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Zusammenfassung 

Die Entwicklung von Resistenzen gegen bestimmte Medikamente steigt bei Herpes- und 

Adenovirus Infektionen, vor allem bei Kindern und immungeschwächten Personen, stark an. 

Gegen beide Viren gibt es trotz klinischem Bedarf nur eine unzureichende Auswahl an antiviral 

wirksamen Substanzen, welche oft mit schädlichen Nebenwirkungen einhergehen. Zusätzlich 

sind phänotypische Tests zur Ermittlung von Resistenzen zeitaufwendig, schwer 

quantifizierbar und mit langen Wartezeiten bis zur Auswertung verbunden. In dieser Arbeit 

haben wir ein neues, konditionelles Replikonsystem konstruiert, welches auf dem Genom des 

Adeno-assozierten Virus (AAV) beruht. Unser Ziel war es, ein Reportersystem zu etablieren, 

um virale Resistenzen gegen zugelassene Medikamente und neue antivirale Wirkstoffe 

effektiv zu detektieren. 

 

Dabei nutzen wir die natürliche Eigenschaft des AAV, eine lytische Replikation nur in 

Abhängigkeit einer Überinfektion mit anderen Viren wie dem Herpes-simplex-Virus (HSV) oder 

dem Adenovirus (Ad) durchführen zu können. Um ein induzierbares Expressionssystem zu 

entwickeln, wurden die strukturell kodierenden Sequenzen des AAVs mit einem Reportergen 

ausgetauscht, ohne die entsprechende Promotersequenz des Virus-Genoms zu verändern. Die 

Expression dieses Reportergens wird bei diesem sogenannten AAV Replikon Vektor nur durch 

eine Infektion mit den entsprechenden Wildtyp-Viren induziert. Infektionen aller getesteten 

Ad-Serotypen, wie auch Infektionen durch HSV-1, HSV-2 und das humane Cytomegalievirus 

(HCMV) konnten das AAV Replikon Reportersignal signifikant induzieren, während bei 

fehlender Infektion ein Signal nur knapp über dem Hintergrundsignal gemessen wurde. Für 

unterschiedliche Anwendungen haben wir verschiedene Einführungs-möglichkeiten des AAV 

Replikon Vektors in entsprechende Zelllinien getestet: transiente und stabile Transfektion und 

Transduktion durch Verpackung des AAV Replikon Vektors in AAV Vektoren. Unter allen 

Versuchsbedingungen führte die Induktion des Replikon Vektors durch Infektion zu 

unterschiedlichen Reporterexpressionsniveaus. 

 

Um eine Virusinfektion zu therapieren, ist das schnelle und präzise Testen eines effektiven 

antiviralen Wirkstoffes an Patienten-Virusisolaten essentiell. Deshalb haben wir mit dem AAV 

Replikon System einen phänotypischen Wirkstoff-Resistenztest für HSV etabliert und mit 

diesem bereits 21 HSV Patientenisolate auf ihre Resistenz gegen das Referenzmedikament 

Acyclovir getestet. Dabei waren wir in der Lage, die Ergebnisse des als Standard geltenden  

5 -7 Tage dauernden Plaque-Reduktions-Tests für alle HSV-1 Isolate bereits nach 24 Stunden, 

und für HSV-2 nach 48 Stunden quantitativ zu bestätigen. 

 

Zusätzlich haben wir mit dem AAV Replikonsystem ein Wirkstofftestsystem etabliert, welches 

auch im Hochdurchsatz-Screening-Format genutzt werden kann. In einem ersten Vorversuch 

wurden 22 unbekannte und 2 bekannte Wirkstoffe auf deren Wirksamkeit gegen Ad und 

HSV-1 getestet. Das Replikonsystem konnte dabei reproduzierbar die bekannten Wirkstoffe 

detektieren und zusätzlich neue interessante Wirkstoffgruppen als direkte Inhibitoren der 

Virusreplikation in vitro identifizieren. 
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Summary 

Due to long-term chemoprevention, the risk of immune compromised patients to suffer from 

an infection of therapy-resistant herpes simplex virus (HSV) or adenovirus (Ad) is increasing. 

Therefore, fast and reliable tests for drug resistance of these viruses become more and more 

important in clinical praxis. Additionally, because of the lack of approved antivirals in case of 

human Ad and the limitation of the therapeutic target range for antiviral therapy of HSV 

infections, there is an unmet need for new antivirals improving the infectious mortality in this 

patient group. 

Here, we constructed a new conditional expression system that is based on the adeno-

associated virus (AAV) genome replication. This system provided an appropriate reporter 

system for replication of large DNA viruses, for testing their drug resistance and for screening 

of new antiviral substances. The multiplication of AAV is dependent on super-infection with 

other viruses such as herpes- or adenoviruses. The helper functions provided by these viruses 

induce the replication of the previously silent AAV turning its lytic gene expression on. We 

employed this natural switch to regulate the expression of a reporter gene, replacing the AAV 

Cap gene, depending on the infection with herpes or adenoviruses. By replacing the coding 

sequences for the structural AAV proteins with a Gaussia luciferase (GLuc) or a green 

fluorescence protein (GFP) open reading frame, we constructed a genetic element. This 

genetic element retained the extremely low basal activity in absence, and inducibility in the 

presence of helper virus infection. Instead of AAV production, reporter gene expression is 

turned on dependent on this infection. We coined this genetic element as AAV replicon in 

analogy to similar virus replication-based reporter systems, which were established for 

assessing RNA virus replication. 

After successful introduction of the AAV replicon into permissive cells the reporter gene 

expression was specifically activated upon infection with different human Ad serotypes, 

HSV-1, HSV-2, and human cytomegalovirus (HCMV). Almost no induction of the signal was 

measured without infection. In this study, we characterized the responsiveness of the AAV 

replicon system using different delivery methods and target cell lines and tested feasibility of 

different applications such as resistance testing, trans-complementation and drug screening.  

A fast diagnosis of drug resistance of patient isolates towards certain antiviral drugs is 

absolutely essential for the decision on effective therapy. Therefore, a phenotypical drug 

resistance test using the AAV replicon vector system was established for HSV. By testing 21 

clinical isolates of HSV we showed that the AAV replicon-based test can differentiate between 

acyclovir sensitive and resistant strains already after 24 hours (for HSV-1) and 48 hours (for 

HSV-2) after virus isolation, compared to the gold standard plaque reduction assay, which 

takes 5-7 days. 

Furthermore, the AAV replicon vector system was used to generate a drug susceptibility test 

system, which can be applied in a high-throughput screening format. In a first approach, 24 

kinase inhibitors were tested for their ability to inhibit Ad and HSV. The system was 

reproducibly detecting known inhibitors and could even identify new interesting compound 

groups.  
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1. Introduction 

1.1. Microbial drug resistance 

Antimicrobial resistance is a natural mechanism of pathogens to overcome treatments with 

antimicrobial drugs. It occurs due to adaptive genetic changes of the pathogen 

microorganisms under selection pressure. Especially prolonged treatment, overuse and 

misuse of antimicrobials are accelerating this process in all kind of microorganisms, such as in 

bacteria, viruses, fungi, and parasites. Emergence and spreading of antimicrobial resistance 

mechanisms occur globally and influence the ability of treating common infectious diseases 

[1] [2]. 

Antibiotic resistance of bacteria can be preserved by intrinsic or acquired mechanisms. 

Intrinsic mechanisms are obtained by naturally occurring genes like multidrug-resistant active 

efflux systems and modification of antibiotic target sites [3]. Acquired mechanisms in contrast 

include the transfer of resistance genes on plasmids, bacteriophages, transposons, and similar 

mobile genetic material [4]. Consequences for humans infected with emerged pathogens 

resistant to multiple antibiotics, are prolonged illness, disability, and death [5] [6]. Some 

nosocomial pathogens are even untreatable if they become resistant to all antimicrobials 

available [7].  

Antimicrobial susceptibility testing is important to meet the challenge of fast treatment. 

Bacterial infection, for example, currently have to be treated with broad-spectrum antibiotics 

before the antimicrobial susceptibility test result of the isolated pathogen is available. 

Preferred testing methods at the moment are broth microdilution test, agar dilution, disk 

diffusion, and gradient diffusion methods. These methods take 16–24 hours. More rapid 

results (3.5–16 hours) can be obtained by automated instrument methods, like ultra-high-

throughput bacterial growth assays, for which materials and devices are commercially 

available [8] [9]. In clinical practice, every hour can be crucial for the mortality rate of patients 

if the effective antimicrobial treatment is not started as soon as possible [10] [11]. Globally, 

the world is facing an increasing emergence of multi-drug resistances, while the average time 

span of developing a new antimicrobial treatment takes 10–12 years [7]. Future prospects 

concentrate on alternatives to antibiotics, like modulating the host immune response by 
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altering inflammation and autophagy, or on combinations of antibiotics and so-called 

antibiotic resistant breakers [12]. 

1.1.1. Viral resistance development 

Viruses have the evolutionary advantage to generate a remarkable genetic diversity by a fast 

adoption to new host and environmental changes. The necessary viral mutations in their 

genomes are dependent on multiple viral- and host-specific processes [13]. Emergence of 

resistant strains is therefore a common result of therapeutic selection pressure [14]. In this 

perspective, an antiviral drug must fulfill several requirements. The two most important 

requirements are safety and potency. Since the viral life cycle is dependent on cellular 

functions, it is important to specifically inhibit either a viral function or a cellular pathway that 

is essential for virus growth, without causing deleterious effects on the host cell functionality 

itself. Most antivirals therefore target viral enzymes such as proteases, nucleic acid 

synthesizing proteins or other viral targets essential for viral reproduction. For a potent 

antiviral drug, it is important to avoid even modest replication of the virus. Due to their fast 

adopting capacities, viruses can easily acquire resistance in presence of an inhibitor that does 

not fully block virus replication. If the drug concentration is insufficient to completely inhibit 

virus replication, the remaining virus population can expand and gain fitness due to genetic 

variation. In patients that are not treated with an alternative antiviral drug in time, the 

uncontrolled expansion of the resistant mutant virus can be fatal [15]. 

In the last two decades, potent antiviral drugs were approved for treatment of viral infections. 

Some antivirals can clear infections from the patient or persistent viruses can at least be 

controlled effectively by antivirals. Unfortunately, development of resistance has been 

documented for nearly all clinically used antivirals. The mechanisms of how viruses circumvent 

drug therapy involve either a gene mutation of the target site of the antiviral drug or a gene 

mutation of antiviral drug activators [14]. The randomly appearing frequent mutation rate and 

the fast replication of viral genomes lead to a large pool of variants called quasispecies. The 

respective fitness of the quasispecies determines whether a mutation leads to a replication-

competent and additionally resistant virus mutant. Therefore, once the replication of the virus 

is not fully repressed, the possibility of resistance development is very high [16]. This is the 

reason for resistance occurring with an increased probability especially in 

immunocompromised patients under long term low dose antiviral prophylaxis. Extensive 
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immunosuppression for example, has to be initiated in transplant patients due to the 

management of rejection in solid organ transplant recipients or hematopoietic stem cell 

transplant recipients. This is similar for the treatment of leukemia and autoimmune diseases 

[17] [18]. In the following chapter, the mechanisms behind resistance development of viruses 

as well as strategies for dealing with resistance are discussed for selected important viruses. 

1.1.2. Antiviral drug-resistant tests 

The risk for patients to suffer from drug-resistant viruses should be detected as fast and as 

accurate as possible. There are two means of determining drug resistance: either by genotypic 

or by phenotypic assays. Genotypic assays detect mutations in the viral genome pools that are 

known to cause resistances. Phenotypic assays measure the actual drug resistance of patient 

derived infectious virus. The choice which assay to use for drug resistance detection is 

dependent on the genome size of the respective virus and the ability to culture the virus in 

vitro. 

Genotypic testing has several technical advantages. However, novel or so far uncharacterized 

mutations that lead to resistance as well as the overall replication fitness of mutated viruses, 

cannot be detected with this method. Especially under long term therapy of patients, the 

choice of antiviral drugs based on genotyping can be challenging because of the increasing 

occurrence of cross resistance and multiresistance. Furthermore, the implementation of new 

antiviral drugs on the market will lead to new and complex patterns of yet unknown mutations 

[19]. Notably, genotyping of resistance is only applicable for drugs that are in longtime use 

and therefore sufficient data are available to connect resistance with specific mutations. This 

connection needs to be generated or proven by a phenotypic test. Hence, a standardized 

phenotypic testing would be necessary for each virus of interest.  

Phenotypic assays have the advantage of detecting decreased susceptibility of a viral mutant 

to a certain antiviral agent compared to a wild-type strain. The drug concentration necessary 

to inhibit wild-type viral growth by 50% is called IC50 value. For evaluation of the phenotypic 

drug resistance, the increase of the IC50 of the viral isolate strain compared to the wild-type 

strain is important. The general IC50 threshold (so called cut-off), which defines therapeutic 

resistance, is dependent on the respective assay and determined by careful assessment of 

standard strains and isolates [17]. 
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The standard clinical practice test for hepatitis B virus (HBV) antiviral susceptibility is the 

genotypic resistance test, because it is fast and convenient. Since most of HBV drugs on the 

market are nucleosid- or nucleotid analogs, the detection concentrates mainly on HBV 

polymerase gene mutations [17]. Genotypic resistance mutation tests include standard 

sequencing of polymerase chain reaction (PCR) products, real-time PCR, reverse hybridization, 

restriction fragment length polymorphism, single genome sequencing, and ultra-deep 

pyrosequencing. These assays differ up to 20% concerning the sensitivity of the minor 

subpopulation of mutant HBV viruses [20] [21]. Since the genome size of HBV is small, the 

number of mutations leading to resistance is better investigated compared to viruses with a 

larger genome size. The database for genetic resistance is based on and controlled by 

phenotypic tests. 

For HBV, the phenotypic testing method is limited in clinical use because of the absence of a 

fully permissive HBV infectious cycle in a cell culture system. Nevertheless, there are different 

methods to determine the phenotypic resistance of patient derived HBV isolates to learn more 

about drug-resistant HBV phenotypes. This includes the transient transfection method, where 

clinical isolated HBV genomes are either amplified or cloned and transfected to hepatocyte-

derived cell lines in the presence of antiviral drugs [22]. Another method is the transduction 

of recombinant baculoviruses encoding drug-resistant HBV clones. Like the transient 

transfection method, this method is very work-intense but good for cross-resistance testing 

[19]. To define and characterize the fitness of a certain HBV mutant, a stable human hepatoma 

cell line, which promotes differentiation and phenotypic stability, can be constructed for every 

isolated mutant [23] [24]. 

In the case of human immunodeficiency virus (HIV) the high rate of replication in vivo leads to 

an accumulation of innumerable genetically distinct quasispecies with a high genetic 

variability in individuals [25]. HIV drug resistance is mainly tested via sequencing-based 

genotyping methods, as they offer reduced costs and faster turnaround times compared to 

phenotypic cell-based methods. Despite the disadvantages of phenotypic assays, they are 

used for HIV-testing and are able to define antiviral resistance to any drug without prior 

knowledge of the corresponding mutations. The most advanced phenotypic tests are based 

on construction of pseudotyped viruses by homologous recombination of patient derived 

coding sequences for integrase, protease, and reverse transcriptase into a standardized virus 
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backbone. The spread of these recombinant HIV infection is measured in the presence of 

different drugs and compared to wild-type standards. Significant increase of spread reveals 

presence of coding sequences with resistance phenotype. Unfortunately, the sensitivity of this 

methodology allows a detection of resistant viruses only if they constitute more than 10% to 

20% in one patient sample [26-28]. Overall, the data of phenotypic tests provide experimental 

proof for the correlation between genome mutations and drug resistance. These 

characterizations are very important for the interpretation of genotypic data and 

improvement of performing HIV genotyping based predictions [29]. In case of assays for HIV 

susceptibility testing, the greatest sensitivity for drug resistance is reached by next-generation 

sequencing based methods. The increased sensitivity thereby is achieved by massively 

increased coverage of sequencing data, which generates three to four orders of magnitude 

more identification of mutations compared to the Sanger-sequencing based method [30] [31] 

[32]. This allows the description of the drug resistance potential for a given HIV pool more 

exactly, including the genotypes with extremely low frequency. However, one of the major 

limitations of next-generation sequencing, especially for lower volume laboratories, is the 

necessary start-up and running costs. Nevertheless, the utility of next-generation sequencing 

for human viral pathogens in general is expected to increase in the future [33]. 

In contrast to HIV and HBV, the resistance determination of larger DNA viruses like herpes 

simplex viruses (HSV) or adenoviruses (Ad) is more challenging due to their large genome size 

and therefore aggravated conditions to detect mutations leading to resistance. However, for 

HSV, a phenotypic assay is standard because patient derived viral isolates can be grown easily 

in vitro. In case of other herpesviruses, like cytomegalovirus (CMV) or varicella zoster virus 

(VZV), in vitro growth abilities are limited and therefore neither genetic nor phenotypic 

methods can be easily applied for testing drug resistance. For Ad, genotypic and phenotypic 

drug resistance testing is limited to specialized laboratories. Further information on resistance 

tests for HSV and Ad can be found in chapter 1.2.2.7 and chapter 1.2.3.5. 

1.2. Biology of large DNA viruses and their inhibitors 

Herpesviruses and adenoviruses belong to the large class of double-stranded viruses. Both 

groups of viruses are able to induce AAV replication and therefore their growth potential can 

be tested by an AAV based replicon system. 
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1.2.1. Herpesviruses 

In order to structure the relationship of herpesviruses into a taxonomical framework, the 

International Committee on Taxonomy of Viruses (ICTV) classified the order of Herpesvirales 

into three families called Alloherpesviridae, Herpesviridae and Malacoherpesviridae. This 

classification was made according to their biological characteristics, like having a linear 

double-stranded DNA genome, a capsid of about 100 nm with icosadeltahedral shape, a 

proteinaceous matrix called tegument, and an glycoprotein-containing lipid envelope [34]. 

Amongst those, the family of Herpesviridae consists of three subfamilies: Alphaherpesvirinae 

(with the genera of Iltovirus, Mardivirus, Scutavirus, Simplexvirus, and Varicellovirus), 

Betaherpesvirinae (with the genera of Cytomegalovirus, Muromegalovirus, Proboscivirus, 

Roseolovirus) and Gammaherpesvirinae (with the genera of Lymphocryptovirus, Macavirus, 

Percavirus, Rhadinovirus) [35]. 

The transmission route of Herpesviridae ranges from physical contact to aerosol spread. 

Severe symptoms after infection are often limited to immunocompromised hosts [36]. A 

characteristic observed among all herpesviruses is their ability to establish a life-long latent 

state after primary infection. Interestingly, herpesviruses show a high species specificity due 

to a long-lasting coevolution between the viruses and their hosts. This may be the reason why 

the pathology of primary herpesvirus infection is normally relatively mild. For example, in 

humans, although the average adult population is infected with 3-4 out of the 9 human 

herpesviruses, symptoms of primary herpesvirus infections are rarely observed [37].  

The nine known human herpesviruses are Human alphaherpesvirus 1 (also called herpes 

simplex virus type 1 (HSV-1)), Human alphaherpesvirus 2 (also called herpes simplex virus type 

2 (HSV-2)) and Human alphaherpesvirus 3 (also called varicella zoster virus (VZV)), which 

belong to Alphaherpesvirinae, Human betaherpesvirus 5 (also called cytomegalovirus (CMV)) 

and Human betaherpesvirus 6A, 6B, and 7, belonging to Betaherpesvirinae- and Human 

gammaherpesvirus 4 (also called Epstein-Barr virus (EBV)) and Human gammaherpesvirus 8 

(also called Kaposi’s sarcoma-associated herpesvirus (KSHV)), which belong to the 

Gammaherpesvirinae subfamily [37, 38]. The clinical outcome of infections and the tissue 

tropism in vivo and cell tropism in vitro differs amongst these herpesviruses. 

Human Alphaherpesvirinae have a restricted host specificity and are characterized by their 

short reproduction cycle and rapid spread in cell culture. During latent state, these viruses are 
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maintained in the nervous system in vivo. They may cause neurological diseases upon both 

primary infection and reactivation [38] [39] [40]. In contrast, human Betaherpesvirinae 

possess a very broad cell tropism compared to Alphaherpesvirinae subfamily. They are able to 

replicate in vitro in epithelial cells, fibroblasts, endothelial cells, and smooth muscle cells, 

whereas their replication cycle takes longer (reviewed in [41]). Viruses remain latent in bone 

marrow-derived hematopoietic or endothelial cells [42] [43]. Human Gammaherpesvirinae 

subfamily has the highest restriction of host cell tropism both in cell culture and in vivo 

amongst the human herpesviruses. EBV infects either B cells or epithelial cells by tropism 

switching after propagation in one or the other cell types [44] and latently infected cells are 

resting memory B cells used by the virus in a non-pathogenic persistence state [45].  

1.2.2. Herpes simplex viruses  

There are two known human members of the Simplexvirus genus: HSV-1 and HSV-2, common 

and endemic worldwide. In Germany, the seroprevalence of HSV-1 in the population older 

than 15 years is relatively high, being 76.3% in females and 75.2% in males, in contrast to the 

seroprevalence of HSV-2 being only 18% in women and 13.8% in men [46]. In some regions in 

developing countries, the seroprevalence of HSV-1 and HSV-2 is even up to 100%. In principle 

the prevalence of infection is strongly dependent on age, geographic regions, population 

subgroups, and pre-infections with other endemic human viruses like HIV [47] [48]. 

Usually HSV-1 is already transmitted during childhood mainly due to oral contact with body 

fluids of infected persons around the mouth (orolabial) causing oral herpes. However, a 

proportion of HSV-1 infections can as well be transmitted via the genital or anal area and cause 

genital herpes. In contrast, HSV-2 is mainly sexually transmitted also leads to genital herpes 

infections. Infections with both HSV species persists lifelong and, in most cases, asymptomatic. 

Reactivation from latency is associated with mild symptoms in about 30% of latently infected 

patients and characterized by recurrent eruptions of painful blisters or ulcers at the respective 

site. Immunocompromised patients, such as HIV infected patients, and solid or bone marrow 

transplant recipients are at high risk to develop herpes simplex keratoconjunctivitis and 

herpes simplex encephalitis, where the latter goes along with a frequency of 5 in 1 million 

people. Perinatal HSV infections of neonates lead to a life threating systemic disease. Herpes 

infections of neonates, immunocompromised patient and herpes encephalitis is associated 

with high mortality [49] [50] [51].  
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1.2.2.1. Genome organization of HSV  

The genome of HSV consists of a linear, double stranded DNA, which contains two unique 

regions named unique segment long (UL) and unique segment short (US). Both are flanked by 

an internal repeat sequence (IR) and a terminal repeat sequence (TR) (see Figure 1). HSV 

produces 4 roughly equimolar genomic isomers, which differ by inversion of the long and short 

components. Furthermore, the HSV genome has three origins of replication depicted as ORIL 

and ORIS. The latter one is present twice [52] [53]. 

 

Figure 1: The structure of HSV-1 genome. 

Genome configuration depicting IRS and TRS. (modified from [54]). 

1.2.2.2. Lytic and latent infection cycle 

Like all Herpesviridae, HSV has a biphasic life cycle consisting of a lytic and a latent state. 

During latency in neurons of sensory ganglia, gene expression is limited, and viral production 

is completely inhibited. Only microRNAs and latency-associated transcripts (LATs) are 

abundantly accumulated whereby LATs are suggested to suppress viral lytic genes as primary 

function [55-57]. Especially stress or neuronal damage can lead to periodic viral reactivation 

throughout the lifetime of a host. During a productive lytic phase, virions are retrogradely 

transported along neuronal axons resulting in a release of an infectious virus in the axonal 

termini, where it has access to permissive peripheral tissue to cause recurrent lesions [58]. 

Here, viral genes are expressed in a certain cascade manner of at least three coordinated 

kinetic classes: immediate-early (IE) genes, early (E) genes and late (L) genes [59] [60]. 

HSV virions consist of an outer envelope containing 13 distinct viral envelope glycoproteins 

for viral attachment and entry, and host-cell derived lipids and membrane proteins. A 

proteinaceous layer termed tegument links the envelope to the inner viral capsid. This inner 

icosahedral capsid of 100 nm size contains 150 hexons and 12 pentons in an icosahedral 

symmetry (T=16). The linear double-stranded DNA is comprised in the inner nucleoprotein 

core [61] [62]. The attachment of HSV-1 is upon binding of the viral glycoprotein gC to cell 

surface heparin sulfate (HS). Viral glycoprotein gB mediates fusion of the viral envelope with 
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the cell membrane [63]. In case of HSV-2, the glycoprotein gB is involved in both mechanisms 

of binding and penetration of HSV [64]. Then the viral envelope is fused to the cellular 

membrane and the tegument with the capsid is released into the cytoplasm [65] [66]. The 

microtubule-mediated transport mechanism transfers the viral nucleocapsid to the nucleus 

and naked DNA is then released at a nuclear pore [67]. The linear DNA is converted into a 

covalently closed circular form [68].  

Transcription of HSV genes is solely dependent on the host RNA polymerase II (pol II) since the 

virus does not encode its own RNA polymerase. Gene expression is conducted by the 

formation of an activator complex by the viral protein VP16 with the host cell factor (HCF) and 

the octamer-binding transcription factor-1 (Oct-1). This complex binds to IE gene promoters, 

recruits other transcriptional factors and stimulates directly the transcription of IE genes ICP0, 

ICP4, ICP22, ICP27 and ICP47 [69] [70]. Then the early phase of transcription is stimulated 

mainly by ICP4 [70] [71] and ICP22 [72]. The E genes are involved in viral genome replication 

during the viral lytic cycle. HSV encodes for its own polymerase helicase and single stranded 

DNA binding protein ICP8, which are mandatory for the viral DNA replication [73]. The final 

late phase is characterized by expression of viral structural genes after onset of the DNA 

genome replication [74]. 

1.2.2.3. Viral DNA replication 

The onset of DNA replication in HSV leads to significant reduction of E gene expression 

whereas L genes start to be expressed in very high amounts. Seven viral proteins are essential 

for viral DNA synthesis: the viral DNA polymerase complex composed of a catalytic subunit Pol 

UL30 and a processivity subunit UL42, the origin-binding protein UL9, the DNA binding proteins 

ICP8 (UL29) and the helicase/primase complex is based on UL5/UL8/UL52 (reviewed in [53]). 

Detection of nucleoprotein complexes into the nucleus leads to the recruitment and formation 

of cellular nuclear substructures called ND10 protein foci, which are disrupted by IE protein 

ICP0 [75] [76]. The initiation step at the beginning of DNA synthesis is started by UL9 and ICP8 

with distortion or destabilization at one of the three Oris. During the elongation phase, H/P 

complex is recruited to unwind duplex DNA and for synthetizing short RNA primers for 

initiation of the DNA replication step [77]. Then the two-subunit polymerase is recruited to 

the fork to catalyze leading- and lagging-strand synthesis [78]. The lagging strand is looped 

back to the fork. Leading and the lagging strands, which consists of so-called Okazaki 
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fragments, are synthesized in cycles [79] [80]. Whether DNA replication initially proceeds by 

a rolling circle amplification or by a theta type mechanism remains as one of the challenges in 

the field [81]. 

1.2.2.4. Viral assembly and egress 

After DNA replication, the viral DNA is incorporated into the accumulated and pre-assembled 

viral capsids [82, 83]. Maturated nucleocapsids then egress to the cytoplasm. First an 

envelopment takes place at the inner nuclear membrane. Then there follows a de-

envelopment of the nucleocapsid at the outer side of the nuclear membrane [84]. In this 

process the capsids acquire a transient (also called “primary”) envelope. Primary enveloped 

virions can be found only in the peri-nuclear space. After the fusion of the primary envelop to 

the outer nuclear membrane, the nucleocapsids are released to the cytosol where they 

acquire most of their tegument. Their morphogenesis is continued in the trans-Golgi derived 

membrane compartment, which is enriched in viral glycoproteins. There they acquire their 

permanent (secondary) envelop, which can be found in infectious particles. During the 

secondary envelopment the virus particles are budding to secretory vesicles and the resulting 

virions are entering the extracellular space ready to initiate a new infection cycle [85, 86]. 

1.2.2.5. Immunity against herpes simplex viruses 

Since HSV are ancient and very well adapted human pathogens, their immune evasion 

mechanisms are complex. Both, the innate and the adaptive immune response are activated 

by the virus. As a first line of defense against HSV the innate immune response is induced in 

all cells that are infected and mainly rely on the type I interferon response. This innate immune 

response against HSV also involves activity of multiple immune cell types [87]. Most 

importantly, natural killer (NK) cells respond by cytokine production and cell killing to the 

recognition of HSV infected cells. Additionally, plasmacytoid dendritic cells (pDCs) produce 

type I IFN and thereby support the cell intrinsic antiviral immune responses [88, 89]. The 

adaptive immune response shows an important role in controlling disease progression, 

latency, and limiting of viral spread. Key players in the cellular response are CD8+ T cells [90] 

[91]. In the absence of other immune effectors, CD4+ T cells as well as the humoral immunity 

have been shown to play only a minor role in protection [92]. 
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1.2.2.6. Antiviral drugs against herpes simplex virus infections 

The most commonly used drugs against HSV are nucleoside and nucleotide analogues, sharing 

a common molecular mechanism of inhibiting the viral DNA polymerase.  

Acyclovir and valacyclovir: 

Among the 25 by the US Food and Drug Administration (FDA) approved antiviral nucleoside 

analogues, Acyclovir (ACV) was the first efficient and selective antiviral agent against 

herpesvirus infections back in 1982. Still, it is a commonly used drug and the primary choice 

in treatment of HSV infections. ACV consists of a guanosine derivate with an acyclic side chain 

declared as 9-[(2-hydroxyethoxy)methyl]guanine. The specificity relies on the fact that mainly 

the viral encoded thymidine kinase (TK) performs phosphorylation of the acycloguanosine to 

a monophosphate (ACV-MP) (Figure 2). This reaction is not efficiently catalyzed by any 

nucleotide kinases belonging to the host nucleoside salvage pathway. After this initial step, 

however, the host cellular GMP kinase and the host nucleoside diphosphate kinase (NDP), 

respectively, can further phosphorylate the ACV-MP resulting in the biologically active 

intermediate of acyclovir, which is the ACV-triphosphate (ACV-TP) [93] [94]. The ACV-TP then 

serves as an alternative substrate of the natural nucleoside dGTP for the interaction with the 

viral DNA polymerase. If ACV-TP is incorporated into the DNA at its 3’ terminus, a further chain 

elongation is impossible because the nucleoside analogue lacks the hydroxyl group needed 

for this step [95] [96].  
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Figure 2: Chain termination mechanism of Acyclovir. Different viral and cellular kinase 

phosphorylation steps are needed before the ACV-triphosphate is recognized by the viral DNA 

polymerase. Figure reprinted from [97]. 

 

Furthermore, the HSV DNA polymerase-associated 3’ -> 5’-exonuclease activity is not able to 

excise the incorporated ACV-monophosphate residues [98]. In principle, ACV is very potent 

against HSV-1 but only half as potent against HSV-2. In vitro, the half inhibitory dose (IC50) 

against HSV-1 is 0.09 - 4 µM and in case of HSV-2 it is 0.1 – 9.8 µM [99]. Due to its low oral 

absorption, this drug is applied topically against labial herpes and intravenously to fight 

systemically genital and labial herpes and herpes encephalitis [100] [101]. 

The low oral uptake is the reason why the L-valyl-ester prodrug of acyclovir called valacyclovir 

was developed, which shows a better oral bioavailability (54% versus 12 – 20%) [99]  [100]. 

After oral intake, valacyclovir is first carried out by the human intestinal transporter. In the 

intestine it is then converted to ACV by ester hydrolysis. ACV and valacyclovir are both very 

well tolerated drugs [102]. 

Penciclovir and famciclovir: 

Another drug used in the clinic is penciclovir and its prodrug famciclovir, which shows 

improved oral bioavailability. Penciclovir is an acyclic guanine derivative and famciclovir is the 

inactive prodrug of penciclovir with an additional diacetyl ester. Similar to ACV, penciclovir 

leads to a limited chain elongation during viral DNA replication by virtue of the triphosphate 

hydroxyl group. The advantage of penciclovir over acyclovir is the higher stability of the active 

triphosphate as well as the longer time frame it persists inside the target cell [103] [104]. 
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Because the antiviral mechanisms of ACV and penciclovir are similar, resistance to one of these 

agents has an impact on the other drug as well [105].  

Foscarnet: 

The similarity of ACV and penciclovir is the reason why foscarnet, with the chemical name 

phosphonoformic acid (PFA), is used as a second in line drug. It inhibits the viral DNA 

polymerase by mimicking the structure of pyrophosphate and therefore blocking the 

pyrophosphate-binding site during DNA chain elongation without being incorporated. It does 

not belong to the nucleoside or nucleotide analogues. During its mode of action, it is 

independent from viral and cellular kinase activation in contrast to ACV. In addition, compared 

to host cellular enzymes foscarnet shows a 100-fold increase against viral derived enzymes 

[106]. The drug is supplied intravenously and it is associated with nephrotoxicity and 

hemoglobin disturbances [107]. 

Cidofovir: 

Another second line therapy is cidofovir, which has a very broad antiviral mechanism of action 

against several DNA viruses. It consists of an acyclic phosphonate nucleotide analogue. Here 

an initial phosphorylation of the viral kinase is not required because it has already a single 

phosphate group attached. It is sequentially phosphorylated to its active triphosphate form 

by the cellular kinases. As a consequence, cidofovir selectively inhibits the viral DNA 

polymerase due to the 25- to 50-fold greater affinity compared to the cellular one [108] [109] 

[110]. 

New drugs: 

New drugs target different sides of the virus life cycle. 1-docosanol for example is a 22-carbon-

long saturated fatty alcohol, which prevents the fusion of the viral capsid with the host cell 

membrane and is used topically against recurring labial herpes infections [111]. Another 

current approach of special novel small molecules, which are currently in development, 

belongs to the class of helicase-primase inhibitors. This class of inhibitors are based on the 

viral helicase-primase enzyme complex, which is essential and has no eukaryotic homologue. 

Thus it is a very interesting target for novel drugs against HSV [101]. The two most promising 

helicase-primase inhibitors are amenamevir and pritelivir [112] [113]. 

Since current treatments of HSV infections generally show limited efficacy, new and more 

competent antiviral drugs are needed. Especially for immunocompromised patients with a 
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higher probability of developing an acyclovir resistant HSV infection, therapies with an 

increased oral bioavailability, less toxic effects, and higher efficacy are urgently needed. 

1.2.2.7. Antiviral drug resistance of HSV 

Although drugs against HSV are widely used, the prevalence of resistance in 

immunocompetent hosts is less than 1%. In contrast, 3.5% to 14% of immunocompromised 

hosts are affected by drug-resistant HSV infections (reviewed in [17]).  

Two genes of HSV are currently targeted by approved antiviral therapy: either the UL23 gene 

encoding the 376-amino-acid (aa) HSV TK protein or the UL30 gene encoding the HSV DNA-

polymerase enzyme. Since the TK protein is dispensable, the probability of gene mutations in 

this gene is 95% in contrast to the essential UL30 gene [114] [115]. TK mutations can lead to 

different outcomes like TK-negative or -low-producer mutants, which show no or reduced TK 

activity. In the minor cases, the mutation leads to TK-altered mutants, which are able to 

circumvent phosphorylation of ACV or PCV [116] [117]. The essential sites for enzyme activity 

are the nucleoside-binding site, the ATP-binding site, one cysteine at codon 336, which is 

responsible for the structure of the active site, and six highly conserved domains [118]. The 

DNA polymerase consists of 1235 aa with eight conserved regions, whereas the regions 

associated with resistance are most likely region II and III [119] [114]. Since in general the UL23 

gene and the UL30 gene reveal a polymorphism pattern, it is not easy to differentiate between 

mutations having no influence and mutations leading to resistance [99]. Most of the resistant 

viruses show cross resistance to other nucleoside analogues and even resistance to both ACV 

and foscarnet can been found [120] [121] [122]. 

1.2.2.8. Assays for HSV drug resistance 

As described in the last chapter, in case of detecting HSV resistance in patient isolates, 

genotypic tests reveal only already characterized mutations. If treatment failure points toward 

resistance development, a phenotypic test should be performed to define a possible 

responsive drug for counselling and management of the patient. 

The “gold standard” for phenotypic determination of antiviral susceptibility of HSV-1 and 

HSV-2 isolates is definitively the plaque reduction assay (PRA). For testing the antiviral drug 

effect on HSV, the appropriate patient-derived clinical specimen has to be propagated in a 
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cultured cell line. Afterwards, the viral inoculum is grown in the presence of serial dilutions of 

the applicable drug. The time needed to make a defined statement due to viral plaque 

numbers is usually 2-3 days. For manual counting of the single plaques, the cells have to be 

fixed and stained. All in all, a final conclusion about the susceptibility of an isolated virus takes 

3-7 days [123]. The disadvantage of this method is that it is time-consuming, labor intensive, 

and due to its manual read out, the results are very subjective. 

Alternative methods are evaluating the antigen expression after virus multiplication in vitro, 

like the sandwich enzyme-linked immunosorbend assay (ELISA) or the microplate in situ ELISA 

called MISE [124] [125] [126]. Other established methods are based on DNA hybridization 

[127] or fluorescence activated cell sorting (FACS) analysis of late gene expression [128]. A 

similar method like PRA is a genetically marked Vero cell line that responds to HSV infection 

with β-Galactosidase expression [129]. The DNA reduction assay (DRA) combines pre-cultured 

clinical samples treated with antivirals and nucleic acid detection with HSV-1 specific 

quantitative real-time PCR by measuring the viral DNA concentration in the cell lysates. The 

cell count and lysis are corrected via beta-globin PCR [130]. 

1.2.3. Human adenoviruses and their replication 

Adenoviruses (Ad) were detected in human tonsils and adenoids in tissue culture in 1953 by 

Wallace Rowe and Robert Huebner when they were searching for the causative agent of 

‘common cold’ [131]. In general adenoviruses are important pathogens of human and animals. 

Furthermore, they are very interesting as vectors for gene therapy. 

According to the ICTV, the family of Adenoviridae consists of 5 genera: Atadenovirus (infecting 

a broad range of hosts like ovine and bovine), Aviadenovirus (infecting birds), Ichtadenovirus 

(the only species infecting sturgeons), Mastadenovirus (infecting mammals) and Siadenovirus 

(infecting birds and frogs). The genus of Mastadenovirus consists of 36 species infecting 

different mammals, including the 7 species of human adenovirus species, currently coined 

Human mastadenovirus A-G. The human adenovirus species consist of different serotypes. All 

in all up-to-date 71 different human adenovirus serotypes were described [132] [35]. The 

classification is based on classical serotyping via neutralization testing and hemagglutination 

patterns among other biological attributes [133] [134].  
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The transmission route of human Ad ranges from physical contact to aerosol spread. In 

general, the virus shows a high stability outside the host and can still be infectious after several 

weeks at room temperature or after one week at 36°C [135]. Human Ad are the causative 

agent of a multitude of diseases including respiratory infections, gastroenteritis and epidemic 

keratoconjunctivitis [136] [137] [138]. The different Ad serotypes and their specific tropism 

are summarized in Table 1.2.3.1. Dependent on serotype of the infecting human Ad and the 

immune status of infected individuals, the disease manifestation varies from mild localized 

lesions to life-threatening disseminated diseases. Like in the case of HSV infections, the 

frequency of diseases caused by human Ad increases in immunocompromised patients, like 

allogeneic hematopoietic stem cell recipients, solid organ transplantation recipients, or bone 

marrow recipients [139] [140]. 5–47% of immunocompromised patients were found to be 

infected with Ad and out of these, 6–70% died [141]. In immunocompromised children, the 

mortality rate is even greater than 50% [142].  

Table 1.2.3.1: Differentiation of human adenovirus types by species and tropisms. 

Species Type Tropism 

A 12, 18, 31 Enteric, respiratory 

B1 3, 7, 16, 21, 50 Respiratory, keratoconjunctivitis 

B2 14, 11, 34, 35, 55 Renal, respiratory, 
keratoconjunctivitis 

C 1, 2, 5, 6, 57 Respiratory, keratoconjunctivitis, 
hepatic, lymphoid 

D 8-10, 13, 15, 17, 19, 20, 22-30, 32, 
33, 36-39, 42-49, 51, 53, 54, 56, 70 

Keratoconjunctivitis, enteric 

E 4 Respiratory, keratoconjunctivitis 

F 40, 41 Enteric 

G 52 Enteric 

Since for human Ad it was shown that the virus is able to be excreted after acute infection for 

several months or years, it is suggested that Ad is able to establish a persistent infection [143]. 

This point is supported by the ability of adenoviruses to infect the urinary tract, lymphatic 

tissues, like tonsils and adenoids, and the gastrointestinal tract permanently [144] [145] [146]. 

1.2.3.1. The organization of the adenovirus genome 

The genome of Mastadenovirus genus consists of a linear double-stranded DNA of 34-36 kbp, 

which has two inverted terminal repeats (ITRs) on both ends of the genome as well as a 

terminal protein (TP) covalently linked to the 5’ end of the ITR at each strand [147].  
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The genomes of Ad are organized in 8 units transcribed by the RNA polymerase II, which are 

located at both DNA strands (Figure 3). The transcription units are temporally regulated and 

can be divided into: five early genes expressed before onset of DNA replication (E1A, E1B, E2, 

E3, E4); the delayed early genes expressed independent of DNA synthesis (IX and Iva2); and 

one late transcription unit expressed after replication of Ad DNA (L1-L5) [148]. Additionally, 

there are two RNA polymerase III dependent transcription units encoding virus-associated 

RNAs I and II (VAI and VAII RNAs).  

 

Figure 3: Genome organization of human adenovirus.  

Black arrows highlight early protein gene regions, blue arrows indicate delayed early genes, green 

arrows show late transcription units and red arrows denote the VA-RNA I and II. Adopted from [149]. 

 

In principle, the human Ad life cycle can be divided in an early and late phase. In the early 

phase, regulatory proteins are expressed. Regulatory proteins are responsible for activating 

transcription of other viral genes, for avoiding antiviral host mechanisms, and for altering host 

protein expression. The first transcription unit expressed shortly after cell entry is the E1A 

gene. The two major proteins encoded by E1A are transcription modulators and force the host 

cell to enter the S-phase [150] [151]. The gene products of E1B are the proteins called 19K and 

55K, which both prevent apoptosis of the host cell by inhibiting the tumor suppressor protein 

p53 as well as using p53-independent apoptosis [152] [153]. From the two early regions E2A, 

three proteins are encoded by alternative splicing: TP, which is responsible for a unique 

protein-priming mechanism, the DNA polymerase, and the ssDNA binding protein (DBP) [154] 

[155] [156]. Proteins encoded by E3 have immunomodulatory functions [157]. The gene 
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products of the E4 gene, which encodes 18 distinct mRNAs due to alternative splicing 

mechanisms, are associated with DNA replication, transcription and in the regulation of cell 

cycle signaling [158] [159]. The VA RNAs are responsible for inhibition of the interferon-

induced PKR  and for the block of cellular micro-RNA machinery [160] [161]. As soon as all 

proteins responsible for viral DNA replication are synthetized, the late phase starts with DNA 

replication on the one side and transcription of late virus genes on the other side. The late 

viral genes encode the structural proteins and the proteins that are necessary for the 

maturation of viral particles [162].  

1.2.3.2. Adenoviral DNA replication  

The DNA replication of human Ad depends on a unique mechanism among viruses. It starts 

between 5 to 8 hours after infection of the cell. The DNA replication is catalyzed by the viral 

DNA polymerase (POL) and involves other essential viral components such as the pre-terminal 

protein (pTP), which forms a heterodimer with the POL. The DBP is the viral single strand 

binding protein and essential in stabilization of replication intermediates [163] (Figure 4). The 

initiation of the process starts when a deoxycytidine monophosphate (dCMP) is covalently 

linked to the pTP serine hydroxyl group by the adenovirus polymerase [164]. The pTP has a 

high affinity for ssDNA. In presence of the two cellular factors octamer-binding transcription 

factor-1 (Oct-1) and nuclear factor-1 (NF1), it binds to the origin of DNA replication and 

functions as a primer for replication [165] [166]. The DBP most likely plays a key role for the 

unwinding of the DNA,  although the full mechanism has not yet been understood [167]. Then 

a 5’ to 3’ elongation process starts and the new growing strand displaces the old one [168]. 

Subsequently, the new dsDNA serves as template for the following replication rounds. In a 

second step, the displaced single strand, which is protected by DBPs, forms a panhandle 

structure by hybridization of the complementary sequence of the two ITRs. The strand 

synthesis is then primed by new pTP binding and takes place in the same way as the 5’ to 3’ 

strand synthesis [169] [170]. DNA replication is finalized by a viral protease cleaving pTP to TP. 

The resulting progeny DNA is finally packaged into the virion [171]. The protein priming and 

the missing lagging strands (and Okazaki fragments) clearly differentiate the human Ad 

replication machinery from the mammalian DNA replication as well as for the replication 

strategy of most DNA viruses. 
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Figure 4: Adenovirus genome replication.  

Terminal protein precursor (pTP) and viral DNA polymerase form a heterodimer. This binds to viral 

DNA and induces DNA replication by priming. During elongation process, one strand is displaced by 

new synthesized DNA and protected from degradation by binding of DNA binding Protein (DBP). 

Panhandle structure is formed by hybridization and second strand is synthesized. Figure reprinted from 

ViralZone with permission [172]. 

1.2.3.3. The adenovirus virion 

Ads consist of icosahedral particles of about 90 to 100 nm in size, which are composed of 13 

structural proteins denoted by roman numerals (II-X). The 252 capsomeres comprise the 

major structural component: the trimeric hexon proteins and 12 pentons, consisting of a 

pentamer and a penton base. There is a trimeric fibre protein at each capsid vertices 

projecting from the penton base that mediates the initial attachment to the host cells. Species 

C Ad enter the host cell via the primary coxsackie B virus and adenovirus receptor (CAR) on 

the cell membrane [173]. Although most Ad species are able to bind CAR, they primarily use 

several additional receptors: CD46 as well as the cadherin protein Desmoglein-2 (DSG-2) and 

the sialic acid-containing proteins were identified as entry receptors for different Ad species 

[174]. Subsequently, the penton base promotes interaction with cellular αv integrins, causing 

the entry of the virus via clathrin-mediated endocytosis. Other minor components of the 

capsids are IIIa, VI, VIII and IX. After internalization within the endosomes, the acidification 

leads to the release of the dismantled virus particle due to disruption of the endosomal 

membrane by protein pVI [175]. Inside the capsid, the viral double-stranded DNA genome is 

associated with five basic polypeptides: V, VII and X (also called Mu), which form the virus 

core, Iva2, responsible for genome packaging and the TP [149]. After transportation along the 

microtubules, the viral DNA is imported into the nucleus where DNA replication of the virus 

takes place [162] [176]. Since translation to proteins occurs in the cytoplasm, but the assembly 
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of progeny occurs in the nucleus, protein VI serves to shuttle the proteins over the nuclear 

pore complex back into the nucleus [177]. There, assembled virions with the packaged DNA 

must go through a maturation process by processing several viral proteins with the viral 

cysteine protease [178]. As the nucleus finally is fully packed with virions, the cytoskeleton is 

disrupted leading to rounding up of cells and in the end to cell lysis [179] [180]. 

1.2.3.4. Induction immune cascade 

Human Ad infection induces release of type I interferons (IFN) in infected cells: IFNα and IFNβ, 

which cause an antiviral state in neighboring cells [181] [182]. At the level of the host, 

however, the immune response upon symptomatic Ad infection is initiated by the release of 

proinflammatory cytokines IL-6, IL-1β and additionally the tumor necrosis factor alpha (TNF-

α) into the bloodstream. Other important innate immune mechanisms include the activation 

of cytotoxic immune cells [183]. Macrophages are attracted at first to different infected 

organs. They are trapping the invading viruses and play an important role in preventing 

viremia and systemic spread of Ad infection [184] [185] [186]. Further cytotoxic innate 

immune cells are chemo-attracted by different macrophage-derived cytokines and 

chemokines, whereby IL-1α/IL-1R1 pathway is the most important [187]. The adaptive 

immune response plays a crucial role in controlling the dissemination of adenovirus infection. 

Both humoral and cytotoxic adaptive immune mechanisms are involved in humans to contain 

adenovirus infection. It is believed that the serotype-specific antibody response is protective 

against reinfection with the same serotype. 

1.2.3.5. Antiviral drugs against adenovirus infections 

Until now, no approved drug against Ad is available and therefore only broadly active antivirals 

such as cidofovir or ribavirin are used in therapy of adenoviral diseases. Cidofovir acts as an 

Ad DNA replication inhibitor by mimicking a triphosphate nucleotide substrate for Ad DNA 

polymerases after activation by cellular kinases (see also 1.2.2.6). It is active against all species 

of human adenoviruses in vitro. Several clinical case studies have already indicated an efficient 

treatment of acute adenoviral keratoconjunctivitis as well as adenoviral infections in 

immunocompromised children and adults with cidofovir [188] [189] [190] [191] [192]. It was 

shown that the time point of treatment after infection plays a key role concerning the antiviral 

efficacy of cidofovir [193]. Additionally, combination-therapies with e.g. intravenous 
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immunoglobulin therapy (IVIG) demonstrate promising results [194]. The disadvantage using 

cidofovir for therapy of adenovirus infections is a high rate of non-responders and a limited 

oral bioavailability. This is the reason why an intravenous administration is necessary. 

Moreover, cidofovir tends to be accumulated in renal tubule cells to toxic levels and therefore 

this drug is associated with nephrotoxicity [195] [196]. 

Another broad-spectrum antiviral agent, which is used against both RNA and DNA viruses, is 

ribavirin. In vitro activity is shown mainly against Ad of species C, which is the clinically most 

relevant species in humans [197]. It is a purine nucleoside analogue, but up to now, there has 

been no consensus about the mechanism of action that would explain the major antiviral 

activity of ribavirin [198]. According to the “European guidelines” ribavirin is not an approved 

drug for the treatment of Ad infections since it failed to show consistent activity against 

various different Ad serotypes.  

A new anti-Ad therapy showed a major advantage in recent years, concerning upcoming drugs 

against Ad: Brincidofovir (3-hexadecyloxy-1-propanol-cidofovir), developed by Chimerix, 

received Fast Track designation from the FDA for the treatment of Ad, CMV and smallpox virus. 

In addition, it obtained Orphan Medicinal Product Designation from the European Commission 

for the prevention of Ad- and CMV-disease. Brincidofovir (previously named CMX001) is a 

lipid-linked derivative of cidofovir and can be orally administered because of a lipid moiety. 

The drug is cleaved only within the cells to Cidofovir and cannot exit cells readily. Since it is 

not transported by an organic anion transporter, it does not show any nephrotoxicity because 

there is not re-accumulation in renal tubules [199] [200]. 

Patients suffering from T-cell-specific diseases, such as T-cell-depleted grafts, severe 

lymphopenia, and hematopoietic stem cell transplantation, especially associated in children, 

have a high risk for fatal Ad infections [201]. Successful treatment with Ad-specific cytotoxic 

T-lymphocytes from donors (CTL) have been reported [202] [203]. 

1.2.3.6. Assays for virus resistance 

Failing to control Ad infections in risk groups with systemic Ad infection occurs frequently. A 

timely start of monitoring human Ad loads, especially in vulnerable patient groups, is 

important to prevent progression of invasive and disseminated diseases and to control the 

susceptibility of Ad in immune compromised patients [204]. The role of viral resistance 
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development in these therapy failures is unknown. Detection methods for different Ad 

serotypes include quantitative PCR (qPCR), Ad-specific viral antigen assays, and viral culture. 

Evaluation by real time PCR is a fast and easy-to-handle test. However, the current lack of 

broad knowledge concerning the drug resistance mutations in Ad does not allow genotyping 

of resistance. A reliable phenotypic resistance test is an urgent need in the field to generate 

the information pool needed for the genetic approaches. The basis of the current standard 

phenotypic tests, the culture of Ad, is work and time intense. It can take one to four weeks. 

Additionally, in some cases, the viral isolate does not grow well in cell culture [205]. 

For evaluation of new anti-Ad-targets it is important to have a cell culture model for screening 

the antiviral activity of a certain compound. The most commonly used methods for in vitro 

antiviral assays in the case of Ad are: the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT)-based method, the plaque assay, the yield reduction assay, and the real-time 

PCR. These methods can be applied at any step of the viral replication cycle [206] [207]. Also, 

several other methods can be used like non-replicative vectors with a reporter gene, as well 

as other cell-based assays that concentrate on specific steps of the Ad life cycle. Furthermore, 

biosensor method using capacitance sensor arrays, computation method and animal model 

can be used for detection of Ad [208]. 

1.3. Replicon-based reporter systems in virology 

Replicons are genetic elements that are amplified by virus infection. In general, they are 

comprised of a viral origin of replication (ORI) and a transgene. The ORI itself is the starting 

point of DNA- or RNA-replication. The dependence of the initiation of replication on certain 

viral elements, which are missing from the replicon itself, is the key factor for the specificity 

and the inducibility of replicon systems. As a consequence, the transgene is only expressed, if 

this deficiency is rescued by a co-infecting complementation proficient virus. These systems 

can provide platforms for new viral vaccines, specific detection system of infectious RNA 

viruses, drug susceptibility testing, studies on viral replication, and pathogenesis [209] [210] 

[211] [212]. 

Especially in the field of RNA virus research and diagnostics, replicon-based systems are 

already playing important roles as specific live cell-based reporter systems for detection of 

infectious particles. In contrast to traditional diagnostic tools, replicon-based reporter systems 
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have the advantage of a great sensitivity towards infectious viruses and are furthermore a 

robust, fast, cost effective, and specific technology [213]. They can easily be applied for testing 

of potential new antiviral inhibitors in a high throughput format. 

Unlike RNA viruses, replicon-based reporter vectors for DNA viruses are more difficult to 

establish due to the challenges of viral DNA delivery into the nucleus and the dependence of 

the DNA virus transcription on the host RNA polymerases. Until now, only one replicon-based 

gene expression system for a DNA virus was published [214]. 

1.3.1. RNA virus replicon systems 

RNA virus replicons have the advantage that replication and transcription of the genetic 

information are mainly confined to the cytosol. If nuclear localization was needed, the 

transgenes could not be transcribed by the host RNA polymerases. The replicons derive from 

either positive- or negative-strand RNA viruses with at least one essential gene deletion. 

Besides the viral ORIs and the transgene, the RNA virus replicons normally encode for the 

specific RNA replicase and many viral co-factors too. RNA replicons can be used for several 

approaches such as trans-complementation of essential viral genes, for tracking of viral 

infections, and for the production of recombinant viruses [211]. 

1.3.2. DNA virus replicon systems  

The only published DNA virus-based replicon vector is specific for the murine CMV (MCMV) 

replication. It is based on an episomal vector and constitutes a conditional gene expression 

system that depends on viral DNA replication. The true-late genes of herpesviruses are only 

expressed after onset of lytic DNA replication and silenced in the absence of tightly regulated 

viral factors [214]. For the construction of the MCMV based replicon vectors, an episomal 

transgene was coupled to the MCMV origin of lytic replication (oriLyt). Since the oriLyt is 

activated upon a MCMV infection, the transgene expression relies on a co-infection of the cell 

with a wild-type MCMV. While the reporter gene expression is silenced in the absence of a 

lytic MCMV infection, an active infection leads to an induction of the transgene expression by 

more than 1000-fold. Mohr et al. used this mechanism as a tool for effective complementation 

of toxic viral late genes without the need of an additional inducer. Furthermore, the MCMV 

replicon-based vector could be exploited in vitro for intracellular immunization against MCMV 
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infection. In principle, the MCMV replicon vector shows a virus dose dependent induction of 

the transgene and therefore is able to provide a quantitative reporter tool for productive 

MCMV infection [214]. The disadvantage of the MCMV replicon system is that it is dependent 

on host histone-deacetylase-induced silencing process for optimal inducibility and therefore 

specific stable cell lines have to be generated for each application. Moreover, the published 

strategy could not be applied to human CMV (Zsolt Ruzsics, personal communication). 

1.4. Adeno-associated virus as basis for a replicon vector 

The Adeno-Associated Viruses (AAV) replicate only when the host cells are infected by another 

DNA virus. This natural switch built into the AAV’s genetic system provided a promising 

platform to develop a replicon system responding to DNA virus infections. 

1.4.1. Adeno-Associated Virus and their replication 

In 1965, a small parvovirus was discovered as contamination of an Ad preparation and was 

therefore named adeno-associated virus [215]. This virus belongs to the Parvoviridae family, 

which has been isolated from many species, including humans. The genus to which the AAV is 

assigned to is named Dependovirus because it does not productively infect cells in vitro 

without a coinfection by a so-called helper virus. Viruses, known to serve as helper viruses for 

AAV are Ad, many herpesvirus strains like HSV-2 [216], HCMV [217], VZV [218] EBV, HHV6 

[219] and pseudorabies virus (PrV) [220]. Other virus families, like human papillomavirus 

(HPV) [221] or an insect virus called baculovirus [222] were also shown as inducers of AAV 

productive cycle. Vaccinia virus is known as a sub-helper for AAV replication and packaging 

but fails to activate AAV promoters [223]. 

AAVs have a non-enveloped, icosahedral capsid of about 20-26 nm in diameter. Their genome 

consists of a linear, single-stranded DNA with approximately 4.7 – 6 kb. 13 human- and 

primate- specific AAV serotypes are currently known and the seroprevalence within the 

human population is very high (about 80%) [224]. Although no disease or pathogenic 

properties could be associated to AAV infections, the virus can be readily isolated from many 

different human samples. CD3+ T lymphocytes were recently suggested as putative site of AAV 

persistence in humans [225]. 
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1.4.1.1. AAV genome organization 

The AAV particles carry a single stranded 4.8 kbp large linear DNA genome. At each end of the 

genomes, there are identical ITRs of about 150 bp, which form secondary structures by base 

pairing with one another [226]. The cis elements in the ITRs are necessary for AAV replication 

and for packaging of the AAV genome into the capsids [227]. Within the ITRs there are 3 open 

reading frames (ORFs), which encode the non-structural Rep gene, the structural Cap gene, 

and the assembly activating protein (AAP) gene [228]. Via unspliced and single-spliced forms, 

two out of four mRNAs encoding for the Rep proteins are transcribed by 2 different promoters 

and by additional alternative splicing of either transcript. All in all, the Rep gene encodes for 

four different proteins: Rep78 and Rep68, which are regulated by the promoter p5; Rep52 and 

Rep40 where transcription of both is activated by p19. Rep68 is the truncated version of Rep78 

and Rep40 the one of Rep52 [229]. The Rep gene product is important for regulation of viral 

transcription, replication, encapsidation, integration of viral genome into the host 

chromosome, rescue from the latent state, and packaging of DNA. 

The p40 promoter regulates the Cap gene that encodes the three structural proteins VP1, VP2 

and VP3, all residing in the same reading frame [225] [230]. Responsible for the activation of 

p40 are the two larger Rep proteins in the presence of essential factors provided by large DNA 

viruses (see 1.4.1.3) [231] [232]. A nested alternative ORF within the Cap gene encodes an 

assembly-activating protein (AAP). A nonconventional start site initiates its translation [228]. 

1.4.1.2. Latent infection of AAV 

In the absence of an additional helper virus, AAV establishes a latent state in its host cell. This 

is either characterized by chromosomal integration, mostly within the AAVS1 site located on 

the human chromosome 19, or by persistence in an extrachromosomal ds DNA episome [233] 

[234]. After entering the cell, the single stranded DNA is completed to a double stranded DNA 

in the host cell nucleus. Within the ITR there is a Rep-binding site (RBS) that allows binding of 

the two large Rep proteins of AAV [235]. Rep68 and Rep78 exhibit endonuclease activity, 

which is needed for unwinding the DNA and integration of a single-stranded DNA nick nearby 

a specific terminal resolution site (TRS) at the ITR [236]. In the AAVS1, a homologous DNA 

sequence to the RBS was found. This 33 bp sequence is sufficient for AAV integration and 

encompasses the RBS and the TRS element [237]. 
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1.4.1.3. Productive replication cycle of AAV 

Suitable conditions such as the infection of the same cell with a defined helper virus or, to a 

much lower extend, due to metabolic inhibitors, UV irradiation or genotoxic compounds lead 

to an initiation of a lytic replication cycle of AAV [238]. If the AAV genome is latently integrated 

into the host genome, the induced Rep gene products lead to its rescue [239]. As starting 

point, AAV p5 and p19 promoters are trans-activated by specific viral helper factors [240] 

[241]. As a consequence, the expression of the large Rep proteins lead to the replication of 

the AAV genome [242]. AAVs replicate their genome over unidirectional strand-displacement 

replication (Figure 5) [243] [244] [245]. Two motifs within the ITRs are important for 

replication: the TRS and the RBS. The ITRs have the ability for self-annealing and therefore 

build secondary structures on both ends of the genome, which provide unidirectional DNA 

synthesis due to a base-paired 3’OH group. Then, the replication of the AAV strand is done 

dependent on the infecting helper virus by either the viral or the cellular DNA polymerase with 

support by cellular proteins, which are involved in this process. As soon as the DNA template 

is copied, the terminal resolution step is initiated by binding of the Rep proteins at the RBE 

within the ITRs on both ends of the AAV genome. Their endonuclease activity is responsible 

for introducing a site-specific single stranded nick at the TRS. This leads to a free 3’-OH serving 

as a primer for new DNA synthesis [246]. The additional helicase activity provided by the REP 

proteins is another function in the replication process and is important for rendering the TRS 

site to single-stranded and therefore providing the access for introducing the nick into the TRS 

[236]. As a result, a double stranded full length AAV genome as well as a single stranded full 

length AAV displacement product is generated [247].  
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Figure 5: AAV Genome Replication.  

Model of ssDNA replication of AAV genome showing the steps that lead to generation of multiple AAV 

genome copies. Illustration taken from [246]. 

The transcription of the AAV capsid proteins is controlled by p5 dependent Rep proteins in the 

presence of helper virus. Here, the binding of the cellular factor Sp1 to the larger Rep proteins 

promotes induction of the p40 promoter. In the presence of helper virus functions and wild-

type AAV Rep proteins, there are three sequence elements essential for p40 promoter activity: 

the two Sp1 binding sites at -50 (Sp1-50) and -70 (GGT-70) bp upstream of the start of p40 and 

the TATA-box at -30. Another important element for maximal Rep mediated p40 activation is 

the CARG-like element at -140 in the p19 promoter, which cooperates with the Sp1-50 site of 

the p40 promoter [232] [231]. 
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After the expression of the capsid proteins, the AAP protein directed capsid assembly takes 

place in the nucleus and genomes with both positive and negative polarity are packaged into 

the preformed AAV particles by assistant of the small Rep proteins Rep52 and Rep40 [227]. 

1.4.1.4. Ad helper functions for productive AAV replication  

A productive AAV replication is dependent on helper functions by different helper viruses. 

Isolated adenoviral gene products that are able to induce AAV replication are E1A, E1B, E2A, 

E4ORF6, and the VA-RNA [248]. The different Ad proteins reveal different tasks: E1A is needed 

for the activation of the AAV promoters as transcription factor, for driving the host cell into S-

phase of the cell cycle and stabilization of p53, which leads to apoptosis [249] [241]. The E2A 

encoded protein DBP binds the ssDNA of AAV together with Rep gene products in the nuclear 

replication centers and serves for viral DNA replication and furthermore for viral mRNA 

processing and export [250] [251] [252]. It is also important for activating p5 transcription of 

AAV [253]. By inhibiting the interferon-inducible eIF-2 protein kinase, the Ad derived VA-RNA 

circumvents this cellular anti-viral mechanism, which would block AAV protein translation 

[254] [255]. E1B55K together with E4ORF6 prevents apoptosis and counteracts E1A by forming 

a complex with p53 that leads to degradation [256] [257]. Furthermore, the two proteins form 

a heterodimer in order to export AAV and Ad late mRNAs from the nucleus and at the same 

time to inhibit the transition of Ad early genes as well as cellular mRNAs [258]. In case of Ad 

induction, the DNA polymerase responsible for AAV replication is of cellular origin [259]. 

1.4.1.5. HSV helper functions for productive AAV replication  

Opposed to Ad, HSV-1 helper functions are directly involved in AAV genome replication. As 

helper functions for AAV, the ternary HSV-1 helicase/primase (HP) complex and the major ss 

DNA-binding protein ICP8 are sufficient for a productive AAV2 replication [260] [261]. For the 

initiation of AAV genome replication, ICP8 forms a ternary complex by co-localization with 

Rep78 and the AAV ssDNA within nuclear replication centers [262] [263]. In addition, a few 

other HSV-1 gene products enhance AAV replicative cycle. ICP0 protein was shown to activate 

Rep gene expression in latently AAV infected cells [264]. The proteins ICP4 and ICP22 act 

synergistically with ICP0 and therefore support the enhancing effect. Furthermore, the HSV-1 

DNA polymerase complex (UL30/UL42) was proven to increase the AAV DNA replication 

substantially [260]. Another HSV-1 protein, the exonuclease (UL12), has recently been shown 
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to intervene with AAV genome replication. UL12 increases the resolution of AAV replicative 

forms and in addition it is involved in AAV particle production [265]. 

The helper effect of HPV is dependent on E1, E2 and E6 genes, which are able to increase AAV 

replication in vitro. The main contributor was shown to be the helicase/ATPase domain of the 

carboxy-half of E1 [266] [221]. 
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1.5. Objectives 

The aim of this work was the construction of a novel replicon-based gene expression system 

based on the genome of the Adeno-associated virus. This system had to fulfill several criteria: 

 

1. Expression of the AAV replicon system transgene should be induced by wild-type virus 

infection without further modification of the viral genome. 

2. There should be no homology between the AAV-based replicon system and the 

inducing virus to avoid recombination events. 

3. Several delivery methods of the AAV replicon vector should be tested for different 

applications of the system. 

 

The newly generated AAV replicon-based system had to be tested for several applications: 

 

1. Trans-complementation of the toxic HAd5 late protein pVI by the AAV replicon vector 

should be tested in order to have a tool for studying essential viral genes in a 

chronological correct expression kinetic. 

2. A fast phenotypical diagnostic assay for detecting drug-resistance in patient-derived 

viral samples should be generated in order to decrease the treatment start time for 

the patient and furthermore to get the most effective therapy according to the 

sensitivity of the infecting virus. 

3. A drug susceptibility test system should be established in order to test new drugs 

against herpes- and adenoviruses in a high-throughput screening format ensuring 

reliable quantitative results for data analysis. 
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2. Material 

2.1. Devices 

BD FACSCanto™ II Biosciences, San Jose, CA, USA 

Biofuge Pico Heraeus Centrifuges, Buckinghamshire, E 

Bio-Photometer Eppendorf, Hamburg, D 

CASY® cell counter Schärfe System, Reutlingen, D 

Centrifuge 5417 R Eppendorf, D 

Centrifuge AvantiR J-26 XPI Beckman Coulter GmbH, Krefeld, D 

Centrifuge AvantiTM J-20 XP Beckman Coulter GmbH, Krefeld, D 

Fluorescence microscope DMI4000B Leica, Wetzlar, D 

Gene PulserTM Bio-Rad, D 

Incubator B5050E Haereus instruments, D 

Incubator BB16CU Haereus instruments, D 

Bakterienschüttelschrank Certomat BS1 Satorius, Göttingen, D 

Light Cycler ® 2.0 Roche, Mannheim; D 

Light microscope Axiovert 40L Zeiss Carl AG, D 

Magnetrührer RCT basic  IKA® Labortechnik, D 

Microplate Luminometer XFluor4_V4_51 Tecan, Grödig, A 

Multifuge 3 S-R Heraeus Centrifuges, Buckinghamshire, E 

Multikanalpipette, 12-Kanal (100 µL, 30-300 µL) Eppendorf, Hamburg, D 

NanoDrop™ ND-1000 Spectrophotometer Peqlab, Erlangen, D 

NanoPhotometer® P-Class P330 Implen, Westlake Village, USA 

Optima LE-80K Ultracentrifuge Beckman Coulter GmbH, Krefeld, D 

PH-Meter 430 Cornig, Miami, USA 

Photo documentation apparatus Bio-rad, München, D 

Shaking water bath GFL 1092 Burgwedel, D 

T Gradient PCR Machine Biometra, Göttingen, D 

Thermomixer 5436 Eppendorf, Hamburg, D 

Vortex-Mixer M51 IKA® Labortechnik, D 

2.2. Consumables 

96 well plate flat CC ST W/Lid Thermo Electron, Langenselbold, D 
Caesium Chloride Disposable PD 10 Desaltin Sigma-Aldrich, Deisenhofen, D 

CASYcups OLS OMNI Life Science 
Cell culture dish (20 cm2; 55 cm2; 145 cm2) Corning, Durham, USA 
Cell culture plate (6-, 12-, 24-, 48-, 96-well) Corning, Durham, USA 

Cell scrapers Costar, Bodenheim, D 
Combitips plus (5 mL, 10 mL) Eppendorf, Hamburg, D 

CryoTube™ Vials nunc, Langenselbold, D 
Electroporation cuvettes Bio-Rad, D 
epDualfilter tips (2-100 µL; 20-300 µL) Eppendorf, Hamburg, D 
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Eppendorf tubes Eppendorf, Hamburg, D 

Falcons conical tubes (15 mL, 50 mL) Becton Dickinson, Heidelberg, D 
Inoculation Loops Sarstedt, Nürnbrecht, D 

LightCycler® Capillaries (20 µL) Roche, Mannheim, D 
Mikroschraubenröhre 0.5 mL Sarstedt, Nürnbrecht, D 

Pipettes (5 ml, 10 ml, 25 ml) Kuhnle, Karlsruhe, D 
Reaction tubes (0.5 mL, 1.5 mL, 2 mL) Eppendorf, Hamburg, D 
Ultracentrifugation tubes Beckman Coulter GmbH, Krefeld, D 

2.3. Reagents and biochemicals 

Acetone Roth, Karlsruhe, D 
Acetic acid Sigma-Aldrich, Deisenhofen, D 

Acycloguanosine Sigma-Aldrich, Deisenhofen, D 
Agar BD Falcon™, D 

Agarose Thermo Fisher Scientific, MA, USA 
Alcaline Phosphatase (CIP) NEB, Frankfurt/Main, D 
Ammonium sulfate (> 99.5%, p.a.) Fluka Chemie, Buchs, CH 

Ampicillin Sigma-Aldrich, Deisenhofen, D 
Bacto™ Agar Becton Dickinson, Heidelberg, D 

Bacto™ Tryptone Roth, Karlsruhe, D 
Bacto™ Yeast Extract Becton Dickinson, Heidelberg, D 

Benzonase® Nuclease Sigma-Aldrich, Deisenhofen, D 
Boric acid Sigma-Aldrich, Deisenhofen, D 
Carboxymethyl Cellulose Sodium Medium Sigma-Aldrich, Deisenhofen, D 

Cell culture lysis reagent (5x) Promega, Madison, USA 

Cesium chloride, Optical Grade Sigma-Aldrich, Deisenhofen, D 

Chloramphenicol Sigma-Aldrich, Deisenhofen, D 
DMEM-Dulbecco’s Modified Eagle 

Medium 

Thermo Fisher Scientific, MA, USA 
DNA ladder (100 bp, 1 kbp) NEB, Frankfurt/Main, D 

dNTPs NEB, Frankfurt/Main, D 
Ethanol Roth, Karlsruhe, D 

Ethylen-Diamin-Tetra-Acetic acid (EDTA) Fluka, Karlsruhe, D 
Fetal calf serum (FCS) PAN-Biotech, Aidenbach, D 

Fomaldehyde Roth, Karlsruhe, D 
Foscarnet sodium hexahydrate Sigma-Aldrich, Deisenhofen, D 
FuGene® HD Transfection Reagent Promega, Madison, USA 

Glycerin Roth, Karlruhe, D 

Glycin Roth, Karlsruhe, D 

Hepes (1M) buffer Thermo Fisher Scientific, MA, USA 
Hygromycin B solution Sigma-Aldrich, Deisenhofen, D 
Isopropanol Merck, Darmstadt, D 

Kanamycin Sigma-Aldrich, Deisenhofen, D 
L-Arabinose Sigma-Aldrich, Deisenhofen, D 

L-Glutamin Thermo Fisher Scientific, MA, USA 
Lipofectamine2000 Thermo Fisher Scientific, MA, USA 



Material  

33 

L-Plus Arabinose Crystalline Sigma-Aldrich, Deisenhofen, D 

Luciferase Cell Lysis Buffer NEB, Frankfurt/Main, D 
Methanol Roth, Karlsruhe, D 

Newborne calf serum (NCS) PAN-Biotech, Aidenbach, D 
Opti-MEM™ I Reduced Serum Medium Thermo Fisher Scientific, MA, USA 

PEI "Max", MW 40.000 Polysciences, Eppelheim, D 
Penecillin/Streptomycine Thermo Fisher Scientific, MA, USA 
Phenol-Chloroform Roth, Karlsruhe, D 

Phosphate buffered saline (PBS) Thermo Fisher Scientific, MA, USA 
Proteinase K Quiagen, Hilden, D 

Q5® High-Fidelity DNA Polymerase NEB, Frankfurt/Main, D 
Restriction enzymes and buffers NEB, Frankfurt/Main, D 
Sodium acetat Merk, Darmstadt, D 

Sodium chloride Merk, Darmstadt, D 

sodium dodecyl sulfate SERVA, Heidelberg, D 

SuperFect Transfection Reagent Quiagen, Hilden, D 
Tris-HCl (pH 8.0) Sigma-Aldrich, Deisenhofen, D 

Tris Sigma-Aldrich, Deisenhofen, D 
Trypsin/EDTA Solution (TE) Thermo Fisher Scientific, MA, USA 
T4 DNA Ligase NEB, Frankfurt/Main, D 

2.4. Commercial Kits 

BioLux® Gaussia luciferase Assay Kit NEB, Frankfurt/Main, D 
DNeasy™ Blood and Tissue Kit Quiagen, Hilden, D 

Dual-Luciferase® Reporter Assay System Promega, Madison, USA 

Expand High Fidelity PCR System Roche, Mannheim, D 

illustra ™ plasmidPrep Mini Spin Kit GE Healthcare, Freiburg, D 
NucleoBond® PC100 Plasmid DNA Purification Kit Macherey-Nagel, Düren, D 
Plasmid Maxi Kit Quiagen, Hilden, D 

QIAquick PCR Purification and Gel Extraction Kit Quiagen, Hilden, D 
QuantiTect SYBR Green PCR Kit Quiagen, Hilden, D 
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2.5. Culture Media for bacteriology and cell culture 

Table 2.5.1: LB medium 

LB medium 

10 g Bacto Tryptone 

5 g Bacto yeast extract 

5 g NaCl 

add 1 L ddH2O 
 

Table 2.5.2: LB agar 

LB agar 

7.5 g Agar 

in 500 mL LB medium 

 

Table 2.5.3: TE buffer 

TE buffer 

10 mM Tris, pH 8 

1 mM EDTA 

 

Table 2.5.4: TAE buffer 

TAE buffer 

40 mM Tris-HCl 

1 mM EDTA (pH 8.0) 

20 mM acetic acid 

add 1 L ddH2O 

 

Table 2.5.5: TBE buffer 

TBE buffer 

90 mM Tris 

2.5 mM EDTA (pH 8.0) 

90 mM boric acid 

add 1 L ddH2O 

 

Table 2.5.6: Freezing medium 

Freezing medium 

10% DMSO 

60% FCS 

30% DMEM 

 

Table 2.5.7: 1 x Hepes buffer 

1 x Hepes buffer 

100 mM of HEPES 

20 mM of MgCl2 

add 100 mL ddH2O 
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2.6. Oligonucleotides 

All oligonucleotides for cloning and sequencing used were either synthesized by Metabion 

(Martinsried, D) and additionally HPLC purified if the sequence exceeded 33 nt or purchased 

from GATC for sequencing directly. 

List of oligonucleotides: 

Name Comments Sequence 5’ - 3’ 

AVfor Sequencing primer for AAV 
replicon vector 

CCGTGTCAGAATCTCAACCC 

AVrev Sequencing primer for AAV 
replicon vector 

CATGCTTTGCATACTTCTGCC 

REPfor1 Sequencing primer for AAV 
replicon vector 

AGAAGCTGCAGCGCGACTTTCTGAC 

REPrev1 Sequencing primer for AAV 
replicon vector 

GGTGATCAGATCAAAAACTTCAGCCAGGTAC
ATG 

REPfor2 Sequencing primer for AAV 
replicon vector 

GAGCTGGTCGGGTGGCTCGTGG 

REPrev2 Sequencing primer for AAV 
replicon vector 

GGTGGGCAAAGGATCACGTGG 

pBR3 GATC sequencing primer for 
AAV replicon vector 

TCCCCATCGGTGATGTC 

5ITRfor Sequencing primer for AAV 
replicon vector 

GAAGTGGCGAGCCCGATCTTCCCC 

HYGfor Forward PCR primer for 
pAV1-Hyg 

GTGTGGGCCCTGTGGTATGGCTGATTATGATC
CTC 

HYGrev Reverse PCR primer for 
pAV1-Hyg inclusive a multiple 
cloning site (MCS) 

GTGTCTCGAGGACACTCTCTCTGAGCTAGCTT
CGTACGGATATCACCGGTAACTTAAGTTGCGG
CCGCGTGTGGAAAGTCCCCAGGCTCCCC 

Bgfp-rev Sequencing primer for pAV1-
GFP-Hyg 

GGACGAGCTGTACAAGTAAAGCGGCCGCGAC 

LUCfor Forward PCR primer for 
pAV1-GLuc-Hyg 

GTGTAGATCTCGGGATCCACCGGTCGCCACCT
CCGGAGGCGGCGGCTCCGAAGACGCCAAAAA
CATAAAGAAAGG 

LUCrev Reverse PCR primer for 
pAV1-GLuc-Hyg 

CTCTGGCACAAAATCGTATTCATTA 

pEGFP_N Sequencing primer for pAV1-
GFP-Hyg 

CTGGTCGAGCTGGACGG 

M13_FP GATC sequencing primer for 
pL-MTT-P and pL-SV40L-P 

TGTAAAACGACGGCCAGT 

M13_RP GATC sequencing primer for 
pL-MTT-P and pL-SV40L-P 

CAGGAAACAGCTATGACC 

AVfor2seq Sequencing primer for pAV1-
GLuc-P40M-MTT-TPL and 
pAV1-GLuc-P40M-SV40L-TPL 

GCTGCCGATGGTTATCTTCC 
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GLucrevseq Sequencing primer for pAV1-
GLuc-P40M-MTT-TPL and 
pAV1-GLuc-P40M-SV40L-TPL 

TTGTTCTCGGTGGGCTTGGC 

AVfor3seq Sequencing primer for pAV1-
GLuc-P40M-MTT-TPL and 
pAV1-GLuc-P40M-SV40L-TPL 

ATGTGGATTTGGATGACTGC 

H3-PPVIT-
zeo2 

Forward PCR primer for 
ETPCR_DELpVI 

CTGGCGGCGACATGGACGCATACATGACACA
CATACGACACGTTAGCTATTGAACTGCTGATC
TTCAGATCCTC 

H5-PPVIT-
zeo 

Reverse PCR primer for 
ETPCR_DELpVI 

TAAAAAGTCTGGACTCTCACGCTCGCTTGGTC
CTGTAACTATTTTGTAGACGTTTACAATTTCGC
CTGATGCG 

pVI-3seq Sequencing primer for pBA5-
FRT-ΔpVI 

CTCAGGTACTCCGAGGCGTCC 

pVI_5seq Sequencing primer for pBA5-
FRT-ΔpVI-zeo 

ATCCTGCCCCTCCTTATTCC 

BAC_for Sequencing primer for pBA5-
FRT- Che-ΔpVI-zeo 

GCCGTGCCGGCACGTTAACC 

pVI_5seq Sequencing primer for pBA5-
FRT- Che-ΔpVI-zeo 

ATCCTGCCCCTCCTTATTCC 

APVIfor Forward PCR primer for 
pAV1-PVI-Hyg 

GTGTGCTAGCATGGAAGACATCAACTTTGCGT
CTC 

APVIrev Reverse PCR primer for 
pAV1-pVI-Hyg 

GGGTGCAATCCCTGAAGCGCCGACGATGCTT
CTGAGCGGCCGCACAC 

 

List of real time PCR primer: 

Name Sequence 5’ - 3’ 

QGLucfor AAGTTCATCCCAGGACGCTGCC 

QGLucrev ACACTGCACGTTGGCAAGCCCT 

GAPDHfor TGGTATCGTGGAAGGACTCA 

GAPDHrev CCAGTAGAGGCAGGGATGAT 

 

2.7. Enzymes for molecular biology 

All restriction endonucleases used during this study were purchased from New England 

Biolabs (NEB) (Frankfurt/Main, D) and applied according to the manufacturer’s instructions. 

2.8. Plasmids 

pLITMUS28 NEB, Frankfurt/Main, D 

pAV1 (REF: Laughlin et al 1983) ATCC 37215 

pTRE2Hyg Clontech, Mountain View, CA, USA 

pGluc NEB, Frankfurt/Main, D 

pEGFP-N1 Clontech 
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pB45neo-F-tet Derived from pBMGNeo [267]. The papillomavirus derived sequences 
and the MTT promoter used in this study were identical to pBMGNeo 

pSVL-mo FceRI Newly synthetized sequence by Addgene (Cambridge, MA, USA) 

pMK-T-P40M(syn) Newly synthetized by Invitrogen GeneArt Gene Synthesis; mutated 
human Ad-5 p40 promoter (Thermo Fisher Scientific, Waltham, MA 
USA) 

pMK-T-TPL(syn) Newly synthetized by Invitrogen GeneArt Gene Synthesis; 5′-
untranslated tripartite leader sequences (Thermo Fisher Scientific, 
Waltham, MA USA) 

pO6-ie-zeo GenBank AccNr: AY700022.1 [268] 

pO6-A5-CMV-
mCherry 

Sirion Biotech, Martinsried, Germany 

pCP20 Chloramphenicol and ampicillin resistant genes, temperature 
sensitive replication of yeast Flp recombinase gene [269] 

2.8.1. Plasmids that were constructed in this study 

Name (Resistance) Comments 

pAV1-Hyg Generated by inserting the amplicon PCRHyg –MCS (PCR template on 
pTRE2Hyg using primer pair HYGfor and HYGrev) replacing the Gap 
genes into pAAV1 with a hygromycin cassette and a multiple cloning 
site (MCS) with ApaI/XhoI. 

pAV1-GLuc-Hyg Generated by inserting the amplicon PCR-GLuc (PCR template on 
pGLuc using primer pair LUCfor and LUCrev) inot pAV1-Hyg after 
restriction with NheI/NotI using the sites in the cloned MCS. 

pAV1-GFP-Hyg The EGFP gene was excited from the plasmid pEGFP-N1 and inserted 
into pAV1-Hyg after treatment with NheI/NotI using the sites in the 
cloned MCS of pAV1-Hyg. 

pL-SV40L-P Generated by inserting the amplicon PCRSV40Lpro (PCR template on 
pSLV-mo using primer pair SV40LPfor (#1505) and SV40LPrev 
(#1506))  into pLitmus28 after restriction with XhoI/AgeI 

pL-P40M-SV40L The mutated p40 promoter from plasmid was excised from the 
plasmid pKM-T-P40M and inserted into pL-SV40L-P after treatment 
with XhoI/BglII. 

pL-P40M-SV40L-
TPL 

The TPL sequence was excised from the plasmid pKM-T-TPL and 
inserted into pL-P40M-SV40L after treatment with AvrII/AgeI. 

pAV1-GLuc-P40M-
SV40L-TPL 

The P40M-SV40L-TPL sequence was excised from the plasmid pL-
P40M-SV40L-TPL and inserted into pAV1-GLuc-Hyg after treatment 
with NheI/BsteII. 

pL-MT-P Generated by inserting the amplicon PCR MTTpro (PCR template on 
pB45neo-F-tet using primer pair  MTTfor (#1507) and MTTrev 
(#1508)) into pLitmus28 after restriction with XhoI/AgeI 

pL-P40M-MT The mutated p40 promoter was excised from the plasmid pKM-T-
P40M and inserted into pL-MTT-P after treatment with XhoI/BglII. 

pL-P40M-MT-TPL The TPL sequence was excised from the plasmid pKM-T-TPL and 
inserted into pL-P40M-MT after treatment with AvrII/AgeI. 
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pAV1-GLuc-P40M-
MT-TPL  
 

The P40M-MT-TPL sequence was excised from the plasmid pL-P40M-
MT-TPL and inserted into pAV1-GLuc-Hyg after treatment with NheI 
(fulcut) /BsteII (partial cut). 

pAV1-pVI-Hyg Generated by inserting the amplicon PCRAd5_ppVI (PCR template on 
pBA5-FRT using primer pair APVIfor and APVIrev) into pAV1-Hyg 
after treatment with NheI/NotI. 

2.9. Bacterial artificial chromosomes 

2.9.1. Published BACs and BACs available in the group 

Name Comments 

pBA5-FRT Derived from [270]  BAC carrying the Ad5 genome and an FRT site for 
homologous recombination; left ITR, the encapsidation signal, the E1 
and E3 region are deleted;  

2.9.2. BAC’s cloned during this study 

Name Comments 

pBA5-FRT-ΔpVI-
zeo 

Generated by homologous recombination to replace the pVI gene of 
pBA5-FRT by a zeocin resistance cassette using the amplicon 
ETPCR_DELpVI (PCR template on pO6-ie-zeo using primer pairs H5-
PPVIT-zeo and H5-PPVIT-zeo2) 

pBA5-FRT-Che Ectopic insertion of pO6-A5-CMV-mCherry into pBA5-FRT via Flp/FRT 
system. 

pBA5-FRT- Che-
ΔpVI-zeo 

Ectopic insertion of pO6-A5-CMV-mCherry into pBA5-FRT-ΔpVI-zeo 
via Flp/FRT system. 

2.9.3. Viruses 

Name Comments 

Human adenovirus 
type 5 wild-type (Ad5-
WT ) 

German reference center, Albert Heim, Hannover, D 

Ad5-Che SIRION Biotech, Martinsried, D 

Human Ad-12  Kindly provided by Prof. A. Ehrhardt, Lehrstuhl für Virologie und 
Mikrobiologie, Witten, D 

Human Ad-3  Kindly provided by Prof. A. Ehrhardt, Lehrstuhl für Virologie und 
Mikrobiologie, Witten, D 

Human Ad-11  Kindly provided by Prof. A. Ehrhardt, Lehrstuhl für Virologie und 
Mikrobiologie, Witten, D 

Human Ad-9 Kindly provided by Prof. A. Ehrhardt, Lehrstuhl für Virologie und 
Mikrobiologie, Witten, D 

Human Ad-17  Kindly provided by Prof. A. Ehrhardt, Lehrstuhl für Virologie und 
Mikrobiologie, Witten, D 
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Human Ad-4  Kindly provided by Prof. A. Ehrhardt, Lehrstuhl für Virologie und 
Mikrobiologie, Witten, D 

HSV-1 strain F Kindly provided by Dr. G. Jäger, Max von Pettenkofer-Institut, 
München, D [271] 

HSV-1 res Kindly provided by Dr. G. Jäger, Max von Pettenkofer-Institut, 
München, D Resistant control strain used in the viral diagnostic 
department of the MvP. 

ACV+ HSV-1 isolate 
# 824670 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-1 isolate 
# 842369 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-1 isolate 
# 842913 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-1 isolate 
# 854014 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-1 isolate 
# 838500 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-1 isolate 
# 847890 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-1 isolate 
# 848759 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 852044 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 846206 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 861747 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 845708 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 854437 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 860929 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-1 isolate 
# 845531 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-2 isolate 
# 17-168 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-2 isolate 
# 17-604 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-2 isolate 
# 17-742 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV+ HSV-2 isolate 
# 18-650 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-2 isolate 
# 18-161 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 

ACV- HSV-2 isolate 
# 18-553 

Kindly provided by Dr. V. Kapper-Falcone, Institut für Virologie, 
Freiburg, D 
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HCMV (TB40-BAC4) Wild-type BAC derived endotheliotropic HCMV strain [272]; 
Kindly provided by PD Dr. rer. nat. Barbara Adler, Max von 
Pettenkofer-Institut, München, D 

2.9.4. Recombinant viral particles 

Name Comments 

rAAV1-CMV-GFP SIRION Biotech, Martinsried, D 

rAAV1/2-CMV-GFP SIRION Biotech, Martinsried, D 

rAAV2-CMV-GFP SIRION Biotech, Martinsried, D 

rAAV4-CMV-GFP SIRION Biotech, Martinsried, D 

rAAV5-CMV-GFP SIRION Biotech, Martinsried, D 

rAAV6-CMV-GFP SIRION Biotech, Martinsried, D 

rAAV2-REP-GLuc SIRION Biotech, Martinsried, D 

rAAV1/2-R-GLuc SIRION Biotech, Martinsried, D 
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3. Methods 

3.1. Propagation of recombinant DNA in E. coli 

3.1.1. Culturing recombinant E. coli 

For propagation of plasmid DNA or viral BAC DNA in bacteria, the respective Escherichia coli 

strains carrying the recombinant DNA were amplified. The strains for harvesting recombinant 

DNA were propagated either in liquid culture using low-salt Lucia Broth (LB) medium or, if 

isolation of single colonies was needed, on LB-agar plates in the presence of appropriate 

antibiotics. Antibiotics used were: Ampicillin (amp) at concentrations of 100 µg/mL for 

selection of high copy plasmids, and 50 µg/mL for selection of low copy plasmids and BACs, 

Chloramphenicol (cm) was used at concertation of 25 µg/mL, Kanamycin (kn) at 50 µg/mL, and 

Zeocin (zeo) at 30 µg/mL. DH10B and PIR1 cells were cultured at 37°C and SW102 were 

cultured at 32°C. For optimal aeration liquid cultures were propagated under constant shaking 

at 160 rpm. 

Glycerol stocks of the bacterial strains with the DNA of interest were long-term stored. For 

this purpose, 600 µL of the respective culture were added to 400 µL of 60 % (v/v) sterile 

glycerol and after rigorous vortexing they were stored at -80°C. To recover the strains from 

the glycerol stocks they were either plated or recovered in liquid pre-culture o.n. 

 

Table 3.1.1.1: Used bacterial strains 

E. coli strain Genotype 

DH10B F −  mcrA Δ(mrr−hsdRMS−mrcBC) Φ80lacZΔM15 ΔlacX74 recA1  
endA1 araD139 Δ(ara, leu) 7697 galU galK rpsL nupG λ −   
(Invitrogen, Karlsruhe, D) 

PIR1 F −  Δlac169 rpoS(Am) robA1 creC510 hsdR514 endA recA1  
widA(ΔmluI):pir-116 (Invitrogen, Karlsruhe, D) 

SW102 DH10B [λc1857 (cro-bioA)<>Tet] gal490 ΔgalK [273] 

  

3.1.2. Preparation of electro-competent bacteria 

For the preparation of electro-competent DH10B and PIR1 cells, 2 x 200 mL pre-warmed LB-

medium was inoculated with 2 mL of overnight pre-cultures (see chapter 3.1.1) and kept at 
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37°C constantly shaking at 160 rpm until reaching the middle logarithmic phase at OD600 of 

about 0.5. The bacterial cultures were then incubated on ice for 30 min and centrifuged to 

collect the bacteria at 6000 x g for 10 min at 4°C. All further steps were subsequently 

performed on ice with pre-cooled equipment and buffers. The received pellets were combined 

and re-suspended in 200 mL of 10 % (v/v) glycerol. The bacteria were collected again by 

centrifugation as above. This washing step was repeated two times to remove as much salt 

residuals as possible. After the last centrifugation step, the pellet was re-suspended in 1 mL 

of fresh 10 % (v/v) glycerol and aliquoted to 65 µL/tube in 1.5 ml Eppendorf tubes. The bacteria 

were either transformed directly by electroporation or snap-frozen in liquid nitrogen and 

stored at -80°C.  

For preparation of electro-competent SW102 E.coli, 100 mL of LB were inoculated with 2 mL 

of the pre-culture and grown at 32°C constantly shaking at 160 rpm until the OD600 of 0.55 to 

0.6 was reached. In case of homologous recombination, the expression of the recombinases 

was heat induced at incubating the bacterial culture 42°C for 15 min in a shaking water bath. 

The bacterial cultures were then incubated on ice for 10 min and centrifuged to collect the 

bacteria at 6000 x g for 10 min at 4°C. All further steps were subsequently performed on ice 

with pre-cooled equipment and buffers. The received pellets were combined and re-

suspended in 50 mL of pre-cooled ddH2O. The bacteria were collected again by centrifugation 

as above. This washing step was repeated two times to remove as much salt residuals as 

possible. After the last centrifugation step, the pellet was re-suspended with 250 µL of ddH2O 

and aliquoted to 65 µL/tube in 1.5 ml Eppendorf tubes. The electro-transformation in case of 

SW102 cells was always done directly after the preparation of competent cell. 

3.1.3. Transformation of electro-competent bacteria 

Aliquots of electro-competent cells were either taken directly after their preparation or were 

thawed on ice from frozen aliquots for 15 min. Then approximately 25 – 50 ng DNA was 

transferred to pre-cooled 2 mm electroporation cuvettes. The prepared electro-competent 

cells were added directly to the DNA and mixed. Bacteria cells were electro-shocked at 2.5 kV 

(25 µF/200 Ω). Right after pulsing, 1 mL of pre-warmed LB w/o antibiotics was added and 

suspension was incubated for 1 h at the appropriate temperature (32°C or 37°C) using a 

thermo-mixer. Appropriate amounts of transformed cultures were then plated on LB-agar 

plates with selective antibiotics and cultured o.n. at 32°C or 37°C respectively.   
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3.1.4. Isolation of DNA from bacteria 

3.1.4.1. Small scale isolation of plasmid DNA 

Single clones from the o.n. plate culture were picked and inoculated in 2 mL LB completed 

with the appropriate antibiotics. The cultures were incubated o.n. at 32°C or 37°C, at 160 rpm. 

Plasmid DNA was purified from saturated o.n. cultures using the illustra ™ plasmidPrep Mini 

Spin Kit according to the manufacturer's instructions. 

3.1.4.2. Large scale isolation of plasmid DNA 

For isolation of plasmid DNA in large quantities o.n. 200 mL of LB was inoculated with either 

100 µL of an o.n. culture from small scale preparations or from a scratch of a glycerol stock 

(see chapter 3.1.1) together with the appropriate antibiotics. Plasmids were purified according 

to the manufacturer’s instructions using the NucleoBond® PC100 Plasmid DNA Purification Kit 

(Macherey-Nagel). Plasmid DNA pellet was dissolved in 200 µL TE buffer at 4°C o.n. and then 

stored at -20°C. 

3.1.4.3. Small scale isolation of BAC-DNA 

A single bacterial clone was picked and cultured in 10 mL LB in the presence of the appropriate 

antibiotics for selection of the BAC DNA in SW102 or DH10B strains at 32°C or 37°C, 

respectively, with shaking at 160 rpm o.n. Bacterial cultures were centrifuged at 3500 rpm for 

15 min at RT and then pellets were re-suspended in 300 µL of resuspension buffer P1 of the 

Plasmid Maxi Kit (QIAGEN) and transferred to 2 mL Eppendorf tubes. 300 µL of lysis buffer P2 

of the Plasmid Maxi Kit (QIAGEN) was added and mixed by gentle inversion. After an 

incubation time of 5 min at RT, 300 µL of neutralization buffer P3 of the Plasmid Maxi Kit 

(QIAGEN) was added to precipitate proteins and chromosomal DNA. Samples were incubated 

for 10 min on ice before pelleting the precipitate by centrifugation at 13,000 x g for 10 min at 

4°C. Supernatants were transferred into a new 2mL tube with containing 1 mL of phenol-

chloroform for BAC DNA extraction. After inversion, another centrifugation with 13.000 x g 

for 5 min followed. The DNA containing upper aqueous phase was transferred to a new tube 

and for precipitation 900 µL of isopropanol was added and mixed by inversion a few times. 

Then the precipitates were collected by centrifugation at 13.000 x g for 20 min. The pellet was 

washed with 1 mL of 70% ethanol during centrifuged at 13.000 x g for 10 min to remove salts 
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residuals. Then supernatant was discarded, the pellet was air-dried for 10 min, and finally the 

BAC DNA was dissolved in 60 µL TE buffer o.n. at 4°C. Purified BAC DNA was stored at 4°C. 

3.1.4.4. Large scale isolation of BAC-DNA 

NucleoBond® Xtra Midi/Maxi Kit of Macherey-Nagel was used for isolation of BAC DNA in large 

scale volume as described in the manufacturer’s instructions for low copy plasmids. Then 

precipitated BAC DNA was eluted in 100 µL TE buffer o.n. at 4°C.  

3.2. Analysis and cloning of recombinant DNA 

3.2.1. Determination of DNA concentration  

Isolated nucleic acid concentrations were determined by measuring the optical density (OD) 

at 260 nm and 280 nm by using the NanoPhotometer® P-Class P330. The purity of DNA was 

measured using the ratio between OD260/OD280 that should be optimally in 1.8 for DNA 

preparations. For analyzation of the concentration in ng/µL, the OD260 value had to be 

multiplied with the factor 50 ng/µL and with the dilution factor.  

3.2.2. Ethanol precipitation 

To concentrate purified DNA or for removal of reaction components from DNA solutions, the 

DNA fragments were precipitated by addition of 1/10 volume of 3 M sodium acetate (pH 5.3) 

and three volumes of 100% ethanol. Then the mixture was incubated for 1 h on ice and 

centrifuged at 13.000 x g at 4°C for 30 min. The pellet was washed with 70% ethanol and 

centrifuged another time 13.000 x g at RT for 10 min. After air-drying of the pellet at RT, the 

DNA was dissolved in the required volume using 10 mM Tris-HCl buffer (pH 8.0). 

3.2.3. Polymerase chain reaction (PCR) 

To amplify DNA fragments for mutagenesis and cloning, a touch down PCR protocol was used 

(see Table 3.2.3.1). In this approach, the PCR cycling starts at high annealing temperatures, 

ensuring high specificity. During the run the annealing temperature is decreased gradually, 

allowing high productivity of the amplification. This approach also avoids the necessity of the 

PCR optimization for most of the primer pairs. In general, the PCR reaction was set up using 
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the manufacturer’s protocol of Expand High Fidelity PCR Kit using a reaction volume of 100 µL 

and 3-25 ng template DNA. 

Table 3.2.3.1: Program of touch down PCR: 

 step temperature time cycles 

1. initial-
denaturation 

95°C 5 min  

2. denaturation 95°C 30 sec  

3. annealing 67°C 30 sec -1°C every cycle 

4. elongation 72°C 2 min 17 x back to 2. 

5. denaturation 95°C 30 sec  

6. annealing 45°C 45 sec  

7. elongation 72°C 2 min 20 x back to 5. 

8. final-elongation 72°C 7 min  

9. end 4°C ∞  

3.2.4. Restriction enzyme digest 

DNA restriction endonucleases from NEB were used for either restriction fragment analysis or 

for the preparation of linear DNA fragments. All restriction endonucleases used were 

purchased from NEB and performed according to the manufacturer’s instructions. For 

restriction pattern analysis, 300-600 ng of plasmid DNA was digested with 10 U of the 

appropriate restriction enzyme in a total volume of 20 µL and incubated for 2 h. For 

preparative digestion for cloning of plasmid DNA, 1 µg of DNA was digested at the same 

conditions as for restriction pattern analysis for at least 3 h. 

For analysis of BACs 50 µL (1-2 µg) of BAC mini preparations (see chapter 3.1.4.3) were 

restricted in 60 µL reaction volumes using 10-50 U restriction enzyme o.n. For the digestion of 

BACs for reconstitution of viruses, BAC DNA was ethanol precipitated (see chapter 3.2.2) to a 

concentration of 10-12 µg and diluted in 10 µL. The restriction with PacI enzyme was done 

using 10 x reaction buffer and 10-50 U PacI restriction enzyme in a total volume of 40 µL to 

linearize the DNA. Incubation was done at 4°C o.n. 

3.2.5. Agarose gel electrophoresis 

To analyze the fragment lengths after restriction of plasmid or BAC DNA, the restriction 

fragments were separated by agarose gel electrophoresis. Plasmid derived fragments were 

analyzed using 1 % agarose/ TAE gels containing 1 µg/mL ethidium bromide, which were run 

in TAE buffer. DNA fragments were separated by a fast electrophoresis protocol adjusted to 



Methods 

46 

the length and amount of expected fragments using 80-120 V and a duration of 20-60 min. 

BAC DNA, on the other hand, was separated on a 0.8% agarose/ TBE gel with ethidium 

bromide staining for visualization in TBE buffer for 16 h at 80 V. Separated bands were 

visualized under UV-light and documented by the Eagle-eye imaging system. 

3.2.6. Purification of DNA from agarose gel 

After separation of fragments by preparative restriction enzyme digestion, a selected 

fragment was excised from the gel by usage of non-mutagenic UV-transillumination. The DNA 

was then purified with the Qiaquick Gel Extraction Kit as described by the manufacturer’s 

instructions. The isolated fragments were eluted by 35 µL using 10 mM Tris-HCl buffer (pH 

8.0). 

3.2.7. Blunting of DNA ends 

For ligation of incompatible restriction sites, 5’ overhangs were filled and 3’overhangs 

removed using the DNA polymerase I, Large (Klenow) Fragment of NEB according to the 

manufacturer’s protocol. After a 15 min incubation at a temperature of 25°C of, the reaction 

was stopped. This was achieved by adding EDTA to a final concentration of 10 mM. Then the 

enzyme was heat inactivated for 20 min at 75°C. Then the blunted fragment was purified via 

QIAquick PCR Purification Kit according to the manufacturer’s instruction for further cloning 

steps.  

3.2.8. Ligation of DNA fragments 

The ligation of DNA fragments was achieved by mixed vector and insert in a molar ratio of 1:3, 

respectively, with 2 units of NEB T4 DNA ligase and the T4 DNA ligase reaction buffer using 

100 ng of linearized vector DNA in a volume of 20 µL in total. An additional control reaction, 

containing water instead of insert DNA, was also prepared. Then reaction mix was incubated 

o.n. in +4°C. 2 µL of the ligated DNA were in a further step used for transformation into 60 µL 

of electro-competent bacteria. 
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3.2.9. DNA sequencing 

For verifying the recombinant DNA constructs, 500 ng of generated DNA-plasmids were sent 

to GATC Biotech (Konstanz, D) for Sanger sequencing along with sequencing primers flanking 

the region of interest. 2000 ng of purified BAC-DNA were sent to Sequiserve (Vaterstetten, D) 

for Sanger sequencing with optimized BAC protocols along with sequencing primers flanking 

the region of interest. 

3.3. Mutagenesis of BAC DNA 

Bacterial artificial chromosomes (BACs) enable the preservation and mutagenesis of the 

genome of large DNA viruses in E.coli. Here the advanced methodology of bacterial genetics 

to the cloned viral genomes can be applied for the generation of recombinant viruses with 

virtually any mutation. The fertility factor (F-factor) constitutes the backbone of the BAC 

vector and harbors repE and repF gene products regulating the origin of replication S (oriS) to 

allow maintenance of only one BAC copy per cell, reducing unwanted recombination events  

[274].  

3.3.1. Homologous recombination of BACs 

For the deletion of the pVI gene in the adenovirus BAC DNA, the technique homologous 

recombination was used to manipulate the pBA5-FRT BAC vector coding for an E1/E3 deleted 

Ad5 genome, which can be propagated in 293 cells [270]. To do so, the pVI gene was replaced 

by the marker for zeo resistance. The zeo resistance cassette from pori6ie-zeo was amplified 

by PCR using primers that were flanked by 50 nt homologies to the sequences up- and 

downstream to the pIV coding sequences. The PCR product was column purified, DpnI 

digested and precipitated with ethanol. 

For the homologous recombination, the pBA5-FRT BAC was introduced to the E. coli strain 

SW102. In this E. coli strain cis-acting λ prophage recombineering system can be induced by 

heat shock [273]. The SW102 harboring the pBA5-FRT BAC vector were prepared for electro-

transformation as described in chapter 3.1.2 and were transformed with 0.2-0,5 µg of the 

prepared recombination fragments containing the zeo cassette and the homologies. 

Transformed cells were incubated with 1 mL LB medium w/o antibiotics for 1.5 h at 32°C. Then 

the cells were transferred to cm and zeo containing LB-plates and incubated o.n. at 32°C. 
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Single colonies were picked on the next day and incubated to perform BAC mini-preparations. 

Subsequently, BAC mini-preparations were tested by restriction fragment length 

polymorphism (RFLP) and then sequences verified. 

3.3.2. Flp/FRT recombination system 

In order to insert DNA sequences at a pre-determined site in the viral BAC DNA, recombination 

between two FRT sites was performed by the Flp recombinase to introduce a mCherry 

expression cassette as a marker gene into the Ad5 BACs. The Ad-BACs used in this study 

carried an FTR- site at the position of their deleted E1 region, the place where usually 

transgenes are inserted in first generation Ad vectors. The mCherry expression cassette was 

cloned into pO6-A5-CMV vector, which carried a conditional origin of replication (RK6) and an 

FRT site. For the replication of this RK6 phage based pO6 plasmid, the presence of the phage 

π-protein trans-complemented in the E.coli strain PIR1 is necessary [275]. In other bacterial 

strains lacking π-protein, these plasmids cannot be maintained. Therefor all cloning steps for 

pO6-A5-CMV-mCherry were performed in PIR1 cells, whereas FLP-mediated insertion was 

done using DH10B strain for propagation of the BAC DNA. 

To carry out Flp recombination DH10B cells carrying the recombinase helper plasmid pCP20 

were co-transformed with 100 ng of the pBA5-FRT constructs and the pO6-A5-CMV-mCherry 

plasmid. In order to induce Flp recombinase expression, the transformed cells plated onto LB 

plates at 43°C and selected with cm and kan o.n. to isolate the BACs with the integrated donor 

plasmids. Single colonies were picked on the next day and were analyzed by BAC mini-

preparations, which were tested for single copy insertion of the donor plasmid by RFLP and 

then correct insertions were verified by sequencing. 

3.4. Tissue culture 

3.4.1. Cultivation of mammalian cell lines 

All mammalian cells were maintained under sterile conditions in an incubator providing a 

temperature of 37°C, humidity of 95% and 5% CO2 concentration. Cells were passaged as 

indicated in Table 3.4.1.1. Adherent cells were splitted by removing the old DMEM medium, 

washing once with PBS and detaching the cells from the plate by addition of 0.25% trypsin/ 

EDTA in an accurate amount according to the size of the respective well or culture dish for 5 
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min at RT. Reaction of detaching was stopped by addition of the respective and appropriate 

amount of fully supplemented DMEM medium for resuspension of the cells. After 

centrifugation at 1200 rpm (311 x g), cell pellets were re-suspended again using appropriate 

amount of the full medium and a defined proportion of the cells were aliquoted and seeded 

on new cell culture plates with fresh DMEM medium. To ascertain a defined number of cells, 

100 µL of the aliquoted cells were analyzed by addition of 1 mL of CASYton and measurement 

using the CASYCell Counter & Analyzer. 

 

Table 3.4.1.1: Used cell lines and culture conditions. 

Cell lines Type and source Cultivation medium 
Split ratio, 
interval 

293A Human embryonic kidney cells, ATCC® 
CRL 1573TM 

DMEM 
10% FCS, P/S 

1:8 
2-3 days 

LE2D8 Stable 293A derived cell line containing 
pAV1-GLuc-Hyg; constructed in this 
study 

DMEM 
10% FCS, P/S 

1:8 
2-3 days 

U-2 OS Human osteosarcoma cell line, ATCC® 
HTB-96TM 

DMEM 
10% FCS, P/S 

1:8 
2-3 days 

911 Human embryonic retinoblast cell line, 
RRID:CVCL_1K15 

DMEM 
10% FCS, P/S 

1:6 
2-3 days 

Vero Cercopithecus aethiops kidney 
epithelial cell line, ATCC® CCL-81TM 

DMEM 
10% FCS, P/S 

1:10 
2-3 days 

A549 Human lung carcinoma cell line, ATCC® 
CCL-185TM 

DMEM 
10% FCS, P/S 

1:10 
2-3 days 

HFF Human foreskin fibroblasts, PromoCell 
NHDF-c; C-12300 

DMEM 
10% FBS, Q, P/S 

1:3 
7 days 

P/S, 1.3 % (w/v) streptomycin 0.6 % (w/v), penicillin; Q, 0.3 mg/mL L-glutamine;  

3.4.2. Cryopreservation of mammalian cell lines 

For maintaining of stock cells in liquid nitrogen permanently, cells were grown on 3 x 145 cm2 

dishes to 80-90% confluence and harvested by trypsinization. Then the cells were pelleted by 

centrifugation at 311 x g for 5 min and resuspended in 9 mL freezing medium. For freezing, 

the cell suspension was aliquoted in cryo-tubes, 1 mL each. The cell aliquots in cryo-tubes 

were kept in isopropanol filled cryo-boxes for 48 h at -80°C to allow gentle freezing of the cells. 

Then the frozen cells were long-term stored in liquid nitrogen. 

The frozen cell aliquots in the cryo-tubes were thawed at 37 °C using a water bath. Then the 

cells of each aliquot were transferred to 9 mL fresh DMEM medium and centrifuged at 311 x 
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g for 5 min. Washed cell pellets were subsequently re-suspended with 10 mL appropriate 

medium and seeded on a new 10 cm cell culture dish. 

3.4.3. Transfection of cultured mammalian cells 

Four different transfection reagents were used in the course of this study: polyethylenimine 

(PEI) (Polysciences), Lipofectamine2000 (Invitrogen), FuGene HD® (Promega) or SuperFect 

(Quiagen). For the usage of PEI and Lipofectamine2000, cells were seeded onto 10 cm dishes. 

For FuGene HD® or SuperFect the same was done onto 6-well plates. For all three transfection 

reagents, this was done one day before the experiment. On the day of transfection, the 

confluency should reach 80 %. In parallel to all transfections, an EGFP expressing control 

plasmid was co-transfected for evaluation of transfection efficacy. 

293A cells transfection with PEI was performed using a 6-well plate format for seeding on the 

day before transfection. A total of 6 µg of DNA was used per well, consisting of 1.5 µg of AAV1-

GLuc-Hyg plasmid DNA, 0.75 µg of EGFP control plasmid and for the rest Litmus28 as tracer 

DNA for increasing transfection efficacy was taken. DNA was suspended in 100 µL Opti-MEM, 

15 µL of PEI were added, vortexed and transferred to the cell culture medium after an 

incubation time of 40 min at RT. After incubation time on the cells of 3 h medium was changed 

to fresh complete medium. 

SuperFect was used as transfection reagent for the AAV replicon vector in 293A, 911 and U-2 

OS cells seeded on a 6-well plate to 60 - 80% confluency. Here cells were transfected in 

duplicates with 2 µg DNA consisting of 0.5 µg pAV1-GLuc-Hyg, 0.25 µg pO6-A5-ORI-GFP 

plasmid and 1.25 Litmus28 as stuffer DNA according to manufacturer’s instructions. After an 

incubation time of 3 h, the DNA-SuperFect mixture was removed and changed to 2 mL fresh 

complete medium. 

Transfection of 293A, 911, U-2 OS and Vero cells with FuGene HD® was performed in 

duplicates in 6-well plate format after seeding of the cells onto a 6-well plate to 60 – 80% 

confluency. In total 6 µg of DNA were transfected. For trans-complementation experiments, 

1.5 µL PacI (60 U) restricted and ethanol precipitated BAC DNA, 0.5 µg of AAV1-GLuc-Hyg DNA,  

3.85 µg of stuffer DNA and 0.15 µg of pO6-A5-ORI-GFP control plasmid were mixed, whereas 

for transfection of AAV replicon vector, and 0.75 µg of pO6-A5-ORI-GFP control plasmid were 

mixed with 100 µL of Opti-MEM and vortexed. Then 15 µl of FuGene HD® reagent was carefully 
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added and immediately vortexed bevor incubation for 30 min at RT. Then the DNA-

transfection mixture was added drop wise to the cell culture supernatant.  

Duplicate transfected cells were harvested and pooled together after 72 h and 3E+04 cells per 

well were seeded on a 96-well plate. 

3.4.4. Construction of stable cell lines 

To generate stable cell lines, 293A cells were transfected either with pAV1-GLuc-Hyg or with 

pAV1-EGFP-Hyg. Cells of one 6-well plate were transferred to a 10 cm cell culture dish and 

hygromycin (200 µg/mL) was added for selection towards the AAV replicon vector containing 

cells. Cells that did not show positive transfection of the AAV1-GLuc-Hyg usually died within 4 

- 5 days. Single cell clones were subcloned using limiting dilution by seeding the cells on day 7 

(0.5, 3 and 10 cells per well) onto a 96-well plate under Hyg selection. Single cells that started 

to proliferate were tagged and after confluency were transferred to a 24-well plate and then 

to a 6-well plate. The stable cells were frozen after 4 passages and tested for their inducibility 

after 5 passages by Ad infection with either a Luciferase assay or via FACS analysis.  

3.4.5. Cryopreservation of transfected cells 

Transfection of pAV1-GLuc-Hyg into 293A cells with FuGene HD® as transfection reagent was 

done as described in chapter 3.4.3. Then transfected cells were pooled after 48 and 72 h post 

transfection (h p.t.). Cells were pelleted by centrifugation at 1200 rpm (311 x g), supernatants 

were removed, and cells were re-suspended in freezing media (70% DMEM, 20% FBS and 10% 

DMSO) and seeded onto 96-well plates at a density of 3E+04 cells/well. Subsequently, the 

plates were sealed and then rapidly frozen in -80°C.  

For thawing of the plates 150 µL of pre-warmed growth medium was added directly to each 

well and cells were incubated for 2 hours under normal cell culture conditions. Then, the 

supernatants were removed and 100 µL of growth medium was added to each well. The 

inducibility of the introduced AAV replicon after thawing the transfected cells was tested by 

infection 4, 6, 20 and 26 h after thawing with different MOIs of Ad and HSV-1. 
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3.4.6. Antiviral drug treatment of cultured cells 

For the treatment of cells with different antiviral drugs as listed in Table 3.4.6.1, stock 

solutions were prepared in DMEM and stored in 200 µL aliquots at -20°C and used only once 

after thawing in indicated concentrations. 
 

Table 3.4.6.1: Stock solutions of antiviral drugs. 

drug abbreviation Storage concentration 

Acyclovir ACV 166.67 µg/mL 

Ganciclovir GCV 15 mg/mL 

Foscarnet PFA 300 µg/mL 

Cidofovir Hydrate CDV 15 mg/mL  
 

3.4.7. Extraction of genomic DNA from cultured mammalian cells 

DNA extraction from cultured cell lines was performed before analyzing the genomic DNA via 

quantitative real-time PCR. To do so, 2 wells of a 6-well plate were transfected with the AAV 

replicon vector and 3 days later seeded onto a 12-well plate. Then the cells were either 

infected or kept mock infected by addition of the same volume of complete medium. 

Extraction of the genomic DNA was performed with the DNeasy Blood & Tissue Kit. This was 

done according to the manufacturer’s instructions (purification of total DNA from animal 

cells). 

3.4.8. Quantitative real-time PCR 

Quantitative real-time PCR reaction (qPCR) was performed for analyzing GLuc expression upon 

virus infection after cell extraction. For the reaction 5 µL of the purified DNA were mixed in 

duplicates with 10 µL of QuantiTect SYBR® Green PCR master mix and with the forward and 

reverse primers of either GLuc or the housekeeping gene gapdh (all primers are listed in 

chapter 2.6). The qPCR was performed using the LightCycler® for amplification. Thermal 

cycling conditions comprised 15 min at 95°C, 45 amplification cycles of 15 s at 95°C 

(denaturation), 30 s at 58°C (annealing) and 30 s at 70°C (elongation). Melting curve analysis 

followed with 15 s at 65°C and at the end a cooling phase to 37°C was done. Relative 

quantification of GLuc amplification was performed in relation to uninfected controls and 

normalized to the housekeeping gene gapdh using the delta CT method [276]. 
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3.4.9. Flow cytometry 

For analyzation of the EGFP AAV replicon stable cell line, EGFP expression was measured via 

Fluorescence-based flow cytometry assay. Typically, AAVG clones were seeded 1:4 in 

duplicates in a new 6-well plate and infected 24 h later or mock treated. After 3 days cells 

were harvested by digestion with Trypsin/EDTA and washed with PBS. Cell pellets were re-

suspended in 0.8 - 2 mL PBS and measurement was done using the BD FACS Canto™ II 

cytometer. 

3.5. Virological methods 

3.5.1. Virus infection of cultured cells 

For infection of cells under standard conditions, the appropriate cell line was seeded to a 

confluency of about 90% o.n. in cell culture dishes or a total number of 3E+04 cells per well 

were seeded onto a 96-well plate for infections 4 - 6 h before infection. Appropriate amounts 

of virus stocks or inocula were diluted in complete medium to achieve the respective MOIs 

and applied correspondingly to the cells.  

3.5.2. Reconstitution of viruses from BACs 

For reconstitution of adenovirus from viral BACs permissive cells were transfected with the 

corresponding BAC DNA after manipulation of the viral genome. Positive control of the mutant 

Ad BAC lacking the pVI gene (pBA5-ΔpVI-Che) was the Ad5-WT BAC having Cherry expression 

cassette (pBA5-Che BAC). To this end, 293A or 911 cells were seeded onto a 6-well plate one 

day before transfection as described in chapter 3.4.1. The successful transfection was 

controlled by the EGFP expressing control plasmid as well as by the mCherry expression of the 

BAC mutants with a fluorescence microscopy. 4 days after transfection, the supernatants of 

all cells were removed in each well and then the cells together with the propagated viruses in 

the 6-well plate were immediately stored at -80°C. For both, virus trans-complementation and 

for virus reconstitution from BACs for production of virus stocks, viral suspension was thawed 

by adding 700 µL pre-warmed complete media to each well and transfer to +37°C incubator. 

After 15 min, cells were scraped from the plates and transferred with the media to new 2 mL 

Epis. Then three cycles of freezing (5 min in liquid nitrogen) and thawing (10 min at 37°C) 
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followed before the suspension was centrifuged again at 6.000 x g at RT for 10 min. Sn was 

collected for further processing. 

3.5.3. Preparation of viral inocula 

For preparation of low titer virus inocula optional amount and size of cell culture dishes with 

the appropriate cells grown to 90% confluency were infected with either a reconstituted virus 

BAC or a previous virus stock. Ad were propagated in 293A cells upon infection at a MOI of 1. 

Harvesting of lysed cells and Sn followed 1 day after complete cytopathic effect was observed. 

The pooled suspension was centrifuged at 6.000 x g at 4°C for 15 min. Except of 2 mL the Sn 

was collected, and an aliquot was stored in -80°C for safety. The cell pellet was re-suspended 

in the remaining 2 mL Sp. Then three cycles of freezing (5 min in liquid nitrogen) and thawing 

(10 min at 37°C) followed before the suspension was centrifuged again at 6.000 x g at 4°C for 

15 min. Viruses in the Supernatants were harvested and Aliquots of 250 µL were stored at -

80°C. Virus titer was analyzed by endpoint titration (chapter 3.5.5). 

For propagating HSV, Vero cells were infected at MOI 0.01 and cell-virus suspension was 

collected 4 d p.i., harvested and frozen at -20°C. After a thawing process to 37°C, suspension 

was vortexed for 15 sec and centrifuged at 6.000 x g at 4°C for 15 min. Then the Supernatants 

were aliquoted using a volume of 100 µL and stored at -80°C. 

3.5.4. Preparation of high-titer virus stocks 

Large scale adenovirus stocks were purified using the caesium chloride (CsCl) purification 

method. To do so, first a seed stock of the virus had to be generated to be able to propagate 

a bulk stock. Therefore 150 µl of either a previous virus stock or of the 2nd lysate after BAC 

reconstitution (chapter 3.5.2) were used to infect 293A cells grown to a confluency of 80 – 90 

% in a 15 cm culture dish. One day after cytopathic effect was reached 100% of the cells, all 

cells were detached by pipetting up and down. Then suspension was centrifuged at 6000 x g 

for 5 min at 4°C.  Supernatants were removed and replaced with 4 mL of fresh DMEM. The 

virus particles were realized from the infected cells by three cycles of freezing (5 min in liquid 

nitrogen) and thawing (10 min at 37°C). The lysates were clarified by centrifugation at 6.000 x 

g at 4°C for 10 min and stored immediately at -80°C. 
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For the bulk preparation of Ad, 20 x 15 cm dishes of 293A cells grown to 80 - 90 % confluency 

and were infected with 150 µL of the thawed seed stock. When full CPE was evident, cells 

were detached as before and harvested together with the supernatant. After centrifugation 

6.000 x g at 4°C for 15 min, the supernatant was transferred to an extra tube and the 

remaining cell pellet was diluted with 3 - 4 mL of this supernatant. The rest of the supernatant 

was removed. Three cycles of freezing (5 min in liquid nitrogen) and thawing (10 min at 37°C) 

followed, then centrifugation at 6.000 x g at 4°C for 15 min was done, supernatant was 

transferred to a new tube to remove cell debris and kept on ice. Then 25 U Benzonase per mL 

lysate was used and incubated at 37°C for 30 min. Then the lysate was kept on ice again. 

The CsCl purification was done by preparing a CsCl gradient in an Ultraclear Beckman tube. To 

do so, first 3 mL of δ=1,2 CsCl solution (13.85 g CsCl, 50 mL PBS) were added to a fresh tube 

and then 3 mL of δ=1,4 CsCl solution (30.5 g CsCl, 50 mL PBS) were added underneath the 

δ=1,2 CsCl layer w/o disturbing the interface. Then the prepared viral Supernatant was 

carefully added to the top of the gradient and the tube was filled up with δ=1,2 CsCl almost to 

the rim. Centrifugation at 32000 x g at 4°C for 1.5 h followed. After the centrifugation step 

three different layers should be visible within the CsCl gradient, containing cell debris in the 

top layer, empty virions in the second layer and in the lowest layer there should be properly 

packaged virions. The lowest layer was aspirated by puncturing the tube with a hollow needle 

into a 2 mL syringe. 

For the step of desalination of the virus stock, a sephadex column was prepared by 5 x pre-

washing steps with 1 x Hepes buffer. Then the virus was loaded onto the column and 

desalinated virus eluted in the void volume was aliquoted and stored in -80°C.  

3.5.5. Endpoint dilution assay 

An endpoint dilution assay was performed to determine the infectivity of the virus preparation 

[277]. 293A cells were used to estimate the infectivity Ad5 and its vectors and Vero cells for 

HSV-1.  The cells were seeded in 96-well plates to a density of 10 % in 100 µL complete medium 

the day before infection. Next day 10-fold virus dilution series were prepared in twelve parallel 

wells (one dilution step for each row) in an extra 96-well plate starting with a 100-fold dilution 

in complete medium. 100 µL/well from each dilution between 10-2 - 10-9 were transferred to 

the cell cultures plate using the multichannel pipette. For determining virus titer of Ad and 
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HSV, the cytopathic effect of each virus dilution was observed for each infected well after a 1-

week incubation period, whereas HCMV was analyzed after 9 days. The calculation of the 

TCID50/mL comprises the dilution were 50% of the cells show a cytopathic effect using the 

following formula: 

TCID50  = A-D (S-0.5) 

A - Log of highest dilution showing CPE in over 50 % of the wells 

D - Log of dilution factor 

S - ratio of: number of wells per row with CPE versus number without CPE 

For validation of the HSV resistance or sensitivity towards ACV, 104 cells of the stable replicon 

cell line LE2D8 were seeded onto two 96-well plates and 4 h later treated in duplicates with 

96, 48, 12, 6 and 1 µg/mL of ACV in 50 µL completed medium. Next the cells were infection 

with either the sensitive HSV-1 WT (ACV sens) or the ACV resistant HSV-1 (ACV res) at a MOI 

of 0.035 or mock in a volume of 50 µL. Subsequently after an incubation time of 2 days the 

supernatants were collected, and virus load was analyzed in duplicates by endpoint dilution 

assays in Vero cell line.  

3.5.6. Gaussia luciferase assay 

Bioluminescence measurement of Gaussia luciferase (GLuc) reporter gene expression was 

performed to quantify the induction of the GLuc carrying AAV replicon vectors upon virus 

infection. First, the GLuc assay solution was prepared according to the manufacturer’s 

protocol using the BioLux® Gaussia luciferase Flex Assay Kit. Aliquots of 10 mL were stored in 

-20°C and thawed to RT upon usage. 

For the assay, supernatants were collected in different time points after induction and stored 

in -80°C. Right before the assay they were thawed to RT. 20 µL of each sample in technical 

triplicates was transferred to a white 96-well plate. Then 50 µl of the GLuc assay solution was 

added carefully into each well and incubated for 5 min covered for light protection. For the 

evaluation of GLuc expression, the emitted light was measured using an integration time of 1 

second by the Tecan luminometer. For analyzing the fold induction of GLuc, the measured 

relative light unit (RLU) values were compared to the values measured in the supernatants of 

the AAV replicon vector treated but non-infected cells.  
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4. Results 

4.1. Construction of the AAV based replicon 

Replicon vectors represent replication proficient artificial genetic elements that are induced 

specifically in the presence of a viral infection. One major application of replicons utilizes their 

infection-dependent activation to regulate reporter genes, which can be used to trace 

infection with native viruses. The known replicon vectors are restricted to respond to infection 

with one specific virus species that can activate the homologous origin of replication 

embedded in the replicon constructs. To expand the replicon response to more than one virus 

species, we decided to choose the AAV2 genome as a basis for a replicon system reacting to 

infection with large DNA viruses. The replication of AAV is known to be naturally dependent 

on co-infection with helper viruses like adeno- or herpesviruses [215] [216]. Furthermore, the 

genome replication of AAV can be induced by a helper virus infection not only on the single 

stranded (virion) DNA, but also on a circular double stranded, or linear double stranded 

template [239]. For our purpose we used the plasmid pAV1 [278] containing the complete 4.7-

kb genome of AAV2  (Figure 6.A first panel). This plasmid encodes all important cis elements, 

the two ITRs, and the rep gene for the helper virus infection induced AAV DNA replication on 

double stranded templates. Since the structural gene of AAV is kept silent in the absence of 

helper virus infection but is expressed at very high levels during AAV lytic replication cycle in 

the presence of helper virus infection, we aimed to use the properties of p40 regulation for 

controlling the expression of the transgene of interest. We wanted to delete the coding region 

of the Gap gene to prevent formation of infectious AAV particles during replicon induction but 

preserve the cis-elements, which are involved in regulating the expression of the Gap gene.  

Thus, to construct an AAV replicon vector, a hygromycin resistance cassette was inserted into 

pAV1, replacing all Cap coding sequences upstream of the p40 transcription initiation site. This 

hygromycin cassette (HYG) can be used for selection of stable cell lines carrying the AAV 

replicon. The hygromycin cassette is under the control of an SV40 early promoter, which is a 

constitutive promoter initiating transcription independently of activation of any AAV 

promoter. Next, on the 5’ end of the HYG transcription unit, we flanked a multiple cloning site 

(MCS) to facilitate insertion of transgenes. The MCS is now located directly downstream to the 

p40 promoter and upstream to the HYG. Afterwards, to test the responsiveness of our 
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replicon, two different ORFs were inserted between p40 and the hygromycin cassette using 

the MCS as insertion site. The transgene was either coding for a Gaussia luciferase (GLuc) or 

an enhanced green fluorescence protein (EGFP), resulting in pAV1-GLuc-Hyg or pAV1-GFP-

Hyg, respectively (Figure 6A second and third panels). 

 

 

A 

B 

Figure 6: Cloning and Concept of the AAV replicon vector. 

(A) Cloning of the pAV1-GLuc-Hyg replicon vector was done by deletion of the Cap coding locus of the 

plasmid pAV1 containing the whole AAV 2 genome. Instead a hygromycin resistance cassette under 

the control of a SV40 early promoter and either of the transgene GLuc or EGFP were introduced 

downstream of the inducible AAV p40 promoter. (B) Concept of the conditional gene expression by 

AAV replicon vectors. Delivery of the AAV replicon vector should show no or very low level of transgene 

expression. But, infection with a helper virus should activate DNA replication of the AAV replicon 

vector and consequently induce the p40 promoter to drive expression of the reporter gene. 
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The replicon vector without an accompanying virus infection should have a very low or no 

transgene expression. However, as soon as the replicon carrying cell is infected with an 

inducing (helper) virus infection, the lytic AAV genome replication should start. The replication 

should activate the p40 controlled reporter gene expression, which then can be measured by 

the assay specific to the actual reporter gene (Figure 6B). This allows assaying the virus 

infection indirectly by using simple, well-developed, automated methods for the reporter 

detection instead of more complicated or time-consuming methods for direct detection of 

infectious viruses. 

To examine whether the mechanism of transgene expression of the AAV replicon vector was 

in fact regulated by helper virus infection, we transfected three different cell lines transiently 

with the newly constructed pAV1-GLuc-Hyg vector using SuperFect as transfection reagent. 

293A and 911 cells carry the functional E1 gene of adenovirus type 5, which complements the 

deletion of the E1 region of first-generation adenovirus type 5 derived recombinant viruses. 

We used recombinant Ad5-Che that carry deletions of the E1 and the E3 region (the latter is 

not essential for Ad replication in cell culture), and expresses mCherry as transgene in this 

study [279]. In contrast to 293A and 911 cells, the U-2 OS cell line does not carry 

complementing genes for adenoviruses and therefore replication of the E1 deficient Ad5-Che 

vector is not supported in this cell line. Researching not only the general inducibility but also 

the dependence on a productive helper virus replication, we tested the inducibility of our AAV 

replicon in all three cell lines upon infection with Ad5-Che and Ad5 wild-type virus (Ad5-WT). 

Ad5-WT should be permissive in all three cell lines. Therefore, transfected cells were seeded 

72 h post transfection (p.t.) onto 96-well-plates and infected 4 h later with either the E1 

deficient Ad5-Che at a multiplicity of infection (MOI) of 100, the Ad5-WT virus at a MOI of 1 

or kept non-infected (n.i.). The difference of the chosen MOIs between Ad5-Che and Ad5-WT 

were considering the expected limitation in productivity of the E1 deficient Ad5-Che. The 

supernatants were collected 48 h post infection (p.i.) to complete the infectious cycle of Ad5. 

Then, a bioluminescence assay was performed to evaluate the activity of the secreted 

luciferase by light emission, measured by luminometry and the results were expressed in 

relative light units (RLU) (Figure 7). 
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Figure 7: Productive Ad infection induced AAV replicon vector expression. 

293A, 911 and U-2 OS cells were transfected with pAV1-GLuc-Hyg and infected 72 h post transfection 

with either Ad5-Che at MOI 100 or Ad5-WT at MOI 1 or kept non-infected (n.i.). 48 h p.i. the RLU values 

were measured in a bioluminescence assay. Data from three independent experiments are shown; the 

error-bars represent means ± SD; 

Infection-dependent induction of luciferase signal was observed after infection with Ad5-WT 

in all cell lines and after infection with the E1 deficient Ad5-Che only in 293A and 911 cells, 

which complemented the essential gene E1. Here, the GLuc expression increased by 

approximately 60- to 135-fold. In contrast, replicon transfected but non-infected cells or U-2 

OS cells infected with Ad5-Che showed extremely low levels of luciferase activity. The light 

signal measured in transfected but non-infected cells were comparable to background levels 

that can be observed in non-transfected cells (for example in 293A cells these were 39000 [+/-

6000] for transfected but non-infected and 26000 [+/- 2900] for non-transfected cells) 

demonstrating the tightness of the p40 promoter control on transgene expression. 

Next, we wanted to test whether a productive Ad5 infection is able to induce amplification of 

the replicon vector, in order to determine the role of AAV genome replication in the observed 

response. To test the replicon vector amplification, we set up a semi-quantitative real-time 

PCR. We transiently transfected 293A cell line with pAV1-GLuc-Hyg 72 h before subsequent 

infection with Ad5-Che or keeping them uninfected. We harvested the infected and 

uninfected cells 24 and 48 h p.i. and extracted total cell associated DNA. Vector DNA copy 

numbers were analyzed by performing a semi-quantitative RT-PCR (described in chapter 

3.4.8). The back calculation of the vector copy number (CN) from the observed CT values 

confirmed an increase of replicon vector DNA copies from 2/haploid host genome to 

145/haploid host genome (24 h p.i.) and from 1/haploid host genome to 214/haploid host 

genome (48 h p.i) after infection with Ad5-Che (Figure 8). 



Results 

61 

 

Figure 8: Amplification of the AAV replicon vector after Ad5-Che infection. 

293A were transfected with pAV1-GLuc-Hyg and infected 72 h post transfection with Ad5-Che at MOI 

1 or kept non-infected (n.i.). 24 and 48 h p.i. copy number of the PCR products gapdh (cellular 

housekeeping gene) and vector encoded GLuc gene (Gaussia luciferase gene) were determined by 

semi-quantitative RT-PCR. Vector copy numbers were calculated relative to the haploid host genomes 

by the CT method. Shown is one representative experiment out of 3 replicates. 

Since a robust amplification of the replicon encoded GLuc gene only appeared in virus-infected 

cells, the full activation of the replicon vector occurred in parallel with the infection-

dependent AAV replication after infection with activating viruses. 

These data strongly indicated that the transgene induction of the AAV replicon vector was 

dependent on a productive helper virus infection. 

4.2. Characterization of the AAV replicon system  

The initial reporter gene induction data were promising with regard to the responsiveness of 

the newly constructed AAV replicon vector. However, the data were highly variable. For 

further applications, such as trans-complementation of essential viral genes and in diagnostic 

or screening approaches as reporter for viral replication, the system had to be further 

optimized regarding its reproducibility. First, we aimed to test the different methodologies for 

the delivery of the AAV replicons in target cells. 

Since the AAV replicon was significantly inducible after transient transfection, we primarily 

wanted to optimize this method for delivering the replicon because this system is very flexible, 

allows to target different cell types and requires no modification or further processing of the 

easy-to-produce plasmid preparations. In addition, transient transfection allows further 

characterization of the genetic elements of the replicon required for its performance. To get 
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a simpler protocol and a better reproducibility, a stable cell line could be constructed for 

specific applications as second step. Moreover, since recombinant AAV genomes can be 

packaged into recombinant AAV particles, we wanted to test a new, to our knowledge never 

applied before, approach to deliver replicons using transduction.   

4.2.1. Delivery of the AAV replicon by transient transfection and its 

applications 

The previous experiment showed that the induction of the AAV replicon vector was 

dependent on infection of Ad5 after transient transfection of pAV1-GLuc-Hyg with SuperFect 

as transfection reagent in 293A, 911 and U-2 OS cells. We furthermore wanted to test the AAV 

replicon response using different transfections reagents. After that, we wanted to explore 

which promoters are useful in the replicon vector context and, finally, which viruses can 

significantly induce the replicon system. 

4.2.1.1. Comparing transfection reagents 

Transient transfection generally allows flexibility concerning different cell lines and viruses. 

However, the various methodologies of transfection induce the innate immune response 

differently. To evaluate the optimal transfection reagent for further studies on the AAV 

replicon system, we wanted to test the major groups of different chemical transfection 

reagents. Therefore, SuperFect, which consists of activated dendrimers, was compared with 

two other reagents belonging to other chemical classes: JetPEI, based on polyethylenimine, 

and FuGene HD®, consisting of a proprietary blend of lipids. 

At first the replicon vector pAAV-GLuc-Hyg was introduced with the respective reagent into 

293A cells. For all reagents we used 5 µg total DNA, which was very close to the suggested 

DNA amounts by the vendors of the different reagent in 6-well plate format. To evaluate the 

primary transfection efficacy, 0.25 µg of pO6-GFP was co-transfected. After 3 days the 

transfected cells were trypsinized and either seeded on 96-well plates at a density of 30.000 

cells per well or subjected to FACS analysis to control the transfection efficiency. 6 h later the 

seeded cells were infected with Ad5-Che. 48 h p.i. the AAV replicon derived GLuc expressions 

were measured in the supernatants to characterize the replicon response. 
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After transient transfection, FACS analysis, using the three different transfection reagents, 

revealed a transfection efficiency of 94.93% using PEI, 41.57% using SuperFect and 97.23% 

using FuGene HD® reagents with a standard deviation of 2.9, 10.2 and 1.5, respectively. Data 

of the GLuc measurement showed a significant induction of the AAV replicon system in 293A 

cells irrespective of the transfection reagent (Figure 9).  

 

Figure 9: Comparison of three different chemical transfection reagents. 

293A cells were transfected with pAAV-GLuc-Hyg, using SuperFect, jetPEI or FuGene as transfection 

reagent. Cells were infected 72 h p.t. with Ad5-Che at indicated MOI and 48 h p.i. a bioluminescence 

assay was performed. The induction upon infection was calculated by comparing the RLU values 

recorded after measurements of infected to non-infected supernatants Data from three independent 

experiments are shown; the error-bars represent means ± SD; (Two-Way-ANOVA was performed for 

statistical analysis; ns: p > 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001) 

As noted above, the variation of reporter gene expression between three independent 

experiments was very high in the case of SuperFect and jetPEI. Using SuperFect, the GLuc 

expression was induced 8-fold after infection at MOI 1, 49-fold at MOI 10 and 96-fold at MOI 

100 compared to non-infected but transfected cells. The calculated standard deviation 

between the different experiments was 2, 22 and 66 for the respective virus loads. Similarly, 

jetPEI as transfection reagent resulted in a 17-fold induction at MOI 1 and in a 47-fold 

induction at both MOI 10 and MOI 100 whereas the standard deviation was 11, 42 and 47. 

However, transfection with FuGene achieved the highest GLuc induction of 38-, 129- and 141-

fold after infection with MOI 1, 10 and 100, respectively. Accordingly, transfection with 

FuGene resulted in the best induction and the best reproducibility of replicon vector 

induction. Based on these observations we decided to use FuGene in further experiments 

because it combines the highest efficacy of transfection, best inducibility, and best 

reproducibility among the reagents tested. 
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4.2.1.2. Trans-activation of different viral promoters during infection 

Next, we wanted to test the importance of the p40 promoter for the inducibility of the AAV 

replicon. Different potential applications may need different expression levels of the regulated 

gene of interest, which can most efficiently be regulated by using different promoters. In the 

context of our basic replicon, both the genome replication and transactivation of the natural 

p40 promoter were responsible for the induction of the transgene expression in presence of 

helper functions. To evaluate the intrinsic features of the AAV p40 promoter for the replicon 

response, we inserted two other well-characterized constitutive promoters into the replicon 

construct and tested their inducibility upon Ad infection. We choose a viral promoter, the 

simian virus 40 major late promoter (SV40L) [280], and a cellular mouse metallothionein I 

promoter (MT) [281] as model promoters. 

To do this, the AAV p40 promoter was inactivated by mutation of the TATA sequence of p40 

in order to avoid transgene expression activation due to the AAV specific promoter (Figure 10) 

[232]. The mutated P40 promoter was synthetized and cloned in an extra plasmid together 

with either the SV40L or the MT promoter sequences, and a tripartite leader sequence for 

increasing the efficiency of GLuc mRNA export [282]. Then, the cassettes were transferred to 

the pAV1-GLuc-Hyg vector instead of the AAV p40 promoter on the 5’ end of the GLuc ORF. 

These constructs should be regulated mainly by induction of vector amplification similarly to 

the published constitutive promoter based MCMV replicon. 

 

Figure 10: Cloning of two different constitutive promoters instead of the AAV p40 promoter. 

For the cloning of the constructs pAV1-GLuc-P40M-SV40L-TPL and pAV1-GLuc-P40M-MT-TPL, the AAV 

replicon p40 promoter was eliminated in the pAV1-GLuc-Hyg construct by insertion of a mutated p40 

promoter together with either the MT or the SV40L promoter fused to a tripartite leader sequence 

upstream to the transgene (GLuc) ORF. 
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The AAV replicon plasmids with the respective promoters, pAV1-GLuc-P40M-SV40L-TPL and 

pAV1-GLuc-P40M-MT-TPL, were co-transfected with the tracer plasmid pO6-A5-CMV-GFP into 

293A cells. After controlling the transfection efficiency, the cells were split into 96-well plates 

and 72 h after transfection the cells were either infected with the Ad5-Che at different MOIs 

or kept non-infected. 48 h p.i. the GLuc expression was measured. 

 

Figure 11: Trans-activation of different viral promoters by infection. 

293A cells were transfected with pAAV-GLuc-Hyg (p40) or the respective constructs with the simian 

virus 40 major late promoter pSV40L or the metallothionein I promoter pMT and infected with 

different dose of Ad5-Che or kept non-infected. The supernatants were collected 48 h p.i. and a 

bioluminescence assay was performed. The induction upon infection was calculated by comparing the 

RLU values recorded after measurements of infected to non-infected supernatants. Data from three 

independent experiments are shown; the error-bars represent means ± SD; (Two-Way-ANOVA was 

performed for statistical analysis; **: p < 0.01, ****: p < 0.0001) 

The background GLuc expression levels of non-infected AAV p40 promoter transfected cells 

were 1.9-fold lower compared to SV40L promoter transfected cells and 1.8-fold lower than 

the MT promoter transfected cells. The MT promoter driven replicon appeared to be none-

inducible with Ad5-Che infection at any MOI tested (Figure 11). The simian virus promoter 

SV40L showed 2-, 10- and 23-fold induction of GLuc expression after infection with Ad5-Che 

at MOI 1, 10 and 100, respectively. Nevertheless, the highest increase of the transgene 

expression was significantly demonstrated by the AAV specific promoter p40, where GLuc 

expression was increased 11-, 90- and 207-fold. This data show that p40 promoter-specific 

factors play an important role in the replicon response. The p40 promoter showed the lowest 

background activity, it expressed the highest level of transgene product upon induction, and 

consequently showed the highest inducibility and also the highest expression levels among 

the promoters tested. Therefore, the promoter p40 of AAV was chosen for all further 

experiments in these studies. If lower transgene expression levels are favored upon induction 

(toxicity), the pSV40L based constructs may provide a useful alternative of the p40 construct. 
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4.2.1.3. Induction of the AAV replicon system by different human adenovirus 

serotypes 

Several adenovirus serotypes have been shown to provide helper functions for AAV [283] 

[284]. To test different viruses as inducers, we first tested how efficient helper functions were 

provided by different Ad. To this end, selected serotypes were tested, representing 5 out of 7 

human Ad species for their ability to induce the AAV replicon response. 

At first, we wanted to determine the optimal virus load and time kinetics that is required to 

induce a significant AAV replicon response by wild-type Ad5, which belongs to species C. We 

used this serotype as a model inducer. With this information we could limit the test conditions 

to compare the helper efficiencies of different Ad serotypes. Therefore, the AAV replicon 

vector was transiently transfected in 293A cells and 72 h p.t. the cells were seeded into 96-

well plates and, 4 hours later, infected with Ad5 at different MOIs to find out the minimal and 

maximal inducible infection dose. The supernatants of infected and non-infected cells were 

collected 1, 2, 3, and 4 d p.i. and afterwards the reporter gene expression was evaluated by 

bioluminescence measurement in the supernatants.  

 

Figure 12: Induction of the AAV replicon by different Ad serotypes upon transfection. 

(A) Cells were infected with Ad5 at indicated MOI 72 hours post transfection (h p.t.). The supernatants 

were collected at different time points and a bioluminescence assay was performed. Fold induction of 

infected compared to non-infected RLU values were calculated. (B) Inducibility of GLuc after infection 

with different adenovirus species and serotypes, species A – serotype Ad12 (A12), species B – serotype 

Ad3 and Ad11 (B3 and B11), species C – serotype mutant Ad5-Che (C5), species D – serotype Ad9 and 

Ad17 (D9 and D17) and species E – serotype Ad4 (E4), in comparison with Ad5-Che mutant virus at MOI 

1 was examined 3 d p.i. by collecting the supernatants and comparison of infected versus non-infected 

RLU values. Data from three independent experiments are shown; the error-bars represent means ± 

SD; 
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The results revealed that the best dynamic range of induction can be achieved with a dose of 

MOI 1 (Figure 12A) for Ad5 infection. The induction for higher MOIs (MOI 10 and 100) reached 

a plateau of about 180-fold after 3 d p.i. and at the lowest dose (MOI 0.1) the levels of 

induction were very low. At MOI 1 in contrast, we received a clear dose response until 

collection at 3 d p.i. The induction of reporter gene expression was 133-fold and doubled 

within a 24 h period. The replication cycle of the specific Ad serotypes may differ from each 

other. Therefore, we decided to take 3 d p.i., which is the latest time point of significant 

increase observed by Ad5. Having an average replication cycle of 24h this is one of the best 

growing serotypes.  

In order to test the responsiveness of the AAV replicon to different Ad serotypes we 

transfected 293A cells transiently with pAV1-GLuc-Hyg. Then, the transfected cells were 

seeded on 96-well plates and infected with 7 different Ad serotypes: Ad12 of species A, Ad3 

and Ad11 of species B, Ad9 and Ad17 both belonging to species D, and Ad4 of species E. As 

control, and representing species C, we used Ad5-Che infection at MOI of 1. After analysis of 

the transgene expression 3 d p.i. by bioluminescence assay, the height induction by all tested 

Ad serotypes was compared to non-infected cells (Figure 12B). The infection with Ad12 of 

species A showed the highest induction of GLuc expression (87-fold), whereas the Ad5-Che 

infection induced the GLuc expression 31-fold, similarly as observed before (Figure 9). 

Interestingly, most Ads, besides Ad12, displayed the same range of induction. Ad species B 

viruses for example induced the bioluminescence expression 41- and 54-fold, whereas Ad 

species D viruses showed a 39- and 37-fold induction. Species E derived virus Ad4 was 

demonstrated to induce the least GLuc expression with only 21-fold. The data indicated that 

the AAV replicon system is generally applicable for assays of human adenovirus infections.  

4.2.1.4. Induction of the AAV replicon by herpes simplex viruses 

As Ad, herpesviruses are also known helper viruses for AAV. Therefore, we were primarily 

interested in testing if the AAV replicon vector is inducible by herpes simplex viruses. Both 

herpes simplex virus type 1 (HSV-1) and herpes simplex virus type 2 (HSV-2) can productively 

infect Vero cells, the standard cell line culturing these viruses in clinical virology. Therefore, 

we decided to test these herpesviruses first for their ability to induce AAV replicons upon 

transient transfection of Vero cells. 
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We transiently transfected Vero cells with pAV1-GLuc-Hyg according to the protocol used for 

293 cells and seeded those 72 h later into a 96-well plate at density of 3x104/well. After 4 h, 

the cells were infected with either HSV-1 or HSV-2 using different doses. To examine the GLuc 

expression over time, supernatants were collected after 1, 2, and 3 days after infection. The 

induction of luciferase expression of HSV infected cells were normalized to the values 

obtained in supernatants of non-infected cells (Figure 13A).  

 

Figure 13: Infection with HSV-1 and HSV-2 activates reporter gene expression. 
Vero cells were transfected with pAAV-GLuc-Hyg and infected with different particle numbers of (A) 

HSV-1 and (B) HSV-2. The supernatants were collected at different time points and a bioluminescence 

assay was performed. Fold induction of infected compared to non-infected RLU values were calculated. 

Data from three independent experiments are shown; the error-bars represent means ± SD; 

The experiments revealed that 3 d p.i. the AAV replicon assay was highly inducible at a very 

low infection dose, achieving a plateau after infection at MOI 0.01. For example, infection of Vero 

cells at MOI of 0.001 induced the replicon encoded reporter gene expression 246-fold, 

compared to a 392-fold induction with infection at MOI of 0.01. Infection with the lowest dose, 

at MOI 0.01, showed a significant induction after 2 d p.i. (119-fold). At higher HSV-1 infection 

density (MOI 0.1 or more), a significant induction was already detected after 24 h p.i. With 

MOI 0.1 and MOI 1 the induction was 18-fold and 120-fold, respectively. 

However, induction of the transiently transfected AAV replicon vector with HSV-2 was much 

lower than after infections with HSV-1 (Figure 13B). In this case, the induction of GLuc was at 

maximum 17-fold at a MOI of 0.1. Taken together, the reactivity of the transiently transfected 

AAV replicon system is excellent using HSV-1 infection in Vero cells. On the other hand, HSV-

2 barely induced the replicon-encoded transgene under the same conditions. 
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4.2.2. Construction and characterization of stable cell lines carrying AAV 

replicons 

Despite the flexibility of the transient transfection concerning the investigation of the AAV 

replicon in different cell lines, the reproducibility of the assay needed to be improved. 

Especially applications, such as phenotypic tests in virus diagnostics seek high level of 

standardization. Therefore, we wanted to test whether it is possible to generate cell lines that 

stably maintain the AAV replicon. To this end we wanted to generate cell lines carrying 

different reporter genes under the control of AAV replicon. For quantitative detection of virus 

infection using flow cytometry (FACS), the enhanced green fluorescent protein gene (EGFP) 

was selected and incorporated to the AAV genome as described earlier (chapter 4.1). EGFP is 

known to be a very stable protein, with a half-life of 24 h [285] and can easily be detected in 

the presence of low level induction due to its propensity to accumulate. The other transgene 

we wanted to test with this system, was the GLuc, which we could test using the construct we 

used in the transient assays. The advantage of this reporter gene is its secretion from 

mammalian cells into the cell culture medium, which allows testing without the need of cell 

lysis [286]. The sensitivity of GLuc is very high and, due to its great stability, the possibility of 

collecting the supernatants at different time points and measure their bioluminescence later, 

makes it a useful tool for high throughput applications. 

4.2.2.1. Establishment of an EGFP expressing AAV replicon cell line 

293A cells were chosen as a platform to construct the EGFP reporter based stable AAV replicon 

cell line. This cell line can be infected with both Ad and HSV. Therefore, the pAV1-EGFP-Hyg 

was transfected into 293A cells using FuGene, and individual cell clones were isolated by 

limiting dilution in the presence of hygromycin for selection. 25 cell clones named AAVG#1-25 

were isolated, propagated until a stable stage of growth (usually 6 passages) and frozen for 

further testing. After establishing the clones based on their hygromycin resistance, they were 

tested for their ability to express EGFP upon Ad infection using FACS analysis.  

To analyze the AAVG clones, they were recovered from their frozen stocks and either infected 

with Ad5-Che using a MOI of 100 or kept mock infected. FACS analysis of the non-infected and 

infected cell clone was done 2 d p.i. Among these cell clones, all showed an induction of green 

fluorescence upon Ad infection compared to non-transduced 293A cells, which had a low level 
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autofluorescence (1%). Most of the clones showed a higher proportion of green fluorescence 

positive cells after infection, ranging from 11% to 72%, and indicating Ad5 infection induced 

expression of EGFP. Interestingly, AAVG#7 did show a high proportion of green fluorescence 

that was not further induced by Ad infection. Out of these cell clones the 4 most promising 

clones were selected for further analysis: AAVG#9, AAVG#16, AAVG#20 and AAVG#K, together 

with the non-inducible but GFP fluorescence positive clone AAVG#7. In order to compare the 

inducibility of their GFP expression, the different AAVG clones were either infected with Ad5-

Che at a MOI of 100 or with HSV at a MOI of 1. After 48 h p.i., EGFP expression in the cells was 

analyzed by FACS (Figure 14).  

As expected, AAVG#7 showed green fluorescence independently of virus infection. The other 

selected clones demonstrated a similar increase of transgene expression of 4.4-fold (AAVG#9), 

3.8-fold (AAVG#16), 3.3-fold (AAVG#20) and 3.5-fold (AAVG#K) after Ad5-Che infection. In 

general, the induction after Ad5-Che infection was slightly higher compared to the induction 

of EGFP expression after HSV-1 infection, which was 2.5-fold (AAVG#9), 3.5-fold (AAVG#16), 

1.5-fold (AAVG#20) and 3.6-fold (AAVG#K). Considering the insignificant effect of Ad5 and 

HSV-1 on the reporter gene expression of the AAVG clones, these clones appeared to be 

minimally reactive and therefore represented no advantage over the assay based on the 

transient transfection of AAV replicon. 
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Figure 14: FACS analysis of stable AAV EGFP replicon clones. 

The stable cell lines AAVG#7, AAVG#9, AAVG#16, AAVG#20 and AAVG#K were either non-infected 

(n.i.), infected with the mutant virus Ad5-Che at MOI 100 or with HSV-1 at MOI 1. EGFP capacities were 

determined 48 h p.i. using FACS analysis. Shown is one representative experiment out of two; 
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4.2.2.2. Construction of a GLuc expressing AAV replicon cell line  

Besides EGFP, GLuc represents another possible transgene for the construction of an inducible 

stable cell line. To construct stable AAV replicon clones with GLuc as transgene, the vector 

pAV1-GLuc-Hyg was transfected into 293A cells and single clones were selected by limiting 

dilution under hygromycin selection. Overall, 66 clones were isolated, propagated and tested 

for the inducibility of the transgene expression upon Ad infection. For testing the conditional 

expression of GLuc, the clones were seeded into 96-well plates at 3x104/well density and 

either kept non-infected or infected with the recombinant Ad5-Che at a MOI of 100. 48 h p.i. 

bioluminescence assays of the collected supernatants were performed and compared to the 

respective values obtained in non-infected cultures. Only 1 clone out of the 66 tested was 

responding to the Ad5-Che infection with an about 30-fold induction of GLuc expression.  

This clone, LE2D8, was the only one we further analyzed to define the best conditions of future 

applications. LE2D8 cells were either infected with Ad5-Che at MOI 100 on the same day of 

seeding (day 0), or within the following 3 days (day 1 – day 3). The supernatants were collected 

at different days, ranging from 1 day p.i. to 4 days p.i., in order to test the optimal induction 

time (Figure 15).  

 

Figure 15: Characterization of LE2D8. 

Stable cell line LE2D8 was infected with the Ad5-Che using a MOI of 100 at the same day (Day 0) to day 

3 after seeding, following supernatants collection at different time points (1 – 4 days post infection (d 

p.i.)). A bioluminescence assay was performed, and the inductions of infected cells were calculated by 

normalizing to the values of non-infected cells. Data from three independent experiments are shown; 

the error-bars represent means ± SD; 

The highest induction of the transgene upon Ad infection was detected when LE2D8 cell clones 

were infected at the same day of seeding and analysis of the bioluminescence done on day 3 
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after transduction. Here, the induction of luciferase expression was 40-fold. Infection on the 

day of seeding generally showed an increase of the signal from day 1 to day 3 post infection 

of 1.5-fold, 13-fold and 40-fold. At day 4 the expression of GLuc was slightly decreasing to 35-

fold. If cells were infected 24 hours after seeding, the variation between the experiments 

started to increase considerably. Here, the induction of the transgene was 20-fold (1 day-), 

11-fold (2 days-) and 42-fold (3 days after infection) with a standard deviation (SD) nearly as 

high as the values itself (26, 14 and 30). When the stable cell line was transduced 2 days after 

seeding, the induction was 20-fold with a SD of 27 after collection at day 1 - and 26-fold with 

a SD of 17 at day 2 post transduction. However, when the infection was performed 3 days 

after seeding, no induction of GLuc was detected.  

In summary, the reproducibility of the experiments was better when all were infected on the 

day of seeding, while infection on later days after seeding gave unsatisfactory results for Ad5-

Che induction. 

Concerning the overall time for one assay, the possibility of immediate infection after seeding 

resulted in a shortened assay duration. The bioluminescence after infection of the stable cell 

line was lower when compared to results after infection of transiently transfected cells using 

the same infection conditions (see Figure 7). However, the loss of reproducible inducibility 

culturing the cells together with the extremely low cloning efficiency indicated the instability 

of the AAV replicon construct in stable cell lines. 

4.2.2.3. Human Ad5 and HSV-1 infection induce the AAV replicon in the cell line 

LE2D8 

Based on these findings, the link between the time point of analysis and signal strength was 

nevertheless further evaluated. Therefore, the inducibility of the LE2D8 cell line infected by 

Ad5-Che and HSV-1 was investigated at different MOIs right after seeding. The supernatants 

of Ad5-Che infected cells were collected and analyzed from 24 to 84 h p.i. and of HSV-1 

infected cells from 12 – 60 h p.i. (see Figure 16). 
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Figure 16: Infection of LE2D8 with HAd5-Che and HSV-1. 

(A) The stable cell line LE2D8 was infected with the mutant virus Ad5-Che at a MOI of 1, 10 and 100 or 

kept mock infected and at 24, 36, 48, 60, 72 and 84 h post transduction the induction of GLuc was 

measured. (B) Infection of LE2D8 with HSV-1 at a MOI of 0.1, 1 and 10 or no infection was done. Then 

supernatants collection and measurement of GLuc induction at different time points (12, 24, 36, 48, 

60 h p.i.) followed. The induction of the bioluminescence for both viruses was calculated by comparing 

infected and non-infected values. Data from three independent experiments are shown; the error-bars 

represent means ± SD; 

Both viruses showed a time dependent increase that was not reaching the plateau in the 

tested time. Detailed analysis of Ad5-Che revealed that the expression of GLuc was highly 

dependent on the virus dose. The induction after infection at a MOI of 1 was not significant. 

There was no induction compared to the non-infected cells within the first 24 h p.i. and an 

increase to 4-fold followed only at 84 h p.i. At a MOI of 10, the expression of the transgene 

was higher and increased to 16-fold at 84 h p.i. The highest values of the bioluminescence 

compared to non-infected cells with an increase of 29-fold after 84 hours were reached with 

the highest dose of Ad5-Che. In contrast, the induction of the stable AAV replicon cell line by 

infection with HSV-1 was less dependent on the virus dose, compared to Ad5-Che infections. 

This indicates that HSV-1 infection reached the induction limit faster and at much lower virus 

load. The induction of GLuc could be already detected 24 h p.i. after infection at a MOI of 1 

and 10. The induction compared to non-infected cells was 11-fold and 17-fold. When LE2D8 

cells were infected with HSV-1 at a MOI of 0.1 the earliest time point of a significant 

bioluminescence signal was 36 h p.i. with an induction of 8-fold compared to non-infected 

cells. The highest values were reached 60 h p.i. Here, the induction of GLuc was 58-fold (MOI 

0.1), 68-fold (MOI 1) and 72-fold (MOI 10).  
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Overall, the induction of the stable cell line LE2D8 revealed lower bioluminescence compared 

to the transient system. Nevertheless, the signal strength showed a clear correlation between 

time after infection and MOI for both viruses tested. 

4.2.2.4. The replicon response in LE2D8 cells by various Ad serotypes and HSV-2 is 

limited 

Based on the data from the transient transfection, we were interested to find out whether the 

response in the stable AAV replicon cell line was also inducible by different serotypes of Ads. 

Since the induction of GLuc after Ad5-Che infection of the stable cell line LE2D8 showed lower 

values compared to infection of transiently with pAV1-GLuc-Hyg transfected cells, the aim was 

a proof of principle and the usefulness of LE2D8 for approaches testing different adenovirus 

serotypes. Infection of LE2D8 cells was performed, as before, right after seeding and the 

bioluminescence signal was measured 3 d p.i. Afterwards the induction of GLuc was calculated 

compared to non-infected cells. A marginal increase of the signal could be seen for all viruses. 

The highest induction of GLuc, 15-fold, was reached after Ad12 infection, just like after the 

transient transfection. These results confirmed that the replicon response in LE2D8 

recapitulate the induction seen after transient transfection of the AAV replicon but in a lower 

level (see Figure 17). However, a lower level of inducibility was not observed when the LE2D8 

cell line was used to test HSV-2. 

Figure 17: Infection of LE2D8 with different HAdV-serotypes. 

The stable cell line LE2D8 was transduced with either species C – serotype mutant Ad5-Che (C5) as 

control or with species A – serotype Ad12 (A12), species B – serotype Ad3 and Ad11 (B3 and B11), 

species D – serotype Ad9 and Ad17 (D9 and D17) and species E – serotype Ad4 (E4) at MOI 1 or kept 

mock infected. 3 d p.i., the induction of GLuc was measured. The fold induction of GLuc was calculated 

for all viruses by comparing infected and non-infected RLU values. Data from three independent 

experiments are shown; the error-bars represent means ± SD; 
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To find out whether LE2D8 cells would be a good tool to test HSV-2, they were seeded into a 

96-well plate and infected 4 h later with HSV-2. The virus was a patient isolate (used with 

permission), expanded in cell culture and used at a dilution of 1:10. The GLuc expression was 

subsequently measured after 48 and 72 h p.i. Compared to transient transfection of Vero cells, 

the induction of LE2D8 upon HSV-2 infection indicated no significant signal increase (Figure 

18). 

 

Figure 18: Infection of LE2D8 with HSV-2. 

The stable cell line LE2D8 was infected with HSV-2 using 1:10 diluted viruses. 48 and 72 h p.i., the 

induction of GLuc was measured. The fold induction of GLuc was calculated by comparing infected and 

non-infected RLU values. Data from three independent experiments are shown; the error-bars 

represent means ± SD; 

4.2.3. Induction of frozen AAV replicon vector transfected cells 

Since generating cell lines that stably maintain AAV replicons did not yield a real alternative to 

transient transfection, we explored another way of controlling experiment-to-experiment 

variations.  

In order to do so, we transfected a large batch of 293A cells with pAV1-GLuc-Hyg and re-

suspended them after either 48 or 72 hours in standard freezing medium at a density of 3x104 

/100 L and seeded them in 96 well plates. The plates were then frozen to -80oC. Right after 

thawing, fresh medium was added and then the cells were incubated for 2 hours under normal 

cell culture conditions. After that, supernatants were exchanged to fresh medium. Six h after 

thawing, the cells were ready to be infected with Ad5-Che at different MOIs. The GLuc signals 

in the supernatants were analyzed 48 h p.i. and compared to non-infected cells, which were 

treated the same way. The results showed that freezing and thawing of transfected cells for 

an induction experiment is possible (Figure 19A). The induction was higher when the 
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transfected cells were frozen already at 48 h post transfection. Interestingly, independent of 

the freezing time-point after transfection, the signal was not reflecting the number of viral 

particles used for infection. If the cells were frozen 48 h after transfection, infection at MOI of 

1 resulted in a 126-fold induction of GLuc, whereas the signal decreased to 99-fold and 67-

fold at MOI 10 and MOI 100. The same effect, but lower, could be seen if the cells were frozen 

72 h after transfection. Here, the signal strength decreased from 73-fold at MOI 1, to 59-fold 

at MOI 10 and 46-fold at MOI 100. It seems that a combination of freezing and thawing 

procedure and infection with high dose of Ad has a negative impact on the replicon response. 

 

Figure 19: Frozen AAV replicon transfected cells are induced by helper virus infection. 

293A cells were transfected with pAV-GLuc-Hyg, and either after 48 or 72 h post transfection (p.tf.) the 

cells were seeded in a 96 well plate format and frozen. (A) Cells were thawed and 6 h post thawing 

(p.th.) infected with Ad5-Che at indicated MOI. (B) After thawing of the cells, they were infected either 

6 or 18 h p.th. with HSV-1 at indicated MOI. The induction of GLuc in the supernatants of Ad5-Che and 

HSV-1 infected and non-infected cells were measured. The fold induction of GLuc was calculated for 

all samples by comparing infected and non-infected RLU values. Data from three independent 

experiments are shown; the error-bars represent means ± SD; 
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Consequently, we infected the pre-transfected, frozen and thawed cells with HSV-1 at 

different MOIs to proof whether this effect can be seen using another helper virus as well. For 

this, AAV replicon transfected cells in the prior frozen plates were infected 6- or 18 h after 

thawing. The second time point for infection was chosen in order to let the cells recover for a 

longer period before infection to avoid possible toxic effects of infection with higher MOIs 

(Figure 19B). Here MOI of HSV-1 correlates with the strength of induction of GLuc expression. 

Cells frozen 48 h after transfection and infected 18 h after thawing at MOI 0.01, 0.1 and 1, 

showed the highest induction of GLuc expression (103-, 419- and 649-fold, respectively). 

Freezing the plate 72 h post transfection resulted in a lower induction of the signal. If the cells 

were infected 6 h after thawing, the bioluminescence signals were independent of the freezing 

time point after transfection and were about 90-, 270- and 315-fold, respectively. The 

correlation of the time of infection after freezing and toxicity effects seen with Ad at higher 

viral load could not be confirmed with HSV-1. 

In conclusion, freezing of already transfected and seeded cells is functioning very well. The 

cells in the 96-well plate format could easily be prepared in a larger amount of plates and 

thawed in the respective quantity. The freezing and thawing of the AAV replicon transfected 

cells can be used as an alternative to save time after transfection and to have a ready to use 

system. Nevertheless, this new approach is restricted to cell lines that can be well transfected 

and are robust enough to withstand this protocol. 

4.2.4. Induction of the AAV replicon vector packaged into recombinant 

AAV2 particles 

The so-far tested transfection-based methods for delivery of the AAV replicon did not fulfill all 

standardization characteristics and applicability requirements for the development of a 

reporter assay on virus growth. This can be due to the poor reproducibility of transfection 

based experiments. In addition, delivery of all previously described plasmid-based replicons is 

limited to transient or stable transfection. This restricts the use to only well transfectable cell 

lines for the replicon assays. Testing the inducibility of AAV replicon by other viruses, such as 

human cytomegalovirus (HCMV), which are permissive to only a limited set of target cells, is 

inhibited by the poor transfectability of these cells. 
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In our AAV replicon vector, the ITRs are required as cis elements for the incorporation of its 

genome into recombinant AAV (rAAV) particles. This allows to test whether the AAV replicon 

can be packaged and delivered as recombinant AAV particle. For this purpose, we analyzed 

the transduction efficacy of different rAAV particle serotypes for their ability to transduce 

293A cells, Vero cells and HFF (Human foreskin fibroblasts) cells. This was done to test whether 

packaging systems other than AAV2 are beneficial for the target cell range for the replicon 

assay. Next, we tested if the AAV replicon vector can be packaged into recombinant AAV 

particles by standard co-transfection methodology using AAV2 based packaging plasmids 

[287]. 

4.2.4.1. Transduction efficiency of different recombinant AAV serotypes on Vero 

and HFF cells 

To identify the best rAAV serotype for transduction of Vero cells and HFF cells we used rAAV 

particles carrying EGFP under the control of a CMV promoter (rAAV-CMV-GFP). We tested 

recombinant capsids derived from AAV serotype 1, 1/2 (a hybrid between serotype 1 and 2), 

2, 4, 5 and 6. First, both Vero and HFF cells were transduced with 10000 particles per cell (p/c) 

of the 6 different rAAV-CMV-GFP serotypes. We then analyzed the transduction efficiency of 

the different rAAV serotypes in the cell lines 48 h and 6 days post transduction using 

fluorescence microscopy (Figure 20). The particle rAAV2-CMV-GFP showed the highest 

number of transduction efficiency. 
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Figure 20: Analysis of transduction efficacy of different AAV serotypes. 

HFF and Vero cells were transduced with 10,000 particles per cell (p/c) of different rAAV-CMV-GFP 

serotypes, namely 1, 1/2, 2, 4, 5 and 6. All cells were analyzed for their ability to be transduced by 

fluorescence microscopy 48 h and 6 days post transduction. 

Consequently, the recombinant AAV2-CMV-GFP particles were further analyzed for their 

optimal transduction dose, applying of 100, 1000 and 10000 p/c. We also included two 

additional cell lines - 293A and A549 - which are both possible options to carry out replicon 

induction experiments after Ad infections. After transduction, the cells were analyzed by 

fluorescence microscopy after 24, 48 and 72 h post transduction. In all cell lines the GFP signal 

obtained correlated with the dose of recombinant particles (Figure 21). 
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The observed transduction efficiency was different for each cell line. 48 h post infection, the 

efficacy of GFP expression in 293A, Vero and HFF cells was high, whereas after the same 

timespan A549 cells revealed a low transduction rate of rAAV2-CMV-GFP, which then slightly 

increased after 72 h (Figure 22). 

 

Figure 22: Analysis of transduction efficacy of A549 cells with rAAV2 particle after 72 h. 

A549 cells were transduced with 100, 1000 and 10.000 particles per cell (p/c) of rAAV2-CMV-GFP. 72 

h post transduction, cells were analyzed for their ability to be transduced by fluorescence microscopy. 

 

In conclusion, the serotype 2-derived rAAV particle showed an acceptable transduction rate 

in at least one cell line of interest. 

Subsequently, we tested the production of serotype 2 rAAV particles carrying the AAV 

replicon. The AAV replicon vector pAV1-GLuc-Hyg contains two ITRs serving as viral origin of 

Figure 21: Analysis of transduction efficacy of rAAV2 particles. 

293A, Vero, A549 and HFF cells were transduced with 100, 1000 and 10000 particles per cell (p/c) of 

rAAV2-CMV-GFP. 48 h post transduction, cells were analyzed for their transduction capacity by 

fluorescence microscopy. 
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replication and packaging signal. These two ITRs flank the rep gene and the transgene under 

the control of the p40 promoter, which should be transferred as DNA vector genome into the 

rAAV particle. For the replicon containing rAAV2 particle production we used the helper 

plasmid pDP2rs, which provides the structural and non-structural genes of AAV2 and the Ad 

helper functions [287]. The AAV replicon containing serotype 2-derived recombinant AAV 

particles we named rAAV2-REP-GLuc. 

The semi-quantitatively analyzed ITR differed from the GLuc genome copy numbers along 

different productions of rAAV2-REP-GLuc. These irregularities also revealed a difference 

between ITR and GLuc sequences of 14- and 24-fold in single productions of rAAV2-REP-GLuc 

batches as well as differences between batches concerning the gene copy number of GLuc 

(Table 4.2.4.1.1). 

We did not investigate the reason for these irregularities and decided to use the GLuc-PCR 

based genome counts instead of the commonly used ITR-counts for the particle number 

calculations, since the gene copy number measured using the GLuc gene corresponded to the 

expression data (see later). 

Table 4.2.4.1.1: Comparison of ITR and GLuc copy number by quantitative PCR. 

  ITR copy number Gluc copy number 

rAAV2-REP-GLuc batch 1 N/A 3,40 x 1010 

rAAV2-REP-GLuc batch 2 2,38 x 1011                  5,76 x 109 

rAAV2-REP-GLuc batch 3 3,98 x 1011 2,29 x 1010 

rAAV2-REP-GLuc batch 4 4,25 x 1011 2,17 x 1010 

4.2.4.2. Induction of rAAV-based replicon response 

We selected 293A cells for a first functional test of the transduced rAAV2-REP-GLuc, since this 

cell line showed appropriate induction rates for both Ad and HSV-1 infections after replicon 

transfection. Therefore, 293A cells were seeded onto 96-well plates at a density of 3 x 104 per 

well and right after seeding transduced with 1 to 10000 p/c of rAAV2-REP-GLuc. After an 

incubation time of 6 hours, the transduced cells were infected with either Ad5-WT at MOI 10, 

HSV-1 at MOI 0.1, or kept non-infected. 48 h later a bioluminescence assay was performed to 

measure the GLuc induction and to compare the induction of infected to non-infected but 

transduced cells (Figure 23). 
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Figure 23: Transduction of 293A cells by replicon containing recombinant AAV particles. 

293A cells were transduced with the indicated number of replicon-containing recombinant AAV 

particles (rAAV2-REP-GLuc) per cell (p/c) and 6 h later infected with (A) Ad5-WT at MOI 10, (B) HSV-1 

at MOI 0.1, or kept non-infected. 48 h p.i. GLuc induction was measured and compared to values of 

transduced but non-infected cells. Shown are data from three independent experiments, done in 

triplicates; the error-bars represent means ± SD; 

We observed an infection-dependent induction of the replicon gene expression of at least 10-

fold under all conditions tested. A transduction dose-dependent increase of the GLuc reporter 

gene expression after Ad5-WT infection was also detectable up to the amount of 100 rAAV2-

REP-GLuc per cell. Interestingly, transduction with higher particle numbers resulted in a 

proportional decrease of the signal. Nevertheless, the 537-fold induction after HAd5 infection, 

compared to non-infected but transduced cells, was the highest induction we could observe 

in our study up to this point for Ads. In case of HSV-1 infection, the induction also increased 

dose-dependently in the low-dose settings.  In contrast to Ad5-WT, HSV-1 infection resulted 

in a plateau of GLuc induction after transduction with 1000 p/c. With an induction of 613-fold 

following HSV-1 infection, the rAAV2-REP-GLuc also showed a better inducibility of GLuc 

compared to previously tested delivery methods of the AAV replicon vector. The subsequent 

decrease or constant signal with increasing amounts of rAAV2-REP-GLuc particles after Ad5 

and HSV-1 infections indicated a potential toxicity of AAV transduction at high dose. The big 

variation of induction levels also indicated suboptimal conditions for the replicon response 

upon transduction of 293 cells. 

Nevertheless, the reporter gene of the rAAV2-REP-GLuc was better inducible in 293A cells than 

in any other experiment before. Therefore, we decided to test other cell lines and viruses for 
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their ability to induce the AAV replicon response after delivery by rAAV particle transduction. 

For each cell line and virus, we tested multiple conditions of transduction, infection, and 

collection of the supernatants to draw a comprehensive conclusion of the applicability of the 

AAV replicon system. 

Hence, A549, Vero and HFF cells were seeded onto 96-well plates at a density of 3 x 104/ well 

and transduced with different doses of the rAAV2-REP-GLuc right after seeding. After 6 hours, 

the cells were infected with Ad5-WT at MOI 10, with HSV-1 and HSV-2 at MOI 0.1 and with 

HCMV at MOI 1. The supernatants of infected and non-infected cells were collected for 

analysis at different time points after the respective virus infections. 

In the rAAV2-REP-GLuc transduced A549 cells, the replicon encoded reporter gene expression 

was induced by infection with Ad5-WT at MOI 10 to an unexpectedly high value of 13500-fold 

compared to non-infected cells 48 h p.i. This result was in sharp contrast to the low 

transduction efficacy we observed in this cell line after transduction of the constitutive GFP 

expressing rAAV2-REP-GLuc in the previous experiment (chapter 4.2.4.1). In addition, the 

reporter gene induction directly correlated with the number of AAV replicon containing rAAV 

particles without showing a drop at higher doses (Figure 24A). HSV-1 was able to significantly 

induce the transgene expression 54-fold in transduced Vero cells with 600 p/c after 24 h p.i. 

Similar to A549 cells after Ad5-WT infection, this cell line showed a transduction dose-

dependent increase of the GLuc induction. The induction also increased linearly by time, 

showing an about 7-fold increase from 24 h p.i. to 48 h p.i. The highest induction, 2800-fold 

compared to non-infected transduced Vero cells, was observed on day 2 after transduction of 

10000 particles and infection with HSV-1 (Figure 24B). 
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Figure 24: Induction of AAV replicon after transduction. 

(A) A549 cells were transduced with indicated dose (p/c) of rAAV2-REP-GLuc and 6 h later infected with 

Ad5-WT at MOI 10. 48 h p.i. supernatants were collected, GLuc induction measured and compared to 

those of transduced but non-infected A549 cells. (B +C) Vero cells were transduced with indicated 

rAAV2-REP-GLuc doses (p/c) and infected with (B) HSV-1 or (C) HSV-2 at MOI 0.1 6 h later. Supernatants 

were collected at 24- and 48 h p.i. and induction were calculated as above. (D) HFF cells were 

transduced with 1000, 3000 and 10000 p/c of rAAV2-REP-GLuc and 6 h later infected with HCMV at 

MOI 1. Supernatants were collected after 48 h p.i., 4- and 7 d p.i. GLuc activity was analyzed by 

bioluminescence and induction was calculated. Data represents three independent experiments, done 

in triplicates; the error-bars represent means ± SD; 

In previous experiments we could not induce the AAV replicon system significantly with two 

other herpesviruses: HSV-2 and HCMV. The stability of the transduced rAAV2-REP-GLuc 

motivated us to re-test the inducibility of the AAV replicon after infection with these viruses. 

The supernatants of HSV-2 infected Vero cells were therefore analyzed after 24 and 48 hours 

and the supernatants of HCMV infected HFF cells at 48 h p.i., 4- and 7 d p.i., taking the longer 

replication time of HCMV in comparison with Ad5 or α-herpesvirinae into account. As a result, 

both viruses were able to significantly induce the AAV replicon system after transduction of 
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the corresponding cell line. HSV-2 showed an induction of 21-fold 24 h p.i. after transduction 

with 1000 p/c and a 100-fold induction with 10000 p/c. Two days after infection, the GLuc 

induction increased to 215-fold at 10000 particles of rAAV2-REP-GLuc per cell. In case of 

HCMV, hardly any induction could be seen at 48 h p.i. 4 p.i., we measured a 76-fold increase 

at transduction levels of 10000 p/c compared to non-infected but transduced HFF cells. The 

effect was even more significant 7 days after infection, when the induction of the transgene 

was 165-fold compared to non-infected cells. Interestingly the level of induction after 

transduction of either 1000 or 10000 particles was only moderately increased (77- and 76-fold 

at 1000 p/c and 143- and 165-fold at 10000 p/c). Yet, the deviation between the two 

independent experiments, each performed in technical triplicates, was very high. 

The results revealed that the nature of target cell line plays an important role in both the 

inducibility and the reproducibility of the AAV replicon induction. High level inducibility, 

significant dose response, and good reproducibility were observed upon transduction of A549 

cells and infection with Ad5 as well as transduction of Vero cells and infection with HSV-1 and 

2. In contrast, 293A cells were not optimal using the same viruses for induction of AAV replicon 

containing rAAV particles. Further optimization is also needed for replicon induction by HCMV 

infection in transduced HFF cells. Nevertheless, with the ability of transducing the AAV 

replicon vector via a viral vector in more cell lines than before, the efficacy of the replicon 

induction increased significantly for all tested viruses. Furthermore, with the new delivery 

method, a significant induction of the AAV replicon system was observed for the first time 

after HSV-2 and HCMV infection. 

  



Results 

87 

4.3. Applications 

The different delivery systems of the AAV replicon offer several possible applications: We 

tested the AAV replicon vector for its applicability for trans-complementation, since this is a 

feasible method to investigate essential genes [214]. Furthermore, we established a suitable 

AAV replicon-based resistance test in order to analyze the application of the AAV replicon 

system in the field of diagnostic. Additionally, we developed a new screening platform for 

antiviral inhibitors using the AAV replicon vector. For the first time, this allows high-

throughput tests of inhibitors against genetically unmodified large DNA viruses. 

4.3.1. Trans-complementation of HAd5 late protein pVI by the AAV replicon 

vector 

For analyzing the trans-complementation potential of the AAV replicon system, we selected 

pVI, an essential late viral gene of HAd5, as a target. pVI is important for the activation of Ad 

genomes during the entry phase, for the endosomal escape, for the nuclear transport of Ad 

particles and it is an allosteric activator for the viral encoded cysteine protease [162]. In 

addition, pVI is toxic in isolated expression and therefore trans-complementing cell lines were 

not reported so far. Previously the pVI functions were studied in the same laboratory that 

provided the required tools to perform a proof-of-principle experiment for trans-

complementation using AAV replicon [288]. 

Adenovirus late proteins such as pVI are expressed only after the onset of viral DNA 

replication. For the expression of the toxic Ad5 pVI in trans, the AAV replicon system seemed 

to be a plausible alternative, since the expression of the transgene in the AAV replicon vector 

is dependent on the early functions of Ad. Without helper virus infection the reporter genes 

were practically silent in all our previous experiments. The early phase of Ad replication 

therefore is a prerequisite for viral DNA replication, onset of Ad late gene expression, and 

induction of p40 controlled transgene expression in the AAV replicon.  

For the trans-complementation of pVI deletion of Ad5 with the AAV replicon vector, cloning 

of pVI as transgene into the pAV1-Hyg vector was necessary. Furthermore, an Ad5 mutant 

lacking the pVI gene had to be constructed as well. In theory, upon infection with the Ad5 

mutant, the AAV replicon vector with pVI as transgene should be induced. Expression of the 
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essential pV gene could then complement the missing gene for production of the virions in 

the replicon containing cells. 

4.3.1.1. Construction of a HAd5ΔpVI mutant and the pIV expressing AAV replicon 

The deletion of the protein pVI would lead to an Ad5 mutant which is not able to spread. To 

test whether a deletion of the essential pVI gene can be trans-complemented and reverse this 

defect in trans, we constructed the viral mutant Ad5ΔpVI. We generated the genomic 

constructs using the E1-E3 deleted Ad5 BAC, namely the pBA5-FRT, as a basis. This BAC can be 

genetically tagged by site specific recombination at its FRT site. Additionally, the E1-E3 deleted 

viruses derived from this BAC should possess WT-like growth properties in 293 and 911 cells.  

To mark the genome before deleting the pVI gene, we introduced a mCherry expression 

cassette (Che) using the Flp/FRT recombination system with pBA5-FRT as an acceptor and 

pO6-A5-mCherry as donor plasmid leading to pBA5-Che. The correct insertion of the marker 

gene was checked by restriction digest and verified by sequencing the insertion sites. We 

deleted the pVI gene from the pBA5-FRT and inserted a zeocin resistance cassette by 

homologous recombination in E. coli SW102 cells. For this approach the selection marker was 

flanked on both ends with sequences homologous to those in the region exactly up and down-

stream of the pVI gene.  

We verified the replacement of pVI to a selection marker, leading to pBA5-ΔpVI-Che, by 

fragment length polymorphism, comparing the original pBA5-FRT BAC and the pBA5-FRT-Che 

BAC (Figure 25). Finally, the constructs were verified by Sanger sequencing at the site of the 

mutagenesis (see chapter 3.2.9). 
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Figure 25: Construction of a genetically marked pVI deletion mutant of Ad5 genome by BAC 

technology. 

Specific changes in the restriction pattern after insertion of the mCherry marker and deletion of the 

pVI gene were tested by restriction analysis. BAC DNA of Ad5-WT (wt or pBA5-FRT), pBA5-Che (wtC), 

and pBA5-ΔpVI-Che (ΔpVI) were digested with DraIII and HindIII (right panel). E.g. cleavage of Ad5-WT 

with DraIII resulted in fragments of 9.5, 8.3, 7.7, 4.5, 3.4, 3 and 0.85 kbp. Flip-in reaction of Che to 

pBA5-Che resulted in the loss of the fragment at 8.3 kbp but addition of 6 and 5.7 kbp. Deletion and 

replacement of pVI gene leaded to the addition of the fragments of 2.6 and 0.3 kbp (the last one is not 

visible anymore) and in the deletion of 3 kbp (additional fragments are indicated with blue 

arrowheads). These results were further confirmed by HindIII restriction. Here, the loss of fragment 

9.4 kbp and the addition of fragments 6.6, 2.9, 1.9, 1 and 0.2 and 0.07 kbp (latter two were not visible) 

demonstrated the difference between wt and wtC. Whereas the difference between wtC and ΔpVI 

could be displayed by the addition of fragment at 12.5 kbp and loss of fragment at 4.6 kbp. 

In addition to the mutated pBA5-ΔpVI-Che BAC, we also constructed a corresponding AAV 

replicon. For that purpose, we replaced the pAV1-GLuc-Hyg replicon vector (GLuc ORF) with 

the Ad5 pVI ORF, thus in direct control of the p40 promoter. This construct was named pAV1-

pVI-Hyg (see chapter 3.2). 
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4.3.1.2. Assessment of the AAV replicon system for trans-complementation 

In order to trans-complement the deleted pVI protein of the mutated Ad5 BAC during virus 

rescue, sub-confluent 293A cells were transfected in a 6-well plate at first with either pAV1-

pVI-Hyg or with pAV1-GLuc-Hyg. The replicon vector with GLuc served here for two purposes: 

as a control for potential inhibitory effects of the AAV replication, and to exclude the negative 

effects of the transfection process on the reconstitution of Ad5. Three days after replicon 

transfection, the cells were re-transfected with either the mutated pBA5-ΔpVI-Che or with the 

wt pBA5-Che BACs. Then the cells were harvested five days after the BAC transfection 

according to the standard rescue protocol for the Ad5 BACs. We subsequently re-suspended 

the harvested cells in normal media and lysed them by three freeze and thaw cycles in order 

to release reconstituted viruses. Finally, the lysates were cleared from cell debris by 

centrifugation. A new batch of 293A cells was transfected with either pAV1-pVI-Hyg or with 

pAV1-GLuc-Hyg replicons again. 72 hours after transfection, this batch was treated with the 

cleared lysates of the rescue cultures and viral plaque formation was examined in the course 

of the next seven days in order to quantify the efficiency of the virus rescue. 

Due to the high variability of BAC transfection efficiency, this experiment was repeated six 

times. All results are summarized in Table 4.3.1.2.1. We did not observe any trans-

complementation of the pVI deletion for the pVI gene deleted pBA5-ΔpVI-Che (ΔpVI-BAC) by 

the pAV1-pVI-Hyg replicon (pVI-R) and even the wt BAC, pBA5-Che, failed to be rescued in 

replicon transfected cells. In half of the experiments, a rescue of the wt BAC was observed 

despite the presence of pVI-R transfection but not in presence of pAV-GLuc-Hyg (GLuc-R), 

independent of the amount of the AAV replicon vector DNA transfected into the cells.  

Growing of the rescued wt Ad5 BAC, pBA5-Che, happened independently of the presence of 

pre-transfected or non-pre-transfected cells. Altogether, the number of plaques varied 

significantly between experiments. 
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Table 4.3.1.2.1: Rescue after trans-complementing pVI gene in mutated Ad5 BAC. 

Transfer of rescued virus with 
cells: 

WT BAC 
WT BAC 
+ pVI-R 

WT BAC 
+ GLuc-R 

pBA5-
ΔpVI-Che 

pBA5-
ΔpVI-Che 
+ pVI-R 

pBA5-ΔpVI-
Che  

+ GLuc-R 

non-pre-transfected 16.7 ± 15.9* 0.8 ± 1 0 0 0 0 

pre-transfected with GLuc 
Replicon 

12.8 ± 19.8 1.0 ± 2 0 0 0 0 

pre-transfected with pVI 
Replicon 

12.2 ± 15.1 0.8 ± 1.2 0 0 0 0 

*This table shows the mean and standard deviation of counted plaques from three independent experiments. 

To exclude an inhibitory effect by pre-transfection of the AAV replicon vectors on the virus 

reconstitution process, a recombinant AAV2 vector was packaged with pAV1-pVI-Hyg (named 

rAAV2-R-pVI). Here, 293A cells were transduced with the rAAV-R-pVI, containing the essential 

pVI gene for trans-complementation using 500 rAAV p/c. 5 days later, cell lysates were 

prepared and, to test virus rescue, the lysates of wt BAC and the mutated BAC were 

transferred to two groups of cells, one treated and one not treated with rAAV2-R-pVI using 

the same schedule as for the BAC transfection. 

Unfortunately, the pVI trans-complementation did not function upon transduction of the pVI 

containing rAAV replicon vector. The influence of the recombinant AAV replicon vector 

(rAAV2-R-pVI) transduction after transfection of the pBA5-ΔpVI-Che BAC vector was the same 

as observed after transfection of the AAV replicon vector and resulted in no viral progeny 

(Table 4.3.1.2.2) in three independent experiments.  

In contrast, we were able to rescue the wt BAC Ad5-Che independent of the presence of the 

recombinant AAV replicon vector. We even had to dilute the viral lysate and repeat the second 

part of the latter two experiments because of very high plaque numbers. Since trans-

complementing pVI of the mutated Ad5 BAC failed, we did not aim to investigate the reason 

for the high amount of plaques. 

Table 4.3.1.2.2: Rescue after trans-complementing pVI with rAAV2-R-pVI in mutated Ad5 BAC. 

  Ad5-Che +rAAV2-R-pVI pBA5-ΔpVI-Che+rAAV2-R-pVI 

Transfer of rescued virus with cells: Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3 

non-pre-transduced 152* 1880 1270 0 0 0 

pre-transduced with rAAV2-R-pVI 158 640 1860 0 0 0 
*counted plaques. 

To test a potential effect of the timing of the AAV replicon transduction, the transfection of 

the BAC DNAs was performed one day before transduction, on the same day, and two days 
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after the transduction of the 293A cells. As before, plaques were counted after seven days. 

Independent of the transduction time point, the trans-complementation of pVI was not 

successful after transducing 293A cells with the rAAV2-R-pVI vector. Nevertheless, 

independent of timing, the inhibitory effect of the replicon transfection on Ad-WT rescue was 

not observed by transduction of the replicons as rAAV particle.  

Overall, independent of the AAV replicon delivery to the cells, we were not able to observe 

trans-complementation of the pVI gene of the Ad deletion mutant. Transfection of the AAV 

replicon vector showed a toxic effect on virus rescue even independently of the pVI gene. This 

toxic effect was not observed if the AAV replicon vector was delivered packaged in a 

recombinant AAV2 vector. Nevertheless, the genetic defect of the pVI deletion in the viral 

mutant could not be rescued in the course of this work. 

4.3.2. AAV replicon system for diagnostic approaches 

For patients suffering from a drug-resistant HSV infection, a timely decision on switching to an 

effective antiviral therapy plays an important role in therapy success. Successful antiviral 

therapy of herpesvirus infections in immunocompromised patients, such as transplant 

recipients, newborns, leukemia patients, and patients with AIDS, are dependent on availability 

of phenotypic or genotypic drug resistance tests. The prevention of aggravation of the disease 

in these patients, by either increasing the dose of intravenous ACV administration or switching 

to another drug is very important. Concerning phenotypic methods, the “gold standard” for 

drug resistance testing for HSV isolates is still the plaque reduction assay (PRA), which is very 

labor and time intensive [123]. With tailoring the AAV replicon system as a quantitative 

reporter of viral growth in an antiviral drug resistance test, we aimed to establish a fast, 

reliable, easy to handle alternative to the PRA.  

The major potential to analyze the infectivity of herpes- or adenovirus samples relies on the 

ability of the AAV replicon vector to express a readily quantifiable reporter gene product upon 

infection. This reporter gene can be detected directly, in contrast to the indirect assay, which 

is needed to test the infectivity itself. At the same time, the absence of the reporter signal 

must reliably indicate the absence of infection or virus spread and both the positive and the 

negative results need to be highly quantitatively reproducible. 
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4.3.2.1. Establishment of the AAV replicon-based drug resistance test for HSV-1 

based on the LE2D8 cell line  

For testing the general ability of the AAV replicon system to respond to a drug treatment, we 

first examined the impact of the widely used drug ACV to an ACV sensitive HSV-1 laboratory 

strain by the induction of the replicon encoded reporter gene. Important to notice at this point 

is that ACV is highly specifically inhibiting HSV DNA metabolism [96]. Therefore, an influence 

of ACV on the replication of the AAV based replicon system itself is not to be expected, since 

the AAV genome replication is entirely dependent on host DNA polymerases [253]. 

For a reliable diagnostic assay, reproducibility of the measurements is very important. To 

proof this, the infection of the AAV replicon transformed stable cell line LE2D8 was chosen for 

the assay. To this end, LE2D8 cells were propagated in presence of hygromycin selection and 

frozen in a large batch with the aim of using a freshly thawed LE2D8 each time to avoid signal 

loss due to potential instabilities during passaging. Hence, freshly thawed LE2D8 cells were 

seeded after one passage on 96-well plates and infected with different doses of WT HSV-1. 

The doses ranged from 0.1 to 0.001 MOI in order to test the induction of the replicon encoded 

expression of GLuc at different time points. We aimed to identify the lowest viral dose still 

inducing a significant reporter signal within a reasonably short time after infection. 

Infection of LE2D8 cells with HSV-1 at MOI 0.1 showed a constant induction of the 

bioluminescence signal of 97- to 125-fold over a period of 2 – 6 days. In contrast we measured 

no induction of infection at MOI 0.001 at day 2 to day 4, and an induction of 21-fold after 6 

days post infection. The bioluminescence signals after infection at MOI 0.005 to MOI 0.075 

showed constantly increasing values, indicating an increase of viral spread over time. 

To test the effect of ACV on HSV-1 viral replication, we chose infection at MOI 0.035 with an 

induction of the bioluminescence signal by 55-fold after 3 days. Using this low initial viral dose 

ensures that the final signal strength will be a result of significant virus spread, providing ideal 

conditions for the inhibitors of the virus replication to affect the final replicon signal. For 

testing the effect of the ACV treatment on the induction of the AAV replicon in LE2D8 after 

HSV-1 infection, the cells were seeded as described above and treated with ACV at 

concentrations ranging from 0.22 to 426 µM or kept non-treated directly after seeding. 4 h 

after ACV treatment the cells were infected with HSV-1 at MOI 0.035 or kept non-infected. 48 

h p.i. the bioluminescence was measured in the supernatants of infected- and non-infected 
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cells. The bioluminescent signals of ACV-treated or n.t. but infected cells were compared to 

non-treated and non-infected cells and the induction was calculated for each individual 

reaction. Then, the induction of GLuc expression of non-treated cells infected with HSV-1 was 

defined as 100% and the induction of the ACV treated cells was normalized to the induction 

observed non-treated cells and expressed as % non-treated. (Figure 26).  

 

Figure 26: ACV dose-response to HSV-1 replication measured by the Replicon assay. 

LE2D8 stable AAV replicon cell line was treated with indicated concentrations of ACV or kept non-

treated (n.t.) and infected with HSV-1 at a MOI of 0.035 or mock infected. 48 h p.i. Supernatants were 

collected and analyzed. GLuc induction values of infected cells were compared to non-infected cells. 

The fold activity of the n.t. cells was set to 100 % and activities of ACV treated cells was depicted as % 

of non-treated values. Data from three independent experiments are shown; the error-bars represent 

means ± SD; 

In summary, we observed a clear decrease of HSV-1 induced reporter gene expression upon 

treatment with increasing concentrations of ACV. The half maximal inhibitory dose (IC50) to 

reduce the HSV-1 infection-dependent induction of GLuc expression was calculated to be 

32 µM. This value is much higher than IC50s described in the literature: depending on the assay 

conditions and the cell line in use the half inhibitory concentration of ACV should not exceed 

8.9 µM [289]. 

Since ACV treatment clearly inhibited the replicon induction by an ACV sensitive strain, we 

wanted to test the replicon response of a drug-resistant HSV-1 strain in the presence of ACV. 

To this end, the LE2D8 cells were seeded and treated as above. Then, the cells were either 

infected with the WT laboratory strain HSV-1 (ACV sens) or with a known ACV resistant clinical 

isolate HSV-1 strain (ACV res) at a MOI of 0.035. ACV res is used as resistant control strain for 
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phenotypic resistance tests at the Clinical Virology Laboratory of the Max von Pettenkofer-

Institute. Experiment were performed as described above (Figure 27).  

 

Figure 27: HSV-1 resistance to ACV can be evaluated with LE2D8 cells. 

The LE2D8 cells were treated with indicated concentrations of ACV and infected with either the ACV 

sensitive WT HSV-1 strain (ACV sens) or with the isolated ACV resistant HSV-1 strain (ACV res). After 

48 h p.i. Supernatants were collected and bioluminescence assay of GLuc activity was performed. 

Depicted is the induction of the bioluminescence signal in the ACV treated cell relative to non-treated 

cells (100%). Data from three independent experiments are shown; the error-bars represent means ± 

SD; 

The WT strain in these experiments was inhibited at a higher IC50 of 74 µM by ACV compared 

to the last experiment. Nevertheless, the ACV res strain induced the same replicon response 

in presence of all tested concentrations of ACV. The ACV res strain could therefore be clearly 

distinguished from the ACV sens strain starting at an ACV concentration of 53 µM. 

Interestingly, the replicon response after ACV sens infection is even increasing after treatment 

at lower inhibitor concentrations. It seems that the AAV replicon response has an advantage 

if the inducing virus is not fully inhibited. The prolonged survival of the infected cells seems to 

allow a higher marker expression after AAV replicon induction. 

To verify that the differences in the replicon response observed under ACV treatment were 

indeed reflecting differences in HSV-1 replication, we tested the HSV-1 production after 

infection of LE2D8 cells with either the WT laboratory strain HSV-1 (ACV sens) and the ACV 

resistant HSV-1 strain (ACV res) by endpoint dilution assay. LE2D8 cells were seeded and 

treated with ACV as above. Supernatants were collected 48 h p.i. and the infectious HSV-1 
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loads in each supernatant sample were determined by limiting dilution (see chapter 3.5.5). 

The result of one representative experiment is depicted in Figure 28. 

 

Figure 28: The production of infectious particles after infection of LE2D8 cells in the presence of ACV 

was dependent on the ACV sensitivity of the HSV-1 strain. 

The LE2D8 cells were infected with either the ACV sensitive WT HSV-1 strain (ACV sens) or with the 
isolated ACV resistant HSV-1 strain (ACV res) using MOI of 0.035. Treatment with indicated 
concentrations of ACV (4.4 - 426 µM) followed. 48 h p.i. Supernatants were collected, and endpoint 
dilution-assays performed. TCDI50 values per ml were calculated, depicted are normalized values in % 
of the virus production in n.t. cells.  

In infected cells, a treatment with 4.4 µM ACV resulted in more than 50% reduction of WT 

HSV-1 virus production compared to non-treated cells. In contrast, the resistant HSV-1 strain 

showed a reduction of 50% in infectious virus particle production only at a concentration of 

53 µM ACV. Generally, the assay on virus production appeared to be more sensitive to ACV 

treatment compared to the replicon response in stable transfected cells.  

All HSV-helper functions for AAV replication are expressed early after infection while release 

of virus particles is the last event in the HSV-1 life cycle. Apparently, infection of the cell and 

early gene expression, naturally required for the production of infectious particles, is sufficient 

to induce replicon response after the ACV targeted DNA replication. Thereby, the replicon 

assay detects the difference in virus spread whereas the end point dilution assay shows the 

virus production in infected cells. However, both assays were clearly revealing the difference 

in the ACV resistance of the two HSV-1 strains in our experiments, with the replicon-based 

response yielding more reliable results.  
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4.3.2.2. Resistance test of clinical HSV-1 isolates based on the replicon response in 

LE2D8 cells 

To be useful in everyday practice, a resistance test should be robust enough to tolerate 

differences in probe quality, which are inherent in-patient derived probes. The above tests 

were performed with well characterized HSV-1 strains using quantified virus stocks. To 

challenge the robustness of the newly developed replicon-based resistance test, we selected 

seven ACV resistant and seven ACV sensitive HSV-1 strains. All strains were obtained by virus 

isolation directly from clinical samples during daily praxis of Virological Diagnostic Laboratory 

of the Institute of Virology of the University Medical Center Freiburg. The virus isolates were 

propagated on Vero cells according to the standard HSV-1 isolation protocol until the primary 

cultures showed 80-100% CPE. Afterwards, according to the normal diagnostic protocol, the 

supernatants were collected, aliquoted and stored at -80oC. All isolates used in this test were 

typed by indirect immunofluorescence assay and found to be HSV-1. Their ACV resistance was 

diagnosed using plaque reduction assay (PRA). LE2D8 cells with a defined low passage number 

were seeded on 96-well plates and then either treated with 0.8, 4, 20, 100 and 500 µM ACV 

in order to produce a dilution series used in the standard PRA or left untreated. 6 h later the 

cultures were infected with the HSV-1 culture supernatants at dilutions of 1:10, 1:100 and 

1:1000. 2 days after infection the bioluminescence was measured, and the relative induction 

of the AAV replicon encoded reporter was calculated as before (see 4.3.2.1).  

Table 4.3.2.2.1 summarizes the relative induction compared to non-infected LE2D8 cells and 

shows the bioluminescence signals of ACV resistant and ACV sensitive clinical HSV-1 isolates 

tested with a dilution of 1:10, 48 h after infection of the LE2D8 cells. 

Table 4.3.2.2.1: Resistance test of clinical HSV-1 isolates with LE2D8 cells. 

ACV sens # 824670 # 842369 #842913 #854014 # 838500 # 847890 # 848759 
n.t. 79.8* 123.5 51.6 48.3 36.7 72.3 51.3 

0,8 µM 173.1 151.5 97.2 76.1 57.8 129.7 76.7 

4 µM 97.4 59.1 68.7 54.3 69.3 83.3 71.4 

20 µM 25.5 10.9 17.4 17.5 22.8 14.9 28.8 

100 µM 13.6 4.4 5.0 5.3 7.4 4.3 5.7 

500 µM 12.3 3.4 3.9 3.7 3.5 3.8 4.2 

*fold induction of RLU values from infected compared to non-infected LE2D8 cells. 

ACV res # 852044 #846206 #861747 # 845708 # 854437 # 860929 # 845531 
n.t. 196.1 81.0 34.0 44.3 42.3 16.3 63.3 

0,8 µM 204.5 93.3 30.3 47.0 40.0 22.8 44.5 

4 µM 198.1 96.1 35.9 68.6 51.0 24.3 54.2 

20 µM 187.7 119.1 21.3 85.8 57.4 19.9 47.2 

100 µM 311.8 136.1 27.3 68.0 42.4 17.0 101.2 

500 µM 426.2 37.0 18.9 21.7 31.8 13.5 133.4 
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The cumulative results obtained by the infection with 1:10 diluted supernatants are depicted 

in Figure 29. 

 

Figure 29: LE2D8 resistance test in the diagnostic context. 

LE2D8 was treated with indicated concentrations of ACV and infected with 14 different patient derived 

HSV-1 isolates using a 1:10 dilution of propagated viruses. Supernatants were collected 48 h p.i. and 

GLuc assay was performed. Fold induction of treated compared to non-treated cells was calculated 

and then the fold activity of the non-treated cells was set to 100% and the activity of the ACV treated 

cells was depicted as % of the non-treated values (****: p < 0.0001, ns: p > 0.05, Two-Way-ANOVA, 

depicted are means ± SD). 

At a 1:10 dilution of the viral isolates, the bioluminescence signal induced by the infection of 

the non-treated LE2D8 cells was in average 66-fold for sensitive strains and 68-fold for 

resistant strains, which indicated the robustness of the assay after accounting the passage 

number of the stable cell line. In general, the GLuc induction of all sensitive HSV-1 isolates 

decreased with increasing amounts of ACV concentrations. In sharp contrast to the sensitive 

HSV-1 isolates, the resistant HSV-1 isolates showed a different pattern. The IC50 of ACV for all 

sensitive HSV-1 isolates was 25 µM whereas the mean IC50 value for the resistant HSV-1 

isolates was not obtainable due to the lack of the useful regression curve for many strains. 

The resistant viral isolates induced a similar replicon response than the non-treated cells in 

the presence of almost all ACV concentration. Two isolates showed no reduction at any 

concentration, but the replicon response even increased up to over 200% compared to n.t. 

values. This increase of the replicon response after treatment of the cells with suboptimal 

inhibitory concentration of ACV was also evident after infection with ACV sensitive strains 

demonstrated as a peak at 0.4 µM in the cumulative curve. In summary, detection of ACV 

resistance for all HSV-1 strains could be indicated by the sustained replicon response at high 
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ACV concentration after 2 days of the assay start. In comparison the PRA took 5 to 7 days until 

results could be evaluated. 

4.3.2.3. Establishment of an AAV replicon-based drug resistance test for HSV-

based rAAV transduction  

Considering that the AAV replicon packaged in recombinant viral particles, in comparison with 

the stable AAV replicon vector carrying cell line LE2D8, was able to be induced not only by 

HSV-1 but also HSV-2 we evaluated the applicability of rAAV2-REP-GLuc for drug-resistance 

testing. We also hoped that the transduction would allow us to find the optimal cell line for 

the assay and that this would lead to IC50 values mirroring the results from PRA. 

Therefore, we choose Vero cells which were efficiently transduced by rAAV (see chapter 

4.2.4.1). First, we wanted to test the replicon response upon rAAV2-REP-GLuc transduction 

using ACV-sensitive standard HSV-1 and HSV-2 strains. For that purpose, Vero cells were 

transduced with 600 p/c of rAAV2-REP-GLuc directly after seeding 3 x 104 cells/well in 96-well 

plate. The transduced cells were treated with 0.8, 4, 20, 100 and 500 µM ACV or left untreated 

right after seeding. 6 h later they were infected with either HSV-1 or HSV-2 at MOI of 0.035. 

After 48 h p.i., we measured the induction of the replicon encoded GLuc expression 

bioluminescence assays (Figure 30). 

 

Figure 30: ACV susceptibility testing after HSV-1 and HSV-2 infection with rAAV replicon. 

Recombinant AAV replicon vector transduced Vero cells were treated at indicated concentrations of 

ACV and infected with (A) HSV-1 and (B) HSV-2 at a MOI of 0.035. Supernatants were collected after 

48 h p.i. and induction of the replicon encoded reporter gene in presence of ACV is depicted as % of 

the response of the non-treated cells. Data from three independent experiments are shown; the error-

bars represent means ± SD; 
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The replicon inductions of the ACV treated samples were normalized to the non-treated 

samples, which were set to 100%. In general, both HSV-1 and HSV-2 induced a measurable 

replicon response upon infection, which decreased by increasing amounts of ACV. The HSV-1 

induced replicon response showed an IC50 of 1.87 µM (Figure 30A), whereas for HSV-2 (Figure 

30B) we observed an IC50 of 19.1 µM towards ACV. The results of both viruses indicate a more 

sensitive assay system if transduction of the AAV Replicon vector is used for delivery. 

Furthermore, as observed before, HSV-1 was more sensitive to ACV treatment than HSV-2.  

Summarizing these results, transduction by AAV particles provides a useful tool to test ACV 

resistance with the AAV replicon system. The calculated IC50 values for HSV-1 correspond to 

the published in vitro inhibitory concentrations of ACV tested by PRA. The IC50 value for HSV-

2 in contrast is 2-fold higher compared to the concentrations published in the literature. 

4.3.2.4. ACV resistance test of clinical HSV isolates using recombinant AAV-based 

replicon assay 

For setting up a transduced replicon-based resistance test for clinical isolates, we reconsidered 

some conditions based on the preliminary test described before. We decided to increase the 

rAAV2-REP-GLuc particles from 600 p/c to 1500 p/c to gain higher induction levels after HSV-

2 induction. We used the set of 10 clinical HSV-1 isolates, which we had evaluated with the 

LE2D8 cell line-based tests before. In addition, we selected 4 sensitive and 3 resistant HSV-2 

isolates, which were also derived from the Virological Diagnostic Unit in Freiburg and were 

treated and diagnosed the same way as the HSV-1 isolates. Vero cells were seeded in a 96-

well plate, transduced with 1500 p/c of rAAV2-REP-GLuc and incubated overnight. We decided 

to prolong the incubation after transduction to increase the efficiency of the replicon delivery, 

as longer incubation after transduction resulted in higher transgene expression in the pilot 

assays (see chapter 4.2.4). On the next day, the transduced cells were treated either with 0.8, 

4, 20, 100, 500 µM ACV or left untreated and infected right after the ACV treatment with HSV 

isolate, containing culture supernatants at 1:10 and 1:100 dilution (as before for the cell line 

tests). The supernatants were collected 24 and 48 h p.i. Then the light emission in the 

supernatants were measured with a plate luminometer and analyzed as described before. The 

detailed fold inductions of the RLU results obtained for the HSV-1 tests are listed in Table 

4.3.2.4.1 the cumulative analysis of the relative values is depicted in Figure 31. 
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Table 4.3.2.4.1: Resistance test of clinical HSV-1 isolates using the replicon containing rAAV particles. 

ACV sens # 842369 # 842913 # 838500 # 847890 # 848759 
24 h p.i. 48 h p.i. 24 h p.i. 48 h p.i. 24 h p.i. 48 h 

p.i. 

24 h p.i. 48 h p.i. 24 h p.i. 48 h 

p.i. n.t. 159.4 417.9 103.8 315.4 97.4 236.0 180.2 116.7 159.5 161.4 

0.8 µM 158.6 556.2 103.7 437.9 115.4 336.2 177.5 206.8 199.6 260.5 

4 µM 79.7 496.1 55.2 349.0 78.7 309.4 33.0 57.7 75.9 135.0 

20 µM 4.9 50.5 4.5 42.9 22.6 188.2 2.1 1.2 2.7 7.0 

100 µM 1.7 3.1 2.0 3.8 1.8 7.8 1.6 0.8 1.4 1.2 

500 µM 1.6 3.3 2.0 4.0 1.6 2.7 1.7 0.7 1.5 1.2 

 

ACV res 
# 846206 # 861747 # 845708 # 854437 # 860929 

24 h p.i. 48 h p.i. 24 h p.i. 48 h p.i. 24 h p.i. 48 h p.i. 24 h p.i. 48 h p.i. 24 h p.i. 48 h p.i. 

n.t. 129.5 97.2 16.9 200.8 111.7 92.3 57.1 75.7 22.8 113.7 

0.8 µM 145.5 104.7 19.2 235.6 141.8 117.9 48.1 84.5 33.9 171.1 

4 µM 162.7 127.8 18.5 218.3 149.2 129.6 44.5 76.4 28.5 166.8 

20 µM 160.4 126.3 17.1 212.7 173.3 159.0 28.6 56.5 21.1 157.2 

100 µM 180.2 152.4 15.6 198.0 122.1 144.3 7.6 23.4 19.9 153.3 

500 µM 107.4 103.8 8.8 81.6 18.8 42.7 44.5 64.3 8.7 24.9 

 

 

Figure 31: Replicon containing rAAV particles for resistance testing of HSV-1. 

Vero cells were seeded and transduced with rAAV2-REP-GLuc using 1500 p/c. After incubation time of 

24 h the cells were treated with indicated concentrations of ACV and infected with 10 different patient 

derived HSV-1 isolates using a 1:10 dilution of propagated viruses. Supernatants were collected after 

24 and 48 h p.i. and GLuc assay was performed. Fold induction of treated compared to non-treated 

cells was calculated and then the fold activity of the non-treated cells was set to 100 % and the 

activities of the ACV treated cells were depicted as % of the non-treated values. (****: p < 0.0001, ns: 

p > 0.05, Two-Way-ANOVA, depicted are means ± SD). 

After an induction time of 24 h, the IC50 of all sensitive strains of HSV-1 towards ACV was 4.6 

µM and increased to 14.6 µM after an induction time of 48 h p.i. Contrary to that, the resistant 

HSV-1 strains showed IC50 values of 633 µM after 24 h and 1197 µM after 48 h. A significant 

differentiation between sensitive and resistant HSV-1 strains could therefore be made earlier 

than with the LE2D8 cell line and even showed a higher sensitivity towards ACV. Interestingly, 

the sensitivity of the assay using the rAAV2-REP-GLuc replicon system decreased after 48 h. It 



Results 

102 

is possible, however, that this effect is caused by prolonged spreading of the virus. The 

increased sensitivity of the system 24 h p.i. was also observed after infection with resistant 

strains. 

In contrast to the LE2D8 cell line, HSV-2 is able to strongly induce the AAV replicon after 

transduction of the recombinant particle. Therefore, we tested the AAV replicon containing 

rAAV particles for the applicability of testing resistance in HSV-2 clinical isolates. The setup of 

the experiment was the same as for testing HSV-1 isolates. Altogether four sensitive and two 

resistant HSV-2 viral isolates that were previously tested could be selected for AAV replicon-

based differentiation based on their resistance to ACV within 48 h. The detailed fold inductions 

of the RLU results obtained for the HSV-2 with 1:10 diluted supernatants are listed in Table 

4.3.2.4.2, the cumulative analysis of the relative values is depicted in Figure 32. 

Table 4.3.2.4.2: Resistance test of clinical HSV-2 isolates with rAAV particles. 
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Figure 32: Replicon containing rAAV particles for resistance testing of HSV-2. 

Vero cells were seeded and transduced with rAAV2-REP-GLuc using 1500 p/c. After an incubation time 

of 24 h, the cells were treated with indicated concentrations of ACV and infected with 6 different 

patient derived HSV-2 isolates using a 1:10 dilution of propagated viruses. Supernatants were collected 

after 48 h. and GLuc assays were performed. Fold induction of treated versus non-treated cells was 

calculated and then the fold activity of the non-treated cells was set to 100 % and the activities of the 

ACV treated cells were depicted as % of the non-treated values. (**: p < 0.01, ns: p > 0.05, Two-Way-

ANOVA, depicted are means ± SD). 

ACV sens # 17-168 # 17-604 # 17-742 # 18-650  ACV res # 18-161 # 18-553 

0.8 µM 183.6 108.7 132.8 98.7  0.8 µM 126.4 130.5 
4 µM 31.9 31.9 42.6 33.9  4 µM 92.1 104.2 

20 µM 15.1 14.4 20.2 5.4  20 µM 62.3 67.6 

100 µM 2.9 2.8 14.4 2.0  100 µM 56.5 31.5 

500 µM 1.3 2.5 12.1 1.0  500 µM 34.4 19.6 
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The results show a clear differentiation between sensitive and resistant HSV-2 isolates after 

48 h. The significance was calculated for a very low number of strains and is therefore only an 

indication. The IC50 values of the sensitive strains were between 3.2 and 4 µM in contrast to 

the IC50 values of the resistant strains (130 µM and 53 µM). Therefore, we determined a cut-

off at a concentration of 20 µM ACV for the differentiation between ACV resistant and 

sensitive HSV-2 strains.  

The validity of the AAV replicon-based resistance test for HSV-2 was considerable weaker that 

it was observed for HSV-1. This is maybe due to lower induction levels using HSV-2 and can be 

optimized, for example, by further increasing the replicon load. 

All in all, the AAV replicon response was able to discriminate between infections with ACV-

sensitive and -resistant HSV-1 shown within one or two days and HSV-2 within two days post 

infection. Therefore, the transduction-based assay is now prepared for testing its applicability 

in retrospective and prospective studies in diagnostic settings. 
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4.3.3. Screening for new antivirals by the AAV replicon-based assay  

Our data so far showed that the AAV replicon system is useful for testing the resistance of HSV 

to the known inhibitor ACV. In this setting, the replicon-based assay was robust enough to 

respond reliably to infection with minimally characterized clinical isolates with different 

infectivity. Moreover, the same replicon was inducible with HSV, Ad, and HCMV infections 

upon transduction into the respective permissive cell lines. All in all, these features of the AAV 

replicon suggest that it may be a valuable and unique tool for screening of new antivirals. The 

assay for drug resistance or susceptibility can be carried out in multi-well format. The 

measurement requires one liquid handling step and can be automated. Most importantly, the 

AAV replicon-based assay does not need any genetic modification on the virus or the cell line 

of interest. Consequently, clinical isolates and virus strains with limited laboratory adaptation 

can be subjected to screening approaches. This feature is especially valuable in testing low 

passage, not well-established herpesvirus strains, which undergoes substantial genetic 

changes upon laboratory passages, and genetic manipulation. 

To test this possibility, we set up a pilot study using A549 cells for testing of Ad, as well as Vero 

cells for HSV-1 testing in a 96-well plate format. The before tested ACV was dissolved in water 

and diluted in culture medium before use. As the compound libraries are normally provided 

as highly concentrated stocks dissolved in DMSO, we first tested the effect of DMSO on the 

induction of the AAV replicon.  

For this, Vero, A549 and HFF cells were transduced with 1000 p/c of the replicon containing 

recombinant AAV particle, rAAV2-REP-GLuc, after seeding. Then, infection with HSV-1 at a 

MOI of 0.1 followed after 6 h in parallel with the treatment of the cells with different 

concentrations of DMSO, ranging from 0.1 to 6%. Two days later the induction of GLuc was 

measured in a bioluminescence assay. The results showed that the use of DMSO of up to 1% 

did not influence the results significantly in all cells tested (see Figure 33). 
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Figure 33: DMSO toxicity test of different cell lines. 

HFF, Vero and A549 cells were transduced with rAAV2-REP-GLuc using 1000 p/c. Then the cells were 

infected with HSV-1 at a MOI of 0.1 or kept mock infected and treated additionally with different 

concentrations of DMSO of 0%, 0.1%, 0.5%, 1%, 2%, 4% and 6%. 48 h p.i. Supernatants were collected, 

GLuc induction values were analyzed and values of infected cells were compared to non-infected cells. 

The fold activity of the n.t. cells was set to 100% and activities of ACV treated cells were depicted as % 

of non-treated values. 

As discussed before, there is an urgent need for new antiviral drugs against HSV-1 and against 

human Ad. With regard to this challenge, the next step in this study was to test the 

applicability of the AAV replicon test for drug discovery. For this, a set of heterocyclic small 

molecular kinase inhibitors with known in vitro and in vivo toxicity profiles were provided by 

Origenis GmbH (Martinsried, Germany).  

In order to run the pilot screen, 22 potential inhibitor compounds, deriving from different 

series of compound families, were selected. Additionally, an apoptosis-inducing drug called 

staurosporine [290] was included as inhibitory control as well as a published herpesvirus 

inhibitor. The compounds were labeled “ORI-SIRI-01” to “ORI-SIRI-24” in the first round of 

experiments. In the reproducing second round they were labeled “ORI-SIRI-25” to “ORI-SIRI-

48” in a randomized order to guarantee blind testing. To receive a good overview of the 

inhibition spectrum, both HSV-1 and Ad5 were tested for their inhibition by the different 

compounds. To accomplish this, rAAV1/2-REP-GLuc, a chimeric rAAV particle was produced. 

This particle showed almost as much transduction efficacy as rAAV2 and in addition yielded 

better production titers in our pre-experiments. Experiments to test the rAAV1/2-REP-GLuc 

demonstrated no difference compared to rAAV2-REP-GLuc (data not shown). For testing the 

different kinase-inhibitors, Vero and A549 cells were seeded on 96-well plates at a density of 

104 cells pro well. To receive comparable luciferase induction values with both viruses Vero 
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cells were then transduced with 500 p/c of rAAV1/2-REP-GLuc whereas A549 were transduced 

with a lower number of 10 p/c. The transduced cells were incubated for 6 h in a final volume 

of 100 l/well. The cells were treated with 4 and 40 µM of each compound in presence of 4% 

DMSO, which was applied by multichannel pipetting in 50 l, resulting in a DMSO 

concentration of 1% in total. Known inhibitors in two concentrations were included as positive 

controls in order to have immediate and known controls of the experiment. For Vero cells, 80 

and 2000 µM ACV were added into a volume of 50 l.  For Ad5, 80 and 800 µM of Cidofovir 

(CDV) were also added in a volume of 50 l. These treatments resulted in a final concentration 

of 1 or 10 M of each kinase inhibitors: 20 and 500 M ACV, 20 and 200 M CDV, and 1% 

DMSO in the respective wells. CDV inhibits Ad5 in vitro at an IC50 of 25 µM [291]. In addition, 

to generate DMSO treated cells for determining the infection induced luciferase production 

without any inhibition, normal medium was added to n.t. cells and 4% DMSO. Immediately 

after application of the inhibitors, Vero cells were infected with HSV-1 at a MOI of 0.035 and 

A549 cells with Ad5-WT using a MOI of 10. As established in former experiments, the GLuc 

activity was measured after 48 h p.i. in the supernatants. The induction of the GLuc activity 

was calculated by comparison of the values derived from infected and non-infected values. 

In order to compare the primary and secondary experiment, the compound specific inhibition 

of the GLuc induction was calculated. The GLuc induction after infection in the absence of 

inhibitors were defined as 100% and the induction values were calculated from the compound 

treated cells as % of the non-drug treated cells (Figure 34). 

The results of the internal control with approved drugs showed that CDV treatment of Ad5 

and ACV treatment of HSV-1 leaded to an inhibition of the signal in case of both experiments 

(Table 4.3.3.1). The AAV replicon screening system was capable of detecting the two control 

inhibitors (ORI-SIRI-1, ORI-SIRI-2 in the primary screen and ORI-SIRI-47 and ORI-SIRI-48 in the 

secondary screen) in the reproduced screening with either virus tested. The internal controls 

therefore verified the functionality of the established cell-based assay. 

Since we only tested compounds at a concentration of 1 µM and 10 µM, a scientific statement 

concerning the dose response cannot be made. Nevertheless, results of testing Ad indicated 

a more reliable response comparing the two experiments. Only one compound (ORI-SIRI-20) 

showed a 540% higher induction after treatment with 10 µM compared to treatment with 

1 µM concentration, without reproducibility in the second screen (Table 4.3.3.1). In contrast, 
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for HSV-1 10 different compounds showed an increase in induction (more than 20%) after 

treatment with higher compound concentrations whereas only half of these results were 

reproducible. Generally, the peak-out, defined as showing a 50% higher induction than the 

DMSO control, are not reproducible, since 7 out of 9 compounds showing in either virus a 

peak-out could not be observed in the second experiment. 

Generally, for Ad more inhibitory compounds were found: Three new compounds showed at 

least a 50% inhibition at the higher compound concentration and two compounds even 

inhibited the Ad activity to over 90%. In contrast, HSV-1 inhibition to over 90% could only be 

observed for one compound (ORI-SIRI-17 in primary and ORI-SIRI-46 in secondary screening). 

This compound demonstrated promising results for both viruses. A compound exclusively 

inhibiting HSV-1 could not be found in this application test for inhibitor screening. 
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Figure 34: AAV replicon-based drug susceptibility assay for testing potential HSV-1 and Ad5 

inhibitors. 

Average inhibition by of the corresponding compounds (Cmpd) from the primary and secondary 

experiment are shown (% non-treated). 

A549 cells (A) were transduced with 10 p/c of rAAV1/2-REP-GLuc replicon and infected with Ad5 -WT 

at a MOI of 10 whereas Vero cells (B) were transduced with 500 p/c of rAAV1/2-REP-GLuc and infected 

with HSV-1 at a MOI of 0.035. Addition of 1 and 10 µM of the undisclosed Cmpd followed next to no 

treatment (n.t.) or treatment with 1% DMSO without Cmpd. Supernatants of Vero and A549 cells were 

collected 48 h p.i. and fold induction GLuc were calculated by comparing RLU values of infected and 

non-infected cells. Inhibition of both viruses by each Cmpd was calculated by setting the induction of 

the GLuc expression of the non-drug treated cells as 100% and activities of treated cells were depicted 

as % of non-treated values. 
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Table 4.3.3.1: Comparison of compounds tested twice with the AAV replicon drug susceptibility test. 

    

  

[µM] Cmpd
fold 

induction
Cmpd

fold 

induction

1 % DMSO 311.0 1% DMSO 571.0

20 246.0 7.7

200 1.0 1.0

1 68.1 95.3

10 1.5 1.3

1 76.5 62.4

10 1.9 1.4

1 213.2 551.7

10 103.2 302.2

1 220.2 623.3

10 105.4 515.1

1 296.4 744.6

10 234.5 284.0

1 351.1 592.7

10 263.5 395.5

1 357.7 610.3

10 320.0 477.0

1 330.4 581.7

10 191.7 355.5

1 240.5 622.9

10 123.6 234.6

1 267.4 643.6

10 46.4 22.4

1 317.6 737.2

10 217.5 38.3

1 251.3 639.6

10 240.9 609.6

1 317.4 628.1

10 232.9 437.5

1 343.8 655.6

10 332.9 626.4

1 340.2 640.2

10 273.5 549.9

1 298.4 720.6

10 207.4 534.8

1 178.5 329.2

10 2.6 1.6

1 352.9 737.2

10 285.2 847.9

1 336.1 679.2

10 349.1 659.4

1 344.2 704.8

10 2204.0 697.4

1 289.3 708.5

10 188.9 326.8

1 356.8 730.5

10 320.6 674.6

1 197.3 298.3

10 17.0 29.2

1 358.5 728.6

10 244.6 473.6

ORI-SIRI-37

ORI-SIRI-02 ORI-SIRI-47

ORI-SIRI-03

Ad5-WT

primary screen secondary screen

ORI-SIRI-01 ORI-SIRI-48

ORI-SIRI-29

ORI-SIRI-08 ORI-SIRI-36

ORI-SIRI-09 ORI-SIRI-31

ORI-SIRI-06 ORI-SIRI-34

ORI-SIRI-07 ORI-SIRI-28

ORI-SIRI-04 ORI-SIRI-30

ORI-SIRI-05

ORI-SIRI-12 ORI-SIRI-33

ORI-SIRI-13 ORI-SIRI-25

ORI-SIRI-10 ORI-SIRI-32

ORI-SIRI-11 ORI-SIRI-35

ORI-SIRI-16 ORI-SIRI-44

ORI-SIRI-17 ORI-SIRI-46

ORI-SIRI-14 ORI-SIRI-26

ORI-SIRI-15 ORI-SIRI-27

ORI-SIRI-20 ORI-SIRI-40

ORI-SIRI-21 ORI-SIRI-38

ORI-SIRI-18 ORI-SIRI-45

ORI-SIRI-19 ORI-SIRI-42

ORI-SIRI-24 ORI-SIRI-39

ORI-SIRI-22 ORI-SIRI-43

ORI-SIRI-23 ORI-SIRI-41

CDV CDV

[µM]

[µM] Cmpd
fold 

induction
Cmpd

fold 

induction

1 % DMSO 105.0 1% DMSO 32.0

20 8.5 2.3

500 1.9 1.7

1 11.5 9.9

10 4.7 1.0

1 68.9 22.4

10 6.2 1.0

1 75.8 33.9

10 144.4 56.7

1 89.6 30.6

10 96.1 45.3

1 89.9 27.7

10 79.4 14.3

1 136.0 38.1

10 223.6 47.2

1 137.0 34.7

10 204.2 49.6

1 112.5 41.7

10 104.7 60.4

1 75.4 33.7

10 140.9 35.1

1 79.2 30.2

10 78.3 61.7

1 83.1 34.9

10 116.5 42.5

1 141.0 32.2

10 190.6 32.0

1 77.2 37.4

10 86.3 54.8

1 85.6 39.3

10 69.1 35.8

1 87.9 32.9

10 88.0 35.9

1 82.9 27.7

10 76.6 26.1

1 137.5 23.5

10 6.3 1.3

1 130.2 34.9

10 111.4 22.3

1 143.9 25.4

10 136.2 21.6

1 142.6 25.3

10 131.7 20.7

1 73.9 32.0

10 69.9 33.8

1 75.5 26.0

10 69.7 24.6

1 79.9 35.9

10 198.5 59.0

1 76.3 27.8

10 86.9 32.9

ORI-SIRI-05 ORI-SIRI-37

ORI-SIRI-48

ORI-SIRI-02 ORI-SIRI-47

HSV-1

primary screen secondary screen

ORI-SIRI-01

ORI-SIRI-03 ORI-SIRI-29

ORI-SIRI-08 ORI-SIRI-36

ORI-SIRI-09 ORI-SIRI-31

ORI-SIRI-06 ORI-SIRI-34

ORI-SIRI-07 ORI-SIRI-28

ORI-SIRI-04 ORI-SIRI-30

ORI-SIRI-12 ORI-SIRI-33

ORI-SIRI-13 ORI-SIRI-25

ORI-SIRI-10 ORI-SIRI-32

ORI-SIRI-11 ORI-SIRI-35

ORI-SIRI-16 ORI-SIRI-44

ORI-SIRI-17 ORI-SIRI-46

ORI-SIRI-14 ORI-SIRI-26

ORI-SIRI-15 ORI-SIRI-27

ORI-SIRI-20 ORI-SIRI-40

ORI-SIRI-21 ORI-SIRI-38

ORI-SIRI-18 ORI-SIRI-45

ORI-SIRI-19 ORI-SIRI-42

ORI-SIRI-24 ORI-SIRI-39

ORI-SIRI-22 ORI-SIRI-43

ORI-SIRI-23 ORI-SIRI-41

ACV ACV
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5. Discussion 

There is an increased risk in immune-compromised patients infected with herpesviruses or 

adenoviruses, for development of resistant virus strains especially after long-term therapy 

against nearly all antiviral drugs in clinical use [17]. Most of anti-α-herpesvirus compounds are 

targeting the viral DNA replication, either indirectly by targeting the thymidine kinase (TK) or 

directly by targeting the viral DNA polymerase. The choice of taking an alternative drug is very 

limited and it often goes along with severe side effects. In case of adenoviruses there is only 

one approved drug in clinical use. Especially immune compromised children are of high risk to 

be affected by invasive and disseminated infections by Ad. This is the reason why, on the one 

hand, effective and fast assays are needed to test drug resistance of herpesviruses and, on the 

other hand, new effective drugs with alternative viral targets are urgently required for 

treatment of adeno- and herpesvirus infections. 

In this work, we reported the development of a new AAV-based replicon vector that is suitable 

for detection of DNA virus infections. Using this assay, we established a new phenotypic assay 

for testing HSV resistance and set up a platform, which allows screening for new antiviral 

compounds targeting wild-type adeno- and herpesviruses.  

5.1. Advantages and disadvantages of taking AAV as basis for the 

AAV replicon vector 

5.1.1. Comparison of the AAV replicon to RNA replicon vectors 

The RNA replicase-sensor reporter systems used assaying replication of different RNA viruses, 

can be paralleled with the AAV replicon system which responds to DNA virus infection. 

Phenotypic tests for the evaluation of new drug candidates in a high-throughput format can 

be conducted with either using the RNA replicons for RNA viruses [292] as well as for the AAV 

replicon vector system as we reported here. Replicons are essentially live cell reporter 

systems, which are induced by infectious viral particles. This represents a more attractive 

system in certain applications than genome detection-based technologies like PCR or 

serological-based antigen detection-based assays. Furthermore, in the field of RNA virus 

research, live cell reporter systems, which are dependent on virus replication, play an 
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important role for the viral phenotypical monitoring of host infectious diseases [213]. In case 

of HCV for example, chimeric shuttle replicon vectors carrying all possible single and double 

variants of mutations are used to assess the consequences in response to increasing 

concentrations of antiviral therapy and the level of resistance in comparison to wild-type HCV. 

As a consequence, this knowledge can be used for future genotypic resistance analysis [293]. 

Due to the small genome size of RNA viruses the information of single and multiple mutations 

of RNA viruses leading to drug susceptibility are easily available for the genotypic analysis. 

Concerning resources and time, the phenotypic testing by AAV-based replicon assay may 

become superior to genotyping, due to the larger genome size of the activating DNA viruses. 

One of the major approaches of either positive- or negative-strand RNA replicons which are 

unable to produce infectious progeny, but can be propagated by trans-complementation, is 

the development of vaccines [211]. RNA virus replicons with the gene of interest will be 

abortively replicated and transcribed after delivery inducing an immune response by 

mimicking WT virus replication. In contrast, the AAV replicons, we constructed are not capable 

even of an abortive replication cycle by their own. Therefore, it is very unlikely that using the 

AAV replicon vectors, carrying Rep in addition to the trans gene, will induce better immune 

response as standard recombinant AAV-based recombinant vaccines. 

Alternatively, replicons can provide a trans-complementation for propagation of attenuated 

or replication-incompetent recombinant vaccines [214]. We have tested the trans-

complementation ability of our AAV replicon system and found that the replicon cannot trans-

complement defective Ad genomes. In same settings, we even observed that an inhibitory 

effect at the level of virus rescue from wild-type recombinant genomes, showing that the AAV 

replicon in its present form is not suited for such an application. 

5.1.2. Comparison of the heterologous AAV replicon to the homologous 

DNA virus replicon system 

To our knowledge, until now only one DNA virus replicon was reported (Mohr et al., 2012) 

which is based on a homologous ori and reacted  to murine cytomegalovirus (MCMV) infection 

in trans [214]. Although the MCMV ori based replicon vector also is a DNA virus inducible 

expression system, a number of differences between the AAV based and the MCMV based 

replicon vectors are important to indicate. 
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First, in case of the MCMV based replicon vector, the MCMV oriLyt is the key factor for 

transgene expression. The activation of the replicon oriLyt is very specifically dependent on 

the MCMV DNA replication machinery. No other tested virus within the herpesvirus family 

was able to induce this replicon vector. The here described AAV replicon system utilizes the 

replication system of the AAV and is induced by replication of different helper viruses. 

Therefore, the AAV replicon carries a heterologous origin of replication and, thus, the 

recombination between the replicon and the inducing virus is not possible by homologous 

recombination, which provides a favorable biosafety profile. In addition, the AAV replicon is 

activated by infection with many different helper viruses. The inducibility of the same AAV 

replicon by HSV-1, HSV-2 and HCMV and all Ad serotypes tested so far represents a great 

advantage towards the MCMV replicon vector or potential other replicons constructed in the 

same way, because it allows one standardized setting for testing different viruses. For 

example, as we have shown in the pilot screen for kinase inhibitor-based antivirals (chapter 

4.3.3) both HSV-1 and Ad could be tested in parallel in high throughput. 

Secondly, the inducibility of the MCMV-based replicon vector required chromatin silencing of 

the basal expression of the transgenes. In addition, it was only responsive in an episomal state. 

After integration into the host cell chromosome, the MCMV replicon lost its inducibility by 

MCMV infection. In contrast, the AAV-based replicon was readily inducible upon transient 

transfection and upon rAAV transduction indicating that chromatin silencing does not play a 

major role in its control. However, similar to the MCMV replicon, the extrachromosomal AAV 

replicons showed better induction than the stable cell lines carrying most likely integrated or 

chromatinized replicon copies. One additional remarkable difference between the two DNA 

virus replicon systems is their basal activity in transient settings, which may explain their 

dissimilar inducibility. While in case of the AAV replicon vector, the basal transgene expression 

without infection was very low and often under detection limit, the MCMV replicon vector 

showed very high basal expression levels of the marker gene without induction. This was 

silenced 16 weeks after the establishment of stable transfectants. The episomal and therefore 

circular state of the MCMV replicon vector was very instrumental for a response to MCMV 

infection although it is known that herpesviruses in general are able to replicate via circular 

and linear intermediates [294]. The MCMV replicon vector however failed to respond to WT 

MCMV infection after integration into the host chromosome. The reason for this could not be 

clarified by now. On the contrary, here it has been shown that the AAV replicon vector could 
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efficiently start from circular, linear, and most likely also integrated intermediates as 

described for AAV in the literature [295] [237]. Dependent on the use, the AAV replicon vector 

could be delivered either by transient transfection, stably integrated, or packaged into a 

recombinant AAV vector. Altogether, these features make the AAV replicon the most versatile 

replicon system described so far including the RNA virus replicons as well. 

5.1.3. The versatility of the AAV replicon system 

For establishing the AAV replicon system, it was very convenient to use Ad because we were 

able to compare the results after a wild-type Ad5 virus infection and the viral mutant Ad5-Che 

transduction, lacking essential genes which are only complemented in 293A and 911 cells. 

Because of differences concerning the productive replication ability of the viruses in different 

cell lines, we could test via the usage of transient transfection whether the induction of the 

AAV replicon system was dependent on a full productive cycle of the helper virus. 

Interestingly, there was no signal expression in U2-OS cells after infection with the viral 

mutant because of the lack of viral essential gene complementation in contrast to the wild-

type virus which showed induction of the signal in all cell types tested. Together with the 

results of the qPCR of the GLuc gene, we could therefore assume that the induction of the 

AAV replicon vector is in fact dependent on a full viral replication cycle of the helper virus.  

In the course of exploring the AAV replicon system, we have chosen the chemical transfection 

delivery system FuGENE® HD as transfection reagent showing the highest and most stable 

results. In principle, transient transfection with non-viral delivery systems like the 

nonliposomal FuGENE® HD reagent is suitable for a number of cell lines although relative 

inefficiency and cytotoxicity is an issue [296]. Nevertheless, HSV-1 and HSV-2 inducibility of 

the AAV replicon system could be successfully validated in Vero cells, whereas different 

human Ad serotypes were verified for helper functions in 293A cells. This cell line is derived 

from human embryonic kidney cells. Due to easy culture conditions, good transfection 

efficiencies, and reproducible infection conditions for Ad, HSV-1 and also HSV-2, 293A cells 

were chosen as model cell line for all basic experiments. However, this delivery system 

restricted, for example, the testing of HCMV induction of the AAV replicon in primary HFF cells 

or made the delivery of the AAV replicon system to hepatocarcinoma cell lines for testing its 

HBV inducibility impossible because of the lag time of cell differentiation after transfection 

prior infection. 
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The construction of the stable cell line LE2D8 was also based on 293A cells because of the 

indicated advantages. However, the induction rate of LE2D8 was not as strong as the transient 

system. In general, the stable cell line was very useful for the establishment of different assays 

in the course of this work because it was possible to standardize it for the comparison of 

different studies and the AAV replicon vector was equally distributed while being transduced 

in all cells. However, since it was very time-consuming and extensive work to pick one stable 

cell clone, a translation of the system to different cell lines is not recommended. Nevertheless, 

the transduction of the replicon resulted in better results in all tested cell lines in terms of 

inducibility and also showed similar reproducibility as the stable cell line-based assays. 

Until now, the AAV replicon is the only replicon system, which functions independently of 

transfection or stable cell lines. We tested this possibility in order to circumvent transfection 

inefficiencies shown by some target cells as well as disadvantages of the fixed cell type by the 

stable AAV replicon cell line. The endogenous regions of the AAV replicon vector together with 

the ITRs were used as cis-elements whereas addition of a separate construct coding for rep 

and cap genes provided the structural proteins. These constructs together with the adenovirus 

helper factors delivered in a separate plasmid enabled the production of recombinant AAV 

particles packaging the AAV replicon vector.  

For each target cell type, there are recommended serotypes of AAV and therefore the 

respective rAAV can be chosen for the appropriate application [297]. This feature increased 

the delivery of the recombinant AAV replicon vector into specific cell lines, which were barely 

transfectable before, such as A549 and HFF cells. For choosing the serotype of the rAAV, 

transduction efficacies of different types were tested. Since rAAV2 showed the best results in 

case of the cell lines planned for application, this serotype was further chosen for AAV replicon 

packaging. A549 cell line is a human lung adenocarcinoma cell line which is very susceptible 

for adenovirus infections but hardly transfectable. With the newly established rAAV2-based 

replicon vector the induction rate after human Ad5 wild-type infection was 230-fold higher in 

A549 cells compared to 293A cells treated with the same conditions. 

Furthermore, the transduction of Vero cells with rAAV2-replicon vector and infection with 

HSV-1 leaded to a 2800-fold induction of the marker gene GLuc compared to non-infected 

cells and therefore there was a greater sensitivity compared to the transient or the stable 

system. Moreover, using this delivery system of the AAV replicon vector for Vero cells, the 
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HSV-2 induction became significantly higher, enabling the establishment of a phenotypical 

HSV-2 antiviral resistance test. 

Using the AAV replicon vector packaged into a recombinant AAV particle, we were able to 

transduce HFF cells and therefore testing HCMV as inducer for the AAV replicon system. 

Primary HFF cells are derived from human foreskin and the combination of inefficient 

transfection ability and a slowly replicating virus like HCMV leaded to inappropriate 

experimental conditions. However, transduction of the rAAV2-replicon vector and infection 

with HCMV resulted in 110-fold induction of a marker gene compared to non-infected cells 

after an incubation time of 7 days. Differentiation between HCMV-infected and non-infected 

cells could already be detected after 4 days. 

5.1.4. Comparison to other virus-inducible reporters 

There are several conditional or inducible systems for the transcriptional regulation of 

reporter genes, consisting of a regulatory element, a responsive unit which is linked to a 

transgene and an external inducer. The most prominent inducible transgenic systems are the 

tetracycline-controlled transcriptional activation system (Tet-ON/Tet-OFF) [298] and the 

streptogramin-based gene regulation system (PipOFF/PipON) [299]. In case of the Tet-ON/Tet-

OFF system the external inducer is tetracycline and in case of the PipOFF/PipON system it is 

streptogramin. The AAV replicon system in contrary was induced by an incoming viral 

infection. 

The most important requirement for trigger-inducible transgene expression technologies in 

general is that the system upon induction provides high-level transgene expression, whereas 

under repressed conditions and in the absence of an inducer the expression should be 

suppressed completely or at least elicit only low basal expression. Such technologies are 

especially interesting for precise delivery of protein therapeutics via viral vectors in clinically 

relevant cell phenotypes. In case of small-molecule-inducible systems a high compatibility of 

the transfer system to the specific aimed tissue is extremely important to limit negative effects 

of not affected cells. In principle, the AAV replicon vector would possess the ability for clinical 

applications against herpes-, adeno- and possibly even papillomavirus-infected cells in vivo. 

The latter infection is especially interesting due to the fact that papillomavirus infections can 

cause cervical cancer [300]. Because of these prerequisites it may be possible to insert an 
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antiviral compound as transgene in the AAV replicon vector and package it into an AAV 

serotype particle for targeting a specific tissue. After delivery of the AAV replicon vector into 

the targeted tissue cells, the activation of the compound expression would only occur after 

infection of the same cell, leading to an inhibition of the incoming virus. This would prevent 

induction of transgene expression in a non-affected cell. However, before the AAV replicon 

system could be used in this manner, the rep genes in the AAV replicon vector would have to 

be modified in order to prevent integration of the AAV replicon vector into the host cell 

chromosome. Without this safety process an application in vivo is inconceivable.  

5.2. AAV Replicon vector for testing drug resistance 

5.2.1. Advantages and disadvantages of AAV replicon-based test compared 

to classical PRA 

The most important phenotypic test used during the last decades which is standardized by the 

Clinical and Laboratory Standards Institute for the use of susceptibility validations of clinical 

HSV-1 and HSV-2 strains is the plaque reduction assay (PRA) (detailed description in chapter 

1.2.2.8) [123]. There are a number of disadvantages concerning the PRA which led to the 

invention of other tests. But due to the fact that in general phenotypic tests are critical in 

terms of standardization, there are only limited numbers approved by the FDA and the PRA 

remains the ‘gold standard’. The standardized protocol of the PRA includes a lot of different 

technical steps and is therefore very costly in terms of labor. The other very significant 

disadvantage of this phenotypic test is the time which is needed to proof whether a patient-

derived viral isolate is resistant to certain drugs or not. Because of laboratory routine issue, 

the assay takes 5-7 days before a final conclusion about the further therapy decision can be 

made. Furthermore, the manual counting of the plaques needs an experienced person and 

results are highly dependent on the individual opinion of the respective executive technician. 

In contrast, the AAV replicon-based susceptibility assay, established in this study, 

demonstrated a number of advantages over the PRA. First of all, the different working steps 

could be limited to seeding of the cells in a 96-well plate format and direct transduction with 

the recombinant AAV replicon vector. After 6 hours incubation time, the 1:100 diluted pre-

cultured virus as well as different concentrations of the respective antiviral drug to be tested 

were added to the wells without any further treatment and incubated for 24- or respective 48 
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hours. Then 20 µl of the cell supernatants were transferred directly to a white assay plate and 

the GLuc could be measured. To quantitate drug resistance or susceptibility to drugs, the IC50 

values could be calculated based on the inhibition of the virus-dependent inductions of the 

luciferase expression.  

Since the results of the AAV replicon-based resistance tests were measurable via the 

chemiluminescent reagent GLuc, the standardization and comparison between experiments 

can be provided qualitatively.  

In critical cases of HSV-infected patients, therapy decisions have to be made as quick as 

possible [301]. Not only can the treatment of the patient start earlier after the AAV replicon-

based susceptibility assay compared to the PRA but also the economical factor of time is 

reduced to limited technical aspects, reduced working power and time needed for finishing 

the assay. 

Before using the standardized PRA protocol, the patient-derived viral isolate has to be 

propagated in cell culture to produce a standardized viral inocula. For assaying clinical strains 

with the AAV replicon system, the step of pre-culturing of viral material was done as well. In 

this case, patient-derived samples were never tested directly. Since the pre-culturing needs 1-

3 days it would be interesting in the future to test whether this step may be skipped. On the 

other side, standardization of the number of viral particles may be an important requirement 

for quantitative analysis. It was published by van der Beek et al. [130] that without pre-

culturing the cells for a short period of time, viral replication was not detectable. They explain 

this by a possible adoption step of the virus to cell culture conditions which may be a key 

factor. Interestingly, they also tested the influence of pre-culturing on the existing mutations 

by PCR and they did not observe differentiations due to selection pressure after 48 h. 

However, in case of PRA the subpopulation of ACV-resistant viruses has to be at least 20 % to 

give an IC50 of ≥ 2 µg/mL (8.9 µM) as threshold for resistance [289] [115] [302]. In general the 

IC50 of antiviral resistance to ACV or penciclovir has been proposed as > 10-fold higher 

compared to the sensitive control strain [303].  

Using the LE2D8 stable AAV replicon cell line we were able to differentiate between 7 sensitive 

and 7 resistant HSV-1 strains using a 1:10 dilution of the viral pre-culture 48 h post infection. 

The mean IC50 values for HSV-1 ACV sensitive isolates was 25 µM, whereas the IC50s of HSV-1 

resistant strains were not calculable because no sigmoidal curve could be observed after 
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treatment with different doses of ACV. Although the induction levels of the stable cell line 

were generally low, the response of the AAV replicon cell line to the treatment with ACV after 

infection with the clinical isolates enabled a differentiation between sensitive and resistant 

strains. In case of RLU values, the sensitive strains were 4 times less responsive compared to 

resistant strains. Here, the sensitivity of PRA standards could not be provided. Furthermore, 

the induction after HSV-2 infection was in general too low for an establishment of a 

susceptibility assay for this serotype. 

The low sensitivity towards HSV infection could be overcome by a higher induction rate of the 

AAV replicon vector after delivery into cells via transduction. Packaging of the AAV replicon 

vector into a recombinant AAV particle allowed a great increase of sensitivity towards 

susceptibility testing. We calculated an IC50 of 1.87 µM for HSV-1 WT strain and 19.1 µM for 

HSV-2 WT strain 48 hours after infection using the rAAV replicon system. 

With this improvement on hands, significant results were obtained for virus susceptibility 

testing, even after using a higher dilution of the respective pre-cultured virus (1:100). 

Furthermore, significant differentiation between sensitive and resistant strains could be 

observed after a much shorter period of time of only 24 h. In conclusion, the possibility of 

transducing the AAV replicon vector enabled the establishment of a diagnostic test for HSV 

drug resistance, providing answers on antiviral susceptibility within one day after pre-culturing 

the virus. 

PRA for testing the susceptibility of HCMV in general is not performed due to the long pre-

culturing time necessary for this slowly replicating herpesvirus serotype (> 4 weeks) [304]. The 

actual time of the PRA takes 7 to 10 days which results in a test period of approximately 4-6 

weeks [305]. There are proposed cutoffs for the susceptibility to GCV, CDV and FOS (6, 2 and 

400 µM respectively) [306] [307]. However, since the results are dependent on the respective 

laboratory, the IC50 value for resistance can be generally interpreted as ≥ 2-fold compared to 

the reference strain [305]. Therefore, phenotypic testing systems for HCMV are very 

challenging and restricted to specialist diagnostic labs. Using the AAV based replicon, it may 

be possible to establish a test, similar what we have established for HSV here, which would be 

less demanding and therefore easily applicable in standard laboratories. 
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5.2.2. Advantages and disadvantages of AAV replicon compared to other 

methods 

Direct analysis of patient-derived viral isolates by PCR-based methods allows fast 

identification of mutations connected to antiviral resistance and is technically easy to perform. 

The distinction whether an analyzed mutation indeed leads to antiviral resistance of the 

respective virus or whether it simply belongs to a natural inter-strain variation has to be pre–

validated by a phenotypic assay. The comparison with mutations described in the literature is 

fundamental for the analysis and interpretation process. 

Genotyping HSV-1 and HSV-2 is concentrating mainly on mutations within the thymidine 

kinase gene (UL23) or the DNA polymerase encoding gene (UL39) [308]. For sequencing of the 

TK gene, patient material can directly be amplified and sequenced whereas analysis of the pol 

gene needs to be performed on previously cultured viral stocks (18). Therefore, the overall 

time for susceptibility testing via sequencing methods still lasts 3-4 days. 

Clearly for HSV tests, the AAV replicon-based system is competitive with the genotypic-based 

methods. It does not require more time and is applicable without further knowledge on 

resistance-associated mutations. 

In general, laboratory testing of HCMV resistance to antiviral drugs is based on genotypic 

diagnostic. Mutations especially in the viral UL97 kinase and the UL54 DNA polymerase gene 

are described [304]. A genotypic test for HCMV lasts 3-4 days, provided sufficient material is 

available. Here, the AAV replicon probably will not be a competitive alternative for 

genotyping, since the in vitro culture of HCMV also is time-consuming. However, the replicon-

based resistance test may allow the generation of a reliable database for resistance-associated 

mutations, allowing HCMV resistance test in a broader range of laboratories. 

There are a number of phenotypic assays to detect HSV which were developed to overcome 

the problems associated with the PRA. Methods which are evaluating the antigen expression 

after virus multiplication in vitro are based on enzyme-linked immunosorbent assays (ELISAs) 

like the sandwich ELISA or the microplate in situ ELISA called MISE [124] [125] [126]. For plaque 

autoradiography in the MISE assay, the activity of viral thymidine of virally infected and drug 

treated cells were measured by the addition of [125I]iododeoxycytidine 72 h post infection 

[125]. Other established methods are based on DNA hybridization assays using radioactivity 
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48 h after incubation with different drug concentrations [127] or based on measuring HSV-1 

gC expression in infected cells stained with an appropriate antibody by FACS [128]. The FACS-

based method is very labor-intensive due to several washing steps and the results can be 

observed only 72 h after the pre-cultured virus is recovered. 

A similar method like PRA is the assay with an inducible Vero cell line which responds to HSV 

infection with β-Galactosidase expression. 10-fold dilutions of non-titrated HSV samples are 

used to determine histochemical stained blue plaques after 48 h [129]. Although plaques are 

better visualized, and the assay time is shorter than in case of PRA, the method is still labor-

intensive and has no objective endpoint. 

A recently developed method is a combined assay using cell culture and nucleic assay 

detection and is named DNA reduction assay. Pre-cultured clinical samples are cultured in 

presence of antivirals and after only 24 h the increase of the viral DNA load in the infected 

cells is measured with quantitative real-time PCR whereas the cell count and lysis are 

corrected by beta-globin PCR [130]. This assay is fast, however, very instrumentation-intensive 

and expensive. 

All these tests cannot satisfy the requirements of sensitivity, time consumption, laboratory 

technical efforts, standardization procedure, and cost effectiveness at the same time. This is 

the reason why the PRA assay - or at least variations of the PRA - still belongs to the methods 

of choice in specialized laboratories. Yet, the AAV replicon system, as we show here provided 

an improved alternative by exhibiting a high sensitivity which was comparable to the standard 

PRA test. Additionally, in the AAV replicon-based assay, the time needed for the performance 

of the test was reduced to a minimum due to the decreased technical working steps, which 

also led to reduced costs because less personal expenses have to be calculated. Furthermore, 

the assay can be standardized very well due to gathering quantitative data.  

5.3. AAV replicon vector for testing new inhibitors 

5.3.1. Why new inhibitors are needed 

HSV infections cause clinically mild manifestations with chronically recurrent labial and genital 

herpes. Although these painful lesions are not life-threatening, patients can suffer from stress 

going along each infection which can lead to psychosocial problems [309]. Moreover, 
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especially for neonates and immunosuppressed individuals HSV-1 and HSV-2 is a common 

cause for devastating clinical consequences. For instance HSV encephalitis, which is 

responsible for 20% of all cases of sporadic encephalitis [310] typically leads to coma within 6 

days after the first neurological symptom if the disease is not treated in time. The incidence 

of herpes simplex encephalitis is 1 in 250,000 to 500,000 per year with a mortality rate of 

20 - 30% if ACV therapy is started timely at an early stage of encephalitis [311] [312] [313]. 

The number of patients dying although receiving an ACV treatment is very high. Currently, 

new drugs aiming for the helicase-primase complex of HSV are under clinical development as 

well as new vaccines against HSV-2 [101]. Nevertheless, alternative drugs are urgently needed 

that target different sites of the virus than currently used drugs, having additionally a high oral 

bioavailability, an efficient delivery through the blood brain barrier, no, or at least, less toxic 

effects and a high efficacy.  

In case of human Ad infections, 15% of upper- and 5% of lower respiratory tract inflammatory 

diseases in children are accounted to this virus and the course of disease is mainly mild and 

self-limiting in immunocompetent individuals. The situation is different in case of 

immunocompromised patients with an impaired immunological response, such as solid-organ 

transplant or hematopoietic stem cell recipients. In this case, an acute or a persistent infection 

can lead to high morbidity and even mortality. The clinical manifestation is highly dependent 

on the patient age, the virus serotype, the primary disease, and the tissue which is infected by 

Ad. Children have a 2 to 3.5 times higher risk of infections compared to adults [208] [141]. At 

present, there is no approved drug against human Ad infection. Only broad-spectrum antiviral 

agents can be used as an alternative with limited success. Therefore, patients at risk are 

dependent on decreasing the immunosuppression or treatment with adoptive 

immunotherapy using adenovirus-specific T cells. There is an urgent need for new potent anti-

adenoviral drugs, or at least one, to be able to treat the severe cases of infections. New 

antiviral Ad compounds have to meet additionally the challenge that constantly new serotypes 

are recognized that may show difference in drug susceptibility.  

5.3.2. Current testing systems  

Screening of potential new drugs against viruses is a process that can be divided into several 

phases. The most important point is to have an in vitro and in vivo model for testing a large 

number of new target molecules. Fortunately, the HSV-1, HSV-2 and Ads, the mostly used 
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viruses in the course of this work, are in general suitable for in vitro analyses. In case of HSV, 

the in vivo models commonly used to study infections are mice, guinea pigs, rats and rabbits 

[314]. For human Ad there is a new Zealand white rabbit model for corneal infections of Ad-

1, -2, -5, -6, -8 and -37 [315]. Human Ad5 can be tested intranasally or intravenously in 

different mouse models, in the pig and in the Syrian hamster (reviewed in [208]). The latter 

one is the most promising one and was used for testing the new antiviral candidate drug 

Brincidofovir [316] [317].  

For screening of new compounds with antiviral activity, either biochemical or target-based 

assays are used for testing the direct effect on a target protein or a certain function such as 

the enzymatic assay published by McGrath et al. for testing inhibitors of the human Ad 

proteinase [318]. However, for evaluation studies of antiviral activity in the cell, phenotypic 

assays based on cell culture are preferred because a preconceived idea concerning the target 

site, at the stage of high throughput compound library testing is not necessary. 

A widely used assay, which can be used for drug screening towards cell viability, is the 3-

(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, suitable for a 96-

well format high throughput screening. Compared to the AAV replicon assay there are more 

steps to perform the MTT assay, it cannot be applied in many different cell lines and the 

sensitivity depends highly on different parameters [319] [320]. 

Another method to test the impact of certain compounds on Ad or HSV is the yield reduction 

assay. For HSV-1 for example the enzyme-linked virus inhibitor reporter assay (ELVIRA) is 

published [321] [322]. However, this method is restricted to a certain cell line and furthermore 

the implementation includes more working steps compared to the newly established AAV 

replicon system. Therefore, especially in case of Ad, it is mainly used to ensure already 

selected compounds [323]. The same is true for the plaque reduction assay, which is even 

more time and labor-intensive for Ad and for HSV [324]. Quantification after 

immunofluorescence with antibodies targeting virus specific antigens has the advantage of 

evaluating the antiviral activity of the compound at a defined step of the viral life cycle. 

However, the following quantification of fluorescent cells is again very time consuming and 

not convenient to be performed in high throughput conditions.  

Other test systems used for screening in high throughput format are cell lines expressing a 

marker gene. For HSV-1 a strategy using a modified plaque reduction assay with a transgenic 
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cell line is published. The promoter of the HSV-1 UL39 gene is induced to express β-

galactosidase upon HSV-1 infection [325]. In contrast, the AAV replicon assay is applicable in 

several tested cell lines including primary cells. 

Genetically marked viruses expressing a reporter gene upon viral infections for the evaluation 

of viral infectivity are the most commonly used approaches for high throughput screenings of 

large compound libraries [326] [208]. Ad5-GFP or Ad16-GFP for example have been used for 

high throughput screenings based on labelled genes and modified PRAs [326]. 

The advantage of the AAV replicon system over labelled viruses is the ability to use it for wild-

type viruses and clinically isolated strains. Especially concerning all the different relevant 

serotypes of human Ad, this issue is very relevant because the AAV replicon assay provides a 

direct testing of all in vitro growing Ad without the inconvenient construction of genetically 

labelled BAC-derived serotypes. Until now all alpha- and beta-herpesviruses tested responded 

to the AAV replicon system as well. Most important, viruses known to be resistant to certain 

drugs can be evaluated independent of the mutation leading to this resistance. 

Yet, the newly developed AAV replicon-based screening assay was used to test a compound 

library of 24 candidates for their potential to inhibit Ad5 as well as HSV-1. Compounds that 

inhibited these viruses were analyzed via an absent induction signal of GLuc as transgene of 

the AAV replicon vector, which was transduced in the adopted cell line 4 h before adding the 

possible inhibitors together with the respective virus. The compounds were highly selected 

for their inhibitory effect on certain targets in the cell. Out of 24 small molecules 7 were able 

to inhibit Ad5 and 3 of these compounds were also able to inhibit HSV-1. Out of these 7 Ad 

and 3 HSV-1 inhibitors, one was the known apoptosis inducer staurosporin, and another one 

was a published kinase inhibitor and therefore both were used as internal controls of the assay 

system. For further validations of the compounds, toxicity was tested via an MTT-test in two 

different cell lines (A549 and Vero) using different concentrations (data not shown). The 3 

compounds, inhibiting both viruses (including the two control inhibitors) showed a high 

toxicity profile of less than 80% viability in both cell lines. The two compounds that 

demonstrated 50% inhibition of Ad in contrast did not show any toxicity within those 

concentrations we used in the screening assay. For evaluation, if the inhibitory effect of those 

compounds does not derive from cell toxicity, the MTT test would have to be reproduced and 

other cell lines have to be tested with the replicon system as well. Since this screen was only 
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made with a limited data-set, the AAV replicon system could be further used to establish a 

high throughput screen for testing a greater compound library. Nevertheless, the first 

application of the AAV replicon-based screening system granted a first hint on compound 

groups to be more or less interesting for further studies. 

However, in case of the AAV replicon compound screening it is possible, that the inhibitory 

effect of possible antiviral drugs roots on the inhibition of the AAV replicon vector itself. 

Therefore, it is necessary to further evaluate screened hits with methods for direct analysis of 

the targeted viral inhibition.  
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5.4. Concluding remarks 

In this study a new form of a DNA based replicon vector that is inducible by infection with 

large DNA viruses combining the regulatory elements of the replication controlled late AAV 

gene with the transcription unit of an exchangeable gene of interest was established. The 

novel and major advantages of this new AAV based replicon over similar systems resides in 

the possibility to induce this replicon vector by productive helper viruses without the risk of 

recombinant homologous sequences to these viruses.  

Several delivery systems of the AAV replicon vector were established for varying demands. 

The AAV replicon proved its functionality in context of all tested delivery approaches and 

remained responsive in multiple physical states of its genome demonstrating its superior 

versatility. 

However, the viral delivery system of transducing the AAV replicon by an adeno-association 

virus particle appeared to be superior for most of the applications tested in this study allowing 

fast, easy to apply and quantitative marker of helper virus infections.  

In this study, the construction of the AAV replicon containing recombinant AAV particle was 

the prerequisite for the establishment of two unique approaches towards diagnostic and drug 

development. The phenotypic susceptibility assay for HSV-1 and HSV-2 resistance testing was 

developed and already tested in a small cohort of 16 clinical isolates. The sensitivity of the 

AAV replicon assay was validated by PRA. 

The second major application of the AAV replicon system, was a novel phenotypic screening 

system for the detection of new antivirals. The applicability of the system as sensitive, easy to 

handle and time-saving high-throughput assay was demonstrated in a primary screening test 

of potential inhibitors for human Ad and HSV-1 using conditions adopted for each virus. The 

antiviral effect of 5 compounds inhibiting Ad5 and 1 compound inhibiting HSV-1 could be 

detected as hits towards possible new antivirals against important DNA viruses. We believe 

that in future the AAV replicon can be adapted to detect replication of further viruses, such as 

VZV and HCMV, and other applications such as testing neutralization activity of antisera and 

trans-complementation, which can boost both clinical and basic research on large DNA 

viruses. 



 

127 

References 

1. Levy, S.B. and M. Bonnie, Antibacterial resistance worldwide: Causes, challenges and 
responses. Nature Medicine, 2004. 10(12S): p. S122-S129. 

2. Organization, W.H. Antimicrobial resistance: global report on surveillance 2014. 2014  [cited 
2018 November 2018]; Available from: 
http://www.who.int/drugresistance/documents/surveillancereport/en/. 

3. Borges-Walmsley, M.I. and A.R. Walmsley, The structure and function of drug pumps. Trends 
in Microbiology, 2001. 9(2): p. 71-79. 

4. Alekshun, M.N. and S.B. Levy, Molecular Mechanisms of Antibacterial Multidrug Resistance. 
Cell, 2007. 128(6): p. 1037-1050. 

5. Gould, I.M., Antibiotic resistance: the perfect storm. Int J Antimicrob Agents, 2009. 34 Suppl 
3: p. S2-5. 

6. World Health Organization. Antimicrobial resistance 2017 September 2016 [cited 2017 4 
April]; Available from: http://www.who.int/mediacentre/factsheets/fs194/en/. 

7. Walsh, F.M. and S.G.B. Amyes, Microbiology and drug resistance mechanisms of fully 
resistant pathogens. Current Opinion in Microbiology, 2004. 7(5): p. 439-444. 

8. Jorgensen, J.H. and M.J. Ferraro, Antimicrobial susceptibility testing: A review of general 
principles and contemporary practices. Clinical Infectious Diseases, 2009. 49(11): p. 1749-
1755. 

9. Sun, W., et al., Rapid antimicrobial susceptibility test for identification of new therapeutics 
and drug combinations against multidrug-resistant bacteria. Emerg Microbes Infect, 2016. 5: 
p. e116. 

10. Cornejo-Juárez, P., et al., The impact of hospital-acquired infections with multidrug-resistant 
bacteria in an oncology intensive care unit. International Journal of Infectious Diseases, 2015. 
31: p. e31-e34. 

11. Garnacho-Montero, J., et al., Timing of adequate antibiotic therapy is a greater determinant 
of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Critical Care, 2006. 
10(4). 

12. Brown, D., Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery 
void? Nature Reviews Drug Discovery, 2015. 14(12): p. 821-832. 

13. Sanjuán, R. and P. Domingo-Calap, Mechanisms of viral mutation. Cellular and molecular life 
sciences : CMLS, 2016. 73(23): p. 4433-4448. 

14. Pillay, D. and M. Zambon, Antiviral drug resistance. British Medical Journal, 1998. 317(7159): 
p. 660-662. 

15. Mansky, L.M., Retrovirus mutation rates and their role in genetic variation. J Gen Virol, 1998. 
79 ( Pt 6): p. 1337-45. 

16. McKeegan, K.S., M.I. Borges-Walmsley, and A.R. Walmsley, Microbial and viral drug 
resistance mechanisms. Trends in Microbiology, 2002. 10(10): p. S8-S14. 

17. Strasfeld, L. and S. Chou, Antiviral Drug Resistance: Mechanisms and Clinical Implications. 
Infectious disease clinics of North America, 2010. 24(2): p. 413-437. 

18. Field, H.J., Persistent herpes simplex virus infection and mechanisms of virus drug resistance. 
Eur J Clin Microbiol Infect Dis, 1989. 8(8): p. 671-80. 

19. Zoulim, F., In Vitro Models for Studying Hepatitis B Virus Drug Resistance. Semin Liver Dis, 
2006. 26(02): p. 171-180. 

20. Lok, A.S.F., How to diagnose and treat hepatitis B virus antiviral drug resistance in the liver 
transplant setting. Liver Transplantation, 2008. 14(SUPPL. 2): p. S8-S14. 

21. Margeridon-Thermet, S., et al., Ultra-deep pyrosequencing of hepatitis b virus quasispecies 
from nucleoside and nucleotide reverse-transcriptase inhibitor (NRTI)-treated patients and 
NRTI-naive patients. Journal of Infectious Diseases, 2009. 199(9): p. 1275-1285. 

http://www.who.int/mediacentre/factsheets/fs194/en/
http://www.who.int/drugresistance/documents/surveillancereport/en/


 

128 

22. Lada, O., et al., In vitro susceptibility of lamivudine-resistant hepatitis B virus to adefovir and 
tenofovir. Antiviral Therapy, 2004. 9(3): p. 353-363. 

23. Gripon, P., et al., Infection of a human hepatoma cell line by hepatitis B virus. Proceedings of 
the National Academy of Sciences of the United States of America, 2002. 99(24): p. 15655-
15660. 

24. Villet, S., et al., In Vitro Characterization of Viral Fitness of Therapy-Resistant Hepatitis B 
Variants. Gastroenterology, 2009. 136(1): p. 168-176.e2. 

25. Shafer, R.W., Genotypic Testing for Human Immunodeficiency Virus Type 1 Drug Resistance. 
Clinical Microbiology Reviews, 2002. 15(2): p. 247-277. 

26. Weber, J., et al., Novel Method for Simultaneous Quantification of Phenotypic Resistance to 
Maturation, Protease, Reverse Transcriptase, and Integrase HIV Inhibitors Based on 
3′Gag(p2/p7/p1/p6)/PR/RT/INT-Recombinant Viruses: a Useful Tool in the Multitarget Era of 
Antiretroviral Therapy. Antimicrobial Agents and Chemotherapy, 2011. 55(8): p. 3729-3742. 

27. Hertogs, K., et al., A Rapid Method for Simultaneous Detection of Phenotypic Resistance to 
Inhibitors of Protease and Reverse Transcriptase in Recombinant Human Immunodeficiency 
Virus Type 1 Isolates from Patients Treated with Antiretroviral Drugs. Antimicrobial Agents 
and Chemotherapy, 1998. 42(2): p. 269-276. 

28. Petropoulos, C.J., et al., A novel phenotypic drug susceptibility assay for human 
immunodeficiency virus type 1. Antimicrob Agents Chemother, 2000. 44(4): p. 920-8. 

29. Shafer, R.W., Rationale and uses of a public HIV drug-resistance database. Journal of 
Infectious Diseases, 2006. 194(SUPPL. 1): p. S51-S58. 

30. Liu, L., et al., Comparison of next-generation sequencing systems. Journal of Biomedicine and 
Biotechnology, 2012. 2012. 

31. Loman, N.J., et al., Performance comparison of benchtop high-throughput sequencing 
platforms. Nature Biotechnology, 2012. 30(5): p. 434-439. 

32. Gibson, R.M., C.L. Schmotzer, and M.E. Quiñones-Mateu, Next-generation sequencing to help 
monitor patients infected with HIV: Ready for clinical use? Current Infectious Disease Reports, 
2014. 16(4). 

33. Parker, J. and J. Chen, Application of next generation sequencing for the detection of human 
viral pathogens in clinical specimens. Journal of Clinical Virology, 2017. 86: p. 20-26. 

34. Roizman, B., et al., Herpesviridae. Intervirology, 1981. 16(4): p. 201-217. 
35. International Committee on Taxonomy of Viruses (ICTV). Virus Taxonomy: 2017 Release. 

2018 July 2017 [cited 2018 May 2018]; Available from: https://talk.ictvonline.org/ictv-
reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/93/adenoviridae. 

36. Davison, A.J., Overview of classification, in Human Herpesviruses: Biology, Therapy, and 
Immunoprophylaxis. 2007. p. 3-9. 

37. Grinde, B., Herpesviruses: latency and reactivation – viral strategies and host response. 
Journal of Oral Microbiology, 2013. 5: p. 10.3402/jom.v5i0.22766. 

38. Weir, J.P., Genomic organization and evolution of the human herpesviruses. Virus Genes, 
1998. 16(1): p. 85-93. 

39. Zerboni, L. and A. Arvin, Neuronal Subtype and Satellite Cell Tropism Are Determinants of 
Varicella-Zoster Virus Virulence in Human Dorsal Root Ganglia Xenografts In Vivo. PLoS 
Pathog, 2015. 11(6): p. e1004989. 

40. Croen, K.D., et al., Latent herpes simplex virus in human trigeminal ganglia. Detection of an 
immediate early gene 'anti-sense' transcript by in situ hybridization. New England Journal of 
Medicine, 1987. 317(23): p. 1427-1432. 

41. Sinzger, C., M. Digel, and G. Jahn, Cytomegalovirus Cell Tropism, in Human Cytomegalovirus, 
T.E. Shenk and M.F. Stinski, Editors. 2008, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 
63-83. 

42. Koffron, A.J., et al., Cellular localization of latent murine cytomegalovirus. Journal of Virology, 
1998. 72(1): p. 95-103. 

https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/93/adenoviridae
https://talk.ictvonline.org/ictv-reports/ictv_9th_report/dsdna-viruses-2011/w/dsdna_viruses/93/adenoviridae


 

129 

43. Hahn, G., R. Jores, and E.S. Mocarski, Cytomegalovirus remains latent in a common precursor 
of dendritic and myeloid cells. Proceedings of the National Academy of Sciences of the United 
States of America, 1998. 95(7): p. 3937-3942. 

44. Hutt-Fletcher, L.M., Epstein-Barr Virus Entry. Journal of Virology, 2007. 81(15): p. 7825-7832. 
45. Thorley-Lawson, D.A., EBV Persistence--Introducing the Virus. Current topics in microbiology 

and immunology, 2015. 390(Pt 1): p. 151-209. 
46. Rabenau, H.F., et al., Seroprevalence of herpes simplex virus types 1 and type 2 in the 

Frankfurt am Main area, Germany. Med Microbiol Immunol, 2002. 190(4): p. 153-60. 
47. Smith, J.S. and N.J. Robinson, Age-Specific Prevalence of Infection with Herpes Simplex Virus 

Types 2 and 1: A Global Review. The Journal of Infectious Diseases, 2002. 
186(Supplement_1): p. S3-S28. 

48. Freeman, E.E., et al., Herpes simplex virus 2 infection increases HIV acquisition in men and 
women: systematic review and meta-analysis of longitudinal studies. AIDS, 2006. 20(1): p. 73-
83. 

49. Roizman, B. and R.J. Whitley, An inquiry into the molecular basis of HSV latency and 
reactivation. Annu Rev Microbiol, 2013. 67: p. 355-74. 

50. Whitley, R.J. and B. Roizman, Herpes Simplex Viruses, in Clinical Virology, Third Edition. 2009, 
American Society of Microbiology. 

51. Kennedy, P.G.E. and A. Chaudhuri, Herpes simplex encephalitis. Journal of Neurology 
Neurosurgery and Psychiatry, 2002. 73(3): p. 237-238. 

52. Wadsworth, S., R.J. Jacob, and B. Roizman, Anatomy of herpes simplex virus DNA. II. Size, 
composition, and arrangement of inverted terminal repetitions. J Virol, 1975. 15(6): p. 1487-
97. 

53. Weller, S.K. and D.M. Coen, Herpes Simplex Viruses: Mechanisms of DNA Replication. Cold 
Spring Harbor perspectives in biology, 2012. 4(9): p. a013011-a013011. 

54. Khalil, M.I., et al., Varicella-Zoster Virus (VZV) origin of DNA replication oriS influences origin-
dependent DNA replication and flanking gene transcription. Virology, 2015. 481: p. 179-186. 

55. Stevens, J.G., et al., RNA complementary to a herpesvirus α gene mRNA is prominent in 
latently infected neurons. Science, 1987. 235(4792): p. 1056-1059. 

56. Umbach, J.L., et al., MicroRNAs expressed by herpes simplex virus 1 during latent infection 
regulate viral mRNAs. Nature, 2008. 454(7205): p. 780-783. 

57. Garber, D.A., P.A. Schaffer, and D.M. Knipe, A LAT-associated function reduces productive-
cycle gene expression during acute infection of murine sensory neurons with herpes simplex 
virus type 1. Journal of Virology, 1997. 71(8): p. 5885-5893. 

58. Antinone, S.E., S.V. Zaichick, and G.A. Smith, Resolving the assembly state of herpes simplex 
virus during axon transport by live-cell imaging. Journal of Virology, 2010. 84(24): p. 13019-
13030. 

59. Honess, R.W. and B. Roizman, Regulation of herpesvirus macromolecular synthesis: 
sequential transition of polypeptide synthesis requires functional viral polypeptides. 
Proceedings of the National Academy of Sciences of the United States of America, 1975. 
72(4): p. 1276-1280. 

60. Honess, R.W. and B. Roizman, Regulation of herpesvirus macromolecular synthesis. I. Cascade 
regulation of the synthesis of three groups of viral proteins. Journal of Virology, 1974. 14(1): 
p. 8-19. 

61. Mettenleiter, T.C., Herpesvirus assembly and egress. J Virol, 2002. 76(4): p. 1537-47. 
62. Owen, D.J., C.M. Crump, and S.C. Graham, Tegument assembly and secondary envelopment 

of alphaherpesviruses. Viruses, 2015. 7(9): p. 5084-5114. 
63. Spear, P.G., et al., Heparan sulfate glycosaminoglycans as primary cell surface receptors for 

herpes simplex virus. Adv Exp Med Biol, 1992. 313: p. 341-53. 
64. Herold, B.C., et al., Differences in the susceptibility of herpes simplex virus types 1 and 2 to 

modified heparin compounds suggest serotype differences in viral entry. J Virol, 1996. 70(6): 
p. 3461-9. 



 

130 

65. Gianni, T., V. Gatta, and G. Campadelli-Fiume, α<inf>v</inf>β<inf>3</inf>-integrin routes 
herpes simplex virus to an entry pathway dependent on cholesterol-rich lipid rafts and 
dynamin2. Proceedings of the National Academy of Sciences of the United States of America, 
2010. 107(51): p. 22260-22265. 

66. Nicola, A.V. and S.E. Straus, Cellular and viral requirements for rapid endocytic entry of herpes 
simplex virus. Journal of Virology, 2004. 78(14): p. 7508-7517. 

67. Sodeik, B., M.W. Ebersold, and A. Helenius, Microtubule-mediated transport of incoming 
herpes simplex virus 1 capsids to the nucleus. Journal of Cell Biology, 1997. 136(5): p. 1007-
1021. 

68. Garber, D.A., S.M. Beverley, and D.M. Coen, Demonstration of circularization of herpes 
simplex virus DNA following infection using pulsed field gel electrophoresis. Virology, 1993. 
197(1): p. 459-62. 

69. Wysocka, J. and W. Herr, The herpes simplex virus VP16-induced complex: The makings of a 
regulatory switch. Trends in Biochemical Sciences, 2003. 28(6): p. 294-304. 

70. Smith, C.A., et al., ICP4, the major transcriptional regulatory protein of herpes simplex virus 
type 1, forms a tripartite complex with TATA-binding protein and TFIIB. Journal of Virology, 
1993. 67(8): p. 4676-4687. 

71. Carrozza, M.J. and N.A. DeLuca, Interaction of the viral activator protein ICP4 with TFIID 
through TAF250. Molecular and Cellular Biology, 1996. 16(6): p. 3085-3093. 

72. Rice, S.A., et al., Herpes simplex virus immediate-early protein ICP22 is required for viral 
modification of host RNA polymerase II and establishment of the normal viral transcription 
program. Journal of Virology, 1995. 69(9): p. 5550-5559. 

73. Chen, Y.M. and D.M. Knipe, A dominant mutant form of the herpes simplex virus ICP8 protein 
decreases viral late gene transcription. Virology, 1996. 221(2): p. 281-290. 

74. Gruffat, H., R. Marchione, and E. Manet, Herpesvirus late gene expression: A viral-specific 
pre-initiation complex is key. Frontiers in Microbiology, 2016. 7(JUN). 

75. Everett, R.D. and J. Murray, ND10 components relocate to sites associated with herpes 
simplex virus type 1 nucleoprotein complexes during virus infection. J Virol, 2005. 79(8): p. 
5078-89. 

76. Gu, H., Y. Zheng, and B. Roizman, Interaction of herpes simplex virus ICP0 with ND10 bodies: a 
sequential process of adhesion, fusion, and retention. J Virol, 2013. 87(18): p. 10244-54. 

77. Chen, Y., et al., Herpes simplex virus type 1 helicase-primase: DNA binding and consequent 
protein oligomerization and primase activation. J Virol, 2011. 85(2): p. 968-78. 

78. Falkenberg, M., P. Elias, and I.R. Lehman, The herpes simplex virus type 1 helicase-primase. 
Analysis of helicase activity. J Biol Chem, 1998. 273(48): p. 32154-7. 

79. Bermek, O., S. Willcox, and J.D. Griffith, DNA replication catalyzed by herpes simplex virus 
type 1 proteins reveals trombone loops at the fork. J Biol Chem, 2015. 290(5): p. 2539-45. 

80. Okazaki, T. and R. Okazaki, Mechanism of DNA chain growth. IV. Direction of synthesis of T4 
short DNA chains as revealed by exonucleolytic degradation. Proc Natl Acad Sci U S A, 1969. 
64(4): p. 1242-8. 

81. Boehmer, P.E. and I.R. Lehman, Herpes simplex virus DNA replication. Annu Rev Biochem, 
1997. 66: p. 347-84. 

82. Conway, J.F. and F.L. Homa, Nucleocapsid structure, assembly and DNA packaging of herpes 
simplex virus. Alphaheresviruses Caister Academic Press, 2011. 4(9): p. 175-193. 

83. Vlazny, D.A., A. Kwong, and N. Frenkel, Site-specific cleavage/packaging of herpes simplex 
virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. 
Proceedings of the National Academy of Sciences of the United States of America, 1982. 
79(5): p. 1423-1427. 

84. Tandon, R. and E.S. Mocarski, Viral and host control of cytomegalovirus maturation. Trends in 
microbiology, 2012. 20(8): p. 392-401. 

85. Johnson, D.C. and J.D. Baines, Herpesviruses remodel host membranes for virus egress. Nat 
Rev Microbiol, 2011. 9(5): p. 382-94. 



 

131 

86. Mettenleiter, T.C., B.G. Klupp, and H. Granzow, Herpesvirus assembly: a tale of two 
membranes. Curr Opin Microbiol, 2006. 9(4): p. 423-9. 

87. Chew, T., K.E. Taylor, and K.L. Mossman, Innate and Adaptive Immune Responses to Herpes 
Simplex Virus. Viruses, 2009. 1(3): p. 979-1002. 

88. Biron, C.A. and L. Brossay, NK cells and NKT cells in innate defense against viral infections. 
Curr Opin Immunol, 2001. 13(4): p. 458-64. 

89. Lund, J., et al., Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by 
plasmacytoid dendritic cells. J Exp Med, 2003. 198(3): p. 513-20. 

90. Dobbs, M.E., et al., Clearance of herpes simplex virus type 2 by CD8+ T cells requires gamma 
interferon and either perforin- or Fas-mediated cytolytic mechanisms. J Virol, 2005. 79(23): p. 
14546-54. 

91. Milligan, G.N., et al., T-cell-mediated mechanisms involved in resolution of genital herpes 
simplex virus type 2 (HSV-2) infection of mice. J Reprod Immunol, 2004. 61(2): p. 115-27. 

92. Johnson, A.J., C.F. Chu, and G.N. Milligan, Effector CD4+ T-cell involvement in clearance of 
infectious herpes simplex virus type 1 from sensory ganglia and spinal cords. J Virol, 2008. 
82(19): p. 9678-88. 

93. Miller, W.H. and R.L. Miller, Phosphorylation of acyclovir (acycloguanosine) monophosphate 
by GMP kinase. J Biol Chem, 1980. 255(15): p. 7204-7. 

94. Miller, W.H. and R.L. Miller, Phosphorylation of acyclovir diphosphate by cellular enzymes. 
Biochem Pharmacol, 1982. 31(23): p. 3879-84. 

95. Field, H.J. and D.M. Coen, Pathogenicity of herpes simplex virus mutants containing drug 
resistance mutations in the viral DNA polymerase gene. Journal of Virology, 1986. 60(1): p. 
286-289. 

96. Reardon, J.E. and T. Spector, Herpes simplex virus type 1 DNA polymerase. Mechanism of 
inhibition by acyclovir triphosphate. Journal of Biological Chemistry, 1989. 264(13): p. 7405-
7411. 

97. De Clercq, E., Strategies in the design of antiviral drugs. Nature Reviews Drug Discovery, 
2002. 1(1): p. 13-25. 

98. Derse, D., et al., Inhibition of purified human and herpes simplex virus-induced DNA 
polymerases by 9-(2-hydroxyethoxymethyl)guanine triphosphate. Effects on primer-template 
function. Journal of Biological Chemistry, 1981. 256(22): p. 11447-11451. 

99. Piret, J. and G. Boivin, Resistance of Herpes Simplex Viruses to Nucleoside Analogues: 
Mechanisms, Prevalence, and Management. Antimicrobial Agents and Chemotherapy, 2011. 
55(2): p. 459-472. 

100. Weller, S., et al., Pharmacokinetics of the acyclovir pro-drug valaciclovir after escalating 
single- and multiple-dose administration to normal volunteers. Clin Pharmacol Ther, 1993. 
54(6): p. 595-605. 

101. Birkmann, A. and H. Zimmermann, HSV antivirals - Current and future treatment options. 
Current Opinion in Virology, 2016. 18: p. 9-13. 

102. Perry, C.M. and D. Faulds, Valaciclovir: A review of its antiviral activity, pharmacokinetic 
properties and therapeutic efficacy in herpesvirus infections. Drugs, 1996. 52(5): p. 754-772. 

103. Kimberlin DW, W.R., Antiviral therapy of HSV-1 and -2, in Human Herpesviruses: Biology, 
Therapy, and Immunoprophylaxis, A. Arvin, et al., Editors. 2007, Cambridge University Press 
Copyright (c) Cambridge University Press 2007.: Cambridge. 

104. Vere Hodge, R.A., et al., Selection of an oral prodrug (BRL 42810; famciclovir) for the 
antiherpesvirus agent BRL 39123 [9-(4-hydroxy-3-hydroxymethylbut-l-yl)guanine; penciclovir]. 
Antimicrob Agents Chemother, 1989. 33(10): p. 1765-73. 

105. Safrin, S. and L. Phan, In vitro activity of penciclovir against clinical isolates of acyclovir-
resistant and foscarnet-resistant herpes simplex virus. Antimicrobial Agents and 
Chemotherapy, 1993. 37(10): p. 2241-2243. 

106. Crumpacker, C.S., Mechanism of action of foscarnet against viral polymerases. The American 
Journal of Medicine, 1992. 92(2): p. S3-S7. 



 

132 

107. Bacigalupo, A., et al., Foscarnet in the management of cytomegalovirus infections in 
hematopoietic stem cell transplant patients. Expert Rev Anti Infect Ther, 2012. 10(11): p. 
1249-64. 

108. Ho, H.T., et al., Intracellular metabolism of the antiherpes agent (S)-1-[3-hydroxy-2-
(phosphonylmethoxy)propyl]cytosine. Mol Pharmacol, 1992. 41(1): p. 197-202. 

109. Xiong, X., J.L. Smith, and M.S. Chen, Effect of incorporation of cidofovir into DNA by human 
cytomegalovirus DNA polymerase on DNA elongation. Antimicrob Agents Chemother, 1997. 
41(3): p. 594-9. 

110. De Clercq, E., Broad-spectrum anti-DNA virus and anti-retrovirus activity of 
phosphonylmethoxyalkylpurines and -pyrimidines. Biochemical Pharmacology, 1991. 42(5): p. 
963-972. 

111. Katz, D.H., et al., Antiviral activity of 1-docosanol, an inhibitor of lipid-enveloped viruses 
including herpes simplex. Proceedings of the National Academy of Sciences, 1991. 88(23): p. 
10825-10829. 

112. Chono, K., et al., ASP2151, a novel helicase-primase inhibitor, possesses antiviral activity 
against varicella-zoster virus and herpes simplex virus types 1 and 2. Journal of Antimicrobial 
Chemotherapy, 2010. 65(8): p. 1733-1741. 

113. Wald, A., et al., Helicase-primase inhibitor pritelivir for HSV-2 infection. New England Journal 
of Medicine, 2014. 370(3): p. 201-210. 

114. Morfin, F. and D. Thouvenot, Herpes simplex virus resistance to antiviral drugs. J Clin Virol, 
2003. 26(1): p. 29-37. 

115. Bacon, T.H., et al., Herpes simplex virus resistance to acyclovir and penciclovir after two 
decades of antiviral therapy. Clin Microbiol Rev, 2003. 16(1): p. 114-28. 

116. Larder, B.A., S.D. Kemp, and G. Darby, Related functional domains in virus DNA polymerases. 
EMBO Journal, 1987. 6(1): p. 169-175. 

117. Pottage, J.C., Jr. and H.A. Kessler, Herpes simplex virus resistance to acyclovir: clinical 
relevance. Infect Agents Dis, 1995. 4(3): p. 115-24. 

118. Field, H.J., Persistent herpes simplex virus infection and mechanisms of virus drug resistance. 
European Journal of Clinical Microbiology and Infectious Diseases, 1989. 8(8): p. 671-680. 

119. Piret, J., E. Drouot, and G. Boivin, Antiviral Drug Resistance in Herpesviruses, in Handbook of 
Antimicrobial Resistance, A. Berghuis, et al., Editors. 2017, Springer New York: New York, NY. 
p. 87-122. 

120. Sauerbrei, A., et al., Database on natural polymorphisms and resistance-related non-
synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex 
virus types 1 and 2. Journal of Antimicrobial Chemotherapy, 2016. 71(1): p. 6-16. 

121. Schmit, I. and G. Boivin, Characterization of the DNA polymerase and thymidine kinase 
genesof herpes simplex virus isolates from AIDS patients in whom acyclovirand foscarnet 
therapy sequentially failed. J Infect Dis, 1999. 180(2): p. 487-90. 

122. Schubert, A., et al., Single nucleotide polymorphisms of thymidine kinase and DNA 
polymerase genes in clinical herpes simplex virus type 1 isolates associated with different 
resistance phenotypes. Antiviral Res, 2014. 107: p. 16-22. 

123. Swierkosz, E.M., et al., Antiviral susceptibility testing: herpes simplex virus by plaque 
reduction assay. Clinical and Laboratory Standards Institute, Wayne, PA., 2004. Approved 
standard, vol. 24. 

124. Berkowitz, F.E. and M.J. Levin, Use of an enzyme-linked immunosorbent assay performed 
directly on fixed infected cell monolayers for evaluating drugs against varicella-zoster virus. 
Antimicrobial Agents and Chemotherapy, 1985. 28(2): p. 207-210. 

125. Safrin, S., E. Palacios, and B.J. Leahy, Comparative evaluation of microplate enzyme-linked 
immunosorbent assay versus plaque reduction assay for antiviral susceptibility testing of 
herpes simplex virus isolates. Antimicrob Agents Chemother, 1996. 40(4): p. 1017-9. 

126. Leahy, B.J., K.J. Christiansen, and G. Shellam, Standardisation of a microplate in situ ELISA 
(MISE-test) for the susceptibility testing of herpes simplex virus to acyclovir. J Virol Methods, 
1994. 48(1): p. 93-108. 



 

133 

127. Standring-Cox, R., T.H. Bacon, and B.A. Howard, Comparison of a DNA probe assay with the 
plaque reduction assay for measuring the sensitivity of herpes simplex virus and varicella-
zoster virus to penciclovir and acyclovir. J Virol Methods, 1996. 56(1): p. 3-11. 

128. Pavic, I., et al., Flow cytometric analysis of herpes simplex virus type 1 susceptibility to 
acyclovir, ganciclovir, and foscarnet. Antimicrob Agents Chemother, 1997. 41(12): p. 2686-
92. 

129. Tebas, P., E.C. Stabell, and P.D. Olivo, Antiviral susceptibility testing with a cell line which 
expresses beta-galactosidase after infection with herpes simplex virus. Antimicrob Agents 
Chemother, 1995. 39(6): p. 1287-91. 

130. Van der Beek, M.T., et al., Rapid susceptibility testing for herpes simplex virus type 1 using 
real-time PCR. Journal of Clinical Virology, 2013. 56(1): p. 19-24. 

131. Rowe, W.P., et al., Isolation of a Cytopathogenic Agent from Human Adenoids Undergoing 
Spontaneous Degeneration in Tissue Culture. Proceedings of the Society for Experimental 
Biology and Medicine, 1953. 84(3): p. 570-573. 

132. Human Adenovirus Working Group. Coordinating and standardizing the process of 
adenovirus typing. 2017 April 2017 [cited 2017 25 April]; Available from: 
http://hadvwg.gmu.edu/. 

133. Wadell, G., et al., GENETIC VARIABILITY OF ADENOVIRUSES, in Annals of the New York 
Academy of Sciences. 1980. p. 16-42. 

134. Hage, E., et al., Human mastadenovirus type 70: a novel, multiple recombinant species D 
mastadenovirus isolated from diarrhoeal faeces of a haematopoietic stem cell 
transplantation recipient. J Gen Virol, 2015. 96(9): p. 2734-42. 

135. Mahl, M.C. and C. Sadler, Virus survival on inanimate surfaces. Canadian Journal of 
Microbiology, 1975. 21(6): p. 819-823. 

136. Ryan, M.A., et al., Large epidemic of respiratory illness due to adenovirus types 7 and 3 in 
healthy young adults. Clin Infect Dis, 2002. 34(5): p. 577-82. 

137. Walsh, M.P., et al., Evidence of molecular evolution driven by recombination events 
influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. 
PLoS One, 2009. 4(6): p. e5635. 

138. Jones, M.S., 2nd, et al., New adenovirus species found in a patient presenting with 
gastroenteritis. J Virol, 2007. 81(11): p. 5978-84. 

139. Ganzenmueller, T., et al., High lethality of human adenovirus disease in adult allogeneic stem 
cell transplant recipients with high adenoviral blood load. J Clin Virol, 2011. 52(1): p. 55-9. 

140. Mynarek, M., et al., Patient, virus, and treatment-related risk factors in pediatric adenovirus 
infection after stem cell transplantation: results of a routine monitoring program. Biol Blood 
Marrow Transplant, 2014. 20(2): p. 250-6. 

141. Echavarria, M., Adenoviruses in immunocompromised hosts. Clin Microbiol Rev, 2008. 21(4): 
p. 704-15. 

142. Walls, T., A.G. Shankar, and D. Shingadia, Adenovirus: an increasingly important pathogen in 
paediatric bone marrow transplant patients. Lancet Infect Dis, 2003. 3(2): p. 79-86. 

143. Fox, J.P., C.E. Hall, and M.K. Cooney, The seattle virus watch: Vii. Observations of adenovirus 
infections. American Journal of Epidemiology, 1977. 105(4): p. 362-386. 

144. Alkhalaf, M.A., M. Guiver, and R.J. Cooper, Prevalence and quantitation of adenovirus DNA 
from human tonsil and adenoid tissues. Journal of Medical Virology, 2013. 85(11): p. 1947-
1954. 

145. Garnett, C.T., C.I. Pao, and L.R. Gooding, Detection and quantitation of subgroup C 
adenovirus DNA in human tissue samples by real-time PCR. Methods in molecular medicine, 
2007. 130: p. 193-204. 

146. Roy, S., et al., Adenoviruses in lymphocytes of the human gastro-intestinal tract. PLoS ONE, 
2011. 6(9). 

147. Davison, A.J., M. Benko, and B. Harrach, Genetic content and evolution of adenoviruses. 
Journal of General Virology, 2003. 84(11): p. 2895-2908. 

http://hadvwg.gmu.edu/


 

134 

148. Berk, A.J., Recent lessons in gene expression, cell cycle control, and cell biology from 
adenovirus. Oncogene, 2005. 24(52): p. 7673-7685. 

149. Hall, K., Maria E. Blair Zajdel, and G.E. Blair, Unity and diversity in the human adenoviruses: 
exploiting alternative entry pathways for gene therapy. Biochemical Journal, 2010. 431(3): p. 
321. 

150. Flint, J. and T. Shenk, Viral transactivating proteins. Annu Rev Genet, 1997. 31: p. 177-212. 
151. Ghosh, M.K. and M.L. Harter, A viral mechanism for remodeling chromatin structure in G0 

cells. Mol Cell, 2003. 12(1): p. 255-60. 
152. Roth, J. and M. Dobbelstein, Interaction of p53 with the adenovirus E1B-55 kDa protein. 

Methods Mol Biol, 2003. 234: p. 135-49. 
153. White, E., Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. 

Oncogene, 2001. 20(54): p. 7836-46. 
154. Rekosh, D.M., et al., Identification of a protein linked to the ends of adenovirus DNA. Cell, 

1977. 11(2): p. 283-95. 
155. Parker, E.J., et al., Adenovirus DNA polymerase: domain organisation and interaction with 

preterminal protein. Nucleic Acids Res, 1998. 26(5): p. 1240-7. 
156. van Breukelen, B., et al., Adenovirus type 5 DNA binding protein stimulates binding of DNA 

polymerase to the replication origin. J Virol, 2003. 77(2): p. 915-22. 
157. Lichtenstein, D.L., et al., Functions and mechanisms of action of the adenovirus E3 proteins. 

Int Rev Immunol, 2004. 23(1-2): p. 75-111. 
158. Tigges, M.A. and H.J. Raskas, Splice junctions in adenovirus 2 early region 4 mRNAs: multiple 

splice sites produce 18 to 24 RNAs. J Virol, 1984. 50(1): p. 106-17. 
159. Tauber, B. and T. Dobner, Molecular regulation and biological function of adenovirus early 

genes: the E4 ORFs. Gene, 2001. 278(1-2): p. 1-23. 
160. Ma, Y. and M.B. Mathews, Comparative analysis of the structure and function of adenovirus 

virus-associated RNAs. J Virol, 1993. 67(11): p. 6605-17. 
161. Andersson, M.G., et al., Suppression of RNA Interference by Adenovirus Virus-Associated RNA. 

Journal of Virology, 2005. 79(15): p. 9556-9565. 
162. Russell, W.C., Adenoviruses: Update on structure and function. Journal of General Virology, 

2009. 90(1): p. 1-20. 
163. Lichy, J.H., et al., Separation of the adenovirus terminal protein precursor from its associated 

DNA polymerase: role of both proteins in the initiation of adenovirus DNA replication. Proc 
Natl Acad Sci U S A, 1982. 79(17): p. 5225-9. 

164. Hay, R.T., et al., Molecular interactions during adenovirus DNA replication. Current Topics in 
Microbiology and Immunology, 1995. 199(II): p. 31-48. 

165. Armentero, M.T., M. Horwitz, and N. Mermod, Targeting of DNA polymerase to the 
adenovirus origin of DNA replication by interaction with nuclear factor I. Proc Natl Acad Sci U 
S A, 1994. 91(24): p. 11537-41. 

166. Coenjaerts, F.E., J.A. van Oosterhout, and P.C. van der Vliet, The Oct-1 POU domain 
stimulates adenovirus DNA replication by a direct interaction between the viral precursor 
terminal protein-DNA polymerase complex and the POU homeodomain. Embo j, 1994. 13(22): 
p. 5401-9. 

167. Kuil, M.E., et al., Complex formation between the adenovirus DNA-binding protein and single-
stranded poly(rA). Cooperativity and salt dependence. Biochemistry, 1989. 28(25): p. 9795-
800. 

168. King, A.J., W.R. Teertstra, and P.C. van der Vliet, Dissociation of the protein primer and DNA 
polymerase after initiation of adenovirus DNA replication. J Biol Chem, 1997. 272(39): p. 
24617-23. 

169. Webster, A., et al., Role of preterminal protein processing in adenovirus replication. J Virol, 
1997. 71(9): p. 6381-9. 

170. Leegwater, P.A., R.F. Rombouts, and P.C. van der Vliet, Adenovirus DNA replication in vitro: 
duplication of single-stranded DNA containing a panhandle structure. Biochim Biophys Acta, 
1988. 951(2-3): p. 403-10. 



 

135 

171. Hoeben, R.C. and T.G. Uil, Adenovirus DNA replication. Cold Spring Harbor perspectives in 
biology, 2013. 5(3). 

172. ViralZone, DNA strand displacement replication. 
173. Bergelson, J.M., et al., Isolation of a common receptor for Coxsackie B viruses and 

adenoviruses 2 and 5. Science, 1997. 275(5304): p. 1320-3. 
174. Arnberg, N., Adenovirus receptors: Implications for targeting of viral vectors. Trends in 

Pharmacological Sciences, 2012. 33(8): p. 442-448. 
175. Greber, U.F., et al., The role of the adenovirus protease on virus entry into cells. Embo j, 1996. 

15(8): p. 1766-77. 
176. Nemerow, G.R., et al., Insights into adenovirus host cell interactions from structural studies. 

Virology, 2009. 384(2): p. 380-388. 
177. Wodrich, H., et al., Switch from capsid protein import to adenovirus assembly by cleavage of 

nuclear transport signals. Embo j, 2003. 22(23): p. 6245-55. 
178. Weber, J.M., Adenovirus endopeptidase and its role in virus infection. Curr Top Microbiol 

Immunol, 1995. 199 ( Pt 1): p. 227-35. 
179. Goodrum, F.D. and D.A. Ornelles, p53 status does not determine outcome of E1B 55-

kilodalton mutant adenovirus lytic infection. J Virol, 1998. 72(12): p. 9479-90. 
180. Tollefson, A.E., et al., The E3-11.6-kDa adenovirus death protein (ADP) is required for efficient 

cell death: characterization of cells infected with adp mutants. Virology, 1996. 220(1): p. 152-
62. 

181. Randall, R.E. and S. Goodbourn, Interferons and viruses: an interplay between induction, 
signalling, antiviral responses and virus countermeasures. J Gen Virol, 2008. 89(Pt 1): p. 1-47. 

182. Atasheva, S. and D.M. Shayakhmetov, Adenovirus sensing by the immune system. Curr Opin 
Virol, 2016. 21: p. 109-113. 

183. Mistchenko, A.S., et al., Cytokines in adenoviral disease in children: Association of interleukin-
6, interleukin-8, and tumor necrosis factor alpha levels with clinical outcome. The Journal of 
Pediatrics, 1994. 124(5, Part 1): p. 714-720. 

184. Lieber, A., et al., The role of Kupffer cell activation and viral gene expression in early liver 
toxicity after infusion of recombinant adenovirus vectors. J Virol, 1997. 71(11): p. 8798-807. 

185. Di Paolo, N.C., et al., Virus binding to a plasma membrane receptor triggers interleukin-1 
alpha-mediated proinflammatory macrophage response in vivo. Immunity, 2009. 31(1): p. 
110-21. 

186. Xu, Z., et al., Clearance of adenovirus by Kupffer cells is mediated by scavenger receptors, 
natural antibodies, and complement. J Virol, 2008. 82(23): p. 11705-13. 

187. Kolaczkowska, E. and P. Kubes, Neutrophil recruitment and function in health and 
inflammation. Nature Reviews Immunology, 2013. 13(3): p. 159-175. 

188. Muller, W.J., et al., Clinical and in vitro evaluation of cidofovir for treatment of adenovirus 
infection in pediatric hematopoietic stem cell transplant recipients. Clin Infect Dis, 2005. 
41(12): p. 1812-6. 

189. Hillenkamp, J., et al., Topical treatment of acute adenoviral keratoconjunctivitis with 0.2% 
cidofovir and 1% cyclosporine: a controlled clinical pilot study. Arch Ophthalmol, 2001. 
119(10): p. 1487-91. 

190. Hillenkamp, J., et al., The effects of cidofovir 1% with and without cyclosporin a 1% as a 
topical treatment of acute adenoviral keratoconjunctivitis: a controlled clinical pilot study. 
Ophthalmology, 2002. 109(5): p. 845-50. 

191. Fowler, C.J., et al., Life-Threatening Adenovirus Infections in the Setting of the 
Immunocompromised Allogeneic Stem Cell Transplant Patients. Advances in Hematology, 
2010. 2010: p. 601548. 

192. Hoffman, J.A., et al., Adenoviral infections and a prospective trial of cidofovir in pediatric 
hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2001. 7(7): p. 388-
94. 

193. Neofytos, D., et al., Treatment of adenovirus disease in stem cell transplant recipients with 
cidofovir. Biol Blood Marrow Transplant, 2007. 13(1): p. 74-81. 



 

136 

194. Saquib, R., et al., Disseminated adenovirus infection in renal transplant recipients: the role of 
cidofovir and intravenous immunoglobulin. Transpl Infect Dis, 2010. 12(1): p. 77-83. 

195. Lacy, S.A., et al., Effect of oral probenecid coadministration on the chronic toxicity and 
pharmacokinetics of intravenous cidofovir in cynomolgus monkeys. Toxicol Sci, 1998. 44(2): p. 
97-106. 

196. Ortiz, A., et al., Tubular cell apoptosis and cidofovir-induced acute renal failure. Antivir Ther, 
2005. 10(1): p. 185-90. 

197. Morfin, F., et al., Differential susceptibility of adenovirus clinical isolates to cidofovir and 
ribavirin is not related to species alone. Antivir Ther, 2009. 14(1): p. 55-61. 

198. Dixit, N.M. and A.S. Perelson, The metabolism, pharmacokinetics and mechanisms of antiviral 
activity of ribavirin against hepatitis C virus. Cellular and Molecular Life Sciences CMLS, 2006. 
63(7): p. 832-842. 

199. Chimerix. Chimerix Announces Final Data from AdVise Trial of Brincidofovir at BMT Tandem 
Meetings. 2017 Feb 22, 2017 [cited 2017 5 May]; Available from: 
http://ir.chimerix.com/releasedetail.cfm?ReleaseID=1013907. 

200. Wold, W.S.M. and K. Toth, New Drug on the Horizon for Treating Adenovirus. Expert opinion 
on pharmacotherapy, 2015. 16(14): p. 2095-2099. 

201. Wy Ip, W. and W. Qasim, Management of Adenovirus in Children after Allogeneic 
Hematopoietic Stem Cell Transplantation. Advances in Hematology, 2013. 2013: p. 176418. 

202. Hromas, R., et al., Donor leukocyte infusion as therapy of life-threatening adenoviral 
infections after T-cell-depleted bone marrow transplantation. Blood, 1994. 84(5): p. 1689-90. 

203. Feuchtinger, T., et al., Detection of adenovirus-specific T cells in children with adenovirus 
infection after allogeneic stem cell transplantation. Br J Haematol, 2005. 128(4): p. 503-9. 

204. Kosulin, K., et al., Comparison of different approaches to quantitative adenovirus detection in 
stool specimens of hematopoietic stem cell transplant recipients. Journal of Clinical Virology, 
2016. 85: p. 31-36. 

205. Jeulin, H., et al., Diagnostic value of quantitative PCR for adenovirus detection in stool 
samples as compared with antigen detection and cell culture in haematopoietic stem cell 
transplant recipients. Clinical Microbiology and Infection, 2011. 17(11): p. 1674-1680. 

206. Waye, M.M.Y. and C.W. Sing, Anti-Viral Drugs for Human Adenoviruses. Pharmaceuticals, 
2010. 3(10): p. 3343-3354. 

207. Gainotti, R., et al., Real time PCR for rapid determination of susceptibility of adenovirus to 
antiviral drugs. J Virol Methods, 2010. 164(1-2): p. 30-4. 

208. Martínez-Aguado, P., et al., Antiadenovirus drug discovery: potential targets and evaluation 
methodologies. Drug Discovery Today, 2015. 20(10): p. 1235-1242. 

209. Li, J., et al., Rapid, specific detection of alphaviruses from tissue cultures using a replicon-
defective reporter gene assay. PLoS ONE, 2012. 7(3). 

210. Qi, X., et al., Development of a replicon-based phenotypic assay for assessing the drug 
susceptibilities of HCV NS3 protease genes from clinical isolates. Antiviral Research, 2009. 
81(2): p. 166-173. 

211. Zimmer, G., RNA Replicons - A New Approach for Influenza Virus Immunoprophylaxis. Viruses, 
2010. 2(2): p. 413-434. 

212. Tzeng, W.P., et al., Novel replicon-based reporter gene assay for detection of rubella virus in 
clinical specimens. Journal of Clinical Microbiology, 2005. 43(2): p. 879-885. 

213. Ren, L., et al., Live Cell Reporter Systems for Positive-Sense Single Strand RNA Viruses. Applied 
Biochemistry and Biotechnology, 2016. 178(8): p. 1567-1585. 

214. Mohr, H., et al., Cytomegalovirus replicon-based regulation of gene expression in Vitro and in 
Vivo. PLoS Pathogens, 2012. 8(6). 

215. Atchison, R.W., B.C. Casto, and W.M. Hammon, ADENOVIRUS-ASSOCIATED DEFECTIVE VIRUS 
PARTICLES. Science, 1965. 149(3685): p. 754-6. 

216. Buller, R.M.L., et al., Herpes Simplex Virus Types 1 and 2 Completely Help Adenovirus-
Associated Virus Replication. Journal of Virology, 1981. 40(1): p. 241-247. 

http://ir.chimerix.com/releasedetail.cfm?ReleaseID=1013907


 

137 

217. McPherson, R.A., L.J. Rosenthal, and J.A. Rose, Human cytomegalovirus completely helps 
adeno-associated virus replication. Virology, 1985. 147(1): p. 217-222. 

218. Georg-Fries, B., et al., Analysis of proteins, helper dependence, and seroepidemiology of a 
new human parvovirus. Virology, 1984. 134(1): p. 64-71. 

219. Thomson, B.J., et al., Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated 
virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA 
replication and regulate gene expression. Virology, 1994. 204(1): p. 304-11. 

220. Shiau, A.L., P.S. Liu, and C.L. Wu, Novel strategy for generation and titration of recombinant 
adeno-associated virus vectors. J Virol, 2005. 79(1): p. 193-201. 

221. You, H., et al., Multiple human papillomavirus genes affect the adeno-associated virus life 
cycle. Virology, 2006. 344(2): p. 532-40. 

222. Mietzsch, M., et al., OneBac: platform for scalable and high-titer production of adeno-
associated virus serotype 1-12 vectors for gene therapy. Hum Gene Ther, 2014. 25(3): p. 212-
22. 

223. Moore, A.R., et al., Vaccinia virus as a subhelper for AAV replication and packaging. 
Molecular Therapy. Methods & Clinical Development, 2015. 2: p. 15044. 

224. Boutin, S., et al., Prevalence of serum IgG and neutralizing factors against adeno-associated 
virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy 
using AAV vectors. Hum Gene Ther, 2010. 21(6): p. 704-12. 

225. Hüser, D., et al., High Prevalence of Infectious Adeno-associated Virus (AAV) in Human 
Peripheral Blood Mononuclear Cells Indicative of T Lymphocytes as Sites of AAV Persistence. 
Journal of Virology, 2017. 91(4): p. e02137-16. 

226. Hauswirth, W.W. and K.I. Berns, Origin and termination of adeno-associated virus DNA 
replication. Virology, 1977. 78(2): p. 488-99. 

227. King, J.A., et al., DNA helicase-mediated packaging of adeno-associated virus type 2 genomes 
into preformed capsids. Embo j, 2001. 20(12): p. 3282-91. 

228. Sonntag, F., K. Schmidt, and J.A. Kleinschmidt, A viral assembly factor promotes AAV2 capsid 
formation in the nucleolus. Proceedings of the National Academy of Sciences of the United 
States of America, 2010. 107(22): p. 10220-10225. 

229. Becerra, S.P., et al., Synthesis of adeno-associated virus structural proteins requires both 
alternative mRNA splicing and alternative initiations from a single transcript. J Virol, 1988. 
62(8): p. 2745-54. 

230. Berns, K.I. and C. Giraud, Biology of adeno-associated virus. Curr Top Microbiol Immunol, 
1996. 218: p. 1-23. 

231. McCarty, D.M., M. Christensen, and N. Muzyczka, Sequences required for coordinate 
induction of adeno-associated virus p19 and p40 promoters by rep protein. Journal of 
Virology, 1991. 65(6): p. 2936-2945. 

232. Pereira, D.J. and N. Muzyczka, The adeno-associated virus type 2 p40 promoter requires a 
proximal Sp1 interaction and a p19 CArG-like element to facilitate Rep transactivation. 
Journal of Virology, 1997. 71(6): p. 4300-4309. 

233. Kotin, R.M., et al., Site-specific integration by adeno-associated virus. Proceedings of the 
National Academy of Sciences of the United States of America, 1990. 87(6): p. 2211-2215. 

234. Schnepp, B.C., et al., Characterization of adeno-associated virus genomes isolated from 
human tissues. Journal of Virology, 2005. 79(23): p. 14793-14803. 

235. Snyder, R.O., et al., Features of the adeno-associated virus origin involved in substrate 
recognition by the viral Rep protein. J Virol, 1993. 67(10): p. 6096-104. 

236. Im, D.S. and N. Muzyczka, Factors that bind to adeno-associated virus terminal repeats. J 
Virol, 1989. 63(7): p. 3095-104. 

237. Linden, R.M., E. Winocour, and K.I. Berns, The recombination signals for adeno-associated 
virus site-specific integration. Proceedings of the National Academy of Sciences of the United 
States of America, 1996. 93(15): p. 7966-7972. 

238. Gonçalves, M.A.F.V., Adeno-associated virus: from defective virus to effective vector. Virology 
Journal, 2005. 2: p. 43-43. 



 

138 

239. Ward, P., P. Elias, and R.M. Linden, Rescue of the adeno-associated virus genome from a 
plasmid vector: evidence for rescue by replication. J Virol, 2003. 77(21): p. 11480-90. 

240. Pereira, D.J., D.M. McCarty, and N. Muzyczka, The adeno-associated virus (AAV) Rep protein 
acts as both a repressor and an activator to regulate AAV transcription during a productive 
infection. J Virol, 1997. 71(2): p. 1079-88. 

241. Chang, L.S., Y. Shi, and T. Shenk, Adeno-associated virus P5 promoter contains an adenovirus 
E1A-inducible element and a binding site for the major late transcription factor. Journal of 
Virology, 1989. 63(8): p. 3479-3488. 

242. Labow, M.A., P.L. Hermonat, and K.I. Berns, Positive and negative autoregulation of the 
adeno-associated virus type 2 genome. Journal of Virology, 1986. 60(1): p. 251-258. 

243. Berns, K. and C.R. Parrish, Parvoviridae. Fields Virology, 2007: p. 2437-2477. 
244. Dutheil, N., et al., Adeno-associated virus site-specifically integrates into a muscle- specific 

DNA region. Proceedings of the National Academy of Sciences of the United States of 
America, 2000. 97(9): p. 4862-4866. 

245. Walters, R.W., et al., Structure of Adeno-Associated Virus Serotype 5. Journal of Virology, 
2004. 78(7): p. 3361-3371. 

246. Brister, J.R. and N. Muzyczka, Mechanism of Rep-mediated adeno-associated virus origin 
nicking. J Virol, 2000. 74(17): p. 7762-71. 

247. Weitzman, M.D. and R.M. Linden, Adeno-associated virus biology, in Methods in Molecular 
Biology. 2011. p. 1-23. 

248. Samulski, R.J. and T. Shenk, Adenovirus E1B 55-Mr polypeptide facilitates timely cytoplasmic 
accumulation of adeno-associated virus mRNAs. Journal of Virology, 1988. 62(1): p. 206-210. 

249. Lowe, S.W., et al., p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. 
Cell, 1993. 74(6): p. 957-67. 

250. Carter, B.J., B.A. Antoni, and D.F. Klessig, Adenovirus containing a deletion of the early region 
2A gene allows growth of adeno-associated virus with decreased efficiency. Virology, 1992. 
191(1): p. 473-6. 

251. Ward, P., et al., Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus 
DNA replication. Journal of Virology, 1998. 72(1): p. 420-427. 

252. Weitzman, M.D., K.J. Fisher, and J.M. Wilson, Recruitment of wild-type and recombinant 
adeno-associated virus into adenovirus replication centers. Journal of Virology, 1996. 70(3): p. 
1845-1854. 

253. Chang, L.S. and T. Shenk, The adenovirus DNA-binding protein stimulates the rate of 
transcription directed by adenovirus and adeno-associated virus promoters. Journal of 
Virology, 1990. 64(5): p. 2103-2109. 

254. West, M.H.P., et al., Gene expression in adeno-associated virus vectors: The effects of 
chimeric mRNA structure, helper virus, and adenovirus VA, RNA. Virology, 1987. 160(1): p. 38-
47. 

255. Nayak, R. and D.J. Pintel, Adeno-associated viruses can induce phosphorylation of eIF2alpha 
via PKR activation, which can be overcome by helper adenovirus type 5 virus-associated RNA. 
J Virol, 2007. 81(21): p. 11908-16. 

256. Querido, E., et al., Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in 
adenovirus-infected cells. Journal of Virology, 1997. 71(5): p. 3788-3798. 

257. Steegenga, W.T., et al., The large E1B protein together with the E4orf6 protein target p53 for 
active degradation in adenovirus infected cells. Oncogene, 1998. 16(3): p. 349-357. 

258. Pilder, S., et al., The adenovirus E1B-55K transforming polypeptide modulates transport or 
cytoplasmic stabilization of viral and host cell mRNAs. Molecular and Cellular Biology, 1986. 
6(2): p. 470-476. 

259. Myers, M.W., et al., Adenovirus helper function for growth of adeno-associated virus: effect 
of temperature-sensitive mutations in adenovirus early gene region 2. J Virol, 1980. 35(1): p. 
65-75. 

260. Alazard-Dany, N., et al., Definition of herpes simplex virus type 1 helper activities for adeno-
associated virus early replication events. PLoS Pathogens, 2009. 5(3). 



 

139 

261. Weindler, F.W. and R. Heilbronn, A subset of herpes simplex virus replication genes provides 
helper functions for productive adeno-associated virus replication. Journal of Virology, 1991. 
65(5): p. 2476-2483. 

262. Heilbronn, R., et al., ssDNA-dependent colocalization of adeno-associated virus Rep and 
herpes simplex virus ICP8 in nuclear replication domains. Nucleic Acids Res, 2003. 31(21): p. 
6206-13. 

263. Alex, M., et al., DNA-binding activity of adeno-associated virus rep is required for inverted 
terminal repeat-dependent complex formation with herpes simplex virus ICP8. Journal of 
Virology, 2012. 86(5): p. 2859-2863. 

264. Geoffroy, M.C., et al., Herpes simplex virus type 1 ICP0 protein mediates activation of adeno-
associated virus type 2 rep gene expression from a latent integrated form. Journal of 
Virology, 2004. 78(20): p. 10977-10986. 

265. Nicolas, A., et al., Identification of Rep-Associated Factors in Herpes Simplex Virus Type 1-
Induced Adeno-Associated Virus Type 2 Replication Compartments. Journal of Virology, 2010. 
84(17): p. 8871-8887. 

266. You, H., et al., Multiple human papillomavirus genes affect the adeno-associated virus life 
cycle. Virology, 2006. 344(2): p. 532-540. 

267. Karasuyama, H. and F. Melchers, Establishment of mouse cell lines which constitutively 
secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. 
Eur J Immunol, 1988. 18(1): p. 97-104. 

268. Bubeck, A., et al., Comprehensive mutational analysis of a herpesvirus gene in the viral 
genome context reveals a region essential for virus replication. J Virol, 2004. 78(15): p. 8026-
35. 

269. Cherepanov, P.P. and W. Wackernagel, Gene disruption in Escherichia coli: TcR and KmR 
cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. 
Gene, 1995. 158(1): p. 9-14. 

270. Ruzsics, Z., F. Lemnitzer, and C. Thirion, Engineering adenovirus genome by bacterial artificial 
chromosome (BAC) technology. Methods Mol Biol, 2014. 1089: p. 143-58. 

271. Chou, J. and B. Roizman, The terminal a sequence of the herpes simplex virus genome 
contains the promoter of a gene located in the repeat sequences of the L component. Journal 
of Virology, 1986. 57(2): p. 629-637. 

272. Sinzger, C., et al., Cloning and sequencing of a highly productive, endotheliotropic virus strain 
derived from human cytomegalovirus TB40/E. J Gen Virol, 2008. 89(Pt 2): p. 359-68. 

273. Warming, S., et al., Simple and highly efficient BAC recombineering using galK selection. 
Nucleic Acids Res, 2005. 33(4): p. e36. 

274. Messerle, M., et al., Cloning and mutagenesis of a herpesvirus genome as an infectious 
bacterial artificial chromosome. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14759-63. 

275. Kolter, R., M. Inuzuka, and D.R. Helinski, Trans-complementation-dependent replication of a 
low molecular weight origin fragment from plasmid R6K. Cell, 1978. 15(4): p. 1199-208. 

276. Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT–PCR. 
Nucleic Acids Research, 2001. 29(9): p. e45-e45. 

277. Reed, L.J. and H. Muench, A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. 
American Journal of Epidemiology, 1938. 27(3): p. 493-497. 

278. Laughlin, C.A., et al., Cloning of infectious adeno-associated virus genomes in bacterial 
plasmids. Gene, 1983. 23(1): p. 65-73. 

279. Niforou, K.M., et al., The proteome profile of the human osteosarcoma U2OS cell line. Cancer 
Genomics Proteomics, 2008. 5(1): p. 63-78. 

280. Gruda, M.C. and J.C. Alwine, Simian virus 40 (SV40) T-antigen transcriptional activation 
mediated through the Oct/SPH region of the SV40 late promoter. Journal of Virology, 1991. 
65(7): p. 3553-3558. 

281. Radtke, F., et al., Cloned transcription factor MTF-1 activates the mouse metallothionein I 
promoter. EMBO Journal, 1993. 12(4): p. 1355-1362. 



 

140 

282. Huang, W. and S.J. Flint, The tripartite leader sequence of subgroup C adenovirus major late 
mRNAs can increase the efficiency of mRNA export. Journal of Virology, 1998. 72(1): p. 225-
235. 

283. Carter, B.J., et al., Separate helper functions provided by adenovirus for adenovirus-
associated virus multiplication. Nat New Biol, 1973. 244(133): p. 71-3. 

284. Myers, M.W., et al., Adenovirus helper function for growth of adeno-associated virus: effect 
of temperature-sensitive mutations in adenovirus early gene region 2. Journal of Virology, 
1980. 35(1): p. 65-75. 

285. Li, X., et al., Generation of destabilized green fluorescent protein as a transcription reporter. J 
Biol Chem, 1998. 273(52): p. 34970-5. 

286. Tannous, B.A., Gaussia luciferase reporter assay for monitoring biological processes in culture 
and in vivo. Nat. Protocols, 2009. 4(4): p. 582-591. 

287. Grimm, D., M.A. Kay, and J.A. Kleinschmidt, Helper virus-free, optically controllable, and two-
plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Molecular 
Therapy, 2003. 7(6): p. 839-850. 

288. Martinez, R., et al., The Amphipathic Helix of Adenovirus Capsid Protein VI Contributes to 
Penton Release and Postentry Sorting. Journal of Virology, 2015. 89(4): p. 2121-2135. 

289. Safrin, S., et al., Correlation between response to acyclovir and foscarnet therapy and in vitro 
susceptibility result for isolates of herpes simplex virus from human immunodeficiency virus-
infected patients. Antimicrobial Agents and Chemotherapy, 1994. 38(6): p. 1246-1250. 

290. Belmokhtar, C.A., J. Hillion, and E. Ségal-Bendirdjian, Staurosporine induces apoptosis 
through both caspase-dependent and caspase-independent mechanisms. Oncogene, 2001. 
20: p. 3354. 

291. Morfin, F., et al., In vitro susceptibility of adenovirus to antiviral drugs is species-dependent. 
Antiviral Therapy, 2005. 10(2): p. 225-229. 

292. Lo, M.K., M. Tilgner, and P.-Y. Shi, Potential High-Throughput Assay for Screening Inhibitors of 
West Nile Virus Replication. Journal of Virology, 2003. 77(23): p. 12901-12906. 

293. Sarrazin, C., The importance of resistance to direct antiviral drugs in HCV infection in clinical 
practice. Journal of Hepatology, 2016. 64(2): p. 486-504. 

294. Gardella, T., et al., Detection of circular and linear herpesvirus DNA molecules in mammalian 
cells by gel electrophoresis. Journal of Virology, 1984. 50(1): p. 248-254. 

295. Samulski, R.J., Adeno-associated virus: integration at a specific chromosomal locus. Curr Opin 
Genet Dev, 1993. 3(1): p. 74-80. 

296. Luo, D. and W.M. Saltzman, Synthetic DNA delivery systems. Nat Biotech, 2000. 18(1): p. 33-
37. 

297. Naso, M.F., et al., Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. Biodrugs, 
2017. 31(4): p. 317-334. 

298. Sprengel, R. and M.T. Hasan, Tetracycline-controlled genetic switches. Handb Exp Pharmacol, 
2007(178): p. 49-72. 

299. Fussenegger, M., et al., Streptogramin-based gene regulation systems for mammalian cells. 
Nature Biotechnology, 2000. 18(11): p. 1203-1208. 

300. Crosbie, E.J., et al., Human papillomavirus and cervical cancer. Lancet, 2013. 382(9895): p. 
889-99. 

301. Levin, M.J., T.H. Bacon, and J.J. Leary, Resistance of herpes simplex virus infections to 
nucleoside analogues in HIV-infected patients. Clin Infect Dis, 2004. 39 Suppl 5: p. S248-57. 

302. Young Kyoo, S., et al., Frequency of acyclovir-resistant herpes simplex virus in clinical 
specimens and laboratory isolates. Journal of Clinical Microbiology, 2001. 39(3): p. 913-917. 

303. Sarisky, R.T., et al., Profiling penciclovir susceptibility and prevalence of resistance of herpes 
simplex virus isolates across eleven clinical trials. Archives of Virology, 2003. 148(9): p. 1757-
1769. 

304. Chou, S., Approach to drug-resistant cytomegalovirus in transplant recipients. Current 
Opinion in Infectious Diseases, 2015. 28(4): p. 293-299. 



 

141 

305. Lurain, N.S. and S. Chou, Antiviral Drug Resistance of Human Cytomegalovirus. Clinical 
Microbiology Reviews, 2010. 23(4): p. 689-712. 

306. Lurain, N.S., et al., Analysis and characterization of antiviral drug-resistant cytomegalovirus 
isolates from solid organ transplant recipients. J Infect Dis, 2002. 186(6): p. 760-8. 

307. Chou, S., Antiviral drug resistance in human cytomegalovirus. Transpl Infect Dis, 1999. 1(2): p. 
105-14. 

308. Burrel, S., et al., Genotypic characterization of UL23 thymidine kinase and UL30 DNA 
polymerase of clinical isolates of herpes simplex virus: natural polymorphism and mutations 
associated with resistance to antivirals. Antimicrob Agents Chemother, 2010. 54(11): p. 4833-
42. 

309. Mindel, A. and C. Marks, Psychological symptoms associated with genital herpes virus 
infections: Epidemiology and approaches to management. CNS Drugs, 2005. 19(4): p. 303-
312. 

310. Ramakrishna, C., H. Openshaw, and E.M. Cantin, The case for immunomodulatory approaches 
in treating HSV encephalitis. Future virology, 2013. 8(3): p. 259-272. 

311. Whitley, R.J. and J.W. Gnann, Viral encephalitis: familiar infections and emerging pathogens. 
Lancet, 2002. 359(9305): p. 507-13. 

312. Solomon, T., et al., Management of suspected viral encephalitis in adults--Association of 
British Neurologists and British Infection Association National Guidelines. J Infect, 2012. 
64(4): p. 347-73. 

313. Hjalmarsson, A., P. Blomqvist, and B. Skoldenberg, Herpes simplex encephalitis in Sweden, 
1990-2001: incidence, morbidity, and mortality. Clin Infect Dis, 2007. 45(7): p. 875-80. 

314. Kollias, C.M., et al., Animal models of herpes simplex virus immunity and pathogenesis. 
Journal of NeuroVirology, 2015. 21(1): p. 8-23. 

315. Gordon, Y.J., E.G. Romanowski, and T. Araullo-Cruz, Topical HPMPC inhibits adenovirus type 5 
in the New Zealand rabbit ocular replication model. Investigative Ophthalmology and Visual 
Science, 1994. 35(12): p. 4135-4143. 

316. Wold, W.S.M. and K. Toth, Chapter Three - Syrian Hamster as an Animal Model to Study 
Oncolytic Adenoviruses and to Evaluate the Efficacy of Antiviral Compounds, in Advances in 
Cancer Research, T.C. David and B.F. Paul, Editors. 2012, Academic Press. p. 69-92. 

317. Toth, K., et al., Hexadecyloxypropyl-cidofovir, CMX001, prevents adenovirus-induced 
mortality in a permissive, immunosuppressed animal model. Proceedings of the National 
Academy of Sciences, 2008. 105(20): p. 7293-7297. 

318. McGrath, W.J., et al., First generation inhibitors of the adenovirus proteinase. FEBS Letters, 
2013. 587(15): p. 2332-2339. 

319. Kaneko, H., et al., Antiviral activity of NMSO3 against adenovirus in vitro. Antiviral Research, 
2001. 52(3): p. 281-288. 

320. Takeuchi, H., M. Baba, and S. Shigeta, An application of tetrazolium (MTT) colorimetric assay 
for the screening of anti-herpes simplex virus compounds. Journal of Virological Methods, 
1991. 33(1-2): p. 61-71. 

321. Stabell, E.C. and P.D. Olivo, Isolation of a cell line for rapid and sensitive histochemical assay 
for the detection of herpes simplex virus. J Virol Methods, 1992. 38(2): p. 195-204. 

322. Stránská, R.ž., et al., ELVIRA HSV, a Yield Reduction Assay for Rapid Herpes Simplex Virus 
Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2004. 48(6): p. 2331-2333. 

323. Kurosaki, K., et al., Therapeutic basis of vidarabine on adenovirus-induced haemorrhagic 
cystitis. Antivir Chem Chemother, 2004. 15(5): p. 281-5. 

324. Cromeans, T.L., et al., Development of plaque assays for adenoviruses 40 and 41. Journal of 
Virological Methods, 2008. 151(1): p. 140-145. 

325. Stabell, E.C. and P.D. Olivo, Isolation of a cell line for rapid and sensitive histochemical assay 
for the detection of herpes simplex virus. Journal of Virological Methods, 1992. 38(2): p. 195-
204. 

326. Sanchez-Cespedes, J., et al., Inhibition of adenovirus replication by a trisubstituted piperazin-
2-one derivative. Antiviral Research, 2014. 108: p. 65-73. 



 

142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank.  



 

143 

List of Figures 

Figure 1: The structure of HSV-1 genome. .............................................................................................................. 8 

Figure 2: Chain termination mechanism of Acyclovir. .......................................................................................... 12 

Figure 3: Genome organization of human adenovirus. ........................................................................................ 17 

Figure 4: Adenovirus genome replication. ............................................................................................................ 19 

Figure 5: AAV Genome Replication. ...................................................................................................................... 27 

Figure 6: Cloning and Concept of the AAV replicon vector. .................................................................................. 58 

Figure 7: Productive Ad infection induced AAV replicon vector expression. ........................................................ 60 

Figure 8: Amplification of the AAV replicon vector after Ad5-Che infection. ....................................................... 61 

Figure 9: Comparison of three different chemical transfection reagents. ............................................................ 63 

Figure 10: Cloning of two different constitutive promoters instead of the AAV p40 promoter. .......................... 64 

Figure 11: Trans-activation of different viral promoters by infection. ................................................................. 65 

Figure 12: Induction of the AAV replicon by different Ad serotypes upon transfection. ..................................... 66 

Figure 13: Infection with HSV-1 and HSV-2 activates reporter gene expression. ................................................. 68 

Figure 14: FACS analysis of stable AAV EGFP replicon clones. .............................................................................. 71 

Figure 15: Characterization of LE2D8. ................................................................................................................... 72 

Figure 16: Infection of LE2D8 with HAd5-Che and HSV-1. .................................................................................... 74 

Figure 17: Infection of LE2D8 with different HAdV-serotypes. ............................................................................. 75 

Figure 18: Infection of LE2D8 with HSV-2. ............................................................................................................ 76 

Figure 19: Frozen AAV replicon transfected cells are induced by helper virus infection. ..................................... 77 

Figure 20: Analysis of transduction efficacy of different AAV serotypes. ............................................................. 80 

Figure 21: Analysis of transduction efficacy of rAAV2 particles. ........................................................................... 81 

Figure 22: Analysis of transduction efficacy of A549 cells with rAAV2 particle after 72 h. .................................. 81 

Figure 23: Transduction of 293A cells by replicon containing recombinant AAV particles. ................................. 83 

Figure 24: Induction of AAV replicon after transduction. ..................................................................................... 85 

Figure 25: Construction of a genetically marked pVI deletion mutant of Ad5 genome by BAC technology. ....... 89 

Figure 26: ACV dose-response to HSV-1 replication measured by the Replicon assay. ........................................ 94 

Figure 27: HSV-1 resistance to ACV can be evaluated with LE2D8 cells. .............................................................. 95 

Figure 28: The production of infectious particles after infection of LE2D8 cells in the presence of ACV. ............ 96 

Figure 29: LE2D8 resistance test in the diagnostic context................................................................................... 98 

Figure 30: ACV susceptibility testing after HSV-1 and HSV-2 infection with rAAV replicon.................................. 99 

Figure 31: Replicon containing rAAV particles for resistance testing of HSV-1. ................................................. 101 

Figure 32: Replicon containing rAAV particles for resistance testing of HSV-2. ................................................. 102 

Figure 33: DMSO toxicity test of different cell lines............................................................................................ 105 

Figure 34: AAV replicon-based drug susceptibility assay for testing potential HSV-1 and Ad5 inhibitors. ......... 108 

  

file://///nas.ads.mwn.de/tumw/lrt/Users/no69rej/Mona_Thesis_final_16.02.2019_original_mod.docx%23_Toc1228018
file://///nas.ads.mwn.de/tumw/lrt/Users/no69rej/Mona_Thesis_final_16.02.2019_original_mod.docx%23_Toc1228033
file://///nas.ads.mwn.de/tumw/lrt/Users/no69rej/Mona_Thesis_final_16.02.2019_original_mod.docx%23_Toc1228018
file://///nas.ads.mwn.de/tumw/lrt/Users/no69rej/Mona_Thesis_final_16.02.2019_original_mod.docx%23_Toc1228033


 

144 

List of Tables 

Table 1.2.3.1: Differentiation of human adenovirus types by species and tropisms. ........................................... 16 

Table 2.5.1: LB medium ......................................................................................................................................... 34 

Table 2.5.2: LB agar ............................................................................................................................................... 34 

Table 2.5.3: TE buffer ............................................................................................................................................ 34 

Table 2.5.4: TAE buffer .......................................................................................................................................... 34 

Table 2.5.5: TBE buffer .......................................................................................................................................... 34 

Table 2.5.6: Freezing medium ............................................................................................................................... 34 

Table 2.5.7: 1 x Hepes buffer ................................................................................................................................ 34 

Table 3.1.1.1: Used bacterial strains ..................................................................................................................... 41 

Table 3.2.3.1: Program of touch down PCR .......................................................................................................... 45 

Table 3.4.1.1: Used cell lines and culture conditions. ........................................................................................... 49 

Table 3.4.6.1: Stock solutions of antiviral drugs. .................................................................................................. 52 

Table 4.2.4.1.1: Comparison of ITR and GLuc copy number by quantitative PCR. ................................................ 82 

Table 4.3.1.2.1: Rescue after trans-complementing pVI gene in mutated Ad5 BAC. ........................................... 91 

Table 4.3.1.2.2: Rescue after trans-complementing pVI with rAAV2-R-pVI in mutated Ad5 BAC. ....................... 91 

Table 4.3.2.2.1: Resistance test of clinical HSV-1 isolates with LE2D8 cells. ......................................................... 97 

Table 4.3.2.4.1: Resistance test of clinical HSV-1 isolates using the replicon containing rAAV particles. .......... 101 

Table 4.3.2.4.2: Resistance test of clinical HSV-2 isolates with recombinant rAAV particles. ............................ 102 

Table 4.3.3.1: Comparison of compounds tested twice with the AAV replicon drug susceptibility test. ........... 109 

  



 

145 

Abbreviations 

aa Amino-acid 

AAP Assembly activating protein 

AAV Adeno-associated virus 

ACV Acyclovir 

ACV res Acyclovir resistant herpes simplex virus type 1 

ACV sens Acyclovir sensitive herpes simplex virus type 1 

ACV-MP Acyclovir-monophosphate 

ACV-TP Acyclovir -triphosphate 

Ad Human adenovirus 

allo-HSCT Hematopoietic stem cell transplantation 

amp Ampicillin 

BACs Bacterial artificial chromosomes 

bp Base pair 

CAR Primary coxsackie B virus and adenovirus receptor 

CDV Cidofovir Hydrate 

Che Expression cassette mCherry 

cm Chloramphenicol 

Cmpd Compound 

CMV Cytomegalovirus 

CN Copy number 

CsCl Cesium chloride 

CTL T-lymphocytes from donors 

d p.i. Days post infection 

dCMP Deoxycytidine monophosphate 

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethylsulfoxid 

DRA DNA reduction assay 

DSG-2 Cadherin protein Desmoglein-2 

E Early genes 

EBV Epstein-Barr virus 

EDTA Ethylen-Diamin-Tetra-Acetic acid 

EGFP Enhanced green fluorescence protein 

ELISA Enzyme-linked immunosorbent assay 

ELVIRA Enzyme-linked virus inhibitor reporter assay 

FACS Fluorescence activated cell sorting analysis 

FCS Fetal calf serum 

FDA US Food and Drug Administration 

F-factor Fertility factor 



 

146 

GLuc Gaussia luciferase 

h p.i. Hours after infection 

h p.t. Hours post transfection 

h p.th. Hours after thawing 

HCF Host cell factor 

HCMV Human cytomegalovirus 

HFF Human foreskin fibroblasts 

HIV Human immunodeficiency virus 

HBV Hepatitis B virus 

HP Helicase/primase complex  

HPV Human papillomavirus 

HS Heparin sulfate 

HSV Herpes simplex virus 

HSV-1 Herpes simplex virus type 1 

HSV-2 Herpes simplex virus type 2 

HYG Hygromycin cassette 

IC50 Half inhibitory dose 

ICTV International Committee on Taxonomy of Viruses 

IE Immediate-early genes 

IFN Type I interferons 

IR Internal repeat sequence 

ITRs Inverted terminal repeats 

IVIG Intravenous immunoglobulin therapy 

kbp Kilobase pair 

kn Kanamycin 

KSHV Kaposi’s sarcoma-associated herpesvirus 

L Late genes 

LATs Latency-associated transcripts 

LB Lucia Broth medium  

MCMV Murine cytomegalovirus 

MCS Multiple cloning site 

MOI Multiplicity of infection 

MT Metallothionein I promoter 

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

n.i. Non-infected 

n.t. Non-treated 

NCS Newborne calf serum 

NDP Nucleoside diphosphate kinase 

NEB New England Biolabs 

NF Nuclear factor-1 

NK Natural killer cells  

ns Non-significant 



 

147 

Oct-1 Octamer-binding transcription factor-1 

OD Optical density 

ORFs Open reading frames 

ORI Origin of replication 

oriLyt Origin of lytic replication 

oriS Replication S 

p.t. Post transfection 

p/c Particles per cell 

PAA Phosphonoacetic acid 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

pDCs Plasmacytoid dendritic cells 

PEI Polyethylenimine 

PFA Phosphonoformic acid or Foscarnet 

POL DNA polymerase 

PRA Plaque reduction assay 

PrV Pseudorabies virus 

pTP Pre-terminal protein 

qPCR Quantitative real-time PCR reaction 

RBS Rep-binding site 

RFLP Restriction fragment length polymorphism 

RLU Relative light unit 

SD Standard deviation 

TE Trypsin/EDTA Solution 

TK Thymidine kinase 

TNF-α Tumor necrosis factor alpha 

TP Terminal protein 

TR Terminal repeat sequence 

TRS Terminal resolution site 

UL Unique segment long 

US Unique segment short 

v/v Volume per volume 

VZV Varicella zoster virus 

w/v Weight per volume 

wt Wild-type 

WTBAC Wild-type Bacterial Artificial Chromosome 

zeo Zeocin 

  



 

148 

Publications and posters 

This thesis describes the work performed at the Max von Pettenkofer-Institut, in Munich 

between January 2013 and May 2017. Parts of this thesis were published, patented or 

presented at conferences. 

 

 

Patents 
 

01/2016 AAV-based conditional expression system (Co-inventor) - EP-patent 

application 16 15 3329.4. An in vitro system for fast detection of 

phenotypic resistant Herpes- and Adenoviruses and for discovering new 

antiviral drugs. 
 

Posters 
 

04/2016  “AAV based replicon technology for phenotypic detection of adeno- and 

herpesvirus infections”, 26th Annual Meeting of the Society for 

Virology, Münster, Germany. 

 

07/2016 “AAV based replicon technology for detection and quantification of 

herpesvirus replication and drug resistance”, 41st Annual International 

Herpesvirus Workshop, Madison, USA. 

 

11/2016 “Fast detection of drug-resistant herpesviruses using an AAV based 

replicon technology”, DZIF Annual Meeting, Köln, Germany. 
 

  



 

149 

Acknowledgement 

Die über vier Jahre meiner Promotion waren für mich in vielerlei Hinsicht sehr lehr- und 

erfahrungsreich. Neben meinem eigenen Durchhaltevermögen ist diese Arbeit vor allem 

durch die Unterstützung zahlreicher Personen, die ich im Folgenden gerne hervorheben 

möchte, zu diesem erfolgreichen Projekt geworden. 

Foremost, I would like to express my sincere gratitude to my advisor Dr. Zsolt Ruzsics. From 

the first moment he believed in this small Austrian-Hungarian reunion and supported me 

continuously with his patience, endless enthusiasm, motivation and his immense scientific 

(and historical) knowledge. Even after he moved to another city during my Ph.D. study he was 

always within reach of a phone call or an e-mail (even on the weekends) and ready to spend 

countless hours of travelling. His guidance helped me throughout the time of research and 

writing this thesis. 

Meiner Doktormutter PD. Dr. Barbara Adler ist es zu verdanken, dass ich meine Forschungen 

am Max von Pettenkofer-Institut in einem wissenschaftlichen Umfeld zu Ende führen konnte. 

Bei ihr möchte ich mich besonders für die vielen aufmunternden Gespräche, das ehrliche 

Feedback an meinen wissenschaftlichen Tätigkeiten und die Unterstützung derselben 

bedanken. 

Ich bin sehr dankbar dafür, dass meine Doktorarbeit durch den Forschungsverbund ForBIMed 

der Bayrischen Forschungsstiftung gefördert wurde und ich dadurch an den halbjährlichen 

wissenschaftlichen Zusammenkünften teilhaben konnte. Zusätzlich weiß ich das Wissen, das 

ich in den angebotenen Workshops mitgenommen habe sehr zu schätzen. 

Meinen Industriepartnern in diesem Projekt, Dr. Christian Thirion und Silke Schrödel von der 

Firma Sirion Biotech möchte ich für ihren unermüdlichen und motivierenden Beitrag und die 

zahlreichen interessanten und ideenreichen Meetings danken, die dazu beigetragen haben, 

dass das AAV Replikon System erfolgreich patentiert wurde. 

Herzlichen Dank an die Leute im Institut für Virologie in Freiburg. Ich habe mich in den 3 

durchgehenden Wochen und immer wiederkehrenden Besuchen sofort aufgenommen und 

absolut wohl gefühlt. Danke auch an die Diagnostik in Freiburg für die Bereitstellung der Viren 

für die Resistenztestungen. 

Ebenso möchte ich mich bei der virologischen Diagnostik des Max von Pettenkofer-Institut, 

vor allem bei Frau Dr. Gundula Jäger und Herrn Dr. Hans Nitschko, und bei Prof. Dr. Anja 

Erhardt, von der Universität Witten/Herdecke für die vielen verschiedenen Viren zum Testen 

bedanken. 

Prof. Dr. Oliver T. Keppler danke ich für den Aufschub, den er mir ohne weiteres gewährt hat 

und den neuen Schwung, den er mit seiner Übernahme des Virologie Lehrstuhls gebracht hat. 



 

150 

Ein riesen Dank für die nette Arbeitsatmosphäre geht an alle meine Kolleginnen und Kollegen 

am Max von Pettenkofer-Institut. Vor allem bei Dr. Yi-Quan Wu, Dr. Ilija Brizic, Dr. Madlen 

Pogoda, Adrian Prager, Simone Boos und Dr. Hermine Mohr möchte ich mich an dieser Stelle 

besonders für die hilfreichen Ratschläge und für die netten und lustigen Gespräche im 

Laboralltag, bedanken. Bei Simone Boos und Sigrid Seelmeir möchte ich mich insbesondere 

für die Einführung der BAC-Technologie und bei Lisa Marcinowski für die Einweisung in die 

qPCR-Analyse bedanken. 

An dieser Stelle möchte ich ein herzliches Dankeschön an Jasmin Gauch für das Korrekturlesen 

aber vor allem für ihre Freundschaft aussprechen. Danke auch an Susanne Langer für die 

zahlreichen aufmunternden und lustigen Messages in unserer gemeinsamen 

Hochschreibphase. 

Ich bin glücklich, dass ich neben der Arbeit so viele großartige neue Freunde in München 

gefunden habe, aber gleichzeitig trotz 400 km Abstand, nach wie vor so einen guten Draht zu 

allen Freunden zuhause habe. Diese Freundschaften geben mir immer Kraft und so viel 

Freude, dass ich an dieser Stelle auch mal ein großes Danke schreiben möchte. 

Für das Vertrauen, die stätige Motivationsflut, die grandiose Unterstützung aber auch das 

Ablenken auf die tatsächlichen Prioritäten im Leben möchte ich meiner gesamten Familie und 

Schwiegerfamilie besonders danken. Es ist schön, dass ich mit 4 Geschwistern aufwachsen 

durfte und dass es, trotz stetigem Zuwachs, diesen besonderen Zusammenhalt in unserer 

Familie und Großfamilie gibt. 

Zuletzt möchte ich dem wichtigsten Menschen in meinem Leben für seine Liebe, den 

unendlichen Vorrat an Optimismus, für die immense Hilfe bei dieser Arbeit und für die 

wundervollen rational/sarkastischen Aussagen, die mich in allen Ausgangslagen zum Lachen 

bringen, danken. 


