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I. Introduction                 1 

I. INTRODUCTION 

Emerging respiratory coronaviruses such as the severe acute respiratory 

syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome 

coronavirus (MERS-CoV) have caused worldwide epidemics with high 

morbidity, mortality and economic losses. MERS-CoV was first described in 

2012 as a novel infectious agent causing severe and often fatal respiratory 

disease in humans. Up to date a total of 2279 confirmed cases with a fatality 

rate of 35% have been reported. Most of the epidemics are located in the 

Arabian Peninsula. In that context, dromedary camels are suspected to be the 

most important animal reservoir leading to zoonotic infections in humans. So far 

there are no therapeutics or candidate vaccines licensed. Most efforts in 

vaccine research against MERS-CoV focused on the viral spike (S) protein, 

which mainly elicits neutralizing antibody response. In contrast, there is still 

relatively little known about the role of T cell responses directed against MERS-

CoV. Recently published data suggest that both antibody as well as T cell-

based cellular immunity are crucial for viral clearance and recovery from MERS-

CoV infection. Therefore, the highly conserved nucleocapsid (N) protein might 

be a potential target immunogen to elicit MERS-CoV-specific antibodies as well 

as cellular immune responses.  

Modified Vaccinia virus Ankara (MVA) is a highly attenuated and replication 

deficient strain of vaccinia virus that serves as one of the most advanced 

recombinant poxvirus vectors in preclinical research and human clinical trials for 

developing new vaccines against infectious disease and cancer.  

The aim of this project was to evaluate the capacity of a recombinant MVA-

MERS-N candidate vaccine to activate specific T cells in vivo in BALB/c mice 

comparing different immunization routes. For this we analyzed MERS-CoV-N-

specific T cell epitopes by using two-dimensional matrix peptide pools. Indeed, 

the recombinant MVA vector vaccine induced MERS-CoV-N-specific CD8+ T 

cell response. Here, we identified a decamer peptide epitope within the MERS-

CoV N protein activating significant levels of CD8+ T cells. The results from this 

study will allow to elucidate the role of MERS-N-specific T cells for MERS-

vaccine induced protection and also to better understand MERS-CoV 
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pathogenesis in more detail. 
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II. LITERATURE REVIEW 

1. MERS-CoV: a new emerging pathogen  

1.1. Epidemiology 

 

In June 2012, almost ten years after the sudden arise of severe acute 

respiratory syndrome coronavirus (SARS-CoV), another novel virus of the 

family Coronaviridae emerged causing severe respiratory disease and death in 

humans (GRAHAM et al., 2013; COLEMAN & FRIEMAN, 2014): Middle East 

respiratory syndrome coronavirus (MERS-CoV). This novel human coronavirus 

was initially identified and isolated from the sputum of a 60-year-old Saudi man 

succumbing to acute severe pneumonia and renal failure (ZAKI et al., 2012; AL-

TAWFIQ & MEMISH, 2014). The clinical picture of this first MERS-patient 

evoked the SARS-CoV outbreak in 2003 (ZAKI et al., 2012). In September 

2012, a second case of severe acute respiratory illness caused by this novel 

coronavirus was confirmed in the United Kingdom. Here, a 49-year old man was 

transferred to intensive care in London from a hospital in Qatar showing 

symptoms of severe respiratory illness (BERMINGHAM et al., 2012; AL-OMARI 

et al., 2018). The experience gained during the SARS epidemic facilitated the 

rapid development of diagnostic methods for the detection of this new emerging 

pathogen (DROSTEN et al., 2003; BERMINGHAM et al., 2012). Interestingly, 

retrospective analysis revealed that the first recognized cluster outbreak of 

MERS-CoV had already occurred in Jordan in April 2012. Thereby, later 

retesting of blood and respiratory samples confirmed MERS-CoV as the 

causative agent for severe respiratory illness in 13 patients housed in the public 

hospital in Jordan (HIJAWI et al., 2013; AL-TAWFIQ & AUWAERTER, 2019). In 

contrast to the SARS epidemic in 2002/2003, MERS-CoV still continues to 

circulate and to cause disease and infections in humans, mostly linked to 

countries of the Arabian Peninsula, i.e. Jordan, Saudi Arabia, Qatar, Oman and 

the United Arab Emirates. Sporadic cases of MERS-CoV have also occurred in 

Europe, Africa and North America due to travel-associated infections in the 

Middle East. Interestingly, there was a large hospital-associated epidemic in the 
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Republic of Korea in 2015, with 186 confirmed cases of MERS-CoV infections 

and 38 related deaths. The index case of the Korea outbreak was a traveler 

who developed fever after returning from a trip through different countries of the 

Arabian Peninsula. Starting from this first patient, 26 more individuals had been 

infected leading to consecutive nosocomial transmission throughout the 

Republic of Korea (KOREA CENTERS FOR DISEASE & PREVENTION, 2015; 

OH et al., 2018). At present, a total of 2279 laboratory-confirmed cases of 

infections with MERS-CoV, resulting in 806 deaths (35.5%), have been reported 

in about 27 countries according to the World Health Organization (WHO) 

(WORLD HEALTH ORGANIZATION (WHO), 2019b).  

Mechanisms of human-to-human transmission are not yet completely 

understood. However, transmission of the virus most likely occurs via 

respiratory droplet infection and close contact (AL-OMARI et al., 2018). The 

spread of MERS-CoV through the human population is characterized by three 

main features, including sporadic community cases, family clusters and 

healthcare-associated cluster outbreaks. Sporadic community cases are 

presumably acquired from non-human exposure. Family clusters can be traced 

back to contact with an infected family index case (AL-TAWFIQ & MEMISH, 

2016).  Hospital-associated infections are caused by transmission from patients 

and healthcare workers. According to epidemiological data, healthcare facilities 

play a major role in human-to-human transmission of MERS-CoV leading to 

cluster outbreaks. Reasons for the efficient and rapid spread of MERS-CoV 

within healthcare facilities are among other things delayed recognition, 

inadequate hygienic measures or insufficient accommodation of infected 

patients (AL-TAWFIQ & AUWAERTER, 2019). Thus, healthcare workers are 

the main individuals at risk for MERS-CoV infections (ASSIRI et al., 2013b; 

MEMISH et al., 2013; AL-TAWFIQ & MEMISH, 2014). The exact origin of 

MERS-CoV is still unclear, but dromedary camels are considered to be an 

important animal reservoir causing sporadic primary zoonotic infections in 

humans (SONG et al., 2019). High levels of MERS-CoV-specific antibodies as 

well as viral genome could be detected in dromedaries throughout the Arabian 

Peninsula and in Africa (REUSKEN et al., 2013; HAAGMANS et al., 2014; 

MEYER et al., 2014; RAJ et al., 2014a; REUSKEN et al., 2014b; MEYER et al., 

2016). Infection of juvenile and immunological naïve animals with MERS-CoV 
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results in a mild and transient disease of the upper respiratory tract (DURAI et 

al., 2015; MEYER et al., 2016). Furthermore, recent studies showed that 

infected dromedary camels younger than one year of age shed large amounts 

of the virus from the upper respiratory tract (ADNEY et al., 2014). In addition, 

viral ribonucleic acid (RNA) as well as antibodies to MERS-CoV could be 

detected in the milk of lactating camel mares (REUSKEN et al., 2014a). The 

exact mode of zoonotic transmission is still unclear, but human infections may 

be acquired from camels (MEMISH et al., 2014; HUI et al., 2018). 

 

1.2. Taxonomy, molecular biology and life cycle 

 

MERS-CoV, a member of the family Coronaviridae, is assigned to the genus 

Betacoronavirus, which is subdivided into four lineages (A, B, C, D). MERS-CoV 

belongs to the lineage C species together with two phylogenetically closely 

related bat coronaviruses, namely Bat-Coronavirus HKU4 and Bat-Coronavirus 

HKU5 (WOO et al., 2012; CHAN et al., 2015). SARS-CoV is a lineage B 

Betacoronavirus. In contrast to SARS- and MERS-CoV, four other 

coronaviruses are known to cause human infections: human coronavirus 

(HCoV-) 229E, HCoV-HKU1, HCoV-NL63 and HCoV-OC43. Infections with 

these viruses are mainly associated with mild and self-limiting respiratory 

illnesses (FOUCHIER et al., 2004; VAN DER HOEK et al., 2004; PYRC et al., 

2007; WOO et al., 2009).  

Coronaviruses are enveloped, positive-sense single-stranded RNA viruses with 

genomes of 25 to 32 kilobase pairs (kbp) causing various diseases in humans 

and a broad range of animals, including avian species (PERLMAN & 

NETLAND, 2009; GRAHAM et al., 2013). Coronaviruses have the potential to 

cause epidemics in livestock resulting in large economic losses, e.g. the porcine 

epidemic diarrhea virus (PEDV) in swine populations (LAU & CHAN, 2015). 

Similar to other coronaviruses, the 5’-proximal two-thirds of the MERS-CoV 

genome (about 30kbp in size) typically encodes the large replicase-

transcriptase-complex containing 16 non-structural proteins within open reading 

frame (ORF) 1a and 1b. The essential structural proteins spike (S), envelope 

(E), membrane (M) and nucleocapsid (N) are encoded by the remaining 3’ one-
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third of the genome (VAN BOHEEMEN et al., 2012; GRAHAM et al., 2013; 

CHAFEKAR & FIELDING, 2018). In addition to the structural proteins, the 

region downstream of ORF1ab also produces strain specific accessory proteins 

(ORF3, ORF4a/b, ORF5, ORF8b) (GRAHAM et al., 2013). The number, 

genomic organization and the function of these accessory genes are unique to 

the different coronaviruses. In terms of MERS-CoV, the non-structural proteins 

4a and 4b are involved in inhibition of type-I interferon (IFN) signaling pathways 

and double-stranded RNA sensors, which enables evasion from the innate 

immune system (SHOKRI et al., 2019). The coronavirus virion is characterized 

by large protruding spikes on the surface of the virions representing peplomers 

of trimeric S proteins (GRAHAM et al., 2013; CHAN et al., 2015). The single-

stranded RNA genome is sourrounded by N proteins in form of a helical 

nucleocapsid. The viral envelope is composed of the E, M and the characteristic 

S proteins (GRAHAM & BARIC, 2010).  

The membrane-anchored trimeric S protein mediates virus attachment and 

entry into host cells, thereby initiating infection (LU et al., 2013; QIAN et al., 

2013; CHAN et al., 2015). For the MERS-CoV, the S protein consists of the N-

terminal receptor-binding subunit (S1) and the C-terminal S2 subunit, which 

facilitates membrane fusion via conformational changes after cleavage of S1 

and S2 (QIAN et al., 2013). In contrast to all other known coronaviruses, MERS-

CoV uses the human cell surface amino dipeptidyl peptidase 4 (DPP4, also 

known as CD26) as a functional receptor for cell entry (table 1) (GRAHAM et 

al., 2013; RAJ et al., 2013). After identification of DPP4 as the specific MERS-

CoV receptor, the receptor binding domain (RBD) within the S1 subunit has 

been further analyzed. Antibodies against this RBD were shown to efficiently 

neutralize MERS-CoV infection (DU et al., 2013; JIANG et al., 2013; MOU et al., 

2013). 
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Table 1: Coronavirus receptor usage (GRAHAM et al., 2013) 

Host Virus Receptor 

Human HCoV-229E Aminopeptidase N (APN) 

HCoV-NL63 Angiotensin-converting 

enzyme 2 (ACE2) 

HCoV-OC43 Sialic acid moieties 

SARS-CoV ACE2 

MERS-CoV Dipeptidyl peptidase 4 

(DPP4) 

Pig Transmissible Gastroenteritis 

virus (TGEV) 

APN 

Dog Canine coronavirus APN 

Cat Feline coronavirus APN 

Mouse Mouse hepatitis virus (MHV) Carcinoembryonic antigen 

cell adhesion molecule 1a 

(CEACAM 1a) 

 

Following viral entry into the host cell, the viral RNA is released into the 

cytoplasm followed by translation of ORF1a and 1ab to produce two 

polypeptides. Subsequently, proteases encoded by ORF1a cleave these two 

polypeptides resulting in 16 non-structural proteins, which build up the large 

RNA replicase-transcriptase-complex (SONG et al., 2019). In the next step of 

MERS-CoV life cycle negative-sensed RNA copies are produced to serve as a 

template for the production of new viral genomic RNA and for the discontinuous 

transcription of subgenomic messenger RNA (mRNA). Following translation of 

all structural and non-structural proteins, virion assembly takes place within the 

lumen of the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) 

starting with genomic RNA being encapsidated by N protein to form a helical 

nucleocapsid (ZUMLA et al., 2015). After budding of the nucleocapsid into 
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vesicles, which harbor S, M and E proteins, new infectious virus is released via 

exocytosis (ZUMLA et al., 2015; SONG et al., 2019). 

 

1.3. Clinical features and pathogenesis 

 

Clinical manifestations of MERS-CoV infections in humans range from 

asymptomatic or mild respiratory disease to acute respiratory distress syndrome 

(ARDS) and multiorgan failure (YIN & WUNDERINK, 2018). The time from 

infection to onset of disease varies between two to 14 days (SENGA et al., 

2017). The main presenting symptoms are fever, cough, shortness of breath, 

sore throat and myalgia (ASSIRI et al., 2013a; ASSIRI et al., 2013b; CHAN et 

al., 2015). Gastrointestinal symptoms are the most frequent extrapulmonary 

symptoms, including vomiting, diarrhea, nausea and abdominal pain (ASSIRI et 

al., 2013a; CHAN et al., 2015). Hospitalization of MERS-CoV patients 

associated with severe illness and fatal outcome is often linked to comorbidities 

of these individuals, such as diabetes, immunosuppression and chronic renal 

disease (AL-TAWFIQ et al., 2014). As is the case for SARS-CoV infection, 

elderly people are at higher risk for severe disease with fatal outcome (ASSIRI 

et al., 2013a). Asymptomatic individuals are thought to play a major role in virus 

transmission (AL-TAWFIQ & AUWAERTER, 2019). This is supported by the 

fact that a high percentage of camel workers is positive for MERS-CoV-specific 

immune response without showing any symptoms of severe disease. These 

camel workers with mild or subclinical MERS infections are hypothesized to be 

the origin of primary severe MERS cases in the community (ALSHUKAIRI et al., 

2018). 

The pathogenesis of MERS-CoV infection is not yet fully understood. However, 

the distribution and expression level of specific MERS-CoV entry-receptor within 

the different human tissues and organs explains the clinical severity of MERS-

CoV disease. The MERS-CoV entry-receptor DPP4 is a type II transmembrane 

glycoprotein and it is highly expressed on epithelial and endothelial cells of 

various tissues, including lung, liver, kidney, small intestine, and on activated 

leukocytes (LAMBEIR et al., 2003; CHAN et al., 2015; WIDAGDO et al., 2016). 

The significant higher expression of DPP4 in the kidney and alveoli explains the 
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clinical picture of the severe disease with renal dysfunction and highly lethal 

pneumonia. Interestingly, there is a different pattern of DPP4-expression in the 

upper respiratory tract between camels and humans. Widagdo and coworkers 

observed that the viral receptor is highly expressed on epithelial cells in the 

upper respiratory tract of camels giving the reason for efficient virus shedding 

and camel-to-camel transmission (WIDAGDO et al., 2016). Compared to 

dromedary camels, in humans DPP4-expression is limited to the lower 

respiratory tract. The lack of DPP4 in the human upper respiratory tract may 

explain the restricted and sporadic MERS-CoV transmission from human to 

human (WIDAGDO et al., 2016). This is also supported by the observation that 

large amounts of infectious virus could be detected in nasal secretions of 

MERS-CoV infected camels, but not in those of human MERS-patients (ADNEY 

et al., 2014; DROSTEN et al., 2014). Experimental MERS-CoV infected camels 

developed mild and transient respiratory disease, mainly limited to the upper 

respiratory tract, with nasal discharge, which persisted up to two weeks after 

challenge infection. High titers of infectious MERS-CoV could still be detected in 

nasal swabs obtained seven days after MERS-CoV challenge infection (ADNEY 

et al., 2014). 

As described above, cells of the human respiratory tract are the primary 

infection site of MERS-CoV. This feature highlights the zoonotic potential of this 

new emerging pathogen (KINDLER et al., 2013). The infection of human 

respiratory epithelial cells results in robust viral replication (CHAN et al., 2013c; 

GRAHAM et al., 2013; KINDLER et al., 2013; ZHOU et al., 2015). Remarkably, 

the virus suppresses the induction of antiviral and proinflammatory cytokines. 

This observation could be confirmed in ex vivo lung tissues (LAU et al., 2013; 

ZIELECKI et al., 2013; ZHOU et al., 2015). Several MERS-CoV proteins, 

including the M protein and accessory proteins ORF4a/b and ORF5 have been 

identified as potent IFN antagonists (NIEMEYER et al., 2013; YANG et al., 

2013; MATTHEWS et al., 2014; SIU et al., 2014). Unlike SARS-CoV, MERS-

CoV is also able to infect and replicate in human macrophages, dendritic cells 

and T lymphocytes leading to disruption of the immune system with aberrant 

production of proinflammatory cytokines and T cell apoptosis (CHU et al., 2014; 

ZHOU et al., 2014; ZHOU et al., 2015; CHU et al., 2016). In addition to the 

lower respiratory tract epithelium, cells of the human intestinal tract were 
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recently shown to be susceptible for MERS-CoV suggesting that the human 

intestinal tract may serve as alternative infection route (ZHOU et al., 2017). The 

broad range of human tissue tropism and the ability to evade the host innate 

immune response associated with cytokine dysregulation may explain the 

possible clinical severity of MERS-CoV infections (CHAN et al., 2013b; CHAN 

et al., 2015).  

 

1.4. Treatment and prevention 

 

As there is currently no licensed vaccine or antiviral therapy available for 

MERS-CoV disease, supportive and palliative care remains the only mainstay of 

treatment for patients with severe MERS disease. Supportive care is mainly 

based on the provision of organ support and the management of complications 

including assisted ventilation, renal replacement therapy, fluids and 

antimicrobials to prevent secondary nosocomial and opportunistic infections 

especially in individuals with comorbidities (CHAN et al., 2015; CHAFEKAR & 

FIELDING, 2018).  

Animal models are essential for the development and testing of safe and 

effective countermeasures against infectious diseases. Different animals have 

been already tested as models for human MERS disease progression and to 

evaluate the efficacy of antivirals and candidate vaccines (SUTTON & 

SUBBARAO, 2015; CHAFEKAR & FIELDING, 2018). In contrast to SARS-CoV, 

commonly used laboratory animals, including ferrets, the Syrian hamster or 

wild-type mice, are not suitable as MERS-CoV infection animal models due to 

their differences in the functional host receptor DPP4 (DE WIT et al., 2013a; 

COLEMAN et al., 2014; RAJ et al., 2014b; HAAGMANS et al., 2015; VAN 

DOREMALEN & MUNSTER, 2015). Rabbits are susceptible for MERS-CoV 

infection, since virus could be detected in the lungs and respiratory excretions 

of infected rabbits. However, there are no histopathological changes or 

symptoms of clinical disease observed in MERS-CoV infected rabbits 

(HAAGMANS et al., 2015). Also non-human primates (NHPs), such as rhesus 

macaques and common marmosets, are susceptible for MERS-CoV infection 

(DE WIT et al., 2013b; MUNSTER et al., 2013; FALZARANO et al., 2014; YAO 
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et al., 2014). However, the extent of viral replication and clinical outcome of 

disease varies in between both human primate species. Infection of rhesus 

macaques with MERS-CoV results in a mild clinical disease associated with 

transient pneumonia, whereas the infection of common marmosets causes 

lethal pneumonia simulating the more severe illness of human infections 

(SUTTON & SUBBARAO, 2015). The development of a suitable mouse model 

facilitates efficacy studies of candidate vaccines against MERS-CoV. Several 

adapted mouse models have been tested for the ability to simulate human 

MERS-CoV disease (GRAHAM et al., 2013; SUTTON & SUBBARAO, 2015). In 

the first model, an adenoviral vector expressing the DPP4 was introduced 

intranasally to BALB/c mice inducing a transient expression of the receptor in 

the lungs. Five days later mice had been intranasally challenged with a dose of 

1x105 plaque-forming-units (PFU) MERS-CoV. DPP4-transduced mice 

developed mild pulmonary disease starting about two to four days after MERS-

CoV challenge infection (ZHAO et al., 2014; BASELER et al., 2016). 

Interestingly, clinical disease was more severe when using type-I IFN 

immunodeficient mice (ZHAO et al., 2014). In a second model, human DPP4-

transgenic mice were generated to express the functional host cell receptor 

systemically. After challenge infection with MERS-CoV, DPP4-transgenic mice 

developed severe progressive respiratory disease with a fatality rate of 100% 

(AGRAWAL et al., 2015). However, high infectious virus titers could be detected 

in the brain of infected transgenic mice (AGRAWAL et al., 2015). In another 

transgenic mouse model approach, the mouse DPP4 ORF was replaced by the 

human DPP4 encoding sequence ensuring the physiological expression of 

human DPP4 (DPP4-humanized mice) (PASCAL et al., 2015; CHAFEKAR & 

FIELDING, 2018). But yet, as the mice remained asymptomatic after challenge 

infection with MERS-CoV Jordan strain, the DPP4-humanized mouse model 

could only be considered as a model to mimic mild human disease (PASCAL et 

al., 2015; BASELER et al., 2016). In 2019, Iwata-Yoshikawa and coworkers 

developed the most recent DPP4-transgenic mouse model for MERS-CoV 

infection. Here, expression of human DPP4 is under control of an endogenous 

promoter. As a result, the human MERS-CoV receptor is expressed in the lung 

and the kidney, displaying the expression pattern in humans. However, human 

DPP4-expression could also be detected in T cells within lymphoid tissues, 
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which is different to humans. After intranasal challenge infection with MERS-

CoV, young and adult DPP4-transgenic mice only showed transient weight loss 

and they developed lower respiratory tract infection with acute multifocal 

interstitial pneumonia (IWATA-YOSHIKAWA et al., 2019). In a third approach, 

DPP4-chimeric mice were generated to be susceptible for MERS-CoV infection. 

Here, the mouse DPP4 encoding sequence was modified by two human amino 

acids. Infection of these DPP4-chimeric mice with a mouse-adapted MERS-CoV 

strain resulted in a ARDS-like respiratory disease characterized by extreme 

weight loss, decreased survival, decreased pulmonary function and pulmonary 

hemorrhage (COCKRELL et al., 2016). In summary, mice expressing the 

human functional host cell receptor DPP4 are susceptible to MERS-CoV 

infection and they serve as a suitable animal model for evaluating 

immunogenicity and efficacy of candidate vaccines, although each mouse 

model has its own benefits and limitations (BASELER et al., 2016).  

Since the emergence of MERS-CoV, significant efforts have been made to 

develop effective antiviral agents. Based on the fact that MERS-CoV infection 

results in the production of antiviral cytokines in different cell lines, several 

studies investigated in vitro the antiviral effect of IFNs on viral replication (CHAN 

et al., 2015). Type-I IFNs, such as IFN-α, pegylated IFN-α and IFN-β were 

shown to reduce MERS-CoV replication in various cell lines demonstrated by a 

reduced cytopathic effect (CHAN et al., 2013a; DE WILDE et al., 2013; 

FALZARANO et al., 2013; KINDLER et al., 2013; ZIELECKI et al., 2013). The 

antiviral effect of IFNs on MERS-CoV infection was also investigated in animal 

studies. Inter alia, combined treatment of MERS-CoV-infected rhesus 

macaques with IFN-α2b and the RNA-polymerase inhibitor Ribavirin resulted in 

a reduced viral replication associated with moderate immune response and a 

mild clinical outcome. However, in this study the animals were treated within a 

few hours after MERS-CoV challenge infection. Therefore, combinational 

treatment of IFN-α2b and Ribavirin should be considered suitable for human 

patients in early stages of disease as it might happen in a hospital associated 

outbreak (FALZARANO et al., 2013; KHALID et al., 2015; CHAFEKAR & 

FIELDING, 2018). Another approach of antiviral treatment is to develop 

candidate drugs, which block viral attachment and viral entry into host cells. 

Therefore, the S protein and the corresponding viral attachment and cell entry 
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mechanisms are of particular interest as target antigens. Inhibition of virus 

attachment and entry into host cells can be achieved by monoclonal antibodies 

targeting the RBD. These monoclonal antibodies competitively block the binding 

of the RBD to the host cell receptor DPP4 with higher affinity than the RBD itself 

(DU et al., 2014; JIANG et al., 2014; YING et al., 2014; CHAN et al., 2015). The 

protective role of neutralizing antibodies could also be confirmed in different in 

vivo studies. Treatment or prophylactic intervention with neutralizing monoclonal 

antibodies resulted in a reduction of viral titers in the lungs of DPP4-transgenic 

mice, rabbits or non-human primates (AGRAWAL et al., 2016; HOUSER et al., 

2016; JOHNSON et al., 2016; OKBA et al., 2017). In another study, DPP4-

transduced mice were protected against MERS-CoV challenge infection due to 

passive immunotherapy with convalescent camel sera (ZHAO et al., 2015). In 

addition to antibodies inhibiting viral attachment and cell entry, specifically in 

silico designed antiviral peptides have been used to interact with the S2 subunit. 

These peptides prevented cell-to-cell fusion and viral entry into host cells in 

several in vitro studies (GAO et al., 2013; LU et al., 2014). The entry process of 

MERS-CoV into host cells is also inhibited by agents targeting the functional 

host cell receptor DPP4 (CHAN et al., 2015). Raj and coworkers demonstrated 

that adenosine deaminase, a DPP4 binding protein, acts as natural antagonist 

for MERS-CoV infection (RAJ et al., 2014b). 

Nevertheless, the efficacy of antiviral candidate drugs remains uncertain in 

humans. For this, safe and efficient vaccines are urgently needed to prevent 

MERS-CoV infections in humans and animals (dromedaries) considering the 

insufficient intervention therapies for patients with severe MERS disease. 

Among all four structural proteins, the S and N protein are the major 

immunogenic target antigens of coronaviruses (AGNIHOTHRAM et al., 2014; 

OKBA et al., 2017). As described above, neutralizing antibodies are mainly 

directed against epitopes within the RBD region of the S protein (MOU et al., 

2013). Thus, current candidate vaccines against MERS-CoV have been 

developed mainly focusing on the S protein. Therefore, different platforms were 

used to generate anti-S candidate vaccines, such as viral-vector-based 

vaccines, DNA vaccines, protein-based vaccines or whole virus vaccines 

(OKBA et al., 2017). DNA-based vaccines targeting the S protein were shown to 

evoke antigen-specific neutralizing antibodies as well as potent cellular immune 
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response in mice, NHPs and camels (MUTHUMANI et al., 2015; WANG et al., 

2015a; WANG et al., 2016). Furthermore, a DNA-based vaccine proved to be 

protective in NHPs (MUTHUMANI et al., 2015; WANG et al., 2015a). For the 

generation of recombinant MERS-vaccines expressing the S protein (or parts of 

the S protein) several vector viruses have been used: Modified Vaccinia virus 

Ankara (MVA), adenovirus, measles virus, parainfluenza virus and rabies virus 

(KIM et al., 2014; MALCZYK et al., 2015; VOLZ et al., 2015b; HAAGMANS et 

al., 2016; WIRBLICH et al., 2017). Recombinant vector vaccines based on 

MVA, measles virus and rabies virus were shown to be protective against 

MERS-CoV challenge infection in mice, and in case of the MVA-based vaccine 

also in dromedary camels (MALCZYK et al., 2015; VOLZ et al., 2015b; 

HAAGMANS et al., 2016; WIRBLICH et al., 2017). Immunization with protein-

based vaccines proved to be immunogenic in different animal species, including 

mice, rabbits and NHPs (OKBA et al., 2017). But even though protein-based 

vaccines have the highest safety profile, immunogenicity and efficacy largely 

depends on dose, immunization regime and the addition of a suitable adjuvant 

(WANG et al., 2016; OKBA et al., 2017). 

Despite the promising data of current vaccine candidates inducing anti-MERS-

CoV S immune responses, waning of virus-specific humoral immune responses 

and the development of antibody escape mutants should be considered critical 

for the generation of a long-lived anti-MERS vaccine (SUI et al., 2014; TANG et 

al., 2014). Furthermore, it is known that a combination of both virus-specific 

cellular and humoral immune responses is involved in protective immunity 

against coronaviruses in general (OKBA et al., 2017). Therefore, the highly 

conserved N protein is another promising target immunogen for vaccine 

development with the potential to induce a longer lasting cellular immune 

response. 

 

 



II. Literature Review               15 

2. Modified Vaccinia virus Ankara (MVA) as viral vector 

vaccine against MERS-CoV 

2.1. History of MVA 

 

MVA is a highly attenuated vaccinia virus (VACV) strain generated by 

continuous passages on primary chicken embryo fibroblasts (CEF) with the 

approach to develop a safer vaccine against human smallpox. VACV, the 

ancestor virus of MVA, has been used as vaccine against human smallpox for 

over 200 years. Unfortunately, severe side effects appeared when using VACV, 

which sometimes even lead to death (MAYR, 2003; GILBERT, 2013). The 

major side effects of VACV include dangerous localized reactions, such as 

eczema vaccinatum or generalized vaccinia, or even postvaccinal encephalitis, 

which can result in death (MAYR, 2003). MVA is derived from the VACV strain 

Ankara, which was used as smallpox vaccine in Turkey (MAYR & MUNZ, 1964; 

MAYR et al., 1975; VOLZ & SUTTER, 2017). In 1953, Mayr and Herrlich (from 

the Institute of Medical Microbiology, Infectious and Epidemic Diseases in 

Munich) started to propagate the parental virus of MVA on the chorioallantoic 

membranes of embryonated chicken eggs leading to the name Chorioallantois 

Vaccinia virus Ankara (CVA) (MAYR et al., 1975; VOLZ & SUTTER, 2017). 

Further amplification of CVA through over 500 serial passages on CEF cells 

resulted in a highly attenuated virus with reduced virulence and which was no 

longer able to replicate productively in human and most other mammalian cell 

lines (CARROLL & MOSS, 1997; DREXLER et al., 1998; MEISINGER-

HENSCHEL et al., 2007). Compared to its ancestor virus CVA, MVA lost 

approximately 15% of the genome including six major deletions sites as well as 

a couple of small deletions and mutations affecting genes with functions in 

virus-host interactions (MEYER et al., 1991; ANTOINE et al., 1998; VOLZ & 

SUTTER, 2017). Preliminary clinical testing in humans conducted during the 

final stages of the smallpox vaccination campaign in South Germany confirmed 

the safety profile of MVA. Here, more than 120,000 individuals got vaccinated 

with MVA without documentation of severe side effects (STICKL et al., 1974; 

MAYR et al., 1978; MAHNEL & MAYR, 1994). Thereby, MVA vaccination 

proved to be safe for intracutaneous, subcutaneous and intramuscular 
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injections. Of note, MVA was even safe in immunocompromised individuals, in 

contrast to vaccination with replication competent VACV strain Elstree, which 

showed a drastic increase in virulence in those individuals (MAYR et al., 1978). 

To date, MVA is licensed in the European Union and Canada as a standalone 

third-generation smallpox vaccine for active immunization in adults, even for 

high-risk individuals (VOLLMAR et al., 2006; KENNEDY & GREENBERG, 2009; 

GREENBERG et al., 2013).  

 

2.2. Taxonomy and viral life cycle 

 

The family Poxviridae is divided into the two subfamilies Chordopoxvirinae 

(vertebrate specific) and Entomopoxvirinae (insect specific). The 

Chordopoxvirinae are subdivided into nine genera and two unassigned species, 

with Orthopoxvirus as the best-known genus. The most famous members within 

the genus Orthopoxvirus are variola virus, the causative agent of human 

smallpox disease, and VACV, as the prototypic member of the poxvirus family 

and the parental virus of MVA (MOSS et al., 2007).  

Poxviruses are large enveloped and barrel-shaped viruses containing linear 

double-stranded deoxyribonucleic acid (DNA) genomes that vary from 130 to 

300 kbp. Due to their large dimension of about 250x360nm poxviruses can just 

be visualized by light-microscopy. The internal structure of the virions is 

characterized by a core containing the s-shaped genome, two lateral bodies 

and the outer lipid membrane (figure 1). The genome consists of a highly 

conserved central region encoding genes required for viral replication, and the 

end terminal regions containing ORFs associated with host interactions (MOSS, 

1996; MOSS et al., 2007; WERDEN et al., 2008). The two double-stranded 

DNA strands are flanked by inverted terminal repetitions (ITR), which form two 

hairpin loops at the ends of the genome (BAROUDY et al., 1982).  

Notably, two different forms of infectious particles are produced by poxvirus 

replication: intracellular mature virions (MVs), which represent the basic form of 

infectious particles with a single outer membrane, and extracellular enveloped 

virions (EVs), which are surrounded by an additional outer lipid membrane 

containing proteins distinct to MVs (SMITH et al., 2002; MOSS, 2006; MOSS et 
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al., 2007). The majority of infectious particles is represented by MVs. MVs are 

released via cell lysis and mediate infection between hosts, whereas EVs are 

required for cell-to-cell and long-range dissemination (BLASCO & MOSS, 1992; 

SMITH et al., 2002). 

 

Figure 1: Morphology of poxvirus virions 

(Source: ViralZone; www.expasy.org/viralzone, SIB Swiss Institute of 
Bioinformatics; with permission) 

 

Interestingly, poxviruses replicate entirely within the cytoplasm of infected cells 

using their own transcription machinery (MOSS, 1996). The process of genome 

replication and virion assembly is typically regulated by a cascade mechanism 

depending on the level of expressed genes (figure 2) (MOSS, 1996; BROYLES, 

2003). Initially, cell entry of MVs occurs via fusion with the plasma membrane or 

endocytosis, whereas EV-entry is mediated by disruption of the outer viral 

membrane leading to fusion of the inner viral membrane as described for MVs 

entry mechanism (LAW et al., 2006; MOSS, 2016). Compared to many other 

viruses, which use only one or two proteins for cell binding, fusion and entry, 

poxviruses encode a large number of proteins mediating virus entry process 

(MOSS, 2012). The attachment of VACV MVs is mediated by four proteins, 

which bind to glycosaminoglycans or laminin on the cell surface. Eleven more 

proteins, embedded in the MV membrane, the so called entry fusion complex 

(EFC), are involved in membrane fusion and core entry (MOSS, 2016). After 

cell entry, the virus core is released into the cytoplasm and early gene 
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expression starts immediately with early mRNA being detected within 20 

minutes (MOSS et al., 2007). Proteins essential for the transcription of early 

genes are already packaged with the viral genome in the core, including a 

DNA‐dependent RNA polymerase, early transcription factors, capping and 

methylating enzymes, and a poly(A)-polymerase (MOSS & EARL, 2001). Early 

genes encode proteins and transcription factors, which are essential for viral 

replication and intermediate gene transcription (MOSS, 1996; BROYLES, 

2003). This leads to disruption of the viral core and the viral DNA is released 

into the cytoplasm, which is called uncoating (MOSS & EARL, 2001; 

MCFADDEN, 2005). In the next step, DNA replication takes place followed by 

successive transcription of intermediate as well as late genes within the so 

called viral factories (KATSAFANAS & MOSS, 2007). Intermediate as well as 

late class gene products are essential for virion morphogenesis and assembly 

including structural proteins, which are encoded by late genes (BROYLES, 

2003). Late genes encode also for early transcription factors, which are then 

packaged with the viral genome (MOSS & EARL, 2001). Finally, the structural 

proteins and newly synthesized viral genome copies assembly to form MVs. In 

the next step, these MVs are further enwrapped by two membranes derived 

from the trans-Golgi network to form intracellular enveloped virions (HILLER & 

WEBER, 1985; SCHMELZ et al., 1994). These enveloped virions move to the 

cell membrane and are released as EVs via fusion with the plasma membrane 

(BLASCO & MOSS, 1992; CUDMORE et al., 1995; WARD & MOSS, 2001).  

A special feature of MVA is that MVA is replication deficient in mammalian cells. 

Here, the life cycle is blocked during late gene expression at the stage of virion 

assembly. In detail, MVA virion assembling is inhibited at the stage of 

proteolytic processing of late viral proteins resulting in immature virus particles. 

However, the pattern of early and late proteins is similar to replicating VACV 

strains with late genes being expressed between six and 12 hours after cell 

infection (SUTTER & MOSS, 1992).  
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Figure 2: Replication cycle of poxviruses  

(Source: ViralZone; www.expasy.org/viralzone, SIB Swiss Institute of 
Bioinformatics; with permission) 
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2.3. MVA as a viral expression vector 

 

Smallpox vaccination discontinued after the eradication of human smallpox was 

officially declared in 1980 (FENNER, 1993). Since 1982, poxviruses and 

especially the prototype Orthopoxvirus VACV have been established as 

recombinant expression vectors in vaccine development (MACKETT et al., 

1982; PANICALI & PAOLETTI, 1982; MOSS, 1996). In general, poxviruses 

exhibit several advantages, which make them suitable for the application as 

viral vector vaccine (SMITH & MOSS, 1983; PERKUS et al., 1985; MOSS, 

1996; DRAPER et al., 2013; KREIJTZ et al., 2013; VOLZ et al., 2015a; VOLZ & 

SUTTER, 2017): i) Due to their own large genome and the high genetic 

plasticity, poxviruses are able to incorporate large (at least 25kbp) or even 

multiple foreign genes into their genome. ii) The replication cycle of poxviruses, 

unlike other DNA viruses, is limited to the cytoplasm of infected host cells. Thus, 

gene expression is under strict control of virus-specific transcription systems, 

without any integration of viral DNA into the host genome. iii) Regarding the 

immunogenicity and efficacy as vector vaccines, poxviral vectors are able to 

induce strong adaptive immunity, namely cellular as well as humoral immune 

response.  

Engineering of recombinant poxviruses is commonly based on homologous 

DNA recombination. This phenomenon occurs naturally between the viral 

genomes present within an infected cell during the poxvirus life cycle with a 

frequency of approximately 0.1% (NAKANO et al., 1982; MACKETT et al., 

1984; MOSS, 1996). For the generation of recombinant VACV, homologous 

recombination is usually directed by a plasmid transfer vector, which contains 

an expression cassette including a poxvirus-specific promoter next to a multiple 

cloning site for insertion of foreign genes and a selectable marker (e.g. a 

fluorescent marker) to facilitate the clonal isolation of recombinant MVA 

(MACKETT et al., 1984; MOSS, 1996). The virus-specific promoter followed by 

the foreign gene as well as the marker gene are flanked by poxvirus genomic 

sequences, which direct the recombination and insertion of heterologous DNA 

into a desired locus within the poxvirus genome (MACKETT et al., 1984). After 

infection of the cells with the poxvirus vector followed by transfection with the 

specific transfer plasmid, homologous recombination occurs and recombinant 
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viruses can be isolated using the specific selection marker (KREMER et al., 

2012).  

Recombinant poxviruses engineered for the application as vector vaccines still 

have the potential to induce life-threatening complications, in particular in 

immunocompromised individuals, as observed during conventional smallpox 

vaccination with live VACV (LANE  et al., 1969; REDFIELD et al., 1987). Further 

research of poxviruses in vaccine development focused on replication deficient 

and attenuated VACV strains. Therefore, non-replicating MVA has been 

established as viral vector system with an exceptional safety profile due to its 

replication deficiency in cells of mammalian origin (SUTTER & MOSS, 1992; 

VOLZ & SUTTER, 2013, 2017). Here, MVA is still able to infect them and to 

start its molecular life cycle, which is associated with a block in virion assembly 

that occurs late in viral life cycle. Thus, expression of early as well as late genes 

is unimpaired, although MVA fails to produce mature virions (SUTTER & 

MOSS, 1992; VOLZ & SUTTER, 2017). Another attenuated VACV strain is New 

York attenuated vaccinia virus (NYVAC), which is derived from the VACV strain 

Copenhagen. But compared to MVA, the life cycle of NYVAC is blocked at an 

early stage with the result of non-efficient expression of intermediate as well as 

late genes (TARTAGLIA et al., 1992; PAOLETTI, 1996).  

Overall, MVA is characterized by its exceptional safety profile, which is mainly 

based on the replication deficiency in cells of mammalian origin. The stability of 

the poxvirus genome and the genetic plasticity allows for the production of high 

amounts of foreign antigens. In addition, the availability of convenient and well-

established laboratory protocols facilitates the generation of recombinant MVAs 

for large scale production (KREMER et al., 2012).  

 

2.4. MVA interfering with inflammatory immune response 

 

In contrast to conventional VACV, MVA has strong immunostimulating 

capacities in particular targeting the innate immune system (BLANCHARD et 

al., 1998; WAIBLER et al., 2007; DELALOYE et al., 2009; HALLE et al., 2009; 

LEHMANN et al., 2009; ALTENBURG et al., 2014). In general, poxviruses 
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produce many gene products, which are involved in modulation and evasion of 

innate immunity (SMITH et al., 2013). About one third of the VACV genes 

(especially these located at the terminal regions) encodes genes affecting the 

host immune system (SMITH, 1993). Most of these immunomodulatory proteins 

are expressed early during poxvirus infection, which enables them to disturb the 

host innate immune system rapidly (SMITH et al., 2013). The ability of MVA to 

activate the innate immune system early on can be explained by the significant 

loss of genetic information, which occurred during serial passages on CEF cells. 

As a result, many of the poxvirus immunomodulatory genes were depleted in 

the highly attenuated MVA leading to an innate immune response and induction 

of adaptive immunity in infected cells (ALTENBURG et al., 2014). Poxviruses 

have evolved different strategies to interfere with the host innate immune 

response, i.e. they are able to inhibit cytokine production and other signaling 

pathways, such as IFN signaling or the apoptotic response (SEET et al., 2003; 

HAGA & BOWIE, 2005). In terms of IFN response, VACV encodes a large 

number of proteins, which are able to block the activation of transcription factors 

NF-κB and IRF-3 (SMITH et al., 2013). In contrast, many of these inhibitors are 

not present in MVA, such as the proteins A52, B14, C4, C16, K1, M2 and N1. 

As a result, NF-κB signaling takes place in MVA infected cells and the proteins 

K1 and M2 could be confirmed as NF-κB inhibitors by re-introduction of 

corresponding VACV gene sequences into the MVA genome (OIE & PICKUP, 

2001; HINTHONG et al., 2008). Another immune evasion strategy of poxviruses 

is the secretion of viral receptors that are able to bind chemokines and 

cytokines, such as tumor necrosis factor (TNF), IFN or interleukins (ILs) 

(ALCAMI & SMITH, 1992, 1995; MOSSMAN et al., 1995; SYMONS et al., 1995; 

SMITH et al., 1996; GRAHAM et al., 1997; SMITH et al., 2013). Compared to 

replication competent VACVs, MVA lacks several of these genes encoding 

receptors that inhibit innate immune response. Blanchard et al. demonstrated 

that MVA is not able to produce soluble receptors for IFN-α/β, IFN-γ, TNF and 

some chemokines, but in contrast it is still able to produce a soluble IL-1β 

receptor (BLANCHARD et al., 1998). IL-1β is a proinflammatory cytokine and it 

is known to act significantly on the febrile response in VACV and poxvirus 

infection in general (ALCAMÍ & SMITH, 1996). Immunizations of mice with a 

MVA deletion mutant defective in IL-1β receptor expression resulted in 
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increased numbers of virus-specific CD8+ T cells and higher levels of protection 

against lethal challenge infection with virulent VACV strain Western Reserve 

(STAIB et al., 2005). Another characteristic of the immunostimulatory properties 

of MVA is the induction of chemokines, e.g. CCL2, which leads to rapid 

immigration of leukocytes (LEHMANN et al., 2009; LEHMANN et al., 2015). In 

addition to the upregulation of chemokines, Price and coworkers demonstrated 

that MVA is also able to activate the complement system resulting in enhanced 

migration of leukocytes (PRICE et al., 2015).  

The efficacy of vaccine applications largely depends on a high activation of 

innate and adaptive immune response. Therefore, MVA is highly advantageous 

for the development of vector vaccines due to its particular ability to rapidly 

upregulate important host immune responses. 

 

2.5. MVA vaccines in preclinical and clinical trials 

 

Today, MVA serves as one of the most advanced recombinant poxvirus vectors 

for the development of vaccines against various infectious diseases, e.g. 

influenza, human immunodeficiency virus (HIV), malaria or tuberculosis, and 

against cancer (KREIJTZ et al., 2013; VOLZ & SUTTER, 2013; ALTENBURG et 

al., 2014; SHEEHAN et al., 2015; VOLZ et al., 2015a; SEBASTIAN & GILBERT, 

2016). Different recombinant MVAs have been evaluated in both preclinical and 

clinical trials and they proved to be safe and immunogenic (GILBERT, 2013; 

GOMEZ et al., 2013).  

Ongoing research focuses in particular on the study of MVA-based vector 

vaccines against different influenza viruses. In 1994, the first recombinant MVA 

candidate vaccine was generated to deliver simultaneously the influenza virus 

A/PR/8/34 (H1N1) antigens hemagglutinin (HA) and nucleoprotein (NP). The 

recombinant MVA (MVA-HA-NP) was shown to be immunogenic in immunized 

mice. Here, vaccination by different routes with the MVA-HA-NP candidate 

vaccine resulted in efficient levels of influenza HA-specific antibodies as well as 

cellular immune responses. Furthermore, mice were protected against lethal 

respiratory challenge with influenza virus A/PR/8/34 (SUTTER et al., 1994). In 
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more recent years, a promising recombinant MVA candidate vaccine against 

highly pathogenic influenza virus H5N1 (MVA-HA-VN/04) was successfully 

evaluated in different animal models including mice, macaques and chickens 

(KREIJTZ et al., 2007; VEITS et al., 2008; KREIJTZ et al., 2009a; KREIJTZ et 

al., 2009b; HESSEL et al., 2011). Of note, MVA-HA-VN/04 was able to induce 

neutralizing and protective H5-specific antibodies after challenge with 

homologous and heterologous H5 subtype influenza viruses (KREIJTZ et al., 

2007). The promising results of preclinical assessment allowed for phase I/IIa 

clinical studies of MVA-HA-VN/04 in humans. Here, the candidate vaccine 

proved to be immunogenic as it efficiently induced high titers of H5-specific 

antibodies and T cells with cross-reactivity to influenza H5 viruses of other 

clades (KREIJTZ et al., 2014; DE VRIES et al., 2015; DE VRIES et al., 2018). 

Another promising MVA-based influenza vaccine candidate targeting the T cell 

antigens NP and Matrix 1 protein (M1) (MVA-NP-M1) was successfully tested in 

phase I/IIa clinical trials. In the first clinical trial (phase I), vaccination with MVA-

NP-M1 was well-tolerated and immunogenic in healthy adult individuals. 

Remarkably, this influenza MVA-based vaccine induced significantly higher 

amounts of responding T cells compared to other influenza vaccines. With 

regard to the safety record, significantly less local side effects could be 

observed in intramuscular vaccinated volunteers, compared to the intradermal 

vaccinated group. However, systemic side effects, such as nausea, vomiting or 

rigors, were observed in five out of eight individuals, which have received a 

higher dose of MVA-NP-M1 via the intramuscular route (BERTHOUD et al., 

2011). In the second clinical study (phase IIa), the protective capacity of the T 

cell-based influenza vaccine MVA-NP-M1 was assessed in healthy adults. 

Given a single intramuscular injection, only two of 11 vaccinated volunteers 

developed influenza disease after influenza virus challenge infection. Thereby, 

the number of symptoms was lower than in the control group and also the time 

of viral shedding was reduced (LILLIE et al., 2012). In the third clinical trial 

(phase I), MVA-NP-M1 proved to be safe and immunogenic in adults with an 

age of over 50 years, which present the primary target population for seasonal 

influenza vaccination. Here, it is noteworthy that older individuals showed 

similar immune responses to younger volunteers of the former two clinical trials 

(ANTROBUS et al., 2012).  
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Well-established protocols allow for the rapid generation of new MVA candidate 

vaccines. This could be demonstrated in the context of the new emerging 

pathogen MERS-CoV. Immediately after the discovery of MERS-CoV in 2012, a 

recombinant MVA expressing the MERS-CoV S protein (MVA-MERS-S) could 

be generated and successfully evaluated in preclinical studies in mice 

emphasizing the efficiency and high suitability of MVA as vaccine platform 

(SONG et al., 2013; VOLZ et al., 2015b). Mice immunized with MVA-MERS-S 

via different application routes developed virus-neutralizing antibodies as well 

as MERS-CoV-specific CD8+ T cells leading to protection against MERS-CoV 

challenge infection (VOLZ et al., 2015b). More recently, the MVA-MERS-S 

vaccine candidate was evaluated in dromedaries, which are suspected to be 

responsible for virus spread to humans (HAAGMANS et al., 2014; RAJ et al., 

2014a; HAAGMANS et al., 2016). Haagmans and coworkers demonstrated that 

the vaccine significantly reduced the amount of infectious virus in excretions 

from MVA-MERS-S immunized dromedary camels after MERS-CoV challenge 

infection (HAAGMANS et al., 2016). This MVA candidate vaccine is currently 

undergoing clinical testing in phase I/IIa clinical trial.  

In the most recent clinical trial, a MVA-based vector vaccine has been tested 

against papillomavirus, emphasizing the importance of MVA application in the 

field of tumor therapy (CABO BELTRAN & ROSALES LEDEZMA, 2019). In this 

study, single treatment with a MVA vaccine expressing the papillomavirus E2 

protein (MVA-E2) eliminated lesions on the vocal cords in 13 patients. The 

remaining 16 patients showed recurrence of the lesions after single injection. 

However, the lesions did not return after a second injection with MVA-E2 

(CABO BELTRAN & ROSALES LEDEZMA, 2019). 

In summary, these highly promising data of preclinical and clinical assessment 

encourages further development of MVA-based candidate vaccines in the field 

of human and veterinary medicine and in particular against emerging zoonotic 

viruses. 
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3. Cellular immune responses to viral infections 

3.1. T cell populations 

 

In basic terms, the immune system is divided into two parts: innate and adaptive 

immunity (WARRINGTON et al., 2011). Innate immunity represents the first 

immunological mechanism after exposure to intruding pathogens, which 

involves rapid and antigen-independent responses (WARRINGTON et al., 2011; 

LAU & SUN, 2018). Unlike the innate mechanisms of host defense, adaptive 

immunity is characterized by antigen-specific immune responses and the 

capacity of immunological memory, which facilitates a more rapid and stronger 

secondary response when re-exposed to a given pathogen (WARRINGTON et 

al., 2011; LAU & SUN, 2018; RAPP et al., 2018). The adaptive immunity, is 

further divided into a cellular and a humoral branch (MURPHY et al., 2008). The 

cellular part of the adaptive immune system includes T lymphocytes (T cells) 

and B lymphocytes (B cells), which can differentiate into antibody producing 

plasma cells (MURPHY et al., 2008; WARRINGTON et al., 2011). As all other 

blood cells, lymphocytes are derived from pluripotent hematopoietic stem cells 

in the bone marrow (MURPHY et al., 2008). Those pluripotent stem cells can 

either differentiate into a common lymphoid progenitor cell or a common 

myeloid progenitor cell (CHAPLIN, 2010). The myeloid stem cells give rise to 

erythrocytes, thrombocytes and the other leukocytes, including granulocytes, 

mast cells and monocytes. Lymphocytes originate from the lymphoid progenitor 

cell, together with natural killer cells (MURPHY et al., 2008; CHAPLIN, 2010). B 

cells arise in the bone marrow, whereas T cells require the thymus for 

maturation (BONILLA & OETTGEN, 2010; LUCKHEERAM et al., 2012). 

Following differentiation in the primary lymphoid tissues, lymphocytes circulate 

as so called naïve B and T cells between blood and secondary peripheral 

lymphoid organs, including lymph nodes and the spleen, until they meet their 

specific antigen (MURPHY et al., 2008; BONILLA & OETTGEN, 2010).  
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3.2. T cell functions 

 

Activation of T cells is mediated by antigen-presenting cells. Thereby, a unique 

T cell receptor expressed on the surface of T cells recognizes a specific antigen 

fragment bound to a cell-surface protein, known as major histocompatibility 

complex (MHC), presented by antigen-presenting cells (WARRINGTON et al., 

2011; GAUD et al., 2018). The development of functional T cell receptors is 

regulated by positive and negative selection during differentiation process in the 

thymus. T cells carrying a T cell receptor, which is able to bind with low avidity 

to self-MHC complexed with self-antigens undergo positive selection. In 

contrast, negative selection occurs when T cell receptors bind with very high 

avidity to self-antigens leading to deletion of such self-reactive T cell clones 

(KLEIN et al., 2009; BONILLA & OETTGEN, 2010). Coordinated series of 

genomic rearrangements, known as somatic recombination, lead to the 

tremendously high diversity of T cell receptors, each with unique specificity for a 

different antigen (BONILLA & OETTGEN, 2010; CHAPLIN, 2010). Remarkably, 

about 30,000 T cell receptors are expressed on the surface of one T 

lymphocyte (MURPHY et al., 2008). T cell receptors are heterodimeric 

molecules composed of two transmembrane polypeptides termed as α and β 

chain, which are linked by a disulfide bond (MURPHY et al., 2008; GAUD et al., 

2018). Both chains consist of a variable domain (Vα, Vβ), which confer binding 

to a specific MHC/peptide complex, and a constant domain (Cα, Cβ) anchored 

into the plasma membrane (MURPHY et al., 2008). The T cell receptor αβ-

heterodimer is associated with a signal-transducing CD3 complex, including 

CD3γ, CD3δ and CD3ε subunits (GAUD et al., 2018). T lymphocytes further 

express CD4 and CD8 co-receptors on their surface, leading to the 

classification of CD4+ and CD8+ T cells (MURPHY et al., 2008). These co-

receptors bind to conserved regions in the MHC molecules and stabilize the 

interaction between T cell receptor and MHC/antigen complex (BONILLA & 

OETTGEN, 2010; GAUD et al., 2018). CD8+ T cells are mainly involved in the 

defense of viruses by inducing apoptosis of virus-infected cells. Thus, CD8+ T 

cells are also called cytotoxic T cells (MURPHY et al., 2008). CD4+ T cells, also 

known as T helper cells (TH cells), present the major part of T cells and they are 

responsible for the defense of extracellular bacteria and parasites (BONILLA & 
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OETTGEN, 2010; LUCKHEERAM et al., 2012). Furthermore, they play a major 

role in mediating the immune response, including the secretion of cytokines, the 

activation of other immune cells, such as macrophages and B lymphocytes, and 

the suppression of autoimmune reactions (LUCKHEERAM et al., 2012). After 

being activated, CD4+ T cells differentiate into two main subtypes, TH1 and TH2 

cells (MURPHY et al., 2008). 

 

3.3. T cell activation and antigen-presenting pathways 

 

As described above, T cells are activated by interaction of their specific receptor 

with antigenic peptide fragments bound to MHC molecules on the surface of 

antigen-presenting cells (BONILLA & OETTGEN, 2010; WARRINGTON et al., 

2011). MHC molecules are cell surface glycoproteins, which are classified as 

either class I or class II molecules (CHAPLIN, 2010; WARRINGTON et al., 

2011). MHC molecules are encoded by a large group of genes, which is named 

major histocompatibility complex (MURPHY et al., 2008). MHC-class I 

expression is constitutive in all nucleated cells, whereas MHC-class II 

molecules are only present on cells of the immune system, including 

macrophages, dendritic cells and B cells (BONILLA & OETTGEN, 2010; 

WARRINGTON et al., 2011). MHC-class I molecules are comprised of a 

polymorphic transmembrane α chain and a non-covalently attached β2-

microglobulin (CHAPLIN, 2010). The larger α chain is subdivided into three 

domains, α1, α2, and α3, whereby subunit α1 and α2 build the peptide- binding 

site and subunit α3 is responsible for membrane anchoring (MURPHY et al., 

2008). MHC-class II molecules also consist of two non-covalently attached 

polypeptide chains α and β, which are both divided into two subunits, α1/α2 and 

β1/β2 (MURPHY et al., 2008). Here, the antigen-binding site is formed by α1 and 

β1, whereas α2 and β2 are anchored into the plasma membrane (MURPHY et 

al., 2008). Priming of CD8+ T cells is mediated by interaction with antigenic 

peptides bound to MHC-class I molecules. These MHC-class I-restricted 

peptides originate from cytosolic proteins, which are degraded in the 

proteasome and encoded by intracellular replicating pathogens like viruses and 

some bacteria (endogenous pathway) (BONILLA & OETTGEN, 2010). In 
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contrast, CD4+ T cells recognize peptides displayed on MHC-class II 

molecules. MHC-class II-restricted peptides are derived from exogenous 

pathogens, which are incorporated into antigen-presenting cells via 

phagocytosis or endocytosis (exogenous pathway) (BLUM et al., 2013). 

Extracellular pathogens are recognized by pattern recognition receptors 

(PRRs), such as toll-like receptors, expressed on the surface of dendritic cells, 

macrophages and other cells (LUCKHEERAM et al., 2012; IWASAKI & 

MEDZHITOV, 2015). PRRs are specialized for the detection of pathogen-

associated molecular patterns (PAMPs), such as lipopolysaccharides of the 

bacterial cell wall (TAKEDA et al., 2003; IWASAKI & MEDZHITOV, 2004). After 

recognition, extracellular pathogens are incorporated via phagocytosis and 

antigenic peptides are generated by proteolytic processing in the lysosomes for 

presenting on MHC-class II molecules (BLUM et al., 2013). Dendritic cells are 

considered to play a crucial role in exogenous antigen presentation and the 

corresponding activation of CD4+ T cells (JENKINS et al., 2001; 

LUCKHEERAM et al., 2012). Furthermore, they are essential for a process 

called cross-presentation, whereby exogenous antigens are processed into the 

MHC-class I pathway (ROCK & SHEN, 2005). This process facilitates the 

generation of immunity against viruses, which are able to suppress antigen 

processing through the endogenous pathway or only infect hematopoietic cells 

(SIGAL et al., 1999; CHAPLIN, 2010).  

T cell-mediated immune response is characterized by three different phases: 

clonal expansion, contraction and the formation of long-lived memory 

(WILLIAMS & BEVAN, 2007; RAPP et al., 2018). After initial exposure to a 

specific antigen, T lymphocytes start to differentiate into effector T cells and 

undergo massive proliferation (CHAPLIN, 2010; POLONSKY et al., 2016). This 

process, called clonal expansion, is followed by apoptosis of most of the 

effector T cells leading to contraction of the expanded T lymphocytes (RAPP et 

al., 2018). This small fraction of T cells is maintained as long-lived memory T 

cells mediating immunological memory (RAPP et al., 2018). Immunological 

memory is defined as the ability of the immune system to produce a more rapid 

or robust secondary response when re-exposed to a given pathogen (LAU & 

SUN, 2018; RAPP et al., 2018). The formation of long-lived immunological 

memory constitutes the basis for efficient and protective vaccination 
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(SALLUSTO et al., 2010). 

 

3.4. Methods for T cell monitoring 

 

Enzyme-linked immunospot (ELISPOT) and intracellular cytokine staining (ICS) 

detecting IFN-γ secretion are the most commonly used assays for quantifying 

and characterizing T cell-mediated immune response in natural infections as 

well as vaccination studies (CURRIER et al., 2002; STREECK et al., 2009; WU 

et al., 2012; FIORE-GARTLAND et al., 2016; MALM et al., 2016). IFN-γ is 

produced by cytotoxic CD8+ as well as TH1 CD4+ effector cells, and this 

cytokine plays a crucial role in immunity against intracellular pathogens, such as 

viruses (SCHOENBORN & WILSON, 2007). 

The ELISPOT assay is based on the principle of an enzyme-linked 

immunosorbent assay (ELISA). The frequency of cytokine-secreting T cells is 

measured after ex vivo stimulation with one or multiple peptides (FIORE-

GARTLAND et al., 2016). IFN-γ molecules secreted from activated T cells are 

captured by an immobilized antibody and visualized by an enzyme-linked 

secondary antibody (ANTHONY & LEHMANN, 2003; STREECK et al., 2009). 

One of the main advantages of the ELISPOT assay is the ability to rapidly and 

efficiently screen a wide array of peptide antigens allowing the detection of T 

cell specificities to an entire vaccine immunogen (ANTHONY & LEHMANN, 

2003; FIORE-GARTLAND et al., 2016). Mapping of antigen-specific epitopes is 

facilitated by the use of overlapping peptides to cover every possible 

determinant within a given antigenic sequence (ANTHONY & LEHMANN, 

2003). Moreover, the use of peptide pools allows the reduction of assays to 

identify T cell epitope specificities within the peptide array (ANTHONY & 

LEHMANN, 2003; FIORE-GARTLAND et al., 2016). Although ELISPOT assay 

is highly sensitive, specific cell types, which contribute to IFN-γ production, 

cannot be identified (TOBERY et al., 2006; MALM et al., 2016). In that context, 

ICS has proved to be a valuable tool for enumerating and differentiation of 

vaccine- and infection-induced T cells (DE ROSA, 2012). ICS is based on the 

flow cytometry technique. Here, stimulated cytokine-producing cells are cultured 

in the presence of a protein secretion inhibitor, which leads to the accumulation 
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of the cytokines within the antigen-specific cell. After stimulating, the cells are 

fixed and permeabilized followed by staining of intracellular cytokines and cell 

markers with fluorescence-conjugated antibodies (FREER & RINDI, 2013). 

Compared to the ELISPOT assay, ICS assays are less sensitive. However, the 

main advantage of this assay is the ability to measure multiple cytokines or T 

cell functions and phenotypes (DE ROSA, 2012; FREER & RINDI, 2013). This 

feature allows for qualitative analysis of activated T cells including the 

differentiation of cell subpopulations responsible for cytokine production (WU et 

al., 2012; FREER & RINDI, 2013; MALM et al., 2016). The quantification of 

antigen-specific T cells and the determination of their function and phenotype 

are essential to measure immunogenicity in studies of infectious diseases and 

during vaccine trials. 
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III. OBJECTIVES 

In terms of ongoing epidemics caused by MERS-CoV and due to the lack of 

approved vaccines or therapies for MERS, this work describes the following: 

 

(i) the generation of recombinant MVA expressing the MERS-CoV N 

protein (MVA-MERS-N) 

 

(ii) in vitro characterization of recombinant MVA-MERS-N 

 

- genetic analysis at the DNA level 

- analysis of protein expression  

- replication analysis 

 

(iii) in vivo characterization of cellular immune responses recognizing the 

MERS-CoV N protein 

 

- immunization experiments in mice 

- analysis of MVA-MERS-N-induced T cell responses using a two-

dimensional, pooled-peptide matrix system 
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IV. RESULTS 

The manuscript is presented in form accepted for publication (VEIT et al., 

2018). 
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Middle East respiratory syndrome coronavirus (MERS-CoV), a novel 

infectious agent causing severe respiratory disease and death in humans, 

was first described in 2012. Antibodies directed against the MERS-CoV 

spike (S) protein are thought to play a major role in controlling MERS-CoV 

infection and in mediating vaccine-induced protective immunity. In 

contrast, relatively little is known about the role of T cell responses and 

the antigenic targets of MERS-CoV that are recognized by CD8+ T cells. In 

this study, the highly conserved MERS-CoV nucleocapsid (N) protein 

served as a target immunogen to elicit MERS-CoV-specific cellular 

immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested 

strain of vaccinia virus for preclinical and clinical vaccine research, was 

used for generating MVA-MERS-N expressing recombinant N protein. 

Overlapping peptides spanning the whole MERS-CoV N polypeptide were 

used to identify major histocompatibility complex class I/II-restricted T 

cell responses in BALB/c mice immunized with MVA-MERS-N. We have 

identified a H2-d restricted decamer peptide epitope in the MERS-N 

protein with CD8+ T cell antigenicity. The identification of this epitope, 

and the availability of the MVA-MERS-N candidate vaccine, will help to 

evaluate MERS-N-specific immune responses and the potential immune 

correlates of vaccine-mediated protection in the appropriate murine 

models of MERS-CoV infection. 

Introduction 

The Middle East respiratory syndrome coronavirus (MERS-CoV), a hitherto 

unknown β-coronavirus, emerged as a causative agent of a severe respiratory 

disease in humans in 2012. This new coronavirus was first isolated from the 

sputum of a patient suffering from severe pneumonia and renal failure (ZAKI et 

al., 2012). To date, the MERS-CoV still causes disease and death in humans 

with a total of 2260 confirmed cases including 803 fatalities (PARK et al., 2018; 

WORLD HEALTH ORGANIZATION (WHO), 2019b, 2019a). Epidemiological 

data suggest that the MERS-CoV is endemic in Saudi Arabia, which accounts 

for the majority of primary community-acquired cases. Many of those primary 

cases are due to virus exposure through direct contact with dromedary camels, 

the primary animal reservoir of MERS-CoV. Alternatively, camel workers 

undergoing subclinical infections are suggested to mediate virus transmission to 
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other susceptible individuals (ALRADDADI et al., 2016; ALSHUKAIRI et al., 

2018). Other outbreaks of MERS have been caused by nosocomial 

transmissions in health care settings (ASSIRI et al., 2013b; KI, 2015; OH et al., 

2018; AL-TAWFIQ & AUWAERTER, 2019). Most of the MERS-CoV infections 

occur within the Arabian Peninsula, i.e., Saudi Arabia, Qatar, and United Arab 

Emirates, however MERS cases have been reported in various other countries 

around the world (KRAAIJ-DIRKZWAGER et al., 2014; OH et al., 2018). At 

present, there is still relatively little known about the pathogenesis of MERS-

CoV. The highest incidence of severe disease is observed in elderly and 

immunocompromised individuals (ASSIRI et al., 2013a). Those at general risk 

for infections are health care workers and people in close contact with 

dromedary camels (AL-TAWFIQ & MEMISH, 2014; MEMISH et al., 2014). 

These groups are therefore considered relevant target populations for 

prophylactic vaccination against MERS-CoV infection and prevention of MERS. 

The World Health Organization (WHO) and the Coalition for Epidemic 

Preparedness Innovations (CEPI) have listed MERS as priority target for 

vaccine development (ROTTINGEN et al., 2017). However, so far, no candidate 

vaccines have proceeded beyond phase I/IIa clinical testing (CHO et al., 2018). 

One of these candidate vaccines is based on Modified Vaccinia virus Ankara 

(MVA), a safety-tested and replication-deficient vaccinia virus serving as an 

advanced viral vector platform for the development of new vaccines against 

infectious diseases and cancer (for review see (VOLZ & SUTTER, 2017)). In 

that context, we still know relatively little about the correlates of vaccine induced 

protection against MERS-CoV. It is well-known that virus-neutralizing antibodies 

directed against the spike glycoprotein (S protein) correlate with protective 

immunity against coronavirus infections in general (SUNE et al., 1991; KOLB et 

al., 2001; BISHT et al., 2004; YANG et al., 2004). Since the S protein is present 

on the cell surface, S protein is considered as the major antigen to induce virus 

neutralizing antibodies and as a key immunogen for the development of MERS-

CoV candidate vaccines (SONG et al., 2013; MALCZYK et al., 2015; 

MUTHUMANI et al., 2015; VOLZ et al., 2015b; WIRBLICH et al., 2017). 

However, based on current knowledge from the biology of β-coronaviruses, we 

hypothesize that also other viral proteins warrant consideration as immunogens 

and targets of virus-specific antibodies and T cells. Among those, the 
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nucleocapsid protein (N protein) is produced at high levels in infected cells and 

has been proposed as useful candidate protein for clinical diagnosis (LAU et al., 

2004; TIMANI et al., 2004; HE et al., 2005; CHEN et al., 2015; YAMAOKA et al., 

2016). The coronavirus N proteins have been associated with multiple functions 

in the virus life cycle including the regulation of viral RNA synthesis, the 

packaging of the viral RNA in helical nucleocapsids, and in virion assembly 

through interaction with the viral M protein (ALMAZAN et al., 2004; ZUNIGA et 

al., 2010; MCBRIDE et al., 2014; HSIN et al., 2018). Furthermore, several 

reports suggest that the severe acute respiratory syndrome coronavirus (SARS-

CoV) N protein functions as an immune evasion protein and an antagonist of 

the host interferon response (SPIEGEL et al., 2005; KOPECKY-BROMBERG et 

al., 2007; LU et al., 2011). Recently, the overexpression of MERS-CoV N in 

human A549 cells was found to be linked to an up-regulation of antiviral host 

gene expression including the synthesis of the inflammatory chemokine 

CXCL10 (ABOAGYE et al., 2018). Despite this possible immune modulatory 

activity, SARS-CoV N-specific immune responses are reported to be long-lived 

and more broadly reactive when compared to SARS-CoV S-specific immunity 

(TANG et al., 2011). Likewise, we were curious as to the suitability of the 

MERS-CoV N protein to serve as a vaccine antigen. The N protein is not 

present on the surface of MERS-CoV particles nor is it predicted to be 

expressed on the surface membrane of MVA infected cells. From this we 

hypothesized that the most relevant part of MERS-CoV N-specific immunity is 

based on CD8+ T cell responses relying on the processing and presentation of 

intracellular antigens. Currently, there is little information about MERS-CoV N-

specific immune responses including the in vivo induction of N-specific cellular 

immunity. 

In this study, we investigated the synthesis and delivery of the MERS-CoV N 

protein as a privileged antigen by a MVA vector virus. The recombinant MVA 

expressing a synthetic gene sequence of full-length MERS-CoV N (MVA-

MERS-N) proved genetically stable and fully replication-competent in chicken 

embryo fibroblasts, an established cell substrate for MVA vaccine 

manufacturing. Upon in vitro infection, MVA-MERS-N produced high amounts of 

the heterologous protein that were detectable with MERS-CoV N-specific 

antibodies. Furthermore, MVA-MERS-N was tested as an experimental vaccine 



IV. Results               39 

in BALB/c mice and elicited MERS-CoV N-specific interferon γ (IFN-γ)-

producing CD8+ T cells. Using peptide library covering the whole MERS-CoV N 

polypeptide, we identified new H2-d restricted peptide epitopes of MERS-CoV N 

in BALB/c mice. This data will be highly relevant for further assessment of N 

antigen-specific immune responses in the well-established MERS-CoV-BALB/c 

mouse immunization/challenge model (ZHAO et al., 2014; CHI et al., 2017; 

COLEMAN et al., 2017; LIU et al., 2017; JUNG et al., 2018). 

Materials and Methods 

Mice 

Female BALB/c mice (6 to 10-week-old) were purchased from Charles River 

Laboratories (Sulzfeld, Germany). For experimental work, mice were housed in 

an isolated (ISO) cage unit (Tecniplast, Hohenpeißenberg, Germany) and had 

free access to food and water. All animal experiments were handled in 

compliance with the German regulations for animal experimentation (Animal 

Welfare Act, approved by the Government of Upper Bavaria, Munich, 

Germany). 

Cells 

Primary chicken embryo fibroblasts (CEF) were prepared from 10-day-old 

chicken embryos (SPF eggs, VALO, Cuxhaven, Germany) and maintained in 

Minimum Essential Medium Eagle (MEM) (SIGMA-ALDRICH, Taufkirchen, 

Germany) containing 10% heat-inactivated fetal bovine serum (FBS) (SIGMA-

ALDRICH, Taufkirchen, Germany), 1% Penicillin-Streptomycin (SIGMA-

ALDRICH, Taufkirchen, Germany), and 1% MEM non-essential amino acid 

solution (SIGMA-ALDRICH, Taufkirchen, Germany). Human HeLa (ATCC CCL-

2) cells were maintained in MEM containing 10% FBS and 1% Penicillin-

Streptomycin. Human HaCat (CLS Cell Lines Service GmbH, Eppelheim, 

Germany) cells were cultured in Dulbecco`s Modified Eagle`s Medium (SIGMA-

ALDRICH, Taufkirchen, Germany) supplemented with 10% heat-inactivated 

FBS, 2% HEPES-solution (SIGMA-ALDRICH, Taufkirchen, Germany) and 

antibiotics as described above. All cells were maintained at 37 °C and 5% CO2 

atmosphere. 
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Plasmid Constructions 

The cDNA encoding the entire amino acid (aa) sequence (413 aa) of the 

MERS-CoV N protein was in silico modified by introducing silent codon 

alterations to remove three termination signals (TTTTTNT) for vaccinia virus 

early transcription and two G/C nucleotide runs from the original MERS-CoV 

gene sequence (Human betacoronavirus 2c EMC/2012, GenBank accession 

no. JX869059). A cDNA fragment was generated by DNA synthesis (Invitrogen 

Life Technology, Regensburg, Germany) and cloned into the MVA transfer 

plasmid pIIIH5red (KREMER et al., 2012) to place the MERS-CoV N gene 

sequence under the transcriptional control of the vaccinia virus early/late 

promoter PmH5 (WYATT et al., 1996) resulting in the MVA vector plasmid 

pIIIH5red-MERS-N. 

Generation of Recombinant Virus 

Recombinant MVA was generated using standard methodology as described 

previously (KREMER et al., 2012). Briefly, monolayers of nearly confluent CEF 

grown in six-well tissue culture plates (Sarstedt, Nürnbrecht, Germany) were 

infected with non-recombinant MVA (clonal isolate MVA F6) at 0.05 multiplicity 

of infection (MOI) and, 45 min after infection, CEF cells were transfected with 

plasmid pIIIH5red-MERS-N DNA using X-tremeGENE DNA Transfection 

Reagent Lipofectamine (Roche Diagnostics, Penzberg, Germany) as 

recommended by the manufacturer. At 48 h after infection, the cell cultures 

were harvested and recombinant MVA expressing the MERS-CoV N protein 

was clonally isolated by consecutive rounds of plaque purification in CEF by 

screening for transient co-expression of the red fluorescent marker protein 

mCherry. 

Quality control experiments were performed using standard methodology 

(KREMER et al., 2012). Genetic identity and genetic stability of the recombinant 

virus were assessed via polymerase chain reaction (PCR) analysis of the 

genomic viral DNA. Replicative capacities of the MVA vector virus was tested in 

multi-step growth experiments in CEF and human HaCat and HeLa cells. 

To generate high titer vaccine preparations for preclinical studies, recombinant 

MVA was amplified in CEF, purified by ultracentrifugation through 36% sucrose 
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cushions, resuspended in 10 mM Tris-HCl buffer, pH 9.0, and stored at −80 °C. 

The sucrose purified MVA-MERS-N vaccine preparations corresponded in total 

protein/total DNA content to the purity profile of a MVA candidate vaccine for 

human use. 

Western Blot Analysis of Recombinant Proteins 

Confluent cell monolayers of CEF or HaCat cells were infected at a MOI of 5 

with recombinant MVA expressing the MERS-CoV N or S protein (SONG et al., 

2013). Non-infected (mock) or wild-type MVA-infected cells served as controls. 

Cell lysates were prepared at different time points after infection and stored at 

−80 °C. Total cell proteins were resolved by electrophoresis in a sodium 

dodecyl sulfate (SDS)-10% polyacrylamide gel (SDS-PAGE) and subsequently 

transferred onto a nitrocellulose membrane via electroblotting. After 1 h blocking 

in a phosphate buffered saline (PBS) buffer containing 1% (w/v) non-fat dried 

milk and 0.1% (v/v) NP-40 detergent, the blots were incubated with monoclonal 

mouse anti-MERS-CoV Nucleocapsid antibody (Sino Biological, Beijing, China, 

1:1000), monoclonal rabbit anti-MERS-CoV Spike Protein S1 Antibody (Sino 

Biological, 1:500), or polyclonal sera from MERS-CoV infected rabbits or 

cynomolgus macaques (kindly provided by Dr. Bart Haagmans, Erasmus 

Medical Center, Rotterdam, 1:1000) (SONG et al., 2013) as primary antibodies. 

After washing with 0.1% NP-40 in PBS, the blots were incubated with anti-

mouse IgG (1:5000), or anti-rabbit IgG antibody (1:5000), or protein A (1:1000) 

conjugated to horseradish peroxidase (Cell Signaling Technology, Frankfurt am 

Main, Germany). After further washing, blots were developed using 

SuperSignal® West Dura Extended Duration substrate (Thermo Fisher 

Scientific, Planegg, Gemany). 

Immunization Experiments in Mice 

Groups of female BALB/c mice (n = 2 to 5) were immunized twice within a 21-

day interval with 108 plaque-forming-units (PFU) of recombinant MVA-MERS-N 

or non-recombinant MVA (MVA) or PBS as mock vaccine. Vaccinations were 

given via the intramuscular (i.m.) or intraperitoneal (i.p.) route using 25 µL (i.m.) 

or 200 µL (i.p.) volumes per inoculation. All mice were monitored daily for 

welfare and potential adverse events of immunization. At day 8 post prime-

boost immunization, animals were sacrificed by cervical dislocation and spleens 
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were taken for T cell analysis. 

Synthetic Peptides and Design of Peptide Pools 

For T cell immune monitoring, we identified 101 individual synthetic peptides 

(assigned as 1 to 101) in silico spanning the entire MERS-CoV N protein 

sequence (Human betacoronavirus 2c EMC/2012, GenBank accession no. 

JX869059). This peptide library was designed to contain 15-mer peptides 

overlapping by 11 aa. Eighty-four peptides could be synthesized (Thermo 

Fisher Scientific) and were organized into two-dimensional matrix peptide pools 

(V1 to V9 and H1 to H9) containing 9 or 10 peptides as described previously 

(FIORE-GARTLAND et al., 2016; MALM et al., 2016). For further T cell epitope 

mapping, the 11 aa sequence shared between peptide #89 and #90 was 

trimmed into 8-10-mer peptides, which were also obtained from Thermo Fisher 

Scientific. All peptides were dissolved in PBS to a concentration of 2 mg/mL and 

stored at −20 °C until use. 

T cell Analysis by Enzyme-Linked Immunospot (ELISPOT) 

Spleens were harvested on day 8 post prime-boost vaccination. Splenocytes 

were prepared by passing through a 70 µm strainer (Falcon®, A Corning Brand, 

Corning, USA) and incubating with Red Blood Cell Lysis Buffer (SIGMA-

ALDRICH, Taufkirchen, Germany). Cells were washed and resuspended in 

RPMI 1640 medium (SIGMA-ALDRICH) containing 10% heat inactivated FBS 

and 1% Penicillin-Streptomycin. Splenocytes were further processed by using 

the QuadroMACS Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) to 

separate CD8+ and CD4+ splenocytes with MACS Micro Beads (Miltenyi 

Biotec, Bergisch Gladbach, Germany). 

IFN-γ-producing T cells were measured using ELISPOT assays (Elispot kit for 

mouse IFN-γ, MABTECH, Germany) following the manufacturer`s instructions. 

Briefly, 1x106 splenocytes were seeded in 96-well plates (Sarstedt, Nürnbrecht, 

Germany) and stimulated with peptide pools or individual peptides (2 µg 

peptide/mL RPMI 1640 medium) at 37 °C for 48 h. Non-stimulated cells and 

cells treated with phorbol myristate acetate (PMA) (SIGMA-ALDRICH) and 

ionomycin (SIGMA-ALDRICH, Taufkirchen, Germany) or MVA F2L26-34 peptide 

(F2L, SPGAAGYDL, Thermo Fisher Scientific, Planegg, Germany) (TSCHARKE 
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et al., 2006) served as negative and positive controls, respectively. Automated 

ELISPOT plate reader software (A.EL.VIS Eli.Scan, A.EL.VIS ELISPOT 

Analysis Software, Hannover, Germany) was used to count and analyze spots. 

T Cell Analysis by Intracellular Cytokine Staining (ICS) and Flow Cytometry 

Splenocytes were prepared as described above. Splenocytes were added to 

96-well plates (1x10⁶ cells/well) and stimulated for 6 h with MERS-CoV N-

specific peptide (at 8 µg peptide/mL RPMI 1640 medium) in presence of the 

protein transport inhibitor Brefeldin A (Biolegend, San Diego, CA, USA; 5 

µg/mL). Non-stimulated cells served as a background control and cells 

stimulated with 5 ng/mL PMA and 500 ng/mL ionomycin or with F2L peptide (8 

µg/mL RPMI 1640 medium) were used as positive controls. After stimulation, 

cell surface antigens were stained using PE-conjugated anti-mouse CD3 (clone: 

17A2, Biolegend, San Diego, CA, USA), PE/Cy7-conjugated anti-mouse CD4 

(clone: GK1.5, Biolegend, San Diego, CA, USA), or FITC-conjugated anti-

mouse CD8a (clone: 5H10-1, Biolegend, San Diego, CA, USA) antibody and 

incubated for 30 min on ice. The surface-stained cells were washed with 

staining buffer (MACS QuantTM Running Buffer, Miltenyi Biotec), then fixed and 

permeabilized with Fixation- and Perm/Wash-Buffer (Biolegend, San Diego, CA, 

USA), and finally stained for intracellular IFN-γ expression using APC-

conjugated anti-mouse-IFN-γ antibody (clone: XMG1.2, Biolegend, San Diego, 

CA, USA) for 30 min on ice. Following final washes, cells were resuspended in 

staining buffer and analyzed using the MACS Quant® VYB flow cytometer 

(Miltenyi Biotec, Bergisch Gladbach, Germany). 

Statistical Analysis 

Statistical analysis was performed by t-test using GraphPad Prism version 5 

software (GraphPad software, San Diego CA, USA); P-values less than 0.05 

were considered to be statistically significant. 
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Results 

Construction and Characterization of Recombinant MVA Expressing MERS-

CoV N Gene Encoding Sequences 

Recombinant virus MVA-MERS-N was formed in CEF that were infected with 

MVA and transfected with the MVA vector plasmid pIIIH5red-MERS-N (Figure 

1a). The MVA DNA sequences in pIIIH5red-MERS-N (flank-1, flank-2) targeted 

the insertion of the N gene sequences into the site of deletion III within the MVA 

genome. The clonal isolation was facilitated by co-production of the red 

fluorescent reporter protein mCherry allowing for the convenient detection of 

MVA-MERS-N infected cells during plaque purification. The repetitive DNA 

sequence of flank-1 (FR) served to remove the marker gene mCherry from the 

genome of the final recombinant virus through initiating an intragenomic 

homologous recombination (marker gene deletion). After PCR analysis 

confirmed the presence of more than 95% MVA-MERS-N recombinant viruses 

in the cultures, we selected the final marker-free recombinant viruses by plaque 

purification and screening for plaques without mCherry fluorescence. To confirm 

genetic integrity and proper insertion of the heterologous N gene sequences 

within the MVA-MERS-N genome, we analyzed viral genomic DNA by PCR 

using specific oligonucleotide primers specific for MVA sequences adjacent to 

the deletion III insertion site (Figure 1b). Additional PCRs specific for MVA 

sequences within the C7L gene locus or adjacent to the major deletion sites I, II, 

IV, V, and VI served to control for the genetic identity and genomic stability of 

MVA-MERS-N (Figure 1c, and data not shown). Next, we evaluated the 

recombinant virus MVA-MERS-N by multi-step growth analysis in different cell 

lines (Figure 1d). In CEF, the cell culture routinely used to propagate 

recombinant MVA vaccines, MVA-MERS-N efficiently replicated to titers similar 

to those obtained with non-recombinant MVA. In contrast, the human cell lines 

HaCat and HeLa proved non-permissive for productive virus growth confirming 

the well-preserved replication deficiency of the recombinant MVA-MERS-N in 

cells of mammalian origin. 
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Figure 1. Generation and characterization of recombinant Modified Vaccinia virus Ankara 

expressing the Middle East respiratory syndrome coronavirus N protein (MVA-MERS-N); (a) 

Schematic diagram of the MVA genome indicating the major deletion sites I-VI on the top. 

Flank-1 and flank-2 refer to MVA DNA sequences adjacent to corresponding insertion site. 

Deletion III was used to insert MERS-N encoding gene sequences under the transcriptional 

control of the vaccinia virus promoter PmH5. Repetitive sequences (FR) were designed to 

remove the mCherry marker by intragenomic homologous recombination (marker gene 

deletion); (b–c) PCR analyses of genomic viral DNA using oligonucleotide primers to confirm 

the correct insertion of recombinant MERS-N gene into deletion III (b), and the genetic integrity 

of the MVA genome for the C7L gene locus (c); (d) Multi-step growth analysis of recombinant 

MVA-MERS-N and non-recombinant MVA (MVA); Chicken embryo fibroblasts (CEF) and 

human HaCat or HeLa cells were infected at a multiplicity of infection (MOI) of 0.05 with MVA-

MERS-N or MVA. Infected cells were collected at different time points after infection and titrated 

on CEF cells. 
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To confirm the synthesis of MERS-CoV N protein upon MVA-MERS-N infection, 

total cell proteins from infected CEF and HaCat cells were separated by SDS-

PAGE and analyzed by immunoblotting (Figure 2). Consistent with the expected 

molecular mass of the MERS-CoV N protein we readily detected a ~45 kDa 

polypeptide using the N-specific mouse monoclonal antibody. At 24 hours post 

infection (hpi) a prominent band of N protein was visible in the lysates from both 

cell lines suggesting efficient synthesis of the recombinant protein under 

permissive and non-permissive growth conditions for MVA-MERS-N (Figure 

2a).  

In addition, the comparative Western blot analysis of cell lysates from MVA-

MERS-N or MVA-MERS-S infected CEF with antigen-specific mouse 

monoclonal antibodies suggested the production of comparable amounts of 

both MERS-CoV candidate antigens (Figure 2b). This observation is in line with 

the fact that the MVA-MERS-S candidate vector vaccine expresses the MERS-

CoV S gene sequences using the identical PmH5 promoter system (SONG et 

al., 2013). As shown in previous studies, we detected two MERS-CoV S-

specific protein bands upon infection with MVA-MERS-S indicating the authentic 

proteolytic cleavage of the full-length S glycoprotein (~210 kDa) into an N-

terminal (~120 kDa S1 domain) and a C-terminal (~85 kDa S2 domain; not 

detected) subunit (GIERER et al., 2013; SONG et al., 2013; MILLET & 

WHITTAKER, 2014). Following this, we used the total protein lysates from 

MVA-MERS-N or MVA-MERS-S infected CEF to assess the recognition of the 

MERS-CoV N and S antigens by sera from experimentally MERS-CoV infected 

animals. The Western blot analysis of sera from an infected rabbit (Figure 2c) or 

a cynomolgus monkey (Figure 2d) revealed the presence of antibodies specific 

for the MERS-CoV N protein. The recognition of the MERS-CoV N protein was 

at least as prominent as the MERS-CoV S antigen, which was suggestive of the 

induction of substantial N-specific antibody responses after experimental 

MERS-CoV infections. 
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Figure 2. Analysis of recombinant MVA-MERS proteins; (a) Western Blot analysis of MERS-

CoV N protein produced in CEF or HaCat cells. Lysates from cells infected with recombinant 

MVA (MVA-MERS-N, MVA-MERS-S) or non-recombinant MVA (MVA) at a MOI of five, or from 

non-infected cells (mock) were prepared at eight, 12, or 24 hpi. Proteins were analyzed by 

immunoblotting with a monoclonal anti-MERS-N antibody; (b–d) Western Blot analysis of 

MERS-CoV N and S proteins produced in CEF. Total cell extracts from CEF infected with 

recombinant MVA (MVA-MERS-N, MVA-MERS-S) or non-recombinant MVA (MVA) at a MOI of 

five, or from non-infected cells (mock) were prepared at 24 hpi. Cell lysates and proteins were 

tested by immunoblotting using monoclonal anti MERS-N and anti MERS-S antibody (b) or 

polyclonal sera from MERS-CoV infected rabbits (c) or cynomolgus macaques (d). Arrows 

indicate the N- or S-specific protein bands. 
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Characterization of MERS-CoV N-specific T Cell Responses 

Initial Screen of MERS-CoV N Epitopes Using Overlapping Peptide Pools 

T cell responses against coronaviruses are known to be long lived and mostly 

target the more conserved CoV internal structural N protein. However, 

information on MERS-CoV N antigen-specific T cell specificities is still limited. 

Thus, we aimed first to identify N polypeptide-specific T cell epitopes in BALB/c 

mice immunized twice with recombinant virus MVA-MERS-N or non-

recombinant MVA as a control via the intraperitoneal and intramuscular routes. 

Eight days after the final immunization, splenocytes were prepared and the 

purified CD4+ and CD8+ T cells were restimulated in vitro with overlapping 

peptides corresponding to the N protein. Overlapping peptides were pooled 

using a two-dimensional, pooled-peptide matrix system (Table S1) and 

screened by IFN-γ ELISPOT.  

Table S1. The design of matrix peptide pools for systematically screening of H2-d 

restricted T cell epitopes in MERS-CoV N protein. 

Matrix Pool Peptide 

1 H1 2 3 4 6 7 8 9 10 11 

 H2 12 13 14 15 16 17 18 19 22 

 H3 23 24 25 26 27 28 29 30 31 

 H4 32 33 34 35 36 37 38 39 49 

 H5 50 51 52 53 54 55 56 57 58 

 H6 59 60 65 66 67 68 69 70 71 

 H7 72 73 74 75 76 77 78/79 80 81 

 H8 82 83 84 85 86 87 88 89/90 91 

 H9 92 93 94 95 96 97 98 99 100/101 

2 V1 2 12 23 32 50 59 72 82 92 

 V2 3 13 24 33 51 60 73 83 93 

 V3 4 14 25 34 52 65 74 84 94 

 V4 6 15 26 35 53 66 75 85 95 

 V5 7 16 27 36 54 67 76 86 96 

 V6 8 17 28 37 55 68 77 87 97 

 V7 9 18 29 38 56 69 78/79 88 98 

 V8 10 19 30 39 57 70 80 89/90 99 

 V9 11 22 31 49 58 71 81 91 100/101 

 

The stimulation of splenoctyes from MVA-MERS-N immunized mice with the 

peptides from 16 out of the total 18 peptide pools did not result in the detection 

of IFN-γ producing T cells above background numbers obtained with 

splenocytes from mock or MVA-control vaccinated animals. Stimulation with the 

peptides from pools H8 (n = 10) and V8 (n = 10) as well as the use of the 
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vaccinia virus positive peptide F2L (TSCHARKE et al., 2006) (data not shown) 

showed elevated numbers of IFN-γ spot forming cells (SFC) in CD8+ T cell 

cultures (Figure 3a,b). MVA-MERS-N immunizations given by i.p. and i.m. 

routes resulted in comparable T cell stimulatory capacities of overlapping N-

specific peptides from pools V8 and H8. In contrast, peptides from other pools 

showed no or only minor stimulatory activities, as exemplified for peptides in 

pools V4 and V6. 

 

Figure 3. Screening for H2-d restricted T cell epitopes in MERS-CoV N protein using matrix 

peptide pools; (a–b) groups of BALB/c mice (n = 2 to 6) were vaccinated twice (21-day interval) 

by i.p. (a) or i.m. (b) application with 10
8
 plaque-forming-units (PFU) of recombinant MVA-

MERS-N (MVA-N). Mice inoculated with non-recombinant MVA (MVA) or phosphate-buffered 

saline (PBS) were used as controls. Splenocytes were restimulated in vitro with pools of 

overlapping peptides corresponding to MERS-CoV N protein. IFN-γ spot-forming CD8+ T cells 

(IFN-γ SFC) were measured by ELISPOT. The lines represent means. 

Reassessment of Positive Reacting Peptides Pools for MERS-CoV N T Cell 

Epitopes 

Following this, the peptides within the V8 and H8 peptide pools were used to 

elucidate in more detail the T cell epitope specificities. We subdivided the 

peptides from H8 and V8 in four new pools each containing five peptides (H8.1, 

H8.2, V8.1, V8.2). In addition, we separately tested the two 15-mer peptides 

#89 and #90, which were shared between pools H8 and V8. We again 

vaccinated BALB/c mice with MVA-MERS-N using i.p. or i.m. inoculations in a 

prime-boost regime. Splenocytes were prepared at day eight after the last 

vaccination and purified CD8+ T cells were restimulated with subpools V8.1., 

V8.2., H8.1, and H8.2 (Figure 4a).
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Figure 4. Mapping of H2-d restricted T cell epitopes in MERS-CoV N protein; (a–b) BALB/c 

mice (n = 2 to 4) were immunized twice (21-day interval) i.p. or i.m. with 10
8
 PFU of recombinant 

MVA-MERS-N (MVA-N), non-recombinant MVA (MVA) or PBS. Splenocytes from vaccinated 

mice were incubated in the presence of subpools (V8.1, V8.2, H8.1, H8.2) from positive matrix 

pools (a) or individual 15-mers peptides #89 or #90 (b). IFN-γ spot-forming CD8+ T cells (IFN-γ 

SFC) were quantified by ELISPOT. The lines represent means.  
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Stimulation with peptides from pools V8.1 or H8.1 activated only minor levels of 

IFN-γ producing cells with mean levels about 23 SFC/106 splenocytes. Yet, the 

stimulation with subpools V8.2 and H8.2 revealed clearly higher numbers of 

activated T cells with 83-176 IFN-γ SFC/106 splenocytes. Comparable numbers 

of IFN-γ producing cells were again induced by i.p. or i.m. immunization. Of 

note, the stimulations with the 15-mer peptides #89 (N353-367 = 

QNIDAYKTFPKKEKK) or #90 (N357-371 = AYKTFPKKEKKQKAP) alone resulted 

in detection of substantial quantities of IFN-γ producing cells (mean levels about 

71–107 SFC/106 splenocytes) in mice that had been vaccinated with MVA-

MERS-N by both immunization routes (Figure 4b). CD8+ T cells purified from 

mice receiving non-recombinant MVA or mock vaccine (PBS) did not produce 

IFN-γ following stimulation with peptides from subpools V8.1-H8.2 and with 

peptides #89 and #90. When checking for the specific peptides contained within 

the subpools, we observed that the strongly stimulatory peptides #89 and #90 

were part of the subpools V8.2 and H8.2, whereas these peptides were absent 

in V8.1 and H8.1. This data suggested that the overlapping 15-mer peptides 

#89 and #90 contained a valuable antigen epitope for the activation of MERS-

CoV N-specific CD8+ T cell responses. 

Identification of MERS-CoV N-specific T Cell Epitope 

To map more precisely this specific epitope within the MERS-CoV N protein, we 

concentrated on the overlapping 11-mer peptide shared between peptides #89 

and #90 and obtained nine 8-10-mer peptides (Table 1). Using these peptides 

for the stimulation of splenoctyes from MVA-MERS-N vaccinated mice, we 

obtained the highest numbers of IFN-γ producing T cells with peptide 10.2 

(mean levels of 94 to 97 SFC/106 splenocytes), while the other peptides (10.1, 

9.1, 9.2, 9.3, 8.1, 8.2, 8.3, 8.4) induced weaker responses with a mean of 5–76 

IFN-γ SFC/106 splenocytes (Figure 5a,b).  
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Table 1. Peptide information.
1
 

Peptide-ID Sequence Position 

#89 QNIDAYKTFPKKEKK N353-367 

#90 AYKTFPKKEKKQKAP N357-371 

11 AYKTFPKKEKK N357-367 

10.1 AYKTFPKKEK N357-366 

10.2   YKTFPKKEKK N358-367 

9.1 AYKTFPKKE N357-365 

9.2   YKTFPKKEK N358-366 

9.3    KTFPKKEKK N359-367 

8.1 AYKTFPKK N357-364 

8.2   YKTFPKKE N358-365 

8.3     KTFPKKEK N359-366 

8.4      TFPKKEKK N360-367 
 

1 
The common 11 amino acid sequence between positive 15-mers #89 and #90 was truncated 

into 8-10-mer peptides and tested by ELISPOT and ICS assay. 

 

Furthermore, we tested the 10.2 peptide to monitor N-specific T cell responses 

by IFN-γ ICS and fluorescence activated cell sorting (FACS) analysis. Indeed, 

we could detect significant numbers of 10.2 peptide-specific CD8+ T cells being 

induced and activated by the MVA-MERS-N prime-boost vaccination. In 

comparison, the CD4+ T cell populations from splenocytes of immunized 

animals demonstrated only background levels of IFN-γ producing cells (Figure 

5c). The vaccinia virus-specific immunodominant CD8+ T cell determinant F2L 

(TSCHARKE et al., 2006) served as control peptide for the detection of MVA-

specific CD8+ T cells (Figure 5d). 
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Figure 5. Identification of an H2-d restricted T cell epitope in MERS-CoV N protein; (a–d) 

Groups of BALB/c mice (n = 3 to 8) were vaccinated in a prime-boost regime with 10
8
 PFU of 

MVA-MERS-N via i.p. (a) or i.m. (b–d) application. Mice immunized with non-recombinant MVA 

(MVA) and PBS served as negative controls. (a-b) Splenocytes were stimulated with individual 

8-11-mer peptides and IFN-γ spot-forming CD8+ T cells (IFN-γ SFC) were measured by 

ELISPOT. (c–d) Splenocytes were stimulated with positive MERS-CoV N 10.2 peptide (c) or 

F2L26-34 peptide (d) and IFN-γ producing CD8+ or CD4+ T cells were measured using 

intracellular cytokine staining assay and FACS analysis. The lines represent means. *< 0.05, 

**< 0.005. 
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Discussion 

The availability of appropriate MERS-CoV-specific immune monitoring tools is a 

prerequisite for the successful development of vaccines and therapeutic 

approaches. The development of these tools is hampered by the fact that we 

still know little about the relevant viral antigens and the overall pathogenesis of 

the MERS-CoV infection. Recent studies describe a number of cases with 

asymptomatic MERS-CoV infection in humans and raise questions as to which 

factors influence the clinical manifestation of MERS (AL HAMMADI et al., 2015; 

SONG et al., 2018). Since asymptomatic or mild clinical manifestations of 

MERS-CoV infection are often associated with low levels of seropositivity, the 

analysis of MERS-CoV-specific cellular immune responses may facilitate further 

insight into the immune correlates of disease prevention. Moreover, in order to 

characterize the pathogenesis of MERS-CoV infection, it will be indispensable 

to monitor the role of virus-specific T cells in animal models of MERS and to 

precisely identify the antigen specificities of these T cell responses. 

In the present study, we identified a major histocompatibility complex (MHC) 

haplotype H2-d restricted peptide epitope in the MERS-CoV N protein by 

stimulating T cells from MVA-MERS-N vaccinated BALB/c mice with a 2-D 

matrix pool of overlapping peptides. These mice have already been used in 

various preclinical studies to establish the MERS-CoV S protein as an important 

vaccine antigen for induction of virus neutralizing antibodies (SONG et al., 

2013; CHI et al., 2017; COLEMAN et al., 2017; JIAMING et al., 2017; JUNG et 

al., 2018). Moreover, BALB/c mice transduced with the human cell surface 

receptor dipeptidyl peptidase 4 (hDPP4) using an adenovirus vector are 

susceptible to productive MERS-CoV lung infection, which allows for the testing 

of the protective efficacy of MERS-CoV-specific immunization using the MERS-

CoV S protein (ZHAO et al., 2014; VOLZ et al., 2015b; CHI et al., 2017; 

COLEMAN et al., 2017; LIU et al., 2017). Here, we wished to specifically assess 

the suitability of an MVA-delivered MERS-CoV N antigen for the activation of 

cellular immune responses in mice. In general, the N protein is a well conserved 

internal protein and the major structural component incorporating the viral RNA 

within the viral nucleocapsid (NARAYANAN et al., 2000). In previous studies, 

the SARS-CoV N protein has also been used as a candidate antigen for vaccine 

development (ZHAO et al., 2005), and an experimental DNA vaccine efficiently 
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induced SARS-CoV N-specific cellular immunity (ZHAO et al., 2010; ZHAO et 

al., 2016a). In line with this data, recent studies in MERS patients demonstrated 

that both antibody and T cell responses are associated with recovery from 

MERS-CoV infection (ZHAO et al., 2017a). 

The recombinant virus MVA-MERS-N produced stable amounts of MERS-CoV 

N antigen upon in vitro infection of human cells indicating the unimpaired 

expression of the target gene at the level of viral late transcription using the 

synthetic vaccinia virus-specific promoter PmH5 (WYATT et al., 1996). 

Moreover, the MERS-CoV N antigen produced in MVA-MERS-N infected cells 

was strongly recognized by antibodies from experimentally infected laboratory 

animals suggesting that N-specific immune responses were potently activated 

upon MERS-CoV infection. It seems noteworthy that MERS-CoV productively 

replicates in rabbits, but viral loads are low and the animals develop no overt 

disease symptoms. However, Haagmans et al. found infectious virus in the lung 

tissues of the rabbits and revealed the presence of the MERS-CoV N antigen in 

bronchiolar epithelial cells and in the epithelial cells of the nose (HAAGMANS et 

al., 2015). The localization of N in these respiratory epithelial cells may result in 

an efficient recognition by innate and also adaptive immune cells similar to 

those described for other viruses inducing robust protective immunity 

(ASCOUGH et al., 2018). This might be a possible explanation for efficient 

activation of MERS-CoV N-specific antibodies despite a barely productive 

MERS-CoV infection. Similar outcomes of infection were observed upon MERS-

CoV infection in cynomolgus macaques and other relevant non-human primate 

models (DE WIT et al., 2013b; FALZARANO et al., 2014). Thus, the induction of 

N-specific immune responses in these animals emphasizes the potential 

usefulness of the MERS-CoV N protein to serve as a vaccine antigen. 

Nevertheless, the immunogenicity of N requires further characterization in 

preclinical models for MERS-CoV infection. In addition to the induction of 

MERS-CoV-specific antibodies, the MERS-CoV N protein holds promise to 

efficiently activate virus-specific CD8+ T cell responses. For more detailed 

studies characterizing the possible role of these T cell specificities in MERS-

CoV-associated immunity or pathogenesis it is highly relevant to determine the 

N peptide epitopes allowing for the appropriate MHC-restricted antigen 

presentation and the activation of virus-specific T cells. In this study, we 
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identified a new H2-d restricted CD8+ T cell epitope in the MERS-CoV N protein 

using a 2-D matrix and pools of 84 overlapping 15-mer N peptides. First, we 

have identified two MERS-CoV N derived peptides (N353-367 = 

QNIDAYKTFPKKEKK and N357-371 = AYKTFPKKEKKQKAP) and further 

mapped these 15-mer peptides to the minimal aa sequence of N358-367 = 

YKTFPKKEKK representing a decamer peptide epitope (Figure S1) 

(PAPAGEORGIOU et al., 2016).  

 

       

Figure S1. Sequence analysis and modular organization of MERS-CoV N protein. The primary 

amino acid sequence of MERS-CoV N protein (MERS-CoV strain EMC/2012, GenBank 

accession no. JX869059). The N-terminal and C-terminal domain are indicated in red and 

green, respectively. Predicted RNA-binding domains (aa 37-164 and aa 239-362) are 

highlighted in gray. The structurally flexible linker region is indicated in black containing several 

Ser/Arg (SR) motifs, which are underlined in black (PAPAGEORGIOU et al., 2016). H2-d 

restricted peptides with CD4+ (N350-362, (ZHAO et al., 2016a)) and CD8+ (N358-367) T cell 

antigenicity are underlined in orange and blue, respectively. 
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Analysis of MERS-CoV sequences reveals that N358-367 is conserved among 

different strains of MERS-CoV (Table S2) (LEE et al., 2017).  

 

Table S2. Comparative analysis of MERS-CoV N358-367 epitope in different MERS-CoV 

strains (modified from (LEE et al., 2017)). 

Lineage Strain N358-367 

Lineage 1 England-Qatar/2012 YKTFPKKEKK 

Lineage 2 Abu Dhabi_UAE_8_2014 YKTFPKKEKK 

Lineage 3 Riyadh_2014KSA_683/KSA/2014 YKTFPKKEKK 

Lineage 4 Jeddah_c7770/KSA/2914-04-07 YKTFPKKEKK 

Lineage 5 MERS-CoV/KOR/KNIH/0001_05_2015 YKTFPKKEKK 

Outgroup MERS-CoV EMC/2012 YKTFPKKEKK 

 

The availability of such an epitope may allow for more detailed experimental 

monitoring of cellular immune responses induced by a MVA based candidate 

vaccine against MERS-CoV in the mouse model and potentially also in other 

preclinical models. Of note, the H2-d restricted CD8+ T cell epitope enables 

characterization of T cell responses in BALB/c mice that serve as a well-

established MERS-CoV infection model following adenovirus vector mediated 

transduction with hDPP4 (ZHAO et al., 2014; VOLZ et al., 2015b; CHI et al., 

2017; COLEMAN et al., 2017; LIU et al., 2017). A particular feature of MERS in 

humans, as observed upon the investigation of cluster outbreaks in hospitals, is 

the lack of detectable MERS-CoV neutralizing antibodies in patients with 

confirmed disease (WANG et al., 2015b; PALLESEN et al., 2017). This 

observation is attributed to the emergence of specific virus mutants evading the 

neutralizing antibody response, as already described for SARS-CoV (SUI et al., 

2014; TAI et al., 2017). Thus, future use of a T cell-specific immune monitoring 

might contribute to a more detailed understanding of MERS pathogenesis. 

Here, studies on the function of MERS-CoV-specific CD8+ T cells in this 

BALB/c mouse MERS-CoV lung infection model will be helpful to better 

estimate the role of cellular immunity in vaccine mediated protection in MERS-

CoV infection. 

Finally, the MVA-MERS-N vector virus generated for this study proved to be a 

stable recombinant virus that can be readily amplified to obtain vaccine 

preparations technically fulfilling all requirements for further preclinical or even 

clinical development. Future work with MVA-MERS-N candidate vaccines 
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should help to elucidate the potential protective capacity of N-specific immune 

responses in MERS-CoV infections models and contribute to our better 

understanding of MERS vaccine-induced protection. 
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V. DISCUSSION 

Emerging respiratory coronaviruses such as SARS- and MERS-CoV represent 

potential biological threats to humans, both in terms of sporadic epidemics and 

possible bioterrorism. Considering the ongoing MERS-CoV epidemic and the 

lack of antiviral therapies, the development of safe and efficient MERS-vaccines 

is urgently needed. Prophylactic vaccination of people at high risk for infections, 

including healthcare workers or camel workers, and also the vaccination of 

camels, as the major animal reservoir, should be pursued to combat the 

ongoing spread of MERS-CoV. The MERS-CoV spike (S) protein is the major 

target of vaccine approaches, since neutralizing antibodies are directed against 

this surface protein. In accordance with data published from other 

coronaviruses, these S-induced neutralizing antibodies are hypothesized to 

correlate with protection against MERS-CoV infection (BISHT et al., 2004; 

SUBBARAO et al., 2004; YANG et al., 2004; CHI et al., 2017). Currently, there 

is rather little known about antigenic targets, which are recognized by T cells 

during MERS-CoV infection. However, T cells seem to be important for viral 

clearance and recovery from MERS disease. Based on knowledge from other 

coronaviruses, highly conserved (internal) structural proteins, such as the 

coronavirus N protein, are considered as other innovative target antigens and 

they may elicit a long-lived and broad-reactive T cell immune response.  

MVA, a replication-deficient and safety-tested VACV, serves as a promising 

platform for the development of vector-based vaccines against various 

infectious diseases and cancer. In this study, a recombinant MVA stably 

expressing the full-length MERS-CoV N protein was generated to further 

elucidate mechanistic insights into the nature of MERS-CoV N-specific T cell 

immunity. T cell responses recognizing the MERS-CoV N protein were 

characterized in mice immunized with the MVA vaccine candidate by using 

overlapping peptide libraries. The identification of T cell specific epitopes may 

facilitate studies of immune correlates of protection and the evaluation of 

vaccine strategies in murine models of MERS-CoV infection. 
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Correlates of vaccine-induced immunity against viral infections 

In general, vaccine induced protection is based on the activation of 

immunological memory responses, which act in combating infection or re-

infection with a specific pathogen (SALLUSTO et al., 2010). Protection for most 

of the licensed vaccines is currently associated with the induction of strong 

humoral immune response as measured by neutralizing antibodies in the serum 

or on the mucosal surfaces (PLOTKIN, 2010). Indeed, antibodies are believed 

to play the key role in mediating protection against various blood-borne viruses, 

such as hepatitis A and B, yellow fever, measles, mumps, polio or Japanese 

encephalitis virus (for review: (PLOTKIN, 2008)). The induction of humoral 

immune response is also the main strategy of vaccines against viruses, which 

infect via the mucosal route, including influenza virus or rotavirus (BELSHE et 

al., 2000; JIANG et al., 2008; PULENDRAN & AHMED, 2011). Vaccine-induced 

antibodies circulating in the blood and on the mucosa build a first line of 

defense with the aim to control viruses in an extracellular state and to inhibit 

viremia (PLOTKIN, 2010). In addition to antibodies, evidence is growing that T 

cells also play an important role in mediating protective immunity, especially 

against pathogens, which are antigenically highly variable, such as influenza 

virus or HIV (SALLUSTO et al., 2010; PULENDRAN & AHMED, 2011). 

Moreover, CD4+ T cells also support the proliferation of B cells and the control 

of disease (PLOTKIN, 2008). The importance of pathogen-specific cellular 

immunity for vaccine-induced protection was confirmed in the context of 

influenza virus infection. Here, the efficacy of vaccination in elderly people 

largely depends on the induction of cellular immune response due to a decline 

in antibody response. Indeed, the risk of elderly people to develop severe 

influenza disease inversely correlates with the magnitude of influenza-specific T 

cell response induced by vaccination (MCELHANEY et al., 2006). Moreover, T 

cells are also important to control infections with human cytomegalovirus 

(HCMV). Here, high frequencies of virus-specific T cells correlate with the 

absence of HCMV complications in patients after organ transplantation 

(SESTER et al., 2001; BUNDE et al., 2005). Furthermore, it is known that a 

balanced interplay between T and B cells is important for the protection against 

poxviruses. For the smallpox eradication campaign, immunization with VACV 

induces long-term antibody response. Although antibody response declines 
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within the first three years after vaccination, stable amounts of VACV-specific 

antibodies could be detected in human vaccinees up to 75 years after 

immunization with VACV (EL-AD et al., 1990; HAMMARLUND et al., 2003; 

PUTZ et al., 2005; AMANNA et al., 2006). Such a long-lasting antibody 

persistence is also described in the context of Ebola virus infections. Using 

ELISA and plaque reduction neutralization assay, Rimoin and colleagues 

analyzed the blood samples from 14 patients, who had survived Ebola virus 

infection. Of note, they could detect neutralizing antibodies 40 years after initial 

infection with Ebola virus (RIMOIN et al., 2018). Back to the smallpox 

vaccination, beside the humoral immune response, immunization with VACV 

also induces a robust cellular immune response. VACV-specific T cells were 

found to be long-lived and stable for many decades after immunization (EL-AD 

et al., 1990; DEMKOWICZ et al., 1996; CROTTY et al., 2003; FREY et al., 

2003). However, extensive cross sectional analysis of 306 humans vaccinated 

with VACV revealed that the level of antiviral CD4+ T cells is reduced slowly 

over time, with a half time of eight to 15 years (HAMMARLUND et al., 2003). 

The same is observed for the CD8+ T cell subpopulation, which declines more 

rapidly (AMARA et al., 2004). Taken together, these data suggest that VACV-

specific antibodies as well as T cells are involved in long lasting protective 

immunity induced by smallpox vaccination. Thereby, protection against re-

infection after vaccination is mediated by nearly lifelong persisting antibodies, 

which prevent severe disease. But, the presence of robust and long-term CD4+ 

T cells is likely to be critical for B cell proliferation and the corresponding long-

lasting humoral immune response against VACV (AMARA et al., 2004; 

AMANNA et al., 2006). In addition, CD8+ T cells are necessary for disease 

control, as re-infections and disease will only be asymptomatic in the presence 

of both humoral and cellular immune responses (AMANNA et al., 2006; 

PANCHANATHAN et al., 2008; PLOTKIN, 2008). In summary, these findings 

indicate that vaccine-induced T cells might be an innovative and promising 

approach to overcome some of the more complicated viral diseases. 
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Advantages of MVA as vector vaccine 

Several viral vectors are currently under development to be established as 

vaccine platform technology against infectious diseases and cancer, e.g. 

poxvirus, adenovirus, alphavirus or vesicular stomatitis virus. The main 

advantage of live viruses as a vaccine vector is their ability to infect cells and to 

facilitate intracellular expression of any foreign antigen (DRAPER & HEENEY, 

2010). This is essential for the activation of CD8+ T cells. Since the antigenic 

proteins are synthesized de novo during the viral replication cycle within the 

host cell, those endogenous proteins can be processed and presented within 

MHC-class I molecules. Thus, viral vector vaccines efficiently induce antigen-

specific CD8+ T cell responses (ALTENBURG et al., 2015). Besides cellular 

immune responses, the use of viral vectors allows for the activation of humoral 

immune responses against the antigen of choice. Thereby, it is noteworthy that 

the foreign antigens are expressed in their native conformation (DE VRIES & 

RIMMELZWAAN, 2016). In basic terms, viral vectors are distinguished into 

replicating and non-replicating viruses. The use of replication-competent vector 

viruses can be associated with severe side effects, especially in 

immunocompromised individuals, raising concerns about the safety of such 

vector-based vaccines. To address these safety concerns, attenuated or 

replication-deficient vector viruses have been developed, including the highly-

attenuated VACV strain MVA. 

The use of MVA as vector vaccine has several advantages. The capacity to 

insert large amounts of foreign DNA into the MVA genome enables transient 

expression of heterologous antigens that can induce both cellular und humoral 

immune responses (DE VRIES & RIMMELZWAAN, 2016). The ability of MVA to 

elicit high levels of antigen-specific cellular as well as humoral immune 

responses was demonstrated with the first recombinant MVA expressing the 

influenza antigens HA and NP (SUTTER & MOSS, 1992). The robust activation 

of cellular immune responses is supported by the fact that MVA seems to 

predominantly infect antigen-presenting cells, which are essential for the 

efficient activation of T cells. This kind of MVA cellular tropism has been 

demonstrated in in vitro, ex vivo and in vivo studies using a recombinant MVA 

expressing green fluorescent protein (GFP) as a reporter virus (ALTENBURG et 

al., 2017).  
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Another important characteristic of MVA-based vaccines is their high 

immunogenicity. Hereby it is noteworthy that immune responses and the 

vaccination efficacy induced by MVA vaccines are comparable to vaccines 

based on replication-competent VACV strains, if not even slightly better 

(SUTTER et al., 1994; RAMIREZ et al., 2000). This feature is most likely 

explained by the fact that MVA lacks several immunomodulatory proteins still 

expressed by the wild-type VACV (ALTENBURG et al., 2014). Due to the lack 

of IFN-α/β receptors, the type-I IFN response is activated during MVA infection. 

Indeed, Blanchard and colleagues demonstrated that MVA infection of primary 

human fibroblasts induces potent type-I IFN response in those cells 

(BLANCHARD et al., 1998). The activation of type-I IFN response by MVA was 

corroborated in a more recent study. Here, the infection of bone-marrow derived 

dendritic cells, the main producers of type-I IFNs, resulted in a strong secretion 

of IFN-α (WAIBLER et al., 2007). In addition to IFN-α/β receptors, MVA also 

lacks functional receptors for IFN-γ. This is important in the context that IFN-γ is 

essential for the activation of cytotoxic T cells (BLANCHARD et al., 1998). 

CD8+ T cells are not the only cell subpopulation, which are activated after MVA 

infection. Lehmann and colleagues demonstrated that intranasal infection of 

mice with MVA leads to immigration of monocytes, neutrophils and CD4+ T 

cells to the site of infection, triggered by expression of CCL2 (LEHMANN et al., 

2009). Taken together these findings indicate that MVA is able to activate 

various components of the host innate immune system leading to immigration of 

several immune cells to the site of MVA-vaccine inoculation (ALTENBURG et 

al., 2014). The increased production of proinflammatory cytokines, such as IFN-

α/β and TNF, and the immigration of different cell subpopulations provides a 

valuable explanation for the high immunogenicity and efficacy of MVA vaccines 

(BLANCHARD et al., 1998; WAIBLER et al., 2007). This intrinsic 

immunostimulatory capacity of MVA is comparable to adjuvants, which are used 

in many vaccines currently available to enhance immunogenicity and efficacy. 

For this reason, adjuvants are considered dispensable for the use of most MVA 

vaccines (ALTENBURG et al., 2014; BATISTA-DUHARTE et al., 2018).  

One of the most important features of MVA-based vaccines is the excellent 

safety profile. This has been confirmed in vivo in various animal models, 

including immunocompromised NHPs (STITTELAAR et al., 2001). Here, it is 
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remarkable that no clinical and pathological signs were noticed in 

immunosuppressed macaques infected with high dose of MVA (STITTELAAR et 

al., 2001). In addition to these promising studies in NHPs, several phase I and II 

clinical trials have corroborated the safety record of MVA in 

immunocompromised individuals being at high risk for conventional smallpox 

vaccination. Thereby, MVA proved to be well tolerated and immunogenic in 

patients with atopic dermatitis and HIV infection (VON SONNENBURG et al., 

2014; GREENBERG et al., 2015; OVERTON et al., 2015).  

In summary, these data highlight the suitability of MVA as vector platform for the 

generation of vaccines against the emerging pathogen MERS-CoV. In 

particular, the excellent safety profile of MVA also allows for the application in 

immunocompromised or elderly people. Since these individuals are at high risk 

to develop severe MERS disease, they represent the major target population for 

vaccination. Moreover, the use of MVA is highly advantageous in the 

development of future MERS vaccines, because both parts of the adaptive 

immune system can be activated efficiently. As mentioned above, this is 

important in the context that humoral and cellular immunity are known to be 

essential for long-lived and cross-reactive immunity against coronaviruses.  

Immunity against viral infection of the respiratory tract: antibodies vs. T 

cells 

According to data published in 2016 by the WHO, lower respiratory infections 

remained the leading cause of death due to communicable diseases, 

accounting for 3.0 million deaths in 2016 (WORLD HEALTH ORGANIZATION 

(WHO), 2016). The human respiratory tract is highly susceptible to infection with 

various pulmonary viruses such as influenza virus, respiratory syncytial virus, 

parainfluenza virus, rhinovirus or coronavirus, including the highly pathogenic 

SARS- and MERS-CoV (LESSLER et al., 2009; SCHMIDT & VARGA, 2018). 

One of the most striking feature of many respiratory viral infections, including 

respiratory syncytial virus and rhinovirus, is their ability to often cause re-

infections throughout life, which indicates that virus-specific antibody response 

may decline over time (SCHMIDT & VARGA, 2018). This phenomenon is also 

observed in influenza virus infections. However, in contrast to virus-neutralizing 

antibodies, the virus-specific T cells elicited during infection with influenza A 
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virus subtypes are long lived and more cross-reactive than neutralizing 

antibodies (VAN DE SANDT et al., 2014). These long-lasting influenza-specific 

T cells are hypothesized to provide protection against re-infection after ages 

and even more against infection with new influenza viruses evolving in the 

future. The decline of the virus-specific humoral immune response over time 

has also been observed in patients infected with the highly pathogenic SARS-

CoV. Here, neither antibodies nor memory B cells could be detected in 

recovered SARS patients six years post infection. In contrast, SARS-CoV-

specific memory T cells were found to persist up to 11 years post infection 

(TANG et al., 2011; NG et al., 2016; OKBA et al., 2017). Currently, there is 

relatively little known about memory responses after MERS-CoV infection. One 

study showed that MERS-CoV antibody responses persisted up to 34 months, 

albeit reduced. However, the effect of such long-lasting antibodies on MERS-

CoV re-infection and clinical severity is still unclear (PAYNE et al., 2016).  

In addition to providing protection against secondary infections, T cells are also 

essential for the control of acute primary infections with respiratory viruses 

(SCHMIDT & VARGA, 2018). CD8+ T cells in particular play a crucial role in the 

elimination of and corresponding protection against respiratory virus infections. 

This phenomenon was already described more than 30 years ago in studies 

with mice infected with influenza virus. Here, adoptive transfer of virus-specific 

CD8+ T cells resulted in a significant reduction of infectious virus in the lungs 

following challenge infections with influenza A virus (LUKACHER et al., 1984; 

TAYLOR & ASKONAS, 1986; BENDER et al., 1992; SLUTTER et al., 2013). 

Similar studies in mice were also conducted with the highly pathogenic SARS- 

and MERS-CoV. Zhao and coworkers demonstrated that adoptive transfer of 

SARS-CoV-specific T cells into both immunocompetent or immunodeficient 

mice enhanced survival and reduced viral lung titers following SARS-CoV 

challenge infection (ZHAO et al., 2010). Furthermore, they also showed that T 

cell deficient mice were not able to clear MERS-CoV, whereas viral clearance 

was possible in mice lacking B cells (ZHAO et al., 2014). In addition, virus-

specific memory CD4+ and CD8+ T cells have been confirmed to mediate 

protection against both SARS- and MERS-CoV infection in mice 

(CHANNAPPANAVAR et al., 2014b; ZHAO et al., 2016b). Evidence suggests 

that T cells are also important for the control of acute coronavirus infection in 
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humans. In SARS patients, a decreased number of T cells correlated with 

enhanced disease severity (LI et al., 2003; CHANNAPPANAVAR et al., 2014a).  

In summary, these data highlight an important role for T cells in mediating 

protection against respiratory virus infections, including the emerging pathogen 

MERS-CoV. Moreover, it is indispensable to identify the role of MERS-CoV 

specific T cells and their antigen-specificities for understanding MERS-CoV 

pathogenesis. From SARS-CoV it is known that low levels of virus-specific T 

cell immune response is responsible for severe disease and pathological 

changes in SARS-CoV infected mice (ZHAO et al., 2009; ZHAO et al., 2010). 

With regard on vaccine development, future improved vaccination strategies 

against MERS-CoV should target both arms of the adaptive immune response, 

virus-specific T cells as well as neutralizing antibodies, to induce long-lived 

protective immunity and to prevent severe MERS disease (SCHMIDT & 

VARGA, 2018).  

Challenges for the development of vaccines against MERS-CoV and 

emerging coronaviruses in general 

As already mentioned above, approaches to develop candidate vaccines 

against the highly pathogenic MERS-CoV mainly focused on the S protein, 

which plays an important role in viral infection and pathogenesis and represents 

the major target for neutralizing antibodies (MOU et al., 2013; OKBA et al., 

2017). Here, the RBD within the MERS-CoV S protein is of particular interest for 

the development of MERS-CoV specific vaccines, including recombinant 

proteins, nanoparticles or virus-like particles (ZHOU et al., 2019). One of the 

most striking features of MERS-CoV pathogenesis in humans is the tendency of 

MERS-CoV RBD to mutate as a result of viral evolution (ZHANG et al., 2016; 

TAI et al., 2017). Several important key mutations, also called “antibody escape 

mutations”, have been identified in the RBD of different MERS-CoV strains from 

infected humans and dromedaries (TANG et al., 2014; KIM et al., 2016; TAI et 

al., 2017). Such antibody escape MERS-CoV mutants may facilitate viral 

evasion of cross-neutralizing antibodies raising concerns about the efficacy of S 

protein-based vaccine candidates (TAI et al., 2017). Thus, in light of ongoing 

outbreaks caused by MERS-CoV, it is important to develop vaccines with more 

broad-reactivity against coronaviruses evolving in the future. In that context, it is 
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also noteworthy to mention that the S protein, especially the RBD within the S1 

subunit, is highly divergent among the different coronaviruses (OKBA et al., 

2017). As a result, S-specific neutralizing antibodies primarily target 

homologous strains (CHANNAPPANAVAR et al., 2014a). Due to the limitations 

of coronavirus-specific antibody responses, the induction of long-lived T cell 

mediated immune responses should be pursued via a more broadly activating 

coronavirus antigen. Therefore, internal structural proteins, such as the MERS-

CoV N-protein, are promising target immunogens as they are more conserved 

among different coronaviruses (OKBA et al., 2017). The potential of internal 

structural proteins to activate T cells with broad reactivity has already been 

shown in the context of immunity against different influenza A virus subtypes. In 

that context, the highly conserved internal proteins NP and M1 were shown to 

induce appropriate levels of cross-reactive T cell response against different 

subtypes of seasonal influenza A viruses (YEWDELL et al., 1985; VAN DE 

SANDT et al., 2014; LIU et al., 2016; ZHAO et al., 2017b). In addition, these 

CD8+ T cells directed against NP and M1 protein of seasonal influenza A virus 

showed cross-reactivity with influenza viruses of avian or swine origin 

(JAMESON et al., 1999; KREIJTZ et al., 2008; HILLAIRE et al., 2013; 

ALTENBURG et al., 2014; VAN DE SANDT et al., 2014). Currently licensed 

seasonal influenza (Flu) vaccines focus on the robust activation of strain-

specific antibodies targeting the viral surface proteins HA and neuraminidase 

(NA). The most commonly used Flu vaccines are available as trivalent 

inactivated vaccine formulations. These trivalent inactivated vaccines contain 

three virus strains, including two influenza A viruses (H1N1 and H3N2) and one 

influenza B virus. In more recent years, due to the spread of two antigenically 

different influenza B viruses, quadrivalent inactivated vaccine formulations have 

been generated, including a second influenza B virus strain (RAJAO & PEREZ, 

2018). In addition to inactivated vaccine formulations, live-attenuated and 

recombinant HA vaccines are available that also induce neutralizing antibodies 

against HA and NA (YAMAYOSHI & KAWAOKA, 2019). Indeed, both influenza 

surface proteins efficiently induce influenza A virus-neutralizing antibodies, 

which correlate with protection. However the HA and NA encoding genes are 

frequently mutating as a result of selective pressure exerted by previous 

antibody inducing vaccinations or infections (ALTENBURG et al., 2015). Thus, 
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such Flu vaccines that are based on HA- and NA-mediated immunity require an 

annual update to provide solid protection against antigenically mismatching 

seasonal influenza A virus strains  (SMITH et al., 2004). Focusing more on the 

conserved internal influenza antigens may help to overcome the limitations of 

influenza candidate vaccines solely based on HA and NA. 

The importance of long-lived immunity is further highlighted by the key target 

populations for MERS-CoV vaccination. Since most of the larger MERS-CoV 

outbreaks occurred in hospitals also involving insufficient hygiene measures, 

healthcare workers being at high risk for MERS-infections would benefit from 

robust and long-lived T-cells against MERS-CoV. Considering emergency 

scenarios, short-term protection with a rapid onset of protective immunity might 

be another important requirement for a promising candidate vaccine against 

MERS-CoV. Besides healthcare workers, people working with dromedary 

camels in endemic areas are another important target population for vaccine 

application (OKBA et al., 2017). Ideally, the same vaccine should be suitable for 

vaccination of dromedary camels to prevent primary zoonotic infections 

humans. So far, two MERS candidate vaccines have been evaluated in 

dromedary camels. Both candidate vaccines are based on the MERS-CoV S 

protein (MUTHUMANI et al., 2015; OKBA et al., 2017). The first one, a DNA 

vaccine, proved to be immunogenic in camels by inducing binding as well 

neutralizing antibodies (MUTHUMANI et al., 2015). The second candidate 

vaccine, is based on the viral vector MVA (MVA-MERS-S) (SONG et al., 2013; 

VOLZ et al., 2015b). Of note, immunization of camels with the MVA-MERS-S 

vaccine induced protective immunity against MERS-CoV challenge infection. 

Thereby, the protection correlated with neutralizing antibodies on mucosal 

surfaces (HAAGMANS et al., 2016). At present, this MVA vaccine is being 

tested in phase I/IIa clinical trials for the application in humans. The promising 

results of preclinical and clinical MVA-MERS-S testing encouraged us to utilize 

the same vector platform for the investigation of immune responses against the 

MERS-CoV N protein. In addition to the S protein, the conserved N protein may 

be used as a second co-expressed antigen in the MVA vector system to 

address the limitations of S-mediated humoral immune responses. For this 

purpose, we first generated a recombinant MVA that showed stable expression 

of MERS-CoV N protein, as demonstrated by Western Blot analysis. Moreover, 
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the new recombinant MVA-MERS-N vaccine proved to be replication deficient in 

mammalian cells, which confirmed the expected safety profile of recombinant 

MVA vaccines. Immunization studies in mice with MVA-MERS-N nicely show 

that the new recombinant MVA vaccine is able to induce a MERS-N-specific T 

cell response. 

Significance of virus-specific T cell epitopes in the development of 

vaccines 

The knowledge about virus-specific epitopes for T cells and B cells offers a 

broad application area in immunology and also microbiology. Here, the 

availability of specific epitopes facilitates mechanistic insight into disease 

specific pathogenesis. Moreover, in the context of vaccinology, identification of 

virus-specific epitopes allows for immune monitoring during vaccination studies 

in preclinical models. Furthermore, ongoing research focuses more and more 

on the development of epitope-based subunit vaccines, which are based solely 

on a single or the combination of different epitopes for the induction of stronger 

protective and maybe broad-reactive immunity (SANCHEZ-TRINCADO et al., 

2017). Epitope-based vaccines have several advantages compared to vaccines 

based on full-length antigens. They are highly stable, they can be easily 

produced, and they are less expensive than full-length antigen vaccines 

(AGGARWAL et al., 2019). In the last years, several epitope-based vaccines 

generated against bacteria, viruses and cancer underwent preclinical and 

clinical testing (KAUR et al., 2009). Inter alia, epitope-based vaccines are 

hypothesized as promising pre-vaccine candidates for the prevention of 

measles virus infection in children (EL KASMI & MULLER, 2001). Hereby, 

synthetic peptides representing epitopes from measles virus surface proteins 

proved to be protective against measles virus encephalitis in mice and they 

could be used for the pre-vaccination of children (OBEID et al., 1995; 

HATHAWAY et al., 1998; EL KASMI et al., 2000). This is possible, because the 

peptides are not recognized by pre-existing maternal antibodies. Thus, infants 

receiving the peptide-based vaccine would be protected during the gap of 

measles virus susceptibility until vaccination with standard live-attenuated 

vaccine (EL KASMI & MULLER, 2001). Another epitope-based vaccine is 

dealing with Bacillus anthracis. Aggarwal and coworkers demonstrated the 

protective efficacy of a chimeric vaccine comprising different epitopes of 
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Bacillus anthracis antigens. Mice treated with the epitope-based vaccine were 

fully protected against challenging with Bacillus anthracis (AGGARWAL et al., 

2019). The results of this study show that a combination of different epitopes 

can lead to better protectivity. This strategy may be useful for the generation of 

a broad-reactive coronavirus vaccine. Using MVA-MERS-N vaccination in mice, 

we have identified a T cell epitope within the MERS-CoV N protein. To 

overcome the risk of potential antibody escape mutants, the combination of 

beneficial B and T cell epitopes, at best within highly conserved proteins such 

as the coronavirus N protein, may provide the basis for the generation of a 

universal coronavirus vaccine having broader protection.  

Future perspectives 

The studies described here using the recombinant vaccine candidate MVA-

MERS-N confirmed that MVA is a good vector platform for generating safe and 

effective vaccines against emerging infectious diseases. Future work includes 

further preclinical studies in mice and other animal models to show protection 

against MERS-CoV induced by our MVA-MERS-N vaccine candidate. 
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VI. SUMMARY 

Characterization of recombinant Modified Vaccinia virus Ankara 

expressing the Middle East respiratory syndrome coronavirus 

nucleocapsid protein  

The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe 

respiratory disease and death in humans. In 2012, this novel highly pathogenic 

coronavirus suddenly emerged in Saudi Arabia. Since then, MERS-CoV 

continues to cause worldwide epidemics in humans with high morbidity and 

mortality. Dromedary camels are suspected to be the most important animal 

reservoir leading to sporadic zoonotic infections in humans, followed by 

intrafamilial or healthcare-associated transmission. Since virus-neutralizing 

antibodies directed against the coronavirus spike (S) protein correlate with 

protective immunity against coronavirus in general, the S protein is considered 

as the key immunogen for vaccine development against MERS-CoV. However, 

based on studies with other coronaviruses, it is well-known that T cell immune 

response is essential for viral clearance and recovery from MERS disease. In 

that context, the highly conserved and internal structural MERS-CoV 

nucleocapsid (N) protein is proposed as another promising target antigen for 

vaccine development to elicit MERS-CoV-specific T cell-based immune 

response.  

The highly-attenuated Modified Vaccinia virus Ankara (MVA) serves as 

promising viral platform for the development of recombinant vector vaccines 

against infectious diseases and cancer in preclinical research and in human 

clinical trials. MVA candidate vaccines are characterized by an exceptional 

safety-profile and a high immunogenicity. Despite its replication deficiency in 

mammalian cells, MVA is able to efficiently produce foreign proteins and to 

activate cellular and humoral immune responses against these antigens. 

The objective of this study was to characterize a recombinant MVA candidate 

vaccine expressing the MERS-CoV N protein. The new recombinant virus 

proved to be genetically stable and growth kinetics confirmed the replication 

deficiency of the recombinant virus on human cell lines despite the insertion of 

the foreign gene. In contrast, the viral replication remained unimpaired in 
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chicken embryo fibroblasts facilitating a large scale vaccine production. The 

correct and stable expression of MERS-CoV N protein in infected target cells 

was shown by immunoblot analysis. To assess whether the recombinant N 

protein can activate MERS-CoV-N-specific T cell immune responses, BALB/c 

mice were immunized with the MVA candidate vaccine. Overlapping peptides 

spanning the whole MERS-CoV N protein served to identify N-specific T cell 

epitopes. Using this strategy, a T cell decamer peptide epitope could be 

identified within the MERS-CoV N polypeptide. These results support further 

assessment of MERS-CoV pathogenesis and N protein-specific immune 

responses in mice and maybe also other preclinical animal models. 
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VII. ZUSAMMENFASSUNG 

Untersuchung von rekombinantem Modifizierten Vacciniavirus Ankara zur 

Expression von Nucleokapsid Protein des Middle East Respiratory 

Syndrome Coronavirus 

Das Middle East Respiratory Syndrome Coronavirus (MERS-CoV) ist in der 

Lage schwere Atemwegserkrankungen mit oftmals tödlichem Verlauf im 

Menschen hervorzurufen. Dieses neue hochpathogene Coronavirus konnte 

erstmals im Jahre 2012 bei einem Patienten in Saudi-Arabien isoliert werden. 

Seitdem verursacht das MERS-CoV immer wieder weltweit Ausbrüche, die von 

hoher Erkrankungs- und Sterberate gekennzeichnet sind. Dromedare sind 

bisher als einziges Tierreservoir identifiziert worden und gelten als Quelle für 

zoonotische Infektionen beim Menschen, die wiederum zur Weiterverbreitung 

des Virus innerhalb von Familien und in Krankenhäusern führen können. Im 

Allgemeinen korrelieren neutralisierende Antikörper gegen das Coronavirus 

Spike (S) Protein mit schützender Immunität gegen Coronavirusinfektionen. 

Daher gilt das S Protein als wichtigstes Immunogen für die Entwicklung von 

MERS-Impfstoffen. Allerdings ist basierend auf Untersuchungen von anderen 

Coronaviren bekannt, dass darüber hinaus auch eine ausreichend starke T Zell 

Immunantwort wichtig ist für die Viruselimination und die Erholung erkrankter 

MERS-Patienten. In diesem Zusammenhang wird das hochkonservierte und im 

Virusinneren liegende Nucleokapsid (N) Strukturprotein als ein weiteres 

vielversprechendes Zielantigen für die Entwicklung von MERS-Impfstoffen 

angesehen, die dann auch MERS-CoV spezifische T Zell-vermittelte 

Immunantwort hervorrufen sollen.  

Das Modifizierte Vacciniavirus Ankara (MVA) gilt als eine vielversprechende 

Plattform für die Entwicklung von Vektorimpfstoffen gegen verschiedenste 

Infektions- und Krebserkrankungen, sowohl in der präklinischen Forschung als 

auch in klinischen Studien im Menschen. MVA Vektorimpfstoffe zeichnen sich 

durch exzellente Sicherheit und hohe Immunogenität aus. Trotz der fehlenden 

Replikation in humanen Zellen werden Fremdproteine effizient durch das 

Vektorvirus exprimiert. Dadurch kommt es zur Aktivierung von zellulärer und 

auch humoraler Immunantworten auch gegen die Fremdantigene.  
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Ziel dieser Arbeit war es, einen neuen auf MVA basierenden Kandidatimpfstoff 

gegen das MERS-CoV zu entwickeln und zu charakterisieren, der das MERS-

CoV N Protein exprimiert (MVA-MERS-N). Molekularbiologische 

Charakterisierung in vitro in Zellkultur bestätigte die genetische Stabilität des 

neu generierten MVA-MERS-N. Des Weiteren wurde mittels 

Wachstumsanalysen die Replikationsdefizienz des rekombinanten MVA-MERS-

N auf humanen Zelllinien nachgewiesen. Im Gegensatz dazu kann sich MVA-

MERS-N auf Zellen aviären Ursprungs produktiv vermehren. Dies ermöglicht 

eine Impfstoffproduktion in großem Maßstab. Western-Blot-Analysen 

bestätigten die stabile und korrekte MERS-N Proteinsynthese in infizierten 

Zellen. Die Induktion einer MERS-N-spezifischen T Zell Immunantwort wurde in 

Impfversuchen in BALB/c Mäusen untersucht. Dazu wurden für die 

Identifizierung von möglichen T Zellepitopen innerhalb des MERS-CoV N 

Proteins überlappende Peptide eingesetzt. Mit Hilfe dieser Strategie konnten 

MERS-CoV N-spezifische T Zellen identifiziert werden, die ein T Zellepitop mit 

einer Länge von 10 Aminosäuren innerhalb des MERS-CoV N Proteins 

spezifisch erkennen. Diese Ergebnisse bilden die Basis für weiterführende 

Untersuchungen im Mausmodell und möglicherweise auch in anderen 

präklinischen Tiermodellen hinsichtlich der Pathogenese von MERS-CoV 

Infektionen und den induzierten N-spezifischen Immunantworten.
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