgenden Ausführungen 
demonstriert.

Assoziativgesetz
Ebenso wie für die Addition, gilt für die Multiplikation natürlicher Zahlen neben 
dem Kommutativgesetz auch das Assoziativgesetz. Das beliebige Zusammenfassen 
der Faktoren eines Produktes wird dabei üblicherweise durch die Klammersetzung 
angedeutet. Für alle natürlichen Zahlen a, b, c gilt:

(a x b) x c = a x (b x c).

Die Assoziativität wird nur dann im Unterricht der Grundschule explizit zum Th e-
ma, wenn in den Lehrplänen Klammern als verpfl ichtende Lerninhalte vorge-
schrieben sind. Dies ist allerdings nicht in allen Bundesländern verbindlich gefor-
dert (STEINWEG, 2013, S. 136), so z. B. auch nicht im bayerischen Lehrplan.26 „Die 
grundsätzliche Idee, dass Verbindungen zwischen drei oder mehr […] Faktoren be-
liebig eingegangen werden können, ohne die Äquivalenz der Terme zu zerstören, 
kann jedoch unabhängig von der Darstellung in Termstrukturen erkannt werden“ 
(STEINWEG, 2013, S. 136).

Nach STEINWEG (2013) kann die Darstellung von Punktemustern – unter der 
Bedingung, dass ein Verständnis der Kommutativität vorliegt – Anstöße liefern, 
„unterschiedliche ,Zählweisen‘ bzw. Perspektiven des Hineindeutens von Produk-
ten zu erproben“ (ebd., S.  137, Hervorhebung im Original). Dieses Herantasten an 
Variationen verschiedener Zählweisen ermöglicht zwar keine verallgemeinerbare 
Interpretation zur Klärung der Assoziativität der Multiplikation, es kann allerdings 
aufgezeigt werden (siehe Abbildung 4), dass ein Punktemuster unterschiedlich inter-
pretiert, zu einer gleichen Anzahl an Punkten führt bzw. dass die beiden Produkte 
4 x (2 x 2) und 2 x (4 x 2) zum selben Ergebnis führen.

26 Der gemeinsame Rahmenlehrplan von Berlin und Brandenburg, der ab dem Schuljahr 
2017/2018 eingeführt wird, fordert auf Niveaustufe C (in Jahrgangstufe 3–5) beispielsweise 
das „Nutzen, Darstellen, Beschreiben von […] Rechengesetzen […] (Kommutativgesetz, 
Assoziativgesetz, Distributivgesetz, gleich- und gegensinniges Verändern)“ (BERLINER 
SENATSVERWALTUNG FÜR BILDUNG, JUGEND UND WISSENSCHAFT & 
MINISTERIUM FÜR BILDUNG, JUGEND UND SPORT DES LANDES BRANDENBURG, 
2015, S.  35) sowie das „Verknüpfen mehrerer Grundrechenoperationen unter Beachtung 
der Punkt-vor-Strich-Regel und der Klammerregeln im Bereich der natürlichen Zahlen“ 
(ebd., S.  35). Die Assoziativität der Multiplikation ist in diesem exemplarisch angeführten 
Rahmenplan somit „in der Termform […] Gegenstand des Unterrichtes der Primarstufe“ 
(STEINWEG, 2013, S. 136).
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Abbildung 4:  Interpretation des Punktemusters als 4 x (2 x 2) und 2 x (4 x 2).

PADBERG und BENZ (2011, S. 136 f.) führen als anschauliche Begründung der As-
soziativität einen aus Würfeln aufgebauten Quader an, dessen Quaderkanten die drei 
Faktoren verkörpern. Die Gesamtzahl der Würfel bleibt unverändert, ganz abgesehen 
davon, wie die Würfel des Quaders Schicht für Schicht abgezählt werden: von unten 
nach oben oder von links nach rechts. Bei der schichtweisen Abzählung von unten 
nach oben erhält der abgebildete Quader (siehe Abbildung 5) als unterste Schicht 2 x
4 Würfel. Da der Quader aus zwei Schichten besteht, kann für das konkrete Beispiel 
die Gesamtwürfelzahl 2 x (2 x 4) ermittelt werden. Bei einer Schichtung von links 
nach rechts kann die Anzahl der Würfel auf ähnliche Weise über (2 x 2) x 4 gefunden 
werden. Die Anzahl der Würfel ändert sich nicht durch eine Variation in der Zähl-
weise – es gilt demnach: 2 x (2 x 4) = (2 x 2) x 4. 

Abbildung 5:  Quader bestehend aus 2 x (2 x 4) (links) bzw. (2 x 2) x 4 Würfeln (rechts).

Verallgemeinert gilt diese Argumentation nicht nur für die im Beispiel aufgeführten 
Zahlen 2, 2 und 4, sondern auch für alle beliebigen natürlichen Zahlen a, b und c.

Distributivgesetz
Das Distributivgesetz beschreibt den bestehenden Zusammenhang zwischen Addi-
tion und Multiplikation, das Zusammenspiel zwischen multiplikativen und additiven 
Verknüpfungen (PADBERG & BÜCHTER, 2015, S.  207). Für alle natürlichen Zah-
len a, b, c gilt: 

a x (b + c) = a x b + a x c.

Eine beispielgebundene Beweisstrategie der Distributivität (der Addition) lässt sich 
nach PADBERG und BENZ (2011, S.  137) über ein Punktemuster mit zwei unter-
schiedlichen Farben sehr gut veranschaulichen (siehe auch PADBERG & BÜCHTER, 
2015, S.  208 f.). Die Gesamtzahl der Punkte kann dabei auf zwei unterschiedlichen 

4 x (2 x 2) 2 x (4 x 2)
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Wegen ermittelt werden: Bei einer reihenweisen Bestimmung kann die Gesamtzahl 
über das Produkt 3 x (5 + 2), bei einer Bestimmung aufgrund der unterschiedlichen 
Farben mittels 3 x 5 + 3 x 2 (siehe Abbildung 6) berechnet werden.  

Abbildung 6:  Interpretation des Punktemusters reihenweise als 3 x (5 + 2), getrennt nach Farben als 
3 x 5 + 3 x 2.

Da in beiden Fällen sämtliche Punkte berücksichtigt wurden und die Zahl der Punk-
te übereinstimmt, gilt: 3 x (5 + 2)  =  3 x 5 + 3 x 2. Die am Beispiel dargestellte Ar-
gumentation gelingt dabei nicht ausschließlich bei den speziellen Zahlen 3, 5 und 
2, sondern auch entsprechend bei beliebig eingesetzten natürlichen Zahlen. STEIN-
WEG (2013, S. 142) beschreibt die Verallgemeinerung der Distributivität folgender-
maßen:

Ein Punktefeld kann als räumlich-simultane Anschauung eines Produktes in 
zwei Teile (Teil-Produkte) zerlegt werden. […] [E]ine Länge des Punktefel-
des [wird] aufgeteilt, die andere bleibt bei beiden Teilprodukten erhalten. Das 
Produkt und die Summe der Teilprodukte bestimmen jeweils die gleiche An-
zahl von Punkten und sind somit gleichwertig (äquivalent). (STEINWEG, 2013, 
S. 142, Ergänzung der Autorin)

Konstanz des Produkts
Der Konstanzsatz der Multiplikation lautet wie folgt: Produkte bleiben gleich, 
wenn der eine Faktor mit einem bestimmten Wert multipliziert wird und der an-
dere gleichzeitig durch diesen Wert dividiert wird (gegensinniges Verändern) 
(KRAUTHAUSEN & SCHERER, 2007, S.  42). Der mathematische Hintergrund 
des Konstanzsatzes ist dabei nach PADBERG und BENZ (2011) die „Beziehung 
(n x a) x (1

n x b) = (n x 1
n

) x (a x b) = a x b, die wegen des Kommutativ- und Assoziativ-
gesetzes im Bereich der rationalen Zahlen (Bruchzahlen) generell gilt“ (ebd., S. 141, 
Hervorhebungen im Original). Soll das Ergebnis des Produktes eine natürliche 
Zahl sein, ist das Ausgleichsgesetz nur bei speziellen Faktoren anwendbar – wenn 
1
n x b bzw. die Division von b durch n, selbst eine natürliche Zahl ergibt (PADBERG 
& BENZ, 2011, S. 141).

Für alle natürlichen Zahlen a, b und 1
n x b gilt:

(n x a) x (1
n x b) = (n x 1

n ) x (a x b) = a x b.

3 x (5 + 2) = 3 x 5 + 3 x 2
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Die beispielgebundene Beweisstrategie kann wiederum anhand eines Punktefel-
des geführt werden. Die Gesamtzahl der Punkte des Punktefeldes ändert sich nicht, 
wenn die Anzahl der Reihen eines Punktefeldes verdoppelt (bzw. verdreifacht etc.) 
wird und im Gegenzug die Anzahl der Spalten des Punktefeldes halbiert (bzw. ge-
drittelt etc.) wird. Als Endprodukte entstehen zwei unterschiedliche Punktefelder 
(siehe Abbildung 7) mit derselben Gesamtpunktzahl (STEINWEG, 2013, S.  156) – 
das Produkt bleibt konstant gegenüber der gegensinnigen Veränderung der Faktoren:
 4 x 6 = (2 x 4) x (1

2 x 6) = 8 x 3.

Abbildung 7:  Konstantes Produkt gegenüber der gegensinnigen Veränderung der Faktoren:

4 x 6 = (2 x 4) x (12 x 6) = 8 x 3.

Die in diesem Abschnitt angeführten Interpretationen der Punktemuster (bzw. des 
Quaders im Falle der Argumentation der Assoziativität) bieten die Möglichkeit, 
Eigenschaft en der Multiplikation – die Kommutativität, die Assoziativität, die Distri-
butivität und die Konstanz des Produktes – nicht lediglich aufgabenspezifi sch zu er-
fassen, sondern diese auch anschaulich und allgemeingültig zu begründen. Inwieweit 
bzw. inwiefern die beispielgebundenen Beweisstrategien in etwas adaptierter oder 
vereinfachter Form in der Unterrichtspraxis der Grundschule zum Einsatz kommen 
und welche bedeutende Rolle ihrer verständnisbasierten Erarbeitung zuteil wird, soll 
bei der Darstellung der unterrichtlichen Erarbeitung des kleinen Einmaleins konkre-
tisiert werden.

4 x 6

(2 x 4) x (1

2 x 6) = 8 x 3
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2.2 Strategiebegriff  und Herangehensweisen zur Lösung von 
Einmaleinsaufgaben

„Th e fact that children use diverse strategies is not a mere 
idiosyncracy of human cognition. Good reasons exist for people to 

know and use multiple strategies.“

(SIEGLER, 1991, S. 90) 

Arithmetische Aufgabenstellungen und in diesem Sinne auch Aufgaben zum klei-
nen Einmaleins können auf verschiedenen Wegen gelöst werden. Dabei werden aus 
mathematikdidaktischer Sicht elegantere von weniger eleganten Herangehensweisen 
bzw. effi  zientere von weniger effi  zienten unterschieden. Der Abschnitt 2.2 stellt ver-
schiedene Herangehensweisen zur Lösung von Einmaleinsaufgaben dar. Zu Beginn 
wird ein Überblick über die Verwendung des Begriff es Strategie gegeben. Der Ab-
schnitt 2.2.1 gibt dabei gewissermaßen einen Einblick in die uneinheitliche Verwen-
dung des Begriff es. Daran anschließend werden im Abschnitt 2.2.2 unterschiedliche 
Herangehensweisen zur Lösung von Einmaleinsaufgaben aus mathematikdidakti-
scher Sicht dargestellt. Die in der vorliegenden Arbeit verwendeten Begriffl  ichkeiten 
für verschiedene Lösungswege von Einmaleinsaufgaben werden im Folgenden erläu-
tert und voneinander abgegrenzt. Im Abschnitt 2.2.3 erfolgt die für diese Arbeit fi -
nale Positionierung hinsichtlich des Strategiebegriff es beim kleinen Einmaleins. Der 
abschließende Abschnitt 2.2.4 widmet sich in einem Exkurs dem Begriff  Strategie 
bezogen auf das Einmaleins aus internationaler Perspektive. Dieser Exkurs ist erfor-
derlich, da im Kontext Einmaleins internationalen Studien teils ein anderes Strate-
gieverständnis zugrunde liegt als der Fachdidaktik in Deutschland und dieser Arbeit. 

2.2.1 Strategiebegriff  allgemein

ASHCRAFT (1990) bezeichnet unter dem Begriff  Strategie „how some task is per-
formed mentally“ (ebd., S. 186) und umschreibt Strategie als „any mental process or 
procedure in the stream of information-processing activities that serves a goal-relat-
ed purpose“ (ebd., S.  207). CARR und HETTINGER (2003) stimmen mit der De-
fi nition von ASHCRAFT (1990) überein, indem sie den Begriff  Strategie ganz weit 
gefasst wie folgt festlegen: „Mathematics strategies […] will be defi ned broadly as 
any method used to solve a mathematics problem“ (ebd., S.  34). Ihrem Begriff sver-
ständnis nach erfolgt der Einsatz von Strategien „with a specifi c outcome in mind“ 
(CARR & HETTINGER, 2003, S.  34). Dies steht im Einklang mit der Bezeichnung 
„goal-related“ bei ASHCRAFT (1990). Ein wesentlicher Bestandteil jeder Strategie 
besteht demnach in ihrer Zielgerichtetheit (vgl. ASHCRAFT, 1990, S.  186; CARR 
& HETTINGER, 2003, S.  34; GAIDOSCHIK, 2010, S.  10; STERN, 1992, S.  102; 
THRELFALL, 2009, S. 541 f.).
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Eine Spezifi zierung bzw. Ausdiff erenzierung des Strategiebegriff es liefert THREL-
FALL (2009) bezüglich der sogenannten „approach-strategy“ (S. 541), die er als „the 
general form of mathematical cognition used for the problem“ (ebd., S.  541) be-
schreibt. Unter strategischen Herangehensweisen an ein mathematisches Problem 
werden beispielsweise das Zählen, der Faktenabruf, die Anwendung einer gelernten 
Methode, die Visualisierung einer Prozedur oder der Rückgriff  auf bekannte Zahl-
beziehungen gefasst. Dem Verständnis von THRELFALL (2009) zufolge werden mit 
dem Begriff  Strategie sowohl bewusste bzw. gezielt ausgeführte als auch unbewusste 
Herangehensweisen beschrieben – ein Strategieverständnis, das im Laufe der weite-
ren Ausführungen noch modifi ziert werden wird.

SHERIN und FUSON (2005) verwenden den Begriff  computational strategies und 
beziehen sich auf „patterns in computational activity, viewed at a certain level of ab-
straction“ (SHERIN & FUSON, 2005, S.  350, Hervorhebungen im Original). Dabei 
grenzen sie sich gezielt von alternativen begriffl  ichen Darstellungen ab, die Strate-
gien als „knowledge (cognitive structures) possessed by individuals“ (ebd., S. 350, Her-
vorhebungen im Original) beschreiben. Computational strategies stellen „a pattern 
in the steps taken toward producing a numerical result“ (ebd., S. 350) dar, aber nach 
SHERIN und FUSON (2005) kein Wissen im eigentlichen Sinne. Kinder müssen 
demnach zur Aufgabenlösung nicht über explizites Strategiewissen verfügen. Stra-
tegien können ähnlich wie bei THRELFALL (2009) durchaus auch unbewusst ablau-
fen (SHERIN & FUSON, 2005, S. 349). Vereinzelte, einfache Beziehungen zwischen 
einer speziellen Strategie und dem Wissen eines einzelnen Kindes können zuweilen 
aber auch bestehen. Nach SHERIN und FUSON (2005) muss dies allerdings nicht 
zwingend der Fall sein: „Sometimes, […] there is a simple relationship […], but this 
need not always be the case“ (ebd., S. 350). Die Tatsache, dass SHERIN und FUSON 
(2005) Strategien nicht oder nur eingeschränkt mit dem Begriff  knowledge gleich-
setzen, soll allerdings nicht zu dem Schluss führen, dass Strategien nicht auf Wis-
sen basieren. Ganz im Gegenteil werden bei SHERIN und FUSON (2005) Strategien 
danach klassifi ziert, welche zahlspezifi schen Fertigkeiten zur Aufgabenlösung ver-
langt werden bzw. erforderlich sind: „We associate classes of strategies with the type 
of number-specifi c computational resources that underpin those strategies“ (ebd., 
S. 356).

Inwiefern eine Strategie als wissensbasierter oder nicht wissensbasierter Prozess 
verstanden wird, kann im Hinblick auf den Strategiebegriff  in der Literatur diskutiert 
werden. Autoren für die Strategien im Gegensatz zu SHERIN und FUSON (2005) 
Wissen oder kognitive Strukturen – im beschriebenen Sinne – darstellen, sollen an-
hand der folgenden Ausführungen exemplarisch angeführt werden. 

STERN (1992) betont ebenso wie SHERIN und FUSON (2005), dass strategi-
sches Verhalten eine Basis an Wissen voraussetzt, welche als „gut organisierte Wis-
sensstruktur vorliegt, auf deren Grundlage neues Wissen aufgebaut werden kann“ 
(STERN, 1992, S.  103). Die Notwendigkeit einer zugrundeliegenden Wissensstruk-
tur wird dabei ihrer Meinung nach umso deutlicher, wenn man berücksichtigt, dass 
sich eine Strategie durch keinen bekannten oder festgelegten Handlungsschritt kenn-
zeichnet (STERN, 1992, S.  103). STERN (1992) unterscheidet nämlich zwischen 
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einer Prozedur und einer Strategie: „Während bei der Prozedur die einzelnen Schrit-
te festgelegt sind und der Lernprozeß [sic] darin besteht, die Abfolge dieser zu op-
timieren, gibt es bei der Strategie keinen vorher bekannten und festgelegten Hand-
lungsablauf “ (ebd., S.  103). Strategien sind im Vergleich zu Prozeduren, bei denen 
Handlungsschritte in der richtigen Reihenfolge ausgeführt werden, deutlich komple-
xer und schwerer zu fassen. Der Strategiebegriff  wird mit übergeordneten kogniti-
ven Prozessen in Verbindung gebracht: „Kognitive Prozesse, die sich mit den Begrif-
fen Flexibilität, Zielorientiertheit und Effi  zienz charakterisieren lassen, werden unter 
dem Begriff  ,Strategie‘ zusammengefasst“ (STERN, 1992, S.  102, Hervorhebung im 
Original). Nach STERN (1992) und einer von ihr durchgeführten Literaturrecherche 
liegt darin der Minimalkonsens der Vielfalt an Begriff serklärungen (ebd., S.  102). 
Neben der bereits zu Beginn dieses Abschnittes angesprochenen Zielorientiertheit, 
stellen nach STERN (1992) darüber hinaus auch die Flexibilität und Effi  zienz kenn-
zeichnende Merkmale einer Strategie dar.

BISANZ und LEFEVRE (1990) betonen ebenso wie STERN (1992), dass eine 
Voraussetzung für strategisches Vorgehen in einem gut strukturierten Wissensnetz 
liegt. Bei ihrer ebenfalls getroff enen Unterscheidung zwischen den Begriffl  ichkei-
ten Strategie und Prozedur führen sie als entscheidendes Charakteristikum den Ent-
scheidungsspielraum an – von einem gezielten, strategischen Vorgehen kann nach 
BISANZ und LEFEVRE (1990) nur dann gesprochen werden, wenn zwischen ver-
schiedenen Lösungswegen gewählt werden kann (ebd., S.  236). Nach BISANZ und 
LEFEVRE (1990) ist eine Strategie defi niert als „a procedure that is invoked in a 
fl exible, goal oriented manner and that infl uences the selection and implementation 
of subsequent procedures“ (ebd., S.  236). Während sich eine Prozedur durch eine 
erfolgreiche Ausführung einer bekannten und festgelegten Lösungsmethode kenn-
zeichnen lässt und nicht zwingend konzeptuelles Verständnis erfordert, bedeutet der 
Gebrauch einer Strategie, „looking for facilitatory methods instead of running long 
winded and time consuming procedures“ (STERN, 1992, S.  266 f.). STERN (1992) 
zufolge stellt die bewusste Auswahl einer Strategie mit einem spezifi schen Zielgedan-
ken einen wesentlichen Aspekt des Strategieeinsatzes dar. Strategien sind auch ge-
mäß BISANZ und LEFEVRE (1990) auf Entscheidungen beschränkt, die vor der tat-
sächlichen Berechnung einer Aufgabe getroff en werden und eine fl exible Auswahl 
zwischen verschiedenen Herangehensweisen zur Zielerreichung vorsehen. In dieser 
bewussten bzw. fl exiblen Auswahl liegt auch der Unterschied zum Begriff sverständnis 
von SHERIN und FUSON (2005) begründet – nach STERN (1992) sowie BISANZ 
und LEFEVRE (1990) scheint Wissen um eine Strategie explizit erforderlich zu sein. 
Andernfalls kann keine bewusste Entscheidung für oder gegen eine Strategie erfol-
gen. Der Faktenabruf wird von BISANZ und LEFEVRE (1990) dabei nicht als Stra-
tegie angesehen, da sie unter Faktenabruf folgendes fassen: „A fundamental property 
of the cognitive system, it is not an optional procedure, and hence it is not strategic“ 
(BISANZ & LEFEVRE, 1990, S. 237).

Somit ähnelt die Verwendung des Begriff s Strategie bei BISANZ und LEFEVRE 
(1990) dem Strategieverständnis von STERN (1992), welche – wie bereits im vorhe-
rigen Absatz erwähnt – neben der Zielorientierung auch die Flexibilität als weiteres 
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Kriterium einer Strategie anführt. Nach CARR und HETTINGER (2003) sprechen 
sich BISANZ und LEFEVRE (1990) auch für eine saubere Abgrenzung des Strategie-
begriff es von anderen kognitiven Prozessen bzw. Vorgehensweisen aus. Sie fordern 
demzufolge „a more constrained use of the term so as to discriminate strategies 
from other cognitive procedures“ (CARR & HETTINGER, 2003, S. 34).

In Anlehnung an STERN (1992, S.  102 f.) versteht RATHGEB-SCHNIERER 
(2006) unter Strategien „übergeordnete, bewusste handlungsleitende Prinzipien, 
die altersabhängig, aufgabenabhängig, wissensabhängig und motivabhängig sind“ 
(ebd., S. 55). Strategischem Vorgehen bedarf es dann, wenn keine geschlossene bzw. 
„durchgängige[…] Lösungsmethode“ (RECHTSTEINER-MERZ, 2013, S.  24) zur 
Verfügung steht und demnach zur Problemlösung strategische Werkzeuge erforder-
lich sind (RATHGEB-SCHNIERER, 2006, S.  55 f.). Unter strategischen Werkzeu-
gen27 werden „Zahlzerlegungen, regelgestützte Veränderungen von Aufgaben sowie 
Nutzung von Hilfsaufgaben, Nutzung des Analogiewissens und Auswendigwissens“ 
(RATHGEB-SCHNIERER, 2010, S.  270) verstanden – vorwiegend liegen diesen 
Werkzeugen numerische Prinzipien und Rechengesetze zugrunde. „Charakteristisch 
für diese strategischen Werkzeuge ist ihre Aufgabenunabhängigkeit sowie die Kom-
binierbarkeit mehrerer strategischer Werkzeuge beim Lösen einer Aufgabe“ (RATH-
GEB-SCHNIERER, 2006, S.  55). Nach RATHGEB-SCHNIERER (2006) benötigen 
Kinder somit explizites Wissen zur Ausführung einer Strategie – das erforderliche 
Strategie- und Basisfaktenwissen bezeichnen sie mit der Begriffl  ichkeit strategisches 
Werkzeug.

THRELFALL (2002) spricht von „analytic strategies“ (ebd., S.  42) und wider-
spricht in Bezug auf den Begriff  Strategie der Annahme einiger Autoren, dass Schü-
lerinnen und Schüler vor dem Lösen einer Aufgabe eine geeignete Strategie, in Form 
eines kompletten – bekannten und festgelegten – Lösungsweges, auswählen:

It [the analytic strategy] is not learned as a general approach and then applied 
to particular cases. Th e solution path taken may be interpreted later as being 
the result of a decision or choice, and be called a ‘strategy’, but the labels are 
misleading. Th e ‘strategy’ (in the holistic sense of the entire solution path) is 
not decided, it emerges. Th at is why the classifi cations of strategies do not map 
easily onto the diff erences that there are in practice. Th ey are a post-hoc cons-
truct applied to a diff erent kind of cognitive product. In this interpretation, the 
mental ‘strategies’ that can actually occur are not solution strategies, but analy-
tic strategies. Th ey are ways of thinking about mental calculations that do not 
 describe the whole sequence to the solution, but concern just some of the steps, 
for example ways of beginning, ways of thinking about the numbers, and ways 
of relating the numbers to other knowledge. (THRELFALL, 2002, S. 42, Hervor-
hebungen im Original, Ergänzung der Autorin)

Eine Strategie kann sich, wie dem Zitat von THRELFALL (2002) zu entnehmen ist, 
demnach auch in Abhängigkeit vom individuellen Wissen und Erkennen entwickeln 

27 Die an dieser Stelle aufgelisteten strategischen Werkzeuge beziehen sich auf die Lösung von 
Additions- und Subtraktionsaufgaben (RATHGEB-SCHNIERER, 2006, S. 55).
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und weniger vorneweg als gesamter Lösungsweg ausgewählt werden. Nach SIEGLER 
(1988) scheint es sogar möglich zu sein, „that people make at least some of their 
strategy choices without reference to explicit knowledge of capacities, strategies, and 
problem characteristics“ (ebd., S. 258). Selbst wenn eine Strategie in der Th eorie als 
intuitiv ablaufende oder als bewusst getroff ene Herangehensweise defi niert wird – 
in der Praxis ist es vereinzelt nur schwer möglich zwischen diesen beiden Fällen zu 
unterscheiden, wie das Zitat von THRELFALL (2009) zeigt:

In any particular case, it may not be possible to say from its form whether a 
number-transformation-strategy was an example of purposeful calculation based 
on number knowledge or the ‘blind’ application of a learned method. (THREL-
FALL, 2009, S. 542, Hervorhebung im Original)

Der dargebotene Einblick über die Verwendung des Begriff s Strategie verdeutlicht, 
dass dieser in der Literatur – sowohl national als auch international – sehr vielfältig 
genutzt und ihm verschiedene Bedeutungen zugewiesen werden.

Zusammenfassung
Die verschiedenen Defi nitionen fassen unter dem Begriff  Strategie sowohl bewusst 
als auch unbewusst ablaufende Herangehensweisen, andere wiederum beschränken 
sich auf gezielt ausgeführte Prozesse. Nach Meinung einiger Autoren ist eine Strate-
gie mit dem zur Lösung explizit erforderlichen Wissen gleichzusetzen, andere wie-
derum behaupten, dass eine Strategie kein Wissen im eigentlichen Sinne darstellt. Je 
nach Defi nition werden neben der Zielorientiertheit auch die Begriffl  ichkeiten Flexi-
bilität und Effi  zienz mit Strategien in Verbindung gebracht.

Vor allem aber sind die bewusst ablaufenden Prozesse, bei denen Zahlbeziehun-
gen genutzt werden, die größtenteils auf Rechengesetzen beruhen, von besonderem 
Interesse. Dies trifft   auch auf die vorliegende Arbeit zu. Im Abschnitt 2.2.2 werden 
die verschiedenen Herangehensweisen – im Hinblick auf das kleine Einmaleins bzw. 
die Multiplikation – detailliert erläutert.

Die bisherigen Ausführungen dieses Abschnittes sollten allerdings auch unter 
dem Gesichtspunkt betrachtet werden, dass Begriff sdefi nitionen zwar allgemeingül-
tig bzw. unabhängig von einer konkreten Operation formuliert werden, je nach Re-
chenoperation aber auch unterschiedliche Ausdiff erenzierungen aufweisen können. 
Die bereits erwähnte Aussage von THRELFALL (2002) „the ‚strategy‘ (in the holis-
tic sense of the entire solution path) is not decided, it emerges“ (ebd., S.  42, Her-
vorhebung im Original) könnte beispielsweise eher auf das exemplarisch angeführte 
Beispiel der halbschrift lichen Addition zutreff en als für das kleine Einmaleins. Auf-
grund der begrenzten Anzahl an und einer beschränkten Anzahl zu lösender Aufga-
ben, ist es denkbar, dass durchaus – im Widerspruch zur Aussage von THRELFALL 
(2002) –, eine Strategie als „general approach“ (THRELFALL, 2002, S.  42) gelernt 
und dann auf spezielle Fälle angewendet wird und weniger im Rechenprozess ent-
steht. Kinder merken sich möglicherweise für die begrenzte Anzahl an Aufgaben 
aus dem kleinen Einmaleins, welche Aufgabe wie gut zu lösen ist. Im Zahlenraum 
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bis 1000 müssen Kinder im Gegensatz dazu immer wieder neu nachdenken, wie sie 
Aufgaben berechnen.

2.2.2 Herangehensweisen zur Lösung von Einmaleinsaufgaben

Die Vielfalt an verschiedenen Lösungswegen für Einmaleinssätze unabhängig da-
von, ob sie gezielt ausgeführt, automatisiert ablaufen, unter den Begriff  Wissen fal-
len oder nicht (siehe Abschnitt 2.2.1), werden in den folgenden Ausführungen dieser 
Arbeit mit dem Oberbegriff  Herangehensweisen bezeichnet bzw. tituliert. Die Begriff -
lichkeit orientiert sich an den im Abschnitt 2.2.1 ebenfalls sehr weit gefassten Strate-
gie-Defi nitionen von ASHCRAFT (1990) sowie CARR und HETTINGER (2003), die 
es ermöglichen, die Gesamtheit der unterschiedlichen Ausprägungen an Herange-
hensweisen an eine Aufgabe zu erfassen. Was in der vorliegenden Arbeit unter dem 
Begriff  Strategie gefasst wird, wird nach der Beschreibung der unterschiedlichen He-
rangehensweisen aufgeführt.

Trotz unterschiedlicher Bezeichnung und teilweise unterschiedlichen Ausdiff e-
renzierungen der Lösungswege von Einmaleinsaufgaben in der mathematikdidakti-
schen Literatur können nach SELTER (1994) vier verschiedene Herangehensweisen 
an Einmaleinssätze klassifi ziert werden (ebd., S.  75 f.), „deren einzelne Kategorien 
verschiedene Grade an Eleganz und Effi  zienz aufweisen“ (SETER, 1994, S.  75). Die 
Zusammenfassung einiger Studienergebnisse liefert gemäß SELTER (1994) die fol-
gende Klassifi kation (ebd., S.  75 f.): das Zählen, das Addieren, das Ableiten aus be-
reits bekannten Einmaleinsaufgaben sowie die auswendige Verfügbarkeit des Ein-
maleinssatzes.

Für diese Arbeit werden die unterschiedlichen Herangehensweisen beim Lösen 
von Einmaleinssätzen neu klassifi ziert – dabei werden die ersten beiden Kategorien 
von SELTER (1994) zusammengefasst:
• Zählen und wiederholtes Addieren (gleicher Summanden)
• Ableiten aus bereits bekannten Einmaleinsaufgaben
• Faktenabruf

In den folgenden Absätzen sollen die verschiedenen Herangehensweisen zur Lösung 
von Aufgaben des kleinen Einmaleins und ihre kennzeichnenden Merkmale einer 
genaueren Betrachtung unterzogen werden.

Zählen und wiederholtes Addieren (gleicher Summanden)
Den mit Abstand geringsten Grad an Eleganz und Effi  zienz – im Vergleich zum Ab-
leiten aus bereits bekannten Einmaleinsaufgaben und der Automatisierung – weisen 
die Herangehensweisen des Zählens und wiederholten Addierens auf (vgl. RADATZ 
et al., 1998, S. 87; SCHIPPER et al., 2015, S. 109). Dabei unterscheiden sich auch die 
verschiedenen Lösungswege beim Zählen und wiederholten Addieren deutlich mit 
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Blick auf eine elegante und/oder effi  ziente Möglichkeit zur Lösung einer Einmaleins-
aufgabe, wie anhand der folgenden Ausführungen verdeutlicht wird.

Einen Lösungsweg, der bereits vor der unterrichtlichen Behandlung der Multi-
plikation gewählt wird, stellt das Auszählen dar. Das vollständige Auszählen jedes 
einzelnen Objekts oder das direkte Modellieren mit Material kann dabei nach SHE-
RIN und FUSON (2005) „paper-based“ oder „fi nger-based“ (ebd., S.  364 f.) vollzo-
gen werden.

Beim rhythmischen Zählen erfolgt die Aufgabenlösung wiederum über das Zäh-
len, allerdings unter Betonung der gleichgroßen Teilabschnitte (1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12). Eine Variante des rhythmischen Zählens stellt das rhythmische Zäh-
len mit Fingern dar. Die Finger werden dabei zur Anzahlbestimmung der gleich gro-
ßen Teilabschnitte eingesetzt. Generell kann für alle Schülerinnen und Schüler unab-
hängig vom Leistungsvermögen festgehalten werden: „Count-all strategies can be the 
most time-consuming and most diffi  cult to enact correctly when the operands are 
large“ (SHERIN & FUSON, 2005, S. 363).

Zum Lösen von Einmaleinsaufgaben kann auch die wiederholte Addition gleicher 
Summanden (4 + 4 + 4) genutzt werden. Auch dieser Lösungsweg ist eher zeitauf-
wändig und fehleranfällig – laut SHERIN und FUSON (2005) aber „less time-consu-
ming and easier to enact than count-all strategies“ (ebd., S. 367). Bei dieser Herange-
hensweise wird, gegebenenfalls auch unter Zuhilfenahme der Finger, die Anzahl der 
durchgeführten Teiladditionen vermerkt.

Eine weitere Herangehensweise nach PADBERG und BENZ (2011) stellt die „Be-
nutzung von Zahlenfolgen“ (ebd., S. 126) (z. B. 4, 8, 12) dar, welche auch unter dem 
synonymen Begriff  Aufsagen der Einmaleinsreihe in der Literatur geführt wird. Das 
Aufsagen der Einmaleinsreihe führt nach RADATZ  et  al. (1998) „zu einem ande-
ren, nicht weniger aufwendigen und fehleranfälligen Verfahren“ (ebd., S.  87). „Th e 
tradeoff  is that a count-by sequence must be learned for each number“ (SHERIN & 
FUSON, 2005, S. 370). Bei großen Faktoren scheint es auch bei dieser Herangehens-
weise hilfreich, zur Entlastung des Kurzzeitgedächtnisses, die Finger zum Zählen he-
ranzuziehen.

Ableiten aus bereits bekannten Einmaleinsaufgaben 
Eine Lösung über ein Ableiten aus bekannten Einmaleinsaufgaben repräsentiert eine 
Herangehensweise, die auf Zahlbeziehungen, bekannte Einmaleinssätze oder be-
stimmte Muster zur Problemlösung zurückgreift . In der mathematikdidaktischen Li-
teratur werden mit Blick auf das kleine Einmaleins in der Mehrzahl der Fälle folgen-
de fünf Herangehensweisen, die noch unbekannte Einmaleinsaufgaben aus bereits 
bekannten Einmaleinsaufgaben ableiten, unterschieden (vgl. PADBERG & BENZ, 
2011, S. 139; SCHIPPER et al., 2015, S. 110):
• die Tauschaufgabe,
• die Verdopplung bzw. Halbierung eines Faktors,
• die Zerlegung eines Faktors,
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• die Nachbaraufgabe und
• das gegensinnige Verändern beider Faktoren.

Im Folgenden sollen diese fünf Herangehensweisen spezifi ziert werden:

Tauschaufgabe
Beim Lösen von Einmaleinsaufgaben sollen Kinder die Tauschaufgabe als einen 
Lösungsweg kennenlernen, der – wenn die Tauschaufgabe bekannt ist – einfacher 
zur Lösung führen kann, als eine für die ursprüngliche Aufgabe alternative Heran-
gehensweise. Grundlage für die Tauschaufgabe, bei der die Faktoren der Aufgabe 
vertauscht werden, um somit auf das Ergebnis des leichteren oder bereits bekann-
ten Einmaleinssatzes zurückzugreifen, ist das Kommutativgesetz der Multiplikation 
(a x b  =  b x a) (siehe Abschnitt 2.1.2). Wegen der Gültigkeit des Kommutativgeset-
zes kann beispielsweise anstelle der noch nicht bekannten Aufgabe 7 · 3, zur Auf-
gabenlösung die bereits bekannte Aufgabe 3 · 7 genutzt werden (PADBERG, 2005, 
S. 202 f.). Die Begründung der Tauschaufgabe kann anhand eines beispielgebundenen 
Beweises wie im Abschnitt 2.1.2 bereits veranschaulicht, grundschuladäquat aufge-
zeigt werden. Die Anzahl der zu erlernenden Aufgaben kann um fast die Hälft e re-
duziert werden, wenn Kinder die Tauschaufgabe zum Lösen von Aufgaben einsetzen 
(RADATZ et al., 1998, S. 88).

Verdopplung bzw. Halbierung eines Faktors
Wegen der Gültigkeit des Assoziativgesetzes (siehe Abschnitt 2.1.2) können Einmal-
einsaufgaben über die Verdopplung bzw. Halbierung eines Faktors gelöst werden. Soll 
ein Kind beispielsweise die noch unbekannte Aufgabe 4  · 7 lösen, fällt es ihm unter 
Umständen leichter, auf eine bereits bekannte Aufgabe wie beispielsweise 2  ·  7 zu-
rückzugreifen. Die Lösung der Aufgabe 4  · 7 kann dann durch die Verdopplung des 
Ergebnisses der Aufgabe 2 · 7 erfolgen. In ähnlicher Weise kann die Halbierung zur 
Aufgabenlösung beitragen: Ist einem Kind bekannt, dass 5 · 6 die Hälft e von 10 · 6 
darstellt, dann kann die Aufgabe 5 · 6 leicht über 5 · 6 = 60 : 2 = 30 ermittelt werden.

Zerlegung eines Faktors
Beim Lösen einer Aufgabe über das Zerlegen eines Faktors werden zwei Auf-
gaben, deren Ergebnisse bereits bekannt sind, zur Lösung der ursprüngli-
chen Aufgabe herangezogen. Bei der Zerlegung kann sowohl der erste als auch 
der zweite Faktor additiv oder subtraktiv zerlegt werden. Das Distributivgesetz 
a x (b + c) = a x b + a x c bzw. a x (b – c) = a x b – a x c (siehe Abschnitt 2.1) bildet 
die Grundlage für das Zerlegen von Aufgaben (wie beispielsweise der Aufgabe 6 · 4) 
in zwei bekannte Teilaufgaben (4 · 4 und 2 · 4) und deren schrittweise Berechnung 
im Anschluss (6 · 4 = 4 · 4 + 2 · 4 = 16 + 8 = 24).



   68  

Nachbaraufgabe
Nachbaraufgaben sind Spezialfälle der Zerlegung eines Faktors. Einer der beiden 
Faktoren wird auch bei diesem Lösungsweg additiv oder subtraktiv verändert, aller-
dings genau um eins. Die Lösung der Aufgabe 6 · 4 kann über die leicht zu lösende 
bzw. bereits bekannte Einmaleinsaufgabe 5 · 4 erfolgen. Im angeführten Beispiel wird 
zu der Nachbaraufgabe 5 · 4, die 4 bzw. das Ergebnis der Teilaufgabe 1 · 4 addiert, so 
dass insgesamt das Ergebnis der Aufgabe über 6 · 4 = 5 · 4 + 1 · 4 = 20 + 4 = 24 er-
mittelt werden kann.

Gegensinniges Verändern beider Faktoren
Bei der Anwendung des gegensinnigen Veränderns wird die Konstanz des Produkts 
genutzt (siehe Abschnitt 2.1). „Wird der erste Faktor verdoppelt und der zweite Fak-
tor halbiert oder allgemein ein Faktor mit einer natürlichen Zahl n multipliziert und 
zugleich der andere Faktor durch diese natürliche Zahl n dividiert, so bleibt das Pro-
dukt unverändert“ (PADBERG & BENZ, 2011, S.  141). Durch die Halbierung des 
ersten Faktors und der gleichzeitigen Verdopplung des zweiten Faktors bleibt das 
Produkt konstant gegenüber dem gegensinnigen Verändern. Das gegensinnige Ver-
ändern fi ndet im Bereich der Grundschule allerdings nur bei speziellen Faktoren 
Anwendung – die Variation des Faktors durch Halbieren, Dritteln, Vierteln etc. kann 
in der Grundschule eigentlich nur unter der Bedingung vorgenommen werden, dass 
eine natürliche Zahl entsteht (siehe Abschnitt 2.1.2).

Wie bereits angemerkt, werden allerdings nicht alle diese fünf beschriebenen He-
rangehensweisen einheitlich von allen Autoren aufgeführt. Beispielsweise wird ver-
einzelt das gegensinnige Verändern nicht als Herangehensweise gelistet (LORENZ & 
RADATZ, 1993, S. 141; SCHIPPER, 2009, S. 145) oder die Tauschaufgabe (RADATZ 
et al., 1998, S. 87). SCHIPPER (2009) listet hingegen beispielsweise die Verwendung 
der Umkehraufgabe ebenfalls als operative Strategie auf, wodurch er sich von den an-
deren Autoren unterscheidet (ebd., S. 145). 

Neben den in diesem Abschnitt angeführten Herangehensweisen zur Lösung von 
Einmaleinsaufgaben lassen sich auch eine Vielzahl von Übergangsformen erkennen 
– so kann das Ergebnis einer Aufgabe beispielsweise auch ermittelt werden über die 
Benutzung von Zahlenfolgen und einem anschließenden Zählen in Einzelschritten 
(PADBERG & BENZ, 2011, S. 127). Ein weiteres Beispiel einer „hybrid strategy“ wie 
SHERIN und FUSON (2005) diese kombinierten Herangehensweisen nennen, ist 
die Nutzung einer Zerlegungsstrategie und der anschließenden wiederholten Addi-
tion zur Aufgabenlösung anstelle der Addition des restlichen Teilproduktes. „Hybrid 
strategies are based on combinations of […] strategies […]. In principle, there is a 
moderately large number of possible ways that existing strategies can be composed 
to form hybrid strategies“ (SHERIN & FUSON, 2005, S. 374).
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Faktenabruf
Neben den bereits angeführten Herangehensweisen des Zählens und wiederholten 
Addierens gleicher Summanden sowie den verschiedenen Rechenstrategien kann zur 
Lösung von Aufgaben des kleinen Einmaleins auch auf den Faktenabruf zurückge-
griff en werden. 

In der englischsprachigen Literatur wird die auswendige Verfügbarkeit von Ein-
maleinsaufgaben häufi g unter dem Begriff  knowledge of facts geführt, so dass MUL-
LIGAN und MITCHELMORE (1997) von known multiplication facts sprechen, 
KOUBA (1989) von recalled number facts und ANGHILERI (1989) von known 
facts. Eine weitere gängige Bezeichnung für den Faktenabruf ist der Begriff  retrieval
(vgl. COONEY, SWANSON & LADD, 1988; LEFEVRE, BISANZ, DALEY, BUF-
FONE, GREENHAM & SADESKY, 1996; LEMAIRE & SIEGLER, 1995; SIEGLER, 
1988). SHERIN und FUSON (2005) sprechen von learned product. Sie vermeiden bei 
ihrer Begriff swahl bewusst die Begriff sbestandteile fact oder retrieval, da diese nach 
ihrem Verständnis eher einem „rote lockup, as if from a mental table“ entsprechen 
(SHERIN & FUSON, 2005, S. 373).

Auch BAROODY (1985) führt ähnlich wie SHERIN und FUSON (2005) eine Er-
klärung für die in seiner Arbeit bevorzugt verwendete Begriffl  ichkeit number com-
bination anstelle von number fact an. Mit den Begriff en basic number combinations 
und (basic) number facts assoziiert BAROODY (1985) folgendes: „Number fact con-
notes a mechanical or rote associative process and will be used to denote that mean-
ing. Number combinations may be learned in a meaningful manner, and I prefer 
this less prejudicial term“ (BAROODY, 1985, S.  83). Die beiden Begriffl  ichkeiten 
stehen für ein- und dasselbe Ziel bzw. Endprodukt des Lernprozesses, das Beherr-
schen von Grundaufgaben. Sie unterscheiden sich aber – wie aus dem Zitat her-
vorgeht – bezüglich der Inhalte des Lernprozesses, die zum Lernprodukt führen. 
Dies bringt BAROODY auch in seinem 1985 erschienenen Artikel mit dem Titel 
Mastery of Basic Number Combination: Internalization of Relationships or Facts? zum 
Ausdruck.

Bezogen auf das auswendige Beherrschen von Einmaleinsaufgaben wird in der 
deutschsprachigen fachdidaktischen Literatur eine ähnliche Diskussion geführt. Der 
Faktenabruf steht für das Lösen einer Aufgabe durch einen direkten Abruf der Lö-
sung aus dem Gedächtnis. Voraussetzung für diesen unmittelbaren Faktenabruf stellt 
das „Auswendigwissen“ (SCHIPPER et al., 2015, S. 102) dar. Nach GERSTER (1994) 
ist Auswendigwissen das Ergebnis eines Prozesses, der mit den Begriff en Auswen-
diglernen oder Automatisieren bezeichnet wird (ebd., S. 37 ff .; SCHERER & MOSER 
OPITZ, 2010, S.  62). Unberücksichtigt bleibt dabei nach SCHERER und MOSER 
OPITZ (2010) häufi g, dass Lernen und somit auch das Auswendiglernen auf Ein-
sicht und Verständnis beruht (ebd., S. 62). Dieser Aussage liegt eine konstruktivisti-
sche Sichtweise auf Lernen zugrunde (siehe Abschnitt 1.1 und 1.5), die „mit Auto-
matisieren […] nicht das bloße Abspeichern von isolierten Einzelfakten […] [meint], 
sondern das vernetzte Verinnerlichen dieser Inhalte“ (ebd., S. 61, Ergänzung der Au-
torin). Diese Einsichten in Beziehungen und Zusammenhänge sind es wiederum, die 
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unweigerlich zur Automatisierung führen (WOODWARD, 2006, S. 271). Im Gegen-
satz dazu wird – einer behavioristischen Sicht auf Lernen folgend (siehe Abschnitte 
1.2 und 1.5) – Auswendiglernen bzw. Automatisieren als Endprodukt eines mecha-
nischen Lernens durch Wiederholung verstanden und gleichgesetzt mit dem Abru-
fen isolierter Fakten.

Unter dem Begriff  Faktenabruf wird in dieser Arbeit der schnelle, korrekte Abruf 
von auswendig beherrschten Einmaleinsaufgaben gefasst – der beschrittene Weg, wie 
die Automatisierung erfolgt, kann dabei je nach zugrundeliegendem Lernverständ-
nis ein anderer gewesen sein, das Lernprodukt ist allerdings dasselbe. Die Herange-
hensweise Faktenabruf zeichnet sich demnach dadurch aus, dass Ergebnisse der Auf-
gaben „rasch, sicher und mühelos (wie automatisch) aus dem Gedächtnis abgerufen 
werden können“ (GERSTER & SCHULTZ, 1998, S.  271). Bei einigen Autoren wie 
beispielsweise bei KOUBA (1989) wird – im Gegensatz zu der vorliegenden Arbeit 
– auch das blitzschnelle Ableiten der Ergebnisse unter Nutzung von Aufgabenbezie-
hungen bzw. Rechenstrategien unter recalled number facts geführt (ebd., S. 153).

2.2.3 Strategiebegriff  – Positionierung

Nach der allgemeinen Begriff sklärung Strategie (Abschnitt 2.2.1) und der Darstel-
lung der verschiedenen Herangehensweisen im Abschnitt 2.2.2 soll in diesem Ab-
schnitt eine fi nale Positionierung hinsichtlich des Strategiebegriff es beim kleinen 
Einmaleins für diese Arbeit erfolgen. In der mathematikdidaktischen Literatur wer-
den mit Blick auf das kleine Einmaleins unter dem Begriff  Strategie Herangehens-
weisen gefasst, bei denen Zahlbeziehungen und bereits bekannte Einmaleinssätze zur 
Aufgabenlösung genutzt werden. Neben dem Begriff  Strategie (SCHERER & MO-
SER OPITZ, 2010, S. 127) werden auch Begriffl  ichkeiten wie Rechenstrategie (PAD-
BERG & BENZ, 2011, S. 139; KRAUTHAUSEN & SCHERER, 2007, S. 32), heuristi-
sche Strategie (PADBERG, 2005, S. 129), operative Strategie (SCHIPPER, 2009, S. 145; 
SCHIPPER et al., 2015, S.  110)‚ operative Grundstrategie (RADATZ et al., 1998, 
S.  97) oder Ableitungsstrategie (SCHIPPER, 2009, S.  145) als Bezeichnung für diese 
ablaufenden Prozesse angeführt.

In Anlehnung an PADBERG und BENZ (2011) sowie KRAUTHAUSEN und 
SCHERER (2007) wird in dieser Arbeit der Begriff  Rechenstrategie verwendet. Unter 
diesem Begriff  werden in den folgenden Ausführungen – gemäß aktueller mathema-
tikdidaktischer Publikationen – Herangehensweisen geführt, die auf Zahlbeziehun-
gen, bekannte Einmaleinssätze oder bestimmte Muster zur Problemlösung zurück-
greifen. Als Rechenstrategien werden somit die im Abschnitt 2.2.2 beschriebenen 
Herangehensweisen Ableiten aus bereits bekannten Einmaleinsaufgaben gefasst.

In der vorliegenden Arbeit ist ein Charakteristikum des Begriff s Strategie die 
Zielgerichtetheit mit dem vordergründigen Zweck der Aufgabenbewältigung unter 
Nutzung von Zahlbeziehungen. Inwiefern eine Aufgabenlösung über Rechenstrate-
gien allerdings tatsächlich unter Einsicht in Beziehungen und Zusammenhängen er-
folgt oder Rechenstrategien im Sinne einer Prozedur bzw. einem erlernten Verfahren 
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– gegebenenfalls auch unverstanden – Anwendung fi nden, kann in der Unterrichts-
praxis wie bereits erwähnt nur schwer unterschieden werden. Idealerweise erfolgt 
der Einsatz einer Rechenstrategie allerdings auf Basis von Einsicht und Verständ-
nis. Angelehnt an die Defi nition von SHERIN und FUSON (2005) ist für den Ein-
satz einer Rechenstrategie das explizite Wissen um diese nicht zwingend erforderlich 
(siehe Abschnitt 2.2.1), ein Kind kann aber durchaus über dieses explizite Wissen 
verfügen. Zur Ausführung einer Rechenstrategie wird allerdings – so auch der weit-
gehend übereinstimmende Konsens (siehe ebenfalls Abschnitt 2.2.1) – Wissen be-
nötigt. RATHGEB-SCHNIERER (2006) spricht in diesem Kontext von strategischen 
Werkzeugen, SHERIN und FUSON (2005) sprechen von zahlspezifi schen Fertigkeiten 
(siehe ebenfalls Abschnitt 2.2.1). Anhand der detaillierten Beschreibungen zu den 
Rechenstrategien in den vorausgehenden Ausführungen des Abschnitt 2.2.2 werden 
die benötigten Wissensbausteine je Rechenstrategie sehr gut ersichtlich.

Darüber hinaus wird jede Herangehensweise an eine Einmaleinsaufgabe als Re-
chenstrategie bezeichnet, die auf Zahlbeziehungen und bekannte Einmaleinssätze zu-
rückgreift  – unabhängig davon, ob die Anwendung einer Rechenstrategie sich durch 
bereits bekannte, festgelegte Handlungsschritte kennzeichnen lässt, intuitiv verläuft , 
als gesamter Lösungsweg vorneweg ausgewählt oder nach THRELFALL (2002) erst 
entwickelt wird. Entgegen dem Strategieverständnis von STERN (1992) sowie BI-
SANZ und LEFEVRE (1990) ist für das Strategieverständnis dieser Arbeit keine Aus-
wahl zwischen verschiedenen Lösungswegen notwendig, um eine Herangehensweise 
als Rechenstrategie bezeichnen zu können.

Automatisierte Prozesse wie das Auswendigbeherrschen werden angelehnt an die 
Studie von GASTEIGER und PALUKA-GRAHM (2013) nicht unter dem Begriff  Re-
chenstrategie gefasst (ebd., S.  8) – eine klare Abgrenzung der Rechenstrategien von 
einem reinen Wissen oder Beherrschen liegt demnach vor.

Ebenfalls ausgeschlossen bzw. nicht unter dem Begriff  Rechenstrategie geführt 
werden Herangehensweisen, die zählend zur Aufgabenlösung führen sowie die wie-
derholte Addition gleicher Summanden (siehe Abschnitt 2.2.2). Im Falle einer Auf-
gabenlösung über die wiederholte Addition wird die Multiplikation von den Kindern 
unter Umständen noch nicht als eine von der Addition deutlich zu unterscheidende 
Rechenoperation wahrgenommen (vgl. ANGHILERI, 1989, S. 381 f.). Ein Ausschluss 
der zählenden Aufgabenlösung erfolgt, da Kinder die Rechenoperation der Multipli-
kation vermutlich noch nicht als Operation der Vereinigung gleichmächtiger Men-
gen verstanden haben (siehe Abschnitt 2.1.1). Bei der Anwendung von Lösungswe-
gen, die in der Arbeit unter dem Begriff  Rechenstrategie geführt werden, wird davon 
ausgegangen, dass die Kinder die Multiplikation bereits als eigene, sich von der Ad-
dition deutlich unterscheidende, Operation erkannt haben.

Ob die sukzessive Addition bei der Lösung von Multiplikationsaufgaben als Re-
chenstrategie bezeichnet werden kann, ist sicherlich nicht zweifelsfrei zu beantwor-
ten – die Zuordnung der wiederholten Addition scheint einen Grenzfall darzustellen. 
„Students have prior learning experiences relating to addition“ (SHERIN & FUSON, 
2005, S. 367) und der Einführungsweg über die Mengenvereinigung bzw. die wieder-
holte Addition gleicher Summanden wurde im Abschnitt 2.1.1 als wichtigster Weg 
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zur Einführung der Operation angeführt. Nicht verwunderlich ist es demnach, dass 
die wiederholte Addition „von nicht wenigen Kindern als zentraler (einziger) Lö-
sungsweg“ (RADATZ et al., 1998, S. 86) angesehen wird. Unter der Bedingung, dass 
einer der beiden Faktoren relativ klein ist, kann das Ergebnis auch über die wie-
derholte Addition schnell ermittelt werden. SHERIN und FUSON (2005) bestätigen 
dies: „Indeed, it is not implausible that an answer could be produced quite quickly 
using this latter strategy [repeated addition]“ (ebd., S. 376, Ergänzung der Autorin). 
MABBOTT und BISANZ (2003) betonen ebenfalls die Abhängigkeit der Lösungs-
geschwindigkeit von der Größe der Faktoren einer Aufgabe: „Finally, if children use 
[…] repeated addition to solve multiplication problems, the solution latency will be a 
direct function of the magnitude of the operands“ (ebd., S. 1093). Bei entsprechender 
Aufgabencharakteristik kann der Einsatz der wiederholten Addition zur Aufgabenlö-
sung durchaus überlegt bzw. refl ektiert erfolgen. Greifen Kinder zur Lösung der Auf-
gabe 7 · 3 zum Beispiel auf die Tauschaufgabe zurück und ziehen im Anschluss die 
wiederholte Addition zur Beantwortung der Aufgabe 3 · 7 heran, kann von einem re-
fl ektierten Einsatz gesprochen werden (GASTEIGER & PALUKA-GRAHM, 2013). 
Da die sukzessive Addition zum Lösen von Einmaleinsaufgaben allerdings – wie in 
den Ausführungen bereits erwähnt – nur vereinzelt einen refl ektierten und sinnvol-
len Einsatz ermöglicht, ist der Lösungsweg über die wiederholte Addition bei vielen 
Einmaleinssätzen vorwiegend sehr zeitaufwändig und fehleranfällig (RADATZ et al., 
1998, S. 86) und stellt somit für die Lösung von Einmaleinssätzen eine eher ungeeig-
nete Herangehensweise dar. Aus diesem Grund fällt die sukzessive Addition in dieser 
Arbeit nicht per se unter den Begriff  der Rechenstrategie.

2.2.4 Exkurs: Strategieverständnis im Zusammenhang mit dem Lösen von 
Einmaleinsaufgaben in der internationalen Literatur

Wie bereits in den Defi nitionen zu Beginn des Abschnittes (Abschnitt 2.2.1) ersicht-
lich, wird der Begriff  Strategie in der englischsprachigen Literatur des Öft eren sehr 
weit gefasst. Auch aus der schon thematisierten Ausdiff erenzierung nach THREL-
FALL (2009), bei der Herangehensweisen an ein mathematisches Problem wie das 
Zählen und Auswendigwissen unter dem Begriff  Strategie gefasst werden, ist ein weit 
gefasstes Strategieverständnis deutlich zu erkennen. Dass dies auch für den Strategie-
begriff  beim kleinen Einmaleins zutrifft  , soll als kleiner Exkurs, der für die Interpre-
tation einiger Studienergebnisse im weiteren Verlauf der Arbeit relevant wird, aufge-
zeigt werden. Nach SHERIN und FUSON (2005) „researchers still diff er greatly on 
the strategies described as well as in the terminology used“ (ebd., S. 347). Die in der 
englischsprachigen Literatur genannten Herangehensweisen bzw. aufgestellten Ka-
tegorien stimmen nicht eins-zu-eins mit den in Deutschland vorliegenden Katego-
rien, die im Abschnitt 2.2.2 aufgelistet wurden, überein. Exemplarisch wurde bereits 
im vorausgehenden Abschnitt bezogen auf die Automatisierung betont, dass KOUBA 
(1989) beispielsweise unter der Kategorie recalled number facts nicht nur die Auto-
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matisierung, sondern auch derived facts fasst, die in der deutschsprachigen Literatur 
– und explizit auch in dieser Arbeit – als Rechenstrategien tituliert werden.

In der englischsprachigen Literatur wird auch eine Kategorisierung einiger He-
rangehensweisen in pattern-based strategies vorgenommen (vgl. COONEY et al., 
1988; LEFEVRE et al., 1996; SHERIN & FUSON, 2005, S. 371). Nach SHERIN und 
FUSON (2005) fallen darunter: „A number of specifi c patterns, such as N × 1  =  N 
and N × 0 = 0“ (ebd., S. 359). Charakteristisch für diese Herangehensweisen (0’s rule, 
1’s rule, 10’s rule) ist die schnelle Aufgabenlösung ohne erkennbare Berechnungen 
(SHERIN & FUSON, 2005, S. 371). Nach SHERIN und FUSON (2005) gestaltet sich 
die Unterscheidung zwischen dem Anwenden einer Regel (0’s rule, 1’s rule, 10’s rule) 
und einem Faktenabruf (learned product) in der Unterrichtspraxis relativ schwierig, 
führen doch beide Vorgehensweisen zu einer schnellen Lösung der jeweiligen Auf-
gabe (ebd., S. 371). „Nonetheless, we believe that it makes sense to treat these strat-
egies as a part of a separate category (from learned product) because they are based 
on a very diff erent sort of number-specifi c resource“ (SHERIN & FUSON, 2005, 
S. 371). Dass in der deutschsprachigen Literatur pattern-based strategies nicht sepa-
riert aufgelistet werden, kann unter anderem darauf zurückgeführt werden, dass Ein-
maleinssätze mit 1 und 10 – wie im nächsten Abschnitt detailliert beschrieben – be-
reits zu einem sehr frühen Zeitpunkt der Erarbeitung automatisiert und nicht im 
Sinne einer zu erlernenden Regel erarbeitet werden. Unter pattern-based strategies 
wird nach SHERIN und FUSON (2005) auch eine weitere Herangehensweise gelis-
tet, die 9’s patterns:

Students fi rst consider 9’s patterns based on thinking of 9 as 10 – 1. For exam-
ple, for the product 6 × 9, they fi rst fl ash 10 fi ngers 6 times, then fold down 6 
fi ngers from the last 10, leaving 4 ones. Th en they raise 5 fi ngers to show the 5 
tens, thus showing 5 tens with one hand and 4 ones with the other. (SHERIN & 
FUSON, 2005, S. 371)

Diese angewandte Regel kann unter Zuhilfenahme der Finger zur schnellen Lösung 
der Aufgaben mit einem Faktor 9 führen: Bei der Aufgabe 6 x 9 muss das Kind den 
sechsten Finger einklappen – die Anzahl der Finger links von dem eingeknickten 
gibt die Anzahl der Zehner wieder, die Anzahl rechts die der Einer (LEFREVRE et 
al., 1996, S.  289; MABBOTT & BISANZ, 2003, S.  1095; SHERIN & FUSON, 2005, 
S.  371 f.). Ein Großteil der Studien aus dem englischsprachigen Raum führt diesen 
Lösungsweg nicht wie gerade beschrieben in einer separaten Kategorie auf, inte-
griert diesen jedoch als regelbasierte Herangehensweise in die Kategorie learned pro-
duct (SHERIN & FUSON, 2005, S. 371 f.). Die Herangehensweise der 9’s patterns ver-
deutlicht im Kontext Einmaleins, dass auch innerhalb internationaler Studien – und 
nicht nur im Vergleich zur Fachdidaktik in Deutschland – keine Übereinstimmung 
hinsichtlich der Kategorisierung vorliegt. In Deutschland werden die in der englisch-
sprachigen Literatur sogenannten pattern-based strategies bei Faktoren mit 0, 1 und 
10 als automatisiert verfügbare Einmaleinssätze (Faktenabruf) geführt, was vergleich-
bar zu der Herangehensweise des learned products ist – dies trifft   defi nitiv aber nicht 
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für den eingeschlagenen Lösungsweg der letztgenannten Regel (9’s patterns) zu. Das 
„Fingerrechnen beim Neuner-Einmaleins“ (GERSTER & SCHULTZ, 1998, S.  407) 
wie diese Vorgehensweise nach GERSTER und SCHULTZ (1998) genannt und in der 
Abbildung 8 am Beispiel 8 x 9 veranschaulicht wird, stellt weder eine Herangehens-
weise dar, bei der Zahlbeziehungen und bereits bekannte Einmaleinssätze zur Aufga-
benlösung genutzt werden (siehe Abschnitt 2.2.2), noch einen schnellen, korrekten 
Abruf von auswendig beherrschten Einmaleinsaufgaben aus dem Gedächtnis (siehe 
Abschnitt 2.2.2). In dieser Arbeit wird eine Vorgehensweise wie das Fingerrechnen 
beim Neuner-Einmaleins, die nach SHERIN und FUSON (2005) die Lösung einer 
Einmaleinsaufgabe durchaus erleichtern kann, aber ohne Einsicht in Zahlzusammen-
hänge oder -beziehungen angewendet wird, als separate Herangehensweise gelistet 
und als weniger tragfähig angesehen.

Abbildung 8:  Fingerrechnen beim Neuner-Einmaleins (GERSTER & SCHULZ, 1998, S. 407).

In den bisherigen Ausführungen dieses Abschnittes wurde sehr deutlich herausge-
arbeitet, dass den internationalen Untersuchungen teils ein anderes Strategiever-
ständnis als dieser Arbeit zugrunde liegt – die Kategorisierungen der Herangehens-
weisen einiger Studien stimmen teils mit den in der deutschsprachigen Literatur und 
dieser Arbeit vorgenommenen Zuordnungen überein, andere wiederum nicht. Für 
die Interpretation der Ergebnisse der in den folgenden Abschnitten vorgestellten Stu-
dien muss somit immer berücksichtigt werden, welches Verständnis von Strategie 
der jeweiligen Studie zugrunde liegt, um die Ergebnisse richtig einordnen bzw. kor-
rekt interpretieren zu können.

Darüber hinaus muss bei der kritischen Auseinandersetzung mit der internatio-
nalen Literatur bzw. den entsprechenden Studienergebnissen berücksichtigt werden, 
dass sich die Studien zur Multiplikation auch erheblich in der ausgewählten Stich-
probe, den gestellten Aufgaben und den erfassten Daten unterscheiden (SHERIN 
& FUSON, 2005, S.  360). Mit dem variierenden Lebensalter der untersuchten Kin-
der weicht beispielsweise auch das verwendete Zahlenmaterial der einzelnen Studien 
stark voneinander ab. Demnach beschränken sich einige internationale Studien nicht 
ausschließlich – wie die vorliegende Arbeit – auf Multiplikationsaufgaben mit Fak-
toren zwischen 1 und 10 bzw. auf das kleine Einmaleins, sondern fordern auch die 
Lösung von Einmaleinsaufgaben mit Faktoren größer als 10 ein. Nach SHERIN und 
FUSON (2005) bleibt festzuhalten: „For these reasons, we must expect signifi cant 
diff erences in the types of strategies reported“ (ebd., S. 361).
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Ebenfalls soll an dieser Stelle die Tatsache erwähnt werden, dass ein erheblicher 
Teil der internationalen Forschungsliteratur sich in erster Linie mit der Frage be-
schäft igt, wie Kinder zu einem schnellen Faktenabruf gelangen (vgl. CAMPBELL & 
GRAHAM, 1985; COONEY et al., 1988, STEEL & FUNELL, 2001). Viele der Au-
torinnen und Autoren, die ihren Fokus auf die Automatisierung bei Kindern legen, 
unterscheiden in ihren Studien zwei Hauptkategorien von Herangehensweisen – die 
der Automatisierung und die Kategorie andere. Dabei wird ein nur wenig detaillier-
ter Einblick in die Kategorie andere ermöglicht bzw. anders als in dieser Arbeit der 
Fokus nicht auf Strategien gelegt.

2.3 Unterrichtliche Behandlung des kleinen Einmaleins aus 
mathematikdidaktischer Sicht

„Die Schüler müssen […] die grundlegende Strategie lernen: 
Schwierige Aufgaben löst man über geeignete leichte Aufgaben.“ 

(WINTER, 1996, S. 43) 

Im Fokus dieses Abschnittes steht die unterrichtliche Behandlung des kleinen Ein-
maleins in der Grundschule. Da es im weiteren Verlauf der Arbeit notwendig wird, 
verschiedene Herangehensweisen der Erarbeitung des kleinen Einmaleins in der 
Unterrichtspraxis zu identifi zieren und zugleich charakterisieren zu können, soll zu-
nächst die Erarbeitung des kleinen Einmaleins vorgestellt werden, wie sie derzeit in 
der Mathematikdidaktik weitgehend übereinstimmend als sinnvoll erachtet wird. Die 
Grundgedanken des Lernens, die in den Abschnitten 1.1 bis 1.4 dieser Arbeit be-
schrieben wurden und die den Mathematikunterricht im Allgemeinen (siehe Ab-
schnitt 1.5) und die Erarbeitung des Einmaleins im Besonderen beeinfl ussen, sollen 
in den folgenden Ausführungen aufgegriff en werden. Für ein besseres Verständnis 
der aktuell vorgeschlagenen Vorgehensweise der Behandlung des kleinen Einmaleins 
sind auch die Ausführungen zu den fachlichen Grundlagen des Abschnittes 2.1 von 
Relevanz, auf die in diesem Abschnitt ebenfalls Bezug genommen wird.

Im Zentrum dieses Abschnittes kann allerdings nicht die Erarbeitung des kleinen 
Einmaleins stehen, da viele Möglichkeiten unterschieden werden können, das Ein-
maleins zu erarbeiten. In der Fachdidaktik herrscht weitgehend Einigkeit, wie eine 
Erarbeitung basierend auf dem derzeitigen Verständnis von Mathematikunterricht 
aussehen sollte. Im Folgenden soll die Kernidee, über die derzeit Konsens herrscht, 
herausgearbeitet sowie einzelne Facetten, in denen sich die Autoren in ihren Sicht-
weisen unterscheiden, aufgezeigt werden. Da dabei auch Arbeitsmittel eine entschei-
dende Rolle einnehmen, wird in einem weiteren Abschnitt deren Funktion bei der 
Erarbeitung des kleinen Einmaleins detailliert erläutert.
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2.3.1 Automatisierung auf Basis von Einsicht

Als langfristiges Ziel der Erarbeitung des kleinen Einmaleins ist das „geläufi -
ge Beherrschen einer Grundfertigkeit […], d. h. dessen Automatisierung zu sehen“ 
(SCHERER & MOSER OPITZ, 2010, S. 128). Was den sicheren und schnellen Abruf 
von Einmaleinsaufgaben als oberstes Ziel betrifft  , besteht ausnahmslos Einigkeit in 
der Literatur (vgl. KRAUTHAUSEN & SCHERER, 2007; PADBERG & BENZ, 2011, 
S. 137 ff .; RADATZ et al., 1998, S. 81 ff .; SCHERER & MOSER OPITZ, 2010, S. 122 ff .; 
SCHIPPER, 2009, S. 143 ff .; SCHIPPER et al., 2015, S. 102 ff .; WITTMANN & MÜL-
LER, 1990, S.  107 ff .). Gerade mit Rückgriff  auf das aktuelle Verständnis von Ler-
nen (siehe Abschnitte 1.1 bis 1.4) ist auch der beschrittene Weg hin zur Automatisie-
rung – von der Kernidee – vorgezeichnet und nach SCHERER und MOSER OPITZ 
(2010) „von entscheidender Bedeutung“ (ebd., S. 122). Nach einem aktuellen, kons-
truktivistischen Lernverständnis ist demnach der „Weg […] [zur Automatisierung] 
keine Gedächtnisübung, sondern eine Verstandesübung“ (SCHIPPER, 2009, S.  143, 
Ergänzung der Autorin). SCHIPPER et al. (2015) halten fest: „Die Erarbeitung von-
einander isolierter Einmaleinsreihen gehört der Vergangenheit an. Statt das Ge-
dächtnis zu schulen, wird Verständnis für Aufgabenbeziehungen entwickelt“ (ebd., 
S.  101 f.). Damit beschreiben sie weitgehend die Konsensmeinung in der Mathema-
tikdidaktik.

Um dieses „Beziehungsgefl echt zwischen Einmaleinsaufgaben“ (SCHIPPER et 
al., 2015, S.  110) bzw. ein „Verständnis des strukturellen Beziehungsreichtums“ 
(KRAUTHAUSEN & SCHERER, 2007, S.  32) entwickeln zu können, müssen ope-
rative Beziehungen, die zwischen den einzelnen Einmaleinsaufgaben bestehen, von 
den Kindern erkannt und genutzt werden. Schülerinnen und Schüler müssen, wie 
im einführenden Zitat von WINTER (1996) angeführt, die grundlegende Strate-
gie erlernen, dass die Lösung schwieriger Aufgaben über Hilfsaufgaben leichter ge-
lingt. Dabei sieht die Erarbeitung des kleinen Einmaleins vor, mithilfe bereits be-
kannter Einmaleinssätze und auf Basis von Einsicht in operative Beziehungen noch 
unbekannte Aufgaben zu erschließen (WITTMANN & MÜLLER, 1990). Dieses Zu-
rückführen auf bekannte Einmaleinsaufgaben setzt dabei zunächst das Beherrschen 
eines Grundstockes an Einmaleinsaufgaben voraus. Diese Aufgaben werden in der 
fachdidaktischen Literatur häufi g unter dem Begriff  Kernaufgaben28 geführt – je 
nach Literatur werden darunter Einmaleinssätze mit 1, 2, 5 und 10 (z. B. BAYERI-
SCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS,  2000, S.  99) 
oder Einmaleinsaufgaben mit 1 x x, 2 x x, 5 x x und 10 x x (vgl. KRAUTHAUSEN & 
SCHERER, 2007, S.  33; LORENZ & RADATZ, 1993, S.  141; PADBERG & BENZ, 
2011, S. 142; SCHIPPER, 2009, S. 146; SCHIPPER et al., 2015, S. 110; WITTMANN 
& MÜLLER, 1990, S. 115) verstanden. Quadrataufgaben werden teils als Kernaufga-
ben angesehen (PADBERG & BENZ, 2011, S. 142), in der Mehrzahl der fachdidakti-
schen Publikationen allerdings nicht.

28 Neben dem Begriff  Kernaufgabe werden für diesen Grundstock an Aufgaben auch Begriff -
lichkeiten wie Stützpunktaufgabe, Königsaufgabe, Sonnenaufgabe (SCHIPPER et al., 2015, 
S. 110) oder Grundaufgabe verwendet (SCHIPPER, 2009, S. 146).
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Diese sogenannten „kurzen Reihen“ (WITTMANN & MÜLLER, 1990, S.  114) 
sollen nach einstimmigem Konsens die ersten den Kindern gedächtnismäßig zur 
Verfügung stehenden Aufgaben darstellen, die aus vermeintlich trivialen Multipli-
kationen (z. B. 1 x x und 10 x x) sowie aus der Verdopplung (2 x x) und Halbierung 
(5 x x) dieser Aufgaben, die den Kindern bereits aus der Addition und Subtraktion 
bekannt sind, entstehen (KRAUTHAUSEN & SCHERER, 2007, S. 32). Sie bilden die 
Grundlage für das Ableiten bzw. das Lösen weiterer noch unbekannter Einmaleins-
aufgaben unter Nutzung von Aufgabenbeziehungen bzw. Rechenstrategien (siehe Ab-
schnitt 2.2.2). Eine besondere Bedeutung wird dabei vor allem der Tauschaufgabe 
zuteil, die sich – aufgrund der Gültigkeit des Kommutativgesetzes bei der Multipli-
kation – den folgenden Rechenvorteil zu Nutze macht (siehe Abschnitt 2.1.1 und 
2.1.2): Neue Aufgaben können auf bereits bekannte Aufgaben zurückgeführt werden 
– anstelle der noch nicht bekannten Aufgabe 7 x 3 wird zur Aufgabenlösung die be-
reits bekannte Aufgabe 3 x 7 herangezogen (PADBERG, 2005, S. 202 f.). Die Anzahl 
der zu erlernenden Aufgaben kann somit durch die Nutzung des Kommutativgeset-
zes um fast die Hälft e reduziert werden (RADATZ & SCHIPPER, 1998, S. 88). Wei-
tere unbekannte Einmaleinssätze können auf Basis der zunächst erarbeiteten Kern-
aufgaben über die im Abschnitt 2.2.2 detailliert erläuterte Verdoppelung bzw. die 
Halbierung, mithilfe von Nachbaraufgaben sowie einem Zerlegen und Zusammen-
setzen von Faktoren abgeleitet werden.

Beziehungen zwischen Einmaleinsaufgaben zu nutzen, erlaubt die Lösung von 
Aufgaben auf unterschiedlichen Wegen. Die folgende Abbildung 9 veranschaulicht 
das Beziehungsnetz zwischen Einmaleinsaufgaben und verdeutlicht auch die viel-
fältige Art und Weise der Aufgabenlösung ein und derselben Aufgabe (RADATZ & 
SCHIPPER, 1998, S. 84).
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Abbildung 9:  Beziehungsnetz zwischen Einmaleinsaufgaben unter Berücksichtigung der Rechen-
strategien der Verdopplung/Halbierung eines Faktors, der Bildung von Nach bar-
aufgaben sowie der Zerlegung eines Faktors (hier: Zusammensetzen mit 2 x x) (RADATZ 
& SCHIPPER, 1998).

Den Fokus auf diese „vielfältigen Vernetzungen der einzelnen Aufgaben“ (PADBERG 
& BENZ, 2011, S.  143, Hervorhebungen im Original) zu legen, stößt in der ma-
thematikdidaktischen Literatur auf breite Akzeptanz und hat den „Eff ekt, dass sich 
Grundschulkinder nicht einen Wust von vielen, unverbunden nebeneinanderstehen-
den Fakten mühsam einprägen müssen, sondern stattdessen ein System übersichtlich 
miteinander verbundener Aussagen“ (ebd., S.  143). Eine auf Verständnis basierende 
Erarbeitung unterstützt bzw. erleichtert das angestrebte Ziel der Erarbeitung – das 
automatisierte Beherrschen der Einmaleinssätze. Laut fachdidaktischer Publikatio-
nen schafft   „nicht das isolierte Memorieren von Einmaleinsreihen […] dauerhaft es 
Auswendigwissen, sondern ein solches Aufgabennetz ist die Verständnisgrundlage 
für einen zunehmend größeren Vorrat an auswendig gewussten Aufgaben“ (SCHIP-
PER, 2009, S. 143). Th eoretische Ausführungen sowie empirische Studien, die diese 
Aussage von SCHIPPER (2009) untermauern bzw. bekräft igen, werden im Abschnitt 
2.4 als Argumente für eine auf Einsicht und Verständnis basierende Erarbeitung des 
kleinen Einmaleins angeführt.
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Aufgabenbeziehungen bzw. Rechenstrategien verständnisbasiert zu verinnerli-
chen, was in den bisherigen Ausführungen als beschrittener Weg bzw. Prozess hin 
zur Automatisierung herausgearbeitet wurde, kann – neben einem schnellen Fak-
tenabruf von Einmaleinsaufgaben – als Ziel der Erarbeitung des kleinen Einmal-
eins angesehen werden. „Strategien zur Herleitung neuer Aufgaben sind nicht als 
Schematismus zu verstehen, sondern müssen von Schülern aktiv konstruiert wer-
den“ (SCHERER & MOSER OPITZ, 2010, S. 126), um auch gezielt Einsicht und Ver-
ständnis aufb auen, vertiefen und erweitern zu können (SCHIPPER, 2009, S.  154). 
Erfolgreiches Einmaleinslernen bedingt demnach ebenso wie erfolgreiches Mathema-
tiklernen im Allgemeinen das gleichmäßige Verfolgen beider Wissensaspekte (siehe 
Abschnitt 1.5): das Automatisieren und die Einsicht.

In den nationalen fachdidaktischen Publikationen zum Mathematikunterricht der 
Grundschule herrscht demnach weitgehend Einigkeit, was die Grundidee der Er-
arbeitung des kleinen Einmaleins in der Grundschule bzw. die mit der Erarbeitung 
verfolgten Ziele betrifft  . In den didaktischen Veröff entlichungen sind allerdings im 
Hinblick auf die konkreten didaktischen Empfehlungen zur Umsetzung unterschied-
liche Schwerpunktsetzungen zu erkennen. Diese werden nachfolgend herausgearbei-
tet (vgl. KRAUTHAUSEN & SCHERER, 2007; PADBERG & BENZ, 2011; SCHERER 
& MOSER OPITZ, 2010; SCHIPPER et al., 2015; WITTMANN & MÜLLER, 1990).

Zu Beginn soll dabei auf WITTMANN und MÜLLER (1990) Bezug genom-
men werden, die mit ihren Ausführungen basierend auf einem aktuellen Verständ-
nis von Lehren und Lernen bereits 1990 „neue Möglichkeiten […] [für die Erarbei-
tung des kleinen Einmaleins] eröff nen“ (ebd., S.  107, Ergänzung der Autorin). In 
dem Bewusstsein, dass ihr vorgeschlagener ganzheitlicher Zugang zum Einmaleins 
durchaus nicht „kompromißlos [sic] und ausschließlich zu vertreten“ (WITTMANN 
& MÜLLER, 1990, S.  107) ist, werden verschiedene Stufen mit zunehmend ganz-
heitlicher29 Behandlung des kleinen Einmaleins unterschieden. In einer ersten Stu-
fe werden zahlreiche Anregungen als Ergänzung zu einem gewohnten Lehrgang, der 
Einmaleinsreihen der Reihe nach behandelt, gegeben. Die nächste Stufe lässt sich 
durch einen ganzheitlichen Einstieg30 in das Einmaleins charakterisieren, an den sich 
das Abarbeiten der einzelnen Reihen und eine „integrierende […] Wiederholung“ 
(WITTMANN & MÜLLER, 1990, S.  107) anschließt. Die Behandlung der kurzen 
Reihen ersetzt in der nächsten Stufe die Behandlung der kompletten Reihe, bevor als 

29 Die Begriff e ganzheitlich bzw. Ganzheitlichkeit stehen in den folgenden Ausführungen für 
eine Behandlung des kleinen Einmaleins, die die Erarbeitung der Einmaleinsaufgaben 
mithilfe verschiedener Lösungswege bzw. Rechenstrategien vorsieht, ohne dabei den Fokus 
gezielt auf einzelne Reihen zu richten (KRAUTHAUSEN & SCHERER, 2007; PADBERG & 
BENZ, 2011; WITTMANN & MÜLLER, 1990).

30 Ein ganzheitlicher Einstieg soll nach WITTMANN und MÜLLER (1990) die anschauliche 
Grundlage für das Einmaleins legen, indem alle Einmaleinsaufgaben von Beginn an für 
die individuelle Arbeit geöff net sind. „In dieser Phase besteht nicht der geringste Anlaß 
[sic] oder gar Druck, Ergebnisse auswendig lernen zu lassen“ (WITTMANN & MÜLLER, 
1990, S.  112). Bei einem ganzheitlichen Einstieg in das Th emengebiet sollen nach 
KRAUTHAUSEN und SCHERER (2007) Kinder „gemäß ihrem individuellen Vermögen und 
auf natürliche Weise in die Struktur des Einmaleins hineinwachsen“ (ebd., S. 31).
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Endstufe eine „wahrhaft  ganzheitliche Behandlung des 1×1“ (ebd., S.  107) vorgese-
hen ist.

Während sich die gemäß WITTMANN und MÜLLER (1990) unterschiedenen 
Stufen der Erarbeitung von einer systematischen Erarbeitung hin zu einer ganzheit-
lichen Erarbeitung bewegen, ist man sich in Fachkreisen weitgehend einig, dass ge-
rade die ausgewogene Kombination zwischen Ganzheitlichkeit und systematischer Er-
arbeitung sich erfolgsversprechend auszuwirken scheint (vgl. KRAUTHAUSEN & 
SCHERER, 2007; PADBERG & BENZ, 2011). Nach KRAUTHAUSEN und SCHE-
RER (2007) schließt dabei ein „ganzheitliches Vorgehen keineswegs aus […], dass 
man sich zu gegebener Zeit an gegebener Stelle auch einmal genauer mit einzelnen 
Reihen beschäft igen kann und soll sowie mit den Zusammenhängen zwischen spe-
ziellen (>verwandten<) Reihen“ (ebd., S. 31, Hervorhebung im Original).

Eine ausgewogene Kombination dieser beiden Wege zeichnet sich nach PAD-
BERG und BENZ (2011) dadurch aus, dass Einmaleinsaufgaben einerseits zunächst 
ganzheitlich mithilfe von Anschauungsmitteln (siehe Abschnitt 2.3.2) erarbeitet wer-
den, so dass „konsequent auf Zusammenhänge zwischen den einzelnen Einmaleins-
aufgaben unabhängig vom Korsett der Einmaleinsreihen hingearbeitet wird und 
[…] Kinder exemplarisch Rechenstrategien entdecken können“ (PADBERG & BENZ 
2011, S. 139). Andererseits sollen die Einmaleinssätze auch durch eine systematische 
Betrachtung der einzelnen Reihen unter Berücksichtigung der Zusammenhänge be-
handelt werden (siehe Abschnitt 2.3.1).

Im Vergleich dazu steht bei SCHIPPER et al. (2015) von Anfang an die syste-
matische Erarbeitung der Einmaleinsreihen im Fokus – „die Behandlung der ver-
schiedenen Einmaleinsreihen beginnt jeweils mit der Erarbeitung der Kernaufgaben“ 
(SCHIPPER et al., 2015, S. 110). Bei der Erarbeitung von Einmaleinsaufgaben inner-
halb einer Reihe sowie bei der Reihenfolge der Erarbeitung der einzelnen Einmal-
einsreihen empfehlen SCHIPPER et al. (2015) operative Beziehungen zu nutzen: Das
2er-Einmaleins wird über die Idee des Verdoppelns entwickelt, das 10er-Einmaleins 
durch Verzehnfachen sowie im Anschluss das 5er-Einmaleins über die Halbierung 
des 10er-Einmaleins. Ausgehend von dem 2er-Einmaleins können dann das 4er- und 
das 8er-Einmaleins über die jeweilige Verdopplung ermittelt, das 3er-Einmaleins (ab-
geleitet aus dem 2er-Einmaleins) führt über die Verdopplung zum 6er-Einmaleins 
und ein Zusammensetzen des Einmaleins der 3 und 6, dann zum 9er-Einmaleins. 
Letztgenanntes kann allerdings auch über die Nachbarschaft  zum 10er-Einmaleins 
ermittelt werden. Die 7er-Reihe wird über das Zusammensetzen aus der Multiplika-
tion mit 5 und 2 erarbeitet (vgl. PADBERG & BENZ, 2011, S. 142; SCHIPPER, 2009, 
S. 154; SCHIPPER et al., 2015, S. 110).

RADATZ et al. (1998) geben zwar in den einleitenden Worten des Multiplika-
tionskapitels ihres Didaktikbuches von 1998 an, dass ihr Handbuch bei „den didak-
tischen Prinzipien der Behandlung des Einmaleins wie isolierte Behandlung oder 
ganzheitliche Behandlung der Einmaleinsreihen […] durchweg eine off ene Position 
ein[nimmt]“ (ebd., S. S.  81, Ergänzung der Autorin), doch die aufgelisteten Stufen 
einer Unterrichtseinheit zu diesem Th ema sprechen ein anderes Bild. Keine der an-
geführten Stufen lässt eine systematische Erarbeitung einzelner Reihen erkennen, 
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einzig die letzte von sechs Stufen führt das Herausarbeiten und Lernen der Kern-
aufgaben an. Alle vorangehenden Stufen legen das Hauptaugenmerk auf das Unter-
suchen von operativen Beziehungen bzw. das Entdecken und Erarbeiten von unter-
schiedlichen Lösungswegen, ohne den Blick gezielt auf einzelne Reihen zu richten.

Die bisherigen Ausführungen dieses Abschnittes zeigen unter anderem unter-
schiedliche Nuancen der Realisierung der unterrichtlichen Erarbeitung des kleinen 
Einmaleins einiger gängiger Fachbücher auf. Während sich ein empfohlener Weg 
durch eine vorwiegende Behandlung von Einmaleinssätzen unabhängig von den Ein-
maleinsreihen auszeichnet (PADBERG & BENZ, 2011, S. 138 f.), steht die systemati-
sche Erarbeitung der Einmaleinsreihen des kleinen Einmaleins unter Berücksichti-
gung von Beziehungen für einen weiteren denkbaren Weg. Die beschriebenen Wege 
zu kombinieren – wie bereits von PADBERG und BENZ (2011) betont –, trifft   dabei 
auf weite Zustimmung in den mathematikdidaktischen Veröff entlichungen (PAD-
BERG & BENZ, 2011, S.  139): „Mittlerweile gibt es erfreulicherweise einen brei-
ten Konsens, dass nur eine ausgewogene Kombination dieser […] Zugangswege zum 
Einmaleins zu einer nachhaltigen Steigerung des Lernerfolges beiträgt (ebd., S. 139, 
Hervorhebungen im Original).

Unabhängig vom beschrittenen Zugangsweg bzw. den unterschiedlichen Nu-
ancen der Realisierung der unterrichtlichen Erarbeitung des kleinen Einmaleins 
nimmt „neben der inhaltlichen Kompetenz oder Fertigkeit des Rechnenkönnens“ 
(STEINWEG, 2013, S.  123) vor allem die Entdeckung der Eigenschaft en der Multi-
plikation eine zentrale Rolle ein. STEINWEG betont in ihrem 2013 veröff entlich-
ten Werk Algebra in der Grundschule: „Der Mathematikunterricht der Grundschu-
le nutzt die Eigenschaft en von Operationen. Sie werden nicht nur bei den ersten 
Hinführungen, sondern auch als Besonderheiten der Operation und für Rechenhil-
fen implizit eingesetzt bzw. genutzt“ (ebd., S. 123). Die Entdeckung der Eigenschaf-
ten der Multiplikation bzw. die Entdeckung von Rechengesetzen stellt die Grundla-
ge für die auf Einsicht basierende Nutzung von Zusammenhängen und Beziehungen 
zwischen Einmaleinssätzen und der Anwendung von Rechenstrategien zur Lösung 
von Einmaleinsaufgaben dar (siehe auch Abschnitt 2.2.2). Für die Umsetzung in der 
Unterrichtspraxis wird sich in den mathematikdidaktischen Publikationen und den 
Empfehlungen auf eine ähnliche Kernidee berufen – nicht die Eigenschaft en selbst 
nehmen im Mathematikunterricht der Grundschule die zentrale Rolle ein, sondern 
vor allem deren implizite Nutzung im Sinne von Rechenhilfen bzw. Rechenvortei-
len. Flexibles bzw. geschicktes Rechnen bei der Erarbeitung des kleinen Einmaleins 
über Kernaufgaben und operative Beziehungen (siehe Abschnitt 2.3.1) setzt im We-
sentlichen laut KRAUTHAUSEN und SCHERER (2007) ein „Ausnutzen strukturel-
ler Merkmale der konkreten Aufgabenstellungen auf der Basis von Rechengesetzen“ 
(ebd., S.  40) voraus (siehe Abschnitte 2.1.1 und 2.1.2). Kinder sollen somit bereits 
in der Grundschule die Eigenschaft  der Kommutativität, der Distributivität sowie 
der Assoziativität der Multiplikation als Rechenvorteile kennenlernen (PADBERG & 
BENZ, 2011, S.  134–137; SCHIPPER, 2009, S.  155; SCHIPPER et al., 2015, S.  110–
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113).31 Nach SCHIPPER (2009) werden diese Eigenschaft en nicht in separaten Stun-
den erarbeitet, sondern entwickeln sich vielmehr parallel durch ihren Einsatz und 
die Erfahrungen, die man bei der Behandlung der Multiplikation mit ihnen macht 
(ebd., S.  150). STEINWEG (2013) sieht den „Schlüssel […] [allerdings] in der be-
wussten und damit expliziten Th ematisierung der Eigenschaft en der Operationen“ 
(ebd., S.  124, Ergänzung der Autorin). Einem konstruktivistischen Lehr-/Lernver-
ständnis folgend besteht Einigkeit in den fachdidaktischen Publikationen, dass eine 
Operationseigenschaft  „der Lehrerin dann nicht nur geglaubt zu werden braucht, 
sondern von den Kindern selbst – wenn auch an einigen exemplarischen Fallbeispie-
len, so dennoch allgemein gültig begründbar – anschaulich entdeckt werden kann“ 
(KRAUTHAUSEN & SCHERER, 2007, S.  32). Dabei kann die Begründung dieser 
Rechengesetze laut PADBERG und BÜCHTER (2015) durch beispielgebundene Be-
weisstrategien, wie im Abschnitt 2.1.2 bereits ausführlich aufgeführt, geleistet werden 
(ebd., S. 214).

Besonders geeignet zur Begründung, aber auch zur Veranschaulichung oder 
Entdeckung der Eigenschaft en erweisen sich räumliche Darstellungen, da an ih-
nen die algebraischen Gesetzmäßigkeiten gut nachzuvollziehen sind (PADBERG & 
BENZ, 2011, S.  134–137; SCHIPPER, 2009, S.  155; SCHIPPER et al., 2015, S.  110–
113). „Werden […] Mengen als Repräsentanten für die Zahlen genutzt, können die 
Kinder im Konkreten das Abstrakte bzw. Allgemeine erkennen“ (KÄPNICK, 2014, 
S. 105). Die Relevanz einer verständnisorientierten Erarbeitung, die mit räumlichen 
Darstellungen bzw. der anschaulichen Darbietung der Operationseigenschaft en bzw. 
Rechenvorteile einhergeht, zeigt sich auch am nachfolgenden Zitat von SCHIPPER 
(2009) bezogen auf die Distributivität der Multiplikation: „Solche Zerlegungen zu se-
hen, ist eine der wichtigsten Fähigkeiten, die bei der Behandlung der Multiplikation 
zu entwickeln ist“ (ebd., 151, Hervorhebung im Original).

Welche konkreten räumlichen Darstellungen bzw. Arbeitsmittel dazu bevorzugt 
genutzt werden und welche Rolle Arbeitsmittel bei der Erarbeitung des kleinen Ein-
maleins einnehmen, wird in den Ausführungen des nächsten Abschnittes herausge-
arbeitet.

2.3.2 Arbeitsmittel als Mittel zum Rechnen, als Argumentations- und 
Beweismittel

Dieser Abschnitt beginnt mit einer inhaltlichen Klärung der im weiteren Verlauf 
der Arbeit verwendeten Begriffl  ichkeit Arbeitsmittel. Sowohl in fachdidaktischen 
Publikationen als auch in der Unterrichtspraxis liegt kein einheitlicher Sprachge-

31 Da die Rechenstrategie des gegensinnigen Veränderns nur in seltenen Fällen – bei 
geeignetem Zahlenmaterial (siehe Abschnitt 2.2.2) – zur Lösung von Einmaleinsaufgaben 
eingesetzt werden kann, scheint auch dem ihr zugrunde liegenden Gesetz der Konstanz 
des Produktes in den fachdidaktischen Publikationen eher eine vernachlässigte Rolle zu-
zu kommen. Die nur vereinzelte Th ematisierung in Publikationen (z. B. KRAUTHAUSEN 
& SCHERER, 2007, S.  42; PADBERG & BENZ, 2011, S.  141; STEINWEG, 2013, S.  156), 
verstärkt diese Vermutung.
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brauch bzw. eine einheitliche Begriff sverwendung der Begriffl  ichkeit Arbeitsmittel 
vor (KRAUTHAUSEN & SCHERER, 2007, S.  240 ff .). Nach KRAUTHAUSEN und 
SCHERER (2007) können je nach Art des Einsatzes Veranschaulichungsmittel und 
Anschauungsmittel unterschieden werden (ebd., S.  242). Erstere werden von Sei-
ten der Lehrkraft  zum Illustrieren von mathematischen Ideen wie z. B. dem Dar-
stellen bzw. Veranschaulichen von Zusammenhängen genutzt. Dabei liegt ein pas-
siv-rezeptives Grundverständnis von Lehren und Lernen zugrunde (siehe Abschnitte 
1.2 und 1.3), dass Lehrende Wissen an Lernende vermitteln können (WITTMANN, 
1998, S. 155) – Veranschaulichungsmittel sind nach diesem Verständnis demnach als 
Werkzeuge der Lehrerin oder des Lehrers zu verstehen. Anschauungsmittel stehen im 
Gegensatz dazu für Kinder „als Werkzeuge ihres eigenen Mathematiktreibens […] 
zur (Re-)Konstruktion mathematischen Verstehens“ (KRAUTHAUSEN & SCHE-
RER, 2007, S.  243) und entsprechen somit einem eher aktiv-konstruktiven Lernver-
ständnis (siehe Abschnitte 1.1 und 1.3). Als Oberbegriff  führen KRAUTHAUSEN 
und SCHERER (2007) dabei das Begriff spaar Arbeitsmittel und Veranschaulichungen 
an und unterscheiden ebenso wie SCHIPPER (2009), der in diesem Zusammenhang 
von Materialien und Veranschaulichungen spricht, zwischen „konkret-gegenständli-
chen Materialien und deren bildliche Darstellungen“ (SCHIPPER, 2009, S.  288). In 
der vorliegenden Arbeit wird als Sammelbegriff  für konkret-gegenständliche Ma-
terialien aber auch zweidimensionale Darstellungen, die sowohl zur Veranschauli-
chung bzw. Illustration von mathematischen Sachverhalten zum Einsatz kommen als 
auch von Kindern selbst zum Entwickeln mathematischen Verständnisses genutzt 
werden, die Begriffl  ichkeit Arbeitsmittel verwendet. Unter dem Begriff  Arbeitsmit-
tel werden somit Veranschaulichungsmittel als auch Anschauungsmittel gefasst. Die-
se begriffl  iche Unterscheidung wird in dieser Arbeit wie auch bei KRAUTHAUSEN 
und SCHIPPER (2007) nicht als trennscharfe Abgrenzung verstanden – sie soll viel-
mehr ins Bewusstsein rufen, dass Arbeitsmittel je nach Art des Einsatzes eine Veran-
schaulichungsfunktion von Seiten der Lehrkraft  oder eine Anschauungsfunktion für 
das Kind einnehmen können. Ein möglicher Einsatz bzw. der konkrete Einsatz des 
Arbeitsmittels kann dabei abhängig von der Vorstellung der Lehrkraft  sein, wie Leh-
ren und Lernen bei einem Individuum vor sich geht (siehe Kapitel 1).

Die Ausführungen des vorausgehenden Abschnittes 2.3.1 haben den großen Stel-
lenwert der Einsicht bzw. des Verstehens bei der Erarbeitung des kleinen Einmaleins 
herausgearbeitet bzw. hervorgehoben. Um mathematisches Verständnis aufzubauen, 
sind anschauliche Begründungen und Argumentationen anhand von Arbeitsmitteln 
von besonderer Relevanz, da diese nach WITTMANN (2011) erst die in den Eigen-
schaft en der Operation „verborgenen Handlungen zur Geltung“ (ebd., S.  52) brin-
gen und somit wiederum erst zu einem tiefgreifenden Verständnis führen. Dabei ist 
„Anschauung nicht eine Konzession an angeblich theoretisch schwache Schüler, son-
dern fundamental für Erkenntnisprozesse überhaupt“ (WINTER, 1996, S. 9).

Im Folgenden werden zwei zentrale Funktionen von Arbeitsmitteln, die für den 
Verständnisaufb au in einem modernen Mathematikunterricht und für die Erarbei-
tung des kleinen Einmaleins von bedeutender Relevanz sind, genauer beschrieben 
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– die Funktion als Mittel zum Rechnen und als Argumentations- oder Beweismittel 
(KRAUTHAUSEN & SCHERER, 2007, S. 257 ff .; SCHULZ, 2014, S. 73).32

In einem zeitgemäßen Mathematikunterricht werden mithilfe von Arbeitsmitteln 
Rechenoperationen dargestellt bzw. veranschaulicht. Arbeitsmittel werden dabei nach 
dem Kriterium ausgewählt, den Kindern unterschiedliche Zugänge und Lösungswe-
ge zu ermöglichen. SCHULZ (2014) betont in diesem Zusammenhang explizit, dass 
Arbeitsmittel „nicht bloß auf die Funktion als Lösungshilfe reduziert werden sollten. 
Stattdessen sollten sich aus den konkreten Lösungsfi ndungen am Material individu-
elle Kopfstrategien entwickeln können“ (ebd., S.  74). Nach SCHERER und STEIN-
BRING (2001) ermöglicht „nicht schon die Kenntnis eines Rechenwegs, sondern 
erst die Wahrnehmung der Struktur der Rechnung […] mathematisches Verstehen“ 
(SCHERER & STEINBRING, 2001, S.  200, Hervorhebungen im Original). Dabei 
trägt das Arbeitsmittel durch die Funktion als Argumentations- oder Beweismit-
tel dazu bei, bestimmte gewonnene Einsichten, wahrgenommene Regelmäßigkeiten 
oder Muster zu begründen bzw. nachzuweisen (siehe Abschnitt 2.1.2). Arbeitsmit-
tel bieten laut KRAUTHAUSEN und SCHERER (2007) dank ihrer Funktion als Mit-
tel zum Argumentieren und Beweisen nicht nur eine „Stützfunktion“ (ebd., S. 259), 
sondern ihnen wird eine „eigenständige Bedeutung“ (ebd., S. 259) zuteil.

Die zunächst allgemeinen Ausführungen dieses Abschnittes zu Arbeitsmitteln 
und ihren Funktionen können auf den Inhaltsbereich der Multiplikation übertra-
gen werden. Arbeitsmittel nehmen bereits beim Aufb au von Grundvorstellungen der 
Multiplikation eine unverzichtbare Rolle ein: Konkrete bildliche Darstellungen bil-
den neben den vorausgehenden Handlungen den Ausgangspunkt für eine fundier-
te mathematische Vorstellung für die Multiplikation (HASEMANN & GASTEIGER, 
2014, S.  109; RADATZ et al., 1998, S.  83; SCHIPPER et al., 2015, S.  103 ff .). Feld-
strukturen, die den Kindern bereits aus vielen multiplikativen Mustern der Umwelt 
bekannt sind, kommen dabei bevorzugt zum Einsatz. Ein Untersuchen und multipli-
katives Interpretieren dieser Felderanordnungen (räumlich-simultane Anschauung) 
steht im Mittelpunkt der anfänglichen Behandlung des kleinen Einmaleins: Bereits 
in Feldstruktur dargestellte Einmaleinsaufgaben sollen erkannt und erste Lösungs-
versuche unternommen werden (KRAUTHAUSEN & SCHERER, 2007, S. 27 ff .; RA-
DATZ et al., 1998, S. 83; SCHERER & MOSER OPITZ, 2010, S. 122 ff .; SCHIPPER et 
al., 2015, S. 103 ff .; WITTMANN & MÜLLER, 1990, S. 108 ff .).

„Eine wichtige Rolle spielen die Arbeitsmittel […], um Strategien und Beziehun-
gen zu zeigen, aber auch um Vorgehensweisen zu beschreiben und zu begründen“ 
(SCHERER & MOSER OPITZ, 2010, S.  128). Dies wird im Folgenden anhand der 
sogenannten Punktefelder bzw. des Hunderterfeldes33 und der Einmaleinstafel bzw. 

32 Dabei nimmt die Funktion als Mittel zum Rechnen nach KRAUTHAUSEN und SCHERER 
(2007, S.  257) eine bereits relativ lange Tradition ein, der Funktion als Argumentations- 
oder Beweismittel wird im Bereich der Grundschule im Vergleich dazu erst seit kurzem eine 
zentrale Rolle zuteil, die mit der stärkeren Betonung der prozessbezogenen Kompetenzen 
einhergeht (siehe Abschnitt 1.5.3).

33 Unter Punktefeld wird eine beliebige rechteckige Anordnung von Punkten verstanden. Das 
Hunderterfeld oder auch Hunderterpunktefeld genannt, zeichnet sich durch 10 Reihen mit 
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-tabelle34, zwei in Fachkreisen gängigen Arbeitsmitteln zur Behandlung des kleinen 
Einmaleins, veranschaulicht.

Für operative Untersuchungen multiplikativer Aufgaben in der Grundschule sind 
vor allem Punktefelder bzw. das Hunderterfeld (siehe Abbildung 10) unverzichtbar.

Abbildung 10:  Hunderterfeld.

Operationseigenschaft en können mit ihrer Hilfe entdeckt und veranschaulicht wer-
den, so dass diese in Form von Rechenvorteilen bewusst und verständnisbasiert ge-
nutzt werden können (siehe Abschnitt 2.1.2). Punktefelder bzw. das Hunderterfeld 
eignen sich demnach dazu, verschiedene Lösungswege von Multiplikationsaufgaben 
aufzuzeigen bzw. zu erarbeiten: die Tauschaufgabe (Kommutativgesetz), die Verdop-
plungs- bzw. Halbierungsaufgabe (Assoziativgesetz) sowie die Zerlegung eines Fak-
tors (Distributivgesetz) mit ihrem Sonderfall, der Nachbaraufgabe (PADBERG & 
BENZ, 2011, S.  135 ff .). Die didaktischen Empfehlungen zur Entdeckung von Ope-
rationseigenschaft en in der Unterrichtspraxis entsprechen in leicht adaptierter Form 
den im Abschnitt 2.1.2 zu den fachlichen Grundlagen ausführlich dargestellten bei-
spielgebundenen Beweisstrategien. An zwei Rechenstrategien, der Tauschaufgabe 
und der Nachbaraufgabe sollen Einsatzmöglichkeiten des Punktefeldes bzw. Hun-
derterfeldes in der Unterrichtspraxis exemplarisch dargestellt bzw. veranschaulicht 
werden.

Weit verbreitet in fachdidaktischen Publikationen und in Schulbüchern sind im 
Hinblick auf die Erarbeitung der Tauschaufgabe bzw. des Kommutativgesetzes Abbil-
dungen, die Kinder zeigen, die ein Punktefeld bzw. Hunderterfeld aus unterschiedli-
cher Perspektive betrachten (siehe Abbildung 11).

jeweils zehn Punkten und eine 5er-Struktur aus (siehe Abbildung 10) – im Folgenden wird 
dafür der Begriff  Hunderterfeld verwendet.

34 Unter Einmaleinstafel bzw. -tabelle wird eine spezielle Anordnung und unter Umständen 
Einfärbung sämtlicher Aufgaben des kleinen Einmaleins verstanden (siehe Abbildung 13). 
Im Folgenden wird der Begriff  Einmaleinstafel verwendet.
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Abbildung 11:  Betrachtung des Punktefeldes bzw. Hunderterfeldes aus zwei unterschiedlichen 
Perspektiven (Zahlenzauber 2, 2014, S. 70).

Alternativ sind in Publikationen aber auch rechteckige Darstellungen bzw. Punkte-
felder um 90 Grad gedreht dargestellt, die die Tauschaufgabe bzw. das ihr zugrunde-
liegende Kommutativgesetz veranschaulichen (vgl. KÄPNICK, 2014, S. 106; KRAUT-
HAUSEN & SCHERER, 2007, S.  32; PADBERG & BENZ, 2011, S.  135; RADATZ 
et al., 1998, S.  85; SCHERER & MOSER OPITZ, 2010, S.  121; SCHIPPER, 2009, 
S.  150; SCHIPPER et al., 2015, S.  112; WITTMANN & MÜLLER, 1990, S.  108 f.). 
Die „Bilder praktisch aus verschiedenen Perspektiven zu lesen und diese Perspektiv-
änderungen damit zunehmend als Erfahrung ebenfalls mit dem inneren Punktefeld 
[…] auch vor dem inneren Auge einzunehmen“ (STEINWEG, 2013, S. 136, Hervor-
hebung im Original), führen verstärkt zu der Überzeugung, dass die Reihenfolge, in 
der die Faktoren multipliziert werden, das Ergebnis der Multiplikationsaufgabe nicht 
verändert. 

Den Ausführungen der vorherigen Abschnitte (siehe Abschnitt 2.1.1, 2.1.2, 2.2.2 
und 2.3.1) bereits zu entnehmen, war die enorme Bedeutung der Distributivität bei 
der Erarbeitung des kleinen Einmaleins. SCHIPPER (2009) hat in diesem Zusam-
menhang bezogen auf die Distributivität der Multiplikation betont: „Solche Zerle-
gungen zu sehen, ist eine der wichtigsten Fähigkeiten, die bei der Behandlung der 
Multiplikation zu entwickeln ist“ (ebd., S. 151, Hervorhebung im Original). Das 
Hunderterfeld eignet sich auch für die operative Untersuchung der distributiven Zu-
sammensetzung bzw. Zerlegung von Einmaleinsaufgaben (vgl.  KRAUTHAUSEN & 
SCHERER, 2007, S.  37; PADBERG & BENZ, 2011, S.  137; RADATZ et al., 1998, 
S. 85; SCHERER & MOSER OPITZ, 2010, S. 126; SCHIPPER, 2009, S. 155; SCHIP-
PER et al., 2015, S.  112 f.). Dies wird in Abbildung 12 anhand eines Schulbuchbei-
spiels anschaulich verdeutlicht. Die Lösung der Aufgabe 7 x 4, die nicht zu den Kern-
aufgaben gehört, kann am Hunderterfeld über 5 x 4 + 2 x 4 veranschaulicht bzw. 
erarbeitet werden, was der Anwendung einer additiven Zerlegung des Faktors 7 
unter Zuhilfenahme der bereits bekannten Kernaufgaben 5 x 4 und 2 x 4 entspricht.

Nach STEINWEG (2013) zeigen sich „bereits im Primarbereich an vielfältigen 
Stellen Begegnungen mit den Eigenschaft en der Distributivität“ (ebd., S.  153), die 
dann wiederum mithilfe einer Darstellung am Punktefeld „für die Entwicklung al-
gebraischen Denkens […] zusätzlich fruchtbar gemacht werden [können], wenn die 
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Eigenschaft en nicht nur wie von Zauberhand genutzt werden und im Hintergrund 
bleiben, sondern wenn eine angemessene Explizitheit der Eigenschaft  eingefordert 
und unterstützt wird“ (ebd., S.  153, Ergänzung der Autorin; siehe auch Abschnitt 
2.1.2).

Neben Punktefeldern bzw. dem Hunderterfeld bieten sich für die Gewinnung von 
Einsicht in die beziehungsreiche Struktur des kleinen Einmaleins allerdings auch 
Einmaleinstafeln (siehe Abbildung 13) an (KRAUTHAUSEN & SCHERER, 2007, 
S.  33; PADBERG & BENZ, 2011, S.  144; RADATZ et al., 1998, S.  48 f.; SCHIPPER, 
2009, S.  155 f.; SCHIPPER et al., 2015, S.  113 f.; WITTMANN & MÜLLER, 1990, 
S. 119 ff .).

Laut RADATZ und SCHIPPER (1998) stehen sie „zur Verfügung, um für die 
schwierigen Multiplikationsaufgaben Ableitungen von bereits bekannten Aufgaben 
zu erkennen“ (ebd., S.  89) sowie „das Argumentieren und anschauliche Begründen 
in diesem Rahmen zu üben“ (KRAUTHAUSEN & SCHERER, 2010, S. 33). Sie bieten 
ebenfalls die Möglichkeit, Beziehungen zwischen Aufgaben zu untersuchen und zei-
gen mögliche unterschiedliche Lösungswege auf (SCHIPPER, 2009, S. 155).

Entscheidend scheint es – nicht nur für das Mathematiklernen im Allgemeinen, 
sondern auch für die Erarbeitung des Einmaleins im Speziellen – zu sein, dass Lehr-
kräft e sich nicht auf die Veranschaulichungsfunktion der Arbeitsmittel beschränken, 
indem sie diese ausschließlich als Demonstrationsmaterial einsetzen, sondern Kin-
der vielmehr befähigen, eigenständig Entdeckungen am Arbeitsmittel vorzunehmen 
(KRAUTHAUSEN & SCHERER, 2007, S. 243).

BAUERSFELD (2000) formuliert darüber hinaus:
Jede Veranschaulichung eines mathematischen Sachverhalts, so treff end, iso-
morph und ablenkungsfrei Experten sie auch einschätzen mögen, muß [sic] ge-
lernt werden. Und das heißt, ihre Bedeutung muß [sic] in der angeleiteten Aus-
einandersetzung mit der Sache vom lernenden Subjekt konstruiert werden. In 

Abbildung 12:  Erarbeitung der Aufgabe 7 x 4 über 5 x 4 + 2 x 4 (Welt der Zahl 2, 2014, S. 117).
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Nach SCHULZ (2014) kann eine „Fokussierung auf die intendierten mathemati-
schen Aspekte des Materials“ (ebd., S. 78, Hervorhebungen im Original) sowohl vom 
Kind als auch von der Lehrkraft  erfolgen. Bei der Nutzung von Arbeitsmitteln geht 
es nicht „um eine Entscheidung […] zwischen belehrendem, instruktivem Vorgehen 
des Lehrers auf der einen Seite und der konstruktiven Erschließung durch die Kin-
der auf der anderen“ (ebd., S.  79). Vielmehr muss die Lehrkraft  den Unterricht auf 
die relevanten mathematischen Aspekte bzw. Strukturen lenken, die am Arbeitsmittel 
erschlossen werden können.

Die Rechenoperation der Multiplikation zu verstehen und zu beherrschen ist 
gegenwärtiges Ziel eines zeitgemäßen Mathematikunterrichts (siehe auch Kapitel 
1). Im Fokus stehen dabei – wie den Ausführungen des Abschnittes 2.3 zu entneh-
men ist – die Entdeckungen der Eigenschaft en der Operation, die bei Rechenvortei-
len und -strategien zum Tragen kommen und mithilfe von Arbeitsmitteln für Kin-
der leicht zugänglich gemacht werden können. Die Einigkeit bzw. Übereinstimmung 
in den Kernideen der Erarbeitung des kleinen Einmaleins in den mathematikdidak-
tischen Veröff entlichungen ist sicherlich auch auf theoretische und empirische Er-
kenntnisse zurückzuführen, die eine Vielzahl an Argumenten für eine verständnis-
basierte Erarbeitung des kleinen Einmaleins liefern. Im folgenden Abschnitt sollen 
diese Argumente dargestellt werden.

Abbildung 13:  Einmaleinstafel (Zahlenzauber 2, 2014).

der Regel stützt nicht die Veranschaulichung das mathematisch Gemeinte, son-
dern umgekehrt: Die Mathematik gibt der Veranschaulichung einen (bestimm-
ten) Sinn. (BAUERSFELD, 2000, S. 119)
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2.4 Argumente für eine verständnisbasierte Erarbeitung 
des kleinen Einmaleins

„Drill activities have oft en been overemphasized in the mathematics 
classrooms. Practice and drill are carried to extremes when 

computational skill is considered suffi  cient to gain the goals of 
mathematics. Routine learning of skills results in poor retention, 

little understanding, and almost no application in daily problems. 
It is evident that the key to learning skills is through meaningful 

experiences, discovery and applications.“

(JOHNSON & RISING, 1967, S. 102)

Im Zentrum dieses Abschnittes stehen Argumente einer auf Einsicht basieren-
den Erarbeitung des kleinen Einmaleins. Sieht man diese Art der Erarbeitung aus 
einem aktuellen Verständnis von Lehren und Lernen bzw. dem aktuellen Verständ-
nis von Mathematikunterricht abgeleitet, kann diese Gegebenheit allein schon – 
im weiteren Sinne – auch als Argument für diese Behandlung angeführt werden 
(Abschnitt 2.4.1). Inwiefern ein Fokus auf operative Beziehungen und die Anwen-
dung von Rechenstrategien bei der Erarbeitung unbekannter Einmaleinssätze sich 
auf die Ausführung der Rechenoperation selbst auswirkt sowie auch für leistungs-
schwache Schülerinnen und Schülern erfolgsversprechend sein kann, soll in den Ab-
schnitten 2.4.2 und 2.4.4 detailliert beleuchtet werden. Aber auch die propädeutische 
Funktion einer verständnisbasierten Erarbeitung des kleinen Einmaleins für das wei-
tere algebraische Lernen bzw. zukünft iges Lernen soll in diesem Abschnitt diskutiert 
werden (Abschnitt 2.4.5). Ebenso sollen alternative Wege der Erarbeitung des klei-
nen Einmaleins im Hinblick auf ihre Praktikabilität untersucht bzw. analysiert wer-
den (Abschnitt 2.4.3).

Die folgenden Abschnitte (2.4.1 bis 2.4.5) führen sowohl theoretische als auch 
empirische Argumente an, die für eine auf Verständnis basierende Erarbeitung des 
kleinen Einmaleins sprechen. Den Abschluss des Abschnittes 2.4 bildet eine fi nale 
Zusammenschau der Erkenntnisse (Abschnitt 2.4.6).

2.4.1 Aktuelles Lehr- und Lernverständnis sowie das aktuelle Verständnis 
eines zeitgemäßen Mathematikunterrichtes

In einem um Verständnis und einsichtsvolles Rechnen bemühten, zeitgemäßen Ma-
thematikunterricht erfolgt die Erarbeitung und Automatisierung des kleinen Ein-
maleins – wie im Abschnitt 2.3 anschaulich dargelegt – über operative Beziehun-
gen. Weit gefasst kann als ein Argument für ein „Netz von Beziehungen zwischen 
den Aufgaben zur Multiplikation“ (SCHIPPER, 2009, S. 154) und ihrer Entdeckung, 
das aktuelle Verständnis von Lehren und Lernen angeführt werden (siehe Abschnitt 
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1.1). Denn einem konstruktivistischen Lehr- und Lernverständnis folgend ist „men-
schenwürdiges Lernen […] nicht passiver Nachvollzug fremder Gedanken, son-
dern aktive Erzeugung eigener Sinnstrukturen“ (SCHULZ, 1989, S.  36). Auch auf 
die verständnisbasierte Erarbeitung des kleinen Einmaleins, die den aktiven Auf-
bau eines strukturierten Wissensnetzes zwischen Einmaleinssätzen anstrebt (siehe 
Abschnitt 2.3.1), trifft   die Aussage von SCHULZ (1989) zu. Die auf Einsicht in ope-
rative Beziehungen basierende Behandlung des kleinen Einmaleins folgt demnach 
den Grundsätzen des aktuellen Lehr- und Lernverständnisses.

Einem zeitgemäßen Mathematikunterricht, der neben der Rechenfertigkeit gera-
de den kindlichen Verstehensprozessen eine besondere Bedeutung zuteilwerden lässt 
(siehe Abschnitt 1.5.2), wird die aktuelle Erarbeitung des kleinen Einmaleins eben-
falls gerecht, indem sie die Automatisierung der Einmaleinssätze auf Basis von Ein-
sicht anstrebt (siehe Abschnitt 2.3). Nicht nur aus Sicht der Mathematikdidaktik, 
sondern auch aus Sicht der empirischen Unterrichtsforschung ist einem verständnis-
orientierten Unterricht eine enorme Relevanz beizumessen (FREESEMANN, 2014, 
S. 71). Forschungsergebnisse belegen, dass Schülerinnen und Schüler von einem ko-
gnitiv aktivierenden und fachlich anspruchsvollen Unterricht stark profi tieren. Als 
kognitiv aktivierend kann dabei nach LIPOWSKY (2007) „die Anregung der Lernen-
den zu einem vertieft en fachlichen Nachdenken über den Unterrichtsinhalt“ (ebd., 
S. 28) verstanden werden. Vor allem für das Fach Mathematik ist die kognitive Akti-
vität von Bedeutung (BAUMERT, KUNTER, BLUM, BRUNNER, VOSS & JORDAN, 
2010; RAKOCZY, KLIEME, LIPOWSKY & DROLLINGER-VETTER, 2010, S. 233 ff .; 
STERN 2005, S.  145). Die Forschungsergebnisse der SCHOLASTIK-Studie belegen 
positive Eff ekte auf den Lernerfolg der Kinder, die von Lehrpersonen mit einer kons-
truktivistischen Einstellung zum Lehren und Lernen unterrichtet wurden und somit 
eine aktive Auseinandersetzung mit anspruchsvollen Aufgaben im Unterricht ver-
folgten. Schülerinnen und Schüler in Klassen, in denen Lehrpersonen keine konst-
ruktivistische Einstellung zeigten, sondern Lehren und Lernen als direkte Instruktion 
im Sinne eines eher behavioristischen Grundverständnisses ansahen, wiesen einen 
geringeren Lernfortschritt auf (STERN & STAUB, 2000). Nach KROESBERGEN und 
VAN LUIT (2002) trifft   dies auch auf die Erarbeitung des kleinen Einmaleins zu: 
„Research suggests that instruction based on constructivist principles leads to bet-
ter results than more direct, traditional mathematics education“ (ebd., S. 364). Dabei 
erweist sich ein konstruktivistisch orientierter Unterricht allerdings nicht nur viel-
versprechend für den Lernzuwachs von Kindern (COBB et al., 1991; KLEIN, 1998), 
sondern scheint sich auch positiv auf die Motivation der Schülerinnen und Schüler 
auszuwirken. Forschungsergebnisse verweisen darauf, dass Lernen auf eine konstruk-
tivistische Art und Weise motivierender, spannender und herausfordernder für Kin-
der ist (AMES & AMES, 1989; GINSBURG-BLOCK & FANTUZO, 1998).

Ergebnisse der empirischen Unterrichtsforschung sind konform zum aktuellen, 
konstruktivistischen Lehr- und Lernverständnis des Mathematikunterrichts (FREE-
SEMANN, 2014, S.  53). Die positiven Eff ekte, die sich off ensichtlich durch konst-
ruktivistisches Lernen und Unterrichten zeigen, kann man dann vermutlich auch 
erwarten, wenn das Einmaleins auf die in Abschnitt 2.3 geschilderte Weise verständ-
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nisbasiert erarbeitet wird. In den folgenden Abschnitten 2.4.2 bis 2.4.5 werden wei-
tere Argumente für eine verständnisbasierte Erarbeitung der Einmaleinssätze disku-
tiert.

2.4.2 Positive Auswirkungen auf den Lern- und Wissensprozess bei der 
Erarbeitung des kleinen Einmaleins

Im Abschnitt 2.3 dieser Arbeit wurde bereits herausgearbeitet, dass das Auswendig-
lernen der Einmaleinssätze gemäß fachdidaktischer Empfehlungen immer auf einer 
gesicherten Verständnisgrundlage aufb auen sollte. Ob und inwiefern eine verständ-
nisbasierte Erarbeitung positive Auswirkungen auf den Lern- und Wissensprozess im 
Hinblick auf das kleine Einmaleins selbst hat, soll in den folgenden Ausführungen 
aufgezeigt werden.

Anhand der Ergebnisse bzw. Erkenntnisse der Studien, die im folgenden Ab-
schnitt diskutiert werden, soll aufgezeigt werden, dass eine verständnisbasierte Er-
arbeitung dazu beiträgt, „grundlegendes Verständnis [zu] sichern“ (SCHERER & 
MOSER OPITZ, 2010, S.  122, Hervorhebungen und Ergänzung der Autorin), „das 
Erlernen, Verinnerlichen und Behalten [zu erleichtern] und […] eine erfolgreiche 
Automatisierung [der Einmaleinssätze zu erreichen]“ (ebd., S. 122, Hervorhebungen 
und Ergänzung der Autorin).

Grundlegendes Verständnis sichern
Die Erarbeitung der Einmaleinssätze auf Basis automatisierter Kernaufgaben und 
operativer Beziehungen erweist sich laut einiger Studien als erfolgversprechend – sie 
sichert das grundlegende Verständnis des Lerninhaltes. Nach BAROODY (1985) ge-
lingt es Kindern, die eine verständnisbasierte Erarbeitung des kleinen Einmaleins er-
fahren haben, ein ganzheitliches Beziehungsgefüge aufzubauen (ebd., S. 94). Die Ein-
sicht in vielfältige Beziehungen bzw. die Betonung von Strategien bei der Erarbeitung 
des kleinen Einmaleins hilft  Kindern „[to] organize facts into a coherent knowled-
ge network“ (WOODWARD, 2006, S.  271, Ergänzung der Autorin). Sie sind in der 
Lage, wie eine Studie von BAROODY im Jahre 1999 zeigt, noch unbekannte Einmal-
einsaufgaben mithilfe bereits angeeigneten Faktenwissens und unter Nutzung opera-
tiver Beziehungen zu lösen (ebd., S. 184). Aus den Ergebnissen seiner Studie schließt 
BAROODY (1999) auf die zentrale Rolle der Einsicht in Beziehungen und Zusam-
menhänge beim Erarbeiten von Einmaleinssätzen.

Th e results of this study indicate that past work in the fi eld of mathematical cog-
nition has focused too narrowly on the role of simple associative mechanisms 
and has neglected the potentially central role of relational knowledge, such as 
multiplicative commutativity, in the learning of basic number combinations. 
(BAROODY, 1999, S. 189)
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STEEL und FUNNELL (2001) bestätigten die positiven Forschungsergebnisse von 
BARRODY (1999). Sie untersuchten den Einfl uss einer Lernbedingung auf die Stra-
tegievielfalt und den Abruf von Einmaleinsaufgaben bei einer Gruppe von eng-
lischsprachigen Kindern zwischen 8 und 12 Jahren, „who were taught by discovery 
methods“ (ebd., S. 37).35 Sie kamen zu der Erkenntnis, dass die vom National Curri-
culum verpfl ichtende Betonung entdeckerischer Aktivitäten sich bei der Erarbeitung 
des kleinen Einmaleins positiv auswirkt. Neben der Bestätigung der Ergebnisse von 
BAROODY (1999), dass bereits gelernte Einmaleinsaufgaben mithilfe von Einsicht in 
Strategien zum Lösen anderen Aufgaben herangezogen werden können, ist auch eine 
Abkehr von weniger tragfähigen Strategien zu erkennen. Diese Abkehr von weniger 
tragfähigen Strategien – die sich auch als fehleranfälliger und zeitaufwändiger bei 
der Lösung von Multiplikationsaufgaben herauskristallisiert haben (STEEL & FUN-
NELL, 2001, S. 49) – hin zu Rechenstrategien –, führt nicht nur zu einer geringeren 
Fehlerquote, sondern auch zu schnelleren Lösungszeiten bei der Beantwortung von 
Einmaleinsaufgaben. Allerdings zeigen die Ergebnisse der Studie von STEEL und 
FUNNELL (2001) auch, dass die Anzahl an automatisiert abrufb aren Einmaleinsauf-
gaben im Durchschnitt eher gering ausfällt: „By the last year of primary school (age 
11 years), 20% children had failed to learn multiplication facts for even the sim plest 
operands and only 61% retrieved facts for all problems up to 6 × 6“ (ebd., S. 46).

Im deutschsprachigen Raum konnten SELTER (1994) sowie GASTEIGER und 
PALUKA-GRAHM (2013) die internationalen Forschungsergebnisse anhand weite-
rer Studien untermauern. SELTER (1994) untersuchte die Wirksamkeit von Eigen-
produktionen in einem Unterrichtsversuch zum multiplikativen Rechnen. Eigenpro-
duktionen sind nach SELTER (1994) „alle Aktivitäten, bei denen die Schüler selbst 
Aufgabenstellungen erfi nden“ (ebd., S.  30, Hervorhebung im Original) und gelten 
„als exponierte Form der Mitgestaltung des Unterrichtes durch die Schüler“ (ebd., 
S.  29). In diesem Unterrichtsversuch von SELTER (1994), in dem Rechenstrategien 
von den Kindern genutzt und auch diskutiert, und in Bezug auf ihre Eleganz und 
Effi  zienz bewertet wurden, zeigte sich, dass Kinder sich Beziehungen zwischen den 
einzelnen Aufgaben zur Ermittlung aber auch zur Einprägung von Ergebnissen zu-
nutze machen (ebd., S.  285 f.). Sofern Kinder die Einmaleinssätze noch nicht aus-
wendig abrufen konnten, griff en sie auf das Ableiten mithilfe von Stützpunkten (be-
reits bekannte Einmaleinsaufgaben, die sogenannten Kernaufgaben) zurück (ebd., 
S. 286 f.). GASTEIGER und PALUKA-GRAHM (2013) konnten in ihrer explorativen 
Studie ebenfalls zeigen, dass Kinder in der Lage sind, auf der Basis operativer Bezie-
hungen Einmaleinsaufgaben zu lösen. Ein geringer Anteil an wenig tragfähigen Stra-
tegien sowie der gleichzeitig hohe Anteil an eingesetzten Rechenstrategien zur Auf-
gabenlösung „kann als Anzeichen dafür gesehen werden, dass die […] Erarbeitung 

35 „In England, […] didactic teaching methods have given way to “discovery methods” in 
which children fi nd the best methods of calculation for themselves“ (STEEL & FUNNELL, 
2001, S.  39, Hervorhebung im Original). Die verbindliche Vorgehensweise der Erarbeitung 
des kleinen Einmaleins in England ähnelt dabei der in der deutschsprachigen Literatur 
vorgeschlagenen Erarbeitung – „multiplication facts relating to multiples of 2, 5, and 10 are 
taught, and these facts are used to learn other facts, such as using double multiples of 2 to 
produce multiples of 4 as a basis for fi nding answers to novel questions“ (ebd., S. 39).
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des Einmaleins unter dem Fokus der Vernetzung und Strategieentwicklung gelingen 
kann“ (ebd., S. 17).

Ein weiteres Argument für die vorgeschlagene verständnisorientierte Erarbeitung 
liefert WOODWARD  (2006) – in seiner durchgeführten Studie haben Kinder, die 
vier aufeinanderfolgende Wochen lang jeden Tag für 25 Minuten auf Basis von Ein-
sicht die Einmaleinssätze erarbeitet haben, einen deutlichen Lernzuwachs zwischen 
Vor- und Nachtest erzielt. Während bei den Vortestungen nur 68% der Multiplika-
tionsaufgaben von den Kindern korrekt gelöst wurden, erreichten die Kinder nach 
einer vierwöchigen verständnisbasierten Erarbeitungsphase im Vergleich zu einer 
Kontrollgruppe „mastery level (i. e., 90% correct)“ (WOODWARD, 2006, S. 280) mit 
durchschnittlich 94% korrekten Antworten. Eine zweite Testung der Hard Multipli-
cation Facts (Einmaleinsaufgaben, deren korrekte Beantwortung den Kindern in der 
Vortestung üblicherweise Schwierigkeiten bereitet) wurde im Nachtest von den Kin-
dern mit einer deutlich höheren durchschnittlichen Lösungsquote von 64% gelöst, 
als noch im Vortest (durchschnittliche Lösungsquote von 30%). Signifi kante Unter-
schiede zwischen den beiden Testzeitpunkten sind zu erkennen, wobei im Durch-
schnitt kein Kind „achieved mastery of these facts by the end of the four-week inter-
vention“ (WOODWARD, 2006, S. 283).

TER HEEGE (1985) stellt folgendes fest: „Children have trouble remembering 
isolated basic facts. Th ey tend to remember arithmetical facts by skillfully applying 
a number of strategies“ (ebd., S.  386). Sollten sie aber auf keine Strategien zurück-
greifen können bzw. über das nötige konzeptuelle Verständnis nicht verfügen, be-
sitzen sie nicht die Möglichkeit sich vergessene Prozeduren zu erschließen – und 
verweisen somit nach TER HEEGE (1985) geringere Erfolge bei der rechnerischen 
Bewältigung von Aufgabenstellungen (ebd., S. 386). „Das Prinzip, dass ,grundlegen-
des Verstehen‘ nachhaltiger ist als ,dressierte Fertigkeit‘“ (PREDIGER, HUßMANN, 
LEUDERS & BARZEL, 2011, S. 24, Hervorhebungen im Original), ist bereits diesen 
Forschungsergebnissen zu entnehmen. Dressierte Fertigkeit oder das bloße Auswen-
diglernen ohne verständnisvolles Verinnerlichen ermöglicht – wie in den weiteren 
Ausführungen dieses Abschnittes noch geschildert – keine Rekonstruktion von Ver-
gessenem. STERN (1992) betont ein weiteres Problem fehlenden konzeptuellen Wis-
sens. Kinder, die dazu angehalten werden, eine bestimmte Strategie ohne Einsicht 
in ihre Zusammenhänge anzuwenden, laufen Gefahr, sogenannte Oberfl ächenstrate-
gien zu entwickeln. Dies führt zu einem Einsatz der Strategie ähnlich einer Schab-
lone ohne verinnerlichtes Verständnis. Erfolgt das Anwenden der Strategie zunächst 
erfolgreich, gestaltet es sich nach STERN (1992) deutlich schwerer, das bestehende 
konzeptuelle Defi zit später zu beheben (ebd., S.  120 f.). ANTHONY und KNIGHT 
(1999) halten in diesem Zusammenhang mit Bezug auf das kleine Einmaleins fest: 
„Where understanding is adequate, strategies will tend to be eff ective, but where un-
derstanding is inadequate, ,malrules‘ and error-prone strategies will result“ (ebd., 
S. 31, Hervorhebung im Original).

BASTABLE und SCHIFTER (2008) führen als ein weiteres aussagekräft iges Ar-
gument für eine verständnisbasierte Erarbeitung des kleinen Einmaleins eine ge-
steigerte Flexibilität erlernter Inhalte an. Kinder sind den Ergebnissen ihrer Studie 
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zufolge fähig, über die Gesetzmäßigkeiten der Multiplikation zu refl ektieren sowie 
allgemeingültige Begründungen vorzunehmen. Das damit einhergehende Verständ-
nis bzw. das konzeptuelle Wissen, ist dann wiederum von enormer Relevanz im Hin-
blick auf die fl exible Anwendung gelernter Inhalte (BAROODY, 2003). Die Anwen-
dung von Strategien baut auf Einsicht in Zahlbeziehungen sowie einem verständigen 
Umgang mit Zahlen auf und „erfordert damit nicht nur ein Gefühl für Zahlen und 
den Umgang mit ihnen, sondern fördert es auch“ (FREESEMANN, 2014, S.  123; 
KRAUTHAUSEN & SCHERER, 2007, S.  43). WOODWARD (2006) gelangt in sei-
ner bereits angeführten Studie von 2006 zur gleichen Erkenntnis: „Strategies help 
increase a student’s fl exible use of numbers“ (ebd., S. 271). Eine auf Verständnis ab-
zielende Erarbeitung stellt nach THRELFALL (2002) die Voraussetzung dar, Flexibi-
lität in der Anwendung von Strategien anzubahnen bzw. auszubilden (ebd., S. 44 f.). 
Gemäß KROESBERGEN et al. (2004) wirkt sich die Strategiethematisierung posi-
tiv auf die Vielfalt und Angemessenheit der Strategien des kleinen Einmaleins aus 
(ebd., S. 247). Die Bandbreite an verfügbaren Strategien kann dann wiederum dazu 
beitragen, dass operative Beziehungen bzw. Zusammenhänge zwischen Zahlen eher 
erkannt und fl exibel zur Aufgabenlösung eingesetzt werden (THRELFALL, 2009, 
S. 548) und somit fl exibles Rechnen im Hinblick auf das Lösen von Einmaleinsauf-
gaben ermöglichen (SCHIPPER, 2009, S.  107). TER HEEGE erkannte bereits 1985: 
„An  approach based on the use of supports and strategies would seem to be much 
more fl exible […]. Th e source of this fl exibility is the great potential for applying the 
strategies within the area of basic multiplication“ (ebd., S. 387).

Ob und inwiefern sich eine verständnisbasierte Erarbeitung auch über die be-
reits vorgestellten Erkenntnisse hinaus positiv auf den Strategieeinsatz bzw. die Stra-
tegiewahl auswirkt, wird im Abschnitt 3.3.3 dieser Arbeit noch detailliert betrachtet. 
In den Ausführungen dieses Abschnittes liegt der Fokus allerdings im Weiteren auf 
einem zusätzlichen Argument, das für eine verständnisbasierte Erarbeitung des klei-
nen Einmaleins spricht – das Erleichtern des Erlernens, Behaltens und Verinnerli-
chens sowie der erfolgreichen Automatisierung.

Erleichtern des Erlernens, Behaltens und Verinnerlichens sowie der 
erfolgreichen Automatisierung
Nach ANTHONY und KNIGHT (1999) liegt eine Fehlvorstellung vor „concerning 
the relationship between skills and understanding“ (ebd., S. 28). Diese besagt, „that 
if the student really understands then the skills will follow automatically“ (ANTHO-
NY & KNIGHT, 1999, S. 28, Hervorhebung im Original). Andererseits „it is not ap-
propriate to think of the end products of learning as a straightforwardly internalized 
version of the multiplication table“ (SHERIN & FUSON, 2005, S. 385). Forschungs-
ergebnisse leisten einen entscheidenden Nachweis dafür, dass die Verbindung zwi-
schen konzeptuellem Verständnis auf der einen Seite und dem Abspeichern und Ab-
rufen von Kombinationen auf der anderen von großer Relevanz ist (ANTHONY & 
KNIGHT, 1999, S.  32). Sie verweisen darauf, dass die Entwicklung von Strategien 
„associated with meaningful basic fact learning is interwoven with the development 
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of automaticity“ (ebd., S.  31; ENGLISH & HALFORD, 1995). „Th ere is no cogni-
tive ‚magic‘ that produces appropriate performance automatically“ (ENGLISH & 
HALFORD, 1995, S.  80, Hervorhebung im Original). Dennoch scheint der Strate-
gieerwerb auch zur Entwicklung von Fertigkeiten zu führen: „Children acquire more 
and more skill in the use of strategies […]. Th ey can (quickly) become so skilled at 
this that the border between ‚fi gure out‘ and ‚know by heart‘ seems to blur“ (TER 
HEEGE, 1985, S.  386, Hervorhebungen im Original). Der Weg über das Verstehen 
und die Einsicht in zentrale Beziehungen bei der Erarbeitung des kleinen Einmal-
eins fördert somit den Automatisierungsprozess von Einmaleinssätzen (ANTHONY 
& KNIGHT, 1999, S. 31). Wenn man bedenkt, welche entscheidende Rolle dem auto-
matisierten Abruf von Einmaleinsaufgaben zukommt, wird auch die Bedeutung einer 
verständnisbasierten Erarbeitung ersichtlich: Nicht nur beim Lösen von noch unbe-
kannten Aufgaben über Rechenstrategien wird dem automatisierten Abruf eine ent-
scheidende Rolle zuteil, sondern auch im Hinblick auf das weitere Lernen und das 
Lernen leistungsschwacher Schülerinnen und Schüler (siehe  Abschnitte 2.3.1, 2.4.4 
und 2.4.5).

Sichtbar wird die Bedeutung allerdings auch, wenn man den Forschungsergebnis-
sen von LEMAIRE und SIEGLER (1995) Aufmerksamkeit schenkt. Die Ergebnisse 
zeigen, dass Kinder, die Einmaleinsaufgaben über das Zählen oder wiederholte Ad-
dieren gleicher Summanden lösen, zu einem geringeren Automatisierungsgrad von 
Einmaleinsaufgaben gelangen. Sie setzen vermehrt weniger tragfähige Lösungswe-
ge ein und führen diese zudem häufi g fehlerhaft  aus. Damit bestätigt sich die von 
LEMAIRE und SIEGLER (1995) für das kleine Einmaleins getätigte Prognose, dass 
„early incorrect use of backup strategies should lead to more frequent later use of 
backup strategies (rather than retrieval)“ (ebd., S. 94).

Forschungsergebnisse aus dem Bereich der Addition und Subtraktion zeigen al-
lerdings auch, dass Kinder, die den Beziehungen Beachtung schenken und diese ver-
stehen, „are better equipped to store or retrieve […] combinations in mathematics“ 
(CANOBI, REEVE & PATTISON, 1998, S.  890). Gleiches trifft   auch auf das kleine 
Einmaleins und ihre verständnisbasierende Erarbeitung zu. „Facilitating long-term 
retention and direct recall“ (WOODWARD, 2006, S.  271) ist nach WOODWARD 
(2006) ein weiterer positiver Eff ekt, der durch eine verständnisbasierte Erarbei-
tung und den Aufb au eines bereits erwähnten „coherent knowledge network“ (ebd., 
S. 271) erzielt werden kann. Die Studie von WOODWARD (2006) scheint auch da-
für einen empirischen Nachweis zu liefern, indem sie belegt, dass die langfristige 
Automatisierung von Einmaleinssätzen auf Basis einer Erarbeitung von Einmaleins-
strategien erreicht werden kann. Im Vergleich zu einer Kontrollgruppe ergab die Be-
haltensleistung nach einer 10-tägigen unterrichtsfreien Zeit bedingt durch Schulfe-
rien annähernd gleichbleibende Lösungsquoten wie im Nachtest – „group remained 
at a mastery level“ (ebd., S. 280). Isoliert erworbenes Einzelwissen, das nicht wirklich 
verstanden bzw. rein mechanisch auswendig gelernt wurde, „erweist sich als leichter 
anfällig, dem Vergessen anheimzufallen, als Wissensnetze“ (SCHERER, 2003, S.  11; 
SCHIPPER, 1990; SELTER, 1994, S. 19). Es besteht somit wenig Zweifel, dass mithil-
fe einer verständnisbasierten Erarbeitung die Automatisierung umso leichter gelingt 
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(SCHERER, 2003, S.  16; SCHERER & MOSER OPITZ, 2010, S.  74) und langfristig 
gesehen erfolgsversprechend ist (SCHERER, 2003, S. 21).

Es kann abschließend festgehalten werden, dass „nicht das isolierte Memorie-
ren von Einmaleinsreihen […] dauerhaft es Auswendigwissen [schafft  ], sondern ein 
solches Aufgabennetz ist die Verständnisgrundlage für einen zunehmend größeren 
Vorrat an auswendig gewussten Aufgaben“ (SCHIPPER, 2009, S. 143, Ergänzung der 
Autorin). Eine auf Einsicht basierende Erarbeitung bzw. das Denken in Beziehungs-
netzen kann das Abspeichern unterstützen, erleichtern sowie beschleunigen (GERS-
TER, 1994, S. 94 ff .) und – den Ergebnissen dieses Abschnittes folgend – den Grund-
stein für eine langfristige Automatisierung legen.

Dieses Unterstützen, Erleichtern oder Beschleunigen des Abspeicherns von Ein-
maleinssätzen wirkt sich allerdings wiederum positiv auf den Lern- und Wissens-
prozess bei der Erarbeitung des kleinen Einmaleins selbst aus – indem ein Grund-
stock an automatisierten Einmaleinsaufgaben, die sogenannten Kernaufgaben, den 
Schülerinnen und Schülern zur Erschließung anderer Einmaleinssätze mithilfe von 
Rechenstrategien bereitsteht (siehe Abschnitt 2.3.1). Ein möglicher schneller Fakten-
abruf stellt auch eine effi  ziente Vorgehensweise zur Lösung von Multiplikationsauf-
gaben dar (STEEL & FUNELL, 2001, S. 49). Dabei ist es wissenschaft lich gesichert, 
dass die Automatisierung unseren Arbeitsspeicher entlastet und freie Kapazitäten er-
möglicht (BORN & OEHLER, 2009b, S.  89), die beispielsweise für die Anwendung 
von Strategien vonnöten sind: „Automatisieren durch gehirngerechtes Abspeichern 
und Verarbeiten von Informationen ermöglicht den Schülern, die mit den Aufgaben 
verbundene Informationsmenge drastisch zu reduzieren. Dies wirkt sich nachhaltig 
positiv sowohl auf eine gute Behaltensleistung mathematischer Inhalte aus als auch 
auf ein schnelles Rechnen“ (BORN & OEHLER, 2009b, S. 90).

Nach ANTHONY und KNIGHT (1999) können Kinder ihre Aufmerksamkeit zur 
selben Zeit nur auf eine begrenzte Anzahl an Informationen richten. Die Automa-
tisierung nimmt dabei eine bedeutende Rolle ein, sie vergrößert die Kapazität des 
Arbeitsgedächtnisses (ebd., S. 29):

If it takes children’s full concentration to carry out the procedural steps required 
to solve a problem, they may not have the cognitive resources to appreciate the 
conceptual aspects of what they are doing […]. Th us, in order to be able to pay 
attention to one thing we may need to stop paying attention to something else. 
(ebd., S. 29)

WOODWARD (2006) kommt zur gleichen Erkenntnis, als er betont, dass „students 
are likely to experience a high cognitive load“ (ebd., S. 269), wenn ihnen das schnel-
le Abrufen von Fakten nicht gelingt. Dabei entsteht diese zusätzliche Informations-
verarbeitung durch ineffi  ziente Lösungswege, die anstelle eines Abrufes aus dem 
Gedächtnis zur Aufgabenlösung eingesetzt werden. Ergebnisse, wie die gerade an-
geführten, heben die Bedeutung der Automatisierung hervor und verdeutlichen die 
enorme Relevanz, die dem Erleichtern und Beschleunigen des Abrufes von Einmal-
einsaufgaben mithilfe einer verständnisbasierten Erarbeitung zukommt.
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Eine auf Einsicht basierende Erarbeitung, die das Abspeichern von Fakten im 
Allgemeinen, aber auch von Einmaleinssätzen im Speziellen, erleichtert oder be-
schleunigt, ist auch aus einem weiteren Grund von bedeutender Relevanz – bestärkt 
sie doch durch den ermöglichten schnellen Faktenabruf auch ein entfaltetes Gefühl 
„of security about their own abilities“ (ANTHONY & KNIGHT, 1999, S.  29). Der 
Lernstoff  kann durch die gemachten Erfahrungen oder Erfolgserlebnisse positiv be-
wertet (BORN & OEHLER, 2009b, S. 90) und Vertrauen in das eigene Lernen sowie 
Mathematiklernen aufgebaut werden (ANTHONY & KNIGHT, 1999, S. 29).

Inwiefern dem schnellen Abruf von Einmaleinsaufgaben darüber hinaus große 
Bedeutung beizumessen ist, wird vor allem im Abschnitt 2.4.5 deutlich, wenn die 
propädeutische Funktion für das algebraische bzw. zukünft ige Lernen diskutiert 
wird.

Im folgenden Abschnitt 2.4.3 werden alternative Wege der Erarbeitung des klei-
nen Einmaleins auf ihre Praktikabilität überprüft  und als zwangsläufi g wenig zielfüh-
rend charakterisiert. Denn FREESEMANN (2014) bringt es auf eine einfache Formel 
mit seiner in den Raum geworfenen Frage: „Wie kann ein Training von Fertigkeiten 
ohne die Erarbeitung des konzeptuellen Verständnisses die Schülerinnen und Schü-
ler dazu befähigen, die für das kleine Einmaleins auswendig gelernten Aufgaben zum 
Ableiten anderer Aufgaben zu nutzen?“ (ebd., S. 66).

2.4.3 Alternative Wege der Erarbeitung nicht zwangsläufi g zielführend

Eine Erarbeitung und Automatisierung des kleinen Einmaleins auf Basis von Ein-
sicht, geht – wie im Abschnitt 2.4.2 anhand einiger theoretischer, aber auch empiri-
scher Erkenntnisse aufgezeigt werden konnte – mit positiven Auswirkungen auf den 
Lern- und Wissensprozess des kleinen Einmaleins selbst einher. Der folgende Ab-
schnitt soll diese angeführten Argumente einer verständnisbasierten Erarbeitung be-
stärken bzw. untermauern, indem aufgezeigt wird, dass ein möglicher alternativer 
Weg der Erarbeitung nicht zwangsläufi g zielführend ist. Da alternative Vorgehens-
weisen bei der Erarbeitung des kleinen Einmaleins und ein diesbezüglicher Blick in 
die Historie ausführlich Th ema im Abschnitt 2.5 sind, soll an dieser Stelle als kleiner 
Vorgriff  angeführt werden, was unter alternativen Vorgehensweisen bei der Erarbei-
tung des kleinen Einmaleins verstanden wird. Erst vor diesem Hintergrund wird es 
anschließend möglich sein, diese kritisch zu diskutieren und Forschungsergebnisse 
vorstellen sowie refl ektieren zu können.

Ein möglicher alternativer Weg der Erarbeitung des kleinen Einmaleins folgt 
einer behavioristischen Auff assung von Lehren und Lernen (siehe Abschnitt 1.2) und 
stellt „das Rechnen und nicht das konzeptuelle Verständnis“ (MOSER OPITZ, 2013, 
S. 34 f.) in den Vordergrund. „Practice and drill are carried to extremes when com-
putational skill is considered suffi  cient to gain the goals of mathematics“ (JOHNSON 
& RISING, 1967, S. 102). Übertragen auf das kleine Einmaleins steht einer verständ-
nisbasierten Erarbeitung demnach als alternativer Weg ein reines Memorieren oder 
„Einschleifen“ (LAUTER, 1982, S. 102) der Einmaleinssätze gegenüber. Eine Behand-
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lung nach dieser Drill and practice-Methode konzentriert sich „ausschließlich auf 
die Erarbeitung von Einmaleinsreihen und baut so das ganze Einmaleins schrittwei-
se auf “ (PADBERG & BENZ, 2011, S. 139, Hervorhebungen im Original) ohne Zu-
sammenhänge oder Beziehungen zwischen den einzelnen Aufgaben in den Blick zu 
nehmen.

Vor allem das isolierte Erarbeiten und Abspeichern von Einmaleinsaufgaben wird 
häufi g als Kritikpunkt dieser alternativen Vorgehensweise bei der Erarbeitung des 
kleinen Einmaleins angeführt. Nach SCHERER (2003) kann die Aufsplittung in klei-
ne und kleinste Schritte – wie bei alternativen Vorgehensweisen vorgesehen – die 
Einsicht in den größeren Zusammenhang erschweren oder behindern (ebd., S.  10; 
vgl. HENGARTNER 1992; SELTER, 1994). SELTER (1994) betont, dass „das schritt-
weise Rezipieren und Abspeichern unzusammenhängender Einzelfakten besonders 
denjenigen Schülern Schwierigkeiten bereiten kann, die nicht oder nur ansatzweise 
in der Lage sind, die entsprechende – zuvor aus der Erwachsenenperspektive zerlegte 
– ,Lernganzheit‘ (wieder) aufzubauen“ (ebd., S. 19, Hervorhebung im Original). Das 
Lernen auf Basis von Einsicht und Sinnzusammenhängen verringert den Stoff druck, 
weil nach HENGARTNER (1992) gerade davon auszugehen ist, dass „die Segmentie-
rung […] [den Stoff druck] vermutlich miterzeugt und ein Lernen in größeren sinn-
vollen Zusammenhängen eher entlastend wirkt“ (ebd., S. 19, Ergänzung der Autorin; 
GALLIN & RUF, 1990; SELTER, 1994). Der zu investierende Aufwand, der mit dem 
isolierten Abspeichern von Einzelfakten einhergeht, erzeugt Stoff - aber auch Zeit-
druck: „Immer wieder müssen Kenntnisse und Fertigkeiten aufgefrischt werden, die 
längst ,sitzen‘ sollten“ (WITTMANN, 1993, S.  162, Hervorhebung im Original). Im 
Gegensatz dazu kann, wie bereits im Abschnitt 2.3 beschrieben – anders als bei indi-
viduell zu lernenden arithmetischen Fakten – bei einer verständnisbasierten Erarbei-
tung ein Transfer von Rechenstrategien bzw. Rechengesetzen auf ungeübte Aufgaben 
stattfi nden (BAROODY, 1985; BAROODY, 1999).

Bereits erwähnt wurde in diesem Zusammenhang auch (siehe Abschnitt 2.4.2), 
dass isoliert erworbenes Einzelwissen von den Schülerinnen und Schülern deutlich 
leichter vergessen wird als Wissen, das in Wissensnetzen abgespeichert ist (RES-
NICK & FORD, 1981; SCHERER, 2003, S.  11; SCHIPPER, 1990). Die „natürliche 
Ganzheit in isolierte Partikel“ (SELTER, 1994, S.  20) zu zerlegen, führt dazu, dass 
Kinder beim Abspeichern bzw. Einprägen vieler isolierter Einzelfakten an die Grenze 
ihrer Speicherkapazitäten gelangen (BAROODY, 1985, S.  94). Dies geht verständli-
cherweise aber auch mit Schwierigkeiten bzw. Problemen einher – Kinder „may feel 
overwhelmed with such a chore and may give up trying to learn the basic combina-
tions“ (ebd., S.  94). Negative motivationale Konsequenzen können auch durch eine 
Unterforderung aufgrund der Isolierung von Schwierigkeiten bzw. der Aufgliede-
rung des Lernprozesses in kleine und kleinste Schritte hervorgerufen werden (HOLT, 
1979, S.  107; SELTER 1994, S.  19). Laut HOLT (1979) kann nämlich davon ausge-
gangen werden, dass „Kinder […] in dieser Komplexität glücklich arbeiten“ (ebd., 
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S. 107).36 „Ein Unterricht, der das Lernen durch Zerlegen in kleine isolierte Schritte 
zu vereinfachen sucht, [hilft ] den Kindern nicht […], sondern [legt] ihnen nur Stei-
ne in den Weg“ (ebd., S. 107, Ergänzungen der Autorin).

Wie im einleitenden Zitat dieses Abschnittes bereits angeführt, betonen JOHN-
SON und RISING bezogen auf den Mathematikunterricht bereits 1967: „Routine 
learning of skills results in poor retention, little understanding and almost no ap-
plication in daily problems“ (S.  102). Zu einer ähnlichen Erkenntnis gelangen auch 
BRUNS (1994) sowie ANTHONY und KNIGHT (1999). ANTHONY und KNIGHT 
(1999) äußern sich in diesem Zusammenhang folgendermaßen: „It is commonly ac-
cepted that learning basic facts in a rote, unthinking manner, almost always ensures 
mediocrity“ (ebd., S. 34). Des Weiteren verweisen ANTHONY und KNIGHT (1999) 
auf ein Hauptproblem alternativer, kleinschrittig aufgebauter Vorgehensweisen, die 
keine Einsicht in Beziehungen oder Zusammenhänge anstreben:

At the very least, it deprives students of maximising their own potential for 
more eff ective performance: Students have little chance to construct relations 
between these procedures and other things they might know and failure to capi-
talise on the effi  ciencies of mathematics, such as commutativity. (ANTHONY & 
KNIGHT, 1999, S. 34)

Explizit bezogen auf das kleine Einmaleins halten SHERIN und FUSON (2005) fest, 
dass man die größten Eff ekte erzielt, „when ,facts‘ are not treated in isolation“ (ebd., 
S.  385, Hervorhebung im Original). TER HEEGE (1985) betont darüber hinaus: „I 
would like to mention here that the learning of rows of multiplications (the ‘tables’) 
by rattling them off  repeatedly can obstruct the mastery of individual multiplica-
tion facts“ (ebd., S.  378, Hervorhebung im Original). Der Aussage von TER HEE-
GE (1985) zufolge kann somit beim Reihenlernen unter Umständen das Ergebnis 
einer Einzelaufgabe gar nicht wiedergegeben werden. Psychologisch ausgerichteten 
Studien zur Multiplikation stellen eine Praxis, die das Einmaleins Reihe für Reihe 
erarbeitet und der Th ematisierung von Beziehungen und Strategien keine relevan-
te Rolle zuteilwerden lässt, ebenfalls in Frage (CAMPBELL, 1987; GRAHAM, 1987). 
BROWNELL und CHAZAL haben bereits 1935 darauf verwiesen, dass mechanisches 
Auswendiglernen den Lernerfolg der Kinder deutlich weniger positiv beeinfl usst als 
zunächst angenommen. Ein in erster Linie auf Drill ausgerichteter Unterricht kann 
eine Eff ektivitätssteigerung einzelner Lösungswege zur Folge haben, führt allerdings 
nicht zwangsläufi g zum Ablegen wenig tragfähiger Strategien. Kinder lösen Aufga-
ben mithilfe von wenig tragfähigen Strategien zwar schneller und haben eine gerin-
gere Fehlerquote  – „not because the month’s drill had materially raised the level of 
the pupils’ performance, not because drill had supplied more mature methods of 
thinking of the combinations, but because the old methods were, on the second oc-
casion, employed with greater profi ciency“ (BROWNELL & CHAZAL, 1935, S. 24). 
BROWNELL und CHAZAL (1935) halten diesbezüglich fest: „It may be conceded 

36 HOLT (1979) assoziiert mit dem Begriff  Komplexität einen anspruchsvollen Unterricht, 
der durch die Forderung eines Lernens in Sinnzusammenhängen bzw. durch eine auf 
Verständnis zielende Erarbeitung der Lerninhalte erzeugt werden kann. 
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that drill increases, fi xes, maintains and rehabilitates effi  ciency“ (ebd., S. 20), „[but] 
still its showing is scarcely creditable“ (ebd., S.  24, Ergänzung der Autorin).37 Einer 
Studie von BROWNELL und CARPER (1943) folgend, fördert eine auf Einsicht ba-
sierende Erarbeitung die Automatisierung von Einmaleinsaufgaben eff ektiver als die 
alternative Behandlung basierend auf reinem Drill einzelner Fakten. BAROODY 
(1985) geht in diesem Zusammenhang ebenfalls von Folgendem aus: „Children 
do not learn and store basic number combinations as so many separate entities or 
bonds (as hundreds of specifi c numerical associations)“ (ebd., S. 83). Mehrfach ver-
weisen Forschungsergebnisse auf die negativen Auswirkungen eines zu frühen oder 
reinen Eintrainierens von Ergebnissen (BAROODY, 1985; BROWNELL & CHAZAL, 
1935; SELTER, 1994): „Drill makes little, if any, contribution to growth in quantita-
tive thinking by supplying maturer ways of dealing with numbers“ (BROWNELL & 
CHAZAL, 1935, S.  26). Nach WOODWARD (2006) sind in der Literatur zwei An-
sätze, die zur Automatisierung von Einmaleinssätzen führen, vorzufi nden – die Stra-
tegiethematisierung und eine rein auf Automatisierungsübungen ausgelegte Behand-
lung. In der bereits im Abschnitt 2.4.2 angeführten Studie vergleicht WOODWARD 
(2006) die ausschließlich auf Automatisierungsübungen basierende Behandlung 
( timed practice only group) (ebd., S.  269) mit einer Behandlung, die sowohl Auto-
matisierungsübungen sowie die Th ematisierung von Strategien (integrated group) 
(ebd., S. 269) im Unterrichtsgeschehen vorsieht. Dabei bestätigen die Ergebnisse sei-
ner Studie, dass sich beide Ansätze als eff ektiv erweisen und zu einer hohen Auto-
matisierungsquote von Einmalsaufgaben führen (WOODWARD, 2006, S.  285). Bei 
durchschnittlich 64% korrekt gelösten Einmaleinsaufgaben in beiden Gruppen in der 
Vortestung erzielte die Strategie-Gruppe (integrated group) mit 94% korrekter Ant-
worten in der Nachtestung eine etwas höhere durchschnittliche Lösungsquote als die 
Vergleichsgruppe mit 86%. Bei den sogenannten „Hard Multiplication Facts“ (ebd., 
S.  279) erlangten beide Gruppen identische durchschnittliche Lösungsquoten, so 
dass auch dieses Ergebnis ein besseres Abschneiden der Strategie-Gruppe darlegt, da 
diese in den Vortestungen geringere Lösungsquoten aufwies. CAMPBELL und GRA-
HAM (1985) konnten darüber hinaus zeigen, dass gerade ein systematisches Lernen 
der Einmaleinssätze, Reihe für Reihe, dazu beizutragen scheint, dass Kinder zu be-
stimmten Einmaleinsaufgaben falsche Ergebnisse assoziieren – in erster Linie Er-
gebnisse anderer Einmaleinsaufgaben (ebd., S.  359). Dies ist unter Betrachtung der 
Ergebnisse aus Abschnitt 2.4.2 insofern nicht verwunderlich, da ein mechanisches 
Automatisieren der Einmaleinssätze das Zahlverständnis nicht zwangsläufi g fördert 
(BROWNELL & CHAZAL, 1935, S. 26).

Ein rein auf Automatisierungsübungen ausgerichteter Unterricht erschwert es 
Kindern laut SELTER (1994) den „Beziehungsreichtum des Lerninhalts zu nutzen“ 
(ebd., S.  92, Hervorhebung im Original). Dies ist vor allem aber vor dem Hinter-

37 Mit der Formulierung showing is scarcely creditable verweisen BROWNELL und CHAZAL 
(1935) erneut darauf, dass reiner Drill nicht zwangsläufi g den Einsatz wenig tragfähiger 
Herangehensweisen reduziert: „Counting and guessing combined still contributed more than 
70 percent as many responses as did immediate recall“ (BROWNELL & CHAZAL, 1935, 
S. 24).
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grund unglücklich, da Forschungsergebnisse nach ISAACS und CARROLL (1999) 
sogar betonen, dass Schülerinnen und Schüler auf natürliche Art und Weise Stra-
tegien entwickeln, um zur Automatisierung zu gelangen (vgl. MULLIGAN & MIT-
CHELMORE, 1997; SHERIN & FUSON, 2005).

Eine von TER HEEGE (1985) durchgeführte Studie zeigt in diesem Kontext 
ebenfalls, dass Kinder auch ohne explizite Th ematisierung von Strategien in der Lage 
sind, Strategien selbst zu entdecken und adäquat anzuwenden (ebd., S.  380). TER 
HEEGE (1985) äußert sich über einen Schüler, der zur Lösung einer Einmaleinsauf-
gabe auf eine Rechenstrategie zurückgreift , wie folgt: „It is certain that he [the test 
person] has never had to learn the multiplication […] in this way“ (ebd., S. 380, Er-
gänzung der Autorin).

Das mechanische Auswendiglernen ist aber auf keinen Fall gänzlich aus dem 
Unterricht zu verbannen (siehe Abschnitte 2.3.1 und 2.4.2) – es darf lediglich nicht 
Alleinstellungsmerkmal sein. „Practice must be done in such a way that it helps stu-
dents become familiar with, and continues to support student understanding of, the 
patterns and structure across computational resources, so that each child can form a 
rich network of number-specifi c resources“ (SHERIN & FUSON, 2005, S. 385 f., Her-
vorhebung der Autorin). Das im Zitat von SHERIN und FUSON (2005) angespro-
chene Netzwerk ist allerdings kein Ziel alternativer Wege der Erarbeitung des klei-
nen Einmaleins, die ausschließlich das reine Memorieren der Einmaleinssätze in den 
Fokus stellen – wie bereits in diesem Abschnitt mehrfach herausgestellt wurde.

Eine weitere alternative Vorgehensweise bei der Erarbeitung des kleinen Einmal-
eins bzw. eine Merkstrategie, die an dieser Stelle nicht unerwähnt bleiben soll, da sie 
auch in der Forschungsliteratur der Multiplikation existiert, stellt die Mnemotech-
nik dar. Was konkret unter dieser Strategie verstanden wird, soll anhand der Studie 
von WOOD, FRANK und WACKER (1998) veranschaulicht werden. Drei rechen-
schwache Schüler nahmen in der Studie von WOOD et al. (1998) an einem speziel-
len Unterrichtsprogramm für Kinder mit Rechenschwäche teil. Jeder Teilnehmer er-
hielt eine Förderung in Kleingruppen von vier bis sechs rechenschwachen Kindern. 
Die Kinder wurden dabei unterrichtet, die Mnemotechnik anzuwenden. MASTRO-
PIERI und SCRUGGS (1991) verstehen darunter „a device, procedure, or operation 
that is used to improve memory“ (ebd., S.  271). Eine detailliertere Defi nition laut-
et „specifi c reconstruction of target content intended to tie new information more 
closely to the learner’s existing knowledge base and, therefore, facilitate retrieval” 
(MASTROPIERI & SCRUGGS, 1991, S. 271 f.). Die Kinder erzielten erhebliche, um-
gehende Eff ekte. Um Aufgaben der Neuner-Einmaleinsreihe und ihre Tauschauf-
gaben zu lösen, wird beispielsweise eine „linking procedure“ (WOOD et al., 1998, 
S. 326) verwendet:

Number from 1 through 8 were linked as follows: 1 → 8, 2 → 7, 3 → 6, 4 → 5. 
Participants learned and practiced the links until they could immediately re-
spond with the appropriate link when orally given a number by the teacher. In 
the multiplication fact 9 × 4, aft er classifying the problem as being in the nines 
category, participants subtracted 1 from the 4 and wrote the answer (i. e., 3) in 
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the tens column under the problem, then put the link to this answer (i. e., 6) in 
the ones column under the problem. (WOOD et al., 1998, S. 327)

Nach WOOD et al. (1998) sind diese Strategien abgestimmt auf Individuen oder 
Gruppen von rechenschwachen Schülerinnen und Schülern und ihre speziellen De-
fi zite (ebd., S. 323). Da Kinder mit Rechenschwierigkeiten häufi g Probleme mit dem 
Auswendiglernen haben, sollen bei der Erarbeitung des kleinen Einmaleins insbe-
sondere Reime zum Einsatz kommen, die allerdings wiederum auf keinerlei Ver-
ständnis oder Einsicht in Zahlbeziehungen beruhen wie folgendes Beispiel exempla-
risch aufzeigen soll:

For example, in the problem 3 × 4, the pegwords were tree (rhymes with three) 
and door (rhymes with four); the picture representing this problem was a tree 
with a door in it and an elf (rhymes with 12, the answer) standing nearby. 
(WOOD et al., 1998, S. 327)

Die Studie von GREENE (1999) kommt zu ähnlichen Ergebnissen wie die Unter-
suchung von WOOD et  al. (1998): „Special education teachers should consider the 
use of mnemonics as a viable means for remediation of math fact defi cits“ (EU-
BANKS, 2013, S. 4). MASTROPIERI und SCRUGGS (1991) resümieren in Bezug auf 
die Mnemotechnik folgendes: „Mnemonic strategies have produced some of the larg-
est, most consistently positive outcomes in special education intervention research“ 
(ebd., S. 271 f.).

Die Mnemotechnik scheint – im Gegensatz zu den in diesem Abschnitt aufge-
führten alternativen Wegen der Erarbeitung – eine zwangsläufi g zielführende Er-
arbeitung bzw. Merkstrategie für eine bestimmte Personengruppe darzustellen. 
Jedem Kind zum Abruf von Faktenwissen bzw. zur Automatisierung von Einmal-
einsaufgaben zu verhelfen, sollte ausnahmslos im Fokus der Erarbeitung stehen – 
in der mathematikdidaktischen Diskussion herrscht allerdings Konsens, dass die 
Automatisierung bzw. das Abspeichern von Einmaleinssätzen nicht oder nicht aus-
schließlich mithilfe von Reimen erfolgen, sondern auch auf Verständnis und Ein-
sicht in die Rechenoperation beruhen sollte. Es kann resümiert werden, dass sowohl 
die Mnemotechnik als auch ein reines Automatisieren nicht der in der fachdidakti-
schen Literatur in Deutschland geforderten Vorgehensweise entspricht, unbekannte 
Einmaleinssätze über bereits zur Verfügung stehende Einmaleinssätze und operative 
Beziehungen zu lösen.

Inwiefern sich eine verständnisbasierte Erarbeitung des kleinen Einmaleins ins-
besondere auch für leistungsschwache Schülerinnen und Schüler als geeignet erweist, 
wird in den Ausführungen des folgenden Abschnittes aufgezeigt. Mögliche alterna-
tive Vorgehensweisen der Erarbeitung des kleinen Einmaleins bei rechenschwachen 
Schülerinnen und Schülern – neben der Mnemotechnik, die bereits in diesem Ab-
schnitt erläutert wurde – werden im folgenden Abschnitt 2.4.4 ebenfalls diskutiert.



103    

2.4.4 Positive Auswirkungen auf leistungsschwache Schülerinnen und 
Schüler

Die in den vorausgehenden Abschnitten (2.4.1 bis 2.4.3) aufgeführte Vielzahl an 
Erkenntnissen aus Th eorie und Empirie spricht für eine verständnisbasierte Er-
arbeitung des kleinen Einmaleins. Nach SELTER (1994) besteht die „Kernidee des 
Lernens in Sinnzusammenhängen […] darin, die Kinder mit Komplexitäten zu kon-
frontieren“ (ebd., S.  18, Hervorhebung im Original). In der Schulpraxis und der 
Fachwissenschaft  ist in diesem Zusammenhang eine häufi g diskutierte Frage, in-
wiefern sich ein höheres Anspruchsniveau durch eine auf das Verständnis der Kin-
der zielende Erarbeitung für die Rechenschwachen als eher wenig geeignet bzw. 
förderlich erweist (FREESEMANN, 2014, S.  53). Dabei bezieht sich die geäußerte 
Skepsis oft mals nicht auf die konkrete Vorgehensweise ganz generell, sondern ins-
besondere auf die Gestaltung der Förderung rechenschwacher Schülerinnen und 
Schüler.38 In den letzten Jahren steht vermehrt die Frage im Raum, ob und inwie-
fern ein am Konstruktivismus orientierter Unterricht genauso eff ektiv für leistungs-
schwache Rechnerinnen und Rechner wie für leistungsstarke ist (vgl. FREESE-
MANN, 2014; WOODWARD & BAXTER, 1997). Im Abschnitt 1.5.4 dieser Arbeit 
wurde mit dem aktiv-entdeckenden Lernen bereits ein konzeptueller Weg vorge-
stellt, der den Anforderungen an einen zeitgemäßen Mathematikunterricht ge-
recht wird und nach WITTMANN (1995a) zudem ermöglicht, „Kinder im gesam-
ten Leistungsspektrum zu fördern und in den Unterricht zu integrieren“ (ebd., S. 20, 
Hervorhebung im Original). Aber auch bereits in diesen Ausführungen zum ak-
tiv-entdeckenden Lernen wurde auf die Zweifel und Vorbehalte verwiesen, die in 
diesem Zusammenhang gerade für die leistungsschwache Personengruppe vorlie-
gen. In der Literatur ist insbesondere im Hinblick auf die Förderung rechenschwa-
cher Schülerinnen und Schüler ein Rückgriff  auf einen rezeptiven Unterricht, eine 
rezeptive Interventionsform, zu erkennen (MOSER OPITZ, 2013, S.  34 ff .; SCHE-
RER, 1999, S. 53 ff .; SCHERER, 2008, S. 278). Dass diese Förderung – basierend auf 
einem rezeptiven Unterricht – schwacher Rechnerinnen und Rechner von einem 
derzeit gängigen Verständnis von Mathematiklernen abweicht (SCHERER, 2008, 
S.  278), halten auch KROESBERGEN und VAN LUIT (2002) fest: „Th e recommen-
dations mentioned in the literature for teaching students with learning disabilities or
low-performing students appear to be in clear opposition to the constructivist prin-
ciple of guided reinvention“ (S.  364). Nach MOSER OPITZ (2013) muss in diesem 
Zusammenhang aber zwischen Ansätzen zum Lehren und Lernen von Mathema-
tik im Fachbereich der Mathematikdidaktik und der Sonderpädagogik unterschei-
den werden (ebd., S. 34). Klar zu erkennen ist jedenfalls laut KROESBERGEN et al. 
(2004) Folgendes: „A discrepancy thus exists between the application of constructiv-

38 Als rechenschwache Schülerinnen und Schüler werden in den folgenden Ausführungen 
Kinder verstanden, die unterdurchschnittliche Mathematikleistungen zeigen. Die Begriff e 
Rechenschwäche, rechenschwache Rechnerinnen und Rechner sowie leistungsschwache 
Rechnerinnen und Rechner werden dabei synonym verwendet – sie schließen sowohl das 
Rechnen als auch das Verständnis grundlegender Mathematikinhalte ein.
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ist learning theories in general education, as promoted by the current mathematics 
reforms, and the application of more explicit instruction, as recommended for low 
achievers“ (ebd., S. 234).

Off ensichtlich und manifest scheint, dass ein Unterricht, der alle Kinder unab-
hängig von ihrem Leistungsvermögen fördern soll und auf Basis eines aktuellen Ver-
ständnisses von Mathematikunterricht konzipiert ist, den speziellen Status Rechen-
schwacher berücksichtigen soll – „the special status of these children, who clearly 
have more diffi  culties with knowledge generalization, connecting new information 
to old, and the automatization of basic facts“ (KROESBERGEN & VAN LUIT, 2002, 
S. 364).

Die folgenden Erkenntnisse aus Th eorie und Empirie zeigen Argumente auf, die 
für eine verständnisbasierte Erarbeitung im Mathematikunterricht bei rechenschwa-
chen Schülerinnen und Schülern sprechen. Dabei soll konkret herausgearbeitet wer-
den, wovon und unter welchen Bedingungen leistungsschwache Rechnerinnen und 
Rechner von einem Vorgehen profi tieren, das auf Einsicht in Zusammenhänge Wert 
legt.

In erster Linie spricht die begrenzte Speicherfähigkeit leistungsschwacher Schüle-
rinnen und Schüler für ein Ausnutzen von Strategien bzw. ihre implizite Nutzung im 
Sinne von Rechenhilfen bzw. Rechenvorteilen. „Unfortunately, decades of research 
show that academically low-achieving students as well as those with learning disa-
bilities […] exhibit considerable diffi  culty in developing automaticity in their facts“ 
(WOODWARD, 2006, S.  271). Probleme bei der Speicherung und dem Abruf ma-
thematischen Faktenwissens bei schwachen Rechnerinnen und Rechnern werden da-
bei häufi g in Verbindung mit Beeinträchtigungen des Arbeitsgedächtnisses diskutiert 
(FREESEMANN, 2014, S.  26 f.; MABBOTT & BISANZ, 2008). Lernen in größeren 
Sinnzusammenhängen kann – wie bereits im Abschnitt 2.4.2 erwähnt – den Stoff -
druck verringern und entlastend wirken (HENGARTNER, 1992; SELTER, 1994), da 
nicht eine Vielzahl von Aufgaben isoliert voneinander abgespeichert werden muss. 
SCHERER und MOSER OPITZ (2010) betonen ebenfalls, dass Abspeichern und Ab-
rufen umso besser funktionieren, „je mehr Anknüpfungspunkte im eigenen Wissen 
vorhanden sind“ (ebd., S.  18) – das Fehlen solcher Anknüpfungspunkte ist häufi g 
für Lernschwierigkeiten verantwortlich. Insbesondere leistungsschwächere Schülerin-
nen und Schüler sind auf Verständnis basierende Rechenstrategien angewiesen, weil 
sie wieder und wieder gesicherte Resultate ein ums andere Mal vergessen (WITT-
MANN, 1993, S.  162). Eine auf Verständnis basierende Erarbeitung kann die Re-
konstruktion von Vergessenem ermöglichen.

Ein Unterricht, der die Kleinschrittigkeit und die Reduktion des Lernstoff es in 
das Zentrum stellt, kann für schwache Rechnerinnen und Rechner fatale Auswir-
kungen haben. Das Lernen unzusammenhängender Einzelfakten führt dazu, dass 
Schülerinnen und Schüler ein Beziehungsnetz im Hinblick auf die Einmaleinssätze 
selbst knüpfen müssen. Während dies für leistungsstarke Rechnerinnen und Rech-
ner kein allzu großes Hindernis darstellt, sind leistungsschwache Schülerinnen 
und Schüler damit meistens – wie bereits im Abschnitt 2.4.4 verwiesen – überfor-
dert (SELTER, 1994, S.  19). Den Kindern wird es erschwert, den „Beziehungsreich-
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tum des Lerninhaltes zu nutzen und den einzelnen Elementen durch die Einordnung 
in eine Struktur mehr Sinn zu verleihen“ (ebd., S.  92, Hervorhebungen im Origi-
nal). Erarbeiten Kinder Einmaleinsaufgaben auf eine kleinschrittige, isolierende Art 
und Weise, stellt nach SELTER (1994) das blinde und mechanische Auswendigler-
nen die „einzige ,Überlebensstrategie‘ dar“ (ebd., S. 20, Hervorhebung im Original). 
Dass eine derartige Vorgehensweise auch mit negativen motivationalen Auswirkun-
gen für alle Schülerinnen und Schüler einhergehen kann, ist nicht weiter verwun-
derlich und wurde bereits (Abschnitt 2.4.3) bzw. wird im Abschnitt 2.4.5 nochmals 
diskutiert: Eine verständnisbasierte Erarbeitung stellt im Gegensatz zu einer Erarbei-
tung nach dem Prinzip der kleinen und kleinsten Schritte für die leistungsschwachen 
kein reines mechanisches Abspeichern isolierter Einmaleinsaufgaben dar. SCHERER 
(2003) verweist in diesem Zusammenhang auf die enorme Bedeutung, die der intrin-
sischen Motivation bei lernschwachen Schülerinnen und Schüler zuteil wird (ebd., 
S. 12). Nur die Motivation aus der Sache heraus führt zu wünschenswerten langfris-
tigen positiven Auswirkungen (BÖHM, DREIZEHNTER, EBERLE & REISS, 1990).

In den einleitenden Ausführungen dieses Abschnittes wurde bereits angeführt, 
dass „man die Kinder anfangs nicht mit der Komplexität des zu lernenden Systems 
konfrontieren [dürfe], da sie zur Bewältigung derart komplizierter Sachverhalte nicht 
in der Lage“ (DONALDSON, 1982, S. 117, Ergänzung der Autorin) seien. Auf diese 
immer noch weit verbreitete Ansicht, die von dem derzeit gängigen Verständnis von 
Mathematikunterricht abweicht und auf einem rezeptiven Verständnis von Lehren 
und Lernen im Mathematikunterricht basiert, wird insbesondere für die Förderung 
von rechenschwachen Schülerinnen und Schülern zurückgegriff en (FREESEMANN, 
2014, S. 53 ff .; MOSER OPITZ 2013, S. 34 ff .; SCHERER, 2008, S. 278). Während For-
schungsergebnisse (siehe Abschnitte 2.4.1 und 2.4.2) bereits positive Eff ekte auf den 
Lernerfolg von Kindern zeigen konnten, wenn das dem Unterricht zugrundeliegende 
Lehr-Lernverständnis ein konstruktivistisches ist, so mehren sich die Belege dafür, 
dass dieses Vorgehen auch für leistungsschwächere Schülerinnen und Schüler posi-
tive Auswirkungen hat. FREESEMANN (2014) kommt bei ihrer Sichtung der For-
schungsliteratur zu dem Ergebnis, dass „eine am Verständnis orientierte Förderung 
und das entdeckende Lernen auch für schwache Rechnerinnen und Rechner erfolg-
reich umgesetzt werden könne […]“ (ebd., S.  82). Laut STERN (2005) profi tieren 
rechenschwache Lernende von einem anspruchsvollen Unterricht deutlich mehr als 
unter weniger anspruchsvollen Lernbedingungen (ebd., S.  148). So konnte die be-
reits erwähnte SCHOLASTIK-Studie belegen, dass ein um Einsicht bemühter Unter-
richt sowohl leistungsstarken als auch leistungsschwachen Kindern den Aufb au bzw. 
das Erweitern ihres mathematischen Verständnisses ermöglicht (STERN & STAUB, 
2000, S.  96 f.). Dabei ist bei rechenschwachen Schülerinnen und Schülern laut den 
Ergebnissen der empirischen Unterrichtsforschung die hohe Qualität des Unterrich-
tes von großer Relevanz, während diese für die leistungsstärkeren eine nicht so ent-
scheidende Rolle einnimmt (HELMKE et al., 2007, S.  20; LIPOWSKY, 2007, S.  37). 
Insbesondere sind die leistungsschwachen Kinder auf eine angemessene Begleitung 
bzw. Unterstützung durch die entsprechende Lehrerin oder den entsprechenden Leh-
rer angewiesen.
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Die in diesem Abschnitt bisher angeführten Argumente, die für eine verständnis-
basierte Erarbeitung bei leistungsschwachen Schülerinnen und Schüler sprechen, ha-
ben sich zunächst größtenteils auf den Mathematikunterricht ganz generell und die 
dort behandelten Lerninhalte bezogen – was die auf Einsicht basierende Erarbeitung 
des kleinen Einmaleins natürlich ebenfalls einschließt.

In den weiteren Ausführungen soll die Frage geklärt werden, ob und inwieweit 
die angeführten Argumente einer Erarbeitung auf Basis von Einsicht bei leistungs-
schwachen Schülerinnen und Schülern sich auch empirisch mit Bezug auf das klei-
ne Einmaleins bestätigen lassen. Ob und inwiefern leistungsschwache Schülerinnen 
und Schüler von einer verständnisbasierten Erarbeitung des kleinen Einmaleins pro-
fi tieren können bzw. sich andere Ansätze als besonders eff ektiv herausstellen, soll 
im Folgenden anhand bisheriger Forschungsergebnisse zu diesem Lerninhalt ver-
deutlicht werden. Im Zuge der nachfolgenden Zusammenschau der Ergebnisse sol-
len auch Besonderheiten der einzelnen Studien sowie die Repräsentativität für die 
Grundgesamtheit Beachtung fi nden – nur eine refl ektierte Analyse der Studien und 
ihrer Studiendesigns ermöglicht es, die richtigen Schlüsse aus den ermittelten For-
schungsergebnissen zu ziehen.

Einige Forschungsergebnisse bestätigen zunächst die positive Auswirkung einer 
verständnisbasierten Erarbeitung für schwache Rechnerinnen und Rechner. Die 
schon mehrmals angeführte Studie von WOODWARD (2006) stellt nicht nur zwei 
unterschiedliche Ansätze zur Erarbeitung von Einmaleinssätzen gegenüber. Die 
Stichprobe setzt sich auch aus Schülerinnen und Schülern mit durchschnittlichem 
Leistungsvermögen und rechenschwachen Kindern zusammen. Die Ergebnisse der 
Studie zeigen, dass innerhalb der Gruppe der rechenschwachen Schülerinnen und 
Schüler sowohl ein integrierender Ansatz als auch reine Automatisierungsübungen 
zu einem Anstieg der Lösungsquoten vom Vor- zum Nachtest führen. Allerdings 
muss nach WOODWARD (2006) berücksichtigt werden: „It should be noted that 
students with LD [Learning Disabilities]  in both groups were still below the mas-
tery level“ (ebd., S. 280, Ergänzung der Autorin). Bei Betrachtung der einzelnen Lö-
sungsquoten der rechenschwachen Schülerinnen und Schüler wird allerdings ersicht-
lich, dass die Kinder, die Einmaleinssätze über Strategien und daran anschließende 
Übungen zur Automatisierung erarbeitet haben, nach zunächst niedrigeren Lösungs-
quoten in der Vortestung im Nachtest sowie in einer weiteren Testung – 10 Tage im 
Anschluss an den Nachtest – bessere Ergebnisse erzielen konnten als ihre Vergleichs-
gruppe. An dieser Stelle muss aber angemerkt werden, dass die Stichprobe der Stu-
die nicht repräsentativ für die Grundgesamtheit zu sein scheint, da sich die gesamte 
Stichprobe auf nur 58 Schülerinnen und Schüler beläuft . Nur sieben bzw. acht Kin-
der je Unterrichtsansatz wurden als rechenschwache Schülerinnen und Schüler iden-
tifi ziert und deren erzielte Leistungen in den vorherigen Ausführungen aufgeführt. 
Nichtsdestotrotz können die Forschungsergebnisse von WOODWARD (2006) als 
erster Hinweis gesehen werden, dass rechenschwache Schülerinnen und Schüler von 
einer auf Einsicht basierenden Erarbeitung zu profi tieren scheinen.

VAN LUIT und NAGLIERI (1999) zeigen mit ihren Forschungsergebnissen eben-
falls auf, dass eine am Verständnis orientierte Förderung auch für schwache Rech-
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nerinnen und Rechner eff ektiv sein kann. Sie konnten die Effi  zienz eines Förderpro-
grammes – „designed to encourage strategies utilization with multiplication“ (ebd., 
S. 98) – nachweisen, an dem 84 rechenschwache Schülerinnen und Schüler teilnah-
men. Im Rahmen dieses Trainingsprogrammes wurden Rechenstrategien für Mul-
tiplikationsaufgaben erlernt sowie die Automatisierung aller Einmaleinssätze an-
gestrebt. Die Lehrerin bzw. der Lehrer stellte in diesem Training in Kleingruppen 
sicher, dass jedes Kind die unterschiedlichen Lösungswege versteht und bestärkte 
die Kinder darin, die eff ektivsten Strategien zu wählen. Eine von KROESBERGEN 
und VAN LUIT (2002) an 75 schwachen Rechnerinnen und Rechnern durchgeführ-
te Gruppenvergleichsstudie untersuchte die Eff ektivität eines konstruktivistischen 
Ansatzes, der direkten Instruktion sowie des regulären Unterrichts (Kontrollgrup-
pe) bei der Erarbeitung des kleinen Einmaleins. Beide Interventionsgruppen schnit-
ten im Vergleich zur Kontrollgruppe, die einen regulären Unterricht erfahren hat, 
signifi kant besser ab. Wobei die Ergebnisse verdeutlichen, dass rechenschwache 
Schülerinnen und Schüler der konstruktivistisch orientierten Gruppe bessere Leis-
tungen erzielten als die Kinder, die der Interventionsgruppe der direkten Instruk-
tion zugeteilt wurden. Die im Jahr 2004 replizierte Studie von KROESBERGEN et 
al. ermittelte an einer größeren Stichprobe und gleichem Design erneut die Eff ektivi-
tät einer konstruktivistisch geprägten und einer expliziten Einmaleinserarbeitung mit 
einer am regulären Unterricht teilnehmenden Kontrollgruppe bei leistungsschwa-
chen Schülerinnen und Schülern. Die resultierenden Daten aus einer Stichprobe von 
265  leistungsschwachen Schülerinnen und Schülern ermöglichen dabei eine weite-
re Unterteilung der Schülergruppe in Schülerinnen und Schüler, die eine Regelschu-
le besuchen, und Kinder, die eine Schule für Sonderpädagogik aufsuchen aufgrund 
von Lernschwierigkeiten oder geistiger Behinderung. Auswahlkriterien für alle an 
der Studie teilnehmenden Kinder waren ähnliche Fertigkeiten im Lösen von Ein-
maleinsaufgaben. Ein durchgeführter Automatisierungstest zeigte keine Unterschie-
de zwischen den beiden Experimentalbedingungen, jedoch bessere Leistungen der 
Experimentalgruppen im Vergleich zu der Kontrollgruppe (ebd., S.  244 ff .). Schüle-
rinnen und Schüler der Schule für Sonderpädagogik schnitten dabei schlechter ab 
als Kinder, die eine Regelschule besuchten. Ein drei Monate nach dem Nachtest 
stattfi ndender Automatisierungstest ergab insgesamt ähnliche bzw. etwas schlechte-
re Lösungsquoten im Hinblick auf das schnelle Lösen von Einmaleinsaufgaben und 
wiederum keine Unterschiede in Bezug auf die beiden Experimentalgruppen. Das 
bessere Abschneiden beim Lösen von Multiplikationsaufgaben mit einem einstelligen 
und einem zweistelligen Faktor (zwischen 10 und 20), einigen Problemlöseaufgaben 
mit großen Faktoren sowie Textaufgaben der Schülergruppe, die einen eher behavio-
ristisch orientierten Unterricht erfahren haben, ließ die Autoren zu dem Fazit kom-
men, „that recent reforms in mathematics instruction requiring students to construct 
their own knowledge may not be eff ective for low-achieving students“ (KROESBER-
GEN et al., 2004, S. 233). Um die richtigen Schlüsse aus dieser Studie ziehen zu kön-
nen, muss die gesamte Konzeption, aber vor allem der erteilte Unterricht in den bei-
den Experimentalgruppen einer genaueren Betrachtung unterzogen werden. Jede 
Experimentalgruppe erhielt über fünf Monate zweimal die Woche eine dreißigmi-
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nütige Unterrichtseinheit zum kleinen Einmaleins, die in Kleingruppen von 4 bis 6 
Kindern durchgeführt wurde. Dies ist insbesondere vor dem Hintergrund von Inter-
esse, da die Kinder in der restlichen Unterrichtszeit durchaus eine andere Form von 
Unterricht erfahren haben. Nach KROESBERGEN und VAN LUIT (2002) kann in 
diesem Zusammenhang festgehalten werden: „It is plausible that the general math 
instruction also infl uences the students’ learning of multiplication, which would de-
crease the eff ects of a special intervention“ (ebd., S.  374). In der genannten Studie 
von KROESBERGEN et al. (2004) nahmen die Kinder an den drei Tagen, die kei-
ne Förderung in Kleingruppen vorsah, am regulären Unterricht teil. Wurde in die-
ser Zeit das kleine Einmaleins im regulären Unterricht behandelt, erhielten die Kin-
der der Experimentalgruppen Arbeitsblätter zur Bearbeitung – was eine zusätzliche, 
nicht vorgesehene Behandlung des Einmaleins nicht zwangsläufi g ausschließt (ebd., 
S. 237). Außerdem ist davon auszugehen, dass Unterricht in Kleingruppen im Allge-
meinen deutlich eff ektiver ist als Klassenunterricht.

Des Weiteren müssen die beiden Unterrichtsansätze der Studie bzw. das zugrun-
deliegende konstruktivistische und behavioristische Lehr-/Lernverständnis analy-
siert und berücksichtigt werden. Die beiden Ansätze der Studie von KROESBER-
GEN et al. (2004) verfolgen beide die nachstehend angeführten Ziele: „Th e two most 
important goals of the current elementary mathematics curriculum in Th e Nether-
lands […] the automatized mastery of basic operations and the acquisition of ade-
quate problem-solving strategies“ (ebd., S.  235). Die Studie überprüft  bzw. unter-
sucht das Erreichen dieser Ziele allerdings auf zwei unterschiedlichen Wegen. In 
dem als konstruktivistisch bezeichneten Weg unterstützt der Lehrer „student lear-
ning by asking questions and promoting discussion among students […] by helping 
students classify strategies and posing questions about the usefulness of particular 
strategies“ (ebd., S. 240). Dabei demonstriert der Lehrende den Kindern keine Stra-
tegie explizit. Der gegenübergestellte Ansatz, der „explicit instruction“ (ebd., S. 240) 
– wie dieser Ansatz von KROESBERGEN et al. (2004) genannt wird – unterscheidet 
sich von dem als konstruktivistisch bezeichneten Ansatz deutlich im Hinblick auf 
die größere Bedeutung der Belehrung von Seiten der Lehrkraft . „In the explicit con-
dition, the teacher gives direct instruction, that is, the teacher always tells students 
how and when to apply a new strategy“ (ebd., S.  240). Die erzielten Ergebnisse der 
Interventionsgruppen müssen unter Umständen etwas relativiert betrachtet werden, 
kann doch unter Berücksichtigung bisheriger Forschungsergebnisse davon ausgegan-
gen werden, dass der Aufb au des konzeptuellen Verständnisses der Multiplikation 
in der konstruktivistisch orientierten Interventionsgruppe nicht vollkommen ausge-
schöpft  werden konnte. „Th ese students have special needs, to which their instruc-
tion should be adapted“ (KROESBERGEN et al., 2004, S. 249). In einem Unterricht, 
der ausschließlich – wie in dieser Studie – auf den Ideen der schwachen Rechnerin-
nen und Rechner fußte und keine Strategiethematisierung von Seiten der Lehrkraft  
vorsah, bleiben unter Umständen die Bedürfnisse dieser Personengruppe für den 
Aufb au eines konzeptionellen Verständnisses unberücksichtigt.

Ein vermehrt auf Belehrung gründender Unterricht (explicit instruction) bei re-
chenschwachen Schülerinnen und Schülern hat sich auch in der Einzelfallstudie 
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von ZHANG, XIN, HARRIS und DING (2014) als gute Möglichkeit herauskristalli-
siert, Strategien mit rechenschwachen Kindern zu erarbeiten. Dabei zeichnet sich die 
durchgeführte Studie nicht ausschließlich durch einen rein auf Belehrung basieren-
den Unterricht aus: „Th is study also suggested the importance of integrating explicit 
demonstration with students’ self-exploration“ (ZHANG et al., 2014, S. 26). In einem 
individuell abgestimmten Trainingsprogramm verbesserten drei Studienteilnehmer 
den Einsatz von vorteilhaft en Strategien und ihre Flexibilität im Gebrauch von Back-
up-Strategien. Im Vergleich zu durchschnittlichen Rechnerinnen und Rechnern wur-
den Rechenstrategien selten zur Aufgabenlösung eingesetzt, was nach ZHANG et 
al. (2014) vermutlich wie folgt zusammenhängt: „Decomposition strategy is work-
ing-memory demanding because it requires students to break down one or two mul-
tiplicands and hold these complex procedures in mind“ (ebd., S. 27). Wenn ZHANG 
et al. (2014) vom Einsatz vorteilhaft er Strategien sprechen, darunter ihrer Aussage 
zu Folge aber keine Rechenstrategien fallen, dann müssen die Ergebnisse dieser Stu-
die auch mit Vorsicht interpretiert werden. Denn Backup-Strategien wie das Zäh-
len oder wiederholte Addieren sind nicht tragfähige Strategien, die nicht als Endpro-
dukte einer verständnisbasierten Erarbeitung des kleinen Einmaleins stehen sollten 
– auch nicht bei leistungsschwachen Schülerinnen und Schülern. Diese Lösungswe-
ge sind recht anspruchsvoll, zeitintensiv und fehleranfällig (siehe Abschnitt 2.2.2) – 
Teilergebnisse der einzelnen Zählschritte und der Multiplikator müssen beispielswei-
se zeitgleich beachtet werden (ANGHILERI 1989; KRAUTHAUSEN & SCHERER, 
2007, S. 14 f.; SCHERER & MOSER OPITZ, 2010, S. 126). Dies stellt enorme Anfor-
derungen an das Arbeitsgedächtnis dar, was wiederum bei schwachen Rechnerin-
nen und Rechnern nicht im gleichen Maße ausgebildet ist wie bei durchschnittlichen 
oder starken Rechnerinnen und Rechnern (SCHERER & MOSER OPITZ, 2010, 
S. 126). Zudem sollte berücksichtigt werden, dass die angeführte Studie von ZHANG 
et al. (2014) eine Einzelfallstudie darstellt. Diese ist aufgrund ihrer Stichprobengröße 
weder repräsentativ für die Grundgesamtheit noch können die Ergebnisse der Stu-
die auf den regulären Klassenunterricht übertragen werden, da die Teilnehmer des 
Strategie-Programmes eine individuelle Intervention erhalten haben bzw. „were con-
sequently given diff erentiated tasks to promote their [individual] strategic develop-
ment“ (ebd., S. 26). ZHANG et al. (2014) beschreiben eine der bedeutenden Limita-
tionen ihrer Studie wie folgt: „First, the nature of case studies with three participants 
limited the generalization of the intervention eff ects. Because of the descriptive na-
ture of the data in case studies, there is a lack of inferential analyses“ (ebd., S. 27).

Neben den Forschungsergebnissen im Hinblick auf eine verständnisbasierte Er-
arbeitung bei leistungsschwachen Schülerinnen und Schülern im Allgemeinen, lie-
fern die vereinzelten Untersuchungen im Bereich der Multiplikation ein erstes In-
diz dafür, dass sich eine Erarbeitung des kleinen Einmaleins auf Basis von Einsicht 
durchaus auch für rechenschwache Kinder als erfolgsversprechend erweisen kann. 
Allerdings nur, wenn auch den individuellen Bedürfnissen dieser Personengruppe in 
angemessener Weise Rechnung getragen wird. Den empirischen Erkenntnissen die-
ses Abschnittes zufolge profi tieren rechenschwache Schülerinnen und Schüler dem-
nach von einer angemessenen Begleitung bzw. Unterstützung durch die Lehrkraft . 
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Deutlich ersichtlich wurde in diesem Abschnitt auch die enorme Bedeutung bzw. 
Notwendigkeit einer refl ektierten Analyse der Untersuchungsdesigns, um korrekte 
Schlüsse aus den teilweise uneinheitlichen Forschungsergebnissen ziehen zu können. 
Die begrenzte Anzahl an Studien hinsichtlich einer verständnisbasierten Erarbeitung 
des kleinen Einmaleins bei leistungsschwachen Kindern verdeutlicht die Notwendig-
keit weiterer Untersuchungen in diesem Kontext.

2.4.5 Propädeutische Funktion für das weitere algebraische bzw. zukünftige 
Lernen im Mathematikunterricht

Es gibt einige Gründe bzw. eine Reihe von Argumenten – wie in den vorherigen Ab-
schnitten bereits ausführlich geschildert –, die dafür sprechen, den Fokus auf ope-
rative Beziehungen und die Anwendung von Strategien bei der Erarbeitung unbe-
kannter Einmaleinssätze zu legen. Dabei wirkt sich diese Erarbeitung, die zugleich 
Verständnis und die Automatisierung der Rechenoperation anstrebt, positiv auf 
„many tasks across all domains of mathematics and across many subject areas“ 
(WONG & EVANS, 2007, S. 91) aus. Der folgende Abschnitt widmet sich der propä-
deutischen Funktion einer verständnisbasierten Erarbeitung des kleinen Einmaleins 
für das weitere algebraische bzw. zukünft ige Lernen im Mathematikunterricht.

Eine verständnisbasierte Erarbeitung erleichtert nicht nur, wie in den Abschnit-
ten 2.3.1 und 2.4.2 beschrieben, die Automatisierung von Einmaleinssätzen, sondern 
führt auch dazu, dass diese erfolgreich langfristig aus dem Gedächtnis abgerufen 
werden können und somit das Fundament für das weitere Mathematiklernen legen 
(WONG & EVANS,  2007, S.  91). WOODWARD (2006) betont in diesem Zusam-
menhang: „Automaticity in math facts is fundamental to success in many areas of 
higher mathematics“ (ebd., S.  269). WONG und EVANS (2007) halten dazu fest: 
„to succeed in higher-order skills, these lower-order processes need to be execut-
ed effi  ciently“ (ebd., S.  91). LAUTER (1982) hebt in diesem Zusammenhang her-
vor, dass die Automatisierung von Einmaleinssätzen weder Selbstzweck noch Schi-
kane einer Lehrperson darstellt, sondern vielmehr für die Bewältigung komplexerer 
Aufgaben der Schulmathematik aber auch in zahlreichen weiteren Lebenssituationen 
von enormer Relevanz ist (ebd., S.  102). Bezogen auf das kleine Einmaleins stellt 
der automatisierte Faktenabruf die Basis dar, um komplexere Aufgaben – wie im 
Folgenden veranschaulicht – zu lösen (ANTHONY & KNIGHT, 1999, S.  28; GRU-
BE, 2005; HASSELHORN & GOLD, 2006, S. 128; ISAACS & CAROLL, 1999; LÖR-
CHER, 1985; TER HEEGE, 1985, S.  378; WONG & EVANS,  2007, S.  91; WOOD-
WARD, 2006, S. 287). Die Relevanz eines Grundstockes an automatisiert verfügbaren 
Einmaleinsaufgaben wird insbesondere auch bei der Gruppe der rechenschwachen 
Schülerinnen und Schüler ersichtlich, die über ein begrenztes Arbeitsgedächtnis 
verfügen und durch ein sicheres Abrufen des kleinen Einmaleins Kapazitäten ein-
sparen (siehe Abschnitte 2.4.2 und 2.4.4) und somit bei der Bewältigung komple-
xerer Aufgaben einer Überlastung des Gedächtnisses entgegenwirken (LÖRCHER, 
1985, S.  191 f.). Das erfolgreiche Abspeichern und Abrufen von Fakten kann da-
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bei nicht nur dazu beitragen, mehrstellige Multiplikationsaufgaben oder Divisions-
aufgaben zu lösen, die verpfl ichtende Grundschulinhalte darstellen, sondern auch 
über die ganzen Zahlen hinaus, Kinder beispielsweise beim Finden von Vielfachen 
bei der Bruchaddition mit unterschiedlichen Nennern zu unterstützen oder algebrai-
sche Gleichungen zu faktorisieren – um zwei exemplarische Beispiele aus der Sekun-
darstufe genannt zu haben (WOODWARD, 2006, S.  269). „Automaticity in facts is 
still relevant to profi ciency in traditional algorithms“ (WOODWARD, 2006, S. 269), 
wie anhand der beiden folgenden Studien verdeutlicht werden kann. Eine Studie 
von CAWLEY, PARMER, YAN und MILLER (1998) ermittelte die Testleistungen 
von Schülerinnen und Schülern bei der Lösung mehrstelliger Multiplikationsaufga-
ben mit Bezug zu den Basisfertigkeiten der Kinder. Dabei wurden die Kinder nicht 
nur angehalten eine mehrstellige Multiplikationsaufgabe zu lösen, sondern auch im 
Nachgang Aufgaben aus dem kleinen Einmaleins, die zur Berechnung der Ausgangs-
aufgabe nötig gewesen sind. Die Untersuchung zeigte dabei negative Auswirkun-
gen einer mangelnden Automatisierung auf mathematische Inhalte – in der Unter-
suchung von CAWLEY et al. (1998) bei den schrift lichen Algorithmen. LÖRCHER 
(1985) kam in seiner Modellrechnung auch zu dem Schluss, dass Kinder Einmaleins-
aufgaben sicher beherrschen müssen:

Wenn ein Schüler das Einmaleins nur mit 90%iger Sicherheit beherrscht, liegt 
seine Erfolgswahrscheinlichkeit bei der schrift lichen Multiplikation einer 4- 
mit einer 3-stelligen Zahl unter 30% […] und selbst bei 95%iger Beherrschung 
nur knapp über 50% – vorausgesetzt, dass er 100%ig über alle anderen für die 
schrift liche Multiplikation notwendigen Kenntnisse verfügt. (LÖRCHER, 1998, 
S. 191)

Die erfolgreiche Automatisierung bildet somit eine der entscheidenden Vorausset-
zungen, komplexere Rechenanforderung erfolgreich meistern zu können. Zu diesen 
komplexeren Rechenanforderungen, für die Faktenwissen von Vorteil ist, gehören 
auch das fl exible Kopfrechnen, das Lösen von Schätzaufgaben sowie Problemlöse-
aufgaben (ANTHONY & KNIGHT, 1999; ISAACS & CARROLL, 1999; WONG & 
EVANS,  2007; WOODWARD, 2006). Dabei legt nach ANTHONY und KNIGHT 
(1999) die Automatisierung erst „the foundation for fl exible mental calculations, esti-
mation skills and problem-solving (ebd., S. 28). WONG und EVANS (2007) bilanzie-
ren: „Th e importance of automaticity becomes apparent when it is absent“ (WONG 
& EVANS,  2007, S.  91) und TER HEEGE hält bereits 1985 fest, dass automatisiert 
zur Verfügung stehendes Wissen wichtig ist für einen erfolgreichen Fortschritt in al-
len Teilbereichen der Arithmetik. Wie bereits in den Ausführungen angeführt so-
wohl im Hinblick auf „column arithmetic, as well as fl exible mental arithmetic“ 
(TER HEEGE, 1985, S. 378). Gemessen an der enormen Bedeutung, die der erfolg-
reichen Automatisierung – wie in diesem Absatz aufgeführt – zuteil wird, wird auch 
ersichtlich, welche Relevanz einer verständnisbasierten Erarbeitung zukommt, wel-
che die Grundvoraussetzung eines erfolgreichen Faktenabrufes darzustellen scheint.

Als ein Argument für eine verständnisbasierte Erarbeitung ist anzuführen, dass 
„strategy instruction also includes an emphasis on the link between facts and ex-
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tended facts“ (WOODWARD, 2006, S.  271). Gerade dieser Anknüpfungspunkt 
hilft  Schülerinnen und Schülern dann wiederum Schätz- und Kopfrechenaufga-
ben auch im größeren Zahlenraum erfolgreich zu bewältigen (ebd., S.  271). In die-
sem Zusammenhang scheint die auf Einsicht basierende Erarbeitung mit der Ent-
wicklung eines verbesserten Zahlverständnisses bzw. der Einwicklung eines number 
sense einherzugehen (WOODWARD, 2006, S.  287). Wie bereits im Abschnitt 2.4.2 
angeführt, erfordert die Nutzung von Strategien nicht nur Einsicht in Zahlbezie-
hungen und Zusammenhänge, sondern trägt auch zu einer weiteren Förderung und 
einem fl exiblen Lösen von Einmaleinsaufgaben bei (FREESEMANN, 2014; KRAUT-
HAUSEN & SCHERER, 2007; TER HEEGE, 1985; THRELFALL, 2009; SCHIPPER, 
2009; WOODWARD, 2006). Die Strategienutzung bezogen auf das kleine Einmal-
eins erhöht den fl exiblen Umgang mit Strategien und formt „an underlying structu-
re, which can produce extremely fl exible mental activity structures“ (TER HEEGE, 
1985, S.  386), die sich als vorteilhaft  für viele Bereiche der Mathematik herausstel-
len und über die Behandlung des kleinen Einmaleins hinausgehen. Ein konzeptuel-
les Verständnis von Mathematik bzw. das Strategiewissen im Hinblick auf das kleine 
Einmaleins stellt ein tiefgreifendes und nachhaltiges Wissen dar (VAN DE WALLE, 
2007, S. 30), das sich – wie die weiteren Forschungsergebnisse hierzu zeigen werden 
– positiv auf die darauf aufb auenden Fertig- und Fähigkeiten auswirken kann.

Laut einer von WOODWARD (2006) durchgeführten Studie kann die Anbah-
nung von Strategien, die beim mündlichen Rechnen mit größeren Zahlen und beim 
halbschrift lichen Rechnen eine zentrale Rolle einnehmen und für deren Durchdrin-
gung operative Beziehungen unumgänglich sind, durch eine verständnisorientierte 
Erarbeitung der Einmaleinssätze erreicht werden (ebd., S. 287). Der informelle Um-
gang mit Rechengesetzen, den die Kinder anhand von Rechenvorteilen als zentra-
le Grundlage der Anwendung des Prinzips von Rechenstrategien erfahren bzw. nut-
zen, ist ebenfalls als befürwortendes Argument anzuführen (PADBERG & BENZ, 
2011, S.  135 ff .; STEINWEG, 2013, S.  124). Denn nur ein angemessenes, explizites 
Th ematisieren der Eigenschaft en der Operation führt dazu, „dass sich die Eigen-
schaft en als transferierbare ,Regeln‘ im Verständnis der Schülerinnen und Schüler 
entwickeln und die Operationen als Objekte der Auseinandersetzung zu einem fort-
geschrittenen, algebraischen […] Denken verleiten“ (STEINWEG, 2013, S. 153, Her-
vorhebung im Original). Nach STERN (1998) müssen mathematische „Prinzipien 
auf generalisierbarem Niveau explizit verfügbar sein“ (S. 215), wenn Kinder den An-
forderungen des algebraischen Denkens gewachsen sein wollen. Aus der Perspekti-
ve der Förderung dieses Denkens spielt somit die Entdeckung der Operation eine 
entscheidende Rolle, da sie zum Verinnerlichen einer allgemeingültigen Regel füh-
ren kann (siehe Abschnitt 2.1.2). Forschungsergebnisse, die belegen, dass Kinder in 
der Lage sind, transferierbare Regeln aufzustellen, liefert FRENCH (2005). Er stellte 
in seiner Studie fest, dass Kinder die implizite Nutzung von Rechengesetzen im Sin-
ne von Rechenvorteilen nach ihrer Th ematisierung zur Lösung kleiner Einmaleins-
aufgaben auch auf Multiplikationsaufgaben mit zweistelligen Faktoren übertragen 
können. WOODWARD konnte in seiner 2006 durchgeführten Studie signifi kante 
Unterschiede in den Lösungsquoten der sogenannten extended facts, Multiplikations-
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aufgaben mit einem einstelligen und einem zweistelligen Faktor, feststellen bei Kin-
dern, die eine verständnisbasierte Erarbeitung des kleinen Einmaleins erfahren ha-
ben, und Kindern, deren Fokus ausschließlich auf Automatisierungsübungen lag. 
Schülerinnen und Schüler, die Einsicht in operative Beziehungen erhielten, schnit-
ten dabei mit durchschnittlich 90% richtiger Lösungen deutlich erfolgreicher ab als 
ihre Vergleichsgruppe mit 72% korrekten Aufgabenlösungen. Dabei zeigen sich ähn-
lich deutliche Unterschiede auch innerhalb der Gruppen der leistungsschwachen und 
durchschnittlichen Schülerinnen und Schüler – in beiden Gruppen erwies sich eine 
verständnisbasierte Erarbeitung als eff ektiver (WOODWARD, 2006, S.  281 ff .). Die 
beiden Interventionsgruppen waren allerdings nicht komplett vergleichbar. Wäh-
rend die Kinder der Gruppe, die eine auf Einsicht basierende Erarbeitung erfuhren, 
durchwegs halbschrift lich rechneten, lösten die Kinder der anderen Gruppe die Auf-
gaben ausschließlich schrift lich (WOODWARD, 2006, S. 274).

In einem von STEINWEG (2013) mit Grundschulkindern durchgeführtem Al-
gebraprojekt wurden Kinder aufgefordert, die distributive Verknüpfung 10 x 5 – 4 x 
5  =  ___ x ___ zu komplettieren. Zu Beginn des Projektes konnten die teilnehmen-
den Schülerinnen und Schüler diese Aufgabenstellung nicht lösen. Nach der Pro-
jektarbeit, in der distributive Zusammenhänge ebenfalls behandelt wurden, gelingt 
es einem Drittel der Kinder diese Aufgabe zu lösen, zwei Dritteln nicht – ein Drit-
tel konnte keine Antwort geben, ein weiteres Drittel verrechnete die Faktoren auf be-
liebige Art und Weise. Um den Fokus auf die Beziehungen und nicht ein mögliches 
Ausrechnen der Aufgabe zu legen, wurde im Algebraprojekt auch eine Aufgabe ge-
wählt, die sich „einer rechnerischen Lösung noch entzieht und die Gleichwertigkeit 
auf anderen Wegen argumentativ begründet werden muss“ (ebd., S. 146). Die erhal-
tenen Antworten unterscheiden sich allerdings nicht von der vorangegangenen Auf-
gabe – erneut ein Drittel konnte die Verknüpfung korrekt vervollständigen. Als Fa-
zit dieses Projektes kann festgehalten werden, dass „sich etliche Indizien fi nden, die 
auf eine verstehende Nutzung der Eigenschaft  der Distributivität schließen lassen“ 
(STEINWEG, 2013, S. 146). Implizit wird eine verstehende Nutzung der Eigenschaft en 
der Distributivität bei einer auf Einsicht basierenden Erarbeitung des kleinen Ein-
maleis über Strategien geschult, was sich in ähnlicher Weise wie die Intervention im 
Algebraprojekt als hilfreich erweisen kann. Sind die Eigenschaft en der Multiplikation 
erst einmal verstanden, können sie auf beliebige Zahlen übertragen werden. Einer 
bereits erwähnten Studie von BASTABLE und SCHIFTER (2008) zufolge sind Kin-
der auch in der Lage, Gesetzmäßigkeiten der Multiplikation, wie beispielsweise die 
Kommutativität zu refl ektieren und die Allgemeingültigkeit der Eigenschaft  zu er-
kennen sowie nicht allein aufgabenspezifi sch wahrzunehmen (siehe auch Abschnitte 
2.1.2, 2.3.1 und 2.4.2).

Den Forschungsergebnissen der aufgeführten Studien folgend setzt der infor-
melle Umgang mit Rechengesetzen im Zuge einer verständnisbasierten Erarbeitung 
des kleinen Einmaleins den Grundstock algebraischen Denkens in der Grundschu-
le und besitzt somit eine propädeutische Funktion für das weitere algebraische Ler-
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nen in höheren Jahrgangsstufen (FUJII & STEPHENS,  2008).39 „Die Rechengesetze 
sind nämlich die grundlegenden Strukturen (Muster) der Multiplikation, von denen 
aus das Lernen, Üben und Anwenden der Multiplikation in wachsenden Zahlenräu-
men […] gesteuert werden kann“ (WITTMANN & MÜLLER, 2007, S.  53). Neben 
dem überwiegenden impliziten Einsatz als Rechenhilfen in der Grundschule stellt 
die Auseinandersetzung mit den Eigenschaft en der Operation aber auch den Weg 
von der Arithmetik zum algebraischen Lernen und Denken dar: Die Eigenschaft en 
der Operation kommen auch als Term- und Äquivalenzumformungen in der Sekun-
darstufe zum Tragen (FUJII & STEPHENS,  2008; LINK, 2012, S.  11; STEINWEG, 
2013, S.  124 f.). NUNES und BRYANT (1996) sowie PARK und NUNES (2000) be-
tonen sogar noch weitreichendere Auswirkungen einer Einsicht in Zahlbeziehungen 
und Zusammenhänge bei der Multiplikation.

Zudem zeigen Untersuchungen, dass die Problemlöse- und Denkfähigkeit der 
Kinder gefördert werden können (BAROODY, 1999, S.  191; NUNES & BRYNT, 
1996; PARK & NUNES,  2000; THRELFALL, 2009, S.  543; WOODWARD, 2006, 
S. 287), weshalb dem Entdecken und Erarbeiten bei der unterrichtlichen Erarbeitung 
eine bedeutende Rolle zugewiesen wird. Dabei betonen KROESBERGEN und VAN 
LUIT (2002), dass eine Förderung der Problemlösefähigkeit gerade die Entdeckerhal-
tung der Kinder verlangt:

Students who learn to apply active learning strategies are also expected to ac-
quire more useful and transferable knowledge because, for example, problem 
solving requires active participation on the part of the learner. (GABRYS et al., 
1993; vgl. KROESBERGEN & VAN LUIT, 2002, S. 363)

Verbunden mit anschaulichen Begründungen und Argumentationen unterschied-
licher Lösungswege, unterschiedlicher Rechenstrategien und dem informellen Um-
gang mit Rechengesetzen (siehe Abschnitt 2.1.2) besteht die Chance, auch prozessbe-
zogene Kompetenzen wie z. B. das Argumentieren oder Kommunizieren bei Kindern 
weiterzuentwickeln. In diesem Zusammenhang sollte insbesondere die bedeuten-
de Rolle der prozessbezogenen Kompetenzen bei der Entwicklung der auf Einsicht 
und Verständnis beruhenden inhaltlichen mathematischen Kompetenzen, wie der 
Erarbeitung des kleinen Einmaleins, nicht unberücksichtigt bleiben (WALTHER et 
al., 2011, S. 20). Das Erkennen, Beschreiben und Untersuchen von operativen Bezie-
hungen sowie ihre Begründung kann wiederum inhaltsbezogene Lernprozesse ansto-
ßen (LINK, 2012, S. 14 f.) bzw. Wissen im arithmetischen Kontext vertiefen (FUJII & 
STEPHENS, 2008).

39 Die Arithmetik und die Algebra, zwei häufi g getrennt betrachtete Teilgebiete, verdeutlichen 
durch ihre gemeinsamen charakteristischen Merkmale, dass die Arithmetik nicht als 
getrennt von der Algebra zu betrachten ist (CARRAHER & SCHLIEMANN, 2007). „Ins-
gesamt ist eine Tendenz dahin zu erkennen, dass algebraisches Denken mehr und mehr in 
arithmetisches Denken eingebettet und zusammen und nicht getrennt von diesem unter-
richtet wird“ (SPECHT, 2009, S.  55). Die Entwicklung des algebraischen Denkens in der 
Grundschule zielt auf die Vorbereitung der Algebra in der Sekundarstufe ab – es handelt 
sich „folglich nicht um eine frühe, sondern eine propädeutische Entwicklung der Algebra“ 
(AKINWUMNI, 2012, S. 79, Hervorhebungen im Original).
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Laut WITTMANN und MÜLLER (2007) wird den allgemeinen mathematischen 
Kompetenzen eine bedeutende Rolle zuteil (siehe Abschnitt 1.5.3), da diese „zentrale 
mathematische Prozesse bei der mathematischen Tätigkeit erfassen – im Forschungs-
prozess wie im Lernprozess. […] Die inhaltsbezogenen mathematischen Kompeten-
zen erhalten mathematisches Leben nur in Verbindung mit den allgemeinen Kompe-
tenzen“ (ebd., S. 49 f.). Nach WALTHER et al. (2011) ist ein „zentrales Anliegen […] 
ein vernetztes, kumulatives, anschlussfähiges und auf Verstehen ausgerichtetes Ler-
nen, bei dem den allgemeinen mathematischen Kompetenzen im kognitiven und af-
fektiven Bereich eine zentrale Rolle zukommt (WALTHER et al., 2011, S. 22, Hervor-
hebungen der Autorin). Mit der Erarbeitung von Strategien beim kleinen Einmaleins 
können die prozessbezogenen Kompetenzen gefördert und dadurch auch die Freude 
am Fach gesteigert werden. Mit der folgenden zentralen Textstelle der Bildungsstan-
dards der Kultusministerkonferenz wird dies zum Ausdruck gebracht:

Die allgemeinen mathematischen Kompetenzen sind mit entscheidend für den 
Aufb au positiver Einstellungen und Grundhaltungen zum Fach. In einem Ma-
thematikunterricht, der diese Kompetenzen in den Mittelpunkt des unterrichtli-
chen Geschehens rückt, wird es besser gelingen, die Freude an der Mathematik 
und die Entdeckerhaltung der Kinder zu fördern und weiter auszubauen. (KMK, 
2005, S. 6)

Kinder sollen nach BEZOLD (2010) Entdeckungen machen, ihre gemachten Entde-
ckungen beschreiben bzw. mitteilen, sie hinterfragen und in einem letzten Schritt 
auch grundschulspezifi sch begründen lernen. Das Finden möglicher Begründungen 
bzw. Begründungsideen wird dabei nach BEZOLD (2009) erweitert um das „Finden 
inhaltlich-anschaulicher Begründungen“ (ebd., S.  38), wie in den Abschnitten 2.1.2 
und 2.3.2 bereits für die Multiplikation ausführlich dargestellt. Diese Begründun-
gen dienen nicht nur maßgeblich zur Sicherung von Erkenntnissen (siehe Abschnitt 
2.4.2), sondern können auch als Vorstufe für die in höheren Jahrgangsstufen zu füh-
renden Beweise gesehen werden, die hinsichtlich Schlüssigkeit und Korrektheit im 
Vergleich zu Begründungen deutlich größere Ansprüche an Lernende stellen (KÄP-
NICK, 2014, S.  106). Dabei fällt es einigen Kindern im Grundschulalter zunächst 
noch schwer, ihre Entdeckungen bezüglich des kleinen Einmaleins schrift lich aber 
auch mündlich eindeutig bzw. verständlich zu formulieren. Ein verständnisbasier-
te Erarbeitung der Multiplikation, die Kinder aber von Anfang an darin motiviert, 
wird auch in diesen Bereichen Fortschritte erzielen. MÜLLER et al. (2004) geben in 
diesem Zusammenhang Folgendes zu bedenken: „Ein Verständnis für Präzision lässt 
sich nur in einem langfristig angelegten Prozess des Präzisierens entwickeln, nicht 
durch formale Setzungen von außen“ (ebd., S. 3).

Generell besitzt das Verstehen von Beziehungen und Zusammenhängen zwischen 
Zahlen demnach eine wichtige propädeutische Funktion für das weitere algebrai-
sche bzw. zukünft ige Lernen – vor allem aber schafft   das Durchdringen der operati-
ven Beziehungen eine Grundlage für das strategische Rechnen über das kleine Ein-
maleins hinaus. Dies bestätigen auch Ergebnisse nach MOSER OPITZ (2013) und 
HUMBACH (2008), die in ihren Studien beide die bedeutende Relevanz eines Ver-
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ständnisses zentraler Inhalte der Grundschulmathematik, wie des kleinen Einmal-
eins, für das zukünft ige Lernen in der Sekundarstufe hervorheben. Die Studie von 
MOSER OPITZ (2013) off enbart, dass sich die Einsicht in Mathematikinhalte der 
Grundschule als Prädiktor für das Lernen bzw. die Leistung im Fach Mathematik 
in den Jahrgangsstufen 5 und 8 erweist (ebd., S.  217 ff .). HUMBACH (2008) zeigt 
eindrucksvoll auf, dass Inhalte der Grundschulmathematik eine notwendige Be-
dingung darstellen für „tragfähige, weiterführende schulmathematische Kenntnis-
se“ (ebd., S. 65). Nach FREESEMANN (2014) verweisen auch internationale Studien 
darauf, dass fehlendes mathematisches Basiswissen bei Schülerinnen und Schülern 
„eine Hürde beim Erlernen weiterführender Inhalte darstellt“ (ebd., S. 34) und die-
se „deshalb fast zwangsläufi g an den Anforderungen des weiteren Mathematikunter-
richts scheitern“ (GAIDOSCHIK, 2008, S. 287). Dabei sind es natürlich überwiegend 
die leistungsschwachen Schülerinnen und Schüler, die aufgrund eines unzureichen-
den Verständnisses Defi zite in den erwähnten Bereichen aufweisen. Eine verständ-
nisorientierte Erarbeitung der grundschulrelevanten Th emengebiete und somit auch 
des kleinen Einmaleins scheint unbedingt notwendig – denn den Ergebnissen der 
Studien zufolge ist es das Verständnis, das sich als prädiktiv erweist.

Wie die vorherigen Abschnitte aufgezeigt haben, kann nach AKINWUMNI 
(2012) nicht nur im Hinblick auf das kleine Einmaleins, aber eben auch für das Ein-
maleins und insbesondere für rechenschwache Schülerinnen und Schüler folgendes 
Fazit gezogen werden: „Wird in der Arithmetik […] von Anfang an bereits Wert auf 
Struktursinn oder den verständnisvollen Gebrauch von mathematischen Zeichen ge-
legt, so […] [liegt] hierin eine mögliche Grundlage für […] Einsichten in die Alge-
bra“ (AKINWUNMI, 2012, S.  75, Hervorhebung und Ergänzung der Autorin; vgl. 
FUJII & STEPHENS, 2008).

2.4.6 Zusammenfassung

Eine verständnisbasierte Erarbeitung des kleinen Einmaleins trifft   nicht nur in der 
aktuellen mathematikdidaktischen Literatur auf breiten Konsens (siehe Abschnitt 
2.3), sondern erweist sich darüber hinaus auch in einigen Publikationen bzw. Stu-
dien als positiv bzw. erfolgsversprechend – wie dieser Abschnitt 2.4 anhand von 
theoretischen aber auch einer Reihe von empirischen Argumenten detailliert veran-
schaulichen konnte.

Zu Beginn dieses Abschnittes wurde skizziert, dass eine auf Einsicht in operati-
ve Beziehungen basierende Behandlung des kleinen Einmaleins den Grundsätzen des 
aktuellen Lehr- und Lernverständnisses entspricht und einem zeitgemäßen Mathe-
matikunterricht folgt (siehe Abschnitt 2.4.1). Als weiteres Argument einer verständ-
nisbasierten Erarbeitung des kleinen Einmaleins wurden in vereinzelten empirischen 
Studien die positiven Auswirkungen auf den Lern- und Wissensprozess bei der Er-
arbeitung des kleinen Einmaleins selbst angeführt (siehe Abschnitt 2.4.2). Durch die 
vorgesehene Erarbeitung kann laut einiger theoretischer und empirischer Erkennt-
nisse nicht nur das grundlegende Verständnis der Rechenoperation gesichert wer-
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den, sondern eine verständnisbasierte Erarbeitung erleichtert den Erkenntnissen die-
ses Abschnittes zufolge auch das Erlernen, Behalten und Verinnerlichen sowie die 
erfolgreiche Automatisierung von Einmaleinssätzen. Da – wie bereits erwähnt – ein 
Teil der Erkenntnisse theoretischen Ursprungs ist oder sich auf eine verständnisba-
sierende Erarbeitung im Allgemeinen bezieht, wird an dieser Stelle der bestehende 
Forschungsbedarf hinsichtlich möglicher positiver Auswirkungen einer verständnis-
basierten Erarbeitung des kleinen Einmaleins sehr gut ersichtlich.

Einer auf Einsicht und Verständnis basierenden Erarbeitung gegenüber ste-
hen zwangsläufi g nicht zielführende alternative Wege der Erarbeitung des klei-
nen Einmaleins. Alternative Erarbeitungen, die einer behavioristischen Auff assung 
von Lehren und Lernen folgen, stellen das Rechnen und nicht die Einsicht bzw. das 
Verständnis in den Vordergrund – einer verständnisbasierten Erarbeitung steht dem-
nach das reine Einschleifen von Einmaleinsreihen gegenüber, ohne Zusammenhän-
ge oder Beziehungen einzelner Aufgaben in den Fokus zu rücken. Th eoretische und 
empirische Erkenntnisse sehen insbesondere im isolierten Erarbeiten und Abspei-
chern der Einmaleinssätze den entscheidenden Kritikpunkt alternativer Vorgehens-
weisen. Einige wenige Studien, die einen alternativen Weg der Erarbeitung mit einer 
verständnisbasierten Erarbeitung verglichen, konnten nachweisen, dass Kinder, die 
eine verständnisbasierte Erarbeitung des kleinen Einmaleins erfahren haben, besser 
bzw. erfolgreich in der Lage waren, Einmaleinsaufgaben zu lösen, Beziehungen zwi-
schen einzelnen Aufgaben zur Lösung heranzuziehen sowie Einmaleinssätze lang-
fristig sicher aus dem Gedächtnis abzurufen. Die im Abschnitt 2.4.3 erwähnte Mne-
motechnik, die ebenfalls als alternative Herangehensweise angesehen werden kann, 
erzielte vor allem bei der Gruppe der rechenschwachen Kinder positive Forschungs-
ergebnisse. Die Kernidee der Mnemotechnik besteht darin, rechenschwachen Kin-
dern unter anderem mithilfe von Reimen das Auswendiglernen von Faktenwissen zu 
erleichtern. Diese Vorgehensweise entspricht nicht dem aktuellen Lehr- und Lern-
verständnis bzw. einem zeitgemäßen Mathematikunterricht und sollte aus diesem 
Grund nicht die sehr einheitlichen Forschungsergebnisse des Abschnittes 2.4.3 einer 
auf Einsicht basierenden Erarbeitung in Frage stellen. Die Mnemotechnik kann aber 
bereits als kleiner Hinweis betrachtet werden, dass vor allem bezogen auf die leis-
tungsschwachen Schülerinnen und Schüler und eine verständnisbasierte Erarbeitung 
des kleinen Einmaleins ein nicht ganz so einheitliches Bild in der Forschungslitera-
tur existiert.

In den Ausführungen des Abschnittes 2.4.4 konnten eine Vielzahl an positiven 
Auswirkungen einer verständnisbasierten Erarbeitung auf leistungsschwache Schü-
lerinnen und Schüler präsentiert werden. Ein aus Sicht der Mathematikdidaktik gu-
ter Mathematikunterricht lässt sich als ein Unterricht charakterisieren, der mithilfe 
eines konstruktivistischen Lehr- und Lernverständnisses auf das konzeptuelle Ver-
ständnis aller Kinder zielt, eine aktive Auseinandersetzung mit dem Unterrichts-
stoff  verlangt sowie die Begleitung durch die Lehrperson einschließt (siehe Kapitel 
1). Nach FREESEMANN (2014) sowie im Abschnitt 1.5 bereits thematisiert, ist im 
Hinblick auf einen konstruktivistischen Unterricht „off en, wie viel Strukturierung 
oder Begleitung durch die Lehrperson die Schülerinnen und Schüler erfahren. Dies 
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sind aber wichtige Faktoren, die die Lernerfolge der Schülerinnen und Schüler be-
einfl ussen können“ (ebd., S.  66). Dass rechenschwache Kinder auf eine ausreichen-
de Begleitung durch eine Lehrperson angewiesen sind, geht aus den wenigen For-
schungsergebnissen zum kleinen Einmaleins und der unterrichtlichen Erarbeitung 
bei rechenschwachen Schülerinnen und Schülern hervor. In Übereinstimmung mit 
den Erkenntnissen, die FREESEMANN (2014) für eine Förderung rechenschwacher 
Kinder aus seiner Metaanalyse abgeleitet hat (ebd., S. 71), kann auch bezogen auf das 
kleine Einmaleins festgehalten werden:
• Rechenschwache Schülerinnen und Schüler scheinen von der direkten Instruk-

tion zu profi tieren (siehe Abschnitt 2.4.4). 
• Die Ergebnisse konstruktivistisch orientierter Unterrichtsansätze sind für Schüle-

rinnen und Schüler mit schwachen Mathematikleistungen abhängig von der Be-
gleitung durch die Lehrperson (siehe Abschnitt 2.4.4). Wird beispielsweise kein 
rein entdeckender Unterricht, sondern ein entdeckendes Lernen, das von der 
Lehrperson begleitet wird – wie in der Studie von KROESBERGEN und VAN 
LUIT (2003) – in die Praxis umgesetzt, dann scheinen Kinder von einem konst-
ruktivistischen Ansatz profi tieren zu können. 

MERCER, JORDAN und MILLER (1994) sprechen von einem „explicit-to-implic-
it continuum of constructivism” (ebd., S.  290).40 Ihrer Meinung nach sind rechen-
schwache Kinder auf die Hilfe der Lehrperson angewiesen und benötigen einen 
stärker auf Belehrung ausgelegten Unterricht, der trotzdem mit einem konstrukti-
vistischen Lehr- und Lernverständnis vereinbar ist (siehe auch KROESBERGEN & 
VAN LUIT, 2002). MERCER, JORDAN und MILLER (1994) betonen in diesem Zu-
sammenhang mit Bezug auf rechenschwache Schülerinnen und Schüler:

Constructivists diff er concerning the degree of help the teacher should provide; 
however, some common instructional practices of the teacher include modeling 
cognitive processes, providing guided instruction, encouraging refl ection about 
thinking, giving feedback, and encouraging transfer. Th e teacher focuses on gui-
ding the student to achieve success and become a self-regulated strategic learner. 
(ebd., S. 292)

In diesem angeführten Zitat von MERCER et al. (1994) wird ebenfalls wie bereits 
von FREESEMANN (2014) – und im Kapitel 1 dieser Arbeit – darauf verwiesen, 
dass konstruktivistischen Ansätzen keine einheitliche Defi nition zugrunde gelegt 
werden kann und die Ergebnisse der Studien aus diesem Grund teilweise viel Raum 
zur Interpretation lassen. Nach FREESEMANN (2014) weisen viele Autorinnen und 
Autoren „im Fazit ihrer Veröff entlichungen auf den Bedarf an qualitativ hochwerti-
gen Studien und einer wissenschaft lich fundierten und umfangreichen Darstellung 
der Durchführung dieser Studien sowie ihrer Ergebnisse hin“ (ebd., S. 72).

40 „Mercer identifi es a single continuum from explicit (most teacher assistance) to implicit 
(least teacher assistance) instruction. Th e continuum is about the movement from teacher 
regulation through shared regulation to student regulation of learning“ (NORWICH, 2013, 
S. 89).
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Off ensichtlich scheint aber für eine verständnisbasierte Erarbeitung des kleinen 
Einmaleins, dass insbesondere Schülerinnen und Schüler mit schwachen Mathema-
tikleistungen die Hilfe der Lehrperson benötigen, um auch – wie ihre leistungsstär-
keren Mitschüler und Mitschülerinnen – aktive und selbstregulierte Lerner werden 
zu können. „Th erefore, a more explicit instruction is needed, but this can neverthe-
less be designed in accordance with constructivist principles“ (KROESBERGEN & 
VAN LUIT, 2002, S. 364 f.).

Der Abschnitt bezugnehmend auf die propädeutische Funktion einer verständ-
nisbasierten Erarbeitung des kleinen Einmaleins für das weitere algebraische bzw. 
zukünft ige Lernen im Mathematikunterricht lässt keine Zweifel off en, dass sich eine 
auf operative Beziehungen basierende Erarbeitung nach WONG und EVANS (2007) 
auf alle Bereiche der Mathematik und darüber hinaus auf weitere Fachgebiete (ebd., 
2007, S. 91) positiv auswirkt. Dies konnte in dem Abschnitt 2.4.5 belegt werden.

Der folgende Abschnitt 2.5 widmet sich nach einem kleinen Vorgriff , der bereits 
in diesem Abschnitt vorgenommen wurde, im Detail den alternativen Vorgehens-
weisen der Erarbeitung des kleinen Einmaleins. Dabei steht ein kurzer historischer 
Abriss unterrichtlicher Vorgehensweisen bei der Erarbeitung des kleinen Einmaleins 
im Mittelpunkt der Ausführungen sowie deren unterrichtspraktische Umsetzung, die 
anhand von vereinzelten Schulbuchbeispielen veranschaulicht wird. Im Anschluss 
wird analysiert, welche Erarbeitung der Multiplikation in den deutschen Lehr- und 
Bildungsplänen sowie Rahmenplänen jeweils vorgeschrieben wird.

2.5 Alternative Vorgehensweisen bei der Erarbeitung – 
ein Blick in die Historie und auf einzelne Bundesländer

 „Für viele Menschen ist die Erinnerung an das Erlernen des kleinen 
Einmaleins mit der Vorstellung endloser Paukerei verbunden, bis 

diese Aufgaben endlich ‚im Schlaf ‘ beherrscht wurden. Multiplizieren 
haben sie als reine Gedächtnisübung empfunden.“ 

(SCHIPPER et al., 2015, S. 101, Hervorhebung im Original)

Der historische Abriss des Abschnittes 1.4 hat sehr deutlich aufgezeigt, dass es eine 
Zeit gab, in der die behavioristische Grundauff assung von Lehren und Lernen eher 
vorherrschend war und derzeit aktuelle Lehr-/Lerntheorien durchaus konstituierende 
Elemente des Behaviorismus aufweisen. Abschnitt 1.5.1 zeigt ein ähnliches Bild für 
den heutigen Mathematikunterricht. Wie die Behandlung bzw. Erarbeitung des klei-
nen Einmaleins auszusehen hat, besteht weitgehend Einigkeit (siehe Abschnitt 2.3). 
Auch empirische Argumente, die für eine verständnisbasierte Erarbeitung sprechen, 
gibt es reichlich – wie im vorherigen Abschnitt 2.4 geschildert. Allerdings wurde in 
diesem Abschnitt auch bereits auf alternative Vorgehensweisen der Erarbeitung des 
kleinen Einmaleins in der Forschungsliteratur hingewiesen.
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Bisher wurde der Fokus allerdings überwiegend auf aktuelle didaktische Empfeh-
lungen gelegt und kein detaillierter historischer Rückblick auf unterrichtliche Vor-
gehensweisen der Vergangenheit vorgenommen. Da die Vorgehensweisen, die in der 
Fachdidaktik bzw. im Unterricht vergangener Tage vorzufi nden waren, unter Um-
ständen auch noch in die Gegenwart nachwirken, sollen im folgenden Abschnitt al-
ternative Zugänge aufzeigt werden. Auch auf Schulbücher dieser Zeit – die den fach-
wissenschaft lich bzw. fachdidaktisch aufb ereiteten Unterrichtsstoff  darbieten – soll 
der Fokus gerichtet werden. Des Weiteren sollen in diesem Abschnitt Lehr- und Bil-
dungspläne sowie Rahmenpläne in Deutschland bezüglich festgeschriebener Lernin-
halte das kleine Einmaleins betreff end untersucht werden. Zunächst wird ein Über-
blick über die Lehrplanentwicklung in Bayern gegeben, bevor in einem weiteren 
Abschnitt ein Vergleich aller aktuellen deutschen Lehrplaninhalte erfolgt.

2.5.1 Ein kurzer historischer Abriss unterrichtlicher Vorgehensweisen bei der 
Erarbeitung des kleinen Einmaleins

Der breite Konsens in den didaktischen Veröff entlichungen der letzten Jahre im Hin-
blick auf die Erarbeitung des kleinen Einmaleins wurde bereits im Abschnitt 2.3 die-
ser Arbeit detailliert beschrieben. Eine Kombination aus Entdeckung und Erarbei-
tung operativer Beziehungen zwischen einzelnen Einmaleinssätzen „unabhängig von 
dem Korsett der Einmaleinsreihen“ (PADBERG & BENZ, 2011, S.  139) sowie die 
systematische Behandlung der einzelnen Einmaleinsreihen unter Berücksichtigung 
ihrer Zusammenhänge kennzeichnet die gegenwärtige Vorgehensweise. Die aufge-
führten Argumente für diese Art der Behandlung (siehe Abschnitt 2.4) untermauern 
dabei die derzeit etablierten Empfehlungen der Fachdidaktikbücher.

Von Seiten einiger Fachdidaktiker wird diese Erarbeitung bereits viele Jahre ein-
gefordert – zahlreiche Hinweise in der didaktischen Literatur des letzten Jahrhun-
derts verweisen darauf, wie wichtig das Herausarbeiten von Beziehungen bzw. die 
Erarbeitung des kleinen Einmaleins über Strategien ist (FRICKE, 1970; KÜHNEL, 
1916; LAUTER, 1982; OEHL, 1962). Die unterschiedlichen Ansichten bzw. verschie-
dene alternative Zugänge, die sich in der Vergangenheit entwickelt haben, sollen in 
diesem Abschnitt dargestellt bzw. beschrieben werden. Da die didaktischen Empfeh-
lungen sich auch auf die Konzeption von Schulbüchern auswirkt und Schulbücher 
als Orientierung für Lehrerinnen und Lehrer und die Gestaltung der Unterrichtspra-
xis fungieren, sollen in diesem Abschnitt auch Schulbücher im Hinblick auf die vor-
geschriebene Erarbeitung analysiert werden.

Belege für eine Erarbeitung des kleinen Einmaleins über Beziehungen gibt es 
bereits Anfang des letzten Jahrhunderts. So plädierte KÜHNEL bereits 1916 dafür, 
dass die Verwandtschaft  der einzelnen Reihen bei der Behandlung des kleinen Ein-
maleins berücksichtigt werden muss. Laut KÜHNEL (1916) muss „jede [Reihe] erst 
eine Zeitlang allein geübt, dann mit anderen in Beziehung [treten]“ (ebd., S. 221, Er-
gänzungen der Autorin). OEHL (1962) weist den Beziehungen zwischen den Ein-
maleinsreihen ebenfalls eine wichtige Rolle zu und schlägt zur systematischen Er-
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arbeitung eine Reihenfolge vor (10, 5; 2, 4, 8; 3, 6, 9), deren Grundgedanke in der 
heutigen Umsetzung (SCHIPPER et al., 2015) leicht erkennbar ist – „es sind jeweils 
verwandte Reihen zu Gruppen zusammengefasst“ (OEHL, 1962, S.  73). LAUTER 
(1982) formuliert diese Wahl der Reihenfolge wie folgt: „Ein brauchbares Prinzip ist 
es, […] mit Verdopplungen zu arbeiten“ (ebd., S. 104).

Neben den Beziehungen zwischen den Einmaleinsreihen wurden auch die Be-
ziehungen innerhalb einer Reihe von einigen Didaktikern schon lange Zeit, bevor 
diese Beziehungen in den Schulbüchern und Lehrplänen immer mehr thematisiert 
wurden, eingefordert (FRICKE, 1970; LAUTER, 1982, S. 102 ff .; MÜLLER & WITT-
MANN, 1977, S. 183; OEHL, 1962, S. 67 ff .; PADBERG, 1986, S. 102 ff .). Diese ope-
rative Behandlung der Einmaleinsreihen, die auch die Beziehungen innerhalb einer 
Reihe in den Fokus nimmt, wurde in der operativen Didaktik von Arnold Fricke 
und Heinrich Besuden ausgearbeitet (FRICKE, 1970, S. 90 ff .). FRICKE betont bereits 
1970 in diesem Zusammenhang:

Der Blick sollte [nach der Einführung der Operation] nicht sogleich auf die Lö-
sung des neuen Rechenfalls eingeengt werden, sondern auf die Erfassung seiner 
Eigenschaft en und seiner inneren Struktur, auf das funktionale Gleichgewicht 
der in der Rechnung eingehenden Größen und ihren operativen Zusammen-
hang gerichtet sein. (ebd., S. 92, Ergänzung der Autorin)

Konkret auf das Einmaleins bezogen stehen wie in den derzeit weitestgehend ein-
heitlichen Empfehlungen der Mathematikdidaktik zunächst die Eigenschaft en und 
Gesetzmäßigkeiten im Fokus, die in operativer Weise durchgearbeitet werden (FRI-
CKE, 1970, S.  94). OEHL (1962) spricht in diesem Sinne von funktionalen Zusam-
menhängen innerhalb der Reihe, die dem heutigen Ansatz des Ableitens noch unbe-
kannter Aufgaben aus „Grundaufgaben“ (ebd., S. 67) entsprechen. So wird auch laut 
MÜLLER und WITTMANN bereits im Jahre 1977 empfohlen die „drei elementaren 
Operationen, nämlich x 2, x 10, x 5“ (ebd., S. 183) parat zu haben, da diese unter Ein-
satz operativer Beziehungen zur Erschließung der anderen Einmaleinsaufgaben füh-
ren (FRICKE, 1970; LAUTER, 1982; MÜLLER & WITTMANN, 1977; OEHL, 1962; 
PADBERG, 1986). Operative Beziehungen ergeben sich – damals wie heute –, wenn 
die Nachbaraufgaben, die Tauschaufgaben, das Verdoppeln oder Halbieren, das Zu-
sammensetzen von Faktoren expliziert werden (vgl. FRICKE, 1970; KEMPINSKI, 
1951; LAUTER, 1982; MÜLLER & WITTMANN, 1977; OEHL, 1962; PADBERG, 
1986) oder die verschiedenen Reihen, im Sinne des gegensinnigen Veränderns, in 
Zusammenhang gebracht werden (vgl. FRICKE, 1970; MÜLLER & WITTMANN, 
1977). FRICKE (1970) sieht dabei das operative Durcharbeiten – ähnlich wie heu-
te – als „ausgiebige Phase eines […] Erforschens aller Möglichkeiten [zur Aufgaben-
lösung] und deren Einsatz in entsprechenden Aufgaben“ (ebd., S. 94, Ergänzung der 
Autorin) an.

Ein Hauptunterschied zwischen den bisher beschriebenen Kernaussagen zur Er-
arbeitung des Einmaleins des letzten Jahrhunderts und den heute propagierten ist in 
dem folgenden Zitat von KEMPINSKY (1951) sehr schön zu erkennen:
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Die Einmaleinsreihen bilden eine Reihe. Reihen-Wissen wird dadurch charakte-
risiert, daß [sic] sich die Einzelglieder der Reihe gegenseitig stützen. […] Nicht 
nur die Nachbarglieder stützen sich gegenseitig, sondern auch über die nächs-
ten Glieder hinaus lassen sich leicht Fäden ziehen, die festigend wirken. (KEM-
PINSKY, 1951, S. 115, Hervorhebungen der Autorin)

Die bisher aufgeführten fachdidaktischen Publikationen des letzten Jahrhunderts 
zeichnen sich alle durch den Reihengedanken bzw. durch eine Erarbeitung des klei-
nen Einmaleins Reihe für Reihe aus – wohingegen aktuelle Vorgehensweisen (siehe 
Abschnitt 2.3) zunächst für eine Behandlung losgelöst „von dem Korsett der Einmal-
einsreihen“ (PADBERG & BENZ, 2011, S.  139) plädieren und nach KRAUTHAU-
SEN und SCHERER (2007) als „ganzheitliches, aktiv-entdeckendes Vorgehen“ (ebd., 
S. 31) bezeichnet werden.

Weitere Zugänge zum Einmaleins vergangener Tage, die in den folgenden Aus-
führungen herausgearbeitet werden sollen, stellen ebenfalls die Erarbeitung Rei-
he für Reihe in den Fokus und zeichnen sich durch das Lernen bzw. Pauken der 
Einmaleinsreihen aus. „Nach traditionellem Verständnis steht und fällt die Behand-
lung des 1×1 mit der Behandlung der Reihen“ (WITTMANN & MÜLLER, 1990, 
S. 107). Diese Vorgehensweisen teilen aber im Gegensatz zu den bisherigen geschil-
derten Erarbeitungen nicht die „dynamische Sicht der Zusammenhänge bei Multi-
plikationsaufgaben“ (WITTMANN & MÜLLER, 1977, S.  183), sondern verfolgen 
eine „isolierte[…] Einzelmemorierung“ (ebd., S. 183) oder nach FRICKE (1970) „die 
Aufspaltung in kleinste Portionen und ihrer gegenseitigen Abschirmung und Isolie-
rung“ (ebd., S.  90). Nach PADBERG und BENZ (2011) liegt die Konzentration auf 
einem ausschließlich schrittweisen Aufb au und Einprägen der einzelnen Einmal-
einsreihen (ebd., S. 139), einer „endlosen Paukerei“ (SCHIPPER et al., 2015, S. 101). 
Dieser Unterricht ist somit weniger um Verständnis und einsichtsvolles Rechnen be-
müht, als dass er sich durch „Drill und Übernahme unverstandener Rechenverfah-
ren“ (FRICKE, 1970, S.  80 f.) bzw. nach SCHIPPER et al. (2015) durch eine „reine 
Gedächtnisübung“ (ebd., S.  102 f.) auszeichnet. Alle aktuellen Fachdidaktikbücher 
grenzen sich von dieser Art der Erarbeitung des kleinen Einmaleins, der ein be-
havioristisches Verständnis von Lehren und Lernen zugrunde zu liegen scheint, ab 
(KRAUTHAUSEN & SCHERER, 2007, S.  31; LORENZ & RADATZ, 1993, S.  139; 
MOSER OPITZ, 2010, S.  120; PADBERG & BENZ, 2011, S.  138 f.; RADATZ & 
SCHIPPER, 1998, S. 81; SCHERER & SCHIPPER et al., 2015, S. 101 f.; WITTMANN 
& MÜLLER, 1990, S. 107).

KRAUTHAUSEN und SCHERER (2007) beschreiben die Unterrichtspraxis in 
diesem Kontext wie folgt: „Traditionell haben wahrscheinlich viele […] aus der eige-
nen Grundschulzeit noch eine Praxis in Erinnerung, derzufolge [sic] die einzel-
nen Reihen isoliert durchgenommen wurden und dann recht bald auswendig ge-
lernt werden sollten“ (ebd., S.  31, Hervorhebung im Original). Charakteristisch für 
diese Erarbeitung ist auch die „Veranschaulichung im Sachgebiet“, wie sie JUNKER 
und SCZYRBA (1964) in ihrer didaktischen Veröff entlichung Lebensnahes Rechnen 
bezeichnen. Die Erarbeitung jeder einzelnen Einmaleinsreihe erfolgt getrennt und 
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unter Einsatz einer Veranschaulichung mit Lebensbezug – das Einmaleins mit 4 wird 
beispielsweise im Sachgebiet Bald beginnt die Adventzeit! durch ein Tafelbild mit 10 
Adventskränzen eingeführt (siehe Abbildung 14).

Abbildung 14:  Tafelzeichnung zur Erarbeitung des kleinen Einmaleins mit 4 im Sachgebiet Bald 
beginnt die Adventszeit! (JUNKER & SCZYRBA, 1964, S. 63).

Die Anzahl der benötigten Kerzen für 10 Kränze soll dabei ermittelt werden. „Zuerst 
schreiben die Kinder die Anzahl der Kränze und der daran befestigten Kerzen auf. 
Danach werden die Kerzen zusammengezählt. 4 + 4 = 8 …“ (JUNKER & SCZYRBA, 
1964, S. 63). So bauen sie sich wie in dem zu Beginn der Arbeit ausführlich geschil-
derten Unterrichtsbeispiel von STEINER (2008) (Abschnitt 1.2) Schritt für Schritt 
die Einmaleinsreihe auf. Nach der Erarbeitung der kompletten Einmaleinsreihe, er-
geben sich weitere Aufgaben im behandelten Sachgebiet – „für jeden Adventskranz 
werden vier rote Seidenbänder[,] […]Lichthalter und rote Schleifen für die Krän-
ze gebraucht“ (JUNKER & SCZYRBA, 1964, S.  63). Dass dieses Vorgehen keinen 
Einzelfall in der damaligen Zeit darstellt, sieht man auch in den Ausführungen von 
KOLLER (1958). Auch nach seiner Empfehlung wird das Einmaleins Reihe für Reihe 
„mit wirklichen Dingen“ (KOLLER, 1958, S. 177) erarbeitet:

Wir basteln Tiere aus Rüben, Kartoff eln, Kastanien, Korken oder Plastilin. Beine 
und Schwänze werden mit Zündhölzchen dargestellt.[…] So haben wir in jeder 
Bank die Aufgaben 1 x 5 bis 10  x  5. Die konkrete Einmaleinsfrage lautet: ‚Wie-
viel [sic] Hölzchen hast du zu zwei Hunden gebraucht?‘ Vielleicht sagt ein Kind 
gleich die Reihe auf, während alle Kinder an der Reihe mitdeuten: ‚Ein Hund 
braucht fünf Hölzchen. Zwei Hunde brauchen zehn Hölzchen‘, usw. (KOLLER, 
1958, S. 177 f., Hervorhebung im Original)

Diese Sicht teilt auch BREIDENBACH (1963), der ebenfalls Mitte des letzten Jahr-
hunderts dafür plädiert, „jedes Einmaleins […] aus der Spielhandlung vollständig zu 
entwickeln“ (ebd., S. 130) und im Gegensatz zu den anderen Vorgehensweisen davon 
abrät, Rechenvorteile wirklich auch schon bei der Erarbeitung zu berücksichtigen. 
„Bei der Herleitung des Einmaleinse [sic] darf noch nicht von dem Vertauschungsge-
setz Gebrauch gemacht werden“ (BREIDENBACH, 1963, S.  130). Widersprüchliche 
Aussagen bzw. Unsicherheiten bezogen auf den Einsatz oder Nutzen von Rechen-
vorteilen fi ndet man allerdings auch bei Fachdidaktikern, die eigentlich für eine Er-
arbeitung über Beziehungen eintreten. Nach LAUTER (1982) eignet sich „das Prin-
zip der Nachbaraufgaben […] insbesondere bei den Multiplikationen mit 9, etwa 
7  x  9  = 63, da 7 x 10  =  70. […] Der Lehrer muss abwägen, ob er den Nutzen der 
Nachbaraufgabe höher einschätzt als die Gefahr, […] Rechenfehler zu begünstigen“ 
(ebd., S. 104).
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Wie in den bisherigen Ausführungen dieses Abschnittes herausgearbeitet, unter-
scheiden sich die fachdidaktischen Veröff entlichungen sehr stark in den Empfeh-
lungen für die Unterrichtspraxis. Ein so einheitliches Bild, wie in den derzeitigen 
Publikationen der Mathematikdidaktik ist im letzten Jahrhundert bei weitem nicht 
vorzufi nden. Die Bandbreite erstreckt sich von einer verständnisbasierten Erarbei-
tung Reihe für Reihe bis hin zum reinen Abarbeiten und Automatisieren der Reihen. 
Auf der einen Seite wird „eine vorstellend-denkende Erfassung der Reihe [ermög-
licht,] […] von der aus entwickelt sich dann das verstehende Können bis zur me-
chanischen Fertigkeit“ (OEHL, 1962, S. 66, Ergänzung der Autorin), auf der anderen 
Seite dient als „wichtigste Übungsform für die Mechanisierung […] das Auswendig-
lernen der Einmaleinsreihen“ (LAUTER, 1982, S. 104).

Auch ein Blick in die Schulbücher dieser Zeit – die den fachwissenschaft lich bzw. 
fachdidaktisch aufb ereiteten Unterrichtsstoff  darbieten – lässt erkennen, dass die 
Einführung des Einmaleins in der Unterrichtspraxis durchaus stark durch das Ab-
arbeiten und Automatisieren der verschiedenen Reihen gekennzeichnet war (vgl. z. B. 
ALTMANN, GIERLINGER, KOBR, KRAUS, KRAUS & LANGEN, 1997; LEININ-
GER, WALLRABENSTEIN & ERNST, 1989). Da neben den fachdidaktischen Pub-
likationen und ihren Empfehlungen vor allem das Schulbuch einen Einfl uss auf die 
Unterrichtspraxis der Lehrkraft  zu haben scheint (OELKERS & REUSSER, 2008, 
S.  408) bzw. für die Planung der Unterrichtspraxis hilfreich oder als Orientierung 
dient, sollen einzelne bayerische Schulbücher im Hinblick auf die Behandlung des 
kleinen Einmaleins betrachtet werden. Die exemplarisch herangezogenen bayeri-
schen Schulbücher aus dem letzten Jahrhundert verdeutlichen, was bereits die Ana-
lyse der fachdidaktischen Veröff entlichungen in den vorangehenden Ausführungen 
off enbart hat: In den Schulbüchern vergangener Tage sind alternative Vorgehenswei-
sen der Erarbeitung des kleinen Einmaleins zu den gegenwärtig etablierten vorzu-
fi nden. Auff ällig für alle im Folgenden aufgeführten Schulbücher ist die separate Be-
handlung der einzelnen Einmaleinsreihen.

Im Schulbuch Rechne mit uns 2 aus dem Jahr 1982 (ALTMANN, ANSELM, 
GIERLINGER, KOBR & LANGEN, 1982, S. 50) werden bereits ebenso Beziehungen 
zwischen Einmaleinsaufgaben einer Reihe anhand einer Aufgabe gezielt behandelt 
(siehe Abbildung 15), wie im gleichen Schulbuch im Jahr 1997 (ALTMANN et al., 
1997, S.  61) – dort trifft   man auf eine etwas adaptierte Aufgabenstellung, die aller-
dings erneut Beziehungen bzw. eine Rechenstrategie – im konkreten Fall die Nach-
baraufgabe – zum Th ema macht (siehe Abbildung 16).
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Abbildung 15:  Aufgabenbeispiel aus dem Schulbuch Rechne mit uns 2 (1982) zur Behandlung von 
Beziehungen zwischen Einmaleinsaufgaben einer Reihe mit explizitem Verweis in der 
Aufgabenstellung.

Abbildung 16:  Aufgabenbeispiel aus dem Schulbuch Rechne mit uns 2 (1997) zur Behandlung von 
Beziehungen zwischen Einmaleinsaufgaben einer Reihe mit expliziten Verweis in der 
Aufgabenstellung.

Das Schulbuch Denken und Rechnen 2 von 1978 (SCHMIDT, RIEGER, SCHMITT-
DIEL, TIETZE & VESPERMANN, 1978, S.  53) enthält ebenfalls eine Aufgabe, die 
sich als geeignet zur Th ematisierung von Beziehungen innerhalb einer Reihe erweist, 
dies aber im Unterschied zum erstgenannten Schulbuch nicht durch einen expliziten 
Verweis in der Aufgabenstellung hervorhebt (siehe Abbildung 17). Hier liegt es so-
mit in den Händen der Lehrkraft  auf die Beziehungen zwischen den Einmaleinsauf-
gaben zu verweisen, um einer schlichten Berechnung durch die Kinder – ohne Zu-
sammenhänge in den Blick zu nehmen –, entgegenzuwirken.

Abbildung 17:  Aufgabenbeispiel aus dem Schulbuch Denken und Rechnen 2 (1978) zur Behandlung 
von Beziehungen zwischen Einmaleinsaufgaben einer Reihe ohne expliziten Verweis in 
der Aufgabenstellung.

Das letzte exemplarisch angeführte bayerische Schulbuch Nussknacker 2 aus dem 
Jahre 1989 (LEININGER, WALLRABENSTEIN & ERNST, 1989, S. 73) verdeutlicht 
im Gegensatz zu den bisher angeführten Schulbüchern eine Behandlung des kleinen 
Einmaleins, die den Fokus auf das reine Abarbeiten und Automatisieren von Ein-
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maleinsreihen legt. Die in Abbildung 18 dargestellte Schulbuchseite veranschaulicht 
diese isolierte, nicht auf Verständnis basierende Behandlung anhand der Einmaleins-
reihe mit 4.

Abbildung 18:  Schulbuchseite aus dem Nussknacker 2 (1989) zur Erarbeitung des kleinen Einmaleins 
ohne die Thematisierung von Zusammenhängen.

Neben Schulbüchern, die nach OELKERS und REUSSER (2008) das Unterrichtsge-
schehen maßgebend prägen, sollen im nächsten Abschnitt auch Lehrpläne analysiert 
und auf ihre vorgeschriebenen bzw. verpfl ichtenden Lerninhalte im Hinblick auf das 
kleine Einmaleins untersucht werden. Da Lehr-, Bildungs- und Rahmenpläne nicht 
nur über die Lehrerausbildung und die Schulbuchproduktion die Unterrichtspraxis 
beeinfl ussen, sondern auch direkt als Orientierungsfunktion für Lehrkräft e dienen, 
sollen diese im folgenden Abschnitt analysiert werden.



127    

2.5.2 Erarbeitung des Einmaleins in Lehr-, Bildungs- und Rahmenplänen in 
Deutschland

Ob und inwiefern sich die unterschiedlichen didaktischen Empfehlungen der Be-
handlung des kleinen Einmaleins der letzten Jahre (siehe Abschnitt 2.5.1), die auch 
auf ein verändertes Lehr-/Lernverständnis (siehe Kapitel 1) zurückzuführen sind, 
auch auf die Konzeption der Lehr-, Bildungs- und Rahmenpläne in Deutschland 
ausgewirkt haben bzw. sich in diesen auch widerspiegeln, soll in den folgenden Aus-
führungen dieses Abschnittes aufgezeigt werden. Zunächst wird dabei die bayerische 
Lehrplanentwicklung in den Fokus genommen, bevor im Anschluss ein Lehr- bzw. 
Bildungsplanvergleich der aktuell gültigen Lehr- und Bildungspläne in Deutschland 
präsentiert wird.

Ein Überblick über die bayerische Lehrplanentwicklung
Ausgehend von der Annahme, dass Lehrkräft e Lehrpläne als Orientierung bzw. zur 
Anregung oder Hilfe zur Unterrichtsplanung und -durchführung einsetzen, stehen 
im Zentrum dieses Abschnittes die curricularen Vorgaben. Der vorläufi ge Fokus auf 
den bayerischen Lehrplan ist damit zu erklären, dass die Studie im Bundesland Bay-
ern durchgeführt wurde. Da wie in den vorherigen Abschnitten aber auch der Histo-
rie und ihren verschiedenen Zugängen zum Einmaleins Aufmerksamkeit geschenkt 
werden soll, berücksichtigt der folgende Abschnitt anhand eines Überblicks über die 
bayerischen Lehrpläne auch die historische Entwicklung. Neben dem bayerischen 
Lehrplan von 2000, der zum Zeitpunkt der Untersuchung Gültigkeit besaß, liegt ein 
Hauptaugenmerk auch auf den curricularen Vorgaben Bayerns aus dem Jahre 1981 
bzw. 1976. In den folgenden Ausführungen sollen die genannten Lehrpläne bzw. ihre 
vorgeschriebenen und verpfl ichtenden Inhalte bezogen auf das kleine Einmaleins an-
geführt und verglichen werden. Am Ende des Abschnittes wird auf den aktuell in 
Bayern gültigen Lehrplan Plus und mögliche Veränderungen bei der vorgeschriebe-
nen Behandlung des kleinen Einmaleins verwiesen.

In allen drei bayerischen Lehrplänen von 1976 bis 2000 wird die Behandlung 
des kleinen Einmaleins in den Jahrgangsstufen 2 und 3 als verpfl ichtender Lernin-
halt aufgeführt. In Bezug auf die Behandlung des kleinen Einmaleins am Ende der 3. 
Jahrgangstufe ist ein einheitliches Lernziel auszumachen: die Automatisierung bzw. 
Beherrschung aller Einmaleinssätze. Ebenfalls stimmen alle drei Lehrpläne darin 
überein, dass die Automatisierung der Einmaleinsätze in zwei Phasen vonstattenge-
hen soll – in Jahrgangsstufe 2 wird ein erster Teil der Einmaleinssätze automatisiert, 
in Jahrgangsstufe 3 die verbliebenen Sätze. Unterschiede zwischen dem Lehrplan von 
2000 und den beiden älteren Fassungen sind allerdings in der konkreten Reihenfol-
ge der geforderten Erarbeitung der Einmaleinssätze je Jahrgangsstufe zu erkennen. 
Während im Lehrplan von 2000 in der Jahrgangsstufe 2 zunächst die Einmaleins-
sätze mit 1, 2, 5 und 10 sowie die Quadratsätze als verpfl ichtend formuliert werden, 
wird in den Lehrplänen von 1976 und 1981 das „Beherrschen der Einmaleinssät-
ze mit 10, 5, 2, 4, 8“ (BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT 
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UND KULTUS,  1976, S.  309) gefordert. Die im Hinblick auf die zu behandelnden 
Einmaleinssätze wahrzunehmenden, vermeintlich minimalen Unterschiede, können 
eventuell als Indiz für die verschiedenen zugrundeliegenden Kernideen der Fachdi-
daktik bei der Erarbeitung des kleinen Einmaleins stehen: Die Fachdidaktik um die 
Jahrtausendwende plädierte ebenso wie die heutigen fachdidaktischen Veröff entli-
chungen (siehe Abschnitt 2.3) für ein Vorgehen, das mithilfe bereits bekannter Ein-
maleinssätze und auf Basis von Einsicht in operative Beziehungen noch unbekannte 
Aufgaben erschließt. Dies setzt einen Grundstock an beherrschten Einmaleinsaufga-
ben voraus – die Einmaleinssätze mit 1, 2, 5 und 10 sowie die Quadratsätze –, deren 
Automatisierung im bayerischen Lehrplan von 2000 in der Jahrgangsstufe 2 gefor-
dert wird. Erst in Jahrgangsstufe 3 sollen Schülerinnen und Schüler dann die ver-
bliebenen bzw. „alle Einmaleinssätze automatisieren“ (BAYERISCHES STAATSMI-
NISTERIUM FÜR UNTERRICHT UND KULTUS, 2000, S. 188). Im Vergleich dazu 
wird in den curricularen Vorgaben von 1976 und 1981 in der Jahrgangsstufe 2 auch 
die Beherrschung der Einmaleinssätze mit 4 und 8 gefordert. Dies kann unter Um-
ständen als ein Hinweis angesehen werden, dass die Einmaleinsaufgaben Reihe für 
Reihe erarbeitet werden sollen und nicht mithilfe bekannter Einmaleinsaufgaben auf 
noch unbekannte geschlossen wird.

Die verpfl ichtenden Lerninhalte der Lehrpläne von 1976 und 1981 fordern in der 
3. Jahrgangstufe das „Beherrschen aller Einmaleinssätze“ (BAYERISCHES STAATS-
MINISTERIUM FÜR UNTERRICHT UND KULTUS,  1976, S.  310) oder die Be-
herrschung der „Einmaleinssätze mit 10, 5; 2, 4, 8; 3, 6, 9; 7“ (BAYERISCHES 
STAATSMINISTERIUM FÜR UNTERRICHT UND KULTUS, 1981, S. 598). Die im 
letztgenannten Lernziel der Fassung aus dem Jahr 1981 vorgenommene Trennung 
der Einmaleinssätze durch Semikolon dient vermutlich als Verweis auf die Zusam-
menhänge verwandter Reihen, die nach dem Abarbeiten der einzelnen Reihen in 
den Fokus des Unterrichts rücken. An der folgenden Empfehlung zur Unterrichts-
gestaltung wird dies besonders gut ersichtlich: „Aufstellen von Einmaleinsreihen 
und untersuchen ihrer Beziehungen“ (BAYERISCHES STAATSMINISTERIUM FÜR 
UNTERRICHT UND KULTUS, 1981, S. 598, Hervorhebung der Autorin).

Unterschiede in den Vorgehensweisen bei der Erarbeitung des kleinen Einmal-
eins werden auch im expliziten Ausweisen von Rechenstrategien als verpfl ichtender 
Lerninhalt ersichtlich. Während die Lehrpläne von 1976 und 1981 für das Einmal-
eins einzig die Automatisierung der Einmaleinssätze fordern – wie den vorhergehen-
den Ausführungen geschildert – steht im Lehrplan von 2000 auch die Erarbeitung 
von Strategien im Fokus. In der Jahrgangsstufe 2 wird als verpfl ichtender Lernin-
halt gefordert, „Strategien zum Lösen von Multiplikationsaufgaben [zu] entwickeln 
und an[zu]wenden“ (BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT 
UND KULTUS,  2000, S.  99, Ergänzungen der Autorin). Dabei sollen Schülerinnen 
und Schüler von bekannten Einmaleinssätzen, den Kernaufgaben, auf das Ergebnis 
anderer Aufgaben schließen, indem sie „Nachbaraufgaben zu den Kernaufgaben lö-
sen“ (ebd., S.  99) oder „Kernaufgaben additiv zusammensetzen bzw. Malaufgaben 
in Kernaufgaben zerlegen“ (ebd., S.  99). In Jahrgangsstufe 3 wird als verbindliches 
Lernziel die Wiederholung der Strategien zum Lösen von Einmaleinsaufgaben und 
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– wie bereits erwähnt – die anschließende Automatisierung aller Einmaleinssätze ge-
fordert.

Der aktuell in Bayern gültige Lehrplan Plus41 sieht im Kern eine ähnli-
che Erarbeitung wie der vorangegangene Lehrplan von 2000 vor. Schülerin-
nen und Schüler sollen „Kernaufgaben des kleinen Einmaleins (Einmaleins-
sätze mit 1, 2, 5, 10 und die Quadratsätze) zur Lösung weiterer Aufgaben 
(z. B. 9 x 8 Æ 9 x 8 = 10 x 8 – 1 x 8 Æ 9 x 8 = 80 – 8 = 72)“ (BAYERISCHES STAATS-
MINISTERIUM FÜR BILDUNG UND KULTUS, WISSENSCHAFT UND KUNST, 
2014, S. 276) nutzen. Kernaufgaben, die eine Grundlage für die Anwendung von Stra-
tegien darstellen (siehe auch Abschnitte 2.2.2 und 2.3.1), sollen laut Lehrplan Plus 
ebenfalls nach Jahrgangsstufe 2 automatisiert zur Verfügung stehen. Unterschiede mit 
Blick auf die Fassung von 2000 stellen die Forderungen nach einer automatisierten 
und zugleich fl exiblen Anwendung der Zahlensätze dar sowie die konkrete Auff or-
derung in Jahrgangsstufe 3 und 4, „auch beim Kopfrechnen, […] Kenntnisse zu den 
Zahlsätzen des kleinen Einmaleins“ (ebd., S.  282) zu übertragen. Durch die Orien-
tierung am Erwerb von Kompetenzen berücksichtigt der Lehrplan Plus im Gegen-
satz zu den älteren Fassungen auch explizit die Bildungsstandards der Kultusminis-
terkonferenz. Die bereits erwähnte stärkere Akzentuierung der prozessbezogenen 
Kompetenzen in den letzten Jahren (siehe Abschnitt 1.5) wird auch bei den Kompe-
tenzerwartungen und Inhalten des Lehrplan Plus zum kleinen Einmaleins sichtbar 
und trägt „entscheidend zu einer verständnisbasierten mathematischen Bildung bei“ 
(ebd., S. 104), wie an folgenden verbindlichen Vorgaben für Schülerinnen und Schü-
ler exemplarisch aufgezeigt werden kann. Kinder nutzen am Ende der Jahrgangs-
stufe 2 bezogen auf die vier Grundrechenarten „Rechenstrategien […], vergleichen 
sowie bewerten Rechenwege und begründen ihre Vorgehensweisen“ (ebd., S.  276). 
Am Ende der Grundschulzeit werden ähnliche Kompetenzerwartungen bzw. Inhalte 
verbindlich gefordert: Schülerinnen und Schüler „nutzen und erklären Rechenstra-
tegien und entwickeln vorteilhaft e Lösungswege; sie vergleichen und bewerten Re-
chenwege und begründen ihre Ergebnisse“ (ebd., S. 282).

Der bayerische Lehrplan von 2000 sowie der aktuell gültige Lehrplan Plus for-
dern eine auf Einsicht in operative Beziehungen basierende Erarbeitung des kleinen 
Einmaleins, die sich mit den aktuellen Empfehlungen der Fachdidaktik in Deutsch-
land deckt. Inwiefern dies für die Lehr-, Bildungs- bzw. Rahmenpläne der anderen 
Bundesländer ebenfalls zutrifft  , soll der Vergleich der curricularen Vorgaben der 
Bundesländer zeigen.

Vergleich der Lehr-, Bildungs- und Rahmenpläne einzelner Bundesländer
Durch die Kulturhoheit der Länder besitzt jedes Bundesland seinen landesspezifi -
schen Lehr-, Bildungs- oder Rahmenplan, der sich im Aufb au und der inhaltlichen 
Ausgestaltung von Bundesland zu Bundesland erheblich unterscheiden kann. In den 
einzelnen Bundesländern werden zum Teil unterschiedliche Bezeichnungen für die 

41 Der Lehrplan Plus wurde für die Jahrgangsstufen 1 und 2 im Schuljahr 2014/2015 für 
verbindlich erklärt, 2016 für die Jahrgangsstufe 3 und 2017 für die Jahrgangsstufe 4.
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curricularen Vorgaben ausgeführt. So werden diese beispielsweise in Bayern, Nord-
rhein-Westfalen, Sachsen, Sachsen-Anhalt, Schleswig-Holstein und Th üringen als 
Lehrplan, in Saarland als Kernlehrplan und in Brandenburg und Berlin sowie in Bre-
men und Mecklenburg-Vorpommern als Rahmenlehrplan bezeichnet. In Nieder-
sachsen und Hessen wird die Bezeichnung Kerncurriculum und in Rheinland-Pfalz 
Rahmenplan verwendet. In Baden-Württemberg und in Hamburg sind die verbindli-
chen Vorgaben im Bildungsplan formuliert.

Dieser Abschnitt strebt einen Vergleich der aktuell verbindlichen Vorgaben der 
Erarbeitung des kleinen Einmaleins der einzelnen Bundesländer an. Unterschie-
de bzw. Gemeinsamkeiten der Lehrplan- bzw. Bildungsplaninhalte sollen herausge-
arbeitet und in den Ausführungen dieses Abschnittes dargestellt werden. Die Analy-
se bzw. der Vergleich wird dabei auf die in der fachdidaktischen Literatur auf breiten 
Konsens treff ende verständnisbasierte Erarbeitung des kleinen Einmaleins bezogen 
(siehe Abschnitt 2.3) sowie mit den vorgestellten bayerischen Lehrplaninhalten in 
Verbindung gebracht.

Bei der Analyse der Inhalte der jeweiligen Lehr-, Bildungs- und Rahmenpläne 
kann zunächst beobachtet werden, dass in den curricularen Vorgaben aller Bundes-
länder – mit Ausnahme des Bundeslandes Hamburg – das kleine Einmaleins konkret 
Erwähnung fi ndet. In den Ausführungen des Bundeslandes Hamburg wird als Be-
obachtungskriterium am Ende der Jahrgangsstufe 2 das Anwenden der vier Grund-
rechenarten formuliert sowie als Regelanforderung am Ende der Jahrgangsstufe 
4 das Beherrschen der „vier Grundoperationen im Zahlenraum bis 100 im Kopf “ 
(BEHÖRDE FÜR SCHULE UND BERUFSBILDUNG FREIE UND HANSESTADT 
HAMBURG, 2011, S. 20) gefordert. Eine konkrete Vorgabe der Erarbeitung des klei-
nen Einmaleins, die zum Beherrschen einer der Grundoperationen führen soll, ist 
dem Bildungsplan nicht zu entnehmen. Die Beobachtungskriterien verweisen auf das 
Anwenden von Rechenstrategien und das Nutzen von Rechenvorteilen, ohne sich 
dabei explizit auf das kleine Einmaleins zu berufen bzw. zu beziehen.

Die anderen 15 Bundesländer, die das kleine Einmaleins explizit in den Lehr-, 
Bildungs- und Rahmenplänen thematisieren, unterscheiden sich deutlich in der Aus-
führlichkeit der Darstellung sowie den verpfl ichtend geforderten Inhalten bzw. Kom-
petenzerwartungen. In Nordrhein-Westfalen und Sachsen-Anhalt sowie in Bremen 
und Mecklenburg-Vorpommern wird ausschließlich die Automatisierung der Ein-
maleinssätze des kleinen Einmaleins verbindlich gefordert. In Nordrhein-Westfa-
len sollen Schülerinnen und Schüler am Ende der Schuleingangsphase „die Kern-
aufgaben und einzelne weitere Aufgaben des kleinen Einmaleins“ und am Ende der 
vierten Jahrgangsstufe „alle Zahlensätze des kleinen Einmaleins automatisiert wie-
der[geben]“ (MINISTERIUM FÜR SCHULE UND WEITERBILDUNG DES LAN-
DES NORDRHEIN-WESTFALEN, 2008, S.  62, Ergänzung der Autorin). Über „die 
Grundaufgaben des Multiplizierens“ (KULTUSMINISTERIUM SACHSEN-AN-
HALT, 2007, S.  8) sicher zu verfügen bzw. „die Grundaufgaben der Multiplikation 
[…] [zu] nutzen“ (MINISTERIUM FÜR BILDUNG, JUGEND UND SPORT DES 
LANDES BRANDENBURG, SENATSVERWALTUNG FÜR BILDUNG, JUGEND 
UND SPORT BERLIN, SENATOR FÜR BILDUNG UND WISSENSCHAFT BRE-
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MEN & MINISTERIUM FÜR BILDUNG, WISSENSCHAFT und KULTUR MECK-
LENBURG-VORPOMMERN, 2004, S. 33, Ergänzung der Autorin), sind Inhalte bzw. 
Kompetenzerwartungen, die in den Lehrplänen Sachsen-Anhalts sowie in Bremen 
und Mecklenburg-Vorpommern formuliert sind. Weitere Ausführungen, die den 
Weg oder den Prozess hin zur gewünschten Automatisierung in den Fokus nehmen, 
sind in diesen letztgenannten Lehrplänen ebenfalls nicht aufgeführt.

Aus den Formulierungen des Lehrplans des Landes Schleswig-Holstein geht die 
vorgesehene Erarbeitung des kleinen Einmaleins ebenfalls nicht im Detail hervor. In 
den Klassenstufen 1 und 2 sollen Schülerinnen und Schüler laut Lehrplan „tragfähi-
ge Strategien zur Lösung von Gleichungen entwickeln und anwenden, Zahlen multi-
plizieren […]“ (MINISTERIUM FÜR BILDUNG, WISSENSCHAFT, FORSCHUNG 
UND KULTUR DES LANDES SCHLESWIG-HOLSTEIN, 1997, S.  82) sowie in 
Klassenstufe 3 das „Kleine Einmaleins gedächtnismäßig beherrschen“ (ebd., S. 84).

Allgemein formuliert – ohne konkreten Bezug auf das kleine Einmaleins – wird 
im Lehrplan Nordrhein-Westfalens von den Schülerinnen und Schülern das Nut-
zen von „Zahlbeziehungen und Rechengesetzen für vorteilhaft es Rechnen“ (MI-
NISTERIUM FÜR SCHULE UND WEITERBILDUNG DES LANDES NORD-
RHEIN-WESTFALEN, 2008, S. 62) am Ende der Schuleingangsphase sowie am Ende 
der Klasse 4 „bei allen vier Grundrechenarten“ (ebd., S. 62) erwartet. Ähnliche allge-
meine Forderungen bezogen auf die Anwendung von Rechengesetzen bzw. Rechen-
vorteilen sind auch in den Lehrplänen von Bremen, Mecklenburg-Vorpommern und 
Sachsen-Anhalt zu verzeichnen.

Detailliertere Vorgaben zur konkreten Erarbeitung des kleinen Einmaleins bzw. 
verbindliche Vorgehensweisen sind in den verbliebenen Bundesländern zu fi nden. In 
Baden-Württemberg, Niedersachen, Th üringen und der Rheinland-Pfalz wird in den 
Lehr-, Bildungs- oder Rahmenplänen am Ende der Jahrgangsstufe 2 nicht nur gefor-
dert, „die Kernaufgaben des kleinen 1 × 1 automatisiert wieder[zugeben]“ (NIEDER-
SÄCHSISCHES KULTUSMINISTERIUM, 2006, S.  21, Hervorhebung im Original, 
Ergänzung der Autorin) und mit Abschluss der Jahrgangsstufe 3 „die Grundaufga-
ben des Kopfrechnens (Einmaleins) aus dem Gedächtnis ab[zu]rufen“ (MINISTE-
RIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG, 2016, 
S. 26, Ergänzung der Autorin), sondern auch der Weg, wie Schülerinnen und Schü-
ler zur Automatisierung gelangen sollen, wird skizziert. Im Sinne einer Erarbeitung 
auf Basis von Einsicht in operative Beziehungen können bzw. sollen Kinder „Ab-
leitungsstrategien […] zum Berechnen weiterer Aufgaben nutzen“ (MINISTERIUM 
FÜR BILDUNG, WISSENSCHAFT, WEITERBILDUNG UND KULTUR RHEIN-
LAND-PFALZ, 2014, S.  28), „Aufgaben des kleinen Einmaleins aus den Kernauf-
gaben ableiten und deren Beziehungen zueinander nutzen“ (MINISTERIUM FÜR 
KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG, 2016, S. 14) bzw. „die 
Ergebnisse weiterer Aufgaben ab[leiten]“ (NIEDERSÄCHSISCHES KULTUSMI-
NISTERIUM, 2006, S. 21, Ergänzung der Autorin). In Einklang mit den fachdidak-
tischen Empfehlungen (siehe Abschnitt 2.3) müssen Kinder „Zusammenhänge zwi-
schen den 1 × 1-Reihen und 1 × 1-Aufgaben zur Lösung von weiteren Aufgaben“ 
(MINISTERIUM FÜR BILDUNG, WISSENSCHAFT, WEITERBILDUNG UND 
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KULTUR RHEINLAND-PFALZ, 2014, S. 28) erkennen und als „Rechenvorteile, Re-
chenregeln, Rechenstrategien und Gesetzmäßigkeiten […] beim Rechnen anwenden“ 
(THÜRINGER MINISTERIUM FÜR BILDUNG, WISSENSCHAFT UND KULTUR, 
2010, S. 11).

Das Bundesland Saarland fordert im Kernlehrplan „von den Kernaufgaben […] 
des ,Kleinen Einmaleins‘ andere Aufgaben ab[zu]leiten“ (MINISTERIUM FÜR BIL-
DUNG, FAMILIE, FRAUEN UND KULTUR SAARLAND, 2009, S. 8, Hervorhebung 
im Original, Ergänzung der Autorin) und geht somit mit den Forderungen der letzt-
genannten Lehrpläne konform. Einziger Unterschied besteht im Zeitpunkt der an-
gestrebten Automatisierung – die Auff orderung „Aufgaben des ,Kleinen Einmaleins‘ 
automatisiert wieder[zu]geben“ (MINISTERIUM FÜR BILDUNG, FAMILIE, FRAU-
EN UND KULTUR SAARLAND, 2009, S. 9, Hervorhebung im Original, Ergänzung 
der Autorin) erfolgt bereits in den Jahrgangsstufen 1 und 2.

Im sächsischen Lehrplan wird ebenfalls das „Zurückführen [unbekannter Aufga-
ben] auf bekannte Aufgaben, insbesondere Grundaufgaben des Einmaleins“ (SÄCH-
SISCHES STAATSMINISTERIUM FÜR KULTUS, 2009, S. 10, Ergänzung der Auto-
rin) betont. Allerdings scheint die Erarbeitung der Einmaleinssätze Reihe für Reihe 
vorgesehen zu sein, da im Lehrplan für die Jahrgangsstufe 2 das „Erarbeiten aller 
Malfolgen“ (ebd., S. 10) sowie in Klassenstufe 3 das „Beherrschen aller Malfolgen des 
kleinen Einmaleins“ (ebd., S. 19) gefordert wird.

Der Rahmenplan von Hessen lässt – wie der sächsische Lehrplan – den Reihen-
gedanken im Vordergrund vermuten, wenn „das Multiplizieren […] aus konkreten 
Handlungen heraus entwickelt […] und in den Einmaleinsreihen systematisiert“ 
(HESSISCHES KULTUSMINISTERIUM, 1995, S.  154, Hervorhebung im Original) 
werden soll. Neben dem gedächtnismäßigen Beherrschen der Einmaleinsreihen bis 
zur Mitte des dritten Schuljahres soll allerdings auch bei diesen verbindlichen Vorga-
ben „auf denkendes und bewegliches Rechnen durch Ausnutzen von Rechengesetzen 
und Zahlbeziehungen“ (ebd., S. 154) hingearbeitet werden.

Der gemeinsame Rahmenlehrplan von Berlin und Brandenburg, der ab dem 
Schuljahr 2017/2018 eingeführt wird, betont – im Vergleich zum derzeit noch gül-
tigen Rahmenplan42 – ebenfalls eine Erarbeitung des kleinen Einmaleins über Kern-
aufgaben und operative Beziehungen. Von den Schülerinnen und Schülern wird 
das „Berechnen von Produkten über auswendig gelernte Kernaufgaben (z. B. 6 x 7 = 
6 x 5 + 6 x 2)“ (BERLINER SENATSVERWALTUNG FÜR BILDUNG, JUGEND 
UND WISSENSCHAFT & MINISTERIUM FÜR BILDUNG, JUGEND UND SPORT 
DES LANDES BRANDENBURG, 2015, S. 35) verlangt, an dessen Ende ein „fl exibles 
automatisiertes Lösen der Aufgaben des ,kleinen 1 × 1‘“ (ebd., S. 35, Hervorhebung 
im Original) steht.

Der in diesem Abschnitt angestrebte Überblick der aktuell verbindlichen Vorga-
ben der Lehr-, Bildungs- und Rahmenpläne der einzelnen Bundesländer bescheinigt 
einerseits Unterschiede in der Ausführlichkeit der Darstellung der curricularen Vor-

42 Für die Bundesländer Berlin und Brandenburg besitzt bis zum Schuljahr 2017/2018 
der gemeinsame Rahmenlehrplan der Bundesländer Berlin, Brandenburg, Bremen und 
Mecklenburg-Vorpommern aus dem Jahr 2004 Gültigkeit.
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gaben, zeigt andererseits aber auch den weitgehenden Konsens im Hinblick auf die 
angestrebten Ziele bzw. Kompetenzerwartungen. Als durchweg verfolgtes Ziel ist die 
Automatisierung aller Einmaleinssätze am Ende der dritten bzw. vierten Jahrgangs-
stufe vorgesehen. Eine Automatisierung in zwei Phasen, die zunächst das Beherr-
schen der Kernaufgaben vorschreibt, ist ebenfalls in den curricularen Vorgaben fast 
aller Bundesländer vorzufi nden. Eine Erarbeitung, die den aktuellen fachdidaktischen 
Empfehlungen für die Unterrichtspraxis (siehe Abschnitt 2.3) entspricht – eine Er-
arbeitung über Kernaufgaben und Einsicht in operative Beziehungen, wird hingegen 
in nur wenigen Lehrplänen explizit thematisiert. Zwar liegt es nahe, dass Lehr-, 
Bildungs- und Rahmenpläne, die zunächst die Automatisierung der Kernaufgaben 
verlangen und erst zu einem späteren Zeitpunkt das Beherrschen aller Einmaleins-
sätze einfordern, aufgrund dieser Konzeption auch eine auf Einsicht basierende Be-
handlung des kleinen Einmaleins anstreben. Doch geht dies aus den entsprechenden 
Lehrplänen für die Lehrerinnen und Lehrer nicht deutlich hervor. Sollten Lehrpläne 
– wie in den einführenden Worten dieses Abschnittes erwähnt – eine Orientierungs-
funktion für Lehrkräft e einnehmen bzw. als Anregung oder Hilfe bei der Unter-
richtsplanung und -durchführung dienen, muss kritisch refl ektiert werden, ob die 
aktuellen Lehrpläne diese Orientierungsmöglichkeit für die Erarbeitung des kleinen 
Einmaleins wirklich umfangreich bieten.

Die Lehr- und Bildungspläne, die sich in ihren Kompetenzerwartungen nicht al-
lein auf die Automatisierung der Einmaleinssätze beschränken, sondern dieses Ziel 
auf Basis von Einsicht zu erreichen versuchen, verwirklichen die Intention eines ak-
tuellen Mathematikunterrichts, der auch den Weg als Ziel hat (siehe Abschnitt 1.5). 
In einigen Lehr- und Bildungsplänen ist mit der vorgeschriebenen verständnisorien-
tierten Erarbeitung des kleinen Einmaleins somit die stärkere Betonung des Lernpro-
zesses zu beobachten (vgl. BAYERISCHES STAATSMINISTERIUM FÜR UNTER-
RICHT UND KULTUS, 2014; BERLINER SENATSVERWALTUNG FÜR BILDUNG, 
JUGEND UND WISSENSCHAFT & MINISTERIUM FÜR BILDUNG, JUGEND 
UND SPORT DES LANDES BRANDENBURG, 2015). Diese Akzentuierung ist in 
den neu verabschiedeten Lehr- und Bildungsplänen allerdings nicht nur durch den 
zu beschreitenden Weg explizit ausgewiesen, sondern fi ndet sich auch in der am 
Ende verfolgten Kompetenzerwartung die „Zahlensätze des kleinen Einmaleins […] 
automatisiert und fl exibel an[zuwenden]“ (BAYERISCHES STAATSMINISTERIUM 
FÜR UNTERRICHT UND KULTUS,  2014, S.  282, Hervorhebung und Ergänzung 
der Autorin; vgl. BERLINER SENATSVERWALTUNG FÜR BILDUNG, JUGEND 
UND WISSENSCHAFT & MINISTERIUM FÜR BILDUNG, JUGEND UND SPORT 
DES LANDES BRANDENBURG, 2015, S. 35) wieder.

Inwiefern die fl exible Anwendung der Zahlensätze bereits die Übertragung der 
erworbenen Kenntnisse zur Lösung von Aufgaben aus dem kleinen Einmaleins auf 
das große Einmaleins einschließt, kann aus den formulierten Kompetenzen bzw. In-
halten nicht zweifelsfrei gefolgert werden. Eindeutigere Aussagen lassen sich in die-
sem Zusammenhang bezogen auf einige wenige weitere aktuelle Lehr-, Bildungs- 
oder Rahmenpläne vornehmen. Die Übertragung der Kenntnisse bzw. der Verweis 
auf die propädeutische Funktion von Rechenstrategien beim kleinen Einmaleins – 
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wie im Abschnitt 2.4.5 bereits ausführlich diskutiert – wird in den aktuellen Lehr-, 
Bildungs- und Rahmenpläne nur vereinzelt bzw. erst zu einem späteren Zeitpunkt 
im Zuge des halbschrift lichen Rechnens erläutert.

In Hamburg wird als Mindestanforderung mit Blick auf das Gymnasium ge-
fordert, dass „Schülerinnen und Schüler […] ihre Kenntnisse zu den vier Grund-
operationen [nutzen] und […] diese auf analoge Aufgaben in größeren Zahlenräu-
men [übertragen]“ (BEHÖRDE FÜR SCHULE UND BERUFSBILDUNG FREIE 
UND HANSESTADT HAMBURG, 2011, S. 21, Ergänzungen der Autorin). Konkre-
ter werden die Teilkompetenzen am Ende von Jahrgangsstufe 3/4 in Baden-Würt-
temberg formuliert: „Die Schülerinnen und Schüler können […] die Grundaufga-
ben des Kopfrechnens (Einmaleins) aus dem Gedächtnis abrufen […] und diese 
Grundkenntnisse auf analoge Aufgaben in größeren Zahlenräumen übertragen und 
nutzen“ (MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRT-
TEMBERG, 2016, S.  26). Im Bundesland Saarland wird in Jahrgangsstufe 3 nach 
der Erarbeitung des kleinen Einmaleins das Nutzen von Rechenvorteilen gefor-
dert. In den konkreten Umsetzungsvorschlägen wird dabei auch auf Rechenaufga-
ben des großen Einmaleins wie beispielsweise 9 · 15 verwiesen, die unter Zuhilfe-
nahme der bereits bekannten Nachbaraufgabe 9 · 15  =  10 · 15 – 1 · 15 einfacher 
gelöst werden können (MINISTERIUM FÜR BILDUNG, FAMILIE, FRAUEN UND 
KULTUR SAARLAND, 2009, S. 16). Die Auff orderung das kleine Einmaleins zu be-
herrschen „und bei Aufgaben mit größeren Zahlen anwenden“ zu können (MINIS-
TERIUM FÜR BILDUNG, WISSENSCHAFT, FORSCHUNG UND KULTUR DES 
LANDES SCHLESWIG-HOLSTEIN, 1997, S. 84) beantwortet nicht, inwiefern auch 
eine Übertragung von Rechenstrategien auf große Zahlen vorgesehen ist. Der zum 
Zeitpunkt der Untersuchung dieser Arbeit noch gültige bayerische Lehrplan fordert 
die Multiplikation mit 10 und 100, stellt aber darüber hinaus in der Jahrgangsstufe 3 
keine verbindlichen Lernziele im Hinblick auf einen Transfer von Rechenstrategien 
heraus (BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND KUL-
TUS, 2000, S. 189).

Im Vergleich dazu sehen die Kompetenzerwartungen und Inhalte des bayeri-
schen Lehrplan Plus vor, dass „Schülerinnen und Schüler […] auch beim Kopfrech-
nen, ihre Kenntnisse zu den Zahlensätzen des kleinen Einmaleins […] in größere 
Zahlenräume“ übertragen (BAYERISCHES STAATSMINISTERIUM FÜR BILDUNG 
UND KULTUS, WISSENSCHAFT UND KUNST, 2014, S. 282). Das MINISTERIUM 
FÜR BILDUNG, WISSENSCHAFT, WEITERBILDUNG UND KULTUR RHEIN-
LAND-PFALZ (2014) verlangt als Kompetenzerwartung am Ende der Jahrgangsstufe 
4, dass Kinder „Nachbaraufgaben, Tausch- und Umkehraufgaben, Verdoppeln, Hal-
bieren … zur Lösung von großen 1 × 1-Aufgaben nutzen“ (ebd., S. 28). Neben dem 
bayerischen Lehrplan und dem Rahmenplan von Rheinland-Pfalz, wird auch im 
sächsischen Lehrplan ein konkreter Verweis auf die Übertragung von Rechenstrate-
gien – in der Jahrgangsstufe 3 unmittelbar nach der Erarbeitung der Einmaleinssätze 
– gegeben, indem das Lösen der „Aufgabe mit benachbarter Zahl“ sowie das „gegen-
sinnige Verändern“ (SÄCHSISCHES STAATSMINISTERIUM FÜR KULTUS,  2009, 
S. 18) im größeren Zahlenraum postuliert wird.
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Die abschließenden Ausführungen zur Übertragung der erworbenen Kenntnis-
se zur Lösung von Aufgaben aus dem kleinen Einmaleins auf das große Einmaleins 
zeigen sehr deutlich, dass die propädeutische Funktion von Rechenstrategien bzw. 
Rechenvorteilen durchaus auch für die Rechenoperation der Multiplikation im Be-
wusstsein zu sein scheint, wie der Hamburger Bildungsplan – der an dieser Stelle 
wie zu Beginn der Ausführungen nochmals zitiert wird – sehr treff end formuliert: 
„Schülerinnen und Schüler [sollen] […] ihre Kenntnisse zu den vier Grundoperatio-
nen [nutzen] und […] diese auf analoge Aufgaben in größeren Zahlenräumen [über-
tragen]“ (BEHÖRDE FÜR SCHULE UND BERUFSBILDUNG FREIE UND HAN-
SESTADT HAMBURG, 2011, S. 21, Ergänzungen der Autorin). Allerdings wird nur 
in einigen wenigen aktuellen Lehr-, Bildungs- oder Rahmenplänen explizit auf diese 
transferierbaren Regeln (siehe Abschnitte 2.1.1, 2.1.2 und 2.4.5) verwiesen.

Dies ist vor allem oder gerade aus der Annahme heraus, dass – wie bereits in die-
sem Abschnitt erwähnt – Lehrpläne nicht nur die Lehrerausbildung und die Schul-
buchkonzeption beeinfl ussen, sondern auch als unmittelbare Orientierungsfunktion 
für Lehrerinnen und Lehrer fungieren sollen, nicht besonders glücklich.

2.6 Zusammenfassung und Desiderat

Es gibt nicht die eine Erarbeitung des kleinen Einmaleins, vielmehr können mehre-
re verschiedene Wege der Behandlung unterschieden werden. In der Mathematikdi-
daktik herrscht derzeit allerdings weitgehend Konsens hinsichtlich einer Erarbeitung, 
die dem zeitgemäßen Verständnis von Lehren und Lernen im Mathematikunterricht 
folgt bzw. entspricht: Die verständnisbasierte Erarbeitung des kleinen Einmaleins 
zeichnet sich durch ein Entdecken und Anwendenlernen von Rechenstrategien aus, 
die auf Zusammenhängen zwischen verschiedenen Einmaleinssätzen basieren. Mit-
hilfe bereits bekannter Einmaleinssätze und dem Wissen über Rechenstrategien (sie-
he Abschnitt 2.2.2) bzw. den zugrundeliegenden Eigenschaft en der Rechenoperation 
(siehe Abschnitt 2.1) können weitere noch unbekannte Einmalsaufgaben erschlos-
sen werden (siehe Abschnitte 2.2 und 2.3). Die im Abschnitt 2.4 angeführten theo-
retischen und empirischen Argumente für eine verständnisbasierte Erarbeitung des 
kleinen Einmaleins liefern erste Hinweise der Relevanz bzw. Eff ektivität dieser in der 
deutschen Fachdidaktik empfohlenen Vorgehensweise. Da sich die Vielzahl an prä-
sentierten Argumenten teils auf verständnisbasierte Erarbeitungen im Allgemeinen 
bezieht, teils auf theoretischen Erkenntnissen beruht und nur begrenzt auf empiri-
schen Studien zum kleinen Einmaleins basiert, wird der Bedarf einer fundierten em-
pirischen Untersuchung hinsichtlich einer verständnisbasierten Erarbeitung des klei-
nen Einmaleins ersichtlich. Insbesondere fehlt in diesem Kontext eine Studie, die in 
Deutschland durchgeführt und mit dem Strategieverständnis der deutschsprachigen 
Literatur übereinstimmt, da Erkenntnisse internationaler Studien sich nur schwer auf 
den Unterricht und die fachdidaktische Diskussion in Deutschland übertragen lassen 
(siehe Abschnitt 2.2).
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Um der off enen Frage nachgehen zu können, wie die Erarbeitung des kleinen 
Einmaleins in der Unterrichtspraxis tatsächlich aussieht, wurden weitere, alternati-
ve Vorgehensweisen in den Fokus des zweiten Kapitels gestellt (Abschnitt 2.5). Wie 
bereits die Ausführungen zum Lehren und Lernen des ersten Kapitels off enbarten, 
ist vor allem der historische Rückblick für die Charakterisierung der gegenwärtigen 
oder möglichen Sichtweisen bzw. Grundauff assungen der Lehrkräft e von bedeuten-
der Relevanz. Denn verschiedene Wege der Erarbeitung des kleinen Einmaleins, die 
in der Fachdidaktik bzw. im Unterricht vergangener Tage vorzufi nden waren, kön-
nen auch noch in der Gegenwart nachwirken und die Unterrichtspraxis maßgeblich 
prägen. Eine Zusammenschau der Erkenntnisse soll im Folgenden kurz resümiert 
werden. Neben etwas älteren didaktischen Empfehlungen wurden auch einzelne 
Schulbücher analysiert, die Lehrkräft en zur Planung und Orientierung dienen bzw. 
dienten (siehe Abschnitt 2.5.1). Aber auch Lehr-, Bildungs- oder Rahmenpläne, die 
als ein die Lehrkraft  bzw. das Unterrichtsgeschehen beeinfl ussender Faktor zu nen-
nen sind (siehe Abschnitt 2.5.2), wurden detailliert betrachtet. Die festgeschriebenen 
Lerninhalte des kleinen Einmaleins werden bzw. wurden beispielsweise in der Leh-
rerausbildung thematisiert, dienen bzw. dienten als Orientierung für die Schulbuch-
produktion oder als Anregung oder Hilfe für die Unterrichtsplanung und -durchfüh-
rung.

Während bereits zahlreiche Hinweise in der didaktischen Literatur des letz-
ten Jahrhunderts auf die enorme Relevanz des Herausarbeitens von Beziehungen 
und die Erarbeitung von Strategien verweisen, lassen fachdidaktische Publikatio-
nen auch alternative Vorgehensweisen der Erarbeitung erkennen. Die verschiede-
nen Ansichten bzw. unterschiedlichen alternativen Zugänge zum kleinen Einmaleins 
(siehe Abschnitt 2.5.1), die sich im letzten Jahrhundert entwickelt haben, sind auf 
die damalige Sichtweise von Lehren und Lernen im Allgemeinen sowie im Mathe-
matikunterricht zurückzuführen (siehe Kapitel 1). Einer behavioristischen Grund-
auff assung folgend lässt sich eine traditionelle Erarbeitung durch das Lernen bzw. 
Pauken der Einmaleinsaufgaben Reihe für Reihe charakterisieren. Auch der Blick in 
die Schulbücher des letzten Jahrhunderts lässt in erster Linie die separate Behand-
lung einzelner Einmaleinsreihen erkennen und für die Unterrichtspraxis eine Ein-
führung des kleinen Einmaleins über das Abarbeiten und Automatisieren vermuten 
(siehe Abschnitt 2.5.1). Die im Zuge der Lehrplanentwicklung analysierten älteren 
bayerischen Lehrpläne geben einzig das Automatisieren der Einmaleinssätze als ver-
pfl ichtenden Lerninhalt vor und decken sich demnach nicht mit den aktuellen Emp-
fehlungen der Fachdidaktik in Deutschland. Aber auch aus einigen aktuellen Lehr-, 
Bildungs- oder Rahmenplänen wird nicht ersichtlich, welche Erarbeitung des kleinen 
Einmaleis empfohlen wird.

Wie die Unterrichtspraxis tatsächlich aussieht, inwiefern Lehrkräft e auf alternati-
ve Vorgehensweisen bei der Erarbeitung zurückgreifen oder aktuelle Vorgaben bzw. 
Empfehlungen umgesetzt werden, ist nicht sicher zu konstatieren. In Deutschland 
sind bisher kaum empirische Studien bekannt, die unterrichtliche Vorgehensweisen 
bei der Erarbeitung des kleinen Einmaleins umfassend untersuchten. Auch wenn in 
der Th eorie weitestgehend Konsens hinsichtlich einer empfehlenswerten Erarbei-
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tung des kleinen Einmaleins besteht, muss eine verständnisbasierte Erarbeitung nicht 
zwingend von allen Lehrkräft en in der Unterrichtspraxis umgesetzt werden. Auch 
ein Nachwirken alternativer Vorgehensweisen ist, wie bereits beschrieben, durchaus 
denkbar. Diese Forschungslücke versucht die vorliegende Arbeit mithilfe einer Vor-
studie zu schließen, die Erkenntnisse darüber generiert, wie die Erarbeitung des klei-
nen Einmaleins im Unterricht (in Bayern) erfolgt (siehe Kapitel 4).
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3. Strategieentwicklung und Strategieverwendung

„Diff erent children use diff erent strategies; individual children use 
diff erent strategies on diff erent problems within a single session; 

individual children oft en use diff erent strategies to solve the same 
problem on two occasions close in time.“

(SIEGLER, 2006, S. 477)

Wie Kinder Strategien nutzen, ob sie wirklich über eine Bandbreite an Strategien 
verfügen und diese auch fl exibel bzw. adäquat anwenden können, wird im dritten 
Kapitel dieser Arbeit anhand von empirischen Forschungsergebnissen bestätigt bzw. 
kritisch beleuchtet. Die im Abschnitt 3.1 angeführten Entwicklungsmodelle beschrei-
ben bzw. skizzieren in diesem Zusammenhang den Weg von den Strategien beim Er-
lernen des kleinen Einmaleins zur Automatisierung von Einmaleinssätzen. Nach der 
Darstellung von Erkenntnissen zur Strategieentwicklung stellt der Abschnitt 3.2 For-
schungsergebnisse hinsichtlich der Strategieverwendung in den Fokus. Nationale so-
wie internationale Studien und Untersuchungen vermitteln einen detaillierten Über-
blick über Forschungsergebnisse in diesem Inhaltsbereich und zeigen zugleich den 
noch bestehenden Forschungsbedarf auf.

Über verschiedene Herangehensweisen an eine Einmaleinsaufgabe zu verfügen, 
bedeutet für die Lösung ein und derselben Aufgabe auch, unterschiedliche Lösungs-
wege zur Beantwortung einsetzen zu können. Allerdings erweist sich nicht jede 
Heran gehensweise gleich geeignet zur Aufgabenlösung. Wie sich eine adäquate 
Strategie wahl kennzeichnet, wird im Abschnitt 3.3 dieser Arbeit detailliert be-
leuchtet. Der Abschnitt beschreibt darüber hinaus zwei die Strategiewahl be ein-
fl ussende Faktoren – das Individuum und den Unterricht. In einer abschließenden 
Zu sam menschau des Abschnittes 3.3 wird modellhaft  aufgezeigt, was eine erfolg-
reiche Strategiewahl auszeichnet. Das 3. Kapitel wird am Ende (Abschnitt 3.4) mit 
einer Zusammenfassung komplettiert. 

3.1 Von der Strategie beim Erlernen des Einmaleins zur Automatisierung: 
Entwicklungsmodelle

„We must not assume that the end products of learning are […] 
straightforwardly internalized versions of the multiplication table.“

(SHERIN & FUSON, 2005, S. 377)

Die Ausführungen des folgenden Abschnittes sollen teils basierend auf theoretischen 
Annahmen, teils aber auch gestützt auf empirischen Ergebnissen einen Einblick in 
sehr unterschiedliche Entwicklungsmodelle von den Strategien beim Erlernen des 



139    

kleinen Einmaleins bis hin zur Automatisierung von Einmaleinssätzen geben. Be-
steht das übergeordnete Ziel des 3. Kapitels darin, Erkenntnisse über die kindliche 
Strategieverwendung beim kleinen Einmaleins zu sammeln, sollte dies immer auf 
Basis einer kritischen Refl exion bereits bestehender theoretischer bzw. empirisch ge-
sicherter Erkenntnisse zur Entwicklung erfolgen.

ANGHILERI (1989, 2008) geht beim Erlernen von Strategien des kleinen Ein-
maleins von einer eher linearen Entwicklung aus und unterscheidet zwischen vier 
Phasen bzw. Stadien, die linear aufeinander folgen (ANGHILERI, 1989, S.  374 ff .; 
ANGHILERI, 2008, S. 117). Kinder, die sich in der ersten Phase befi nden, greifen auf 
das direkte Auszählen konkreter Objekte zurück: „At the most basic level of coun-
ting strategy, each individual item in the product set (actual or abstracted to a uni-
tary image) was accounted for in a unitary counting procedure that was observed 
among the youngest children“ (ANGHILERI, 1989, S.  374, Hervorhebung im Ori-
ginal). Weitere Phasen stellen das rhythmische Zählen (1, 2, 3, 4, 5, 6, 7 …), die 
Nutzung von Zahlenmustern (3, 6, 9 …) sowie die Automatisierung von Einmal-
einssätzen dar. Bei der Beschreibung der Übergänge von einer Phase zur nächsten 
wird die lineare Strategieentwicklung von der ANGHILERI (1989) ausgeht, deutlich 
ersichtlich: „At the next stage, this unitary counting became rhythmic and then la-
ter the interim numbers in a count were internalised to produce a number pattern 
that was used as a count in its own right“ (ebd., S. 374, Hervorhebungen im Origi-
nal). Wesentlich für den Übergang vom direkten Auszählen zum rhythmischen Zäh-
len ist, dass das Kind den Wechsel vom ordinalen zum kardinalen Aspekt vollzieht. 
Der anschließende Übergang vom Stadium des rhythmischen Zählens zur Nutzung 
von Zahlenmustern kennzeichnet sich gemäß ANGHILERI (1989) dadurch, dass das 
rhythmische Zählen in zunehmendem Maße automatisiert abläuft  und zugleich die 
Aufmerksamkeit vermehrt auf die betonte Zahl gelegt wird (ebd., S.  376). Wie sich 
der abschließende Übergang zur Beherrschung einzelner Einmaleinssätze vollzieht, 
bleibt in ihrem Modell off en: „Th e way in which children relate number patterns to 
multiplication facts is not yet clear“ (ebd., S.  380). In Summe könne – vergleich-
bar mit der Rechenoperation der Addition – ein immer umfassenderes kardinales 
Verständnis als Bedingung für die fortschreitende Strategieentwicklung beim kleinen 
Einmaleins angesehen werden (ebd., S. 384): „Transition from one stage to the next 
is marked by the child’s ability to recognize that the single word that ends the fi rst 
count represents the totality of that group“ (ANGHILERI, 1989, S. 374 f.).

Ein weiteres Modell, das im Zusammenhang mit der Multiplikation angeführt 
wird, ist das der intuitive models von FISCHBEIN, DERI, NELLO und MARINO 
(1985). Diese nehmen an, dass „each fundamental operation of arithmetic general-
ly remains linked to an implicit, unconscious, and primitive intuitive model“ (ebd., 
S.  4). Unter dem Begriff  intuitive models wird demnach eine unterbewusste Steue-
rung bzw. Suche nach einer geeigneten, mathematischen Problemlösung verstan-
den. Für die Multiplikation nehmen sie als zugrunde liegendes intuitives Modell das 
der sukzessiven Addition an: „Specifi cally, in the present investigation we assumed 
[…] the primitive model of multiplication is repeated addition“ (FISCHBEIN et al., 
1985, S.  14). Demzufolge existiert nur ein einziges intuitives Modell: „A single in-
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tuitive model underlies all understanding of multiplication“ (SHERIN & FUSON, 
2005, S. 349, Hervorhebung im Original). Dieses Modell ruft  die allgemein bekannte 
Fehlvorstellung hervor, dass „multiplication makes bigger“ (FISCHBEIN et al., 1985, 
S. 5) bzw. dass das Produkt zweier Faktoren immer größer sein müsse als die beiden 
zu multiplizierenden Faktoren.

Anders als ANGHILERI (1989) führen MULLIGAN und MITCHELMORE 
(1997) Veränderungen in der Strategieverwendung auf ein breiter werdendes Opera-
tionsverständnis zurück. Sie defi nieren angelehnt an FISCHBEIN et al. (1985) ein in-
tuitive model als „an internal mental structure corresponding to a class of calculation 
strategies“ (MULLIGAN & MITCHELMORE, 1997, S. 309). Die Struktur eines intui-
tiven Modells geht dabei aus dem vorherigen Modell hervor: „Students do not sim-
ply switch from one model to the next, but rather develop a widening repertoire of 
models“ (MULLIGAN & MITCHELMORE, 1997, S. 309). Sie unterscheiden drei in-
tuitive Modelle: direct counting, repeated addition und multiplicative operation (MUL-
LIGAN & MITCHELMORE, 1997, S. 316 ff .). Dabei werden ähnliche Herangehens-
weisen an Einmaleinsaufgaben in einem intuitiven Modell zusammengefasst. Diese 
Idee des Zusammenfassens führen sie dabei auf KOUBA (1989) zurück:

Kouba’s (1989) study suggests that it would be valuable to examine young chil-
dren’s solution strategies in more detail and, in particular, to look for categories 
of similar calculation strategies used across a range of semantic structures. Each 
category of calculation strategy could then be seen as evidence for an internal 
mental structure that children impose on multiplicative situations and that re-
fl ects particular aspects of the mathematical structure. Kouba is clearly thinking 
of such internal mental structures when she uses the term intuitive model, and 
we will do the same. (MULLIGAN & MITCHELMORE, 1997, S.  312, Hervor-
hebungen im Original)

Das intuitive Modell des direct counting wird in der Herangehensweise des unita-
ry counting (MULLIGAN & MITCHELMORE, 1997, S. 316) sichtbar. Unter unitary 
counting wird, wie im ersten Stadium von ANGHILERI (1989), das direkte Auszäh-
len von Objekten verstanden. Der Bedeutung gleich großer Gruppen, die im Zuge 
der Rechenoperation erfasst und genutzt werden können, sind sich die Kinder bei 
der Anwendung des direct counting noch nicht bewusst. MULLIGAN und MIT-
CHELMORE (1997) betonen in diesem Zusammenhang: „A child using direct coun-
ting has not yet made the leap of regarding ‚three ones‘ as ‚one three‘ (ebd., S. 317, 
Hervorhebungen im Original). Diese Erkenntnis liegt erst vor, wenn das intuitive 
Modell der repeated addition dominiert: „Repeated addition is an advance on direct 
counting because it takes advantage of the equal-sized groups present in the problem 
situation“ (MULLIGAN & MITCHELMORE, 1997, S.  317). Dieses Modell vereint 
somit die Lösungswege des rhythmischen Zählens, des Aufsagens der Produkte so-
wie der wiederholten Addition gleicher Summanden. Bei dem intuitiven Modell der 
multiplicative operation können die Kinder bereits Einmaleinsaufgaben lösen ohne 
die Vielfachen einzelner Einmaleinsreihen aufzählen zu müssen – die Multiplikation 
wird in diesem Modell erstmalig als eigene, von der Addition abweichende, Rechen-
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operation wahrgenommen bzw. erfasst. Das Modell der multiplicative operation zeigt 
sich in Herangehensweisen wie beispielsweise dem automatisierten Abruf von Ein-
maleinssätzen sowie dem Einsatz von Rechenstrategien. Wie die Ausführungen zu 
den Th eorien von MULLIGAN und MITCHELMORE (1997) gezeigt haben, gehen 
die drei intuitiven Modelle mit einem unterschiedlich ausgeprägten Operationsver-
ständnis einher. Insgesamt ist auch in dieser Th eorie von einer tendenziell linearen 
Entwicklung auszugehen – wie in den Entwicklungsstadien von ANGHILERI (1989): 
„Th e structure of each model derives from the previous one“ (MULLIGAN & MIT-
CHELMORE, 1997, S.  327). Sowohl die Stadien nach ANGHILERI (1989) als auch 
die Strategieentwicklung nach MULLIGAN und MITCHELMORE (1997) betreff end, 
ist nicht von einem unmittelbaren Übergang von einem Stadium bzw. von einem 
Modell zum nächsten auszugehen. „Students do not simply switch from one mo-
del to the next, but rather develop a widening repertoire of models“ (MULLIGAN & 
MITCHELMORE, 1997, S. 327), so dass Kindern zum Lösen verschiedener Einmal-
einsaufgaben durchaus unterschiedliche Herangehensweisen, die wiederum auf ver-
schiedenen intuitiven Modellen beruhen, zur Verfügung stehen (ANGHILERI, 1989, 
S.  382 f.; MULLIGAN & MITCHELMORE, 1997, S.  327). „Which one (or more) of 
all the available intuitive models is called into play to solve a particular problem de-
pends on several factors, including previous experience of and instruction in that 
problem situation and knowledge of the relevant number facts“ (MULLIGAN & 
MITCHELMORE, 1997, S. 327).

Statt ein verändertes Zahl- oder Operationsverständnis als Voraussetzung für ein 
Voranschreiten in der Strategieentwicklung zu sehen wie ANGHILERI (1989) oder 
MULLIGAN und MITCHELMORE  (1997), betonen SHERIN und FUSON (2005), 
dass „changes in strategy use are primarily driven by the learning of number-spe-
cifi c computational resources“ (ebd., S.  348). Neben einer umfangreichen Literatur-
recherche sowie den Erkenntnissen aus einer eigens durchgeführten Studie liefern 
SHERIN und FUSON (2005) für ihren komplett anderen zur Diskussion gestellten 
Ansatz auch ohne Datenanalyse ein überzeugendes Argument: „When one considers 
the possibility that much of the relevant knowledge underlying single-digit multi-
plication is number-specifi c, it becomes clear that there is a prima facie case to be 
made for this position“ (SHERIN & FUSON, 2005, S. 355 f.). Eine zahlspezifi sche Re-
chenfertigkeit nach SHERIN und FUSON (2005) besteht beispielsweise darin, dass 
ein Kind die Rechenstrategie der Nachbaraufgabe erst zum Lösen der Aufgabe 6 · 7 
einsetzen kann, wenn z. B. die Aufgabe 5 · 7 bereits sicher beherrscht wird. SHERIN 
und FUSON (2005) unterscheiden folgende in der Forschungsliteratur bekannte bzw. 
in der Praxis beobachtete Strategien: das direkte Auszählen, die sukzessive Addition, 
das Aufsagen der Einmaleinsreihe, das Beherrschen von Mustern, wie die Einmal-
einssätze mit 0, 1, 10 und 9, auswendig gelernte Einmaleinsaufgaben sowie Kom-
binationen der aufgeführten Herangehensweisen. Mit Ausnahme der Zählstrategien 
und der sukzessiven Addition sind für alle genannten weiteren Lösungswege zahl-
spezifi sche Rechenfertigkeiten vonnöten. Das Aufsagen der Reihe, das Beherrschen 
von Einmaleinssätzen sowie das Nutzen von Rechenstrategien erfordert das Beherr-
schen von Einmaleinssätzen bzw. auf die Multiplikation bezogener spezifi scher Fer-
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tigkeiten. Die Wahl der Strategie ist somit nach SHERIN und FUSON (2005) davon 
abhängig, welche aufgabenbezogenen Rechenfertigkeiten den Kindern zum gege-
benen Zeitpunkt zur Verfügung stehen: „Th e primary mechanism is the incremen-
tal appropriation, by students, of number-specifi c computational resources“ (ebd., 
S. 383 f.). Allerdings gehen sie im Vergleich zu ANGHILERI (1989) und MULLIGAN 
und MITCHELMORE (1997) nicht von einer linearen Entwicklung aus, bei der vor-
herrschende Strategien durch ein profunder werdendes Verständnis von anderen 
Strategien abgelöst werden: „For a given individual, we do not expect across-the- 
board development in strategy use. Instead, at any given time, the strategy that a child 
uses will depend on the values of the operands“ (SHERIN & FUSON, 2005, S. 378).43 
Insgesamt können Kinder somit über diverse, voneinander verschiedene Strategien 
gleichzeitig verfügen, die in der Regel abhängig vom Zahlenmaterial eingesetzt wer-
den. Dabei sind es vor allem Strategie-Kombinationen, die für spezielle Aufgaben 
bzw. spezielle Faktoren entwickelt wurden, die den Ansatz von SHERIN und FU-
SON (2005) untermauern: „Th is [the observed strategy variants] suggest a richer 
texture to the learning than could be explained by an across-the-board conceptual 
shift “ (ebd., S. 385, Ergänzung der Autorin). SHERIN und FUSON (2005) beschrei-
ben die Strategieverwendung sehr treff end wie folgt: „Strategy use by individuals, 
in a particular circumstance, will be very sensitive to the number-specifi c resources 
available, which are in turn sensitive to details of instruction“ (ebd., S. 348). Sie beto-
nen darüber hinaus: „Our stance implied that strategies, as well as learning progres-
sions through strategies, are sensitively dependent on certain details of instruction“ 
(SHERIN & FUSON, 2005, S.  384). Ihrer Meinung nach ist es Kindern nicht mög-
lich, ohne explizite unterrichtliche Behandlung z. B. einen Großteil der Einmaleins-
sätze zu lernen oder Einmaleinsreihen aufsagen zu können (ebd., S. 384) (siehe auch
Abschnitt 3.3.3).

Einen ganz anderen Ansatz im Hinblick auf die Entwicklung von Strategien ver-
folgen einige weitere Modelle aus der Psychologie (z. B. ASHCRAFT, 1987; CAMP-
BELL, 1987; CAMPBELL & GRAHAM, 1985; LEMAIRE & SIEGLER, 1995; SIEG-
LER, 1988). Den Modellen ist gemeinsam, dass davon ausgegangen wird, dass Kinder 
Informationen zu einer bestimmten Aufgabe in einem assoziativen Netzwerk gespei-
chert haben und zur Aufgabenlösung auf dieses assoziative Netzwerk zurückgreifen. 
SIEGLER (1988) fasst die Kennzeichen der aufgestellten Modelle wie folgt zusam-
men: „Th ese models share several features, particularly the assumption that knowl-
edge of multiplication can be represented as an associative network linking problems 
and answers“ (ebd., S.  261 f.). Eine Aufgabenstellung führt zu einer Assoziation mit 
verschiedenen Antworten, richtigen und falschen – wobei idealerweise die Assozia-
tion zur korrekten Antwort am deutlichsten bzw. stärksten ausgeprägt ist (LEMAIRE 
& SIEGLER, 1995, S. 85 f.; SIEGLER, 1988, S. 259). Ob Kinder bei der Lösung einer 
Einmaleinsaufgabe schlussendlich auf das assoziative Netzwerk zurückgreifen bzw. 
die Aufgabe automatisiert abrufen, ist stark davon abhängig, inwiefern dem assozia-

 43 Unter dem Ausdruck „across-the-board development“ wird nach SHERIN und FUSON 
(2005) eine lineare Entwicklung verstanden.
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tiven Ergebnis Vertrauen geschenkt wird und wie schnell man mit dieser Assoziation 
zur Aufgabenlösung gelangt ist. Die Assoziationen bzw. die Strukturen des assoziati-
ven Netzwerkes ändern sich im Laufe der Zeit einhergehend mit größerer Erfahrung 
und der Häufi gkeit der Aufgabenpräsentation (SIEGLER, 1988, S.  261). Die Stärke 
der Assoziation zwischen Aufgabe und Ergebnis wird dabei mit jeder korrekten Auf-
gabenlösung erhöht, bei jeder falschen Lösung vermindert (STERN, 1992, S.  104). 
Während Kinder zunächst sogenannte Backup-Strategien (ebd., S.  258), wie bei-
spielsweise Zählstrategien oder die sukzessive Addition zur Aufgabenlösung einset-
zen, werden diese weniger tragfähigen Strategien im Laufe der Zeit – wenn sich die 
Assoziationsstärke durch mehrmalige richtige Aufgabenberechnung vergrößert hat 
bzw. gegenüber alternativen Antworten deutlich abgesetzt hat – durch den automati-
sierten Abruf von Einmaleinssätzen aus dem assoziativen Netzwerk abgelöst. Bei ver-
hältnismäßig schwachen Assoziationen wird erneut auf Backup-Strategien zurückge-
griff en (SIEGLER, 1988, S. 262).

Ein weiteres Modell aus der Psychologie stellt ASHCRAFT (1987) auf. Er geht 
davon aus, dass Kinder Einmaleinssätze als mentale Repräsentationen ähnlich einer 
Einmaleinstabelle44 (siehe Abschnitt 2.3.2) im Gedächtnis abgespeichert haben (ebd., 
S.  321). „For purposes of illustration, this network structure is isomorphic with a 
printed table of […] multiplication facts, where each intersection of row i and co-
lumn j contains two values, the correct answer and the strength value for the pa-
thway leading to that answer“ (ASHCRAFT, 1987, S. 321, Hervorhebungen im Ori-
ginal). Der Faktenabruf wird bewerkstelligt, indem es zu einer Ausbreitung der 
Aktivierung von den beiden Faktoren der Einmaleinsaufgabe bis zu ihrem Schnitt-
punkt, dem Ergebnis der gesuchten Einmaleinsaufgabe, kommt. Dass die Aufgaben-
lösung bei großen Faktoren mehr Zeit beansprucht, kann ASHRAFT (1987) sehr 
einleuchtend anhand seines aufgestellten Modells erklären: Er führt die längere Ab-
rufzeit dabei auf die längere Aktivierungsausbreitung entlang der Reihe und der Zei-
le – bis zu den großen Faktoren – zurück. ASHCRAFT (1987) geht somit in seinem 
Modell ebenso wie SIEGLER (1988) und einige weitere Forscher von einem Abruf 
der Einmaleinssätze aus dem assoziativen Netzwerk aus, wenn die Assoziationsstär-
ke zwischen Aufgabe und Ergebnis ausreichend groß ist, während der Rückgriff  auf 
Backup-Strategien bei geringer Assoziationsstärke erfolgt (ebd., S. 321 f.).

Dass sich einige Modelle aus der Psychologie in vielerlei Hinsicht ähneln, soll ab-
schließend an einem weiteren Modell von CAMPBELL und GRAHAM (1985) ver-
anschaulicht werden – Wissen um Einmaleinssätze ist auch gemäß diesem Modell in 
einem Netzwerk von Assoziationen zwischen Aufgabe und Ergebnis präsentiert:

Th e acquisition of simple multiplication skill is well described as a process of 
associative bonding between problems and candidate answers. Performance 
is determined by the relative strengths of correct and competing associa tions 
represented in a network structure that is searched by a process that activates 
associated products. Th e activation of competing products and competing asso-

44 Im Gegensatz zu der im Abschnitt 2.3.2 veranschaulichten Einmaleinstafel bzw. -tabelle kön-
nen aus der mentalen Repräsentation einer Einmaleinstabelle gemäß ASHCRAFT (1987) die 
Ergebnisse der einzelnen Einmaleinsaufgaben abgelesen werden.
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ciations with the correct product both interfere with a correct retrieval. (CAMP-
BELL & GRAHAM, 1985, S. 359)

Alles in allem sind verschiedene Th eorien bezogen auf die Entwicklung von Stra-
tegien beim Erlernen des Einmaleins bis zur Beherrschung von Einmaleinssätzen 
zu erkennen. Einerseits wird ein profunder werdendes Verständnis als Vorausset-
zung für die Veränderung in der Verwendung von Strategien angeführt, anderer-
seits scheinen die immer weiter zunehmenden zahlspezifi schen Fertigkeiten des Kin-
des für die Weiterentwicklung verantwortlich zu sein. Während einige der von den 
Grundannahmen sehr verschiedenen Modelle teilweise als eher lineare Entwick-
lungsmodelle beschrieben werden, zeichnen sich andere nicht durch eine lineare 
Entwicklung aus. In den meisten Modellen aus der Psychologie werden im Gegen-
satz zu den anderen in diesem Abschnitt vorgestellten Entwicklungsmodellen Stra-
tegien auf Basis operativer Beziehungen kaum berücksichtigt bzw. wird ihnen wenig 
bis gar keine Beachtung geschenkt.

Erste Studienergebnisse, die im Abschnitt 2.4 präsentiert wurden, liefern aller-
dings erste Indizien, dass Lösungswege auf Basis von operativen Beziehungen bzw. 
sogenannte Rechenstrategien beim Lösen von Einmaleinssätzen von Kindern ein-
gesetzt werden und zur erfolgreichen Lösung führen können. Aktuelle mathema-
tikdidaktische Publikationen (siehe Abschnitt 2.3) sowie nationale Lehrpläne (siehe 
Abschnitt 2.5.2) betonen ebenfalls in ihren konkreten Vorgaben für die Unterrichts-
praxis die Bedeutung der Erarbeitung des kleinen Einmaleins über Rechenstra-
tegien. Der Abschnitt 3.1 veranschaulicht sehr deutlich, dass es off ensichtlich kei-
ne klaren Erkenntnisse gibt, wie Kinder von ersten informellen Herangehensweisen 
über Rechenstrategien zum Automatisieren gelangen. Dies trifft   vor allem auch auf 
den deutschsprachigen Raum zu, in dem keine Erkenntnisse aus empirischen Unter-
suchungen vorliegen. Die verschiedenen bestehenden theoretischen bzw. empirisch 
gesicherten Erklärungsansätze können kritisch refl ektiert zur Entwicklung eigener 
Th eorien beitragen.

Der folgende Abschnitt 3.2 stellt nationale sowie internationale Untersuchungs-
ergebnisse zum kleinen Einmaleins vor, die den Strategieeinsatz konkret fokussieren: 
Das Hauptaugenmerk liegt dabei auf der Vielfalt an eingesetzten Strategien in der 
Unterrichtspraxis, der Häufi gkeit des Einsatzes einzelner Herangehensweisen sowie 
der korrekten Ausführung in Abhängigkeit vom bevorzugt eingesetzten Lösungs-
weg. Die empirischen Ergebnisse des folgenden Abschnittes sollen sich dabei nicht 
nur auf Rechenstrategien zur Lösung von Einmaleinsaufgaben beschränken, sondern 
auch den Faktenabruf einschließen.
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3.2 Empirische Ergebnisse zur Strategieverwendung und zum Faktenabruf

„Th e state of research on single-digit multiplication diff ers greatly 
from that on addition. Although there is a growing body of research 
[…], researchers still diff er greatly on the strategies described as well 

as in the terminology used.“

(SHERIN & FUSON, 2005, S. 347)

Nach SHERIN und FUSON (2005) wurde hinsichtlich der Rechenoperation der Ad-
dition eine Vielzahl an Studien zur Strategieverwendung veröff entlicht. Ein etwas an-
deres Bild zeichnet sich diesbezüglich für die Multiplikation ab – im Bereich der 
Multiplikation wurde bereits im letzten Jahrhundert darauf hingewiesen, dass alles in 
allem noch Forschungsbedarf besteht (COONEY, SWANSON & LADD, 1988; JER-
MAN, 1970; KOSHMIDER & ASHCRAFT, 1991; LEMAIRE & SIEGLER, 1995, S. 84;
SUYDAM, 1967). KOSHMIDER und ASHCRAFT (1991) erwähnen in diesem Zu-
sammenhang: „While many studies have focused on children’s addition and counting 
skills, only a few have examined multiplication in children“ (KOSHMIDER & ASH-
CRAFT, 1991, S. 56). COONEY, SWANSON und LADD (1988) verweisen ebenfalls 
auf die im Vergleich zur Addition und Subtraktion eher geringe Anzahl an Untersu-
chungen mit dem Fokus auf multiplikativen Aufgabenstellungen: „Compared with 
the literature on addition and subtraction skills, there have been very few investi-
gations of the cognitive processes that underlie children’s performance of mental 
multiplication“ (ebd., S.  324). Im Mittelpunkt der wenigen durchgeführten Studien 
stand dabei in erster Linie der Schwierigkeitsgrad einzelner Multiplikationsaufgaben 
und nicht die Strategieverwendung im eigentlichen Sinne (COONEY, SWANSON & 
LADD, 1988, S. 324). Eine im Zeitraum von Beginn des letzten Jahrhunderts bis in 
die 70er Jahre durchgeführte Artikelzusammenschau wies nach SUYDAM (1967) in 
den USA im Bereich der Multiplikation nur neun Artikel auf, darunter lediglich drei 
empirische Studien. „None of these attempted to analyze in depth the strategies used 
by children to fi nd the product of simple combinations“ (JERMAN, 1970, S. 95).

Heute kann der Forschungsstand nach SHERIN und FUSON (2005) wie im ein-
leitenden Zitat dieses Abschnittes beschrieben werden. SHERIN und FUSON (2005) 
verweisen nicht nur auf den Anstieg an Studien und Veröff entlichungen im Bereich 
der Multiplikation, sondern betonen auch die von Studie zu Studie höchst abwei-
chenden ermittelten Herangehensweisen und die Unterschiede hinsichtlich der ver-
wendeten Begriffl  ichkeiten – wie bereits in den Ausführungen zum Strategiebegriff  
(Abschnitt 2.2.1) erwähnt. Ihrer Literaturzusammenschau zufolge lassen sich Studien 
zum Th ema Multiplikation nach vier Hauptkriterien unterscheiden bzw. charakteri-
sieren (ebd., S. 348 ff .). Die Forschung in diesem Inhaltsbereich beschäft igt sich ent-
weder mit den verschiedenen Grundvorstellungen der Multiplikation, wie beispiels-
weise der Vereinigung gleichmächtiger Mengen oder dem kartesischem Produkt 
zweier Mengen (siehe Abschnitt 2.1.1) oder den intuitiven Modellen, wie sie im vor-
hergehenden Abschnitt 3.1 kurz und überblicksmäßig angeführt wurden. Ein weite-
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rer inhaltlicher Forschungsschwerpunkt umfasst die verschiedenen Herangehenswei-
sen bzw. Rechenstrategien an multiplikative Aufgabenstellungen. Studien im Bereich 
der Multiplikation konzentrieren sich aber auch auf den Faktenabruf, der, wie be-
reits im Kapitel 2 dieser Arbeit herausgestellt, ein übergeordnetes Ziel der unter-
richtlichen Behandlung des kleinen Einmaleins einnimmt. In der Forschungslitera-
tur werden die einzelnen genannten inhaltlichen Schwerpunktsetzungen häufi g in 
Untersuchungen miteinander kombiniert diskutiert, so dass Herangehensweisen an 
Einmaleinsaufgaben typischerweise zugleich mit Diskussionen über intuitive Model-
le oder Grundvorstellungen der Multiplikation geführt werden (SHERIN & FUSON, 
2005, S. 349). Forschungsergebnisse zum Faktenabruf beim kleinen Einmaleins wer-
den ihrerseits wiederum häufi g mit den Herangehensweisen an Einmaleinsaufgaben 
kombiniert betrachtet: „Research of this sort [with the focus on retrieval] usually 
has some concern with computational strategies, but when categorizing strategies, 
a simple binary split between retrieval and nonretrieval strategies is oft en made“ 
(SHERIN & FUSON, 2005, S.  349, Ergänzung der Autorin). Einige Autoren versu-
chen auch in einer einzigen Studie ein ziemlich umfassendes Bild von multiplikati-
ven Denk- und Entwicklungsprozessen aufzubauen, indem sie das Hauptaugenmerk 
gleichzeitig auf mehrere inhaltliche Th emen der Multiplikation legen.

Bei der Betrachtung der einschlägigen Forschungsliteratur bzw. der Interpreta-
tion der Forschungsergebnisse muss vor allem das Studiendesign der Untersuchun-
gen zur Strategieverwendung beim kleinen Einmaleins kritisch beleuchtet werden. 
Die Studien unterscheiden sich zum Beispiel deutlich im Untersuchungszeitraum. 
Es gibt Studien, die vor der unterrichtlichen Behandlung des kleinen Einmaleins die 
Strategieverwendung untersuchen, Studien, die während oder am Ende der Erarbei-
tung durchgeführt werden, sowie mit einigem Abstand zur Erarbeitung des kleinen 
Einmaleins. Darüber hinaus variieren die Studien auch in der Anzahl der Teilneh-
mer, der Zusammensetzung der Stichprobe oder der Altersstruktur. Die Unterschie-
de in der Altersstruktur sind dabei unter anderem auf die unterschiedlichen Zeiten 
der unterrichtlichen Erarbeitung der verschiedenen Länder zurückzuführen. Einige 
Untersuchungen sehen beispielsweise die Lösung von Einmaleinsaufgaben auf der 
Zahlenebene vor, andere wiederum befassen sich mit der Lösung von Textaufgaben. 
Ein Hauptunterschied scheint aber in den erhobenen Daten der Studien zu liegen.

Um die richtigen Konsequenzen aus den Studien zu ziehen bzw. die Erkenntnisse 
aus den Forschungsergebnissen korrekt einordnen zu können, werden das Studien-
design sowie Besonderheiten der nachfolgenden Untersuchungen explizit themati-
siert.

Die Übertragung internationaler Forschungsergebnisse auf die deutsche Unter-
richtspraxis erweist sich im Hinblick auf den Strategieeinsatz bzw. die Strategiewahl 
als schwierig, da diese in erster Linie im Unterricht stattfi ndet und neben der Vor-
gehensweise der Lehrkraft  auch von kulturellen Gegebenheiten und der didaktischen 
Tradition des jeweiligen Landes abhängig zu sein scheint. Aus diesem Grund sol-
len insbesondere auch einige nationale Forschungsergebnisse angeführt werden. A 
growing body of research wie SHERIN und FUSON (2005) die Zunahme an Studien 
im Bereich der Multiplikation beschrieben haben, trifft   allerdings nicht auf die For-
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schung in Deutschland zu – im Bereich der Multiplikation sind nur wenige nationa-
le Studien realisiert worden.

3.2.1 Nationale und internationale Studien sowie ihre Forschungsergebnisse

Der folgende Abschnitt 3.2.1 thematisiert nationale sowie internationale Studien zur 
Strategieverwendung beim kleinen Einmaleins und ihre Forschungsergebnisse. Zu-
allererst steht ein Überblick über Erkenntnisse empirischer Studien zu den Heran-
gehensweisen, die Kinder zur Lösung von Einmaleinsaufgaben in der Unterrichts-
praxis einsetzen – inwiefern weniger tragfähige Lösungen zum Einsatz kommen, 
inwiefern auf konkrete Rechenstrategien zurückgegriff en wird oder die Einmaleins-
aufgaben bereits aus dem Gedächtnis abgerufen werden. Neben der Strategievielfalt 
in der Praxis wird auch die Häufi gkeit des Einsatzes der entsprechenden Herange-
hensweisen bzw. Rechenstrategien dargestellt. Des Weiteren wird die korrekte bzw. 
fehlerfreie Ausführung der Herangehensweisen veranschaulicht sowie die ermittelten 
Lösungszeiten zur Aufgabenbeantwortung präsentiert. Forschungsergebnisse in Ab-
hängigkeit von der Aufgabencharakteristik sollen ebenfalls thematisiert werden. An-
gelehnt an die vier Dimensionen bzw. Bausteine der strategischen Kompetenz (Four 
Aspects of Strategic Change) von LEMAIRE und SIEGLER (1995) werden die Studien 
bzw. ihre Forschungsergebnisse hinsichtlich der folgenden vier Aspekte analysiert:
• Vielfalt an Herangehensweisen bzw. Rechenstrategien
• Häufi gkeit des Einsatzes
• Korrektheit der Ausführung und Lösungszeiten
• Korrektheit der Ausführung und Lösungszeiten in Abhängigkeit von der Aufga-

bencharakteristik

Vielfalt an Herangehensweisen bzw. Rechenstrategien 
Die Strategievielfalt soll in einem ersten Schritt anhand einer Reihe von empiri-
schen Forschungsergebnissen zu den Vorkenntnissen und informellen Lösungsstra-
tegien von Kindern vor der systematischen unterrichtlichen Erarbeitung des klei-
nen Einmaleins aufgezeigt werden (z. B. ANGHILERI, 1989; AXMANN & BÖNIG, 
1994; BÖNIG, 1995; MULLIGAN & MITCHELMORE, 1997; PADBERG & VENT-
KER, 1997; RASCH, 2009; SELTER, 1996). Die Lösungen der überwiegend multi-
plikativen Kontextaufgaben belegen in überraschend großem Ausmaß das verfügba-
re Vorwissen der Schülerinnen und Schüler sowie die verschiedenen zur Verfügung 
stehenden Lösungsstrategien. PADBERG und BENZ (2011) listen mit konkretem Be-
zug zu Forschungsergebnissen die folgenden Lösungsmöglichkeiten für Schülerinnen 
und Schüler des zweiten Schuljahres vor der unterrichtlichen Erarbeitung des klei-
nen Einmaleins auf (ebd., S. 126 f.):
• das direkte Modellieren mit Material sowie das vollständige Auszählen anhand 

dieses Materials,
• das rhythmische Zählen in gleichgroßen Teilabschnitten,
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• die Benutzung von Zahlenfolgen,
• das wiederholte Addieren gleicher Summanden und 
• den Rückgriff  auf multiplikatives Faktenwissen.

Das breite Lösungsspektrum, über das Kinder bereits vor der unterrichtlichen Be-
handlung des kleinen Einmaleins verfügen, lässt mit Ausnahme der Herangehens-
weise des direkten Modellierens mit Material schon die Nutzung gleich großer 
Gruppen erkennen (siehe auch Abschnitt 2.1). Die genannten Herangehensweisen 
kommen allerdings nicht nur in ihrer Reinform zum Einsatz, sondern auch Über-
gangsformen konnten ermittelt werden.45

Während eine Reihe nationaler Studien zu den Vorkenntnissen und Lösungs-
strategien vor der unterrichtlichen Erarbeitung des kleinen Einmaleins durchgeführt 
wurden, sind nur wenige nationale Studien zur Strategieverwendung beim kleinen 
Einmaleins während oder nach der Erarbeitung des kleinen Einmaleins realisiert 
worden. Die Untersuchungen und Forschungsergebnisse von SELTER (1994), RU-
WISCH (1999) sowie GASTEIGER und PALUKA-GRAHM (2013) sollen im Folgen-
den neben weiteren internationalen Studien vorgestellt werden.

Die internationale Forschungsliteratur wird von DE BRAUWER und FIAS (2009) 
im Hinblick auf die Strategievielfalt bzw. die verschiedenen Herangehensweisen 
an Aufgaben des kleinen Einmaleins sehr prägnant zusammengefasst: „It has been 
shown that young children already rely heavily, but not exclusively, on memory 
re trieval to solve simple multiplication problems (i. e., with both operands smaller 
than 10)“ (DE BRAUWER & FIAS, 2009, S. 1481, Hervorhebungen der Autorin). Be-
reits 2006 teilen DE BRAUWER, VERGUTS und FIAS die in Forscherkreisen häufi g 
vertretene Meinung, dass der Faktenabruf aus dem Gedächtnis zu der am häufi gsten 
eingesetzten Herangehensweise zur Aufgabenlösung bei Einmaleinsaufgaben gehört 
(ebd., S.  44). DE BRAUWER et al. (2006) betonen allerdings darüber hinaus, dass 
neben dem Faktenabruf auch eine Vielfalt bzw. Vielzahl an verschiedenen Herange-
hensweisen bzw. Rechenstrategien vorherrscht (ebd., S. 44).

Auf die Vielfalt möglicher Herangehensweisen bzw. Rechenstrategien an Ein-
maleinsaufgaben aus fachdidaktischer Perspektive wurde in dieser Arbeit bereits im 
Abschnitt 2.2.2 in den Ausführungen zu den Herangehensweisen zur Lösung von 
Einmaleinssätzen verwiesen, indem das Zählen und wiederholte Addieren, die Rechen-
strategien sowie der Faktenabruf als mögliche Lösungswege für Aufgaben des kleinen 
Einmaleins vorgestellt bzw. genauer in den Blick genommen wurden. Die Vielfalt 
an Rechenstrategien bzw. Herangehensweisen in der Unterrichtspraxis wurde in den 
vereinzelten empirischen Erkenntnissen zur Strategieentwicklung im Abschnitt 3.1 
ein erstes Mal ersichtlich (ANGHILERI, 1989, 2008; FISCHBEIN et al., 1985; MUL-
LIGAN & MITCHELMORE, 1997; KOUBA, 1989; SHERIN & FUSON, 2005). Auch 

45 Je nach kindlichem Leistungsvermögen muss aber festgehalten werden, dass die eingesetzten 
Herangehensweisen stark variieren: Leistungsschwache Schülerinnen und Schüler greifen vor 
der unterrichtlichen Behandlung vorzugsweise auf das direkte Modellieren zurück, während 
leistungsstärkere Kinder vereinzelt schon die wiederholte Addition oder sogar multiplikative 
Rechnungen zur Aufgabenlösung einsetzen (z. B. ANGHILERI, 1989, S. 379).
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die vorherige Zusammenschau an Forschungsergebnissen zu den Vorkenntnissen 
und informellen Herangehensweisen vor der systematischen Erarbeitung des kleinen 
Einmaleins bestätigen die in der Fachdidaktik bzw. der Th eorie beschriebene Vielfalt 
an Herangehensweisen.

Auf die Existenz zahlreicher Strategien zur Lösung von Einmaleinsaufgaben wird 
auch in weiteren Studien der internationalen Literatur verwiesen (vgl. z. B. COONEY 
et al., 1988; DE BRAUWER et al., 2006; KROESBERGEN et al., 2004; LEFEVRE, BI-
SANZ, SADESKY, DALEY, BUFFONE & GREENHAM, 1996; LEFEVRE, SHANA-
HAN & DESTEFANO, 2004; LEMAIRE & SIEGLER, 1995; MABBOTT & BISANZ, 
2003; SIEGLER, 1988; STEEL & FUNNELL, 2001; TER HEEGE, 1985). Die konkret 
eingesetzten Herangehensweisen variieren allerdings von Untersuchung zu Untersu-
chung sehr stark. Exemplarisch soll dies im Folgenden an einigen nationalen sowie 
internationalen Studien veranschaulicht werden.

STEEL und FUNNELL (2001) unterschieden in ihrer groß angelegten Studie in 
England mit N  = 241 Kindern der Klasse 3 bis 7 drei große „strategy types“ (ebd., 
S.  43): den Faktenabruf aus dem Gedächtnis, Berechnungen über Ableitungen und 
das Aufsagen der Reihe. Dabei ähneln oder stimmen die aufgestellten bzw. ermit-
telten Strategietypen sehr stark mit den in den theoretischen Ausführungen der di-
daktischen Literatur beschriebenen Herangehensweisen zur Aufgabenlösung an Ein-
maleinssätzen überein (siehe Abschnitt 2.2.2). Einzig die wiederholte Addition, eine 
durchaus gängige Herangehensweise zur Lösung von Einmaleinssätzen wurde von 
den Kindern nicht als möglicher Lösungsweg einer Einmaleinsaufgabe des kleinen 
Einmaleins angeführt. Ein erstes Indiz dafür, dass die Strategievielfalt auch von der 
unterrichtlichen Erarbeitung abhängig zu sein scheint, liefern demnach STEEL und 
FUNNELL (2001), die in ihrer Studie im Gegensatz zu vielen anderen Studien (z. B. 
LEFEVRE et al., 1996; LEMAIRE & SIEGLER, 1995) nicht den Einsatz der wieder-
holten Addition verzeichnen können:

Th ere was no evidence for the use of repeated addition, generally considered to 
be the most common back-up strategy employed. Since the absence of repea-
ted addition applied to all children in our study, we assume that the learning en-
vironment was directly responsible for this absence and for the emergence of 
counting-in-series: a strategy rarely reported hitherto. (STEEL  & FUNNELL, 
2001, S. 51 f.)

Die ermittelten Herangehensweisen bzw. Rechenstrategien in der Untersuchung von 
LEMAIRE und SIEGLER (1995), die N  =  20 französische Kinder im 2. Schuljahr 
untersuchte, decken sich nicht bzw. nur teilweise mit den ermittelten Herangehens-
weisen der Studie von FUNNELL und STEEL (2001). Einerseits kamen keine Re-
chenstrategien zur Aufgabenlösung zum Einsatz – neben dem Faktenabruf konnte 
als weitere, verbreitete Herangehensweise nur die sukzessive Addition bestimmt wer-
den. Andererseits wurden im Vergleich zur genannten Studie von STEEL und FUN-
NELL (2001) noch weitere separate Kategorien ermittelt, wie beispielsweise das No-
tieren der Aufgabe und anschließende Lösen ohne sichtbares Zählen oder Addieren 
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sowie das Notieren von Gruppen von Zählstrichen und das anschließende Auszäh-
len dieser Zählstriche.

Die Studie von GASTEIGER und PALUKA-GRAHM (2013) untersuchte den 
Strategieeinsatz von Kindern zweier bayerischer Klassen der Jahrgangsstufe 3 
(N  =  22). Die unterrichtliche Vorgehensweise der Erarbeitung des kleinen Einmal-
eins entsprach dabei den Vorgaben des in Bayern zum Zeitpunkt der Untersuchung 
gültigen Lehrplans (siehe Abschnitte 2.3 und 2.5.2). Im Vergleich zu den bereits ge-
nannten Studien berichten GASTEIGER und PALUKA-GRAHM (2013) von einer 
Vielfalt an Rechenstrategien: Neben dem Einsatz der Nachbaraufgabe, wurde auf das 
Verdoppeln bzw. Halbieren eines Faktors, auf die additive oder subtraktive Zerlegung 
sowie auf das gegensinnige Verändern zur Aufgabenlösung zurückgegriff en. Darü-
ber hinaus wurden Einmaleinsaufgaben über die sukzessive Addition gelöst oder laut 
Aussage der Kinder bereits gewusst.

Die drei an dieser Stelle exemplarisch angeführten Studien von LEMAIRE und 
SIEGLER (1995), STEEL und FUNNELL (2001) sowie GASTEIGER und PALU-
KA-GRAHM (2013) verweisen auf die in der Unterrichtspraxis vorhandene Vielzahl 
an verschiedenen Herangehensweisen. Sie zeigen aber auch bereits auf, wie unter-
schiedlich die ermittelten Herangehensweisen je Studie ausfallen können. Die For-
schungsergebnisse, unter Berücksichtigung der Studiendesigns betrachtet, scheinen 
dabei erste Indizien dafür zu liefern, dass die unterrichtliche Vorgehensweise ein 
Einfl ussfaktor ist.

Für die bereits beschriebenen aber auch alle weiteren angeführten Untersu-
chungen sollte berücksichtigt werden: Die vorgenommenen Kategorisierungen ver-
anschaulichen die Vielzahl an eingesetzten Herangehensweisen, die in den Studien 
analysiert wurden – während in einigen Studien die Kategorien sehr detailliert und 
diff erenziert aufgestellt wurden, scheinen die Kategorien in anderen Studien eher 
breiter gefasst und demnach schlussendlich weniger Kategorien gebildet worden zu 
sein. Aus diesem geschilderten Grund identifi ziert eine Studie unter Umständen we-
niger Herangehensweisen als eine andere.

Häufi gkeit des Einsatzes 
Zur Klärung der Frage, wie häufi g Kinder in der Unterrichtspraxis spezielle Rechen-
strategien bzw. Herangehensweisen zur Lösung von Einmaleinsaufgaben einsetzen, 
kann in der nationalen aber auch in der internationalen Literatur nur auf eine be-
grenzte Anzahl an Studien zurückgegriff en werden. Die folgenden Ausführungen 
stellen einige dieser Forschungsergebnisse vor – zu einem gewissen Zeitpunkt der 
Erarbeitung und über einen gewissen Untersuchungszeitraum hinweg.

Die Studie von SIEGLER (1988) ermittelte die Strategieverwendung von N  =  26 
Drittklässlern, die zum Erhebungszeitraum bereits ungefähr fünf Monate Erfahrung 
im Lösen von Einmaleinsaufgaben sammeln konnten. Wie Tabelle 3 veranschaulicht, 
riefen bereits 68% der Kinder nach dieser kurzen Zeit Einmaleinsaufgaben aus dem 
Gedächtnis ab, während weitere 22% noch auf die wiederholte Addition als Hilfe zu-
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rückgriff en. 10% der Schülerinnen und Schüler setzten weitere, weniger tragfähige 
Herangehensweisen zur Aufgabenlösung ein.

LEMAIRE und SIEGLER kamen in ihrer Studie 1995 zu sehr ähnlichen For-
schungsergebnissen wie SIEGLER (1988), als sie die Strategieverwendung bei Ein-
maleinsaufgaben über drei Zeitpunkte im Schuljahr untersuchten (vor, während und 
nach der unterrichtlichen Behandlung des kleinen Einmaleins in der Jahrgangsstu-
fe 2). Über diese drei Erhebungszeiträume hinweg lösten französische Schülerinnen 
und Schüler (N  =  20) insgesamt 63% der Aufgaben über den Faktenabruf aus dem 
Gedächtnis, 20% über die sukzessive Addition, 16% nannten keine Aufgabenlösung 
und 1% der Kinder griff  auf das Zählen zur Lösung der Einmaleinsaufgaben zurück 
(siehe Tabelle 3).

Während Kinder der Studien von LEMAIRE und SIEGLER (1995) sowie SIEG-
LER (1988) keine Rechenstrategien zur Aufgabenlösung einsetzten, löste in der be-
reits beschriebenen explorativen Interviewstudie von GASTEIGER und PALU-
KA-GRAHM (2013) die Mehrzahl der Kinder (66%) Einmaleinsaufgaben mithilfe 
von Rechenstrategien (siehe Tabelle 3). Laut Aussage der Kinder wurden 20% der 
Aufgaben bereits gewusst, weitere 14% über die sukzessive Addition gelöst. Die am 
häufi gsten beobachtbaren Rechenstrategien stellten die Nachbaraufgabe (41%) und 
das Verdoppeln bzw. Halbieren (15%) dar. Deutlich weniger häufi g wurde mit 8% auf 
das additive oder subtraktive Zerlegen sowie auf das gegensinnige Verändern (2%) 
zurückgegriff en (ebd., S. 13 f.). Bei der Interpretation der Forschungsergebnisse muss 
allerdings berücksichtigt werden, dass sich nicht jede Strategie gleich gut zur Lösung 
von Einmaleinsaufgaben anbietet – während sich die Rechenstrategie der Nachbar-
aufgabe fast annähernd bei jeder Aufgabe zum kleinen Einmaleins zur Aufgaben-
lösung empfi ehlt, ist dies beispielsweise bei der Rechenstrategie des gegensinnigen 
Veränderns nur bei einer bestimmten Aufgabencharakteristik möglich (siehe Ab-
schnitt 2.2.2, GASTEIGER & PALUKA-GRAHM, 2103, S.  14). Die Studienteilneh-
merinnen und -teilnehmer waren darüber hinaus in der Lage, die beiden Faktoren 
einer Einmaleinsaufgabe fl exibel zu betrachten und mit Ausnahme von zwei Kin-
dern die Tauschaufgabe mindestens bei einer Aufgabe zur Aufgabenlösung einzuset-
zen. Insgesamt konnte man bei 47 von 110 Aufgabenlösungen erkennen, dass anstel-
le des ersten Faktors der zweite Faktor als Multiplikator betrachtet wurde. Bei 10 der 
47 Aufgaben, zu deren Lösung die Tauchaufgabe zur leichteren Lösung zum Einsatz 
kam, wurde die Aufgabe über die sukzessive Addition gelöst oder die Tauchaufga-
be bereits auswendig beherrscht (GASTEIGER & PALUKA-GRAHM, 2013, S. 16 f.).

Inwiefern Erwachsene bei der Lösung von Einmaleinsaufgaben ausschließlich auf 
den Faktenabruf aus dem Gedächtnis zurückgreifen oder – wie gerade anhand der 
Studien an Kindern gezeigt – zudem andere Herangehensweisen zur Aufgabenbeant-
wortung heranziehen, haben LEFEVRE et al. (1996) in ihren zwei Studien mit Stu-
dentinnen und Studenten der Psychologie (N  =  60 und N  =  23) zu ermitteln ver-
sucht (siehe Tabelle 3). Den Forschungsergebnissen der Studie zufolge setzt sich der 
aufgezeigte Trend internationaler Studien fort, dass der Faktenabruf zu einer der be-
vorzugt eingesetzten Herangehensweisen gehört. Er überwiegt in der Studie von LE-
FEVRE et al. (1996) deutlich mit durchschnittlich 88% bzw. 81% Nennungen. Aller-
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dings variiert er von Person zu Person zwischen 23% und 100%. Im Gegensatz zu 
der Vermutung, dass Erwachsene Einmaleinsaufgaben des kleinen Einmaleins immer 
aus dem Gedächtnis abrufen (SIEGLER, 1988), zogen in den zwei Studien von LE-
FEVRE et al. (1996) nur insgesamt 28% der Teilnehmer den Faktenabruf zur Lösung 
aller gestellten Einmaleinsaufgaben heran. Neben dem Faktenabruf konnten die wie-
derholte Addition, das Aufsagen der Reihe und die Ableitungsstrategien als weitere 
Herangehensweisen der Aufgabenbeantwortung ermittelt werden. Ableitungsstrate-
gien stellten mit je 6% die am zweithäufi gsten eingesetzte Herangehensweise dar, ge-
folgt von der wiederholten Addition und dem Aufsagen der Reihe (LEFEVRE et al., 
1996, S. 292 f.).

Die bisher angeführten Studien, die Forschungsergebnisse zu einem gewissen 
Zeitpunkt der Erarbeitung präsentieren, weisen deutliche Unterschiede hinsichtlich 
des Einsatzes des Faktenabrufes und der Verwendung von Rechenstrategien auf. Ein-
zig die Studie von GASTEIGER und PALUKA-GRAHM  (2013) zeichnet sich durch 
einen hohen Prozentsatz an Rechenstrategien aus. Studien, die Herangehensweisen 
an Einmaleinsaufgaben über einen längeren Erhebungszeitraum oder über mehrere 
Zeitpunkte im Schuljahr untersucht haben, werden im Folgenden vorgestellt und lie-
fern zusätzliche Erkenntnisse hinsichtlich der Häufi gkeit des Einsatzes von Strategien 
und Herangehensweisen sowie deren Entwicklung.
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Die bereits in den vorherigen Ausführungen beschriebene Studie von LEMAIRE und 
SIEGLER (1995) liefert ähnliche Erkenntnisse hinsichtlich der Entwicklung von He-
rangehensweisen bzw. Strategien über einen Untersuchungszeitraum hinweg, wie die 
weiteren in Tabelle 3 aufgeführten Studien von COONEY et al. (1988), MABBOTT 
und BISANZ (2003) sowie SHERIN und FUSON (2005).

Betrachtet man die Entwicklung der Strategieverteilung der Untersuchung von 
LEMAIRE und SIEGLER  (1995) über das 2. Schuljahr hinweg, fallen vor allem ein 
deutlicher Anstieg des Faktenabrufes aus dem Gedächtnis und die Abnahme der 
sukzessiven Addition ins Auge (siehe Tabelle 3). Während bereits zu Beginn des 
Schuljahres, vor der unterrichtlichen Erarbeitung 36% der Aufgaben über den Fak-
tenabruf gelöst wurden, stieg der Abruf im Verlauf der unterrichtlichen Erarbeitung 
auf 62% an und stellte sich am Ende der Erarbeitung wiederum als bevorzugt einge-
setzte Herangehensweise (92%) bei fast allen Kindern heraus. Die sukzessive Addi-
tion, die zu Beginn der Erarbeitung von 30% der Kinder zur Aufgabenlösung einge-
setzt wurde, kam am Ende der Erarbeitung nur noch in 6% der Fälle zum Einsatz. 
Ebenfalls nahm die Anzahl der Kinder, die über keine Aufgabenlösung verfügte, 
über den Erhebungszeitraum ab (von 32% auf 2%).

Eine von SHERIN und FUSON (2005) im 3. Schuljahr durchgeführte Studie an 
zwei Klassen (N  =  37) veranschaulicht ebenso die Entwicklung des Einsatzes von 
Herangehensweisen an Einmaleinsaufgaben über den Erhebungszeitraum von einem 
Schuljahr (siehe Tabelle 3). Nach der Erarbeitung des kleinen Einmaleins kann der 
Faktenabruf wiederum als bevorzugt eingesetzte Herangehensweise identifi ziert wer-
den. Darüber hinaus nimmt auch der gegen Mitte der Erarbeitung vermeintlich 
hohe Anteil an Aufgabenlösungen über das Zählen und wiederholte Addieren zum 
Schuljahresende wieder ab. Im Unterschied zur Studie von LEMAIRE und SIEGLER 
(1995) wird allerdings zur Aufgabenlösung auch auf Rechenstrategien zurückgegrif-
fen: Im Laufe des Schuljahres setzen noch 16% der Kinder diese Herangehensweise 
ein, gegen Ende der Erarbeitung nur noch 8% der Schülerinnen und Schüler.

COONEY et al. (1988) untersuchten die Strategieverwendung in einer 3. und 
einer 4. Klasse (je N = 10) einer amerikanischen Schule (siehe Tabelle 3). Drittkläss-
ler wurden mit Beginn des 3. Schuljahres in der Multiplikation eingeführt und er-
fuhren im Laufe des Schuljahres „drill and practice“ (COONEY et al., 1988, S. 328) 
durch ein Computer-Programm, das zusätzlich zum regulären Unterricht zum Ein-
satz kam. Nach dem Faktenabruf wurde die sukzessive Addition bzw. das Aufsagen 
der Einmaleinsreihe als zweithäufi gste Herangehensweise ermittelt. Die sehr niedri-
gen Prozentsätze der Ableitungsstrategien fallen erneut auf – in der jüngeren Alters-
gruppe wurden die Ableitungsstrategien nur von 1% der Schülerinnen und Schüler 
eingesetzt, im 4. Schuljahr von 6% der Kinder.

An der Studie von MABBOTT und BISANZ (2003) nahmen N = 120 kanadische 
Kinder der Klasse 4 und 6 teil. Während in Kanada in der Jahrgangsstufe 3 erste 
Erfahrungen bezüglich der Multiplikation angebahnt werden, wird von den Schüle-
rinnen und Schülern am Ende des 4. Schuljahres die Automatisierung aller Einmal-
einsaufgaben des kleinen Einmaleins vorausgesetzt bzw. verlangt. Die Forschungs-
ergebnisse der Studie von MABBOTT und BISANZ (2003) ähneln im Hinblick auf 
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den Faktenabruf sehr stark den Studienergebnissen der Untersuchung von LEMAIRE 
und SIEGLER (1995), die von einer sehr hohen Automatisierungsquote berichten 
(siehe Tabelle 3). Sowohl in Jahrgangsstufe 4 als auch in 6 wurde eine Vielfalt an He-
rangehensweisen an Einmaleinsaufgaben beobachtet – der Faktenabruf wurde aller-
dings mit 67% im 4. Schuljahr und 88% im 6. Schuljahr als häufi gste Herangehens-
weise an Einmaleinsaufgaben ermittelt. In Jahrgangsstufe 4 wurde noch häufi ger auf 
die wiederholte Addition (8%), das Aufsagen der Reihe (5%), das Raten (3%) und 
Ableitungsstrategien bzw. das Fingerrechnen beim Neuner-Einmaleins (16%) zu-
rückgegriff en, als dies in Jahrgangsstufe 6 der Fall war. Die wiederholte Addition, 
das Aufsagen der Reihe oder das Raten der Ergebnisse wurden im 6. Schuljahr kaum 
noch zur Aufgabenlösung herangezogen (1–2%).

Resümierend kann für die vier letztgenannten Studien von COONEY et al. 
(1988), LEMAIRE und SIEGLER (1995), MABBOTT und BISANZ (2003) so-
wie SHERIN und FUSON (2005) festgehalten werden: Der Faktenabruf stellt mit 
Abstand die am häufi gsten eingesetzte Herangehensweise dar, ein deutlicher An-
stieg der Automatisierungsquoten ist sowohl innerhalb eines Schuljahres als auch 
über ein Schuljahr hinaus zu erkennen. Weniger tragfähige Herangehensweisen wie 
das Zählen oder die sukzessive Addition bzw. das Aufsagen der Reihe werden von 
den Kindern mit zunehmendem Alter weniger häufi g eingesetzt. In der Mehrzahl 
der Studien weisen diese Herangehensweisen aber nicht zu vernachlässigende, ver-
gleichsweise hohe Prozentsätze auf. Rechenstrategien nehmen in den beschriebe-
nen Studien erneut keine bedeutende Rolle bei der Aufgabenlösung ein. Der höchs-
te Prozentsatz (16%) wurde in den Studien von SHERIN und FUSON (2005) sowie 
von MABBOTT und BISANZ (2003) erreicht52 und unterscheidet sich beispielswei-
se deutlich von dem erreichten Prozentsatz der Studie von GASTEIGER und PALU-
KA-GRAHM (2013).

Die im Folgenden weiteren aufgeführten Studien weisen Besonderheiten im Stu-
diendesign oder in der Auswertung der erhobenen Daten auf und werden aus die-
sem Grund separat von den bisherigen Studien bzw. der tabellarischen Darstellung 
beschrieben.

HEIRDSFIELD, COOPER, MULLIGAN und IRONS (1999) ermittelten in ihrer 
Studie an N  =  95 australischen Kindern den Strategieeinsatz im Bereich der Multi-
plikation und Division zwischen Klasse 4 bis 6.53 In jedem Schuljahr wurden zwei 
Interviews (Mitte und Ende des Schuljahres) durchgeführt. Lediglich drei Multipli-
kationsaufgaben wurden zur Überprüfung der Strategieverwendung eingesetzt. Im 
Folgenden sollen die Forschungsergebnisse der Multiplikationsaufgabe zum kleinen 
Einmaleins vorgestellt werden. Über alle Klassenstufen hinweg ist eine deutliche Ent-

52 Da die aufgelisteten Prozentsätze der Tabelle 3 aber nicht ausschließlich aus dem Einsatz von 
Rechenstrategien ermittelt wurden, fällt ihre tatsächliche Verwendung unter Umständen so-
gar noch geringer aus. Erneut erwähnt sei, dass MABOTT und BISANZ (2003) sowie SHE-
RIN und FUSON (2005) unter den sogenannten special tricks oder den sogenannten Hybrids, 
die in Tabelle 3 als Rechenstrategien geführt werden, nicht ausschließlich den Einsatz von 
Rechenstrategien erfasst haben.

53 Die Einführung in die Multiplikation wird nach dortigem Lehrplan im 2. Schuljahr vorge-
nommen und im 3. Schuljahr das Multiplikationssymbol eingeführt.
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wicklung vom Zählen zum Abruf oder Ableiten von Fakten zu erkennen. Während 
im ersten Interview die gestellte Einmaleinsaufgabe von 54% der Kinder über das 
Zählen und 38% über den Faktenabruf bzw. über das Ableiten gelöst wurde, wurde 
gegen Ende des Schuljahres von nur 23% der Kinder das Zählen als bevorzugte He-
rangehensweise eingesetzt, von 74% allerdings bereits auf den Faktenabruf oder Ab-
leitungsstrategien zurückgegriff en.54 Mit zunehmendem Alter rufen fast alle Kinder 
Einmaleinsaufgaben ausschließlich aus dem Gedächtnis ab bzw. setzen Ableitungs-
strategien zur Aufgabenlösung ein, während der Prozentsatz an Lösungen über das 
Zählen gegen null läuft . Inwiefern der hohe Prozentsatz der Faktenabrufe bzw. Ablei-
tungsstrategien tatsächlich auf den Einsatz von Ableitungsstrategien zurückzuführen 
ist, geht aus der Studie nicht hervor.

In der Studie von STEEL und FUNNELL (2001) wurde der Strategieeinsatz von 
N  =  241 Kindern im Alter zwischen 8 und 12 Jahren erfasst, die in England nach 
den discovery methods (siehe Abschnitt 2.4.2) unterrichtet wurden. Im Alter zwi-
schen 5 und 7 Jahren sammelten Schülerinnen und Schüler erste Erfahrungen im 
Bereich der Multiplikation, lernten die Einmaleinssätze mit 2, 5 und 10 und nutz-
ten diese, um weitere Einmaleinssätze daraus abzuleiten. Im Alter zwischen 7 und 
12 Jahren wurden Schülerinnen und Schülern Möglichkeiten zur Lösung der Auf-
gaben bis 10 · 10 aufgezeigt, bereits bekannte Einmaleinssätze zur Aufgabenlösung 
eingesetzt (STEEL & FUNNELL, 2001, S.  39). Die Studie von STEEL und FUN-
NELL (2001) unterscheidet sich von den bisher beschriebenen Studien wie folgt: 
Es wird nicht erfasst, wie häufi g jede Herangehensweise zum Einsatz kommt, son-
dern wie häufi g Schülerinnen und Schüler ausschließlich auf eine Herangehensweise 
zur Aufgabenlösung zurückgreifen. In der Altersgruppe der 8- bis 9-Jährigen nutz-
ten 11% der Kinder ausschließlich den Faktenabruf zur Aufgabenlösung, 12% den 
Faktenabruf oder Ableitungsstrategien, 13% ausschließlich das Aufsagen der Reihe 
und 10% der Kinder konnten keine Herangehensweise zur Lösung der Aufgaben an-
führen. Am häufi gsten (54%) setzten Schülerinnen und Schüler verschiedene He-
rangehensweisen (Faktenabruf, Ableitungsstrategien oder das Aufsagen der Reihe) 
zur Lösung ein. Während im Alter von 8 Jahren nur 4% der Kinder ausschließlich 
auf den Faktenabruf aus dem Gedächtnis zurückgriff en, belief sich der Prozentsatz 
bei den 9-Jährigen im Vergleich auf durchschnittlich 20%. Der Einsatz verschiede-
ner Herangehensweisen zur Lösung von Einmaleinsaufgaben erwies sich in beiden 
Jahrgängen als präferierte Vorgehensweise. In der Altersgruppe der 10- bis 12-Jähri-
gen riefen durchschnittlich 20% der Kinder Einmaleinsaufgaben ausschließlich aus 
dem Gedächtnis ab, 37% nutzten den Faktenabruf oder Ableitungsstrategien, 23% 
unterschiedliche Strategien und 20% lediglich das Aufsagen der Reihe. Der unmit-
telbare Vergleich der Altersgruppen verdeutlicht, dass die 11-Jährigen häufi ger Ein-
maleinsaufgaben ausschließlich über den Faktenabruf lösten und weniger das Aufsa-

54 HEIRDSFIELD et al. (1999) verstehen unter dem Begriff  Counting: „Any form of count-
ing strategy, skip counting forwards and backwards, repeated addition and subtraction, and 
halving and doubling strategies“ (ebd., S. 91). Der Einsatz von Ableitungsstrategien und der 
Faktenabruf aus dem Gedächtnis werden zusammengefasst unter dem Begriff  Basic Fact ge-
führt.
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gen der Reihe zur Hilfe nahmen. Im Alter von 12 Jahren war kein Anstieg für den 
reinen Faktenabruf zur Lösung von Einmaleinsaufgaben des kleinen Einmaleins zu 
verzeichnen, allerdings wurde auf Schülerseite auch fast nicht mehr auf das Aufsa-
gen der Einmaleinsreihen als alleinige Herangehensweise zurückgegriff en (STEEL & 
FUNNELL, 2001, S.  43 ff .). Den Forschungsergebnissen der Studie von STEEL und 
FUNNELL (2001) zufolge weisen die getesteten Kinder eher geringe Automatisie-
rungsquoten auf: „By the last year of primary school (age 11 years), 20% children 
had failed to learn multiplication facts for even the simplest operands and only 61% 
retrieved facts for all problems up to 6 × 6“ (STEEL & FUNNELL, 2001, S. 46).

Auf eine weitere nationale Studie, die Studie von RUWISCH (1999) soll in die-
sem Abschnitt ebenfalls kurz verwiesen werden. Die Untersuchung setzte sich zum 
Ziel, Lösungsstrategien und Handlungsmuster von Grundschulkindern (N  =  122) 
beim Bearbeiten multiplikativer Sachsituationen zu erfassen sowie zu beschreiben. 
RUWISCH (1999) verweist als auff älligstes Ergebnis ihrer Untersuchung auf die Be-
obachtung, dass der Addition als Lösungsstrategie nur eine untergeordnete Rolle zu-
teil wird. Ebenso wenig war ein Rückgriff  auf distributive oder assoziative Zerlegun-
gen bei der Bearbeitung von Sachsituationen zu erkennen. Während Zweitklässler 
in einer Sachsituation zu zwei Dritteln noch Zählstrategien und lediglich zu einem 
Achtel die Addition zur Aufgabenlösung nutzten, wurde die Addition in der 3. Klas-
se dagegen von keinem Kind mehr eingesetzt (ebd., S.  253).55 60% der Kinder der 
Jahrgangsstufe 3 bevorzugten zur Lösung das Aufsagen der Reihe. RUWISCH (1999) 
deutete ihre Forschungsergebnisse bezüglich der Addition und dem Aufsagen der 
Reihe wie folgt:

Daß [sic] die beteiligten Drittklässler eher Einmaleinsreihen zur Lösungsermitt-
lung einsetzten als die Addition, könnte darauf zurückgeführt werden, daß [sic] 
sie die Multiplikation im Unterricht in der Regel durch das Aufsagen der Ein-
maleinsreihen gelernt haben, ihr Multiplikationswissen – sofern nicht als Mul-
tiplikationsgleichung isoliert abrufb ar – deshalb an diese gekoppelt ist. (RU-
WISCH, 1999, S. 254)

Nach RUWISCH (1999) scheint die Wahl der Lösungsstrategie somit durch die 
unterrichtliche Erarbeitung des kleinen Einmaleins mitbestimmt zu sein. Diese Ver-
mutung lässt sich auch anhand einiger bisheriger Forschungsergebnisse untermau-
ern. Die explizite unterrichtliche Erarbeitung von Rechenstrategien, wie sie beispiels-
weise in der Studie von GASTEIGER und PALUKA-GRAHM (2013) sowie in der 
Studie von STEEL und FUNNELL (2001) umgesetzt wurde, führt auch unmittelbar 
zum Einsatz der Rechenstrategien in der Unterrichtspraxis bzw. den durchgeführ-
ten Testungen. STEEL und FUNNELL (2001) führen – wie bereits in den vorherigen 
Ausführungen zur Strategievielfalt verwiesen – ebenso wie RUWISCH (1999) den 
Nicht-Einsatz der sukzessiven Addition und die Verwendung des Aufsagens der Rei-

55 Die an der Studie von RUWISCH (1999) beteiligten Kinder aus zweiten Klassen besaßen 
zum Untersuchungszeitraum noch keine Erfahrung mit der Rechenoperation der Multiplika-
tion, die teilnehmenden Kinder aus den dritten Klassen hatten dahingegen bereits alle Ein-
maleinsreihen im Unterricht behandelt.
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he auf die fehlende bzw. vorhandene unterrichtliche Th ematisierung zurück. Da al-
lerdings in einer Vielzahl von Studien keine detaillierten Erkenntnisse bezüglich des 
Unterrichts vorliegen, können diese aufgestellten Vermutungen teilweise weder be-
stärkt noch entkräft et werden (RUWISCH, 1999, S.  254). In der Mehrzahl der Stu-
dien, die in ihrer Arbeit nicht bzw. nicht detailliert auf die Erarbeitung in der Unter-
richtspraxis Bezug nehmen (z. B. HEIRDSFIELD et al., 1999; COONEY et al., 1988), 
fällt es somit schwer, die ermittelten Forschungsergebnisse zu interpretieren und Er-
kenntnisse, die beispielsweise aus internationalen Studien gezogen werden, auch auf 
die nationale Ebene zu übertragen.

Die nationalen und internationalen Forschungsergebnisse zur Strategiever-
wendung lassen Tendenzen erkennen, konkret liegen aber keine einheitlichen For-
schungsergebnisse zur Häufi gkeit des Einsatzes einzelner Herangehensweisen vor. 
Aus den bisherigen Ausführungen geht hervor, dass Schülerinnen und Schüler mit 
zunehmendem Alter Einmaleinsaufgaben gehäuft  über den Faktenabruf lösen und 
der Einsatz der weniger tragfähigen Herangehensweisen (z. B. die sukzessiven Addi-
tion oder das Aufsagen der Reihe) im Laufe der Zeit zurückgeht. Dabei unterschei-
den sich die Automatisierungsquoten und Häufi gkeiten des Einsatzes von Rechen-
strategien sowie weiteren ermittelten Herangehensweisen an Einmaleinsaufgaben 
von Studie zu Studie sehr. Der Einsatz von Rechenstrategien fi el allerdings in al-
len beschriebenen Studien mit Ausnahme der Studie von GASTEIGER und PALU-
KA-GRAHM (2013) eher gering aus. Vereinzelte Forschungsergebnisse liefern ers-
te Hinweise, dass der Einsatz von Rechenstrategien bzw. die Strategieverwendung im 
Allgemeinen abhängig von der unterrichtlichen Th ematisierung zu sein scheint (z. B. 
STEEL & FUNNELL, 2001; RUWISCH, 1999; GASTEIGER & PALUKA-GRAHM, 
2013).

Korrektheit der Ausführung und Lösungszeiten
Wenn im Zusammenhang mit der Strategiewahl bzw. -ausführung von der Effi  zienz 
einer Strategie gesprochen wird, werden in der internationalen Literatur häufi g die 
beiden Faktoren Lösungsgeschwindigkeit und Korrektheit der Aufgabenlösung als Cha-
rakteristika angeführt. Die folgenden Ausführungen sollen Forschungsergebnisse im 
Hinblick auf die Korrektheit und die Lösungsgeschwindigkeit verschiedener Heran-
gehensweisen aufzeigen – als Grundlage hierfür dienen unter anderem die bereits 
beschriebenen bzw. angeführten Studien des Abschnittes 3.2.1. Zunächst werden 
Forschungsergebnisse zur Lösungskorrektheit berichtet.

LEMAIRE und SIEGLER (1995) ermittelten in ihrer sehr klein angelegten Studie 
zu Beginn der Erarbeitung eine sehr hohe Fehlerquote von insgesamt 55%. Im Laufe 
des 2. Schuljahres nahm diese deutlich ab, so dass am Ende der Erarbeitung die Feh-
lerquote nur noch 12% betrug. Zum ersten Untersuchungszeitraum wurden 27% der 
Aufgaben, die über den Faktenabruf aus dem Gedächtnis abgerufen wurden, falsch 
gelöst, am Ende der Erarbeitung lag der Prozentsatz bei 9%. Der Einsatz der wieder-
holten Addition erwies sich als fehleranfälliger. 40% der Kinder konnten die wieder-
holte Addition zu Beginn des Schuljahres nicht fehlerfrei einsetzen, der Prozentsatz 
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gegen Ende des Schuljahres nahm lediglich minimal auf 29% ab. MABBOTT und 
BISANZ (2003) verzeichneten ebenso wie LEMAIRE und SIEGLER (1995) für alle 
ermittelten Herangehensweisen über die Zeit sinkende Fehlerquoten (MABBOTT & 
BISANZ, 2004, S. 1097). Nichtsdestotrotz kamen sie für die Jahrgangsstufe 4 zu fol-
gender Erkenntnis: „Children in Grade 4 were almost always accurate when they re-
ported using retrieval and were less accurate when they used nonretrieval procedu-
res“ (ebd., S. 1097). In der Studie von COONEY et al. (1988) erwies sich die Anzahl 
der gemachten Fehler als sehr gering über alle Herangehensweisen hinweg – im Ver-
gleich zur Studie von MABBOTT und BISANZ (2004) ergab die Analyse für den 
Faktenabruf allerdings mehr Fehler im 4. Schuljahr als noch im 3. Schuljahr. Nach 
HEIRDSFIELD et al. (1999) sowie nach STEEL und FUNNELL (2001) lösten Kinder 
mit zunehmendem Alter immer mehr Aufgaben über den Faktenabruf oder mithil-
fe von Ableitungsstrategien richtig. Während im ersten Interview gemäß HEIRDS-
FIELD et al. (1999) nur 37% der Aufgaben korrekt gelöst wurden, stieg der Prozent-
satz korrekt gelöster Aufgaben zum zweiten Interviewzeitpunkt bereits auf 71%. Den 
Forschungsergebnissen von STEEL und FUNNELL (2001) folgend, stellen der Fak-
tenabruf und der Einsatz von Ableitungsstrategien die zwei erfolgreichsten Heran-
gehensweisen an Einmaleinsaufgaben dar. Keine Abnahme der Fehlerquote, son-
dern der gegenteilige Fall liegt in der Untersuchung von HEIRDSFIELD et al. (1999) 
für die wiederholte Addition bzw. das Aufsagen der Reihe vor – mehr Fehler wur-
den von den Schülerinnen und Schülern mit zunehmendem Alter beim wiederhol-
ten Addieren oder beim Aufsagen der Reihe gemacht. Dies kann unter Umständen 
darauf zurückgeführt werden, dass zu einem späteren Zeitpunkt bevorzugt leistungs-
schwächere Schülerinnen und Schüler auf diese Herangehensweisen zurückgreifen 
und diese wiederum weniger erfolgreich in der Ausführung sind als beispielsweise 
leistungsstärkere Kinder, die zu Beginn ebenfalls die wiederholte Addition oder das 
Aufsagen der Reihe als Lösungsweg genutzt haben. Unabhängig von dieser mögli-
chen Erklärung erwies sich die wiederholte Addition erneut als sehr fehleranfällige 
Herangehensweise.

Die Forschungsergebnisse von SIEGLER (1988) sind mit den Erkenntnissen von 
LEMAIRE und SIEGLER (1995) im zweiten Schuljahr vergleichbar. Zu einem sehr 
frühen Zeitpunkt nach der unterrichtlichen Erarbeitung des kleinen Einmaleins 
konnten 78% der Aufgaben, die über den Faktenabruf gelöst wurden bereits fehler-
frei gelöst werden, während nur 59% der Schülerinnen und Schüler über die wie-
derholte Addition zu einem korrekten Ergebnis gelangten. Die zwei Studien von 
LEFEVRE et al. (1996), welche die Strategieverwendung von Studierenden unter-
suchten, off enbarten eine sehr niedrige Fehlerquote. Bei 3% bzw. 4% der Aufgaben, 
die über den Faktenabruf gelöst wurden, konnte keine korrekte Aufgabenlösung er-
zielt werden. Ableitungsstrategien wurden von einem etwas höheren Prozentsatz der 
Studierenden nicht korrekt angewendet (7% bzw. 8%). Das Aufsagen der Reihe wur-
de von den Teilnehmerinnen und Teilnehmern der ersten Studie immer korrekt aus-
geführt, für die zweite Studie von lediglich 6% nicht. Für die wiederholte Addition 
ist ein ähnliches Fehlerbild zu erkennen – während in der ersten Untersuchung die 
sukzessive Addition von 5% der Studierenden nicht korrekt durchgeführt wurde, 
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konnte in der zweiten Studie die gesamte Stichprobe mithilfe der Addition zur rich-
tigen Lösung der Einmaleinsaufgaben gelangen. So gut wie keine Aussagen bzw. Er-
kenntnisse im Hinblick auf mögliche Fehler bei der Ausführung einzelner Rechen-
strategien und Herangehensweisen an Einmaleinsaufgaben liefern die beschriebenen 
nationalen Studien. In der Studie von GASTEIGER und PALUKA-GRAHM (2013) 
wurde unabhängig vom eingesetzten Lösungsweg jede Aufgabe korrekt gelöst. In 
einer weiteren nationalen Studie, der Studie von SELTER (1994)56, waren etwa zwei 
Drittel der Schülerinnen und Schüler nach einer 5-stündigen Erarbeitung von Re-
chenstrategien in der Lage, ausgehend von den Ergebnissen der kurzen Reihen bzw. 
den sogenannten Kernaufgaben durch Addition und Subtraktion (Zerlegung eines 
Faktors) noch unbekannte Einmaleinsaufgaben zu lösen (ebd., S.  171 f.). Das rest-
liche Drittel konnte diese Rechenstrategie nicht unmittelbar zur Lösung einsetzen: 
„Nach und nach gewannen jedoch nahezu alle Schüler Einsicht in die zugrundelie-
genden Prinzipien und waren in der Lage, sie anzuwenden“ (SELTER, 1994, S. 172). 
Im weiteren Verlauf des Unterrichtsversuches wurden Rechenstrategien auch disku-
tiert bzw. bezüglich ihrer Eleganz und Effi  zienz bewertet. Die Vorgehensweisen des 
Verdoppelns und des Ableitens wurden in diesem Zusammenhang an zwei fi ktiven 
Schülerbeispielen behandelt. Im Anschluss an die Diskussion konnte zumindest eine 
der beiden erwähnten Strategien von fast allen Schülerinnen und Schülern angewen-
det werden, die Hälft e verfügte über Sicherheit im Umgang mit beiden Rechenstrate-
gien, dem Verdoppeln und dem Ableiten.

Eine Zusammenschau der vorgestellten Forschungsergebnisse hinsichtlich der 
Lösungskorrektheit liefert für die Rechenoperation der Multiplikation kein einheit-
liches Bild. Während einige Studien über insgesamt sehr hohe Fehlerquoten berich-
ten, sind auch Studien mit sehr geringen Fehlerquoten oder ausschließlich korrek-
ten Aufgabenlösungen beschrieben worden. In der Mehrzahl der Studien lösen die 
Kinder Aufgaben des kleinen Einmaleins über die Zeit zunehmend fehlerfrei. Auch 
hinsichtlich einzelner Herangehensweisen wurden mit zunehmender Erfahrung der 
Kinder in der Regel weniger Fehler verzeichnet. Als eher fehleranfällige Herange-
hensweise wurde die sukzessive Addition identifi ziert, im Gegensatz dazu ging der 
Faktenabruf mit niedrigen Fehlerquoten einher. Welche konkreten Fehler Kinder 
bei der Lösung von Einmaleinsaufgaben machen bzw. beim Einsatz unterschiedli-
cher Herangehensweisen praktizieren, ist in der Forschungsliteratur noch relativ un-
erforscht.57 

56 SELTER (1994) verfolgte in einem mehrmonatigen Unterrichtsversuch das Ziel, Eigenpro-
duktionen im Mathematikunterricht der Grundschule auf die unterrichtliche Realisierung 
bzw. Praktikabilität hin zu überprüfen. Er versuchte nachzuweisen, dass Schülerinnen und 
Schüler jedes Leistungsniveaus von Eigenproduktionen profi tieren sowie auch essentielle In-
halte thematisiert werden können. In einer zweiten Klasse (N = 21) wurden Eigenproduktio-
nen zum multiplikativen Rechnen erprobt (ebd., S. 72 ff .).

57 Eine Vielzahl an Studien im Bereich der Multiplikation liefert Erkenntnisse hinsichtlich 
praktizierter Fehler unabhängig von der eingesetzten Herangehensweise. So unterscheiden 
Studien beispielsweise zwischen „table-errors“ oder „miscellaneous errors“ (CAMPBELL & 
GRAHAM, 1985, S.  350 f.) und ermitteln in diesem Zusammenhang, inwiefern nicht kor-
rekte Aufgabenlösungen, Lösungen der gleichen Einmaleinsreihe (table-related) oder ande-
rer Einmaleinsreihen (table-unrelated) darstellen oder das Ergebnis keiner Einmaleinsaufga-
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Neben dieser kurzen Zusammenfassung der Forschungsergebnisse zum korrekten 
Einsatz einzelner Herangehensweisen bzw. Rechenstrategien, werden im Folgenden 
die benötigten Lösungszeiten für Einmaleinsaufgaben detailliert betrachtet.

Zwei der wenigen Studien, die auch Lösungszeiten unterschiedlicher Lösungswe-
ge von Kindern bei Einmaleinsaufgaben ermittelten, sind die Untersuchungen von 
LEMAIRE und SIEGLER (1995) sowie von MABBOTT und BISANZ (2003). In Ta-
belle 4 sind zur besseren Übersicht die Lösungszeiten der jeweils erhobenen Heran-
gehensweisen der beiden Studien aufgelistet.

 Tabelle 4:  Gemittelte Lösungszeiten (in Sekunden) über alle Teilnehmenden der Untersuchungen von 
LEMAIRE und SIEGLER (1995) sowie von MABBOTT und BISANZ (2003)

Herangehensweisen

LEMAIRE & SIEGLER
(1995)

MABBOT & BISANZ
(2003)

2. Schuljahr
4. Schuljahr 6. Schuljahr

vor während nach

Faktenabruf 5.9 s 2.8 s 2.9 s 2.2 s 1.5 s

Wiederholte Addition 18.8 s 14.7 s 11.8 s 4.8 s 2.8 s

Aufsagen der Reihe – – – 3.8 s 1.5 s

Special trick – – – 5.7 s 3.7 s

Wie der Überblick anhand der Tabelle 4 veranschaulicht, nehmen für fast alle aufge-
führten Herangehensweisen die Lösungszeiten mit zunehmendem Alter ab bzw. die 
Herangehensweisen werden mit zunehmender Erfahrung in der Anwendung schnel-
ler zur Aufgabenlösung eingesetzt. LEMAIRE und SIEGLER (1995) verweisen im 
Zuge der Analyse der Forschungsergebnisse ihrer Studie nicht nur auf quantitative 
Veränderungen im Hinblick auf die Lösungszeiten und die Korrektheit der Aufga-
benlösung, sondern erkennen auch qualitative Anpassungen:

Th e improved execution of the strategies refl ected qualitative as well as quanti-
tative changes. Repeated addition provided the clearest evidence for such quali-
tative changes in strategy execution. Part of the improvement in the speed and 
accuracy of this strategy was due to children increasingly adding the larger ad-
dend the number of times indicated by the smaller, rather than vice versa. (LE-
MAIRE & SIEGLER, 1995, S. 94)

Im Laufe des 2. Schuljahres nimmt in der Studie von LEMAIRE und SIEGLER 
(1995) die benötigte Lösungszeit zur Aufgabenlösung – unabhängig von den He-
rangehensweisen – über alle Erhebungszeiträume hinweg substantiell ab. Der 
Fakten abruf fi ndet am Schuljahresende im Vergleich zum Schuljahresbeginn mehr 
als doppelt so schnell statt. Deutlich schneller werden Aufgaben mit zunehmender 

be (miscellaneous errors) zuzuordnen ist (z. B. BAROODY, 1993; CAMPBELL & GRAHAM, 
1985; COONEY et al., 1988; LEFEVRE et al., 1996). Typische Fehlerbilder je angewandter 
Herangehensweise sind bisher allerdings nicht unterschieden bzw. diff erenziert worden. 
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Erfahrung auch über die wiederholte Addition gelöst, was nicht nur auf den zu-
neh menden Gebrauch der Herangehensweise zurückzuführen ist, sondern wie 
im Zitat von LEMAIRE und SIEGLER  (1995) bereits betont, auch auf die effi  -
zientere Nutzung. Im Gegensatz zur Untersuchung von MABBOTT und BISANZ 
(2003) ermittelten LEMAIRE und SIEGLER (1995) in ihrer Studie allerdings 
außer ordentlich hohe Lösungszeiten (siehe Tabelle 4). Am Ende des 2. Schuljah-
res beläuft  sich die Bearbeitungszeit einer Einmaleinsaufgabe über die wieder-
holte Addition auf fast 12 Sekunden, während MABBOTT und BISANZ (2003) 
im 4. Schuljahr 4.8 Sekunden als Lösungszeit ermittelten. Dieser deutliche Unter-
schied in der Bearbeitungszeit kann einerseits auf die zunehmende Erfahrung im 
Hin blick auf Additionen in höheren Jahrgangsstufen zurückgeführt werden, eben-
so kann aber auch das Aufgabenmaterial für diese Unterschiede verantwortlich 
sein. Fordert eine Studie zum Beispiel hauptsächlich die Lösung komplexer Auf-
gaben aus dem kleinen Einmaleins mit je zwei großen Faktoren (z. B. beide Fakto-
ren größer als 5) im Gegensatz zum vermehrten Einsatz von Aufgaben mit jeweils
einem kleinen Faktor bzw. zwei kleinen Faktoren in der anderen Studie, so stellt sich 
die wiederholte Addition bei letztgenanntem Aufgabenmaterial als vermeintlich ge-
eignetere Herangehensweise heraus, die deutlich schneller zur korrekten Aufgaben-
lösung führt.58 Wird die wiederholte Addition in der Studie von MABBOTT und 
BISANZ (2003) beispielsweise von den Schülerinnen und Schülern nur bei relativ 
kleinen Faktoren eingesetzt, während Kinder der Studie von LEMAIRE und SIEG-
LER (1995) auch zur Lösung komplexer Aufgaben mit großen Faktoren auf diese 
Herangehensweise zurückgreifen, dann sind die enormen Abweichungen in der Be-
arbeitungszeit ebenfalls – wie gerade bereits in einem ähnlichen Zusammenhang an-
geführt – nicht weiter verwunderlich. Stichproben, die sich in der Leistungsstärke 
unterscheiden, könnten ebenfalls zu Abweichungen der Lösungszeiten führen.

Über die zwei bereits genannten Studien hinaus, wurden auch in der Studie von 
STEEL und FUNNELL (2001) Lösungszeiten ermittelt. Wie bereits in dem Abschnitt 
Häufi gkeiten des Einsatzes von Herangehensweisen bzw. Rechenstrategien berichtet, 
besteht eine Besonderheit der Auswertung darin, zu erfassen, wie häufi g Schülerin-
nen und Schüler auf ein und dieselbe Herangehensweise oder verschiedene Herange-
hensweisen zur Aufgabenlösung zurückgriff en. Die Lösungszeiten dieser Studie wur-
den erneut unter diesem Gesichtspunkt analysiert. Die durchschnittlich schnellste 
Lösungszeit der Studie von STEEL und FUNNELL (2001) konnte für die Personen-
gruppe ermittelt werden, die ausschließlich auf den Faktenabruf zurückgriff . Der Ab-
ruf von Einmaleinsaufgaben aus dem Gedächtnis sowie der Rückgriff  auf Ableitungs-
strategien führte zur zweitschnellsten Lösungszeit, gefolgt von der Personengruppe, 

58 BIEWALD (1998), STEEL und FUNNELL (2001) sowie LEFEVRE et al. (2004) sprechen 
von schweren Aufgaben des kleinen Einmaleins, wenn sich die Aufgaben aus zwei Fakto-
ren größer als fünf zusammensetzen (BIEWALD, 1998, S. 58; LEFEVRE et al., 2004, S. 1019; 
STEEL & FUNNELL, 2001, S.  48). Aufgaben mit zwei kleinen Faktoren (LEFEVRE et al., 
2004, S. 1019; STEEL & FUNNELL, 2001, S. 48) oder einem kleinen und einem großen Fak-
tor (BIEWALD, 1998, S. 58) sind einfacher zu berechnen.
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die zusätzlich noch das Aufsagen der Reihe nutzte. Das ausschließliche Aufsagen der 
Reihe hat sich als am zeitintensivsten herauskristallisiert.

Eine Erkenntnis kann allerdings im Hinblick auf die wiederholte Addition unab-
hängig von der Bandbreite an Bearbeitungszeiten festgehalten werden: Die wieder-
holte Addition stellt eine weniger tragfähige Herangehensweise dar (siehe Abschnitt 
2.2.2), da ihr kein bewusster Einsatz von Zahlbeziehungen zugrunde liegt. Ihr Ein-
satz ist zudem häufi g zeitintensiver als der Einsatz anderer ermittelter Herangehens-
weisen an Einmaleinsaufgaben des kleinen Einmaleins (siehe Tabelle 4). Je nach Auf-
gabencharakteristik kann die sukzessive Addition allerdings vereinzelt auch überlegt 
und sinnvoll eingesetzt und somit schnell und fehlerfrei zur Aufgabenlösung füh-
ren. Der Faktenabruf aus dem Gedächtnis führt am schnellsten zur Lösung von Ein-
maleinsaufgaben (LEMAIRE & SIEGLER, 1995; MABBOTT & BISANZ, 2003; SIEG-
LER, 1988; STEEL & FUNNELL, 2001). Bei Anwendung von Ableitungsstrategien 
ist es auf Basis der vorgestellten Studien eher schwierig, Aussagen zu den konkreten 
Lösungszeiten dieser Herangehensweise zu tätigen. Sowohl in der Studie von MAB-
BOTT und BISANZ (2003) als auch in der Studie von STEEL und FUNNELL (2001) 
wurden Ableitungsstrategien nur indirekt erhoben.59 

Die Lösungszeiten von Erwachsenen sind der Studie von LEFEVRE et al. (1996) 
zufolge durchwegs sehr niedrig. Für den Faktenabruf benötigten Studierende im 
Durchschnitt 1.2 Sekunden. Der Einsatz von Ableitungsstrategien führte in 3.1 bzw. 
in 2.2 Sekunden zur korrekten Aufgabenlösung. Im Vergleich wurde die korrekte 
Einmaleinsaufgabe mithilfe des Aufsagens der Reihe (in 1.7 bzw. 1.8 Sekunden) und 
unter Verwendung der wiederholten Addition (in 1.2 Sekunden in beiden Studien) 
deutlich schneller ermittelt als über den Einsatz von Ableitungsstrategien. Die wie-
derholte Addition stellt sich diesen Forschungsergebnissen zufolge als schnelle und 
akkurate Herangehensweise für Erwachsene heraus (LEFEVRE et al., 1996, S.  294). 
Dieses Ergebnis darf nicht einfach als gegeben hingenommen werden, sondern muss 
einer genauen Analyse unterzogen werden. Berücksichtigt man, dass die wiederhol-
te Addition in genannter Studie hauptsächlich bei Aufgaben mit Faktor 2 zur Aufga-
benlösung herangezogen wurde, wird die Aussage „repeated addition was a fast and 
accurate procedure“ (LEFEVRE et al., 1996, S. 294) relativiert.

Besteht das Ziel einer Studie darin, aussagekräft ige Erkenntnisse zur Effi  zienz 
einzelner Herangehensweisen bzw. Rechenstrategien zu erzielen, sollten nicht aus-
schließlich die Korrektheit und die Lösungszeiten verschiedener Lösungswege erfasst 
werden, sondern idealerweise auch berücksichtigt werden, welche Herangehensweise 
bei welchem Aufgabentyp bzw. bei welchen Faktoren bevorzugt zum Einsatz kommt. 
Nur aufgrund der zusätzlichen Information der Studie von LEFEVRE et al. (1996), 
dass die sukzessive Addition in erster Linie bei Einmaleinssätzen mit Faktor 2 zur 

59 In der Studie von MABBOTT und BISANZ (2003) wurden Rechenstrategien sowie das Fin-
gerrechnen beim Neuner-Einmaleins unter die sogenannten special tricks geführt und eine 
gemeinsame Lösungszeit ermittelt. Die berichteten Lösungszeiten der Studie von STEEL und 
FUNNELL (2001) fassen einerseits Lösungszeiten für Rechenstrategien und Faktenabrufe zu-
sammen und andererseits Lösungszeiten für Rechenstrategien, Faktenabrufe und das Aufsa-
gen von Einmaleinsreihen.
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Aufgabenlösung eingesetzt wurde, konnte der deutliche Unterschied zwischen den 
ermittelten Lösungszeiten von durchschnittlich 1.2  Sekunden im Vergleich zu den 
deutlich höheren Zeiten der anderen Studien relativiert werden. Auch die Lösung 
von Einmaleinsaufgaben über das Aufsagen der Reihe wird in der Studie von LE-
FEVRE et al. (1996) den Lösungszeiten zufolge als durchaus schnelle Lösungsvarian-
te geführt – doch scheint die geringe Lösungszeit bei Erwachsenen auch auf einen 
geschickten Einsatz zurückzuführen zu sein. Das Aufsagen der Reihe wurde am häu-
fi gsten für Faktoren mit 3 oder 5 eingesetzt und bei anderen Faktoren gab immer 
der kleinere Faktor die Anzahl an Schritten vor. Die Lösung von Einmaleinsaufgaben 
mithilfe von Ableitungsstrategien beanspruchte im Durchschnitt 2- bzw. 3-mal mehr 
Zeit als ein Abruf von Aufgaben aus dem Gedächtnis. Eine sinnvolle bzw. nachvoll-
ziehbare Erklärung liefern dafür LEFEVRE et al. (1996): „Derived-fact solutions pre-
sumably involve both retrieval and some additional operation and thus would be ex-
pected to be slower and less accurate than retrieval“ (ebd., S. 295).

Neben den bereits erwähnten Studien wurden weitere Untersuchungen im Be-
reich der Multiplikation durchgeführt, die Lösungszeiten von Kindern allerdings un-
abhängig von den eingesetzten Herangehensweisen erfassen und somit  keine Aus-
sagen im Hinblick auf Bearbeitungszeiten je Herangehensweise  ermöglichen. Als 
exemplarisches Beispiel wird an dieser Stelle auf die Studie von KOSHMIDER und 
ASHCRAFT (1991) verwiesen: „No direct measure of strategic pro cessing was 
either planned or obtained in this study“ (KOSHMIDER & ASHCRAFT, 1991, 
S.  61). KOSHMIDER und ASHCRAFT (1991) untersuchten in ihrer Studie Be-
arbeitungszeiten zur Lösung von Einmaleinsaufgaben des kleinen Einmaleins im 3., 
5., 7. und 9. Schuljahr sowie bei Studentinnen und Studenten zwischen 18  und 25 
Jahren (N  =  90). Das Studiendesign dieser Studie unterscheidet sich von den bis-
her vorgestellten Untersuchungen. Während Kinder in den bisherigen Studien in 
den Interviewsituationen aufgefordert wurden, die Ergebnisse der kontextfrei ge-
stellten Einmaleinsaufgaben möglichst schnell zu lösen, werden in der Studie von 
KOSHMIDER und ASHCRAFT (1991) die Aufgabenstellung sowie eine mögli-
che Lösung gleichzeitig präsentiert und Kinder aufgefordert, Aussagen zur Fehler-
freiheit bzw. Korrektheit schnellstmöglich zu tätigen. Die ermittelten Reaktions-
zeiten von im Durchschnitt 2542 ms, 1642 ms, 1370 ms, 1140 ms und 1084 ms in 
den Jahrgangsstufen 3, 5, 7, 9 und bei Studentinnen und Studenten müssen dabei 
unter zweierlei Gesichtspunkten betrachtete werden. Nur die Reaktionszeiten der 
korrekt gelösten Aufgaben werden zur Analyse von durchschnittlichen Reaktions-
zeiten herangezogen und Ausreißer – Aufgaben, deren Lösung besonders viel Zeit 
in Anspruch genommen haben – wurden nach bestimmten Vorgaben aus den Be-
rechnungen ausgeschlossen. „Th e RTs from trials on which an error occurred were eli-
minated from further consideration, as were RTs identifi ed as extreme scores beyond 
the .05 level (for Dixon’s test for outliers […])“ (KOSHMIDER & ASHCRAFT, 1991, 
S. 59).

Um aus den beschriebenen Untersuchungen die richtigen Schlüsse ziehen zu 
können bzw. die gesammelten Erkenntnisse fi nal zusammenfassen oder vergleichen 
zu können, müssen – wie in den bisherigen Ausführungen beschrieben – immer 
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auch eine Fülle an Informationen oder Rahmenbedingungen berücksichtigt werden. 
Ohne Berücksichtigung der Aufgabencharakteristik sind beispielsweise Erkenntnis-
se im Hinblick auf Lösungszeiten von Herangehensweisen nur schwer einzuschätzen. 
Welche weiteren Aspekte darüber hinaus Berücksichtigung fi nden sollten, wird an-
hand der folgenden Ausführungen veranschaulicht.

Die in der Vergangenheit am häufi gsten eingesetzte Methode zur Ermittlung 
von Lösungskorrektheit und Lösungszeiten einzelner Herangehensweisen ist die so-
genannte „choice method“ (LUWEL, ONGHENA, TORBEYNS, SCHILLEMANS & 
VERSCHAFFEL, 2009, S.  351, Hervorhebung im Original; SIEGLER  & LEMAIRE, 
1997, S.  71), die auch in den bisher beschriebenen Untersuchungen in erster Linie 
zum Einsatz kam. „It involves presenting a set of problems to a group of participants, 
assessing their strategy use on each problem, and then calculating the mean speed 
and accuracy for each strategy“ (LUWEL et  al., 2009, S.  251). Nach SIEGLER und 
LEMAIRE (1997) weist die Methode der freien Strategiewahl allerdings zwei nicht 
zu vernachlässigende Mängel auf, die auch auf die bisher beschriebenen Forschungs-
ergebnisse durchaus zutreff en können: „Unfortunately, the estimates of strategy cha-
racteristics generated by the choice method are biased by selection eff ects. Th ese se-
lection eff ects involve both the problems on which strategies are used and the people 
who use each strategy most oft en“ (SIEGLER & LEMAIRE, 1997, S. 71 f.). Eine He -
rangehensweise oder Rechenstrategie, die bevorzugt zur Lösung von einfachen Auf-
gaben herangezogen wird oder in erster Linie von den leistungsfähigeren Kindern 
eingesetzt wird, wird den Eindruck erwecken eine effi  zientere Strategie darzustel-
len als eine Herangehensweise oder Rechenstrategie, auf die fast ausschließlich bei 
schwierigeren Aufgaben zurückgegriff en wird oder bei weniger qualifi zierten Kin-
dern zum Einsatz kommt (LUWEL et al., 2009, S. 251; SIEGLER & LEMAIRE, 1997, 
S. 71 f.).

Die Interpretation der Forschungsergebnisse bzw. der Vergleich von Studien hin-
sichtlich der Effi  zienz verschiedener Herangehensweisen wird somit nicht nur durch 
die Nicht-Berücksichtigung der Aufgabencharakteristika erschwert, sondern auch 
durch viele weitere Zusatzinformationen, die häufi g nicht oder nicht detailliert ge-
nug berichtet werden. Studien, die sich mit Lösungszeiten im Allgemeinen oder dem 
Faktenabruf von Einmaleinsaufgaben im Speziellen beschäft igen, sollten beispiels-
weise viel diff erenzierter die folgenden Fragestellungen beantworten: 
• Welche Verfahren werden zum Ausschluss von Reaktionszeiten, die als Ausreißer 

identifi ziert werden, herangezogen? 
 Dies ist aus folgendem Grund von bedeutender Relevanz: Werden keine Ausrei-

ßer ausgeschlossen, so sind die Reaktionszeiten entsprechend höher, ebenso für 
den Fall, dass die angewandte Ausschluss-Regel einer Studie moderater als die 
einer anderen Studie ist.

• Wie viel Zeit wird den Kindern zur Beantwortung der Einmaleinsaufgaben zuge-
standen?

 Verfügen die Studienteilnehmerinnen und -teilnehmer beispielsweise wie in der 
Studie von LEFEVRE et al. (1996) nicht länger als 5 Sekunden zur Aufgabenbe-
antwortung (ebd., S. 293), sind auch die sehr geringen Lösungszeiten, die in die-
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ser Untersuchung ermittelt werden konnten, nicht zwingend überraschend. Er-
folgt in einer Studie dahingegen keine Begrenzung der Antwortzeit oder wird 
eine andere Zeitspanne zur Begrenzung angesetzt, können variierende durch-
schnittliche Lösungszeiten verschiedener Studien unter anderem auch darin be-
gründet liegen.

• Wie groß ist der Prozentsatz der Schülerinnen und Schüler, deren Abruf aufgrund 
eines nicht korrekten Ergebnisses nicht für die Analysen berücksichtigt wurde?

 Rufen Kinder viele Aufgaben aus dem Gedächtnis fehlerhaft  ab, kann dies auch 
zu einer Verzerrung der Gesamtstichprobe führen. Unter Umständen lösen vor 
allem leistungsschwächere Schülerinnen und Schüler Einmaleinsaufgaben deut-
lich weniger häufi g korrekt, so dass möglicherweise ein Großteil der Lösungszei-
ten auf Basis der Nennungen leistungsstärkerer Kinder erfolgen und die Lösungs-
zeiten dementsprechend niedriger ausfallen.

Forschungsergebnisse in Abhängigkeit von der Aufgabencharakteristik
Neben der aufgezeigten Vielfalt an Herangehensweisen bzw. Rechenstrategien an 
Einmaleinsaufgaben, der Häufi gkeit des Einsatzes, den berichteten Lösungszeiten 
und der Lösungskorrektheit soll in diesem Abschnitt auch die Abhängigkeit von der 
Aufgabencharakteristik nicht unberücksichtigt bleiben. Nicht zuletzt aufgrund seiner 
allgegenwärtigen Präsenz in der Forschungsliteratur soll zunächst der problem-size 
eff ect analysiert werden.60 Aussagen im Zusammenhang mit diesem Eff ekt wie bei-
spielsweise von MABOTT und BISANZ (2003) „one of the most pervasive fi ndings 
in research“ (ebd., S.  1092) oder laut DOMAHS, DELAZER und NUERK (2006) 
„one of the core fi ndings in simple arithmetic is the problem-size eff ect“ (ebd., 
S.  275) verdeutlichen dabei seinen Stellenwert. Ganz allgemein versteht man unter 
diesem Eff ekt, dass mit zunehmender Größe der Operanden bei arithmetischen 
Aufgabenstellungen die Lösungszeiten und die Anzahl gemachter Fehler wachsen 
(CAMPBELL & GRAHAM, 1985; KOSHMIDER & ASHCRAFT, 1991). „Problems 
with smaller operands […] are solved more quickly and accurately than problems 
with larger operands“ (LEFEVRE et al., 1996, S. 284). Für die Multiplikation bedeu-
tet dies konkret, dass Einmaleinsaufgaben mit großen Faktoren (z. B. 7 · 8) tenden-
ziell längere Lösungszeiten und mehr Fehler hervorrufen als Aufgaben mit kleineren 
Faktoren (z. B. 2 · 3) (CAMPBELL & GRAHAM, 1985; DE BRAUWER et al., 2006; 
KOSHMIDER & ASHCRAFT, 1991; LEFEVRE et al., 1996; LEFEVRE, SHANAHAN 
& DESTEFANO, 2004; MABBOTT & BISANZ, 2003, S. 1092; SIEGLER, 1988). Ex-
plizite Ausnahmen stellen die Quadrataufgaben und Einmaleinssätze mit 5 dar: Qua-
drataufgaben werden in der Regel schneller gelöst als Nicht-Quadrataufgaben (tie ef-

60 Einen der ersten Nachweise für den problem-size eff ect lieferte Frank L. Clapp im Jahr 1921, 
als er an 10.945 Schülerinnen und Schülern der Klassen drei bis acht an insgesamt 3.862.332 
Aufgabenstellungen – alle möglichen Aufgabenkombinationen der Addition, Subtraktion, 
Multiplikation und Division – den Schwierigkeitsgrad ermittelte. Im Zusammenhang mit 
der Multiplikation beobachtete er, dass einfache Kombinationen mit großen Faktoren sich 
als schwieriger zur Lösung herauskristallisierten als Aufgaben mit kleinen Faktoren (CLAPP, 
1924). 
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fect), Einmaleinsaufgaben mit einem Faktor 5 schneller und korrekter als Aufgaben 
mit vergleichbar großen Faktoren (fi ve eff ect) (CAMPBELL & GRAHAM, 1985). Die 
Eff ekte konnten sowohl in Untersuchungen mit Kindern als auch mit Erwachsenen 
ermittelt werden: „In sum, the eff ects that are robustly observed in adult multiplica-
tion (the problem size, fi ve, and tie eff ects) have been observed in children as well“ 
(CAMPBELL & GRAHAM, 1985, S.  350; DE BRAUWER et al., 2006, S.  1481; LE-
FEVRE et al., 1996, S. 291).

Nach CAMPBELL und GRAHAM (1985) können diese Eff ekte bereits sehr früh 
im Lernprozess verzeichnet werden und sind bis in das Erwachsenenalter festzustel-
len. „Th us, although problem size is a reliable predictor of latencies and errors, it 
provides an incomplete account of the variability in solution latencies on single-digit 
multiplication problems“ (LEFEVRE et al., 1996, S.  284 f.). CAMPBELL und GRA-

A  bbildung 19:  Lösungszeiten der Studie von CAMPBELL und GRAHAM (1985) in Sekunden bzw. 
Millisekunden sortiert nach Einmaleinssätzen und den Klassenstufen 2, 3, 4, 5 sowie 
der Erwachsenenstichprobe (ebd., S. 348). Die Reaktionszeiten der Teilnehmerinnen 
und Teilnehmer der Jahrgangsstufe 3 wurden zu drei Messzeitpunkten (A, B, C) 
erhoben. Zwischen der ersten und der zweiten Messung lagen sieben Wochen, 
zwischen der zweiten und der dritten fünf Wochen. 
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HAM (1985) veranschaulichen anhand der Abbildung 19 sehr deutlich, dass die Re-
aktionszeiten mit zunehmender Größe der Faktoren nicht einfach linear oder kur-
venförmig verlaufen – wie beim problem-size eff ect intendiert (CAMPBELL & 
GRAHAM, 1985, S.  349). Neben den Einmaleinssätzen mit 5, die schneller gelöst 
werden als Aufgaben mit ähnlicher Faktorgröße (z. B. Einmaleinssätze mit 4 oder 6) 
sind auch Aufgaben mit einem Faktor 9 größtenteils leichter zu lösen als die Aufga-
benkombinationen, die den kleineren Faktor 8 aufweisen.

Eine Studie von KOSHMIDER und ASHCRAFT (1991) ermittelte für die Klassen 
3, 5, 7, 9 und für Studierende im Durchschnitt 317 ms langsamere Lösungszeiten für 
Einmaleinsaufgaben mit hohen Ergebnissen im Vergleich zu Aufgaben, deren Pro-
dukt klein ausfi el.61 Während sich der problem-size-eff ect zwischen kleinen und gro-
ßen Aufgabenkombinationen im 3. Schuljahr noch auf 703 ms belief, wurde mit zu-
nehmendem Alter eine deutliche Abnahme dieses Eff ektes erkennbar – 233 ms, 194 
ms, 164 ms und 161 ms für das 5., 7. und 9. Schuljahr sowie für das Erwachsenen-
alter (KOSHMIDER & ASHCRAFT, 1990, S.  60). Ähnliche Entwicklungen wie die 
gerade beschriebenen wurden auch für die Anzahl der Fehler ermittelt. Drittkläss-
ler beispielsweise konnten lediglich 4% der kleinen Aufgaben nicht korrekt lösen, bei 
großen Aufgaben stieg der Prozentsatz auf 19% (ebd., S. 62). Während die bereits vor-
gestellten Untersuchungen von CAMPBELL und GRAHAM (1985) sowie KOSHMI-
DER und ASHCRAFT (1991) davon ausgehen, dass der problem-size eff ect hinsicht-
lich der Reaktionszeiten drastisch und sukzessive abnimmt mit zunehmendem Al-
ter, stabilisiert sich der Eff ekt allerdings laut DE BRAUWER et al. (2006) ab dem 6. 
Schuljahr. Ein Grund für die unterschiedlichen Ergebnisse liegt nach DE BRAUWER 
et al. (2006) in der Nicht-Berücksichtigung der altersbedingten Unterschiede der er-
mittelten Reaktionszeiten: „However, these studies also reported major diff erences in 
mean RTs among age groups. As eff ect sizes scale up or down with increasing or de-
creasing RTs, their conclusions can be an artifact of the observed diff erences in mean 
RTs“ (ebd., S. 53; DE BRAUWER & FIAS, 2009). DE BRAUWER et al. (2006) kom-
men zu folgendem Fazit: „Our results indeed demonstrate the importance of cau-
tiously interpreting age group by condition interactions in developmental research 
when confronted with between-group diff erences in mean RTs“. Während Uneinig-
keit hinsichtlich einer Stabilisierung des problem-size eff ects nach dem 5. Schuljahr 
herrscht, ist allerdings das Antreff en dieses Eff ektes in der Primarstufe unbestritten.

In einer bereits in den vorherigen Abschnitten erwähnten Untersuchung an 
N  =  241 Kindern im Alter zwischen 8 und 10 Jahren konnten STEEL und FUN-
NELL (2001) ebenfalls nachweisen, dass Lösungszeiten für Aufgaben mit gro-
ßen Faktoren (7 bis 12) signifi kant größer waren im Vergleich zu kleinen Faktoren 
(1 bis 6) (ebd., S.  48 f.). Während in den anderen erwähnten Studien der problem-
size eff ect nicht für einzelne Herangehensweisen betrachtet wurde, werteten STEEL 
und FUNNELL (2001) diesen auch getrennt nach Herangehensweisen aus. Der pro-

61 In der Studie von KOSHMIDER und ASHCRAFT (1991) wurden die Einmaleinsaufgaben 
unterteilt in kleine und große Aufgaben basierend auf der Größe ihres Produktes. Von klei-
nen Aufgaben wird bei einem Produkt zwischen 1 und 18 gesprochen, von großen Aufgaben 
bei einem Produkt zwischen 20 und 81 (ebd., S. 58).



   170  

blem-size eff ect ist nicht nur präsent für die Fehlerrate insgesamt über alle Heran-
gehensweisen, sondern auch für alle Strategiegruppen separat betrachtet. Während 
beispielsweise der Faktenabruf für kleine Fakten nur in 2% der Fälle nicht korrekt 
durchgeführt wurde, stieg die Anzahl der Fehler bei dieser Herangehensweise auf 
13% für große Faktoren. Darüber hinaus konnte diese Studie auch nachweisen, dass 
verschiedene Einmaleinsaufgaben innerhalb einer Einmaleinsreihe unabhängig von 
der Faktorengröße schneller gelöst werden als die gleiche Anzahl an bunt gemischten 
Aufgaben aus verschiedenen Einmaleinsreihen. „Children clearly benefi ted from the 
fact that, on banded screens, all questions were drawn from the same multiplication 
series“ (STEEL & FUNNELL, 2001, S. 43).

Die Untersuchung von STEEL und FUNNELL (2001) stellt eine der wenigen Stu-
dien im Bereich der Multiplikation dar, die die verschiedenen zur Lösung der Auf-
gabe eingesetzten Herangehensweisen bzw. Strategien auch unter dem Gesichtspunkt 
der Aufgabencharakteristik betrachtet. Dabei trifft   die Studie Aussagen darüber, wel-
che Herangehensweisen bevorzugt bei Aufgaben mit kleinen bzw. großen Faktoren 
zum Einsatz kamen. 54% der Kinder zwischen 10 und 12 Jahren haben zur Lösung 
bei Aufgaben mit kleinen Faktoren ausschließlich den Faktenabruf eingesetzt. Fak-
tenabruf und Ableitungsstrategien nutzten 10% der Kinder bei Aufgaben mit klei-
nen Faktoren, auf verschiedene Herangehensweisen griff en 16% der Kinder zurück 
sowie ein Fünft el der Kinder auf das Aufsagen der Reihe. „Overall, there was a signi-
fi cant shift  away from retrieval strategies for low numbers toward less effi  cient stra-
tegies for high operands“ (STEEL & FUNNELL, 2001, S. 45). Anstelle die eff ektivs-
te verfügbare Herangehensweise zur Aufgabenlösung einzusetzen – wie zur Lösung 
der Einmaleinsaufgaben mit kleinen Faktoren –, griff en Kinder bei großen Faktoren 
auf die zweiteff ektivste zur Verfügung stehende Herangehensweise zurück. Kinder, 
die Aufgaben mit kleinen Faktoren ausschließlich über den Faktenabruf lösten, rie-
fen die Lösung für große Faktoren erneut aus dem Gedächtnis ab und nutzten Ablei-
tungsstrategien. Wurden der Faktenabruf und Ableitungsstrategien zur Lösung von 
Einmaleinsaufgaben mit kleinen Faktoren bevorzugt eingesetzt, lösten dieselben Kin-
der Aufgaben mit großen Faktoren über den Faktenabruf, über Ableitungsstrategien 
und das Aufsagen der Reihe. Kinder, die den Faktenabruf, Ableitungsstrategien und 
das Aufsagen der Reihe zur Lösung von Aufgaben mit kleinen Faktoren einsetzten, 
wählten zur Aufgabenlösung mit großen Faktoren nur noch ausschließlich das Auf-
sagen der Reihe. Obwohl sich gezeigt hat, dass Aufgabenmerkmale einen Einfl uss 
auf die Wahl der Herangehensweisen und Rechenstrategien haben, wurden diese nur 
in wenigen Studien (z. B. LEFEVRE et al., 1996; STEEL & FUNNELL, 2001) gezielt 
betrachtet. Im Fall der Studie von LEFEVRE et al. (1996) allerdings auch nur bei 
Erwachsenen. Vor allem für das Erwachsenenalter kann in diesem Zusammenhang 
festgehalten werden: „Selection of procedures was not random, but was systematical-
ly related to problem characteristics“ (LEFEVRE et al., 1996, S. 295).
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Zusammenfassung
Eine Zusammenstellung der Forschungsergebnisse der nationalen und internatio-
nalen Studien macht deutlich, dass insgesamt eher wenige Studien zur Multiplika-
tion bzw. zum kleinen Einmaleins existieren. Darüber hinaus beschäft igt sich vor al-
lem nur eine begrenze Anzahl an Untersuchungen mit dem Strategieeinsatz bzw. der 
Strategieverwendung beim kleinen Einmaleins. Vor allem die relativ geringe Gesamt-
zahl an nationalen Studien in diesem Forschungsgebiet wurde in den Ausführun-
gen dieses Abschnittes ersichtlich. In der internationalen Literatur, die im Vergleich 
zu den nationalen Studien deutlich mehr Studien in diesem „thread in single-digit 
multiplication“ (SHERIN & FUSON, 2005, S. 349) aufweist, fi el allerdings der größ-
tenteils unbedeutend geringe Einsatz an Rechenstrategien ins Auge. Welche Wir-
kung bzw. welchen Einfl uss eine Erarbeitung des kleinen Einmaleins über Rechen-
strategien auf die Strategieverwendung und das langfristige Ziel des Faktenabrufes 
besitzt, muss somit bisher weitgehend unbeantwortet bleiben. Da diese Art der Er-
arbeitung die in Deutschland verpfl ichtend vorgeschriebene Vorgehensweise seit ei-
nigen Jahren darstellt (siehe Abschnitt 2.5.2), wird der vorhandene Forschungsbedarf 
in diesem Kontext besonders deutlich. Erste Indizien sprechen laut der gesammel-
ten Forschungsergebnisse dafür, dass der Einsatz von Rechenstrategien abhängig von 
der unterrichtlichen Erarbeitung zu sein scheint. Wie allerdings die konkrete unter-
richtliche Erarbeitung des kleinen Einmaleins detailliert vonstattengeht, kann aus der 
Mehrzahl der Studien nicht entnommen werden. Um zukünft ig Aussagen hinsicht-
lich der Strategieverwendung beim kleinen Einmaleins treff en zu können, muss die 
unterrichtliche Erarbeitung mehr in den Fokus gerückt werden.

3.2.2 Methodische Schwierigkeiten bei der Kategorisierung 
der verschiedenen Herangehensweisen beim Lösen von 
Einmaleinsaufgaben

Wie bereits im Abschnitt 3.2.1 angeführt bzw. an der ein oder anderen Stelle die-
ser Arbeit darauf verwiesen, müssen die Forschungsergebnisse teilweise sehr vorsich-
tig bzw. unter Berücksichtigung des Studiendesigns oder Besonderheiten der durch-
geführten Studien interpretiert werden. Vor allem bei der gesonderten Betrachtung 
einzelner Herangehensweisen oder ermittelter Lösungszeiten muss bei der Beurtei-
lung bzw. Interpretation der Ergebnisse beachtet werden, dass die von den Kindern 
genannten Herangehensweisen an Einmaleinsaufgaben unter Umständen nicht den 
wirklich eingesetzten Lösungswegen entsprechen. „Students do just what they are in-
structed to do, they do sometimes follow recent teaching, or do what is usually ex-
pected in the class“ (THRELFALL, 2009, S.  545). THRELFALL  (2009) geht davon 
aus, dass Schülerinnen und Schüler ihre Antworten im Interview unter Umständen 
entsprechend dem Schulkontext anpassen und dementsprechend die von ihnen er-
warteten Herangehensweisen äußern, ohne diese tatsächlich zur Lösungsfi ndung ein-
gesetzt zu haben. Ein Grund den Angaben der Schülerinnen und Schüler zur Stra-
tegiewahl kritisch gegenüberzustehen sieht nach THRELFALL (2009) wie folgt aus: 
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„One is that the school context, or any other particular context in which data collec-
ted, is also a constrained context, and the subject may say what they feel is expected 
of them“ (ebd., S. 549). Möglicherweise werden in den Interviews aber auch beson-
ders leicht zu beschreibende Herangehensweisen genannt anstelle der ursprünglich 
angewandten Lösungswege (THRELFALL, 2009, S.  549). Auch ASHCRAFT (1990) 
nimmt in diesem Zusammenhang an: „Verbalised solutions may not refl ect the sub-
ject’s true solution strategy, but merely one that is somewhat easier to verbalise“ 
(ebd., S. 201).

In dieser Arbeit wurden bereits mehrmals mögliche Kategorisierungen von Her-
angehensweisen zum Lösen von Einmaleinsaufgaben des kleinen Einmaleins erläu-
tert. Die Herangehensweisen bzw. die gebildeten Kategorien erweisen sich dabei im 
Bereich der Multiplikation im Vergleich zur Addition und Subtraktion als sehr über-
schaubar. Allerdings stellt gerade im Bereich der Multiplikation der angewandte Lö-
sungs- bzw. Rechenweg viel mehr noch als in den anderen Rechenoperationen „a 
challenge for categorization” (SHERIN & FUSON, 2005, S. 376) dar. An dieser Stelle 
soll zur Veranschaulichung auf ein Fallbeispiel von SHERIN und FUSON (2005) Be-
zug genommen werden:

In this episode, Cayla was given the task of multiplying 2 × 3, and she respon-
ded, relatively quickly, with an answer of 6. Th en, when prompted to explain, 
she explained that ‘you could add three plus three.’ Th e point is that it is un-
clear how to categorize an episode of this sort in terms of our taxonomy. Th e in-
itial answer was produced very quickly, which suggests that this is an episode of 
learned product. However, in her explanation, Cayla said that the answer could 
be found by adding 3 + 3. Indeed, it is not implausible that an answer could 
be produced quite quickly using this latter strategy. (SHERIN & FUSON, 2005, 
S. 376, Hervorhebung im Original)

Auf die beschriebene Situation scheint die Aussage von TER HEEGE (1985), auf die 
bereits im Abschnitt 2.4.2 Bezug genommen wurde, sehr treff end zu passen: Schü-
lerinnen und Schüler werden zunehmend so erfahren bzw. bewandt, dass es nur 
schwierig möglich ist, zu unterscheiden, ob Kinder auf einen Faktenabruf zur Aufga-
benlösung zurückgreifen oder die Einmaleinsaufgabe mithilfe anderer Herangehens-
weisen lösen (TER HEEGE, 1985, S.  386). Nach SHERIN und FUSON (2005) wird 
eine eindeutige Zuordnung eines Lösungsweges bzw. einer Herangehensweise darü-
ber hinaus umso schwieriger mit zunehmender Erfahrung hinsichtlich der Rechen-
operation: „We believe that coding becomes increasingly diffi  cult as students move 
toward expertise, because of a real merging of the strategies“ (SHERIN & FUSON, 
2005, S. 393).

In diesem Zusammenhang stellt sich die berechtigte Frage, wie man bei Schü-
lerinnen und Schülern den Einsatz einer Herangehensweise bzw. Rechenstrategie 
von dem Abruf einer Aufgabe aus dem Gedächtnis präzise und vor allem vertret-
bar unterscheidet. In der Forschungsliteratur werden verschiedene Methoden diff e-
renziert. Einerseits sind Studien im Bereich der Multiplikation vorzufi nden, die aus-
schließlich aufgrund von verbalen Äußerungen der Studienteilnehmerinnen und 
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-teilnehmer Zuordnungen vornehmen (z. B. COONEY et al., 1988; LEFEVRE et al., 
1996; MABBOTT & BISANZ, 2003; SIEGLER, 1988; STEEL & FUNNELL, 2001). 
Nach COONEY et al. (1988) werden Aussagen wie „I  just knew it“, „It just came to 
me“ oder „I remembered it“ (ebd., S.  330) als Faktenabruf klassifi ziert. Die Zuord-
nung von LEFEVRE et al. (1996) sowie von MABBOTT und BISANZ (2003) sah zu-
dem noch als weitere Voraussetzung vor, dass kein Hinweis für off ensichtliche Be-
rechnungen vorlag. Den gleichen Standpunkt teilten auch SIEGLER (1988) sowie 
LEMAIRE und SIEGLER (1995): „On trials in which no overt behavior (e. g., subvo-
cal counting, use of fi ngers, or writing) was evident, children were classifi ed as having 
retrieved the answer“ (LEMAIRE & SIEGLER, 1995, S. 88; SIEGLER, 1988, S. 264). 
STEEL und FUNNELL (2001) berücksichtigten für ihre Klassifi kation noch eine zeit-
liche Komponente – Schülerinnen und Schüler mussten die Aufgabenlösung ohne 
Zögern bzw. Verzögerung unmittelbar nach der Aufgabenpräsentation nennen (ebd., 
S. 42). Was allerdings unter „without hesitation“ (STEEL & FUNNELL, 2001, S. 42) 
zu verstehen ist, liegt in diesem Fall vermutlich in der subjektiven Einschätzung der 
Testleiterin oder des Testleiters.

Wie bereits in den vorherigen Ausführungen erwähnt, sieht auch SIEGLER 
(1988) eine Schwachstelle bezüglich der vorgeschlagenen Klassifi kationen: „Th is 
classifi cation procedure had the potential weakness that if children executed back-
up strategies covertly, they would be misclassifi ed as having used retrieval“ (ebd., 
S. 264). Während alle erwähnten Studien Aussagen darüber treff en, wie viele Aufga-
ben Kinder zu einem Erhebungszeitraum bereits automatisiert beherrschen, verwei-
sen GASTEIGER und PALUKA-GRAHM (2013) darauf, dass eine kindliche Äuße-
rung wie gewusst oder Ähnliches nicht mit der Lösungsquote für Automatisierung 
bzw. dem Faktenabruf aus dem Gedächtnis gleichgesetzt werden kann (ebd., S. 17 f.). 
GASTEIGER und PALUKA-GRAHM (2013) berufen sich in diesem Zusammenhang 
auf VERSCHAFFEL et al. (2007, S.  564 f.), die ebenso wie SHERIN und FUSON 
(2005) die Meinung vertreten, dass selbst eine sehr schnelle Lösung der Aufgabe kei-
nen Rückschluss auf einen Faktenabruf zulässt (SHERIN & FUSON, 2005, S.  376). 
Wie von SHERIN und FUSON (2005) am Beispiel von Cayla veranschaulicht, kann 
beispielsweise auch die sukzessive Addition bei kleinen Faktoren angewandt zu einer 
sehr schnellen Lösung der Aufgabe führen (ebd., S. 376).

Zeitlich fi xe Obergrenzen zur Unterscheidung zwischen dem Faktenabruf 
und anderen Herangehensweisen
Studien, die im Vergleich zu den bereits gerade genannten Untersuchungen den Fo-
kus ihrer Erhebung auf den Faktenabruf legen, setzen andere Kriterien zur Unter-
scheidung zwischen dem Faktenabruf aus dem Gedächtnis und anderen Heran-
gehensweisen – keinem Faktenabruf – fest. Der Faktenabruf aus dem Gedächtnis 
zeichnet sich in der Forschungsliteratur zur Automatisierung durch eine korrekte 
und schnelle Aufgabenlösung aus. Die schnelle Aufgabenlösung wird dabei als cha-
rakteristisches Merkmal des Faktenabrufes im Vergleich zu der Durchführung von 
Berechnungen angeführt: „To minimize confounding due to computation, mastery 
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was operationalized as a response that was both correct and fast“ (BAROODY, 1999, 
S.  172). In weniger als 3 Sekunden sollen Schülerinnen und Schüler von der Prä-
sentation einer Aufgabe zur korrekten Aufgabenlösung gelangen. BAROODY (1999) 
begründet die Wahl des „3-s criterion“ (BAROODY, 1999, S.  172) oder auch „3-se-
cond per fact criterion“ (WOODWARD, 2006, S.  286) wie folgt: In der frühen Er-
arbeitung des kleinen Einmaleins war noch nicht davon auszugehen, dass Kinder 
über eine hohe Automatisierungsrate verfügen und zudem hat sich die 3-Sekun-
den-Grenze für den Faktenabruf in anderen Studien, die zu ähnlichen Erhebungs-
zeiträumen durchgeführt wurden, als durchaus geeignet erwiesen (ebd., S.  172). 
Dass sich die 3-Sekunden als benchmark in der Forschungsliteratur etabliert ha-
ben, zeigen auch einige weitere nationale sowie internationale Studien, die diese an-
führen (z. B. BAROODY, 1999; GERSTER, 2005; HATFIELD, EDWARDS & BIT-
TER, 2000; VAN DE WALLE & WATKINS,  1993). THORNTON (1990) schlägt 
basierend auf den Ergebnissen seiner Arbeit mit Kindern 2 Sekunden als geeigne-
te Grenze vor. Nach BORN und OEHLER (2009a) kann im Gegensatz zu den bis-
her genannten Referenzwerten lediglich bei einer halben Sekunde, innerhalb wel-
cher das Kind das Ergebnis einer Aufgabe nennt, gesichert davon ausgegangen 
werden, dass das Ergebnis einer Aufgabe auswendig gewusst wird (ebd., S.  160). 
Nach LÖRCHER (1985) sollte „jede einzelne Kombination in weniger als 5 Sekun-
den abrufb ereit“ (ebd., S. 192) sein.

Kritik an zeitlich fi xen Obergrenzen und Alternativen zur Ermittlung 
automatisierter Einmaleinsaufgaben
Die Abgrenzung zwischen einem Faktenabruf und einer anhaltenden Nutzung von 
Herangehensweisen bzw. Rechenstrategien zur Lösung von Einmaleinsaufgaben ist – 
wie sich im vorhergehenden Abschnitt zeigt – weniger eindeutig (BAROODY, 1999, 
S.  110; SHERIN & FUSON, 2005, S.  376 f.; WOODWARD, 2006, S.  286), als in der 
Literatur oft mals proklamiert. BAROODY (1999) betont in diesem Kontext: „Me-
thodologically, […] the retrieval-required task cannot distinguish between retrie-
ved responses and responses generated by relatively fast, covert estimation or reaso-
ning strategies“ (ebd., S.  110). Einige Kinder sind in der Lage, Einmaleinsaufgaben 
innerhalb von drei Sekunden zu lösen, indem sie auf verfügbares Faktenwissen so-
wie ihre strategischen Kenntnisse zurückgreifen (WOODWARD, 2006, S. 286). Nach 
SHERIN und FUSON (2005) trifft   dies auch für relativ schwierige Einmaleinsaufga-
ben zu, die Schülerinnen und Schüler unter Einsatz von Ableitungsstrategien schnell 
lösen. Kinder verfügen, auch wenn sie in der Lage sind, Aufgaben innerhalb von 
3 Sekunden zu lösen, weiterhin über strategisches Wissen, das sie auch zur Aufga-
benlösung einsetzen. Nach SHERIN und FUSON (2005) kann festgehalten werden, 
dass schnelle Aufgabenlösungen eine Herausforderung für die Kategorisierung dar-
stellen: „Th e answers are produced moderately quickly, aft er about 3 seconds in each 
case. Th is suggests that learned product may be an appropriate coding“ (SHERIN & 
FUSON, 2005, S. 376, Hervorhebung der Autorin). Die Aussage, dass der Faktenab-
ruf im beschriebenen Fall eine angemessene Kodierung darstellen kann, ist aber we-
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nig zufriedenstellend, um ein klareres Bild der Entwicklung im Bereich der Arith-
metik zu erhalten. Gemäß BAROODY (1999) werden andere, neue Abgrenzungen 
notwendig: „Researchers will need to devise methods that disentangle retrieved and 
nonretrieved responses“ (ebd., S. 191).

Neben einer zeitlich fi xen Obergrenze für den Faktenabruf bedienen sich eini-
ge Autoren in ihren Studien auch einer anderen Methode zur Ermittlung automati-
sierter Einmaleinsaufgaben bei Kindern. Auch in diesen Untersuchungen spielt das 
Kriterium Zeit eine ausschlaggebende Rolle. Allerdings wird nicht die benötigte Lö-
sungszeit einer Einmaleinsaufgabe herangezogen, um Aussagen über einen mögli-
chen Faktenabruf zu tätigen, sondern die Anzahl an gelösten Aufgaben in einem 
vorgegebenen Zeitintervall. Nach KROESBERGEN et al. (2004) stellt die Anzahl der 
korrekt gelösten Einmaleinsaufgaben demnach die Lösungsquote der automatisiert 
verfügbaren Einmaleinsaufgaben dar. Die in dieser Studie eingesetzten Automatisie-
rungstests erfassen aber nicht die Lösungsquoten für Automatisierung bzw. können 
nicht als Anzeichen für eine Automatisierung gewertet werden. Von den Kindern 
wird lediglich verlangt in 2 Minuten möglichst viele der 40 Einmaleinsaufgaben zu 
lösen (KROESBERGEN et al., 2004, S.  239) – ob diese wirklich über den Fakten-
abruf aus dem Gedächtnis gelöst werden oder andere Herangehensweisen herange-
zogen werden, bleibt ungeklärt. Studien, wie die von KROESBERGEN et al. (2004) 
durchgeführte, können somit Aussagen darüber treff en, dass eine Gruppe von Kin-
dern mehr Aufgaben als eine Vergleichsgruppe in der vorgegebenen Zeit lösen konn-
te, jedoch keine Aussage im Hinblick darauf, worauf diese Leistungsunterschiede 
tatsächlich zurückzuführen sind. Die Untersuchungen von WOODWARD (2006) so-
wie von WONG und EVANS (2007) können als weitere Beispiele aufgeführt wer-
den, die ebenso wie die Studie von KROESBERGEN et al. (2004) Lösungsquoten für 
einen (vermeintlichen) Faktenabruf ermitteln und berichten, die im Grunde genom-
men aber nicht mit den Lösungsquoten für einen Faktenabruf gleichzusetzen sind 
(WOODWARD, 2006, S. 279; WOOD & EVANS, 2007, S. 94).

Im Mittelpunkt des Abschnittes 3.3 steht die Kompetenz der Strategiewahl beim 
kleinen Einmaleins. Merkmale bzw. Voraussetzungen, die zu einer erfolgreichen 
Strategiewahl führen, werden im folgenden Abschnitt vorgestellt. Mögliche die Stra-
tegiewahl beeinfl ussende Faktoren werden ebenfalls präsentiert.
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3.3 Strategiekompetenz und Einfl ussfaktoren auf die Strategiewahl

„Th ey [the students] had started to develop what we consider as 
the most subtle and diffi  cult aspect of strategy competency, namely, 

knowing when to apply what strategy.“

(TORBEYNS, VERSCHAFFEL & GHESQUIÈRE, 2005, S. 16, 
Ergänzung der Autorin)

Im Abschnitt 3.3, der den Th eorieteil abschließt, liegt der Fokus der Ausführungen 
vorrangig auf den fl exiblen/adaptiven Rechenkompetenzen von Kindern bezüglich 
der Rechenoperation der Multiplikation. Über die Relevanz der Entwicklung fl exib-
len/adaptiven Rechnens bei Grundschulkindern herrscht innerhalb der mathema-
tikdidaktischen Diskussion weitgehend Konsens – was konkret unter fl exiblem/ad-
aptivem Rechnen verstanden wird und inwiefern es empirische Erkenntnisse zum 
fl exiblen/adaptiven Rechnen bezüglich der Multiplikation gibt, soll in diesem Ab-
schnitt beleuchtet werden. Ebenso sollen mögliche Einfl ussfaktoren auf die Strategie-
wahl präsentiert werden.

Der Abschnitt 3.3.1 widmet sich zunächst der Klärung der Begriffl  ichkeiten Flexi-
bilität und Adaptivität sowie der Begriff sverwendung in der vorliegenden Arbeit. Im 
anschließenden Abschnitt 3.3.2 werden die Forschungsergebnisse einer fl exiblen bzw. 
adaptiven Strategiewahl vorgestellt sowie geklärt, woran sich eine adäquate Strate-
giewahl in dieser Arbeit festmachen lässt. Ein wichtiger Aspekt der Strategiekompe-
tenz, der bereits im Zitat von TORBEYNS et al. (2005) angeführt wurde – „knowing 
when to apply what strategy“ (ebd., S. 16), wird dabei off engelegt. Im Abschnitt 3.3.3 
werden das Individuum und die unterrichtlichen Vorgehensweisen der Lehrkräft e 
als beeinfl ussende Faktoren auf die Strategiewahl näher betrachtet. Den Abschluss 
bilden die Ausführungen des Abschnittes 3.3.4, die anhand einer graphischen Dar-
bietung den Prozess einer erfolgreichen Strategiewahl diff erenziert veranschaulichen 
sowie die Begriff sverwendung der vorliegenden Arbeit erneut aufgreifen. Die Merk-
male bzw. Voraussetzungen, die eine erfolgreiche Strategiewahl auszeichnen, werden 
ebenfalls anhand des aufgestellten Modells illustriert sowie die beeinfl ussenden Fak-
toren.

3.3.1 Flexibilität und Adaptivität – Begriff sklärung

Die enorme Bedeutung fl exibler Rechenkompetenzen ist in der heutigen Litera-
tur unbestritten (HEINZE, STAR & VERSCHAFFEL, 2009; RATHGEB-SCHNIE-
RER, 2006, 2010; SELTER 2000, 2009; THRELFALL, 2002, 2009; TORBEYNS, DE 
SMEDT, GHESQUIÈRE & VERSCHAFFEL, 2009; VERSCHAFFEL, LUWEL, TOR-
BEYNS & VAN DOOREN, 2009). „Th e fl exible/adaptive use of strategies […] is con-
sidered as an important aspect of mathematical competence that mathematics class-
rooms should address“ (HEINZE et al, 2009, S.  535). Die Förderung des fl exiblen 
Rechnens wird demnach auch in den Bildungsstandards und gegenwärtigen Lehr-
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plänen postuliert (BAYERISCHES STAATSMINISTERIUM FÜR BILDUNG UND 
KULTUS, WISSENSCHAFT UND KUNST, 2014; KMK, 2005; NCTM, 2000). Nach 
THRELFALL (2009) zeichnet sich der Stellenwert des fl exiblen Rechnens allerdings 
nicht ausschließlich durch die erfolgreiche Bewältigung von mathematischen Aufga-
ben aus: „Flexible mental calculation is valued not so much because of the benefi ts 
to the child of being eff ective in calculation, but because it is the start of, or eviden-
ce for, something more mathematical than the acquisition of factual and procedural 
knowledge“ (ebd., S. 543). THRELFALL (2009) spricht im Zuge der Entwicklung fl e-
xiblen Kopfrechens von einer besonderen Art und Weise des Umgangs mit Zahlen: 
„One which has implications for other mathematics learning“ (ebd., S. 543).

Obwohl sich Forscherinnen und Forscher sowie Praktikerinnen und Prakti-
ker im Hinblick auf die große Bedeutung fl exibler Rechenkompetenzen einig sind, 
herrscht in der Literatur längst kein Konsens, was explizit unter fl exiblem Rech-
nen bzw. unter einer fl exiblen Strategiewahl zu verstehen ist (HEINZE et al., 2009; 
SELTER, 2009; THRELFALL, 2002; TORBEYNS et al., 2009; VERSCHAFFEL et al., 
2009). Das fl exible Rechnen wird in der englischsprachigen Literatur mit den bei-
den Begriff en „fl exibility“ und „adaptivity“ (VERSCHAFFEL et  al., 2009, S.  337) 
in Verbindung gebracht (z. B. HEINZE et al., 2009, S.  536; SELTER, 2009, S.  620; 
VERSCHAFFEL et al., 2009, S.  337). Der beiden Begriffl  ichkeiten wird sich aller-
dings nicht konsequent bedient (BLÖTE et al., 2001; THRELFALL, 2002), so dass 
die Begriffl  ichkeiten entweder als Alternativen geführt – und nur eine der bei-
den bevorzugt eingesetzt wird – (BAROODY, 2003) oder diese mit unterschied-
licher Bedeutung verwendet werden (z. B. HEINZE et al., 2009; SELTER, 2009; 
VERSCHAFFEL et al., 2009). Einer Literaturrecherche von VERSCHAFFEL et  al. 
(2009) zufolge können die beiden Begriff e Flexibilität (fl exibility) und Adaptivi-
tät (adaptivity) inhaltlich folgenderweise unterschieden werden: „Th e term ‚fl exi-
bility‘ is primarily used to refer to switching (smoothly) between diff erent stra-
tegies, whereas the term ‚adaptivity‘ puts more emphasis on selecting the most 
appropriate strategy“ (ebd., S.  337, Hervorhebungen im Original). VERSCHAFFEL 
et al. (2009) gehen mit dieser in der Mehrzahl der Fälle getroff enen begriffl  ichen 
Diff erenzierung konform: „Th e dual term ‚fl exibility/adaptivity‘ as the overall term, 
‚fl exibility‘ for the use of multiple strategies, and ‚adaptivity‘ for making appropriate 
strategy choices“ (ebd., S.  337 f., Hervorhebungen im Original). In der deutschspra-
chigen Literatur beschäft igten sich unter anderem RATHGEB-SCHNIERER (2006) 
und RECHTSTEINER-MERZ (2013) sehr ausführlich mit der Entwicklung fl exib-
ler Rechenkompetenzen. Wenn die Begriff e Flexibilität und/oder fl exibles Rechnen 
für „aufgabenadäquates Handeln“ (RATHGEB-SCHNIERER, 2006, S.  59) stehen, 
dann stellt der fl exible Wechsel zwischen Strategien bzw. Herangehensweisen ihrer 
Meinung nach nur einen Aspekt von Flexibilität dar (RECHTSTEINER-MERZ, 2013, 
S. 74). RATHGEB-SCHNIERER (2006) und RECHTSTEINER-MERZ (2013) unter-
scheiden nicht, wie in den bisherigen Ausführungen beschrieben, zwischen den bei-
den Begriff en Flexibilität und Adaptivität. Unter dem Begriff  Flexibilität wird nicht 
ausschließlich der Wechsel zwischen Strategien oder Herangehensweisen verstanden, 
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sondern eher der Aspekt der Adäquatheit eines Lösungsweges, was VERSCHAFFEL 
et al. (2009) mit dem Begriff  Adaptivität bezeichnen.

Sehr herausfordernde, fundamentale theoretische Fragen im Zusammenhang 
mit der Vielzahl an verschiedenen Defi nitionen zum fl exiblen bzw. adaptiven Rech-
nen lauten nach HEINZE et al. (2009) wie folgt: „When should a strategy be consi-
dered as appropriate and which criteria are relevant to this?“ (ebd., S.  536). Sobald 
die Adäquatheit der Strategiewahl analysiert werden soll, muss im Prinzip normativ 
festgelegt sein, welche Herangehensweise bzw. Rechenstrategie bei welchen Aufga-
ben mehr oder weniger geeignet ist. Wer diese normative Festsetzung allerdings vor-
nimmt, stellt eine weitere fundamentale Frage in diesem Kontext dar. Hinsichtlich 
des Einsatzes bzw. der Wahl einer Strategie geht es darum – wie im einleitenden Zi-
tat angeführt – zu wissen: „Knowing when to apply what strategy“ (TORBEYENS et 
al., 2005, S. 16).

VERSCHAFFEL et al. (2009) beziehen sich in ihrer Arbeit auf folgende Arbeits-
defi nition, um zum Ausdruck zu bringen, was unter einer adaptiven Strategiewahl 
zu verstehen ist: „By an adaptive choice of a strategy we mean the conscious or uncon-
scious selection and use of the most appropriate solution strategy on a given mathema-
tical item or problem, for a given individual, in a given sociocultural context“ (ebd., 
S. 343, Hervorhebungen im Original). Auch bei der Defi nition von VERSCHAFFEL 
et al. (2009) wird allerdings nicht ersichtlich, wer letztlich entscheidet, was als ge-
eignet gilt. Wie bereits im vorausgehenden Absatz angesprochen, bleibt diese funda-
mentale Frage erneut unbeantwortet. Einen wichtigen Aspekt, der in der Defi nition 
angesprochen wird, stellt die bewusste oder unbewusste Wahl einer Herangehenswei-
se sowie die Wahl des adäquatesten Lösungsweges dar – dabei werden in der Defi -
nition insbesondere individuelle Kriterien, aufgaben- und kontextspezifi sche Krite-
rien eingeschlossen. VERSCHAFFEL et al. (2009) verweisen explizit darauf, dass die 
Wahl und Durchführung einer speziellen Herangehensweise – auch wenn der Begriff  
Strategiewahl dies unter Umständen assoziiert – an eine Aufgabe nicht „rational, de-
liberate and conscious“ (THRELFALL, 2009, S.  545) erfolgen muss: „Strategy selec-
tion can also occur implicitly, without conscious consideration of alternative strate-
gies“ (VERSCHAFFEL et al., 2009, S. 338). Die Defi nition von VERSCHAFFEL et al. 
(2009) nimmt keinen Bezug auf das Ausmaß des Bewusstseins und der Absicht einer 
Strategiewahl – wie am Beispiel der Addition und Subtraktion exemplarisch veran-
schaulicht wird:

Many researchers believe that metacognitive processes – here defi ned as con-
scious awareness and deliberate control – regulate strategy selection and, thus, 
strategy fl exibility/adaptivity. […]. It is commonly agreed that conscious moni-
toring and control are involved, at least to some extent, in such strategy choices. 
[…]. On the other hand, there is quite a lot of evidence suggesting that in quick 
and simple strategy selections, like doing simple additions or subtractions in the 
number domain up to 20, people’s selection of a particular strategy does not re-
sult from deliberate consideration of the choices and conscious awareness of the 
factors that infl uenced that choice, but rather from more autonomous, implicit 
processes. (VERSCHAFFEL et al., 2009, S. 338)
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Laut TORBEYNS et al. (2009) liegen verschiedene Auff assungen vor, was unter 
einem fl exiblen bzw. adaptiven Strategieeinsatz zu verstehen ist. Die Defi nitionen 
unterscheiden sich bezüglich ihrer Komplexität. Es wird von einfacheren Defi nitio-
nen im Hinblick auf eine fl exible bzw. adaptive Strategiewahl gesprochen, wenn bei-
spielsweise lediglich eine Vielzahl an Herangehensweisen eingesetzt werden oder die 
Strategiewahl angepasst an die spezielle Aufgabencharakteristik erfolgt. Komplexere 
Defi nitionen enthalten individuelle Faktoren wie die Korrektheit und Geschwindig-
keit der Aufgabenlösung als auch Kontextvariablen (ebd., S.  582 f.). In ihrer Studie 
defi nieren sie eine fl exible bzw. adaptive62 Strategiewahl auf zweierlei Art und Weise. 
Einerseits verstehen sie darunter, die Wahl zwischen verschiedenen Herangehenswei-
sen schlicht und einfach auf Basis der Aufgabencharakteristik.63 „Second we also ap-
plied a more sophisticated defi nition wherein strategy fl exibility is conceived as se-
lecting the strategy that brings the child most quickly to an accurate answer to the 
problem“ (TORBEYNS et al., 2009, S. 583). 

Laut VERSCHAFFEL et al. (2009) zeichnet sich ein adaptiver Strategieeinsatz al-
lerdings als deutlich scharfsinniger und mehrdimensionaler aus – „we certainly do 
not simply mean ‚the strategy that leads most quickly to the correct answer‘ (as in 
the cognitive-psychological sense of the term)“ (VERSCHAFFEL et al., 2009, S. 343, 
Hervorhebung im Original). Die Adaptivität einer gewählten Strategie lässt sich nach 
Meinung von VERSCHAFFEL et al. (2009) nicht durch die Lösungskorrektheit und 
die Lösungsgeschwindigkeit bestimmen – eine Strategie wird demnach nicht allein 
als adaptiv bezeichnet, wenn sie am schnellsten zur korrekten Antwort führt (ebd., 
S. 340).

Eine fl exible bzw. adaptive Strategiewahl allein über die Charakteristik der Auf-
gaben zu defi nieren, wird von VERSCHAFFEL et al. (2009) sowie von THRELFALL 
(2002) ebenfalls als eher problematisch angesehen. „Even though some problems do 
seem to suit some ‚strategies‘ more than others, ‚choice‘ could not be just about the 
number characteristics of the problem“ (THRELFALL, 2002, S. 39, Hervorhebungen 
im Original).64 Defi nitionen zum fl exiblen bzw. adaptiven Rechnen, die eine Strate-
giewahl in Abhängigkeit von der Aufgabencharakteristik beschreiben, setzen voraus, 
dass die Charakteristik der Aufgabe bzw. die Aufgabenmerkmale spezielle Lösungs-
wege näher legt als wiederum andere (BLÖTE et al., 2000; KLEIN et al., 1998). „By 
‚fl exible use of arithmetic strategies and computation procedures‘ we mean choice 
of the most appropriate and effi  cient strategy or procedure given the (number) cha-
racteristics of the problem at hand“ (KLEIN et al., S.  449, Hervorhebung im Origi-
nal). THRELFALL (2002) kritisiert, dass im Vorfeld die Eignung einer Herangehens-
weise für entsprechende Aufgabenmerkmale bzw. Aufgabencharakteristika bestimmt 
werden muss – es muss ein fi xer Kriterienkatalog vorhanden sein, der festlegt, unter 

62 Die Begriffl  ichkeiten Flexibilität und Adaptivität werden von TORBEYNS et al. (2009) syno-
nym verwendet (ebd., S. 1).

63 Dabei stimmen TORBEYNS et al. (2009) in ihrer Defi nition mit einigen vorausgegangenen 
Studien überein (z. B. BLÖTE et al., 2000; KLEIN et al., 1998).

64 Neben der Aufgabencharakteristik scheint nach THRELFALL (2002) auch das individuelle 
Wissen einer Person eine entscheidende Rolle bei der Strategiewahl zu spielen: „Th e know-
ledge of the individual must also be very important“ (THRELFALL, 2002, S. 39).
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welcher Bedingung welche Herangehensweise gewählt wird bzw. welches Aufgaben-
merkmal sich für welche Strategie als geeignet erweist (ebd., S.  37 f.; VERSCHAF-
FEL et al., 2009, S.  339). Nach THRELFALL (2002, 2009) steht fl exibles Rechnen 
allerdings vielmehr für ein situationsabhängiges, individuelles Erkennen von Aufga-
benmerkmalen bzw. einer spezifi schen Aufgabencharakteristik, das zur Konstruktion 
von Herangehensweisen im Lösungsprozess führt.

STAR, RITTLE-JOHNSON, LYNCH und PEROVA (2009) verwenden ausschließ-
lich den Begriff  der Strategiefl exibilität, der sehr dem Verständnis einer adapti-
ven Strategiewahl nach VERSCHAFFEL et al.  (2009) ähnelt. Übereinstimmend mit 
der Defi nition von RATHGEB-SCHNIERER (2006) und RECHTSTEINER-MERZ 
(2013) verstehen sie unter Flexibilität: „Strategy fl exibility is defi ned here as know-
ledge of multiple strategies and the ability to select the most appropriate strategy for 
a given problem and a given problem-solving goal“ (STAR et al., 2009, S. 570). HA-
TANOS (2003) Defi nition von Adaptivität beinhaltet die Adverbien „fl exibly“ und 
„creatively“ (ebd., xi) – der Wechsel von einer Herangehensweise zu einer anderen 
wird mit dem Begriff  Flexibilität bezeichnet, unter Kreativität wird die Fähigkeit ver-
standen, neue Ansätze bzw. Vorgehensweisen zu erfi nden oder bereits vorhandene 
zu modifi zieren. Nach SELTER (2009) sollte die adaptive Strategiewahl, angelehnt an 
HATANO (2003), um die Bezeichnung Kreativität ergänzt werden, da die Anwen-
dung einer neuen Strategie bzw. Herangehensweise nicht mit dem fl exiblen Wechsel 
zwischen Herangehensweisen gleichzusetzen ist (SELTER, 2009, S. 620). Aus diesem 
Grund modifi ziert bzw. erweitert SELTER (2009) die Defi nition von VERSCHAFFEL 
et al. (2009) und unterscheidet zwischen den folgenden drei Begriffl  ichkeiten:
• „Creativity is the ability to invent new or modify known strategies. 
• Flexibility is the ability to switch between diff erent strategies. 
• Adaptivity is the ability to use appropriate strategies the individual has creatively 

developed or fl exibly selected“ (ebd., S. 620).

Eine adaptive Strategiewahl kennzeichnet sich nach SELTER (2009) wie folgt: „Adap-
tivity is the ability to creatively develop or to fl exibly select and use an appropriate 
solution strategy in a (un)conscious way on a given mathematical item or problem, 
for a given individual, in a given sociocultural context“ (ebd., S.  624). Wie in der 
Defi nition von SELTER (2009) fi xiert, kann sich die Adäquatheit eines Lösungsvor-
gehens auch am soziokulturellen Kontext (ebd., S. 624; VERSCHAFFEL et al., 2009, 
S. 340), an „context-specifi c criteria“ (HEINZE et al., 2009, S. 536) bzw. an „contex-
tual variables“ (TORBEYNS,  2009, S.  582) orientieren. TORBEYNS (2009) fasst 
unter dem soziokulturellen Kontext: „Fitting strategy choices to those aspects of stra-
tegic behavior that are valued most in the given socio-cultural setting“ (ebd., S. 582).

Nach RECHTSTEINER-MERZ (2013) sollen beim Rechnen bzw. bei der Stra-
tegiewahl in der Regel Zahl-, Term- und Aufgabenbeziehungen herangezogen wer-
den. Die Auswahl einer Herangehensweise bzw. Rechenstrategie kann sich aber 
zum Beispiel auch auf Hilfsmittel stützen oder auf erlernte, routinemäßig ange-
wandte Verfahren (RATHGEB-SCHNIERER, 2006, S.  16; RECHTSTEINER-MERZ, 
2013, S.  76 f.; THRELFALL, 2009). RATHGEB-SCHNIERER (2006) und RECHT-
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STEINER-MERZ (2013) sprechen in diesem Kontext von der Adäquatheit des Refe-
renzrahmens (RATHGEB-SCHNIERER, 2006, S. 16; RECHTSTEINER-MERZ, 2013, 
S. 76 f.). Unter Referenzen werden die den Schülerinnen und Schülern im Lösungs-
prozess hilfreichen Erfahrungen verstanden: ein erlerntes, routinemäßig angewand-
tes Verfahren oder das Kennen von Aufgabenmerkmalen, die im Lösungsprozess den 
Referenzkontext darstellen. Inwiefern ein Lösungsweg auf einem gelernten Verfahren 
oder auf erkannten Aufgabenmerkmalen und Zahlbeziehungen basiert oder inwie-
fern aus einer Kombination, kann häufi g nicht anhand des Lösungsweges erschlossen 
oder durch Beobachtungen rekonstruiert werden (RATHGEB-SCHNIERER, 2006, 
S. 16; RECHTSTEINER-MERZ, 2013, S. 76). Greifen Schülerinnen und Schüler zur 
Lösung unabhängig von der Aufgabe ausschließlich auf ein erlerntes, nach Schema 
F angewandtes Verfahren zurück, fällt diese Strategiewahl nach THRELFALL (2009) 
und RATHGEB-SCHNIERER (2006) nicht unter fl exibles Rechnen. Lösungen, die 
sich auf das Erkennen und Nutzen von Aufgabenmerkmalen und Beziehungen stüt-
zen, werden im Gegensatz dazu als fl exibel bezeichnet (RATHGEB-SCHNIERER, 
2006, S.  19; THRELFALL, 2009, S.  542): „Bei der Berücksichtigung des Referenz-
rahmens […] wird aufgabenadäquates Handeln als Rechnen mit Rückgriff  auf Zahl-, 
Term- und Aufgabenbeziehungen defi niert“ (RECHTSTEINER-MERZ, 2013, S. 79).

Der Vergleich der verschiedenen Defi nitionen zur fl exiblen bzw. adaptiven Strate-
giewahl verdeutlicht die Bedeutungsunterschiede in der Forschungsliteratur im Hin-
blick auf die Identifi kation der Vorgehensweise, die als appropriate bzw. adäquat an-
gesehen wird.

Einer Zusammenschau dieses Abschnittes zufolge und angelehnt an RECHT-
STEINER-MERZ (2013) kann sich eine adaptive Strategiewahl an der Adäquatheit 
• von individuellen Kriterien (Lösungskorrektheit und Lösungsgeschwindigkeit),
• von beschrittenem Lösungsweg und der Aufgabencharakteristik oder
• des Referenzrahmens zeigen (ebd., S. 74).

Einen Vorschlag, wann ein Vorgehen als adäquat tituliert werden kann, liefert SEL-
TER (2009): „Th e only way out of this dilemma seems to be that appropriateness has 
to be defi ned in diff erent contexts in diff erent ways according to the specifi c require-
ments“ (ebd., S. 620).

Flexibilität, Adaptivität und Transferierbarkeit – Begriff sverwendung in der 
vorliegenden Arbeit
Da in dieser Arbeit nicht auf bereits bestehende Defi nitionen im Hinblick auf eine 
fl exible/adaptive Strategiewahl im Bereich der Multiplikation zurückgegriff en wer-
den kann, werden im Folgenden Defi nitionen – orientiert an den im Abschnitt 3.3.1 
vorgestellten – aufgestellt, die den Besonderheiten des kleinen Einmaleins Rechnung 
tragen, den kulturellen Rahmenbedingungen entsprechen und fachdidaktische Vor-
stellungen bzw. Vorgaben berücksichtigen.
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In der vorliegenden Arbeit sollen in Anlehnung an die Defi nition von SELTER 
(2009) die drei folgenden Begriffl  ichkeiten unterschieden werden: Flexibilität, Adap-
tivität und Transferierbarkeit. 65

• Eine Strategiewahl lässt sich als fl exibel bezeichnen, wenn die Strategiewahl basie-
rend auf Strategie-Alternativen erfolgt. 

• Eine Strategiewahl lässt sich als adaptiv bezeichnen, wenn aus einem Strate-
gie-Repertoire auf eine jeweils adäquate bzw. geeignete Herangehensweise zur 
Lösung zurückgegriff en wird.

• Eine Strategiewahl lässt sich als transferierbar bezeichnen, wenn Kinder eine ad-
äquate Herangehensweise auf einen größeren Zahlenraum übertragen bzw. modi-
fi zieren können.

Eine fl exible Strategiewahl geht in dieser Arbeit in Einklang mit STAR et al. (2009) 
mit einer oder mehreren alternativen Rechenstrategien einher, die den Schülerin-
nen und Schülern zur Aufgabenlösung zur Verfügung stehen: „First, strategy fl exi-
bility involves knowledge of multiple strategies“ (ebd., S. 570). Dabei muss eine Stra-
tegie – „in the holistic sense of the entire solution path“ (THRELFALL, 2002, S. 42) 
– allerdings nicht bereits gelernt sein, sondern kann sich vielmehr auch noch entwi-
ckeln (siehe Abschnitt 2.2.1). „It is inappropriate to think of strategies as ready-made 
 methods or techniques that are available in the repertoire of the children, waiting 
to be selected and applied in a particular situation“ (VERSCHAFFEL et al., 2009, 
S. 344).

Die dieser Arbeit zugrundeliegenden Defi nitionen von Flexibilität, Adaptivität 
und Transferierbarkeit stimmen auch mit der folgenden Aussage von THRELFALL 
(2009) überein: „Th e value of knowledge of strategies need not be because knowl-
edge of strategies gives options to choose, it can be because represented strategies are 
descriptions of number relationships, and knowledge of them adds to the repertoire 
of what might be noticed about numbers and possibilities for operating on them“ 
(ebd., S. 548). Eine fl exible bzw. adaptive Strategiewahl liegt in dieser Arbeit somit in 
der Vertrautheit bzw. Familiarität mit gewissen Zahlbeziehungen begründet (VER-
SCHAFFEL et al., 2009, S.  344). Auch für die Transferierbarkeit nimmt diese Ver-
trautheit bzw. Familiarität eine entscheidende Rolle ein. Der Aspekt der Transferier-
barkeit bei der Strategiewahl wird anstelle des Aspekts der Kreativität betrachtet, da 
bei der Rechenoperation der Multiplikation z. B. im Vergleich zur halbschrift lichen 
Addition dem Finden neuer Herangehensweisen oder dem Modifi zieren der bereits 
bekannten ein eher geringerer Stellenwert zuteilwird. Von immer bedeutenderer Re-
levanz ist im Hinblick auf das kleine Einmaleins allerdings die Transferierbarkeit der 
tragfähigen Herangehensweisen auf große Zahlenräume. Die Bedeutung wird nicht 
zuletzt auch in den neueren Lehrplänen ersichtlich, die bereits mit der Th ematisie-
rung des kleinen Einmaleins auch die Übertragung der Rechenstrategien auf das 
große Einmaleins explizit fordern (siehe Abschnitt 2.5.2).

65 Anstelle der von SELTER (2009) vorgenommenen Ergänzung der zu unterscheidenden Be-
griffl  ichkeiten um die Bezeichnung Kreativität, wird in der vorliegenden Arbeit der Begriff  
Transferierbarkeit verwendet.
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Der folgende Abschnitt stellt Forschungsergebnisse hinsichtlich einer fl exiblen 
bzw. adaptiven Strategiewahl im Bereich der Multiplikation vor. Darüber hinaus soll 
aufgezeigt werden, woran sich eine adäquate Strategiewahl in dieser Arbeit festma-
chen lässt.

3.3.2 Forschungsergebnisse zur Flexibilität und Adaptivität im Bereich der 
Multiplikation – Positionierung

Die bereits im Abschnitt 3.3.1 angeführte Aussage von SELTER (2009) – „Th e only 
way out of this dilemma seems to be that appropriateness has to be defi ned in diff e-
rent contexts in diff erent ways according to the specifi c requirements“ (ebd., S. 620) 
– stellt die Grundlage der weiteren Ausführungen dieses Abschnittes dar. Im Fol-
genden sollen bisherige Forschungsergebnisse zur fl exiblen bzw. adaptiven Strategie-
wahl im Bereich der Multiplikation vorgestellt und die Begriff sverwendung fl exibles/
adaptives Rechnen „according to the specifi c requirements“ (SELTER, 2009, S.  620) 
beschrieben werden. In dieser Arbeit erweist es sich aus verschiedenen Gründen als 
besonders notwendig, die Begriff sverwendung auf die spezifi schen Anforderungen 
bzw. die Rechenoperation der Multiplikation anzupassen bzw. auszurichten. Die bis-
her dargestellten Defi nitionen zum fl exiblen Rechnen (siehe Abschnitt 3.3.1) bezie-
hen sich hauptsächlich auf den Zahlenraum ab hundert66 und fast ausschließlich auf 
den Th emenbereich der Addition und/oder der Subtraktion. Insgesamt gibt es eine 
Vielzahl an Studien im Bereich der Addition und Subtraktion, die sich explizit mit 
dem fl exiblen Rechnen beschäft igt (z. B. BLÖTE et al., 2000; HEINZE et al., 2009; 
RATHGEB-SCHNIERER, 2006; RECHTSTEINER-MERZ, 2013; SCHÜTTE, 2004; 
SELTER, 2009; THRELFALL 2002, 2009; TORBEYNS et al., 2009). Demgegenüber 
sind bis dato kaum Untersuchungen bekannt, die ihren Hauptfokus explizit auf einen 
fl exiblen bzw. adaptiven Strategieeinsatz bei Einmaleinsaufgaben legt bzw. gelegt hat.

Wird unter dem Begriff  Flexibilität das fl exible Wechseln zwischen verschiedenen 
Herangehensweisen verstanden (z. B. SELTER, 2009; VERSCHAFFEL et al., 2009), 
trifft   man im Bereich der Multiplikation auf vereinzelte Forschungsergebnisse, die 
von den durchschnittlich je Kind zur Verfügung stehenden Herangehensweisen an 
Einmaleinsaufgaben berichten. Diese Vielfalt an Strategien bzw. Herangehenswei-
sen wird allerdings in den ermittelten Studien nicht mit dem Begriff  Flexibilität oder 
ähnlichen Begriffl  ichkeiten in Verbindung gebracht. Erkenntnisse bezüglich der Fä-
higkeit zwischen verschiedenen Rechenstrategien zu wählen bzw. verschiedene Re-
chenstrategien zur Aufgabenlösung bei Einmaleinsaufgaben einzusetzen, werden im 
Folgenden präsentiert.

66 Zwei Ausnahmen sind im Hinblick auf die Defi nitionen und Anmerkungen zu verzeichnen. 
Die der Arbeit von RECHSTEINER-MERZ (2013) zugrundliegenden Defi nitionen bezie-
hen sich auf die Förderung fl exiblen Rechnens in Jahrgangsstufe 1, die Studie von RATH-
GEB-SCHNIERER (2006) hingegen untersuchte die Rechenwegsentwicklung bei Kindern im 
2. Schuljahr im Th emenbereich Subtraktion vor der Einführung der halbschrift lichen und 
schrift lichen Verfahren.
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SHERIN und FUSON (2005) sprechen von „variability in strategy use at a gi-
ven time during the instructional sequence“ (ebd., S.  378) und verweisen darauf, 
dass Kinder über den Untersuchungszeitraum im 3. Schuljahr hinweg auf den Ein-
satz verschiedener Herangehensweisen bzw. Rechenstrategien zurückgriff en. Im 
Abschlussinterview am Ende des 3. Schuljahres werden pro Kind durchschnitt-
lich drei verschiedene Strategietypen eingesetzt. Strategietypen, die in der Unter-
suchung unterschieden wurden, sind neben dem Auszählen die wiederholte Addi-
tion, das Aufsagen der Reihe, regelbasierte Herangehensweisen, die sogenannten 
Hybrids (Misch-Strategien) und der Faktenabruf. Die Studie fordert es kritisch zu 
hinterfragen, inwiefern unter den je Individuum im Durchschnitt drei verfügba-
ren Strategietypen auch tragfähige Herangehensweisen beinhaltet sind – d. h. Kin-
der als Lösungsvarianten nicht ausschließlich wenig tragfähige Herangehenswei-
sen, wie das Auszählen, wiederholte Addieren oder das Aufsagen der Reihe nutzten. 
In der Studie von LEMAIRE und SIEGLER (1995) setzte jedes der 20 teilnehmen-
den Kinder mindestens zwei verschiedene Herangehensweisen zur Lösung von Ein-
maleinsaufgaben ein, im Durchschnitt über die drei Untersuchungszeiträume im 
2. Schuljahr hinweg sogar mehr als drei. Die Anzahl der Rechenstrategien bzw. He-
rangehensweisen belief sich zu Beginn des Schuljahres (nach 1-wöchiger Einmal-
einserarbeitung) auf durchschnittlich M  =  3.1 unterschiedliche Herangehensweisen, 
in der Mitte des 2. Schuljahres auf M  =  3.7 und gegen Ende der Erarbeitung auf 
durchschnittlich M  =  2.4 verschiedene Herangehensweisen bzw. Rechenstrategien 
zur Aufgabenlösung (LEMAIRE & SIEGLER, 1995, S.  88). Den Rückgang der 
eingesetzten Herangehensweisen gegen Ende der Erarbeitung führen LEMAIRE 
und SIEGLER (1995) darauf zurück, dass „a single strategy potentially works best 
on all problems“ (ebd., S.  88). Als unterschiedliche Herangehensweisen wurden in 
dieser Studie der Faktenabruf, die wiederholte Addition, die Aussage I  don’t know, 
das Notieren der Aufgabe und anschießende Lösen sowie das Notieren von Grup-
pen von Zählstrichen und das anschließende Auszählen dieser Zählstriche ermittelt. 
Auch wenn die Studie von LEMAIRE und SIEGLER (1995) Erkenntnisse hinsicht-
lich einer fl exiblen Strategiewahl liefert, muss kritisch angemerkt und bei der Inter-
pretation der Ergebnisse berücksichtigt werden, dass die genannten Herangehenswei-
sen – nach dem dieser Arbeit zugrunde liegendem Verständnis – nicht unter dem 
Begriff  Rechenstrategie67 gefasst werden und die Aussage I don’t know wahrlich kei-
ne Herangehensweise darstellt. Schülerinnen und Schüler der Studie von MABBOTT 
und BISANZ (2003) griff en im 4. Schuljahr im Durchschnitt auf M = 2.86 verschie-
dene Herangehensweisen zurück. Am Ende der 4. Klasse sollten die Kinder laut Cur-
riculum über alle Einmaleinsaufgaben automatisiert verfügen. Im 6. Schuljahr, als 
Kinder Aufgaben deutlich häufi ger aus dem Gedächtnis abriefen, wurde ein Rück-
gang der Anzahl an verschiedenen Herangehensweisen bzw. Rechenstrategien auf 
M  =  1.85 Herangehensweisen verzeichnet (ebd., S.  1097). Neben dem Faktenabruf 
griff en Kinder in dieser Untersuchung auf die wiederholte Addition, das Aufsagen 

67 Einzig die Herangehensweise der wiederholten Addition kann unter Umständen – in Abhän-
gigkeit von der Aufgabencharakteristik – als Rechenstrategie angesehen werden.
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der Reihe, das Raten, andere nicht zuordenbare Herangehensweisen oder einen spe-
cial trick (Ableitungsstrategien oder das Fingerrechnen beim Neuner-Einmaleins) 
zurück. Defi niert man Flexibilität nach VERSCHAFFEL et al. (2009) oder nach SEL-
TER (2009) kann in den aufgeführten Studien demnach von einem fl exiblen Stra-
tegieeinsatz im Bereich der Multiplikation gesprochen werden. Wobei man erneut 
kritisch refl ektieren muss, ob es sich nicht eher um das Anwenden verschiedener – 
auch nicht tragfähiger – Herangehensweisen handelt als um einen fl exiblen Strate-
gie-Einsatz. Keine Auskünft e lassen diese Forschungsergebnisse über die Adaptivität 
der entsprechenden Strategiewahlen zu. Wie bereits an der Studie von SHERIN und 
FUSON (2005) kritisch hinterfragt, bleibt off en, inwiefern der fl exible Strategieein-
satz der beschriebenen Studien auf effi  zienten bzw. geeigneten Rechenstrategien be-
ruht.

Inwiefern eine Strategiewahl als adaptiv angesehen wird, hängt – wie bereits im 
Abschnitt 3.3.1 zur Begriff sklärung ausführlich thematisiert – davon ab, was als ad-
äquat identifi ziert wird. Im Folgenden sollen die verschiedenen vorgestellten Ansät-
ze einer adaptiven Strategiewahl und eventuell vorhandene Forschungsergebnisse in 
diesem Zusammenhang mit Blick auf das kleine Einmaleins beschrieben werden.

Adäquatheit von Lösungskorrektheit und Lösungsgeschwindigkeit
Wird die Adäquatheit der Strategiewahl auf Basis individueller Fähigkeiten der Auf-
gabenlöser betrachtet, dann wird eine ausgewählte Strategie bzw. Herangehenswei-
se als adäquat bewertet, wenn sie am schnellsten – im Vergleich zu anderen Her-
angehensweisen – zur korrekten Lösung der entsprechenden Aufgabe führt (siehe 
Abschnitt 3.3.1). Im Bereich der Multiplikation sind nur einige wenige Studien zu 
verzeichnen, die neben der Korrektheit der Aufgabenlösung auch die Lösungsge-
schwindigkeit einzelner Herangehensweisen bzw. Rechenstrategien erheben (sie-
he Abschnitt 3.2.1 – Korrektheit der Ausführung und Lösungszeiten). Aus diesem 
Grund ist die Anzahl an Studien, die sich unter Umständen mit diesem Ansatz von 
Adäquatheit beschäft igt, von vornherein stark begrenzt. Zudem besteht das Ziel der 
erwähnten Studien nicht darin, Aussagen über einen adäquaten Strategieeinsatz je 
Individuum zu tätigen, sondern vornehmlich darin, Erkenntnisse bezüglich schneller 
und fehlerfreier Herangehensweisen im Allgemeinen zu erlangen. Häufi g wird dabei 
beispielsweise der Faktenabruf als schnellster Lösungsweg für die Gesamtstichprobe 
identifi ziert. Über Studien bzw. Untersuchungen, wie die gerade beschriebenen, und 
ihre Forschungsergebnisse wurden bereits im Abschnitt 3.2.1 (Korrektheit der Aus-
führung und Lösungszeiten) detailliert berichtet.

Wie ebenfalls bereits im vorherigen Abschnitt erwähnt wurden im Bereich der 
Multiplikation hauptsächlich Studien konzipiert und durchgeführt, die eine freie 
Strategiewahl nach der sogenannten choice-method vorsahen. Neben der bereits er-
wähnten Schwachstelle dieser Methode hinsichtlich der Ermittlung effi  zienter Heran-
gehensweisen (siehe Abschnitt 3.2.2), verweisen LUWEL et al. (2009) auf einen wei-
teren Schwachpunkt der freien Strategie-Wahl:
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A second serious shortcoming with the choice method is that it does not allow 
studying the adaptivity of people’s strategy choices. Indeed, if one assumes that 
adaptive individuals select the strategy that leads fastest to a correct answer on 
a specifi c problem, then a proper investigation of that adaptivity should involve 
the examination of whether strategy preferences are associated with these strate-
gies’ benefi ts. Th is, however, requires unbiased estimates of the effi  ciency of the 
diff erent strategies in an individual’s repertoire, which can act as a criterion to 
compare against their actual strategy choices. (LUWEL et al., 2009, S. 352)

Die Mehrheit der bislang beschriebenen Studien wäre demnach – gemäß LUWEL et 
al. (2009) – gar nicht imstande, Erkenntnisse im Hinblick auf die Adäquatheit der 
Strategiewahl beim kleinen Einmaleins zu generieren. Zumindest nicht, wenn die 
Adäquatheit an der Lösungskorrektheit sowie der Lösungsgeschwindigkeit festge-
macht wird. Um eine adäquate Strategiewahl unter den geforderten Voraussetzungen 
ermitteln zu können, riefen SIEGLER und LEMAIRE (1997) die „choice/no-choice 
method“ (ebd., S.  71 ff .) ins Leben. Diese Methode sieht die Testung jeder Person 
unter zwei Bedingungen vor: einer Wahl-Bedingung (choice condition) und zwei 
oder mehr Nicht-Wahl-Bedingungen (no-choice conditions). In der Wahl-Bedingung 
können Studienteilnehmerinnen und -teilnehmer frei wählen, welche Strategie bzw. 
Herangehensweise sie aus einer Reihe von Alternativen zur Aufgabenlösung einset-
zen. In der Nicht-Wahl-Bedingung wird der teilnehmenden Person für den gleichen 
Aufgabenpool eine Herangehensweise zur Lösung vorgeschrieben. Dabei existieren 
im Regelfall so viele Nicht-Wahl-Bedingungen wie verschiedene Herangehenswei-
sen bzw. Rechenstrategien bei freier Strategiewahl eingesetzt wurden (LUWEL et al., 
2009, S. 352; SIEGLER & LEMAIRE, 1997, S. 72).68

In einem schematischen Überblick aller durchgeführten Studien von LUWEL et 
al. (2009), die auf die Choice/no-choice-Methode zurückgreifen, wird deutlich, dass 
diese Methode in vielen Bereichen zum Einsatz kommt. Vor allem fand sie bis zum 
Zeitpunkt der Zusammenschau bevorzugt im Bereich der Addition und Subtraktion 
Anwendung. Für die Multiplikation bzw. das kleine Einmaleins sind zwei Studien 
vorzufi nden – zunächst die Vorreiterstudie von SIEGLER und LEMAIRE (1997) so-
wie die Untersuchung von IMBO und VANDIERENDONCK (2007). Letztgenann-
te hat die Choice/no-choice-Methode allerdings nicht für Messungen der Adäquatheit 
der Strategiewahl herangezogen. Im Gegensatz dazu konnten SIEGLER und LEMAI-
RE (1997) unter anderem die Nützlichkeit ihrer alternativen Methode im Hinblick 
auf die Ermittlung der Adäquatheit spezieller Herangehensweisen an Einmaleinsauf-
gaben nachweisen:

Data from the usual choice condition would have led to the conclusion that 
mental arithmetic was the faster strategy. However, data from the no-choice 
condition showed that this fi nding was entirely due to selection eff ects. When 
each strategy had to be used equally oft en on each problem (the no-choice con-
dition), the speeds diff ered signifi cantly in the opposite direction. Use of the cal-

68 Nähere Erläuterungen und Anmerkungen zu der choice/no-choice-Methode werden in den 
Ausführungen zur Hauptstudie im Kapitel 5 vorgenommen.
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culator yielded more accurate performance in both conditions, but the amount 
of diff erence was far greater in the no-choice condition. Th us, examining per-
formance under no-choice conditions seems essential for obtaining accurate as-
sessments of the speed and accuracy characteristics of each strategy. (SIEGLER 
& LEMAIRE, 1997, S. 80)

Die darüber hinaus ermittelten Forschungsergebnisse der Studie werden aufgrund 
fehlender Relevanz für diese Arbeit nicht detailliert in den Blick genommen.69

Die Ausführungen dieses Abschnittes veranschaulichen sehr deutlich, dass es zur 
Adäquatheit der Strategiewahl auf Basis individueller Kriterien (Lösungskorrektheit 
und Lösungsgeschwindigkeit) im Bereich der Multiplikation noch vergleichsweise 
wenig Forschung gibt. Ein in Gänze anderes Bild zeichnet sich vergleichsweise im 
Bereich der Addition und Subtraktion ab.

Adäquatheit von beschrittenem Lösungsweg und der Aufgabencharakteristik
Die Forschungsliteratur im Bereich der Multiplikation hat in einer Vielzahl von Stu-
dien Aufgabenlösungen unter Berücksichtigung der Aufgabencharakteristik analy-
siert. Im Bereich der Multiplikation wurde dabei vor allem ein Eff ekt besonders de-
tailliert erforscht: „Research on the problem-size eff ect, one of the most pervasive 
fi ndings in research“ (MABBOTT & BISANZ, 2003, S.  1092). Dieses Forschungs-
gebiet zeichnet sich dadurch aus, dass gewisse Aufgabencharakteristika mit kurzen 
oder langen Reaktionszeiten in Verbindung gebracht werden. Ein diff erenzierter 
Überblick über die in diesem Zusammenhang ermittelten Forschungsergebnisse zur 
Multiplikation wurde bereits im Abschnitt 3.2.1 (Forschungsergebnisse in Abhängig-
keit von der Aufgabencharakteristik) gegeben. Die Studien und Forschungsergebnis-
se zum problem-size eff ect ermöglichen jedoch keine Erkenntnisse bzw. Aussagen zur 
Adäquatheit von beschrittenem Lösungsweg und der Aufgabencharakteristik, wie sie 
in den vorherigen Ausführungen erläutert wurde.

Studien, die sowohl die verschiedenen Herangehensweisen an Einmaleinsauf-
gaben im Detail erfassen als auch die Aufgabencharakteristik in den Blick nehmen 
und somit mögliche Aussagen über die Adäquatheit überhaupt gestatten, sind im Be-
reich der Multiplikation nur vereinzelt vorzufi nden (siehe Abschnitt 3.2). Als exem-
plarisches Beispiel kann die bereits beschriebene Studie von STEEL und FUNNELL 
(2001) aufgeführt werden, die unter anderem untersucht, welche Herangehensweisen 
bzw. Rechenstrategien bevorzugt bei welcher Aufgabencharakteristik – kleine bzw. 
große Faktoren – zum Einsatz kommen. Die Studie verfolgt das Ziel, Aussagen über 
die Strategiewahl in Abhängigkeit von der Aufgabencharakteristik zunächst erst ein-
mal zu ermitteln – und somit nicht per se Aufgabenmerkmale festzulegen, um an-
hand dieser adäquates Handeln auszumachen.

69 Wie aus dem Zitat von SIEGLER und LEMAIRE (1997) bereits entnommen werden 
kann, strebt die Studie einen Vergleich zwischen dem Einsatz eines Taschenrechners und 
dem Kopfrechnen zur Lösung multiplikativer Aufgaben an (SIEGLER & LEMAIRE, 1997, 
S. 76 ff .).
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Als eine von wenigen Studien liefert die Untersuchung von LEFEVRE et al. 
(1996) Erkenntnisse, die hinsichtlich der Aufgabencharakteristika über die Unter-
scheidung kleine bzw. große Faktoren hinausgehen. Die Untersuchung ermittelt, in-
wiefern Herangehensweisen bzw. Rechenstrategien in Abhängigkeit von den Auf-
gabenmerkmalen ausgewählt werden bzw. welche Herangehensweisen bei welchen 
speziellen Aufgabenmerkmalen bevorzugt zum Einsatz kommen. Die Stichprobe von 
LEFEVRE et al. (1996) ist allerdings auf das Erwachsenenalter beschränkt. „Certain 
problems were more likely to elicit certain procedures, and the connections between 
problems and procedures seemed to depend on featural similarities across problems 
and the effi  ciency of a particular procedure for a particular type of problem“ (LE-
FEVRE et al., 1996, S. 301).

Eine weitere Studie, die die Aufgabencharakteristik der Einmaleinsaufgaben in 
ihre Analysen einbezieht, ist die Studie von LEMAIRE und SIEGLER (1995). Die 
Ergebnisse der Studie verdeutlichen, dass die Strategiewahl bzw. die Wahl zwischen 
dem Faktenabruf aus dem Gedächtnis oder dem Einsatz von sogenannten Back-
up-Strategien maßgeblich durch die Aufgabenschwierigkeit beeinfl usst wurde. LE-
MAIRE und SIEGLER (1995) sprechen in diesem Zusammenhang von „Adaptive-
ness of Strategy Choices“ (ebd., S. 91), da die Wahl der Herangehensweise auf Basis 
des Schwierigkeitsgrades der Aufgabe erfolgte.

Th us at all points in learning, children used retrieval most oft en on problems on 
which that fast and easy approach was likely to yield a correct answer; used re-
peated addition most oft en on problems that they could solve by that approach 
but were not so easy that they could solve them through retrieval; and said I 
‘don’t know’ most oft en on the diffi  cult problems that they were unlikely to sol-
ve correctly by either approach. (LEMAIRE & SIEGLER, 1995, S.  93, Hervor-
hebung im Original)

Auch vorausgegangene Studien der genannten Forscher verwiesen bereits auf eine 
höchst adaptive Strategiewahl der Kinder zwischen einem Abruf aus dem Gedächtnis 
und dem Einsatz von Backup-Strategien. Wobei man an dieser Stelle erneut berück-
sichtigen sollte, dass die Herangehensweisen nicht unbedingt einvernehmlich als ad-
äquat bezeichnet werden würden. Was LEMAIRE und SIEGLER (1995) als adäquat 
bezeichnen, wird in folgendem Zitat ersichtlich:

Th is pattern of choices is highly adaptive because it enables subjects to use the 
faster retrieval approach on problems where it yields correct answers and to use 
the slower backup strategies on problems where they are needed to produce ac-
curate performance. (LEMAIRE & SIEGLER, 1995, S. 84)

GASTEIGER und PALUKA-GRAHM (2013) können anhand der Ergebnisse ihrer 
Studie eine aufgabenspezifi sche Strategiewahl ebenfalls bestätigen. Im Vorfeld als 
möglich erachtete oder erwartete Rechenstrategien bzw. Herangehensweisen bildeten 
sich in der überwiegenden Mehrzahl der Fälle auch bei der Strategiewahl ab. So wur-
de beispielsweise zur Lösung der Aufgaben 8 · 7 oder 6 · 9 deutlich häufi ger auf die 
Nachbaraufgabe zurückgegriff en als bei der Aufgabe 5 · 8, bei der sich nach GAS-
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TEIGER und PALUKA-GRAHM (2013) aufgrund der Aufgabencharakteristik der 
Einsatz anderer Strategien deutlich eher anbot. Auch die aufgabenspezifi sche Ana-
lyse des Einsatzes der sukzessiven Addition, die je nach Charakteristik der Aufgabe 
eine mehr oder weniger tragfähige Herangehensweise darstellt, zeigt, dass die Kinder 
größtenteils in der Lage waren, diese adäquat einzusetzen. Resümierend lässt sich 
festhalten, dass die Strategiewahl „von sinnvollen, bewussten Strategieentscheidun-
gen“ (GASTEIGER & PALUKA-GRAHM, 2013, S. 18) geprägt wurde.

Im Bereich der Multiplikation kann folgendes Resümee im Hinblick auf die 
Untersuchungen zur Adäquatheit von beschrittenem Lösungsweg und der Auf-
gabencharakteristik gezogen werden: „Th e existing literature is somewhat sparse; 
 there have not been systematic attempts to map, in detail, how children’s strategy use 
varies across all multiplicand values“ (SHERIN & FUSON, 2005, S.  380). Während 
Studien realisiert wurden, die Erkenntnisse hinsichtlich der bevorzugt eingesetzten 
Herangehensweisen in Abhängigkeit von der Faktorengröße (einfache oder schwe-
re Aufgaben) liefern, sind nur vereinzelte Studien bekannt, die aufgabenadäquates 
Handeln im Zusammenhang mit der Aufgabencharakteristik beschreiben und – wie 
in den theoretischen Ausführungen zu Beginn dieses Abschnittes aufgeführt – auf-
grund der Aufgabenmerkmale einen bestimmten Rechenweg für eine Aufgabe näher 
legen als andere. Um die Strategiewahl als adäquat bezeichnen zu können, müsste im 
Vorfeld normativ festgesetzt werden, welche Herangehensweisen bzw. Rechenstrate-
gien für welche Aufgaben geeignet sind. In der nationalen Literatur hat die Studie 
von GASTEIGER und PALUKA-GRAHM (2013), auf die bereits in den vorausge-
henden Ausführungen verwiesen wurde, erste Erkenntnisse in diesem Kontext ge-
liefert.

Adäquatheit des Referenzrahmens
Aufgabenadäquates Handeln lässt sich auch an der Adäquatheit des Referenzrahmens 
identifi zieren. Während die Abschnitte zu der Adäquatheit von Lösungskorrektheit 
und Lösungsgeschwindigkeit sowie von beschrittenem Lösungsweg und der Aufga-
bencharakteristik bereits gezeigt haben, dass nur wenige Untersuchungen hinsicht-
lich der Adäquatheit im Bereich der Multiplikation durchgeführt wurden, scheint 
dies auch für Studien zur Überprüfung der Adäquatheit des Referenzrahmens zuzu-
treff en. Ein Grund dafür könnte unter Umständen, wie bereits erwähnt, darin liegen, 
dass es schwierig ist, den Referenzkontext zu rekonstruieren – weder anhand eines 
Lösungsweges noch mithilfe von Beobachtungen (RATHGEB-SCHNIERER, 2011, 
S. 16; RECHTSTEINER-MERZ, 2013, S. 76).

Wie die Zusammenschau der Forschungsergebnisse der Studien und Untersu-
chungen im Hinblick auf das kleine Einmaleins verdeutlicht, sind die in der Th eorie 
unterschiedenen verschiedenen Auff assungen von adäquatem Handeln bisher noch 
nicht oder nur vereinzelt in Studien im Bereich der Multiplikation von Relevanz ge-
wesen bzw. realisiert worden. Untersuchungen, die sich mit verschiedenen Herange-
hensweisen bzw. Strategien im Bereich der Multiplikation beschäft igt haben, legen 
bzw. legten, wie im Abschnitt 3.2 ausgeführt, bisher andere Schwerpunkte.



   190  

Was wird in der vorliegenden Arbeit unter Adäquatheit verstanden? – 
Positionierung
Eine adäquate Strategiewahl liegt dem Verständnis der Arbeit zufolge vor, wenn ef-
fi ziente Herangehensweisen bzw. Rechenstrategien zur Lösung von Einmaleinsauf-
gaben gewählt werden. Nach STAR et al. (2009) müssen dabei effi  ziente von weni-
ger effi  zienten Herangehensweisen unterschieden werden: „More effi  cient [strategies] 
than others under particular circumstances“ (ebd., S.  570, Ergänzung der Autorin). 
Was kann nun unter effi  zienteren bzw. adäquateren Herangehensweisen bzw. Re-
chenstrategien im Vergleich zu anderen unter den jeweiligen Gegebenheiten oder 
Verhältnissen verstanden werden? Mit Blick auf die fachdidaktischen Empfehlungen 
des Abschnittes 2.3 zur Erarbeitung des kleinen Einmaleins können Herangehens-
weisen an Einmaleinsaufgaben unterschiedliche Grade an „Eleganz und Effi  zienz“ 
(SELTER, 1994, S.  75) aufweisen. Nach allgemeinem Konsens der Mathematikdi-
daktik sollen Kinder noch unbekannte Aufgaben mithilfe bereits bekannter Einmal-
einssätze und auf Basis von Einsicht in operative Beziehungen, den in dieser Arbeit 
sogenannten Rechenstrategien (siehe Abschnitt 2.2.2), lösen. Der Einsatz von Re-
chenstrategien zur Lösung von Einmaleinsaufgaben stellt in dieser Arbeit somit die 
erste Bedingung bzw. Voraussetzung für eine adäquate Strategiewahl dar.70 Da sich 
allerdings nicht jede Rechenstrategie als gleichermaßen geeignet für jeden Aufga-
bentyp bzw. jedes Aufgabenmerkmal einer Einmaleinsaufgabe herauskristallisiert hat 
(siehe Abschnitt 2.2.2), muss eine adäquate Strategiewahl in dieser Arbeit auch unter 
Berücksichtigung von Aufgabencharakteristika erfolgen. Kinder müssen, damit von 
einer adäquaten Strategiewahl gesprochen werden kann, über Rechenstrategien bzw. 
strategisches Wissen verfügen, um Aufgabenbeziehungen im Lösungsprozess wahr-
nehmen und auf dieser Basis eine adäquate bzw. geeignete Wahl in Abhängigkeit von 
der Aufgabencharakteristik treff en zu können. Dabei grenzt sich die dieser Arbeit 
zugrundeliegende Defi nition aufgabenadäquaten Handelns von Defi nitionen ab, die 
nach BLÖTE et al. (2000) oder KLEIN et al. (1998) davon ausgehen, dass die Aufga-
bencharakteristik genau einen bestimmten Rechenweg zur Lösung der Aufgabe vor-
sieht. Zwar wird die Eignung einer Lösungsstrategie auch im Hinblick auf die Aufga-
bencharakteristik abgewägt, allerdings liegt das Hauptaugenmerk auf dem Rückgriff  
von Beziehungen zur Aufgabenlösung. Idealerweise liegt dem Rückgriff  beim Ein-
satz von Rechenstrategien ein Verständnis der Zahl- und Aufgabenbeziehungen zu-
grunde und nicht ein erlerntes Verfahren, das nach Schema F abgearbeitet wird. Da 
es nach RATHGEB-SCHNIERER (2011) schwierig ist, den Referenzkontext anhand 
eines Lösungsweges zu rekonstruieren (ebd., S. 16) und zu unterscheiden, inwiefern 
ein gelerntes, routinemäßig angewandtes Verfahren, erkannte Aufgabenmerkmale 
bzw. genutzte Zahlbeziehungen oder eine Kombination aus allem zur Aufgabenlö-
sung geführt haben (siehe Abschnitt 3.3.1), wird in dieser Arbeit die Frage nach dem 
Referenzkontext eine womöglich nur schwer zu beantwortende Frage sein.

70 Das langfristige Ziel der Erarbeitung des kleinen Einmaleins ist der Faktenabruf aller Aufga-
ben aus dem Gedächtnis (siehe Abschnitt 2.3). Der Einsatz des Faktenabrufes zur Aufgaben-
lösung kennzeichnet demnach eine adäquate Strategiewahl.
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Die Lösungsgeschwindigkeit und die Lösungskorrektheit werden in dieser Arbeit 
nicht als Kriterium für adäquates Handeln herangezogen, steht doch vorrangig – 
wie bereits beschrieben – das Anwenden von Herangehensweisen im Vordergrund, 
die auf Beziehungen und Zusammenhängen basieren und somit wiederum auch das 
Wahrnehmen und Erkennen von Beziehungen fordern (siehe Abschnitt 2.4.2). Nicht 
eine möglichst schnelle und korrekte Aufgabenlösung ist in erster Linie erstrebens-
wert, sondern eine Herangehensweise, die erkennen lässt, dass Beziehungen erkannt 
und genutzt werden sowie einen Transfer auch im größeren Zahlenraum beispiels-
weise beim großen Einmaleins zulässt. Die Lösungsgeschwindigkeit scheint im Be-
reich der Multiplikation ein schwieriges Kriterium zur Einschätzung eines adäquaten 
Einsatzes darzustellen. Die sukzessive Addition ist beispielsweise je nach Aufgaben-
charakteristik häufi g eine weniger tragfähige – weil fehleranfällige – Herangehens-
weise, kann aber durchaus im Vergleich zum Einsatz von Rechenstrategien zu einer 
schnelleren Lösung von Einmaleinsaufgaben führen (z. B. LEFEVRE et al., 1996).

Die sukzessive Addition wird wie im Abschnitt 2.2.2 ausführlich beschrieben 
nicht per se als Rechenstrategie erfasst. Sie stellt einen Grenzfall dar: Bei entspre-
chender Aufgabencharakteristik kann der Einsatz der wiederholten Addition zur 
Aufgabenlösung durchaus überlegt bzw. refl ektiert erfolgen, in einem Großteil der 
Fälle erweist sich der Einsatz aber vorwiegend als sehr zeitaufwendig und fehler-
anfällig und stellt somit für die Lösung von Einmaleinssätzen eine eher ungeeigne-
te Herangehensweise dar. Für die Analyse der Adäquatheit, wie sie in dieser Arbeit 
defi niert ist, wird der Einsatz der sukzessiven Addition anhand der Aufgabencharak-
teristik von Fall zu Fall individuell betrachtet bzw. abgewägt.

Eine notwendige Bedingung für eine erfolgreiche Strategiewahl bzw. -verwendung 
besteht dem Verständnis dieser Arbeit zufolge darin, dass dem Kind der Wechsel 
zwischen verschiedenen zur Verfügung stehenden Herangehensweisen zur Lösung 
von Einmaleinsaufgaben gelingt. Erweist sich das Kind darüber hinaus noch in der 
Lage, eine jeweils adäquate Aufgabe hinsichtlich der Aufgabencharakteristik zu wäh-
len, kann das Kind als noch kompetenter bezüglich des Strategieeinsatzes eingestuft  
werden. Mit der Einführung der Begriffl  ichkeit der Transferierbarkeit wird zudem 
ein noch diff erenzierteres Bild der Strategiekompetenz erlangt. Der Transfer bzw. 
die Übertragung von tragfähigen Herangehensweisen auf den größeren Zahlenraum 
stellt in diesem Zusammenhang beim kleinen Einmaleins die größte Kompetenzleis-
tung im Grundschulbereich dar. Die einleitenden Worte dieses Kapitels erneut auf-
greifend, kann bei einer erfolgreichen Strategiewahl von einer besonderen Art und 
Weise des Umgangs mit Zahlen gesprochen werden – „one which has implications 
for other mathematics learning“ (THRELFALL, 2009, S. 543).
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3.3.3 Das Individuum und der Unterricht als Einfl ussfaktoren der 
Strategiewahl

Ob und welche Herangehensweisen bzw. Rechenstrategien Kinder zur Lösung von 
Einmaleinssätzen einsetzen, inwiefern ihre getroff ene Wahl als fl exibel, adaptiv oder 
transferierbar bezeichnet werden kann, scheint von verschiedenen Faktoren abhän-
gig zu sein. Eine Abhängigkeit der gewählten Herangehensweise bzw. Rechenstrate-
gie lässt sich unter anderem vom Individuum, dem dargebotenem Unterricht und 
der jeweiligen Aufgabenstellung beobachten. Die beiden erstgenannten Faktoren, das 
Individuum und der Unterricht, sollen in diesem Abschnitt detaillierter betrachtet 
werden. Auf die Abhängigkeit der gewählten Strategie bzw. Herangehensweise vom 
Zahlenmaterial wurde bereits ausführlich im Abschnitt 3.2.1 zu den Forschungs-
ergebnissen im Hinblick auf die Aufgabencharakteristik und im Abschnitt 3.3.2 be-
züglich der Adäquatheit von beschrittenem Lösungsweg und der Aufgabencharak-
teristik verwiesen. Aus diesem Grund wird im folgenden Absatz nur ein kurzes 
Resümee gezogen.

Vor allem aus dem Bereich der Addition und Subtraktion ist bekannt, dass Kin-
der das Zahlenmaterial der Aufgabenstellung kaum nutzen und es dementsprechend 
nur selten als Entscheidungsgrundlage für ihre Strategiewahl heranziehen (z. B. 
BENZ, 2007; BLÖTE, KLEIN & BEISHUIZEN, 2000; HEINZE, MARSCHICK & LI-
POWSKY, 2009; SELTER, 2001; TORBEYNS, DE SMEDT, GHESQUIÈRE & VER-
SCHAFFEL, 2009; TORBEYNS, VERSCHAFFEL & GHESQUIÈRE, 2006). Für den 
Multiplikationsbereich verweisen vereinzelte Studien auf Zusammenhänge zwischen 
der gewählten Herangehensweise und der jeweiligen Aufgabenstellung. Zusammen-
fassend kann allerdings festgehalten werden, dass über die bereits genannten For-
schungsergebnisse hinaus noch Forschungsbedarf hinsichtlich einer adäquaten Stra-
tegiewahl bezogen auf die Aufgabenstellung besteht. SHERIN und FUSON (2005) 
kamen in ihrer Literaturrecherche (siehe Abschnitt 3.3.2) zu einer ähnlichen Er-
kenntnis (ebd., S. 380).

Im Folgenden wird zunächst das Individuum als ein die Strategiewahl beeinfl us-
sender Faktor vorgestellt.

Einfl ussfaktor Individuum
Dass individuelle Dispositionen einen Einfl uss auf die Wahl einer Herangehenswei-
se bzw. Rechenstrategie haben, ist nicht weiter verwunderlich – stellen diese doch 
die Schlüsselfi gur in einem Entscheidungsfi ndungsprozess dar. Die vom Individuum 
gewählte Herangehensweise scheint hierbei von den individuell vorhandenen bzw. 
nicht vorhandenen Voraussetzungen abhängig zu sein (KROESBERGEN et al., 2004; 
THRELFALL, 2002, 2009): „Some possible strategies for some students are not feasi-
ble because of what they know, or more precisely do not know” (THRELFALL, 2009, 
S.  548). Zur Aufgabenlösung von Einmaleinsaufgaben mithilfe von Rechenstrate-
gien müssen Kinder beispielsweise neben einem bestimmten Faktenwissen (den so-
genannten Kernaufgaben) auch über Wissen in Bezug auf operative Zusammenhän-
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ge bzw. Beziehungen zwischen Aufgabenstellungen verfügen. Da aufgabenadäquates 
Handeln allerdings auch Alternativen erfordert, die eine Wahl in Abhängigkeit von 
den Aufgabenmerkmalen erst ermöglicht, ist somit Wissen über unterschiedliche 
Herangehensweisen bzw. Rechenstrategien ebenfalls hilfreich bzw. von Vorteil. Die 
im Folgenden angeführte Aufl istung von THRELFALL (2002) veranschaulicht mit 
Bezug auf ein möglichst großes Strategierepertoire die Vielfalt an benötigten Kompe-
tenzen bzw. Fähigkeiten zur Lösung von Einmaleinsaufgaben auf unterschiedlichen 
Wegen:
• „Using related facts and doubling or halving […]
• Using closely related facts already known 
• Partitioning and using the distributive law 
• Using the relationship between multiplication and division 
• Using known number facts and place value“ (THRELFALL, 2002, S. 43).71

Dem Entwicklungsmodell der Multiplikation von SHERIN und FUSON (2005) zu-
folge muss ein Kind zahlspezifi sche Rechenfertigkeiten besitzen, um eine Herange-
hensweise bzw. Rechenstrategie anwenden zu können: „It is manifestly clear that at 
least some of the relevant knowledge is number-specifi c“ (ebd., S.  384; siehe auch 
Abschnitt 3.1).

For example, the count-by strategy requires that the student acquire the count-
by sequences for each operand. And learned product requires that specifi c num-
ber triads are learned. No across-the-board conceptual development can ob viate 
the need for the learning of these number-specifi c computational resources. 
(SHERIN & FUSON, 2005, S. 384)72

Die Vielfalt an Rechenstrategien bzw. die Bandbreite verschiedener Herangehenswei-
sen, über die eine Person verfügt, kann nach THRELFALL (2009) zu einem gewissen 
Repertoire des Individuums beitragen, was an Zahlen bzw. dem Zahlenmaterial einer 
Aufgabe erkannt werden kann (ebd., S.  548). „In this way, fl exible mental calcula-
tion can be seen as an individual and personal reaction with knowledge, manifested 
in the subjective sense of what is noticed about the specifi c problem“ (THRELFALL, 
2002, S.  42). Das adaptive Lösen einer Einmaleinsaufgabe setzt somit das Erkennen 
spezifi scher Aufgabenmerkmale sowie das Nutzen dieser Merkmale zur Aufgabenlö-
sung voraus. Dabei wird erneut die Abhängigkeit vom Individuum bzw. den Kom-
petenzen des Lernenden ersichtlich: Der Lernende muss nicht nur über das notwen-
dige Wissen über Zahlen und ihre Beziehungen verfügen, sondern auf Basis dieses 
Wissens auch die spezifi schen Aufgabeneigenschaft en wahrnehmen, die zur Lösung 
genutzt werden, sowie die dementsprechend geeigneten Herangehensweisen kor-

71 Die Aufl istung von THRELFALL (2002) beschränkt sich nicht ausschließlich auf die Multi-
plikation, sondern bezieht auch die Division ein (ebd., S. 43).

72 Wie bereits im Abschnitt 3.1 angeführt gehen SHERIN und FUSON (2005) bei der Multi-
plikation nicht von einer linearen Strategieentwicklung aus, bei der dominierende Strategien 
durch ein profunder werdendes Verständnis (across-the-board conceptual development) von 
anderen Strategien abgelöst werden. Nach SHERIN und FUSON (2005) sind für einen Stra-
tegiewechsel zahlspezifi sche Rechenfertigkeiten vonnöten (ebd., S. 348).
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rekt ausführen. RATHGEB-SCHNIERER (2006) spricht in diesem Zusammenhang 
von einem „Zusammenspiel von Erkennen und Wissen“ (ebd., S.  59). THRELFALL 
(2002) versteht das Wissen und Erkennen jedes Individuums wie folgt: „Personal 
knowledge as a determinant of how a solution path emerges in the context of parti-
cular calculations, by way of what is noticed by the individual about the numbers in 
the calculation“ (ebd., S. 45).

Neben Wissen betont auch er die Wichtigkeit von Zahlen und deren Beziehun-
gen für die Entwicklung fl exibler Rechenkompetenzen bzw. eine adaptive Strategie-
wahl (ebd., S.  44). LORENZ (1998) sieht im Wissen über Zahlen, dem Verständ-
nis von Zahlbeziehungen sowie in der Entwicklung des „Zahlensinns“ (ebd., S.  60) 
wichtige Bedingungen für das Rechnen – in der Entwicklung des Zahlensinns sieht 
LORENZ (1998) sogar „das wichtigste und übergeordneteste Ziel des Arithmetik-
unterrichts“ (ebd., S. 67). Der englische Begriff  number sense, den LORENZ mit dem 
Begriff  Zahlensinn gleichsetzt, scheint sich in den folgenden kindlichen Fähigkeiten 
bemerkbar zu machen bzw. zu äußern (LORENZ, 1998a, S. 12):
• im Zusammensetzen und Zerlegen von Zahlen,
• in der „bedeutungshaltigen“ (ebd., S. 11) Verbindung von Zahl- und Operations-

systemen
• im Umgang mit Regeln und ihren Auswirkungen
• im Nutzen von Zahleigenschaft en im Bereich des Kopfrechnens
• in der fl exiblen Verwendung von Zahlen und
• im Verstehen von Zahlen und ihren Beziehungen.

HEIRDSFIELD und COOPER (2002) arbeiteten die folgenden eher allgemeinen 
Merkmale heraus, durch die sich ein fl exibler Rechner auszeichnet bzw. die für eine 
adaptive Strategiewahl eines jeden Individuums vonnöten sind:
• number facts 
• numeration73 
• estimation and sense of size of numbers 
• number and operation (HEIRDSFIELD & COOPER, 2002, S. 66).

Bereits in dieser sehr allgemein gehaltenen Aufzählung von HEIRDSFIELD und 
COOPER (2002) wird der Stellenwert der number deutlich. Ähnlich wie LORENZ 
(1998) und THRELFALL (2002) hebt auch SCHÜTTE (2004) die Relevanz des Wis-
sens über Zahlen hervor. „Ein reichhaltiges Wissen in Bezug auf den mathemati-
schen Gegenstand ‚Zahlen‘“ (SCHÜTTE, 2004, S.  143, Hervorhebung im Original), 
der das Wahrnehmen von Zahleigenschaft en und -beziehungen umfasst, erfährt im 
Zuge des Lösens von Aufgaben große Bedeutsamkeit. SCHÜTTE (2002) spricht in 
diesem Kontext von der „Schulung des Zahlenblicks“ (ebd., S. 6).

Nach HEIRDSFIELD und COOPER (2002) weisen fl exible bzw. adaptive Rech-
ner neben einer Vielfalt an kognitiven Kompetenzen auch metakognitive und aff ek-
tive Kompetenzen auf (ebd., S.  66 ff .). Auch RATHGEB-SCHNIERER (2006) macht 

73 Der Begriff  numeration steht nach HEIRDSFIELD (2011) für das Zahlverständnis.
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neben den mathematisch-inhaltlichen auf metakognitive Fähigkeiten aufmerksam, 
wenn von adaptivem Handeln bzw. Merkmalen eines Rechners gesprochen wird. 
Ihrer Meinung nach zeichnet sich ein adaptiver Rechner wie folgt durch:
• „[…] das Erkennen von Aufgabenunterschieden,
• das Erkennen von Zahleigenschaft en und Zahlbeziehungen,
• das Nutzen von Zahl- und Aufgabeneigenschaft en sowie Zahlbeziehungen beim 

Lösen von Aufgaben,
• das Kennen und Verstehen von strategischen Werkzeugen74, 
• der bewegliche Umgang mit strategischen Werkzeugen, das Kennen von alterna-

tiven Rechenwegen,
• das Begründen von Rechenwegen,
• die Einschätzung der Passung eines Lösungsweges und 
• das Verfügen über metakognitive Kompetenzen“ (RATHGEB-SCHNIERER, 2006, 

S. 270 f.) aus.

Auch wenn sich die Anmerkungen und Aussagen von LORENZ (1998), HEIRDS-
FIELD und COOPER (2002), RATHGEB-SCHNIERER (2006) sowie SCHÜTTE 
(2002, 2004) nicht explizit auf das Einmaleins beziehen, da sie sich in erster Linie 
auf Forschungsergebnisse zu Studien zur Addition und Subtraktion stützen und in 
diesem Kontext Merkmale fl exibler bzw. adaptiver Rechner beschreiben, lassen sich 
viele kennzeichnende Merkmale nahezu direkt auf die Multiplikation und die Strate-
giewahl übertragen.

Gemäß HESS (2012) müssen Kinder im Bereich der Multiplikation „über ein 
fortgeschrittenes Mengen- und Operationsverständnis verfügen, bis sie […] im Ein-
maleins Beziehungen nutzen und Ableitungen vornehmen können“ (ebd., S.  157). 
Nach MABBOTT und BISANZ (2003) setzt sich ein verständnisvoller Umgang mit 
der Rechenoperation der Multiplikation aus mehreren miteinander verbundenen 
Konzepten – „related concepts“ (MABBOTT & BISANZ, 2003, S.  1093) – zusam-
men, die zu einem adaptiven Rechnen befähigen (ebd., S. 1093). Für das Lösen von 
kontextfreien Einmaleinsaufgaben werden eine Reihe relevanter Konzepte von MAB-
BOTT und BISANZ (2003) angeführt:75

• relations between repeated addition and multiplication: a · b  =  b + b + … (a 
times)

• commutativity: a · b = b · a
• part-whole relation: a · b = a · (b – 1) + b 
• relative eff ects of operations on numbers: a · I = a, only when I = 1
• relative magnitudes of numbers: „if a · b = c, then c > a and c > b (natural num-

bers)“76 (MABBOTT & BISANZ, 2003, S. 1106)

74 Nach RATHGEB-SCHNIERER (2006) wird unter der Begriffl  ichkeit strategisches Werkzeug 
das zur Ausführung einer Herangehensweise bzw. Rechenstrategie erforderliche Strategie- 
und Basisfaktenwissen verstanden (siehe auch Abschnitt 2.2.1).

75 Die vollumfängliche Aufl istung, die auch Konzepte im Hinblick auf die Lösung von Sachauf-
gaben beinhaltet, wird in MABBOTT und BISANZ (2003) erwähnt (ebd., S. 1093, S. 1106 f.).

76 Diese von MABBOTT und BISANZ (2003) angeführte Vorstellung ist in Bezug auf die An-
schlussfähigkeit mathematischen Lernens nicht unbedenklich. Das Konzept Relative Magni-
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• relations between concrete manipulatives and symbolic representations of specifi c 
problems (MABBOTT & BISANZ, 2003, S. 1093, S. 1106).77

Die von MABBOTT und BISANZ (2003) angeführten „related concepts“ (ebd., 
S. 1093), über die ein Kind zur Aufgabenbewältigung beim kleinen Einmaleins ver-
fügen sollte, stimmen in einigen Punkten mit den von LAMPERT (1986) beschriebe-
nen Fähigkeiten überein, die Kinder benötigen, um verständnisbasiert Aufgaben aus 
dem großen Einmaleins zu lösen. Nach LAMPERT (1986) muss ein Kind die folgen-
den Fähigkeiten besitzen bzw. die nachfolgenden Rechengesetze kennen:
• Einsicht in das Stellenwertprinzip
• Fähigkeit Zahlen fl exibel zusammenzusetzen bzw. zu zerlegen (die Zahl 76 kann 

auf verschiedene Art und Weise zerlegt werden, z. B. 70 + 6 oder 75 + 1)
• Assoziativität der Addition 
• Kommutativität der Addition
• Fähigkeit, Zahlen in gleich große Gruppen zu zerlegen (die Zahl 76 kann auf 

verschiedene Art und Weise in gleich große Gruppen zerlegt werden, z. B. 38 + 
38 = 2 · 38 oder 19 + 19 + 19 + 19 = 4 · 19)

• Assoziativität der Multiplikation 
• Kommutativität der Multiplikation
• Distributivität (ebd., S. 310 f.).

LAMPERT (1986) verdeutlicht die Wichtigkeit der aufgelisteten Gesetze und Grund-
sätze: „Principles are basic building blocks not only of processes used to multiply 
large numbers but also of much of pure mathematics. Th ey can be used to represent 
the implicit conceptual knowledge of anyone who understands multiplication pro-
cedures“ (LAMPERT, 1986, S.  311). Auf die Bedeutsamkeit der Rechengesetze bzw. 
Eigenschaft en für das kleine Einmaleins, aber auch für den darauf aufb auenden grö-
ßeren Zahlenraum bzw. das große Einmaleins wurde bereits im Abschnitt 2.4 ver-
wiesen.

Zusammenfassend lässt sich bislang sagen, dass die Strategiewahl eines jeden 
Individuums maßgebend vom individuellen Wissen einer Person und insbesonde-
re von der Fähigkeit Zahlbeziehungen zu erkennen beeinfl usst wird. THRELFALL 
(2009) spricht in diesem Zusammenhang von „knowledge and skills of the indivi-
dual“ (ebd., S.  551). Dabei hat sich vor allem das bereits erwähnte Zusammenspiel 
zwischen Wissen und Erkennen als entscheidendes Kriterium der Strategiewahl her-
auskristallisiert. Wie eng dabei im Zuge einer adaptiven Strategiewahl die einzelnen 
Wissensbausteine miteinander verknüpft  sind bzw. sich wechselseitig bedingen und 

tudes of Numbers – „if a · b = c, then c > a and c > b “ (ebd., S. 1106) – ist nur widerspruchs-
frei, wenn a, b und c natürliche Zahlen mit a, b > 1 sind.

77 Im Gegensatz zu den bisherigen Aufl istungen, wird mit dem letzten Punkt als ein relevan-
tes Konzept für das Lösen multiplikativer Aufgaben von MABBOTT und BISANZ (2003) auf 
den wichtigen Zusammenhang zwischen der symbolischen Darstellung einer Aufgabe und 
ihrer Veranschaulichung verwiesen. Insbesondere im Bereich der Multiplikation nehmen 
unter anderem Arbeitsmittel eine wichtige Rolle beim Rechnen sowie beim Argumentieren 
und Beweisen ein (siehe Abschnitt 2.3.2).
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welche Rolle dem Verständnis dieses Wechselspiels zuteilwird, hält KUHN (1984) 
fest: „In order to select a strategy as appropriate for solving a particular problem, the 
individual must understand the strategy, understand the problem, and understand 
how the problem and strategy intersect or map onto one another“ (ebd., S.  165). 
Neben den mathematisch-inhaltlichen Merkmalen, wie beispielsweise dem Wis-
sen über Zahlen – speziellen Zahleigenschaft en und Zahlbeziehungen – oder dem 
Operationswissen der entsprechenden Rechenoperation, sind allerdings auch noch 
eine Reihe weiterer Faktoren für individuelle Strategieentscheidungen von Relevanz 
(THRELFALL, 2009).

Die Rolle des Arbeitsgedächtnisses sollte nicht unberücksichtigt bleiben mit Blick 
auf das Lösen von Einmaleinsaufgaben: „Th e role of working memory in mental cal-
culation comes clearly to mind when thinking of calculations that involve interme-
diate results, such as multiplying […] in parts, and needing to ‚hold‘ the outcome 
of the fi rst part […] while working out the other part“ (THRELFALL, 2009, S. 552, 
Hervorhebung im Original). Nach ZHANG et al. (2014) ist der Arbeitsspeicher vor 
allem beim Lösen von Strategien von bedeutender Relevanz: „Decomposition strate-
gy is working memory demanding because it requires students to break down one or 
two multiplicands and hold these complex procedures in mind.“ (ebd., S. 27). Dass 
Kinder vor allem beim Zwischenspeichern vorübergehender Ergebnisse von den 
vorhandenen Kapazitäten des Arbeitsspeichers abhängig sind, veranschaulicht TER 
HEEGE (1985) an folgendem Beispiel:

Take 7 x 7 = 49, for instance: fi rst he [a participant] ascertains that 10 x 7 = 70. 
He uses the result – 70 – to continue his calculations. Half of 70 is 35. Th is re-
sult is used to continue the procedure: 35 + 7 = 42. And fi nally 42 + 7 = 49. Th e 
intermediate results involved in the solution were: 70, 35, 42 and (the fi nal ans-
wer) 49. (TER HEEGE, 1985, S. 379, Ergänzung der Autorin)

Einer Studie von IMBO und VANDIERENDONCK (2007) zufolge erfordert das Lö-
sen von Einmaleinsaufgaben grundsätzlich Arbeitsspeicherkapazitäten (ebd., S. 1759; 
DE RAMMELAERE, STUYVEN & VANDIERENDONCK, 2001; DESTEFANO 
& LEFEVRE, 2004; LEE & KANG, 2002; SEITZ & SCHUMANN-HENGSTELER, 
2000). Im Bereich der Addition und Subtraktion erweist sich die Anzahl der For-
schungsergebnisse zur Rolle des Arbeitsgedächtnisses im Hinblick auf unterschiedli-
che Lösungsstrategien allerdings als sehr begrenzt78, ebenso wie für die Rechenope-
rationen der Multiplikation und Division: „We know practically nothing about the 

78 Nicht nur aufgrund der begrenzten Zahl an Studien in diesem Forschungsbereich sollten 
die Forschungsergebnisse der Addition bzw. Subtraktion nicht auf die Rechenoperation der 
Multiplikation (bzw. Division) übertragen werden: „Studying the role of working memory in 
multiplication and division strategies is far more than just an extension of previous research 
(IMBO  & VANDIERENDONCK, 2007, S.  1760). IMBO und VANDIERENDONCK (2007) 
führen dies zum einen auf die verschiedenen Erarbeitungszeitpunkte zurück. „Furthermore, 
the acquisition of addition and subtraction skills and strategies is mainly based on count-
ing procedures, whereas the acquisition of multiplication and division skills and strategies is 
based on the memorization of problem–answer pairs“ (ebd., S. 1760).
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role of working memory in multiplication and division strategies“ (IMBO & VAN-
DIERENDONCK, 2007, S. 1760).

Laut den Forschungsergebnissen von DESTEFANO und LEFEVRE (2004) vari-
ieren die Anforderungen an den Arbeitsspeicher mit der genutzten Herangehens-
weise und der Komplexität der Aufgabenstellung. Gemäß THRELFALL (2009) stellt 
die erforderte Kapazität des Arbeitsgedächtnisses somit unter anderem einen weite-
ren bestimmenden Faktor der individuellen Strategiewahl dar: „It is reasonable to 
conclude that one strategy may not be feasible for an individual just because their 
working memory capacity is not up to it, whereas for another student, this may not 
apply, and either might be used“ (ebd., S. 552). Ergebnisse im Hinblick auf die Effi  -
zienz79 einzelner Herangehensweisen führen nach IMBO und VANDIERENDONCK 
(2007) zu folgenden Erkenntnissen: „Results concerning strategy effi  ciency showed 
that the roles of the diff erent working memory resources diff ered across strategies 
(ebd., S. 1765).80

Den Forschungsergebnissen von STEEL UND FUNNELL (2001) zufolge ist die 
Wahl und die Anwendung von Herangehensweisen bzw. Rechenstrategien demnach 
auch abhängig von der Leistungsfähigkeit des Arbeitsgedächtnisses (ebd., S. 53). Stu-
dien zeigen, dass vor allem rechenschwache Schülerinnen und Schüler über begrenz-
te Arbeitsgedächtnis-Kapazitäten verfügen (SWANSON & BEEBE-FRANKENBER-
GER, 2004; siehe Abschnitt 2.4.4) und demnach unter Umständen auch bei ihrer 
Strategiewahl eingeschränkt sind. Weniger effi  ziente81 Herangehensweisen bzw. Re-
chenstrategien scheinen mehr Kapazitäten zu beanspruchen als effi  ziente Strategien. 
STEEL und FUNNNELL (2001) verweisen des Weiteren darauf, dass nicht nur die 
Kinder, die über ein leistungsfähiges Arbeitsgedächtnis verfügen, effi  zientere Strate-
gien zur Lösung von Einmaleinsaufgaben wählen, sondern insgesamt leistungsstär-
kere Schülerinnen und Schüler effi  zientere Herangehensweisen bzw. Rechenstrate-
gien einsetzen und den Strategieeinsatz erfolgreicher meistern. „It was the more able 
children who discovered the most eff ective strategies“ (STEEL & FUNNELL, 2001, 
S. 54). STEEL und FUNNELL (2001) bringen in dieser zitierten Textstelle noch ein-
mal einen anderen Aspekt ins Spiel, der ebenfalls dem Individuum zuzuschreiben ist: 
allgemeine mathematische Fähig- und Fertigkeiten.

Was die Abhängigkeit der Strategiewahl von allgemeinen arithmetischen Fähig- 
und Fertigkeiten des einzelnen Individuums betrifft  , sind im Bereich der Multipli-
kation kaum Studien publiziert worden, die im Detail Erkenntnisse dazu liefern. Im 
Zusammenhang mit leistungsschwachen Schülerinnen und Schülern konnten einige 

79 Die Effi  zienz eines Strategieeinsatzes wurde in der Studie von IMBO und VANDIEREN-
DONCK (2007) anhand der benötigten Reaktionszeiten ermittelt.

80 Nach IMBO und VANDIERENDONCK (2007) werden die exekutiven Funktionen des 
Arbeitsgedächtnisses (zentrale Exekutive) beim Einsatz jeder Herangehensweise bzw. Re-
chenstrategie benötigt. Bei der Anwendung von Zähl-Strategien wird darüber hinaus die 
phonologische Schleife beansprucht (ebd., S. 1760). 

81 Der Studie von STEEL und FUNNELL (2001) zufolge stellt der Faktenabruf (retrieval) die ef-
fi zienteste Herangehensweise zur Lösung von Einmaleinsaufgaben dar. Ableitungsstrategien 
(calculation using derived facts) sind am zweiteffi  zientesten gefolgt von der Herangehenswei-
se des Aufsagens der Reihe (counting-in-series) (ebd., S. 43–53).
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wenige Studien vorgestellt werden (siehe Abschnitt 2.4.4), die erste Indizien geben, 
dass rechenschwache Kinder von einer verständnisbasierten Erarbeitung des klei-
nen Einmaleins profi tieren. Zudem existieren vereinzelt Studien wie unter anderem 
die von WOODWARD (2006) in der Forschungsliteratur, die zwar zwischen Kin-
dern unterschiedlichen Leistungsvermögens diff erenzieren und somit Aussagen im 
Hinblick auf das unterschiedliche Leistungsvermögen zulassen – allerdings nicht mit 
Blick auf die Strategiewahl, sondern bezüglich der Korrektheit und der Lösungsge-
schwindigkeit der Aufgabenlösung. Ein möglicher Grund für die wenigen Erkennt-
nisse hinsichtlich individueller Einfl ussfaktoren im Allgemeinen und im Speziellen 
bezogen auf mathematische Fähigkeiten kann sicherlich in der generell sehr gerin-
gen Anzahl an Studien liegen, die sich mit den verschiedenen Herangehensweisen 
bzw. Rechenstrategien an Einmaleinsaufgaben bzw. der Strategiewahl im Speziellen 
beschäft igen (siehe Abschnitt 3.2).

Mit Blick auf die Strategieausführung kann festgehalten werden, dass leistungs-
schwächere Schülerinnen und Schüler deutlich weniger erfolgreich Einmaleinsauf-
gaben lösen und angewandte Strategien auch weniger erfolgreich auf Aufgaben des 
großen Einmaleins übertragen als leistungsstärkere Kinder (IMBO & VANDIEREN-
DONCK, 2007, S.  1768; WOODWARD, 2006, S.  280 ff .). Noch einmal bezugneh-
mend auf die Studie von IMBO und VANDIERENDONCK (2007) konnte ermittelt 
werden, dass arithmetische Fertigkeiten signifi kant mit der Effi  zienz des Strategie-
einsatzes korrelieren: „More specifi cally, high-skill participants were more effi  cient 
in executing both retrieval and non-retrieval strategies to solve multiplication […] 
problems“ (ebd., S. 1768). Insgesamt wird auch in diesem Kontext ein erneuter For-
schungsbedarf ersichtlich: Vereinzelte Studien, die die Strategiewahl analysieren 
und zudem die individuellen Fähig- und Fertigkeiten eines jeden Individuums be-
rücksichtigen, wurden zwar realisiert – wie beispielsweise in der Studie von IMBO 
und VANDIERENDONCK (2007) –, allerdings wurden bisher nicht alle relevanten 
Zielgruppen diesbezüglich untersucht oder eine effi  ziente Strategieanwendung aus-
schließlich hinsichtlich der Lösungsgeschwindigkeit – „more effi  cient (i. e., faster)“ 
(ebd., S. 1761) – erfasst. Wie bereits im Abschnitt 3.3.2 beschrieben, ist nicht zwin-
gend bzw. ausschließlich die Schnelligkeit der Aufgabenlösung von Relevanz, son-
dern ein wenn möglich fl exibler, adaptiver und unter Umständen transfereierbarer 
Strategieeinsatz.

Nach HESS (2012) muss im Hinblick auf die Strategiewahl noch ein weiterer be-
einfl ussender Faktor betont werden: „Nicht jedes Kind erkennt und nutzt die glei-
chen multiplikativen Beziehungen. Dies hängt unter anderem von […] den persönli-
chen Vorlieben ab“ (ebd., S. 172). Auf die persönlichen Vorlieben bzw. individuellen 
Präferenzen, die ebenfalls ein Entscheidungskriterium darstellen können, wird in 
den folgenden Ausführungen Bezug genommen. Gewissermaßen abhängig von den 
individuellen Kenntnissen und Fähigkeiten scheinen Strategiewahlen auch mit dem 
Wunsch gepaart zu sein, nach Möglichkeit leichte bzw. einfache Herangehensweisen 
zur Aufgabenlösung heranzuziehen (THRELFALL, 2009, S. 548). Was Kindern leicht 
fällt, spielt auch in einem anderen Zusammenhang eine Rolle: Werden Schülerin-
nen und Schüler aufgefordert, ihre Herangehensweisen an Einmaleinsaufgaben ver-
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bal zu erklären, greifen diese häufi g auf leicht zu beschreibende Herangehensweisen 
bzw. Rechenstrategien zurück (ASHCRAFT, 1990, S. 201; THRELFALL, 2009, S. 549; 
siehe auch Abschnitt 3.2.2). Auf die Frage, inwiefern Kinder bestärkt bzw. bekräft igt 
werden sollen, ihre Herangehensweisen an Aufgaben zu erklären, antwortet THREL-
FALL (2009): „Too much and they will prefer methods that are easy to articulate“ 
(ebd., S. 553).

Vor allem scheint aber das Vertrauen in den Erfolg einer Herangehensweise die 
Strategieentscheidung maßgebend zu beeinfl ussen (LEMAIRE & SIEGLER, 1995). 
Wie bereits im Abschnitt 3.3.2 (Adäquatheit von beschrittenem Lösungsweg und der 
Aufgabencharakteristik) erwähnt, setzen Kinder bevorzugt Herangehensweisen zur 
Lösung von Einmaleinsaufgaben ein, die schnell und unkompliziert zur korrekten 
Lösung führen (LEMAIRE & SIEGLER, 1995, S.  93). Über einen etwaigen Einsatz 
einer Strategie bzw. einer Herangehensweise entscheidet das Kind zumeist in Abhän-
gigkeit von der Sicherheit und Schnelligkeit, die es zur Lösung einer Aufgabe führt. 
Die Aussicht auf eine erfolgreiche und zudem schnellere Aufgabenlösung führt Kin-
der darüber hinaus auch zur Bereitschaft  einen Strategiewechsel zu vollziehen (SIEG-
LER & LEMAIRE, 1995). Eine Herangehensweise oder Rechenstrategie, die von Kin-
dern bevorzugt im Auswahlprozess bestimmt wird, zeichnet sich wie folgt aus: „to be 
reliable, as easy as possible and viable“ (THRELFALL, 2009, S. 548).

Nach HESS (1997) und STERN (1998) wählen Kinder, wenn sie aufgefordert wer-
den, bei der Aufgabenlösung wenig Fehler zu machen, überwiegend zeitaufwändige-
re, aber weniger fehleranfällige Herangehensweisen aus, als die ursprünglich von den 
Kindern zur Aufgabenlösung vorgesehenen. So können – trotz vorhandenem Fak-
tenwissen und Strategiewissen – beispielsweise ursprünglich geeignete bzw. adäquate 
Rechenstrategien nicht zum Einsatz kommen (THRELFALL, 2009, S. 551), weil feh-
lendes Vertrauen in eine korrekte Ausführung dieser Herangehensweise die Anwen-
dung hemmt: „Moreover, other individual criteria such as low self-effi  cacy concer-
ning the accurate execution of certain strategies can result in an ineffi  cient strategy 
use despite of an adequate strategy repertoire“ (HEINZE, MARSCHICK & LIPOW-
SKY, 2009, S.  593). Unabhängig vom Vorhandensein oder einem Mangel an Selbst-
vertrauen verweist THRELFALL (2009) darauf, dass sich einige Personen schlicht 
und einfach nicht die Mühe machen, aus einer Reihe an Rechenstrategien eine ge-
eignete zu wählen: „Some students can be brought to be able to operate fl exibly, but 
then do not usually bother“ (ebd., S. 554).

Manche Strategieentscheidungen erfolgen allerdings – wie in den Abschnit-
ten 2.2.1 und 3.3.1 bereits ausgeführt – eher intuitiv und ohne bewusste Steuerung 
(SIEGLER, 1988): „People make at least some of their strategy choices without re-
ference to explicit knowledge of capacities, strategies, and problem characteristics“ 
(ebd., S.  258). Dabei muss jedoch ebenfalls berücksichtigt werden, dass auch diese 
unbewusst ablaufenden Prozesse wieder vom Wissenstand der jeweiligen Person ab-
hängig zu sein scheinen und somit von Individuum zu Individuum durchaus sehr 
unterschiedlich vonstattengehen können.
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Einen weiteren beeinfl ussenden Faktor, der in den folgenden Ausführungen vor-
gestellt werden soll, stellt der Unterricht selbst dar und gerade das, was inhaltlich in 
der Unterrichtspraxis gelehrt und gelernt wird.

Einfl ussfaktor Unterricht
Die Wahl einer Herangehensweise bzw. Rechenstrategie ist off ensichtlich nicht aus-
schließlich von den individuellen Voraussetzungen eines Strategie-Nutzers abhängig, 
sondern kann auch vom Unterricht bzw. dem Unterrichtsgeschehen beeinfl usst wer-
den. Die Abkehr oder der Nicht-Einsatz einer verfügbaren adäquaten Strategie kann 
unter anderem aus dem folgenden Grund erfolgen: „Students who may be capable of 
operating fl exibly, and have the number knowledge to support it, may still not choo-
se to because they have been taught procedures that work more or less as well, and 
are as easy or easier to do“ (THRELFALL, 2009, S. 554). Auch die Erwartung eine be-
stimmte Herangehensweise zur Aufgabenlösung einsetzen zu müssen, kann die Stra-
tegiewahl entscheidend beeinfl ussen. Wie bereits von THRELFALL (2009) betont, 
kann auch nach BLÖTE et al. (2000) eine als geeignet identifi zierte Herangehenswei-
se schlussendlich nicht zum Einsatz kommen: „Students who can identify the ‚best‘ 
strategy do not use it because they do not think to, or because they do what they see 
as more familiar or comfortable or certain to succeed, or because they believe that 
they are expected to do something else“ (THRELFALL, 2009, S. 551, Hervorhebung 
im Original). Wie bereits im Abschnitt 3.2.2 angeführt können erlebte Konventio-
nen, die sogenannten soziomathematischen Normen (YACKEL & COBB, 1996), dazu 
führen, dass Kinder, die von der Lehrkraft  präferierte Herangehensweise einsetzen, 
auf die gerade im Unterricht erarbeitete Herangehensweise zurückgreifen oder ihre 
Antwort anpassen, angelehnt daran, was von ihnen im Schulkontext erwartet wird 
(THRELFALL, 2009, S. 545). Soziomathematische Normen regeln das mathematische 
Verhalten im Klassenzimmer – der Mathematikunterricht wird durch sie beeinfl usst 
(YACKEL & COBB, 1996). „Die Lehrkraft  hat die Rolle inne, als mathematischer 
Experte zu fungieren, der die kulturellen Normen der Mathematik im Klassenraum 
vertritt und vermittelt“ (MEYER, 2015, S.  100; YACKEL & COBB, 1996). Mit der 
Begriff serweiterung sozio drücken YACKEL und COBB (1996) dabei aus, dass die 
aufgestellten Wertkriterien für mathematische Aktivitäten bzw. Handlungen sozial 
konstituiert sind. Die Ausgestaltung der Kriterien bleibt somit immer auch gebun-
den an die jeweilige Situation und die entsprechenden Individuen: „What be comes 
mathematically normative in a classroom is constrained by the current goals, be-
liefs, suppositions, and assumptions of the classroom participants“ (ebd., S.  460). 
Die soziomathematischen Normen werden somit einerseits wie bereits beschrie-
ben von der Lehrperson und ihrem Unterricht geprägt, aber inwiefern sich Schü-
lerinnen und Schüler daran orientieren, mag von Individuum zu Individuum vari-
ieren. Die soziomathematischen Normen prägen den Unterricht und können somit 
auch einen das Individuum beeinfl ussenden Faktor bei der Strategiewahl darstellen: 
Das Unterrichtgeschehen ist in diesem Kontext weniger als beeinfl ussender Einzel-
faktor anzusehen, sondern vielmehr als Wirkungskette.
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SHERIN und FUSON (2005) zufolge wird dem Unterrichtsgeschehen eine bedeu-
tende Rolle bei der Strategiewahl zuteil (ebd., S 380 ff .). Ihrer Meinung nach ist es 
vom Ausmaß der in der Unterrichtspraxis erarbeiteten operativen Beziehungen bzw. 
Zusammenhänge sowie der Vermittlung bzw. Sicherung von Faktenwissen abhängig, 
inwiefern Herangehensweisen bzw. Rechenstrategien zur Lösung von Einmaleinsauf-
gaben eingesetzt werden. Die Relevanz der unterrichtlichen Behandlung nach SHE-
RIN und FUSON (2006) wird in der folgenden Aussage ersichtlich: „Without explicit 
instructional attention, it is unlikely that children would learn most of the single-di-
git number triads or that they would learn the count-by sequences. Th us, the ap-
pearance of these strategies likely requires this instructional attention” (ebd., S. 384). 
Einige Einmaleinsaufgaben, vor allem die vermeintlich leichteren, werden Kinder 
selbstständig lernen und aus dem Gedächtnis abrufen können. Das korrekte Lösen 
der Vielzahl an Einmaleinsaufgaben wird allerdings zu einem erheblichen Ausmaß 
vom unterrichtlichen Fokus abhängen (SHERIN & FUSON, 2005, S.  383). Für die 
Anwendung der in der fachdidaktischen Literatur vorgesehenen Rechenstrategien 
(siehe Abschnitte 2.2.2 und 2.3.1) ist es unter anderem erforderlich, dass Kinder zu-
nächst über die sogenannten Kernaufgaben verfügen. Wie bereits im Abschnitt 2.3.1 
beschrieben, kann sich bei dieser Erarbeitung eine von der Lehrperson vorgegebe-
ne Reihenfolge der Vermittlung von Strategien als vorteilhaft  erweisen. SHERIN und 
FUSON (2005) verdeutlichen die bedeutende Relevanz der unterrichtlichen Unter-
stützung bzw. Lenkung anhand eines konkreten Beispiels: „For example, it is less li-
kely that students will recognize patterns in multiples of 9’s if these are not addressed 
instructionally” (ebd., S.  383). Eine explizite Unterstützung bzw. Sensibilisierung der 
Kinder, dass eine Aufgabe wie z. B. die Einmaleinsaufgabe 9 · x mit dem Faktor 9 im-
mer mithilfe der entsprechende Nachbaraufgabe 10 · x gelöst werden kann, ist eben-
falls unbedingt nötig. Nur so können Kinder im weiteren Verlauf der Erarbeitung 
Aufgabenmerkmale dieses Typs erkennen bzw. wahrnehmen und die entsprechen-
de Rechenstrategie zum Lösen der Aufgabe nutzen. Im Hinblick auf die ein oder 
andere Herangehensweise bzw. Rechenstrategie scheint die explizite Th ematisierung 
von Seiten der Lehrkraft  förderlich oder sogar notwendig für eine korrekte Ausfüh-
rung zu sein. Zusammenfassend halten SHERIN und FUSON (2005) im Hinblick 
auf das Unterrichtsgeschehen fest: „Th us, broadly speaking, classrooms and cultures 
that mobilize organized and sustained eff orts for such learning will be more success-
ful“ (ebd., S.  383). Forschungsergebnisse, die die Aussagen von SHERIN und FU-
SON (2005) bestärken, liefern KROESBERGEN et al. (2004) in ihrer – im Abschnitt 
2.4.4 bereits ausführlich beschriebenen – Studie. Sie weisen darauf hin, dass sich 
eine explizite unterrichtliche Behandlung von Rechenstrategien, Zahlbeziehungen 
und verschiedenen Lösungswegen positiv auf die Vielfalt und die Adäquatheit der 
gewählten Herangehensweisen auswirkt (ebd., S.  247). Die von KROESBERGEN et 
al. (2004) durchgeführte Studie mit leistungsschwachen Schülerinnen und Schülern 
kam zudem zu der Erkenntnis, dass leistungsschwache Kinder deutlich von einer ex-
pliziten unterrichtlichen Behandlung eines kleinen aber adäquaten Strategiereper-
toires profi tieren. Der Diskussion im Unterricht, wie und wann eine Herangehens-
weise korrekt eingesetzt wird, wird auch ein enormer Stellenwert eingeräumt – wirkt 
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sich diese doch positiv auf eine korrekte, adaptive Strategiewahl aus (KROESBER-
GEN et al., 2004). Das Entdecken – im Sinne eines konstruktivistisch geprägten An-
satzes – hat sich ebenso als eff ektiv herausgestellt, aber bei weitem nicht so eff ektiv 
wie die erstgenannte explizite Behandlung. Wie  bereits im Abschnitt 2.4.4 betont, 
zeichneten sich die beiden verglichenen Ansätze der Studie durch das verfolgte Ziel 
der Automatisierung von Einmaleinssätzen und dem Erwerb adäquater Lösungsstra-
tegien aus. Der Hauptunterschied der beiden Ansätze bestand in dem Ausmaß der 
Belehrung durch die Lehrperson: Während in dem als konstruktivistisch bezeichne-
ten Weg die Lehrperson keine Rechenstrategie explizit thematisierte, waren charakte-
ristische Merkmale der direkten Instruktion unter anderem die konkrete Erarbeitung 
einzelner Strategien, ihre korrekte Anwendung und die Th ematisierung möglicher 
Schwierigkeiten (KROESBERGEN et al., 2004, S.  240). Da der Unterricht, den die 
ausschließlich rechenschwachen Kinder der konstruktivistischen Interventionsgrup-
pe erfuhren, lediglich auf den Ideen dieser schwachen Rechnerinnen und Rechner 
fußte, müssen die erzielten Ergebnisse etwas relativiert betrachtet werden. Wie be-
reits im Abschnitt 1.5.4 dieser Arbeit betont, erweist sich generell nicht die tota-
le Selbststeuerung als eff ektiv bzw. effi  zient, sondern vielmehr die Interaktion von 
Selbstständigkeit und Anleitung bzw. Instruktion und Konstruktion.82

Die konkrete Behandlung von verschiedenen Herangehensweisen bzw. Rechen-
strategien, die damit verbundene Einsicht in verschiedene operative Beziehungen 
und die Entwicklung bzw. Vermittlung von Zahlenwissen sind auch nach THREL-
FALL (2002) von bedeutender Relevanz für eine adaptive Strategieauswahl.

Teaching towards fl exible mental calculation must include extensive develop-
ment of factual knowledge about numbers, so that children will come to no-
tice a range of diff erent things about the numbers when faced with a calcula-
tion, and are then better placed to develop an ‘easy’ solution to it. (THRELFALL, 
2002, S. 44, Hervorhebung im Original)

Um eine Strategiewahl adaptiv83 gestalten zu können, weist THRELFALL (2002) in 
erster Linie auf die enorme Bedeutung der ausführlichen und umfangreichen Be-
handlung der verschiedenen Herangehensweisen anhand konkreter Aufgabenstellun-
gen hin (ebd., S.  44): „It seems important to the development of fl exibility to keep 
the teaching about mental calculation strongly attached to real attempts to calculate 
problems, examining solutions to emphasise the possibilities for numbers that have 
been exemplifi ed by what was done“ (ebd., S. 45).

82 Das der Studie von KROESBERGEN et al. (2004) zugrundeliegende Verständnis von Kons-
truktivismus entspricht demnach nicht in Gänze dem aktuellen Lehr- und Lernverständnis, 
welches eine Kombination aus off enen und geleiteten Unterrichtsphasen vorsieht, die sich 
durch konstruktive Phasen der Lernenden sowie der Instruktion durch den Lehrenden cha-
rakterisieren lassen. Es scheint eher der Th eorie des Radikalen Konstruktivismus gleich zu 
kommen (siehe Abschnitt 1.1).

83 THRELFALL (2002) verwendet anstelle des Begriff es adaptiv den Begriff  fl exibel. Unter Fle-
xibilität wird dabei nach THRELFALL (2002) die bewusste Wahl aus einer Reihe von Heran-
gehensweisen „based on the characteristics of the problem faced“ (ebd., S. 29) verstanden.
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Die bisherigen Ausführungen zu den Einfl üssen der unterrichtlichen Erarbei-
tung auf die Strategiewahl lassen allesamt erkennen, dass es neben den benötigten 
individuellen Fähig- und Fertigkeiten, vor allem die explizite unterrichtliche Th e-
matisierung bzw. Behandlung von Herangehensweisen bzw. Strategien ist, die aus-
schlaggebend sein könnte. So wird z. B. durch eine Vielfalt an thematisierten Re-
chenstrategien erst die Möglichkeit für einen fl exiblen Strategieeinsatz geboten. Das 
Wissen um verschiedene Herangehensweisen ist darüber hinaus sehr hilfreich, um 
bei der Strategiewahl weiterer Aufgabenstellungen basierend auf der Aufgabencha-
rakteristik geeignete Herangehensweisen zur Lösung zu erkennen (THRELFALL, 
2009, S. 548). Aufgrund dieser Tatsache ist es nicht weiter verwunderlich, dass sich 
die explizite unterrichtliche Behandlung von Strategien auch positiv auf die Über-
tragbarkeit von Strategien auf Einmaleinsaufgaben mit einem einstelligen und einem 
zweistelligen Faktor auswirkt, wie die Studie von WOODWARD (2006, S. 286) off en-
legt. Die Interventionsgruppe, deren Lehrpersonen neben Automatisierungsübungen 
auch verschiedene Herangehensweisen bzw. Rechenstrategien in den Fokus der Er-
arbeitung des kleinen Einmaleins nahmen, erzielte im Hinblick auf die Übertragbar-
keit von Herangehensweisen bessere Ergebnisse als die Vergleichsgruppe, deren Er-
arbeitung rein auf Automatisierungsübungen basierte. Wie bereits im Abschnitt 2.4.3 
zu den alternativen Wegen der Erarbeitung beschrieben, erwiesen sich zwar beide 
Ansätze als eff ektiv bezüglich hoher Automatisierungsquoten, die Gruppe, die He-
rangehensweisen bzw. Rechenstrategien thematisierte, schnitt aber im Durchschnitt 
erfolgreicher ab – bei der Lösung der vermeintlich einfacheren Einmaleinsaufgaben 
sowie den sogenannten „Hard Multiplication Facts“84 (WOODWARD, 2006, S. 279). 
Auch die Lösungsquoten der zu lösenden Schätzaufgaben85 ergaben mit durch-
schnittlich 83% korrekter Lösungen im Vergleich zu 51% richtig gelöster Aufgaben 
ein besseres Abschneiden der Gruppe, die Herangehensweisen bzw. Rechenstrategien 
im Unterricht erarbeitete (ebd., S. 284). „If educators were only considering facts as a 
foundation for traditional algorithm profi ciency, either method would probably suf-
fi ce“ (ebd., S. 287). Im Hinblick auf „students‘ development of number sense“ (ebd., 
S. 287) und der damit einhergehenden Übertragbarkeit von Herangehensweisen auf 
den größeren Zahlenraum sowie die Lösung von Schätzaufgaben zeigte sich das ex-
plizite Strategielernen jedoch als erfolgsversprechender. 

Als Fazit am Ende dieses Abschnittes kann mit Blick auf das Unterrichtsgesche-
hen – aber auch auf die vorangegangenen Erkenntnisse – resümiert werden:

Of course, any learning progression is somewhat dependent on the nature of 
instruction. Nevertheless, some learning progressions that we discover in mathe-
matics learning may be strongly constrained by factors that are largely outside of 
our control, such as the inherent structure of the mathematics, the knowledge 

84 Unter Hard Multiplication Facts fallen – wie bereits im Abschnitt 2.4.2 erläutert – Einmal-
einsaufgaben, die Kindern in der Vortestung Schwierigkeiten bereiteten.

85 Der Approximations Test der Studie von WOODWARD (2006) setzte sich aus multiplikati-
ven Aufgaben mit jeweils einem einstelligen und einem zwei- oder dreistelligen Faktor zu-
sammen: „Th is 15-item test asked students to round 2 x 1 and 3 x 1 digit computational pro-
blems to produce an approximate answer“ (WOODWARD, 2006, S. 280).
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that students bring to their learning, nearly universal attributes of children’s ex-
perience, and the more global developmental unfolding of cognitive capabilities. 
(SHERIN & FUSON, 2005, S. 350)

Eine Zusammenschau der Merkmale, die bei einer erfolgreichen Strategiewahl zu-
sammenspielen, soll der folgende Abschnitt 3.3.4 liefern bzw. graphisch veranschau-
lichen.

3.3.4 Modell zur Kompetenz der Strategiewahl beim Einmaleins

Der abschließende Abschnitt 3.3.4 des dritten und zugleich letzten Th eoriekapi-
tels hält eine Zusammenschau bzw. ein Modell bereit, das die Voraussetzungen für 
einen erfolgreichen Strategieeinsatz bzw. eine erfolgreiche Strategiewahl – wie sie im 
Laufe des 3. Kapitels herausgearbeitet wurde – graphisch darbietet. Das Modell be-
schreibt dabei die unterschiedlichen mathematischen Fähig- und Fertigkeiten, über die 
ein Kind verfügen muss bzw. die gefördert werden müssen, um Rechenstrategien der 
Rechenoperation der Multiplikation einsetzen und die Strategiewahl fl exibel, adap-
tiv und transferierbar durchführen zu können. Das Modell (siehe Abbildung 20) ver-
anschaulicht insbesondere das Zusammenspiel von Erkennen und Wissen (siehe Ab-
schnitt 3.3.3). In diesem Zusammenhang sei erneut auf das Zitat von KUHN (1984) 
verwiesen, die beschreibt, welche bedeutende Rolle das Verständnis im Wechselspiel 
zwischen Wissen und Erkennen einnimmt: „In order to select a strategy […] the in-
dividual must understand the strategy, understand the problem, and understand how 
the problem and strategy intersect or map onto one another“ (ebd., S. 165). 

Ein Fundament bzw. ein Grundstein für eine erfolgreiche Strategieanwendung 
liegt in dem Wissen über Zahlen und Zahlbeziehungen begründet (siehe Abschnitt 
3.3.3). Darüber hinaus kann das Operationsverständnis der Rechenoperation der 
Multiplikation als weitere notwendige Voraussetzung für einen erfolgreichen Strate-
gieeinsatz bzw. eine erfolgreiche Strategiewahl von Rechenstrategien angeführt wer-
den. Speziell auf die Rechenoperation der Multiplikation bezogen ist für den Einsatz 
von Rechenstrategien Strategiewissen sowie entsprechendes Faktenwissen erforder-
lich. Unter Strategiewissen wird im Folgendem die Kenntnis von Rechenstrategien 
wie beispielsweise der Nachbaraufgabe oder der Zerlegung eines Faktors verstan-
den (z. B. THRELFALL, 2002, S.  43; Abschnitt 3.3.3). Unter Faktenwissen wird ein 
Grundstock an automatisierten Einmaleinsaufgaben geführt, v. a. die sogenannten 
Kernaufgaben, die mithilfe des erwähnten Strategiewissens die Lösung einer Aufgabe 
über eine Rechenstrategie ermöglichen. Die genannten Wissensbausteine dienen als 
Fundament für einen erfolgreichen Strategieeinsatz bzw. als notwendige Vorausset-
zung für eine fl exible, adaptive oder transferierbare Strategiewahl (siehe Abbildung 
20).
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  Ab bildung 20:  Entwickeltes Modell zur Kompetenz der Strategiewahl beim Einmaleins.

Ein Kind, das Rechenstrategien fl exibel einsetzt, kann zur Aufgabenlösung nicht 
nur auf eine, sondern bereits auf mehrere Rechenstrategien zurückgreifen – es ver-
fügt hinsichtlich des Strategierepertoires über Alternativen zur Aufgabenlösung (sie-
he Abbildung 20). Die Fähigkeit aufgrund eines ausgeprägten Strategiewissens und 
des benötigten Faktenwissens zwischen verschiedenen Rechenstrategien zu wechseln 
bzw. wählen zu können, wird dem dieser Arbeit zugrundeliegenden Verständnis als 
Flexibilität bezeichnet (siehe Abschnitt 3.3.1).

Das Verfügen über Alternativen bei der Strategiewahl (Flexibilität) wird, wie dem 
Modell in Abbildung 20 zu entnehmen ist, bei einer adaptiven Strategiewahl vor-
ausgesetzt. Erst wenn ein Kind verschiedene Rechenstrategien besitzt, kann es eine 
adäquate Rechenstrategie gezielt auswählen. Wie in den theoretischen Ausführun-
gen des Abschnittes 3.3.2 im Detail beschrieben, wird unter einer adäquaten Heran-
gehensweise vorwiegend der Einsatz von Rechenstrategien verstanden, die auf Basis 
von Einsicht in operative Beziehungen das Lösen von Einmaleinsaufgaben vorse-
hen.86 Die Auswahl der Rechenstrategie muss sich allerdings basierend auf den Auf-
gabenmerkmalen auch als geeignet herausstellen. Gerade im Wechselspiel zwischen 
dem Erkennen spezifi scher Aufgabenmerkmale, Zahleigenschaft en oder Zahlbeziehun-
gen und dem Wissen über verschiedene Rechenstrategien bzw. dem Verfügen über 

86 Ebenfalls im Abschnitt 3.3.2 wurde bereits darauf verwiesen, dass bei der Anwendung der 
sukzessiven Addition in Abhängigkeit von der Aufgabencharakteristik entschieden werden 
muss, inwieweit die Wahl als adäquat bezeichnet werden kann.
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Alternativen erfolgt die Wahl einer adäquaten Rechenstrategie unter Berücksichti-
gung der Aufgabencharakteristik. Man spricht in diesem Zusammenhang von der 
Adaptivität der getroff enen Wahl.

Wie bereits im Abschnitt 3.3.1 ausgeführt kann auch bereits bei Grundschulkin-
dern über eine adaptive Strategiewahl hinaus der Transfer einer Herangehenswei-
se auf einen größeren Zahlenraum bzw. das große Einmaleins angebahnt werden. 
Auch im Hinblick auf die Übertragbarkeit von Rechenstrategien wird dem Zusam-
menspiel von Erkennen und Wissen ein besonderer Stellenwert zuteil: Aufgrund der 
Berücksichtigung aufgabenspezifi scher Merkmale oder Charakteristika der Aufgabe 
kann auch im großen Zahlenraum eine geeignete Rechenstrategie zur Lösung her-
angezogen werden. Die Übertragbarkeit von Rechenstrategien zur Lösung von Auf-
gaben aus dem kleinen Einmaleins auf das große Einmaleins wird in der vorliegen-
den Arbeit mit der Begriffl  ichkeit Transferierbarkeit bezeichnet (siehe Abschnitt 
3.3.1) und stellt für den Primarbereich vermutlich die höchste Kompetenzanforde-
rung87 dar, die im Zuge des Strategieeinsatzes hinsichtlich der Rechenoperation der 
Multiplikation gegebenenfalls erreicht werden kann.88 Kann ein Kind nicht nur fl e-
xibel zwischen Rechenstrategien wechseln, sondern setzt es Rechenstrategien unter 
Berücksichtigung der Aufgabencharakteristik sowohl beim kleinen als auch beim 
großen Einmaleins geeignet ein, kann von einer besonders hohen Kompetenz der 
Strategiewahl gesprochen werden. Von einer erfolgreichen Strategiewahl ist aber be-
reits die Rede, wenn nicht unbedingt die höchste Ausprägung der Kompetenz er-
reicht wird – das Kind beispielsweise in der Lage ist eine jeweils adäquate Rechen-
strategie zur Aufgabenlösung beim kleinen Einmaleins auszuwählen.

Inwiefern Schülerinnen und Schüler eine ausgesprochen hohe Kompetenz der 
Strategiewahl erreichen, ist von den individuell vorhandenen bzw. nicht vorhandenen 
Voraussetzungen abhängig (siehe Abschnitt  3.3.3) – aus mathematischen Gesichts-
punkten vom Vorhandensein oder dem Mangel an Wissensbausteinen, die im Mo-
dell (siehe Abbildung 20) detailliert aufgeführt werden. Darüber hinaus dürfen aber 
auch individuell unterschiedliche aff ektive sowie metakognitive Kompetenzen der 
Kinder nicht unerwähnt bleiben, ebenso weitere beeinfl ussende Faktoren wie bei-
spielsweise das Arbeitsgedächtnis oder die Intelligenz des Kindes (siehe Abschnitt 
3.3.3). Wie gleichfalls im Abschnitt 3.3.3 aufgeführt können sich aber auch unabhän-
gig von den vorhandenen mathematischen Fähig- und Fertigkeiten individuelle Stra-
tegiepräferenzen bzw. individuelle Zahlpräferenzen auf die Strategiewahl auswirken. 
Im Hinblick auf das Individuum kann festgehalten werden: Jeder einzelne im Mo-

87 Der Begriff  Kompetenz wird in der vorliegenden Arbeit nach WEINERT (2001) defi niert. 
Man versteht „unter Kompetenzen die bei Individuen verfügbaren oder durch sie erlernba-
ren kognitiven Fähigkeiten und Fertigkeiten, um bestimmte Probleme zu lösen, sowie die 
damit verbundenen motivationalen, volitionalen und sozialen Bereitschaft en und Fähigkei-
ten, um die Problemlösungen in variablen Situationen erfolgreich und verantwortungsvoll 
nutzen zu können“ (WEINERT, 2001, S. 27 f.).

88 Die folgende Aussage bezüglich der Rechenoperation der Multiplikation bezieht sich aus-
schließlich auf das Verfahren des Kopfrechens. Mit Blick auf das halbschrift liche Rechnen 
oder das schrift liche Rechenverfahren werden im Primarbereich über die genannten Forde-
rungen hinaus weitere Anforderungen gestellt. 
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dell aufgeführte Baustein, der für eine erfolgreiche oder besonders hohe Kompetenz 
der Strategiewahl erforderlich ist, kann – wie in der Grafi k skizziert – von dem einen 
oder anderen individuellen Faktor entscheidend beeinfl usst werden.

Als weiterer Einfl ussfaktor ist in der veranschaulichten Graphik der Unterricht 
explizit illustriert. Wie bereits im Abschnitt 3.3.3 erwähnt stellt das Unterrichts-
geschehen keinen beeinfl ussenden Einzelfaktor dar, sondern kann sich unter Um-
ständen auf das Wissen, Erkennen und Handeln eines Individuums, das die Strate-
giewahl durchführt, auswirken. Wie in den Ausführungen dieser Arbeit an einigen 
Stellen herausgearbeitet wurde (siehe vor allem die Abschnitte 1.5 und 3.3.3), scheint 
vor allem die explizite unterrichtliche Th ematisierung von Herangehensweisen an 
Einmaleinsaufgaben besonders hilfreich bzw. notwendig zu sein – denn nur mithil-
fe der Unterstützung beim Aufb au der Wissensbausteine als auch der Sensibilisierung 
im Hinblick auf das Wahrnehmen und Erkennen wichtiger Aufgabenmerkmale kön-
nen sowohl leistungsstarke als auch leistungsschwache Schülerinnen und Schüler das 
Ziel erreichen, Rechenstrategien erfolgreich anzuwenden. „Explicit instructional at-
tention“ wie SHERIN und FUSON (2005, S. 384) die Begleitung durch die Lehrkraft  
nennen, steht dabei nicht im Widerspruch zu einem aktiv-entdeckenden Mathema-
tikunterricht, der gemäß eines aktuellen Lehr- und Lernverständnisses gegenwärtig 
empfohlen wird (siehe Abschnitt 1.5).

Resümierend kann hinsichtlich der Strategiewahl festgehalten werden, dass das 
Erreichen einer fl exiblen, adaptiven oder sogar transferierbaren Strategiewahl ent-
scheidend vom individuellen Leistungsvermögen eines Kindes und den vorzufi nden-
den unterrichtlichen Rahmenbedingungen abhängig zu sein scheint. Wichtig ist in 
diesem Kontext der Hinweis, dass – dem Verständnis der vorliegenden Arbeit zufol-
ge – bereits der fl exible Strategieeinsatz die Nutzung von Zahl- bzw. Aufgabenbezie-
hungen auf Basis von Einsicht erfordert und somit nicht für alle Kinder realisierbar 
zu sein scheint. Es gibt off ensichtlich Schülerinnen und Schüler, die Rechenstrate-
gien beispielsweise im Sinne eines Verfahrens nach Schema F ohne Einsicht in die 
zugrundeliegenden Zahlbeziehungen oder Zahleigenschaft en anwenden (siehe auch 
Abschnitt 3.2.2). In diesem konkreten Fall sollte eigentlich nicht von einer Strategie-
wahl gesprochen werden. In der Unterrichtspraxis ist die Unterscheidung einer Stra-
tegieanwendung auf Basis von Einsicht oder des Einsatzes eines routinemäßigen Ver-
fahrens allerdings nur schwer möglich (siehe Abschnitt 3.3.2). Darüber hinaus gibt 
es Kinder, die über keine Rechenstrategien zur Aufgabenlösung verfügen und zur 
Lösung von Einmaleinsaufgaben auf weniger tragfähige Herangehensweisen wie bei-
spielsweise das Aufsagen der Reihe oder die sukzessive Addition zurückgreifen. Die 
Strategiewahl dieser Schülerinnen und Schüler wird im Modell nicht abgebildet.
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3.4 Zusammenfassung und Desiderat

Das den Th eorieteil dieser Arbeit abschließende 3. Kapitel legt das Hauptaugen-
merk auf Ausführungen zur Strategieentwicklung und der Strategieverwendung 
beim Kind. Die im Abschnitt 3.1 teils auf theoretischen Annahmen, teils aber auch 
gestützt auf empirischen Forschungsergebnissen beschriebenen Entwicklungsmo-
delle, skizzieren verschiedene Wege der Entwicklung von Herangehensweisen bzw. 
Rechenstrategien beim Erlernen des kleinen Einmaleins bis hin zur Beherrschung 
von Einmaleinssätzen. Nationale Forschungsergebnisse, die Rückschlüsse auf Ent-
wicklungsprozesse beim Erlernen des kleinen Einmaleins erlauben, existieren bisher 
kaum. Internationale Th eorien bzw. Studien verweisen auf ein profunder werden-
des Zahl- oder Operationsverständnis als Voraussetzung für die Veränderung in der 
Verwendung von Herangehensweisen bzw. Rechenstrategien oder die immer weiter 
zunehmenden zahlspezifi schen Fertigkeiten des Kindes, die für die Weiterentwick-
lung der Herangehensweisen verantwortlich sind. Während einige Modelle als linea-
re Entwicklungsmodelle geführt werden, zeichnen sich andere wiederum durch eine 
nicht lineare Entwicklung der Herangehensweisen bzw. Rechenstrategien aus.

Eine Zusammenschau der Forschungsergebnisse zur Strategieverwendung beim 
kleinen Einmaleins und dem automatisierten Faktenabruf im Abschnitt 3.2 verdeut-
licht den bestehenden Forschungsbedarf in diesem Forschungsgebiet. Im Vergleich 
zur Strategieverwendung bei den Rechenoperationen der Addition und Subtrak-
tion sind im Bereich der Multiplikation deutlich weniger Forschungsergebnisse zu 
verzeichnen – die geringe Anzahl an Studien bzw. Erkenntnissen zur Strategiever-
wendung beim kleinen Einmaleins fällt dabei allerdings besonders ins Auge. Wäh-
rend national nur wenige Studien die Strategieverwendung analysieren, konnten die 
durchgeführten internationalen Studien entweder keinen Einsatz von Rechenstrate-
gien ermitteln oder nur unbedeutende Prozentsätze. Wie im Abschnitt 3.2.1 hervor-
gehoben, geht der größtenteils geringe, ermittelte Einsatz von Rechenstrategien mit 
wenigen Erkenntnissen hinsichtlich der Vielfalt und der Häufi gkeit eingesetzter Re-
chenstrategien, der Lösungskorrektheit sowie der Abhängigkeit von der Aufgaben-
charakteristik einher.

Viele der beschriebenen Studien weisen darüber hinaus methodische Schwierig-
keiten bei der Kategorisierung der unterschiedlichen Herangehensweisen auf (siehe 
Abschnitt 3.2.2). Vor allem die eingesetzten Methoden zur Abgrenzung des automa-
tisierten Faktenabrufes von anderen Herangehensweisen erweisen sich als größten-
teils wenig geeignet und verdeutlichen den Bedarf an neuen methodischen Vorge-
hensweisen. BAROODY (1999) beschreibt die Notwendigkeit wie folgt: „Researchers 
will need to devise methods that disentangle retrieved and nonretrieved responses“ 
(ebd., S. 191).

Im Abschnitt 3.3 liegt der Fokus der Ausführungen auf den fl exiblen bzw. adap-
tiven Rechenkompetenzen der Kinder. Was unter den Begriff en Flexibilität und Ad-
aptivität in der nationalen sowie internationalen Literatur verstanden wird, kann 
dem Abschnitt 3.3.1 detailliert entnommen werden. In der vorliegenden Arbeit wer-
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den hinsichtlich einer Strategiekompetenz die folgenden drei Begriffl  ichkeiten unter-
schieden: Flexibilität, Adaptivität und Transferierbarkeit. Während eine Strategie-
wahl bereits als fl exibel bezeichnet werden kann, wenn ein Kind über Alternativen 
zur Strategiewahl verfügt, spricht man von einer adaptiven Strategiewahl erst, wenn 
aus diesem verfügbaren Strategie-Repertoire auf eine jeweils adäquate bzw. geeigne-
te Herangehensweise zur Lösung zurückgegriff en wird. Als transferierbar lässt sich 
eine Strategiewahl bezeichnen, wenn Kinder eine adäquate Herangehensweise auf 
einen größeren Zahlenraum übertragen bzw. modifi zieren können. Unter Berück-
sichtigung der kulturellen Rahmenbedingungen, der fachdidaktischen Empfehlun-
gen, der verbindlichen Vorgaben der Lehrpläne sowie der Besonderheiten des klei-
nen Einmaleins wird die Strategiewahl in dieser Arbeit als adäquat bezeichnet, wenn 
der Einsatz von Rechenstrategien basierend auf der Beachtung von Aufgabencharak-
teristika erfolgt (siehe Abschnitt 3.3.2). Wie im einleitenden Zitat des Abschnittes 
3.3 betont, stellt die adäquate bzw. geeignete Wahl einer Herangehensweise eine her-
ausfordernde Aufgabe dar: „Th ey [the students] had started to develop what we con-
sider as the most subtle and diffi  cult aspect of strategy competency, namely, know-
ing when to apply what strategy“ (TORBEYNS, VERSCHAFFEL & GHESQUIÈRE, 
2005, S.  16, Ergänzung der Autorin). Neben dieser Positionierung hinsichtlich der 
Begriffl  ichkeit Adäquatheit veranschaulicht der Abschnitt 3.3.2 auch die bisherigen 
Forschungsergebnisse zu einer fl exiblen sowie adaptiven Strategiewahl, welche sich 
an der Adäquatheit von beschrittenem Lösungsweg und der Aufgabencharakteristik, 
von individuellen Kriterien oder des Referenzrahmens zeigen kann. Wie die Zusam-
menschau der Forschungsergebnisse der Studien verdeutlicht, sind die in der Th eorie 
unterschiedenen verschiedenen Auff assungen von adäquatem Handeln bisher noch 
nicht oder nur vereinzelt in Untersuchungen im Bereich der Multiplikation von Re-
levanz gewesen bzw. realisiert worden. Ergebnisse hinsichtlich eines fl exiblen bzw. 
adaptiven Strategieeinsatzes, wie dieser in der vorliegenden Arbeit defi niert wurde, 
existieren ebenfalls kaum.

Im Abschnitt 3.3.3 dieser Arbeit werden das Individuum und der Unterricht als 
Einfl ussfaktoren der Strategieverwendung bzw. -wahl näher beleuchtet. Sehr um-
fangreiche Erkenntnisse liegen vor, über welches Wissen Kinder verfügen müssen, 
um Aufgaben über den Einsatz von Rechenstrategien lösen zu können. Die vorge-
stellten Forschungsergebnisse der Studien zur Strategieverwendung bei der Addition 
und Subtraktion, die Merkmale fl exibler bzw. adaptiver Rechner beschreiben, lassen 
sich auf die Rechenoperation der Multiplikation übertragen und liefern somit auch 
Erkenntnisse bezüglich kennzeichnender Merkmale eines fl exiblen bzw. adaptiven 
Rechners hinsichtlich der Multiplikation.

Welche Auswirkungen bzw. welchen Einfl uss allgemeine arithmetische Fähig- 
und Fertigkeiten eines Individuums auf die Strategiewahl haben, ist im Bereich der 
Multiplikation allerdings bisher kaum untersucht worden – auch in diesem Kontext 
wird somit Forschungsbedarf ersichtlich. Vereinzelte Studien, die sowohl die Strate-
giewahl analysieren als auch die individuellen Fähig- und Fertigkeiten berücksichti-
gen, spezialisieren sich überwiegend nur auf eine besondere Zielgruppe – und nicht 
auf Kinder mit unterschiedlichen Leistungsvermögen – oder untersuchen die Strate-
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giewahl beispielsweise in erster Linie hinsichtlich der Lösungsgeschwindigkeit und 
nicht im Hinblick auf einen adäquaten Einsatz von Rechenstrategien unter Beach-
tung der Aufgabencharakteristik.

Auch der Einfl ussfaktor Unterricht wurde im Abschnitt 3.3.3 eingehend be-
trachtet. Das Unterrichtsgeschehen ist allerdings nicht wie das Individuum als be-
einfl ussender Einzelfaktor zu verstehen, sondern ist vielmehr Teil einer Wirkungs-
kette: Der Unterricht wirkt indirekt auf das Individuum bzw. auf die individuellen 
Fähig- und Fertigkeiten, die aff ektiven und metakognitiven Kompetenzen oder die 
individuellen Vorlieben eines Jeden und somit unter Umständen auch indirekt auf 
die Strategiewahl eines Kindes. Inwiefern bzw. inwieweit der Unterricht einen be-
einfl ussenden Faktor der Strategiewahl darstellt, variiert letztendlich von Individu-
um zu Individuum. Wie allerdings bereits im Abschnitt 3.2 angeführt sprechen Indi-
zien dafür, dass das Unterrichtsgeschehen die Strategiewahl zu beeinfl ussen scheint. 
Forschungsergebnisse vereinzelter weiterer Studien, die im Abschnitt 3.3.3 (Ein-
fl ussfaktor Unterricht) vorgestellt wurden, bestätigen die bedeutende Rolle, die dem 
Unterrichtsgeschehen zuteil wird. Eine explizite unterrichtliche Behandlung von He-
rangehensweisen bzw. Rechenstrategien scheint sich nicht nur auf die Vielfalt dieser 
positiv auszuwirken, sondern vor allem auch zu einer adaptiven bzw. adäquaten Stra-
tegiewahl beizutragen. Alles in allem muss nichtsdestotrotz resümiert werden, dass 
sich nur eine begrenzte Anzahl an Studien zum Einmaleins mit dem Einfl ussfak-
tor Unterricht beschäft igt. Detaillierte Erkenntnisse zum Unterricht oder dem Vor-
gehen der Lehrkräft e liegen in den wenigsten Fällen vor. Nur selten können erlang-
te Erkenntnisse auf Basis der unterrichtlichen Vorgehensweise der Erarbeitung des 
kleinen Einmaleins analysiert werden und wichtige Schlüsse für eine eff ektive bzw. 
effi  ziente Behandlung für die Unterrichtspraxis gezogen werden. Umfassende For-
schungsergebnisse zum Strategieeinsatz beim kleinen Einmaleins basierend auf einer 
verständnisbasierten Erarbeitung von Rechenstrategien liegen in Deutschland bisher 
nicht vor. Ebenfalls noch Forschungsbedarf besteht hinsichtlich möglicher alterna-
tiver unterrichtlicher Vorgehensweisen bei der Erarbeitung des kleinen Einmaleins 
und deren Effi  zienz.

Am Ende von Kapitel 3 werden in einem Modell zur Kompetenz der Strategie-
wahl beim Einmaleins mögliche Voraussetzungen für eine erfolgreiche Strategiewahl 
dargestellt und unter Umständen beeinfl ussende Faktoren der Strategiewahl zusam-
mengefasst berichtet.
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4. Explorative Vorstudie – Fragebogenstudie zur Klassifi zierung 
von Lehrkräften bei der Erarbeitung des kleinen Einmaleins89

„Selbstständiges Erschließen von Aufgaben und fl exibles 
Denken sind sicher gefordert und in unserer 

Vorstellungswelt von heute positiv besetzt. 
Aber: vergesst das gute alte Üben nicht.“

(Zitat einer an der Vorstudie teilnehmenden Lehrkraft )

In der mathematikdidaktischen Literatur werden – wie bereits in den theoretischen 
Ausführungen dieser Arbeit aufgezeigt – grundsätzlich verschiedene Wege der Er-
arbeitung des kleinen Einmaleins unterschieden. Zahlreiche Vorzüge einer verständ-
nisbasierten Erarbeitung des kleinen Einmaleins sind in der Fachdidaktik schon lan-
ge bekannt und werden in ähnlicher Weise auch schon viele Jahre eingefordert (siehe 
Abschnitt 2.5.1). Zudem sprechen einige Forschungsergebnisse für eine verständnis-
basierte Erarbeitung im Allgemeinen aber auch im Hinblick auf das kleine Einmal-
eins (siehe Abschnitt 2.4). Obwohl dieser Ansatz darüber hinaus in den Lehr- und 
Bildungsplänen seit einigen Jahren größtenteils konsequent umgesetzt ist (siehe Ab-
schnitt 2.5.2), wurde noch nicht erhoben – wie in der Zusammenfassung des 2. Ka-
pitels bereits berichtet –, ob und in welcher Ausprägung dieses Vorgehen in der 
Unterrichtspraxis in Deutschland tatsächlich umgesetzt wird. Es gibt Hinweise aus 
der Praxis darüber, dass das kleine Einmaleins nach wie vor von den Vorgaben ab-
weichend – mit einem großen Fokus auf dem Auswendiglernen von Reihen – er-
arbeitet wird (vgl. SCHERER & MOSER OPITZ, 2010).

Das Hauptziel dieser Arbeit besteht darin, in der Hauptstudie die Strategiever-
wendung bei Aufgaben des kleinen Einmaleins von Kindern im 3. Schuljahr genauer 
zu untersuchen. Der bestehende Forschungsbedarf in diesem Kontext wurde bereits 
in den Ausführungen des 3. Kapitels ersichtlich und in der Zusammenfassung (sie-
he Abschnitt 3.4) angeführt. Wenn die Strategieverwendung erhoben wird, so kann 
ein zentraler Bedingungsfaktor die unterrichtliche Vorarbeit darstellen. In der For-
schungsliteratur wurde der Einsatz von Rechenstrategien bisher kaum unter Berück-
sichtigung der expliziten unterrichtlichen Erarbeitung einer Lehrperson analysiert. 
Um Erkenntnisse hinsichtlich der unterrichtlichen Erarbeitung in der Praxis zu er-
langen, wurde der Hauptstudie der vorliegenden Arbeit eine Vorstudie vorgeschaltet.

Die explorative Vorstudie versucht der off enen Frage nachzugehen, inwiefern 
eine verständnisbasierte Erarbeitung des kleinen Einmaleins in der Praxis tatsächlich 
Umsetzung fi ndet. Eine Klassifi zierung von Lehrpersonen und ihren unterschiedli-
chen Vorgehensweisen bei der unterrichtlichen Erarbeitung des kleinen Einmaleins 
soll zudem realisiert werden. Da es sich hierbei um ein relativ unerforschtes Th ema 

 89 Teile dieses Kapitels entstammen aus folgender Vorpublikation: KÖHLER und GASTEIGER 
(2014). Die Datenerhebung, -auswertung und -analyse erfolgte eigenverantwortlich durch die 
Autorin.
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handelt, erfolgte die Vorstudie explorativ (MAYRING, 2010, S. 231; BORTZ & DÖ-
RING, 2006). Der zentrale Grundgedanke dieser explorativen Studie besteht darin, 
in der Hauptstudie an den Forschungsstand angebunden zu diff erenzierten Fragestel-
lungen zu gelangen (MAYRING, 2010, S. 231 f., BORTZ & DÖRING, 2006).

Die zentralen Fragestellungen der Vorstudie, die Konzeption des dazu einge-
setzten Erhebungsinstrumentes, die statistischen Methoden sowie die erzielten For-
schungsergebnisse werden in den folgenden Abschnitten 4.1 bis 4.4 beschrieben. 
Den Abschluss des 4. Kapitels bildet eine zusammenfassende Diskussion der ermit-
telten Forschungsergebnisse und gewonnenen Erkenntnisse hinsichtlich verschiede-
ner unterrichtlicher Vorgehensweisen der Erarbeitung des kleinen Einmaleins. Es 
sei erneut darauf verwiesen, dass dieses Kapitel bzw. diese Vorstudie dazu dient, die 
unterrichtliche Vorarbeit der Lehrkräft e – als einen möglicherweise zentralen Ein-
fl ussfaktor der Strategieverwendung in der Hauptstudie – zu analysieren.

4.1 Forschungsfragen der Vorstudie

Ob eine Erarbeitung der Einmaleinssätze auf Basis von Einsicht und der Erarbeitung 
verschiedener Rechenstrategien wirklich in der Praxis realisiert wird, ist bisher empi-
risch noch nicht überprüft . In einer in Bayern durchgeführten explorativen Fragebo-
genstudie an Lehrpersonen, die nicht den Anspruch erhebt, auf die Gesamtheit aller 
Lehrerinnen und Lehrer Rückschlüsse zu ziehen, soll diesbezüglich eine erste empi-
rische Überprüfung erfolgen.

Im Zentrum der Fragebogenstudie steht folgende Leitfrage:
• Wird eine auf Einsicht basierende Erarbeitung des kleinen Einmaleins von Lehr-

personen in der Unterrichtspraxis umgesetzt?

Die in der Fragestellung sehr weite Formulierung eine auf Einsicht basierende Er-
arbeitung wurde dabei bewusst gewählt, da es im Zuge der Erarbeitung des klei-
nen Einmaleins – wie bereits im Abschnitt 2.3.1 zu den fachdidaktischen Empfeh-
lungen erwähnt – nicht die eine Art der Erarbeitung des kleinen Einmaleins gibt. 
Zwar herrscht breiter Konsens in den fachdidaktischen Veröff entlichungen, was die 
Grundidee der Erarbeitung des kleinen Einmaleins in der Grundschule bzw. die mit 
der Erarbeitung verfolgten Ziele betrifft   – im Hinblick auf die konkreten didakti-
schen Empfehlungen zur Umsetzung sind allerdings unterschiedliche Schwerpunkt-
setzungen zu erkennen. Wir vermuteten unter anderem aufgrund der nicht sehr 
ausführlichen Erklärungen zur Erarbeitung des kleinen Einmaleins in den aktuel-
len Lehr- und Bildungsplänen (siehe Abschnitt 2.5.2) und den in der Vergangenheit 
durchaus üblichen anderen Erarbeitungswegen des kleinen Einmaleins (siehe Ab-
schnitt 2.5.1), dass eine auf Einsicht basierende Behandlung in der Unterrichtspraxis 
nicht ausschließlich umgesetzt wird. Denkbar erscheint der Einsatz alternativer Vor-
gehensweisen bei der Behandlung.



   214  

In den Fokus der Vorstudie rückt, was eine verständnisbasierte Erarbeitung des 
kleinen Einmaleins – aber auch alternative Vorgehensweisen – kennzeichnet. Die 
Leitfrage dieser Vorstudie wird folglich durch die folgenden Fragen ergänzt:
• Lassen sich Lehrkräft e – basierend auf ihrer unterrichtlichen Vorgehensweise bei 

der Erarbeitung des kleinen Einmaleins – verschiedenen Gruppen zuordnen? 
• Wie lassen sich diese verschiedenen Gruppen und deren unterrichtliche Vorge-

hensweisen wiederum charakterisieren?

4.2 Design der Vorstudie

Im Folgenden soll die Konzeption der Fragebogenstudie detailliert betrachtet wer-
den. Neben einer Beschreibung der Stichprobe (Abschnitt 4.2.1) wird die Konstruk-
tion des Fragebogens erläutert sowie die konkrete Durchführung der Untersuchung 
beschrieben (siehe Abschnitt  4.2.2). Im Abschnitt 4.2.3 werden die Kodierung und 
die eingesetzten statistischen Methoden dargelegt.

4.2.1 Stichprobe

An der im Schuljahr 2011/2012 durchgeführten explorativen Fragebogenstudie nah-
men insgesamt 95  bayerische Lehrkräft e teil – 46 Lehrkräft e aus Jahrgangsstufe 1 
oder 2 und 49 Lehrkräft e aus Jahrgangsstufe  3  oder 4. Da Lehrkräft e im Bundes-
land Bayern in der Regel entweder den Turnus Jahrgangsstufe 1/2 oder 3/4 unter-
richten, und in Jahrgangsstufe 2 die Erarbeitung des kleinen Einmaleins grundgelegt 
sowie in Jahrgangsstufe 3 abgeschlossen wird, entsprach diese Personengruppe ex-
akt der Zielpopulation. Die Auswahl der Lehrkräft e wurde nach einem qualitativen 
Stichprobenplan unter besonderer Berücksichtigung einer heterogenen Wahl vorge-
nommen (LAMNEK, 2005). Im Fokus stand „eine bestimmte Bandbreite sozialstruk-
tureller Einfl üsse zu erfassen, indem theoretisch relevant erscheinende Merkmale in 
der qualitativen Stichprobe in ausreichendem Umfang durch Einzelfälle vertreten 
sind“ (KELLE & KLUGE, 1999, S. 53). Als relevante Merkmale wurden das Alter der 
Lehrpersonen, die Anzahl der Jahre im Schuldienst und verschiedene Ausbildungs-
schwerpunkte (Fachstudium Mathematik, Mathematikdidaktik, keine universitäre 
Ausbildung90) einbezogen. Durch diese Merkmalsauswahl sollte sichergestellt wer-
den, dass die Stichprobe die Kontextbedingungen nicht einseitig wiedergibt. Die 
Stichprobe setzte sich aus Lehrpersonen im Alter zwischen 20 und über 61  Jahren 
zusammen. Entsprechend dem ungleichen Verhältnis von Grundschullehrerinnen 
und Grundschullehrern im Schulalltag war auch die prozentuale Verteilung in die-
ser Vorstudie: Während sich der prozentuale Anteil an Frauen in dieser Vorunter-
suchung für die Jahrgangsstufe 1 und 2 auf 98% beläuft , nahmen an der Vorstudie 

90 Im Bundesland Bayern kann sich die universitäre Ausbildung auf Mathematikdidaktik be-
schränken, es kann Mathematik als Fachstudium zusätzlich zur Mathematikdidaktik studiert 
werden oder es hat keine universitäre Ausbildung in Mathematikdidaktik stattgefunden.
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für die Stichprobe der Jahrgangsstufe 3 und 4 94% weibliche Lehrpersonen teil. Die 
Mehrzahl der Studienteilnehmenden beider Untersuchungsgruppen verfügte über 
eine universitäre Ausbildung in Mathematikdidaktik, ein deutlich geringerer Pro-
zentsatz besaß ein Fachstudium Mathematik zusätzlich zur Mathematikdidaktik oder 
verfügte über keine universitäre Ausbildung in diesem Fachdidaktikbereich (siehe 
Tabelle 5). Die Lehrpersonen, die im 1. und 2. Schuljahr der Grundschule unterrich-
teten, konnten im Durchschnitt auf eine Berufserfahrung von M  =  14.1 Jahren zu-
rückschauen, die der Jahrgangstufe 3 und 4 auf eine Tätigkeit im Schuldienst von 
durchschnittlich M  =  12.4 Jahren. Der prozentuale Anteil an Teilnehmenden bzw. 
Nicht-Teilnehmenden an Fort- oder Weiterbildungsmaßnahmen im Hinblick auf die 
veränderte Erarbeitung des kleinen Einmaleins im Rahmen der Einführung des bay-
erischen Lehrplans von 2000 ergab in beiden Teilstichproben ein ausgewogenes Ver-
hältnis (siehe Tabelle 5).
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  Tabelle 5:  Beschreibung der Stichprobe (Vorstudie) getrennt nach dem Unterrichts-Turnus

Variable Wert N %
Lehrkräft e aus Jahrgangsstufe 1 oder 2 (N = 46)
Alter (in Jahren) 20–30 5 11

31–40 21 46
41–50 13 28
51–60 5 11
61 und älter 2 4

Geschlecht Männlich 1 2
Weiblich 45 98

Ausbildungsschwerpunkt Mathematik im Unterrichtsfach
(nicht vertieft )

5 11

Mathematikdidaktik 31 67
Keine universitäre Ausbildung in 
Mathematikdidaktik

10 22

Tätigkeit im Schuldienst (in Jahren) ≤ 10 17 37
11–20 21 46
21–30 4 8
≥ 31 4 9

Fortbildungsmaßnahme (Einmaleins)91 Ja 27 59
Nein 19 41

Lehrkräft e aus Jahrgangsstufe 3 oder 4 (N = 49)
Alter (in Jahren) 20–30 14 29

31–40 18 37
41–50 8 16
51–60 7 14
61 und älter 2 4

Geschlecht Männlich 3 6
Weiblich 46 94

Ausbildungsschwerpunkt Mathematik im Unterrichtsfach
(nicht vertieft )

7 14

Mathematikdidaktik 39 80
Keine universitäre Ausbildung in 
Mathematikdidaktik

3 6

Tätigkeit im Schuldienst (in Jahren) ≤ 10 28 57
11–20 11 23
21–30 4 8
≥ 31 6 12

Fortbildungsmaßnahme (Einmaleins) Ja 25 51
Nein 24 49

91 Fortbildungsmaßnahmen zur bzw. nach der Einführung des bayerischen Lehrplans im Jahre 
2000, in dessen Rahmen die Erarbeitung des kleinen Einmaleins thematisiert wurde. 
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4.2.2 Fragebogenkonstruktion und Durchführung

Für die Vorstudie wurde die Methode einer schrift lichen Befragung gewählt, um eine 
möglichst große Anzahl an Lehrkräft en zu erreichen und damit einhergehend ein-
heitliche Erhebungsbedingungen zu gewährleisten. Schrift liche Befragungen werden 
zudem als anonymer wahrgenommen, „was sich günstig auf die Bereitschaft  zu ehr-
lichen Angaben und gründlicher Auseinandersetzung mit der erfragten Problematik 
auswirken kann“ (BORTZ & DÖRING, 2006, S.  237). Darüber hinaus erweist sich 
das Erhebungsinstrument der schrift lichen Befragungen als in höchstem Maße stan-
dardisiert (BORTZ & DÖRING, 2006, S. 236 f.).

Die spezifi sch für die Arbeit am kleinen Einmaleins in Jahrgangsstufe 2 und 3 
entwickelten Fragebögen enthielten dabei Items zu sechs Teilbereichen. Es wurden 
allgemeine Angaben zur Person, zum Schulbucheinsatz und zum Zeitpunkt und 
Zeitraum der Erarbeitung des kleinen Einmaleins erhoben. Die drei inhaltlich zent-
ralen Teilbereiche bezogen sich auf die Vorgehensweise bei der Erarbeitung des klei-
nen Einmaleins, den Arbeitsmitteleinsatz und auf Einstellungen zum Mathematik-
unterricht im Allgemeinen (siehe Tabelle 6).

 Tabelle 6:  Überblick über den Aufbau der Fragebögen

Inhaltliche Teilbereiche Items
(Jgst. 1/2) 

Items
(Jgst. 3/4)

Allgemeine Angaben zur Person
Schulbuch-Einsatz (kleines Einmaleins)
Arbeitsmitteleinsatz (kleines Einmaleins)
Vorgehensweise bei der Erarbeitung des kleinen Einmaleins
Einstellungen zum Mathematikunterricht im Allgemeinen
Zeitpunkt/Zeitraum der Behandlung des kleinen Einmaleins

4 Items
7 Items

17 Items
16 Items

5 Items
4 Items

4 Items
7 Items

17 Items
11 Items

5 Items
4 Items

Da die Erarbeitung des kleinen Einmaleins in Jahrgangsstufe 2 grundgelegt und in 
Jahrgangsstufe 3 aufb auend auf dem vorhergehenden Schuljahr wiederholt und ver-
tieft  wird (siehe Abschnitt 2.5.2 – Ausführungen zum bayerischen Lehrplan von 
2000), sieht die inhaltliche Arbeit der Lehrkräft e in Jahrgangsstufe 2 anders aus als in 
Jahrgangsstufe 3. In der Vorstudie kamen aus diesem Grund etwas unterschiedliche 
Fragebögen je Jahrgangsstufe zum Einsatz. Die inhaltlichen Teilbereiche der beiden 
Fragebögen unterschieden sich nur bezüglich der verwendeten Items zur Vorgehens-
weise bei der Erarbeitung des kleinen Einmaleins (siehe Tabelle 6) – die restlichen 
fünf Teilbereiche wiesen die gleiche Anzahl an Items in identischer Ausführung und 
Reihenfolge auf.

Im Wesentlichen wurden mithilfe der Fragebögen Selbstberichte der Lehrkräft e 
ermittelt. Der Fragebogen wurde allerdings so konzipiert, dass gegebenenfalls durch 
Widersprüche Einblick in das tatsächliche Unterrichtsgeschehen ermöglich werden 
sollte. Mit den Items des Teilbereiches Vorgehensweise bei der Erarbeitung des kleinen 
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Einmaleins sollten Erkenntnisse zu folgenden Fragen gewonnen werden (Jahrgangs-
stufe 2):
• Th ematisiert die Lehrkraft  verschiedene Rechenstrategien zur Lösung von Ein-

maleinsaufgaben und werden diese von den Kindern (laut Selbstbericht der Lehr-
kraft ) zur Lösung eingesetzt? 

• Th ematisiert die Lehrkraft  Beziehungen zwischen den einzelnen Aufgaben oder 
Einmaleinsreihen und werden diese von den Kindern (laut Selbstbericht der 
Lehrkraft ) genutzt?

• Ermöglicht die Lehrkraft  den Kindern verschiedene Rechenstrategien bzw. Bezie-
hungen selbst zu entdecken bzw. zu erforschen?

• Welche Rolle nimmt die Automatisierung der Einmaleinsaufgaben im Unterricht 
der Lehrkraft  ein?

Im Hinblick auf die Erarbeitung des kleinen Einmaleins in Jahrgangsstufe 3 waren 
die folgenden Fragen von Relevanz:
• Wiederholt die Lehrkraft  Rechenstrategien zum Lösen von Einmaleinsaufgaben?
• Erarbeitet die Lehrkraft  noch nicht bekannte Einmaleinsaufgaben über bereits 

automatisierte Aufgaben unter Einsatz von Rechenstrategien?
• Werden (laut Selbstbericht der Lehrkraft ) Beziehungen zwischen den einzelnen 

Aufgaben von Kindern zur Aufgabenlösung genutzt oder auf das Aufsagen der 
Reihe zur Aufgabenlösung zurückgegriff en?

• Welchen Stellenwert nimmt die Automatisierung der Einmaleinssätze bei der 
unterrichtlichen Erarbeitung des kleinen Einmaleins ein?

Bei der Konstruktion der Testitems wurde im Besonderen darauf geachtet, dass so-
wohl die Lenkung durch die Lehrkraft  bei der Erarbeitung überprüft  bzw. hinterfragt 
wurde, als auch die Möglichkeit der aktiven Entdeckung von Seiten der Kinder.92 
Ausschlaggebend hierfür war die im Th eorieteil dieser Arbeit herausgearbeitete Rele-
vanz beider genannter Komponenten, die sich bezüglich des Lehren und Lernens im 
Allgemeinen (siehe Abschnitt 1.3) aber auch bezüglich mathematischer Th emen wie 
der Multiplikation im Besonderen als ausgesprochen erfolgsversprechend herauskris-
tallisiert haben (siehe Kapitel 1 und Abschnitt 2.3.1).

Die Items zum Arbeitsmitteleinsatz lieferten Erkenntnisse zu folgenden Fragestel-
lungen:
• Setzen Lehrkräft e generell Arbeitsmittel zur Erarbeitung des kleinen Einmaleins 

im Unterricht ein und welche Arbeitsmittel kommen dabei bevorzugt zum Ein-
satz?

• Welche Rolle wird beim Arbeitsmitteleinsatz den Schülerinnen und Schülern zu-
teil?

92 Als exemplarische Beispiele können folgende Fragebogenitems angeführt werden: (1) Die Er-
arbeitung noch nicht bekannter Einmaleinsaufgaben erfolgt über bereits automatisierte Auf-
gaben unter Einsatz von Rechenstrategien. (2) Innerhalb einer Reihe versuchen Schülerinnen 
und Schüler, noch unbekannte Aufgaben über die Idee des Verdoppelns, Halbierens oder 
über unmittelbare Nachbarschaft  zu erschließen.
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• Erkennen Lehrkräft e das Potential der eingesetzten Arbeitsmittel und verwenden 
sie diese adäquat?93

Im Hinblick auf den Arbeitsmitteleinsatz und die damit einhergehende Itemkons-
truktion bestand ein vordergründiges Ziel darin, Items zu erstellen, die zwischen 
Lehrpersonen zu unterscheiden vermögen, die Arbeitsmittel in erster Linie zur Ver-
anschaulichung oder Demonstration einsetzen oder die zudem auch Kindern ermög-
lichen, an Arbeitsmitteln selbstständig Erfahrungen zu sammeln bzw. Entdeckungen 
zu machen (siehe Abschnitt 2.3.2). In der fachdidaktischen Literatur wird in diesem 
Kontext der Einsatz eines Arbeitsmittels als Veranschaulichungs- oder Anschauungs-
mittel unterschieden.

Da die auf Einsicht und Verständnis basierende Erarbeitung des Einmaleins unter 
anderem mit aktiv-entdeckendem, konstruktivem Lernen begründet wird und das 
reine Automatisieren der Einmaleinsreihen eher einer rezeptiven Sichtweise des Ler-
nens entspricht, wurde der Fragebogen durch Items von STERN und STAUB (2002) 
zu Einstellungen der Lehrkräft e zum Mathematiklernen ergänzt. Die Items sollten 
dabei folgende Teilfragen beantworten:
• Ist bei den Lehrkräft en eine eher konstruktivistische oder rezeptive Sichtweise 

zum Lehren und Lernen von Mathematik verbreitet?
• Erfolgt die unterrichtliche Arbeit eher lehrergelenkt oder im Sinne des aktiv-ent-

deckenden Lernens?

Um weitere Erkenntnisse im Hinblick auf die präferierte Vorgehensweise einzelner 
Lehrpersonen bei der Erarbeitung des kleinen Einmaleins zu ermitteln, wurde in 
dem beschriebenen Teilbereich des Fragebogens das zugrundeliegende Verständnis 
von Lehren und Lernen bei der Erarbeitung mathematischer Inhalte im Allgemeinen 
überprüft . In jedem der drei inhaltlich zentralen Teilbereiche (Vorgehensweise bei 
der Erarbeitung des kleinen Einmaleins, Arbeitsmitteleinsatz und Einstellungen zum 
Mathematikunterricht im Allgemeinen) wurden demnach mehr oder weniger off en-
sichtlich für die Studienteilnehmerinnen und -teilnehmer Einstellungen erhoben, in 
der Hoff nung, ein fi nal schlüssiges Bild der tatsächlichen Einstellung und damit ver-
bunden Vorgehensweise der Erarbeitung zu erhalten. Die Items zur Ermittlung der 
Einstellung zum Mathematiklernen wurden dabei nicht separat aufgelistet, sondern 
in den Teilbereich Vorgehensweise der Erarbeitung integriert.

Der Fragebogen beinhaltet gebundene und freie Antwortformate. Für die im Fra-
gebogen verwendeten gebundenen Antwortformate wurden Ratingskalen eingesetzt 
(siehe Abbildung 21). Sie erlauben eine quantitative Beurteilung der Eigenschaft s-
ausprägungen der Probanden (BÜHNER, 2011, S.  115; JANKISZ & MOOSBRUG-
GER, 2008, S. 50). Zudem erweisen sich Beurteilungsaufgaben als leicht verständlich, 
einfach bezüglich der Durchführbarkeit und ökonomisch hinsichtlich des Material-
verbrauchs und der Auswertbarkeit (JANKISZ & MOOSBRUGGER, 2008, S.  55 f.; 

93 Hier wurden Lehrkräft e z. B. aufgefordert zu beschreiben, wofür sie ein Arbeitsmittel ver-
wenden oder sie sollten ein geeignetes Arbeitsmittel angeben, das sie zu einem vorgegebenen 
Zweck einsetzen würden.
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BÜHNER, 2011, S.  115). Sie ermöglichen es, „die Diff erenziertheit der Fragen dem 
Untersuchungszweck und der Diff erenzierungsfähigkeit der Probanden anzupassen“ 
(BÜHNER, 2011, S. 115). In dieser Fragebogenstudie wird auf verbale Ratingskalen 
zurückgegriff en. Die mit Worten bezeichneten Skalenwerte bieten den Vorteil für die 
Probanden, Skalenwerte intersubjektiv einheitlich interpretieren zu können (JAN-
KISZ & MOOSBRUGGER, 2008, S.  52). Noch diff erenzierter betrachtet, kann von 
verbal bipolaren Skalen mit Abstufungen des Zutreff ens gesprochen werden (JAN-
KISZ & MOOSBRUGGER, 2008, S.  52; BÜHNER, 2011, S.  111). Dabei erfolgt die 
Abstufung der Antwortkategorien ausschließlich vierstufi g, so dass die verbalen Ab-
stufungen der Skala nicht zu nahe liegen bzw. noch ausreichend eindeutig sind und 
eine ausreichende Diff erenzierung sichergestellt werden kann. Bipolare Skalen kenn-
zeichnen sich dadurch, dass der Zustimmungs- bzw. Ablehnungsbereich sich von 
einem Nicht-Zutreff en über einen Indiff erenzbereich zu einem starken Zutreff en 
ausdrückt (siehe Abbildung 21). Auf  eine mittlere Antwortkategorie der Ratingska-
la wurde verzichtet, um eine Antworttendenz zu mittleren Urteilen nicht zu ermög-
lichen und die Probanden indirekt zum Treff en einer Entscheidung zu bewegen. Em-
pirisch erwiesen ist in diesem Kontext, dass Testteilnehmerinnen und -teilnehmer 
eine mittlere Antwortkategorie nicht ausschließlich im Sinne einer mittleren Merk-
malsausprägung verwenden, sondern diese neutrale Mittelkategorie auch häufi g als 
Ausweichoption benutzen (JANKISZ & MOOSBRUGGER, 2008, S. 53 f.), was zu „er-
heblichen Validitätsproblemen und somit zu Verzerrungen in der Interpretation der 
Befunde führen“ (ebd., S. 54) kann (vgl. BORTZ & DÖRING, 2006, S. 180).

A bbildung 21:  Beispielitem für ein gebundenes Antwortformat (Rating-Skala).

Der Fragebogen wurde durch freie Aufgabenbeantwortungen ergänzt, die teilwei-
se gezielt in Kombination mit gebundenen Antwortformaten zum Einsatz kamen. 
Da der Fragebogen zur Überprüfung der Umsetzung eines in Lehrplänen veranker-
ten Lerninhaltes eingesetzt wurde, scheint vor allem die „Verfälschung“ (BÜHNER, 
2011, S. 125) ein nicht zu unterschätzendes Problem zu sein. Es liegt vermutlich im 
Interesse einiger Befragten, sich positiv darzustellen und z. B. nicht direkt anzugeben, 
falls die eigene Vorgehensweise im Unterricht von amtlichen Vorgaben abweicht. Um 
gegebenenfalls Verfälschungen aufzudecken, wurden deshalb einige auf Ratingskalen 
vorzunehmende Einstufungen gezielt durch off ene Fragen zur gleichen Th ematik er-
gänzt (siehe Abbildung 22).

Neben dieser Kombination freier und gebundener Antwortformate wird dem 
Antwortverhalten der „Sozialen Erwünschtheit“ (JANKISZ & MOOSBRUGGER, 
2008, S.  59) in dieser Fragebogenstudie versucht entgegenzuwirken bzw. den Ef-
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fekt zu verringern, indem zu Beginn der Studie über den Untersuchungsgegenstand 
aufgeklärt und die Anonymität der persönlichen Angaben zugesichert wurde (ebd., 
S. 59 f.). Die Kombination freier und gebundener Antwortformate dient zur Kontrol-
le, inwiefern Vorsicht bei der Interpretation der gebundenen Testergebnisse geboten 
ist – in den folgenden Ausführungen soll dies anhand von Beispielitems veranschau-
licht werden.

A b bildung 22:  Freies Beispielitem einer gezielten Kombination gebundener und freier Antwortformate 
(Teilbereich Vorgehensweise der Erarbeitung).

Wurden Lehrkräft e z. B. angehalten auf einer Ratingskala zu folgender Aussage Stel-
lung zu nehmen: „In Ihrem Unterricht werden verschiedene Rechen strategien zur 
Lösung von Einmaleinsaufgaben erarbeitet“, so wurden sie ebenfalls mit der off enen 
Fragestellung konfrontiert, die zur Lösung von Einmaleins auf gaben thematisierten 
Rechenstrategien bzw. Rechenwege konkret aufzulisten (siehe Abbildung 21 und Ab-
bildung 22). Wenn Lehrkräft e bei der Ratingskala angeben, verschiedene Rechenstra-
tegien zu erarbeiten, bei der off enen Antwort allerdings nur die sukzessive Addition 
als vermeintliche Rechenstrategie anführen, ergibt sich ein Widerspruch, der eine 
eventuell hohe Merkmalsausprägung auf dem erstgenannten Item relativiert.

Ein weiteres Beispiel der Ergänzung gebundener Antwortformate mit freien Auf-
gabenbeantwortungen soll aus dem Teilbereich Arbeitsmitteleinsatz vorgestellt wer-
den (siehe Abbildung 23).
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Abb ildung 23: Beispielitems einer gezielten Kombination gebundener und freier Antwortformate 
(Teilbereich Arbeitsmitteleinsatz).

Ebenso wie in dem bereits präsentierten Itembeispielen zur Vorgehensweise der Er-
arbeitung (siehe Abbildung 21 und Abbildung 22), wird auch in diesem Teilbereich 
zunächst eine Rating-Skala zur Ermittlung der Merkmalsausprägung eingesetzt. Die 
freie Aufgabenbeantwortung im Anschluss ermöglicht wiederum eine realistische 
Einordnung bzw. Einschätzung der vorgenommenen Einstufung auf der Rating-Ska-
la. Wird die Aussage „Mithilfe von Arbeitsmitteln entdecken und erarbeiten Schü-
ler in Ihrem Unterricht unterschiedliche Lösungs- bzw. Rechenwege bei Einmaleins-
aufgaben“ mit trifft   eher zu beantwortet und das Hunderterfeld bzw. ein Punktefeld 
als vorrangig eingesetztes Arbeitsmittel notiert, kann von einem geeigneten bzw. ad-
äquaten Arbeitsmitteleinsatz zum Entdecken und Erarbeiten unterschiedlicher Re-
chenwege gesprochen werden. Die Nennung Alltagsgegenstände im Vergleich wür-
de die getätigte Einstufung der Rating-Skala relativieren, da deutlich geeignetere 
Arbeitsmittel zur Entdeckung bzw. Erarbeitung zur Verfügung stehen und ein Entde-
cken und Erarbeiten unterschiedlicher Lösungswege mit dem aufgeführten Arbeits-
mittel unter Umständen nur schwer oder nicht realisierbar ist.

Inwiefern den Lehrkräft en das Potential eines Arbeitsmittels bekannt ist, das sich 
zur Erarbeitung des kleinen Einmaleins als geeignet erweist (siehe Abschnitt 2.3.2), 
wird in weiteren Items untersucht. Die Items ermitteln in diesem Kontext, ob ein be-
sagtes Arbeitsmittel eingesetzt wird, wie verhältnismäßig oft  der Einsatz erfolgt und 
ob jedes Kind eine Ausfertigung dieses Arbeitsmittels zur Verfügung hat. Daran an-
knüpfend wird der konkrete Einsatz des Arbeitsmittels im Unterricht überprüft , in-
dem Lehrkräft e Einsatzmöglichkeiten des Arbeitsmittels aufzeigen bzw. nennen sol-
len. Anhand der beschriebenen Tätigkeit der Lehrkraft  kann bestimmt werden, 
inwiefern das Potential des eingesetzten Arbeitsmittels genutzt, nicht genutzt oder 
nicht vollumfänglich genutzt wurde. Abbildung 24 veranschaulicht die Ermittlung 
exemplarisch für das Hunderterfeld bzw. Punktefelder.
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Abbi ldung 24:  Überprüfung des erkannten Potentials eines zur Erarbeitung des kleinen Einmaleins 
geeigneten Arbeitsmittels (Hunderterfeld/Punktefelder).

Alle ermittelten Antworten des freien Antwortformats wurden mithilfe eines Ko-
dierleitfadens auf eine vierstufi ge Skala übertragen, um einheitliche Skalen für alle 
Fragebogenitems aufweisen zu können. Der folgende Abschnitt 4.2.3 erläutert die 
Datenauswertung im Detail. Neben den bereits beschriebenen freien Aufgabenbeant-
wortungen und Ratingskalen wurden in dieser Fragebogenstudie vereinzelt auch wei-
tere gebundene Antwortformate eingesetzt. Wie bereits in Abbildung 24 ersichtlich 
fi nden auch dichotome Auswahlaufgaben (z. B. Ja-Nein-Items) Verwendung sowie 
Aufgaben, die mehr als nur zwei Antwortalternativen besitzen, sogenannte Mehr-
fachwahl- oder Multiple-Choice-Aufgaben (JANKISZ & MOOSBRUGGER, 2008, 
S. 48 f.; BÜHNER, 2011, S. 117). Diese kamen bevorzugt bei den Fragen zur Person 
und zum Zeitpunkt bzw. Zeitraum der Behandlung des kleinen Einmaleins zum Ein-
satz, um den Untersuchungsteilnehmerinnen und -teilnehmern eine Wahl aus vorge-
gebenen Antwortalternativen zu ermöglichen.

Im Vorfeld der Vorstudie erfolgte eine Pilotierung des Fragebogens mit 15 bay-
erischen Lehrkräft en. Sie führte dazu, dass nicht eindeutige oder als missverständ-
lich identifi zierte Itemformulierungen überarbeitet wurden. Die Erhebung der Vor-
studie fand zu Beginn des Schuljahres 2011/2012 über einen Zeitraum von ungefähr 
3–4 Wochen statt. Die Teilnahme (siehe Abschnitt 4.2.1) erfolgte dabei auf freiwilli-
ger Basis und war an keine weiteren verpfl ichtenden Teilnahmen an Untersuchun-
gen oder dergleichen gekoppelt. Die Bearbeitungszeit der Vorstudie, der Wochentag 
sowie die Uhrzeit der Bearbeitung konnten von Teilnehmerin zu Teilnehmer stark 
variieren, einzig die Bearbeitungsdeadline war fi x vorgegeben. Die Erhebungszeit 
je Teilnehmerin bzw. Teilnehmer wurde auf ungefähr 15–20 Minuten veranschlagt. 
Zur Gewährleistung bestmöglicher Objektivität erhielten alle Lehrkräft e auf den ers-
ten Seiten des Fragebogens die gleichen einleitenden Erläuterungen bzw. die glei-

Hunderterfeld/Punktefelder               ja                                           nein                              
 

Wenn Sie ‚ja‘ angekreuzt haben, beantworten Sie bitte die nachfolgende Frage zu diesem 
Arbeitsmittel. 
Wenn Sie ‚nein‘ angekreuzt haben, können Sie zum nächsten Arbeitsmittel übergehen. 

 

Wie oft wird dieses Arbeitsmittel bei der Behandlung des kleinen Einmaleins 
eingesetzt? 
 

                               - 
sehr selten    –   selten   –   gelegentlich   –    oft    –    sehr oft 

 
Besitzen alle Kinder eine Ausfertigung dieses Arbeitsmittels? 

           ja                                           nein                                     
 
Wie setzen Sie das „Hunderterfeld/Punktefelder“  im Unterricht ein? 
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che Einführung zum konkreten Ablauf der Fragebogenbeantwortung. Dabei wurde 
auch auf die Anonymität der persönlichen Angaben verwiesen. Die Teilnehmerin-
nen bzw. Teilnehmer dieser Vorstudie erhielten den Fragebogen je nach Wunsch in 
Papierform oder in digitaler Form (PDF-Format bzw. Word-Format). Die Variante 
Word-Format ermöglichte eine Bearbeitung des Fragebogens direkt am Computer. 
Die Rücksendung des Fragebogens erfolgte entweder per E-Mail, eingescannt oder 
auf dem postalischen Weg.

4.2.3 Kodierung und statistische Methoden

Die Auswertung der Fragebogendaten erfolgte auf zweierlei Art und Weise: anhand 
einer qualitativen strukturierenden Inhaltsanalyse und multivariaten Datenanalysen.

Qualitative strukturierende Inhaltsanalyse
Zur Analyse der Lehrkraft antworten der freien Antwortformate (siehe Tabelle 9 – 
kursiv dargestellte Items) wurde eine qualitative strukturierende Inhaltsanalyse nach 
MAYRING (1990) durchgeführt. In einem ersten deduktiven Schritt wurde in kolle-
gialer Zusammenarbeit ein theoriegeleitetes, selbstentwickeltes, vierstufi ges Katego-
riensystem ausdiff erenziert. Eine erste Kodierung der freien Antwortformate zeig-
te, dass das Manual um relevante Kategorien ergänzt werden muss. Dieses deduktive 
als auch induktive Vorgehen lieferte schlussendlich ein umfassendes Kategoriensys-
tem. Die Kodierung der erhaltenen Antworten des freien Antwortformats auf eine 
vierstufi ge Skala (vier verschiedene Niveaustufen) wurde unter anderem angestrebt, 
um für alle Fragebogenitems – die geschlossenen sowie die freien – auf einheitli-
che Skalen zurückgreifen zu können. Die aufgestellten Niveaustufen wurden dem-
nach metrisch interpretiert. Das entwickelte Kodiermanual (Tabelle 7) wird an fol-
gendem bereits bekannten freien Beispielitem aus dem Teilbereich Vorgehensweise 
der Erarbeitung exemplarisch erläutert: Welche Rechenstrategien/Rechenwege zur Lö-
sung von Einmaleinsaufgaben werden thematisiert?

Zeigen sich Lehrkräft e nicht in der Lage, Herangehensweisen zur Lösung von 
Einmaleinsaufgaben anzuführen oder nennen sie die Automatisierung als einzige be-
kannte Herangehensweise an Einmaleinssätze, wird die Antwort der Niveaustufe 1 
zugeordnet. Nennen sie nur weniger tragfähige Herangehensweisen (z. B. das rhyth-
mische Zählen, das Aufsagen der Reihe oder die sukzessive Addition) und/oder le-
diglich eine Rechenstrategie (z. B. Tauschaufgabe oder Nachbaraufgabe) wird die Ko-
dierung auf Niveaustufe 2 vorgenommen. Voraussetzung für Niveaustufe 3 ist der 
Kerngedanke des Zusammensetzens von Kernaufgaben bzw. des Zerlegens in Kern-
aufgaben. Alternativ kann die 3.  Niveaustufe auch erreicht werden durch die An-
gabe von zwei oder mehreren verschiedenen Rechenstrategien. Zum Erreichen der 
4.  Niveaustufe muss erneut der Kerngedanke des Zerlegens oder Zusammenset-
zens von Faktoren ersichtlich werden sowie eine oder mehrere Rechenstrategien 
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Tabe lle 7:  Eigenentwickeltes Kodiermanual zur Auswertung des Items: Welche Rechenstrategien/
Rechenwege zur Lösung von Einmaleinsaufgaben werden thematisiert?

Niveaustufen Name Beschreibung/Indikatoren

1 –  – Angabe keiner Herangehensweise zum Lösen von Einmaleins-
aufgaben bzw. keine Th ematisierung von Herangehensweisen 
laut Aussage der Lehrkraft 

 – ausschließlich Automatisierung wird als Herangehensweise ge-
nannt bzw. indirekt in den Ausführungen der Lehrkraft  ange-
führt

2 … auf niedri-
gem Niveau

 – Angabe einer oder mehrerer weniger tragfähiger Herangehens-
weisen (Auswahl):
 – direktes Modellieren mit Material/vollständiges Auszählen
 – rhythmisches Zählen in gleichgroßen Teilabschnitten
 – Benutzung von Zahlenfolgen (Aufsagen der Reihe)
 – sukzessive Addition (wiederholtes Addieren gleicher Summan-

den)
 – Angabe einer Herangehensweise/Rechenstrategie zum Lösen 

von Einmaleinsaufgaben (Auswahl): 
 – Kernaufgaben (ohne weitere Erläuterungen – reine Aufzählung)
 – Tauschaufgabe
 – Nachbaraufgabe 
 – Verdopplung/Halbierung
 – gegensinniges Verändern

 – Angabe einer Herangehensweise/Rechenstrategie zum Lösen 
von Einmaleinsaufgaben (Auswahl): 
 – Kernaufgaben (ohne weitere Erläuterungen – reine Aufzählung)
 – Tauschaufgabe
 – Nachbaraufgabe 
 – Verdopplung/Halbierung
 – gegensinniges Verändern 

und eine oder mehrere weniger tragfähige Herangehensweisen 
(Auswahl):
 – direktes Modellieren mit Material/vollständiges Auszählen
 – rhythmisches Zählen in gleichgroßen Teilabschnitten
 – Benutzung von Zahlenfolgen (Aufsagen der Reihe)
 – sukzessive Addition (wiederholtes Addieren gleicher Summan-

den)
3 … auf mittle-

rem Niveau
 – Angabe der Herangehensweise Kernaufgabe additiv zusammen-

setzen/Malaufgaben in Kernaufgaben zerlegen
oder 
Zerlegung eines Faktors

 – Angabe von zwei oder mehreren Herangehensweisen/Rechen-
strategien (Auswahl) 
 – Kernaufgaben (ohne weitere Erläuterungen – reine Aufzählung)
 – Tauschaufgabe
 – Nachbaraufgabe 
 – Verdopplung/Halbierung
 – gegensinniges Verändern
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Fortsetzung Tabelle 7

Niveaustufen Name Beschreibung/Indikatoren

4 … auf hohem 
Niveau

 – Angabe der Herangehensweise Kernaufgabe additiv zusammen-
setzen/Malaufgaben in Kernaufgaben zerlegen
oder 
Zerlegung eines Faktors

und eine oder mehrere weitere Herangehensweisen/
Rechenstrategien (Auswahl)
 – Tauschaufgabe
 – Nachbaraufgabe 
 – Verdopplung/Halbierung
 – gegensinniges Verändern 

angeführt werden.94 Die Zuordnung der Herangehensweisen zu den entsprechenden 
Niveaustufen des Kodiermanuals basiert somit in erster Linie auf der Effi  zienz der 
Herangehensweisen zur Lösung von Einmaleinssätzen (siehe Abschnitt 2.2.2). Kon-
form mit den fachdidaktischen Empfehlungen und den bayerischen Lehrplaninhal-
ten wird die Strategie „Kernaufgaben additiv zusammensetzen bzw. Malaufgaben in 
Kernaufgaben zerlegen“ (BAYERISCHES STAATSMINISTERIUM FÜR UNTER-
RICHT UND KULTUS, 2000, S. 99) als Voraussetzung für hohe Niveaustufen ange-
sehen. Die Vielfalt an aufgelisteten unterschiedlichen Rechenstrategien stellt zudem 
eine weitere Grundlage für die Kodierung auf einem mittleren oder hohen Niveau 
dar.

Stellvertretend für die freien Antwortformate des Teilbereichs Arbeitsmittelein-
satz wird das Kodiermanual zur Ermittlung des von der Lehrkraft  erkannten Poten-
tials des Hunderterfeldes bzw. Punktefeldes vorgestellt (siehe Tabelle 8). Das aufge-
stellte Kategoriensystem für das Hunderterfeld, aber auch für die Einmaleinstafel 
unterscheidet in den vier Niveaustufen das Ausmaß des erkannten Potentials des 
eingesetzten Arbeitsmittels. Niveaustufe 1 ist gleichbedeutend mit kein Einsatz des 
Arbeitsmittels. Da unspezifi sche Antworten (wie z. B. Übung, Wiederholung oder 
Überblick) keine Aussage über das erkannte Potential des Arbeitsmittels auf Seiten 
der Lehrkraft  zulassen, werden unspezifi sche Aussagen der 2.  Niveaustufe zugeord-
net. Spezifi sche Aussagen bezüglich des Einsatzes sind der 3. oder 4. Niveaustufe zu-
geordnet. Die beiden höchsten Kategorien unterscheiden sich dabei im Ausmaß des 
erkannten Potentials. Das Erkennen und Darstellen von Einmaleinsaufgaben mithil-
fe der Felderdarstellung wird z. B. als sinnvolle unterrichtspraktische Aktivität ein-
gestuft , die allerdings das Potential des Arbeitsmittels noch nicht vollkommen aus-
schöpft . Die Entdeckung oder Erarbeitung von Rechenvorteilen, Rechenwegen oder 
-strategien anhand des Hunderterfeldes stellt im Vergleich dazu eine Tätigkeit dar, 
die das Potential des Hunderterfeldes vollständig berücksichtigt. Weitere exemplari-
sche Zuordnungen veranschaulicht die aufgeführte Tabelle 8.

94 Von den Lehrkräft en wurde an dieser Stelle nicht zwingend die korrekte Bezeichnung der je-
weiligen Herangehensweise verlangt – die Herangehensweise konnte unter anderem auch an-
hand eines konkreten Beispiels verdeutlicht werden.
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 Tabelle 8:  Eigenentwickeltes Kodiermanual zur Ermittlung des von der Lehrkraft erkannten Potentials 
des Hunderterfeldes bzw. Punktefeldes

Niveaustufen Name Beschreibung/Indikatoren
1 Kein Einsatz 

des Arbeits-
mittels

Antwortalternative nein

2 Unspezifi scher 
Einsatz des 
Arbeitsmittels

Die Lehrkraft  tätigt eine unspezifi sche Aussage in Bezug auf den 
Einsatz des Arbeitsmittels, z. B. 

 – Einführung (der Operation)
 – Übung/Wiederholung
 – Methodischer Einsatz 
 – (Diff erenzierung, Off ener Unterricht)
 – Angaben zur Ausführung des Materials

3 Spezifi scher 
Einsatz des 
Arbeitsmittels
(Potential nicht 
vollständig ge-
nutzt)

Die Lehrkraft  tätigt eine spezifi sche Aussage in Bezug auf den Ein-
satz des Arbeitsmittels (Potential nicht vollständig genutzt), z. B. 

 – Einmaleinsaufgaben erkennen/darstellen
 – optische Darstellung/

Veranschaulichung von Einmaleinsaufgaben 
 – Einmaleinsaufgaben nennen
 – Verknüpfen von konkreten Handlungen, ikonischen Darstellun-

gen und symbolischen Zahlensätzen
 – Tauschaufgabe veranschaulichen/thematisieren

4 Spezifi scher 
Einsatz des 
Arbeitsmittels
(Potential er-
kannt bzw. 
genutzt)

Die Lehrkraft  tätigt eine spezifi sche Aussage in Bezug auf den Ein-
satz des Arbeitsmittels (Potential erkannt bzw. genutzt), z. B.

 – Einmaleinsaufgaben berechnen/lösen 
 – von Anfang an alle Einmaleinsaufgaben am Anschauungsmittel 

entdecken und lösen lassen
 – zur Entdeckung von Rechenvorteilen bzw. Rechenstrategien
• Kommutativgesetz 

(Verdeutlichung der TA)
(Æ ausschließlich TA – nicht ausreichend – Stufe 3)

• Assoziativgesetz (Achterreihe als Verdoppelung der Vierer-
reihe)

• Distributivgesetz
(Zerlegung eines Faktors – Kernaufgaben)

 – verschiedene (mögliche) Rechenwege zur Lösung einer Multi-
plikationsaufgabe/operative Untersuchungen
• Tauschaufgabe

(Æ ausschließlich TA – nicht ausreichend – Stufe 3)
• Verdopplungs-/Halbierungsaufgabe
• Zerlegungsaufgabe

(Nachbarschaft sbeziehungen)
• gegensinniges Verändern

Zur Kodierung der Antworten in den freien Formaten wurden zwei unabhängige 
Kodierer eingesetzt. Die Interraterreliabilität ermittelt in diesem Kontext, inwieweit 
die Kodierungen dieser zwei unabhängigen Beobachter übereinstimmen. Insbeson-
dere für freie Antwortformate ist diese Übereinstimmungsanalyse von besonde-
rer Relevanz (ARON, COUPS & ARON, 2013). Die Doppelkodierung der gesamten 
Datenmenge wurde durch eine geschulte Hilfskraft  und die Autorin vorgenommen. 
Die Übereinstimmungsanalyse über alle freien Antwortformate ermittelte eine sehr 
gute Übereinstimmung der beiden Rater (Cohens κ > .936). Die prozentuale Über-
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einstimmung der Raterinnen reichte von 80% bis 98%,95 so dass nach LANDIS und 
KOCH (1977) von beachtlichen oder fast vollkommenen Interraterreliabilitäten ge-
sprochen werden kann.

Clusteranalyse – exploratives Verfahren der multivariaten Datenanalyse
Zur Identifi zierung und Charakterisierung verschiedener unterrichtlicher Vorge-
hensweisen bei der Erarbeitung des kleinen Einmaleins wurden die mithilfe des Fra-
gebogens gesammelten Daten einer Clusteranalyse unterzogen. Die Clusteranalyse 
stellt ein Verfahren dar, das der Frage nachgeht, ob zwischen beobachteten Unter-
suchungsobjekten Ähnlichkeiten bestehen. Für die vorliegende Arbeit ist in die-
sem Zusammenhang von Interesse, ob sich Gruppen von Lehrkräft en (sogenannte 
Cluster) identifi zieren lassen, die im Hinblick auf die betrachteten Merkmale oder 
Eigenschaft en als weitgehend homogen bezeichnet werden können. Die verschiede-
nen ermittelten Gruppen sollen sich allerdings zugleich möglichst unähnlich sein 
bzw. größtmögliche Heterogenität aufweisen. Die Clusteranalyse stellt ein explorati-
ves Verfahren der multivariaten Datenanalyse dar, insofern die einzelnen zu identi-
fi zierenden Gruppen zu Untersuchungsbeginn noch unbekannt sind und die Grup-
pierungen erst mithilfe eines Clusterverfahrens herbeigeführt werden (BACKHAUS, 
ERICHSON, PLINKE & WEIBER, 2016, S. 455 ff .).

Bei der Auswahl der Items für die Clusteranalyse wurden inhaltliche Kriterien be-
achtet. Um die jeweiligen Unterschiede der Erarbeitung in den jeweiligen Jahrgangs-
stufen zu berücksichtigen, wurde auch auf Items zurückgegriff en, die spezifi sch auf 
die Erarbeitung in der entsprechenden Jahrgangsstufe Bezug nehmen. Besondere Be-
achtung fand bei der Auswahl allerdings auch die Charakteristik des Fragebogens mit 
kombinierten freien und gebundenen Antwortformaten. So wurden in den beiden 
Fragebogenversionen zwei bzw. drei Items mit freiem Antwortformat (kursiv in Tabel-
le 9) ausgewählt, die in Kombination mit einer entsprechenden geschlossenen Frage 
gestellt wurden. Insgesamt wurden je Fragebogen zwölf Items zur Klassifi zierung ver-
schiedener Gruppen von Lehrkräft en herangezogen (siehe Tabelle 9). Die Begrenzung 
auf zwölf Items erfolgte aus verschiedenen Gründen: Einige Items wurden für weitere 
Analysen im Zusammenhang mit der Erarbeitung des kleinen Einmaleins entwickelt 
und sind für die Forschungsfragen der Vorstudie nicht relevant.96 Bei hoch korrelie-
renden Merkmalen wurde eine Auswahl zwischen Items getroff en, um zu vermeiden, 
dass bei der Fusionierung der Objekte bestimmte Aspekte überbetont werden. BACK-
HAUS et al. (2016) bestärken diese Vorgehensweise der Itemauswahl: 

95 Auch die Überprüfung der Interraterreliabilität mit anderen Maßen (z. B. BORTZ & LIE-
NERT, 2008) bestätigt den dargestellten Cohen’s Kappa-Wert.

96 Die Items bzw. die aus den Antworten der Lehrpersonen gewonnen Erkenntnisse aus den 
Teilbereichen Schulbucheinsatz oder Zeitpunkt/Zeitraum der Behandlung des kleinen Einmal-
eins werden beispielsweise bei der Konzeption der Hauptstudie berücksichtigt (siehe Kapitel 
5).
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Ebenso wie für die Anzahl der zu betrachtenden Objekte gibt es auch für die 
Zahl der in einer Clusteranalyse heranzuziehenden Variablen keine eindeutigen 
Vorschrift en. Der Anwender sollte darauf achten, dass nur solche Merkmale im 
Gruppierungsprozess Berücksichtigung fi nden, die aus theoretischen Überlegun-
gen als relevant für den untersuchenden Sachverhalt anzusehen sind. Merkmale, 
die für den Untersuchungszusammenhang bedeutungslos sind, müssen aus 
dem Gruppierungsprozess herausgenommen werden. (BACKHAUS et al., 2016, 
S. 510, Hervorhebung im Original)

Bei den zwölf ausgewählten Items handelt es sich um Items aus den bereits ange-
führten zentralen Teilbereichen des Fragebogens: Arbeitsmitteleinsatz (5 Items), Vor-
gehensweise bei der Erarbeitung (5  Items), Einstellungen der Lehrkräft e zum Ma-
thematiklernen (2 Items). In der Mehrzahl der verwendeten Items stimmen beide 
Fragebogenversionen überein – im Teilbereich Arbeitsmitteleinsatz kann aufgrund 
einer einzigen Itemumformulierung nicht von einer Übereinstimmung gesprochen 
werden, im Teilbereich Vorgehensweise der Erarbeitung unterscheiden sich die beiden 
Fragebogenversionen zur Klassifi zierung von Lehrpersonen in zwei Items.

 Tabelle 9:  Zentrale Items der Clusteranalyse (freie Items kursiv)

Items der Clusteranalyse Konkrete Formulierung

Ar
be

its
m

itt
ele

in
sa

tz
 (A

M
)

Erkanntes Potential der AM 
(Feld, Tafel)

Wie setzen Sie die Einmaleinstafel/-tabelle bzw. das Hunderterfeld/
Punktefelder in Ihrem Unterricht ein?

Demonstration von 
Lösungswegen

Arbeitsmittel nutzen Sie v.a. um Ihren Schülerinnen und Schü-
lern zu demonstrieren, wie man sie zum Lösen von Einmaleins-
aufgaben einsetzen kann.

Entdecken und Erarbeiten 
von Lösungswegen

Mithilfe von Arbeitsmitteln entdecken und erarbeiten Schülerin-
nen und Schüler in Ihrem Unterricht unterschiedliche Lösungs- 
bzw. Rechenwege bei Einmaleinsaufgaben.

Potential des eingesetzten 
AM zum Entdecken von 
Lösungswegen

Welche Arbeitsmittel setzen Ihre Schülerinnen und Schüler für das 
Entdecken und Erarbeiten unterschiedlicher Lösungs- bzw. Rechen-
wege in Ihrem Unterricht in erster Linie ein?

Jahrgangsstufe 2
Hoher AM-Einsatz nach 
Aufb au des Operationsver-
ständnisses

Nach dem Aufb au des Operationsverständnisses unter Arbeits-
mitteleinsatz fi ndet in der anschließenden Phase der Behandlung 
der Einmaleinsaufgaben ein hoher Arbeitsmitteleinsatz statt.

Jahrgangsstufe 3
Geringer AM-Einsatz In Ihrem Unterricht fi ndet in der Jahrgangsstufe 3 bei der Be-

handlung der Einmaleinsaufgaben ein geringer Arbeitsmittelein-
satz statt.
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Items der Clusteranalyse Konkrete Formulierung
Vo

rg
eh

en
sw

eis
e E

ra
rb

eit
un

g
Lösen durch Anwenden 
von Strategien

Innerhalb einer Reihe versuchen Schülerinnen und Schüler, noch 
unbekannte Aufgaben über die Idee des Verdoppelns, Halbierens 
oder über unmittelbare Nachbarschaft  zu erschließen.

Lösen durch Aufsagen der 
Reihe

Viele Ihrer Schülerinnen und Schüler lösen eine Einmaleinsauf-
gabe über das Aufsagen der Reihe. 

Übungen zum 
Auswendiglernen

Im Mittelpunkt Ihres Unterrichts zur Erarbeitung des kleinen 
Einmaleins stehen Übungen zum Auswendiglernen.

Jahrgangsstufe 2
Rechenstrategien (RS) In Ihrem Unterricht werden verschiedene Rechenstrategien zur 

Lösung von Einmaleinsaufgaben erarbeitet.
RS (konkrete Nennung) Welche Rechenstrategien/Rechenwege zur Lösung von Einmaleins-

aufgaben werden thematisiert?
Jahrgangsstufe 3
Erarbeitung über Rechen-
strategien

Die Erarbeitung noch nicht bekannter Einmaleinsaufgaben 
erfolgt über bereits automatisierte Aufgaben unter Einsatz von 
Rechenstrategien.

Wiederholung Die Wiederholung der Strategien zum Lösen von Einmaleinsauf-
gaben spielt in Ihrem Unterricht eine große Rolle.

Ei
n-

ste
llu

ng
en

Finden eigener Methoden In der Mathematik werden Lehrziele am besten erreicht, wenn 
Schülerinnen und Schüler ihre eigenen Methoden fi nden, um die 
Aufgabe zu lösen.

Aufgabenlösung nach Vor-
gabe der Lehrkraft 

Man sollte von den Schülerinnen und Schülern verlangen, Auf-
gaben so zu lösen, wie es im Unterricht gelehrt wurde.

Die mithilfe des Fragebogens ermittelten Daten der Vorstudie wurden mithil-
fe einer hierarchischen Clusteranalyse unter Einsatz der quadrierten euklidischen 
Distanz untersucht. Diese wird nach BACKHAUS et al. (2016) zu einem weit ver-
breiteten Distanzmaß der empirischen Forschung gezählt (ebd., S.  469 f.). Mit dem 
Single-Linkage-Verfahren erfolgte der Ausschluss von Ausreißern, das Complete-
Linkage-Verfahren diente der angestrebten Klassifi zierung von Gruppen. Dabei wur-
de das letztgenannte Verfahren als Fusionierungsalgorithmus gewählt, um neben 
möglichst homogenen und sich untereinander möglichst stark unterscheidenden 
Clustern auch die Bildung anzahlmäßig kleiner Gruppen zu ermöglichen (BACK-
HAUS et al., 2011, S. 484).

Diskriminanzanalyse – multivariates Verfahren zur Bestimmung von 
Gruppenunterschieden
Nach der Klassifi zierung der Lehrkräft e im Hinblick auf ihre Vorgehensweise bei der 
unterrichtlichen Erarbeitung des kleinen Einmaleins wurden mithilfe von Diskrimi-
nanzanalysen die vorgegebenen Gruppen untersucht. Die Diskriminanzanalyse stellt 
dabei ein multivariates Verfahren zur Bestimmung von Gruppenunterschieden dar, 
die zwischen zwei oder mehreren Gruppen in Bezug auf eine Vielzahl an Variab-
len bestehen oder nicht bestehen. Sie ermöglicht es, signifi kante Gruppenunterschie-

Fortsetzung Tabelle 9
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de hinsichtlich der Variablen zu identifi zieren sowie die Eignung einzelner Variablen 
zur Gruppenunterscheidung zu bestimmen (BACKHAUS et al., 2016, S. 216 f.). Kurz 
gefasst untersucht die Diskriminanzanalyse, ob und wie sich Gruppen unterscheiden.

Zur Überprüfung der Modellgüte der Diskriminanzanalyse kann basierend auf 
der Clusterlösung eine Diskriminanzfunktion geschätzt werden, die eine möglichst 
große Trennung der einzelnen Cluster ermöglicht und zudem die diskriminatorische 
Bedeutung der eingesetzten Fragebogenitems ermittelt. Der in diesem Zuge ermittel-
te Eigenwert bildet ein Maß für die Güte bzw. die Trennkraft  der Diskriminanzfunk-
tion, ist allerdings nicht auf Werte zwischen 0 und 1 normiert. Aus diesem Grund 
wird in dieser Arbeit auf das gebräuchlichste Kriterium zur Überprüfung – Wilks’ 
Lambda – zurückgegriff en (BACKHAUS et al., 2016, S.  240). Darüber hinaus be-
steht noch eine weitere Möglichkeit, das Modell auf seine Güte hin zu überprüfen, 
indem die tatsächlich vorgenommene Gruppenzuordnung mit der Zuordnung ba-
sierend auf der Diskriminanzanalyse verglichen und die Anzahl insgesamt richtiger 
Einordnungen ermittelt wird. Nach BORTZ und SCHUSTER (2010) soll im Kontext 
der Diskriminanzanalyse die Frage erörtert werden, „wie gut die untersuchten Per-
sonen oder Objekte aufgrund der ermittelten Diskriminanzfaktoren den ursprüngli-
chen Gruppen zugeordnet werden können“ (ebd., S. 498).

Neben der Analyse von Gruppenunterschieden erweist sich die Diskriminanz-
analyse aber auch im Hinblick auf die Hauptstudie dieser Arbeit von Vorteil. Sie er-
möglicht die Prognose der Gruppenzugehörigkeit von Elementen bzw. bezugneh-
mend auf diese Arbeit von Lehrkräft en. Dabei liefert sie eine Antwort auf die Frage, 
welcher Gruppe eine neue Lehrkraft , deren Gruppenzuordnung noch nicht bekannt 
ist, aufgrund ihrer Merkmalsausprägungen zuzuordnen ist. „Nachdem für eine ge-
gebene Menge von Elementen die Zusammenhänge zwischen der Gruppenzugehö-
rigkeit der Elemente und ihren Merkmalen analysiert wurden, lässt sich darauf auf-
bauend eine Prognose der Gruppenzugehörigkeit von neuen Elementen vornehmen“ 
(BACKHAUS et al, 2016, S. 18).

Nach BACKHAUS et al. (2016) ergänzen sich die beiden beschriebenen Verfah-
ren – die Clusteranalyse und die Diskriminanzanalyse – sehr gut: „Durch die Clus-
teranalyse werden Gruppen erzeugt, durch die Diskriminanzanalyse dagegen werden 
vorgegebene Gruppen untersucht“ (ebd., S. 217, Hervorhebungen im Original).

4.3 Forschungsergebnisse und Interpretation der Cluster

In einem ersten Schritt wurde mithilfe des Single-Linkage-Verfahrens geprüft , ob in 
den beiden Teilstichproben der 46 (Jahrgangsstufe 1 und 2) bzw. 49 (Jahrgangsstu-
fe 3 und 4) befragten bayerischen Lehrkräft en sogenannte Ausreißer enthalten sind. 
Die zugehörigen Dendrogramme weisen für die Jahrgangsstufe 2 sowie für die Jahr-
gangsstufe 3 jeweils drei Ausreißer nach. Die identifi zierten Ausreißer wurden aus 
dem Clusterungsprozess ausgeschlossen, um den Gruppierungsprozess mit dem 
Complete-Linkage-Verfahren nicht zu verzerren (vgl. BACKHAUS et al., 2016). Zur 
Identifi zierung verschiedener Gruppen bei der Erarbeitung des kleinen Einmaleins 
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standen demnach 43 bzw. 46 Lehrkräft e zur Verfügung. Beide Teilstichproben konn-
ten bezüglich ihrer Vorgehensweise bei der Erarbeitung des kleinen Einmaleins in 
vier Gruppen klassifi ziert werden. Einen ersten Anhaltspunkt zur Bestimmung der 
optimalen Clusteranzahl von vier Clustern für beide Fragebogenversionen liefert die 
optische Identifi kation eines Sprunges in der Entwicklung des Heterogenitätsmaßes, 
das sogenannte Elbow-Kriterium (BACKHAUS et al., 2016, S.  494 f.). Neben dieser 
in erster Linie visuellen Überprüfung konnte der Test von Mojena (BACKHAUS et 
al., 2016, S. 497) die Eignung einer 4-Cluster-Lösung für beide Fragebogenversionen 
ebenfalls bestätigen.

Nach der Klassifi zierung der Lehrkräft e im Hinblick auf ihre Vorgehensweise bei 
der Erarbeitung mithilfe der Clusteranalyse wurde im Rahmen der Diskriminanz-
analyse durch eine einfaktorielle ANOVA überprüft , welche der 12 Items bzw. Merk-
malsvariablen der beiden Fragebogenversionen signifi kant zur Clusterbildung bei-
tragen bzw. wie gut sie jeweils isoliert zwischen den vier Gruppen unterscheiden. 
Die ANOVA zeigt, dass die Mehrzahl der zwölf zentralen Items dies besonders gut 
erfüllen – mit Ausnahme von je 4 Items für den Fragebogen der Jahrgangsstufe 2 
und Jahrgangsstufe 3 trennen alle eingesetzten Items mit einer Irrtumswahrschein-
lichkeit unter 5% (p < .050) (siehe Tabelle 10 und Tabelle 11 – Hervorhebung der 
Items durch kursive Schrift ). Vor allem die acht signifi kant zur Trennung der Grup-
pen maßgeblichen Fragebogenitems bzw. Merkmale werden in erster Linie zur Be-
schreibung und Interpretation bzw. zur Charakterisierung der unterschiedlichen 
Lehrkraft typen herangezogen. Ein Grund dafür, dass für je vier Items keine signi-
fi kanten Unterschiede (p ≥ .050) zwischen den jeweiligen Clustern ermittelt werden 
konnten, könnte beispielsweise in einem sehr ähnlichen Antwortverhalten der Pro-
banden liegen .

Tabelle 10:  Für die Clusteranalyse verwendete Items in Jahrgangsstufe 2 (F-Wert, Signifi kanzlevel p und 
Eff ektstärke η²)

Variablen F-Wert
(3, 39)

Signifi kanz-
level p

Eff ekt-
stärke η²

Ar
be

its
m

itt
ele

in
-

sa
tz

 (A
M

)

Erkanntes Potential der AM (Feld, Tafel) 7.944 .001 .377
Demonstration von Lösungswegen 1.360 .269 .095
Entdecken und Erarbeiten von Lösungswegen 5.782 .002 .308
Potential des eingesetzten AM zum Entdecken von 
Lösungswegen 10.220 < .001 .440

Hoher AM-Einsatz nach Aufb au des Operationsver-
ständnisses 12.135 < .001 .483

Vo
rg

eh
en

s-
we

ise
 E

ra
rb

ei-
tu

ng

Rechenstrategien (RS) 7.459 < .001 .365
RS (konkrete Nennung) 8.641 < .001 .399
Lösen durch Anwenden von Strategien 1.957 .136 .131
Lösen durch Aufsagen der Reihe 2.200 .103 .145
Übungen zum Auswendiglernen 3.428 .026 .209

Ei
ns

te
ll-

un
ge

n Finden eigener Methoden 1.597 .017 .228

Aufgabenlösung nach Vorgabe der Lehrkraft 2.310 .091 .145
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 Tabelle 11:  Für die Clusteranalyse verwendete Items in Jahrgangsstufe 3 (F-Wert, Signifi kanzlevel p und 
Eff ektstärke η²)

Variablen F-Wert 
(3, 42)

Signifi kanz-
level p

Eff ekt-
stärke η²

Ar
be

its
m

itt
ele

in
sa

tz
 

(A
M

)
Erkanntes Potential der AM (Feld, Tafel) 3.170 .049 .203

Demonstration von Lösungswegen 1.488 .232 .096

Entdecken und Erarbeiten von Lösungswegen 16.953 < .001 .548

Potential des eingesetzten AM zum Entdecken von 
Lösungswegen 175.819 < .001 .926

Geringer AM-Einsatz 2.134 .110 .132

Vo
rg

eh
en

sw
eis

e 
Er

ar
be

itu
ng

Erarbeitung über Rechenstrategien 4.313 .010 .236
Wiederholung von Rechenstrategien 1.992 .130 .125
Lösen durch Anwenden von Strategien 2.223 .100 .137
Lösen durch Aufsagen der Reihe 3.750 .018 .211
Übungen zum Auswendiglernen 9.634 < .001 .408

Ei
ns

te
ll-

  
un

ge
n Finden eigener Methoden 2.948 .044 .174

Aufgabenlösung nach Vorgabe der Lehrkraft 5.465 .003 .281

Um die Trennschärfe bzw. die Güte dieser Clusterlösung zu überprüfen, werden zu-
nächst die Ergebnisse der Diskriminanzanalyse berichtet. Die Gütemaße der Diskri-
minanzanalyse für die Jahrgangsstufe 2 sind in Tabelle 12 aufgeführt.

 Tabelle 12:  Prüfung der Clustergüte (Jahrgangsstufe 2) mittels Diskriminanzanalyse (Eigenwerte, 
Wilks-Lambda)

Fkt. Eigen-
wert

% der 
Varianz

Kumu-
lierte %

Kanonische 
Korrelation

Test der 
Fkt.

Wilks-
Lambda

Chi-
Quadrat

df Sign.

1 4.377 46.4 46.4 .902 1 bis 3 .016 138.273 39  < .001

2 3.458 36.7 83.1 .881 2 bis 3 .087 81.924 24 < .001

3 1.588 16.9 100.0 .783 3 .386 31.853 11 .001

Alle drei Diskriminanzfunktionen weisen einen Eigenwert > 1 auf (siehe Tabelle 12). 
Dabei ergibt sich ein kumuliertes residuelles Wilks-Lambda von 0.016.97 Der Anteil 
der nicht erklärten Streuung an der Gesamtstreuung liegt demnach bei lediglich 2% 
bzw. nur 2% der Streuung wird nicht durch die Gruppenunterschiede erklärt. Die Er-
gebnisse der Diskriminanzanalyse zeigen für die Clusterbildung der Jahrgangsstufe 2 
hochsignifi kante Wilks-Lambda-Werte – die Güte der Clusterlösung erweist sich so-
mit als vergleichsweise hoch (BACKHAUS et al., 2016, S. 240 f.; BORTZ & SCHUS-
TER, 2010, S. 487 ff .). Eine Zuordnung der Lehrkräft e nach Maßgabe der Diskrimi-
nanzfunktion, bei der die beobachtete bzw. tatsächliche Gruppenzuteilung gegen die 

97 Wilkins-Lambda stellt ein inverses Gütemaß dar, das für einen Wert nahe null auf eine gute 
Trennfähigkeit der Diskriminanzfunktion hinweist.



   234  

geschätzte bzw. vorhergesagte Gruppenzuteilung abgetragen wird, zeigt, dass insge-
samt 100% der Lehrkräft e der Jahrgangsstufe 2 richtig klassifi ziert werden konnten. 
Dies spricht erneut für eine sehr gute Trennung durch die Fragebogenitems.

Das Gütemaß der Clusterlösung für die Jahrgangsstufe 3 kann Tabelle 13 ent-
nommen werden. Die drei Diskriminanzfunktionen weisen erneut alle einen Eigen-
wert > 1 auf. Der Anteil der nicht erklärten Streuung an der Gesamtstreuung beträgt 
weniger als 1%, was auf ein kumuliertes residuelles Wilks-Lambda von 0.006 schlie-
ßen lässt. Darüber hinaus zeigen die Ergebnisse der Diskriminanzanalyse für alle 
vier Clusterlösungen hochsignifi kante Wilks-Lambda-Werte. Der Prozentsatz korrekt 
klassifi zierter Lehrkräft e liegt auch in der Jahrgangsstufe 3 bei 100%.

 Tabelle 13:  Prüfung der Clustergüte (Jahrgangsstufe 3) mittels Diskriminanzanalyse (Eigenwerte, 
Wilks-Lambda)

Fkt. Eigen-
wert

% der 
Varianz

Kumu-
lierte %

Kanonische 
Korrelation

Test der 
Fkt.

Wilks-
Lambda

Chi-
Quadrat

df Sign.

1 23.955 88.4 88.4 .980 1 bis 3 .006 186.519 39 < .001

2 1.675 6.2 94.5 .791 2 bis 3 .151 69.095 24 < .001

3 1.482 5.5 100.0 .773 3 .403 31.177 11 < .001

Mithilfe der durchgeführten hierarchischen Clusteranalyse und unter Berücksich-
tigung der Ergebnisse der Diskriminanzanalyse konnten – wie bereits erwähnt – 
sowohl für die Erarbeitung im 2. als auch im 3.  Schuljahr vier verschiedene Lehr-
kraft -Profi le identifi ziert bzw. Lehrkraft -Gruppen klassifi ziert werden, die sich im 
Hinblick auf die Vorgehensweisen bei der Erarbeitung des kleinen Einmaleins mehr 
oder weniger deutlich voneinander unterscheiden. Im Folgenden werden die explo-
rierten Ergebnisse präsentiert.

In erster Linie aus Gründen der Veranschaulichung und zur besseren Orientie-
rung in den folgenden Ausführungen werden die verschiedenen Cluster mit inhalt-
lichen Bezeichnungen versehen. Anhand eines Profi lverlaufs und den durchschnittli-
chen Mittelwerten der einzelnen relevanten Merkmalsausprägungen je Cluster (siehe 
Abbildung 25 und Abbildung 26) sollen die je vier verschiedenen Lehrkraft typen der 
Jahrgangstufe 2 und 3 charakterisiert werden.

Ergebnisse der Lehrkräft e der Jahrgangsstufe 1 oder 2
Die erste Lehrkraft -Gruppe (Cluster 1) setzt sich aus acht Lehrkräft en zusammen 
und kann als lehrplankonform mit Fokus auf aktiv-entdeckendes Lernen charakteri-
siert werden. Im Profi lverlauf dieser Gruppe sowie anhand der aufgeführten Mittel-
werte der entsprechenden Items (siehe Abbildung 25) kann ein hoher und vor allem 
geeigneter Arbeitsmitteleinsatz als charakteristisches Merkmal dieser ersten Gruppe 
identifi ziert werden. Lehrkräft e kennen das Potential ihrer im Unterricht eingesetz-
ten Arbeitsmittel, setzen diese häufi g und vor allem angemessen ein und ermögli-
chen ihren Schülerinnen und Schülern mithilfe geeigneter Arbeitsmitteln das gezielte 
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Entdecken von verschiedenen Lösungswegen. Zentraler Bestandteil des Unterrichts 
ist die Erarbeitung und die Entdeckung von verschiedenen Rechenstrategien. Mit 
einem Mittelwert von 3.87 (SD  =  0.35) erzielt das lehrplankonforme Cluster unter 
allen Gruppen die höchste Ausprägung bei der konkreten Nennung von Herange-
hensweisen, was für die Kenntnis der zentralen Rechenstrategien und für eine lehr-
plankonforme Umsetzung der Erarbeitung des Einmaleins spricht. Ebenfalls in weit-
gehendem Konsens mit dem bayerischen Lehrplan, der nur die Automatisierung der 
Kernaufgaben im 2. Schuljahr als verpfl ichtend vorschreibt (siehe Abschnitt 2.5.2), 
nimmt das Auswendiglernen in der Jahrgangsstufe 2 zunächst noch eine eher unter-
geordnete Rolle ein. Einen ausgesprochen hohen Stellenwert wird in dieser Lehr-
kraft -Gruppe dem aktiv-entdeckenden Unterricht zuteil, der es den Kindern in ange-
messenem Ausmaß gestattet durch das Finden eigener Methoden Erfahrungen und 
Erkenntnisse zu sammeln.

Eine weitere Gruppe, bestehend aus zwölf Lehrkräft en (Cluster 2), lässt sich mit 
lehrplankonform ohne Arbeitsmitteleinsatz bezeichnen. Auch im Unterricht dieser 
Gruppe spielt das Erarbeiten und Entdecken verschiedener Rechenstrategien eine 
entscheidende Rolle, was sich vor allem im Antwortverhalten der konkret zu benen-
nenden Herangehensweisen zur Lösung von Einmaleinssätzen zeigt. Die Merkmals-
ausprägung fällt dabei allerdings nicht ganz so deutlich aus, wie dies im Cluster 1 
der Fall war. Der Hauptunterschied zur erstgenannten Gruppe liegt, wie die inhalt-
liche Bezeichnung des Clusters bereits vermittelt, im geringen Arbeitsmitteleinsatz. 
Trotz Kenntnis verschiedener Arbeitsmittel und geeigneter Einsatzmöglichkeiten 
werden Arbeitsmittel in dieser Gruppe nach dem Aufb au des Operationsverständnis-
ses off ensichtlich nur selten eingesetzt (M = 1.42, SD = 0.52). Das Auswendiglernen 
wird hingegen in der Unterrichtspraxis intensiver als in Cluster 1 verfolgt. Eine mög-
liche Interpretation für die im Vergleich zur Gesamtstichprobe hohe Ausprägung auf 
diesem Item könnte darauf zurückgeführt werden, dass sich die Lehrkräft e eventuell 
vor allem auf das Auswendiglernen der Kernaufgaben beziehen. Auf einen aktiv-ent-
deckenden Unterricht wird in dieser Lehrkraft -Gruppe ebenfalls Wert gelegt (siehe 
Abbildung 25).

Als bewusst traditionell kann die dritte Gruppe (Cluster 3) tituliert werden, die 
sich aus zwölf Lehrkräft en zusammensetzt (siehe Abbildung 25). Vereinzelte Re-
chenstrategien werden in der Unterrichtspraxis dieser Lehrkräft e zwar thematisiert, 
aber nicht in so großer Vielfalt, wie dies in den bereits beschriebenen Gruppen der 
Fall zu sein scheint. Einen vergleichsweise großen Stellenwert nimmt die Automati-
sierung von Einmaleinsaufgaben ein (M  =  3.17, SD  =  0.58). Der Unterricht zeich-
net sich nicht durch das aktive Entdecken von Seiten der Kinder aus, sondern er-
folgt eher lehrergelenkt: Im Hinblick auf das Item Finden eigener Methoden weist 
das Cluster 3 die geringste Ausprägung aller Gruppen (M  =  2.58, SD  =  0.67) auf. 
Lehrkräft e betonen mithilfe von Arbeitsmitteln verschiedene Lösungswege aufzu-
zeigen, das Potential von Arbeitsmitteln scheint ihnen dabei aber nicht bewusst zu 
sein – sowohl im Hinblick auf das Hunderterfeld als auch auf die Einmaleinstafel ist 
die Mehrzahl der Lehrkräft e dieses Clusters nicht in der Lage, geeignete bzw. spe-
zifi sche Einsatzmöglichkeiten aufzuzeigen. Darüber hinaus scheint ihnen kein ge-
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
(N = 8) (N = 12) (N = 12) (N = 11)
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eignetes Arbeitsmittel zur Entdeckung verschiedener Lösungswege bekannt zu sein 
(M = 1.58, SD = 1.08). 

Die vierte und letzte klassifi zierte Gruppe (Cluster 4) besteht aus elf Lehrkräft en. 
Für diese Gruppe von Lehrkräft en hat sich die Bezeichnung widersprüchlich als pas-
send herauskristallisiert. Sie scheint die aktuellen Vorgaben des bayerischen Lehr-
plans sowie die Empfehlungen der fachdidaktischen Literatur verinnerlicht zu ha-
ben, diese in ihrer Unterrichtspraxis aber nicht wie vorgeschrieben bzw. idealerweise 
vorgesehen umzusetzen. Lehrkräft e geben an, den Kindern ihrer Klasse die Mög-
lichkeit zu geben mithilfe von Arbeitsmitteln verschiedene Lösungswege zu entde-
cken, zur Angabe dazu geeigneter Arbeitsmittel sind sie aber nicht oder nur gering-
fügig in der Lage. Ebenfalls betonen sie, verschiedene Rechenstrategien zu erarbeiten 
(höchste Ausprägung aller Gruppen: M = 3.90, SD = 0.35), beschreiben bzw. benen-
nen können sie diese aber nicht konkret. Der Durchschnittswert bei der konkre-
ten Nennung von Rechenstrategien beläuft  sich in dieser Gruppe auf nur M = 2.00 
(SD = 0.76) und fällt somit mit deutlichem Abstand niedriger aus als für die anderen 
drei Lehrkraft -Gruppen. Im Durchschnitt sind die Lehrkräft e dieses Clusters dem-
nach nur in der Lage, maximal eine Rechenstrategie zu beschreiben (siehe Abbil-
dung 25). Aufgrund dieser nachweislichen Widersprüche muss kritisch hinterfragt 
werden, ob Lehrkräft e dieser Gruppe im Unterricht wirklich Rechenstrategien the-
matisieren bzw. Arbeitsmittel geeignet einsetzen (siehe Abbildung 25).

Die vier Items, die laut Diskriminanzanalyse nicht signifi kant zur Diff erenzie-
rung der Cluster beitrugen, bekräft igen tendenziell die gefundene Klassifi zierung: 
Alle Lehrkraft -Gruppen mit Ausnahme des bewusst traditionellen Clusters setzen 
Arbeitsmittel als Veranschaulichungsmittel zu Demonstrationszwecken ein – die be-

A  bbildung 25:  Profi lverläufe der Cluster der Jahrgangsstufe 2 (Mittelwerte und Standard abweichun-
gen).
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wusst traditionelle Gruppe bestätigt mit einer geringen Merkmalsausprägung ihren 
bereits durch die vorherige Analyse ermittelten begrenzten Einsatz von Arbeitsmit-
teln. Das Fragebogenitem Man sollte von Kindern verlangen, Aufgaben so zu lösen, 
wie es im Unterricht gelehrt wurde, bestärkt die bereits prognostizierten Einstellun-
gen der Lehrkräft e zum Lehren und Lernen im Allgemeinen. Drei von vier Clustern 
bestätigen darüber hinaus, dass Kinder zur Lösung von noch unbekannten Aufgaben 
auf Rechenstrategien zurückgreifen. Eine hohe Zustimmung konnte in der Gruppe 
der Widersprüchlichen (M = 3.27, SD = 0.79) ermittelt werden, die als bewusst tra-
ditionell charakterisierte Personengruppe weist die geringste Merkmalsausprägung 
auf. Mit Durchschnittswerten von M = 3.00 (SD = 0.74) und M = 3.25 (SD = 0.46) 
bestätigen die beiden übrigen Cluster (Cluster 1 und  2) ihre mutmaßlich lehrplan-
konforme Behandlung des kleinen Einmaleins. Die Lösung von Einmaleinsaufgaben 
durch das Aufsagen der Reihe scheint sich fast über die Gesamtstichprobe hinweg 
nicht als die gängigste Variante zur Lösung von Einmaleinssätzen herauskristallisiert 
zu haben. Bei Mittelwerten in der Höhe von 2.00 (SD = 0.62) und 2.09 (SD = 1.14) 
trifft   das Aufsagen der Reihe nur vereinzelt auf die beiden lehrplankonformen Grup-
pen zu, und ebenso wenig scheint dies für das widersprüchliche Cluster der Fall zu 
sein (M = 1.87, SD = 0.35). Inwiefern Lehrkräft e, die dem widersprüchlichen Clus-
ter angehören, unter Umständen nur angaben, dass ihre Kinder nicht auf das Aufsa-
gen der Reihe zurückgreifen, das Aufsagen der Reihe in der Praxis allerdings durch-
aus zum Einsatz kam, konnte nicht überprüft  werden. Ein erzielter Mittelwert von 
2.75 (SD  =  0.62) der bewusst traditionellen Lehrkräft e lässt darauf schließen, dass 
die Kinder dieser Lehrkräft e auf das Aufsagen der Reihe zurückgreifen.

Ergebnisse der Lehrkräft e der Jahrgangsstufe 3 oder 4
Im Folgenden werden die verschiedenen ermittelten Lehrkraft -Gruppen bzgl. der 
Erarbeitung des kleinen Einmaleins im 3. Schuljahr vorgestellt. Dem ersten Clus-
ter (Cluster 1) lassen sich 15 Lehrkräft e zuordnen, die sich als lehrplankonform mit 
Fokus auf aktiv-entdeckendes Lernen charakterisieren lassen. Ähnlich wie bereits die 
gleichnamige Lehrkraft -Gruppe, die im zweiten Schuljahr identifi ziert werden konn-
te, nimmt in dieser Gruppe von Lehrpersonen der Arbeitsmitteleinsatz einen hohen 
Stellenwert ein. Die Lehrkräft e zeigen für den Einsatz der Einmaleinstafel geeigne-
te Einsatzmöglichkeiten auf,98 geben an mithilfe von Arbeitsmitteln verschiedene Lö-
sungswege zu erarbeiten oder zu entdecken und setzen in diesem Kontext geeigne-
te Arbeitsmittel ein. Im Hinblick auf die Erarbeitung noch unbekannter Aufgaben 
über bereits bekannte Einmaleinssätze erzielt diese Lehrkraft -Gruppe mit einem Mit-
telwert von 3.87 (SD  = 0.67) die höchste Ausprägung unter allen Clustern. Auf das 
Aufsagen der Reihe wird in der Regel nicht zurückgegriff en, um eine noch unbe-

98 In Tabelle 9 ist unter dem Item Erkanntes Potential der Arbeitsmittel die Merkmalsausprä-
gung für den Einsatz des Hunderterfeldes sowie der Einmaleinstafel zusammengefasst ge-
führt. Die Auswertung erfolgte allerdings für jedes Arbeitsmittel separat, so dass auch das er-
kannte Potential für jedes Arbeitsmittel einzeln berichtet werden kann.
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kannte Aufgabe zu lösen.99 Auch das Auswendiglernen der Einmaleinssätze nimmt 
nach Aussage der Lehrkräft e eine eher untergeordnete Rolle ein. Auff allend im Ver-
gleich zu der gleichnamigen Lehrkraft -Gruppe und ihrer Erarbeitung des kleinen 
Einmaleins in der Jahrgangsstufe 2 ist allerdings die enorme Bedeutung, die der Len-
kung in diesem Cluster zuteil wird. Kinder sollen Aufgaben nach den Vorgaben der 
Lehrkräft e lösen, weniger nach ihren einigen Methoden (siehe Abbildung 26).

Als klassisches Beispiel einer Personengruppe, deren Antworttendenzen zu mitt-
leren Urteilen neigen, kann die zweite Lehrkraft -Gruppe (Cluster 2) angesehen wer-
den, die sich aus insgesamt elf Lehrkräft en zusammensetzt. Im Folgenden wird diese 
Gruppe als weitgehend lehrplankonform mit Tendenzen zu mittleren Urteilen tituliert. 
Für die Lehrkräft e dieses Clusters spielt der Arbeitsmitteleinsatz eine eher zu ver-
nachlässigende Rolle – sie führen in der Regel nur unspezifi sche Einsatzmöglichkei-
ten für die Einmaleinstafel und das Hunderterfeld auf und lassen ihre Kinder nicht 
anhand von Arbeitsmitteln Lösungswege entdecken bzw. erarbeiten. Den Aussagen 
der Lehrkräft e nach zu urteilen, werden noch unbekannte Einmaleinsaufgaben aller-
dings über Rechenstrategien erarbeitet, das Aufsagen der Reihe ist als Herangehens-
weise zur Aufgabenlösung ebenfalls gegenwärtig. Als weitgehend lehrplankonform 
kann dieses Cluster trotz des fehlenden Einsatzes von Arbeitsmitteln im Unterricht 
verstanden werden, da dies in Jahrgangsstufe 3 nicht zwingend erforderlich ist. Der 
verpfl ichtende Lehrplaninhalt, Rechenstrategien zum Lösen noch nicht bekannter 
Aufgaben einzusetzen, wird laut Aussagen der Lehrkräft e erfüllt. Das Item bezüglich 
des Stellenwerts von Übungen zum Auswendiglernen sowie die zwei Items zu einem 
lehrergelenkten Unterricht bestärken mit Mittelwerten von 2.64 (SD = 0.87) und 2.45 
(SD = 0.90) bzw. 2.64 (SD = 0.87) die Tendenz zu einem mittleren Antwortverhalten 
(siehe Abbildung 26).

Ein drittes Cluster (Cluster 3), bestehend aus acht Lehrpersonen, kann als mit 
Fokus auf dem Auswendiglernen bezeichnet werden. Im Hinblick auf einen mögli-
chen Arbeitsmitteleinsatz ist kein einheitliches Antwortverhalten zu identifi zieren: 
Wie eine inhaltliche Analyse der Antworten zeigt, ist die Mehrzahl der Lehrkräft e 
nicht in der Lage eine adäquate Einsatzvariante der Einmaleinstafel zu nennen, für 
das Hunderterfeld im Gegensatz dazu schon. Für die Lehrkräft e der Jahrgangsstufe 3 
steht allerdings nicht – wie eventuell zu vermuten aufgrund der hohen Ausprägung 
bezüglich der genannten spezifi schen Einsatzmöglichkeiten des Hunderterfeldes 
– das Erarbeiten und Entdecken verschiedener Lösungswege anhand von Arbeits-
mitteln im Fokus des Unterrichts. Dies scheint daran zu liegen, dass diese Lehr-
kraft -Gruppe generell wenig Fokus auf die Erarbeitung noch unbekannter Einmal-
einsaufgaben über Rechenstrategien legt, wie die geringste Ausprägung auf diesem 
Item im Vergleich zu den anderen drei Clustern verdeutlicht. Auch das Antwort-
verhalten auf das Item Wiederholung von Rechenstrategien bestätigt diese Vermutung 
– ebenso wie für die Erarbeitung von Rechenstrategien berichtet, verzeichnet die 
Gruppe auch in diesem Kontext die minimalste Merkmalsausprägung. Das Aufsa-

99 Eines von vier Items, die laut Diskriminanzanalyse nicht signifi kant zur Diff erenzierung der 
Cluster beitrug.
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gen der Reihe wird allerdings nicht als alternative Herangehensweise zur Lösung von 
Einmaleinsaufgaben angeführt. Mit einem Mittelwert von 3.88 (SD  =  0.67) griff en 
Kinder bereits auf Zusammenhänge und Beziehungen zur Aufgabenlösung zurück, 
wie ein Item, das nicht signifi kant zur Clusterbildung beitrug, aufzeigt. Da diese aber 
dem Antwortverhalten der Lehrkräft e zufolge nicht in der Jahrgangsstufe 3 erarbei-
tet wurden, muss von einer Erarbeitung in der Jahrgangsstufe 2 ausgegangen werden. 
Die beschriebene Lehrkraft -Gruppe lässt in der Jahrgangsstufe 3 dem Auswendigler-
nen die zentrale Bedeutung zukommen (M = 3.25, SD = 0.65). Eine eindeutige Inter-
pretation dieses Clusters ist an dieser Stelle nicht möglich. Deutlich zu erkennen ist 
allerdings, dass der Unterricht eher lehrergelenkt erfolgt (siehe Abbildung 26).

Die anhand der Clusteranalyse klassifi zierte vierte Lehrkraft -Gruppe (Cluster 4) 
setzt sich aus zwölf Lehrpersonen zusammen, die im Hinblick auf den Arbeitsmittel-
einsatz ein widersprüchliches Antwortverhalten aufweisen. Aus diesem Grund wird 
diese Lehrkraft -Gruppe, in Anlehnung an das 4. Cluster der Lehrkräft e im 2. Schul-
jahr, als das widersprüchliche Cluster bezeichnet. Diese Lehrkraft -Gruppe kann aus-
schließlich für die Einmaleinstafel eine spezifi sche Einsatzmöglichkeit anführen, im 
Hinblick auf die Entdeckung und Erarbeitung unterschiedlicher Lösungswege sind 
die Lehrkräft e dieses Clusters nicht imstande ein adäquates Arbeitsmittel zu nennen. 
Nach Aussage der Lehrkräft e wird aber mit einem Mittelwert von 3.00 (SD  =  0.73) 
auf einer vierstufi gen Ratingskala der Entdeckung und Erarbeitung von verschiede-
nen Lösungswegen zugestimmt, was einen Widerspruch zum Antwortverhalten des 
gerade beschriebenen freien Antwortformates darstellt. Das Cluster zeichnet sich des 
Weiteren wie das letztgenannte Cluster ebenfalls durch einen lehrergelenkten Unter-
richt aus. Zudem werden hohe Merkmalsausprägungen bei der Erarbeitung noch 
unbekannter Einmaleinsaufgaben über Rechenstrategien erzielt, bei der Wiederho-
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Ab bildung 26:  Profi lverläufe der Cluster der Jahrgangsstufe 3 (Mittelwerte und Standardabweichun-
gen).
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lung von Rechenstrategien sowie beim kindlichen Lösen von Aufgaben unter Zuhil-
fenahme von Zusammenhängen und Beziehungen. Zudem aber als erneuter kleiner 
Widerspruch auch im Hinblick auf das Aufsagen der Reihe, das in dieser Lehr-
kraft -Gruppe mit einem Durchschnittswert von 3.00 (SD = 0.66) eine hohe bzw. die 
höchste Ausprägung unter allen Clustern erzielt (siehe Abbildung 26). Da die kon-
krete Nennung von Rechenstrategien in dieser Fragebogenvariante nicht gefordert 
wurde, können eventuell zu vermutende widersprüchliche Aussagen im Hinblick auf 
den Einsatz von Rechenstrategien in dieser Lehrkraft -Gruppe – aber unter Umstän-
den auch in anderen – nicht genauer aufgedeckt werden.

4.4 Zusammenfassende Diskussion

Ein Hauptziel der Vorstudie bestand darin, einen Einblick zu erhalten, ob und in 
welcher Ausprägung Lehrkräft e – wie in den verschiedenen Lehrplänen und in der 
didaktischen Literatur empfohlen – eine verständnisbasierte Erarbeitung des kleinen 
Einmaleins mit Einsicht in Beziehungen und Zusammenhänge in der Unterrichts-
praxis verwirklichen. Mithilfe der Fragebogenstudie sollte zudem eine Antwort auf 
die Frage ermittelt werden, ob sich Gruppen von Lehrkräft en mit unterschiedlichen 
Vorgehensweisen identifi zieren lassen und wie sich diese Gruppen gegebenenfalls 
charakterisieren. Der Fragebogen kommt in der Hauptstudie erneut zum Einsatz, um 
die Anschlussfrage zu klären, ob und inwiefern die verschiedenen Ansätze bei der 
Erarbeitung des kleinen Einmaleins Konsequenzen auf die Entwicklung der mathe-
matischen Kompetenzen der Schülerinnen und Schüler haben. Aus diesem Grund 
muss in diesem Abschnitt auch die besondere Konzeption des Fragebogens aus ge-
schlossenen und freien Antwortformaten im Hinblick auf eine erfolgreiche Realisie-
rung begutachtet werden.

An dieser Stelle muss erneut angemerkt werden, dass die Stichprobe der Vorstu-
die nicht repräsentativ für die Grundgesamtheit ist, sondern ausschließlich explorati-
ven Charakter aufweist. Sie liefert erste Forschungsergebnisse in Bezug auf verschie-
dene Vorgehensweisen der unterrichtlichen Erarbeitung des kleinen Einmaleins von 
Lehrkräft en in Bayern.

Dreiviertel der an der Fragebogenstudie teilnehmenden bayerischen Lehrkräft e 
(die beiden lehrplankonformen Cluster und die widersprüchliche Personengruppe) 
scheinen die amtlichen Vorgaben sowie die didaktischen Empfehlungen bezüglich 
der Erarbeitung des kleinen Einmaleins im 2. Schuljahr verinnerlicht zu haben – bei 
der Umsetzung im Unterricht zeigen sich allerdings davon abweichende Ansätze. Die 
Erkenntnisse dieser Vorstudie bestätigen, dass in der Unterrichtspraxis off ensichtlich 
unterschiedliche Ansätze bei der Erarbeitung des kleinen Einmaleins vorherrschen. 
Dabei werden aber nicht nur, wie nach PADBERG und BENZ (2011) beschrieben, 
zwei idealtypische Vorgehensweisen unterschieden, sondern mehrere Facetten sind 
vorzufi nden: Lehrkräft e, die mithilfe von Kernaufgaben und Einsicht in operative 
Beziehungen noch unbekannte Einmaleinssätze ableiten und demnach lehrplankon-
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form vorgehen (BAYERISCHES STAATSMINISTERIUM FÜR UNTERRICHT UND 
KULTUS, 2000) – jedoch im Stellenwert des Arbeitsmitteleinsatzes im Hinblick auf 
die Erarbeitung und Entdeckung verschiedener Lösungswege sowie dem Aufzeigen 
von Beziehungen und Zusammenhängen voneinander abweichen. Wiederum an-
dere Lehrkräft e folgen einem eher traditionell einzuordnenden Ansatz, bei dem die 
Strategieerarbeitung und -thematisierung eine weniger bedeutende Rolle einzuneh-
men scheint, die Automatisierung von Einmaleinsaufgaben eher im Fokus steht, der 
Unterricht eher lehrergelenkt erfolgt und dem Arbeitsmitteleinsatz eine untergeord-
nete Rolle zuteil wird. Darüber hinaus scheinen einige Lehrkräft e zwar zu wissen, 
was die aktuellen Lehrpläne vorsehen, es sind allerdings berechtigte Zweifel ange-
bracht, ob sie dies auch konsequent umsetzen. Diese Lehrkraft -Gruppe zeichnet sich 
durch einige konträre Aussagen aus, die teilweise im Widerspruch zu den bekannten 
amtlichen Vorgaben stehen.

Den Ergebnissen der Fragebogenstudie zufolge scheint im 2. Schuljahr eine Ein-
teilung der Lehrkräft e in Gruppen bezüglich ihrer Vorgehensweise bei der Erarbei-
tung des kleinen Einmaleins möglich und die Cluster lassen sich inhaltlich gut inter-
pretieren (siehe Abschnitt Ergebnisteil 4.3). Es konnten vier verschiedene Cluster 
ermittelt werden, deren verschiedene Facetten sich sehr diff erenziert herausarbeiten 
ließen. Als zielführend hat sich diesbezüglich mit sehr hoher Wahrscheinlichkeit die 
Kombination aus geschlossenen und freien Antwortformaten herausgestellt. Das Ziel 
mögliche Verfälschungen bzw. ein sozial erwünschtes Antwortverhalten von Seiten der 
Lehrkräft e aufzudecken (siehe Abschnitt 4.2.2), konnte mithilfe der besonderen Fra-
gebogenkonstruktion erreicht werden – die kombinierte freie Aufgabenbeantwortung 
fungierte und überzeugte zugleich als Kontrolle, inwiefern Vorsicht bei der Interpre-
tation der gebundenen Testergebnisse geboten war.

Für die Vorgehensweisen der Lehrkräft e der Jahrgangsstufe 3 kann resümiert 
werden, dass ebenso wie für die Lehrkräft e im 2. Schuljahr verschiedene Vorgehens-
weisen der Erarbeitung des kleinen Einmaleins in der Unterrichtpraxis vorliegen. 
Mithilfe der durchgeführten Clusteranalyse konnten Lehrkräft e identifi ziert wer-
den, deren Erarbeitung als lehrplankonform bezeichnet werden kann, da noch un-
bekannte Einmaleinsaufgaben über Rechenstrategien erarbeitet werden und die Wie-
derholung von Rechenstrategien im Fokus der unterrichtlichen Behandlung steht. 
Eine weitere Gruppe an Lehrpersonen wurde als weitgehend lehrplankonform be-
schrieben und zeichnet sich durch fast ausschließlich mittlere Tendenzen im Ant-
wortverhalten aus. Im Vergleich zu den anderen Clustern wies eine weitere Lehr-
kraft -Gruppe dem Auswendiglernen einen hohen Stellenwert zu. Unklar bleibt 
jedoch, inwiefern die Lehrkraft -Gruppe von einer Grundlegung der Rechenstrategien 
ausschließlich in der Jahrgangsstufe 2 ausgeht – was nicht direkt konform mit den 
amtlichen Vorgaben ist und somit keine lehrplankonforme Umsetzung im eigentli-
chen Sinne darstellt. Die vierte und zugleich letzte ermittelte Gruppe hebt sich von 
den anderen Clustern durch ein widersprüchliches Antwortverhalten ab. Ähnlich 
wie in dem ermittelten widersprüchlichen Cluster der Jahrgangsstufe 2 scheint die 
Lehrkraft -Gruppe über das Wissen, was in aktuellen Lehrplänen verbindlich gefor-
dert wird, zu verfügen. Zweifel bestehen aber erneut, inwiefern die Umsetzung die-
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sen amtlichen Vorgaben entspricht. Die Widersprüchlichkeit ist aber in diesem Clus-
ter nicht auf eine so eindeutige und anschauliche Art und Weise zu ermitteln, wie 
dies für den Fragebogen bzw. die Merkmalsausprägungen der Jahrgangstufe 2 mög-
lich war.

Positiv zu bewerten ist die Konstruktion zweier unterschiedlicher Fragebogen-
varianten für die Jahrgangsstufe 2 und 3 aus dem folgenden Grund: Zunächst er-
möglicht sie die Berücksichtigung unterschiedlicher Schwerpunktsetzungen der Er-
arbeitungen des kleinen Einmaleins je Jahrgangsstufe. Vor allem im Teilbereich 
Vorgehensweisen der Erarbeitung können Lehrkräft en somit angepasst an die jeweilige 
Jahrgangsstufe spezifi sche Fragen gestellt werden. Items wie beispielsweise die Er-
arbeitung über Rechenstrategien bzw. die Wiederholung von Rechenstrategien in der 
Fragebogenvariante für das 3. Schuljahr erhielten basierend auf dieser theoretischen 
Überlegung ihre Berechtigung (siehe Abschnitt 2.5.2; BAYERISCHES STAATSMINI-
STERIUM FÜR UNTERRICHT UND KULTUS, 2000). Die Tatsache, dass eine die-
ser Variablen (Erarbeitung über Rechenstrategien) auch signifi kant zur Trennung der 
einzelnen Cluster beiträgt, bestärkt diese Ansicht. Darüber hinaus spricht auch die 
Prüfung der Clustergüte für die Fragebogenvariante der Jahrgangsstufe 3 für eine 
sehr gute Trennung durch die eingesetzten Fragebogenitems.

Als nicht optimal hat sich allerdings der Verzicht auf die Kombination ge-
schlossener und freier Antwortformate im Teilbereich Vorgehensweisen der Er-
arbeitung der Fragebogenvariante für die Jahrgangsstufe 3 herausgestellt. Während 
in der Jahrgangsstufe 2 in erster Linie durch die Forderung der konkreten Nen-
nung von Rechenstrategien einige Merkmalsausprägungen geschlossener Items rela-
tiviert betrachtet werden konnten bzw. mussten, konnte auf diese Option zur kor-
rekten Interpretation aller Items im Zusammenhang mit Rechenstrategien für die 
Jahrgangsstufe 3 leider nicht zurückgegriff en werden. Die inhaltliche Clusterinter-
pretation erwies sich aufgrund fehlender Zusatzinformationen deshalb als deutlich 
schwieriger für die Jahrgangsstufe 3. Zugleich verdeutlicht das Fehlen der kombi-
nierten Antwortformate ihre bedeutende Relevanz für ähnlich geartete Fragebogen-
konstruktionen.

Wie die Erkenntnisse dieser Vorstudie in das Studiendesign der Hauptstudie ein-
fl ießen bzw. welche Rolle dem Fragebogen in der Hauptstudie zuteil wird, werden 
die nachfolgenden Ausführungen des 5. Kapitels im Detail aufzeigen.



5. Hauptstudie – Herangehensweisen beim Lösen 
von Einmaleinsaufgaben

„Doch Forschung strebt und ringt, ermüdend nie, 
Nach dem Gesetz, dem Grund Warum und Wie.“

(JOHANN WOLFGANG VON GOETHE, 1749–1832)

In den theoretischen Kapiteln 1 bis 3 dieser Arbeit wurde bereits des Öft eren dar-
auf verwiesen, dass es nicht nur die eine Art der Erarbeitung des kleinen Einmal-
eins gibt. Ist man sich in der Fachdidaktik in der Kernaussage, einer auf Einsicht 
basierenden Erarbeitung unbekannter Einmaleinssätze anhand von Rechenstrate-
gien noch einig (siehe Abschnitt 2.3.1), so kann die Unterrichtsrealität vermutlich 
durch unterschiedliche Schwerpunktsetzungen geprägt sein. Bisher wurde in kaum 
einer empirischen Studie erhoben, ob und in welcher Ausprägung das in den deut-
schen Lehr- und Bildungsplänen weitgehend konsequent geforderte Vorgehen in 
der Unterrichtspraxis in Deutschland tatsächlich vorwiegend umgesetzt wird. Die 
im Kapitel 4 dieser Arbeit vorgestellte Vorstudie konnte erste Erkenntnisse in Be-
zug auf Vorgehensweisen bei der unterrichtlichen Erarbeitung des kleinen Einmal-
eins in Bayern ermitteln. Die Forschungsergebnisse zeigen, dass in der Unterrichts-
praxis verschiedene Ansätze der Erarbeitung des kleinen Einmaleins vorherrschen: 
Neben lehrplankonformen Ansätzen sind auch, wie Erfahrungen aus der Praxis be-
reits vermuten haben lassen und wie dies traditionell durchaus üblich war (siehe
Abschnitt 2.5.1), Vorgehensweisen mit einem großen Fokus auf dem Auswendigler-
nen von Reihen zu erkennen. Die Vorzüge einer verständnisbasierten Erarbeitung im 
Allgemeinen, aber auch im Hinblick auf das Einmaleins sind bekannt, konnten aller-
dings in diesem Th emengebiet bisher nur an einigen wenigen Studien bestätigt wer-
den (siehe Abschnitt 2.4). Vor allem für den deutschsprachigen Raum wird diesbe-
züglich Forschungsbedarf ersichtlich, kann doch bisher kaum auf Untersuchungen 
zum kleinen Einmaleins verwiesen werden.

Die Hauptstudie EmuS (Einmaleins und Strategieeinsatz) dieses Dissertations-
projektes widmet sich genau dieser Forschungslücke und untersucht anhand einer 
großen Stichprobe, über welche Herangehensweisen Kinder zur Lösung von Einmal-
einsaufgaben verfügen und welche sie zur Lösung von Einmaleinsaufgaben explizit 
einsetzen. Dabei liegt ein Fokus dieses Projektes auf der Frage, ob und inwieweit sich 
verschiedene unterrichtliche Vorgehensweisen der Lehrpersonen in der Strategiever-
wendung und im Lernerfolg der Kinder bemerkbar machen. Die Berücksichtigung 
der unterrichtlichen Vorgehensweise ist dabei aufgrund der Zuordnung von Lehr-
kräft en zu verschiedenen Lehrkraft -Gruppen möglich, die in der Vorstudie durch 
eine Clusteranalyse identifi ziert und charakterisiert werden konnten (siehe Kapi-
tel 4). Da eine in der Fachdidaktik präferierte bzw. amtlich festgelegte Behandlung 
sich aber auch für alle Schülerinnen und Schüler als realisierbar bzw. tragbar erwei-
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sen sollte, besteht ein weiteres Ziel der Hauptstudie darin, diff erenzierte Erkennt-
nisse bezüglich der Strategieverwendung bei leistungsschwachen, durchschnittlichen 
und leistungsstarken Kindern – ebenfalls unter Berücksichtigung der jeweiligen Er-
arbeitung – zu ermitteln. Neben individuellen Strategieinterviews zur Erfassung ver-
schiedener Herangehensweisen an Einmaleinsaufgaben wurden auch Reaktionszeit-
testungen durchgeführt, um Aussagen bzw. Erkenntnisse bezüglich eines schnellen 
Faktenabrufes aus dem Gedächtnis sammeln zu können.

Das Kapitel 5 dieser Arbeit widmet sich zunächst den Forschungsfragen der 
Hauptstudie (Abschnitt 5.1). Im Abschnitt 5.2 wird das Studiendesign der Arbeit 
detailliert beschrieben. Neben dem Ablaufplan der Vor- und Hauptstudie (sie-
he Abschnitt 5.2.1) wird der Auswahlprozess der an der Hauptstudie teilnehmen-
den Lehrkräft e (siehe Abschnitt 5.2.2) basierend auf den Ergebnissen der Vorstudie 
präsentiert. Die Erhebungsinstrumente für die Gewinnung einer geschichteten Zu-
fallsstichprobe (siehe  Abschnitt 5.2.3) sowie die detaillierte Beschreibung der Stich-
proben der an der Haupterhebung teilnehmenden Lehrkräft e und Kinder (siehe 
Abschnitt 5.2.4) werden im Anschluss aufgeführt. Abschnitt 5.3 widmet sich den Er-
hebungsinstrumenten der Hauptstudie, der Reaktionszeittestung und dem Strategie-
interview. Die Kodierung und die statistischen Methoden werden im Abschnitt 5.4 
beschrieben. 

Zunächst werden die Forschungsfragen der Hauptstudie vorgestellt. 

5.1 Forschungsfragen

Wie dem Th eorieteil dieser Arbeit zu entnehmen (siehe Kapitel 1 bis 3) sind die 
Vorzüge einer verständnisbasierten Erarbeitung des kleinen Einmaleins bekannt, 
die Wirksamkeit dieser Art der Erarbeitung konnte allerdings erst an einigen weni-
gen empirischen Studien bestätigt werden. Ein kennzeichnendes Merkmal einer ver-
ständnisbasierten Behandlung des kleinen Einmaleins kann die Lösung von Einmal-
einsaufgaben auf Basis von bereits automatisierten Kernaufgaben und unter Einsatz 
von Rechenstrategien darstellen.

Im Zentrum dieser Arbeit steht demnach folgende Leitfrage:
• Zeigen sich im Strategieeinsatz bei Kindern nach der Erarbeitung des kleinen 

Einmaleins Herangehensweisen, die basierend auf Einsicht in operative Bezie-
hungen zur Aufgabenlösung führen?

Wie im Abschnitt 3.2 ausgeführt, konnten nationale Forschungsergebnisse sowie 
Forschungsergebnisse aus dem englischsprachigen Raum vereinzelte Indizien für 
einen Einsatz von Rechenstrategien liefern. Im Zusammenhang mit der Leitfrage 
stellen sich die folgenden ausdiff erenzierten Folgefragen:
• Welche konkreten Herangehensweisen setzen Kinder zur Lösung von Einmal-

einsaufgaben ein?



245    

• Wie häufi g greifen Kinder auf diese Herangehensweisen zur Lösung von Aufga-
ben zum kleinen Einmaleins zurück? Wie häufi g wird zur Aufgabenlösung auf 
den Faktenabruf, den Einsatz von Rechenstrategien oder weniger tragfähigen He-
rangehensweisen zurückgegriff en?

• Über welches Repertoire an verschiedenen Rechenstrategien verfügen Kinder?
• Wie fehlerfrei erfolgt der Einsatz der ermittelten Herangehensweisen und welche 

Fehlertypen lassen sich unterscheiden?

Die theoretischen Ausführungen des Abschnittes 3.2.2 zeigten detailliert auf, dass es 
bisher nicht präzise und insbesondere vertretbar gelungen ist, den Einsatz einer Stra-
tegie von dem Abruf einer Aufgabe aus dem Gedächtnis zu unterscheiden. Eine kor-
rekte und zudem schnelle Aufgabenlösung lässt genauso wenig einen Rückschluss 
hinsichtlich des Faktenabrufes zu, wie beispielsweise kindliche Äußerungen, die 
einen Faktenabruf des Kindes vermuten lassen. Ein weiteres Ziel dieser Arbeit be-
steht demnach darin, eine alternative Methode zur Ermittlung schneller Abrufe von 
Einmaleinsaufgaben zu entwickeln, die Aussagen bezüglich des schnellen Faktenab-
rufes aus dem Gedächtnis ermöglicht. In diesem Kontext muss zunächst die Beant-
wortung der folgenden Frage angestrebt werden:
• Woran lässt sich ein schneller Faktenabruf aus dem Gedächtnis charakterisieren 

bzw. wie lässt sich die Grenze zwischen Faktenabruf und anderer Herangehens-
weisen charakterisieren?

Die Ausführungen des Abschnittes 3.3 haben für die Rechenoperation der Multi-
plikation zudem Forschungsbedarf off enbart bezüglich fl exibler Rechenkompeten-
zen. Der Aufb au bzw. die Förderung fl exiblen Rechnens hat in den letzten Jahren 
zunehmend an Stellenwert gewonnen – auch für die Rechenoperation der Multi-
plikation ist die enorme Bedeutung fl exibler Rechenkompetenzen unbestritten (sie-
he Abschnitt 3.3.1). Aktuelle Lehr- und Bildungspläne haben die Förderung fl exib-
len Rechnens auch verbindlich für das kleine Einmaleins formuliert (siehe Abschnitt 
2.5.2). Inwieweit der Aufb au bzw. die Förderung allerdings in der Unterrichtpraxis 
Umsetzung erfahren hat bzw. erfährt, ist bisher weitgehend ungeklärt. Die Leitfrage 
wird somit um eine weitere off ene Folgefrage ergänzt:
• Inwiefern erfolgt die Strategiewahl bei Einmaleinsaufgaben fl exibel, adäquat oder 

transferierbar?

Die Strategieverwendung von Kindern nach der Erarbeitung des kleinen Einmaleins 
soll allerdings auch diff erenziert unter Berücksichtigung möglicher Einfl ussfaktoren 
untersucht werden. Da die Strategiewahl entscheidend von der unterrichtlichen Vor-
gehensweise einer Lehrkraft  und der individuellen Leistungsfähigkeit des Kindes be-
einfl usst zu sein scheint (siehe Abschnitte 3.3.3 und 3.3.4) und Erkenntnisse somit 
lediglich basierend auf einer Beachtung der genannten Einfl ussfaktoren aussagekräf-
tig erscheinen, werden diese in der Hauptstudie einer genaueren Betrachtung unter-
zogen.
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In dieser Arbeit wird deshalb auch den folgenden zwei Leifragen nachgegangen:
• Inwieweit zeigen sich Unterschiede in der Strategieverwendung und im Lern-

erfolg bei Aufgaben zum kleinen Einmaleins bei Kindern mit unterschiedlichem 
Leistungsvermögen (leistungsstark, durchschnittlich und leistungsschwach)?

• Machen sich verschiedene unterrichtliche Vorgehensweisen der Lehrpersonen in 
der Strategieverwendung und im Lernerfolg der Kinder bei Aufgaben zum klei-
nen Einmaleins bemerkbar? Wenn ja, wie?

Neben der getrennten Analyse der beiden Einfl ussfaktoren Unterricht und Individu-
um soll auch die Interaktion der beiden Einfl ussfaktoren untersucht werden.

5.2 Studiendesign

Der folgende Abschnitt 5.2 widmet sich dem Studiendesign der Hauptstudie. In 
einem ersten Schritt (Abschnitt 5.2.1) wird ein Ablaufplan zur besseren Übersicht 
über den Verlauf der Vor- und Hauptstudie präsentiert. Im Anschluss wird der Aus-
wahlprozess der für die Untersuchung gewonnenen Lehrkräft e basierend auf den 
Forschungsergebnissen der Vorstudie vorgestellt (Abschnitt 5.2.2). Erhebungsinst-
rumente und die entsprechenden Selektionskriterien für die an der Interviewstudie 
sowie der Reaktionszeittestung teilnehmenden Schülerinnen und Schüler der ausge-
wählten Lehrkräft e sollen im Abschnitt 5.2.3 präsentiert werden. Eine detaillierte Be-
schreibung der an der Haupterhebung teilnehmenden Lehrkräft e und Kinder wird 
im Abschnitt 5.2.4 gegeben.

5.2.1 Ablaufplan der Vor- und Hauptstudie

Wie bereits im Abschnitt 5.1 thematisiert, besteht ein Ziel der Hauptstudie darin, 
die Strategieverwendung bei Aufgaben des kleinen Einmaleins nach der unterricht-
lichen Erarbeitung zu untersuchen. Zentrale Bedingungsfaktoren scheinen in die-
sem Kontext die unterrichtliche Vorgehensweise der Lehrkräft e sowie das individu-
elle Leistungsvermögen der Kinder zu sein (siehe Abschnitt 3.3.3). Um Erkenntnisse 
hinsichtlich der unterrichtlichen Vorgehensweise in der Praxis zu erlangen und die 
explizite unterrichtliche Erarbeitung einer Lehrperson in der Hauptstudie berück-
sichtigen zu können, wurden anhand der Vorstudie (siehe Kapitel 4) verschiedene 
Gruppen von Lehrpersonen identifi ziert. Den dafür konzipierten Fragebogen beant-
worteten N  =  95 bayerische Lehrkräft e gegen Ende des Jahres 2012 (siehe Tabelle 
14). Die ermittelten Gruppen stellen die Grundlage der Prognose der Gruppenzuge-
hörigkeiten der Lehrkräft e der Hauptstudie dar.
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Tabelle 14:  Ablaufplan der Vor- und Hauptstudie

Ablaufplan der Studie
Vo

rs
tu

di
e

Ende 2012
Explorative Fragebogenstudie

Æ Identifi zierung verschiedener Lehrkraft -Gruppen
N = 95
Lehrpersonen

H
au

pt
stu

di
e

Juli – 
September 2014

Fragebogenstudie
Æ Auswahl von N = 24 Lehrkraft -Tandems

N = 40
Lehrkraft -Tandems

November – 
Dezember 2014

Vortestungen N = 486
Schülerinnen und 
SchülerHRT 1–4 CFT R-1

Januar – 
Februar 2015

Haupterhebung N = 144
Schülerinnen und 
SchülerReaktionszeittestung Strategieinterview

Im Zeitraum von Juli bis September 2014 sicherten insgesamt 40 Lehrkräft e an 
Grundschulen im Stadtgebiet München ihre Teilnahme an der Hauptstudie im 
Schuljahr 2014/2015 zu. Wie anhand der Forschungsfragen bereits dargelegt (sie-
he Abschnitt 5.1) werden in dieser Arbeit nicht lediglich Erkenntnisse hinsichtlich 
der Strategiewahl angestrebt, auch die Abhängigkeit der Strategiewahl von der unter-
richtlichen Vorgehensweise soll einer Analyse unterzogen werden. Dies wiederum 
setzt die Erfassung der unterrichtlichen Erarbeitung des kleinen Einmaleins voraus. 
Da die Hauptstudie für Mitte des 3. Schuljahres angesetzt wurde, handelt es sich bei 
den genannten 40 Lehrkräft en um Lehrpersonen, die die Erarbeitung des kleinen 
Einmaleins – aufb auend auf der Erarbeitung einer Kollegin oder eines Kollegen im 
2. Schuljahr – in Jahrgangsstufe 3 fortführten und die Klasse während der Studie be-
gleiteten. Da die Erarbeitung des kleinen Einmaleins in Bayern, wie bereits erwähnt, 
aber nicht nur in Jahrgangsstufe 3 erfolgt, sondern bereits im 2. Schuljahr beginnt, 
ist auch die Vorgehensweise der Lehrkräft e in dieser Jahrgangsstufe von besonderem 
Interesse. Um aussagekräft ige Rückmeldungen zur gesamten unterrichtlichen Er-
arbeitung des kleinen Einmaleins zu erhalten, war mit der Zusicherung der Teilnah-
me der unterrichtenden Lehrkraft  im 3. Schuljahr auch die Teilnahme der im vorhe-
rigen Schuljahr lehrenden Zweitklasslehrkraft  an der Fragebogenstudie verbunden.

Von den 40 Lehrkraft -Tandems wurden letztlich 24 geeignete Tandems für die 
Hauptstudie ausgewählt. Wie der Auswahlprozess der teilnehmenden Lehrkräft e ba-
sierend auf der Vorstudie erfolgte, wird im folgenden Abschnitt 5.2.2 detailliert er-
läutert. Um die Strategiewahl auch hinsichtlich des unterschiedlichen Leistungsver-
mögens der Individuen untersuchen und verschiedene Leistungsgruppen bilden zu 
können, wurden Vortestungen mit allen Kindern der 24 Lehrkraft -Tandems durchge-
führt. Insgesamt N = 486 Drittklässler wurden im Hinblick auf ihre mathematischen 
Kompetenzen (HRT 1–4) sowie allgemeine und spezifi sche intellektuelle Fähigkei-
ten (CFT 1-R) getestet. Die Mathematiktestung wurde durchgeführt, um Schülerin-
nen und Schüler mit unterschiedlichem Leistungsvermögen für die Haupterhebung 
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auswählen zu können. Die Testung der intellektuellen Fähigkeiten wurde als weitere 
Kontrollvariable sowohl für die Auswahl der Stichprobe der Haupterhebung als auch 
als Kontrollvariable für die Haupterhebungen selbst herangezogen.

Mittels einer Zufallsstichprobe wurden basierend auf den Ergebnissen der Vortes-
tungen im Mathematiktest N = 144 Kinder ausgewählt (siehe Abschnitt 5.2.4). Zwi-
schen Januar und Februar 2015 nahmen diese im Zuge der Haupterhebung an einem 
Strategieinterview und einer Reaktionszeittestung teil.

5.2.2 Auswahlprozess der teilnehmenden Lehrkräfte auf Basis der Vorstudie

Insgesamt wurden 80 Lehrkräft e bzw. 40 Lehrkraft -Tandems aus Lehrpersonen der 
Jahrgangsstufe 2 und  3 im Hinblick auf ihre Vorgehensweise bei der Behandlung 
mithilfe der bereits im Kapitel 4 vorgestellten Fragebögen untersucht. Ähnlich wie in 
der Vorstudie kamen zwei unterschiedliche Fragebogenvarianten für Jahrgangsstufe 2 
und 3 zum Einsatz. Während der Fragebogen zur Erarbeitung des Einmaleins im 2. 
Schuljahr in identischer Form wie in der Vorstudie eingesetzt wurde, fand der Fra-
gebogen der Jahrgangstufe 3 in etwas abgeänderter Form im Vergleich zur Vorstudie 
Anwendung. Dies ist dem Umstand geschuldet, dass die inhaltliche Interpretation 
der Lehrkraft -Cluster der Jahrgangsstufe 3 durch die ursprüngliche Fragebogen-
konstruktion nicht eindeutig bzw. nicht zufriedenstellend gelang (siehe Abschnitte 
4.3 und 4.4). Das Grundgerüst des Fragebogens der Erarbeitung in Jahrgangsstufe 3 
wurde aus den relevanten Items der Fragebogenvariante des 2. Schuljahres gebildet, 
ergänzt um die jahrgangsspezifi schen Items der Jahrgangsstufe 3.

Für die fi nale Auswahl von Lehrkräft en mussten mithilfe der Fragebogenstu-
die Lehrkraft -Tandems ermittelt werden, die nicht nur in ihrer unterrichtlichen Er-
arbeitung weitestgehend übereinstimmen, sondern auch einer der beiden idealtypisch 
gegensätzlichen Erarbeitungsweisen zuzuordnen waren (lehrplankonform – bewusst 
traditionell). Mithilfe der bereits im Kapitel 4 beschriebenen Diskriminanzanalyse 
erfolgte die Klassifi zierung der N  =  80 an der Untersuchung teilnehmenden Lehr-
kräft e in die anhand der Vorstudie ermittelten vier Lehrkraft -Gruppen.100 Die Dis-
kriminanzanalyse kann demnach nicht nur zur Analyse von Gruppenunterschieden 
– wie bereits an der Vorstudie veranschaulicht – zum Einsatz kommen, sondern sie 
eignet sich auch zur Prognose von Gruppenzugehörigkeiten noch nicht klassifi zier-
ter Elemente. Für die Klassifi zierung von neuen Elementen bzw. Lehrpersonen wird 
in dieser Arbeit auf das Distanzkonzept zurückgegriff en, das eine noch nicht klassi-
fi zierte Lehrperson in dasjenige Cluster einordnet, zu dessen Gruppenmittel es die 
geringste Distanz aufweist. Bei der Gruppeneinteilung anhand des Distanzkonzep-
tes werden üblicherweise die quadrierten euklidischen Distanzen verwendet (BACK-
HAUS et al., 2016, S.  248 f.). Die Diskriminanzanalyse kann als „statistischer Plau-
sibilitätstest der erzielten Clusterlösung“ (SCHENDERA, 2010, S.  299) verstanden 

100 Die Gruppenzugehörigkeit der Lehrkräft e aus Jahrgangsstufe 2 und 3 wurde auf Basis der in 
der Vorstudie ermittelten vier Cluster für das 2. Schuljahr prognostiziert.
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werden. Sie ermöglicht aufgrund der Klassifi zierungsergebnisse Aussagen über die 
tatsächliche Gruppenzugehörigkeit sowie die vorhergesagte Gruppenzugehörigkeit. 
Mittels des Vergleichs der vorhergesagten mit der tatsächlichen Gruppenzugehörig-
keit erfolgt die Beurteilung der Klassifi kation. Der Prozentsatz richtig klassifi zier-
ter Elemente stellt die Maßzahl für die Klassifi zierungsgüte dar (BACKHAUS et al., 
2016, S. 231 ff .). Ein Vergleich der beiden Zuordnungen in dieser Arbeit ergibt, dass 
alle Elemente richtig zugeordnet wurden bzw. 100% der ursprünglich gruppierten 
Fälle korrekt klassifi ziert wurden. Die erzielte, hohe Klassifi zierungsgüte deutet da-
rauf hin, dass sich die ermittelten Gruppen gut durch die Ausgangsvariablen erklä-
ren lassen.

Die Klassifi zierung der Lehrpersonen ergab dabei für die beiden Teilstichproben 
der Jahrgangstufe 2 und 3 folgende Verteilung (siehe Tabelle 15).101

 Tabelle 15:  Verteilung der 40 Lehrpersonen je Jahrgangsstufe auf die vier identifi zierten Lehrkraft-Grup-
pen anhand der Diskriminanzanalyse

Lehrkraft -Cluster Lehrkräft e
Jahrgangsstufe 2

Lehrkräft e
Jahrgangsstufe 3

Lehrplankonform
(aktiv-entdeckendes Lernen) N = 14 N = 5

Lehrplankonform
(ohne Arbeitsmitteleinsatz) N = 5 N = 15

Bewusst traditionell N = 12 N = 12

Widersprüchlich N = 9 N = 8

Für die Hauptstudie war eine Gleichverteilung zwischen den Lehrkraft -Tandems 
pro Erarbeitungsweise vorgesehen. Da es aufgrund der Verteilungen der Lehrkräf-
te auf die verschiedenen Cluster (siehe Tabelle 15) nicht möglich war, ausschließ-
lich Tandems aus Lehrpersonen des lehrplankonformen (aktiv-entdeckendes Lernen) 
Clusters bzw. des bewusst traditionellen Clusters zu bilden, wurden Tandems aus bei-
den lehrplankonformen Clustern bzw. aus der bewusst traditionellen und der wider-
sprüchlichen Lehrkraft -Gruppe gebildet. Die lehrplankonformen Lehrkraft -Tandems 
kennzeichnen sich in der Mehrzahl der Fälle durch das aktiv-entdeckende Lernen 
in Jahrgangsstufe 2 aus, während die Lehrpersonen der Jahrgangsstufe 3 vermehrt 
aus der lehrplankonformen Lehrkraft -Gruppe ohne Fokus auf Arbeitsmittel stam-
men. Die gegensätzlichen, bewusst traditionellen Lehrkraft -Tandems setzen sich 
größtenteils aus den Lehrpersonen zusammen, die als bewusst traditionell klassifi -
ziert wurden – vereinzelt ergänzt werden die Tandems durch Lehrpersonen aus dem 

101 Die zusätzlich zu den relevanten Items der Fragebogenvariante des 2. Schuljahres eingesetz-
ten jahrgangsspezifi schen Items der Fragebogenvariante für die Lehrkräft e der Jahrgangsstu-
fe 3 bestärken die ermittelten Lehrkraft -Gruppen für diese Teilstichprobe. Für die beiden 
lehrplankonformen Cluster konnten z. B. deutlich höhere Ausprägungen auf den Items bzgl. 
der Wiederholung von Rechenstrategien sowie der Erarbeitung noch unbekannter Aufgaben 
über Rechenstrategien im Vergleich zu den beiden eher als traditionell einzustufenden Clus-
tern verzeichnet werden.
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widersprüchlichen Cluster. Diese unterrichten ähnlich wie ihre Tandem-Kolleginnen 
bzw. Tandemkollegen das kleine Einmaleins auch bewusst traditionell, mit dem klei-
nen Unterschied, dass sie die aktuellen Vorgaben des bayerischen Lehrplans sowie 
die Empfehlungen der fachdidaktischen Literatur verinnerlicht haben. Tabelle 16 lie-
fert eine detaillierte Übersicht der Zusammensetzungen der Lehrkraft -Tandems. 

 Tabelle 16: Detaillierte Übersicht der Zusammensetzungen der Lehrkraft-Tandems

Jahrgangsstufe 3

Jahrgangsstufe 2
Lehrplankonform
(aktiv-entdeckend)

Lehrplankonform
(ohne Arbeitsmittel)

Bewusst 
traditionell

Wider-
sprüchlich

Lehrplankonform
(aktiv-entdeckend) N = 2 N = 10 – –

Lehrplankonform
(ohne Arbeitsmittel) – – – –

Bewusst traditionell – – N = 8 N = 2

Widersprüchlich – – N = 2 –

Insgesamt konnten je Vorgehensweise 12 Lehrkraft -Tandems, in der Summe 24 Tan-
dems, als für die Hauptstudie geeignet identifi ziert werden.102 Dies führt zu einer 
Anzahl von 24 Schulklassen aus 16 Münchner Schulen, die an der Hauptstudie im 3. 
Schuljahr teilnehmen.

Wie sich die Stichprobe der Hauptstudie im Detail zusammensetzt, wird im An-
schluss an die Ausführungen zu den Erhebungsinstrumenten der Vortestungen im 
Abschnitt 5.2.4 veranschaulicht.

5.2.3 Erhebungsinstrumente für die Gewinnung einer geschichteten 
Zufallsstichprobe

Im folgenden Abschnitt werden die beiden eingesetzten Erhebungsinstrumen-
te der Vortestung kurz dargestellt. Als standardisiertes Testverfahren zur Ermitt-
lung der mathematischen Kompetenz fand der Heidelberger Rechentest (HRT 1–4) 
Anwendung. Die kognitiven Grundfähigkeiten wurden im Rahmen dieses Disser-
tationsprojektes mit der revidierten Version des Grundlagenintelligenztests Skala 1
(CFT 1-R) erhoben.

Die beiden standardisierten Vortestungen konnten aufgrund der Anwendbarkeit 
als Gruppentest im Klassenverband vorgenommen werden. Die elterliche Zustim-
mung zur Teilnahme wurde im Vorfeld der Testungen eingeholt. Die Erhebungen 
fanden an allen Schulen im Laufe eines Schulvormittages statt – ein Erhebungstag 

102 In zwei Klassen fand nach der Jahrgangsstufe 2 kein Lehrerwechsel statt, so dass für eine 
lehrplankonform unterrichtende sowie für eine bewusst traditionell lehrende Lehrperson die 
Übereinstimmung bzgl. der Erarbeitung des kleinen Einmaleins (mit einer weiteren Lehrper-
son) nicht überprüft  werden musste bzw. als gegeben angenommen werden konnte. Im Fol-
genden wird trotzdem von jeweils 12 Lehrkraft -Tandems gesprochen.
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bestand dabei aus zwei Schulstunden (je 45 Minuten). Um neben einer reibungslo-
sen Durchführung der Testungen und ohne Zeitdruck auch die Konzentrationsfä-
higkeit der Kinder sicherstellen zu können, wurden die Vortestungen vor und nach 
einer großen Schulpause angesetzt bzw. durchgeführt. Um die Datenerhebung hin-
sichtlich der Vortestungen auf einen möglichst engen Zeitraum begrenzen zu kön-
nen und die Vergleichbarkeit zwischen den teilnehmenden Klassen gewährleisten zu 
können, wurden die Erhebungen von zwei geschulten Testleiterinnen und der Au-
torin durchgeführt. Die Testleiterinnen wurden im Vorfeld der Erhebungen in einer 
Testleiterschulung intensiv mit den Instruktionen der standardisierten Testverfahren 
vertraut und auf eine strenge Einhaltung der Vorgaben aufmerksam gemacht. Zu al-
len Testsitzungen war neben der Testleiterin auch die Klassenlehrkraft  im Klassen-
zimmer anwesend, um mit ihrer Hilfe unter anderem eine anonyme Durchführung 
der Erhebung sicherstellen zu können.

Heidelberger Rechentest – Erfassung der mathematischen Basiskompetenzen 
Der Heidelberger Rechentest (HRT 1–4) dient zur Erfassung mathematischer Grund-
lagenkenntnisse im Grundschulalter. Er ermöglicht einen Überblick bzw. Auskünft e 
über den Leistungsstand einzelner Kinder sowie kompletter Schulklassen hinsichtlich 
mathematischer Basiskompetenzen (HAFFNER et al., 2005, S. 9). Mithilfe des HRT 
1–4 sollen mathematische Grundlagen überprüft  werden, die eine notwendige Vor-
aussetzung für den Erwerb mathematischen Wissens und komplexer mathematischer 
Fertigkeiten darstellen. „Der erfolgreiche Aufb au komplexer mathematischer Kom-
petenzen setzt neben der Entwicklung eines kardinalen Zahlbegriff s, der die Bedeu-
tung der Zahl als Mengen- und Größenangabe abbildet, ein handlungs- und aufga-
benorientiertes Verständnis von Rechenoperationen voraus (HAFFNER et al., 2005, 
S. 11).

Jedes wissenschaft lich fundierte Testverfahren bedarf einer theoretischen Veran-
kerung (HASSELHORN, MARX & SCHNEIDER, 2005, S.  2) – dem HRT 1–4 liegt 
zur Erklärung und Beschreibung mathematischer Fertigkeiten das Triple-Code-Mo-
dell von DEHAENE (1992) zugrunde.103

In 11 Untertests werden die Beherrschung der Grundrechenarten und grundle-
gender Rechenoperationen sowie wichtige numerische und räumlich-visuelle Fähig-
keiten überprüft . Der Heidelberger Rechentest umfasst demnach folgende zwei Be-
reiche und Untertests:
• Rechenoperationen (6 Untertests)

 – Addition
 – Subtraktion
 – Multiplikation
 – Division

103 Wie die Bezeichnung Triple-Code-Modell bereits vermuten lässt, geht das Modell von DE-
HAENE (1992) von einer modularen Zahlverarbeitung in drei voneinander getrenn-
ten Funktionseinheiten bzw. Repräsentationsformen aus: der visuell-arabischen, der audi-
tiv-sprachlichen und der analogen Repräsentation. Für eine ausführliche Beschreibung des 
Triple-Code-Modells siehe DEHAENE (1992).
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 – Ergänzungsaufgaben
 – Größer-Kleiner-Vergleiche

• Numerisch-logische und räumlich-visuelle Fähigkeiten (5 Untertests)
 – Zahlenreihen
 – Längenschätzen
 – Würfelzählen
 – Mengenzählen
 – Zahlenverbinden

Drei Skalen werden aufgrund der Untertests und der verschiedenen Teilbereiche 
unterschieden: die Skala der grundlegenden Rechenoperationen, die Skala zur lo-
gischen Zahlverarbeitung, der Mengenerfassung und der räumlich-visuellen Fähig-
keiten sowie eine Skala der Gesamtleistung aller 11 Untertests (HAFFNER et al., 
2005, S.  9; SCHNEIDER, KÜSPERT & KRAJEWSKI, 2013, S.  159). Für alle Unter-
tests liegen Prozentrang-Werte und T-Werte104 für vier Quartale pro Schuljahr vor. 
Anhand des durchschnittlichen T-Wertes aller Untertests, die einer Skala angehören, 
lässt sich der T-Wert der Skala für ein entsprechendes Quartal der Jahrgangsstufe 
ermitteln bzw. aus der Normentabelle ablesen.

Der Heidelberger Rechentest ist als Speed-Test konzipiert. Da die Durchfüh-
rungszeiten je Untertest vorgeschrieben sind, weist der HRT 1–4 eine enge Zeitbe-
grenzung auf: Die Kinder werden bei jedem Untertest aufgefordert, so viele Auf-
gaben wie möglich in der vorgeschriebenen Zeit zu lösen. Dieses Testprinzip prüft  
demnach, wie schnell und sicher Kinder verschiedene Arten von Aufgaben beherr-
schen. Die Konzeption als Speed-Test wurde bei der Entwicklung des HRT gezielt 
vorgesehen, da die Autoren davon überzeugt sind, dass sich der Zuwachs in den 
Kompetenzen unter anderem durch eff ektivere und sichere Herangehensweisen bzw. 
Strategien kennzeichnet oder ausdrücken lässt (HAFFNER et al., 2005, S. 13).

Der Heidelberger Rechentest liefert eine weitgehend sprach- und lehrplanunab-
hängige Erfassung mathematischer Basiskompetenzen. Im Gegensatz zu den Test-
verfahren der DEMAT-Reihe, die lehrplanorientiert mathematisches Wissen erfassen 
(HAFFNER et al., 2005, S.  29 ff .), bietet er ein breiter angelegtes und kompetenzo-
rientierteres Verfahren für die Grundschule (HASSELHORN et al., 2005, S.  2), das 
das komplette Leistungsspektrum im Grundschulalter messen kann (HAFFNER et 
al., 2005, S.  13). „Mittels hoher Aufgabenzahlen und steigender Aufgabenschwie-
rigkeiten wurde angestrebt ein breites Leistungsspektrum inkl. Rechenschwächen 
und Rechenstärken im Grundschulalter auszubilden und Boden- und Deckeneff ekte 
(keine oder alle Aufgaben eines Untertests gelöst) zu vermeiden“ (HAFFNER et al., 
2005, S. 13; HAFFNER et al., 2005b, S. 129). Nach RICKEN und FRITZ (2009) bietet 
der HRT aufgrund seiner Konzeption die Möglichkeit „sichere und besonders leis-
tungsfähige Rechner gut zu erkennen“ (ebd., S. 320). Der HRT 1–4 ermöglicht nach 
SCHNEIDER et al. (2013) im Gegensatz zur DEMAT-Reihe allerdings auch rechen-

104 T-Werte klären darüber auf, wie sich die Testleistung von Kindern im Vergleich zur Alters-
norm verhält. Sie zeigen auf, wie weit die erreichte Testleistung eines Kindes vom Mittelwert 
der Altersnorm entfernt liegt und ermöglichen den direkten Vergleich von Testleistungen.
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schwache Schülerinnen und Schüler zuverlässig zu identifi zieren. Obwohl beide Test-
verfahren die Geschwindigkeitskomponente enthalten, gelingt es beim DEMAT auch 
vermeintlich schwächeren Kindern, alle Aufgaben eines Untertests vollständig zu lö-
sen. Diese Tatsache ist sicherlich neben der geringeren Anzahl an Testitems je Unter-
test auch der Lehrplankonformität geschuldet.

Da der zuverlässigen Identifi kation leistungsschwacher aber auch leistungsstar-
ker Rechnerinnen und Rechner in dieser Arbeit eine bedeutende Relevanz zukommt 
und der HRT 1–4 zudem alle Voraussetzungen und Gütekriterien eines allgemein-
gültigen und zuverlässigen Testverfahrens erfüllt, wird im Rahmen dieser Arbeit zur 
Erfassung der mathematischen Kompetenz auf den Heidelberger Rechentest zurück-
gegriff en. Der HRT 1–4 erweist sich aber auch aufgrund der inhaltlichen Schwer-
punktsetzungen der Untertests als geeignetes Testverfahren. Mit den Untertests zur 
Addition und Subtraktion kann z. B. das Beherrschen grundlegender Rechenfertig-
keiten, die für den Einsatz von Rechenstrategien beim kleinen Einmaleins, wie bei-
spielsweise der additiven oder subtraktiven Faktorzerlegung, vonnöten sind, über-
prüft  werden. Ähnliches ist auch für die beiden Untertests festzuhalten, die die 
Lösung von Ergänzungsaufgaben (z. B. 6 + ܆� =  7) oder Größer-Kleiner-Vergleichen 
(z. B. 6 + 1 7 ܆) anstreben – auch diese Basiskompetenzen (z. B. Zahlverständnis, 
Teil-Teil-Ganzes) sind für die Lösung von Einmaleinsaufgaben auf Basis von operati-
ven Beziehungen hilfreich oder sogar zwingend notwendig. HAFFNER und Kollegen 
(2005) halten in diesem Kontext fest: 

„Die Erfassung der Rechenoperationen […] sowie des Verständnisses für Glei-
chungen und Ungleichungen (Ergänzungsaufgaben, Größer-Kleiner-Vergleiche) 
dient der Prüfung grundlegender Rechenprozesse, die für die Entwicklung kom-
plexer mathematischer Kompetenzen eine Voraussetzung darstellen und im Be-
reich der Mathematik ständig gebraucht werden“ (ebd., S. 15). 

Der Einsicht in Eigenschaft en bzw. Rechengesetze wird bei der Erarbeitung des klei-
nen Einmaleins ein wichtiger Stellenwert zuteil (siehe  Abschnitt 2.1.2) – erste Er-
kenntnisse hinsichtlich des Erkennens von Regeln bzw. des logisches Denkens kön-
nen mithilfe des Untertests Zahlenfolgen bereits durch die Vortestung ermittelt 
werden. Weitere Untertests, die neben den bereits genannten zur Wahl des Heidel-
berger Rechentests beigetragen haben, sind die Untertests zur Rechenoperation der 
Multiplikation sowie zum Mengenzählen. Anhand der Testergebnisse des HRT im 
Untertest Multiplikation war bereits vor der Haupterhebung eine Überprüfung der 
Studienteilnehmerinnen und -teilnehmer hinsichtlich ihrer Multiplikationsleistung 
möglich – so konnte für die ausgewählte Zufallsstichprobe bereits festgehalten wer-
den, dass alle Kinder aufgrund ihrer bisherigen gesammelten Erfahrungen zur Mul-
tiplikation über Herangehensweisen zur Lösung von Einmaleinsaufgaben verfügen. 
Mit dem Untertest Mengenzählen105 besteht zusätzlich die Option, Aussagen über 
eine mögliche Nutzung bzw. das Erkennen multiplikativer Strukturen zu tätigen.

105 Im Untertest Mengenzählen sollen Kinder in einem Kästchen angeordnete Figuren so schnell 
wie möglich geschickt zählen. Geschicktes Zählen bedeutet in diesem Untertest die abgebil-
dete Mengenstrukturierung zu erkennen und zu nutzen (z. B. acht Flugzeuge angeordnet in 
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Revidierte Version des CFT (CFT 1-R) – Ermittlung der allgemeinen und 
spezifi schen intellektuellen Fähigkeiten 
Die kognitiven Grundfähigkeiten der Kinder wurden mit den Subskalen des CFT 
1-R (WEIß & OSTERLAND, 2013), einer Weiterentwicklung des Grundlagenin-
telligenztests Skala 1 (CFT 1; CATTELL, WEIß & OSTERLAND, 1997) erhoben. 
Der CFT 1 stellt eine partielle Adaption des Culture Fair Intelligence Tests – Scale 
1 von Raymond B. Cattell (1905–1998) dar (WEIß & OSTERLAND, 2013, S.  7 ff .). 
Seit 2012 fi ndet auch die revidierte Version des CFT 1, der CFT 1-R106 Anwendung 
(WEIß & OSTERLAND, 2013).

Dem CFT 1 sowie seiner Weiterentwicklung liegt die Intelligenztheorie von CAT-
TELL (1987) zugrunde, die davon ausgeht, dass sich der Bereich der allgemeinen 
intellektuellen Leistungsfähigkeit in zwei Intelligenzformen (zweifaktorielle Intelli-
genztheorie) gliedern lässt. Der CFT misst in diesem Kontext fast ausschließlich die 
Merkmale der fl uiden Intelligenz (fl uid general intelligence) und defi niert darunter, 
die allgemeine Fähigkeit, Relationen bzw. Beziehungen komplexerer Art in neuarti-
gen Situationen zu erkennen (CATTELL, 1971, S. 74; WEIß & OSTERLAND, 2013, 
S.  20 ff .).107 In diesem Zusammenhang wird auch von der Messung der Grundintel-
ligenz einer Testperson gesprochen (HOLLING, PRECKEL & VOCK, 2004, S.  88). 
Darunter fallen z. B. das Erkennen und Bilden von Gesetzmäßigkeiten, Serien, Klas-
sifi kationen, Analogien und Typologien (WEIß & OSTERLAND, 2013, S. 9 f.).

Das Verfahren des CFT 1-R umfasst zwei Testteile, die jeweils aus drei Unter-
tests bestehen und unterschiedliche Bereiche der Intelligenz messen. Im ersten Test-
teil wird die wahrnehmungsgebundene Leistung (fi gurale Wahrnehmung) gemessen, 
im zweiten das fi gurale Denken. Die Gesamtleistung bildet die Grundintelligenz wie-
der. Dabei werden die in den sechs Subskalen erzielten Rohwerte zu einem Summen-
wert zusammengefasst und mittels Altersnormen in Prozentrangwerte bzw. T-Wer-
te umgewandelt. Diese auf Basis der in den Subskalen ermittelten Testwerte werden 
mithilfe eines Vergleichs mit Normtabellen der Altersgruppe in IQ-Werte transfor-
miert und dienen als Kontrollvariable für die allgemeine Intelligenz.

Insgesamt gilt der CFT 1-R wie der CFT 1 als ein standardisiertes Testverfahren, 
das sprachfair entwickelt und ökonomisch durchführbar ist. Eine stärkere diff eren-
zierende Intelligenzmessung diff erenziert insbesondere im unteren Intelligenzbereich 
optimal (WEIß & OSTERLAND, 2013, S.  9 f.). Darüber hinaus handelt es sich um 
ein weit verbreitetes und durchaus bekanntes Verfahren, das über eine ausreichende 
Validität und Reliabilität verfügt (WEIß & OSTERLAND, 2013, S. 28).

zwei Reihen à vier Flugzeugen) – die Nutzung der visuellen, logischen Strukturbildung sollte 
dabei mit einer schnelleren Zählgeschwindigkeit einhergehen.

106 Durch eine erweiterte Aufgabenanzahl, durch die qualitative Verbesserung von Aufgaben so-
wie durch die Ergänzung eines weiteren Untertests konnte in der Revision des bewährten 
Tests eine höhere Diff erenzierung erreicht werden (WEIß & OSTERLAND, 2013).

107 Neben der fl uiden Intelligenzform zeichnet sich das Modell von Raymond B. Cattell auch 
durch eine kristalline Intelligenzform (crystallized general intelligence) aus. Die kristalline 
Intelligenz stellt eine umweltbedingte Komponente dar, einen von Lernen, Erziehung und 
Umwelt abhängigen Intelligenzfaktor, der im CFT in geringerem Umfang beteiligt ist (WEIß 
& OSTERLAND, 2013, S. 18).
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5.2.4 Stichprobe der Haupterhebung

Lehrkräft e 
Im Folgenden werden die personenbezogenen Daten der N = 46 ausgewählten Lehr-
kräft e108 der Haupterhebung vorgestellt (siehe Tabelle 17 und Tabelle 18). Tabelle 17 
listet die personenbezogenen Daten der Lehrpersonen aus Jahrgangsstufe 2 und 3 
zusammengefasst auf, Tabelle 18 getrennt nach Jahrgangsstufe und unterrichtlicher 
Vorgehensweise. Mithilfe der Fragebogenstudie wurden das Alter der Lehrpersonen, 
das Geschlecht und die Anzahl der Jahre im Schuldienst erhoben sowie verschiedene 
Ausbildungsschwerpunkte ermittelt (siehe Abschnitt 4.2.1 – Beschreibung der Stich-
probe der Vorstudie). Zudem wurde die Teilnahme an einer Fortbildungsmaßnahme, 
die die Erarbeitung des kleinen Einmaleins nach den Vorgaben des im Jahre 2000 
neu eingeführten Lehrplans109 thematisiert hat, abgefragt. Eine Zusammenschau der 
personenbezogenen Daten liefern die folgenden Tabellen.

 Tabelle 17:  Personenbezogene Daten der Lehrpersonen aus Jahrgangsstufe 2 und 3 zusammengefasst

Lehrplankonforme und bewusst traditionelle Lehrkräft e
(N = 48, je N = 24 lehrplankonform, bewusst traditionell)

Variable Wert %
(lehrplankonform)

%
(traditionell)

Alter (Jahre)

20–30 25 17
31–40 46 33
41–50 25 8
51–60 – 29
61 und älter 4 13

Geschlecht
Männlich 17 4
Weiblich 83 96

Ausbildungs-
schwerpunkt

Mathematik im Unterrichtsfach
(nicht vertieft )

8 25

Mathematikdidaktik 79 54
Keine universitäre Ausbildung in 
Mathematikdidaktik

13 21

Tätigkeit im Schul-
dienst (Jahre)

≤ 10 63 50
11–20 29 13
21–30 8 4
≥ 31 – 33

Fortbildungsmaß-
nahme110

Ja 46 25
Nein 54 75

108 Wie bereits erwähnt unterrichteten zwei Lehrpersonen sowohl in Jahrgangsstufe 2 als auch 
in 3. 

109 Der Lehrplan von 2000 stellt den zum Zeitpunkt der Untersuchung gültigen bayerischen 
Lehrplan für Grundschulen dar.

110 Fortbildungsmaßnahmen zur bzw. nach der Einführung des bayerischen Lehrplans im Jahre 
2000, in dessen Rahmen die Erarbeitung des kleinen Einmaleins thematisiert wurde.
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Insbesondere die Unterschiede in der Altersstruktur der beiden Teilstichproben fallen 
dem Betrachter für beide Jahrgangsstufen ins Auge (siehe Tabelle 17) – die bewusst 
traditionelle Lehrkraft -Gruppe setzt sich zu einem hohen Prozentsatz aus älteren 
Lehrpersonen zusammen. Während fast 42% der Lehrpersonen der bewusst traditio-
nellen Lehrkraft -Tandems älter als 50 Jahre sind, besteht die Gruppe der lehrplankon-
formen Lehrpersonen fast ausschließlich (96%) aus Personen unter 51 Jahren (siehe
Tabelle 17). Ein ähnliches Bild spiegelt sich dementsprechend auch für die Tätigkeit 
im Schuldienst wieder – 33% der bewusst traditionell unterrichtenden Lehrperso-
nen blicken auf 31 oder mehr Jahre Erfahrung im Schuldienst zurück. Unterschie-
de zwischen den beiden Lehrkraft -Gruppen sind auch hinsichtlich der Teilnahme an 
einer Fortbildungsmaßnahme zur Erarbeitung des kleinen Einmaleins zu beobach-
ten. Etwas mehr als die Hälft e der Lehrkräft e der bewusst traditionellen Teilstichpro-
be nahm an einer Fortbildung teil, im Vergleich dazu Dreiviertel der Lehrpersonen, 
die lehrplankonform unterrichten.

Sehr ähnliche Verteilungen der Prozentsätze wie die gerade beschriebenen liegen 
auch für die personenbezogenen Daten vor, die nach Lehrkraft -Gruppen und Jahr-
gangsstufe getrennt dargestellt wurden (siehe Tabelle 18). In beiden Jahrgangsstufen 
fallen insbesondere die höheren Prozentsätze der bewusst traditionellen Lehrperso-
nen hinsichtlich des Alters und der Tätigkeit im Schuldienst auf.

Resümierend kann festgehalten werden, dass die bewusst traditionelle Lehr-
kraft -Gruppe im Vergleich zu der Mehrzahl der lehrplankonform unterrichtenden 
Lehrpersonen unter anderem aufgrund der Altersstruktur über eine große Berufs-
erfahrung verfügt. In der größeren Berufserfahrung kann allerdings auch die be-
vorzugte Wahl einer bewusst traditionellen Vorgehensweise bei der unterricht-
lichen Erarbeitung des kleinen Einmaleins begründet liegen. Liegt der Einstieg in 
den Schuldienst bereits einige Jahre zurück, ist – wie den theoretischen Ausführun-
gen dieser Arbeit zu entnehmen ist (siehe Abschnitt 2.5.1) – davon auszugehen, dass 
Lehrpersonen die Erarbeitung des kleinen Einmaleins auf traditionelle Art und Wei-
se erlernt haben und unter Umständen auch lehren. Einige Lehrpersonen der be-
wusst traditionellen Lehrkraft -Gruppe haben das Einmaleins eventuell angelehnt an 
die verpfl ichtenden Lerninhalte des Lehrplans von 1976 oder 1981 Reihe für Reihe 
erarbeiten lassen (siehe Abschnitt 2.5.2).

Wie bereits im Abschnitt 1.5.1 angeführt, haben nach KRAUTHAUSEN (2000, 
S.  13 ff .) aber unter Umständen auch die eher behavioristischen Vorstellungen von 
Lernen und Lehren von Mathematik, aus durchaus nachvollziehbar erscheinenden 
Gründen, nicht an Aktualität in der heutigen Unterrichtsrealität bzw. -praxis verlo-
ren: verantwortlich können dafür „u. a. die eigene Lernbiographie, [die] Altersstruk-
tur und [der] Aus- und Fortbildungsstand der Kollegen“ (ebd., S.  13, Ergänzungen 
der Autorin) sein.
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 Tabelle 18:  Personenbezogene Daten der Lehrpersonen nach Jahrgangsstufen getrennt aufgelistet

Variable Wert % (gesamt) % (lehrplan-
konform)

% (tradi-
tionell)

Lehrkräft e aus Jahrgangsstufe 2 (N = 24, je N = 12 lehrplankonform, bewusst traditionell)

Alter (Jahre)

20–30 17 17 17
31–40 42 50 33
41–50 21 33 8
51–60 16 – 34
61 und älter 4 – 8

Geschlecht
Männlich 8 17 –
Weiblich 92 83 100

Ausbildungs-
schwerpunkt

Mathematik im Unterrichtsfach 
(nicht vertieft )

17 8 25

Mathematikdidaktik 63 67 58
Keine universitäre Ausbildung in 
Mathematikdidaktik

20 25 17

Tätigkeit im 
Schuldienst 
(Jahre)

≤ 10 50 50 50
11–20 33 50 17
21–30 4 – 8
≥ 31 13 – 25

Fortbildungs-
maßnahme

Ja 33 42 25
Nein 67 58 75

Lehrkräft e aus Jahrgangsstufe 3 (N = 24, je N = 12 lehrplankonform, bewusst traditionell)

Alter (Jahre)

20–30 25 33 17
31–40 37 42 33
41–50 12 17 8
51–60 13 – 25
61 und älter 13 8 17

Geschlecht
Männlich 12 17 8
Weiblich 88 83 92

Ausbildungs-
schwerpunkt 

Mathematik im Unterrichtsfach
(nicht vertieft )

17 8 25

Mathematikdidaktik 71 92 50
Keine universitäre Ausbildung in 
Mathematikdidaktik

12 – 25

Tätigkeit im 
Schuldienst 
(Jahre)

≤ 10 63 75 50
11–20 8 8 8
21–30 8 17 –
≥ 31 21 – 42

Fortbildungs-
maßnahme

Ja 38 50 25
Nein 62 50 75
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Schülerinnen und Schüler
Wie bereits im Abschnitt 5.2.1 bezugnehmend auf den Ablaufplan der Vor- und 
Hauptstudie skizziert, nahmen im November und Dezember 2014 insgesamt N = 486 
Schülerinnen und Schüler der 24 ausgewählten Lehrkräft e an zwei Vortestungen im 
Vorfeld der Haupterhebung teil. Der Heidelberger Rechentest (HRT 1–4) zur Unter-
suchung mathematischer Basiskompetenzen wurde dabei zur Ermittlung verschie-
dener Leistungsgruppen eingesetzt.111 Anhand von Perzentilen (siehe Abbildung 
27) konnten Kinder verschiedenen Teilstichproben zugeordnet werden, aus denen 
wiederum gezielt Schülerinnen und Schüler für die Haupterhebung gezogen wur-
den. Mithilfe einer geschichteten Zufallsstichprobe bzw. einer geschichteten Stichpro-
be werden nach BORTZ und SCHUSTER (2010) „Untersuchungsobjekte innerhalb 
der Schichten nach Zufall ausgewählt“ (ebd., S. 82; ALBERS, KLAPPER, KONRADT, 
WALTER & WOLF, 2009). Die Stichprobenauswahl bei der Hauptstudie folgte der 
Vorgehensweise nach BORTZ und DÖRING (2006): Zunächst wird die Zielpopula-
tion basierend auf einer oder mehreren Merkmalsausprägungen in Teilpopulationen 
(sog. Schichten) eingeteilt. Aus den je Merkmalsausprägung entstehenden Schichten 
werden anschließend Zufallsstichproben entnommen (BORTZ & DÖRING, 2006, 
S.  425). Die sogenannten Teilpopulationen wurden mithilfe von Perzentilen ermit-
telt, durch die drei verschiedene Leistungsgruppen (je 25% der Kinder der Gesamt-
stichprobe) unterschieden werden können. Sie setzten sich wie folgt zusammen: 
Das unterste Leistungs-Viertel, bestehend aus den 25% der Kinder, die im Heidel-
berger Rechentest am schlechtesten abschnitten, seinem Pendant, dem oberen Leis-
tungs-Viertel sowie dem mittleren Leistungs-Viertel (25% der Kinder der Gesamt-
stichprobe, die sich zwischen dem 37.5ten und 62.5ten Perzentil befanden). Kinder 
zwischen dem 25ten  und 37.5ten Perzentil sowie zwischen dem 62.5ten und 75ten 
Perzentil (Abbildung 27 – weißen Flächen des Perzentilbandes) wurden nicht für die 
Ziehung der Zufallsstichprobe berücksichtigt. Damit sollte sichergestellt werden, dass 
Kinder mit zwei vergleichsweise ähnlichen mathematischen Basiskompetenzen nicht 
in zwei unterschiedlichen Leistungsgruppen vorzufi nden sind, sondern sich die ein-
zelnen Gruppen in ihren Kompetenzen weitestgehend unterscheiden. 

A bbildung 27:  Übersicht der drei aufgestellten Teilpopulationen/Leistungs-Viertel.

111 Die mittels des CFT 1-R berechneten allgemeinen und spezifi schen intellektuellen Fähigkei-
ten kamen als Kontrollvariablen zum Einsatz.
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Ein Vergleich der ermittelten T-Werte112 des Heidelberger Rechentests anhand von 
Perzentilbändern (siehe Abbildung 28) veranschaulicht graphisch die ähnliche Ver-
teilung in der Gesamtstichprobe und der lehrplankonform unterrichteten Schüler-
gruppe. Die bewusst traditionell unterrichteten Schülerinnen und Schüler schnit-
ten im Vergleich zu den beiden anderen Teilstichproben im Durchschnitt schlechter 
ab hinsichtlich ihrer mathematischen Basiskompetenzen – die einzelnen Gruppen 
unterschieden sich allerdings nicht signifi kant voneinander.

Ab bildung 28:  T-Wert-Vergleich der verschiedenen Teilstichproben anhand von Perzentilbändern.

Für die geschichtete Zufallsstichprobe wurden je Klasse aus jedem Leistungs-Viertel 
zwei Schülerinnen oder Schüler gezogen, so dass sich die Gesamtstichprobe aufgrund 
der 24 teilnehmenden Klassen auf N  =  144 Kinder belief. Die folgende Übersicht 
veranschaulicht die Verteilung über die verschiedenen Vorgehensweisen der unter-
richtlichen Erarbeitung (siehe Abbildung 29). Die zwei leistungsstarken, die zwei 
durchschnittlichen und die zwei leistungsschwachen Kinder, die je Klasse gezogen 
wurden, führen zu einer Stichprobenzusammensetzung von je 24 leistungsschwa-
chen, durchschnittlichen und leistungsstarken Kindern der beiden Lehrkraft -Grup-
pen. Die angestrebte Gleichverteilung je Lehrkraft -Gruppe und individuellem Leis-
tungsvermögen wurde mit zwei Ausnahmen erreicht – da in einer lehrplankonform 
unterrichteten Klasse nur ein leistungsschwaches Kind anzutreff en war, wurden in 
dieser Klasse zwei leistungsstarke und drei durchschnittliche Kinder gezogen, so-
wie das leistungsschwache Kind hinzugenommen. Je Lehrkraft -Typ stehen insgesamt 
N  =  72 Kinder für Unterschiedsanalysen im Hinblick auf die Strategieverwendung 
bei unterschiedlichen unterrichtlichen Vorgehensweisen zur Verfügung.

112 Detailliertere Informationen hinsichtlich der T-Werte des Heidelberger Rechentests wurden 
im Abschnitt 2.5.4 bereits angeführt.
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Abb ildung 29:  Stichprobenzusammensetzung unter Berücksichtigung der unterrichtlichen Erarbeitung 
und des individuellen Leistungsvermögens der zu untersuchenden Kinder.

Der T-Wert der Gesamtstichprobe (N  =  144) liegt bei durchschnittlich 54.76 
(SD = 10.16, Min = 32, Max = 80) und somit leicht über dem T-Wert der HRT-Eich-
stichprobe, der sich durch einen Wert von 50 auszeichnet. Die lehrplankonform 
unterrichteten Kinder unterscheiden sich – ähnlich wie bereits die Gesamtstichprobe 
vor der Stichprobenziehung – mit einem durchschnittlichen T-Wert von 55.10 
(SD = 10.04, Min = 35, Max = 75) nicht signifi kant von der Vergleichsgruppe der be-
wusst traditionell unterrichteten Schülerinnen und Schüler (T  =  54.43, SD  =  10.34; 
Wald χ2(1) = 0.37, p =  .542). Signifi kante Unterschiede, wie durch die Wahl der Per-
zentile angestrebt, können mittels verallgemeinerter Schätzgleichungen hinsicht-
lich der T-Werte der verschiedenen Leistungsgruppen über beide Lehrkraft -Grup-
pen hinweg ermittelt werden (leistungsstark: T = 66.38, SD = 4.46; durchschnittlich: 
T = 54.15, SD = 2.94; leistungsschwach: T = 43.30, SD = 4.14; Wald χ2(2) = 727.63, 
p  <  .001). Dabei ergeben paarweise Vergleiche signifi kante Unterschiede zwi-
schen allen drei Leistungsgruppen (alle p  <  .001). Auch die Unterschiedsanalysen 
im Hinblick auf das Leistungsvermögen separat für beide Lehrkraft -Gruppen be-
trachtet, liefern signifi kante Unterschiede (lehrplankonform: T  leistungsstark  =  66.54, 
SD = 3.75; T durchschnittlich = 54.56, SD = 2.63; T leistungsschwach = 43.23, SD = 3.85; Wald 
χ2(2) = 574.12, p < .001; bewusst traditionell: T leistungsstark = 66.21, SD = 5.15; T durch-

schnittlich  =  53.71, SD  =  3.24; T  leistungsschwach  =  43.38, SD  =  4.47; Wald χ2(2)  =  263.38, 
p  <  .001). Die entsprechenden paarweisen Vergleiche weisen erneut signifi kan-
te Unterschiede zwischen allen Leistungsgruppen auf (alle p < .001). Der Vergleich 
der Kinder der beiden Lehrkraft -Gruppen einer Leistungsgruppe liefert keine sig-
nifi kanten Unterschiede hinsichtlich der ermittelten T-Werte für leistungsschwache, 
leistungsstarke sowie Kinder durchschnittlichen Leistungsvermögens (leistungsstark: 
Wald χ2(1) = 0.07, p =  .792; durchschnittlich: Wald χ2(1) = 0.90, p =  .344; leistungs-
schwach: Wald χ2(1) = 0.02, p = .898).113

113 Die konkreten T-Werte und die entsprechenden Standardabweichungen wurden bereits bei 
den vorausgehenden Unterschiedsanalysen berichtet. 
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Für alle in der Studie als leistungsschwach bezeichneten Kinder liegt laut Aussa-
ge der Lehrkräft e keine Rechenschwäche oder kein erhöhter Förderbedarf vor. Der 
durchschnittliche T-Wert der leistungsschwachen Kinder liegt wie bereits erwähnt 
bei 43.30 und kann somit einem Prozentrang von 27 zugewiesen werden. Bei den 
Skalenwerten sind Prozentrangwerte (PR) größer als 25 „in der Regel als unauff ällig 
zu betrachten, d. h. das Kind zeigt eine mindestens ausreichende Leistung“ (HAFF-
NER, BARO, PARZER & RESCH, 2005, S. 20 f.).

Neben den mathematischen Basiskompetenzen wurden die allgemeinen und spe-
zifi schen intellektuellen Fähigkeiten der Kinder ermittelt. Auf Basis der in den Sub-
skalen ermittelten Testergebnisse wurde ein Summenscore gebildet, der mithilfe 
der Normtabellen der Altersgruppe in entsprechende IQ-Werte transformiert wer-
den konnte. Der durchschnittliche IQ der Gesamtstichprobe beläuft  sich auf 102.57 
(SD = 12.20, Min = 85, Max = 130). Die lehrplankonform und die bewusst traditio-
nell unterrichteten Kinder liegen über dem Durchschnitt der Eichstichprobe eines 
mittleren IQs von 100 (lehrplankonform: M =  103.75, SD  =  12.39; bewusst tradi-
tionell: M  =  101.40, SD  =  11.98). Zwischen den beiden Lehrkraft -Gruppen zeigen 
sich keine signifi kanten Unterschiede hinsichtlich der IQ-Werte (Wald  χ2(1) = 1.28, 
p  =  .256). Signifi kante Unterschiede in den IQ-Werten können verallgemeiner-
te Schätzgleichungen für die verschiedenen Leistungsgruppen über beide Lehr-
kraft -Gruppen hinweg ermitteln (leistungsstark: M  =  110.25, SD  =  10.01; durch-
schnittlich: M = 102.10, SD = 11.12; leistungsschwach: M = 95.04, SD = 10.59; Wald 
χ2(2) = 46.96, p < .001). Paarweise Vergleiche ergeben, dass sich die leistungsstarken 
Kinder von den leistungsschwachen Kindern und den Kindern durchschnittlichen 
Leistungsvermögens signifi kant unterscheiden (beide p < .001) und ebenfalls ein sig-
nifi kanter Unterschied zwischen der leistungsschwachen und der durchschnittlichen 
Leistungsgruppe vorliegt (p =  .011). Verallgemeinerte Schätzgleichungen zur Analy-
se der Unterschiede zwischen den Leistungsgruppen getrennt nach Lehrkraft -Grup-
pen ermittelten ebenfalls signifi kante Unterschiede hinsichtlich der IQ-Werte (lehr-
plankonform: M leistungsstark = 109.33, SD = 12.48; M durchschnittlich = 104.08, SD = 11.71; 
M  leistungsschwach  =  97.27, SD  =  10.21; Wald χ2(2)  =  9.51, p  =  .009; bewusst traditio-
nell: M  leistungsstark  =  111.17, SD  =  6.86; M durchschnittlich  =  100.04, SD  =  10.30; M  leis-

tungsschwach  =  93.00, SD  =  10.73; Wald  χ2(2)  =  97.31, p < .001). Paarweise Vergleiche 
zeigen, dass sich in der bewusst traditionellen Lehrkraft -Gruppe die leistungsstar-
ken Kinder von den Kindern durchschnittlichen Leistungsvermögens und den leis-
tungsschwachen Kindern signifi kant unterscheiden (beide p < .001). Kein signifi kan-
ter Unterschied liegt zwischen den leistungsschwachen Kindern und den Kindern 
durchschnittlichen Leistungsvermögens vor, deren Lehrkräft e der bewusst traditio-
nell unterrichtenden Lehrkraft -Gruppe zugewiesen wurden. Für die Kinder, die lehr-
plankonform unterrichtet wurden, besteht nur zwischen der leistungsstarken und der 
leistungsschwachen Gruppe ein signifi kanter Unterschied bezüglich des IQ-Wertes 
(p  =  .006). Die Kinder durchschnittlichen Leistungsvermögens unterscheiden 
sich nicht signifi kant von den leistungsstarken Kindern (p  =  .470) und den leis-
tungsschwachen Kindern (p  =  .201). Der Vergleich der Kinder der beiden Lehr-
kraft -Gruppen einer Leistungsgruppe liefert darüber hinaus keine signifi kanten 
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Unterschiede hinsichtlich der ermittelten IQ-Werte für leistungsschwache und leis-
tungsstarke Kinder sowie Kinder durchschnittlichen Leistungsvermögens (leistungs-
stark: Wald χ2(1) = 2.75, p = .600; durchschnittlich: Wald χ2(1) = 1.75, p = .186; leis-
tungsschwach: Wald χ2(1) = 1.87, p = .172).114

Die Zusammensetzung der Stichprobe wird im Folgenden anhand weiterer perso-
nenbezogener Daten beschrieben, die im Rahmen der Haupterhebung ermittelt wur-
den. Die Stichprobe setzt sich zu 49% (N = 71) aus Jungen zusammen, der Anteil an 
teilnehmenden Mädchen fällt dementsprechend mit 51% (N = 73) höher aus. Insge-
samt kann von einem ausgewogenen Geschlechterverhältnis gesprochen werden. Auf 
eine ähnliche Gleichverteilung zwischen den Geschlechtern trifft   man auch hinsicht-
lich der Lehrkraft - und der Leistungsgruppen (siehe Tabelle 19). Das Alter der teil-
nehmenden Kinder liegt im Mittel bei 8 Jahren und 8 Monaten (lehrplankonform 
unterrichtete Kinder: 8 Jahre, 7 Monate, bewusst traditionell unterrichtete Kinder: 8 
Jahre, 8 Monate; leistungsschwache, durchschnittliche und leistungsstarke Kinder: je 
8 Jahre, 8 Monate; männlich: 8 Jahre, 8 Monate, weiblich: 8 Jahre, 7 Monate). 

 Tab elle 19:  Geschlechterverhältnis im Hinblick auf die Lehrkraft-Gruppen und Leistungsgruppen

N = 144

Leistungsschwach
(N = 47)

Durchschnittlich
(N = 49)

Leistungsstark
(N = 48)

m
(N = 22)

w
(N = 25)

m
(N = 23)

w
(N = 26)

m
(N = 26)

w
(N = 22)

Lehrplan-
konform
(N = 72)

10 13 13 12 11 13
m (N = 34)

w (N = 38)

Bewusst 
traditionell
(N = 72)

12 12 10 14 15 9
m (N = 37)

w (N = 35)

5.3 Erhebungsinstrumente der Haupterhebung

Die entwickelten Testinstrumente der Haupterhebung sollen im Folgendem vorge-
stellt werden: Es handelt sich dabei um eine Reaktionszeittestung zur Ermittlung 
eines schnellen Faktenabrufes sowie ein klinisches Interview zur Erfassung verschie-
dener weiterer Herangehensweisen an Einmaleinsaufgaben.

Zu Beginn wurde mittels einer Reaktionszeittestung der schnelle Faktenabruf er-
fasst, bevor im Anschluss das Strategieinterview geführt wurde. Im Gegensatz zu den 
Vortestungen, die als Gruppentestung anwendbar waren, stellten sich in der Haupt-
erhebung Einzelinterviews, die in separaten Räumen durchgeführt wurden, als sinn-
voll bzw. notwendig heraus. Ein Erhebungstag erstreckte sich je Klasse über den 
gesamten Schulvormittag. Die Einzelinterviews wurden aufgrund der großen Stich-

114 Die konkreten IQ-Werte und die entsprechenden Standardabweichungen wurden bereits bei 
den vorausgehenden Unterschiedsanalysen berichtet.



263    

probenanzahl von einem geschulten Testleiter und der Autorin der Arbeit durchge-
führt. Da die Haupterhebung im 3. Schuljahr nach Beendigung der Erarbeitung des 
kleinen Einmaleins stattfi nden sollte, das Ende der Erarbeitung allerdings von Klas-
se zu Klasse stark variierte115, erstreckte sich der Zeitraum der Erhebung der Haupt-
untersuchung über Januar und Februar 2015 (siehe auch Tabelle 14).

5.3.1 Reaktionszeittestung

In den folgenden Ausführungen soll die Reaktionszeittestung als eines von zwei Er-
hebungsinstrumenten der Haupterhebung vorgestellt werden. Die Reaktionszeittes-
tung kam im Gegensatz zum Strategieinterview, in dem der Fokus auf der indivi-
duellen Strategieverwendung von Kindern lag, mit dem vordergründigen Ziel zum 
Einsatz, den Anteil an schnell abrufb aren Einmaleinsaufgaben aus dem Gedächtnis 
zu ermitteln. Wie bereits im Abschnitt 3.2.2 verwiesen, lassen Aussagen im Strategie-
interview, die auf den Einsatz des Faktenabrufes hindeuten, nicht zwangsläufi g einen 
Rückschluss auf einen tatsächlichen Faktenabruf zu. Da demnach eigentlich auch 
keine Erkenntnisse hinsichtlich eines schnellen Abrufes gewonnen werden können, 
wird in dieser Arbeit auf eine alternative, separate Ermittlung schneller Faktenabrufe 
mithilfe einer Reaktionszeittestung zurückgegriff en. Die Realisierung der Ermittlung 
von Lösungszeiten und Lösungsraten erfolgte computerbasiert mit dem Programm 
E-Prime 2.0 Professional (SCHNEIDER, ESCHMAN & ZUCCOLOTTO, 2002a, b). 
Die Soft ware bietet die Möglichkeit eines computerbasierten Experimentdesigns und 
eine bis auf eine Millisekunde genaue Datenerhebung. 

Den N  =  144 an der Studie teilnehmenden Kindern wurden je 50 Einmaleins-
aufgaben mit den Faktoren 0–10 gestellt. Die beiden ersten Aufgabenitems dien-
ten als Probeaufgaben. Die verbliebenen 48  Aufgaben116 wurden anschließend in 
fünf aufeinanderfolgenden Sets abgeprüft  (3 Sets à 10 Aufgaben, 2 Sets à  9  Aufga-
ben). Die Aufgaben setzten sich aus 31 Kernaufgaben, 15 Nicht-Kernaufgaben und 
zwei Aufgaben mit einem der beiden Faktoren 0 zusammen (siehe Tabelle 20). In-
nerhalb der Kernaufgaben können 23 Aufgaben der Einmaleinssätze mit 1, 2, 5 und 
10 sowie acht Quadrataufgaben unterschieden werden. Die 15 Aufgaben vom Typ 
Nicht-Kernaufgabe stellen unter Nichtberücksichtigung der Tauschaufgaben alle ver-
bleibenden Ableitungsaufgaben117 dar.

115 Im Zuge der Fragebogenstudie wurde der vorgesehene Zeitraum der Erarbeitung des klei-
nen Einmaleins zu Beginn des Schuljahres abgeprüft  (siehe Abschnitt 4.2.2) und im Dezem-
ber erneut in Absprache mit den Lehrkräft en auf die Realisierbarkeit überprüft . So konn-
te die Haupterhebung – je nach individuellem Voranschreiten im Unterrichtsstoff  – in allen 
Klassen unmittelbar nach Beendigung der Erarbeitung des kleinen Einmaleins angesetzt und 
durchgeführt werden. 

116 Für eine detaillierte Aufl istung der eingesetzten Einmaleinsaufgaben sei auf den Anhang 
(A.1) verwiesen.

117 Unter Ableitungsaufgaben werden Aufgaben vom Typ Nicht-Kernaufgabe gefasst, die mithil-
fe von bereits bekannten Kernaufgaben und unter Anwendung von Rechenstrategien gelöst 
werden können.
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 Tabelle 20:  Verschiedene Aufgabentypen im Aufgabenpool der Reaktionszeittestung

48 Einmaleinsaufgaben zum kleinen Einmaleins

31 Kernaufgaben (KA)
15 Nicht-Kernaufgaben 

(NKA)
2 Aufgaben mit einem 

Faktor 023 Kernaufgaben 
(Einmaleinssätze

1, 2, 5 und 10)

8 Kernaufgaben 
(Quadrataufgaben)

Die Aufgabenauswahl für die Reaktionszeittestung erfolgte nach den folgenden Kri-
terien: 
• Zunächst wurde bei der Auswahl angestrebt, dass verschiedene – im Lehrplan 

verankerte – Aufgabentypen, die sogenannten Kernaufgaben und Nicht-Kernauf-
gaben, abgedeckt sind. Die Lösung letztgenannter wird dabei gemäß den fach-
didaktischen Empfehlungen zunächst über Ableitungen vorgesehen (siehe Ab-
schnitt 2.3.1). Darüber hinaus wurden auch Aufgaben abgeprüft , die in einem 
Faktor die Ziff er 0 aufweisen – erwiesen sich Aufgaben diesen Formats in der 
fachdidaktischen Literatur doch als besonders fehleranfällig oder in der Unter-
richtspraxis zu wenig thematisiert (PADBERG & BENZ, 2011, S. 143; SCHERER 
& MOSER OPITZ, 2010, S. 127).

• Aufgabenwiederholungen sowie Tauschaufgaben wurden für die Auswahl nicht 
berücksichtigt.

• Eine annähernde Gleichverteilung der einzelnen Ziff ern über alle Testaufgaben 
wurde angestrebt.

• Ebenfalls im Aufgabenpool der Reaktionszeittestung befi nden sich die im Strate-
gieinterview abgeprüft en Aufgaben sowie einige Einmaleinsaufgaben, die even-
tuell unter Strategieeinsatz zur Ableitung dieser Aufgaben in Frage kommen. Für 
die im Interview eingesetzte Aufgabe 9  x  6 wurden unter anderem die Lösungs-
zeiten der Aufgaben 10 x 6 und 1 x 6 erfasst. Der schnelle Faktenabruf dieser Teil-
aufgaben stellt eine Voraussetzung für die Lösung über die Nachbaraufgabe (9 x 
6 = 10 x 6 – 1 x 6) dar.

Ausgehend von der Annahme, dass der Anteil an schnell abrufb aren Kernaufgaben 
zum Durchführungszeitpunkt der Testung höher ist als der der Nicht-Kernaufgaben 
(siehe Abschnitte 2.3.1 und 2.5.2), wurde die Aufgabenschwierigkeit durch eine ge-
zielte Aufgabenanordnung variiert. Jeder Nicht-Kernaufgabe wurde zumindest eine 
Kernaufgabe voran- und nachgestellt, so dass sich vermeintlich leichtere und schwie-
riger zu lösende Aufgaben abwechseln. Als Einstieg in die Testung wurde aus mo-
tivationalen Aspekten die vermeintlich einfach zu lösende Aufgabe 2 x 5 abgefragt 
(SELTER & SPIEGEL, 1997, S. 107).

Um einen möglichen „priming-eff ect“ (BIEWALD, 1998, S.  13) und damit ein-
hergehende Verzerrungen bei den Lösungszeiten einzelner Aufgaben zu vermeiden, 
wurden Aufgaben derselben Einmaleinsreihe nicht unmittelbar aufeinanderfolgend 
gestellt, sondern im Wechsel zwischen den Reihen: „Einander folgend vorgegebe-
ne Aufgaben derselben Multiplikations[reihe] […] werden schneller gelöst als Auf-
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gaben, die einen Wechsel zwischen verschiedenen Reihen erfordern“ (ebd., S.  13; 
STEEL & FUNNELL, 2001).

Vor der Durchführung der Reaktionszeittestung wurden die Kinder von der Test-
leiterin bzw. dem Testleiter über den Ablauf der Testung informiert. Zusätzlich dazu 
erfolgte eine erneute kurze allgemeine computerbasierte Instruktion zum Testab-
lauf mit Beginn der Testung. Explizit hervorgehoben wurde das vordergründige Ziel 
dieser Untersuchung – das schnelle Lösen der Einmaleinsaufgaben. Vor Beginn der 
eigentlichen Ermittlung der Lösungszeiten je Aufgabe wurde der Ablauf der Testung 
an zwei Probeaufgaben exemplarisch veranschaulicht. Durch die Möglichkeit der in-
dividuellen Fortsetzung der Testung durch die Testleiterin bzw. den Testleiter konn-
ten bereits nach Lösung des ersten Probeitems eventuell auft retende Fragen bzw. Un-
klarheiten besprochen werden. Spätestens mit Beantwortung der zweiten Aufgabe 
und einem möglichen wiederholten Austausch zwischen Testleiterin bzw. Testleiter 
und Testteilnehmerin bzw. -teilnehmer konnte sichergestellt werden, dass alle Kinder 
die Aufgabenstellung verstanden haben.

Vor jeder zu lösenden Einmaleinsaufgabe erscheint für 3 Sekunden ein kleines 
Wartekreuz bzw. Fixationszeichen, das die Aufmerksamkeit der Testteilnehmerin 
bzw. des Testteilnehmers auf die in Kürze zu lösende Einmaleinsaufgabe lenken soll. 
Darauf folgt der Bildschirm mit der zentral präsentierten Aufgabenstellung (z. B. 
8 x 7). Abbildung 30 veranschaulicht den Ablauf schematisch. Die Reaktionszeitmes-
sung beginnt mit dem Erscheinen der Einmaleinsaufgabe und wird durch die Test-
leiterin oder den Testleiter möglichst zeitgleich zur ersten verbalen Äußerung durch 
Drücken einer Taste gestoppt. Die manuelle Zeitauslösung wurde – wie auch in ähn-
lichen Untersuchungen (CAMPBELL & GRAHAM, 1985, S. 345) – gezielt eingesetzt, 
um den Schwierigkeiten alternativer Zeiterfassungen entgegenzuwirken .118  

Nach jedem Aufgabenset erhielten die Kinder ein neutrales, von der Anzahl rich-
tig gelöster Aufgaben unabhängiges Feedback. Pausen von einer vorgesehenen Länge 
von 10 Sekunden zwischen den einzelnen Sets konnten von den Testleiterinnen bzw. 
-leitern in Einzelfällen individuell verlängert werden. Ein für die Testleiterin bzw. 
den Testleiter erstellter Übersichtsbogen mit den aufgelisteten Einmaleinsaufgaben in 
ihrer getesteten Reihenfolge sowie Anmerkungsfeldern (siehe Anhang A.1) ermög-
lichte das Festhalten von eventuell falschen Ergebniseingaben oder weiteren unvor-
hergesehenen Vorfällen. Die Reaktionszeittestung wurde zudem videodokumentiert, 
um unter anderem im Falle möglicher fehlerhaft er Reaktionszeiterfassungen weitere 
Analysen vornehmen zu können.

118 Eine Selbstauslösung der Reaktionszeit durch die Testteilnehmerinnen und -teilnehmer mit 
nachfolgender Eingabe der Aufgabenlösung hätte eine ökonomische Gruppentestung ermög-
licht – die Pilotierung der Reaktionszeittestung in Jahrgangsstufe 4 (N = 65) off enbarte aller-
dings, dass Kinder mit dem Ziel vor Augen, eine Aufgabe möglichst schnell zu lösen, vor der 
kompletten Berechnung der gestellten Aufgabe die Reaktionszeit durch Drücken der Taste 
auslösten und deutlich kleinere Lösungszeiten als die tatsächlichen erfasst wurden.
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5.3.2 Strategieinterview

Zur Erhebung der Herangehensweisen an Aufgaben des kleinen Einmaleins wird die 
Methode des klinischen Interviews eingesetzt. Klinische Interviews stellen eine in der 
mathematikdidaktischen Forschung weit verbreitete, anerkannte Methode zur Erhe-
bung von Denk- und Vorgehensweisen von Kindern dar (BECK & MAIER, 1993, 
S.  147 ff .; SELTER & SPIEGEL, 1997, S.  100 ff .; BENZ, 2005, S.  105 ff .). HUINKER 
(1993) beschreibt die Rolle des Interviews wie folgt: „Interviews, like windows, allow 
us to see students’ mathematical understanding and reasoning more clearly“ (ebd., 
S. 86).

Die von Jean Piaget aus der Psychoanalytik entlehnte und entwickelte Methode 
ermöglicht Kindern, eine gestellte Aufgabe zunächst so zu lösen, wie sie wollen. Erst 
in einem zweiten Schritt können durch Nachfragen weitere Denkprozesse der Kin-
der off engelegt werden. Jean Piaget unterscheidet zwischen der klassischen und der 
revidierten klinischen Methode (PIAGET, 1926). In dieser Arbeit bezieht sich der Be-
griff  klinisches Interview auf das klassische Verfahren, das ausschließlich sprachli-
che Äußerungen der Kinder einbezieht und nicht wie für die revidierte Methode üb-
lich auch Handlungen der Kinder am Material integriert (SELTER & SPIEGEL, 1997, 
S. 101).

Die klinischen Interviews werden in dieser Arbeit in halbstandardisierter Form
durchgeführt. Vor allem um eine Vergleichbarkeit der Interviewergebnisse bzw. der 
Herangehensweisen zu ermöglichen, erweist sich das halbstandardisierte Verfahren 
als besonders geeignet. Trotz des Einsatzes eines „Interview-Leitfaden[s], der dem 
Interviewer mehr oder weniger verbindlich die Art und die Inhalte des Gesprächs 
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Abbildung 30: Schematische Darstellung der Reaktionszeiterfassung.
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vorschreibt“ (BORTZ & DÖRING, 2006, S.  239, Ergänzung der Autorin), zeichnet 
sich eine halbstandardisierte Form dennoch durch seine Off enheit aus, individuel-
le Denkwege der Kinder in alle Richtungen verfolgen zu können (SELTER & SPIE-
GEL, 1997).

Charakteristisch für diese Methode sind nach SELTER und SPIEGEL (1997) die 
bewusste Zurückhaltung der interviewenden Person, das Erzeugen kognitiver Kon-
fl ikte sowie das fl exible Reagieren auf die Lösungswege der Kinder. Für eine über-
sichtliche Darstellung der Vor- und Nachteile eines klinischen Interviews sei auf die 
Arbeit von BENZ (2005) verwiesen (ebd., S. 106 ff .).

Im Folgenden soll ausschließlich die Wahl des klinischen Interviews hinsichtlich 
der Besonderheiten der vorliegenden Arbeit thematisiert werden:
• In allen Teilbereichen des Strategieinterviews werden neben quantifi zierbaren 

Aussagen wie beispielsweise zur Korrektheit der zu lösenden Aufgaben oder der 
Anzahl der genannten unterschiedlichen Herangehensweisen auch qualitative 
Aussagen im Hinblick auf die kindlichen Herangehensweisen an Einmaleinsauf-
gaben getätigt. Das klinische Interview ermöglicht dabei nicht nur Erkenntnisse 
hinsichtlich konkreter Ergebnisse, sondern liefert auch Auskünft e zu den einge-
setzten Lösungs- bzw. Rechenwegen – dem Lösungsprozess.

• Das klinische Interview bietet zudem in Form der halbstandardisierten Varian-
te die Möglichkeit Nachfragen zu stellen und auf diese Weise Aufschluss über in-
dividuelle Denkwege oder Denkprozesse zu erhalten. Dies ist vor allem bei der 
Testung von Kindern erforderlich, die unter Umständen noch nicht in der Lage 
sind, ihre Gedanken, Lösungswege oder Refl exionen genau und präzise für jeden 
nachvollziehbar zu verbalisieren. „Selbst wenn das Kind verstanden hatte, konnte 
es vielleicht doch noch nicht den gesamten Umfang seines Wissens verbalisieren“ 
(GINSBURG & OPPER, 2004, S.  150). Dieses Verfahren bietet somit die Gele-
genheit zunächst vielleicht etwas unverständliche oder unpräzise Gedankengän-
ge der Kinder zu hinterfragen, mit dem vordergründigen Ziel, die Schülerin oder 
den Schüler in seinem Denken nachvollziehen und verstehen zu können (HOPF, 
2008, S.  177). Andersherum können aber auch Verständnisprobleme auf Seiten 
der Kinder hinsichtlich der Aufgabenstellung entstehen, die aufgrund der Halb-
standardisierung ohne weiteres mit der Interviewerin oder dem Interviewer ge-
klärt werden können. Dabei bietet der konzipierte Interviewleitfaden (siehe An-
hang A.2) auch weitere Anregungen bzw. Variationen der Fragestellungen oder 
alternative Formulierungsvorschläge für Aufgabenstellungen.

Nach THRELFALL (2009) können zwei Hauptmethoden zur Untersuchung mentaler 
Rechenvorgänge bei Kindern unterschieden werden (ebd., S.  549): self-reports und 
controlled option experiments. „In self-report approaches, subjects are asked to report 
what they do, either as it is happening using ‚verbal protocol‘ methods, or aft erwards 
by description (THRELFALL, 2009, S. 549, Hervorhebung im Original). In der vor-
liegenden Untersuchung wurde sich für eine Beschreibung der Vorgehensweise bzw. 
des Rechenweges direkt im Anschluss an die Aufgabenlösung entschieden. Die alter-
native Methode des lauten Denkens (während des Lösungsprozesses) wurde als eher 
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ungeeignet identifi ziert, da nicht sichergestellt werden kann, dass die zusätzlich zur 
Aufgabenbearbeitung verlangte Anforderung des lauten Denkens nicht den Lösungs-
prozess selbst beeinfl usst.

Als Alternativen zur bereits beschriebenen Methode des self-reports nennt 
THRELFALL (2009) „experiments involving constrained choices“ (ebd., S.  549) wie 
beispielsweise die choice/no-choice method, die von SIEGLER und LEMAIRE (1997) 
entwickelt und bereits in den Ausführungen des Abschnittes 3.3.2 als Forschungs-
methode angeführt wurde. Trotz der beschriebenen Vorteile der besagten Metho-
de (siehe Abschnitte 3.3.2), die Testungen in einer Wahl-Bedingung und mehreren 
Nicht-Wahl-Bedingungen vorsieht, wurde für die Studie dieser Arbeit bewusst auf 
die Methode des self-reports zurückgegriff en. Als ausschlaggebendes Kriterium für 
diese Entscheidung sind die Forschungsfragen bzw. die verfolgten Ziele (siehe Ab-
schnitt 5.1) dieser Studie zu nennen. Im Gegensatz zu den Studien, die die Choice/
no-choice-Methode bevorzugt einsetzen und eine adäquate Strategiewahl von der 
Lösungskorrektheit und der Lösungsgeschwindigkeit festmachen, zeichnet sich die 
Adäquatheit der Strategiewahl in der vorliegenden Arbeit durch den Einsatz von ge-
eigneten Rechenstrategien unter Berücksichtigung der Aufgabencharakteristik aus 
(siehe Abschnitt 3.3.2). Es geht somit in erster Linie nicht darum zu überprüfen, ob 
Kinder bei freier Strategiewahl die Herangehensweise zur Lösung einsetzen, die am 
schnellsten zur korrekten Lösung führt. Denn eine schnelle Aufgabenlösung kann, 
wie im Th eorieteil (siehe Abschnitt 2.4.3; BROWNELL & CHAZAL, 1935, S. 25) be-
reits herausgestellt, auch auf die Eff ektivitätssteigerung einer weniger tragfähigen He-
rangehensweise zurückgeführt werden. Vielmehr ist davon auszugehen, dass eine 
Herangehensweise tragfähig ist, wenn die Aufgabenlösung unter bewusstem Einsatz 
von Zahlbeziehungen erfolgt – der Erwartung entsprechend sollte die Aufgabenlö-
sung allerdings zu einem gewissen Zeitpunkt der Erarbeitung auch möglichst schnell 
und korrekt ablaufen.

Ein weiterer Nachteil der von LEMAIRE und SIEGLER (1997) entwickelten Me-
thode besteht darin, dass die Vielfalt an verschiedenen Herangehensweisen in der 
Unterrichtspraxis nur eingeschränkt erfasst werden kann. Da für jede genannte He-
rangehensweise in der Wahl-Bedingung eine Nicht-Wahl-Bedingung vorgesehen ist, 
stellt sich das beschriebene Verfahren als sehr umfangreich und zeitaufwendig her-
aus.119 

However, given the rich diversity of strategies that people use to solve cogni-
tive tasks (and which, thus, may occur in the choice condition), the choice/no-
choice method runs the risk of becoming a problematically time-consuming and 
unmanageable investigative tool if one would eff ectively implement a no-choice 
condition for every strategy being used in the choice condition. (LUWEL et al., 
2009, S. 355)

119 Dies soll an einem exemplarischen Beispiel veranschaulicht werden: Nennen Kinder zur Auf-
gabenlösung von fünf Einmaleinsaufgaben beispielsweise vier unterschiedliche Herangehens-
weisen, müsste jede Testteilnehmerin bzw. jeder Testteilnehmer in der Nicht-Wahl-Bedin-
gung 20 Aufgaben lösen (jede der fünf Aufgaben muss auf vier verschiedenen Lösungswegen 
berechnet werden).
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Aus dem geschilderten Grund wird die freie Strategiewahl oft  ersetzt durch eine 
„restricted-choice“ oder „multiple-choice condition“ (LUWEL et al., 2009, S.  355), 
die das Individuum in seiner ursprünglich vorgesehenen oder präferierten Strategie-
wahl durchaus maßgeblich einschränken kann.

Im Vergleich dazu kann der self-report gemäß THRELFALL (2009) einen „rela-
tively direct access“ gewährleisten – einen möglichst natürlichen, freien, wenig vor-
eingenommenen Zugang zu den Einmaleinsaufgaben, der den Kindern ihre präfe-
rierte Strategiewahl ermöglicht.

ASHCRAFT (1990) führt als Kritikpunkt der Methode des self-reports an: „Ver-
balised solutions may not refl ect the subject’s true solution strategy, but merely one 
that is somewhat easier to verbalise“ (ebd., S.  201; siehe auch Abschnitt 3.2.2). Bei 
der Betrachtung und Interpretation von Ergebnissen sollte dies mitbedacht werden. 
Im Hinblick auf die Choice/no-choice-Methode muss allerdings ebenfalls festgehal-
ten werden, dass keine Garantie besteht, dass Kinder in der Nicht-Wahl-Bedingung, 
in der sie aufgefordert werden, eine vorgeschriebene Herangehensweise zur Aufga-
benlösung einzusetzen, diese auch wirklich zur Lösung heranziehen. Kinder können 
unter Umständen schlicht und einfach einen Lösungsweg wählen, den sie bevorzugt 
anwenden oder der leichter zur Lösung führt. Vor allem, wenn die geforderte Her-
angehensweise für die Aufgabenstellung höchst unnatürlich ist, dürft e dies eintreten.

Im Folgenden werden die einzelnen Teilbereiche des Strategieinterviews vorge-
stellt. Das Strategieinterview setzt sich aus drei Teilbereichen zusammen. Alle Teilbe-
reiche wurden ebenso wie die computerbasierte Reaktionszeittestung videodokumen-
tiert. Während des ersten Interviewteils haben die Kinder bei der Aufgabenlösung 
freie Strategiewahl. Sechs verschiedene Aufgaben werden auf diese Weise von den 
Kindern gelöst. Die Aufgaben wurden in Form von dargebotenen Aufgabenkarten 
gestellt und mündlich gelöst. Allerdings wurden den Schülerinnen und Schülern 
Papier und Stift  zur Verfügung gestellt, um gegebenenfalls Notizen zu ermöglichen. 
Das Ziel dieses ersten Teilbereiches bestand darin, die Vielfalt an unterschiedlichen 
Herangehensweisen an Aufgaben des kleinen Einmaleins zu ermitteln.

Geben Schülerinnen oder Schüler hinsichtlich der Lösung einer Einmaleinsaufga-
be an, die Aufgabe gewusst zu haben (die Aufgabe womöglich über den Faktenabruf 
gelöst zu haben), werden sie aufgefordert, eine alternative Herangehensweise bzw. 
einen alternativen Lösungsweg zur erstgenannten Lösung zu nennen. Eine mögliche 
Auff orderung oder Hilfestellung des Interviewers für diesen speziellen Fall könnte 
wie folgt aussehen:
• Stell dir vor, du kannst dich einfach nicht mehr an das Ergebnis erinnern – wie 

versuchst du dann die Aufgabe zu lösen?

Da sich diese Studie bereits im Zuge der Reaktionszeittestung mit einem schnellen 
Faktenabruf aus dem Gedächtnis befasst, wurde im Strategieinterview zur Ermitt-
lung der Vielfalt an unterschiedlichen Herangehensweisen eine alternative Lösungs-
möglichkeit anstelle des genannten Faktenabrufes gefordert.

Der zweite Interviewteil versucht Strategiewahl-Alternativen der Kinder jeweils 
zu einer konkreten Einmaleinsaufgabe zu ermitteln. Die Schülerinnen und Schü-
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ler sollen für die beiden letzten Aufgabenstellungen des ersten Interviewteils weitere 
mögliche Lösungswege zu den bereits genannten aufzeigen. Durch die Auff orderung 
zur Nennung zusätzlicher Lösungswege kann gegebenenfalls nicht nur die Vielfalt 
der verschiedenen Herangehensweisen des ersten Teilbereichs des Strategieinterviews 
vergrößert werden, sondern auch die Anzahl an verschiedenen Herangehensweisen 
an eine konkrete Aufgabe erhoben werden. Ein Ziel des Interviews besteht darin, ein 
möglichst umfassendes Strategie-Repertoire der Kinder hinsichtlich der Lösung von 
Einmaleinsaufgaben zu erhalten. Da der erste Teilbereich diese Zielsetzung allerdings 
nicht ausschöpfend erfüllen kann, wurde das Strategieinterview um diesen zweiten 
Teilbereich erweitert. In einer Pilotierungsstudie mit N = 25 Grundschulkindern im 
3. Schuljahr wurden verschiedene Methoden zur Erfassung des Strategie-Repertoires 
erprobt und auf ihre Wirksamkeit hin analysiert und beurteilt. Ergänzende Fragen 
zur Ermittlung noch weiterer alternativer Herangehensweisen off enbarten – im Ver-
gleich zu den ausschließlich in der freien Strategiewahl ermittelten Herangehenswei-
sen – ein deutlich größeres Strategie-Repertoire der Kinder.

Der dritte und zugleich letzte Teil des Strategieinterviews überprüft  mögliche 
Herangehensweisen bzw. Ideen zur Lösung einer Aufgabe aus dem großen Einmal-
eins. Die Kinder sollen einen möglichen Lösungsweg zur Berechnung dieser Aufga-
be kommunizieren und gegebenenfalls vorhandene alternative Lösungswege nennen. 
Eine Berechnung der Aufgabe wurde in diesem Interviewteil nicht gefordert – ledig-
lich die Beschreibung eines Lösungsweges oder einer Idee.

Eine Übersicht über die drei Teilbereiche des Strategieinterviews sowie die ausge-
wählten Aufgaben veranschaulicht Tabelle 21. 

Tabelle 21: Teilbereiche des Strategieinterviews und Aufgabenauswahl

Kleines Einmaleins

1 Freie Strategiewahl (choice) 6 Aufgaben

3 x 7

9 x 4

5 x 8

6 x 9

4 x 6

8 x 7

2 Strategiewahl-Alternativen 2 Aufgaben
4 x 6

8 x 7

Großes Einmaleins
3 Freie Strategiewahl (choice) 1 Aufgabe 18 x 7

Die Auswahl der Aufgaben für das Strategieinterview wurde für alle Interviewteil-
bereiche gezielt vorgenommen. Dabei wurden Aufgaben so ausgewählt, dass sie eine 
Lösung anhand von verschiedenen Rechenstrategien ermöglichen. Die Übersicht der 
Tabelle 22 veranschaulicht die unterschiedlichen Herangehensweisen bzw. Rechen-
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strategien, die je Aufgabenstellung zur Aufgabenlösung eingesetzt werden können 
bzw. sich zur Aufgabenlösung anbieten könnten (Interviewteilbereich 1, 2 und 3).120 
Die sukzessive Addition ist in der Übersicht ebenfalls aufgeführt, auch wenn diese 
wie dem Th eorieteil (siehe  Abschnitte 2.2.3) zu entnehmen ist, nicht per se als Re-
chenstrategie erfasst wird. Erweist sich ein Einsatz aufgrund der Aufgabencharakte-
ristik allerdings als überlegt, kann die sukzessive Addition auch als Rechenstrategie 
gelistet bzw. angesehen werden. Die Übersicht stellt keine verbindliche Zuordnung 
zwischen Aufgabenstellung und einzusetzender Herangehensweise dar, veranschau-
licht aber, dass sich die ein oder andere Rechenstrategie (wie beispielsweise die 
Nachbaraufgabe) häufi ger als Lösungsweg anbietet als wiederum andere aufgeführte 
Rechenstrategien. Herangehensweisen wie die Verdopplung bzw. die Halbierung oder 
das gegensinnige Verändern sind auf eine spezielle Aufgabencharakteristik angewie-
sen und erweisen sich somit weniger häufi g als geeignete Lösungsvarianten (siehe 
Abschnitt 2.2.2).

 Tabelle 22:  Erwartete bzw. mögliche Herangehensweisen zur Aufgabenlösung der Interviewteilbereiche

Aufgabe Nachbaraufgabe Zerlegung Verdoppeln/ 
Halbieren

gegensinniges 
Verändern

sukzessive 
Addition

3 x 7 ✓ ✓ – – ✓

9 x 4 ✓ ✓ ✓ (✓) –
5 x 8 (✓) ✓ ✓ ✓ ✓

6 x 9 ✓ (✓) (✓) – –
4 x 6 ✓ ✓ ✓ (✓) –
8 x 7 ✓ ✓ (✓) – –

18 x 7 – ✓ ✓ – –

Insgesamt setzt sich die Auswahl für den ersten Teilbereich des Strategieinterviews 
aus einer Kernaufgabe (5 x 8) und fünf Nicht-Kernaufgaben zusammen. Die einge-
setzten sechs Einmaleinsaufgaben decken dabei die Faktoren von 3 bis 9 ab.

Die Aufgabe 3 x 7 wurde mit ihrem kleinen Zahlenmaterial berücksichtigt, um 
einen – je nach zugrundeliegendem Verständnis – sinnvollen Einsatz der sukzessi-
ven Addition zu ermöglichen (siehe Abschnitt 2.2.2). Die sukzessive Addition kann 
allerdings im konkreten Fall nur als adäquate Herangehensweise bezeichnet wer-
den, wenn der zweite Faktor als Multiplikator angesehen wird und die Aufgabe 
3 x 7 dementsprechend über 3 x 7  =  7 + 7 + 7 gelöst wird. Die Wahl der Aufgabe 
5 x 8 ist aus ähnlichen Beweggründen in den Pool an Aufgaben aufgenommen wor-
den. Neben der Aufgabe 3 x 7 ist auch bei der Lösung einer Einmaleinsaufgabe mit 
Faktor 5 eine Berechnung über die sukzessive Addition denkbar. Wenn die Aufga-

120 Die in Tabelle 22 aufgeführten, erwarteten bzw. möglichen Herangehensweisen je Aufgaben-
stellung sind als normative Setzung der Autorin zu verstehen. Häkchen stehen für eher na-
heliegende Aufgabenlösungen. Die Herangehensweisen an Aufgaben, die mit Häkchen in 
Klammern gekennzeichnet sind, stellen weitere denkbare, aber vermutlich nicht die geläu-
fi gsten Herangehensweisen dar.
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be 5 x 8 nicht schon als Kernaufgabe frühzeitig automatisiert zur Verfügung steht, 
kann zur schnellen Aufgabenlösung der Rechenweg 5 x 8 = 5 + 5 + 5 + 5 + 5 + 5 + 5 
+ 5 = 10 + 10 + 10 + 10 herangezogen werden. Die weiteren angeführten Aufgaben 
können ebenfalls über die sukzessive Addition gelöst werden, aufgrund der Aufga-
bencharakteristik ist der Einsatz der sukzessiven Addition aber wenig refl ektiert bzw. 
empfehlenswert (siehe Abschnitt 2.2.3).

Zur Lösung der Aufgabe 6 x 9 scheint die Anwendung der Nachbaraufgabe deut-
lich naheliegender als eine potentielle Lösung über die Herangehensweise der Zer-
legung basierend auf einer Kern- und einer (unter Umständen noch nicht auswen-
dig verfügbaren) Nicht-Kernaufgabe (z. B. 6 x 9  =  4 x 9 +  2  x  9). Insbesondere die 
zur Aufgabenlösung benötigte Nicht-Kernaufgabe führt dazu, dass die Faktorzerle-
gung für die Aufgabenstellung 6 x 9 in der Tabelle 22 mit eingeklammerten Häkchen 
versehen ist. Auch die Aufgabe 5 x 8 kann nur mithilfe einer Nicht-Kernaufgabe über 
die Rechenstrategie der Nachbaraufgabe gelöst werden und wird aus diesem Grund 
ebenfalls mit einem Häkchen in Klammern versehen.

Die Anwendung der Rechenstrategie des gegensinnigen Veränderns ist auf eine 
spezielle Aufgabencharakteristik angewiesen. Eine geeignete Aufgabencharakteris-
tik geht aber nicht zwingend mit einer leichter zu lösenden alternativen Aufgabe 
einher. Anstelle der Aufgabe 5 x 8 kann auch auf die vermeintlich leichte Aufgabe 
10 x 4 zur Lösung zurückgegriff en werden. Die Aufgaben 9 x 4 und 4 x 6, die in Ta-
belle 22 beide mit Häkchen in Klammern versehen sind, können aufgrund der Auf-
gabencharakteristik noch über eine (vermeintlich leichte) Verdopplung gelöst wer-
den (18 x 2 bzw. 2  x  12). Die Aufgaben 8 x 7 und 6 x  9 ermöglichen ebenfalls eine 
Aufgabenlösung mittels gegensinnigen Veränderns (8 x 7  =  4 x 14  =  2 x 28 bzw. 6 x 
9 = 2 x 27), die Lösung wird allerdings anhand der alternativen Aufgaben nicht maß-
geblich erleichtert. Aus diesem Grund wird das gegensinnige Verändern bei den bei-
den letztgenannten Aufgaben nicht als erwartete bzw. mögliche Herangehensweise in
Tabelle 22 geführt. 

Die Aufgaben 9 x 4 und 4 x 6 können darüber hinaus auch über die Rechenstra-
tegie des Verdoppelns (z. B. 9 x 4 = 2 x (2 x 9) bzw. 4 x 6 = 2 x (2 x 6)) gelöst werden. 
Zur Lösung der Aufgabe 5 x 8 kann auf die Halbierung 5 x 8 =  (10 x 8) : 2 zurück-
gegriff en werden. Für die Aufgaben 6 x 9 und 8  x  7 müssen entweder zwei Nicht-
Kernaufgaben verdoppelt (6 x 9  =  2 x (3 x 9) bzw. 8 x 7  =  2 x (4 x 7)) oder für die 
Aufgabe 8 x 7 drei Verdopplungen hintereinander ausgeführt werden (8 x 7 = 2 x 2 x 
(2 x 7)). Da die Verdopplung bei bereits bekannter Nicht-Kernaufgabe denkbar ist 
ebenso wie eine mehrmalige Verdopplung zur Lösung der Aufgabe 8 x 7, die Ver-
dopplung allerdings sicherlich nicht die naheliegendste Herangehensweise bei die-
sen beiden Aufgaben darstellt, werden die letztgenannten Aufgaben in Tabelle 22 mit 
Häkchen in Klammern versehen.
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Generell wurde bei der Aufgabenselektion berücksichtigt, dass sich zusätzliche 
Rechenstrategien oder Herangehensweisen hinsichtlich der Anwendung der Tausch-
aufgabe bzw. der Interpretation des zweiten Faktors als Multiplikator anbieten.121 

Für den zweiten Interviewteilbereich wurden zwei Aufgaben ausgesucht, die sich 
durch viele verschiedene Rechenstrategien zur Aufgabenlösung auszeichnen. Darü-
ber hinaus sollen zur Lösung auch verschiedene Lösungswege für ein- und dieselbe 
Rechenstrategie denkbar sein. Diese Voraussetzung erfüllen die beiden ausgewählten 
Aufgaben 4 x 6 und 8 x 7 (siehe Tabelle 23). In Tabelle 23 werden verschiedene mög-
liche bzw. erwartete Lösungswege über die Nachbaraufgabe, die Zerlegung sowie das 
Verdoppeln  und Halbieren aufgezeigt.

Tabelle 23:  Verschiedene denkbare Lösungswege des zweiten Teilbereichs des Strategieinterviews

Aufgabe Nachbaraufgabe Zerlegungsaufgabe Verdoppeln/Halbieren

4 x 6 z. B. 
5 x 6 – 1 x 6
6 x 4 = 5 x 4 + 1 x 4

z. B. 
2 x 6 + 2 x 6
6 x 6 – 2 x 6
6 x 4 = 4 x 4 + 2 x 4
6 x 4 = 2 x 4 + 2 x 4 + 2 x 4

z. B. 
2 x (2 x 6) 
2 x (4 x 3) (keine KA)

8 x 7 z. B. 
7 x 7 + 1 x 7
7 x 8 = 8 x 8 – 1 x 8

z. B. 
10 x 7 – 2 x 7
5 x 7 + 3 x 7 (keine KA)
7 x 8 = 5 x 8 + 2 x 8
7 x 8 = 10 x 8 – 3 x 8 (keine KA) 

z. B. 
2 x 2 x (2 x 7) 
2 x (4 x 7) (keine KA)

Zur Lösung beider Aufgaben kann – wie in Tabelle 23 angeführt – auf Quadratauf-
gaben zurückgegriff en werden. Ebenso bieten sich Aufgabenlösungen auf Basis des 
Einsatzes von Tauschaufgaben an – kursiv hervorgehoben sind die Lösungswege, bei 
denen der zweite Faktor als Multiplikator interpretiert wird. Vereinzelte Lösungen, 
die nicht ausschließlich auf der Anwendung von Kernaufgaben (KA) basieren, wur-
den in Tabelle 23 als solche gekennzeichnet (keine KA).

Im dritten Interviewteilbereich sollten mögliche Herangehensweisen oder 
Ideen zur Lösung einer Aufgabe aus dem großen Einmaleins vorgestellt wer-
den (siehe Tabelle 24). Die Aufgabe 18 x 7 diente der Überprüfung eines mög-
lichen Transfers von Rechenstrategien. Wurde beispielsweise die Rechenstrate-
gie der Zerlegung auf Basis von Einsicht für das kleine Einmaleins angewandt 
und verinnerlicht, könnten die Kinder unter Umständen auch zur Übertra-
gung dieser Rechenstrategie auf den größeren Zahlenraum fähig sein. Denkbar 
wäre demnach z. B. die Übertragung des Lösungsweges 8 x 7  =  10  x  7  –  2 x  7 
auf 18  x 7 = 20 x 7 – 2 x 7. Weitere denkbare Herangehensweisen sind in Tabelle 24 
auf  gelist et.

121 Die Aufgabe 4 x 6 lässt sich beispielsweise nicht nur über die Nachbaraufgabe 4 x 6 = 5 x 6 
– 1 x 6 lösen, sondern auch wenn der zweite Faktor als Multiplikator interpretiert wird (z. B. 
6 x 4 = 5 x 4 + 1 x 4) (siehe für weitere Beispiele auch Tabelle 23).
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Tabelle 24:  Verschiedene denkbare Lösungswege für die Einmaleinsaufgabe 18 x 7

Aufgabe Verdoppeln/Halbieren Zerlegungsaufgabe Sukzessive Addition

18 x 7 z. B. 2 x (9 x 7)
  

z. B.  20 x 7 – 2 x 7
         10 x 7 + 8 x 7

z. B. 
7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 
7 + 7 + 7 + 7 + 7 + 7 + 7 + 7 + 7
18 + 18 + 18 + 18 + 18 + 18 + 18

5.4 Kodierung und statistische Methoden der Haupterhebung

Reaktionszeittestung
Für jede zu lösende Einmaleinsaufgabe der Reaktionszeittestung erfasste das compu-
terbasierte Programm E-Prime die benötigte Lösungszeit, das genannte Ergebnis so-
wie die Korrektheit der Aufgabenlösung. Die Reaktionszeittestung kann als Niveau-
test angesehen werden, zu dessen Bearbeitung ausreichend Zeit zur Verfügung stand. 
Nicht gelöste Aufgaben wurden in der dichotomen 0–1 Kodierung daher hinsichtlich 
der Korrektheit als falsch (0) gewertet. Für einen Teil der anschließenden Auswer-
tung wurden die Variablen in das Statistikprogramm SPSS übertragen.

Strategieinterview
Für alle sechs zu lösenden Einmaleinsaufgaben des ersten Teilbereiches des Strate-
gieinterviews wurden die – bei freier Strategiewahl präferierten – Lösungswege des 
Kindes sowie das Ergebnis der berechneten Einmaleinsaufgabe erfasst.122 Der im De-
tail festgehaltene Lösungs- bzw. Rechenweg ermöglichte dabei die Kodierung der 
eingesetzten Herangehensweisen sowie die Ermittlung eventueller Fehlertypen. Zu-
sätzlich zum genannten Lösungsweg wurde auch erfasst, inwiefern die Kommutativi-
tät bzw. der implizite Einsatz der Tauschaufgabe bei der Aufgabenbeantwortung eine 
Rolle spielt bzw. fl exibel bei der Strategiewahl genutzt wird.123 Darüber hinaus wurde 
in einer weiteren Variable kodiert, ob auf Nicht-Kernaufgaben bei der Aufgabenbe-
antwortung zurückgegriff en wurde.

Die Kodierung der Herangehensweisen an Aufgaben des kleinen Einmaleins er-
folgte basierend auf einem in zwei Schritten entwickelten Kodiermanual. In einem 
ersten theoriegeleiteten, deduktiven Schritt wurde ein Kodierungsschema, orien-
tiert an den in der fachdidaktischen Literatur unterschiedenen Herangehenswei-
sen, ausgearbeitet (siehe Abschnitt 2.2.2 bis 2.2.4). Unterschieden wurden die bereits 
im Abschnitt 2.2.2 klassifi zierten drei Hauptkategorien: der Faktenabruf, die Re-
chenstrategien sowie das Zählen bzw. wiederholte Addieren. Innerhalb der Katego-

122 Im Falle der Angabe eines schnellen Abrufes der Aufgabe aus dem Gedächtnis oder der Äu-
ßerung, die Aufgabe gewusst zu haben, wird der geforderte alternative Lösungsweg des Kin-
des ebenfalls festgehalten.

123 Für jeden Lösungsweg wurde parallel zur Erfassung der Herangehensweise eine mögliche 
Anwendung der Tauschaufgabe bzw. die Interpretation des 2. Faktors als Multiplikator 
ermittelt.
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rie der Rechenstrategien wurden als typische Herangehensweisen die Tauschaufga-
be, die Verdopplung und Halbierung eines Faktors, die Zerlegung eines Faktors, die 
Nachbaraufgabe und das gegensinnige Verändern beider Faktoren klassifi ziert (sie-
he Tabelle 25). Bei den Lösungswegen über die Nachbaraufgabe und die Faktorzer-
legung wurde dabei noch einmal diff erenziert in additive oder subtraktive Zerlegun-
gen. Ebenso wie in der Klassifi zierung der Herangehensweisen im Th eorieteil dieser 
Arbeit stellen das Zählen und wiederholte Addieren gleicher Summanden eine wei-
tere Kategorie dar. Während im Th eorieteil die geringe Eleganz und Effi  zienz dieser 
Herangehensweisen im Allgemeinen zu einer Zusammenfassung zu einer Hauptkate-
gorie geführt hat, bietet sich aufgrund der unterschiedlich eleganten bzw. effi  zienten 
Herangehensweisen innerhalb dieser Kategorie eine separate Kodierung des Zählens 
und wiederholten Addierens an. Idealtypische Herangehensweisen dieser Katego-
rie wie die wiederholte Addition oder das Nutzen von Zahlenfolgen können in der 
Praxis bzw. im Strategieinterview nicht zweifelsfrei voneinander abgegrenzt werden. 
Ein Kind, das zur Lösung der Aufgabe 4 x 3 beispielsweise folgenden Lösungsweg 
nennt: 3, 6, 9, 12 – kann durchaus über das Aufsagen der Reihe zur Aufgabenlö-
sung gelangt sein – unter Umständen etwas längere Lösungszeiten zur Aufgabenbe-
antwortung können aber auch ein Indiz dafür sein, dass Kinder die Aufgabe über die 
sukzessive Addition gelöst haben. Da auch ein Nachfragen durch die Interviewerin 
oder den Interviewer unter Umständen keine klare Zuordnung ermöglicht, werden 
die sukzessive Addition und das Nutzen von Zahlenfolgen in der vorliegenden 
Untersuchung als eine idealtypische Herangehensweise zusammengefasst und unter 
der Bezeichnung sukzessive Addition geführt. Die Herangehensweise des rhythmi-
schen Zählens bzw. des rhythmischen Zählens unter Zuhilfenahme der Finger kann 
von der idealtypischen Herangehensweise der sukzessiven Addition unterschieden 
und als eigene Herangehensweise separat aufgeführt werden.124 Der Lösungsweg 
eines Kindes, das zur Lösung einer Aufgabe nicht off ensichtlich auf das rhythmische 
Zählen zurückgreift  (z. B. 1, 2, 3, 4, 5, 6, 7… zur Lösung der Aufgabe 4 x 3), sondern 
die Aufgabe 4 x 3 über den bereits beschriebenen Lösungsweg 3, 6, 9, 12 löst – ein 
rhythmisches Zählen aber vermuten lässt –, wurde ebenfalls als sukzessiven Addi-
tion kodiert.125

Eine Vorkodierung der ersten Interviews zeigte darüber hinaus, dass auch eine 
Vielzahl an Mischformen zur Lösung von Einmaleinsaufgaben herangezogen wurden 
sowie weitere im ersten Kodierungsschema noch unberücksichtigte Herangehens-
weisen eingesetzt werden. Das Manual wurde aus diesem Grund in einem zweiten 

124 Die Separierung ist inhaltlich vertretbar, stellt das rhythmische Zählen ohne oder unter Zu-
hilfenahme der Finger doch eine weniger elegante Herangehensweise im Vergleich zu den 
anderen Lösungswegen dar. 

125 Für den gerade beschriebenen Fall, dass die Lösung einer Aufgabe unter Umständen durch 
das rhythmische Zählen anstelle der sukzessiven Addition oder dem Nutzen von Zahlen-
folgen ermittelt wurde, wurde eine Notiz in einem Anmerkungsfeld des Datensatzes 
vermerkt. Bei Analysen im Ergebnisteil, die unter Umständen eine ausschließliche Be trach-
tung der sukzessiven Addition erfordern, können die betroff enen Fälle somit bei Bedarf 
separiert betrachtet werden. 
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Schritt im Sinne eines induktiven Vorgehens um die folgenden Herangehensweisen 
erweitert:
• die verkürzte sukzessive Addition (z. B. 8 x 7 = 14 + 14 + 14 + 14) sowie 
• Mischformen:

 – Zerlegung eines Faktors und anschließende sukzessive Addition des anderen Teil-
produktes (z. B. 8 x 7 = 5 x 7 + 7 + 7 + 7)

 – Verdopplung einer Aufgabe und anschließende sukzessive Addition 
(z. B. 5 x 8 = 2 x (2 x 8) + 8)

Herangehensweisen, die keine der genannten Kategorien zugeordnet werden konn-
ten, wurden in der Kategorie sonstige Herangehensweisen zusammengefasst. Das Zu-
sammenwirken eines deduktiven sowie eines induktiven Vorgehens liefert ein umfas-
sendes Kategoriensystem, das in Tabelle 25 veranschaulicht is t.

Tabelle 25:  Kodiermanual der Herangehensweisen an Aufgaben des kleinen Einmaleins

Hauptkategorien Konkrete Herangehensweisen

Faktenabruf Abruf aus dem Gedächtnis126

Rechenstrategien

Tauschaufgabe

Verdopplung

Halbierung

Nachbaraufgabe
Additiv

Subtraktiv

Zerlegung eines Faktors
Additiv

Subtraktiv

gegensinniges Verändern

Mischformen

Zerlegung eines Faktors u. sukzessive 
Addition

Additiv

Subtraktiv

Halbierung u. sukzessive Addition

Zählen und sukzessive 
Addition 

sukzessive Addition

verkürzte sukzessive Addition

rhythmisches Zählen

Sonstige Herangehensweisen

Auf Basis der Lösungswege wurden aber nicht nur die jeweiligen Herangehenswei-
sen an Einmaleinsaufgaben erfasst und kodiert, sondern auch die Fehlertypen, die 
bei der Berechnung der Aufgaben aufgetreten sind. Ähnlich wie für das Kodierma-
nual der verschiedenen Herangehensweisen beschrieben, wurde das Kodierungssche-

126 Getätigte Äußerungen der Kinder wie beispielsweise Habe ich gewusst! oder Kann ich bereits 
auswendig! wurden der Hauptkategorie Faktenabruf zugeordnet.
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ma für die Fehlertypen ebenfalls sowohl auf deduktive als auch auf induktive Art 
und Weise erstellt. Aufgrund der wenigen Forschungsergebnisse in diesem Teilgebiet 
(siehe Abschnitt 3.2.1 – Korrektheit der Ausführung und Lösungszeiten) überwog al-
lerdings das induktive Vorgehen. Zwei Haupt-Fehlertypen wurden im Kodiermanual 
angeführt bzw. unterschieden:
• Rechenfehler (die Rechenoperationen der Addition, Subtraktion, Multiplikation 

oder Division wurden nicht korrekt ausgeführt)127

• Strategiefehler (eine Herangehensweise bzw. das zugrundeliegende prozedurale 
Wissen wird nicht korrekt bzw. fehlerhaft  ausgeführt).

Auch eine Kombination der verschiedenen Fehlerbilder ist denkbar und wurde bei 
der Kodierung berücksichtigt. Die Tabelle 26 bildet die verschiedenen Fehlertypen 
sortiert nach Herangehensweisen ab. Anhand exemplarischer Lösungswege werden 
die Fehlerbilder der einzelnen Herangehensweisen zusätzlich veranschaulicht. Aus 
Gründen der Übersicht wird auf eine detaillierte Aufsplittung der Fehlerbilder der 
Strategiefehler verzichtet. Auch die möglichen Kombinationen der Fehlerbilder wur-
den aus Gründen der Übersichtlichkeit nicht in Tabelle 26 aufgeführt.

Für den zweiten Teilbereich des Strategieinterviews zur Erfassung alternati-
ver Herangehensweisen an ein- und dieselbe Einmaleinsaufgabe bzw. zur Erfassung 
eines umfangreichen Strategie-Repertoires wurde von den Kindern nur die Nennung 
des alternativen Lösungsweges gefordert, nicht die erneute Berechnung der Aufgabe 
anhand der alternativen Herangehensweise. Aus diesem Grund wurden im Zuge der 
Fehleranalyse für die jeweiligen Herangehensweisen des zweiten Teilbereiches auch 
nur Strategiefehler sichtbar und konnten erfasst werden, keine Rechenfehler.

Im dritten Teilbereich des Strategieinterviews wird die Übertragbarkeit von Her-
angehensweisen des kleinen Einmaleins auf das große Einmaleins überprüft . Die ge-
nutzten Lösungswege der Kinder werden festgehalten und basierend auf dem Kodie-
rungsschema zur Lösung von Aufgaben aus dem kleinen Einmaleins (siehe Tabelle 
27) kodiert. Zusätzlich zu den bereits vorzufi ndenden Herangehensweisen wird das 
Schema um eine weitere genannte Herangehensweise erweitert, die im Folgenden 
mit der Begriffl  ichkeit Faktortausch bezeichnet wird.

127 Im Kodiermanual wurden Rechenfehler für die Rechenoperation der Addition, Subtraktion 
und Division getrennt von den Rechenfehlern der Rechenoperation der Multiplikation ge-
führt.
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 Tabelle 26:  Kodiermanual der Fehlertypen je Herangehensweise

Haupt-
kategorie

Konkrete 
Herangehensweise

Konkretes Fehlerbild/
Fehlertypen

Exemplarisches Beispiel

Kein Fehler     3 x 7 = 21

Fa
k-

te
n-

ab
ru

f Abruf aus dem 
Gedächtnis

Rechenfehler I (Multiplika-
tion)

z. B. 3 x 7 = 20

Re
ch

en
str

at
eg

ien

Verdopplung/
Halbierung

Rechenfehler I (Multiplika-
tion)

z. B. 4 x 6 = 2 x 6 + 2 x 6, 14 + 
14 = 28

Rechenfehler II (Addition/
Subtraktion/Division)

z. B. 4 x 6 = 2 x 6 + 2 x 6, 12 
+12 = 26

Strategiefehler z. B. 4 x 6 = 2 x 6 + 2 x 6 + 2 x 6

Zerlegung eines 
Faktors

Rechenfehler I (Multiplika-
tion)

z. B. 8 x 7 = 10 x 7 – 2 x 7, 70 – 16

Rechenfehler II (Addition/
Subtraktion)

z. B. 8 x 7 = 10 x 7 – 2 x 7, 70 – 
14 = 58

Strategiefehler
- z. B. falscher Faktor addiert/

subtrahiert
- z. B. falsche Anzahl des Fak-

tors addiert/subtrahiert
- falscher Faktor subtrahiert/

addiert (1.

z. B. 8 x 7 = 10 x 7 – 2 x 8

z. B. 8 x 7 = 10 x 7 – 3 x 7

Nachbaraufgabe Rechenfehler I (Multiplika-
tion)

z. B. 8 x 7 = 7 x 7 + 1 x 7, 48 + 7

Rechenfehler II (Addition/
Subtraktion)

z. B. 8 x 7 = 7 x 7 + 1 x 7 = 49 + 
7, 57

Strategiefehler
- z. B. falscher Faktor addiert/

subtrahiert
- z. B. falsche Anzahl des Fak-

tors addiert/subtrahiert

z. B. 8 x 7 = 8 x 8 – 1 x 7

z. B. 8 x 7 = 7 x 7 + 2 x 7

Zä
hl

en
 u

nd
 

su
kz

es
siv

e 
Ad

di
tio

n Sukzessive Addition
Rhythmisches Zählen
Verkürzte sukzessive 
Addition

Rechenfehler II (Addition 
bzw. Verzählen)

z. B. 3 x 7 = 7 + 7 + 7 = 22

Strategiefehler
- z. B. falsche Anzahl an Sum-

manden addiert/aufgesagt/
zusammengezählt

- z. B. falschen Summanden 
die korrekte Anzahl an 
Malen addiert/aufgesagt/
zusammengezählt

z. B. 3 x 7 = 7 + 7 + 7 + 7

z. B. 3 x 7 = 3 + 3 + 3
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Unter einem Faktortausch wird in dieser Arbeit die Fehlvorstellung der Kinder ge-
fasst, dass die Aufgabe 18 x 7 auch alternativ über die Aufgabe 17 x 8 korrekt gelöst 
werden kann. Da in diesem Teilbereich des Interviews die Lösung der Aufgabe nicht 
verlangt wurde, erfasst das Kodiermanual erneut nur eventuelle Strategiefehler hin-
sichtlich der eingesetzten Herangehensweisen. Basierend auf einer erneut überwie-
gend induktiven Vorgehensweise der Erstellung des Kodiermanuals und der großen 
Anzahl weitgehend verschiedener individueller Fehlerbilder wird auf eine ausführli-
che Aufl istung des Kodierungsschemas an dieser Stelle verzichtet. In Tabelle 27 sind 
einige mögliche Strategiefehler je Herangehensweise aufgelistet.  

Tabelle 27:  Kodiermanual der Strategiefehler je Herangehensweise bei der Aufgabe 18 x 7

Konkrete 
Herangehensweise

Konkretes Fehlerbild Exemplarisches Beispiel

Kein Fehler 18 x 7 = 126

Zerlegung eines Faktors

- z. B. falscher Faktor subtrahiert/addiert
- z. B. falsche Anzahl des Faktors
   addiert/subtrahiert

- z. B. weitere falsche Zerlegungen

z. B. 20 x 7 – 2 x 18

z. B. 20 x 7 – 7

z. B. 10 x 7 + 7
z. B. 10 x 7 + 8
z. B. 8 x 7 + 10
z. B. 7 x 8 + 10
z. B. 8 x 7 + 100

Verdopplung - z. B. unvollständige Zerlegung 18 x 7 = 8 x 7 + 8 x 7

Sukzessive Addition
Rhythmisches Zählen

- z. B. falsche Anzahl an Summanden
   addiert/aufgesagt/zusammengezählt

-  z. B. falscher Summand die falsche
  Anzahl an Malen addiert/aufgesagt/
  zusammengezählt

z. B. 18 x 7 = 18 + 18 + 18 + 18
                      + 18 + 18

z. B. 18 x 7 = 7 + 7 + 7 + 7 + 7 
                      + 7 + 7

Sonstige -  z. B. Faktortausch 18 x 7 = 17 x 8

Zur Ermittlung der Interraterreliabilität des Strategieinterviews wurden zwei unab-
hängige Beobachter eingesetzt. Für alle drei Interviewteile wurden 15% der Daten 
einer Übereinstimmungsanalyse unterzogen. Die gemittelten Cohens Kappa-Werte 
(Cohens κ) der einzelnen Teilbereiche des Strategieinterviews sind Tabelle 28 zu ent-
nehmen. Mit einer prozentualen Übereinstimmung von 84% bis 89% Prozent erga-
ben sich nach LANDIS und KOCH (1977) beachtliche Raterübereinstimmungen.
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 Tabelle 28:  Gemittelte Interraterreliabilität je Teilbereich des Strategieinterviews

Teilbereiche Strategieinterview κ

1. Teilbereich: Freie Strategiewahl (kleines Einmaleins) .86

2. Teilbereich: Strategiewahl-Alternativen .89

3. Teilbereich: Freie Strategiewahl (großes Einmaleins) .84

Statistische Methoden
Für alle statistischen Auswertungen wurde das Programm IBM SPSS Statistics her-
angezogen.

Statt eines klassischen linearen Modells, das sich durch die zentralen statistischen 
Verfahren der linearen Regression und der Varianzanalyse kennzeichnet und sich 
ausschließlich zur Analyse metrischer Kriteriumsvariablen eignet sowie unabhängige 
und varianzhomogen normalverteilte Residuen voraussetzt, wird in der vorliegenden 
Arbeit auf GEE-Modelle (Generalized Estimating Equations bzw. generalisierte/verall-
gemeinerte Schätzgleichungen) zurückgegriff en.

Das GEE-Verfahren, das durch LIANG und ZEGER (1986) ausgearbeitet und 
seitdem mehrfach modifi ziert und erweitert wurde, stellt die Erweiterung der klassi-
schen generalisierten linearen Modelle (GLM) dar. Durch diese wird bereits die Be-
schränkung der klassischen linearen Modelle auf metrische (intervallskalierte) Krite-
rien mit normalverteilten und varianzhomogenen Residuen überwunden.128 Mithilfe 
von GEE-Modellen, als Erweiterung der GLM-Modelle, werden zudem korrelierte 
Beobachtungen berücksichtigt.

An der Studie teilnehmende Schülerinnen und Schüler wurden auf Basis einer 
geschichteten Zufallsstichprobe (siehe Abschnitt 5.2.4) ermittelt. Ähnlich wie 
bei Cluster-Stichproben (Cluster Sample) (BORTZ & SCHUSTER, 2010, S.  79 ff .; 
BORTZ & DÖRING, 2006, S.  435) werden in der erwähnten Stichprobenziehung 
die N  =  144 teilnehmenden Kinder nicht zufällig aus der Population aller Schüle-
rinnen und Schüler ermittelt, sondern die Auswahl erfolgt in einem mehrstufi gen 
Prozess – aus 24  verschiedenen Klassen wurden je sechs Kinder unterschiedlichen 
Leistungsvermögens zufällig gezogen. Aus der Klassenzugehörigkeit der Kinder geht 
dabei eine hierarchische Struktur der ermittelten Daten hervor, die Merkmalsausprä-
gungen nicht ausschließlich basierend auf individuellen Fähig- und Fertigkeiten er-
klärt, sondern unter Umständen auch durch ihre Klassenzugehörigkeit. Die erhobe-
nen Messwerte einzelner Personen, die von ein und derselben Lehrkraft  unterrichtet 
werden, sind demnach nicht mehr als unabhängig voneinander zu verstehen. Das 
GEE-Modell bietet in diesem Kontext die Möglichkeit, Daten mit korrelierten Re-
siduen – wie in dieser Studie – korrekt zu analysieren. Werden Daten, wie die die-

128 Viele Voraussetzungen, die bei der Berechnung eines linearen Modells noch berücksichtigt 
werden müssen, werden für die klassischen generalisierten linearen Modelle nicht mehr vo-
rausgesetzt. Die sehr wichtige Voraussetzung unabhängiger Beobachtungen bleibt allerdings 
bei GLM-Modellen bestehen.



281    

ser Arbeit zugrundeliegenden, wie unabhängige Beobachtungen bzw. unkorrelierte 
Residuen betrachtet, wären deutliche Verzerrungen bzw. gravierende Auswirkungen 
auf die Interferenzstatistik zu befürchten (BALTES-GÖTZ, 2016, S. 28 ff .; GHISLET-
TA & SPINI, 2004, S. 421 f.). BALTES-GÖTZ (2016) hält in diesem Zusammenhang 
wie folgt fest: „Mit zunehmender Intraklassenkorrelation wächst die Gefahr von fal-
schen Testentscheiden durch Modelle ohne Berücksichtigung der Abhängigkeit“ 
(ebd., S. 7).

Abgesehen von den nicht berücksichtigten korrelierten Beobachtungen wäre es 
vordergründig der Datenbasis der Untersuchung geschuldet gewesen, dass die Aus-
wertungen nicht anhand des klassischen linearen Modells hätten erfolgen können. 
Die Datenbasis genügt den Voraussetzungen des linearen Modells nicht bzw. verletzt 
diese. Insbesondere die Normalverteilung der Zielvariablen wird mit den bevorzugt 
in dieser Arbeit verwendeten Zählvariablen verletzt.129 Präsentiert eine Zielvariab-
le, wie häufi g ein bestimmtes Ereignis aufgetreten ist, wird die abhängige Variable 
als Zählvariable bezeichnet. In der konkreten Arbeit können die Ermittlungen der 
Häufi gkeiten einzelner Herangehensweisen oder die Anzahl korrekter Lösungen als 
exemplarische Beispiele für Zählvariablen angeführt werden. Zählvariablen nehmen 
dabei nur die Werte 0, 1, 2, 3 … an, sind somit diskret und sicher nicht normal-
verteilt – die klassische Verteilung für Zählvariablen stellt die Poissonverteilung dar 
(TUTZ, 2010, S. 887 ff .).

Die Attraktivität des GEE-Verfahrens zeichnet sich nach BALTES-GÖTZ (2016) 
zusammenfassend durch die Flexibilität dieser Methodik aus (ebd., S.  30; SWAN, 
2006, S.  336 f.). Die generalisierten Schätzgleichungen greifen auf die gesamte Fle-
xibilität der GLM-Modelle zurück und stellen darüber hinaus eine Analysemethode 
dar, die auch bei korrelierten Beobachtungen zu gültigen Schlüssen gelangt. Die Ro-
bustheit des Verfahrens wird als weiterer Pluspunkt angesehen: „Aufgrund einer ro-
busten Schätzmethodik resultieren konsistente Schätzungen für die Parameter und 
deren Standardfehler selbst dann, wenn eine falsche Annahme über das Korrela-
tionsmuster der Beobachtungen eingeht“ (BALTES-GÖTZ, 2016, S. 30). Die Voraus-
setzung einer hinreichend großen Stichprobe zur Durchführung eines GEE-Modells 
ist durch die vorgenommene Stichprobenauswahl dieser Arbeit gewährleistet (GHIS-
LETTA & SPINI, 2004, S. 425).

 

129 Neben den erwähnten Zählvariablen wurden auch Zielvariablen alternativer Skalenniveaus 
analysiert.
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6. Ergebnisse der Hauptstudie

„Mhh – wie ich die Aufgabe 18 · 7 rechnen würde? Vielleicht 9 · 14! 
Aber wirklich einfach ist das auch nicht. 

Dann doch lieber 10 · 7 + 8 · 7.“

(Zitat eines an der Hauptstudie teilnehmenden Kindes)

Orientiert an den verschiedenen Zielsetzungen der vorliegenden Arbeit gliedern sich 
die Ergebnisse der Hauptstudie in die folgenden Abschnitte: Zunächst werden die 
Ergebnisse der Reaktionszeittestung berichtet (Abschnitt 6.1). Im Abschnitt 6.2 bil-
det die Auswertung des Strategieinterviews den Schwerpunkt. 

6.1 Ergebnisse der Reaktionszeittestung

Wie im Abschnitt 5.1 zu den Fragestellungen der Hauptstudie bereits thematisiert, 
liegt der Fokus der Hauptstudie nicht ausschließlich auf Analysen zum Strategie-
einsatz, sondern auch auf Erkenntnissen zum schnellen Faktenabruf aus dem Ge-
dächtnis. Die Konzeption einer zusätzlich zum Strategieinterview durchgeführ-
ten Reaktionszeittestung wurde bewusst gewählt, um nicht lediglich basierend auf 
Selbstauskünft en der Kinder im Strategieinterview Aussagen zum schnellen Fak-
tenabruf aus dem Gedächtnis tätigen zu können. Wenn man Erkenntnisse gewin-
nen will, ob und vor allem wie häufi g Kinder Aufgaben schnell aus dem Gedächtnis 
abrufen, muss man zunächst klären, wann konkret von einem Faktenabruf gespro-
chen werden kann bzw. wie sich der Einsatz eines Faktenabrufes von anderen Heran-
gehensweisen unterscheidet. Die folgende Forschungsfrage muss in diesem Kontext 
primär beantwortet werden (siehe Abschnitt 5.1):
• Woran lässt sich ein schneller Faktenabruf aus dem Gedächtnis charakterisieren 

bzw. wie lässt sich die Grenze zwischen Faktenabruf und anderen Herangehens-
weisen charakterisieren?

Bisher publizierten nationalen sowie internationalen Studien gelingt es den theoreti-
schen Erkenntnissen dieser Arbeit zufolge nicht zufriedenstellend, die Anzahl an tat-
sächlich gedächtnismäßig verfügbaren Einmaleinsaufgaben zu ermitteln (siehe Ab-
schnitt 3.2.2).

Um reliable Erkenntnisse hinsichtlich eines schnellen Abrufes zu gewinnen, wird 
in dieser Arbeit eine alternative Methode zur Ermittlung schneller Faktenabrufe ent-
wickelt. Diese wird im Abschnitt 6.1.1 vorgestellt. Vorüberlegungen bzw. im Rahmen 
der Reaktionszeittestung gewonnene Erkenntnisse, die zur Entwicklung dieser alter-
nativen Methode geführt haben, sollen zunächst berichtet werden.
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Basierend auf den ermittelten Lösungszeiten der 48 in der Reaktionszeittestung 
überprüft en Einmaleinsaufgaben werden die individuellen Reaktionszeitverläufe der 
Kinder analysiert. Für die visuelle Betrachtung der individuellen Verläufe werden die 
Lösungszeiten der korrekt gelösten Aufgaben jedes Kindes aufsteigend nach der Zeit-
dauer sortiert. Anschließend werden die Lösungszeiten basierend auf dieser aufstei-
genden Sortierung – beginnend mit der kürzesten Lösungszeit – in einem Liniendia-
gramm graphisch veranschaulicht. Auf der x-Achse des Diagrammes ist die jeweilige 
Einmaleinsaufgabe abgetragen, auf der y-Achse die entsprechend ermittelte Lösungs-
zeit. 

Abbildung 31 veranschaulicht in diesem Kontext die individuellen Reaktionszeit-
verläufe aller Kinder der Gesamtstichprobe. Auff allend bei Betrachtung der indivi-
duellen Reaktionszeitverläufe sind die je Kind stabilen, relativ gleichbleibenden Lö-
sungszeiten über die am schnellsten gelösten Einmaleinsaufgaben hinweg. Abbildung 
32 verdeutlicht diese Erkenntnis für die Lösungszeiten der Gesamtstichprobe der 12 
am schnellsten gelösten Einmaleinsaufgaben. Mit zunehmender Anzahl an Aufgaben 
ist in den individuellen Reaktionszeitverläufen allerdings ein Anstieg der Lösungs-
zeiten zu erkennen. Bei der Analyse einzelner Verläufe können auch Sprünge in 
den Lösungszeiten zweier aufeinanderfolgender Aufgaben identifi ziert werden. Ers-
te schnelle, annähernd ähnliche Abrufzeiten lassen off ensichtlich einen Rückschluss 
auf mental ähnliche Abrufprozesse zu, die vermutlich für einen Faktenabruf aus dem 
Gedächtnis stehen. Längere Lösungszeiten oder sogar Sprünge in den Lösungszeiten 
können in diesem Zusammenhang ein Indiz dafür sein, dass andere Herangehens-
weisen zur Aufgabenlösung eingesetzt werden, die mit anderen mentalen Abrufpro-
zessen bzw. anderen Anforderungen im Lösungsprozess einhergehen. Bekräft igt wird 
diese Erkenntnis durch die Ergebnisse der im Th eorieteil der vorliegenden Arbeit 
vorgestellten Studien (siehe Abschnitt 3.2.1 – Korrektheit der Ausführung und Lö-
sungszeiten), die den Faktenabruf als schnellste Herangehensweise an Einmaleins-
aufgaben darstellen und längere Lösungszeiten für die Strategieverwendung oder den 
Einsatz alternativer Herangehensweisen ermitteln. 

Wie sich ein schneller Faktenabruf bzw. der Einsatz alternativer Herangehenswei-
sen oder gerade die Grenze zwischen diesen beiden Herangehensweisen charakteri-
sieren lässt, kann folglich mittels der Betrachtung der individuellen Reaktionszeitver-
läufe gezeigt werden.

Die visuelle Überprüfung der individuellen Reaktionszeitverläufe (siehe Abbil-
dung 31 und Abbildung 32) liefert allerdings noch eine weitere zentrale Erkenntnis: 
Kinder benötigen zur Lösung von Einmaleinsaufgaben unterschiedlich lange. Auch 
die Abrufzeiten gedächtnismäßig verfügbarer Einmaleinsaufgaben variieren dement-
sprechend von Kind zu Kind sehr stark. 

Abbildung 33 bestätigt auf deskriptive Weise, dass Kinder sich in den Lösungszei-
ten unterscheiden – sie verdeutlicht Unterschiede in den Lösungs- bzw. Abrufzeiten 
von Einmaleinsaufgaben der Kinder unterschiedlichen Leistungsvermögens.
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Bei Betrachtung der deskriptiven Kennwerte wird ersichtlich, dass leistungsschwa-
che Kinder im Durchschnitt länger zur Lösung von Einmaleinsaufgaben benöti-
gen als leistungsstärkere Kinder und die leistungsstarken Kinder Einmaleinsaufga-
ben durchschnittlich am schnellsten lösen. Die Graphen der Abbildung 33 erweisen 
sich für die 20 am schnellsten gelösten Aufgaben130 dabei als sehr ähnlich, weisen 

130 In Abbildung 33 wurden ausschließlich die gemittelten Lösungszeiten je Leistungsgruppe 
von 20 Aufgaben präsentiert. In der Gesamtstichprobe befi nden sich unter anderem Studien-
teilnehmerinnen oder  -teilnehmer, die nur oder aber nicht viel mehr als 20 Aufgaben der 
Reaktionszeittestung gelöst haben.
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Ab bildung 32: Individuelle Reaktionszeitverläufe der Kinder der Gesamtstichprobe für die 12 am 
schnellsten gelösten Aufgaben.
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Abb ildung 33: Gemittelte Reaktionszeitverläufe je Leistungsgruppe. Die Fehlerbalken repräsentieren 
den Standardfehler des Mittelwertes. 
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sie doch einen annähernd parallelen Verlauf der Lösungszeiten über alle Leistungs-
gruppen hinweg auf. Ein weitgehend stabiler Verlauf der Lösungszeiten – wie er be-
reits für die Gesamtstichprobe berichtet wurde – ist auch über die ersten schnell ge-
lösten Aufgaben je Leistungsgruppe zu erkennen. Mit zunehmender Aufgabenanzahl 
verzeichnet die leistungsschwache Gruppe allerdings einen deutlicheren Anstieg der 
Lösungszeiten im Vergleich zu den beiden anderen Gruppen. Die längeren Abrufzei-
ten können dabei ein Indiz für den Einsatz zeitintensiverer Herangehensweisen dar-
stellen, der in der leistungsschwachen Gruppe mehr Lösungszeit beansprucht als bei 
den anderen Leistungsgruppen.  

Vergleicht man die durchschnittlich schnellste Lösungszeit (in Millisekunden) 
der Kinder unterschiedlichen Leistungsvermögens liegen signifi kante Unterschiede 
bezüglich dieser Abrufzeiten von Einmaleinsaufgaben vor (leistungsstark: M = 1139, 
SD  =  167; durchschnittlich: M  =  1273, SD  =  187; leistungsschwach: M  =  1358, 
SD = 360; χ2(2) = 8.30, p < .001). Paarweisen Vergleichen zufolge unterscheiden sich 
die leistungsstarken Kinder signifi kant von den leistungsschwachen Kindern sowie 
den Kindern durchschnittlichen Leistungsvermögens (beide p = .001). Zwischen den 
leistungsschwachen und den Kindern durchschnittlichen Leistungsvermögens liegt 
ebenfalls ein signifi kanter Unterschied vor (p = .042).

Basierend auf den gerade beschriebenen Ergebnissen lässt sich vermuten, dass für 
die Abweichungen in den Lösungszeiten zwischen unterschiedlich leistungsstarken 
Individuen die verschiedenen Abrufprozesse verantwortlich sein können. Ist man 
sich dessen bewusst, stellt sich aus gutem Grund die Frage, inwiefern mit einer zeit-
lich fi xen Obergrenze (z. B. 3 Sekunden) wirklich die tatsächliche Anzahl an schnell 
abrufb aren Aufgaben ermittelt werden kann bzw. inwiefern dieses Verfahren ohne 
Berücksichtigung der stark variierenden mentalen Abrufgeschwindigkeit wirklich 
Automatisierungsquoten liefert. Mithilfe zweier Reaktionszeitverläufe der an der 
Hauptstudie teilnehmenden Kinder soll die Problematik zeitlich fi xer Obergrenzen 
abschließend veranschaulicht werden (siehe Abbildung 34). 
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Obergrenze.
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Würde man auf die 3-Sekunden-Obergrenze zurückgreifen, erhält man 23 schnell 
abgerufene Aufgaben für das Kind 2 und 32 für Kind 1 (siehe Abbildung 34). Die 
deutlich höhere Anzahl an schnellen Abrufen bei Kind 1 scheint dabei in den ins-
gesamt schnelleren Abrufprozessen begründet zu liegen. Während die schnellste 
Lösungszeit sich bei Kind 1 auf 1229 ms beläuft , benötigt Kind 2 zum Abruf mehr 
als 600 ms länger. Kind 2 ruft  die schnellste Lösung einer Einmaleinsaufgabe so-
mit mehr als eine halbe Sekunde langsamer ab als die Vergleichsperson und liegt 
demnach bereits nach der schnellsten ermittelten Lösungszeit sehr viel näher an 
der 3-Sekunde-Obergrenze. Dies führt zwangsläufi g bei einem vergleichbaren An-
stieg der Lösungszeiten der beiden Kinder bzw. ähnlichen Reaktionszeitverläufen zu 
einem schnelleren Erreichen der Obergrenze und einer deutlich geringeren Quote 
schneller Faktenabrufe.

Zur Bestimmung der Anzahl an tatsächlichen Faktenabrufen muss demnach eine 
alternative Methode zu zeitlich fi xen Obergrenzen herangezogen bzw. entwickelt 
werden. Es scheint, als könnten aussagekräft ige Erkenntnisse bezüglich schneller Ab-
rufe von Einmaleinsaufgaben nur basierend auf individuell ermittelten Schwellen ge-
tätigt werden.

6.1.1 Methode zur Ermittlung einer individuellen Schwelle bzw. zur 
Ermittlung der Anzahl korrekter Abrufe aus dem Gedächtnis

Ausgehend von den aufgeführten Erkenntnissen des vorausgehenden Abschnittes 
werden zur Bestimmung einer individuellen Schwelle erneut die Reaktionszeitver-
läufe für die Gesamtheit der Stichprobe, aber auch für jedes Kind getrennt analysiert. 
Eine visuelle Prüfung ermittelt, dass für alle Kinder die Lösungszeiten der ersten 12 
Aufgaben stabil verlaufen bzw. die Lösungszeiten je Kind annähernd gleich sind (sie-
he Abbildung 32). Aufgaben werden als schnell abrufb ar verstanden, wenn innerhalb 
einer Lösungszeit von drei Standardabweichungen vom individuellen Mittelwert der 
zwölf am schnellsten gelösten Aufgaben die Aufgabenlösung erfolgt. Die Begrenzung 
bzw. Beschränkung auf 12 Aufgaben zur Bestimmung des individuellen Mittelwertes 
wird festgesetzt, um die Zahl an Ausreißern aufgrund nicht stabiler Reaktionszeit-
verläufe zu minimieren. Hinsichtlich der Mittelwerte der zwölf am schnellsten gelös-
ten Einmaleinsaufgaben (in Sekunden131) zeigen sich zwischen den Kindern unter-
schiedlichen Leistungsvermögens signifi kante Unterschiede (leistungsstark: M = 1.4, 
SD = 0.2; durchschnittlich: M = 1.5, SD = 0.2; leistungsschwach: M = 1.6, SD = 0.3; 
Wald χ2(2)  =  56.08, p < .001). Paarweisen Vergleichen zufolge unterscheiden sich 
die leistungsstarken Kinder von den leistungsschwachen Kindern und den Kin-
dern durchschnittlichen Leistungsvermögens signifi kant (beide p  < .001). Zwischen 
den Kindern durchschnittlichen Leistungsvermögens und den leistungsschwachen 
Kindern liegt ebenfalls ein signifi kanter Unterschied vor (p = .043). 

131 Die ermittelten Lösungszeiten werden in diesem sowie den folgenden Abschnitten in Sekun-
den berichtet, um die Übersichtlichkeit zu erhöhen – in den Abbildungen dieses Abschnittes 
wird weiterhin die Einheit Millisekunden (ms) verwendet.
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Anhand des in Abbildung 34 bereits skizzierten Reaktionszeitverlaufes von Kind 
2 soll das Vorgehen zur Bestimmung einer individuell ermittelten Schwelle veran-
schaulicht werden (siehe Abbildung 35). In Abbildung 35 ist der Mittelwert der zwölf 
am schnellsten gelösten Aufgaben sowie der Standardabweichungskorridor skiz-
ziert (Mittelwert ± 3 SD).
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Abbil dung 35: Individuell ermittelte Schwellen für einen schnellen Abruf von Einmaleinsaufgaben.

Kind 2 ruft  13 Aufgaben schnell aus dem Gedächtnis ab. Würde man die 3-Sekun-
den-Obergrenze anwenden, wären – wie bereits skizziert (siehe Abbildung 34) – 23 
Aufgaben im Bereich des so ermittelten Faktenabrufes. Das Kind weist über 13 Auf-
gaben hinweg ähnliche Lösungszeiten auf, die ein Indiz für gleich ablaufende Abruf-
prozesse sind und konkret für einen ausschließlich schnellen Abruf von Einmaleins-
aufgaben stehen. Ein in der Mehrzahl der Reaktionszeitverläufe erkennbarer Sprung 
nach der ermittelten individuellen Schwelle (Mittelwert plus drei Standardabwei-
chungen), lässt auf einen veränderten mentalen Ablauf im Lösungsprozess schließen.

Zur Validierung der Anzahl an schnellen Abrufen von Einmaleinsaufgaben wer-
den die einzelnen Reaktionszeitverläufe auf Sprünge oder Knicke im Verlauf über-
prüft . Der Vergleich zwischen der optischen Prüfung und den statistisch ermittelten 
Schwellen erfolgt dabei erneut basierend auf der zentralen Idee der gewählten Me-
thodik – weitgehend stabile Lösungszeiten liegen bei gleichen Denkvorgängen vor, 
ein Sprung oder Knick kann ein Kennzeichen für andere Abrufvorgänge darstellen 
und sollte idealerweise erst nach der individuellen Schwelle auft reten. Abbildung 36 
und Abbildung 37 veranschaulichen anhand zweier exemplarischer Beispiele Verläu-
fe mit einem erkennbaren Sprung nach der individuellen Obergrenze (Mittelwert plus 
drei Standardabweichungen).
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Für die fi nale Kodierung der Anzahlen an schnell abrufb aren Einmaleinsaufgaben 
werden in vereinzelten Fällen nach visueller Prüfung Korrekturen der Schwellen und 
der Anzahlen an verfügbaren schnellen Abrufen vorgenommen. Die charakteristi-
schen Reaktionszeitverläufe und eventuelle Korrekturen werden im Folgenden vor-
gestellt.

Keine Korrekturen werden in zwei Fällen vorgenommen:
• Sprung in den Lösungszeiten direkt nach der Obergrenze (siehe Abbildung 36 

und Abbildung 37) oder
• annähernd linearer Verlauf der Lösungszeiten.
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Abbild ung 36:  Exemplarischer Reaktionszeitverlauf mit kleinem Sprung bei der abgebildeten 
Obergrenze (Mittelwert plus drei Standardabweichungen).

Abbildu ng 37: Exemplarischer Reaktionszeitverlauf mit großem Sprung bei der abgebildeten 
Obergrenze (Mittelwert plus drei Standardabweichungen).
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Korrekturen werden in zwei Fällen als notwendig angesehen:
• weitere Lösungszeit/en einer bzw. mehrerer Aufgaben (unmittelbar) nach der 

Schwelle, Sprung der Lösungszeiten im Anschluss (siehe Abbildung 38) oder
• weitere Lösungszeit/en einer bzw. mehrerer Aufgaben nach der Schwelle, Sprung 

der  Lösungszeiten vor der Schwelle (siehe Abbildung 39).

Im ersten beschriebenen Fall einer notwendigen Korrektur (siehe Abbildung 38) 
wird die Anzahl der ermittelten Abrufe um die Zahl an Aufgaben erweitert bzw. kor-
rigiert, deren Lösungszeiten in unmittelbarer Nähe der statistisch ermittelten Schwel-
le und vor einem Sprung liegen. Der Grund für diese Erweiterung wird erneut über 
die Th eorie ähnlicher Abrufvorgänge begründet: der Lösungsprozess der beiden zu-
sätzlichen Aufgaben (dunkel markiert) scheint den Abrufprozessen der Aufgaben, 
die über einen schnellen Abruf gelöst wurden, deutlich ähnlicher zu sein als den 
Vorgängen, die nach dem Sprung vorzuherrschen scheinen.
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Abbildun g 38:  Erhöhung der Schwelle bzw. Erweiterung der Anzahl an schnellen Abrufen von 
Einmaleinsaufgaben (um die dunkel markierten Aufgaben).

Der zweite Fall (siehe Abbildung 39) führt aufgrund einer visuellen Überprüfung 
des Reaktionszeitverlaufes zur Reduktion der Anzahl an Aufgaben, die ursprüng-
lich als schnell abgerufen ermittelt wurden. Die Lösungszeit und damit einherge-
hend auch der Lösungsvorgang der dunkel markierten Aufgabe scheint den Abruf-
prozessen oder Lösungsprozessen der nachfolgenden Aufgaben näher bzw. ähnlicher 
zu sein als den vorausgegangenen, die sich ebenfalls innerhalb der Schwelle (indivi-
dueller Mittelwert plus drei Standardabweichungen) befi nden.

Insgesamt werden die Reaktionszeitverläufe von 16 Kindern bzw. 11% der Ge-
samtstichprobe in der visuellen Nachbetrachtung korrigiert. Alle 144 Reaktionszeit-
verläufe der an der Studie teilnehmenden Kinder werden in diesem Kontext von 
zwei unabhängigen Ratern auf mögliche vorzunehmende Korrekturen überprüft . Mit 
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einem Cohens Kappa-Wert von κ = .75 ergibt sich nach LANDIS und KOCH (1977) 
eine hohe durchschnittliche Interraterreliabilität hinsichtlich der Anpassung der in-
dividuellen Schwellen.

Welche individuellen Schwellen für die Gesamtstichprobe ermittelt wurden und 
wie sich diese je individuellem Leistungsvermögen unterscheiden, wird im Folgen-
den berichtet.

Die im Durchschnitt ermittelte individuelle Schwelle der Gesamtstichprobe be-
läuft  sich auf 2.1 Sekunden (SD  =  0.3). Im Hinblick auf die ermittelten Schwel-
len je Leistungsvermögen werden signifi kante Unterschiede zwischen allen Leis-
tungsgruppen sichtbar (Wald χ2(2)  =  64.82, p < .001). Die leistungsstarken Kinder 
unterscheiden sich signifi kant von den leistungsschwachen und den Kindern 
durchschnittlichen Leistungsvermögens (beide p < .001). Zwischen den beiden 
leistungsschwächeren Gruppen liegt ebenfalls ein signifi kanter Unterschied vor 
(p  =  .002). Die Tabelle 29 veranschaulicht den Mittelwert, die Standardabweichung 
sowie den Minimal- und den Maximalwert der individuellen Schwellen je Leistungs-
vermögen.

Tabelle 2 9:  Mittelwert, Standardabweichung sowie Minimal- und Maximalwert der individuellen Schwel-
len je Leistungsgruppe

Leistungsvermögen N M SD Min Max

Leistungsstark 48 1.8 0.2 1.5 2.6

Durchschnittlich 49 2.1 0.3 1.5 2.8

Leistungsschwach 46 2.4 0.3 1.5 3.0

Gesamt 143 2.1 0.3 1.5 3.0
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Abbildung  39:  Herabsetzung der Schwelle bzw. Reduktion der Anzahl an schnellen Abrufen von 
Einmaleinsaufgaben (um die dunkel markierte Aufgabe).
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Für die leistungsstarken Kinder zeigen sich im Mittel die niedrigsten individuellen 
Schwellen (M  =  1.8, SD  =  0.2). Die beiden leistungsschwächeren Gruppen zeich-
nen sich durch höhere individuelle Schwellen aus, wobei für die leistungsschwächste 
Gruppe durchschnittlich die höchsten individuellen Schwellen festgemacht werden. 
Auff allend bei der deskriptiven Betrachtung der Ergebnisse in Tabelle 29 ist, dass es 
Kinder gibt, die Einmaleinsaufgaben bis zu einer Zeit von 1.5  Sekunden automati-
siert abrufen – und das sogar in allen Leistungsgruppen.

6.1.2 Erfolgsquote, Lösungszeiten und Anzahl schneller Faktenabrufe

Nachdem in den bisherigen Ausführungen die Forschungsfrage geklärt wurde, wann 
konkret von einem schnellen Faktenabruf gesprochen werden kann, ist es in einem 
nächsten Schritt möglich, der off enen Frage nachzugehen, wie häufi g Kinder auf 
einen schnellen Abruf aus dem Gedächtnis zurückgreifen (siehe Abschnitt 5.1). Im 
Fokus stehen in diesem Kontext die ermittelten Lösungszeiten für einen schnellen 
Abruf aus dem Gedächtnis sowie die Anzahl an schnellen Faktenabrufen. Da nur 
korrekt gelöste Einmaleinsaufgaben zur Analyse der Lösungszeiten von Faktenab-
rufen sowie zur Ermittlung der Anzahlen an Faktenabrufen herangezogen werden, 
wird zunächst die Erfolgsquote der Reaktionszeittestung präsentiert. Sie spiegelt folg-
lich den Anteil an Aufgaben wider, die zur Analyse der Faktenabrufe herangezogen 
wird. Darüber hinaus sollen, um die ermittelten Lösungszeiten der Kinder beim Fak-
tenabruf besser einschätzen zu können, auch die Lösungszeiten aller korrekt gelösten 
Aufgaben bzw. der verschiedenen überprüft en Aufgabentypen präsentiert werden.

Der Ergebnisteil der Reaktionszeittestung gliedert sich in vier Bereiche: 
• Anzahl korrekt gelöster Aufgaben (Erfolgsquote)
• Lösungszeiten korrekt gelöster Aufgaben
• Lösungszeiten korrekter Abrufe aus dem Gedächtnis
• Anzahl korrekter Abrufe aus dem Gedächtnis

Erkenntnisse in diesen vier genannten Bereichen sollen nicht ausschließlich mit 
Blick auf die Gesamtstichprobe gewonnen werden, sondern ebenfalls unter Berück-
sichtigung möglicher Einfl ussfaktoren gesammelt werden. Inwiefern unterrichtliche 
Herangehensweisen einer Lehrkraft  und das individuelle Leistungsvermögen die vier 
gerade angeführten Bereiche, die Erfolgsquote, die Lösungszeiten und die Anzahl an 
schnellen Faktenabrufen beeinfl ussen, soll in den folgenden Ausführungen zusätzlich 
analysiert werden. Die Forschungsfragen, auf die sich die nachfolgende Ergebnisdar-
stellung bezieht, sind folgende (siehe Abschnitt 5.1):
• Inwieweit zeigen sich Unterschiede in der Strategieverwendung und im Lern-

erfolg bei Aufgaben zum kleinen Einmaleins bei Kindern mit unterschiedlichem 
Leistungsvermögen (leistungsstark, durchschnittlich und leistungsschwach)?

• Machen sich verschiedene unterrichtliche Vorgehensweisen der Lehrpersonen in 
der Strategieverwendung und im Lernerfolg der Kinder bei Aufgaben zum klei-
nen Einmaleins bemerkbar? Wenn ja, wie?
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Alle im Folgenden präsentierten Unterschiedsanalysen werden mithilfe verallgemei-
nerter Schätzgleichungen (GEEs) durchgeführt (siehe Abschnitt 5.4). Die durch-
schnittliche Testdauer der Reaktionszeittestung belief sich auf 10 Minuten (SD = 3.3) 
je Kind.

Zur Überprüfung der Skalen wurden zunächst die Reliabilitäten der Messungen 
der Reaktionszeittestung betrachtet. Eine Reliabilitätsprüfung wurde sowohl für die 
Reaktionszeiten als auch für die Lösungsraten der Haupterhebung durchgeführt. Als 
Kennwert für die interne Konsistenz wurde der Reliabilitätskoeffi  zient Cronbachs 
Alpha (α) angegeben. Für die Skala der Reaktionszeiten genügt die Reliabilität mit 
einem Wert von α  =  .81 den Anforderungen an einen guten Test (BORTZ & DÖ-
RING, 2002, S. 198 f.). Bei der Skala der Lösungsraten erweist sich der Reliabilitäts-
wert mit α = .91 als hoch.

Nachfolgend werden die Erfolgsquoten der 48 Einmaleinsaufgaben, die in der 
Reaktionszeittestung abgeprüft  wurden, aufgeführt.

Anzahl korrekt gelöster Aufgaben (Erfolgsquote)
Die 48 in der Reaktionszeittestung überprüft en Einmaleinsaufgaben setzen sich aus 
unterschiedlichen Aufgabentypen zusammen (siehe Abschnitt 5.3.1). Eine Haupt-
unterteilung erfolgt in Kernaufgaben und Nicht-Kernaufgaben. Die 31 ausgewählten 
Kernaufgaben bestehen aus 23 Aufgaben, die aus den Einmaleinssätzen mit 1, 2, 5 
und 10 ausgewählt wurden sowie acht Quadrataufgaben. Die Anzahl an Nicht-Kern-
aufgaben beläuft  sich auf 15, zwei weitere Aufgaben mit einem Faktor 0 wurden 
ebenfalls abgeprüft . Im Folgenden werden die Lösungsraten unter Berücksichtigung 
dieser verschiedenen Aufgabentypen vorgestellt sowie Unterschiedsanalysen hin-
sichtlich des individuellen Leistungsvermögens der Kinder und der Lehrkraft -Grup-
pen.

Die durchschnittlichen Lösungsraten je Aufgabentyp können Tabelle 30 ent-
nommen werden. Von den 48 in der Reaktionszeittestung abgeprüft en Einmaleins-
aufgaben wurden von den 144 Kindern durchschnittlich 87% korrekt gelöst. Der 
Prozentsatz an richtig gelösten Kernaufgaben liegt im Durchschnitt bei 95%. Einmal-
einssätze mit 1, 2, 5 und 10 wurden – rein deskriptiv betrachtet – erfolgreicher gelöst 
(96%) als Quadrataufgaben (90%). Im Vergleich niedrigere Lösungsraten wurden mit 
77% für Einmaleinsaufgaben ermittelt, die sich durch eine 0 im Faktor auszeichnen. 
Mit durchschnittlich 74% korrekten Antworten wurde die niedrigste Erfolgsquote 
bei der Lösung von Nicht-Kernaufgaben erzielt.
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Tabelle 30: Prozentualer Anteil korrekt gelöster Einmaleinsaufgaben verschiedener Aufgabentypen

Aufgabentypen N %

Kernaufgaben gesamt (KA) 144 95

Kernaufgaben – Einmaleinssätze mit 1, 2, 5 und 10 (KA1) 144 96

Kernaufgaben – Quadrataufgaben (KA2) 144 90

Nicht-Kernaufgaben (NKA) 144 74

Aufgaben mit einem Faktor 0 (0) 144 77

Gesamt 144 87

Die Unterschiedsanalyse über alle Aufgabentypen hinweg zeigt keinen signifi kanten 
Unterschied zwischen den lehrplankonform und den eher bewusst traditionell unter-
richteten Kindern (siehe Tabelle 31). Durchschnittlich 88% der Einmaleinsaufgaben 
werden von den lehrplankonform unterrichteten Kindern korrekt gelöst, die Kin-
der der bewusst traditionellen Lehrkraft -Gruppe erzielen eine Quote von im Durch-
schnitt 87%. Auch die Analyse je Aufgabentyp off enbart keine signifi kanten Unter-
schiede zwischen den Kindern der beiden Lehrkraft -Gruppen (siehe Tabelle 31). 
Lehrplankonform unterrichtete Kinder lösen den deskriptiven Kennwerten zufolge 
Nicht-Kernaufgaben im Durchschnitt erfolgreicher und erzielen höhere Prozentsät-
ze hinsichtlich der Lösung der Gesamtheit der überprüft en Kernaufgaben. Aufgaben 
mit einem Faktor 0 werden von den Kindern der bewusst traditionellen Lehrkräft e 
erfolgreicher gemeistert.

 Tabelle 31: Prozentualer Anteil korrekt gelöster Einmaleinsaufgaben verschiedener Aufgabentypen in 
Abhängigkeit von der Lehrkraft-Gruppe

Aufgabentypen

Lehrkraft -Gruppe

Lehrplankonform
(N = 72)

Bewusst traditionell
(N = 72)

% % Wald χ2(1) p

KA (gesamt) 95 94 0.01 .945

KA1 96 96 0.07 .794

KA2 91 89 0.21 .645

NKA 75 73 0.41 .522

0 71 83 3.28 .070

Gesamt 88 87 0.01 .936

Anmerkung: KA (gesamt) = alle Kernaufgaben; KA1 = Einmaleinssätze mit 1, 2, 5 und 10; KA2 = Quadratauf-
gaben; NKA = Nicht-Kernaufgaben; 0 = Aufgaben mit einem Faktor 0; Gesamt = alle Aufgabentypen.

Signifi kante Unterschiede zwischen den verschiedenen Leistungsgruppen sind bezüg-
lich der Korrektheit zu lösender Einmaleinsaufgaben für alle Aufgabentypen (KA 
(gesamt): Wald χ2(2) = 17.85, p < .001; KA1: Wald χ2(2) = 13.70, p = .001; KA2: Wald 
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χ2(2)  =  14.44, p  =  .001; NKA: Wald χ2(2)  =  87.51, p  <  .001; 0: Wald χ2(2)  =  12.74, 
p  =  .002) sowie über die Gesamtheit an Aufgaben (Wald χ2(2) =  58.97, p  < .001) 
zu erkennen (siehe Abbildung 40).132 Paarweise Vergleiche zeigen für die Gesamt-
heit der Einmaleinsaufgaben und für Nicht-Kernaufgaben signifi kante Unterschiede 
zwischen allen Leistungsgruppen, während bei den restlichen Aufgabentypen nur si-
gnifi kante Unterschiede zwischen den beiden leistungsstärkeren und der schwäche-
ren Gruppe bestehen (siehe auch Abbildung 40).133 Mit zunehmendem Leistungs-
vermögen der Kinder steigt der Prozentsatz an fehlerfreien Lösungen: Während 
leistungsschwache Kinder z. B. insgesamt durchschnittlich 76% der Aufgaben korrekt 
lösen, ist die durchschnittliche Leistungsgruppe in 91% der Fälle in der Lage Einmal-
einsaufgaben korrekt zu lösen, die Leistungsstarken erreichen eine Lösungsrate von 
95% korrekt gelöster Aufgaben. Die leistungsschwachen Kinder können nur knapp 
mehr als die Hälft e der Nicht-Kernaufgaben (55%) korrekt lösen, Schülerinnen und 
Schüler der anderen beiden Leistungsgruppen erzielen signifi kant höhere Prozentsät-
ze (78% und 89%). 

Im Anschluss werden die Lösungszeiten der korrekt gelösten Aufgaben der Re-
aktionszeittestung präsentiert. Unterschiedsanalysen hinsichtlich möglicher Einfl uss-
faktoren, Unterricht und Individuum, werden erneut analysiert.

132 Die Gesamtheit der deskriptiven Kennwerte der Anzahl korrekt gelöster Aufgaben verschie-
dener Aufgabentypen in Abhängigkeit vom Leistungsvermögen sind im Anhang (B.2) ange-
führt.

133 Eine detaillierte Übersicht aller paarweisen Vergleiche fi ndet sich im Anhang (B.2).

A bbildung 40:  Prozentualer Anteil korrekt gelöster Einmaleinsaufgaben verschiedener Aufgabentypen 
in Abhängigkeit vom Leistungsvermögen, *p < .05, **p < .01, ***p < .001.
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Lösungszeiten korrekt gelöster Aufgaben
Neben der Ermittlung der Korrektheit der Aufgabenlösung lag ein Hauptaugenmerk 
der Reaktionszeittestung auf der Erfassung der benötigten Lösungszeiten für Einmal-
einsaufgaben. Die im Durchschnitt ermittelten Lösungszeiten der korrekt gelösten 
Einmaleinsaufgaben sind in Tabelle 32 aufgelistet. Erneut wird auch eine Aufl istung 
getrennt nach Aufgabentypen vorgenommen. Um sicherzustellen, dass auff allend 
hohe, weit überdurchschnittliche Lösungszeiten einer Testteilnehmerin bei allen Ein-
maleinsaufgaben nicht das Ergebnis entscheidend verzerren, wird dieses Kind für die 
Analysen der Lösungszeiten ausgeschlossen – die Gesamtstichprobe setzt sich aus 
diesem Grund in den folgenden Auswertungen aus lediglich N  =  143 Kindern zu-
sammen.

Im Durchschnitt benötigt ein Kind 4.0 Sekunden (SD  =  1.9) zur korrekten Lö-
sung einer Aufgabe.134 Mit durchschnittlich 8.2 Sekunden zur Aufgabenlösung wur-
den die Nicht-Kernaufgaben am langsamsten berechnet. Die Einmaleinssätze mit 1, 
2, 5 und 10 wurden – deskriptiv betrachtet – nicht nur erfolgreicher gelöst als die 
Quadrataufgaben, sondern im Durchschnitt auch schneller (siehe Tabelle 32).

T abelle 32: Durchschnittliche Lösungszeit (in Sekunden) korrekt gelöster Aufgaben verschiedener Aufga-
bentypen

Aufgabentypen N M SD

KA (gesamt) 143 2.8 0.8

KA1 143 2.6 0.8

KA2 143 3.1 1.7

NKA 143 8.2 6.2

0 143 2.1 1.0

Gesamt 143 4.0 1.6

Im Anschluss werden die Lösungszeiten der Kinder hinsichtlich der Lehrkraft -Grup-
pen betrachtet. Den deskriptiven Kennwerten zufolge lösen lehrplankonform unter-
richtete Kinder – mit Ausnahme der Aufgaben vom Aufgabentyp 0 – die Einmal-
einsaufgaben schneller als die bewusst traditionell unterrichteten Schülerinnen und 
Schüler (siehe Tabelle 33). Es liegen über alle Aufgabentypen sowie über die Ge-
samtheit der Aufgaben allerdings keine signifi kanten Unterschiede bezüglich der Lö-
sungszeiten korrekt gelöster Aufgaben vor (siehe Tabelle 33).
 

134 Das aus den Analysen der Reaktionszeittestung ausgeschlossene Kind hat im Vergleich 
durchschnittlich doppelt so lang zur korrekten Aufgabenlösung benötigt (M = 7.8, SD = 3.2).
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Tabelle 33:  Durchschnittliche Lösungszeit (in Sekunden) korrekt gelöster Aufgaben verschiedener Aufga-
bentypen in Abhängigkeit von der Lehrkraft-Gruppe

Aufgabentypen

Lehrkraft -Gruppe

Lehrplankonform
(N = 71)

Bewusst traditionell
(N = 72)

M SD M SD Wald χ2(1) p

KA (gesamt) 2.7 0.7 2.8 0.9 0.88 .349

KA1 2.6 0.7 2.7 0.9 0.60 .439

KA2 3.0 1.5 3.3 1.9 < 0.01   .999

NKA 7.8 4.8 8.6 7.4 0.01 .920

0 2.2 0.9 2.1 1.0 0.32 .574

Gesamt 3.9 1.4 4.1 1.8 0.19 .663

Abbildung 41 veranschaulicht die Lösungszeiten der Kinder getrennt nach verschie-
denen Leistungsgruppen. Hinsichtlich der unterschiedlichen Leistungsgruppen kön-
nen – mit Ausnahme des Aufgabentyps Aufgaben mit einem Faktor 0 – signifi kan-
te Unterschiede über alle Aufgabentypen (KA (gesamt): Wald χ2(2) = 39.87, p < .001; 
KA1: Wald  χ2(2)  =  37.30, p < .001; KA2: Wald χ2(2)  =  10.81, p  =  .004; NKA: Wald 
χ2(2) = 18.59, p < .001; 0: Wald χ2(2) = 1.84, p = .399) sowie über die Gesamtheit an 
Aufgaben (Wald χ2(2)  =  18.53, p < .001) ermittelt werden (siehe Abbildung 41).135 
Den durchgeführten paarweisen Vergleichen zufolge unterscheiden sich die Lö-
sungszeiten für die Nicht-Kernaufgaben über alle Leistungsgruppen signifi kant. Die 
mittleren Lösungszeiten der durchschnittlichen und der leistungsschwachen Kin-
der unterscheiden sich allerdings für die Aufgabentypen, Kernaufgabe (gesamt) und 
Kernaufgabe (KA1) sowie für die Gesamtheit der überprüft en Einmaleinsaufgaben, 
nicht signifi kant. Für die Lösungszeiten der Quadrataufgaben besteht ausschließlich 
ein signifi kanter Unterschied zwischen den leistungsstarken und den leistungsschwa-
chen Kindern (siehe auch Abbildung 41).136 Besonders auff allend sind in Abbildung 
41 die durchwegs längsten durchschnittlichen Lösungszeiten von Nicht-Kernaufga-
ben. Leistungsschwache Schülerinnen und Schüler benötigen darüber hinaus für den 
Abruf von Aufgaben des Aufgabentyps Nicht-Kernaufgabe mehr als doppelt so lang 
wie die leistungsstarken Kinder.

135 Die Gesamtheit der deskriptiven Kennwerte der durchschnittlichen Lösungszeiten verschie-
dener Aufgabentypen in Abhängigkeit vom Leistungsvermögen sind im Anhang (B.2) ange-
führt.

136 Eine detaillierte Übersicht aller paarweisen Vergleiche fi ndet sich im Anhang (B.2).
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A bbildung 41:  Durchschnittliche Lösungszeit (in Sekunden) korrekt gelöster Aufgaben verschiedener 
Aufgabentypen in Abhängigkeit vom Leistungsvermögen. Die Fehlerbalken 
repräsentieren den Standardfehler des Mittelwertes,
*p < .05, **p < .01, ***p < .001.

Im Folgenden werden die ermittelten Lösungszeiten der Kinder für einen schnellen 
Abruf aus dem Gedächtnis vorgestellt.

Lösungszeiten schneller korrekter Faktenabrufe
Neben den Lösungszeiten der korrekt gelösten Aufgaben, die bereits erste gute An-
haltspunkte hinsichtlich benötigter Lösungszeiten im Allgemeinen liefern, wird den 
ermittelten Lösungszeiten für schnelle Abrufe aus dem Gedächtnis ebenfalls eine 
wichtige Rolle zuteil. Sie dienen dazu, die später vorgestellten Ergebnisse bzw. Er-
kenntnisse der off enen Forschungsfrage, wie häufi g wird zur Aufgabenlösung auf 
den Faktenabruf zurückgegriff en, besser einordnen bzw. einschätzen zu können.

Wie bereits in den methodischen Ausführungen betont (siehe Kapitel 5), ist ein
Ziel dieser Arbeit, eine Alternative zur 3-Sekunden-Obergrenze, die in der interna-
tionalen Literatur häufi g zur Feststellung von Automatisierungsquoten zum Einsatz 
kommt, zu entwickeln bzw. aufzustellen. Der in dieser Arbeit verfolgte Ansatz ermit-
telt dabei individuelle Schwellen je Kind (siehe Abschnitt 6.1.1). Aufgaben, die in-
nerhalb der individuell ermittelten Schwelle gelöst werden, können dem schnellen 
Faktenabruf aus dem Gedächtnis zugeordnet werden.

Basierend auf den individuell ermittelten Schwellen werden die Forschungs-
ergebnisse hinsichtlich der Lösungszeiten korrekter Faktenabrufe vorgestellt. Tabel-
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le 34 veranschaulicht die durchschnittlichen Lösungszeiten der getätigten schnellen 
Faktenabrufe. Sie präsentiert darüber hinaus die durchschnittlichen Lösungszeiten 
schneller Faktenabrufe getrennt nach den verschiedenen Leistungsgruppen.

T abelle 34:  Mittelwert, Standardabweichung sowie Minimal- und Maximalwert der Lösungszeiten für 
einen schnellen Abruf aus dem Gedächtnis in Abhängigkeit vom Leistungsvermögen

Leistungsvermögen N M SD Min Max

Leistungsstark 48 1.5 0.2 1.1 2.0

Durchschnittlich 49 1.7 0.2 1.3 2.2

Leistungsschwach 46 1.8 0.3 1.3 2.5

Gesamt 143 1.6 0.3 1.1 2.3

Die durchschnittlichen Lösungszeiten für Faktenabrufe der Kinder unterschiedlichen 
Leistungsvermögens unterscheiden sich mit Werten von 1.5, 1.7 und 1.8 Sekunden 
signifi kant voneinander (Wald χ2(2) = 67.95, p < .001). Den paarweisen Vergleichen 
zufolge unterscheiden sich die leistungsstarken Kinder von den leistungsschwa-
chen und den Kindern durchschnittlichen Leistungsvermögens signifi kant (beide 
p < .001). Darüber hinaus zeigen sich signifi kante Unterschiede zwischen den Kin-
dern durchschnittlichen Leistungsvermögens und den leistungsschwachen Kindern 
(p = .047) – signifi kante Unterschiede liegen demnach zwischen allen Leistungsgrup-
pen vor. 

Zwischen den Kindern der verschiedenen Lehrkraft -Gruppen zeigt sich kein si-
gnifi kanter Unterschied bezüglich der mittleren Lösungszeiten (lehrplankon-
form: M = 1.6, SD = 0.3; bewusst traditionell: M = 1.6, SD = 0.3; Wald χ2(1) < 0.01, 
p  =  .963) – die ermittelten Lösungszeiten für einen Faktenabruf unterscheiden sich 
nur im Millisekundenbereich.

Anzahl schneller Abrufe aus dem Gedächtnis
Mittels der individuellen Schwellen je Kind können nicht nur Erkenntnisse darüber 
gewonnen werden, wie lange ein Kind im Durchschnitt für den Abruf von Aufga-
ben aus dem Gedächtnis benötigt – wie gerade vorgestellt –, sondern individuelle 
Schwellen ermöglichen auch die Anzahl der getätigten schnellen Abrufe zu ermit-
teln.

Im Folgenden wird berichtet, wie viele der 48 überprüft en Einmaleinsaufgaben 
verschiedener Aufgabentypen im Durchschnitt schnell aus dem Gedächtnis verfüg-
bar sind, d. h. wie viele Aufgaben innerhalb der individuell ermittelten Schwelle für 
einen Faktenabruf gelöst werden (siehe  Tabelle 35).
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Tabelle 35:  Prozentualer Anteil abrufbarer Einmaleinsaufgaben verschiedener Aufgabentypen

Aufgabentypen N %

Kernaufgaben gesamt (KA) 143 50

Kernaufgaben – Einmaleinssätze mit 1, 2, 5 und 10 (KA1) 143 53

Kernaufgaben – Quadrataufgaben (KA2) 143 40

Nicht-Kernaufgaben (NKA) 143 1

Aufgaben mit einem Faktor 0 (0) 143 49

Gesamt 143 35

Betrachtet man die bevorzugt schnell abgerufenen Aufgabentypen, wird ersicht-
lich, dass fast ausschließlich Kernaufgaben innerhalb der individuell ermittelten 
Schwelle für einen schnellen Abruf liegen. Insgesamt werden 50% aller Kernaufga-
ben schnell aus dem Gedächtnis abgerufen. Auff allend ist in diesem Zusammenhang, 
dass die Einmaleinssätze mit 1, 2, 5 und 10 – deskriptiv betrachtet – häufi ger abruf-
bar zur Verfügung stehen als die Quadrataufgaben, die laut den Forschungsergeb-
nissen internationaler Studien am schnellsten gelöst werden (siehe Abschnitt 3.2.1). 
Während 53% der zu lösenden Kernaufgaben der Einmaleinssätze mit 1, 2, 5 und 10 
schnell abgerufen werden, beläuft  sich der Prozentsatz der Quadrataufgaben nur auf 
40%. Darüber hinaus wird immerhin im Durchschnitt eine von zwei Aufgaben mit 
einem Faktor 0 von den Kindern schnell ermittelt. Die Nicht-Kernaufgaben weisen 
im Vergleich zu den anderen Aufgabentypen die niedrigsten Abrufquoten auf, ledig-
lich 1% der Nicht-Kernaufgaben werden schnell abgerufen. Insgesamt sind in der 
vorliegenden Studie 35% der Aufgaben gedächtnismäßig verfügbar.

Wie der Tabelle 36 zu entnehmen ist, variieren die Anzahlen bzw. prozentualen 
Anteile an schnellen Faktenabrufen aus dem Gedächtnis für jeden einzelnen Aufga-
bentyp und für die Gesamtheit an Aufgaben je Leistungsgruppe nur gering. Es liegen 
keine signifi kanten Unterschiede zwischen den Leistungsgruppen hinsichtlich der 
verschiedenen Aufgabentypen vor sowie im Hinblick auf die Gesamtzahl verfügbarer 
schneller Abrufe (siehe Tabelle 36).137

137 Eine detaillierte Übersicht aller paarweisen Vergleiche fi ndet sich im Anhang (B.2).
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 Tabelle 36:  Prozentualer Anteil schnell abrufbarer Einmaleinsaufgaben verschiedener Aufgabentypen in 
Abhängigkeit vom Leistungsvermögen

Aufgabentypen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

% % % Wald χ2(2) p

KA (gesamt) 50 50 50 0.02 .992

KA1 52 53 53 0.43 .808

KA2 43 40 39 1.53 .465

NKA 1 1 2 2.01 .365

0 55 55 40 3.10 .212

Gesamt 35 35 34 0.32 .851

Was die unterschiedliche Anzahl an Abrufen unter Berücksichtigung der Lehr-
kraft -Gruppen betrifft   (siehe Tabelle 37), existiert einzig ein signifi kantes Ergeb-
nis für die Kernaufgaben bestehend aus den Einmaleinssätzen 1, 2, 5 und 10 (Wald 
χ2(1) = 4.20, p =  .041). Die lehrplankonform unterrichteten Kinder rufen im Schnitt 
signifi kant mehr Aufgaben der Einmaleinssätze 1, 2, 5 und 10 schnell ab als die Kin-
der der bewusst traditionellen Lehrkraft -Gruppe.

 Tabelle 37:  Prozentualer Anteil abrufbarer Einmaleinsaufgaben verschiedener Aufgabentypen in Abhän-
gigkeit von der Lehrkraft-Gruppe

Aufgabentypen

Lehrkraft -Gruppen

Lehrplankonform
(N = 71)

Bewusst traditionell
(N = 72)

% % Wald χ2(1) p

KA (gesamt) 50 49 0.78 .378

KA1 54 52 4.20 .041

KA2 39 42 0.72 .396

NKA 1 2 0.86 .353

0 42 55 3.05 .081

Gesamt 35 35 < 0.01 .952

Die vorgestellten Ergebnisse bezüglich der Anzahl verfügbarer Faktenabrufe zeigen, 
dass Kinder unterschiedlichen Leistungsvermögens annähernd gleiche Anzahlen an 
Aufgaben aus dem Gedächtnis abrufen. Davon zu sprechen, dass keine Unterschiede 
zwischen den Leistungsgruppen vorliegen, trifft   dabei zwar auf die Anzahl an ermit-
telten schnellen Faktenabrufen zu, nicht aber darauf, dass leistungsschwächere Kin-
der im Schnitt für einen Abruf mehr Zeit benötigen. Dies sollte bei der Interpreta-
tion der Ergebnisse einbezogen werden.
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6.2 Ergebnisse des Strategieinterviews

Nach der Präsentation der Forschungsergebnisse der Reaktionszeittestung und den 
in diesem Kontext ermittelten Erkenntnissen hinsichtlich eines schnellen Faktenab-
rufes liegt in den folgenden Ausführungen der Fokus auf der Strategieverwendung 
von Kindern beim kleinen Einmaleins.

6.2.1 Vielfalt an Herangehensweisen und die Häufi gkeit des Einsatzes

Im Zentrum des Strategieinterviews und der Ausführungen des folgenden Abschnit-
tes steht insbesondere die Beantwortung der Leitfrage dieser Arbeit:
• Zeigen sich im Strategieeinsatz bei Kindern nach der Erarbeitung des kleinen 

Einmaleins Herangehensweisen, die basierend auf Einsicht in operative Bezie-
hungen zur Aufgabenlösung führen?

In einem ersten Schritt sollen die ausdiff erenzierten Folgefragen analysiert werden: 
• Welche konkreten Herangehensweisen setzen Kinder zur Lösung von Einmal-

einsaufgaben ein?
• Wie häufi g greifen Kinder auf diese Herangehensweisen zur Lösung von Aufga-

ben zum kleinen Einmaleins zurück?

Da auch im Strategieinterview ein möglicher Einfl uss der individuellen Leistungs-
fähigkeit eines Kindes sowie der unterrichtlichen Erarbeitung auf die Strategiever-
wendung nicht unberücksichtigt bleiben soll, werden die vorgestellten Fragen auch 
hinsichtlich des Einfl usses des individuellen Leistungsvermögens und der unterricht-
lichen Vorgehensweise der Lehrkräft e analysiert. Die allgemein formulierten Fragen 
hinsichtlich der Einfl ussfaktoren Individuum und Unterricht lauten wie folgt:
• Inwieweit zeigen sich Unterschiede in der Strategieverwendung und im Lern-

erfolg bei Aufgaben zum kleinen Einmaleins bei Kindern mit unterschiedlichem 
Leistungsvermögen (leistungsstark, durchschnittlich und leistungsschwach)?

• Machen sich verschiedene unterrichtliche Vorgehensweisen der Lehrpersonen in 
der Strategieverwendung und im Lernerfolg der Kinder bei Aufgaben zum klei-
nen Einmaleins bemerkbar? Wenn ja, wie?

Da theoretische Erkenntnisse der vorliegenden Arbeit ebenso wie publizierte inter-
nationale Forschungsergebnisse zur Strategieverwendung gezeigt haben, dass vor al-
lem hinsichtlich einer geeigneten Art der Erarbeitung des kleinen Einmaleins bei 
rechenschwachen Kindern noch weitestgehend wenig Konsens besteht, sollen im 
Strategieinterview nicht ausschließlich die beiden Haupteff ekte der Faktoren Indi-
viduum und Unterricht analysiert werden, sondern die Strategieverwendung auch 
hinsichtlich des Interaktionseff ektes der beiden Faktoren (Individuum × Unterricht) 
betrachtet werden.�Die in diesem Zusammenhang durchgeführten Unterschiedsana-
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lysen werden, wie bereits bei den Auswertungen der Reaktionszeittestung angemerkt, 
basierend auf verallgemeinerten Schätzgleichungen durchgeführt.

Der erste Interviewteil sah für N  =  144 Kinder die Lösung von sechs Einmal-
einsaufgaben bei freier Strategiewahl vor. Da im Strategieinterview verschiedene He-
rangehensweisen abgesehen vom Abruf einer Aufgabe aus dem Gedächtnis ermit-
telt werden sollten, wurden Kinder, die Aufgaben bevorzugt aus dem Gedächtnis 
abriefen, aufgefordert, eine alternative Herangehensweise anstelle des Faktenabrufes 
zu nennen (siehe Abschnitt 5.3.2). Erneut wird – wie bereits bei den Auswertungen 
der Ergebnisse der Reaktionszeittestung – ein Kind der Stichprobe von den Analysen 
ausgeschlossen, um Verzerrungen insbesondere im Hinblick auf die Unterschieds-
analysen zu verhindern.138

In einem ersten Schritt soll das Verhältnis eingesetzter Rechenstrategien und we-
niger tragfähiger Herangehensweisen veranschaulicht werden. Die Darstellung dieser 
und aller folgenden Auswertungen erfolgt dabei immer nach dem Schema, dass zu-
nächst die Haupteff ekte der Faktoren Individuum und Unterricht berichtet werden 
und im Anschluss die Wechselwirkung zwischen diesen beiden Faktoren.

Anteil Rechenstrategien und weniger tragfähiger Herangehensweisen
Tabelle 38 veranschaulicht das Verhältnis zwischen Rechenstrategien und weniger 
tragfähigen Herangehensweisen139 bei freier Strategiewahl. Die angeführten absoluten 
und relativen Häufi gkeiten listen dabei die gewählten Herangehensweisen der Kinder 
unabhängig von möglichen Strategie- bzw. Rechenfehlern auf. Mehr als Zweidrittel 
der Aufgaben des ersten Interviewteilbereiches bzw. 69% der Aufgaben werden über 
Rechenstrategien gelöst, 30% über weniger tragfähige Herangehensweisen. Für 1% 
der Aufgaben ist keine Aufgabenlösung bekannt.

 Tabelle 38:  Absolute und relative Häufi gkeit verwendeter Rechenstrategien und weniger tragfähiger 
Herangehensweisen bei freier Strategiewahl

Herangehensweisen Absolute Häufi gkeit Relative Häufi gkeit

Rechenstrategien 589 69

Weniger tragfähige  Herangehensweisen 258 30

Keine Aufgabenlösung 11 1

Gesamt 858 100

138 Nur bei einer von sechs Aufgaben war das Kind in der Lage einen Lösungsweg zur Berech-
nung zu nennen. Vom Ausschluss betroff en ist dasselbe Kind, das bereits in einem Großteil 
der Auswertungen zur Reaktionszeittestung nicht in die Analysen einbezogen wurde.

139 Die Herangehensweise der sukzessiven Addition wird in der Tabelle 38 unter eine weniger 
tragfähige Herangehensweisen gefasst, auch wenn sie bei entsprechender Aufgabencharakte-
ristik als Rechenstrategie angesehen werden kann (siehe auch Abschnitt 2.2.3).
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Im Mittel setzt ein Kind demnach bei sechs zu lösenden Aufgaben M  =  4.13 
(SD = 1.97) Rechenstrategien ein und M = 1.77 (SD = 1.97) weniger tragfähige He-
rangehensweisen.140 Ein Vergleich der Häufi gkeiten aller eingesetzten Rechenstrate-
gien und aller weniger tragfähigen Herangehensweisen unter Berücksichtigung des 
individuellen Leistungsvermögens wird in Tabelle 39 veranschaulicht.

 Tabelle 39:  Häufi gkeit des Einsatzes von Rechenstrategien und weniger tragfähigen Herangehensweisen 
je Kind in Abhängigkeit vom Leistungsvermögen

Herangehensweisen

Leistungsvermögen

Leistungsstark     
(N = 48)

Durchschnitt-
lich (N = 49)

Leistungs-
schwach 
(N = 46)

M SD M SD M SD Wald χ2(2) p

Rechenstrategien 4.65 1.59 4.71 1.63 2.96 2.17  20.86 < .001

Weniger tragfähige 
Herang. 1.19 1.56 1.24 1.64 2.93 2.21 23.50  < .001

Die Kinder unterschiedlichen Leistungsvermögens unterscheiden sich sowohl hin-
sichtlich der Häufi gkeit des Einsatzes von Rechenstrategien als auch bezüglich der 
weniger tragfähigen Herangehensweisen signifi kant (siehe Tabelle 39). Paarwei-
se Vergleiche off enbaren allerdings nur zwischen der leistungsstarken und der leis-
tungsschwachen Gruppe (Rechenstrategie: p < .001, weniger tragfähige Heran-
gehensweise: p < .001) sowie den leistungsschwachen Kindern und den Kindern 
durchschnittlichen Leistungsvermögens signifi kante Unterschiede (Rechenstrategie: 
p < .001, weniger tragfähige Herangehensweise: p  =  .001). Wohingegen kein signi-
fi kanter Unterschied zwischen den leistungsstarken und den Kindern durchschnitt-
lichen Leistungsvermögens vorliegt (Rechenstrategie: p  =  1.000, weniger tragfähi-
ge Herangehensweise: p = 1.000). Im Durschnitt greifen leistungsstarke Kinder und 
Kinder durchschnittlichen Leistungsvermögens fünfmal auf Rechenstrategien zurück 
und setzen nur eine weniger tragfähige Herangehensweise ein. Im Vergleich dazu 
hält sich der Einsatz von Rechenstrategien und weniger tragfähiger Herangehenswei-
sen bei den leistungsschwachen Kindern die Waage.

Wie Tabelle 40 veranschaulicht, unterscheiden sich die Kinder verschiedener Lehr-
kraft -Gruppen im Einsatz von Rechenstrategien und im Einsatz weniger tragfähiger 
Herangehensweisen signifi kant voneinander. Im Durchschnitt setzen die lehrplan-
konform unterrichteten Kinder eine Rechenstrategie mehr ein als die Vergleichs-
gruppe und dafür greifen sie im Mittel einmal weniger auf eine weniger tragfähige 
Herangehensweise zurück.

140 Die restlichen Aufgaben wurden im Mittel je Kind nicht gelöst – für die Gesamtstichprobe 
beläuft  sich der Prozentsatz nicht gelöster Aufgaben – wie später noch detailliert berichtet 
wird – auf 1%. 
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 Tabelle 40:  Häufi gkeit des Einsatzes von Rechenstrategien und weniger tragfähigen Herangehensweisen 
je Kind in Abhängigkeit von der Lehrkraft-Gruppe 

Herangehens-
weisen

Lehrkraft -Gruppe

Lehrplankonform
(N = 71)

Bewusst traditionell
(N = 72)

M SD M SD Wald χ2(1) p

Rechenstrategien 4.50 1.76 3.76 2.11 6.72 .010

Weniger trag-
fähige Herang. 1.37 1.71 2.17 2.14 4.16 .041

Die bisher vorgestellten Studienergebnisse lassen erkennen, dass leistungsschwächere 
Kinder im Durchschnitt weniger häufi g auf Rechenstrategien zurückgreifen als leis-
tungsstärkere und das Verhältnis des Einsatzes von Rechenstrategien und weniger 
tragfähigen Herangehensweisen allerdings ausgewogen ist. Zudem off enbaren die Er-
gebnisse hinsichtlich der Lehrkraft -Gruppen, dass die lehrplankonform unterrichte-
ten Kinder signifi kant häufi ger Rechenstrategien einsetzen, die bewusst traditionell 
unterrichteten signifi kant mehr weniger tragfähige Herangehensweisen. 

Jeweils keine signifi kante Interaktion zwischen den Faktoren Individuum und 
Unterricht zeigt sich den Forschungsergebnissen zufolge hinsichtlich der Häufi gkeit 
des Einsatzes von Rechenstrategien sowie von weniger tragfähigen Herangehenswei-
sen (Rechenstrategie: Wald χ2(2) = 5.60, p  =  .050; weniger tragfähige Herangehens-
weise: Wald χ2(2) = 1.35, p = .510).

Tabelle 41 veranschaulicht deskriptiv die Häufi gkeit des Einsatzes der Heran-
gehensweisen gruppiert nach Rechenstrategien und weniger tragfähigen Herange-
hensweisen unter Berücksichtigung des individuellen Leistungsvermögens und der 
unterrichtlichen Erarbeitung. Zwischen den leistungsschwachen Kindern der beiden 
Lehrkraft -Gruppen liegt ein signifi kanter Unterschied hinsichtlich der Häufi gkeit des 
Einsatzes von Rechenstrategien vor (Wald χ2(1)  =  7.54, p  =  .006) und im Umkehr-
schluss demnach auch hinsichtlich der Häufi gkeit des Einsatzes weniger tragfähi-
ger Herangehensweisen (Wald χ2(1) = 7.91, p =  .005). Die leistungsschwachen, lehr-
plankonform unterrichteten Kinder setzen signifi kant mehr Rechenstrategien und 
signifi kant seltener weniger tragfähige Herangehensweisen zur Aufgabenlösung ein 
als die traditionell unterrichteten Kinder der gleichen Leistungsgruppe.
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 Tabelle 41:  Häufi gkeit des Einsatzes von Rechenstrategien und weniger tragfähigen Herangehensweisen 
je Kind in Abhängigkeit vom Leistungsvermögen und der Lehrkraft-Gruppe

Herangehens-
weise

Leistungsvermögen und Lehrkraft -Gruppe

Leistungsstark Durchschnittlich Leistungsschwach

Lehrplan-
konform
(N = 24)

Bewusst 
traditionell
(N = 24)

Lehrplan-
konform
(N = 25)

Bewusst 
traditionell
(N = 24)

Lehrplan-
konform
(N = 23)

Bewusst 
traditionell
(N = 23)

M SD M SD M SD M SD M SD M SD

Rechen-
strategien 4.88 1.51 4.42 1.67 4.72 1.46 4.71 1.83 3.82 2.15 2.17 1.90

Weniger 
tragfähige 
Herang.

0.88 1.33 1.50 1.72 1.24 1.48 1.25 1.82 2.05 2.13 3.75 1.98

Kinder der beiden Lehrkraft -Gruppen mit durchschnittlichem Leistungsvermögen 
unterscheiden sich nicht signifi kant hinsichtlich der Häufi gkeit des Einsatzes von Re-
chenstrategien und weniger tragfähigen Herangehensweisen (Rechenstrategie: Wald 
χ2(1)  =  0.00, p  =  1.000; weniger tragfähige Herangehensweisen: Wald χ2(1)  =  0.00, 
p  =  1.000), da sie deskriptiv betrachtet ähnlich häufi g auf Rechenstrategien sowie 
weniger tragfähige Herangehensweisen zurückgreifen (siehe Tabelle 41).

Ein signifi kanter Unterschied zwischen den leistungsstarken Kindern der bei-
den Lehrkraft -Gruppen hinsichtlich der Häufi gkeit des Einsatzes von Rechenstrate-
gien und weniger tragfähigen Herangehensweisen liegt ebenfalls nicht vor (Rechen-
strategie: Wald χ2(1)  =  0.92, p  =  .337; weniger tragfähige Herangehensweise: Wald 
χ2(1)  =  1.90, p  =  .168). Rein deskriptiv setzen leistungsstarke Kinder der bewusst 
traditionellen Lehrkraft -Gruppe weniger tragfähige Herangehensweisen häufi ger und 
Rechenstrategien seltener ein als die Vergleichsgruppe, deren Lehrkräft e den Fokus 
der Erarbeitung auf verschiedene Rechenstrategien legen (siehe Tabelle 41).

Vielfalt an Herangehensweisen und Häufi gkeit des Einsatzes
Ein Überblick über die verschiedenen eingesetzten Herangehensweisen sowie die 
Häufi gkeit des Einsatzes je Herangehensweise wird in Tabelle 42 gegeben. Die ange-
führten Prozentsätze listen dabei erneut die gewählten Herangehensweisen der Kin-
der unabhängig von möglichen Strategie- bzw. Rechenfehlern auf.
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Tabelle 42:  Absolute und relative Häufi gkeit verwendeter Herangehensweisen

Absolute Häufi gkeit Relative Häufi gkeit

Nachbaraufgabe 
Sukzessive Addition
Verdopplung/Halbierung
Faktorzerlegung
Verkürzte sukzessive Addition 
Keine Aufgabenlösung 
Sonstige Herangehensweisen
Gegensinniges Verändern
Tauschaufgabe 

363
238
118
106

15
11

5
1
1

42
28
14
12

2
1

< 1
< 1
< 1

Gesamt 858 100

Die insgesamt N  =  143 Kinder greifen zur Lösung der 858 Aufgaben auf eine Viel-
falt an Herangehensweisen zurück. Neben Rechenstrategien, wie der Nachbaraufga-
be, der Faktorzerlegung, der Verdopplung und Halbierung, der Tauschaufgabe und 
dem gegensinnigen Verändern werden auch weitere Herangehensweisen wie die ver-
kürzte sukzessive Addition und die sukzessive Addition141 zur Aufgabenlösung ein-
gesetzt. Darüber hinaus kamen auch Herangehensweisen zum Einsatz, die keiner der 
genannten Kategorien bzw. keiner eigenen Kategorie zugeordnet werden können und 
aus diesem Grund in die Kategorie sonstige Herangehensweisen fallen. Ein Teil der 
Aufgaben wurde zudem – wie bereits erwähnt – nicht gelöst. Die absoluten und re-
lativen Häufi gkeiten je Herangehensweise über die sechs zu lösenden Aufgaben sind 
Tabelle 42 zu entnehmen.

Rein deskriptiv sollen die Häufi gkeiten des Einsatzes der verschiedenen Heran-
gehensweisen in den folgenden Ausführungen beschrieben werden: Die Nachbarauf-
gabe stellt die am häufi gsten zur Lösung eingesetzte Herangehensweise dar – auf sie 
wird bei fast der Hälft e der Aufgaben (42%) zurückgegriff en. Die zweithäufi gste ge-
wählte Herangehensweise ist die sukzessive Addition, sie wird in fast einem Drit-
tel der Aufgaben (28%) bevorzugt zur Aufgabenlösung eingesetzt. Zur Lösung von 
12% der Aufgaben wird die Faktorzerlegung eingesetzt, 14% der berechneten Aufga-
ben werden mithilfe der Verdopplung bzw. Halbierung gelöst. Bei den Lösungswe-
gen über die Nachbaraufgabe und die Faktorzerlegung wurde zusätzlich diff erenziert 
in additive oder subtraktive Zerlegungen. Je Rechenstrategie können annähernd glei-
che Prozentsätze für eine additive (Nachbaraufgabe: 19%, Faktorzerlegung: 6%) bzw. 
subtraktive (Nachbaraufgabe: 23%; Faktorzerlegung: 6%) Zerlegung ermittelt werden. 
Die verkürzte sukzessive Addition, das gegensinnige Verändern sowie die Tauschauf-
gabe erweisen sich als vergleichsweise selten eingesetzte Herangehensweisen.

141 Unter die Bezeichnung sukzessive Addition fällt in den folgenden Auswertungen der Einsatz 
der sukzessiven Addition, das Nutzen von Zahlenfolgen sowie gegebenenfalls auch ein nicht 
off ensichtlicher Einsatz des rhythmischen Zählens (siehe Abschnitt 5.4).
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Einhergehend mit der Kodierung der gewählten Herangehensweisen wurde auch 
erfasst, ob Kinder beide Faktoren einer Aufgabe fl exibel betrachten und die Kom-
mutativität zur Lösung einer Einmaleinsaufgabe nutzen. Im Durchschnitt betrach-
ten Kinder in zwei von sechs Aufgaben (M = 2.00, SD = 1.17) beide Faktoren fl exi-
bel. Von den N = 143 Kindern setzen nur 14 Kinder (10%) keine Tauschaufgabe zur 
Lösung ihrer Aufgaben ein. Betrachtet man das Verhältnis zwischen keinem Einsatz 
und dem Einsatz einer Tauschaufgabe für jede Aufgabe getrennt, fällt anhand der 
deskriptiven Kennwerte vor allem für die Aufgaben 3 x 7 und 4 x 6 ein ungleiches 
Verhältnis im Vergleich zu den restlichen Aufgaben auf (siehe Tabelle 43). 

Tabelle 43:  Prozentualer Anteil fl exibler Faktorbetrachtungen je Aufgabenstellung

Aufgabe Einsatz der Tauschaufgabe
(%)

Kein Einsatz der Tauschaufgabe
 (%)

3 x 7 94 6

9 x 4 54 46

5 x 8 54 46

6 x 9 57 43

4 x 6 81 19

8 x 7 59 41

Bei den zwei genannten Aufgaben wird seltener auf den Einsatz der Tauschaufga-
be zurückgegriff en, was bei Betrachtung der Aufgabencharakteristik allerdings nicht 
weiter verwunderlich ist. Der Einsatz der Tauschaufgabe würde bei beiden Aufgaben 
hinsichtlich der sukzessiven Addition bedeuten, dass der kleinere der beiden Fakto-
ren summiert werden würde und mehrere Rechenschritte zur Aufgabenlösung be-
nötigt werden würden. Darüber hinaus bietet sich bei beiden Aufgaben die Lösung 
über Rechenstrategien an, für die keine Betrachtung bzw. eine Vertauschung der 
Faktoren erforderlich ist. So kann die Aufgabe 3 x 7 beispielsweise über die Nachbar-
aufgabe mit anschließender additiver Veränderung des Ergebnisses, also 2 x 7 + 1 x 7 
gelöst werden. Bei der Aufgabe 4 x 6 bietet sich unter anderem das zweimalige Ver-
doppeln von sechs sowie eine Lösung mithilfe der Kernaufgabe 5 x 6 an.

Im Folgenden soll dargelegt werden, wie häufi g Kinder unterschiedlichen Leis-
tungsvermögens auf verschiedene Herangehensweisen zurückgreifen und inwiefern 
sich die Häufi gkeit des Einsatzes je nach zugehöriger Lehrkraft -Gruppe unterschei-
det. Darüber hinaus soll untersucht werden, ob ein Interaktionseff ekt zwischen dem 
Faktor Unterricht und dem Faktor Individuum vorliegt. Es wird in diesem Kotext 
auch untersucht, inwiefern sich Kinder der beiden Lehrkraft -Gruppen gleichen Leis-
tungsvermögens hinsichtlich der Häufi gkeit des Einsatzes verschiedener Herange-
hensweisen unterscheiden.
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Häufi gkeit des Einsatzes von Herangehensweisen in Abhängigkeit vom 
Leistungsvermögen und der Lehrkraft -Gruppe
In Abbildung 42 wird angeführt, wie häufi g einzelne Herangehensweisen in Abhän-
gigkeit vom individuellen Leistungsvermögen eines Kindes zum Einsatz kommen. 
Häufi gkeiten des Einsatzes der Rechenstrategien des gegensinnigen Veränderns und 
der Tauschaufgabe sowie sonstige Herangehensweisen werden aufgrund der geringen 
Anzahl an Nennungen (siehe Tabelle 42) nicht in Abbildung 42 visualisiert.142

Auff allend in Abbildung 42 ist vor allem der – anhand der deskriptiven Kenn-
werte erkennbare – zunehmende Einsatz der Herangehensweisen der Nachbaraufga-
be, der Verdopplung bzw. Halbierung sowie der verkürzten sukzessiven Addition mit 
höherem Leistungsvermögen. Ein dazu gegensätzliches Bild lässt der durchschnitt-
liche Einsatz der sukzessiven Addition der Kinder unterschiedlichen Leistungsver-
mögens erkennen (siehe auch Tabelle 44): Leistungsschwache Kinder greifen bei-
spielsweise mehr als doppelt so oft  auf die weniger tragfähige Herangehensweise der 
sukzessiven Addition zurück (M  =  2.87, SD  =  2.21) als Kinder durchschnittlichen 
Leistungsvermögens (M = 1.16, SD = 1.56).

Signifi kante Unterschiede hinsichtlich der Häufi gkeit des Einsatzes zwischen den 
verschiedenen Leistungsgruppen liegen nur für den Einsatz der Nachbaraufgabe, der 

142 Die genannten Herangehensweisen werden nur in den Analysen hinsichtlich des bereits be-
richteten Anteils an Rechenstrategien und weniger tragfähigen Herangehensweisen berück-
sichtigt.

A bbildung 42:  Häufi gkeit des Einsatzes verschiedener Herangehensweisen je Kind in Abhängigkeit 
vom Leistungsvermögen. Die Fehlerbalken repräsentieren den Standardfehler des 
Mittelwertes, *p < .05, **p < .01, ***p < .001.
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Verdopplung bzw. Halbierung und der sukzessiven Addition vor (siehe auch Tabel-
le 44). Paarweise Vergleiche zeigen für die drei genannten Herangehensweisen si-
gnifi kante Unterschiede zwischen den leistungsschwachen Kindern und den Kin-
dern durchschnittlichen Leistungsvermögens (NA: p  =  .004, V/H: p  =  .003, sukz. 
Addition: p  =  .009) sowie zwischen den leistungsschwachen und den leistungsstar-
ken Kindern (NA: p < .001, V/H: p <  .001, sukz. Addition: p < .001). Keine signifi -
kanten Unterschiede hinsichtlich der Häufi gkeit des Einsatzes werden zwischen der 
durchschnittlichen und der leistungsstarken Gruppe ermittelt (NA: p  =  1.000, V/H: 
p = .947, sukz. Addition: p = 1.000).143 

T abelle 44:  Häufi gkeit des Einsatzes verschiedener Herangehensweisen je Kind in Abhängigkeit vom 
Leistungsvermögen

Herangehens-
weisen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

M SD M SD M SD Wald 
χ2(2)

p

NA 2.98 1.48 2.84 1.72 1.76 1.51 20.55 < .001

FZ 0.58 0.68 0.92 1.00 0.72 0.89 4.03    .133

V/H 1.02 0.91 0.96 1.10 0.48 0.81 6.70    .035

Verk. Addition 0.17 0.43 0.08 0.34 0.07 0.25 1.50    .473

Suk. Addition 1.02 1.41 1.16 1.56 2.87 2.21 28.32 < .001

Anmerkung: NA = Nachbaraufgabe; FZ = Faktorzerlegung; V/H = Verdopplung bzw. Halbierung; Verk. Addi-
tion = verkürzte sukzessive Addition; Suk. Addition = sukzessive Addition

Wie bereits in den vorherigen Ausführungen zum Anteil Rechenstrategien und we-
niger tragfähigen Herangehensweisen berichtet, sind es die beiden leistungsstärkeren 
Gruppen, die signifi kant mehr Rechenstrategien im Vergleich zu leistungsschwachen 
Kindern zur Aufgabenlösung einsetzen: Die Kinder der beiden leistungsstärkeren 
Gruppen greifen dabei im Mittel dreimal auf die Nachbaraufgabe zur Aufgabenlö-
sung zurück und je einmal auf die Faktorzerlegung, die Verdopplung bzw. Halbie-
rung sowie die sukzessive Addition. Der ebenfalls bereits berichtete signifi kant hö-
here Einsatz weniger tragfähiger Herangehensweisen der leistungsschwachen Kinder 
im Vergleich zu den leistungsstärkeren Kindern geht dabei überwiegend auf den 
Einsatz der sukzessiven Addition zurück. Durchschnittlich drei von sechs Aufgaben 
und demnach die Hälft e der Aufgaben werden über diese Herangehensweise gelöst.

Neben den Forschungsergebnissen hinsichtlich des Leistungsvermögens sollen 
auch mögliche Unterschiede in der Häufi gkeit des Einsatzes verschiedener Heran-
gehensweisen zwischen den verschiedenen Lehrkraft -Gruppen analysiert werden. Die 
deskriptiven Daten (siehe Tabelle 45) zeigen, dass alle eingesetzten Rechenstrategien 

143 Alle paarweisen Vergleiche der nicht signifi kanten Unterschiedsanalysen werden im Anhang 
(B.2) berichtet.
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von den lehrplankonform unterrichteten Kindern häufi ger zur Aufgabenlösung ge-
nutzt werden als von den bewusst traditionell unterrichteten Kindern. Auf die suk-
zessive Addition greifen zur Aufgabenlösung vermehrt Kinder der bewusst traditio-
nellen Lehrkraft -Gruppe zurück als Kinder der lehrplankonformen Gruppe. Kinder, 
die eine bewusst traditionelle Erarbeitung des kleinen Einmaleins erfahren, nut-
zen durchschnittlich fast doppelt so häufi g die sukzessive Addition zur Aufgabenlö-
sung als ihre Vergleichsgruppe: Im Durchschnitt wird eine aus sechs Aufgaben von 
den lehrplankonform unterrichteten Kindern über die sukzessive Addition gelöst 
(M  =  1.24, SD  =  1.67) und durchschnittlich zwei Aufgaben von den bewusst tradi-
tionell unterrichteten Kindern (M = 2.08, SD = 2.08). Signifi kante Unterschiede hin-
sichtlich der Häufi gkeit des Einsatzes liegen zwischen den Lehrkraft -Gruppen nur 
für die Herangehensweisen der Verdopplung bzw. Halbierung sowie der sukzessiven 
Addition vor (siehe Tabelle 45).

 Tabelle 45:  Häufi gkeit des Einsatzes verschiedener Herangehensweisen je Kind in Abhängigkeit von der 
Lehrkraft-Gruppe

Herangehens-
weisen

Lehrkraft -Gruppe

Lehrplankonform
(N = 71)

Bewusst traditionell
(N = 72)

M SD M SD Wald χ2(1) p

NA 2.58 1.66 2.50 1.66 0.71 .339

FZ 0.79 0.89 0.69 0.85 0.69 .406

V/H 1.10 1.11 0.56 0.73 6.34 .012

Verk. Addition 0.13 0.38 0.08 0.33 0.08 .778

Suk. Addition 1.24 1.67 2.08 2.08 5.93 .015

Neben der Betrachtung der beiden Haupteff ekte soll auch die Wechselwir-
kung zwischen dem Faktor Individuum und dem Faktor Unterricht (Individu-
um × Unter richt) hinsichtlich der Häufi gkeit des Einsatzes der verschiedenen 
He rangehensweisen analysiert werden. Dabei ergibt sich nur für die Herangehens-
weise der Nachbaraufgabe eine signifi kante Interaktion der beiden genannten Fak-
toren (NA: Wald χ2(2) = 7.09, p =  .029; FZ: Wald χ2(2) = 1.18, p =  .555; V/H: Wald 
χ2(2)  =  5.74, p =  .017; verk. Addition: Wald χ2(2)  =  1.50, p  =  .473; sukz. Addi-
tion: Wald χ2(2)  =  1.66, p  =  .436). Entsprechend kann hinsichtlich der Häufi gkeit 
des Einsatzes der Nachbaraufgabe in diesem Kontext festgehalten werden, dass sich 
die unterrichtliche Erarbeitung je nach kindlichem Leistungsvermögen auswirkt: 
Eine lehrplankonforme Erarbeitung des kleinen Einmaleins geht dabei mit einem 
signifi kant häufi geren Einsatz des Aufgabentyps der Nachbaraufgabe bei leistungs-
schwachen Kindern (M = 2.23, SD = 1.63) einher im Vergleich zu einer bewusst tra-
ditionellen Erarbeitung (M = 1.33, SD = 1.27; Wald χ2(1) = 5.74, p = .017).
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Trotz keiner signifi kanten Interaktionen der Faktoren Individuum und Unterricht 
bei fast allen verschiedenen Aufgabentypen sollen weitere Unterschiedsanalysen hin-
sichtlich der Häufi gkeiten des Einsatzes der genannten Herangehensweisen zwischen 
den Kindern der beiden Lehrkraft -Gruppe gleichen Leistungsvermögens berichtet 
werden. Die in diesem Zusammenhang ermittelten deskriptiven Ergebnisse können 
Tabelle 46 entnommen werden.

 Tabelle 46:  Häufi gkeit des Einsatzes verschiedener Herangehensweisen je Kind in Abhängigkeit vom 
Leistungsvermögen und der Lehrkraft-Gruppe

Herangehens-
weisen

Leistungsvermögen und Lehrkraft -Gruppe

Leistungsstark Durchschnittlich Leistungsschwach

Lehrplan-
konform
(N = 24)

Bewusst 
traditionell
(N = 24)

Lehrplan-
konform
(N = 25)

Bewusst 
traditionell
(N = 24)

Lehrplan-
konform
(N = 23) 

Bewusst 
traditionell
(N = 23)

M SD M SD M SD M SD M SD M SD

NA 3.00 1.64 2.96 1.33 2.48 1.69 3.21 1.72 2.23 1.63 1.33 1.27

FZ 0.71 0.69 0.46 0.66 0.88 0.97 0.96 1.04 0.77 1.02 0.67 0.76

V/H 1.08 0.97 0.96 0.86 1.36 1.32 0.54 0.69 0.82 0.96 0.17 0.48

Verk. Addition 0.25 0.53 0.08 0.28 0.08 0.28 0.08 0.41 0.05 0.21 0.08 0.28

Suk. Addition 0.63 1.01 1.42 1.64 1.16 1.46 1.17 1.68 2.00 2.16 3.67 1.97

Auff allend ist vor allem bei Betrachtung der deskriptiven Kennwerte, dass die leis-
tungsschwachen, lehrplankonform unterrichteten Kinder Rechenstrategien (Nach-
baraufgabe, Faktorzerlegung, Verdopplung bzw. Halbierung) im Durchschnitt häu-
fi ger anwenden als die Vergleichsgruppe der bewusst traditionell unterrichteten 
Kinder (siehe Tabelle 46). In der Häufi gkeit der Anwendung der Nachbaraufga-
be – dies wurde bereits im Zusammenhang mit einem signifi kanten Interaktions-
eff ekt berichtet –, der Verdopplung bzw. Halbierung sowie der sukzessiven Addi-
tion unterscheiden sich die leistungsschwachen Kinder der beiden Lehrkraft -Gruppen 
signifi kant voneinander (NA: Wald  χ2(1)  =  5.74, p  =  .017; V/H: Wald  χ2(1)  = 4.13, 
p =  .042; sukz. Add.: Wald χ2(1) = 7.92, p =  .007). Die leistungsschwachen lehrplan-
konform unterrichteten Kinder nutzen signifi kant häufi ger die Nachbaraufgabe sowie 
die Verdopplung bzw. Halbierung zur Aufgabenlösung, wohingegen sie signifi kant 
seltener die sukzessive Addition heranziehen. Keine signifi kanten Unterschiede hin-
sichtlich der Häufi gkeit des Einsatzes liegen für die Herangehensweise der Faktor-
zerlegung und der verkürzten sukzessiven Addition vor (FZ: Wald χ2(1)  =  0.27, 
p = .604; verk. Add.: Wald χ2(1) = 0.26, p = .611).

Lehrplankonform unterrichtete, durchschnittliche Kinder greifen signifi kant 
häufi ger auf den Einsatz der Verdopplung bzw. Halbierung zurück (V/H: Wald 
χ2(1)  =  7.83, p  =  .005). Keine signifi kanten Unterschiede liegen für die restli-
chen Herangehensweisen an Einmaleinsaufgaben hinsichtlich der Häufi gkeit des 
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Einsatzes vor (NA: Wald χ2(1)  =  1.62, p =.203; FZ: Wald χ2(1)  =  0.07, p  =  .792; 
verk. Add.: Wald χ2(1) = 0.01, p = .972; sukz. Add.: Wald χ2(1) = 0.00, p = .990).

Für die Häufi gkeit des Einsatzes der Herangehensweise der sukzessiven Addi-
tion kann für die leistungsstarken Kinder deskriptiv berichtet werden (siehe Ta-
belle 46), dass die lehrplankonformen Kinder im Mittel bei M  =  0.63 (SD  =  1.01) 
von sechs Aufgaben auf die sukzessive Addition zurückgreifen, während die be-
wusst traditionell unterrichteten, leistungsstarken Kinder bei durchschnittlich 
M  =  1.42 (SD  =  1.64) Aufgaben die sukzessive Addition zur Lösung von Einmal-
einsaufgaben nutzen. Der ermittelte Unterschied zwischen den leistungsstarken 
Kindern der beiden Lehrkraft -Gruppen erweist sich hinsichtlich des Einsatzes der 
sukzessiven Addition als signifi kant (sukz. Addition: Wald χ2(1)  =  4.11, p  =  .043). 
Keine signifi kanten Unterschiede liegen für die Häufi gkeit des Einsatzes der an-
deren Herangehensweisen an Einmaleinsaufgaben vor (NA: Wald χ2(1)  =  0.01, 
p  =  .916; FZ: Wald χ2(1)  =  1.24, p  =  .231; V/H: Wald χ2(1)  =  0.28, p  =  .594; verk. 
Add.: Wald χ2(1) = 1.98, p = .160). 

Der Einsatz der Kommutativität soll zum Abschluss dieses Abschnittes ebenfalls 
unter Berücksichtigung des individuellen Leistungsvermögens von Kindern und der 
unterrichtlichen Erarbeitung analysiert werden. 

Signifi kante Unterschiede zwischen den Kindern unterschiedlichen Leistungsver-
mögens lassen sich hinsichtlich einer fl exiblen Betrachtung der beiden Faktoren einer 
Aufgabe erkennen (Wald χ2(2)  =  18.61, p  <  .001). Leistungsschwache Kinder set-
zen im Mittel M = 2.48 (SD = 1.30) Herangehensweisen ein, die eine Vertauschung 
der Faktoren erfordern. Im Vergleich greifen die beiden Gruppen der leistungsstär-
keren Kinder signifi kant seltener auf die Tauschaufgabe zurück. Signifi kante Unter-
schiede liegen zwischen den leistungsstarken und den leistungsschwachen Kindern 
(p =  .002) sowie zwischen den leistungsschwachen und den Kindern durchschnittli-
chen Leistungsvermögens vor (p < .001). Aufgrund ähnlicher Mittelwerte der beiden 
leistungsstärkeren Gruppen (durchschnittlich: M  =  1.82, SD  =  1.09; leistungsstark: 
M  =  1.73, SD  =  0.98) existiert zwischen diesen beiden Gruppen kein signifi kanter 
Unterschied (p = .999). 

Zwischen den beiden Lehrkraft -Gruppen zeigt sich ebenfalls kein signifi kan-
ter Unterschied hinsichtlich des Einsatzes der Tauschaufgabe (lehrplankonform: 
M  =  2.08, SD  =  1.14; bewusst traditionell: M  =  1.92, SD  = 1.20; Wald  χ2(1)  =  0.72, 
p = .396).

6.2.2 Fehlerquoten und Fehlertypen je Herangehensweise

Die berichteten Häufi gkeiten der eingesetzten Herangehensweisen für die sechs zu 
berechnenden Aufgaben bei freier Strategiewahl wurden unberücksichtigt eventuel-
ler Fehler bei der Ausführung vorgestellt. Im Folgenden soll das Hauptaugenmerk 
auf die Fehlerquoten und Fehlertypen je Herangehensweise gelegt werden. Eine wei-
tere zu beantwortende Frage lautet demnach:
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• Wie fehlerfrei erfolgt der Einsatz der ermittelten Herangehensweisen und welche 
Fehlertypen lassen sich unterscheiden?

Insgesamt werden 87% der Einmaleinsaufgaben des ersten Interview-Teilbereichs 
korrekt gelöst. Dies entspricht 746 fehlerfreien Aufgabenbeantwortungen von ins-
gesamt 858 zu lösenden Einmaleinsaufgaben oder im Durchschnitt M  =  5.22 
(SD  =  1.26) von 6 Einmaleinsaufgaben. Abbildung 43 veranschaulicht die durch-
schnittlich korrekt gelöste Anzahl an Aufgaben in Abhängigkeit vom individuellen 
Leistungsvermögen bei den sechs zu berechnenden Aufgaben im ersten Interview-
teilbereich. Neben der Gesamtstichprobe wird auch die im Mittel je Kind fehlerfrei 
gelöste Anzahl an Aufgaben der beiden Teilstichproben – lehrplankonform und be-
wusst traditionell unterrichteter Kinder – unter Berücksichtigung des individuellen 
Leistungsvermögens veranschaulicht.
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A bbildung 43:  Anzahl korrekt gelöster Aufgaben in Abhängigkeit vom Leistungsvermögen und der 
Lehrkraft-Gruppe. Die Fehlerbalken repräsentieren den Standardfehler des Mittelwertes.

Anhand der deskriptiven Kennwerte wird ersichtlich, dass je leistungsstärker die 
Kinder basierend auf den Ergebnissen des HRT 1–4 eingestuft  werden, desto feh-
lerfreier lösen sie die gestellten Einmaleinsaufgaben. Kinder mit durchschnittlichem 
Leistungsvermögen der lehrplankonform unterrichteten Gruppe stellen in diesem 
Kontext eine Ausnahme dar – sie lösen mehr Aufgaben korrekt als die Kinder der 
leistungsstarken Gruppe.

Mittels verallgemeinerter Schätzgleichungen kann zwischen den verschiede-
nen Leistungsgruppen der Gesamtstichprobe ein signifi kanter Unterschied bezüg-
lich der Anzahl korrekt gelöster Aufgaben ermittelt werden (leistungsstark: M = 5.75, 
SD  =  0.56; durchschnittlich: M  =  5.49, SD  =  0.87; leistungsschwach: M  = 4.39, 
SD = 1.68; Wald χ2(2) = 23.41, p < .001). Paarweise Vergleiche zeigen, dass sich die 
Gruppe der leistungsschwachen Kinder signifi kant unterscheidet von der Gruppe 
der leistungsstarken Kinder und der Kinder durchschnittlichen Leistungsvermögens 
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(beide p < .001). Kein signifi kanter Unterschied liegt zwischen den beiden leistungs-
stärkeren Gruppen vor (p = .222).

Das Ergebnis der verallgemeinerten Schätzgleichung zeigt darüber hinaus, dass 
zwischen den Lehrkraft -Gruppen kein signifi kanter Unterschied bezüglich der Anzahl 
korrekt gelöster Einmaleinsaufgaben vorliegt (lehrplankonform: M = 5.37, SD = 1.20; 
bewusst traditionell: M = 5.08, SD = 1.32; Wald χ2(1) = 1.49, p = .222).

Auch die Interaktion der beiden Faktoren Individuum und Unterricht erweist 
sich als nicht signifi kant (Wald χ2(1)  =  4.34, p  =  .114). Die durchgeführten Unter-
schiedsanalysen zwischen Kindern der beiden Lehrkraft -Gruppen gleichen Leis-
tungsvermögens liefern die folgenden Erkenntnisse: Die Betrachtung der Abbil-
dung 43 lässt bereits vermuten, dass sich die Kinder der beiden Lehrkraft -Gruppen 
durchschnittlichen Leistungsvermögens hinsichtlich der Anzahl korrekt gelöster Ein-
maleinsaufgaben signifi kant unterscheiden. Bestätigt wird dieser signifi kante Unter-
schied mittels der durchgeführten Unterschiedsanalyse (Wald χ2(1) = 7.45, p = .006). 
Während die Gruppe der lehrplankonformen Kinder mit durchschnittlichem Leis-
tungsvermögen im Mittel alle sechs Aufgaben (M  = 5.80, SD  =  0.41) korrekt lö-
sen, berechnet die bewusst traditionelle Gruppe im Mittel lediglich fünf Aufgaben 
(M = 5.17, SD = 1.09) fehlerfrei. Ein Vergleich der Anzahl korrekt gelöster Aufgaben 
der leistungsschwachen (lehrplankonform: M = 4.45, SD = 1.74; bewusst traditionell: 
M = 4.33, SD = 1.66; Wald χ2(1) = 0.06, p =  .803) sowie der leistungsstarken Kinder 
(lehrplankonform: M =  5.75, SD  =  0.53; bewusst traditionell: M  =  5.75, SD  =  0.53; 
Wald χ2(1) = 0.00, p = 1.000) der beiden Lehrkraft -Gruppen liefert keine signifi kan-
ten Unterschiede.

In Summe lösen Kinder 12% der Aufgaben nicht korrekt, ein Prozent der 
Aufgaben wurde nicht bearbeitet. Zwei Fehlertypen können dabei diff erenziert 
werden – der Rechenfehler bzw. Multiplikationsfehler sowie der Strategiefehler. Der 
Strategiefehler überwiegt mit einem doppelt so hohen Prozentsatz (8%) im Vergleich 
zum Rechen- bzw. Multiplikationsfehler (4%). Abbildung 44 veranschaulicht erneut 
die Häufi gkeit des Einsatzes verschiedener Herangehensweisen in Abhängigkeit vom 
individuellen Leistungsvermögen der Kinder (siehe Abbildung 42). Allerdings wird 
in der wiederholten Veranschaulichung der Anteil an gemachten Fehlern in einem 
gestapeltem Säulendiagramm angeführt: Die schwarzen Säulen kennzeichnen die 
Strategiefehler, die grauen Säulen stehen für Rechen- bzw. Multiplikationsfehler.

Insgesamt 363 Mal greifen Kinder zur Aufgabenlösung auf die Nachbaraufgabe 
zurück. Sieben Einsätze führen dabei aufgrund von Rechenfehlern nicht zu einem 
korrekten Ergebnis, was bei der Anwendung der Nachbaraufgabe für einen lediglich 
2%igen fehlerhaft en Einsatz spricht. Die Faktorzerlegung wird in 3% der Anwendun-
gen fehlerhaft  ausgeführt, der Einsatz der Verdopplung bzw. Halbierung führt in 5% 
der Anwendungen ebenfalls zu einer fehlerhaft en Lösung. Mit 8% werden prozentual 
am meisten Rechenfehler beim Einsatz der sukzessiven Addition gemacht.

Bei 26 Aufgaben wird die Rechenstrategie der Nachbaraufgabe von den Kindern 
nicht korrekt ausgeführt, das entspricht einem Prozentsatz von 7% Strategiefehlern 
über alle Lösungsversuche mittels der Nachbaraufgabe. Die Faktorzerlegung weist 
einen deskriptiv deutlich höheren Anteil an Strategiefehlern auf (19%). Die verkürz-
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te sukzessive Addition wurde in 7% der Anwendungen nicht korrekt ausgeführt, die 
sukzessive Addition in 8% der Anwendungen.

Als fehleranfällige Herangehensweisen erweisen sich den deskriptiven Ergebnis-
sen der Studie zufolge mit insgesamt 22% Rechen- und Strategiefehlern die Faktorzer-
legung sowie mit 16% die sukzessive Addition. Insgesamt 9% Strategie- und Rechen-
fehler wurden beim Einsatz der Nachbaraufgabe ermittelt, 7% bei der verkürzten 
sukzessiven Addition und 5% beim Einsatz der Verdopplung bzw. Halbierung.

Ab bildung 44:  Gestapeltes Säulendiagramm zur Darstellung der Häufi gkeit des Einsatzes einzelner 
Herangehensweisen unter Berücksichtigung von Rechen- bzw. Multiplikationsfehlern 
und Strategiefehlern.

Dass leistungsschwächere Kinder im Durchschnitt mehr Rechen- bzw. Multiplika-
tionsfehler sowie Strategiefehler als leistungsstärkere Kinder begehen, lassen die de-
skriptiven Kennwerte des gestapelten Säulendiagramms in Abbildung 44, das die Re-
chen- bzw. Strategiefehler je Herangehensweise veranschaulicht, bereits vermuten. 
Die statistischen Werte, die im Folgenden angeführt werden, untermauern diese Ver-
mutung: Kinder unterschiedlichen Leistungsvermögens unterscheiden sich signifi kant 
hinsichtlich ihrer gemachten Rechen- bzw. Multiplikationsfehler sowie Strategiefeh-
ler (siehe Tabelle 47).
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Ta belle 47:  Häufi gkeit von Rechen- bzw. Multiplikationsfehlern und Strategiefehlern in Abhängigkeit vom 
Leistungsvermögen

Fehlertypen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

M SD M SD M SD Wald 
χ2(2) p

Rechenfehler 0.04 0.20 0.18 0.49 0.54 0.72 21.91  < .001

Strategiefehler 0.13 0.33 0.33 0.80 1.00 1.53 37.80 < .001

Signifi kante Unterschiede liegen hinsichtlich der Häufi gkeit gemachter Rechen- bzw. 
Multiplikationsfehler mit Ausnahme der leistungsstarken und durchschnittlichen 
Leistungsgruppe (p = .119) zwischen der Gruppe der leistungsstarken und leistungs-
schwachen Kinder sowie zwischen der leistungsschwachen und der durchschnittli-
chen Leistungsgruppe vor (beide p < .001). Während leistungsschwache Kinder im 
Durchschnitt bei einer von sechs Aufgaben einen Rechenfehler machen (M  = 0.54, 
SD  =  0.72), treten Rechenfehler bei leistungsstarken Kindern und Kindern durch-
schnittlichen Leistungsvermögens signifi kant weniger häufi g auf (leistungsstark: 
M = 0.04, SD = 0.20; durchschnittlich: M = 0.18, SD = 0.49). Hinsichtlich gemachter 
Strategiefehler unterscheiden sich die Kinder unterschiedlichen Leistungsvermögens 
ebenfalls signifi kant (siehe Tabelle 47). Paarweise Vergleiche off enbaren allerdings 
erneut keinen signifi kanten Unterschied zwischen den leistungsstarken Kindern 
und den Kindern durchschnittlichen Leistungsvermögens (p  =  .632), während die 
leistungsschwachen Kinder sich von den leistungsstarken und den Kindern durch-
schnittlichen Leistungsvermögens signifi kant unterscheiden (beide p < .001).

Darüber hinaus sollen die beiden Lehrkraft -Gruppen hinsichtlich ihrer Re-
chen- bzw. Strategiefehler verglichen werden. Die Kinder der verschiedenen Lehr-
kraft -Gruppen unterscheiden sich dabei weder hinsichtlich der Rechenfehler (lehr-
plankonform: M  =  0.17, SD  =  0.41; bewusst traditionell: M =  0.33, SD  = 0.65; 
Wald χ2(1) = 0.90, p =  .343) noch hinsichtlich der Strategiefehler (lehrplankonform: 
M  =  0.42, SD  =  1.05; bewusst traditionell: M  =  0.53, SD  =  1.09; Wald  χ2(1)  =  1.35, 
p = .246) signifi kant voneinander. Deskriptiv betrachtet, werden Rechen- sowie Stra-
tegiefehler dabei im Mittel häufi ger bei den Kindern erfasst, die bewusst traditionell 
unterrichtet werden.

Die Interaktionseff ekte des individuellen Leistungsvermögens und der unter-
richtlichen Erarbeitung des kleine Einmaleins (Individuum × Unterricht) sind hin-
sichtlich der Rechen- bzw. Strategiefehler nicht signifi kant (Rechenfehler: Wald 
χ2(2)  =  1.89, p  =  .388; Strategiefehler: Wald χ2(2)  =  2.46, p  =  .184). Der getrennte 
Vergleich der Kinder der beiden Lehrkraft -Gruppen desselben Leistungsvermögens 
off enbart ebenfalls für jede Leistungsgruppe keine signifi kanten Unterschiede hin-
sichtlich gemachter Rechenfehler (leistungsstark: M lehrplankonform = 0.04, SD = 0.20; M 
bewusst traditionell  =  0.04, SD  =  0.20; Wald  χ2(1)  =  0.00, p  =  1.000; leistungsschwach: M 
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lehrplankonform = 0.41, SD = 0.59; M bewusst traditionell = 0.67, SD = 0.82; Wald χ2(1) = 1.56, 
p =  .211) sowie der gemachten Strategiefehler (leistungsstark: M  lehrplankonform = 0.13, 
SD  =  0.34; M bewusst traditionell  =  0.13, SD  =  0.34; Wald  χ2(1)  =  0.00, p  =  1.000; leis-
tungsschwach: M  lehrplankonform = 0.90, SD = 1.20; M bewusst traditionell = 0.92, SD = 1.44; 
Wald  χ2(1)  =  0.75, p  =  .403). Einzig zwischen den beiden Lehrkraft -Gruppen der 
Kinder durchschnittlichen Leistungsvermögens liegen fast signifi kante Unterschiede 
hinsichtlich der Rechenfehler vor (lehrplankonform: M  =  0.08, SD  =  0.28; bewusst 
traditionell: M = 0.04, SD = 0.20; Wald χ2(1) = 3.18, p = .074) sowie im Hinblick auf 
die Strategiefehler (lehrplankonform: M = 0.04, SD = 0.20; bewusst traditionell: M = 
0.29, SD  =  0.62; Wald  χ2(1)  =  3.84, p  =  .050). Die deskriptiven Ergebnisse zeigen, 
dass weniger Rechen- und Strategiefehler über alle Leistungsgruppen bei den lehr-
plankonform unterrichteten Kindern ermittelt werden, deren Lehrkräft e verschiede-
ne Rechenstrategien im Unterricht erarbeiten.

6.2.3 Strategierepertoire

Im Folgenden wird die Vielfalt an zur Verfügung stehenden Rechenstrategien, das 
ermittelte Strategierepertoire eines Kindes, vorgestellt. Erkenntnisse zu folgender 
konkreten Forschungsfrage werden ermittelt:
• Über welches Repertoire an verschiedenen Rechenstrategien verfügen Kinder?

Erfasst wird der Einsatz der Nachbaraufgabe, der Faktorzerlegung, der Verdopplung 
bzw. Halbierung, der Tauschaufgabe sowie des gegensinnigen Veränderns. Für die 
Analysen zum Strategierepertoire werden nur korrekt ausgeführte Rechenstrategien 
berücksichtigt. Ist einer nicht korrekten Aufgabenlösung mittels einer Rechenstrate-
gie ein Rechenfehler vorausgegangen, wird die eingesetzte Rechenstrategie als Stra-
tegie-Alternative erfasst – ganz im Gegensatz zu einer Rechenstrategie, die aufgrund 
eines Strategiefehlers zu einer fehlerhaft en Lösung der Aufgabe führt. Neben den er-
mittelten Rechenstrategien der sechs Aufgaben des ersten Interviewteilbereiches, die 
zur Bestimmung des Repertoires herangezogen werden, werden mithilfe des zweiten 
Interviewteils bei zwei der sechs Aufgaben des ersten Interviewteilbereiches zusätz-
liche Rechenstrategien erfasst (siehe Abschnitt 5.3.2), die ebenfalls bei der Bestim-
mung des Repertoires berücksichtigt werden.

Strategievielfalt bei der Lösung mehrerer Aufgaben
Insgesamt verfügen Kinder im Mittel über M  =  2.06 (SD  =  1.02) verschiedene Re-
chenstrategien zur Lösung der Aufgaben des ersten und zweiten Interviewteilberei-
ches. Während leistungsstarke Kinder über durchschnittlich M  =  2.56 (SD  =  0.68) 
unterschiedliche Rechenstrategien verfügen, weisen die Kinder durchschnittli-
chen Leistungsvermögens M  =  2.20 (SD  =  0.93) und die leistungsschwachen Kin-
der M  =  1.34 (SD  =  1.03) verschiedene Rechenstrategien auf. Es liegen signifi kante 
Unterschiede zwischen den Kindern verschiedenen Leistungsvermögens hinsichtlich 
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des Repertoires an Rechenstrategien vor (Wald χ2(2)  =  35.46, p < .001). Paarweise 
Vergleiche zeigen signifi kante Unterschiede zwischen allen drei Leistungsgruppen – 
leistungsschwache Kinder verfügen über signifi kant weniger verschiedene Rechen-
strategien als leistungsstarke Kinder und Kinder durchschnittlichen Leistungsvermö-
gens (beide p  <  .001), die Kinder durchschnittlichen Leistungsvermögens verfügen 
über signifi kant weniger Rechenstrategien als die leistungsstarken Kinder (p = .033).

Das ermittelte Repertoire an Rechenstrategien soll im Folgenden auch für die 
beiden Lehrkraft -Gruppen analysiert werden. Hinsichtlich der Anzahl durchschnitt-
lich verfügbarer Rechenstrategien liegt ein signifi kanter Unterschied zwischen den 
beiden Lehrkraft -Gruppen vor (Wald χ2(1)  =  6.49, p  =  .011). Ein lehrplankonform 
unterrichtetes Kind verfügt im Durchschnitt über signifi kant mehr Rechenstrate-
gien als ein bewusst traditionell unterrichtetes Kind (lehrplankonform: M  =  2.25, 
SD = 0.85; bewusst traditionell: M = 1.82, SD = 0.93).

Keine signifi kante Interaktion zeigt sich für die Faktoren Individuum und Unter-
richt hinsichtlich des Strategierepertoires (Wald χ2(2)  =  2.90, p  =  .235). Abbildung 
45 legt die deskriptiven Kennwerte der Anzahl verfügbarer Rechenstrategien je indi-
viduellem Leistungsvermögen und der Lehrkraft -Gruppe dar. Die signifi kant größe-
re Anzahl berichteter Rechenstrategien der lehrplankonform unterrichteten Gruppe 
spiegelt sich auch deskriptiv für jede Leistungsgruppe der lehrplankonform unter-
richteten Kinder wider: Alle lehrplankonform unterrichteten Kinder unterschied-
lichen Leistungsvermögens verfügen im Mittel über mehr Rechenstrategien als die 
Kinder der entsprechenden Leistungsgruppe, die bewusst traditionell unterrich-
tet wurden (siehe Abbildung 45). Ein signifi kanter Unterschied zwischen den Lehr-
kraft -Gruppen liegt für die leistungsschwachen Kinder (lehrplankonform: M  =  1.59, 
SD  =  1.10; bewusst traditionell: M  =  1.09, SD  = 0.92; Wald  χ2(1)  =  4.59, p  =  .032) 
sowie die Kinder durchschnittlichen Leistungsvermögens vor (lehrplankonform: 
M  =  2.48, SD  =  0.92; bewusst traditionell: M  =  1.92, SD  =  0.88; Wald χ2(1)  =  3.89, 
p =  .049). Einzig zwischen den leistungsstarken, lehrplankonform unterrichteten so-
wie den leistungsstarken, bewusst traditionell unterrichteten Kindern ist der Unter-
schied nicht signifi kant (lehrplankonform: M = 2.67, SD = 0.64; bewusst traditionell: 
M = 2.46, SD = 0.72; Wald χ2(1) = 1.88, p = .171).

Um ein möglichst großes Strategie-Repertoire je Kind erfassen zu können, wur-
den, wie bereits in den einleitenden Ausführungen dieses Abschnittes erwähnt, ge-
zielt Strategiewahl-Alternativen erfragt. Ob  und inwiefern mittels der ergänzenden 
Fragen weitere alternative Herangehensweisen bzw. Rechenstrategien zu den bereits 
genannten bei freier Strategiewahl (im ersten Interviewteil) ermittelt werden können, 
soll im Folgenden kurz aufgezeigt werden. Die Anzahl an zusätzlich ermittelten He-
rangehensweisen bzw. Rechenstrategien soll anhand der Aufgabe 4 x 6, die zur Erfas-
sung der alternativen Herangehensweisen im zweiten Interviewteilbereich eingesetzt 
wurde, veranschaulicht werden.144 Mittels des Erfragens von Strategiewahl-Alterna-
tiven können im Mittel je Kind M  =  0.61 (SD  = 0.68) andere Herangehensweisen 

144 Hinsichtlich der Erfassung alternativer Herangehensweisen bzw. Rechenstrategien wurden 
für die Aufgabe 8 x 7 ähnliche Ergebnisse wie für die Aufgabe 4 x 6 ermittelt, so dass auf eine 
detaillierte Darstellung der erzielten Ergebnisse der Aufgabe 8 x 7 verzichtet wird.
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zu den im ersten Strategieinterviewteil bereits eingesetzten Herangehensweisen er-
fasst werden. Die durch den zweiten Interviewteilbereich zusätzlich zum ersten Teil-
bereich ermittelte Anzahl an Rechenstrategien beläuft  sich für die Aufgabe 4 x 6 auf 
im Mittel M = 0.34 (SD = 0.52) alternative Rechenstrategien zur Aufgabenlösung.

Strategie-Vielfalt zur Lösung einer Aufgabe 
Durch die Auff orderung zur Nennung zusätzlicher Lösungswege im zweiten Inter-
viewteilbereich kann nicht nur die Vielfalt der verschiedenen ermittelten Herange-
hensweisen bzw. Rechenstrategien des ersten Teilbereichs des Strategieinterviews 
vergrößert werden, sondern auch die Anzahl verschiedener Herangehensweisen bzw. 
Rechenstrategien bei einer konkreten Aufgabe erhoben werden. Im Folgenden sol-
len die Ergebnisse für die Aufgabe 4 x 6 des zweiten Interviewteilbereiches präsen-
tiert werden.145

Im Mittel können Kinder M  =  2.06 (SD  =  0.85) verschiedene Herangehenswei-
sen zur Lösung ein und derselben Aufgabe (4 x 6) nennen. Die Anzahl variiert dabei 
allerdings von keiner Lösung bis zu vier verschiedenen aufgeführten Herangehens-
weisen. Die Anzahl an ermittelten verschiedenen Rechenstrategien liegt bei durch-
schnittlich M  =  1.23 (SD  =  0.74) – Kinder verfügen demzufolge im Mittel über je 
eine Rechenstrategie und eine weniger tragfähige Herangehensweise.  

145 Für die Aufgabe 8 x 7 wurden hinsichtlich der Strategie-Vielfalt zur Lösung einer Aufgabe 
ähnliche Ergebnisse wie für die Aufgabe 4 x 6 ermittelt, so dass erneut auf eine detaillierte 
Darstellung der erzielten Ergebnisse der Aufgabe 8 x 7 verzichtet wird.
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A bbildung 45:  Anzahl verfügbarer Rechenstrategien je Kind in Abhängigkeit vom Leistungsvermögen 
und der Lehrkraft-Gruppe. Die Fehlerbalken repräsentieren den Standardfehler des 
Mittelwertes.
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Tabelle 48:  Häufi gkeit verfügbarer Herangehensweisen bzw. Rechenstrategien zur Lösung einer Aufgabe 
in Abhängigkeit vom Leistungsvermögen

Herangehens-
weisen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

M SD M SD M SD Wald χ2(2) p

Herangehens-
weisen 2.38 0.67 2.20 0.76 1.57 0.89 29.68  < .001

Rechen-
strategien 1.50 0.85 1.43 0.67 0.74 0.74 28.20 < .001

Unterschiedliche Anzahlen an verfügbaren Herangehensweisen bzw. Rechenstrate-
gien liegen für die einzelnen Leistungsgruppen vor. Rein deskriptiv betrachtet ver-
fügen die leistungsstarken Kinder über mehr verschiedene Herangehensweisen 
bzw. Rechenstrategien zur Lösung ein und derselben Aufgabe als die Kinder durch-
schnittlichen Leistungsvermögens und leistungsschwache Kinder (siehe Tabelle 48). 
Im Mittel verfügt ein leistungsstarkes Kind beispielsweise über zwei verschiedene 
Rechenstrategien (M  =  1.50, SD  =  0.85), ein leistungsschwaches Kind allerdings le-
diglich über eine einzige Rechenstrategie (M = 0.74, SD = 0.74). Die beschriebenen 
Unterschiede zwischen den Leistungsgruppen erweisen sich für die Vielfalt an He-
rangehensweisen (Wald  χ2(2)  =  29.68, p < .001) ebenso wie für die Vielfalt an Re-
chenstrategien (Wald χ2(2)  =  28.20, p  <  .001) als signifi kant. Paarweise Vergleiche 
zeigen, dass die leistungsschwache Gruppe sich hinsichtlich der Vielfalt an Heran-
gehensweisen signifi kant unterscheidet von der Gruppe der leistungsstarken Kin-
der (p =  .011) sowie der Gruppe der Kinder durchschnittlichen Leistungsvermögens 
(p = .015). Kein signifi kanter Unterschied liegt allerdings zwischen den leistungsstar-
ken und den Kindern durchschnittlichen Leistungsvermögens vor (p = 1.000). Hin-
sichtlich der Anzahl an verfügbaren Rechenstrategien existieren ebenfalls nur zwi-
schen den beiden leistungsstärkeren und der leistungsschwachen Gruppe (beide p < 
.001) signifi kante Unterschiede, die beiden leistungsstärkeren Gruppen unterschei-
den sich nicht signifi kant (p = 1.000).

Im Hinblick auf die beiden Lehrkraft -Gruppen kann festgehalten werden, dass be-
züglich der Vielfalt an verfügbaren Herangehensweisen bzw. Rechenstrategien zur 
Lösung ein und derselben Aufgabe keine signifi kanten Unterschiede vorliegen (He-
rangehensweisen: Wald χ2(1) = 1.95, p =  .163; Rechenstrategien: Wald χ2(1) = 79.01, 
p  =  .400). Die deskriptiven Kennwerte legen dar, dass die lehrplankonform unter-
richteten Kinder durchschnittlich über mehr Herangehensweisen bzw. Rechen-
strategien (Herangehensweisen: M  =  2.15, SD  =  0.90; Rechenstrategien: M  =  1.28, 
SD  =  0.68) verfügen als die bewusst traditionell unterrichteten Kinder (Herange-
hensweisen: M = 1.96 , SD = 0.90; Rechenstrategien: bewusst traditionell: M = 1.18, 
SD = 0.79). 
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Interaktionseff ekte (Individuum × Unterricht) der beiden Faktoren Individu-
um und Unterricht hinsichtlich der Vielfalt an Herangehensweisen bzw. Rechen-
strategien zur Lösung einer Aufgabe liegen nicht vor (Herangehensweisen: Wald 
χ2(2) = 2.61, p =  .271; Rechenstrategien: Wald χ2(2) = 1.50, p =  .472). Abbildung 46 
veranschaulicht die Anzahl zur Verfügung stehender Herangehensweisen zur Lösung 
einer einzelnen Einmaleinsaufgabe in Abhängigkeit vom individuellen Leistungsver-
mögen und der unterrichtlichen Erarbeitung.
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A bbildung 46:  Anzahl verfügbarer Herangehensweisen zur Lösung einer Einmaleinsaufgabe in 
Abhängigkeit vom Leistungsvermögen und der Lehrkraft-Gruppe. Die Fehlerbalken 
repräsentieren den Standardfehler des Mittelwertes.

Der Vergleich der deskriptiven Kennwerte je Leistungsgruppe über die verschiede-
nen Lehrkraft -Gruppen off enbart durchschnittlich geringere Anzahlen genannter 
Herangehensweisen bei allen Leistungsgruppen der bewusst traditionell unterrichte-
ten Kinder. Auch wenn ein Unterschied zwischen den leistungsschwachen Kindern 
der beiden Lehrkraft -Gruppen – rein deskriptiv betrachtet – deutlich ins Auge fällt, 
unterscheiden sich die leistungsschwachen Kinder der lehrplankonform unterrich-
teten Kinder im Vergleich zu den Kindern der bewusst traditionellen Gruppe nicht 
signifi kant voneinander (lehrplankonform: M  =  1.77, SD  =  0.87; bewusst traditio-
nell: M = 1.38 , SD = 0.88; Wald χ2(1) = 1.28, p = .258). Ebenfalls keine signifi kanten 
Unterschiede existieren zwischen den beiden Lehrkraft -Gruppen der Kinder durch-
schnittlichen Leistungsvermögens (lehrplankonform: M  =  2.28, SD  =  0.74; bewusst 
traditionell: M = 2.13 , SD = 0.80; Wald χ2(1) = 0.66, p = .418) und den leistungsstar-
ken Kindern (lehrplankonform: M = 2.38, SD = 0.65; bewusst traditionell: M = 2.38 , 
SD = 0.56; Wald χ2(1) = 0.00, p = 1.000). 
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Ein ähnliches Bild, wie das gerade beschriebene, liefert Abbildung 47, die die 
Anzahl verschiedener verfügbarer Rechenstrategien zur Lösung ein und derselben 
Aufgabe in Abhängigkeit vom Leistungsvermögen und der Lehrkraft -Gruppe ver-
anschaulicht. Ein Unterschied hinsichtlich der deskriptiven Kennwerte verfügba-
rer Rechenstrategien ist erneut zwischen den leistungsschwachen Kindern der bei-
den Lehrkraft -Gruppen zu erkennen – die lehrplankonform unterrichteten Kinder 
verfügen im Mittel über M  =  0.86 (SD  =  0.77) verschiedene Rechenstrategien, die 
bewusst traditionell unterrichteten Kinder über M  =  0.63 (SD  =  0.71) Rechenstra-
tegien. Ein signifi kanter Unterschied liegt allerdings zwischen diesen leistungsschwa-
chen Kindern nicht vor (Wald χ2(1) = 1.28, p =  .258). Aufgrund der exakt gleichen 
Anzahl verfügbarer Rechenstrategien der leistungsstarken Kinder beider Gruppen 
(lehrplankonform: M  =  1.50, SD  =  0.51; bewusst traditionell: M  =  1.50, SD  =  0.66) 
oder sehr ähnlicher deskriptiver Kennwerte der Kinder beider Lehrkraft -Gruppen 
durchschnittlichen Leistungsvermögens (lehrplankonform: M  =  1.44, SD  =  0.58; be-
wusst traditionell: M = 1.42, SD = 0.72) unterscheiden sich die Kinder je Leistungs-
gruppe hinsichtlich der Anzahl verfügbarerer Rechenstrategien zur Lösung einer 
Aufgabe zwischen den Lehrkraft -Gruppen auch nicht signifi kant (leistungsstark: 
Wald χ2(1) = 0.01, p = .999; durchschnittlich: Wald χ2(1) = 0.02, p = .896).
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Ab bildung 47: Anzahl verfügbarer Rechenstrategien zur Lösung einer Einmaleinsaufgabe in 
Abhängigkeit vom Leistungsvermögen und der Lehrkraft-Gruppe. Die Fehlerbalken 
repräsentieren den Standardfehler des Mittelwertes.

Individuelle Strategiepräferenzen
Im Zusammenhang mit den Erkenntnissen zur Vielfalt an verschiedenen Rechen-
strategien bei der Lösung mehrerer Aufgaben, aber auch für eine einzige Aufgabe 
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liegt das Forschungsinteresse auch auf Auskünft en zu möglicherweise vorliegenden 
individuellen Strategiepräferenzen – Erkenntnisse liefern ein noch umfassenderes 
bzw. detaillierteres Bild des in diesem Abschnitt beschriebenen Strategie-Repertoires. 
Wenn man von einer individuellen Strategiepräferenz eines Kindes spricht, wenn 
bei sechs zu beantwortenden Fragen mindestens drei mithilfe dergleichen Herange-
hensweise gelöst werden, kann in 86% der Gesamtstichprobe von einer individuellen 
Strategiepräferenz ausgegangen werden.

Keine signifi kanten Unterschiede hinsichtlich individueller Strategiepräferen-
zen existieren zwischen den Kindern verschiedener Leistungsgruppen (leistungsstark: 
85%, durchschnittlich: 88%, leistungsschwach: 85%; Wald χ2(2) = 0.25, p =  .881) so-
wie den Kindern der beiden Lehrkraft -Gruppen (lehrplankonform: 83%, bewusst tra-
ditionell: 89%; Wald χ2(1)  =  0.94, p  =  .333). Auch der Interaktionseff ekt (Individu-
um × Unterricht) hinsichtlich einer individuellen Strategiepräferenz erweist sich als 
nicht signifi kant (Wald χ2(2) = 5.79, p = .055). 

Überprüft  man die individuellen Strategiepräferenzen nur für die Rechenstrate-
gien, ergeben sich durchwegs andere Kennwerte. Insgesamt 59% der Gesamtstichpro-
be greift  dreimal oder häufi ger auf ein und dieselbe Rechenstrategie zur Lösung der 
Einmaleinsaufgaben zurück.

Während 73% der leistungsstarken Kinder und 72% der Kinder durchschnitt-
lichen Leistungsvermögens mindestens dreimal oder häufi ger ein und diesel-
be Rechenstrategie zur Aufgabenlösung heranziehen, fällt der Prozentsatz der leis-
tungsschwachen Kinder um mehr als die Hälft e geringer aus in diesem Kontext 
(leistungsschwach: 33%). Ein signifi kanter Unterschied hinsichtlich individuel-
ler Präferenzen beim Einsatz ein und derselben Rechenstrategie liegt zwischen den 
Leistungsgruppen vor (Wald χ2(2) = 16.32, p < .001). Paarweisen Vergleichen zufolge 
unterscheiden sich, wie anhand der Kennwerte zu vermuten, allerdings nur die leis-
tungsschwachen Kinder von den leistungsstarken und den Kindern durchschnittli-
chen Leistungsvermögens (beide p < .001). Kein signifi kanter Unterschied liegt zwi-
schen der leistungsstarken und der durchschnittlichen Gruppe vor (p = 1.000).

Die Kinder der beiden Lehrkraft -Gruppen unterscheiden sich darüber hinaus 
auch signifi kant voneinander (Wald χ2(1) = 5.37, p =  .049): Lehrplankonform unter-
richtete Kinder setzen signifi kant häufi ger ein und dieselbe Rechenstrategie zur Lö-
sung von mindestens drei Aufgaben ein als die Vergleichsgruppe (lehrplankonform: 
63%, bewusst traditionell: 56%).

Neben den beiden signifi kanten Haupteff ekten ist auch ein signifi kanter Interak-
tionseff ekt (Individuum × Unterricht) zu erkennen (Wald χ2(2) = 7.38, p = .025). Der 
Vergleich der beiden Lehrkraft -Gruppen eines Leistungsvermögens zeigt dabei zwi-
schen den leistungsschwachen Kindern einen signifi kanten Unterschied (lehrplankon-
form: 50%, bewusst traditionell: 17%; Wald χ2(1)  =  6.30, p  =  .012). Eine lehrplan-
konforme Erarbeitung bewirkt demnach unter Umständen, dass leistungsschwache 
Kinder häufi ger drei oder mehr Aufgaben über ein und dieselbe Rechenstrategie lö-
sen (50%) im Vergleich zu Kindern, die bewusst traditionell unterrichtet werden 
(17%). Die beiden Lehrkraft -Gruppen der leistungsstarken Kinder (lehrplankonform: 
75%, bewusst traditionell: 71%; Wald χ2(1) = 0.10, p = .751) sowie der Kinder durch-
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schnittlichen Leistungsvermögens (lehrplankonform: 64%, bewusst traditionell: 79%; 
Wald χ2(1) = 1.11, p = .291) unterschieden sich nicht signifi kant voneinander.

Eine Analyse der eingesetzten Herangehensweisen bzw. Rechenstrategien legt dar, 
dass bevorzugt die Nachbaraufgabe und die sukzessive Addition bei mindestens der 
Hälft e der zu lösenden Aufgaben eingesetzt werden. Die Nachbaraufgabe wurde von 
53% der Kinder in der Hälft e oder mehr als der Hälft e der Aufgaben eingesetzt, die 
sukzessive Addition von 27% der Kinder. Darüber hinaus setzen 4% die Faktorzer-
legung mehr als zweimal zur Aufgabenlösung ein, auf den dreimaligen Einsatz des 
Verdoppelns bzw. Halbierens greifen 6% der Kinder zurück.146 Im Folgenden soll der 
prozentuale Anteil des mindestens dreimaligen Einsatzes der bevorzugt verwende-
ten Herangehensweisen, der sukzessiven Addition und der Nachbaraufgabe, detail-
liert untersucht werden.

T a belle 49:  Prozentualer Anteil des Einsatzes ein und derselben Herangehensweise bei mehr als zwei Auf-
gaben in Abhängigkeit vom Leistungsvermögen

Herangehens-
weisen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

Wald 
χ2(2) p

% % %

NA 69 59 28 16.96 < .001

Sukz. Addition 15 16 52 21.19 < .001

Signifi kante Unterschiede zwischen den verschiedenen Leistungsgruppen liegen hin-
sichtlich eines drei- oder mehrmaligen Einsatzes der Nachbaraufgabe und der suk-
zessiven Addition vor (siehe Tabelle 49). Die Kinder durchschnittlichen Leistungs-
vermögens unterscheiden sich dabei signifi kant von den leistungsstarken Kindern 
(NA: p < .001, sukz. Addition: p < .001) und den leistungsschwachen Kindern 
(NA: p  =  .001, sukz. Addition: p < .001). Kein signifi kanter Unterschied je Heran-
gehensweise liegt erneut zwischen den beiden leistungsstärkeren Gruppen vor (NA: 
p = .646, sukz. Addition: p = 1.000).

Zwischen den verschiedenen Lehrkraft -Gruppen sind keine signifi kanten Unter-
schiede zu erkennen, weder für die Nachbaraufgabe (lehrplankonform: 51%, be-
wusst traditionell: 54%; Wald χ2(1)  =  2.36, p  =  .627) noch für die sukzessive Addi-
tion (lehrplankonform: 21%, bewusst traditionell: 33%; Wald χ2(1) = 1.46, p =  .228). 
Der Interaktionseff ekt off enbart sich als nicht signifi kant für die sukzessive Addition 

146 Das Aufsummieren der einzelnen Prozentsätze der verschiedenen Rechenstrategien bzw. He-
rangehensweisen liefert höhere Prozentsätze als die für die Gesamtstichprobe aufgeführten 
hinsichtlich eines drei- oder mehrmaligen Einsatzes ein und derselben Rechenstrategie bzw. 
Herangehensweise. Die niedrigeren Prozentsätze für die Gesamtstichprobe sind darauf zu-
rückzuführen, dass für die Gesamtstichprobe je Kind nur erfasst wird, ob ein mehrmaliger 
Einsatz erfolgt und unberücksichtigt bleibt, wenn ein Kind zweimal auf einen mindestens 
dreimaligen Einsatz ein und derselben Herangehensweise bzw. Rechenstrategie zurückgreift . 
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(Wald χ2(2)  =  0.74, p  =  .692), allerdings als signifi kant für die Rechenstrategie der 
Nachbaraufgabe (Wald χ2(2) = 8.93, p = .011).

Wie Abbildung 48 vermuten lässt, liegen signifi kante Unterschiede hinsicht-
lich des Einsatzes der Nachbaraufgabe zwischen den Lehrkraft -Gruppen der leis-
tungsschwachen Kinder (lehrplankonform: 40%, bewusst traditionell: 17%; Wald 
χ2(1) = 3.80, p = 0.49) und der Kinder durchschnittlichen Leistungsvermögens (lehr-
plankonform: 44%, bewusst traditionell: 75%; Wald χ2(1)  =  4.30, p  =  .038) vor. Die 
leistungsschwachen, bewusst traditionell unterrichteten Kinder setzen die Nachbar-
aufgabe bei mindestens drei von sechs Aufgaben signifi kant seltener ein als die lehr-
plankonform unterrichteten Kinder. Für die Kinder durchschnittlichen Leistungsver-
mögens der beiden Lehrkraft -Gruppen zeichnet sich der Einsatz je Lehrkraft -Gruppe 
genau umgekehrt ab (siehe Abbildung 48). Kein signifi kanter Unterschied zeigt sich 
hinsichtlich des prozentualen Einsatzes der Nachbaraufgabe zwischen den leistungs-
starken Kindern der beiden Lehrkraft -Gruppen (lehrplankonform: 67%, bewusst tra-
ditionell: 71%; Wald χ2(1) = 1.40, p = .747).
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A bbildung 48:  Prozentualer Anteil des Einsatzes der Nachbaraufgabe bei mindestens drei von sechs 
Aufgaben in Abhängigkeit vom Leistungsvermögen und der Lehrkraft-Gruppe.

Hinsichtlich des prozentualen Anteils eines mindestens dreimaligen Einsatzes der 
sukzessiven Addition liegt einzig zwischen den leistungsschwachen Kindern der bei-
den Lehrkraft -Gruppen ein signifi kanter Unterschied vor (lehrplankonform: 41%, be-
wusst traditionell: 63%; Wald χ2(1) = 3.78, p = .049). Während durchschnittlich 63% 
der leistungsschwachen, bewusst traditionell unterrichteten Kinder mehr als zweimal 
die sukzessive Addition zur Aufgabenlösung einsetzen, liegt der Prozentsatz der leis-
tungsschwachen Kinder, die lehrplankonform unterrichtet werden, bei lediglich 41% 
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(siehe Abbildung 49). Kein signifi kanter Unterschied zeigt sich hingegen zwischen 
den beiden Lehrkraft -Gruppen der leistungsstarken Kinder (lehrplankonform: 8%, 
bewusst traditionell: 21%; Wald χ2(1) = 1.57, p =  .210) und der Kinder durchschnitt-
lichen Leistungsvermögens (lehrplankonform: 16%, bewusst traditionell: 17%; Wald 
χ2(1) = 0.01, p = .950).
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Ab bildung 49:  Prozentualer Anteil des Einsatzes der sukzessiven Addition bei mindestens drei von 
sechs Aufgaben in Abhängigkeit vom Leistungsvermögen und der Lehrkraft-Gruppe.

6.3.4 Kompetenz der Strategiewahl – Flexibilität, Adaptivität und 
Transferierbarkeit

Eine weitere Frage dieser Arbeit beschäft igt sich mit der in der Forschungsliteratur 
noch weitgehend unbeantworteten Frage, inwiefern die Strategiewahl bei Einmal-
einsaufgaben fl exibel, adaptiv oder transferierbar erfolgt. Das Erreichen einer mög-
lichst hohen Kompetenz der Strategiewahl soll zudem unter den möglichen Einfl uss-
faktoren der individuellen Leistungsfähigkeit und der unterrichtlichen Erarbeitung 
des kleinen Einmaleins untersucht werden. Zur Analyse werden die Herangehens-
weisen der sechs Aufgaben des ersten Interviewteilbereiches herangezogen, die mit-
hilfe des zweiten Strategieinterviews ermittelten Strategiealternativen sowie die 
Herangehensweisen der Einmaleinsaufgabe des großen Einmaleins des dritten Inter-
viewteilbereiches. Zunächst werden Erkenntnisse hinsichtlich eines fl exiblen Strate-
gieeinsatzes von Kindern gewonnen.
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Flexible Strategiewahl
Eine Strategiewahl lässt sich dem Verständnis dieser Arbeit zufolge als fl exibel be-
zeichnen, wenn sie basierend auf Strategie-Alternativen erfolgt (siehe Abschnitt 
3.3.1). Zwischen wie vielen Rechenstrategien Kinder allerdings wechseln bzw. über 
wie viele Alternativen sie verfügen müssen, ist jedoch eine off ene Frage. Im Folgen-
den sollen die ermittelten Forschungsergebnisse vorgestellt werden. Dabei werden 
die beiden Fälle betrachtet, dass mindestens zwei verschiedene Rechenstrategien für 
eine fl exible Strategiewahl vorausgesetzt werden, und mindestens drei unterschiedli-
che Rechenstrategien. Unter unterschiedlichen Rechenstrategien werden die im Ab-
schnitt 2.2.2 beschriebenen Herangehensweisen, die Nachbaraufgabe, die Faktorzer-
legung, das Verdoppeln bzw. Halbieren, die Tauschaufgabe und das gegensinnige 
Verändern verstanden. Unterschiedliche Lösungswege einer Rechenstrategie, wie bei-
spielsweise die additive und die subtraktive Faktorzerlegung werden als eine alterna-
tive Rechenstrategie erfasst und nicht als zwei separate Rechenstrategien. Darüber 
hinaus werden zur Ermittlung der Strategie-Alternativen im Hinblick auf eine fl e-
xible Strategiewahl – ebenso wie bereits zur Analyse des Strategierepertoires – nur 
korrekt ausgeführte Rechenstrategien berücksichtigt. Solche, die aufgrund eines Stra-
tegiefehlers eines Kindes nicht zur korrekten Aufgabenlösung führen, werden nicht 
als Strategie-Alternativen erfasst. Rechenstrategien, die allerdings zu einem fehlerhaf-
ten Ergebnis führen, weil ein Multiplikations- bzw. Rechenfehler vorausgegangen ist, 
werden als Strategie-Alternativen gewertet.

Wenn als Voraussetzung bzw. als Grundlage für eine fl exible Strategiewahl ein 
möglicher Wechsel zwischen mindestens zwei verschiedenen Rechenstrategien vor-
gesehen ist, dann erfüllen 71% der an der Studie teilnehmenden Kinder diese Vo-
raussetzung. Werden drei oder mehr Strategie-Alternativen für eine fl exible Wahl 
vorausgesetzt, dann liegt der Prozentsatz der Kinder, die in der Lage sind, Rechen-
strategien fl exibel einzusetzen, bei lediglich 24%. Wie den deskriptiven Kennwer-
ten der Tabelle 50 zu entnehmen ist, sind es die leistungsstarken Kinder, die häufi -
ger über Strategie-Alternativen verfügen, die eine fl exible Strategiewahl ermöglichen. 
Die leistungsstarken Kinder sind im Vergleich zu den leistungsschwachen Kindern 
im Durchschnitt sogar fast doppelt so häufi g dazu in der Lage. Ins Auge fallen in Ta-
belle 50 auch die – rein deskriptiv betrachtet – geringeren Prozentsätze, wenn für 
eine fl exible Strategiewahl der Wechsel zwischen mindestens drei verschiedenen Re-
chenstrategien gefordert wird.

Unabhängig von der Anzahl zur Verfügung stehender Strategie-Alternativen 
unterscheidet sich die Grundlage für eine fl exible Strategiewahl signifi kant zwischen 
den Kindern verschiedener Leistungsgruppen (siehe Tabelle 50). Wenn mindestens 
zwei Strategie-Alternativen vorausgesetzt werden, zeigen paarweise Vergleiche signi-
fi kante Unterschiede zwischen den verschiedenen Leistungsgruppen (beide p < .001), 
mit Ausnahme der beiden leistungsstärkeren Gruppen (p  = 1.000). Bei mindestens 
drei verfügbaren Rechenstrategien liegen zwischen den Kindern der verschiedenen 
Leistungsgruppen paarweisen Vergleichen zufolge nur zwischen den leistungsstarken 
und den leistungsschwachen signifi kante Unterschiede vor (p  =  .035). Die Kinder 
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durchschnittlichen Leistungsvermögens unterscheiden sich im Hinblick auf die Mög-
lichkeit, Strategien fl exibel einsetzen zu können, nicht signifi kant von den leistungs-
schwachen Kindern (p = .522) und von den leistungsstarken Kindern (p = 1.000).

Ta belle 50:  Prozentualer Anteil (möglicher) fl exibler Strategiewahlen in Abhängigkeit vom Leistungsver-
mögen 

Voraussetzung

Leistungsvermögen

Leistungsstark 
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach   
(N = 46)

% % % Wald χ2(2) p

> 1 RS 85 82 44 15.82 < .001

> 2 RS 33 25 15 7.00 .030

Ein signifi kanter Unterschied hinsichtlich der Voraussetzung bzw. der Grundlage für 
einen fl exiblen Strategieeinsatz ist auch zwischen den beiden Lehrkraft -Gruppen zu 
verzeichnen – allerdings nur, wenn mindestens drei Strategie-Alternativen für einen 
fl exiblen Einsatz verlangt werden (siehe Tabelle 51). Die deskriptiven Kennwerte le-
gen dar, dass die lehrplankonform unterrichteten Kinder unabhängig von den festge-
legten Voraussetzungen für eine fl exible Strategiewahl höhere Prozentsätze erreichen, 
was einen möglichen fl exiblen Einsatz von Rechenstrategien betrifft  , als die bewusst 
traditionell unterrichteten Kinder.

 Tabelle 51:  Prozentualer Anteil (möglicher) fl exibler Strategiewahlen in Abhängigkeit von der Lehr-
kraft-Gruppe 

Voraussetzung

Lehrkraft -Gruppen

Lehrplankonform
(N = 71)

Bewusst traditionell
(N = 72)

% % Wald χ2(1) p

> 1 RS 76 65 2.43 .119

> 2 RS 35 13 5.96 .015

Die Interaktion der beiden Faktoren Individuum und Unterricht (Individuum 
× Unterricht) zeigt hinsichtlich der Voraussetzung für einen fl exiblen Strategie-
einsatz – unabhängig von der Anforderung über mindestens zwei oder drei ver-
schiedene Strategie-Alternativen verfügen zu müssen – keine Signifi kanz (> 1 RS: 
Wald χ2(2) = 1.71, p = .425; > 2 RS: Wald χ2(2) = 1.01, p = .602). Über den Vergleich 
der prozentualen Anteile der Kinder verschiedener Lehrkraft -Gruppen einer Leis-
tungsgruppe, die über Strategie-Alternativen als Voraussetzung für eine fl exible Stra-
tegiewahl besitzen, wird im Folgenden berichtet. Abbildung 50 veranschaulicht in 
diesem Kontext Forschungsergebnisse basierend auf mindestens zwei vorausgesetz-
ten Strategie-Alternativen, Abbildung 51 für drei oder mehr als drei verschiedene ge-
forderte Rechenstrategien.
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A bbildung 50:  Prozentualer Anteil (möglicher) fl exibler Strategiewahlen (mindestens zwei 
verschiedene Rechenstrategien) in Abhängigkeit vom Leistungsvermögen und der 
Lehrkraft-Gruppe.

Wird für einen fl exiblen Strategieeinsatz verlangt, über mindestens zwei Strate-
gie-Alternativen zu verfügen, fallen in erster Linie die deskriptiven Kennwerte zwi-
schen den leistungsschwachen Kindern der beiden Lehrkraft -Gruppen ins Auge (sie-
he Abbildung 50). Während 55% der lehrplankonform unter richteten Kinder über 
zwei oder mehr verschiedene Rechenstrategien zur Aufgabenlösung verfügen und 
demnach die Möglichkeit für eine fl exible Strategiewahl besitzen, kann man ledig-
lich bei 33% der bewusst traditionell unterrichteten Kinder davon ausgehen, dass 
die Grundlage für eine fl exible Strategiewahl gegeben ist. Der Unterschied zwischen 
den leistungsschwachen Kindern der beiden Lehrkraft -Gruppen stellt sich allerdings 
als nicht signifi kant heraus (lehrplankonform: 55%, bewusst traditionell: 33%; Wald 
χ2(1)  =  2.27, p  =  .132). Neben den leistungsschwachen Kindern unterscheiden sich 
auch die leistungsstarken Kinder beider Lehrkraft -Gruppen nicht signifi kant hin-
sichtlich ihrer Voraussetzungen für eine fl exible Strategiewahl (lehrplankonform: 
88%, bewusst traditionell: 83%; Wald  χ2(1)  =  0.20, p  =  .653) – ebenso die Kinder 
durchschnittlichen Leistungsvermögens (lehrplankonform: 84%, bewusst traditionell: 
79%; Wald χ2(1) = 0.19, p = .667).
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Ab bildung 51:  Prozentualer Anteil (möglicher) fl exibler Strategiewahlen (mindestens drei verschiedene 
Rechenstrategien) in Abhängigkeit vom Leistungsvermögen und der Lehrkraft-Gruppe.

Während sich die Kinder je Leistungsgruppe, die über mindestens zwei verschie-
dene Rechenstrategen verfügen, zwischen den beiden Lehrkraft -Gruppen hinsicht-
lich der prozentualen Anteile fl exibler Strategiewahlen nicht signifi kant unterschei-
den, zeichnet sich hinsichtlich der Voraussetzung von mindestens drei verschiedenen 
Rechenstrategien ein anderes Bild ab. Hinsichtlich einer fl exiblen Strategiewahl, die 
als Voraussetzung mindestens drei verschiedene Rechenstrategien vorsieht, besteht 
zwischen den leistungsstarken Kindern der beiden Lehrkraft -Gruppen (lehrplan-
konform: 46%, bewusst traditionell: 21%; Wald χ2(1)  =  3.95, p  =  .047) sowie zwi-
schen den Lehrkraft -Gruppen der Kinder durchschnittlichen Leistungsvermögens je-
weils ein signifi kanter Unterschied (lehrplankonform: 40%, bewusst traditionell: 8%; 
Wald χ2(1)  =  4.91, p  =  .027). Bei mehr als doppelt so vielen leistungsstarken, lehr-
plankonform unterrichteten Kindern kann im Vergleich zu leistungsstarken Kin-
dern, die bewusst traditionell unterrichtet wurden, von einer (möglichen) fl exiblen 
Strategiewahl ausgegangen werden. Die deskriptiven Kennwerte berücksichtigend, 
fällt die Möglichkeit für eine fl exible Strategiewahl der bewusst traditionell unter-
richteten Kinder durchschnittlichen Leistungsvermögens sogar niedriger aus als für 
die Leistungsschwachen: Nur 8% der Kinder durchschnittlichen Leistungsvermögens 
verfügen über mindestens drei verschiedene Rechenstrategien, bei den leistungs-
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schwachen Kindern derselben Lehrkraft -Gruppe insgesamt 13%. Kein signifi kan-
ter Unterschied existiert darüber hinaus zwischen den leistungsschwachen Kindern 
beider Lehrkraft -Gruppen (lehrplankonform: 18%, bewusst traditionell: 13%; Wald 
χ2(1) = 0.22, p = .643).

Adaptivität
Neben den Forschungsergebnissen hinsichtlich einer fl exiblen Strategiewahl soll im 
Folgenden analysiert werden, ob und inwiefern Kinder eine Strategie adaptiv wählen 
können. Eine Strategie lässt sich dem Verständnis dieser Arbeit zufolge als adaptiv 
bezeichnen, wenn aus einem Strategie-Repertoire auf eine jeweils adäquate bzw. ge-
eignete Herangehensweise zur Lösung zurückgegriff en wird (siehe Abschnitt 3.3.1). 
Ob und inwiefern Kinder über ein Strategie-Repertoire bzw. Strategie-Alternativen 
verfügen, konnte anhand der Forschungsergebnisse des vorausgehenden Abschnittes 
bereits geklärt werden, das Verfügen über adäquate bzw. geeignete Herangehenswei-
sen soll im Folgenden untersucht werden. 

Eine adäquate Strategiewahl setzt den Einsatz von Rechenstrategien zur Aufga-
benlösung voraus. Da sich in Abhängigkeit vom Aufgabentyp bzw. den Aufgaben-
merkmalen nicht jede Rechenstrategie als in gleichem Maße geeignet zur Aufgaben-
lösung erweist, erfolgt eine adäquate Strategiewahl auch unter Berücksichtigung der 
Aufgabencharakteristika (siehe Abschnitt 3.3.2). Die im Abschnitt 5.3.2 aufgeführte 
Tabelle 22 veranschaulicht erwartete bzw. mögliche Herangehensweisen an Aufgaben 
des ersten Interviewteilbereiches. Alle mit Häkchen versehenen Herangehensweisen 
(mit oder ohne Klammern) in Tabelle 22 werden in dieser Arbeit als adäquate He-
rangehensweisen verstanden.147 Detaillierte Begründungen für diese normative Aus-
wahl sind im Abschnitt 5.3.2 zu fi nden. Zur Analyse werden die Herangehensweisen 
der sechs Aufgaben des ersten Interviewteilbereiches herangezogen.

Im Durchschnitt werden zur Lösung von 69% aller Aufgaben im vorher genann-
ten Sinne geeignete bzw. adäquate Rechenstrategien herangezogen. Das entspricht 
einer Anzahl von durchschnittlich 4 von 6 Aufgaben (M = 4.15, SD = 1.84), die mit-
tels adäquater Rechenstrategien gelöst werden. Von Person zu Person variiert die 
Anzahl adäquat eingesetzter Herangehensweisen dabei zwischen keinem adäquaten 
Einsatz und sechs Einsätzen.

Signifi kante Unterschiede bezüglich eines adäquaten Einsatzes zwischen Kin-
dern unterschiedlichen Leistungsvermögens liegen vor (Wald χ2(2) = 32.46, p < .001). 
Paarweise Vergleiche zeigen signifi kante Unterschiede zwischen der leistungsschwa-
chen und den beiden leistungsstärkeren Gruppen von Kindern (beide p < .001). 
Kein signifi kanter Unterschied liegt zwischen den leistungsstarken und den Kindern 
durchschnittlichen Leistungsvermögens vor (p  =  1.000). Die deskriptiven Kennwer-

147 Zur Lösung der beiden Aufgaben 3 x 7 und 5 x 8 wird auch der Einsatz der sukzessiven Ad-
dition als adäquat gewertet. Da allerdings nur eine wiederholte sukzessive Addition oder das 
Nutzen von Zahlenfolgen sich aufgrund der Aufgabencharakteristik auch als geeignet erwei-
sen, aber nicht ein unter Umständen verdeckter Einsatz des rhythmischen Zählens, wurde 
überprüft , dass ein möglicherweise verdeckter Einsatz nicht bei den beiden Aufgaben 3 x 7 
und 5 x 8 zum Einsatz kam.
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te zeigen in diesem Zusammenhang, dass leistungsstarke Kinder adäquate Herange-
hensweisen durchschnittlich häufi ger einsetzen als Kinder durchschnittlichen Leis-
tungsvermögens (leistungsstark: M  =  4.85, SD  =  1.38; durchschnittlich: M  =  4.71, 
SD  =  1.47). Den geringsten Einsatz geeigneter Herangehensweisen verzeichnen die 
leistungsschwachen Kinder, die weniger als die Hälft e der gestellten Aufgaben (leis-
tungsschwach: M = 2.80, SD = 1.92) mittels adäquater Rechenstrategien lösen. 

Die Kinder der beiden Lehrkraft -Gruppen unterscheiden sich ebenfalls hinsicht-
lich einer adäquaten Strategiewahl: Lehrplankonform unterrichtete Kinder lösen 
signifi kant mehr Aufgaben adäquat (M  =  4.42, SD  =  1.66) als Kinder, die bewusst 
traditionell unterrichtet werden (M = 3.88, SD = 1.98; Wald χ2(1) = 4.13, p = .042).

Während Unterschiedsanalysen signifi kante Haupteff ekte hinsichtlich adäquater 
Strategiewahlen zeigen, liegt keine signifi kante Interaktion Individuum × Unterricht 
hinsichtlich eines adäquaten Strategieeinsatzes vor (Wald χ2(2) = 2.70, p = .259). Der 
Vergleich der Kinder der beiden Lehrkraft -Gruppen gleichen Leistungsvermögens 
soll im Folgenden präsentiert werden (siehe Abbildung 52). Der Einsatz adäqua-
ter Herangehensweisen erfolgt von den leistungsschwachen Kindern, die lehrplan-
konform unterrichtet wurden, signifi kant häufi ger als von den bewusst traditionell 
unterrichteten Kindern (Wald  χ2(1)  =  4.61, p  =  .049). Während leistungsschwache 
Kinder der lehrplankonform unterrichteten Lehrkraft -Gruppe bei drei von sechs 
Aufgaben eine geeignete Herangehensweise wählen (M = 3.32, SD = 2.06) setzen die 
leistungsschwachen Kinder der anderen Lehrkraft -Gruppe im Mittel nur bei zwei 
Aufgaben adäquate Herangehensweisen ein (M = 2.33, SD = 1.67). Keine signifi kan-
ten Unterschiede können zwischen den beiden Lehrkraft -Gruppen der Kinder durch-
schnittlichen Leistungsvermögens (lehrplankonform: M  =  4.92, SD  =  1.12; bewusst 
traditionell: M = 4.50, SD = 1.77; Wald χ2(1) = 0.58, p =  .447) und der leistungsstar-
ken Kinder (lehrplankonform: M = 4.92, SD = 1.25; bewusst traditionell: M = 4.79, 
SD = 1.53; Wald χ2(1) = 0.10, p = .754) ermittelt werden.

Direkt im Anschluss an die Forschungsergebnisse hinsichtlich einer adäquaten 
Strategiewahl soll der Frage nachgegangen werden, inwiefern die Strategiewahl bei 
Einmaleinsaufgaben adaptiv erfolgt.148 Wie der Defi nition zu entnehmen ist, kann 
eine Strategiewahl nur dann als adaptiv bezeichnet werden, wenn sich die Wahl als 
geeignet hinsichtlich der Aufgabencharakteristik herausstellt und zudem basierend 
auf einem Strategie-Repertoire erfolgt. Eine adaptive Strategiewahl setzt demnach die 
Flexibilität des Einsatzes voraus (siehe Abschnitt 3.3.4) – von einem fl exiblen Ein-
satz wird im weiteren Verlauf der Analyse der Adaptivität gesprochen, wenn Kin-
der sich durch ein Strategie-Repertoire von mindestens zwei verschiedenen Rechen-
strategien auszeichnen. Off en bleibt allerdings die Frage, wie häufi g der Einsatz einer 
Rechenstrategie adäquat erfolgen muss. Von einer adaptiven Strategiewahl wird in 
dieser Arbeit ausgegangen, wenn ein Kind nicht nur in der Lage ist, zwischen min-
destens zwei verschiedenen Rechenstrategien zu wählen, sondern darüber hinaus für 
alle Aufgaben im Stande ist adäquate Rechenstrategien einzusetzen.

148 Eine Strategiewahl kann dem Verständnis dieser Arbeit zufolge als adaptiv verstanden wer-
den, wenn aus einem Strategie-Repertoire auf eine jeweils adäquate bzw. geeignete Herange-
hensweise zur Lösung zurückgegriff en wird (siehe Abschnitt 3.3.1).
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Von den 143 an der Studie teilnehmenden Kindern wird aufgrund der Forderung 
alle Aufgaben über eine adäquate Herangehensweise lösen zu müssen, der Anteil an 
Kindern, die sich durch eine adaptive Strategiewahl auszeichnen, sehr limitiert. Et-
was weniger als ein Drittel der Kinder (33%) zieht zur Lösung aller sechs Aufgaben 
eine adäquate Herangehensweise heran. Wie viele dieser Kinder bei der Lösung zu-
dem noch auf mindestens zwei verschiedene Rechenstrategien (Defi nition Flexibili-
tät) zurückgreifen bzw. über mindestens zwei Strategie-Alternativen verfügen, muss 
für die Analyse einer adaptiven Strategiewahl ebenfalls berücksichtigt werden. Wie 
sich die Anteile adaptiver Strategiewahlen zudem in Abhängigkeit von der indivi-
duellen Leistungsfähigkeit und der unterrichtlichen Erarbeitung verteilen, sollen die 
folgenden Ergebnisse veranschaulichen.

Der Prozentsatz an Kindern, den man als adaptive Rechner bezeichnen kann, 
liegt bei im Durchschnitt 29%. Bei 42% der leistungsstarken Kinder werden alle ge-
stellten Aufgaben mithilfe von adäquaten Herangehensweisen basierend auf mindes-
tens zwei Strategie-Alternativen gelöst. Die Kinder durchschnittlichen Leistungsver-
mögens zeichnen sich durch 31% adaptive Rechner aus, 13% der leistungsschwachen 
Kinder verfügen ebenfalls über diese Kompetenz. Es liegen signifi kante Unterschie-
de hinsichtlich einer adaptiven Strategiewahl zwischen den verschiedenen Leistungs-
gruppen vor (Wald  χ2(2)  = 11.84, p  =  .003). Paarweise Vergleiche zeigen nur signi-
fi kante Unterschiede zwischen der leistungsstarken und der leistungsschwachen (p
< .001) sowie zwischen der durchschnittlichen und der leistungsschwachen Gruppe 
(p = .041), nicht aber zwischen den beiden leistungsstärkeren Gruppen (p = .581).

Für die Kinder der verschiedenen Lehrkraft -Gruppen soll ebenfalls eine Analyse 
hinsichtlich einer adaptiven Strategiewahl präsentiert werden. Die Unterschiedsana-
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Standardfehler des Mittelwertes.



335   

lyse mittels der verallgemeinerten Schätzgleichung zeigt, dass zwischen den Kindern 
der beiden Lehrkraft -Gruppen kein signifi kanter Unterschied hinsichtlich einer ad-
aptiven Strategiewahl vorliegt (Wald χ2(1)  =  1.05, p  =  .305). Von den lehrplankon-
form unterrichteten Kindern sind 30% in der Lage aus einem Repertoire von min-
destens zwei Rechenstrategien eine jeweils adäquate Herangehensweise zur Lösung 
aller Aufgaben einzusetzen – einen deskriptiv annähernd vergleichbaren Prozentsatz 
erreichen die bewusst traditionell unterrichteten Kinder (28%).

Darüber hinaus soll auch der Einfl uss verschiedener unterrichtlicher Erarbei-
tungen auf eine adaptive Strategiewahl der Kinder je nach kindlichem Leistungs-
vermögen untersucht werden. Die Interaktion der Faktoren Individuum × Unter-
richt erweist sich allerdings als nicht signifi kant (Wald χ2(2)  =  3.66, p  =  .161). 
Interessante Ergebnisse bezüglich eines adaptiven Strategieeinsatzes liefert der Ver-
gleich der Kinder der beiden Lehrkraft -Gruppen einer Leistungsgruppe (siehe Ab-
bildung 53). Die leistungsstarken Kinder beider Lehrkraft -Gruppen sind gleich häu-
fi g in der Lage Strategiewahlen adaptiv durchzuführen und demnach liegt zwischen 
den Kindern dieser Gruppen kein signifi kanter Unterschied vor (lehrplankonform: 
42%, bewusst traditionell: 42%; Wald χ2(1)  =  0.00, p  =  1.000). Ebenfalls keine si-
gnifi kanten Unterschiede existieren für die Kinder der beiden Lehrkraft -Gruppen 
durchschnittlichen Leistungsvermögens (lehrplankonform: 24%, bewusst traditionell: 
38%; Wald χ2(1) = 1.18, p = .277) sowie die für die leistungsschwachen Kinder (Wald 
χ2(1) = 2.81, p = .094). Allerdings fast ein Viertel (23%) der leistungsschwachen Kin-
der der lehrplankonform unterrichteten Gruppe wählt Rechenstrategien adaptiv – 
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diese Kinder sind somit mehr als fünfmal häufi ger in der Lage adaptive Strategie-
wahlen durchzuführen als die leistungsschwachen Kinder der bewusst traditionellen 
Lehrkraft -Gruppe (4%).

Transferierbarkeit
Eine wichtige Kompetenz stellt das Übertragen von Herangehensweisen bzw. den er-
worbenen Erkenntnissen zur Aufgabenlösung des kleinen Einmaleins auf das gro-
ße Einmaleins dar. Aus diesem Grund sieht die Studie auch die Ermittlung von Er-
kenntnissen hinsichtlich der Transferierbarkeit vor, die im Folgenden präsentiert 
werden. Kinder wurden im dritten Interviewteilbereich gebeten verschiedene Lö-
sungswege bzw. Lösungsideen der Einmaleinsaufgabe 18 x 7 zu nennen. Über ein 
korrektes Ergebnis der angewandten Lösungsidee bzw. des Lösungsweges kann in 
dieser Studie keine Aussage getroff en werden, da die Lösung der Einmaleinsaufgabe 
aus dem großen Einmaleins nicht vorgesehen bzw. gefordert wurde. Zunächst wird 
die Anzahl korrekter Lösungsideen bzw. Lösungswege der Aufgabe 18  x 7 unabhän-
gig von der eingesetzten Herangehensweise vorgestellt. Herangehensweisen oder Re-
chenstrategien, die fehlerhaft  angewandt wurden (Strategiefehler), fallen nicht unter 
korrekte Lösungsideen bzw. Lösungswege.

Im Durchschnitt sind die Kinder in der Lage M = 1.71 (SD = 1.14) verschiedene 
Herangehensweisen zur Lösung der Aufgabe 18 x 7 zu nennen. Die Anzahl an verfüg-
baren Herangehensweisen je Kind variiert dabei zwischen keiner und vier verschie-
denen Herangehensweisen. In Tabelle 52 sind die absoluten und relativen Häufi gkei-
ten je unterschiedlicher Anzahl verfügbarer Herangehensweisen aufgelistet.

Ta belle 52:  Absolute und relative Häufi gkeiten je Anzahl verfügbarer Herangehensweisen

Anzahl verfügbarer Herangehensweisen Absolute Häufi gkeit Relative Häufi gkeit

0 23 16

1 39 27

2 49 34

3 21 15

4 11 8

Gesamt 143 100

Über ein Drittel der Kinder verfügt über zwei verschiedene Lösungsideen bzw. Lö-
sungswege für die Aufgabe 18 x 7 – die Prozentsätze an Kindern, die keine, eine, drei 
oder vier Herangehensweisen nennen, fallen den deskriptiven Kennwerten zufolge 
im Vergleich geringer aus (siehe Tabelle 52).

Signifi kante Unterschiede liegen für die Anzahl an verschiedenen Herangehens-
weisen für die Aufgabe 18  x 7 zwischen den verschiedenen Leistungsgruppen vor 
(Wald χ2(2) = 29.84, p < .001). Auf M = 1.13 (SD = 0.83) verschiedene Lösungswe-
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ge gelangen leistungsschwache Kinder, Kinder durchschnittlichen Leistungsvermö-
gens nennen M  =  1.76 (SD  =  1.03) und leistungsstarke Kinder im Mittel M  =  2.21 
(SD = 1.25) verschiedene Herangehensweisen. Die leistungsstarken Kinder verfügen 
demnach rein deskriptiv mit im Mittel zwei verschiedenen genannten Herangehens-
weisen zur Aufgabenlösung über die meisten potentiellen Lösungswege. Paarweisen 
Vergleichen zufolge unterscheiden sich erneut – wie bereits in einer Vielzahl der vor-
ausgegangenen Ergebnisse – nur die beiden leistungsstärkeren Gruppen und die leis-
tungsschwache Gruppe signifi kant voneinander (beide p < .001). Kein signifi kanter 
Unterschied liegt zwischen den leistungsstarken und den Kindern durchschnittlichen 
Leistungsvermögens vor (p = .094).

Auch zwischen den beiden Lehrkraft -Gruppen ist kein signifi kanter Unterschied 
hinsichtlich der Anzahl genannter potentieller Aufgabenlösungen zu verzeichnen 
(Wald χ2(1)  =  0.64, p < .424). Die lehrplankonform unterrichteten Kinder verfü-
gen bei Betrachtung der deskriptiven Kennwerte im Durchschnitt ebenso wie die 
bewusst traditionell unterrichteten Kinder über zwei verschiedene Lösungswege 
zur Lösung der Aufgabe aus dem großen Einmaleins (lehrplankonform: M  =  1.76, 
SD = 1.05; bewusst traditionell: M = 1.65, SD = 1.22).

Auch die Wechselwirkung der beiden Faktoren Individuum und Unterricht (Indi-
viduum × Unterricht) wird hinsichtlich der Anzahl verschiedener Herangehenswei-
sen an die Aufgabe 18 x 7 nicht signifi kant (Wald χ2(2) = 4.13, p < .127).

Als potentielle Rechenstrategien zur Lösung der Aufgabe 18 x 7 verweisen die 
Kinder auf die Faktorzerlegung, die Verdopplung sowie das gegensinnige Verän-
dern149. Darüber hinaus wird auch die sukzessive Addition als Herangehensweise zur 
Lösung angeführt.

Insgesamt nennen Kinder 94 korrekte Lösungswege basierend auf operativen 
Beziehungen (Rechenstrategien). Dies entspricht einem Mittelwert von M  =  0.66 
(SD  =  0.75) verschiedenen Rechenstrategien je Kind, um die Aufgabe 18 x 7 zu lö-
sen. Zur Interpretation der Ergebnisse sei erneut darauf verwiesen, dass Kinder in 
der Anzahl genannter Herangehensweisen bzw. Rechenstrategien von Individuum zu 
Individuum durchaus variieren zu scheinen. Wie sich die Häufi gkeiten auf die ver-
schiedenen Rechenstrategien verteilen, soll Tabelle 53 veranschauliche n.

Tabelle 53:  Absolute und relative Häufi gkeiten korrekt angewandter Rechenstrategien

Rechenstrategie Absolute Häufi gkeit Relative Häufi gkeit

Faktorzerlegung 83 88

Verdopplung/Halbierung 6 6

gegensinniges Verändern 5 5

Gesamt 94 100

149 Die vereinzelten Nennungen des gegensinnigen Veränderns erfolgen von den Kindern sehr 
refl ektiert – Kinder, die diese Rechenstrategie anführen, verweisen darauf, dass der jeweilige 
Einsatz nicht maßgeblich zur Vereinfachung der Aufgabe beiträgt.
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Ähnlich wie für den Einsatz von Herangehensweisen bereits berichtet, verfügen Kin-
der mit zunehmendem Leistungsvermögen auch über signifi kant mehr verschiede-
ne Rechenstrategien zur Lösung der Aufgabe aus dem großen Einmaleins – es liegen 
signifi kante Unterschiede zwischen Kindern unterschiedlichen Leistungsvermögens 
vor (Wald χ2(2)  =  18.63, p < .001). Paarweise Vergleiche zeigen signifi kante Unter-
schiede zwischen den Kindern der beiden leistungsstärkeren und der leistungs-
schwachen Gruppe (beide p < .001) sowie einen signifi kanten Unterschied zwischen 
den leistungsstarken Kindern und den Kindern durchschnittlichen Leistungsver-
mögens (p =  .036). Im Durchschnitt verfügen leistungsstarke Kinder über M = 1.06 
(SD  =  0.70) Rechenstrategien, Kinder durchschnittlichen Leistungsvermögens nen-
nen M = 0.70 (SD = 0.80) sowie leistungsschwache M = 0.20 (SD = 0.45) verschiede-
ne Rechenstrategien.

Auch zwischen den Kindern der beiden Lehrkraft -Gruppen ist ein signifi kan-
ter Unterschied zu erkennen hinsichtlich der Anzahl genannter Rechenstrategien 
zur Lösung der Aufgabe aus dem großen Einmaleins (Wald χ2(1) = 5.02, p =  .025). 
Die lehrplankonform unterrichteten Kinder kennen im Durchschnitt M  =  0.72 
(SD = 0.70) verschiedene Rechenstrategien. Die bewusst traditionelle Gruppe ledig-
lich M  =  0.60 (SD  =  0.80) verschiedene und demnach signifi kant weniger als die 
lehrplankonform Gruppe.

Der Interaktionseff ekt Individuum × Unterricht zeigt sich hinsichtlich der Anzahl 
verschiedener eingesetzter Rechenstrategien als nicht signifi kant (Wald χ2(2) = 4.77, 
p  =  .002). Abbildung 54 veranschaulicht die Anzahl an aufgeführten Rechenstra-
tegien der Kinder unter Berücksichtigung des individuellen Leistungsvermögens 
und der unterrichtlichen Erarbeitung. Im Mittel werden M  =  0.36 (SD  = 0.58) ver-
schiedene Rechenstrategien von leistungsschwachen, lehrplankonform unterrich-
teten Kindern als mögliche Lösungswege der Aufgabe 18 x 7 aufgeführt, während 
nur durchschnittlich M  =  0.04 (SD  =  0.20) verschiedene Rechenstrategien bei den 
leistungsschwachen Kindern der bewusst traditionellen Lehrkraft -Gruppe verfüg-
bar sind. Das heißt nur ein leistungsschwaches, bewusst traditionelles Kind von 
24 hat einmal eine Rechenstrategie zur Aufgabenlösung eingesetzt. Zwischen den 
leistungsschwachen Kindern der genannten Lehrkraft -Gruppen liegt ein signifi -
kanter Unterschied vor (Wald χ2(1)  =  4.73, p  =  .030). Die leistungsstarken Kinder 
(lehrplankonform: M  =  1.00, SD  =  0.72; bewusst traditionell: M  =  1.13, SD  =  0.68; 
Wald  χ2(1) = 5.67, p =  .452) und die Kinder durchschnittlichen Leistungsvermögens 
(lehrplankonform: M  =  0.76, SD  =  0.66; bewusst traditionell: M  = 0.63, SD  =  0.92; 
Wald  χ2(1)  =  2.97, p  =  .586) unterscheiden sich jeweils nicht signifi kant zwischen 
den beiden Lehrkraft -Gruppen.
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 Abbildung 54:  Anzahl verschiedener Rechenstrategien zur Lösung der Aufgabe 18 x 7 in Abhängigkeit 
vom Leistungsvermögen und der Lehrkraft-Gruppe. Die Fehlerbalken repräsentieren 
den Standardfehler des Mittelwertes.

Im Anschluss an die detaillierten Ergebnisse hinsichtlich der Anzahl verfügbarer Re-
chenstrategien je Kind soll bezüglich der Transferierbarkeit von Rechenstrategien 
auch noch berichtet werden, wie viele Kinder über mindestens eine Rechenstrate-
gie zur Lösung der Aufgabe 18 x 7 verfügen. Im Durchschnitt sind mehr als die Hälf-
te der Kinder (51%) in der Lage, mindestens eine Rechenstrategie auf das große Ein-
maleins zu übertragen.

Je leistungsstärker Kinder sind, desto signifi kant erfolgreicher gelingt ihnen dies. 
Zwischen den Kindern unterschiedlichen Leistungsvermögens liegen signifi kante 
Unterschiede vor hinsichtlich der Anzahl an Kindern, die mindestens eine Rechen-
strategie zur Lösung der Aufgabe 18 x 7 nennen können (siehe Tabelle 54). Paarweise 
Vergleiche lassen signifi kante Unterschiede zwischen allen Leistungsgruppen erken-
nen (alle p ≤ .001). 

Tabelle 54:  Prozentualer Anteil transferierbarer Strategiewahlen in Abhängigkeit vom Leistungsvermö-
gen

Herangehens-
weisen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

% % % Wald χ2(2) p

RS 81 53 17 20.31 < .001

Auch die Kinder der beiden Lehrkraft -Gruppen unterscheiden sich signifi kant. Die 
Anzahl an Kindern, die über mindestens eine Rechenstrategie zur Lösung der Auf-
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gabe 18 x 7 verfügen, ist signifi kant größer in der Lehrkraft -Gruppe, die das Einmal-
eins lehrplankonform unterrichtet als in der bewusst traditionellen Lehrkraft -Grup-
pe (lehrplankonform: 59%, bewusst traditionell: 43%; Wald χ2(1) = 5.39, p = .020).

Während die Haupteff ekte für die Faktoren Individuum und Unterricht 
signifi kant sind, liegt keine signifi kante Interaktion der Faktoren Individuum und 
Unterricht hinsichtlich der Transferierbarkeit von Rechenstrategien vor (Wald 
χ2(2) = 5.76, p = .056). Der Vergleich der Kinder der beiden Lehrkraft -Gruppen glei-
chen Leistungsvermögens soll im Folgenden erneut dargelegt werden (siehe Ab-
bildung 55). Die Kinder durchschnittlichen Leistungsvermögens der beiden Lehr-
kraft -Gruppen unterscheiden sich hinsichtlich einer transferierbaren Strategiewahl 
nicht signifi kant voneinander (lehrplankonform: 64%, bewusst traditionell: 42%; 
Wald χ2(1)  =  2.04, p  =  .153). Die Unterschiedsanalysen ermitteln ebenfalls kei-
ne signifi kanten Unterschiede für die leistungsstarken Kinder beider Leistungsgrup-
pen (lehrplankonform: 79%, bewusst traditionell: 83%; Wald χ2(1) = 0.18, p =  .673). 
Während die Kinder durchschnittlichen Leistungsvermögens, die lehrplankon-
form unterrichtet wurden, deskriptiv häufi ger über mindestens eine Rechenstrate-
gie zur Lösung der Aufgabe 18 x 7 verfügen als die Vergleichsgruppe, sind es die 
leistungsstarken, bewusst traditionell unterrichteten Kinder, die häufi ger mindestens 
eine Rechenstrategie besitzen. Ein signifi kanter Unterschied liegt einzig für die leis-
tungsschwachen Kinder der beiden Lehrkraft -Gruppen vor (lehrplankonform: 32%, 
bewusst traditionell: 4%; Wald χ2(1)  =  4.21, p  = .040): Während 32% der leistungs-
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 Abbildung 55:  Prozentualer Anteil transferierbarer Strategiewahlen in Abhängigkeit vom 
Leistungsvermögen und der Lehrkraft-Gruppe.
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schwachen, lehrplankonform unterrichteten Kinder über mindestens eine Rechen-
strategie verfügen, besitzen nur 4% der traditionell unterrichteten, leistungsschwa-
chen Kinder mindestens über eine Rechenstrategie, die auf das große Einmaleins 
übertragen wird. Bei einer Teilstichprobengröße von N = 23 leistungsschwachen, tra-
ditionell unterrichteten Kindern entspricht dies genau einem einzigen Kind.

Kompetenz der Strategiewahl
Final soll die Frage geklärt werden, inwiefern Kinder nach der Erarbeitung des klei-
nen Einmaleins über eine ausgesprochen hohe Kompetenz der Strategiewahl verfü-
gen – nicht nur zwischen Rechenstrategien fl exibel wechseln können, sondern auch 
adäquate Rechenstrategien für alle gestellten Aufgaben auswählen und geeignete Re-
chenstrategien des kleinen Einmaleins auf das große Einmaleins übertragen können. 
Im Durchschnitt gelingt diese anspruchsvolle Aufgabe 21% aller teilnehmenden Kin-
der der Studie.

Mehr als ein Drittel aller leistungsstarken Kinder (35%) zeichnen sich durch die-
se ausgesprochen hohe Kompetenz der Strategiewahl aus. Durchschnittlich fast ein 
Fünft el der Kinder durchschnittlichen Leistungsvermögens (18%) sind ebenfalls in 
der Lage eine Strategiewahl fl exibel, adaptiv und transferierbar zu bewältigen. Unter 
den leistungsschwachen Kindern befi nden sich 9%, die eine ausgesprochen hohe 
Kompetenz bei der Strategiewahl besitzen. Zwischen den verschiedenen Leistungs-
gruppen liegen signifi kante Unterschiede hinsichtlich der Kompetenz der Strategie-
wahl vor (Wald χ2(2)  =  10.74, p  =  .005). Signifi kant fällt der Unterschied zwischen 
den leistungsstarken und den leistungsschwachen Kindern aus (p < .001), nicht 
signifi kant unterscheiden sich die Kinder durchschnittlichen Leistungsvermögens 
von den leistungsstarken (p = .233) und den leistungsschwachen Kindern (p = .497).

Die lehrplankonform unterrichteten Kinder erreichen deskriptiv betrachtet höhe-
re Prozentsätze (23%) im Vergleich zu den bewusst traditionell unterrichteten Kin-
dern (19%) – ein signifi kanter Unterschied zwischen den beiden Lehrkraft -Grup-
pen bezüglich der Kompetenz des Strategieeinsatzes liegt allerdings nicht vor (Wald 
χ2(1) = 1.05, p = .305).

Trotz eines erneut nicht signifi kanten Interaktionseff ektes Individuum × Unter-
richt (Wald χ2(2)  =  1.58, p  =  .453) soll der Unterschied zwischen den Kindern der 
beiden Lehrkraft -Gruppen gleichen Leistungsvermögens hinsichtlich einer ausge-
sprochen hohen Kompetenz der Strategiewahl analysiert werden (siehe Abbildung 
56). Der Unterschied zwischen den leistungsschwachen Kindern der beiden Lehr-
kraft -Gruppen ist nicht signifi kant (Wald χ2(1)  =  1.18, p  =  .277). Bei 14% der leis-
tungsschwachen, lehrplankonform unterrichteten Kindern gelingt eine fl exible, ad-
aptive sowie transferierbare Strategiewahl, im Vergleich gelingt dies lediglich 4% der 
Kinder, die bewusst traditionell unterrichtet werden. Auch zwischen den Kindern 
der beiden Lehrkraft -Gruppen durchschnittlichen Leistungsvermögens liegt kein si-
gnifi kanter Unterschied vor (lehrplankonform: 20%, bewusst traditionell: 17%, Wald 
χ2(1) = 0.08, p =  .778). Die leistungsstarken Kinder unterscheiden sich zwischen den 
beiden Lehrkraft -Gruppen ebenfalls nicht signifi kant (Wald χ2(1)  =  0.18, p  =  .733) 
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– die Kinder der bewusst traditionell unterrichten Lehrkräft e (38%) zeigen sich ba-
sierend auf den deskriptiven Kennwerten erfolgreicher hinsichtlich einer fl exiblen, 
adaptiven sowie transferierbaren Strategiewahl als die Vergleichsgruppe der lehr-
plankonform unterrichteten Kinder (33%).
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A bbildung 56:  Anteil fl exibler, adaptiver und transferierbarer Strategiewahlen in Abhängigkeit vom 
Leistungsvermögen und der Lehrkraft-Gruppe.



7. Diskussion und Ausblick

„Ein reines Ableiten von noch unbekannten Aufgaben über 
Kernaufgaben halte ich nicht für sinnvoll. Die schwachen Kinder sind 

damit überfordert, das Auswendiglernen der einzelnen Reihen hilft  
ihnen. Nur die starken Kinder können aus den Kernaufgaben andere 

Ergebnisse erschließen.“

(Zitat einer an der Hauptstudie teilnehmenden Lehrkraft )

In dieser Arbeit wurden bei 144 Kindern basierend auf zwei entwickelten Testins-
trumenten Erkenntnisse hinsichtlich verschiedener Herangehensweisen zur Lösung 
von Aufgaben des kleinen Einmaleins im 3. Schuljahr ermittelt. Eine Reaktionszeit-
testung sah in diesem Zusammenhang in erster Linie die Ermittlung eines schnellen 
Faktenabrufes vor, ein Strategieinterview kam zur Erfassung verschiedener weiterer 
Herangehensweisen an Einmaleinssätze zum Einsatz. Die kindliche Strategieverwen-
dung wurde unter Berücksichtigung möglicher Einfl ussfaktoren analysiert. Neben 
einem möglichen Einfl uss der individuellen Leistungsfähigkeit eines Kindes sollte 
auch untersucht werden, ob und wie sich verschiedene unterrichtliche Vorgehens-
weisen der Lehrpersonen in der Strategieverwendung und im Lernerfolg der Kinder 
bemerkbar machen. In den folgenden Abschnitten sollen die Forschungsergebnisse 
der Reaktionszeittestung sowie des Strategieinterviews zusammenfassend berichtet 
sowie kritisch refl ektiert und diskutiert werden. Bezüge zu den publizierten Ergeb-
nissen werden angeführt. Die Grenzen dieser Arbeit werden dargelegt und es wird 
aufgezeigt, welchen Beitrag diese Arbeit für weitere Forschung liefert. Abschließend 
sollen die Konsequenzen für die Unterrichtspraxis aufgezeigt werden.

7.1 Reaktionszeittestung

Im Rahmen der Reaktionszeittestung wurden 48 Einmaleinsaufgaben150 hinsichtlich 
der Korrektheit der Aufgabenlösung überprüft  sowie die dafür benötigten Lösungs-
zeiten erfasst. Die Reaktionszeittestung kam dabei mit dem vordergründigen Ziel 
zum Einsatz, die folgende Forschungsfrage zu klären:
• Wie häufi g wird zur Aufgabenlösung auf den Faktenabruf aus dem Gedächtnis 

zurückgegriff en?
Die Konzeption einer Reaktionszeittestung zusätzlich zum Strategieinterview wurde 
dabei gezielt vorgenommen, um die Ermittlung gedächtnismäßig verfügbarer Ein-
maleinsaufgaben getrennt von der Erfassung anderer Herangehensweisen an Ein-
maleinsaufgaben zu ermöglichen. Die bisher publizierten internationalen Studien, 

150 Die 48 Einmaleinsaufgaben setzen sich aus Aufgaben vom Typ Kernaufgabe (Quadrataufga-
ben und Einmaleinssätze mit 1, 2, 5 und 10) und Nicht-Kernaufgabe sowie aus Aufgaben mit 
einem Faktor 0 zusammen.
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die ihren Fokus auf die Strategieverwendung beim kleinen Einmaleins legen (z. B. 
 COONEY et al., 1988; HEIRDSFIELD et al., 1999; LEFEVRE et al., 1996; LEMAIRE 
& SIEGLER, 1995; MABBOTT & BISANZ, 2003; SHERIN & FUSON, 2005; SIEG-
LER, 1988; STEEL & FUNNELL, 2001), erfassen den Faktenabruf – entgegen der 
vorliegenden Arbeit – als eine mögliche Herangehensweise neben einer Vielzahl wei-
terer Herangehensweisen, die im Rahmen eines Strategieinterviews ermittelt werden. 
Eine in diesem Kontext korrekte und als schnell beurteilte Aufgabenlösung lässt al-
lerdings noch keinen Rückschluss auf einen Faktenabruf zu, ebenso wenig wie kind-
liche Äußerungen (z. B. „Die Aufgabe habe ich gewusst.“). Auch die Ermittlung 
der Anzahl gelöster Aufgaben in einem vorgegebenem Zeitintervall, wodurch z. B. 
in den Studien von KROESBERGEN et  al. (2004), WONG und EVANS (2007) so-
wie WOODWARD (2006) eine Aufgabenlösung als Faktenabruf kategorisiert wird, 
lässt sich eigentlich nicht mit der Lösungsquote für einen tatsächlichen Faktenabruf 
gleichsetzen. Auch in diesem Kontext ist es möglich, dass Kinder andere Herange-
hensweisen als den Faktenabruf (zügig) zur Aufgabenlösung anwenden. Eine in der 
Forschungsliteratur häufi g angeführte Methode zur Ermittlung von Faktenabrufen 
stellt das Aufstellen einer zeitlich fi xen Obergrenze dar. Der häufi g empfohlene Ein-
satz der 3-Sekunden-Obergrenze zur Ermittlung eines Faktenabrufes wird allerdings 
wiederholt kritisiert, weil es auch mit dieser Obergrenze nicht gelingt, den Fakten-
abruf von anderen alternativen Herangehensweisen, die sich ebenfalls durch eine 
schnelle Aufgabenlösung auszeichnen, zu trennen (z. B. BAROODY, 1999; SHERIN 
& FUSON, 2005; WOODWARD, 2006). Der Forschungsbedarf hinsichtlich einer 
neuen Methode zur Unterscheidung eines Faktenabrufes von anderen Herangehens-
weisen wird in dem in dieser Arbeit bereits vorher erwähnten Zitat von BAROODY 
(1999) deutlich ersichtlich: „Researchers will need to devise methods that disentan-
gle retrieved and nonretrieved responses” (ebd., S. 191).

Um den Einsatz einer Herangehensweise bzw. Rechenstrategie möglichst präzi-
se und vertretbar von dem Abruf einer Aufgabe aus dem Gedächtnis unterscheiden 
und Erkenntnisse hinsichtlich des tatsächlichen Faktenabrufes gewinnen zu können, 
bestand ein Ziel dieser Arbeit darin, eine Alternative zur zeitlichen Obergrenze für 
die Ermittlung schneller Abrufe zu entwickeln. In diesem Zusammenhang musste 
demnach der folgenden off enen Frage nachgegangen werden:
• Woran lässt sich ein schneller Faktenabruf aus dem Gedächtnis charakterisieren 

bzw. wie lässt sich die Grenze zwischen einem Faktenabruf und anderen Heran-
gehensweisen charakterisieren?

7.1.1 Individuelle Schwellen zur Ermittlung von Faktenabrufen

Ein Faktenabruf aus dem Gedächtnis scheint sich den Erkenntnissen der vorliegen-
den Reaktionszeittestung zufolge durch schnelle, annähernd ähnliche Abrufzeiten 
auszuzeichnen, die off ensichtlich einen Rückschluss auf mental ähnliche Abrufpro-
zesse ermöglichen. Längere Lösungszeiten zur Aufgabenbeantwortung scheinen hin-
gegen in längeren mentalen Abrufprozessen begründet zu liegen, die aufgrund des 
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Einsatzes zeitintensiverer Herangehensweisen vonnöten sind. Die im Th eorieteil prä-
sentierten Studien, die Lösungszeiten verschiedener Herangehensweisen erfassen, be-
stätigen dabei, dass der Faktenabruf am schnellsten zur Lösung einer Einmaleins-
aufgabe führt (LEFEVRE et al., 1996; LEMAIRE & SIEGLER, 1995; MABBOTT & 
BISANZ, 2003; SIEGLER, 1988; STEEL & FUNNELL, 2001; siehe Abschnitt 3.2.1).151

Die vorliegende Arbeit konnte ermitteln, dass Kinder unterschiedlichen Leis-
tungsvermögens unterschiedlich lange zur Lösung von Einmaleinsaufgaben oder 
dementsprechend auch für einen Abruf aus dem Gedächtnis benötigen. Je leistungs-
stärker die Kinder, desto schneller werden Aufgaben gelöst. Basierend auf dieser Er-
kenntnis fungieren vor allem individuelle Schwellen als geeignete Obergrenzen zur 
Ermittlung eines Faktenabrufes aus dem Gedächtnis. Nur mithilfe einer indivi-
duellen Schwelle scheint es erfolgreich gelingen zu können, die von Kind zu Kind 
unterschiedlich langen, mentalen Abrufprozesse zu berücksichtigen und für Kinder 
unterschiedlichen Leistungsvermögens vertretbare Aussagen bezüglich eines Fakten-
abrufes zu tätigen. Aufgaben wurden in der vorliegenden Arbeit als schnell abruf-
bar verstanden, wenn innerhalb einer Lösungszeit von drei Standardabweichungen 
vom individuellen Mittelwert der zwölf am schnellsten gelösten Aufgaben die Auf-
gabenlösung erfolgte. Dass mithilfe dieser alternativen Schwelle die Trennung zwi-
schen dem Faktenabruf aus dem Gedächtnis und anderen Herangehensweisen zu ge-
lingen scheint, verdeutlichen auch die identifi zierten Sprünge in den Lösungszeiten 
bzw. der abrupte Anstieg der Lösungszeiten zwischen den Aufgaben, die in der vor-
liegenden Arbeit als schnell abgerufen klassifi ziert werden und den Aufgaben, die 
nicht mit einem Faktenabruf gleichgesetzt werden. Die Sprünge zeigen off ensichtlich 
die Unterschiede in der Bearbeitung von Einmaleinsaufgaben: Sie trennen Aufgaben, 
die sich durch andere mentale Abrufvorgänge auszeichnen, voneinander.

Die in der vorliegenden Arbeit ermittelte Schwelle der Gesamtstichprobe, die 
unter Berücksichtigung der individuell unterschiedlichen Abrufprozesse eruiert 
wurde, beläuft  sich auf durchschnittlich M  =  2.1  Sekunden (SD  =  0.3, Min  =  1.5, 
Max = 3.0). Verglichen mit der alternativen 3-Sekunden-Obergrenze fällt die in die-
ser Arbeit aufgestellte Schwelle, die zwischen Faktenabrufen und dem Einsatz ande-
rer Herangehensweisen trennt, eher streng aus. D. h. Aufgaben, die aufgrund einer 
Obergrenze von drei Sekunden als aus dem Gedächtnis verfügbar angesehen werden, 
werden auf Basis der individuellen Schwelle unter Umständen nicht als gedächtnis-
mäßig verfügbar erfasst. Weitere in der Th eorie angeführte oder in empirischen Stu-
dien eingesetzte fi xe Referenzwerte für einen schnellen Faktenabruf aus dem Ge-
dächtnis zeichnen sich allerdings – ebenso wie in der vorliegenden Studie – durch 
niedrigere Obergrenzen im Vergleich zur 3-Sekunden-Grenze aus (z. B. THORN-
TON, 1990; BORN & OEHLER, 2009a).

Im Folgenden werden die Erkenntnisse hinsichtlich eines schnellen Faktenabru-
fes basierend auf den individuellen Schwellen zusammengefasst dargelegt und kri-
tisch refl ektiert.

151 Die Lösungszeiten für einen Faktenabruf aus dem Gedächtnis wurden in den angeführten 
Studien dabei allerdings auf Basis korrekter und als schnell beurteilter Aufgabenlösung oder 
basierend auf kindlichen Äußerungen ermittelt.
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7.1.2 Anzahl korrekter Faktenabrufe aus dem Gedächtnis 

Die Reaktionszeittestung kam mit dem vordergründigem Ziel zum Einsatz, zu klä-
ren, wie häufi g Kinder zur Aufgabenlösung auf den Faktenabruf aus dem Gedächt-
nis zurückgreifen. Das entwickelte Testinstrument zeigt, dass insgesamt 35% der 
überprüft en Einmaleinsaufgaben gedächtnismäßig zur Verfügung stehen. Im Durch-
schnitt sind Kinder in der Lage 17 von 48 Aufgaben über einen Faktenabruf zu lö-
sen. Unterschiede im prozentualen Anteil abgerufener Fakten sind für die verschie-
denen überprüft en Aufgabentypen zu erkennen. Von den zu lösenden Kernaufgaben 
wird durchschnittlich die Hälft e gedächtnismäßig abgerufen. Ein ähnlicher Prozent-
satz (49%) wurde für Aufgaben mit einem Faktor 0 ermittelt. Die durchschnittlich 
17 aus dem Gedächtnis abrufb aren Einmaleinsaufgaben setzen sich den Forschungs-
ergebnissen der Reaktionszeittestung zufolge größtenteils aus gedächtnismäßig ver-
fügbaren Kernaufgaben zusammen, im Durchschnitt ist keine der abgeprüft en 
Nicht-Kernaufgaben aus dem Gedächtnis abrufb ar.

Die Forschungsergebnisse bzw. die angeführten Prozentsätze für einen Faktenab-
ruf erweisen sich insgesamt als eher niedrig, wenn man bedenkt, dass die verpfl ich-
tenden Lehrplaninhalte die Automatisierung aller Kernaufgaben bereits am Ende 
des 2. Schuljahres vorsehen und die Verfügbarkeit aller Einmaleinssätze am Ende 
des 3. Schuljahres voraussetzen (siehe Abschnitt 2.5.2).152 Ein möglicher Erklärungs-
ansatz könnte wie folgt aussehen: Die geringen Prozentsätze lassen sich darauf zu-
rückzuführen, dass Kinder zum Untersuchungszeitraum vielleicht noch vermehrt 
auf alternative Herangehensweisen zurückgreifen. Die Kinder, deren Lehrkräft e Re-
chenstrategien erarbeiten, nutzen beispielsweise bevorzugt das schnelle Ableiten über 
Rechenstrategien, die bewusst traditionell unterrichten Kinder womöglich in erster 
Linie das Aufsagen der Reihe. Bestärkt kann diese Erklärung werden durch den Zeit-
punkt der Studiendurchführung. Die Erarbeitung war zum Zeitpunkt der Testun-
gen für alle Klassen bereits abgeschlossen, allerdings konnte zum Halbjahr in Jahr-
gangsstufe 3 noch nicht davon ausgegangen werden, dass bereits alle Einmaleinssätze 
automatisiert zur Verfügung stehen.

Zieht man die publizierten Ergebnisse der internationalen Studien und deren 
prozentualen Anteile an Faktenabrufen bzw. anderen Herangehensweisen als Ver-
gleich heran, kann der in dieser Arbeit vorliegende Prozentsatz an Faktenabrufen 
erneut als eher gering angesehen bzw. bewertet werden. Der Anteil der ermittelten 
Faktenabrufe der publizierten internationalen Studien beläuft  sich zwischen 55% 
und 92%. Die Ergebnisse müssen allerdings im Vergleich zu den vorliegenden Er-
gebnissen dieser Arbeit etwas relativiert betrachtet werden. Es muss in diesem Kon-
text abermals betont werden, dass in den verwiesenen Studien nicht ausschließlich 
ein Faktenabruf aus dem Gedächtnis erfasst wurde, sondern vermutlich auch weite-
re zur Aufgabenlösung eingesetzte Herangehensweisen. Zudem sollte berücksichtigt 
werden, dass in den erwähnten Studien das Erarbeiten von Rechenstrategien – wenn 

152 Die geforderten Lehrplaninhalte bzw. die verpfl ichtenden Vorgaben hinsichtlich des kleinen 
Einmaleins für das 2. und 3. Schuljahr entstammen dem bayerischen Lehrplan von 2000, der 
zum Zeitpunkt der Untersuchung Gültigkeit besaß.
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überhaupt – einen geringfügigen Stellenwert eingenommen hat und der Abruf von 
Einmaleinsaufgaben überwiegend im Fokus stand. Auf ähnlich niedrige Prozentsätze 
für Faktenabrufe wie in der vorliegenden Studie trifft   man nur in der nationalen Stu-
die von GASTEIGER und PALUKA-GRAHM (2013): Während ein hoher Prozent-
satz für den Einsatz von Rechenstrategien ermittelt werden kann, beläuft  sich der 
Prozentsatz für – in dieser Studie zwar nur selbstberichtete – Faktenabrufe auf ledig-
lich 20%, was sogar einen noch geringeren Prozentsatz darstellt, als in der vorliegen-
den Studie ermittelt.

Unterschiede im prozentualen Anteil abgerufener Fakten der verschiedenen 
überprüft en Aufgabentypen, vor allem zwischen dem Aufgabentyp Kernaufgabe und 
Nicht-Kernaufgabe, sind nicht weiter überraschend. Die verhältnismäßig hohen Pro-
zentsätze des Aufgabentyps Kernaufgabe – im Vergleich zu den Nicht-Kernaufgaben 
– lassen sich durch den enormen Stellenwert dieser Einmaleinssätze unabhängig von 
der unterrichtlichen Erarbeitung des kleinen Einmaleins begründen: Nehmen Re-
chenstrategien eine wichtige Rolle bei der Erarbeitung des kleinen Einmaleins ein, 
stellen Kernaufgaben einen benötigten Grundstock für die Anwendung von Rechen-
strategien dar und müssen gedächtnismäßig zuallererst zur Verfügung stehen. Liegt 
das Hauptaugenmerk eher auf der Automatisierung von Einmaleinsaufgaben, werden 
es vermutlich ebenfalls die vermeintlich einfacheren Einmaleinsaufgaben sein, die in 
einem ersten Schritt behandelt werden und auswendig verfügbar sind.

Im Folgenden sollen auch die Erkenntnisse hinsichtlich eines möglichen Einfl us-
ses der Faktoren Unterricht und Individuum auf den Faktenabruf präsentiert und re-
fl ektiert bzw. diskutiert werden.

Einfl ussfaktor Individuum und Unterricht
Den theoretischen und empirischen Erkenntnissen des Th eorieteils zufolge wirkt 
sich eine verständnisbasierte Erarbeitung des kleinen Einmaleins, die ihren Fokus 
auf das Erarbeiten und Anwenden von Rechenstrategien legt, positiv auf die Auto-
matisierung von Einmaleinsaufgaben aus – sie scheint nach SCHERER und MOSER 
OPITZ (2010) dazu beizutragen, „das Erlernen, Verinnerlichen und Behalten [zu er-
leichtern] und […] eine erfolgreiche Automatisierung [der Einmaleinssätze zu er-
reichen]“ (ebd., S. 122, Ergänzungen der Autorin). Dass sich allerdings auch eine 
Erarbeitung als erfolgversprechend hinsichtlich des Faktenabrufes von Einmaleins-
aufgaben erweist, die der Automatisierung einen großen Stellenwert zuteilwerden 
lässt, bzw. mehr Wert auf die Automatisierung legt im Vergleich zu einer verständ-
nisbasierten Erarbeitung, scheint nicht vollkommen abwegig. In der vorliegenden 
Arbeit zeigt sich kein signifi kanter Unterschied hinsichtlich der Anzahl aus dem Ge-
dächtnis abgerufener Einmaleinsaufgaben zwischen den Kindern der beiden unter-
suchten Lehrkraft -Gruppen. In  der vorliegenden Studie besitzen Kinder, die das 
kleine Einmaleins basierend auf Rechenstrategien erarbeiten, über die im Durch-
schnitt gleiche Anzahl gedächtnismäßig verfügbarer Einmaleinsaufgaben wie die 
Vergleichsgruppe, in der vordergründig die Automatisierung im Fokus steht. Wenn 
mittels einer Erarbeitung, die ihren Fokus nicht ausschließlich auf die Automatisie-
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rung legt, sondern basierend auf Einsicht und Verständnis Rechenstrategien erarbei-
tet, der Faktenabruf aus dem Gedächtnis gleich erfolgreich bewerkstelligt wird, wie 
bei einer Erarbeitung, bei der das Hauptaugenmerk überwiegend auf der Automati-
sierung liegt, scheint sich das Anwenden von Rechenstrategien als durchaus positiv 
bzw. zumindest nicht negativ auf den Faktenabruf auszuwirken.

Auf den ersten Blick vermeintlich unerwartete Forschungsergebnisse werden be-
züglich der Anzahl schneller Faktenabrufe aus dem Gedächtnis je individuellem 
Leistungsvermögen erzielt. Entgegen der Vermutung, dass leistungsstärkere Kinder 
mehr Aufgaben gedächtnismäßig zur Verfügung haben als leistungsschwächere Kin-
der unterscheiden sich die verschiedenen Leistungsgruppen nicht signifi kant in der 
Anzahl ermittelter Faktenabrufe. Davon zu sprechen, dass sich Kinder unterschied-
lichen Leistungsvermögens nicht hinsichtlich des Faktenabrufes unterscheiden, trifft   
zwar für die Anzahl an ermittelten Abrufen aus dem Gedächtnis zu, nicht allerdings 
für die Abrufzeiten der Einmaleinsaufgaben. Ein möglicher Erklärungsansatz für 
ähnliche Anzahlen an Faktenabrufen zwischen den verschiedenen Leistungsgruppen 
kann unter Umständen auf die eingesetzte Methode zur Ermittlung schneller Fak-
tenabrufe zurückgeführt werden bzw. auf die zur Erfassung schneller Faktenabrufe 
herangezogene individuelle Obergrenze, die basierend auf dem Mittelwert plus drei 
Standardabweichungen der 12 am schnellsten gelösten Aufgaben eines Kindes ermit-
telt wird (siehe Abschnitt 6.1.1). Die Standardabweichungen der individuell berech-
neten Mittelwerte der leistungsschwachen Kinder sind im Durchschnitt höher als die 
Standardabweichungen der leistungsstärkeren Kinder, was bei leistungsschwächeren 
Kinder mit verhältnismäßig größeren Standardabweichungskorridoren einhergehen 
kann. Diese können wiederum zu einer größeren Anzahl unter Umständen ermittel-
ter Faktenabrufe führen bzw. sich günstig auf die Anzahl an Faktenabrufen bei leis-
tungsschwachen Kindern auswirken.

In den folgenden Ausführungen soll noch zusammenfassend auf die benötig-
ten Lösungszeiten der Kinder unterschiedlichen Leistungsvermögens für einen Ab-
ruf aus dem Gedächtnis verwiesen werden. Bezüglich des Faktenabrufes lassen sich 
die verschieden leistungsfähigen Kinder – wie bereist erwähnt – nur unter dem Ge-
sichtspunkt der benötigten Lösungszeit unterscheiden.

Im Durchschnitt hat ein Kind eine Einmaleinsaufgabe aus dem Gedächtnis in 1.6 
Sekunden (SD  =  0.3) abgerufen. Keine signifi kanten Unterschiede liegen zwischen 
den beiden Lehrkraft -Gruppen hinsichtlich der durchschnittlichen Lösungszeiten 
von Faktenabrufen vor. Kinder der beiden Lehrkraft -Gruppen verfügen demnach 
nicht nur – wie bereits erwähnt – über die gleiche Anzahl an aus dem Gedächtnis 
abrufb aren Aufgaben, sondern sie unterscheiden sich auch noch in ihren Abrufzei-
ten nicht wesentlich. Der bereits beschriebene positive oder zumindest nicht negati-
ve Einfl uss einer verständnisbasierten Erarbeitung auf den Faktenabruf spiegelt sich 
demnach auch in den Lösungszeiten für Faktenabrufe wider.

Für die Kinder der verschiedenen Leistungsgruppen zeigen sich – wie be-
reits angedeutet – signifi kante Unterschiede in den benötigten Lösungszeiten für 
einen Abruf. Je leistungsstärker die Kinder, desto signifi kant niedriger fallen die 
im Durchschnitt ermittelten Lösungszeiten der gedächtnismäßig korrekt abgerufe-
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nen Einmaleinsaufgaben aus. Leistungsschwache Kinder benötigen für einen Ab-
ruf aus dem Gedächtnis basierend auf individuell ermittelten Schwellen im Durch-
schnitt 1.8 Sekunden (SD  =  0.3), Kinder durchschnittlichen Leistungsvermögens 
1.7 (SD  =  0.3) und leistungsstarke Kinder lediglich 1.5  Sekunden (SD  =  0.3). Diese 
Unterschiede sind dabei nicht weiter verwunderlich. Die Reaktionszeitverläufe zeig-
ten systematische Unterschiede bei Kindern unterschiedlichen Leistungsvermögens, 
was dazu führte, eine individuelle Schwelle vorzuschlagen. Nutzt man eine individu-
elle Schwelle, so geht man davon aus, dass die mentalen Abrufprozesse bei Kindern 
unterschiedlichen Leistungsvermögens unterschiedlich ablaufen.

Für Kinder unterschiedlichen Leistungsvermögens kann demnach resümiert wer-
den, dass sie sich in der Anzahl an verfügbaren Faktenabrufen nicht unterscheiden, 
leistungsschwache Kinder allerdings für den gedächtnismäßigen Abruf einer Aufgabe 
im Durchschnitt länger benötigen als die leistungsstärkeren Kinder.

Neben der Refl exion und Interpretation der gewonnen Erkenntnisse bezüglich 
der Häufi gkeit des Einsatzes eines Faktenabrufes und möglicher Einfl ussfaktoren 
in diesem Kontext sollen die ebenfalls im Zuge der Reaktionszeittestung ermittel-
ten allgemeinen Lösungsraten und Lösungszeiten korrekt gelöster Einmaleinsaufga-
ben kurz dargestellt und diskutiert werden. Vor allem gilt das Hauptaugenmerk in 
diesem Kontext den Unterschieden zwischen den verschiedenen Aufgabentypen, die 
bereits im Zuge der Diskussion der Anzahl verfügbarer Faktenabrufe kurz erwähnt, 
in bisher publizierten Studien allerdings noch nicht in den Blick genommen wurden.

7.1.3 Allgemeine Lösungsraten und Lösungszeiten korrekt gelöster Aufgaben 
je Aufgabentyp

Der Prozentsatz korrekt gelöster Aufgaben der 48 in der Reaktionszeittestung 
überprüft en Einmaleinsaufgaben beläuft  sich auf insgesamt 87%. Für eine korrek-
te Lösung werden im Durchschnitt genau 4 Sekunden (SD = 1.6) benötigt. Kernauf-
gaben werden – den deskriptiven Kennwerten zufolge – nicht nur am erfolgreichs-
ten gelöst (95%), Kernaufgaben werden im Vergleich zu den anderen Aufgabentypen 
auch am schnellsten gelöst (M = 2.8, SD = 0.8). Vergleichsweise geringere Lösungs-
quoten erzielen die Kinder beim Lösen von Aufgaben mit einem Faktor 0 (77%) so-
wie bei der Berechnung von Nicht-Kernaufgaben (74%). Für Aufgaben vom Typ 
Nicht-Kernaufgabe fallen darüber hinaus vor allem die vergleichsweise hohen Lö-
sungszeiten ins Auge (M = 8.2, SD = 6.2).

Der vergleichsweise geringere Prozentsatz an korrekten Aufgabenlösungen des 
Typs Nicht-Kernaufgabe sowie die benötigten hohen Lösungszeiten sind nicht wirk-
lich überraschend: Wie bereits im Th eorieteil ausgeführt, setzen sich Kernaufgaben 
aus vermeintlich trivialen Multiplikationen 1 · x und 10 · x sowie aus der Verdopp-
lung und Halbierung dieser Aufgaben zusammen, sind demnach vergleichsweise ein-
fach korrekt zu lösen oder stehen bereits früh automatisiert zur Verfügung. Denn 
Kernaufgaben gehören – wie bereits erwähnt – vermutlich zu den ersten Aufgaben, 
die im Zuge der Erarbeitung des kleinen Einmaleins thematisiert werden und im 
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Laufe der Erarbeitung demnach sehr häufi g von den Kindern gelöst werden. Auf-
gaben vom Typ Nicht-Kernaufgabe sind unter anderem aufgrund der Aufgabencha-
rakteristik deutlich anspruchsvoller (siehe Abschnitt 2.3.1). Greifen Kinder auf weni-
ger tragfähige Herangehensweisen zur Lösung von Nicht-Kernaufgaben zurück, sind 
vor allem bei Aufgaben mit größeren Faktoren mehr Zwischenschritte zur Aufgaben-
lösung vonnöten, die nicht nur zeitintensiver sind, sondern auch das Fehlerpoten-
tial deutlich erhöhen. Um Nicht-Kernaufgaben über Rechenstrategien korrekt zu 
lösen, muss das korrekte Ergebnis von mindestens einer, zur Anwendung der Fak-
torzerlegung sogar von zwei Kernaufgaben bekannt sein und die jeweilige Rechen-
strategie noch korrekt ausgeführt werden. Bestätigen lässt sich die Erkenntnis, dass 
Nicht-Kernaufgaben schwieriger zu lösen sind und länger für die Lösung benötigt 
wird, durch Forschungsergebnisse zum problem-size eff ect: Es sind vor allem die Auf-
gaben mit größeren Faktoren, die weniger häufi g korrekt und langsamer gelöst wer-
den (CAMPBELL & GRAHAM, 1985; DE BRAUWER et al., 2006; KOSHMIDER & 
ASHCRAFT, 1991; LEFEVRE et al., 1996; LEFEVRE, SHANAHAN & DESTEFANO, 
2004; MABBOTT & BISANZ, 2003, S. 1092; SIEGLER, 1988; siehe Abschnitt 3.2.1 – 
Forschungsergebnisse in Abhängigkeit von der Aufgabencharakteristik). Nicht-Kern-
aufgaben setzen sich größtenteils aus Aufgaben mit einem oder sogar zwei großen 
Faktoren zusammen.

Neben Nicht-Kernaufgaben erweisen sich auch Aufgaben mit einem Faktor 0 als 
vergleichsweise fehleranfällig. Dies kann unter anderem darauf zurückzuführen sein, 
dass Einmaleinssätzen mit 0 in der unterrichtlichen Erarbeitung wenig bzw. zu wenig 
Aufmerksamkeit zuteil wird (PADBERG & BENZ, 2011, S. 143; SCHERER & MO-
SER OPITZ, 2010, S. 127). Der besonderen Rolle der Null sollte nicht nur bei der 
Rechenoperation der Multiplikation, sondern auch bei den anderen Rechenoperatio-
nen ein bedeutender Stellenwert zuteilwerden (siehe Abschnitt 2.1.1). Bei fehlender 
Th ematisierung der Multiplikation mit 0 kann die Null beispielsweise fortwährend 
als neutral betrachtet werden – wie dies für die zum Zeitpunkt der Erhebung geläu-
fi gen Rechenoperationen der Addition und Subtraktion korrekt ist – und so zu einer 
fehlerhaft en Berechnung führen.

Ein widersprüchliches Ergebnis zur publizierten Literatur ergibt sich in den vor-
liegenden Erkenntnissen hinsichtlich des Einsatzes von Quadrataufgaben. Nationalen 
sowie internationalen Studien zufolge werden Quadrataufgaben schneller und fehler-
freier gelöst als Nicht-Quadrataufgaben. Man spricht in diesem Kontext vom soge-
nannten tie eff ect (z. B. CAMPBELL & GRAHAM, 1985; siehe Abschnitt 3.2.1 – For-
schungsergebnisse in Abhängigkeit von der Aufgabencharakteristik). Dieser Eff ekt 
kann allerdings in der vorliegenden Arbeit nicht gänzlich bestätigt werden – Qua-
drataufgaben werden zwar schneller und fehlerfreier als Nicht-Kernaufgaben oder 
Aufgaben mit einem Faktor 0 gelöst, Einmaleinssätze mit 1, 2, 5 und 10 off enbaren 
im Vergleich zu den Quadrataufgaben aber im Durchschnitt schnellere und fehler-
freiere Aufgabenlösungen.
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Einfl ussfaktor Individuum und Unterricht
Die Lösungsraten und -zeiten der verschiedenen Aufgabentypen sollen auch noch 
in Abhängigkeit von den beiden Einfl ussfaktoren Unterricht und Individuum disku-
tiert werden. Zwischen den beiden Lehrkraft -Gruppen existieren keine signifi kanten 
Unterschiede hinsichtlich der Lösungsraten und Lösungszeiten korrekt gelöster Ein-
maleinsaufgaben – weder über die Gesamtheit der zu lösenden Aufgaben noch für 
die Einmaleinsaufgaben getrennt nach den verschiedenen Aufgabentypen betrachtet.

Zunächst werden die Ergebnisse hinsichtlich des Einfl ussfaktors der unterrichtli-
chen Erarbeitung diskutiert.

Die Kinder, deren Lehrkräft e Rechenstrategien im Unterricht erarbeiten lassen, 
erzielen – deskriptiv betrachtet – überwiegend etwas höhere Lösungsraten als die 
Vergleichsgruppe oder zumindest gleich hohe Lösungsraten. Eine Ausnahme stellt 
die Lösungsrate der Aufgaben mit einem Faktor 0 dar – die Lösung dieses Aufgaben-
typs wurde fast signifi kant häufi ger von den Kindern, deren Lehrkräft e der Erarbei-
tung verschiedener Rechenstrategien einen geringeren Stellenwert zukommen lassen, 
korrekt gelöst. Der Unterschied in der Lösungsrate der Aufgaben mit einem Faktor 
0 kann unter Umständen darin begründet liegen, dass die Lehrkräft e der traditionell 
unterrichteten Kinder der Automatisierung dieses Aufgabentyps einen großen Stel-
lenwert zuteilwerden lassen oder die verständnisorientierte Erarbeitung der speziel-
len Rolle der Null in der Vergleichsgruppe kein spezieller Stellenwert zukommt.

Bezüglich der Lösungszeiten korrekt gelöster Aufgaben kann festgehalten werden, 
dass die Kinder, deren Lehrkräft e den Fokus auf die Erarbeitung von Rechenstra-
tegien legen, rein deskriptiv niedrigere Lösungszeiten erzielen. Die Unterschiede in 
den Lösungszeiten der beiden Lehrkraft -Gruppen können den Erkenntnissen zum 
Faktenabruf zufolge nicht in der Lösungszeit korrekter Faktenabrufe begründet liegen 
– in den benötigten Lösungszeiten für einen korrekten Faktenabruf unterscheiden 
sich die Kinder der beiden Lehrkraft -Gruppen nämlich nicht signifi kant. Erklärungs-
ansätze für die bestehenden deskriptiven Unterschiede scheinen viele vorzuliegen: 
Die Unterschiede könnten beispielsweise auf den Einsatz zeitintensiverer Herange-
hensweisen der traditionell unterrichteten Kinder zurückzuführen zu sein oder unter 
Umständen auf eine schnellere Ausführung der gleichen Herangehensweisen der 
Kinder, deren Lehrkräft e Rechenstrategien erarbeiten. Betrachtet man die Lösungs-
zeiten je Aufgabentyp, sind vor allem hinsichtlich der deskriptiven Kennwerte der 
Nicht-Kernaufgaben Unterschiede in den Lösungszeiten zu verzeichnen. Kinder, de-
ren Lehrkräft e den Fokus der Erarbeitung auf verschiedene Rechenstrategien legen, 
lösen Nicht-Kernaufgaben fast eine Sekunde schneller als Kinder, deren Lehrkräf-
te insbesondere die Automatisierung von Einmaleinsaufgaben anstreben. Denkbar 
wäre dem vorherigen Erklärungsansatz zufolge, dass traditionell unterrichtete Kinder 
vermehrt zur Lösung von Nicht-Kernaufgaben auf die sukzessive Addition oder das 
Aufsagen der Reihe zurückgreifen, die bekanntlich zeitintensivere Herangehenswei-
sen zur Lösung von Aufgaben mit großen Faktoren darstellen, während in der ande-
ren Gruppe vermehrt weniger zeitintensive Rechenstrategien eingesetzt werden. 
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Während sich die Kinder der verschiedenen Lehrkraft -Gruppen hinsichtlich der 
allgemeinen Lösungsraten und Lösungszeiten korrekt gelöster Aufgaben – wie gera-
de dargelegt – nicht signifi kant unterscheiden, zeigen sich signifi kante Unterschie-
de zwischen den Kindern unterschiedlichen Leistungsvermögens hinsichtlich der Lö-
sungsraten und benötigten Lösungszeiten von Einmaleinsaufgaben. Diese Ergebnisse 
sind wenig verwunderlich. Dass vor allem leistungsschwache Kinder weniger erfolg-
reich – weniger fehlerfrei und langsamer – Einmaleinsaufgaben lösen, kann ebenfalls 
verschiedene Gründe haben. Leistungsschwache Kinder greifen unter Umständen auf 
vermeintlich fehleranfälligere und/oder zeitintensivere Herangehensweisen zurück. 
Dies kann darin begründet liegen, dass es sich um ihre präferierte Herangehensweise 
handelt oder die einzig anwendbare Herangehensweise darstellt, weil bestimmte in-
dividuelle Voraussetzungen zur Anwendungen anderer Herangehensweisen nicht ge-
geben sind. Denkbar sind die Unterschiede in den Lösungsraten und Lösungszeiten 
aber auch, wenn vermeintlich komplexere Herangehensweisen eingesetzt werden, die 
aufgrund eines geringeren Leistungsvermögens weniger erfolgreich bewältigt bzw. 
ausgeführt werden oder zur Ausführung mehr Zeit benötigt wird.

Die Erkenntnis, dass Nicht-Kernaufgaben allen Kindern nicht leicht von der 
Hand gehen, zeigt sich durch die bereits erwähnten niedrigen Lösungsquoten und 
hohen Lösungszeiten dieses Aufgabentyps. Den deskriptiven Kennwerten dieser 
Arbeit zufolge, weisen vor allem die leistungsschwachen Kinder bei diesem Aufga-
bentyp vergleichsweise niedrige Lösungsquoten und hohe Lösungszeiten auf. Die 
leistungsschwachen Kinder sind nur in der Lage, knapp mehr als die Hälft e der 
Nicht-Kernaufgaben (55%) korrekt zu lösen, im Durchschnitt werden dabei 11.6 Se-
kunden (SD = 9.4) zur Lösung benötigt. Für die – rein deskriptiv – niedrigeren Lö-
sungsraten und höheren Lösungszeiten der Nicht-Kernaufgaben im Vergleich zu den 
anderen Aufgabentypen kann erneut auf den bereits vorher im Zuge der korrekten 
Aufgabenlösungen und der benötigten Lösungszeiten beschriebenen Erklärungsan-
satz verwiesen werden.

7.1.4 Grenzen der Reaktionszeittestung und Forschungsperspektiven

Resümierend kann bezüglich der Reaktionszeittestung festgehalten werden, dass es 
sich anbietet, den Faktenabruf aus dem Gedächtnis separat von der Strategieverwen-
dung zu erfassen. Nur über eine Ermittlung losgelöst von der Strategieverwendung 
sind aussagekräft ige Erkenntnisse hinsichtlich des Faktenabrufes zu gewinnen. Um 
die Anzahl gedächtnismäßig verfügbarer Faktenabrufe bzw. die entsprechenden be-
nötigten Lösungszeiten zu ermitteln, hat es sich basierend auf den Erkenntnissen 
dieser Arbeit darüber hinaus als sinnvoll bzw. vertretbar erwiesen, die unterschied-
lich langen mentalen Abrufprozesse der Kinder zu berücksichtigen. Für die Repli-
kation dieser Studie bzw. für Studien, die Faktenabrufe unter Beachtung individuell 
unterschiedlicher Abrufprozesse vorsehen, wäre eine statistische Absicherung die-
ser Methode wünschenswert. Ebenfalls sollte das eingesetzte Testinstrument zur Er-
mittlung von Faktenabrufen auch dahingehend kritisch refl ektiert werden, inwiefern 
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die Anzahl an ermittelten Faktenabrufen unter Umständen auch durch vorhandene 
Unterschiede in den Standardabweichungen der individuell berechneten Mittelwerte 
der Kinder, die zur Berechnung der individuellen Obergrenze herangezogen werden, 
begründet liegen können. 

Eine sehr spannende bisher noch weitgehend off ene Frage, die sich hinsicht-
lich des Faktenabrufes anschließt und für weitere Forschungsarbeiten von Interes-
se sein kann, ist, inwieweit eine langfristige Automatisierung von Einmaleinsauf-
gaben anhand der verschiedenen Zugänge zum Einmaleins erlangt werden kann. 
Den Erkenntnissen der vorliegenden Arbeit zufolge erweist sich eine Erarbei-
tung der Einmaleinssätze basierend auf Einsicht und Verständnis hinsichtlich der 
Automatisierung als ebenso wirkungsvoll, als ob der überwiegende Fokus auf der 
Automatisierung von Einmaleinsaufgaben liegt. Könnte sich in Anschlussstudien 
an diese Arbeit bestätigen, dass mithilfe einer verständnisbasierten Erarbeitung 
auch eine langfristige Automatisierung gelingt, dann könnte die Wirksamkeit dieser 
Erarbeitung noch deutlicher ersichtlich werden. Eine weitere sich an schließende 
Forschungsfrage könnte in diesem Kontext sein, inwiefern sich eine ver ständnis-
basierte Erarbeitung positiv auf das weitere algebraische bzw. zukünft ige Lernen im 
Mathematikunterricht auswirkt. Dabei wäre es nach WONG und EVANS (2007) 
sogar denkbar die Wirksamkeit nicht nur auf mathematische Th emengebiete zu 
beschränken – ein positiver Einfl uss besteht ihrem Verständnis gemäß für „many 
tasks across all domains of mathematics and across many subject areas“ (ebd., S. 91). 

7.2 Strategieinterview

Im Zentrum dieser Arbeit, aber insbesondere im Fokus der Ermittlungen des Stra-
tegieinterviews steht die Strategieverwendung von Kindern im 3. Schuljahr nach der 
Erarbeitung des kleinen Einmaleins. Mithilfe der Methode des self-reports wurden 
die zur Aufgabenlösung von sechs Einmaleinsaufgaben eingesetzten Herangehens-
weisen bzw. Rechenstrategien überprüft .

Das Strategieinterview sah das vordergründige Ziel darin, die folgenden For-
schungsfragen zu klären:
• Welche konkreten Herangehensweisen setzen Kinder zur Lösung von Einmal-

einsaufgaben ein?
• Wie häufi g greifen Kinder auf diese Herangehensweisen zur Lösung von Aufga-

ben zum kleinen Einmaleins zurück?
• Über welches Repertoire an verschiedenen Rechenstrategien verfügen Kinder?
• Wie fehlerfrei erfolgt der Einsatz der ermittelten Herangehensweisen und welche 

Fehlertypen lassen sich unterscheiden?

Eine weitere Frage dieser Arbeit beschäft igte sich darüber hinaus mit der noch weit-
gehend unbeantworteten Frage:
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• Inwiefern erfolgt die Strategiewahl bei Einmaleinsaufgaben fl exibel, adäquat oder 
transferierbar?

Darüber hinaus sollten die gerade angeführten Forschungsfragen hinsichtlich des 
Strategieeinsatzes bzw. der Strategiewahl von Kindern in der vorliegenden Arbeit 
auch diff erenziert unter Berücksichtigung des individuellen Leistungsvermögens 
eines Kindes und verschiedener unterrichtlicher Vorgehensweisen beim kleinen Ein-
maleins analysiert sowie der Lernerfolg der Kinder in Abhängigkeit von diesen Ein-
fl ussfaktoren untersucht werden. 

In den folgenden Ausführungen sollen die Ergebnisse des Strategieinterviews ge-
trennt nach den verschiedenen Forschungsfragen zusammengefasst vorgestellt, kri-
tisch refl ektiert und diskutiert werden.

7.2.1 Erkenntnisse bezogen auf die Gesamtstichprobe

Vielfalt an Herangehensweisen, Häufi gkeit eines korrekten Einsatzes und 
Strategie-Repertoire
Die Studie off enbart viele verschiedene Herangehensweisen an Aufgaben des klei-
nen Einmaleins. Erfreulicherweise wurde auch eine Vielfalt an verschiedenen Re-
chenstrategien zur Aufgabenlösung eingesetzt. In den publizierten Ergebnissen der 
Forschungsliteratur zeichnet sich in diesem Kontext ein dazu eher widersprüchliches 
Bild ab. Eine Vielfalt an verschiedenen Rechenstrategien wird nur in den wenigsten 
Studien ermittelt. Die Studie von GASTEIGER und PALUKA-GRAHM (2013), die 
eine dieser wenigen Studien darstellt, zeichnet sich dabei durch eine ähnlich große 
Vielfalt an Rechenstrategien aus, wie sie in der vorliegenden Arbeit ermittelt wurde. 
Es gibt nur eine begrenzte Anzahl an Untersuchungen, die den Fokus auf die Stra-
tegieverwendung legt – häufi g wird dabei der Strategieeinsatz auch nur wenig de-
tailliert erfasst oder es werden Rechenstrategien von den untersuchten Kindern erst 
gar nicht zur Aufgabenlösung eingesetzt. Die Vielfalt ermittelter Herangehensweisen 
scheint demnach in einem gewissen Maß von der unterrichtlichen Th ematisierung 
abhängig zu sein (SHERIN & FUSON, 2005). Für die Vielzahl zur Aufgabenlösung 
eingesetzter Rechenstrategien in der vorliegenden Arbeit ist vermutlich überwiegend 
die verständnisbasierte Erarbeitung verantwortlich, die verschiedene Rechenstrate-
gien auch im Unterricht thematisiert.

In der vorliegenden Arbeit erweist sich aber nicht allein die Vielfalt an Heran-
gehensweisen als erfreulich, sondern vor allem die Häufi gkeit des Einsatzes von Re-
chenstrategien im Vergleich zu den weniger tragfähigen Herangehensweisen. Bei vier 
von sechs Aufgaben setzen Kinder im Durchschnitt Rechenstrategien zur Aufgaben-
lösung ein – der Anteil der mit Rechenstrategien gelösten Aufgaben beläuft  sich auf 
69%, der Anteil der weniger tragfähigen Herangehensweisen auf 30%. Fast die Hälft e 
der Aufgaben wird über die Rechenstrategie der Nachbaraufgabe gelöst, die sukzes-
sive Addition stellt die zweithäufi gste angewandte Herangehensweise dar (siehe Ab-
schnitt 3.2.1 – Häufi gkeit des Einsatzes). Deutlich seltener wird auf die Faktorzerle-
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gung und die Verdopplung bzw. Halbierung zurückgegriff en, ein sehr geringer, fast 
zu vernachlässigender Prozentsatz an Aufgaben wird über das gegensinnige Verän-
dern, die Tauschaufgabe oder die verkürzte sukzessive Addition gelöst. Als Bezug zur 
veröff entlichten Literatur bietet sich erneut die Untersuchung von GASTEIGER und 
PALUKA-GRAHM  (2013) an. Der Rückgriff  auf Rechenstrategien zur Aufgabenlö-
sung zeichnet sich dort durch einen sehr ähnlichen Prozentsatz wie in der vorliegen-
den Studie aus. In den Häufi gkeiten des Einsatzes je Rechenstrategie unterscheiden 
sich die Studien ebenso nur unwesentlich. Einzig der Rückgriff  auf die sukzessive 
Addition erfolgt seltener als in der vorliegenden Arbeit. Der Einsatz der sukzessiven 
Addition bei durchschnittlich zwei von sechs Aufgaben in der vorliegenden Arbeit 
ist allerdings vollkommen vertretbar, bedenkt man, dass sich bei zwei der sechs ge-
stellten Aufgaben (3 x 7 und 5 x 8) der Einsatz der sukzessiven Addition als durch-
aus sinnvoll bzw. tragfähig erweist. Die Nachbaraufgabe zeichnet sich den Erkennt-
nissen zufolge als die bevorzugt angewandte Rechenstrategie aus, was sicherlich auch 
auf die Tatsache zurückzuführen ist, dass sich die Anwendung dieser Herangehens-
weise bei annähernd jeder Aufgabe anbietet. Die Häufi gkeit des Einsatzes einer He-
rangehensweise sollte demnach auch immer im Bezug darauf beurteilt werden, wie 
häufi g sich die Herangehensweise zur Lösung der verschiedenen Aufgabenstellun-
gen anbietet. Internationale Studien, auf die in diesem Kontext Bezug genommen 
werden kann, ermitteln alle den Faktenabruf als bevorzugt eingesetzte Herangehens-
weise. Rechenstrategien werden entweder – wie bereits erwähnt – in den publizier-
ten Studien nicht zur Aufgabenlösung eingesetzt (z. B. LEMAIRE & SIEGLER, 1995; 
SIEGLER, 1988) oder nur vergleichsweise selten genutzt (COONEY et al., 1988; 
MABOTT & BISANZ, 2001; SHERIN & FUSON, 2005). 

Ein Großteil der an der vorliegenden Arbeit teilnehmenden Kinder erweist sich 
darüber hinaus in der Lage, bei der Anwendung verschiedener Herangehensweisen 
beide Faktoren einer Aufgabe fl exibel betrachten zu können und die Kommutativität 
zur Lösung einer Einmaleinsaufgabe heranzuziehen. Dass die Kommutativität bzw. 
der implizite Einsatz der Tauschaufgabe bei der Aufgabenbeantwortung eine Rolle 
spielt bzw. fl exibel bei der Strategiewahl genutzt wird, spiegelt sich in den Ergeb-
nissen der vorliegenden Arbeit wider, die erste Erkenntnisse in diesem Zusammen-
hang der Studie von GASTEIGER und PALUKA-GRAHM (2013) bestätigt. Der hohe 
Prozentsatz für einen mindestens einmaligen Einsatz der Tauschaufgabe pro Kind 
scheint ein Indiz dafür zu sein, dass unabhängig von der unterrichtlichen Erarbei-
tung die Kommutativität zur Aufgabenlösung nutzbar gemacht werden kann.

Des Weiteren off enbaren die Forschungsergebnisse dieser Arbeit eine Fehler-
quote von 12%. Der Strategiefehler überwiegt mit einem doppelt so hohen Prozent-
satz im Vergleich zum Rechen- bzw. Multiplikationsfehler (siehe Abschnitt 6.2.2). 
Die Fehlerquote dieser Arbeit deckt sich mit der Quote fehlerhaft er Aufgabenlösun-
gen der publizierten Studie von LEMAIRE und SIEGLER (1995), die – nach der Er-
arbeitung des kleinen Einmaleins – ebenfalls bei genau 12% liegt. Geht man davon 
aus, wie die veröff entlichen Studien ebenfalls verdeutlichen (COONEY et al., 1988; 
HEIRDSFIELD et al., 1999; LEMAIRE & SIEGLER, 1995; SIEGLER, 1988; STEEL & 
FUNNELL, 2001; siehe auch Abschnitt 3.2.1 – Korrektheit der Ausführungen und 
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Lösungszeiten), dass mit zunehmender Erfahrung der Kinder in der Anwendung 
verschiedener Herangehensweisen in der Regel weniger Fehler verzeichnet werden, 
erscheint die vorliegende Fehlerquote dieser Arbeit niedrig bzw. durchaus in einem 
akzeptablen Bereich. Bestätigen kann die vorliegende Studie die Fehleranfälligkeit 
der Herangehensweise der sukzessiven Addition, auf die die publizierten Studien be-
reits verweisen (HEIRDSFIELD et al., 1999; LEMAIRE & SIEGLER, 1995; SIEGLER, 
1988). Eine vergleichsweise hohe Fehlerquote in der vorliegenden Arbeit geht darü-
ber hinaus mit dem Einsatz der Faktorzerlegung einher. Wie bereits im ersten Dis-
kussionsteil zur Reaktionszeittestung angeführt, werden beim Lösen einer Aufga-
be über das Zerlegen eines Faktors zwei Aufgaben zur Lösung der ursprünglichen 
Aufgabe herangezogen. Für eine korrekte Aufgabenlösung müssen allerdings nicht 
nur diese Teilaufgaben korrekt gelöst werden, sondern auch deren schrittweise Be-
rechnung im Anschluss fehlerfrei erfolgen. Das Heranziehen bzw. die Auswahl der 
richtigen Teilaufgaben, die schrittweise berechnet zum Ergebnis der ursprünglichen 
Aufgabe führen, kann eine weitere Hürde für eine korrekte Aufgabenbeantwortung 
darstellen und die Fehlerquote beim Einsatz der Faktorzerlegung erhöhen. Die Her-
angehensweise der Faktorzerlegung weist demnach vergleichsweise viel Fehlerpoten-
tial auf. Während die Fehlerquote der sukzessiven Addition sich zu gleichen Teilen 
aus Rechen- sowie Strategiefehlern zusammensetzt, wird bei der Analyse der Feh-
lertypen der Faktorzerlegung überwiegend die Schwierigkeit in der Anwendung der 
Rechenstrategie ersichtlich.

Die Vielfalt an Rechenstrategien spiegelt sich in der vorliegenden Arbeit auch im 
Strategierepertoire eines Kindes wider: Durchschnittlich über zwei verschiedene Re-
chenstrategien verfügt ein Kind. Zur Lösung ein und derselben Aufgabe ist ein Kind 
sogar in der Lage im Durchschnitt zwei verschiedene Herangehensweisen zu nen-
nen, davon eine Rechenstrategie. Erkenntnisse der publizierten Studien hinsichtlich 
des kindlichen Strategierepertoires bieten sich kaum dazu an, einen Vergleich zu den 
Forschungsergebnissen der vorliegenden Arbeit zu ziehen. Die im Durchschnitt er-
mittelten zwei, drei oder sogar mehr als drei verfügbaren Herangehensweisen der 
publizierten Studien zeigen eher die Vielzahl an wenig tragfähigen Herangehenswei-
sen und nicht die Vielfalt an verschiedenen eingesetzten Rechenstrategien, die in der 
vorliegenden Arbeit zur Ermittlung eines Strategie-Repertoires herangezogen werden 
(siehe Abschnitt 3.2.1). Der Mangel an Bezugsnahmen auf publizierte Studien der 
Forschungsliteratur liegt vermutlich daran, dass nur eine geringe Anzahl an Studien 
den Einsatz von verschiedenen Rechenstrategien zur Lösung von Einmaleinsaufga-
ben detailliert analysiert. Diese Tatsache kann unter Umständen auch darauf zurück-
zuführen sein, dass der Erarbeitung von Rechenstrategien in der Unterrichtspraxis 
ein eher zu vernachlässigender Stellenwert zuteil wird.

Auch auf individuelle Strategiepräferenzen wurde der Strategieeinsatz untersucht. 
Spricht man von einer individuellen Strategiepräferenz, wenn bei sechs zu beantwor-
tenden Fragen mindestens drei Aufgaben mithilfe der gleichen Herangehensweise 
gelöst werden, haben 86% der Kinder eine individuelle Strategiepräferenz. Die suk-
zessive Addition wird von 27% der Kinder mindestens dreimal zur Aufgabenlösung 
genutzt. Insgesamt 59% der Kinder der Gesamtstichprobe greifen dreimal oder häu-
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fi ger auf ein und dieselbe Rechenstrategie zur Lösung der Einmaleinsaufgaben zu-
rück (siehe Abschnitt 6.2.3), dabei wird die Nachbaraufgabe von 53% der Kinder 
mindestens dreimal eingesetzt. Der relativ hohe Prozentsatz an Kindern, die persön-
liche Vorlieben haben, was die Wahl einer Herangehensweise betrifft  , kann wie folgt 
erklärt werden: Die Strategiewahl kann beispielsweise mit dem Wunsch gepaart sein, 
eine möglichst leichte Herangehensweise zu wählen oder eine im Rahmen des Inter-
views leicht zu beschreibende Herangehensweise (ASHCRAFT, 1990; THRELFALL, 
2009). Vor allem aber das Vertrauen in den Erfolg einer Herangehensweise könnte 
für einen wiederholten Einsatz dergleichen Herangehensweise im Strategieinterview 
verantwortlich sein (LEMAIRE & SIEGLER, 1995). Eine Wahl ein und derselben 
Herangehensweise für mehrere Aufgaben kann im Mangel an alternativen Herange-
hensweisen begründet liegen oder in den fehlenden individuellen Fähig- bzw. Fertig-
keiten, die zur Anwendung anderer Herangehensweisen vonnöten sind (siehe auch 
Abschnitt 3.3.3). Nach LEMAIRE und SIEGLER (1995) geht ein Erklärungsansatz 
für einen vermehrten Einsatz dergleichen Herangehensweise darauf zurück, dass 
„a single strategy potentially works best on all problems“ (ebd., S.  88). Vermutlich 
trifft   diese Erklärung auf die Kinder zu, die sich durch einen hohen Prozentsatz in-
dividueller Strategiepräferenzen der Nachbaraufgabe sowie der sukzessiven Addition 
charakterisieren. Neben der sukzessiven Addition, die zur Lösung aller überprüft en 
Aufgaben des Strategieinterviews möglich ist, stellt die Nachbaraufgabe die einzige 
Rechenstrategie dar, die zur Lösung aller sechs Aufgaben eingesetzt werden kann.

Kompetenz der Strategiewahl – Flexibilität, Adaptivität und 
Transferierbarkeit
Insbesondere aufgrund der enormen Bedeutung fl exibler Rechenkompetenzen im 
Allgemeinen und der aktuellen Forderung nach einer automatisierten und zugleich 
fl exiblen Anwendung von Einmaleinssätzen in Lehr-, Bildungs- und Rahmenlehr-
plänen (z. B. BAYERISCHES STAATSMINISTERIUM FÜR BILDUNG UND KUL-
TUS, WISSENSCHAFT UND KUNST, 2014, S. 282; siehe auch Abschnitt 2.5.2), zielt 
die vorliegende Arbeit auch auf Erkenntnisse in diesem Kontext. Die Strategiewahl 
wurde hinsichtlich der Flexibilität, der Adaptivität und der Transferierbarkeit analy-
siert.

Wenn lediglich der Wechsel zwischen mindestens zwei verschiedenen Rechen-
strategien verlangt ist, dann verfügen den Forschungsergebnissen des Strategieinter-
views zufolge 71% der Kinder über die Voraussetzung für eine fl exible Strategiewahl. 
Bei drei oder mehr geforderten Strategie-Alternativen für eine fl exible Wahl fällt der 
Prozentsatz deutlich geringer aus (24%). Ein Prozentsatz von 71% bedeutet dem-
nach, dass mehr als zwei Drittel der Kinder die Voraussetzungen für eine fl exible 
Strategiewahl erfüllen. Der vermeintlich hohe Prozentsatz scheint dabei aus dem ins-
gesamt relativ großen Strategierepertoire der an der Studie teilnehmenden Kinder 
zu resultieren. Der fast dreimal niedrigere Prozentsatz für eine fl exible Wahl bei drei 
oder mehr geforderten Rechenstrategien kann einerseits darin begründet liegen, dass 
Kinder über nicht mehr Strategie-Alternativen verfügen oder dass für sie die Not-
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wendigkeit zum Einsatz von drei oder mehr als drei verschiedenen Rechenstrategien 
bei den sechs zu lösenden Aufgaben schlicht und einfach nicht besteht. Unter dem 
letztgenannten Gesichtspunkt kann ein Prozentsatz von 24% als durchaus hoch be-
wertet werden – ein Viertel der Kinder verfügt über drei oder sogar mehr Strategie-
alternativen.

Der Prozentsatz an Kindern, die in der vorliegenden Arbeit als adaptive Rech-
nerinnen bzw. Rechner bezeichnet werden können, liegt bei 29%. Die Voraussetzung 
einer adaptiven Strategiewahl setzt dabei eine adäquate Strategiewahl bei allen sechs 
Aufgaben voraus sowie den Einsatz von mindestens zwei verschiedenen Rechenstra-
tegien. Der Prozentsatz mag auf den ersten Blick nicht besonders hoch erscheinen, 
allerdings muss hinsichtlich der Forderungen für eine adaptive Strategiewahl berück-
sichtigt werden, dass in diesem Zusammenhang bereits von einer besonders hohen 
Kompetenz der Strategiewahl beim kleinen Einmaleins gesprochen werden kann. 
Vor allem die Voraussetzung, alle Aufgaben mit einer jeweils adäquaten Strategie 
lösen zu müssen, um von einer adaptiven Strategiewahl sprechen zu können, limi-
tiert den Anteil an Kindern, die sich durch eine adaptive Strategiewahl auszeichnen, 
deutlich. Während insgesamt 69% der Aufgaben von den Kindern mittels adäquater 
Rechenstrategien gelöst werden, zieht weniger als ein Drittel der Kinder (33%) zur 
Lösung aller sechs Aufgaben eine jeweils adäquate Rechenstrategie heran.

Der Strategietransfer bzw. das Übertragen von Rechenstrategien auf das große 
Einmaleins gelingt etwas mehr als der Hälft e der Kinder (51%). Berücksichtigt man, 
dass das Übertragen von Rechenstrategien des kleinen Einmaleins auf das große Ein-
maleins curricular noch nicht gefordert wird, sind die erzielten Forschungsergebnis-
se als sehr erfreulich zu werten. Ob eine explizite Th ematisierung für den Transfer 
verantwortlich ist bzw. inwiefern die unterrichtliche Erarbeitung womöglich einen 
Einfl uss auf die Übertragung hat, soll anhand der späteren Ausführungen zum Ein-
fl ussfaktor Unterricht beantwortet werden.

Bezüglich einer ausgesprochen hohen Kompetenz der Strategiewahl kann re-
sümiert werden, dass etwas mehr als ein Fünft el der Kinder (21%) in der Lage ist, 
nicht nur zwischen Rechenstrategien fl exibel zu wechseln, sondern auch adäquate 
Rechenstrategien für alle gestellten Aufgaben auszuwählen und geeignete Rechen-
strategien des kleinen Einmaleins auf das große Einmaleins zu übertragen. Ein Pro-
zentsatz von 21% kann alles in allem als durchaus beachtlich gewertet werden, be-
rücksichtigt man, dass hierfür eine sehr hohe mögliche Ausprägung der Kompetenz 
einer Strategiewahl abgeprüft  bzw. untersucht wurde, die zusätzlich – wie bereits an-
geführt – sogar voraussetzt, zu diesem Zeitpunkt noch nicht curricular geforderte 
Inhalte erfolgreich zu bewältigen. Beachtet man zudem, dass die bislang vorgenom-
menen Interpretationen der Forschungsergebnisse unabhängig von der unterrichtli-
chen Erarbeitung vorgenommen wurden, scheint eine positive Bewertung des Pro-
zentsatzes durchwegs gerechtfertigt.

Inwiefern sich diese positive Interpretation der gewonnenen Forschungsergebnis-
se auch für die verschiedenen unterrichtlichen Vorgehensweisen der Erarbeitung be-
wahrheitet sowie für Kinder unterschiedlichen Leistungsvermögens, soll in den fol-
genden Ausführungen zusammengefasst dargelegt und refl ektiert werden. Zu Beginn 
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wird das individuelle Leistungsvermögen als beeinfl ussender Faktor der Strategiever-
wendung in den Blick genommen.

7.2.2 Einfl ussfaktor Individuum

Für den Einfl ussfaktor der individuellen Leistungsfähigkeit kann zusammengefasst 
berichtet werden, dass für alle untersuchten Aspekte (die Vielfalt an Rechenstrate-
gien, die Häufi gkeit des Einsatzes von Rechenstrategien, das Repertoire an Rechen-
strategien, die Fehlerfreiheit der angewandten Herangehensweisen sowie eine fl exib-
le, adaptive und transferierbare Strategiewahl) signifi kante Unterschiede zwischen 
Kindern unterschiedlichen Leistungsvermögens vorliegen. Je leistungsfähiger ein 
Kind, desto erfolgreicher gelingt der Strategieeinsatz bzw. die Strategiewahl. Mit nur 
vereinzelten Ausnahmen unterscheiden sich dabei immer die beiden leistungsstärke-
ren Gruppen von der leistungsschwachen Gruppe signifi kant. Die Unterschiede zwi-
schen den leistungsstarken Kindern und den Kindern durchschnittlichen Leistungs-
vermögens lassen ein durchwegs erfolgreicheres Abschneiden der leistungsstärkeren 
Kinder erkennen, signifi kante Unterschiede liegen zwischen diesen beiden Gruppen 
meistens allerdings nicht vor.

Unterschiede in der Strategieverwendung bzw. bei der Strategiewahl zwischen 
Kindern unterschiedlichen Leistungsvermögens sind nicht unerwartet. Der erfolg-
reichere Strategieeinsatz bzw. die erfolgreichere Strategiewahl der leistungsstärkeren 
Kinder im Vergleich zu den leistungsschwachen Kindern scheint dabei auf einem 
relativ einfachen Erklärungsansatz zu basieren: Der Strategieeinsatz bzw. die Strate-
giewahl eines jeden Individuums wird vom individuellen Wissen einer Person be-
einfl usst – von den individuell vorhanden oder nicht vorhandenen Voraussetzungen 
(THRELFALL, 2002, 2009). THRELFALL (2009) beschreibt diese Erkenntnis sehr 
treff end in dem bereits erwähnten Zitat: „Some possible strategies for some students 
are not feasible because of what they know, or more precisely do not know“ (ebd., 
S. 548). Mithilfe der vorliegenden Studie kann empirisch bestätigt werden, dass der 
Strategieeinsatz bzw. die Strategiewahl beim kleinen Einmaleins maßgeblich von der 
individuellen Leistungsfähigkeit beeinfl usst wird. Wenn vom Vorhandensein von Vo-
raussetzungen gesprochen wird, dann wird insbesondere den mathematischen Wis-
sensbausteinen für einen erfolgreichen Strategieeinsatz ein besonderer Stellenwert 
zuteil. Unter anderem stellen das Wissen über Zahlen, über spezielle Zahleigen-
schaft en und Zahlbeziehungen sowie das Operationsverständnis der Rechenopera-
tion die Grundvoraussetzungen für individuelle Strategieentscheidungen dar (LO-
RENZ, 1998; SCHÜTTE, 2004; THRELFALL, 2009). Das in der vorliegenden Arbeit 
entwickelte Modell zur Kompetenz der Strategiewahl beim Einmaleins skizziert die 
mathematischen Fähig- und Fertigkeiten über die ein Kind verfügen muss, um dem 
Verständnis dieser Arbeit zufolge Rechenstrategien erfolgreich einsetzen bzw. wäh-
len zu können. Weitere die Strategiewahl beeinfl ussende Faktoren wie beispielswei-
se die Intelligenz des Kindes oder das Arbeitsgedächtnis werden in dem beschriebe-
nen Modell ebenfalls aufgelistet. Leistungsschwächere Kinder, die über den ein oder 



   360  

anderen benötigten Wissensbaustein für eine erfolgreiche Strategiewahl nicht ver-
fügen, müssen demzufolge weniger erfolgreich als leistungsstärkere Kinder sein, die 
sich unter anderem durch das Vorhandensein dieser Wissensbausteine auszeichnen.

Warum zwischen den leistungsstarken Kindern und den Kindern durchschnitt-
lichen Leistungsvermögens, die sich in ihren mathematischen Grundlagenkenntnis-
sen signifi kant voneinander unterscheiden, überwiegend keine signifi kanten Unter-
schiede hinsichtlich der Strategieverwendung ermittelt werden, scheint weniger 
eindeutig zu beantworten zu sein und ist doch etwas überraschend. Eine Erklärung 
könnte darin liegen, dass Kinder, die insgesamt als durchschnittlich bezüglich ihres 
mathematischen Leistungsvermögens eingestuft  werden, dennoch größtenteils über 
die mathematischen Voraussetzungen für einen erfolgreichen Strategieeinsatz bzw. 
eine erfolgreiche Strategiewahl bei Einmaleinsaufgaben verfügen. Ein weiterer Er-
klärungsansatz kann unter Umständen auch auf die nicht signifi kant unterschiedli-
chen IQ-Werte der beiden Leistungsgruppen zurückgeführt werden (siehe Abschnitt 
5.2.4), deren Lehrkräft e im Unterricht verschiedene Rechenstrategien thematisie-
ren. Den leistungsstarken Kindern der genannten Lehrkraft -Gruppe fehlen vermut-
lich die kognitiven Grundfähigkeiten, die benötigt werden, um den ein oder ande-
ren Zusammenhang im Hinblick auf eine erfolgreiche Strategiewahl herstellen und 
sich dementsprechend von den Kindern durchschnittlichen Leistungsvermögens 
signifi kant unterscheiden zu können.

Vielfalt an Herangehensweisen, Häufi gkeit eines korrekten Einsatzes und 
Strategie-Repertoire
Resümierend konnten in der vorliegenden Arbeit folgende Erkenntnisse gewonnen 
werden: Das individuelle Leistungsvermögen wirkt sich auf die Strategieverwendung 
beim kleinen Einmaleins aus – je leistungsfähiger ein Kind ist umso erfolgreicher 
lässt sich der Strategieeinsatz bzw. die Strategiewahl bewältigen: Leistungsstärkere 
Kinder setzen demnach Rechenstrategien nicht nur häufi ger ein und greifen selte-
ner auf weniger tragfähige Herangehensweisen zurück, sondern sie verwenden die 
Herangehensweisen auch fehlerfreier. Sie verfügen über ein größeres Repertoire an 
Rechenstrategien für die Lösung verschiedener Aufgaben, zeichnen sich aber auch 
durch eine größere Anzahl an verschiedenen Herangehensweisen sowie Rechenstra-
tegien aus, die sie für die Lösung ein und derselben Aufgabe nennen können.

Diese Ergebnisse lassen sich ebenso anhand des bereits angeführten Erklärungs-
ansatzes begründen: Leistungsstärkere Kinder verfügen basierend auf ihrem indi-
viduellen Leistungsvermögen über mehr Wissensbausteine, die für eine erfolgrei-
che Strategieverwendung benötigt werden. Sie sind dementsprechend in der Lage, 
neben weniger tragfähigen Herangehensweisen auch anspruchsvollere Rechenstrate-
gien zur Aufgabenlösung einzusetzen. Um Rechenstrategien anwenden zu können, 
müssen Kinder nicht nur über das entsprechende Fakten- und Strategiewissen verfü-
gen, sondern unter anderem auch zahlspezifi sche Rechenfertigkeiten sowie eine Viel-
zahl weiterer kognitiver Kompetenzen besitzen (HEIRDSFIELD & COOPER, 2002; 
LAMPERT, 1986; MABBOTT & BISANZ, 2003; RATHGEB-SCHNIERER, 2006; 
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SHERIN & FUSON, 2005; THRELFALL, 2002), was die Komplexität des Einsatzes 
einer Rechenstrategie verdeutlicht. Ein hoher IQ-Wert, wie ihn vor allem die leis-
tungsstärkeren Kinder der vorliegenden Arbeit besitzen, scheint sich demnach als 
ebenfalls förderlich bei der Anwendung anspruchsvollerer Rechenstrategien zu er-
weisen. Für einige leistungsschwächere Kinder bietet sich im Gegensatz zur Anwen-
dung anspruchsvoller Rechenstrategien eher der Einsatz weniger tragfähiger Heran-
gehensweisen an, die unter Berücksichtigung der individuellen Leistungsfähigkeit 
vermeintlich weniger anspruchsvoll in der Anwendung und vermutlich mit den in-
dividuellen Voraussetzungen durchführbar sind. Auch der geringe Prozentsatz an 
fehlerhaft en Aufgabenlösungen der leistungsstarken Kinder scheint in den höheren 
mathematischen Grundkenntnissen dieser Leistungsgruppe begründet zu liegen. Be-
zugnehmend auf die Studien von IMBO und VANDIERENDONCK (2007) sowie 
von WOODWARD (2006) bestätigen die Ergebnisse der vorliegenden Arbeit anhand 
einer vergleichsweise großen Stichprobe, dass die leistungsstärkeren Kinder Einmal-
einsaufgaben erfolgreicher lösen. Wie bereits in den Ausführungen des Th eorieteils 
betont und anhand der Forschungsergebnisse der vorliegenden Arbeit bestätigt, sind 
es vor allem auch die weniger tragfähigen Herangehensweisen, die sich als fehler-
anfälliger bei der Ausführung erweisen (HEIRDSFIELD et al., 1999; LEMAIRE & 
SIEGLER, 1995; SIEGLER, 1988). Mit einem vergleichsweise hohen Einsatz weniger 
tragfähiger Herangehensweisen der leistungsschwachen Kinder kann demnach auch 
ihre vergleichsweise höhere Fehlerquote erklärt werden.

Kompetenz der Strategiewahl – Flexibilität, Adaptivität und 
Transferierbarkeit
Es sind auch die leistungsstärkeren Kinder, die häufi ger über Strategie-Alternativen 
verfügen, die wiederum eine fl exible Strategiewahl ermöglichen. Auch was die Adap-
tivität einer Strategiewahl betrifft  , erreichen leistungsstärkere Kinder höhere Prozent-
sätze im Vergleich zu den leistungsschwächeren Kindern der Studie. Darüber hinaus 
wird auch der Transfer mindestens einer Rechenstrategie auf das große Einmaleins 
im Durchschnitt erfolgreicher von den Kindern der leistungsstärkeren Gruppen be-
werkstelligt. Zu guter Letzt zeigt sich der signifi kante Unterschied zwischen den ver-
schiedenen Leistungsgruppen, der bereits für die getrennte Betrachtung einer fl exib-
len, adaptiven bzw. transferierbaren Strategiewahl ermittelt werden konnte, auch für 
die ausgesprochen hohe Kompetenz, eine Strategiewahl sowohl fl exibel als auch ad-
aptiv und transferierbar wählen zu können. Erneut sind es die leistungsstarken Kin-
der, die sich durch den höchsten Prozentsatz auszeichnen.

Auch die geschilderten Erkenntnisse hinsichtlich einer fl exiblen, adaptiven und 
transferierbaren Strategiewahl der Kinder unterschiedlichen Leistungsvermögens sol-
len kurz refl ektiert und diskutiert werden. Erneut lassen sich die Unterschiede in der 
Strategiewahl der verschiedenen Leistungsgruppen vermutlich auf die unterschied-
lichen individuellen Voraussetzungen der Kinder zurückführen. Leistungsschwache 
Kinder, die aufgrund fehlender mathematischer Kompetenzen bzw. Fähigkeiten zur 
Lösung von Einmaleinsaufgaben ein geringeres Repertoire an Rechenstrategien im 
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Vergleich zu leistungsstärkeren Kindern besitzen, sind wiederum in ihren Vorausset-
zungen für eine fl exible Strategiewahl limitiert – wird für eine fl exible Strategiewahl 
doch der Wechsel zwischen mindestens zwei verschiedenen Rechenstrategien gefor-
dert. Auch die niedrigeren Prozentsätze der leistungsschwachen Kinder hinsichtlich 
einer adäquaten bzw. adaptiven Strategiewahl lassen sich durch die bereits fehlenden 
Voraussetzungen für eine fl exible Strategiewahl erklären; wird, um von einer adap-
tiven Strategiewahl sprechen zu können, doch wiederum eine fl exible Strategiewahl 
vorausgesetzt (siehe Abschnitt 3.3.4). Erschwerend, insbesondere für die leistungs-
schwachen Kinder, kommt noch hinzu, dass Kinder über einen weiteren Wissens-
baustein verfügen müssen: Eine adäquate bzw. adaptive Strategiewahl erfordert, wie 
bereits im Th eorieteil dieser Arbeit herausgearbeitet, das Erkennen spezifi scher Auf-
gabenmerkmale, Zahleigenschaft en und -beziehungen (RATHGEB-SCHNIERER, 
2006; SCHÜTTE, 2002; THRELFALL, 2009) – erst im Wechselspiel zwischen diesem 
Erkennen und dem Wissen über Zahlen und Zahlbeziehungen kann eine adäquate 
bzw. adaptive Strategiewahl erfolgen (RATHGEB-SCHNIERER, 2006). Dieses Wahr-
nehmen von spezifi schen Aufgabeneigenschaft en wird auch bei einer erfolgreichen 
Übertragung von Rechenstrategien des kleinen auf das große Einmaleins vorausge-
setzt. Nur wenn diese erkannt werden, können sie auch zur Aufgabenlösung genutzt 
werden, indem darauf ausgerichtet eine adäquate Rechenstrategie für die zu lösende 
Aufgabe des großen Einmaleins ausgewählt werden kann. Die Ergebnisse der vorlie-
genden Arbeit bestätigen somit die Erkenntnisse der publizierten Studien (IMBO & 
VANDIERENDONCK, 2007; WOODWARD, 2006), dass es vor allem den leistungs-
schwachen Kindern schwer fällt, geeignete Rechenstrategien des kleinen Einmaleins 
auf das große Einmaleins zu übertragen.

Insgesamt kann basierend auf den vorliegenden Forschungsergebnissen dieser 
Arbeit die folgende Erkenntnis empirisch untermauert werden: Die Strategiewahl 
eines jeden Individuums bei Aufgaben zum kleinen Einmaleins wird von individuellen 
Leistungsvoraussetzungen einer Person beeinfl usst.

Um bei der Diskussion der bisherigen Ergebnisse der Kinder unterschiedlichen 
Leistungsvermögens nicht den Eindruck zu erwecken, dass die Strategieverwendung 
beim kleinen Einmaleins ausschließlich von den leistungsstärkeren Kindern erfolg-
reich zu bewerkstelligen ist bzw. bewerkstelligt wird153, sollen die zentralen Ergebnis-
se der vorliegenden Arbeit bezogen auf die leistungsschwachen Kinder kurz zusam-
mengefasst und refl ektiert werden.

Leistungsschwache Kinder greifen bei drei von sechs Einmaleinsaufgaben auf Re-
chenstrategien zur Aufgabenlösung zurück und verfügen im Durchschnitt sogar über 
M  =  1.34 (SD  =  1.03) verschiedene Rechenstrategien. Auch hinsichtlich einer fl e-
xiblen Strategiewahl, die einen Wechsel zwischen mindestens zwei verschiedenen 
Rechenstrategien erfordert, sind die erzielten Ergebnisse der leistungsschwachen 
Kinder durchaus beachtlich. Zwar verfügen sie im Vergleich zu den leistungsstar-

153 Von einer ähnlich erfolgreichen Strategieverwendung wie bei den leistungsstarken Kindern 
ist bei den Kindern durchschnittlichen Leistungsvermögens auszugehen, da sich diese beiden 
Gruppen in einer Vielzahl der erhobenen abhängigen Variablen nicht signifi kant unterschei-
den.
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ken Kindern nur etwa halb so oft  über die Voraussetzung für eine fl exible Strate-
giewahl, allerdings beläuft  sich der Prozentsatz der leistungsschwachen Kinder dabei 
auf noch immerhin 44%. Auch der Anteil der Aufgaben, für die leistungsschwache 
Kinder eine Rechenstrategie adäquat wählen, soll nicht unerwähnt bleiben: Er liegt 
bei knapp der Hälft e der gestellten Aufgaben (M = 2.80, SD = 1.92). Eine Strategie-
wahl sowohl fl exibel als auch adaptiv ausführen zu können, gelingt 13% der leis-
tungsschwachen Kinder. Den Transfer mindestens einer Rechenstrategie auf das 
große Einmaleins schafft   fast ein Fünft el dieser Personengruppe. Durch die ausge-
sprochen hohe Kompetenz der fl exiblen, adäquaten und transferierbaren Strategie-
wahl zeichnen sich darüber hinaus zumindest 9% aller leistungsschwachen Kinder 
aus – im Vergleich dazu, dass diese anspruchsvolle Aufgabe lediglich 21% aller teil-
nehmenden Kinder der Studie gelingt, ist der erzielte Anteil der leistungsschwachen 
Kinder durchaus nennenswert.

Das Individuum stellt einen beeinfl ussenden Faktor der Strategieverwendung 
bzw. der Strategiewahl beim kleinen Einmaleins dar, das steht den Ergebnissen der 
vorliegenden Arbeit zufolge außer Frage. Die Beantwortung der Forschungsfrage, 
inwieweit Unterschiede bei Kindern unterschiedlichen Leistungsvermögens vorlie-
gen, zeigt dabei, dass es auch leistungsschwachen Kindern oder zumindest einem 
Teil dieser Leistungsgruppe gelingt, Einmaleinssätze gemäß den aktuellen Vorgaben 
basierend auf Rechenstrategien „fl exibel“ (BAYERISCHES STAATSMINISTERIUM 
FÜR BILDUNG UND KULTUS, WISSENSCHAFT UND KUNST, 2014, S. 282) an-
zuwenden. Die in diesem Kontext gewonnenen Erkenntnisse sind womöglich noch 
viel höher zu bewerten, wenn man bedenkt, dass sich die Stichprobe aus Kindern 
zusammensetzt, die das kleine Einmaleins unterschiedlich erarbeitet haben – unter 
anderem teilweise auch nach einer unterrichtlichen Vorgehensweise, die die Strate-
giethematisierung im Unterricht nicht in den Fokus der Erarbeitung stellt. Welche 
Rolle dem unterrichtlichen Vorgehen bei der Erarbeitung des kleinen Einmaleins zu-
teil wird, wird im folgenden Abschnitt diskutiert.

7.2.3 Einfl ussfaktor Unterricht

Nicht nur das individuelle Leistungsvermögen eines Kindes beeinfl usst die Strate-
gieverwendung beim kleinen Einmaleins bzw. im weiteren Sinne den Lernerfolg 
eines Kindes in diesem Kontext, sondern auch die unterrichtliche Vorgehenswei-
se scheint sich auf den Strategieeinsatz bzw. die Strategiewahl auszuwirken. Wie be-
reits im Th eorieteil angemerkt, ist zu bedenken, dass das Unterrichtsgeschehen ver-
mutlich weniger als beeinfl ussender Einzelfaktor zu sehen ist, sondern vielmehr als 
Wirkungskette. Eine Lehrperson prägt beispielsweise mit ihren Zielen und Einstel-
lungen das Unterrichtsgeschehen, sie gibt die unterrichtliche Erarbeitung eines ma-
thematischen Lerninhaltes vor und versucht die benötigten individuellen Vorausset-
zungen für das Gelingen des Strategieeinsatzes bzw. der Strategiewahl zu vermitteln. 
Der Unterricht stellt dabei eher einen das Individuum beeinfl ussenden Faktor dar. 
Wie sich die verschiedenen unterrichtlichen Vorgehensweisen der Lehrpersonen in 
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der Strategieverwendung und im Lernerfolg der Kinder beim kleinen Einmaleins be-
merkbar machen, soll im Folgenden kurz zusammengefasst dargelegt, kritisch refl ek-
tiert und diskutiert werden.

Vielfalt an Herangehensweisen, Häufi gkeit eines korrekten Einsatzes und 
Strategie-Repertoire
Eine Erarbeitung des kleinen Einmaleins, die Rechenstrategien im Unterricht thema-
tisiert, beeinfl usst die kindliche Strategieverwendung durchwegs positiv, sie macht 
sich im Lernerfolg der Kinder deutlicher bemerkbar als die bewusst traditionelle Er-
arbeitung, deren Fokus insbesondere auf der Automatisierung der Einmaleinsaufga-
ben liegt: Die Kinder, die verschiedene Rechenstrategien im Unterricht erarbeiten, 
setzen diese auch signifi kant häufi ger zur Aufgabenlösung ein und greifen im Um-
kehrschluss signifi kant seltener auf weniger tragfähige Herangehensweisen zurück. 
Sie lösen zudem – deskriptiv betrachtet –Einmaleinsaufgaben häufi ger korrekt. Auch 
hinsichtlich der Anzahl durchschnittlich verfügbarer Rechenstrategien liegt ein sig-
nifi kanter Unterschied zwischen den beiden Lehrkraft -Gruppen vor – ein Kind, de-
ren Lehrkraft  Rechenstrategien im Unterricht erarbeitet, verfügt demnach im Durch-
schnitt über mehr Rechenstrategien als ein Kind, das eine eher bewusst traditionelle 
Erarbeitung des Einmaleins erfährt und bei der die Erarbeitung von Rechenstrate-
gien demnach nur einen geringeren Stellenwert einnimmt.

Einigen theoretischen und vereinzelten empirischen Erkenntnissen zufolge wird 
dem Unterrichtsgeschehen beim Strategieeinsatz bzw. der Strategiewahl eine ent-
scheidende Rolle zuteil. Vor allem eine Erarbeitung des kleinen Einmaleins mit dem 
Fokus auf der Erarbeitung von Rechenstrategien soll sich in diesem Kontext als be-
sonders positiv auswirken (KROESBERGEN et al., 2004; SHERIN & FUSON, 2005). 
Die berichteten Forschungsergebnisse der vorliegenden Arbeit können den positi-
ven Einfl uss einer unterrichtlichen Behandlung, die dem Erarbeiten von Rechen-
strategien einen bedeutenden Stellenwert zukommen lässt, in jeder Hinsicht bestä-
tigen. Um mögliche Erklärungsansätze für die vorliegenden Unterschiede zwischen 
den beiden unterrichtlichen Vorgehensweisen im Hinblick auf den Strategieein-
satz ausfi ndig zu machen, müssen vor allem die charakteristischen Merkmale der 
überprüft en Herangehensweisen der beiden Lehrkraft -Gruppen bei der Refl exion 
bzw. Interpretation berücksichtigt werden. Ein wesentliches Merkmal, in dem sich 
die beiden Lehrkraft -Gruppen unterscheiden, ist wie bereits mehrmals erwähnt, der 
Stellenwert, den die unterrichtliche Erarbeitung von Rechenstrategien einnimmt. 
Während die eine Lehrkraft -Gruppe eine Vielfalt an verschiedenen Rechenstrate-
gien thematisiert bzw. zusammen mit den Kindern erarbeitet, werden in der ande-
ren Gruppe nur vereinzelt Rechenstrategien im Unterricht behandelt. Auch die Rol-
le des Arbeitsmitteleinsatzes bei der Erarbeitung von Rechenstrategien unterscheidet 
sich – die Lehrkraft -Gruppe, die verschiedene Rechenstrategien erarbeiten lässt, 
zeigt nicht nur verschiedene Lösungswege anhand des Arbeitsmittels auf, sondern 
ermöglicht ihren Kindern auch, an geeigneten Arbeitsmitteln das gezielte Entde-
cken von verschiedenen Lösungswegen. Die eher traditionell unterrichtenden Lehr-
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kräft e behaupten zwar anhand von Arbeitsmitteln verschiedene Lösungswege für 
Einmaleinsaufgaben aufzuzeigen, geeignete Arbeitsmittel können sie dafür aber nicht 
nennen. Zudem ist ihnen das Potential von Arbeitsmitteln wie beispielsweise dem 
Hunderterfeld oder der Einmaleinstafel nicht bekannt oder sie setzen diese bewusst 
nicht ein.

Dass Kinder, die verschiedene Rechenstrategien im Unterricht erarbeiten, dem-
entsprechend über vergleichsweise mehr Rechenstrategien verfügen und Rechen-
strategien demnach auch vermehrt zur Aufgabenlösung einsetzen als die Vergleichs-
gruppe, scheint eine logische Konsequenz der unterrichtlichen Th ematisierung zu 
sein. Die Ergebnisse der vorliegenden Studie können demnach bestätigen, dass der 
Einsatz von Rechenstrategien maßgeblich vom Ausmaß der in der Unterrichtspraxis 
erarbeiteten operativen Beziehungen und Zusammenhänge abhängt (SHERIN & FU-
SON, 2005). Auch die Forschungsergebnisse der Studie von KROESBERGEN et al. 
(2004) können mithilfe der vorliegenden Ergebnisse der Arbeit untermauert werden: 
Die explizite Behandlung von Rechenstrategien, Zahlbeziehungen und verschiedenen 
Lösungswegen wirkt sich positiv auf die Vielfalt der verfügbaren Rechenstrategien 
aus. Das Entdecken verschiedener Rechenstrategien bzw. ihrer zugrundeliegenden 
Eigenschaft en mittels des Einsatzes von Arbeitsmitteln kann sich unter Umständen 
ebenfalls positiv auf den Strategieeinsatz der Kinder auswirken, deren Lehrkräft e 
verschiedene Rechenstrategien in den Fokus der Erarbeitung stellen.

Trotz überwiegend signifi kanter Unterschiede hinsichtlich des Strategieeinsatzes 
zwischen den beiden Lehrkraft -Gruppen soll nicht unerwähnt bleiben, dass Kinder, 
bei denen der Fokus der unterrichtlichen Erarbeitung nicht ausschließlich auf die 
Th ematisierung verschiedener Rechenstrategien gelegt wird, durchaus in der Lage 
sind Rechenstrategien einzusetzen. Auch die Lehrpersonen dieser Lehrkraft -Grup-
pe thematisieren Rechenstrategien – allerdings nicht in der Vielzahl und dem Aus-
maß, wie dies in der anderen Gruppe der Fall ist. Der positive Einfl uss einer Er-
arbeitung, die Rechenstrategien thematisiert, scheint allerdings nicht ausschließlich 
auf die reine Th ematisierung zurückzuführen zu sein, sondern auch von der Art der 
Th ematisierung abzuhängen. Was konkret darunter verstanden werden kann, soll im 
Zusammenhang mit der kritischen Refl exion der Ergebnisse zur Strategiewahl veran-
schaulicht werden.

Kompetenz der Strategiewahl – Flexibilität, Adaptivität und 
Transferierbarkeit
Im Durchschnitt signifi kant mehr Strategie-Alternativen als Voraussetzung für eine 
fl exible Strategiewahl besitzen die Kinder, deren Lehrkräft e Rechenstrategien im 
Unterricht erarbeiten. Bei der adaptiven Strategiewahl unterscheiden sich die Kin-
der der beiden Lehrkraft -Gruppen nicht signifi kant – den Kindern, deren Lehrkräf-
te verschiedene Rechenstrategien im Unterricht thematisieren, wird allerdings ein 
größerer Anteil adaptiver Strategiewahlen attestiert. Darüber hinaus gelingt diesen 
Kindern im Durchschnitt signifi kant häufi ger die Übertragung mindestens einer Re-
chenstrategie zur Lösung der Aufgabe 18 x 7. Hinsichtlich einer ausgesprochen ho-
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hen Kompetenz der Strategiewahl, Rechenstrategien fl exibel, adaptiv sowie transfe-
rierbar zu wählen, unterscheiden sich Kinder der beiden Lehrkraft -Gruppen nicht 
signifi kant. Erneut erfolgreicher hinsichtlich der Strategiewahl zeigen sich – den de-
skriptiven Kennwerten der vorliegenden Arbeit zufolge – die Kinder, deren Lehrkräf-
te den Fokus auf das Erarbeiten und Entdecken von verschiedenen Rechenstrategien 
legen.

Auch die beschriebenen Unterschiede zwischen den Kindern der verschiede-
nen Lehrkraft -Gruppen hinsichtlich einer erfolgreichen Strategiewahl scheinen sich 
durchaus logisch zu erschließen. Bauen kognitive Kompetenzen, wie im konkreten 
Fall für die Kompetenz der Strategiewahl beim kleinen Einmaleins, aufeinander auf, 
können Unterschiede im Hinblick auf die Strategiewahl bereits auf die nicht oder 
nicht ausreichend verfügbaren Voraussetzungen zurückzuführen zu sein, auf die im 
vorausgehenden Abschnitt bereits verwiesen wurde. Kindern, die mangels unter-
richtlicher Th ematisierung ein geringeres Repertoire an Strategien zur Verfügung 
haben, ist es unter Umständen schon aus besagtem Grund nicht möglich, Rechen-
strategien beispielsweise fl exibel einzusetzen und dann gegebenenfalls auch nicht ad-
aptiv.

Ein zusätzlich positiver Einfl uss neben dem Ausmaß der Th ematisierung von Re-
chenstrategien scheint aber auch der Art der Erarbeitung zuteilzuwerden – dem ak-
tiv-entdeckenden Lernen, dass sich als weiteres charakteristisches Merkmal der Lehr-
kraft -Gruppe anführen lässt, die verschiedene Rechenstrategien in den Mittelpunkt 
der Erarbeitung stellt. Dieses aktiv-entdeckende Lernen geht auf eine eher konst-
ruktivistische Sichtweise der Lehrpersonen auf das Lehren und Lernen zurück und 
stellt eigene mathematische Entdeckungen in den Fokus (siehe Abschnitt 1.5.4). Da-
bei wird vor allem dem Verständnisaufb au die höchste Bedeutung zugemessen. Im 
Zuge der Erarbeitung des kleinen Einmaleins basierend auf einem aktiv-entdecken-
den Lernen wird das Entdecken verschiedener Lösungswege angestrebt, auf mögli-
che Zahlbeziehungen und Zusammenhänge zwischen den Aufgaben verwiesen und 
eine Rechenstrategie basierend auf Einsicht und Verständnis angewendet. Vor al-
lem das tiefere Verständnis erzeugt dabei Strukturen, die sich durch Beweglichkeit 
und Flexibilität auszuzeichnen scheinen (DROLLINGER-VETTER, 2011). Ein wei-
terer Erklärungsansatz für diese erfolgreichere Strategiewahl scheint demnach auch 
im angestrebten Aufb au eines tieferen Verständnisses durch das aktiv-entdeckende 
Lernen begründet zu liegen. Basierend auf den gewonnen Erkenntnissen der vor-
liegenden Arbeit kann darüber hinaus bestätigt werden, dass sich eine Erarbeitung 
von Rechenstrategien basierend auf Einsicht und Verständnis auch auf die Angemes-
senheit der eingesetzten Herangehensweise auswirkt und zwar positiv (KROESBER-
GEN et al., 2004). Da ein tieferes Verständnis den Transfer begünstigt (DROLLIN-
GER-VETTER, 2011), scheint sich die verständnisbasierte Erarbeitung positiv auf 
die Übertragbarkeit auswirken zu können. Erneut bezugnehmend auf die Studie von 
WOODWARD (2006) gelingt es Kindern, deren Lehrkraft  Rechenstrategien erarbei-
tet, erfolgreicher diese Rechenstrategien auf das große Einmaleins zu übertragen im 
Vergleich zu Kindern, deren Lehrkraft  den Fokus ausschließlich auf Automatisie-
rungsübungen von Einmaleinsaufgaben legt. Gemäß den Erkenntnissen der vorlie-
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genden Arbeit kann der positive Einfl uss einer verständnisbasierten Erarbeitung auf 
die erfolgreiche Übertragung von Aufgaben des kleinen Einmaleins auf das große 
Einmaleins bekräft igt werden.

Resümierend kann festgehalten werden, dass neben dem individuellen Leistungs-
vermögen die unterrichtliche Erarbeitung einer Lehrperson den Strategieeinsatz bzw. 
die Strategiewahl beeinfl usst. Positive Auswirkungen auf den Lernerfolg gehen in 
diesem Kontext mit einer verständnisbasierten Erarbeitung einher. 

Auff ällig hinsichtlich der Signifi kanz der Unterschiede ist allerdings, dass sich die 
Kinder der beiden Lehrkraft -Gruppen vor allem in den zwei höheren Kompetenzen 
der Strategiewahl (Adaptivität sowie einer fl exiblen, adaptiven und transferierbaren 
Strategiewahl) nicht signifi kant voneinander unterscheiden. Die unterrichtliche Er-
arbeitung scheint demnach einen weniger einfl ussreichen Faktor für das Erreichen 
höherer Kompetenzen beim Kleinen Einmaleins darzustellen. Mögliche Erklärungs-
ansätze in diesem Zusammenhang können unter Umständen im Vergleich der Kin-
der der beiden Lehrkraft -Gruppen gleichen Leistungsvermögens gewonnen werden.

7.2.4 Interaktion der Faktoren Individuum und Unterricht

Die ebenfalls betrachteten Interaktionseff ekte, die die kombinierte Wirkung der Fak-
toren Individuum und Unterricht auf die abhängigen Variablen erfassen, erweisen 
sich als größtenteils nicht signifi kant. Der Vergleich der Kinder der beiden Lehr-
kraft -Gruppen innerhalb einer Leistungsgruppe off enbart Unterschiede in der kindli-
chen Strategieverwendung. Der für die Gesamtstichprobe ermittelte durchwegs posi-
tive Einfl uss einer verständnisbasierten Erarbeitung von Einmaleinsaufgaben, setzt 
sich auch in der überwiegenden Mehrzahl der Fälle für die Unterschiedsanalysen 
zwischen den Kindern der beiden Lehrkraft -Gruppen einer Leistungsgruppe fort. 
Während – deskriptiv betrachtet – mögliche Unterschiede der Kinder der beiden 
Lehrkraft -Gruppen innerhalb einer Leistungsgruppe für die beiden leistungsstärke-
ren Gruppen weniger deutlich ins Auge fallen, ist vor allem für die leistungsschwa-
chen Kinder evident, dass diese von einer Erarbeitung zu profi tieren scheinen, deren 
Hauptaugenmerk auf der Erarbeitung von Rechenstrategien liegt. Über alle unter-
suchten abhängigen Variablen hinweg schneiden leistungsschwache Kinder, die Re-
chenstrategien erarbeitet haben, besser hinsichtlich der Strategieverwendung ab als 
die bewusst traditionell unterrichteten leistungsschwachen Kinder – größtenteils so-
gar signifi kant besser. Entgegen der Einwände und Vorbehalte einiger Lehrkräft e 
gegenüber einem auf Verständnis angelegten Lernen für leistungsschwache Kinder 
(DONALDSON, 1982; KRAUTHAUSEN, 2000; WITTMANN, 1990) scheinen den 
Ergebnissen der vorliegenden Studie zufolge gerade die leistungsschwächeren Kin-
der von dieser Art der Erarbeitung bei der Rechenoperation der Multiplikation pro-
fi tieren zu können. Die vorliegende Arbeit bestätigt demnach Erkenntnisse, wonach 
vor allem leistungsschwache Kinder einen Lerngewinn aus einem aktiv-entdecken-
den Unterricht erzielen (LORENZ, 1992; MOSER OPITZ, 2001; SCHERER, 1995). 
Als positiv im Gegensatz zu einem eher belehrenden Unterricht wird für leistungs-
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schwächere Kinder der größere Spielraum beim aktiv-entdeckenden Unterricht an-
geführt (SCHERER 1995) sowie der für jedes Kind angestrebte Verständnisaufb au 
(HECKMANN & PADBERG, 2014; LORENZ, 1992). Unter einem größeren Spiel-
raum für leistungsschwache Kinder sind Freiräume für die Eigendynamik kindlicher 
Lernprozesse zu verstehen, die auch eine Diff erenzierung vom Kinde aus ermögli-
chen. Die beiden letztgenannten Argumente dienen demnach auch als möglicher Er-
klärungsansatz für einen insgesamt erfolgreicheren Strategieeinsatz bzw. eine erfolg-
reichere Strategiewahl der leistungsschwachen Kinder, die eine verständnisbasierte 
Erarbeitung des kleinen Einmaleins erfahren.

Eine Erklärung soll dieser Abschnitt auch dafür liefern, dass sich – wie bereits im 
Abschnitt 7.2.3 erwähnt – Kinder verschiedener Lehrkraft -Gruppen in einem Teil 
der ausgesprochen hohen Kompetenzen der Strategiewahl (Adaptivität sowie einer 
fl exiblen, adaptiven und transferierbaren Strategiewahl) nicht signifi kant voneinan-
der unterscheiden. Während sich die signifi kanten Unterschiede der Lehrkraft -Grup-
pen hinsichtlich des Strategieeinsatzes auf das in allen Leistungsgruppen bessere 
Abschneiden der Kinder, deren Lehrkräft e verschiedene Rechenstrategien themati-
sieren, zurückführen lassen, zeigt der Vergleich der Lehrkraft -Gruppen hinsichtlich 
der genannten höheren Kompetenzen der Strategiewahl in je einer Leistungsgruppe 
eine – deskriptiv betrachtet – erfolgreichere Strategiewahl der traditionell unterrich-
teten Kinder. Bezüglich der Adaptivität erzielen die traditionell unterrichteten Kin-
der durchschnittlichen Leistungsvermögens einen vergleichsweise höheren – wenn 
auch nicht signifi kant höheren – Prozentsatz als die Kinder, deren Lehrkräft e ver-
schiedene Rechenstrategien erarbeiten lassen. Was eine ausgesprochen hohe Kom-
petenz der Strategiewahl betrifft  , sind es die leistungsstärkeren Kinder, die eher tra-
ditionell unterrichtet werden, die erneut einen höheren, wiederum nicht signifi kant 
höheren Prozentsatz an fl exiblen, adaptiven sowie transferierbaren Strategiewahlen 
erzielen im Vergleich zu den Kindern, die eine verständnisbasierte Erarbeitung des 
kleine Einmaleins erfahren.

7.2.5 Grenzen des Strategieinterviews und Forschungsperspektiven

Als ein genereller Kritikpunkt der Methode des self-reports, die im Strategieinterview 
der vorliegenden Arbeit zur Ermittlung verschiedener Herangehensweisen zum Ein-
satz kommt, wird angeführt, dass die Methode unter Umständen nicht die tatsäch-
lich eingesetzte Herangehensweise erfasst, sondern eine unter Umständen leichter zu 
verbalisierende (ASHCRAFT, 1990; siehe auch Abschnitt 5.3.2). Bei der Interpreta-
tion der Ergebnisse des Strategieinterviews sollte dies ebenfalls berücksichtigt wer-
den.

Bei der Interpretation der Ergebnisse sollte allerdings noch einmal betont wer-
den, dass im Strategieinterview bei einem Teil der Kinder nicht die bevorzugt ein-
gesetzte Herangehensweise ermittelt wurde, sondern nur die als Alternative zum 
Faktenabruf genannte. Da Kinder, die zunächst angaben über den Faktenabruf zur 
Aufgabenlösung gelangt zu sein, im Anschluss aufgefordert wurden eine alternati-
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ve Herangehensweise zu nennen, entsprechen die ermittelten Forschungsergebnisse 
zumindest bei dem genannten Teil der Stichprobe nicht zwingend den präferiert zur 
Lösung von Aufgaben des kleinen Einmaleins eingesetzten Herangehensweisen.

Während ein Testinstrument dieser Arbeit, das Strategieinterview, in den vor-
ausgehenden Ausführungen kritisch refl ektiert wurde, soll im Folgenden basierend 
auf den Erkenntnissen dieser Arbeit weiterer Forschungsbedarf hinsichtlich der Stra-
tegieverwendung beim kleinen Einmaleins aufgezeigt werden. Die Studie der vor-
liegenden Arbeit stellt eine der wenigen Studien dar, die basierend auf einer im 
Vergleich zu bereits publizierten Studien eher großen Stichprobe die Strategiever-
wendung beim kleinen Einmaleins in Abhängigkeit von der individuellen Leistungs-
fähigkeit sowie der unterrichtlichen Erarbeitung untersucht. Die ermittelten Daten 
legen unter anderem nahe, dass sich eine Erarbeitung, die den curricularen Vorga-
ben und didaktischen Empfehlungen entspricht, in verschiedenen Aspekten positiv 
im Lernerfolg der Kinder bemerkbar macht. Welche charakteristischen Merkmale 
einer verständnisbasierten unterrichtlichen Erarbeitung den Lernerfolg der Kinder 
unterschiedlichen Leistungsvermögens beim kleinen Einmaleins bewirken, könnte 
eine spannende Anschlussfrage an die vorliegende Arbeit darstellen. Rechenkonfe-
renzen oder der Einsatz von Arbeitsmitteln können in diesem Kontext als exemplari-
sche Beispiele angeführt werden. Die besondere Relevanz dieser Frage für die Unter-
richtspraxis ist dabei bereits unbestritten.

7.3 Fazit und Konsequenzen

Die theoretischen Ausführungen der vorliegenden Arbeit haben die enorme Rele-
vanz der Verfügbarkeit von schnellen Abrufen aus dem Gedächtnis betont. Nicht 
nur zur Anwendung von Rechenstrategien, beim halbschrift lichen Rechnen, dem 
schrift lichen Rechenverfahren der Rechenoperation der Multiplikation, sondern 
auch in vielen weiteren Bereichen der Schulmathematik und Lebenssituationen neh-
men die gedächtnismäßig verfügbaren Einmaleinsaufgaben eine entscheidende Rol-
le ein (siehe Abschnitt 2.4.2 und 2.4.5). Ein Zitat aus den Bildungsstandards, auf das 
im Verlauf der Arbeit Bezug genommen wurde, soll in diesem Kontext erneut ver-
deutlichen, dass gemäß einem aktuellen Verständnis von Lehren und Lernen nicht 
ausschließlich die Entwicklung und Aneignung von prozeduralem Wissen wün-
schenswert bzw. erstrebenswert ist: „Das Mathematiklernen in der Grundschule darf 
nicht auf die Aneignung von Kenntnissen und Fertigkeiten reduziert werden. Das 
Ziel ist die Entwicklung eines gesicherten Verständnisses mathematischer Inhalte“ 
(KMK, 2004, S.  6, Hervorhebung im Original). Auch die Erarbeitung des kleinen 
Einmaleins zielt demnach nicht ausschließlich auf die Automatisierung der Einmal-
einssätze ab. Die Automatisierung ist und bleibt zwar das fi nale Ziel der unterrichtli-
chen Behandlung, sie soll aber auf Basis von Einsicht erfolgen und folglich zu einem 
gesicherten Verständnis dieses mathematischen Lerninhaltes beitragen.
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Bereits die Prozentsätze der in der Reaktionszeittestung korrekt gelösten Einmal-
einsaufgaben der vorliegenden Arbeit liefern ein erstes kleines Indiz dafür, dass in 
der Zukunft  dem korrekten Abruf von Einmaleinsaufgaben aus dem Gedächtnis im 
Unterricht ein größerer Stellenwert eingeräumt werden muss. An dieser Stelle soll 
noch einmal auf die Modellrechnung von LÖRCHER (1998) Bezug genommen wer-
den. Er berechnet, dass die Erfolgswahrscheinlichkeit der Multiplikation einer 4- mit 
einer 3-stelligen Zahl unter 30% liegt, sollte eine 90%ige Sicherheit hinsichtlich der 
Beherrschung von Einmaleinsaufgaben vorliegen. Bei einer 87%igen Sicherheit154, 
wie sie in der vorliegenden Arbeit vorherrscht, würde die Erfolgswahrscheinlichkeit 
dementsprechend noch niedriger ausfallen. Die Ergebnisse der vorliegenden Reak-
tionszeittestung verdeutlichen insbesondere, dass in erster Linie Nicht-Kernaufga-
ben und Aufgaben mit einem Faktor 0 mehr in den Fokus der unterrichtlichen Er-
arbeitung rücken müssen. Nicht-Kernaufgaben müssen dies den Erkenntnissen der 
Reaktionszeittestung zufolge dabei in zweierlei Hinsicht: Einerseits muss der Auto-
matisierung der Nicht-Kernaufgaben ein größerer Stellenwert zuteilwerden, da die 
Automatisierung aller Nicht-Kernaufgaben ebenso wie der gedächtnismäßige Ab-
ruf der restlichen Einmaleinsaufgaben gegen Ende der Jahrgangsstufe 3 gefordert 
ist. Andererseits sollte aber auch dem korrekten Ableiten von Nicht-Kernaufgaben 
für den Fall, dass diese Aufgaben einmal nicht gedächtnismäßig verfügbar sind, eine 
zentrale Rolle im Unterricht zukommen. Fehler mit der 0 stellen unter anderem 
auch bei den schrift lichen Rechenverfahren der Multiplikation und Division eine 
große Fehlerquelle dar, der bereits bei der Erarbeitung des kleinen Einmaleins ent-
scheidend entgegengewirkt werden kann. Bezüglich der Fehler mit 0 soll noch er-
wähnt werden, dass diese Fehler nicht in Zusammenhang mit der Erarbeitung oder 
Th ematisierung von Rechenstrategien stehen, sondern vermutlich in einer mangeln-
den verständnisorientierten Erarbeitung der Rechenoperation der Multiplikation be-
gründet liegen.

Der in der vorliegenden Arbeit ermittelte Prozentsatz gedächtnismäßig verfüg-
barer Einmaleinsaufgaben verweist noch off ensichtlicher als bisher publizierte Stu-
dien daraufh in, der Automatisierung aller Einmaleinssätze einen deutlich größeren 
Stellenwert in der Grundschule einzuräumen. Auch eine verständnisbasierte Erarbei-
tung, die zunächst das Entdecken und Anwenden von Rechenstrategien in den Fo-
kus der Erarbeitung stellt, zielt auf die Beherrschung von Einmaleinssätzen ab. Auch 
wenn die Automatisierung in den meisten Lehr-, Bildungs- und Rahmenplänen als 
verpfl ichtender Lerninhalt angeführt wird, muss diese Tatsache besonders im Zuge 
einer verständnisbasierten Erarbeitung viel mehr ins Bewusstsein der ein oder ande-
ren Lehrkraft  gerufen werden – um einer etwaigen Fehlvorstellung entgegenzuwir-
ken, dass dem Faktenabruf bei einer verständnisbasierten Erarbeitung ein geringerer 
Stellenwert zuteil wird. Das Ziel, alle Einmaleinsaufgaben am Ende des 3. Schuljah-
res gedächtnismäßig verfügbar zu haben, sollen Lehrkräft e immer vor Auge haben.

154 Wird von einer in dieser Arbeit vorliegenden 87%ige Sicherheit gesprochen, ist die Sicher-
heit ausschließlich auf die korrekte Aufgabenlösung bezogen, nicht aber auf einen schnellen 
Abruf von Einmaleinsaufgaben.
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Ein Vorteil einer verständnisbasierten Erarbeitung wird in der Th eorie darin ge-
sehen, dass damit nicht nur die Automatisierung ermöglicht wird, sondern auch das 
Erlernen, Behalten und Verinnerlichen der Abrufe aus dem Gedächtnis erleichtert 
werden kann (ANTHONY & KNIGHT, 1999; SCHERER & MOSER OPITZ, 2010). 
Die Ergebnisse der vorliegenden Arbeit bestätigen, dass basierend auf einer solchen 
verständnisorientierten Erarbeitung die Automatisierung gelingt, im Vergleich zu 
den Kindern, deren Lehrkräft e den Fokus überwiegend auf die Automatisierung le-
gen, sogar genauso erfolgreich. Der Vorteil dieser Erarbeitung soll sich einigen theo-
retischen und empirischen Erkenntnissen zufolge nicht nur auf diesen einen posi-
tiven Eff ekt bzw. Aspekt beschränken. Sie besitzt eine bedeutende propädeutische 
Funktion für das weitere algebraische bzw. zukünft ige Lernen im Mathematikunter-
richt (z. B. ANTHONY & KNIGHT, 1999; BASTABLE & SHIFTER, 2008; FRENCH, 
2005; TER HEEGE, 1985; WONG & EVANS, 2007; WOODWARD, 2006; siehe auch 
Abschnitt 2.4.5). Eine verständnisbasierte Erarbeitung scheint sich dadurch auszu-
zeichnen, das grundlegende Verständnis eines Lerninhaltes sichern zu können und 
somit vereinzelten Studien zufolge sich positiv auf den Lern- und Wissensprozess bei 
der Erarbeitung des kleinen Einmaleins auszuwirken (siehe Abschnitt 2.4.2). Insbe-
sondere die positiven Auswirkungen einer verständnisbasierten Erarbeitung auf den 
Strategieeinsatz bzw. die Strategiewahl können anhand der Forschungsergebnisse der 
vorliegenden Arbeit bestätigt werden – und zwar überwiegend für alle Kinder.

Neben der unterrichtlichen Erarbeitung beeinfl usst den Ergebnissen der vorlie-
genden Arbeit zufolge auch das individuelle Leistungsvermögen eines Kindes den 
Strategieeinsatz bzw. die Strategiewahl: Je  leistungsstärker Kinder sind, desto häu-
fi ger setzen Kinder zur Lösung Rechenstrategien ein, desto häufi ger führen sie die-
se korrekt aus, desto mehr Rechenstrategien befi nden sich in ihrem Repertoire und 
desto erfolgreicher sind sie in der Lage, Strategiewahlen fl exibel, adaptiv und trans-
ferierbar durchzuführen. Im Hinblick auf die beschriebenen Erkenntnisse hinsicht-
lich der Kinder unterschiedlichen Leistungsvermögens kann allerdings betont wer-
den, dass auch leistungsschwache Kinder den Strategieeinsatz bzw. die Strategiewahl 
erfreulicherweise erfolgreich bewerkstelligen. Als Resümee zeigt sich in diesem Kon-
text auch, dass insbesondere eine verständnisbasierte Erarbeitung ermöglicht, die 
leistungsschwachen Kinder entsprechend ihrer Leistungsfähigkeit zu fördern. Das 
einleitende Zitat der Diskussion kann demnach basierend auf den Erkenntnissen der 
vorliegenden Studie widerlegt werden.

Eingeräumte Zweifel, hinsichtlich einer verständnisbasierten Erarbeitung des klei-
nen Einmaleins in Th eorie und Unterrichtspraxis vor allem für leistungsschwäche-
re Kinder bzw. auf die in dieser Arbeit verwiesen wurde, können bezugnehmend auf 
die Erkenntnisse der Studie dieser Arbeit sowohl für eine erfolgreiche Automatisie-
rung der Einmaleinsaufgaben als auch für einen erfolgreichen Strategieeinsatz bzw. 
eine erfolgreiche Strategiewahl ausgeräumt werden. Die verständnisbasierte Erarbei-
tung wirkt sich im Gegensatz zur traditionellen Erarbeitung positiv auf den Stra-
tegieeinsatz und die Strategiewahl aus. Berücksichtigt man zudem, welche weite-
re wichtige propädeutische Funktion dieser Erarbeitung zukommt, kann in dieser 
Arbeit nur appelliert werden, alle Kinder – aber vor allem auch leistungsschwache 
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Kinder – auf Basis von Einsicht und Verständnis zur Automatisierung der Einmal-
einsaufgaben gelangen zu lassen.

Bleibt fi nal noch die Frage für die Unterrichtspraxis zu klären, wie eine verständ-
nisbasierte Erarbeitung, die den Lernerfolg der Kinder beim kleinen Einmaleins 
positiv zu beeinfl ussen scheint, aussehen und defi niert werden kann. In diesem Kon-
text von einem einzigen korrekten Weg zu sprechen, der es Kindern ermöglicht Stra-
tegiewahlen fl exibel, adaptiv und transferierbar auszuführen, ist nicht beabsichtigt 
bzw. gibt die vorliegende Studie auch nicht her. Vielmehr geht es darum, charakteris-
tische Merkmale für eine verständnisbasierte Erarbeitung zu nennen, die in der vor-
liegenden Studie unter Umständen zu den Lernerfolgen beitragen bzw. für diese ver-
antwortlich sind. Die folgenden kennzeichnenden Merkmale lassen sich dabei aus 
den allgemeinen theoretischen und empirischen Erkenntnissen dieser Arbeit sowie 
aus der in der Studie praktizierten Vorgehensweise der Lehrpersonen ableiten. Eine 
enorme Bedeutung einer unterrichtlichen Erarbeitung, die noch unbekannte Aufga-
ben basierend auf bereits bekannten Aufgaben und mithilfe operativer Beziehungen 
zu erschließen versucht, wird den folgenden vier Merkmalen zuteil:
• dem aktiv-entdeckenden Lernen
• der Vielfalt an Rechenstrategien
• den Verstehensprozessen
• der Balance zwischen Instruktion und Konstruktion.

Das aktiv-entdeckende Lernen stellt einen konzeptionellen Weg dar, den aktuellen 
Anforderungen und Zielsetzungen im Mathematikunterricht gerecht zu werden. Es 
zielt darauf ab, Rechenstrategien anhand eigenständiger entdeckerischer Tätigkei-
ten zu erarbeiten, die vor allem das grundlegende Verständnis der Rechenoperation 
und ihrer Eigenschaft en sichern. Basierend auf dieser Einsicht bzw. diesem Verständ-
nis wird die Automatisierung von Einmaleinsaufgaben angestrebt. Von bedeuten-
der Relevanz scheint auch die Erarbeitung einer Vielfalt an Rechenstrategien zu sein. 
Leistungsschwache Kinder scheinen in diesem Kontext allerdings von einer expli-
ziten unterrichtlichen Erarbeitung eines kleinen aber adäquaten Strategierepertoires 
zu profi tieren (KROESBERGEN et al., 2004). Die explizite unterrichtliche Erarbei-
tung, wie sie im vorausgehenden Satz für leistungsschwache Schülerinnen und Schü-
ler gefordert wurde – verweist dabei schon auf ein weiteres charakteristisches Merk-
mal einer verständnisbasierten Erarbeitung. Eine zentrale Rolle nimmt die Balance 
zwischen Instruktion und Konstruktion ein – Kinder sollen individuelle Lernwege 
gehen, die Konstruktion von Wissen eigenständig vorantreiben, aber diese Selbst-
ständigkeit erfordert immer ein ausgewogenes Maß an Instruktion. Der Unterricht 
bzw. das Ausmaß an Instruktion muss dabei so konzipiert sein, dass er vor allem den 
speziellen Status rechenschwacher Kinder berücksichtigt. Vor allem für diese Kin-
der muss immer wieder aufs Neue abgewogen werden, wann sie auf die explizite 
Instruktion durch die Lehrperson angewiesen sind. Während den leistungsstarken 
Kindern z. B. das eigenständige Entdecken verschiedener Rechenstrategien durchaus 
auch ohne Anleitung gelingen kann, benötigen die leistungsschwächeren Kinder 
diesbezüglich Lenkung bzw. Unterstützung. Insbesondere um Verstehensprozesse 
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beim kleinen Einmaleins anzuleiten, wird der Lehrperson als Vermittler/in bzw. 
Lernbegleiter/in eine entscheidende Rolle zuteil.

In den vorausgehenden Ausführungen wurde bereits darauf verwiesen, dass die 
Ziele einer verständnisbasierten Erarbeitung des kleinen Einmaleins vereinzelten 
Lehrpersonen ins Bewusstsein gerufen werden müssen. Eine erste Hilfestellung wäre 
in diesem konkreten Fall, die Ausführlichkeit der Darstellung dieses Lerninhaltes in 
den aktuellen Lehr-, Bildungs- und Rahmenplänen zu erhöhen. Eine Vielzahl an ak-
tuellen Lehr-, Bildungs- und Rahmenplänen enthält keinerlei Ausführungen, die den 
Weg oder den Prozess zur Automatisierung beschreiben (siehe Abschnitt 2.5.2). 

Insgesamt ist es überaus erfreulich, dass Kinder unabhängig von ihrem indivi-
duellen Leistungsvermögen von einer verständnisbasierten Erarbeitung des klei-
nen Einmaleins profi tieren. Die Erkenntnisse dieser Arbeit haben aber gezeigt, dass 
vor allem die Automatisierung von Einmaleinsaufgaben viel mehr in den Fokus der 
unterrichtlichen Erarbeitung in der Grundschule rücken muss. Zudem sollte der 
Weg, wie Schülerinnen und Schüler zur Automatisierung – durch Einsicht – gelan-
gen können, viel mehr im Bewusstsein der unterrichtenden Lehrkräft e sein bzw. ins 
Bewusstsein gerufen werden und für alle klar skizziert sein. Basierend auf den theo-
retischen und empirischen Erkenntnisse im Th eorieteil dieser Arbeit sowie den er-
mittelten Erkenntnissen der vorliegenden Studie, kann der Weg anders als im bereits 
einleitenden Zitat von Carl Friedrich Gauß nämlich für alle klar skizziert werden.

„Das Ergebnis habe ich schon, jetzt brauche ich 
nur noch den Weg, der zu ihm führt.“155

155 CARL FRIEDRICH GAUß, siehe Einleitung. 
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Anhang

A. Ergänzendes zur Konzeption der Studie

A.1 Übersichtsbogen Reaktionszeittestung

Reaktionszeittest E-Prime (Forschungsprojekt EmuS)

Schülercode:

Aufg. Erg. Anmerkungen Aufg. Erg. Anmerkungen

Beispiel- 10 · 1 10
aufgaben 9 · 10 90

Aufgabenset 1 2 · 5 10 Aufgabenset 4 7 · 4 28
3 · 3 9 5 · 6 30

10 · 6 60 8 · 9 72
9 · 7 63 10 · 7 70
1 · 4 4 6 · 6 36
8 · 6 48 2 · 8 16
4 · 2 8 9 · 4 36
8 · 7 56 5 · 7 35
5 · 3 15 8 · 8 64
0 · 9 0

Aufgabenset 2 3 · 7 21 Aufgabenset 5 3 · 9 27
5 · 9 45 2 · 6 12

10 · 4 40 10 · 5 50
6 · 3 18 9 · 9 81
1 · 8 8 4 · 6 24
4 · 4 16 1 · 7 7
2 · 3 6 8 · 3 24
8 · 4 32 5 · 4 20
1 · 9 9 2 · 9 18
6 · 7 42

Aufgabenset 3 4 · 3 12
10 · 8 80
6 · 9 54
2 · 7 14
5 · 5 25 FE Falsche Ergebniseingabe
1 · 6 6
3 · 0 0 Zeit zu frühe Zeiterfassung
5 · 8 40
2 · 2 4
7 · 7 49

Abbildung 57:  Übersichtsbogen der Reaktionszeittestung mit den aufgelisteten Einmaleinsaufgaben in 
ihrer getesteten Reihenfolge.
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A.2 Leiƞ aden

Abbildung 58:  Interviewleitfaden des Projektes EmuS (Teil 1).

LEHRSTUHL FÜR DIDAKTIK DER MATHEMATIK  

Leitfaden – Projekt EmuS 

Reaktionszeittestung 

Begrüßung, 
Einführung 

Ich habe dir heute wieder ein paar Aufgaben mitgebracht 
– wie bei meinem letzten Besuch. Vielleicht kannst du 
dich ja noch daran erinnern [Vortestung]. Heute 
allerdings nur Einmaleinsaufgaben. 

Sicherlich hast du auch schon die Kamera entdeckt. Sie ist 
dazu da, dass ich unser Gespräch aufnehmen kann und ich 
nicht alles mitschreien muss, was du mir erzählst. 

Ganz wichtig – es ist auch heute wieder nicht schlimm, 
wenn du eine Aufgabe nicht lösen kannst. Ich möchte nur 
schauen, was du schon alles kannst. 

Reaktionszeit-
testung 

Dann lass uns gleich anfangen.  
Zunächst geht es darum, verschiedene  
Einmaleinsaufgaben so schnell wie möglich zu lösen. 
Dazu benötigen wir den Laptop, den ich  mitgebracht 
habe. 

Durchführung Reaktionszeittest (siehe Übersichtsblatt) 
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Abbildung 59:  Interviewleitfaden des Projektes EmuS (Teil 2).

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN SEITE 2 VON 4 

 

Strategieinterview 
 

 
Strategie-
interview 

 Super, jetzt hast du schon den ersten Teil hinter 
dich gebracht. 
Jetzt möchte ich mit dir noch ein paar 
Einmaleinsaufgaben genauer anschauen.  
Ich weiß mittlerweile schon, dass du 
Einmaleinsaufgaben richtig schnell lösen kannst. 
 
Bei den folgenden Aufgaben ist es nicht mehr 
wichtig, wie schnell du die Aufgaben löst. Mich 
würde vielmehr interessieren, wie du die Aufgaben 
gelöst hast.  
Was du also genau gerechnet hast, um auf das 
Ergebnis der Aufgabe zu kommen.  

 
1. Interview-teil 

 
(freie 

Strategiewahl) 

 
1. Aufgabenstellung   

 2. Lösung des Kindes 
3. Strategieerklärung 

 
3 · 7 
9 · 4 
5 · 8 
6 · 9 
4 · 6 
8 · 7 

 

Ich lege dir immer eine Karte auf den Tisch – auf 
der Karte siehst du die Einmaleinsaufgabe, die du 
lösen sollst.  
Ich lese die Aufgabe vor und du sagst mir das 
Ergebnis der Aufgabe.  
Vielleicht kannst du mir auch erklären, wie du zum 
Ergebnis gelangt bist?  
 
Vor dir liegen auch noch Papier und Stift, falls du 
deine Rechnung notieren möchtest. 
 
[Karte auf den Tisch legen – Laut vorlesen - Kind 
rechnen lassen] 
 
Mögliche Fragestellungen zur Ermittlung der 
Vorgehensweise: 

o� Wie bist du vorgegangen? 
o� Kannst du mir erklären, was genau du 

gerechnet hast? 
o� Wie kommst du darauf? 
o� Wie hast du gerechnet? 

 
Variante 1:  
Kind nennt einen Rechenweg  
 
� ggfs. Nachfragen bzgl. des Rechenweges 
 
Variante 2:  
Kind braucht zur Aufgabenlösung relativ lang – 
nennt den Faktenabruf als Herangehensweise. 
 
� Nachfragen:  
Jetzt hast du aber doch etwas Zeit gebraucht, was 
hast du denn gerechnet? 
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Abbildung 60:  Interviewleitfaden des Projektes EmuS (Teil 3).

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN SEITE 3 VON 4 

 

  Variante 3:  
Kind löst die Aufgabe relativ schnell –  
nennt den Faktenabruf als Herangehensweise.  
 
�� Nachfragen:  
Stell dir vor, dir ist die Lösung einer Aufgabe 
entfallen. Du kannst dich einfach nicht mehr 
an das Ergebnis erinnern - wie versuchst du 
dann die Aufgabe zu lösen? 
 
Hast du einen Tipp für mich, wie ich die 
Aufgabe lösen kann, wenn ich mich nicht 
mehr an das Ergebnis erinnern kann? 

 
2. Interview-teil 

 
 

Zusatzfragen 
 

4 · 6 
8 · 7 

 
 

Jetzt möchte ich mit dir zusammen die beiden 
letzten Aufgaben, die du gerechnet hast, noch 
einmal genauer anschauen.  
Die Aufgabe 4 · 6 hast du folgendermaßen gelöst.  
 
[Lösung nochmals wiederholen] 
 
Kennst du denn noch andere Lösungswege für 
diese Aufgabe?  
 
[Gleiches Vorgehen bei der Aufgabe  8 · 7] 
 
 
Mögliche Fragestellungen zur Ermittlung weiterer 
Strategien: 
 
allgemein: 

o� Bestimmt fällt dir noch eine andere 
Herangehensweise/ein anderer 
Lösungsweg ein, wie du die Aufgabe 
lösen kannst? 

 
o� Stell dir vor, dir ist die Lösung einer 

Aufgabe entfallen. Du kannst dich 
einfach nicht mehr an das Ergebnis 
erinnern - wie versuchst du dann die 
Aufgabe zu lösen? 

 
o� Kannst du diese Aufgabe vielleicht 

auch lösen, indem du eine andere 
Einmaleinsaufgabe zur Hilfe nimmst, 
die du bereits kennst? 
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Abbildung 61: Interviewleitfaden des Projektes EmuS (Teil 4).

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN SEITE 4 VON 4 

 

speziell:  
(zur Überprüfung suk. Addition) 
 

o� Kannst du dich vielleicht daran 
erinnern, wie du Einmaleinsaufgaben 
am Anfang (als du sie noch nicht 
auswendig gewusst hast) gerechnet 
hast? 

 
o� Wie würdest du einem 

Grundschulkind, welches noch keine 
Einmaleinsaufgaben berechnet hat 
(demnach noch keine Erfahrungen zu 
diesem Thema hat) erklären, wie es 
Einmaleinsaufgaben lösen kann? 

    
3. Interview-teil  

Große Einmaleinsaufgabe 
 

18 · 7 
 

Jetzt habe ich dir zum Abschluss noch eine 
Aufgabe mitgebracht, die du eigentlich noch gar 
nicht rechnen kannst, weil sie ziemlich schwer ist.  
Vielleicht hast du eine Idee, wie man diese 
Einmaleinsaufgabe lösen kann.  
 
Du brauchst die Aufgabe nicht unbedingt rechnen! 
 
[Laut vorlesen - Kind erklären lassen] 
 
Hast du vielleicht auch noch einen anderen 
Lösungsweg/ eine weitere Idee zur Lösung dieser 
großen Einmaleinsaufgabe? 
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B. Ergänzende Teststatistik

B.1 Deskriptive Kennwerte und Teststatistik

Tabelle 55:  Prozentualer Anteil korrekt gelöster Einmaleinsaufgaben je Aufgabentyp in Abhängigkeit 
vom Leistungsvermögen

Aufgaben-
typen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46) Wald χ2(2) p

% % %

KA (ges.) 98 97 88 17.85 < .001

KA1 99 99 91 13.70 .001

KA2 96 93 80 14.44 .001

NKA 89 78 55 87.51 < .001

0 85 87 59 12.74 .002

Gesamt 95 91 76 58.97 < .001

Tabelle 56:  Durchschnittliche Lösungszeit (in Sekunden) korrekt gelöster Aufgaben je Aufgabentyp in 
Abhängigkeit vom Leistungsvermögen

Aufgaben-
typen

Leistungsvermögen

Leistungsstark
(N = 48)

Durchschnittlich
(N = 49)

Leistungsschwach
(N = 46)

M SD M SD M SD Wald χ2(2) p

KA (ges.) 2.4 0.5 2.8 0.8 3.1 1.8 39.87 < .001

KA1 2.3 0.5 2.7 0.7 3.0 2.0 37.30 < .001

KA2 2.7 1.5 3.1 1.8 3.6 1.6 10.81 .004

NKA 5.7 2.3 7.4 2.8 11.6 9.4 18.59 < .001

0 2.0 1.3 2.1 0.6 2.3 1.1 1.83 .399

Gesamt 3.3 0.8 4.0 1.2 4.8 2.4 18.53 < .001
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B.2 Post-hoc-Tests

Tabelle 57:  Paarweise Vergleiche hinsichtlich der mittleren Lösungsraten korrekt gelöster Einmaleinsauf-
gaben verschiedener Aufgabentypen in Abhängigkeit vom Leistungsvermögen

Aufgabentyp Leistungsvermögen p

KA (gesamt)
Leistungsstark

Durchschnittlich .016
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .016
Leistungsschwach < .001

Leistungsschwach
Leistungsstark < .001
Durchschnittlich < .001

KA1 
Leistungsstark

Durchschnittlich .881
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .881
Leistungsschwach .002

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .002

KA2
Leistungsstark

Durchschnittlich .520
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .520
Leistungsschwach .001

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .001

NKA
Leistungsstark

Durchschnittlich .003
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .003
Leistungsschwach .105

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .105

0
Leistungsstark

Durchschnittlich .999
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .999
Leistungsschwach .001

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .001

Gesamt
Leistungsstark

Durchschnittlich .390
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .390
Leistungsschwach < .001

Leistungsschwach
Leistungsstark < .001
Durchschnittlich < .001
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Tabelle 58:  Paarweise Vergleiche der durchschnittlichen Lösungszeiten korrekt gelöster Aufgaben ver-
schiedener Aufgabentypen in Abhängigkeit vom Leistungsvermögen

Aufgabentyp Leistungsvermögen p

KA (gesamt)
Leistungsstark

Durchschnittlich .016
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .016
Leistungsschwach .054

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .054

KA1 
Leistungsstark

Durchschnittlich < .001
Leistungsschwach < .001

Durchschnittlich
Leistungsstark < .001
Leistungsschwach .131

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .131

KA2
Leistungsstark

Durchschnittlich .340
Leistungsschwach .004

Durchschnittlich
Leistungsstark .340
Leistungsschwach .307

Leistungsschwach
Leistungsstark .004
Durchschnittlich .307

NKA
Leistungsstark

Durchschnittlich .010
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .010
Leistungsschwach .019

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .019

0 Leistungsstark Durchschnittlich .949
Leistungsschwach .580

Durchschnittlich Leistungsstark .949
Leistungsschwach .689

Leistungsschwach Leistungsstark .580
Durchschnittlich .689

Gesamt
Leistungsstark

Durchschnittlich .008
Leistungsschwach < .001

Durchschnittlich
Leistungsstark .008
Leistungsschwach .105

Leistungsschwach
Leistungsstark < .001
Durchschnittlich .105
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Tabelle 59:  Paarweise Vergleiche des prozentualen Anteils schnell abrufbarer Einmaleinsaufgaben ver-
schiedener Aufgabentypen in Abhängigkeit vom Leistungsvermögen

Aufgabentyp Leistungsvermögen p

KA (gesamt)
Leistungsstark

Durchschnittlich 1.000
Leistungsschwach 1.000

Durchschnittlich
Leistungsstark 1.000
Leistungsschwach. 1.000

Leistungsschwach
Leistungsstark 1.000
Durchschnittlich 1.000

KA1 
Leistungsstark

Durchschnittlich 1.000
Leistungsschwach 1.000

Durchschnittlich
Leistungsstark 1.000
Leistungsschwach 1.000

Leistungsschwach
Leistungsstark 1.000
Durchschnittlich 1.000

KA2
Leistungsstark

Durchschnittlich 1.000
Leistungsschwach .729

Durchschnittlich
Leistungsstark 1.000
Leistungsschwach 1.000

Leistungsschwach
Leistungsstark .729
Durchschnittlich 1.000

NKA
Leistungsstark

Durchschnittlich 1.000
Leistungsschwach .532

Durchschnittlich
Leistungsstark 1.000
Leistungsschwach .964

Leistungsschwach
Leistungsstark   .532
Durchschnittlich .964

0 Leistungsstark Durchschnittlich 1.000
Leistungsschwach .204

Durchschnittlich Leistungsstark 1.000
Leistungsschwach .227

Leistungsschwach Leistungsstark  .204
Durchschnittlich .227

Gesamt
Leistungsstark

Durchschnittlich 1.000
Leistungsschwach 1.000

Durchschnittlich
Leistungsstark 1.000
Leistungsschwach 1.000

Leistungsschwach
Leistungsstark 1.000
Durchschnittlich 1.000
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Tabelle 60:  Paarweise Vergleiche der Häufi gkeit des Einsatzes verschiedener Herangehensweisen je Kind 
in Abhängigkeit vom Leistungsvermögen

Herangehensweisen Leistungsvermögen p

FZ
Leistungsstark

Durchschnittlich .154

Leistungsschwach .888

Durchschnittlich
Leistungsstark .154

Leistungsschwach .713

Leistungsschwach
Leistungsstark .888

Durchschnittlich .713

Verk. Addition
Leistungsstark

Durchschnittlich 1.000

Leistungsschwach .775

Durchschnittlich
Leistungsstark 1.000

Leistungsschwach 1.000

Leistungsschwach
Leistungsstark .775

Durchschnittlich 1.000
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