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1  Introduction 

1.1  Acute myeloid leukemia 

From the earliest times, scientists and physicians have speculated about the origin and 

nature of cdurancer, but it was not until the second half of the twentieth century that 

profound insights into its genetics and treatment, beyond surgical interventions, were 

gained1. Scientific advances including the discovery and application of anti-cancer drugs 

as well as a deeper understanding of genetics first emerged in leukemia and related blood 

cell cancers. Important variables for the success story of leukemia research were a solid 

foundation of basic biology for the corresponding normal tissue and good tissue 

accessibility1. Blood cell related cancers including leukemia and other hematological 

malignancies account for only 7 to 9% compared to all other cancer types2. 

Leukemia is defined as a hematopoietic malignancy of white blood cells initiated by a few 

abnormal leukemic stem cells (LSC) or more committed progenitors. With time, these 

immature blood cells, also known as blast cells, accumulate and crowd out normal 

hematopoietic cells in the bone marrow and blood. Blood cells are mainly composed of 

lymphoid (B cells, T cells, and natural killer cells) and myeloid-erythroid cells 

(erythrocytes, granulocytes, megakaryocytes/thrombocytes, monocytes/macrophages, and 

mast cells). Based on the affected cell type, leukemias are classified into two main 

categories, lymphoid and myeloid, which are each further subdivided into acute and 

chronic forms. In chronic leukemia, the abnormal cells are more mature and there is 

usually no need for immediate treatment as the disease progresses slowly. In contrast, 

immediate medical care is required for acute leukemias due to a fast increase of immature 

blood cells resulting in an aggressive crowd out of normal blood cells. If left untreated, 

acute leukemias can progress quickly and become fatal within weeks or few months. 

The most common form of acute leukemia in adults is acute myeloid leukemia (AML), 

which is characterized by rapid clonal expansion of undifferentiated myeloid precursor 

cells in the bone marrow and blood with possible spread to other tissues like liver and 

spleen. About 18,376 new diagnoses of AML are estimated to occur per year in Europe 

with a median age of 68 and a slightly higher prevalence in men compared to women3,4. 

Patients with AML have a one-year relative survival rate of only 37%, which decreases to 

19% after five years3. Generally, survival rates decrease with increasing age as young 
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patients in the age group of 0-14 have a 5-year survival rate of 67% compared to only 5% 

in patients older than 65 years3.  

 

1.1.1  Pathogenesis 

AML is a group of heterogeneous subentities with substantial differences in cytogenetic 

and mutational profiles that profoundly influence treatment response and patient 

outcome5–7. Based on morphology and cytochemistry, AML was initially divided into 8 

subtypes (M0-M7) according to the French-American-British (FAB) classification system8. 

In 2002, the World Health Organization (WHO) introduced the WHO Classification of 

Tumours of Haematopoietic and Lymphoid Tissues classification system incorporating 

morphology, biologic, and genetic information9, which was updated in 2008 and 201610,11. 

The 2016 revision was necessary due to major advances in technology like whole genome 

sequencing (WGS), whole exome sequencing (WES), and gene expression analysis, which 

resulted in the identification of numerous new molecular genetic lesions as prognostic and 

predictive markers11. One of the most important prognostic marker for the rate of 

complete remission (CR), second CR after first disease recurrence (relapse), overall 

survival (OS), and disease-free survival (DFS) is the karyotype5,12–16. For instance, 

cytogenetic abnormalities like inversion inv(16) are associated with a favorable prognosis 

whereas adverse outcome is observed among patients with chromosome 5q 

deletions12,14,17. However, about 45-50% of AML patients lack these prognostic 

chromosomal aberrations and are termed cytogenetically normal (CN) AML.6,7 CN-AML 

is classified into the intermediate-risk group and patients outcome is strongly influenced 

by the mutational status18. 

With an average number of 13 to 15 coding mutations per case of which only 2-5 are 

recurrently mutated in AML19,20, the mutational burden in AML is relatively low 

compared to other adult tumor types including breast, ovarian, colorectal and lung 

squamous cancer19. According to their roles in pathogenesis, a two-class gene 

classification model has initially been proposed7. Mutations in genes that lead to activated 

signal transduction and confer a proliferative advantage are considered as class I 

mutations (e.g. FLT3-ITD and NRAS). The class II gene mutations are associated with 

transcription regulation leading to impaired hematopoietic cell 
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Figure 1 Overview of recurrently mutated genes in AML. Histogram showing the frequency of driver 
gene mutations detected in >1% of patients in a cohort of 664 AML patients. Genes are clustered according 
to their respective functional groups. Data was obtained from Metzeler et al.21. 

 

differentiation (e.g. NPM1). The recent identification of recurrent mutations in a large 

number of genes encoding epigenetic regulators like DNA (DNMT3A, TET2, IDH1/2) and 

chromatin (KMT2D, EZH2) modifiers has led to the proposal of a third category of gene 

mutations6,22–30. Epigenetic deregulation appears to be one of the major driver of 

AML31,32. Evolutionary studies as well as evidence from mouse models suggest that 

cooperation of two or more lesions is required to generate AML20,33–35. For instance, 

compared to single-mutant controls, combination of NPM1 mutation and FLT3-ITD is 

rapidly and universally leukemogenic in knock-in mice with the possibility that additional 

mutations are rapidly acquired35. 

The most recurrently mutated genes in AML are the fms-like tyrosine kinase FLT3 (28-

39%), nucleophosmin NPM1 (27-33%), and DNA methyltransferase DNMT3A (20-

31%)19,21,36 (Figure 1). Although with less frequency, several other mutations in genes 

belonging to functional groups like RNA splicing, transcription factor, cohesion complex 

or chromatin modifiers have been found to occur in AML (Figure 1). Among these genes, 

mutations in CEBPA, NPM1, and FLT3 are routinely used as prognostic markers, as 

reflected in the European LeukemiaNet (ELN) recommendations37. The prognostic 

importance is less clear for some other recurrently mutated genes and can be influenced by 

the karyotype, type of mutation, patients age, and co-occurring mutations11. In many 

cases, co-occurring alterations have an effect on CR rates, DFS, relapse-free survival 

(RFS) and OS. For instance, AML patients with a NPM1 mutation who lack FLT3-ITD 



 Introduction  
	 	 	
	 	

	 4	

have a significantly better outcome than patients with a NPM1 mutation and a FLT3-

ITD11,38,39. The proportion of mutations within the tumor population can be estimated by 

the variant allele frequency (VAF), which refers to the frequency of sequencing reads of 

the mutated allele compared to the wild type (WT) allele. Advances in technology 

including greater sequencing depth have allowed to detect mutations in minor cell 

subpopulations (subclones) of the bulk tumor, to estimate the size of subclones, and to 

map clonal evolution of AML.  

Peter Nowell was the first to describe cancer as an evolutionary process through the 

sequential selection of increasingly abnormal cells, which initially originate from a single 

cell, or at most a very few cells (Figure 2a)40. By means of intraclonal competition and 

ecological bottlenecks like insufficient resources within the tissue microenvironment or 

anti-cancer therapy, alterations that provide the most selective growth advantage will be 

selected40. Unless a mutation confers self-renewal ability on a later progenitor, mutations 

occurring in non-self-renewing cells will be lost due to a limited lifespan. Mutations in 

AML blasts but also in normal, self-renewing hematopoietic stem cells (HSC) of healthy 

individuals accumulate gradually with age20, and age-related clonal hematopoiesis is a 

common condition in about 10% of healthy individuals older than 70 years of age41. 

Although associated with an increased risk of hematologic malignancies and 

cardiovascular disease, people with clonal hematopoiesis can live for many years without 

developing hematologic cancers41. Moreover, clinically silent clonal hematopoiesis 

appears to be far more common in healthy middle-aged adults than previously thought but 

progression to hematologic malignancies is exceptionally rare42. As clonal hematopoiesis 

shares many mutations with AML, this suggests that some mutations in AML are random 

background mutations that first occurred in HSCs20,43. Years before developing AML, the 

occurrence of mutations in certain genes including spliceosome genes, IDH1/2, TP53, 

DNMT3A, and TET2 appears to increase the risk of developing AML44. As DNMT3A and 

TET2 mutations were also common in individuals that did not develop AML, a higher risk 

of AML was only associated with these genes if high VAF and high number of variants 

were detected44. At some point an initiating mutation (e.g. DNMT3A, TET2, IDH1/2) is 

acquired in addition to preexisting mutations in the HSCs20,43,45,46. These so called pre-

leukemic (preL)-HSCs are capable of increased proliferation or self-renewal, but retain 

normal characteristics of multi-lineage differentiation36. 
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Figure 2 Process of clonal evolution with linear and branching architecture. Evolutionary process with 
linear (a) or variable nonlinear, branching dynamic (b). During normal hematopoiesis, mutations accumulate 
with age. At some point an initiating mutation occurs resulting in the pre-leukemic clone. a, Pre-leukemic 
clone evolves by aquiring additional mutations and overwhelms earlier clones carrying only some of the 
mutations. The dominant clone at diagnosis carries all mutations that emerged during the evolutionary 
process. b, Originating from the pre-leukemic clone, various mutations can emerge and create divergent 
mutational pathways. Of note, small subclones might fall below the detection limit leading to an 
underestimated branching complexity. Numerals indicate the number of mutations in cells. Cells carrying 
identical mutations are represented in the same color. Adapted from Grove et al.47.  

 

 

A portion of the preL-HSC population might acquire additional cooperating mutations 

(e.g. NPM1, FLT3) at a later time point contributing to disease progression or 

relapse20,36,47. Interestingly, ancestral preL-HSCs that carry DNMT3A mutations were 

shown to exhibit competitive repopulation advantage over non-mutated HSC in xenograft 

assays, survive induction therapy and persist in the bone marrow at complete remission46. 

Although with less frequency, persisting mutations at remission also occur in certain other 

genes like NPM1, TET2, IDH2, ASXL1, RUNX1, and SRSF and contribute to a higher 

relapse risk48,49. 

Clonal architecture appears to be a dynamic process with great variation between 

individual AML patients. A study by Anderson et al.50 revealed that the evolutionary 

process has either a linear dynamic with sequentially dominant clones, as originally 
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proposed by Nowell’s model, or a nonlinear dynamic with a variable branching 

architecture (Figure 2). It is likely that many cancers evolve with a complex, nonlinear 

dynamic. Serial transplantations of primary acute lymphoblastic leukemia (ALL) cells into 

immunodeficient mice showed patterns of variable competitive subclonal regeneration, 

which reflected the diversity of genetically distinct subclones identified in the original 

diagnostic sample50. Genetic and clonal heterogeneity within individual patients with 

consistent patterns of clonal regeneration after transplantation into NSG mice was also 

observed in AML51.  

 

1.1.2  Therapy 

For several decades, the general therapeutic strategy in patients with AML remained 

largely unchanged and the “3+7” regimen is still employed as the standard of care for 

induction therapy. The “3+7” regimen combines 7 days of continuous-infusion cytarabine 

(AraC; 100-200mg/m2) and 3 days of an intravenous anthracycline like daunorubicin 

(DNR; 60 mg/m2), idarubicin (10-12 mg/m2), or the anthracenedione mitoxantrone (10-

12 mg/m2)17,52. Different combination of drugs and intensification of dose or duration 

were intensively investigated53–56 and promising results were reported for certain 

subgroups. For instance, intensification of the dose of DNR from standard- to high-dose 

improved the outcome in AML patients (<60 years of age) with mutations in DNMT3A, 

NPM1 or with MLL translocations57. The addition of a third drug, e.g. 6-Thioguanine (6-

TG), was applied (TAD schedule) although there is no evidence of benefit compared to 

the “3+7” schedule52. 

A morphologic complete remission which is indicated by less than 5% blasts in the bone 

marrow and a regeneration of peripheral counts58, is achieved in 60 to 85% of young 

adults (≤60 years) and 40 to 60% of elderly patients (≥60 years) undergoing standard 

induction therapy17. To achieve a complete remission, two cycles of induction therapy are 

applied with the exception for elderly patients that might just receive one cycle. In first 

remission, a key strategic decision is whether to apply chemotherapy or undertake 

allogeneic hematopoietic-cell transplantation (allo-HCT), which is guided by cytogenetics, 

certain established genetic markers, and additional patient-related factors. Although 

transplantation-related mortality is still an issue, the benefit of transplantation in terms of 

reduced relapse rate usually outweighs the transplantation-associated risks in patients with 

a high risk of relapse36. An exception to this approach might be made for patients who 
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present with favorable mutations at diagnosis. The recommended postremission therapy 

for these patients is to receive repetitive cycles (2-4) of an intermediate-dose cytarabine-

based regimen17.  

A major complication in the treatment of AML is disease recurrence, which requires a 

blast rise above 5% after achieving CR and occurs in most patients within 2 to 3 years 

from diagnosis. The risk of relapse is influenced by the degree of detectable residual 

leukemia after CR and the biologic characteristics of the AML17. Once the disease 

reoccurs, certain factors such as older age, poor general health status, adverse genetics, 

prior allo-HCT, and a short duration of remission (under 6 months) are generally 

associated with an inferior outcome17.  

In recent years, new drugs in the area of targeted therapy including the FLT3 inhibitor 

midostaurin and an anti-CD33 antibody-drug conjugate gemtuzumab ozogamycin have 

been approved for the treatment of AML. An exciting and promising therapeutic area is 

the development of new epigenetic therapies. The FDA has recently approved the IDH2 

inhibitor enasidenib59 and the IDH1 inhibitor ivosidenib60 for the treatment of relapsed or 

refractory AML with an IDH2 or IDH1 mutation, respectively. The clinical development 

of several other inhibitors against epigenetic regulators is under way. Due to the 

heterogeneity of AML, knowledge of the full mutational inventory, which might be gained 

by access to panel-based or whole next-generation-sequencing (NGS) in the diagnostic 

work-up, may help to facilitate assessment of treatment response in the future.  

 

1.1.3  Tumor evolution at relapse 

Although the majority of patients with AML undergoing induction therapy achieve 

complete remission, a large number of them will relapse, often with resistant disease and 

poor response to subsequent therapy. Therefore, it is essential to understand the factors 

that contribute to the recurrence of disease. Anti-cancer therapy can interfere with the 

composition of the heterogeneous AML population by altering the relative 

competitiveness of different subpopulations50,61. By comparing the genomic sequence of 8 

patients with AML at diagnosis and at the time of relapse by deep sequencing, Ding et 

al.61 identified two major patterns of tumor evolution at relapse in AML. These include 

one in which the dominant clone in the primary tumor evolved into the relapse clone by 

gaining relapse-specific mutations, and another one in which a minor subclone within the 

founding clone survived and evolved to become the dominant clone at relapse by aquiring 
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additional mutations (Figure 3)61. Additionally, DNA damage caused by cytotoxic 

chemotherapy seems to have a substantial effect on the spectrum of acquired mutations 

observed at relapse.  

Two mechanism of overcoming the cytotoxic effects of chemotherapy are possible, either 

a subpopulation is already intrinsically drug-resistant (primary resistance) or surviving 

cells acquire additional mutations under the selective pressure of therapy resulting in a 

drug-resistant phenotype (acquired resistance). Often the relapse appears rather quickly, 

suggesting that a primary resistance plays a dominant role62. In therapy-related AML (t-

AML), where AML typically develops 1-5 years following exposure to chemo-, radiation-

, or immunosupressive therapy, clones carrying a TP53 mutation are often selectively 

enriched63. Contrary to the assumption that cytotoxic therapy induces TP53 mutations, 

findings from a recent study suggest that rare hematopoietic stem and progenitor cells 

(HSPCs) harboring age-related TP53 mutations are resistant to chemotherapy, expand 

under the selective pressure of chemotherapy, and acquire additional mutations (Figure 

3)64. Similar results were reported in childhood ALL, where l 

 

 

Figure 3 Patterns of tumor evolution at relapse in AML. Possible patterns of clonal evolution at relapse 
that originate from the hypothetical, diagnostic tumor sample after chemotherapy are shown. 1, dominant 
clone in the primary tumor evolved into the relapse clone by gaining relapse-specific mutations; 2, subclone 
within the founding clone evolved to become the dominant clone at relapse by aquiring additional; 3, relapse 
of an ancestrally related clone. For simplicity, a linear evolutionary pattern is shown. Adapted from Ding et 
al.61 and Grimwade et al.36. 



 Introduction  
	 	 	
	 	

	 9	

selection and outgrowth of preexisting, drug-resistant subclones was the major mechanism 

of relapse and a shorter time to relapse correlated with a higher quantity of the relapsing 

clone at diagnosis65.  

Taken together, these findings by Ding et al.61 and others45,65,66 reveal that incomplete 

eradication of the leukemic clone rather than the emergence of genetically unrelated, novel 

clones underlies relapse and persistence. A more efficient therapy to target and eradicate 

such clones might improve outcome in AML patients. 

 

1.1.4  Mechanisms of therapy resistance 

So far, most likely only a fraction of the mechanisms responsible for drug resistance has 

been discovered. Most of the mechanisms affecting the response to chemotherapy include 

either reduction in the amount of active agents inside target cells or a decrease in 

effectiveness of these compounds on target mechanisms like upregulation of anti-

apoptotic genes or changes in microenvironment67 (Figure 4). One of the most 

investigated mechanisms of drug resistance is the multidrug-resistance (MDR) phenotype, 

which involves the upregulation of the drug efflux transmembrane ATPase P-glycoprotein 

(Pgp; encoded by the MDR1 gene)68. Upregulation of Pgp appears to be a direct 

consequence of the exposure to cytotoxic drugs, including DNR and AraC, which, 

interestingly, is not a Pgp substrate68,69. In AML, Pgp was shown not only to function as a 

drug efflux pump, but also to affect the apoptotic threshold and actively exert a pro-

survival effect70. Several studies have linked increased expression of Pgp with treatment 

failure and shorter survival71–77, whereas others do not78,79 and its contribution to treatment 

failure remains debatable. Other transmembrane proteins belonging to the ABC 

transporter family such as multi-drug resistance-associated protein 1 (MRP1)62, 

7 (MRP7)80, and 8 (MRP8)81 might also contribute to resistance.  

The main transporter for the cellular uptake of the hydrophilic drug AraC which is an 

analogue of the nucleoside cytidine, is the human equilibrative nucleoside transporter 1 

(ENT1), also known as SLC29A1 (Figure 5). It is responsible for 80% of AraC influx and 

low ENT1 expression in AML blasts was linked with AraC resistance ex vivo82,83 and 

correlates with a shorter disease-free and overall survival in AML patients84. 
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Figure 4 Schematic representation of common mechanisms of resistance to chemotherapeutic agents. 
a,b, Various mechanisms account for chemoresistance in tumor cells including reduction of either active 
drugs inside target cells (a) or the effectiveness of drugs on target mechanisms (b). a, The amount of active 
drugs that reach their intracellular targets can be reduced by different mechanisms like decreased 
intracellular uptake or enhanced efflux, reduced activation of pro-drugs or an increased drug inactivation. 
b, The effectiveness od anticancer drugs can be affected as well and these mechanisms include enhanced 
DNA damage repair, decreased activity of pro-apoptotic factors, increased activity of anti-apoptotic factors, 
changes in microenvironment, and functional or expressional changes of the molecular targets. Adapted 
from Marin et al.67. 

 

 

Once the deoxycytidine analogue is in the cytoplasm, it needs to be converted to its active, 

5´-triphosphate derivative (Ara-CTP) by three different kinases (Figure 5). During DNA 

synthesis, Ara-CTP is incorporated into DNA in place of deoxycytidine triphosphate 

(dCTP), which leads to reducing chain elongation, block in DNA synthesis and initiation 

of apoptosis85,86. Low levels of deoxycytidine kinase (DCK) which is believed to be the 

key rate-limiting activating enzyme by phosphorylating AraC to AraC monophosphate 

(Ara-CMP), were reported to correlate with low AraC sensitivity87,88 and to predict shorter 

DFS83,89. The intracellular concentration of Ara-CTP can also be influenced by the action 

of inactivating enzymes including 5´-nucleotidase (NT5C2), cytidine deaminase (CDA), 

and deoxycytidylate deaminase (DCTD)85. For example in AML patients treated with 

AraC, high levels of the inactivating enzyme NT5C2 were reported to predict shorter 

DFS90. Recently, the dNTP triphosphohydrolase SAMHD1 was shown to reduce the 
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amount of active AraC derivatives by hydrolyzing Ara-CTP and thereby facilitating 

increased resistance to AraC treatment91,92. Other reported mechanisms of resistance are 

cytarabine metabolic pathway polyphorphisms94–96. Mutations or differential expression in 

genes important for DNA synthesis or apoptosis might also contribute to an inferior 

response to AraC therapy.  

Contrary to AraC, mitoxantrone and anthracyclines including DNR and idarubicin exert 

their cytotoxic effect by inhibiting the activity of nuclear DNA topoisomerase II, which 

leads to DNA damage and initiation of apoptosis (Figure 5). DNA topoisomerase II alters 

 

 

 

 

Figure 5 Metabolic pathway of DNR and AraC. Key candidate genes involved in the metabolic activation 
of AraC and the metabolism of DNR are shown. AraC: cytarabine; CDA: cytidine deaminase; CDP: cytidine 
diphosphate; dCTP: deoxycytidine triphosphate;  DCK: deoxycytidine kinase; DCTD: Deoxycytidylate 
deaminase; DNR: daunorubicin; ENT1: equilibrative nucleoside transporter 1; NT5C2: 5´nucleotidase; 
Topo-II: topoisomerase II. Adapted from McLornan et al.86, J. Lamba et al.85, and Megias-Vericat et al.93. 
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the topological state of DNA by generating a transient double-stranded break and passing 

an intact helix through this break thereby relaxing supercoiled DNA during replication and 

transcription97. Alterations in anthracyclines metabolizing enzymes (Figure 5) including 

influx (SLC22A16, SLC28A3, SLCO1B1) and efflux (Pgp, ABCC1-3, ABCG2) 

transporters, detoxification through hydroxylation by carbonyl (CBR1, CBR3) and aldo-

keto reductases (AKR1A1, AKR1C3), deglycosydation, and semiquinone formation might 

all influence the efficacy of anthrycylines93.  

Although misregulation of cell intrinsic factors plays a major role in resistance, extrinsic 

factors such as the microenvironment also contribute to the biology of resistance in AML 

blasts98–102. Future studies are required to validate and confirm drug resistant candidate 

genes, which preferably should be identified in patient samples and not only by generating 

resistant cell line models. Eventually, a panel of resistant-associated genes might then be 

used as a diagnostic tool to identify patients with an altered drug response even before 

treatment. 
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1.2  Epigenetic regulation 

Epigenetic is defined as heritable but biochemically reversible changes of a given 

expression state without inducing alteration in the DNA sequence103,104. Epigenetic 

mechanisms involve DNA methylation, post-translational histone modifications, 

nucleosome remodeling, histone variants and non-coding RNAs. These mechanisms 

control cell type–specific patterns of gene expression and are therefore essential for 

establishing and maintaining cell identity and function.  

 

1.2.1  Chromatin structure and histone modifications 

Eukaryotes package their genomic DNA into repeating units of nucleosomes to form 

chromatin fibers105 (Figure 6). The basic unit of chromatin is the nucleosome, which 

occurs every 200 ± 40 base pairs (bp) throughout all eukaryotic genomes105,106. One 

nucleosome core consists of 146-147 bp of DNA wrapped around a histone octamer that is 

composed of two copies of each of the histone pairs H3-H4 and H2A-H2B107,108. To 

establish higher-order chromatin compaction, the repeating nucleosome cores are 

stabilized by the linker histone H1, which binds to DNA between the nucleosome 

cores109,110. By determining DNA accessibility, the nucleosome plays an important role in 

the regulation of transcription. Thus, modification of histone proteins can have great 

implications on the transcriptional regulation. Histone proteins, especially their 20-35 

amino acid long N-terminal “tail” domains that protrude from the surface of the 

nucleosome, can interact with other proteins and are subject to a variety of post-

translational modifications111. These modifications involve acetylation and methylation of 

lysine and arginine residues, phosphorylation of serine and threonine residues, 

sumoylation, ubiquitination and crotonylation of lysine residues, and ADP ribosylation. 

The net level of modifications is regulated by a balance between “writer” (histone 

acetyltransferases and methyltransferases), “eraser” (histone deacetylases and 

demethylases) and “reader” (e.g. PHD- and bromodomain-containing proteins) enzymes. 

For instance, lysine acetylation by histone acetyltransferases (HATs) is thought to loosen 

the interaction between histones and the negatively charged DNA backbone by 

neutralizing the positive charge on lysine. Thereby it promotes an open, transcriptionally 

active chromatin state where transcription factors can more efficiently bind to DNA. As 

histone lysine and arginine methylation does not profoundly affect the charge on 

individual lysine and arginine residues, it most likely influences the binding of chromatin-
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associated proteins. For example, methylation of the histone 3 lysine 27 (H3K27) is 

essential for the binding of the polycomb repressive complex 1 (PCR1) and subsequent 

ubiquitination of H2A112. The motif of adjacent amino acids of posttranscriptional 

modified residues can also play a role in histone-binding specificity. HAT GCN5, for 

instance, requires a specific consensus motif, G-K14-X-P, to acetylate lysine 14 on histone 

3113. HMTs like the H3K9 HMT G9a and GLP can also recruit DNA methyltransferases to 

histone modifications. By independently inducing both H3K9 and DNA methylation, 

G9a/GLP suppresses transcription in embryonic stem cells114,115.  

In addition to the canonical histones, histone variants such as H3.3, CENP-A, H2A.Z, and 

H2A.X modulate chromatin dynamics. Whereas multiple gene copies of canonical 

histones exist through the genome to meet the high demand of histone protein required for 

genome duplication, histones variant genes lie outside the histone gene cluster116.  

 

 

 

 
Figure 6 Chromatin organization and histone modifications at N-terminal histone tails. Eukaryotic 
DNA is packaged into repeating units of nucleosomes to form chromatin fibers, which are then compacted 
into higher ordered structures to form chromosomes. One nucleosome core consists of DNA wrapped around 
a histone octamer that is composed of two copies of each of the histone pairs H3-H4 and H2A-H2B. In 
addition to their globular domains, these histone proteins have N-terminal peptides, so called “tails”, that 
protrude from the surface of the nucleosome. H2A also has a C-terminal tail with similar regulatory features. 
Certain amino acid residues on histone tails are frequently post-translationally modified. All known 
mammalian acetylation (blue triangle) and methylation (red pentagon) modifications on histone lysine (K) 
residues are displayed. The above depictions of chromatin structure and histone tails are only schematic and 
are not meant to reflect the exact size. Adapted from Bagot el al.117. 
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Subtle differences in the amino acid sequence between H3 and H3.3 facilitate recognition 

by variant-specific chaperone proteins and post-translational modifications of variant-

specific sites. Variant H3.3 which was found to be enriched at enhancers, impairs higher-

ordered chromatin folding and promotes gene activation118. 

It is now clear that histones and its associated modifying enzymes are remarkable diverse 

and highly dynamic components of the machinery responsible for regulating gene 

transcription. Recent discoveries of mutations targeting these components in cancer and 

other diseases have further revealed a crucial role in pathological processes. 

 

1.2.2  Histone methylation and demethylation 

Histone methylation is an important biological process through which the expression state 

of many genes is controlled. Lysine residues can be mono-, di- or trimethylated and 

depending on the site and methylation state, transcription is either activated or repressed. 

Generally, actively transcribed regions are marked with high levels of H3K27me1, 

H3K9me1, H4K20me1, H3K36me3, H3K4me3 and H2BK5me1119. In contrast, 

trimethylation of H3K9 and H3K27 is correlated with gene silencing. Opposing histone 

marks co-exist at certain genomic domains and these domains are referred to as “bivalent” 

domains. Bivalent genes are transcriptionally repressed, but hold in a poised state, 

enabling them to be rapidly activated upon stimulation. Activating H3K4me3 and 

repressive H3K27me3 marks are commonly found within developmental gene promoters 

of embryonic stem (ES) cells, like the Homeotic (HOX) locus120,121. Global histone lysine 

methylation patterns are maintained by two enzyme families, lysine methyltransferases 

(KMTs) and demethylases (KDMs). The human KMT protein family is a group of 52 

known KMTs, which have a catalytic SET domain except for the H3K79-specific KMT 

DOT1L. KMT enzymes utilize S-adenosyl-L-methionine (SAM) as the methyl donor and 

are highly specific for the histone residue and the degree of methylation. KMTs are multi-

domain proteins and have been found to operate as multisubunit protein complexes112,122. 

The Polycomb repressive complex 2 (PRC2) is responsible for the deposition of 

H3K27me3 marks by catalyzing the mono-, di- and trimethylation of H3K27123. 

Mammalian PRC2 can be further classified into two distinct complexes, PRC2.1 and 

PRC2.2124, which both comprise the methyltransferase EZ homolog 2 (EZH2) as a 

catalytic subunit. Besides EZH2, human PRC2.2 complex contains the subunits SUZ12, 

AEBP2, RpAp48, and EED125. SUZ12 and EED are essential for the methyltransferase 
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activity of EZH2126. PRC2 complex was found to have essential roles in developmental 

processes, X inactivation and carcinogenisis127–130. In pediatric glioblastomas, researchers 

discovered that global H3K27me3 marks are reduced because of a point mutation 

(H3K27M) in the histone 3 variant H3.3, which inhibits the enzymatic activity of 

PRC2131–133.  

Demethylation of histone lysines was first experimentally confirmed in 2004 when Shi et 

al. discovered that H3K4 demethylation was mediated by a KDM called LSD1134. To date, 

two functional enzymatic families have been identified to possess lysine demethylase 

activity112,122. These two KDM families differ from each other in terms of catalytic 

domain organization and type of demethylase mechanism. KDM1A (LSD1) and KDM1B 

(LSD2) belong to the family of amine oxidases that utilize flavin adenine dinucleotide 

(FAD) as a cofactor to catalyze demethylation of only mono- and di-methylated lysine 

residues. These amine oxidases cannot remove trimethyl lysine residues because they 

require a protonatable lysine ε-amine group135. The Jumonji C (JmjC) domain-containing 

KDM family members catalyze oxidative demethylation of all three methylation states 

with the cofactors iron and α-ketoglutarate135. Similar to KMTs, KDMs are mostly 

selective for a specific lysine residue and the degree of methylation. In addition, it has 

recently emerged that KDMs also have many activities that are distinct from histone 

demethylation136. Demethylation of non-histone proteins like transcription factors, 

chromatin-associated proteins, or proteins involved in signal transduction appears to 

regulate the abundance, stability or activity of non-histone substrates137–140. Furthermore, 

demethylase-independent functions can be facilitated through protein-protein interaction 

domains as part of large multiprotein complexes or through chromatin-binding domains122.  

Dysregulation of these epigenetic regulatory processes have major implications in the 

development of many diseases, especially cancer. Lysine demethylases are often found to 

be deregulated in cancer141–145. Overexpression of LSD1, for instance, was reported to 

contribute to carcinogenesis in a variety of cancer types including colorectal, bladder and 

lung carcinomas146. In addition, changes in intracellular levels of cofactors required for 

KDM reactions can effect histone demethylation. Low concentrations of the cofactor α-

ketoglutarate and thus inhibition of KDMs were observed in certain AML and 

glioblastomas cases with IDH1 or IDH2 mutations147. Mutated IDH1 and IDH2 convert α-

ketoglutarate to 2-hydroxyglutarate causing a “hypermethylator” phenotype122. 
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1.2.3  The histone H3K27 demethylase KDM6A 

In 2007, KDM6A (UTX; ubiquitously transcribed tetratricopeptide repeat, X 

chromosome) was discovered by several research groups as a histone demethylase that 

specifically targets di- and tri-methyl groups on lysine 27 of histone 3, a mark important 

for transcriptional repression148–151. The ubiquitously expressed KDM6A belongs to the 

family of JmjC domain-containing proteins and consists of 1401 amino acids (Figure 7). 

In contrast to the KDM6 family member KDM6B (JMJD3), it contains 6 protein 

interaction-mediating tetratricopeptide repeat (TPR) domains, which are believed to 

mediate protein-protein interactions. The human KDM6A and mice Kdm6a genes are both 

located on chromosome X and sequence alignment between the cDNA of the mouse and 

human genes revealed that the two genes are 95% identical152. KDM6A is one of the few 

genes known to escape X chromosome inactivation in both mice and humans152,153. Thus, 

KDM6A is expressed at higher levels in females than in males48,153,154.  

The third member of the KDM6 family is KDM6C (UTY; Figure 7). UTY is a homologue 

of KDM6A with 83% sequence homology in humans, which is encoded on the Y 

chromosome152. The Y-linked homolog in males, which has a substitution of critical 

amino acids within the JmjC domain compared to KDM6A155, was reported to have 

reduced demethylase activity in vitro155 but appears to have no demethylase activity in 

vivo156. 

 

 

 

 

Figure 7 Schematic overview of the KDM6 protein family. Protein structures of KDM6A (UTX; 
NP_066963.2), KDM6B (JMJD3; NP_001335645.1) and KDM6C (UTY; NP_009056.3) are illustrated 
using IBS software157. Amino acid positions are indicated below the graphs. TPR, tetratricopeptide repeat; 
JmjC, Jumonji C. 



 Introduction  
	 	 	
	 	

	 18	

The H3K37 methylation status is mainly regulated by methyltransferase complex PRC2 

and the H3K27me2/3 demethylases KDM6A and KDM6B. KDM6A also associates with 

KMT2D (MLL2/MLL4) or KMT2C (MLL3) in the COMPASS (Complex of Proteins-

Associated with Set1)-like multi-protein complex responsible for H3K4 methylation 

(Figure 8)158,159. KMT2D methylates specific promoter regions, but also enhancer regions 

which can then be further activated by H3K27 acetyltransferases CBP/p300160–162. By 

removing the H3K27me3 mark, KDM6A appears to facilitate a stable interaction between 

H3 and members of the COMPASS complex, WDR5 and RbBP5, necessary for H3K4 

methylation163. Furthermore, the protein stability of KDM6A depends on KMT2D in 

ES cells164.  

 
 

 

Figure 8 The KMT2D protein complex. KDM6A is a member of the KMT2D (MLL2/MLL4) multi-
protein complex. KMT2D associates with NCOA6, PA1, PTIP, WDR5, RbBP5, ASH2L, DPY30, and 
KDM6A in one complex. KMT2D harbors a SET domain, which is responsible for H3K4 methyltransferase 
activity. KDM6A is a H3K27me2/me3 demethylase. H3K4 methylation and H3K27 demethylation is 
associated with transcriptionally active genes. Adapted from Froimchuk et al.158. 

 
 

1.2.3.1  KDM6A during embryonic development, hematopoiesis, and differentiation 

KDM6A is broadly expressed and is essential in a wide array of functions. During murine 

embryonic development, KDM6A functions are critical for cardiovascular development 

and neural tube closure. Homozygous knockout (KO) of KDM6A in females is mid-

gestational embryonic lethal with severe defects in the development of mesoderm-derived 

cardiac, posterior notochord, and hematopoietic tissues156,165–168. In comparison to 

KDM6A hemizygous males, KDM6A homozygous females demonstrated a significantly 

more severe embryonic phenotype suggesting a functional redundancy of KDM6A and 
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UTY during embryonic development156,166,167. Whereas some of these studies propose that 

H3K27 demethylation is non-essential for embryonic viability156 and ES cell 

differentiation into mesoderm167, other researchers conclude a demethylase activity-

dependent as well as -independent role for KDM6A in the activation of cardiac-specific 

genes165,166. For example, KDM6A was demonstrated to recruit the Brg1-containing 

chromatin remodeling SWI/SNF complex to the cardiac specific genes independent of its 

demethylase activity165.  

KDM6A is highly expressed in HSPCs, with lower expression in lineage-dedicated 

precursors and is a key factor for hematopoiesis167–169. Homozygous deletion in female 

adult mice resulted in myelodysplasia with reduced hemoglobin levels, anemia, and 

enlarged spleen168. KDM6A is also involved in the regulation of stem cell migration since 

loss of KDM6A in HSPCs promoted a strong reduction in cell migration capability168. In a 

study by Zheng et al.170, loss of KDM6A in mice causes a chronic myelomonocytic 

leukemia (CMML)-like disease by increasing hematopoietic stem cell self-renewal and 

differentiation. 

During retinoic acid-induced differentiation of teratocarinoma NT2/D1 and ES cells, 

KDM6A was found to participate in the transcriptional activation of HOX genes by 

reducing H3K27me3 levels at the promoters of these genes148. In primary human 

fibroblasts, in which HOX genes are differentially expressed, KDM6A was reported to be 

enriched around the transcription start sites of HOX genes and H3K27me3 levels at HOX 

promoters increased upon silencing of KDM6A151. KDM6A is also essential during early 

embryogenesis in Drosophila to prevent PRC2 mediated repression of HOX genes 

necessary for differentiation171. During myogenesis, KDM6A is targeted to regions 

upstream of the transcriptional start site of muscle-specific genes to mediate removal of 

H3K27me3 marks by a two-step mechanism172. After H3K27me3 demethylation near 

certain promoters, KDM6A appears to move across the coding regions with the RNA 

Polymerase II to facilitate demethylation172. 

KDM6A also plays an important role in cell fate regulation via Retinoblastoma (RB)-

dependent pathways173. Depletion of KDM6A provides cells with an immediate 

proliferative advantage by preventing the expression of RB-binding proteins, important for 

cell cycle arrest173.  
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1.2.3.2  Human diseases associated with the deregulation of KDM6A 

Deletions or mutations in the KDM6A gene were identified in a variety of human diseases. 

In recent years, KDM6A mutations have been found in a rare genetic disease called 

Kabuki syndrome (KS) that causes developmental delay and congenital anomalies174–177. 

Another, more frequently occurring, genetic cause of KS are heterozygous, nonsense and 

frameshift mutations in the KMT2D gene177–180. To date, a few cases with both KS and 

cancer have been reported, but whether KS predisposes individuals to cancer remains 

uncertain181,182. 

In 2009, KDM6A was the first described histone demethylase to be targeted by somatic 

inactivating mutations and deletions in human cancer145. Since then, several research 

groups have reported inactivating KDM6A mutations and deletions in a wide array of 

cancer types183–191 including leukemia153,192–195. In urothelial bladder cancer, it is the 

second most altered cancer-associated gene, after TP53186. In most cases, inactivating 

mutations and deletions were identified suggesting a tumor suppressor function for 

KDM6A. For instance, reduced expression or mutations/deletions of KDM6A correlate 

with poor overall survival in patients with CN-AML48 or myeloma191, respectively.  

Although KDM6A is a recurrent mutational target in a broad range of cancer types, the 

regulatory mechanisms of its tumor suppressor function seem to be diverse and specific 

for each tumor type. In KDM6A mutated urothelial bladder carcinoma, loss of the 

KDM6A demethylase-activity seems to create an EZH2 dependency in cell proliferation 

making these cells vulnerable to EZH2 inhibition189. A similar conclusion may be drawn 

from a study in T-cell ALL (T-ALL), in which T-ALL driven by KDM6A inactivation 

showed sensitivity to pharmacologic H3K27me3 inhibition153. In contrast, the tumor 

suppressor role of KDM6A in a subset of pancreatic cancer is largely independent of its 

catalytic function and KDM6A loss resulted in a deregulation of the COMPASS-like 

complex and aberrant activation of super-enhancers196. 

A recent study shed light on KDM6A´s role during myeloid leukemogenesis. In a mouse 

model, KDM6A was shown to prevent myeloid leukemogenesis through noncatalytic 

repression of pro-oncogenic ETS and maintenance of tumor-suppressive GATA 

transcriptional programs197. During the evolution to AML, the demethylase function of 

KDM6A appears to be redundant for tumor suppression and KDM6A operates by 

interacting with KMT2C/D-containing COMPASS complex and certain chromatin 

remodeling factors like SMARCA4, important for chromatin accessibility197. The Y-

linked homolog UTY facilitates KDM6A-similar noncatalytic functions during myeloid 
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leukemogenesis and can rescue KDM6A-deficient preleukemic phenotypes197. Depending 

on whether the demethylase activity is essential for pathogenesis, there appears to be a 

gender bias towards males (in T-ALL153) or females (in pancreatic cancer196 and myeloid 

leukemogenesis197). 

 
 

1.3  Aims of this work 

Although recent studies have reported a crucial role for the histone H3K27me3 

demethylase KDM6A in the development of cancer, its functions during clonal evolution 

of AML from diagnosis to relapse are still unresolved. Relapse of AML occurs in the 

majority of patients and drug resistance is likely to play an essential role in its 

development. It was the aim of this project to characterize the clonal evolution dynamics 

of KDM6A during AML progression and to investigate if KDM6A loss facilitates 

resistance to drugs that are commonly used in the induction therapy for AML. For this 

purpose, different silencing approaches including siRNA, shRNA and CRISPR/Cas9-

mediated gene editing were used to generate transient and stable KDM6A 

knockdown/knockout models in human myeloid leukemia cell lines. Furthermore, 

genomewide RNA expression analysis was performed to identify potential KDM6A target 

genes involved in chemotherapy resistance. 
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2  Materials and Methods 

2.1  Materials 

2.1.1  Reagents and chemicals 

Table 1  List of used reagents and chemicals. 

Reagent Supplier Product 
number 

1 kb DNA ladder Promega (Madison, WI, USA) G571A 
2-Mercaptoethanol Sigma-Aldrich (St. Louis, MO, USA) M3148  
2-Propanol AppliChem (Darmstadt, Germany) A3928 
Acetic acid Sigma-Aldrich (St. Louis, MO, USA) A6283 
Agarose Carl Roth (Karlsruhe, Germany) 2267.5 
Albumin Fraction V (pH 7.0) (BSA) AppliChem (Darmstadt, Germany) A1391 
Ammonium persulfate (APS) Carl Roth (Karlsruhe, Germany) 9592.3 
Ampicillin sodium salt Sigma-Aldrich (St. Louis, MO, USA) A0166 
Aprotinin Sigma-Aldrich (St. Louis, MO, USA) 10820 
Bio-Rad Protein Assay Dye R. Bio-Rad (Hercules, CA, USA) 5000006 
Bromophenol blue Sigma-Aldrich (St. Louis, MO, USA) B8026 
Calcium Chloride 2-hydrate AppliChem (Darmstadt, Germany) A4689 
CutSmart Buffer  New England Biolabs (Frankfurt, Germany) B7204S 
Coulter Clenz Cleaning Agent Beckman Coulter (Krefeld, Germany) 8546929 
Coulter Isoton II Diluent Beckman Coulter (Krefeld, Germany) 8546719 
DNase I Roche (Basel, CH) 4536282001 
DAPI Sigma-Aldrich (St. Louis, MO, USA) D9542 
DEPC-treated water Thermo Fisher Scientific (Waltham, MA, USA) 11531575 
DH5alpha competent bacteria Thermo Fisher Scientific (Waltham, MA, USA) 18265017 
Dimethyl Sulfoxide (DMSO) Sigma-Aldrich (St. Louis, MO,USA) D2438 
Dulbecco`s MEM (DMEM), high 
glucose, GibcoTM 

Thermo Fisher Scientific (Waltham, MA, USA) 31966021 

EcoRI New England Biolabs (Frankfurt, Germany) R0101S 
EcoRI-HF New England Biolabs (Frankfurt, Germany) R3101S 
EDTA Sigma-Aldrich (St. Louis, MO,USA) ED-500G 
Ethanol Merck Millipore (Darmstadt, Germany) 64-17-5 
Fast Digest BpiI Thermo Fisher Scientific (Waltham, MA, USA) FD1014 
Fast Digest HpyF10VI Thermo Fisher Scientific (Waltham, MA, USA) FD1734 
Fetal Bovine Serum (FBS) PAN-Biotech (Aidenbach, Germany)   P40-37500 
Gel Loading Dye Purple 6x New England Biolabs (Frankfurt, Germany) B7025S 
Glycerol AppliChem (Darmstadt, Germany) A4443.1000 
Glycine Sigma-Aldrich (St. Louis, MO, USA) G8898 
HBS 2x Sigma-Aldrich (St. Louis, MO, USA) 51558 
HEPES AppliChem (Darmstadt, Germany) A3724.0500 
Kanamycin Sulfate Sigma-Aldrich (St. Louis, MO, USA) K1377 
Kaliumchlorid KCl AppliChem (Darmstadt, Germany) A2939 
LB-Agar (Lennox) Carl Roth (Karlsruhe, Germany) X964.1 
LB-Medium (Lennox) Carl Roth (Karlsruhe, Germany) X965.1 
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L-Glutamine Sigma-Aldrich (St. Louis, MO, USA) G7513 
Lipofectamine 3000 Thermo Fisher Scientific (Waltham, MA, USA) L3000001 
Magnesium Chloride 6-hydrate AppliChem (Darmstadt, Germany) A4425 
Maxima H Minus Reverse 
Transcriptase 

Thermo Fisher Scientific (Waltham, MA, USA) EP0751 

Methanol Carl Roth (Karlsruhe, Germany) 8388.5 
Milk powder blotting grade Carl Roth (Karlsruhe, Germany) T145.1 
MyTaq Polymerase Bioline (London, UK) BIO-21105 
NEBufferTM 2.1 New England Biolabs (Frankfurt, Germany) B7201S 
NEBufferTM 3.1 New England Biolabs (Frankfurt, Germany) B7203S 
NEBufferTM 4 New England Biolabs (Frankfurt, Germany) B7204S 
Non-essential amino acids 10x Biochrom (Berlin, Germany) K0293 
NP40 Substitute AppliChem (Darmstadt, Germany) A1694 
Opti-MEM® I Reduced Serum 
Medium, GibcoTM 

Thermo Fisher Scientific (Waltham, MA, USA) 11058021 

PageRulerTM Prestained Protein 
Ladder 

Thermo Fisher Scientific (Waltham, MA, USA) 26616 
 

PBS Dulbecco w/o Mg2+, Ca2 PAN-Biotech (Aidenbach, Germany) P04-36500 
Penicillin-Streptomycin, GibcoTM Thermo Fisher Scientific (Waltham, MA, USA) 15140122 
peqGold Protein Marker VI Peqlab (Erlangen, Germany) 27-2310P 
Phenylmethylsulfonyl fluoride 
(PMSF) solution 

Sigma-Aldrich (St. Louis, MO, USA) 93482 

Pierce ECL Plus Western Blotting 
Substrate 

Thermo Fisher Scientific (Waltham, MA, USA) 32106 

Polybrene Sigma-Aldrich (St. Louis, MO, USA) H9268 
Propidium iodide (PI) Sigma-Aldrich (St. Louis, MO, USA) P4170 
Proteinase K New England Biolabs (Frankfurt, Germany) P8107S 
Quick-Load Purple 50bp DNA 
ladder 

New England Biolabs (Frankfurt, Germany) N0556S 

Recombinant Human FLT3 
(rhFLT3) Ligand  

R&D Systems (Minneapolis, MN, USA) PRD308 

Recombinant Human IL3 (rhIL3) 
protein 

R&D Systems (Minneapolis, MN, USA) 203-IL 

Recombinant Human 
Thrombopoietin (rhTPO) protein 

R&D Systems (Minneapolis, MN, USA) 288-TP 

Recombinant Human SCF (rhSCF) 
protein 

R&D Systems (Minneapolis, MN, USA) 255-SC 

RestoreTM PLUS Western Blot 
Stripping Buffer 

Thermo Fisher Scientific (Waltham, MA, USA) 46430 
 

RNase AWAY Carl Roth (Karlsruhe, Germany) 3865.1 
Rotiphorese gel 30 Carl Roth (Karlsruhe, Germany) 3029.1 
RPMI 1640 + Glutamax, Gibco Invitrogen (Darmstadt, Germany) 61870-044 
Sodium chloride NaCl Carl Roth (Karlsruhe, Germany) 3957.1 
Sodium dodecyl sulfate (SDS) Sigma-Aldrich (St. Louis, MO, USA) L4509 
Sodium fluoride NaF Sigma-Aldrich (St. Louis, MO, USA) 201154 
Sodium Orthovanadate Sigma-Aldrich (St. Louis, MO, USA) S-6508 
Sodium pyrophosphate decahydrate Sigma-Aldrich (St. Louis, MO, USA) 221368 
Sodium pyruvate 100mM Biochrom (Berlin, Germany) L0473 
S.O.C. Medium Invitrogen (Darmstadt, Germany) 15544-034 
StemPro-34 SFM Media Thermo Fisher Scientific (Waltham, MA, USA) 10639011 
SYBRTM Safe DNA gel stain Invitrogen (Darmstadt, Germany) S33102 
T4 DNA Ligase Promega (Madison, WI, USA) M1801 
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TAE Buffer 10x In-house  - 
TBE Buffer 10x Invitrogen (Darmstadt, Germany) 15581-028 
TBS Buffer 10x In-house  T03290 
Tetramethylethylenediamine 
(TEMED) 

Sigma-Aldrich (St. Louis, MO, USA) T9281 

Tris-(hydroxymethyl)-
aminomethane (TRIS) 

Carl Roth (Karlsruhe, Germany) AE15.2 

Triton X-100 Sigma-Aldrich (St. Louis, MO, USA) X100 
Trypan Blue Sigma-Aldrich (St. Louis, MO, USA) T8154 
Trypsin-EDTA (0.05%), phenol red Thermo Fisher Scientific (Waltham, MA, USA) 25300054 
Tween20 Sigma-Aldrich (St. Louis, MO, USA) P1379 
XhoI New England Biolabs (Frankfurt, Germany) R0146S 

 
 
 

2.1.2  Chemotherapeutic and targeted agents 

Stock solutions of cytarabine (Selleck Chemicals, Houston, TX, USA) at 20 mM, 6-

thioguanine (Sigma-Aldrich, St. Louis, MO, USA) at 20 mM, and MG132 (Calbiochem, 

Merck, Darmstadt, Germany) at 50 mM were prepared by dissolving the drugs in sterile 

DMSO under steril conditions. Daunorubicin was prepared at the in-house clinical 

pharmacy at 3.2 mM in sterile deionized water. To avoid repetitive freeze-thaw cycles, 

stock solutions were stored in aliquots at -80°C. Stock solutions were diluted with media 

to the required concentrations before each experiment. 

 

2.1.3  Buffers and solutions 

Table 2  List of used buffers. 

Name Composition 
Agarose gels 0.8-1.5% 0.8-1.5% agarose in 1x TAE or TBE buffer with SYBRTM 

Safe (1:10 000) 
Electrophorese buffer 10x 5 L: 151.4 g Tris (pH 8.3), 720.7 g Glycine, 50 g SDS, ad 

Aqua dest.  
KCM 5x 13 mL: 5 mL 3M KCl, 4,5 ml 1M CaCl2, 7.5 ml 1M 

MgCl2, ad Aqua dest.  
Lämmli buffer 4x 10mL: 1.33 mL 1.5M Tris-HCl (pH 6.8), 0.8 g SDS, 4 mL 

Glycerol, 0.4 mL 14.3M 2-Mercaptoethanol, 146 mg 
EDTA, 8 mg Bromophenol blue 

LB Agar 32 g in 1 L Aqua dest., autoclaved*1 

LBAmpicillin/Kanamycin plates Plates containing 20 mL LB Agar with 100 μg/mL 
Ampicillin or 25 μg/mL Kanamycin 

Luria Broth Base 25 g in 1 L Aqua dest., autoclaved*1 

Lysis buffer WCL*2 0.5 L: 25 mL 1 M Hepes (pH 7.5), 15 mL 5M NaCl, 2,5 
mL 200 mM EGTA, 100 mL Glycerol 50%, 5 mL 
TritonX-100, 2.1 g NaF, 2.23 g Na4P2O7x10H2O  
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Lysis buffer SC 50 mM TRIS/HCl (pH 7.5), 10 mM CaCl2, 1.7 µM SDS, 
50 µg/mL Proteinase K), 

TAE buffer 5 L: 242.3 g Tris, 57.1 mL acetic acid 100%, 18.61 g 
EDTA 2Na x 2H2O  

TBS 10x 5 L: 12.11 g Tris (pH 8.0), 87.66 g NaCl, add Aqua dest.  
TBST TBS 1x with 0.1% Tween20 
Transfer blotting solution 5 L: 15 g Tris, 71 g Glycine, 790 g Methanol, add Aqua 

dest.  
Tris-HCl 1.5M pH 6.8 5 L: 908.55 g Tris (pH 6.8), add Aqua dest.  
Tris-HCl 1.5M pH 8.8 5 L: 908.55 g Tris (pH 8.8), add Aqua dest. 

*1 Autoclave sterilization of media was performed at 120°C and 2 bar for 20 min.  
*2 The following inhibitors were added before use: 5 mM PMSF, 25 μg/mL Aprotinin,      
    50 μg/mL Sodium Orthovanadate. 
 
 
 

2.1.4  Kits 

Table 3  List of used kits. 

Kit Supplier Product 
number 

BigDyeTM Terminator v1.1 Cycle 
Sequencing Kit 

Thermo Fisher Scientific (Waltham, MA, 
USA) 

4337450 

Cell Line NucleofectorTM Kit V Lonza (Basel, CH) VVCA-1003 
EndoFree Plasmid Maxi Kit Qiagen (Hilden, Germany) 12362 
EpiQuik Total Histone Extraction Kit Epigentek (Farmingdale, NY, USA) OP-0006-100 
Gentra Puregene Kit Qiagen (Hilden, Germany) 158389 
In-Fusion® HD Cloning Plus Takara Bio (Saint-Germain-en-Laye, 

France) 
638909 

KAPA Hifi 2x ready mix Kapa Biosystems (Wilmington, MA, 
USA) 

KK2601  

Mouse Cell Depletion Kit Miltenyi Biotec (Bergisch Gladbach, 
Germany)  

130-104-694 

MycoAlert® Mycoplasma Detection Kit Lonza (Basel, CH) LT07-218 
Nextera XT DNA Library Preparation Kit Illumina (San Diego, CA, USA) FC-131-1024 
QIAamp DNA Blood Mini Kit Qiagen (Hilden, Germany) 51104 
QIAquick Gel Extraction Kit Qiagen (Hilden, Germany) 28106 
QIAquick PCR Purification Kit Qiagen (Hilden, Germany) 28104 
QIAprep Spin Miniprep Kit Qiagen (Hilden, Germany) 27104 
Qproteome Nuclear Protein Kit Qiagen (Hilden, Germany) 37582 
QuantiTect SYBR Green PCR Kit Qiagen (Hilden, Germany) 204141 
QuickChange II XL Site-Directed 
Mutagenesis 

Stratagene (La Jolla, CA, USA) 200521 

RNase-Free DNase Kit  Qiagen (Hilden, Germany) 79254 
RNeasy Mini Kit Qiagen (Hilden, Germany) 74104 
SALSA MLPA KDM6A probe mix   MRC Holland (Amsterdam, Netherlands) 

  
P445 

SuperScriptTM IV First-Strand Synthesis 
System 

Thermo Fisher Scientific (Waltham, MA, 
USA) 

18091050 
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2.1.5  Antibodies 

Respective primary and secondary antibodies (Table 4) were used for western blot 

analysis. 

 
Table 4  List of used primary and secondary antibodies. 

Antibody Supplier Product 
number 

Dilution 

Anti-β-Actin (AC-15)  Sigma-Aldrich (St. Louis, MO, 
USA) 

A5441 1:20000 

Anti-α-Tubulin mouse Sigma-Aldrich (St. Louis, MO, 
USA) 

T6199 1:20000 

Anti-HA-Tag (6E2) Cell Signaling Technology 
(Danvers, MA, USA 

2367 1:1000 

Anti-Histone H3  Abcam (Cambridge, UK) ab1791 1:5000 
Anti-KDM6A/UTX (3A2)* Abcam (Cambridge, UK) ab91231 1:1000 
Anti-KDM6A/UTX (D3Q1I) Cell Signaling Technology 

(Danvers, MA, USA 
33510 1:3000 

Anti-monomethyl-Histone H3 
Lys27 (H3K27me1) 

Merck (Darmstadt, Germany) 07-448 1:400 

Anti-dimethyl-Histone H3 
Lys27 (H3K27me2) 

Merck (Darmstadt, Germany) 07-452 1:750 

Anti-trimethyl-Histone H3 
Lys27 (H3K27me3) 

Merck (Darmstadt, Germany) 07-449 1:600 

Anti-trimethyl-Histone H3 
Lys27 (H3K27me3)  

Cell Signaling Technology 
(Danvers, MA, USA 

9733 1:1000 

Anti-Mouse IgG-HRP, goat Santa Cruz Biotechnology (Dallas, 
TX, USA) 

sc-2005 1:10000 

Anti-Mouse IgGκ BP-HRP Santa Cruz Biotechnology (Dallas, 
TX, USA) 

sc-516102 1:10000 

Anti-Rabbit IgG-HRP, goat Sigma-Aldrich (St. Louis, MO, 
USA) 

A0545 1:10000 

* was used at the beginning of this work. Immunoblots shown in this work were generated with #33510.  
 
 
 

2.1.6  Oligonucleotides 

Table 5  List of used primers. 

Name Sequence (5`to 3`) Application 
AML393_FOR CACGGATGAGGAAATTGACTCC PCR 
AML393_REV GGCATCTGTGTACATCTAGATTGTTCTTAG PCR 
AML393-Sanger_FOR CAGGCCTGCTGAGCATTG Sequencing 
AML393-Sanger_REV GAAACCAACAGTGGAGAGGG   Sequencing 
EZH2_FOR2 CCCTGACCTCTGTCTTACTTGTGGA qRT-PCR 
EZH2_REV2 ACGTCAGATGGTGCCAGCAATA qRT-PCR 
GAPDH_FOR AATGAAGGGGTCATTGATGG  qRT-PCR 
GAPDH_REV AAGGTGAAGGTCGGAGTCAA  qRT-PCR 
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HA-KDM6A_REV CTCCCTCTCCTCGGCTGT Sequencing 
InFus-pcDNA6-
KDM6A_FOR 

CAGTGTGGTGGAATTCCGACGGATCAATTCACC
ATGGCATAC 

Cloning: KDM6A 
in pcDNA6 vector 

InFus-pcDNA6-
KDM6A_REV 

GCCCTCTAGACTCGAGCCCTTTCAAGATGAGGC
GGATGGT 

Cloning: KDM6A 
in pcDNA6 vector 

KDM6A_FOR_1 CCAGAGGAAATATCATTCTGCAA Sequencing 
KDM6A_FOR_2 ATGCTGTGTCACATCCTCCA Sequencing 
KDM6A_FOR_3 ACCCTGCCTAGCAATTCAGT Sequencing 
KDM6A_FOR_4 CACCTCCAAGACCACCATCT Sequencing 
KDM6A_FOR_5 TCAGTTAACATAAATATTGGCCCAG Sequencing 
KDM6A_REV_1 GCATCCAACCTAACTGTTGTAAGA Sequencing  
KDM6A_KO_FOR GGGGTTAGCCTAGATGCTGTTC Screening 
KDM6A_KO_REV ATTGGCAATAATCTGCCCAAAACA Screening 
KDM6A_V1113Sfs38_
FOR 

CTGCTTTTGTGCGTGTCTCTATCAGCAGGAAAT
CT 

Site-directed 
mutagenesis 

KDM6A_V1113Sfs38_
REV 

AGATTTCCTGCTGATAGAGACACGCACAAAAG
CAG 

Site-directed 
mutagenesis 

KDM6A_L1103R_FOR GTTGCAGCTACATGAGCGGACTAA ACT 
TCCTGCTT 

Site-directed 
mutagenesis 

KDM6A_L1103R_REV AAGCAGGAAGTT 
TAGTCCGCTCATGTAGCTGCAAC 

Site-directed 
mutagenesis 

KDM6A E1325X_FOR TATATGGCATGGGCGGACAAAATAAGAACCAG
CTCA 

Site-directed 
mutagenesis 

KDM6A E1325X_REV TGAGCTGGTTCTTATTTTGTCCGCCCATGCCATA
TA 

Site-directed 
mutagenesis 

KDM6A H1146A_FOR CAGGGAGCAGAACACCAGGTGCTCAGGAAAAT
A ACAACT T 

Site-directed 
mutagenesis 

KDM6A H1146A_REV AAGTTGTTATTTTCCTGAGCACCTGGTGTTCTGC
TCCCTG 

Site-directed 
mutagenesis 

KDM6A_FOR TACAGGCTCAGTTGTGTAACCT  qRT-PCR 
KDM6A_REV  CTGCGGGAATTGGTAGGCTC  qRT-PCR 
KDM6B_FOR GGAGGCCACACGCTGCTAC  qRT-PCR 
KDM6B_REV GCCAGTATGAAAGTTCCAGAGCTG  qRT-PCR 
P5NEXTPT5 AATGATACGGCGACCACCGAGATCTACACTCTT

TCCCTACACGACGCTCTTCCG*A*T*C*T* 
RNA-Seq 

pU6_FOR  GAGGGCCTATTTCCCATGATTC Sequencing Cas9 
UTY_FOR TTAGCCTGACAGTCGAGGAAA qRT-PCR 
UTY_REV GTAGGGTCTTCGTTCTGGCG qRT-PCR 
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Table 6  List of used siRNA’s, shRNA’s and gRNA. 

Name Sequence (5`to 3`) Origin 
gRNA KDM6A GGTATGCAGATAATGCTGAA  This work 
Stealth siRNA KDM6A 
HS111232 

GCAAAUGUUCCAGUGUAUAGGUUUA Thermo Fisher Scientific 
(Waltham, MA, USA) 

Stealth siRNA negative 
ctrl, low GC 

NA Thermo Fisher Scientific 
(Waltham, MA, USA) 

shRNA KDM6A #3 TACTTGAATAGCACCTTCCGA I. Jeremias, Helmholtz 
Zentrum München 

shRNA KDM6A #4 TTTAATGGCATCCTGAGGCTG I. Jeremias, Helmholtz 
Zentrum München 

shRNA KDM6A #7 TTTATCAATAGACTGCCTGTA I. Jeremias, Helmholtz 
Zentrum München 

shRNA Renilla, control TAGATAAGCATTATAATTCCT I. Jeremias, Helmholtz 
Zentrum München 

shRNA eGFP, control CAGCCACAACGTCTATATCAT I. Jeremias, Helmholtz 
Zentrum München 

NA, not available. 
 
 

2.1.7  Plasmids 

Table 7  List of used plasmids. 

Name Application Origin 
pCDH-EF1α-MCS-T2A-
copGFP (CD521A-1) 

Lentivirus expression System Biosciences (Palo 
Alto, CA, USA) 

pcDNA6/V5-His A Expression vector Thermo Fisher Scientific 
(Waltham, MA, USA) 

pcDNA6 HA KDM6A HA KDM6A expression This work 
pcDNA6 HA KDM6A H1146A HA KDM6A H1146A expression This work 
pcDNA6 HA KDM6A L1103R HA KDM6A L1103R expression This work 
pcDNA6 HA KDM6A 
V1113Sfs*38 

HA KDM6A V1113Sfs*38 
expression 

This work 

pcDNA6 HA KDM6A E1325X HA KDM6A E1325X expression This work 
pCMV-HA-UTX Cloning of HA KDM6A Kristian Helin; Addgene 

plasmid #24168 
pSpCas9(BB)-2A-GFP (PX458) Cas9-eGFP and backbone for gRNA 

expression 
Feng Zhang; Addgene 
plasmid #48138 

pSpCas9(BB)-2A-GFP-gRNA-
KDM6A 

Cas9-eGFP and gRNA KDM6A 
expression 

This work 

TRMPVIR Extraction of dsRED-miR30 
fragment 

Scott Lowe; Addgene plasmid 
#27994 
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2.1.8  Cell lines and patient-derived xenograft AML cells 

Human cancer cell lines and patient-derived xenograft (PDX) AML cells used for the 

experiments are shown in Table 8 and 9, respectively. As indicated in Table 8, certain cell 

lines were not cultured, but their genomic DNA (gDNA) was obtained from the German 

Collection of  Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). 

 
Table 8  List of used cell lines. All cell lines were obtained from the DSMZ. 

Name Cell Type Gender gDNA/culture 
AP-1060 AML male gDNA 
Eol-1 AML male culture 
F-36P AML male gDNA 
FKH-1 AML male gDNA 
GF-D8 AML male gDNA 
HEK293T embryonic kidney female culture 
HL-60 AML female culture 
HNT-34 AML female gDNA 
HT-93 AML male gDNA 
K562 CML in blast crisis female culture 
Kasumi-1 AML male culture 
Kasumi-3 AML male gDNA 
KG-1a AML male gDNA 
M-07e acute megakaryoblastic leukemia female gDNA 
ME-1 AML male gDNA 
MEGAL acute megakaryoblastic leukemia n.s. gDNA 
MKPL-1 acute megakaryoblastic leukemia male gDNA 
MONO-MAC-1 (MM-
1) 

acute monocytic leukemia male culture 

MONO-MAC-6 (MM-
6) 

acute monocytic leukemia male culture 

Molm-13 AML male culture 
Molm14 (sister Molm-
13) 

AML male gDNA 

Molm16 AML female gDNA 
MUTZ-2 AML male gDNA 
MUTZ-3 acute myelomonocytic leukemia male gDNA 
MV4-11 acute monocytic leukemia male culture 
NB-4 acute promyelocytic leukemia female culture 
OCI-AML1 AML female gDNA 
OCI-AML3 AML male culture 
OCI-AML4 AML female gDNA 
OCI-AML5 AML male culture 
OCI-AML6 sAML female gDNA 
OCI-M1 AML NA gDNA 
PLB-985  AML female gDNA 
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SKM-1 AML male gDNA 
SKNO-1 AML male gDNA 
TF-1 erythroleukemia male gDNA 
THP-1 acute monocytic leukemia male culture 
U-937 histiocytic lymphoma male culture 
UCSD-AML1 AML female gDNA 
UOC-M1 AML male gDNA 
UT-7 AML male gDNA 
YNH-1 AML male gDNA 

NA, not available. 
 
 
 
 
Table 9  List of used PDX AML cells. PDX AML cells were a gift from I. Jeremias (Helmholtz Zentrum 
München)51. All samples were established from patients with AML. 

Sample Disease 
stage 

Sex Cytogenetics NPM1 FLT3 ELN 

AML-372 Relapse M Complex, including -17 WT WT Adv 
AML-393 Relapse 

after SCT 
F 46,XX,ins(10;11)(p12;q23q23) WT WT Adv 

AML-407 Relapse 
after SCT 

F 47,XX,t(4;8)(p15;q22),+12 WT WT Adv 

AML-415 Relapse F Normal Mut ITD Int I 
AML-491 Relapse F Aberrant WT WT Adv 
AML-538 Relapse F Normal WT WT Int I 
AML-573 Relapse F NA NA ITD Int I 
AML-579 Relapse M Normal Mut ITD Int I 

SCT, stem cell transplantation; NPM1, nucleophosmin-1; WT, wild type; Mut, mutated; FLT3, Fms-related 
tyrosine kinase 3; ITD, internal tandem duplication; ELN, European LeukemiaNet classification system; Int 
I, intermediate I; Adv, adverse; F, female; M, male; NA, not available; ND, not determined. 
 

 

 

2.1.9  Genomic DNA 

The following human gDNA was used as control samples for MLPA analysis: female 

G1521 (Promega, Madison, WI, USA), female D1234999-G02, and male D1234999-G01 

(Biochain, Newark, CA, USA). 

 

2.1.10  Patient samples 

The analysis was based on samples from AML patients from the AMLCG-99 trial 

(NCT00266136), AMLCG-2008 trial (NCT01382147), and the Department of Medicine 

III, University Hospital, LMU. The institutional review boards of the participating centers 
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approved the studies and informed consent for scientific use of sample material was 

received from all study participants in accordance with the Declaration of Helsinki. 

Diagnostic and relapse samples had at least 50% blasts by morphology.  

 

2.1.11  Laboratory equipment and consumables 

Table 10  List of used equipment. 

Device Supplier 
ABI Prism 3500 XL Genetic Analyzer Applied Biosystems (Foster City, CA, USA) 
Amaxa Nucleofector II device Lonza (Basel, CH) 
Analytical balance ABJ 220-4NM Kern & Sohn (Balingen-Frommern, Germany) 
BioPhotometer® Eppendorf (Hamburg, Germany) 
Bio-Rad Mini Protean Tetra system Biorad (Hercules, CA, USA) 
Centrifuge 5415D, 5424R Eppendorf (Hamburg, Germany) 
Centri-SepTM Spin Columns Thermo Fisher Scientific (Waltham, MA, USA) 
CO2 incubator C 170 BINDER (Tuttlingen, Germany) 
E-BOX VX2 Vilber Lourmat (Eberhardzell, Germany) 
FACSCantoTM II BD Biosciences (Franklin Lakes, NJ, USA) 
FACSVantage SE (sorting cells) BD Biosciences (Franklin Lakes, NJ, USA) 
Fluorescent microscope DMi8 Leica Microsystems (Wetzlar, Germany) 
Freezer -20°C Liebherr, (Biberach, Germany) 
Freezer -80°C, TLE Thermo Fisher Scientific (Waltham, MA, USA) 
Freezing container Mr. FrostyTM Thermo Fisher Scientific (Waltham, MA, USA) 
Fusion SL4 imaging system Vilber Lourmat (Eberhardzell, Germany) 
Heating block Thermomixer compact Eppendorf (Hamburg, Germany) 
HeraeusTM MultifugeTM X1R Centrifuge Thermo Fisher Scientific (Waltham, MA, USA) 
Ice machine FM-170AKE Hoshizaki (Amsterdam, NL) 
Illumina HiSeq 1500 Illumina (San Diego, CA, USA) 
Incubator 9040-0013 Binder (Tuttlingen, Germany) 
Light Cycler 480 II Roche (Basel, CH) 
Liquid Nitrogen Tank Cryoson (Schökrippen, Germany) 
Magnetic stirrer MR3001 Heidolph (Schwabach, Germany) 
Microplate reader GloMax® Discover Promega (Madison, WI, USA) 
Microscope ID03 Carl Zeiss (Oberkochen, Germany) 
Mini Incubator Labnet International (Edison, NJ, USA) 
PCR cycler PeqSTAR 2xGradient Peqlab (Wilmington, DE, USA) 
pH meter inoLab®  pH 7110 WTW (Weilheim, Germany) 
Pipettes (0.25-2.00 μL, 2.0-20.0 μL, 20-200 μL, 
200-1000 μL) 

Gilson (Limburg, Germany) 

Pipetus accu-jet pro® Brand (Wertheim, Germany) 
Precision scale PCB 2500-2 Kern & Sohn (Balingen-Frommern, Germany) 
Q-POD® Remote Dispenser Merck Millipore (Darmstadt, Germany) 
RS-TR 5 Tube-roller Phoenix instrument (Garbsen, Germany) 
Spectrophotometer Nanodrop 1000 Thermo Fisher Scientific (Waltham, MA, USA) 
Ultrapure water system Milli-QTM Reference 
System 

Merck Millipore (Darmstadt, Germany) 

VARIOKLAV® Type 500 HP Medizintechnik (Oberschleißheim, Germany) 
Vertical Autoclave VX-150 Systec (Linden, Germany) 
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Vi-CELLTM Cell Viability Analyzer XR Beckman Coulter (Krefeld, Germany) 
Vortexer Cenco (Breda, NL)  
Water Bath Type 1003 GFL (Burgwedel, Germany) 
Xcell SureLock Mini Cell for SDS gel 
electrophoresis 

Invitrogen (Darmstadt, Germany) 

 

 

 
Table 11  List of used consumables. 

Consumable Product 
number 

Supplier 

5 mL Round Bottom Polystyrene Test 
Tube, Falcon® 

352058 Thermo Fisher Scientific (Waltham, MA, 
USA) 

5 mL Stripette® Serological Pipets 4487 Corning (Corning, NY, USA) 
10 mL Stripette® Serological Pipets 4488 Corning (Corning, NY, USA) 

25 mL Serological Pipets 760180 Greiner Bio One (Frickenhausen, Germany) 
96-well Lightcycler plate 721982.202 Sarstedt (Nümbrecht, Germany) 
96-well PCR plate 781400 Brand (Wertheim, Germany) 
96-well Solid White PS Microplate 07-200-628 Corning (Corning, NY, USA) 

96-well V-bottom, Greiner M9686 Sigma-Aldrich (St. Louis, MO, USA) 
Amersham Protran Nitrocellulose 
membrane, 0.45 μM  

10600012 GE Healthcare (Little Chalfont, UK) 

Combitips advanced® 0.5 mL 0030089634 Eppendorf (Hamburg, Germany) 
Combitips advanced® 1.0 mL 0030089642 Eppendorf (Hamburg, Germany) 
Combitips advanced® 5.0 mL 0030089669 Eppendorf (Hamburg, Germany) 
Diamond Tower Pack D10 F167101 Gilson (Middleton, WI, USA) 
Diamond Tower Pack D200 F167103 Gilson (Middleton, WI, USA) 
Diamond Tower Pack D1000 F167104 Gilson (Middleton, WI, USA) 
Disposable bags 759710 Brand (Wertheim, Germany) 
DURAN® GL 45 Lab Bottles (10 mL, 
250 mL, 500 mL, 1000 mL) 

21801 DURAN Group (Mainz, Germany) 

DURAN® Erlenmeyer flasks (25 mL, 50 
mL, 250 mL, 500 mL, 1000 mL) 

21216 DURAN Group (Mainz, Germany) 

Sorenson low binding standard tips Z719595 Sigma-Aldrich (St. Louis, MO, USA) 
Gel-loading pipet tips  CSL4853 Sigma-Aldrich (St. Louis, MO, USA) 
Micro tube 1.5 mL SafeSeal 72.706.400 Sarstedt (Nümbrecht, Germany) 
Micro tube 2.0 mL SafeSeal 72.695.400 Sarstedt (Nümbrecht, Germany) 
Mr. FrostyTM Freezing Container 5100-0001 Thermo Fisher Scientific (Waltham, MA, 

USA) 
Novex Empty Gel Cassette, mini, 1.0 
mm 

NC2010 Thermo Fisher Scientific (Waltham, MA, 
USA) 

NuncTM Cryo Tube Vial 375418 Thermo Fisher Scientific (Waltham, MA, 
USA) 

PARAFILM® M P7793 Sigma-Aldrich (St. Louis, MO, USA) 
PCR tubes 0.2 mL 710988 Biozym Scientific (Oldendorf, Germany) 
Petri dish 10cm 82.1135.500 Sarstedt (Nümbrecht, Germany) 
QIAshredder 79656 Qiagen (Hilden, Germany) 
Sealing Tape, optically clear 95.1994 Sarstedt (Nümbrecht, Germany) 
TC Dish 100 standard 83.3902 Sarstedt (Nümbrecht, Germany) 
TC Flask T25, standard, Vent. Cap 83.3910.002 Sarstedt (Nümbrecht, Germany) 
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TC Flask T75, standard, Vent. Cap 83.3911.002 Sarstedt (Nümbrecht, Germany) 
TC Flask T175, standard, Vent. Cap 83.3912.002 Sarstedt (Nümbrecht, Germany) 
TC Flask T25, suspension, Vent. Cap  
TC Flask T75, suspension, Vent. Cap  
TC Flask T175, suspension, Vent. Cap  
TC Plate 6-well, standard 

83.3910.502 
83.3911.502 
83.3912.502 
83.3920 

Sarstedt (Nümbrecht, Germany) 
Sarstedt (Nümbrecht, Germany) 
Sarstedt (Nümbrecht, Germany) 
Sarstedt (Nümbrecht, Germany) 

TC Plate 12-well, standard 83.3921 Sarstedt (Nümbrecht, Germany) 
TC Plate 24-well, standard 83.3922 Sarstedt (Nümbrecht, Germany) 
TC Plate 48-well, standard 83.3923 Sarstedt (Nümbrecht, Germany) 
TC Plate 96-well, standard 83.3924 Sarstedt (Nümbrecht, Germany) 
TC Plate 6-well, suspension 83.3920.500 Sarstedt (Nümbrecht, Germany) 
TC Plate 12-well, suspension 83.3921.500 Sarstedt (Nümbrecht, Germany) 
TC Plate 24-well, suspension 83.3922.500 Sarstedt (Nümbrecht, Germany) 
TC Plate 48-well, suspension 83.3923.500 Sarstedt (Nümbrecht, Germany) 
TC Plate 96-well, suspension 83.3924.500 Sarstedt (Nümbrecht, Germany) 
Tube 15ml, 120x17mm, PP 62.554.502 Sarstedt (Nümbrecht, Germany) 
Tube 50ml, 114x28mm, PP 62.547.254 Sarstedt (Nümbrecht, Germany) 
Vasco® Nitrile Blue 9209825 B. Braun (Melsungen, Germany) 

 

 

2.1.12  Software and Programs 

Table 12  List of used software and programs. 

Application Software Developer/Link 
Agarose gel documentation E-Capt 15.06 Vilber Lourmat (Eberhardzell, 

Germany) 
Data visualization and statistical 
analysis 

GraphPad Prism 6.07 GraphPad Software (La Jolla, 
CA, USA) 

DNA cloning and vector map 
visualization 

SnapGene 3.3.4 GSL Biotech LLC (Chicago, 
IL, USA) 

Flow cytometry data analysis FlowJo 10.1r5 FlowJo, LLC (Ashland, OR, 
USA)  

Flow cytometry setup and data 
acquisition 

FACSDivaTM 8.0.1 BD Biosciences (Franklin 
Lakes, NJ, USA) 

Gel visualization and Western Blot 
analysis 

ImageJ version 1.50d ImageJ developers, 
www.imagej.net 

Manuscript preparation and analysis Microsoft Office 2010 Microsoft (Redmond, WA, 
USA)  

Mapping STAR version 2.5.2b STAR198 
MLPA analysis CoffalyserNet v140721.1958 MRC Holland (Amsterdam, 

NL) 
Molecular biology and NGS analysis Geneious 8.1.7   Biomatters Ltd (Auckland, 

NZ) 
Multiple usage NCBI database www.ncbi.nlm.nih.gov 
Preparation of protein domain graphs IBS 1.0 CUCKOO Workgroup157 
Reference manager Mendeley Toolbar 1.19.2 Mendeley Ltd., Elsevier 
RNA-Seq analysis R program www.R-project.org 
Western Blot analysis FusionCapt Advance 16.11 Vilber Lourmat (Eberhardzell, 

Germany) 
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2.2  Methods 

2.2.1  Molecular biology methods 

2.2.1.1  Chemical Transformation of recombinant bacteria 

An aliquot of 50 μL of recombinant DH5α E.coli bacteria was thawed on ice. 25 μL of 

recombinant bacteria were then gently added to a chilled tube containing 1 μL of plasmid 

DNA, 14 μL water and 10 μL 5xKCM. After 20 min on ice followed by 10 min at RT, 250 

μL LB media was added and cells were incubated at 37°C for 1h at 220rpm. 100-150 μL 

of bacteria suspension was then plated on a pre-warmed LBAmpicillin/Kanamycin plate and 

incubated at 37°C over night. On the next day, single colonies were picked for further 

expansion and subsequent plasmid DNA extraction. 

 

2.2.1.2  Preparation of plasmid DNA 

To isolate plasmid DNA from bacteria, the alkaline lysis extraction method was applied. 

For extraction of small amounts of plasmid DNA, a single colony was picked and 

incubated in 2 mL LBAmpicillin/Kanamycin media for 8 to 10h at 37°C and 220 rpm. Plasmid 

DNA was extracted with QIAprep Spin Miniprep Kit according to the manufacturer`s 

instructions, dissolved in EB buffer and stored at -20°C. For extraction of large amounts 

of plasmid DNA, a single colony was picked and incubated in 2 mL LBAmpicillin/Kanamycin 

media for 8h at 37°C and 220 rpm. Bacteria suspension was then added to 100-200mL 

LBAmpicillin/Kanamycin media and incubated over night at 37°C and 220rpm. On the following 

day, plasmid DNA was extracted with Endofree Plasmid Maxi Kit according to the 

manufacturer`s instructions and dissolved in 200 μL TE buffer or water over night at 4°C. 

Concentration and purity of plasmid DNA was determined with spectrophotometer 

Nanodrop 1000. Aliquots of plasmid DNA were stored at -20°C. 

 

2.2.1.4  Restriction digestion 

Before sequencing, plasmid DNA constructs were screened for correct vector and insert 

size as well as successful mutagenesis by digestion with restriction enzymes and 

subsequent electrophoretic DNA separation. Reaction mixture containing the following 

components was incubated for at least 3h at 37°C. 
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 1 μg Plasmid DNA     x μL 

 Restriction enzyme [20 000 u/μL]  1 μL 

 Restriction buffer [10x]   2 μL 

 H2O      x μL 

 total volume     20 μL 

 

 

2.2.1.5  Electrophoretic DNA separation 

To separate DNA fragments by size for visualization or purification/extraction, gel 

electrophoresis was used. Depending on the fragment size, 0.8 to 1.5% agarose gels were 

used. Agarose was dissolved in 1xTAE or 1xTBE buffer with SYBRTM Safe DNA gel 

stain (1:10 000) by heating the flask in a microwave oven using 40-50 sec intervals and 

gentle swirling between intervals until the agarose was completely dissolved. Solution was 

cooled down to 50-60°C before pouring the gel into a gel tray. After 20-30 min when the 

gel was completely solidified, the agarose gel was placed into the gel box, the comb was 

removed and the gel box was filled with 1xTAE or 1xTBE buffer. DNA samples with 1:6 

Gel Loading Dye were loaded into wells of the gel together with a molecular weight 

ladder into the first or last lane of the gel. Gel was run at 80-120 V for 30-50 min and 

DNA fragments were visualized with UV light. SYBRTM Safe DNA gel stain interacts 

with the DNA backbone and can be seen under UV light. 

 

2.2.1.6  DNA purification 

During cloning, DNA fragments were either directly purified with QIAquick PCR 

Purification Kit according to the manufacturer`s instructions. If more than one DNA 

fragment was detectable, the desired DNA fragment was sliced from the agarose gel, 

placed in a labeled microfuge tube and isolated using the QIAquick Gel Extraction Kit 

according to the manufacturer`s instructions. 

 

2.2.1.7  DNA cloning 

Human full-length KDM6A with N-terminal HA Tag was amplified from pCMV-HA-

UTX and cloned into the pcDNA6/V5-His A vector with the In-Fusion® HD Cloning Plus 

Kit according to the manufacturer`s instructions.  
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Lentiviruses expressing KDM6A-targeting shRNA’s or non-target control shRNA 

targeting Renilla or eGFP (Table 6) were generated in the laboratory of Irmela Jeremias 

(Helmholtz Zentrum München, Germany) by cloning into a modified pCDH-EF1α-MCS-

T2A-copGFP vector. To enhance the shRNA expression, the EF1α promoter was replaced 

by the viral promoter SFFV. The dsRED-miR30 fragment was amplified from the 

TRMPVIR vector and cloned into the pCDH-SFFV-MCS-T2A-copGFP vector. The 

22mer shRNA target sequences were synthetized as part of 110 bp ss-DNA oligos 

(Eurofins Scientific, Luxembourg), annealed and cloned into the vector using XhoI and 

EcoRI.  

For generation of KDM6A knockout clones, KDM6A specific gRNA targeting the splice 

site at the intron 3 and exon 4 border of KDM6A was designed using Benchling software 

and cloned into pSpCas9(BB)-2A-GFP vector. KDM6A gRNA forward and reverse strand 

(100 µM) were annealed in NEB4 buffer at 95°C for 5 min followed by a slow cool down 

to RT. Ligation of annealed gRNA was performed as follows: 

 

pSpCas9(BB)-2A-GFP  250 ng 

Annealed Oligo [1:100]  0.3 µL 

FastDigest BpiI   1 µL 

T4 Ligase HC [20 u/µL]  1.5 µL 

T4 Buffer [10x]   2 µL 

 H2O     x µL 

 total volume    20 µL 

 

Reactions were run with the following cycling settings: [37°C/5 min - 20°C/5 min] x 55 - 

37°C/60 min - 65°C/10 min - 4°C/∞. 1 µL of FastDigest BpiI was added and reaction was 

incubated at 37°C for 1h. Recombinant DH5α E.coli bacteria were then transformed with 

1 µL of ligation reaction mixture. Correct sequence was confirmed by Sanger sequencing. 

 

2.2.1.8  Mutagenesis 

KDM6A mutations H1146A, L1103R, V1113Sfs*38 and E1325X were generated using 

the QuikChange II XL Site-Directed Mutagenesis Kit according to the manufacturer`s 

instructions. Briefly, 50 ng of pcDNA6 HA KDM6A plasmid was amplified with 
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oligonucleotides containing the desired mutation. Correct sequence was confirmed by 

Sanger sequencing. 

 

2.2.1.9  Sequencing 

2.2.1.9.1  Sanger sequencing 

Sequencing of plasmid DNA or PCR products was performed by the service-company 

Sequiserve (Vaterstetten, Germany). Somatic mutation E1325X was verified by Sanger 

sequencing both DNA strands of PCR-amplified gDNA using 3500/3500xL Genetic 

Analyzer. First, PCR was performed with AML393_FOR and AML393-REV primer 

located in the exon 27 flanking introns. The 790-bp PCR product was then purified with 

QIAquick PCR Purification Kit followed by a second PCR and sequence analysis with 

AML393-Sanger_FOR and AML393-Sanger_REV primer yielding a 373bp PCR product. 

For the second PCR, reaction mixture (6 µL PCR grade water, 2 µL Big Dye Terminator 

v1.1, and 1 µL 10 µM AML393-Sanger_FOR or REV primer) was mixed with 1 µL of 

purified PCR product (80 ng/µL) from the first PCR reaction. Samples were run on a 

thermo cycler with the following cycling settings: 95°C/1 min - 96°C/30s - 50°C/30s - 

60°C/4 min - 4°C/∞. Samples were purified with a Centri-SepTM spin column and then 

Sanger sequenced using 3500/3500xL Genetic Analyzer. 

 

2.2.1.9.2  Targeted sequencing 

Targeted, multiplexed amplicon resequencing covering the entire open-reading frame of 

KDM6A and mutational hotspots/entire open-reading frame of genes known to be 

recurrently mutated in myeloid malignancies was performed as described previously51. 

 

2.2.1.10  Extraction of genomic DNA 

Genomic DNA (gDNA) of 5x106 cells was isolated with the QIAamp DNA Blood Mini Kit 

manually or using a Qiacube instrument (Qiagen GmbH).  

 

2.2.1.11  Multiplex Ligation-dependent Probe Amplification (MLPA) analysis 

To screen AML cell lines or PDX samples for KDM6A exon deletions, MLPA analysis 

was carried out using the SALSA MLPA P445 KDM6A probe mix according to the 
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manufacturer’s recommendations. 50 ng of purified gDNA was used as starting material. 

After hybridization, ligation and amplification steps, products were run on an ABI Prism 

3500 XL Genetic Analyzer. The ratio of each relative probe signal from cell lines 

compared to human control samples (G1521, D1234999-G02, and D1234999-G01) was 

calculated.  

 

2.2.1.12  Numerical aberrations 

To identify and validate numerical KDM6A aberrations in AML cell lines, CytoScan HD 

Array (Affymetrix, Santa Clara, CA, USA) hybridization analysis was performed at the 

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany). The gDNA was prepared using the Gentra Puregene Kit. 

Labeling, hybridization and scanning were performed at the Genome Analytics Facility, 

Helmholtz Centre for Infection Research (Braunschweig, Germany), all according to the 

manufacturer´s protocol (Affymetrix). Data were analyzed by H. Quentmeier at the 

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany) using the Chromosome Analysis Suite software version 2.0.1.2 

(Affymetrix). 

 

2.2.1.13  RNA isolation 

Total RNA was isolated from 3-5x106 cells using the RNeasy Mini Kit together with the 

RNase-Free DNase Kit according to the manufacturer`s instructions. For homogenization 

of samples, QIAshredder columns were used. 

 

2.2.1.14  cDNA synthesis 

cDNA was synthesized by reverse transcription (RT) with the SuperScriptTM IV First-

Strand Synthesis System. 

 

 1 μg total RNA   x μL 

 10 mM dNTP Mix   1 μL 

Oligo (dT)18 primer   1 μL 

H2O     x μL 

 total volume    15 μL 
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Reaction mixture was incubated at 65°C for 5 min and the following reagents were added. 

 

 RevertAidTM Premium Enzyme Mix 1 μL 

 RT buffer [5x]    4 μL 

 

For cDNA synthesis, reaction mixture was incubated for 30 min at 50°C followed by 5min 

at 85°C. cDNA was stored at -20°C. 

 

2.2.1.15  Quantitative real-time PCR 

qRT-PCR assays were performed with QuantiTect SYBR Green PCR Kit using 500 ng of 

cDNA and the appropriate primers. 9 μL of reaction mixture containing SYBR Green Mix 

and primers was transferred into wells of a 96-well plate and 1 μL of cDNA [500 ng/μL] 

was added.  

 

 QuantiTect SYBR Green PCR Master [2x]  5 μL 

 Primer FOR [10 μM]     0.3 μL 

 Primer REV [10 μM]     0.3 μL 

H2O       x μL    

 total volume      10 μL  

  

Reactions were run on a Light Cycler 480 II with the following cycling settings: 

95°C/15 min - [94°C/15s - 57°C/30s - 72°C/30s] x 45 - 40°C/30s - 4°C/∞. Fold changes 

were calculated using the ΔΔCt method and normalized against GAPDH expression.  

  

2.2.1.16  RNA Sequencing 

2.2.1.16.1  Library preparation and sequencing 

To construct bulk libraries from the prior isolated mRNA, a protocol adapted from the 

SCRB-seq method was used199. 50 ng of mRNA was reverse transcribed using Maxima H 

Minus Reverse Transcriptase and tagged with sample-specific barcodes and unique 

molecular identifiers (UMIs). Only 2 µM of the E3V6NEXT was used. Samples were 

pooled and purified by SPRI beads, followed by an Exonuclease I treatment to digest 

unattached primers. Full-length cDNA was pre-amplified by single primer PCR for 
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10 cycles with the modification of using KAPA Hifi 2x ready mix kit. For the Nextera XT 

DNA Library Preparation kit 4 ng of cDNA was used as input and library preparation 

performed according to the manufacturer’s protocol, with the only exception of using a 

custom i5 primer (P5NEXTPT5). Sequencing was performed on an Illumina HiSeq 1500 

on a flow cell with single end layout utilizing the standard Illumina sequencing primers 

and index primers. Sample reads were sequenced using 50 cycles and the UMI sequence 

using 16 cycles.  

 

2.2.1.16.2  Data Processing 

To obtain expression data the raw fastq files were processed by the zUMIs pipeline using 

default parameters200. Mapping to the human reference genome hg38 was performed by 

STAR198 (version 2.5.2b) and the gene annotation GRCh38.84 was taken from Ensembl. 

Differential expression analysis was performed using limma201. For this analysis genes 

with a read count below 10 in all of the samples were filtered out and library sizes scaled 

using the package edgeR202. Count data was transformed to log2-counts per million and 

the mean variance calculated to compute the precision weights. In order to increase 

statistical power empirical Bayes moderation was applied and the false discovery rate 

calculated by the Benjamini-Hochberg procedure. 

 

 

2.2.2  Cell biology methods 

2.2.2.1  Cell culture cultivation and handling 

All cells were grown and maintained under conventional cell culture conditions at 37°C 

and 5% CO2. Cells were cultured according to the supplier’s recommendation (DSMZ, 

Braunschweig, Germany). Before use, medium and trypsin were warmed to 37°C in a 

water bath. 

Suspension cells were cultured in RPMI-1640 medium supplemented with 20% (v/v) FBS 

and 0.5% (v/v) Penicillin/Streptomycin. For culturing MM-1 and MM-6 cells, medium 

was additionally supplemented with 1 mM sodium pyruvate and 1 x Non-essential amino 

acids. To passage suspension cells, the amount of viable cells was counted on Vi-CELLTM 

Cell Viability Analyzer XR with Trypan Blue exclusion every 2-3 days. Fresh medium 
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together with cell suspension in an appropriate ratio (e.g. 3:1; 4:1; or 5:1) was placed in a 

new flask.   

HEK293T cells were cultured in DMEM medium supplemented with 10% (v/v) FBS and 

0.5% (v/v) Penicillin/Streptomycin. To passage HEK293T cells that are grown to 80-90% 

confluence, cells were gently washed with PBS and incubated in trypsin-EDTA solution 

for 5 min at 37°C in the incubator. After detachment of cells, medium in a 1:4 ratio was 

added to inactivate trypsin and the cell suspension was transferred to a conical tube. Cells 

were centrifuged (1100 rpm, 5 min, RT), resuspended in fresh medium and placed in a TC 

flask. 

PDX AML samples were established and recovered from mice as previously 

described51.PDX cells were enriched with the mouse cell depletion kit according to the 

supplier’s recommendation. For in vitro cultivation, PDX cells were kept in DD medium 

according to a previously described recommendation203 for up to 7 days. DD medium 

contained StemPro-34 SFM media supplemented with 2% (v/v) FBS, 1% (v/v) 

Penicillin/Streptomycin, 1% (v/v) L-glutamine, 10 ng/mL of rhIL3, rhTPO, rhFLT3-

ligand, and rhSCF. 

 

2.2.2.2  Cell thawing and freezing 

For storage purposes, 5x106 viable cells were centrifuged (1100 rpm, 5 min, RT) and the 

cell pellet was resuspended in 5 mL FBS containing 10% (v/v) DMSO. 1 mL aliquots of 

the cell suspension were each dispensed into cryogenic storage vials (NuncTM Cryo Tube). 

Vials were placed in an isopropanol freezing container (Mr. FrostyTM Freezing Container) 

and stored at -80°C overnight. For long-term storage, frozen cells were transferred to a 

tank of liquid nitrogen. 

To thaw cells, frozen cells stored at -80°C or in liquid nitrogen were quickly thawed in a 

water bath at 37°C and transferred to a conical tube containing 5 mL of respective media. 

After centrifugation (1100 rpm, 5 min, RT), the cell pellet was resuspended in 2-4 mL 

fresh medium (amount depending on the appropriate cell density for each cell line) and the 

cell suspension was placed in 2-4 wells of a 48-well plate. After 1-3 days, suspension cells 

were gradually expanded by transferring cells to bigger wells (24-well or 12-well plate). 

Adherent cells were resuspended in 10 mL fresh medium and transferred to a TC flask 

T75.  



 Materials and Methods  
	 	 	
	 	

	 42	

PDX AML cell were thawed according to the protocol of Dominique Bonnet204 to obtain 

high viability. Briefly, cells were rapidly thawed in a 37°C water bath and 100 μL of 

DNase I (1 mg/mL) was added drop wise into the cryogenic vial.  Cell suspension was 

gently mixed, incubated for 1 min and transferred into a 50 mL conical centrifuge tube. 1 

mL FBS was added drop wise and cell suspension was gently mixed. After 1 min, 10 mL 

PBS with (v/v) 2% FBS was slowly added and incubated for 1 min. Volume was then 

slowly added up to 30 mL with PBS containing 2% (v/v) FBS. Cells were centrifuged 

(1100 rpm, 5 min, 4°C) and resuspended in DD medium. 

 

2.2.2.3  Mycoplasma testing 

To test for mycoplasma contamination in cell cultures, the MycoAlert® Mycoplasma 

Detection kit, which detects the enzymatic activity of mycoplasma, was used according to 

the supplier’s recommendation. An aliquot (0.2 - 0.5 mL) was taken from each cell line 

grown in culture and transferred to a micro tube 4-6 days after thawing and subsequently 

every 7 days or before the start of an experiment. After centrifugation (1500 rpm, 10 min, 

RT), 25 µL of supernatant was transferred to a white bottom 96-well plate and mixed with 

25 µL of MycoAlertTM Reagent. The plate was incubated for 5 min at RT to lyse 

mycoplasma cells and luminescence was measured with a Microplate reader GloMax® 

Discover (read A). After the addition of 25 µL of MycoAlertTM Substrate, reaction was 

incubated for 10 min at RT in the dark. During this time, mycoplasma enzymes react with 

the MycoAlertTM Substrate and generate ATP, which is then transferred into a light signal 

via the luciferase enzyme. Luminescence was measured a second time (read B). The ratio 

of B/A indicates the absence (<0.9) or presence (>1.1) of mycoplasma contamination. 

 

2.2.2.4  Transient transfection 

HEK293T cells were transiently transfected using the calcium-phosphate precipitation 

method. To have a confluency of 80-90%, 7x106 HEK293T cells were seeded in a 10 cm 

dish. On the next day, medium was removed and 10 mL of fresh medium was slowly 

added. After 4-5 h, 13 µg endotoxin-free plasmid DNA diluted in 450 µL sterile H2O was 

mixed with 50 µL of 2M CaCl2. The resulting mixture was slowly added to 500 µL HBS 

buffer to form Ca3(PO4)2 - DNA complexes. After incubation for 3 to 4 min, the solution 

was added drop wise to the cells. Cells were incubated in the incubator and medium was 

changed after 13-15h. Cells were lysed 48h after transfection. For siRNA mediating 
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silencing of KDM6A expression, Lipofectamine 3000 reagent was used to transiently 

transfect HEK293T cells using 50 or 100 nM siRNA/well according to the supplier’s 

recommendation. 

Suspension cells were transfected with 100 nM siRNA or 1-2 µg endotoxin-free plasmid 

DNA using the Nucleofector Kit V on the Amaxa Nucleofector II device according to the 

supplier’s recommendation. The following preprogrammed settings were used, K562: T-

016; MM-1: T-030/T-036. For siRNA mediated silencing of KDM6A expression, K562 

cells were nucleofected two times with siRNA against KDM6A or negative control siRNA. 

After 72h, cells were nucleofected for a second time and incubated again for 72h, after 

which cells were used for subsequent analysis. 

 

2.2.2.5  Stable transfection with lentivirus 

Production of lentiviral particles expressing shRNA’s against KDM6A or non-target 

control (Table 6) was performed as previously described205,206. For transduction, 

1x106 K562 cells in 1mL medium were placed in a 24-well plate and lentiviral particles 

together with 8 μg/mL polybrene were added. After 24h, cells were washed three times 

with PBS and resuspended in fresh medium. After a few days, transgene positive cells 

were enriched in two consecutive rounds with one week in between by flow cytometry 

with the red fluorochrome gate using FACSVantage SE. Knockdown efficiency was 

determined by immunoblotting with the appropriate antibodies (Table 4). 

 

2.2.2.6  CRISPR/Cas9-mediated gene editing 

For generation of KDM6A knockout clones, K562 or MM-1 cells were transfected with 

1 µg (MM-1) or 2 µg (K562) pSpCas9(BB)-2A-GFP-gRNA-KDM6A plasmid by 

nucleofection. After 48h, GFP positive cells were enriched by single-cell sorting into 96-

well plates (V-bottom) with the FACSVantage SE. Cells were cultured until colonies were 

readily visible (10 to 30 days). To screen for KDM6A KO clones, cell lysis, PCR on 

lysates, and restriction digest were performed as previously described with minor 

modifications207. Briefly, for gDNA isolation cells in 96-well plate were washed two times 

with PBS, resuspended in 50 μL/well lysis buffer SC, frozen at -80°C for 30 min, 

incubated at 56°C for 3 h, and finally Proteinase K heat inactivated at 85°C for 30 min. 2.5 

μL/well of the resulting crude cell lysate were directly subjected to PCR (25 μL/rxn, 0.1 

μL MyTaq™ DNA Polymerase) using external screening primers (KDM6A_KO_FOR 
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and KDM6A_KO_REV) and following cycling settings: 95°C/5 min - [95°C/30s - 

60°C/30s - 72°C/30s] x 45 - 72°C/40s - 4°C/∞. KDM6A KO clones were identified by 

restriction-fragment length polymorphism (RFLP) analysis of PCR products using 

HpyF10VI. Enzyme recognition site is lost after successful CRISPR/Cas9 targeting. 

Clones were confirmed by immunoblotting and Sanger sequencing. Sequences were 

analyzed and aligned with Geneious 8.1.7 and Benchling software. 

 

2.2.2.7  MG132 treatment 

HEK293T cells were transiently transfected as described under 2.2.2.4 with pcDNA6-HA-

KDM6A WT or mutant plasmids. After 42h, medium was carefully removed and cells 

were incubated for 6h with 10 mL of fresh medium containing 50 µM of the proteasomal 

inhibitor MG132. Cells were then lysed and analyzed by immunoblotting. 

 

2.2.2.8  Proliferation assay and cell counting 

For proliferation assays with chemotherapeutic agents, 0.5 mL medium containing DMSO 

as control or increasing concentrations of the respective drugs were added to wells of a 48-

well plate. Cells were resuspended in medium at 4x105 cells/mL and 0.5 mL of cell 

suspension corresponding to 2x105 cells was each added to the wells. After incubation for 

72h or 96h, viable cells were counted on a Vi-CELLTM Cell Viability Analyzer XR. To 

count viable cells, cells were resuspended and 0.5 mL was transferred to a counting vial. 

The vial was then placed inside the Vi-CELLTM Cell Viability Analyzer XR and the 

amount of viable cells was measured by Trypan Blue exclusion. 

For long-term proliferation, 3 mL of 4x105 cells/mL were placed in a TC flask T25 and 

3 mL of medium containing DMSO as control or a certain drug concentration was added. 

The amount of viable cells was counted in duplicates every second day for 14 days. On 

day 4 and 8, 1 mL of cell suspension was transferred to a new TC flask T25 and 5 mL 

medium containing DMSO as control or a certain drug concentration was added. 

 

2.2.2.9  Competitive growth assay 

Competitive growth analysis in the presence of AraC was performed with the mixed 

population of lentiviral transduced K562 cells (10 days after transduction, not enriched for 

positive cells), containing both transduced shRNA-DsRed2(+) cells and untransduced 
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shRNA-DsRed2(-) cells. The mixed culture of native and transgene K562 cells 

(2x105 cells/mL) were placed in a TC flask T25 and treated with 111 nM of AraC every 

three days or left untreated for a time period of 24 days. The percentage of transduced 

DsRed2(+) cells was determined every 3 days by flow cytometry analysis with the red 

fluorochrome gate using FACSVantage SE. For flow cytometry analysis, cells were 

washed twice with PBS and resuspended in 0.5 mL buffer containing PBS, 3% [v/v] FBS 

and 1 μg/mL DAPI. DAPI was used to exclude non-viable cells. 

 

2.2.2.10  In vivo therapy trial 

Patient-derived xenograft (PDX) cells expressing firefly luciferase were established as 

previously described51 in the laboratory of Irmela Jeremias (Helmholtz Zentrum München, 

Germany). 5x105 AML-491 or AML-393 cells were injected i.v. into groups of NSG mice 

(NOD scid gamma, The Jackson Laboratory, Bar Harbour, ME, USA), and tumor growth 

was regularly monitored by bioluminescence imaging (BLI) as previously described51. At 

defined imaging signals, mice were treated with a combination of AraC (100 mg/kg, i.p., 

days 1-4 and 14-17) and DaunoXome (1 mg/kg, i.v., days 1, 4, 14, 17). 28 days after start 

of therapy, BLI was performed and increase in BLI signals relative to day 0 were 

calculated. All animal trials were performed in accordance with the current ethical 

standards of the official committee on animal experimentation (Regierung von 

Oberbayern, number 55.2-1-54-2531-95-2010). 

 

2.2.3  Protein biochemistry methods 

2.2.3.1  Preparation of cell lysates 

To extract whole cellular proteins, adherent cells were scraped off the culture dish using a 

cell scraper and the cell suspension was transferred into a pre-cooled conical tube on ice. 

For suspension cells, cells were transferred into a pre-cooled conical tube on ice. Cells 

were washed two times with 0.5-1.0 mL ice-cold PBS (1100 rpm, 5 min, 4°C) and the cell 

pellet was resuspended in ice-cold lysis buffer WCL (400 μL buffer for 1x107 cells). Cell 

lysates were incubated for 30-60 min on ice followed by centrifugation (13000 rpm, 30 

min, 4°C) to pellet the cell debris. The supernatant was then transferred into a cooled 

micro tube and was stored at -20°C in aliquots to avoid repetitive freezing and thawing 

cycles. 
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Nuclear proteins were extracted with the Qproteome Nuclear Protein kit or EpiQuik Total 

Histone Extraction kit according to the supplier’s recommendation. Aliquots of nuclear 

protein lysates were stored at -80°C. 

 

2.2.3.2  Determination of protein concentration by Bradford Protein Assay 

Total protein concentration in cell lysates was measured colorimetrically in a 

spectrophotometer using the Bradford method208. The Coomassie® Brilliant Blue G-250 

dye binds to basic and aromatic amino acids of a protein which causes the dye to change 

its absorption maximum from 465 nm to 595 nm under acidic conditions. The measured 

absorbance at 595 nm correlates with the protein concentration. Bio-Rad Protein Assay 

Dye reagent was diluted 1:5 in H2O and 2 μL of cell lysate were mixed with 18 μL H2O. 

20 μL of diluted cell lysates were then mixed with 980 μL of diluted Bio-Rad Protein 

Assay Dye and incubated for 5 min at RT. Absorption at 595 nm was measured against a 

blank control sample containing Bio-Rad Protein Assay Dye with 20 μL H2O. To 

determine the protein concentration, a serial dilution of 20 μL BSA solution (200, 400, 

600, 800 and 1000 μg/mL) was used as protein concentration reference standard. 

 

2.2.3.3  SDS-Polyacrylamide gel electrophoresis 

SDS-polyacrylamide gel electrophoresis (SDA-PAGE) was used to separate denatured 

proteins based on their molecular weight. Depending on the molecular weight of the 

protein of interest, separating gels in the range of 8 to 15% were used. For separating low 

molecular weight proteins (e.g. histone H3), a higher acrylamide concentration of 15% 

was used. First, the separating gel was poured into a gel cassette, overlaid with H2O, and 

allowed to polymerize for 30 min. The overlaid water was then removed and the 

acrylamide solution for a stacking gel was poured on top of the separating gel. A comb 

with 10, 12 or 15 combs was inserted. After polymerization, the gel was used or stored 

with wet tissue in the fridge up to several days. 
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Separating gel (e.g. 10%) 

    H2O dest.    6.9 mL 

30% acrylamide/bisacrylamide 4.0 mL 

    1.5 M Tris-HCl buffer (pH 8.8) 3.8 mL   

    10% SDS in H2O dest.  0.15 mL 

    10% APS in H2O dest.  0.15 mL 

    TEMED    0.009 mL 

 

Stacking gel 

H2O dest.    3.4 mL 

30% acrylamide/bisacrylamide 0.83 mL 

    1.5 M Tris-HCl buffer (pH 6.8) 0.63 mL  

    10% SDS in H2O dest.  0.05 mL 

    10% APS in H2O dest.  0.05 mL 

    TEMED    0.005 mL 

 

Samples containing equal amount of proteins (e.g. 30 μg) from lysates were mixed with 

4:1 Lämmli buffer (total volume: 12 or 16 μL) and samples were boiled for 5 min at 95°C. 

Samples were allowed to cool down and shortly centrifuged. Samples and a molecular 

weight protein ladder were loaded in wells. Gels were run in a Xcell SureLock Mini Cell 

with 1x Electrophorese buffer at 40 mA (stacking gel) and 60-80 mA (separating gel). 

 

2.2.3.4  Western Blot 

Separated proteins were transferred to a nitrocellulose membrane using a wet 

electroblotting system (Biorad Mini Protean Tetra system) with transfer blotting solution 

at 100 mA and 4°C overnight. Immunoblot was blocked with 5% (w/v) nonfat dried milk 

or 5% BSA (w/v) in TBST for 60-90 min at RT and incubated with respective primary 

antibody solution (Table 4;diluted antibody in 5% (w/v) milk- or BSA-TBST) for 1 h at 

RT or overnight at 4°C. After washing 3 times for 10 min in TBST, immunoblot was 

incubated for 1 h at RT with respective secondary antibody (Table 4) diluted 1:10000 in 

5% milk- or BSA-TBST. After washing 3 times for 10 min in TBST, proteins of interest 

were detected using enhanced chemoluminescence (ECL). Immunoblot was incubated 

with Pierce ECL solution for 5 min and proteins were visualized on Fusion SL imaging 
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system. Western blot signals were quantified using ImageJ and relative protein levels were 

normalized to loading control. 

 

2.2.3.6  Statistical analysis 

All results are expressed as the mean ± SD of at least three independent experiments 

unless stated otherwise. The significance of differences was calculated by unpaired, two-

tailed Student’s t-test. P values at <0.05 were considered significant by Student’s t test. 

Calculation of IC50 values and Pearson`s correlation were performed using GraphPad 

Prism software. 
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3  Results 

3.1  Investigation of KDM6A during AML progression 

The histone demethylase KDM6A is frequently targeted by somatic loss-of-function 

mutations in newly diagnosed cancer types145,183–188 including leukemia153,192–194In this 

work, the clonal evolution dynamics of KDM6A during progression of AML was 

addressed by investigating the VAF of KDM6A mutations and expression levels of 

KDM6A in diagnosed and relapsed AML.  

 

3.1.1  Analysis of KDM6A mutations in AML patients at diagnosis 

To get insight into the biological relevance of KDM6A mutations at diagnosis, we first 

analyzed their locations, type of mutations and VAFs in AML patients. Given the low 

frequency of KDM6A mutations in AML, KDM6A mutations were analyzed in patients 

from two AMLCG trials, AMLCG-99 (NCT00266136; n=6) and AMLCG-2008 

(NCT01382147; n=9/664)21, and our CN-AML diagnosis-relapse cohort (n=2/50)48. In 

addition, three KDM6A mutated patients (UPN-393, UPN-202, and UPN-432) were 

identified and analyzed in the Laboratory of Leukemia Diagnostics, University Hospital 

LMU Munich. Analysis of their locations showed that the majority of mutations are either 

located at or within the proximity of the tetratricopeptide repeat (TPR) or the JmjC 

domain (Figure 9a). 65% (n=13/20) of patients harbor either frameshift 

insertions/deletions or nonsense mutations suggesting a loss-of-function phenotype. As 

KDM6A escapes X chromosome inactivation in females and therefore has two active 

copies of KDM6A, VAF of KDM6A mutations is shown separately for both genders 

(Figure 9b). In the majority of patients (n=12/20), the mutation occurred only in a 

subpopulation of AML cells, with a VAF below 15% (Figure 9b).  

 

3.1.2  Gain of KDM6A mutations in AML patients at relapse 

In our recent study48, we analyzed paired diagnosis and relapse samples of 50 CN-AML 

patients and found two patients with KDM6A mutations, L1103R and V1113Sfs*38. 

Cancer cells harboring these mutations were discovered to be subclonal at diagnosis 

(VAFs < 6%) but became the major clone at relapse (VAFs > 73%; Figure 10a).  
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Figure 9 KDM6A mutations at diagnosis. a, Schematic overview of KDM6A protein structure 
(NP_066963.2) and mutations (red=truncating; black=missense) identified in patients with newly diagnosed 
AML, illustrated using IBS software157.  Location of mutations is displayed and amino-acid positions are 
indicated below the graph. Asterisk (*) signifies two patient harboring two mutations each. Presented 
KDM6A mutations are from AMLCG-99 trial, AMLCG-2008 trial, a CN-AML diagnosis-relapse cohort48 
and this work. TPR, tetratricopeptide repeat; JmjC, Jumonji C. b, Overview of variant allele frequency 
(VAF) of KDM6A mutations at diagnosis. The types of mutation including missense and truncating 
mutations are highlighted with their respective color. VAFs are shown separately for male and female 
patients and a VAF of 15% is pointed out by a dotted line.  

 

The analyses of three additional AML patients harboring KDM6A mutations, for which a 

matched diagnosis and relapse samples was available, also revealed an increase in VAF of 

KDM6A mutations at relapse compared to diagnosis (Figure 10a, Supplementary Figure 

1). Mutations N634Tfs*57 and L1375Qfs*10, which were already present as a major 

clone at diagnosis, were found to be further enriched at relapse. The mutant clone E1325X 

showed the most striking increase at relapse (68.2% VAF relative to blast count), as it was 

barely detectable at diagnosis (0.58% VAF). A second KDM6A mutation, P1394fs, was 

detectable in the same patient at diagnosis with a 12.8-fold greater VAF (8.1%) than 

E1325X (Supplementary Figure 1a). Intriguingly, the frameshift mutation, which is 

located at the very C-terminal end (1394/1401 AS), was lost at relapse.  
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Figure 10 Gain of recurrent KDM6A mutations at relapse. a, Comparison of variant allele frequency 
(VAF) between diagnosis and relapse of 5 AML patients with KDM6A mutations. Due to variations in blast 
count, VAF was calculated relative to the respective blast count. Raw data for mutation L1130R and 
V1113Sfs*38 originate from our previous study48. b, Schematic overview of KDM6A mutant structures 
illustrated with IBS software157. The locations of premature stop codons originating from point or frameshift 
mutations are shown with two straight oblique lines. The position of point mutation L1103R is highlighted 
with a red dot. Amino acid positions are indicated below the graphs. TPR, tetratricopeptide repeat; JmjC, 
Jumonji C. 

 

 

The majority of KDM6A mutations (4/5) are frameshift or stop mutation resulting in a 

premature stop codon and inactivation of KDM6A (Figure 10b). 

Forms of induction therapy were according to standard German AML protocols, but 

varied between patients (Table 13). Whereas patient CN-017 and CN-025 received the 

TAD regimen (6-TG, AraC, and DNR), other three patients received induction therapy 

including sequential high dose AraC with mitoxantrone (S-HAM) alone, or in 

combination with AraC plus DNR followed by S-HAM. One chemotherapeutic agent, 

AraC, was part of the treatment schedule in all five patients. Comparison of time to 

relapse between patients showed early relapse in two patients (UPN-432 and CN-025) and 

a relatively late relapse in one patient, UPN-202 (Table 13). Of interest, early relapse 

patient CN-025 acquired chromosomal alterations during disease progression. The X 

chromosome not carrying the KDM6A mutation was lost at relapse48. 
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Table 13 Patients characteristics.  

UPN Age at 

Diagnosis 

Gender KDM6A 

mutation 

Karyotype 

at Diagnosis 

Karyotype at 

Relapse 

Time to 

Relapse  

Induction 

Therapy 

202 56 Female L1375Qfs*
10 

Normal Normal 2294 S-HAM 

393 43 Female E1325X N/A 46,XX,ins(10;
11)(p12;q23q2
3)[13]/46,XX[

6] 

1373 AD HAM 

432 32 Female N634Tfs*5
7 

Normal Normal 250 S-HAM 

CN-
01748 

80 Female V1113Sfs*
38 

Normal Normal 1203 TAD TAD 

CN-
02548 

66 Female L1103R Normal N/A; -X, +8, 
+20 

122 TAD 

Time to relapse in days. A, AraC; D, DNR; H, high dose; M, Mitoxantrone; N/A, not available; S, 
sequential; T, 6-Thioguanine. Data for patients CN-017 and CN-025 originate from our previous study48. 
 

 

 

3.1.3  Proteasomal degradation of KDM6A mutants in HEK293T cells 

Given the high frequency of truncating mutations (Figure 9a; n=13/20), mutant KDM6A 

is presumably inactivated by degradation mechanisms such as non-sense mediated mRNA 

decay or degradation by the proteasome. To investigate the stability of some of the 

recurrent KDM6A mutants at the protein level, HEK293T cells were transiently 

transfected with KDM6A WT and mutant expression constructs. Cells were then treated 

with the proteasomal inhibitor MG132 for 6h and protein expression was analyzed by 

immunoblotting with a HA antibody (KDM6A constructs have a N-terminal HA tag). 

Protein expression of the patient-related KDM6A mutants V1113Sfs*38, E1325X, and 

L1103R was significantly reduced compared to WT (Figure 11). MG132 mediated 

proteasomal inhibition resulted in a significantly elevated expression of these mutants and 

restored their expression in the range of WT levels. In contrast, WT and the demethylase-

dead mutant H1146A did not change after treatment with MG132 (Figure 11). These 

results suggest that the three patient-related KDM6A mutants are rapidly degraded by the 

proteasome leading to reduced KDM6A protein levels and a loss-of-function phenotype. 
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Figure 11 Recurrent KDM6A mutants are degraded by the proteasome. a, Immunoblot showing the 
effect of MG132 treatment (50 μM, 6h) on HA tagged KDM6A protein expression in HEK293T cells 
transiently transfected with KDM6A WT or mutants (N-terminal HA tag). Immunoblots are representative 
of three independent experiments. EV, empty vector; WT, wild type; MW, molecular weight; α-Tubulin, 
loading control. b, The mean ratio of HA relative to α-tubulin expression ± s.d. is given for three 
independent experiments. Unpaired, two-tailed Student’s t-test; *P<0.05; **P<0.01; n.s., not significant. 
EV, empty vector; WT, wild type. 

 

 

 

3.1.4  KDM6A mutation independent protein expression at diagnosis and relapse 

To investigate if KDM6A protein levels change during disease progression in AML 

samples without KDM6A mutations, matched diagnosis and relapse samples of 5 AML 

patients were analyzed. Compared to time point of diagnosis, three patients (#1, #2, #3) 

showed a strong decrease in KDM6A protein expression at relapse (Figure 12). On the 

contrary, KDM6A expression was increased at relapsed in two patients (#4, #5). Of note, 

the karyotype of these patients changed from normal to aberrant at relapse (Table 14).  In 

addition, trisomy 21 was lost at relapse in patient #5 (Table 14). Heterogeneous expression 

levels are observed when comparing KDM6A protein levels at diagnosis or relapse 

between patients (Figure 12). All three male patients have similar low KDM6A protein 

levels than the two female patients. Overall, KDM6A expression, especially at relapse, 

appears to be heterogeneous between patients and strong changes during disease 

progression can be observed. 
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Figure 12 KDM6A protein expression patterns in diagnosed and relapsed AML. a, Immunoblotting for 
KDM6A expression in 5 AML patients at diagnosis (D) and relapse (R). Their respective gender is shown 
below. MW, molecular weight; β-actin, loading control. b, The ratio of KDM6A to β-actin expression is 
displayed.  

 
 
 
Table 14 Patients characteristics of samples analyzed by immunoblotting. 

UPN Age at 

Diagnosis 

Sex Karyotype at 

Diagnosis 

Karyotype at 

Relapse 

Time to 

Relapse 

Induction 

Therapy 

#1 38 Female 47,XX,+8[15]//4
6,XX[2] 

47,XX,+8[6]/47,sl,t(
2;13)(p21;p11)[2]/47
,sl,t(1;13)(p36;q?3),t(
1;20)(q21;?q13),t(1;8
)(q21;q22),t(3;4)(q2?
8;q3?4),t(3;5)(q1?;q3
?5), t(5;9)(q31;p22),t

(6; 
13)(q2?;q?3),t(9;15)(
q3?4;q1?5)[cp8]//46,

XX[2] 

137 S-HAM 

#2 76 Male Normal N/A 176 S-HAM 
#3 57 Female Normal Normal 468 TAD9 HAM 
#4 71 Male Normal 46,XY,t(1;22)(p13;q

11),der(5)t(5;19)(q12
;?),der(15)t(5;15)(q?;
q?),der(19)t(15;19)(q
?:q?)[5]/46,XY,t(11;
13)(p1?;q1?)[3]/46,X

Y[1] 

209 S-HAM 

#5 44 Male 47,XY,+21[16]/
46,XY[6] 

46,XY,i(7)(q10),der(
9)(p?),del(9)(p1?)[9] 

860 TAD HAM 

Time to relapse in days. A, AraC; D, DNR; H, high dose; M, Mitoxantrone; N/A, not available; S, 
sequential; T, 6-Thioguanine. TAD9, TAD for 9 days. 
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3.1.5  Status of KDM6A in PDX relapsed AML cells 

A patient-derived xenograft (PDX) mouse model of AML was used to further investigate 

the mutational status and expression of KDM6A at relapse. PDX relapsed AML samples 

were established from primary patients´ cells by the group of Irmela Jeremias at the 

Helmholtz Zentrum München (Table 9). PDX cells were shown to share close relationship 

to the patient sample and can be serially retransplanted to provide PDX cells for in vitro or 

in vivo experiments51.  

First, KDM6A mRNA and protein levels were analyzed in 8 PDX relapsed AML samples. 

Heterogeneous expression patterns of KDM6A were observed for mRNA (Figure 13a) as 

well as protein expression (Figure 13b). PDX AML-393, -573, and -579 cells showed low 

mRNA levels, which correlated with protein expression. A correlation between mRNA 

and protein levels was observed for all samples except for AML-372.  

 

 

 

 

Figure 13 Heterogeneous KDM6A expression patterns in PDX cells of relapsed AML patients. 
a,b, KDM6A mRNA (a) and protein (b) expression was analyzed in eight PDX relapsed AML cells. KDM6A 
mRNA expression is shown relative to GAPDH expression. Male samples are highlighted as grey bar blots. 
For Western Blot, α-Tubulin was used as a loading control. c, DNA sequencing chromatogram showing a 
KDM6A mutation in the gDNA of female primary AML patient UPN-393 at relapse and in PDX AML-393 
cells, established from the primary relapse sample. The mutation is not detectable in diagnosis material of 
the same patient by Sanger sequencing. 
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To investigate if KDM6A exon deletions or missense/truncating mutations are present, 

which might explain the reduced KDM6A expression observed in some of the PDX cells, 

multiplex ligation-dependent probe amplification (MLPA) and targeted sequencing was 

performed. MLPA analysis showed that none of the analyzed PDX AML cells harbor 

KDM6A exon deletions (Supplementary Figure 2). Targeted sequencing revealed a 

KDM6A stop mutation E1325X in PDX AML-393 cells. PDX AML-393 was established 

from primary cells of patient UPN-393 at relapse (mutation was already mentioned in 

chapter 3.1.2). The cancer cells harboring KDM6A mutation E1325X at relapse (UPN-

393) regenerated to a stable population after transplantation into immunodeficient mice 

(PDX AML-393; Supplementary Figure 1a), which was verified by Sanger sequencing 

(Figure 13c). No additional KDM6A mutations were detected.  

No molecular weight band corresponding to the premature stop mutation E1325X 

(estimated protein weight: 145 kDa) in the female PDX AML-393 cells was observed. To 

investigate if this mutant is undetectable due to rapid proteasomal degradation, PDX 

AML-393 cells were treated in vitro with the proteasomal inhibitor MG132 for 6h. No 

increase in overall KDM6A expression, but also no appearance of an additional band 

corresponding to E1325X was observed (Supplementary Figure 3). These results might 

point towards a nonsense-mediated mRNA decay.  

 

 

 

 

Figure 14 KDM6B and EZH2 mRNA levels in PDX relapsed AML cells. a,b, qRT-PCR for KDM6B (a) 
and EZH2 (b) in eight PDX relapsed AML samples. The mean ± s.d. relative to the endogenous control 
GAPDH for three experiments is shown.  
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The histone demethylase KDM6B and the histone methyltransferase EZH2 remove or add, 

respectively, methyl groups at the same lysine residue as KDM6A and therefore might be 

able to compensate for KDM6A loss. KDM6B and EZH2 mRNA levels were slightly 

increased in AML-579 cells, whereas AML-538 showed low KDM6B and AML-491 low 

EZH2 mRNA levels (Figure 14). Concomitant loss of UTY, a catalytically inactive 

homolog of KDM6A that is encoded on the Y chromosome, was recently shown to be lost 

or reduced in conjunction with KDM6A mutations in pancreatic cancers with squamous 

differentiation in male patients196. Analysis of the mRNA level of UTY in male PDX AML 

samples of which PDX AML-579 showed reduced KDM6A expression, revealed normal 

UTY levels (Figure 21).  

Most patients with recurrent KDM6A mutations received the “3+7” or TAD regimen as 

induction therapy. Both schedules include the cytotoxic agents AraC and DNR suggesting 

that KDM6A mutant cells might be less sensitive to AraC and/or DNR treatment. To test 

this hypothesis, drug sensitivity of two PDX AML models of the same adverse ELN 

classification51 with i) KDM6A WT and strong expression (AML-491) and ii) KDM6A 

mutant and weak expression (AML-393) was investigated in vivo. Mice bearing AML-491 

or AML-393 were treated with two cycles of AraC and DaunoXome (DNX; liposomal 

DNR) and tumor burden was analyzed before and after treatment. Treatment dramatically 

decreased the tumor burden in KDM6A WT AML-491 bearing mice compared to control 

(P=0.0157), whereas only a modest drop in tumor burden was observed in treated AML-

393 bearing mice (Figure 15). 

 

 
 

 

Figure 15 Decreased in vivo drug sensitivity in 
KDM6A mutant PDX AML-393 cells.  
Comparison of tumor load reduction under in vivo 
chemotherapy in AML-491 and AML-393 
bearing animals. Tumor burden was quantified by 
bioluminescence before (d0) and after (d28) two 
cycles of treatment with AraC (days 1-4, 14-17) 
and DNX (days 1, 4, 14, and 17) (A/D) or control 
treated animals (ctrl). Relative tumor burden at 
day 28 compared to d0 was calculated. Unpaired, 
two-tailed Student’s t-test; *P=0.0157; n.s., not 
significant. 
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3.2  KDM6A in AML cell lines 

3.2.1  Mutation and expression analysis of KDM6A in AML cell lines 

KDM6A exon deletion mutations have been observed in AML cell lines, MONO-MAC-6 

(MM-6) and THP-1145. To identify the frequency of KDM6A deletions in leukemia, 

MLPA analysis for the KDM6A gene in 40 myeloid leukemia cell lines (Table 8) was 

performed. Obtained peak ratios were then compared to two healthy donor control 

samples (male and female). MLPA analysis confirmed the reported exon deletions in MM-

6 (exon 3-10) and THP-1 (exon 1-16) and revealed two additional AML cell lines, OCI-

AML3 and HL-60, with in-frame deletions in exon 3-4 and 5-6, respectively (Figure 16). 

 

 

 
Figure 16 Identification of KDM6A exon deletions in AML cell lines. The peak ratio for each KDM6A 
exon specific probe, detected by quantitative MLPA analysis, is shown. Results for 4/40 of the investigated 
myeloid cell lines (summarized in Table 8) and two healthy donor control samples (male and female) are 
shown. The area of a normal peak ratio lies within the two dotted lines and ranges from 0.7 to 1.3. 
Mean ± s.d. are given for at least two independent experiments. 
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Figure 17 Identification of KDM6A aberrations in AML cell lines. AML cell lines HL60, OCI-AML3, 
MM-6, and THP-1 were analyzed by CytoScan HD Array hybridization analysis for KDM6A aberrations. 
MM-1 serves as a WT control. Bar thickness ranging from 0 to 2 indicates the copy number (CN) status. 
Haploidy (CN = 1) in cell lines from male patients is due to the X chromosomal localization of KDM6A. 
HL-60, the only cell line derived from a female patient, has lost one X chromosome.  

 

 

These deletions were confirmed by independent CytoScan HD Array hybridization 

analysis at the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell 

Cultures in Braunschweig (Figure 17). In addition, X chromosomal haploidy was detected 

in the female AML cell line HL-60 suggesting that HL-60 cells have lost the other X 

chromosome (Figure 17). 

Exon deletions in MM-6 lead to a frameshift with two premature stop codons in exon 11, 

whereas in-frame deletions in THP-1 might result in a truncated protein of approximately 

71 kDa (WT: 154 kDa). In-frame deletions in OCI-AML3 and HL-60 lead to a truncated 

protein of approximately 147 kDa. Although low to intermediate mRNA levels were 

detectable in the mutant cell lines, KDM6A protein expression was completely absent 

(Figure 18). The anti-KDM6A antibody used for KDM6A protein expression analysis, 

detects amino acids surrounding Ala490 of human KDM6A protein. Therefore, the 

antibody should be able to detect the truncating forms of KDM6A in OCI-AML3 and HL-

60 if these are expressed. 
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Figure 18 Loss of KDM6A protein expression in KDM6A mutant AML cell lines. a,b, qRT-PCR (a) and 
immunoblot analysis (b) for KDM6A in KDM6A WT and mutant human leukemia cell lines. a, The mean ± 
s.d. relative to the endogenous control GAPDH for three experiments is shown. b, α-Tubulin was used as a 
loading control and blots are representative of three independent experiments. MW, molecular weight. 

 

 
 
 
 

3.2.2  Global H3K27 methylation in KDM6A WT and mutant AML cell lines 

To investigate the impact of KDM6A loss on global H3K27 mono-, di-, and tri-

methylation, immunoblotting in KDM6A WT and mutant cell lines was performed. Mutant 

cells showed increased H3K27 tri-methylation, whereas H3K27 di- and mono-methylation 

levels were similar between WT and mutant cells (Figure 19a). Global H3K27me3 was 

inversely correlated with KDM6A levels (r=-0.76; P=0.0042; Figure 19b) indicating a 

KDM6A dependent epigenetically altered phenotype.  

The sister cell lines MM-1 and MM-6 were established from the peripheral blood of a 64-

year-old man with AML at relapse209. We found that MM-1 and MM-6 have an identical 

mutation profile (e.g. FLT3 V592A, KMT2A/MLLT3 fusion), but only MM-6 harbor 

KDM6A exon deletions, which result in a loss of KDM6A expression exclusively in MM-

6 cells48. In comparison to MM-1, KDM6A mutant MM-6 cells showed a trend for 

decreased H3K27 mono- or di-methylation and increased H3K27 tri-methylation48. 
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Figure 19 High H3K27 tri-methylation in KDM6A mutant cells. a, Immunoblotting for global H3K27 
mono-, di- and tri-methylation levels in KDM6A WT and mutant human leukemia cell lines. Total H3 was 
used as a loading control. Blots are representative of three independent experiments. MW, molecular weight. 
b, Negative correlation between KDM6A protein expression and global H3K27me3 level in KDM6A WT 
and mutant human leukemia cell lines (Pearson`s correlation; r=-0.76, *P=0.0042). Mean values of three 
independent analyzes are shown. 

 

 

 

 

3.2.3  Analysis of H3K27 modifiers in AML cell lines 

In addition, the H3K27 demethylase KDM6B or methyltransferase EZH2 can influence 

the global H3K27 methylation status and compensate for KDM6A loss. Therefore, the 

mRNA levels of KDM6B and EZH2 were analyzed via qPCR. For both genes, mRNA 

levels were similar between mutant and WT cells (Figure 20). EZH2 mRNA levels were 

especially low in KG-1a and U937 cells (Figure 20b). Both cell lines were found to have 

strong mono-methylation and low tri-methylation of H3K27 (Figure 19a).  

Mutations in the KDM6A homolog UTY were recently reported to occur frequently in 

KDM6A mutated male hematopoietic cell lines and solid organ cancers197. Analysis of 

UTY mRNA levels showed loss of UTY mRNA expression in two KDM6A mutant (OCI-

AML3 and MM-6) and three KDM6A WT cell lines (Figure 21). 

 
 

 

 

 



 Results  
	 	 	
	 	

	 62	

 

 
Figure 20 KDM6B and EZH2 mRNA expression in KDM6A WT and mutant cell lines. a,b, qRT-PCR 
analysis for KDM6B (a) or EZH2 (b) in KDM6A WT and mutant human leukemia cell lines. The mean ± s.d. 
relative to GAPDH for three experiments is shown. 

 
 
 
 

     

 

 

 
 
 
 
 
 
 
 

Figure 21 UTY mRNA expression in KDM6A 
mutant and WT cells. qRT-PCR for UTY in 
male KDM6A WT and mutant AML cell lines. 
The female cell line HL-60 was used as a 
negative control. In addition, two male PDX 
relapsed AML samples are shown. The mean ± 
s.d. relative to GAPDH for three experiments is 
displayed. 
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3.3  Investigation of the role of KDM6A in chemotherapy resistance 

Due to the observed inactivating mutations or mutation-independent, heterogeneous 

expression patterns of KDM6A in AML patients, the effect of reduced or depleted 

KDM6A expression regarding H3K27 tri-methylation, proliferation, and drug resistance 

was investigated. Therefore, stable KDM6A knockdown (KD) and knockout (KO) models 

were generated. 

 

3.3.1  shRNA mediated knockdown of KDM6A in K562 cells 

3.3.1.1  Generation of stable KDM6A knockdown cells 

To generate stable KDM6A KD cells, the myeloid cell line K562 was transduced with 

lentivirus expressing different short hairpin RNA’s (shRNA’s) against KDM6A. As 

control, shRNA against Renilla (shRenilla) or GFP (shGFP), which are not expressed in 

the cell, were used. Of several tested shRNA’s, shKDM6A #3, #4, and #7 decreased 

KDM6A protein expression by 70% (#3, #4) or 90% (#7; Figure 22a). Compared to K562  

 

 
 

                  

Figure 22 KDM6A expression and H3K27 tri-methylation in KDM6A KD K562 cells. a, Immunoblot 
showing knockdown (KD) of KDM6A protein expression in K562 cells lentiviral transduced with three 
different shRNA’s against KDM6A. shRenilla and shGFP serve as controls. Blot is representative of three 
independent experiments. α-Tubulin, loading control. b, Immunoblotting for global H3K27 tri-methylation 
in KDM6A KD and ctrl K562 cells. Blot is representative of three independent experiments. H3, loading 
control; MW, molecular weight. c, The mean ± s.d. of H3K27me3 levels relative to H3 for KDM6A ctrl and 
KD K562 cells are displayed (n=3). 
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native cells, KDM6A protein expression was not affected by shRenilla or shGFP 

(Figure 22a). Comparison of H3K27 tri-methylation levels between KDM6A KD and ctrl 

cells showed only a trend for higher tri-methylation in cells where KDM6A expression 

was downregulated (Figure 22b,c). 

 

3.3.1.2  Effect of KDM6A knockdown on chemotherapy sensitivity 

To investigate if reduced expression of KDM6A correlates with increased resistance 

towards chemotherapeutic agents commonly used in the induction therapy of AML, the 

half-inhibitory concentration (IC50) of the respective drugs was determined in KDM6A KD 

or ctrl cells after 72h.  

KDM6A KD cells displayed decreased sensitivity towards AraC treatment (Figure 23c) 

applying doses within the range of reported AraC plasma concentrations in patients210 

(Figure 23d). Only KD with the most potent shKDM6A #7 resulted in a significantly 

increased resistance to AraC (Figure 23c). However, the effect of KDM6A KD on 

response towards DNR or 6-TG was not as prominent or even absent: only KD cells 

shKDM6A #7 were slightly more resistant to DNR treatment (Figure 23b), and no change 

in IC50 values was observed after 6-TG treatment for all constructs (Figure 23a). 

Since induction therapy typically involves continuous treatment of AML patients for 

seven (“7+3”) or 10 days (TAD regimen), KDM6A KD and ctrl cells were treated multiple 

times (day 0, 4, and 8) for a prolonged time course. For each drug, a concentration 

corresponding to their respective IC40 to IC50 values was chosen.  

Prolonged treatment with 6-TG (1000 nM) showed no difference in the amount of viable 

cells between control and KD cells after 14 days (Figure 24a). Differences in growth 

under AraC (150 nM) treatment started at day 4, and resulted in a significant proliferative 

advantage for KDM6A KD cells compared to control (Figure 24b). Growth of both control 

groups was completely arrested under DNR (20 nM) treatment after day 8, whereas 

KDM6A KD cells were strongly proliferating (Figure 24c). KDM6A KD efficiency and 

proliferative advantage under DNR were positively correlated. In contrast, no differences 

in growth were observed without drug treatment (Figure 24d). 
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Figure 23 Knockdown of KDM6A confers decreased AraC resistance in K562 cells. a,b,c, Comparison 
of IC50 values for 6-TG (a), DNR (b), and AraC (c) between control and KDM6A KD in K562 cells. Cells 
were treated for 72h with the respective drug. Mean of IC50 values ± s.d. are shown (n=4). Unpaired, two-
tailed Student’s t-test; *P<0.05; **P<0.01; ***P<0.001. d, AraC dose-response analysis in K562 cells with 
modified KDM6A expression, shControl and shKDM6A #7, after 72h. The mean ± s.d. is given (n=3). The 
area shaded in dark grey and light grey indicates the range of steady-state plasma concentrations measured 
in patients during standard AraC (100-200mg/m2) and after high-dose AraC (3000mg/m2) treatment, 
respectively210. Unpaired, two-tailed Student’s t-test; *P<0.05; **P<0.01. 
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Figure 24 KDM6A KD confers a proliferative advantage during multiple treatments with AraC and 
DNR but not 6-TG. a,b,c,d, Long-term proliferation assay measuring the amount of viable K562 cells, 
shControl and shKDM6A, every 2 days for  10 or 14 days. Cells were treated with 1000 nM 6-TG (a), 
150 nM AraC (b), and 20 nM DNR (c) on day 0, 4 and 8 as indicated with the triangle or left untreated (d). 
Mean ± s.d. are given for three independent experiments. Unpaired, two-tailed Student’s t-test; *P<0.05; 
**P<0.01; ***P<0.001.  

 

 

3.3.1.3  Selective growth advantage of KDM6A KD cells 

To further investigate if downregulation of KDM6A might lead to a growth advantage 

either under normal conditions or when treated with AraC, a competitive growth assay 

was performed. K562 cells were transduced with lentivirus expressing shRNA against 

Renilla (shRenilla) or KDM6A (shKDM6A) #3. The mixed population of lentiviral 

transduced K562 cells, which was not enriched for positive cells by FACS, contained both 

transduced shRNA-DsRed2(+) and native, shRNA-DsRed2(-) cells. The transduction 

efficiency ranged from 18% (shKDM6A #3) to 32% (shRenilla). 
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In the presence of AraC (111 nM) for 24 days, shKDM6A #3 cells showed a significant 

growth advantage compared to native untransduced cells (Figure 25). In contrast, the 

amount of K562 cells transduced with shRenilla did not change over the treatment period. 

In the absence of AraC, the percentage of shRenilla or shKDM6A #3 cells remained stable 

(Figure 25).  

 

 

               

Figure 25 Knockdown of KDM6A in K562 cells leads to a competitive growth advantage in the 
presence of AraC. Mixed population of K562 native and lentiviral transduced cells, shRenilla or shKDM6A 
#3, were treated with 111 nM AraC (approximately IC75 value) or left untreated. Cells were treated every 
three days for a time period of 24 days. The amount of transduced, DsRed2(+) cells relative to day 0 with a 
log2 scale is shown. The mean values ± s.d. of three independent experiments are displayed. Unpaired, two-
tailed Student’s t-test; *P<0.05; **P<0.01; ***P<0.001. 

 

 

3.3.2  CRISPR/Cas9-mediated knockout of KDM6A in K562 cells 

To confirm the results obtained by lentiviral mediated KD of KDM6A and compare the 

effect of KD vs. KO, CRISPR/Cas9-mediated genome editing was applied to knockout 

KDM6A in K562 cells. 

 

3.3.2.1  Generation of KDM6A knockout single cell clones 

K562 single cell KDM6A KO clones were generated by nucleofection with Cas9 and a 

KDM6A specific guide RNA (gRNA) targeting the intron 3 - exon 4 border of the KDM6A 

locus (Figure 26b). Single cell clones were screened and potential KDM6A KO clones 

were identified by restriction-fragment length polymorphism (RFLP) analysis of PCR 
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products using HpyF10VI (Figure 26a). Recognition site of HpyF10VI was completely 

lost in two single cell clones (Figure 26a) and Sanger sequencing confirmed successful 

CRISPR/Cas9 targeting in these clones (Figure 26b). Homozygous deletions of GCA (KO 

#1) or AGCA (KO #2) both generate a KDM6A frameshift mutation A112Vfs*12 and 

result in a complete loss of KDM6A protein expression (Figure 26c). Comparison of 

H3K27 tri-methylation levels between KDM6A WT and KO single cell clones showed 

only a trend for higher tri-methylation in cells with lost KDM6A protein expression 

(Figure 27). 

 

 

 

                

Figure 26 Generation of KDM6A KO K562 single cell clones. a, Screening PCR followed by restriction 
digest with HpyF10VI of generated single cell clones. Enzyme recognition site is lost after successful 
CRISPR/Cas9 targeting. SC, single cell. b, DNA sequencing chromatogram showing KDM6A frameshift 
mutations A112Vfs*12 in KDM6A KO K562 clone #1 and #2 compared with parental cells and a WT #1 
clone. WT #1 clone was tested negative for KDM6A KO after CRISPR/Cas9 targeting. c, Immunoblot 
showing loss of KDM6A protein in KDM6A KO K562 single cell clones. Results of one representative 
experiment are shown (n=3). MW, molecular weight; β-actin, loading control. 
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Figure 27 Analysis of H3K27 tri-methylation in KDM6A WT and KO cells. a, Immunoblotting for 
global H3K27 tri-methylation in KDM6A WT and KO K562 single cell clones. Blot is representative of 
three independent experiments. H3, loading control; MW, molecular weight. b, The mean ± s.d. of 
H3K27me3 levels relative to H3 levels for KDM6A WT and KO K562 single cell clones are shown (n=3). 

 

 
 

 

 
 
 
 
 

3.3.2.2  Effect of KDM6A loss in K562 cells on chemotherapy sensitivity 

In order to investigate the effect of KDM6A loss on drug sensitivity, the established 

KDM6A KO single cell clones #1 and #2 were treated with AraC, DNR, and 6-TG for 72h. 

Their respective IC50 values were then compared to the IC50 values of a KDM6A WT 

single cell clone and K562 native cells.  

After AraC treatment for 72h, IC50 values were significantly increased for both KDM6A 

KO clones compared to controls (Figure 28a). Some of the applied AraC doses were 

within the range of reported AraC plasma concentrations in patients210 (Figure 28d). 

A trend towards higher IC50 values or no difference between KO and control cells after 

DNR or 6-TG treatment, respectively, was seen (Figure 28b,c). 
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Figure 28 Loss of KDM6A results in decreased sensitivity towards AraC but not DNR and 6-TG 
treatment. a,b,c Comparison of IC50 values for AraC (a), DNR (b) and 6-TG (c) between K562 control cells 
(native, WT #1) and KDM6A KO clones #1 and #2 (72h treatment). Mean of IC50 values ± s.d. (n=3-4) are 
shown. Unpaired, two-tailed Student’s t-test; **P<0.01; ***P<0.001. d, AraC dose-response analysis in 
K562 cells with modified KDM6A expression, KDM6A WT #1 and KO #2, after 72h. The mean ± s.d. is 
given (n=4). The area shaded in dark grey and light grey indicates the range of steady-state plasma 
concentrations measured in patients during standard AraC (100-200mg/m2) and after high-dose AraC 
(3000mg/m2) treatment, respectively210. Unpaired, two-tailed Student’s t-test; *P<0.05; **P<0.01; 
***P<0.001. 

 

 

3.3.3  CRISPR/Cas9-mediated knockout of KDM6A in MM-1 cells 

The sister cell lines MM-1 and MM-6 have originally been established in culture from the 

same male AML patient at relapse211. Whereas MM-1 cells express KDM6A, MM-6 cells 

have lost KDM6A expression due to a KDM6A exon deletion mutation (Figure 30a), 

rendering them a good model to examine the implications of KDM6A loss within a similar 

genetic background. In our previous study48, we observed that MM-6 cells are less 
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sensitive to AraC treatment than MM-1 cells. To study if KDM6A loss is responsible for 

this drug resistance phenotype, KDM6A expression was deleted in KDM6A WT MM-1 

cells by CRISPR/Cas9 genome editing. 

 

3.3.3.1  Generation of KDM6A KO MM-1 single cell clones 

MM-1 single cell KDM6A KO clones were generated by nucleofection with Cas9 and a 

KDM6A specific guide RNA (gRNA) targeting the intron 3 - exon 4 border of the KDM6A 

locus (Figure 29). Due to poor transfection efficiency and low tolerance for single cell 

culture, only few single cell colonies were visible after a few weeks. Single cell clones 

were screened by immunoblotting for KDM6A expression. Compared to MM-1 parental 

and WT single cell clones, KDM6A protein expression was lost in a single clone (Figure 

29b). Sanger sequencing revealed that the last 74 bp of Intron 3 and 29 bp of exon 4 were 

deleted in this clone resulting in a KDM6A frameshift mutation A112Vfs*3 (Figure 29a). 

 

 

 

 

Figure 29 Generation of KDM6A KO and WT MM-1 single cell clones. a, DNA sequencing 
chromatogram showing KDM6A frameshift mutation A112Vfs*3 of a KDM6A KO MM-1 clone which is 
absent in native MM-1 cells and two KDM6A WT clones. WT #1 and #2 clones were tested negative for 
KDM6A KO after CRISPR/Cas9 targeting. b, Immunoblotting for KDM6A expression in KDM6A WT and 
KO cells. Results of one representative experiment are shown (n=2). MW, molecular weight; α-Tubulin, 
loading control. 
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3.3.3.2  Effect of KDM6A loss in MM-1 cells on chemotherapy sensitivity 

In our previous study48, we treated KDM6A WT MM-1 and KDM6A mutant MM-6 cells  

with AraC for 72h and found that MM-6 were 4.3-fold more resistant than MM-1. 

Comparison of the IC50 values of AraC after treatment for 96h showed that loss of 

KDM6A expression in MM-1 significantly increased the IC50 of AraC compared to both 

WT clones (3.4- to 8.8-fold increase; Figure 30b). KDM6A KO MM-1 cells were also 

significantly less sensitive to 6-TG and DNR treatment than KDM6A WT MM-1 cells 

(Figure 30c,d). Compared to native MM-1 cells, MM-6 showed a 2.5-fold increase in IC50 

of DNR (Figure 30c). A very similar resistance to DNR was observed in KDM6A KO llllll 

 
 
 

            

Figure 30 KDM6A loss in MM-1 recapitulates the drug phenotype of the KDM6A mutant sister cell 
line MM-6. a, Immunoblot showing loss of KDM6A protein expression in KDM6A mutant MM-6 cells. 
MW, molecular weight; β-actin, loading control.  b,c,d, Comparison of IC50 values for AraC (b), DNR (c), 
and 6-TG (d) between MM-6 and MM-1 cells including MM-1 native, two KDM6A WT and one KDM6A 
KO clone. Cells were treated for 96h with the respective drug. Mean ± s.d are given for three independent 
experiments. Unpaired, two-tailed Student’s t-test; *P<0.05; **P<0.01; ***P<0.001. 

MM-1 cells: KO cells showed a 2.5- or 2.6-fold increase of IC50 values for DNR 

compared to WT #1 or #2 cells. Treatment with 6-TG showed that KDM6A KO MM-1 
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cells were 1.6- to 2.1-fold more resistant than KDM6A WT MM-1 cells (Figure 30d). A 

1.9-fold decrease in 6-TG sensitivity was observed in native MM-1 compared to MM-6 

cells (Figure 30d). 

 

 

3.4  Identification of KDM6A target genes with different KD/KO approaches 

To identify genes involved in KDM6A-mediated drug resistance, genomewide RNA 

expression (RNA-Seq) analysis was performed in K562 cells treated with siRNA or 

shRNA against KDM6A under native conditions and after AraC treatment. Furthermore, 

differentially expressed genes in KDM6A KO K562 single cell clones were compared to 

KDM6A WT cells. 

 

3.4.1  siRNA-mediated silencing of KDM6A 

First, different siKDM6As´ with various concentrations were tested in HEK293T cells to 

identify potent siRNAs against KDM6A. Of several tested, one was successful in strongly 

reducing KDM6A expression compared to control (siSCR) or native cells (Figure 31). 

Transient transfection of HEK293T cells with siSCR or siKDM6A showed stable reduction 

of KDM6A protein levels in siKDM6A treated cells for all investigated time points (Figure 

31). To investigate which genes are differentially expressed in KDM6A KD cells, K562 

cells were nucleofected with the respective siRNAs, siSCR or siKDM6A. To maximize the 

time of KDM6A silencing and thereby potentially the amount of differentially expressed 

genes, K562 cells were nucleofected two times (2 x 72h) and RNA was isolated on day 6. 

Transient KDM6A KD in K562 cells reduced KDM6A protein levels by 73.6 ± 9.7% 

compared to control (n=6; Figure 32a) and resulted in transcriptional downregulation of 

39 genes and upregulation of 7 genes (Figure 32b). 
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Figure 31 Time course of siRNA-mediated silencing of KDM6A in HEK293T cells. Immuno-blot 
showing reduction of KDM6A protein levels in HEK293T cells transfected with two different 
concentrations of siRNA targeting KDM6A (siKDM6A) for 24h, 48h and 72h. siSCR was used as a control 
showing the same KDM6A expression levels as native cells. MW, molecular weight; α-Tubulin, loading 
control. 

 

 

 

Figure 32 Identification of differentially expressed genes in K562 cells treated with siRNA targeting 
KDM6A. a, Knockdown efficiency of siKDM6A compared with control (siSCR) after two rounds of 
nucleofection (2x72h; 300 nM) in K562 is shown for six independent experiments (mean ± s.d.). The ratio 
of KDM6A to α-Tubulin protein expression was calculated for each experiment. b, Volcano plot of log2 FC 
and -log10 adjusted P value (transcripts with P<0.05 are highlighted in red) for genes differentially 
expressed after siRNA-mediated knockdown of KDM6A in K562 cells. Differential genes for siKDM6A 
compared with siSCR after two rounds of nucleofection (2x72h) are shown (n=6). 
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3.4.2  shRNA-mediated knockdown of KDM6A 

To identify KDM6A target genes in stable KDM6A KD K562 cells, RNA-Seq analysis 

was performed under native conditions and after AraC treatment. For the most potent 

shKDM6A #7, transcriptional deregulation was detected in 295 genes compared to 7 or 54 

deregulated genes during shKDM6A #3 or #4 mediated KD, respectively (Figure 33a). 

Only 3 genes showed transcriptionally deregulation in all three shKDM6As, but 44 genes 

overlapped when shKDM6A #4 was compared with #7 (Figure 33a). Whereas the majority 

of differentially expressed genes (39/46) was downregulated in the siRNA-mediated KD 

(Figure 32b), shKDM6A #7 KD resulted in similar transcriptional down- (150, 50.8%) and 

upregulation (145, 49.2%; Figure 33c).  

 

 

 

 

Figure 33 Identification of 
differentially expressed 
genes in KDM6A KD K562 
cells. a, Overlap between 
differentially expressed genes 
(P<0.05) in three different 
shKDM6A KD K562 cells. 
Differentially expressed 
genes of each shKDM6A (#3, 
#4, and #7) compared to 
shGFP control cells are 
shown (n=6). b,  AraC 
specific gene expression 
changes (P<0.05) in 
shKDM6A #7 K562 cells 
compared with shRenilla 
control cells (n=6). 
Differentially expressed 
genes in AraC (150 nM, 72h) 
treated samples were 
acquired by comparison with 
the respective untreated 
samples. c, Volcano blot of 
log2 FC and -log10 P value 
(transcripts with P<0.05 are 
highlighted in red) showing 
differentially expressed genes 
of shKDM6A #7 K562 
compared with shGFP K562 
cells. 
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Treatment with AraC (150 nM, 72h) during shRNA-mediated KD led to increased 

transcriptional deregulation (shKDM6A #7: 2,357; shRenilla: 2,272) in comparison to the 

native state with 40.3% (949/2,357) of genes exclusively being deregulated in 

shKDM6A #7 (Figure 33b). 

 

3.4.3  CRISPR/Cas9-mediated knockout of KDM6A 

To detect KDM6A target genes and compare these with the differentially expressed genes 

in KDM6A KD cells, RNA-Seq was performed in KDM6A KO K562 cells.  

Comparison of KDM6A KO #1 or #2 with KDM6A WT #1 cells revealed transcriptional 

deregulation of 1679 and 1187 genes, respectively (Figure 34a,b).  

 

 

 

Figure 34 Identification of differentially expressed genes in KDM6A KO K562 cells. a,b, Volcano plot 
of log2 FC and -log10 P value (transcripts with P<0.05 are highlighted in red) showing differentially 
expressed genes of KDM6A KO #1 (a) and KDM6A KO #2 (b) compared with KDM6A WT #1 K562 cells. 
c, Overlap between differentially expressed genes (P<0.05) in KDM6A KO #1 and #2 K562 cells. 
Differentially expressed genes of each KDM6A KO compared to KDM6A WT #1 are shown (n=6). 
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Of these genes, 839 differentially expressed genes were found in both KDM6A KO single 

cell clones (Figure 34c). The top 20 of these differential expressed genes of both KDM6A 

KO #1 and #2 cells compared with KDM6A WT #1 cells with the highest log2 fold change 

(FC) are summarized in Table 15. 

 

 
Table 15 Summary of top 20 differentially expressed genes found in both KDM6A KO K562 single cell 
clones. The top 20 differentially expressed genes in both KDM6A KO #1 and #2 K562 cells compared to 
KDM6A WT #1 K562 cells are listed. Genes with the strongest log2 fold change and the respective log10 P-
values are shown. 

Gene Name log2 FC log10 P-value 
 

Gene Name log2 FC log10 P-value 

ZFP42 5.09 -15.68 
 

FAM49A -4.28 -10.59 
CD36 4.91 -15.14 

 
BCRP2 -3.64 -7.89 

AC109492.1 4.80 -12.25 
 

TIMP4 -3.55 -12.69 
MS4A6A 3.56 -22.64 

 
LPCAT2 -3.50 -10.91 

CALB1 3.47 -30.62 
 

FAM9B -3.41 -9.98 
IGFBP5 3.44 -6.73 

 
TESPA1 -3.39 -9.08 

MS4A4A 3.44 -27.88 
 

SNCA -3.38 -22.16 
OOSP1 3.43 -10.56 

 
SRGN -3.19 -20.89 

MAP3K7CL 3.15 -10.58 
 

PLA2G4A -3.17 -6.56 
PI16 3.13 -6.77 

 
PAWR -2.72 -6.67 

FC, fold change. 
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3.4.4  Overlap of KDM6A target genes between different silencing approaches 

Due to the observed drug resistance in both KDM6A silencing approaches (KD and KO), 

differentially expressed genes of both RNA-Seq analyses were compared. Of the 295 

deregulated genes in shKDM6A #7 cells, 112 genes overlapped with those differentially 

expressed in KDM6A KO #1 and #2 single cell clones (Figure 35). The top 20 of these 

genes with the highest log2 FC in KDM6A KO #1 cells compared to control are shown in 

Table 16 (all 112 genes are listed in Supplementary Table 1). 

 

 

                     
Figure 35 Identification of transcriptional deregulated genes in both KDM6A silencing systems. 
Overlap between differentially expressed genes (P<0.05) in shKDM6A #7_shGFP and KDM6A KO #1_WT 
#1 with KDM6A KO #2_WT #1 K562 cells are shown (n=6). 

 
 
 
Table 16 Summary of top 20 differentially expressed genes in both KDM6A silencing approaches. The 
log2 fold changes and the respective log10 P-values are listed for the top 20 of the 112 differentially 
expressed genes found in all three KDM6A silenced K562 cells compared to controls: shKDM6A #7_shGFP, 
KDM6A KO #1_WT #1 and KDM6A KO #2_WT #1.  
 

shKDM6A #7_shGFP KDM6A KO #1_WT #1 KDM6A KO #2_WT #1 

Gene Name log2 FC log10 P-value log2 FC log10 P-value log2 FC log10 P-value 
CD36 2.05 -4.33 4.91 -15.14 3.35 -8.55 
CALB1 2.32 -6.11 3.47 -30.62 3.13 -27.47 
CAV1 1.63 -3.76 2.78 -15.61 2.31 -11.91 
HPGD 1.67 -3.62 2.48 -9.39 2.14 -7.30 
ERRFI1 1.81 -3.35 2.30 -6.77 1.59 -3.43 
C9orf47 2.77 -6.06 2.26 -3.83 3.02 -6.40 
HBBP1 1.14 -5.70 2.14 -11.08 1.54 -6.29 
CXCL1 2.65 -6.96 2.04 -5.01 2.74 -8.30 
FN1 1.61 -4.96 1.89 -8.14 1.91 -8.15 
TSPAN5 1.55 -3.81 1.87 -6.95 1.61 -5.36 
FAM49A -2.57 -5.69 -4.28 -10.59 -3.62 -9.34 
LPCAT2 -1.29 -8.24 -3.50 -10.91 -1.91 -8.61 
TESPA1 -2.94 -5.94 -3.39 -9.08 -3.19 -8.26 
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SNCA -1.06 -3.41 -3.38 -22.16 -0.64 -5.43 
DLC1 -3.14 -5.07 -2.57 -4.49 -2.72 -4.28 
PEAR1 -1.44 -3.78 -2.41 -8.89 -2.52 -9.16 
SERPINF1 -0.57 -3.02 -2.37 -15.35 -2.61 -16.12 
ADTRP -0.75 -3.97 -2.33 -9.44 -1.39 -6.38 
CD53 -1.24 -12.54 -2.21 -10.15 -2.77 -10.99 
AIF1 -2.73 -8.03 -2.09 -8.13 -2.23 -7.92 

FC, fold change. 

 

 

Gene set enrichment analysis, an analytical method that evaluates RNA-Seq data at the 

level of gene sets212, revealed no gene sets that share common biological functions. 

Therefore, KDM6A regulated genes were compared with known key candidate genes in 

AraC, DNR, and 6-TG metabolic pathways. To eliminate cell type specific changes, 

RNA-Seq data of the sister cell lines MM-1 and MM-6 was included in the analysis. 

For the metabolic pathway of AraC, the AraC influx transporter SLC29A1 was found to be 

consistently downregulated in siKDM6A, shKDM6A #7 and both KDM6A KO cells 

compared to their controls (Figure 36). In addition, SLC29A1 mRNA was downregulated 

in KDM6A mutant MM-6 cells compared to KDM6A WT MM-1 cells. SLC29A1, also 

known as ENT1, is a membrane transporter important for the cellular uptake of 

nucleosides and its analogues213. 

 

 

                 
Figure 36 Differential expression of SLC29A1 in KDM6A silenced cells. Horizontal bar plot showing log2 
FC with confidence interval of differentially expressed gene SLC29A1. RNA-Seq data from KDM6A 
silencing approaches (siRNA, shRNA, CRISPR/Cas9) in K562 cells and MM-6 vs. MM-1 are shown (n=6). 

 



 Results  
	 	 	
	 	

	 80	

For the metabolic pathway of DNR, the aldo-keto reductases AKR1C1 and AKR1C2, 

which are members of the drug-metabolizing enzyme family called AKR1C, were found 

to be differentially expressed in KDM6A silenced cells. An upregulation of AKR1C1 and 

AKR1C2 mRNA was observed in both shRNA and KO approaches but not in siKDM6A 

KD cells (Figure 37). In KDM6A mutant MM-6 cells, only AKR1C2 mRNA was also 

upregulated compared to MM-1 cells (Figure 37b). 

 

 

 

                  
Figure 37 Differential expression of AKR1C1 and AKR1C2 in KDM6A silenced cells. Horizontal bar plot 
showing log2 FC with confidence interval of differentially expressed genes AKR1C1 (a) and AKR1C2 (b). 
RNA-Seq data from KDM6A silencing approaches (siRNA, shRNA, CRISPR/Cas9) in K562 cells and MM-
6 vs. MM-1 are shown (n=6). 
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4  Discussion 

4.1  Inactivation of KDM6A during the clonal evolution of AML 

In AML, frequency of patients with KDM6A mutations ranges from 0.7 to 4.0% and the 

majority of mutations are missense mutations19,21,31,48. In this work, the investigated 

KDM6A mutations AML patients at diagnosis were somatic missense and truncating 

mutations. In contrast to T-ALL153 and pediatric ALL194, where inactivating KDM6A 

mutations were almost exclusively detected in the catalytic JmjC domain, the investigated 

mutations were also located at or within the proximity of the TPR domain. KDM6A 

mutations most likely lead to a loss of KDM6A expression by facilitating nonsense-

mediated mRNA decay or proteasomal degradation of premature stop codons. Therefore, 

these mutations lead to an inactivation of KDM6A. Although the catalytic inactive mutant 

H1146A is normally expressed in HEK293T cells, point mutations in specific, highly 

conserved residues (e.g. L1103R)214, might facilitate a destabilization of the protein and 

subsequent proteasomal degradation. Mutations or deletions targeting the catalytic SET 

domain of KMT2D were reported to destabilize KMT2D164. It may be that the JmjC 

domain is responsible not only for the H3K27 demethylase activity but also for 

maintaining protein stability of KDM6A.  

KDM6A mutation E1325X was previously described in an AML patient at diagnosis and 

was present in a subclone only31. Given that many KDM6A mutations are present as 

subclones in this work and other studies21,31, one could speculate that these mutations 

occur at a later time point during AML evolution. Investigation of clonal relationships in a 

cohorte of 1540 AML patients by Papaemmanuil and Gerstung et al.31 revealed that 

mutations in the KDM6A gene mostly occur after the acquisition of mutations in genes 

like ASXL1, DNMT3A, IDH1/2, NPM1, NRAS, TP53, TET2, RAD21, RUNX1, NF1, 

PHF6, EP300, STAG2, or SF3B1. Only the KIT gene is probably targeted by mutations 

after KDM6A31. The heterogeneous mixture of subclones and small number of patients 

with KDM6A mutations hinders the definition of common mutational patterns. In the 

present study, KDM6A mutations co-occurred with mutations in genes such as KRAS, 

BCOR, Rad21, WT1, NPM1, ASXL1, RUNX1, TP53, FLT3, and ABCG2, but no solid 

conclusion can be drawn whether KDM6A mutations occurred in the same clone or in 

separate clones. It is possible that the type of co-occurring mutation influences the ELN 
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risk group assessment, because KDM6A mutated patients are diversely grouped31. For 

example, TP53 mutations were reported to be enriched in myeloid malignancies with 

KDM6A mutations and dual loss of p53 and Kdm6a strongly shortened the latency of 

Kdm6a loss induced CMML compared to mice with single gene loss170.  

Given the low frequency of diagnosed AML patients with KDM6A mutations and limited 

availability of relapse material, we were able to analyze matched diagnosis and relapse 

samples in a total of five AML patients. Of these, two patients were part of our CN-AML 

diagnosis-relapse cohorte48. The consistent outgrowth of the KDM6A mutated population 

at relapse in all investigated patients, which varied only in their outgrowth intensities, 

suggests that mutations in the KDM6A gene contribute to clonal survival during 

chemotherapy by at least two possible mechanism. One, KDM6A inactivation could 

increase the mutational diversity and thus adaptability of the leukemia, leading to clonal 

survival. Two, KDM6A loss may lead to chemotherapy resistance and clonal survival 

during therapy. 

So far, many studies have focused on identifying driver genes at diagnosis, but only few 

have compared gene alterations between diagnosis and relapse to identify possible 

recurrent relapse signatures. Several studies in ALL report compelling evidence that 

KDM6A alternations in ALL are more prevalent at relapse than at diagnosis. For instance, 

whole-exome sequencing analysis in three adult patients with Philadelphia chromosome 

negative ALL at diagnosis and relapse after allo-HSCT showed a recurrent somatic 

KDM6A frameshift mutation, N855Rfs*20, in one patient215. Although the changes in the 

variant frequencies were not drastic (34% vs. 44%), the KDM6A mutated clone 

outcompeted the other clones and evolved into the dominant clone at relapse215. In 

pediatric B-ALL patients, KDM6A mutations were reported to be enriched at relapse in 

two patients216. Additionally, investigation of copy number alterations (CNA) during 

progression of adult B-ALL revealed that copy number deletions of KDM6A occur 

specifically at relapse217. Recurrent mutations of KDM6A are not limited to leukemia and 

were recently associated with a risk of bladder recurrence218. Although not specific for 

KDM6A, high levels of relapse-associated clones at diagnosis predict a shorter remission 

than low levels in certain cases of childhood ALL65. In this study, maybe due to the small 

number of cases (n=5), no correlation between VAF of individual KDM6A mutations at 

diagnosis and time to relapse could be observed. 

As KDM6A is not X-inactivated152, females have two active gene copies and thus higher 

KDM6A expression than males48. Consistent with these reports, KDM6A protein levels in 
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KDM6A non-mutated patients were lower in males than in females. Of note, all five 

patients with recurrent KDM6A mutations in this study were females. Of these patients, 

patient CN-025 lost the X chromosome carrying KDM6A WT at relapse48. The AML cell 

line HL-60 harboring a KDM6A exon deletion also lost the other X chromosome.  In line 

with these observations, a loss of heterozygosity was observed among 16 female cancer 

cell lines with KDM6A inactivating mutations on one allele145. Patient CN-025, who lost 

the other X chromosome, had an extremely short remission with a time to relapse of only 

122 days. Although the possibility remains that gain of additional alterations contribute to 

a short remission, complete loss of KDM6A WT expression might play a role in 

accelerating the progression of AML. Consistent with this notion, KDM6A deficiency was 

found to accelerate and promote cancer progression dependent on its expression dosage in 

a mouse lymphoma model219.  

In our recent study, we found a positive correlation between KDM6A expression and 

overall survival in CN-AML patients48. This correlation appears to be gender-specific, 

because shortened overall and relapse-free survival was only observed in male CN-AML 

patients48. Female cells likely have more functional reserves to compensate for KDM6A 

inactivation compared with male cells carrying only a single copy. In T-ALL, 

pathogenesis seems to be facilitated through a loss in demethylase activity and thus 

females benefit from two functional copies153. On the contrary, male mice with loss of 

KDM6A do not develop AML, because the Y-linked homolog UTY facilitates KDM6A-

similar noncatalytic functions197. Expression levels of UTY were not analyzed in the 

AMLCG-99 cohorte and thus no conclusion about the prognostic impact of UTY and the 

functional redundancy between KDM6A and UTY in male CN-AML patients can be 

drawn from our recent study. 

Results from this work suggest that at least two mechanisms exist to regulate KDM6A 

activity. On the one hand, KDM6A can be inactivated by loss-of-function mutations. On 

the other hand, KDM6A mutation-independent mechanisms seem to contribute to low 

protein expression at relapse. A possible mechanism to downregulate KDM6A in females 

during AML progression could be loss of chromosome X, because the X chromosome is 

among the most frequently aneuploid chromosomes in female cancers220.  

 

Other possible regulatory mechanisms are altered epigenetic pathways including DNA 

hypermethylation, histone modifications, and misregulation of miRNAs or deregulated 

protein degradation. A recent study by Göllner et al.221 found that a subset of AML 
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patients lost protein expression of the histone H3K27 methyltransferase EZH2 during 

disease progression. EZH2 protein levels were reduced by proteasomal degradation 

through EZH2 phosphorylation at Threonine 487 and binding of E3 ubiquitin protein 

ligases221. Whereas treatment with the proteasomal inhibitor bortezomib restored EZH2 

levels in some AML patients221, in vivo treatment of PDX AML-393 bearing mice with 

bortezomib showed no upregulation of KDM6A expression in this study (data not shown). 

These findings suggest that KDM6A levels might be reduced during AML progression by 

other regulatory mechanisms than protein degradation.  

Karyotype changes from normal to complex aberrant may have an impact on KDM6A 

protein expression during disease progression. Of note, the karyotype of patient #5 at 

relapse was completely distinct from the primary tumor, which differentiates it as a second 

malignancy. This might explain why KDM6A protein expression is higher in this specific 

relapse sample compared to diagnosis. 

The type of induction therapy included S-HAM, TAD or AraC plus DNR and thus the 

applied drug combinations varied between AML patients. The component all induction 

regimens have in common is AraC. Although the number of cases is small, the results 

from the in vivo therapy of PDX bearing mice with AraC and liposomal DNR indicate that 

KDM6A mutated cells are resistant to therapy whereas KDM6A WT cells are not. 

Unfortunately, no viable cells from these two patients were available at diagnosis to 

establish a PDX model and to compare drug sensitivity between diagnosis and relapse in 

PDX samples from the same patient. Overall, the in vivo findings are in agreement with 

results obtained from patients and suggest that chemotherapy might select for clones 

which possess a KDM6A mutation or have reduced KDM6A expression.  
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4.2  Deletions of KDM6A facilitate an altered epigenetic phenotype in AML 

cell lines 

Van Haaften and colleagues145 were the first to identify KDM6A exon deletion mutations 

in a broad spectrum of cancer cell lines. In this work, extended analysis of 40 myeloid 

leukemia cell lines revealed KDM6A exon deletions in 10% of AML cell lines. Exon 

deletions in MM-6 and THP-1 cells were detected as reported previously145. In addition, 

exon deletion mutations were found in OCI-AML3 and HL60 cells and these findings 

were independently validated. Although both deletions are short and in-frame, KDM6A 

protein expression is completely lost. Recently, KDM6A expression was reported to be 

lost in the cell line MV4-11197. In contrast, MV4-11 cells used in this study harbor no 

KDM6A exon deletion and showed normal KDM6A protein expression. Cell line identity 

of MV4-11 was confirmed by fingerprint analysis. The discrepancy could be explained by 

clonal evolution of sublines during cultivation or other yet unexplained mechanisms.  

Genomic loss of UTY in hematopoietic and solid organ cancer cell lines was demonstrated 

to occur more frequently in cells with inactivating KDM6A mutations than in KDM6A WT 

cells145,197. Additionally, UTY was reported to be lost or reduced in conjunction with 

KDM6A mutations in pancreatic cancers with squamous differentiation in male patients196. 

Consistent with these findings, reduced expression of UTY mRNA was found to occur 

quite frequently in KDM6A mutant AML cell lines (2/3), but also in some KDM6A WT 

cell lines (3/7). In contrast, PDX AML-579 and AML-372 cells with low KDM6A protein 

expression showed UTY mRNA levels comparable to UTY WT cell lines. Of note, the 

sister cell lines MM-1 and MM-6, which have been originally established in culture from 

the same male AML patient at relapse211, both lost UTY expression. We demonstrated 

previously that KDM6A mutant MM-6 cells are more resistant to AraC treatment than 

KDM6A WT MM-1 cells48. In KDM6A-deficient male mice, UTY can compensate for 

KDM6A loss and suppress myeloid leukemogenesis cells197. Because UTY mRNA 

expression is lost in both cell lines, the impact of KDM6A loss in these sister cell lines can 

be studied without possible interference from UTY.  

The steady state of H3K27 methylation is kept tightly regulated by the histone H3K27 

methyltransferase EZH2 and demethylases KDM6A and KDM6B. Despite their opposing 

roles on H3K27 methylation, loss-of-function mutations in both KDM6A and EZH2 genes 

were detected in a mutually exclusive manner in CMML patients195.  
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Mutations in EZH2 and KDM6A or KDM6B appear to be mutually exclusive in AML as 

well. In addition, EZH2 and KDM6B mRNA levels were similar in AML cell lines with 

different KDM6A gene status, suggesting that the increase of global H3K27me3 in 

KDM6A mutated AML cell lines is a direct consequence of KDM6A loss. 

Consistent with this notion, both KDM6A silencing approaches in K562 cells led to a 

modest increase of global H3K27me3. Recently, inactivation or loss of KDM6A was 

linked to a modest increase of global H3K27me3 in urothelial bladder carcinomas189. 

During malignant T-cell transformation in a NOTCH1-induced T-ALL mouse model, 

KDM6A deficiency caused a genomewide redistribution of H3K27me3, but did not 

change the global levels of H3K27me3153. Hence, increased H3K27me3 are direct 

consequence of KDM6A loss, but results from several studies suggest that the magnitude 

of increase as well as its impact on regulatory mechanisms might vary depending on the 

investigated tumor type. 
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4.3  Inactivation of KDM6A confers drug resistance in AML 

Despite high initial remission rates, a substantial fraction of patients with AML relapse. In 

addition to established cytogenetic risk factors, certain molecular genetic lesions such as 

RUNX1, TP53, and FLT3/ITD mutations have been associated with an increased risk of 

relapse in AML52,222–225. Still, reliable biomarkers for predicting the therapeutic response 

to induction therapy are mostly lacking52,226. The search for relapse promoting biomarkers 

is further complicated by the heterogeneity of AML. Recently, SAMHD1 was reported to 

be a promising biomarker for AraC resistance in patients with AML91. By decreasing the 

levels of active AraC (Ara-CTP), SAMHD1 was found to mediate resistance to AraC. 

SAMHD1 levels at diagnosis were inversely correlated with the clinical response to AraC 

based therapy in two cohorts of adult patients with AML91. Another potential candidate 

gene for AraC resistance in AML is the H3K27 methyltransferase EZH2. Low EZH2 

expression correlate with poor overall survival and event-free survival in AML patients221. 

Loss of EZH2 and subsequent reduction of H3K27me3 levels were identified as a novel 

pathway of acquired resistance to cytotoxic drugs such as AraC and DNR but also to 

tyrosine kinase inhibitors (e.g. PKC412)221.  

In this work, we identified KDM6A as a novel biomarker for drug resistance in AML. 

Suppression of KDM6A protein expression induced chemoresistance of AML cell lines in 

vitro and of PDX cells in vivo. In contrast to AraC for which a dependency on KDM6A 

expression dosage was only observed after short-term treatment, resistance to DNR 

appears to be dependent on KDM6A expression dosage during prolonged treatment. 

Stronger suppression of KDM6A results in increased growth advantage under DNR 

therapy indicating that regulation of chemoresistance mediating KDM6A target genes 

depends on KDM6A expression dosage. Although not in the context of chemoresistance, 

level of KDM6A expression were found to have an impact on leukemogenesis in mouse 

models197,219. 

Induction therapy typically involves continuous treatment of AML patients for seven (7+3 

schedule) or 10 days (TAD regime). During prolonged in vitro treatment, we observed a 

strong increase in resistance of AML cell lines with KDM6A loss to AraC and DNR, 

whereas only a modest increase was seen after short-term treatment in vitro. This shows 

that even smaller differences in drug sensitivity observed after short-term therapy can 

significantly impact long-term therapy. 

In our previous study48 we demonstrated that the KDM6A mutant MM-6 cells were 

significantly more resistant to AraC short-term treatment than its sister cell line MM-1 



 Discussion  
	 	 	
	 	

	 88	

(KDM6A WT). In contrast, only a trend for increased DNR resistance was seen after short-

term treatment for 72h. In this work, we extended treatment time, which resulted in a 

significant increase of DNR resistance in MM-6 compared to MM-1 cells. Additionally, 

we demonstrated that deletion of KDM6A in MM-1 recapitulates the same drug resistant 

phenotype observed in MM-6. These findings are in agreement with our previous results 

and clearly support our hypothesis that KDM6A deficiency induces drug resistance in 

AML. Besides increased resistance towards AraC and DNR, KDM6A deficient MM-1 and 

KDM6A mutant MM-6 cells are less sensitive to 6-TG treatment. As this was not the case 

for KDM6A deficient K562 cells, 6-TG resistance might be cell type dependent. To date, 

a link between KDM6A loss and altered cytotoxic drug sensitivity has only been reported 

in a mouse B cell lymphoma model219, but not for AML. AraC, which is only occasionally 

used in the treatment of lymphomas, was reported to show the most significant sensitivity 

changes upon KDM6A knockdown in mouse B lymphoma cells219. In contrast to our 

findings in AML, lymphoma cells with KDM6A knockdown were more sensitive to AraC 

but showed increased resistance towards 6-TG, 3-MA-34, and CDDP219. One possible 

explanation for the discrepancy between the AraC sensitivity of KDM6A deficient murine 

B lymphoma cells and KDM6A deficient human AML cells could be tissue specific 

activation or repression of regulatory genes involved in drug sensitivity. Overall, these 

results suggest for the first time that AML clones with a KDM6A loss are selected for 

during therapy with cytotoxic agents including AraC and DNR. 

Given the tumor suppressor function of KDM6A, the design and application of therapeutic 

approaches targeting KDM6A deficient cancer cells is rather difficult. A potential 

vulnerability that can be exploited is its dependency on increased EZH2 activity because 

cells with a KDM6A deficiency were reported to be more sensitive for H3K27me3 

inhibition in certain tumor types182,189. Van der Meulen et al.182 demonstrated in both 

murine and human in vitro T-ALL model systems that KDM6A loss renders cells more 

sensitive to treatment with DZNep, an epigenetic compound that targets EZH2. Notably, 

no increased sensitivity to DZNep treatment was observed in KDM6A mutant AML cell 

lines in this work (data not shown). Given that DZNep is not specific for EZH2 and also 

acts as a S-adenosylhomocysteine hydrolase inhibitor, KDM6A deficient cells were also 

treated with a specific EZH2 inhibitor (GSK126). Consistent with our findings from 

DZNep treatment, treatment with GSK126 showed no differences in growth between 

KDM6A WT and deficient AML cell lines (data not shown). Probably due to its largely 

demethylase independent tumor suppressor functions, KDM6A deficient squamous-like 
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pancreatic cancers do not respond differently to EZH2 inhibition, but are selectively 

sensitive to BET inhibitors196. To exploit potential vulnerabilities upon KDM6A loss in 

AML, screening for diverse types of inhibitors should be performed in the future.  

 

 

4.4  Identification of key KDM6A target genes involved in mediating drug 

resistance 

Various mechanisms of drug resistance in AML have been proposed in the last decades. 

Possible mechanisms of resistance include drug inactivation, decreased drug influx or 

increased drug efflux, altered DNA repair mechanisms, protective microenvironment, 

altered apoptotic pathway and cell cycle67.  

AraC for instance can only exert its cytotoxic effect via DNA polymerase inhibition and 

incorporation into DNA after cellular uptake and conversion into its active triphosphate 

form. Hence, deregulation of genes involved in AraC metabolism can profoundly impact 

AraC sensitivity. One of the factors affecting AraC sensitivity in AML patients is DCK, 

which is believed to be the key rate-limiting activating enzyme by phosphorylating AraC 

to AraC monophosphate (Ara-CMP). Low levels of DCK were reported to correlate with 

low AraC sensitivity87,88 and to predict shorter DFS83,89. Besides AraC activating enzymes, 

increased activity of inactivating enzymes can also impact the responsiveness to AraC91. 

Upon loss of EZH2, the effectiveness of AraC in AML cell lines and primary cells was 

reported to be diminished due to an activation of HOX gene family members (e.g. HOXB7 

and HOXA9)221. Given that no gene sets with shared common biological functions were 

found by gene set enrichment analysis in KDM6A deficient cells, differential expressed 

genes were compared with known candidate genes in drug resistance pathways. 

Among the key candidate genes in AraC metabolism, we consistently found differential 

expression of the drug influx transporter gene SLC29A1, also known as ENT1, in KDM6A 

deficient cells. SLC29A1 is the most abundant nucleotide transporter in blasts from AML 

patients and leukemia cell lines227. It is responsible for the cellular uptake of AraC and the 

DNA methyltransferase inhibitors decitabine and 5-azacytidine227. Previous studies 

showed that KD or inhibition of SLC29A1 in AML cell lines confers AraC resistance95,228. 

A trend for inverse correlation of SLC29A1 protein expression and AraC sensitivity was 

also observed in AML cell lines91. In AraC based therapy, AML patients with low 

SLC29A1 levels were reported to have shorter disease-free or overall survival and a 
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reduction of ENT1 expression was observed at relapse compared to remission96. 

Consistent with these findings, we demonstrate that both K562 and MM-6 cells with 

KD/KO of KDM6A, which are less sensitive to AraC based treatment, have decreased 

mRNA expression of SLC29A1. Furthermore, combinational treatment with AraC and a 

selective SLC29A1 small molecule antagonist called NBMPR resulted in increased cell 

survival compared to AraC alone (data not shown). Collectively these results show that 

loss of KDM6A induces decreased AraC sensitivity in AML cells by reducing the 

expression of the AraC influx transporter SLC29A1 and thereby decreasing the 

intracellular amount of AraC (Figure 38). Hence, we propose a novel mechanism of AraC 

resistance upon loss of KDM6A in AML although the possibility cannot be ruled out that 

other target genes of KDM6A might contribute to AraC resistance as well.  

 

 

 

Figure 38 Proposed model for KDM6A-controlled AraC resistance in AML cells. In KDM6A WT cells, 
ENT1 (SLC29A1) facilitates the transport of AraC across the cell membrane of AML cells leading to high 
amounts of intracellular AraC and subsequent high levels of active AraC (Ara-CTP). Ara-CTP blocks DNA 
synthesis and repair resulting in enhanced induction of apoptosis (left panel). In KDM6A deficient AML 
cells, loss of KDM6A leads to the reduction of ENT1 expression thereby decreasing intracellular AraC 
levels and preventing/reducing the induction of apoptosis (right panel). 
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To further elucidate the mechanism of SLC29A1 regulation by KDM6A, ChIP-seq 

analysis for H3K27me3 in KDM6A deficient and WT cells should be performed in the 

future. Additionally, ChIP-seq analysis for H3K27 acetylation seems promising since 

KDM6A was reported to regulate gene expression during myeloid leukemogenesis mainly 

by modifying levels of H3K27 acetylation, H3K4 monomethylation and chromatin 

accessibility197. Consistent with previous findings that KDM6A is not solely a 

transcriptional activator197, we observed gene expression changes with similar up- and 

downregulation after KD and KO of KDM6A in myeloid cells suggesting that KDM6A 

regulates gene expression not only by modifying levels of H3K27 methylation. It will be 

important to understand the extent to which the drug resistant promoting effects of 

KDM6A depend upon its catalytic activity as compared to its noncatalytic structural 

contributions to COMPASS complex integrity and chromatin remodeling factor activity. 

Given that the cellular uptake of DNR is not facilitated by SLC29A1 (Stief et al., 

manuscript submitted), other mechanisms appear to induce DNR resistance in KDM6A 

deficient cells. One possible mechanism leading to DNR resistance might be upregulation 

of the metabolizing enzymes AKR1C1 and AKR1C2 in KDM6A deficient cells. AKR1C 

and AKR1C2 belong to a family of aldo-keto reductases (AKR1C1-AKR1C4), which 

share over 86% homology and catalyze NADPH dependent aldehyde or ketone 

reductions229,230. Although their natural substrates are steroids and prostaglandins, these 

aldo-keto reductases can metabolize and inactivate anticancer drugs and thus were 

implicated in chemotherapeutic drug resistance in cancer230,231. For instance, resistance to 

cisplatin was found to be induced by upregulation of AKR1C1 in human ovarian cancer 

cells232 or of both AKR1C1 and AKR1C3 in human colon cancer cells233. In leukemic 

U937 cells, induction of AKR1C1 and AKR1C3 expression was demonstrated to facilitate 

reduction of DNR efficacy234. Whereas AKR1C3 expression was not differentially 

regulated, we observed upregulation of AKR1C1 and AKR1C2 in DNR resistant leukemic 

cells upon reduction or loss of KDM6A. However, we exclusively found a consistent 

upregulation of AKR1C2, but not AKR1C1, across different cell lines in both K562 cells 

with KDM6A KD/KO and KDM6A mutant MM-6 cells. Interestingly, AKR1C2, but not 

AKR1C1, was reported to display enzymatic activity with DNR metabolism230 supporting 

our hypothesis that AKR1C2 plays a role in conferring resistance to DNR in KDM6A 

deficient cells. The role of AKR1C2 in DNR resistance seems promising and should be 

further investigated by deleting or overexpressing AKR1C2 in AML cells. Additionally, if 

upregulation of AKR1C2 is the major factor responsible for DNR resistance in KDM6A 
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deficient cells, specific inhibition of AKR1C2230,235 should re-sensitize cells to DNR 

treatment.  

In summary, these findings suggest that two different proteins mediate resistance to AraC 

and DNR, respectively, in KDM6A deficient cells. AraC resistance is achieved by 

downregulation of the drug influx transporter SLC29A1, whereas upregulation of 

AKR1C2 most likely promotes resistance to DNR. Future studies are planned to unravel 

the mechanisms behind KDM6A target gene regulation. 
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5  Summary 

Acute myeloid leukemia (AML) is an aggressive hematologic cancer resulting from the 

malignant transformation of myeloid progenitors. Despite an initiate response to intensive 

chemotherapy, relapse caused by intrinsic or acquired drug resistance remains a major 

hurdle in the treatment of AML. KDM6A (or UTX) is a histone 3 lysine 27 (H3K27)-

specific demethylase and a member of the COMPASS-like complex, which is important 

for H3K4 methylation and chromatin enhancer activation. KDM6A is targeted by 

inactivating mutations in a variety of cancer types with frequency of occurrence ranging 

from 0.7 to 4% in AML. Although recent studies reported a crucial role for the tumor 

suppressor KDM6A in the development of cancer including leukemia, its functions during 

clonal evolution of AML from diagnosis to relapse are still unresolved. 

It was the aim of this project to characterize the clonal evolution dynamics of KDM6A 

during AML progression and to investigate if KDM6A loss facilitates tolerance to drugs 

that are commonly used in the induction therapy for AML. In a diagnosis-relapse cohorte 

of 50 cytogenetically normal AML patients, we initially discovered KDM6A as a novel 

relapse-associated gene in two patients. Subclones harboring a KDM6A mutation were 

selected for during AML progression and evolved into the major clone at relapse. By 

comparing the variant allele frequency of KDM6A mutations in AML patients with 

matched diagnosis and relapse samples, we found three additional AML patients with 

enrichment of KDM6A loss-of-function mutations at relapse. During disease progression, 

loss of KDM6A can also occur in a mutation-independent fashion suggesting that loss of 

KDM6A is also facilitated by other regulatory mechanisms. Increase of global H3K27me3 

in KDM6A mutant or deleted cells is a direct consequence of KDM6A inactivation, but to 

which extend the relapse-promoting effects of KDM6A depend upon its enzymatic 

activity need further investigation. 

To investigate whether loss of KDM6A leads to increased resistance towards drugs 

commonly used in the treatment of AML, KDM6A expression was silenced by different 

approaches including siRNA, shRNA and CRISPR/Cas9-mediated genome editing in the 

myeloid leukemia cell lines K562 and MM-1. Compared to control, KDM6A knockdown 

and knockout K562 cells showed a strong proliferative advantage after cytarabine (AraC) 

and daunorubicin (DNR) but not 6-thioguanine (6-TG) treatment. Loss of KDM6A in 

MM-1 phenocopied the drug resistance phenotype observed in the sister cell line MM-6 
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(KDM6A mutant). RNA-Seq analysis in K562 cells treated with siRNA or shRNA against 

KDM6A revealed differentially expressed genes, of which two are key candidate genes in 

AraC and DNR metabolic pathways. AraC resistance, at least partly, might be achieved by 

reduction of the AraC influx transporter SLC29A1 (or ENT1). In contrast, resistance to 

DNR in KDM6A deficient cells might be mediated by upregulation of the drug 

metabolizing enzymes AKR1C1 and AKR1C2. 

In conclusion, these results show that mutations in KDM6A are associated with the 

outgrowth of drug-resistant clones and highlight KDM6A as a novel mediator of drug 

resistance in AML.  
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6  Zusammenfassung 

Die akute myeloische Leukämie (AML) ist eine aggressive hämatologische Neoplasie, die 

aus der malignen Umwandlung myeloischer Vorläufer entsteht. Obwohl die Mehrheit der 

Patienten auf eine intensive Chemotherapie anspricht, ist ein Krankheitsrückfall aufgrund 

intrinsischer oder erworbener Arzneimittelresistenz häufig. Das Rezidiv ist daher eine der 

größten Herausforderungen bei der Behandlung von AML. KDM6A (oder UTX) ist eine 

Histon 3 Lysin 27 (H3K27)-spezifische Demethylase und Mitglied des COMPASS-artigen 

Komplexes, welcher für die H3K4 Methylierung und die Aktivierung von Chromatin 

Enhancern wichtig ist. Inaktivierende KDM6A Mutationen wurden in einer Vielzahl von 

Krebsarten gefunden und haben eine Häufigkeit von 0,7 bis 4% in der AML. Obwohl 

kürzlich durchgeführte Studien eine entscheidende Rolle für KDM6A als 

Tumorsuppressor bei der Krebsentstehung, einschließlich Leukämien, beschrieben haben, 

sind dessen Funktionen während des Fortschreitens der AML von Diagnose zu Rezidiv 

noch ungeklärt. 

Ziel dieses Projektes war es, die klonale Evolutionsdynamik von KDM6A während der 

AML-Progression zu bestimmen. Des Weiteren sollte untersucht werden, ob der Verlust 

von KDM6A zu einem veränderten Ansprechen auf Medikamente, die üblicherweise in 

der Induktionstherapie für AML eingesetzt werden, führt. In einer Diagnose-Rezidiv-

Kohorte von 50 zytogenetisch normalen AML Patienten entdeckten wir KDM6A als 

neues, rezidiv-assoziiertes Gen bei zwei Patienten. Subklone mit einer KDM6A Mutation 

hatten einen selektiven Vorteil während der AML-Progression und entwickelten sich in 

den Hauptklon im Rezidiv. Durch Vergleich der Allelhäufigkeit von KDM6A Mutationen 

bei AML Patienten, bei denen übereinstimmende Diagnose- und Rezidivproben verfügbar 

waren, fanden wir drei weitere AML Patienten mit einer Anreicherung von KDM6A 

Mutationen im Rezidiv. Während des Fortschreitens der Krankheit kann der Verlust von 

KDM6A auch mutationsunabhängig auftreten, was darauf hindeutet, dass die Expression 

von KDM6A auch durch andere Mechanismen reguliert wird. Die Zunahme von globalem 

H3K27me3 in KDM6A mutierten oder reprimierten Zellen ist eine direkte Folge der 

KDM6A Inaktivierung. Weitere Untersuchungen müssen aber erst zeigen, in wie fern die 

enzymatische Aktivität die rezidiv-spezifische Selektion beeinflusst.  

Um zu untersuchen, ob der Verlust von KDM6A zu einer erhöhten Resistenz gegenüber 

Medikamenten führt, die üblicherweise bei der Behandlung von AML eingesetzt werden, 
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wurde die KDM6A Expression durch verschiedene Ansätze wie siRNA, shRNA und 

CRISPR/Cas9 in den myeloischen Leukämie Zelllinien K562 und MM-1 reprimiert. Im 

Vergleich zur Kontrolle zeigten KDM6A Knockdown (KD) und Knockout (KO) K562 

Zellen einen starken proliferativen Vorteil nach Behandlung mit Cytarabin (AraC) und 

Daunorubicin (DNR), aber nicht 6-Thioguanin (6-TG). KO von KDM6A in MM-1 Zellen 

resultierte im gleichen Resistenzphänotyp wie der der Schwesterzelllinie MM-6 (KDM6A 

mutiert).  

Die RNA-Seq-Analyse in K562 Zellen, die mit siRNA oder shRNA gegen KDM6A 

behandelt wurden, zeigte differentiell exprimierte Gene, von denen zwei eine wichtige 

Rolle im AraC- und DNR-Stoffwechselweg spielen. Die Resistenz gegen AraC, zumindest 

teilweise, könnte durch die reduzierte Expression des AraC Transporters SLC29A1 (oder 

ENT1) erreicht werden. Im Gegensatz dazu könnte die Resistenz gegen DNR in KDM6A-

reprimierten Zellen durch eine Hochregulierung der Arzneimittel metabolisierenden 

Enzyme AKR1C1 und AKR1C2 vermittelt werden. 

Zusammenfassend zeigen die Ergebnisse dieser Arbeit, dass KDM6A Mutationen die 

Selektion von Chemotherapie-resistenten Klonen im Rezidiv begünstigen. Somit spielt 

KDM6A eine wichtige Rolle bei der Vermittlung der Chemotherapie-Resistenz in der 

AML. 
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8  Annex 

8.1  Supplementary Figures 

 
 
 

 

Supplementary Figure 1 Evolutionary patterns during progression of AML. a,b,c, VAF plots for 
different evolutionary patterns observed from diagnosis to relapse in three AML patients. Bars represent the 
blast count and each line represents one mutation. In addition, for patient UPN-393 (a) VAFs of the PDX 
sample from passage 0 (P0) and for UPN-202 (b) VAFs of a remission sample are shown.  
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Supplementary Figure 2 KDM6A exon deletions in AML cell lines and AML PDX samples identified. 
The peak ratio for each KDM6A exon specific probe, detected by quantitative MLPA analysis, is shown. 
Results for 6/40 of the investigated myeloid cell lines (summarized in Table 8) and 8/8 PDX AML cells are 
shown. Additionally six cell lines are shown in Figure 15. The area of a normal peak ratio lies within the two 
dotted lines and ranges from 0.7 to 1.3. Mean ± s.d. are given for at least two independent experiments.   

 
 
 
 

 
 

Supplementary Figure 3 In vitro analysis 
of the KDM6A mutant E1325X in PDX 
AML-393 cells regarding proteasomal 
degradation. Immunoblot showing KDM6A 
expression in KDM6A mutant PDX AML-
393 cells after treatment with the proteasomal 
inhibitor MG132 for 6 hours. MW, molecular 
weight; α-Tubulin, loading control.		
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8.2  Supplementary Table 

 

Supplementary Table 1 Summary of 112 differential expressed genes in KDM6A silenced cells. The 
log2 fold changes and the respective log10 P-values are listed for each of the 112 differentially expressed 
genes found in all three KDM6A silenced K562 cells compared to controls: shKDM6A #7_shGFP, KDM6A 
KO #1_WT #1 and KDM6A KO #2_WT #1 (P<0.05). 

 shKDM6A #7_shGFP KDM6A KO #1_WT #1 KDM6A KO #2_WT #1 

Gene Name log2 FC log10 P-value log2 FC log10 P-value log2 FC log10 P-value 

AC004233.3 -0.77 -3.43 -1.10 -2.96 -1.22 -3.32 
AC010327.1 -0.71 -3.13 -0.64 -5.06 -0.86 -7.37 
AC090409.1 0.79 -4.26 0.71 -10.11 0.58 -7.31 
ADAM8 -1.58 -3.05 -2.05 -5.43 -1.76 -4.68 
ADTRP -0.75 -3.97 -2.33 -9.44 -1.39 -6.38 
AIF1 -2.73 -8.03 -2.09 -8.13 -2.23 -7.92 
AIM2 2.34 -6.41 1.27 -3.95 1.28 -3.96 
AKR1C1 1.13 -8.30 0.98 -9.03 1.50 -16.18 
AKR1C2 0.97 -5.00 1.34 -8.89 1.38 -9.14 
AMHR2 -0.86 -4.62 -1.13 -11.71 -1.30 -13.15 
ANXA6 -0.64 -4.27 -1.36 -10.68 -0.87 -6.42 
APOBR -0.96 -3.41 -0.97 -3.89 -1.71 -6.96 
AREG 1.20 -8.43 0.98 -5.89 0.97 -5.63 
ARHGDIB -0.46 -4.75 -1.16 -16.20 -1.28 -17.45 
ARHGEF6 -1.03 -6.39 -1.50 -6.67 -1.38 -6.08 
B2M -0.39 -5.65 -0.23 -2.81 -0.26 -3.43 
C12orf75 1.49 -6.11 1.28 -7.95 0.86 -4.03 
C1orf54 -0.72 -3.23 -1.19 -11.47 -1.18 -11.11 
C1orf61 -1.01 -6.36 -0.96 -7.54 -1.47 -11.72 
C9orf47 2.77 -6.06 2.26 -3.83 3.02 -6.40 
CALB1 2.32 -6.11 3.47 -30.62 3.13 -27.47 
CAPG -1.35 -6.74 -0.87 -6.52 -0.82 -5.92 
CAV1 1.63 -3.76 2.78 -15.61 2.31 -11.91 
CCDC74A 2.18 -3.06 1.14 -4.42 2.50 -15.75 
CCND1 0.88 -4.05 0.85 -6.67 0.97 -8.06 
CCND2 -0.57 -4.82 -0.88 -9.37 -1.67 -16.77 
CD36 2.05 -4.33 4.91 -15.14 3.35 -8.55 
CD37 -1.71 -6.79 -2.01 -6.87 -2.32 -7.23 
CD3D -0.83 -3.76 -0.77 -4.36 -1.46 -9.62 
CD52 -0.95 -7.28 -0.89 -7.13 -1.18 -9.89 
CD53 -1.24 -12.54 -2.21 -10.15 -2.77 -10.99 
CNN3 1.55 -3.09 1.37 -2.57 1.71 -3.74 
COA1 -0.33 -4.90 -0.44 -5.65 -0.33 -3.45 
COL4A2 -2.45 -3.92 -1.59 -3.55 -3.15 -6.56 
CREB3L2 -0.82 -7.77 -0.60 -3.64 -0.61 -3.70 
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CTSS -0.72 -4.69 -1.75 -10.48 -1.47 -8.99 
CXCL1 2.65 -6.96 2.04 -5.01 2.74 -8.30 
CXCL3 1.29 -4.19 1.43 -9.77 1.61 -11.71 
DLC1 -3.14 -5.07 -2.57 -4.49 -2.72 -4.28 
DOCK2 -1.09 -8.85 -1.26 -9.48 -1.77 -12.61 
DUSP3 0.55 -3.56 0.33 -2.71 0.49 -5.02 
DUT -0.34 -5.43 -0.23 -4.32 -0.21 -3.76 
ENC1 1.18 -5.98 1.64 -11.70 2.02 -15.55 
EPCAM -0.44 -5.24 -0.66 -6.12 -0.96 -9.77 
ERRFI1 1.81 -3.35 2.30 -6.77 1.59 -3.43 
FAM213A -0.44 -3.89 -0.71 -12.59 -0.74 -13.06 
FAM49A -2.57 -5.69 -4.28 -10.59 -3.62 -9.34 
FEZ1 -1.20 -6.18 -1.88 -17.67 -1.72 -16.07 
FN1 1.61 -4.96 1.89 -8.14 1.91 -8.15 
FYB1 -2.42 -5.80 -1.77 -2.54 -2.24 -3.08 
FYN -0.74 -4.93 -0.64 -4.44 -0.80 -5.83 
GBE1 0.74 -4.55 0.70 -4.72 0.66 -4.22 
GFOD1 1.11 -4.57 1.01 -7.01 0.88 -5.51 
GMPPA -0.46 -3.33 -0.22 -2.22 -0.28 -3.01 
GPRC5C -0.63 -2.97 -1.25 -6.42 -1.77 -8.56 
GYPC -0.71 -11.71 -0.55 -8.92 -0.64 -10.60 
HBA2 0.89 -3.29 1.40 -7.39 1.41 -7.21 
HBBP1 1.14 -5.70 2.14 -11.08 1.54 -6.29 
HPGD 1.67 -3.62 2.48 -9.39 2.14 -7.30 
IFT57 0.63 -3.53 0.37 -3.48 0.58 -6.82 
KCNN4 -1.07 -3.19 -1.24 -8.36 -1.19 -7.58 
KRT18 0.35 -3.09 1.12 -14.15 1.06 -12.61 
KRT18P55 0.52 -4.04 1.26 -5.46 1.10 -4.27 
KRT8 0.40 -3.22 1.09 -13.86 0.90 -10.24 
KYNU 1.34 -7.95 1.38 -11.27 1.64 -14.25 
LPCAT2 -1.29 -8.24 -3.50 -10.91 -1.91 -8.61 
MAGEB2 0.35 -3.82 0.67 -12.20 0.66 -11.71 
ME1 0.81 -4.80 0.54 -3.26 0.70 -4.89 
MEIS1 -0.75 -3.60 -1.69 -5.68 -1.79 -5.68 
MT1A 1.25 -6.26 1.43 -6.92 1.02 -3.79 
MT2A 1.26 -5.56 1.54 -10.00 1.05 -5.20 
MUC19 1.40 -4.87 1.81 -7.68 0.94 -2.34 
MYO1F -0.67 -4.01 -0.84 -3.40 -0.75 -2.82 
MYO3B 0.61 -3.06 1.35 -9.49 1.20 -7.66 
OAT -0.80 -3.73 -1.11 -11.75 -1.06 -10.80 
OSBP2 -1.44 -3.59 -1.17 -4.14 -1.53 -4.98 
PASD1 -1.44 -4.30 -0.91 -2.42 -1.33 -3.48 
PCDH11Y 0.49 -3.03 1.32 -4.33 1.15 -3.32 
PDLIM1 -0.50 -5.55 -0.74 -9.63 -0.61 -7.16 
PEAR1 -1.44 -3.78 -2.41 -8.89 -2.52 -9.16 
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PHLDA1 1.73 -9.73 1.01 -6.38 0.86 -4.87 
PIR 0.62 -4.61 1.50 -15.88 1.07 -9.50 
PLK2 0.94 -4.95 1.76 -15.19 1.32 -9.80 
PPOX -1.05 -6.09 -0.56 -4.37 -0.52 -3.85 
PRG2 -1.41 -7.56 -0.62 -3.11 -0.61 -2.94 
PRICKLE1 2.33 -7.06 1.32 -7.36 1.35 -7.58 
PRSS23 1.49 -4.45 1.86 -7.65 2.51 -12.26 
RAB20 -1.25 -3.02 -1.72 -3.47 -2.04 -3.94 
RASSF5 -0.43 -4.04 -0.50 -2.35 -0.71 -3.78 
RFLNB 1.39 -3.16 1.77 -2.91 1.63 -2.47 
RNASE1 -1.13 -7.71 -1.29 -10.32 -2.02 -14.92 
S100A16 0.80 -4.68 0.91 -10.49 0.45 -3.30 
S1PR3 2.24 -6.79 1.31 -7.85 1.58 -10.54 
SERPINB9 1.38 -5.66 0.67 -3.47 1.12 -7.87 
SERPINF1 -0.57 -3.02 -2.37 -15.35 -2.61 -16.12 
SLC29A1 -0.75 -3.89 -0.29 -2.24 -0.36 -3.05 
SNCA -1.06 -3.41 -3.38 -22.16 -0.64 -5.43 
SPARC -1.30 -12.15 -1.69 -19.40 -1.50 -16.94 
STAP1 -1.30 -9.71 -1.05 -3.35 -1.67 -5.29 
STAR -0.79 -6.19 -0.92 -9.73 -1.32 -13.82 
SUGCT 0.73 -5.74 0.66 -4.90 0.92 -8.18 
TESPA1 -2.94 -5.94 -3.39 -9.08 -3.19 -8.26 
TEX9 0.91 -5.07 1.09 -9.42 1.17 -10.20 
TGM2 -0.92 -5.26 -1.12 -11.36 -0.82 -7.72 
TIMP1 0.78 -5.46 1.04 -11.74 0.87 -8.81 
TMEM158 1.38 -6.80 0.98 -4.78 1.28 -7.41 
TMEM173 -0.69 -4.61 -0.74 -3.91 -0.84 -4.49 
TMEM98 -0.40 -4.59 -0.57 -11.39 -0.39 -6.57 
TMSB4X -1.13 -15.95 -0.63 -4.86 -0.97 -8.50 
TNNT1 -0.43 -4.67 -0.42 -6.24 -0.52 -7.96 
TRPV2 0.52 -6.95 0.26 -2.61 0.39 -4.82 
TSPAN5 1.55 -3.81 1.87 -6.95 1.61 -5.36 

FC, fold change. 
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8.3  Abbreviations 

6-TG    6-Thioguanine 
α    Anti, Alpha 
A    Ampère 
ad    fill up to 
Adv    Adverse 
ADP     Adenosine diphosphate 
ALL    Acute Lymphoblastic Leukemia 
allo-HCT   allogeneic hematopoietic-cell transplantation 
AML    Acute Myeloid Leukemia 
AraC    Cytarabine 
ATP    Adenosine triphosphate  
β    Beta 
B-ALL    B-cell ALL 
bp    base pair(s) 
BET    bromodomain and extra-terminal 
BSA    Bovine serum albumin 
CDA    cytidine deaminase 
CDP    cytidine diphosphate 
CLL    Chronic Lymphocytic Leukemia 
CML    Chronic Myeloid Leukemia 
CMML   Chronic Myelomonocytic Leukemia 
CN    cytogenetically normal 
CNA     copy number alterations 
COMPASS   Complex of Proteins Associated with Set1 
CR    complete remission 
DCK    Deoxycytidine kinase 
dCTP    deoxycytidine triphosphate 
DCTD    Deoxycytidylate deaminase 
del    deletion 
dest    distilled 
DFS    disease-free survival 
DMEM   Dulbecco´s Modified Eagle Medium 
DMSO    Dimethyl Sulfoxide 
DNA    Deoxyribonucleic acid 
DNMT    DNA methyltransferase 
DNMT3A   DNA methyltransferase 3 alpha 
DNR    Daunorubicin 
dNTP    deoxynucleotide triphosphate 
DSMZ    German Collection of  Microorganisms and Cell Cultures 
ECL    enhanced chemoluminescence 
EDTA    ethylene diamine tetraacetic acid 
e.g.    for example 
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ELN    European LeukemiaNet 
ENT1    equilibrative nucleoside transporter 1 
ESC    embryonic stem cell 
ETS    E26 transformation-specific or E-twenty-six 
EZH2    enhancer of zeste homolog 2 
F    female 
FAB    French-American-British classification system 
FAD    flavin adenine dinucleotide 
FACS    fluorescence activated cell sorter 
FC    fold change 
FITC    Fluorescein isothiocyanate 
FBS    Fetal bovine serum 
FLT3 fms-like tyrosine kinase 3 
FOR    forward 
g    gram, genomic, gravity acceleration 
GFP    green fluorescent protein 
h    hour(s) 
H    histone 
HAT    histone acetyltransferase 
HBS    Hepes-buffered saline 
HDAC    histone deacetylases 
HMT    histone methyltransferase 
Hox    homeobox 
HRP    horseradish peroxidase 
HSC    Hematopoietic Stem Cell 
HSPC    Hematopoietic Stem and Progenitor Cell 
IC50    half-inhibitory concentration 
IC75    inhibitory concentration that leads to a response of 25% 
IDH1/2   isocitrate dehydrogenase (NADP(+)) 1/2, cytosolic 
Int    Intermediate 
inv    inversion 
IL-3    Interleukin-3 
IL-6    Interleukin-6 
i.p.    intraperitoneal 
IRES    Internal ribosomal entry site 
ITD    Internal tandem duplication 
i.v.    intravenous 
JmjC    Jumonji C 
kb    Kilo base pairs 
KD    knockdown 
kDa    kilodalton(s) 
KDM    Lysine demethylase 
kg    kilogram 
KMT    Lysine methyltransferase 
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KO    knockout 
KS    Kabuki syndrome 
l    liter 
LSC    leukemic stem cell 
M    molar (mol/l), male 
m    milli (1x10-3) 
MDR    multidrug-resistance 
min    minute(s) 
miRNA   microRNA 
MLL    Mixed Lineage Leukemia 
MLPA    Multiplex Ligation-dependent Probe Amplification 
MM-1    MONO-MAC-1 
MM-6    MONO-MAC-6 
mRNA    messenger RNA 
n    nano (1x10-9) 
NADPH   Nicotinamide Adenine Dinucleotide Phosphate Hydrogen 
NGS    Next-generation sequencing 
NPM1    nucleophosmin-1 
n.s.    not significant 
NT5C2   5´nucleotidase 
OS    Overall Survival 
PAGE    Polyacrylamide gel electrophoresis 
PBS    phosphate buffered saline 
PCR    polymerase chain reaction 
PCR1    polycomb repressive complex 1 
PCR2    polycomb repressive complex 2 
PDX    patient-derived xenograft 
PI    Propidium Iodide 
preL    Pre-leukemic 
REV    reverse 
RFS    relapse-free survival 
rh    recombinant human 
RNA    ribonucleic acid 
rpm    rounds per minute 
RPMI    Roswell Park Memorial Institute 
RT    room temperature, real time 
s    second 
SAM    S-adenosyl-L-methionine 
sAML    secondary AML 
SC    single cell 
SCF    stem cell factor 
SCT    stem cell transplantation 
s.d.    standard deviation 
SDS    sodium dodecyl sulfate     
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SET    Su(var)3-9, Enhancer-of-zeste and Trithorax 
S-HAM   sequential high dose AraC with mitoxantrone 
shRNA   short hairpin RNA 
siRNA    small interfering RNA 
ss-DNA   single stranded DNA 
t    Translocation 
TAD    Treatment regime including 6-TG, AraC and DNR 
T-ALL    T-cell ALL 
t-AML    therapy-related AML 
TE    Tris-EDTA 
TET2    tet methylcytosine dioxygenase 2 
Topo-II   Topoisomerase II 
Tp53    tumor protein p53 
TPR    tetratricopeptide repeat 
UPN    Unique Patient Number 
UTX ubiquitously transcribed tetratricopeptide repeat, X 

chromosome 
UTY ubiquitously transcribed tetratricopeptide repeat, Y-linked 
V    Volt 
VAF    variant allele frequency 
WB    Western Blot 
WES    Whole exome sequencing 
WGS    Whole genome sequencing  
WHO    World Health Organization 
WT    wild type 
µ    micro (1x10-6) 
°C    degree Celsius 
%    percentage 
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Single letter codes for amino acids 

nonpolar 

A    Alanine (Ala) 

V    Valine (Val) 

L    Leucine (Leu) 

I    Isoleucine (Ile) 

M    Methionine (Met) 

P    Proline (Pro) 

G    Glycine (Gly) 

polar hydrophilic 

S    Serine (Ser) 

T    Threonine (Thr) 

C    Cysteine (Cys) 

N    Asparagine (Asn) 

E    Glutamic acid (Glu) 

positively charged 

K    Lysine (Lys) 

R    Arginine (Arg) 

H    Histidine (His) 

negatively charged 

Q    Glutamine (Gln) 

D    Aspartic acid (Asp) 

aromatic 

F    Phenylalanine (Phe) 

Y    Tyrosine (Tyr) 

W    Tryptophan (Trp) 
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