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5-FU 5-fluorouracil 

ALK Anaplastic lymphoma kinase 

ALL Acute lymphoblastic leukemia 

ALCL Anaplastic large cell lymphoma 

AML Acute myeloid leukemia 

AML-MRC AML with myelodysplasia-related changes  

APC Antigen-presenting cell 

APL Acute promyelocytic leukemia 

ATO Arsenic trioxide 

ATRA All-trans-retinoic acid 

BCL2 B-cell lymphoma 2 

BCR-ABL  Breakpoint cluster region protein-Abelson murine leukemia viral oncogene homolog 

BiTE®  Bispecific T cell engager 

BHES 2,2‘-Thiodiethanol 

BM Bone Marrow 

BSA Bovine serum albumin  

BTD Breakthrough therapy designation 

BTK Bruton's tyrosine kinase 

CAR Chimeric antigen receptor 

CD Cluster of differentiation 

CEA Carcinoembryonic antigen 

cHL classical hodgkin lymphoma 

CLL Chronic lymphocytic leukemia 

CML  Chronic myeloid leukemia 

CMP Common myeloid progenitor cell 

CR Complete remission 

CRh Complete response with partial hematologic recovery  

CSC Cell Surface Capturing 

CTCL Cutaneous T-cell lymphoma 

CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 

DC Dendritic cell 

DFS Disease-free survival 

DFSP Dermatofibrosarcoma protuberans 

DHFR Dihydrofolate reductase 

DNA Deoxyribonucleic acid 

DPBS Dulbecco`s Phosphate Buffered Salt Solution 

DTH Delayed-type hypersensitivity  

DTT DL-Dithiothreitol 

early HPC_BM Hematopoietic progenitor cells from bone marrow 

EDTA Ethylenediaminetetraacetic acid  

EGFR Endothelial growth factor receptor  

E:T Effector-to-target 

ET/NET Endocrine/neuroendocrine tumor 

ELN European LeukemiaNet 

FAB French–American–British classification system 

FBS Fetal bovine serum 

FDA Food and Drug Administration (U.S.) 

FGFR Fibroblast growth factor receptor 

FIH First-in-human 

FL Follicular lymphoma 

FLT3 Fms-like tyrosine kinase 3 

FOLFOX4 Oxaliplatin/5-FU/leucovorin 

GCTB Giant cell tumor of the bone 

GIST Gastrointestinal stromal tumor 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

GMP Granulocyte monocyte progenitors 

GO Gemtuzumab ozogamicin 

GVAX Vaccine comprised of cancer cells genetically modified to secrete 
granulocyte-macrophage colony-stimulating factor 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45552&version=Patient&language=English
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HDAC Histone deacetylase 

HER2 Human epidermal growth factor receptor 2  

HNC Head and neck cancer 
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HSC_BM Hematopoietic stem cells from bone marrow 

HSCs Hematopoietic stem cells  

HSP Heat shock protein 

iBAQ Intensity based absolute quantification  

IDH2 Isocitrate dehydrogenase-2  

IFN Interferon 
IL Interleukin 

ITD Internal tandem duplication 

i.v. Intravenous injection 

LAA Leukemia-associated antigen 

LC-MS Liquid chromatography coupled to tandem mass spectrometry  

LSA Leukemia-specific antigen 

LSC Leukemic stem cell 

M mol/l 

MCC Merkel cell carcinoma 

MCD Multicentric Castleman disease 

MCL Mantle cell lymphoma 

mDC CD11c
+
 myeloid dendritic cells 

MD/MPDs Myelodysplastic/myeloproliferative disorders 

MEP Megakaryocyte-erythroid progenitor cell 

MES 2-(N-Morpholino)ethanesulfonic acid hydrate 

mg Milligram 

ml  Milliliter  

mM Milli mol/l 
MM Multiple myeloma 

MRC Medical Research Council 

MRD Minimal residual disease 

MS Mass spectrometry 

MY_BM Myelocyte from bone marrow 

NA Not available 

NB Neuroblastoma 

NCI National Cancer Institute 

NHL Non-hodgkin's lymphoma 

NIH National Institutes of Health 

NK cells CD56
+
 natural killer cells 

NSCLC Non-small cell lung cancer 

NPM1 Nucleophosmin-1 

OEC/FTC/PPC Ovarian epithelial/fallopian tube/primary peritoneal cancers 

OS Overall survival 

PB Peripheral blood 

PBD Pyrrolobenzodiazepine 
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PCNSL Primary central nervous system lymphoma  

pDC CD123
+
 plasmacytoid dendritic cells 

PD-1 Programmed cell death protein 1 

PD-L1 Programmed death-ligand 1 
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Pen-Stre-Glu Penicillin-Streptomycin-Glutamine 

PDGFR Platelet-derived growth factor receptor 

Ph+ Philadelphia chromosome-positive 

Ph- Philadelphia chromosome-negative 

PI3K-δ Phosphatidylinositol-3-kinase- delta 

PM_BM Promyelocyte from bone marrow 

PMN_BM Polymorphonuclear cells from bone marrow 

PMN_PB Polymorphonuclear cells from peripheral blood 

PP Primary patient 

PRAME Preferentially expressed antigen in melanoma 

PTM Post-translational modification  

PTCL Peripheral T-cell Lymphoma 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=270800&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://en.wikipedia.org/wiki/Philadelphia_chromosome
https://en.wikipedia.org/wiki/Philadelphia_chromosome
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rh Recombinant Human 
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RIL Relapsed indolent lymphoma 

RPKM Reads Per Kilobase of transcript per Million mapped reads 

RXRs Retinoid X receptors 

R/R Relapsed or refractory  

sALCL systemic anaplastic large-cell lymphoma 

SCT Stem cell transplantation 

SEER Surveillance, Epidemiology, and End Results Program 

SILAC Stable-isotope labeling with amino acids in cell culture  

SLAMF7 Signaling lymphocytic activation molecule F7 

SLL Small lymphocytic lymphoma 

SM Systemic mastocytosis 

STS Soft tissue sarcoma 

sulfo-NHS-SS-biotin sulfosuccinimidyl-2-(biotinamido)-ethyl-1,3'-dithiopropionate 

t-AML Therapy-related AML  

TCEP Tris (2-carboxyethyl) phosphine 

TIM-3 T-cell immunoglobulin domain and mucin domain 3 

TLR Toll-like receptor 

TMs Transmembrane domains 

Tregs regulatory T cells  

VEGFR Vascular endothelial growth factor receptor 

WHO World Health Organization 

WT Wildtype 

WT1 Wilm’s tumor protein 1  
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Summary 

 

Acute myeloid leukemia (AML) is a heterogenous hematopoietic disorder which 

includes a number of categories and many subtypes. The incidence rate correlates 

with age showing higher incidence rate for individuals above the age of 65. Patients 

with AML have worse 5-year survival rates compared to other subtypes of leukemia, 

such as acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and 

chronic lymphocytic leukemia (CLL).  

Despite many considerable advances in the field of immunotherapy, such as chimeric 

antigen receptor (CAR) T cells, checkpoint inhibitors, dendritic cell vaccination, T 

cell-recruiting antibody constructs and antibody-drug conjugates, clinical 

immunotherapy of AML to date has failed to show the same efficacy seen in other 

types of leukemia. In addition, on-target off-leukemia toxicity remains a challenge. 

Thus, identification of more suitable target antigens for immunotherapy might 

improve the therapeutic efficacy of immunotherapy in AML and ultimately improve 

over outcome for this disease. 

The original „Cell Surface Capturing“(CSC) technology (Glyco-CSC) and it‘s variants 

(Cys-Glyco-CSC and Lys-CSC) technology are Mass spectrometry-based 

technologies which offer the advantage of multiplexed and unbiased detection of cell 

surface proteins independently from existing antibody collections. They provide the 

possibility to identify the entirety of surface proteins expressed on living cell 

populations. However, direct processing of primary leukemia samples has been 

limited by the substantial number of viable cells needed for the CSC-workflow. We 

therefore addressed this issue by improving the technique including the use of our ex 

vivo culture system. This allowed for an unbiased, direct assessment of primary AML 
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patient samples and thus enabled us to interrogate the AML surfaceome in clinically 

relevant samples. Primary cells from patients with newly diagnosed or relapsed AML 

were cultured in our ex vivo co-culture system as previously described (Krupka et al. 

2014) using MS-5 feeder cells. After 3 days, non-adherent cells were harvested and 

immediately subjected to the CSC-workflow. Glyco-CSC and its variants 

Cys-Glyco-CSC and Lys-CSC were initially performed as described by Wollscheid 

and colleagues (Wollscheid et al. 2009 and Bausch-Fluck et al. 2012) and 

subsequently modified to improve the yield on AML samples. CSC samples were 

analyzed by tandem mass spectrometry on an Orbitrap Elite instrument and modified 

peptides were identified using MaxQuant software. 

To enhance the number of successfully identified surface proteins, we also adapted 

the original CSC protocol. These modifications doubled the yield in identified 

proteins from AML cell lines from initially 125 to 252. More importantly, the 

modifications increased the specificity of the assay significantly. In the original 

Glyco-CSC experiments, only 54% of all identified peptides displayed a mass shift 

(of 0.984 Da) associated with successful N-glycosylation and had a transmembrane 

domain or a signal peptide annotated in UniProt. After modification of the protocol, 

80.4% of all peptides fulfilled these criteria. The modified protocol was therefore 

used for all primary samples. 5 representative primary patient samples from initial 

diagnosis and 2 samples from relapsed disease were analyzed. All samples yielded 

sufficient viable cell numbers after ex vivo culture and could successfully be 

subjected to the CSC workflow. We identified a total of 719 surface proteins fulfilling 

all filter rules. 22.9% of these proteins had CD annotations. Next, we only considered 

proteins that were detected by CSC in at least half of the primary patient samples 

tested. In addition, proteins were filtered to eliminate targets that are abundantly 
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expressed on normal human hematopoietic stem and progenitor cells as well as 

relevant healthy tissue using publicly available transcriptome databases. 85 proteins 

were selected as potential candidates for manual screening. Of note, the expression 

of several antigens currently under investigation for AML immunotherapy (i.e. CD33, 

CD123, CD135, CLL-1) were detected by the method. We selected 5 promising 

novel candidate markers previously not described as relevant targets in AML. These 

were assessed by FACS analysis in independent patient samples. 4/5 of our novel 

targets showed uniform expression in all independent primary AML samples tested

(defined as MFI ratio >1.5).

In conclusion, improvements in the CSC-Workflow combined with our ex vivo culture 

system allowed for the successful identification of the AML surfaceome from primary 

patient samples without the necessity of xeno-amplification. We identified 5 novel 

targets, 4/5 were found to be uniformly expressed in independent primary AML 

samples. These candidates are now being evaluated further as potential targets for 

antibody and CAR based immunotherapy in AML.

*  A  majority  of  this  "Summary"  part  was  submit  to  ASH,  Blood   2017   130:3968, 

which I  am the second author. Slightly changes have been made after more  clinical 

data was carried out from AML patient samples.
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Zusammenfassung 

Akute myeloische Leukämie (AML) ist eine genetisch und klinisch heterogene 

Erkrankung. Die Inzidenz der Erkrankung korreliert mit dem Alter und ist deutlich 

erhöht in Individuen über dem Alter von 65 Jahren. Verglichen mit anderen 

Leukämien – akute lymphatische Leukämie (ALL), chronische myeloische Leukämie 

(CML) und chronisch lymphatische Leukämie (CLL) – verbleibt die Prognose für 

Patienten mit AML deutlich schlechter. Trotz deutlicher Fortschritte auf dem Feld der 

Immuntherapie und entsprechenden Anstrengungen, chimäre antigen-rezeptor T 

Zellen, Checkpoint-Inhibitoren, dendritische Zell-Vakzinierungen, T Zell 

rekrutierende Antikörperkonstrukte sowie Antikörper-toxin-Konjugate gegen AML 

einzusetzen, ist der klinische Erfolg für Patienten mit AML bislang begrenzt. Ein 

möglicher Grund ist das die bislang verwendeten Zielantigene auf AML-Zellen 

entweder keine effiziente Eliminierung der malignen Zellen ermöglichen oder eine 

erhöhte Toxizität gegenüber gesunden Zellen aufweisen. Daher besteht ein 

erhebliches Interesse an der Identifikation von geeigneteren Antigenen zur 

Entwicklung von immuntherapeutischen Strategien.  

Die „Cell Surface Capture“ (CSC) Technologie erlaubt die 

Massenzytometrie-basierte Identifikation  der Gesamtheit der 

Zell-Oberflächenproteine (das sog. „Surfaceome“), unabhängig von bestehenden 

Antikörperkollektionen. Bislang war eine direkte Anwendung dieser Technologie auf 

primäre Leukämieproben von Limitationen bezüglich der notwendigen Zellzahlen 

begrenzt. Wir haben diesen Aspekt durch die Verwendung unseres ex vivo 

Kultursystems (Krupka et al., 2014) adressiert. Primäre Patientenproben von 

Patienten mit neu diagnostizierter oder rezidivierter AML wurden mit MS-5 

Stromazellen kokultiviert und nach drei Tagen konnten viable, nicht-adhärante 
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Zellen der CSC Technologie zugeführt werden. Die CSC Proben wurden mittels 

Tandem Massenspektrometrie auf einem Orbitrap Elite Instrument detektiert und 

mittels MaxQuant software ausgewertet.  

Um die Anzahl der erfolgreich identifizierten Proteine zu erhöhen, haben wir zudem 

das vorhandene CSC-Protokoll (Wollscheid et al. 2009 and Bausch-Fluck et al. 2012) 

modifiziert. Durch diese Modifikationen konnten wir die Anzahl der identifizierten 

Proteine auf AML Zelllinien von initial 125 auf 252 erhöhen. In diesem Kontext ist 

jedoch noch relevanter, dass die Modifikationen auch zu einer Erhöhung der 

Spezifität der Technologie führen konnte. So fand sich initial die mit einem für die 

korrekte N-Glycosylation charakteristische Massenverschiebung (0.984 Da) in nur 

54% aller identifizierten Peptide. Nach Einführung der Protokoll-Modifikationen 

erfüllten 80.4% aller identifizierten Peptide dieses Kriterium. Das modifizierte 

Protokoll wurde daher bei allen primären AML Proben eingesetzt. 

5 repräsentative Patienproben zum Zeitpunkt der Primärdiagnose sowie 2 Proben 

von Rezidivfällen wurden analysiert. Von allen Proben konnten ausreichende 

Zellzahlen der CSC-Technologie zugeführt werden. 

Wir konnten in Summe 719 Oberflächenproteine identifizieren. 22.9% dieser 

Proteine waren mit Cluster of Differentiation (CD) Annotationen versehen. In einem 

nächsten Schritt wurden diejenigen Antigene Eliminiert, die entweder auf weniger als 

der Hälfte der analysierten Proben nachweisbar waren oder eine hohe Expression 

auf gesunden hämatopoetischen Stamm- und Vorläuferzellen sowie relevante 

Organe des nicht-hämatopoetischen Systems zeigten.  

84 Proteine wurden als potentielle Kandidaten für ein manuelles Screening 

identifiziert. Interessanter Weise wurde durch unsere Methode mehrere Antigene, 

die derzeit als potentielle Zielantigene für immuntherapeutische Strategien 
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untersucht weden (CD33, CD123, CD135, CLL-1). Wir wählten 6 vielversprechende, 

neue Antigene, die bislang nicht als relevante Zielantigene in der AML beschrieben 

worden sind, aus. Für 4/5 Antigene konnte eine relevante Expression auf 

unabhängigen AML Patientenproben mittels FACS (definiert als MFI ratio >1.5) 

nachgewiesen werden. 

Zusammenfassend, konnten wir durch Verbesserungen des CSC-Protokolls 

gemeinsam mit der Verwendung unseres ex-vivo Kultursystems erfolgreich das 

Surfaceome in primären AML Proben identizieren. Wir konnten 5 potentiell relevante 

Zielantigene identifizieren, 4/5 ließen sich zudem mit einer relevanten Expression 

auf unabhängigen AML Patientenproben nachweisen. Diese Kandidatenantigene 

werden nun weiter bezüglich Ihrer Eignung als Zielstrukturen für Antikörper- oder 

CAR-T Zell-basierte Immuntherapie evaluiert 
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1. Introduction 

 
1.1 Leukemia and acute myeloid leukemia   

Leukemia is a group of cancers caused by malignant clonal expansion of 

hematopoietic stem- and precursor cells. Alfred-Armand-Louis-Marie Velpeau, an 

anatomist and surgeon, described leukemia for the first time in 18271,2, though it is 

possible that leukemia had already been seen as early as 18111,3. Leukemia may 

occur in every stage of people’s whole life, most often in older adults, but it is the 

most common cancers in young children. The incidence and death rate are low 

before age 60, 16.8 and 5.8 (rate is per 100,000 per year), respectively. But there is a 

rapid increase from age 65 to 85+, with incidence rates increasing from 38.3 to 87.5 

and death rates increasing from 17.7 to 84.04.   

Leukemia can be divided into 4 main types: acute lymphoblastic leukemia (ALL), 

acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL) and chronic 

myeloid leukemia (CML)5,6. ALL is the most common childhood leukemia, about 75% 

of all ALLs were accounted in children (Figure 1-1 A). By contrast, AML, CLL and 

CML occur mainly in adults. According to data statistics from National Cancer 

Institute (NCI, at the National Institutes of Health (NIH)), AML is the most common 

acute leukemia in adults with a incidence of 4.1/100,000 cases (year 2009-2013)4 in 

the US. Incidence dramatically increases with age, resulting in 19.1/100,000 cases in 

the age group 65+ (Figure 1-1 A)4. Despite some improvement since 1975, 5-year 

relative survival rate for AML patients remain low for now (26.8%) (Figure 1-1 B). In 

addition, survival rates correlate with age, resulting in a 5-year relative survival rate of 

6.3% in patients aged above 65 while younger patients display 5-year survival rates 

of 44.8% (Figure 1-1 C and D). One significant reason is that in spite of remission 

rates of up to 80% after intensive induction chemotherapy, patients with AML have a 

https://en.wikipedia.org/wiki/Alfred-Armand-Louis-Marie_Velpeau
https://en.wikipedia.org/wiki/Acute_lymphoblastic_leukemia
https://en.wikipedia.org/wiki/Acute_myeloid_leukemia
https://en.wikipedia.org/wiki/Chronic_lymphocytic_leukemia
https://en.wikipedia.org/wiki/Chronic_myeloid_leukemia
https://en.wikipedia.org/wiki/Chronic_myeloid_leukemia


Introduction 

 8 

D 

high risk of disease recurrence. Therefore, more research is needed to improve 

survival rates or achieve long-term cure for the majority of AML patients in the future. 

 

 

  

 
 

 

 

 

 

 

*Data source: https://seer.cancer.gov/csr/1975_2013/sections.html, NCI SEER, all races, both sexes, 1975-2013.

Figure 1-1. Updated data of leukemia. (A) SEER incidence of leukemias show that leukemia occurs 
in every age group. ALL patients are mainly younger children (age<14) while AML, CLL and CML are 
mainly  found  in  adult  patients,  especially those  age  55+. (B)  Great  improvements  have  been  made 
since 1975. Leukemia patients have a much higher 5-year relative survival rate now (62.7%) compare 
to 34.2% in 1975. AML patients have the poorest 5-year relative survival rate (26.8%) while CLL patients display 
a  more favorable prognosis  (85.1%).  (C) With  increased age, survival  rates decrease:  AML  patients  aged  65+ 
have the lowest survival rate, only 6.3%, compare to the other 3 types (D).

Most patients eligible for intensive therapy, excluding acute promyelocytic leukemia, 

are treated with  standard  “7+3”  intensive  induction  therapy.  After continuous
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intravenous (i.v.) infusion of cytarabine (7 days) and anthracycline (3 days, mostly 

daunorubicin, alternatively mitoxantrone or idarubicin), 60-80% of younger adults and 

40-60% of older adults (65+) will achieve a complete remission (CR)7-10.  

Despite some improvements, especially for patients below 60 years of age, 50-70% 

of patients achieving first CR are expect to relapse within 3  years11,12. Relapses in 

patients with a continued CR of >5 years are rare (1.16% of all relapses) 13. However, 

prognosis for relapsed or refractory AML (R/R-AML) is especially poor14-16. Many 

factors might contribute to the poor outcomes at relapse, such as cytogenetics, 

unidentified mutations, relapse after hematopoietic stem cell transplant (HSCT), older 

age, and duration of first CR less than 12 months14,17-20. 

The major reason considered to cause relapse in leukemia is a small number of 

leukemic cells still detectable in the patients during or after treatment when a CR 

achieved. These cells have been termed “minimal residual disease” (MRD) or 

“minimal measurable disease”. MRD assays have been established and are 

commonly performed in ALL patients21-24. In AML, MRD assessment is more complex 

due to the genetic as well as phenotypic heterogeneity of the disease. One potential 

target for MRD assessment in AML is are nucleophosmin (NPM1) gene mutations, 

which occur in about 30% patients, which represent the most frequent genetic 

alteration in AML25. More than 50 NPM1 mutations have been found to date. Type A, 

B and D are the three most common variants found in 90% of all mutated cases26-32. 

Fms-like tyrosine kinase 3 (FLT3) internal tandem duplications (ITD) is a second 

commonly affected gene mutation and can be identified in about 25% of all AML 

patients. However, heterogeneity and instability limits its suitability as a MRD 

marker28-38. These examples highlight the fact that AML is a biologically 

heterogeneous disease.  

https://en.wikipedia.org/wiki/Anthracycline
https://en.wikipedia.org/wiki/Daunorubicin
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Traditional chemotherapy-based treatment of AML patients are unlikely to improve 

outcomes. Various novel immunotherapy strategies are being evaluated in 

pre-clinical and clinical trials, such as chimeric antigen receptor (CARs) T cells39-45, 

dendritic cells (DC) vaccination46-48 and antibody based immunotherapy49-56. Clinical 

results from these functional cells or antibody drugs are expected to further improve 

survival interval and prevent relapse of AML patients. 
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1.2 Advanced cancer therapies 
 

 

Figure 1-2. Current strategies to treat cancers and hematopoiesis disorders. 8 treatment 
strategies were developed to fight against cancer and hematopoiesis diseases to date. Surgery, 
radiation therapy, and chemotherapy are still important choices for many types of cancer, especially 
solid tumors. Immunotherapy and targeted therapy are two most potential strategies for all types of 
cancers, with the development of new/novel therapeutic markers and relevant drugs. Hormone therapy 
is applied to treat gender-special cancer, like breast cancer; while stem cell transplant (SCT) is specific 
for numbers of hematopoiesis diseases, like leukemias. Precision medicine aims to supply personalise 
treatment strategy to the patient based on the rapid development of gene sequencing technology and 
big data, i.e. genome, proteome, transcriptome and metabolome. 

 

The National Cancer Institute (NCI) lists 8 main types of cancer treatment (Figure 

1-2). Besides the 3 conventional strategies (surgery, radiation therapy and 

chemotherapy), 5 more recent strategies are also involved, which are immunotherapy, 

targeted therapy, hormone therapy, precision medicine, and  stem cell transplant 

CANCERS
AND 

HEMATOPOIESIS
DISEASES

An
tic

an
cer drugs commonly involved

New/Novel drugs development

Surgery Radiation Therapy

Chemotherapy Immunotherapy

Targeted Therapy Hormone Therapy 

Stem Cell Transplant Precision Medicine

Monoclonal antibody Immunotoxins

Adoptive cell transfer

Small molecule inhibitor Cytokines

Vaccine
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(SCT). Currently, cancer patients commonly receive a combination of treatments, 

including surgery (especially for solid tumors such as breast cancer, lung cancer and 

prostate cancer), radiation therapy, chemotherapy, immunotherapy and SCT 

(especially for hematological cancers). Immunotherapy utilizes the host immune 

responses to produce potent cancer destruction; whereas, targeted therapies 

commonly aim to block essential molecular pathways crucial for proliferation and 

maintenance of cancer. But NCI claims that immunotherapy is one type of targeted 

therapies, which possibly indicates that there is obscure boundary between 

immunotherapy and targeted therapy. Since they both are focusing on suitable 

“targets” on tumor cells, immunotherapy and targeted therapy play very important 

roles in the development of new/novel anticancer drug. 

  

1.2.1 Cancer immunotherapy  

 

Briefly, the aim of cancer immunotherapy is to utilize a patient’s own immune system 

to treat cancer. Four main types strategies are accounted for cancer therapy: 1) 

antibody therapy; 2) cellular immunotherapy (i.e. DC and CAR T cells); 3) cytokine 

therapy (interleukin and interferon); 4) Therapeutic vaccines (Figure 1-2). Cancer 

immunotherapy has a long history in its development (Figure 1-3)57,58 and now is 

given rise to new options for  cancer treatment57,59-65.  

In 1796, Edward Jenner produced the first vaccine with cowpox to against smallpox57. 

About 100 years later, Paul Ehrlich firstly named the “slide-chain” theory on 189766, 

but it was replaced by “receptor” in 190067 and it was accepted by doctors and 

scientific researchers and still in use now. Meanwhile, Coley’s toxins (also called 

Coley’s treatment) was developed by William Coley, a bone surgeon, to treat with 

https://www.cancer.gov/about-cancer/treatment/types/immunotherapy
https://en.wikipedia.org/wiki/Hematological
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different types of cancer from 1893 to 196368,69. But it did not show more promising 

results in several small clinical trials. Chemotherapy and HSCT were developed from 

1940s to 1960s70-72. More and more important discoveries came up after the 

tumor-specific antigen was found in mice73, including the discovery of DC74,75, first 

report of treatment lymphoma with monoclonal antibody76, research on IL-2 and 

IFN-α on human77,78. In the late 20th century, Steven Rosenberg et al. had introduced 

immune cell therapy for cancer. They received a low tumor regression rate (2.6-3.3%) 

in 1205 metastatic cancer patients79,80. The first experimental DC vaccine81 and the 

first set of tumor-specific antigens from melanoma patient82 were studied in the 

1990s.  

FDA approved drugs, especially for immunotherapy and targeted therapy, promoted 

the improvement of cancer therapy since the 1980s83-88. With the coming of the 21st 

century, totally 395 new therapeutic drugs had been proved by FDA between 2001 

and 2015, among which 112 (28.4%) were used for treatment of hematologic, 

oncologic, or immune-modulating disease89,90. Figure 1-3 listed some selected FDA 

approval drugs from 2000 to 2017 and information of those drugs can be found online 

(FDA Approved drugs: Hematology/Oncology (Cancer) Approvals & Safety 

Notifications): 

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm.  

 

https://en.wikipedia.org/wiki/Steven_Rosenberg
https://en.wikipedia.org/wiki/Metastatic
https://en.wikipedia.org/wiki/Cancer
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1.2.2 Targeted cancer therapy  

 

4 different types of cancer therapy are commonly involved in the current treatment 

with anticancer drugs: chemotherapy, hormonal therapy, targeted therapy and 

immunotherapy (Figure 1-2)91. After the first tumor-specific antigens were identified 

and isolated from melanoma patient82, the race was on to target them as therapeutic 

vaccines. Technically, targeted cancer therapy is considered as a special type of 

chemotherapy. However, different from conventional chemotherapy, targeted cancer 

therapy makes combination with specific proteins involved in tumorigenesis and show 

cytostatic instead of cytotoxic92,93.  3 mainly types of drugs are developed in targeted 

cancer therapies: 1) monoclonal antibodies, 2) small molecule inhibitors and 3) 

immunotoxins (Figure 1-2)93.  

NCI summed up 7 types of targeted therapies for cancer treatment, including 

hormone therapies, signal transduction inhibitors, gene expression modulators, 

apoptosis inducers, angiogenesis inhibitors, immunotherapies, and toxin delivery 

molecules. Sometimes, cancer vaccine and gene therapy are also considered as 

targeted therapies since they attack and interfere with the growth of cancer cells. 

Taking cancer vaccine as an example, in 1993, Glenn Dranoff developed the first 

therapeutic vaccine comprised of cancer cells genetically modified to secrete 

granulocyte-macrophage colony-stimulating factor, shorted as GVAX94. GVAX and 

CRS-207, a supplemental vaccine, were granted by FDA in 2015 as 2 vaccines in 

patients with metastatic pancreatic adenocarcinoma95. GVAX can be an option to 

treat many other cancers, such as melanoma, ovarian, NSCLC and prostate 

cancer96-99.  GVAX also showed effective roles in post-transplantation AML and CLL 

studies100,101.  

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000756173&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044020&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045110&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044829&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000537335&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046524&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046739&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000045729&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000046622&version=Patient&language=English
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Targeted therapies had been expected less toxic than traditional chemotherapy since 

they commonly target with cancer cells rather than normal cells. But scientists and 

doctors did find side effects during the research and treatment. Moreover, there are 

still limitations of targeted cancer therapies for cancer treatment, such as drug 

resistant; not all cancers respond to targeted therapy; the drugs are expensive or not 

yet developed for specific types of cancer. Mutation of target and new pathway 

discovered for cancer survival would cause the resistant, which makes targeted 

cancer therapies most often used in combination with more other targets102, or other 

strategies, such as immunotherapy103,104, surgery, chemotherapy and/or radiation 

therapy.  

New anti-cancer drugs are urgent need to treat those patients. FDA had approved 

169 drugs for target cancer therapy since December 31, 2017. Among them, 53 

drugs (31.4%) were approved to treat with hematologic cancers, 19 for leukemia, 17 

for lymphoma and 6 for multiple myeloma (MM), (Figure 1-4, Table 1-1). Some drugs 

shared the same target and some of them have been approved for more than one 

type of cancer105. Nivolumab and pembrolizumab are two widely used checkpoint 

inhibitors that targeted programmed cell death protein 1 (PD-1) to block a signal 

which prevent active T cells from eliminating cancer cells. The FDA has approved 

these to treat several specific types of cancer, including head and neck cancer (HNC), 

melanoma, lymphoma and lung cancers. Nivolumab also had been approved for the 

treatment of advanced form of kidney cancer in 2015 and more recently for urothelial 

carcinoma, in February, 2017. Anti-cluster of differentiation antigen (CD) 20 antibody, 

rituximab, was approved for the treatment of both previously untreated and previously 

treated CLL and certain types of B-cell non-Hodgkin lymphoma (NHL). Another 

anti-CD20 antibody, obinutuzumab, have been approved to treat previously untreated 

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm515627.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm427716.htm
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm501412.htm
https://www.fda.gov/newsevents/newsroom/pressannouncements/ucm436534.htm
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=444967&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45148&version=Patient&language=English
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CLL  and  R/R Follicular  Lymphoma (FL).  Idelalisib,  acts  as  a 

phosphatidylinositol-3-kinase-delta  (PI3Kδ)  inhibitor,  has  been  approved  for  the 

treatment of recurred CLL and NHL patients (Table 1-1).

Side  effects,  like  skin  problems  and  blood  pressure,  still  exist  though  most 

researchers had expected that targeted cancer therapies would show less cytotoxic

than conventional chemotherapy.   But some side effects have been noticed that they 

were linked to better outcomes106,107. Children and adults patients may have different

108side effects to specific target therapy . Many mutations and uncertain changes may 

involve in the development of cancer makes it a multifactorial disease. Different types 

of  cancer  may  own  different  critical  targets.  Therefore,  targeting  one  specific 

molecular  target  or  pathway  may  not  be  the  final  option.  Many  targeted  therapies 

have  been  studied  in  combination  with  established  chemotherapies  or  more  than  2 

critical targets. Bevacizumab is the first angiogenesis inhibitor drug approved to treat 

numerous types of cancer. It didn’t improve patient survival rate as a monotherapy for 

metastatic  colorectal  cancer,  however,  it  provided  a  2.5  months  benefit  in

progression-free  survival  and  overall  survival  when  combination  with  FOLFOX4

109(oxaliplatin/5-FU/leucovorin) . In addition,  blockade  of  co-inhibitory  pathways,  like 

PD-1,  PD-L1  and  cytotoxic  T-lymphocyte-associated  protein  4  (CTLA-4),  also

provided  an  effective  and  durable  cancer  immunotherapy  in  several  types  of

110 112cancer - . More recently, FDA granted accelerated approval to pembrolizumab

(in  combination  with  pemetrexed  and  carboplatin)  for  the  treatment  of  previously 

untreated NSCLC patients. There is still a long way ahead for all cancer treatments 

besides the achievements researchers have now. Side effects, therapeutic index and 

myriad  possibilities  are  challenges  of  combination  therapies,  which  would  be 

overcame and improved by scientific researchers and clinical doctors in the future.  

https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm488013.htm
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=46556&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044020&version=Patient&language=English
https://en.wikipedia.org/wiki/Angiogenesis_inhibitor
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*Data sources:  
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm 
https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-shee
t 

Figure 1-4. FDA approved drugs for targeted cancer therapy. Totally 169 drugs (or combined 
drugs) had been approved by FDA for targeted cancer therapy (some of them have been proved for 
more than one specific type of cancer). 53 drugs (31.4%) were approved for hematologic malignancies. 
(Reviewed: December 31, 2017) 

Abbreviations: DFSP, Dermatofibrosarcoma protuberans; ET/NET, Endocrine/neuroendocrine tumors; 
GCTB, Giant cell tumor of the bone; HNC, Head and neck cancer; GIST, Gastrointestinal stromal 
tumor; MD/MPDs, Myelodysplastic/ myeloproliferative disorders; MM, Multiple myeloma; NB, 
Neuroblastoma; OEC/FTC/PPC, Ovarian epithelial/fallopian tube/primary peritoneal cancers; SM, 
Systemic mastocytosis; STS, Soft tissue sarcoma. 
 

Table 1-1. FDA approved targeted therapy drugs for hematologic malignancies. (Reviewed: 
December 31, 2017) 
 

Drugs FDA approved indication(s) Target(s) 

Leukemia   
Tretinoin/ATRA (Vesanoid®) APL, AML RARs 
Imatinib Mesylate (Gleevec®) ALL (Ph

+), CML (Ph
+) ABL, KIT, PDGFR 

Dasatinib (Sprycel®) ALL (Ph
+), CML (Ph

+) ABL 
Nilotinib (Tasigna®) CML (Ph

+) ABL 
Bosutinib (Bosulif®) CML (Ph

+) ABL 
Rituximab (Rituxan®) CLL CD20 
Alemtuzumab (Campath®) CLL CD52 
Ofatumumab (Arzerra®) CLL CD20 
Obinutuzumab (Gazyva®) CLL CD20 
Ibrutinib (Imbruvica®) CLL BTK 
Idelalisib (Zydelig®) CLL PI3Kδ 
Blinatumomab (Blincyto®) ALL (Ph

-) CD3, CD19 

Leu
ke

m
ia

Lym
phom

a

Lung
ca

nce
r

B
re

as
t ca

nce
r

K
id

ney
ca

nce
r

Ski
n

ca
nce

r

C
olo

re
ct

al
ca

nce
r

B
la

dder
ca

nce
r

M
M

Pro
st

at
e

ca
nce

r

O
E
C
/F

TC
/P

PC

Thyr
oid

ca
nce

r

B
ra

in
ca

nce
r

Sto
m

ac
h

ca
nce

r
H
N
C

G
IS

T
STS

Pan
cr

ea
tic

ca
nce

r

C
er

vi
ca

l c
an

ce
r

Liv
er

ca
nce

r
S
M

ET/N
ET

M
D
/M

P
D
s

N
B

G
C
TB

D
FS

P

0

10

20

30
N

u
m

b
e

r
o

f
F

D
A

a
p

p
ro

v
e

d
d

ru
g

s

Total=25

AML
ALL
ALL&CML
CML
CLL

5

4

35

8

https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet
https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet
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Venetoclax (Venclexta™) CLL (del[17p]) BCL2 

Ponatinib Hydrochloride (Iclusig®) 
CML (Ph

+)T315I mutation 
ALL (Ph

+)T315I mutation 
FLT3, VEGFR2, 
ABL, FGFR1-3 

Midostaurin (Rydapt®) AML (FLT3
+
) FLT3 

Combination of rituximab and 
hyaluronidase human 

CLL and diffuse large B-cell lymphoma CD20 

Blinatumomab (Blincyto®) ALL (Ph
+) CD3, CD19 

Enasidenib (Idhifa®) AML (IDH2 mutation) IDH2 
Liposome-encapsulated combination 
of daunorubicin and cytarabine 

t-AML or AML-MRC DNA/RNA 

Inotuzumab ozogamicin 
(Besponsa®) 

ALL CD22 

Tisagenlecleucel (Kymriah®) ALL CAR T cell therapy 

Gemtuzumab ozogamicin 
(Mylotarg®) 

AML CD33 

Dasatinib (Sprycel®) CML (Ph
+
), in the chronic phase ABL 

Bosutinib (Bosulif®) CML (Ph
+
), newly-diagnosed chronic 

phase 
ABL 

Nilotinib (Tasigna®) CML (Ph
+), updated ABL 

Lymphoma   
Ibritumomab Tiuxetan (Zevalin®) NHL CD20 
Denileukin Diftitox (Ontak®) CTCL CD25 
Brentuximab Vedotin (Adcetris®) ALCL, HL CD30 
Rituximab (Rituxan®) NHL CD20 
Vorinostat (Zolinza®) CTCL HDAC 
Romidepsin (Istodax®) CTCL HDAC 
Bexarotene (Targretin®) Skin problems caused by CTCL RXRs 
Bortezomib (Velcade®) MCL Proteasome 
Pralatrexate (Folotyn®) PTCL DHFR 
Ibrutinib (Imbruvica®) MCL, NHL BTK 
Siltuximab (Sylvant®) MCD IL-6 
Idelalisib (Zydelig®) FL, SLL PI3Kδ 
Belinostat (Beleodaq®) PTCL HDAC 
Obinutuzumab (Gazyva®) FL CD20 
Nivolumab (Opdivo®) cHL PD-1 
Pembrolizumab (Keytruda®) cHL PD-1 
Combination of rituximab and 
hyaluronidase human 

FL CD20 

Copanlisib (Aliqopa®) FL PI3K-α and PI3K-δ 
Axicabtagene ciloleucel (Yescarta™) R/R large B-cell lymphoma CAR T cell therapy 

Brentuximab Vedotin (Adcetris® ) pcALCL CD30 
Obinutuzumab (Gazyva®) FL CD20 
Acalabrutinib (Calquence®) MCL BTK 
Multiple myeloma (MM)   
Bortezomib (Velcade®) MM Proteasome 
Carfilzomib (Kyprolis®) MM Proteasome 
Ixazomib citrate (Ninlaro®) MM Proteasome 
Panobinostat (Farydak®) MM HDAC 
Elotuzumab (Empliciti™) MM SLAMF7 
Daratumumab (Darzalex™) MM CD38 

 
*Data sources:  
https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm 
https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-shee
t 

https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45148&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=45148&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=44854&version=Patient&language=English
https://en.wikipedia.org/wiki/P110%CE%B1
https://en.wikipedia.org/wiki/P110%CE%B4
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=445048&version=Patient&language=English
https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet
https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet
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1.2.3 AML therapies  

 

A number of immunotherapeutic strategies have been developed113,114. Immune 

checkpoint inhibitors, which were previously studied in various solid tumors115, have 

shown considerable promise in the treatment of AML and other types of hematologic 

malignancies116,117. Hereby, we mainly discuss three types of treatment: 

antibody-based immunotherapy, Immune checkpoint pathways and Immune cells 

(DCs and CAR T cells)-based strategies. 

1.2.3.1 Antibody-based immunotherapy 

Antibody-based immunotherapy demonstrated efficacy by targeting surface antigens 

expressed on tumor or immune cells. Monoclonal antibodies (mAbs) were identified 

as unique tools in clinical diagnosis and basic research investigation after its first 

description in 1975118 and now hare considered as a standard component of cancer 

treatment. CD33 is a cell surface therapeutic target which has been found to be 

broadly expression on AML blasts52. FDA granted accelerated approval to 

Gemtuzumab ozogamicin (GO), an anti-CD33 antibody conjugate, for treatment of 

AML patients who have relapsed following initial chemotherapy in 2000119. 

Subsequently, it was voluntarily withdrawn from the US market in June 2010 since a 

randomized phase 3 study found addition of GO showed no improvement in CR, 

disease-free survival (DFS), or overall survival (OS)120. There still are several clinical 

trials focus on GO (or combined with other drugs) for the treatment of AML patients 

(Table 1-2). SGN-CD33A is another immune-conjugated anti-CD33 antibody that is 

being evaluated in several clinical trials (Table 1-2). SGN-CD33A showed improved 

efficacy compared to GO in xenograft mice models121. Additionally, other antibody 

based therapies are being evaluated in clinical trials, including antibodies targeting 
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CD37, CD45, CD47 and CD123. AMG 330 is a novel bispecific T-cell-engaging 

antibody (BiTE), which belongs to a novel class of cytotoxic drugs derived from 

antibody-based immunotherapy. By targeting both CD33 and CD3, AMG 330 would 

recruit T cells and show effective antibody-mediated cytolysis in ex vivo52 and in 

vivo122 experiments at low effector-to-target (E:T) ratio. AMG 330-regulated 

cytotoxicity and immune responses were significantly enhanced after blocking the 

PD-1/PD-L1 pathway53. CD33 antigen universally expressed on AML blast cells from 

individual patients which indicated CD33 as an useful target for debulking CD33+ 

AML cells. But it is not an ideal target to eradicate all types of AML cells since it was 

still not crystal clear whether, or to what degree, this antigen was displayed on AML 

progenitor and stem cells123, though some data from cDNA microarray showed CD33 

lower expressed on normal hematopoietic stem cells (HSCs) than on AML leukemic 

stem cells (LSCs)124.  JNJ-63709178, another BiTE antibody targets CD123 and 

CD3, was considered to be a candidate drug to eliminate AML stem cells since 

CD123 was presumed widely expressed on those cells.  The first-in-human (FIH) 

phase 1 clinical trial was carrying out by Amgen and Janssen Research & 

Development, LLC, focus on the research of AMG 330 and JNJ-63709178, 

respectively (Table 1-2).  As no AML-specific antigens were identified and BiTE 

antibodies could be highly effective at low target antigen level, target antigens should 

be selected prudently and their expression on regenerative and normal tissues need 

to be assessed carefully.  

1.2.3.2 Immune checkpoint pathways  

Immune checkpoint pathways, particularly the CTLA-4 and PD-1/PD-L1, have 

become promising therapy strategies in both solid and blood cancers110,116,125-127. 
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Several phase 1 or 2 clinical trials start learning on the effect of nivolumab, 

pidilizumab, atezolizumab and ipilimumab for the treatment of AML patients (Table 

1-2). FLT3, also known as CD135, is a surface antigen expressed on many 

hematopoietic progenitor cells. FLT3-ITD is the most common mutation associated 

with AML patients which indicates worse prognosis33. On April 28th 2017, FDA 

approved midostaurin (RYDAPT, Novartis Pharmaceuticals Corp.), in combination 

with standard cytarabine and daunorubicin induction and cytarabine consolidation, for 

the treatment of adult patients with newly diagnosed (AML) who are FLT3 

mutation-positive (FLT3+) (Table 1-1). This is the first FDA approved multi-targeted 

protein kinase inhibitor drug for AML therapy since 1990. The efficacy and safety of 

midostaurin-combined treatments were studied in a randomized phase 3 clinical trial 

of 717 AML patients. The trial showed significant improvement in OS for midostaurin 

received patients compared to placebo treated patients, median months from 16.3 

(placebo) to 20.9 (midostaurin) (HR=0.77, p=0.016)128. AGS62P1 is another novel 

site-specific antibody drug conjugate target FLT3. Its preclinical assessment of 

anti-leukemic activity had been tested with AML and ALL cell lines, in vitro and in 

vivo129,130. Agensys, Inc. sponsored a phase 1 clinical trial to evaluate the safety, 

tolerability, pharmacokinetics and the anti-leukemic activity of AGS62P1 in AML 

patients’ age of year 18 and older (Table 1-2).  

More recently, FDA approved enasidenib, a small molecule inhibitor of isocitrate 

dehydrogenase 2 (IDH2), for the treatment of adult R/R AML patients with an IDH2 

mutation on August 1, 2017 (Table 1-1). With orally treatment with 100 mg of 

enasidenib, 23% of 199 adult AML patients experienced CR or complete response 

with partial hematologic recovery (CRh) lasting a median of 8.2 months 

(NCT01915498). This is the first FDA approval for R/R AML specifically with an IDH2 

https://en.wikipedia.org/wiki/Hematopoietic
https://en.wikipedia.org/wiki/IDH2
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mutation and FDA concurrently approved a companion diagnostic, the RealTime 

IDH2 Assay, used to detect the IDH2 mutation. 

B-cell lymphoma 2 (BCL2) was identified as an apoptosis regulator in 1986 and was 

continuous researched on how its functional roles in cancer biology for more than 20 

years131. Recently, a novel BCL2 inhibitor drug, venetoclax, was reported with a 79% 

overall response rate for all 116 R/R CLL or small lymphocytic lymphoma (SLL) 

patients132.  FDA approved venetoclax as the first drug targets BCL2 for the 

treatment of CLL patients who have a chromosomal abnormality called 17p deletion 

(del[17p]) and who have been treated with at least one prior therapy in April 2016 

(Table 1-1).  AbbVie, which developed the drug in collaboration with Roche, also 

claimed a phase 2 breakthrough designation that combination of venetoclax with 

hypomethylating agents in naïve AML patients.  S 055746 is another candidate 

BCL2 inhibitor drug and now is performing phase 1 trials with AML patients (Table 

1-2).   

 

1.2.3.3 Immune cells (DCs and CAR T cells)-based strategies 

DCs are professional antigen-presenting cells (APCs), and thus usually are 

considered as “nature's adjuvants” for antigen delivery in cancer immunotherapy. 

DC-based vaccines133-136 and immunotherapies136-138 are essential therapy 

approches to induce immune responses through the patients’ own immune system. 

Numerous of leukemia-associated antigens (LAAs), such as FLT3, preferentially 

expressed antigen in melanoma (PRAME) and Wilm’s tumor protein 1 (WT1), were 

identified with the development of the tumor biology and biochemistry. Clinical phase 

1/2 trials on those peptide vaccines also have showed exciting results for AML 
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patients. DCs, however, retain the potential to be more successful than peptide 

vaccines since its antigen delivery properties in cellular and humoral immunity. The 

first clinical study of autologous monocyte-derived DCs on patients was carried out to 

treat AML relapse after autologous SCT139. More recently, 17 of in-remission but at 

high risk with relapse AML patients were administrated with WT1 

mRNA-electroporated DCs that differentiated from CD14+ monocytes. In this phase 

1/2 study, 8 patients reached clinical and molecular remission. Median of OS was 

from 6 months (non-responders) to 52 months (responders), p=0.0007; and median 

of relapse-free survival was 3 months (non-responders) compared to 47 months 

(responders), p<0.0001. Excitingly, two out of three patients, who only got partial 

remission with chemotherapy-refractory disease, achieved CR after 4 vaccinations 

with this cellular product140,141. Other clinical studies also have shown that DC-based 

immunotherapies were safe and improved the survival rate by inducing anti-tumor 

immune responses142.  

Normally, DCs can be generated from hematopoietic precursor cells, monocytes, 

embryonic stem cells and peripheral blood stem cells143,144 with a standard 7-day 

protocol. An improved 3-day protocol developed in our lab to obtain mature DCs from 

monocytes which stimulated by cytokines, granulocyte-macrophage 

colony-stimulating factor (GM-CSF) and IL-4 for 48 hours, and subsequently, 

incubated with toll-like receptor (TLR)7/8 agonist-containing maturation cocktail for 

another 24 hours48. A phase 1/2 study (NCT01734304) held by our lab had revealed 

the feasibility and safety of the next-generation DCs for post-remission therapy of 

AML patients145. Delayed-type hypersensitivity (DTH) responses were achieved in 

6/6 patients, and 9/9 patients in updated data at December 2016146, accompanied by 

slight erythema and indurations at the injection site, but no grade III/IV toxicities. 
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Autologous leukemic apoptotic corpse pulsed DCs also showed significantly 

improvement of OS in elderly AML patients (NCT01146262). In this study, most 

patients (19/21) received non-intensive chemotherapy. After 5 vaccines administrated, 

the median of OS was extended from 4.75 months to 13 months, p=0.00947. However, 

another literature showed that 71% (12/17) of patients, the median age was 63 years, 

remain alive without recurrence at a median follow-up of 57 months after treated with 

autologous DCs147. Current DC-based therapy had demonstrated promising results in 

solid, skin and blood cancers114,142,148. Further deeply and widely researches are 

clearly needed with more sophisticated strategies developed, like identification of 

individual patient antigens or mutations.  

CAR T cells are another potent candidate strategy to treat AML and several of other 

types of cancer39,43,45,149,150. CAR T cells were usually engineered by grafting an 

arbitrary specificity onto T cells to increase the specificity of those T cells which could 

be adoptively transferred to cancer patients. Many CD (CD19, CD20, CD22, CD33 

and CD123) and non-CD (IL-13Rα, endothelial growth factor receptor (EGFR), 

carcinoembryonales antigen (CEA) and human epidermal growth factor receptor 2 

(HER2)) targets for CAR T cells were submitted for clinical trials39,149. Many factors in 

the whole immune system, like the regulatory T cells, checkpoints and tumor 

microenvironment, would influence the function of CAR T cells151-153.  

T cell-based immunotherapies, including antibody bases immunotherapy, DC 

vaccines and CAR T cells, together with checkpoint-targeted drugs and standard 

established chemotherapy, mainly shaped the advanced AML therapy114. Some 

approaches might have achieved milestone success, e.g. APL therapy154, but not 

with broadly feasible for treatment with other cancers. The high risk of relapse in AML 

patients, the poor survival rate after chemotherapy and SCT and tolerance ability for 
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individual treatment of patients with SCT prompt researchers to look for more LAAs or 

even the leukemic specific antigens (LSAs). New therapeutic drug or checkpoint 

targets are urgently needed for more promising preclinical and clinical trials, with the 

final purpose to completely eliminate both leukemic cells and leukemic stem cells 

(LSCs).  

High relapse rates and poor prognosis remain challenging in AML, especially 

compared to other subtypes of leukemia (Figure 1-1 B). Current immunotherapeutic 

approaches for AML therapy have had only shown limited success in clinical trials. 

Thus, novel, more specific targets are needed for AML immunotherapy. “Cell Surface 

Capturing” (CSC) technology provide the possibility to identify the whole leukemia 

surfaceome (cell surface proteome) of AML blasts or cell lines. In this study, we 

employed this technology and its variants to discover new targets for AML 

immunotherapy. In addition, the identification of more specific surface markers is also 

likely to improve MRD detection. 

 

Table 1-2. Ongoing clinical trials of antibody/immune checkpoint-based treatments for AML 
patients.  
 

Drug(s) Target(s) NCT trial number Phase 
AMG 330 CD33/CD3 NCT02520427 1 
SGN-CD33A CD33 NCT02326584 1 
SGN-CD33A CD33 NCT01902329 1 
SGN-CD33A CD33 NCT02785900 3 
IMGN779 CD33 NCT02674763 1 
GO (combination) CD33 NCT02473146 2/3 
GO (combination) CD33 NCT02724163 3 
AGS67E CD37 NCT02610062 1 
Yttrium Y 90 CD45 NCT01300572 1 
Hu5F9-G4 CD47 NCT02678338 1 
SGN-CD123A CD123 NCT02848248 1 
KHK2823 CD123 NCT02181699 1 
Talacotuzumab CD123 NCT02472145 3 
JNJ-63709178 CD123/CD3 NCT02715011 1 
AGS62P1 FLT3 NCT02864290 1 
Nivolumab PD-1 NCT02532231 2 
Nivolumab PD-1 NCT02275533 2 
Pidilizumab PD-1 NCT01096602 2 
Atezolizumab PD-L1 NCT02935361 1/2 
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Nivolumab/Ipilimumab PD-1/CTLA-4 NCT02397720 2 
Ipilimumab CTLA-4 NCT01757639 1 
Ipilimumab CTLA-4 NCT02890329 1 
S 055746 BCL2 NCT02920541 1 
 

*Data source : https://clinicaltrials.gov/ 

 

1.3 AML surfaceome and LC-MS-based CSC technology 

 

Surfaceome, also referred to as the cell surface sub-proteome, are proteins that are 

expressed on the cell surface. These proteins represent important cellular functions 

in cell-cell interaction, cell signaling and microenvironment. Cell surface proteins, 

offer great potential as therapeutic targets105. A comprehensive analysis of the 

surface proteome promises to be useful for the identification and validation of novel 

targets, which may be considered for the development of antibody-, DC vaccines-,  

and CAR T cell-based AML therapy. However, until recently, a comprehensive 

mapping of the surface proteins was technologically limited.  

Mass spectrometry (MS)-based technologies offer the advantage of multiplexed and 

unbiased detection of proteins independent of existing antibody collections. The 

original “Cell Surface Capturing” (CSC) technology (Glyco-CSC) and its variants 

(Cys-Glyco-CSC and Lys-CSC) technology provide the ability to identify all surface 

proteins of any cell population155-157. These three strategies were developed based 

on the following features of membrane proteins: 1), most cell surface proteins are 

known or predicted to be glycosylated158,159 (for original CSC); 2), the glycosylated 

peptides often contain cysteine residues within disulfide bridges160,161 (for 

Cys-Glyco-CSC); 3), lysine-contained proteins can be identified by interaction with 

biotin162-164 (for Lys-CSC). Taking advantages of these features, membrane peptides 

can be detected and the associated specific proteins identified. The procedure 

encompasses six steps which are depecited in Figure 1-4. Compared to other 

https://clinicaltrials.gov/
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strategies, such as lectin-based methods, cell surface shaving, antibody-mediated 

membrane enrichment, silica bead coating method, cell surface biotinylation, 

reversed phase capillary liquid chromatography coupled to tandem mass 

spectrometry (LC-MS/MS)-based CSC technologies provide increased specificity 

(95%) and thus allow for the mapping of a more representative surfaceome155,165,166.  

 

 

 

 

 

 

 

 

 

 

 

*Figure source : http://www.gundrylab.com/research/#/cellsurfaceproteins/ 

Figure 1-4. Overview of the CSC workflow. Six mainly steps involved in CSC and it’s variant 
technologies: (1) oxidation of reactive protein groups, (2) biocytin hydrazide or NHS-SS-biotin labelling, 
(3) cell lysis, membrane protein collected and digested, (4) affinity purification of glycopeptides, (5) 
enzymatic or reduction release peptides and (6) analysis and identification of peptides. 

 

In a previous study using two AML cell lines, more than 500 membranes were 

identified, including 137 CD antigens160. Another group identified 823 proteins with an 

EZ-link sulfo-NHS-LC-biotin-based protocol; however, only 320 proteins could be 

annotated to the cell surface membrane. Membrane specificity was not high, with a 

percentage of putative membrane proteins in all six samples ranging between 44 and 

53%166. The hematopoietic cell surface marker CD45, the myeloid marker CD33 and 

http://www.gundrylab.com/research/#/cellsurfaceproteins/
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granulocyte differentiation markers such as CD11b and CD35 were identified in both 

studies. However, no comprehensive mapping of the surfaceome has been published 

using primary AML primary patient samples167-169. 

 

1.4 Objectives  

 

The objectives of this work were: 

(1): To establish the use of CSC and it’s variants technologies on AML cells from 

primary patient samples. 

(2): To identify new biomarkers to measure MRD and target antigens from primary 

AML patient samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Materials and methods 

 30 

2. Materials and methods 

 
2.1 Materials 

2.1.1 Chemicals and Kits 

 
Table 2-1. Chemicals and Kits 
 

Name Product No. Company 
Sodium (met)periodate (NaIO4) 30323-100 g Sigma-Aldrich 
Biocytin hydrazide ABD-3086 Biomol 
Tris base 93350-100 g Sigma-Aldrich 
Magnesium chloride hexahydrate (MgCl2·6H2O) 13152-1 kg Sigma-Aldrich 
MES hydrate M8250-250 g Sigma-Aldrich 
Sodium chloride (NaCl) S1679-500 g Sigma-Aldrich 
Sucrose 16104-1 kg Sigma-Aldrich 
Ammonium bicarbonate (NH4HCO3) 11213-1 kg-R Sigma-Aldrich 
RapiGest 186001860-1 mg Waters 
Tris (2-carboxyethyl)phosphine hydrochloride C4706-2 g Sigma-Aldrich 
Iodoacetamide I1149-5 g Sigma-Aldrich 
2,2'-Thiodiethanol 166782-100 g Sigma-Aldrich 
Sequence grade modified trypsin V5111-5X20 µg Promega 
Glycerol free PNGase F P0705 S-15000 units NEB 
Pierce™ Streptavidin Plus UltraLink™ Resin 53117-5 ml ThermoFisher 
EZ-Link™ Sulfo-NHS-SS-Biotin 21331-100 mg ThermoFisher 
Sodium bicarbonate(NaHCO3) 6885.2-500 g Carl Roth 
Sodium carbonate (Na2CO3) A135.1-500g Carl Roth 
DL-Dithiothreitol  43815-1 g Sigma-Aldrich 
HPLC Grade Water W/0110/PB17-2.5 L ThermoFisher 
Formic acid (HCOOH) 56302-10 X 1 ml Sigma-Aldrich 
Acetonitrile (CH3CN) 34967-250 ml Sigma-Aldrich 
LC-MS grade water 39253-1 l-R Sigma-Aldrich 
Ultrapure Water Cay400000-4 L Biomol 
Glycerol G5516-500 ml Sigma-Aldrich 
Triton™ X-100 T9284-500 ml Sigma-Aldrich 
Fetal Bovine Serum  10270-106-500 ml ThermoFisher 
Horse Serum H1270-500 ml Sigma-Aldrich 
Recombinant Human G-CSF (rh-G-CSF) 300-23-1 mg PeproTech 
Recombinant Human IL-3 (rh-IL-3) 200-03-1 mg PeproTech 
Recombinant Human TPO (rh-TPO) 300-18-1 mg PeproTech 
2-Mercaptoethanol (14.3 M) M6250-100 ml Sigma-Aldrich 
Penicillin-Streptomycin-Glutamine (100X) 10378016-100 ml ThermoFisher 
Pierce™ Bovine Serum Albumin Standard 23209-10 x 1 ml ThermoFisher 
Pierce™ BCA Protein Assay Kit 23227-500 ml ThermoFisher 
Pierce™ C18 Spin Columns 89870-25 columns ThermoFisher 
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2.1.2 Solutions, Mediums and Buffers (Commercial) 

 
Table 2-2. Solutions, Mediums and Buffers (Commercial) 
 

Name Product No. Company 
Phosphoric Acid 438081-500 ml Sigma-Aldrich 
Sodium hydroxide solution (4 mol/l) T198.1-1 L Carl Roth 
Hydrochloric acid (6 mol/l) 0281.1-1 L Carl Roth 
UltraPure™ 0.5M EDTA, pH 8.0 15575-038-100 ml ThermoFisher 
HEPES buffer (1M)  15630-080-100 ml ThermoFisher 
DPBS P04-36500-500 ml PAN-Biotech 
RPMI 1640 P04-16500-500 ml PAN-Biotech 
Alpha MEM Eagle P04-21500-500 ml PAN-Biotech 

 

2.1.3 Solutions, Mediums and Buffers (Handmade) 

 
Table 2-3. Solutions, Mediums and Buffers (Handmade) 
 

Name Preparation method 
R10 medium (10% FBS, 1% HEPES, 1% 
Penicillin-Streptomycin-Glutamine in 
RPMI 1640) 

Add 50 ml FBS, 5 ml of HEPES and 5 ml of 
Penicillin-Streptomycin-Glutamine into 500 ml RPMI 1640 
medium. Store at 4 °C. 

Blasts Base medium (12.5% 
FBS ,12.5% horse serum ,1% 
Penicillin-Streptomycin-Glutamine in 
ALPHA MEM Eagle Medium) 

Add 62.5 ml FBS, 62.5 ml of horse serum and 5 ml of 
Penicillin-Streptomycin-Glutamine into 500 ml ALPHA 
MEM Eagle Medium. Store at 4 °C. 

Long-Term culture medium (20 ng/ml 
of rh-G-CSF, rh-IL-3 and rh-TPO, 57.2 

μM -mercaptoethanol in Blasts Base 
medium) 

Add 2 µl (0.1 mg/ml) of rh-G-CSF, rh-IL-3 and rh-TPO to 
10 ml Blasts Base medium. Add 4 µl (1:100 dillution) of 

-mercaptoethanol. Mix and store at 4 °C. 

FACS buffer 500 ml DPBS, 1% bovine serum albumin (BSA), 0.1% 
sodium azide 

Glyco labeling buffer (PBS, pH=6.5) 500 ml DPBS, adjust the pH to 6.5 with 85% (w/v) 
Phosphoric Acid. Add 0.5 ml fetal bovine serum.  

NaIO4 stock solution (160 mM) Add 34 mg NaIO4 to 0.9 ml labeling buffer and make up to 
1 ml with labeling buffer. (Keep in dark) 

Biocytin hydrazide solution (5.4 mM) Add 25 mg biocytin hydrazide to 10 ml labeling buffer, mix 
and make up to 14 ml with labeling buffer. (Prepare 
before use) 

Iodoacetamide stock solution (500 mM) Add 92.48 mg iodoacetamide to 800 µl water, mix, and 
make up to 1 ml with water. Aliquot and store at  
−20°C. (Keep in dark) 

Lysine labeling buffer (2 mM 
sulfo-NHS-SS-biotin and 4 mM 
iodoacetamide) 

Add 5.55 mg sulfo-NHS-SS-biotin and 40 µl of 
iodoacetamide stock solution to 4.5 ml PBS, mix and 
make up to 5 ml with PBS. (Prepare before use) 

Hypotonic lysis buffer (Glyco-CSC) (10 
mM Tris pH=7.5, 0.5 mM MgCl2) 

Add 0.6 g Tris Base and 50.5 mg MgCl2·6H2O to 45 ml 
water. Mix and adjust the pH to 7.5 with 1M HCl. Make up 
to 50 ml with water. Store at 4 °C. 

Hypotonic lysis buffer (Lys-CSC) (10 
mM Tris pH=7.5, 0.5 mM MgCl2,10 mM 
iodoacetamide) 

Add 0.6 g Tris Base, 92.48 mg iodoacetamide and 50.5 
mg MgCl2·6H2O to 45 ml water. Mix and adjust the pH to 
7.5 with 1M HCl. Make up to 50 ml with water. Store at 
4 °C. (Keep in dark) 

MES stock solution (500 mM, pH=6)  Add 9.76 g MES hydrate to 80 ml water. Mix and adjust 
the pH to 6 with 1 M NaOH. Make up to 100 ml with water.  
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Membrane preparation buffer (50 mM 
MES pH=6, 10 mM MgCl2 , 450 mM 
NaCl, 280 mM sucrose) 

Add 2.03 g MgCl2·6H2O, 26.30 g NaCl, 95.84 g sucrose 
and 100 ml of the 500 mM MES stock solution pH=6 to 
700 ml water. Mix and make up to 1 L. Aliquot in 50 ml 
tubes and store at −20°C.  

Membrane wash buffer (25 mM 
Na2CO3) 

Add 0.265 g Na2CO3 to 90 ml water. Mix and make up to 
100 ml with water. 

Sucrose buffer (35% sucrose in 
membrane preparation buffer and 
water) 

Add 15.08 g sucrose to 20 ml water. Mix and make up to 
25 ml with water. Add 25 ml of Membrane preparation 
buffer. Store at −20°C. 

NH4HCO3 buffer (100 mM) Add 0.395 g NH4HCO3 to 45 ml water. Mix and make up 
to 50 ml with water. (Prepare before use) 

2,2-Thiodiethanol stock solution (100 
mM BHES) 

Add 12.22 mg BHES to 900 µl water. Mix and make up to 
1 ml. Store at −20°C 

RapiGest stock solution (1% (w/v) 
RapiGest surfactant) 

Add 1 mg RapiGest to 10 µl water. Mix and store at 4 °C. 

Tris (2-carboxyethyl) phosphine stock 
solution (100 mM TCEP) 

Add 28.66 mg TCEP to 900 µl water. Mix and make up to 
1 ml. Aliquot and store at −20°C. 

Digestion buffer (Glyco-CSC, 
Cys-Glyco-CSC) (100 mM NH4HCO3 , 1 
mM iodoacetamide, 1 mM BHES) 

Add 100 µl of BHES stock solution and 200 µl of 
iodoacetamide stock solution to 9 ml NH4HCO3. Make up 
to 10 ml with NH4HCO3. 

Digestion buffer (Lys-CSC) (100 mM  
NH4HCO3, 1.25 mM iodoacetamide, 1.25 
mM BHES, 2 mg/ml RapiGest.) 

Add 5 µl of BHES stock solution and 1 µl of 
iodoacetamide stock solution to 320 µl NH4HCO3. Mix 
and add 80 µl of RapiGest stock solution. (Keep in dark) 

NaCl washing buffer (5 M NaCl) Add 14.6 g NaCl to 30 ml water, mix and make up to 50 
ml with water.  

Detergent buffer (137 mM NaCl, 50 mM 
Tris pH=7.8, 10% glycerol, 0.5 mM 
EDTA pH 8, 0.1% Triton X-100) 

Add 0.606 g Tris base to 70 ml water and adjust pH to 7.8 
with 1 M HCl. Then, add 0.8 g NaCl, 10 ml glycerol, 0.1 ml 
EDTA stock solution, and 1 ml Triton X-100 and make up 
to 100 ml  with water.  

NaHCO3 washing buffer (100 mM 
NaHCO3, pH=11) 

Add 0.84 g NaHCO3 to 90 ml water. Adjust pH with 1 M 
NaOH and make up to 100 ml with water. (Prepare before 
use) 

Dithiothreitol (DTT) stock solution (100 
mM DTT) 

Add 15.4 mg DTT to 800 µl water. Mix and make up to 1 
ml. Aliquot and store at −20°C. 

Elution buffer (100 mM NH4HCO3 , 10 
mM TCEP, 1 mM DTT) 

Add 100 µl DTT stock solution and 200 µl TCEP stock 
solution to 9 ml NH4HCO3. Mix and make up to 10 ml with 
100 mM NH4HCO3 buffer. 

10% formic acid (10% (v/v) formic acid) Add 1 ml formic acid to 9 ml water. 

50% acetonitrile (LC-MS grade water, 
50% (v/v) acetonitrile, 0.1% (v/v) formic 
acid) 

Add 5 ml acetonitrile and 10 µl formic acid to 4.5 ml 
LC-MS grade water. Mix and make up to 10 ml with 
LC-MS grade water. 

80% acetonitrile (LC-MS grade water, 
80% (v/v) acetonitrile, 0.1% (v/v) formic 
acid) 

Add 8 ml acetonitrile and 10 µl formic acid to 1.5 ml 
LC-MS grade water. Mix and make up to 10 ml with 
LC-MS grade water. 

Sample buffer (LC-MS grade water, 5% 
(v/v) acetonitrile, 0.1% (v/v) formic 
acid) 

Add 0.5 ml acetonitrile and 10 µl formic acid to 9 ml 
LC-MS grade water. Mix and make up to 10 ml with 
LC-MS grade water. 

 

2.1.4 Instruments and Equipments 

 
Table 2-4. Instruments and Equipments 
 

Name Company 
5 ml, 15 ml and 50 ml Tubes  BD  
FACS tubes BD 
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1.5 ml and 2 ml Tubes  Eppendorf  
Ultracentrifuge Tubes (SW40) Seton Scientific 
pH Meter (MP225) METTLER TOLEDO 
Vortexer  Heidolph Instruments  
Mobicol “classic” column-M1002 Mobitec 
Filter (large) 35 μm pore size-M523515 Mobitec 
Countess™ Automated Cell Counter Invitrogen 
Glass 7 mL Dounce Tissue Grinder-357542 Wheaton 
Centrifuge-5920R Eppendorf 
Centrifuge-5417R Eppendorf 
Thermomixer-Comfort (1.5 ml) Eppendorf 
Ultracentrifuge-L70 Beckman 
Rotary mixer-LD-76 Labinco-BV 
Roll mixer-SRT6D Stuart 
Vacuum Concentrator Centrifuge (SpeedVac)-UNIVAPO 150 H Uniequip 
Bioruptor Diagenode 
LC-MS (Elite-velos-pro) ThermoScientific 
FACS (10-color Navios flow cytometer) Beckman Coulter 

 

2.1.5 Antibodies for FACS 

 
Table 2-5. Antibodies for FACS 
 

Name Product No. Company 
PE-CD172b Cat # 323906 BioLegend 
PE-CD148 Cat # 328708 BioLegend 
Brilliant Violet 421-CD49d Cat # 304321 BioLegend 
FITC-PLXA1 Cat #: abx107198 Abbexa 
PE-ITB7 Cat #: 321204 BioLegend 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://www.google.de/aclk?sa=l&ai=DChcSEwjI86qZyeTSAhUkse0KHSxiCrUYABAAGgJkZw&sig=AOD64_1gz0B95fTkYA5s9x0EzgDVjNRITw&rct=j&q=&ved=0ahUKEwiLmaeZyeTSAhXlJMAKHWQaAKkQ0QwIGA&adurl=
http://www.heidolph-instruments.de/
http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjk1NOmyN3SAhXhDMAKHaJnAT0QFggyMAA&url=http%3A%2F%2Fgmi-inc.com%2Fbeckman-optima-l-70-ultracentrifuge.html&usg=AFQjCNGpgmJ5Zcybu5DVdYNwcrMlapi5MQ&sig2=3aY1G56g-l2JrJwNpLn6Cg&bvm=bv.149760088,d.d24
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2.2 Methods 

2.2.1 Cell culture 

 

The AML cell line OCI-AML3 was maintained in RPMI1640 medium, supplemented 

with 10% fetal calf serum, 1% penicillin/streptomycin/glutamine and 0.005 mM 

2-mercaptoethanol. The cell suspension was kept in the incubator at 37°C, 5% CO2. 

 

2.2.2 Patient-derived xenograft (PDX) cells 

 

In cooperation with Prof. Dr. med. Irmela Jeremias (Group Leader of Apoptosis Group 

in Helmholtz Zentrum München), we collected 2 patient-derived xenograft (PDX) 

samples. The PDX cells were obtained from mice spleen as previously described170. 

Briefly, patient cells were transplanted i.v. into NSG mice. After 6 to 20 weeks, when 

mice showed clinical signs of illness, mice were sacrificed and PDX cells were 

isolated from bone marrow and spleen. PDX cells were either directly retransplated or 

frozen for later analyses or retransplantation.To amplify transgenic PDX cells, they 

were retransplanted into mice. Fresh PDX cells were incubated with hypotonic lysis 

buffer (Vcell:Vbuffer=1:2) for 10 minutes at room temperature to lysis the blood and 

spleen cells. Then, the sample was centrifuged at 500×g for 5 minutes. The pellet 

was resuspended in 50 ml labeling buffer. Around 108 cells were harvested, with a 

cell viability of 89% and 91% for PDX1 and PDX2, respectively. Fresh PDX cells were 

immediately performed with experiments following the improved CSC protocol. 

Patient characteristics were collected in Table 2-6.   

 

http://jingyan.baidu.com/article/fa4125acb30d8228ac709235.html
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2.2.3 Primary patient (PP) cells 

 

Peripheral blood (PB) and/or bone marrow (BM) samples were collected from primary 

diagnosis or relapsed AML patients after signed informed consent in accordance with 

the Declaration of Helsinki and approval by the Institutional Review Board of the 

Ludwig-Maximilians-University (Munich, Germany). Primary AML patient cells were 

isolated by gradient centrifugation and then stored in -80°C, -150°C or liquid nitrogen 

until further experiments were performed. Primary patient (PP) samples for CSC tests 

were subjected to the long-term cell culture workflow as reported previously with 

slight modifications52. Briefly, irradiated MS-5 cells were resuspended in blast 

medium and 2.5 x 105 cells /well were seeded on 6-well plates.  The plates were 

incubated at 37°C overnight to allow the cells to adhere to the plate. The primary 

patient cells were thawed and washed with pre-heated blasts basal medium (550 g, 5 

min). Cells were counted and washed one more time with blast medium.  Then the 

cell pellet was resuspended in blasts basal medium, and 20 ng / ml of IL-3, TPO and 

G-CSF + 57.2 μM -mercaptoethanol were added to the medium.  Then, the 

medium in the 6-well plate was carefully removed without scratching the feeder layer. 

1-1.5 x 107 cells/well were added into the plate. The cells were incubated at 37°C for 

3 days and then were collected, counted and subjected to the Glyco-CSC protocol. 

Patient characteristics are summarized in Table 2-6.   

 

Table 2-6. Patient characteristics for CSC experiments. 
 

Sample Sex 
Age 
(Y) 

FAB 
Disease 
Stage 

Cytogenetics 
NPM

1 
FLT3
-ITD 

ELN 
BM/
PB 

PDX 1 F 47 M4 
Relapse 

after SCT 
46,XX, ins(10;11) 

(p12;q23q23) 
WT WT Adv BM 

PDX 2 M 57 M4 
Primary 

Diagnosis 
46,XY,t(6;11) 

(q27;q23) 
WT WT Adv BM 

PP 01 F 35 M1 
Primary 

Diagnosis 
46,XX WT WT Fav BM 
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PP 03 F 28 M5 
Primary 

Diagnosis 
46,XX,t(11;19) 

(q23;p13.3) 
WT WT Adv BM 

PP 04 M 55 NA Relapse 46,XY WT WT NA PB 

PP 05 F 53 NA 
Primary 

Diagnosis 
46,XX Mut Mut NA BM 

PP 06 F 31 NA 
Primary 

Diagnosis 

46,XX,der(8)(8;21)(q
22;q22),der(22)t(8;22

)(q22;q1?3)[21] 
WT WT NA BM 

 
PDX (patient-derived xenograft); PP (Primary Patient); F (female); M (male); FAB 
(French–American–British classification system); SCT (stem cell transplantation); NPM1 
(nucleophosmin-1); WT (wildtype); Adv (adverse); Mut (mutated); FLT3 (Fms-related tyrosine kinase 
3); ITD (internal tandem duplication); ELN (European LeukemiaNet classification system); PB 
(peripheral blood); BM (bone marrow); NA (not available) 

 
 

2.2.4 CSC technology 

 

2.2.4.1 Original protocol 

Original standard Glyco-CSC and it’s variants (Cys-Glyco-CSC and Lys-CSC) 

technology were performed as previously described155,156. Briefly, about 108 cells 

were labeled with biocytin hydrazide (Glyco-CSC and Cys-Glyco-CSC, 10 ml, 6.5 mM) 

after the oxidation with NaIO4 (50 ml ,1.6 mM), or NHS-SS-biotin (Lys-CSC, 5 ml, 2 

mM). Afterwards, cells were lysis with Dounce homogenizer or bioruptor. 

Subsequently, surface proteins were collected by ultracentrifugation in a 1:1 ratio with 

membrane preparation buffer and hypotonic lysis buffer (Glyco-CSC and 

Cys-Glyco-CSC, 100,000×g, 60 minutes) or in a sucrose gradient (Lys-CSC, 

150,000×g, 60 minutes, collect the phase border containing plasma membranes into 

a new ultracentrifuge tube and fill the tube with hypotonic lysis buffer and then 

centrifuge at 200,000×g, 20 hours). Membrane protein pellets from Glyco-CSC and 

Cys-Glyco-CSC were incubated with 400 µl membrane wash buffer and then filled 

with hypotonic lysis buffer and centrifuged at 100,000×g, 60 minutes. Membrane 

protein pellets were completely collected into a new 2 ml tube and added 340 µl of 
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100 mM NH4HCO3 buffer and 40 µl of 1% RapiGest stock solution (Glyco-CSC and 

Cys-Glyco-CSC) or 320 µl of digestion buffer and 80 µl of 1% RapiGest stock solution 

(Lys-CSC), then were completely dissolved by indirect sonication. Protein 

concentrations were determined by BCA kit. For Glyco-CSC samples, membrane 

proteins were reduced by TCEP (8 µl, 100 mM, 30 minutes) and then alkylated by 

iodoacetamide (12 µl, 500mM, 30 minutes). While for Lys-CSC and optionally for 

Cys-Glyco-CSC samples, 1 µl PNGase F were added to solubilize and de-glycosylate 

the membrane proteins. The pre-treated membrane proteins were then digested 

overnight with trypsin at a ratio of trypsin: protein=1:50. The membrane proteins in the 

digestion were captured by affinity streptavidin beads and then released by 1 µl of 

glycerol-free PNGase F (Glyco-CSC and Cys-Glyco-CSC) or by reduction agents 

(cysteine contained peptides in Cys-Glyco-CSC and Lys-CSC ). Those peptides were 

then desalted and washed in C18 columns and concentrated in a SpeedVac 

concentrator. The complete dried peptides were resuspended in 20 µl of sample 

buffer and stored at -20°C for further LC-MS detection.  

In summary, the differences between Cys-Glyco-CSC and Glyco-CSC are that the 

Cys-Glyco-CSC skips the protein reduction and alkylation step and instead releases 

cysteine peptides by chemical reduction from the solid phase. Lys-CSC is also 

differing from Glyco-CSC in biotin labeling, ultracentrifugation and peptides release 

steps. The systematic workflow of CSC and it’s variants (Cys-Glyco-CSC and 

Lys-CSC) technology are illustrated in Figure 2-1. 
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Figure 2-1. Workflow of Cell Surface Capturing (CSC) technology and it's 2 variants
(Cys-Glyco-CSC and Lys-CSC). Modified from Wollscheid et al., Nat Biotechnol., 2009 and 
Elschenbroich et al., Exp Rev Pro., 2010. 
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2.2.4.2 Modifications to the protocol 

Several strategies were applied to improve the original Glyco-CSC protocol in our lab. 

Experimental modifications are listed in the following Table 2-7. Cys-Glyco-CSC was 

performed using the same modifications (No.3 through No. 6) as Glyco-CSC. Since 

the Lys-CSC protocol uses a different biotin derivative for labeling, strategies only 

modifications No.4 through No.6 were applied to the Lys-CSC protocol.  

 

Table 2-7. Strategies to improve the original CSC protocol. 
 

Modification 
No. 

Protocol Description 

1 Technical Control (without biocytin hydrazide treated) 
2 Original Glyco-CSC protocol 
3 Optimization ①: lower concentration of biocytin hydrazide (5.4 mM) 
4 Optimization ②: Optimization ① + bioruptor (instead of homogenizer) 
5 Optimization ③: Optimization ② + homogenizer + 2 times digestion (firstly 2 hours, 

then overnight) 
6 Optimization ④: Optimization ③ + digestion buffer (instead of pure NH4HCO3) 

 

 

2.2.5 LC-MS: 

 

Peptides in the sample were separated with an on-line 70 minutes reversed-phase 

nano HP-LC and analyzed on-line with a velos-pro orbitrap. MS1 spectra were 

acquired at 120000 resolution in data-dependent acquisition mode (top 10) and MS2 

spectra at low resolution in the ion trap. The activation time was 10 ms; the AGC 

target value 104 ions; the maximum injection time 100 ms and the minimum ion count 

500. Each sample was analyzed twice and the resulting technical replicates 

averaged. 

Raw files were analyzed with MaxQuant using N-deamidation, protein n-terminal 

acetylation and methionine oxidation as a variable modification. 
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Carbamidomethylation on cysteines was used as a fixed modification. A maximum 

precursor mass error of 4.5 ppm and a fragment mass error of 0.5 Da were allowed. 

The final peptide and protein list were filtered at a 1% FDR. As database the whole 

reviewed human proteome from UniProt August-2015 was used. 

The MaxQuant table containing the identified N-deamidations was processed further 

by incorporating annotations from UniProt and the Cell Surface Protein Atlas. Each 

deamidation was validated as and n-glycosylation based on the following criteria: i) 

the deamidation occurred in a NXS\T motif and had a MaxQuant localization 

probability greater than 0.75; ii) the deamidation occurred in a protein with at least 

one TM domain and/or signal peptide; and iii) the NXS\T motif did not overlap with a 

transmembrane (TM) domain. In this study, TM represented proteins with 

transmembrane domains or signal peptide, or that were present in the Cell Surface 

Protein Atlas, or that were annotated as Plasma Membrane proteins in Gene 

Ontology. Intensities between different samples were compared at the deamidation 

site level and deamidated-protein level. For the former n-glycosylations at the same 

site but in different tryptic peptides were summed. For the latter n-glycosylations at 

the same protein were averaged. Intensities were then log2-transformed and median 

normalization between samples was applied. Clustering at the protein level was done 

using hiearchical clustering either using Euclidean distance or Cosine correlation 

distance. Edges in the network plot with a cosine correlation lower than 0.85 were 

filtered out. Finally, gene enrichment analysis was performed using DAVID. 

Each of the samples were tested twice or three times. Intensity of the identified 

peptides were merged as average. 
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2.2.6 Flow cytometry 

 

Peripheral blood (PB) or bone marrow (BM) aspirate samples of AML patients at 

initial diagnosis were collected for flow cytometric analysis. All samples were 

collected after written informed consent in accordance with the Declaration of Helsinki 

and approval by the Institutional Review Board of the Ludwig Maximilian University 

Munich. Patient characteristics are summarized in Table 2-9. 

Antibody panel for the expression of candidate markers are shown in Table 2-8. 

Primary AML patient samples were analyzed by flow cytometry in the Laboratory of 

Leukemia Diagnostics of the Department of Internal Medicine III. Briefly, patient 

samples were thawed, cells were washed once with PBS and resuspended in FACS 

buffer. 106 cells in 100 µl of FACS buffer were used per tube. Appropriate amount of 

antibody or isotype control were added into the tube. Data was acquired using a 

Navios flow cytometer (Beckman Coulter, Brea, CA, USA). 

Antigen expression intensity was determined by median fluorescence intensity (MFI) 

ratio. The MFI ratio is calculated by dividing the MFI value of the antigen-specific 

antibody by the MFI value of the respective isotype control, as previously described52. 

Positive expression was defined as MFI ratio ≥1.5. MFI values were determined using 

FlowJo software (Version 9.8.5) (Tree Star Inc., Ashland, Oregon). 

2.2.7 Statistical analysis 

Intensity based absolute quantification (iBAQ) of protein was calculated as the sum of 

all peptide peak intensities divided by the number of theoretically observable tryptic 

peptides. 
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Table 2-8. Surfaceome panel for FACS detection. 
 

Tube FITC PE ECD PC7 
Alexa Fluor 

750 
KO 

Brilliant Violet  
421 

Isotype IgG1 IgG1 IgG1 IgG1 IgG1 CD45 IgG1 

1 CD38 SIRBL (CD172b) CD34 CD33  CD45 ITGA4 (CD49d) 

2 CD38 PTPRJ (CD148) CD34 CD33  CD45  

3 PLXA1 ITB7 CD34 CD33 CD38 CD45  

 

 
Table 2-9. Patient characteristics for FACS tests. 
 

 

 
 
 

Patient 
No. 

Sex 
Age 
(Y) 

FAB Blasts Cytogenetics 
NPM

1 
FLT3-IT

D 
ELN BM/PB 

1 F 69 M4 68% 46,XX Mut FLT-ITD
(low) 

Fav BM 

2 M 68 NA 32% NA Mut FLT-ITD
(low) 

Fav BM 

3 F 78 NA 20% 46,XX  Mut WT Fav PB 
4 M 86 M5b 47% 46,XY Mut WT Fav BM 

5 M 52 M3 41% 46,XY,t(15;17)(q24;q
21)[7]/46,XY,der(15)t
(15;17)(q24;q21),ider
(17)(q10)t(15;17)(q2
4;q21)[8]/46,XY[1] 

WT WT Int-I BM 

6 M 68 M1 65% 46,XY WT WT Int-I BM 
7 M 78 NA 21% 46,XY WT WT Int-I BM 
8 F 59 M1 77% 46,XX Mut Mut Fav BM 
9 M 78 NA 38% 46,XY WT WT Int-I BM 

10 F 80 M2 23% 46,XX WT WT Adv  BM 
11 F 31 M5 32% 46,XX Mut WT Fav BM 
12 F 60 M1 88% 46,XX WT WT Int-I BM 
13 M 50 NA 26% NA Mut WT Fav BM 

14 F 61 M4 54% 46,XX,der(6)t(6;13)(p
2?1;q?)[6]/46,XX[4] 

WT Mut Int-I PB 

15 F 41 NA NA NA WT WT Int-I PB 

16 M 32 M5a 96% 46,XY,t(9;11)(p21.3;
q23.3)[3]/55,sl,+3,+8,
+der(11)t(9;11)(p21.3
;q23.3),+12,+13,+14,

+18,+19,+20[13] 

WT WT Int-I BM 

17 M 68 NA 36% 46,XY[20] WT WT Adv BM 

18 F 87 M2 84% 46,XX[20] Mut FLT3-IT
D(high) 

Int -I  BM 

19 F 54 NA 40% 46,XX,t(3;3)(q21.3;q
26.2)[10]/46,XX[1].is

h 
der(2)t(2;11)(q3?7;q2

3)(KMT2A+)[3/14] 

WT WT Adv BM 

20 M 46 NA 59% NA NA NA NA BM 



Materials and methods 

 43 

 

   

 

Statistical  data  were  analyzed using GraphPad  Prism  7.1  (GraphPad  software,  La 

Jolla. CA).  Data  is displayed as mean  ±  standard  error of  the mean (SEM),  using 

Two-tailed  Student’s t test to  determine  statistical  significance. Graphs  were 

generated with GraphPad Prism 7.1 (GraphPad software, La Jolla.CA), R Studio (R 

Studio, Boston, USA) and Adobe Illustrator CS6 (Adobe Systems, San José, USA). 
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3. Results 

 

 
3.1 Surfaceome study on AML cell line and patient samples 

3.1.1 Modifications to the Glyco-CSC protocol 

 

 

  

 

  

 

  

 

  

  

 

 

  

Initially,  we performed the original Glyco-CSC technology to capture N-glycosylated

158 160proteins using the OCI-AML3 cell line as described previously - . The protocol did 

work  well  with  good  peptides  intensity  detected  and  very  little  noise  (Figure  3-1  A). 

216  of  peptides digested from  125  N-glycosylated  proteins  were  identified. 54  were 

annotated as CD antigens. PANTHER association of the identified proteins revealed 

receptor  function  in about  1/3 of  the  proteins (Figure  3-1  B).  While  these  initial 

results  were  encouraging,  the  number  of  identified  proteins  of these  results  lacked

behind  other  publications  on  AML cell  lines,  where 237  and  230  proteins  were

160identified in HL-60 and NB4 cell lines, respectively . Moreover, only about 54% of 

identified proteins showed a mass shift (of 0.984 Da) at N-residues associated with 

N-glycosylated  and  had  TM  domains  or signal  peptide  annotated  in  UniProt, 

indicating  that  the  specificity  was lower  than  expected.  Therefore, we  employed 

strategies to improve the standard protocol in order to increase the specificity of the 

technology and generate more surface proteins.

Cell viability  during  the  oxidation  step  is  very  important  to  make  sure  the  targeted 

proteins are cell surface glycoproteins. Ensuring high viability avoids the possibility of 

chemical  reaction  between  sodium  periodate  and  intracellular  glycoproteins  caused 

by cell  lysis  or  permeabilized  membranes.  In  our  experiments, despite  slightly 

decreased  cell  numbers,  high cell  viability was  maintained  before cell  lysis was 

performed  (Supplemental information, Figure  S1  A  and  B). Comparable  data were
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also found in HL-60 cell line. As a benchmark CD33, a myeloid marker found on >99% 

of AML samples, was also detected in both two cell lines (Data from HL-60 was not 

shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. N-glycosylated proteins identified with original Glyco-CSC technology. (A) 
Distribution of identified glycosylated peptides on OCI-AML3 cell line. (B) PANTHER molecular 
function of identified surface proteins. 
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3.1.2 Strategies to improve the original Glyco-CSC protocol 

 

In order to improve the experimental CSC protocol, we introduced several 

modifications (Table 2-7). After the vicinal diol groups on glycoproteins were oxidized 

to aldehyde functions by periodate, biocytin hydrazide can covalently link to the 

aldehydes and form the hydrazone. In out initial experiments, we detected cell 

aggregation during this step, which was eliminated by lowering the concentration of 

biocytin hydrazide (5.4 mM) since we found cell aggregation during our experiments, 

after we add it to the cell suspension or during the incubation. Sonication using a 

bioruptor and followed by cell homogenization assured the complete lysis of cells and 

increased our yield of membrane proteins after ultracentrifugation. Then, double 

digestion with trypsin and replacement of pure NH4HCO3 solution with digestion 

buffer (100 mM NH4HCO3, 1 mM iodoacetamide, 1 mM 2,2’-thiodiethanol) increased 

the peptide yield retrieved from LC-MS.  

To evaluate the specificity of our modified method, we relied on the detection of the 

deamidation reaction detected by a mass shift (of 0.984 Da) at N-residues. 

Furthermore, the deamidation might be reduced by the three-dimensional structure of 

proteins and thus it can be enhanced by alkylation, tryptic digestion, and reduction171. 

Figure 3-2 shows the number of deamidation sites and the Loc. Prob. (probability of 

the PTM being localized at the claimed position, recommended threshold ≥0.75) of 

detected peptides. No glycosylated peptides were detected in our technical control 

without biocytin hydrazide (test NO. 1). Samples treated with lower concentration of 

biocytin hydrazide resulted in a slightly lower number of deamidation sites than the 

original concentration (test NO. 3 and test NO. 2, respectively). However, since cell 

aggregation affect the following cell lysis negatively and resulted in a decreased 
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amount of membrane protein and thus impacting specificity (data not shown), we 

preferred the modified protocol in the following experiments (test NO. 3). The number 

of deamidation sites increased in test group NO.4, where we performed cell lysis 

using the bioruptor rather than Dounce homogenizer, compared to the former 2 

groups. Double digestion further improved the yield. Finally, the use of  digestion 

buffer in test NO.6 worked better than pure NH4HCO3 in maintaining the peptides. 

In summary, more than 500 deamidation sites, which represent 252 proteins, were 

identified using our final, modified protocol.  In addition, the specificity of the 

technology was also increased. 80.4% of all identified proteins contained 

N-glycosylations and a transmembrane domain or a signal peptide annotated in 

UniProt compared to only 54% using the original protocol. Furhermore, 90.3% of the 

N-glycosylated proteins were annotated in UniProt as glycoproteins and 61.9% were 

annotated as plasma membrane proteins in Gene Ontology. These results showed 

the relative enrichment for N-glycosylated cell surface proteins in our study. 
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Figure  3-2. N-glycosylated  peptides  identified  by improved  strategies. (A) Deamidation  sites 
detected on  OCI-AML3  cell  line with  different  improved strategies. (B) Probability  of  the 
post-translational  modification  (PTM)  being  localized  at  the  claimed  position  (Loc.  Prob., 
recommended  threshold ≥ 0.75)  of  identified  peptides  in  each  group.  Peptides  representing  CD 
proteins  (labelling  with  green  column)  listed  on  the  left  while  Non-CD proteins  (labelling  with  brown 
column) listed on the right. 

 

3.1.3 Surfaceome study on patient sample (PDX1) with improved Glyco-CSC protocol 

 

In order to assure the effectiveness and robustness of the improved Glyco-CSC 

protocol, we began by employing the technology using a patient derived xenograft 

sample. 293 surface proteins were identified in this sample, slightly more than the 

from the OCI-AML3 cell line using our modified protocol (Figure 3-3 A). Similarly, 

almost the same percentage of CD and non-CD proteins were identified in the two 

samples (Figure 3-3 B). Comparable PANTHER protein classes172, including 

receptors, signaling molecules, cell adhesion molecules and immunity proteins,  

were detected in these 2 samples (Figure 3-3 C). Abundance of identified protein was 

calculated as the sum of all peptide peak intensities divided by the number of the 

observed peptides in our experiments. Proteins were divided into 4 clusters by their 

B 

N
o. 1

N
o. 2

N
o. 3

N
o. 4

N
o. 5

N
o. 6

N
o. 1

N
o. 2

N
o. 3

N
o. 4

N
o. 5

N
o. 6

0
0
.2

0
.4

0
.6

0
.8

1

L
o
c.

 P
ro

b
.



Results 

 49 

expression level (log2 (Average of Abundance)). Cluster 1 showed proteins with low 

expression in both samples. Conversely, cluster 4 represents proteins with high 

expression in both samples (Figure 3-3 D). In fact, many well-known surface CD 

antigens, such as CD33 (P20138), CD45 (P08575), CD123 (P26951) and CD244 

(Q9BZW8) were clustered in cluster 4 in our study. CD64 (P12314) and CLL-1 

(Q5QGZ9) are two important surface markers for the differentiation of monocytes 

from myeloid progenitors173. CD64 showed high expression in both OCI-AML3 and 

PDX1 samples, while CLL-1 high expressed only in the PDX1 sample in our study. 
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Figure 3-3 Cell surface proteins identified by improved Glyco-CSC technology.  Totally 384 
membrane proteins identified in 2 different cell types. (A) Area-proportional Venn diagram

174
 of 

overlapping membrane proteins identified in OCI-AML3 and PDX cells. (B) More than one third of 
identified membrane proteins were annotated as CD antigens in both samples. (C) PANTHER proteins 
classifications of membrane proteins identified in AML samples (http://pantherdb.org/). (D) Expression 
level (log2 (Average of abundance)) and hierarchical clusters of identified membrane proteins in 
OCI-AML3 and PDX samples. Green colour indicated high protein expression level, while red colour 
indicated low protein expression level.  
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3.1.4 Surfaceome study on OCI-AML3 cell line with improved Glyco-CSC, 

Cys-Glyco-CSC and Lys-CSC protocol 

 

Buidling on the the results obtained above from the OCI-AML3 cell line and PDX1 

sample using the Glyco-CSC technology, we next used the OCI-AML3 cell line to 

investigate the improved Cys-Glyco-CSC (n=3) and Lys-CSC (n=3) protocol, in 

parallel with additional 3 replicates of Glyco-CSC on this cell line. The step-to-step 

protocol is depicted in Figure 2-1 and the modifications are listed in Table 2-7. Each 

biological replicate was tested twice. Results from each technology were merged 

together.  

496 cell surface proteins were identified using the Glyco-CSC protocol, 231 proteins 

were identified using Cys-Glyco-CSC, while only 126 proteins were identified with 

Lys-CSC (Figure 3-4 A). A network diagram illustrates the details of identified proteins 

using the 3 improved CSC protocols (Figure 3-4 B). Overall, 119 CD antigens (Green 

color nodes) were identified and 483 proteins were annotated as non-CD proteins. 

The width of the links indicated the peptide number of each identified proteins, 

ranging from 1 to 32. The size of the nodes increased with the number of TM domains, 

ranging from 0 to 36. Nevertheless, the size will not increase if there were more than 

10 TM domains in that protein. 
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Figure 3-4 Comparison network of membrane proteins identified with improved Glyco-CSC, 
Cys-Glyco-CSC and Lys-CSC technology in OCI-AML3. (A) Area-proportional Venn diagram

174
 of 

overlapping 602 membrane proteins identified with improved Glyco-CSC and its variant technology 
with OCI-AML3 cell line. (B) Nodes represented for CD proteins were in green colour and non-CD 
proteins were in brown colour. The thickness of the links connecting two nodes was proportional to the 
number of peptides identified for that protein. The size of the node indicated the number of 
transmembrane domains (TMs) in the protein. Proteins with more than 9 TMs were limited in size to 
10. 
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3.1.5 Surfaceome study on clinical patient samples 

 

Maintaining high viability of primary patient AML blasts while gathering sufficient cell 

numbers necessary for the CSC protocol is a significant challenge. Our pre-liminary 

work using clinical patient samples directly with our improved Glyco-CSC protocol 

also provided unsatisfied results. Specifically, cell viability decreased rapidly during 

oxidation and biotynilation steps before the cell lysis was performed (data not shown). 

Thus, in this study, we used two well studied methods to improve viability of clinical 

patient samples for to interrogate the AML surfaceome. 

We used two PDX samples (PDX1 and PDX2) from Prof. Dr. med. Irmela Jeremias’ 

group in Helmholtz Zentrum München170. For sample PDX1, we were able to perform 

the Glyco-CSC (n=1) and Cys-Glyco-CSC (n=1) protocol, while for PDX2, we were 

performed Glyco-CSC (n=1) only due to limited cell numbers isolated from mice 

spleen. Additionally, six clinical primary patient samples (PP01-PP06) were used to 

perform our improved Glyco-CSC protocol. Results from PP02 were retrospectively 

excluded in this study due to a change in the final clinical diagnosis from AML to ALL. 

To improve cell viability prior to CSC experiments, primary patient samples were 

maintained in a long-term culture system established in our lab52. Clinical 

characteristics of patient samples used for this study are listed in Table 2-6. Taken 

together, data from 22 samples (OCI-AML3 with Glyco-CSC (n=6, test NO.6 plus 5 

replicates), OCI-AML3 with Cys-Glyco-CSC (n=5), OCI-AML3 with Lys-CSC (n=3), 

PDX1 with Glyco-CSC (n=1), PDX1 with Cys-Glyco-CSC (n=1), PDX2 with 

Glyco-CSC (n=1), PP01 with Glyco-CSC (n=1), PP03 with Glyco-CSC (n=1), PP04 

with Glyco-CSC (n=1), PP05 with Glyco-CSC (n=1) and PP06 with Glyco-CSC (n=1)) 
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were merged together as surfaceome results in this study. Intensity based absolute 

quantification (iBAQ) of protein was calculated as described in the Methods.  

22.9% (165) of all identified proteins had CD annotations (Figure 3-5 A). In total, 23 

types of PANTHER protein classes were associated with the 719 identified proteins 

(Figure 3-5 B). Furthermore, those 719 proteins were involved in 75 pathways found 

in the PANTHER database (Supplemental information, Figure S3). Most notably, 

these included the integrin signaling pathway (P00034) and inflammation related 

pathway (P00031), followed by the Wnt signaling pathway (P00057). Cancer 

associate and immune cells responses pathways, like p53 pathway (P00059), 

JAK/STAT signaling pathway (P00038), Wnt signaling pathway (P00057), 

Interferon-gamma signaling pathway (P00035) and Interleukin signaling pathway 

(P00036), B cell activation (P00010) and T cell activation (P00053), were also 

detected in our study. Expression levels (log10 (Average of iBAQ)) of the 165 CD 

proteins are shown in Figure 3-6.  
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Figure 3-5. Totally 719 surface proteins identified with CSC and its variant technology in 1 AML 
cell line and 7 clinical samples.  (A) 165 CD proteins and 554 non-CD proteins were identified in 1 
AML cell line and 7 clinical patient samples with specific CSC technologies. (B) PANTHER proteins 
classifications of 719 membrane proteins identified in 8 AML samples (http://pantherdb.org/).  
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Figure 3-6. Expression of CD proteins identified in AML samples. Overview of all 165 CD antigens 
in 8 AML samples. Color of the heatmap indicated the value of log10 (Average of iBAQ). 
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3.2 Selection and verification of candidate surface markers 

3.2.1 85 candidate proteins were filtered from 719 proteins as AML cell surface 

targeted markers  

 

In order to curate a list of candidate markers we filtered the list of identified proteins to 

concentrate on those proteins which show low expression on healthy hematopoietic 

cells as well as other normal human tissues. To achieve this, we interrogated two 

databases to correlate gene expression of the 719 proteins on blood cells in different 

stages (BloodSpot) and on normal human tissues (Genotype-Tissue Expression 

Project (GTEx)). 

We eliminated those proteins that showed a median value (log2 (Expression)) of: (I), 

HSC_BM (Hematopoietic stem cells from bone marrow) <8; (II), early HPC_BM 

(Hematopoietic progenitor cells from bone marrow) <8 and (III), CD14+ 

monocytes<10. Next, we eliminated proteins which showed median of RPKM in 

normal tissues excluding whole blood and spleen of ≥ 20 (rule IV) in the GTEx 

database. 

For all of the 719 surface proteins, there was no  expressiondata for 64 genes in 

BloodSpot and 40 genes in GTEx, respectively. Figures 3-8 (A)-(C) show the log2 

(Expression) of 655 genes in different stages of normal human hematopoiesis found 

in the BloodSpot (HemaExplorer) database. Genes were clustered by expression 

within the groups “HSC_BM” (Figure 3-8 A), “early HPC_BM” (Figure 3-8 B) and 

“CD14+ monocytes” (Figure 3-8 C), respectively. Accordingly, Figures 3-8 D illustrate 

the expression values (RPKM) of 679 genes in normal human tissues, excluded 

spleen and whole blood. Expression of all 719 proteins identified in our samples as 

determined by LC-MS/MS and calculated as log10 (Average of iBAQ) is depicted in 
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Figure 3-8 E with values ranging from 0 to 8. 354 protein were identified (log10 

(Average of iBAQ)>0) in at least 4 out of 8 samples, thus we only considered these 

proteins (rule V). Taken all five filter rules together, 85 cell surface proteins were 

selected as candidate biomarkers for further study on AML (Figure 3-8 F). 
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Figure 3-7. CD33 gene expression in hematopoietic cells, AML petients samples and normal 
human tissues. (A) Microarray data showed the expression level of CD33 in hematopoietic cells (left) 
and in AML patients (right). Data obtained from BloodSpot (http://servers.binf.ku.dk/bloodspot/) and 
violin diagram was generated with R. (B) RNA sequencing data of CD33 expression in normal human 
tissues. Data was downloaded from GTEx (https://gtexportal.org/home/) and violin diagram was 
generated with R Studio.  
Abbreviations for Figure 3-7 A: AML complex., AML complex aberrant karyotype; AML inv(16), AML 
with inv(16)/t(16;16); AML MLL, AML with t(11q23)/MLL; AML normal karyotype., AML with normal 
karyotype + other abnormalities.; AML t(8;21), AML with t(8;21); AML t(15;17), AML with t(15;17).  
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Figure 3-8. Integrated strategies to investigate new AML-associated markers from 719 
identified surface proteins. Two databases were invited for further analyzation of potential new 
markers. Figure (A)-(C) showed the expression of 655 genes in hematopoietic cells at different 
maturation stages (Normal human hematopoiesis (HemaExplorer) based on curated microarray data 
(BloodSpot database: http://servers.binf.ku.dk/bloodspot/). Genes were hierarchical clustered by the 
value of log2 (expression). 436 and 437 targets were filtered out with strategy 1 and 2: median of log2 
(expression) in HSC_BM<8 (A) and Early HPC_BM<8 (B), respectively. 522 targets were filtered out 
with strategy 3: median of log2 (expression) in CD14

+
 monocytes<10 (C). Figure (D) demonstrated the 

expression of 679 genes in normal tissues based on RNA sequencing data (GTEx database: 
https://gtexportal.org/home/). Genes were hierarchical clustered by the value of RPKM. 283 
candidates were filtered out with with strategy 4: RPKM of all other normal tissues (exclude two cell 
lines (EBV-transformed lymphocytes and Transformed fibroblasts), the whole blood and spleen) <20 in 
the GTEx database. Figure (E) described the expression level of all 719 proteins identified in our 
samples, with specific CSC technology. Proteins were hierarchical clustered by the value of log10 
(Average of iBAQ). With strategy 5: commonly expressed in AML samples, 354 proteins were 
identified in no less than 4 out of 8 samples. (F) Symmetric Venn diagram

175
 of five strategies above to 

select new candidate surface targets, which resulted in 85 candidates for further study on AML cell 
lines or patient samples.  

 
Abbreviations for Figure 3-8 B: B cells, CD19

+
 B cells; CMP, Common myeloid progenitor cell; early 

HPC_BM, Hematopoietic progenitor cells from bone marrow; GMP, Granulocyte monocyte progenitors; 
HSC_BM, Hematopoietic stem cells from bone marrow; mDC, CD11c

+
 myeloid dendritic cells; MEP, 

Megakaryocyte-erythroid progenitor cell; MY_BM, Myelocyte from bone marrow; NK cells, CD56
+
 

natural killer cells; pDC, CD123
+
 plasmacytoid dendritic cells; PM_BM, Promyelocyte from bone 

marrow; PMN_BM, Polymorphonuclear cells from bone marrow; PMN_PB, Polymorphonuclear cells 
from peripheral blood.  
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3.2.2 5 potential markers selected for further study on clinical samples 

 

Finally, 3 CD proteins and 2 non-CD proteins were manually selected for further 

investigation following an extensive literature research based on novelty on potential 

for immunotherapeutic targeting. Expression levels of our 5 candidate markers and 6 

well-known AML targeted-therapy markers also detected in our samples are depicted 

in Figure 3-9. 5 out of these 6 markers were identified in at least 6 AML of our 

samples, further validating our modified CSC protocol.   

 

 

Figure 3-9. Protein expression of 5 new selected candidate markers and 6 novel markers in 8 
groups of AML samples. O00241 and Q5TFQ8 belong to the same family, CD172b. 5 candidate 
markers, including CD49d, CD148, CD172b, PLXA1 and ITB7 were selected for further clinical 
detection on AML patient samples. 5 out of 6 novel AML targets (exclude TIM3) were identified in 
75%-100% of our samples, which also indicate the modified CSC protocol worked efficiently in our lab. 
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Figure 3-10. Schematic representation of identified surface proteins from AML samples. 5 new 
candidate markers (A) and 5 on-going studied proteins (B) were submitted to the protein database
  "Protter" (http://wlab.ethz.ch/protter/#). Peptides identified from each protein were highlighted in red. 
PTMs, variants and disulfide bonds were rounded in green, yellow and blue color, respectively. Brown 
band represented the membrane. All identified peptides were from extracellular particle of relative
proteins.

Potential AML therapy markers, such as CD33, CD123, CD135, CD244 and CL12A,

also have been identified in most (75%-100%) of our samples. However, we did not

176identify TIM3, which is an interesting antigen to target stem cells of AML , in any of 

our samples (Figure 3-9). The most possible reason might be the sequence of amino 

acids and the structure of the protein. There is a N-glycosylation for TIM3 at residue 

172. The closest disulfide bonds to residue 172 might occur at residues 110 and 109, 

but there are many lysines/argines in between which can be cleaved by trypsin. So 

the chance of retrieving TIM-3 by piggy-peptides (Cys-Glyco CSC and Lys-CSC), or 
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putative  N-glycosylation (Glyco-CSC) is  either non-existent  or  of  low  abundance

based  on  the  mechanisms  of  CSC  technologies156,160 (Supplemental information, 

Figure S4).

Peptides  identified  with  CSC  and  its  variant  technologies  within  the  protein  context 

from our 5 novel candidate markers as well as the 5 more established AML targets 

were reconfirmed  using  the  protein  database “Protter”  (http://wlab.ethz.ch/protter/#)

and labelled in red (Figure 3-10 A and B). All peptides identified in our samples were 

from the extracellular region of the proteins. These results also indicate that the CSC 

technologies worked efficiently in our lab and we chose appropriate strategies to filter 

candidate AML markers. 

 

3.2.3 Flow cytometry analysis of 5 candidate markers with AML patient samples 

 

To confirm the expression of our candidate markers, we performed multicolor flow 

cytometry analysis on independent AML samples in our clinical laboratory. Samples 

were stained with corresponded antibodies and isotype controls. Gating strategy of 

blast cells are shown in Figure 3-11 A. Median fluorescence intensity (MFI) ratio was 

used to measure the antigen expression intensity and it was calculated as described 

previously52 (Figure 3-11 B).  

MFI ratio value showed varying degrees of surface antigen density on AML patient 

samples (Figure 3-11 C). Most patients were positive for CD148 (90.0%, mean MFI 

ratio value=12.39, n=10), CD172b (65.0%, mean MFI ratio value=3.87, n=20), ITGA4 

(72.7%, mean MFI ratio value=8.86, n=11) and ITGB7 (75.0%, mean MFI ratio 

http://wlab.ethz.ch/protter/
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  value=5.03, n=20);  but remained negative for   PLXNA1 (70.0%,  mean   MFI  

ratio  value=1.48, n=20).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 3-11. FACS analysis of 5 candidate antigens with AML patient samples. Flow cytometric 
gating strategy of blast cells (A) and calculation of MFI Ratio (B). Antigen expression of 5 candidate 
surface markers was illustrated as MFI ratio and 4 out of 5 (80%) candidates got mean MFI ratio>1.5 
(C).
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3.3 Supplemental information  

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
Figure S1. Stable cell morphology during the process of Glyco-CSC protocol.  (A) Cells were 
slightly lost in both cell lines before cell lysis. (B) Cell viability was still very high after oxidation and 
biocytin hydrazide treatment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. The number of identified peptides decreased with the reduction of cell number. 
Peptides represented all peptides identified, not necessary only from surface proteins. Deamidations 
standed for sites that may have had a glycosylation. DeamidPeps were deamidated peptides; however, 
a single deamidation site can have more than 1 single tryptic peptide. Nglycosites and Nglycopep 
(Nglycopeptides) had similar meanings, but only for N-glycosylations. 

A B 
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Figure S3. PANTHER pathway analyzation of all 719 surface proteins identified from AML 
samples. Totally 75 pathways generated from PANTHER database. 7.4% and 6.5% of identified 
proteins involved in the integrin signaling pathway (P00034) and inflammation related pathway 
(P00031), respectively. Followed by the Wnt signaling pathway (P00057), which also had about 4.2% 
of proteins in this group. Many other immune response and cancer related pathways, such as B cell 
activation (P00010), T cell activation (P00053), p53 pathway (P00059), JAK/STAT signaling pathway 
(P00038), Interferon-gamma signaling pathway (P00035) and Interleukin signaling pathway (P00036) 
and so on, were also described in the figure. 
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Figure S4. Schematic representation of the extracellular domain of Hepatitis A virus cellular 
receptor 2 (HAVR2, TIM3). Extracellular sequences of TIM3 has 202 amino acids, including 6 

disulfide bonds, 2 PTMs and 1 variants. It has a TM domain from residue 203-223. Figure was 
modified from http://wlab.ethz.ch/protter/#. 
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4. Discussion 

 

Acute myeloid leukemia (AML) is a disease with poor prognosis signified by short 

overall survival and a high risk of relapse after therapy. The disease is highly 

heterogeneous and despite some improvements current therapeutic strategies have 

not been successful. During the past few years, considerable advances have been 

made in the field of immunotherapy, however immunotherapy of AML has been 

challenging52,114,115,177-180. 

All of these novel therapy strategies, such as CAR T cells therapy, antibody based 

therapies and vaccines require target antigens that are as specific as possible for the 

malignant cell. Many surface-bound target antigens, such as CD33, CD123, CD47, 

CD244, CD7, CD96, CD157, TIM3, FLT3 and CLL1, are known to be over-expressed 

on AML cells and leukemic stem cells (LSC)181-190. However, for all of these antigens 

there is considerable overlap with expression detected on healthy cells. 

CD33 and FLT3 are two well-characterised target antigens. CD33 is not a suitable 

target for conventional, non-conjugated antibody formats because of its rapid 

internalization into the cell upon receptor cross-linking. Moreover, CD33 is also high 

expressed in healthy cells, i.e. lung, spleen and whole blood. Recently, our group 

evaluated another candidate target, CD157, with a novel Fc-engineered antibody 

(MEN1112) in AML. MEN1112 could trigger NK cell-mediated cytotoxicity to against 

AML cell lines and primary AML cells185. In a similar study, Salih H.R. et al. also 

described another interesting target, CD133. In their study, monoclonal antibody 

293C3-SIDE made degranulation and lysis of CD133-positive primary AML cells by 

activation of NK cells191. More recently in 2018, Salih H.R. et al. and colleagues 

published another NK cells-related AML therapy strategy with checkpoint modulator 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Salih%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=27435001
https://www.ncbi.nlm.nih.gov/pubmed/?term=Salih%20HR%5BAuthor%5D&cauthor=true&cauthor_uid=27435001
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OX40192. Taken those above and other researches, NK cells and its cell viability may 

play important role in AML immunotherapy193,194. Besides NK cells, regulatory T cells 

(Tregs) could be another candidate or auxiliary AML therapy strategy195.  

 

4.1 In combination of improved CSC workflow with ex vivo co-culture system 

provided impressive surfaceome data in AML 

 

Because of the accessibility at the cell surface, there is great clinical interest to 

identify suitable surface antigens as therapeutic targets for cancer immunotherapy. A 

comprehensive analysis of the surface proteome promises to be helpful for the 

identification of additional targets, which may be considered for the development of 

antibody and CAR based immunotherapy in AML. However, until recently, a 

comprehensive mapping of the surface proteins from primary AML samples was 

technologically limited. 

Here in this study, we improved the original CSC protocol and it’s 2 variants to 

achieve this. The mass spectrometry-based CSC workflow capture bona fide cell 

surface proteins from living cells and provides the possibility to capture all surface 

proteins from any cell population. Wollscheid and colleagues described that as many 

as 95% of identified proteins were cell surface proteins155. In our study we adapted 

the protocol to increase the yield of identified proteins. Since we detected cell 

aggregation during the biotinylation step, we slightly reduced the concentration of 

hydrazide during this step for subsequent experiments. Several other modifications 

were made to increase the yield as well as the specificity of identified peptides, which 

include ultrasonic breakage, trypsinic digestion and a modified peptide digestion step 

(Table 2-7). Using our modified CSC protocol, we were able to double the yield of 
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identified proteins from AML cell lines, from initially 125 to 252. More importantly, the 

specificity of the protocol was significantly increased as well. 80.4% of all peptides 

identified with modified protocol fulfilled the criteria, a mass shift (of 0.984 Da)  

associated with successful N-glycosylation and had a transmembrane domain or 

signal peptide annotated in Uniprot, while only 54% of all peptides identified fulfilled 

these criteria in the original Glyco-CSC experiments. 

Other studies also showed promising results for quantitative proteomics, such as 

CSC in combination with stable-isotope labeling with amino acids in cell culture 

(SILAC) technique196, experimentally verified potential N-glycosylation sites which 

were not confirmed before197, and a similar assay to capture cell surface proteins with 

both lectin-based affinity and glycocapture on hydrazide resins198. However, as the 

periodate oxidation/hydrazide method is highly specific for detecting glycoproteins, 

the CSC workflow will not work for minority of proteins which are non-glycosylated, 

such as the lymphoma target antigen, CD20199. Another disadvantage of chemical 

oxidation related techniques is the high cell number required. In this study, we found 

both the number of deamidations and peptides had a sharp decline with the reduction 

of the cell number (Supplemental information, Figure S2). To overcome this difficulty 

and maintain high viability in our samples, we performed ex vivo co-culture system 

prior to our CSC workflow from primary AML patient samples52. 

In combination with the modified CSC-workflow and ex vivo co-culture system, 

surfaceome data from 22 tests of primary and cell line samples were generated in 

our lab. Atotal of 719 surface proteins were identified and 22.9% of them had CD 

annotations. Of them all, 23 PANTHER proteins classes, which involved 75 

PANTHER pathways were screened out (Figure 3-5 and Supplemental information, 
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Figure S3). Compare to our study, Bernd Wollscheid and his colleagues phenotyped 

more than 500 membrane proteins in two AML cell lines, HL-60 and NB4. However, 

they did not show any data from primary or relapsed AML patient samples160. In 

another surfaceome study, Dario Neri and colleagues identified about 320 

membrane proteins, less than half of our identifications, with cell surface biotinylation 

related methods from acute leukemia cell lines and a normal human granulocytes 

(polymorphonuclear cells/PMN)166. Taken together, all data described above 

suggested that the modified CSC-workflow plus ex vivo co-culture system worked 

efficiently in our lab for the study of surfaceome in primary AML samples. This study 

is, to our knowledge, the first large scale of surfaceome identification from AML 

clinical patient samples. 

 

4.2 5 suitable targets were selected for further clinical investigation 

 

Next, we aimed to identify new un-studied surface targets for further evaluation in 

AML. Two databases were interrogated to filter all 719 proteins we identified above: 

a gene expression database (BloodSpot) of all blood cells during the development, 

differentiation and maturation and a gene expression database (Genotype-Tissue 

Expression Project , GTEx) of all normal human tissues. We identified and calculated 

the expression levels of all identified proteins, excluded those with significant 

expression in healthy HSCs, HSPCs and most healthy tissues. Finally, we only 

considered those proteins detected by CSC in at least half of the primary patient 

samples. 85 proteins were filtered and then subjected to manual screening. Of note, 

several antigens currently under investigation for AML immunotherapy (i.e. CD33, 
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CD123, CD135, CLL-1) were detected by the method as well. 5 interesting candidate 

novel markers were selected for the following tests in AML primary patient samples. 

CD49d is a receptor for fibronectin and it may participate in cytolytic T-cell 

interactions with target cells. Most recently, two groups found it may also show 

positive characteristics in study on CLL/SLL200,201. CD148 is a transmembrane 

protein-tyrosine phosphatase with a single intracellular catalytic domain and an 

extracellular domain with structural similarities to cell adhesion molecules. Previous 

studies showed that CD148 was expressed but not functioning as a protein-tyrosine 

phosphatases for FLT3-ITD. The high ROS levels in FLT3 ITD–expressing cells led to 

partial inactivation of CD148 by reversible oxidation202. There were 3 proteins from 

signal-regulatory protein (SIRPB1, CD172b) family, identified in our samples (Figure 

3-6). CD172a acted as inhibitory receptor by interacting with a broadly expressed 

transmembrane protein CD47 also called the "don t́ eat me" signal203. Conversely, 

the molecular role of CD172g in immune response or cancer immunity is poorly 

understood to date. We have detected two isoforms of CD172b, signal-regulatory 

proteinβ -1 (O00241; Gene: SIRB1) and signal-regulatory proteinβ -1 isoform 3 

(Q5TFQ8; Gene: SIRBL). Data from SIRPα/β- and SIRPβ -specific MoAbs revealed 

low / absent expression on HSC204. Since the natural ligand for SIRPβ is unknown, 

the in vivo functional role of SIRPβ remains unresolved205. We chose CD172b for 

further study on AML patient blasts in this work. PLXA1 is a coreceptor for SEMA3A, 

SEMA3C, SEMA3F and SEMA6D. In Lewis lung carcinoma, Plxna1 knockdown 

caused an increased sensitivity to the EGFR-TKIs gefitinib and erlotinib206. 2 other 

members of the plexin family were detected to be differently regulated by ATRA. 

Increased protein abundances of CD232 (PLXC1) but decreased protein abundances 

of plexin D1 (PLXD1) were detected in both AML cell lines after ATRA stimulation160. 

https://en.wikipedia.org/wiki/Signal-regulatory_protein
https://en.wikipedia.org/wiki/CD47
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PLXA1 might be a potential target in AML therapy after forming dimer with 

NRP-1207,208. ITB7 forms the heterodimer LPAM-1 with CD49d and plays role in 

homing to bone marrow and inflammation209,210. Vedolizumab (trade name Entyvio) is 

a monoclonal antibody binds to integrin α4β7 (LPAM-1), which can be used to treat 

inflammatory bowel disease after failure of TNFα-antagonists211.  

Results of our FACS analysis on independent patient samples shows that except for  

PLXNA1 (mean MFI ratio value=1.48), all the other 4 candidate targets, ITGB7, 

CD172b, ITGA4 and CD148, were found on primary AML patients (>1.5), indicating 

that these candidates might be potential targets for further development of antibody, 

CAR T cells, immune checkpoints or even combinatorial targeting approach in AML. 

In conclusion, we successfully identified 719 surface proteins with the combination of 

modified CSC protocol with ex vivo culture system and subsequently selected 5 

candidate markers for test on primary AML patient. 4/5 showed expression in 

independent primary patient samples. These candidates will be further evaluated as 

potential targets for immunotherapy and targeted therapy strategy in AML. 

https://en.wikipedia.org/wiki/Monoclonal_antibodies
https://en.wikipedia.org/wiki/Integrin
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