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ABSTRACT

Abstract

Summary

Background. Cardiometabolic diseases are the major cause of mortality and morbidity
worldwide. Diagnosis at a pre-pathological state, before irreversible damage has been
imposed on the organism, is therefore essential to disease prevention. Risk assessment is
important in clincial decison making to tailor therapeutic intervention to those who ben-
efit most, but also fundamental for developing general treatment guidelines and public
health care policies. Cardiometabolic risk can be assessed by an absolute percentage esti-
mate, i.e. a risk score, or by a deeper phenotypic characterization of the pre-pathological
disease state. Risk scores are mainly constructed from traditional cardiometabolic risk
factors, such as blood pressure or lipid profile, and can be utilized for risk stratification.
However, these traditional risk factors - and hence the risk scores - cannot provide a thor-
ough depiction of the subclinical cardiometabolic phenotype.

Imaging-based markers of cardiometabolic disease, derived by Magnetic Resonance Imag-
ing (MRI), are able to detailedly picture anatomical and physiological changes. Thus, they
have the potential to characterize the subclinical cardiometabolic phenotype more acu-
rately and hence advance risk assessment.

This thesis aims to identify temporal trends in the development of traditional cardiometa-
bolic risk factors and the subsequent impact on established risk scores; and to quantify
the association of imaging-based markers to cardiometabolic phenotypes.

Methods. We used data from the KORA study, which comprises several well-characterized
population-based cohorts from the region of Augsburg, Southern Germany. Three co-
horts enrolled in 1989/1990, 1994/1995 and 1999/2000, respectively, were analyzed for
their cardiometabolic risk factor profiles and for the performance of two established risk
scores regarding discrimination and calibration. Another sample of N = 400 individuals
underwent whole-body imaging by MRI. For these individuals, we constructed multivari-
ate longitudinal trajectory clusters of cardiometabolic risk factors and related them to
a panel of MRI-derived abdominal and ectopic adipose tissue parameters. Furthermore,
we assessed associations of prediabetes and type 2 diabetes to cardiac morphology as well
as to a cluster of MRI parameters covering several organs. To this aim, an unsupervised
fuzzy clustering algorithm and regularized LASSO regression for variable selection were

employed.

Results. There were temporal trends in cardiometabolic risk factor profiles. For instance,
mean Body Mass Index, mean systolic blood pressure, and mean total cholesterol signif-
icantly decreased; at the same time, intake of antihypertensive and lipid-lowering medi-

cation increased. This affected the performance of risk scores in a sex-specific way: while
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ABSTRACT

the scores gained discrimination ability for women, performance for men dropped. How-
ever, discrimination ability was still adequate at all time points.

Longitudinal trajectory clusters of risk factors were significantly associated to MRI-derived
adipose tissue compartments. The variation in adipose tissue that could be explained
by these clusters varied to a substantial degree, with highest values for total abdominal
adipose tissue and lowest values for intrahepatic fat. Furthermore, there were signifi-
cant associations of prediabetes and type 2 diabetes to measurements of myocardial wall
thickness as well as to a cluster of MRI parameters covering several organs. We identi-
fied specific diabetes-related combinations of MRI parameters, which included abnormal

values of visceral adipose tissue and intrahepatic fat.

Conclusion. While risk scores based on traditional cardiometabolic markers still per-
form adequately and capture a major part of cardiovascular risk burden, imaging-based
phenotyping has a substantial potential to early recognize pre-pathological cardiometa-
bolic states.

Zusammenfassung

Hintergrund. Kardiometabolische Erkrankungen sind die Hauptursache fiir Mortal-
itdat und Morbiditat weltweit. Es ist daher essentiell fiir die Krankheitspravention, diese
Erkrankungen zu einem pra-pathologischen Stadium zu diagnostizieren, bevor irreversible
Schadigungen bereits aufgetreten sind. Risikoeinschdtzungen sind fiir die klinische Ent-
scheidungsfindung wichtig, um therapeutische MafSnahmen denjenigen zukommen zu
lassen, die am meisten davon profitieren. Sie sind aber auch grundlegend, um allge-
meine Behandlungsleitlinien festzulegen sowie 6ffentliche Gesundheitspolitik zu entwer-
fen. Das kardiometabolische Risiko kann anhand einer absoluten Prozentzahl eingeschatzt
werden, d.h. durch einen sogenannten Risikoscore; es kann jedoch auch durch eine
genauere Betrachtung des pra-pathologischen Krankheitsstadiums bewertet werden. Ri-
sikoscores werden tiblicherweise aus klassischen kardiometabolischen Risikofaktoren ge-
bildet, wie z.B. Blutdruck und Lipiden, und konnen zur Risikostratifizierung verwendet
werden. Die klassischen Risikofaktoren, und somit auch die Risikoscores, konnen jedoch
keine tieferen Einblicke in den subklinischen kardiometabolischen Phanotyp geben.
Bildgebungsbasierte Marker, die durch Magnetresonanztomographie (MRT) gewonnen
werden, sind in der Lage, anatomische und physiologische Veranderungen detailliert dar-
zustellen. Sie haben daher das Potential, die Einschdtzung des kardiometabolischen
Risikos durch die genauere Charakterisierung des subklinischen kardiometabolischen
Phanotyps zu verbessern.

Ziel dieser Arbeit ist, zeitliche Trends in der Entwicklung klassischer kardiometabolischer

Risikofaktoren und deren Einfluss auf die Leistung etablierter Risikoscores zu bestimmen;
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auflerdem soll die Assoziation bildgebungsbasierter Marker mit kardiometabolischen Pha-
notypen quantifiziert werden.

Methoden. Es wurden Daten der KORA Studie verwendet, die mehrere gut charakter-
isierte bevolkerungsbasierte Kohortenstudien aus der Region Augsburg umfasst. Drei
Kohorten, die in den Jahren 1989/1990, 1994/1995 und 1999/2000 erfasst wurden, wur-
den auf ihr kardiometabolisches Risikoprofil untersucht; aufierdem wurde die Leistung
zweier etablierter Risikoscores hinsichtlich Diskrimination und Kalibrierung analysiert.
Eine weitere Stichprobe von N = 400 Probanden unterzog sich einem Ganzkoérper-MRT.
Fiir diese Probanden wurden Cluster von multivariaten longitudinalen Trajektorien, ba-
sierend auf klassischen kardiometabolischen Risikofaktoren, konstruiert und die Assozi-
ation dieser Cluster mit Parametern von abdominellem und ektopischem Fettgewebe bes-
timmt. Desweiteren wurden die Assoziationen von Pradiabetes und Typ 2 Diabetes mit
kardialer Morphologie und mit einem Cluster verschiedener, mehrere Organe umspan-
nender MRT Parameter berechnet. Dazu wurde ein Fuzzy Clustering Algorithmus sowie
zur Variablenselektion eine regularisierte LASSO Regression verwendet.

Ergebnisse. Es gab zeitliche Trends in kardiometabolischen Risikoprofilen. Zum Beispiel
nahmen der mittlere Body Mass Index, der mittlere systolische Blutdruck, und das mit-
tlere Gesamtcholesterin tiber die Zeit ab; gleichzeitig stieg die Einnahme von Antihy-
pertonika und Lipidsenkern iiber die Zeit an. Dadurch wurde die Leistung der Risiko-
scores in einer geschlechtsspezifischen Weise beeinflusst: wahrend die Diskrimination-
sleistung der Scores bei Frauen anstieg, fiel die Leistung bei Mannern ab. Dennoch war
die Diskriminationsleistung zu allen Zeitpunkten immer noch ausreichend.

Cluster von multivariaten longitudinalen Trajektorien waren signifikant mit MRT-erfassten
Fettgewebeparametern assoziiert. Die Variabilitit in Fettgewebe, die von den Clustern
erklart werden konnte, schwankte stark. Die hochsten Werten erreichte das gesamte ab-
dominelle Fett und die niedrigsten Werten das intrahepatische Fett. Dartiber hinaus gab
es signifikante Assoziationen des Pradiabetes und Typ 2 Diabetes zu Messungen myokar-
dialer Wanddicke sowie zu einem Cluster verschiedener MRT Parameter, die mehrere
Organe umspannten. Spezifische Diabetes-typische Kombinationen von MRT Parame-
tern konnten identifiziert werden; diese beinhalteten anormale Werte von Viszeralfett
und intrahepatischem Fett.

Schlussfolgerung. Wahrend Risikoscores, die aufklassischen kardiometabolischen Mar-
kern basieren, nach wie vor geniigende Leistung zeigen und den Grofdteil der kardio-
vaskuldren Krankheitsbelastung erfassen, hat die Phanotypisierung durch bildgebungs-
basierte Marker substantielles Potenzial, das pra-pathologische Stadium kardiometabo-

lischer Erkrankungen frithzeitig zu erkennen.
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BACKGROUND

1 Background

1.1 Concept of cardiovascular and cardiometabolic risk

Cardiometabolic diseases impose a major burden on global health. Cardiovascular Dis-
ease (CVD), specifically ischemic heart disease, is the major cause of mortality worldwide
[1], although there is a decreasing trend in Europe. The prevalence of obesity, type 2 dia-
betes and related metabolic disorders is substantial, and steadily increasing. The preva-
lence of obesity has risen by 30% in the last decades [2] and although the increase rates in
developed countries have been slowing down, obesity still presents a central public health

challenge. In the same vein, the global diabetes prevalence is estimated to be over 10% by
2040 [3].

Cardiometabolic diseases are by definition complex and multi-factorial. Various extrinsic
and intrinsic parameters contribute to the development of these disorders and act con-
jointly. Important parameters are lifestyle choices, such as nutrition habits, physical ac-
tivity, sedentary behavior and smoking. Especially the rise in obesity has been attributed
to an aggravation in these lifestyle choices and behaviors. Those parameters can theoreti-
cally be controlled by each person individually; however they are also affected by societal,
cultural and economic influences [4]. Other environmental parameters, such as air pollu-
tion, noise, and stress can be influenced by an individual only to a limited degree. Finally,
there are intrinsic genetic and epigenetic parameters which contribute to an individual’s

predisposition to cardiometabolic disease [5].

In a long-term process, an individual’s phenotype manifests itself, defined by the tradi-
tional CVD risk factors: high blood pressure, high levels of total cholesterol and Low
Density Lipoprotein (LDL) cholesterol, low levels of High Density Lipoprotein (HDL)
cholesterol or high Body Mass Index (BMI). These factors were already established by
early population-based studies such as the Framingham Heart Study (FHS) [6]. Unfavor-
able risk factor profiles are associated to a higher risk of cardiometabolic disease. The
concept of cardiometabolic risk implies that an unfavorable risk factor profile that pre-
disposes to a higher probability of experiencing cardiometabolic disease can be measured

and used to determine who might benefit from an early intervention.

Usually, when cardiometabolic diseases are therapeutically treated, there is already irre-
versible damage to the organism, e.g. after a myocardial infarction (MI) or at the diag-
nosis of diabetes. Diagnosing these diseases at an earlier, pre-pathological level, before
symptoms are emerging and irreversible damage has been imposed on the organism, is
therefore essential to disease prevention. When cardiometabolic diseases are detected at
earlier stages, lifestyle changes or treatment by medication might inhibit further disease
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progression and damage.

Risk assessments are crucial for treating physicians to decide who might benefit most
from therapeutic intervention. Communication of long-term CVD risk can also help to
encourage individuals to initiate or maintain lifestyle changes and pharmacological treat-
ments. Furthermore, community-based risk assessments are also essential to develop
general treatment guidelines and broader health care policies. Societies like the Ameri-
can Heart Association (AHA) or the European Society of Cardiology recommend regular
CVD risk assessment and communication [7, 8]. Some scientific reports indicate that
periodical check-ups by general practitioners result in lower CVD mortality, though the

evidence is not yet firmly established [9, 10].

Risk can be assessed in absolute percentage quantities, e.g. by a risk score which predicts
an individual’s risk to experience disease within a specified time span in the future. How-
ever, risk can also be assessed by a more detailed characterization of the intermediate,
pre-pathological disease state. A better understanding of how traditional risk factors and
metabolic phenotypes are connected can help to elucidate potential pathophysiological

pathways and thereby potential cardiometabolic risk.

1.2 Traditional markers and CVD risk scores

Traditional CVD markers such as blood pressure, lipid profile and glycemic status are
readily obtained in standard clinical practice. Traditional markers are the basis for vari-
ous established risk scores that estimate an individual’s CVD risk. These risk scores work
with different risk factors as covariables for an underlying regression model - usually a Cox
Proportional Hazards model- and predict the probability to experience a cardiovascular
event within a specified time frame, e.g. five years or ten years. Patients can then be strat-
ified according to their predicted risk and treatment, e.g. antihypertensive medication or

statin therapy can be tailored accordingly.

For the estimation of CVD risk, a variety of published risk scores is available. Their use-
fulness is often questionable, as many are not properly documented, suffer from method-
ological shortcomings or have not been externally validated [1]. However, there are a
number of established risk scores, which have been proven to be useful and are com-
monly employed. These risk scores have mostly been derived from population-based co-
horts and also externally validated. The commonly used CVD risk scores are outlined in

the following.

Framingham Risk Score (FRS). Derived from the FHS and its offspring cohorts, three
main risk scores have been established. The first one was published in 1998 [12] and pre-
dicts coronary heart disease (CHD) and hard CHD outcomes for a 10 year time frame. It is
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applicable to men and women in the age range of 30 to 74 years without prior CHD. Pre-
dictor variables comprise age, systolic and diastolic blood pressure (BP), HDL cholesterol,
LDL cholesterol - or, in an alternative version, total cholesterol - , presence of diabetes
and smoking behavior. Estimates for 10 year risk of CHD were obtained from a Cox re-
gression model. By categorizing continuous variables, the well-known score sheets were
created, which allow practitioners to easily calculate their patient’s CHD risk by adding
up points from the score sheets. Framingham 1998 has been validated in several other
studies, e.g. [13, 14].

The second score was made available in 2002. It only predicts hard CHD outcomes for a
time frame of 10 years in men and women aged from 30 to 79 years without prior CHD and,
importantly, without prevalent diabetes. Predictor variables are age, quadratic term of
age, systolic BP, total and HDL cholesterol, antihypertensive treatment, smoking behavior
as well as interaction terms of age with cholesterol and age with smoking. The score has
been applied in other population-based cohorts [15, 16].

The third score stems from 2008 [17]. Predicted outcome is CVD for a 10 year time frame
in men and women in the age range from 30 to 74 years without prior CHD. Predictor vari-
ables are age, systolic BP, total and HDL cholesterol - or, in an alternative version, BMI
instead of both lipid values -, antihypertensive treatment, smoking behavior and presence
of diabetes. Given the number of outcomes predicted, this score is the most versatile of all
three. It has been validated in several other population-based cohorts [18, 19]. Through-
out the remainder of this thesis, the notation FRS will denote the 2008 Framingham score.
As all Framingham risk scores have been constructed from data from the FHS which in-
cluded mainly Caucasian participants, the translation of the estimates to other ethnic
groups is not straightforward. Also, as already mentioned above, the FHS is one of the
oldest population-based studies. This might imply that the transferability of their risk
profile to chronologically more current cohorts is questionable.

Systematic Coronary Risk Evaluation (SCORE). This risk score is derived from twelve
population-based cohorts throughout Europe [20]. It predicts only CHD mortality; i.e.
fatal CHD cases in men and women aged 45 to 64 years. Risk estimates are based on a
Weibull Proportional Hazards model where the baseline survival is modeled by a function
of age and sex and relative risks are calculated for sex, systolic BP, total cholesterol - or, in
an alternative version, ratio of total to HDL cholesterol -, and smoking behavior. SCORE
Risk estimates are also available as point sheets for easier utilization by practitioners.
The score has been applied in other cohorts, e.g [21, 22] and the use of SCORE for risk

stratification is recommended by the European Society of Cardiology [7].

Prospective Cardiovascular Miinster Study (PROCAM). The PROCAM study consists
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of men and women employed at companies and government authorities in the region of
Miinster, Germany. The PROCAM risk score, however, has only been derived and vali-
dated on male participants of the study. It predicts CHD for a 10 year time frame based on
a Cox model with predictor variables age, systolic BP, LDL and HDL cholesterol, triglyc-
erides, smoking behavior, family history of MI and diabetes. PROCAM has been validated

in other studies [15, 23].

QRISK2. QRISK2 is the first update of the original QRISK Score [24]. It predicts CHD,
stroke, and transient ischaemic attack in men and women aged 35-74 years. The score
includes the following risk factors: age, sex, systolic BP, BMI, ratio of total cholesterol to
HDL cholesterol, family history of CHD in a first degree relative, Townsend deprivation
score, ethnicity (self-reported), smoking behavior, and presence of type 2 diabetes, hyper-
tension treatment, renal disease, atrial fibrillation, and rheumatoid arthritis. The score
was derived on approximately 1.5 million patients from 355 medical practices in the UK.
The use of QRISK is recommended by the UK National Institute of Health and Care Ex-
cellence [25]. Meanwhile there is also QRISK3, which updates QRISK2 and incorporates

even more covariates [26].

Pooled Cohort Equations (PCE). This risk score was constructed and recommended by
the 2013 Guidelines on the Assessment of Cardiovascular Risk from the American College
of Cardiology and the AHA [27]. It predicts 10 year risk of atherosclerotic CVD (death
from CHD or stroke and nonfatal MI and stroke) in men and women aged 40 to 79 with-
out prior atherosclerotic CVD. The PCE risk score was derived from five community-based
cohorts from the US and provides risk estimates for multiple ethnicities. Predictor vari-
ables encompass age, systolic BP, total and HDL cholesterol, antihypertensive treatment,

smoking behavior and presence of diabetes.

Efforts to improve the performance of established risk scores, especially FRS, are con-
stantly undertaken, but prove to be difficult [28, 29]. One central point of criticism di-
rected at the FRS is that the cohorts from which these scores originated are decades old. In
the meantime, healthcare and treatment regimes have changed and thus the distribution
of risk factors in the population might not be comparable to current cohorts. However,
to which extent a changing risk factor distribution in the population affects the perfor-
mance of the FRS has not been quantified so far.

Stratification according to an absolute value of predicted risk can be used to assign treat-
ments, however it does not give insight into potential disease pathways and processes.

This is were imaging-based markers enter the stage.




BACKGROUND

1.3 Current status of imaging-based phenotyping

Compared to traditional CVD risk factors, imaging-based markers are able to provide a
deeper insight into anatomical and physiological changes. With imaging data, a detailed
visualization of an individual’s phenotype is available, which confers important informa-
tion about disease processess and manifestations. This information can further be used

in the context of personalized treatment.

In clinical practice, various imaging modalities such as Computed Tomography (CT),
sonography and Magnetic Resonance Imaging (MRI) are routinely used when indicated.
To be used prognostically for asymptomatic individuals, however, modalities like CT where
individuals are exposed to radiation cannot ethically be employed. Modalities like sonog-
raphy suffer from low reproducibility and provide prognostic value only in few situations
such as specific applications of echocardiography, e.g analyses of cardiac valves. There-
fore, for imaging in clinically healthy individuals, MRI is usually the imaging modality of
choice. Besides the advantage of non-radiation and high reproducibility, MRI is also char-
acterized by high-resolution and high quality images. Furthermore, whole-body imaging

is possible, which enables studying multiple organ systems simultaneously.

Data contained in this thesis is derived from the Cooperative Health Research in the Re-
gion of Augsburg (KORA) study, which will be described more thoroughly in the Methods
section. Besides the KORA study, several other population-based studies have already in-
cluded MRI protocols in their standardized examinations, or are planning to do so, to ex-

ploit the potential of these data. These studies are briefly outlined in the following.

FHS. The design of the FHS has already been introduced above. Imaging in the FHS
focused on brain and cardiac data. Approximately N ~ 2500 individuals from the Fram-
ingham Offspring Cohort underwent brain MRI and N ~ 1800 underwent cardiac MRI
on a 1.5T machine. Main findings from the FHS-MRI studies include the association of
white matter lesions (WML)s to cerebrovascular risk factors [30], establishing WMLs as
potential risk factors for stroke and Alzheimer’s Disease [31] and the description of sex

differences in key cardiac parameters [32].

The Rotterdam Scan Study. The Rotterdam Study is a prospective population-based
cohort from the Netherlands comprising ~ 15 ooo individuals aged 45 or older enrolled in
different cycles between 1990 and 2008. Imaging in the Rotterdam Scan Study focused on
brain and carotid arteries; N ~ 6000 underwent brain MRI and = 2000 underwent scan-
ning of the carotid arteries on a 1.5T scanner. Relevant results from imaging in this study
are e.g. reporting of the high prevalence of cerebral microbleeds [33] and assymetrical

distribution of carotid plaque burden [34].
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Multi Ethnic Study of Atherosclerosis (MESA). This US study was primarily designed
to study the progression of subclinical, asymptomatic CVD in the general population.
Imaging in MESA focused on cardiac MRI and has longitudinal measurements available:
N = 5004 participants underwent cardiac imaging at the baseline examination between
2000-2002 and N = 3015 participated in a follow up, including MRI, 10 years later. Mea-
surements were taken at six study centers on a 1.5T scanner. Relevant findings from MESA
include the establishment of reference values for left ventricular (LV) wall thickness [35],
associations of obesity to LV structure [36] and development of LV parameters with age

[37].
Study of Health in Pomerania (SHIP). The SHIP-TREND study is a population-based

cohort from North-East Germany including N = 4420 participants enrolled between 2008
and 2012. N = 2188 participants underwent whole-body MRI on 1.5T scanners, including
measures of adipose tissue, cardiac structure and function and brain data. Important
findings from SHIP include reporting of prevalences of hepatic steatosis [38] and the im-

pact of incidental findings on participants [39].

UK Biobank. This study is among the largest ongoing population studies and comprises
500 000 participants from the general UK population, enrolled from 2006-2010. Imaging
by MRI focused on brain, heart and abdomen is still ongoing and is planned on 100 ooo

individuals [40].

German National Cohort. This currently still ongoing study aims to enroll 200 ooo
individuals from the general population across Germany [41]. Besides standardized in-
terviews and examinations, 30 ooo participants are planned to undergo whole-body MRI,
including assessments of adipose tissue, brain parameters and cardiac function and mor-

phology. Scans are performed on 3T scanners at five study centers [42].

MRI-based imaging becomes especially relevant in the context of cardiometabolic dis-
ease. Besides the possibility to detailedly depict the myocardium, including measures of
LV function and structure, also precise assessment of segments of LV wall thickness are
feasible. MRI is also the gold standard for quantifying adipose tissue. Different adipose
tissue compartments vary substantially in their metabolic activity and their systemic role
in metabolism. Adipose tissue is a metabolically active endocrine organ and confers a
high amount of information about metabolic risk. Particularly the accrual of ectopic fat,
i.e. storage of adipose tissue in and around organs such as liver, kidney and pancreas has
been recognized as an important factor in metabolic diseases [43, 44]. Traditional mark-
ers of body size are BMI and waist circumference (WC), as they are (relatively) easily
obtained. However, these rather crude measures only give an incomplete picture about

body fat distribution and cannot accurately report the actual amount of metabolically
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active adipose tissue, which is one key strength of quantification by MRI.

1.4 Special role of type 2 diabetes

Among the traditional CVD risk factors, diabetes takes an important position. The debate
whether diabetes can be considered a CHD equivalent, has not yet been fully resolved.
The concept of diabetes as a CHD equivalent implies that individuals with diabetes have
the same risk to experience a CHD event in the future as do individuals without diabetes,

who already suffered from a prior CHD event.

A seminal study in this respect was published 20 years ago, finding that the CHD risk of
individuals with diabetes was indeed equivalent to those with prior CHD [45]. The AHA
has implemented the risk equivalence in their 2002 guidelines for statin therapy (Adult
Treatment Panel III, [46]). European guidelines [47] place individuals with diabetes in

the highest risk category, without specifically claiming a risk equivalence.

However, published data are not unequivocally in favor of this interpretation. A meta-
analysis including cohort and observational studies with a follow-up period of five years
or longer, came to the conclusion that diabetes in itself is not a CHD risk equivalent
[48]; as the summary odds ratio for individuals with diabetes to develop CHD was 0.56
compared to individuals with prior CHD. Another meta-analysis [49] found that CVD risk
in diabetes was strongly depending on sex; the unfavorable effect of diabetes was higher

in women than in men.

Although the equivalence of prior CHD and diabetes in CHD risk is questionable, it is
undisputed that diabetes predisposes to a higher CVD risk. Concomitant risk factors
and diabetes duration are likely contributors [50]. Current data indicate that diabetes-
related cardiac damage such as peripheral artery disease modulates the higher CVD risk
[51]. Imaging-based markers can therefore help to shed light on changes in cardiac struc-
ture and function in individuals with diabetes. Moreover, as diabetes has systemic ef-
fects on the organism, it is therefore of interest to holistically study multiple organs to-

gether.

Furthermore, as the glycemic spectrum is continuous, there are precursor states of di-
abetes, termed intermediate hyperglycemia or prediabetes. These terms comprise both
(isolated) Impaired Fasting Glucose ((i)-IFG) and (isolated) Impaired Glucose Tolerance
((i)-IGT). The World Health Organization (WHO) defines (i)-IFG as fasting glucose levels
between 110 and 125 mg/dL with normal 2h glucose levels and (i)-IGT as 2h glucose levels
between 140 and 200 mg/dL with normal fasting glucose levels, with 2h glucose obtained
after an Oral Glucose Tolerance Test. Individuals with prediabetes have a high risk to
progress to overt diabetes during their lifetime [52].




BACKGROUND

Prediabetes represents an important phenotype, as (i)-IFG and (i)-IGT are associated to
increased risk of CVD and mortality [53]. Possible pathways include fibrinolytic dysfunc-
tion of the endothelium and impaired blood flow in the microvasculature, although the
mechanisms are not fully elucidated [54]. However, prediabetes is not a homogeneous
entity; not everyone with prediabetes will progress to diabetes and not everyone will
profit from pharmacological treatment. In the clinical setting, prediabetes often remains
undiagnosed, as it is usually asymptomatic. Therefore, particularly in the context of di-
abetes and prediabetes, imaging-based markers can serve to elucidate and characterize
the systemic roles of impaired glucose metabolism by visualizing changes in physiology

and anatomy.

1.5 Specific aims of the thesis

The objective of this thesis is to characterize and quantify the role of traditional and novel
imaging-based markers in the context of metabolic risk assessment. For that purpose, the
focus is on epidemiological outcomes, i.e. how imaging-based markers associate to car-
diometabolic risk, rather than the technical derivation of these imaging-based markers.

Specifically, the aims of this thesis are

(@) To evaluate the temporal development of traditional cardiovascular risk factors in
different population-based cohorts spanning several time frames and characterize
the corresponding development of CVD risk scores - these questions will be treated

in manuscript I [55] as outlined in the next section.

(b) To identify longitudinal clusters of traditional cardiovascular risk factor trajectories
and associate them to imaging-based metabolic phenotypes - these questions will

be treated in manuscript II [56] as outlined in the next section.

(c) To assess the relation of imaging-based metabolic phenotypes to diabetes and its
precursor states and identify specific diabetes-related imaging-based signatures -
these questions will be treated in manuscripts III [57] and IV [58] as outlined in the

next section.
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2 Contributing manuscripts

2.1 Manuscripts included in the thesis

This cumulative thesis comprises four manuscripts, which will be referred to with Ro-
man numericals I through IV. A simplified overview of manuscripts I through IV is given
in Figure 1, followed by a more detailed description. Three of the manuscripts have
been prepared within the framework of the KORA-MRI study, where I also contributed
to other manuscripts which are relevant in the context of cardiometabolic risks. Those

manuscripts are outlined in the next section.

Traditional CVD risk
factors
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Figure 1: Overview of contributing manuscripts. Thick lines connecting traditional CVD
risk factors to imaging markers/CVD denote the associations that are treated within each
manuscript. Manuscript I describes the association of traditional risk factors to CVD by
analysis of CVD risk scores. Manuscript II describes the association of traditional risk
factors to MRI measurements of adipose tissue. Manuscript III describes the association
of prediabetes and type 2 diabetes to MRI measurements of LV wall thickness. Manuscript
IV describes the association of prediabetes and diabetes to MRI measurements covering
several organs. The thin dotted lines connecting Traditional CVD risk factors to Imaging
markers to CVD denote the underlying implied association, which is causally probable,
but not treated within this thesis.

Manuscript I: Temporal evolvement of CVD risk factors and Risk Scores

In this paper, we analyzed data of n = 7789 individuals from three prospective population-
based cohort studies enrolled in 1989/1990, 1994/1995 and 1999/2000. We found signifi-
cant temporal trends in risk factor distributions which were also reflected in a changing
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performance of two commonly used CVD risk scores (FRS and PCE). Nevertheless, the
performance of the two risk scores was still adequate and the incorporated risk factors
captured a major burden of CVD.

[ am first author of the manuscript. I developed the research question to a substantial ex-
tent, developed the statistical analysis plan, conducted the statistical analyses, evaluated
the results, drafted the paper and revised it according to peer reviewers’ comments.

This manuscript is published as “Temporal trends in cardiovascular risk factors and
performance of the Framingham Risk Score and the Pooled Cohort Equations” in
BM] Journal of Epidemiology and Community Health [55].

Manuscript II: Longitudinal Trajectory Clusters and Adipose Tissue

In this paper, we worked with longitudinal data of n = 325 individuals obtained at three
time points covering 14 years. We first determined multivariate clusters of the conjoint
trajectories of nine traditional CVD risk factors and then associated them to a compre-
hensive panel of adipose tissue depots obtained by MRI. We found three distinct trajec-
tory clusters which represented graded levels of cumulative risk factor burden and which
showed graded associations to all adipose tissue traits.

I am shared first author of the manuscript. I contributed to the research question by
directing the focus on outcomes of adipose tissue. I developed the main part of the
statistical analysis plan by introducing the longitudinal multivariate k-means clustering
method, conducted all statistical analyses, evaluated the results and drafted the paper.
This manuscript will be submitted as “Association of longitudinal risk profile trajec-

tory clusters with adipose tissue depots measured by magnetic resonance imag-

ing” [56].

Manuscript I1I: Diabetes and LV Wall Thickness

In this paper, we analyzed the impact of prediabetes and type 2 diabetes on LV wall thick-
ness, as increased LV wall thickness is a marker for future cardiovascular complications.
To identify regional LV remodeling, we used the established LV 16-segments model of the
AHA. We found significant associations of prediabetes and diabetes to overall wall thick-
ness, as well as single segment groups as well as interaction effects with blood pressure
in certain segments of the LV wall.

I am first author of the manuscript. I developed the research question, designed the sta-
tistical analysis plan, conducted the statistical analyses, evaluated the results, drafted the
paper and revised it according to peer reviewers’ comments.

This manuscript is published as “Association of glycemic status and segmental left
ventricular wall thickness in subjects without prior cardiovascular disease: a cross-
sectional study” in BMC Cardiovascular Disorders [57].

10
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Manuscript IV: Multiorgan Involvement in Diabetes

In this paper, we worked with six MRI parameters (Age Related White Matter Changes
(ARWMC), intrahepatic fat as measured by proton-density fat fraction (PDFF), visceral
adipose tissue (VAT), LV remodeling, carotid plaque, Late Gadolinium Enhancement (LGE))
that were dichotomized into “normal” and “abnormal” values according to predefined
clinical cutoffs. We constructed a phenotypic score from these six dichotomized param-
eters and found that high values of the score were strongly correlated to prediabetes and
diabetes status. Furthermore, unsupervised fuzzy clustering of the dichotomized param-
eters revealed two distinct clusters which were highly associated to prediabetes and di-
abetes status. Finally, specific combinations containing abnormal values of intrahepatic
fat and VAT were specific for prediabetes and diabetes status, as identified by regularized
Least Absolute Selection and Shrinkage Operator (LASSO) regression.

I am second author of the manuscript. I designed parts of the statistical analysis plan by
introducing LASSO regression and fuzzy clustering, conducted the statistical analyses,
created tables and graphics and wrote parts of the manuscript.

This manuscript is published as “Phenotypic Multiorgan Involvement of Subclinical
Disease as Quantified by Magnetic Resonance Imaging in Subjects With Predia-
betes, Diabetes, and Normal Glucose Tolerance” in Investigative Radiology [58].
Largely based on work from this paper, we successfully applied for a grant from the Ger-
man Center of Diabetes Research (DZD), enabling us to continue and extend this the work

in a collaboration with the SHIP study from Greifswald, Germany.

2.2 Other manuscripts

The KORA-MRI study is a population-based imaging study and was designed with the
specific focus of assessing subclinical disease states in individuals with diabetes and its
precursor stages. I was involved in several projects concerned with the assessment of

cardiometabolic risk, as itemized below.

Cohort Profile of the KORA-MRI Study [59]. This paper presents the general setup of
the KORA-MRI study as well as its main findings. There was a gradually increasing sub-
clinical disease burden from normoglycemic individuals to individuals with prediabetes
to diabetes, as measured by key cardiac, neurological and metabolic imaging markers.

I designed the statistical analysis plan, conducted the statistical analyses, created tables

and graphics, wrote parts of the manuscript and replied to reviewer comments.

Characteristics of Diverticular Disease [60]. Diverticula are structural alterations in
the colonic wall that originate from herniation of the colonic mucosa. Individuals with
diverticular disease might be affected by abdominal pain, inflammation and bowel com-

11
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plications. In this paper, prevalence and potential metabolic risk factors of diverticular
disease are assessed. The prevalence of diverticular disease was found to be 42% and BMI,
cholesterol levels and blood pressure were associated to increased risk of diverticular dis-
ease.

I designed the statistical analysis plan, conducted the statistical analyses, created tables

and graphics and wrote parts of the manuscript.

Adipose Tissue and Diabetes [61]. This paper demonstrates the association of glycemic
status to different adipose tissue compartments (VAT, subcutaneous adipose tissue (SAT)).
Results showed a strong correlation of VAT and SAT and a strong association of predia-
betes and diabetes to both adipose tissues as well as their ratio. However, an interaction
analysis yielded that the marginal effect of both prediabetes and diabetes decreased with
rising BMI and WC, indicating that the role of diabetes for cardiometabolic risk recedes
behind that of general obesity with rising BMI and WC.

I designed the statistical analysis plan including the focus on interaction effects, analyzed

the data, created tables and graphics and wrote parts of the manuscript.

Characteristics of Fatty Muscle [62]. This paper evaluates the amount of fatty infil-
tration within various skeleto-muscular tissues subject to an individuals glycemic status.
Results showed that skeletal muscle in individuals with prediabetes and diabetes had a
higher degree of fatty infiltration compared to normoglycemic individuals. However, this
was mainly attributable to the higher amount of VAT in these individuals.

I designed the statistical analysis plan, conducted the statistical analyses, created tables

and graphics and wrote parts of the manuscript.

Adipose Tissue and Uric Acid [63] This manuscript evaluates cross-sectional associa-
tions of uric acid as a breakdown product of purine metabolism to MRI-derived adipose
tissue compartments (VAT, SAT, intrahepatic fat). There was a significant association of
uric acid to VAT and hepatic fat, but not to SAT, indicating different metabolic properties
of the respective adipose tissue depots.

This work is a Master’s Thesis that I supervised, written by a student from the MSc Epi-
demiology Program at the Ludwig-Maximilians-Universitiat Munich. I developed the ini-
tial research question, recruited the student, assisted with the statistical analyses and
oversaw the writing process. The manuscript is currently being finalized and will be sub-
mitted to BMC Gastroenterology.

12
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3 Methods

3.1 Study Population

This thesis builds on the prospective population-based cohort studies of KORA, all sam-
pled in the region of Augsburg, Southern Germany. An overview of the relevant stud-
ies is given in Figure 2. The sampling scheme and the examination protocols of the
KORA cohorts have been described previously [64]. Participants were sampled in a two-
step procedure. First, communities from the city of Augsburg and two adjacent counties
were chosen by cluster sampling, followed by a stratified random sampling of partici-
pants within each community. As depicted in Figure 2, four cross-sectional surveys (Si-
S4) are followed up longitudinally. KORA participants underwent extensive, standard-
ized interviews and physical examinations conducted by trained medical staff. For some
surveys, additional measurements, e.g. genomics, electrocardiograms, accelerometry are
also available. Whole-body MRI measurements were obtained for a selected sample from
the participants in KORA-FF4.
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Figure 2: Overview of those KORA studies that were used in manuscripts I through IV.

For each manuscript, additional exclusion criteria were applied to arrive at the final an-
alytical sample. For manuscript I, exclusion criteria were pre-established by the defini-

tions of the analyzed risk scores. For the other manuscripts, exclusion of participants was
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mainly due to missing data. Note that as depicted in Figures 1 and 2, the direct associa-
tion of imaging markers to CVD cannot be evaluated, as the follow-up data for the MRI

participants are not available yet.

3.2 MRI methods

The KORA-MRI study comprises 400 participants from FF4 and was specifically designed
to study subclinical disease in individuals with pre-diabetes and diabetes. The study setup
has been detailedly described [59]. Criteria for enrollment were readiness for partici-
pation, validated glycemic status, age between 39-73 years and, importantly, absence of
prior CVD (stroke, MI, revascularization). Furthermore, individuals with contraindica-
tions to the MRI procedure (non-removable metal parts within the body, pregnancy or
breast-feeding, inability to hold breath, allergy to contrast agent or renal insufficiency)
were excluded. Participants were classified according to their glycemic status as being
normoglycemic, having prediabetes, or having diabetes, following the WHO definitions

as described above.

The whole-body MRI exams took place at the University Clinic of the Ludwig-Maximilians-
Universitiat and were conducted at 3 Tesla (Magnetom Skyra; Siemens AG, Healthcare
Sector, Erlangen, Germany) with a whole-body radiofrequency coil-matrix system. The
resulting MRI images were analyzed by different teams of radiologists with extensive ex-
perience in the respective areas. Subsequently, a comprehensive quality control routine
was applied, where measures of inter-and intrareader variability were calculated and the
data screened for outliers or implausible values. Radiologists interacting with the partici-
pants or reading the MRI images were blinded to other clinical covariates. Data handling

staff and statisticians were blinded to the actual images.

Cardiac data. Markers of LV function and morphology were obtained semi-automatically
by cine-steady-state free precession sequences. Key markers included LV ejection frac-
tion (EF), end-diastolic volume (EDV), end-systolic volume (ESV), myocardial mass, di-
astolic filling and ejection rates as well as wall thickness and LGE, a marker of myocardial
scarring. Wall thickness and LGE measurement were mapped to the AHA 16-segments
model [65] with basal segments 1-6; mid-cavity segments 7-12 and apical AHA segments
12-16.

Carotid plaque. Presence of plaque in the left and right Arteria Carotis Communis and
Arteria Carotis Interna was evaluated on a Ti1-weighted, fat-suppressed sequence and was

rated according to AHA criteria.

Brain data. On fluid-attenuated inversion recovery images, presence of WML was de-
fined as T2 hyperintense areas >5 mm in 5 brain areas in the left and right hemisphere,
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respectively.

Adipose tissue data. To determine renal sinus fat fraction, total abdominal adipose
tissue, VAT, SAT, a volume-interpolated 3D in/opposed-phase VIBE-Dixon sequence was
employed and adipose tissues were segmented semi-automatically [61, 66]. SAT was quan-
tified from cardiac apex to femoral head and VAT was quantified from diaphragm to
femoral head. Total abdominal adipose tissue was calculated as the sum of SAT and VAT.
Intrahepatic fat fraction was evaluated as PDFF on a multi-echo Dixon-VIBE Ti1-weighted
sequence, accounting for confounding T2* decay and spectral complexity of fat [67]. On
the same sequence, intrapancreatic fat content was measured as PDFF in caput, corpus
and cauda. As the final intrapancreatic fat measure, the arithmetic mean of these three

was calculated [68].

3.3 Statistical methods

Statistical methods that were used in manuscripts I to IV can be roughly distinguished
in prediction evaluation methods, methods relating to longitudinal data and methods

relating to cross sectional data.

Prediction evaluation methods. We analyzed two established, commonly employed
risk scores, the FRS and PCE. Both predict the risk of experiencing a CVD event within
a 10-year period and are based on Cox proportional hazard regression models. Scores
were recalibrated to the study population by pasting risk factor mean values and baseline
survival probabilities from each study into the original risk score equations, keeping the

original model structure and model coefficients.

Risk scores have to be evaluated regarding two features: Discrimination and calibration.
Discrimination is concerned with distinguishing individuals who experience a CVD event
from those who do not. Calibration is concerned with estimating the right amount of ab-
solute risk. Discrimination was quantified by Receiver Operating Characteristic (ROC)
curves and their respective Area under the Curve (AUC). Differences in AUC were evalu-
ated by an unpaired DeLong test. Additionally, Somer’s D statistic was computed, which
indicates the rank correlation between predicted risk probabilities and observed event

rate.

Calibration was assessed graphically by continuous calibration curves based on LOESS
smoothing [69] and quantitatively by Hosmer-Lemeshow tests, calibration slopes and

percent discordance between the number of observed and predicted events.

The Population Attributable Fraction (PAF) denotes how much disease burden is at-
tributable to the presence of a specific exposure, i.e. how much disease could be removed
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if the specific exposure is not present. This state is by definition counterfactual, as the
situation without presence of a specific exposure cannot be measured in reality. We es-
timated the PAF of a predicted risk score in the high category (e.g. predicted risk score
>10%), thereby answering the question how much less CVD would be present if all indi-

viduals had predicted risk scores <10%. The PAF was calculated by Levin’s formula

p-(RR—1)
p-(RR—1)+1

PAF =

with p prevalence of a predicted risk score in the high risk category and RR the relative
risk: rate of CVD in individuals with predicted risk score in the high risk category divided
by the rate of CVD in individuals with predicted score not in the high risk category (e.g.
predicted risk score <10%).

Methods relating to longitudinal data. We were interested in eight continuous risk
factors measured for each participant at three time points: S4 (baseline), F4 (first follow-
up) and FF4 (second follow-up), as graphically outlined in Figure 2. The risk factors of
interest were systolic and diastolic BP, BMI, WC, HbAuic, total cholesterol, LDL, HDL
cholesterol. The longitudinal course of each risk factor can be modeled by a risk fac-
tor trajectory for each individual, designated by the absolute risk factor values and the
relative changes from one time point to another. Outcomes of interest were different
MRI derived measurements of abdominal and ectopic adipose tissue accrual (total adi-
pose tissue (TAT), VAT, SAT, renal sinus fat fraction, intrahepatic fat and intrapancreatic
fat) as markers of cardiometabolic risk, measured at the FF4 examination.

However, the eight risk factors of interest are correlated to varying degrees; thus their
conjoint evolution is more informative than the single trajectories. We therefore looked
at multivariate trajectories including all eight risk factors at the same time.

To categorize individuals according to their multivariate trajectories, we applied an unsu-
pervised k-means Expectation-Maximization (EM) clustering algorithm [70]. Generally,
the clustering algorithm should agglomerate individuals that are similar in their multi-
variate risk factor trajectories by assigning them to the same cluster and separate indi-
viduals that are less similar in their trajectories by assigning them to different clusters.
To determine similarity between individuals, an appropriate mathematical measure is
needed which can quantify how similar or dissimilar individuals are. The complete clus-

tering procedure is derived in the following:

Data of interest Y for the individual ¢ can be represented as a matrix Y; = (y;,) which
denotes the value of traditional risk factor r at time point ¢ for individual ¢. More con-

cretely, in our case, Y; takes the form
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Yi S4,SystolicBP  Yi F4,SystolicBP Ui FF4,SystolicBP

Yi,S4,DiastolicBP  Yi,F4,DiastolicBP  Yi,FF4,DiastolicBP

Yi,S4,BMI Yi,F4,BMI Yi,FF4,BMI
Y, — Yi,S4,WC Yi,F4,WC Yi,FF4,WC
=
Yi,S4,HbA1c Yi,F4,HbA1c Yi,FF4,HbA1c

Yi,S4,Cholesterol ~ Yi,F4,Cholesterol ~ Yi,FF4,Cholesterol
Yi,S4,LDL Yi,F4,LDL Yi,FF4,LDL

Yi,S4,HDL Yi,F4,HDL Yi,FF4,HDL

Now a distance measure d’ between individual i and individual j is constructed by

!
d'(Y3,Yj) = ||d__systolicBP (Ui, SystolicBP: ¥j,. SystolicBP)
d.,.,DiastolicBP (yi,.,DiastolicBPa yj,.,DiastolicBP) )
ey

d., upL(Yi,. HDL, Yj, HDL)||

with d denoting the Minkowski distance and ||.|| denoting the p-norm, both for p =
2.

Now each individual is allocated to a cluster by a simple EM algorithm: An initial configu-
ration for the cluster centers is determined and each individual is assigned to the nearest
cluster center, with the distance to cluster centers being determined by d’ (Maximization
step). Then the cluster centers are recomputed on the information given by all individuals
assigned to that cluster (Expectation step). This procedure is repeated until convergence,
i.e. until no changes in cluster assignment occur in the Maximization step. Note that the
clustering algorithm and thus the cluster assignment is independent of the outcomes of

interest (adipose tissue).

Methods relating to cross sectional data. In general, associations between exposure
variables and outcomes of interest were estimated by linear or logistic regression models,
adjusted for potential confounding covariates. Possible interactions between two expo-
sure variables or effect modification of a covariate on an exposure of interest were de-
termined by running regression models containing multiplicative interaction terms and

calculating marginal effects.

We used unsupervised fuzzy clustering to determine clusters of dichotomized MRI pa-
rameter combinations. Analogously to the multivariate longitudinal clustering described
above, the fuzzy clustering aims to group individuals according to their similarity with

respect to patterns in the input data. Whereas for the multivariate longitudinal cluster,
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input data were longitudinal risk factor measurements, for fuzzy clustering input data
were six cross-sectional MRI parameters, covering several organs. As the MRI parameters
are dichotomized, the similarity measure had to be constructed appropriately. We used
Gower’s general dissimilarity coefficient [71] to construct a dissimilarity matrix.

Fuzzy clustering implies that each individual is not simply assigned to a single cluster but
assigned a “membership probability”: a probability to belong to each of the constructed
clusters. To arrive at a single assignment, an appropriate cutoff can be chosen. In the case
of two clusters, a cutoff of 50% is sensible, i.e. if an individual has a probability of > 50%

to belong to a cluster, this is treated like a fixed assignment to that cluster.

As we analyzed six dichotomized MRI parameters, 2° = 64 combinations of these are
possible. Therefore, an adequate variable selection procedure has to be applied to deter-
mine those combinations that are most important in their association to the outcome of
interest. For variable selection, we employed LASSO regression. LASSO regularizes the
absolute size of the estimated coefficients by imposing a penalty parameter A on them.

Given a linear regression model

p
Y =06+ Z ﬁjX j
j=1
with N number of observations and p number of predictors, the LASSO estimator in the

Langrangian form can be written as

N

P P
fllasso] = arg;nin %Z(yz — Bo — injﬂj)Q + )\Z |35
p= =1

=1

The estimated coefficients 3[lasso] are therefore shrunk towards zero, depending on the
size of A. Variables are discarded by shrinking coefficents to be exactly zero; thus a subset
of predictors is selected. Note, however, that the estimated coefficients are biased due
to the shrinking procedure and that statistical inference (Confidence Interval (CI)s, p-
values) is not possible.
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4 Main Results

4.1 CVD risk assessment by traditional risk factors

Our analysis comprised n = 7789 individuals from three population-based cohorts, en-
rolled in 1989/1990, 1994/1995 and 1999/2000 who were followed up for CVD mortal-
ity and MI and stroke morbidity for ten years [55]. Comparing the baseline examina-
tions of the three studies, there were significant temporal trends in risk factor distribu-
tions. For instance, mean BMI, mean systolic BP, mean total cholesterol and LDL signif-
icantly decreased; at the same time, intake of antihypertensive and lipid-lowering med-
ication increased. The rate of observed CVD events remained relatively stable (in men:
12.4%, 10.4%, 10.4%, in women: 4.4%, 5.7%, 5.6%), though fatal CVD events significantly
dropped in men.

Both FRS and PCE emerged similarly in their discrimination performance and calibration.
Although recalibrated to the respective sample, both FRS and PCE considerably overesti-
mated real CVD risk; and while calibration improved slightly over time, the improvement
was not statistically significant. For men, overestimation by the FRS amounted to 46%,
48% and 42% in the three studies, respectively, whereas for women overestimation was

58%, 55% and 53%.

Discrimination performance of the scores evolved differently for men and women. Whereas
the discrimination performance, as measured by AUC nominally declined for men (e.g.
AUC PCE: 76.4, 76.1, 72.8), it nominally improved for women (e.g. AUC PCE: 75.9, 79.5,
80.5). The difference between AUC for men and women was statistically significant.

The burden of CVD that can be attributed to a high risk score (and thereby can be at-
tributed to the underlying risk factors) is measured by the PAFs. PAFs of a PCE>10%
steadily declined for men (87%, 76%, 66%) and increased for women (49%, 69%, 82%).

The first specific aim of this thesis stated (a) To evaluate the temporal development of tra-
ditional cardiovascular risk factors in different population-based cohorts spanning several
timeframes and characterize the corresponding development of CVD risk scores.

We have now shown that there are significant shifts in the distribution of traditional CVD
risk factors over time. These shifting distributions affect the performance of established
risk scores; and importantly, the performance of these risk scores is affected in a sex-
specific manner, differently for men and women. However, as shown by the analysis of

PAFs, it is evident that the risk scores still capture a major part of CVD risk.
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4.2 Metabolic phenotypes and traditional risk factor clusters

Our analysis comprised N = 325 individuals [56]. Using systolic and diastolic BP, BMI, WC,
HbAu1c, Total cholesterol, LDL and HDL cholesterol measured at three time points, we
identified three compact and well-separated longitudinal multivariate trajectory clusters,
characterized by different risk factor exposure levels. Individuals agglomerated in a low-
risk cluster (Cluster I, n = 114), an intermediate-risk cluster (Cluster II, n = 129) and a
high-risk cluster (Cluster III, n = 82). The clusters were characterized by different mean

risk factor levels and risk factor changes along time points, as shown in Figure 3.
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Figure 3: Risk factor trajectories in the three clusters. Adapted from [56]. The clusters
were derived in an unsupervised fashion based on longitudinal trajectories of all eight
risk factors simultaneously. For each risk factor, the mean risk factor value at every time
point is plotted, stratified by cluster. Generally, Cluster I (in green) is characterized by
the lowest mean risk factor values and most favorable trajectories for all risk factors and
can therefore be considered the “low-risk” cluster. Cluster III (in red) is characterized by
the highest mean risk factor values, except for total and LDL cholesterol. Cluster III also
shows the highest gains in BMI, WC and HbAic over time, and can therefore be considered
the “high-risk” cluster. Cluster II (in blue) is intermediate between Cluster I and III and
is thus considered the “medium-risk” cluster.

Within the trajectory clusters, there was a gradual increase in a broad panel of adipose tis-
sue compartments as measured by MRI. For instance, VAT amounted to (arithmetic mean
+ standard deviation) 2.5 liter + 1.7 liter in Cluster I, 4.6 liter + 1.9 liter in Cluster II and
7.3 liter + 2.2 liter in Cluster III. Intrapancreatic fat amounted to (median [first quartile,
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third quartile]) 3.7% [2.3%, 5.7%] in Cluster I, 5.9% [4.3%, 9.2%)] in Cluster II and 10.7%
[5.0%, 16.3%] in Cluster III. Furthermore, trajectory clusters were significantly associated
to these adipose tissue compartments after adjustment for potential confounders. For
example, the intermediate-risk cluster, Cluster II, was associated with an increase of 1.30
liter in VAT (95%-CI: [0.84; 1.75]) and a 52% increase in intrapancreatic fat (95%-CI: [26;
84]), compared to Cluster I. The high-risk cluster, Cluster III, was associated with an in-
crease of 3.32 liter in VAT (95%-CI: [2.74; 3.90]) and a 120% increase in intrapancreatic fat
(95%-CI: [73, 180]) after adjustment for confounders.

Importantly, the variability in adipose tissue that could be explained by the trajectory
clusters varied substantially across the respective compartments. The highest amount of
variability could be explained for total abdominal adipose tissue with R? = 0.89, while the

smallest amount of variability was explained for intrahepatic fat with R? = 0.27.

The second specific aim of this thesis stated (b) To identify longitudinal clusters of tradi-
tional cardiovascular risk factor trajectories and associate them to imaging-based metabolic
phenotypes.

We have now shown that individuals can be clustered by their longitudinal trajectories
of traditional CVD risk factors; trajectories are characterized by the mean value of a risk
factor and the evolvement over time. Furthermore, we have shown that sustained high
risk factor levels and unfavorable risk factor trajectories are associated with high levels of

adipose tissue.

4.3 Special role of diabetes

We specifically analyzed LV wall thickness and a combination of MRI parameters in their
relation to glycemic status [57]. LV wall thickness increased across the glycemic spectrum:
mean wall thickness was 8.8 mm + 1.4 mm in normoglycemic individuals, 9.9 mm + 1.4 mm
in individuals with prediabetes and 10.5 mm + 1.6 mm in individuals with diabetes. The
association of prediabetes and diabetes to wall thickness was independent of potential
confounders. For specific segments, also an interaction of glycemic status and systolic
BP was discernible: for basal segments, the marginal effect of prediabetes and diabetes
decreased with rising blood pressure, whereas for mid-cavity and apical segments, there
was an increasing marginal effect of prediabetes and diabetes with rising blood pressure.
In the same vein, association of glycemic status was strongest for the mid-cavity segments,

while the association of hypertension was strongest for the basal segments.

Clustering of combinations of dichotomized MRI parameters yielded two distinct clus-
ters, which were significantly associated to (pre-)diabetic glycemic status [58]. Impor-

tantly, no distinct cluster for prediabetes was identified. Figure 4 shows the distribution
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of MRI parameter combinations within the two clusters. The columns denote prevalence
of the respective combinations, expressed in % of the whole sample. All MRI markers
are dichotomized by clinically relevant cutoffs, compare [58]. Every individual can have
exactly one of 26 = 64 possible combinations of these MRI parameters. In our sample,
only 33 unique combinations occurred, as depicted by the 33 columns. E.g. the first col-
umn shows the prevalence of the combination of abnormal ARWMC with normal PDFF,
normal VAT, normal LV remodeling index, normal Carotid Plaque and normal LGE. The
second column shows the prevalence of having no abnormal MRI parameter at all; and so
forth. The shaded area depicts the proportion of individuals with prediabetes or diabetes
that had the respective combination of MRI parameters. Columns colored in orange de-
note combinations that were assigned to the first cluster, as calculated by fuzzy clustering.
Columns colored in turquoise denote the combinations that were assigned to the second
cluster. As visible from the shaded areas, combinations that were assigned to the second

cluster feature a higher proportion of individuals with prediabetes or diabetes.

Within the clusters, LASSO regression identified specific combinations of MRI parame-
ter combinations that were significantly related to either normal glycemic status or (pre-
)diabetes. Individuals with abnormal ARWMC only or the combination of ARWMC and
carotid plaque were assigned to the first cluster and these MRI parameter combinations
were significantly associated to normoglycemic status. Also individuals without abnor-
mal MRI parameter values were assigned to the first cluster; however having no abnormal
MRI parameter value was not associated to normoglycemic status. Individuals with com-
binations involving abnormal adipose tissue values (VAT and intrahepatic fat) were as-
signed to the second cluster. Specifically, combinations comprising both abnormal VAT
and intrahepatic fat as well as brain changes and/or changes in cardiac structure were

significantly associated to (pre-)diabetes.

The third specific aim of this thesis stated (c) To assess the relation of imaging-based
metabolic phenotypes to diabetes and its precursor states and identify specific diabetes-
related imaging-based signatures.

We have now shown that prediabetes and diabetes are unfavorably associated to cardiac
structure, independently of other potential confounders. We have furthermore shown
that clusters of abnormal MRI parameters are associated to diabetes status and that com-
binations including abnormal hepatic fat and abdominal fat in addition to LV remodeling

or brain changes are characteristic for diabetes status.
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Figure 4: Distribution of normal and abnormal MRI markers for multiple organs. Adapted
from [58]. ARWMC: Age-Related White Matter Changes; PDFF: proton-density fat frac-
tion (intrahepatic fat); VAT: visceral adipose tissue; LVRI: left ventricular remodeling in-
dex; LGE: late gadolinium enhancement.
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5 Discussion

5.1 Performance and development of CVD risk scores

Currently, a plethora of CVD prediction models are available, albeit only a few are com-
monly used [11]. We have shown how two commonly applied risk scores, the FRS and PCE
behave with regard to temporal shifts in risk factor distributions. Although we found a de-
crease in AUC for men and an increase for women, in all studies and for both sexes, both
risk scores showed adequate discrimination with AUCs > 70. Additionally, our analysis

of PAFs revealed that these risk scores still capture the relevant part of CVD risk.

The fact that risk prediction models score differently for men and women has already
been reported. Generally, women develop CVD later in the life course and have a lower
CVD lifetime risk compared to men [72] although these estimates might be underesti-
mating actual risk, as women have a higher life expectancy than men. The associations
of specific risk factors, most prominently glycemic status and smoking, are different in
women and men [73, 74]. Statistically, higher hazard ratios of the underlying risk factors
can contribute to a better performance of the risk models.

With regard to calibration performance, we corroborate findings from other studies that
reported substantial overestimation of risk, especially by the PCE [75, 76]. This might
be an inherent characteristic of the design of the PCE [77] or due to underreporting of
CVD events. A very recent study conducted in the US cohort of the Women’s Health
Initiative [78] reported that calibration of the PCE improved after additionally including

CVD events collected by the insurance provider.

Taken together, our results support the notion that, although established CVD risk scores
have been derived from older population-based cohorts, they still perform adequately, if
they are properly adjusted to the population at hand. However, for future refinement of
CVD risk prediction models, sex-specific risk factor trends will have to be more strongly

taken into account.

5.2 Contributions torisk assessment by imaging-based phenotyping

Results from this thesis have demonstrated that MRI derived markers contribute to car-
diometabolic risk assessment. By recognizing the manifestation of early, subclinical dis-
orders, these markers provide a better understanding for disease phenotypes which would
potentially allow for a timely intervention to prevent disease progression.

We brought together traditional CVD risk factors and metabolic MRI measurements by

analyzing longitudinal trajectories of traditional risk factors and relating them to a panel
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of adipose tissue compartments as measured by MRI. We highlighted that the amount
of variability in adipose tissue that can be explained by these risk factors is substantially
varying, indicating different potential pathways in the formation of these adipose tissue
compartments and how they impact an individual’s metabolism. In line with other find-
ings, our results also indicate that anthropometric measurements, such as BMI and WC
are strongly correlated to VAT and SAT, although the correlation is not complete.

Ectopic adipose tissue depots like intrahepatic fat, renal sinus fat and intrapancreatic fat
can only be measured by imaging-based modalities, if the measurement should be non-
invasive. They cannot be accurately mapped to anthropometric measures such as BMI
and WC and there are no other biomarkers (e.g. blood-based) that can properly, reliably

and reproducibly describe the amount of adipose tissue [79, 80].

Nevertheless, these ectopic adipose tissue compartments convey considerable informa-
tion about metabolic risk. The liver is a key player in systemic metabolism and substan-
tially involved in triglyceride synthesis and storage. Increased intrahepatic fat is associ-
ated to CVD by its contribution to chronic inflammation, elevated free fatty acids and
insulin resistance [81]. Results from the KORA-MRI study also revealed substantial asso-
ciations with hypertension [67]. Particularly the combination of elevated hepatic fat and

diabetes is a major public health concern [82].

The connection of intrapancreatic fat and renal sinus fat to CVD have been less vigorously
established. Renal sinus fat induces increased pressure on the vasculature within the
kidneys and can therefore lead to structural damage and impaired renal function [83, 84].
Intrapancreatic fat has been discussed to modulate insulin metabolism by constraining
beta-cell function [85]. Interestingly, this specific ectopic fat compartment seems to be

susceptible to nutrition changes [86].

By the use of imaging-based markers we could quantify the role of traditional risk fac-
tors in the development of abdominal and ectopic adipose tissue compartments and pro-
vide relevant data on the relation of unfavorable longitudinal trajectories to these pheno-

types.

Especially for determining metabolic consequences of prediabetes, the precursor state of
diabetes, MRI emerges to be a powerful modality, as prediabetes is usually asymptomatic
and not clinically diagnosed. Notwithstanding, consequences of prediabetes are already
metabolically manifest and are visible on MRI.

Findings from the KORA-MRI study show that prediabetes and diabetes are strongly asso-
ciated to unfavorable cardiometabolic phenotypes, e.g. to increased fat infiltration within
the muscle [62], increased adipose tissue [68, 61], impaired cardiac function [59, 87, 88]
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and alterations in cardiac structure [89)].

By analyzing LV wall thickness according to the AHA 16-segments model, we have shown
that prediabetes and diabetes are associated to increased wall thickness, independent
of traditional CVD risk factors. This is in line with findings from Atherosclerosis Risk
in Communities (ARIC) and FHS who found increasing relative LV wall thickness across
glycemic categories [90, 91]. However, no measurements of segmental wall thickness were
available in theses samples. Other studies reported increased wall thickness in individ-
uals with diabetes, but found no independent effect apart from other traditional CVD
risk factors [92, 93]. The exact pathophysiological mechanisms how impaired glucose
metabolism works on LV remodeling are still unknown. In individuals with diabetes, LV
torsion and strain have been shown to associate with a lower perfusion reserve induced
by a decreased myocardial blood flow [94]. Moreover, advanced fibrosis due to accrual
of collagen and advanced glycation end products leads to LV stiffness and subsequent
remodeling [95, 96]. As increased LV wall thickness is associated with an increased risk
for CVD [97], it is of paramount importance to identify modifiable risk factors. By our

analysis, we could further illuminate the role of prediabetes in cardiac remodeling.

We have furthermore derived specific combinations of abnormal MRI parameters that are
indicative of diabetes status by employing unsupervised clustering methods. In our anal-
ysis, the simultaneous incorporation of different organs allowed for studying systemic
impacts of diabetes. As an important result, individuals with prediabetes were assigned
to the same cluster as those with full-fledged diabetes. This indicates that unfavorable
diabetes-related alterations in organic structure and function are already present in pre-
diabetes. Moreover, our findings emphasize the important role of adipose tissue and
intrahepatic fat in glucose metabolism [98, 99]. In contrast, brain changes such as AR-
WMC were not indicative of diabetes status in our study. Particularly in elderly popula-
tions, the prevalence of WMLs is high and increasing with age, presumably due to damage
in the small vasculature, which can also be diabetes-induced [100, 101]. Recent research
suggests that the presence of WML is too crude a measure to distinguish between indi-
viduals with and without diabetes; however more refined MRI measures of WML achieve

this distinction [102].

Taken together, imaging data sizeably contribute to an intricate characterization of an in-
dividual’s phenotype, allowing for a more accurate cardiometabolic risk assessment.

5.3 Challenges and limitations

The focus of this thesis is on epidemiological questions, i.e. associations of imaging-based

markers to cardiometabolic phenotypes and risk, as opposed to questions regarding the
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technical derivation of these markers. Nevertheless, some challenges of imaging-based

data acquisition in epidemiological studies shall briefly be mentioned.

In contrast to the clinical setting, where imaging modalities are only employed when indi-
cated, and thus result in manageable numbers of images to process, in well-powered epi-
demiological studies, the number of enrolled subjects goes up to several thousand. Man-
ual evaluation of these numbers of images is impractical, therefore automated algorithms
have to be developed to achieve standardized and reproducible information extraction,
e.g. for the automated quantification of adipose tissue [103]. Additionally, by applying ad-
vanced statistical and bioinformatical methods, the data contained in these images can
be processed as mineable data instead of solely visually inspected. The emerging field
of “radiomics” has already embarked upon this task and is already supplying statistical

methods [104].

Moreover, although particularly MRI is a highly reproducible modality, imaging can be
conducted through a variety of protocols. To attain comparability within a single, e.g.
multi-centered study or comparability across different imaging studies, protocols and

methods have to be rigorously standardized to achieve sufficient harmonization.

A major concern in population-based imaging studies is the handling of incidental find-
ings, i.e. pathological findings that were not previously diagnosed and that the partici-
pant was unaware of. These findings impose certain ethical problems: On the one hand,
undifferentiated information about every finding might trigger additional follow-up for
the participant, including potentially invasive tests and procedures which can lead to dis-
comfort, reduced quality of life or put the participant at risk. On the other hand, with-
holding medically important information from the participant is ethically not feasible.
To determine a trade-off between these two sides, the severity of the finding and its med-
ical importance, as well as the participant’s preference about if or how they wish to be
informed, should be taken into account. To this aim, population-based imaging stud-

ies have installed standardized procedures how incidental findings should be handled

[42, 105].

5.4 Conclusion

Whereas risk scores based on traditional markers still capture a major part of CVD risk
burden, imaging-based phenotyping has a substantive potential to early recognize pre-
pathological cardiometabolic states. These data are ideally utilized together with other
metabolic markers, such as glycemic status, from well-characterized studies to embark
on their full potential. In the context of individualized medicine, relating imaging data

to traditional CVD risk factor data yields a powerful combination.
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Pooled Cohort Equations

Susanne Rospleszcz,' Barbara Thorand, ' Tonia de las Heras Gala," Christa Meisinger,

Rolf Holle,® Wolfgang Koenig,*>® Ulrich Mansmann,” Annette Peters

ABSTRACT

Background The Framingham Risk Score (FRS) and the
Pooled Cohort Equations (PCE) are established tools for
the prediction of cardiovascular disease (CVD) risk. In the
Western world, decreases in incidence rates of CVD were
observed over the last 30 years. Thus, we hypothesise
that there are also temporal trends in the risk prediction
performance of the FRS and PCE from 1990 to 2000.
Methods We used data from n=7789 men and women
aged 4074 years from three prospective population-
based cohort studies enrolled in Southern Germany in
1989/1990, 1994/1995 and 1999/2000. 10-year CVD
risk was calculated by recalibrated equations of the

FRS or PCE. Calibration was evaluated by percentage

of overestimation and Hosmer-Lemeshow tests.
Discrimination performance was assessed by receiver
operating characteristic (ROC) curves and corresponding
area under the curve (AUC).

Results Across the three studies, we found significant
temporal trends in risk factor distributions and predicted
risks by both risk scores (men: 18.0%, 15.4%, 14.9%;
women: 8.7%, 11.2%, 10.8%). Furthermore, also the
discrimination performance evolved differently for men
(AUC PCE: 76.4, 76.1, 72.8) and women (AUC PCE:
75.9, 79.5, 80.5). Both risk scores overestimated actual
CVD risk.

Conclusion There are temporal trends in the
performance of the FRS and PCE. Although the overall
performance remains adequate, sex-specific trends have
to be taken into account for further refinement of risk
prediction models.

BACKGROUND
Cardiovascular disease (CVD) is a leading cause of
mortality and morbidity worldwide."

To reduce the burden of CVD, prevention strate-
gies such as lifestyle counselling and treatment with
medication are called for and have to be tailored
to the population at risk. For effective prevention,
people at a high risk of CVD who would benefit
most from these strategies have to be identified.
This is often done by predicting the risk of devel-
oping CVD based on an individual’s risk factor
levels, such as age, blood pressure or serum choles-
terol levels. Risk prediction models are crucial
tools for establishing general treatment guidelines.
However, they are also used by clinicians to decide
on the best therapy for an individual patient.

A vast number of CVD risk prediction models are
available nowadays, and their number is constantly

1,6,8

growing.> Often the development of a new model is
motivated by the claim that, as existing models have
been calculated from older data, they fail to capture
the changing distribution of risk factors in the popu-
lation. Indeed, the distribution of traditional risk
factors and metabolic profiles in Western popula-
tions changed during the last decades. Specifically,
mean systolic blood pressure has decreased, prob-
ably due to increased awareness and more aggressive
treatment.’ The prevalence of smoking has decreased
with considerable variation according to region and
education status* and total cholesterol levels have
declined with age-specific and sex-specific varia-
tions.” At the same time, the prevalence of obesity
has risen substantially for both men and women.®

Additionally, total cardiovascular mortality has
been declining in the USA and Europe.” However,
it remains unclear how this shifting risk factor
distribution and reduction of overall risk translates
into changes in the performance of risk prediction
models. We therefore aimed to assess temporal
trends in traditional cardiovascular risk factors
and how their changing distribution relates to a
change in risk prediction performance. To this aim,
we analyse 10-year risks of CVD predicted by the
Framingham Risk Score (FRS)® and the Pooled
Cohort Equations (PCE).”

We hypothesise that changes in risk factor distri-
butions are reflected in a changing performance of
the CVD risk scores.

METHODS

Study sample

We used data from three population-based cohorts
that were established in the Region of Augsburg,
Germany (KORA: ‘Kooperative Gesundheitsfor-
schung in der Region Augsburg’). Time of data
collection was 1989-1990 for cohort S2, 1994-
1995 for cohort S3 and 1999-2000 for cohort
S4. Sampling methods and cohort profiles have
been described elsewhere.!® ' All cohorts were
followed up for mortality and for myocardial
infarction (MI) and stroke incidence until 2011.
For each cohort, we used 10years of follow-up to
calculate the risk scores. Participants were excluded
according to criteria for FRS and PCE as presented
in online supplementary figure 1: in particular we
only analysed subjects aged 40-74 years.

Outcome assessment
Death from CVD was defined as International Clas-
sification of Diseases, ninth revision codes 390-459

BM)
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and 798. Death certificates were obtained to determine the cause
of death.

Non-fatal MI and stroke incidence was assessed by question-
naire and validated by reviewing the medical documentation of
the participant’s physician. MI was additionally validated with
the information from the MONICA/KORA Myocardial Infarc-
tion Registry.*

Covariable assessment
Blood pressure and serum cholesterol measurements for the
S2 and S3 studies were carried out according to the MONICA
Manual as described elsewhere.'” For the S4 study, blood
pressure was measured after a 15-min rest using a validated
automatic device (OMRON HEM 705-CP). Serum total and
high-density lipoprotein cholesterol (HDL-C) were measured by
enzymatic methods (CHOD-PAP; Boehringer, Mannheim).'! '
Diabetes was defined as self-reported diabetes or use of anti-di-
abetic medication. Antihypertensive treatment was defined
according to the most recent guidelines of the German Hyper-
tension Society.'* Smoking and intake of lipid-lowering agents
was determined via questionnaire.

Statistical methods

Predicted 10-year risks were calculated according to the published
formulae for FRS and PCE®® with recalibration. Both FRS and
PCE are based on Cox proportional hazard regression models
and predict the risk of experiencing a cardiovascular event over
a 10-year period. The published formulae provide the regression
model coefficients and use risk factor mean values and baseline
survival probabilities from the original populations to derive a
risk score estimate. For our analysis, recalibration consisted of
inserting risk factor mean values and baseline survival proba-
bilities from each study into the original risk score equations,
while maintaining the original model coefficients. Thereby, the
original model structure, including sex stratification, non-linear
model terms and interaction terms are retained and within this
original framework, the recalibration only reflects the specific
properties of the sample at hand. We tested for linear trends in

baseline characteristics and predicted 10-year risks with linear
and logistic regression using orthogonal contrasts.'

Calibration of the risk scores was assessed visually by cali-
bration plots and quantitatively by Hosmer-Lemeshow y’tests,
calibration slopes and % discordance between the number of
observed and predicted events.'® Clinically relevant thresholds
of 5, 7.5, 10% and 20% were used, as well as continuous cali-
bration curves based on LOESS smoothing.'”

Discrimination performance was assessed by receiver oper-
ating characteristic (ROC) curves and their respective area
under the curve (AUC), which is equivalent to the c-statistic.'®
Differences in AUCs over time were evaluated by an unpaired
DeLong test. Additionally, we report Somer’s D statistic, which
indicates the rank correlation between predicted risk probabili-
ties and observed event rate. For relevant thresholds, sensitivity
was calculated and differences were assessed by meta-regres-
sion assuming fixed effects.'” Population-attributable frac-
tions (PAFs) of risk scores=20%or =10%as opposed to risk
scores <209% and<10%, respectively, were calculated by Levin’s
formula with Cls obtained by percentile bootstrapping. We use
the term ‘attributable’ without implying causality.

RESULTS

Trends in risk factor distributions

Table 1 shows the baseline characteristics of the participants of
all three studies.

Mean age was similar across all studies for both men and
women. There was a significant trend for increasing body mass
index (BMI) for both men and women.

Mean systolic blood pressure decreased for both men and
women, but more pronounced in women. The proportion of
men receiving antihypertensive treatment increased significantly.

There was no significant linear trend in mean HDL-C levels.
Mean total cholesterol levels and mean low-density lipoprotein
cholesterol (LDL-C) levels declined significantly for both sexes.
The proportion of both men and women receiving lipid-low-
ering treatment increased significantly.

Table 1
and S4 (1999-2000)

Baseline characteristics of participants in Kooperative Gesundheitsforschung in der Region Augsburg S2 (1989-1990), S3 (1994-1995)

Men Women

S2 S3 sS4 Linear trend S2 S3 sS4 Linear trend

n=1432 n=1332 n=1139 Estimate Pvalues n=1360 n=1322 n=1204 Estimate P values
Age, years 55.8(9.7) 56.6 (9.6) 56.0 (9.5) 0.10 0.70 55.7 (9.4) 55.4(9.7) 55.4 (9.6) -0.24 0.36
BMI, kg/m* 27.6 (3.6) 27.8(3.5) 28.03.9) 0.30 <0.05 27.0 (4.7) 27.4(4.9) 27.5(4.9) 0.34 <0.05
Systolic BP, mm Hg 138.1(18.4)  138.7(188)  136.8(18.4) -0.87 0.09 133.6 (20.2) 134.0 20.6)  127.0(19.5) -4.66 <0.05
Diastolic BP, mm Hg 83.2(11.2) 83.9(11.3) 84.7 (10.7) 1.04 <0.05 79.9 (10.8) 80.3 (10.9) 79.4(10.2)  -0.35 0.25
Total cholesterol, mg/dL 2450 (445)  238.8(42.6) 236.1(41.1) -6.29 <0.05 2459 (46.5)  237.4(42.4) 2358(41.1) -7.19 <0.05
HDL-C, mg/dL 51.6 (15.2) 48.5 (14.1) 51.5(14.2) -0.03 0.95 63.8 (15.9) 59.9 (16.8) 64.5(17.2) 0.53 0.26
LDL-C, mg/dL 155.3(40.5)  149.8(40.3)  148.4(38.9) -4.90 <0.05 152.6 (44.4) 145.6 (41.6)  141.8(40.1) -7.62 <0.05
Type 2 diabetes 83 (5.8%) 67 (5.0%) 74 (6.5%) 0.09 0.46 59 (4.3%) 43(33%) 58 (4.8%) 0.08 0.56
Antihypertensive treatment 229 (16.0%) 232 (17.4%) 218 (19.1%)  0.15 <0.05 268 (19.7%) 266 (20.1%) 266 (22.1%) 0.10 0.14
Lipid-lowering treatment 50 (3.5%) 43 (3.2%) 73 (6.4%) 0.45 <0.05 41 (3.0%) 56 (4.2%) 82 (6.8%) 0.60 <0.05
Smoking 400 (27.9%)  331(24.8%) 274(24.1%) -0.14 <0.05 219 (16.1%) 230 (17.4%) 209 (17.4%) 0.06 0.39
CVD event 177(12.4%)  139(10.4%)  119(10.4%) -0.13 0.13 60 (4.4%) 76 (5.7%) 67 (5.6%) 0.17 0.18
Fatal CVD event 106 (7.4%) 62 (4.7%) 46 (4.0%)  -0.45 <0.05 36 (2.6%) 31(2.3%)  28(2.3%) -0.01 0.61

Continuous variables are presented as arithmetic mean (SD). Categorical variables are presented as counts (%). CVD event is defined as death from CVD, non-fatal Ml and stroke.
BMI, body mass index; BP, blood pressure; CVD, cardiovascular disease; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; MI, myocardial infarction.
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Figure 1

Predicted risks by Framingham Risk Score (FRS) and Pooled Cohort Equations (PCE). On the y-axis: risk of cardiovascular disease event

in %. On the x-axis: FRS (black) and PCE (grey) for the three studies, for men (dashed lines) and women (solid lines), respectively. Displayed are the
median (filled diamond) and mean (cross) predicted risks with interquartile range as calculated by the recalibrated equations of the FRS and PCE.

Actually observed risk is indicated by a dashed line.

The prevalence of diabetes slightly increased non-linearly
for both men and women. Prevalence of smoking significantly
decreased in men and increased slightly in women.

There was no significant trend in CVD event rates, though they
slightly declined for men and increased for women. However,
fatal CVD event rates were significantly declining for men.

Trends in predicted risks of the FRS and PCE

Figure 1 shows mean and median predicted risk for both risk
scores and the actually observed event rate. Mean predicted risks
by both FRS and PCE declined significantly for men (estimate
of linear trend: both —2.3, p<0.001), but increased for women
(estimate of linear trend FRS 1.1, PCE 1.5, p<0.001).

Trends in calibration of the FRS and PCE

Both the FRS and PCE substantially overestimated actual
CVD risk. Discordance for the FRS was 46%, 48% and 42%
for men in the three studies, respectively, whereas for women
discordance was 58%, 55% and 53%. Discordance for the PCE
was 56%, 57% and 54% for men and 96%, 96% and 94% for
women. Smooth calibration plots are displayed in figure 2, and
further details are presented in online supplementary figure 2
and table 1. Overall, the FRS showed better calibration for men
and women and calibration slightly improved for both the FRS
and PCE in the three studies. Calibration slopes for the FRS
were 1.07, 1.13 and 0.97 for men and 0.99, 1.14 and 1.00 for
women, whereas calibration slopes for the PCE were 1.01, 1.11
and 0.87 for men and 0.81, 0.93 and 0.90 for women.

Trends in discrimination performance of the FRS and PCE

As shown in figure 3, for men, the discrimination performance
of both the FRS and PCE declined from the S2 to the S4 study;
however, the difference in AUC was not statistically significant
(p=0.232and 0.223, respectively). In contrast, for women

the discrimination performance increased for both the FRS
and PCE; however, the difference in AUC was not significant
(P=0.749 and 0.220, respectively). In the S4 study, the differ-
ence in AUC between men and women was statistically signifi-
cant for the PCE (p=0.02), but not for the FRS (p=0.12).

In the same vein, Somer’s D rank correlation for the FRS
decreased from 0.53 in S2 and S3 to 0.46 in S4 in men and
increased from 0.54 to 0.55 and 0.57 in women. Corresponding
values for the PCE were 0.53, 0.52 and 0.46 for men and 0.52,
0.59 and 0.61 for women, respectively.

The sensitivity at clinically relevant thresholds decreased for
men and increased for women; again for both risk scores in a
similar pattern as presented in table 2.

Trends in PAFs

The evolvement of PAFs is displayed in figure 4. For men,
the PAF of a risk score =20%or =10%declined from the S2
to the S4 study for both risk scores. For women, the PAF of a
risk score =10%increased over the three studies, whereas the
PAFs of a risk score =20% were more divergent: The PAF of an
FRS =20% was comparable in the S2 and S4 study, but the PAF
of a PCE =20% increased in the same time frame.

DISCUSSION

In this study, we evaluated temporal trends in the distribution of
traditional cardiovascular risk factors in a German population
and in the performance of two commonly employed CVD risk
scores, the FRS and the PCE. We found (i) significant trends in
risk factor distributions with declining levels of systolic blood
pressure and lipid values and increasing BMI for both men and
women, (i) significant trends in predicted risks for both FRS and
PCE, and (iii) sex-specific differences in the temporal develop-
ment of the risk scores’ performance with nominally decreasing
performance for men and increasing performance for women.

Rospleszcz S, et al. J Epidemiol Community Health 2018;0:1-7. doi:10.1136/jech-2018-211102 3
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Figure 2 Smooth calibration of the Framingham Risk Score (FRS) and Pooled Cohort Equations (PCE) in the three studies. On the x-axis: predicted
probability of cardiovascular disease (CVD) event by the respective risk score, calculated by LOESS smoothing. On the y-axis: rate of observed CVD
events. Light grey, dotted line: S2 study; medium grey, dashed-and-dotted line: S3 study, dark grey, dashed line: S4 study. This figure was created by

an adapted version of the the R function val.prob.ci.2 from Van Calster et a/."”

Overall, the FRS and the PCE evolved over time in a similar
pattern. We observed fundamental overestimation of actual
CVD risk, especially for the PCE. This has already been reported
by other studies***? and seems to indicate an inherent feature of
the design of the PCE.” We could show that calibration slightly
increased over time; however, not to a substantial extent. This
development was comparable for men and women.

Trends in predicted risks can give important hints about
future CVD development in a population. Ford" analysed
predicted CVD risks by the FRS in six consecutive 2-year cycles
of the National Health and Nutrition Examination Survey and
found decreasing predicted risks in white subjects; however,
the decrease was not significant and men and women were
combined. No data on actual CVD events were available.

In our analysis, the change in absolute numbers of predicted
risk resulted into sex-specific changes in prediction performance
of the risk scores. We observed a decline in AUC for men and an
increase for women. However, in all studies and for both men
and women, the discrimination performance of both risk scores
as measured by AUC was >70.

It has been noted that risk prediction models perform differ-
ently for men and women.”* Women develop CVD later in life
and the strength of associations of some risk factors, especially
smoking and diabetes, are different.” > In our sample, although
CVD risk was lower for women, both risk scores performed
better than for men. These findings were also reported from
other studies?” and are probably due to higher hazard ratios of
the single underlying risk factors.

Our analysis of the PAF showed that high-risk categories
(=10%, =20%) of both risk scores capture a major part of CVD
burden. For women, the PAF increased over time, supporting
our other findings of a developing better discrimination perfor-
mance of the risk models for women. Further research is needed
to disentangle the effects of the single risk factors that contribute
to the risk scores. Cheng et al, who analysed data from the ARIC
cohort, found that due to a shifting risk factor distribution the
PAF of most traditional risk factors was declining for both men
and women with profound sex differences.”

Our results support the idea that established models derived
from older population- based data still perform sufficiently well
in risk prediction, if appropriately adapted to the population at
hand.? %

We used standardised measurement techniques on indepen-
dent cohorts with the same study design and sampling scheme
with the same length of follow-up. These cohorts stem from the
same geographical area and therefore comprise the same genetic
background. This design has the advantage—compared with
using the same cohort at different time points—that we can rule
out ageing effects, survivor bias and longitudinal dependencies
of risk factor profiles in subjects.

Our study has several limitations. Most importantly, we might
have had insufficient power to discover some differences due
to the low event rate, especially in women. Replication of our
findings in a population with higher CVD event rates is therefore
needed. The possibility of residual confounding cannot be ruled
out. Additionally, we cannot exclude that different response

4 Rospleszcz S, et al. J Epidemiol Community Health 2018;0:1-7. doi:10.1136/jech-2018-211102
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Figure 3  Receiver operating characteristic (ROC) curves and area under the curve (AUC) for Framingham Risk Score (FRS) and Pooled Cohort
Equations (PCE) in the three studies. Displayed are the ROC curves and corresponding AUC when the respective risk score is used as the only predictor
for a CVD event. Light grey, dotted: S2 study; medium grey, dashed-and-dotted: S3 study; dark grey, dashed: S4 study.

rates in the three cohorts affected the distribution of the partici-
pants’ risk factors. However, potential incomplete ascertainment
of CVD events does not seem to have profound influence on
the risk scores” performance.*® Furthermore, we refrained from
reporting other common measures of model assessment, such
as the Net Reclassification Index, as this measure is mainly used
to compare an extended model to a baseline model to quan-
tify the potential improvement in risk performance, or positive
predictive values (PPVs), as these are highly dependent on the

rate of CVD events, which differ between our three cohorts, thus
rendering a comparison of PPVs invalid.

Many other CVD risk scores exist besides the FRS and PCE.
For European populations, SCORE®! is often used; however,
this score only predicts CVD mortality. Using only fatal CVD
events would have further diminished our already low event rate
(compare table 1); therefore, we did not analyse the performance
of SCORE in this study. Other commonly used risk scores such
as PROCAM,* Reynolds Risk Score*® ** and QRISK2* require

Table 2 Performance of the Framingham Risk Score (FRS) and Pooled Cohort Equations (PCE) at clinically relevant thresholds in Kooperative

Gesundheitsforschung in der Region Augsburg S2, S3 and S4

FRS PCE
7.5% 10% 20% 7.5% 10% 20%
Threshold Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% Cl Estimate 95% CI Estimate 95% CI
Men
Sensitivity S2 98.3 95.1t099.6 94.4 89.9t097.3 66.1 586t073.0 97.2 93.51099.1 94.4 89.9t097.3 75.7 68.7 to 81.8
S3 96.4 91.81098.8 89.2 82.81093.8 59.7 51.1t067.9 957 90.8 t0 98.4 89.9 83.7t094.4 65.5 56.9t0 73.3
S4 93.3 87.21097.1 83.2 75210 89.4 52.1 42810613 916 85.11095.9 86.6 79.11t092.1 60.5 51.11069.3
P values 0.079 0.008 0.054 0.085 0.068 0.015
Women
Sensitivity S2 61.7 48.2,73.9 55.0 41.610,67.9 20.0 10.8t0323 71.7 58.6 t0 82.5 61.7 4821073.9 35.0 23.1t048.4
S3 80.3 69.5, 88.5 AR 59.5 10 80.9 36.8 26.11t048.7 842 74.0t091.6 80.3 69.5t0 88.5 57.9 46.0 t0 69.1
sS4 80.6 69.1,89.2 67.2 54.6 t0 78.2 254 15510375 91.0 81.51096.6 85.1 7431092.6 478 35.41060.3
P values 0.019 0.135 0.079 0.014 0.005 0.03
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Figure 4 Trends in population-attributable fractions (PAFs). On the
y-axis: PAF of a predicted risk of = 20% (above) or = 10% (below) as
compared to a predicted risk <20% (above) or <10% (below) in % with
respective 95% Cls. On the x-axis: all three studies, men and women,
Framingham Risk Score (black), Pooled Cohort Equations (grey).

additional variables, such as family history of CVD, C-reactive
protein or measures of deprivation, which were not readily avail-
able in all of our cohorts.

In conclusion, risk models have to be modified to the popu-
lation at hand to maximise their clinical utility. Particular atten-
tion has to be paid to refining sex-specific risk predictions. Our
results show that the performance of both the FRS and the PCE

What is already known on this subject

» Risk scores based on the Framingham Equations and the
Pooled Cohort Equations are commonly used tool to predict
cardiovascular disease (CVD) risk.

» These scores rely on traditional cardiovascular risk factors
such as age, blood pressure and lipid profile.

» The distribution of these risk factors has shifted in the last
decades in Western populations and CVD incidence has
decreased.

What this study adds

» We used three independent studies to analyse the impact of
a shifting risk factor distribution on the performance of both
risk scores.

We found temporal trends in the amount of predicted risk as
well as in the discrimination performance.

We found a sex-specific temporal evolvement, with
improving discrimination performance in women and
decreasing performance in men.

These sex-specific differences should be more strongly taken
into account for the future refinement and development of
prediction models.

is susceptible to changes in the underlying risk factor distri-
butions and event rates; however, the overall performance of
the risk scores is still adequate and the underlying risk factors
capture a major part of the burden of CVD.
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Supplementary Figure 1: Flowchart of participants for the three cohort studies
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Supplementary Figure 2: Calibration of the FRS and PCE in the three studies, based on risk thresholds
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Supplementary Table 1 : Calibration measures of the two risk scores. a) Men b) Women

. . Hosmer- Hosmer-
a) MEN Risk Score Subjects, n Observed Predicted  Discordance Lemeshow Lemeshow
Events, n Events, n ,%
X2 P
S2 [0, 5) 153 0 5.8 Inf 5.8 0.215

[5,7.5)

[7.5, 10)

FRS

[10, 20)

[20, 100]

[0, 100]

[0,5)

[5,7.5)

[7.5, 10)

[10, 20)

[20, 100]
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b) Risk Score, o . . Observed Predicted  Discordance L:rfmse?:;;u L:rzse?:or;u
WOMEN % jects, Events,n  Events,n % - ,
10 19 90 4.27

[0, 5) 705

[5,7.5)

[7.5,10)

[10, 20)

[20, 100]

[0, 100]

[0, 5)

[5, 7.5)

[7.5, 10)

[10, 20)

[20, 100]

[0, 100]
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Study Importance Questions

What is already known about this subject?

- Some, but not all, abdominal and ectopic fat depots are associated to cardiovascular
disease risk.
- Abdominal and ectopic fat are metabolically highly active tissues and connected to

traditional cardiovascular risk factors in a complex interplay.

What does this study add?

- We quantify the explanatory value of traditional cardiometabolic risk factors to a
comprehensive panel of MRI-derived adipose tissue traits.

- We identify three different longitudinal risk profile trajectory clusters which
represent different risk factor burdens.

- We provide strong evidence that sustained high risk factor levels and unfavorable

risk factor trajectories are associated with high levels of ectopic adipose tissue.
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ABSTRACT

Objective: To identify associations of longitudinal trajectories of traditional cardiometabolic

risk factors with abdominal and ectopic adipose tissue depots.

Methods: We measured total abdominal, visceral, and subcutaneous adipose tissue in liter
and intrahepatic, intrapancreatic and renal sinus fat as fat fractionsby magnetic resonance
imaging (MRI) in 325 individuals without cardiovascular disease at the 3™ examination cycle
of a population-based cohort. We examined multivariate longitudinal risk profile trajectory
clusters based on measurements from the 39, 2"d (seven years prior) and 1% (14 years prior)

examination cycle.

Results: Risk factor profiles (blood pressure, lipid profile, anthropometric measurements,
HbA1c), obtained at the 3™ examination cycle, provided substantially varying explanatory
value for adipose tissue traits within a range of R?=0.26 to R?=0.87 (lowest for pancreatic fat
fraction, highest for subcutaneous adipose tissue). Longitudinally, we identified three distinct
clusters of trajectories which displayed a graded association with all adipose tissue traits after
adjustment for potential confounders (e.g. visceral adipose tissue: Bciusteri=1.301, 95%-
CI:[0.841;1.751], Bclusterm=3.321[2.741;3.901]; intrahepatic: Estimateciusterni=1.54[1.27,1.86],
Estimateciustern=2.48[1.93,3.16]. Trajectory clusters provided additional explanatory value,

beyond single point measurements.

Conclusion: The association with cardiometabolic risk factors varies between different
ectopic adipose tissues. Sustained high risk factor levels and unfavorable trajectories are

associated to high levels of adipose tissue.
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INTRODUCTION

Obesity confers an increased risk for several disease conditions, including clinical
cardiovascular disease (CVD) events and mortality as well as type 2 diabetes. Recent research

has strengthened evidence for a causal role of obesity in CVD mortality (1, 2).

Apart from visceral and subcutaneous abdominal obesity, ectopic fat depots, i.e. the
accumulation of adipose tissue in and around organs might have local as well as systemic

effects and, thereby, modulate overall CVD risk.

Easily applicable measures such as body mass index (BMI) and waist circumference (WC) are
often used as measures of adiposity. However, both BMI and WC do not reflect well the
distribution of fat in the body, nor can they adequately quantify the amount of metabolically
active adipose tissue. Although the anthropometric markers BMI and WC are correlated to
adipose tissue, the correlation is not complete, and these markers cannot explain the full
variation in adipose tissue content (3).For a more precise quantification of the amount and
distribution of adipose tissue, non-invasive imaging is increasingly utilized, including magnetic

resonance imaging (MRI).

Prior studies have indeed shown that accurate quantification of adipose tissue provides
additional value in the prediction of cardiovascular outcomes, beyond anthropometric
measures. For example, in the Dallas Heart study, MRI-derived visceral adipose tissue (VAT)
was associated with incident CVD and type 2 diabetes, independent of BMI (4, 5). Similarly, in
the Multi-Ethnic Study of Atherosclerosis, VAT, as assessed by computed tomography,

predicted CVD beyond BMI and traditional risk factors (6).
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In contrast, subcutaneous adipose tissue (SAT) seems not to be associated with CVD or to
even exhibit a protective effect(6, 7). On a parallel note, excess hepatic fat is associated with
impaired glucose tolerance (8, 9) and hypertension (10). Furthermore, a recent study from
the UK biobank reported that individuals with coronary heart disease or type 2 diabetes are

characterized by a complex interplay of different MRl measured fat compartments (11).

Several risk factors contribute to the development of adipose tissue, including lifestyle
choices like nutrition and physical activity and genetic variation (12). Furthermore,
etiologically linked traditional cardiometabolic risk factors such as age, hypertension and lipid
traits are connected to VAT, (13, 14, 15), SAT (16, 17), hepatic fat (18), pancreatic fat (19) and
renal fat (20, 21). The relation of the development of the above-mentioned traditional
cardiometabolic factors over the adult life course on different adipose tissues is not well

descried thus far.

Longitudinal trajectories of risk profiles convey more information than single time point
measurements; as these trajectories reflect more adequately the joint contribution and

evolvement of multiple risk factors over time.

In the present manuscript, we aimed to analyze the association of traditional CVD risk factors
to total adipose tissue (TAT), VAT, SAT, renal sinus fat fraction (RSFF), intrahepatic fat,
measured as hepatic fat fraction (HFF) and intrapancreatic fat, measured as pancreatic fat
fraction (PFF) derived by MRI. Specifically, we aim to i) determine risk factor trajectories over
three time points, covering 14 years of follow-up, ii) assess whether earlier or more recent
risk profiles display stronger association with MRI-determined adipose tissue traits iii)
identify distinct clusters of longitudinal risk profile trajectories, iv) quantify the association of

these clusters to adipose tissue traits.
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METHODS

Study sample

We used longitudinal data from the KORA (Cooperative Health Research in the Region of
Augsburg) S4/F4/FF4 studies, a population-based sample from Bavaria, Germany. The sampling
scheme and the examination protocols of the KORA cohorts have been described previously (22,
23). Briefly, participants were sampled in a two-step procedure. First, communities from the city
of Augsburg and two adjacent counties were chosen by cluster sampling, followed by a stratified
random sampling of participants within each community. The baseline examination of this
population-based sample (S4 survey) was conducted in 1999-2001 and included 4261
participants; the 2" examination cycle (F4) took place in 2006-2008 with 3080 participants and
the 3" examination cycle (FF4) was conducted in 2013-2014, including 2279 participants. At the
3 examination cycle, a whole-body MRI was obtained in a subsample of 400 participants without
prior CVD (8). The MRI sample followed a case-control study design and was enriched with

prediabetes and type 2 diabetes cases.

For the present analyses, a total of 75 of the 400 KORA-MRI study participants had to be excluded.
Specifically, 20 individuals had to be excluded because they did not participate in the 2"
examination cycle (F4 study) and 55 individuals had to be excluded because of missing values in
any of the MRI parameters of interest (HFF: n = 11, VAT: n =8, SAT: n =6, PFF: n =5, RSFF: n =
25). Reasons for missing values in the MRI parameters comprised insufficient image quality,

imaging artifacts and technical errors and were unrelated to each subject’s clinical covariates.

Covariate assessment
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At all three examination cycles, participants underwent a physical examination, including a blood

draw and a standardized face-to-face interview by trained examiners.

Height and weight were determined by Seca's measuring systems (Seca GmbH & Co, KG,
Hamburg, Germany) with either calibrated steelyards or digital scales. Height was quantified to
the closest 0.1 cm and weight to the closest 0.1 kg. BMI was calculated as weight in kg divided by

squared height in m.

WC was measured with an inelastic tape at the level midway between the lower rib margin and

the iliac crest. Hip circumference was measured at the level of maximal gluteal protrusion.

Blood pressure was measured on the right upper arm by OMRON type HEM-705CP oscillometric
devices. After at least 5 minutes of rest, three measurements were taken at intervals of three
minutes. The mean of the second and third blood pressure measurement was used for the
present analyses. Hypertension was defined as systolic/diastolic blood pressure above 140/90
mmHg or intake of antihypertensive medication, given that the participant was aware of being
hypertensive. Antihypertensive medication was defined according to German national guidelines

(24).

Laboratory measurements have been described previously (25). Briefly, for the assessment of
total cholesterol, LDL cholesterol and HDL cholesterol, enzymatic, photometric assays were used
at the 1texamination (S4 study) and enzymatic, colorimetric Flex assays were used at the 2" (F4)
and 3 examination cycle (FF4). HbAlc was measured by a turbidimetric inhibition immunoassay
at the 1% examination and by cation-exchange high performance liquid chromatographic,

photometric assays at the 2" and 3" examination cycle.
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Diabetes status, cigarette consumption, physical activity, alcohol intake and medication intake
were self-reported. Participants were labeled as being physically active if they reported engaging
in sports activities regularly for 21 hour per week or as physically inactive if they reported
engaging in sports activities irregularly and less than 1 hour per week. At the 3™ examination
cycle (FF4 study), glycemic status was additionally validated by an oral glucose tolerance test and
categorized into normoglycemic control, prediabetes or diabetes according to the WHO

guidelines (26).

We defined the combination of systolic blood pressure, diastolic blood pressure, BMI, WC, total
cholesterol, HDL, LDL and HbA1c at the time point of the 15t examination cycle as “remote”, at
the time point of the 2" examination cycle as “recent” and at the time point of the 3™

examination cycle as “current” risk profile, respectively.

MRI outcome assessment

The whole-body MRI protocol as well as the measurements of single adipose tissue
compartments have been detailed previously (8). In brief, all MRI scans were performed on a 3
Tesla Magnetom Skyra (Siemens Healthineers, Erlangen, Germany). All images were read by
independent radiologists blinded to the participants’ clinical covariates and standard quality

measures of inter-and intrareader variability were evaluated.

For quantification of adipose tissue compartments, volume-interpolated 3D in/opposed-phase
VIBE-Dixon sequence was performed and adipose tissues were segmented semi-automatically

(27, 28). SAT was quantified from cardiac apex to femoral head and VAT was quantified from
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diaphragm to femoral head; TAT was defined as the sum of SAT and VAT, all indicated in liter.

Figure 1 exemplifies the segmentation and quantification of VAT and SAT.

For the determination ofHFF in %, a multi-echo Dixon-VIBE T1-weighted sequence was used,
accounting for confounding T2* decay and spectral complexity of fat (10). HFF was calculated as
the mean fat fraction of right liver lobe (measured in segment VIII according to Couinaud

classification) and left liver lobe (measured in segment Il).

PFF was measured by the 3D multi-echo Dixon-VIBE sequence by drawing regions of interest into

the pancreatic head, body and tail, and was measured as proton-density fat fraction in % (29).

Additionally, based on the volume-interpolated 3D in/opposed-phase T1 weighted VIBE-Dixon
sequence, an inhouse MATLAB algorithm was used for semi-automatic segmentation of total
renal volume, renal cortex, medulla and sinus (30). RSFF was then determined by overlaying the
segmentation with the respective Water-Only and Fat-Only Dixon images, as exemplarily shown

in Figure 2.

Statistical analysis

Continuous covariates are summarized by arithmetic means and standard deviation (SD) and
categorical variables are presented as counts and percentagesand compared by repeated
measures ANOVA and Cochran’s Q-Test, respectively. MRI-derived adipose tissue outcome
variables at the 3™ examination cycle are displayed as mean and SD or median with interquartile

range. For regression modeling, HFF and PFF were log-transformed. The associations of remote,
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recent and current risk profiles with the different MRI derived adipose tissue outcome variable
(TAT, SAT, VAT, RSFF, log (HFF), log (PFF)) were evaluated by linear regression models for each
time point. The models included all risk profile variables as well as age, sex, antihypertensive
medication, lipid-lowering medication and smoking behavior measured at that time point. The
Goodness-Of-Fit statistic R?> served as a measure of how much variance in the outcome is

explained by the respective statistical model.

Longitudinal risk factor trajectories were computed by non-parametric k-means clustering using
Euclidean distance (31). The clusters were calculated for a combination of all risk factors,
resulting in a strictly multivariate cluster. Associations of the trajectory clusters with the MRI-
derived adipose tissue outcomes were evaluated by linear regression adjusted for potential
confounding variables, measured at the 3™ examination cycle. Furthermore, regression models
were additionally adjusted for i) the risk factor values, measured at the 15t examination cycle and
ii) the risk factor values, measured at the 3™ examination cycle. Given the design of the KORA
MRI study with its focus on participants with diabetes and prediabetes, we additionally adjusted
all models for validated diabetes status (control, prediabetes, diabetes), assessed at the 3™

examination cycle to avoid potential bias by the presence of undetected diabetes.

Additionally, all analyses were repeated with BMI and WC excluded from the risk profile variables
and included as outcomes. Furthermore, we constructed an ordinal logistic regression model
using the trajectory clusters as outcomes and the MRI parameters, BMI and WC as risk factors.
The ordinal logistic regression model estimates an Odds Ratio (OR) for each risk factor: The odds
of being in Cluster Il or higher (compared to Cluster |) associated with an increase of the risk

factor in one unit.




APPENDIX

Two sided p-values <0.05 were considered to indicate statistical significance. All computations
were performed with Stata 14.1 (Stata Corporation, College Station, Texas, USA) and R 3.4.1 (R

Core Team, Vienna, Austria).

RESULTS

Trends in risk factor profiles

The cardiometabolic risk factor profiles at each examination cycle are presented in Table 1. A
description of the different MRI-derived adipose tissue traits that served as outcome variables is
provided in Table 2. The sample comprised 59.4% men;mean age at baseline was 42.2 years.
Over the course of 14 years, mean systolic and diastolic blood pressure declined significantly,
while the percentage of individuals treated with antihypertensive medication increased
significantly. Body weight, WC and BMI increased (Table 1). We also observed decreasing total
cholesterol. Alcohol consumption remained stable whereas more participants quit smoking and
became physically active. Prevalence of self-reported diabetes and mean HbAlc increased

significantly.

Associations of current, recent and remote risk factor profile with adipose tissue traits

The associations of individual risk factor measurements at the three time points (1°t, 2" and 3
examination cycle) with the respective adipose tissue traits are displayed in Supplementary

Figures Sl1a-f and S2a-g. Overall, WC was most strongly associated at all time points for almost
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all adipose tissue traits. When excluding WC from the risk factor set, HDL showed the strongest
association. Figure 3 shows the ability of current, recent and remote risk profiles to explain the
variance in the different adipose tissue traits. When including all eight risk factors in the profile,
for TAT, VAT, SAT and HFF, the current risk profile, concurrent to the MRl measurements, showed
decidedly the strongest association to the outcome. At the same time, for these adipose tissue
traits the model explained a high amount of variance of the outcome (all R*>0.5, respectively).
For RSFF and PFF, the amount of variance explained by the set of traditional risk factors was
substantially less than for TAT, VAT, and SAT, and the performance of the recent and current risk

profiles was comparable.

When excluding BMI and WC from the risk factor profile, the amount of variance explained was
considerably lower for all adipose tissue traits (compare Figure 3). The highest R? values were
obtained for VAT, WC and HFF (all RZ>0.4), whereas the values for SAT and BMI were substantially

decreased.

Characterization of longitudinal risk profile trajectory clusters

We identified three distinct clusters of risk profile trajectories over a time period of 14 years, as
described in Figure 4 and Supplementary Table S2.. In essence, these clusters differ in the mean
risk factor levels at the baseline and in the trend of the risk factor development over time.
Specifically, Cluster | comprises 114 subjects (35 % of the overall sample) with the youngest age,
and the lowest mean levels of systolic and diastolic blood pressure, WC, BMI, HbAlc, total and

LDL cholesterol at baseline. In addition, Cluster | is characterized by the lowest increase of WC
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and BMI and the highest increase of lipid parameters over time. Cluster Il comprises 129 subjects
(40% of the overall sample). Mean age, mean blood pressure values, mean BMI and WC, HBA1c
and HDL reside between Cluster | and Cluster Ill. However, total cholesterol and LDL values are

higher in this cluster than in the other two clusters.

Cluster Ill, comprising 82 subjects (25% of the overall sample), has the highest mean age and
highest levels of blood pressure, BMI, and WC as well as the lowest levels of HDL. Furthermore,
BMI, WC and HbAlc increased over time with the highest % change of all clusters (see

Supplementary Table S3).

When excluding WC and BMI from the risk factor set, the resulting clusters comprised 122, 107
and 96 individuals, respectively. Cluster | had lowest blood pressure, lowest HBalc and highest
HDL at all time points. There was a gradual relation in blood pressure, HbAlc and HDL, between
the clusters, where Cluster | had the most favorable profile and Cluster Ill the most unfavorable.
Cluster lll also had the highest total cholesterol and LDL values (compare Supplementary Figure

3)

Association of longitudinal risk profile trajectory clusters to adipose tissue traits

Figure 5 shows the boxplots of the MRI-derived adipose tissue traits according to the three risk
factor clusters. A gradual increase in adipose tissue content for all traits is discernible from Cluster
| to Il (e.g TAT:meanciuster=8.6%3.4l, meanciusteri=12.3%3.5, meanciusterni=18.4%4.6l), with the

differences being statistically significant (all p<0.001, compare Supplementary Table S2).

70



APPENDIX

When excluding BMI and WC from the risk factor set, the gradual relation between the clusters
was less clear-cut (compare Supplementary Figure S4). Adipose tissue levels in Cluster | were
lower compared to the other two clusters, but levels between Cluster Il and Il were comparable
(e.g TAT:meanciuster=10.0%4.8l, meanciusteri=13.9%4.4l, meanciusterni=14.3%5.61). BMI was similar
between cluster Il and Ill (28.8 + 4.2 kg/m? and 29.4 + 4.6 kg/m?, respectively), whereas WC was

significantly different (101.3+11.4cm vs 105.3113.1cm, p=0.02).

As presented as Model 1 in Table 3, in a multivariable model adjusting for age, sex, medication
intake (antihypertensive and lipid-lowering medication), smoking and diabetes, the trajectory
clusters (coded as a categorical variable with Cluster | serving as referent) were significantly
associated to all adipose tissue outcomes. For example, Cluster Il was associated with an increase
of 1.30 | in VAT (95%-Cl:[0.84; 1.75]) and a 2.60l increase in SAT (95%-CI:[1.87; 3.34]) whereas
Cluster Il was associated with an increase of 3.32| in VAT (95%-Cl:[2.74; 3.90]) and a 6.16l
increase in SAT (95%-Cl:[5.23, 7.10]). In the same vein, Cluster Il was associated with a 52%
increase in PFF (95%-Cl:[26; 84]) and Cluster Il was associated with a 120% increase in PFF (95%-

ClI:[73, 180]).

When excluding BMI and WC from the risk factor set, associations were attenuated and less
gradual, e.g. Cluster Il was associated with an increase of 1.09 | in VAT (95%-Cl:[0.53; 1.66]) and
a 1.57l increase in SAT (95%-Cl:[0.62; 2.53]) whereas Cluster Ill was associated with an increase

of 1.091 in VAT (95%-CI:[0.48; 1.70]) and a 1.71l increase in SAT (95%-Cl:[0.68, 2.74]).

As presented as Model 2 in Table 3, after adjustment for the remote risk profile (obtained at the

15t examination cycle), associations were attenuated but remained highly statistically significantly
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associated with the various adiposity traits, except for RSFF.. As shown as Model 3 in Table 3,
when adjusting for the current risk profile (3" examination cycle, concurrent to the MRI
examination) trajectory clusters were still significantly associated with TAT, VAT and PFF. R?
measures for TAT, VAT, RSFF, HFF and PFF were higher compared to the model using the current

risk profile alone (compare Supplementary Table S5).

An ordinal logistic regression with the trajectory clusters as outcomes revealed an OR of 1.10 for
TAT (95%Cl:[1.05, 1.16]), 1.21[1.08, 1.36] for VAT, 1.13[1.06, 1.22] for SAT, 1.03[1.00, 1.06] for
RSFF, 1.05[1.02, 1.09] for HFF, 1.05[1.02, 1.09] for PFF, 1.10[1.04, 1.16] for BMI and 1.05[1.03,
1.07] for WC. This indicates that MRI derived VAT confers the most information about risk factor

profiles.
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DISCUSSION

To our knowledge, this is the first study to analyze longitudinal trajectories of multiple
cardiometabolic risk factors by identifying clusters of these risk factors, and to evaluate the
association of these longitudinal risk profile trajectory clusters with a broad panel of MRI-derived

abdominal and ectopic adipose tissue traits.

Identification of trajectory clusters

We identified three clusters, which reflect low, medium and high cumulative risk factor exposure.
The identified trajectories are based on the mean risk factor values and the change in mean risk
factor levels from the 1%t to the 2" and 3™ examination cycle. Cluster Ill is characterized both by
high risk factor values at baseline over time and by the largest gains (%change over time) in BMI,

WC, and HbA1lc.

Association of longitudinal risk factor trajectories with MRI adipose tissue traits

There are notable differences in the amount of variation of the MRI adipose tissue traits that
were explained by the individual risk factor profiles and the trajectory clusters, with a large
amount of variation being explained by the models for TAT, VAT and SAT. For RSFF and PFF only
a smaller amount of variation could be explained by traditional CVD risk factors in our sample

(Figure 1).
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Total abdominal, visceral and subcutaneous fat

VAT contributes to CVD risk e.g. by elevated lipolytic activity, increased low-grade inflammation,
and raised production of cytokines and other chemical messenger compounds (32). Our
observations of an association between longitudinal risk factor profiles and these adipose tissue
traits are in line with results from the Framingham study. There, changes in VAT and to a lesser
extent in SAT were significantly associated with changes in metabolic and cardiovascular risk
factors while adipose tissue traits where modeled as exposure and risk factors as the outcome
(33, 34). In our analyses, however, the respective MRI derived adipose tissue traits served as
outcome variables and we observed how longitudinal changes in risk factors correlate with these
traits. We also confirm that anthropometric measurements are strongly correlated to VAT and

SAT (35).

Hepatic fat fraction

The liver is a central metabolic organ and plays a critical role e.g. in triglyceride storage and
synthesis. Elevated hepatic fat is related to CVD by its involvement in the development of insulin
resistance, increased free fatty acids and chronic inflammation (36). In the CARDIA study,
unfavorable BMI trajectories over the life course (25 years) were associated with an increased
risk of developing non-alcoholic fatty liver disease (37). In line with this report, in our sample,
traditional CVD risk factors and their trajectories over 14 years explained more than half of the
variance in hepatic fat. We also found that longitudinal trajectory clusters provided additional

value beyond the current risk profile (at examination cycle 3 when also the MRI measures were
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obtained) for the prediction of hepatic fat, although the association was attenuated. As we made
similar observations with respect to VAT, this could corroborate findings from Yaskolka Meir et

al that MRI derived hepatic fat is partly modulated by VAT (38).

Pancreatic fat fraction

The role of pancreatic fat in CVD development has not been fully established (39). It is
hypothesized that accumulation of pancreatic fat may affect beta-cell function and thus
modulate insulin metabolism. Results regarding the association of pancreatic fat to impaired
glucose metabolism and type 2 diabetes are inconclusive (29, 40). Other studies showed that
pancreatic fat content is associated with serum triglyceride and nutritional fat intake (41) and
susceptible to exercise and nutrition changes (42). In our study, the CVD risk profile could only
explain approximately a quarter of the variance in pancreatic fat. However, the longitudinal
trajectories provided substantial additional informative value. This could be due to the fact that
these trajectory clusters might also reflect information on unmeasured features that contribute

to pancreatic fat.

Renal sinus fat fraction

Adipose tissue in the renal sinus can lead to increased pressure on the renal vasculature and
thereby to structural damage in the kidney (43). Associations of renal sinus fat to blood pressure
and renal function have been proposed (21, 44). In our analysis, we found that approximately a
third of the variance in renal sinus fat could be explained by traditional CVD risk factors.
Longitudinal trajectories provided no distinct additional explanatory value beyond single point

measures of these risk factors. This supports recent findings from Gepner et al. who reported

75



APPENDIX

that weight loss affected all MRl measured ectopic fat depots; however, in their study, renal sinus
fat was not modified by specific interventions such as diet and physical activity. Only reduced
VAT and hepatic fat (in response to lifestyle interventions) were independently associated with

a more favorable lipid profile (45).

Strengths and limitations

Limitations of our study include the relatively small sample size which prevents sex-stratified
analyses and the limited number of CVD risk factors analyzed. Several other risk factors, such as
triglycerides, glucose levels, inflammation markers or liver enzymes have been hypothesized to
be associated with ectopic fat depots. However, in our study, these factors were not available for
all individuals at all time points and could therefore not be included in the present analysis.
Another important issue is the role of medication for risk factor assessment. Although we
adjusted for lipid-lowering and antihypertensive treatment in our regression models, further
disentanglement of the role of medication is warranted. Furthermore, MRl measurements were
only available at the 3™ examination cycle; thus we cannot assess longitudinal changes in MRI

parameters.

A major strength of our analyses is the longitudinal study design with repeated standardized
assessment of several established CVD risk factors over a long time period, which enables us to
describe and analyze the temporal development of risk profiles. We used unbiased machine
learning algorithms to characterize the participants based on their cardiometabolic risk factor

profiles and to group them in clusters based on different longitudinal trajectories of several
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cardiometabolic risk factors. Furthermore, MRI is considered to be the gold standard for the

quantification of adipose tissue.

CONCLUSIONS

Our results characterize the differential contribution of traditional risk factors to the variation in
abdominal and ectopic adipose tissue depots. We provide strong evidence that sustained high
risk factor levels and unfavorable risk factor trajectories are associated with high levels of ectopic
adipose tissue. The trajectories are remarkably stable and emphasize the need for long-term

interventions regarding traditional cardiovascular risk factors.
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FIGURE LEGENDS

Figure 1: MRI-based assessment of VAT (red) and SAT (yellow) adipose tissue in a 46-year-old

male (VAT 6.57 1), displayed in coronar (A), sagittal (B) and axial (C) slices.

Figure 2: Exemplary image of MRI-based RSFF assessment. Displayed is the overlay of renal sinus

segmentation with Water-Only (A) and Fat-Only (B) Dixon images.

Figure 3: Goodness-of-Fit of current (3™ examination cycle), recent (2"¢ examination cycle) and
remote (1%t examination cycle) risk factor profiles to individual adipose tissue depots, as
measured by explained variance (adjusted R?). The risk factor profiles included: A, left: age, sex,
smoking, intake of hypertensive or lipid-lowering medication, systolic blood pressure, diastolic
blood pressure, BMI, WC, Total Cholesterol, HDL, LDL and HbAlc, B, right: as A, but without BMI
and without WC. TAT: Total adipose tissue, VAT: Visceral adipose tissue, SAT: Subcutaneous

adipose tissue, RSFF: Renal sinus fat fraction, HFF: Hepatic fat fraction, PFF: Pancreatic fat fraction

Figure 4: Mean risk factor levels at the 3" examination cycle (contemporary to the MRI adipose
tissue measurement), at the 2" examination cycle (recent) and at the 1% examination cycle

(remote) in the three longitudinal risk profile trajectory clusters.

Figure 5: Box plots, reflecting key measures of the distribution of the respective adipose tissue
traits in the three longitudinal risk profile trajectory clusters. TAT: Total adipose tissue, VAT:
Visceral adipose tissue, SAT: Subcutaneous adipose tissue, RSFF: Renal sinus fat fraction, HFF:

Hepatic fat fraction, PFF: Pancreatic fat fraction
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TABLES

Table 1: Cardiometabolic risk profile of the study sample (N = 325) at the time of MRI
examination (“current”, 3™ examination cycle), at the time point of the 2"¢ examination cycle,
(“recent”) and at baseline (“remote”, 15t examination cycle).

1%t examination  2"¢ examination 3" examination

cycle cycle cycle
(1999-2001) (2006-2008) (2013-2014) P
value
Men 193 (59.4%) 193 (59.4%) 193 (59.4%)
Age, years 42.2+9.2 49.2+9.2 56.2+9.2
Systolic BP, mmHg 126.5+16.4 121.3+16.5 121.1+16.4 <0.01
Diastolic BP, mmHg 81.6+10.5 76.4£9.6 75.6+10.1 <0.01
Hypertension, # of individuals 94 (28.9%) 80 (24.6%) 109 (33.5%) <0.01
.Ant.il'fypertensive Treatment, # of 25 (7.7%) 43 (13.2%) 77 (23.7%)
individuals <0.01
BMI, kg/m? 26.6 + 3.8 27.3+4.2 28.0+4.7 <0.01
Weight, kg 78.8+13.3 81.4+14.8 82.9+16.0 <0.01
Waist Circumference, cm 90.4+11.5 93.6+12.9 98.3+13.8 <0.01
Hip Circumference, cm 104.4+6.8 106.0+ 7.7 106.6 £ 8.5 <0.01
Waist-To-Hip-Ratio 09+0.1 09+0.1 09+0.1 <0.01
Total Cholesterol, mg/dL 223.8 +40.1 214.6 + 36.7 218.4 +36.9 <0.01
LDL Cholesterol, mg/dL 134.0 £ 39.0 137.6£32.8 140.4 £ 33.0 n.s
HDL Cholesterol, mg/dL 56.1+17.2 53.6+14.2 61.7£18.1 <0.01
Ratio Total Cholesterol/HDL 44+1.6 42+1.2 38+1.3 <0.01
Ratio LDL/HDL 27+1.2 2.7+1.0 25+1.0 0.01
.L|p|.dj|ower|ng Medication, # of 5 (1.5%) 20 (6.2%) 32 (9.8%)
individuals <0.01
Plapgtes mellitus, self-reported, # of 3 (0.9%) 14 (4.3%) 27 (8.3%)
individuals <0.01
HbAlc, % 55+0.5 55+0.5 5.6+0.7 0.02
Antidiabetic Medication, # of individuals 3 (0.9%) 8 (2.5%) 24 (7.4%) <0.01
Alcohol consumption, g/day 19.5+25.3 17.9+235 18.3+22.2 n.s
Smoking, # of individuals 0.04
never-smoker 121 (37.2%) 121 (37.2%) 121 (37.2%)
ex-smoker 116 (35.7%) 133 (40.9%) 140 (43.1%)
smoker 88 (27.1%) 71 (21.8%) 64 (19.7%)
Physically active, # of individuals 161 (49.5%) 192 (59.1%) 198 (60.9%) <0.01

Continuous variables are presented as mean and standard deviation with p-values calculated by
repeated measures ANOVA, indicating whether the mean values differ significantly in at least
two time points. Categorical variables are presented as counts and percentages with p-values
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calculated by Cochrans Q Test, indicating whether the percentage of subjects differ significantly
in at least two time points.
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Table 2: MRI-derived adipose tissue measures of the study sample (N = 325), obtained at the 3"
examination cycle.

N =325
TAT, | 12.6+5.3
VAT, | 45+2.7
SAT, | 8.1+3.6
RSFF, % 63.9+9.9
HFF, % (median[IQR]) 5.7 [3.0, 11.7]
PFF, % (median[IQR]) 5.4[3.4,9.2]

TAT: Total adipose tissue, VAT: Visceral adipose tissue, SAT: Subcutaneous adipose tissue, RSFF:
Renal sinus fat fraction, HFF: Hepatic fat fraction, PFF: Pancreatic fat fraction
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Table 3: Association of longitudinal risk profile trajectory clusters with different adipose tissue traits. Cluster | served as referent for

all comparisons.

Cluster Il Cluster lll
outcome Model estimate 95%-Cl p-value estimate 95%-Cl p-value
TAT 1 3.90 [2.89, 4.91] <0.01 9.49 [8.20, 10.78] <0.01 R?=0.54
2 3.21 [2.14, 4.29] <0.01 6.25 [4.73,7.77] <0.01 R?=0.65
3 0.39 [-0.26, 1.04] n.s 0.96 [0.09, 1.82] 0.03 R?=0.89
VAT 1 1.30 [0.84,1.75] <0.01 3.32 [2.74, 3.90] <0.01 R?=0.63
2 1.16 [0.63, 1.69] <0.01 2.62 [1.87,3.37] <0.01 R?=0.66
3 0.17 [-0.30, 0.65] n.s 0.90 [0.26, 1.53] <0.01 R?=0.76
AT 1 2.60 [1.87,3.34] <0.01 6.16 [5.23,7.10] <0.01 R?=0.48
2 2.05 [1.30, 2.81] <0.01 3.63 [2.56, 4.70] <0.01 R?=0.63
3 0.22 [-0.26, 0.70] n.s 0.06 [-0.59, 0.71] n.s R?=0.87
RSFF 1 3.39 [1.02, 5.76] <0.01 3.20 [0.18, 6.22] 0.04 R?=0.29
2 247  [-0.41,5.35] n.s 031 [-3.77, 4.39] n.s R?=0.29
3 0.19 [-2.80, 3.18] n.s -2.28 [-6.28,1.72] n.s R?=0.33
HEE 1 1.54 [1.27,1.86] <0.01 2.48 [1.93, 3.16] <0.01 R?=0.43
2 1.51 [1.21, 1.90] <0.01 2.23 [1.62,3.03] <0.01 R?=0.47
3 1.14 [0.91, 1.43] n.s 1.32 [0.98, 1.79] n.s R?=0.53
PEF 1 1.52 [1.26, 1.84] <0.01 2.20 [1.73, 2.80] <0.01 R?=0.24
2 1.52 [1.21, 1.92] <0.01 1.82 [1.32,2.51] <0.01 R?=0.26
3 1.40 [1.10, 1.79] <0.01 1.58 [1.15, 2.20] <0.01 R?=0.27

Estimates are derived from linear regression model. Estimates for TAT, VAT; SAT and renal sinus fat are given as B-coefficients.
Estimates for hepatic and pancreatic fat are back-transformed from log-transformation and are therefore given as %change of the
geometric mean. Model 1: adjusted for age, sex, antihypertensive medication (3¢ examination cycle), lipid-lowering medication (3™
examination cycle), smoking status (3" examination cycle), validated diabetes (3" examination cycle). Model 2: as Model 1, plus
adjusted for remote (1%t examination cycle) risk profile. Model 3: as Model 1, plus adjusted for current (3" examination cycle) risk
profile.
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Supplementary Table S1: Cardiometabolic risk profile of the study sample (N = 325) at the time of

MRI examination (“current”, 3rd examination cycle), at the time point of the 2nd examination

cycle, (“recent”) and at baseline (“remote”, 1st examination cycle), stratified by men and women.

S4 F4 FF4
(1999-2001) (2006-2008) (2013-2014) p-
value
Men 193 (59.4%) 193 (59.4%) 193 (59.4%)
Age, years 42.2+9.2 49.2+9.2 56.2+9.2
Men 42.1+93 49.1+93 56.1+9.3
Women 42.4+9.0 49.4£9.0 56.4+9.0
p-value men/women n.s n.s n.s
Systolic BP, mmHg 126.5+16.4 121.3£16.5 121.1+16.4 <0.01
Men 131.4+14.7 125.8+15.4 1259 +16.2 <0.01
Women 119.4+16.3 114.7 £15.9 114.1+14.2 0.01
p-value men/women <0.01 <0.01 <0.01
Diastolic BP, mmHg 81.6 £ 10.5 76.4+9.6 75.6 £10.1 <0.01
Men 83.8+10.2 78.2+9.4 77.6 £10.6 <0.01
Women 78.4+10.0 73.8+9.3 726+8.4 <0.01
p-value men/women <0.01 <0.01 <0.01
;',Z;’ertens'°”' # of subjects 94 (28.9%) 80 (24.6%) 109 (33.5%) w001
Men 63 (32.6%) 52 (26.9%) 73 (37.8%) <0.01
Women 31 (23.5%) 28 (21.2%) 36 (27.3%) n.s
p-value men/women n.s n.s n.s
:r;tf':m:zte:(sx Treatment, 25 (7.7%) 43 (13.2%) 77 (23.7%) w00l
Men 8 (4.1%) 23 (11.9%) 43 (22.3%) <0.01
Women 17 (12.9%) 20 (15.2%) 34 (25.8%) <0.01
p-value men/women <0.01 n.s n.s
BMI, kg/m2 26.6+3.8 27.3+4.2 28.0+4.7 <0.01
Men 26.9+3.1 27.6+3.7 283+4.1 <0.01
Women 26.1+4.7 26.8+4.9 27.5+5.4 n.s
p-value men/women n.s n.s n.s
Weight, kg 78.8+13.3 81.4+14.8 82.9+16.0 <0.01
Men 85.0+10.1 88.0+12.4 89.6 £ 13.5 <0.01
Women 69.6 +12.2 719 +12.7 73.1+14.3 n.s
p-value men/women <0.01 <0.01 <0.01
Waist Circumference, cm 90.4+11.5 93.6+12.9 98.3+13.8 <0.01
Men 95.8+8.5 98.7£10.3 103.2+11.6 <0.01
Women 82.5+10.9 86.3+12.7 91.1+13.6 <0.01
p-value men/women <0.01 <0.01 <0.01
Hip Circumference, cm 104.4+6.8 106.0+ 7.7 106.6 £ 8.5 <0.01
Men 104.8+5.5 106.5+6.7 106.7+7.1 <0.01
Women 103.7+8.3 105.3+9.0 106.6 £ 10.2 0.04
p-value men/women n.s n.s n.s
Waist-To-Hip-Ratio 09+0.1 09+0.1 09+0.1 <0.01

S1-
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Men

Women

p-value men/women
Total Cholesterol, mg/dL

Men

Women

p-value men/women
LDL Cholesterol, mg/dL

Men

Women

p-value men/women
HDL Cholesterol, mg/dL

Men

Women

p-value men/women
Ratio Total Cholesterol/HDL

Men

Women

p-value men/women
Ratio LDL/HDL

Men

Women

p-value men/women
Lipid-lowering Medication, #
of subjects (%)

Men

Women

p-value men/women
Diabetes mellitus, # of
subjects (%)

Men

Women

p-value men/women
HbAlc, %

Men

Women

p-value men/women
Antidiabetic Medication, # of
subjects (%)

Men

Women

p-value men/women
Alcohol consumption, g/day

Men

Women

p-value men/women
Smoking, # of subjects (%)

never-smoker

09+0.1
0.8+0.1
<0.01
223.8+40.1
227.1£40.5
218.9+39.3
n.s
134.0+39.0
140.0£38.5
125.1+38.1
<0.01
56.1+17.2
499+13.6
65.1+17.9
<0.01
44+1.6
49+1.7
3611
<0.01
2.7+1.2
3.0+1.2
21+10
<0.01

5(1.5%)

3 (1.6%)
2 (1.5%)
n.s

3(0.9%)

1 (0.5%)
2 (1.5%)
n.s
55+0.5
5405
5.5+0.4
n.s

3(0.9%)

1(0.5%)
2 (1.5%)
n.s
19.5+25.3
26.6 +28.6
9.0+13.9
<0.01

121 (37.2%)

_2-

0.9+0.1
0.8+0.1
<0.01
214.6 +36.7
213.0+35.9
216.9+37.9
n.s
137.6+32.8
139.4+31.2
134.9+35.0
n.s
53.6+14.2
483+11.4
61.4+14.4
<0.01
4.2+1.2
46+1.2
3.7+10
<0.01
27+10
3.0+£0.9
2.3+09
<0.01

20 (6.2%)

16 (8.3%)
4 (3.0%)
n.s

14 (4.3%)

8 (4.1%)
6 (4.5%)
n.s
5.5%0.5
55+0.6
55%0.5
n.s

8(2.5%)

5 (2.6%)
3(2.3%)
n.s
17.9+23.5
25.0+26.9
7.5+10.9
<0.01

121 (37.2%)

1.0+0.1
0.9+0.1
<0.01
218.4+36.9
217.5+38.8
219.7 +33.9
n.s
140.4+33.0
143.3+34.0
136.3+31.1
n.s
61.7+18.1
55.0+14.9
71.3+18.1
<0.01
3.8+13
42+1.4
3.3+09
<0.01
25%+1.0
28+1.1
2.1+0.8
<0.01

32 (9.8%)

19 (9.8%)
13 (9.8%)
n.s

27 (8.3%)

17 (8.8%)
10 (7.6%)
n.s
5.6+0.7
5.6+0.9
5.6+0.5
n.s

24 (7.4%)

14 (7.3%)
10 (7.6%)
n.s
18.3+22.2
25.3+24.8
8.1+11.7
<0.01

121 (37.2%)

<0.01
<0.01

<0.01
<0.01
n.s

n.s
n.s
0.02

<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

0.01
0.05
0.02

<0.01
<0.01
<0.01

<0.01
<0.01
<0.01

0.02
0.05
n.s

<0.01
<0.01
<0.01

n.s.
n.s.

n.s

0.04
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Men 65 (33.7%) 65 (33.7%) 65 (33.7%)
Women 56 (42.4%) 56 (42.4%) 56 (42.4%)
ex-smoker 116 (35.7%) 133 (40.9%) 140 (43.1%)
Men 74 (38.3%) 84 (43.5%) 90 (46.6%)
Women 42 (31.8%) 49 (37.1%) 50 (37.9%)
smoker 88 (27.1%) 71 (21.8%) 64 (19.7%)
Men 54 (28.0%) 44 (22.8%) 38 (19.7%)
Women 34 (25.8%) 27 (20.5%) 26 (19.7%)
p-VaIUe men/women n.s n.s n.s
::gjse'ccil"(';)cwe' f# of 161 (49.5%) 192 (59.1%) 198 (60.9%) w001
Men 99 (51.3%) 115 (59.6%) 110 (57.0%) n.s.
Women 62 (47.0%) 77 (58.3%) 88 (66.7%) <0.01
p-value men/women n.s n.s n.s
_3-
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Supplementary Figure S1: Association of individual risk factor measurements, obtained at
the 1%, 2" and 3™ examination cycle, with different MRI derived adipose tissues

(obtained at the 3" examination cycle).

Displayed are B-coefficients from a linear regression model adjusted for age, sex, smoking,
intake of hypertensive or lipid-lowering medication and all risk profile variables at the
respective time point. Risk profile variables were standardized (risk factor — mean(risk

factor))/sd(risk factor) before analysis.
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Supplementary Figure S1a: Associations of individual risk factor measurements at the 1%,
2"d and 3'Y examination cycle with Total adipose tissue (TAT).
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Supplementary Figure S1b: Associations of individual risk factor measurements at the 1%,
2"d and 3! examination cycle with Visceral adipose tissue (VAT).
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Supplementary Figure S1c: Associations of individual risk factor measurements at the 1%,
2"d and 3'Y examination cycle with Subcutaneous adipose tissue (SAT).
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Supplementary Figure S1d: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with Renal sinus fat fraction (RSFF).
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Supplementary Figure Sle: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with hepatic fat fraction (HFF).
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Supplementary Figure S1f: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with pancreatic fat fraction (PFF).
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Supplementary Figure S2: Association of six individual risk factor measurements, obtained
at the 1%, 2"Y and 3"! examination cycle, with different MRI derived adipose tissues and

BMI and WC (obtained at the 3¢ examination cycle).

Displayed are B-coefficients from a linear regression model adjusted for age, sex, smoking,
intake of hypertensive or lipid-lowering medication and the following risk profile variables at
the respective time point: systolic blood pressure, diastolic blood pressure, HbAlc, total
cholesterol, HDL cholesterol, LDL cholesterol. Risk profile variables were standardized (risk

factor — mean(risk factor))/sd(risk factor) before analysis.
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Supplementary Figure S2a: Associations of individual risk factor measurements at the 1%,
2"d and 3'Y examination cycle with Total adipose tissue (TAT).
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Supplementary Figure S2b: Associations of individual risk factor measurements at the 1%,
2"d and 3! examination cycle with Visceral adipose tissue (VAT).
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Supplementary Figure S2c: Associations of individual risk factor measurements at the 1%,
2"d and 3'Y examination cycle with Subcutaneous adipose tissue (SAT).
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Supplementary Figure S2d: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with Renal sinus fat fraction (RSFF).
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Supplementary Figure S2e: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with hepatic fat fraction (HFF).
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Supplementary Figure S2f: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with pancreatic fat fraction (PFF).
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Supplementary Figure S2g: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with Body Mass Index (BMI).
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Supplementary Figure S2h: Associations of individual risk factor measurements at the 1st,
2nd and 3rd examination cycle with Waist Circumference (WC).
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Supplementary Table S2: Risk factor values at (3™ examination cycle; contemporary to the
MRI measurement), at the 2"® examination cycle (recent) and at the 1 examination cycle

(remote) in the three longitudinal risk profile trajectory clusters.

Cluster | Cluster I Cluster Il p-value
<
5
£ N=114 N =129 N =82
Ig
%male 39 48 (42.1%) 82 (63.6%) 63 (76.8%) <0.01
Age, years 3rd 51.6+7.9 58.4+8.9 59.2+8.9 <0.01
1t 117.3+13.8 127.8+12.1 137.4+18.4 <0.01
. M 112.4+14.1 122.2+143 132.2+16.0 <0.01
Systolic BP, mmHg
3 110.6 £12.8 123.8+14.6 131.4+15.6 <0.01
A%  -5.6[-11.7,1.1] -3.2[-10.5, 3.1] -3.1[-9.6, 3.2] n.s
1t 76.2+89 82.0+8.3 88.6 +11.3 <0.01
o 2 71.2+£8.1 773+8.38 82.3+9.0 <0.01
Diastolic BP, mmHg o
3" 70.1+7.2 77.4+9.5 80.3+11.0 <0.01
A%  -6.1[-13.5,-0.6] -6.5[-13.1, 2.6] -8.0[-16.9, 0.9] n.s
1t 194.0+29.0 244.6 +£35.6 232.3+354 <0.01
nd + + + .
Total Cholesterol, mg/dL 2! : 190.2 £ 28.3 237.6+30.0 212.3+34.1 <0.01
3" 199.6 £ 28.4 241.0+32.6 209.0+35.0 <0.01
A%  3.8[-4.3,12.8] 0.8 [-9.0, 8.6] -9.9 [-16.8, -0.4] <0.01
1t 104.6 £ 26.3 155.1+35.8 141.6 £33.3 <0.01
M 113.7+234 158.7 £ 25.5 137.4+£315 <0.01
LDL, mg/dL J
3" 120.5+22.7 161.8 + 28.2 134.5+32.3 <0001
A%  17.1[2.0,35.2] 7.6 [-5.4,22.8] -3.1[-12.4,9.1] <0.01
1% 621187 57.3+15.2 4581128 <0.01
nd + +
HDL, mg/dL 2 ) 58.4+16.4 544+12.1 45.8+10.4 <0.01
3" 69.5 +20.2 61.2+14.4 51.4+14.9 <0.01
A%  14.6[0.7, 26.0] 8.4[-6.9, 23.3] 11.0 [-2.0, 22.3] n.s
1t 23.9+238 26.2+23 30.8+3.2 <0.01
2 244+29 26.9+2. 0t3. <0.01
BMI, ke/m? 6.9+2.8 32.0+£3.6
3 249+3.3 27.6+3.2 329+43 <0.01
A%  3.2[-2.4,8.8] 4.3[0.7, 8.8] 7.1[0.2, 13.5] 0.04
1t 81.8+9.5 90.1+7.7 102.7+7.4 <0.01
- 2™ 83.8+10.1 93.0+7.2 108.3+9.2 <0.01
Waist Circumference, cm d
3r 87.9+10.7 98.0+ 8.5 113.3+10.1 <0.01
A%  6.3[1.1,12.0] 7.9(3.7,13.1] 10.2 [4.8, 16.3] 0.03
1t 54+04 5.4+03 5.6+0.7 <0.01
nd + + + .
HbALC, % 2d 53+03 5.4+03 5.8+0.8 <0.01
3" 5304 5.5+0.4 6.1+1.2 <0.01
A% -1.1[-6.0,4.0] 1.4[-4.4,6.2] 5.9 [-2.4,12.4] <0.01
1t 19+0.8 29+11 34+13 <0.01
LDL to HDL ratio 2nd 2.1+0.8 3.1+0.9 3.1+0.9 <0.01
3¢ 19+07 2.8+1.0 2.8+1.1 <0.01
1t 3.4+1.0 46+1.4 55+1.8 <0.01
-13-
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Total Cholesterol to HDL

ratio 2™ 35%09 46+1.1 4.8+1.2 <001
3¢ 31108 42+1.2 44+14 <0.01
15t 1(0.9%) 2 (1.6%) 2 (2.4%) n.s
Lipid-lowering Medication 2™ 2 (1.8%) 9 (7.0%) 9 (11.0%) 0.02
34 3(2.6%) 14 (10.9%) 15 (18.3%) <0.01
. ) 1t 1(0.9%) 9 (7.0%) 15 (18.3%) <0.01
Antihypertensive ’
o 2" 6 (5.3%) 15 (11.6%) 22 (26.8%) <0.01
medication
3¢ 13(11.4%) 29 (22.5%) 35 (42.7%) <0.01
Validated Glycemic Status <0.01
Normoglycemic 39 102 (89.5%) 81 (62.8%) 22 (26.8%)
Prediabetes 34 10(8.8%) 37 (28.7%) 30 (36.6%)
Diabetes 34 2(1.8%) 11 (8.5%) 30 (36.6%)

Risk factor values at each time point are presented as arithmetic mean with standard
deviation. A% is calculated as (value_[3™ examination cycle]-value_[15texamination
cycle])/value_[1%texamination cycle]*100 and is presented as median with 15t and 3™
quartile. P-values from t-test or Wilcoxon rank test, where appropriate. Additional
information for lipid-lowering medication, antihypertensive medication and validated
glycemic status at the time point of the 3™ examination cycle is given as counts and
percentages.

-14 -
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Supplementary Figure S3: Mean risk factor levels at the 3™ examination cycle (contemporary to the MRI adipose tissue measurement), at the
2" examination cycle (recent) and at the 1% examination cycle (remote) in the three longitudinal risk profile trajectory clusters, when BMI and

WC are not used to derive the clusters.
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Supplementary Figure S4: Box plots, reflecting key measures of the distribution of the respective adipose tissue traits in the three longitudinal
risk profile trajectory clusters, when BMI and WC are not used to derive the clusters, but counted as outcomes. TAT: Total adipose tissue, VAT:
Visceral adipose tissue, SAT: Subcutaneous adipose tissue, RSFF: Renal sinus fat fraction, HFF: Hepatic fat fraction, PFF: Pancreatic fat fraction,

BMI: Body Mass Index, WC: Waist Circumference.
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Supplementary Table S3: Key measures of the different adipose tissue traits in the three longitudinal risk profile trajectory clusters.

Values are presented as arithmetic mean +/- SD or median with IQR: interquartile range (1° quartile, 3" quartile).

Cluster | Cluster Il Cluster 11l p-value
TAT, | 8634 12335 184+ 4.6 <0.01
VAT, | 25+1.7 46+1.9 73+22 <0.01
SAT, | 6.2+24 7.8+29 111+41 <0.01
RSFF, % 59.2+11.2 65.9 £8.1 67.3+8.1 <0.01
HFF, % (median[IQR]) 2.9[2.0,4.9] 5.9(3.9,10.8] 13.4(7.9,23.0] <0.01
PFF, % (median [IQR]) 3.7[2.3,5.7] 5.9[4.3,9.2] 10.7[5.0, 16.3] <0.01

TAT: Total adipose tissue, VAT: Visceral adipose tissue, SAT: Subcutaneous adipose tissue, RSFF: Renal sinus fat fraction, HFF: Hepatic fat
fraction, PFF: Pancreatic fat fraction
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Supplementary Table S4: Association of longitudinal risk profile trajectory clusters with different adipose tissue traits, when BMI and WC are
not used to derive the clusters. Cluster | served as referent for all comparisons.

Cluster Il Cluster 11l

outcome Model estimate 95%-Cl p-value estimate 95%-Cl p-value R?

1 2.67 [1.30, 4.03] <0.01 2.80 [1.33, 4.28] <0.01 0.28

TAT 2 2.56 [0.91, 4.22] <0.01 2.46 [0.83, 4.09] <0.01 0.30
3 0.94 [-0.65, 2.54] 0.25 0.14 [-1.50, 1.79] 0.86 0.36

1 1.09 [0.53, 1.66] <0.01 1.09 [0.48, 1.70] <0.01 0.51

VAT 2 1.00 [0.32, 1.68] <0.01 0.83 [0.16, 1.51] 0.02 0.53
3 0.52 [-0.14, 1.18] 0.12 0.15 [-0.53, 0.83] 0.66 0.56

1 1.57 [0.62, 2.53] <0.01 1.71 [0.68, 2.74] <0.01 0.24

SAT 2 1.57 [0.40, 2.74] 0.01 1.63 [0.48, 2.78] 0.01 0.25
3 0.42 [-0.71, 1.56] 0.46 -0.01 [-1.18, 1.16] 0.99| 0.30

1 4.30 [1.77, 6.83] <0.01 2.92 [0.19, 5.65] 0.04 0.29

RSFF 2 4.14 [1.01, 7.26] 0.01 1.80 [-1.28, 4.89] 0.25 0.29
3 2.75 [-0.36, 5.86] 0.08 1.27 [-1.93, 4.46] 0.44 0.31

1 0.34 [0.12, 0.55] <0.01 0.34 [0.10, 0.57] 0.01 0.36

HFF 2 0.29 [0.03, 0.55] 0.03 0.26 [0.01, 0.52] 0.05 0.38
3 0.17 [-0.09, 0.42] 0.21 0.02 [-0.24, 0.29] 0.87 0.41

1 0.21 [-0.01, 0.42] 0.06 0.31 [0.07, 0.54] 0.01 0.16

PFF 2 0.16 [-0.11, 0.42] 0.24 0.27 [0.01, 0.53] 0.04 0.16
3 0.10 [-0.17, 0.36] 0.48 0.19 [-0.08, 0.46] 0.17 0.16

1 1.90 [0.64, 3.17] <0.01 2.27 [0.91, 3.64] <0.01 0.21

BMI 2 1.83 [0.31, 3.34] 0.02 2.05 [0.55, 3.54] 0.01 0.25
3 0.36 [-1.13, 1.84] 0.64 -0.12 [-1.64, 1.40] 0.88 0.29

wcC 1 6.48 [3.24,9.73] <0.01 8.13 [4.62,11.63] <0.01 0.39
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2 6.96 [3.06, 10.86] <0.01 7.30 [3.46, 11.15] <0.01| 0.42

3 2.99 [-0.85, 6.82] 0.13 2.04 [-1.91, 5.98] 031| 045
Estimates are derived from linear regression model. Estimates for TAT, VAT; SAT and renal sinus fat are given as B-coefficients. Estimates for
hepatic and pancreatic fat are back-transformed from log-transformation and are therefore given as %change of the geometric mean. Model
1: adjusted for age, sex, antihypertensive medication (3rd examination cycle), lipid-lowering medication (3rd examination cycle), smoking
status (3rd examination cycle), validated diabetes (3rd examination cycle). Model 2: as Model 1, plus adjusted for remote (1st examination
cycle) risk profile. Model 3: as Model 1, plus adjusted for current (3rd examination cycle) risk profile.
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Supplementary Table S5: Goodness of Fit as measured by explained variance (adjusted R?) of different models.

Predictor variables in model

remc'ote recent risk  current risk . traj clusters  traj clusters
risk ) ) traj clusters

) profile profile + remote + current

profile alone . ) . "
alone alone risk profile  risk profile

outcome alone

TAT 0.57855 0.74993 0.88847 0.54222 0.65176 0.88946
VAT 0.61280 0.69311 0.75721 0.62927 0.66006 0.76312
SAT 0.57030 0.73082 0.86844 0.48148 0.63180 0.86804
RSFF 0.28550 0.31595 0.32937 0.28467 0.28631 0.33040
HFF 0.43344 0.50097 0.53093 0.43124 0.47394 0.53285
PFF 0.21882 0.25570 0.25369 0.24432 0.25740 0.27140

All models are adjusted for age, sex, antihypertensive medication, lipid-lowering medication and smoking. Note that the values in the first three columns are
graphically displayed in Figure 1 in the main document. TAT: Total adipose tissue, VAT: Visceral adipose tissue, SAT: Subcutaneous adipose tissue, RSFF: Renal
sinus fat fraction, HFF: Hepatic fat fraction, PFF: Pancreatic fat fraction

-20-
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Abstract

Background: Left ventricular (LV) hypertrophy and changes in LV geometry are associated with increased
cardiovascular mortality. Subjects with type 2 diabetes have an increased risk of such alterations in cardiac
morphology. We sought to assess the association of glycemic status and LV wall thickness measured by cardiac
magnetic resonance (CMR), and potential interactions of hypertension and diabetes.

Methods: CMR was performed on 359 participants from a cross-sectional study nested in a population-based
cohort (KORA FF4) free of overt cardiovascular disease. Participants were classified according to their glycemic
status as either control (normal glucose metabolism), prediabetes or type 2 diabetes. Segmentation of the left
ventricle was defined according to the American Heart Association (AHA) 16-segment model. Measurements of
wall thickness were obtained at end-diastole and analyzed by linear regression models adjusted for traditional
cardiovascular risk factors.

Results: LV wall thickness gradually increased from normoglycemic controls to subjects with prediabetes and
subjects with diabetes (88+ 1.4 vs 9.9+ 1.4 vs 10.5+ 1.6 mm, respectively). The association was independent of
hypertension and traditional cardiovascular risk factors (B-coefficient: 0.44 mm for prediabetes and 0.70 mm for
diabetes, p-values compared to controls: p=0.007 and p = 0.004, respectively). Whereas the association of glycemic
status was strongest for the mid-cavity segments, the association of hypertension was strongest for the basal
segments.

Conclusion: Abnormal glucose metabolism, including pre-diabetes, is associated with increased LV wall thickness
independent of hypertension.

Keywords: Cardiac magnetic resonance imaging, Prediabetes, Diabetes, Left ventricular wall thickness, 16-segment
model
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Background

Abnormal cardiac morphology, such as left ventricular
(LV) hypertrophy and altered geometry, represents a risk
factor for increased cardiovascular mortality and
morbidity [1, 2].

Increased LV wall thickness is considered as an adaptive
response to augmented wall stress caused by pressure
overload. Short-term increase in wall thickness can there-
fore be regarded as a beneficial adaptation in order to
maintain oxygen demand and contractile function of the
heart [3]. However, a persistent increase in wall thickness
leads to impaired myocardial relaxation and subsequently
to decreased diastolic function, [4] which is associated
with diastolic heart failure and other adverse cardiovascu-
lar outcomes [5]. The exact pathophysiological pathways
of the transition from compensatory response to a detri-
mental chronic condition are not yet fully understood.

Chronic hypertension and the resulting increased
hemodynamic load are a major risk factor for cardiac re-
modeling. However, metabolic factors, including diabetes
status, play an important role [6-9]. Multiple studies
have used echocardiography to analyze the potential im-
pact of glycemic status on measures of LV mass and
geometric patterns. Although most studies found higher
values of LV mass in people with abnormal glucose me-
tabolism, these associations were often attenuated by the
presence of other traditional cardiovascular risk factors,
especially elevated blood pressure [10-15]. Moreover,
the prognostic utility of LV mass for CVD events in
people with diabetes also depends on other metabolic
factors [16—-18].

These findings raise the question whether these mea-
surements of LV mass and geometric patterns are de-
tailed enough to describe the complex interplay between
glycemic status and blood pressure on cardiac structure.
Cardiac magnetic resonance imaging (CMR) has now
become the gold standard for the measurement of myo-
cardial mass and volumes [19, 20] and delivers a more
detailed characterization of cardiac morphology than
echocardiography, thereby allowing more precise in-
sights into the mechanisms of LV remodeling.

In our initial analyses, using CMR to derive measures
of LV geometry and function, we had observed an
increased myocardial mass in subjects with abnormal
glucose metabolism, but the difference disappeared after
adjustment for major cardiovascular risk factors [21].
We therefore aim to elucidate the impact of glycemic
status on regional LV remodeling and further analyze its
potential interaction with blood pressure.

Methods

Study sample

The study sample is a subsample of the second
follow-up of the population-based KORA (“Cooperative
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Health Research in the Region of Augsburg”) S4 cohort
(KORA FF4). The major focus of the substudy is the
analysis of subclinical cardiovascular disease by
whole-body magnetic resonance imaging (MRI).

Recruitment and eligibility criteria for the KORA stud-
ies have been described elsewhere [22]. The KORA FF4
study was conducted between 2013 and 2014 and in-
cluded 2279 of the originally recruited 4261 KORA S4
participants. Of these, 400 subjects participated in the
MRI substudy who were eligible and willing to undergo
whole-body MRI. The detailed participant flow and
exclusion criteria have been described previously [21].

Additionally, we excluded 31 subjects with incomplete
measurements of any AHA segment due to low image
quality and subsequently excluded 10 subjects with vis-
ible Late Gadolinium Enhancement.

Covariate assessment

Glycemic status was defined as known diabetes, either
self-reported or defined by current use of glucose-lowering
medication, and in participants without known dia-
betes, it was determined by a standard 2-h oral
glucose tolerance test (OGTT). According to the 1999
WHO criteria [23], subjects with fasting serum
glucose levels >7.0 mmol/l or OGTT 2-h serum glu-
cose levels >11.1 mmol/l were also classified as hav-
ing diabetes. Isolated impaired fasting glucose (ilFG)
was defined as fasting glucose 26.1 but <6.9 mmol/l
and 2-h glucose < 7.8 mmol/l. Isolated impaired glucose
tolerance (iIGT) was defined as fasting glucose <
6.1 mmol/l and 2-h glucose >7.8 but <11.1 mmol/l.
Subjects with ilFG, iIGT or with both conditions were
classified as having prediabetes. Subjects with fasting
glucose < 6.1 mmol/l and 2-h glucose < 7.8 mmol/l were
considered controls.

Hypertension was defined as current antihypertensive
treatment and/or systolic/diastolic blood pressure above
140/90 mmHg. Prehypertension was defined as systolic/
diastolic blood pressure above 120/80 mmHg. Subjects
were classified as smokers if they reported current regular
or sporadic cigarette smoking. Cholesterol, serum glucose,
serum insulin and Hbalc were determined by standard
methods as described in Additional file 1: Text S1.

CMR outcome assessment
Magnetic resonance imaging was performed at a 3 Tesla
Magnetom Skyra (Siemens AG, Healthcare Sector,
Erlangen Germany) using a 18 channel body coil in
combination with the table-mounted spine matrix coil.
The whole-body MRI protocol comprised several se-
quences as described previously [21].

Imaging of cardiac function and morphology was
performed using cine steady-state free precession
(cine-SSFP) sequences in the short axis with a stack of
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10 layer and 25 phases per cardiac cycle as well as in a
4-chamber view (echo time 1.46 ms, repetition time
29.97 ms, in-plane voxel size 1.5x 1.5 mm, flip angle
62-63°, field-of-view 297 x 360 mm, matrix size 240 x
160 mm, slice thickness 8 mm).

The cine-SSFP sequences were then analyzed
semi-automatically using cvi42 software (Circle Cardio-
vascular Imaging, Calgary, Canada) by two readers un-
aware of the subject’s glycemic status and all other
clinical covariates. In the 4-chamber view, apex and base
of the LV were first manually selected, followed by auto-
matic border detection of the LV endocardial and epicar-
dial border in the short axis. Borders were corrected
manually, if necessary. The basal slice was selected when
at least 50 % of the LV cavity was surrounded by myo-
cardium at end-diastole. Papillary muscles and trabecu-
lations were excluded from the myocardial area and
included in the blood pool. To assess intraobserver
agreement, measurements of 25 randomly chosen sub-
jects were repeated by the first reader. Interobserver
agreement was assessed on 52 subjects who were mea-
sured by the first and the second reader. Intra- and In-
terobserver agreement were calculated by the Intraclass
Correlation Coefficient (ICC).

Mean wall thickness was measured at the end of
diastole for each segment according to the American
Heart Association (AHA) 16-segment model [24]. Mea-
surements of the single segments are visualized in a
polar plot according to glycemic status. For further stat-
istical analysis, segments are grouped according to level
(basal: AHA segments 1-6; mid-cavity: AHA segments
7-12; apical: AHA segments 12-16) and region (lateral:
AHA segments 5, 6, 11, 12 and 16; septal: AHA seg-
ments 2, 3, 8 and 9; anterior: AHA segments 1, 7 and
13; inferior: AHA segments 4, 10 and 15) [24].

Statistical analysis

Main demographic and cardiovascular characteristics of
the participants are reported as arithmetic means with
standard deviations for continuous variables and counts
and percentages for categorical variables. Differences in
wall thickness between the glycemic groups were
assessed by one-way ANOVA. A linear regression model
including glycemic status, age, sex, Body Mass Index
(BMI), systolic blood pressure, total cholesterol, use of
antihypertensive medication and smoking status was cal-
culated to determine the association of glycemic status
to the respective wall thickness variable. The same
model without adjustment for systolic blood pressure
was calculated for hypertension. Additionally, linear
regression models with multiplicative terms between
glycemic status and systolic blood pressure were com-
puted to discover any interaction effects.
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As the MRI sample is a non-representative subsample
of a population based cohort, we used appropriate sam-
pling weights to render the sample more representative
of the full eligible underlying cohort. Weighting was
based on glycemic status, age and sex. Details of the
weighting procedure are presented in Additional file 1:
Text S2.

P-values <0.05 were considered to denote statistical
significance. All analyses were done with R version 3.2.1
(R Core Team, Vienna, Austria).

The KORA FF4 study was approved by the ethics
committee of the Bavarian Chamber of Physicians,
Munich; the MRI substudy by the institutional review
board of the Ludwig-Maximilians-University Munich.
The investigations were carried out in accordance with
the Declaration of Helsinki, including written informed
consent of all participants.

Results

Study population

The sample of 359 subjects comprised 223 normogly-
cemic controls (62%), 92 subjects with prediabetes (26%)
and 44 subjects with diabetes (12%) as presented in
Table 1. Of those, 15 diabetes cases were diagnosed
based on the results of OGTT. In subjects with estab-
lished diabetes the median duration of diabetes was
7.0 years.

Intra- and Interobserver agreement

The ICCs for intraobserver and interobserver agree-
ment were 0.93 and 0.94 for mean wall thickness,
respectively. ICCs for single segments are presented
in Additional file 1: Figure S1.

Comparison of wall thickness according to glycemic status
Mean wall thickness of all AHA segments in the whole
sample was 9.1 mm (+ standard deviation: 1.5 mm). The
polar plots in Fig. 1 display the wall thickness of the in-
dividual AHA segments for the three glycemic groups.

We found a gradual increase in wall thickness from
controls through prediabetes to diabetes for all classes of
segments grouped by level and region. The differences
between the glycemic groups were statistically significant
in univariate analysis for all analyzed segment classes
(Table 2).

Association of glycemic status and wall thickness
independent of confounding factors

After adjustment for additional covariates as detailed
above, prediabetes and diabetes were independently associ-
ated to increased wall thickness (prediabetes: B: 0.44 mm,
95%-CL: [0.12 mm, 0.75 mm], diabetes: : 0.70 mm,
95%-CI: [0.23 mm, 1.17 mm]). Associations held true for
most segment classes according to level and region as
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Table 1 Demographic characteristics of study participants

Page 4 of 10

All Control Prediabetes Type 2 diabetes
N=359 N=223 N=92 N=44

Age (years) 56.1+9.1 543+89 58.1+88 614+83
Male gender 205 (57.1%) 115 (51.6%) 58 (63.0%) 32 (72.7%)
BMI (kg/mz) 279+48 265+42 303+46 302+51
Systolic blood pressure (mmHg) 1203+ 169 1165+ 152 1247 +155 130.1+212
Diastolic blood pressure (mmHg) 753 +10.1 737+92 780+97 780+132
Prehypertension 94 (26.2%) 61 (27.4%) 26 (28.3%) 7 (15.9%)
Hypertension 117 (32.6%) 45 (20.2%) 41 (44.6%) 31 (70.5%)
Fasting glucose (mmol/L) 57+13 52+04 59406 80+23°
Fasting insulin (pmol/L) 654+41.1 516+267 869 +44.6 91.7 +60.0°
HbA1c (%) 56+0.7 53+03 56+03 6.7+14
Total cholesterol (mmol/L) 56+10 56+09 58+08 55+12
HDL cholesterol (mmol/L) 16+05 17+£05 15+04 14+04
LDL cholesterol (mmol/L) 36+09 36+08 37+08 35+1.1
Triglycerides (mmol/L) 15+10 12+0.7 17+10 23+14
Smoking

Never-smoker 130 (36.2%) 88 (39.5%) 28 (30.4%) 14 (31.8%)

Ex-smoker 156 (43.5%) 87 (39.0%) 46 (50.0%) 23 (52.3%)

Smoker 73 (20.3%) 48 (21.5%) 18 (19.6%) 7 (15.9%)
Antihypertensive medication 85 (23.7%) 35 (15.7%) 28 (30.4%) 22 (50.0%)

Values are arithmetic means + standard deviations for continuous variables and number of subjects (percentage of respective group) for categorical outcomes

?Based on N =43 subjects with type 2 diabetes
PBased on N =42 subjects with type 2 diabetes

presented in Table 3. The strongest associations were (26% in the sample vs 12% in the cohort) and subjects
found for the mid-cavity segments and the anterior with diabetes (12% in the sample vs 10% in the cohort).
segments. Additionally, the proportion of males was higher in the

MRI sample compared to the underlying cohort,

Effects of weighting whereas mean age was similar.

Additional file 1: Table S1 shows the characteristics of Results of the unweighted analysis are presented in
the underlying eligible cohort that was used for the Additional file 1: Table S2. Associations that were statis-
calculation of sampling weights. tically significant in the weighted analysis were also

Comparing the MRI sample to the whole cohort, there  significant in the unweighted analysis. The size of the es-
was an overrepresentation of subjects with prediabetes  timates was comparable; however as sampling weights

Control Prediabetes

End-diastolic
Wall Thickness (mm)

Fig. 1 Left ventricular wall thickness (mm) of 16 AHA segments for control, prediabetes and diabetes group

Diabetes
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Table 2 Mean wall thickness grouped by level and region and myocardial mass
All Control Prediabetes P-value Type 2 diabetes P-value
N=359 N=223 N=92 N=44
Wall thickness (mm): arithmetic mean of
All segments 91+15 88+ 14 99+ 14 <0.001 105+ 16 <0.001
Basal segments 96+ 16 94+16 104+16 <0.001 108 = 1.7 <0.001
Mid segments 92+18 89+16 103 £ 18 <0.001 109 + 2.1 <0.001
Apical segments 82+15 80+14 87+15 <0.001 93+16 <0.001
Lateral segments 98+ 16 93+15 103+14 < 0.001 108+ 1.8 < 0.001
Septal segments 91+ 16 87+15 97 +14 < 0.001 103+ 16 < 0.001
Anterior segments 94+19 88+ 17 100+ 17 < 0.001 108 £22 < 0.001
Inferior segments 94+ 15 90£15 99+ 14 < 0.001 104+ 14 < 0.001
Myocardial mass (g/mz) 700 £ 139 69.0 £ 136 723 £130 0.1 759 + 160 0.019

P-values are obtained from one-way ANOVA and Bonferroni corrected for the repeated comparisons to the control group

introduce additional variation in the data, confidence in-
tervals for the weighted analysis were wider than for the
unweighted analysis. Model diagnostics such as residual
distribution were similar between the weighted and un-
weighted analysis. Taken together, the evidence suggests
that the analytical model was correctly specified [25]
and although the weighted estimates are conceptually
more precise, as they relate to the underlying cohort, the
actual differences between weighted and unweighted
estimates were small.

Association of specific prediabetes subgroups and wall
thickness

We further differentiated prediabetes status into subjects
with il[FG (N=35, 9.7% of total sample and 38.1% of
subjects with prediabetes), iIGT (N=41, 11.4% of total
sample and 44.6% of subjects with prediabetes) and both
IFG + IGT (N =16, 4.5% of total sample and 17.4% of sub-
jects with prediabetes). Though there were differences in
mean wall thickness according to segment classes between

Table 3 Association of glycemic status and wall thickness

the prediabetes subgroups there was no gradual increase
from ilFG to iIGT and IFG + IGT (See Additional file 1:
Figure S2 and Table S3).

Association of hypertension and wall thickness
independent of confounding factors

Prehypertension and hypertension were significantly asso-
ciated with increased wall thickness (prehypertension: f:
0.48 mm, 95%-CI: [0.17 mm, 0.79 mm)], hypertension: f:
0.67 mm, 95%-CI: [0.31 mm, 1.02 mm]) after adjustment
for additional covariates. The strongest associations were
seen for the basal segments and the septal segments as
presented in Table 4. Notably, there was also a significant
association of hypertension to myocardial mass.

Interaction of glycemic status and blood pressure

As displayed in Fig. 2 we found no interaction of gly-
cemic status and systolic blood pressure for mean wall
thickness averaged over all segments. Marginal effects of
glycemic status, i.e. associations of prediabetes and

Prediabetes Diabetes
Estimate 95%-Cl P-value Estimate 95%-Cl P-value
Wall thickness (mm): arithmetic mean of

All segments 044 [0.12,0.75] 0.007 0.70 [023,1.17] 0.004
Basal segments 033 [-0.05, 0.70] 0.087 051 [0.02, 0.99] 0.040
Mid segments 061 [0.20, 1.02] 0.004 0.86 [0.28, 1.45] 0.004
Apical segments 034 [-0.04, 0.73] 0.080 0.74 [0.23, 1.24] 0.005
Lateral segments 0.46 [0.09, 0.83] 0.014 0.65 [0.14, 1.16) 0.013
Septal segments 035 [0.05, 0.65] 0.023 064 [0.18,1.10] 0.006
Anterior segments 052 [0.10, 0.93] 0.015 0.98 [0.38,1.59] 0.002
Inferior segments 045 [0.11,0.79] 0.009 0.58 [0.17,1.04] 0.016
Myocardial mass (g/mz) -0.11 [-3.51,3.28] 0.948 0.56 [-4.94, 6.07] 0.841

Estimates from linear regression models adjusted for age, sex, BMI, systolic blood pressure, total cholesterol, use of antihypertensive medication and smoking status
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Table 4 Association of hypertension and wall thickness

Prehypertension Hypertension
Estimate 95%-Cl P-value Estimate 95%-Cl P-value

Wall thickness (mm): arithmetic mean of

All segments 048 [0.17,0.79] 0.003 067 [0.31,1.02] <0.001
Basal segments 063 [0.28, 0.98] <0.001 083 [0.42,1.24] <0.001
Mid segments 035 [-0.01,0.71] 0.057 0.70 [0.26,1.14] 0.002
Apical segments 044 [0.02, 0.86] 0.043 038 [-0.01,0.77] 0.060
Lateral segments 037 [0.03, 0.71] 0.036 0.52 [0.12,092] 0.012
Septal segments 0.59 [0.29, 0.89] <0.001 0.84 [0.48, 1.19] <0.001
Anterior segments 044 [0.02, 0.86] 0.039 0.77 [0.34, 1.19] <0.001
Inferior segments 051 [0.14, 0.88] 0.007 0.54 [0.16, 0.92] 0.006
Myocardial mass (g/m?) 3.18 [-0.02, 6.39] 0.053 6.16 [2.19,10.12] 0.003

Estimates from linear regression models adjusted for age, sex, BMI, glycemic status, total cholesterol, use of antihypertensive medication and smoking status

All segments Basal segments

N

o
I

marginal effect of glycemic status
marginal effect of glycemic status

% 120 150 180 % 120 150 180
Systolic Blood Pressure (mmHg) Systolic Blood Pressure (mmHg)

Mid segments Apical segments

marginal effect of glycemic status
marginal effect of glycemic status

3 ' . . . ' . .
90 120 150 180 90 120 150 180

Systolic Blood Pressure (mmHg) Systolic Blood Pressure (mmHg)
group = Prediabetes == Diabetes group = Prediabetes == Diabetes

Fig. 2 Marginal effects of glycemic status on wall thickness for multiplicative interactions with systolic blood pressure. Marginal effects indicate
the size of the association of the respective group (prediabetes or diabetes) with wall thickness for a specific value of systolic blood pressure.
Displayed are the marginal effects of prediabetes (solid line, dark grey) and diabetes (solid line, light grey) and the respective 95% confidence
interval for a grid of possible values of systolic blood pressure (range in data: 73-179.5 mmHg). The arithmetic mean is indicated by a dotted line.
The dashed line indicates the line of no effect
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diabetes with wall thickness for a specific value of
systolic blood pressure, remained constant over the
range of possible blood pressure values. However, for
basal segments, there was a decreasing marginal effect
of glycemic status with rising blood pressure, whereas
for mid-cavity and apical segments the marginal effect of
glycemic status was increasing with rising blood
pressure.

Discussion

Increased LV wall thickness is associated with a higher
risk for cardiovascular outcomes. Recent findings from
the Framingham study showed that a 0.1 unit increase in
relative wall thickness was accompanied by a 59%
increase in the hazard for cardiovascular disease [1]. A
detailed assessment of LV geometry based on regional
wall thickness can predict risk of incident cardiovascular
disease [26]. Given these implications, it is of major
importance to determine modifiable risk factors for
increased wall thickness.

Our findings from this cross-sectional study show that
(i) type 2 diabetes is associated to increased LV wall thick-
ness, independent of traditional cardiovascular risk factors
and especially independent of hypertension, (ii) the inde-
pendent association of abnormal glucose homeostasis to
cardiac structure is already present in prediabetes, (iii) in-
dividual LV segments are differently affected by hyperten-
sion and glycemic status. Thereby, we could demonstrate
that the more specific evaluation of CMR derived regional
LV wall thickness unveils associations that cannot be de-
tected when assessing LV mass alone.

Our results therefore support and extend findings
from other established population-based studies. In the
Atherosclerosis Risk in the Community (ARIC) study,
Skali et al. found that mean and relative LV wall thick-
ness were elevated in subjects with diabetes independent
of systolic blood pressure. To a certain extent, wall
thickness was already increased in subjects with predia-
betes [27]. In the Framingham Offspring Cohort,
Velageti et al. [28] found an increasing CMR derived
relative wall thickness across glycemia categories. After
multivariable adjustment, the association remained
significant in men. In the Multiethnic Study of Athero-
sclerosis (MESA), an association between CMR-derived
LV mass and diabetes was found that was independent
of blood pressure; however no measurements of seg-
mental wall thickness were taken [29]. On the other
hand, Bertoni et al. measured mid-cavity segments and
found an increasing wall thickness for Caucasian sub-
jects with normal glucose metabolism to subjects with
il[FG and type 2 diabetes. The differences were not sig-
nificant after adjustment for other cardiovascular risk
factors [30]. Another study found an association of gly-
cemic status to LV mass, but not to (relative or mean)
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wall thickness [31]. In our sample, we showed that the
increased LV mass in subjects with diabetes was attribut-
able to hypertension but there are independent regional
associations of diabetes and blood pressure in segmental
wall thickness.

Regarding the prediabetic state, recent evidence from
the CARDIA study implies that longer exposure to ab-
normal glucose tolerance, longer duration of diabetes,
and early onset of diabetes leads to more unfavorable re-
modeling [32]. Analyses from the Strong Heart Study
demonstrated increased LV mass in Native Americans
with impaired glucose tolerance, however the finding
was less definitive for measures of wall thickness [33].
Our findings corroborate that prediabetes, defined as ei-
ther iIGT, iIFG or IFG + IGT, is independently associated
to increased wall thickness. Our sample size was prob-
ably too small to detect gradual effects of these different
prediabetic groups.

Disentangling the associations of blood pressure and
glycemic status proves to be complicated. In the Strong
Heart Study, LV mass of subjects with diabetes but with-
out hypertension was significantly lower compared to
those subjects with both conditions, whereas relative
wall thickness was not different [34]. In the HyperGEN
study comprising only hypertensive subjects, diabetes
was independently associated to increased LV mass [35].
A recent Chinese study suggested additive effects of dia-
betes and hypertension to LV remodeling [36]. Although
blood pressure reduction appears to be an effective way
of lowering the risk of cardiovascular disease in hyper-
tensive patients with increased LV mass, [37] these treat-
ments do not seem to be as effective in patients with
diabetes [38]. In our study, we found a decreasing mar-
ginal effect of both prediabetes and diabetes with rising
blood pressure for the basal segments, whereas the mar-
ginal effect for apical and mid segments was increasing.
Thus we could further characterize the complex inter-
play of blood pressure and glycemic status and its im-
pact on cardiac geometry.

The exact mechanisms of impaired glucose metabolism
on LV geometry remain to be identified. Increased LV stiff-
ness, induced by an accumulation of collagen and ad-
vanced glycation end products and subsequent fibrosis in
diabetic cardiomyopathy have been suggested to contrib-
ute to LV remodeling [39, 40]. Also, a decreased myocar-
dial perfusion reserve in subjects with diabetes induced by
an impaired myocardial blood flow has been shown to be
correlated with LV torsion and strain [41]. Recent findings
imply that myocardial steatosis, excess storage of cardiac
triglycerides, and impaired myocardial energetics are asso-
ciated with concentric LV remodeling [42]. However, our
study is limited in this respect as it cannot explain the
pathophysiological mechanisms behind the association of
glycemic status on regional LV geometry.
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The values of LV wall thickness reported here, as
measured by short-axis cine SSFP, substantially exceed
the reference values according to the 16-segment model
suggested by other groups [43, 44]. These reference
values have been obtained from healthy subjects with a
low-risk profile for developing cardiovascular disease,
excluding smokers, and people with hypertension or
diabetes. Given the major impact of these risk factors on
wall thickness, it is plausible that our study found larger
values for the control group.

For this nested cross-sectional study, we used a
well-characterized population-based cohort. Highly
standardized measurements and validation allowed us
to precisely define covariates and glycemic status.
Furthermore, using adequate sampling weights we
were able to relate our results to the full underlying
cohort.

Limitations of our study include its cross-sectional
design that precludes causal inference. Further longi-
tudinal follow-up of this study sample is mandated to
determine the prognostic potential of segmental wall
thickness.

Conclusion

Our findings highlight the role of glycemic status as a
potential risk factor and implicate prediabetes as un-
favorably associated to LV wall thickness. Measurements
of regional wall thickness provides a more precise pic-
ture than assessing overall myocardial mass. Delaying or
halting progression from impaired fasting glucose to dia-
betes might prevent further thickening of the ventricular
walls and subsequent cardiovascular complications.

Additional file

Additional file 1: Text S1. Description of laboratory measurements.
Figure S1. Intra-and interobserver agreement. Text S2. Description of
the underlying eligible cohort. Table S1. Characteristics of study subjects
from the full eligible cohort used for the calculation of sampling weights.
Table S2. Associations of glycemic status with wall thickness from
weighted and unweighted linear regression models. Figure S2. Mean
wall thickness according to prediabetic glycemic status. Table S3.
Association of prediabetic glycemic status and mean wall thickness.
(DOCX 57 kb)
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APPENDIX

Additional file

Text S1: Description of laboratory measurements

Glucose, total cholesterol, HDL cholesterol, LDL cholesterol as well as triglyceride levels were
measured in fresh serum by enzymatic, colorimetric methods using GLU, CHOL, LDLC, HDLC, and
TRIG Flex assays, respectively, on a Dimension Vista 1500 instrument (Siemens Healthcare
Diagnostics Inc., Newark, USA) or using GLUC3, CHOL2, LDL_C, HDLC3, and TRIGL assays,
respectively, on a Cobas c702 instrument (Roche Diagnostics GmbH, Mannheim, Germany). Insulin
was measured in fresh serum by an solid-phase enzyme-labeled chemiluminescent immunometric
assay on an Immulite 2000 systems analyzer (Siemens) or by an electrochemiluminescence
immunoassay on a Cobas €602 instrument (Roche). The measurement instrument and assays changed
from Siemens to Roche halfway during the study. Calibration formulas were developed using 122 (194
for insulin) KORA FF4 samples which were measured with both methods during the time of the
change. The Siemens measurement results were calibrated to the Roche measurements using the
following formulas [insulin in pU/mL; all other units in mg/dL]: Total_Cholesterol_Roche = 3.00 +
Total_Cholesterol_Siemens * 1.00; HDL_Cholesterol_Roche = 2.40 + HDL_Cholesterol_Siemens *
1.12; LDL_Cholesterol_Roche = antilog (-0.13328 + log LDL_Cholesterol_Siemens * 1.03051);
Triglycerides_Roche = 4.97073 + Triglycerides_Siemens * 0.90732; Insulin_Roche = 1.307 +
Insulin_Siemens * 1.016. No calibration was needed for glucose because the double measurements
were very similar so that the intercept and the slope of the Passing-Bablok regression used for
calibration were estimated to be zero and one, respectively. HbAlc was measured in hemolyzed whole
blood using the cation-exchange high performance liquid chromatographic, photometric VARIANT II
TURBO HbAlc Kit - 2.0 assay on a VARIANT Il TURBO Hemoglobin Testing System (Bio-Rad

Laboratories Inc., Hercules, USA).
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Figure S1: Intra-and interobserver agreement

Intra Inter

Intraclass Correlation Coefficients for intra- and interobserver agreement for end-diastolic wall
thickness. Intraobserver agreement was based on 25 subjects and interobserver agreement based on 52

subjects.

126



APPENDIX

Text S2: Description of the underlying eligible cohort

The original KORA FF4 cohort comprises N = 2279 participants, whereas the MRI study sample
comprises N = 400 participants. Due to the sampling design of the MRI study, not all subjects from the
cohort can be represented by a subject from the MRI sample. The underlying eligible cohort comprises
n = 1652 subjects: not eligible were subjects older than 72 years (n = 428), subjects with
indeterminable glycemic status (n = 69), a history of myocardial infarction or stroke (n = 63), subjects
with implanted medical devices (n = 11) and subjects with impaired renal function (n = 56). We
treated the remaining n = 1652 subjects as the underlying cohort for the calculation of sampling
weights. The difference to the n = 1282 subjects as presented in (1) arises because we considered the
exclusion criteria claustrophobia, pregnancy, inability to hold breath, tattoos and allergy to contrast
agents as unrelated to a subject’s glycemic status and cardiac morphology. Therefore, all subjects for
whom these exclusion criteria would apply can nevertheless be represented in their glycemic status
and cardiac morphology by subjects who participated in the MRI study. Base weights were calculated
by inverse-probability cell weighting in 12 cells defined by glycemic status and age category (38-47
years, 48 — 57 years, 58 — 67 years, 68- 72 years) (2) and were then further modified by post-
stratification according to sex (3). Weighted variances and standard errors were computed by Taylor

series linearization.
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Table S1: Characteristics of study subjects from the full eligible cohort used for the calculation

of sampling weights.

all Control Prediabetes Type 2 Diabetes
N = 1652 N = 1240 N =250 N =162
Age (years) 56.1+9.4 54.3+£9.0 60.5+8.9 62.7+8.4
Male gender n (%) 763 (46.2%) 538 (43.4%) 136 (54.4%) 89 (54.9%)
BMI (kg/m?) 276+5.1 265+45 30.2+5.2 315+56
Systolic BP (mmHg) 118.0+16.9 1155+ 15.8 1239+ 16.4 127.6 +19.7
Hypertension n (%) 497 (30.1%) 272 (21.9%) 116 (46.4%) 109 (67.3%)
Total Cholesterol (mg/dL) 219.2 +37.6 219.2+37.0 2244+ 37.5 211.0+ 404
Smoking n (%)
never-smoker 726 (43.9%) 555 (44.8%) 98 (39.2%) 73 (45.1%)
ex-smoker 625 (37.8%) 449 (36.2%) 107 (42.8%) 69 (42.6%)
smoker 301 (18.2%) 236 (19.0%) 45 (18%) 20 (12.3%)
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Table S2: Associations of glycemic status with wall thickness from weighted and unweighted linear

regression models.

Prediabetes Diabetes
estimate 95%-ClI p-value estimate 95%-Cl p-value
Diastole
Wall thickness (mm): arithmetic mean of
all segments unweighted 0.36 [0.07, 0.65] 0.014 0.69 [0.31, 1.08] <0.001
weighted 0.44 [0.12, 0.75] 0.007 0.70 [0.23, 1.17] 0.004
basal segments unweighted 0.32 [-0.02, 0.66] 0.065 0.53 [0.08, 0.98] 0.022
weighted 0.33 [-0.05,0.70]  0.087 0.51 [0.02, 0.99] 0.040
mid segments unweighted 0.49 [0.13, 0.85] 0.007 0.86 [0.39, 1.34] <0.001
weighted 0.61 [0.20, 1.02] 0.004 0.86 [0.28, 1.45] 0.004
apical segments unweighted 0.24 [-0.11, 0.60] 0.178 0.69 [0.22, 1.17] 0.004
weighted 0.34 [-0.04, 0.73] 0.080 0.74 [0.23, 1.24] 0.005
lateral segments unweighted 0.38 [0.05, 0.71] 0.024 0.64 [0.20, 1.08] 0.005
weighted 0.46 [0.09, 0.83] 0.014 0.65 [0.14, 1.16] 0.013
septal segments unweighted 0.31 [0.02, 0.61] 0.035 0.66 [0.27, 1.05] 0.001
weighted 0.35 [0.05, 0.65] 0.023 0.64 [0.18, 1.10] 0.006
anterior segments unweighted 0.44 [0.05, 0.83] 0.027 1.00 [0.48, 1.52] <0.001
weighted 0.52 [0.10, 0.93] 0.015 0.98 [0.38, 1.59] 0.002
inferior segments unweighted 0.35 [0.04, 0.66] 0.028 0.54 [0.13, 0.96] 0.011
weighted 0.45 [0.11,0.79] 0.009 0.58 [0.11, 1.04] 0.016
myocardial mass (g/m?) unweighted -1.37 [-4.52, 1.77] 0.392 0.00 [-4.20, 4.20] 1
weighted -0.11 [-3.51, 3.28] 0.948 0.56 [-4.94, 6.07] 0.841
5
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Figure S2: Mean wall thickness according to prediabetic glycemic status.

ilIFG: isolated impaired fasting glucose. ilGT: isolated impaired glucose tolerance. IFG+IGT: both

impaired fasting glucose and impaired glucose tolerance.
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Table S3: Association of prediabetic glycemic status on mean wall thickness.

isolated IFG (N = 35)

isolated IGT (N = 41)

IFG + IGT (N = 16)

estimate 95%-Cl p-value estimate 95%-Cl p-value estimate 95%-Cl p-value
Wall thickness (mm): arithmetic mean of
all segments 0.50 [-0.03, 1.04] 0.067 0.39 [0.02, 0.76] 0.038 0.41 [0.01, 0.81] 0.047
basal segments 0.28 [-0.23, 0.80] 0.278 0.17 [-0.31, 0.64] 0.490 0.7 [0.04, 1.50] 0.118
mid segments 0.75 [0.09, 1.41] 0.082 0.61 [0.05, 1.17] 0.098 0.33 [-0.20, 0.86] 0.326
apical segments 0.46 [-0.24, 1.15] 0.278 0.41 [-0.03,0.84] 0.099 -0.03 [-0.51, 0.46] 0.911
lateral segments 0.45 [-0.23,1.12] 0.193 0.48 [0.04, 0.91] 0.133 0.46 [-0.04,0.97] 0.149
septal segments 0.44 [-0.01, 0.90] 0.092 0.29 [-0.10, 0.68] 0.141 0.31 [-0.17,0.79] 0.207
anterior segments 0.68 [-0.05, 1.41] 0.092 0.46 [-0.03, 0.94] 0.133 0.33 [-0.17,0.83] 0.207
inferior segments 0.51 [0.02, 0.99] 0.092 0.36 [-0.08, 0.80] 0.141 0.56 [0.10, 1.03] 0.074
myocardial mass (g/m?) 0.88 [-4.81, 6.57] 0.762 -0.89 [-4.92,3.14] 0.665 027 [-5.69, 5.15] 0.923

Estimates from linear regression models adjusted for age, sex, BMI, systolic BP, total cholesterol, use of antihypertensive medication and smoking status.Cl:
Confidence Interval. Results of the diabetes group are not displayed as the interpretation remains unchanged compared to Table 3 in the main manuscript

131



APPENDIX

1. Bamberg F, Hetterich H, Rospleszcz S, Lorbeer R, Auweter SD, Schlett CL, et al. Subclinical
Disease in Subjects with Prediabetes, Diabetes and Normal Controls from the General Population: the
KORA MRI-Study. Diabetes. 2016.

2. Kalton G, Flores-Cervantes I. Weighting methods. Journal of Official Statistics. 2003;19(2):81.
3. Little RJ. Post-stratification: a modeler's perspective. Journal of the American Statistical
Association. 1993;88(423):1001-12.

132



APPENDIX

Manuscript IV

Title: Phenotypic Multiorgan Involvement of Subclinical Disease
as Quantified by Magnetic Resonance Imaging
in Subjects with Prediabetes, Diabetes, and Normal Glucose Tolerance

Authors: Corinna Storz,

Susanne Rospleszcz,
Roberto Lorbeer,
Holger Hetterich,
Sigrid Auweter,
Wieland Sommer,
Jiirgen Machann,
Sergios Gatidis,
Wolfgang Rathmann,
Margit Heier,
Birgit Linkohr,
Christa Meisinger,
Maximilian Reiser,
Udo Hoffmann,
Annette Peters,
Christopher L. Schlett,
Fabian Bamberg
Journal: Investigative Radiology
Status: Published

doi: 10.1097/11i.0000000000000451

133



APPENDIX

ORIGINAL ARTICLE

Phenotypic Multiorgan Involvement of Subclinical Disease as
Quantified by Magnetic Resonance Imaging in Subjects With
Prediabetes, Diabetes, and Normal Glucose Tolerance

Corinna Storz, MD,* Susanne Rospleszcz, MSc, T Roberto Lorbeer, PhD,}§ Holger Hetterich, MD,}$
Sigrid D. Auweter, PhD,} Wieland Sommer, MD,} Jiirgen Machann, PhD,*|/9# Sergios Gatidis, MD, *
Wolfgang Rathmann, MD,** Margit Heier, MD,7 Birgit Linkohr, PhD, 7 Christa Meisinger, MD, MPH, 17171
Maximilian Reiser, MD,} Udo Hoffmann, MD, MPH, } | Annette Peters, PhD,19§$¢§
Christopher L. Schlett, MD, MPH,///| and Fabian Bamberg, MD, MPH*f§

Introduction: Detailed mechanisms in the pathophysiology of diabetes disease
are poorly understood, but structural alterations in various organ systems incur
an elevated risk for cardiovascular events and adverse outcome. The aim of this
study was to compare multiorgan subclinical disease phenotypes by magnetic
resonance (MR) imaging to study differences between subjects with prediabetes,
diabetes, and normal controls.

Materials and Methods: Subjects without prior cardiovascular disease were en-
rolled in a prospective case-control study and underwent multiorgan MR for the
assessment of metabolic and arteriosclerotic alterations, including age-related
white matter changes, hepatic proton density fat fraction, visceral adipose tissue
volume, left ventricular remodeling index, carotid plaque, and late gadolinium
enhancement. Magnetic resonance features were summarized in a phenotypic-
based score (range, 0—6). Univariate, multivariate correlation, and unsupervised
clustering were performed.

Results: Among 243 subjects with complete multiorgan MR data sets included in
the analysis (55.6 + 8.9 years, 62% males), 48 were classified as subjects with
prediabetes and 38 as subjects with diabetes. The MR phenotypic score was signif-
icantly higher in subjects with prediabetes and diabetes as compared with controls
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(mean score, 3.00 + 1.04 and 2.69 £ 0.98 vs 1.22 + 0.98, P < 0.001 respectively),
also after adjustment for potential confounders. We identified 2 clusters of MR phe-
notype patterns associated with glycemic status (P < 0.001), independent of the MR
score (cluster II-metabolic specific: odds ratio, 2.49; 95% CI, 1.00-6.17; P=0.049).
Discussion: Subjects with prediabetes and diabetes have a significantly higher
phenotypic-based score with a distinctive multiorgan phenotypic pattern, which
may enable improved disease characterization.

Key Words: epidemiology, prediabetes and diabetes,
magnetic resonance imaging, risk assessment

(Invest Radiol 2018;53: 357-364)
P revalence of diabetes is steadily increasing throughout developed
and developing countries worldwide, representing one of the most
common noncommunicable diseases globally with prevalence rates of
7.9% and 9.0% in women and men, respectively.* As a precursor stage
of diabetes, prediabetes affects a substantial proportion of individuals
and is defined as an impaired glucose metabolism not satisfying diabe-
tes criteria but also incurring an elevated risk for cardiovascular events
and adverse outcome.

Detailed mechanisms in the pathophysiology of prediabetes and
diabetes are poorly understood, but structural alterations in various or-
gans are related to the development of impaired glucose metabolism,
which in itself is a major risk factor.** In addition, previous studies
found that nonalcoholic fatty liver disease (NAFLD) may be associated
with low-grade chronic inflammatory state, affecting adipose tissue and
resulting in abnormal glucose metabolism, increased oxidative stress,
dyslipidemia, and endothelial dysfunction with progression of athero-
sclerosis.®’ Visceral adipose tissue (VAT), in turn, seems to be associated
with an increased risk for hypertension, dyslipidemia, and prediabetes.®
Furthermore, multiple prior studies demonstrated a correlation between
metabolic risk factors and VAT as well as hepatic steatosis in prediabetes
and diabetes.”'? In addition to that, white matter changes were previ-
ously shown to be associated with cardiovascular risk, cognitive decline,
and impaired glucose metabolism and can be detected in patients with
metabolic diseases.'*'® Thus, the variety of metabolic and organ changes
clarify the complex interrelationship of metabolic processes and the de-
velopment of adverse outcome.

Magnetic resonance (MR) imaging can be used to derive strong
prognostic multiorgan phenotypic parameters for the occurrence of
metabolic alterations and cardiovascular events in patients with predia-
betes and diabetes.”'®!” Relevant parameters include quantification of
hepatic fat content by proton density fat fraction (PDFF), VAT, the cere-
bral age-related white matter changes (ARWMC) score, the left ventric-
ular remodeling index (LVRI), carotid atherosclerotic plaque, as well as
post-ischemic changes to the myocardium as evident by late gadolinium
enhancement (LGE).">'®2! The noninvasive detection of these MR
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imaging—based parameter may, on one hand, enable a better understand-
ing of the pathophysiology in patients with metabolic diseases, especially
in precursor states of diabetes disease, and, on the other hand, allow for
an early detection of organic alterations. Summarizing, comprehensive
MR imaging provides a detailed assessment of multiorgan alterations
in subclinical disease state, which were separately shown to be associated
with higher risk profile for adverse cardiovascular outcome.?>** Accord-
ingly, the purpose of our study was to compare multiorgan subclinical
disease phenotypes as determined by MR imaging between subjects with
prediabetes, diabetes, and controls with normal glucose tolerance and to
identify diabetic specific MR pattern differing from subjects with normal
glucose tolerance. Our hypothesis was that there is a distinguishable
multiorgan phenotypic MR pattern in patients with impaired glucose me-
tabolism compared with subjects with normal glucose tolerance.

MATERIALS AND METHODS

Study Design

The study was approved by the institutional review board and all
participants provided written informed consent.

The study was designed as a prospective case control study
nested in a cohort from the Cooperative Health Research in the Region
of Augsburg (KORA). As described elsewhere, subjects were recruited
from the FF4 follow-up of the KORA study, representing a large samgle
from the general population in the region of Augsburg, Germany.?**
Subjects, aged between 25 and 74 years and recruited between 1999
and 2001, were enrolled in an MR substudy and examined between
June 2013 and September 2014 at the KORA study center.* Subjects
were excluded ifthey had any contraindications to either MR or gadolin-
ium contrast administration. In addition, we included only subjects in
this specific subanalysis with a complete set of all analyzed MR param-
eters. Thus, of overall 400 subjects who underwent whole-body MR im-
aging examinations, 157 participants were excluded due to incomplete
MR imaging data sets (Supplementary Figure 1, Supplemental Digital
Content 1, http:/links.lww.com/RLI/A370).

While differences in single imaging markers of the overall
cohort have been published previously,? the current analysis is tai-
lored to the assessment of comprehensive whole-body MR imaging
phenotypic markers.

Covariates

Subjects of the KORA cohort were reexamined between June
2013 and September 2014 at the KORA study center.?? An oral glucose
tolerance test was performed to all participants who had not been diag-
nosed for type 2 diabetes. According to the World Health Organization
guidelines® and as described previously,>*** subjects were stratified
into prediabetes, diabetes, and controls. Subjects who had been diag-
nosed with diabetes 27 years ago were defined as long-term diabetes
patients, based on the median duration of diabetes subjects in our study
population (n = 25), subjects with diabetes below this period were
assigned to the group of short-term diabetes.

Other established risk factors such as hypertension, smoking, or
increased body mass index (BMI) were collected in standardized fash-
ion as part of the KORA study design and are described elsewhere.?>**

Magnetic Resonance Imaging—Acquisition and
Image Analysis

As described previously, MR scans were performed with a 3 T
whole-body MR system (Magnetom Skyra; Siemens AG, Healthcare
Sector, Erlangen, Germany).?* Details on the MR protocol comprising
sequences of the whole body including the brain, cardiovascular sys-
tem, and adipose tissue compartments are provided in Supplementary
Table 1, Supplemental Digital Content 2, http://links.lww.com/RLI/
A371.%% All analyses were performed in blinded fashion by 2 independent

358 | www.investigativeradiology.com

readers each (overall 6 independent readers with 23 years of experience)
unaware of the diabetic group and clinical covariates on dedicated off-
line workstations. In case of discrepancy, a consensus reading was per-
formed. To allow for improved interpretability, cut-points representing
binary normal versus abnormal results of MR parameters per subject
were derived individually and included either known pathologic thresholds
(ie, LGE or hepatic PDFF), established grading systems (ie, ARWMC), or
the highest 75th percentile of a similar population (ie, VAT).

Assessment of White Matter Lesions

According to the ARWMC rating scale adapted from the Fazekas
scale, FLAIR sequences were evaluated for T2 hyperintense area
=5 mm lesions in 5 brain areas per hemisphere.'®2® A total ARWMC
value ranging from 0 to 30 was derived. As severity of ARWMC and
diabetes is associated with cognitive decline, all subjects with a severity
of ARWMC 21 (mild/moderate) were categorized as abnormal.'®

Gadolinium Enhancement of the Myocardium

Late gadolinium enhancement was acquired on fast low-angle
shot inversion recovery sequences in short-axis stack and a 4-chamber
view 10 minutes after administration of gadopentetate dimeglumine
(0.2 mmol/kg, Gadovist; Bayer Healthcare, Berlin, Germany). For the
assessment of the presence and distribution pattern of LGE, the 17-segment
model of the American Heart Association was used.?” As LGE seems to
be associated with adverse outcome in cardiomyopathy, the presence of
LGE in any myocardial segment was considered as abnormal.”!

Assessment of Left Ventricular Function

Cine-SSFP sequences were evaluated semi-automatically using
commercially available software (cvi42, Circle Cardiovascular Imaging,
Calgary, Canada) providing established LV volumetric data. The LVRI
was calculated by the ratio of the LV mass to the LV end-diastolic volume.?®
Left ventricular remodeling index >1.3 represents architectural and
functional changes in myocardium and was considered as abnormal.>°

Assessment of Carotid Plaque

Presence and measures of atherosclerotic plaque in the common
carotid artery, at the carotid bulb, and in the proximal internal carotid
artery on both sides were determined on black-blood T1-weighted fat-
suppressed sequences.”’ Any type of carotid plaque (tyge I, type III,
type IV/V and type VI/VII) was considered as abnormal.*’

Assessment of Hepatic PDFF

For the purpose of quantification of the hepatic PDFF, a multi-
echo VIBE T1-weighted sequence for determination of hepatic PDFF
by accounting for confounding effects of T2* decay and the spectral
complexity of fat were performed.*

Hepatic PDFF was classified according to the estimated hepatic
PDFF thresholds for dichotomized hepatic steatosis scoring system for
NAFLD from the nonalcoholic steatohepatitis clinical research network
ancillary study: grade 0 (<6.4% hepatic PDFF), grade 1 (26.4 to <17.4%),
grade 2 (217.4 to <22.1%), and grade 3 (222.1%)%; hepatic steatosis
grade =1 were considered as abnormal.®>!

Assessment of Visceral Abdominal Adipose Tissue

Visceral adipose tissue volume was measured from the femoral
head to the cardiac apex, indicated in liter. High VAT levels seem to
be related to adverse metabolic risk profiles, but studies about threshold
levels associated with higher risk profiles are lacking. Thus, the determined
cutoff value in our generated score is related to the 75% percentile volume-
based VAT level of the healthy control group identified within the large-
scale UK Biobank Imaging Study (median, 1.32 [0.86—1.79] L/m?).3?
Visceral adipose tissue levels =1.79 L/m? were considered as abnormal.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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Multiorgan Involvement in Diabetes

Multiorgan MR Phenotypic Score

An unweighted numeric summation score representing the ex-
tent of organ areas affected by subclinical disease as measured by MR
was calculated by the sum of parameters exceeding the defined thresh-
olds (range, 0—6). To characterize the distribution of the summation
score, mean and standard deviation were calculated in addition to a

categorization into low (score < 1), intermediate (score = 2), and
high (score 23).

Statistical Analysis

Subject demographics and cardiovascular risk factors are presented
as arithmetic means and standard deviations for continuous variables
and counts (percentages) for categorical variables. Differences in dichoto-
mized MR features according to diabetes group were assessed by x? test.
Differences in continuous MR features and in the multiorgan MR pheno-
typic score among diabetes groups were evaluated by one-way analysis of
variance (ANOVA). Pairwise comparisons of multiorgan MR phenotypic
score between short-/long-term diabetes and prediabetes were Bonferroni
adjusted. Correlation between diabetes groups and multiorgan MR phe-
notypic score was tested by Spearman rank correlation coefficient.

To assess the association between diabetes groups and multi-
organ MR phenotypic score, predicted score means with 95% confidence
intervals (CIs) were calculated and compared by linear regression models
adjusting for age, sex, smoking, BMI, hypertension, high-density lipo-
protein, low-density lipoprotein, and triglycerides. Diabetes groups en-
tered the model as a categorical variable with the 3 levels—control,
prediabetes, and diabetes, with the control group as the reference group.
Differences in baseline characteristics according to different multiorgan
MR phenotypic score categories (low, intermediate, high as detailed
above) were assessed by one-way ANOVA or x? test. The predictive

power among the different MR parameters and the score was compared
by fitting logistic regression models and comparing the c-statistics,
which is equivalent to the area under the ROC curve®® using DeLongs
nonparametric test of areas under the curve.

For the purpose of deriving underlying MR phenotypic patterns
of the specific combinations of the dichotomized outcomes, unsuper-
vised fuzzy clustering with a dissimilarity matrix given by Gower coeffi-
cient was used (Supplementary Figure 2, Supplemental Digital Content
1, http:/links.lww.com/RLI/A370).>* Correlation between the resulting
2 clusters and glycemic status was assessed by x? test. Combinations
of dichotomized outcomes associated to glycemic status were identified
by LASSO regression. Variables that remained in the model with a non-
zero coefficient after shrinkage were considered to be associated to glyce-
mic status.’> The shrinkage parameter N was chosen as the minimum
value after 10-fold cross validation. Fuzzy clustering and LASSO regres-
sion were carried out with R version 3.3.1 and packages cluster (v2.0.4)
and glmnet (2.0-5). A 2-sided P value of less than 0.05 was considered to
indicate statistical significance.

RESULTS

Among 243 white subjects with complete MR data sets, 48 subjects
were classified as prediabetes and 38 subjects had established diabetes
mellitus (20% and 16%, respectively). They were predominantly middle-
aged (55.6 + 8.9 years) with a slightly higher proportion of males (62%).
Further demographics and risk profiles are provided in Table 1.

Significantly higher ARWMC levels were found in subjects with
diabetes and prediabetes compared with controls with normal glucose
tolerance (3.9 £ 3.2 vs 3.7 £4.3 vs 2.4 + 3.1, P = 0.013; respectively).
Similar differences were found for LVRI, hepatic PDFF, and VAT (all
P < 0.001). Carotid plaque was detected more often in subjects with

TABLE 1. Patient Demographic Characteristics and Cardiovascular Risk Factors

Control Prediabetes Diabetes

Variable N=243 n =157 n=48 n=38
Age,y 556+89 542+88 559489 613+75
Male sex 151 (62.1%) 89 (56.7%) 34 (70.8%) 28 (73.7%)
Height, cm 1725+9.2 1725 +9.5 1732 +9.7 1718 £ 7.4
Weight, kg 822+ 14.7 78.6 +13.6 90.0 +11.6 86.9+17.5
BMI, kg/m? 275+42 263 +3.6 30.1 +£43 293 +4.7
Waist-to-hip ratio 09+0.1 09+0.1 1.0+0.1 1.0+0.1
Duration of diabetes, median [first quartile, third quartile], y 7.0 [5.0, 12.0] NA NA 7.0 [5.0, 12.0]
HbAlc, % 56+0.8 53+03 56+03 6.7+15
Smoking

Never-smoker 85 (35.0%) 58 (36.9%) 16 (33.3%) 11 (28.9%)

Ex-smoker 108 (44.4%) 63 (40.1%) 23 (47.9%) 22 (57.9%)

Smoker 50 (20.6%) 36 (22.9%) 9 (18.8%) 5 (13.2%)
Systolic blood pressure, mm Hg 1205+ 17.1 1169+ 15.6 1259 + 149 1282 +21.3
Diastolic blood pressure, mm Hg 754+98 74.0+9.2 789 +9.6 76.6 £ 11.5
Total cholesterol, mg/dL 217.1 £35.5 2159 +34.7 228.0 £30.6 2082 +41.9
HDL cholesterol, mg/dL 61.3+175 643 +17.2 57.1+£13.8 54.1 £20.0
LDL cholesterol, mg/dL 139.6 +32.2 1389 +30.4 150.1 +30.2 1292 +£38.3
Triglycerides, mg/dL 134.1£87.1 111.3+71.3 161.4+93.4 193.8 £ 101.3
Hypertension 77 (31.7%) 30 (19.1%) 21 (43.8%) 26 (68.4%)
Antihypertensive medication 57 (23.5%) 23 (14.6%) 14 (29.2%) 20 (52.6%)
Antithrombotic medication 12 (4.9%) 2 (1.3%) 3(6.2%) 7 (18.4%)
Lipid lowering medication 26 (10.7%) 8 (5.1%) 3(6.2%) 15 (39.5%)

Data are presented as mean + standard deviation for continuous variables and counts and percentages for categorical variables, unless otherwise indicated.
NA indicates not available; LDL, low-density lipoprotein; HDL, high-density lipoprotein.
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TABLE 2. Overview of Affected Organ Systems Among Subjects With Prediabetes, Diabetes, and Controls and Differences in Multiorgan MR
Phenotypic Score Among Groups

All Control Prediabetes Diabetes
N =243 n=157 n=48 n=38 P

Brain

Total ARWMC Score, mean + SD 29+34 24+3.1 37+43 39+32 0.013

Subjects with total ARWMC score 2 1, n (%) 151 (62.1%) 88 (56.1%) 32 (66.7%) 31 (81.6%) 0.01
Cardiac

LVRI, mean + SD 1.1+£03 1.0+0.2 1.3+£03 1.4+04 <0.001

Subjects with LVRI >1.3, n (%) 51(21.0%) 17 (10.8%) 18 (37.5%) 16 (42.1%) <0.001

Subjects with presence of LGE 5(2.1%) 2 (1.3%) 1 (2.1%) 2 (5.3%) 0.3

AHA myocardial segments involved 1,2,4,4,4 2,4 1 4,4
Atherosclerosis

Subjects with presence of carotid plaque, n (%) 49 (20.2%) 26 (16.6%) 16 (33.3%) 7 (18.4%) 0.04
Visceral organ

PDFF, mean + SD 82+82 49+48 126 +79 162+114 <0.001

Subjects with PDFF = 6.4%, n (%) 95 (39.1%) 33 (21.0%) 33 (68.8%) 29 (76.3%) <0.001

Subjects with grade 1 PDFF, n (%) 57 (23.5%) 25 (15.9%) 20 (41.7%) 12 (31.6%)

Subjects with grade 2 PDFF, n (%) 15 (6.2%) 4 (2.5%) 4 (8.3%) 7 (18.4%)

Subjects with grade 3 PDFF, n (%) 23 (9.5%) 4 (2.5%) 9 (18.8%) 10 (26.3%)
Adipose tissue

VAT, mean = SD, L/m? 44+26 34+21 58+22 6.7+2.6 <0.001

Subjects with VAT = 1.79 L/m?, n (%) 83 (34.2%) 25 (15.9%) 29 (60.4%) 29 (76.3%) <0.001
Multiorgan MR phenotypic score, mean + SD 1.79+1.35 1.22+098 2.69 £ 1.50 3.00 £ 1.04 <0.001

Data are presented as mean + standard deviation for continuous variables and counts and percentages for categorical variables, unless indicated otherwise. P values are
from x? test or one-way ANOVA. PDFF grade 1: PDFF = 6.4% but <17.4%. PDFF grade 2: PDFF = 17.4% but < 22.1%. PDFF grade 3: PDFF > 22.1%.

AHA indicates American Heart Association; MR, magnetic resonance; ARWMC, age-related white matter changes; LVRI, left ventricular remodeling index;
LGE, late gadolinium enhancement; PDFF, proton density fat fraction of the liver; VAT, visceral adipose tissue.

prediabetes and diabetes compared with controls (P = 0.04). The pres-
ence of LGE was rare (2.1% of all 243 subjects).
The prevalence of these MR features, dichotomized based on

iousl lished cutofts detailed in Table 2. .
previously published cutoffs, are detailed in Table Age and Gender Age, Gender, Fully adjusted=

adjusted Smoking and
BMI adjusted

3,56 35 3,5

MEEEE I HZ.Z H

2

Multiorgan MR Phenotypic Score

On average, the multiorgan MR phenotypic score was 1.79 + 1.35
and ranged from 0 to 5. Subjects with prediabetes and diabetes had
significantly higher scores compared with controls with normal glucose
tolerance (P < 0.001; Table 2, Supplementary Figure 3, Supplemental
Digital Content 1, http:/links.Iww.com/RLI/A370). These differences
remained significant after multivariable adjustment for age, sex, smoking,
BMI, hypertension, high-density lipoprotein, low-density lipoprotein, and
triglycerides (P < 0.001, Fig. 1). The multiorgan MR phenotypic score
provided the highest discriminatory power to predict prediabetes and dia-
betes as compared with single MR features (area under the curve, 0.824)
and provided the highest risk estimate (odds ratio [OR], 25.92; 95% CI,
10.83-62.05, for high vs low score, Table 3).

‘When comparing subjects with long-term, short-term, and newly
diagnosed diabetes mellitus, there were no differences in MR phenotypic
score between the groups (MR phenotypic score: 3.1 £ 1.0vs 29+ 1.2 vs
2.8 + 1.1, P =0.16, for long-term vs short-term vs newly diagnosed dia-
betes mellitus; respectively). 065

15 { 15 } 15 I

1 |p=0.001 1 <0.001 1 [p=0.001
0.5 i p<0.001 05 <0001 05 l p<0.001 i

Mean of Multi-Organ MR Phenotypic Score (95% CI)
[N}
[N}

& P L F P ,\@"' & P

0\5’6 0051 6&6"0 & & ; & °
MR Phenotype Pattern between Subgroups N ¢

R . FIGURE 1. Predicted means of multiorgan MR phenotypic score after
The frequency distribution of MR features in controls and sub- adjustment by linear regression analysis. Higher means of multiorgan

jects with pre'diabetes. and diabetgs stratified by extent of multiorgan MR phenotypic score were independently associated with impaired
MR phenotypic score is shown in Figures 2 and 3. Among controls with glucose metabolism (P < 0.001). *Adjusted for age, sex, smoking, body

low score, a high prevalence of elevated ARWMC was found (47,5%), mass index, hypertension, high-density lipoprotein, low-density
while only in a small proportion of these subjects, hepatic PDFF, carotid lipoprotein, and triglycerides.
360 | www.investigativeradiology.com © 2018 Wolters Kluwer Health, Inc. All rights reserved.
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TABLE 3. Risk and Discriminatory Power of MR Phenotypic Score
and Single MR Parameters to Predict Metabolic Disease State
(Prediabetes and Diabetes) Adjusted for Age and Sex

OR 95% CI P AUC P*
MR Phenotypic Score
Numeric 3.03 221416 <0.001 0.824
Intermediate vs low ~ 2.38  1.04-5.42 0.0392 0.812  0.119
High vs low 2592 10.83-62.05 <0.001
Single MR parameters
ARWMC 1.83 1-3.38 0.0513  0.674 <0.001
LVRI 464 234921 <0.001 0.728 <0.001
Plaque 1.59  0.82-3.09 0.173  0.673 <0.001
LGE 212 034-1331 0422  0.670 <0.001
PDFF 899  4.68-17.26 <0.001 0.787  0.066
VAT 10.11  5.04-20.27 <0.001 0.774  0.017

*P value from DeLongs test if AUC of MR phenotypic Score (numeric) is
larger than AUC of each single parameter.

OR indicates odds ratio; CI, confidence interval; AUC, area under the curve;
ARWMC, age-related white matter changes; LVRI, left ventricular remodeling
index; LGE, late gadolinium enhancement; PDFF, proton density fat fraction of
the liver; VAT, visceral adipose tissue.

plaque, VAT, or myocardial changes were detected (6.9%, 5.0%, 2.0%,
4.0%, and 0.0% for hepatic PDFF, carotid plaque, VAT, LVRI, and
LGE, respectively). The prevalence increased continuously among con-
trols resulting in highest prevalence of hepatic PDFF and VAT in control
subjects with high multiorgan MR phenotypic score (85.7% and 78.6%,
respectively). Similarly, among subjects with prediabetes and diabetes
and low score, the prevalence of ARWMC and hepatic PDFF was highest
(31.2% and 18.8%, respectively). Among subjects with prediabetes and
diabetes and high score, the prevalence of hepatic PDFF and VAT was
highest (91.1% and 92.9%, respectively). We found significantly higher
ARWMC, LVRI, hepatic PDFE, and VAT levels in subjects with predia-
betes and diabetes and high score compared with subjects with prediabe-
tes and diabetes and low score (Fig. 3) (all P < 0.001).

MR-Based Cluster Analysis

Assessing the combination of normal and abnormal MR param-
eters (ARWMC, hepatic PDFE, VAT, LVRI, carotid plaque, and LGE)
in each subject, unsupervised fuzzy clustering revealed 2 different
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FIGURE 2. Prevalence of MR-based parameters among controls,
prediabetes, and diabetes patients. ARWMC indicates age-related white
matter changes; PDFF, hepatic proton density fat fraction; VAT, visceral
adipose tissue; LVRI, left ventricular remodeling index; LGE, late
gadolinium enhancement.
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FIGURE 3. Frequency distribution of MR-based parameters among low-,
intermediate-, and high-score ranges (0-1, 2, and =3, respectively)
between controls (A) and patients with prediabetes and diabetes (B).
ARWMC denotes age-related white matter changes; PDFF, hepatic
proton density fat fraction; VAT, visceral adipose tissue volume; LVRI, left
ventricular remodeling index; LGE, late gadolinium enhancement.

multiorgan phenotypic clusters (Supplementary Figure 2, Supplemen-
tal Digital Content 1, http://links.lww.com/RLI/A370) which were sig-
nificantly associated with glycemic status (P <0.001). After adjustment
for high multiorgan MR phenotypic score, cluster IT was still indepen-
dently associated with prediabetes/diabetes group (OR, 10.05; 95% CI,
3.75-27.00, P = <0.001). Within the group with low multiorgan MR
phenotypic score, cluster II was also significantly associated to diabetes
status (OR, 2.49; 95% CI, 1.00-6.17, P = 0.049). No further pre-
diabetes-specific cluster could be identified. Figure 4 presents the dis-
tribution of the observed 33 combinations of dichotomized MR
parameters (of theoretically possible 64 combinations) that occurred
in the sample according to glycemic status and cluster membership.
LASSO regression revealed that the MR feature combinations of only
abnormal ARWMC and of only abnormal ARWMC plus carotid plaque
were associated with normal controls, while all MR feature combina-
tion patterns associated with prediabetes/diabetes included hepatic
PDFF and VAT beside other abnormal MR parameters (Figs. 4, 5).

DISCUSSION

In this sample from the general population, we characterized
multiorgan involvement of subclinical disease phenotypes between sub-
jects with impaired glucose metabolism and controls. While our results
demonstrate that the overall prevalence and distribution of MR variables
representing metabolic alterations is significantly elevated among sub-
jects with prediabetes and diabetes as compared with controls, our find-
ings also indicate that metabolic organ alterations, such as elevated
LVRI, hepatic PDFF, and increased VAT volumes, are mainly affected
in subjects with higher scores. We also identified distinctive multiorgan
phenotypic patterns in subjects with prediabetes or diabetes status, which
are specific for metabolic disease.

Metabolic organ alterations, for example, the fatty degeneration
of internal organs such as the liver (ie, NAFLD), seem to be associated
with chronic inflammatory state, which affects the adipose tissue and
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FIGURE 4. Distribution of specific combinations of dichotomized MR
phenotypic parameters. Each MR phenotypic parameter is binary and
may either be normal/negative (blue) or abnormal/positive (yellow).
Among 64 possible combinations of MR phenotypic parameters, 33
combinations were observed. Each column in the figure represents the
prevalence of a specific combination in the whole sample. The

percentage of subjects with prediabetes/diabetes is shown as black; the gray
columns display the control group. There were 2 clusters of MR
phenotype patterns associated with glycemic status (P < 0.001),
independent of the MR score. Cluster Il was independently associated
with diabetes state (odds ratio, 2.49; 95% confidence interval, 1.00-6.17;
P =0.049). ARWMC indicates age-related white matter changes; PDFF,
hepatic proton density fat fraction; VAT, visceral adipose tissue volume; LVRI,
left ventricular remodeling index; LGE, late gadolinium enhancement.

contribute to the complex pathomechanism of the development of an
abnormal glucose metabolism, increased oxidative stress, dyslipidemia,
and endothelial dysfunction with accelerated atherosclerosis and micro-
angiopathy and macroangiopathy.® These changes lead to liver diseases
and dysfunctional cardiometabolic phenotypes, which result in a higher
risk for adverse cardiovascular events and mortality.*'® Tn addition,
high levels of VAT are associated with cardiometabolic risk factors and
are accompanied with the development of dyslipidemia and impaired
glucose metabolism.®*¢

In summarizing individual findings in multiple organs, we con-
firm earlier evidence pertaining to single findings. Specifically, hepatic
PDFF is known to be associated with VAT and adverse metabolic risk
profiles, independent of standard anthropometric indexes such as the
BMIL.*® Similarly, white matter lesions, supposed as result of cerebro-
vascular origin, were found to be independent risk factors for cognitive
decline and previous studies observed an association between changes
in the white matter of the brain and diabetic disease.!>*’ In addition,
LGE, representing myocardial fibrosis, and LVRI, a measure for struc-
tural changes in affected myocardium, were found to be reliable factors
for the assessment of structural and functional changes'>*' and repre-
sent strong predictors of adverse cardiovascular outcome and impaired
cardiac function.'”?! While we found that these specific MR pheno-
types are elevated in subjects with diabetes and prediabetes, we found
more subjects with higher LVRI indices in the high score as compared
with subjects in the low-score group. However, we found a high per-
centage of ARWMC among controls with low MR score, which can
be traced back to the fact that white matter lesions can also be caused
by inflammatory vessel processes and hypertensive diseases, which
may lead to the assumption that ARWMC represents an early detectable

362 | www.investigativeradiology.com

MR pattern with high prevalence in adult population, representing car-
diovascular changes.>*=° Interestingly, we found a substantially lower
prevalence of 5.3% of LGE in our diabetic population as compared with
a prior analysis in Korean population (15%), which may be attributable
to the fact that these subjects underwent clinically indicated MR imag-
ing due to suspected coronary artery disease and were retrospectively
included.*® Also, in contrast to Yoon et al, we excluded subjects with
history of stroke or peripheral artery disease, which may further decrease
likelihood of presence of disease. As such, our results may be generaliz-
able to a general asymptomatic population without prior known cardio-
vascular disease only.

Our findings may indicate that risk factors such as high adipose
tissue levels or fatty liver disease may occur relatively early within the
course of diabetes disease and may lead to the end point of irreversible
organic architectural and functional changes especially in the myocar-
dium, caused by impaired glucose metabolism.®!* In addition, there
was no difference in multiorgan MR phenotypes between subjects with
long-term and short-term or newly diabetes mellitus, which may be at-
tributable to the overall high effectiveness of currently available treat-
ment options once diagnosed in this sample from a western European
general population.

More importantly, by utilizing an MR imaging approach, we per-
formed a multiparametric assessment of different clusters representing
different combinations of phenotypic patterns that occurred in our study
sample. This cluster analysis reveals a number of relevant findings.
First, subjects with prediabetes and diabetes were assigned to the same
cluster (Supplemental Figure 2, Supplemental Digital Content 1, http://
links.lww.com/RLI/A370). In contrast, unsupervised cluster analysis
could not identify a distinct phenotypic cluster for subjects with predi-
abetes, confirming the close metabolic relationship between the 2 hy-
perglycemic disease entities observed when applying the multiorgan
MR phenotypic Score. Second, we identified distinctive clusters and
specific phenotype patterns of healthy controls and subjects with predia-
betes and diabetes. Subjects with normal glucose tolerance (healthy con-
trols) mainly show MR parameter combinations of abnormal changes in
ARWMC and carotid plaque only, with LVRI in higher score levels to
some extent, whereas additional changes including hepatic PDFF and
VAT are more likely in subjects with prediabetes and diabetes. This ob-
servation illustrates the distinctive multiorgan pattern in subjects with im-
paired glucose metabolism and outlines the importance of metabolic
alterations such as hepatic PDFF and VAT representing the strongest con-
tributors for the assessment of metabolic differences as compared with
healthy controls. Third, the MR phenotypic cluster was associated with
diabetes state, independent of a high multiorgan MR phenotypic score,
thus providing incremental information in characterizing hyperglycemic
disease manifestation as demonstrated by its superior discriminatory
power compared with single MR parameter assessment. Overall, these
results suggest that a comprehensive, detailed clustering-based assess-
ment of subclinical MR phenotypes may provide incremental value in
characterization of early metabolic changes and identifying the individ-
ual extent and risk profile of involvement of different organ systems,
even in subclinical stages.

Our study has several limitations. First, our study assesses the
cross-sectional association of imaging findings and clinical disease
types. While this may be highly relevant for gaining more insights into
the disease process, clinical relevance and consequence for patient man-
agement will need to be determined in longitudinal cohorts. Unfortunately,
at this point in time, we have no outcome data available to determine the
prognostic value of the MR phenotypic score. However, this MR pheno-
typic score provides a baseline for all subsequent analysis along the longi-
tudinal course of our study and allows to integrate the multiorgan imaging
into a sum estimate to display the extent of subclinical disease in patients
with impaired glucose metabolism. Notably, studies on the definition of
“normal versus abnormal” threshold levels of MR-based parameters de-
rived from healthy cohorts are scarce, and there is a lack of uniform cutoff
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FIGURE 5. Imaging findings in a 61-year-old male as part of the study protocol. A, Two-point DIXON T1-weighted sequence for the assessment of visceral
adipose tissue (VAT) volume from the femoral head to the cardiac apex (arrow) indicating high levels of VAT as well as hepatic proton density fat fraction
(asterix, measured on multi-echo VIBE T1-weighted sequences). B, Fluid-attenuated inversion recovery sequences demonstrating mild white matter
lesions (arrowhead). C, Atherosclerotic carotid plaque was determined on black-blood T1-weighted fat suppressed sequences in the common carotid
artery (arrow), the carotid bulb, and the proximal internal carotid artery. D, Cine-SSFP sequences were evaluated for the calculation of volume and mass
left ventricle (LV). F, late gadolinium enhancement was detected on fast-low-single-shot inversion recovery sequences 4-chamber view. The overall MR

phenotypic score in this subject totaled 4.

levels associated with higher risk profiles. Thus, we applied heterogeneous
definitions of thresholds, which were previously found to be strongly asso-
ciated with impaired glucose metabolism and/or associated with higher
cardiovascular risk and adverse outcome in an unweighted fashion.??
For instance, the presence of LGE was previously found to be associ-
ated with an 8-fold increased risk of an adverse cardiovascular event,
whereas an ARWMC score >1 is associated only with mild or moderate
risk for adverse cardiovascular outcomes.'>?! We applied 1.79 I/m? as
a threshold level for VAT, which represents the 75th percentile in a
large-scale population-based healthy sample from UK Biobank Imaging
Study and was associated with increased of risk for adverse outcome and
corresponds to the 84th percentile in our population.® It is clear that the
thresholds we applied as well as the unweighting of parameters are pre-
liminary and will require further adjustment once novel pertaining re-
search findings occur. Thus, further research is clearly warranted but
our findings may serve as a hypothesis-generating reference. Finally,
the study was conducted in a southern German general population,
and all subjects were white, thus the generation of our results to differ-
ent settings is limited.

In our study population without prior cardiovascular disease,
subjects with prediabetes and diabetes have significantly higher multi-
organ involvement of subclinical disease as compared with subjects
with normal glucose tolerance and feature a diabetes-specific pattern
of MR imaging phenotypes. These specific disease patterns are accen-
tuated when performing cluster analysis, which revealed distinctive hy-
perglycemic multiorgan phenotypic clusters of subclinical disease
manifestation in subjects with impaired glucose metabolism, containing
more metabolic organ alterations as compared with control subjects in-
cluding elevated levels of hepatic PDFF and VAT volume as well as
structural cardiac changes such as LVRI. With this study, we demonstrate
that diabetes and prediabetes is associated with a multiorgan footprint that
can be identified and quantified by MR imaging. Furthermore, MR imag-
ing may provide a more detailed assessment of the extent of subclinical
disease and multiorgan alterations, which were previously shown to be

© 2018 Wolters Kluwer Health, Inc. All rights reserved.

associated with higher risk for cardiovascular events and adverse outcome
and may therefore justify a more complex and costly imaging procedure.
As such, MR imaging may provide detailed insights into metabolic dis-
ease process and pathogenesis and thus may enable an individual charac-
terization of disease states and improve risk stratification.
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Subject in KORA-FF4 <74 years
n=1,851

- Exclusion criteria (n=221) such as
history of stroke, CAD or PAD

- MR contraindications (n=348), was
as pacemaker/ICD, claustrophobia,
allergy to Gadolinium)

Eligible for MR Study
n=1,282

- Refused participation, unavailable,
— or unsuccessfull MR scheduling
(n=882)

MR Examination
n=400

Incomplete Multi-Component MR
- ARWMC (n=14)

- LGE (n=16)

| - Hepatic PDFF (n=11)

- Myocardial LVRI (n=3)

- Carotid plaque (n=110)

- VAT (n=3)

Analysis Cohort
n=243

Supplemental Figure 1: Study flow chart. CAD, coronary artery disease; PAD peripheral
artery disease; ARWMC, age-related white matter changes; PDFF, proton-density-fat-
fraction; VAT, visceral adipose tissue volume; LVRI, left ventricular remodeling index; LGE,

late gadolinium enhancement; MR, magnetic resonance.
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Cluster Il

Cluster |

Control Prediabetes and Diabetes

T T T T T
10% 20% 30% 40% 50% 60% 70% 80% 90%
Probability of Cluster Membership

Supplemental Figure 2: Results of unsupervised fuzzy clustering by separation of two
clusters. In general, subjects within a cluster are considered “similar” to each other with
respect to the six dichotomized MRI parameters and “dissimilar” to the subjects in the other
cluster. Unsupervised clustering includes no prior knowledge on glycemic status. The
similarity/dissimilarity between the subjects is then calculated based the on the distances in
their MRI parameters by Gower’s general dissimilarity coefficient, which is appropriate for
dichotomized data. Based on these distances, each subject is assigned a probability of
membership to each cluster. The figure demonstrates the membership probabilities for both
clusters for N = 243 individuals, sorted by glycemic status. The lower row displays the
probability for each subject to belong to Cluster | whereas the upper row displays the
probability to belong to Cluster I1. Probabilities are color-coded according to the legend and
always add up to one for a single subject. The figure shows that control subjects are more
likely to belong to Cluster I, indicated by probabilities in darker red in the lower row, whereas

subjects with prediabetes or diabetes are more likely to belong to Cluster |1, indicated by
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probabilities in darker red in the upper row. A x test reveals that the clusters are significantly

associated to glycemic status (y* statistic: 64.7, p-value < 0.001).
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Supplemental Figure 3: Prevalence of MR phenotypic score among controls, patients with

prediabetes and diabetes (score range: 0 to 6). There was no subject with maximum score.
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