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I INTRODUCTION 

Various species in the genus Borrelia (B.) are the etiological agents of tick-borne relapsing 

fever (TBRF) and Lyme borreliosis (LB) infections in vertebrate hosts including humans 

(SCHWAN & PIESMAN, 2002). B. persica (Bp), a recently successfully in vitro culturable 

TBRF spirochete (ZAMANI et al., 2014), is transmitted by the argasid soft (fast-feeding) 

tick Ornithodoros (O.) tholozani. This bacterium represents the most significant and 

prevalent species causing human TBRF in the Central Asian and Middle Eastern countries 

(ASSOUS & WILAMOWSKI, 2009; OSHAGHI et al., 2011). Contrariwise, species of the 

B. burgdorferi sensu lato (Bbsl) complex are vectored by Ixodes (I.) hard ticks and mainly 

cause LB, namely, Lyme disease (LD). Because of the frequent association with human 

infections, the most important genospecies of Bbsl include: B. burgdorferi sensu stricto 

(Bbss) in both North America and Europe, B. afzelii, B. garinii, and B. bavariensis in Europe 

and Asia (RIZZOLI et al., 2011; BORCHERS et al., 2015). 

Consistent with other well identified TBRF species, e.g., B. hermsii and B. turicatae that are 

primarily endemic in the United States (DWORKIN et al., 2002), Bp has also been detected 

in large quantities in the peripheral blood of infected animals (RAFINEJAD et al., 2011; 

BANETH et al., 2016). In addition, blood samples from human patients with history of fever 

attacks showed numerous Bp spirochetes (DE VERDIÈRE et al., 2011; KUTSUNA et al., 

2013). During or after the appearance of spirochetemia in the bloodstream, borrelial 

organisms can be found in the brain tissues of infected mice (ADDAMIANO & 

BABUDIERI, 1957; SCHWARZER et al., 2016). However, still no information is available 

to clearly characterize the dissemination pathway of Bp in experimental animals.  

In comparison to Bp, LB spirochetes are deposited slowly during the Ixodes tick bite. At 

early days of infection (2 - 4 weeks), cutaneous inflammatory responses (erythema migrans, 

EM) around the bite site are developed frequently (STEERE, 1989; SCHWAN & PIESMAN, 

2002). Clinically, Bbsl cells have been examined in this early stage of infection by means of 

PCR or bacteriological culture from large volumes of blood or serum samples from the Lyme 

disease patients (WORMSER et al., 1998). Without treatment or being treated insufficiently, 

Bbsl infections often result in multisystemic infectious disease such as Lyme carditis (LC), 

Lyme arthritis (LA), or acrodermatitis chronica atrophicans (ACA) (STEERE et al., 1987; 

STEERE et al., 2016). It is generally believed that mechanisms of these manifestations are 
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reliant on the route of borrelia dissemination. However, the exact dissemination pathway of 

these bacteria in vivo is still in debate and not evidently understood so far. In response to 

these questions, some authors hypothesized that LB borreliae employ a hematogenous route, 

similar to some identified TBRF Borrelia spp. such as B. hermsii and B. turicatae, which 

firstly enter vasculature near the site of the tick bite and subsequently exit from the 

vasculature to various tissues (RISTOW et al., 2015; HYDE, 2017). However, some studies 

suggested the progress of chronic LB is not due to transmission of Borrelia via the 

bloodstream, but instead due to the migration of spirochetes through various tissues 

(STRAUBINGER et al., 1997).  

Do TBRF and LB species, e.g., Bp and Bbss, have the same hematogenous dissemination 

route, or not? It is of scientific importance to define the exact dissemination pathways of the 

two biologically different pathogens in the mammalian host. In the present study, we 

developed a novel long-term murine model to examine the dissemination route of host-

adapted Bp and Bbss organisms in vivo post intradermal (ID) and strict intravenous (IV) 

inoculation in immunocompetent mice. The objectives of this investigation were to (1) 

provide an animal model with a precise and defined infection route; (2) investigate the 

population dynamics of borrelia organisms disseminated in the bloodstream of the 

immunodeficient and immunocompetent mice; (3) study whether Bp and Bbss disseminate 

into tissues of mice after ID or IV inoculation; (4) characterize the immune response against 

host-adapted borrelia organisms in immunocompetent mice.  

Based on the data obtained, it is concluded that our long-term murine infection model was 

successfully established. This newly established murine model is a reliable tool to shed more 

light on the dissemination route (via blood versus via tissue) of Bp and Bbss organisms in 

immunocompetent mice. 
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II LITERATURE REVIEW 

1 Historical background 

1.1 Tick-borne relapsing fever (TBRF) 

Tick-borne relapsing fever (TBRF) caused by the spirochete Borrelia (B.) duttonii was first 

described in humans in East Africa in 1905 with a feature of acute fever episodes separated 

by afebrile intervals (DUTTON et al., 1905; BURGDORFER, 2001). In many states of the 

USA, human cases of TBRF were reported during the first half of the 20th century 

(DWORKIN et al., 2002). In Persian of Iran, the first clinical description of TBRF, which 

was spread to humans by the soft tick Ornithodoros (O.) tholozani, was published as early 

as in 1882 (THÉODORIDÈS, 1998). Its causative agent, Spirochaeta persica, was first 

isolated from the blood of a patient in 1913 (DSCHUNKOWSKY, 1913; EUZÉBY, 1997). 

In the following decades, B. persica (Spirochaeta persica, Bp) vectored by O. tholozani was 

clearly identified as the agent causing TBRF (ADLER et al., 1937; BABUDIERI, 1957; 

SKERMAN et al., 1980). Nowadays, Bp is known to be the main cause of TBRF in Central 

Asia and Middle East areas (OSHAGHI et al., 2011). 

1.2 Lyme borreliosis (LB) 

Lyme disease (LD) was originally named as Lyme arthritis (LA) in 1975 after the town of 

Lyme in Connecticut, USA, where a bizarre cluster of arthritis cases was reported from 

adolescents (STEERE et al., 1977). A skin lesion erythema chronicum migrans (ECM) was 

a typical manifestation in the early phase of LD (STEERE & MALAWISTA, 1979). In 1982, 

the etiological agent of LD was first isolated from the midgut tissues of the hard tick 

Ixodes (I.) scapularis and was named B. burgdorferi (Bb) in honor of its original discoverer 

(BURGDORFER et al., 1982; JOHNSON et al., 1984). In Europe, individual ECM had first 

been documented in 1909 (AFZELIUS, 1910) and the tick species I. ricinus was identified 

as a vector related to this clinical sign (GELBJERG-HANSEN, 1945; THÖNE, 1968). After 

the 1980s, the species B. burgdorferi, B. afzelii and B. garinii were further determined as 

etiological agents to cause LD in Europe and Asia (BORCHERS et al., 2015). Until today, 

Lyme disease or, more precise, Lyme borreliosis (LB), is considered one of the most 

prevalent tick-borne diseases (TBDs) in Europe (VAN DEN WIJNGAARD et al., 2017) and 

in the United States (PENG et al., 2017).  
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2 Etiology and epidemiology 

2.1 Taxonomy and nomenclature of Borrelia spirochetes 

Spirochetes in the genus Borrelia belong to the family Spirochaetaceae (BURGDORFER et 

al., 1982). In addition to other three families within the order Spirochaetales, 

Spirochaetaceae belongs to the class of Spirochaetes, which is incorporated in the Phylum 

of Spirochaetes (EUZÉBY, 1997). According to genomic, genetic and phylogenetic studies 

on nucleotide and protein signatures (ADEOLU & GUPTA, 2014; OREN & GARRITY, 

2016), Borreliella (“borrelia-like”) gen. nov. was proposed to differentiate the pathogens 

that cause LB from those that cause relapsing fever (RF; maintaining the genus Borrelia 

affiliation). However, the splitting of genus Borrelia into two taxonomical genera groups 

has not been accepted due to some criticism and inadequate evidence (MARGOS et al., 

2017). Nevertheless, 42 Borrelia species have nowadays been recognized and divided into 

two groups responsible for RF and LB (EUZÉBY, 2012). Except for B. recurrentis, which 

is transmitted by the body louse Pediculus humanus and causes epidemic louse-borne 

relapsing fever (LBRF) in humans, all other known RF-related Borrelia species are tick 

vectored and therefore named tick-borne relapsing fever (TBRF) (Figure 1) (BARBOUR & 

HAYES, 1986; MARGOS et al., 2017). Generally, TBRF and LB Borrelia spirochetes are 

transmitted by soft ticks of the genus Ornithodoros and hard ticks of the genus Ixodes, 

respectively. However, a TBRF inducing species, B. miyamotoi, shares the same Ixodes 

vector as LB species (TAKANO et al., 2014). Thus, TBRF can be divided into soft tick-

borne relapsing fever (STBRF) and hard tick-borne relapsing fever (HTBRF) (Figure 1) 

(TALAGRAND-REBOUL et al., 2018). 

The classification of Borrelia is as follows: 

Order: Spirochaetales 

Family: Brachyspiraceae  

Family: Brevinemataceae  

Family: Leptospiraceae 

Family: Spirochaetaceae 

Genus: Borrelia 

Species: Borrelia spp. associated with LB 

Borrelia spp. associated with RF (louse- and tick-borne) 
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Figure 1: Phylodendrogram of average nucleotide identity values among relapsing 

fever borrelia genomes 

LB borrelia genomes are shown as an outgroup.  

Cited from the reference (TALAGRAND-REBOUL et al., 2018) 

 

Among the Borrelia species Bp is one of the most important and prevalent pathogens of 

TBRF in humans (ASSOUS & WILAMOWSKI, 2009). Based on the flagellin B gene (flaB) 

and 16S ribosomal ribonucleic acid (rRNA) gene (rrs) sequencing of Bp isolated from 

O. tholozani ticks and TBRF human blood samples, a separate cluster has been formed from 

the other African (Old World) RF Borrelia in the phylogenetic tree (Figure 1) (ASSOUS et 

al., 2006; SAFDIE et al., 2010; TALAGRAND-REBOUL et al., 2018). On the other hand, 

various LB species have been classified in the B. burgdorferi sensu lato (Bbsl) complex and 

divided into 21 validated genotypes on the basis of deoxyribonucleic acid (DNA) relatedness 

(LOHR et al., 2018). Of them, the closely related species that induce most human LB cases 

have been classified as distinct genospecies such as B. burgdorferi sensu stricto (Bbss), 

B. afzelii, B. garinii (Figure 1) by DNA-DNA hybridization and 16S rRNA sequencing 

(JOHNSON et al., 1984; BARANTON et al., 1992). Also, multilocus sequence typing 

(MLST) which conducts targeted gene amplification and sequence analysis of several 

defined housekeeping genes has been used to distinguish both Bp and Bbsl species 
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(MARGOS et al., 2011; SCHWARZER et al., 2015). For example, strains of B. garinii 

OspA1 serotype 4 (a rodent-associated ecotype) have been newly designated B. bavariensis 

species by MLST in humans and ticks in Europe and Asia (MARGOS et al., 2013). In 

particular, lack of the glycerophosphodiester-phosphodiesterase gene (GlpQ) differentiates 

LB from TBRF Borrelia spp. that possess this gene (PETTERSSON et al., 2007). 

2.2 Pathogenic TBRF and LB Borrelia species 

2.2.1 TBRF Borrelia species throughout the world  

TBRF is an important global infection disease that is caused by several Borrelia species 

(Figure 1). The Ornithodoros spp. ticks, the transmitting vectors of TBRF, are present 

worldwide and are closely associated with their animal hosts (Figure 1). Naturally occurring 

infections with TBRF spirochetes have been observed in a diversity of mammals including 

squirrel monkeys, opossums, and armadillos, calves, horses and humans (LOPEZ et al., 

2016). However, the impact of TBRF on the health of domestic and wild animals is mostly 

understudied (SCHWAN et al., 2005). Nevertheless, only few cases of infection in dogs, cats, 

domestic pigs and horses from some limited parts in the world have been reported with 

veterinary importance. In comparison, clinical TBRF cases in humans have been clearly 

documented in most areas of the world and remain a noticeable public health concern 

(ELELU, 2018).  

Among pathogenic TBRF spp., B. hermsii and B. turicatae are the primary entities in the 

United States. Associated with the geographical distribution of their transmission vectors, 

O. hermsii and O. turicata, respectively, this disease is endemic in moderate to high-

elevation and coniferous forests of the United States (DWORKIN et al., 2002). B. parkeri, 

another TBRF spirochete that was recovered from O. parkeri, shares similar geographic 

distribution to B. hermsii and can also pose risks to both animals and humans (THOMPSON 

et al., 1969; BARBOUR & CAMPEAU MILLER, 2014). Of the reported TBRF cases 

(n=504) in humans from 1990 to 2011 in the USA, most are caused by B. hermsii and approx. 

70% cluster in California, Washington, and Colorado (FORRESTER et al., 2015). In Africa, 

the main circulating species are B. crocidurae in Western and Northern Africa and B. duttonii 

in Eastern, Central and Southern Africa (VIAL et al., 2006; TRAPE et al., 2013). 

B. hispanica is found in some Mediterranean countries such as Spain, Portugal, Cyprus, 

 
1 OspA: outer surface protein A 
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Greece, and North Africa (REBAUDET & PAROLA, 2006; VIAL et al., 2006; TRAPE et 

al., 2013). In certain areas of Asia, Europe and USA, B. miyamotoi has been reported 

(TALAGRAND-REBOUL et al., 2018).  

Through the Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan) 

and Middle East (Iran, Iraq, Syria, Jordan, Turkey, Israel, Egypt) region, clinical human 

cases of TBRF are confirmed and associated with Bp (PAROLA & RAOULT, 2001; 

ASSOUS et al., 2006). Especially in Israel, Iran and Jordan, Bp infection in persons have 

been detected frequently (DE VERDIERE et al., 2011). Although other species of 

B. caucasica, B. latyschewii, B. microti and B. baltazardi have been described, they are not 

prevalent in these areas (KARIMI et al., 1979; GOUBAU, 1984; AGHIGHI et al., 2007). In 

some epidemiological studies in Iran, cases of TBRF caused by Bp were mostly found in 

rural areas, especially correlated with young people (e.g., students and children) (ARSHI et 

al., 2002; ASL et al., 2009; RAFINEJAD et al., 2012; KASSIRI et al., 2014). Provinces of 

Ardabil, Hamadan, Zanjan and Kurdistan are highly endemic regions (MASOUMI ASL et 

al., 2009). In Israel and Jordan, Bp infection is often found in hikers who enter the tick 

infested habitats but normally without necessary precautions. In summer and autumn during 

the year, TBRF occurs frequently, because of human outdoor activities exposed to tick 

vectors (ASSOUS & WILAMOWSKI, 2009; KASSIRI et al., 2014). Especially in Israel, 30% 

- 60% of caves were found to be infested by ticks of O. tholozani. Therefore, TBRF in this 

country has traditionally been called cave fever (SIDI et al., 2005). 

2.2.2 LB Borrelia genospecies in the Northern Hemisphere  

Of the Lyme Borrelia spp., Bbss (also referred to Bb) predominates in the United States and 

less extensively in Europe, whereas B. afzelii and B. garinii are more endemic than 

B. spielmanii in Europe; B. bavariensis is widely distributed in Europe and Asia. All of these 

five genospecies are particularly human pathogenic agents of LB (Table 1) (MARGOS et al., 

2013; SCHOTTHOEFER & FROST, 2015; STEERE et al., 2016). Additionally, Bbss 

species in the USA has been solely detected to be pathogenic in dogs, whereas only DNA of 

B. afzelii and B. garinii was found in naturally infected dogs in Europe and Asia (HOVIUS 

et al., 1999; SPECK et al., 2001). The other species, such as B. lusitaniae, are only 

occasionally associated with human disease while the pathogenicity of other tick-isolated 

species (e.g., B. valaisiana, B. americana, B. californiensis, and B. caroliniensis) in persons 
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or animals has not been demonstrated so far (COLLARES-PEREIRA et al., 2004; DIZA et 

al., 2004; KRUPKA & STRAUBINGER, 2010).  

In humans, different genospecies seem to be variably associated with the particular clinical 

manifestations in some organs (skin, nervous system, joint) of the LB patients, although they 

share some common clinical signs such as EM and an influenza-like illness. In Europe, the 

most common disseminated symptom is Lyme neuroborreliosis (LNB) attributed to 

B. garinii (mostly) and B. bavariensis. B. afzelii is principally involved in cutaneous 

manifestations such as EM and ACA. Bbss, however, is most frequently the etiological agent 

for LA of patients (STANEK et al., 2012; VEINOVIĆ et al., 2013; COIPAN et al., 2016). 

The heterogeneity of the Bbsl strains, which are transmitted by different species of Ixodes 

ticks, is possibly the main factor accounting for the variances in the clinical symptoms of 

human LB from/in different geographical regions (MARGOS et al., 2011). A study involving 

at least 26 European countries revealed that Bbsl infection occurred from Italy to Iceland 

and from Portugal to Russia. The proportion of the population showing positive for 

B. burgdorferi antibodies differs in various countries (approx. 5 - 25%) (HABÁLEK & 

HALOUZKA, 1997). There is no obvious sex bias of LB while age distribution is generally 

bimodal, with the highest occurrence rates seen in children 5 - 9 years of age and in adults 

aged over 50 years in both the USA and Europe (BORCHERS et al., 2015). Annually, more 

than 85,000 cases are widespread in Europe, typically in Central (Germany, Austria and 

Switzerland) and Eastern Europe (LINDGREN et al., 2006). During 2005 - 2010, averagely 

106.6 LB cases per 100,000 individuals per year in the USA have been reported by the 

Centers for Disease Control and Prevention (CDC) (NELSON et al., 2015). However, recent 

modeling investigations based on claims data suggest significant under-reporting and predict 

much higher quantities of LB cases annually in the USA (>300,000) and Germany (>200,000) 

(MULLER et al., 2012; NELSON et al., 2015).  

As one of the significant infectious TBDs in the Northern Hemisphere, LB has been 

described in more than 80 countries (KUGELER et al., 2015; STEERE et al., 2016). Globally, 

it seems to be on the rise because of climate changes, land use as well as recreational 

behavior of humans which impact the ticks and thus disease prevalence (LINDGREN et al., 

2006). For example, the number of confirmed cases of LB increased approx. eight times 

between 2004 and 2012 in Canada (OGDEN et al., 2014) and from 27,444 (2007) to 29,513 

(2017) in the USA (CDC, 2017).  
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Table 1: Members of Bbsl complex of confirmed or possible human pathogenic significance of Lyme borreliosis 

causative 
agents 

typical vectors geographical 
distribution 

main reservoirs pathogenicity 
for humans 

clinical signsa 

Bbss I. scapularis, 
I. pacificus, 
I. ricinus, 
I. persulcatus (?) 

North America, 
Europe 

mammals, birds + + +  time of onset of clinical signs after exposure: 
early stage generally 3 - 30 days;  
influenza-like (e.g., mild fever, malaise, 
myalgia/arthralgia; Bbss); 
erythema migrans (Bbss, B. afzelii) 
time of onset of clinical signs after exposure:  
late stage generally > 30 days; 
arthritis; 
acrodermatitis chronica atrophicans 
(B. afzelii);  
neurological (Lyme neuroborreliosis, e.g., 
numbness, Bell’s palsy, stiffness of neck, 
declining memory, sleep disorders; 
Bbss, B. bavariensis) 

B. afzelii I. ricinus, 
I. persulcatus 

Europe, Asia small mammals + + + 

B. garinii I. ricinus, 
I. persulcatus 

Europe, Asia birds  + + + 

B. bavariensis I. ricinus, 
I. persulcatus 

Europe, Asia small mammals, 
birds 

+ + +  

B. spielmanii I. ricinus, 
I. persulcatus 

Europe garden dormouse + + + 

B. mayonii I. scapularis, 
I. pacificus 

North America mammals + +  

B. lusitaniae I. ricinus Europe lizards (+)  

B. bissettiae I. pacificus, 
I. spinipalpis, 
I. ricinus 

Europe,  
North America 

Neotoma fuscipes 
(wood rat) 

(+)  

B. valaisiana I. ricinus, 
I. granulatus, 
I. columnae 

Europe, Japan, 
Taiwan (China), 
Korea 

birds ?  

  

a Clinical signs of LB are based on the confirmed human pathogens of Bbss, B. afzelii, B. garinii, B. bavariensis, and B. spielmanii. 

Data modified from references (STONE & BRISSETTE, 2017; LOHR et al., 2018) 
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2.2.3 Cell morphology and outer membrane proteins 

Spirochetes in the genus Borrelia are gram-negative, regularly wavy, slenderly helical, 

flagellated bacteria (Figure 2). Their length and diameter may range from 8 - 30 µm and 

from 0.2 – 0.5 µm, respectively. They share the morphological properties but differ within 

the number of periplasmic flagella and the number and regularity (length, diameter, 

uniformity and tightness) of the spiral coils (BARBOUR & HAYES, 1986). For example, 

the number of flagella inserted between inner and outer membranes of the cell is 15 - 30 for 

RF spirochete (25 - 30 for Bp) and only 7 - 11 for Bbsl isolate (KARIMI et al., 1979; 

CHARON et al., 2012). The cytoplasmic membrane of Bp is followed by an outer membrane 

in which the lipoproteins were anchored with their lipid content (BARBOUR & RESTREPO, 

2000). In comparison to other TBRF borrelia (e.g., B. hermsii), which have been featured of 

spontaneous antigenic variations on their outer membrane proteins (variable-major-proteins, 

Vmps) (BARBOUR et al., 1982), Bp has been poorly understood in this item. On the other 

hand, LB spirochetes are irregularly coiled, bound by an inner cytoplasmic membrane and 

an outer membrane (Figure 2) (BARBOUR & HAYES, 1986; BORCHERS et al., 2015). 

Particularly, the outer membrane does not contain lipopolysaccharide (LPS) but instead is 

covered by several outer surface proteins (Osps) (STÜBS et al., 2009). To date, six Osps 

from OspA to OspF and various other diagnostically-relevant immunodominant protein 

components of Bbsl have been described. Of them, OspA, OspB, and OspC are most 

significant because their expression is changed to adapt to and to survive in different 

arthropod and mammalian milieus (DE SILVA & FIKRIG, 1997). The variable major 

protein-like sequence expression (VlsE) in mammals has been described and characterized 

with a special serodiagnostic relevance (INDEST et al., 2001; EICKEN et al., 2002). 

Moreover, LB spirochete harbors a small but unique linear chromosome and a variety of 

linear (12) and circular (9) plasmids in which relevant Osps are encoded (BRISSON et al., 

2012). In 1997, the complete genome size of type strain Bbss B31 was first sequenced with 

1,521,419 base pairs (bp) (FRASER et al., 1997), whereas that of Bp with 1,784,979 bp 

(1.7 Mb) was first published in 2014 partly due to the difficulty of in vitro cultivation of this 

bacteria (ELBIR et al., 2014). 
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Figure 2: Structure and morphology of B. burgdorferi 

(a) Scanning (left) and transmission (right) electron micrographs of B. burgdorferi. The helical 

shape of Borrelia (left) is imparted by the periplasmic flagella, which can be seen in the cross-

sectional view of the spirochete in the transmission electron micrograph. (b) Diagram of the 

spirochete. Flagellar insertion points are located near the termini of the spirochete. Bundles of 

flagella wind around the flexible, rod-shaped protoplasmic cylinder of Borrelia and overlap in the 

middle. The outer membrane constrains the flagellar bundles within the periplasm. (c) Detailed 

diagram of flagella. Each flagellum is inserted into the cytoplasmic membrane and extends through 

the cell wall into the periplasm. Flagella are multi-component, complex structures. Spirochetal 

motility results from coordinated rotation of the flagella. 

Cited from Rosa et al. (ROSA et al., 2005) 
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2.3 The enzootic cycle of TBRF and LB Borrelia 

2.3.1 Transmission vectors 

Ticks are the transmission vectors of TBRF and LB Borrelia (PAROLA & RAOULT, 2001). 

Until 2012, 896 tick species are defined and three families are recognized: two major 

families of the Argasidae (193 species) and the Ixodidae (702 species) and a third one, the 

Nuttalliellidae (1 species) (YAKHCHALI et al., 2012). As shown in Figure 3, the Argasidae 

ticks are characterized with flexible cuticle (soft bodied) while species of the Ixodidae family 

possess a sclerotized dorsal shield or scutum (hard bodied). Among Argasidae family, the 

genus Ornithodoros comprises the largest number of species (n=112) (GUGLIELMONE et 

al., 2010). Of them, O. tholozani (Figure 3A) serves as the principal vector for Bp with a 

large distribution of regions overlapped by TBRF cases in Middle East, Central Asia, and 

India and Kashmir. However, the occurrence of O. tholozani varies in these areas (ASSOUS 

& WILAMOWSKI, 2009; MANZANO-ROMÁN et al., 2012). The genus Ixodes (243 

species) in the Ixodidae family is most vital of vectors that transmit zoonotic pathogens with 

significant impact on human and veterinary health (GUGLIELMONE et al., 2006; 

YAKHCHALI et al., 2012). Four predominant species of Ixodes ticks (Table 1) have been 

revealed as competent vectors for LB organisms. In North America, Bbss was transmitted 

by I. scapularis (the deer tick) in the northeastern and upper midwestern USA and in Canada, 

whereas I. pacificus predominately presents in western USA along the Pacific coast. 

I. ricinus (the castor bean tick, Figure 3B) transmits LB agents in Europe and Asia while 

I. persulcatus is endemic in Asia (PIESMAN & GERN, 2004; STANEK et al., 2012).  
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Figure 3: Soft and hard bodied ticks 

(a) Soft tick of species O. tholozani, left: ventral view; right: dorsal view. (b) Three stages of unfed 

hard tick I. ricinus, left to right: adult (female), adult (male), nymph, and larva (bar, 1 cm). Scutum 

(arrow) covers entire dorsal surface in male, whereas it is confined to anterior part of body in other 

stages. Note the three pairs of walking legs in larva.  

Cited from references (PAROLA & RAOULT, 2001; ASSOUS et al., 2006) 
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Both soft and hard ticks take blood meals to reproduce, develop, and to complete their life 

cycle that comprises three stages: larva, nymph, and adult (male and female) (PAROLA & 

RAOULT, 2001). Before molting to adult, soft ticks may pass through several nymph stages 

(2 to 5 depending on the tick species; Figure 4). The nymphs feed briefly (minutes to hours) 

and repeatedly (may up to 6 times) on the same or multiple hosts (BASU & CHARLES, 

2017). Differing from soft ticks, the long/slow feeding (2 - 4 days) ixodid ticks have a unique 

nymphal stage, which means that these vectors feed only once at each stage on various hosts 

(Figure 5) (RANDOLPH, 1993). After each blood meal, soft ticks drop to molt and hide in 

their habitats such as the cracks and crevices of the houses, animal burrows, or just below 

the soil surface. Usually, they emerge at night to feed upon the host while asleep (PAROLA 

& RAOULT, 2001; BOGITSH et al., 2013). Interestingly, many hard ticks are highly 

susceptible to drying conditions. Hence, they prefer to locate on or near the soil surface with 

vegetation with a relative humidity of minimum 80% (RANDOLPH, 1993; CORTINAS et 

al., 2002; STANEK et al., 2012). Most hard ticks spend more than 95% of their lives on or 

just below the ground surface digesting the blood meal, molting, in diapause or seeking a 

host (RANDOLPH, 1993; PIESMAN & GERN, 2004). The life span of hard ticks is 

generally 2 - 3 years through a life cycle (Figure 5), because adult female ticks feed and lay 

clutches of eggs only once and die. However, like nymphs, adult females of soft ticks are 

also capable of taking blood meal for several times. Moreover, soft female ticks lay 

numerous batches of eggs multiple times during their lifetime (TYSON & J., 2009b). In 

particular, soft adult ticks can survive 5 - 10 years even with prolonged periods of starvation 

(DWORKIN et al., 2008; LOPEZ et al., 2016). 
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Figure 4: General soft tick life cycle 

The example is tick of O. moubata species transmitting B. duttonii in Africa and Asia. Nymphal 

instars vary with species.  

Cited from WHO (WHO, 1997) 
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2.3.2 Life cycle of TBRF and LB organisms 

TBRF and LB spirochetes cycle through their mammalian reservoirs and tick vectors. The 

opportunities of transmitting spirochetes vary between soft and hard species because of their 

contrasting feeding performances (KADA et al., 2017). Characteristically, uninfected larvae 

acquire borreliae through blood meal from infected rodents or other small mammals. By the 

 
2 Namely, species of Bbss in North America 

Figure 5: Transmission cycle responsible for maintaining B. burgdorferi2 in tick 

populations and allowing infection of humans and dogs 

Briefly, larvae emerge from eggs laid by female adult in spring, take blood meal upon the first 

hosts of small vertebrate mammals which may be already infected with borreliae and transfer the 

bacteria to the fed larvae. Larvae molt in spring of the following year into nymphs that are 

responsible for spreading the majority of infections via saliva to the second reservoir hosts, humans 

included. Nymphal ticks are endemic during spring and summer, with a peak activity occurring in 

late summer. Later, nymphal ticks develop into adults which feed upon the third hosts, including 

dogs, and reproduce in fall or even in winter.  

Cited from Little et al. (LITTLE et al., 2010) 
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time the larvae molt to the nymphs, borreliae are transmitted from infected nymph to 

uninfected animals during blood meal. Infected animals serve as new reservoirs for 

continuing the Borrelia transmission cycle (Figure 5). After molting to the adults, adult ticks 

are able to spread borreliae and/or acquire borreliae through blood meal between infected 

and uninfected animals. Generally, transmission frequency of LB borreliae is influenced by 

seasonal and environmental conditions (e.g., temperature, relative humidity, and the 

photoperiod), which can decide the activities of ixodid ticks. The soft ticks, however, have 

no seasonal preference (PAROLA & RAOULT, 2001). Therefore, the prevalence of TBRF 

Borrelia infection arises more often in summer due to increased human outdoor activities in 

tick-infested areas (TALAGRAND-REBOUL et al., 2018).  

TBRF organisms are mostly horizontally transmitted between Ornithodoros ticks and 

different animals. Also, a transovarial transmission (TOT) of TBRF borreliae exist via the 

adult’s eggs to the offspring. TOT of LB spirochetes, however, is rare or non-existent. 

Regularly, LB organisms are maintained in the transstadial transmission during molting 

progress of Ixodes spp. ticks: from infected larva to nymph and/or from infected nymph to 

adult (MAGNARELLI et al., 1987b; RICHTER et al., 2012; ROLLEND et al., 2013). Upon 

hard tick attachment to susceptible animals, various secretions from the salivary glands 

facilitate and support the spirochete transmission. There salivary secretions include cement, 

enzymes, vasodilators, and anti-inflammatory, antihemostatic, and immunosuppressive 

substances (PAROLA & RAOULT, 2001). Transmission of Borrelia spirochetes by soft ticks 

is faster than hard ticks and mainly through the saliva secretion at nymphal stages or via the 

coxal fluids from coxal organs of adult ticks throughout the short feeding time (SCHWAN 

& PIESMAN, 2002). 

2.3.3 Reservoirs and hosts 

In general, soft ticks are believed to serve as the natural vertebrate reservoirs of TBRF 

organisms (HOOGSTRAAL, 1985; PAROLA & RAOULT, 2001). O. tholozani, is able to 

transmit Bp and have a wide range of mammalian hosts including humans, sheep, goats, 

camels, cattle, porcupines, hedgehogs, foxes, jackals and rodents (HOOGSTRAAL, 1985). 

Besides soft ticks, other animals have been also implicated as reservoirs of Bp. These animals 

include bats in Jordan and Central Asia, and rock hyraxes (Procavia capensis) in Israel and 

the West Bank (DE ZULUETA et al., 1971; VASIL'EVA et al., 1990; KLEINERMAN et al., 

2018). Recently, reports of natural Bp infection in cats and dogs (including a young puppy) 
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from Israel and Iran suggested that domestic animals are possibly transient reservoir hosts 

of this bacterium (BANETH et al., 2016; SHIRANI et al., 2016). Soft ticks have no host 

tropism possibly due to their inhabiting environment and an adaption of natural selection 

(TALAGRAND-REBOUL et al., 2018). Also, an animal reservoir may not be necessary to 

complete Bp life cycle because of the presence of transovarial transmission 

(BURGDORFER & VARMA, 1967). Furthermore, an infected O. tholozani tick is able to 

survive impressively long for 10 years or even more without feeding. This long time lasting 

may have two important roles: as the vector and as the original natural reservoir (GOUBAU, 

1984; ASSOUS & WILAMOWSKI, 2009; BANETH et al., 2016). In a result, animals or 

humans in the life cycle of this tick may only be the source of a blood supply (BANETH et 

al., 2016).  

Ixodid ticks at different life stages may feed on a wide diversity of mammals, birds and 

reptiles (Table 1) that differ dependening on the geographical distributions. In Europe, 

I. ricinus is the main tick biting various vertebrates with over 300 species. However, only a 

few of them, such as certain strains of mice, voles, rats and shrews have been detected as 

reservoirs for Bbsl (ANDERSON, 1991; GERN et al., 1998). Garden dormice 

(Eliomys quercinus) in France and edible dormice (Glis glis) in Germany were observed 

parasitized with Ixodes spp. ticks and showed their possible roles as borrelial reservoirs 

(MATUSCHKA et al., 1994; MATUSCHKA et al., 1999). Some rodents like grey squirrels, 

sheep in the UK and red squirrels in Switzerland are associated with Bbsl (CRAINE et al., 

1997; OGDEN et al., 1997; HUMAIR & GERN, 1998). In North America, the contribution 

of the white-footed mouse (Peromyscus leucopus) is chiefly substantial as the primary 

reservoir for Bbss (LANE et al., 1991; ORLOSKI et al., 2000). White-tailed deer, other 

various species of deer (e.g., elks), and lizards apparently serve as hosts for I. scapularis and 

I. pacificus ticks. Particularly, adult Ixodes spp. ticks mate on the deer but these animals do 

not actually act as reservoirs for spirochetal transmission (PIESMAN & GERN, 2004). Some 

passerine birds (canary finches) may migrate Ixodes spp. ticks to new locations and may also 

act as reservoirs for circulating B. garinii and B. valaisiana in Europe and Bbss in the USA 

(OLSEN et al., 1996; PIESMAN & GERN, 2004). In the aspect of veterinaty health, canine 

infection with Bbsl is often associated with infestion of adult ixodid ticks (Figure 5) 

(KRUPKA & STRAUBINGER, 2010). Humans are considered as accidental hosts for both 

TBRF and LB organisms (LOPEZ et al., 2016). 
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3 Pathogenesis of TBRF and LB organisms in mammalian host 

3.1 Tick-assisted immune evasion 

A successful infection relies on blood meal by infected ticks and a succeptible host. The first 

step in the infection cascade is the tick crawling to the host skin seeking a safe attachment 

site (VERHAEGH et al., 2017). Mechanically, the infected vector cuts a hole in host’s skin, 

enabling the rapid (soft tick) or slow (hard tick) delivery of borrelial organisms into the 

mammal/bird/reptile (BOYLE et al., 2014; STEERE et al., 2016). Biochemically, 

multifunctional tick saliva or coxal fluids provide adaptive advances in tick feeding and 

transmission of spirochetes. These vasodilatory molecules secreted by the feeding tick, 

although most of them are different between soft and hard ticks, can inhibit blood-

coagulation and platelet aggregation pathways. These mechnisms allow more blood 

circulation at the cutaneous bite site and make contribution to the infectivity of the bacteria 

(KAZIMÍROVÁ & STIBRANIOVA, 2013). Some proteins derived from ixodid tick saliva 

such as tick salivary protein 20 (Salp20), Salp15, Salp25D are more directed to inactivate 

the host’s innate and adaptive immune pathways including the complement system, CD4+ 

T cell activation (DAS et al., 2001; ANGUITA et al., 2002; HOURCADE et al., 2016). A 

large family of Ixodes scapularis anticomplement (Isac) proteins and Isac-like family of 

proteins such as Ixodes ricinus anticomplement (Irac) I, Irac II, and IxAC-B1 through 5 have 

the function to inhibit the host's alternative complement pathway (VALENZUELA et al., 

2000; DAIX et al., 2007; COUVREUR et al., 2008). Furthermore, saliva of the hard tick 

inhibits the Toll-like receptors (TLRs)-induced cytokine responses in keratinocytes as well 

as on dendritic cells (DCs) (VERHAEGH et al., 2017). Regarding to argasid vectors, 

however, only O. moubata complement inhibitor (OmCI) has been recognized to date. The 

salivary lipocalins expressed by the tick of O. moubata directly bind C5, by which OmCI 

can inhibite the classical and alternative complement pathways (TYSON & J., 2009a; 

STONE & BRISSETTE, 2017). Nevertheless, all these mechanisms in turn facilitate the 

spirochetes to establish the infection in a new host milieu (PAL & FIKRIG, 2003; 

VERHAEGH et al., 2017). 

3.2 Adaptation of borreliae during transmission 

Soft ticks of Ornithodoros spp. take blood meals as fast as within a few seconds or minutes. 

For example, ticks of O. tholozani and O. hermsii attach 10 - 20 min and 15 - 90 min, 

respectively, for repletion after encountering their hosts. During the short feeding time, 
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pathogenic TBRF spirochetes can be efficiently transmitted from a tick vector to the new 

host (SCHWAN & PIESMAN, 2002; ASSOUS & WILAMOWSKI, 2009). Recent studies 

have described that deposition of B. turicatae into the bite site is a rapid event within 15 s of 

tick attachment during the blood meal. Particularly, their findings suggested that spirochetes 

disseminate into the host blood during the short time required for tick engorgement (BOYLE 

et al., 2014). Thus, it is proposed that a preadaptation of TBRF borreliae is likely established 

in the tick salivary glands. During the preadaptation period, pathogens can express some 

proteins against innate immunity in order to enter the vertebrate host by a rapid transmission, 

e.g., variable tick protein (Vtp) synthesized by B. hermsii (SCHWAN & PIESMAN, 2002; 

RAFFEL et al., 2014; LOPEZ et al., 2016).  

Lyme spirochetes are well-identified pathogens that alters the expression of Osps (Figure 6) 

over the course of its life cycle between the tick vector and mammalian host. Various Osps 

are crucial antigens in cellular physiology and act directly in pathogenesis in mammals 

(FRASER et al., 1997; SINGH & GIRSCHICK, 2004). OspA is expressed as LB spirochetes 

enter the tick vector during the uptake of an infected blood meal. This protein remains a key 

surface antigen during bacterial colonization in the midgut of unfed ticks (BATTISTI et al., 

2008). During the slow engorgement process of infectious tick feeding (2 - 4 days of the 

complete 5- to 8-day attachment period), spirochetes that undergo ambient temperature and 

pH changes (from 23 °C, high pH to 37 °C, low pH) migrate from the midgut to the salivary 

grands (TEMPLETON, 2004). Concurrently, these bacteria multiply to increase their 

quantity and downregulate the expression of OspA (particularly) and OspB (DE SILVA & 

FIKRIG, 1995; ANGUITA et al., 2003). Another surface protein, OspC, is highly 

upregulated and plays a pivotal part in spirochetal dissemination from tick midgut to the host 

dermis (GILMORE & PIESMAN, 2000; TILLY et al., 2008). Since spirochetes with OspC 

are able to invade the tick’s salivary glands and bind Salp15, prevention of complement- or 

phagocytosis-mediated killing and further recognition by antibodies (especially 

immunoglobulins M, IgM) is beneficial for LB organisms to survive at early stage of 

mammalian infection (SCHUIJT et al., 2008; CARRASCO et al., 2015). Studies reviewed 

by Verhaegh et al. show that deleting or overexpressing OspC results in quick clearance of 

borrelial organisms from the host (VERHAEGH et al., 2017). However, OspC production is 

not required for spirochete persistence in the host once the infection is established (TILLY 

et al., 2006). Nevertheless, these Osps, especially OspA and OspC as identified, are able to 

bind vector or host molecules. This mechanism protects the LB organisms against the innate 
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immune response during the initial stage of host colonization/invasion (RUDENKO et al., 

2016).  

 

 

3.3 Establishment of early infection 

Although the precise number of delivered TBRF spirochetes through the tick saliva remains 

unknown, one can speculate that it is low due to the very short (seconds to minutes) feeding 

course of Ornithodoros spp. ticks. Successful infections have been established in laboratory 

animals (ticks included) under different settings with variable infection doses and 

inoculation types. A single spirochete of B. recurrentis var. turicatae, B. duttoni, and 

B. hermsii is sufficient to produce an effective infection in rats (IP inoculation), soft ticks of 

O. moubata (capillary tube), and mice (IP inoculation), respectively (SCHUHARDT & 

WILKERSON, 1951; GEIGY & SARASIN, 1958; STOENNER et al., 1982). Motile 

Figure 6: Overview of the LB spirochete and its Osps ordered according to their 

(predicted) function  

Cited from Verhaegh et al. (VERHAEGH et al., 2017) 
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spirochetes appear in the blood of white mouse as soon as 1 h after IP injection of “a large 

inoculum” of a RF species “Borrelia erratici” (EIDMANN et al., 1959; BARBOUR & 

HAYES, 1986). Kinetic studies on the spirochete populations have confirmed mild to high-

level bacteremia in the blood of immunocompetent animals one day after tick attachment, 

ID, and IP inoculation of B. turicatae, B. persica, and B. hermsii, respectively (BOLZ et al., 

2006; LOPEZ et al., 2014; SCHWARZER et al., 2016). Therefore, TBRF spirochetes occupy 

a feature that they can pass rapidly from the tick bite site to the blood of the vertebrate host. 

Consequently, as early as the first 3 to 5 days after inoculation, TBRF pathogens that have 

survived in and adapted to the bloodstream can multiply and produce severe spirochetemia 

at a density of approx. 106 - 108 organisms per ml blood (SOUTHERN & SANFORD, 1969; 

BARBOUR & GUO, 2010; LOPEZ et al., 2016).  

In contrast to TBRF, even low-level spirochetemia is rarely seen in humans or animals with 

LB borreliae infections (BARBOUR & HAYES, 1986). In fact, the LB spirochetes remain 

locally in the mammal’s dermis for few days before their colonization in different tissues, 

including the distant skin sites or such organs as joint and heart where they can induce 

inflammatory responses (SHIH et al., 1992; ANGUITA et al., 2003; GRILLON et al., 2017). 

In the natural reservoir hosts, infections with LB organisms generally do not induce obvious 

disease manifestations, because spirochetes have co-evoluted immune evasion strategies 

with the mammals (TRACY & BAUMGARTH, 2017). The majority (95%) of the exposed 

dogs in the USA develop no clinical signs and if they become ill, arthritis, fever, anorexia, 

and lymphadenopathy are most common symptoms (LITTLE et al., 2010). Although humans 

are believed as occasional hosts and do not contribute to spreading pathogens to another host, 

they are susceptible to Bbsl infection and would experience severe disease complications in 

some cases (RADOLF et al., 2012). The earliest and most common clinical manifestation of 

LB in humans is characterized with EM, a red skin rash at the tick bite site (Figure 7), 

occurring in approx. 80% and 90% of patients in the USA and Central Europe, respectively 

(STEERE & SIKAND, 2003; STANEK & STRLE, 2018). If left untreated, EM may persist 

and expand over weeks to months, their diameter ranging from a few centimeters (≥ 5 cm) 

to more than a meter (Figure 7) (STANEK & STRLE, 2018). Multiple EM are described 

with the presence of a secondary or more lesions similar in morphology to the initial solitary 

lesion but smaller in the size criteria (STANEK & STRLE, 2018). As mentioned in an 

investigation, the expanding EM seems to represent the advancing front of a wave of the 

spirochetal organisms “dermatogenously” migrating outward from the deposition site in the 
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skin of the human host (SHIH et al., 1992). Pathogenically, the inoculated spirochetes 

initially sense the pattern recognition receptors (PRRs) such as TLRs and NOD 3 -like 

receptors (NLRs) on DCs and sentinel macrophages in the cutaneous bite site of the 

vertebrate host. Accordingly, certain pro-inflammatory molecules including type 1 

interferons (IFNs) and inflammatory chemokines and cytokines are released by the host 

immune cells with the engagement of TLRs. Also, infiltration of immune cells such as T cells 

(CD8+ and CD4+ cells), macrophages, plasmacytoid, monocytoid DCs, and neutrophils have 

been identified in biopsies of human EM skin lesions (RADOLF et al., 2012). Therefore, 

EM by LB patients is thought to be induced by both innate and adaptive immune response 

to the live and spreading spirochetes (BORCHERS et al., 2015). 

 
3 NOD: nucleotide-binding oligomerization domain 
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Figure 7: Erythema migrans (EM) skin lesions 

(a) EM shoulder, (b) EM knee pit, (c) EM lower leg, a day after onset of treatment, (d-f) EM∼9 

weeks after onset; tick bite in the axilla, (g) EM started at the breast 6 months before 

Cited from Stanek and Strle (STANEK & STRLE, 2018) 
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3.4 Susceptibility to host complement system  

Complement represents a central component of innate immunity. It functions as a well-

organized network comprising the classical, alternative, and the lectin pathway (STONE & 

BRISSETTE, 2017). The alternative pathway is triggered independently of antibodies and 

therefore serves as a primary host defense against borrelia infection before any involvement 

of humoral immune response. Particularly, a key regulatory factor H (FH; 150-kDa protein) 

is involved in the alternative pathway of complement activation (PAL & FIKRIG, 2003; 

WOODMAN et al., 2009). However, various native proteins expressed by Borrelia spp. 

organisms are able to inhibit/regulate complement activation. According to their mechanisms, 

these native proteins are collectively termed as factor H binding proteins (FHBPs) or 

complement regulator-acquiring surface proteins (CRASPs) (KRAICZY & STEVENSON, 

2013). TBRF borreliae have successfully established various sophisticated mechanisms to 

overcome innate immunity, mostly complement system (RÖTTGERDING et al., 2017). At 

least for B. hermsii resistance to complement mediated killing activity has been 

demonstrated (BHIDE et al., 2009). B. miyamotoi was described with persistence in the 

human serum, indicating that this bacterium grasps determinants to evade killing by 

complement (TEEGLER et al., 2014; WAGEMAKERS et al., 2014). More recently, 

complement binding and inhibitory protein A (CbiA) has been identified and found to 

directly inhibit both the initiation of classical pathway of complement and the assembly of 

the terminal complement complex (RÖTTGERDING et al., 2017). Taken together, TBRF 

spirochetes probably have evolved strategies to resist (successfully) the complement 

activation for their survival in the host (MERI et al., 2006; ROSSMANN et al., 2007). In 

addition, resistance to complement strengthens the transmission, survival, and dissemination 

of the Borrelia spp. in mammalian and rodent reservoir hosts (KURTENBACH et al., 2002).  

Regarding to LB organisms different OspE/F-related proteins (Erp) (Figure 6), which are 

known collectively as CRASPs, are synthesized to inhibit host complement during early 

infection phase (PAL & FIKRIG, 2003). Especially the OspE protein has been demonstrated 

to bind the host FH protein (HELLWAGE et al., 2001). However, different isolates and 

genospecies of LB vary in their susceptibility to normal human serum and are therefore 

classified as complement-resistant (most isolates of B. afzelii), complement-sensitive (most 

B. garinii isolates), and intermediate complement-sensitive (Bbss isolates) (KRAICZY et al., 

2001; DE TAEYE et al., 2013). There is evidence that these three pathogenic genospecies 

are related to diverse clinical manifestations in humans: LA with Bbss, LNB with B. garinii, 
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and ACA with B. afzelii (COIPAN et al., 2016). Differences in the complement susceptibility 

may play a part in the pathogenesis of the disease; whether or not complement resistance is 

a virulence factor of LB spirochetes needs to be confirmed. Nonetheless, one must consider 

that B. afzelii has the capacity of persistence in LB patients with ACA over the years. This 

may suggest a higher pathogenicity of complement-resistant B. afzelii isolates to the skin 

(KRAICZY et al., 2001). 

3.5 Immune evasion by borrelial antigenic variations 

Borrelial spirochetes experience an important change in environment when they are 

transmitted by a tick vector, which has no antibody-based immune system, to the vertebrate 

hosts, of which many are warm-blooded and have the capacity of responding uniquely to 

many different types of foreign substances and cells (BARBOUR, 1990). To face the 

vertebrate’s adaptive immune responses, Borrelia spirochetes achieve persistence through 

multiphasic antigenic variation (BARBOUR, 1990). 

3.5.1 Variable major proteins of TBRF Borrelia 

Human infection by TBRF Borrelia is characterized with recurring episodes of fever, which 

is consistent with the high-level spirochetemia in the blood (Figure 8) (DWORKIN et al., 

2008). Immunity of the infected mammals is therefore stimulated to generate borreliae-

specific antibodies of IgM. Once the density of antibodies is high enough, the initial 

spirochetal wave is rapidly eliminated from the bloodstream (Figure 8). Borrelial cells are 

not detectable in the blood resulting in afebrile period (BARBOUR, 1990; STONE & 

BRISSETTE, 2017). However, the lower number of spirochetes (10 to 1,000 cells/ml) in the 

blood switches to produce another antigenic serotype that is not recognized by the host 

immune response. As a result, a new population of bacteria emerges in the blood (MEIER et 

al., 1985; BARBOUR & HAYES, 1986; DAI et al., 2006). Accordingly, old populations are 

being replaced by new serotypes that have been formed in the meantime (Figure 8). The 

serotype-specific antigens are surface lipoproteins of the spirochete outer membrane and 

have been referred to as variable-major-proteins (Vmps). The existing two different classes 

of Vmps are the variable large proteins (Vlps) and the variable small proteins (Vsps) of 

about 38 kDa and 23 kDa, respectively (BARBOUR, 1990; CADAVID et al., 1997; 

CADAVID et al., 2001). Up to now, the mechanism of antigenic variation has been described 

in the following species: B. hermsii (PLASTERK et al., 1985), B. turicatae (RAS et al., 

2000), and more recently in B. miyamotoi (WAGEMAKERS et al., 2016). Regarding to Bp, 
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knowledge of its genetic mechanisms at the level of Vmps is still limited, although Vmp 

sequences have been identified (e.g., Vlp18 under NCBI accession number: WP_024653159) 

(SCHWARZER et al., 2016). Nevertheless, immune evasion of TBRF spirochetes due to the 

multiphasic antigenic variance allows a longer lasting and repeated spirochetemia (Figure 8). 

This strategy gives the chance of increasing the horizontal transmission of TBRF borreliae 

in nature, because recurrent presence of these organisms in the blood increases the likelihood 

of an infection of ticks that suck blood in short time (minutes) (PLASTERK et al., 1985; 

SCHWAN & PIESMAN, 2002). 

 

  

Figure 8: TBRF increases its persistence in blood by shifting the surface protein Vmp 

When antibodies are induced against the first serotype (red), all borreliae expressing this serotype 

are killed by Vmp-specific antibodies. Only those that have shifted to a second serotype (yellow) 

survive and proliferate to cause the first relapse. This combat continues until the host dies or the 

borrelial organisms are eradicated from the blood. Antigenic variation is the mechanism initiating 

the recurring fever, which gave the disease its name. Relapses rarely involve one, single serotype. 

Cited from Talagrand-Reboul et al. (TALAGRAND-REBOUL et al., 2018) 
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3.5.2 Variable major protein-like sequence of LB Borrelia 

After the establishment of Bbsl infection, the evasion of bactericidal antibodies becomes 

crucial for borrelial survival. For this purpose, the spirochetes again alter rapidly and 

continually the surface antigen epitopes by downregulation of OspC and simultaneous 

upregulation of VlsE protein, i.e., Vmp-like sequences (Vls) system (NORRIS, 2006; TILLY 

et al., 2008; STEERE et al., 2016). As each Osp is present as a single-copy locus, genetic 

variation is seen at the population level. Therefore, a single spirochete cannot produce 

various OspC types in situ (STONE & BRISSETTE, 2017). In contrast, VlsE encoded by 

vls gene can undergo extensive antigenic recombination. This is a significant variation 

system to help LB organisms evade the killing by host antibodies and maintain persistent 

infection in mammals (ZHANG et al., 1997). The Vls system (Figure A1) comprises around 

16 vls cassettes (the precise number differs by strain) and one expression locus, vlsE. All 

known vls cassettes are sited on the same linear plasmid (lp28-1) in close proximity to but 

in the opposite orientation of vlsE (ZHANG et al., 1997). Transcription of vlsE occurs 

through the random recombination of different segments of vls cassettes rather than 

recombination of an entire, single vls cassette. Thus, in contrast to TBRF borreliae that 

harbor a predominant serotype, recombination steps occurring to LB spirochete may 

generate thousands of sole VlsE variants but with a similar protein size (~ 36 kDa) after 

translation (STONE & BRISSETTE, 2017). Accordingly, shifted epitopes and confounding 

efforts by humoral immune response (antibodies IgG) to keep up with the sequence variation 

can be harbored in the infected mammals (MCDOWELL et al., 2002; NORRIS, 2006). As 

early as 4 days after Bbsl infection in mice, the recombination events have been identified 

and seem to occur continuously during infection (MCDOWELL et al., 2002). Interestingly, 

mutants that express non-variable VlsE are unable to re-infect animals that have been 

previously infected with Bbsl, whereas spirochetes that express variable VlsE can 

(ROGOVSKYY & BANKHEAD, 2013). However, unlike TBRF, recurring spirochetemia 

corresponding to recurrent episodes of high fever are not seen during LB organism infections.  

3.6 Persistence of Borrelia infection in mammalian host tissues 

3.6.1 Residual brain infection of TBRF spirochetes  

Antigenic variation facilitates the Borrelia infection in the mammals. When TBRF 

spirochetes are no longer measurable in the blood circulation, they may still be found in 

distant organs such as spleen, liver, kidneys, bone marrow, eyes, and the central nervous 
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system (CNS) of infected mammals. In particular, brain tissue harbors consistently persistent 

infections (BARBOUR & HAYES, 1986; CADAVID & BARBOUR, 1998; DWORKIN et 

al., 2008). Borreliae have also been recovered from the cerebrospinal fluid (CSF) of humans 

with RF (CHUNG, 1938; ANDERSON & ZIMMERMAN, 1955). Recently, Bp was found 

to be persistent in the brain tissues of infected immunocompetent mice while at the same 

time the spirochetes were not detectable in blood samples from the same animals 

(SCHWARZER et al., 2016). Residual brain infection has been found in different 

experimental animals or animals in nature (DIATTA et al., 1994; CADAVID & BARBOUR, 

1998). In some cases, brain infection has been found to remain for up to 3 years after 

spirochete inoculation. This indicates that these borreliae maintain a population large enough 

to perpetuate the infection in the brain, yet small enough to avoid host immune responses 

and noticeable tissue damage. Additionally, borreliae recovered from residual brain infection 

were susceptible to the serum of the animal and could not reenter the blood of that animal. 

These phenomena also proposed that the immune response was not effectively reaching the 

organisms in the brain (CADAVID & BARBOUR, 1998). However, immunosuppression 

could reactivate the infection, inducing bacteremia comparable to that of initial densities in 

the blood (LARSSON et al., 2006).  

3.6.2 Invasion of LB spirochetes in host tissues  

Clinically, spirochetemia at the early stage of LB organism infection was often silent in both 

American and European patients with erythema migrans. Blood culturing for Bbsl 

spirochetes have been conducted with great efforts but the yield was low in early or 

occasionally later course during disease progression (WORMSER et al., 1998; MARASPIN 

et al., 2001; LIVERIS et al., 2011; MARASPIN et al., 2011). Instead, following successful 

host colonization, LB spirochetes have a tendency to reside in host tissues. There the 

borrelial organisms evade the developing adaptive immunity of the host. Typically, skin and 

joint, where the host extracellular matrix protein decorin is found, are the immune-privileged 

sites for LB bacteria (TILLY et al., 2008; BORCHERS et al., 2015). Also, the skin but not 

the blood of the vertebrate reservoir host is indicated to play a critical part in receiving, 

hosting, and transmitting the LB pathogens (GRILLON et al., 2017). A large number of 

genes are selectively expressed on outer membranes of Bbsl, which likely contribute to 

spirochete migration and colonization in target tissues (PAL & FIKRIG, 2003). Among them, 

decorin-binding proteins (Dbps) such as DbpA and DbpB and fibronectin binding protein 

BBK32 have been identified with critical roles in LB organism infection within the 
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mammalian environment (Figure 6) (GUO et al., 1995; GUO et al., 1998; PROBERT & 

JOHNSON, 1998). The pore protein P66, another Bbsl surface antigen, has been reported to 

have adhesive properties and bind human ß3-chain integrins that are synthesized in a wide 

range of host location (COBURN et al., 1999). Therefore, multiple adhesin mechanisms 

through widespread host receptors such as decorin, fibronectin or integrins contribute to the 

virulence of the LB spirochete and aid the pathogen to establish chronic infection in multiple 

tissues (PAL & FIKRIG, 2003).  

The most significant clinical sign of LB is acute or chronic arthritis (LA) occurring to ~ 10% 

of all LB patients in the United States. However, the isolation rate of borrelial spirochetes 

from joint fluid and synovial is very low (STANEK & STRLE, 2018). In Europe, 

acrodermatitis chronica atrophicans (ACA) remains a slowly progressive lesion that is 

located primarily on the extensor (acral) surfaces of the extremities. Approximately 20% of 

LB patients with ACA have a history that is consistent with a preceding spontaneously healed 

EM lesion. Usually, ACA lesion develops 6 months to 8 years later on this healed EM 

extremity. Unfortunately, ACA does not resolve spontaneously. Bbsl spirochetes have been 

isolated more than 10 years post onset of this skin lesion from untreated patients with early 

disease manifestations (EM or early LNB) (ASBRINK & HOVMARK, 1985; STEERE et 

al., 2016). 

3.7 Patterns of Borrelia dissemination in mammalian host 

3.7.1 Hematogenous dissemination of TBRF borrelia 

TBRF spirochetes translocate rapidly into the bloodstream from the tick bite site, multiply 

and produce cyclic high-level spirochetemia (BOYLE et al., 2014; LOPEZ et al., 2016). In 

the absence of antibiotic treatment, the cyclic nature of bacteremia in the blood and its 

correlated clinical sign, recurring fever, can continue even for months (SOUTHERN & 

SANFORD, 1969). B. duttonii, B. crocidurae, B. hispanica and Bp frequently bind or rosette 

blood erythrocytes, and thus cause erythrocytes to aggregate. This phenomenon can prevent 

the interaction of spirochetes with host immune cells and thus may enhance persistence of 

these organisms within the bloodstream (BURMAN et al., 1998; SHAMAEI-TOUSI et al., 

1999; TALAGRAND-REBOUL et al., 2018). Along the infection time, motile organisms in 

terms of B. hermsii, B. turicatae, B. crocidurae and Bp spp. have been isolated from the 

animal brain tissue, although spirochetes are not detectable in the bloodstream (CADAVID 

et al., 2001; NORDSTRAND et al., 2001; MEHRA et al., 2009; SCHWARZER et al., 2016). 
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Undoubtedly, these TBRF borrelia, as well as the LBRF species B. recurrentis, have an 

excellent ability to cross the microvessels and tight barriers, such as blood-brain-barrier 

(BBB) and the dura mater-arachnoid barrier (CADAVID et al., 2001). Moreover, blood 

transfusion-transmitted infections (TTI) of B. recurrentis and B. duttonii in humans have 

been reported (WANG & LEE, 1936; HIRA & HUSEIN, 1979; NADELMAN et al., 1990), 

indicating that these accidentally injected borrelial organisms are capable of surviving in the 

bloodstream of the adopter. After IV inoculation in experimental immunocompetent animals, 

B. hermsii and B. miyamotoi induced a mild to high-level spirochetemia (BENOIT et al., 

2010; POLICASTRO et al., 2013; DICKINSON et al., 2014; KRAUSE et al., 2015). 

Therefore, these TBRF spirochetes are considered to have predominantly a 

hematogenous/blood-borne dissemination route. In this way, borreliae enter and leave the 

bloodstream by invading through the endothelium, followed by a massive spirochetemia and 

further infection in distant tissues (e.g., brain) (MERI et al., 2006).  

3.7.2 Controversial dissemination pathways of LB borrelia 

Once transmitted into the dermis of the mammalian host, Bbsl spirochetes were shown to 

disseminate to a variety of remote sites. The pathogens have been detected in skin, blood, 

CSF, and synovial fluids in humans (BENACH et al., 1983; STEERE et al., 1983; 

JOHNSTON et al., 1985) as well as in skin, blood, and urinary bladder in rabbits and natural 

reservoir hosts (P. leucopus) (KORNBLATT et al., 1984; SCHWAN et al., 1988). According 

to some experimental studies on LB spirochete infection, some systematic manifestations 

especially in skin tissue, joints, nervous system, or heart were induced (STEERE et al., 2016). 

However, the relationship between the dissemination of spirochetes and the subsequent 

severity of disease is a complex question. Generally, dissemination through the bloodstream 

has long been hypothesized as the main route of spreading the borrelia organisms 

(GOODMAN et al., 1995; WORMSER et al., 1999; OJAIMI et al., 2005). Reports of 

B. burgdorferi-positive blood cultures from LB patients or of blood samples tested positive 

by polymerase chain reaction (PCR) in early stages of the illness seem to support the view 

of a blood-borne bacterial spread (BENACH et al., 1983; GOODMAN et al., 1995). 

However, these reports, which were based on large sample volume of 9 - 18 ml plasma or 

blood, yielded a very low rate of spirochete-positive culture (≤ 5%) (WORMSER et al., 1998; 

WORMSER, 2006). Results of such culturing were consistent with an estimate of 0.1 

cultivable spirochete per ml blood (WORMSER, 2006). Therefore, the bacterial burden in 

blood is actually extremely low. Additionally, an in vitro investigation on B. recurrentis, 
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B. duttonii, and Bbss provided evidence that LB pathogens are less immune serum-resistant 

than the RF spirochetes (MERI et al., 2006), indicating that LB spirochetes are less able to 

survive in the blood than the RF species.  

On the other hand, some authors hold the view that LB borreliae disseminate from the tick 

bite site through perhaps blood or tissue planes to other distant locations (STANEK et al., 

2012). Other authors also stated a “dermatogenous” migration of spirochetes from the 

deposition site outward to further tissues causing EM skin lesions of the human host (SHIH 

et al., 1992). Experimental data on the development of persistent LB in dogs clarified that 

live spirochetes are found more frequently in tissues of the somatic quadrant closest to the 

tick bite than in tissues further from the site of infection (STRAUBINGER et al., 1997). If 

the LB borreliae had spread to the joint space through the bloodstream, a random distribution 

of infection of different joints would have been anticipated. Therefore, this interesting study 

suggested that the progress of chronic LB is not due to proliferation of borrelia in the 

bloodstream, but especially due to the migration of spirochetes through various tissues 

(STRAUBINGER et al., 1997). Additionally, in a separate investigation of humans with 

LNB, the presence of skin lesion EM on an extremity was also topographically related with 

motor paresis of that specific extremity (HANSEN & LEBECH, 1992). This finding has also 

suggested that the spirochetes disseminate through soft tissues. Notably, up to now there is 

no reported cases of transfusion-transmitted infections by Bbsl via donated blood from LB 

patients, although other transfusion-associated bacteria such as Babesia microti and 

Anaplasma phagocytophilum, which are transmitted by the same Ixodes spp. ticks, have been 

documented (LEIBY, 2004; BIHL et al., 2007).  

The differences of TBRF and LB species (Table 2) still remain to be further determined, but 

probably affect the pathogenetic properties of the organisms (BUNIKIS et al., 2004). 

Mechanisms of dissemination and invasion are important not only for the pathogenesis but 

also for the development of spirochete persistence in hosts. 
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Table 2: Comparison of TBRF, LBRF and LB species associated with their pathogenicity 

characteristic TBRF LBRF LB 

agent several species B. recurrentis Bbsla 

vector Ornithodoros spp. (soft ticks) P. humanus  
(human body louse) 

Ixodes spp. (hard ticks) 

fever (temperature of ≥ 39 °C) common common  rareb 

fever relapses multiple  few  no 

local skin rash no  no  common (EMc) 

arthritis  no  no  commond  

spirochetes in blood smear yes  yes  no  

spirochetemia (cells/ml blood) from 105 to >106  from 105 to >106 occasionally but low level 

neurological involvement  commone rare  commonf  

tissue tropism brain  brain  skin, joint  

serological assay specificity fair to poorg fair to poorg good to excellent 

dissemination pathway hematogenoush  hematogenoush hematogenous or tissue migrationi 

blood transfusion-mediated infection human and mouse model casesj humans casesk no 

a typically: Bbss, B. afzelii, B. garinii 
b Fever is rarely one of the constitutional symptoms accompanied with the development of erythema migrans at early stage of LB (BORCHERS et al., 2015). 
c erythema migrans 
d Arthritis is the most common manifestation of late LB, occurring weeks to months after the initial infection (MURRAY & SHAPIRO, 2010). 
e common in ≥ 10% of patients with disseminated disease 
f Lyme neuroborreliosis (LNB) may be associated with early disseminated stage of LB spirochete infection (BORCHERS et al., 2015). 
g Variable major proteins (Vmps) of RF borreliae during infection may not be produced by the in vitro cultured spirochete that is utilized as a whole-cell 

lysate antigen in the serologic testing; this may reduce the reactivity of a sample in the IFA and ELISA falsely. 
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h supported by references summarized in chapter 3.7.1 
i supported by references summarized in chapter 3.7.2 
j supported by references (HIRA & HUSEIN, 1979; NADELMAN et al., 1990; BENOIT et al., 2010; POLICASTRO et al., 2013; DICKINSON et al., 2014) 
k supported by references (WANG & LEE, 1936; NADELMAN et al., 1990) 

Data summarized and modified from references (BARBOUR & HAYES, 1986; CADAVID & BARBOUR, 1998; DWORKIN et al., 2008) 
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III STUDY HYPOTHESIS AND OBJECTIVE 

Prior studies have reported rapid and high-level spirochetemia of Bp in the bloodstream of 

laboratory mice (SCHWARZER et al., 2016). After deposition by ixodid ticks, LB 

spirochetes multipy locally in the skin during the first few days of infection and subsequently 

disseminate to remote sites, thus causing clinical manifestations (GRILLON et al., 2017). 

To the best of our knowledge, we hypothesize that 1) Bp spirochetes probably rely on a 

hematogenous dissemination, like the other well-studied RF species (e.g., B. recurrentis, 

B. hermsii, B. duttonii, and B. turicatae) (MERI et al., 2006; BOYLE et al., 2014; LOPEZ 

et al., 2016); 2) (most) motile LB spirochetes at the deposition site migrate actively through 

tissues to further distant tissues and accidentally (only some few of the deposited borreliae) 

may penetrate the blood vessel into bloodstream. To test these hypotheses, we established a 

murine anmial model. In this study model, host-adapted Bp and Bbss organisms were 

intradermally (ID) or strictly intravenously (IV) inoculated into immunocompetent animals. 

If the IV injected spirochetes are capable of multiplying in the bloodstream and 

transmigrating through the blood vessels, further infection should be established in distant 

tissues of the immunocompetent animal. Moreover, the immune system should recognize 

and respond to the multiplying bacteria. Only based on positive results from IV inoculated 

animals can it be undoubtedly believed that Bp and Bbss borreliae disseminate 

hematogenously. 

The objectives of our murine infection model were to: 

i) establish an animal model with a specific infection route; 

ii) investigate the population kinetics of borrelia organisms in the bloodstream of the 

immunodeficient and immunocompetent mice;  

iii) study whether host-adapted, ID or IV inoculated Bp and Bbss disseminate into tissues 

of immunocompetent mice; 

iv) compare the tissue tropism of Bp and Bbss in immunodeficient and immunocompetent 

mice; 

v) characterize the immune response against host-adapted borrelia organisms in 

immunocompetent animals; 

vi) illustrate the possibility and risk of the blood transfusion-transmitted infection by Bp 

and Bbss spirochetes.   
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IV ANIMALS, MATERIALS AND METHODS 

1 Experimental design 

This study was performed with the following two parts: 

i) generation of host-adapted borrelia organisms in immunodeficient mice after ID 

inoculation of culture-derived motile borrelia spirochetes;  

ii) after ID or IV inoculation of the host-adapted spirochetes, observation of the 

spirochete population dynamics in the immunocompetent mice.  

2 Animals 

The experimental project was based on murine model and received approval by the 

government of Upper Bavaria in accordance with § 8 of the German Animal Welfare Act 

(TierSchG, version of 18 May 2006) (Registration number: AZ 55.2-1-54-2532-144-2015). 

Mouse strains of immunodeficient NOD-SCID and immunocompetent C3H/HeOuJ 

(Figure 9) were used for the in vivo experiments of the present dissertation.  

 

Figure 9: Mouse strains used in this study 

(a) NOD-SCID mouse; photo from Janvier Labs (Saint Berthevin Cedex, France), (b) C3H/HeOuJ 

mouse; photo from The Jackson Laboratory (Maine, USA) 
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2.1 Immunodeficient NOD-SCID mouse 

In this murine model, immunocompromised mice were firstly used to generate host-adapted 

borrelia organisms, in order to avoid the interference of any antigen derived from in vitro 

cultivation. For example, expression of OspA of LB spirochete derived from in vitro cultures 

differs profoundly from that in arthropod vector and mammalian milieu (DE SILVA & 

FIKRIG, 1997; CROWLEY & HUBER, 2003). A critical advantage of using the 

immunodeficient mice is that persistent spirochetemia can be induced, because the lack of 

immunity allows high bacterial load in the bloodstream compared to that affected by immune 

responses in immunocompetent animals (HODZIC et al., 2003; LIU et al., 2004; RISTOW 

et al., 2015). Therefore, host-adapted borreliae can be easily harvested by sampling blood at 

scheduled time points. The viability and number of spirochetes can be examined under dark 

field microscope and by PCR method, respectively. 

In this study, 35 NOD-SCID (Non Obese Diabetic-Severe Combined Immune Deficiency) 

mice (Figure 9A), which do not contain mature T and B cells and complement, were 

purchased at the age of week 6 (~ 15 g body weight) from Janvier Labs at various schedule 

time. Compared to regular SCID mice, NOD-SCID mice have reduced macrophages and 

natural kill (NK) cell function (MILSOM et al., 2013). 

2.2 Immunocompetent C3H/HeOuJ mouse 

Immunocompetent mice develop a well-detectable antibody response in the course of 

borrelia infection as long as the inoculated spirochetes are infectious. Given that C3H mice 

may develop severe Lyme arthritis and possess a higher bacterial burden in tissues compared 

to the resistant strain of BALB/c mice (ZEIDNER et al., 1997; WOOTEN & WEIS, 2001), 

the immunocompetent C3H/HeOuJ mice (Figure 9B) were used in our study. This mouse 

strain is easily treatable and tolerated with blood sampling and anaesthesia. At the age of 

week 8 (~ 20 g body weight), 38 C3H/HeOuJ mice were obtained from Charles River 

(Sulzfeld, Germany) at different time points based on the experiment scheme. 

2.3 Mouse hygiene and handling management 

The specific-pathogen-free (SPF) female mice were obtained at different time points based 

on the work schedule. One to two weeks prior to the experiment mice were introduced into 

the animal facility of the Institute of Infectious Diseases and Zoonoses, Ludwig-

Maximilians-Universität (LMU, Munich) in order to ensure adequate acclimation to the new 
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environment. According to guidelines and principles of Gesellschaft für 

Versuchstierkunde/Society of Laboratory Animal Science (GV-SOLAS), maintenance and 

handling of these mice were conducted in the laminar flow systems to sustain SPF conditions. 

Three to five mice were kept in an individually ventilated cage (IVC, ISOcage N System; 

Tecniplast Deutschland GmbH, Hohenpeißenberg, Germany) at controlled room 

temperature (20 - 24 °C) and humidity (45%). The animals received standard feed for 

laboratory rodents (housing food V 1536) ad libitum; autoclaved water is indefinitely 

available to the mice from drinking bottles.  

Three days prior to the experiment, blood samples were obtained from naïve mice for 

baseline controls. Collection of blood specimens in small volume (2 - 4 drops ≈ 10 - 30 µl) 

was carried out from the facial vein of the mouse without anaesthesia. Puncture in the skin 

was performed with a 4-mm Goldenrod Animal Lancet (Braintree Scientific, Bio-Medical 

Instruments, Zöllnitz, Germany), which is a rapid and simple method for submandibular 

bleeding of mice (Figure 10) (GOLDE et al., 2005). The dropping blood from the facial vein 

was maintained in the Microvette 100 K3E (preparation K3EDTA; Sarstedt AG & Co., 

Nümbrecht, Germany). At the end of the experiment, a large final blood volume was 

harvested aseptically into the S-Monovette 2.7 ml K3E (Sarstedt AG & Co.) by intracardiac 

puncture. Mice were anaesthetized by IP administration of medetomidine and midazolam 

(Table 3) (DHEIN et al., 2005; XU, 2006). ID and IV inoculation were conducted on the 

shaven dorsal back and via the right jugular vein, respectively (procedures in detail will be 

described in the following sections). Specific antagonists (Table 3) were used to neutralize 

the anaesthetics. Fentanyl and naloxone provided adequate sedation and analgesia, 

respectively. Recovery of mice after each challenge were observed closely. The surgical 

instruments were autoclaved. Standardized aseptic techniques were employed during all 

procedures. After each experiment based on the scheduled course of period, anaesthetized 

mice were sacrificed by cervical dislocation. 
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Table 3: Anaesthetics and antagonists used in mice 

 drug dosage 
(mg/kg)a 

product  
unit (mg/ml) 

source 

a
n

a
e
s

th
e

ti
c

s
 

Medetomidine 
hydrochlorideb 

0.5 1 Dechra Veterinary 
Products Deutschland GmbH,
Aulendorf, Germany 

Midazolam 5 5 Hexal AG, 
Holzkirchen, Germany 

Fentanyl 0.05 0.05 B. Braun Melsungen AG, 
Melsungen, Germany 

a
n

ta
g

o
n

is
ts

 

Atipamezole 2.5 5 Dechra Veterinary 
Products Deutschland GmbH 

Flumazenil 0.5 0.1 Hexal AG 

Naloxone 1.2 0.4 B. Braun Melsungen AG 

 

  

Figure 10: Facial vein bleeding from mouse 

(a) positioning and poking the cheek with the lancet; photo from Golde et al. (GOLDE et al., 

2005), (b) collecting blood from the cheek; photo from Braintree scientific, Inc. (Braintree, USA) 

a All three substances used as anaesthetics or antagonists were diluted in sterile physiological saline 

(isotonic saline; B. Braun Melsungen AG); the combined solution was dosed at 10 µl per g body 

weight of the mouse. 
b Sedator® 1.0 mg/ml solution 



Animals, materials and methods  40 

 

 

3 Borrelial strains and cultivation 

3.1 Bp LMU-01 and Bbss N40 

In this study, borrelia spirochetes of the following two strains were used to infect the animals: 

Bp LMU-01 strain was originally isolated from a heparinized blood specimen of an ill cat 

in Jerusalem (Israel) (SCHWARZER et al., 2015). After cultivation in filtered human serum, 

passage 2 of this strain was used with 6.9 x 105 Bp spirochetes per ml of serum. Aliquots of 

100-µl serum were frozen at -80 °C until used. The minimal infectious dose of this borrelia 

strain in immunocompetent mice has been reported between 4 and 100 organisms per animal 

(in vitro cultured, passage 3) (SCHWARZER et al., 2016).  

Bbss N40 strain was isolated from a skin biopsy of an experimentally infected dog (APPEL 

et al., 1993). Its passage 3 was used in a prior study, indicating the infectivity of 1.0 x 106 

cultured cells in immunocompetent mice (RAFINEJAD et al., 2011). In vitro culture 

(passage 4) was frozen in the presence of 15% sterile glycerol, containing 1.1 x 106 

spirochetes in each 100-µl aliquot.  

3.2 Preparation of spirochetes for initial inoculation using in vitro culture 

Spirochetes used to infect immunodeficient mice were prepared by in vitro cultivation. A list 

of necessary materials and devices used in this step is given in Table 4. Briefly, a 5-ml 

polypropylene tube was filled with 3 ml in-house prepared Pettenkofer/LMU Bp medium 

(SCHWARZER et al., 2015). An aliquot of frozen passage 2 stock (100µl, Bp LMU-01 strain) 

was maintained in this medium at 37 °C with a humidified 5% CO2 air atmosphere. For 

cultivation of Bbss spirochetes (at 33 °C), the frozen passage 4 stock (100 µl, Bbss N40 

strain) was applied to 6 ml Barbour-Stoenner-Kelly H (BSK-H) complete medium in a 12-

ml screw top tube. This medium was additionally supplemented with 6% heat-inactivated 

(at 56 °C) rabbit serum (POLLACK et al., 1993). The mobility and morphology of the 

organisms (passage 3 and 5 of Bp and Bbss, respectively) were inspected by dark-field 

microscope. Spirochete counts were achieved in a Petroff-Hausser counting chamber. Viable 

spirochetes were grown to day 7 and day 6 at the mid-log phase, reaching densities of 2.0 x 

106 Bp and 1.0 x 107 Bbss per ml medium, respectively. By adjusting the medium volume to 

50 µl and 100 µl, an inoculum dose of 1.0 x 105 Bp or 1.0 x 106 Bbss of motile spirochetes 

was prepared in the 1.5-ml safe-lock centrifuge tubes for further use. Another inoculation 

dose of 1.0 x 108 viable Bbss organisms was harvested as follows:  
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i) cultivation of frozen passage 4 stocks of Bbss in 20 of the 12-ml screw top tubes for 6 

days to the concentration of ~ 1.0 x 107 cells/ml as described above;  

ii) centrifugation of 120 ml culture in 3 of the 45-ml centrifuge tubes (each 40 ml) at 

15,000 × g for 10 min at 23 °C;  

iii) washing the three pellets with 1 ml sterile phosphate-buffered saline (PBS, pH 7.3);  

iv) transfer of 3 ml PBS into a 5-ml sterile safe-lock centrifuge tube;  

v) centrifugation of 5-ml tube at 15,000 × g for 10 min at 23 °C;  

vi) resuspension of the pellet in 1 ml fresh BSK-H medium;  

vii) dilution of 10-µl re-suspended solution (1:100) and count for the concentration of live 

spirochetes (1.0 x 109 cells/ml);  

viii) adjustment with appropriate medium volume (100 µl) for further use. 

 

Table 4: Materials used for in vitro cultivation and preparation of inoculum dose 

instrument, ingredient comment source 

BSK-H complete medium  Sigma-Aldrich Chemie GmbH, 
Taufkirchen, Germany 

centrifuge  
5430R and 5810R 

 Eppendorf Vertrieb Deutschland GmbH, 
Wesseling-Berzdorf, Germany 

centrifuge tube 45-ml Sarstedt AG & Co. 

dark-field microscope  Leica Microsystems GmbH,  
Wetzlar, Germany 

Galaxy 170S CO2 incubator  Eppendorf Vertrieb Deutschland GmbH 

Petroff-Hausser counting 
chamber 

 Hausser Scientific, 
Horsham, PA, USA 

polypropylene tube 5-ml Sarstedt AG & Co. 

rabbit serum  activated  Sigma-Aldrich Chemie GmbH 

safe-lock centrifuge tube 1.5-ml, 5-ml Eppendorf Vertrieb Deutschland GmbH 

screw top tube  
(centrifuge tube 12) 

12-ml, TPP Faust Lab Science GmbH,  
Klettgau, Germany 
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4 Experimental procedures 

4.1 Negative control group 

Before the experiments that animals were exposed to spirochetes, a negative group (NG) 

was performed as control (Table 5). Briefly, anticoagulated whole blood (free of borrelia 

organisms) were collected from two non-infected NOD-SCID mice. One hundred microliter 

blood was IV injected into five immunocompetent C3H/HeOuJ mice under anaesthesia. The 

challenged mice were monitored for five weeks; blood was collected once a week. Once 

ensured that there was no inflammation on the surgical area (Figure 11) and no microsurgery-

induced specific antibody levels, the experimental test with borrelia organisms was then performed.  

Table 5: Mice used for negative control 

mouse strain subgroup procedure number of animals 

negative 
group (NG) 

NOD-SCID N-NG Harvesting of blood 2 

C3H/HeOuJ C-NG IV inoculation 5 

 

 

Figure 11: Recovery of C3H/HeOuJ mouse after microsurgery via the jugular vein 

(a) recovery of sutured wound on day 2 after microsurgery, (b) recovery of sutured wound on 

day 6 after microsurgery 
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4.2 Generation of host-adapted borreliae in NOD-SCID mice 

4.2.1 Intradermal inoculation of culture-derived spirochetes 

As described above, the inoculum dose of 1.0 x 105 Bp or 1.0 x 106 (or 1.0 x 108) Bbss 

spirochetes was freshly prepared before use. Each of six NOD-SCID mice was ID injected 

with the borrelial organisms (Bp or Bbss) into the shaven back (Figure 12). The time point 

was named day 0. The injection volume was divided into small portions (5 x 10 µl of Bp, 10 

x 10 µl of Bbss), placed closely to each other into the dermis (~ 4 cm2 area). Thereafter, six 

mice were randomly separated into two subgroups (3 mice of each) (Table 6). 

 

Table 6: NOD-SCID mice used to detect populations of host-adapted borreliae 

borrelial species injection route inoculum dose  subgroup number 

Bp (passage 3) ID 1.0 x 105 

N-A 3 

N-B 3 

Bbss (passage 5) ID 

1.0 x 106 
N-C 3 

N-D 3 

1.0 x 108 
N-E 3 

N-F 3 

Figure 12: Intradermal injection of culture-derived spirochetes into the shave back 

of NOD-SCID mouse under anesthesia 
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4.2.2 Dynamic detection of host-adapted borreliae in blood 

In order to obtain data for each single day of the scheduled 17-day interval, mice in different 

subgroups were bled via facial vein puncture according to the alternating scheme. Briefly, 

blood specimens (~ 10 - 30 µl) from each single mouse in subgroup N-A, N-C, and N-E 

were collected at odd days (day 1, 3…17) and subgroup N-B, N-D, and N-F at even days 

(day 2, 4…16) (Figure 13). Puncture alternated between the right and left facial vein at each 

sampling day to produce less impact on the mice as possible. Blood aliquots (5 µl each) from 

each single mouse at each time point were separated in individual 1.5-ml safe-lock tubes and 

stored at -30 °C. By DNA extraction and PCR examination, the population kinetics of the 

hematogenous spirochete load from six NOD-SCID mice that received the same inoculum 

dose was monitored between day 0 and 17. The term “the anticipated day”, namely the time 

point to reach the largest bacteria load in the blood was determined during this step. 

Additionally, 30-µl blood from three mice in each individual subgroup was diluted and 

mixed with 500 µl medium for Bp or Bbss cultivation, followed by an examination for motile 

spirochetes using dark-field microscope. Once no viable spirochete was observed, the 

solution above was transferred to 5 ml corresponding medium for further growth and 

inspection of potential Bp or Bbss spirochetes. The ~ 5.5-ml culture medium used here 

contained antibiotics (Table 7).  

 

Figure 13: Blood sampling from NOD-SCID mice based on alternative schedule 
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Table 7: Antibiotics used in medium for spirochete isolation from blood samples 

antibiotic product No. concentration source 

Kanamycina K0129 8 µg/ml Sigma-Aldrich Chemie GmbH 

Rifampicinb R3501 50 µg/ml 

 

4.2.3 Harvesting of host-adapted borreliae in blood 

Based on the obtained population kinetics of spirochetes circulating in the bloodstream, a 

second separate group consisting of five NOD-SCID mice was performed using ID 

inoculation of the in-medium cultured 1.0 x 105 Bp or 1.0 x 106 Bbss spirochetes (Table 8). 

Blood samples at a time point before the anticipated day were collected to determine if these 

mice were infected with borreliae. At the anticipated day with the highest spirochete load, 

anticoagulated peripheral blood was collected aseptically by intracardiac puncture under 

anaesthesia. A S-Monovette 2.7 ml K3E was connected with a 23-gauge needle for puncture 

into the heart and utilized for the maintenance of the anticoagulated blood (~ 0.8 - 1.2 ml) 

from each individual mouse (Figure 14). Thirty microliter blood from each single mouse 

were diluted in 500 µl fresh medium and motile spirochetes were visualized with a dark-

field microscope. All blood samples containing Bp or Bbss spirochetes were pooled in one 

S-Monovette 2.7 ml K3E and checked again for bacterial viability with the dark-field 

microscope. Aliquots (5 µl) from pooled blood were prepared and stored at -30 °C for 

borrelial density determination.  

Table 8: NOD-SCID mice used for generation of host-adapted borrelia organisms 

borrelial species injection 
route 

inoculum  
dose  

subgroup number mouse  
no. 

Bp (passage 3) ID 1.0 x 105 N-G 5 N1-5  

Bbss (passage 5) ID 1.0 x 106 

N-H 5 N6-10 

N-I 5 N11-15 

 

 

 

 

a 20 ml solution, 10 mg kanamycin per ml 0.9% sterile NaCl 
b 250 mg powder stock, dissolved in 5 ml DMSO (dimethyl sulfoxide, Sigma-Aldrich Chemie GmbH) 
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4.2.4 Collection of tissue samples for cultivation and PCR testing 

Besides blood, other tissues including ear, skin (injection areal), tibiotarsal joint, spleen, 

urinary bladder, heart, and brain were removed from the sacrificed NOD-SCID mice 

(subgroup N-G and N-H) at the anticipated day (protocol seen in the following section). 

Each collected tissue sample was divided into approx. equal two parts. Half of each tissue 

sample was transferred to medium for bacterial culture and the other half was kept at -80 °C 

for DNA extraction and further PCR testing. 

4.3 Inoculation of host-adapted borreliae into C3H/HeOuJ mice 

4.3.1 Intradermal inoculation of host-adapted borreliae 

Anaesthetized immunocompetent C3H/HeOuJ mice (n=16; Table 9) were intradermally 

inoculated with 100 µl freshly pooled blood containing the NOD-SCID-adapted borrelia 

organisms (Bp or Bbss) in the shaven dorsal back (the same ID injection technique as used 

for NOD-SCID mice). 

Figure 14: Blood collection by intracardiac puncture  

(a) technique model of blood collection by intracardiac puncture; photo from Howard University 

(HOWARD UNIVERSITY), (b) collected anticoagulated blood in S-Monovette 2.7 ml K3E 
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Table 9: Subgroups of C3H/HeOuJ mice used for ID and IV inoculation 

borrelial 
speciesa 

NOD-SCID C3H/HeOuJ  

subgroup subgroup injection route number mouse no. 

Bp N-G 
C-A ID 5 C1-5 

C-B IV 6 C6-11 

Bbss 

N-H 

C-C ID 5 C21-25 

C-D IV 5 C26-30 

N-I 

C-E ID 6 C31-36 

C-F IV 6 C37-42 

 

4.3.2 Strict intravenous inoculation of host-adapted borreliae 

C3H/HeOuJ mice (n=17) were strictly IV inoculated with the same pooled blood as used in 

each subgroup of ID injection (Table 9). Each mouse was transferred into the open space of 

the SPF-conditioned animal handling room (Figure 15). The IV inoculation was carried out 

via the right jugular vein (Figure 16) and instruments used in this procedure are listed in 

Table 10. Briefly, C3H/HeOuJ mouse was deeply anaesthetized for the surgical procedure. 

The warming pad was used to maintain the body temperature at ~ 37 °C. Hair under the chin 

was shaved and this area was disinfected with 70% ethanol. On the position slightly right to 

the body midline under the chin, a ~ 1 cm long incision was made into the skin. Using the 

stereo microscope equipped with Leica MC170 HD camera and two goose lights (Figure 15), 

the right jugular vein was carefully separated from the connective tissue and fat without any 

bleeding. Splinter forceps and eye forceps were utilized during this procedure. The exposed 

vein and removed tissue were immersed in sterile physiological saline. By holding the 

jugular vein with bulb-headed probe, two loop ligations were made around the vein with 

SURGICRYL® PGA Polyglycolic acid suture. The up-ligation was completely closed and 

the down-ligation was a loose knot fixed with Student Halsted-Mosquito Hemostats. The 

jugular vein was held well with two bulb-headed probes to avoid bleeding when a 45°-angle 

hole on the up side of the vein was cut by the Vannas-style spring scissors. The micro hook 

assisted greatly to open and grab the wall of the vessel for inserting the catheter. When 

~ 9 mm of the Alzet Mouse Jugular Catheter (filled with ~ 13 µl sterile isotonic saline) tip 

was introduced parallel into the jugular vein, the down-ligation was closed and secured that 

a Borrelial organisms were host-adapted and present in pooled blood from NOD-SCID mice in 

each subgroup. 



Animals, materials and methods  48 

 

 

the catheter would not slip out from the vein. The down-put bulb-headed probe was removed 

from the jugular vein for adequate space and fluent injection. After connecting the Terumo 

Agani needle (attached to the 1-ml syringe filled with 140 µl pooled blood) with the exposed 

end of the catheter, 100 µl blood were injected very slowly (~ 10 µl/min) into the vein. 

Thereafter, the needle was removed from the catheter and a second 23-gauge needle 

connected with a 1-ml syringe (filled with sterile saline) was subsequently attached to the 

catheter. Then, the catheter was flushed slowly with 50 µl sterile saline. Without withdrawing 

the needle and syringe the catheter tip was carefully pulled back. Simultaneously and 

immediately, the down-ligation was fastened entirely without any bleeding into the 

surrounded tissue. After the injection, the incision site was sutured intracutaneously (4 - 5 

single sutures) with Monosyn® Easyslide. Then, antagonists were injected intraperitoneally 

for recovery. The procedure, from making the incision on the chin until closing the skin, took 

approx. 60 minutes per mouse. During the IV inoculation, movie (available on the CD-ROM) 

was taken through 10x/1.6 objectives on the stereo microscope. 

 

Figure 15: Working condition and anaesthetized mouse before IV inoculation 

mouse kept on a warming pad 
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Figure 16: Strict IV injection via the jugular vein monitored with a stereo microscope 

(a) a 1-cm long incision in the skin under the chin, (b) right jugular vein separated from connective 

tissue and fat, (c) up-ligation (fixed) and down-ligation (a loose knot), (d) injection of pooled 

blood containing host-adapted borreliae into right jugular vein, (e) two ligations around the right 

jugular vein after injection, (f) closed skin after injection 
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Table 10: Materials used for microsurgery via the jugular vein 

instrument comment source 

Alzet Mouse Jugular  
Catheter 

No. 0007700 Durect Corporation,  
California, USA 

bulb-headed probe No. 310335 Henry Schein VET GmbH, 
Hamburg, Germany 

camera Leica MC170 HD Leica Microsystems GmbH 

eye forceps No. 310174 Henry Schein VET GmbH 

goose light Leica LED3000 SLI Leica Microsystems GmbH 

micro hook No. 10062-12; blunt Fine Science Tools GmbH, 
Heidelberg, Germany 

Monosyn® Easyslide suture DS16 (5/0) B. Braun Surgical SA, 
Barcelona, Spain 

single use syringe 1-ml Dispomed Witt oHG,  
Gelnhausen, Germany 

splinter forceps No. 310645 Henry Schein VET GmbH 

stereo microscope Leica M60 Leica Microsystems GmbH 

Student Halsted-mosquito  
hemostats 

No. 91309-12 Fine Science Tools GmbH 
 

SURGICRYL® PGA  
Polyglycolic acid suture 

 SMI AG, St. Vith, Belgium 

Terumo Agani needle 23-gauge Shanghai international Holding 
Corporation GmbH (Europe),  
Hamburg, Germany 

Vannas-style spring scissors No. 15000-03 Fine Science Tools GmbH 

warming pad Model #39DP Braintree scientific, Inc., 
Braintree, USA 

 

4.3.3 Blood collection, plasma and serum samples 

After the ID and IV injection, blood samples were collected via facial vein bleeding from 

C3H/HeOuJ mice at indicated intervals (Figure 17). Considering the recovery time of the 

surgical skin of the IV inoculated mice (Figure 11), the first blood samples were collected 
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on day 6 after surgery and subsequently every three days until day 30 post inoculation (p.i.). 

Afterwards, bleeding was performed on day 37, day 44, and day 49/50 (ID challenged mice 

on day 49, IV mice on day 50). Aliquots of blood (5 µl) were prepared from each single 

mouse at each time point. Plasma was obtained from pooled blood from each ID or IV 

subgroup by soft centrifugation at 350 × g for 10 min at 23 °C. On day 49/50, final blood 

samples via intracardiac puncture were collected with a 23-gauge needle connected with a 

2-ml sterile single use syringe (Henry Schein VET GmbH). Non-coagulated blood was kept 

in a micro tube (1.1 ml Z-Gel; Sarstedt AG & Co.) and serum sample was harvested by 

centrifugation as describe above. All samples were stored in the 1.5-ml safe-lock tubes at -

30 °C for subsequent tests. 

 

 

4.3.4 Culture of spirochetes from blood and tissue samples 

Thirty microliter pooled blood from C3H/HeOuJ mice of ID or IV challenged subgroup were 

diluted and mixed with 500 µl culture medium (for Bp or Bbss cultivation). Detection of 

motile spirochetes was performed using dark-field microscope. Once no viable spirochetes 

were observed, the solution above was transferred to 5 ml medium for culture of Bp or Bbss 

spirochetes. The ~ 5.5-ml culture medium used was supplemented with kanamycin and 

rifampicin (Table 7) to supress undesirable contaminating bacterial growth.  

On day 49/50 p.i., various tissue samples from the ear, skin (injection areal; ~ 6 mm 

diameter), tibiotarsal joint, spleen, urinary bladder, heart, and brain were collected from each 

Figure 17: Blood sampling from C3H/HeOuJ mice  
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euthanatized C3H/HeOuJ mouse. Tissues were immersed in 70% ethanol for 1 min and then 

washed with sterile PBS (pH 7.3) for 30 seconds. Ear and skin tissues were immersed in 70% 

ethanol for 2 min. After washing, tissues were cut into approx. equal two parts. Half of each 

sample was put in a 1.5-ml microcentrifuge tube and stored at -30 °C for DNA extraction 

and further PCR testing. For spirochete cultivation the other half part was transferred into a 

sterile Stomacher closure bag (Seward Laboratory, London, UK), which contained 2 ml 

Pettenkofer/LMU Bp medium (for Bp) or 2 ml BSK-H complete medium (for Bbss) devoid 

of any antimicrobials. Once tissue samples from all mice in ID and IV subgroups were 

obtained, the Stomacher bags were processed at normal speed for 60 seconds with a 

Stomacher® 80 microBiomaster (Seward Laboratory). The pressed tissue sample and 

medium was subsequently transferred into the 12-ml screw top tube prefilled with 8 ml of 

the same medium. All cultures were kept at 37 °C (Bp) or 33 °C (Bbss) for six weeks and 

inspected once a week using a dark-field microscope. 

4.4 Detection and quantification of borrelial DNA in blood and tissue samples 

4.4.1 DNA extraction 

All blood and tissue samples from the NOD-SCID and C3H/HeOuJ mice were subjected to 

DNA extraction using AS3000 Maxwell 16 MDx Instrument and the Maxwell 16 LEV Blood 

DNA Kit. Reagents and materials used in this experiment are listed in Table 11. The 

protocols, which were successfully applied in a previous study (SCHWARZER et al., 2016), 

are depicted in Figure 18. The extracted DNA was eluted in 50 µl elution buffer and frozen 

in the 1.5-ml safe-lock tube at -30 °C until used.  

Table 11: Materials and reagents used for DNA extraction 

name source 

1.5-ml safe-lock tube Eppendorf Vertrieb Deutschland GmbH 

AS3000 Maxwell 16 MDx Instrument Promega GmbH, Mannheim, Germany 

incubation buffer Promega GmbH 

Maxwell 16 LEV Blood DNA Kita Promega GmbH 

micro pestle Faust Lab Science GmbH 

PBS in-house made, sterile, pH 7.3 

ThermoMixer comfort 5355 V 2.0 Eppendorf Vertrieb Deutschland GmbH 

 

a containing lysis buffer, proteinase K, and elution buffer 
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4.4.2 PCR testing 

Borrelia-specific DNA was detected and quantified using the QuantStudio 5 real-time 

quantitative PCR (qPCR) system (Applied Biosystems, ThermoFisher Scientific GmbH, 

Ulm, Germany). The target sequence of flaB (Bp) and ospA (Bbss) genes (Table 12) have 

been described in the prior studies (STRAUBINGER, 2000; SCHWARZER et al., 2016). 

Oligonucleotide primers and probes of the genes were synthesized by Eurofins Genomics 

(Ebersberg, Germany). Each qPCR reaction was set up in a 20 µl final volume (Table 13). 

The qPCR running program consisted of (i) heating at 95 °C for 2 min for polymerase 

activation and DNA denaturation, (ii) amplification for 40 cycles with denaturation at 95 °C 

for 5 s and extension and annealing at 60 °C for 25 s, (iii) a final step at 25 °C for 2 min.  

Table 12: Primers and probes used in this study 

Figure 18: Borrelial DNA extraction from blood (a) and tissue samples (b) 

primer name sequence 

Bp_flaB_fw 5’-GAGGGTGCTCAACAAGCAA-3’ 

Bp_flaB_re 5’-CAACAGCAGTTGTAACATTAACTGG-3’ 

Bp_flaB_probe 5’-FAM-AAATCAGGAAGGAGTACAACCAGCAGCA-3’-TAM 

BbssN40-ospA 17 fw 5’-AATGTTAGCAGCCTTGACGAGAA-3’ 

BbssN40-ospA 119 re 5’-GATCGTACTTGCCGTCTTTGTTT-3’ 

BbssN40-ospA-41T 5’-FAM-AACAGCGTTTCAGTAGATTTGCCTGGTGA-3’-TAM 

(a) 

(b) 
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Table 13: PCR reaction used in this study 

PCR Bp (flaB) Bbss (ospA) 

working 
concentration 

reaction 
volume (µl) 

working 
concentration 

reaction 
volume (µl) 

master mixa 1x 10 1x 10 

forward primer 600 nM 1.2 900 nM 0.64 

reverse primer 600 nM 1.2 900 nM 0.64 

probe 200 nM 0.8 100 nM 0.97 

reference dyeb  0.1 - - 

nuclease-free water  4.2  5.25 

template DNA  2.5  2.5 

 

In order to quantify spirochetes in the DNA samples extracted from blood or tissue samples, 

a PCR-based standard curve was established. Briefly, double stranded DNA (dsDNA) 

targeting the sequence of flaB (Bp) or ospA (Bbss) genes with known quantities (0.5 nmol) 

was synthesized by Metabion International AG (Planegg, Germany). The dry dsDNA stock 

was diluted in 5 µl nuclease-free water (0.1 nmol/µl). Considering that 1.0 mol is 

6.022 x 1023 molecules, concentration of the target gene copy numbers in this dsDNA 

solution was 6.022 x 1013 molecules/µl. Ten-fold serial dilutions were prepared with 

nuclease-free water. Dilutions ranging from 6.022 x 107 to 6.022 x 100 molecules/µl were 

used to run a qPCR procedure as described above. After analysis using the QuantStudio 

Design & Analysis Software (Applied Biosystems), the standard curve was established, 

which was determined by the threshold cycles (Ct) of the dsDNA copy numbers at each 

dilution. Ten-microliter aliquots of dsDNA solution at concentration of 6.022 x 105 and 6.022 

x 103 molecules/µl, were prepared and stored at -30 °C before use.  

In each run of the qPCR system a no-template-control (NTC, 2.5 µl nuclease-free water) and 

two positive controls of dsDNA (6.022 x 105 and 6.022 x 103 molecules/µl as prepared above) 

were included in the 96 Multiply PCR plate natural (Sarstedt AG & Co.). Both standard 

template dsDNA and sample DNA from blood and tissue samples were amplified in triplicate. 

Spirochete number per ml blood or per mg tissue were obtained with the QuantStudio Design 

& Analysis Software (Applied Biosystems) considering Ct-values for each sample analysed. 

a QuantiNova Probe PCR Master Mix (Qiagen GmbH, Hilden, Germany) 
b QN ROX reference dye (Qiagen GmbH) 
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4.5 Serological analysis  

4.5.1 ELISA  

Antigen production was prepared from cultured spirochetes of Bp and Bbss. The purified 

borrelial cell lysate was used to detect mouse antibodies by ELISA test. Spirochetes of the 

frozen stocks of Bp LMU-01 (passage 2) and Bbss N40 (passage 4) were grown in medium 

as described in section IV.3 (borrelial strains and cultivation). When reaching the desired 

concentration of 107 to 108 spirochetes/ml, the 6-ml bacteria suspensions of Bp or Bbss were 

transferred to a sterile airtight screw cap glass bottle containing 1.0 l of the corresponding 

medium. The cultures were further incubated for 7 to 9 days to stationary phase. According 

to the protocols described by earlier studies (TÖPFER, 2005; TÖPFER & STRAUBINGER, 

2007), one liter of the culture was separated into 250- ml tubes and centrifuged at 10,000 × g 

at 20 °C for 15 min. After discarding the supernatants, the pellets were re-suspended in 

sterile PBS. The suspensions were centrifuged at 10,000 × g at 4 °C for 15 min. This step 

was repeated twice. After the last centrifugation, the spirochetes were re-suspended in 5 ml 

sterile PBS and placed on ice. Ultrasound disruption of these borrelia organisms was done 

on ice at 35 W for 3 to 5 s, repeating the procedure for 3 times (Bandelin Sonoplus UW2070, 

Berlin, Germany). After controlling the bacteria disintegration applying dark-field 

microscope, the solution of disrupted cells was centrifuged at 10,000 × g at 4 °C for 10 min. 

The supernatant of the whole-cell lysate was collected and stored at -30 °C until used. 

Protein concentration of the Bp or Bbss cell lysate was measured using the bicinchoninic 

acid (BCA) protocol (BCA Protein Assay Kits; Pierce Biotechnology Inc., Rockford, USA). 

The quality of the antigen preparation was determined using SDS-PAGE gels stained with 

silver nitrate salt (SilverQuest Silver Staining Kit; Invitrogen GmbH, Karlsruhe, Germany). 

ELISA plates were prepared by coating the whole-cell antigen lysate of Bp and Bbss in the 

microdilution plates (Nunc-Immuno Microwell Maxisorp C96; Thermo Scientific, VWR 

International GmbH, Ismaning, Germany). According to the published protocol (BARTH et 

al., 2014; SCHWARZER et al., 2016), a solution of carbonate coating buffer (CO3, 0.1M), 

CO3/ME/SDS, and borrelia antigen was prepared. Preparation of CO3 and CO3/ME/SDS 

were described by Töpfer (TÖPFER, 2005). The final concentration of Bp or Bbss antigen 

proteins was 0.2 µg (Bp) or 0.18 µg (Bbss) per 100 µl of each well, respectively. For the 

Bbss-ELISA plate, pure recombinant OspA (1 ml/1 dose, Rekombitek Lyme; Merial, Duluth, 

GA, USA) was also applied in the solution at a concentration of 0.32 µl per well (100 µl). 

Half of the wells received 100 µl aliquots of the prepared antigen solution and the remaining 
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wells were coated with only 100 µl of CO3, serving as negative control values. Coated plates 

were covered and incubated at 4 °C overnight. Then, the plates were stored at -30 °C over a 

24-hour period until used.  

A computerized kinetic ELISA (KELA) test was carried out to detect the specific 

antibodies against Bp or Bbss. Before use, the coated 96-well ELISA plates and the collected 

plasma and serum samples from inoculated C3H/HeOuJ mice were thawed to room 

temperature. Each test included three negative and three positive controls. Negative plasma 

samples derived from borrelia-free C3H/HeOuJ mice (in the negative control group see 

section IV.4.1) and positive serum samples were from previously Bp or Bbss infected mice. 

All plasma and serum samples were tested in duplicate and mean values are reported. The 

washing process for the 96-well plate was done with an AquaMax® microplate washer 

(Molecular Devices, Sunnyvale, USA). All subsequent washes were performed with 

washing buffer of PBS containing 0.05% Tween 20 (AppliChem GmbH, Darmstadt, 

Germany). Samples of plasma and serum were diluted at 1:100 with sample buffer PBS 

containing 0.05% of Tween 20 and 2% non-fat dry milk (Merck KGaA, Darmstadt, 

Germany). After one wash with washing buffer, 100 µl of the diluted samples were added to 

each well (in duplicate each with lysate antigen and carbonate buffer control) and incubated 

for 1 h at 37 °C. After a second wash, 100 µl of 1:4000 (for Bp) or 1:3000 (for Bbss) diluted 

secondary peroxidase-conjugated goat anti-mouse immunoglobulins (IgG, IgA, IgM; MP 

Biomedicals, LLC, Heidelberg, Germany) were added to each well and incubated for 30 min 

at room temperature. After a final wash, 100 µl of the substrate (TMB Microwell Peroxidase 

Substrate Kit; KPL, medac GmbH, Wedel, Germany) were immediately added to each well 

(within 1 min 45 s). The extinction of each well was immediately read 5 times at 650 nm in 

35-s intervals in a SpectraMax Plus 384 Microplate Reader (Molecular Devices, Wokingham, 

UK). Results were analyzed with the SoftMax Pro software 5.3 (Molecular Devices). To 

standardize the sample assessment and compare the plates of every run, all results of the 

tested specimens in antibody units were adjusted to the evaluated values of the control 

samples. Note that the same control samples were performed for each ELISA test in the same 

Bp or Bbss experiments. 

4.5.2 LIA  

Serum samples collected from C3H/HeOuJ mice on day 49/50 p.i. with Bbss were analysed 

with a specific line immunoblot assay (LIA), in order to visualize specific antibodies against 
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this agent. Briefly, the commercially available IgG immunoblotting strips (Sekisui Virotech 

GmbH, Rüsselsheim, Germany) were used according to the manufacturer’s instructions. The 

recombinant protein fractions of VlsE mix, OspA mix, DbpA mix, OspC mix, BmpA, p58, 

and p83/100 antigens (Table 14) are considered to be specific for LB infection in humans 

and animals (BRUCKBAUER et al., 1992; ZÖLLER et al., 1993). Serum was 1:100 diluted 

in the ready to use IgG immunoblot dilution-/wash buffer (Sekisui Virotech GmbH). At a 

dilution of 1:1,000, secondary peroxidase-conjugated goat anti-mouse immunoglobulins 

(IgG, IgA, IgM; MP Biomedicals) were incubated with the strips for 30 min at room 

temperature. After three washing steps with dilution-/wash buffer and one time with distilled 

water, the colour reaction was initiated by adding substrate solution (Opti-4CN Substrate Kit; 

Bio-Rad Laboratories GmbH) and stopped by washing the strips 3 times with distilled water. 

Table 14: Name and molecular weight of Bbss antigens used for LIA test 

name molecular 
weight (kDa) 

origin/function reference 

DbpA 17-18 Osp, immunodominant, 
chronic infection 

JAURIS-HEIPKE et al., 1999 

OspC 22-24 Osp, early infection  
(see section II.3.2) 

PAL et al., 2004 

OspA 31-33 Osp, early and late infection 
(see section II.3.2) 

WILSKE et al., 1993 

BmpA 39 Osp, immunodominant,  
role in biology of borrelia 

SHIN et al., 2004 

p58  58 Osp, immunodominant HAUSER et al., 1997 

VlsE 66 in vivo-expressed protein, 
plasmid encoded, persistent 
infection (see section II.3.5.2) 

BYKOWSKI et al., 2006 

p83/100  83-100 protein from protoplasmic 
cylinder, highly specific for 
chronic infection 

BRUCKBAUER et al., 1992 
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4.6 Statistics and data analysis 

Bacteria-free blood and tissue samples, which were collected from mice before borreliae 

exposure, served as negative controls. All data for graphs in this study were prepared with 

the OriginPro 2017 Software (Additive GmbH, Friedrichsdorf, Germany). Data obtained 

from each single mouse in the same subgroup are presented as mean and standard deviation 

(SD).  

The students unpaired, two-tailed t test was utilized to determine if there is a significant 

difference between mouse subgroups after ID or IV inoculation of Bbss spirochetes. 

Difference was considered statistically significant when this test resulted in p values that 

were lower than 0.05. 
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V RESULTS 

1 Population kinetics of host-adapted borreliae in the blood of 

immunodeficient NOD-SCID mice 

Six immunodeficient NOD-SCID mice were ID challenged with an inoculum dose of in vitro 

cultured 1.0 x 105 Bp or 1.0 x 106 (or 1.0 x 108) Bbss spirochetes. During a 17-day infection 

course, viable borrelia organisms and their numbers in the bloodstream were recorded.  

1.1 Kinetics of host-adapted Bp spirochetes  

On day 1 after ID inoculation, Bp DNA targeting flaB gene (1.3 ± 0.2 x 105 copies/ml) was 

detectable in the blood samples from six mice in subgroup N-A and N-B by qPCR testing 

(Figure 19). Viable spirochetes were also observed in the blood samples after dilution (30 µl 

blood in 500 µl medium). Borrelial counts increased the following days after inoculation. 

Although, minor drop-offs occurred on day 4 (2.2 ± 1.7 x 105 cells/ml), day 7 (1.8 ± 0.5 x 

106 cells/ml), and day 11 (3.6 ± 2.0 x 106 cells/ml) (Figure 19). Considering the number and 

viability of Bp occurring between day 1 and day 17 (8.8 ± 1.2 x 106 cells/ml) in the 

bloodstream, day 12 (5.6 ± 1.2 x 106 cells/ml blood) was determined as the anticipated time 

point to obtain the blood samples for further experiments. Subsequently, each of the other 

five NOD-SCID mice (subgroup N-G) were ID inoculated with cultured 1.0 x 105 Bp 

organisms. On day 6 p.i., each microliter blood was detected with 1.5 ± 0.1 x 106 spirochetes. 

On day 12, 7.2 x 106 Bp organisms were detected in one millilitre of the pooled blood from 

these five mice (Figure 19).  
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Figure 19: Kinetics of host-adapted Bp organisms in the blood of immunodeficient 

NOD-SCID mice  

Kinetics of host-adapted Bp organisms in the blood of NOD-SCID mice (subgroup N-A and N-B) 

are shown with symbol ● during a 17-day infection period. Standard deviations between 

individual mice are indicated with the error bars. On day 12 p.i., 7.2 x 106 Bp spirochetes were 

detected per ml pooled blood (◆) from five mice in subgroup N-G. 
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1.2 Kinetics of host-adapted Bbss spirochetes 

After ID injection with cultured 1.0 x 106 (subgroup N-C and N-D) or 1.0 x 108 (subgroup 

N-E and N-F) Bbss organisms, six NOD-SCID mice were monitored for motile spirochetes 

in the blood samples collected between day 3 and day 17. As shown in Figure 20, Bbss 

organisms in the bloodstream was firstly detectable by qPCR (targeting ospA gene) on day 

2 p.i. In the case of the inoculum dose of 1.0 x 106 Bbss, the borrelial counts rose from 8.5 

± 1.4 x 103 cells/ml blood on day 2 up to 4.9 ± 3.3 x 104 cells/ml blood on day 7, followed 

by a small decrease on day 8 (2.6 ± 1.2 x 104 spirochetes/ml). On day 10, a second peak of 

spirochemia occurred with 3.9 ± 1.3 x 104 viable organisms per ml blood. Subsequently, 

borrelial concentration plateaued at ~ 3.0 x 104 cells/ml until day 17 (Figure 20). After ID 

injection of the higher inoculum dose of 108 Bbss spirochetes, the first bacteraemia was noted 

on day 5 (7.2 ± 0.8 x 104 organisms/ml blood). On day 7 and day 11, 6.9 ± 2.1 x 104 and 

4.9 ± 1.0 x 104 organisms circulated in each millilitre blood, respectively. At the other days, 

however, lower spirochete density was detected, which plateaued at ~ 4.0 x 104 (ranging 

from 2.3 x 104 to 3.9 x 104) per ml blood (Figure 20). According to statistical analyse, the 

highest spirochete densities in the blood caused by 106 and 108 Bbss inoculum showed no 

significant difference (p = 0.1958). Considering the difficulty of centrifugation for higher 

Bbss counts and the viability of spirochetes in the suspended medium, the inoculum dose of 

106 was used for further experiments. Day 10 (3.9 x 104 cells/ml blood) was considered as 

the expected day with host-adapted and relatively peaking number of borreliae. As shown in 

Figure 20, 3.5 x 104 (subgroup N-H) and 2.8 x 104 (subgroup N-I) Bbss organisms per ml 

were recorded in pooled blood of each five NOD-SCID mice on day 10 post injection. 
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Figure 20: Kinetics of host-adapted Bbss organisms in the blood of NOD-SCID mice  

During a 17-day infection period, kinetics of host-adapted Bbss organisms in the blood of NOD-

SCID mice are shown with symbol ▼ (subgroup N-C and N-D with 1.0 x 106 Bbss inoculum dose) 

and ▲ (subgroup N-E and N-F with 1.0 x 108 Bbss inoculum dose). The standard deviations 

between individual mice are shown with the error bars. On day 10 p.i., 3.5 x 104 (●) and 2.8 x 104 

(◆) Bbss organisms per ml pooled blood from five mice in subgroup N-H and N-I were detected, 

respectively. 
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2 Distribution of borreliae in tissues of NOD-SCID mice 

On day 12 and day 10 after injection of culture-derived 1.0 x 105 Bp and 1.0 x 106 Bbss, 

respectively, in most of the collected tissue samples from NOD-SCID mice (subgroup N-G 

and N-H) the flaB (Bp) and the ospA (Bbss) gene were detected by qPCR. Motile spirochetes 

were also identified by cultivation (Table 15). Briefly, Bp DNA was detected in all skin 

(infection areal) (5/5), tibiotarsal joint (5/5), spleen (5/5), urinary bladder (5/5), heart (5/5), 

and brain tissue (5/5) samples, but not in either of the five ear tissue samples (0/5). In 

subgroup N-H, each collected tissue sample (ear, skin, joint, spleen, bladder, heart, and brain) 

was positive for Bbss DNA. Although contamination occurred to some tissue samples as 

shown in Table 15, motile spirochetes were demonstrated in cultures with following tissue 

samples: joint (1/5 with Bp; 4/5 with Bbss), spleen (2/5 Bp; 3/5 Bbss), bladder (3/5 Bp; 5/5 

Bbss), heart (2/5 Bp; 4/5 Bbss), and brain (3/5 Bp; 5/5 Bbss).  

 

 

 

 

 

 

 

  



Results                  64 

 

 

Table 15: Distribution of Bp and Bbss in tissues of NOD-SCID mice 

inoculum*  mouse 
no.  

spirochetes in tissue samples detected by culture/qPCR (organisms/mg) 

   ear skin joint spleen bladder heart brain 

Bp 

1.0 x 105 

ID 

s
u

b
g

ro
u

p
 N

-G
 

n
=

5
 

N1 # / 0 # /       17 # /     199 + /   873 + /     74518 + / 14017 + /   3702 

N2 # / 0 # / 47690 # /     117 # /     19 # /       1743 # / 46102 # / 10721 

N3 # / 0 # / 11529 + /     262 - /  3381 + /     83700 + / 23582 + / 11929 

N4 # / 0 # /   1171 # /     574 + / 1050 + /     26254 # / 28797 + /   2639 

N5 # / 0 # /     311 # /       24 # /   144 # /   131872 # /   6168 # /   1896 

positive rate 3 / 5  0 / 0 0 / 5 1 / 5 2 / 5 3 / 5 2 / 5 3 / 5 

Bbss 

1.0 x 106 

ID 

s
u

b
g

ro
u

p
 N

-H
 

n
=

5
 

N6 # /       48 # / 41467 + / 20395 + /     22 + /   266594 + /     360 + /       11 

N7 # /     522 # / 18795 + / 37393 + /   537 + /   217600 # /     333 + /       12 

N8 # /   3082 # / 16655 # /   2113 # /     14 + / 2110835 + /     357 + /       15 

N9 # / 10372 # / 18435 + / 40571 # /       3 + / 1141583 + /   1122 + /       47 

N10 # /   4987 # / 15288 + / 17693 + /   992 + /   384204 + /   2057 + /       12 

positive rate 5 / 5  0 / 5 0 / 5 4 / 5 3 / 5 5 / 5 4 / 5 5 / 5 

 

 

 

 

*, culture-derived borreliae 

#, contaminated culture 
+, positive with motile spirochetes in culture 
-, negative with spirochetes in culture 
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3 Population kinetics of borreliae in the blood of immunocompetent 

C3H/HeOuJ mice 

One hundred microliter pooled blood that contained host-adapted Bp or Bbss organisms were 

injected ID or strictly IV into C3H/HeOuJ mice. Thereafter, blood samples were collected 

at defined time points throughout a 49/50-day study period. Spirochete numbers in the 

bloodstream were detected by qPCR testing. 

3.1 Population kinetics of Bp spirochetes in blood 

As described above, 7.2 x 105 host-adapted Bp spirochetes in 100 µl pooled blood were 

inoculated into mice of subgroup C-A (ID injection) and C-B (IV injection). Blood samples 

from all ID and IV challenged animals were screened for the flaB gene applying the qPCR 

method until day 15 p.i. (Figure 21). Correspondingly, viable spirochetes were cultured and 

observed applying dark-field microscope. In ID inoculated mice, spirochete concentration 

was 8.3 ± 1.9 x 105 and 9.4 ± 15.8 x 105 Bp cells/ml blood on day 6 and day 9, respectively. 

A second peak of spirochetemia occurred on day 12 with 1.9 ± 1.7 x 106 organisms/ml. On 

day 18, however, only one single mouse (no. C4) was detected to be positive for Bp with 

7.4 x 104 organisms/ml blood. Similarly, the IV injected mice in subgroup C-B demonstrated 

two peaks of Bp populations: 3.7 ± 2.4 x 106 organisms per ml blood on day 6 

and 4.1 ± 6.8 x 106 organisms per ml blood on day 12. Interestingly, one single mouse (no. 

C10) contained 2.8 x 105 and 3.8 x 105 Bp cells/ml blood on day 21 day 24, respectively 

(Figure 21). Between day 27 and day 49/50, however, all of the ID and IV inoculated mice 

were negative for borrelial DNA and no motile spirochetes were re-cultured in medium.  
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Figure 21: Kinetics of Bp spirochetemia in the blood of immunocompetent 

C3H/HeOuJ mice 

 

3.2 Population kinetics of Bbss spirochetes in blood 

One hundred microliter pooled blood from NOD-SCID mice in subgroup N-H and N-I 

contained 3.5 x 103 and 2.8 x 103 Bbss organisms, respectively. All blood samples from ID 

(subgroup C-C and C-E) or IV (subgroup C-D and C-F) injected mice produced no positive 

results for Bbss-specific DNA. Spirochetes were not visible when dark-field microscope was 

applied. Cultivation of 30-µl blood from single mice or pooled blood from either ID or IV 

subgroup showed no growth of Bbss spirochetes in 5 ml BSK-H medium. 
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4 Distribution of borreliae in tissues of C3H/HeOuJ mice 

Tissue samples including ear, skin (inoculation areal), tibiotarsal joint, spleen, urinary 

bladder, heart, and brain were aseptically obtained from C3H/HeOuJ mice and separately 

cultivated in 10 ml of Pettenkofer/LMU Bp medium (for Bp at 37°C) or BSK-H medium (for 

Bbss at 33°C) without any antibiotics. By qPCR testing and 6 weeks’ cultivation, results 

were obtained.  

4.1 Bp in tissues  

Tissue samples were collected at the end of the observation period 49/50 days after 

spirochete inoculation. Bp organisms were detected in all brain tissue samples (100%) 

removed from C3H/HeOuJ mice that had received the bacteria either ID or IV. The other 

tissue samples (ear, skin, tibiotarsal joint, spleen, urinary bladder, and heart), however, 

produced neither viable spirochetes in the culture medium nor flaB gene signals in the qPCR 

tests. Bacterial contamination and overgrowth occurred in cultures with ear (10/11) and skin 

tissue samples (8/11; Table 16). 
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Table 16: Distribution of Bp in tissues of C3H/HeOuJ mice 

inoculum*  mouse
no. 

spirochetes in tissue samples by  
culture/qPCR (organisms/mg) 

   ear skin joint spleen bladder heart brain 

Bp 

7.2 x 105 

ID 

s
u

b
g

ro
u

p
 C

-A
 

n
=

5
 

C1 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   39 

C2 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   31 

C3 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 + /   89 

C4 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   59 

C5 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 + / 136 

positive rate 5 / 5  0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 5 / 5 

Bp 

7.2 x 105 

IV 

s
u

b
g

ro
u

p
 C

-B
 

n
=

6
 

C6 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   30 

C7 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   34 

C8 - / 0 - / 0 - / 0 - / 0 - / 0 - / 0 + /   75 

C9 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + / 216 

C10 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   63 

C11 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 + /   74 

positive rate 6 / 6  0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 6 / 6 

4.2 Bbss in tissues 

On day 49/50 after ID inoculation of host-adapted spirochetes, 100% of the exposed mice 

(5/5, subgroup C-C; 6/6, subgroup C-E) were positive for Bbss as shown by cultivation and 

qPCR testing of tissue samples (Table 17). Motile spirochete organisms were visualized in 

cultures containing tissue specimens from ears (4/11), skin samples (10/11), joints (11/11), 

spleen samples (4/11), bladders (11/11), hearts (11/11), and brains (2/11), except for the 

contaminated and negative cultures. Interestingly, Bbss-specific DNA was detected only in 

urinary bladders (11/11) and heart tissue samples (7/11) of these Bbss-ID inoculated animals 

(Table 17). Again, all 11 Bbss-IV inoculated mice (subgroup C-D and C-F) tested completely 

negative for borrelial DNA and for motile Bbss organisms in each tissue sample (Table 17). 

  

*, host-adapted borreliae 

#, contaminated culture 
+, positive with motile spirochetes in culture 
-, negative with spirochetes in culture 
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Table 17: Distribution of Bbss in tissues of C3H/HeOuJ mice 

inoculum*  mouse
no. 

spirochetes in tissue samples by  
culture/qPCR (organisms/mg) 

   ear skin joint spleen bladder heart brain 

Bbss  

3.5 x 103 

ID 

s
u

b
g

ro
u

p
 C

-C
 

n
=

5
 

C21 # / 0 + / 0 + / 0 # / 0 + /   875 + / 0 - / 0 

C22 # / 0 + / 0 + / 0 + / 0 + /   676 + / 0 + / 0 

C23 + / 0 + / 0 + / 0 + / 0 + / 1041 + / 409 - / 0 

C24 # / 0 + / 0 + / 0 + / 0 + / 1867 + / 0 + / 0 

C25 # / 0 # / 0 + / 0 + / 0 + / 1482 + / 0 - / 0 

positive rate 5 / 5  1 / 0 4 / 0 5 / 0 4 / 0 5 / 5 5 / 1 2 / 0 

Bbss  

3.5 x 103 

IV 

s
u

b
g

ro
u

p
 C

-D
 

n
=

5
 

C26 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C27 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C28 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C29 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C30 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

positive rate 0 / 0  0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 

Bbss  

2.8 x 103 

ID 

s
u

b
g

ro
u

p
 C

-E
 

n
=

6
 

C31 + / 0 + / 0 + / 0 - / 0 +/   2420 + / 893 - / 0 

C32 + / 0 + / 0 + / 0 - / 0 +/ 10295 + / 501 - / 0 

C33 + / 0 + / 0 + / 0 - / 0 +/   1383 + / 788 - / 0 

C34 # / 0 + / 0 + / 0 - / 0 +/   2741 + / 817 - / 0 

C35 # / 0 + / 0 + / 0 - / 0 +/     906 + / 109 - / 0 

C36 # / 0 + / 0 + / 0 - / 0 +/   3487 + / 607 - / 0 

positive rate 6/6  3 / 0 6 / 0 6 / 0 0 / 0 6 / 6 6 / 6 0 / 0 

Bbss  

2.8 x 103 

IV 

s
u

b
g

ro
u

p
 C

-F
 

n
=

6
 

C37 - / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C38 - / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C39 - / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C40 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C41 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

C42 # / 0 # / 0 - / 0 - / 0 - / 0 - / 0 - / 0 

positive rate 0 / 0  0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 

  

*, host-adapted borreliae 

#, contaminated culture 
+, positive with motile spirochetes in culture 
-, negative with spirochetes in culture 
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5 Specific antibodies against Bp and Bbss in C3H/HeOuJ mice 

Plasma and serum samples were obtained from the blood samples of C3H/HeOuJ mice post 

ID or IV inoculation. Serological testing (ELISA or/and LIA) was applied to characterize 

the kinetics of antibody levels and the quality of the specific antibody response induced by 

borrelial spirochetes.  

5.1 Kinetics of specific antibody response against Bp  

As shown in Figure 22, ID and IV inoculation of host-adapted Bp organisms into 

C3H/HeOuJ mice elicited positive antibody responses. Clearly, Bp-ID mice generated 

similar antibody levels to that of the Bp-IV counterparts. In subgroup C-A and C-B, antibody 

levels rose to 267.5 and 166.1 KELA units on day 21 and decreased to 214.1 and 104.9 

KELA units on day 24, respectively. Afterwards, antibody responses increased steadily and 

reached 300.1 (ID) and 264.5 (IV) KELA units on day 49/50 (end of this study). Serum 

samples obtained on the final day of the experiment were tested individually for each mouse. 

Calculated mean values were 296.6 ± 103.1 KELA units for Bp-ID and 208.7 ± 42.5 KELA 

units for Bp-IV.  
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Figure 22: Kinetics of specific antibody response against Bp in C3H/HeOuJ mice 

 

5.2 Kinetics of specific antibody response against Bbss 

Mice that had been injected intradermally with host-adapted Bbss organisms (Bbss-ID) 

developed specific antibodies with a steady increase (Figure 23). In subgroup C-C and C-E, 

the antibody levels increased similarly up to 493.7 and 526.9 KELA units, respectively, on 

day 49/50 p.i. In contrast, none of IV-injected mice (subgroup C-D and C-F) produced 

specific antibodies against Bbss. Only approx. 30 KELA units were recorded, ranging from 

13.7 to 59,8. Serum samples from individual mice clearly showed specific IgG and IgM 

antibody responses: 478.9 ± 54.9 KELA units (Bbss-ID-1, subgroup C-C), and 492.7 ± 68.8 
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KELA units (Bbss-ID-2, subgroup C-E), 31.3 ± 25.5 KELA units (Bbss-IV-1, subgroup C-

D) and 28.6 ± 17.1 KELA units (Bbss-IV-2, subgroup C-F). 

No data are available from mouse no. C23 in subgroup C-C, because the final blood 

collection via intracardiac puncture failed.  

 

Figure 23: Kinetics of specific antibody response against Bbss in C3H/HeOuJ mice 
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5.3 Visualization of specific antibodies against Bbss 

As shown in Figure 24, individual serum samples obtained from 11 mice inoculated 

intravenously with Bbss (5 in subgroup C-D and 6 in subgroup C-F) produced no specific 

signals on the line immunoblot (lanes 4 to 14). In contrast, serum samples collected from ten 

animals inoculated intradermally with Bbss (4 in subgroup C-C, because no serum was from 

mouse no. C23; and 6 in subgroup C-E) reacted with following antigens (lanes 15 to 24): 

strong signals with VlsE mix (10/10); strong/moderate signals with OspC mix (8/10), BmpA 

(7/10) and p58 (58 kDa; 5/10); weak signals with DbpA mix (10/10) and p83 (83 kDa; 8/10). 

 

Figure 24: Representative IgG line immunoblots of individual serum samples from 

Bbss inoculated C3H/HeOuJ mice 

Lanes belong to the individual serum samples in the following groups: NG (lanes 1-3) to plasma 

samples from three of five mice in subgroup C-NG; IV-1 (subgroup C-D) to lanes 4-8; IV-2 

(subgroup C-F) to lanes 9-14; ID-1 (subgroup C-C, except for one mouse no. C23) to lane 15-18; 

ID-2 (subgroup C-E) to lanes 19-24. 



Discussion  74 

 

 

VI DISCUSSION 

Tick-borne relapsing fever (TBRF), although recognized for ages, remains one of the 

neglected diseases with only a few studies clarifying the interactions between host, tick and 

pathogens (TALAGRAND-REBOUL et al., 2018). Among its pathogens, Bp can cause acute 

infection and make TBRF a widespread disease in the large areas of Middle East and Central 

Asia. This bacterium poses a noteworthy health threat not only to the local residents and the 

military but also to the tourists who may carry the infection back to non-endemic countries 

on their return journey (SIDI et al., 2005; DE VERDIERE et al., 2011; KUTSUNA et al., 

2013). However, to the best of our knowledge, data on the pathogenesis of Bp in the 

vertebrate host are still limited, though previous studies have developed animal models with 

Bp infection via ID or IP inoculation (ASSOUS et al., 2006; SCHWARZER et al., 2016). 

On the other hand, Lyme borreliosis (LB) is the most common tick-borne disease in the 

northern hemisphere, but continuously needs to be extensively investigated because of its 

long-lasting infections in humans (STONE & BRISSETTE, 2017; SPRONG et al., 2018). 

Bbss, the endemic species causing LB in the USA and Europe, has been the focus of 

scientific research in the last years. However, some authors still hold different views on its 

dissemination route in the vertebrate host. In the context of the characterization of the exact 

dissemination pathway of both TBRF and LB borreliae in mammals, there is to date no 

suitable animal model available in which specific organisms are injected into the venous 

system for long-term infection. With the intention of further insights into pathogenic 

strategies of Borrelia, research in the underlying dissemination is of great importance. 

Therefore, we established the present murine model using ID and strict IV inoculation of 

host-adapted Bp and Bbss organisms into immunocompetent mice. Evident clarifications 

from our study are as follows. Firstly, Bp causes persistent infection in the 

immunocompetent mice regardless of the ID or IV inoculation route. This indicates its 

excellent adaptation to the circulation environment and its robust capability of surviving in 

the bloodstream. During the course of the infection, Bp spirochetes disseminate 

hematogenously to distant organs (especially brain), causing persistent infection. Secondly, 

Bbss, in comparison to Bp, cannot lead to a systemic infection via IV inoculation, because 

these spirochetes in the bloodstream are probably unable to cross the blood vessel and 

thereafter translocate to distal tissues. However, LB spirochetes are able to migrate to distant 

tissues primarily via non-hematogenous pathways (i.e., tissue migration shown after ID 
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inoculation) and establish systemic infections in tissues such as ear, skin, joint, bladder and 

heart. The distribution of Bbss organisms in our ID-inoculated mice also resembles the 

scenario that was observed in human tissue specimens with LB infection (DURAY & 

STEERE, 1988; DURAY, 1989). Finally, our murine model could be a valuable research 

tool in understanding the pathogenesis of TBRF and LB borreliae during human and animal 

infections. Nevertheless, our data provide insight into potential risk factors that come with 

blood transfusions in clinical practice. Transfusion of Bp contaminated blood is highly 

problematic, because of its potential to cause spirochetemia and persistent brain infection in 

recipients. On the contrary, the risk of receiving Bbss infection via blood transfusion is low 

or should be considered to be non-existent. 

1 Host-adapted Bp and Bbss organisms 

In our study, immunodeficient NOD-SCID mice were used to generate host-adapted borrelia 

organisms. After ID injection of 1.0 x 105 in vitro cultured Bp spirochetes, hematogenous 

organisms were first detected on day 1 (the first sampling time point p.i.) with 1.3 ± 0.2 x 

105 cells per ml blood. Along the infection time, Bp burden kept rising up to 8.8 ± 1.2 x 106 

cells/ml blood (on day 17-end time point), except for some slight decrease on day 4, 7 and 

11 (see Figure 19). By contrast, Bbss organisms were first detectable on day 2 with 8.5 ± 1.4 

x 103 and 2.5 ± 0.1 x 104 cells per ml blood of NOD-SCID mouse after ID inoculation of 1.0 

x 106 and 1.0 x 108 cultured spirochetes, respectively (see Figure 20). The highest density 

recorded was 7.2 ± 0.8 x 104 Bbss per ml blood, although a high inoculum dose (1.0 x 108) 

was used. Given that Bp organisms (1.0 x 105) were injected in a 10- and 103-fold lower dose 

than Bbss, it seems that Bp adapts more rapidly to the circulation than Bbss and proliferates 

efficiently in the bloodstream of immunodeficient animals.  

On day 12 and day 10 post injection of cultured Bp (1.0 x 105 cells) and Bbss (1.0 x 106 

cells), respectively, most sampled tissue samples collected from the ears, skin (site of 

inoculation), tibiotarsal joints, spleens, urinary bladders, hearts, and brains from NOD-SCID 

mice presented with spirochetes by in vitro cultivation and qPCR (see Table 15). Therefore, 

spirochetes of both Bp and Bbss can disseminate to various distant tissues of 

immunodeficient animals. For the first time, our study reported the population dynamics of 

Bp in the bloodstream and its distribution in different tissues of immunodeficient mice, 

which complete data from a prior study (SCHWARZER et al., 2016) and also results we 

obtained with immunocompetent mice (see Figure 21 and Table 16).  



Discussion  76 

 

 

As described above, on day 12 and day 10, 7.2 x 106 Bp and 3.5 x 104 or 2.8 x 104 Bbss 

organisms per ml blood were harvested from NOD-SCID mice, respectively. After ID 

inoculation of 100 µl pooled blood that contained these host-adapted Bp (7.2 x 105) or Bbss 

(3.5 x 103 or 2.8 x 103) organisms, persistent infection was induced in all immunocompetent 

mice as confirmed by the detection of viable spirochetes in various tissue samples collected 

at the end of the observation periods (see Tables 16 and 17) and the induction of consistently 

rising Borrelia-specific antibody levels (see Figures 22 and 23). These evidences are 

substantial to prove that host-adapted borrelia organisms are invasive and pathogenic to the 

immunocompetent host even though a low inoculum dose of Bbss was used. However, this 

relatively low number of borreliae may reflect more faithfully the actual pathophysiological 

conditions in terms of a low spirochete load (~ 103 to 105 or less) being transmitted from the 

tick to the host or from the infectious host to the naïve tick (BURKOT et al., 1993; GOLDE 

et al., 1994; DE SILVA & FIKRIG, 1995; KERN et al., 2011; GRILLON et al., 2017). It is 

also reasonable to explain why many studies dealing with TBRF and LB borreliae widely 

utilize an injection dose of approx. 103 - 106 spirochetes. According to clinical case studies, 

Bbss was positively re-isolated from large quantity of plasma or blood sample volume (9 - 

18 ml) from patients at early stage of LB infection (WORMSER et al., 1998; MARASPIN 

et al., 2001; WORMSER, 2006; LIVERIS et al., 2011). This indicates that the actual 

spirochete number in blood of the LB patients is extremely low, which was estimated to be 

0.1 cultivable cell/ml in whole blood (WORMSER, 2006). Compared to LB infection, 

numerous Bp organisms were found in blood of naturally infected animals and humans (DE 

VERDIÈRE et al., 2011; RAFINEJAD et al., 2011; KUTSUNA et al., 2013; BANETH et al., 

2016). Consequently, the injection doses used for host-adapted Bp and Bbss spirochetes in 

this project can be considered as practical and optimal for further experiment as scheduled 

in this study. Furthermore, experimental results based on the host-adapted bacteria appear to 

be more reliable and reproducible compared to those using in vitro cultured bacteria as stated 

by Woodman et al. (WOODMAN et al., 2009).  

2 Intravenous inoculation via jugular vein but not tail vein 

According to the published data, the lateral tail vein of the rat or mouse was preferentially 

utilized for IV inoculation with the help of a suitable restrainer (Figure 25) (STEEL et al., 

2008). However, this method is considered challenging and often unsuccessful (YARDENI 

et al., 2011). Firstly, it is technically difficult to visualize the vessel. The fragile tail vein 
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shows a poor visibleness through the dark brown skin of the C3H/HeOuJ mouse used in our 

study. Injection errors may occur. For example, the needle may accidentally punch through 

the vessel walls due to a small size of the tail vein. Secondly, a low number of bacteria 

adhering to the tip of the needle might be unavoidably carried off into the surrounding tissue 

or skin during the process of removing the apparatus from the mouse’s tail. Unpublished 

data from an earlier experiment, which was independently carried out of the present study, 

showed an overall successful rate of 93.1% (67 of 72 C3H mice) on IV injection via tail vein. 

 

Therefore, an alternate route of IV injection was considered. The jugular vein, in comparison 

to other vessels such as femoral vein and retro-orbital plexus, is easier to be separated from 

the connective tissue and exposed clearly for further procedures carried out under the 

constant surveillance with a stereo microscope (Figure 16). Many investigators use catheters 

into jugular vein for intravenous administration or chronic/acute implantation (BARR et al., 

1979), although it is necessary to ligate the vein to avoid bleeding while puncturing it with 

a needle (POPOVIC & POPOVIC, 1960).  

In our experiment, the right jugular vein was ligated. This procedure does not affect the 

blood-brain-barrier or the blood circulation in mice as previously described (SAKATA et al., 

1999; ATKINSON et al., 2012). Special sterile instruments/materials such as Vannas-style 

 

Figure 25: Demonstration for mouse lateral tail vein injection 

(a) mouse restrainer and tail vein injection technique, (b) axial section of mouse tail anatomy,  

(c) sagittal cross section of mouse lateral tail with needle in position 

Cited from Brown et al. (BROWN et al., 2018) 
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spring scissors, blunt micro hook and Alzet mouse jugular catheter made great contributions 

to the strict IV inoculation without producing severe damage to the vessel wall. Flushing 

with 50 µl sterile isotonic saline avoided dead space in the catheter to ensure that the 

complete blood volume and spirochete dose was applied. Above all, the visual observation 

of the whole procedure during injecting, flushing, and removing was clearly visible using 

stereo microscopy with optimal magnification. The success rate of the injection into the 

jugular vein was 100% (6/6 for Bp, 11/11 for Bbss) without any bleeding of blood into 

surrounding tissues. On day 49/50 after intravenous inoculation of host-adapted borreliae 

into the immunocompetent C3H/HeOuJ mice, Bp organisms induced noticeable antibody 

levels and brain infections were detected consistently (see Figure 22 and Table 16) whereas 

neither Bbss-specific-antibody levels nor motile Bbss spirochetes were detectable (see 

Figure 23 and Table 17). Thus, Bbss organisms, although host-adapted and invasive as 

demonstrated by the ID inoculation, are unlikely to cross the blood vessels for further 

infection of distant sites in C3H/HeOuJ mice. The clear results of Bp and Bbss infection via 

IV inoculation are strong evidence for our successful microvasculature surgery without any 

blood/borreliae leakage.  

However, previous studies claim that hematogenous dissemination of Bbss is still the 

spreading route used by this organism. The careful reading of the publication reveals that 

mice were exposed to Bbss by an intraperitoneal injection due to unsuccessful IV technique 

(GABITZSCH et al., 2006). Obviously, the results obtained by an IP but not IV inoculation 

may lead to a misinterpretation of the data, but do not clarify how Bbss disseminates from 

the injection site to the distant tissues. Other studies used huge doses (4 x 108 organisms per 

animal) and culture-derived Bbss for IV inoculation (MORIARTY et al., 2008; NORMAN 

et al., 2008). Even though they indicated the hematogenous spread based on few interactions 

of spirochetes and the blood vessels under shear force condition, only a small area was 

visualized within a short time period (5 - 45 min). The puzzling results of these studies with 

the large inoculum dose were also argued by some authors (HYDE et al., 2011). It should be 

mentioned that under optimal conditions Borrelia spirochetes reach cell densities of ∼ 108 

to 109 per ml in culture medium (AGUERO-ROSENFELD et al., 2005; PAPPAS et al., 

2011). However, only few spirochetes are naturally deposited in the dermis of the mammals 

after tick attachment as described above. Hence, both the strict IV inoculation and a 

reasonable inoculum dose play the most crucial roles to establish a reliable murine model 

and to draw a realistic conclusion. 
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3 Spirochetemia and brain infection of Bp in C3H/HeOuJ mice 

A hematogenous dissemination of some TBRF Borrelia spp. (e.g., B. hermsii, B. duttonii, 

and B. turicatae) from the bloodstream to distant tissue sites in the mammals has been 

described (CADAVID & BARBOUR, 1998; DWORKIN et al., 2008). Previous studies on 

the infection dynamics have all described spirochetemia regardless of the TBRF spirochete 

or inoculation route: Bp (ID and IP), B. hermsii (ID, IP, IV, and SB4), B. turicatae (ID), and 

B. miyamotoi (blood transfusion) (HOVIS et al., 2006; BENOIT et al., 2010; RAFINEJAD 

et al., 2011; BOYLE et al., 2014; DICKINSON et al., 2014; KRAUSE et al., 2015; 

SCHWARZER et al., 2016). In our study, numerous Bp organisms in blood of C3H/HeOuJ 

mouse were detectable until day 24 after either ID or IV inoculation with 7.2 x 105 host-

adapted organisms (see Figure 21). Fluctuations of spirochetemia during the infection period 

in our ID infected mice, which are consistent with previous data (SCHWARZER et al., 2016), 

were similarly observed in our IV challenged animals (see Figure 21). For example, higher-

level spirochetemia was detected at day 6 and day 12 followed by a small decrease until 

day 9 and day 15, respectively. Our first bleeding time point at day 6 showed 8.3 ± 1.9 x 105 

Bp cells/ml blood after ID injection while 3.7 ± 2.4 x 106 were seen after IV injection. 

Taking into account that ~ 1.5 x 105 (at day 1 p.i.) and ~ 4 x 106 (at day 6 p.i.) Bp 

organisms/ml blood was reported in the prior study (SCHWARZER et al., 2016), this 

suggests that Bp’s entry from the inoculation sites into the circulation is a rapid event, 

followed by a rapid proliferation in the bloodstream of immunocompetent animals. This 

suggestion has been supported by other researchers, who found that transmission and 

dissemination of B. turicatae, another TBRF Borrelia, occurred during the short time 

required for tick engorgement (BOYLE et al., 2014).  

Correlated with the fluctuations of spirochetemia, Bp-specific antibodies appeared in both 

ID and IV inoculated mice and the antibody level increased steadily until day 21 followed 

by a slight decline until day 24. Although no spirochetes were detected by qPCR or in vitro 

cultivation from day 24 until days 49/50 p.i., the antibody level in both ID and IV infected 

mice rose again during this period (see Figure 22). A reasonable explanation might be that 

the immune response is permanently triggered by antigen provided by a persistent infection. 

All cerebral tissue samples collected on day 49/50 p.i. were positive for Bp (see Table 16). 

However, antibodies even at a high level were not able to eliminate Bp organisms present in 

 
4 SB: subcutaneous inoculation 
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brain tissue – probably an immune-privileged site. Bp spirochetes seem to sustain a persistent 

infection in the brain while at the same time they induce no tissue damage or clinical signs 

(SCHWARZER et al., 2016).  

4 Bbss' lack of spirochetemia in C3H/HeOuJ mice 

In our study, neither Bbss DNA detection nor re-cultivation of vital spirochetes was possible 

in any blood specimen of C3H/HeOuJ mice regardless of ID or IV inoculation of host-

adapted Bbss organisms (3.5 x 103 or 2.8 x 103). Similarly, some murine studies have found 

that LB spirochetes can only occasionally or even not at all be reisolated from peripheral 

blood of experimental immunocompetent animals, though a persisten infection was 

established by high (108; SB), or low (103, 104; ID) inoculum doses of Bbsl organisms 

(SIMON et al., 1991; HODZIC et al., 2003; LIU et al., 2004). Although previous data 

reported low yield of Bbsl borreliae by culturing blood/plasma from some LB patients at the 

early infection stage (WORMSER et al., 1998; MARASPIN et al., 2001; WORMSER, 2006; 

LIVERIS et al., 2011), no scientific data so far have shown whether these low number of 

blood-borne spirochetes travel to distal tissues and cause persistent infection there. 

According to our hypothesis, strict IV inoculated Bbss spirochetes mimic closely the LB 

organisms in infected mammalian hosts, including humans. However, neither Bbss 

spirochetes in blood or tissues (see Table 17) nor Bbss-specific antibodies (see Figure 23 

and 24) were detected in IV challenged C3H/HeOuJ mice. Consequently, Bbss organisms 

cannot survive in the bloodstream or disseminate further to other tissues. Possibly the 

spirochetes are cleared by the complement system, which plays a critical role in controlling 

early infection before the specific humoral immune response is induced (STEERE et al., 

2016). This can also explain why no specific antibodies against these host-adapted Bbss cells 

were detected during the entire infection period of our study. It should be questioned, 

whether the low density of blood-carrying LB borreliae in human patients should be 

considered the same as the high-level spirochetemia of TBRF organisms, which can 

disseminate from the bloodstream to distant sites in the body (e.g., brain). On the contrary, 

our intradermally injected animals produced Bbss-induced specific antibodies during the 

infection period (see Figure 23 and 24). On day 49/50 (the end of the observation period), 

motile spirochetes were also isolated from most tissue samples such as ear, skin (inoculation 

site), urinary bladder and tibiotarsal joint (see Table 17). Interestingly, some tissue samples 

showed positive spirochetes in the culture but no Bbss DNA was detectable in the same 
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tissue. Reasons might be: 1) no Bbss DNA was extracted from the tissue (weight ≤ 50 mg); 2) 

Bbss-specific DNA presented in the extracted DNA sample was present at a very low 

concentration that was below the detection limit of the applied qPCR. This phenomena could 

be explained by the finding that even one single viable spirochete may be recovered by 

culture but it is not possible to detect DNA from one single cell by PCR (BARBOUR, 1984). 

Unlike Bp, our infectious Bbss spirochetes appear to only infrequently target the brain tissue 

but prefer to persist in tissues such as skin, bladder, joint, and heart of the immunocompetent 

mice, consistent with prior publications dealing with LB infection in humans and animals 

(SHIH et al., 1992; DIVAN et al., 2018).  

Infection with LB spirochetes initially begins after the deposition of the bacteria into the 

dermis by the vector tick (Ixodes spp.). Presumably, infection may remain locally at this site 

until it is cleared by antibiotic treatment or by strong immunological responses in the 

mammalian hosts. Alternatively, the borrelial organisms may disseminate to other cutaneous 

sites and/or more significantly to extracutaneous sites, such as the joints, nervous system, or 

heart (STEERE et al., 1987; GRILLON et al., 2017). During this dissemination, only few 

spirochetes may accidentally disseminate into the bloodstream. However, as indicated by 

our results based on IV inoculation, these blood-borne borreliae are not capable of leaving 

the bloodstream for further tissue infection. On the contrary, the spirochetes injected in the 

dermis caused persistent infection in various tissues. Therefore, the blood circulation is not 

significantly involved during the dissemination. Instead, skin and connective soft tissues 

probably serve as critical intermediate media for spirochete spread and spirochete tissue 

migration. This view is further supported by the fact that immunosuppression with 

dermocorticoid clobetasol reactivated borrelia in the skin tissue while the blood still 

remained spirochete-negative (GRILLON et al., 2017). In contrast, high-level spirochetemia 

was achieved during TBRF infection and brain tissue colonization by inducing 

immunosuppression (LARSSON et al., 2006). Moreover, early studies have determined 

some Bbsl proteins, e.g., DbpA, DbpB, and BBK32, which may contribute to spirochete 

migration and colonization through mediating tissue adherence (GUO et al., 1995; GUO et 

al., 1998; PROBERT & JOHNSON, 1998). As clarified by other studies, extracellular matrix 

and connective tissues, which are especially rich in collagen, provide a protective niche for 

migration and persistence of Lyme disease spirochetes (CABELLO et al., 2007).  

In summary, infectious Bbss spirochetes, which induced persistent infection via ID but not 

via IV inoculation, probably disseminates via a non-hematogenous route, i.e., via tissue 
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migration. In fact, certain observational and experimental data from a couple of other studies 

support the idea of tissue migration used by Bbss organism (HANSEN & LEBECH, 1992; 

BERGLUND et al., 1995; STRAUBINGER et al., 1997; MOTAMENI et al., 2005; 

CABELLO et al., 2007; TUNEV et al., 2011). 

5 Diagnosis and treatment of TBRF and LB infection 

As indicated from our results and other studies as mentioned above, blood samples from 

TBRF borrelia infected patients can be used for diagnostic test, especially those 

characterized with high fever attacks and a history of tick exposure (DWORKIN et al., 2008). 

The dark field or fluorescence microscope can be useful tools to observe spirochetes in the 

blood. Molecular methods, especially PCR, identifies most Borrelia spp. by amplification 

and analysis of species-specific markers in their genomic DNA (FUKUNAGA et al., 1996; 

SAFDIE et al., 2010). However, spirochetes with a low density in the blood, especially 

during afebrile periods of TBRF infection in patients, can be missed by microscope and 

limited to PCR tests. Therefore, serologic confirmation of TBRF infections is further 

performed, most frequently by ELISA and western blot tests as used in our and prior studies 

(DWORKIN et al., 2008; SCHWARZER et al., 2016). However, some limitations still occur 

to the serodiagnosis of TBRF infection in patients and naturally infected animals. It is known 

that the serologic assays are based on the antigen of whole-cell lysate of the in vitro cultured 

spirochetes. Therefore, false-positive reactions may be possible in the ELISA and IFA, 

partially caused by reactive epitopes on the spirochete’s flagellin protein, which presents in 

other borrelial species as well (MAGNARELLI et al., 1984; MAGNARELLI et al., 1987a). 

Additionally, serologic test can be challenging due to antigenic variations of TBRF 

spirochetes during infection in various mammals, including humans (DWORKIN et al., 

2008). In addition, residual brain infection as shown by our and other results (SCHWARZER 

et al., 2016) ask for new diagnostic approaches, especially when no biopsy specimens are 

available. Once infected with Bp, early treatment strategies can be carried out with 

intravenous medication of antibiotics, if oral administration is not tolerated (DWORKIN et 

al., 2008). Importantly, antimicrobial medicines that can penetrate the blood-brain-barrier 

are necessary for the treatment of brain infection.  

In terms of Bbss infection, our murine model shows clearly the fact that diagnostic 

procedures based on routinely blood detection, either culture or molecular assay or both, 

produce most likely unreliable or negative results. The skin rash EM, the most common and 
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earliest clinical manifestation of LB infection in humans, is considered as the only evidence 

that enables a reliable clinical diagnosis of this disease (STRLE & STANEK, 2009). 

Spirochetes can also be culture-confirmed from this skin lesion, which expands as LB 

borreliae migrate away from the site of the tick bite (NADELMAN et al., 1996). Without 

treatment or in the course of an insufficient treatment LB spirochetes are able to establish 

chronic (month- to year-long) infections in skin tissue of mice and dogs (BARTHOLD et al., 

1993; KRUPKA & STRAUBINGER, 2010). In autopsy/biopsy specimens and human skin 

lesions even months to years after initial LB infection, small numbers of Bbsl borreliae have 

been detected. The remaining spirochetes in the skin suggest their direct role in the 

generation and perpetuation of clinical signs of LB (BARTHOLD et al., 1991). 

Investigations on B. afzelii in wild and laboratory rodents have revealed that the spirochete 

load in the skin regulates the success of host-to-tick transmission (RÅBERG, 2012; REGO 

et al., 2014; JACQUET et al., 2015). Studies from Grillon et al. also suggested that naïve 

nymphs acquire the low density of spirochetes exclusively from the local skin and not from 

the blood (GRILLON et al., 2017). Therefore, skin biopsy specimens close to the tick bite 

or even distal site (e.g., ear tissue), are most suspicious for detection of LB borrelia infection 

during early or even late stages. As shown in our study, Bbss was re-isolated from skin 

(injection areal) and even ear tissue (distal for skin) after needle inoculation. However, not 

all patients present the skin lesion EM and some patients infected or co-infected with other 

pathogens [e.g., Southern tick-associated rash illness (STARI); Masters’ disease] also show 

similarity to EM (MASTERS et al., 1998; MASTERS et al., 2008). Some patients are even 

asymptomatic during Bbsl infection. Consequently, diagnosis avoiding false-negative or 

false-positive should be carried out further based on detection of corresponding antibodies. 

Our serological results (see Figure 23 and 24) indicate obviously that a two-tiered test 

including ELISA and LIA is reliable for confirmation of a successful Bbss infection in the 

mammals (CDC, 1995; WILSKE et al., 2000). 

According to some investigations (SHIH et al., 1992; KNAUER et al., 2011), the topical 

treatment with penicillin G, amoxicillin, ceftriaxone, doxycycline, and azithromycin-

containing formulation effectively cleared Bbsl spirochetes and stopped the infection when 

these antibiotics were applied on murine skin shortly after tick exposure or needle 

inoculation. Therefore, topical treatment strategies with proper antibiotics on deposition site 

are of particular importance to discontinue the spread of LB spirochetes (KNAUER et al., 

2011). In the context of persistent infection of LB borreliae in host tissues, however, a major 
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question, whether antibiotics used are able to eliminate the spirochetes hiding in these 

immune-privileged sites, is still in need to answer. 

6 Prospect  

The in vivo model described in this dissertation provides profound insights into the 

hematogenous and tissue-bound pathways of dissemination followed by Bp and Bbss 

organisms, respectively, which play significant roles in pathogenetic mechanism in 

mammalian hosts.  

The successful initiation of persistent infections by 7.2 x 105 Bp organisms after IV 

inoculation into C3H/HeOuJ mice reveals clearly the risk of transfusion-transmitted 

infections (TTI) humans face when they receive such treatment. Injection of only 100 Bp 

organisms can induce high-level spirochetemia (~ 106 organisms/ml blood) and persistent 

brain infection (SCHWARZER et al., 2016). Based on the ability to survive and proliferate 

in the blood circulation, it is reasonable to presume that even such a low inoculum dose can 

induce infection in immunocompetent individuals when transfused in case of an emergency. 

Hence, physicians should be aware of the potential danger in blood donation and transfusion. 

On the contrary, no TTI of LB borreliae has been reported so far. And according to our data, 

the medical risk of receiving this infection by blood transfusion can be considered as non-

existent. Distinct clinical signs of LB, i.e. LA, ACA, and LNB, are thought to be associated 

with distinct genospecies of Bbss, B. afzelii, and B. garinii, respectively. Therefore, further 

attempts are necessary to explore and compare the dissemination capacities of these species 

for better understanding how LB spirochetes interact with mammalian hosts and cause 

diseases. 

Furthermore, the recent discovery of new borrelia species such as B. miyamotoi, a relapsing 

fever spirochete that is transmitted by hard-shell ticks (e.g., I. ricinus) needs to be considered 

as an additional risk factor for humans and animals. Further studies are needed to describe 

in detail the exact route this organism may take to invade distant sites in mammalian hosts. 
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VII SUMMARY 

Borrelia persica (Bp) is the most prevalent species causing tick-borne relapsing fever (TBRF) 

in Central Asia and the Middle Eastern countries whilst B. burgdorferi sensu stricto (Bbss) 

is an endemic genospecies causing Lyme borreliosis (LB) in North America and Europe. 

TBRF patients commonly suffer from recurrent fever attacks due to spirochete proliferation 

and antibody-mediated killing of these organisms in the blood, whereas during the early 

stage of infection LB patients commonly show skin lesions (erythema migrans). If left 

untreated, LB patients may develop to a chronic phase with Lyme arthritis or other tissue 

lesion due to inflammatory responses (e.g., acrodermatitis chronica atrophicans). Despite a 

severe debate over the exact dissemination pathways employed by borrelia organisms, little 

is known how Bp and Bbss disseminate in the body of mammalian hosts. Hence, a murine 

model with a novel and precise infection approach was established to explore the 

dissemination route of host-adapted Bp and Bbss organisms post intradermal (ID) and 

intravenous (IV) inoculation in immunocompetent C3H/HeOuJ mice. 

Since borreliae are able to express differentially outer surface proteins (Osps) in vitro and in 

vivo, it was necessary to generate the host-adapted bacteria from immunodeficient NOD-

SCID mice. An ID inoculation of 1.0 x 105 culture-derived Bp organisms per animal resulted 

in the peak of spirochetemia with 8.8 x 106 cells per ml blood of NOD-SCID mouse. 

However, 1.0 x 106 and 1.0 x 108 cultured Bbss caused spirochetemia with a low load 

resulting in up to 4.9 x 104 and 7.2 x 104 organisms per ml blood, respectively. Interestingly, 

hematogenous Bp spirochetes were detectable by both qPCR and cultivation at least one day 

earlier when compared to Bbss. It seems that Bp is more efficient in entering the bloodstream 

and multiplying in the circulation of the immunodeficient mice than Bbss. 

Compared to the ID injection the strict IV inoculation via the jugular vein in C3H/HeOuJ 

mice was the most critical step to clarify whether host-adapted Bp and Bbss organisms are 

capable of leaving the bloodstream for further colonization in mammalian tissues. After 

either ID or IV inoculation of 7.2 x 105 host-adapted Bp organisms, these spirochetes were 

detectable up to day 24 in C3H/HeOuJ mice. Bp counts reached up to 1.9 x 106 and 4.1 x 106 

per ml blood sampled at day 12 post ID and IV challenge, respectively. Correspondingly, 

antibody detection with collected plasma and serum samples showed that specific antibodies 

to Bp were induced. Notably, all brain tissue samples from both ID and IV inoculated 
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C3H/HeOuJ mice were positive for Bp when tested with molecular methods and cultivation. 

In contrast, neither the Bbss ospA gene nor viable spirochetes were found in the blood of any 

C3H/HeOuJ mouse inoculated either ID or IV with approx. 3 x 103 host-adapted Bbss 

spirochetes. Interestingly, on day 49/50 after ID injection, Bbss spirochetes were re-isolated 

from most tissue samples collected from the ears, skins (injection areal), tibiotarsal joints, 

urinary bladders, and hearts. Strong antibody responses against Bbss were detected in all ID 

inoculated animals. In contrast, after IV injection of host-derived Bbss organisms, neither 

borrelial DNA nor viable spirochetes were present in any tissue sample collected from these 

animals. In addition, they did not produce specific antibodies against Bbss. 

In summary, 1) Bp is excellently capable of adapting to and surviving in the bloodstream. 

The spirochete disseminates predominantly via hematogenous route to distant organs (e.g., 

brain) to establish a persistent infection; 2) Bbss is a tissue-bound spirochete that migrates 

primarily via non-hematogenous routes. Intradermal deposition will cause a successful 

persistent infection while the blood vessel system is an impasse for this bacterium. The 

animal model applied in this study mimics the natural infection conditions of tick bite as 

closely as possible. Borreliae were used in an inoculum dose expected to be deposited by 

ticks in the skin of mammal hosts or in a development phase (host-adapted) they most likely 

express in blood. The detailed characterization of the spirochetes' dissemination pathways 

provides an advanced understanding of the pathogenicity mechanism of TBRF and LB 

species, and can help to improve diagnostic approaches or therapeutic strategies. Notably, 

blood transfusion of Bp may poses a high risk of infection to recipients whereas the risk to 

become infected with Bbss is nonexistent. 
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VIII ZUSAMMENFASSUNG 

Borrelia persica (Bp) zählt zu den verbreitetsten Spirochätenarten, die Rückfallfieber (tick-

borne relapsing fever, TBRF) in Zentralasien und Ländern des Mittleren Ostens verursacht, 

während Borrelia burgdorferi sensu stricto (Bbss) als endemische Genospezies in 

Nordamerika und Europa vorkommt und die Lyme-Borreliose (LB) verursacht. TBRF-

Patienten leiden häufig unter wiederkehrenden Fiberattacken, ausgelöst durch 

Spirochätämie und die dadurch verursachte Antikörper-mediierte Bekämpfung der Erreger. 

LB-Patienten hingehen zeigen in der frühen Krankheitsphase in der Regel nur eine 

charakteristische Hautläsion (Erythema migrans). Unterbleibt die Behandlung der LB-

Patienten, kann sich die Infektion auf Grund der anhaltenden Entzündungsprozesse zur 

chronischen LB (z. B. acrodermatitis chronica atrophicans) weiterentwickeln. Obwohl eine 

angeregte Diskussion zur Verbreitung der Spirochäten, ob über den Blutkreislauf oder über 

das Gewebe, zu den verschiedenen Borrelien vorherrscht, ist wenig über deren genauen 

Verbreitungsmechanismen bekannt. Deshalb wurde in dieser Studie ein Mausmodell mit 

einem neuartigen und präzisen Injektionsmethode etabliert, um den Verbreitungsweg von 

zuvor wirtsadaptierten Bp- oder Bbss-Organismen nach intradermaler (ID) und strikter 

intravenöser (IV) Inokulation in immunkompetenten C3H/HeOuJ-Mäusen zu untersuchen. 

Da Borrelien in der Lage sind, ihre Oberflächenproteine (Osps) unter in-vitro- und in-vivo-

Bedingungen unterschiedlich zu exprimieren, war es zunächst notwendig, wirtsadaptierte 

Borrelien aus ursprünglich kulturadaptierten Bakterien mithilfe von immundefizienten 

NOD-SCID-Mäusen zu erzeugen. Dafür wurden die Tiere einerseits intradermal Bp-

Organismen (1,0 x 105) inokuliert, was zu einer Spirochätämie mit bis zu 8,8 x 106 Zellen/ml 

Blut in den Mäusen führte. Die intradermale Injektion von 1,0 x 106 bzw. 1,0 x 108 aus der 

Kultur gewonnenen Bbss-Organismen resultierte hingegen in einer Spirochätämie auf 

niedrigem Niveau (4,9 x 104 und 7,2 x 104 Zellen/ml). Zudem waren Bp-Spirochäten im Blut 

mit Hilfe der qPCR und Kultivierung mindestens einen Tag früher nachweisbar als Bbss. 

Insoweit scheint es, dass Bp im Vergleich zu Bbss besser dazu in der Lage ist, in den 

Blutkreislauf von immundefizienten Mäusen einzudringen und sich dort zu vermehren. 

Im Vergleich zur ID-Injektion war die strenge IV-Inokulation über die Jugularvene der 

C3H/HeOuJ-Maus der kritischste Schritt, um zu klären, ob wirtsadaptierte Bp- und Bbss-

Organismen in der Lage sind, den Blutkreislauf für eine Besiedlung der Gewebe im 

Säugetierwirt zu verlassen. Nach ID- oder IV-Inokulation von 7,2 x 105 Wirts-adaptierten 
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Bp-Organismen waren die Spirochäten im Blut der C3H/HeOuJ-Mäusen bis zum Tag 24 

nachweisbar. Die Zahl der Bp erreichte Höchstwerte von bis zu 1,8 x 106 und 4,1 x 106 pro 

ml Blut am Tag 12 nach der ID- und IV-Inokulation. Dementsprechend wurden spezifische 

Antikörper gegen Bp in Plasma- und Serumproben der Mäuse nachgewiesen. Mit Hilfe 

molekularer Methoden und Kultivierung konnte gezeigt werden, dass insbesondere alle 

Hirngewebeproben der C3H/HeOuJ-Mäusen sowohl nach ID- als auch nach IV-Injektion 

positiv für Bp waren. Im Gegensatz dazu wurden weder das Bbss-ospA-Gen noch lebende 

Spirochäten im Blut aller C3H/HeOuJ-Mäuse gefunden, die ca. 3 x 103 wirtsangepasste 

Bbss-Spirochäten erhalten hatten. Allerdings wurden am Tag 49/50 nach der ID-Injektion 

Bbss-Spirochäten aus den meisten Proben, die aus Ohr-, Haut (Injektionsfläche), 

Tibiotarsalgelenk-, Harnblase- und Herzgewebe entnommen wurden, isoliert. Eine robuste 

Antikörperreaktion gegen Bbss wurden in allen ID-inokulierten Mäusen nachgewiesen. Im 

Gegensatz dazu konnten in Gewebeproben der IV-inokulierten Tieren weder Borrelien-DNA 

noch lebensfähige Spirochäten detektiert werden. Eine spezifische Antikörperreaktion gegen 

Bbss blieb in diesen Tieren völlig aus. 

Zusammenfassend wurde in dieser Studie gezeigt, dass 1) Bp sich hervorragend an den 

Blutstrom der Wirte anpassen und darin überleben kann. Danach verbreitet sich das 

Bakterium vorwiegend auf hämatogenem Weg zu entfernt gelegenen Organen (z. B. Gehirn), 

um eine persistierende Infektion zu etablieren; 2) Bbss ist ein gewebegebundenes Bakterium, 

das sich hauptsächlich durch Gewebe fortbewegt und sich so im Körper des Wirtes verbreitet. 

Das intradermale Einbringen der Bbss-Organismen führt zu einer erfolgreich etablierten 

persistierenden Infektion, während die intravenöse Injektion eine Sackgasse für dieses 

Bakterium darstellt. Hervorzuheben ist insbesondere, dass das hier vorgestellte Mausmodell 

die natürlichen Infektionsbedingungen nach Zeckenbiss so gut wie möglich durch die 

Verwendung einer Injektionsdosis nachahmt, die nach Zeckenstich in der Haut eines Wirtes 

zu erwarten ist. Zudem wurden wirtsadaptierte Spirochäten verwendet, die wie in dieser 

Studie vorliegenden Entwicklungsphase so auch im Blut der Wirte vorkommen sollten.  

Die detaillierte Beschreibung der Ausbreitungswege ermöglicht ein besseres Verständnis der 

Pathogenitätsmechanismen sowohl der TBRF- als auch der LB-Spirochäten und kann dazu 

beitragen, die Diagnose- und Behandlungsstrategien für die durch diese Spirochäten 

ausgelösten Krankheiten verbessern. Insbesondere ist anzumerken, dass das Risiko sich nach 

Bluttransfusion mit Bp sich zu infizieren hoch ist, während das Risiko sich mit Bbss zu 

infizieren vernachlässigbar ist. 
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XI APPENDIX 

 

Figure A1: Antigenic variation mechanisms in Lyme and Relapsing fever Borrelia  

(A) VlsE: the expression locus (vlsE) is located near the telomere (open oval) of linear plasmid 

(lp) 28-1 (blue or green arrow, promoter is indicated by a black arrow). Silent vls cassettes are 

located upstream and in the opposite orientation of vlsE. Antigenic variation occurs through the 

random and sequential insertion of silent cassette fragments (labeled 1, 2, and 3). 
(B) vlp (pink arrows) and vsp (purple arrows) cassettes are located throughout the genome on lp28-

1, 28-2, 28-3, 28-4, and 32-1. The expression locus (blue or green arrow, promoter is indicated by 

a black arrow) is found on lp28-1 near the telomere (open oval). Changing the expressed Vmp 

cassette is achieved through deletion of the current cassette (blue arrow) followed by insertion of 

a copy of a new cassette (green arrow via recombination events) resulting in a change in the 

expressed Vmp on the surface of the bacterium (denoted by blue or green triangles, respectively). 

Gray arrows indicate non-Vmp ORFs; tan arrows indicate downstream homology sequences 

(DHS, sequences found throughout the genome and required for mapping recombination events at 

the Vmp expression locus). 

Data from Stone and Brissette (STONE & BRISSETTE, 2017) 
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Table A1: Clinical characteristics, common manifestations, and laboratory support in the diagnosis of LB 

Clinical 
characteristics  
(by state of infection) 

common manifestations essential laboratory 

evidence 

supporting laboratory evidence 

erythema migrans  
(early localizeda and  
disseminatedb 

infection) 

expanding red or bluish-red patch (≥ 5 cm  
in diameter) with or without central clearing; 
advancing edge is typically distinct, often 
intensely coloured, and not noticeably raised 

none if typical culture from skin biopsy;  
seroconversion of specific serum 
IgG antibodies or presence of 
specific IgMc 

borrelial 
lymphocytoma  
(a rare manifestation, 
localized infection) 

painless bluish-red nodule or plaque, usually 
on ear lobe, ear helix, nipple, or scrotum; 
more frequent in children (especially on ear) 
than in adults 

specific IgG antibodies histology;  
culture from skin biopsy 

Lyme 
neuroborreliosis  
(early disseminated 
infection) 

meningitis, cranial neuritis, radiculitis (motor 
or sensory), meningoradiculitis  

lymphocytic pleocytosis in 
CSF; intrathecally produced 
specific antibodiesd 

intrathecal total IgM and/or IgG 
synthesis;  
specific oligoclonal bands in CSF; 
seroconversion of specific serum 
IgG antibodiesc;  
culture from CSF 

Lyme 
neuroborreliosis 
(persistente infection) 

chronic encephalomyelitis, demyelinating-like 
syndrome, axonal polyneuropathy, cognitive 
and behavioral changes 

lymphocytic pleocytosis in 
CSF; intrathecally produced 
specific antibodiesd;  
specific serum IgG antibodies 

specific oligoclonal bands in CSF 

cardiac Lyme 
disease  
(a rare manifestation, 
early disseminated 
infection) 

acute onset of atrioventricular (I–III) 
conduction disturbances, rhythm 
disturbances, and sometimes myocarditis or 
pericarditis; 
alternative explanations should be excluded 

significant change in levels of 
specific IgG antibodiesc 

culture from endomyocardial 
biopsy 
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Lyme arthritis  
(early disseminated 
and persistent 
infection) 

recurrent attacks or persisting objective joint 
swelling in one or more large joints;  
alternative explanations should be excluded 

high level of specific serum 
IgG antibodies 

detection of borrelial DNA in 
synovial fluid and/or 
tissue (culture from synovial fluid 
and/or tissue) 

acrodermatitis 
chronica 
atrophicans  
(persistent infection) 

long-standing red or bluish-red lesions, 
usually on the extensor surfaces of 
extremities;  
initial doughy swelling; 
lesions eventually become atrophic; 
possible skin induration and fibroid nodules 
over bony prominences 

high level of specific serum 
IgG antibodies 

histology; 
culture from skin biopsy 

 

 

 

  

a Duration of infection is days to ~ 4 weeks. 
b Duration of infection is weeks to months (range, 1 - 14 months). 
c Specific antibody levels in serum may increase in response to progression of infection or treatment, or may decrease due to abrogation of the infection 

process. Samples collected a minimum of 3 months apart may be required in order to detect a decrease in IgG levels. 
d Intrathecally produced specific antibodies are determined by investigating simultaneously drawn samples of CSF and serum. 
e Duration of infection is months to years. 

Data modified from references (PAROLA & RAOULT, 2001; STANEK et al., 2012; STANEK & STRLE, 2018) 
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Table A2: Treatment regimens for tick-borne relapsing fever 

medication druga dose for 
adults 

interval 
(times daily) 

treatment 
duration 

oral Chloramphenicol 500 mg 4 7 - 10 days 

 Doxycycline 100 mg 2 

 Erythromycin 500 mg 4 

 Tetracycline 500 mg 4 

parenteralb Chloramphenicol 500 mg 4 

 Doxycycline 100 mg 2 

 Erythromycin 500 mg 4 

 Penicillin G (procaine) 600,000 IU 1 

 Tetracycline 250 mg 4 

 

 

 

 

a Most commonly used antibiotics are in bold. 
b Parenteral medication should be continued until oral medication is tolerated. If oral medication 

is tolerated at the time of diagnosis, parenteral medication may not be necessary. 

Data modified from references (DWORKIN et al., 2008; KUTSUNA et al., 2013) 
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Table A3: Antibiotic treatment regimens available for Lyme borreliosis 

route druga dose for 

adults 

dose for children treatment 

durationb 

oral therapy 
 

Doxycycline 
(patients 
≥ 8yrs) 

100 mg 
2× day 
 

4 mg/kg 
(up to 100 mg) 
2× day 

14 - 28 days 

 Amoxicillin 500 mg 
3× day 

50 mg/kg 
(up to 500 mg) 
3× day 

 Cefuroxime 
axetil 

500 mg 
2× day 

30 mg/kg 
(up to 500 mg) 
2× day 

intravenous 
therapy 

Ceftriaxone 2 g 
1× day 

50 - 75 mg/kg 
(up to 2 g) 
1× day 

 Cefotaxime 2 g 
every 8 hrs 

150 - 200 mg/kg 
(up to 2 g) 
every 8 hrs 

    Penicillin G 18 - 24 million 
U/day divided 
every 4 hrs 

200,000 - 400,000 
U/kg daily 
divided every 4 hrs 
(up to 18 - 24 
million U/day) 

 

a Most commonly used antibiotics are in bold. 
b Duration of treatment is based mainly on the clinical manifestations of LB. 

Data modified from references (MURRAY & SHAPIRO, 2010; STANEK et al., 2012) 


