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SUMMARY 

Chromatin structure, complexity and hence function is conferred by a plethora of proteins mediating 

the transcriptional output of a cell and attributing to the cells’ identity. These chromatin-based 

processes are to a great extend regulated by proteins that read and recognize histone modifications, 

histone variants as well as other chromatin related factors thereby determining downstream 

processes. The essential histone variant H2A.Z plays a pivotal role in a vast number of DNA-related 

processes such as transcriptional regulation, cell cycle control and DNA repair by to date poorly 

understood mechanisms and is primarily correlated with active gene transcription on a genome-wide 

basis. Previously, utilizing a mass spectrometry-based screen for H2A.Z-nucleosome interactors, our 

group identified PWWP2A as a novel binder of H2A.Z. PWWP2A binds to chromatin in a multivalent 

manner and is implicated in transcriptional regulation and cell cycle progression in human HeLa 

Kyoto cells as well as in craniofacial development in Xenopus. In this thesis, the function of PWWP2A 

in transcriptional regulation and mitosis was further investigated. Live-cell imaging revealed that the 

siRNA-mediated depletion of PWWP2A results in a severe defect in mitotic progression. This 

phenotype is supposedly not exerted by a structural role of PWWP2A but rather an indirect effect 

on the transcription of genes involved in tubulin- and actin-related processes. Accordingly, tubulin 

as well as actin fibers exhibited an aberrant morphology. PWWP2A was thoroughly characterized as 

strong H2A.Z-interactor, albeit the depletion of PWWP2A did not affect H2A.Z’s chromatin 

association or occupancy. PWWP2A does not seem to contain any enzymatic activity, suggesting that 

PWWP2A’s function depends on recruitment of chromatin modifying proteins. Using a mass 

spectrometry-based approach, specific interactors of PWWP2A were determined. Among the 

strongest PWWP2A-binders were members of the core NuRD complex, MTA1, HDAC1/2 and 

RBBP4/7, which we termed M1HR and which were previously also identified to precipitate with 

H2A.Z-nucleosomes. To assess whether loss of PWWP2A affects histone deacetylation executed by 

HDAC proteins, nChIP-seq of H3K27ac as well as H2A.Zac after PWWP2A depletion were performed. 

Interestingly, loss of PWWP2A led to an increase of acetylation levels of H3K27 and H2A.Z at some 

defined typically PWWP2A-bound intergenic loci. Analysis of the expression of nearby genes revealed 

that while some genes were upregulated upon PWWP2A depletion, others remained unchanged. 

Concordantly, we hypothesize that PWWP2A may balance histone acetylation via recruitment of 

M1HR and finetune transcriptional output. In summary, PWWP2A influences mitosis progression, 

craniofacial development and histone acetylation. However, whether the underlying mechanisms 

are interconnected remains to be elucidated.  
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ZUSAMMENFASSUNG 

Chromatinstruktur, -komplexität und -funktion wird durch eine Vielzahl von Proteinen vermittelt, 

welche der Zelle ein spezifsches Transkriptionsmuster verleihen und somit die Identität einer Zelle 

bestimmen. Diese chromatinbasierten Prozesse werden weitgehend durch Proteine reguliert, die 

Histonmodifizierungen, Histonvarianten sowie andere chromatinbezogene Faktoren lesen und 

erkennen und damit nachgelagerte Prozesse beeinflussen. Die essenzielle Histonvariante H2A.Z 

spielt eine zentrale Rolle in einer Vielzahl DNA-bezogener Prozesse wie Transkriptionsregulation, 

Zellzykluskontrolle und DNA-Reparatur durch bisher wenig verstandene Mechanismen und korreliert 

genomweit hauptsächlich mit aktiver Gentranskription. In einer früheren Studie unserer 

Arbeitsgruppe wurde PWWP2A mithilfe eines Massenspektrometrie-basierenden Screenings für 

H2A.Z-Nukleosom-Interaktoren als neuartiger Bindepartner für H2A.Z identifiziert. PWWP2A bindet 

auf multivalente Weise an Chromatin und ist an Transkriptionsregulation und Zellzyklusprogression 

in menschlichen HeLa Zellen sowie an der kraniofazialen Entwicklung in Xenopus beteiligt. In dieser 

Arbeit wurde die Funktion von PWWP2A während der Mitose und in der transkriptionellen 

Regulation genauer untersucht. Lebendzell-Mikroskopie zeigte, dass die durch siRNA-vermittelte 

Depletion von PWWP2A zu einem schwerwiegenden Defekt der mitotischen Progression führt. 

Dieser Phänotyp wird vermutlich nicht durch eine strukturelle Rolle von PWWP2A ausgeübt, sondern 

eher durch einen indirekten Einfluss auf die Transkription von Genen, die an tubulin- und 

aktinverwandten Prozessen beteiligt sind. Dementsprechend wiesen sowohl Tubulin- als auch 

Aktinfasern eine abweichende Morphologie auf. PWWP2A wurde als starker H2A.Z-Interaktor 

charakterisiert, nichtsdestotrotz beeinträchtigt die Depletion von PWWP2A die 

Chromatinassoziation von H2A.Z nicht. PWWP2A scheint keine Domänen zu besitzen, die 

enzymatische Aktivität vermitteln, was nahelegt, dass die Funktion von PWWP2A von der 

Rekrutierung von chromatinmodifizierenden Proteinen abhängt. Unter Verwendung eines auf 

Massenspektrometrie basierenden Ansatzes wurden spezifische Interaktoren von PWWP2A 

bestimmt. Zu den stärksten PWWP2A-Bindern gehörten Mitglieder des NuRD-Komplexes, MTA1, 

HDAC1/2 und RBBP4/7, den wir M1HR nannten und der zuvor auch mit H2A.Z-Nukleosomen 

präzipitiert werden konnte. Um zu untersuchen, ob der Verlust von PWWP2A die Histon-

Deacetylierung, welche von den HDAC-Proteinen ausgeführt wird, beeinflusst, wurden nChIP-seq 

Experimente von H3K27ac sowie H2A.Zac nach PWWP2A Depletion durchgeführt. 

Interessanterweise führte der Verlust von PWWP2A zu einer Zunahme der Acetylierung von H3K27 

und H2A.Z an definierten, typischerweise PWWP2A-gebundenen intergenischen Loci. Die 

Expressionsanalyse benachbarter Gene zeigte, dass einige Gene nach Depletion von PWWP2A 
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hochreguliert wurden, andere jedoch unverändert blieben. Möglicherweise beeinflusst PWWP2A die 

Histonacetylierung über die Rekrutierung von M1HR und passt dadurch die transkriptionelle Aktivität 

an. PWWP2A beeinflusst den Verlauf der Mitose, die kraniofaziale Entwicklung und die 

Histonacetylierung. Ob die zugrunde liegenden Mechanismen jedoch miteinander verbunden sind, 

bleibt abzuklären. 
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1. INTRODUCTION 

1.1 Chromatin structure and complexity 

To fit DNA into a nucleus of an eukaryotic cell, DNA is compacted and packaged with proteins to form 

a complex structure called chromatin [1]. Chromatin consists of a repeating nucleosome structure, 

with approximately 146 base pairs of DNA wrapped around an octameric histone core [2]. Histone 

octamers comprise a pairwise assembly of the canonical histone core proteins: H2A, H2B, H3 and H4 

[2]. Further, N-terminal and C-terminal peptides protrude histone proteins, which are termed 

histone tails and are prone to posttranslational modifications [3, 4]. Linker DNA connects 

nucleosomes and linker histone H1 and non-histone proteins locate at such free DNA segments. 

Accordingly, linker histone H1 can be modified posttranslationally and regulates and stabilizes higher 

order chromatin structure [5]. Canonical histones are incorporated into chromatin in a replication-

coupled, S-phase dependent manner. Histone chaperones orchestrate histone turnover and 

nucleosome assembly by aiding in synthesis, processing and site-specific delivery of histones [6]. 

Furthermore, chaperones sequester histones in conformations that are unrelated to nucleosomes 

to facilitate wrapping of DNA around histones [2]. Nucleosomes in actively transcribed genes and 

regulatory regions are prone to undergo fast turnover [7]. During the cell cycle as well as throughout 

developmental processes, chromatin undergoes versatile changes and levels of compaction. Those 

changes are not based on direct alterations of the underlying DNA sequence but spatial and temporal 

changes in dynamic chromatin marks. Chromatin architecture is thus shaped by a number of 

variables, including posttranslational modifications (PTMs) of histones, DNA methylation, non-coding 

RNAs (ncRNAs), usage of histone variants and activity of chromatin remodelers, which alter the 

position of or exchange nucleosomes [3, 8-10] (Figure 1.1). They ease transitions between different 

chromatin states thereby affecting chromatin organization ultimately regulating transcriptional 

output by RNA polymerase II (RNAPII). The level of chromatin compaction defines DNA accessibility 

and state of permission for transcription by RNAPII and hence transcriptional activity [11, 12]. Thus, 

regulation of chromatin structure represents a dynamic process with various factors involved. 

Moreover, the majority of chromatin-associated proteins contain domains that meditate binding to 

specific chromatin features. The above-mentioned factors do not execute their functions solely but 

rather accomplish their tasks in a complex and highly dynamic interplay, resulting in a defined 

chromatin signature of a cell.  
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Figure 1.1: Modes of chromatin regulation. Chromatin structure and function is regulated by A. 
posttranslational histone modifications (such as acetylation (ac), methylation (me) and phosphorylation (ph)), 
B. exchange of canonical histones with histone variants (such H2A.Z or H3.3), C. nucleosome remodeling, D. 
DNA modifications (such as methylation (5mC) and hydroxymethylation (5hmC) and E. non-coding RNAs 
(ncRNAs). Further, crosstalk of these mechanisms contributes to the complexity of chromatin regulation.  

 

In general, chromatin is categorized into euchromatin, which is less compacted and therefore 

transcriptionally active, and heterochromatin, which is tightly packed and accordingly 

transcriptionally repressive [13, 14]. Moreover, heterochromatic regions can be further subdivided 

into facultative and constitutive heterochromatin. While the distribution of facultative 

heterochromatin is cell type-specific and, for example, present at developmentally regulated regions 

such as the Barr body in differentiated female cells [15], constitutive heterochromatin features a 

high density of repetitive DNA elements at centromeres and telomeres [16]. The latter distinction 

into euchromatin and heterochromatin is being extended by the recent annotation of chromatin 

states which is further explained later in the text [17-19]. 

In mammals, DNA methylation and demethylation are important means to regulate gene expression 

[20, 21]. The de novo DNA methyltransferases DNMT3A, DNMT3B and DNMT3L establish new 

methylation patterns in embryonic development, differentiation and gametogenesis. During 

replication, DNA methylation patterns are propagated from the mother to the daughter strand by 

the maintenance DNA methyltransferase DNMT1 [8]. DNMT1 is tightly regulated by intra- as well as 

intermolecular interactions and its activity, stability and targeting is highly dependent on its cofactor 

UHRF1 [22-26]. The presence of a methylation mark (5mC) is a feature of silenced chromatin. 

Methylated cytosines can be further oxidized by the ten eleven translocation proteins (TET 1-3) to 

5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) [27-29]. 

Contrary to 5mC, the oxidized derivates are rather associated with transcriptional activity. 

Another layer of chromatin regulation is added by ncRNAs that can vary in length from few to several 

thousand nucleotides and do not translate into proteins [30]. ncRNAs share some common features 

with protein-coding RNAs, such as being transcribed by RNAPII and containing polyA tails, but they 
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are usually expressed at a lower level. ncRNAs are specifically expressed in certain tissues and 

developmental stages where they are thought to recruit chromatin remodeling complexes and 

transcription factors to sites of action.  

As PTMs, nucleosome remodeling and histone variants are vital for this thesis, they are explained in 

greater detail below. 

 

1.2 Posttranslational histone modifications 

Almost two decades ago, a histone modification ‘code’ was postulated, proposing that PTMs on 

histones have a definite outcome and largely depend on reader proteins attracted by the PTMS itself 

or by the combinations of PTMS [3, 31]. Although the existence of the concept is a matter of debate, 

it still signifies a major landmark [32, 33]. In present times, the picture has become more complicated 

as histone PTMs exhibit a vast combinatorial complexity which is established through a dynamic 

interplay between histone PTM readers, writers and erasers. Most histone tail PTMs recruit 

chromatin-related proteins that recognize and read histone modifications via distinct domains, 

which in turn influence downstream processes such as transcription. The addition and removal of 

chemical modifications on amino acid side chains of histone tails as well as cores is executed by highly 

specialized enzymes termed writers and erasers, respectively [34]. Histone-modifying enzymes are 

recruited by transcriptional co-activators and/or -repressors, non-enzymatic chromatin binding 

proteins, RNAPII or adjacent histone modifications to their targets. While some histone PTMs are 

able to directly alter chromatin conformation, such as acetylation, other histone PTMs 

predominately function as recruiters [35]. To date, acetylation, methylation, phosphorylation and 

ubiquitination of histones represent the best-studied PTMs, nonetheless also ADP-ribosylation, 

butyrylation, crotonylation, deamination, formylation, glycosylation, propionylation and 

SUMOylation (small ubiquitin-like modifier) have been found on histones. 

Methylation occurs in form of mono-, di- or trimethylation on lysine (K) residues or as mono- or 

dimethylation (symmetric or asymmetric) on arginine residues of histone proteins [36]. Lysine 

methyltransferases (KMTs) and lysine demethylases (KDMs) catalyze the addition or removal of 

methyl groups on K residues, respectively. Most KMT enzymes, like G9a or EZH2, contain a SET 

(Suppressor of Variegation, Enhancer of Zeste and Trithorax) domain, which is responsible for 

methylation of histone 3 lysine 9 (H3K9) or K27 (H3K27) [37, 38]. S-adenosyl-L-methionine (SAM) as 

a cofactor is utilized as methyl-group donor [39]. KDMs often belong to the Jumonji family, executing 

histone demethylation via hydroxylation [40]. Without altering the charge of the modified histone, 

K methylation can designate euchromatic as well as heterochromatic regions. While methylation on 

H3K4 is typically linked with a transcriptionally active chromatin state, trimethylation of H3K9 and 
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H3K27 represent hallmarks of heterochromatin [41]. Moreover, in embryonic stem cells (ESCs) as 

well as during development, bivalent chromatin regions in which both activating and repressing 

modifications such as H3K4me3 and H3K27me3, respectively, are found colocalizing within the same 

nucleosome [42, 43]. Trimethylation of H3K36 (H3K36me3) is enriched at the bodies of active genes 

and regulates transcriptional elongation [44]. Consequently, proteins reading histone methylation 

contain methyl-lysine-binding motifs which exist in many flavors such as tudor, chromo, PHD or 

PWWP domains [45]. 

Similar to methylation, acetylation affects lysine residues and is regulated by histone 

acetyltransferases (HATs) that transfer an acetyl group from acetyl Coenzyme A [46, 47]. The addition 

of an acetyl group to a positively charged lysine induces charge neutralization. Due to a loss of 

electrostatic interactions between histones and DNA, acetylated sites are associated with 

transcriptionally active sites and thus an open euchromatic chromatin state [48]. Accordingly, 

acetylation of histones, such as H3K9ac, H3K14ac, H3K18ac, H3K23ac, H3K27ac and H3K36ac, 

generally correlates with active transcription, playing a central role in the regulation of gene 

expression [47]. Contrary to acetylation by HATs, deacetylation by histone deacetylases (HDACs) 

leads to transcriptional repression [49]. In general, proteins containing a bromodomain can 

recognize acetylated histone tails [50]. For example, H4K16ac controls chromatin structure and is 

enriched at transcriptional start sites of actively transcribed genes, supporting a positive role in gene 

transcription [48, 51]. Proteins containing a bromodomain can recognize acetylation marks and are 

involved in transcriptional regulation [52].  

Histones are subject to phosphorylation at serine, threonine or tyrosine residues via a highly dynamic 

process, which results in a negative charge change at the affected residue [53]. The transfer of a 

phosphate group is catalyzed by protein kinases, which are either serine/threonine- or tyrosine-

specific protein kinases while dephosphorylation is mediated by phosphatases. In addition to the cell 

cycle control system, Aurora B kinase catalyzes phosphorylation of H3S10, which is associated with 

chromosome condensation during mitosis [54]. Moreover, H3S10ph is crucial for transcriptional 

elongation in interphase cells [55]. Besides H3S10ph, also H2AT120ph, H3T3ph and H3S28ph 

represent marks of condensed mitotic chromatin [56, 57].  

 

1.3 Nucleosome Remodeling 

As mentioned above, the activity of chromatin remodelers contributes to chromatin structure 

changes. In general, nucleosome remodeling complexes as well as histone modifying enzymes 

modulate chromatin to influence DNA accessibility [58]. Chromatin remodeling complexes are 

usually macromolecular, multiprotein machines that use energy derived from ATP hydrolysis to 
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remodel chromatin. Remodeling activities include sliding of nucleosomes as well as incorporation 

and eviction of canonical histones and its variants. These activities result in nucleosome assembly 

and DNA accessibility and thus play important roles in transcriptional regulation, DNA replication, 

DNA damage repair, cell cycle progression and genomic stability. 

The ATPase subunit of chromatin remodelers originates from the SNF2 family of DNA helicases which 

can be subdivided into four major subfamilies: SWI/SNF, ISWI, INO80 and CHD [59]. Due to 

importance for this thesis, the following section will solely focus on the CHD-containing Nucleosome 

Remodeling and Deacetylase (NuRD) complex that was first identified in 1998 [60-63]. NuRD is highly 

conserved among metazoans and uniquely combines chromatin remodeling and histone deacetylase 

enzymatic activity [64, 65]. The chromatin remodeling subcomplex comprises the chromodomain-

helicase-DNA-binding protein (CHD3/4, also known as Mi-2α/β), methyl-CpG-binding domain 

proteins (MBD2/3) and GATA-binding protein 2A/B (GATA2A/GATA2B, also known as p66α/β). The 

histone deacetylase subcomplex contains class I histone deacetylase proteins HDAC1 or HDAC2, the 

retinoblastoma-binding proteins and histone chaperones RBBP4 and 7 (also known as RbAp46 and 

RbAp48) and the metastasis tumor antigen family of proteins, MTA1/2/3. The subunit composition 

of the complex varies, thus NuRD comes in different flavors contributing to the diverse functional 

consequences. The complex fulfils multifaceted biological roles, ranging from gene transcription, 

DNA damage repair, maintenance of genome stability to chromatin assembly and is crucial for 

embryogenesis and embryonic stem cell differentiation [66, 67]. Genome-wide mapping of binding 

features of NuRD components in different cell types displayed occupancy of active enhancers and 

promoters (see 1.6 for characterization) [68-71]. Originally identified and characterized as a 

transcriptional corepressor complex, presently there is growing evidence that NuRD is likewise 

associated with transcriptional activation and is particularly responsible for maintaining an 

equilibrium between the two [58, 59, 67, 72, 73]. 

 

1.4 Core Histone Variants  

The incorporation of core histone variants is an important means to influence nucleosome structure, 

stability and DNA accessibility. Compared to their canonical counterparts, histone variants differ to 

varying degrees in their primary sequences and are usually expressed from either single-copy or two 

genes, which may contain introns giving rise to distinct splice isoforms [74, 75]. In contrast to 

canonical histones, where the encoding mRNAs are devoid of polyA tails and feature a stem loop 

structure to meet the cells’ demand, the mRNA of histone variants is polyadenylated [74]. While 

canonical histones are synthesized during replication only, most histone variants are expressed 

throughout the cell cycle and thus are deposited into chromatin via replication-independent 
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pathways [76]. In this way, histone variants can fulfil specific functions without spatial or temporal 

constraints. Histone variants and canonical histones are usually exchanged by specialized histone 

chaperones. So far, no variants have been described for histone H4 in higher eukaryotes [77]. In the 

following, predominately human histone variants and their functions will be described (Figure 1.2). 

 

 

Figure 1.2: Schematic overview of human core histone variants. Variants of the histone H2A (yellow), H2B (red) 

and H3 (blue) family of the human core histones are depicted. To date, no histone H4 (green) variant has been 

described in humans. 

 

Histone H3 family  

The histone H3 family comprises two canonical histones H3.1 and H3.2, and the variants H3.3, H3.1t, 

H3.5, H3.X, H3.Y and CENP-A. Interestingly, H3.3 only differs from canonical H3.1 and H3.2 in five or 

four amino acids, respectively, attributing to H3.3 dissimilar function. H3.3 is not only found at gene 

bodies and regulatory regions, thereby being associated with transcriptional activity, but also with 

heterochromatic sites such as pericentromeres, transposons and telomeres and is incorporated by 

either HIRA or DAXX chaperone complexes [6, 78]. Primate-specific H3 variant H3.Y, possibly also 

H3.X, is found at actively transcribed genomic regions and is expressed in different brain regions and 

cancer tissues [79]. H3.1t and H3.5 are testis-specific H3 variants and their function is largely elusive 

[80, 81]. Histone H3‑like centromeric protein A (CENP-A) distinctly localizes at the centromere and 

ensures proper centromere establishment and function by being involved in kinetochore assembly 

and chromosome segregation [82]. 

 

Histone H2B family 

The histone H2B variant family to date comprises only three members. Human H2B variants TSH2B 

and H2BFWT are testis- and/or oocyte-specific and differ only slightly in their amino acid sequence 

from canonical H2B. Hence, TSH2B-containing and H2B-containing nucleosomes are highly similar in 
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structure [83]. During spermatogenesis, TSH2B mediates the exchange of histones with protamines 

[84]. Moreover, expression of TSH2B in oocytes regulates reprogramming and enhances the 

generation of induced pluripotent stem cells [85]. H2BFWT’s function is largely elusive although it 

has been proposed to associate with telomeres [86].  

 

Histone H2A family 

For the histone H2A family, the highest number of variants exists with four different classes - H2A.B, 

H2A.X, macroH2A and H2A.Z - and will be further discussed with a special focus on H2A.Z in the next 

section. 

Human H2A variant H2A.B (also known as H2A.Bbd, Barr body-deficient) is exclusively expressed in 

brain and testes [87]. H2A.B shares only 50% sequence identity with H2A and is devoid of an acidic 

patch region thereby leading to a less stable nucleosome [88, 89]. Moreover, H2A.B is enriched over 

the gene body, correlating with active gene expression, and further localizes at the TSS where it 

mediates gene activation during spermatogenesis [90]. 

Generally known as guardian of the genome, histone variant H2A.X participates in DNA damage 

signaling pathways. In response to DNA double strand breaks, H2AX is phosphorylated on its Ser139 

residue, termed γH2A.X, thereby initiating a repair cascade [91, 92]. Moreover, H2A.X also 

accomplishes functions aside from DNA damage such as chromosome inactivation in germ and 

somatic cells, mitosis, stem cell development and aging and is found at promoters of active genes 

[93, 94]. 

Uniquely, histone variant macroH2A contains a large C-terminal globular domain that connects to 

the histone fold region through a flexible linker region. The histone fold domain shares 60% sequence 

identity with canonical H2A and the addition of the non-histone macrodomain gives rise to a large 

protein, three times the size of H2A [95]. In vertebrates, macroH2A exists in three isoforms: the 

alternative splice isoforms macroH2A.1.1 and macroH2A.1.2 as well as macroH2A.2. Generally, 

macroH2A is associated with transcriptional repression and localizes on the female inactive X-

chromosome [96-99]. Moreover, macroH2A impairs recruitment of the chromatin remodeling 

complexes SWI/SNF and ACF [97, 100]. Interestingly, macroH2A localizes at developmental genes 

influencing differentiation and vertebrate development [96, 101]. 
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1.5 Histone Variant H2A.Z 

Structural aspects of H2A.Z 

Among eukaryotes, H2A.Z is highly evolutionary conserved and shares only 60 % sequence identity 

with canonical histone H2A. They differ in the L1 domain which mediates the interaction between 

the two H2A-H2B dimers, in the C-terminal docking domain, that mediates the interaction with the 

H3-H4-tetramer as well as in an extended acidic patch in H2A.Z that slightly alters the nucleosome 

structure and chromatin folding and promotes a higher affinity to the H4 tail [102]. Nevertheless, 

the crystal structure of an H2A.Z-containing nucleosome is overall highly similar to that containing 

the canonical counterpart [103]. While the H2A.Z-H2B dimer seems to be less stable than the H2A-

H2B dimer, H2A.Z has also been reported to increase nucleosome stability [104-107]. Other studies 

report that H2A.Z is less tightly associated with chromatin and hence generates a more mobile 

nucleosome than canonical H2A [108, 109]. To date, it is widely accepted that H2A.Z may stabilize 

nucleosomes in vitro and functions as a destabilizer in vivo [110, 111]. The existence of homo- or 

heterotypic H2A.Z nucleosomes has been subject to much debate. Due to the steric properties of 

the L1 regions of H2A and H2A.Z it seemed reasonable that a coexistence may be ruled out although 

heterotypic H2A-H2A.Z nucleosomes have been reported [103, 112-114]. 

In humans, H2A.Z exists in three isoforms, encoded by the non-allelic genes H2AFZ and H2AFV for 

H2A.Z.1 and H2A.Z.2, respectively. They differ in only 3 amino acids on protein level arguing towards 

a separate evolution [115-117]. Alternative splicing of the H2A.Z.2 primary RNA (encoded by H2AFV) 

gives rise to an additional isoform H2A.Z.2.2, which only occurs in primates and leads to a drastic 

destabilization of the nucleosome [118]. Crystal structures of H2A.Z.1- or H2A.Z.2-containing 

nucleosomes revealed structural differences of the L1 loop regions of both isoforms despite their 

identical amino acid sequence [119]. Recently, using a label-free quantitative mass spectrometry 

approach, it was shown that the isoform specific interactomes are highly similar [120, 121]. However, 

due to the lack of an isoform specific antibody, most studies do not address whether the isoforms 

have independent functions. 

 

Deposition and eviction of H2A.Z 

In yeast, H2A-H2B dimers are substituted with H2A.Z-H2B by the histone chaperones Chz1, Nap1 and 

FACT [122, 123]. In human cells, H2A.Z is incorporated into chromatin independently of replication 

by YL1 and is removed by acidic leucine-rich nuclear phosphoprotein 32 family member E (ANP32E) 

and [124-127]. While YL1 is part of both ATP-dependent chromatin remodeler complexes SWI2–

SNF2-related CBP activator protein (SRCAP) and p400-Tip60, ANP32E seems to be only present in 

p400-Tip60 [128-130]. Like ANP32E, YL1 specifically binds H2A.Z’s extended acidic patch and, 
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additionally, to H2A.Z’s DNA-binding groove [124]. Another key interactor of H2A.Z essential for its 

deposition is GAS41, a component of both H2A.Z deposition complexes SRCAP and p400-Tip60, as 

its depletion leads to a dramatic reduction in H2A.Z occupancy [131]. 

 

Versatile functions of H2A.Z 

Comprehensively, H2A.Z is involved in a vast number of DNA related processes (Figure 1.6 B). In 

metazoans, H2A.Z is essential while in yeast, H2A.Z is required for chromosome stability and normal 

growth [132, 133]. In Drosophila melanogaster, H2A.V, a combined homolog of the histone variants 

H2A.Z and H2A.X, contains residues in the αC helix within the highly conserved extended acidic patch 

that are required for viability [134, 135]. H2A.Z is expressed throughout frog development and RNAi-

mediated loss of H2A.Z in Xenopus laevis impairs cell movement leading to defective gastrulation 

and defects in mesodermal and neuronal crest development [136, 137]. In mice, knockout of H2A.Z.1 

results in embryonic lethality as H2A.Z.2 is unable to compensate for the loss of H2A.Z.1 function 

[138]. Similarly, in rat neurons, knockdown of either variant leads to deregulation of nonoverlapping 

gene cohorts, underlining H2A.Z.1’s and H2A.Z.2’s nonredundant functions [139]. In chicken cells, 

depletion of either H2A.Z paralogue leads to distinct abnormalities in cell growth and gene 

expression [117, 140]. Furthermore, an inducible knockout of H2A.Z in chicken cells results in a 

mitotic progression defect [141]. 

Generally, H2A.Z is an important regulator of transcriptional initiation and active gene expression. 

Consistently, H2A.Z is found at promoter regions (Figure 1.6 A) [142-147]. In line with this, H2A.Z 

resides at DNase hypersensitive sites marking open and accessible chromatin regions [145, 146]. 

During transcription initiation, H2A.Z is exchanged to recruit and modulate RNAPII kinetics at the TSS 

as well as gene bodies thereby reducing the nucleosome barrier for RNAPII [126, 143, 148]. Due to 

its predominant association with active transcription, H2A.Z is anticorrelated with DNA methylation 

at TSS and gene bodies [149, 150]. A recent study corroborates the theory of placeholder 

nucleosomes where H2A.Z is present in a nucleosome that changes its histone and/or its histone 

modification code pattern when transcriptional onset is desired during development [151]. H2A.Z is 

found together with the active chromatin mark H3K4me3 in the same nucleosome [152, 153]. In 

detail, H2A.Z is well-positioned at the -1 and the +1 nucleosome flanking nucleosome free region at 

the TSS of actively transcribed genes [154]. Generally, -1 H2A.Z-containing nucleosomes are 

associated with gene activity [154]. Several studies suggest that the presence of H2A.Z at the +1 

nucleosome may function as a barrier for RNA polymerase II [126, 148, 155]. Besides localizing to 

actively transcribed promoters, H2A.Z also resides at regulatory regions such as enhancers where it 

is predominately found together with the histone variant H3.3 (Figure 1.6 A) [110, 144, 145, 156]. 
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H2A.Z is crucial for estrogen receptor enhancer activity by recruiting RNAPII and promoting the 

transcription of enhancer RNAs [157]. The level of H2A.Z at enhancers positively correlates with the 

H3K27ac level [144]. 

Although predominately described as a variant accompanied with a positive role in transcription and 

open chromatin conformation, H2A.Z also exhibits contrasting functions with being involved in 

transcriptional repression [158, 159]. H2A.Z contributes to the formation of pericentric and 

centromeric heterochromatin and co-occupies H3K9me3-enriched and / or CENP-A-bound regions 

[102, 143, 160-162]. Moreover, H2A.Z can mimic H3K9me3 via H2A.Z’s acidic patch to enhance HP1α 

binding which is mediated [102, 163]. H2A.Z represses transcription of p21 and ΔNp63α target genes 

and is positioned at genes that are silenced in mitosis [130, 164, 165]. 

H2A.Z has been reported to be especially important in ESCs as it facilitates access to active and 

repressive complexes and transcription factors in ESCs and during differentiation [144, 166, 167]. 

Furthermore, it promotes maintenance of pluripotency and self-renewal in ESCs [144, 166, 168]. By 

recruiting pioneer transcription factor Foxa2 (Forkhead box protein A2), H2A.Z facilitates 

nucleosome depletion at TSS during differentiation [169]. The enrichment of H2A.Z at PRC2 target 

genes underlines the variants importance in the regulation lineage commitment [166, 167]. Together 

with H3.3, H2A.Z coordinately finetunes the enzymatic activity of PRC2 and H2A.Z localizes at 

H3K27me3-enriched genome-wide sites [170]. Moreover, H2A.Z activates differentiation-associated 

genes and regulates epithelial-mesenchymal transition by either activating or repressing epithelial 

or mesenchymal gene expression, respectively [171, 172].  

Recent studies emphasize H2A.Z’s role regarding neuronal aspects. Upon learning, H2A.Z is 

exchanged and is involved in fear conditioning and suppresses memory formation and retention by 

modulating gene expression [173]. Furthermore, H2A.Z is evicted from genes that are actively 

transcribed upon learning and accumulates in the mouse hippocampus during aging [174]. When the 

H2A.Z genes were knocked out in adult mice during brain development, deletion of H2A.Z causes 

impaired neuronal progenitor cell (NPC) differentiation, as well as behavioral abnormalities, such as 

reduced exploratory behavior and depression[175]. The occurrence of dendritic malformations upon 

H2A.Z depletion underlines the importance of H2A.Z during neuronal development as dysfunctions 

lead to neurodevelopmental disorders. In line, SNPs in the H2AFZ gene correlate with the occurrence 

of schizophrenia, substantiating H2A.Z.1 as a potential marker of predisposition [176]. 

Notably, H2A.Z is essential for mitosis. In mitotic chromatin, H2A.Z localizes at the centromere, 

indicating a role in centromere formation or a contribution in centromere–kinetochore attachments 

[161, 177]. Strikingly, depletion of H2A.Z in mammalian cells results in chromosome segregation 

defects with lagging chromosomes and issues in chromosome cohesion ultimately leading to 
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genome instability [178]. Consistent with this observation is the mitosis progression phenotype 

observed in chicken cells upon H2A.Z knockout [141].  

Furthermore, H2A.Z is involved in the early stages of the DNA damage response. H2A.Z is rapidly 

deposited into sites of DNA damage to enable DNA repair by lessening chromatin compaction [179-

181]. Exchange of H2A.Z at sites of DNA damage is only transient and shortly after DNA damage; 

ANP32E removes H2A.Z from DNA lesions to facilitate end resection [126, 127, 180]. Moreover, also 

INO80, which replaces H2A.Z-H2B dimers with H2A-H2B in yeast, can similarly evict H2A.Z from 

damaged chromatin promoting homologous recombination [179, 182, 183].  

In various cancer types H2A.Z is overexpressed or dysregulated. Both H2A.Z isoforms are 

overexpressed in melanoma and are linked with poor prognosis in disease progression [120]. 

Knockdown of H2A.Z.2, but not H2A.Z.1 decreases global acetylation levels on H3 and H4 in 

melanoma cells and restrains the recruitment of BRD2 and E2F1 to its target genes [120]. Moreover, 

H2A.Z is involved in hepatocellular carcinoma, breast cancer, bladder cancer and prostate cancer 

[153, 184-186]. 

 

PTMs of H2A.Z 

Adding another layer to the complex and versatile functions of H2A.Z, its tails are subjected to 

posttranslational modifications (Figure 1.6 C). While lysine residues on N-terminal H2A.Z tails can 

either be acetylated (K4, K7, K11; H2A.Zac) or methylated (K4, K7; H2A.Zme), C-terminal lysines are 

prone to ubiquitination (K120, K121, K125; H2A.Zub) as well as methylation (K101) [187, 188]. 

H2A.Zub is enriched at facultative heterochromatin and is associated with a repressive chromatin 

state [152]. E3 ligase RING1B of the PRC1 sets the ubiquitination mark on H2A.Z, which can be 

removed by Ubiquitin Specific Peptidase 10 (USP10) to activate transcription [152, 189]. 

Monomethylation of K4 and K7 is mediated by SET domain containing 6 (SETD6) and is important for 

maintaining self-renewal of mESCs [190]. Furthermore, dimethylation of H2A.Z.1K101 by histone 

methyl-transferase SMYD3 prevents eviction of H2A.Z by ANP32E [191]. Recently, SUMOylation of 

H2A.Z.2 was described to be involved in the DNA-damage mediated exchange of H2A.Z but without 

identifying the SUMOylation target amino acid [192]. Acetylation of the N-terminal tails of H2A.Z on 

residues K4, K7 and/or K11 variations of singly- di and tri-acetylated forms exist [115, 193]. While 

H2A.Z is acetylated by Tip60 in yeast and drosophila, a recent study proposes that this is also true in 

mammalian cells [194-196]. Recently, the bromodomain of Bromodomain PHD Finger Transcription 

Factor (BPTF), which has previously only been described as a H4K16ac reader, was shown to also 

recognize diacetylated H2A.Z [197]. Acetylated H2A.Z is generally correlated with an open chromatin 

conformation by destabilizing the nucleosome while non-acetylated H2A.Z associates more tightly 
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to DNA [104, 193, 198]. H2A.Zac is predominantly found at the TSS of actively transcribed genes and 

correlates with the level of gene expression [144, 156, 173, 199-201]. Moreover, H2A.Zac also 

localizes to enhancers and intergenic regions [200, 201]. In mESCs, acetylated H2A.Z is found at 

promoters of bivalent regions enriched in both H3K4me3 and H3K27me3 to facilitate cellular 

differentiation [156]. These bivalent sites may further comprise H2A.Zub marks [156]. The 

acetylation of H2A.Z plays an important role during differentiation and developmental processes as 

it is crucial for MyoD-activated myoblast differentiation and supports expression of Notch target 

genes [196, 202]. Moreover, H2A.Zac promotes oncogene activation in cancer and is associated with 

poor prognosis [200]. 

 

Figure 1.3: Summary of H2A.Z’s main genome-wide localization, functions and PTMs. A. Genome-wide H2A.Z 

localizes at active regulatory regions such as enhancers and promoters of actively transcribed genes. B. H2A.Z 

is involved in manifold chromatin-related processes including DNA damage response, neuronal development 

and disease, cancer, mESC pluripotency and self-renewal, differentiation and mitosis. C. H2A.Z can be post-

translationally modified contributing to H2A.Z’s versatile functions.  
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1.6 Functional genomic elements 

Gene expression is regulated by dynamic changes in the structure and composition of chromatin, 

leading e.g. to the enhanced accessibility of the DNA allowing in turn binding of transcription factors 

(TFs). Accordingly, genome-wide data from ChIP-seq of histone modifications and variants and RNA-

seq as well as DNA accessibility and TF binding profiles enabled the categorization of the genome 

into functional regulatory elements containing specific chromatin features. Genomic regulatory 

elements that are involved in the spatio-temporal regulation of gene expression as well as genomic 

organization are promoters, enhancers and insulators [203]. The promoter localizes around the TSS 

and is crucial for gene transcription by RNAPII. Specific DNA sequences within the promoter are 

referred to as core promoter motifs, of which the best known is the TATA box, and that among others 

interact with RNAPII as well as transcription factor II D (TFIID). Additionally, transcription is regulated 

spatio-temporally by distal non-coding cis-regulatory modules called enhancers. Enhancers are 

typically placed 3’ or 5’ relative to the promoter or within introns of the transcribed target gene 

irrelevant of the orientation or distance of the latter. A widely accepted model of enhancer function 

implies that enhancers, and transcription factors that bound to enhancers, are brought into contact 

with promoters via DNA looping in order to promote RNAPII performance mediated by the mediator 

core initiation complex [204]. More than 400.000 putative enhancers are predicted to allocate about 

10% of the genome of human cells [205]. With an estimated number of 25.000 genes, it is still under 

debate how to specify which gene is regulated by which enhancer. Moreover, enhancer elements 

may be transcribed into RNA (eRNA), which are bidirectional and non-polyadenylated RNAs that are 

likewise involved in regulating enhancer activity and gene expression [206]. Complicating enhancer 

function even further, they can be found in an active, poised or silenced state. While promoters 

function as transcriptional on/off-switch, enhancers modulate the level of transcription by 

strengthening or dimming transcriptional activity. In addition to promoters and enhancers, insulators 

are long rage cis-regulatory boundary elements that are involved in the regulation of chromatin 

architecture/conformation by promoting DNA looping and consequently aiding to cohere chromatin 

regions into domains [207]. Insulator function in mammals is primarily executed by CCCTC-binding 

factor (CTCF), which cooperates with cohesin to block gene transcription by preventing promoter-

enhancer interaction [208]. 

Due to the importance for this thesis, in the following mainly chromatin features corresponding to 

active chromatin states will be explicated. In addition to signature histone modifications and histone 

variants, accessibility of chromatin and DNase sensitivity are summarized in the following (Figure 

1.4).  
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Figure 1.4: Combinatorics of the most common active genomic features. The genome can be segmented 

according to chromatin features, marking functional regulatory elements. Among others, enhancers are 

predominantly classified by a high DNA accessibility and enrichment in H2A.Z, H3K27ac and H3K4me1. 

Likewise, promoters show a high DNA accessibility as well as H2A.Z enrichment, but also high levels of H3.3 

and H3K4me3. While enhancers are transcribed to eRNAs mostly in a bidirectional manner, within promoters, 

genes are transcribed from the TSS. Typically, gene bodies exhibit H3K79me3, H2BK120ub1 and H3K36me3 

marks. Shown are only chromatin features related to gene activity.  

 

Since enhancers and promoters exhibit an open chromatin conformation, both feature a high DNA 

accessibility as determined by DNase digest and Assay for Transposase-Accessible Chromatin using 

sequencing (ATAC) followed by high-throughput sequencing (DNAse-seq or ATAC-seq). Consistently, 

nucleosomes containing histone variants H2A.Z and H3.3 localize not only at the nucleosome 

depleted promoter region at the TSS of actively transcribed genes but also at active and poised 

enhancers [144-146, 156, 166]. In general, enhancers are marked by mono- or dimethylated H3K4 

while promoters feature di- or trimethylated H3K4 [209]. In combination with H3K27ac, those marks 

are considered to be chromatin signatures of an active state [210]. Active enhancers are also 

enriched in H3K56ac and H4K16ac [51, 211]. Additionally, enhancers are occupied by coactivator 

complexes p300 and CREB-binding protein (CBP) or H2A.Zac [144, 156, 157, 200, 209, 212, 213]. 

Further, TET proteins localize at enhancer regions that are hence enriched in 5hmC [214, 215]. 

Moreover, some enhancers are found in a poised state, in which both activating, such as H2A.Z or 

H3K4me1/2, as well as repressing marks, such as H3K9me3 and H3K27me3, are present at the same 

locus [144, 209, 216]. At promoter regions, H3K4me3 localizes at so called CpG islands and the level 

of H3K4me3 occupancy correlates with gene activity [146, 217]. Furthermore, promoters of active 

genes are enriched in acetylated H3 and H4 [218, 219]. Likewise, actively transcribed gene bodies 

feature high levels of H3ac and H4ac but also H3K79me3 and H2BK120u1 [220-223]. Importantly, 

H3K36me3 classifies gene body regions and increases in enrichment toward the 3′-end of actively 

transcribed genes [44, 224]. Repressive chromatin states are usually marked by low DNA accessibility 

and high levels of 5mC and H2AK119u1, H3K9me3 and H3K27me3 at promoters [225]. 
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Accordingly, enhancers and promoters serve as platforms for TFs and chromatin modifying proteins 

such as reader proteins and remodeling complexes that are tethered to these specific chromatin 

features thereby contributing to the complexity of spatio-temporal chromatin. 

 

1.7 PWWP2A 

H2A.Z localizes at regulatory genomic regions (see 1.6) and is crucial for various biological processes 

(see 1.5). How H2A.Z functions is largely unknown. Possibly, different proteins or protein complexes 

are recruited to and recognize H2A.Z within its specific chromatin environment and aid H2A.Z in 

fulfilling its functions. To identify specific interactors of H2A.Z-containing nucleosomes, our group 

previously solved the H2A.Z interactome via label-free quantitative mass-spectrometry [120, 121]. 

Among several other proteins that bound strongly to both H2A.Z.1 and H2A.Z.2 was PWWP2A, a 

protein that had already been detected in an earlier, non-quantitative H2A.Z-screen, but was not 

further characterized [226]. Owing to its eponymous PWWP domain, PWWP2A is part of the PWWP 

domain containing protein group, which was first found in Wolf-Hirschhorn syndrome candidate 1 

(WHSC1) [227]. PWWP2A is a multidomain protein of 755 amino acids that contains two proline-rich 

regions (P1, P2), an intrinsically disordered internal stretch (I), which does not exhibit any similarity 

to domains present in other proteins, a serine rich region (S) and a PWWP domain (Figure 1.5).  

 

 

Figure 1.5: Domain structure and in vitro binding features of the human PWWP2A protein. PWWP2A consists of 

two proline-rich stretches in the N-terminal part (P1, P2; purple), a N-terminal (IN; light blue) and a C-terminal 

internal region (IC; red), a serine-rich stretch (S; green) and a PWWP domain (orange). PWWP2A binds to 

chromatin in a multivalent manner in vitro: The N-terminal part of I (IN) binds nucleosomes via nucleosomal 

linker DNA, the C-terminal part of I (IC) binds H2A.Z-containing nucleosomes, the serine rich stretch (S) in 

combination with the PWWP domain binds H3K36me3-containing nucleosomes and the PWWP domain alone 

binds single- and double-stranded nucleic acids. 

 

In vitro experiments demonstrated that the internal region divides its labor and can thus be further 

subdivided into a nucleosomal linker DNA-binding N-terminal internal region and a C-terminal 

internal region which specifically interacts with H2A.Z-containing nucleosomes [121, 228]. PWWP 

domains of other proteins have been reported to bind to H3K36me3 via an aromatic cage as well as 
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DNA with low affinity [229-231]. Likewise, regarding PWWP2A, the S together with the PWWP 

domain mediate binding to H3K36me3-containing nucleosomes and the PWWP domain alone 

interacts weakly with single-as well as double stranded nucleic acids in vitro [228]. Fluorescence 

Recovery After Photobleaching (FRAP) experiments in HeLa Kyoto (HK) cells verified that PWWP2A 

uses at least three different regions - the IN, IC and PWWP region – to exert its strong chromatin 

binding ability. On a genome-wide basis, PWWP2A resides at the -1 and +1 nucleosome surrounding 

the TSS of highly transcribed genes (Figure 1.6) [121]. 

 

 

Figure 1.6: Schematic outline of PWWP2A nucleosome binding at the TSS of active genes. PWWP2A binds to 
chromatin in a multivalent manner: The N-terminal part of I (IN) binds nucleosomes, the C-terminal part of I 
(IC) binds H2A.Z and the PWWP domain binds naked DNA. Genome-wide, PWWP2A and H2A.Z co-occupy the 
-1 and the +1 nucleosome at the TSS of highly transcribed genes. 

 

Depletion of PWWP2A in HK cells results in the deregulation of gene expression and a defect in cell 

cycle progression [121], both of which are further explored in this thesis. In Xenopus laevis and 

tropicalis, morpholino-mediated knockdown of PWWP2A leads to severe cranio-facial defects 

assumedly due to deficient neural crest cell differentiation and migration [121]. 

 

1.8 Objective 

PWWP2A was previously characterized as a multivalent chromatin binding protein featuring strong 

interaction with H2A.Z-containing nucleosomes. Further, it was shown that loss of PWWP2A in 

human HeLa cells impairs gene expression programs and cell cycle progression. In this thesis, I set 

out to gain deeper insights into the mechanism(s) by which PWWP2A influences mitosis and 

transcriptional regulation. To investigate how PWWP2A might affect mitosis progression, I 

performed live cell imaging as well as immunofluorescence staining of fixed cells and metaphase 

spreads upon PWWP2A knockdown. Potential candidates deregulated upon PWWP2A depletion and 

implicated in cell cycle-related processes were validated via RT-qPCR and immunoblotting. As 

PWWP2A is a strong interactor of H2A.Z, I determined the effect of PWWP2A depletion on H2A.Z’s 

chromatin association and occupancy using FRAP and nChIP, respectively. Further, to obtain first 

clues on the mechanism by which PWWP2A influences gene regulation, PWWP2A’s interacting 
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proteins were identified. Interesting binding candidates were further characterized and assessed on 

their effect on histone deacetylation and transcriptional output after PWWP2A depletion.  
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2. MATERIAL AND METHODS 

2.1. Material 

2.1.1 Technical devices  

Description Supplier 

2100 Bioanalyzer Agilent 

CASY Cell Counter Innovatis 

Centrifuges 

Beckmann Coulter Optima Max-XP 
Eppendorf 5424R 
Heraeus Biofuge pico 
Roth Rotilabo-mini-centrifuge 
Thermo Shandon Cytospin 4 
Thermo Scientific Multifuge X3R 

Developer machine AGFA Curix 

Freezer (-20°C) Beko, Liebherr 

Freezer (-80°C) Thermo Scientific 

Fridge  Liebherr 

Gel documentation system BioRad ChemiDoc 

H2O purification system  Millipore  

Hood Binder 

Incubator 37°C tissue culture New Brunswick 

LightCycler 480 II Roche 

Mass spectrometer Thermo Scientific Easy-nLC 1000 or 1200 

Mastercycler nexus GX2 Eppendorf 

Microscopes 

Leica SP5 confocal scanning 
Leica SP5 II confocal scanning 
Leica SP8X WLL confocal scanning 
PerkinElmer UltraVIEW VoX spinning disc 

pH meter inoLab 

Pipetboy Neolab 

Pipettes Gilson 

Power supply unit BioRad 

Protein gel chamber Serva BlueVertical PRiME 

Qubit fluorometer Invitrogen 

Rotating wheel Neolab 

Scales Sartorius 

Shaker Roth 

Spectrophotometer Peqlab Nanodrop ND1000 

Thermomixer 
Eppendorf 5436 
Thermomixer C 

Trans Blot SD semi-dry transfer cell  BioRad 

Vortex mixerGenie2 Bachofer 
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2.1.2 Consumables  

Description Supplier 

1.5 ml low binding tubes (DNA and protein) Sarstedt 

1.5 ml and 2 ml reaction tubes Greiner, Sarstedt 

15 ml and 50 ml tubes Sarstedt 

µ-slide 8-well glass bottom dishes Ibidi 

Cell culture plates Sarstedt 

Coplin jar Sigma 

Coverslips Hecht-Assistant 

Cryovials Roth 

Filter paper Whatman Whatman 

Filter tips Biozym, Gilson 

Glassware  Schott 

LightCycler R 480 multiwell plate 384, white Sarstedt 

LightCycler R 480 Sealing foil  Sarstedt 

MaXtract High Density Column Qiagen 

Microscope slides SuperFrost Roth 

Multiply µStripPro with 8 x 0.2 ml tubes Sarstedt 

Pipette tips Biozym, Greiner, Sarstedt 

Protein gels precast Serva 

Protran nitrocellulose transfer membrane Whatman 

Qubit assay tubes Invitrogen 

X-ray films Fujifilm 

 

2.1.3 Chemicals  

Description Supplier 

Acetic acid Sigma 

Acetone Sigma 

Acetone nitrile Sigma 

AMPure XP beads Beckman Coulter 

BSA 98% Sigma 

Colcemid Sigma 

Complete Protease Inhibitor (PI) Cocktails Tablets  Roche 

DAPI Invitrogen 

Developer AGFA 

Digitonin Promega 

DMEM Sigma 

DMSO Sigma 

DNA oligonucleotides Eurofins MWG 

DTT Roth 

Dynabeads  M-280 sheep anti-rabbit, life technologies 
Protein G, life technologies 
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ECL Western Blotting detection reagents Amersham 

EDTA Sigma 

EGTA Sigma 

Ethanol, absolute Roth 

FCS dialyzed Sigma 

Fixer AGFA 

Formic acid Sigma 

G418-sulfate Sigma 

GFP-Trap®_M (magnetic) Chromotek 

Glycerol VWR 

Glycogen Roche 

HEPES Serva 

KCl VWR 

Methanol Sigma 

MgCl2 VWR 

NaCl VWR 

Na-deoxycholate Sigma 

Nail polish DM 

NP-40 Sigma 

Oligofectamine Transfection Reagent Invitrogen 

Opti-MEM Reduced-Serum Medium Invitrogen 

Penicillin / streptomycin (P/S) Sigma 

PMSF Sigma 

Polyethylenimine (PEI) Polysciences 

Proteinase K Life technologies 

RNase A Life technologies 

Roti-Phenol/Chloroform/Isoamylalcohol Roth 

SDS Serva 

siRNAs Eurofins MWG 

ß-mercaptoethanol Sigma 

Sulfuric acid Sigma 

Trichloroacetic acid (TCA) Sigma 

Tris Invitrogen 

Triton X-100 Sigma 

Trypsin/EDTA (cell culture) Sigma 

Tween20 Sigma 

Urea Sigma 

VECTASHIELD® mounting medium  Vector Laboratories 

X-treme Gene HP Transfection Reagent Roche 
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2.1.4 Kits, enzymes and markers 

Description Supplier 

DNA 1000 or HS Kit Agilent 

Fast SYBR Green Master Mix Applied Biosystems 

Micrococcal nuclease Sigma 

MicroPlex Library Preparation Kit Diagenode 

MinElute PCR Purification Kit Qiagen 

NEBNext 2x PCR Master Mix NEB 

Nextera DNA Library Preparation Kit Illumina 

peqGOLD Protein Marker IV, V Peqlab 

Phalloidin Alexa 594-conjugated Life technologies 

ProtoScript First Strand cDNA Synthesis Kit NEB 

Qubit dsDNA HS Assay Kit Invitrogen 

RNase-Free DNase Set Qiagen 

RNeasy Mini Kit Qiagen 

 

2.1.5 Antibodies 

2.1.5.1 Primary antibodies 

Table 2.1: Primary antibodies used for Western Blot (WB), Immunofluorescence (IF), Chromatin 

immunoprecipitation (ChIP) or immunoprecipitation (IP) 

Antibody (order number) Host species Application and dilution Supplier 

Aurora B (ab2254) rabbit 1:400 for IF Abcam 

CAPZA1 (6606-1-lg) mouse 1:2.000 for WB Proteintech 

CENP-E (39620) mouse 1:1.000 for IF Active motif 

F-actin (ABIN731498) rabbit 1:1.000 for WB Antibodies-online GmbH 

FLAG M2 (F1804) mouse 
1:80.000 for WB 

3 µg per IP 
Sigma 

GFP (ab290) rabbit 15 µg for IP Abcam 

H2A.Z (ab4174) rabbit 1:3.000 for WB Abcam 

H2A.Zac (C15410202) rabbit 
1:2.000 for WB  

2 µg per ChIP 

Diagenode 

H2AT120ph (61196) rabbit 1:400 for IF Active motif 

H3 (61475) mouse 1:5.000 for WB Active motif 

H3 (ab1791) rabbit 1:30.000 for WB Abcam 

H3K27ac (ab4729) rabbit 
2 µg per ChIP 

1:2.500 for WB 

Abcam 

H3S10ph (39636) mouse 1:1.000 for IF Active motif 

HA-HRP (2999S) mouse 1:40.000 for WB Cell Signaling Technology 

HDAC1 (5356S) mouse 1:20.000 for WB Cell Signaling Technology 

IgG (I8765) mouse 3 µg per IP Sigma 

INCENP (39260) mouse 1:1.000 for IF Active motif 
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MBD3 (ab157464) rabbit 1:5.000 for WB Abcam 

MTA1 (ab50209) rabbit 3 µg per IP Abcam 

MTA1 (ab71153) rabbit 1:1.000 for WB Abcam 

PWWP2A (NBP2-13833) rabbit 
1:1.000 for WB 

1:100 for IF 

Novus  

α-Tubulin (39527) mouse 1:1.000 for IF Active motif 

 

2.1.5.2 Secondary antibodies 

Table 2.2: Secondary antibodies used for Western Blot (WB) or Immunofluorescence (IF) 

Antibody (order number) Application and dilution Supplier 

α-mouse HRP (NA931) 1:10.000 for WB VWR 

α-rabbit HRP (NA934) 1:10.000 for WB VWR 

α-mouse IRDye 680RD (926-68070) 1:10.000 for WB LICOR Biosciences 

α-rabbit IRDye 800CW (926-32211) 1:10.000 for WB LICOR Biosciences 

α-mouse Alexa 488 (715-545-151) 1:400 for IF Jackson Laboratories 

α-rabbit Alexa 488 (711-545-152) 1:400 for IF Dianova 

α-rabbit Alexa 555 (A31572) 1:1.000 for IF Thermo Fisher Scientific 

α-mouse Alexa 594 (715-585-151) 1:400 for IF Dianova 

α-rabbit Alexa 594 (711-585-152) 1:400 for IF Dianova 

 

2.1.6 Cell lines 

Name Origin Source/Supplier 

HeLa Kyoto (HK) Cervical cancer, human 
Leonhardt laboratory, Biocenter  
LMU Munich 

HK GFP #4 Cervical cancer, human [118] 

HK GFP-H2A #4 Cervical cancer, human [118] 

HK GFP-H2A.Z.1 #5 Cervical cancer, human [118] 

HK GFP-PWWP2A #5.2 Cervical cancer, human [121] 

EXPI293F™ (A14527) 
293 embryonic kidney, 
human 

Thermo Fisher Scientific, Mackay laboratory, 
University of Sydney 

mESC Mbd3-Avi-3×FLAG  E13tg2a embryonic stem 
cells, mouse 

[232], Hendrich laboratory, Wellcome Trust-MRC, 
Cambridge 

mESC Mta1-Avi-3×FLAG 
E13tg2a embryonic stem 
cells, mouse 

[233], Hendrich laboratory, Wellcome Trust-MRC, 
Cambridge 

mESC Mta2-GFP 
E13tg2a embryonic stem 
cells, mouse 

[233], Hendrich laboratory, Wellcome Trust-MRC, 
Cambridge 

mESC Mta3-Avi-3×FLAG 
E13tg2a embryonic stem 
cells, mouse 

[233], Hendrich laboratory, C Wellcome Trust-
MRC, Cambridge 
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2.1.7 Oligonucleotides 

Table 2.3: Oligonucleotides used for nChIP quantitative PCR in 5’ to 3’ 

Name Sequence F Sequence R 

B3GALNT2 remote TGTCTCCCTGAAACTCATCTCT` GCACTAATCCTGCCTTCCTG 

CCDC71 TSS GTGGTGCATTGACATCTGGG CTGGGACTGAAGTGGGCATT 

CCL5 remote GGATCCCAAGAGAAGCCTGA CAGGGGCAAAGAAGGAGAGA 

CCL5 TSS ATTTCTCTGCTGACATCCTTAGT TCCTAACTGCCACTCCTTGT 

FST close TGCCATCCTTAGACCTCAGA AGCACTGCCAGGACTACATT 

NUF- GCATCTAACAAAACCCGGCAC GTCCGAGTTGAAGAGCAAAACC 

NUF+ CACTGTAGGTGAGCGCGAGA CGCTGAGCACGACGAAAACA 

PARS2- AGACGCCTTTATTACAGTGCCC TCTACGTGGTAGCAGCTCAAAA 

PARS2+ GGGATGCAAGTGGGAAAAC ATTGCGGTAGGTGAACGTG 

RPL11 ACAGCTTTGGGTGATGCAGT TTGTTGGACCAAAACACGGC 

ZNF19 remote CACACAAAACATTTCTCCATCAGG AGGTTTTCTTGCCTTGGAACA 

 

Table 2.4: Oligonucleotides used for quantitative PCR in 5’ to 3’ 

Name Sequence F Sequence R 

ANTXR1 CACTCCAGGTCAGCATGAAC CCAGAACCACCAGAGGAGAG 

B3GALNT2 TGGCTGCCATAGGACCTAA TCCACAGTTCCGTCAGTTCC 

CAPZA1 AGTTCACCATCACACCACCT CTTGGCAGTTTGGGCTTCAT 

CCDC71 AAAGCTGCTGAAGTTCCGTG TGGAGCCGTATTACAGGTGA 

CCL5 CTCGCTGTCATCCTCATTGC TACTCCTTGATGTGGGCACG 

FST TGCCTGCCACCTGAGAAAG TCTCCCAACCTTGAAATCCCA 

HPRT AAGGGTGTTTATTCCTCATGGA AATCCAGCAGGTCAGCAAAG 

MTA1 GGCGGATGAACTGGATCGA CAGCACGCTTGGTTTCCG 

PREX1 CTGAGCGTGTCCCTGGAG GTCCTTGACTCGCAGGTTTT 

TPGS2 GGTTCCTGGACAGAGCGTTA GCAGGTTTGTGTTGTAGGTGA 

VASP AGTCGTCTTCTTCGGTGACC GAGAACCCCGCTTCCTCAG 

ZNF19 CCCAGCAGAGAGGACCAAAA GCTGACCATGTGACATCATCC 
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Table 2.5: siRNA oligonucleotides used for RNAi in 5’ to 3’ 

Name Sequence (sense) 

ctrlii UAAGGCUAUGAAGAGAUACTT 

Luciferase CUUACGCUGAGUACUUCGATT 

MTA1#1 GGGAAAUAGAAGAGGAAAUTT 

MTA1#2 GAAAUAUGGUGGCUUGAAATT 

PW#1 GGACAGAAGUCAAGUGUGAUUTT 

PW#2 GCUAUUAAACUACGACCCAUUTT 

 

2.1.8 Plasmids 

Plasmid Description Source Resistance 

Cherry-PWWP2A 

pIRESneo-Cherry-PWWP2A; 

cloned via Gateway from 

pIRESneo-EGFP-PWWP2A 

plasmid 

Andrea Schmid, BMC Amp; Neo 

FLAG-PWWP2A 
pcDNA3.1 expression vector 

backbone 

Mackay laboratory, 

University of Sydney 

Amp; Neo 

GFP-

PWWP2AΔIC 

pIRESneo-eGFP-

PWWP2A_ΔIC; cloned via 

Gibson from pIRESneo-EGFP-

PWWP2A plasmid 

Ramona Spitzer and 

Martina Peritore, BMC 

Amp; Neo 

HA-MTA1 
pcDNA3.1 expression vector 

backbone 

Mackay laboratory, 

University of Sydney 

Amp; Neo 

HA-MTA2 
pcDNA3.1 expression vector 

backbone 

Mackay laboratory, 

University of Sydney 

Amp; Neo 

HA-RBBP7 
pcDNA3.1 expression vector 

backbone 

Mackay laboratory, 

University of Sydney 

Amp; Neo 

 

2.1.9 Buffers and solutions 

Buffer Components 

Laemmli buffer (5x) 

314 mM Tris 
50% Glycerol (v/v) 
5% SDS (v/v) 
5% beta-Mercaptoethanol (v/v) 
0.01% Bromphenol blue (w/v) 

PBS (10x) 

137 mM NaCl 
2.7 mM KCl 
10 mM Na2HPO4 
2 mM KH2PO4 
adjust to pH 7.4 with HCl 

TE 10 mM Tris 
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1 mM EDTA 

Transfer buffer (Western Blot) 

48 mM Tris-HCl 
39 mM Glycine 
0.0375% SDS (w/v) 
20% Methanol (v/v) 
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2.2 Cell biological methods 

2.2.1 Cultivation and manipulation of mammalian cells 

2.2.1.1 Cultivation, passaging, freezing and thawing of cells 

HeLa Kyoto (HK) wild type cells were grown in Dulbecco’s modified Eagle medium (DMEM) 

supplemented with 10% fetal calf serum (FCS) and 1% penicillin/streptomycin at 37°C and 5% CO2 

in a humidified incubator. In case of cultivating cell lines stably expressing GFP-tagged proteins, 

medium was additionally supplemented with 400 – 600 μg/ml G418-sulfate. When cells reached 80-

90 % confluency, cells were usually passaged every second day in a 1:10 ratio into 10 cm dishes. After 

removal of old medium, cells were washed with 10 ml PBS and cells were dissociated by the addition 

of 1 ml trypsin/EDTA for 5 min at 37°C. 9 ml of fresh medium was added to stop the trypsin reaction, 

cells were resuspended and either partly discarded and replaced with fresh medium or seeded into 

new dishes. If cells were seeded into new dishes, the cell number was determined using the CASY 

cell counter. To store cells, trypsinized cells from a 10 cm dish were spun down for 5 min at 200 x g, 

resuspended 1 ml normal medium + 10% DMSO, transferred into cryo vials and kept at -80°C or in 

liquid nitrogen for long term storage. To thaw cells, cryo vials were shortly incubated in a water bath 

(37°C), the cell suspension was resuspended in 9 ml medium and spun down for 5 min at 200 x g to 

remove DMSO and plated into a 10 cm dish. 

EXPI293F™ suspension cells were cultured by our collaborators from the Mackay laboratory 

(University of Sydney) in Expi293™ Expression Medium. 

Epitope tagged mouse embryonic stem cells (mESCs) were grown by our collaborator Dr. Thomas 

Burgold (Wellcome Trust-MRC, Cambridge) on 0.1% gelatin in 2i/LIF conditions. 

 

2.2.1.2 Transfection of plasmid DNA 

24h prior to transfection, 4 x 104 HK cells were seeded into in µ-slide 8-well glass bottom dishes 

containing 150 µl of medium when cells were used for Fluorescence Recovery After Photobleaching 

(FRAP) analyses while 2 x 107 HK cells were seeded into 150 cm plates when cells were subjected to 

Fluorescence-Activated Cell Sorting (FACS) experiments. For the transfection of cells growing in µ-

slide 8-well glass bottom dishes, 100 ng of plasmid DNA was diluted in 10 μl of Opti-MEM and 0.3 μl 

X-tremeGENE transfection reagent was added and incubated for 15-30 min at room temperature 

(RT). For the transfection of cells growing in 150 cm plates, 20 µg of plasmid DNA was diluted in 1.5 

ml of Opti-MEM and 60 µl of X-tremeGENE transfection reagent was added and likewise incubated. 
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Afterwards, the transfection suspension was added dropwise onto the cells. After 48 h cells were 

subjected to FRAP or FACS. 

Expi293F™ cells were transfected by our collaborators from the Mackay laboratory (University of 

Sydney) using polyethylenimine (PEI).  

 

2.2.1.3 Transfection of small interfering RNAs (siRNAs) 

One day prior to transfection 2 x 105 HK cells were seeded into a 6-well containing 2 ml of medium. 

4 μl Oligofectamine transfection reagent was added to 11 μl Opti-MEM and incubated for 5 min at 

RT. 10 μl of small interfering RNA (siRNA, for sequences see 2.1.7, table 2.5; 100 μmol stock solution 

diluted 1:5 in sterile water) dilution was mixed with 175 μl Opti-MEM. The oligofectamine mix was 

added to the siRNA mix and incubated for 20 min at RT. In the meantime, cells were washed twice 

with 2 ml of PBS, 800 μl DMEM without FCS or antibiotics was added and the transfection mix was 

added drop wise. After incubating for 4 h at 37°C, 500 μl DMEM containing 30% FCS was added. 

Usually, cells were harvested and processed 48 h after transfection. If cells were needed for 

immunofluorescence (IF), cells were transferred onto coverslips 24 h after transfection and fixed 

after 48 h. If cells were used for FRAP, one tenth of cells was transferred into µ-slide 8-well glass 

bottom dishes 24 h after transfection. 

 

2.2.2 Immunofluorescence Microscopy 

2.2.2.1 IF staining 

48 h after transfection of siRNAs (see 2.2.1.3), coverslips with adherent HK cells were washed three 

times with 2 ml of PBS and cells were fixed for 10 min with 4% formaldehyde in PBS. The fixation 

solution was exchanged stepwise with PBST (PBS + 0.02% Tween 20). After this step, coverslips were 

stored at 4°C for several days or directly subjected to immunofluorescence staining. To permeabilize 

cells, coverslips were incubated for 15 min in 2 ml of PBS + 0.5% Triton X. After two washing steps 

with 2 ml of PBST, coverslips were incubated in blocking solution (2 % BSA in PBST) for 1 h. The 

coverslips were then incubated for 1 h with 50 µl primary antibody solution (antibody diluted in 

blocking solution) on parafilm in a dark humified chamber. Next, coverslips were washed four times 

with 2 ml of PBST and incubated for 45 min with 50 µl secondary antibody solution on parafilm in a 

dark humified chamber. Coverslips were washed two times with 2 ml of PBST and DNA was 

counterstained with 200 ng/ml DAPI in 2 ml of PBST for 6 min in the dark. Finally, coverslips were 
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washed two times with 2 ml of PBS, briefly rinsed with ddH2O, mounted on slide with a few drops of 

VECTASHIELD® and carefully sealed with nail polish. 

 

2.2.2.2 Metaphase Spreads Preparation and Staining 

Metaphase spreads were prepared as previously described [234] with a few adjustments. Usually, 

confluent cells growing in 6-well plates (approximately 8 x 106 cells) were used. To arrest cells in 

metaphase, cells were incubated with 0.1 µg/ml colcemid for 3 h prior to harvest. Cells were gently 

washed off with medium, collected in a 50 ml falcon, shortly spun down and placed on ice. 1 ml of 

ice-cold 75 mM KCl was added dropwise and mixed with the pellet. The suspension was incubated 

for 20 min at 37 °C and then directly put back on ice. 0.1 % Tween20 was added to the suspension 

and 400 µl of cell suspension were spread at 1600 rpm for 8 min at medium acceleration using a 

Shandon cytospin 4. Slides were transferred into a Coplin Jar filled with 35 ml of KCM and incubated 

for 20 min followed by blocking in 35 ml of blocking solution (KCM + 2% BSA) for 1 h. 50 µl of primary 

antibody solution (antibody diluted in blocking solution) was pipetted directly onto the slide, covered 

with a piece of parafilm and incubated in a dark humified chamber for 1 h. Slides were washed three 

times in 35 ml of KCM and secondary antibody solution was likewise incubated. After washing three 

times in 35 ml of KCM, slides were fixed with 35 ml of 4% formaldehyde in KCM for 10 min. Slides 

were washed two times in 35 ml of KCM and DNA was counterstained with 500 ng/ml DAPI diluted 

in 35 ml KCM followed by one short washing with 35 ml of KCM. A coverslip was mounted onto the 

slide using a few drops of VECTASHIELD® and sealed with nail polish. 

KCM: 120 mM KCl 

20 mM NaCl 

10 mM Tris pH 8.0 

0.5 mM EDTA 

 

2.2.3 Confocal Microscopy  

Single optical sections or z-stacks of optical sections were collected using SP5, SP5 II or a SP8 (Leica) 

confocal microscopes equipped with Plan Apo 63×/1.4 NA oil or Plan Apo CS 63x/1.3 NA glycerol 

immersion objectives and lasers with excitation lines 405, 488, 543 and 594 nm. Laser intensities 

were adjusted using the acousto-optical tunable filters (AOTFs). Photomultiplier tubes (PMTs) were 

used in sequential mode and a smart gain of 600 – 800V. Images were processed using Fiji/ImageJ 

or Adobe Photoshop CS5. 
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2.2.4 Fluorescence Recovery After Photobleaching (FRAP) and live cell imaging 

After transfection and seeding of cells into µ-slide 8-well glass bottom dishes, live cell imaging and 

FRAP experiments were essentially performed as described before [235] using an UltraVIEW VoX 

spinning disc microscope with integrated FRAP PhotoKinesis accessory (PerkinElmer) assembled to 

an Axio Observer D1 inverted stand (Zeiss) and using a 63x or 100×/1.4 NA Plan-Apochromat oil 

immersion objective. The microscope was equipped with a heated environmental chamber set to 

37°C and 5% CO2. Fluorophores were excited with 488 nm solid-state diode laser line. Microscopy of 

living cells and image analysis were supervised by Dr. Yolanda Markaki (LMU Biocenter, Munich). 

FRAP analyses were performed by our collaborator Susanne Leidescher (LMU Biocenter, Munich). 

Confocal image series were typically recorded with 14-bit image depth, a frame size of 512 × 512 

pixels, a pixel size of 68.5 nm and with time intervals of 154 ms. For photobleaching experiments, 

the bleach regions, typically with a length of 8–10 µm, were chosen to cover the anterior half of the 

oval-shaped nucleus. Photobleaching was performed using two iterations with the acousto-optical 

tunable filter (AOTF) of the 488 nm laser line set to 100% transmission. Typically, 20 prebleach frames 

were recorded at maximum speed (197 ms). Postbleach frames were recorded as follows: 150 

images at maximum speed and 180 images at a rate of 1 frame per second for each series. Data 

correction, normalization and quantitative evaluations were performed by automated processing 

with ImageJ using a set of self-developed macros followed by calculations in Excel. In long-term 

imaging experiments, a z-stack of 10.8–14.4 µm with a step size of 1.2 µm was recorded every 20 

min for up to 24 h. To avoid photodamage of the cells, the AOTF of the laser was set to low 

transmission values of 6–10%. Image analysis was performed by automated processing with Fiji using 

a set of macros developed by Dr. Katrin Schneider (LMU Biocenter, Munich). 

 

2.2.5 Fluorescence-Activated Cell Sorting (FACS) 

Fluorescence-Activated Cell Sorting was carried out together with Dr. Martha Smets (LMU Biocenter, 

Munich). Two days after transfection of HK cells stably expressing GFP-H2A.Z.1 with Ch-PWWP2A, 

cells were sorted using a FACS Aria II according to their level of Ch-expression. Accordingly, 4x106 

cells with low or high expression of Ch-PWWP2A were sorted in separate tubes and subsequently 

used for nChIP experiments (see 2.3.5). 
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2.3 Biochemical methods 

2.3.1 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

Proteins were separated usually using precast 4-20% gradients gels from Serva via SDS-

polyacrylamide gel electrophoresis (SDS-PAGE). To determine protein molecular weights, peqGOLD 

protein marker IV and V were additionally loaded onto gels. Prior to loading, samples were boiled in 

Laemmli buffer. Gels were run at 150 – 180 V until the dye front had run out of the gel. Typically, 

gels were immediately used for immunoblotting. 

 

2.3.2 Immunoblotting 

Polyacrylamide gels were blotted onto a nitrocellulose membrane using a semidry blotting system. 

The polyacrylamide gel, a nitrocellulose membrane and four Whatman paper were shortly soaked in 

transfer buffer and assembled as a blotting sandwich with two Whatman paper, the membrane, the 

gel and Whatman paper. Proteins were transferred from the gel to the membrane for one hour at 

250 mA or 300 mA in case more than one sandwich was blotted. The membrane was blocked for one 

hour in 10 ml of blocking buffer (5% milk powder PBST (PBS + 0.1% Tween20)) and subsequently 

incubated with the primary antibody diluted in blocking buffer ON at 4°C. The membrane was 

washed three times with 10 ml PBST and incubated with the secondary antibody diluted in blocking 

buffer for one hour at RT. After three washing steps with 10 ml of PBST, membranes were imaged 

and developed using the Chemidoc or X-ray films and a developing machine if HRP-conjugated 

secondary antibodies and ECL detection reagent were used or the LICOR system if fluorescent 

secondary antibodies were applied.  

 

2.3.3 Preparation of cell lysates 

To prepare whole cell lysates, 2 x 106 freshly harvested HK cells were resuspended in 200 µl 5 x 

Laemmli and boiled for 10 min at 95°C. 

 

2.3.4 Preparation of mononucleosomes 

The isolation of mononucleosomes was initially described by [236] and can be scaled down according 

to the cell number. Typically, 4 x 107 HK cells were harvested and washed once with PBS. Cells were 

resuspended and permeabilized with 5 ml PBS + 0.3% Triton X-100 + protease inhibitors (PI) for 10 
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min at 4°C under rotation. Nuclei were pelleted for 5 min at 3.000 x g and washed once with 5 ml 

PBS + PI. Next, nuclei were resuspended in 500 μl EX100 buffer and transferred to a low-binding 

tube. CaCl2 concentration was adjusted to 2 mM and 1.5 U micrococcal nuclease (MNase) was added 

and incubated for 20 min at 26°C. Samples were placed on ice and the addition of EGTA to a final 

concentration of 10 mM terminated the digestion. Subsequently, samples were centrifuged at 

14.000 x g for 30 min at 4°C. The supernatant (S1) almost exclusively contains the mononucleosome 

fraction that was used for further experiments. 

EX100: 10 mM HEPES pH 7.6 

100 mM NaCl 

1.5 mM MgCl2 

0.5 mM EGTA 

10% Glycerol 

10 mM β-Glycerol phosphate 

add prior to use:  

1 mM DTT 

1x PI 

 

2.3.5 Native chromatin immunoprecipitation (nChIP) 

S1 mononucleosomes (see 2.3.4) isolated from 5 x 106 HK cells or stably expressing GFP-tagged 

proteins and/or subjected to PWWP2A or control siRNAs were used per nChIP. After washing with 

PBS, cells were resuspended and permeabilized with 500 µl PBS + 0.3% Triton X-100 + PI for 10 min 

at 4°C under rotation. Nuclei were pelleted for 5 min at 3.000 x g and washed once with 500 µl PBS 

+ PI. Next, nuclei were resuspended in 50 μl EX100 buffer and transferred to a low-binding tube. 

CaCl2 concentration was adjusted to 2 mM and 1.5 U micrococcal MNase was added and incubated 

for 20 min at 26°C. Samples were placed on ice and the addition of EGTA to a final concentration of 

10 mM terminated the digestion. Subsequently, samples were centrifuged at 14.000 x g for 30 min 

at 4°C and the supernatant was transferred to a fresh tube. The supernatant (S1) almost exclusively 

contains the mononucleosome fraction that was used for further experimental steps. 5 µl from the 

S1 suspension was kept as an input and 455 µl EX100 was added to the remaining 45 µl of S1. 

Depending on the nChIP, either 15 µl magnetic Dynabeads Protein G were precoupled for 2.5 h with 

2 µg anti-H3K27ac or anti-H2A.Zac antibodies or, for GFP-tagged proteins, 15 µl GFP-Trap® beads 

were equilibrated and incubated with mononucleosomes ON at 4°C under rotation. Beads-only IP 

served as negative control. Beads were washed twice with 1 ml of WB1, twice with 1 ml of WB2, 

once with 1 ml of TE + 0.2% Triton-X and once with 1 ml of TE buffers. Beads were then incubated in 

100 µl TE, 3 µl 10% SDS and 5 µl of 20 mg/ml proteinase K for 1 h at 65 °C. After magnetic separation, 
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the supernatant was transferred to a fresh tube. Next, beads were resuspended in 100 µl TE + 0.5 M 

NaCl, magnetically separated and the supernatant was added to the first supernatant. DNA was 

isolated using a standard Phenol/chlorophorm/isoamylalcohol extraction and ethanol precipitation 

protocol. Subsequently, the DNA pellet after IP and the input DNA pellet were resuspended in 12 µl 

or in 32 µl 10 mM Tris-HCl (pH 7.5), respectively. DNA was either used for nChIP-qPCR (see 2.4.5) or 

subjected to library preparation if nChIP-seq (see 2.4.4) was applied.  

WB1:  10 mM Tris-HCl, pH 7.5 

1 mM EDTA 

0.1% SDS 

0.1% sodiumdeoxycholate 

1% TritonX-100 

 

WB2: 10 mM Tris-HCl, pH 7.5 

150 mM NaCl 

1 mM EDTA 

0.1% SDS 

0.1% sodiumdeoxycholate 

1% Triton X-100 

 

2.3.6 Native chromatin immunoprecipitation followed by quantitative label-free mass spectrometry 

(nChIP-MS) 

S1 mononucleosomes (see 2.3.4) isolated from 4 x 107 HK cells stably expressing GFP or GFP-

PWWP2A were used for nChIP-MS. nChIP were essentially performed as described before [120] with 

a few adjustments. 40 µl of GFP-Trap® beads were added to the pooled S1 mononucleosome 

fractions from 8 x 107 cells and incubated for 2.5 h at 4°C. IPs were carried out in triplicates and 

washed using the wash buffers WB1 and WB2 but without the addition of detergents. Samples were 

subsequently prepared for and analysed by label-free quantitative mass spectrometry by our 

collaborator Dr. Eva Keilhauer (MPI of Biochemistry, Martinsried) as described previously [120]. 

Briefly, samples were prepared for on-beads tryptic digestion by incubating the beads with buffer E1 

(50 mM Tris pH 7.5, 2 M Urea, 1 mM EDTA) for 20 min at 25 °C. The supernatant was transferred to 

a fresh low-binding tube and beads were resuspended in buffer E2 (50 mM Tris pH 7.5, 2 M Urea, 5 

mM CAA). Subsequently, trypsin was added to a final concentration of 5 μg/ml and incubated for 1 

h at 25°C while shaking at 500 rpm. The supernatants were pooled and incubated ON at RT. StageTips 

were loaded with tryptic peptides and subjected to LC-MS/MS analysis. Peptides were analyzed by 

reversed-phase liquid chromatography on an EASY-nLC 1000 or 1200 system coupled to a Q Exactive 

plus or HF mass spectrometer.  
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2.3.7 Immunoprecipitation of MTA paralogues and MBD3 or recombinant PWWP2A 

Nuclear extracts from mESCs followed by immunoprecipitation of MTA1 and MBD3 was performed 

by our collaborator Dr. Thomas Burgold (Wellcome Trust-MRC, Cambridge) according to a modified 

version of previously described procedures [232, 237].  

Immunoprecipitation of recombinant FLAG-PWWP2A were performed by our collaborators from the 

Mackay laboratory (University of Sydney) using lysates from EXPI293F™ and standard FLAG affinity 

pull downs. 

 

2.3.8 Acid extraction of histones 

After harvest of 1 – 2 x 106 cells, cell pellets were washed with 1 ml PBS and resuspended in 1 ml ice-

cold hypotonic lysis buffer. Subsequently, samples were incubated for 30 min under rotation at 4 °C 

to promote hypotonic swelling of cells and lysis by mechanical shearing. Intact nuclei were pelleted 

at 10.000 x g for 10 min at 4 °C, resuspended in 400 µl 0.4 N H2SO4 and incubated under rotation for 

at least 30 min at 4 °C. To remove nuclear debris, samples were spun down at 16.000 x g for 10 min 

at 4 °C and the supernatants were transferred into a fresh tube. To precipitate the histones, 132 µl 

100% TCA was added dropwise, the tube was inverted several times and incubated on ice ON. 

Extracted histones were pelleted at 16.000 x g for 10 min at 4 °C, the supernatant was carefully 

removed, and the cloudy histone pellet was washed twice with 500 µl ice-cold acetone without 

disturbing the histone pellet. Then, the histone pellet was air-dried for 20 min at RT. The histone 

pellet, which appears as a smear-like pellet on the tube wall, was dissolved in 50 µl of sterile water 

and transferred into a fresh 1.5-ml tube. Histones were stored at -20 °C. To run on a SDS-PAGE gel, 

2 µl of 5x Laemmli were added to 5 µl of extracted histones and boiled for 10 min at 95°C. 

 
 
Hypotonic lysis buffer: 10 mM Tris pH 8.0 

1 mM KCl 
1.5 mM MgCl2 
add prior to use: 
1 mM DTT 
0.4 mM PMSF 
1x PI 
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2.4 Molecular biological methods 

2.4.1 RNA extraction  

Total RNA from 2 x 106 cells HK cells was isolated using the RNeasy Mini Kit according the 

manufacturer’s instructions. The quality of the RNA was determined using a Nanodrop ND1000 

spectrophotometer. RNA was stored at -80°C.  

 

2.4.2 cDNA synthesis 

1 µg of total RNA was reverse transcribed utilizing the NEB ProtoScript M-MuLV First Strand cDNA 

Synthesis Kit according the manufacturer’s instructions. A sample without reverse transcriptase 

served as control. Typically, a GAPDH-specific PCR was run to verify faithful cDNA preparation. 

 

2.4.3 Quantification of mRNA levels with quantitative PCR (qPCR) 

To investigate changes in gene expression upon PWWP2A knockdown, qPCR was applied on cDNA. 

qPCR was performed on a LightCycler® 480 Instrument II using Fast SYBR Green Master Mix. Primers 

were designed using the Primer3 tool and were BLASTed to ensure specificity (see 2.1.7, table 2.4). 

PCR efficiency and primer pair specificity were examined using a standard curve of serially diluted 

cDNA and melting curve, respectively. Samples were analyzed in technical triplicates with a total 

reaction volume of 15 μl. 10 µl of a premix containing 1.5 µl of a forward and reverse primer mix 

(128 µl ddH2O + 4 µl of each primer), 7.5 µl Fast SYBR Green Master Mix and 1 µl of ddH2O were first 

added to a well of the 384-well plate. Then a premix of 0.2 µl cDNA plus 4.8 µl ddH2O was added. 

After sealing with self-adhesive foil, the plate was shortly centrifuged, loaded into the LightCycler® 

and the following program was run: 

 

Table 2.6: PCR program  

 

 

 

Resulting CT (cycle threshold) values were normalized to the transcript level of HPRT1 (hypoxanthine 

phosphoribosyltransferase 1) and further analyzed based on the 2-ΔΔCT method. To incorporate the 

step temperature duration 

preincubation 95°C 20 sec 

amplification 
95°C 3 sec 

60°C 20 sec 

melting curve 5°C/min 

repeat 45 x 
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standard error of the mean (SEM) of the ΔΔCT values into the fold-difference, the range of the error 

bars were calculated as 2–ΔΔCt+SEM and 2–ΔΔCt-SEM. 

 

2.4.4 Preparation of libraries for nChIP-seq 

Prior to nChIP-seq library preparation, quality of nChIP samples was assured. Therefore, DNA 

concentrations were determined using the Qubit dsDNA HS Kit and DNA size was monitored using 

the Bioanalyzer and a DNA 1000 Kit. Illumina Sequencing libraries were established with the 

MicroPlex Library Preparation Kit following the manufacturer’s instructions. The number of 

amplification cycles was scaled according to the amount of input material and amplification was 

validated by determination of DNA concentrations using the Qubit dsDNA HS Kit. Quality of purified 

libraries was assessed using the Bioanalyzer and a DNA 1000 Kit. Sequencing was performed on the 

Illumina 1500 platform using the TruSeq Rapid SR Cluster Kit-HS (Illumina) and single read 50 

nucleotide sequencing on a HiSeq Rapid SR Flow Cell (Illumina) by Dr. Stefan Krebs (Laboratory of 

Functional Genome Analysis, LAFUGA, Munich) or Dr. Andrea Nist (Genomics Core Facility, Philipps-

University Marburg). Bioinformatic data analyses were performed by our collaborators Dr. Tobias 

Straub (Bioinformatics Core Unit, BMC, Munich) and Dr. Marek Bartkuhn (Institute for Genetics, JLU, 

Giessen). 

 

2.4.5 Validation of nChIP-sequencing results with quantitative PCR (nChIP-qPCR) 

To investigate GFP-H2A.Z.1 occupancy after PWWP2A depletion or overexpression as well as to 

validate H3K27ac and H2A.Zac nChIP-seq results, nChIP-qPCR was conducted. qPCR was performed 

as described in 2.4.3. with the following exceptions. Primer pairs were described and established 

before [121] or designed using the Integrated Genome Browser software (BioViz) and Primer3 tool 

and were BLASTed to ensure specificity (see 2.1.7, table 2.3). Instead of 0.2 µl cDNA, 0.15 µl DNA 

was used. Data were analyzed according to the percent input method. 

 

2.4.6 Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) 

ATAC-seq was performed using 50.000 HK cells subjected to PWWP2A or control siRNAs as described 

before [238]. In brief, cells were harvested and washed once with 50 µl PBS + PI. Centrifugation steps 

were carried out at 500 x g for 5 min at 4°C. Cell pellets were resuspended in 50 µl transposase 

mixture of the Nextera DNA Library Preparation Kit and incubated at 37°C for 30 min under agitation. 
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Transposed DNA was purified using a MinElute PCR Purification Kit and eluted in 10 µl elution buffer 

(10 mM Tris-HCl, pH 8). Transposed DNA fragments were amplified according to the following 

conditions: 

Table 2.7: Pipetting scheme  

 

 

 

 

Table 2.8: PCR program  

 

 

 

 

After 4 cycles of PCR amplification, a qPCR side reaction was set up to monitor the PCR amplification 

prior to saturation via the LightCycler®: 

Table 2.9: Pipetting scheme  

 

 

 

Table 2.10: PCR program  

 

 

 

 

The additional number of cycles needed for the remaining 45 μl PCR reaction was determined by 

calculating the number of cycles that corresponds to ¼ of the maximal reached fluorescence. The 

component µl for one reaction 

Transposed DNA  10 µl 

forward primer [25 µM] 2.5 µl 

reverse primer [25 µM] 2.5 µl 

NEBNext 2 x PCR Master Mix  10 µl 

Nuclease-free H2O 10 µl 

temperature duration 

72°C 5 min 

98°C 30 sec 

98°C 10 sec 

63°C 30 sec 

72°C 1 min 

4°C - 

component µl for one reaction 

PCR-amplified DNA 5 µl 

forward primer [25 µM] 0.25 µl 

reverse primer [25 µM] 0.25 µl 

SensiMix SYBR 2x PCR Master Mix 7.5 µl 

Nuclease-free H2O 2 µl 

temperature duration 

95°C 10 min 

98°C 10 sec 

63°C 30 sec 

72°C 1 min 

4°C - 

repeat 4 x 

repeat 19 x 
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amplified library was size-selected to enrich for fragments < 600 bp and purified using AMPure XP 

beads. Quality of libraries were assessed using the Bioanalyzer and a DNA HS Kit. ATAC libraries were 

sequenced using the Illumina Hiseq 1500 platform. 

Transposase mixture: 25 µl 2x TD buffer 
2.5 µl TDE1 
0.25 µl 2% digitonin 
22.25 µl nuclease-free water 
 
 

2.5 Bioinformatics 

2.5.1 nChIP-seq analysis 

2.5.1.1 nChIP-seq analysis of GFP-H2A.Z.1 

Analysis of nChIP-seq data concerning GFP-H2A.Z was carried out by our collaborator Dr. Tobias 

Straub (Bioinformatics Core Unit, BMC, Munich) [121]. 

Raw sequencing reads were mapped to the human genome (hg19) using bowtie (version 0.12.9) 

omitting reads with more than one match. Coverage vectors were created after read extension to 

150 bp corresponding to the expected fragment size after MNase digestion. Peak calling was 

performed on the pooled replicates of each target against the pooled input chromatin libraries using 

Homer (v4.7) applying parameters -style histone, -fragLength 150 and -inputFragLength 150. 

Cumulative plots were obtained by averaging the signals across all genes. 

 

2.5.1.2 nChIP-seq analysis of H3K27ac and H2A.Zac 

Analysis of nChIP-seq data concerning H3K27ac and H2A.Zac was executed by our collaborator Dr. 

Marek Bartkuhn (Institute for Genetics, JLU, Giessen) [228]. 

Image analysis and base calling were performed using the Illumina pipeline v 1.8 (Illumina Inc.). Public 

ChIP-seq data from additional histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K27me3 and 

H3K36me3) was downloaded from ENCODE. Raw sequencing reads were mapped to the human 

genome (hg19) using bowtie (1.1.2) with parameters –k and –m set as 153. PCR duplicates were 

removed with samtools rmdup function. Coverage vectors were generated after read extension to 

150 bp corresponding to the expected fragment size after MNase digestion using Deeptools 

bamCoverage function normalizing to 1x sequencing depth (--normalizeTo1x option) [239]. Peak 

calling was done using MACS2 version 2.1.155. with default settings. Cumulative coverage plots and 

heatmaps were generated with deeptools computeMatrix and plotHeatmap functions. The Venn 
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diagram (Figure 3.14) was generated as described in [240]. As gene models, UCSC hg19 gene models 

were downloaded from Illumina’s iGenome repository. For collection of binding data around meta-

genes, 6 kb up- and downstream regions were collected as 50-bp bins and gene bodies were 

represented by 120 bins of variable size. Differential binding analysis was done using csaw57 and 

validated by a custom analysis pipeline. For csaw we binned the human genome into 100 bp bins 

with a step size of 300 bp. Normalization was performed by extraction of scaling factors based on 10 

kb bins basically normalizing for total read count. Differentially regulated bins were selected as those 

bins with a p-value < 0.001. For representation of significantly changed regions in heatmaps we 

merged neighboring significantly changed bins by a sliding window approach (width: 2 kb). In an 

alternative approach, we calculated the peaks overlapping between control treatments as well as 

those overlapping between RNAi treatments. Peaks were combined and overlapping peaks were 

merged into single features spanning the original features’ intervals. Read counts overlapping these 

intervals were determined for the 4 experimental conditions (untreated, Luci siRNA, PWWP2A siRNA 

1 and 2) and DESeq2 was used for normalization as well as for the identification of differentially 

bound peak intervals [241]. In order to assign chromatin states, publicly available H3K4me1/3, 

H3K27ac, H3K27me3 and H3K36me3 data from HeLa cells generated by the ENCODE consortium 

were used [205]. The human genome was discretized into 1 kb bins and trained a 10-state HMM 

using the ChromHMM application using default parameters [19]. All downstream analysis was done 

in R/BioConductor [242]. Genome browser snap shots were generated using the Gviz package [243]. 

Manipulation of sequencing reads was done using Rsamtools and genomic intervals were 

represented as GenomicRanges objects [244]. The analysis of the association between peak intervals 

and known genomic annotation feature were done using the ChIPseeker package [245] with default 

setting using the UCSC hg19 gene definitions. As statistical tests, Wilcoxon rank sum tests were 

performed. 

 

2.5.2 nChIP-MS analysis 

nChIP-MS data were analyzed by our collaborator Dr. Eva Keilhauer (MPI of Biochemistry, 

Martinsried). MS raw data were processed using the MaxQuant software version 1.4.3.13 [246]. 

Fragmentation spectra were searched against a human sequence database obtained from Uniprot 

in May 2013 and a file containing frequently observed contaminants such as human keratins. 

Cysteine carbamidomethylation was set as a fixed modification; N-terminal acetylation and 

methionine oxidation were set as variable modifications. Trypsin was chosen as specific enzyme, with 

2 maximum missed cleavages allowed. Peptide and protein identifications were filtered at a 1% FDR. 
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Label-free quantification was performed using the MaxLFQ algorithm [247] integrated into 

MaxQuant. The match between runs option was enabled with a matching time window of 0.5 min 

and an alignment time window of 20 min. All other parameters were left at standard settings. 

MaxQuant output tables were analyzed in Perseus [248] version 1.5.8.6 as follows: After deleting 

proteins only identified with modified peptides, hits to the reverse database, contaminants and 

proteins with one or less razor and unique peptides, label-free intensities were log2 transformed. 

Next, proteins were required to have 3 valid values in at least one triplicate, then remaining missing 

values in the data matrix were imputed with values representing a normal distribution around the 

detection limit of the mass spectrometer. Now a two-sample t-test was performed to identify 

proteins enriched in the PWWP2A pull-downs compared input control. Only those proteins were 

kept for further analysis. Significant outliers were determined using a permutation-based FDR. The 

S0 and FDR parameters were set to 0.5 and 0.05, respectively. 

 

2.5.3 ATAC-seq analysis 

Analysis of ATAC-seq data was performed by our collaborator Dr. Marek Bartkuhn (Institute for 

Genetics, JLU, Giessen). ATAC-seq reads were quality controlled with fastqc 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimming of low quality reads and 

adaptor removal was done using Trim Galore! (https://www.bioinformatics.babraham.ac.uk/ 

projects/trim_galore/) with default settings. Reads were aligned against the UCSC version of the 

human genome (hg19) downloaded from Illumina’s iGenome repository 

(http://emea.support.illumina.com/sequencing/sequencing_software/igenome.html?langsel=/de/#

) using Bowtie2 [249]. Samtools were used for filtering and conversion to BAM format (-uq 10 -F 4) 

[250]. Subsequently, Picard tools SortSam and MarkDuplicates were used for sorting of BAM files 

and removal of duplicated reads.  

Downstream processing was done in R (https://www.r-project.org) using BioConductor [242] 

packages and custom R code. For differential ATAC-seq analysis we used the csaw package [251]. For 

this, the genome was binned into 100 bp bins with a 300 bp spacing between bins. Reads were 

extended to 200 bp.  Bins were filtered for abundance, such that we expected a 4-fold difference as 

compared to global background for a bin to be considered as containing an ATAC-seq signal. For each 

bin, we calculated the log2-transformed fold change when comparing specific siRNA and control 

treatment. In order to study the relationship between chromatin availability as measured by ATAC-

seq and H3K27ac changes occurring after knock-down of PWWP2A, we selected bins significantly 

changed for H3K27ac and extracted the corresponding log2-fold changes observed in the same 
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contrast for the ATAC-seq signals. Differences between background bins and bins associated with 

significant H3K27ac changes (p-value < 0.01) were tested using Wilcoxon rank sum test using R’s 

wilcox.test function (with option alternative set as “greater”). 
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3. RESULTS 

Parts of this section of the Ph.D. thesis are published in the following manuscripts: 

Pünzeler, S., Link, S., Wagner, G., Keilhauer, E.C., Kronbeck, N., Spitzer, R.M., Leidescher, S., Markaki, 
Y., Mentele, E., Regnard, C., et al. (2017). Multivalent binding of PWWP2A to H2A.Z regulates mitosis 
and neural crest differentiation. The EMBO journal, 36(15), 2263–2279. 

Link, S., Spitzer, R.M., Sana, M., Torrado, M., Völker-Albert, M., Keilhauer, E.C., Burgold, T., Pünzeler, 
S., Low, J., et al. (2018). PWWP2A binds distinct chromatin moieties and interacts with an MTA1-
specific core NuRD complex. Nature Communications, 9, 4300. 

 

3.1 PWWP2A mediates mitosis progression 

The RNAi-mediated knockdown of PWWP2A not only leads to the deregulation of ~ 600 genes, but 

also to decelerated cell proliferation and enlarged nuclei in HK cells in comparison to control cells as 

determined by Dr. Sebastian Pünzeler, a previous member from the Hake group. Using FACS analysis 

as well as H3S10ph immunofluorescence staining, he could further show that the depletion of 

PWWP2A resulted in an accumulation of cells in mitotic prometaphase [121].  

To gain deeper insights into the cellular processes upon PWWP2A depletion, I employed live-cell 

imaging under the supervision of Dr. Yolanda Markaki (LMU Biocenter, Munich). Therefore, HK cells 

stably expressing GFP-H2A [118] were transfected with Luciferase-specific (Luci, control) or 

PWWP2A-specific (PW#1, PW#2) siRNAs. Two days after knockdown of PWWP2A, stacks of cells 

were acquired every 20 minutes for up to 24 hours. While control cells (wt, Luci) traversed through 

mitosis within less than two hours, cells treated with PWWP2A-specific siRNAs needed up to 20 hours 

to successfully complete mitosis (Figure 3.1 A). Strikingly, depletion of PWWP2A caused cells to 

repeatedly shuffle back and forth between prometaphase and metaphase. Cells were unable to 

properly align all chromosomes at the equatorial plate during metaphase and chromatin generally 

appeared more condensed indicated by brighter GFP-H2A signal upon PWWP2A depletion. Of note 

is that while some cells were able to escape mitotic arrest and proceed to anaphase to complete 

mitosis, some cells accomplished cytokinesis without previous sister chromatid segregation but 

formed micronuclei and some cells underwent apoptosis (Figure 3.1 B).  
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Figure 3.1 PWWP2A is crucial for proper mitosis progression. Selected frames from live cell imaging series 

showing from HK cells stably expressing GFP-H2A for visualization of chromatin. Two days after control (wt, 

Luci) and PWWP2A (PW#1, PW#2) siRNA-mediated knockdown, cells were imaged for (A) four hours or (B) 

indicated duration exemplifying occurring phenotypes starting from nuclear breakdown at prophase. Scale bar 

= 10 µm. 

 

As it seemed as if chromosomes were either not aligning properly at equatorial plate and/or sister 

chromatids were futilely pulled away from the equatorial plate, I next investigated whether tubulin 

fibers were successfully formed and attached to the centromeres. After PWWP2A depletion, cells 

were fixed, stained with an α-tubulin-specific antibody and confocal stack images were obtained. 

Notably, tubulin fibres were formed but showed slightly abnormal morphology and appeared less 

directed in comparison to control stainings (Figure 3.2).  
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Figure 3.2 HK cells form morphologically slightly abnormal tubulin fibres upon PWWP2A knockdown. 

Representative z-projections of confocal images of mitotic metaphases from HK cells. Two days after control 

(wt, Luci) and PWWP2A (PW#1, PW#2) siRNA-mediated knockdowns, HK cells were fixed and stained with an 

α-tubulin-specific (green) antibody. DNA was counterstained with DAPI (blue). Scale bar = 10 µm. 

 

Interestingly, the observed mitotic phenotype strongly copies the previously described mitotic 

defects in chicken cells upon H2A.Z knockout that is mechanistically not understood [141]. Mitosis is 

a tightly regulated process mediated by sophisticated complexes such as chromosomal passenger 

complex (CPC), mitotic checkpoint complex (MCC), spindle assembly checkpoint (SAC) and anaphase-

promoting complex (APC) with many factors involved [252-254]. Analysis of some of the factors 

involved in mitotic regulation by the CPC and SAC, such as the kinase Aurora B that phosphorylates 

H3S10 or the inner centromere protein (INCENP), did not show an altered distribution (Figure 3.3 A). 

Members of the SAC and MCC, such as mitotic arrest deficient 2 (MAD2) and budding uninhibited by 

benzimidazole-related 1 (BUBR1), and members of the APC, were likewise tested in 

immunofluorescence staining, but could not be corroborated due to antibody specificity limitations 

and reproducibility issues (data not shown). Moreover, also staining of posttranslational histone 

marks featuring a specific localization pattern during mitosis such as H3S10ph enrichment at 

chromosome ends and H2AT120ph at centromeres did not exhibit a difference in localization after 

PWWP2A depletion (Figure 3.3 B). 
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Figure 3.3 Localization of mitotic markers remain unchanged in HK cells after depletion of PWWP2A. 

Representative confocal images of mitotic HK cells. Two days after control (wt, Luci) and PWWP2A (PW#1, 

PW#2) depletion, HK cells were fixed and co-stained with (A) Aurora B (green) and INCENP (red) or (B) H3S10ph 

(green) and H2AT120ph (red) antibodies. DNA was counterstained with DAPI (blue). Scale bar = 10 µm. 

 

3.2 PWWP2A indirectly influences mitosis  

These results raised the question of how PWWP2A can influence mitosis. At least two different 

scenarios can be envisioned. First, PWWP2A fulfils a structural role in mitosis, implying that by 

localizing close to a structural component of a chromosome such as the kinetochore, PWWP2A could 

directly interfere with e.g. proper spindle attachment and PWWP2A’s loss might impair the latter. 

Secondly, PWWP2A indirectly influences mitosis by regulating the expression of genes that are 

important for proper mitotic progression. To investigate whether PWWP2A has a structural role in 

mitosis, I specified PWWP2A’s localization on chromosomes and performed metaphase spreads. 

Cells were transfected with siRNAs two days prior to harvest and arrested in metaphase using 

colcemid to enrich for the mitotic cell population. Extracted metaphase spreads were stained with 

anti-PWWP2A and anti-CENP‐E, a microtubule binding kinetochore-associated protein [255], 

antibodies and DNA was counterstained with DAPI. Subsequently, confocal stack images were 

obtained. On metaphase chromosomes, PWWP2A localizes at distinct regions on both sister 

chromatids but does not co‐localize with CENP‐E nor localizes at the centromeric region in general 

(Figure 3.4). Interestingly, a loss of chromosome cohesion and/or a loss or sliding of CENP-E was 

observed for some of the chromosomes but only when treated with PW#1 siRNA. Hence, PWWP2A 

does not seem to be structurally involved in mitosis and it is thus unlikely that it directly regulates 

mitosis.  
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Figure 3.4 PWWP2A localizes at distinct regions on mitotic chromosomes. Representative z-projections of 

confocal images of chromosomes from HK cells. Two days after control (wt, Luci) and PWWP2A (PW#1, PW#2) 

depletion, chromosomes were co-stained with CENP-E- (green) and PWWP2A-specific (red) antibodies, fixed 

and DNA was counterstained with DAPI (blue). Scale bar = 10 µm. 

 

Subsequently, I set out to decipher whether PWWP2A influences mitosis indirectly. RNA-seq after 

knockdown of PWWP2A, previously carried out by Dr. Sebastian Pünzeler and Dr. Tobias Straub 

(Bioinformatics Core Unit, BMC, Munich), showed that ~ 600 genes were deregulated with many 

involved in the regulation of developmental processes, metabolism and cell morphogenesis 

according to gene ontology analysis [121]. Some of the most deregulated genes are involved in actin 

and tubulin regulation including F‐actin‐capping subunit alpha‐1 protein (CAPZA1), tubulin 

polyglutamylase complex subunit 2 (TPGS2), phosphatidylinositol 3,4,5-trisphosphate-dependent 

Rac exchanger 1 (PREX1), vasodilator-stimulated phosphoprotein (VASP) and ANTXR Cell Adhesion 

Molecule 1 (ANTXR1). There is emerging evidence that actin not only plays a role in cell mobility and 

cytokinesis, but also during mitosis by spanning to the spindle poles and being involved in controlling 

spindle length and shape [256-258]. CAPZA1 regulates actin filament growth by capping the 

filaments’ fast growing plus end [259]. As part of a large protein complex that adds polyglutamate 

chains to tubulin, TPGS2 promotes centrosome stability [260, 261]. PREX1 is involved in actin 

dynamics thereby influencing neuronal cell migration and elongation [262, 263]. VASP is part of the 

Ena-VASP protein family whose members are known to bind both globular (G) and filamentous (F) 

actin [264, 265]. There, VASP fulfils an anti-capping activity by promoting elongation of actin 

filaments [266]. ANTXR1 interacts with the actin cytoskeleton and mediates cell migration [267, 268]. 

Indeed, a downregulation of CAPZA1, TPGS2 and PREX1 as well as a slight upregulation of VASP and 
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ANTXR1 could be verified by RT-qPCR in three independent replicates (Figure 3.5 A). Furthermore, 

loss of PWWP2A also led to a decrease in CAPZA1 protein levels detected via immunoblotting but 

did not impair global F-actin protein levels (Figure 3.5 B).  

 

 

Figure 3.5 Knockdown of PWWP2A in HK cells leads to the deregulation of genes involved in tubulin- and actin-

related processes. A. Relative expression levels of selected genes implicated in tubulin and actin regulation two 

days after control (wt, Luci) or PWWP2A (PW#1, PW#2) siRNA-mediated knockdown. Shown is the fold-change 

of three replicates compared to wt and normalized to HPRT expression. Error bars depict SEM (n=3). B. 

Representative immunoblot of F-actin and CAPZA1 after control (wt, Luci) or PWWP2A (PW#1, PW#2) siRNA-

mediated knockdown. H3 served as loading control. 

 

As genes involved in actin and tubulin regulation were deregulated and tubulin fibers exhibited 

altered morphology, I speculated whether actin filament morphology was also compromised by 

PWWP2A depletion although global F-actin levels remained unaffected. To this end, fixed HK cells 

were stained with a Phalloidin-conjugate, a reagent specifically binding F-actin, and overview 

confocal stack images were taken. Interestingly, knockdown of PWWP2A resulted in an altered 

appearance of actin filaments with thicker filaments and more stress fibers occurring (Figure 3.6). 

With both proteins influencing the capping activity at actin filaments, the downregulation of CAPZA1 

as well as the upregulation of VASP upon PWWP2A loss thus may provide an explanation for the 

altered morphology of actin fibers. 
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Figure 3.6 HK cells form morphologically altered actin filaments upon PWWP2A knockdown. Representative z-

projections of confocal images of HK cells. Two days after control (wt, Luci) and PWWP2A (PW#1, PW#2) 

depletion, HK cells were fixed and co-stained with PWWP2A (green) and phalloidin (F-actin, red) and DNA was 

counterstained with DAPI (blue) (merge images, upper panel). Lower panel: Phalloidin staining from upper 

panel in grayscale. Scale bar = 10 µm.  

 

In summary, PWWP2A is involved in the regulation of mitotic progression. While it is unlikely that 

PWWP2A plays a direct role in mitosis it is probable that PWWP2A indirectly affects mitosis by 

regulating the expression of genes involved in processes that regulate proper distribution and 

function of actin and tubulin.  

 

3.3 H2A.Z’s chromatin association is unimpeded by PWWP2A 

As the mitosis phenotype caused by loss of PWWP2A is similar to the phenotype observed after 

H2A.Z knockout in chicken cells [141], it was next investigated whether the phenotype upon 

PWWP2A depletion could be the result of changes in H2A.Z occupancy due to either defects in its 

chromatin binding ability or its deposition. First, to investigate whether PWWP2A influences H2A.Z’s 

chromatin association, FRAP experiments in collaboration with Susanne Leidescher (LMU Biocenter, 

Munich) were performed. HK cells stably expressing GFP-H2A or GFP-H2A.Z.1 [118] were transfected 

with control (Luci) or PWWP2A specific siRNAs and subjected to FRAP. Interestingly, PWWP2A 

depletion did not alter the mobility of GFP-H2A nor of GFP-H2A.Z.1 and thus did not affect their 

chromatin binding ability (Figure 3.7).  
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Figure 3.7 PWWP2A depletion does not influence H2A.Z’s chromatin binding ability. (A) Representative confocal 

images before and after half-nucleus photobleaching of HK cells stably expressing GFP-H2A (H2A, left) or GFP-

H2A.Z.1 (H2A.Z, right) two days after control (wt, Luci) or PWWP2A (PW#1, PW#2) knockdown. B. FRAP 

quantification curves from (A) (n=9-19). Scale bar = 5 µm. 

 

Next, to assess whether PWWP2A is involved in the regulation of H2A.Z occupancy, GFP-H2A.Z.1 

nChIP-seq upon PWWP2A knockdown, sequenced by Dr. Stefan Krebs (LAFUGA, Munich) and 

analyzed by Dr. Tobias Straub (Bioinformatics Core Unit, BMC, Munich), was carried out. 

Mononucleosomes isolated from HK cells stably expressing GFP-H2A.Z.1 and treated with control 

(wt, Luci) or PWWP2A-specific siRNAs (PW#1, PW#2) were precipitated using GFP-Trap® beads. 

Bound DNA was isolated, libraries prepared and subjected to sequencing. nChIP-seq analysis 

revealed only subtle, non-significant changes in H2A.Z peak heights and no effect on global H2A.Z 

occupancy (Figure 3.8 A-C). Notably, the observed reduction in peak heights was apparent on sites 

bound by PWWP2A as well as PWWP2A-unbound sites, arguing for a PWWP2A-unspecific effect 

(Figure 3.8 A+B). qPCR analyses of selected sites verified the nChIP-seq results (Figure 3.8 C). 

Accordingly, as determined by immunoblot, expression levels of endogenous H2A.Z remained 

unaffected by the loss of PWWP2A (Figure 3.8 D).  
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Figure 3.8 PWWP2A depletion does not influence H2A.Z occupancy or global H2A.Z levels. A. Snapshot from 

genome browser of a representative region in human chromosome 7 with gene structure annotations 

displayed below. Depicted are nChIP-seq signals of GFP-PWWP2A (green) and GFP-H2A.Z two days after 

control (ctrlii, Luci; blue) or PWWP2A (PW#1, PW#2; red) knockdown. B. Density plot displaying GFP-H2A.Z 

only (left, 22.343 peaks) or GFP-H2A.Z overlapping with GFP-PWWP2A (right, 18.227 peaks) nChIP-seq peaks 

upon control (ctrlii, Luci; dark blue) or PWWP2A (PW#1, PW#2; red) depletion. C. Verification of nChIP-seq 

results of GFP-H2A.Z from (B) by nChIP-qPCR. RPL11 is a gene body site devoid of H2A.Z-containing 

nucleosomes and serves as negative control. PARS and NUF represent H2A.Z-containing promoter sites (- = -1 

nucleosome relative to the TSS, + = +1 nucleosome relative to the TSS). Shown is percent input of two replicates 

of GFP-H2A.Z nChIPs two days after control (wt, Luci) or PWWP2A (PW: PW#1, PW#2) siRNA-mediated 

knockdown. Error bars indicate SEM of two to three technical replicates. D. Representative immunoblot of cell 

extracts from HK cells two days after control (wt, Luci) or PWWP2A (PW#1, PW#2) knockdown with anti-

PWWP2A, -H3 and -H2A.Z antibodies. H3 served as loading control.  
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As the depletion of PWWP2A did not influence H2A.Z’s occupancy, I next investigated whether 

overexpression of PWWP2A affects H2A.Z levels. To this end HK cells stably expressing GFP-H2A.Z.1 

were transiently transfected with Cherry-tagged PWWP2A (Ch-PWWP2A) and FACS sorted with the 

help of Dr. Martha Smets (LMU Biocenter, Munich) according to the Ch-expression level (Figure 3.9 

A). Cells stably expressing GFP-H2A.Z wt, lowly expressing Ch-PWWP2A and highly expressing Ch-

PWWP2A as well as GFP, as a control, were subjected to nChIP followed by qPCR of specific loci. 

Similar to the results obtained with PWWP2A depletion, also the overexpression of Ch-PWWP2A did 

not affect H2A.Z’s occupancy at selected sites (Figure 3.9 B).  

 

  

Figure 3.9 Overexpression of PWWP2A does not affect H2A.Z occupancy. A. FACS-based sorting of lowly (left) or 

highly (right) transiently expressed Ch-PWWP2A in HK cells stably expressing GFP-H2A.Z. B. nChIP-qPCR of 

selected loci using the same primer pairs as shown in 3.8 C. RPL11 is a gene body site devoid of H2A.Z-

containing nucleosomes and serves as negative control. PARS and NUF represent H2A.Z-containing promoter 

sites (- = -1 nucleosome relative to the TSS, + = +1 nucleosome relative to the TSS). Shown is percent input of 

GFP (negative control, light gray), GFP-H2A.Z (H2A.Z, dark gray) or GFP-H2A.Z transiently expressing low (light 

red) or high (dark red) levels of Ch-PWWP2A. Error bars indicate SEM of two to three technical replicates.  

 

To vice versa determine whether PWWP2A’s chromatin association is dependent on H2A.Z-binding, 

I performed FRAP in collaboration with Susanne Leidescher (LMU Biocenter, Munich). Therefore, I 

transiently transfected HK cells with a GFP-PWWP2A construct lacking the IC region (ΔIC) that 

mediates H2A.Z-specificity (Figure 3.10 A). Indeed, depletion of the H2A.Z interaction domain within 

PWWP2A resulted in increased but not full mobility in comparison to full length PWWP2A (Figure 

3.10 B+C). This result indicates that H2A.Z is one important but not the sole mediator of PWWP2A 

chromatin association and is in line with our previous finding that PWWP2A binds chromatin in a 

multivalent manner.  
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Figure 3.10 Depletion of the H2A.Z-interacting domain within PWWP2A influences PWWP2A’s chromatin binding 

ability. A. Schematic depiction of PWWP2A’s domain structure lacking the IC region. B. Representative confocal 

images before and after photobleaching of half-nucleus of HK cells transiently expressing GFP-ΔIC. C FRAP 

quantification curves from HK cells transiently expressing GFP, GFP- or GFP-PWWP2A (n=9-19). Scale bar = 5 

µm. 

 

In conclusion, H2A.Z’s occupancy remains unaffected by the depletion of PWWP2A while the 

deletion of the H2A.Z-interacting internal region within PWWP2A decreases PWWP2A’s chromatin 

binding ability. 

 

3.4 PWWP2A binds weakly to H3K36me3-containing gene bodies and associates with 

regulatory regions 

To determine whether the multivalent chromatin binder PWWP2A is also enriched at other 

chromatin features besides H2A.Z, Dr. Marek Bartkuhn (Institute for Genetics, JLU, Giessen) 

reanalyzed the earlier generated GFP-PWWP2A nChIP-seq data [121]. Notably, it was previously 

found that PWWP2A is also able to recognize H3K36me3, a chromatin mark typically associated with 

gene bodies, via its PWWP domain in vitro ([224], data from Ramona Spitzer, [228]). To assess 

whether these observations are also supported in vivo, first gene body regions with high H3K36me3 

levels (data from ENCODE) were identified by cluster analysis, defining cluster 2 as prototypic for 

H3K36me3-enriched gene body peaks (Figure 3.11 A). Both PWWP2A as well as H2A.Z were strongly 

enriched at the promoters of cluster 2 genes (Figure 3.11 B). Further, the PWWP2A signal was slightly 

increased at H3K36me3-positive gene bodies of cluster 2 genes, while both H2A.Z isoforms were 

depleted in the gene body regions (Figure 3.11 B). By comparing signals of H2A.Z, PWWP2A and 

H3K36me3 in 3’-gene body ends with the corresponding non-transcribed downstream regions, a 

small but significant enrichment of PWWP2A across H3K36me3-high gene bodies was revealed 

(Figure 3.11 C). Vice versa, H2A.Z.1 and H2A.Z.2 were absent at these sites (Figure 3.11 C). This 
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indicates that PWWP2A is recruited to H3K36me3-enriched sites independently of H2A.Z and might 

only occur in a transient manner. 

 

Figure 3.11 PWWP2A associates weakly with H3K36me3-containing but H2A.Z-depleted gene body regions. A. 

Density heatmap of H3K36me3 (ENCODE) ChIP-seq clustering analysis of meta-gene binding profiles 

encompassing gene bodies and 6 kb upstream and downstream regions of transcriptional start sites (TSS) and 

transcriptional end sites (TES). Color intensity represents normalized and scaled tag counts. Cluster 2, which 

represents H3K36me3-enriched genes, was used for further analysis. B. Meta-gene profile correlations of ChIP-

seq data for H3K36me3, two GFP–PWWP2A replicates (rep), GFP-H2A.Z.1, and GFP-H2A.Z.2 mean coverage 

signals of cluster 2 genes (red line) and all genes (black dotted line) encompassing gene bodies and 6 kb 

upstream and downstream regions of TSS and TES. Regions highlighted in light blue (gene body) and light green 

(downstream region) were further analyzed in (C). C. Boxplots of H3K36me3, two independent GFP–PWWP2A, 

GFP-H2A.Z.1, and GFP-H2A.Z.2 signal intensities comparing gene body with non-coding regions of same size 

within cluster 2. 

 

To identify further binding modes of PWWP2A, the previously generated GFP-PWWP2A nChIP data 

was compared to chromatin states defined by training a 10-state model on ENCODE data for 

H3K4me1, H3K4me3, H3K27ac, H3K27me3, and H3K36me3 and using ChromHMM [18]. 

Interestingly, PWWP2A was anticorrelated with the heterochromatin mark H3K27me3 (state 9) as 

well as H3K36me3 (state 7), while a slight correlation of PWWP2A with H3K36me3 was found, when 

sites were co-occupied with H3K4me1 and/or H3K4me3 and H3K27ac (states 2 and 6) (Figure 3.12 

A+B). Notably, PWWP2A binding was strongly enriched at active promoters, which are marked by 

low levels of H3K4me, high levels of H3K4me3 and H3K27ac (state 3). Moreover, enrichment of 

PWWP2A was observed at active as well as inactive or poised enhancers, which are characterized by 

low levels of H3K4me3, high levels of H3K4me1 and high or low H3K27ac, respectively (states 4 and 
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5) (Figure 3.12 A-C). Intriguingly, enrichment patterns of H2A.Z and PWWP2A not only at promoters 

but also at enhancers were highly identical, indicating a common role for both factors at respective 

chromatin regions and suggesting a mechanism by which PWWP2A is recruited to regulatory regions 

(Figure 3.12 C). 

 

 

Figure 3.12 PWWP2A associates with regulatory regions genome-wide. A. Heatmap displaying the 

characterization of chromatin states of PWWP2A-containing genomic regions according to ChromHMM [19].. 

B. Comparison of enrichments of chromatin states of PWWP2A- or H2A.Z-containing sites to the human 



3. RESULTS 

57 

 

genome (left). Fold enrichment or decrease of PWWP2A- or H2A.Z-conatining sites in specific states calculated 

to frequency in complete genome (right). C. Density heat map of nChIP-seq signals of PWWP2A-enriched sites 

(two replicates, green) and intensities of H3K4me3 (dark blue, ENCODE), H3K4me1 (light blue, ENCODE), 

H3K27ac (yellow, ENCODE) and GFP-H2A.Z1 and -H2A.Z.2 variants (red) at these regions. Color intensity 

represents normalized and globally scaled tag counts. Bioinformatic analyses were performed by Dr. Marek 

Bartkuhn (Institute for Genetics, JLU, Giessen). 

 

3.5 PWWP2A interacts with a MTA1-specific NuRD subcomplex  

Our lab has previously found that PWWP2A interacts with a range of chromatin moieties via its 

distinct domains and affects transcription by a yet unknown mechanism [121]. As PWWP2A does not 

seem to contain any domains with known enzymatic activity, it is likely that PWWP2A mediates 

recruitment of chromatin modifiers to H2A.Z-containing nucleosomes that in turn affect chromatin 

structure and function. To identify interaction partners of PWWP2A, label-free quantitative MS was 

applied. Therefore, chromatin from HK cells stably expressing GFP or GFP-PWWP2A was MNase-

digested and mononucleosomes were immunoprecipitated using GFP-Trap® in technical triplicates. 

In collaboration with Dr. Eva Keilhauer from the Matthias Mann group (MPI of Biochemistry, 

Martinsried) GFP- or GFP-PWWP2A bound nucleosomal proteins were subjected to on-bead tryptic 

digestion and then quantitated by label-free MS/MS. Dr. Sebastian Pünzeler had already determined 

PWWP2A-specific binding partners in one replicate which I aimed to confirm in a second replicate. 

Overall, results of the first replicate were largely verified with PWWP2A representing the strongest 

outlier and H2A.Z as one of PWWP2A’s targets (Figure 3.13 A). While some of the interactors were 

previously identified to also bind H2A.Z (e.g. HMG20A, PHF14, PHF20L1, RAI1, ZNF512B) [120, 121] 

other proteins specifically interacted with PWWP2A only (e.g. ATRX, DAXX, MDC1, PWWP2B). 

Interestingly, comparison of the two replicates revealed a strong reproducible interaction with 

proteins previously shown to also bind H2A.Z-containing nucleosomes: MTA1, HDAC2, RBBP4 and 

RBBP7. These proteins are core components of the Nucleosome Remodeling and Deacetylase (NuRD) 

complex that is, among other functions, involved in gene regulation [64] (Figure 3.13 B). In line with 

our finding, PWWP2A binding to HDAC1/2 and MTA1 has been previously reported in different MS-

based screens [269, 270]. Usually, NuRD also contains MBD2/3, GATAD2A/B and the ATP-dependent 

remodeling enzymes CHD3/4/5 [271]. Surprisingly, none of these subunits were isolated in my or Dr. 

Sebastian Pünzeler’s previous PWWP2A or H2A.Z pulldowns, and also confirmed by immunoblots 

(data not shown, [228]). The MTA, HDAC and RBBP subunits seem to independently constitute a 

stable subcomplex that we termed MHR accordingly. In Drosophila, a corresponding PMR complex 

containing the three homologous proteins (p55, MTA-like, Rpd3) has been identified [272]. PWWP2A 

exhibited binding to all three MTA paralogues although the strongest interaction was observed with 
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MTA1. Thus, it was next tested whether PWWP2A is able to interact with all MTA isoforms equally 

well. Our collaborator Dr. Thomas Burgold from Dr. Brian Hendrich’s group (Wellcome Trust-MRC, 

Cambridge) performed MTA isoform-specific IPs from mESC lysates followed by immunoblotting for 

PWWP2A and, as positive control, MBD3. Indeed, PWWP2A displayed strongest interaction with 

MTA1 over MTA2 or MTA3 (Figure 3.13 C). Reciprocally, only MTA1 but not MBD3 was able to bind 

PWWP2A (Figure 3.13 D). To determine which subunit(s) of the MHR complex is responsible for 

mediating the interaction with PWWP2A, members of the group of Prof. Joel Mackay (University of 

Sydney) carried out further experiments. They co-expressed FLAG-PWWP2A, HDAC1 (untagged), HA-

RBBP4 and either HA-MTA1 or HA-MTA2 in HEK293 cells and performed FLAG-PWWP2A IPs from 

respective cell lysates (Figure 3.13 E). Remarkably, only when MTA1, but not MTA2, was present 

PWWP2A precipitated the other components of the MHR complex. This indicates, that MTA1 directly 

binds to PWWP2A and mediates the recruitment of HDAC and RBBP proteins to form an MTA1-

specific M1HR module.  
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Figure 3.13 PWWP2A interacts with a MTA1-specific core NuRD complex. A. Volcano plot visualizing significantly 

enriched proteins after GFP-PWWP2A pulldowns from mononucleosomes (right) over GFP-enriched proteins 

(left). t-test differences were obtained by two-sample t-test. PWWP2A is highlighted in green, members of the 

MTA1-specific core NuRD (M1HR) complex as well as other proteins that have previously been identified to 

bind H2A.Z as well in dark blue and PWWP2B, as a specific-PWWP2A-binder in light blue. B. Heatmap depicting 

GFP-PWWP2A interacting proteins from two replicates (n=2). Shown are log2 LFQ intensities (fold-change for 

GFP-PWWP2A vs. GFP pulldowns) for the strongest binders of GFP-PWWP2A. C. Immunoblots of IPs from 

endogenously tagged MTA1-FLAG, MTA2-GFP or MTA3-FLAG from mouse embryonic stem cell (mESC) nuclear 

extracts using PWWP2A- or MBD3-specific antibodies. D. Immunoblot of endogenously tagged MBD3-FLAG or 

MTA1-FLAG, CHD4 or control (IgG) IPs from mESC nuclear extracts using PWWP2A- or MBD3-specific 

antibodies. E. Immunoblot of FLAG-PWWP2A IPs with cell lysates from HEK293 cells co-transfected with 

combinations of plasmids encoding for FLAG-PWWP2A, HDAC1 (tagless), HA-RBBP4, and either HA-MTA1 or 

HA-MTA2 (left). Precipitated proteins were detected via Sypro-staining (right). Experiments for figures (C) – (E) 

were carried out by our collaborators as indicated in the text. 
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The interactome of PWWP2A revealed that PWWP2A binds to a range of chromatin modifying 

proteins and complexes, many of which have been previously identified in H2A.Z pulldowns. Notably, 

PWWP2A interacts with an MTA1-specific core NuRD complex (M1HR), presumably recruiting it to 

H2A.Z-containing nucleosomes. 

 

3.6 PWWP2A mediates changes in histone acetylation levels 

Previously, it was shown that H3K27ac levels correlate with the activity of the NuRD complex [273, 

274]. The PWWP2A-associated M1HR complex contains the enzymatically active histone 

deacetylases HDAC1 and HDAC2, with the latter also being found to bind to H2A.Z-containing 

nucleosomes [121]. In general, HDACs were referred to as transcriptional co-repressors that remove 

histone acetylation marks thereby repressing transcription [275, 276]. However, recent studies 

indicate that HDACs may also be associated with active genes, in particular at gene promoters and 

enhancers [277, 278]. These data sets correlate with the observation that HDAC2 and HDAC1 are 

bound to H2A.Z and PWWP2A, which both localize to the -1 and +1 nucleosomes at the TSS of actively 

transcribed genes [121] and also occupy regulatory regions (Figure 3.12 C). Hence, I next set out to 

investigate whether the H2A.Z-PWWP2A-M1HR connection influences histone acetylation levels. To 

this end, I performed nChIPs of H3K27ac as well as H2A.Zac (which can be acetylated at lysines 4, 7 

and 11) after PWWP2A knockdown that were sequenced by Dr. Andrea Nist (Genomics Core Facility, 

Marburg) and bioinformatically analyzed by Dr. Marek Bartkuhn (Institute for Genetics, JLU, Giessen). 

Intriguingly, H3K27ac shares a substantial number of binding peaks across the genome with 

acetylated H2A.Z especially at distal intergenic regions but also at promoters (Figure 3.12, Figure 

3.14). Focusing on genome-wide distribution patterns of the H3K27ac (85.023 peaks) or H2A.Zac 

(87.482 peaks) nChIP-seq data indicated that the vast majority of sites (68.457 peaks; 72.171 peaks 

shared by H3K27ac and PWWP2A) were co-occupied by PWWP2A (84.343 peaks) (Figure 3.14), 

indicating that all three feature a highly similar genome-wide binding patterns. 
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Figure 3.14 Correlation between PWWP2A-enriched sites and H3K27ac as well as H2A.Zac regions. A. Venn 

diagram showing the overlap GFP-PWWP2A, H3K27ac and H2A.Zac sites on a genome-wide scale. The overlap 

was calculated according to [240]. B. Heatmap of PWWP2A, H3K27ac and H2A.Zac. Peak sets were combined 

into a unified set and binding data were collected in 6 k- spanning windows around the peak centres. In total, 

98.953 peaks were analyzed. Data was portioned into 5 clusters by k-means clustering. Bioinformatic analyses 

were performed by Dr. Marek Bartkuhn (Institute for Genetics, JLU, Giessen). 

 

Strikingly, depletion of PWWP2A strongly increased H3K27ac and H2A.Zac levels at 566 distinct 

regions (Figure 3.15 A). Moreover, differential acetylation of H3K27ac was simultaneously induced 

at the majority of H2A.Zac sites. (Figure 3.15 B). Vice versa, for H2A.Zac 423 differentially acetylated 

sites were identified, which likewise, although not as pronounced, exhibit an induction of acetylation 

of H3K27ac (Figure 3.15 B). Of note is that the differentially acetylated sites are typically occupied by 

PWWP2A and H2A.Z. 
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Figure 3.15 Depletion of PWWP2A leads to an increase of H3K27 and H2A.Z acetylation levels in a subset of 

genomic regions. A. Density heat map of nChIP-seq of 566 induced H3K27ac sites upon PWWP2A depletion. 

Shown are H3K27ac (yellow) and H2A.Zac (red) intensities upon control (wt, Luci) or PWWP2A (PW#1, PW#2) 

depletion. B. Boxplots quantifying binding events at 566 sites differentially acetylated at H3K27 (p< 0.001) after 

depletion of PWWP2A (left). Differentially regulated H2A.Zac (423 sites, right) are prevalently induced (p < 

2.2e−16). At these sites, H3K27ac is simultaneously induced, although not as strongly pronounced as for 

H2A.Zac (p value < 2.2e−16). Bioinformatic analyses were performed by Dr. Marek Bartkuhn (Institute for 

Genetics, JLU, Giessen). 
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Interestingly, the increase in histone acetylation was predominantly apparent at distal intergenic 

regions (Figure 3.16). Typically, H3K27ac, H2A.Zac and PWWP2A binding sites are mainly found at 

promoter regions, yet differentially acetylated regions are found at distal intergenic regions (~50%) 

and to a much lesser extend at promoters (~10%). This suggests that the acetylation changes do not 

occur randomly but are happening at defined regions.  

 

 

Figure 3.16 Genomic features of differentially acetylated sites. Feature distribution proportioning the human 

genome according to the indicated functional annotations based on UCSC hg19 gene annotations and in 

comparison to the genomic background. Bioinformatic analyses were performed by Dr. Marek Bartkuhn 

(Institute for Genetics, JLU, Giessen). 

 

In line with the finding that acetylation levels are only increased at a subset of H3K27ac and H2A.Zac 

sites, global acetylation levels of H3K27 and H2A.Z remained unaffected by the depletion of 

PWWP2A as determined by immunoblotting from extracted histones (Figure 3.17). 

 

 

Figure 3.17 Depletion of PWWP2A does not influence global H3K27ac or H2A.Zac levels. Representative 

immunoblot of extracted histones from HK cells two days after control (wt, Luci) or PWWP2A (PW#1, PW#2) 

knockdown with antibodies against H3K27ac (left) or H2A.Zac (right), and H3 respectively. H3 served as loading 

control. 
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Furthermore, to examine whether the increase in histone acetylation is accompanied by an opening 

in chromatin conformation and hence an increase in the accessibility of chromatin, I made use of 

ATAC-seq. Therefore, I prepared transposed DNA samples and libraries for ATAC-seq from HK cells 

after PWWP2A depletion, which were sequenced by Dr. Andrea Nist (Genomics Core Facility, 

Marburg) and analyzed by Dr. Marek Bartkuhn (Institute for Genetics, JLU, Giessen). Interestingly, 

ATAC-seq displayed only a subtle increase in chromatin accessibility at differentially acetylated 

H3K27 loci (Figure 3.18).  

 

 

Figure 3.18 Depletion of PWWP2A slightly affects chromatin accessibility at differentially H3K27 acetylated 

regions. Boxplots showing quantification of accessible chromatin sites at sites differentially acetylated at H3K27 

two days after siRNA-mediated knockdown of control (wt, Luci) or PWWP2A (PW#1, PW#2) in HK cells. 

Genomic regions with increased H3K27ac signals after PWWP2A knockdown that also had enriched number of 

ATAC-seq read counts (in total 433 genomic bins) were identified. Compared to all genomic bins (110.476 bins; 

left), differentially acetylated H3K27 loci (right) were marked by a slight increase in ATAC-seq read counts 

(median log2FoldChange: 0.06 vs -0.02; Wilcoxon rank sum test p-value = 0.0003539). 

 

Assumedly, regulatory regions such as enhancers are localized close to and influence the expression 

of nearby genes [279]. To test whether the increase in acetylation on H3K27ac and H2A.Zac upon 

PWWP2A depletion is robust and indeed affects the expression of nearby genes, I performed nChIP-

qPCR to validate nChIP-seq results from corresponding regulatory regions and analyzed expression 

levels via RT-qPCR. To verify the increase in acetylation levels at defined loci, first loci for possibly 

affected regulatory regions were selected (Figure 3.19 A) and accordingly, nChIP-qPCR primers for 

chosen loci were established. Next, H3K27ac and H2A.Zac nChIPs after PWWP2A knockdown were 

repeated twice and enrichment of these histone PTMs at specific differentially acetylated loci as well 

as control loci was investigated by nChIP-qPCR. Consistently, differential acetylation of H3K27 as well 

as H2A.Z was highly reproducible at selected sites (Figure 3.19 B).  
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Subsequently, in order to assess whether the increase in acetylation on H3K27ac and H2A.Zac affects 

the expression of corresponding nearby genes, I analyzed expression levels via RT-qPCR. For this 

purpose, I established qPCR primers for selected genes from previously generated RNA-seq data 

[121]. RNA from three independent knockdown experiments was isolated, reverse transcribed to 

cDNA and analyzed via qPCR. Interestingly, the differential acetylation on H3K27ac and H2A.Zac led 

to the upregulation of expression of some genes (e.g. CCL5, FST), while the expression levels of other 

genes remained unchanged (e.g. ZNF19, B3GALNT2) (Figure 3.19 C).  

 

 

Figure 3.19 Depletion of PWWP2A leads to a site-specific increase of H3K27 and H2A.Z acetylation levels and a 

gene-specific induction of expression. A. Genome browser snap shots of three representative regions in the 

human genome displaying H3K27ac (from top to bottom: wt, Luci, PW#1, PW#2) (blue), H2A.Zac (wt, Luci, 

PW#1, PW#2) (light blue) and two GFP-PWWP2A replicates (dark gray) nChIP-seq signals. Differentially 

acetylated sites are highlighted in gray. B. Verification of nChIP-seq data (see Figure 3.15) by nChIP-qPCR at 

selected loci. As indicated CCL5, FST, ZNF19 and B3GALTN2 represent TSS (transcriptional start site) regions or 

remote (regulatory region close to a gene) regions at which acetylation levels of H3K27ac and H2A.Zac are 
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induced upon depletion of PWWP2A. Acetylation levels at CCDC71 TSS remain unaffected and serves as 

control. Shown is percent input of two replicates of H3K27ac or H2A.Zac nChIPs two days after control (wt, 

Luci) or PWWP2A (PW: PW#1, PW#2) depletion. Error bars depict SEM (n=4). C. Relative expression of selected 

genes corresponding to differentially acetylated sites (B) after control (wt, Luci) or PWWP2A (PW: PW#1, 

PW#2) siRNA-mediated knockdown. Shown is the fold-change of three replicates normalized to HPRT 

expression. Error bars depict SEM (n=6). Increase of H3K27 and H2A.Z acetylation levels can result in (i) 

upregulation of expression of a nearby gene (CCL5, FST) or (ii) no change in expression of a nearby gene (ZNF19, 

B3GALTN2). 

 

Overall, PWWP2A not only binds to TSSs but also to regulatory regions and its depletion increases 

acetylation levels of H3K27ac and H2A.Zac at a subset of its binding sites. 
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4. DISCUSSION AND FUTURE PERSEPCTIVES 

4.1 Towards understanding the role of PWWP2A in mitosis and Xenopus cranio-facial 

development 

Depletion of PWWP2A in HK cells via RNAi resulted in severe consequences in mitotic progression 

(Figure 3.1, 4.1). Intriguingly, cells repeatedly shuffled back and forth between prometaphase and 

metaphase with some chromosomes failing to properly align on the equatorial plate with single 

chromosomes seemingly being pulled from the metaphase plate into the direction of the opposite 

mitotic spindle apparatus. Nonetheless, chromosomes realigned to the equatorial plate, thereby 

impeding successful progression to anaphase. Eventually, some cells were able to escape the 

seemingly endless loop of prometaphase-metaphase-shuffling and proceeded to anaphase to 

complete mitosis, fulfilling cytokinesis with some cells forming micronuclei due to chromosomes that 

were not properly segregated. Overall, when PWWP2A was depleted, cells needed up to 20 hours to 

complete mitosis. In some cases, cytokinesis was executed albeit sister chromatids had not been 

previously separated. Yet, a high number of cells formed micronuclei over cytokinesis or cytokinesis 

failed and cells went into apoptosis.  

 

Figure 4.1 Consequences of PWWP2A depletion on mitosis. Mitosis consists of a series of phases starting from 

prophase, prometaphase, metaphase, anaphase, telophase (not shown) and cytokinesis. Depletion of 

PWWP2A causes A. a back-and-forth shuffling between prometaphase and metaphase, B. loop of improper 

pulling of chromosomes towards the spindle poles during metaphase and realignment of chromosomes at the 

equatorial plate, C. proper cytokinesis, D. formation of micronuclei during cytokinesis or E. apoptosis. Extended 

and modified from [280]. 
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These observations strongly indicate that PWWP2A depletion causes a defect in chromosome 

congression very early in the series of mitosis stages. Within prometaphase, chromosomes position 

relative to the spindle poles and microtubules attach to the chromosomes’ kinetochores and sister 

chromatid chromosomes align at the equatorial plate and bi-orientate, a process termed 

chromosome congression [281]. Together with motor protein dynein, CENP-E mediates the 

transport of chromosomes along microtubules, first in direction of the spindle poles and 

subsequently towards the equator. In mitotic metaphase, sister chromatids are pulled to the spindle 

which are then oppositely segregated towards the centrosomes in anaphase. The segregation of 

sister chromatids is executed by microtubulin fibers which attach to the kinetochore of 

chromosomes centromere as well as the centrosome and draw the chromatids to the latter. Cyclin-

dependent protein kinases (CDKs) play an important role in the regulation of cell cycle processes and 

most notably in chromosome segregation [282]. By ensuring that chromosomes have properly 

attached to mitotic spindles, the SAC can delay chromosome segregation. In case kinetochores are 

not attached to mitotic spindles, the MCC is formed to delay chromosome segregation and thereby 

inhibits the APC. To hinder mitotic progression, SAC proteins bind to cell-division cycle protein 20 

(Cdc20) and enclose it into a complex that interacts with the APC. The SAC is inactivated when 

chromosomes have bioriented and subsequently the APC is activated and initiates segregation of 

sister chromatids in anaphase. Active APC acts as an E3 ubiquitin ligase and induces the proteasomal 

degradation of securin and cyclins which is required for mitotic exit and allows separase-mediated 

cleavage of cohesin [254]. Only then, cells can proceed to telophase in which the nuclear envelope 

is rebuild followed by cytokinesis and reformation into an interphase nucleus. IF stainings of Aurora 

B or INCENP, members of the CPC and SAC, did not exhibit differences in localization upon PWWP2A 

depletion (Figure 3.3), indicating that these checkpoints remain unaffected by the loss of PWWP2A. 

Maiato et al. summarized a long list of proteins that have been associated with chromosome 

congression defects, highlighting the fact that a plethora of proteins is involved in mitosis [281]. 

Kinetochore associated protein CENP-E was one of them. Loss of CENP-E has been shown to cause 

misalignment of chromosomes at the metaphase plate and an increase in lagging chromosomes 

[283, 284]. On some metaphase chromosomes, a loss or sliding of signal of CENP-E was apparent 

although only when PW#1 siRNA was used for PWWP2A depletion (Figure 3.4). Likewise, also some 

chromosomes were not properly connected at the centromere anymore when treated with PW#1 

siRNA, indicating a loss of chromosome cohesion. After DNA replication the multi-protein complex 

cohesin mediates cohesion of sister chromatids until onset of anaphase. Making use of an inducible 

PWWP2A knockout cell line may contribute to understand whether this is due to an off-target effect 

of the siRNA. Defects in chromosome congression are often linked to aneuploidy, accompanied by 
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chromosome missegregation. Moreover, some other proteins mentioned to be involved in 

chromosome congression, such as Aurora B and Bub1, were tested in IF, but did not display any 

obvious impairment or led to inconclusive results.  

On mitotic chromosomes, PWWP2A binds to distinct regions on the chromosome arms. 

Interestingly, localization of PWWP2A is absent at the centromeric region (Figure 3.4). The absence 

of PWWP2A at centromeres is in agreement with the heterochromatin composition of these regions 

marked by satellite repeat DNA to which PWWP2A generally does not locate according to ChIP-seq 

[121, 285]. Hence, PWWP2A seems not to interfere with the kinetochore and is likely not involved in 

the stability of the chromosome. 

One other possibility by which PWWP2A mediates mitosis progression involves the regulation of 

genes that jointly ensure the formation of necessary cellular conditions for chromosome 

segregation. Indeed, PWWP2A depletion leads to the deregulation of around 600 genes, many being 

involved in metabolism or in actin- and tubulin-related processes [121]. Intriguingly, tubulin as well 

as actin are both involved in mitosis [256-258]. Proposedly, actin filaments are crucial for cleavage 

furrow formation and cytokinesis and loss of actin prevents centrosome separation thereby leading 

to a chromosome segregation delay [257, 286]. Interestingly, although microtubules were formed, 

they exhibited a slightly abnormal morphology with tubulin fibres appearing less directed when 

PWWP2A was depleted (Figure 3.2). This is in line with the observation, that chromosomes are 

indeed pulled towards the spindle poles. Likewise, actin fibres were perturbed in morphology as 

indicated by thicker actin filaments and the emergence of stress-like fibres (Figure 3.6). Among the 

genes that were deregulated upon PWWP2A and involved in actin and tubulin regulation were 

CAPZA1, TPGS2, PREX1, VASP and ANTXR1 (Figure 3.5, [121]). Analysis of H3K27ac and H2A.Zac levels 

of sites in close proximity to these genes remained largely unaffected by PWWP2A depletion, 

indicating that there is no link between the mitosis phenotype and the site-specific increase in 

acetylation. Interestingly, CAPZA1 and VASP perform antagonistic counteracting activities and 

balance actin filament growth [287]. While CAPZA1, characterized as the cap of growing actin 

filaments, was downregulated, VASP, which promotes actin filament elongation, was upregulated 

upon PWWP2A depletion, indicating a possible cause for the perturbed actin filament morphology 

[288]. Moreover, CAPZA1 is linked to tubulin stability, as siRNA-mediated knockdown of CAPZA1 led 

to a reduction in stable microtubuli and is thus needed for microtubule stability [289]. As CAPZA1 

seems to be a fundamental target of PWWP2A, it is of interest to examine if depletion of CAPZA1 

leads to a PWWP2A-resembling phenotype. Knockdowns using siRNAs specific for CAPZA1 should be 

applied and live-cell imaging and immunofluorescence approaches performed. This may validate if 
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the mitotic phenotype is correlated with a PWWP2A-CAPZA1 interconnection. Since actin is required 

for cell migration, deregulation of its polymerization upon PWWP2A depletion can also provide an 

explanation for the neural crest stem cell migration defects during Xenopus development. To identify 

a potential aberration in cell migration, a scratch assay after PWWP2A and CAPZA1 knockdown 

should be performed. With the help of a scratch assay, one can determine the rate of gap closure 

after the removal of a physical barrier using live cell microscopy [290]. In a previous study migration 

rate was increased upon CAPZA1 depletion in gastric cancer cells while overexpression of CAPZA1 

had the opposite effect [291]. The regulation of gene expression might contribute to the phenotypes 

but may not be its only determinants. 

There is a plethora of proteins involved in the regulation of mitosis and the list of associated proteins 

is far from exhausted. Of note is that also the Xenopus phenotype upon PWWP2A is not understood 

either and one should focus on proteins that participate in mitosis as well as cell migration and/or 

differentiation [121]. Strikingly, most phenotypes caused by H2A.Z depletion in different models 

exhibit similarities to the mitotic defects observed when PWWP2A is deleted in HK cells but also to 

the Xenopus phenotype, proposing that PWWP2A might serve as mediator in H2A.Z-dependent 

processes in a yet mechanistically unknown manner. In yeast, lack of H2A.Z leads to a defect in 

chromosome stability and segregation [132, 292, 293]. Likewise in human cells, knockdown of H2A.Z 

leads to a chromosome segregation defect [178]. In DT40 chicken cells, an inducible double knockout 

of both H2A.Z isoforms resulted in a chromosome segregation and progression defect with aberrant 

tubulin fiber and mitotic spindle formation and an increase in micronuclei formation as well as in the 

apoptotic cell population [141]. RNAi-mediated loss of H2A.Z in Xenopus laevis impaired cell 

movement leading to mesodermal and neuronal crest development issues [136, 137], a phenotype 

featuring parallels to the phenotype in Xenopus upon PWWP2A depletion. The frog phenotype is 

dependent on binding of PWWP2A to H2A.Z as a construct lacking the IC domain, which is the H2A.Z 

binding domain within PWWP2A, could not rescue the head malformation phenotype in Xenopus 

[121]. Moreover, upon H2A.Z depletion during mouse neuronal development some of the most 

downregulated genes were the ones involved in microtubule cytoskeleton organization [175]. The 

occurrence of mitotic defects upon H2A.Z loss among different species, hints towards a rather 

evolutionary conserved mechanism by which H2A.Z influences mitosis. Histone variant H2A.Z is 

implicated in the regulation of genome stability providing a possible mechanistic explanation for the 

phenotypes occurring when H2A.Z is depleted. The amount of H2A.Z dramatically increases at the 

centromere but also at subtelomeric regions when cells enter mitosis [177]. Further, H2A.Z 

contributes to a specialized 3D structure of the centromere and adjacent pericentromeric regions, 

which is essential in anaphase for faithful chromosome segregation [161, 178]. With PWWP2A and 
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H2A.Z both being involved in mitosis regulation, and PWWP2A serving as a recruiter for certain 

proteins or protein complexes, it is tempting to speculate that loss of PWWP2A or H2A.Z leads to a 

loss of recruitment of chromatin binders to specific chromatin sites. The latter are then unable to 

fulfil their function and e.g. cellular processes cannot be activated anymore. Particular focus of future 

experiments needs thus to be placed on whether phenotypes are truly conferred trough the 

interplay of PWWP2A and H2A.Z. FRAP experiments indicated, that the deletion of the H2A.Z-

interacting domain within PWWP2A indeed impairs PWWP2A’s chromatin binding ability (Figure 

3.10). Hence, the effect of H2A.Z depletion on PWWP2A needs to be assessed. Technically it is 

extremely challenging to obtain cells in which both H2A.Z alleles (H2AFZ and H2AFV) are depleted. 

Thus, many studies focus on only one of the H2A.Z isoforms. As H2A.Z is essential in higher 

eukaryotes and others had failed to generate H2A.Z ko mESCs before [170], best an inducible double 

knockout of H2A.Z should be generated. Our collaborators from Masahiko Harata’s group (Tohoku 

University, Japan) developed a tetracycline-inducible H2A.Z double knockout system in DT40 chicken 

cells [141], which may aid to shed light on PWWP2A’s dependence on H2A.Z. Although PWWP2A 

seems to be highly dependent on H2A.Z, PWWP2A does not affect H2A.Z’s chromatin association 

and genome-wide occupancy as assessed by FRAP and ChIP-seq, respectively (Figure 3.7, 3.8, 3.9). 

 

Hints from the PWWP2A interactome 

Furthermore, also interactors of PWWP2A may provide missing explanations for the observed 

phenotypes upon PWWP2A knockdown. Notably, some proteins, such as RAI1, HMG20A, TCF20, 

PHF14, PHF20L1, ZNF512B and M1HR members, were previously also identified to bind H2A.Z, while 

other proteins are PWWP2A-specific interactors: PWWP2B, ATRX, DAXX, MDC1 ([121], Figure 3.13). 

Interestingly, phenotypes upon depletion of some of the above mentioned PWWP2A interactors 

bear similarities to the PWWP2A-associated phenotypes. With PWWP2A hypothetically serving as a 

platform for proteins or protein complexes to H2A.Z, loss of PWWP2A will likely impair recruitment 

of the latter. 

PWWP2A specifically interacts with members of a RAI1 complex, containing RAI1, TCF20 (also known 

as SBPB), PHF14 and HMG20A (also known as iBRAF) proteins (Figure 3.13), and that was first 

identified as a H3K4me-repelling complex by the Mann laboratory [294, 295]. Interestingly, each 

member of the RAI1 complex not only has been found to interact with PWWP2A as well as H2A.Z but 

also has implications in neuronal development, providing a possible explanation for the observed 

defect in neural crest development. As depletion of PWWP2A in Xenopus results in defects during 

neuronal crest development and perturb cerebellar development, a possible interplay between 
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PWWP2A and RAI1 complex could provide explanations for the neuronal phenotype observed in 

Xenopus upon PWWP2A knockdown. RAI1 is highly conserved among vertebrates and its deletion or 

mutation in humans is linked the neuronal developmental disorders Smith–Magenis syndrome as 

well as Potocki–Lupski syndrome [296]. Both syndromes are characterized by neurodevelopmental 

and behavioral symptoms. A study in Xenopus indicates that loss of RAI1 principally affects neural 

crest development and proper cartilage formation and features aberrant neural crest migration 

[297]. Like PWWP2A, RAI1 is thus implicated in craniofacial and neural development. As RAI1 

expression during development is induced by retinoic acid [297], using an inducible PWWP2A mESC 

system and neuronal differentiation techniques utilizing retinoic acid may shed light on PWWP2A’s 

function. RAI1 and TCF20 feature a high sequence similarity and are structural paralogues [298]. 

TCF20 functions as transcriptional coactivator and is associated with craniofacial development and 

mental diseases such as autism and schizophrenia [299-301]. PHF14 is linked to Dandy-Walker-

syndrome, a disease of the central nervous system [302]. Moreover, knockdown of PHF14 led to a 

prolonged mitosis with misaligned chromosomes, incomplete separation of chromatids in anaphase 

and defects in spindle organization [303].  

Another possible candidate, involved in mitosis regulation and interacting with both PWWP2A and 

H2A.Z, represents MTA1 (see also 4.2), member of the M1HR NuRD complex. Overexpression of 

MTA1 in MCF7 and HC11 cancer lines leads to an abnormal spindle formation with an increased 

number of cells exhibiting more than three centrosomes [304]. The occurrence of more than two 

spindle poles was also observed for HK cells upon PWWP2A depletion but was not further statistically 

evaluated. Further, it was shown via IF, that cytoplasmic MTA1 localizes to microtubules [305]. As 

assessed by a wound healing assay, also referred to as scratch assay, loss of MTA1 in human and 

cancer cells resulted in a significantly lower ability to migrate [306, 307]. Given the observed defect 

in neural crest cell migration and differentiation in Xenopus upon PWWP2A depletion [121], a scratch 

assay experiment should be employed in HK cells upon PWWP2A as well as MTA1 knockdown. 

Moreover, F-actin staining using phalloidin showed altered actin fiber morphology in human cancer 

cell lines treated with MTA1 shRNA [307]. This finding is similar to the changed actin fiber 

morphology upon PWWP2A knockdown (Figure 3.6), although the phenotypes are not identical. 

Generally, a possible correlation between PWWP2A and MTA1 phenotypes upon respective 

knockdowns needs to be determined (see also 4.2). One other possibility is that indeed gene 

expression changes contribute to the observed phenotypes upon PWWP2A depletion and that these 

transcriptional alterations are, at least in part, due to M1HR (HDAC) influenced changes in histone 

acetylation. But, one must keep in mind that our MS/MS analyses revealed several other PWWP2A 

interacting proteins, of which many are also found in H2A.Z pulldowns, while some others seem to 
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be PWWP2A-specific. As most of the other binding factors are also able to influence or act on 

chromatin structure, and some have been shown to influence normal brain development [294], it is 

likely that they all may contribute, to a different extent, to mitotic progression and cranial-facial 

development. 

Besides interactors of H2A.Z and PWWP2A, also PWWP2A-specific binders may provide explanations 

for loss of PWWP2A-mediated phenotypes. Mediator of DNA-damage checkpoint protein 1 (MDC1) 

interacts with the APC and knockdown of MDC1 resulted in a metaphase arrest due to impaired 

ubiquitin ligase activity of the APC towards cyclin A and B1 [308, 309]. Despite similarities between 

the phenotypes upon MDC1 or PWWP2A knockdown with cells being unable to proceed to anaphase 

the mitosis phenotype, in terms of PWWP2A this is more likely due to a defect in chromosome 

congression. Moreover, PWWP2A-interactor ATRX is important for mitosis. ATRX forms a complex 

with DAXX that serves as a histone chaperone depositing H3.3 at heterochromatic regions. Cells 

exhibit a defect in chromosome congression with misaligned chromosomes at metaphase and 

defective sister chromatid cohesion when ATRX is depleted [310]. 

Future studies regarding changes in gene expression in Xenopus development upon PWWP2A 

depletion will assess whether the observed mitotic defect in HK cells and the defect in cranio-facial 

development in Xenopus are interconnected or are based on different molecular pathways. 

Continuative experiments such as RNA-seq during Xenopus development need to be employed to 

gain further knowledge regarding this phenotype. Likewise, putting loss-of-PWWP2A-studies into 

other systems, like mESCs, in which additionally differentiation into different lineages can be traced, 

will contribute to a clearer understanding of the individual phenotypes. The faithful differentiation 

into the three germ layers should be validated by using lineage markers. Here, a special focus on 

differentiation into ectoderm and subsequent neuronal lineages may aid to understand the cell 

differentiation in Xenopus.  

 

4.2 Probable functions of PWWP2A in NuRD recruitment and histone deacetylation 

PWWP2A – a repellant of NuRD remodeling activities? 

PWWP2A is a multivalent chromatin binder that is involved in cell cycle progression and 

transcriptional regulation [121]. Based on homology searches, it is highly unlikely that PWWP2A has 

any enzymatic activity by means of any of its domains, raising the question of how PWWP2A is able 

to affect gene expression. Hypothetically, PWWP2A may act as a recruiter, mediating the binding of 

other chromatin modifying proteins or complexes to H2A.Z-containing nucleosomes. PWWP2A-
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specific interactors were determined via nChIP-MS and among the potential candidates were MTA1, 

HDAC2, RBBP4 and RBBP7, members of the NuRD complex (Figure 3.13). Typically, NuRD combines 

both chromatin remodeling and histone deacetylase activities [271]. The canonical NuRD complex is 

composed of a chromatin remodeling subcomplex, containing CHD3/4, MBD2/MBD3 and 

GATA2A/GATA2B and a histone deacetylase subcomplex, comprising HDAC1/2, MTA1–MTA3 and 

RBBP4/RBBP7 [67]. Strikingly, PWWP2A only interacted with members of the histone deacetylase 

subcomplex but not with chromatin remodeling subcomplex members. For the mammalian system, 

PWWP2A seems to be the first protein found to be associated solely with the deacetylase 

subcomplex. Recently, drosophila p55 (RBBP4/7 in mammals), MTA1 and Rbd3 (HDAC2 in mammals) 

were described to be part of also called “PMR”-NuRD subcomplex, a preinitiation complex containing 

proteins that first associate when the NuRD complex assembles [272]. According to structural studies, 

mammalian NuRD consists of two HDAC1s and four RBBP4/7s that bind a dimer of MTA1, implying a 

MTA, HDAC and RBBP ratio of 2:2:4, and form a core NuRD whereby MTA proteins serve as scaffold 

around which the other subunits assemble [311-314] (Figure 4.2). As determined by electron 

microscopy, MTA1 dimerizes with HDAC1 and recruits RBBP4 which forms a lobe-like structure 

around the dimer thereby interacting with both MTA1 as well as HDAC1 [313-315]. In line with the 

assumption that MTA proteins represent the scaffold around which the NuRD assembles, depletion 

of all three MTA paralogues constitutes a complete NuRD null [233, 272]. One copy of CHD3/4, 

MBD2/3 and one or two GATAD2A/B in varied compositions mount around this core NuRD and 

MBD2/3 bridges the core NuRD with the chromatin remodeling subcomplex and is essential for a 

stable complex formation. In contrast, Smits et al. suggested a stoichiometry of three MTA1/2/3, one 

HDAC1/2, six RBBP4/7, one CHD3/4, one MBD3 and two GATAD2A/B using a mass spectrometry-

based approach [316].  

 

Figure 4.2: NuRD complex architecture. The NuRD complex contains a histone deacetylase and an ATPase 

subcomplex. Around a dimer of MTA proteins (red), four RBBP (blue) and two HDACs proteins (purple) 
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assemble and form a core MHR NuRD complex. The ATPase subcomplex (gray) consists of MBD2/3, GATA2A/B 

and CHD3/4, where MBD2/3 interaction with MTA1/2/3 bridging the two subcomplexes. 

 

In line with the finding that a stable core NuRD complex exists, components like CHD3/4 as well as 

MBD2/3 are only found transiently associated with or devoid of NuRD [311, 313]. Further, MBD3 

directly interacts with an MTA subunit, indicating that MBD3 may function as a bridge between 

M1HR and the CHD-containing remodeling subcomplex [317]. It is tempting to speculate that 

PWWP2A competes with the MBD proteins for binding to the M1HR module, explaining why MBD, 

GATA and CHD proteins are not enriched in PWWP2A purifications. While MTA proteins are 

exclusively found in NuRD complex, HDAC and RBBP proteins are not restricted to NuRD but are also 

part of other complexes. While HDAC1 and 2 are also present in corepressor for repressor element 

1-silencing transcription factor (CoREST) complexes, RBBPs are moreover associated with ATP-

dependent nucleosome-remodeling factor (NURF) and polycomb repressive complex 2 (PRC2) and 

both protein groups are found in the Swi-independent (SIN3) co-repressor complex. HDAC1 and 

HDAC2 are largely identical in sequence and are able to form homo- as well as heterodimers, which 

are crucial for proper deacetylase function [318]. 

Drosophila “PMR” subcomplex exerts catalytic activity in vitro [272], thus it seems likely, that human 

M1HR fulfils deacetylase function in vivo. Traditionally, HDACs have been described as important 

transcriptional repressors but conversely they also prime genes for successive transcriptional rounds, 

are involved in gene activation and fine-tune transcriptional output [277, 319]. Concordantly, the 

current view of HATs and HDACs implies that they are involved in balancing acetylation states and 

promoting a dynamic acetylation turnover rather than setting static acetylation states [277, 320]. 

HDAC 1 and 2 both localize at promoters of active genes, which correlates with PWWP2A’s as well 

as H2A.Z’s genome-wide occupancy [277]. PWWP2A and H2A.Z are enriched at H3K4me3/H3K27ac-

positive active promoters as well as H3K4me1/H3K27ac-positive active enhancers (Figure 3.12), both 

of which are characteristic NuRD-enriched regions [69, 274]. We speculate that PWWP2A recruits 

HDACs in the context of M1HR complex, to transcriptionally active or bivalent H2A.Z-containing 

regions in order to balance transcriptional output at these sites. Interestingly, it was recently shown 

that also MTA proteins are found at these sites, although sites where only MTA1 (and the core 

deacetylase NuRD) was found and not CHD4 where mostly inactive enhancers, not enriched in 

H3K27ac or H3K4me3 but in H3K4me1 [233]. Purified RBBP4 and RBBP4-MTA1 complex exhibited 

enhanced affinity for H3K27me3 and H3K27ac peptides indicating that, additionally to recruitment 

by PWWP2A, NuRD can also be tethered by RBBP4 to chromatin [313]. Moreover, it was previously 

that shown H3K27ac levels correlate with the activity of the NuRD complex [273, 274]. In mESCs, 
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NuRD is thought to deacetylate H3K27ac to allow subsequent methylation of H3K27me3 by PRC2 

[72, 273, 321]. Typically, also H2A.Z occupies H3K27ac-enriched sites and H2A.Zac is found at these 

sites as well [156, 199, 200]. Of note is the finding that PWWP2A co-occupies H3K27ac as well as 

H2A.Zac regions (Figure 3.12, 3.14). Concordantly, H3K27ac and H2A.Zac constitute valid targets for 

NuRD/M1HR-mediated histone deacetylation. Strikingly, loss of PWWP2A led to a site-specific 

increase in acetylation on H3K27 and H2A.Z levels at 566 sites that are usually likewise occupied by 

PWWP2A and H2A.Z (Figure 3.15). The changes in acetylation levels occurred at defined regions, 

primarily at distal intergenic regions such as enhancers (Figure 3.16). Enhancers are thought to 

modulate the expression of nearby genes, nonetheless, the exact gene targets of enhancers are 

difficult to determine [279]. To assess whether the changes in acetylation at promoters and 

enhancers are likewise reflected by changes in gene expression, expression levels of selected genes 

near differentially acetylated sites were examined. Notably, two different classes of genes/loci were 

detected. While for some genes the increase of acetylation levels on H3K27ac and H2A.Zac caused 

an upregulation of expression of a nearby gene, exemplified by CCL5 and FST, other genes such as 

ZNF19 or B3GALTN2 remained unchanged (Figure 3.19). This observation is in line with previous 

findings that NuRD is more likely involved in balancing acetylation states thereby fine-tuning gene 

expression [72, 322]. Consistently, an emerging model proposes that NuRD promotes turnover of 

acetyl groups primarily at enhancers but likely also at promoters, resulting in fine-tuning of 

transcriptional output [72]. Moreover, recently it was shown, that first changes in gene expression 

occur which are consequently followed by changes in H3K27ac levels [274]. Concordantly, it had 

already been proposed earlier that not the acetylation mark itself, but the dynamic turnover and 

hence the dynamic interplay of proteins involved in acetylation and deacetylation is most important 

in the regulation and activation of transcription [320]. Conclusively, PWWP2A not only binds to TSSs 

but also to regulatory regions, both of which are also co-occupied by H2A.Z, and presumably 

functions as a M1HR-specific recruiter to H2A.Z-containing thereby contributing to balancing 

chromatin acetylation levels of H3K27ac and H2A.Zac at a subset of genomic sites and finetuning of 

specific gene expression (Figure 4.3). Depletion of PWWP2A may lead to improper recruitment of 

M1HR and the histone deacetylase activity encoded by the HDAC. In agreement with the hypothesis 

of PWWP2A serving as recruiter of M1HR to H2A.Z-enriched chromatin is the finding that H2A.Z is 

involved in activation and repression of transcription recruitment of activating and repressive 

complexes, to keep genomic regions accessible [323]. For example, H2A.Z promotes binding of PRC 

complexes during mESCs differentiation and NuRD-mediated deacetylation of H3K27ac has been 

identified as prerequisite for trimethylation of H3K27 by PRC2 [144, 166, 273].  
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Figure 4.3 Schematic depiction of M1HR-NuRD mediated deacetylation of H3K27 and H2A.Zac at enhancers and 

promoters. M1HR is recruited to H2A.Z-containing enhancer and promoter regions via PWWP2A. HDAC1/2 

proteins within M1HR mediate deacetylation of H3K27ac and H2A.Z ac at these sites. Possibly, H3K27ac and 

H2A.Zac may also be found at two adjacent nucleosomes. 

 

So far, it is not clear, what other additional features contribute to gene activation or regulation, but 

it is likely that some genes are more prone to changes in histone acetylation than others. Possibly 

the genomic location of the regulatory region has an influence, or, alternatively, acetylation changes 

regulate other more distant genes. More future work on chromatin architecture changes upon 

PWWP2A depletion will aid in understanding PWWP2A’s role in transcriptional regulation. Chromatin 

conformation capture (Hi-C) experiments upon PWWP2A knockdown can provide answers to the 

question on which enhancer regulates which gene by mapping the spatial genome organization [324, 

325]. Besides solely Hi-C, also Chromatin Interaction Analysis with Paired-End Tag sequencing (ChIA-

PET), a combination of Hi-C and ChIP-seq, could be applied to identify long-range interactions of 

PWWP2A with DNA [326]. Enhancers are frequently transcribed to ncRNAs and eRNAs which are 

both able to influence transcription. Application of specialized RNA-seq techniques such as random 

displacement amplification sequencing (RamDA-seq) after PWWP2A depletion may identify 

misexpression of ncRNAs or eRNAs which are not detected by conventional RNA-seq techniques 

[327]. Moreover, H2A.Z and DNA methylation is anti-correlated at TSS and gene bodies [149, 150]. 

This is in line with the observation that enhancers are hypomethylated but display elevated levels of 

hmC and its oxidized derivates [214, 215, 328, 329]. Hence, it would be of interest to investigate a 

potential correlation of PWWP2A with DNA modifications. 

ATAC-seq revealed only a slight increase in chromatin accessibility at differentially acetylated loci 

upon PWWP2A depletion, indicating that a change in acetylation levels is not sufficient to cause a 

change in chromatin accessibility. Hence, it is likely that chromatin remodeling activity, e.g. executed 
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by a CHD-containing NuRD subcomplex, is relevant for such a change [274]. In agreement with this 

finding, genome-wide H2A.Z occupancy exhibited only subtle changes after knockdown of PWWP2A, 

apparent at PWWP2A-bound as well as -unbound sites, underlining the result that chromatin 

accessibility is not altered and the minimal changes observed are due to the defects in cellular 

progresses. These data moreover show, that PWWP2A is not involved in H2A.Z deposition. As also 

the overexpression of PWWP2A did not affect H2A.Z levels, PWWP2A is not required for proper 

H2A.Z targeting.  

 

Future perspectives regarding the PWWP2A-MTA1-connection 

Different combinatorial assembly of the NuRD subunits enables the formation of mutually exclusive 

NuRD subcomplexes resulting in versatile and diverse specialized functions of the NuRD [65, 330-

334]. Moreover, several proteins, e.g. ZMYND8 and SALL4, are known to associate with NuRD with 

some, such as DOC1 and LSD1, being considered as bona fide NuRD subunits contributing to the 

diverse flavors of NuRD [69, 335-337]. In this context, these proteins recruit NuRD to genome-wide 

targets thus regulating NuRD’s functions. Although, due to its deacetylase function, NuRD was 

originally defined as transcriptional co-repressor complex, several studies hint towards a wide 

functional spectrum of the NuRD including transcriptional activation or balancing and fine-tuning 

transcriptional output [72, 274, 322, 330, 338, 339]. It is thus likely that various NuRD complexes are 

targeted by multiple mechanisms to chromatin, with PWWP2A being one recruitment factor specific 

for M1HR. While MTA1 acts as the scaffold protein during NuRD assembly, PWWP2A presumably 

serves as recruiter for M1HR to H2A.Z-containing chromatin. MTA proteins are found solely in and 

have been reported to form mutually exclusive distinct NuRD complexes [340-343]. To test the 

hypothesis, whether PWWP2A is indeed crucial for recruitment of M1HR, genome-wide occupancy 

of MTA1 but also HDAC1 and RBBP4/7 upon PWWP2A knockdown should be determined via ChIP-

seq. Due to the lack of a good ChIP-applicable antibody for MTA1, GFP-tagged MTA1 needs to be 

cloned and stable HK cells generated. Such stable transfectants can also be used for FRAP 

experiments, assessing whether MTA1’s chromatin association changes when PWWP2A is depleted. 

To gain deeper insights into the PWWP2A-MTA1 connection, preliminary experiments were 

performed with focus on MTA1 function. Similar to PWWP2A, MTA1 does not execute any enzymatic 

activity and its functional role is still largely elusive. Most studies focus only on MTA1’s role in cancer 

as the upregulation of MTA1 is associated with metastasis and poor cancer prognosis [344]. First, it 

was validated, whether siRNAs faithfully decreased expression levels of MTA1. Indeed, knockdown 
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of MTA1 in HK cells using two different siRNAs (MTA1#1, MTA1#2) downregulated expression of 

MTA1 on mRNA as well as on protein level (Figure 4.4). 

 

 

Figure 4.4 RNAi-mediated knockdown of MTA1 is efficient. A. RT-qPCR showing relative expression of MTA1 two 

days after control (wt, Luci) or MTA1 (MTA1#1, MTA1#2) siRNA-mediated knockdown. Shown is the fold-

change of three replicates normalized to HPRT expression. Error bars depict SEM (n=3). B. Representative 

immunoblot of HK cell extracts two days after control (wt, Luci) or MTA1 (MTA1#1, MTA1#2) knockdown with 

antibodies against MTA1 and H3, as loading control. 

 

Investigation of changes in expression levels upon MTA1 knockdown via RNA-seq and the 

comparison to the RNA-seq data after PWWP2A knockdown may identify commonly regulated 

genes.  

Depletion of PWWP2A increased the acetylation of H3K27ac and H2A.Zac at 566 loci but did not 

affect global acetylation levels (Figure 3.15, 3.17). Preliminary experiments showed that also loss of 

MTA1 did not influence global H3K27ac and H2A.Zac levels (Figure 4.5). Accordingly, it will be 

interesting to determine whether the knockdown of MTA1 features a phenotype similarly to that of 

PWWP2A at the 566 differentially acetylated sites. Therefore, respective H3K27ac and H2A.Zac 

nChIPs upon MTA1 knockdown followed by qPCR need to be executed. Interestingly, MTA1-NuRD 

has also been shown to be involved in non-histone deacetylation [345-347], indicating that histones 

may be not the only or the incorrect target. For example, the acetylation status of transcription 

factors may influence their gene regulatory activities [348, 349], therefore, loss of PWWP2A and 

consequent delocalization of a fraction of HDAC1/2 might lead to changes in transcription factor 

acetylation and explain the observed upregulation as well as downregulation of genes. Hence, 

validation and identification of PWWP2A-M1HR deacetylation targets need to be ascertained. To this 

end, protein acetylation levels before and after PWWP2A depletion could be assessed using mass 

spectrometry-based approaches [350-352]. 
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Figure 4.5 Depletion of MTA1 does not influence global H3K27ac or H2A.Zac levels. Representative immunoblots 

of extracted histones from HK cells two days after control (wt, Luci) or MTA1 (MTA1#1, MTA1#2) knockdown 

with antibodies against H3K27ac (left) or H2A.Zac (right), and H3 respectively. H3 served as loading control. 

 

Surprisingly, preliminary data from MTA1 knockdowns indicated that the depletion of MTA1 slightly 

increased PWWP2A’s mobility, indicating that MTA1 influences PWWP2A’s association with 

chromatin (Figure 4.6). Hypothetically, MTA1 might be involved in maintaining PWWP2A’s stability 

by so far unknown mechanisms. MTA1 was found to control the stability p53 and HIF-1α by inhibiting 

its ubiquitination or recruiting HDAC1, respectively [346, 353]. 

 

 

Figure 4.6 MTA1 slightly influences PWWP2A’s chromatin binding ability. (A) Confocal microscopy images before 

and after half-nucleus photobleaching and (B) FRAP quantification curves of average GFP signal relative to 

fluorescence signal prior to bleaching from HK cells stably expressing GFP-PWWP2A two days after control (wt, 

Luci) or MTA1 (MTA1#1, MTA1#2) knockdown (n=6-11). Scale bar = 5 µm. 

 

Eponymous, MTA expression is upregulated in several cancer cell lines and tissues and is well 

correlated with metastasis potential [342, 354]. Depletion of MTA1 or MTA3 does not affect the 

viability or fertility of mice, while mice lacking MTA2 exhibit immune defects and are partially 

embryonic lethal [355, 356]. mESCs devoid of one of the MTA paralogues or all three MTA’s exhibit 

normal morphology although MTA triple knockout cells are unable to maintain lineage and gene 

expression in a lineage-appropriate manner during differentiation [233]. In somatic cells, MTA 

proteins have been described to be mutually exclusive [340], while in mESCs they perform redundant 
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functions [233]. If all three MTA proteins are knocked out, the NuRD is unable to assemble and mESCs 

are unable to undergo neuroectoderm differentiation although MTA1 ko mice are viable [233]. As 

neuroectoderm gives rise to the neural tube and neural crest, it is tempting to speculate, that the 

defects in neural crest differentiation and migration observed in Xenopus upon PWWP2A depletion 

are due to unfaithful MTA recruitment. Studies deciphering functional aspects of NuRD are mostly 

conducted in mESCs and make use of differentiation techniques. The advantage of this system 

includes that developmental changes in chromatin can be easily followed. Given the significance of 

NuRD in mESCs as well as the defect in neural crest cell differentiation in Xenopus upon PWWP2A 

loss, the effect of PWWP2A depletion in mESCs and during differentiation should be assessed. 

Moreover, also H2A.Z is implicated in developmental processes and is present for example at poised 

enhancers in mESCs to regulate pluripotency and lineage differentiation [144, 209, 216]. Thus, loss-

of-function studies of H2A.Z and PWWP2A in mESCs and during differentiation into different 

lineages, with special focus on neuronal lineage would aid in better understanding the function of 

PWWP2A as well as the H2A.Z-PWWP2A-M1HR connectivity. With the help of inducible PWWP2A 

knockout cell lines one could monitor in which stage of differentiation PWWP2A is crucial. 

Differentiation into different lineages with the help of specialized protocols, with a special focus on 

the neuronal ectoderm lineage, in combination with MTA1 and H2A.Z ChIP-seq to test for proper 

recruitment of M1HR to H2A.Z, may contribute to understand a potential PWWP2A-driven NuRD 

role in developmental processes. It is tempting to speculate that PWWP2A recruits M1HR-NuRD, to 

transcriptionally active or bivalent H2A.Z-containing regions in mESCs and during differentiation in 

order to balance transcriptional output at these sites. 

 

4.3 Multivalent chromatin binder PWWP2A localizes to different chromatin features genome-

wide 

PWWP2A is a multivalent chromatin binding protein, exerting its exceptional strong binding by 

means of its different domains. These binding modes have been determined by in vitro approaches 

rendering its functions enigmatic [121, 228]. Novel genome-wide enrichments of PWWP2A at 

enhancers as well as at gene bodies were identified by reanalysis of ChIP-seq data (Figure 4.7). 

Colocalization of PWWP2A with H3K27ac and H2A.Zac at regulatory regions is presumably conceived 

through interaction of PWWP2A with H2A.Z which is likewise found at these regions (Figure 3.12). 

Binding of PWWP2A to enhancers and promoters is thus highly dependent on its strong interaction 

with H2A.Z likely through PWWP2A’s IC region. At H3K36me3-containing, actively transcribed gene 

bodies, which lack H2A.Z by definition, weak binding of PWWP2A was observed (Figure 3.11). In vitro, 
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only a construct containing S and PWWP domains but not full-length PWWP2A was able to 

precipitate H3K36me3 (data from Ramona Spitzer, [228]). PWWP2A interaction with H2A.Z seems 

to be dominating over binding to H3K36me3. When deleting the H2A.Z-binding domain within 

PWWP2A, FRAP experiments indicated PWWP2A is less strong associated with chromatin (Figure 

3.10), arguing that although binding of PWWP2A to chromatin is dependent on H2A.Z, it is not its 

only determinant. Further, in an in vitro binding assay deletion of the IC domain led to a reduction in 

H2A.Z interaction, while binding to H3K36me3 is enhanced (data from Ramona Spitzer, [228]). 

Performing ChIP-seq using the ΔIC deletion construct may be used to address whether PWWP2A’s 

binding to H3K36me3 sites on a genome-wide basis indeed increases. Moreover, when binding of 

PWWP2A to H2A.Z is impeded, it is tempting to speculate, that so far unknown binding sites may be 

unraveled. The different binding modes of PWWP2A may be explained by conformational changes 

that PWWP2A undergoes. Obtaining structural data on PWWP2A will shed further light on 

PWWP2A’s differential binding modes and its possible conformations. 

 

 

Figure 4.7 Model of PWWP2A binding to different chromatin states. PWWP2A binds to different chromatin 

states via distinct domains. It binds to H2A.Z-containing enhancer regions which may also be enriched in 

H2A.Zac and H3K27ac. At promoter regions, PWWP2A localizes at the -1 and the +1 nucleosome, where also 

H2A.Z resides, around the TSS of actively transcribed genes. Further PWWP2A weakly interacts with 

H3K36me3-containing gene bodies. 
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Consistently, PWWP2A’s localization so far correlates only with rather active chromatin states. Using 

MNase-digested chromatin for ChIP may cause a bias towards nucleosomal regions associated with 

active transcription and an open chromatin conformation which are more accessible for MNase. 

Hence, regions that are nucleosome-free or densely packed nucleosomal regions such as 

heterochromatin might not be unveiled. Therefore, testing other ChIP approaches such as 

crosslinked ChIP may reveal additional PWWP2A binding sites across the genome. Whether histone 

variant H3.3, which is found at active regulatory regions together with H2A.Z, colocalizes with 

PWWP2A on a genome-wide basis, still needs to be determined by utilizing H3.3 ChIP-seq [144-146, 

156, 166]. A possible preference for this variant over canonical H3 or the other variant may be 

determined using in vitro approaches. ChIP-seq in synchronously growing cells as well as in other cell 

types may contribute to understand whether PWWP2A binds different chromatin modes in a cell 

cycle or cell specific dependent manner, respectively. 

 

4.4 Consensus and discrepancy between different PWWP2A studies 

In the final stages of writing this thesis, a new study on PWWP2A was published [357]. The efforts 

from the Brockdorff lab largely confirm the findings regarding PWWP2A presented in this thesis and 

previously shown by our lab [121, 228]. All studies characterize PWWP2A as an H3K36me3-

interactor, exerting binding by means of its PWWP domain. Consistent with Zhang et al., we have 

also identified PWWP2B as an interactor of PWWP2A but did not investigate the protein further. 

Also, the interaction of PWWP2A with a specific M1HR module as well as an increase in acetylation 

levels and a deregulation of gene expression when PWWP2A is depleted was uncovered. The main 

difference exists in the genome wide binding pattern of PWWP2A: In the study by Zhang et al., 

PWWP2A was predominantly enriched at H3K36me3-containing gene bodies and a small population 

of PWWP2A was additionally found at poised enhancers. In our hands, only as small fraction of 

PWWP2A is binding to H3K36me3-containing and H2A.Z-depleted gene bodies, while the vast 

majority of PWWP2A is found colocalizing with H2A.Z at the TSS and regulatory regions. Interestingly, 

the ChIP-seq profiles of PWWP2B featuring promoter and enhancer enrichment instead match the 

PWWP2A ChIP-seq profiles from our group. The obvious discrepancy concerning the ChIP-seq data 

from the two studies can be due to several reasons. Firstly, Zhang et al. employed mESCs as their 

model system, although stably expressing FLAG-tagged human PWWP2A, while our lab made use of 

HK cells. Secondly, and most certainly fundamentally different, the experimental procedures of ChIP 

vary. Zhang et al. used double-crosslinked ChIP, in which proteins are chemically crosslinked onto 

DNA followed by sonication to fragment chromatin. In contrast, our lab applied nChIP and so far, I 
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was unable to ChIP PWWP2A from formaldehyde-crosslinked material as PWWP2A was degraded in 

the course of sonication. It seems reasonable that, by utilizing crosslinked ChIP, also transient binding 

events are captured. Presumably, PWWP2A binds only weakly to H3K36me3-enriched genomic 

regions which may be overrepresented after double-crosslinked ChIP. Still, it remains to be 

elucidated, why PWWP2A promoter binding is absent in this experimental setting. It is thus tempting 

to speculate, that binding of PWWP2A to H2A.Z-containing promoters and enhancers is superior to 

gene body binding. Notably, PWWP2A/B DKO mESCs displayed an increase in RNAPII binding at 

promoter-proximal regions, indicating enhanced RNAPII pausing, as well as an increase in elongating 

RNAPII. In general, nucleosomes act as barriers for transcriptional elongation and cause stalling of 

RNAPII [155, 358]. Incorporation of H2A.Z particularly at the +1-nucleosome position relieves the 

strong nucleosomal barrier and enhances RNAPII efficiency [109]. As H2A.Z has been shown to be 

involved in the recruitment of RNAPII, and PWWP2A possibly serves as recruiter for transcription 

factors to H2A.Z sites, the observed phenotype by Zhang et al may possibly be mainly regulated by 

H2A.Z [157]. The connection between RNAPII and PWWP2A still needs to be further elucidated.  

Although not entirely congruent in all aspects, all in all, recent studies on PWWP2A agree in 

important findings and underline the importance of PWWP2A in chromatin-related processes. 

Future studies will shed light on the correlation of the paralogues PWWP2A and PWWP2B and will 

aid to understand how PWWP2A-M1HR functions in terms of transcriptional regulation. 
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