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I. INTRODUCTION 

Herpesviruses belong to the order Herpesvirales and can be divided into three 

families (Alloherpesviridae, Malacoherpesviridae and Herpesviridae). The family 

Herpesviridae can be further subdivided into the subfamilies Alpha-, Beta- and 

Gammaherpesvirinae. Within the Alphaherpesvirinae, we distinguish the genera 

Iltovirus, Mardivirus, Scutavirus, Simplexvirus and Varicellovirus (KING et al., 

2018). Primary herpesvirus infections occur at mucocutaneous junctions, mucosal 

or breeched cutaneous surfaces often in the oronasopharyngeal or the urogenital 

tract. Herpesviruses spread through contact infection or through (short-distance) 

droplet infections. A hallmark characteristic of herpesviruses is their ability to 

cause a chronic-persistent, life-long infection in the host. Following a short-lived 

lytic infection, a latent infection commences, where the virus either retreats in 

sensory peripheral nerve cell bodies that are innervating the area of primary viral 

replication, or it infects immune cells of the mononuclear lineage. Herpesvirus 

latency is the dormant, silent stage of the chronic-persistent infection (BERNARD 

ROIZMAN, 2007).  

Herpesviruses are large, double stranded DNA viruses with viral gene expression 

divided into three phases beginning with immediate early (IE) genes followed by 

early (E), and late (L) genes. Replication is a step-wise process downstream of 

genome transcription and translation, and it is the products of each of these steps 

that initiate the subsequent step (BERNARD ROIZMAN, 2007).   

Herpesvirus latency is defined by a truncated genome transcription of IE genes 

and the absence of viral protein production (STEVENS, 1989; BERNARD 

ROIZMAN, 2007; HOGK et al., 2013). Well-defined circumstances and 

conditions are necessary to cause reactivation and recrudescence from latency, 

resulting once more in a lytic and productive infection in the host. As the location 

for latency in the body is histologically and physiologically connected to the 

original site of primary infection, recrudescence leads to active lytic infection at 

this site, and infectious virus can spread to other members of the population. As 

most herpesviruses are species-specific, latency is probably the most important 

mechanism to maintain their continuous presence in a finite population. 

Furthermore, a latent infection does not induce specific immunity and therefore, 
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future de novo infections are possible.  

Equid herpesvirus type 1 (EHV-1), a member of the Alphaherpesvirinae is one of 

several herpesviruses that can be found in the horse. During lytic infection EHV-1 

causes mild respiratory disease, and depending on the occurrence of a cell-

associated viremia in peripheral blood mononuclear cells (PBMC), it can cause 

serious complications such as late-term abortions, equid herpesvirus 

myeloencephalopathy (EHM) and chorioretinopathies (GOEHRING et al., 2011; 

WILSTERMAN et al., 2011; HUSSEY et al., 2013; GOEHRING, 2015). 

Presumably, latency is established in any of the infected animals. Latent EHV-1 

has been shown to persist in the trigeminal ganglion as well as in the mandibular 

and retropharyngeal lymph nodes (SLATER et al., 1994; CHESTERS et al., 1997; 

REED, 2004; PUSTERLA et al., 2012).  Reactivation and recrudescence is 

thought to be infrequent; however, it can culminate in an outbreak after shedding 

of large amounts of virus into the environment. (SLATER, 2014).  

Current vaccines do not protect completely from horizontal infection, and an 

eradication program to eliminate EHV-1 from horse populations is currently 

unrealistic. It is therefore prudent to deepen our knowledge on EHV-1 latency and 

its dynamics. If the establishment of virus latency during primary infection or 

reactivation from latency could be controlled, future outbreaks and their negative 

impact on the equine industry could be prevented.  

As our long-term goal is either to prevent the establishment of latency or to 

prevent recrudescence, we will need to understand host and virus mechanisms that 

control this aspect of chronic-persistent infection. However, first we need to i) 

define locations of latency in the body of the horse, i.e. locations where active 

viral replication, lytic transcription and translation is absent, and ii) determine if 

strain differences have an impact on latency location or viral quantity in the horse.  

For this, we collected a variety of neural parenchyma and lymphatic tissues of 

horses that were experimentally infected with either a wild-type strain of EHV-1 

(Ab4) or one of two Ab4 mutant strain variants. Horses were euthanized 70 days 

post infection, and the collected tissues were evaluated by routine histology, 

quantitative (q)PCR, RT qPCR and (virus-specific) immunohistochemistry to 

assess for inflammation, (genomic) virus load, transcriptional activity, as well as 

viral translational activity in the various tissue samples. 
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II. LITERATURE REVIEW 

1. Herpesviruses 

1.1. Taxonomy 

In 2009, the International Committee on Taxonomy of Viruses (ICTV) updated 

the herpesvirus classification due to recommendations of the Herpesviridae Study 

Group. The new order Herpesvirales consists of three families with more than 100 

Herpesvirus species which have been isolated and classified and which are 

continuously updated by the ICTV (CARTER, 2013; KING et al., 2018). The 

three families consist of the former family Herpesviridae, which can be found in 

mammals, birds and reptiles, and two new families that were separated from the 

Herpesviridae: the Alloherpesviridae, infecting fish and amphibians and the 

Malacoherpesviridae infecting bivalve mollusk hosts (DAVISON et al., 2009; 

GROSE, 2012). Based on their biological properties, including which tissue or 

cell type is harboring latent virus and sequence similarity, the family 

Herpesviridae is divided into the subfamilies Alpha-, Beta- or 

Gammaherpesvirinae (EFSTATHIOU & PRESTON, 2005; DAVISON et al., 

2009). The word Herpesvirus is derived from the word “herpein” (Greek = to 

creep) and alludes to the creeping spread of the rash induced by Herpes simplex 

virus in humans (MODROW, 2010). All known herpesviruses have in common, 

that once infection has occurred they remain in the host establishing life-long 

latency (EFSTATHIOU & PRESTON, 2005; OSTERRIEDER, 2011; CARTER, 

2013). Most herpesvirus species are host-specific and most viruses affecting 

domestic animals belong to the Alphaherpesvirinae, genus Varicellovirus or 

Simplexvirus (DAVISON et al., 2009; OSTERRIEDER, 2011). Studies indicate, 

that the Alphaherpesvirinae have been in existence for more than 400 million 

years (GROSE, 2012). The Alphaherpesvirinae include viruses such as Herpes 

simplex virus types 1 and 2 (HSV-1 and HSV-2) and Varicella zoster virus (VZV) 

in humans. Important members of the taxon Alphaherpesvirinae infecting animals 

are Marek´s disease virus (MDV, GaHV-2) and Infectious laryngotracheitis virus 

(ILTV) in chickens, Pseudorabies virus (PRV) in pigs, Bovine herpesvirus types 

1, 2 and 5 (BoHV-1, BoHV-2 and BoHV-5) in cattle, and Canine and Feline 

herpesviruses (CHV-1 and FeHV-1) in dogs and cats respectively 
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(OSTERRIEDER, 2011). In equids, nine herpesvirus species have been identified 

thus far (DAVISON et al., 2009; MA et al., 2013). Equid herpesvirus 1 (EHV-1), 

Equine herpesviruses 3 and 4 (EHV-3, EHV-4) as well as the Asinine 

herpesviruses 1 and 8 (formally named EHV-6 and EHV-8) and the Gazelle 

herpesvirus 1 (EHV-9) are members of the subfamily Alphaherpesvirinae, genus 

Varicellovirus. EHV-2, EHV-5, Asinine herpesvirus 2 (EHV-7) and the recently 

identified Zebra herpesvirus 1 belong to the subfamily Gammaherpesvirinae. So 

far only Alphaherpesvirinae and Gammaherpesvirinae have been identified in the 

horse (EHLERS et al., 2008; DAVISON et al., 2009; MA et al., 2013; SLATER, 

2014).  

 

2. Alphaherpesvirinae 

Alphaherpesvirinae have been found to cause similar disease processes within the 

different species they infect. These disease processes include respiratory (VZV, 

EHV-1, BoHV-1, PRV), neurological (HSV-1, HSV-2, VZV, EHV-1, PRV), as 

well as reproductive system pathology (EHV-1, BoHV-1, PRV), with the latter 

resulting in abortions. Neurotropism is another common feature of the 

Alphaherpesvirinae characterized by a lytic and latent state in nerve ganglia, with 

the ability to establish life-long latency (BLOOM, 2016). EHV-1 is notably as the 

latent virus also has been detected in the mandibular and retropharyngeal lymph 

nodes (SLATER et al., 1994; CHESTERS et al., 1997; REED, 2004; PUSTERLA 

et al., 2012).   

Because research is mainly focused on human herpesviruses and notifiable, 

herpesvirus induced diseases with great economical impact on livestock animals, 

knowledge about EHV-1 infection is limited. A brief selection of important 

Alphaherpesvirus subfamily members, which share relevant characteristics with 

EHV-1, is summarized here. 

2.1. Herpes simplex virus types 1 and 2 

First contact with HSV-1 usually occurs in early childhood between ages of 6 and 

18 months and results in oral infection. HSV-2 is sexually transmitted and results 

in genital infection (EFSTATHIOU & PRESTON, 2005; CARTER, 2013). 

Despite the classification of HSV-1 as a cause of oral infection and HSV-2 as a 
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cause of genital infections, there are increasing numbers of cases where HSV-1 

infects the genitals and HSV-2 infects the face (CARTER, 2013).  

After primary replication in the oral mucosa HSV-1 follows retrograde axonal 

transport to the neuron cell bodies in the trigeminal ganglia (TG) where it 

establishes latent infection (EFSTATHIOU & PRESTON, 2005). Reactivation 

can occur at any time, especially in immunocompromised hosts and strong, 

unfiltered UV-light is likely a common cause of HSV-1 recrudescence 

(ICHIHASHI et al., 2004). Furthermore, the degree of immunosuppression 

correlates positively with the likelihood of reactivation. When reactivated the 

virus starts replicating and is subsequently transported within the neuron to the 

initial site of infection. Lytic infection of the epithelial cells results in a cold sore. 

Sometimes serious complications such as encephalitis may occur, especially in 

severely immunocompromised hosts (CARTER, 2013).  

The primary replication of HSV-2 takes place in the genital mucosa, subsequently 

following a similar retrograde axonal transport pathway but to the anatomically 

related sacral ganglia, where latency is established (EFSTATHIOU & PRESTON, 

2005). In newborn babies infection with either HSV-1 or HSV-2 can result in 

serious disease (Herpes neonatum) (MODROW, 2010) with a mortality rate of 

about 54% (CARTER, 2013). When reactivated, both HSV-1 and HSV-2 can also 

be shed  asymptomatically (EFSTATHIOU & PRESTON, 2005).    

2.2. Varicella zoster virus 

Varicella zoster virus (VZV) has the smallest genome (125kbp) of the eight 

known human herpesviruses (M. DUMAS et al., 1980; DAVISON & SCOTT, 

1986; GROSE, 2012). The virus is widespread and more than 95% of all humans 

are seropositive at 15 years of age. Infection normally occurs in childhood and 

causes chickenpox (MODROW, 2010). VZV is mainly transmitted horizontally 

and is the only human herpesvirus that is primarily transmitted by droplet 

aerosolization (GROSE, 2012). After aerogen transmission or direct contact with 

skin lesions, the virus replicates in the respiratory tract and the oropharynx 

causing varicella blisters typically seen in children, and then infects the PBMC. 

After viremia, the virus spreads to the mononuclear phagocyte system (MPS) and 

the endothelial cells. The rash on the skin is the result of inflammation moving 

from the endothelial cells of the capillaries to the epithelial cells of the skin. 
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During infection, the virus spreads via cell-to-cell contact with peripheral nerve 

endings.  Latency is established in paravertebral dorsal root sensory ganglia 

(DRG). However, genomic DNA can also be found in the olfactory bulb and the 

Corpus geniculatum of the thalamus (MODROW, 2010). The VZV follows two 

main strategies: it first causes varicella blisters (chickenpox), then establishes 

latency, and finally may cause zoster (shingles) when reactivated from the DRG. 

Reactivation of VZV can be caused by immunosuppression, trauma to the spinal 

cord, psychological conditions and the use of various medications (MODROW, 

2010). Normally VZV is a mild, non-life-threatening disease, but complications 

can occur in elderly or immunosuppressed people (DAVISON, 1991; MUELLER 

et al., 2008).  

2.3. Bovine herpesvirus 1 

In cattle, the notifiable Bovine herpesvirus 1 (BoHV-1) is the causative agent of 

the infectious bovine rhinotracheitis, infectious pustular vulvovaginitis and 

infectious balanoposthitis. Closely related to EHV-1 (OSTERRIEDER, 2011), 

BoHV-1 is worldwide a major pathogen in cattle which causes respiratory and 

genital disease.  

Infection with BoHV-1 normally occurs through direct contact or inanimate 

vectors. The virus is spread through direct nose-to-nose contact or aerosolization 

over short distance. Genital infection occurs through virus contaminated semen or 

direct contact at mating (MUYLKENS et al., 2007). After infection, the virus first 

replicates in the mucosa of either the upper respiratory or the genital tract. This 

productive lytic infection causes cell death through apoptosis and necrosis, 

resulting in blisters. During viremia, BoHV-1 is transported to the secondary sites 

of infection, where clinical manifestation may cause late-term abortions in 

seronegative pregnant cows and fatal systemic infection in very young 

seronegative calves (NEWCOMER et al., 2017).  

After replication at the primary sites of infection, the virus is retrogradely 

transported to the sensory ganglia of the head and the pelvis, the trigeminal and 

the sacral ganglion respectively, where latency is established (MUYLKENS et al., 

2007). Although the ganglion cells are regarded as the main site of latency, 

BoHV-1 DNA could also be detected in tonsils, PBMC, lymph nodes and spleen 

even without detection of infectious virus (WINKLER et al., 2000; JONES et al., 



II. Literature review     7 

2011). Reactivation from latency can occur when animals are exposed to stressors 

(e.g. transportation, weaning) or after corticosteroid treatment (JONES et al., 

2011). The virus is then transported to the site of primary infection through the 

axonal pathway, where it starts to replicate again. Infectious virus is then shed by 

symptomatic and/or asymptomatic animals to others nearby (MUYLKENS et al., 

2007).  

2.4. Pseudorabies virus 

Suid herpesvirus type 1 (SHV-1), also known as Pseudorabies virus (PRV) or 

Aujeszky´s disease virus is the causative agent of the economically important 

Aujeszky disease in swine (OSTERRIEDER, 2011). Transmission of the virus 

occurs directly through nose-to-nose contact or indirectly through contact with 

feces, secretions or fomites, included staff members. After infection, the virus 

replicates in the nasal and oral epithelial cells and the pharyngeal roof (tonsils). 

PRV is then spread to other organs via lymphatic and blood vessels resulting in a 

PBMC associated viremia (OSTERRIEDER, 2011). The virus can enter the 

central nervous system (CNS) either via retrograde transport through the TG or 

directly via the olfactory nerve through the olfactory neurons located in the nasal 

mucosa. Neurological, reproductive and respiratory signs are due to viral 

replication and the damage caused in related organs. The outcome of the disease 

highly depends on the age of the infected animal (VERPOEST et al., 2017). 

Immature development of the TG and CNS results in an inefficient suppression of 

viral replication, and therefore may explain the more severe neurological disease 

seen in 2-weeks old piglets (VERPOEST et al., 2017).  

Similarly, to HSV-1 and BoHV-1 the primary site of PRV latency is the TG 

(CHEUNG, 1989; MAHJOUB et al., 2015). However, latent PRV genomes have 

been detected in other nervous tissues, such as the olfactory bulb and the brain 

stem. Tonsillar lymph nodes have also been reported a site of latency. 

Reactivation and shedding of the virus frequently occurs under stressful 

conditions, such as transportation, concomitant disease conditions or farrowing 

(POMERANZ et al., 2005). Carriers often do not show any signs of illness, but 

may silently shed the virus when it reactivates (OSTERRIEDER, 2011).  

As PRV is known to have a broad host range, the infectious virus may also cause 

fatal encephalitis in many mammalian species, such as dog, cow and, although 
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rarely seen, horse (VAN DEN INGH et al., 1990; KIMMAN et al., 1991; 

CRAMER et al., 2011). Prevention of carry-over from wild boars and imported 

swine is of utmost importance and highlights the importance of the mechanism of 

latency, where a single infected animal that reactivates can infect others nearby 

and may lead to an outbreak.  

To improve the knowledge on Alphaherpesvirus pathomechanisms, such as 

latency, PRV serves as a model organism to study the viral life cycle and the 

interactions with the host. PRV offers various advantages: it has a broad host 

range, it is easy to manipulate and still poses little hazard to laboratory personnel. 

Infection experiments can be performed in the natural host as well as in other 

model organisms, such as rats, mice and rabbits (POMERANZ et al., 2005). 

Furthermore, as neurological disease is more severe in neonates, both animals and 

humans, PRV infections in the natural host provides a suitable infection model to 

study neurological disease (VERPOEST et al., 2017).  

2.5. Equid Alphaherpesviruses 

The horse is the natural host to several herpesviruses, from which EHV-1, -3 and -

4 belong to the subfamily Alphaherpesvirinae, genus Varicellovirus.  

EHV-4 is an important Alphaherpesvirus affecting equids. It has a high degree of 

genetic and antigenic similarities with EHV-1 and, until 1981, both viruses were 

considered subtypes of a single species (SABINE et al., 1981; STUDDERT et al., 

1981). Differentiation became possible in the 1990s, when one of the viral 

glycoproteins, gG, was shown to elicit type-specific antibodies (MA et al., 2013). 

Subsequently, assays for detection and differentiation between EHV-1 and -4 by 

polymerase chain reaction were developed (BORCHERS & SLATER, 1993; HU 

et al., 2014). Infections with EHV-4 cause rhinopneumonitis and occur through 

direct contact or through inanimate vectors. After primary replication of the virus 

in the upper respiratory tract (URT) mucosa, life-long latency is established 

within TG and lymphatic tissue (PATEL & HELDENS, 2005; SLATER, 2014). 

The virus has restricted tropism for epithelial and neuron cells (SLATER, 2014). 

In contrast to EHV-1, infections with EHV-4 are mainly associated with 

respiratory disease, and viremia is rarely seen (OSTERRIEDER, 2011; 

VANDEKERCKHOVE et al., 2011). However, recrudescence after stressors, 

such as transportation or hospitalization can lead to re-shedding and (re)infection 
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of other horses nearby.  

EHV-3 is antigenically, genetically and pathogenically distinct from EHV-1/-4 

and is the causative agent of equine coital exanthema (ECE), an acute venereal 

disease typically associated with formation of papules, vesicles, pustules and 

ulcers on the genital tract mucosa of mares and stallions. Tissue destruction is the 

result of a localized inflammatory response to the lytic infection 

(BARRANDEGUY et al., 2012). Nevertheless, infections can also be mild or 

subclinical. EHV-3 is primarily transmitted at mating but can also be spread 

indirectly through contaminated objects. As control of the disease mainly consists 

of the exclusion of infected animals from further breeding this disease has a 

significant impact on the equine industry worldwide (OSTERRIEDER, 2011; 

BARRANDEGUY & THIRY, 2012; TOISHI et al., 2017). Interestingly the exact 

location of EHV-3 latency is undetermined. The virus can reactivate 

spontaneously and experimental reactivation was observed after corticosteroid 

treatment (BARRANDEGUY et al., 2008).   

The remaining equid Alphaherpesviruses are natural pathogens to donkeys (EHV-

6 and -8) or are associated with wild equids, such as zebras (EHV-9). However, 

EHV-8 has been recently detected in association with abortion in mares 

(GARVEY et al., 2018). EHV-9 is the newest member of the Alphaherpesvirinae. 

It is a highly neurotropic herpesvirus and is closely related to the neuropathogenic 

EHV-1 (HARTLEY et al., 1999). It causes subclinical infections in the natural 

host, the Grevy´s zebra and onager (Equus hemionus), but can cross the species 

barrier and cause encephalitis in wild animals such as the Thomson´s gazelle, 

where it was first identified (FUKUSHI et al., 1997; SCHRENZEL et al., 2008). 

A recent report demonstrated that EHV-9 can also cause systemic infection in 

zebras (MOELLER et al., 2018). Though herpesviruses are known for species-

specificity, EHV-1 and EHV-9 show the ability to infect multiple mammalian 

species, including Equidae, Rhinocerotidae and Bovidae (SCHRENZEL et al., 

2008; ABDELGAWAD et al., 2016). EHV-9 showed tropism for nervous and 

respiratory tissues during experimental infections (DONOVAN et al., 2009) and 

establishes latency in the TG (GUEVARA et al., 2018). 

2.6. Morphology 

Besides similarities regarding the diseases caused and the ability to establish a 
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latent infection, all Alphaherpesviruses share similar morphology, that is different 

from all other viruses (DAVISON et al., 2009). Alphaherpesviruses are double 

stranded DNA (dsDNA) viruses and the size of these “large DNA viruses” varies 

from 180 to 250 nm in diameter (OSTERRIEDER, 2011). A linear DNA genome 

of 125 - 290 kbp is surrounded by an icosahedral capsid composed of 12 

pentavalent and 150 hexavalent capsomeres (DAVISON, 2010; CARTER, 2013). 

The capsid is coated by a proteinaceous matrix, the tegument, which consists of 

more than 20 proteins of structural and functional importance, such as packaging 

of proteins for initiation of replication and virus transport (OSTERRIEDER, 

2011). In turn, the tegument is covered by a lipid envelope (CAMPBELL, 2006) 

containing 16 different proteins, most of which are glycoproteins (DAVISON et 

al., 2009; DAVISON, 2010; CARTER, 2013). The envelope glycoproteins are 

each prefixed “g” (CARTER, 2013), bear antigen epitopes, and serve for viral cell 

entry pathways (OSTERRIEDER, 2011). Due to the enveloped structure, 

herpesviruses are vulnerable outside their host where they are rapidly inactivated 

by UV-light or mild detergents. Virus is spread through direct contact or 

inanimate vectors and short distance aerosols, but not through the air over long 

distances (OSTERRIEDER, 2011).  

The genomic organization of all Alphaherpesvirinae has four general structural 

components (HAY, 2007) that consist of two unique regions (namely the unique 

long and unique short (UL and US)), which are flanked by two inverted repeat 

regions (internal repeat (Ri) and terminal repeat (Rt)) (HAY, 2007; SLATER, 

2014). The unique regions encode single copy genes, whereas the repeat regions 

might contain diploid genes necessary for cleavage and packaging of viral DNA 

(HAY, 2007). Replication of Alphaherpesviruses follows a highly regulated 

cascade of gene expression, giving rise to successively produce immediate-early 

(IE), early (E) and late (L) mRNA. Gene products from each phase have 

regulatory functions that enable up- and down-regulation of the subsequent phase. 

However, only the IE genes are capable of autoregulation (CARTER, 2013).  

 

3. Equid herpesvirus 1 

Infections with EHV-1 are probably the most important Alphaherpesvirus 

infections in the horse worldwide (OSTERRIEDER, 2011) and in contrast to 
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EHV-4, endothelial cells, lymphocytes and monocytes can also be infected 

(WILSTERMAN et al., 2011; SLATER, 2014). Thus, EHV-1 causes respiratory 

disease, but is much more feared because of devastating complications such as 

abortions and EHM (GOEHRING et al., 2006; GOEHRING, 2015). Therefore, 

EHV-1 has a high impact on the equine industry worldwide (SLATER, 2014). As 

outbreaks of infection and subsequent disease are single outbreaks, connected to a 

horse that returns from a (competitive) event, it is very likely that latent virus 

reactivates in a single horse, replicates and spreads horizontally leading to an 

outbreak. This again highlights the importance of EHV-1 latency and the need to 

improve our knowledge in this area.  

3.1. The virus and its genomic organization 

EHV-1 is an enveloped dsDNA virus with 150kbp size. The genome of EHV-1 is 

organized in the Alphaherpesvirus conformation: two unique regions, one long 

and one short, with the short unique region being flanked by two repeat regions, 

called the internal and the terminal repeat regions respectively (ELIZABETH A. 

R. TELFORD, 1992).  

 Figure 1: Organization of the EHV-1 genome. Note 1: two unique regions, 

one long (UL) and one short (US), with the short US being flanked by two 

repeat regions, called the internal (IR) and the terminal (TR) repeat regions. 

Note 2: Schematic representation of the different genome regions. Note 3: 

Length of the different regions in base pairs. Note 4: Genes contained in the 

different regions: UL contains gene 1 to 63, IR contains genes 64 to 67, US 

contains genes 68 to 76 and TR contains genes 67 to 64 (SLATER, 2014). 

The linear dsDNA encodes 76 open reading frames (ORFs)  (ELIZABETH A. R. 

TELFORD, 1992; SLATER, 2014). As four genes (gene 64-67) are located within 

the repeat regions, they are represented twice resulting in a total of 80 ORFs (MA 
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et al., 2013; SLATER, 2014). These ORFs include the sole immediate-early gene 

(IE), 55 early (E) and 20 late (L) genes (SLATER, 2014). Gene products have 

distinct functions: there are approximately 30 gene products that are associated 

with the virion (six for the capsid (PERDUE et al., 1974)), 12 that are associated 

with the tegument (MCLAUCHLAN & RIXON, 1992; PUREWAL et al., 1994), 

and 11 with glycoproteins. These glycoproteins have various functions, such as 

viral attachment for cell entry, fusion of infected cells and direct cell-to-cell 

spread. Five glycoproteins (gB, gD, gH, gK, gL) are required for replication, and 

therefore essential. Although glycoproteins are main viral immunogens, only three 

(gB, gC, gD) are considered immunodominant and are best recognized by the 

equine host. The remaining genes are associated with replication functions 

(SLATER, 2014). After the advent of complete genome sequencing in 1992 

(ELIZABETH A. R. TELFORD, 1992), deeper studying of the pathogenesis of 

EHV-1 has been feasible; screening the whole genome for virulence factors 

became possible (SLATER, 2014).  

It has been suggested, that circulating isolates in the field differ in their 

neuropathogenicity and the ability of causing abortions. Isolates with high 

virulence, such as Ab4, are more often associated with neurologic disease and 

abortions, than other isolates such as V592 (SLATER, 2014). Differences 

between the isolates were not necessarily associated with pathogenic potential. 

However, a single nucleotide polymorphism (SNP) in the viral polymerase (ORF 

30), substituting G for A at position 2254 and resulting in an amino acid change 

from N (asparagine) to D (aspartate) at position 752 was significantly associated 

with nonneuropathogenic/neuropathogenic capacity, respectively (NUGENT et 

al., 2006; PERKINS et al., 2009). Studies, investigating recombinant viruses with 

different polymerase sequences, confirmed the causal relationship between this 

SNP in EHV-1 polymerase and neuropathogenicity in the horse (GOODMAN et 

al., 2007; VAN DE WALLE et al., 2009). However, neuropathogenicity seems to 

be multifactorial, with host response and virus genotype influencing the outcome 

of infection (WAGNER et al., 2011). Recent epidemiologic studies have revealed 

that EHM cases are not exclusively associated with the D752 variant, whereas 

higher association with prevalence of abortions was detected. More research is 

required to understand the genetic basis of the neuropathogenic phenotype in 

EHV-1 (SMITH et al., 2010; PRONOST et al., 2012).  
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3.2. Replication 

Viruses do not have their own metabolism and thus need a living host cell to 

replicate. Viral replication can be generally divided into seven steps in which the 

mechanisms of the host cell are used. First step is attachment and adsorption, 

where the virus attaches to a functional receptor on the host cell. After cell entry, 

the virus gets uncoated, releasing its nucleic acids. Transcription, translation and 

viral genome replication processes make the fourth step. Following assembly, the 

virion exits the host cell through cell lysis or budding. Final post-translational 

modification of proteins in the progeny virus, complete the circle (TRUYEN, 

2015).  

These general steps of viral replication are common to all virus, regardless of the 

species. However, it is important to understand specific characteristics of the 

replication of each particular virus, to understand the pathogenesis of the disease 

it causes.  

3.2.1. Lytic infection cycle 

During productive lytic infection approximately 20 hours are needed for one 

replication cycle (SLATER, 2014), which starts with attachment of EHV-1 to the 

mucosal epithelial cells of the URT and involves binding to heparan sulfate first, 

followed by binding to the main receptor (CARTER, 2013). It has been suggested, 

that equine major histocompatibility complex (MHC) class I is a functional gD 

receptor that plays a pivotal role in EHV-1 entry into equine cells, and that 

efficient cell entry of EHV-1 (and -4) mainly depends on gD (SASAKI et al., 

2011; AZAB, 2012). The virion envelope then fuses with the plasma membrane to 

enter the host cell (OSTERRIEDER, 2011; CARTER, 2013). This process is 

mediated by gB, gC, gD and presumably the gH/gL complex (NEUBAUER et al., 

1997; OSTERRIEDER, 1999; CSELLNER et al., 2000). After cell entry, parts of 

the tegument proteins are released and transported to several sites within the cell, 

where they activate virus genes and downregulate host DNA, RNA and protein 

synthesis. Other tegument proteins remain associated with the nucleocapsid, 

which is rapidly transported along microtubules towards a nuclear pore 

(CARTER, 2013). This energy consuming process results in docking to a nuclear 

pore, where the capsid undergoes a transformational change that releases DNA 

into the nucleus (FRAMPTON et al., 2010; CARTER, 2013). Once in the nucleus, 

viral DNA forms a circular molecule and becomes associated with histones 
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(CARTER, 2013). Within the nucleus, viral DNA and viral proteins move to 

compartments where replication occurs. These ‘replication compartments’ can be 

seen under the electron and sometimes light microscope as intranuclear inclusions 

(ROY & WOLMAN, 1969). Genome replication starts with the expression of the 

immediate early protein (GRAY et al., 1987). Viral replication then follows a 

tightly regulated cascade of IE, E and L phases (CAUGHMAN et al., 1985; 

SLATER, 2014) (Figure 2). These three phases are controlled by six genes: the 

sole IE gene (ORF 64), four E genes (EICP 22, 27, 0 and TR2) and one L gene 

(ETIF) (SLATER, 2014). The 1487 amino acid IE protein is a regulatory protein 

(SMITH et al., 1992). It is expressed first and thus controls the following 

replication cascade. Through the capability of binding its own promotor, the IE 

protein can auto regulate itself and stop the replication cascade (SMITH et al., 

1992). Hence, the IE protein functions as both: repressor and transactivator of the 

early and late gene promoters (KIM et al., 2012). Replication further requires 

activation of E genes (CARTER, 2013). Three (EICP 22, 27, TR2) of the E 

proteins co-act with the IE gene to transactivate E and L genes. In contrast, the 

EICP0 (ORF 63) downregulates the IE protein (KIM et al., 2003; ALBRECHT et 

al., 2005). Another protein, that downregulates the E genes and IE gene 

expressions is ETIF (KIM & O'CALLAGHAN, 2001). It is the product of L gene 

ORF 12 (LEWIS et al., 1997; KIM & O'CALLAGHAN, 2001) and is equivalent 

to the HSV-1 alpha transducing factor (α-TIF), which is important for cell-to-cell 

spread (CAMPBELL et al., 1984; VON EINEM et al., 2006; SLATER, 2014).  

 Figure 2: Replication cascade of EHV-1 during lytic infection. Gene 

expression follows a strictly regulated cascade of three phases: immediate 

early (IE), early (E) and late (L). Note 1: The IE transactivates promoters of 
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the E genes. Note 2: The IE and E genes transactivate L genes. Note 3: The E 

protein downregulates IE and the IE downregulates its own promoter. Note 

4: The L proteins downregulate the expression of E genes and the IE gene 

(SLATER, 2014). 

Furthermore, replication is dependent upon discrete sites that function as lytic 

origins of replication (oriLyt) (BOEHMER & NIMONKAR, 2003). Copies of 

origin binding protein bind at the ori sites and unwind the DNA. Double helix re-

forming is prevented by a single stranded (ss) DNA-binding protein that binds to 

the ssDNA. A helicase acting complex of three proteins provides further 

unwinding and forming of a replication fork (CARTER, 2013). It is thought that 

the circular DNA is first amplified by Theta replication (bidirectional replication 

from ori with two replication forks) and then switches to Sigma replication 

(rolling circle replication). The exact mechanisms involved in this process are still 

unknown (BOEHMER & NIMONKAR, 2003). Replication products are long 

DNA molecules, so called concatemers, each of which consists of multiple copies 

of virus genomes (CARTER, 2013). Assembly of the virions starts with 

packaging of the newly synthetized DNA into the nucleocapsid which contains 

some tegument proteins. Entering the perinuclear space, the nucleocapsid is given 

a temporary envelope formed by the inner membrane of the nuclear envelope.  

This temporary envelope fuses with the outer membrane of the nuclear envelope 

and the nucleocapsid is released into the cytoplasm. Tegument proteins that were 

translated outside the nucleus are added. The virion envelope is now acquired 

from the Golgi complex and contains glycoproteins that were previously 

synthetized in the rough endoplasmic reticulum. The enveloped virion is 

transported in a vesicle to the plasma membrane where it is released from the cell. 

A lytic infection results in cell lysis (GRANZOW et al., 2001; CARTER, 2013).  

3.2.2. Latent infection cycle 

Latency is the dormant stage of the chronic-persistent infection and a hallmark of 

Alphaherpesvirinae. It plays a key role in the epidemiology, control and 

prevention of the disease. This section will give an overview of the latent 

infection cycle. Deeper insights of the current knowledge about the establishment 

of latency, expression of latency-associated transcripts (LAT), the prevalence and 

detection of EHV-1 latency, will be provided in section 4 ´Latency`.    
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Commonly, latency location for Alphaherpesvirinae is the neural parenchyma, in 

particular sensory ganglia. After primary infection and replication, an 

Alphaherpesvirus enters sensible neuron endings and travels retrogradely towards 

the nerve nucleus, which is typically located in a sensory ganglion. As EHV-1 

replicates in the epithelium of the nasal and pharyngeal mucosa, the TG has been 

identified as a latency location for this virus (SLATER et al., 1994; REED, 2004; 

PUSTERLA et al., 2012). However, and rather unusual for an Alphaherpesvirus, 

EHV-1 has also been detected in the mandibular and retropharyngeal lymph nodes 

(CHESTERS et al., 1997; REED, 2004; PUSTERLA et al., 2012) and in 

circulating CD8+ T-lymphocytes (CHESTERS et al., 1997; SLATER, 2014). 

Currently, all three tissues or cellular departments are considered primary latency 

sites. 

For latent infection establishment, the steps until the virus enters into the nucleus 

are similar during both infection cycles. After attachment, the virus fuses with the 

plasma membrane and viral DNA is released into the nucleus. The exact 

mechanisms that control entry into lytic and latent infection cycles are not 

completely understood (SLATER, 2014). In nervous and lymphatic tissues, it 

appears that both cycles occur in parallel. However, during latency viral DNA is 

maintained in the nucleus and in contrast to the lytic infection, no viral replication 

takes place (CARTER, 2013). The virus is inactive and there is only limited 

transcription of the region antisense to the IE gene. From the human HSV-1, it is 

known that a latency-associated transcript (LAT) is continuously produced during 

the latent state (RAMAKRISHNAN et al., 1996; EFSTATHIOU & PRESTON, 

2005). Presumably, EHV-1 has similar features that control latency, reactivation 

and suppression of transcriptional activity of IE gene transcription, which is a 

transactivator of the E gene promoter (SLATER, 2014). During latency, the viral 

genome persists in multiple copies in a continuous (circular) episomal form in the 

nucleus. Latently infected cells do not express viral antigens and are thus not 

detectable by the hosts immune system (i.e. they are non-immunogenic). After 

latency establishment, reactivation can occur secondary to a variety of stressors, 

including transport, illness and hospitalization (BURROWS & GOODRIDGE, 

1984).The virus is then transported via anterograde axonal transport mechanisms 

towards the URT, where it replicates again. Virus is shed and may be transmitted 

to horses nearby (PUSTERLA et al., 2012). Thus, latently infected horses serve as 
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a natural reservoir (SLATER, 2014) and reactivation seems to be the major source 

of infective virus (PUSTERLA et al., 2012).  

3.3. Pathogenesis 

During EHV-1 infection, the virus enters the host through inhalation, ingestion or 

nose-to-nose contact. The virus then replicates in the URT mucosa where it causes 

cell death resulting in epithelial erosions necrosis, exudation and infiltration of 

phagocytic cells (REED, 2004; SLATER, 2014). After primary replication, the 

virus rapidly reaches the underlying lamina propia and is quickly spread to the 

regional respiratory associated lymph nodes, where it can typically be detected 

within 24-48 hours after infection. From these tissues, the virus enters the 

circulation and is disseminated to secondary sites during viremia, which is 

typically established 4 to 10 days following initial infection (HUSSEY, 2015). 

Vasculitis, thrombo-ischemia and secondary disease manifestation occur on days 

9 to 13 after infection leading to EHM and/or abortion (PUSTERLA & HUSSEY, 

2014; SLATER, 2014) 

The ability to establish cell-associated viremia in PBMC is crucial to the 

pathogenicity of EHV-1 and a link between primary respiratory EHV-1 infection 

and secondary sites of disease manifestation as it allows the virus to be 

transported to other tissues (KYDD et al., 2012). Cell-associated viremia has been 

found most frequently within CD8+ T lymphocytes in vivo, followed by B-

lymphocytes. However, viral DNA has also been detected in other subpopulations 

(CD4+ T lymphocytes and monocytes) (WILSTERMAN et al., 2011; SLATER, 

2014). Following infection, EHV-1 infects endothelial cells and causes vascular 

lesions leading to thrombo-ischemia which may result in damage of the affected 

tissue (EDINGTON et al., 1986). The clinical thrombosis seen in horses with 

EHV-1 infection may be due to rapid stimulation of procoagulant activity in 

equine monocytes by EHV-1 (YEO et al., 2013). The activation of coagulation 

during EHV-1 infection has also been described (GOEHRING et al., 2013). In 

that study, EHV-1 viremia was associated with increases in D-dimers (DD), 

which are breakdown products of the coagulation cascade present after 

fibrinolysis (OLSON, 2015). Vascular endothelium infection occurs during 

viremia through direct contact with infected PBMC and cell-to-cell infection, 

rather than by viral egress from PBMC with an extracellular phase and subsequent 

endothelial cell infection (SMITH et al., 2002). One in vitro study demonstrated 
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EHV-1 infection of brain endothelial cells and endothelial cells from the carotid 

artery after cell-to-cell contact (GOEHRING et al., 2011). Free virus is rarely 

detected in the circulation and presumably would be neutralized by pre-existing 

antibodies in many cases (GOEHRING et al., 2011; SLATER, 2014).  

Secondary disease manifestations of EHV-1 infections are EHM, EHV-1 

abortions, neonatal foal death and chorioretinopathies. Horses that do not undergo 

viremia are unlikely to develop EHM or abortion (SOBOLL et al., 2010). In 

addition, the magnitude and duration of viremia is a critical determinant of 

whether secondary signs will develop or not. Genotypically neuropathogenic 

EHV-1 isolates are reported to induce longer and more severe viremia, which may 

explain the higher association with infections of the CNS and the uterus 

(GOODMAN et al., 2007; GOEHRING, 2015). Nevertheless, neuropathogenicity 

seems to be multifactorial and the appearance of EHM is dependent on both the 

host response and the virulence of the virus (SLATER, 2014). Vasculitis and local 

thrombosis lead to hypoxic degeneration and death of the nervous tissue, which 

causes myelopathy, encephalopathy or myeloencephalopathy depending on the 

region affected. Neurological signs associated with EHV-1 infection are therefore 

subsumed as equine herpesvirus myeloencephalopathy (EHM) (SLATER, 2014).   

The pathogenesis of EHV-1 abortions includes the translocation of the virus to the 

endothelial cells of the uterus where it causes uterovascular lesions (SLATER, 

2014). The pathogenesis of EHM and EHV-1 abortion at the vascular endothelium 

is thought to be similar (PUSTERLA & HUSSEY, 2014). In late pregnancy, the 

endothelial cells of the equine uterus seem more susceptible to EHV-1 than during 

early pregnancy (PUSTERLA & HUSSEY, 2014; SLATER, 2014). It has been 

suggested that abortions associated with EHV-1 during earlier pregnancy stages 

are caused by maternal stress or pyrexia (SLATER, 2014).  

Another site of secondary infection with EHV-1 is the vasculature of the eye, 

inducing multifocal choroidal lesions in 50 to 90% of the horses experimentally 

infected with EHV-1 (HUSSEY et al., 2013). However, these ocular infections are 

subclinical and unlikely associated with loss of function (PUSTERLA & 

HUSSEY, 2014) and therefore of less economic importance. Nevertheless, it may 

serve as a surrogate model to study EHM pathogenesis, as the equine ocular 

fundus is anatomically and physiologically similar to the CNS (HUSSEY et al., 

2013; PUSTERLA & HUSSEY, 2014). 
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3.4. Clinical signs 

Infections with EHV-1 are associated with URT disease, abortions and neurologic 

disease. Affected horses typically show biphasic fever, anorexia, depression, 

tachypnea and dyspnea. Fever peaks occur 24 to 48 hours after infection and again 

on days 6 to 7. The first respiratory signs occur after an incubation period of up to 

10 days. In contrast to equine influenza virus, coughing is not a major clinical sign 

of EHV-1 infection. Nasal discharge is present and changes rapidly from serous to 

mucous and mucopurulent, presumably due to secondary bacterial infection. 

Conjunctivitis and serous ocular discharge are common. There is a progressive 

lymphadenopathy, mainly of the mandibular, but also of the retropharyngeal 

lymph nodes (SLATER, 2014). Bloodwork changes include primary leukopenia 

followed by leukocytosis (GIBSON et al., 1992).  

In horses previously exposed to EHV-1 clinical respiratory signs may be mild and 

of short duration or even absent. As a result, these animals may show no clinical 

signs of respiratory disease prior to abortion or recumbency (GOEHRING et al., 

2005). Abortions typically occur in the last trimester of pregnancy and mares may 

abort while standing. Mares normally can conceive successfully shortly after 

abortion (SLATER, 2014). Neonatal deaths during delivery may occur if gestation 

reaches term, or neonatal foals that survive to birth can be affected and show 

weakness, lethargy, and profound respiratory distress (MURRAY et al., 1998). In 

this foals it is unclear whether infection occurs in utero or shortly after birth, but 

infected foals typically die within 2 to 3 days after birth (SLATER, 2014).   

In horses suffering EHM, neurologic signs typically appear during the end of 

viremia, 6-10 days after infection and are often acute or peracute (REED, 2004). 

The viremic phase of EHV-1 infection is the critical phase, where virus is 

transported from the respiratory tract and the respiratory tract associated 

lymphatic tissues (RALT) to the CNS (GOEHRING et al., 2011). The 

presentation depends on the severity (number, size) and location of ischemic 

lesions in the spinal cord. Horses show different degrees and symmetry of ataxia, 

dysmetria, and weakness of the forelimbs and hindlimbs (GOEHRING, 2015). 

Debatably, caudal segments of the spinal cord and the lumbar intumescence are 

more intensely affected, resulting in cutaneous perineal and limb sensory but 

above all peripheral motor neuron deficits. In addition there is often bladder 

dysfunction, an upper or lower motor neuron bladder dysfunction resulting in 
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dysuria, atony, incontinence or urinary retention (SLATER, 2014). EHM shows 

with an acute onset and rapid progression during the first 24 to 48 hours, but then 

stabilizes (GOEHRING, 2015). Weeks to months are necessary for recovery, a 

return to full function is not guaranteed. For nonrecumbent horses, the prognosis 

is favorable, but once recumbent, the prognosis is guarded to poor (SLATER, 

2014). 

3.5. Immunity 

The immune response to EHV-1 infection is very complex (SLATER, 2014). 

After replication in the mucosa, the virus enters blood vessels and lymphatics via 

endothelial cell infection (invasion phase) and is distributed throughout the horse 

in the viremic phase. Following lytic infection, the virus can evade the host 

immune system and establish a life-long persistent latent infection. Therefore, 

EHV-1 interacts closely with the equine immune system.  

An effective immune response against EHV-1 requires a combination of mucosal 

and systemic humoral and cellular immunity (SLATER, 2014). Infection induces 

a transient protective immune response for 3 to 6 months (KYDD et al., 2006b). 

During this time, there is clinical protection and no viral shedding (SLATER, 

2014). A strong humoral immunity with an initial short-lived (<3 months) 

immunoglobulin M (IgM) mediated response is followed by a long-lived (>12 

months) IgG induction. Mucosal IgA is found only in small quantities. These 

antibodies are secreted onto mucosal surfaces for a short time (weeks), and the 

duration of this period does increase upon stimulation (KYDD et al., 2006b). 

Although a horse´s EHV-1 antibody status provides information on past exposure 

to the virus, the strength of the humoral response does not seem to correlate with 

protection against disease (HENNINGER et al., 2007; DUNOWSKA, 2014a). 

Furthermore, it should be kept in mind that many cross-reactive epitopes exist 

between EHV-1 and EHV-4 (HARTLEY et al., 2005).  

Infection also induces tissue (mucosal and lymphatic) and circulatory cellular 

immune responses mediated by CD8+ T-lymphocytes, which are associated with 

MHC I restricted cytotoxic T lymphocyte (CTL) activity (KYDD et al., 2006b). 

Thus, EHV-1-specific CTL can recognize and lyse virus-infected cells in a 

genetically restricted, antigen-specific manner (ALLEN et al., 1995). The virus 

becomes intracellular within hours of contact with host cells (KYDD et al., 1994a, 
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1994b), thereby evading the neutralizing effects of serum antibodies (KYDD et 

al., 2006b). There is a consensus between researchers that cellular and possibly 

mucosal immunity is more important for protection against EHV-1-induced 

disease than humoral responses (KYDD et al., 2012). 

EHV-1 has evolved sophisticated mechanisms to escape elimination by the host´s 

immune system (VAN DER MEULEN et al., 2006; MA et al., 2013). One such 

mechanism is the ability of EHV-1 to down-regulate cell surface MHC I on 

infected cells (MA et al., 2012). This downregulation of MHC I results in 

avoidance of natural killer cell-mediated lysis (DUNOWSKA, 2014b). The 

humoral immune evasion strategy includes interference with antibody-dependent 

cell lysis (ADCC), which makes infected cells insensitive to ADCC-mediated 

elimination (VAN DER MEULEN et al., 2003; VAN DER MEULEN et al., 

2006). Further, establishment of latency is a key feature for not being eliminated 

by the host immune system (EDINGTON et al., 1994).   

Vaccination remains a key strategy in protection against viral disease (ABBAS et 

al., 2014). The vaccines against EHV-1 must satisfy a difficult series of demands, 

including the induction of humoral and cellular immunity (SLATER, 2014). Thus 

far, modified live virus (MLV) and inactivated vaccines are available (MAYR A., 

1968; BURROWS R., 1978; BURROWS et al., 1984; ALLEN & BRYANS, 

1986; BURKI et al., 1990; BURKI et al., 1991; JESSETT D.M., 1998; MINKE et 

al., 2004), which are all capable of inducing some, but not all of the desired 

components. The MLV vaccines have an excellent safety record and can protect 

horses against clinical disease, however their efficacy in preventing viremia, 

abortion and neurological disease is unclear and has been only reported under 

experimental conditions (GOODMAN et al., 2006; KYDD et al., 2006b; 

BRESGEN et al., 2012; MA et al., 2013). Inactivated vaccines and MLV induce 

high titres of virus neutralizing (VN) antibodies, but there is little evidence, that 

significant cellular immunity is induced (SLATER, 2014). Thus vaccine 

development should be aimed at stimulating both CD8+ and CD4+ elements of 

cell mediated immunity, in particular CTLs, but at the same time maximise 

stimulation of mucosa and plasma VN antibodies (KYDD et al., 2006b). 

Therefore, new generation vaccines like subunit/vector vaccines, DNA vaccines 

and new generation MLV have been tested (MINKE et al., 2006; SOBOLL et al., 

2006; ALLEN, 2008; SOBOLL et al., 2010; BANNAI et al., 2018). Despite all 
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these developed vaccine candidates, many are still unsatisfactory because of 

safety issues, lack of optimized target genes or poor antigenicity, and the ideal 

vaccine has yet to be found (SOBOLL et al., 2006; WAGNER et al., 2011; MA et 

al., 2013).   

3.6. Diagnosis  

Viral diagnostic methods can be generally divided into direct (antigen) and 

indirect (antibody) detection assays. The direct method includes virus isolation 

and cultivation in cell culture, electron microscope presentation and molecular 

biology detection assays (for antigen or viral nucleic acids). The indirect 

serological approach is based on the analysis of the host´s immune response. The 

presence of specific antibodies can be detected by Enzyme-linked Immunosorbent 

Assays (ELISA), complement fixation (CF), specific CTL detection or other 

methods for serological investigation (FIELDS et al., 2013).  

For EHV-1 detection, both direct and indirect methods are used. Diagnosis of 

EHV-1 infection can be further subdivided into ante mortem (for suspected acute 

infection) and post mortem (mainly for latent infection) diagnosis.  

3.6.1. Ante mortem diagnosis of EHV-1 infection 

Ante mortem diagnosis under outbreak conditions requires fast and reliable 

diagnostics for EHV-1, as it is important for further therapy and biosecurity 

measurements (GOEHRING et al., 2010). Accurate sample and case selection are 

crucial for further investigations (SLATER, 2014; BALASURIYA et al., 2015). 

Clinical signs are often very nonspecific and fever may be the only warning sign, 

which can be easily overlooked (POWELL, 1991; BALASURIYA et al., 2015). 

However, a presumptive diagnosis of EHM based on clinical signs should always 

be confirmed via laboratory testing on nasal swabs or venous blood samples 

(SLATER, 2014; GOEHRING, 2015).  

Direct methods for EHV-1 diagnosis include demonstration of EHV-1 antigens by 

direct immunofluorescence test, virus isolation and detection of viral genomic 

DNA. Virus isolation remains the “gold standard” and involves the typical 

cytopathic effect (CPE) seen in cell culture (SLATER, 2014). However, this 

approach is time consuming requiring a minimum of 3-5 days (GOEHRING, 

2015). In addition, both tests require the presence of replicating virus. Therefore, 
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qPCR is the method of choice and analysis of nasal swabs and blood samples is a 

fast and sensitive test for confirmation of EHV-1 infection (GOEHRING, 2015). 

Both conventional (gel-based) and real-time qPCR are available, which 

distinguish the gB sequence between EHV-1 and EHV-4 (SHARMA et al., 1992; 

LAWRENCE et al., 1994; HUSSEY et al., 2006). Tests are also available, which 

not only detect EHV-1, but also differentiate between EHV-1 isolates with D752 

and N752 genetic markers (ALLEN, 2007; SMITH et al., 2012). However, these 

tests showed less sensitivity than the gB qPCR (PUSTERLA et al., 2009b).  

Indirect evidence of infection can be investigated by serology. Serologic detection 

of EHV-1 infection can be achieved by demonstration of seroconversion or a four-

fold increase in antibody titers between paired sera taken 3 weeks apart 

(BALASURIYA et al., 2015; GOEHRING, 2015). Different methods are 

available to determine EHV-1 serum antibody levels, of which CF and virus 

neutralization (VN) do not distinguish between EHV-1 and EHV-4, whereas 

glycoprotein G ELISA does (LANG et al., 2013; SLATER, 2014). 

3.6.2. Post mortem diagnosis of EHV-1 infection 

In some situations, post mortem diagnosis is required to confirm EHV-1 infection. 

This may be the case when multiple late term pregnancy losses occur, suggesting 

the occurrence of EHV-1 abortions. Appropriate testing of aborted fetuses is 

necessary to identify the causative agents and, in case of EHV-1 abortion, 

infective virus will be (most likely) detected (SLATER, 2014). However, post 

mortem diagnosis is mainly used for detection of latent EHV-1 infection, as the 

ante mortem confirmation of the presence of a latent infection remains 

challenging for various reasons (BALASURIYA et al., 2015): 1) Latently infected 

horses do not show any clinical signs; 2) No viral replication is present during 

latency and there is only a small number of viral genomes within the cells and 

some infected leukocytes; 3) Transcription is limited to the region antisense to the 

IE gene with only an EHV-1 LAT thought to be expressed during latent infection; 

and, 4) Serological investigation through antigen-detection assays is impossible, 

because major viral proteins (antigens) are absent.  

Thus far, direct methods for post mortem analysis of latent infection mainly 

include assays to detect virus following in vitro reactivation and molecular tools 

for nucleic acid or viral protein detection. Demonstration of virus by co-
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cultivation (an in vitro test for reactivation) is considered the “gold standard” 

because it unequivocally demonstrates the presence of reactivatable latent 

infection (WELCH et al., 1992; SMITH et al., 1998; SLATER, 2014). However, a 

negative result does not confirm the absence of a latent infection (BALASURIYA 

et al., 2015).  

Molecular assays to demonstrate the presence of EHV-1 include PCR, in-situ 

hybridization (ISH) and immunohistochemistry (IHC). These are valuable for post 

mortem diagnosis and are used to detect viral DNA and viral proteins, 

respectively. For the diagnosis of latency, ISH may give insights about the exact 

localization of the viral DNA within fixed tissue samples. Following PCR 

detection of viral DNA, IHC distinguishes latent and lytic infectious cycles by the 

absence or presence of L gene proteins, respectively (EDINGTON et al., 1987; 

WHITWELL et al., 1992; SZEREDI et al., 2003b; SZEREDI et al., 2003a). For 

detection of latent infection, a nested PCR is available (BORCHERS & SLATER, 

1993; EDINGTON et al., 1994). In addition, an ultrasensitive magnetic bead-

based, sequence-capture nested PCR method was developed for detection of rare, 

low-abundance sequences below the detection threshold of conventional nested 

PCR (ALLEN, 2006; ALLEN et al., 2008). However, all of these techniques 

suffer from some disadvantages: virus isolation techniques are labor intensive and 

time consuming; IHC and ISH have limited sensitivity; and conventional PCR is 

not quantitative. Since 2006, a sensitive and quantitative test for EHV-1 is 

available (real-time qPCR), targeting glycoprotein B (L gene) (HUSSEY et al., 

2006). However, demonstration of gDNA by qPCR is not sufficient, as it may be 

also present during reactivation or lytic infection (SLATER, 2014). Further 

sample processing is required, which aims to detect LAT or other IE gene 

mRNAs. LATs seem the only transcripts present during latency. Their detection 

would therefore confirm the presence of a latent infection. However, the detection 

of these is technically challenging, as LATs seem not to be universally expressed 

in all cells carrying latent virus. Thus, a functional marker for latency still needs 

to be identified (SLATER, 2014).  

Hitherto, diagnosis of latent EHV-1 infection based on qPCR for DNA and 

reverse transcription (RT) qPCR for RNA detection includes three approaches. 

One approach is detection of viral DNA and an EHV-1 LAT within the same 

sample (CHESTERS et al., 1997; ABDELGAWAD et al., 2016). Another 
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approach is detection of EHV-1 gDNA and IE gene mRNA expression with 

simultaneous absence of L gene activity by RT qPCR (PUSTERLA et al., 2009b). 

In a third approach, latent EHV-1 infection is diagnosed by detection of viral 

DNA in the absence of detectable late structural protein genes mRNA (ALEMAN 

et al., 2012; PUSTERLA et al., 2012; SLATER, 2017). Samples required are 

typically venous blood samples for detection of latent EHV-1 in PBMC and 

various tissue samples, such as the TG or mandibular and retropharyngeal lymph 

nodes.  

3.7. Treatment 

After EHV-1 infection has been confirmed, appropriate treatment is required, 

which depends on the clinical presentation. Respiratory disease is generally mild 

and self-limiting and therefore does not require specific treatment (SLATER, 

2014).   

Abortions associated with EHV-1 occur without warning and mares typically do 

not receive special medications. Treatment of in-contact mares with antiviral 

medications does not reliably prevent abortion, however, a recent study 

demonstrated that following experimental infection with EHV-1, healthy foals 

were delivered, despite of the vicinity to aborted fetuses. (GARDINER et al., 

2012).  

Treatment of horses with EHM mainly consists of supportive care (LUNN et al., 

2009) and is targeted towards reduction of inflammation associated with EHV-1 

induced vasculitis (PUSTERLA et al., 2009b; PUSTERLA & HUSSEY, 2014; 

GOEHRING, 2015; GOEHRING et al., 2017). 

3.8. Control during an outbreak 

If despite all precautions an EHV-1 outbreak occurred, it is important to get the 

situation under control as quickly as possible to curtail the spread of infection 

within a premise and beyond. Therefore, a horse with acute neurological disease 

in combination with fever should always be considered as a potential EHM case 

and admission to hospital should be under strict isolation precautions 

(GOEHRING et al., 2010). In any case, as soon as disease is suspected on a 

premise, the horse should be immediately isolated, ideally with a separate 

airspace, and any in contact-horses should be monitored for signs of disease 

(GOEHRING et al., 2010). Literature agrees, that EHV-1 outbreak management 
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should be based on some fundamental strategies. These include: (1) recognition of 

a suspected case, (2) quarantine of the affected horse(s), (3) biosecurity measures 

including overalls, single-use protective gowns, dedicated boots, disposable 

gloves and hand sanitation between horses, (4) confirmation of the diagnosis via 

qPCR of nasal swabs, (5) monitoring of in-contact horses and the general 

population for clinical signs and fever (rectal temperature should be taken at least 

twice a day) (GOEHRING et al., 2010; SLATER, 2014; GOEHRING, 2015; 

GONZALEZ-MEDINA & NEWTON, 2015). It is recommended to lift a 

quarantine after three consecutive nasal swabs were tested negative plus an 

additional 14 days of isolation (GOEHRING et al., 2010). Until then horse 

movement should be stopped.  

3.9. Prevention 

Outbreaks may lead to high economic and emotional losses and disease 

prevention is crucial. Thus far, prevention of EHV-1 infection mainly consists of 

vaccination and strict biosecurity measures including the prevention of disease 

entry onto premises. However, due to the open character of training and boarding 

facilities, these measures are practically unfeasible (GOEHRING et al., 2006). 

Furthermore, the majority of horses are latently infected and do not show any 

clinical signs, but may reactivate after stress situations, such as transportation or 

introduction into a new herd. These silent shedders are of high risk for the spread 

of infection. If recrudescence of the virus could be controlled, new strong 

strategies in prevention of disease outbreaks would become feasible. Until then, 

the occurrence of an EHV-1 outbreak cannot be completely avoided but only 

reduced following appropriate measures, such as isolation.   

Besides these measures, vaccination remains a key point in EHV-1 prevention, 

although there is currently no vaccine available that can reliably prevent EHM 

(GOEHRING, 2015). In addition, vaccination does not protect against the 

establishment of latency.  

3.10. Epidemiology 

After primary infection, the virus retreats to the TG (SLATER et al., 1994; REED, 

2004; PUSTERLA et al., 2012) and the RALT (CHESTERS et al., 1997; REED, 

2004; PUSTERLA et al., 2012), where it establishes a chronic-persistent, latent 

infection.  
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Although EHM is an uncommon manifestation of EHV-1, outbreaks have been 

reported consistently since 1966 (GOEHRING et al., 2006; MCFADDEN et al., 

2016). Several circumstances may increase the risk of an EHM outbreak. These 

include season (fall, winter, and spring), age, breed, and stress factors such as 

transportation, exercise, mingling and crowding, and hospitalization (PUSTERLA 

et al., 2009a). It has been suggested that adult or adolescent (> 3 years of age) 

horses of tall breeds are more likely to develop EHM (GOEHRING, 2015). If 

these horses are transported to competitions, manifestation of EHM may ensue 

(GOEHRING, 2015). However, a number of studies has failed to detect 

recrudescence of EHV-1 under these conditions (YACTOR et al., 2006; CARR et 

al., 2011; SONIS & GOEHRING, 2013). The presence of the so called 

neuropathogenic isolate D752 (single nucleotide polymorphism (SNP)) in the 

DNA polymerase gene (CROWHURST et al., 1981; NUGENT et al., 2006) is 

discussed in several studies (STASIAK et al., 2017; BRYANT et al., 2018), and 

appears to be associated with higher incidence of EHM, possibly due to prolonged 

and/or higher levels of viremia (SLATER, 2014). However, in one fourth of 

horses affected by EHM the non-neuropathogenic variant N752 has been 

identified and experimentally, the D752 strain does not always lead to EHM 

(GOEHRING, 2015).  

Based on the limited number of EHV-1 related disease outbreaks, reactivation and 

recrudescence out of latency has to be a rare event in the individual and latently 

infected horse. Taking this into consideration, deeper knowledge about the 

mechanisms involved in the establishment of EHV-1 latency and recrudescence 

are important to develop strategies for disease control and outbreak prevention. 

 

4. Latency 

Latency is the key feature of Alphaherpesviruses that allows the virus to establish 

a lifelong chronic-persistent infection in the host. It is defined as a type of 

infection without viral genome transcription (HOGK et al., 2013) except limited 

expression of a region antisense to the IE gene (EFSTATHIOU & PRESTON, 

2005; SLATER, 2014). During latency, viral genome persists within tissue but no 

infectious virus, viral proteins or viral lytic transcripts can be detected 

(STEVENS, 1989; BLOOM, 2016). The virus is dormant but can be reactivated at 
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any time.  

For HSV this classical definition of latency was overruled with the use of more 

sensitive techniques, which showed that latency is much more a dynamic state 

that requires looking not only at tissue, but also at cellular levels. Therefore, 

Bloom (2016) recently defined latency as “the persistence of a viral genome 

within tissue where, at any given time, there is a population of cells that lack 

detectable infectious virus, viral proteins, or viral lytic transcripts that are 

dormant but have the capability of being reactivated” (BLOOM, 2016). This 

suggests, that within the same tissue, different cells could harbor latent, lytic 

and/or reactivating virus at the same time.  

Our knowledge on EHV-1 latency is extremely limited and whether this new 

definition is also applicable to EHV-1 has yet to be determined. The following 

sections will give more information on the current knowledge of 

Alphaherpesvirus latency in general and of EHV-1 in particular.  

4.1. Establishment of latency 

After cellular infection, the virus may either enter the lytic or the latent pathway 

(ALLEN, 2004). For EHV-1 the exact mechanisms controlling entry into lytic or 

latent infection and reactivation are not entirely known (SLATER, 2014). For 

HSV-1, the prototype of Alphaherpesvirinae, it has been suggested that the 

interaction and the amounts of incoming viral genome into neural cell type could 

influence the outcome. Furthermore, it has been shown, that productive lytic 

infection is not required for effective HSV-1 latency establishment (BLOOM, 

2016).  

In equids, EHV-1 latency is readily induced during primary respiratory epithelial 

infection where the virus penetrates the sensory nerve endings of the trigeminal 

nerve (cranial nerve V). From the nerve endings, the virus is assumed to be 

transported via retrograde axonal transport mechanisms towards the cell body of 

the neuron. All sensory cell bodies are combined in the TG on either side of the 

brain stem covering the trigeminal impression of the apex of the petrous part of 

the temporal bone (NICKEL, 2003). However as already mentioned, while EHV-

1-induced state of latent infection has been shown in the TG, assumed latent virus 

has also been shown in circulating CD8+ T-lymphocytes (BAXI 1995; 

CHESTERS et al., 1997; SLATER, 2014) and in mandibular and retropharyngeal 
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lymph nodes (CHESTERS et al., 1997). In contrast, HSV-1 establishes latent 

infection only in nervous tissue, and specifically in populations of sensory 

neurons within the TG that are innervating the primary (epithelial) site of HSV-1 

infection (BLOOM, 2016). However, latency is typically established only in a 

small population of the cells in the ganglion (RAMAKRISHNAN et al., 1996). It 

is assumed that the number of EHV-1 latently infected lymphocytes declines over 

time, as these cells are short-lived. However, the number of cells is increased 

during reactivation episodes or by exposure to new infections. In the long-lived 

neurons, latently infected cells are expected to be stable (SLATER, 2014).    

During Alphaherpesvirus latency the viral genome is retained in the nucleus 

(CARTER, 2013) and persists in a circular form without integration into the host 

genome (GULATIY, 2015). The immediate early protein (IEP) encoded by the IE 

gene is associated with latency regulation. The expression of the IEP activates the 

E and L genes resulting in productive lytic infection. In contrast, inhibition of the 

IEP production downregulates the expression of E and L genes resulting in 

latency. This has been shown for EHV-1 (KYDD et al., 2006a; KYDD et al., 

2006b). In turn, the gene product of ORF 12, the homolog to HSV-1 α-TIF (α 

trans-inducing factor) product is required for IE promotor activation (LEWIS et 

al., 1993). Another protein, which is supposedly necessary for the establishment 

of latency, is the EICP0, an early protein encoded by ORF 63 (KIM et al., 2003). 

EICP0 homologues have been found in HSV-1, BHV-1 and PRV (BOWLES et 

al., 1997). Latent virus can reactivate and result in symptomatic or asymptomatic 

virus shedding. EHV-1 is assumed to reactivate from the TG (SLATER et al., 

1994) and from lymphocytes (SMITH et al., 1998).  

For the equine industry, EHV-1 infections including the silent and non-silent 

shedders have a high impact, as reactivation in a single animal can have 

devastating outbreak consequences.  

4.2. Latency associated transcripts  

For HSV-1 it has been suggested that a LAT possesses regulatory functions 

balancing latency and recrudescence (KENT et al., 2003). There is evidence that 

LATs are transcribed from a DNA strand opposite to the viral immediate early 

IPC0 gene (RAMAKRISHNAN et al., 1996; KANG et al., 2006) and that they 

may down-regulate the expression of ICP0 by an antisense mechanism. 
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Descriptions about the location of LAT within the genome of EHV-1 in previous 

publications is inconsistent. It has been claimed that the genomic EHV-1 LAT 

region is located either within the region of ORF 63 (HSV-1 ICP0 homologue) 

(BAXI 1995; ABDELGAWAD et al., 2016) or ORF 64 (CHESTERS et al., 1997; 

PUSTERLA et al., 2009b; SLATER, 2014). Potential regulatory functions during 

latency have also been suggested for the transcript of a gene located antisense to a 

region between ORF 64 and ORF 65 (HOLDEN et al., 1992; AHN et al., 2010). 

In HSV-1, LAT has been studied in greater detail. Therefore, HSV-1 could serve 

as a model for EHV-1 LAT investigation. During latent infection of HSV-1, one 

single region of the genome remains transcriptionally active producing multiple 

nonpolyadenylated LATs. LATs are transcribed from the strand opposite to and 

overlapping the 3´end of the viral immediate early ICP0 gene in the inverted 

repeat region of the unique long region (RAMAKRISHNAN et al., 1996). The 

major form of LAT is an unusual stable 2.0 kbp intron (FARRELL et al., 1991) 

that is spliced from an 8.3 kbp primary transcript and persists as a lariat (loop 

shaped) (EFSTATHIOU & PRESTON, 2005; KANG et al., 2006). It has been 

proposed, that LAT promotes cell survival through an anti-apoptotic mechanism 

(PERNG et al., 2000; EFSTATHIOU & PRESTON, 2005) and inhibits viral 

transcription and productive lytic infection (JONES, 2013).  

The presence of LAT is also well studied in BoHV-1. This Alphaherpesvirus 

establishes latent infection in TG and germinal centers of the pharyngeal tonsil. 

During latency a BoHV-1 latency-related RNA (LR-RNA) is expressed, which 

lies antisense to bovine ICP0 (bICP0) as it is known for HSV-1 ICP0. In contrast 

to all other Alphaherpesviruses, an additional gene ORF-E is abundantly 

transcribed during latent infection suggesting that both regulate the latency-

reactivation cycle (JONES, 2003).  

In PRV the TG is the primary site of latency (GUTEKUNST et al., 1980). It has 

been described that LATs of multiple sizes are transcribed from the opposite 

strand to the encoding EP0 (HSV-1 ICP0 homolog) and IE gene (IE180; HSV-1 

ICP4 homologue) in a region overlapping the internal repeat region (CHEUNG, 

1989; PRIOLA et al., 1990; CHEUNG, 1991; PRIOLA & STEVENS, 1991). The 

largest LAT is the 8.4-kb large latency transcript (LLT). A recent study has 

demonstrated that a 2.5-kb deletion that eliminates the expression of a cluster of 

nine microRNAs (miRNA) in the LLT transcript results in alteration of the host 
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response. That study, also demonstrated that neither miRNA expression nor high 

LLT expression levels are essential to establish latency in the TG (MAHJOUB et 

al., 2015).  

VZV is the only Alphaherpesvirus, that does not appear to express LAT or any 

detectable miRNAs thus far (BLOOM, 2016). 

In summary, there is general consensus that LATs are not essential for latency 

establishment, maintenance or reactivation (EFSTATHIOU & PRESTON, 2005).  

For EHV-1, different locations of LAT genomic origin have been suggested. One 

study demonstrated a possible LAT being expressed from a region overlapping 

ORF 63 (HSV-1 ICP0 homologue) similar to HSV-1 using nested EHV-1 specific 

PCR in randomly selected naturally infected horses (BORCHERS). In that study, 

putative EHV-1 LATs were present only in TG (and in no other nervous or 

lymphatic tissues). However, not all EHV-1 DNA positive samples were also 

LAT positive. These findings suggest that the presence of a putative EHV-1 LAT 

is irregular and is consistent with HSV-1 infections, where not all cells positive 

for HSV-1 DNA express detectable levels of LAT (BLOOM, 2016). Baxi et al. 

also showed a putative EHV-1 LAT is transcribed from a region located antisense 

to ORF 63. In that study nervous tissues of experimentally infected ponies were 

analyzed by in situ hybridization (BAXI 1995). Results demonstrated that 

sequences overlapping ORF 63, but not ORF 64 were present at a low frequency 

in TG. More recently, Abdelgawad et al. demonstrated detection of a putative 

EHV-1 LAT also being transcribed from a region located antisense to ORF 63 in 

the sensory ganglia of zebras using a LAT specific primer during reverse 

transcription to cDNA. However, out of three samples positive for EHV gDNA 

using a pan herpesvirus nested PCR assay, transcriptional activity of a putative 

EHV-1 LAT could only be detected in one sample (ABDELGAWAD et al., 

2016). 

In contrast to these findings, putative EHV-1 LAT gene locations were also 

suggested to lie antisense to ORF 64. In one study, putative EHV-1 LAT were 

found in leukocytes but not in TG by random RT-PCR and southern blot 

hybridization in experimentally infected ponies (CHESTERS et al., 1997). In 

order to describe the location of a putative LAT, total RNA was extracted from 

peripheral blood leukocytes (PBL). Aliquots of the amplified cDNA were 
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hybridized with a radiolabeled, plasmid-purified EHV-1 DNA fragment spanning 

the region of the genome including ORF 63 and ORF 64. Part of the transcript lied 

in a 570-bp region within the internal repeat region, antisense to and overlapping 

the 3´end of the IE gene ORF 64 (HSV-1 IE-3 ICP4 homolog) (CHESTERS et al., 

1997). In 2009, Pusterla et al. used an qPCR assay targeting to ORF 64 in order to 

determine the transcriptional activity of a putative EHV-1 LAT in blood samples 

and nasopharyngeal secretions (NPS) in horses following natural infection 

(PUSTERLA et al., 2009b). In that study, a four-year old Thoroughbred gelding 

index case with confirmed EHM and potentially exposed horses at a racetrack in 

California were sampled over a three-week period. In total 74 horses were 

sampled with three NPS and five blood samples positive for transcriptional 

activity of ORF 64 (IE gene) and negative for transcriptional activity of ORF 33 

(L gene).  

Holden et al. (HOLDEN et al., 1992) described another possible regulatory 

transcript being located between ORF 64 and ORF 65. The EHV-1 unique IR3 

gene lies opposite to the IE gene, and the 5′ end of the non-coding IR3 transcript 

harbors 117 nucleotides that are antisense to the 5′ UTR of the IE mRNA (AHN et 

al., 2007). IR3 it is not essential for viral replication and establishment of lytic 

infection in mice. However, it has been suggested that the IR3 RNA plays a 

regulatory role by downregulating the IE gene expression in a mouse model 

(AHN et al., 2010)  

Although various approaches have been made in the past to detect a putative 

EHV-1 LAT, there is still lack of evidence regarding the sequence and the 

location within the genome. It remains challenging to detect possible EHV-1 LAT 

due to sensitivity issues associated with molecular assays. Therefore, negative 

results for LAT could be due to LAT expression below detection level. 

Furthermore, specificity issues may generate false-positive results. As no 

published data is available regarding reproducible detection of possible EHV-1 

LAT in consecutive studies using previously published assays and there is a lack 

of data confirming the EHV-1 LAT gene region by sequencing of corresponding 

PCR products, it remains questionable whether EHV-1 LAT or equivalent 

transcripts truly exist.  
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4.3. Prevalence and detection of EHV-1 latency 

Infections with EHV-1 occur worldwide causing a serious impact to the equine 

industry. One study from 1994 (EDINGTON et al., 1994) reported 60% latent 

infection of EHV-1 and EHV-4 in 40 necropsied horses using co-cultivation in the 

United Kingdom. Using different PCR assays, a study in Brazil reported that the 

prevalence of latent infection was 88% of analyzed samples (PBL, pooled nervous 

and visceral tissues) from 116 horses (CARVALHO et al., 2000). Allen et al. 

(ALLEN et al., 2008) showed prevalence of 54% in 132 mandibular lymph nodes 

from thoroughbred broodmares, while Pusterla et al. (PUSTERLA et al., 2012)  

reported 25.7% in mandibular (and bronchial) lymph node samples analyzed post 

mortem in the USA in 2008 and 2012, respectively. In 2010, the EHV-1 

prevalence was determined in TG and mandibular lymph nodes from 153 equids 

undergoing routine postmortem examination for various surgical and medical 

reason (PUSTERLA et al., 2010).  

Twenty-one EHV-1 DNA positive (and L gene mRNA expression negative) TG 

and five mandibular lymph nodes were further differentiated whether so-called 

neurotropic (D variant) or non-neurotropic (N variant) EHV-1 strains can be 

detected simultaneously in TG and lymph nodes, respectively. Both EHV-1 

variants were detected in twelve TG and three mandibular lymph nodes 

(PUSTERLA et al., 2010).  

However, data about the prevalence of latent EHV-1 infections in the literature is 

poor and highly variable, suggesting that it is challenging to diagnose. Indeed 

prevalence of latency data may also vary because of regional/geographical 

differences.   

The lack of clinical signs and the requirement for tissue samples, make ante 

mortem diagnosis of a latent infection nearly impossible. Furthermore, there is 

lack of antigen expression in infected cells (VAN DER MEULEN et al., 2003). 

Previous detection methods were based on co-cultivation and cell culture after 

reactivation (WELCH et al., 1992; BALASURIYA et al., 2015). With the advent 

of molecular techniques such as qPCR and RT-PCR, the diagnosis of latency is 

mainly reliant on the detection of viral DNA and RNA transcripts. Detection of a 

putative EHV-1 LAT remains technically challenging and is not commercially 

available. However, latency is said to be established in an animal when a sample 

is shown to be positive for viral genomic DNA using PCR and either i) negative 
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for L gene mRNA in RT-PCR (PUSTERLA et al., 2010; PUSTERLA et al., 2012; 

SLATER, 2017),  ii) positive for IE gene mRNA and negative for L gene mRNA 

in RT-PCR (PUSTERLA et al., 2009b), or iii) positive for putative EHV-1 LAT 

and negative for L gene mRNA (ABDELGAWAD et al., 2016). 
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III. MATERIAL AND METHODS 

1. Introduction to the study 

Controlling latency is key EHV-1 outbreak prevention. Yet, our knowledge on 

this topic is extremely limited. To define locations of latency it is necessary to 

have horses with known infection history. Here we were able to obtain tissue 

samples from horses, previously tested negative for EHV-1, which were 

experimentally infected with EHV-1 and euthanized 70 days post infection, 

allowing presumably sufficient time for establishment of latency. 

Therefore, aims of the study presented in this thesis verify established latency 

locations and identify putative novel locations in these horses. As three different 

EHV-1 strains, were used for infection, a wild type EHV-1 Ab4 and two 

deletion/insertion mutants, a comparison between three different strains was 

made. 

2. Infection study 

2.1. Animals 

The study was evaluated and approved by the Michigan State University (MSU) 

Institutional Animal Care and Use committee. Detailed clinical information on 

this study has been previously published (HOLZ, 2017). In short: Samples from 

twenty-five (n=25) purpose-infected horses were included in this study. These 

were Western Stock yearling horses (range 12 – 19 month-of-age). Three separate 

infection studies were performed using different virus strains, in which individual 

groups of horses were infected a few months apart in the fall of 2014, and again in 

the spring and fall of 2015 at MSU, East Lansing, Michigan, USA. 

Infection study 1, further referred to as group 1, included eight (n=8) horses that 

were infected in September 2014.  

Infection study 2, further referred to as group 2, included nine (n=9) horses that 

were infected in May 2015. 

Infection study 3, further referred to as group 3, included eight (n=8) horses that 

were infected in September 2015.  
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All three groups were bought from the same vendor, who purchased these horses 

in remote areas of North Dakota. Prior to shipping, all horses were tested negative 

for equine infectious anemia (EIA), dewormed and tested for previous exposure to 

EHV-1 and EHV-4 using serum neutralizations tests. Horses included in these 

experiments showed titers < 1:4 for EHV-1 and < 1:40 for EHV-4. Animals were 

of both sexes, equally distributed per group, and were group-housed in a closed 

barn with natural ventilation and adjustable sidewall openings. Animals were fed 

an ad libitum hay diet, twice-a-day pelleted concentrate, mineral supplements, and 

had 24 hours access to fresh water. Prior to infection, all horses were clinically 

healthy. 

Each group was infected with a different EHV-1 strain (see section 2.2) via 

intrapharyngeal instillation of 5 x 107 PFU of the respective virus strain in 10 mL 

of saline on day 0. All horses were euthanized between day 70 and day 75 post 

infection. There was no uninfected control group.  

2.2. EHV-1 Virus strains used for infection 

Group 1 was infected with the neuropathogenic wild type (WT) EHV-1 strain 

Ab4. This strain was originally isolated from a quadriplegic mare and carries the 

aspartic acid amino acid (D) at location 752 (see section 3.1. The virus and its 

genomic organization) in ORF30 (CROWHURST et al., 1981; GOODMAN et al., 

2007). Group 2 was infected with an EHV-1 mutant of Ab4, with an amino acid 

change at position 752 (from aspartate (D) to asparagine (N)) (GOODMAN et al., 

2007) and group 3 was infected with another Ab4 mutant (TISCHER, 2006; 

AZAB, 2012), where gD of EHV-1 was replaced by EHV-4 gD as previously 

published (AZAB, 2012; HOLZ, 2017). During the experiments nasal virus 

shedding was followed via PCR for the different isolates. To confirm, that the 

horses within a group shed only the virus they were infected with, sequencing of 

the PCR products from nasal swabs collected at day 1, 2 or 3 pi was performed 

(HOLZ, 2017).  

2.3. Clinical data 

Detailed information can be found in the publication by Holz et al. (HOLZ, 2017). 

Clinical exams (including rectal temperature recording) and extensive sample 

collection were performed once daily for the first two weeks post infection, as 

well as various sample collections as determined by the main study.   



III. Material and methods     37 

2.4. Collection of postmortem tissues 

Between day 70 and 75 post infection horses (2 or 3 horses per day) were 

euthanized on site. A jugular vein catheter was placed following a pre-medication 

with detomidine (Dormosedan®, Zoetis US, 0.012mg/kg bw IV) and butorphanol 

(Torbugesic®, Zoetis US, 0.025mg/kg bw IV). For euthanasia, an overdose of 100 

mL (380mg/mL) of a pentobarbital solution (Socumb™, Henry Schein Animal 

Health, Dublin) per horse was injected via the catheter. Once death was 

confirmed, the body was transported to the adjacent (100m) Diagnostic Pathology 

Center necropsy floor, of the Department of Pathobiology and Diagnostic 

Investigation, College of Veterinary Medicine at MSU, where an extensive 

necropsy exam started immediately. Once completed, a second and on occasion a 

third horse were euthanized and processed. Time between euthanasia and arrival 

at the unit was typically <10 minutes. Tissue collection was typically completed 

within 60-70 minutes. For the herein presented study, tissue samples were 

collected from already established sites of latent EHV-1 infection and from 

various other sites (see Table 1). The following samples were collected: 

trigeminal ganglia, mandibular and retropharyngeal lymph nodes. Additional sites 

were RALT, which included pharyngeal roof with primary lymphoid tissue and 

bronchial lymph nodes. To look into alternative sites of lymphoid tissue, 

mesenteric lymph nodes and spleen were collected. PBMC were collected on the 

day of euthanasia and were evaluated in a separate study. Regarding a possible 

further distribution of the virus within the horse, a number of additional ganglia 

with different functions (somatic sensory, parasympathetic and sympathetic) were 

collected.  

 

Table 1: Tissue samples collected post mortem 

lymphatic tissue  peripheral neural structures 

RALT pharyngeal roof 

Lnn. mandibulares  

Lnn. retropharyngeales 

Lnn. bronchiales 

 somatic sensory ganglia Trigeminal ganglion 

spinal cord dorsal 

root ganglion 

(mainly L1 - L6) 

(PBMC)   parasympathetic 

ganglia 

Ggl. ciliare 
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 sympathetic ganglia head location: 

Ggl. cervicale 

craniale  

 thoracic location: 

Ggl. cervicale 

caudale  

 

GALT 

 

abdominal location: 

Lnn. mesenteriales 

 

spleen  

 abdominal location: 

Ggl. mesenteriale  

Ggl. coeliacum 

sympathetic trunc spleen 

RALT=respiratory tract associated lymphatic tissue, GALT=gut associated lymphatic tissue; 

PBMC=peripheral blood mononuclear cells 

The entire left TG was available for this study. After dissecting part of the right 

TG for the study from Holz et al. (HOLZ, 2017), the remainder of the right TG 

tissue was returned and also available for this study. Most of the TG from group 1 

and 3 were collected in (4%) phosphate-buffered formalin. The complete TG of 

group 2 were collected in RNAlater™. All sympathetic/parasympathetic (SPS) 

ganglia (n=171), spinal cord dorsal root ganglia of L2-L4 and sympathetic trunk 

were immediately immersed in (4%) phosphate buffered formalin. Lymph node 

tissue (n=163) including RALT, mesenteric lymph node and spleen  were 

immediately immersed in (4%) phosphate buffered formalin (n=61) or frozen in 

liquid nitrogen (n=102). All formalin fixed tissues as well as tissues in 

RNALater™ were trimmed after 24 hours and routinely embedded in paraffin. 

Therefore, samples were hydrated under running tap water for 30 minutes. 

Dehydration was performed using a standard 16 hours program with ascending 

alcohol series (Shandon Hypercenter XP, GMI Inc, Minnesota, USA). Final 

sample blocks were stored at room temperature. In 2 separate shipments tissue 

blocks or frozen tissue samples were shipped to the Ludwig-Maximilians-

University (LMU) either at room temperature, or on dry ice.  

 

3. Tissue preparation for analysis 

At the LMU in Munich samples were further processed. Tissue cut sections were 
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prepared for histopathology and some for selective IHC. Cut sections were 

prepared for PCR assays following DNA/RNA-extraction. 

3.1. Sample preparation 

Further sample processing was performed in small batches, and according a 

specific routine. First TG and RALT samples of all horses were processed, 

followed by mesenteric lymph nodes and spleen. Finally, SPS ganglia and DRG 

were processed. For histological investigation, embedded tissue samples were 

serially sectioned for routine hematoxylin-eosin (H&E) staining and cut sections 

were collected for all PCR work. PCR-positive samples were further assessed 

using IHC. 

For routine microscopy tissue blocks were sectioned at 4µm using a rotatory 

microtome (HM 315 Microtom, Thermo Scientific, Planegg, Germany). Samples 

were placed on an ice-plate to cool down the wax for efficient cutting. Tissue 

blocks were fixed on the block holder and the cutting depth was set at 4µm 

according to the manufacturer´s instructions. Blades (Feather microtome blade 

R35, Engelbrecht Medizin- und Labortechnik GmbH, Edermünde, Germany) 

were wiped with RNase killer solution (Sigma-Aldrich, Darmstadt) and changed 

between each sample. Gloves, brushes and the work area were also wiped with 

RNase killer solution between samples. Samples were processed in batches for 

different types of tissues and on multiple days. Six serial sections were cut in total 

using the third cut for H&E staining. The other five sections were collected in a 

sterile Eppendorf tube, and stored on ice (Figure 3). Until further processing for 

quantitative real-time PCR these sections were kept at -80°C. Sections for staining 

were placed in a cold-water bath using a brush. The sections were transferred to a 

warm water bath (43°C) using microscope slides (STAR FROST® 

adhesive/white, Waldemar Knittel Glasbearbeitungs GmbH, Braunschweig, 

Germany) to allow the paraffin to stretch. Each section was then collected on a 

labeled microscope slide, placed in staining jars and dried overnight in a drying 

oven at 37°C. 
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 Figure 3: Sample preparation for histology and PCR: sections 1, 2, 4-6 were 

collected for PCR analysis following DNA/RNA extraction; section 3 was 

used for H & E staining; sections 7 and 8 were recuts from selectively chosen 

samples and were used for immunohistochemistry 

3.2. H&E staining 

For H&E staining, slides with paraffin sections were placed in a metal slide 

holder. Sections were deparaffinized and rehydrated as follows: 3 x 5 min in 

xylene, 2 x 5 min in 100% ethanol, 1 x 5 min in 96% ethanol, 1 x 5 min in 80% 

ethanol, 1 x 5 min in 70% ethanol, 1 x 5 min in 50% ethanol, 1 x 5 min in 30% 

ethanol and 1 x 5 min in distilled water. Excess liquids were drained and blotted 

before going from one reagent to the next. Nuclei of the sections were stained by 

placing slides for 10 min in Mayers haemalaun (commercially purchased, 

AppliChem GmbH, Damrstadt Germany). Slides were then placed under running 

tap water for 30 min. Excess water was blotted and slides were stained in eosin for 

5 min. Eosin reagent was prepared as follows: 100ml of a stock solution (10g 

eosin yellowish (Sigma-Aldrich, Darmstadt) in 1000ml distilled water) mixed 

with 200ml of distilled water and 1ml 100% acetic acid. Sections were dehydrated 

in 1 x 5 min in distilled water, 1 x 5 min in 70% ethanol, 1 x 5 min in 80% 

ethanol, 1 x 5 min in 96% ethanol, 2 x 5 min in 96% ethanol, 3 x 5 min in 100% 

ethanol and 3 x 5 min in xylene. Slides were cover-slipped using xylene based 

Histokitt Nr. 1025/500 (Glaswarenfabrik Karl Hecht GmbH & Co KG, Sondheim 

v.d. Rhoen, Germany); a drop of Histokitt was placed on the slide using a glass 

rod and the coverslip was then angled to the slide and gently pressed to allow the 

Histokitt to spread beneath the coverslip covering all the tissue. Slides were dried 
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for 24 hours before further processing. H&E staining was done in the histology 

laboratory in the Department of Pathology, Veterinary Medicine Faculty, LMU 

Munich, Germany. All working steps were performed under a fume hood. 

3.3. Histopathological examination and scoring 

Neural tissue was specifically examined for the presence of ganglion cells, under 

the assumption that EHV-1 would be located within these cells. In cases in which 

no ganglion cells were detected sectioning and staining was repeated as described 

above, up to a total of three repetitions. Samples where cell bodies were not 

detected following the third sectioning and staining series were excluded from 

further investigation.  

To determine cyto-histopathological changes these H&E stained FFPE samples 

were evaluated using a custom designed scoring system (Table 2). Ganglion cells, 

satellite cells, nerve fibers and inflammatory infiltration were evaluated and 

scored, according to the changes seen. For each group of characteristics (e.g. 

ganglion cells, satellite cells) the points were not summed, but the points of the 

most severe change were crucial for the total points. Points of all characteristics 

were summed. A maximum score of 12 points was possible, with 0 points 

indicating no changes, 1-4 points mild, 5-8 points moderate and 9-12 points 

severe changes.  
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Table 2: Evaluation of cyto-histopathological and infiltrative changes 

g
a

n
g

li
o

n
 c

el
ls

 
ganglion cells 

density 

 

normal= 0 reduced= 1 increased= 1 

size 

 

small= 1 normal= 0 large= 1 

neuronal cluster 

 

none= 0 sporadic= 1 predominant= 2 

cytoplasm 

Nissl substance not homogenised 

= 0 

 

coarse 

segregation= 1 

chromatolysis =2 

cytoplasmic inclusions  

 

absent= 0 present= 3 

if present, type of inclusion: 

 

nucleus with nucleolus 

position 

 

central= 0 paracentral= 1  

vacuolization 

 

absent= 0 present= 2  

intranuclear inclusions 

 

absent= 0 present= 3 

if present, type of inclusion: 

 

sa
te

ll
it

e 
ce

ll
s 

satellite cells 

cell layers 

 

single-row= 0 multiple= 2  

hypertrophy & hyperplasia 

 

absent= 0 present= 3  

Nageotte´s bodies absent= 0 occasional=1 

(≤3) 

multiple=2 (>3) 

in
fl

a
m

m
a

ti
o

n
 

lymphocytic infiltration 

position 

 

perivascular perineuronal diffuse interstitial 

intensity 

 

mild= 1 moderate= 2 severe= 3 

distribution 

 

occasional= 1 multifocal= 2 diffuse= 3 

neuronophagia 

 

absent= 0 present= 2  

n
er

v
e 

fi
b

re
s 

nerve fibres 

Myelin changes 

 

absent= 0 present= 2 

if present, type of changes: 

 

Wallerian like degeneration 

 

absent= 0 individual=1 multiple=2 

axonal spheroids 

 

absent= 0 individual=1 multiple=2 

 

Tissue preservation differed between fixation with formalin and impregnation 

with RNAlater®. To include these samples into our scoring system, we compared 

the two methods (Table 3).  
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Table 3: RNAlater® impregnation artefacts score system 

grade evaluation cytoplasmic 

homogenization 

nuclear 

vacuolization 

neuronal  

shrinking 

1 evaluation is possible in 

≥75% neurons, glial 

cells and blood vessels 

partial homogenization 

≤25% cytoplasmic 

eosinophilia with 

minimal loss of 

nuclear details  

core structure 

evaluation is 

possible ≥75% of 

cells 

 

≤25% shrunken 

2 evaluation is possible in 

50% neurons, glial cells 

and blood vessels 

partial homogenization 

50% cytoplasmic 

eosinophilia with 

partial loss of nuclear 

details  

core structure 

evaluation is 

possible in 50% of 

the cells 

 

>50% shrunken 

3 evaluation is possible in 

≤25% neurons, glial 

cells and blood vessels 

≥75% cytoplasmic 

eosinophilia with 

complete loss of 

nuclear details  

core structure 

evaluation is 

possible in <50% of 

the cells 

≥75% shrunken 

 

4. Molecular biological characterization 

4.1. DNA/RNA extraction 

Formalin fixed (n=256) or RNAlater™ impregnated (n=13) and paraffin 

embedded tissue samples were stored at room temperature. For further analysis 

tissue blocks were cut into 4µm sections using a rotatory microtome (Microm HM 

315 Microtome (Thermo Scientific, Planegg, Germany) as described in section 

2.1 under sample preparation. 

Total DNA and total RNA were extracted from 20µm (sections 1, 2, 4, 5, 6; see 

Figure 3) using a commercially available kit (AllPrep DNA/RNA FFPE Kit, 

Qiagen, Hilden, Germany) following to the manufacturer´s instructions. Briefly:  

Paraffin was removed using deparaffinization solution, and then lysed with 

proteinase K digestion. Samples were cooled on ice and then centrifuged for 15 

min at 20,000 x g (14000 rpm) to obtain RNA-containing supernatant and DNA-

containing pellet. To extract total RNA, the supernatant was incubated for 15 min 

at 80°C then transferred to an RNeasy MinElute spin column, treated with DNase, 

and washed. RNA was eluted in 30µL RNase free water. To extract total DNA the 
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pellet was lysed with proteinase K digestion, then incubated for 2 hours at 90°C 

and transferred to QIAamp MinElute spin column. DNA was washed and eluted 

in 30μl Buffer ATE.  

For DNA and RNA extraction from frozen tissues (n=108) a piece of tissue was 

separated with a microtome blade (Feather microtome blade R35) on ice in a 4°C 

cold room to avoid thawing. A maximum of 25mg of tissue for DNA extractions 

and 20mg of tissue for RNA extractions (maximum 10mg of spleen) were 

weighed on a high precision scale and further processed as follows:  

Total DNA was extracted using the DNeasy Blood & tissue kit (Qiagen, Hilden, 

Germany) following to the manufacturer´s instructions. In short, each sample was 

homogenized using the TissueLyser (30 Hz for 2 min) and then lysed with 

proteinase K digestion. To extract total DNA the homogenate was transferred to a 

DNeasy Mini spin column, washed and eluted in 200 μL Buffer AE.  

Total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen, Hilden, 

Germany) following the manufacturer’s instructions, including an additional on-

column DNase digestion step according to Appendix D from the RNeasy Mini Kit 

handbook (Qiagen, Hilden, Germany). Briefly, each sample was homogenized 

using the TissueLyser (30 Hz for 2 min) and the homogenate transferred to a 

gDNA Eliminator spin column with an additional DNase treatment. Sample were 

then transferred to an RNeasy spin column, washed and eluted in 30μL RNase-

free water.  

Precautions were taken to avoid laboratory contamination during sample 

processing including disposable lab-ware, filtered pipette tips, separate facilities 

for RNA and DNA extractions. To avoid gDNA contamination of the RNA one 

hood was reserved for RNA extraction only. All equipment and gloves were 

sprayed with 70% alcohol, dried and then treated with RNase killer solution 

(Sigma-Aldrich, Darmstadt) before and during extraction. An extraction control 

was included in each extraction process to control precise working.   

4.2. Quantitative real-time PCR 

Unless stated otherwise, all real-time qPCR reactions for DNA and cDNA 

analysis were performed with the same thermal profile including an initial 95°C 

step for 2 min, followed by 40 cycles of 95°C for 10 s and 60°C for 60 s (and hold 

60°C for 60s). The qPCR was performed in a total reaction volume of 20µL using 
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1 x SensiFAST™ Probe Lo-ROX Kit (Bioline, Luckenwalde, Germany) and 5µl 

of the template. Amplification and detection were performed in strips of 8 PCR 

tubes and caps (BRAND®, Wertheim, Germany) using Stratagene Mx3000P 

cycler (Agilent Technologies, Waldbronn, Germany). All reactions included a 

non-template control (DNA/RNA-free water), an extraction control and a positive 

control for EHV-1 (EHV-1 gDNA extracted from RK infected cells) and for 

equine tissue (DNA extracted from equine liver). All primers and probes were 

purchased from Sigma-Aldrich, Darmstadt Germany. 

4.2.1. Genomic EHV-1 qPCR 

For detection of EHV-1 genomic DNA in the tissue samples a real-time qPCR 

targeting a region of the glycoprotein B gene within the open reading frame 33 

(ORF 33) was performed as previously published (HUSSEY et al., 2006). The 

primers and probe sequences for glycoprotein B (gB) are as follows: gB forward 

5’- CAT ACG TCC CTG TCC GAC AGA T -3’, gB reverse 5’- GGT ACT CGG 

CCT TTG ACG AA -3’; gB probe 5’[FAM]- GGT ACT CGG CCT TTG ACG 

AA -[BHQ1]3’. Forward and reverse primers were added to a final concentration 

of 450nM each, and the probe to a final concentration of 100nM. Therefore, a 

primer-probe-mix (PPM) was prepared for qPCR containing 155 µL nuclease free 

water, 20 µL (10 pmol/µL) and 5 µL (10 pmol/µL) of each primer and probe, 

respectively. 2 µL PPM were added to each reaction. The primer-probe-mix was 

stored at -20.  

To avoid cross-contamination precautions were taken using disposable lab-ware, 

powder free gloves, sterile filtered pipette tips of different size (0,5-10 µL, 2-20 

µL, 2-200 µL, 50-1000 µL; BRAND®) and different facilities for preparing the 

master-mix and adding the samples.  

4.2.2. B2M qPCR 

For detection of equine host cells, Equus caballus beta-2-microglobulin (B2M) 

was used as a housekeeping gene. The sequences for primers and probe for equine 

B2M reference gene were previously described (ABDELGAWAD et al., 2016) 

and are as follows: equine B2M forward 5´- ATG GAA AGC CAA ATT TCC TG 

-3´, equine B2M reverse 5´- ACC GGT CGA CTT TCA TCT TC – 3´; equine 

B2M probe modified with Hexachloro-6-carboxy-fluorescein and Black Hole 

Quencher at the 5´ and 3´ends, respectively: 5´[HEX]-TGG GTT CCA TCC GCC 
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TGA GA –[BHQ1]3’. Forward and reverse primers were added to a final 

concentration of 600nM each, and the probe to a final concentration of 300nM. 

Therefore, a primer-probe-mix (PPM) was prepared for qPCR containing 150 µL 

nuclease free water, 20 µL (10 pmol/µL) and 10 µL (10 pmol/µL) of each primer 

and probe, respectively. 3 µL PPM was added to each reaction. The primer-probe-

mix was stored at -20. 

4.2.3. Standard curve 

For final quantitation, absolute numbers of EHV-1 genomes were extrapolated to 

a standard curve generated with cloned EHV-1 oligonucleotides (with courtesy of 

W. Azab and N. Osterrieder (AZAB, 2012)). Previous efficiency testing was done 

with a log dilution series of the standard curve and a log dilution series of an 

EHV-1 positive control (EHV-1 gDNA extracted from RK infected cells). 

Therefore, 5 µL of the EHV-1 fragment stock solution containing 107 copies/µl 

were diluted in 45 µL TE-buffer, vigorously vortexed (Vortex Genie2) and briefly 

centrifuged to remove fluids from the lid. This procedure was repeated to create 

dilutions containing 106, 105, 104, 103, 102 and 101 copies/µL. EHV-1 positive 

control dilutions series was done by pipetting 5 µL in 45 µL TE-buffer. This step 

was repeated until getting six log dilutions steps. All pipetting steps were 

performed under the hood using disposable lab-ware, powder-free gloves, sterile 

0,5 µL Eppendorf tubes and filtered pipette-tips.   

The number of cells was estimated using B2M as a housekeeping gene 

extrapolated to a standard curve generated with oligonucleotides specific to 

equine B2M (ABDELGAWAD et al., 2016). Therefore, 5 µL of the EHV-1 

fragment stock solution containing 107 copies/µl were diluted in 45 µL TE-buffer 

as described above. Previous efficiency testing was done with a log dilution series 

of the standard curve and a log dilution series of a positive control (DNA 

extracted from equine liver).  

DNA and mRNA quantification for the gB and cDNA transcripts, respectively, 

were compared with standard curves generated for each gene. Viral DNA and 

mRNA concentrations were expressed as copies per million cells, considering that 

each diploid eukaryotic cell contains two copies of beta-2-microglobulin (B2M) 

gene (ALLEN G.P., 2004; PUSTERLA et al., 2009b).  
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4.2.4. cDNA 

Samples positive for EHV-1 gDNA were tested for the presence of viral 

transcripts using assays targeting to IE- and L- genes.  

4.2.4.1. cDNA synthesis 

For quantitative real-time PCR (qPCR) analysis, RNA extracted samples were 

reverse transcribed to complementary DNA (cDNA). Before reverse transcription, 

all extracted samples were tested to confirm the absence of genomic DNA by real-

time qPCR using the housekeeping gene equine glyceraldehyde-3-phosphate 

dehydrogenase (eqGAPDH) as a marker. Primers and probe sequences were 

previously published  (PUSTERLA et al., 2006) and are as follows: eqGAPDH 

forward 5’- GCC ATC ACT GCC ACC CAG -3’, eqGAPDH reverse 5’- TGG 

CAG CAC CAG TAG AAG CA -3’; probe 5´[6FAM]- AGG GGC TGC CCA 

GAA CAT CAT CC - [TAMRA]3´. 

Each PCR reaction was performed in a total reaction volume of 20µL, containing 

2µL of each primer in a final concentration of 1000nM each, 1µL probe in a final 

concentration of 500nM, 10 µL 1 x SensiFAST™ Probe Lo-ROX Kit (Bioline, 

Luckenwalde, Germany), 4µL nuclease free water and 1µL of the template. 

Amplification and detection were performed using Stratagene Mx3000P cycler 

(Agilent Technologies, Waldbronn, Germany) with the following thermal profile: 

initial 95°C step for 2 min, followed by 40 cycles of 95°C for 10 s and 60°C for 

60 s (and hold 60°C for 60s). Samples positive for genomic DNA were treated 

with the RQ1 RNase-free DNase Kit (Promega) according to the manufacturer’s 

instructions. Briefly: 1-8 µL of RNA sample were added to 1 µL RQ1 RNase-Free 

DNase 10X Reaction Buffer, 1 unit RQ1 RNase-Free DNase per µg RNA and 

nuclease-free water to a final volume of 10 µL and incubated at 37°C for 30 min. 

To terminate reactions 1μL of RQ1 DNase Stop Solution was added, followed by 

a final incubation step at 65°C for 10 minutes to inactivate the DNase. Samples 

were re-tested for the presence of gDNA. Only negative samples were used for 

cDNA synthesis. Up to 5µg of RNA was reverse transcribed using the Quantinova 

Reverse Transcription Kit (Qiagen, Hilden, Germany) with random primers 

following manufacturer's instructions. To assess if the reverse transcription was 

successful, the QuantiNova Internal Control RNA (QN IC RNA) was included in 

each reaction according to manufacturer´s recommendations. Briefly: 7µL of 

gDNA free RNA were incubated with reverse transcription master-mix containing 
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2µL gDNA Removal Mix, 1µL Internal control RNA, 1µL Reverse Transcription 

enzyme, 4µL reverse Transcription Mix and 5µL RNase free water at 25°C for 3 

min. This was followed by incubation at 45°C for 10 min and at 85°C for 5 min to 

inactivate Reverse Transcriptase Enzyme, before placing on ice. The cDNA was 

adjusted to 100µL with RNase/DNase-free water and cDNA samples were stored 

at -20°C until further analysis. All incubations were performed in sterile 0,5 ml 

Eppendorf tubes in Eppendorf Thermomixer R Mixer, 0.5ml Block (Sigma-

Aldrich, Darmstadt).  

4.2.4.2. Internal control 

To report instrument or chemistry failures, errors in assay set up or inhibitors QN 

IC RNA was added during conversion as earlier described. All samples were 

tested in a real-time qPCR using QuantiNova Probe RT-PCR kit (Qiagen, Hilden, 

Germany) to monitor successful cDNA synthesis according to manufacturer´s 

instructions. Signal detection was performed at filter HEX of the thermal cycler. 

A no template control was included in each run.  

4.2.4.3. Immediate early gene activity 

For detection of IE gene transcripts, immediate early gene activity was monitored. 

To detect transcripts located within ORF 64 primers and probe were used as 

previously published (PUSTERLA et al., 2009b). The primers and probe 

sequences are as follows: primer ORF64 EHV-1 forward 5’- GGG TGC TGG 

AGG TGA GGA C -3’, primer ORF64 EHV-1 reverse 5’- GCG ATC AGC CAG 

TAC CAC ATC -3’; ORF64 EHV-1 probe [6FAM] – GGC TGA GG – 

[TAMRA]. The probe contained in this protocol was purchased from Roche 

(Roche® universal probe #30). Forward and reverse primers were added to a final 

concentration of 800nM each, the probe to a final concentration of 400nM. 

Therefore a PPM was prepared for qPCR containing 13,2 µL nuclease free water, 

2,4 µL (10 pmol/µL) and 12 µL (10 pmol/µL) of each primer and probe 

respectively. 2 µL PPM were added to each reaction. The primer-probe-mix was 

stored at -20°C. The amplified 113bp long product was detected using real-time 

qPCR.  

4.2.4.4. Late gene activity 

For detection of L gene transcripts in the cDNA of tissue samples a real-time 

qPCR targeting a region of the glycoprotein B gene (ORF 33) was performed as 
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previously published (HUSSEY et al., 2006). The primers and probe sequences 

for glycoprotein B (gB) are as follows: gB forward 5’- CAT ACG TCC CTG TCC 

GAC AGA T -3’, gB reverse 5’- GGT ACT CGG CCT TTG ACG AA -3’; gB 

probe 5’[FAM]- GGT ACT CGG CCT TTG ACG AA -[BHQ1]3’. Forward and 

reverse primers were added to a final concentration of 450nM each, probe to a 

final concentration of 100nM. Therefore, a primer-probe-mix (PPM) was prepared 

for qPCR containing 155 µL nuclease free water, 20 µL (10 pmol/µL) and 5 µL 

(10 pmol/µL) of each primer and probe, respectively. 2 µL PPM were added to 

each reaction. The primer-probe-mix was stored at -20. 

Table 4: Primers and probes   

eGAPDH 

egapdh (F) 5’- GCCATCACTGCCACCCAG-3’ 

egapdh (R) 5’- TGGCAGCACCAGTAGAAGCA-3’ 

egapdh (probe) 5´[6FAM]- AGGGGCTGCCCAGAACATCATCC - [TAMRA]3´ 

B2M 

B2M (F) 5´-ATGGAAAGCCAAATTTCCTG-3´ 

B2M (R) 5´-ACCGGTCGACTTTCATCTTC-3´ 

B2M (probe) 5´[HEX]-TGGGTTCCATCCGCCTGAGA –[BHQ1]3’ 

gB (L gene) 

gB (F) 5’- CATACGTCCCTGTCCGACAGAT -3’ 

gB (R)  5’- GGTACTCGGCCTTTGACGAA -3’ 

gB (probe) 5’[FAM]- GGTACTCGGCCTTTGACGAA -[BHQ1]3’ 

ORF 64 (IE gene) 

ORF 64 (F) 5’- GGGTGCTGGAGGTGAGGAC -3’ 

ORF 64 (R) 5’- GCGATCAGCCAGTACCACATC -3’ 

ORF 64 (probe) [6FAM] - GGCTGAGG – [TAMRA] 

  

4.3. Sequencing 

To confirm the qPCR results, selected samples positive for IE gene transcripts 

(EHV-1 ORF64) were submitted for sequencing: The real-time qPCR product was 

amplified with a Q5® High-Fidelity DNA Polymerase (Roche, Grenzach-Wyhlen, 
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Germany) in a conventional nested PCR. The protocol included an initial 98°C 

step for polymerase activation, followed by 30 cycles of 95°C for 10 s and 64°C 

for 60 s and a final extension step at 72°C for 5 min. Amplified PCR products 

were separated by gel electrophoresis in 2 % agarose gel stained with GelRed 

nucleic acid stain (Phenix Research Products, Chandler, NC USA). Gel 

electrophoresis was performed at 50V for 85min with 13µl of Quick-Load® 2-

Log DNA Ladder (BioLabs, Frankfurt a. M., Germany) in a dilution of 1:10 (0.1-

10.0 kb), 10 µl gel loading dye, blue (x6) (BioLabs, Frankfurt a. M., Germany) 

and 12 µl of each sample. Bands at the required size were cut under a UV-lamp 

and cleaned using Wizard SV gel and PCR clean-up system (Promega, 

Mannheim, Germany) according to manufacturer´s instructions. Samples were 

inserted in E.coli using One Shot™ TOP10 Chemically Competent E. coli 

(Invitrogen) and cloned using TOPO™ TA Cloning™ Kit for Sequencing 

(Invitrogen) according to the manufacturer´s instructions. Five clones of each 

sample were picked and cleaned using PureYield™ Plasmid Miniprep system 

(Promega, Mannheim, Germany) following the manufacturer´s instructions. 

Plasmid clones were diluted a thousandfold and additional ten-fold serial dilutions 

were created to test the clones for the presence of EHV-1 IE gene using real-time 

qPCR for ORF64. PCR product concentration was determined by mass 

spectrophotometry using the NanoDrop® Spectrophotometer ND-1000 (peqlab 

Biotechnologie GmbH, Erlangen, Germany). A conventional PCR with plasmid 

DNA and additional separation in a 2 % agarose gel at 50V for 85min was 

performed for quality control. Selected clones were prepared for sequencing using 

the sequencing service of Eurofins Munich, Germany.  

4.4. Immunohistochemistry 

PCR (genomic) positive tissue sections were re-cut and subjected to IHC using 

EHV-1/ERV polyclonal antiserum to control for lytic virus replication. EHV-1 

gDNA PCR positive (Ct < 13) lung tissue from an EHV-1 aborted fetus was used 

as the positive control. IHC was carried out on samples positive for EHV-1 

genomic DNA. Sections were processed according to the following EHV-1 IHC 

protocol. Paraffin sections were cut as previously described (section 3.1) and 

dried overnight at 37°C. After dewaxing for 20 minutes in xylene, hydrating in 

descending ethanol series and rinsing in distilled water, samples were transferred 

into citric acid – sodium citrate buffer (0.1M, pH 6.0). Therefore, a stock solution 
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was prepared diluting 21.01g citric acid (solution A) and 29.51g sodium citrate 

(solution B) in 1000 mL distilled water. For the working solution, 9mL of solution 

A and 41mL of solution B were mixed with 450mL distilled water. Samples were 

incubated in the microwave at 700W for 2 x 10 minutes and then left for another 

20 minutes to cool down. After rinsing with distilled water, samples were blocked 

with 1% hydrogen peroxide (H2O2) for 15 minutes at room temperature and then 

rinsed with Tris-buffered saline (TBS) (pH 7.6). Therefore, a stock solution of 

TBS was prepared by diluting 121.0g Tris-(hydroxymethyl)-aminomethan (TRIS) 

in 1000mL destilled water. The working solution consists of TBS in a 1:10 

dilution. Slides were incubated with rabbit antiserum diluted 1:10 in TBS for 30 

minutes, directly followed by incubation with polyclonal caprine EHV-1/ERV 

antiserum (VMRD, Pullman, USA) diluted 1:1600 in TBS for 1 hour at room 

temperature without washing. After incubation, slides were rinsed with TBS and 

incubated with the secondary rabbit anti goat biotinylated antibody (Vector 

Laboratories LTD, Burlingame, USA) at room temperature for 50 minutes. To 

increase target amplification slides were incubated with avidin-biotin-complex 

(ABC) (Vector Laboratories LTD, Burlingame, USA) diluted 1:100 in TBS for 30 

minutes at room temperature and were rinsed with TBS before and afterwards. 

For detection, diaminobenzidin (DAB) horseradish peroxidase (HRP) (Vector 

Laboratories LTD, Burlingame, USA) substrate was applied on the slides and 

incubated for 1 minute. Samples were rinsed with running tap water for 5 minutes 

to stop detection and subsequently counterstained with filtered Mayers haemalaun 

(commercially purchased, AppliChem GmbH, Damrstadt Germany) terminating 

with another wash with tap water for 5 minutes. Samples were dehydrated in an 

ascending ethanol series ending in xylene. A cover-slip was applied using xylene 

based Histokitt Nr. 1025/500 (Glaswarenfabrik Karl Hecht GmbH & Co KG, 

Sondheim v.d. Rhoen, Germany). 

 

5. Statistical Analysis 

Statistical analysis was performed using IBM-SPSS-Statistics 24.0 software (IBM 

Deutschland GmbH, Ehningen, Germany). Cross tabulation and U tests for group 

ranked data were used for the following comparisons: 1) tissue type (different 

sample site) regardless of the group (virus strain): significance of number of 
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EHV-1 gDNA-positive samples and viral loads of a specific site (tissue type) 

(among all tissues and among nervous tissue); 2) tissue type (different sample site) 

among groups (different virus strain): significance of number of EHV-1 gDNA-

positive samples of a specific site (tissue type) and viral loads among groups 

(significance of different virus types); 3) tissue type (different sample site) within 

each group (same virus type): significance of number of EHV-1 gDNA-positive 

samples and viral loads of a specific site (tissue type). Differences between results 

for paired tissue samples from both body sides were compared with a Wilcoxon 

signed-rank test. Mann-Whitney U test was used to analyze the correlation 

between cell number (determined using B2M and ganglion cells) and qPCR 

results. Correlations between qPCR results and severity of histopathological 

changes within the nervous tissue samples were determined using cross tabulation 

and chi-squared test. Within sympathetic/parasympathetic ganglia, the presence of 

lymphoid follicles within the sample and the correlation to the qPCR result was 

determined using cross tabulation and chi-squared test. In all statistical analysis 

p<0.01 was considered significant.  
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IV. RESULTS 

For this study, we aimed to collect different tissues to be examined for EHV-1 

presence 70 days post infection. Specifically these tissues were RALT, abdominal 

lymphatic tissue (mesenteric lymph node and spleen), as well as somatic sensory 

TG, spinal cord DRG and various sympathetic/parasympathetic (SPS) ganglia. A 

total of 377 samples were collected. Unfortunately, upon on analysis some of the 

collected material did not contain the cell population of interest. In addition, two 

of eight horses in group 1 were euthanized due to neurological complications on 

day 10 post infection and could not be included in this study. 

From RALT 87.0% (120/138) of the aimed samples were collected. Out of these 

17.5% (21/120) were in group 1, 44.2% (53/120) were in group 2 and 38.3% 

(45/120) were in group 3. From the abdominal lymphatic tissue, 43 samples 

(93.5%; 43/46) were available, from which 12 (27.9%; 12/43) were in group 1, 16 

(37.2%; 16/43) in group 2 and 15 (34.9%; 15/43) in group 3. From TG 93.5% of 

the samples were present, from which 25.6% (11/43) were in group 1, 39.5% 

(17/43) in group 2 and 34.9% (15/43) in group 3. Eighty-one percent (149/184) of 

the SPS samples could be collected (21.5%; 32/149 in group 1, 38.2%; 57/149 in 

group 2, 40.3%; 60/149 in group 3). From the DRG samples, 95.7% were 

available, with 27.2% (6/22) in group 1 and 36.4% (8/22) in groups 2 and 3, 

respectively.  

From the available 377 lymphatic and neural tissue samples, 57 (15.1%) of the 

neural tissue samples could not be analyzed because of the absence of neuron cell 

bodies within the SPS ganglia and DRG samples.  

Altogether, 320 samples were analyzed for the presence of EHV-1 gDNA and IE- 

and L gene mRNA expressions using real-time qPCR. Samples were also scored 

for histopathological changes, and EHV-specific IHC staining was applied to all 

genome positive TG and lymphatic tissue samples and selectively (three samples 

with the lowest Ct from each type of tissue) to genome positive SPS ganglia and 

DRG samples. Correlations between qPCR and histopathological results were 

determined. Results were compared between groups, to find out, whether there are 

differences among the three EHV-1 isolates.  
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1. Molecular biological characterization 

1.1. Detection of viral genomic DNA using PCR  

Viral loads (copies per 1x106 cells (estimated)) and the distribution of EHV-1 

gDNA within the nervous and lymphatic tissues of each horse in each group are 

shown in Table 5. In the qPCR, 28.75% (92/320) were positive (Ct < 40.0) for 

EHV-1 gDNA.  

A higher cell number did not affect the viral load, as no correlation was found 

between the cell number (estimated by B2M and counted ganglion cells) and the 

viral load (p=0.05 and p>0.5, respectively). If paired tissue samples were 

available for analysis, differences between sides were not detected (p =0.387).   

1.1.1. Lymphatic tissue 

1.1.1.1. Respiratory tract associated lymphatic tissue  

A total of 120 RALT samples were analyzed, out of these 17.5% (21/120) were 

found positive for EHV-1 gDNA. Seven out of 40 (17.5%) mandibular lymph 

node samples and five out of 40 (12.5%) retropharyngeal lymph nodes were 

EHV-1 gDNA positive. Despite equal number of samples, 30.0% (6/20) of the 

tonsil samples were tested EHV-1 gDNA positive, while only three out of 20 

bronchial lymph nodes (15.0%) were positive. These three samples came from 

group 3. Highest frequency of positive RALT samples (n=21) were within group 

3: 13/21, 61.9%; followed by group 1 (6/21, 28.6%) and group 2 (2/21, 9.5%). 

Nevertheless, high viral loads (≥ 1x103 copies/1x106 cells) were only found in 

group 1 (1/6 = 16.7%) and group 2 (2/2 =100%). All RALT samples of group 3 

had viral loads <1x103 copies/1x106 cells (Table 5).  

1.1.1.2. Abdominal lymphatic tissue 

Analyzed abdominal lymphatic tissue included spleen and mesenteric lymph 

nodes. A total of 43 samples were analyzed, where 32.6% (14/43) were positive 

for EHV-1 gDNA. Nine out of 22 spleen samples (40.9%) and five out of 21 

(23.8%) mesenteric lymph nodes were positive. The largest number of positive 

samples were found in group 1 (spleen: 66.7%, 4/6; mesenteric lymph node: 50%, 

3/6) followed by group 3 (spleen: 50%, 4/8; mesenteric lymph node: 28.6%, 2/7). 

In group 2 only one sample (spleen: 12.5%, 1/8) was positive.  
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Table 5: Distribution of EHV-1 gDNA within lymphatic and nervous tissues  

 

Similar to the RALT samples, viral loads ≥ 1x103 copies/1x106 cells were found 

in group 1 (4/7; 57.1%) and 2 (1/1; 100%), while in group 3 all abdominal 

lymphatic tissue samples had viral loads <1x103 copies/1x106 cells (Table 5).  

 

1.1.2. Nervous tissue 

1.1.2.1. Trigeminal ganglia 

A total of 43 trigeminal ganglia were analyzed including one paired sample of 

both body sides. Eleven out of 43 (25.6%) were EHV-1 gDNA positive (group 1: 
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36.4%, 4/11; group 2: 29.4%, 5/17; group 3: 13.3%, 2/15). From these 11 positive 

samples, 36.4% (4/11) came from group 1; 45.4% (5/11) from group 2 and 18.2% 

(2/11) from group 3. Eight out of eleven (72.7%) samples showed low viral loads 

(<1x103 copies/1x106 cells). Three samples showed high viral loads (≥1x103 

copies/1x106 cells) but none of these were in group 1 (Table 5).  

1.1.2.2. Sympathetic/Parasympathetic ganglia 

SPS ganglia (n=149) were also analyzed for the presence of EHV-1 gDNA. 

Ganglion cells could not be found in 28.2% (42/149) of the samples and were not 

used for analysis. Of the remaining samples, 36.5% (39/107) were positive for 

EHV-1 gDNA. Out of these, 18.0% (7/39), 51.3% (20/39) and 30.7% (12/39) 

were positive within group 1, 2 and 3, respectively.  

Three out of 22 (13.6%) ciliary ganglion samples were positive for EHV-1 gDNA. 

All three positive samples were within group 2.  

In 12/27 (44.4%) cranial cervical ganglion samples EHV-1 gDNA was detected, 

seven samples came from group 2 (7/12; 58.3%) and five out of group 3 (5/12; 

41.7%).  

For caudal cervical ganglion samples, EHV-1 gDNA was detected in 3 out of 6 

(50%) samples; positive samples were evenly distributed among the three groups.  

Thirty five percent (7/20) of cranial mesenteric ganglion samples were EHV-1 

gDNA positive. Out of these, three samples (42.9%) came each from groups 1 and 

2, and one sample (14.2%) came from group 3.   

For celiac ganglion samples, in 4/13 samples (30.8%) EHV-1 gDNA was detected 

with two samples from group 2 and the other two from group 3.  

Ten out of 19 (52.6%) sympathetic trunk samples were positive for EHV-1 

gDNA, out of these 30% (3/10), 40.0% (4/10) and 30% (3/10) came from groups 

1, 2 and 3, respectively.  

From the positive samples, 23.1% (9/39) showed high viral loads (≥1x103 

copies/1x106 cells) with the samples equally distributed among the groups (Table 

5).  

1.1.2.3. Dorsal root ganglia 

Twenty-two DRG samples were available for EHV-1 gDNA detection. Neuron 
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cell bodies were not present in 15 samples (68.2%) and were therefore not 

analyzed. All of the remaining seven samples (7/7) were EHV-1 gDNA positive. 

Positive samples were distributed as follows:  1/7 group 1 (14.3%); 2/7 group 2 

(28.6%); 4/7 group 3 (57.1%). High viral loads (≥ 1x103 copies/1x106 cells) were 

detected in six out of seven (85.7%) samples (Table 5). 

1.2. Detection of viral RNA using reverse transcription PCR 

All RNA samples converted to cDNA included an internal control to confirm 

correct transcription. Only samples positive for the internal control were further 

processed. To determine whether infection was latent or lytic all samples were 

analyzed for mRNA expression of IE and L genes.  

Trigeminal ganglia, RALT and abdominal lymphatic tissues were systematically 

analyzed using qPCR targeting for IE gene ORF 64 as previously published 

(PUSTERLA, 2009). Although qPCR results showed expression of ORF 64 

throughout tissue samples, sequencing of some of these PCR products did not 

show any matches to EHV-1. Therefore, qPCR results for IE gene ORF 64 were 

considered false positive results.    

All 320 tissue samples were analyzed for L gene expression using real-time qPCR 

targeting to ORF 33 (HUSSEY et al., 2006) and were consistently negative.  

1.3. Immunohistochemistry 

Samples positive for EHV-1 gDNA and negative for L gene RNA were 

additionally analyzed for L gene protein expression of lytic infection using an 

IHC assay. All samples showed background signals and iron pigments in 

mononuclear cells as well as artefacts at the border zones. One lymphatic tissue 

sample showed questionable weak positive signals within few lymphocytes. All 

results were verified by an expert pathologist. All other EHV-1 gDNA positive 

but cDNA L gene negative samples of RALT, abdominal lymphatic tissue and 

neural parenchyma were tested also negative for L gene transcriptional activity in 

the IHC.  
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2. Pathological findings 

2.1. Macroscopic examination 

Macroscopic examinations were performed at the MSU and results were as 

follows (L.S. GOEHRING, personal communication): All animals were in a good 

body condition (average 5/9). Some macroscopic findings included subarachnoid 

spongiform haemorrhage between C1 and C3 and enlarged mandibular, 

retropharyngeal and bronchial lymph nodes. Subarachnoid bleeding was 

associated with centesis of CNS between C1 and C2 on day 5 and on day 11 post 

infection. With exception of lymphadenopathy of many of RALT tissue samples, 

none of the samples showed macroscopic abnormalities.  

2.2. Microscopic examination 

Paraffin embedded nervous tissue samples (n = 151) underwent microscopic 

evaluation and were graded based on criteria of inflammation, degeneration and 

leukocyte/lymphocyte infiltration. Most of the TG of group 1 and 3 were fixed in 

formalin prior to embedding, while most of group 2 TG were collected in 

RNAlater® prior to embedding. As the sample quality of H&E stained tissue cut 

sections had changed dramatically between groups 1 & 3 and group 2, a brief 

comparative study in TG was conducted. Therefore, TG from three EHV-1 (PCR) 

negative horses were collected, divided into equal portions and stored in either 

formalin or RNAlater® (Annex Table 20). While dramatic differences in cut 

section quality was noticed between the two fixation methods, 

inflammation/degeneration of samples could still be appreciated in any of the 

samples.  

No inflammatory/degenerative changes were detected in 37/151 (24.6%) of the 

samples. Mild grade 1-changes were noticed in 105/151 (69.5%) and moderate 

(grade 2) changes in 9/151 (6.0%) of the samples. All samples with moderate 

changes were found in SPS ganglia and DRG, while TG scored ≤1. Cyto-

histopathological changes mainly consisted of Nageotte´s bodies presence (as a 

sign of neural degeneration) and lymphocytic infiltrations.   

As we were currently unable to assign gDNA to cell type of EHV-1 positive cells, 

neural vs. lymphocytic/monocytic infiltration, we tested for correlation between 

high histopathological score and the corresponding low Ct qPCR results. 
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However, correlation coefficient showed no evidence for this correlation with 

p>0.05.  

 

3. Comparative analysis between EHV-1 strains 

3.1.1. Comparison among tissue types  

When all EHV-1 gDNA containing locations where compared, regardless of 

group assignment, a highest genomic load of EHV-1 gDNA was found (p<0.001) 

in DRG. Likewise, a significant higher affinity to DRG could be detected 

compared to the other SPS ganglia (p<0.05). The affinity of the virus to a certain 

tissue type was defined by the frequency and the viral genomic load found in that 

tissue sample.  

In groups 1 and 2 viral loads were high (≥1x103 copies/1x106 cells) within DRG 

(except one sample in group 2 with low viral loads), but low (< 1x103 

copies/1x106 cells) within TG (except one sample in group 2 with high viral 

loads). Viral loads were high for both, the DRG and the TG, in group 3 (Table 5).  

3.1.2. Comparison among tissue types and groups 

To further determine if these tissue affinities differ between groups, the 

localizations and groups were compared. The affinity to RALT was significantly 

higher in groups 1 and 3 compared to group 2 (p<0.005). No difference was 

detected between groups 1 and 3 (p>0.05). For abdominal lymphatic tissue and 

TG the affinity was higher in group 1 compared to group 2 (p<0.005 and p<0.01, 

respectively). No differences were detected for the other localizations between 

groups (p>0.05). With regards to EHV-1 gDNA containing localizations within 

nervous tissues a significantly higher affinity to the SPS ganglia could be detected 

in groups 1 and 2 compared to group 3 (p<0.001). Differences between groups 

within TG and DRG were not detected (p>0.05). 

3.1.3. Comparison among tissue types within each group 

To determine the affinity of each EHV-1 strain to a certain type of tissue, the 

distribution of EHV-1 gDNA was compared within each group. In groups 1 and 3 

an even distribution of the positive samples between the nervous (50.0% in group 

1; 45.7% in group 3) and lymphatic (50% in group 1; 54.3% in group 3) tissues 
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was detected. In group 1, differences between tissue types were not significant 

(p>0.05). In group 3, a high affinity to DRG was seen and a moderate affinity to 

all other tissues (p<0.001 and p<0.005, respectively). In group 2, higher affinity 

was found in the nervous tissue (90.6%; 29/32) when compared to the lymphatic 

tissue (9.4%; 3/32) (p<0.005). In addition, in this group there was a high virus 

affinity to the DRG and mild to moderate affinity to TG and SPS ganglia 

(p<0.005).   

No evidence for a regular and systematic distribution pattern of EHV-1 gDNA 

within tissue types could be detected (p>0.05) (Annex tables 6 - 17). 
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V. DISCUSSION 

EHV-1 gDNA was detected in already previously described and well-documented 

locations of putative latency in the horse; i.e. the TG and in the mandibular or 

retropharyngeal lymph nodes. Furthermore, genomic EHV-1 DNA was also 

detected in various other lymphatic tissues, as well as in previously undocumented 

nervous tissues of horses at day 70 post experimental EHV-1 infection.   

In the present study, EHV-1 gDNA was detected in many but not all of the TG, 

the mandibular and retropharyngeal lymph nodes, in sections of the pharyngeal 

roof containing primary lymphoid follicles, in bronchial lymph nodes, as well as 

in mesenteric lymph node and the spleen. Moreover, EHV-1 gDNA was 

repeatedly detected in spinal cord DRG and in SPS ganglia.  

The TG as well as the mandibular and retropharyngeal lymph nodes are 

considered established sites of EHV-1 latency (SLATER et al., 1994; PUSTERLA 

et al., 2012; SLATER, 2014). Therefore, our findings are consistent with previous 

publications (SLATER et al., 1994; PUSTERLA et al., 2012; SLATER, 2014).  

For members of the Alphaherpesvirinae, such as VZV, HSV-1 and HSV-2 the 

typical latency location is nervous tissue. These locations are connected via 

dermatomes to the primary site of infection. Moreover, HSV-1 establishes latency 

presumably only in nervous tissue (BLOOM, 2016). The detection of EHV-1 

gDNA in various structures of the RALT, mesenteric lymph nodes, spleen as well 

as in additional neural parenchyma is therefore extremely interesting. It would be 

expected that positive tissue is regional lymphatic tissue associated with the 

respiratory tract. However, the frequent identification of EHV-1 gDNA in the 

mesenteric lymph nodes and the spleen, while PBMC were consistently negative, 

is a novel finding, which requires further investigation. Samples were preserved 

on day 70 pi, which was expected to be enough time to establish a non-lytic, latent 

EHV-1 infection and is consistent with previously published investigations of 

latent PRV (BROCKMEIER et al., 1993). However, whether it is true latency 

measured in the herein presented samples remains a central question and will be 

discussed in detail further down the line.  

EHV-1 gDNA in the present study was detected regularly in the equine 

pharyngeal roof. Horses do not have discrete masses of lymphoid tonsillar tissues. 
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However, they do possess follicle-associated epithelium (FAE) overlying primary 

lymphoid tissue located within the walls and the roof of the pharynx (KUMAR & 

TIMONEY, 2001, 2005). This FAE is composed of M cells, which are specialized 

in the uptake and transcytosis of macromolecules and microorganisms 

(HATHAWAY LJ, 2000). Following transcytosis, a virus could reach the primary 

follicles and be subsequently transported to the (secondary) mandibular and 

retropharyngeal lymph nodes. Therefore, the detection of virus in the pharyngeal 

roof as identified in this study was not unexpected. To the authors’ best 

knowledge, this is the first report of EHV-1 gDNA in this location by day 70 pi. 

However, it might be explained by the fact that these tissues simply have not been 

judiciously tested in the past and suggests that these should be included in future 

investigations. In addition, our findings are consistent with other members of the 

Alphaherpesvirinae, being detected in pharyngeal lymphatic tissue, the tonsil, of 

the host species. Winkler et al. (WINKLER et al., 2000) described the consistent 

detection of latent BoHV-1 in tonsils of latently infected calves, suggesting that 

the tonsil is a site for viral persistence or latency in cattle. In another study, 

BoHV-1 was detected in the tonsils of experimentally infected calves using 

BoHV-1 wild type and one strain mutant variant (PEREZ et al., 2005). 

Furthermore, PRV DNA has been detected by PCR at low frequencies in the 

tonsils (and at high frequencies in the TG) of latent infected pigs 70 days after 

experimental infection (BROCKMEIER et al., 1993). In that study pigs were 

believed to be latent infected 70 days after oronasally exposure to virulent PRV. 

In addition, Romero et al. (ROMERO et al., 2003) detected PRV DNA (PCR) in 

tonsils (as well as in TG and Sacral ganglia) from naturally infected (seropositive) 

feral pigs that were trapped and kept in isolation for 2-3 years. Subsequent 

inoculation of tissue suspensions in Vero cell cultures did not yield virus and it 

was suggested that the detected DNA corresponded to latent virus (ROMERO et 

al., 2003). Hence, a latent PRV infection was defined as the presence of viral 

DNA in combination with a negative viral isolation in a cell culture. Considering 

these previous observations and the results of this study, it is plausible that the 

pharyngeal roof could also be a site for EHV-1 latency in equids.   

EHV-1 gDNA was also identified in bronchial lymph nodes. As the bronchial 

lymph node is component of the RALT, the virus may be transported to this site 

via identical mechanisms as those involved in viral transport to the mandibular 
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and retropharyngeal lymph nodes. Alternatively, replicating virus may reach the 

lower respiratory tract (LRT), which drains into the bronchial lymph nodes. And 

although EHV-1 primarily infects the URT, infection of the LRT may result from 

dissemination through airway surfaces or via blood vessels during a cell-

associated viremia (CRABB & STUDDERT, 1995). Therefore, the virus may be 

transported to the bronchial lymph node following possible replication in the 

LRT. In addition, it is plausible that the bronchial lymph nodes are reached by the 

virus via antigen presenting cells (APCs). EHV-1 has been demonstrated to use 

APCs, especially monocytes and dendritic cells, for transportation from the apical 

side of the mucosal epithelium into the lymphatics and blood vessels (BAGHI, 

2014). Therefore, the finding of EHV-1 gDNA in the bronchial lymph nodes of 

horses in the present study is not completely unexpected. Furthermore, it is in 

agreement with findings by Pusterla et al. (2012) who demonstrated that 8.6% 

(6/70) of Thoroughbred race horses that were necropsied following euthanasia due 

to musculoskeletal injuries, were positive for EHV-1 gDNA in the bronchial 

lymph node (PUSTERLA et al., 2012).  

Somewhat surprisingly, EHV-1 gDNA was also identified in spleen and 

mesenteric lymph node samples collected 70 days pi. To the author’s knowledge, 

this has not been previously reported. However, the spleen has been described as a 

site of BoHV-1 latency in experimentally infected cattle (MWEENE et al., 1996). 

Hitherto, BoHV-1 was the only Alphaherpesvirus species in which splenic latency 

had been documented. In contrast to many Alphaherpesvirinae, the lymphatic 

tissue has been commonly identified as a latency site for Gammaherpesvirinae, 

where splenic latency is established preferentially in splenic germinal centers and 

memory B cells (FLAÑO et al., 2002). For the murine Gammaherpesvirus 68 

(MHV-68), which is used as an experimental in vivo model of Gammaherpesvirus 

infections in the host, the spleen is a known site of latency. Also well documented 

is the finding that immunocompetent lymphocytes reach the spleen via blood 

vessels and proliferate locally (BUTCHER & PICKER, 1996). During viremia, 

EHV-1 gDNA has been identified in CD8+ T-lymphocytes, B-lymphocytes, 

monocytes, and less likely in CD4+ T-lymphocytes of horses experimentally 

infected with EHV-1 (WILSTERMAN et al., 2011). Therefore in horses, during a 

productive lytic infection and viremia, the virus may reach the spleen and could 

possibly be retained in splenic germinal centers during potential latent infection. 
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Alternatively, the detection of EHV-1 gDNA in splenic tissue may be due to its 

presence in circulating latently infected lymphocytes. Lymphocytes home 

repeatedly to secondary lymphoid organs, including the spleen and lymph nodes, 

reside in these organs transiently, and return to the circulation (ABBAS et al., 

2014). Through this recirculation, EHV-1 infected lymphocytes move 

continuously through the blood and lymphatic vessels, as well as through 

secondary lymphatic tissues.  

In this study, all but one horse with low viral loads that were EHV-1 gDNA 

positive in the mesenteric lymph nodes were also positive in various other 

respiratory associated and/or abdominal lymphatic tissues. This suggests a 

possible role of (re)circulating infected lymphocytes in the detection of EHV-1 

gDNA in the spleen and the mesenteric lymph nodes. However, whether the viral 

DNA identified in the spleen and mesenteric lymph nodes represent a potentially 

true localization for EHV-1 latency or if these results are a consequence of 

recirculation of lymphocytes remains to be determined. It looks like viral DNA 

has settled in a variety of lymphatics while circulating PBMC were all negative. 

Still, the mechanisms of possible latency establishment at these sites are not well 

understood; therefore, further investigations would be required.  

In this study EHV-1 gDNA was found in TG, considered an established site of 

latency. While easy to understand, as primary infection allows retrograde axonal 

transport to the TG, as sensible nerve fibers are closely associated with respiratory 

tract mucosa, another finding not previously reported was the presence of EHV-1 

gDNA in various ganglia throughout the equine body. The unique tissue sample 

collection of our study allowed us to describe novel and putative EHV-1 latency 

sites in nervous tissues. More precisely, EHV-1 gDNA was found in somatic 

sensory (TG, spinal cord DRG), parasympathetic (ciliary ganglion (GCi)) and 

sympathetic ganglia (cranial cervical (GCcr), caudal cervical (GCca), mesenteric 

(GM), celiac (GCoe) and sympathetic trunk (ST) ganglia). However, it remains 

unclear whether the EHV-1 gDNA is present in the ganglion cell (neuron), in the 

support cell (e.g. satellite cells), or in infiltrative lymphocytes/monocytes. The 

presence of EHV-1 gDNA in the GCi and GCcr could be due to the close 

proximity of primary replication and the vicinity to the guttural pouch epithelium 

(GCi). Virus may establish latency in these sites using retrograde axonal transport, 

similar to the TG pathway. These findings are consistent with a recent publication, 
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where FeHV-1 was detected in various nervous tissues of experimentally infected 

cats including GCi, GCcr and pterygopalatine ganglion (TOWNSEND et al., 

2013). Furthermore, latent VZV has also been demonstrated in the GCcr of human 

specimens (GILDEN et al., 1983; HYMAN et al., 1983). EHV-1, VZV and 

FeHV-1 belong to the genus Varicellovirus and there may be commonalities 

regarding the sites where latency is established in the respective natural host. In 

addition, it has also been previously demonstrated that HSV-1 can establish 

latency in the GCi (BUSTOS & ATHERTON, 2002), and HSV-1 is regarded as a 

model in studying EHV-1 latency. However, whether similarities in latency 

establishment in the GCi between HSV-1 and EHV-1 exist, requires further 

investigation.   

EHV-1 gDNA could herein be detected in the equine GCca, GM, GCoe, ST and 

DRG. As these sites are not in the vicinity to the primary site of the infection, it is 

not clear how the virus reached these ganglia to establish a putative latent 

infection. VZV typically establishes a latent infection in the somatic sensory DRG 

after cell-associated viremia (KENNEDY et al., 1999; MODROW, 2010). 

However, VZV and HSV-1 were also detected in the autonomic nervous system 

in the GCoe (GILDEN et al., 2001). Herpesviruses must travel selectively in a 

retrograde direction from the periphery to the neuron cell body for latency 

establishment and travel in an anterograde direction in the same axons to 

innervated tissues when reactivated (LAVAIL et al., 2007; ANTINONE & 

SMITH, 2010). Anterograde transport to synapses connected with other neurons 

may result in virus transmission to higher-order neural sites (NEGATSCH et al., 

2010). As this anterograde transport is present during reactivation, direct crossing 

of nerves via synapse saltation seems very unlikely for latency establishment. 

Therefore, possible explanations for how EHV-1 establishes latency within these 

SPS ganglia and DRG could include either direct neuro-neural contact or viremia. 

Although, ischemic necrosis of the supporting vessels of the neural parenchyma 

caused by viremia leads to increased permeability, EHV-1 egress from the CNS to 

sites with close contact seems unlikely. However, viremia is crucial to EHV-1 

pathogenesis and may play a role in viral dispersion and transmission to these 

neural sites. Viral DNA has been detected in all PBMC subpopulations of 

experimentally infected horses during acute infection and cell-associated viremia 

leads to the spread of virus in the horse’s body by cell-to-cell contact 
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(GOEHRING et al., 2011; WILSTERMAN et al., 2011). Viral DNA could also be 

present in the endothelial cells of arterioles or venules within or in vicinity to the 

ganglia or within perivascular mononuclear cuffing. Both findings have been 

previously described during lytic infection of the uterine tissue and the spinal cord 

(SMITH & BORCHERS, 2001; STIERSTORFER et al., 2002). If this is also 

occurring during latency, it would suggest that EHV-1 is present in vascular 

endothelial cells and therefore, ‘accidentally’ present within the nervous tissue 

samples.  

In addition, inflammation could have transported virus-positive lymphocytes in 

the vicinity of the nervous tissue of interest through lymphocytic/monocytic 

influx, resulting in a false-positive ‘nervous tissue result’. Inflammation following 

EHV-1 infection results in higher circulation and increased chemotaxis of PBMC. 

As EHV-1 latency is known to be established in CD8+ T-lymphocytes, higher 

lymphocytic infiltrations in nervous tissue samples could influence PCR outcome. 

To test the hypothesis of whether a high inflammation/degeneration grade resulted 

in high positivity of these nervous tissue samples, a purpose-designed scoring 

system was created. This score was used to semi-quantitatively determine the 

cyto-histopathological changes associated with inflammation, infiltration and 

degeneration of neuron cell bodies and nerve fibers. Results were graded from 0 

(=no changes), 1 (=mild), 2 (=moderate) to 3 (=severe) changes. The cyto-

histopathological evaluation of the nervous tissue samples showed no, or only 

mild/moderate changes in EHV-1 gDNA positive samples. The changes detected 

were mainly lymphocytic/monocytic infiltrations. In addition, the presence of 

lymphoid follicles was confirmed in some nervous tissue samples (except TG). 

The presence of lymphocyte infiltration and lymphoid follicles in the SPS ganglia 

and DRG was initially suspected to cause false positive qPCR results. However, 

this assumption could not be confirmed, as several samples were EHV-1 gDNA 

positive without containing lymph nodes or lymphocytic infiltrations and many 

others were qPCR negative while containing these structures. Furthermore, a 

correlation between the presence of lymphoid follicles and/or inflammation with 

the results of qPCR was not detected. Also no correlation could be identified 

between cyto-histopathological changes and the qPCR results. As no changes 

were present in a large number of samples (i.e. no inflammation) which were 

positive for gDNA while negative in the IHC analysis, it was suspected that these 
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nervous tissues may be a true site of EHV-1 latency. However, thus far, how the 

virus is transported to these nervous tissues remains unknown and further studies 

are required to determine the viral pathways to these latency sites. In addition, for 

definitive confirmation of whether these ganglia are true sites of EHV-1 latency, 

further analysis using in-situ hybridization would be necessary to localize the 

virus within these samples and, based on the found localization of viral DNA, to 

further characterize the cell type. 

Though carry-over of viral DNA during sample preparation via 

lymphocytic/monocytic infiltrates into nervous tissue cut-sections must be 

acknowledged as a plausible cause of false-positive results in the analyzed 

nervous tissue samples, this was deemed highly unlikely because all precautions 

were taken to prevent any foreseen type of contamination. Moreover, samples 

were cut in batches subdivided in tissue types and on different days. During DNA 

extraction, controls were also included (extraction control) to avoid laboratory 

and/or cross contaminations among samples. Furthermore, during qPCR 

processing, negative and positive controls were included in each run, and results 

were only considered as valid, if the negative controls remained negative and the 

positives controls were positive.  

Another possible limitation of this study was previous exposure to EHV-1 in the 

subjects enrolled. While it is not possible to completely ascertain whether these 

horses truly never had previous contact with EHV-1, all enrolled horses  were 

young and seronegative, and came from a region (North Dakota) where EHV-1 

infection is deemed unlikely. The horses were therefore assumed to be EHV-1 

naive at the beginning of the experimental infections.  

One of the main objectives of this study relied on establishing whether EHV-1 

gDNA presence in the samples was due to lytic or latent infection. Unfortunately, 

the qPCR for identification of an IE gene mRNA product rendered questionable 

results. Therefore, putative EHV-1 latency for the interpretation of test results was 

defined as the sample being positive for EHV-1 specific gDNA in combination 

with negative EHV-1/4 specific IHC and negative L gene mRNA expression in 

the RT qPCR. A similar definition based only on the combination of the PCR tests 

has been previously used by Pusterla et al (PUSTERLA et al., 2010; PUSTERLA 

et al., 2012) and Slater et al (personal communication 2017).  
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The requirement of a negative IHC result in this study adds strength to the indirect 

method of latency identification. Despite herpesvirus latency being considered a 

dynamic process, EHV-1 latency was reported to be established by day 21 pi 

(SLATER, 2014). Horses in this study were euthanized 70 days pi, which was 

deemed sufficient for latency to be established. Latency is considered the dormant 

stage, with no viral replication and transcriptional activity limited to a region 

antisense to the IE gene producing a latency-associated transcript (LAT) 

(EFSTATHIOU & PRESTON, 2005; SLATER, 2014). The presence of a possible 

EHV-1 LAT was previously described (BAXI 1995; CHESTERS et al., 1997; 

PUSTERLA, 2009; SLATER, 2014; ABDELGAWAD et al., 2016). Pusterla et al. 

(PUSTERLA et al., 2009b) defined latent infected tissue when qPCR for gDNA 

was positive, with simultaneous presence of IE gene activity (mRNA, RT PCR 

positive) and absence of L gene activity (mRNA, RT PCR negative). In the 

present study, L gene activity was not detected in any of the samples. Initial IE 

transcript detection methodology was rejected once the PCR products were 

sequenced and deemed false-positive.  

Despite the failure to detected simultaneous presence of IE gene in suspected 

EHV-1 latently infected tissues in this study, there is still a general consensus that 

LATs are not essential for latency establishment, maintenance or reactivation in 

all herpesviruses (EFSTATHIOU & PRESTON, 2005). In addition, the presence 

of a LAT is thought to be irregular, with not all cells positive for gDNA also 

expressing detectable LATs (BORCHERS; BLOOM, 2016). Moreover, there are 

Alphaherpesvirus species such as VZV that seem not to express LATs during 

latency (BLOOM, 2016). For EHV-1 LAT or equivalent IE transcripts, reports in 

the literature are inconsistent about the location within the virus genome. It has 

been claimed that EHV-1 LAT is either transcribed from a region located 

antisense to the E gene (ORF 63; HSV-1 ICP0 homologue) (BAXI 1995; 

ABDELGAWAD et al., 2016), or the IE gene (ORF 64) (CHESTERS et al., 1997; 

PUSTERLA et al., 2009b; SLATER, 2014). Potential regulatory functions during 

latency have been also suggested for the transcript of a gene located antisense to a 

region between ORF 64 and ORF 65 (HOLDEN et al., 1992; AHN et al., 2010). 

Although out of scope of this study, we additionally tested various strong positive 

EHV-1 gDNA samples for transcription of a region antisense to the E gene by 

specifically transcribing RNA to cDNA using the methodology published by 
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Abdelgawad (ABDELGAWAD et al., 2016). Samples were also tested for the 

presence of the transcript published by Holden (HOLDEN et al., 1992; AHN et 

al., 2010). Results for both assays were invariably negative (unpublished data). It 

therefore remains to be determined whether EHV-1 LAT or an equivalent 

transcript exist, or if different EHV-1 LATs may be present and what their 

location within EHV-1 genome is. Further studies are required to be able to assess 

the expression of potential EHV-1 LATs, latency associated miRNAs or 

equivalent transcripts expressed during latency, as well as IE gene mRNA 

production during latency in horses. As it is expected that the copy number of IE 

RNA present during latency is extremely low, the use of novel techniques such as 

next generations sequencing (NGS) potentially could help identify specific EHV-

1 sequences expressed during latency.  

To differentiate between lytic and latent infection in the present study, qPCR 

gDNA positive tissue samples were screened for translational protein expression 

using an established EHV-1/4 specific IHC assay. During latency, viral protein 

expression should be absent. Therefore, IHC should only be positive in gDNA 

positive tissue sections during lytic infection. All samples except one were tested 

negative in IHC for translational protein expression. One left mandibular lymph 

node sample showed questionable weak positive signals within few lymphocytes 

with the corresponding right side mandibular lymph node tested negative in the 

IHC. As these signals were very rare, present only in one sample and PCR results 

showed left/right discrepancies, it was suspected that these signals were false 

positive. Although, IHC is reported to be a reliable tool for post mortem 

identification of EHV-1 in FFPE tissues (RIMSTAD & EVENSEN, 1993; 

SZEREDI et al., 2003b; HUSSEY et al., 2006), the sensitivity of the IHC assay 

used in this study might have been too low to detect viral protein expression in the 

analyzed samples. For a separate study, testicular samples were tested for the 

presence of EHV-1 infection. EHV-1 crosses the blood-testis barrier. As barrier 

damage is key to EHM and abortions, infections of the testes may serve as a 

model to investigate the detection of virus and tissue pathologies. In addition, 

intact male horses have been shown to shed infectious virus in their semen 

following infection. Shedding was noticed for up to 3 and 4 weeks respectively, 

following natural and experimental infections (TEARLE et al., 1996; WALTER et 

al., 2012). Co-workers of this study confirmed EHV-1 gDNA in the majority of 
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testicles of intact male horses by day 70 pi (C. HOLZ & G. SOBOLL-HUSSEY 

2018; publication in progress). Furthermore, EHV-1/-4 specific IHC was positive 

in EHV-1 gDNA positive testicular samples. Available testes samples were 

retested in our laboratory and results were similar to those observed by our 

colleagues in North America. However, L gene transcriptional activity was 

consistently undetectable. We concluded that mRNA detection may have been 

insufficient probably due to i) low RNA transcriptional activity in the testes prior 

to preservation, ii) RNA degradation during preservation and storage, and/or iii) 

due to loss/destruction of RNA during extraction/reverse transcription. Though 

low sensitivity of the L gene RT PCR assay may explain the occurrence of these 

false negative results, previous efficiency testing with a log dilution series of the 

positive control showed a good sensitivity. In addition, our positive control for 

IHC – an aborted equine fetal lung – was positive for gDNA and weak positive 

for L gene mRNA while strong positive in the IHC.  

Altogether, we cannot be absolutely certain in what form these tissues are EHV-1 

infected. However, the presence of EHV-1 gDNA with simultaneous absence of L 

gene activity in combination with the absence of translational activity as 

demonstrated by IHC provide strong evidence that in these horses an arrested, 

potentially latent form is present in both nervous and lymphatic tissues by day 70 

pi.  

Comparison between groups was used to determine the presence of tissue 

preferences among EHV-1 Ab4 WT and the two strain mutant variants. Clear 

differences in the distribution of EHV-1 gDNA could be identified between the 

groups and therefore between the EHV-1 isolates. Group 2 (EHV-1 Ab4 N752) 

was significantly different from group 1 (Ab4 WT) and group 3 (Ab4 gD4). 

Infections with this EHV-1 Ab4 N752 mutant reportedly had most severe 

respiratory clinical signs after infection (HOLZ, 2017) but viral DNA was found 

only in less than 10% of the analyzed RALT samples. In a study by Quintana et 

al., the equine airway epithelium was characterized immunologically in vitro; it 

was suggested that early events in the respiratory tract may shape downstream 

responses and clinical outcome (QUINTANA et al., 2011; SOBOLL HUSSEY et 

al., 2014). In addition, local virus-specific mucosal immunity is believed to 

represent a first line of defense against EHV-1 infection and may impede the 

establishment of viremia (BREATHNACH et al., 2006). In the present study, 
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horses infected with EHV-1 Ab4 N752 did not show secondary fevers and EHV-1 

Ab4 N752 gDNA was detected in various nervous tissues, suggesting that a rapid 

latency establishment occurred at these sites. However, the exact mechanisms of 

latency establishment and identification of cell type carrying EHV-1 genome after 

infection need to be further investigated.  

Horses infected with EHV-1 Ab4 WT showed significantly higher viremia with 

classical bi-phasic fever than the other groups. A fraction (n=3) developed clinical 

signs of EHM although some transient. None of the horses in the other groups 

showed signs of EHM (HOLZ, 2017). Despite the absence of severe clinical signs 

in horses infected with EHV-1 Ab4 gD4, and the possible role of gD4 in disease 

attenuation, no significant differences in viral genome distribution were identified 

between those two isolates. In both groups, presumed latent virus could be 

detected in nervous and lymphatic tissues throughout the horses’ body. 

Conclusion: 

The presence of EHV-1 gDNA was confirmed in multiple locations in horses 

infected with three different EHV-1 isolates (Ab4 WT and two mutants) that have 

never been described before. Consistent with previous publications, possible 

EHV-1 latency was defined as samples that were positive for EHV-1 gDNA in 

qPCR with simultaneous absence of L gene transcriptional and translational 

activity using RT qPCR and IHC, respectively. Using this definition, we suspect 

that in this study EHV-1 established a latency-like, arrested, non-lytic stage of 

infection in vast parts of nervous and lymphatic tissue in horses euthanized 70 

days pi. The findings presented herein indicate that EHV-1 may become arrested 

in many different tissues at the same time. However, the exact mechanism 

involved in transmission of (arrested) EHV-1 to these tissues and the 

establishment of a presumed latency in the horse 70 days pi could not be 

determined. This highlights the complexity of EHV-1 latency and suggests that 

selectively examining tissues close to primary sites of replication is inappropriate 

for latency diagnosis. In contrast, the known sites of latency (TG, mandibular and 

retropharyngeal lymph nodes) do not seem to be the only “guardian” sites of 

infection and even if negative, other lymphatic and nervous tissues still may 

contain latent EHV-1. Further investigations are required to get more insights 

about how the virus is transported to these new sites, what cell type conclusively 

harbors virus and whether all of these are true sites of EHV-1 latency 
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establishment. The tissue tropism of different EHV-1 isolates for latency 

establishment also requires further investigation. As this is a moment-in-time 

investigation 70 days pi, it would be of great interest to assess the development of 

the EHV-1 latency state in horses over a longer period of time, and to compare 

these findings with the results of the present study. However, these kind of 

experimental infection studies may be difficult to perform due to enormous 

personal and financial efforts. One would need samples of horses kept together 

longer after infection or a random horse population. Last, but not least, while 

changes in the pathogenicity of Ab4 WT have been made to get the two other 

infection groups, one have to realize that Ab4 belongs to an EHV-1 subfamily that 

is different from other circulating EHV-1 WT strains (NUGENT et al., 2006; 

GOODMAN et al., 2007).  

Funding: This study was made possible through a grant by the Grayson-Jockey 

Club Research Foundation, Inc., Lexington KY, and internal funds. 
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VI. SUMMARY 

Equid herpesvirus 1 (EHV-1) is a member of the Alphaherpesvirinae. EHV-1 is 

species-specific, and a worldwide cause of respiratory disease, abortions and 

neurological disease in horses. Alphaherpesvirinae have the ability to cause a 

chronic-persistent latent (dormant) infection following an acute infection. 

Alphaherpesvirinae can reactivate out of dormancy and (re)infect other herd 

members, which is crucial for this group of viruses to maintain presence in the 

horse population. Little is known on EHV-1 latency, while understanding 

mechanisms of reactivation and recrudescence would be crucial for prevention in 

the future. EHV-1 latency locations in the horse have been detected in the 

mandibular and retropharyngeal lymph nodes; in PBMC, and in TG using 

genomic and transcriptional PCR-based assays as well as virus-specific 

immunohistochemistry (IHC). The short-term goal of this study was to define 

locations of chronic-persistent, latent infection in the horse, and to determine if 

different strains have impact on latency location.  

Nervous somatic sensory (trigeminal and spinal cord dorsal root) ganglia; a 

variety of sympathetic/parasympathetic ganglia, and lymphatic tissues of 

respiratory tract origin as well as abdominal origin (mesenteric lymph nodes and 

spleen) were analyzed in three groups of horses experimentally infected with 

either a wild-type EHV-1 Ab4 strain, or a mutant strain Ab4 variant (Ab4 N752 or 

Ab4 gD4). Horses were euthanized 70 days pi and tissue samples were collected. 

Samples were analyzed for genomic EHV-1 presence, transcriptional and (in part) 

for translational activity using published qPCR protocols for viral DNA IE gene 

and L gene mRNA transcripts detection. IHC was carried out on the majority of 

samples positive for gDNA to determine the presence of translational activity. 

Histopathological evaluation on H&E stained tissue samples was also performed. 

As three different viruses were used, results were compared between groups to 

determine strain differences. Latent virus presence was defined when there was 

tissue evidence of viral genomic DNA in the absence of L gene transcriptional 

activity combined with a negative IHC result.   

Using this definition of latency, the previously defined locations of EHV-1 

latency were confirmed in the majority of horses. Surprisingly, at day 70 pi, 
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numerous alternative locations were found in nervous and lymphatic tissue 

(evidence of genomic presence) while transcriptional and translational activity in 

none of the samples could be detected.  

Cyto-histopathological changes of degeneration and inflammation in the nervous 

tissue were variable and consisted more commonly of lymphocytic/monocytic 

infiltrates. A possible carry-over of viral DNA via lymphocytic/monocytic 

infiltrates into nervous tissue cut-sections was addressed, as a DNA positive 

nervous tissue result was not associated with lymphocytic/monocytic infiltrates 

(p>0.05). Among groups, in the group of EHV-1 Ab4 N752 infected animals, we 

found very little evidence of virus in the lymphatic tissue (p>0.005) when 

compared to the other two groups.  

The results of this study provide evidence of already known and alternative sites 

of EHV-1 genomic presence in horses 70 days post infection. Based on the 

absence of transcriptional and translational activity in EHV-1 genome positive 

samples this is likely a chronic-persistent, latent infection. In addition, EHV-1 

strain differences may be responsible for tissue preferences during chronic-

persistent infection.  
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VII. ZUSAMMENFASSUNG 

Das Equide herpesvirus 1 (EHV-1) ist spezies-spezifisch und gehört zu 

Subfamilie der Alphaherpesvirinae. Infektionen mit EHV-1 verursachen bei 

Pferden weltweit respiratorische Symptome, Aborte und neurologische Störungen. 

Ein charakteristisches Merkmal für alle Vertreter der Alphaherpesvirinae ist die 

Fähigkeit nach einer akuten, eine chronisch-persistierende latente (schlummernde) 

Infektion im Wirt einzustellen. Dieser Zustand der Latenz kann jederzeit durch 

eine Reaktivierung des Virus unterbrochen werden, was durch erneute 

Virusausscheidung zur (Re-)Infektion benachbarter Tiere führt und somit 

ausschlaggebend für den Erhalt des Virus innerhalb der Pferdepopulation ist. Das 

Wissen um die EHV-1 Latenz ist limitiert. Um jedoch langfristig mögliche EHV-

1 Ausbrüche verhindern zu können, ist ein besseres Verständnis der Mechanismen 

notwendig, die die Latenz und Virus-Reaktivierung beeinflussen. Latentes EHV-1 

konnte im Pferd bisher in den mandibularen und retropharyngealen Lymphknoten, 

sowie in PBMC und den Ganglia trigeminale mittels qPCR und RT qPCR sowie 

virusspezifischer Immunhistochemie (IHC) nachgewiesen werden. Das Ziel dieser 

Studie war es, mögliche Lokalisationen der chronisch-persistierenden latenten 

EHV-1 Infektion im Pferd zu bestimmen sowie festzustellen ob es Unterschiede 

bezüglich der Präferenz in den Lokalisationen zwischen den verschiedenen 

Isolaten gibt.    

Hierfür wurde neurales (Ganglion trigeminale, sympathische/parasympathische 

Ganglien und Spinalganglien) und lymphatisches (Respirationstrakt-assoziiertes 

und abdominales) Gewebe von Pferden analysiert, welche experimentell mit 

EHV-1 Ab4 WT oder zwei Virusmutanten (Ab4 N752 oder Ab4 gD4) infiziert 

und 70 Tage nach Infektion euthanasiert wurden. Das entnommene Gewebe 

wurde mittels qPCR für genomische virale DNA und mittels RT qPCR für die 

mRNA Expression der sog. „sehr frühen“ (IE) und späten (L) Gene analysiert um 

chronisch-persistierendes, latentes EHV-1 in den Proben zu bestimmen. DNA 

positive Proben wurden weiterhin mittels IHC auf translationale Aktivität getestet. 

Zusätzlich wurden H&E Schnitte der Proben zytohistopathologisch untersucht. 

Bei allen Untersuchungen wurden gruppenspezifische und somit virusspezifische 

Unterschiede mitbeurteilt. Virus wurde als latent definiert, wenn die Probe positiv 

für genomische virale DNA war bei gleichzeitiger Abwesenheit der 
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transkriptionellen Aktivität des L Gens und einem negativen Ergebnis in der IHC.  

Anhand dieser Definition konnte im Großteil der Pferde latentes EHV-1 in den 

bereits zuvor beschriebenen Latenz-Lokalisationen nachweisen. 

Überraschenderweise, konnte in der vorliegenden Studie am Tag 70 nach 

Infektion latentes EHV-1 regelmäßig auch in allen zusätzlichen neuralen und 

lymphatischen Geweben nachgewiesen werden.  

Die zytohistopathologischen degenerativen und entzündlichen Veränderungen im 

neuralen Gewebe variierten und bestanden hauptsächlich aus 

lymphozytären/monozytären Infiltraten. Eine mögliche Übertragung viraler DNA 

in die neuralen Gewebsproben durch die lymphozytären/monozytären Infiltrate 

konnte nicht bestätig werden, da ein positives DNA Ergebnis des neuralen 

Gewebes nicht mit dem Vorhandensein von lymphozytären/monozytären 

Infiltraten in Verbindung gebracht werden konnte (p>0.05). Im Gruppenvergleich 

waren in Gruppe zwei (EHV-1 Ab4 N752) kaum Hinweise auf Virus in den 

lymphatischen Geweben (p>0.005) im Vergleich zu den anderen Gruppen. 

Die Ergebnisse dieser Studie bestätigen das Vorhandensein von EHV-1 in bereits 

zuvor beschriebenen sowie neuen alternativen Lokalisationen im Pferd am Tag 70 

nach Infektion. Basierend auf der transkriptionellen und translationalen Aktivität 

in EHV-1 positiven Proben handelt es sich hierbei mit großer Wahrscheinlichkeit 

um eine chronisch-persistierende, latente Infektion. Darüber hinaus scheinen die 

Unterschiede in den EHV-1 Isolaten für die verschiedenen Gewebspräferenzen 

während einer chronisch-persistierenden Infektion verantwortlich zu sein. 
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IX. ANNEX 

Table 6: Distribution of EHV-1 gDNA within localizations 

   tissue 

   negative positive* positive** total 

lo
ca

li
za

ti
o

n
s 

RALT amount 99 18 3 120 

 within localization 82.5% 15.0% 2.5% 100.0% 

ALT amount 29 9 5 43 

 within localization 67.4% 20.9% 11.6% 100.0% 

TG amount 32 8 3 43 

 within localization 74.4% 18.6% 7.0% 100.0% 

SPS amount 68 30 9 107 

 within localization 63.6% 28.0% 8.4% 100.0% 

DRG amount 0 1 6 7 

 within localization 0.0% 14.3% 85.7% 100.0% 

total  amount 228 66 26 320 

  within localization 71.3% 20.6% 8.1% 100.0% 

RALT= respiratory tract associated lymphatic tissue; ALT=abdominal lymphoid tissue; TG=trigeminal ganglion; SPS= 

sympathetic/parasympathetic ganglia; DRG=dorsal root ganglion; *low viral loads (< 1x103 copies/1x106 cells); 

**high viral loads (≥ 1x103 copies/1x106 cells) 

 

Table 7: EHV-1 gDNA distributions within RALT per group 

  RALT 

  negative positive* positive** total 

group 1 15 5 1 21 

 2 51 0 2 53 

 3 33 13 0 46 

total  99 18 3 120 

RALT= respiratory tract associated lymphatic tissue; *low viral loads (< 1x103 copies/1x106 cells); **high viral 

loads (≥ 1x103 copies/1x106 cells) 
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Table 8: EHV-1 gDNA distributions within ALT per group 

  ALT 

  negative positive* positive** total 

group 1 5 3 4 12 

 2 15 0 1 53 

 3 9 6 0 15 

total  29 9 5 43 

ALT=abdominal lymphatic tissue; *low viral loads (< 1x103 copies/1x106 cells); **high viral loads (≥ 1x103 

copies/1x106 cells) 

 

Table 9: EHV-1 gDNA distributions within TG per group 

  TG 

  negative positive* positive** total 

group 1 7 4 0 11 

 2 12 4 1 17 

 3 13 0 2 15 

total  32 8 3 43 

TG=trigeminal ganglion; *low viral loads (< 1x103 copies/1x106 cells); **high viral loads (≥ 1x103 copies/1x106 

cells) 

 

Table 10: EHV-1 gDNA distributions within SPS per group 

  SPS 

  negative positive* positive** total 

group 1 9 4 3 16 

 2 26 17 3 46 

 3 33 9 3 45 

total  68 30 9 107 

SPS=sympathetic/parasympathetic ganglia; *low viral loads (< 1x103 copies/1x106 cells); **high viral loads (≥ 

11x103 copies/1x106 cells) 
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Table 11: EHV-1 gDNA distributions within DRG per group 

  DRG 

  negative positive* positive** total 

group 1 0 0 1 1 

 2 0 1 3 4 

 3 0 0 2 2 

total  0 1 6 7 

DRG=dorsal root ganglion; *low viral loads (< 1x103 copies/1x106 cells); **high viral loads (≥ 1x103 

copies/1x106 cells) 

 

Table 12: EHV-1 gDNA distributions within tissues in group 1 (Ab4 WT) 

   tissue 

   negative positive* positive** total 

lo
ca

li
za

ti
o

n
s 

RALT amount 15 5 1 21 

 within localization 71.4% 23.8% 4.8% 100.0% 

ALT amount 5 3 4 12 

 within localization 41.7% 25.0% 33.3% 100.0% 

TG amount 7 4 0 11 

 within localization 63.6% 36.4% 0.0% 100.0% 

SPS amount 9 4 3 16 

 within localization 56.3% 25.0% 18.8% 100.0% 

DRG amount 0 0 1 1 

 within localization 0.0% 0.0% 100.0% 100.0% 

total  amount 36 16 9 61 

  within localization 59.0% 26.2% 14.8% 100.0% 

RALT= respiratory tract associated lymphatic tissue; ALT=abdominal lymphoid tissue; TG=trigeminal ganglion; SPS= 

sympathetic/parasympathetic ganglia; DRG=dorsal root ganglion; *low viral loads (< 1x103 copies/1x106 cells); 

**high viral loads (≥ 1x103 copies/1x106 cells) 
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Table 13: EHV-1 gDNA distributions within tissues in group 2 (Ab4 N752) 

    tissue 

    negative positive* positive** total 

lo
ca

li
za

ti
o

n
s 

 RALT amount 51 0 2 53 

 

 

within 

localization 96.2% 0.0% 3.8% 100.0% 

 ALT amount 15 0 1 16 

 

 

within 

localization 93.8% 0.0% 6.3% 100.0% 

 TG amount 12 4 1 17 

 

 

within 

localization 70.6% 23.5% 5.9% 100.0% 

 SPS amount 26 17 3 46 

 

 

within 

localization 56.6% 37.0% 6.5% 100.0% 

 DRG amount 0 1 3 4 

 

 

within 

localization 0.0% 25.0% 75.0% 100.0% 

total   amount 104 22 10 136 

 

 

 

within 

localization 76.6% 16.2% 7.4% 100.0% 

RALT= respiratory associated lymphoid tissue; ALT=abdominal lymphoid tissue; TG=trigeminal ganglion; SPS= 

sympathetic/parasympathetic ganglia; DRG=dorsal root ganglion; *low viral loads (< 1x103 copies/1x106 cells); 

**high viral loads (≥ 1x103 copies/1x106 cells) 
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Table 14: EHV-1 gDNA distributions within tissues in group 3 (Ab4 gD4) 

   tissue 

   negative positive* positive** total 

lo
ca

li
za

ti
o

n
s 

RALT amount 33 13 0 46 

 within localization 71.7% 28.3% 0.0% 100.0% 

ALT amount 9 6 0 15 

 within localization 60.0% 40.0% 0.0% 100.0% 

TG amount 13 0 2 15 

 within localization 86.7% 0.0% 13.3% 100.0% 

SPS amount 33 9 3 45 

 within localization 73.3% 20.0% 6.7% 100.0% 

DRG amount 0 0 2 2 

 within localization 0.0% 0.0% 100.0% 100.0% 

total  amount 88 28 7 123 

  within localization 71.5% 22.8% 5.7% 100.0% 

RALT= respiratory associated lymphoid tissue; ALT=abdominal lymphoid tissue; TG=trigeminal ganglion; 

SPS=sympathetic/parasympathetic ganglia; DRG=dorsal root ganglion; *low viral loads (< 1x103 copies/1x106 cells); 

**high viral loads (≥ 1x103 copies/1x106 cells) 
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Table 15: EHV-1 gDNA distributions within SPS ganglia per group 

   Sympathetic/Parasympathetic ganglia 

   negative positive* positive** total 

g
ro

u
p
 

1 amount 9 4 3 16 

 within localization 56.3% 25.0% 18.7% 100.0% 

2 amount 26 17 3 46 

 within localization 56.5% 37.0% 6.5% 100.0% 

3 amount 33 9 3 45 

 within localization 73.3% 20.0% 6.7% 100.0% 

total  amount 68 30 9 107 

  within localization 63.6% 28.0% 8.4% 100.0% 

*low viral loads (< 1x103 copies/1x106 cells); **high viral loads (≥ 11x103 copies/1x106 cells) 

 

Table 16: Correlation between the nervous tissues 

 (1) (2) (3) (4) (5) (6) (7) (8) 

(1) TG         

(2) GCi p>0.05        

(3) GCcr p>0.05 p>0.05       

(4) GCca p>0.05 p>0.05 p>0.05      

(5) GM p>0.05 p>0.05 p>0.05 p>0.05     

(6) GCoe p>0.05 p>0.05 p>0.05 p>0.05 p>0.05    

(7) ST p<0.05 p>0.05 p>0.05 p>0.05 p>0.05 p>0.05   

(8) DRG p<0.001 p<0.005 p<0.005 p<0.05 p<0.001 p<0.001 p<0.05   

TG=trigeminal ganglion; GCi= ciliary ganglion; GCcr= cranial cervical ganglion; GCca= caudal cervical ganglion; GM= 

mesenteric ganglion; GCoe= celiac ganglion; ST= sympathetic trunk; DRG= dorsal root ganglion 
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Table 17: Samples positive for EHV-1 gDNA within nervous and lymphatic 

tissues 

 lymphatic tissue nervous tissue total 

group 1 13 12 25 

group 2 3 29 32 

group 3 19 16 35 

total 35 57 92 
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Comparative study to determine fixation and impregnation artefacts in TG 

Evaluation of fixation (formalin) vs. impregnation (RNAlater™) artefacts was 

performed on TG from equine carcasses submitted to the LMU pathology service. 

Samples were collected and further prepared as follows: TGs were extracted from 

the opened equine cranial. Each TG was cut lengthways and then into 2 pieces. 

From each side one piece of the TG was immersed into 4 % buffered 

formaldehyde solution in a proportion of 1:10. The other piece was immersed into 

RNAlater™ in a proportion of 1:10 respectively (Figure 4). After 24 and 48 hours, 

respectively, the TGs were transferred to 50% ethanol as an intermedium before 

further preparation. Samples were hydrated under running tap water for 30 

minutes. Dehydration was performed using the standard 16 hours program 

(Shandon Hypercenter XP) (Table 18). After dehydration, samples were 

embedded in wax and sectioned for H&E staining.  

Table 18: Standard dehydration protocol (Shandon Hypercenter XP) 

Step Reagent / Conc. % Temp. Immersion 

01 Alcohol /70 35 01:20:00 

02 Alcohol /70 35 01:20:00 

03 Alcohol /80 35 01:20:00 

04 Alcohol /96 35 01:20:00 

05 Alcohol /96 35 01:20:00 

06 Alcohol /100 35 01:20:00 

07 Alcohol /100 35 01:20:00 

08 Alcohol /100 35 01:20:00 

09 Xylol 35 01:20:00 

10 Xylol 35 01:20:00 

11 Paraffin 62 01:20:00 

12 Paraffin 62 01:20:00 
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 Figure 4: Sample preparation for evaluation of fixation artefacts  
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