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A B S T R A C T

A main question in systems neuroscience is how sensory information
is processed to yield a behavior best suited for the current situation.
In this thesis, we use the larval zebrafish model system, an emerg-
ing model organism in neuroscience due to its optical and genetic
accessibility allowing non-invasive tracking of neural activity.

We first shed light on the feature space that drives swimming
behavior of larval zebrafish. The optomotor response, an innate reflex
to directional whole-field motion, is widely used across animal species
to induce swimming behavior, however, the properties of the visual
stimulus are not yet clearly defined. Here, we show with reverse
correlation and thorough parameter evaluation that the optomotor
response is best elicited by global whole-field motion together with
a local light-dark transition. We further find active units across the
brain that react specifically to this stimulus. We can also show that a
generalized linear model is capable of modeling the observed behavior
better than chance.

We next were interested how visual sensory information and behav-
ior is encoded in Purkinje cells, a principal cell type in the cerebellum
important in sensorimotor control. We show that Purkinje cells in lar-
val zebrafish exhibit the same hallmarks as in mammals, such as planar
dendritic trees. Interestingly, we observed that Purkinje cells show a
different signal compartementalization compared to mammalian ones.
Using two-photon calcium imaging with novel transgenic lines that
we developed, we are able to show that visual information is spatially
clustered across the cerebellum. With the help of electrophysiology,
we could show that the inferior olive provides the sensory context
for Purkinje cell activity. Granule cells seem to be the major carrier
of motor-related information and provide this context homogenously
across the cerebellum. When manipulating Purkinje cell activity, larval
zebrafish show a longer latency to initiate swimming in an optomotor
response paradigm, suggesting that Purkinje cells have an impact on
motor initiation.

Finally, we characterized the in vivo performance of a novel far-red
fluorescence protein termed mCarmine, that expresses well in larval
zebrafish and outperforms an established cyan-fluorescent protein
mTFP1.

In summary, we find novel aspects in the sensorimotor transforma-
tion of visual stimuli to behavior and provide new insights in how
behavior is driven and how sensorimotor contexts are represented in
the brain.
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Z U S A M M E N FA S S U N G

Eine wichtige Frage in den systemischen Neurowissenschaften ist es
herauszufinden, wie sensorische Informationen verarbeitet werden,
um in jeder Situation die beste Verhaltensstrategie hervorzurufen. In
der vorliegenden Arbeit verwenden wir die Zebrabärblingslarve - ein
Modellorganismus, der in der systemischen Neurowissenschaft immer
mehr Zuspruch findet. Durch ihre Transparenz ist es möglich das Inne-
re zu mikroskopieren, ohne den Organismus zu verletzen. Weiterhin
ist es durch etablierte Methoden einfach, transgene Organismen zu
erzeugen.

Zuerst untersuchen wir, welche Eigenschaften visueller Stimuli
Zebrabärblingslarven zum Schwimmen bringen. Diese so genann-
te optomotorische Antwort (optomotor response) ist ein angeborener
Reflex, der ausgelöst wird, wenn die Zebrabärblingslarve globale, ge-
richtete Bewegung wahrnimmt. Wir können hier allerdings zeigen,
dass die optomotorische Antwort am besten ausgelöst wird, wenn
die globale Bewegungswahrnehmung mit einem lokalen hell-dunkel
Übergang kombiniert wird. Zusätzlich finden wir aktive Areale im
Zebrabärblingslarvengehirn, die stark mit diesem Stimulus korrelie-
ren. Weiterhin können wir mit Hilfe eines mathematischen Modells
zeigen, dass dieser Stimulus besser das Verhalten vorhersagt als rein
stochastisches Schwimmen.

Um herauszufinden, wie sensorische Signale motorische Verhal-
tensweisen beeinflussen, haben wir Purkinje-Zellen, ein wichtiger
Zelltyp des Kleinhirns, untersucht. Wir können zeigen, dass Purkinje-
Zellen in der Zebrabärblingslarve ähnlich zum Säugetier planare
Dendritenbäume besitzen, aber eine andere Signalkompartemental-
isierung haben. Mit Hilfe von Zwei-Photonen-Mikroskopie und neuen
transgenen Linien sehen wir, dass sensorische Informationen im
Kleinhirn räumlich organisiert sind, motorische Information aber
einheitlich verfügbar ist. Mit Hilfe der Elektrophysiologie können
wir zeigen, dass die untere Olive die räumliche Organisation her-
stellt, und Körnerzellen homogen über das Kleinhirn motorische In-
formationen zur Verfügung stellt. Durch die aktive Manipulation in
Purkinje-Zellaktivität mit Hilfe von optogenetischen Methoden haben
wir beobachtet, dass Purkinje-Zellen einen Einfluss auf die Bewe-
gungsinitiation haben.

Zuletzt haben wir charakterisiert, wie sich ein neues Fluoreszenzpro-
tein namens mCarmine in vivo verhält. Das ins tief-rote verschobene
Fluoreszenzprotein lässt sich gut in Nervenzellen transgener Zebrabär-
blingslarven exprimieren und zeigt eine bessere Leistung als ein
etabliertes cyan-fluoreszierendes Protein (mTFP1).
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Zusammenfassend legen wir neue Grundsteine für das Verständ-
nis wie die optomotorische Antwort in der Zebrabärblingslarve her-
vorgerufen wird, und wie sensorische und motorische Signale in
Purkinje-Zellen zusammentreffen, und welchen Einfluss Purkinje-
Zellen auf das Verhalten von Zebrabärblingslarven haben.
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1
I N T R O D U C T I O N

Understanding how the brain works is the main task in systems
neuroscience. We not only know that different species have different
brains or brain structures, but also that the brain between individuals
in the same species is different on a micro, and yet so similiar on
a macro level. Interestingly, we commonly ask how the brain works,
rather than why it exists. However, the why seems to be important in
the light of the following studies.

1.1 neuroscience , or why we have a brain

Daniel Wolpert, a figure in sensorimotor control research at Cambridge Why we have a

brain.University, UK, who recentely moved to Columbia, gave a great TED
talk about the real reason why we have brains. He mentions that the
one and only reason for us having a brain is in the light of adaptable

behavior1. To illustrate this, he uses the example of the sea squirt, a
small aquatic organism that has a (rudimentary) brain after birth. As a
larva, it swims through the water until it founds a decent spot to settle
down. After attaching to the stone, it does not move anymore, because
it remains on the very same spot its entire life. And because there is
no more locomotion, it presumable does not need its brain anymore.
This is why it digests its own brain immediately and undergoes
metamorphosis (Margulis and Chapman 2009).

While behaving, we interact with our environment and we need to
be able to also sense the dynamic nature of the environment. Our brain
not only controls behavior, but also receives sensory input through
different sensory modalities, such as the tactile, vestibular and visual
senses, enabling the organism to dynamically modulate its behavior.
In systems neuroscience, we use the following general schematic to
illustrate this connection, from sensory information to behavior (Figure
1).

1 https://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains/transcript

sensory information behaviorbrain

Figure 1: The dogma of systems neuroscience. Sensory information is pro-
cessed by the brain and the most appropriate behavior is chosen
and elicited.
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2 introduction

Classical neuroscience research is often conducted in rodents, es-
pecially mice. Mice are vertebrates and mammals, and thus, have a
highly similar brain structure compared to humans. However, there
are also limitations using this model organism. Monitoring neural
activity involves invasive preparations that may lead to unphysiolog-
ical conditions. Mice brains have a huge amount of neurons, where
only a small part is accessible for each experiment and animal, limit-
ing the field of view to a very narrow area. Although the generation
time of mice is rather short (around ten weeks from birth to giving
birth), experiments using viral transductions can take up months. It
starts with raising mice to a proper age, injection, incubation/waiting,
(invasive) preparations and ends with elaborate experiments (such
as electrophysiology or imaging). If mice should perform a learned
task, time for training is also needed. Further, it is a nocturnal animal
leading to a different metabolism and also shows no cortex folding,
something visible in non-human primates and humans (del Toro et al.
2017).

Recently, the larval zebrafish has been shown to be a very useful
model organism in developmental biology (Dawid 2004), but also in
systems neuroscience (Ahrens et al. 2012). Because it is also a verte-
brate like a mammal, the larval zebrafish shares some homologous
brain structures with mammals, such as the hypothalamus or the
cerebellum. For further reading regarding development and anatomy,
the reader is directed to two great publications: Kimmel et al. 1995

and Müller and Wullimann 2015. Only recently, researchers were able
to image for the first time the whole brain of a non-anesthetized verte-
brate, i.e. larval zebrafish, during behavior in a virtual environment
(Ahrens et al. 2012). With the use of genetically encoded calcium
indicators (GECI) expressed in all neurons, neural activity could be
determined by reading out the fluorescence of single neurons (see
also review Rose et al. 2014). A major break-through in imaging neu-
ral activity was the development of very sensitive GECIs with high
signal-to-noise (T.-W. Chen et al. 2013, see also following paragraphs).

1.1.1 Larval zebrafish

The larval zebrafish (Danio rerio) is a powerful model organism in
systems neuroscience (Figure 2). Larval zebrafish show already a huge
variety of different behaviors (see 1.1.2). They are also optical trans-
parent, especially with the nacre mutation (homozygous defect of the
melanophores gene mitfa, Lister et al. 1999). This allows anatomical
and functional imaging in vivo using endogenously expressed fluores-
cent proteins or GECIs. Luckily, the zebrafish also offers easy genetic
access by using the tol2 transposase system (Asakawa et al. 2008). With
this, foreign DNA can be integrated stably in the zebrafish genome
by injecting a plasmid harboring a gene of interest flanked by two
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100 µm elavl3:H2B-mCherry

Figure 2: The larval zebrafish is a useful model organism in systems
neuroscience. Larval zebrafish are around four mm long at around
six to eight days post fertilization (dpf). Transgenic modified fish
can be utilized to express genes, such as a fluorescent protein, in a
tissue-specific manner. Here, a transgenic fish expressing mCherry
in all neurons (green) is shown.

direction-selective tol2 arms and the tol2 transposase mRNA. The in

vivo translated tol2 transposase recognizes the tol2 arms and integrates
the gene of interest randomly in the genome. This is a stochastic pro-
cess and can yield a various amount of integration events. Using this
technique, a lot of different molecular tools could be used, such as
enhancer trap screening (Scott et al. 2009), direct expression of reports
under the control of tissue-specific promotors or enhancers (Matsui
et al. 2014; Park et al. 2000), or the Gal4/UAS2 system (Scott et al.
2007, explained and used in study III). An example is shown in Figure
2: there, we utilized the elavl3 promotor to label all neurons using a
fluorescent protein.

1.1.2 Behavioral repertoire

The larval zebrafish has a rich behavioral repertoire that develops
very quickly (nicely reviewed by Michael B. Orger and de Polavieja
2017). Three or four days post fertilization (dpf), larvae track rotating
stimuli with their eyes, a reflexive behavior called the optokinetic
response (OKR) (Brockerhoff et al. 1995; D. Clark 1981; J. Easter S. S.
and Nicola 1996; S. S. Easter and Nicola 1997). Around five dpf, fish
swim in the direction of perceived motion to stabilize themselves in
respect to the visual environment. This reflex is called the optomotor
response (OMR) (D. Clark 1981; Neuhauss et al. 1999). The OMR can be
elicited in freely swimming fish and also in a preparation where the
head is restrained in low-melting point agarose (Portugues and Engert
2011), see also Figure 3. It is important to note, that the OMR is not
restricted to larval zebrafish, but also visible in flies (Borst et al. 2010),
mice (Matsuo et al. 2018; Shi et al. 2018) and other species (Dieringer
et al. 1982).

2 see also study III; upstream activation sequence (UAS)
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latency

Figure 3: The innate optomotor response (OMR) is elicited in freely and
head-restrained fish when presented with forward moving visual
stimuli, such as a binary grating.

Behaviorally, OMR swimming has been shown to be driven by green
and red cones (Michael B. Orger and Baier 2005), Fourier and non-
Fourier visual motion (M. B. Orger et al. 2000), depend on the speed of
fixed period square gratings (Portugues et al. 2015; Severi et al. 2014)
and on the visual reafference perceived during swimming3 (Ahrens
et al. 2012; Portugues and Engert 2011).

Larval zebrafish do not swim continously, but rather swim in dis-
crete swimming events called bouts. Bouts are tail oscillations of a
given frequency, typically around 25 to 30 Hz, and can be grouped
using several features into distinct behaviors (Marques et al. 2018),
such as forward swims, turns and approaches.

In terms of neuronal processing, despite a number of elegant studies
characterizing the projection of retinal ganglion cells (RGCs) to the ten
retino-recipient areas in the zebrafish brain (Burrill and S. S. Easter
1994; Robles et al. 2014), the functional involvement of these RGC
aborization fields (AFs) in the OMR remains unclear (Burgess et al.
2010; Muto et al. 2005; Nikolaou et al. 2012; Roeser and Baier 2003;
Temizer et al. 2015). In addition, two studies, (Kubo et al. 2014; Nau-
mann et al. 2016) have implicated the pretectum as an important hub
where OMR sensory drive is represented.

Despite the fact that we know that very simple visual stimuli suchStudy I

as binary gratings are capable inducing OMR (Neuhauss et al. 1999;
M. B. Orger et al. 2000), we don’t know features in the visual stimulus
that trigger or at least significantly contribute to the OMR. In the first
Results part of this thesis, hereafter refered to as Study I, I describe
the contribution of different visual features. In addition, we perform
whole-brain imaging experiments and identify neural populations,
downstream of retinal ganglion cells, that react to these features and
may play a role in driving the OMR.

3 I was involved in studies focusing on the timing aspect of reafference together with
Daniil Markov. Because of their own field of complexity, they are not part of this
thesis.



1.1 neuroscience , or why we have a brain 5

grating stimuluswhite noise stimulus

starts swimming
time

behavioral-

triggered

average (BTA)

±2 s

spikes

Readout:

neural activity

Readout: behavior

x
time

average average

x
time

spike-

triggered

average (STA)

stimulus

history

future

Figure 4: Spike- and behavior-triggered average. Left panel: Spikes are
recorded from a neuron using patch clamp while a visual white
noise stimulus is presented to the mouse’s eye. Computing the
spike-triggered average yields a linear filter. Right panel: Here,
we record not spikes, but behavior, especially when the fish starts
swimming. We present larval zebrafish with a forward-moving
binary grating that provides visual feedback while the fish is swim-
ming. We compute the behavioral-triggered average based on the
swim starts.

1.1.3 Behavior-triggered average

A typical question in systems neuroscience is what the optimal stimu-
lus is to make a neuron fire. One approach to answer this question for
an example neuron located in the primary visual cortex of a mouse
would be to present different stimuli to the eye of the mouse, and
record simultaneously from that particular neuron electrophysiolog-
ically (Figure 4, left panel). After accumulating many spikes in a
recording, one would go back to the stimulus presented and average
all the sequences of stimuli leading to a spike (stimulus history). This
method, also known as reverse correlation or spike-triggered aver-
age (STA) has been extensively used to characterize receptive fields of
neurons (reviewed by Schwartz et al. 2006, see Figure 4, left panel).

The STA can be used as a linear filter in a linear-nonlinear-poisson
(LNP) cascade model (Figure 5), previously used to describe firing
patterns of neurons in the visual pathway (Pillow et al. 2008). To
showcase the method, Figure 5 shows all steps using play data: the
aim is to retrieve a (here, a priori set) linear filter using STA. We first
designed a linear filter (weight vector) k. The dot product of k and
the stimulus, for example a gaussian white noise stimulus, yields
the linear filtered stimulus, or in other words a “raw firing rate”.
Applying a nonlinearity, such as a half-square rectification, we get an
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instantaneous firing rate resembling the probability of a neuron to
spike. Feeding the instantenous firing rate into a stochastic Poisson
process, one yields discrete spikes. Reverse correlating the stimulus
with the spikes should ideally return the linear filter k.

The STA, however, only describes a stimulus subspace. Especially
when the nonlinearity is symmetric, the STA does not provide any
visible structure. Here, spike-triggered covariance (STC) is capable
of extracting these linear filters. To further show how STA and STC
works, a detailed Jupyter notebook4 is attached to this thesis. All code
is available through the LNP repository on my Github account.

In study I, we use a similar approach to determine the optimal stim-BTA

ulus required to elicit a forward OMR swimming response in larval
zebrafish (Figure 4, right panel). This approach yields a behavioral
triggered average (BTA) as has been used previously to map the re-
sponse of zebrafish to fluctuations in heat (Haesemeyer et al. 2015).
By presenting visual stimuli consisting of black and white bars of
randomly varying widths moving at different speeds in uniform for-
ward direction, we compute the BTA (see Figure 4) and show that
the optimal stimulus that will evoke the OMR consists of two fea-
tures: whole-field, global motion and a caudal to rostral light to dark
luminance transition crossing the larva’s head, which has not been
previously described in the literature.

1.1.4 Neural activity indicators

The classical approach and gold standard to determine neuronal
activity is electrophysiology. Whole-cell or cell-attached recordings
reveal detailed information about the activity of single neurons, while
microelectrode arrays can be used to record from a population in vivo.
However, using the latter method, it is hard to determine from which
neurons one recorded. If the cells share a similar spiking pattern, it
is hard to decode if the measured signal arises from one or multiple
sources.

To overcome this invasive method and to better resolve the activity
of many neurons recorded simultaneously, optical activity indicators
were developed (Tsien 1981; Williams et al. 1985). In particular, many
neuroscience labs have adopted functional imaging techniques that
report cell activity by measuring intracellular calcium levels. Calcium
levels change upon depolarization in a neuron by the release of internal
calcium storages, such as the endoplasmatic reticulum, or by influx via
calcium channels, such as NMDA or AMPA receptors5. Early attempts
used organic dyes to report calcium, such as Oregon Green BAPTA-1

4 A Jupyter notebook is a web-based platform to execute Python programming code
with rich-text annotations and inline plots.

5 The receptors are named according to their agonists: N-methyl-D-aspartate (NMDA)
and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
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8 introduction

a b c

Figure 6: The GCaMP protein. a) The cartoon scheme of GCaMP. A circular-
permuted GFP contains an calmodulin (CaM) and an M13 domain
that are connected with linkers to the GFP barrel. Four calcium ions
can be bound to the CaM domain. Image taken from Akerboom et al.
2012. Reprinted with permission. b) A fluorescence trace (changed
fluorescence relative to baseline fluorescence) of GCaMP6s is shown
above a simultaneous electrophysiology trace of the very same cell.
Note the sharp onset and long decay of the calcium signal. c) the
average calcium response to a single action potential. b) and c) were
taken from T.-W. Chen et al. 2013. Reprinted with permission.

or Fura-4. It is, however, hard to translocate the dye into the cell.
Thus, most researchers use genetic encoded fluorescent proteins that
were genetically engineered to fluoresce relative to the cell’s voltage
or calcium levels (see Figure 6b). These indicators are mostly based
on green fluorescent protein (GFP) derivates that consist of one or
more GFP-like molecules. A very famous example is the GCaMP
family, originally developed by Nakai et al. 2001, that consists of a
circular-permuted GFP with a calcium sensitive domain based on
the M13 peptide and Calmodulin (see Looger and Griesbeck (2012)
and Rose et al. (2014) for review, see also Figure 6a). However, there
are also ratiometric calcium sensors based on the troponin C domain
of the toadfish, that uses two fluorescent proteins, cyan fluorescent
protein (CFP) and yellow fluorescent protein (YFP), that show a given
Förster resonance energy transfer (FRET) efficiency depending on the
ambient calcium levels (Thestrup et al. 2014). Due to the ease of use of
single fluorophore reporters, the GCaMP family is the major calcium
reporter used to date and was also utilized in our imaging experiments
(see study I and study II).6

1.1.5 Fluorescent proteins

Fluorescent proteins are the basis of the aforementioned calcium
indicators and consist of a β-barrell structure with the fluorophore
being inside of the barrell. The fluorophore is a combination of three

6 I was involved in developing a new calcium indicator in collaboration with the
Griesbeck lab, which is still an ongoing project, and its description is beyond the
scope of this thesis.



1.1 neuroscience , or why we have a brain 9

480 nm 633 nm

scattering

reflectance

absorption

0.2 mm

~ 3 mm

Figure 7: Light is scattered, reflected and absorbed depending on its wave-
length. Longer wavelengths are capable to penetrate tissue easier
with less reflectance, absorption and scattering than light with
shorter wavelengths.

amino acids that rearrange spontaneously and show distinct features
for excitation and emission. The most common fluorophore is the
enhanced green fluorescent protein (EGFP) and is nowadays widely
used to label transfected cells or to track proteins by fusing EGFP to
the N- or C-terminus of the protein of interest. EGFP is classically
excited using blue light with a peak around 488 nm. Emission is
generally shifted to longer wavelengths, and in case of EGFP, the
emission produces photons with a peak in the green spectrum. As
the most common GCaMP variants are based on EGFP, they are also
excited with blue light and emit green light.

However, high energetic blue light is prone to scatter when it in- Scattering depends

on wavelengthteracts with matter. When imaging deep into the brain, blue light
scatters and loses power in the focus. Interestingly, the longer the
wavelength, the deeper the penetration and the less scattering occurs
(Figure 7). When focusing on fluorescent proteins of other species than
the Aequorea victoria derived EGFP, new red-(emission-)shifted variants
were found, such as DsRed. Using several rounds of mutagenesis,
the original tetrameric protein was turned monomeric and several
variants with different excitation and emission spectra were found
(Shaner et al. 2004). One red-shifted variant from this study, mCherry7,
is nowadays widely used and very often combined with EGFP to
perform two color imaging. Further, due to the fact that the spectra
are red-shifted, mCherry performs better in deeper tissues than EGFP,
despite its lower overall brightness.

When looking at the fluorescent proteins known to date, there is an
abundance of green/yellow emitting fluorescent proteins, however, a
lack of bright far-red emitting fluorescent proteins, that are in partic-
ular useful to study deep brain regions (Figure 8). In this thesis, we Study III

describe a collaboration effort where Arne Fabritius developed a new
far-red shifted protein named mCarmine that was evolved using an

7 the m in mCherry stands for monomeric
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Figure 8: Bright fluorescent proteins are accumulated in the green/yellow
emission spectrum. The brightest fluorescent proteins known are
mClover3 and mNeonGreen in the green, and tdTomato in the
yellow/red spectrum. mCarmine was evolved using a mNeptune
variant. Copyright to Kurt Thorn and Talley Lambert. Reprinted
with permission.

automatic screening platform and outperforms cyan light emitting
fluorescent proteins in larval zebrafish in vivo.

1.1.6 Expression of genes of interest

Tissue-specific promotors and/or enhancers allow specific expression
of genes of interest, such as the aforementioned GCaMP. In study II,
we utilize the carbonic anhydrase 8 (ca8) enhancer element to specifically
label Purkinje cells. In this case, Matsui et al. 2014 found that an only
253 bp long fragment upstream of the transcription start is needed to
specifically drive expression in Purkinje cells. In study III, we used
the elavl3 promotor, that drives expression specifically in neural tissue
(Park et al. 2000).

Ideally, scientists would like to target tissues or cell populations
specifically. However, sometimes little is known about the molecular
expression profiles of specific cell types. Strategies like enhancer trap-
ping were used to create transgenic species that label a specific tissue
without a priori knowledge of the existence and/or location of the
enhancer, for example valuable driver lines for granule cells (Takeuchi
et al. 2015) used in study II.

1.2 the cerebellum

The cerebellum, the Latin name of the orginally Greek term paren-The small brain

cephalis introduced already by Aristotle, is a small structure adja-
cent to the brain stem and the cerebrum (brain). In the 19th century,
Rolando discovered that a damaged cerebellum leads to impairment
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human mouse zebrafish

1010 107 104

Figure 9: The cerebellum is conserved across vertebrates. The whole brain is
shown in gray, the cerebellum is highlighted in purple. The number
of neurons in the cerebellum differ across species in orders of mag-
nitude: humans have around ten billion, mice around ten million
and larval zebrafish approximately tens of thousand neurons in the
cerebellum.

of motor function, pioneering the idea that the cerebellum is impor-
tant for proper motor behavior (the history of the cerebellum is nicely
reviewed by Coco and Perciavalle 2015). Later, it was related to coor-
dination and motor learning, as well as conditioning (Thompson 1986;
Thompson and Steinmetz 2009, for review). Conditioning is a form
of learning, where a neutral, i.e. conditioned, stimulus that typically
evokes no behavior, is paired with a behavior-inducing stimulus, called
the unconditioned response. The cerebellum mediates this learning by
bringing together both, sensory and motor information.

The main cell types of the cerebellum, namely granule cells and
Purkinje cells (as well as interneurons and neurons in the deep cere-
bellar nuclei) were already drawn and described by Ramon y Cajal
in the 19th century. Interestingly, the cerebellum is conserved across
vertebrates, including mice, birds and the larval zebrafish (Figure 9).

1.2.1 Circuitry

The same microcircuit is repeated as unit across the entire cerebellum Microcircuitry

(Figure 10): Mossy fibers carrying sensory and motor signals from
several brain areas and the spinal cord, synapse onto granule cells.
Granule cells (as shown in Figure 11c) are excitatory, have three to five
claw-like dendritic arms and send long axons in the molecular layer
that form parallel fiber sheets. Purkinje cells reside with their soma in
a layer above the granule cells (Purkinje cell layer) and receive input
from various parallel fibers. Their elaborate planar dendritic tree is
arranged such that parallel fibers are orthogonal to the dendritic tree
plane (Figure 12c). Purkinje cells are the sole output of the cerebellar
cortex, are GABAergic (inhibitory) and synapse on deep cerebellar
nuclei neurons (DCN). DCN axons leave the cerebellum. In addition,
the inferior olive, a structure outside of the cerebellum and located in
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Figure 10: The cerebellar circuitry in larval zebrafish. Adapted from Bae
et al. 2009 and Okamoto 2014. Note that a fraction of Purkinje
cell axons are also leaving the cerebellum (vestibular cerebellum).
Eurydendroid cells are in the same layer as Purkinje cells. Neurons
of the inferior olive are located outside of the cerebellum.

the brain stem, sends climbing fibers to Purkinje cells that wrap around
the main dendritic arbor. It is thought that the inferior olive sends
error signals and acts as a teaching signal to allow learning (Albus
1971; Marr David 1969). In larval zebrafish, we observe the same cell
types as in mammals (Bae et al. 2009), except that in zebrafish no DCN
exist, however, they have a homologous cell type termed eurydendroid
cell (EC) (Alonso et al. 1992; Meek et al. 1992). Further, no basket cells
have been described so far. Fortunately, we have a body of available
transgenic fish lines that are either enhancer trap drivers or direct
lines that selectively label specific cerebellar cell types (Matsui et al.
2014; Takeuchi et al. 2015).

1.2.2 Granule cells

Granule cells have been shown to be highly conserved across species,
including larval zebrafish (Knogler et al. 2017). We can utilize enhancer
trap lines that label a subset of granule cells (see Figure 11a) to study
granule cell function (Takeuchi et al. 2015). They have also three to
five claws where they receive dendritic input (Figure 11c). They send
long axons to the molecular layer in the cerebellum known as parallel
fibers, that contact Purkinje cell dendrites (Figure 11b). Already early
studies suggest that cerebellar learning can occur on the parallel
fiber - Purkinje cell synapse by using long-term depression (LTD), see
Suvrathan and Raymond 2018 for review. However, stimuli have to be
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Figure 11: Granule cells in larval zebrafish. a) a confocal maximum inten-
sity projection with a pan-neuronal pattern in red, and a large
population of granule cells in green (combination of many trans-
genic lines). Scale bar represents 100 µm. b) a single Purkinje cell
(labelled with Fyn-mClover3:PC, green) that spans its dendritic
tree to the parallel fiber layer (gSA2AzGFF152B;UAS:mCherry,
magenta). c) Examples of sparse labelled granule cells using elec-
troporation. Open arrowheads indicate dendritic claws, black ar-
rowheads indicate dendritic branches without claws, pound indi-
cates putative growth cone, and the truncated parallel fiber axons
for all cells are marked with asterisks. The scale bar represents
10 µm. Data from (a) and (c) was taken from Knogler et al. 2017.
Reprinted with permission.

exactly timely locked that LTD and thus, learning occurs, otherwise
one can likely get long-term potentiation (LTP). Meek argued that
parallel fibers are parallel so that Purkinje cells can act as coincidence
detectors (Meek 1992). However, it is barely known what kind of
parallel fiber signals make downstream Purkinje cells spike.
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1.2.3 Purkinje cells

Purkinje cells are the sole output of the cerebellar cortex. They areSole output of

cerebellar cortex known to be involved in mediating cerebellar learning via long-term
depression on the parallel-fiber-Purkinje-cell synapse and can shape
motor coordination (Bosch et al. 2015; Gallimore et al. 2018; Kono et al.
2018; Ransdell et al. 2017; Suvrathan and Raymond 2018). As shown
in Figure 10, Purkinje cells receive two major sources of input: granule
cell input via the parallel fibers and inferior olive input via climbing
fibers. These two inputs can be characterized in Purkinje cell activity:
Purkinje cells fire simple spikes intrinsically and in response to parallel
fiber input, or complex spikes due to climbing fiber activity (see Figure
12a). Interestingly, in mammals calcium imaging can separate simple
and complex spike activity depending on the signal location (Figure
12b): somata show most likely simple spikes, whereas dendrites show
complex spike activity (Ramirez and Stell 2016).

Purkinje cells are of inhibitory nature and can be selectively stained
using antibodies against Parvalbumin. Alternatively, they can be ge-
netically selectively labelled using for example the L2 or aldolase c

promotor. In mammals, we see interesting alternating patterns of al-

dolase c, also known as zebrin II, because it generates these beautiful
zebra-like patterns across the cerebellum (see Figure 12d). Interest-
ingly, Purkinje cells in larval zebrafish are all aldolase c/Zebrin II+ (Bae
et al. 2009; Takeuchi et al. 2015), similar to other teleost fish, where
Purkinje cells are the only Zebrin II+ population (Meek et al. 1992).
Interestingly, a small enhancer fragment of the carbonic anhydrase 8

enhancer is capabable of driving Purkinje cell specific expression in
larval zebrafish (Matsui et al. 2014) and across species (Namikawa
et al. 2019). Interestingly, ca8 as well as aldolase c are members of the
glucose cycle, emphasizing the importance of energy production in
these highly active neurons. Further, Parvalbumin 7 (Parv7) has been
utilized to label Purkinje cells using immunohistochemistry to deter-
mine the average number of Purkinje cells in zebrafish at 7 dpf being
between roughly 180 and 350 (Hamling et al. 2015).

Using the tol2 transposon system (as introduced above) and a re-
porter, such as GFP, one can selectively image Purkinje cell mor-
phology and create stable transgenic fish lines labelling Purkinje
cells in vivo. For the work presented here, I was generating trans-
genic fish lines in order to characterize Purkinje cell morphology
and topography (see study II), selectively activate Purkinje cells using
channelrhodopsin (ChR), similar to Matsui et al. 2014, and red-activated
channelrhodopsin (ReaChR) (Lin et al. 2013), and functionally image
Purkinje cell activity using state-of-the-art genetically encoded calcium
indicators.

Similar to mammals, Purkinje cells in larval zebrafish are spon-
taneously active and receive input from granule cells and from the
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Figure 12: Purkinje cells have specific activity patterns, anatomy and molec-
ular identity. a) A loose-patch recording of a zebrafish Purkinje
cell (holds true for other model organisms as well). Data taken
from Knogler et al. 2019. b) Dendritic calcium responses are due
to complex spikes, whereas somatic calcium responses are due
to simple spikes, observed in a mammalian brain slice prepara-
tion. Taken from Ramirez and Stell 2016. c) Purkinje cells have
planar dendrites. They expand in one dimension, but are very
compact orthogonal to the other. Image taken from Piersol and
Dwight 1916. d) Zebrin divides the cerebellum in sagittal stripes.
Figure taken from Hawkes and Herrup 1995. Panels b) to d) were
reprinted with permission.
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Figure 13: Studies on Purkinje cells in larval zebrafish. a) Matsui et al. 2014

showed that the ca8 enhancer labels Purkinje cell specifically. b)
Hamling et al. 2015 quantified the number of Purkinje cells in
zebrafish. c) Hsieh et al. 2014 showed that Purkinje cell mature
with 5 dpf. d) Matsui et al. 2014 performed preliminary imaging
experiments showing a coarse OMR and OKR distribution across
the cerebellum. All panels were reprinted with permission.

inferior olive via climbing fibers (Hsieh et al. 2014; Sengupta and
Thirumalai 2015). Previously, it has been shown that larval zebrafish
Purkinje cells matured already at five dpf, only two days after they
were born (Hsieh et al. 2014). As well, it was shown that larval ze-
brafish Purkinje cells exhibit diverse activity patterns (Scalise et al.
2016). However, important anatomical features have not been investi-
gated yet, such as a comprehensive, high-quality single Purkinje cell
morphology and a topography analysis (see study II and Appendix).

Purkinje cells are also thought to be part of cerebellar internal mod-Internal models

els contributing to smooth behaviorals and motor learning (Wolpert et
al. 1995, 1998) and known to be involved in some variants of spinocere-
bellar ataxias (Matilla-Dueñas et al. 2014; Meera et al. 2016). The
cerebellum is known to have a certain topography, such that vestibular
information is highly processed in the floccolus and lobules involved
in oculomotor behavior include lobule V, IV and VII (Voogd and
Barmack 2006). However, it is nearly impossible to map the whole
mammalian cerebellum due to its size and inaccessibility. Given theStudy II

unique conditions in larval zebrafish such as optical accessibility, we
were able to use whole-cerebellar population imaging to map visual
inputs and motor signals to the whole Purkinje cell layer (study II).
Using single-cell electrophysiological studies in combination with
functional calcium imaging, we could determine that Purkinje cell
calcium transients are due to both, complex spikes and simple spike
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bursts, and the spike type cannot be inferred from calcium traces
(study II).

We could show that Purkinje cells located caudal-laterally in the
cerebellum project outside of the cerebellum and respond almost exclu-
sively to optokinetic stimuli with complex spike transients, suggesting
that these cells resemble the zebrafish homologue of the flocculus.

1.2.4 Eurydendroid cells

The zebrafish homologue to mammalian DCN are eurydendroid cells
(Ikenaga et al. 2006). They reside in the same layer as Purkinje cells
and are similar in many ways. ECs also send their dendrites to the
molecular layer (see Figure 14a) and potentially get input from granule
cells (Ikenaga et al. 2006). This is different from the classical microcir-
cuitry and introduces new potential computational models. Previously
it was shown that ECs in zebrafish leave the cerebellum ipsilaterally
and contacts the optic tectum (Heap et al. 2013), however, with recent
data from Virginia Palieri we were able to label a supposely different
subtype of ECs that project contralaterally (data shown in Virginia’s
master thesis, not published, line used shown in Figure 14b).

Eurydendroid cells share, however, more features with their mam-
malian counterparts. They also are tonically active (observation by
Laura Knogler, not yet reported), and are aspartergic and glutamater-
gic (Ikenaga et al. 2005, and own data, see appendix). Interestingly,
ECs fall in at least two molecularily different groups: olig2+Calretinin-
and olig2-Calretinin+ (Bae et al. 2009; Biechl et al. 2016; McFarland et
al. 2008). The enhancer trap line we use in the lab hspzGFFgDMC156A
(Takeuchi et al. 2015) labels both EC populations, olig2+ and olig- (see
Figure 14c). We further developed an EC-optimized UAS:GCaMP6s
reporter line to functionally image EC populations using two-photon
and light-sheet calcium imaging.

1.2.5 Inferior olive

The inferior olive is part of the cerebellar circuitry and an important
signal source, however, the location of the inferior olive neuron somata
is outside of the cerebellum in the rhombencephalon. The inferior
olive neurons send long so-called climbing fibers to the cerebellum
that “climb up” the different cerebellar layers and wrap the Purkinje
cell dendrite. They form a very strong synaptic connection based on
voltage-gated calcium channels to the Purkinje cell dendrite, that lead
to an extraordinary large depolarization. This depolarization is known
as complex spikes, in contrast to simple spikes that are elicited by
granule cells (see Figure 12a).

The inferior olive is thought to be an error detector since the early
1970s (Ito 2013). According to this theory, inferior olive neurons only
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Figure 14: Eurydendroid cells are distinct from Purkinje cells. a) GFP+ eury-
dendroid cells do never overlap with Pvalb7+ Purkinje cells (top
panels from Bae et al. 2009, lower panels from Takeuchi et al. 2015).
Interestingly, eurydendroid cells extend their dendrites into the
molecular layer. b) Eurydendroid cells leave the cerebellum and
send their axon contralaterally to rostral circuits. c) Some eury-
dendroid cells in the line hspzGFFgDMC156A are olig2+. b) and
c) were taken from Takeuchi et al. 2015. All panels were reprinted
with permission.
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fire when an error occurs. The effect of which is to weaken the granule
cell - Purkinje cell synapse and to evoke learning. However, there is
an increasing body of evidence, that the inferior olive does not simply
function as an error detector, but rather has a specific role in timing
and shows predictive encoding. A recent review tries to unify all
experimental knowledge in one single hypothesis, termed “dynamic
encoding hypothesis” (Streng et al. 2018).

In study II, we elucidate how the inferior olive contributes to Purk-
inje cell activity observed by electrophysiology (Knogler et al. 2019,
see also Appendix) and functional calcium imaging (see the following
chapters).





2
M E T H O D O L O G Y

In this thesis we performed behavioral experiments, anatomical imag-
ing experiments, or functional imaging experiments together with
visual stimulation and behavioral recordings (see also Kist et al. 2017).
Transgenic fish lines were either stable lines (F0 offspring, F1+), such
as elavl3:GCaMP6s used in the first study and PC:GCaMP6s in the sec-
ond study, or transient lines (F0 generation, injected with constructs,
see below) to achieve single cell labelling as in the second study to
identify and image single cells.

2.1 fish husbandry

Adult zebrafish fish were bred in house at the Max Planck Institute of
Neurobiology fish facility and kept at a 14/10 h day/night cycle. Six
to eight dpf larvae were used for either behavioral or imaging experi-
ments. For pure behavioral experiments we used Tüpfel-Longfin (TL)
wildtype fish. For imaging experiments, we used fish that have a
deficiency in the mitfa gene, responsible for forming melanophores
(Lister et al. 1999). These so-called nacre fish lack dark pigments and
are very well suited for in vivo imaging purposes. For imaging experi-
ments in study I, we used a transgenic line that expresses GCaMP6s
under the pan-neuronal elavl3 promoter (Kim et al. 2017). For imag-
ing experiments in study II, we expressed GCaMP6s using the ca8

enhancer (PC:GCaMP6s) in Purkinje cells, or used the enhancer trap
line gSA2AzGFF152B (Takeuchi et al. 2015) to drive UAS:GCaMP6s in
granule cells. For single Purkinje cell labelling, we used aldoca:gap43-
mCherry fish (Takeuchi et al. 2015) as a reference for morphing z

stacks to each other. For behavioral optogenetics experiments, we used
ChR2-Venus:PC:R-GECO1 fish (Matsui et al. 2014). For evaluation of
mCarmine, we used elavl3:Gal4 fish (Kimura et al. 2008). For count-
ing Purkinje cells, we used PC:NLS-GCaMP6s. All experiments were
approved by the Regierung von Oberbayern via TVA 55-2-1-54-2532-
82-2016.

2.2 creating transgenic lines

Cloning

The common strategy across cloning attempts is to linearize the de-
sired backbone by restriction enzyme digestion because linearization
via polymerase chain reaction (PCR) is either non feasible due to
huge plasmid sizes (around 16 kb), AT-rich streches or repetitive se-
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quences. Inserts are prepared using PCR on either plasmid backbones
provided by Addgene or the Baier lab or commercially synthetized
desoxyribonucleic acid (DNA) sequences. Final constructs were assem-
blied in a one-pot-reaction via either Gibson assembly (Gibson et al.
2009), NEBuilder or most commonly SLiCE (Zhang et al. 2012). PCR,
gel purification and construct assemblies were performed according
to the manufacturer’s recommendations with slight variations. The
cloning strategy as well as a protocol is located in the Appendix. An
example to clone EGFP in the ca8 enhancer plasmid is shown in Figure
7. For convenience, we termed all constructs and fish using the ca8

enhancer “PC”. For example, if Fyn-tagRFP and Cre are inserted in the
left and the right cassette, respectively, the construct or fish would be
called Fyn-tagRFP:PC:Cre. An example cloning protocol for creating
the construct PC:EGFP is shown in Figure 15.

Assembly mixes were transformed in chemically competent bacteria
based on the DH5α strain. We made our own competent bacteria
using either the Zymo Mix&Go kit or using TSS buffer (see protocol
in Appendix, similar to the original publication of Chung et al. 1989),
both with equally good performance. Usually, 100 µl bacteria were
transformed with one to two µl of assembly mix, incubated on ice for
around 30 minutes and heat-shocked at 42°C for 30 seconds. After a
short incubation on ice (typically less than five minutes), bacteria were
plated on pre-warmed LB plates containing 1:1000 Ampicillin (plates
acquired from the central media service).

Colony PCR

The colony PCR protocol was improved for maximum efficiency and
reduced costs. A protocol is in the Appendix. Briefly, a mastermix
containing the 2x OneTaq MasterMix with Standard buffer from New
England biolabs (NEB), forward and reverse primer and water was
aliquotted in 15 µl reactions. Colonies were picked using a fresh filter
tip, spread on a fresh plate and the tip was subsequently added to the
PCR mix well. After a short incubation, tips were removed and the
PCR tubes moved to a thermocycler. Optimal performance have been
observed when initial denaturation was three to five minutes.

Positive clones were inoculated in terrific broth (TB) medium (Carl
Roth, X972.1) supplemented with Ampicillin (100 mg/ml, Carl Roth,
K029) in a ratio of 1:1000 for a final concentration of 100 µg/ml and
grown overnight at 37°C while shaking.

Plasmid preparation

2 mL of overnight culture was spun down in 2 mL microfuge tubes
and plasmid DNA was purified using plasmid extraction kits from
Machery Nagel (NucleoSpin). Kits were used according to the manu-
facturer’s instructions. Plasmid was eluted normally in RNAse and
DNase-free water. Plasmids for long-term storage or gained from
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Figure 15: Cloning of EGFP in the PC enhancer plasmid using homology-
dependent cloning, such as SLiCE. Flanking DNA sequences are
color coded according to the plasmid or the PCR product above.
In brief, the 5’ sequence should have a 20-30 bp homology to the
E1b promotor, as well as the EcoRI restriction site and a Kozak
sequence (gccaccATGG), where ATGG are the first 4 bases of
the protein of interest, here EGFP. The 3’ end should have the
UAAA stop codon, which is known to efficiently stop translation
and boost expression in vivo. Further, the XbaI restriction site
and the 20 bp homology to the T7 promotor adjacent to the β-
Globin intron should be included. For injection, a mix of Phenol
red, DNA and optional tol2 mRNA and water is injected in the
one-cell stage of freshly laid eggs. At 3-4 dpf one can screen for
fluorescence, e.g. the cloned EGFP. If tol2 mRNA was added, one
would expect a comprehensive pattern, without tol2 mRNA the
labelling efficiency is low, thus getting sparse labelling. The fish
injected with construct and tol2 mRNA can be raised and the
offspring screened for fluorescence ending in a stable transgenic
fish line. (*): we have plasmids that contain already Fyn-tagRFP
or Fyn-mClover3 here. A list of available constructs is in the
Appendix.
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Midi Preps (Machery Nagel or Zymo) were typically stored in Tris-
EDTA (TE) buffer.

Cas9 protein preparation

For CRISPR/Cas9 experiments, we subcloned NLS-Cas9-NLS1 as pub-
lished by Hruscha et al. 2013 in pCoofy4 (Scholz et al. 2013) to be
expressed by the Max Planck Institute of Biochemistry protein core
facility. Purified Cas9 protein was mixed with sgRNA prepared either
with direct in vitro transcription from oligos or directly ordered from
IDT.

tol2 mRNA preparation

A detailed protocol to create tol2 mRNA is attached in the Appendix.
Briefly, the open reading frame (ORF) of tol2 was cloned into a plasmid
adjacent to a SP6 promotor for in vitro transcription. Using the Ambion
SP6 mMessage mMachine kit, the mRNA is transcribed from that
linearized plasmid. Further modifications, such as capping and poly-
adenylation, are performed to achieve a high quality mRNA. RNA
is precipitated using Lithium chloride (LiCl) overnight at -80°C and
then eluted in RNase and DNase free high pure water. Concentration
is adjusted to 175 ng/µl and aliquotted in PCR tubes (4 µl each) and
stored at -20 °C until further use.

Injection

Constructs for direct drivers were injected in an incross of nacre or
casper fish, whereas Gal4 and UAS constructs were injected in an out-
cross of the desired UAS or Gal4 line and nacre or casper, respectively.
Fish were setup in mating boxes with separator. In the morning of
the next day, the divider was lifted and fish mated. Laid eggs were
immediately collected and injected during the single cell state using
a picospritzer (see Figure 15, bottom panel). The injection mix con-
sists of tol2 mRNA (around 25 ng/ul), plasmid DNA (less or equal
concentration as tol2 mRNA) and phenol red (1:10 dilution). Injection
volume was estimated by eye to be around 1 nL. Injected eggs were
kept in Danieau solution and cleaned once a day. Depending on the
driver line, successful integration was screened using fluorescence
between one (e.g. olig2:KalTA4 and elavl3) or three to four dpf (e.g.
bleeding heart transgenesis marker or ca8 enhancer). Sparse labelling
for optogenetics, electrophysiology or anatomical characterization was
performed by omitting tol2 mRNA (see Figure 15).

1 nuclear localization signal (NLS)
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Figure 16: Preparation of larval zebrafish for head-restrained experiments.
The fish is completely immobilized in low-melting point agarose.
After the agarose set, the agarose around the eyes and the tail is
removed, so fish are able to move their eyes and tail.

2.3 preparation

We embedded six to eight day old larval zebrafish in low-melting
point agarose (Thermo Scientific, Invitrogen UltraPure #16520050)
dissolved in fish water. The tail (and depending on the experiment,
the eyes as well) is freed and the head and trunk stay restrained
in agarose (see Figure 16). We use 35 mm dishes (Falcon, #353001)
for behavioral and two-photon experiments, and a micro knife (Fine
Science Tools, #10315-12) for preparation. For light-sheet experiments,
I developed a custom light-sheet chamber optimized for behavior
tracking, stimulus presentation, illumination and imaging. A detailed
document is appended to this thesis.

2.4 behavioral experiments

In this thesis, larval zebrafish behavior was assessed using head-
restrained larval zebrafish as described in 2.3. The behavioral setup
consists of two parts, hard- and software. In general, I refer to the
hardware as the behavioral setup.

2.4.1 Behavioral setup

The behavioral setup (Figure 17) itself resides on an aluminium bread-
board attached to isolators (Thorlabs). On the breadboard, we mounted
a stage from laser-cut acrylic to position the embedded fish, i.e. the
petri dish. On the stage, we added a screen based on white paper or
opaque foil to project a stimulus pattern from below. For stimulus
presentation, we used a commercially available projector, such as the
ASUS P3E. We used a cold mirror to place the projector horizontally on
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Figure 17: Schematic of the behavioral setup. A forward moving binary
grating is presented from below to a head-restrained, tail-freed
zebrafish larva. The visual stimulus, i.e. grating, is generated in
1D (x, blue rectangle) and stretched in y.

the breadboard and to allow simultaneously infra-red (IR) illumination
from below.

The IR illumination was custom-made based on a high-power light
emitting diode (LED) (e.g. OSRAM Black series, peak wavelength
around 830 - 850 nm), pre-mounted on a star plate. The star plate was
attached to an SM1 cap using thermal pads. Two holes were drilled to
allow two cables passing through the cap from behind. The cables were
soldered on the plus and minus pads as indicated on the star plate.
These cables were connected to a buck pack (e.g. RCD-24-1.00/W/X3)
that allows a constant current supply (recommended for high-power
leds). The voltage applied to the LED is automatically regulated by
the buck pack. We further connected the buck pack to a power supply
that supplies around 12 V (such as Voltcraft ESPS-1500).

The illuminated fish was tracked using a high-speed camera (AVT
Pike, XIMEA MQ003MG-CM, XIMEA MQ013RG-ON, or PointGrey
BlackFly S BFS-U3-04S2M-CS) mounted on an optical rail (Thorlabs)
using custom-made holders (Max-Planck workshop) and connected
either with FireWire (AVT Pike) or USB3 (XIMEA and PointGrey
models) to the computer. The camera speed was between 200 and 450

frames per second with 8 bit and VGA resolution (usually 640x480,
720x540 for PointGrey models). The camera was equipped with a
Navitar tele-objective (TC.5028, Hinze Optoelectronics, Hamburg).

To avoid the stimulus bleed-through to the camera, we used IR
long-pass filters (#66-106, Edmund Optics). A commercially available
computer (Intel i5 family recommended) is sufficient for operating
the closed-loop stimulus and online tracking of the fish’s behavior; a
special arrangement of petri dishes allows two fish being assessed on
the same setup with one computer connected to two cameras.
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Figure 18: DMD-based optogenetic stimulation setup. The illumination light
(blue) is generated by an LED. Light, that hit mirrors oriented into
the active light path, is reflected that it can pass the collimating
lens, is reflected by two mirrors that adjust the beam, and is
focused by the tube lens. The tube lens images the DMD on
the back aperture of the objective. The fluorescent sample emits
green light that is collected by the objective and reflected by a
500 nm short pass dichroic. A lens coupled with an IR blocking
filter focuses the light on a camera chip. The fish is tracked from
below using a high-speed camera equipped with a macro lens. A
projector provides visual stimulation from below.

2.4.2 DMD-based optogenetic stimuluation

To show an image on an liquid crystal display, pixels are set to a
value between 0 (off) and 255 (max intensity). Depending on the pixel
value, a different amount of light passes through an opaque layer. This
happens three times, once per color (RGB2), and then forms a colorful
image. In a commercial digital light processing (DLP) projector, a
similar procedure is used. Instead of liquid crystals, a mirror assembly
is used. For each pixel, a single mirror can be instructed to move out
(0) or completely into the light path (255). Intermediate intensities can
be achieved by only slightly moving the mirror into the light path
(1-254). A device using this kind of mirror matrix is called digital
micromirror device (DMD).

2 three main colors used in additive mixing, red, blue and green (RGB)
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We utilized an evaluation DLP projector (Texas Instruments LightCrafter
4500) with blue, green and red LEDs - as shown in the top left and top
right in figure 18 - loosely based on a previously described protocol
(Zhu et al. 2012). We removed the original, diverging lens array and
replaced it by a collimating convex lens (Thorlabs). By coupling it
with another lens, we imaged the DMD chip on the back aperture
of a 20x water immersion objective (Leica HCX APO L U-V-I, 0.5
numerical aperture (NA)). For alignment, we used a special slide that
emits green fluorescences upon blue illumination (Thorlabs, FSK2).
For fluorescence microscopy, we used the blue LED for illumination
and collected the green fluorescence using a 500 nm dichroic mirror
and focused the light on a XIMEA camera.

To interface the DMD, I programmed a software based on PythonDMD repository

and the dlpc350 library. This program is available through the Por-
tugues lab Github account. For aligning the DMD with the camera,
we moved a rectangle region of interest (ROI) over the camera field of
view and used three positions at the corner of the field of view. Using
the center of mass of both, the rectangles shown on the DMD and the
rectangles on the camera image, we calculated an affine transforma-
tion matrix. This transformation matrix is stored and used for optical
stimulation.

Optical stimulation pattern can be arbitrarily defined using custom
polygonal ROIs on the camera live image (Figure 19). These ROIs
are stored as separate illumination files for further use. During a be-
havioral experiment, these patterns are used to optically stimulate
Purkinje cells during a specific stimulus or behavior. To drive Channel-
rhodopsin, we used the blue and green LED together with a 488/10

band-pass filter.
Visual stimulation for behavioral experiments is projected from

below using commercially available projectors (see Behavioral setup sec-
tion). Behavior tracking was implemented from below in combination
with an IR illumination from above.

2.4.3 Software

Visual stimulation and behavioral tracking is based on custom written
software in Python 3.6, and uses the numpy, PyQt4/5, pyqtgraph and
OpenCV library. The interface as shown in Figure 20 consists of a
graph depicting the tail trace, the tail vigor, the speed of the visual
stimulus, and, depending on the experiment, the eye trace. Further, a
live image of the fish and tracking is presented. A textbox logging all
events is available in the bottom right and stored as text file after the
experiment.

Classically, each experiment saves an image of the fish, the data
collected during the experiment, such as time, tail trace, vigor, speed
of the grating, conditions of the experiment and trial number, as csv
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Figure 19: Stimulation specificty with ROIs drawn on the live camera top
view. The field of view of the camera is depicted on the left (black
rectangle on the larva and zoom-in). The DMD chip covers the
camera’s whole field of view. ROIs can be selected dynamically.
ROIs can have arbitrary shapes (as shown on the right). Purkinje
cell fluorescence is reliably restricted by the ROI selection pattern.

(comma separated values) or npy (pickled numpy array), and a log
file containing relevant information regarding the experiment. Further,
tail trunk and tail tip positions used for tail tracking are saved.

Visual stimuli are presented using an OpenCV or Qt widget. The
visual stimulus is updated at 60 Hz, matching the refresh rate of the
projector. For most behavioral experiments, binary gratings with a
period (one black and white bar) of 10 mm were used. If not stated
otherwise, forward speed of the grating was 10 mm/s. For closed loop
experiments (the stimulus reacts on the fish’s behavior, Figure 17), the
following formula for visual feed-back calculation was used:

s = s0 − α ∗ v

where s is the corrected speed of the grating, s0 is the maximum
speed of the grating, v the vigor of the fish, that is the standard
deviation of a 50 ms rolling buffer of the tail trace, and α the strength
of the fish. For α=0, the stimulus runs in open loop. α is typically set to
a value, that s during swimming reaches around -20 mm/s (Portugues
and Engert 2011).
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Figure 20: Software to operate behavioral rigs. A screenshot of the graphical
user interface showing the online behavior tracking and stimulus
features, and metadata, such as frames per second (fps)

Tail tracing

Tail tracing was performed as previously described (Portugues and En-
gert 2011), re-implemented from LabVIEW in Python. Briefly, the tail
trunk and the tail tip are either manually by clicking or automatically
defined. The latter can be implemented using a multilayer perceptron
(based on the seminal work of Rosenblatt 1961) as explained in detail
in the Appendix and shown in Figure 21.

The two points between tail trunk and tail tip define the length of
the tail L. The length L is divided in 10 segments. For the first segment,
an arc of -90° to 90° where 0° pointing towards the tail tip is drawn,
and an intensity profile I is determined. As the tail is dark on a bright
background, the minimum is determined:3

β = argmin I(β)

Iteratively, for each subsequent tail segment, another -90° to 90° arc
is drawn. The 180° arc is relatively set depending on the angle β of the
previous segment to allow the algorithm to follow the tail cuverture
(Figure 22). The tail sum T is the cumulative sum of all angles β:

T =
10

∑
i=1

βi

.
For a given bout, the tail oscillates around the resting position (see

Figure 22 for resting position and deflection).

3 In some cases the fish is bright on dark background, for example in light-sheet or
2-photon microscopy, then the image is inverted.
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Figure 21: Determination of head, tail trunk and tail tip via a multilayer per-
ceptron. First, features were annotated for 405 fish using log-files
of previous experiments. Second, a library was constructed of
80x80 px segments. Third, a multilayer perceptron with 32 units
in the first hidden layer with rectifier linear unit (ReLU) activation
and a four units in the output layer with a softmax activation func-
tion performed very well. Fourth, for a given image the feature
probabilty can be estimated. The peak probability is indicated by
a blue circle. Fifth, the feature positions were initialized automat-
ically by the multilayer perceptron for downstream tail and eye
tracings.
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Figure 22: Tail tracking procedure. Tail is indexed using a manually or auto-
matically chosen label for trunk and tail tip (indicated by green
and blue circles). Here, the algorithm divides the tail in ten equally
spaced segments and iteratively approaches the tail tip by finding
the minimum of the intensity profile of a half circle drawn at every
segment. The minimum of a circle (indicated by a red dot) is the
current segment angle and the seeding angle for the next segment,
that allows us to calculate the tail curvature (compare left and
right example).

Eye tracing

Eyes are tracked using established methods. In very high (signal to
noise ratio (SNR)) scenarios, the tracking algorithm is as follows (and
shown in Figure 23):

1. The image is thresholded to extract bright eyes from a dark back-
ground (note this is inverted in Figure 23 for display purposes)

2. The two largest contours in the thresholded image are identified.
The image can be cropped to the head position using template
matching, a neural network (Figure 21) or manual selection. The
initial sorting is according to size and not to their spatial location,
thus, the contours are sorted spatially to ensure eye identity.

3. Ellipses are fit to the sorted contours

4. The rotation angle of the ellipse’s major axis (or vertex) in respect
to the body axis of the fish is determined.

An example eye tracing code is located in the Appendix. For com-
plex offline tracking scenarios with low quality eye recordings, an
interactive Jupyter notebook is available to test different algorithms,
for example for local, i.e. adaptive, thresholding. I could apply local
thresholding with further post-processing successfully to a behav-
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Figure 23: Eye tracking. For fast image processing, we crop the full image to
the immediate surrounding of the eyes. The image is first globally
thresholded. Then, contours are found (blue and green for left and
right eye, respectively). For each contour, an ellipse is fitted and
the rotation angle (φL and φR) will be determined. Depending on
the implementation, we correct the angle such that positive values
are nasal and negative values are temporal.

ioral dataset4 with very low quality recordings that had a very dim
illumination and poor contrast.

Recently, we created an effort to standardize the behavioral tracking
and the stimulus presentation in a software termed stytra, that is
publicly available via Github and currently in revision, but available
as preprint (Štih et al. 2018).5

Stimuli sets

For the first study, the visual stimulus consisted of random binary,
i.e. black and white, bars of given sizes (0.5 mm, 2.5 mm, 5 mm and
10 mm). The stimuli were presented at different speeds (5, 10, 15

and 20 mm/s). Stimuli were generated by choosing white and black
bars from a uniform distribution to ensure on average even gray. For
experiments that probed the filter dependence on white-to-black bar
ratio, we changed the threshold such that we ensure on average 25,
50 or 75% white bars (i.e. a 1:3, 1:1 and 3:1 white to black bar ratio).
The stimulus presentation was updated at 60 Hz (projector in-built
refreshing rate). The stimulus scene was a square window that was
centered on the fish’s head and spans 30 mm in each cardinal direction.

For behavioral experiments, the fish experiences three different con-
ditions: open loop (no visual feedback), closed loop (visual feedback)
and replay. In study I, the first experiments that determined the BTA
and its dependency on parameters where performed in closed loop.
Later, the BTA (also refered to as filter) was replayed to head-restrained
larvae (the total 6 s in open loop). As a control we shuffled the pixel
values to disrupt the spatial correlation by keeping the same overall

4 Martinsried two-photon experiments of inferior olive activity during sensorimotor
control

5 stytra is a visual stimulation and behavior tracking tool developed by Vilim Stih and
Luigi Petrucco with my input
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luminance. We also used the intensity profile on bout start of the filter,Stimuli

stretched this in 2D and then presented this in whole-field motion
ensuring that filter replay and whole-field motion filter were probed
the same amount of times. These stimuli are embedded in the linked
movie. The imaging experiment visual stimuli were shown in open
loop.

For Purkinje cell imaging experiments, we showed the fish a batteryExp022

of different stimuli including translational and rotational gratings that
induce robustly OMR and OKR, respectively, as well as whole-field
flashes of different luminance. The experiments were performed in
open loop. The exact sequence of stimuli and durations are located
in the Appendix (condensed format) and are available as an Excel
spreadsheet.

2.5 imaging

In the presented studies we use either a confocal microscope6 for
anatomical imaging studies or a custom built two-photon microscope
(Denk et al. 1990; Tsai and Kleinfeld 2009) for functional imaging stud-
ies (see Figure 24). We also could show that a custom-built light-sheet
microscope has comparable signals when testing the same fish with
both imaging modalities (Kist et al. 2017). However, in one-photon
light-sheet microscopy blue light is needed to excite GCaMP and mon-
itor neural activity, which can potentially interfere with behavior, as
blue light is known to be adversive to fish (Guggiana-Nilo and Engert
2016; Villamizar et al. 2014). We thus used two-photon microscopy for
our functional imaging experiments since the imaging laser is in the
infrared spectrum (tuned to 905 nm for our imaging experiments) and
invisible to the fish.

We monitored neural activity at a framerate of around 3-10 Hz,
depending on the behavioral paradigm and the field of view being
imaged. The tail and eyes were monitored at approximately 150 to 200

Hz using an IR illumination from the side for the tail and through the
objective for the eyes (see Figure 24). Code for tracking both, tails and
eyes, as well as stimulus presentation, were implemented in custom
written software in Python similar to the behavioral rig software. Stim-
uli were triggered by the imaging system using a transistor-transistor
logic (TTL) pulse via a LabVIEW-Python bridge7. Code for tail and eye
tracking is attached to this thesis and available through Github and
stytra.

6 Zeiss LSM700 or Leica SP8, available through imaging core facility
7 known as the anki listener vi, that writes a file to the listener folder upon receiving a

TTL pulse.
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Figure 24: Custom built two-photon microscope. a) Schema of the lab two-
photon microscope. Note that there are IR LED paths to illuminate
the sample, i.e. the fish, decently to allow tail and eye tracking.
The latter is achieved by illuminating the head through the objec-
tive. Visual stimuli are shown using a commercial projector from
below. Behavior is also tracked from below. We imaged using a
pulsed IR Ti:Sapphire laser that was tuned to 905 nm. Images
were acquired using scanning with 2D galvos. b) Photograph of
two-photon microscope with partial annotation of important el-
ements as depicted in a). Light paths are colored according to
the approximate wavelength (IR is colored reddish). Lenses are
indicated with semi-transparent blue shapes. Mirrors or filters are
indicated by grayish lines.
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Figure 25: Behavioral triggered average. Visual stimulus is normally 2D,
however, the information of x is repeated in y, thus, we reduce
the stimulus to 1D and use time as the second dimension. This
shows the visual stimulus over time relative to the fish (fish is
not to scale). It moves forward in time, potentially evoking OMR.
After the experiment, we compute the visual stimulus patterns
triggered on bout start with an interval of ± 2 s.

2.6 data analysis

Data analysis was performed using Python 3.6 using the Anaconda
environment. Packages used to analyze and handle the data include
numpy, scipy, pandas, scikit-learn, scikit-image, deepdish, multipro-
cessing, Keras, OpenCV, gspread, and glob. Data shown in this thesis
are plotted using matplotlib and seaborn. Single cell neurons were
traced using NeuTube. Figure arrangement and image postprocessing
was performed using Adobe Illustrator and Photoshop CS5.

2.6.1 Behavioral data

Behavioral data was acquired using custom written software in Python
(see 2.4.3). Next to the time stamps for each camera frame, we saved
relevant behavioral data such as cumulative tail angle, vigor, grating
speed and position of the grating. To identify bouts, we set a threshold
vigor to identify swimming (above threshold) and resting (below
threshold) periods. Next, by taking the difference of the trace in
time, we identify bout starts (1) and bout ends (-1). Using bout starts
and bout ends, we compute the mean bout duration (i.e. swimming
time) and the mean interbout duration (time between two consecutive
bouts).

Behavioral-triggered average (BTA)

In the first study, we computed the stimulus history for each bout start,
in other words, performing reverse correlation to determine which
stimulus was leading to a bout (see also Figure 4 and 25). Empirically,
we found that a history of two seconds is sufficient. We were also
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identifying a two seconds window into the future, to investigate if
the mean stimulus showed some structure after bout start. Every
bout longer than 150 ms was considered as a proper bout and was
included in the analysis, to avoid contamination with struggles and
escapes. We reduced the stimulus dimensionality to 1D, because the
stimulus is only unique in one dimension (rostral to caudal), and
stretched in the other (left to right). We generated stimulus patterns
using spatio-temporal stimuli with two dimensions: space (1D as
described before) and time. We calculated the behavioral triggered
average (BTA) by averaging all generated patterns across bouts, and
then across individual fish, analogous to the spike-triggered average
as introduced before (Schwartz et al. 2006):

BTA =
1
N

N

∑
i

1
ni

ni

∑
j

~sj

Where N is the number of total fish, ni the number of bout starts and
~sj the spatio-temporal stimulus with a history of one to two seconds.

To extract the grating directly from the camera image, we took a
background image without presenting any stimulus. We focused on
a part close to the border of the image to avoid contamination with
behavior and background subtracted every camera image with the
background image. We subsequently applied a threshold to this image
to gain binary bars. The eye of the fish was always centered on the
center of the camera chip (XIMEA MG022RG-CM).

Nonlinearities were determined using the binned dot product of the
BTA with the stimulus over time (Schwartz et al. 2006). The nonlin-
earity is the ratio between stimuli in each bin at bout triggered events
and occurrences of all stimuli in that bin.

Behavioral-triggered covariance analysis (BTC)

Similar to the spike triggered covariance (Schwartz et al. 2006), the
behavioral triggered covariance is calculated using the following for-
mula:

BTC =
1

nbouts − 1

n

∑
i

(~si − BTA)(~si − BTA)T

We pooled all bouts from all fish together (N=52 fish) and subtracted
the overall mean (i.e. the behavioral triggered average, BTA) of the
whole dataset. We retrieved the eigenvalues and eigenvectors using
singular-value decomposition of the BTC matrix using the scipy’s
implementation of the LAPACK SVD solver.

Generalized Linearized Model (GLM)

We fitted a generalized linear model (GLM) similar to the one described
in (Haesemeyer et al. 2015). We fitted the following equation by min-
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imizing the negative log likelihood. The input to the model is the
grating history leading to a bout xi. The model tries to predict the
labels given the features, i.e. binary bout starts (0 no bout start, 1 bout
start). We used 60 Hz as time basis.

minβ0,β
1
N

N

∑
i=1

L(yi, β0 + βT ẋi + λ[0.5(1 − α)]||β||22 + α||β||1

We set α = 0, thus neglecting L1 regularization, because the model
does not converge otherwise. The model with best performance as
determined by receiver operating characteristic (ROC) analysis had a
λ= 0.088. We used the pyglmnet package for fitting the data. Data was
fitted on an 80% fraction of total bouts and model performance was
evaluated for the whole data set of a given fish. To evaluate model
performance we performed bootstrapping by shuffling the labels and
determines true and false positive and negative rates. We shuffled 100

times and present the average with standard deviation across shuffles.

2.6.2 Imaging data

Imaging data was acquired using custom-written LabVIEW programsh5viewer

and stored as chunked, uncompressed Tagged Image File Format (TIFF)
files. For further processing, TIFF files were combined, compressed
and stored in HDF58 file format to achieve a single file per trial and
plane. The deepdish library was used to interface PyTables and to load
and save HDF5 files. An easy way to visualize compressed HDF5 files
is to use the h5viewer (private repository on the Portugues lab Github
account). It features not only HDF5 files, but also Nearly Raw Raster
Data (NRRD)9 and TIFF files, works with Drag&Drop, accepts pasting
from clipboard and has easy shortcuts to invert a stack or image or to
create maximum intensity or sum projection across z or time.

2.6.2.1 Deinterlacing

The two-photon microscope creates an interlacing artifact by scanning
the laser beam back and forth. Further, due to the optical properties of
scan lens and tube lens, that are just achromatic doublets with no theta
correction, the beam wavefront cuvature is bent causing non-linear
abberations in the far field of view. To compensate for these artifacts,
we estimate a non-linear transformation matrix of each half-image,

8 HDF5 is a hierarchical data format that efficiently stores large amounts of data and
widely supported by many software platforms, such as Java, Matlab, Python, R and
Julia.

9 NRRD files are multidimensional files similar to TIFF files, can be, however, much
better compressed, have richer metadata, and are usually used when working with
CMTK.
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Figure 26: Deinterlacing procedure. The galvo mirros scan the laser beam
back and forth over the whole image plane in multiples of the
eight line scheme. Without deinterlacing, there are image artifacts
visible (black arrow heads). After deinterlacing, nuclei look nicely
round.

that has an offset of four lines to each other (see Figure 26). The non-
linear affine transformation is estimated across the stack and applied
to each acquired frame.

2.6.2.2 Registration

Individual frames are registered either to the mean of the stack or in plane

the first ten frames, depending on the experiment. Registering is
performed using the cross-correlation in the fourier domain of the
image (Guizar-Sicairos et al. 2008). For sub-pixel precision, the discrete
fourier transformation is upsampled in a small neighbourhood. An
rigid transformation is applied to shift the target image to the reference
image using the functions shipped with scipy or skimage.

After registering the stack for each trial or plane, the stack is regis- across planes

tered across trials and planes from the center to the dorsal and ventral
planes of the acquired stack.

2.6.2.3 Anatomy-based segmentation

Anatomical segmentation was performed on datasets that were ac-
quired in fish where the calcium indicator was restricted to the nucleus
of the neuron via an H2B10 or an NLS tag (see Figure 26 as example).
For segmentation we used the template matching algorithm imple-
mented in scikit-image. Using empirical studies, we saw that either
a random nucleus or a gaussian is efficient in detection of nuclei.
The template matching algorithm returns a correlation map between
the template (i.e. random cell or gaussian) and the image anatomy
stack. Here, it is important to note that the standard deviation across
imaging frames instead of the sum projection gave rise to a higher
sensitivity of event detection.

A 2D version of that algorithm was implemented in the data analysis Braunschweig

pipeline in a collaboration with Reinhard Köster and Jakob von Trotha

10 H2B is a histone, part of the DNA packaging machinery.
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at the TU Braunschweig for light-sheet imaging analysis. A 3D version
was used to count Purkinje cells in a confocal dataset (see Figure 52

and Knogler et al. 2019) and to segment Purkinje cells in a two-photon
imaging dataset focusing on the role of Purkinje cells during closed
and open loop (data not shown).

2.6.2.4 Correlation-based segmentation

Correlation-based segmentation was performed as introduced in Por-
tugues et al. 2014 and explained in depth in Michael B. Orger and
Portugues 2016. Briefly, for each imaged plane, i.e. an image stack
of time x width x height, every spatial pixel is correlated with the
summed activity of 5x5 neighbouring pixels. This results in a correla-
tion map that is used to find seeds for the ROI growing algorithm.

ROIs are grown by iteratively adding neighbouring pixels that
correlate highly with the seed pixel. Other implementations, however,
use the correlation of the new neighbour pixel with the mean of all
already added pixels to the ROI. If a neighbouring pixel exceeds a
given euclidean distance to the seed pixel or its correlation value with
the seed pixel is below a pre-defined threshold, the ROI growing
routine is finished. Next, a new seed pixel is selected and fed into
the ROI growing routine. This process continues until the seeding
correlation is below a given threshold or a maximum number of seeds
are drawn from a given stack.

Algorithms are implemented in Python using mainly numpy and
numba, and perform well in a multi-threaded environment using the
threading library.

2.6.2.5 Extracting activity from calcium signals

Neural activity was determined either with ∆F
F or using normalized,

i.e. z-scored activity F̂, where F is the mean fluorescence over time,
and σF denotes the standard deviation of the fluorescence over time:

∆F

F
=

Ft − F0

F0

F̂ =
F − F

σF

2.6.2.6 Clustering

The scikit-learn implementation of the k-means algorithm was used
to cluster activity traces in an unsupervised manner. The number of
clusters were determined empirically.

2.6.2.7 Regression

To determine if neurons are specifically coding for sensory stimuli
and/or behavioral components, we built regressors that would re-
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semble an ideal neural activity. Because neural activity is acquired
as a transient fluorescence signal related to calcium, we convolve the
regressor with the calcium kernel. The calcium kernel describes the
risetime and decay time of the fluorescence signal upon an action po-
tential. We assume an infinitely fast rising time and a one-exponential
decay for the dissociation of calcium and the calcium sensor (as de-
scribed previously in Akerboom et al. 2012; T.-W. Chen et al. 2013).
The following equation explains the mathematical procedure:

R(t) = r(t) ∗ k(t),

k(t) = e−τṫ,

where R(t) is the convolved regressor r(t) with the function, i.e.
convolutional kernel, k(t) that is a single exponential function with
a decay time constant τ, that is typically set to the decay time of the
calcium sensor. Previous studies suggested around 1 to 1.5 seconds
for GCaMP6s (T.-W. Chen et al. 2013; Dunn et al. 2016b).

Regression analysis was performed either on ROIs extracted using
anatomical or correlation-based segmentation or voxel-wise across
an acquired volume. The latter computes in an unbiased way the
correlation of each voxel with the regressor chosen. For multiple
regressors, we used multilinear regression. Multilinear regression tries
to find a linear combination of regressors ri(t) to match accurately the
fluorescence signal F(t):

F(t) = w0 + w1r1(t) + w2r2(t) + . . . + wnrn(t),

where wi is the weight of each ri(t) and w0 the bias term. The
linear equation is solved using the scikit-learn implementation of
LinearModel. In these studies, we did not use any regularization terms,
because the performance of the LinearModel itself was sufficient.

For the swimming correlation map shown in the first study (Figure
48), we created a regressor using the swimming vigor for each plane
and convolved it with the GCaMP6s kernel. ROIs that are correlated
more than 0.8 were considered swimming related ROIs.

Brain region identification

To identify brain regions, we used the annotations provided by the Z-
brain atlas (Randlett et al. 2015). First, we morphed the Tg(elalv3:GCaMP5g)
confocal stack provided by the Z-brain atlas to our reference brain
(as used in Knogler et al. 2017) using the Computational Morphom-
etry Toolkit (CMTK) to compute a general transformation matrix. We
used this transformation matrix to morph each annotation map to
our reference brain. Then, we iterated over every voxel in our cluster
map and determined if this voxel is contained in any annotated map.
Annotations with high coverage were considered being present in the
cluster.
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Injection of Fyn-mClover3:PC

in aldoca:gap43-mCherry inx

Imaging at high-resolution 

    for cellular anatomy

Imaging at lower resolution and zoom

    for axon projection and registration
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Figure 27: Sparse labelling of Purkinje cells. Embryos were injected with
a construct specifically labelling Purkinje cells in green (Fyn-
mClover3:PC). We injected in an incross of the aldoca:gap43-
mCherry background (Casper fish, that lack melanophores and
iridophores, mitfa-/-;roy-/-, described in White et al. 2008). This
allowed us to image the sparse labelled Purkinje cells in refer-
ence to all Purkinje cells. Two stacks were acquired: one for high-
resolution imaging (bottom left panel) and the other for axon
tracing and registration (bottom right panel, see text).

This feature is part of a program called regionfinder and is availableregionfinder

in the Github repository of the lab. It can also be used to easily look
at morphed stacks in relation to our reference brain.

2.6.2.8 Single neuron tracings

For Purkinje cell single cell labelling, Fyn-mClover3:PC was injected in
an incross of aldoca:gap43-mCherry (see Figure 27). The aldoca fish label
all Purkinje cells with a red fluorescent indicator. This red channel
was used as a reference template to morph individual fish together.
Sparse Purkinje cells were imaged in the green channel (excited with
a 488 nm laser) at a high-resolution close to the diffraction limit (ca.
125 nm sampling for each px).

High-resolution images were deconvolved using Richardson-Lucy
deconvolution (Lucy 1974; Richardson 1972) as implemented in the FIJI
plugin DeconvolutionLab. The point-spread function (PSF) used for
deconvolution was created using the PSF Generator plugin for FIJI. The
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PSF was based on the Born&Wolf model. Settings were 1.0 NA, 1.333

for refractive index (water immersion), step size 500 nm, px-width
depending on acquistion settings, on average 125 nm/px. Excitation
wavelength: 488 nm. The Richardson-Lucy algorithm works iteratively,
for our purposes 10 to 20 iterations were sufficient and avoided the
occurence of artifacts. Note: Other implementations of the Richardson-
Lucy algorithm were tested (skimage and own implementation in
Python), however, the DeconvolutionLab software was significantly
faster than all other implementations tested. After deconvolution,
all stacks were manually inspected and background fluorescence,
autofluorescent skin and artifacts were manually removed. All cells
were interpolated to an xy spacing of 200 nm.

Neurons were traced using NeuTube (Feng et al. 2015). Tracing
information was stored in swc file format (Cannon et al. 1998)11. Using Drawing in 3d

custom written software in Python, the swc file was automatically
transformed into a TIFF stack by drawing lines in 3D between each two
adjacent, connected nodes. Drawing functions already implemented
in scikit-image or OpenCV only work in 2D. To draw lines in 3D, I
re-implemented the Bresenham algorithm (Bresenham 1965). A sphere
at the location of the soma with a radius of 5 µm was also drawn
and was implemented by drawing 2D intersections of the sphere, i.e.
circles, using the plane spacing in z. This program circumvented the
tedious operations in FIJI and gave the same results. The drawing
functions are available on my and the Portugues lab Github account.

Reference channels (see Figure 27) were morphed to the Purkinje
cell reference stack that has been morphed to the lab reference brain
(as used in Knogler et al. 2017) using CMTK (Rohlfing and Maurer
2003). The same transformation matrix was used to morph the traced
neurons to the reference brain. For intepretation reasons, we also
morphed all neurons to the same hemisphere.

Evaluation of mCarmine

We excited mTFP1 and mCarmine with a 442 and a 633 nm laser, re-
spectively. To compare mTFP1 and mCarmine quantitatively, we deter-
mined a performance index (PI) in a deconvolved z-stack (Richardson-
Lucy algorithm with a theoretical PSF for mTFP1 and mCarmine)
(Kirshner et al. 2013; Sage et al. 2017) that covers the interpositus nu-
cleus (IPN) (around 240 ± 28 µm deep) with re-adjusted laser settings.
The PI shows the relation of signal (the higher the fluorescence, the
better) to brightness (the brighter the fluorophore, the easier it is to
emit photons and thus, cause fluorescence) and laser power (the less

11 The swc file format is a standardized, ASCII-based file format to save 3D structural
information of nodes and their connection to each other.
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laser power is needed to emit photons, the better). Thus, the following
equation describes the PI

PI =
F

b· β
,

with F being the mean fluorescence in a given frame, b the brightness
of the fluorophore (54.0 and 6.0 for mTFP1 and mCarmine, respectively,
brightness is the product of quantum yield and the molar extinction
coefficient) and β the laser power used in that frame (ranging from
0 to 1, where 0 is off and 1 is maximum laser power). The PI was
normalized to the mean PI of mTFP1.

Statistics

Significance was tested using Student’s t-test where applicable. P-
values below 0.05 were treated as significant, corrected by Bonferroni
correction for multiple tests. All error bars represent standard error of
the mean unless otherwise stated. Confidence intervals show 95% of
variance (i.e. two standard deviations).



3
R E S U LT S

3.1 study i :
optomotor swimming has local and global features .

In the first study, we investigate what visual features contribute to
evoking the OMR. We first behaviorally tested fish with random
binary gratings to use reverse correlation, similar to the spike-triggered
average for receptive fields. The so called behavioral-triggered average
(BTA), to determine if there is some structure in the visual stimulus
triggering the OMR (see introduction and Methods). Next, we were
looking at the stimulus parameters, if they alter the main visual feature
identified in the BTA, the light-dark transition. Then, we tested the
performance of a replay of the BTA and some variants and could show,
that both, global whole-field and local light dark transitions contribute
to the OMR significantly. We used two-photon whole-brain calcium
imaging to identify units correlated with a whole-field filter light-dark
transition stimulus. Lastly, we tested if a generalized linear model is
suitable to explain the data.

3.1.1 The optomotor response is preferentially elicited after a light-dark

transition

To determine which features of the binary grating induce swimming
behavior, we presented head-restrained larval zebrafish with forward-
moving whole-field visual stimuli consisting of black and white bars
from below (see Figure 17). The visual stimulus was generated ran-
domly for each experiment, such that black and white bars occurred
with equal probability (see Methods). In other words, when pick-
ing random instances of the visual stimulus across the experiment,
the average visual stimulus across the field was gray. Using real-time
behavioral tail tracking, we provided the fish visual feedback by chang- Example bout

ing the visual stimulus speed in proportion to the swimming strength
of the fish (see Figure 28, top left panel, and movie).

For every fish we computed the reverse correlation of the presented
visual stimulus with behavioral onset to gain the BTA (see Methods
and Figures 25 and 28). The BTA consists of a spatiotemporal filter (the
history part of the BTA, Figure 28, right panel) that is stereotypical
across individuals (Figure 29).

The BTA filter is globally largely unstructured one to two seconds
before bout start. Structure emerges around 500 ms before bout start
that comprises a local light and dark luminance band moving forward,

45
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Figure 28: The behavioral triggered average contains structure. From the
visual stimulus shown to the fish, we extracted the bout starts
from the tail trace and triggered the visual stimulus on the bout
start with a window of ± 2 s. On the right, the BTA resulting
from averaging the individual BTAs of 52 fish is shown. The
position of the fish’s head is indicated by the red line and positive
y values denote positions in front of the fish. The larva on the
right, indicated by the black arrow head, is drawn to scale. The
z-scale denotes luminance intensity variations from baseline.
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Figure 29: The BTA aligned to bout starts for different six individual fish.
The same light-dark transition trend is apparent across fish. In
individual fish is more noise apparent than in the total average of
52 fish. Heatmaps indicate relative luminance intensity.
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Figure 30: Fish experience a light stimulus compared to baseline, and then
swim after perceiving a light-dark transition. After swimming, the
luminance is homogenously at baseline.

that coincides with bout start when the border from the light to dark
area reaches the head of the fish (Figure 30 and 31a).

The fish experiences this light-dark transition (Figure 31b,c) with a
peak-to-peak duration of around 500 ms. Interestingly, these luminance
changes are very local, roughly ± 5 mm away from the head of the
fish (Figure 31c). The results shown in Figure 31a and Figure 31c
further indicate that fish don’t start swimming at the local luminance
minimum, but rather on the light-dark transition itself. Roughly 500

ms after swimming, the average luminance levels of the filter are not
different from the luminance levels during the unstructured period
before bout onset (Figure 31b,d).

In line with an LNP model, we computed the nonlinearity for the
BTA across fish (Figure 32) and saw that it is in line with an asymmetric
point-linearity as seen in STA nonlinearities (Schwartz et al. 2006).

In order to confirm these results, we repeated these experiments
in higher spatial and temporal resolution to better extract the exact
stimulus presented in the near visual field of the fish as suggested
by Figure 30 directly from the camera image to avoid stimulus un-
certainties due to technical limitations (see Methods). These findings
confirmed that the filter indeed shows fish swim at a local light-dark
transition (Figure 33).

As we observe structure in the average stimulus that triggers behav-
ior, we next asked if there is a structure in the stimulus ending the
bouts. Thus, we performed a similar analysis for bout ends, however,
in contrast to bout starts, we found no apparent structure in the bout
end-triggered average filter (Figure 34a). As suggested by Figure 31a
and Figure 34b, we tested if that unstructured gray is able to trigger
ending the bout. We performed an experiment where the whole visual
field turns gray after detection of bout onset. Fish swim significantly
shorter (328 ± 13 ms vs. 367 ± 13 closed-loop, p<0.05, Student’s t-test,
Figure 34c), but this effect was very small, indicating that the local
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Figure 31: Fish swim after a light-dark transition. (a) The average visual
stimulus in 500 ms steps leading to bout start. As in Figure 30,
the fish’s position is indicated with a red line and black arrow
head. (b) The average luminance profile over time on fish head
across fish (black) with averages for individual fish (light gray). (c)
Average luminance intensity across fish (black) relative to fish’s
position with averages for individual fish (light gray). (d) Average
luminance across fish on fish head at baseline, 500 ms before bout,
on bout and 500 ms after bout. Note, that baseline luminance
levels and luminance levels 500 ms after the bout do not differ.
Asterisks show significance levels with p<0.05. Error bars indicate
S.E.M.
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Figure 32: Nonlinearity is as expected in an LNP model. Details see Methods.
On the left side, a schematic of an LNP model is shown, with the
linear filter gained from the BTA analysis.
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Figure 33: Local filter across twelve fish. Local luminance levels were gained
by extracting the grating directly from the camera image. A repre-
sentative fish is shown right next to the filter for a size comparison.
Same filter is present as indicated by experiments with a greater
field of view (Figure 28).
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luminance levels are important to trigger swimming but that other
factors may contribute to controlling swim duration and stopping.

In summary, these experiments show that a forward moving whole-
field visual stimulus exhibits on average a striking local and not global
structure that is stereotypic across fish and consists of a local light-dark
transition.

Light-dark transition is largely unaffected by stimulus parameters.

To understand the visual features that optimally drive OMR swim-
ming, we next investigated how the BTA filter depends on the stimulus
parameters, as it has been shown previously that grating speeds influ-
ence behavior (Severi et al. 2014). Changing the bar width or stimulus
speed did not affect the most salient features of the filter (compare
Figure 31c and Figure 35), namely the light to dark transition centered
on the larva’s head. Small changes in filter features, such as increased
peak to peak magnitude can be accounted by the different stimulus
statistics (Figure 35, left panel, and Appendix). With low stimulus
speeds the light-dark transition is pronounced, however, fades with
increasing speeds, indicating that fish are presumably faced with sen-
sorimotor processing delays (Figure 35, right panel, and Appendix).
Behavioral parameters, such as mean bout duration and mean inter-
bout duration (i.e. time between bouts) is not affected by these changes
in stimulus parameters (Figure 36). The BTA across stimulus param-
eters is highly similar to the one shown in Figure 28, incorporating
more variance because of the higher stimulus space (Figure 37).

We next were interested if the BTA is dependent on the average
global luminance levels. When we varied the ratio of white to black
bars, the average is not gray, but shifted to darker or lighter luminance
levels, respectively. When determining the BTA filter for these differ-
ent white:black bar ratio stimuli, we observed a similar light dark
transition compared to the BTA shown in Figure 37, indicating that
fish likely adapt to the average luminance level of the stimulus (Figure
38, see Appendix). We also verified that the fish behavior and filter
nonlinearities stayed constant across white:black bar ratios (Figure 38).

In certain cases, reverse correlation may not reveal all stimuli that
drive a response. If both a stimulus and its inverse are equally likely to
elicit a spike/behavior, then the average of these stimuli would have
little structure (Schwartz et al. 2006). We therefore performed behavior
triggered covariance analysis (Schwartz et al. 2006, and methods) on
our dataset focusing on the two seconds prior to bout start to look
for evidence of symmetric filters (Figure 39a). Using singular-value
decomposition on the covariance matrix, we obtained eigenvectors
of the stimulus covariance matrix, sorted by their eigenvalues, that
provide directions which explain the most variance. We performed
the same analysis on our dataset with shuffled bout start labels. We
sorted the eigenvalues in descending order and found that eigenvalues
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Figure 34: Bout end triggered average shows no filter response. a) Bout end
triggered average across fish, grating speeds and bar sizes. The
bout inducing filter is still apparent. Heatmap shows relative lumi-
nance levels b) Relative luminance profile for visual scene (upper
panel) and at fish head (indicated by red line), color coded in
time (one second before bout end to bout end depicted in increas-
ing blue saturations). The mean luminance profile approaches an
average even luminance across the visual field. Around 400 ms
before bout end (the average bout duration of a fish, as seen in c)),
the luminance at fish head is minimal, and during swimming the
luminance increases again. c) Mean bout duration of fish when
provided normal closed-loop reafference or only even gray that
relates to the grating with 0% contrast by overall constant lumi-
nosity. With this neutral stimulus, swim significantly less (p<0.05),
but still close to normal closed-loop bouts. Shaded area indicate
S.E.M.
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Figure 36: Mean bout and interbout duration for different bar sizes (left,
green) and grating speeds (right, magenta), respectively. See also
Figure 35. Error bars indicate S.E.M.
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Figure 37: Average BTA for all grating speeds and bar sizes across 52 indi-
vidual fish BTAs. The structure is highly apparent roughly one
second before bout start and disappears rapidly earlier than one
second before bout start and almost immediately after bout start.
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Figure 38: Left panel: relative intensity profiles aligned to the minimum for
a local random binary grating experiment with varying white-
to-black bar ratios, for 1:3, 1:1 and 3:1, respectively. Right panel:
Nonlinearities for all bar ratios (compare to Figure 32). Bottom
panels: mean bout and mean interbout duration for different
white-to-black-bar ratios. Error bars indicate S.E.M. Top right
panel: nonlinearities for different white-to-black bar ratios with
shaded error shows S.E.M.
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for shuffled bout starts and true bout starts are very close to each
other. Eigenvalues from shuffled bout starts covariance analysis tend
to explain more variance than true bout starts (Figure 39b).

When looking at the eigenvectors, we found that eigenvectors were
also very similar between random instances and bout starts. Inter-
estingly, eigenvectors cover a whole-field, global forward moving
sine-like stimulus that increases its frequency along higher eigen-
values and -vectors (Figure 39c). Later eigenvectors do not show any
structure compared to first eigenvectors (Figure 39c). Given the similar-
ities between shuffled and bout starts, we propose that the covariance
analysis does not yield further symmetric filters to be further consid-
ered in specific behavior triggering. Noteworthy, it showed that global
whole-field motion is symmetric, as this global whole-field motion
becomes gray in the BTA.

To summarize, we could show that the BTA’s light-dark transition
is stable across a variety of stimulus conditions, which underlines the
BTA’s importance in OMR swimming. Together with our covariance
analysis, we show that symmetric global whole-field motion accompa-
nied by a local light to dark transition close to the larva’s head is an
integral part of OMR.

3.1.2 Behavioral response onset is mediated by the light-dark transition

gradient

To precisely examine the importance of both global and local motionStimuli

in eliciting OMR swimming we presented larvae with visual stimuli
that differentially provide relevant global and local information (see
movie). The first one, which we refer to as filter replay, consisted of
the BTA as shown in Figure 37. It is replayed to the fish as shown in
Figure 31a, for the full duration of three seconds before and following
when the optimal visual trigger for the bout would occur. The second,
which we term whole-field motion, consisted of the BTA’s luminance
profile at bout start (see Figure 31c) stretched in 2D and moved over
the fish in a caudal to rostral direction. The third stimulus consisted
of the BTA shuffled in space (i.e. at every instance in time, the spatial
profile of the BTA was shuffled), to avoid motion inducing two-point
correlations. For the space-time profile of the filter replay and the
whole-field motion stimulus see the first two panels in Figure 43b.

By definition, the BTA should comprise a close to ideal stimulus
to evoke the behavior. When comparing the individual visual stimuli
used to generate the BTA to the average BTA obtained across trials
and across fish, we see that the BTA in fact contains no global and
only local motion and is mostly unstructured (compare to Figure 37).
We found that the filter replay was nonetheless capable of evoking
swimming (Figure 40). We observed, however, that the whole-field
motion stimulus, was more effective than the filter replay in eliciting
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Figure 40: Whole-field filter, but not filter replay evokes predicted behavior.
a) Mean number of bout starts at given time points relative to
predicted bout start. Blue lines represent when the grating was
shuffled, green filter replay and red whole-field motion of average
trigger (N=28). b) Cumulative distribution of bout starts (shuffled
= 1414, filter replay = 13699, whole-field motion = 20380) as shown
in a). The midpoint for filter replay is -0.41 s before predicted bout
start, for whole-field motion it is -0.15 s. The shuffled bouts are
distributed equally across the trial. Colors as in a).

swims, indicating that whole-field motion is an important feature for
triggering OMR, however, its structure seems to be irrelevant (see
Figure 28).

In addition, swims in response to the whole-field motion stimulus
occurred closer to the predicted time of bout start, whereas filter replay-
elicited bouts occurred earlier than expected (Figure 40). We therefore
hypothesized that it was the difference in the stimulus presented in
the far visual field that was responsible for the different behavioral
profiles observed between the filter replay and the whole-field motion
stimulus.

To test this hypothesis we presented fish with the filter replay locally,
in an 8 mm window surrounding the larva, and combined this with
different stimuli in the far caudal visual field (see Figure 41, Figure
42, and Methods). As a control we included in this experiment the
whole-field motion stimulus as presented in Figure 40. The results
show that this whole-field motion stimulus again elicited the most
swimming (Figure 42). Notably, all other conditions exhibited similar
behavioral profiles with fewer bouts and again earlier than expected
(Figure 42). This was even the case for the stimulus that combined the
filter replay locally and whole-field forward moving gratings in the
caudal visual field, suggesting a strong dependence of the behavioral
profile on the local luminance transitions, although the whole-field
component yielded a higher amount of bouts close to the whole-field
motion levels (Figure 42).

We analyzed these local luminance transitions for the stimuli we
presented and noticed that the luminance gradient of the whole-field
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Figure 41: Visual stimuli that are presented in two zones: zone 1 (gray) either
part of the filter replay, i.e. morphing of the filter, it is replaced
with uniform gray, random flickering bars that induce peripheral
noise, or forward moving bars. Zone 2 (green) stays constant as
being the filter replay. As a control, we are using the whole-field
moving filter.

motion stimulus was more pronounced than that of the filter replay.
Interestingly, the onset of bouts was mostly concentrated during this
light dark gradient, with a steeper gradient resulting in a shorter time
window over which swimming would start (Figure 43a).

To probe the role of the gradient on the behavioral profile we
introduced a version of the filter replay, which we call temporally-
squeezed filter replay (filter replay*), which consists of the filter replay
squeezed in time to yield a steeper temporal luminance gradient
as similar as possible to the whole-field motion stimulus (Figure
43b-d). This stimulus elicited a behavioral profile with similar total
number of bouts as the filter replay, but their onset was aligned to
the expected bout start time just as was the case for the whole-field
motion stimulus (Figure 43b,e). This confirms the importance of the
light-dark luminance gradient in shaping the timing of the behavioral
profile, while the missing whole-field motion features leads to reduced
number of swimming events.

Finally, to investigate the relationship between this luminance gra-
dient and whole-field motion, we presented larvae with visual stimuli
that incorporated whole-field motion (similar to the whole field motion
stimulus) and differed only in the local luminance gradient (Figure 44).
As expected, swim bouts occurred throughout the light-dark transition.
Steeper gradients resulted in sharper behavioral profiles, although
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Figure 42: Whole-field motion improves behavioral response, but does not
change behavioral onset timing. Top right: Schematic of experi-
mental design. Filter replay is shown locally, close to the fish in
an 8 mm window (rostral to caudal, complete stimulus window
lateral to the fish) and in the periphery the stimulus is altered
(global). Graph shows cumulative sums of bouts in time depend-
ing on stimulus. Either, filter replay (green), filter replay with gray
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filter as shown in b) were presented to the fish. Peak number of
bouts and half maximum location of cumulative sum are derived
from sigmoid fits of the data (see Methods). Shaded area indicate
S.E.M.



3.1 study i :optomotor swimming has local and global features . 59

filter replay

filter replay*

whole-field 

motion

-3 0 3
predicted bout start from BTA [s]

max

min

luminance profile on fish head

b
o
u
t 
p
ro

b
a
b
ili

ty

filter replay

filter replay*

whole-field 

motion

-3 -2 -1 0 1 2 3

Time relative to
expected bout start [s]

0

20

40

C
u
m

u
la

ti
v
e
 m

e
a
n

n
u
m

b
e
r 

o
f 
b
o
u
ts

−1 0

Time relative to
expected bout start [s]

**

n.s.

a e

b

-2 -1 0 1 2

30

0

-30

-2 -1 0 1 2

filter replaywhole-field filter

-2 -1 0 1 2

filter replay*

D
is

ta
n
c
e
 r

e
la

ti
v
e
 t
o
 

fi
s
h
 h

e
a
d
 [

m
m

]

-2 -1 0 1 2

time [s]

0

127

255

p
x
 i
n
te

n
s
it
y

30 20 10 0 -10-20-30

position relative to fish head [mm]

0

127

255

p
x
 i
n
te

n
s
it
y

c d whole-field motion
filter replay
filter replay*

all profiles are overlaid
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luminance profile on the fish head over time during filter replay,
whole-field motion filter and the temporally squeezed filter replay.
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Figure 45: Gradient steepness modulates not only onset timing, but also
number of bouts. Shown are cumulative sums of mean bout starts
across 35 fish, color-coded depending on gradient slope (light
colors shallow, dark colors steep gradient). Shaded area indicate
S.E.M. Right panel shows the half maximum of cumulative sums
against steepness of gradient (higher numbers produce shallower
gradient).

surprisingly, stimuli with steeper gradients also elicited more bouts
despite the fact that whole-field motion was still present (Figure 45).

Overall, the results presented in Figure 3 show that both the local
luminance gradient and the presence of whole-field motion contributes
to shaping the behavioral profile. In certain circumstances, whole-field
motion is required to elicit a stronger behavioral response (Figure 40,
42 and 43e). The light-dark luminance gradient shapes the behavioral
response distribution and its peak onset (Figure 40 and 45). However,
this gradient may also affect the number of bouts elicited, suggesting
a nuanced interplay between the local and global motion percept.

3.1.3 Behaviorally relevant BTA whole-field motion causes tuned neural

responses

Having defined a visual filter that drives the OMR, we were inter-
ested if the visual filter causes specific neural activity. We therefore
performed two-photon whole brain functional imaging in larvae
pan-neuronally expressing the genetically encoded calcium indicator
GCaMP6s. We presented the fish with five stimuli that incorporated
whole-field motion and light-dark luminance transitions in diverse
ways: a sharp light-dark transition (commonly known as off edge)
moving forward across the visual scene, a smooth dark-to-light whole
field luminance transition, a forward-moving sine grating, and finally
the whole-field filter, first moving forwards and then the reversed
filter moving backwards (Figure 46). This later stimulus was presented
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Figure 46: Visual stimuli for two-photon imaging experiment. We probed fish
with a forward moving off edge, a whole-field luminance change
(dark to bright), a forward moving sine grating, the whole-field
motion filter forward, and the whole-field motion filter moving
reversed, moving backward (same light-dark transition, opposite
sign of motion).

because it has the opposite sign of motion by keeping the same light-
to-dark transition.

Using pixel-wise correlations, we found 440,736 active regions of
interests (ROIs) from nine fish that include cell somata and fibers (see
Appendix for coverage). We grouped ROIs into clusters with distinct
responses (Figures 47 and 48, see also Methods) and found five that
were selectively responsive to the filter or its reverse (Figure 47). Clus-
ters 1 and 5 showed luminance dependent responses corresponding to
luminance on and off, respectively. Cluster 1 includes the medial cere-
bellum, as well as arborization fields (AFs), in particular AF9. Cluster
5 includes active units in the pretectum, dorsal thalamus and bilateral
strata of the tectal neuropil. Cluster 3 responded specifically to the
reversed filter that moves backward, and thus comprises a reverse
motion cluster. ROIs in cluster 3 are mainly located in rhombomere 1

of the hindbrain and the tectal stratum periventriculare. Cluster 4 was
active for all visual motion regardless of the direction (Figures 47 and
48). It includes the tectal neuropil, as well as other arborization fields
and cells ventral to the tectum. Only cluster 2 had responses more
specific to the forward moving filter. This cluster was also active when
presented with the forward moving off edge, a feature shared with the
forward filter, but not when the reversed filter is shown, which has the
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moving reverse. Shown are calcium transients using the dF/F
method relative to baseline (gray line).

same luminance transition but with the opposite sign of motion (Fig-
ure 47). These responses are spread out over the whole brain (Figure
48). They include the nucleus of the medio-lateral fasciculus (nMLF),
the pretectum, the tectal neuropil (AF10) and AF6.

When looking at units that are active during swimming episodes, we
identified a single cluster related to swimming (magenta cluster, Figure
48). Interestingly, the cluster that is closest specific to the forward filter
(cluster 2) contained a very small overlap with this swimming cluster,
mainly surrounding the nMLF neurons, indicating that the neurons in
cluster 2 are either sensory or directly involved in the sensorimotor
transformation that leads to behavior. Further, neurons in cluster 2

had only little correlation with swimming.
In summary, we show tuned responses to the forward moving filter

that are located across the whole fish brain.

3.1.4 A generalized linear model can capture more variance than chance

Our results demonstrate that OMR swimming is triggered both by a
light-dark transition and whole-field motion. We asked if a generalized
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clustering analysis of automatically found ROIs across nine fish.
Purple are ROIs that correlate well with behavior (r >= 0.8, N=9

fish).

linear model, a variant of the LNP model (Figure 5), can predict the
fish’s behavior as shown for a heat-induced swimming (Haesemeyer
et al. 2015). At every instance in time, we fed the grating history
computed over a one second window together with the bout starts as
labels to the GLM fitting algorithm that finds the ideal filter using log-
likelihood (Figure 49 and Methods). In agreement with our analysis,
the GLM filter looks highly similar to the BTA (Figure 49, bottom left
heatmaps). The GLM returns rates that should coincide with bouts
(Figure 49, bottom right panel). We assessed model specificity and
sensitivity, as well as false-positive and false-negative rates (Figure 50).
For every given threshold and model (Figure 49, bottom right panel),
we computed the percentage of peaks that are accompanied by a bout
(i.e. true predictive value, Figure 50, top panel) and the percentage of
bouts that are accompanied by a peak (i.e. true positive rate, Figure 50,
bottom panel). The GLM is capable of explaining a higher amount of
variance compared to bootstrap controls. Up to 13.2% of the detected
peaks above threshold are accompanied by a bout, whereas 48.0% of
the bouts are accompanied by a peak (compared to 8.6% and 21.0%
in bootstrap controls, respectively, Figure 50). When determining the
false negative and false positive rates for our model, we observe that
the model outperforms the bootstrap control (Figure 51).
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Figure 49: Fitting a generalized linear model (GLM). Using the grating his-
tory as features and bout start (binary, yes and no) as labels, we
fitted a GLM using pyglmnet (see Methods). The filter gained
by the fitting is shown next to the behavioral triggered average
of the training data (bottom left). The GLM returns probability
rates of a fish to swim (green). We used a variable threshold (pur-
ple) to determine which peaks above threshold (red circles) are
accompanied by a bout (black dashes) in a given window.

Overall, the simple GLM succeeds in explaining the data better than
chance, though we expect more complex models to be able to improve
this significantly.
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Figure 52: Transgenic fish lines labelling specifically Purkinje cells with dif-
ferent reporters. Left: PC:GCaMP6s maximum intensity projection
(used in Knogler et al., 2018), Right: Zoom-in of PC:NLS-GCaMP6s,
shown as maximum intensity projection.

3.2 study ii :
role of purkinje cells in sensorimotor control

3.2.1 Purkinje cell transgenic lines

Effort has been made to create a toolbox to dissect cerebellar circuits.
We developed transgenic lines that allow imaging of Purkinje cells
(PC:GCaMP6s, Fyn-tagRFP:PC:NLS-GCaMP6f, PC:NLS-GCaMP6s),
as well as ablation of Purkinje cells (PC:epNtr-tagRFP) based on
the enhanced Nitroreductase (Tabor et al. 2014). For acute manip-
ulation, we created transgenic lines that express channelrhodopsin
(PC:ChR2-tagRFP) or ReaChR (a red-shifted channelrhodopsin variant,
PC:ReaChR-tagRFP) in Purkinje cells. ReaChR was shown previously
to be efficient in holographic activation (I.-W. Chen et al. 2018), thus,
this line can be potentially used to map circuits using optogenetics.
To gain high-quality anatomy stains, we generated transient and sta-
ble lines using the construct Fyn-mClover3:PC (Figure 52). Using the
last line, one can easily see fine processes of Purkinje cells using a
fluorescent stereoscope.

Further lines, that are part of this study include the ones summa-
rized in table 1.

3.2.2 Purkinje cell anatomy

Earlier studies reported that around 180 to 300 Purkinje cells exist in 3D template

matchinga 7 dpf larval zebrafish (Hamling et al. 2015). However, by labelling
the nuclei of Purkinje cells using a special transgenic line (PC:NLS-
GCaMP6s), we were able to perform 3D template matching using a
3D gaussian as template. The 3D gaussian closely resembles the 3D
anatomy of a Purkinje cell nucleus that appears to be almost spherical.
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line description ref

Fyn-mClover3:PC Labels Purkinje cell dendrite
and axon, used for high-quality
single cell labelling.

Knogler
et al. 2019

PC:GCaMP6s GECI to image Purkinje cell
activity.

Knogler
et al. 2019

PC:NLS-GCaMP6s Same as PC:GCaMP6s, with
the GECI restricted to the
nucleus. Used for Purkinje cell
number estimation. Also
available with GCaMP6f.

Knogler
et al. 2019

PC:epNtr-tagRFP Selectively ablates Purkinje
cells using Nitroreductase
upon Metronidazole treatment.

not
published.

PC:PhobosCA-
tagRFP

A constant optogenetical
activation of Purkinje cells that
should lead to a functional
silencing.

not
published.

PC:ChR2(H134R)-
tagRFP

Allows optogenetical activation
of Purkinje cells with blue light.
Sparse expressing fish were
used for optogenetics
experiments together with
electrophysiology.

not
published.

PC:ReaChR-tagRFP Same as above, however, peak
excitation in the red spectrum.

not
published.

Fyn-tagRFP:PC:Cre Expresses Cre in Purkinje cells
for conditional expression of
floxed genes.

not
published.

Table 1: Available transgenic fish lines to label selectively Purkinje cells. A
full list of all transgenic fish lines (not only restricted to Purkinje
cells) is available in the Appendix.
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Figure 53: Purkinje cells come in two flavors: those with axon projecting
outside of the cerebellum (left two) and those with axon remaining
in the cerebellum (right two). The asterix indicates a cropped axon.
The dendritic tree is colored in orange. Reprinted from Knogler
et al. 2019 with permission.

We used a custom written software in Python to perform 3D tem-
plate matching. The algorithm returns a heatmap of correlation values
of a given voxel and its neighbours with the template (here, a 3D
gaussian). We found peaks in this correlation map and labelled these
points as center of mass of potential Purkinje cell nuclei. We then went
manually through the stack and removed false positives and added
missed Purkinje cells. Using this method, we found that there are 433 Purkinje cells

around 433 ± 19 Purkinje cells labelled in this transgenic line (mean
± std, N=3 fish, 7 dpf), remarkably higher than previously reported
(Hamling et al. 2015).

We acquired around 50 high-resolution and high-quality confocal
stacks of individual Purkinje cells at 6 to 8 dpf. Confocal stacks were
cleaned manually, deconvolved and interpolated to 200 nm per px
(see Methods). A complete overview of all cells imaged is located in
the Appendix. We found that Purkinje cells come in two flavors: 1)
Purkinje cells whose axons remain in the cerebellar hemisphere and 2)
Purkinje cells whose axons leave the cerebellum and projects to the
vestibular nucleus (Figure 53). It is important to note, that we observed
two times Purkinje cells that cross the hemispheres, however, all other
fish screened (in the order of thousands) did not show this.

Further, we could verify that the Purkinje cell dendrite in larval
zebrafish is planar, similarily to those found in mammals (see also
introduction). For this, we used a novel metric based on principal axis.
We assumed that a spherical or cubic data has three orthogonal axis,
where the variance is equally distributed. Thus, when performing
principal component analysis, would yield three components with
equal weight. However, using planar data, only the first and the second
component have large contributions to the data, whereas the third
one only contributes very little. We therefore seeked a metric that
can indicate non-planar and planar data, and propose that the third
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Figure 54: Purkinje cell dendrites are more planar than chance. We performed
principal component analysis on binarized dendritic tress to de-
termine principal axes. If the dendrite is planar, most variance is
explained by the first two components, in contrast to spherical
or cubic dendrites, where all three components contribute rather
equally. Using our metric (component 3 over component 2), we
found that Purkinje cell dendrites are rather planar compared to
random data. Adapted from Knogler et al. 2019 with permission.

over the second principal component would yield 0 if planar and
1 if non-planar (see Figure 54). We selected manually the dendrite,
thresholded it into fore- and background and performed principal
component analysis. Using the aforementioned metric, we show that
larval zebrafish Purkinje cells are indeed more planar than chance.

We further investigated, if Purkinje cells with the same axonal pro-
jection pattern cluster across the cerebellar hemisphere. We morphed
traced neurons to a reference brain using the reference stack acquired
simultaneously with the single Purkinje cell labelled channel. Assum-
ing symmetry across cerebellar hemispheres, we flipped all cells to
the right hemisphere. We found that Purkinje cells that project out-
side of the cerebellum cluster in the caudal-lateral edge (Figure 55).
Interestingly, Purkinje cells with an axon remaining in the cerebellum
spread across the whole cerebellum.
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Figure 55: Purkinje cells with an axon leaving the cerebellum cluster at
the caudal-lateral edge. 52 morphed individual Purkinje cells.
Adapted from Knogler et al. 2019 with permission.
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Figure 56: Stimuli presented and average behavior recorded for an exam-
ple fish. We probed translational grating motion, i.e. forward at
three different speeds (3, 10 and 30 mm/s), reverse, left and right
translational motion at 10 mm/s. Rotational motion was clockwise-
counterclockwise and counterclockwise-clockwise alternating, pro-
vided in one or both halfs of the visual field. Alternating dark-light
flashes probed luminance responses. Tail and eyes were tracked
as described in Methods. Adapted from Knogler et al. 2019 with
permission.

3.2.3 Purkinje cell response types and topography

The cerebellum is thought to be a key area for sensorimotor integra-Max. intensity

across planes

A single plane

tion. To unravel underlying cerebellar internal models, we aimed to
characterize the different input streams, i.e. from granule cells via
parallel fibres and the inferior olive via climbing fibres (see Figure
10). We performed two-photon calcium imaging using fish expressing
GCaMP6s in nearly all Purkinje cells (Figure 52). To get a better un-
derstanding about the coding properties of Purkinje cells, we probed
the fish with a variety of different stimuli to evoke different behaviors,
such as OMR and OKR (Figure 56). Movies showing a maximum
z-projection of the Purkinje cell activity and a single plane during
behavior is available online (use marginal QR codes).

Using multilinear regression (see Methods), we could infer whichmultilinear

regression feature vectors contribute to the fluorescence trace. In Figure 57, we
show the coefficient weights for all regressors used in multilinear re-
gression. Interestingly, we found that sensory signals cluster spatially
across the cerebellum (Figure 57, top panels), indicating a special con-
text topography. However, motor information is presented throughout
the cerebellum (Figure 57, lower panels).

We next asked if the source of these signals are granule cell or
inferior olive dependent, and if they already show the same topo-
graphic organization. We repeated the experiment as presented above
in Figure 56, this time with a line labelling granule cells (Knogler et al.
2017; Takeuchi et al. 2015). We imaged seven fish and morphed all
fish to a reference stack of the same line. On the reference stack, we
draw manually masks to split somatic and parallel fibre layers. We
show that granule cell have in both, somatic and parallel fibre layer, a
broad activation for motor-related signals (Figure 58, top panels). As
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Figure 57: Mean z projection coefficient maps gained from voxel-wise mul-
tilinear regression across the whole Purkinje cell layer. 8 of 14

total regressors are shown. Note the topography for sensory stim-
uli and the broad coding for motor information. Adapted from
Knogler et al. 2019 with permission.
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Figure 58: Mean z projection maps for somatic and parallel fibres for granule
cell experiments. Note the differences to the Purkinje cell maps.
Adapted from Knogler et al. 2019 with permission.

expected (Knogler et al. 2017), granule cells show also activity when
probed with sensory information. However, compared to our Purkinje
cell imaging study, sensory information is differently spatially orga-
nized. For example, responses for clockwise and counter-clockwise
motion is symmetrically organized across the cerebellum. In Purkinje
cells, we observed a distinct asymmetry for the stimuli, indicating that
this sensory information is likely to be delivered by climbing fibre
activity.

Recently, a study described that different kind of spikes, i.e. simple
and complex spikes, are observable in different cellular compartments
during functional calcium imaging: simple spikes in the soma, com-
plex spikes in the dendrite (Ramirez and Stell 2016). To verify if this
holds true in larval zebrafish, we sparsely labelled Purkinje cells with
PC:GCaMP6s and performed two-photon imaging. On a total of 5

nicely separated cells that have their soma and significant parts of the
dendrite in the same optical section, we could show, that larval ze-
brafish Purkinje cells have the same calcium response in the soma and
different parts of the dendrite (Figure 59). This leads to the assumption
that the source of the observed calcium response is ambiguous.

We were next interested if Purkinje cell signals are derived from
granule cells or the inferior olive. Thus, we performed electrophysio-
logical experiments. This part of the study was performed by Laura
Knogler and further details are available in our publication attached
to this thesis (Knogler et al. 2019). Briefly, we could show that indeed
granule cells are providing the motor context in Purkinje cells, and
the inferior olive provide a stereotypic topographic sensory context.

3.2.4 Purkinje cell optogenetic responses

As the cerebellum is known to be involved in sensorimotor trans-
formation, we asked what is the functional role of Purkinje cells in
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Figure 59: Calcium signals are the same in soma and dendrites of larval
zebrafish Purkinje cells. Left, an example single Purkinje cell is
shown. Different ROIs across the cell are indicated by colored poly-
gons. The same color code is used for the calcium trace extracted
from the ROIs. Interestingly, almost the same calcium signal is
available across the different cell compartments. We compared the
correlation for different Purkinje cells (N=5) and show that the
somatic and distal dendritic signal are highly correlated.

sensorimotor control. For this, we utilized optogenetics to manipulate
the firing rate of Purkinje cells to potentially observe differences in
behavior.

As described in the Methods section, we used a DMD-based optoge-
netics behavior setup to dynamically select spatially constrained ROIs
to specifically activate a subset of neurons. In the experiments pre-
sented, we stimulated the two cerebellar hemispheres simultaneously
(Figures 19 and 60).

The behavioral paradigm is presented in Figure 60. We moved a
binary grating with regular spaced white and black bars with a period
of 10 mm at a speed of 10 mm/s forward relative to the fish. We tested
fish that express or do not express channelrhodopsin in Purkinje cells.
In half of the trials, we turned on the light stimulation. Trials without
light and with light were alternated.

Interestingly, we observed that fish expressing ChR in Purkinje cells
have a longer latency to initiate swimming after the grating started
moving forward (Figure 61). This latency has not a fixed width, but
rather follows a stochastically length. In Figure 61, the trials are sorted
for latency, indicating that there are huge differences across individual
trials. This is not only true for these two example fish, but also on a
population level (Figure 62).

When analysis other behavioral parameters, such as mean bout
duration and mean interbout duration, we observed no difference
across light conditions and ChR expressing fish. This indicates that
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Figure 60: Behavioral paradigm optogenetics. A grating alternates between
stationary or moving forward at 10 mm/s. This evokes the OMR,
making the fish swim (see tail trace). When optogenetically stimu-
lating cerebellar Purkinje cells (see schema on the right) during a
forward moving grating, we observe that fish have an increased
latency (green bar).

PC:ChR+PC:ChR-

Figure 61: Vigor, i.e. swimming, heatmaps for two individual, representative
fish (ChR negative and positive, respectively) are shown. Each
row is a single trial. Trials are sorted by light on/off and latency.
Note, that both fish have similar latency distributions for the light
off trials, however, ChR positive fish have increased latencies to
initiate swimming.
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Figure 62: Activity perturbance of Purkinje cells lead to a higher latency to
initiate swimming on a population level (p < 0.05), however, no
other assessed behavioral parameters are altered, such as mean
bout duration or mean interbout duration. Error bars represent
S.E.M.

Purkinje cells have here a role in modulating the motor initiation, but
have little role in motor execution, at least in this given experimental
paradigm.
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3.3 study iii :
in vivo application of a new far-red protein.

Labelling proteins or cells have revolutionized biology research. How-
ever, we still lack appropriate fluorescent proteins in the far-red to
overcome limitations of blue-excited fluorophores. Here, we show a
joint collaboration with the lab of Oliver Griesbeck that focuses on
the development of a new robot-aided platform to enhance screening
fluorescent proteins.

During this study, our collaborators developed a new fluorescent
protein resulting of multiple mutagenisis rounds of mNeptune684

termed mCarmine. We contributed in cloning the fluorescent protein
in a vector enabling us to express mCarmine in zebrafish. To evaluate
its performance, we fused it to mTFP1, a cyan fluorescence protein,
with known characteristics (Day et al. 2008).

3.3.1 Unraveling the elavl3 promotor

We aimed to clone mTFP1-mCarmine in a vector containing the elavl3

promotor to allow pan-neuronal expression of mTFP1-mCarmine (Park
et al. 2000). However, we had problems to express our fusion protein:
transient injected fish had only weak detectable fluorescence. We
therefore mined the poorly annotated vector map and discovered, that
the elavl3 promotor already has the translation start way upstream the
multiple cloning site. Further, we discovered that the multiple cloning
site induces a frame-shift by one basepair (Figure 63). We assured
using proper oligonucleotide primers and SLiCE cloning to excise
hetereologous fragments and clone directly adjacent to the intron.

We decided to leave these three leading amino acids, as they are
N-terminal and should not interfer with the fluorophore expression.
Indeed, when we injected the improved construct, we observed decent
expression levels. To further improve expression levels, we cloned the
mTFP-mCarmine construct downstream of an upstream activitation
sequence (UAS) sequence. We injected the UAS:mTFP1-mCarmine
construct in a fish expressing Gal4 (a protein that drives expression of
genes downstream of UAS) pan-neuronally (elavl3:Gal4).

3.3.2 mCarmine performs better than mTFP1

We observed across multiple transient fish, that mCarmine performs
a little bit worse on dorsal planes than mTFP1, however, largely out-
performs mTFP1 in deeper layers due to far-red shifted excitation and
emission spectra. We imaged a ventral-to-dorsal column from the top
dorsal layer of the fish down to the very ventral located IPN.

We adjusted the laser power dorsally as such, that the histograms
of the mTFP1 and mCarmine channel look highly similar (Figure 64i).



3.3 study iii :in vivo application of a new far-red protein. 79

Huc(long)-MCS construct

Gal4/UAS System

5‘ UTR 3 aa

Intron (5.5 kb)HuC/elavl3 promotor

1 bp

MCS NotISalI

tacgtcaagaATGGTTACTg cacctgcagc GTCGAC

elavl3 14xUAS mTFP-mCarmineGal4

Figure 63: Cloning mTFP1-mCarmine in elavl3 and UAS expression vectors.
Cloning in elavl3 promotor should be performed by cutting the
backbone using SalI and NotI. When using seemless cloning, one
should remove the 1 bp 5’ to SalI to avoid a frameshift due to the
translation start before the large intron and multiple cloning site
(MCS).

Then, we went to deeper layers and used the exact same settings. We
observed that the mTFP1 signal almost completely vanished at deeper
layers, however, the mCarmine signal was still present at -243 µm
(Figure 64ii). When adjusting the mCarmin signal to a decent signal-
to-noise ratio (Figure 64iii), we had to use a very high amount of laser
power for mTFP1 excitation, despite the fact that mTFP1 is multiple
times brighter than mCarmine. In both cases, we could resolve the
IPN, however, even using deconvolution, the fine details in the mTFP1

channel are lost compared to the mCarmine channel (inset in Figure
64iii).

We calculated an performance index based on the biophysical prop-
erties of the fluorophore, the laser power and the photons collected
(see Methods). Although mCarmine is multiple times dimmer than
mTFP1, it outperforms mTFP1 in deeper layers (Figure 64, top right
panel) 22.5 fold.
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Figure 64: mCarmine outperforms mTFP1. We imaged a dorsal to ventral
column of a seven dpf larval zebrafish expressing the fusion
protein mTFP1-mCarmine pan-neuronally. We ensured to have the
same fluorescence across channels in dorsal planes. We used the
same settings and went ventrally. There, mTFP1 shows almost no
fluorescence, however, mCarmine produces still some fluorescence.
When adjusting laser powers, mCarmine needs less laser power
to produce the same amount of fluorescence as mTFP1 and also
shows a greater SNR. When computing a performance index (see
paper in Appendix), we could show that mCarmine performs on
average 22 times better than mTFP1. Adapted from Fabritius et al.
2018 with permission.
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D I S C U S S I O N

These three studies show how to utilize the larval zebrafish modelsys-
tem to answer questions across different disciplines in neuroscience.
In the following, open questions and potential answers are elaborated.

4.1 the optomotor response

In this study we used a reverse-correlation approach to identify the
stimulus that is optimal in eliciting the forward optomotor response.
We found that this stimulus consists of two features: spatially symmet-
ric global whole-field motion and an asymmetric light-dark transition
occurring locally at the larva’s head. The luminance gradient of this
transition influences the swimming rate and timing of the bouts, with
steeper gradients eliciting more bouts whose onsets are closer tempo-
rally aligned with the stimulus. Whereas a contribution of whole-field
motion was expected from previous OMR studies, the importance
of a local light-dark transition has not been described in this context
before.

Different features of whole-field motion that lead to behavioral
modulation have been probed before in the context of the OMR such
as contrast, temporal and spatial frequency in flies (Haag et al. 2004)
and speed in zebrafish larvae (Portugues et al. 2015; Severi et al.
2014). Asymmetries in the processing of light and dark stimuli in
zebrafish have been shown to exist in zebrafish but always relating
to behaviors that involve local or object-related motion, such as prey
capture, looming stimuli or visually-evoked responses (Bianco and
Engert 2015; Burgess and Granato 2007; Burgess et al. 2010; Dunn
et al. 2016a; Semmelhack et al. 2014; Temizer et al. 2015). In the
context of the OMR, experiments in flies, dragonflies and primates
(D. A. Clark et al. 2014; Leonhardt et al. 2016; Nitzany et al. 2017)
have shown asymmetries in the processing of light and dark in the
ON and OFF pathways using two and three point correlation glider
stimuli (Hu and Victor 2010). The asymmetries in processing have
never been shown to be spatio-temporally confined like we show here.
It is interesting to note that this light-dark transition is independent
of color, as equal luminance red/green transitions elicit no optomotor
swimming (Michael B. Orger and Baier 2005). In zebrafish, axons from
RGCs are known to project to ten AFs (Burrill and S. S. Easter 1994;
Robles et al. 2014). It is likely that the two features that we describe
in this study, namely on/off-independent whole-field motion and a
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peripheral whole field motion
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Figure 65: Our current working model for the optomotor response.

local light-dark transition, are conveyed by different RGCs, possibly
to different AFs.

Our simple generalized linear model showed moderate success in
explaining the observed behavior. However, it performs not worse than
studies with similar constraints on the data (Haesemeyer et al. 2015).
Further behavioral experiments accompanied by modeling studies
need to be performed to understand the interaction between the two
visual features that contribute to the OMR. If indeed different RGCs
convey these features to different AFs, these models could provide
a means to create hypotheses about the convergence of different vi-
sual streams and the neuronal mechanisms which could mediate this
interaction, such as neuromodulation, gating or gain control.

Our preliminary imaging study was able to identify units tuned
specifically to visual stimuli known to drive the OMR. Interestingly,
we observe that units that respond to behavior-inducing stimuli occur
throughout the brain but are enriched in the pretectum and AF6,
areas that were recently suggested to contribute to OMR and behavior
(Kubo et al. 2014; Naumann et al. 2016).

Here, we provide further evidence that these areas are indeed im-
portant for the OMR as they also respond to the light-dark transition
feature we describe. To summarize, we propose a working model
(Figure 65) in which the OMR is strongly induced by a whole-field
motion percept together with a newly-described light-dark transition.
The behavioral response to the OMR is further modulated by the
steepness of the light-dark gradient, which may explain the known de-
pendence of this behavior on visual features such as contrast, temporal
and spatial frequency. This study shows that the OMR, a paradigm
that has been used for decades, is still under-characterized and its
comprehensive characterization is of great interest for further studies
dissecting behavior-related neural circuits.
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4.2 sensory information is spatially clustered across

purkinje cells

Several studies found, that the cerebellum has a spatially patterned
organization, for example using molecular markers, such as Zebrin II
(Hawkes and Herrup 1995). Here, we can also show using for the first
time single cell resolution (compared to Matsui et al. 2014) that sensory
information is spatially clustered across Purkinje cells. The cerebellar
organization in stripes is a common phenotype across common signal
source, biomarker and species (Apps and Hawkes 2009; Hawkes 2014;
Larouche and Hawkes 2006; Pakan et al. 2007; Sawada et al. 2008). We
found that signals correlated with translational motion are clustered
in the medial cerebellum, whereas signals correlated with rotational
motion are clustered in the lateral cerebellum (Figure 57). These Purk-
inje cells that are tuned to rotional motion have long axons that leave
the cerebellum and terminate at the vestibular nucleus (Knogler et al.
2019). With this, we believe that we found the zebrafish homologue
of the mammalian flocculus, an important cerebellar structure for
vestibular information processing and vestibulo-ocular coordination
(Ito 1972; Simpson and Alley 1974). Complementary functional imag-
ing studies looking at whole brain activity found activity in similar
regions, i.e. in the lateral cerebellum (Favre-Bulle et al. 2018; Migault
et al. 2018).

These results are very interesting in the sense of what signals the
inferior olive conveys. Classically, the inferior olive is thought to be
an error detector (Albus 1971; Ito 1972, 2013; Marr David 1969), thus,
providing kind of a beacon, when signals conveyed by granule cells
are not expected. However, by repeating the stimuli pattern over and
over again, and we observed the same response, we do not think that
climbing fiber activity is error related, but rather of sensory nature. We
can also see that granule cells do exhibit sensory context as shown pre-
viously in fish (Knogler et al. 2017), but also provide a general motor
context to presumably all Purkinje cells, as these signals were found
homogenously across in the cerebellum. We therefore think, that these
findings are in line with a forward model, one potential cerebellar
internal model to perform sensorimotor control (Wolpert et al. 1995,
1998; Yavari et al. 2015). A forward model provides sensory expec-
tations, that can be compared with the actual sensory information
provided by granule cells.

In the literature, there is evidence for forward and inverse models
Ishikawa et al. 2016; Miall and Wolpert 1996; Ohyama et al. 2003;
Porrill et al. 2013; Wolpert et al. 1998; Yavari et al. 2015. Our study
supports the forward model hypothesis, however, it is very likely
that the cerebellum implements multiple models via different mecha-
nisms. Thus, experiments aiming directly on the functional dissection
of potential internal models are needed to investigate this further.
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Additionally, eurydendroid cells (ECs) are the homologue of deep
cerebellar nuclei because they are contacted by Purkinje cells (Bae
et al. 2009; Takeuchi et al. 2015). However, ECs also send dendrites in
the molecular layer, potentially connecting to granule cells via paral-
lel fibers. This opens a new computational dimension, complicating
the classical microcircuitry and internal model hypotheses, as these
connections are not reported in the mammalian system.

We showed that it is likely that the inferior olive provides the sensory
context for the spatial topography in the Purkinje layer. Indeed, when
performing electrophysiological studies, we confirmed that sensory
contexts driven complex spikes are clustered spatially (data shown in
Knogler et al. 2018). However, imaging inferior olive neurons in the
context of the same experimental paradigm (Figure 56) would reveal
if there is already a topography in the inferior olive, or only climbing
fibres provide that spatial organization. Further, probing all cerebellar
cells with the same experimental paradigm would open the possibility
to look for coding hypotheses and would provide further evidence for
or against the existence of internal models.

Another interesting observation is the monocularity of the OKR
response. Using only half-field rotational stimuli, we observed that
the cerebellum shows monocular sensory signals and only for one
direction of rotational motion. Interestingly, this is also observed in
the inferior olive (D. Markov, personal communication), suggesting
that already the inferior olive either receives only monocular input or
filters the signal.

Using optogenetics, we were able to alter Purkinje cell activity and
modulate the latency to initiate swimming. This provides new insights
how the cerebellum can interact with pre-motor centers. The cere-
bellum is thought to actively modulate a given behavioral syllable
and thus behavior as it goes, but not in the initiation of movement.
Interestingly, we did not observe a change in the assessed behav-
ioral parameters, suggesting that Purkinje cells only modulate mildly
swimming behavior, if at all. With preliminary studies combining
optogenetics and electrophysiology (together with L. Knogler), we
observed that Purkinje cells are activated with already very low light
intensities, but are easily blocked when providing too much light.
However, it is hard to dose the light and read out the average Purkinje
cell activity for each individual fish in the DMD-based optogenetics
behavior rig. We used very low light intensities and assume that we
activated Purkinje cells on average.

To understand the role of Purkinje cells in sensorimotor control, an
obvious way to dissect the circuit is to ablate Purkinje cells. Previous
studies suggested, that a loss of Purkinje cells can lead to spinocere-
bellar ataxia (Xia et al. 2013). Together with D. Markov, we could
not observe a behavioral phenotype in larva with ablated Purkinje
cells (OMR and OKR). Only when larvae were challenged enough,
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we could observe that Purkinje cells mediate plasticity for long term
adaptation (data not shown and not published).

Taken together, Purkinje cells share common hallmarks of mam-
malian Purkinje cells and exhibit a spatial, sensory related organi-
zation. However, there are still many open questions unresolved, to
unravel the role of Purkinje cells in sensorimotor control. We provide
evidence, that Purkinje cells are rather involved in motor initiation
than in motor execution. Recent studies provide also a promising
outlook for larval zebrafish cerebellar research, as other hallmarks,
such as the potential to acquire an conditioned stimulus, has been
shown to exist in larval zebrafish (Harmon et al. 2017).

4.3 mcarmine is a useful far-red fluorescent protein

The lack of proper far-red fluorescent proteins constrains the pos-
sibilities of researches for multicolor imaging. With mCarmine, we
provide a well in vivo performing fluorescent protein, that allows
simultaneous acquisition of a blue excitable fluorescent protein with
literally no cross-talk.

Despite the advantages of far-red proteins, we realized that screen-
ing for mCarmine expression is not possible with the human eye.
Either with camera assisted microscopy or a fusion protein (here
with mTFP1) was needed to allow easy sorting of positive transgenic
fish. We suggest to use transgenesis marker, such as a bleeding heart
(cmlc2:mCherry) to select transgene carrier.

mCarmine is with its brightness of 8.6 relatively dim compared
to best performing green fluorescent proteins (e.g. mNeonGreen
with 92.8 and EGFP with 33.6). However, after multiple mutagen-
esis rounds, no brighter variants could be found, indicating that the
current structural arrangement does not allow modifications leading
to brighter variants. Thus, new fluorescent protein sources that offer
more structural possibilities are desired. This strategy led also to the
first monomeric red fluorescent protein family (Shaner et al. 2004),
and could potentially overcome physical limitations constraining the
performance of far-red shifted fluorescence proteins.





5
C O N C L U S I O N

In this thesis, we followed a comprehensive approach to investigate
sensorimotor circuits in larval zebrafish. New transgenic lines were
developed to allow imaging and optogenetics experiments and novel
optical and behavioral setups were built to perform imaging, optoge-
netics and behavioral experiments.

To understand which visual stimulus features contribute to evoking
OMR, we could show that an approach to map receptive fields can
be applied to characterize the particular stimulus features that drive
behavior in our first study. Notably, we extend the classical thought
that the optomotor response is elicited by pure whole-field directional
motion. We now know that a local light-dark transition plays also an
important role in combination with the contribution from whole-field
motion.

In the last decades, there has been an ongoing debate about how the
cerebellum works. With our second study, we provide a rich dataset
of the activity of the whole Purkinje cell population in a visually
driven, behavior evoking paradigm. We showed that Purkinje cells
cluster spatially depending on their encoding of visual information in
complex spikes, while motor information is highly enriched in simple
spike activity across the cerebellum. Also, we provide evidence that
the inferior olive may not act as an error detector, but rather as a
sensory information source.

Visualizing innately unlabelled structure using fluorescent proteins
revolutionized biology. In the third study, we provide a novel fluo-
rescent protein, that will be useful for researchers that desire a well
performing, far-red fluorescent protein, that works well in deep tissue.

Taken together, my doctoral research provided novel insights in the
biology of larval zebrafish and how their cerebellum works. Given the
conservation of brain structure across vertebrates, this data that can
be potentially extrapolated to mammals, including us humans.
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In this appendix are important methodological notes and protocols,
such as molecular biology techniques and Python code used in this
thesis.

In particular, you will find

• Licensing and reuse of published material in this thesis

• List of generated transgenic fish lines

• Github and bitbucket repositories with short description

• Light-sheet chamber

• Jupyter notebook explaining LNP, STA and STC

• Jupyter notebook using artificial neural network to find features

• Tail track code

• Eye track code

• Cloning protocol for PC enhancer plasmid

• Colony PCR protocol

• Tol2 mRNA precipitation

• Danieau recipe

• Preparing chemical competent cells protocol

• BTA for different visual stimulus parameters

• All imaged single Purkinje cells

• The stimuli presented in the imaging study in Knogler et al.,
2019

• Manuscript: Fabritius et al., Cell Chemical Biology 2018

• Manuscript: Knogler et al., eLife 2019
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Transgenic fish lines generated 

Purkinje cells 

Name Purpose Comment Status 

Fyn-tagRFP:PC:Cre Intersectional 

expression 

Cre works perfectly, 

shown with Huc:flox-

RFP-flox-GFP 

F4 

Fyn-

tagRFP:PC:Ace2N-

2aa-mNeonGreen 

Voltage imaging No signals Discontinued 

Fyn-

tagRFP:PC:Ace2N-

2aa-mVenus 

Voltage imaging Some signals Discontinued 

PC:epNtr-tagRFP Ablations Works well, strong 

expression 

F3 

Fyn-tagRFP:PC:NLS-

GCaMP6f 

Calcium imaging Works, example data 

acquired on light-

sheet 

F3 

Fyn-tagRFP:PC:NLS-

GCaMP6s 

Calcium imaging Good SNR, behavioral 

data for open and 

closed loop 

F4 

PC:GCaMP6s Calcium imaging Good SNR, nice 

signals, used for 

exp022 and exp027 

F3 

PC:ReaChR-tagRFP Optogenetics Red-shifted ChR F2 

Fyn-mClover3:PC Cell marker Membrane tagged, 

very bright fish 

F2 

loxP-Fyn-mClover3-

loxP:PC 

Intersectional 

suppression of 

expression, sparse 

labelling 

As Fyn-mClover3, but 

with the option to 

label only few cells 

F1 

Fyn-tagRFP:PC: 

miniSOG2-2A-Venus 

Single cell directed 

ablations 

Did not work so far F1 

PC:Marina-2A-H2B-

mCherry 

Voltage indicator No real signals 

observed 

F2 (discontinued) 

PC:ChR2(H134R)-

tagRFP 

Optogenetics Works well also in 

electrophysiology 

F1 

 

Eurydendroid cells 

Name Purpose Comment Status 

UAS:GCaMP6s Calcium imaging Two very bright 

founder with  nice 

signals 

F1, F2 (Luigi) 

Olig2:KalTA4 Driver Very good expression 

in RGCs, but less in 

ECs… 

F3 

 

  



Reporter lines 

Name Purpose Comment Status 

tetO:GFP Reporter line Bleeding Heart+ Discontinued 

tetO:ChR2-tagRFP Reporter line Bleeding heart+ Discontinued 

UAS:mTFP1-

mCarmine 

Reporter line Bleeding heart+ F0 

Huc:H2B-mCherry Reporter line  F0 

Huc:H2B-

mCherry(mir124) 

Reporter line Mir124 from 

Eduardo, dubious 

F1 

UAS:H2B-GFP Reporter line  F0 

Huc:H2B-GFP Reporter line  F0 

Huc:H2B-

GFP(mir124) 

Reporter line With real mir124, 

designed by me 

F0 

Huc:H2B-

GFP(mir181a) 

Reporter line With real mir181a, 

designed by me 

F0 

 



Github repositories - contributions 

 

DMD-based optogenetics 

https://github.com/portugueslab/dmd  

Code for calibration of DMD with camera (calib.py), to interact with the DMD (dlpc350.py) 

and a graphical user interface to control the DMD, draw and save ROIs, show checkerboard 

patterns and brightfield mode (main.py). 

 

Offline tail tracking 

https://github.com/portugueslab/offline_tail_tracking 

Minimal graphical user interface to open a video (codec should be supported by OpenCV) 

and track the tail of a larval zebrafish. One has to select tail base and tail tip, the fish should 

face to the right. Creates csv file with the cumulative sum of tail segments (N=10, adjustable). 

 

H5viewer 

https://github.com/portugueslab/h5viewer 

Program to open h5 (with data in “stack” key), nrrd and TIF files, shows a z-stack using a 

custom pyqtgraph ImageWindow. Z-stacks can be easily converted to z-sum and maximum 

projections using shortcuts. Further, images from the clipboard can be imported via Ctrl+V 

and immediately saved as pngs, jpgs or tif. Easily inverts 2D images using Ctrl+I. 

 

Regionfinder 

https://github.com/portugueslab/regionfinder 

Regionfinder is a program used in the BRF paper to find anatomical regions in cluster maps. 

For this, the cluster map should be morphed to the lab reference brain. Then, it is re-sized to 

fit the internal size and compared with all annotated maps from the Z-brain atlas. It shows 

coverage and region power.  

 

Hardware 

https://github.com/portugueslab/hardware 

All hardware I custom designed is available in this repository. This includes the light-sheet 

chambers, the illumination ring for the light-sheet, two-photon and minimal behavior setup, as 

well as the preparation chamber used in Gema’s and Daniil’s experiments.  

 

Volumetric drawing 

https://github.com/portugueslab/volumetric_drawing 

Adds two functions to draw easily in 3D lines and spheres (used to convert swc files to 

binarized z-stacks). 

 



Marean 

https://bitbucket.org/mpin_sensorimotor_control/marean/src/master/ 

Flexible tool to label different regions in a reference stack, based on pyqtgraph ROIs. 

Capable of copying ROIs from previous plane. Alpha status, however, worked well for granule 

cell reference stack (parallel fibres, somatic layer, third unknown region). 

 

The following repositories are either publicly available or on request: 

Zebrafish_NN 

https://github.com/anki-xyz/zebrafish_nn 

Here I trained a multilayer perceptron and a convolutional neural network to identify specific 

regions in the larval zebrafish, such as head, tail base and tail tip. 

 

LNP 

https://github.com/anki-xyz/LNP 

All functions to create an artificial neuron following a linear-nonlinear Poisson process model. 

Based on the functions given in Schwartz et al., 2006. It provides functions for spike-triggered 

average, spike-triggered covariance and a simulated Poisson process. 

 

Image_analysis 

https://github.com/anki-xyz/image_analysis 

This repository carries a lot of functions related to image processing, such as confocal and 

two-photon microscopy. 

- SWC_magic 

Opens a SWC file and a reference file and creates a binarized line stack, and draws a 

sphere of given diameter on the first node. Used for single cell Purkinje cell study. 

- Confocal 

o planarityEvaluator: Used to binarize the dendritic tree of high-res stacks and 

perform PCA and exports the principal axes. 

o Czi_to_cell_and_reference: Uses a Zeiss CZI file and exports the cell z-stack 

for tracing and the reference z-stack for morphing. 

o Czi_to_nrrd_for_morphing: Uses the meta data in CZI file and creates an 

NRRD file for morphing (also able to register stack in 3D) 

- Twophoton 

o Copy_and_compress: Copies TIF Files to folder and compresses them as 

HDF5 files with BLOSC compression. 

o Deinterlace: Deinterlaces images  

o Register: Provides different functions for 2D and 3D registration 

o Repair_tiff_files: Repairs broken TIF files from 2p experiments (due to 

LabVIEW bug with larger TIF files). 

o Roi_select_and_extract: Used to label custom ROIs in soma vs. dendritic signal 

study. 

o select_ROI_mask: Selects arbitrary ROI masks per plane (only 1 mask per 

plane), with matplotlib implementation. Quick and dirty. 



Light sheet chamber  

 

The light sheet chamber is assembled using different parts (as shown in figure below): 

a) 3D printed chamber 

b) Laser cut acrylic bottom 

c) Coverslip glass sides 

The chamber is designed in 3D using OpenSCAD and parametrized to adjust the width and 

height of the chamber, as well as the windows. The illumination source (e.g. a blue laser 

forming a light sheet) enters through the sides. Glass coverslips with a low scatter effect were 

chosen to allow the light to pass freely. We use standard coverslips from Menzel (#1.5). The 

coverslips are mounted using grease (glisseal®). The grease is water tight, but allows the 

removal of broken or dirty parts. The bottom is made of laser cut acrylic (2-3 mm thickness) 

and also sealed with grease. The standard width of the chamber is 29.6 mm, the chamber rim 

is 1 mm, the bottom is around 27.5 mm wide. Hint: test different sizes (e.g. 27 to 27.6 mm) to 

see which version fits best to the chamber.  

The chamber are normally printed using a Formlabs Form2 3D printer using translucent 

resin. Medium quality is fine, the standard printing orientation is slightly tilted. Hint: check the 

supports that they are not close to the outer windows, i.e. the coverslip mounting surface. 

The chamber is part of the Portugues’ lab hardware repository. 

 

 

 

 





Artificial LNP model with STA and STC

December 4, 2018

1 STA and STC

Here, I probe some fake data using an LNP (Linear-Nonlinear-Poisson cascade) model.

LNP = Poisson(N(∑
i

ki · x))

where ki is a linear filter, x the stimulus, N[·] a non-linearity, such as exp or [·]2.

1.1 Strategy for STA

1. I generate a random stimulus in time (gaussian, mean 0, std 1)
2. I generate a nice linear filter k
3. The linear filter is multiplied with the stimulus stim
4. A non-linear transformation is applied (half-square rectification)
5. Everything is fed to a Poisson process
6. Reverse correlate to find STA, which should be close to filter k

In [1]: import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from IPython.display import set_matplotlib_formats

set_matplotlib_formats('png', 'pdf')

plt.plot()

plt.close()

In [2]: plt.rcParams['figure.figsize'] = (4.0, 2.0)

In [3]: def dot(stim, k):

"""dot product of spatiotemporal stimulus with filter k"""

dot_product = np.zeros(stim.shape[0])

history = k.shape[0]

# iterate over time

for i in range(history, stim.shape[0]):

dot_product[i] = stim[i-history:i] @ k

return dot_product
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def hsr(x):

"""half-square rectifier

if x is below 0, return 0, otherwise square the result."""

return 0 if x < 0 else x**2

def STA(stim, spikes, history=20):

"""Calculates spike-triggered average of stimulus using a spike train"""

# Introduce safety margin hack

spikes[:history] = 0

spikes[-history:] = 0

sta = []

#np.zeros((spikes.astype(np.bool).sum(), history))

# Iterate over spikes

for i, sp in enumerate(np.where(spikes)[0]):

# Multiply each spatiotemporal stimulus

# by the amount of spikes elicited

sta.extend([stim[sp-history+1:sp+1]]*spikes[sp])

return np.array(sta).mean(0)

In [4]: # Time

N = 10000

history = 7

# Seed random for reproducability

np.random.seed(1)

# Generate gaussian stim with 0 mean and 1 std

stim = np.random.randn(N)

# Linear filter

k = np.array([0]*2 + list(np.sin(np.arange(history-4)/np.pi*8)) + [0]*2)

In [5]: plt.plot(k)

plt.title('linear filter $k$')

Out[5]: Text(0.5,1,'linear filter $k$')
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In [6]: plt.plot(dot(stim,k)[:100])

plt.title('dot product of stimulus and $k$')

Out[6]: Text(0.5,1,'dot product of stimulus and $k$')

0 20 40 60 80 100

2

0

2

dot product of stimulus and k

In [7]: plt.plot([hsr(i) for i in dot(stim,k)][:100])

plt.title('raw Linear-Nonlinear relationship as entry for poisson process')

Out[7]: Text(0.5,1,'raw Linear-Nonlinear relationship as entry for poisson process')
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In [8]: # Linear-Nonlinear relationship for each time bin

LN = [hsr(i) for i in dot(stim,k)]

In [9]: # Create poisson process

limit = np.percentile(LN, 99) # set the frequency limit

LNP = np.array([np.random.poisson(i/limit) for i in LN])

In [10]: plt.plot(LNP[:100])

plt.title('spikes from Poisson process')

Out[10]: Text(0.5,1,'spikes from Poisson process')
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Calculates STA.

STA = 1
nsp

T

∑
i=1

yixi,

(from wiki)

In [11]: plt.plot(STA(stim, LNP))

plt.title('spike-triggered average over last 20 time bins')
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Out[11]: Text(0.5,1,'spike-triggered average over last 20 time bins')
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spike-triggered average over last 20 time bins

In [12]: plt.figure(figsize=(9,3))

plt.subplot(121)

plt.plot(k)

plt.title('real filter (7 time points)')

plt.subplot(122)

plt.plot(STA(stim, LNP), color=(0,0,0,.5))

plt.plot(np.arange(20-7, 20), STA(stim, LNP)[-7:], color='r')

plt.title('retrieved filter (20 time points)')

plt.tight_layout()
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1.2 and now STC...

In [13]: # Time

np.random.seed(1)

N = 10000

history = 7
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stim = np.random.randn(N)

# Create two filters, one should be roughly the inverse of the other

k1 = np.array([0]*2 + list(np.sin(np.arange(history-4)/np.pi*8)) + [0]*2)+np.random.

k2 = -np.array([0]*2 + list(np.sin(np.arange(history-4)/np.pi*8)) + [0]*2)+np.random

In [14]: plt.plot(k1, label='filter 1')

plt.plot(k2, label='filter 2')

plt.legend(loc='best')

Out[14]: <matplotlib.legend.Legend at 0x20ce37db710>
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In [15]: # Perform LN operation (dot product and squared)

# over each filter, then sum both, see equation in the beginning,

# hsr is N

LN_2filters = np.sum((dot(stim, k1)**2,

dot(stim, k2)**2), 0)

In [16]: # Poisson process

limit = np.percentile(LN_2filters, 99.9) # limit frequency

LNP_2filters = np.array([np.random.poisson(i/limit) for i in LN_2filters])

In [17]: plt.plot(LNP_2filters[:100])

plt.title('spikes from poisson process')

Out[17]: Text(0.5,1,'spikes from poisson process')
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In [18]: # Set history to 20 to see effects beyond the generated filter

history = 20

In [19]: sta = STA(stim, LNP_2filters, history)

In [20]: plt.plot(sta)

plt.title('spike-triggered average for 2 filters, \nshould be unstructured')

Out[20]: Text(0.5,1,'spike-triggered average for 2 filters, \nshould be unstructured')

0 5 10 15

0.05

0.00

0.05

spike-triggered average for 2 filters, 
should be unstructured

1.3 STC formula

STC =
1

ns − 1

T

∑
i=1

yi(xi − STA)(xi − STA)T,

with yi the number of spikes, xi the spatio-temporal stimulus as column vector, STA the spike-
triggered average, and ns the number of spikes. The covariance of the stimulus is given by

C =
1

np − 1

T

∑
i=1

xix
T
i ,
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with np the number of stimuli. The sum ∑ is over complete stimulus time T. Also from wiki and
from Schwartz et al.

In [21]: S = [] # Sum

# Iterate over time

for i in range(history, stim.shape[0]):

xi = stim[i-history+1:i+1][None].T # x, as column vector, at time point i

yi = LNP_2filters[i] # spike at time point i

# Sum y_i * (x_i-st)

S.append(yi * (xi-sta[None].T) * (xi-sta[None].T).T)

S = np.array(S)

print('S shape is stimuli x history x history: ', S.shape)

# STC is 1 / the number of spikes * sum summed over axis 0 (i.e. stimuli)

stc = 1 / (LNP_2filters.sum()-1) * S.sum(0)

# for the covariance of the stimulus itself, let Sx be

Sx = []

for i in range(history, stim.shape[0]):

xi = stim[i-history+1:i+1][None].T # see above

Sx.append(xi*xi.T)

Sx = np.array(Sx)

C = 1 / (Sx.shape[0]-1) * Sx.sum(0)

print('shape of stc:', stc.shape)

print('shape of C: ', C.shape)

S shape is stimuli x history x history: (9980, 20, 20)

shape of stc: (20, 20)

shape of C: (20, 20)

Singular-value decomposition (SVD) to compute eigenvalues and eigenvectors

In [22]: from scipy.linalg import svd

In [23]: %timeit svd(stc-C)

342 ţs ś 32 ţs per loop (mean ś std. dev. of 7 runs, 1000 loops each)

In [24]: U, e_val, e_vec = svd(stc-C)
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In [25]: plt.figure(figsize=(3,9))

for i in range(history):

plt.plot(e_vec[i]-i, color=(1-i/history, 0, 1-i/history))

plt.yticks(np.arange(-history, 0)+1, np.arange(history)[::-1]+1)

plt.ylabel('eigenvector #')

plt.xticks(np.arange(-1, history)[::5], np.arange(-history, 1)[::5])

plt.xlabel('Time to spike [au]');
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In [26]: plt.plot(e_val, 'o')

plt.title('eigenvalues, sorted')

plt.xlabel('eigenval #')

plt.xticks(np.arange(history+1)[::5]);
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See how PCA performs compared to SVD

In [27]: from sklearn.decomposition import PCA

In [28]: pca = PCA()

In [29]: %timeit pca.fit(stc-C)

628 ţs ś 33.6 ţs per loop (mean ś std. dev. of 7 runs, 1000 loops each)

Shows similar result...

In [30]: plt.figure(figsize=(3,9))

for i in range(history):

plt.plot(pca.components_[i]-i, color=(1-i/history, 0, 1-i/history))

plt.yticks(np.arange(-history, 0)+1, np.arange(history)[::-1]+1)

plt.ylabel('principal component #')

plt.xticks(np.arange(-1, history)[::5], np.arange(-history, 1)[::5])

plt.xlabel('Time to spike [au]')

Out[30]: Text(0.5,0,'Time to spike [au]')
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In [31]: plt.plot(pca.explained_variance_, 'o')

plt.title('explained variance for each PC, sorted')

plt.xlabel('principal component #')

plt.ylabel('explained variance')

plt.xticks(np.arange(history+1)[::5]);
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In [ ]: plt.title('Explained variance ratio')

plt.plot(pca.explained_variance_ratio_, 'o')

Out[ ]: [<matplotlib.lines.Line2D at 0x20ceb3ea6d8>]
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Comparison of SVD eigenvector 1 and first principal component:

In [ ]: plt.plot(e_vec[0], color=(1,0,0,.5)) # red

plt.plot(pca.components_[0], color=(0,0,1,.5)) # blue, inverse

# Overlap ==> magenta

plt.title('1st Eigenvector and 1st Principal Component overlap')

Out[ ]: Text(0.5,1,'1st Eigenvector and 1st Principal Component overlap')
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Find Larval Zebrafish Features Using Artificial Neural
Networks

February 24, 2019

1 Machine learning approaches to find features in zebrafish images

Here, I train a Multi-Layer Perceptron (MLP) to classify image tiles.
Load modules

In [ ]: import cv2

from glob import glob

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

from numba import jit

# ML

from sklearn.model_selection import train_test_split

from keras.models import Sequential

from keras.layers import Dense, Conv2D, Flatten, MaxPooling2D

from keras.utils import to_categorical

import pandas as pd

Load plotting related stylesheets

In [2]: import seaborn as sns

sns.set_style('white')

sns.set_style('ticks')

plt.rcParams['figure.figsize'] = (3, 2)

plt.rcParams['figure.dpi'] = 300

Load and prepare data for NN

In [3]: folder = r'C:\Users\me\Documents\MPIN\fish_images'

path_to_a_fish = r"C:\Users\me\Documents\MPIN\fish_images\20150513_142329_image.png"

heads = np.array([cv2.imread(i,0) for i in glob(folder+'\\head\\*.png')])

tip = np.array([cv2.imread(i,0) for i in glob(folder+'\\tailtip\\*.png')])

base = np.array([cv2.imread(i,0) for i in glob(folder+'\\tailbase\\*.png')])

bg = np.array([cv2.imread(i,0) for i in glob(folder+'\\background\\*.png')])

labels = ['head','tail tip', 'tail base', 'background']
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input_shape = heads.shape[1]

X = np.vstack([heads, tip, base, bg])

X = X / X.max(0)[None] # convert to float and normalize image from 0 to 1.

Y = np.repeat([0, 1, 2, 3],450,0)

Split train and test dataset

In [4]: X_train, X_test, y_train, y_test = train_test_split(X,

Y,

test_size=0.2,

random_state=42)

Train a neuron network that consist of

• a full connected layer
• a dense, hidden layer with 32 neurons
• an output layer with 4 neurons comprising the four categories head, tail base, tail tip and

background

In [5]: model = Sequential()

n_epochs = 10 # Train for N epochs

model.add(Dense(units=32, activation='relu', input_dim=80*80))

model.add(Dense(units=4, activation='softmax'))

model.compile(loss='categorical_crossentropy',

optimizer='adam',

metrics=['accuracy'])

r = model.fit(X_train.reshape(X_train.shape[0],-1),

to_categorical(y_train,4),

batch_size=32,

epochs=n_epochs,

validation_split=0.05)

Train on 1368 samples, validate on 72 samples

Epoch 1/10

1368/1368 [==============================] - 3s 2ms/step - loss: 0.9451 - acc: 0.6520 - val_loss:

Epoch 2/10

1368/1368 [==============================] - 0s 338us/step - loss: 0.3567 - acc: 0.8246 - val_loss:

Epoch 3/10

1368/1368 [==============================] - 1s 496us/step - loss: 0.2401 - acc: 0.9539 - val_loss:

Epoch 4/10

1368/1368 [==============================] - 1s 453us/step - loss: 0.2089 - acc: 0.9569 - val_loss:

Epoch 5/10

1368/1368 [==============================] - 1s 473us/step - loss: 0.1720 - acc: 0.9642 - val_loss:

Epoch 6/10
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1368/1368 [==============================] - 1s 474us/step - loss: 0.1488 - acc: 0.9744 - val_loss:

Epoch 7/10

1368/1368 [==============================] - 1s 517us/step - loss: 0.1240 - acc: 0.9788 - val_loss:

Epoch 8/10

1368/1368 [==============================] - 1s 515us/step - loss: 0.1215 - acc: 0.9766 - val_loss:

Epoch 9/10

1368/1368 [==============================] - 0s 340us/step - loss: 0.1272 - acc: 0.9598 - val_loss:

Epoch 10/10

1368/1368 [==============================] - 1s 532us/step - loss: 0.1200 - acc: 0.9686 - val_loss:

Plot the accuracy of the neural network evolved per epoch

In [6]: plt.plot(r.history['acc'], label='accuracy')

plt.plot(r.history['loss'], label='loss')

plt.xlabel('epoch')

plt.xticks(np.arange(n_epochs)[1::2], np.arange(n_epochs)[1::2]+1)

plt.legend(loc='best')

plt.ylim([-.1, 1.1])

sns.despine(trim=True, offset=10)

Plot the probability of each test image per category

In [7]: plt.plot(model.predict(X_test.reshape(X_test.shape[0],-1))[np.argsort(y_test)])

sns.despine(trim=True, offset=10)

plt.xlabel('image# (sorted by class)')

plt.ylabel('class probability')

plt.legend(labels, loc=[1, 0])

Out[7]: <matplotlib.legend.Legend at 0x1e05a168c88>
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Predict the class of each test image (ordered by category).
Note the spikes that indicate that some images are misclassified as background being actual

tail tips.

In [8]: plt.plot(model.predict_classes(X_test.reshape(X_test.shape[0],-1)[np.argsort(y_test)]))

sns.despine(trim=True, offset=10)

plt.yticks(range(4), labels)

plt.xlabel('image# (sorted by class)')

Out[8]: Text(0.5,0,'image# (sorted by class)')

Predict the NN response px-wise in a zebrafish image

In [9]: fish = cv2.imread(path_to_a_fish, 0)

Downsample the image by a given factor

In [10]: sample_step = 2
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In [13]: @jit

def subsample_px_from_im(im, input_shape=80, step=2):

range_x = np.arange(input_shape//2, im.shape[0]-input_shape//2, step)

range_y = np.arange(input_shape//2, im.shape[1]-input_shape//2, step)

pred_im = np.zeros((range_x.shape[0], range_y.shape[0], input_shape*input_shape),

dtype=np.float16)

for i, x in enumerate(range_x):

for j, y in enumerate(range_y):

pred_im[i,j] = im[x-input_shape//2:x+input_shape//2,

y-input_shape//2:y+input_shape//2].flatten()

return pred_im

Subsample image and prepare data for NN. Predict for each px the NN response.

In [14]: %time subim = subsample_px_from_im(fish/255, step=sample_step)

%time pred = model.predict(subim.reshape((-1, input_shape*input_shape)))

Wall time: 2.67 s

Wall time: 2.82 s

Plot the predicted class probabilty per class

In [15]: peaks = []

plt.figure(figsize=(12,3))

for i in range(4):

plt.subplot(1,4,i+1)

plt.imshow(pred.reshape((*subim.shape[:2], -1))[...,i], vmin=0, vmax=1)

plt.axis('off')

#plt.colorbar(fraction=.03)

plt.title(labels[i])

# Show peaks for the three foreground features

if i < 3:

peak = np.unravel_index(np.argmax(pred[...,i]), subim.shape[:2])

plt.scatter(*peak[::-1], s=100, alpha=1, color='b',

lw=2, marker='o', facecolor='none')

peaks.append(np.array(peak)*sample_step+input_shape//2)

plt.tight_layout()
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1.1 Display features at fish

In [23]: plt.figure(figsize=(5,3))

plt.imshow(fish, cmap='gray') #[4:-4, 4:-4]

plt.scatter(*peaks[0][::-1], s=1000, alpha=.7)

plt.text(*(peaks[0][::-1]-60), 'head')

plt.scatter(*peaks[1][::-1], s=20, alpha=.7)

plt.text(*(peaks[1][::-1]+25), 'tail tip')

plt.scatter(*peaks[2][::-1], s=20, alpha=.7)

plt.text(*(peaks[2][::-1]-35), 'tail base')

plt.axis('off')

Out[23]: (-0.5, 647.5, 487.5, -0.5)

1.2 Show effect of neurons in first hidden layer on accuracy

In [ ]: all_acc = []

acc_course = []

n_neurons_1st_layer = [4, 8, 12, 16, 32, 48, 64, 128]

n_epochs = [5, 10, 20, 40]

for _n_epochs in n_epochs:

acc = []

6



for _n_neurons_1st_layer in n_neurons_1st_layer:

model = Sequential()

model.add(Dense(units=_n_neurons_1st_layer,

activation='relu', input_dim=80*80))

model.add(Dense(units=4, activation='softmax'))

model.compile(loss='categorical_crossentropy',

optimizer='adam',

metrics=['accuracy'])

r = model.fit(X_train.reshape(X_train.shape[0],-1),

to_categorical(y_train,4),

batch_size=32,

epochs=_n_epochs,

validation_split=0.05)

acc.append(r.history['acc'])

all_acc.append([i[-1] for i in acc])

acc_course.append(acc)

In [25]: plt.figure(figsize=(3,2))

for e in range(len(n_epochs)):

plt.plot(n_neurons_1st_layer, all_acc[e], label='{} epochs'.format(n_epochs[e]))

plt.ylim([0,1.1])

plt.legend(loc=[1,0])

plt.xlabel('#neurons in 1st hidden layer')

plt.ylabel('accuracy')

sns.despine(trim=True, offset=10)
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1.3 Show the effect of # of neurons and epochs on accuracy

In [26]: df = pd.DataFrame([pd.Series(v) for v in acc_course[2]]).T

In [27]: plt.figure(figsize=(9, 3.5))

for ni, neurons in enumerate(n_neurons_1st_layer):

if ni == 0:

ax = plt.subplot(2,4,ni+1)

else:

plt.subplot(2,4,ni+1, sharey=ax)

for i in range(len(acc_course)):

df = pd.DataFrame([pd.Series(v) for v in acc_course[i]]).T

plt.plot(df[ni])

plt.title('{} neurons'.format(neurons), y=1.2)

plt.ylim([-.1,1.1])

plt.ylabel('Accuracy')

plt.xlabel('epoch')

plt.legend(['{} epochs'.format(i) for i in [5,10,20,40]], loc=[1,0])

plt.tight_layout()

sns.despine(trim=True, offset=10)

1.4 Use the data in convolutional neural network

In [28]: n_epochs = 10

conv_model = Sequential()

conv_model.add(Conv2D(32, kernel_size=(4, 4),

input_shape=(80,80,1), activation='relu'))

conv_model.add(MaxPooling2D(pool_size=(2, 2)))

conv_model.add(Flatten())
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conv_model.add(Dense(32, activation='relu'))

conv_model.add(Dense(units=4, activation='softmax'))

conv_model.compile(loss='categorical_crossentropy',

optimizer='adam',

metrics=['accuracy'])

r = conv_model.fit(X_train[...,None],

to_categorical(y_train,4),

batch_size=32,

epochs=n_epochs,

validation_split=0.05)

Train on 1368 samples, validate on 72 samples

Epoch 1/10

1368/1368 [==============================] - 3s 2ms/step - loss: 0.6459 - acc: 0.7193 - val_loss:

Epoch 2/10

1368/1368 [==============================] - 1s 908us/step - loss: 0.2240 - acc: 0.8984 - val_loss:

Epoch 3/10

1368/1368 [==============================] - 1s 911us/step - loss: 0.1358 - acc: 0.9620 - val_loss:

Epoch 4/10

1368/1368 [==============================] - 1s 1ms/step - loss: 0.0926 - acc: 0.9715 - val_loss:

Epoch 5/10

1368/1368 [==============================] - 1s 1000us/step - loss: 0.1061 - acc: 0.9656 - val_loss:

Epoch 6/10

1368/1368 [==============================] - 1s 928us/step - loss: 0.1271 - acc: 0.9503 - val_loss:

Epoch 7/10

1368/1368 [==============================] - 1s 923us/step - loss: 0.0690 - acc: 0.9854 - val_loss:

Epoch 8/10

1368/1368 [==============================] - 1s 957us/step - loss: 0.0634 - acc: 0.9832 - val_loss:

Epoch 9/10

1368/1368 [==============================] - 1s 931us/step - loss: 0.0595 - acc: 0.9868 - val_loss:

Epoch 10/10

1368/1368 [==============================] - 1s 917us/step - loss: 0.0819 - acc: 0.9788 - val_loss:

In [29]: plt.plot(conv_model.predict(X_test[np.argsort(y_test)][...,None]))

sns.despine(trim=True, offset=10)

plt.xlabel('image# (sorted by class)')

plt.ylabel('class probability')

plt.legend(['head','tail tip', 'tail base', 'background'], loc=[1, 0])

Out[29]: <matplotlib.legend.Legend at 0x1e0ba3094e0>
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In [30]: plt.plot(conv_model.predict_classes(X_test[np.argsort(y_test)][...,None]))

sns.despine(trim=True, offset=10)

plt.xlabel('image# (sorted by class)')

plt.ylabel('class probability')

plt.legend(['head','tail tip', 'tail base', 'background'], loc=[1, 0])

Out[30]: <matplotlib.legend.Legend at 0x1e0ba33fa90>

In [31]: %time subim = subsample_px_from_im(fish/255, step=sample_step)

%time pred = conv_model.predict(subim.reshape(-1, 80, 80, 1))

Wall time: 2.42 s

Wall time: 16 s

In [32]: peaks = []
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plt.figure(figsize=(12,3))

for i in range(4):

plt.subplot(1,4,i+1)

plt.imshow(pred.reshape((*subim.shape[:2], -1))[...,i], vmin=0, vmax=1)

plt.axis('off')

#plt.colorbar(fraction=.03)

plt.title(labels[i])

# Show peaks for the three foreground features

if i < 3:

peak = np.unravel_index(np.argmax(pred[...,i]), subim.shape[:2])

plt.scatter(*peak[::-1], s=100, alpha=1, color='b',

lw=2, marker='o', facecolor='none')

peaks.append(np.array(peak)*sample_step+input_shape//2)

plt.tight_layout()
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def tail_trace(img, tailbase, taillength, num_points = 10): 

    """ 

    Traces the tail, fish should face right, tail to the left 

    :param img: the image with the fish (and obviously the tail) 

    :param tailbase: the tail base coordinates as tuple 

    :param taillength: The length of the tail in px 

    :param num_points: Number of tail segments to be traced 

    :return: tail angle sum 

    """ 

    # X/Y position on tail base 

    x = tailbase[0] 

    y = tailbase[1] 

 

    # Create an arc of 180 deg 

    lin = np.linspace(0, np.pi, 20) 

 

    # Initiate tail_points 

    tail_points = [(x, y)] 

    tail_angles = [] 

    tail_sum = 0 

 

    # Filter image slighty to enhance tracking 

    img_filt = np.zeros(img.shape) 

    img_filt = cv2.boxFilter(img, -1, (7, 7), img_filt) 

 

    # Iterate for number of segments times. 

    for j in range(num_points): 

        xs = x-taillength / num_points * np.sin(lin) 

        ys = y-taillength / num_points * np.cos(lin) 

 

        # Convert them to integer, because of definite pixels 

        xs, ys = xs.astype(int), ys.astype(int) 

 

        # Remove points out of the scene 

        xs = xs[xs < img.shape[1] - 1] 

        ys = ys[ys < img.shape[0] - 1] 

 

  # Draws all points of the arc on the image 

        for a in zip(xs, ys): 

            cv2.circle(img, a, 1, (255, 0, 0), 1) 

 

        if len(xs) != len(ys): 

            return False 

 

        # Find the darkest point 

        ident = np.where(img_filt[ys, xs] == min(img_filt[ys, xs]))[0][0] 

 

        # The minimum is the starting point of the next arc 

        x = xs[ident] 

        y = ys[ident] 



 

        # Add the angle to a total tail sum! 

        tail_sum += lin[ident] 

 

        tail_angles.append(lin[ident]) 

 

        # Create an 180 deg angle depending on the previous one 

        lin = np.linspace(lin[ident] - np.pi / 2, lin[ident] + np.pi / 2, 20) 

 

        # Add point to list 

        tail_points.append((x, y)) 

 

    # draw the found tail points onto the fish's tail 

    for i in tail_points: 

        cv2.circle(img, i, 2, (255, 0, 0), 1) 

 

    return tail_sum 

 



""" 

    Eye tracking code based on OpenCV 

""" 

import cv2 

import numpy as np  

 

def find_eyes (im, show_eyes=True, show_mask=False): 

    """ 

    Find eyes in image and returns the bounding box positions 

     

    Returns: 

    axis 0 from, 

    axis 0 to, 

    axis 1 from, 

    axis 1 to, 

    mask array with the same size as input image (dtype=np.bool) 

     

    """ 

 

    # Use the SimpleBlobDetector from OpenCV to detect automatically the eyes 

    p = cv2.SimpleBlobDetector_Params() 

     

    # Find best threshold (around 20 for eyes without noise) 

    p.minThreshold = 20 

    p.maxThreshold = 25 

    p.thresholdStep  = 1 

 

    # Only find BLACK blobs == eyes 

    p.filterByColor = True 

    p.blobColor = 0 

 

    # Eyes are not round, but ellipsoid, thus, enable Inertia 

    p.filterByInertia = True 

     

    # Detect eyes and save them as KeyPoints 

    d = cv2.SimpleBlobDetector_create(p) 

    kp = d.detect(im) 

 

    # Draw the keypoints on the image and show it 

    im_w_kp = cv2.drawKeypoints(im, kp, np.array([]),  

   (0,0,255), 

    cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS) 

 

    # Determine centers and radius to create bounding box 

    y1 = int(max([i.pt[1] for i in kp])) 

    y0 = int(min([i.pt[1] for i in kp])) 

    x = int(min([i.pt[0] for i in kp])) 

    r = int(max([i.size for i in kp])) 

 

 



    # Show bounding box 

    cv2.rectangle(im_w_kp,(x-r,y0-r),(x+r,y1+r),(0,255,0),1) 

 

    #Create mask to subindex only the eyes for eye tracking 

    mask = np.zeros_like(im, dtype=np.bool) 

    mask[y0-r:y1+r,x-r:x+r] = True 

 

    if show_eyes: 

        cv2.imshow("Im with Keypoints",im_w_kp) 

        cv2.waitKey(0) 

 

    if show_mask: 

        cv2.imshow("Mask",mask.astype(np.uint8)*255) 

        cv2.waitKey(0) 

 

    return y0-r, y1+r, x-r, x+r, mask 

 

 

def eye_track (e, show_eyes = False, t = 90): 

    """ 

        Basic and fast eye tracking algorithm 

        @author anki 

 

        returns left and right eye angle 

    """ 

    thres = (e > t).astype(np.uint8)*255 

         

    # Fit two largest contours and sort them left/right 

    _, contours, _ = cv2.findContours(thres.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) 

    contours = sorted(contours, key=lambda c: c.shape[0],  reverse=True)[:2] 

    contours = sorted(contours, key=np.max) 

 

    # Fit an ellipse and add angle to result array 

    eye_pos = [cv2.fitEllipse(contours[i])[2] for i in range(2)] 

     

    if show_eyes: 

        e_det = cv2.cvtColor(thres.copy(), cv2.COLOR_GRAY2BGR) 

        e_det = cv2.ellipse(e_det,cv2.fitEllipse(contours[0]), (0,0,199),1) 

        e_det = cv2.ellipse(e_det,cv2.fitEllipse(contours[1]), (127,0,127),1) 

         

        e_det = cv2.resize(e_det, (0,0), fx=5, fy=5) 

         

        cv2.imshow("Tracked Eye", e_det) 

        cv2.waitKey(1) 

 

    return eye_pos[0], eye_pos[1], contours 
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Example Protocol cloning into PC enhancer 

Options: 

The PC enhancer plasmid has two (!) cassettes, one can clone into either one. For 

convenience, I am using Fyn-tagRFP:PC:empty (1) if I need an independent red tag or Fyn-

mClover3:PC:empty (2) if I need an independent green tag. If one opts for not an independent 

tag, one can either remove the e.g. red tag afterwards using restriction digest and re-ligation 

(MscI and EcoRV, both blunt end) or use PC:epNtr-tagRFP (3) or PC:ChR2-tagRFP (3) as basis 

and release the insert. 

Equipment 

- PC backbone (1), (2) or (3)  

- Insert (here EGFP as example) 

- Forward primer insert with homology to E1b promotor and EcoRI restriction site, plus 

ideally a kozak sequence (see Figure) 

- Reverse primer insert with homology to T7 and XbaI restriction site. As stop codon I 

suggest the use of UAAA (shown previously to be the most efficient one with expression 

boost, see Horstick et al.) 

- T4 Ligase buffer (there are 10 µl aliquots @-20°C, NEB #B0202S) 

- SLiCE extract (@-20°C, ask Griesbeck lab or make yourself, see Zhang et al., 2015) 

- as alternative: Gibson Assembly or NEBuilder HiFi, follow manufacturer’s instructions 

- 5x Hot FIREPol Blend Master Mix Ready to Load 7.5 mM MgCl2.  

- EcoRI and XbaI restriction enzymes, either from NEB or ThermoScientific. 

I have the latter around and use them normally with 10x red Anza buffer to directly load 

on gel for gel purification (PCR purification sufficient for backbone (1) and (2))  

Backbone preparation 

1) Use around ~ 5 µg of DNA in a 50 µl reaction:  

       5 µl  10x Anza buffer red 

       1 µl  EcoRI (#11) 

       1 µl  XbaI  (#12) 

       x µl  DNA 

ad 50 µl H2O, @37°C at least 15-30 min, normally as long as PCR 

2) Gel purify if you release insert (e.g. from (3)), otherwise PCR purify. 

anki tipp: bring the elution buffer to 50°C, elute in 15 µl, leave column w/ buffer on shaker 

@50°C for around 5 min. Then centrifuge. Increases yield dramatically.  

3) Nanodrop it 

Insert preparation 

You can assembly even complex inserts if they have also some common homology!. 

1) Setup PCR, use 50 µl reactions with Hot FIREPol, I usually do 20 µl with Q5 or Phusion 

10    µl 5x Hot FIREPol MM 

  2.5 µl forward primer 

  2.5 µl reverse primer 

<0.5 µl DNA template (is mostly a plasmid, so use a very low amount!) 

ad 50 µl H2O.  
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2) Cycling parameters (maybe have to be optimized!, here for Hot FIREPol, check manual!) 

95°C ~ 5 min (maybe longer)  

95°C 15 s        | 

Ta°C 20-30 s   | 35x   check primer Tm, run maybe gradient and use the NEB tm calculator 

72°C 1 min      |          polymerase speed is around 1 kb/min 

72°C 2 min 

10°C inf. 

3) Resolving PCR product on gel to see if band is specific 

4) Ideally gel purify PCR product 

anki tipp: Don’t use UV when doing SLiCE, it won’t work anymore!! Use only blue light. 

5) Nanodrop it. 

 

Assembly 

1) Use my small program to find the right volumes, briefly, there should be 50-100 ng of vector 

and 1:3 molar (!) excess of inserts (totally easy are 1-2 inserts) 

2) Prepare SLiCE reaction 

 1 µl T4 Ligase buffer 

 x µl Insert (e.g. EGFP) 

 y µl backbone (e.g. gel purified, EcoRI-XbaI digested (1)) 

 1 µl SLiCE 

ad 10 µl H2O 

@37°C 30 min to 60 min (the more fragments, the longer). 

 

Transformation 

1) Thaw homebrew chemical competent bacteria on ice (100 µl per trafo) 

2) Add 1-10 µl (normally transform 2 µl and then the rest in a second batch of bacteria) 

3) incubate on ice for 30 min 

4) heatshock @42°C for 30-60 s 

5) keep them on ice for around 2 min 

6) plate them on pre-warmed LB plates with appropriate antibiotic (PC enhancer has ampR) 

7) overnight @37°C. 

You should expect around 10 – 50 colonies in a good reaction. 

Problems: 

- low DNA yields  do PCR or digestion again, change amount or cycling parameters 

- no colonies  try NEBuilder or Gibson Assembly if DNA yields are low 

 use larger homology arms (best around 30-40 bp for SLiCE) 

 maybe SLiCE extract is bad (get fresh one, -80°C), always use fresh T4 ligase buffer. 

 use decent concentrations and amounts of DNA and molar ratios 

 check antibiotic of LB plates 
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See also thesis. 

 

 

 

T4 ligase buffer 5x Hot FIREPol MM    
https://bit.ly/2OWaxKy  https://bit.ly/2PtymdT     
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Colony PCR Protocol 

 

Equipment 

- A fresh LB plate (pre-warmed) with appropriate antibiotic (e.g. Ampicillin) 

- LB plate with colonies 

- 2x OneTaq Mastermix with Standard buffer (NEB #M0482L) 

- forward and reverse colony PCR primer (e.g. E1b_f and Seq_T7_PCenh) 

- 0.1 – 10 µl filter tips 

- P2 or P10 pipette 

- Gel electrophoresis equipment (see extra protocol) 

- Racks 

Steps 

1) Label fresh plate, draw areas to indicate colony# 

2) Prepare 1x Mastermix 

 10 rxn, for 8 colonies 20 rxn, for ~16 colonies 

2x OneTaq 75 µl 150 µl 

Primer forward (10 µM)   3 µl     6 µl 

Primer reverse (10 µM)   3 µl     6 µl 

Water 69 µl 138 µl 

 150 µl (15 µl each) 300 µl (15 µl each) 

 

3) Pipette 1x mastermix in tubes 

4) take a fresh filter tip, briefly touch the colony, spread it on the corresponding colony# area on 

the new LB plate and put it directly to the prepared PCR reaction 

5) Perform 4) for each colony, close the lid and go to the thermocycler 

6) Use the following cycling parameters: 

94°C  3 min 

94°C  30 s    | 

52°C  30 s    | 35 x      adjust for primers, my sequencing primers are optimized for this 

68°C  1 min  |              adjust for fragment length, 1 kb/min 

68°C  2 min   

4-10°C inf. 

Resolve ~8 µl on a 1% - 1.5% agarose gel (in 1x TAE buffer).   

Run for around 20-30 min at ~120 V. 

Use the 1 kb NEB ladder to identify fragments of correct size. 

 

 

2x OneTaq MM      

 

     

 





Tol2 mRNA preparation 

 

Reagents 

- Tol2 transposase plasmid (pCS-zT2TP) 

- CutSmart NotI-HF or Anza NotI with respective buffer 

- Ambion mMESSAGE mMACHINE (SP6) kit 

- DNase- and RNase-free water 

- LiCl (shipped with Ambion kit, but make sure it’s there) 
- 70 % Ethanol (stored at -20 °C) 

- Nanodrop 

- Filter tips and high grade microfuge tubes 

 

Digest plasmid 

Use a 50 ul reaction 

5 ul  10x Anza or CutSmart buffer 

x ul   5 ug plasmid 

1 ul  NotI enzyme (depending on buffer system) 

ad 50 ul  ddH2O  

@ 37°C, 3-5 h (to ensure highly complete digestion) 

Recover DNA by PCR purification kit  

(e.g. NucleoSpin, Machery-Nagel, follow manufacturer’s protocol, elute in RNase-free H2O). 

 

In vitro transcription (taken from kit manual) 

 

 



 

 

 

Dilute RNA to 175 ng/ul concentration and store 4 ul aliquots in PCR tubes at -20°C. 

Use 1 ul of tol2 mRNA in a 10 ul injection reaction (final concentration: around 18 ng/ul, can 

be increased, embryos are very tolerant to high RNA concentrations, but not DNA!!) 

Incubate at 

least 2 h 



Danieau solution 

 
Recipe for 1 l of 30x Danieau solution 

 

Reagent Amount  Concentration 

NaCl 101.7 g 1740 mM 

KCl 1.56 g 21 mM 

MgSO4 * 7 H2O 2.96 g 12 mM 

Ca(NO3)2 4.25 g 18 mM 

HEPES 35.75 g  150 mM 

 

Use a beaker of 1 L size. 

Add around 600 mL of ddH2O. 

Add an magnetic stir bar to the water. 

Add salts one after another while stirring. 

Check pH with pH meter (wash electrode extensively with water beforehand). 

Adjust pH with NaOH (you will need A LOT!) to 7.6 

Store at 4°C. 

Note: Don’t check pH with pH paper, the massive amount of salt affects the indicator! 

 Will work for 1x Danieau solution. 

 

For 6 L of 1x Danieau solution 

Add 200 mL of 30x Danieau stock to 10 L bottle. 

Add ddH2O to 6 L. 

Check pH with pH paper (should be 7.6). 

Add 3-4 drops of methylene blue 





Prepare chemical competent cells 

 

Prepare TSS Buffer (Chung et al., P.N.A.S. 1989) 

5g PEG 8000 (or 3350) 

1.5 mL 1 M MgCl2 (or 0.30 g MgCl2 * 6 H2O) 

2.5 mL DMSO 

To 50 mL LB 

 

Sterile filter, store at 4°C for around 3-6 months. 

Check pH, should be slightly acidic, around ~ 6.5 

 

1. Grow 1 µl E.coli in 50 mL LB or SOB medium overnight 

DON’T USE ANY ANTIBIOTICS!! 
 

2. Dilute 1:100 starter culture in 50 mL fresh LB or SOB medium 

 

3. Grow until OD600 = 0.2 – 0.5 

 

4. Put everything, TSS, culture and plenty 1.5 mL Eppendorf tubes, on ice. 

Use dry ice to cool down the storage box. 

 

5. Centrifuge for 10 min at around 3,000 rpm at 4°C (big centrifuge!) 

 

6. Remove supernatant carefully and completely!! 

 

7. Resuspend pellet in around 10% TSS of original culture (i.e. 5 mL for 50 mL final culture) 

 

8. Aliquot in 100 µl (use 1.5 mL Eppendorf tubes) 

 

9. Freeze immediately in the storage box (dry ice) and then → -80°C. 

 

10. Next day: Test performance using a random plasmid and compare it to previous batch 

 

Use 100 µl for transformations. 

 

Original recipe 
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Grouping of distinct responses reveal five clusters tuned to the whole-field moving filter. A) Sampling 

coverage of functional imaging experiments. Colormaps indicate the number of fish sampled. B) Heatmap of all 

ROIs with z-scored fluorescence. Stimuli are indicated by off for off edge, lu for luminance transition, sine for a 

forward moving sine grating and f for the forward filter and r for the reverse filter (see Methods). X-ticks indicate 

when stimuli are on the fish head, different stimuli are separated by light gray lines. C) Average activity profile of 

each cluster with same stimuli presented as in A).









frame id time stim id stim stim duration associated parameter
0 0,216432 0 dark 5 0

22 4,977936 0 dark 5 0
23 5,194368 1 forward 5 0
45 9,955872 1 forward 5 0
46 10,172304 2 forward 5 3
68 14,933808 2 forward 5 3
69 15,15024 3 forward 5 0
91 19,911744 3 forward 5 0
92 20,128176 4 forward 5 10

114 24,88968 4 forward 5 10
115 25,106112 5 forward 5 0
137 29,867616 5 forward 5 0
138 30,084048 6 forward 5 30
160 34,845552 6 forward 5 30
161 35,061984 7 forward 5 0
183 39,823488 7 forward 5 0
184 40,03992 8 reverse 5 10
206 44,801424 8 reverse 5 10
207 45,017856 9 reverse 2,5 0
218 47,398608 9 reverse 2,5 0
219 47,61504 10 left 2,5 0
230 49,995792 10 left 2,5 0
231 50,212224 11 left 5 10
253 54,973728 11 left 5 10
254 55,19016 12 left 5 0
276 59,951664 12 left 5 0
277 60,168096 13 right 5 10
299 64,9296 13 right 5 10
300 65,146032 14 left 2,5 0
310 67,310352 14 left 2,5 0
311 67,526784 15 OKR 2,5 0
322 69,907536 15 OKR 2,5 0
323 70,123968 16 OKR 5 1
345 74,885472 16 OKR 5 1
346 75,101904 17 OKR 5 0
368 79,863408 17 OKR 5 0
369 80,07984 18 OKR 5 -1
391 84,841344 18 OKR 5 -1
392 85,057776 19 OKR 5 0
414 89,81928 19 OKR 5 0
415 90,035712 20 OKR 5 1
437 94,797216 20 OKR 5 1
438 95,013648 21 OKR 5 0
461 99,991584 21 OKR 5 0
462 100,208016 22 OKR 5 -1
484 104,96952 22 OKR 5 -1
485 105,185952 23 OKR 5 0
507 109,947456 23 OKR 5 0
508 110,163888 24 OKR 5 1
530 114,925392 24 OKR 5 1
531 115,141824 25 OKR 5 0
553 119,903328 25 OKR 5 0
554 120,11976 26 OKR 5 -1
576 124,881264 26 OKR 5 -1
577 125,097696 27 OKR 2,5 0
588 127,478448 27 OKR 2,5 0
589 127,69488 28 OKR_left 2,5 0
599 129,8592 28 OKR_left 2,5 0
600 130,075632 29 OKR_left 5 1
622 134,837136 29 OKR_left 5 1
623 135,053568 30 OKR_left 5 0
645 139,815072 30 OKR_left 5 0
646 140,031504 31 OKR_left 5 -1
668 144,793008 31 OKR_left 5 -1
669 145,00944 32 OKR_left 2,5 0
680 147,390192 32 OKR_left 2,5 0
681 147,606624 33 OKR_right 2,5 0
692 149,987376 33 OKR_right 2,5 0
693 150,203808 34 OKR_right 5 1
715 154,965312 34 OKR_right 5 1
716 155,181744 35 OKR_right 5 0
738 159,943248 35 OKR_right 5 0
739 160,15968 36 OKR_right 5 -1
761 164,921184 36 OKR_right 5 -1
772 167,301936 37 OKR_right 2,5 0
773 167,518368 38 dark 2,5 0
784 169,89912 38 dark 2,5 0
785 170,115552 39 flash 1 190
789 170,98128 39 flash 1 190
790 171,197712 40 dark 1 0
793 171,847008 40 dark 1 0
794 172,06344 41 flash 1 190
798 172,929168 41 flash 1 190
799 173,1456 42 dark 1 0
802 173,794896 42 dark 1 0
803 174,011328 43 flash 1 190
807 174,877056 43 flash 1 190
808 175,093488 44 dark 1 0
812 175,959216 44 dark 1 0
813 176,175648 45 flash 1 190
816 176,824944 45 flash 1 190
817 177,041376 46 dark 5 0
859 186,13152 46 dark 5 0
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SUMMARY

Protein engineering involves generating and

screening large numbers of variants for desired prop-

erties. While modern DNA technology has made it

easy to create protein diversity on the DNA level,

the selection and validation of candidate proteins

from large libraries remains a challenge. We built a

screening platform that integrates high-quality fluo-

rescence-based image analysis and robotic picking

of bacterial colonies. It allows tracking each individ-

ual colony in a large population and collecting quan-

titative information on library composition during the

protein evolution process. We demonstrate the po-

wer of the screening platform by optimizing a dim

far-red-emitting fluorescent protein whose bright-

ness increased several fold using iterative cycles of

mutagenesis and platform-based screening. The re-

sulting protein variantmCarmine is useful for imaging

cells and structures within live tissue as well as for

molecular tagging. Overall, the platform presented

provides powerful, flexible, and low-cost instrumen-

tation to accelerate many fluorescence-based pro-

tein optimization projects.

INTRODUCTION

Directed protein evolution involves generating and screening

large numbers of diversified variants (J€ackel et al., 2008; Packer

and Liu, 2015). While diversification of proteins on the DNA level

is straightforward, the analysis of generatedmutants can be time

consuming and laborious. Fluorescent proteins, biosensors, and

other proteins whose functions can be coupled to fluorescence

readout are particularly favorable classes of proteins for imag-

ing-based screening (Heim and Tsien, 1996; Miyawaki et al.,

2005; Goedhart et al., 2010; Rodriguez et al., 2017). Due to the

ease of transforming libraries and retrieving selected DNAs,

Escherichia coli has been a preferred vehicle to express and

screen diversified proteins (Chen et al., 2001; Castle et al.,

2004; Packer and Liu, 2015). Critical steps are the image analysis

to identify improved protein variants and the retrieval of identified

bacterial colonies from an agar plate. When performedmanually,

colony picking is a slow, laborious, and error-prone process.

Automated colony pickers have been built (Jones et al., 1992),

and there are high-end commercial versions available for the

many facets of genomics. However, they are expensive, not

well suited to protein engineering applications, typically do not

have the necessary flexibility in fluorescence image analysis,

and do not allow collecting information on library composition

during the different steps of a protein evolution process. To re-

move this bottleneck, we constructed a low-cost, customizable

bacterial colony screening station that combines flexible online

fluorescence image analysis with a robotic colony-picking

component. This integrated approach increases throughput for

directed evolution applications, while reducing human error.

Furthermore, a focus was put on improving data quality, by

enhancing wide-field fluorescence imaging capability and anal-

ysis of this setup. To demonstrate one possible use of the

screening platform, we set out to improve a far-red-emitting fluo-

rescent protein. There is a continuing drive to engineer brighter

and more red-shifted fluorescent proteins due to the favorable

mammalian tissue penetration above 600 nm (Tromberg et al.,

2000). We chose to improve the far-red-emitting fluorescent pro-

tein mNeptune684 (Li et al., 2016), a protein with the most red-

shifted emission maximum of current fluorescent proteins apart

from the co-factor-dependent bacterial phytochromes.

RESULTS

An Imaging-Based Bacterial Colony Screening Platform

The platform was built around a camera system imaging bacte-

rial colonies on agar plates or blotted onto filter membranes (Fig-

ures 1 and S1, Data S1). For the three-dimensional (3D) manipu-

lation of the picking arm, we used a delta robot configuration

(Clavel, 1988; Merlet, 2006) adapted from an open-source 3D

printer design (Figure 1A). This manipulator setup allowed 3D

movement of the picking head within a cylindrical volume with

a diameter of 210 mm and a height of 200 mm, with a resolution

of 0.05mm in X/Y/Z.We also designed a picking head (Figure 1B)

consisting of a ferromagnetic metal rod at the core of a copper

coil. When put under load, the induced magnetic field lifted the

rod and magnetized it, which allowed for the attachment of a

small disposable steel sphere. The picking head was then

maneuvered to dip the sphere briefly into a bacterial colony of

interest. Subsequently, the picking head was directed to a

selected well of a 96-well plate for inoculating liquid medium

into which the steel sphere was dropped by turning off the elec-

tromagnet. For each colony a fresh sterilized steel sphere was
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used, omitting the need for sterilization between picks. For fluo-

rescence excitation we used single-color light-emitting diodes

(LEDs) fitted with collimating lens assemblies and fluorescence

filters and placed them at the end of a 100 mm steel tube (Fig-

ure 1C). To detect non-fluorescent colonies, the platform was

also fitted with bottom-up illumination using a white LED array.

The complete screening setup was housed in a 50 cm 3 50 cm

3 60 cm box made from medium-density fiber plates to exclude

ambient light. A charge-coupled device (CCD) camera was

mounted on top of the platform and fitted with a zoom lens to

capture the plate at high resolution. To allow fluorescence imag-

ing, a custom-made filter wheel for large-diameter emission fil-

ters was placed in front of the camera assembly (Figure 1). Inte-

grated control of the platform was achieved with a standard

microcontroller board and custom software for hardware con-

trol. For image analysis (Figure 2), automatic plate detection

and bacterial colony detection algorithms were implemented.

Within a single screening session, 50,000–100,000 clones could

be conveniently tracked and analyzed and colonies expressing

proteins with desirable properties identified for picking. No spe-

cial precautions for sterility were necessary, apart from auto-

claving steel spheres and medium before use.

Platform-Based Engineering of mCarmine

Our optimization started with mNeptune684 (Li et al., 2016),

a fluorescent protein with large Stoke shift and an emission

maximum at 684 nm. mNeptune684 and randomized libraries

thereof were fused to the bright cyan- to green-emitting fluores-

cent protein mTFP1 (Ai et al., 2006), which served as a reference

fluorophore (Figure 2C). Fusions were assayed using ratiometric

image processing to account for variations in protein expression

levels seen between E. coli colonies after transformation or

between different libraries assayed over weeks. We executed

Figure 1. An Imaging-Based Screening

Platform to Assist Protein Engineering

(A) Scheme of the analysis and picking station.

Wide-field CCD camera imaging (1) is used to

analyze performance of library variants expressed

in E. coli on agar plates (10). Up to 800 colonies

can be assayed simultaneously and can be picked

by the robotic arm (6) for further analysis. Scale

bar, 10 cm.

(B) Picking head design. A steel rod (20) inside a

copper coil (19) with corresponding insulation (21)

is magnetized. It can be used to engage and trap a

small-diameter steel sphere (22). The steel sphere

can then be transported throughout the 3D volume

by the robotic arm, be dipped into a bacterial

colony, and then dropped into awell of a multi-well

plate filed with liquid medium for inoculation.

(i) Top view; (ii) side view; (iii) cut side view with

electromagnet engaged and a steel sphere

attached; (iv) cut side view with electromagnet

disengaged. Scale bar, 2 cm.

(C) Scheme of illumination device with internal

LEDs. Scale bar, 1 cm.

several modes of mutagenesis and

variant selection using the screening

platform. Briefly, in small-scale selec-

tions the robotic arm was used to pick identified variants with

higher relative brightness per plate for further analysis. For large

scale screens of up to 100,000 bacterial colonies, several hun-

dred plates were screened and analyzed using the station, and

final pick suggestions were made by the software post analysis

for individual plates and colonies according to customized per-

formance criteria. Overall, screening time per plate depended

on a number of factors: image acquisition, image processing,

and eventually picking of colonies. The time required varied

depending on brightness of the fluorescent proteins; the

number of channels to be acquired; and, in the case of

biosensor screening (data not shown), the time it takes to obtain

Fmin and Fmax (or Rmin and Rmax) in successive images. In

most cases, image acquisition (�3 min) and processing

(�20 s–1.5 min/plate) required the major time in a particular

screening step. Density of colonies was typically 500–800 per

plate. Higher densities of 800–1,000 colonies per plate are

technically possible, but in our experience densities exceeding

800 colonies per plate often resulted in fusion of colonies and

double colonies, which would not be picked because of colony

border mixing.

Summaries of the outcomes of several mutagenesis steps on

the brightness distribution of variants are shown in Figure 3 and

are discussed in Method Details. Notably, during the evolution

process, after each mutagenesis step the effects on the total li-

brary composition could be monitored. The software kept track

of each individual colony, its relevant property of interest, and

coordinates. Parental mNeptune684 expressed and matured

poorly in E. coli. We first subjected mNeptune684 to random

mutagenesis by error-prone PCR. Dimeric or tetrameric rever-

tants (R126I,S,T,G) initially dominated the pool of brighter vari-

ants in error-prone PCR mutagenesis of mNeptune684. Only

one variant, mNeptune684 H161Y/P163T, was found that was
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brighter and did not show a reverting mutation in position 126. In

order to further disfavor dimerization, we engineered a library

randomizing residues 107–109 within the AC interface using

cassette mutagenesis (Reidhaar-Olson and Sauer, 1988) and

seamless phage recombinase–based ligation cloning (Zhang

et al., 2012). The oligonucleotides used here contained biased

diversity favoring charged residues in position 107 and 109 to

break hydrophobic interactions within the interface (Figure 3B).

We performed a small-scale screen of 2,500 clones to cover all

72 possible variants within the spectrum of the biased library.

The mutations T107K, A108V, and T109K emerged, maintaining

brightness and providing additional stabilization of the mono-

meric state. We next performed cassette mutagenesis on

stretches of 3–5 neighboring amino acids in selected regions

for a more exhaustive and focused diversification of amino

Figure 2. Image Analysis and Colony

Selection

(A) Inverse greyscale presentation of a fluores-

cence image of an agar plate with bacterial colonies

expressing a fusion protein consisting of the

reference protein mTFP1 and a variant of mNep-

tune684. The pink line shows the position of a

line plot.

(B) Line plot along the x axis of the plate as shown in

(A). The blue/cyan line displays values of themTFP1

reference channel. The red line reports values

within the mNeptune684 measurement channel.

Identified colonies along the line are highlighted

with an asterisk. 1 pixel (px): 76 mm.

(C) Example of analysis of variants after diversifi-

cation. Bacterial colonies are plotted according to

their fluorescence values in the mNeptune684

channel and an mTFP1 reference channel. Diver-

sified mNeptune684 variants had been fused to

reference protein mTFP1. Red clones were classi-

fied as ‘‘no expression’’, indicating no functional

fluorescent mNeptune684 variant, and excluded

from further evaluation. Blue clones were above

performance threshold, green clones were even-

tually selected for further analysis.

acids. We focused on regions with high

levels of variability in alignments of far-

red fluorescent proteins derived from the

closely related precursors eqFP578/611

(Figures 3B and S2). Randomizations in

several regions were screened (Figure 3).

Cassette mutagenesis of region 175–178

yielded a distinctively brighter variant by

introducing the mutations I175Q, C176T,

and N177F. Cassette mutagenesis was

furthermore used to probe several other

regions for enhancement of brightness

using this background but did not reveal

any additive effects. Finally, an extensive

round of error PCR mutagenesis was per-

formed in which about 100,000 variants

were scanned and processed using the

station (Figure 3). Interestingly, all picked

variants from this round had one of four

possible mutations: C65S, N75K, T77P, and I125V, all of which

have occurred either in mMaroon1 (Bajar et al., 2016) or in

mGarnet2 (Matela et al., 2017) before. Some variants carried

one of these four mutations and one or more other mutations.

Most double mutations proved to be worse than the related

single-mutation variant. Saturated screening that targeted

only residues 65 and 125 in unison did not yield further

improvements.

In Vitro Characterization of mCarmine

The final selected variant was named mCarmine. On the back-

ground of parental mNeptune684 it harbored mutations C65S,

T107K, A108V, T109K, H161Y, P163T, I175Q, C176T, and

N177F. mCarmine had an extinction coefficient of 83,000 and

a quantum yield of 7%, bringing its brightness close to that of
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bacterial phytochromes (Shcherbakova et al., 2015) with and

ahead of other fluorescent proteins with emission maxima

beyond 670 nm (Table S1). Its excitation and emission maxima

were 603 nm and 675 nm, respectively (Figure 4A, Table S1).

The pKa was determined to be 5.6, which renders it very favor-

able for cell applications because, under physiological pH,

essentially all of the protein is in the fluorescent anionic state,

in contrast to the parental mNeptune684 with a pKa of 6.5

(Table S1). mCarmine was found to be strictly monomeric, as

determined with analytical size exclusion chromatography

(Figure S3), while parental mNeptune684 and revertants

incorporating R126I remained in a dimeric or tetrameric state,

respectively.

Figure 3. Evolution of mCarmine

(A) The effects of successive rounds of mutagen-

esis on the brightness distribution of the resulting

library expressed in E. coli are depicted. Only

colonies with set fluorescence values over back-

ground in both recorded channels were included.

Brightness is calculated as relative performance

index (PI). Themedian of the distribution is marked

as black horizontal line. Within each population the

PI, identity and coordinates of every bacterial

colony are kept track of. Blue signature lines

mark the median of the parental mNeptune684

brightness and its multiples. The lower graph

indicates the total number of colonies per

library. Fl= fluorescence intensity at wavelength,

P = performance, ~PWT = median performance of

mNeptune684.

(B) Crystal structure of the eqFP578 (PDB: 3PIB)

precursor of mNeptune684 with highlighted re-

gions for cassette mutagenesis. Dotted lines show

the A/C dimer interface, where residue 126 (yellow)

interacts with region 107–109 (turquoise).

Performance of mCarmine in

Tissue Labeling

Due to its long emission wavelengths,

mCarmine should have advantages for

imaging deeper into tissue than more

blue-shifted fluorescent proteins. We

tested its performance in a live larval

zebrafish preparation (Figures 4B–4D).

We cloned an mTFP1-mCarmine fusion

protein downstream of a UAS cassette

(UAS:mTFP1-mCarmine) and injected

this construct in an HuC (elavl3) Gal4

driver line that allows strong pan-

neuronal labelling (Park et al., 2000;

Halpern et al., 2008; Asakawa and Ka-

wakami, 2008). In anesthetized 6–7-

day-old zebrafish larvae, we used

confocal microscopy to image mTFP1

and mCarmine channels (442 nm

and a 633 nm laser excitation, respec-

tively) simultaneously. To compare

performance in terms of scattering

and signal-to-noise ratio, we acquired

z stacks that covered around 300 mm

dorsal to ventral (Figure 4B). In a very dorsal plane, we

adjusted both laser powers to achieve comparable fluores-

cence signals in both channels. We used these exact laser

settings to acquire the whole z stack. In addition, to generate

Figure 4D-iii, in a very ventral plane (here at the interpeduncu-

lar nucleus [IPN]), we re-adjusted the laser power to cover as

much of the dynamic range of the hybrid detector as possible

to again obtain comparable fluorescence signals in both chan-

nels. To compare mTFP1 and mCarmine quantitatively, we

determined a performance index (PI) in a deconvolved z stack

with a theoretical point spread function for mTFP1 and

mCarmine (Kirshner et al., 2013; Sage et al., 2017) that covers

the IPN (around 240 ± 28 mm deep) with re-adjusted laser
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Figure 4. Characterization of mCarmine

(A) Excitation and emission spectra of purified recombinant

mCarmine.

(B) A 6-day old zebrafish larva pan-neuronally expressing

mTFP1 fused to mCarmine was imaged in a column dorsal

to ventral, including the ventrally located interpeduncular

nucleus (IPN).

(C) Performance index (PI) normalized to mTFP1. PI is

calculated for each plane in the z stack of panel D (iii), and

based on mean fluorescence per plane divided by properties

of the fluorophore (see STAR Methods). Error bars represent

SD; n = 2.

(D) Confocal images from cross-sections of the columns

as shown in (B) with corresponding laser power used

(percentage of maximal available power, turquoise and

magenta for 442 and 633 nm laser lines, respectively. (i)

Cross-section of a dorsal plane, used to calibrate laser

powers across channels. (ii) Cross-section at the IPN with

same laser powers as in (i). (iii) Deconvolved maximum

intensity projection of a z stack spanning the whole IPN

(�50 mm), using re-calibrated laser powers. Note the much

higher laser power needed for the brighter mTFP1 fluo-

rophore. Inset shows differences in fine structures between

channels. Scale bar, 20 mm.
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settings. The greatly enhanced performance of mCarmine in

deeper tissue sections was evident. Notably also, auto-fluo-

rescence in the mTFP1 channel generated by the skin and

other structures was barely visible in the mCarmine channel

(Figure S4).

Subcellular Protein Fusions Using mCarmine

The increase in brightness of mCarmine obtained by screening

using our microbial expression system was maintained in

mammalian cells, as verified by fluorescence-activated cell sort-

ing (FACS) analysis (Figure S5). We subsequently tested the use

of mCarmine as a molecular tag by generating a number

of fusions with subcellular targeting motifs to either the N or

C terminus of mCarmine. These fusions were finally examined

in HeLa cells (Figure 5). Overall, they showed the expected local-

ization when targeted to organelles and subcellular structures.

These included targeting to the plasma membrane via fusion of

an N-terminal targeting motif derived from GAP-43 (Figure 5A),

to mitochondria (Figure 5B), mCarmine-a-tubulin fusions (Fig-

ure 5C), targeting to peroxisomes (Figure 5D), labeling of actin fil-

aments via lifeact peptide fusion (Figure 5E), localization to the

ER (Figure 5F), targeting to the nucleus via a nuclear localization

sequence (Figure 5G), nuclear export (Figure 5H), or fusions of

mCarmine to histone2B (Figure 5I). Performance of the sensitive

visual OSER (organized smooth ER) assay (Constantini et al.,

2012; Cranfill et al., 2016) for strictly monomeric state yielded

a value of 56% of correctly appearing cells for mCarmine

(Table S2).

Figure 5. Subcellular targeting of mCarmine

in HeLa cells

HeLa cells were transfected with mammalian

expression vectors expressing the following

mCarmine fusions: (A) Gap43-mCarmine, targeting

to plasma membrane; (B) mito-mCarmine, target-

ing mitochondria; (C) mCarmine-a-tubulin, target-

ing cytoskeleton; (D) mCarmine-SKL, targeting

peroxisomes; (E) Lifeact-mCarmine, targeting

actin filaments; (F) ER-mCarmine, targeting ER;

(G) mCarmine-NLS, nuclear import; (H) mCarmine-

NES, nuclear export; (I) H2B-mCarmine, histone

fusion. Scale bars: 5 mm.

DISCUSSION

We here present a bacterial colony

screening platform that facilitates protein

engineering projects using microbial

expression systems. It does so by inte-

grating image processing and online

data analysis with classification and pick-

ing of colonies with desirable properties.

Both plate segmentation and colony

segmentation are fully automated, which

allows fast screening through large

numbers of bacterial colonies on agar

plates or filter paper with minimal inter-

vention by an experimenter. The picking

function is optional, but in typical engi-

neering cycles it mitigates an error-prone

bottleneck in the optimization. Computer screen images may

have to be aligned with the actual agar plate, which is time

consuming, and the actual manual picking lends itself to

numerous kinds of error. To this end, we also developed an elec-

tromagnetic picking head that uses small disposable steel

spheres that are dipped into the bacterial colony of interest

and subsequently used for inoculation of liquid medium. This

turned out to be efficient, cheap, and of practical usefulness.

Industrial colony pickers, in contrast, either use more expensive

disposable plastic tips or high-resistance wire tips that are ster-

ilized between each pick by heating through current injection,

leading to build-up of burnt material on the tip over time. The

comprehensive analysis of each expressed library gives a

good overview of a given mutagenesis step on the overall

composition of the population over iterative rounds of diversifi-

cation and screening and allows comparing multiple libraries

assayed over weeks. Naturally, microbial expression systems,

in spite of all advantages, have limitations in the range of proteins

that can be expressed and engineered.

To give an example of what can be done with the platform, we

took on an engineering project that aimed at improving bright-

ness of a fluorescent protein variant. The parental protein we

chose was the far-red-emitting mNeptune684 (Li et al., 2016).

Over a number of documented and illustrated steps of mutagen-

esis and screening, we substantially improved the brightness

of the protein by 4–5-fold, demonstrating the power of the

screening platform for such an optimization task. At the same

time, we also engineered the protein to improve monomeric
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state and to ensure favorable pKa and good expression proper-

ties. The final variant, mCarmine, has great usefulness for tissue

labeling and subcellular targeting. In some applications in the

far-red to near-infrared regime, it may rival bacterial phyto-

chromes, whose fluorescence is dependent on the availability

of co-factors.

Finally, the screening station developed here can be con-

structed with a small budget (overall costs �V1500 without

camera), affordable for most laboratories. If required, it can be

downgraded for simpler colony-picking tasks, such as blue-

white screening of colonies in cloning projects. It can be easily

adapted for further optimizing selected genetically encoded

biosensors (Belal et al., 2014; Thestrup et al., 2014) (our unpub-

lished data), switchable proteins (Brakemann et al., 2011), for

optimizing photostability (Wiens et al., 2018), and for the

improvement ofmany other proteins for which functional fluores-

cence readout is feasible. It could also accommodate high-end

laser excitation light sources for two-photon optimization of fluo-

rescent proteins and biosensors (Stoltzfus et al., 2017). Thus, we

believe it provides valuable instrumentation for many protein

engineering projects.

SIGNIFICANCE

Protein engineering involves screening large libraries of

diversified variants, but often the instrumentation used is

not matched to the task. We here developed a fluores-

cence-based platform for screening proteins that integrates

image analysis and instructed robotic picking of bacterial

colonies expressing variants with desirable properties. It

allows tracking each individual colony in a population and

collecting quantitative information on library composition

during each individual step of the protein evolution process.

We used it to engineer mCarmine, a far-red-emitting mono-

meric fluorescent protein with peak emission at 675 nm and

substantial emission beyond 700 nm. Starting from a dim

parental protein, we could boost brightness several fold,

combining mutagenesis protocols and screening using the

platform. As its fluorescence is not dependent on co-

factors, mCarmine may rival bacterial phytochromes in pro-

tein fusions and tissue imaging applications in the far-red

to near-infrared emission range. The low-cost platform

described here can be used to expedite numerous protein

engineering projects.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

E. coli XL1 blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1

lac [F0 proAB lacIqZDM15 Tn10 (Tetr)]

Invitrogen Cat#200249

E. coli Bl21 (DE3) gold

E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal l(DE3) endA Hte

Invitrogen Cat#230132

E. coli PPY

F– endA1 recA1 galE15 galK16 nupG rpsLDlacX74 F80lacZDM15

araD139D(ara,leu)7697 mcrA D(mrr-hsdRMS-mcrBC) cynX::[araC

pBAD- reda EM7- redb Tn5-gam]l–

Zhang et al., 2012 N/A

Chemicals, Peptides, and Recombinant Proteins

NcoI-HF� New England Biolabs Cat#R3193S

DpnI New England Biolabs Cat#R0176L

PvuI New England Biolabs Cat#R0150S

EcoRV-HF� New England Biolabs Cat#R3195L

T4 DNA Ligase Reaction Buffer New England Biolabs Cat#B0202S

Herculase II Fusion DNA Polymerase Agilent Technologies Cat#600679

GeneMorph II Random Mutagenesis Kit Agilent Technologies Cat#200550

Phenylmethanesulfonyl fluoride Sigma Aldrich Cat#P7626

Pepstatin A Sigma Aldrich Cat#P5318

Leupeptin Sigma Aldrich Cat#L0649

G418 disulfat salt Sigma Aldrich Cat#A1720

Lipofectamine 3000 transfection reagent Invitrogen Cat#L3000015

Penicillin-Strepomycin-Glutamine (100X) Thermo Fisher Cat#10378016

DMEM, high glucose, pyruvate, no glutamine Thermo Fisher Cat#21969035

Fetal Bovine Serum, qualified, heat inactivated, E.U.-approved,

South America Origin

Thermo Fisher Cat#10500064

Opti-MEM I Reduced Serum Medium, no phenol red Thermo Fisher Cat#11058021

Hoechst 33342 Solution Thermo Fisher Cat#62249

Experimental Models: Cell Lines

HELA

Gender: female

DSMZ GmbH Cat#ACC 57

Experimental Models: Organisms/Strains

Danio rerio TL strain with mitfa-/- knockout (Nacre)

HuC:Gal4

Kimura et al., 2008 N/A

UAS:mTFP1-mCarmine This work N/A

Oligonucleotides

Primers See Table S3 This work N/A

mNeptune684 de novo synthesis This work N/A

Recombinant DNA

pRSET-B Thermo Fisher Scientific

(Invitrogen)

Cat#V35120

pcDNA3 Invitrogen N/A

mTFP1-pBAD Addgene Cat#54553

UAs:mTFP1-mCarmine This work N/A

mCarmine This work https://www.ncbi.nlm.nih.gov/

nuccore/MH062789

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Oliver

Griesbeck (griesbeck@neuro.mpg.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacterial Strains

Bacterial strains E. coli XL1Blue1 (for screening) (Stratagene) and E.coli BL21 (DE ) (for protein purification) (Invitrogen) were

grown over night at 37�C in 50 mL auto-inductive LB (LB supplemented with 0.05% D-(+)- glucose (w/v), 0.2% lactose (w/v),

0.6% glycerol (v/v).

Cell line

Hela cells (Human, female) were cultured in Dulbecco’s Modified Eagle Medium supplemented with 10% fetal bovine serum.

Zebrafish

All zebrafish procedures were approved by the Regierung von Oberbayern via the TVA 55-2-1-54-2532-82-2016.

METHOD DETAILS

Screening Platform: 3D Manipulator

The colony picking unit of the integrated screening system had to be rapid, precise and accurate to be able to pick individual colonies,

selected from analyzed image files. It also had to be flexible to allow for multiple configurations, e.g. inoculating liquid media or re-

plating on solidmedia. It was built to execute all essential functions of a colony picker as commonly used in cloning and genomics, e.g

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

mCarmine in pRSETB This work https://www.addgene.org/109484/

mCarmine in pcDNA3 This work https://www.addgene.org/109486/

Software and Algorithms

Marlin firmware (adapted) http://marlinfw.org/ https://github.com/GriesbeckLab

Colony picker operation software This work https://github.com/GriesbeckLab

Colony analysis software This work https://github.com/GriesbeckLab

Other

LUXEON Rebel Royal Blue Philips Part#LXML-PR01

LUXEON Rebel Blue Philips Part#LXML-PB01

LUXEON Rebel Cyan Philips Part#LXML-PE01

LUXEON Rebel Green Philips Part#LXML-PM01

LUXEON Rebel Amber Philips Part#LXML-PL01

LUXEON Rebel Deep Red Philips Part#LXM3-PD01

LUXEON Neutral White Philips Part#LXML-PWN1

Star Board Luxeon Rebel LED-tech.de Cat#LT-1103

Carclo 20 mm Collimating lense LED-tech.de Cat#LT-0770

Carclo lense holder for Rebel LED-tech.de Cat#LT-1158

LT3080ET#PBF Farnell Cat#2102611

capacitor 1 100nF Farnell Cat#2112751

capacitor 2 1uF Farnell Cat#2112910

R1 0.1 ohms Farnell Cat#2330244

R2 7k ohms Farnell Cat#1128743

reed relais Farnell Cat#1079435

Hall effect sensor Farnell Cat#9783806

A4988 Stepper Motor Driver Carrier Pololu Cat#1182

Nema 17 Stepper Motor Gunda Automation GmbH Cat#SM17H1.3O0L

Sanguinololu 1.3b Joem https://reprap.org/wiki/Sanguinololu
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re-plating, or colony picking according to blue-white selection schemes.With these criteria inmind, the choice for the 3Dmanipulator

fell on a delta robot design. The delta robot is a type of parallel robot and was envisioned by Clavel (1988) for pick and place appli-

cations. It has three degrees of freedom in translation and allows for rapid movements. Recently, delta robot designs have become

very popular in the 3D printing community for the use in fused depositionmodeling printers (FDM). Because FDMprinters have similar

requirements as the envisioned picking system (3D manipulator with high resolution, precision and speed), its design was adapted

from an existing open source 3D printer design. Specifically, a 3D printer developed by Johann Rocholl in 2012, the ‘‘Rostock’’, was

used as the base for a colony picking system (http://reprap.org/wiki/Rostock).

The colony picking system consisted of a triangular platform, harboring the pick head, which was held in place by three pairs of

parallel arms made of light-weight carbon fiber tubes. The parallel arms in turn were mounted to three carriages, which were seated

on vertical linear motion systems. The arms were connected with the platform and the carriages via custom built, magnetic, universal

ball-joints, to ensure smooth motion in all directions with minimum tolerances. The linear motion systems, consisted of three pairs of

600 mm hardened steel rods fitted with linear bearings. They were positioned at 120� intervals on the edge of a circle with a radius of

210mm, encompassing a cylindrical volume. The carriages seated with linear bearings on these rails were driven vertically by geared

belts through the action of three NEMA 17 stepper motors (GUNDA, Germany), mounted at the base of each individual column.

Because of the fixed length of the arms and their parallel configuration, vertical movement of the three carriages could be converted

into 3 degrees of translation movement of the platform harboring the pick head. This manipulator set-up allowed three-dimensional

movement of the pick headwithin a cylindrical volumewith a radius of 210mmand a height of 200mm,with a resolution of 0.05mm in

X/Y/Z.

Screening Platform: Picking Head

For the picking-head, several important aspects had to be addressed. To avoid cross-contamination, tips had to be sterilized in

between colonies in a fastmanner. Colonies had to be picked fromagar plateswith varying heights and fromblotting paper, rendering

hard coding of height coordinates impractical. Furthermore, it was desirable to be able to inoculate small liquid cultures in deepmulti-

well plates and to re-streak clones onto selective agar plates.

In order to address these issues, we designed a unique picking head. Usually picking tips are sterilized either by heat or by dipping

them into sterilization solutions. This procedure is speed limiting and causes build-up of burnt material residues over time. Therefore,

we opted for a disposable tip, which is brought into contact with the bacterial colony, used for inoculation and then discarded. Steel

spheres (Schulz Stanztechnik GmbH, Germany) were used, eachwith a diameter of 2mmandwhichwere kept as reservoir in 96well-

plates with V-bottoms. To ensure that only a single sphere is picked up by the electromagnet single spheres were pre-sorted into

individual wells of the 96-well plate. The picking head itself consisted of a steel rod resting inside a copper coil. When put charged,

the coil induced a magnetic field inside the steel rod, lifting it vertically by around 5 mm. The magnetized rod then was used to lift the

steel spheres and transport them inside the volume of the 3D manipulator. When the electromagnet was turned off, the rod would

drop into its initial position, ejecting the steel sphere downward in the process. This simple system allowed the quick picking-up

of sterilized steel spheres from a 96-well plate, dipping them into a colony and finally transferring the sphere into a deep-well plate,

inoculating liquid medium. For each colony, a fresh sterilized steel sphere was used, avoiding cross-contamination.

Because of the varying heights of surfaces which were picked from, a responsive systemwas built to detect when the steel sphere

touched the surface of the colonies. For detection, an electrode was connected to the agar plate. The other side of the detection

circuit was connected to the steel rod. For picking, a fresh steel sphere was picked up, positioned over a colony, and then contin-

uously lowered towards the agar plate. As soon as the sphere touched the agar plate, the circuit was closed, triggering the halt of the

pick head. This same system was used to verify a steel sphere had been successfully picked up correctly. This was achieved by first

picking up a steel sphere and then lowering it over a test-electrodewith a fixed height. The detection circuit could only be triggered if a

sphere was present, if no sphere was detected, the pick headwould return and try to pick up another sphere. To prevent the steel rod

from triggering the detection circuit accidently, its end was isolated using a silicone sleeve.

The standard picking routine was as follows: A fresh sphere was picked up by the pick head and then transferred to the testing

electrode, to test whether a sphere was present. If no sphere was detected the head was sent to pick up another sphere. Successful

sphere detection would cause the pick head tomove above the selected colony. Then the headwas lowered until the detection circuit

was triggered, bringing the sphere in contact with bacterial material. The head was then lifted and moved above well of a 96-deep-

well plate filled with selective liquid medium. For inoculation, the electromagnet was turned off, depositing the sphere into the well.

The inoculation rate was 99.5%. If colonies were re-plated, the head was moved above a selective agar plate and lowered until the

detection circuit was triggered. Then the head moved in a square pattern to streak out the bacteria. These squares were placed in a

grid to allow easy identification. After plating, the steel sphere was moved over a beaker glass filled with sterilization solution and

discarded.

Screening Platform: Illumination and Image Acquisition

Bright single color and rapidly switching LEDs (Luxeon�Rebel, Phillips) were used as a light source. They were fitted with collimation

lens assemblies and placed at the end of a 100mm steel tubes. To define the excitation bandwidth, 25mmbandpass filters (Chroma)

were fitted into the other end of the steel tubes and held in place by set-screws. The combinations of LEDs and bandpass filters

initially put in place were: Luxeon� Rebel royal blue + 440/20; Luxeon� Rebel blue + 472/30; Luxeon� Rebel cyan + 500/20;

Luxeon� Rebel green + 535/25; Luxeon� Rebel amber + 575/50; Luxeon� Rebel deep red + 620/60. The tubes were then fixed
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to the roof of the screening set-up and pointed towards the plate area. The assembly focused homogenous light towards the plate,

whilst reducing scattering in other directions. Their emission spectrum could be adjusted by using different bandpass filters. To in-

crease the flexibility of the automated screening set-up, it was of use to be able to detect non-fluorescent colonies on agar plates. To

achieve that, the plate area was fitted with a translucent, opaque bottom and lit with a white LED array (Luxeon� Rebel cool white,

Phillips, Germany) from underneath. With this bottom illumination, colonies could be identified as dark silhouettes against a white

background.

For imaging a CoolSNAP–HQ (Visitron Systems, Germany) CCD camera was used. In order to capture as much light as possible

and to maximize the plate area on the camera sensor, the camera was fitted with a 50 mmmanual zoom lens (NavitarZoom 7000E).

This non-standard arrangement required a custom built filter-wheel which was placed in front of the zoom lens. The filter wheel con-

tained seven 50mm long pass or bandpass filters (485/20 nm, 505LP nm, 535/40 nm, 570/30 nm, 600/20 nm, 630/30nm, 712/30 nm)

andwas housed in a hexagonal boxmade from black acrylic. Thewheel was turned by a NEMA 17 stepper motor (GUNDA, Germany)

and fitted with a 5mm cube neodymiummagnet. This magnet could be detected by a Hall-effect sensor in the housing and served as

fixed homing point for the filter wheel. The measured illumination density on plate was 23.0 mW/cm2 for the mTFP1 (LED 472/30 nm)

channels and 16.2 mW/cm2 for the mCarmine channel (LED 620/60nm). When screening for mCarmine, exposure times were 300 ms

for the mTFP1 reference protein and 6 s for the mCarmine channel.

Screening Platform: Image Analysis

The image processing software implemented contained several features for rapid analysis and extraction of relevant information. It is

custom written in Python 2.7 and uses in many aspects the scikit-image library (Van der Walt et al., 2014)

Reference Channel

For all image processing an aligned reference channel was used. The reference channel was a channel in which all colonies were

visible. This could be the bottomwhite light illumination image which visualized all colonies, or, in case of mNeptune684 optimization,

it was the channel to detect the fused reference fluorescent protein mTFP1. E. coli auto-fluorescence could also be used for this pur-

pose (e.g. excitation at 440/20 nm, emission 535/40 nm).

Plate Detection

To eliminate the influence of objects outside of the plate area (dust particles, plate rim etc.) and to reduce processing time (as only a

fraction of the total image is processed), the plate was automatically detected and the none-plate area masked out (set to zero).The

reference channel (mTFP1; 505/5 nm) was first converted from 12 to 8 bit. Canny edge detection (Canny, 1986) was applied with

empirical values for sigma of Gaussian blur filter and high and low threshold for hysteresis (scikit-image implementation). Contour

images were then fitted with circles in size range of the bacterial plates or filter papers used. Accordingly, the best fit defined center

position and plate radius. Formasking out-of-plate areas twomaskswere created fromplate position and plate radius: an outermask

that included plate rim and an inner mask that excluded the plate rim and rim area. First the outer mask was applied to all measure-

ment channels, the inner mask was applied after background correction to eliminate rim artefacts.

Bacterial Colony Detection

Colonies were detected in the reference channel by template matching based on normalized cross-correlation, and a labeled colony

mask was created for measurements in all channels. We used a 2D Gaussian (17x17 px) as a template, as this approximates the

typical shape of a colony. We determined individual colony coordinates by computing peaks of local maxima with a correlation

cut-off of 0.65. We created a binary mask that we dilated four times to increase measurement area. This colony area mask is sub-

sequently used for measurements in all channels.

Background Correction

Background correction is a computationally costly step and the limiting factor for online image processing and therefore required a lot

of optimization. The background in each picture was calculated on a horizontal line-by-line basis using iterative reweighted asym-

metric least square smoothing (Eilers and Boelens, 2005). Since the background fluorescence of agar plates and blotting paper is

relatively homogeneous with only gradual changes and the imaging set-up allows for relatively high resolution (76 mm/px), this calcu-

lation could be significantly sped up by performing it only for every 9th horizontal line, linearly interpolating all in-between lines.

Furthermore, to improve accuracy and speed, all zero values were first stripped of both ends of each line, removing non-plate

area form the background calculations, and afterwards re-added. Background images were created for each individual picture for

each channel and then subtracted from the original picture. Finally, the inner mask from the aforementioned plate detection algorithm

was applied, to remove rim artifacts.

Measurements and Noise Level Correction

A labeled colony mask was used to measure colony intensity in every relevant background-corrected channel. Median colony inten-

sity within the colony area was determined. Because the main estimator of variant performance was a ratio of channel intensities, it

was susceptible to small values introduced by noise on low expressing variants, as these ratios can get arbitrarily high when domi-

nated by noise. The noise level was calculated bymedian +MAD (median absolute deviation) of all non-zero plate pixels (this approx-

imation assumes that the area in each plate covered by colonies is much smaller than the total plate area, this assumption does not

hold true for very densely populated plates >1500 colonies). The noise level was subsequently subtracted from the median colony

intensity. For each individual colony the plate number, location (x, y coordinates) and intensity of each channel with and without noise

and the ratio between channels was saved.
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Screening Platform: Controls and Software

All mechanical components of the screening set-up (3Dmanipulator, pick head, filter wheel) and the LEDS were controlled by a San-

guinololu 1.3bmicrocontroller board. This controller board is Arduino based andwas developed by the 3D printing community for the

use in 3D printers and CNC machines. The firmware used, was Marlin 1.0.0.0. The board was connected via USB to the screening

computer and operated through G-Code, a low-level programming language for machine tools. The Sanguinololu was fitted

with 4 Polulu stepper driver boards (website: Reprap.me) to control the four NEMA 17 stepper motors (GUNDA, Germany) (three

for the 3D manipulator, one for the filter wheel). The LEDs and the plate detection circuit were controlled using digital pins, provided

by the board. The board was powered using a 15 V DC power supply.

On the software side, the screening set-up was controlled by a Python program. This program provided high-level functions

(e.g. pick next colony, take picture etc.) and translated these functions into G-Code to communicate with the microcontroller board.

The camera was controlled through the python application programming interface (API) of mManager, version 1.4.15, which also

offered high-level camera control functions.

Protein Purification and Spectroscopy

His-tagged proteins were expressed in E.coli BL21 (DE ) (Invitrogen) over night at 37�C in 50mL auto-inductive LB (LB supplemented

with 0.05%D-(+)- glucose (w/v), 0.2% lactose (w/v), 0.6%glycerol (v/v). Cells were harvested by centrifugation (4�C,10min, 6000 x g)

and re-suspended in 10 mL Resuspension buffer (20 mM Na2PO4, 300 mM NaCl, 20 mM imidazole, Sigma Aldrich, Germany) sup-

plemented with protease inhibitors (4 mM PMSF, 20 mg/mL Pepstatin A, 4 mg/mL Leupeptin, Sigma Aldrich, Germany) and 5 mg/mL

DNase and 10 mg/mL RNAse (Sigma Aldrich, Germany). Cells were first lysed physically, through 3 freeze thaw cycles, then enzymat-

ically, by adding 1 mg of lysozyme (Sigma Aldrich, Germany) and incubating for 1 h at 37�C. Finally, the cell suspension was supple-

mented with 0.4 % Triton-X-100 (v/v) and sheered in an ultrasonic water bath (ONOREX SUPER RK 510, Bandelin, Germany) at 4�C

for 1 h. Insoluble components were pelleted through centrifugation (4�C, 30 min at 20000 x g). For purification, the supernatant was

incubated with 150 mL 6% (v/v) Nickel-IDA agarose bead suspension (Jena Bioscience, Germany) over night at 4�C under light agita-

tion. Agarose beads were collected in 1 mL propylene gravity flow columns (Qiagen, Germany) and washed with 10 mL wash buffer

(20 mM Na2PO4, 300 mM NaCl, 55 mM imidazole, Sigma Aldrich, Germany). Finally, purified protein was eluted in 600 mL elution

buffer (20 mM Na2PO4, 300 mM NaCl, 300 mM imidazole, Sigma Aldrich, Germany).

Spectroscopic measurements were acquired with 1/10 diluted protein solutions in protein buffer (25 mM TRIS-HCl, 200 mMNaCl,

pH 7.5). Absorption spectra were acquired using a Varian Cary 100 Scan spectrophotometer (Agilent, Germany). Fluorescence

spectra were acquired using a Varian Cary Eclipse fluorescent spectrophotometer (Agilent, Germany) or an Infinite M200 PRO plate

reader (Tecan, Germany).

Molar extinction coefficients for mTFP1-mNeptune684 fusion proteins were determined ratio-metrically directly from the absorp-

tion spectrum, assuming an extinction coefficient of 64000 M-1cm-1 for mTFP1 at 462 nm (Ai et al., 2006). For single fluorescent pro-

teins the molar extinction coefficient was determined through the absorption of the denatured chromophore at 452 nm (extinction

coefficient 44000 M-1cm-1) (Gross et al., 2000). Proteins were denatured using 0.5 M NaOH.

The quantum yield of new variants was determined relative to mNeptune 684 by using the slope method. First, the absorption

and emission spectra of three serial 1:2 dilutions were acquired in the same cuvette. Then, the integrated emission spectrum was

plotted against the maximum absorption and the slope was determined. For mNeptune684 a quantum yield of 0.03 was assumed

(Li et al., 2016).

Chromatography

Size exclusion chromatography was performed on an Äkta basic (GE Healthcare Life Science, USA) chromatography system using a

Superdex PC 3.2/30 column (GE Healthcare Life Science, USA) with a flow rate of 0.1 mL/min. The sample volume was 50 mL with a

protein concentration of 40 mM (2 nmol protein). PBS was used as the mobile phase in the chromatography.

Screening Vector and Error Prone PCR

For screening libraries generated through error prone PCR a screening vector with counter-selection was used to reduce back-

ground. The screening vector contained the gene for the reference protein mTFP1 and a C-terminal linker sequence (7 amino

acid TEV protease site) under the control of the T7 inducible promotor. In place of the future insert was the counter selection

gene sacB under the control of the lpp5 promoter, flanked by EcoRV sites. The sacB gene encodes the lavansucrase of B.subtilis

which is toxic in media containing sucrose (Scholz et al., 2013).

Error prone PCR mutagenesis was performed using the GeneMorph II Random mutagenesis kit (Agilent, Germany) with primers

introducing 20 base pair overhangs homologous to the screening vector. The mutated insert DNA was cloned with SLiCE cloning

(Zhang et al., 2012) into EcoRV linearized screening vector. Libraries were then transformed into chemically competent

E. coli XL1 blue (Invitrogen) and plated onto YTS agar plates (Yeast extract 5 g/L tryptone 10 g/L D-(+)-saccharose 100 g/L

agar-agar 10 g/L, 100 mg/ml ampicillin)

Cassette Mutagenesis

Cassette mutagenesis (Reidhaar-Olson and Sauer, 1988) was performed by amplifying the full parental vector encoding a

mTFP1-mNeptune684 fusion protein through PCR with primers binding adjacent to the region of interest. One of these primers
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had a degenerated overhang, introducing random codons and a 3’ 20 base pair homology towards the downstream side of the region

of interest. The amplified vector DNA was then circularized using SLiCE cloning and transformed into chemically competent E.coli

XL1 blue cells and plated on selective agar plates.

Evolution of mNeptune684

As a first strategy to improve the brightness and expression ofmNeptune684we applied error prone PCRmutagenesis. The brightest

clones picked from this library were dominated bymutations of the residue R126 (to either I, S or T), which reverted the former mono-

meric protein to a dimer (/tetramer), by removing a positive charge that was introduced to break the A/C interface into TagRFP, a

precursor of mNeptune684 (Merzlyak et al., 2007). In fact, only one clone (mNeptune 684 H162Y P163T) picked from this first library

did not display this type ofmutation. This variant displayed amuch-improved expression at 37�Candwas slightly brighter. mNeptune

684 H162Y P163T was used as the parental base for the next round of error prone PCR, which was similarly dominated by the mu-

tation of R126 (to I, S, T and G). We concluded that the dimerization improved the brightness through stabilization of the protein, and

performedmuch better than any other possible single pointmutation and therefore dominated the brightest variants. To not confound

oligomerization into future constructs, we devised two mitigation strategies. First, we screened specific region of interests via

cassette mutagenesis, which avoids the possibility of mutations in position 126 entirely. For a second strategy we introduced two

further positive residues on the other side of the A/C interface (region 107-109, TAT), which means 3 residues have to be mutated

in order to allow dimerization, which is very unlikely. This was achieved by cassette mutagenesis, introducing three biased codons

(MRNGYNMRN) having a 50% chance for a positively charged residue in position 107 and 109 and either alanine or valine in position

108. The best performing clone from this library displayed the substitutions T107K A108V and T109K, similarly to mTFP1 in the same

region. This variant in turn was slightly brighter and was used as the parental construct for further optimization.

Cassette mutagenesis was performed initially in two regions of interest 144-149 and 159-163. The rational for region 144-149 was,

that it directly covers the chromophore and therefore had several chromophore interacting residues. It wasmutated using the degen-

erated library NNBNNBNNBAACNNBNNB starting from position 144.The library deliberately kept the residue N147 in place, as it was

one of the main residues introducing the red shift into mNeptune684. Screening this library proved not fruitful, as most clones

(>100000 screened) were non-fluorescent. Because with a 5-amino acid library only about 2.5% of all possibilities could be covered

with the typical screening scale, we concluded that several critical interdependent residues lay within this stretch and therefore most

observed variants were non-fluorescent.

In parallel, we screened region 159-164, which seemed interesting because the variant arising from the first error prone PCR round

mNeptune684 H162Y P163T had mutations there. Furthermore, alignments of far red fluorescent proteins showed a high variance of

possible amino acids in this region. We addressed this region with a 4 amino acid library (NNBGGCNNBNNBNNB) keeping the

glycine in position 160 constant as it was conserved in all far red fluorescent proteins. This library led to several interesting insights.

Specifically residue 162 seemed to be very important. Variants with an asparagine in this position displayed similar spectral charac-

teristics to mNeptune684. If residue 162 was mutated to serine, the absorption and emission spectrum were blue shifted (to 555 nm

and 600 nm respectively) mimicking mRuby. If mutated to a cysteine only the emission spectrum was blue shifted (towards 650 nm)

mimicking the spectral characteristics of mNeptune. Several variants were more than twice as bright as the original mNeptune684.

Taking these results into account, we reduced the size of the library to 3 amino acids (using NNBGGCNNBAAYNNB), keeping N162

constant to avoid blue shifting. This approach had the advantage that significantly higher percentage of all possibilities could be

covered in the scope of a typical screening volume (17 % of a 4-amino acid library and 75 % with a 3-amino acid library covered

by 50000 clones).

This shrunken library was screened on the variant mNeptune684 T197K A108V T109K. Interestingly many resulting variants

were picked multiple times in different codon variations, demonstrating the robustness of the screening procedure. Most of the

brightest variants had an isoleucine in position 161 and in position 163, with position 159 being relatively flexible. The best variants

were 2.5 x brighter than mNeptune684 (6A1, mNeptune684 T107K A108V T109K R159T H161I P163I)

Following the rational of regions with high variance in the alignment of far red fluorescent proteins a third region was selected

(region 175-178), which is the adjacent beta sheet to region 159-163. Screening a 4-amino acid library (NNBNNBNNBNNB) on

the variant mNeptune684 T107K A108V T109K H161Y P163T let to the variant 8A1 (mNeptune684 T107K A108V T109K H161Y

P163T I175Q C176T N177F), which was 3.4x brighter than mNeptune684. Next, we tried to combine the results from both of these

regions by applying the 3 amino acid library for region 159-163 on variant 8A1 and similarly the 4 amino acid library of region 175-178

on variant 6A1. Both screenings did not yield brighter variants. In fact, both optimizations seemed to be incompatible with one

another.

We then performed another round error prone PCR mutagenesis. As predicted, no mutation of residue R126 was observed within

all picked variants. Interestingly, all picked variants had one of four possible mutations: C65S, N75K T77P and I125V all of which have

occurred either in mMaroon1 or in mGarnet2 before. Some variants carried one of these 4 mutations and one or more other muta-

tions. Most double mutations proved to be worse than the related single variant. Out of these 4 mutations C65S proved to be the

brightest and was late incorporated into mCarmine.

Structurally, these sets of mutations were very interesting. While C65 and I125 were relatively far apart in the sequence, they

pointed directly at each other within the beta barrel. N75, T77 and G79 formed a second cluster of very close mutations, all situated

on a loop following the central alpha helix.We screened opposing residues 65 and residue 125 in unisonwith a small library consisting
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of only 2 variable amino acids, testing all combinations. However, no further improvements were detected using this approach.

Combining all 4 beneficial mutations (C65S, N75K, T77P and I125V) from the error prone screening did not improve its brightness,

but lead to a variant that was more resistant to denaturation with sodium hydroxide, which could indicate an overall improved

stability.

During the first round of error-prone mutagenesis the mutation P163T arose, which lead to a 6 – 8 nm blue shift compared to

mNeptune684. Yang et.al extensively characterized various mutations in this position and their effect on the maximum emission

(ref mNeptune684 paper). After finalizing mCarmine we sought to red-shift its emission maximum by reintroducing various amino

acids in this position (A, C, G, N, W, P), which were described as red-shifting. This residue seemed to be very critical for various

adverse characteristics of mNeptune684. All of these mutations reduced the expression of the resulting protein, with T163G,

T163W and T163P not expressing at all. Of the remaining 3 variants T163A had the largest red-shift (Emmax at 681 nm) and best

expression. This came at the cost of a 40% reduced brightness and a shift of the pKa to 6.3.

Cell Lines and Tissue Culture

All cell lines were derivatives of HeLa andwere grown in high glucose Dulbecco’sModified EagleMediumwith high glucose, pyruvate

(Gibco) supplemented with 10% fetal bovine serum (FBS), 29.2 mg/ml of L-glutamine, 10,000 units of penicillin and 10,000 mg strep-

tomycin at 37�C with 5% CO2. Imaging experiments were carried out in Opti-MEM Reduced SerumMedium, no phenol red (Gibco).

The plasmid constructs used for stable cell line generation were linearized with PvuI restriction enzyme (NEB) before transfection and

2 mg linearized plasmid was used per transfection. G418 selection for stable cell line generation was carried out at a concentration of

600 mg/mL for 10 days. For subcellular labelling, transient transfections were performed in 3 cm diameter dishes with 2 mg circular

plasmid per transfection, and for OSER assay, transient transfections were performed in 6 cm diameter dishes with 3 mg circular

plasmid per transfection. Hoechst staining was performed immediately before imaging with 1 mg/mL for 20 minutes. Fluorescence

microscopy was performed 20 h post transfection using a Leica SP8.

Flow Cytometry

Cells were collected from 10 cm dishes and diluted in 1 mL PBS inside Falcon test tubes with cell strainer snap cap (Corning).

50,000 – 100,000 events were acquired using a BD FACSAria III cytometer and data were processed using FlowJo (FlowJo, LLC).

Events were gated by forward and side scatter in parallel to exclusion of the doublet cells, and median fluorescence values were

then calculated. The FITC channel (488-530/30) was used to measure mTFP1 fluorescence, and APC channel (633-660/20) was

used to measure mCarmine or mNeptune fluorescence.

OSER Assay

For each construct (CytERM-mCarmine, CytERM-mCardinal, CytERM-Cherry) a 3 mm2 area of transfected HeLa cells was automat-

ically imaged using a 63x water immersion objective (272 individual frames, automatically stitched). Cells were identified by nuclear

stain using image processing in ImageJ (automatic thresh holding: Triangle, 4x binary erosion, 4x binary dilation, particle analyzer)

and saved as individual 200 px x 200 px images, containing an individual cell in the center. Images from all three groups were ran-

domized into a single database and presented to 3 people for manual classification (positive control: mCherry, negative control,

mCardinal, test group: mCarmine). This ensured that the person performing classification did not know which protein was currently

presented and therefor eliminated potential bias.

Imaging Larval Zebrafish

Zebrafish (D. rerio) T€upfel-Longfin (TL) fish (female or male) carrying the mitfa-/- knockout mutation were incrossed and eggs

were injected at the 1-cell-stage with tol2 mRNA (17.5 ng/ml) and DNA (25 ng/ml). We cloned mTFP1-mCarmine downstream

to a UAS cassette using standard methods and injected the resulting construct (UAS:mTFP1-mCarmine) in fish carrying the

HuC:Gal4 transgene to drive expression pan-neuronally (Kimura et al., 2008). Injected embryos were selected at one day

post fertilization (1 dpf) for positive mTFP1 fluorescence. Fish were kept throughout at 28�C at a 14/10 h light cycle using stan-

dard protocols.

At 6-7 dpf, transient positive fish were embedded in 1.5% lowmelting point agarose, anesthetized and imaged in vivo using a Leica

SP8 and 20x high-NA water immersion objective. We excited mTFP1 and mCarmine with a 442 and a 633 nm laser, respectively. To

compare mTFP1 and mCarmine quantitatively, we determined a performance index (PI) in a deconvolved z-stack (Richardson-Lucy

algorithm with a theoretical PSF for mTFP1 and mCarmine) (Kirshner et al., 2013; Sage et al., 2017) that covers the IPN (around

240 ± 28 mm deep) with re-adjusted laser settings. The PI shows the relation of signal (the higher the fluorescence, the better) to

brightness (the brighter the fluorophore, the easier it is to emit photons and thus, cause fluorescence) and laser power (the less laser

power is needed to emit photons, the better). Thus, the following equation describes the PI with F being the mean fluorescence in a

given frame, b the brightness of the fluorophore (54.0 and 6.0 for mTFP1 and mCarmine, respectively) and b the laser power used in

that frame (ranging from 0 to 1). The PI was normalized to the mean PI of mTFP1.

PI=
F

b$b
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QUANTIFICATION AND STATISTICAL ANALYSIS

Details to descriptive statistical methods can be found in figures, their respective legends, tables, and their footnotes. The center and

dispersion of populations are either presented asmedian and plots of population spread (violin plot, histogram) ormean and standard

deviation (SD). For the performance index difference in the imaging experiments in zebra fish (Figure 4C) a two sided t-test was

performed using the implementation of the python scipy.stats library. Significance was assumed if the p-value was below 0.001.

For the randomization in the manual OSER assay evaluation the python library random was used to rearrange a database of pictures

of all 3 constructs for each person performing classifications.

DATA AND SOFTWARE AVAILABILITY

Software, firmware, circuits diagrams and 3D models are available at the Github repository: https://github.com/GriesbeckLab.

The accession numbers for the sequences and DNA samples are Genbank: MH062789 and Addgene: Plasmid #109484; Plasmid

#109486.
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Supplementary File 1: 3D Sketchup file of screening station.  

Related to Figure 1 

online 

  



 

 

Supplementary Figure 1:  Circuit diagram of screening platform 

 

Related to Figure 1 

The schematic for the interface between the Sanguinololu board and the Picking Robot. This 

diagram shows the required circuitry for the LED drivers, Hall effect sensor, probe sensor, and 

the pin-header interface to the microcontroller board using our customized firmware. 

 

 



 

 

Supplementary Figure 2:  Alignment of far-red emitting fluorescent proteins 

 

 

Related to Figure 3 B 

Mutations from mNeptune684 to mCarmine are indicated in red.  Regions subjected to 

cassette mutagenesis are shaded in color. Chromophore is shaded dark grey.  The upper plot 

is an appreciation of variability at a given amino acid residue. 

 



 

 

Supplementary Figure 3:  Analytical size-exclusion chromatography of mCarmine 

variants and related fluorescent proteins. 

 

Related to STAR Methods section Chromatography 

Elution profiles of far-red fluorescent proteins after size exclusion chromatography. The dotted 

lines denote monomer, dimer and tetramer peaks. As reference proteins cjBlue (tetrameric) 

tdTomato (pseudo-dimeric), mGarnet2 and mMaroon1 (monomeric) were used. mCarmine and 

its variants behaved as strict monomers, while mNeptune684 and mMaroon1 seemed to be in a 

mixture of monomer and dimer. While being mostly monomeric, mGarnet2 also displayed 

higher order oligomer states. Introduction of mutation R126I transforms mNeptune684 into a 

tetramer. 

 

 

 



 

 

Supplementary Figure 4:  Auto-fluorescence in mTFP1 channel in live zebrafish larvae 

 

 

 

Related to Figure 4  

We imaged a column in live anesthetized zebrafish larvae. Blue arrows indicate auto-
fluorescence generated by the fish skin that is not related to cellular expression of a 
fluorescent protein. Note that this auto-fluorescence is prominent in the mTFP1 channel but 
only barely present in the mCarmine channel.  White arrows indicate structural details of 
neuropil visible only in the mCarmine channel but not in the mTFP1 channel. Dotted line was 
reference plane for laser power adjustment. D, dorsal, V, ventral, L, lateral, M, medial. 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 5: FACS analysis in HeLa cells  

 

Related to STAR Methods section Flow cytometry 

FACS analysis for HeLa cells expressing mTFP1-mCarmine and mTFP1-mNeptune684 

fusion proteins. A: Contour plot of population fluorescent intensity in red channel vs. cyan 

channel (contours contain 90% of population) B: Ratio histogram of red/cyan channel 

 

 

 

FACS brightness analysis in HeLa cells 

 

 

 

 

 

 

 

 

 

Name Cell count Median 530/30 

fluorescence intensity 

Median 660/20n 

fluoresce intensity  

Median ratio 

630/660 

mNeptune684 39568 575 202 0.28 

mCarmine 55102 1010 1341 1.29 



 

 

Table S1: Spectroscopic properties of far-red emitting fluorescent proteins 

Related to Figure 4 

 

Name Exmax, 

[nm] 

Emmax 

[nm] 

ε 

[mM-1cm-1] 

φ ε*φ pKa 

mCarmine  
603* 675* 83 ± 0.7* 0.07 ± 0.002* 5.73 ± 0.14* 5.58 ± 0.03* 

 

mCarmine T163A 608* 682* 66 ± 1.4* 0.05 ± 0.002* 3.35 ± 0.13* 6.29 ± 0.04* 

 

mNeptune6841 

 

604 

606* 

 

684 

684* 

 

39 

53±0.4*                            

 

 

0.03 

0.03* 

 

1.17 

1.6* 

 

6.50 

6.6±0.1* 

mMaroon12 609 

608* 

657 

657* 

80 

98 ± 1.7* 

0.11 

0.17 ± 0.003* 

8.80 

16.68 ± 0.15* 

6.20 

6.17 ± 0.03* 

mGarnet23 598 

601* 

671 

668* 

105 

46 ± 0.4* 

0.087 

0.11 ± 0.002* 

9.14 

5.00 ± 0.17* 

6.80 

6.67 ± 0.07*  

TagRFP6754 598 675 46 0.08 3.68 5.7 

 

*values determined in our lab using our protocols 

n=3, n represents independent protein purifications with 3 technical replicates for each measurements 

(9 measurements total);  

mean ± SD 

 

Other values taken from 

1 Li et al 2016 

2 Bajar et al 2016 

3 Matela et al. 2017 

4 Piatkevich et al. 2013 
 

  



 

 

Table S2: OSER (Organized Smooth Endoplasmic Reticulum) assay  

Related to STAR Methods section OSER assay 

Construct #cells analyzed % healthy cells % healthy cells ref 

CytERM-mCardinal 548 50 ± 9 41.3 ± 3.61 

CytERM-mCarmine 728 56 ± 16  

CytERM-mCherry 916 89 ± 9 95.0 ± 0.81 

 

n=3, mean ± SD 

 

other values taken from 

1Cranfill et al. 2016 

 

  



 

 

Table S3: Primer table 

 

See File Table S3 

Related to Key Resource Table 
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Motor context dominates output from
purkinje cell functional regions during
reflexive visuomotor behaviours
Laura D Knogler, Andreas M Kist, Ruben Portugues*

Max Planck Institute of Neurobiology, Sensorimotor Control Research Group,
Martinsried, Germany

Abstract The cerebellum integrates sensory stimuli and motor actions to enable smooth

coordination and motor learning. Here we harness the innate behavioral repertoire of the larval

zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje

cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging

reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis.

Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of

three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes.

In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and

eye signals. Interactions between complex and simple spikes show heterogeneous modulation

patterns across different Purkinje cells, which become temporally restricted during swimming

episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells

and organized into behavioral modules across the entire cerebellum.

DOI: https://doi.org/10.7554/eLife.42138.001

Introduction
Decades of influential anatomical (Eccles et al., 1967; Palay and Chan-Palay, 1974), theoretical

(Marr, 1969; Albus, 1971; Ito, 1972) and experimental work (see Ito, 2006 for review) have led to

our current knowledge highlighting the cerebellum as a major brain region for the control of motor

behaviors. This ability to coordinate motor control and learning relies critically on the integration of

sensory and motor-related signals in Purkinje cells, as these neurons constitute the main computa-

tional units and output of the cerebellum. In order to understand the detailed operations of the cer-

ebellum, it is therefore of fundamental importance to characterize the physiology of cerebellar

neurons, especially the Purkinje cells, during sensorimotor behaviors.

Purkinje cells receive two excitatory input streams, via parallel fibers from granule cells and a sin-

gle climbing fiber from the inferior olive, that differentially modulate their spike output. Across verte-

brate species, climbing fibers from inferior olivary neurons drive complex spikes in Purkinje cells at a

spontaneous rate of ~0.5–2 Hz whereas parallel fiber inputs modulate intrinsic simple spike activity

at much higher rates (from tens of Hz in larval zebrafish up to hundreds of Hz in mammals;

Hsieh et al., 2014; Eccles et al., 1967; Raman and Bean, 1997). Simple spike output can further-

more be biased to burst or pause by the arrival of a complex spike (Mathews et al., 2012;

Badura et al., 2013; Sengupta and Thirumalai, 2015), though the precise nature of this relationship

varies across Purkinje cells (Zhou et al., 2014; Zhou et al., 2015; Xiao et al., 2014). In addition,

inhibitory interneurons may also exert considerable control over simple spike rates (Dizon and Kho-

dakhah, 2011; ten Brinke et al., 2015; Jelitai et al., 2016). Characterizing the type of information

carried by these different input streams at the population level and disentangling their relative con-

tributions to Purkinje cell output has been challenging due to the large number of Purkinje cells in
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the mammalian cerebellum (>300,000 in the rat cerebellum) receiving convergent input from

100,000 to 200,000 parallel fibers (Harvey and Napper, 1991).

Due to this complicated physiology, the anatomy of climbing fiber projections onto Purkinje cells

has primarily been used to characterize the organization of the mammalian cerebellum. Four trans-

verse zones along the rostrocaudal axis have been described (Ozol et al., 1999) that can be further

subdivided into longitudinal zones and microzones defined by additional anatomical, physiological

and molecular features (see Apps and Hawkes, 2009 for review). This organization is thought to

produce functional modules that each participate in the control of a certain set of behaviors

(Cerminara and Apps, 2011). However, since these regions have been largely defined in terms of

anatomical rather than physiological properties, the behavioral relevance of cerebellar modules is

not well understood. Purkinje cells are at the center of cerebellar circuits, integrating climbing fiber

and parallel fiber input. A detailed description of the flow of sensory and motor information within

both individual and groups of Purkinje cells is important to understand the functional significance of

these proposed behavioral modules.

A fundamental first step is therefore a population-level investigation of Purkinje cell activity dur-

ing a simple set of sensorimotor behaviors with single-cell resolution of simple and complex spikes.

In this study, we took advantage of the larval zebrafish to study how sensorimotor variables are

encoded in Purkinje cell output during reflexive, visually-driven motor behaviors. The larval zebrafish

cerebellum is anatomically organized in a typical vertebrate tri-layered configuration, with a popula-

tion of fewer than 500 Purkinje cells, each receiving inputs from many parallel fibers and likely just

one climbing fiber (Bae et al., 2009; Hashimoto and Hibi, 2012; Hsieh et al., 2014; Hamling et al.,

2015). Several studies have demonstrated a functional role for the cerebellum in the larval zebrafish

relating to motor coordination, adaptation, and learning (Aizenberg and Schuman, 2011;

Ahrens et al., 2012; Matsui et al., 2014; Portugues et al., 2014; Harmon et al., 2017). The behav-

ioral repertoire of the larval zebrafish includes robust but variable swimming and eye movements to

drifting gratings and rotating stimuli (the optomotor and optokinetic response, respectively). These

visual stimuli are particularly useful because they elicit graded, episodic swim bouts and eye move-

ments that vary across trials, allowing us to disambiguate clearly between sensory and motor

responses. We are furthermore able to extract many different features from both the visual stimuli

and motor behaviors (i.e. onset, direction, velocity) to pinpoint how Purkinje cell activity correlates

with particular features of visual stimuli at a fine temporal scale.

Using this approach, in this study we investigated three main questions: (1) how motor and sen-

sory information is encoded in individual Purkinje cells from different input pathways, (2) how the

temporal dynamics of these different information streams are encoded in Purkinje cell output, and

(3) how responses are spatially organized across the entire cerebellum. Calcium imaging across the

whole cerebellum to the same set of visual stimuli in tandem with tail-free and eye-free behavior

revealed considerable spatial segregation in Purkinje responses. We supplemented calcium imaging

data with direct electrophysiological recordings in order to examine complex and simple spikes

directly under conditions of fictive or eye-free behavior. In agreement with our imaging data, we

uncovered a consistent and striking organization of the Purkinje cell population into three functional

regions along the rostrocaudal axis that encode visual information with respect to either directional

motion onset, rotational motion velocity, or changes in luminance. The fine temporal resolution of

our electrophysiological recordings together with our ability to disentangle different sensorimotor

variables revealed that these regions receive similar motor-related parallel fiber input but are

strongly differentiated by sensory complex spike responses that encode distinct visual features with

unique temporal dynamics. We relate these findings to other work in the field to propose an over-

arching organization of the larval zebrafish cerebellum into cerebellar modules underlying innate

and flexible visually-driven behaviors.

Results

Activity in the cerebellum is arranged into functionally-defined and
anatomically-clustered symmetrical regions of Purkinje cells
Anatomical, physiological, and genetic studies of the mammalian cerebellum across species show

that the cerebellar cortex is organized into spatially-restricted regions of Purkinje cells, where a
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given region has a specific set of inputs and outputs and is thought to control the coordination and

adaptation of a different set of sensorimotor behaviors (Apps and Hawkes, 2009; Witter and De

Zeeuw, 2015). In order to describe the organization of Purkinje cell responses across the entire cer-

ebellum with high spatial resolution, we performed two-photon calcium imaging across the complete

population of Purkinje cells while presenting a variety of visual stimuli that drive variable, reflexive

sensorimotor behaviors (Easter and Nicola, 1996) to awake, head-embedded larval zebrafish whose

eyes and tail were freed and could move (Figure 1a,b; see Video 1 for an animation of visual stimuli

as presented to the fish during two-photon imaging experiments).
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Figure 1. Using population imaging and multilinear regression to describe feature responses across the Purkinje

population during visuomotor behaviors. (a) Cartoon of the embedded zebrafish preparation under the two-

photon microscope with freely-moving eyes and tail. (b) Overview of the visual stimuli presented to the awake,

behaving zebrafish during volumetric two-photon calcium imaging. See Materials and methods for further details.

The mean swimming activity and eye position for a representative fish across an entire experiment is shown

(N = 100 trials). (c) Composite bright field image of a seven dpf zebrafish larva from a dorsal view showing Purkinje

cells expressing GCaMP6s driven by a ca8 enhancer element. Scale bar = 100 microns. (d) Overview of the

multilinear regression analysis. See Materials and methods for additional details and see Figure 1—figure

supplement 1 for full list of regressors. (e) Left panels, example calcium signal from a Purkinje cell across two

planes (black trace) can be well recapitulated through multilinear regression (MLR, grey trace; R2 = 0.77). The

regressors with the seven largest coefficients (b) are shown below scaled in height and colored by their b value

(blue = positive, red = negative). The asterisk for regressor four refers to a negative value of b which results in an

inverted regressor. Right, a bar graph quantifying the normalized b values for all regressors for this cell with the

regressors shown at left labelled. See also Figure 1—figure supplements 1 and 2.

DOI: https://doi.org/10.7554/eLife.42138.002

The following figure supplements are available for figure 1:

Figure supplement 1. Functional imaging anatomy and full regressor list.

DOI: https://doi.org/10.7554/eLife.42138.003

Figure supplement 2. Calcium signals report complex spikes reliably but can also report simple spike bursts.

DOI: https://doi.org/10.7554/eLife.42138.007
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We observed frequent eye and tail move-

ments that varied across visual stimuli and across

trials (Figure 1b). Whole-field gratings moving in

the four cardinal directions elicited reflexive but

variable optomotor swimming responses. Swim-

ming episodes (bouts) were evoked in a probabi-

listic manner that was modulated by the

direction and speed of the visual motion (i.e. no

swim response to gratings in the reverse direc-

tion). A windmill pattern centered on the larva’s

head rotating with a sinusoidal velocity elicited a

reflexive optokinetic response of the eyes that

also showed some behavioral variability across trials. Moderate intensity whole-field flashes were

included to provide stimuli that evoke no acute behavioral response (Figure 1b) but that could

nonetheless contribute to ethological behaviors over longer timescales, for example relating to circa-

dian rhythms (Burgess and Granato, 2007). The visual stimuli were presented in open loop (i.e. with

no updating of the visual stimuli in response to behavior) in order to clearly dissociate the sensory

stimuli and any behavioral response. It should be noted that visually-driven motor behaviors are

robust on average but episodic and variable across trials, allowing us to clearly disambiguate sensory

and motor contributions to neuronal activity when we examine the correlations between Purkinje cell

activity and eye or tail motor activity on a trial by trial basis.

We used two-photon calcium imaging to image neural activity in 7 days-post fertilization (dpf)

zebrafish larvae expressing GCaMP6s in all Purkinje cells (Figure 1c, Figure 1—figure supplement

1a). This strategy allowed us to measure the entire Purkinje cell population in response to this set of

stimuli with high spatial resolution while tracking eye and tail movements. Neural responses to these

Video 1. Z-projection map of GCaMP6s responses

(max dF/F) in Purkinje cells to visual stimuli. Related to

Figure 2.

DOI: https://doi.org/10.7554/eLife.42138.004

a

b c

right eye temporal velocityforward motion whole-field flashesclockwise motion

reverse motion counter-clockwise motion swimming activity right eye nasal velocity R

C

3

-3

m
e
a
n
 n

o
rm

 

M
L
R

 c
o
e
ff
 

0.8

1

1.2

1.4

1.6

1.8

2

2.2

anatomical clustering

stereotypy

principal comp #

in
d

e
x
 v

a
lu

e

1 2 3 4 5 6 7 8 9 10

to
ta

l v
a

r. e
x
p

la
in

e
d

1

0.4

0.2

0.8

0.6

0

example visual and motor features

sensory motion

(forward/left/right)

tail movement

dir. selective sensory

rotational motion
eye movement

ii

i

PC7

PC4 PC6

PC5 

Figure 2. Purkinje cell activity is functionally clustered across the cerebellum. (a) Heatmaps of the z-projected

mean voxelwise correlation coefficients from multilinear regression (MLR) with example sensory and motor

regressors for a representative fish (see Materials and methods). Scale bar = 50 microns. (b) Voxels from the

example fish in a) are colored according to whether the best regressor for correlated sensory stimuli and motor

events (including i) swimming and ii) eye movement) are sensory (magenta), motor (green), or equal/uncorrelated

(white). (c) Left, quantification of principal component analysis, clustering, and stereotypy of Purkinje cell

responses. Left axis, index values across the first ten principal components with respect to the anatomical

clustering of principal components within a fish (red line) and the stereotypy of these clusters across fish (blue line).

Dotted black line shows an index value of 1 (equivalent to chance). Right axis, total variance explained across

principal components. Right panel, mean spatial mapping of the four principal components with the highest index

values for anatomical clustering and stereotypy as individual maps (above) and composite (below). Colors are

arbitrarily chosen.

DOI: https://doi.org/10.7554/eLife.42138.006
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stimuli showed considerable temporal and spatial structure across the cerebellum, as visualized by

the z-projection map of average calcium responses (max dF/F) in the entire Purkinje cell population

across the trial (Video 1) as well as in the activity from single imaging planes (Video 2). We esti-

mated the number of Purkinje cells in the larval zebrafish to be 433 ± 19 (mean ± std, N = 3) by iden-

tifying spherical nuclei in confocal stacks of a transgenic line that expresses nuclear-localized

GCaMP6s using 3D template matching (Figure 1—figure supplement 1; see

Materials and methods). This number is higher than the previously reported range of 180–360 Pur-

kinje cells at seven dpf (N = 6; Hamling et al., 2015).

In order to quantify how different features of the visual stimuli and the tail and eye behaviors con-

tribute to Purkinje cell activity, we performed multilinear regression on voxelwise calcium signals

obtained across the Purkinje cell population (Figure 1d, Figure 1—figure supplement 1; see

Materials and methods for detailed description). Multilinear regression is advantageous for two rea-

sons in particular. First, it allows the identification of multiple visual and/or motor features that may

contribute to a single calcium signal. Second, we can distinguish between regressors that may be

moderately correlated in our experiments, such as forward moving gratings and the variable swim

bouts that these stimuli elicit. Zebrafish swim in episodic bursts of swimming that last just hundreds

of milliseconds, separated by rest periods lasting seconds, whereas the visual stimuli driving these

swim bouts were presented for many seconds. As a result, motor regressors for eye or tail move-

ments look very different from visual sensory regressors (Figure 1d,e, Figure 1—figure supplement

1) and their respective contributions to calcium signals can be determined.

Our analysis showed that Purkinje cell activity is functionally segregated across the cerebellum

with respect to different visual and motor features (Figure 2a, Video 3). Responses to whole-field

flashes were enriched in a bilaterally symmetric central region of the cerebellar cortex, whereas

responses to clockwise and counterclockwise rotational motion had an asymmetric localization within

the left and right hemisphere of the caudolateral cerebellum, respectively. Purkinje cell responses to

motor activity, including eye and tail motion, were generally broad and showed strong, uniform cor-

relations across most of the cerebellar cortex.

Next, to disambiguate between visual and motor responses we explicitly visualized the sensory/

motor preference across the Purkinje cell layer for two visuomotor behaviors: swimming driven by

forward-moving gratings, and left/right eye movements driven by rotational windmill motion.

Figure 2b shows a z-projection of the cerebellum for each of these visuomotor behaviors, with areas

colored magenta or green based on whether the relevant visual or motor feature was significantly

better in explaining the activity in that region (see Materials and methods). As Figure 2bi shows, the

activity of Purkinje cells distributed across a broad region of the cerebellum correlated highly with

tail movement during swimming and accounted for the modulation of calcium activity to a much

greater extent that sensory grating motion. In contrast, Figure 2bii shows that a large dense bilat-

eral area of the caudolateral cerebellum had activity that was more strongly related to sensory rota-

tional motion while the remaining area of the rostral and medial cerebellum showed a stronger

correlation with eye movements. These results indicate that locomotor activity of the tail and eyes is

broadly encoded in Purkinje cell activity across

the cerebellum whereas sensory responses to

visual features are more anatomically clustered.

Finally, in order to identify groups of Purkinje

cells whose activity was similarly modulated dur-

ing the experiment, regardless of which feature

Video 2. Single plane at �35 microns depth from the

dorsal surface showing GCaMP6s responses (max dF/F)

in Purkinje cells to visual stimuli. Related to Figure 2.

DOI: https://doi.org/10.7554/eLife.42138.005

Video 3. Upper left, anatomical stack of Purkinje cell

anatomy (upper left) showing the depth in microns of

the plane from the dorsal surface. Other panels, the

corresponding plane from the stack of regressor

coefficient weights (labelled for regressor type) for all

Purkinje cells as quantified with multilinear regression

(see Materials and methods). Related to Figure 2.

DOI: https://doi.org/10.7554/eLife.42138.008
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drove the response, we performed principal component analysis on the coefficient weights for all

cells across all fish (N = 10; see Materials and methods). This analysis again revealed considerable

spatial structure and stereotypy in Purkinje cell responses, with most functional clusters being also

both anatomically clustered within fish and similarly located across fish (Figure 2c, Figure 1—figure

supplement 1d). Four functional clusters emerged that were particularly spatially-clustered and tiled

the cerebellum across the rostrocaudal axis of each hemisphere (Figure 2c). Together, these results

suggest a clear spatial organization of Purkinje cells into functional regions along the rostrocaudal

axis of the zebrafish cerebellum.

Calcium signals in Purkinje cells report complex spikes with high fidelity
with lesser contributions from simple spikes
Since Purkinje cells receive excitatory inputs from both climbing fibers and parallel fibers that drive

different types of spiking, it is critical to understand exactly what the calcium signals described

above represent in terms of the underlying spike identity and structure. Climbing fiber inputs driving

complex spikes have been shown to reliably produce large dendritic calcium signals in mammalian

Purkinje cells with little to no signal in the soma (Lev-Ram et al., 1992). In contrast, parallel fiber

inputs may contribute to small, local calcium signals at dendritic spines or branchlets (see

Kitamura and Kano, 2013 for review) while changes in sodium-dependent simple spike rates may

be read out from somatic calcium signals (Ramirez and Stell, 2016). We performed in vivo cell-

attached electrophysiological recordings of spontaneous activity from single Purkinje cells express-

ing GCaMP6s in order to show how the signals obtained during calcium imaging relate to complex

and simple spike output in larval zebrafish Purkinje cells (Figure 1—figure supplement 2).

As expected, we found that every complex spike elicited a peak in the calcium signal of a Purkinje

cell’s dendrites (Figure 1—figure supplement 2a,b). However, we also found that isolated bursts of

simple spikes correlated with widespread increases in the dendritic calcium signal. Aligning the cal-

cium signal to the onset of simple spike bursts and single complex spike events showed consistent

simple spike-triggered calcium transients that were of smaller amplitude but similar duration to com-

plex spike-triggered transients (Figure 1—figure supplement 2b,d). We used multilinear regression

methods to determine the relative contribution from the activity of complex and simple spikes to

the calcium signals we measured in different Purkinje cells across fish. We find that although the

majority of the signal is driven by the occurrence of a complex spike, simple spikes also contribute

to a varying degree across cells and can account for up to half of the calcium signal (mean percent-

age contribution from complex spikes = 78.4 ± 6.8%, N = 8 cells from eight fish; Figure 1—figure

supplement 2e,f).

These findings reveal that both complex spikes and simple spike bursts can contribute to the den-

dritic fluorescence signals obtained by calcium imaging in larval zebrafish Purkinje cells. The observa-

tion above that many visual and motor features can contribute to the calcium signal from a single

Purkinje cell (Figure 1e) is therefore unsurprising if this signal represents not only complex spikes

but also simple spike responses modulated by the convergent input from many parallel fibers. We

furthermore observed that somatic signals and dendritic signals were highly correlated with each

other (mean correlation = 0.87 ± 0.2, N = 5 cells from three fish; Figure 1—figure supplement 2g,

h), suggesting that the contribution from these different input streams may not be as spatially segre-

gated in these Purkinje cells as shown in other systems and therefore cannot be isolated by subcellu-

lar imaging. In summary, calcium signals across Purkinje cells report both complex spikes and high

frequency simple spiking and care must therefore be taken when interpreting the underlying activity

patterns of Purkinje cells measured with functional imaging.

Electrophysiological recordings from Purkinje cells reveal distinct
complex spike responses that can be grouped into three primary visual
response phenotypes
In order to overcome the mixed contribution of complex spikes and simple spike bursts to calcium

signals and to record Purkinje cell spiking activity in greater detail, we turned to single-cell electro-

physiology. We performed cell-attached Purkinje cell electrophysiological recordings at different

locations across the cerebellum in the awake, paralyzed larval zebrafish while presenting visual stim-

uli as for the functional imaging experiments described above (N = 61 cells from 61 fish). Complex
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spikes and simple spikes can be clearly distinguished in these recordings with automated threshold-

ing by amplitude (Figure 3a) and converted to a spike rate (Figure 3b; see Materials and methods).

Simultaneous fictive recordings of locomotor activity were obtained from a ventral root extracellular

electrode (Figure 3a) as previously described (Masino and Fetcho, 2005) and used to extract infor-

mation about fictive swim bouts (see Materiials and methods). The high temporal resolution of

electrophysiological recordings further enhances our ability to separate feature components. For

example, we find that swimming activity is only moderately correlated with forward visual motion on

a trial by trial basis (mean correlation = 0.31 ± 0.2, Figure 3c, Figure 3—figure supplement 2).

In an approach similar to that used to analyze the functional imaging results presented above, we

built regressors to capture the most salient features of the visual and motor stimuli (see Figure 3d

for examples and Figure 3—figure supplement 1 for the full regressor list). The high temporal reso-

lution of electrophysiology allows us to resolve transient changes in simple spike firing rate as well as

single complex spikes, therefore we added regressors for the visual and motor regressors that would

capture spiking responses to a more specific set of visual stimulus and behavioral features such as

visual motion onset, duration, velocity, swim onset, and graded swim strength. The window chosen

for stimulus onset covered 500 milliseconds from actual stimulus onset (e.g. motion onset of forward

gratings) in order to account for the inherent synaptic delays for visual information to arrive in the

cerebellar input layer, on the order of 100–200 milliseconds (Knogler et al., 2017). Preliminary

assessments of spike rates with visual and motor feature regressors further confirmed that these

regressors appropriately captured the temporal dynamics of Purkinje cell spiking (Figure 3d, Fig-

ure 3—figure supplement 2). We employed a variant of multilinear regression with elastic net opti-

mization that includes regularization terms to help sparsify the number of features that are used to

reconstruct the signal, as well as variable selection and parameter optimization to overcome the

minor degree of correlation between some regressors (Figure 3e and Figure 3—figure supplement

1; see Materials and methods).

Since the complex spikes and simple spikes of Purkinje cells are modulated by climbing fiber and

parallel fiber input streams, respectively, we independently assessed these responses across the

population of cells (Figure 3e). We will first address the complex spike responses, as these provided

a useful classification of Purkinje cell groups within the population in line with the functional and spa-

tial organization seen during functional imaging.

We observed that complex spikes were generally evoked by a narrow subset of stimuli. Only a

few visual or motor features provided a significant contribution to each cell’s complex spike rate

(mean number of nonzero coefficients = 6.0 ± 0.4 out of 22, N = 61), and in many cases a single fea-

ture was very dominant (Figure 3e). Mixed complex spike responses to multiple stimuli are possible

due to mixed selectivity in neurons of the inferior olive (Ohmae and Medina, 2015; Ju et al., 2018)

or residual multiple climbing fiber input (Crepel et al., 1976). We found little evidence however that

individual Purkinje cells encode multiple types of visual stimuli or both visual and motor features in

their complex spike responses. The current results do not rule out the likely possibility that informa-

tion from other sensory modalities than vision are also encoded in the complex spikes of these cells.

A survey of the best regressor category for each cell from this dataset revealed that Purkinje cell

complex spike responses were strongly enriched for visual information (Figure 3e), specifically the

onset of direction-specific translational motion (N = 31/61) and direction-specific rotational velocity

(N = 14/61). The remaining Purkinje cells were categorized as having complex spikes that best

responded to changes in whole-field luminance, to fictive motor activity, or to the duration of trans-

lational motion. Notably, sensory responses across visual features are far better represented than

motor responses in the complex spike responses of Purkinje cells (Figure 3e). This was not due to a

paucity of motor activity, as bouts of swimming behavior were consistently elicited across trials. Only

8/61 cells had the biggest contribution to complex spike rates from motor activity, and across the

remaining cells the average contribution from motor regressors was less than 5% (3.7 ± 1%, N = 53).

Of the eight cells whose best regressor was motor-related, there were nonetheless significant

responses to visual features present as determined by non-zero sensory coefficient weights account-

ing for 10–40% of the complex spike activity (mean contribution = 20 ± 5%). As a result, we made

the surprising observation that all but one of the Purkinje cells that we recorded from across the

entire cerebellum could be unambiguously assigned to one of three visual complex spike ‘pheno-

types’ corresponding to a response to directionally-selective translational motion onset, direction-

ally-selective rotational velocity, or changes in luminance.
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Figure 3. Electrophysiological recordings from Purkinje cells reveal distinct complex spike responses that can be grouped into four primary response

types corresponding to sensory or motor features. (a) Cartoon of the embedded, paralyzed zebrafish preparation used for simultaneous Purkinje cell

(PC) electrophysiology with fictive swimming patterns extracted from the ventral root (VR). (b) Example single trial from a cell-attached Purkinje cell (PC)

recording (upper trace, black) with simultaneous ventral root recording (lower trace, gray, shown as a moving standard deviation). Complex spikes in

the PC are indicated by orange dots above the trace and simple spikes are indicated by blue dots below the trace. Stimuli are color-coded as before

(see Figure 1 and Materials and methods for more details). (b) Left, the mean simple spike (SS) and complex spike (CS) rate for the cell shown in (a)

across five trials. Right, the correlation coefficients of forward, left and rightward grating motion with the trial by trial fictive swim activity for all fish. (c)

Plot of the correlation coefficient for each fish between the regressor for concatenated swimming activity during moving forward, left, and right gratings

across all trials and the summed sensory regressor for forward, left, and right grating motion. The mean is indicated by the black bar. (d) Example mean

complex spike rate extracts from three different Purkinje cells showing the temporal similarity of firing dynamics with visual feature regressors. (e)

Above, heatmap of coefficient weights for the complex spike firing rates of 61 cells from z-scored least-squares multilinear regression (MLR) with a full

set of 24 stimulus- and motor-related variables (see Materials and methods). Below, histogram showing the distribution of cells’ highest regressor

weight. (f) Location of these cells across all fish mapped onto a reference cerebellum (dorsal view). The color indicates the highest MLR coefficient

weight for that cell while the size indicates the degree to which that coefficient contributes to the overall firing rate respective to the others, where the

biggest circles = 100%. Scale bar = 50 microns. (g) Left, heatmap of complex spike rates for all 61 cells clustered according to the category of their

Figure 3 continued on next page
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We hypothesized that these three different visual complex spike phenotypes could underlie the

spatial clustering of Purkinje cell population activity that we observed with functional imaging

(Figure 2c). Mapping the coordinates of all Purkinje cells onto a reference cerebellum revealed a

spatial organization of complex spike sensory response phenotypes similar to our functional imaging

data (Figure 3f). In particular, we observed a rostromedial cluster of cells responsive to the onset of

directional motion in the visual stimulus and a caudolateral cluster of cells responsive to rotational

stimulus velocity. Luminance responses were more scattered but generally occupied the central zone

between these regions.

Together with our functional imaging data, these results suggest that zebrafish Purkinje cells con-

tribute to the formation of three distinct spatial regions across each cerebellar hemisphere through

visual complex spike profiles encoding either directionally-selective translational motion onset, direc-

tionally-selective rotational velocity, or changes in luminance. These regions bear a striking resem-

blance to the anatomically clustered activity patterns identified by principal component analysis in

our imaging data (Figure 2c), suggesting that the visual complex spike response phenotype is an

important parameter that can be used to understand the spatial and functional organization of Pur-

kinje cells across the cerebellum.

Purkinje cells in different regions receive feature-specific climbing fiber
input and project to different downstream regions
From the three major visual complex spike phenotypes we observed across the Purkinje cell popula-

tion, we observed that further subdivisions could be made based on the specific type of response to

a given visual stimulus. For example, direction-selective motion onset-responsive Purkinje cells differ

in their directional tuning, and luminance-responsive cells can prefer either increases or decreases in

luminance, or bidirectional changes (Figure 3d,g). Therefore, we next performed further detailed

analyses of Purkinje cell complex spike activity in combination with additional anatomical experi-

ments in order to quantify precisely how visual features such as directionality are encoded by differ-

ent Purkinje cells with the same visual phenotype and to also identify the projection patterns of

Purkinje cells across phenotypes.

The largest group of Purkinje cells showed a phenotype for strong, direction-selective responses

to the onset of translational motion (N = 33/61 cells). These responses typically spanned two of the

four cardinal directions tested, producing on average just one complex spike at the onset of motion

in the preferred directions (1.2 ± 0.6 spikes/stimulus; Figure 4a). The occurrence of a complex spike

was not dependent on the behavioral response since visually-evoked complex spikes occurred with

equal probability whether there was a swimming response or not (Figure 3—figure supplement 2).

In the clearest example, reverse visual motion evokes no swimming but is equally well-represented

by a complex spike response at motion onset as the directions that do drive swimming (Figures 3g

and 4a, Figure 3—figure supplement 2a).

The direction selectivity index (see Materials and methods) of these cells ranged from 0.2 to 0.9

(Figure 4—figure supplement 1a), and cells typically responded to two of the four cardinal direc-

tions tested (Figure 4a). No cells were found that responded significantly to motion onset in oppos-

ing directions. Although the Purkinje cell somata displaying this complex spike phenotype were

closely clustered in the most rostromedial part of the cerebellum (Figure 3f), the lateralization of

Purkinje cells was biased such that cells in the left cerebellar hemisphere preferred either forward

Figure 3 continued

highest MLR coefficient weight (e.g. luminance, rotational motion, swimming). Colored bars at right indicate complex spike category as indicated in

previous panels. Right, the mean z-scored complex spike rate from each cluster. See also Figure 3—figure supplements 1 and 2.

DOI: https://doi.org/10.7554/eLife.42138.009

The following figure supplements are available for figure 3:

Figure supplement 1. Sensory and motor regressors used for multilinear least-squares regression with electrophysiological recordings Top left, cartoon

of recording setup.

DOI: https://doi.org/10.7554/eLife.42138.010

Figure supplement 2. Visually-evoked swimming responses to forward gratings are episodic, vary across trials, and are clearly resolvable from visual

responses.

DOI: https://doi.org/10.7554/eLife.42138.011
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motion to the right (0 to 90˚, N = 7) or reverse motion to the left (�90 to �180˚, N = 5; Figure 4—

figure supplement 1a). Conversely, Purkinje cells in the right cerebellar hemisphere preferred either

forward motion to the left (0 to �90˚, N = 5) or reverse motion to the right (90 to 180˚, N = 5; Fig-

ure 4—figure supplement 1a). The reliable, phasic nature of these complex spike responses sug-

gests that these Purkinje cells encode acute, directional changes in the visual field.

Figure 4. Purkinje cells in different regions show complex spike responses that encode different visual features

and one group sends outputs to a different downstream region. (a) Raster plot (upper left panels) and histogram

(lower left panels, 500 ms bins) of complex spikes occurring across trials during translational whole-field motion of

black and white bars in all four cardinal directions for two example Purkinje cells (PC). Numbers assigned to PCs

for this and panels b-c are arbitrary. (b) Raster plot (upper left panels) and histogram (lower left panels, 100 ms

bins) of complex spikes occurring across trials during whole- and half-field bidirectional rotational motion of a

black and white windmill for an example cell. The dashed lines over the histogram show the velocity of the

stimulus in each direction across the trial. (c) Raster plot (upper left panels) and histogram (lower left panels, 100

ms bins) of complex spikes occurring across trials during whole-field light/dark flashes for two example cells, (i)

and ii). (d) A box plot of complex spike firing rates during blank trials (no visual stimuli) for cells grouped by their

sensory or motor complex spike category (see Figure 2). N = 31, 14, 5, 8. Asterisks indicate significance (one-way

ANOVA with Bonferroni post hoc correction, p<0.001). j (i) The location of cells colored by complex spike

phenotype are plotted onto a flattened dorsal view of the cerebellum with all coordinates flipped to the right half

of the cerebellum. e (ii) Three example maximum projection images of traced axonal morphology from

stochastically-labelled, Fyn-mClover3-expressing Purkinje cells for which electrophysiological recordings were also

obtained. Labels for each cell refer to the electrophysiological traces in panels a-c. The asterisk for cell a) indicates

that these coordinates were flipped to the right half of the cerebellum. Scale bar = 50 microns. e (iii) Categorical

grouping of complex spike phenotypes for internal versus caudal axonal projections. N = 17 cells from 17 fish. (f)

Morphed Purkinje cell axonal morphologies from single-cell labelling across fish (N = 50 cells) can be grouped into

two populations based on axonal projection (as for e iii). N = 27 cells with internal axons, N = 23 cells with caudal

axons. See also Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.42138.012

The following figure supplements are available for figure 4:

Figure supplement 1. Complex spike responses encode specific aspects of visual features.

DOI: https://doi.org/10.7554/eLife.42138.013

Figure supplement 2. Purkinje cell dendrites show a mostly planar morphology.

DOI: https://doi.org/10.7554/eLife.42138.014

Figure supplement 3. Motor-related complex spikes are rare.

DOI: https://doi.org/10.7554/eLife.42138.015
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The second group of Purkinje cells, located in the caudolateral cerebellum, showed a phenotype

for large, directionally-selective increase in complex spikes during either clockwise or counter-clock-

wise rotational motion that unlike the previous group persisted throughout the duration of move-

ment (Figure 4b; N = 12/61 cells). During rotational motion in the preferred direction, complex

spike firing rates in these cells were two to five times higher than baseline (mean rate increase = 340

± 40%, N = 12). In contrast, complex spike rates during motion in the non-preferred direction fell to

nearly zero, well below the baseline rate (mean rate non-preferred direction = 0.32 ± 0.1 Hz versus

0.87 ± 0.1 Hz at baseline; Figure 4—figure supplement 1b). Consistent with our functional imaging

data (Figure 2), these complex spike responses to rotational motion were highly lateralized such

that all Purkinje cells (10/10) that preferred clockwise rotational motion were located in the caudolat-

eral region of the left cerebellar hemisphere while the only two Purkinje cells that preferred counter-

clockwise motion were located in the mirror symmetric region of the right cerebellar hemisphere

(Figure 4—figure supplement 1b). Additional experiments in the semi-paralyzed animal (see

‘Motor-related complex spikes are rare for tail and eye movements’, below) confirmed this laterality

(N = 11; Figure 4—figure supplement 3h).

These Purkinje cells also showed an increase in complex spiking for the duration of translational

motion in a preferred lateral direction, determined to be rightwards motion for clockwise motion-

preferring cells and vice versa (mean rate increase above baseline = 280 ± 20%; Figure 4—figure

supplement 1b), suggesting that these cells respond to motion over a large area situated in the

front half of the visual field. Finally, we observed an apparent homeostatic regulation firing in these

cells where spontaneous complex spike rates were strongly depressed for several seconds following

the robust complex spike responses elicited by rotational motion (normalized mean rate for one sec-

ond following rotational stimuli = 37 ± 16% of spontaneous firing rates). Thus a high complex spike

rate for the preferred direction of rotational motion may come at the expense of stochastic complex

spikes. A homeostatic regulation of complex spike rates has also recently been observed in the

mammalian cerebellum (Ju et al., 2018), though the underlying mechanism is not known.

The third prominent group of Purkinje cells had complex spike responses correlated with changes

in whole-field luminance that were surprisingly heterogeneous in feature encoding compared to the

notably stereotyped responses seen for the previous two groups (N = 25/61 cells; Figure 4c and

Figure 4—figure supplement 1c–e; see Materials and methods). Purkinje cells with this luminance

phenotype had complex spike responses that encoded either luminance increases (9/25) or

decreases (11/25) or both (5/25; Figure 4c and Figure 4—figure supplement 1d) and the location

of cells with different luminance response types was mixed across the central region of the cerebel-

lum (Figure 4—figure supplement 1e). The latency from the onset of the preferred luminance tran-

sition to the first complex spike occurred for each cell with very little jitter, but the latency itself

varied across cells (Figure 4—figure supplement 1d). Most whole-field luminance responses were

transient such that cells fired just one complex spike for the preferred luminance change

(mean = 0.80 ± 0.02 spikes). We did however observe, in two cells, different complex firing rates as

a function of the ambient luminance presented that did not adapt over tens of minutes and there-

fore appear to encode ambient luminance through their complex spike rate (Figure 4cii, one-way

ANOVA with Bonferroni post hoc correction, p<0.01; Figure 4—figure supplement 1g,h). Lumi-

nance-responsive Purkinje cells furthermore showed differing patterns of complex spike responses

to local luminance changes during the translational motion of gratings (Figure 4—figure supple-

ment 1f), suggesting that these cells have a wide range of receptive field sizes over which they inte-

grate luminance.

In additional to having qualitative and quantitative differences in visual feature encoding, the

three different types of Purkinje cell visual phenotypes described thus far also had notable differen-

ces in spontaneous complex spike rates (Figure 4d). Purkinje cells responding to rotational motion

velocity had a significantly higher baseline firing rate than those with directionally selective motion

onset responses (0.77 ± 0.1 Hz and 0.20 ± 0.02 Hz, respectively, p<0.001, Bonferroni post hoc cor-

rection). Purkinje cells responding most strongly to luminance or motor activity had intermediate

baseline complex spike rates (0.28 ± 0.1 Hz and 0.34 ± 0.1 Hz, respectively).

Mapping the coordinates of Purkinje cell somata belonging to these three visual complex spike

phenotypes supports a regional division of the cerebellum along the rostrocaudal axis where each of

the three regions within the cerebellar hemisphere receives inputs from the same or similar inferior

olive neurons carrying visual information (Figure 4ei). To examine the corresponding outputs of
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Purkinje cells from these groups, we performed cell-attached electrophysiological recordings in com-

bination with morphological reconstructions via stochastic single-cell labelling of Purkinje cells to

visualize the axonal projections (N = 17 cells from 17 fish; Figure 4eii). Unlike the mammalian cere-

bellum, where all Purkinje cell axons project outside of the cerebellar cortex, zebrafish Purkinje cells

can be divided into two anatomical populations - one with internally-projecting axons that contact

eurydendroid cells (the equivalent of mammalian cerebellar nuclei neurons) and the other whose

somata are more lateral and who have externally-projecting caudal axons that contact neurons in the

vestibular nuclei (Bae et al., 2009; Matsui et al., 2014).

Strikingly, 6/7 Purkinje cells with caudally projecting axons exhibited a clear complex spike phe-

notype for directional rotational motion, whereas only 1/10 cells with an internal axon had this same

phenotype (Figure 4e). We further reconstructed and aligned 50 singly-labelled Purkinje cell mor-

phologies across fish to a reference brain. Although the somata of Purkinje cells with caudal (N = 23/

50) and internal (N = 27/50) axons partially overlap (Figure 4f), the segregation of rotational motion

responses with caudal axon anatomies in this dataset further support our definition of this functional

region of Purkinje cells. We also found that Purkinje cell dendrites generally had a classic albeit sim-

plified morphology with mostly planar dendrites (Figure 4—figure supplement 2) oriented orthogo-

nally to the axis of parallel fiber extension across the cerebellum (Knogler et al., 2017), as seen in

mammalian cerebellum (Eccles et al., 1967). Together, these results define three functional groups

of Purkinje cells residing in different regions across the cerebellum. These groups operate with dif-

ferent complex spike frequencies and encode distinct visual features related to visuomotor behav-

iors, and one group also sends the majority of its projections to a different downstream area than

the others.

Motor-related complex spikes are rare for tail and eye movements
As discussed above, motor regressors did not significantly contribute to complex spike activity in

the majority of Purkinje cells (N = 49/61) despite an abundance of visually-evoked fictive behavior

and the use of multiple motor regressors to capture different motor features. We nonetheless used

this small group of Purkinje cells with motor-related complex spike responses to examine motor fea-

ture encoding (Figure 4—figure supplement 3).

We analyzed complex spike responses from Purkinje cells during spontaneously-evoked swim-

ming in blank trials as well as in trials where visual stimuli elicited swimming and confirmed that

some complex spikes were indeed correlated with swimming activity even in the absence of visual

stimuli (Figure 4—figure supplement 3a). Swim-related responses were however unreliable such

that a complex spike occurred on fewer than half of swim bouts on average for these cells (mean

probability = 0.38 ± 0.07 for stimuli trials, N = 9 cells; mean probability for blank trials = 0.42 ± 0.07,

N = 5 cells; p<0.05, Wilcoxon signed rank test). Aligning the subset of swim bouts that were positive

for motor-related complex spikes showed that the latency from bout onset to the occurrence of a

complex spike in blank trials varied considerably for an individual cell, in contrast to the fixed laten-

cies for most visual-driven complex spikes (Figure 4—figure supplement 3b, compare with Figure 4

and Figure 3—figure supplement 2). This is consistent with observations that complex spikes do

not show phase-locking with stereotyped locomotor movements (Apps, 1999). Some Purkinje cells

showed a decrease in complex spikes during swim bouts with a subsequent increase following bout

offset (mean probability of a complex spike during bout <0.02, N = 3 cells; Figure 4—figure supple-

ment 3c) however this was rarer than those with motor-related increases (Figure 4—figure supple-

ment 3d). Unlike the spatial mapping seen for Purkinje cells with visual complex spike responses,

Purkinje cells with motor-related complex signals were distributed across the cerebellum with no

apparent clustering (Figure 4—figure supplement 3e).

We observed that both translational and rotational visual motion induced frequent bouts of fictive

swimming in fish (Figure 3b); however the complex spike responses during these visual stimuli in

most Purkinje cells did not correlate well on a trial-by-trial basis with swim bouts (Figure 3b, Fig-

ure 3—figure supplement 2) and were thus classified from multilinear regression analysis as sensory

(visual), as described above. Rotational windmill stimuli are however known to evoke stereotyped

eye movements known as the optokinetic reflex (Easter and Nicola, 1996), therefore complex spike

responses to rotational visual motion could relate to the activation of eye rather than tail muscles.

Studies of the cerebellar control of eye movements have shown evidence that climbing fibers pro-

vide eye motor error signals, which could account for the prominent complex spike signals observed
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in Purkinje cells in the caudolateral cerebellum during rotational windmill motion. In order to exam-

ine the potential contribution of eye movements to complex spikes in this group of Purkinje cells, we

performed cell-attached recordings from Purkinje cells in the caudolateral cerebellum in the semi-

paralyzed zebrafish, where the eyes were free to move and were tracked with a high-speed camera

(see Materials and methods). The independent movement of each eye was then used to build a set

of twelve regressors corresponding to eye position and velocity in different directions (Figure 4—

figure supplement 3f).

Least-squares multilinear regression was used to analyze the complex spike activity of all cells

with the existing set of sensory regressors for visual features and the twelve new eye motor regres-

sors. We once again observed a clear bias for a visual complex spike phenotypes across Purkinje

cells (N = 11/13), with only two cells whose best regressor related to eye movement (Figure 4—fig-

ure supplement 3g,h). A further analysis of the complex spike phenotypes of these latter two cells

showed that in one case, the eye movement was exceptionally well-correlated with one visual feature

(directional rotational velocity) that it was hard to disambiguate the true sensory vs motor nature of

the complex spike response (Figure 4—figure supplement 3i, cell 2). For the other cell (Figure 4—

figure supplement 3i, cell 3), a strong luminance (sensory) complex spike phenotype was identified

through additional autocorrelation analyses (p<0.001 from Ljung-Box Q-test; r = 0.67 for correlation

with the luminance regressor) in addition to the moderate correlation with eye movement (r = 0.32

for correlation with eye motor regressor). Nonetheless, the majority of Purkinje cells in this region

could be clearly assigned to a visual complex spike phenotype since these cells showed very stereo-

typed complex spike responses to directional rotational stimuli that did not correlate well with the

variable eye movements observed across trials (Figure 4—figure supplement 3j,k). We conclude

from these data that the complex spike responses during rotational visual motion are predominantly

sensory rather than motor. It is furthermore important to note that these responses are equally

prominent in electrophysiological recordings in the paralyzed fish, where the eyes cannot move, as

in the electrophysiological and functional imaging experiments where the eyes are free and track the

stimulus (compare Figure 2, Figure 3f–g, and Figure 4—figure supplement 3).

Simple spike responses across the Purkinje cell population are highly
modulated by motor efference copies during fictive swimming
Having observed that Purkinje cells can be clustered into functional regions defined by their visual

complex spike responses and anatomical features, we next wanted to understand how simple spike

responses were organized across the cerebellum. Multilinear regression showed that many visual

and motor features contributed to simple spike responses in individual Purkinje cells, such that

response phenotypes were broader than those observed for complex spike activity (Figure 5a and

Figure 3e), as expected in a circuit where many parallel fibers converge on a single Purkinje cell

(De Zeeuw et al., 2011). Although simple spike rates were modulated to some extent by many of

the visual stimuli presented, motor activity significantly modulated simple spike activity in nearly all

Purkinje cells across the cerebellum (N = 60/61) and was in fact the main contributor to modulating

simple spike activity in the majority of cells (N = 44/61; Figure 5a).

Different motor regressors accounted for various motor features including swim onset, offset,

duration, and the continuous quantitative readout of swim strength, termed vigor (calculated from

the standard deviation of the ventral root signal). Simple spike firing rates for these cells had consis-

tently larger contributions to their activity from swim vigor than from bout duration or any other

motor regressor, suggesting that fictive swimming activity is encoded in a graded manner by simple

spike output. Mean simple spike firing rates across the population were on average twice as high

during a bout as during the rest of the trial (mean rate during a bout = 14.5 ± 1.5 Hz vs 7.6 ± 0.8 Hz

at rest; p<0.001, Wilcoxon signed rank test). Trial-averaged simple spike responses across the popu-

lation appeared as a continuum rather than as clusters (Figure 5b), suggesting that the organization

of parallel fiber inputs does not follow the same regional specificity as climbing fiber inputs across

the cerebellum. Our analyses furthermore revealed that translational and rotational motion of visual

stimuli, regardless of direction, was the most prominent sensory feature encoded by simple spike

activity (Figure 5a). These findings suggest that Purkinje cells are integrating inputs from motion

responsive granule cells with different directional tuning (Knogler et al., 2017).

In order to rule out potential sensory contributions to simple spike rates during visually-evoked

behaviors, we analyzed simple spike activity during additional blank trials where no visual stimuli was
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presented (Figure 5c). Purkinje cells exhibit considerable spontaneous simple spike firing in the

absence of any sensory stimuli or motor activity (Hsieh et al., 2014; Sengupta and Thirumalai,

2015); however fictive swim bouts consistently increased simple spike firing well above baseline lev-

els (Figure 5c–e) and to an ever greater extent for spontaneous bouts in the absence of visual stimuli

(p<0.01, Wilcoxon signed rank test). Aligning the mean bout-triggered simple spike rates for all Pur-

kinje cells at bout onset and offset confirmed that the majority of cells have consistent motor-related

increases in simple spike activity that begin at bout onset and return to baseline following bout off-

set (Figure 5e) although a small number of Purkinje cells instead show bout-triggered decreases in

simple spike firing rates (Figure 5e), as observed elsewhere (Scalise et al., 2016). As expected for

Figure 5. Simple spike rates in most Purkinje cells are increased during fictive swimming. (a) Above, heatmap of

coefficient weights for the simple spike firing rates of 61 cells from least-squares regression with a full set of 24

stimulus- and motor-related variables (see Materials and methods for more details). Below, histogram showing the

distribution of cells’ highest regressor weight and the associated sensory/motor categories. (b) Upper panel,

heatmap of z-scored simple spike rates for all 61 cells sorted by decreasing motor coefficient weight. Lower panel,

the mean simple spike rate for the ten cells with the highest (upper trace) and lowest (lower trace) motor

coefficient weights. (c) Left panel, example cell-attached Purkinje cell recording (PC, upper trace, black) from a

blank trial (no stimuli) with simultaneous ventral root recording (VR, lower trace, gray, shown as a moving standard

deviation). The simple spike rate is also shown (SSrate, middle trace, purple). Right, the bouts highlighted in green

on an expanded timescale show the close timing of fictive bout onset and simple spike activity. (d) The bout on-

and off-triggered mean simple spike firing rates for the cell in c) during blank recordings (purple) and stimulus

trials (pink). (e) Z-scored heatmap of bout on- and off-triggered mean simple spike firing rates across all Purkinje

cells sorted by mean firing rate in the 300 ms following bout onset. (f) Mean autocorrelation heatmap for simple

spikes (SS, upper panel) and for ventral root recordings (VR, lower panel) for all Purkinje cells that showed

spontaneous swimming bouts during blank trials (N = 30 cells from 30 fish), sorted by time to first peak in the VR

autocorrelation. Right, the first significant peak in the VR autocorrelation for each recording is plotted to give the

mean fictive swim frequency for each fish.

DOI: https://doi.org/10.7554/eLife.42138.016
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rhythmic locomotor output, the ventral root signal was highly autocorrelated for all fish with a mean

autocorrelation frequency across fish of 26.7 ± 0.7 Hz (N = 30 fish; Figure 5f), consistent with the

slow swim bout frequency reported for restrained zebrafish larvae (Severi et al., 2014). The autocor-

relation analyses of simple spike firing for each Purkinje cell during a spontaneous fictive bout

revealed however no significant autocorrelations for simple spikes at any frequency. Unlike the mod-

ulation of simple spike firing rate seen during step phase in locomoting rats (Sauerbrei et al., 2015),

simple spikes in zebrafish Purkinje cells do not appear to be modulated in phase with rhythmic swim-

ming activity but are nonetheless graded by swim strength. This suggests that individual Purkinje

cell firing does not encode the activation of individual muscles involved in rhythmic swimming.

Motor activity is broadly represented in granule cell signals
The timing and reliability of swim-related simple spike activity is consistent with motor efference sig-

nals from spinal locomotor circuits during fictive swimming that arrive along mossy fibers to the

granule cell layer and subsequently to Purkinje cells. A disynaptic pathway from spinal premotor

interneurons to the granule cells via the lateral reticular nucleus was recently found that would con-

vey information about ongoing network activity in the spinal cord (Pivetta et al., 2014). There is

growing evidence across species that granule cells are strongly driven by ongoing locomotor activity

(Ozden et al., 2012; Powell et al., 2015; Jelitai et al., 2016; Giovannucci et al., 2017;

Knogler et al., 2017). Furthermore, extensive electrophysiological recordings from the granule cells

of the cerebellum-like circuit of the electric organ in the electric fish revealed that an overwhelming

majority (>90%) of granule cells receive depolarizing motor efference signals during electric organ

discharge, although this translated into spiking in only ~20% of granule cells (Kennedy et al., 2014).

In order to characterize motor-related granule cell activity and its potential contribution to motor-

related excitation in Purkinje cells across the cerebellum, we imaged responses in the granule cell

population to the same set of visual stimuli while tracking tail and eye movement (Figure 6a). Multi-

linear regression was once again used to disambiguate responses to sensory stimuli and motor activ-

ity. Across fish (N = 7), we observed that granule cell activity was strong and widespread during

swimming activity, both in the somatic layer and across the parallel fiber layer (Figure 6a). Granule

cell activity relating to eye movements was weaker but also widespread (Figure 6a). These findings

suggest that a large number of granule cells receive mossy fiber inputs relaying motor efference

copies that drive them to fire, and they in turn drive broad motor-related activation of simple spikes

in Purkinje cells (Figure 2a,b). These findings show more widespread motor-related representations

in comparison to previous population-wide analyses of granule cell activity (Knogler et al., 2017)

due to the abundance of behavior elicited by the current set of visual stimuli.

In order to understand the temporal patterning of swim-related motor signals in the granule cells

layer, we performed additional electrophysiological recordings from randomly targeted granule cells

across the cerebellum while simultaneously recording ventral root activity to identify fictive swim epi-

sodes. These recordings revealed several granule cells with negligible firing rates in the absence of

motor activity but that showed large, significant increases in their spike rates during fictive bouts

(N = 6/8 cells; mean firing rate at rest = 1.3 ± 0.3 Hz vs 25.7 ± 7.6 Hz during a bout; p<0.005, Wil-

coxon signed rank test; Figure 6b–d; Figure 6—figure supplement 1). These granule cells had

graded responses correlated with swim strength and could reach high instantaneous firing frequen-

cies of up to 150 Hz during a fictive bout, similar to the burst firing seen in mammalian granule cells

during locomotion (Powell et al., 2015) or whisker stimulation (van Beugen et al., 2013). Half of

these motor-excited granule cells (N = 3/6) also showed significant autocorrelations in their spiking

activity during fictive swimming (p<0.001, Ljung-Box Q-test; Figure 6e). The frequency of the spike

autocorrelations for these cells was comparable to the fictive swim frequency obtained from the ven-

tral root (mean difference in frequency = 1.3 ± 0.6 Hz, N = 3), suggesting that the periodicity of

granule cell spiking is related to the swimming activity (Figure 6e). The phase of the granule cell

spiking with respect to the ipsilateral ventral root activity varied however across cells, arriving either

in phase, with a lag, or in antiphase (Figure 6f).

Together, these results suggest that motor efference copies are relayed along mossy fibers to

many granule cells to drive burst firing during swimming bouts, whether fictive or real. In turn, paral-

lel fibers deliver graded swim-related excitation to nearly all cerebellar Purkinje cells. We are confi-

dent that these are true efference signals and not motor-related sensory input from proprioception

or the lateral line since the fish is paralyzed and the muscles are not moving during these
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Figure 6. Granule cells across the cerebellum code for motor activity with high fidelity. (a) Heatmaps of the z-projected mean voxelwise correlation

coefficients of two-photon granule cell GCaMP6s signals from multilinear regression with example sensory and motor regressors averaged across seven

fish (see Materials and methods). Scale bar = 50 microns. Upper right, cartoon of experimental set-up. (b) Left, cartoon of experimental set-up. Right,

upper panel, example cell-attached recording from a granule cell (gc, upper trace, black) from a blank trial with simultaneous ventral root recording

(VR, lower trace, gray). The granule cell firing rate is also shown (spike rate, middle trace, orange). The bout highlighted in green (i) is shown below on

an expanded timescale. (c) The bout on- (left) and off- (right) triggered mean firing rates for this granule cell during blank recordings (orange) and

stimulus trials (red). (d) Z-scored heatmaps of bout on- (left) and off- (right) triggered mean firing rates in all granule cells sorted by mean firing rate in

the 300 ms following bout onset (N = 8 cells from eight fish). (e) Mean autocorrelation heatmap for spikes (upper panel) and ventral root recordings (VR,

lower panel) for all granule cells from d), sorted by time to first peak in the VR autocorrelation. The red arrowheads signify granule cells with significant

spike autocorrelations during fictive swim bouts (N = 3; p<0.001, Ljung-Box Q-test; see Materials and methods). Right, the first significant peak in the

VR autocorrelation for each recording is plotted to give the mean fictive swim frequency for each fish. The red circles are the mean spike

autocorrelation frequency obtained from the three significantly autocorrelated granule cells. (f) An example bout from the cell indicated in e), which was

located ipsilateral to the ventral root recording. The smoothed spike rate (red) is in antiphase with the ipsilateral fictive tail contractions (grey). See also

Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.42138.017

The following figure supplement is available for figure 6:

Figure supplement 1. Many granule cells show significant modulation of their firing rates during fictive swimming bouts.

DOI: https://doi.org/10.7554/eLife.42138.018
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electrophysiological experiments. The widespread increases in Purkinje cell calcium signals observed

in the behaving animal during swimming (Figure 2a,b) therefore are likely to reflect simple spike

bursts in Purkinje cells (Figure 1—figure supplement 2) driven by the high frequency firing of one

or more presynaptic granule cells carrying motor efference information.

Figure 7. Purkinje cells modify their simple spike output in a complex spike- and motor context-dependent way.

(a) Heatmap of complex spike-driven simple spike (CS:SS) counts for each cell normalized to the mean over 100

ms preceding a complex spike. Cells are sorted by decreasing simple spike pause and increasing excitation. The

inset shows the location of these cells colored by the normalized difference in simple spiking in the 50 ms

following the CS. (b) The mean complex spike-triggered simple spike count (10 ms bins) is shown for five example

cells (as indicated in a) for five different contexts. Left (green box), in the presence (‘motor’) versus absence (‘non-

motor’) of fictive swimming episodes. Under non-motor conditions these different Purkinje cells show, respectively,

a CS-induced i) long SS pause, ii) short SS pause with rebound increase, iii) no change in SS, iv) short SS increase,

and finally a v) long SS increase. Green arrows highlight changed patterns during motor context. Middle (magenta

box), CS:SS relationships across preferred versus all other sensory contexts (only non-motor periods included).

Right (grey box), the CS:SS relationship during blank trials (no stimuli, only non-motor periods). Vertical scale bar

indicates the rate conversion for 0.2 spikes/10 ms bin (20 Hz). (c) Green markers show the mean normalized simple

spike rates (calculated from 10 ms bins) for all Purkinje cells centered on the occurrence of a complex spike during

a fictive bout minus those occurring at any other point (N = 51 cells). Data are mean ± SEM. Grey markers, simple

spike rates centered on the occurrence of a complex spike during all sensory stimuli minus those occurring during

blank trials (N = 53 cells). The dashed black line indicates zero difference between conditions. Inset, the window

around complex spike onset shown on an expanded timescale. Asterisks indicate p<0.05 for motor minus

nonmotor conditions (green markers) as computed by the Wilcoxon signed rank test. Grey markers, no significant

differences. (d) Heat maps are shown for individual Purkinje cell binned simple spike counts over the three

different 50 ms periods as indicated in e). Complex-spike triggered simple spike counts are separated for each cell

for those complex spikes occurring during a fictive bout (left column of heatmaps, outlined in green) or at any

other time (right column of heatmaps, outlined in black).

DOI: https://doi.org/10.7554/eLife.42138.019

The following figure supplement is available for figure 7:

Figure supplement 1. Individual Purkinje cells preferentially combine sensory and motor information.

DOI: https://doi.org/10.7554/eLife.42138.020
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Purkinje cells combine sensory and motor information from distinct
inputs
Our data suggests that as a population, Purkinje cells preferentially encode visual features in their

complex spike activity whereas swimming activity, arriving in the form of motor efference copies, is

predominantly encoded by simple spikes. Breaking this down by group, we find that Purkinje cells

belonging to the three different visual complex spike phenotypes described above have simple spike

activity that is correlated most strongly with motor activity (fraction of total signal from motor

regressors = 0.65 ± 0.05, 0.54 ± 0.07, 0.76 ± 0.02 for the three visual complex spike phenotypes; Fig-

ure 7—figure supplement 1a). In contrast, for the small group of Purkinje cells with dominant

motor-related complex spike phenotypes, the contribution of motor activity to simple spike activity

is relatively low (0.35 ± 0.12) and simple spikes are instead broadly influenced by a combination of

sensory and motor features (Figure 7—figure supplement 1a). This relationship holds true for indi-

vidual Purkinje cells as well (Figure 7—figure supplement 1b). Together, these data suggest that

sensory and motor information is preferentially combined in Purkinje cells from distinct sources.

Motor context alters the relationship between complex spike and
simple spike activity
It is well-established that the occurrence of a complex spike can alter simple spike activity in a Pur-

kinje cell both acutely and across longer timescales (De Zeeuw et al., 2011). On a short timescale,

complex spikes typically cause a brief pause of tens of milliseconds in simple spike firing that can be

followed by an increase or decrease in simple spikes lasting hundreds of milliseconds. The particular

complex spike-triggered change in simple spiking is robust for a given Purkinje cell but varies consid-

erably across cells (Zhou et al., 2014; Zhou et al., 2015; Xiao et al., 2014). Similar to previous find-

ings, we observed heterogeneity in the relationship between complex and simple spikes across

Purkinje cell recordings (Figure 7a). At the most extreme end, we observed complex spike-induced

pauses or increases in simple spike rates in different cells that took several hundred milliseconds to

return to baseline. These pauses or increases in simple spiking may be attributable to a toggling

action of the complex spike to shift the Purkinje cell between ‘up’ and ‘down’ states

(Loewenstein et al., 2005; Sengupta and Thirumalai, 2015). Several cells had brief pauses (tens of

milliseconds) following a complex spike which left simple spikes otherwise unchanged, whereas

others showed a brief increase in simple spike firing. Previous studies have suggested that the mod-

ulation of simple spike firing by a complex spike is related to the cell’s location within the cerebellum

(Zhou et al., 2014; Zhou et al., 2015). We did not, however, observe any clear spatial organization

of the complex spike-simple spike relationship in this dataset (Figure 7a).

The current behavioral state of the animal should provide important contextual information for

cerebellar circuits, therefore we hypothesized that the modulation of simple spikes by a complex

spike might be altered in different sensory and motor contexts. In periods during which the fish was

at rest (no fictive swimming), the relationship between a complex spike and the simple spike firing

rate was similar whether or not visual stimuli were being presented (Figure 7b, ‘non-motor’ versus

‘blank trials’). When the fish was performing a fictive swim bout however, the effect of a complex

spike on simple spike output appeared diminished (Figure 7b, ‘non-motor’ versus ‘motor’), which

was not the case for complex spikes occurring during a cell’s preferred complex spike sensory stimu-

lus versus those occurring during all other periods (Figure 7b, ‘pref. sensory’ versus ‘all other

periods’).

The unique effect of motor context on this relationship is likely related to the finding that many

Purkinje cells have simple spike rates that are strongly excited by motor activity (Figure 5e), there-

fore a complex spike stochastically occurring during a bout would be faced with simple spikes rates

that are significantly higher than baseline. Upon closer examination of the temporal window around

the occurrence of a complex spike, we observed that the acute effect of a complex spike to modu-

late simple spike rates was identical between motor and non-motor periods for only a 50 millisecond

period following the complex spike, after which time simple spiking returned to high levels corre-

lated with ongoing behavior (Figure 7c,d). This temporal window was the same across cells regard-

less of whether the baseline modulation by a complex spike was to pause or facilitate simple spike

firing. These findings suggest that the acute effect of a complex spike to change simple spike output

in a Purkinje cell is temporally restricted by the behavioral state of the animal and that plasticity
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mechanisms relying on coincident complex spike and simple spike activity will have a unique depen-

dence on motor context (see discussion).

Discussion
In this study, we have taken advantage of an innate set of visually-driven motor behaviors in the lar-

val zebrafish to comprehensively interrogate how Purkinje cells encode sensory and motor features
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Figure 8. Organization of the larval zebrafish cerebellum Granule cells (GCs) send long parallel fibers (grey lines)

that contact Purkinje cells (PCs) across the cerebellum and broadly relay motor efference copies of locomotor

activity (swimming). Sensory information relating to different visual features are sent by climbing fibers of inferior

olive neurons (IO) to stereotyped regions of the contralateral Purkinje cell layer. These visual stimuli contribute to

several reflexive behaviors; rotational motion drives the optokinetic reflex of the eyes, translational forward motion

drives the optomotor swimming reflex while others, such as luminance, may drive behavior over longer (e.g.

circadian) timescales. The three distinct functional regions in the zebrafish cerebellum defined by Purkinje cell

complex spike sensory responses that encode these different visual features represent putative behavioral

modules. Information about the onset of directional translational motion is preferentially sent to PCs in the

rostromedial region of the cerebellum (cyan) and would be important for coordinating turning and swimming,

while information about the direction and velocity of rotational motion as would be needed for coordinating eye

and body movements is sent to the caudolateral region (blue). The central region (red) receives information about

luminance and may provide a substrate for learned sensorimotor associations. Axons from PCs (black dashed lines)

of the rostromedial and central regions have mostly internal axons that contact eurydendroid cells (EC) within the

cerebellar cortex. Axons from PCs in the caudolateral region have mostly external axons that exit the cerebellum

and contact neurons in the caudally-located ipsilateral vestibular nucleus.

DOI: https://doi.org/10.7554/eLife.42138.021
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relating to these behaviors at high spatial and temporal resolution across the cerebellum. Our popu-

lation imaging data across both the Purkinje cell and granule cell populations are supported by sin-

gle cell electrophysiological recordings that elucidate complex spike and simple spikes. We

furthermore show the robustness and specificity of these patterns across behavioral conditions

regardless of whether the tail and/or eyes are freely moving or paralyzed. We show that Purkinje

cells fall into anatomically clustered regions that are functionally defined by complex spike responses

that convey mostly sensory information. On the other hand, simple spikes convey mostly motor-

related information about tail and eye movement. During visuomotor behaviors, these two input

streams converge on Purkinje cells in specific regions of the cerebellum and communicate the pres-

ence of distinct visual features together with motor context. Each of these regions therefore likely

represents a behavioral module whose neural computations are used to guide sensorimotor integra-

tion and motor learning in the cerebellum.

Anatomical and functional organization of cerebellar regions
The three distinct regions formed along the rostrocaudal axis of the larval zebrafish cerebellum we

define here based on distinct Purkinje cells sensory complex spike phenotypes to visual stimuli

should receive topographically-specific climbing fiber inputs from the inferior olive (Figure 8;

Ozol et al., 1999). The presence of these discrete complex spike response phenotypes across Pur-

kinje cells suggests that zebrafish climbing fiber inputs from the inferior olive have undergone refine-

ment by seven dpf to innervate only one Purkinje cell, in support of other findings (Hsieh et al.,

2014; Hsieh and Papazian, 2018). Ongoing work characterizing the physiology and anatomy of infe-

rior olive neurons and their climbing fibers (unpublished observations) supports this regional charac-

terization and, together with studies of Purkinje cell output to eurydendroid cells, will further our

understanding of these anatomical regions.

Differences in developmental timing (e.g. birthdate) are known to contribute to the formation of

a topographic functional map in the cerebellum across species (Hashimoto and Hibi, 2012). In

zebrafish, Purkinje cell development occurs in waves that map onto the same regions we describe

here, beginning with a large rostromedial cluster and a smaller, caudolateral cluster and later filling

in the central region to form a continuous layer (Hamling et al., 2015). Just like in mammals, all

climbing fibers cross the midline after leaving the inferior olive and contact the somata or proximal

dendrites Purkinje cells in the contralateral hemisphere of the zebrafish cerebellum (Takeuchi et al.,

2015). The topography of early afferent climbing fiber connectivity onto Purkinje cells is likely hard-

wired, as in mammals it is guided by chemical cues and does not depend on developmental activity

(see Apps and Hawkes, 2009 for review). Although all ipsilateral climbing fibers enter the cerebellar

cortex as one bundle at larval stages, in the adult, additional fiber bundles are visible

(Takeuchi et al., 2015), suggesting that other routes or types of information are added for commu-

nication between the inferior olive and cerebellar cortex at later stages. Regional differences in

cytoarchitecture and patterns of molecular markers such as zebrin have also been useful for identify-

ing related Purkinje cells into groups in the mammalian cerebellum (see Cerminara et al., 2015 for

review). Although in larval zebrafish all Purkinje cells are zebrin-positive (Bae et al., 2009), many

other genes are expressed in restricted patterns in the zebrafish (Takeuchi et al., 2017) and mam-

malian cerebellum (Hawkes, 2014) that may help define the subdivision of Purkinje cells into clearly-

defined subregions within the cerebellum.

The organization of the cerebellum is thought to impart distinct functional roles across regions,

such that each group of Purkinje cells processes sensorimotor information relating to a different

behavioral component (Witter and De Zeeuw, 2015). Although we only probed one sensory modal-

ity to drive behavior, zebrafish are highly visual animals that perform robust visuomotor behaviors at

the larval stage, including prey capture, optokinetic and optomotor responses, and associative learn-

ing with a conditioned visual stimulus (Easter and Nicola, 1996; Budick and O’Malley, 2000;

Aizenberg and Schuman, 2011; Harmon et al., 2017). Visual information is therefore a highly

salient sensory modality at this age and in accordance with this strong ethological relevance we find

that the complex spike sensory responses to visual stimuli provide an overarching organization of

the Purkinje cell layer into putative behavioral modules (Figure 8). Previous studies have used confo-

cal imaging and optogenetics to identify general regions of the cerebellum that are important for

optomotor and optokinetic responses (Matsui et al., 2014). Our current results build on these maps

with an expanded set of visual stimuli, high-resolution two-photon population imaging, and single-
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cell electrophysiology, to comprehensively describe visual and motor feature coding from the level

of single spikes to population activity.

We see little evidence for the encoding of multiple visual features in these complex spike

responses, however we expect to find representations of features from multiple sensory modalities

in individual Purkinje cells arising from the multimodality of inferior olive neurons (Ohmae and

Medina, 2015; Ju et al., 2018). It will be of great interest to see if the same spatial mapping by

complex spike phenotype is conserved across other sensory modalities. Many other sensory systems

are active at this age and provide salient stimuli for larval zebrafish as demonstrated in behavioral

studies. Larval zebrafish show innate behavioral startle responses to loud auditory cues across a

range of frequencies (Bhandiwad et al., 2013), however functional imaging across the brain sug-

gests that the neural coding of auditory stimuli at this stage is generic and underdeveloped in zebra-

fish compared to the visual modality (Vanwalleghem et al., 2017). In contrast, the activity of many

neurons across the brain including the cerebellum are differentially modulated by vestibular inputs

at larval stages (Favre-Bulle et al., 2018; Migault et al., 2018). Given the pronounced complex

spike responses we observe in response to rotational motion in the Purkinje cells with axonal output

to the vestibular nucleus, it is likely that the coordination of vestibular and visual inputs during rolling

movements (the vestibulo-ocular reflex), critically engages the cerebellum of the larval zebrafish.

Although the larval zebrafish exhibits a broad repertoire of innate behavioral responses to many

other stimulus modalities including touch, the lateral line, and olfaction (see Fero et al., 2011 for

review), there is a lack of physiological data to understand how these signals are encoded in the cen-

tral nervous system and the cerebellum in particular. It is furthermore conceivable that other sensory

systems become more important at later developmental stages, for examples olfactory processing

of cues for kin recognition and social behaviors in the juvenile fish (Dreosti et al., 2015) or lateral

line-mediated schooling behaviors in the adult (Miller and Gerlai, 2012).

In support of the spatial division of the cerebellum by visual complex spike phenotypes that we

show in the current study, previous findings from a completely different behavioral paradigm in larval

zebrafish also found three complex spike regions with a similar organization. Harmon et al., 2017

developed an associative learning task to pair visual stimuli with an electric shock to elicit condi-

tioned swimming responses. They found, using single-cell electrophysiological recordings, that Pur-

kinje cell complex spike patterns in their conditioning paradigm were spatially and functionally

clustered into three regions along the rostrocaudal axis that overlap well with the regions described

here. These complementary findings suggest that this regionalization is of fundamental importance

across modalities and behaviors. However, experimental attempts at associative learning using audi-

tory stimuli have been unsuccessful at this stage and even in the 6 week-old larva (Thompson, 2016),

suggesting a prioritization of visual information for the earliest motor learning in larval zebrafish.

Future studies are needed to examine how the function and organization of the zebrafish cerebellum

across regions may change to reflect an increasing complexity and repertoire of sensorimotor behav-

iors at later developmental stages.

Complex spikes use different temporal bases to encode specific visual
features important for the animal’s behavioral repertoire
Our results show that that majority of Purkinje cells across the cerebellum encode visual and not

motor information in their complex spike activity. We observed a remarkably discrete and complete

classification of nearly all Purkinje cells (>90%) for a specific visual complex spike phenotype whose

sensory nature was clearly distinguishable from motor-related signals of eye and tail behavior. These

visual complex spike phenotypes were distinct between the three groups of Purkinje cells in different

rostrocaudal regions. Below, we discuss how the representation of these different visual features

may serve as behavioral modules that relate to the particular behavioral repertoire of the larval

zebrafish and to findings from the mammalian literature.

Transient changes in the direction of translational visual motion convey information critical for

driving locomotion and turning behaviors, or in the case of visual reafference, for evaluating the suc-

cess of a directed behavior. In the larval zebrafish, Purkinje cells of the rostromedial cerebellum reli-

ably encode acute, directional changes of motion in the visual field with a preferred directional

tuning. During the optomotor response, fish swim to stabilize their position with respect to the visual

field. Larval zebrafish also perform a variety of low and high-angle turns at this stage while exploring,

performing escape maneuvers, and hunting prey, therefore complex spike signals updating the brain
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about a transient change in motion in the visual field have strong ethological relevance. This popula-

tion of Purkinje cells whose complex spikes encode directionally-selective motion onset are reminis-

cent of the directionally-tuned Purkinje cells in the oculomotor vermis of posterior lobes VI and VII in

primates, where complex spike tuning organizes the cells into functional groups whose simple spikes

encode real-time eye motion (Soetedjo and Fuchs, 2006; Herzfeld et al., 2015).

In the caudolateral region of the cerebellum we find Purkinje cells with strong complex spike

responses to unidirectional rotational motion and axons that project primarily to the octaval (vestibu-

lar) nuclei in zebrafish (Matsui et al., 2014). These Purkinje cells fire complex spikes during visual

motion in a temporal to nasal direction presented to the ipsilateral eye (with respect to the anatomi-

cal location of the Purkinje cell), resulting in a tonically elevated complex spike rate during visual

motion in the preferred direction. This caudal region is likely the vestibulocerebellum, homologous

to the mammalian flocculonodular lobe where Purkinje cells receive climbing fiber input conveying

information about ongoing, opposing directional visual and rotational head motion that is used for

vestibulo-ocular coordination (Simpson and Alley, 1974; Ito, 1982). Complementary imaging stud-

ies in larval zebrafish show strong, directionally-tuned responses in the activity of undefined cerebel-

lar neurons in this same region (Favre-Bulle et al., 2018; Migault et al., 2018). Larval zebrafish

perform slow steering maneuvers of the tail while navigating and also produce smooth eye move-

ments while engaging in activities such as prey tracking (McElligott and O’malley, 2005), both of

which result in slow changes in the visual field. In addition, zebrafish can control their eyes indepen-

dently from each other, so these signals are likely to be integrated in the brain together with vestibu-

lar and body axis information to achieve coordinated movements. Notably, these zebrafish

vestibulocerebellar Purkinje cells show complex spike responses not only to rotational but also to

translational moving fields, which is not seen in mammals but has been observed in pigeons

(Wylie and Frost, 1991). This finding may relate to the additional complexity of optic flow that

arises during navigation in a three-dimensional world for birds and fish.

We furthermore observed that Purkinje cells in the caudolateral region have spontaneous com-

plex spike rates an order of magnitude higher than those in the rostromedial region described above

and show sustained high complex spike firing in response to their preferred stimulus. This could

allow for increased temporal precision in order to generate fast and precise firing patterns as would

be required when generating sensorimotor associations or coordinating smooth movements

(Porrill et al., 2013; Suvrathan et al., 2016). The computation itself may in fact be different in this

region since complex spikes could use conventional rate coding to encode the speed and direction

of ongoing, slow movements of the visual field during behavior, as proposed by Simpson et al.,

1996 based on observations in the mammalian flocculonodular lobe across species. These findings

challenge the assumption that the computations being performed across the cerebellum all follow

the same rules and that the occurrence of a discrete event, rather than information about an ongo-

ing event, is transmitted by complex spikes.

The heterogeneity of sensory complex spike coding of luminance in the intermediate region of

the zebrafish cerebellum sets this group of Purkinje cells apart from the other two visual phenotypes

We see both many differences in responses to luminance changes, including light/dark preference,

tonic/phasic responses, latency from stimulus onset to complex spike, and receptive field size. We

propose that these Purkinje cells are therefore well-suited to modulate a diversity of light-mediated

behaviors in the larval zebrafish. Although the luminance stimuli in the current experiments were

titrated to be moderate and thus not evoke acute behavioral responses, sudden strong decreases in

luminance induce re-orienting navigational turns (Burgess and Granato, 2007) or escapes

(Temizer et al., 2015) in zebrafish larvae and transient startle responses in the adult (Easter and

Nicola, 1996), the latter two representing likely predator avoidance responses. With respect to

these fast behaviors, a transient encoding of luminance change could serve to modulate these

response circuits. Luminance increases spontaneous locomotor activity in larval zebrafish over longer

timescales as well, which is used as a cue to regulate circadian rhythms and motivate feeding and

exploratory behavior in the daytime (Burgess and Granato, 2007). There is also an innate prefer-

ence for larval zebrafish to be in lighter areas of their environment, a behavior known as phototaxis

(Brockerhoff et al., 1995). These latter behaviors would more likely make use of rate coding of

ambient luminance, as observed in the complex spike output of some Purkinje cells, to provide sen-

sory integration over long timescales (tens of minutes).

Knogler et al. eLife 2019;8:e42138. DOI: https://doi.org/10.7554/eLife.42138 22 of 36

Research article Neuroscience



The differing luminance preferences and temporal dynamics across this group may furthermore

be useful for learning novel associations. Indeed, a recent report by Harmon et al., 2017 found that

Purkinje cells in this central area of the larval zebrafish cerebellum (termed ‘multiple complex spike

cells’ in this study) preferentially acquired complex spike responses to a conditioned visual stimulus

during associative learning. As mentioned above, Purkinje cells in this central region are also born

slightly later in development compared to the groups described above (Hamling et al., 2015), find-

ings that together suggest this region may preferentially contribute to flexible or learned sensorimo-

tor behaviors. This region may be similar to areas in the central zone (posterior lobes VI and VII) of

the cerebellum in mammals, which support a wide range of behavioral functions (Koziol et al.,

2014; Stoodley et al., 2012).

What signals are complex spikes encoding?
There is great debate about whether climbing fiber signals convey error, predictive, or novelty sig-

nals (see Simpson et al., 1996 and Streng et al., 2018 for reviews). The error hypothesis would sug-

gest that the visually-evoked responses we observe here signal unexpected events or ‘negative

sensory events to be avoided’ such as retinal slip (Lang et al., 2017). However, these signals are not

necessarily a classical error signal (Ito, 2013), because in the current study we find that stimulus-

evoked complex spikes are equally prominent in paralyzed fish as in experiments where the eyes

and tail are free and track the stimulus. Furthermore, many complex spikes are robustly elicited by

visual stimuli that do not acutely drive behavior, such as reverse motion or luminance changes.

Other work suggests that climbing fibers carry instructional signals for upcoming motor actions in

a learned behavior, in the context of a reinforcement learning signal (Ohmae and Medina, 2015;

ten Brinke et al., 2015; Heffley et al., 2018), or could provide the corrective drive used to initiate

locomotion (Ozden et al., 2012). While we are not testing predictive signals in this study, it is none-

theless clear that for the complex spikes elicited during visual stimuli in our experiments do not sig-

nal an upcoming motor event. In cases when complex spikes are driven by the onset of directional

translational motion, they occur with a consistently short latency (approximately 200 ms) whereas the

latency to swim bout onset is much longer and more variable, and the presence of absence of these

visual complex spikes across trials do not predict the occurrence of a swim bout.

Other hypotheses suggest that climbing fibers may encode novelty or salience signals related to

sensory stimuli, although in fact these hypotheses do not exclude the previous ones since climbing

fibers may be able to carry different types of signals by multiplexing (Ohmae and Medina, 2015).

The complex spike responses we observe in this study do not encode all novel or salient visual stim-

uli as we see that responses are selective for certain visual features. In our experiments, complex

spikes do not habituate but are consistently elicited by visual stimuli, across many trials and many

hours, in contrast to what might be expected if complex spikes encoded novelty. It remains however

to be seen how robust these responses are over longer timescales, as previous work has suggested

the complex spike response to a novel sensory stimulus is subject to habituation only with repeated

exposure across many days (Ohmae and Medina, 2015).

Since the above hypotheses were mostly developed with respect to observations in the context

of cerebellar learning, the role of complex spikes may be different for innate feature coding. Our

results suggest an innate coding of sensory features in climbing fiber signals in the naı̈ve animal, con-

sistent with observations of visual and multimodal sensory responses carried by climbing fibers in

other studies in zebrafish (Hsieh et al., 2014; Sengupta and Thirumalai, 2015; Scalise et al., 2016;

Harmon et al., 2017) and mammals (Ohmae and Medina, 2015; Ju et al., 2018). The complex

spikes resulting from climbing fibers tuned to specific sensory features could subsequently drive the

learning that underlies novel associations, including predictions, as arises when an animal experien-

ces the repeated pairing of a complex spike-evoking stimulus and a motor event (Ito, 2001;

Harmon et al., 2017). In this context, the sensory complex spike signal could be interpreted as a

sensory prediction error that drives associative learning. Additional work is needed to determine

how the complex spike responses encode different sensory modalities both in the naı̈ve animal and

throughout the course of learning.
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Motor efference copies in the cerebellum
Our population-wide imaging and extensive electrophysiological recordings show that most Purkinje

cells across the cerebellum encode the current behavioral state (motor context) of the animal

through a pronounced increase in simple spikes during locomotor behaviors. We observed strong

swim-related signals in granule cells and Purkinje cells during both active and fictive swimming,

where zebrafish were awake but paralyzed, therefore this activity is more consistent with motor

efference copy signals than proprioceptive or lateral line activation. Moreover, we found that simple

spike output correlated best with the strength of ongoing swimming rather than reporting a phasic

or binary locomotor state, supporting previous findings that motor parameters are linearly coded in

the cerebellum (Raymond and Medina, 2018). Only a small minority of Purkinje cells showed a

motor-related decrease in simple spiking, which may reflect the relatively small contribution of feed-

forward inhibition via molecular layer interneurons. The increases in simple spike output that we

observe are far less heterogeneous than the effects of locomotion on mammalian Purkinje cell simple

spike firing (Jelitai et al., 2016; Sauerbrei et al., 2015) and build on previous electrophysiological

samplings of Purkinje cell activity that showed increases in membrane depolarization and simple

spike output during fictive swimming in zebrafish (Sengupta and Thirumalai, 2015; Scalise et al.,

2016).

These results suggest that motor efference signals during whole-body locomotion (swimming)

drive simple spike output in nearly all cerebellar Purkinje cells in the larval zebrafish. Our current

granule cell population imaging and electrophysiological recordings in zebrafish together with other

recordings and optogenetic experiments in zebrafish and mice (Ozden et al., 2012; Powell et al.,

2015; Jelitai et al., 2016; Giovannucci et al., 2017; Knogler et al., 2017; Albergaria et al., 2018)

provide strong evidence that the cerebellum broadly encodes intended locomotor output or signals

related to it in the input layer (Figure 6). These findings suggest an enrichment of motor signals

across parallel fiber inputs, though some regional specialization of signals in limbed vertebrates may

be needed to coordinate different limb networks. Future work is required to investigate the origin of

mossy fibers carrying eye and tail motor efference copies to the zebrafish cerebellum and how these

signals are transformed by subsequent processing stages in cerebellar circuits.

Complex spike - simple spike relationships
We observed that the dominant action of motor activity on simple spiking acutely changes how com-

plex spikes and simple spikes interact in Purkinje cells. During non-locomotor periods, complex

spikes have the ability to consistently increase or pause simple spiking for several hundreds of milli-

seconds in different Purkinje cells. Under motor-driven conditions of high simple spike rates, how-

ever, a complex spike resets simple spike activity for only a brief (<50 ms) window in all Purkinje cells

before simple spikes return to their previous high rate. This is likely due to the overwhelming excit-

atory influence of locomotor activity carried by parallel fibers that drives simple spiking across the

Purkinje cell population at high rates. When faced with these high simple spike rates, a complex

spike arriving during motor activity therefore has a limited influence over simple spike output. The

narrowing of this temporal window may serve to make finer adjustments of motor activity through

very acute perturbations in network activity.

Across longer timescales, sensorimotor behaviors needs to be adjusted during development,

experience, and learning, so that an animal can adapt to suit a changing environment or context. In

a developmental context, the cerebellum may be actively engaged in refining and maintaining sen-

sorimotor behaviors as the physiology of neural circuits, muscles, and sensory appendages matures.

In the context of supervised cerebellar learning, classical theories predict that the coincident activa-

tion of a climbing fiber input and parallel fiber synapses drives long-term depression at the active

parallel fiber to Purkinje cell synapses, leading to motor learning (Ito, 2001; but see Bouvier et al.,

2018). Synaptic plasticity mechanisms both at other synapses and involving other cerebellar neurons

(e.g. interneurons) are also likely to contribute (see Gao et al., 2012 for review). We propose that

motor efference signals during swimming and eye movements are widely broadcasted across the

cerebellum to Purkinje cells because these are the most relevant signals not only for coordinating

ongoing behaviors but also for driving plasticity. The enrichment of motor-related activity across the

granule cell layer and subsequent broad excitation of Purkinje cells would support learned associa-

tions between motor behaviors and any relevant sensory information carried by regionally-specially
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climbing fiber input. Indeed, recent work by Albergaria et al., 2018 supports this idea by showing

that a generalized increase in granule cell excitation during either locomotion or optogenetic stimu-

lation enhances cerebellar learning in a paradigm for eyeblink conditioning. The amenability of the

zebrafish cerebellum to in vivo physiological and behavioral recordings together with the hypotheses

raised by this study should make it an attractive system to study the rules of cerebellar plasticity and

learning in the future.

Outlook
Our results reveal a strong spatial organization of visual feature encoding in the Purkinje cell popula-

tion into three rostrocaudal functional regions receiving different climbing fiber inputs. These

regions are each involved in processing visual information relating to distinct motor behaviors and as

such exhibit unique temporal features in sensory coding. Broad excitation from granule cells is lay-

ered on these regions during locomotor activity as a contextual signal. We believe that the system

of granule cells and Purkinje cells together thus forms the substrate for cerebellar modules modulat-

ing innate and learned motor behaviors. These and other recent findings (Matsui et al., 2014;

Harmon et al., 2017) provide a promising outlook for using the zebrafish as a model organism for

understanding motor control and learning in the cerebellum.

Materials and methods

Experimental model and subject details
Zebrafish (Danio rerio) were maintained at 28 ˚C on a 14 hr light/10 hr dark cycle using standard pro-

tocols. All animal procedures were performed in accordance with approved protocols set by the

Max Planck Society and the Regierung von Oberbayern (TVA 55-2-1-54-2532-82-2016). All experi-

ments were performed using larvae at 6–8 dpf of as yet undetermined sex.

To label Purkinje cells specifically, we made use of the aldoca promoter and the carbonic anhy-

drase 8 (ca8) enhancer element as published previously (Takeuchi et al., 2015; Matsui et al., 2014).

For electrophysiological recordings in Purkinje cells, aldoca:GFF;mn7GFF;UAS:GFP fish were used

(Takeuchi et al., 2015; Asakawa et al., 2008; Asakawa et al., 2013), with Tg(gSAIzGFFM765B);

UAS:GFP and Tg(gSAG6A); UAS:GFP fish additionally used for granule cell recordings

(Takeuchi et al., 2015). For calcium imaging experiments with granule cells, Tg(gSA2AzGFF152B);

UAS:GCaMP6s fish were used (Takeuchi et al., 2015; Thiele et al., 2014). For calcium imaging

experiments in Purkinje cells, we cloned GCaMP6s (Chen et al., 2013) downstream of the ca8

enhancer with an E1b minimal promoter referred hereafter as PC:GCaMP6s. We injected PC:

GCaMP6s together with tol2 mRNA in one cell stage embryos (25 ng/ml each), screened at six dpf

for expression in the cerebellum, and raised strong positive fish to adulthood. Positive F1 progeny

were used for all imaging experiments. For simultaneous electrophysiological and imaging experi-

ments, we injected PC:GCaMP6s without tol2 mRNA to achieve sparse, single-cell labelling. For ana-

tomical experiments, we created a construct harboring a bright GFP variant mClover3 (Bajar et al.,

2016) tagged with a membrane targeting signal (Fyn). This construct is termed PC:Fyn-mClover3.

Injections were done as described for sparse GCaMP6s labelling in fish expressing aldoca:gap43-

mCherry to allow registration across fish. For Purkinje cell counting, we created a stable transgenic

line as described above where a nuclear localization signal (NLS) is fused to the N-terminus of

GCaMP6s (PC:NLS-GCaMP6s) to restrict GCaMP6s to the nucleus.

Visual stimuli
For functional imaging experiments, trials were presented that consisted of the following stimuli, in

non-randomized order: Black and white whole-field gratings were presented with motion in the for-

ward direction at slow, medium, and fast speeds (3, 10, and 30 mm/s, respectively), for five seconds

each with a pause of five seconds between stimuli, followed by reverse, leftward, and rightward

moving gratings of the same duration and at medium speed. Grating remained static between stim-

uli. Black and white windmill patterns were rotated at 0.2 Hz with changing velocity that followed a

sine function. Windmill patterns were presented across the whole field as well as for each half of the

visual field. Flashes covered the whole visual field and switched between maximum luminance and

darkness. For electrophysiological recordings, stimuli were similar as for functional imaging with the
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exception that the stimulus set had shorter pauses between stimuli and that fewer repetitions of the

rotating windmill stimulus were presented. Blank trials consisting of static gratings were also inter-

spersed with stimuli trials to obtain baseline responses. For one experiment (Figure 4—figure sup-

plement 1g) the fish was also presented with a series of whole-field black or white flashes of various

durations (50–5000 ms) against a baseline intermediate luminance.

Functional population imaging
Volumetric functional imaging in the larval zebrafish cerebellum was performed as previously

described in Knogler et al., 2017. Briefly. 6–8 dpf nacre (mitfa -/-) transgenic zebrafish larvae with

GCaMP6s expressed in Purkinje cells were embedded in 1.5–2.5% agarose prior to imaging. Neural

activity was recorded with a custom-built two-photon microscope. A Ti- Sapphire laser (Spectra

Physics Mai Tai) tuned to 905 nm was used for excitation. Larval brains were systematically imaged

while presenting visual stimuli (see below) at 60 frames per second using a Telefunken microprojec-

tor controlled by custom Python software and filtered (Kodak Wratten No.25) to allow for simulta-

neous imaging and visual stimulation. We acquired the total cerebellar volume by sampling each

plane at ~5 Hz. After all stimuli were shown in one plane, the focal plane was shifted ventrally by 1

mm and the process was repeated. Tail and eye movement was tracked throughout with 850 nm

infrared illumination and customized, automated tracking software. Behavior was imaged at up to

200 frames per second using an infrared-sensitive charge-coupled device camera (Pike F032B, Allied

Vision Technologies) and custom written software in Python.

Image processing
Image analysis was performed with MATLAB (MathWorks) and Python similar to Knogler et al.,

2017. Python analysis used scikit-learn and scikit-image (Pedregosa et al., 2012; van der Walt

et al., 2014). Volumetrically-acquired two-photon data was aligned first within a plane then across

planes to ensure that stacks were aligned to each other with subpixel precision. Any experiments

during which the fish drifted significantly in z were stopped and the data discarded. The boundary of

the cerebellum was manually masked to remove external signals such as skin autofluoresence. All

signals from all planes were extracted for voxelwise analysis (mean of approximately 350 billion ± 10

billion for 5 fish with 100 planes with an additional 118 billion for a sixth fish with only 34 planes).

Purkinje cell ROI activity traces were extracted using automated algorithms based on local signal

correlations between pixels (see Portugues et al., 2014 for details) and used for principal compo-

nent analysis (see Materials and methods below). Tail activity during imaging experiments was proc-

essed to yield a vigor measurement (standard deviation of a 50 ms rolling buffer of the tail trace)

that was greater than zero when the fish is moving. Independent left and right eye position and

velocity were obtained from eye tracking data.

Single cell Purkinje cell imaging
Sparse labelled Purkinje cells expressing GCaMP6s were used to perform two-photon imaging as

described above to identify any signal compartmentalization (Figure 1—figure supplement 2).

Visual stimuli consisting of reverse and forward moving gratings were probed to evoke signals in

Purkinje cells. For five Purkinje cells across three fish, ROIs for soma and parts of the dendrite were

drawn manually and Calcium traces were extracted using custom-written software in Python. The

most distal dendritic ROI was correlated with somatic ROI to determine the correlation coefficient

for each cell.

Electrophysiological neural recordings
Cell-attached electrophysiological recordings were performed in 6–8 dpf zebrafish as previously

described (Knogler et al., 2017) using an Axopatch Multiclamp 700B amplifier, a Digidata series

1550 Digitizer, and pClamp nine software (Axon Instruments, Molecular Devices). Data were

acquired at 8.3 kHz using Clampex 10.2. Wild-type or transgenic zebrafish larvae with GFP-positive

Purkinje cells and motor neurons were used for most recordings (see subject details above).

Larvae were paralyzed in bath-applied buffered 1 mg/ml alpha-bungarotoxin (Cayman Scientific,

Concord, CA) and embedded in 1.5% low melting point agarose in a 35 mm petri dish. External

solution was composed of Evans solution (134 mM NaCl, 2.9 mM KCl, 2.1 mM CaCl2, 1.2 mM
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MgCl2, 10 mM glucose, 10 mM HEPES, pH 7.8 with NaOH). Electrodes for neuron recordings (6–12

MW) were pulled from thick-walled borosilicate glass with filament and were filled with the following

intracellular solution (in mM): 105 D-gluconic acid, 16 KCl, 2 MgCl2, 10 HEPES, and 10 EGTA,

adjusted to pH 7.2, 290 mOsm (Drapeau et al., 1999). Sulforhodamine B (0.1%) was included in the

intracellular solution to visualize the electrode. The skin overlying the cerebellum was carefully

removed with a glass electrode prior to recording. Post-recording fluorescent images of GFP-posi-

tive Purkinje cells and the recording electrode (visualized with an RFP filter) as well as bright-field

images to confirm cell identity and map somatic location were acquired with an epifluorescent Thor-

Labs camera controlled by Micromanager.

Electrophysiological data were analyzed offline with Clampfit 10.2 software (Molecular Devices)

and Matlab (Mathworks, Natick MA). Cell-attached traces were high-pass filtered at 1–10 Hz and

complex spikes and simple spike were automatically extracted by setting a threshold for each type

of spike in that recording. A 2.5 ms period was blanked following each complex spike so that the

complex spike waveform did not cross the simple spike threshold. Baseline firing rates were calcu-

lated from blank trials where no visual stimuli were presented or from the two second period at the

beginning of each trial prior to the first stimulus onset if no blanks were obtained.

For experiments with simultaneous calcium imaging, stochastically-labeled single Purkinje cells

expressing GCaMP6s were recorded with an epifluorescent backlit-CMOS camera (Photometrix

Prime 95B) at 11.5 fps controlled by Micromanager and triggered by pClamp software during

electrophysiological recordings. No visual stimuli were shown in these experiments. Fluorescent Pur-

kinje cell activity was processed by manual ROI extraction. Extracted complex spike and simple spike

rates from simultaneous electrophysiology traces were convolved with a GCaMP6 kernel for compar-

ison with the fluorescent signal.

For electrophysiological recordings in the semi-paralyzed animal, larval zebrafish were embedded

in 2% low-melting point agarose and injected with 0.5 mg/ml alpha-bungarotoxin in the caudal tip

of the tail. This method reduces the trunk contractions during swimming but preserved full eye

movement. The agarose around the eyes was removed and the fish was lit from below with 850 nm

infrared illumination to allow for good image contrast of the eyes. Eye movement was recorded dur-

ing simultaneous electrophysiological recordings and tracked offline with customized, automated

software to extract independent trajectories for each eye.

Ventral root recordings
To obtain extracellular ventral root recordings, a thin-walled borosilicate glass electrode with a large

opening (approximately a quarter of the width of a somite) was first used to remove a small section

of skin overlying the horizontal myotomes of the spinal cord around the fifth spinal somite. The elec-

trode was then cleared with positive pressure and positioned over the terminals of the ventral root

with gentle suction to ensure good signal to noise.

Motor activity was extracted as a moving standard deviation of the ventral root trace. A threshold

was then applied to identify ventral root activity that would correspond to motor output on the side

of the animal ipsilateral to the recording electrode. To extract a binarized trace of swimming bouts,

ventral root activity separated by an interval of less than 100 ms was considered to be part of the

same bout. The vigor trace was median filtered to extrapolate vigor information across the entire

bout. Peaks in the lag of the autocorrelation analysis of the thresholded, binarized signal was used

to extract fictive swim frequency.

Multilinear regression
Briefly, this analysis involves three steps. First, we processed and extracted physiological signals

from imaging data and electrophysiological recordings (see above). Second, we used each different

feature of the visual stimulus or motor behavior, such as rotational clockwise visual motion velocity,

or the strength of the swimming bouts across a trial, to build a vector of values for each trial con-

volved with the temporal dynamics of the signal (calcium signal or firing rate). These feature vectors

are termed regressors. Third, we performed multilinear regression to quantify the contribution of

these different features to the signal of interest. This step included parameter validation to ensure

that the results of the analysis are robust. Following this process, each signal is assigned a vector of
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coefficient weights that can be multiplied by the set of regressors to best recapitulate the activity of

that signal.

Motor regressors were computed for each trial from the behavioral parameters obtained from

eye and tail motor information in imaging and electrophysiology experiments (see above). Motor

regressors for swimming were created to capture various features including bout onset, offset, dura-

tion, and vigor. Eye motor regressors captured directional velocity of each eye independently. Sen-

sory regressors for each type of experiment were the same for all cells and were created using

features including the duration, direction, and velocity of moving stimuli as well as luminance (see

Figure 1—figure supplement 2 and Figure 3—figure supplement 1 for full regressor lists for imag-

ing and electrophysiology).

For functional imaging data, regressors were convolved with a GCaMP6s kernel, modeled as a

single exponential function with time decay constant tau = 1600 ms. The tau for this kernel was

derived from the average single exponential fit of the fluorescence peak produced by a single com-

plex spike as ascertained by simultaneously recorded GCaMP6s and electrophysiological signals

(Figure 1—figure supplement 2, N = 8 cells). Regressors were normalized and passed to the scikit-

learn function LinearRegression to compute the mulilinear regression coefficients, which was suffi-

cient to accurately recapitulate the calcium traces (mean coefficient of multiple

determination = 0.46 ± 0.02).

The higher sampling rates of electrophysiological recordings (8.3 KHz) allowed us to create addi-

tional regressors that captured more subtle features in the visual stimuli, for example the onset of

translational motion in a given direction. The window for these regressors spanned a 500 ms period

beginning at stimulus onset. Our previous electrophysiological recordings in granule cells have sug-

gested a latency of ~100–200 ms for visual input to arrive at the input layer of the cerebellum

(Knogler et al., 2017) similar to the mean latency of 126 ms reported for visual responses in the

mouse inferior olive (Ju et al., 2018). Since most sensory stimuli were presented for longer periods

(gratings for 5 s, windmill stimuli for 10 s, flashes for 1 s), this short window was designed to be suffi-

ciently long to capture onset-related signals that face synaptic delays, but also clearly distinguish

between responses that are transient at stimulus onset or last for the duration of the stimulus. Wind-

mill stimuli had sinusoidal velocity and smoothly changed direction, thus multiple regressors were

built for these stimuli that represented graded velocity, binary motion in a given direction, as well as

change of direction. These motor and visual regressors were then convolved with a 20 ms filter to

match the convolution of spiking into firing rates.

In order to best analyze our electrophysiological data with this extended set of regressors, we

implemented a variant of lasso regression known as elastic net regularization using the function lasso

from MATLAB. This is a useful fitting method for linear regression using generalized penalties that

has been shown to be robust and gives sparse coefficient weight distributions such that in practice

many regressor coefficients are zero (Zou and Hastie, 2005; Tibshirani, 2011; Dean et al., 2015).

Documentation from MATLAB (r2018b) gives the following formulation:

‘Elastic net solves the problem

b0:b
min

1

2N

PN

i¼1
yi � b0 � xTi b
� �2

þ lPa bð Þ
� �

, where

Pa bð Þ ¼ 1� að Þ
2

b2

2
þ ab1 ¼

Pp

j¼1

1� að Þ
2

b2

j þ abj

� �

.

. N is the number of observations.

. yi is the response at observation i.

. xi is data, a vector of length p at observation i.

. l is a nonnegative regularization parameter corresponding to one value of Lambda.

. The parameters b0 and b are a scalar and a vector of length p, respectively.

. The penalty term Pa bð Þ interpolates between the L1 norm of b and the squared L2 norm of b.’

Alpha values of 0.2 were used which represent an elastic net optimization with only modest spar-

sification, approaching ridge regression. Increasing the alpha parameter to move closer to an elastic

net optimization did not significantly alter the main regressor weights. As the regularization coeffi-

cient Lambda increases, the number of nonzero components for regressor weights decreases.

Lambda was selected by assessing the lowest total root mean squared error across the dataset fol-

lowing iterative regression with different parameter values: 0.9 for complex spike analyses and 0.8

for simple spike analyses. Both alpha and Lambda parameters were robust across a range of values
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for the distribution of coefficient weights. The same procedure was used to obtain both Purkinje cell

and granule cell coefficient weights.

For analyses of both imaging and electrophysiological data, multilinear regression produced a

vector of coefficient weights for all regressors for the activity of each cell/voxel. In the latter case, a

separate set of coefficient weights was obtained for complex spikes and simple spikes. The esti-

mated weights for each regressor for a given cell/voxel can take positive or negative values (or

zero). Negative weights are interpretable as a relay through inhibitory neurons.

Purkinje cell maps (Figure 2a) shows mean z-projections of the regressor coefficients from a rep-

resentative fish. Granule cell maps (Figure 6a) are means of seven morphed fish and were manually

masked either for parallel fibers and granule cell somata to show potential differences in the signal

topography. To further dissociate motor and sensory responses for sensory stimuli that strongly

drive a particular behavior (translational motion and swimming, or rotational motion and left/right

eye velocities), we used a maximum intensity projection of respective sensory and motor regressor

maps and colored a pixel depending on whether sensory (magenta) or motor (green) regressors

explain this pixel better with a given minimum distance. Differences that are below that minimum

distance or are uncorrelated are colored white. Despite the slow time constant for the calcium signal

decay, the variability of tail and eye movements across trials, including their onset, duration, and

presence/absence, was sufficient to assign clear sensory or motor origins to the majority of these

voxels.

For detailed electrophysiological analyses of the different classes of visual complex spike

responses for Purkinje cells, we included for analyses all cells for which that regressor coefficient

weight was significant. To determine which Purkinje cells showed significant responses to luminance,

we used autocorrelation analyses of complex spike rates during whole-field flashes only and

assessed significance using the Ljung-Box Q-test. For analysis of complex spikes and motor activity,

we analyzed all cells with significant, nonzero motor regressor weights for complex spike activity.

When examining the relationship between complex spikes and simple spike rates in individual Pur-

kinje cells, cells with less than ten complex spikes for any condition (e.g. motor versus non-motor)

were excluded from analysis.

Our multilinear regression analyses were carefully chosen in place of a series of separate simple

regressions which would not provide useful or even correct insight into the question of which fea-

tures these neurons are encoding. Multilinear regression is therefore preferred statistical method

when considering which of multiple features contribute to a given signal and to what degree. How-

ever, as with any analysis, one must acknowledge the potential caveats or considerations when using

this method (see Slinker and Glantz, 2008 for review). For example, although multilinear regression

assumes a simple addition of the regressor multiplied by the coefficient values, different sensory

and/or motor features could interact nonlinearly to influence a cell’s firing rate. Models do exist that

incorporate nonlinearity (interaction terms), however these terms will highly correlate with each of

the variables used to create the product and artificially introduce multicollinearity. Therefore since

the R2 values of the linear fits were reasonable, we did not explore these models. The complete set

of regressors used for electrophysiological analysis nonetheless face the consideration that even in a

linear model some regressors will be correlated with each other (for example, stimulus onset and

duration, or swim strength and duration). We addressed this concern in two ways. First, we explored

a wide range of possible regressors, both quantitative and categorical, then we dropped unneces-

sary and redundant regressors that consistently gave small or zero coefficient values. This was done

through variable selection methods to select the optimal pool of regressors. Second, we used the

elastic net optimization of lasso with low alpha values that approach ridge regression, which specifi-

cally helps to sparsify the coefficients rather than split coefficient weights between correlated

regressors.

Principal component analysis (PCA)
We performed PCA on the vector of correlations with all regressors for all automatically segmented

ROIs and all fish. This correlation vector representation was clustered in the PC space in 10 clusters

using k-means. This number was chosen because 10 PCs already explained ~90% of the variance. All

voxels were then colored in according to the cluster they belonged to.

The anatomical clustering and stereotypy indices were calculated as follows. For the anatomical

clustering index, the average distance between ROIs of the same cluster within a fish was compared
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against the average distance between an ROI from that cluster and a randomly chosen ROI from

that fish. The inverse ratio of these two quantities is the anatomical clustering index. The stereotypy

index is computed similarly. In this case, the average distance between an ROI from a particular clus-

ter and fish and other ROIs from that same cluster but other fish is compared against the distance

between an ROI from that same cluster and fish and other ROIs from other clusters and fish. Again,

the inverse ratio of these two quantities is the stereotypy index. To summarize, the index is a com-

parison of average distance within a condition to average distance without the restraint of that

condition.

Purkinje cell morphology
Sparsely labelled Purkinje cells were imaged using a 20x water immersion objective with 1 NA (Zeiss)

on a confocal microscope (LSM 700, Carl Zeiss, Germany). High resolution stacks of Purkinje cells

were deconvolved using Richardson-Lucy algorithm and artifacts were removed manually. Purkinje

cell axonal projections were traced using NeuTube (Feng et al., 2015) and the Simple Neurite

Tracer plugin for FIJI (Longair et al., 2011). SWC files were converted to line stacks and post-proc-

essed using custom written software in Python. Individual axonal projections were morphed together

to a reference brain using aldoca:gap43-mCherry as a reference and CMTK as morphing tool

(Rohlfing and Maurer, 2003). Dendritic planarity was assessed by performing principal component

analysis on binarized dendritic morphologies. The ratio of the third principal component to the sec-

ond was used to determine planarity (planar dendrites have ratios approaching 0, whereas nonplanar

dendrites have ratios approaching 1).

Purkinje cell counting
We imaged three individual PC:NLS-GCaMP6s transgenic fish line at seven dpf using confocal

microscopy as described for morphological experiments above. In this line, GCaMP6s is restricted to

the nucleus and approximates a sphere. Consequently, we used 3D template matching using a 3D

(spherical) Gaussian to find individual nuclei using custom written software in Python. False positives

were removed and missed cells were added manually.

Quantification and statistical analysis
Data were analyzed in MATLAB and Python with custom software (Knogler, 2019; copy archived at

https://github.com/elifesciences-publications/Knogler_etal_2019_eLife).

Values given in the text are mean ± standard error of the mean. Baseline complex spike firing

rates for groups of Purkinje cells sorted by complex spike phenotype were compared by one-way

ANOVA, followed by pairwise post hoc analyses using Bonferroni post hoc correction. The nonpara-

metric Wilcoxon signed rank test was used on paired nonparametric datasets. Details of statistical

analyses are found in the text and figure legends.

Data/resource sharing
Example electrophysiological datasets are available at https://zenodo.org/record/1494071. An

example imaging dataset is available at https://zenodo.org/record/1638807. Further information

and requests for data, resources, and reagents should be directed to Ruben Portugues (rportu-

gues@neuro.mpg.de).
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Data availability

Example electrophysiological datasets are available at https://zenodo.org/record/1494071. An

example imaging dataset is available at https://zenodo.org/record/1638807. MATLAB code for

electrophysiological analysis available via GitHub (https://github.com/portugueslab/Knogler_etal_

2019_eLife; copy archived athttps://github.com/elifesciences-publications/Knogler_etal_2019_eLife).
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Figure 1. Using population imaging and multilinear regression to describe feature responses across the Purkinje

population during visuomotor behaviors. (a) Cartoon of the embedded zebrafish preparation under the two-

photon microscope with freely-moving eyes and tail. (b) Overview of the visual stimuli presented to the awake,

behaving zebrafish during volumetric two-photon calcium imaging. See Materials and methods for further details.

The mean swimming activity and eye position for a representative fish across an entire experiment is shown

(N = 100 trials). (c) Composite bright field image of a seven dpf zebrafish larva from a dorsal view showing Purkinje

cells expressing GCaMP6s driven by a ca8 enhancer element. Scale bar = 100 microns. (d) Overview of the

multilinear regression analysis. See Materials and methods for additional details and see Figure 1—figure

supplement 1 for full list of regressors. (e) Left panels, example calcium signal from a Purkinje cell across two

planes (black trace) can be well recapitulated through multilinear regression (MLR, grey trace; R2 = 0.77). The

regressors with the seven largest coefficients (b) are shown below scaled in height and colored by their b value

(blue = positive, red = negative). The asterisk for regressor four refers to a negative value of b which results in an

inverted regressor. Right, a bar graph quantifying the normalized b values for all regressors for this cell with the

regressors shown at left labelled. See also Figure 1—figure supplements 1 and 2.
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Figure 1—figure supplement 1. Functional imaging anatomy and full regressor list. (a) Single imaging planes showing PC:GCaMP6s fluorescence as

obtained from confocal imaging (upper panel) and during two-photon experiments (middle panel). Lower panel, a single confocal imaging plane from a

PC:NLS-GCaMP6s fish where GCaMP is restricted to the nucleus. Red arrowheads indicate example Purkinje cell somata. Scale car = 25 microns. (b)

Quantification of Purkinje cells in the entire cerebellum at seven dpf as counted in the PC:NLS-GCaMP6s line. N = 3 fish. (c) The complete set of

regressors used in analysis of calcium imaging data. Individual regressors fall into one of five categories (three sensory and two motor), as indicated by

the categories at right. Tail and eye motor regressors are calculated for each imaging plane based on the motor activity during that trial, therefore a

representative example from one trial in the dataset is shown here. See also Videos 1 and 2 for example imaging trials with the sequence of visual

stimuli displayed. (d) Projections of the first ten principal components of Purkinje cell activity in response to experimental stimuli across all fish (N = 6;

see Materials and methods), ordered in increasing variance explained. Components that show a high degree of anatomical clustering are colored.

Colors are arbitrarily chosen.

DOI: https://doi.org/10.7554/eLife.42138.003
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Figure 1—figure supplement 2. Calcium signals report complex spikes reliably but can also report simple spike bursts. (a) Example cell-attached

electrophysiological recording (ephys, black trace) and simultaneously recorded fluorescence trace (green) from a Purkinje cell expressing GCaMP6s

under the Purkinje cell-specific ca8 enhancer. All complex spikes (orange dots) are accompanied by an increase in fluorescence as shown as a

deflection in the fluorescence trace that accounts for every peak in the complex spike regressor (orange trace, spike rate convolved with GCaMP

kernel). In contrast, only high frequency bursts of simple spikes (blue dots) influence the fluorescence signal (indicated by blue arrowheads). (b) The

mean spike-triggered fluorescence signal and standard deviation is plotted for the example cell from a) for complex and simple spike bursts (N = 25

each). (c) A composite epifluorescent image showing a bright field dorsal view of the cerebellum together with single-cell GCaMP expression in the

Purkinje cell from the previous panels and the rhodamine-filled electrode contacting this cell. The outline and midline of the cerebellum is indicated by

the dashed white line. Scale bar = 50 microns. (d) The mean spike-triggered fluorescence signal and standard error is plotted for eight cells (N = 6 fish)

for complex and simple spike bursts. (e) The relative contribution of the complex spike (CS) and simple spike (SS) regressors (spike rates convolved with

the GCaMP kernel) to the fluorescence signal in each cell as determined by least squares regression (see Materials and methods) across the eight cells.

The example cell from a) is indicated. (f) The location of all example cells, color-coded by relative SS regressor contribution. (g) Overview of i) the

morphology of a singly-labelled Purkinje cell and the subcellular regions of interest (ROIs) with ii) corresponding calcium signals obtained from high

resolution two-photon imaging (see Materials and methods). Scale bars = 20 microns. (h) Quantification of the correlation coefficient between the

calcium signal from the most distal dendritic segment and the soma. N = 5 cells from three fish.
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Figure 2. Purkinje cell activity is functionally clustered across the cerebellum. (a) Heatmaps of the z-projected

mean voxelwise correlation coefficients from multilinear regression (MLR) with example sensory and motor

regressors for a representative fish (see Materials and methods). Scale bar = 50 microns. (b) Voxels from the

example fish in a) are colored according to whether the best regressor for correlated sensory stimuli and motor

events (including i) swimming and ii) eye movement) are sensory (magenta), motor (green), or equal/uncorrelated

(white). (c) Left, quantification of principal component analysis, clustering, and stereotypy of Purkinje cell

responses. Left axis, index values across the first ten principal components with respect to the anatomical

clustering of principal components within a fish (red line) and the stereotypy of these clusters across fish (blue line).

Dotted black line shows an index value of 1 (equivalent to chance). Right axis, total variance explained across

principal components. Right panel, mean spatial mapping of the four principal components with the highest index

values for anatomical clustering and stereotypy as individual maps (above) and composite (below). Colors are

arbitrarily chosen.
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Figure 3. Electrophysiological recordings from Purkinje cells reveal distinct complex spike responses that can be grouped into four primary response

types corresponding to sensory or motor features. (a) Cartoon of the embedded, paralyzed zebrafish preparation used for simultaneous Purkinje cell

(PC) electrophysiology with fictive swimming patterns extracted from the ventral root (VR). (b) Example single trial from a cell-attached Purkinje cell (PC)

recording (upper trace, black) with simultaneous ventral root recording (lower trace, gray, shown as a moving standard deviation). Complex spikes in

the PC are indicated by orange dots above the trace and simple spikes are indicated by blue dots below the trace. Stimuli are color-coded as before

(see Figure 1 and Materials and methods for more details). (b) Left, the mean simple spike (SS) and complex spike (CS) rate for the cell shown in (a)

across five trials. Right, the correlation coefficients of forward, left and rightward grating motion with the trial by trial fictive swim activity for all fish. (c)

Plot of the correlation coefficient for each fish between the regressor for concatenated swimming activity during moving forward, left, and right gratings

across all trials and the summed sensory regressor for forward, left, and right grating motion. The mean is indicated by the black bar. (d) Example mean

complex spike rate extracts from three different Purkinje cells showing the temporal similarity of firing dynamics with visual feature regressors. (e)

Above, heatmap of coefficient weights for the complex spike firing rates of 61 cells from z-scored least-squares multilinear regression (MLR) with a full

set of 24 stimulus- and motor-related variables (see Materials and methods). Below, histogram showing the distribution of cells’ highest regressor

weight. (f) Location of these cells across all fish mapped onto a reference cerebellum (dorsal view). The color indicates the highest MLR coefficient

weight for that cell while the size indicates the degree to which that coefficient contributes to the overall firing rate respective to the others, where the

biggest circles = 100%. Scale bar = 50 microns. (g) Left, heatmap of complex spike rates for all 61 cells clustered according to the category of their

Figure 3 continued on next page
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Figure 3 continued

highest MLR coefficient weight (e.g. luminance, rotational motion, swimming). Colored bars at right indicate complex spike category as indicated in

previous panels. Right, the mean z-scored complex spike rate from each cluster. See also Figure 3—figure supplements 1 and 2.

DOI: https://doi.org/10.7554/eLife.42138.009
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Figure 3—figure supplement 1. Sensory and motor regressors used for multilinear least-squares regression with electrophysiological recordings Top

left, cartoon of recording setup. Top center, description of stimuli used in the electrophysiological experiments (see Materials and methods and

Figure 2 for details). Gratings speeds are 10 mm/s with additional slow (Fslow, 3 mm/s) and fast (Ffast, 30 mm/s) speeds for forward grating stimuli. The

windmill stimulus rotated at sinusoidal velocities in the clockwise (CW) and counter-clockwise (CCW) directions with a frequency of 0.2 Hz. Six total

periods were shown, with the first two periods being whole-field windmills, the second two periods restricted to the left visual field only, and the final

two periods restricted to the right visual field only. Below, the complete set of regressors used in analysis of electrophysiological data. Individual

regressors fall into one of five categories (four visual or one motor), as indicated by the colored bars and category names at the right, pertaining to

either sensory or motor features as categorized at left. Regressors 19–21 are calculated for each cell based on the motor activity in that trial, therefore a

representative example from one trial in the dataset is shown here.
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Figure 3—figure supplement 2. Visually-evoked swimming responses to forward gratings are episodic, vary across trials, and are clearly resolvable

from visual responses. (a) Shown is the mean simple spike rate (upper trace, blue), complex spike rate (middle trace, orange), and swim bout vigor

(lower trace, grey) across trials for an example fish. The compressed time scale and trial averaging suggests that visual and motor responses to forward-

moving gratings may be correlated with each other as well as with both simple and complex spike rates. Multilinear analysis (summarized in text at

right) finds however that the coefficient weights for motor regressors are large for simple spike activity across trials while they are zero for complex

spike activity. Conversely, direction motion onset regressors for visual motion contribute to the majority of the complex spike activity and to less than

5% of simple spike activity. (b) Upper traces, the boxed area in (a) is shown on an expanded timescale and for five individual trials (numbered at left) in

order to better show the temporal structure of neural and behavioral responses to visual stimuli. Excerpts from cell-attached recordings from this

Purkinje cell (PC) and simultaneous ventral root (VR) show reliable complex spikes elicited at visual motion onset and swim bouts of varying durations

and strength evoked at different latencies (up to two seconds) from visual stimulus onset. Note that trials occur where the visual stimulus can fail to

elicit a complex spike (red asterisks) or a bout (purple asterisk). Lower traces, the average traces from these stimuli are also shown on an expanded

timescale to drive home the point that although average activity may look correlated, the variability of visually-evoked behaviors across trials allows

multilinear regression to clearly separate visual and motor responses in simple spike and complex spike activity. The forward motion onset regressor,

which captures spiking responses in the 500 ms window following visual stimulus onset, is also shown for comparison.
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Figure 4. Purkinje cells in different regions show complex spike responses that encode different visual features

and one group sends outputs to a different downstream region. (a) Raster plot (upper left panels) and histogram

(lower left panels, 500 ms bins) of complex spikes occurring across trials during translational whole-field motion of

black and white bars in all four cardinal directions for two example Purkinje cells (PC). Numbers assigned to PCs

for this and panels b-c are arbitrary. (b) Raster plot (upper left panels) and histogram (lower left panels, 100 ms

bins) of complex spikes occurring across trials during whole- and half-field bidirectional rotational motion of a

black and white windmill for an example cell. The dashed lines over the histogram show the velocity of the

stimulus in each direction across the trial. (c) Raster plot (upper left panels) and histogram (lower left panels, 100

ms bins) of complex spikes occurring across trials during whole-field light/dark flashes for two example cells, (i)

and ii). (d) A box plot of complex spike firing rates during blank trials (no visual stimuli) for cells grouped by their

sensory or motor complex spike category (see Figure 2). N = 31, 14, 5, 8. Asterisks indicate significance (one-way

ANOVA with Bonferroni post hoc correction, p<0.001). j (i) The location of cells colored by complex spike

phenotype are plotted onto a flattened dorsal view of the cerebellum with all coordinates flipped to the right half

of the cerebellum. e (ii) Three example maximum projection images of traced axonal morphology from

stochastically-labelled, Fyn-mClover3-expressing Purkinje cells for which electrophysiological recordings were also

obtained. Labels for each cell refer to the electrophysiological traces in panels a-c. The asterisk for cell a) indicates

that these coordinates were flipped to the right half of the cerebellum. Scale bar = 50 microns. e (iii) Categorical

grouping of complex spike phenotypes for internal versus caudal axonal projections. N = 17 cells from 17 fish. (f)

Morphed Purkinje cell axonal morphologies from single-cell labelling across fish (N = 50 cells) can be grouped into

two populations based on axonal projection (as for e iii). N = 27 cells with internal axons, N = 23 cells with caudal

axons. See also Figure 4—figure supplement 1.
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Figure 4—figure supplement 1. Complex spike responses encode specific aspects of visual features. (a) Left, polar plot of all Purkinje cells with a

significant contribution to complex spike activity from the onset of translational motion in a given direction (N = 33/61 cells). The tuning of the cells is

indicated by the polar coordinates as well as the marker color, with 0˚ indicating forward motion. The distance from the center indicates the direction

selectivity index of the cell (see Materials and methods). Dashed areas indicate the four quadrants used for binning. Right, the location of all cells with

this complex spike phenotype within the quadrants are plotted onto a flattened dorsal view of the cerebellum (example cells i and ii from Figure 3a are

indicated and outlined in black). The overview shows the zoomed-in region of the rostromedial cerebellum. Colors indicate tuning preference as shown

at left. Dotted ellipses indicate the boundary for the mean location and SEM for each group of similarly tuned cells. Scale bar = 100 microns for

overview, 500 microns for cropped zoom. (b) Upper plots, the mean complex spike firing rate (normalized to baseline, dotted black line) of all Purkinje

cells with significant coefficient weights for rotational motion regressors (N = 11) is shown for both the duration of rotational motion in a given direction

(left plot) and the duration of leftward and rightward translational motion (right plot). Two distinct groups are clearly seen that prefer either clockwise

and rightward motion (orange lines) or counter-clockwise and leftward motion (blue lines). Lower panel, the location of all cells with this complex spike

phenotype are plotted onto a flattened dorsal view of the cerebellum. Colors indicate rotational motion preference. Scale bar = 50 microns. (c) Left, all

luminance-responsive cells as determined by significant autocorrelation values for whole-field flashes for the 2 s lag (N = 25/61) are plotted in a heat

map sorted by maximum autocorrelation value for the 2 s lag. Cells are ordered by peak autocorrelation at 2 s. (d) Z-scored complex spike firing rates

for all luminance-responsive Purkinje cells averaged across flash repetitions and sorted by the timing of their peak firing rate are shown as a heatmap.

Black lines mark the transition from dark to light and back again as indicated by the grey bars above. Example cells from Figure 3c are indicated.

N = 25 cells. (e) The location of all cells with a luminance complex spike phenotype are plotted onto a flattened dorsal view of the cerebellum with all

Figure 4—figure supplement 1 continued on next page
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Figure 4—figure supplement 1 continued

coordinates flipped to the right half of the cerebellum. Colors indicate the preference for light or dark flashes (or both). Scale bar = 50 microns. (f) Four

example Purkinje cell mean complex spike firing rates in response to whole-field flashes (left) and three directions of moving gratings (right) show

different responses to global versus local luminance changes. (g) Additional recordings from a luminance-responsive Purkinje cell (see Figure 3cii)

during the presentation of whole-field black (here shown as dark grey) and white flashes of various durations (50–5000 ms) from a baseline intermediate

luminance (light grey). Upper panel, raster plot of complex spikes across trials (N = 11). Lower panel, complex spike count histogram. This cell produces

has a clear sustained increase in complex spike activity during darkness whereas complex spike activity is nearly absent during bright flashes. (h)

Quantification of the baseline complex spike firing rate of the cell in g) in the absence of changing visual stimuli for periods of tens of minutes for three

different whole-field luminance levels. Three asterisks indicate p<0.001 and two indicate p<0.01 as calculated by one-way ANOVA with Bonferroni post

hoc correction.

DOI: https://doi.org/10.7554/eLife.42138.013
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Figure 4—figure supplement 2. Purkinje cell dendrites show a mostly planar morphology. (a) Four example Purkinje cell morphologies obtained by

single-cell labeling (see Materials and methods) are shown with their soma and axon in black and dendrites in orange. Asterisks indicate a truncated

axon. (b) Quantification of dendritic morphology as measured by determining the principal axes (see Materials and methods) shows that dendrites are

significantly more planar than chance (p<0.01, Wilcoxon signed rank test).
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Figure 4—figure supplement 3. Motor-related complex spikes are rare. (a) Upper plot, the mean bout-triggered complex spike rate with shaded SEM

for this cell for all swim bouts during the blank recordings (no stimuli presented, orange trace) and during trials with visual stimuli (red trace). N = 16

bouts (blanks), 76 bouts (stimuli). Lower traces, example excerpt from a blank recording from this Purkinje cell (PC, black trace) with simultaneous

ventral root recording (VR, gray trace, shown as a moving standard deviation). Complex spikes are indicated by orange dots above the trace. (b) Upper

traces, a subset of bouts are plotted aligned to bout onset for swim episodes during which a complex spike (orange dot) occurred. Below, a normalized

histogram for all CS-positive bouts in this recording show that the majority of the complex spikes are triggered in the period 100–150 ms following bout

Figure 4—figure supplement 3 continued on next page
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Figure 4—figure supplement 3 continued

onset (N = 34/76 CS-positive bouts). (c) Upper plot, the mean bout off-triggered complex spike rate with shaded SEM for this cell for blank and visual

stimuli trials. N = 12 bouts (blanks), 468 bouts (stimuli). Lower traces, example excerpt from a blank electrophysiological recording from this cell. (d)

Heatmap of bout on- and off-triggered mean complex spike rates for all cells with significant motor coefficients arranged by peak CS firing rate from

bout onset. The lower three rows correspond to cells that have a decrease in CS activity during bouts which increases following bout offset. The

example cells from a) and c) are indicated. (e) The locations of these Purkinje cells with CS activity correlated with bout onset (green) or bout offset

(black) are plotted on the right lobe of a reference cerebellum (some coordinates were flipped from left to right). The example cells from a) and c) are

indicated. Scale bar = 50 microns. (f) The 12 eye motor regressors used for multilinear least squares regression (MLR) of electrophysiological data with

eye movements in the semi-paralyzed zebrafish (see Materials and methods for details; see Figure 1—figure supplement 2 for the description of

sensory regressors). All eye motor regressors are calculated for each cell based on the motor activity of each eye (tracked independently) in that trial. A

representative set of regressors computed from eye movement in one trial in the dataset is shown here. (g) Heatmap of all 30 regressor coefficient

weights (18 sensory and 12 eye motor) for the complex spike (left) and simple spike (right) firing rates of 13 cells (N = 11 fish). The sensory regressors

with the largest coefficient weights for complex spike rates are indicated. For complex spike phenotypes, 11/13 Purkinje cells have a stronger ‘sensory’

phenotype, whereas 13/13 Purkinje cell have a simple spike ‘motor’ phenotype. The two remaining Purkinje cells with a motor complex spike

phenotype are indicated as ci and cii (arrowheads). (h) Location of all cells, color-coded for complex spike phenotype as determined by MLR and

additional analyses (see subsequent panels). Scale bar = 50 microns. (i) Left, mean activity and SEM for the complex spike rate and best eye movement

regressor excerpted from the rotational stimulus portion of the experiment for Purkinje cell two as indicated in g) and classified as having a motor

complex spike phenotype. The single correlation coefficient between the best motor and sensory regressors across trials are very high (r = 0.60 across

the full trial). Right, mean activity and SEM for the complex spike rate and best eye movement regressor excerpted from the rotational stimulus and

flash portion of the experiment for Purkinje cell three as indicated in b) and the only other cell classified as having a ‘motor’ complex spike phenotype.

The single correlation coefficient values for the complex spike rate with the indicated regressors across trials for just the rotational stimulus period or

just the luminance period are shown. (j) Heatmap of eye movement (left eye, nasal) and complex spike rates across all trials of an experiment for a

representative Purkinje cell in the left caudolateral cerebellum (cell seven as indicated in g,h). Note the variability of the eye movement across trials (left)

compared to the complex spike rate (right). Clockwise velocity is indicated for reference. (k) The best motor regressors for each eye and the best

sensory regressor are plotted against the complex spike rate of the cell in j) for the first (left) and last (right) trial of the experiment. Single correlation

coefficient values are shown between each regressor and the complex spike rate for this trial. Time scale is same as for j).

DOI: https://doi.org/10.7554/eLife.42138.015
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Figure 5. Simple spike rates in most Purkinje cells are increased during fictive swimming. (a) Above, heatmap of

coefficient weights for the simple spike firing rates of 61 cells from least-squares regression with a full set of 24

stimulus- and motor-related variables (see Materials and methods for more details). Below, histogram showing the

distribution of cells’ highest regressor weight and the associated sensory/motor categories. (b) Upper panel,

heatmap of z-scored simple spike rates for all 61 cells sorted by decreasing motor coefficient weight. Lower panel,

the mean simple spike rate for the ten cells with the highest (upper trace) and lowest (lower trace) motor

coefficient weights. (c) Left panel, example cell-attached Purkinje cell recording (PC, upper trace, black) from a

blank trial (no stimuli) with simultaneous ventral root recording (VR, lower trace, gray, shown as a moving standard

deviation). The simple spike rate is also shown (SSrate, middle trace, purple). Right, the bouts highlighted in green

on an expanded timescale show the close timing of fictive bout onset and simple spike activity. (d) The bout on-

and off-triggered mean simple spike firing rates for the cell in c) during blank recordings (purple) and stimulus

trials (pink). (e) Z-scored heatmap of bout on- and off-triggered mean simple spike firing rates across all Purkinje

cells sorted by mean firing rate in the 300 ms following bout onset. (f) Mean autocorrelation heatmap for simple

spikes (SS, upper panel) and for ventral root recordings (VR, lower panel) for all Purkinje cells that showed

spontaneous swimming bouts during blank trials (N = 30 cells from 30 fish), sorted by time to first peak in the VR

autocorrelation. Right, the first significant peak in the VR autocorrelation for each recording is plotted to give the

mean fictive swim frequency for each fish.

DOI: https://doi.org/10.7554/eLife.42138.016
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Figure 6. Granule cells across the cerebellum code for motor activity with high fidelity. (a) Heatmaps of the z-projected mean voxelwise correlation

coefficients of two-photon granule cell GCaMP6s signals from multilinear regression with example sensory and motor regressors averaged across seven

fish (see Materials and methods). Scale bar = 50 microns. Upper right, cartoon of experimental set-up. (b) Left, cartoon of experimental set-up. Right,

upper panel, example cell-attached recording from a granule cell (gc, upper trace, black) from a blank trial with simultaneous ventral root recording

(VR, lower trace, gray). The granule cell firing rate is also shown (spike rate, middle trace, orange). The bout highlighted in green (i) is shown below on

an expanded timescale. (c) The bout on- (left) and off- (right) triggered mean firing rates for this granule cell during blank recordings (orange) and

stimulus trials (red). (d) Z-scored heatmaps of bout on- (left) and off- (right) triggered mean firing rates in all granule cells sorted by mean firing rate in

the 300 ms following bout onset (N = 8 cells from eight fish). (e) Mean autocorrelation heatmap for spikes (upper panel) and ventral root recordings (VR,

lower panel) for all granule cells from d), sorted by time to first peak in the VR autocorrelation. The red arrowheads signify granule cells with significant

spike autocorrelations during fictive swim bouts (N = 3; p<0.001, Ljung-Box Q-test; see Materials and methods). Right, the first significant peak in the

VR autocorrelation for each recording is plotted to give the mean fictive swim frequency for each fish. The red circles are the mean spike

autocorrelation frequency obtained from the three significantly autocorrelated granule cells. (f) An example bout from the cell indicated in e), which was

located ipsilateral to the ventral root recording. The smoothed spike rate (red) is in antiphase with the ipsilateral fictive tail contractions (grey). See also

Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.42138.017
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Figure 6—figure supplement 1. Many granule cells show significant modulation of their firing rates during fictive swimming bouts. (a) Left, matrix of

multilinear regressor coefficients for granule cell firing rates from all 10 cell-attached electrophysiological recordings with simultaneous fictive behavior

in response to the same sensory stimuli as shown in Figure 2a. Right, histogram of cell counts for each best regressor category (as color-coded at left).

(b) Location of granule cells across all fish mapped onto a reference cerebellum (dorsal view) and colored according to their motor phenotype. All

coordinates are flipped onto the right hemisphere. Scale bar = 50 microns. (c) Left, heatmap of z-scored mean firing rates for all granule cells sorted by

decreasing motor regressor coefficient. Colored bars at right indicate cells whose firing rate is positively modulated by bout duration (green), by bout

offset (black), or by neither (grey). Right, cluster mean granule cell firing rates (black) and mean fictive bout vigor (grey).
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Figure 7. Purkinje cells modify their simple spike output in a complex spike- and motor context-dependent way.

(a) Heatmap of complex spike-driven simple spike (CS:SS) counts for each cell normalized to the mean over 100

ms preceding a complex spike. Cells are sorted by decreasing simple spike pause and increasing excitation. The

inset shows the location of these cells colored by the normalized difference in simple spiking in the 50 ms

following the CS. (b) The mean complex spike-triggered simple spike count (10 ms bins) is shown for five example

cells (as indicated in a) for five different contexts. Left (green box), in the presence (‘motor’) versus absence (‘non-

motor’) of fictive swimming episodes. Under non-motor conditions these different Purkinje cells show, respectively,

a CS-induced i) long SS pause, ii) short SS pause with rebound increase, iii) no change in SS, iv) short SS increase,

and finally a v) long SS increase. Green arrows highlight changed patterns during motor context. Middle (magenta

box), CS:SS relationships across preferred versus all other sensory contexts (only non-motor periods included).

Right (grey box), the CS:SS relationship during blank trials (no stimuli, only non-motor periods). Vertical scale bar

indicates the rate conversion for 0.2 spikes/10 ms bin (20 Hz). (c) Green markers show the mean normalized simple

spike rates (calculated from 10 ms bins) for all Purkinje cells centered on the occurrence of a complex spike during

a fictive bout minus those occurring at any other point (N = 51 cells). Data are mean ± SEM. Grey markers, simple

spike rates centered on the occurrence of a complex spike during all sensory stimuli minus those occurring during

blank trials (N = 53 cells). The dashed black line indicates zero difference between conditions. Inset, the window

around complex spike onset shown on an expanded timescale. Asterisks indicate p<0.05 for motor minus

nonmotor conditions (green markers) as computed by the Wilcoxon signed rank test. Grey markers, no significant

differences. (d) Heat maps are shown for individual Purkinje cell binned simple spike counts over the three

different 50 ms periods as indicated in e). Complex-spike triggered simple spike counts are separated for each cell

for those complex spikes occurring during a fictive bout (left column of heatmaps, outlined in green) or at any

other time (right column of heatmaps, outlined in black).
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Figure 7—figure supplement 1. Individual Purkinje cells preferentially combine sensory and motor information. (a) The mean fraction of the simple

spike (SS) response contributed by each regressor computed for each of the four Purkinje cell complex spike (CS) groups. (b) Left, scatterplot of the

fraction of complex spike versus simple spike activity accounted for by motor regressors. Right, the fraction of simple spike activity accounted for by

motor regressors versus the fraction of complex spike activity accounted for by all sensory regressors.

DOI: https://doi.org/10.7554/eLife.42138.020
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Figure 8. Organization of the larval zebrafish cerebellum Granule cells (GCs) send long parallel fibers (grey lines)

that contact Purkinje cells (PCs) across the cerebellum and broadly relay motor efference copies of locomotor

activity (swimming). Sensory information relating to different visual features are sent by climbing fibers of inferior

olive neurons (IO) to stereotyped regions of the contralateral Purkinje cell layer. These visual stimuli contribute to

several reflexive behaviors; rotational motion drives the optokinetic reflex of the eyes, translational forward motion

drives the optomotor swimming reflex while others, such as luminance, may drive behavior over longer (e.g.

circadian) timescales. The three distinct functional regions in the zebrafish cerebellum defined by Purkinje cell

complex spike sensory responses that encode these different visual features represent putative behavioral

modules. Information about the onset of directional translational motion is preferentially sent to PCs in the

rostromedial region of the cerebellum (cyan) and would be important for coordinating turning and swimming,

while information about the direction and velocity of rotational motion as would be needed for coordinating eye

and body movements is sent to the caudolateral region (blue). The central region (red) receives information about

luminance and may provide a substrate for learned sensorimotor associations. Axons from PCs (black dashed lines)

of the rostromedial and central regions have mostly internal axons that contact eurydendroid cells (EC) within the

cerebellar cortex. Axons from PCs in the caudolateral region have mostly external axons that exit the cerebellum

and contact neurons in the caudally-located ipsilateral vestibular nucleus.
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