
The impact of observations in
convective-scale numerical weather

prediction

Tobias Marcel Necker

Munich - June 13, 2019





The impact of observations in
convective-scale numerical weather

prediction

Tobias Marcel Necker

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Tobias Marcel Necker

aus München

München, 13. Juni 2019



Erstgutachter: Dr. Martin Weissmann

Zweitgutachter: Prof. Dr. Bernhard Mayer

Datum der Abgabe: 13.06.2019

Datum der mündlichen Prüfung: 29.07.2019
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Zusammenfassung

Die Qualität von numerischen Wettervorhersagen wird stark von der Genauigkeit der An-

fangsbedingungen bestimmt. Diese werden von Datenassimilationssystemen bereitgestellt,

welche Millionen von Beobachtungen mit der neusten Kurzfristvorhersage kombinieren.

Erst seit kurzem sind Wetterdienste in der Lage hochauflösende und konvektionserlauben-

de Vorhersagen durchzuführen. Der Schritt zu einer höheren Modellauflösung ist mit

mehreren Herausforderungen in Bezug auf die Beobachtungen und die zugrunde liegen-

den Datenassimilationsalgorithmen verbunden. Insbesondere das chaotische Verhalten

und die eingeschränkte Vorhersagbarkeit von Konvektion erfordern räumlich und zeitlich

hoch aufgelöste Beobachtungen. Aktuell gibt es nur begrenzte Kenntnisse darüber, welche

Beobachtungen für die hochauflösende numerische Wettervorhersage am wichtigsten sind.

Daher ist ein besseres Verständnis des Einflusses verschiedener Beobachtungen auf kon-

vektiver Skala erforderlich, um aktuelle Datenassimilations-, Vorhersage- und Beobach-

tungssysteme zu verbessern. Darüber hinaus sind Informationen über den Einfluss von

Beobachtungen erforderlich, um zukünftige Beobachtungs- und Datenassimilierungsstrate-

gien für die regionale numerische Wettervorhersage zu entwickeln.

Die vorliegende Arbeit untersucht, welche Beobachtungen konvektionserlaubende En-

semblevorhersagen am stärksten beeinflussen. Der Einfluss assimilierter Beobachtungen

und der potenzielle Einfluss zukünftiger Beobachtungen wird mit zwei verschiedenen en-

semblebasierten Methoden bestimmt. Beide Methoden basieren auf Stichprobenkorrelatio-

nen, die mit dem Ensemble geschätzt werden. Ensemblevorhersagesysteme nach aktuellem

Stand stellen jedoch nur Ensembles mit 20 bis 250 Vorhersagen zur Verfügung, um die Un-

sicherheit der Vorhersage und räumliche sowie zeitliche Kovarianzen abzuschätzen. Da die

Anzahl der Freiheitsgrade atmosphärischer Modelle jedoch um mehrere Größenordnungen

höher ist, werden Stichprobenkorrelationen erheblich durch Stichprobenfehler beeinflusst.

Folglich ist die begrenzte Ensemblegröße bei der Bestimmung des Beobachtungseinfluss-

es, sowie in vielen anderen Ensembleanwendungen ein Problem. Aus diesem Grund ist

es wichtig, Stichprobenfehler auf konvektiver Skala zu quantifizieren und Methoden zu

entwickeln, um sie zu reduzieren. Um den zuvor diskutierten Herausforderungen zu begeg-

nen, zielt diese Dissertation darauf ab, den Einfluss von Beobachtungen auf konvektion-

serlaubende Vorhersagen abzuschätzen und das Problem von Stichprobenfehlern zu re-

duzieren.

Im ersten Teil dieser Arbeit wird daher der Einfluss von rund 3 Millionen konven-

tionellen Beobachtungen auf das regionale Vorhersagesystem des Deutschen Wetterdienstes

untersucht. Diese Studie stellt die erste Auswertung von ensemblebasierten Schätzungen

des Beobachtungseinflusses über einen längeren Zeitraum von sechs Wochen in einem kon-

vektionserlaubenden Modellsystem dar. Nahezu alle früheren Studien verwendeten den
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Unterschied zwischen der Vorhersage und einer Analyse desselben Modellsystems zur Ver-

ifikation. Diese Art der Verifikation spiegelt jedoch relevante Aspekte der konvektionser-

laubenden Vorhersage unzureichend wider. Daher wird der Einfluss von Beobachtungen

mit verschiedenen beobachtungsbasierten Verifikationsnormen ausgewertet.

Der zweite Teil dieser Arbeit stellt eine Methode zur Abschätzung des relativen poten-

ziellen Einflusses verschiedener beobachtbarer Größen auf konvektionserlaubende Vorher-

sagen vor. Diese Methode basiert auf einer Ensemble-Sensitivitätsanalyse und verwendet

akkumulierte quadratische räumliche und zeitliche Korrelationen als Näherung für den

potenziellen Beobachtungseinfluss. Um zuverlässige Korrelationen zu erhalten, ist jedoch

ein sehr großes Ensemble erforderlich. Daher wurde in Zusammenarbeit mit dem RIKEN

Institut für Computerwissenschaften ein einzigartiges Ensemble mit 1000 konvektionser-

laubenden Vorhersagen berechnet. Diese Simulationen ermöglichen es, die Empfindlichkeit

der Methodik auf die Ensemblegröße hin zu untersuchen. Die vorliegende Studie hebt

die Skalenabhängigkeit des potenziellen Einflusses hervor und bildet die Grundlage für die

Entwicklung besserer Beobachtungs- und Datenassimilationsstrategien.

Im dritten Teil dieser Arbeit wird das Ensemble aus 1000 Vorhersagen als Referenz

benutzt, um Stichprobenfehler auf konvektiver Skala zu quantifizieren und eine statistische

Stichprobenfehlerkorrektur auszuwerten. Die Stichprobenfehlerkorrektur ist ein einfacher

Ansatz auf der Basis einer Nachschlagetabelle und zielt darauf ab, zufällige Korrelationen

zu reduzieren. Eine detaillierte Auswertung für räumliche und zeitliche Korrelationen

zeigt, dass die Stichprobenfehlerkorrektur Fehler in Korrelationen, die zur Abschätzung

des Einflusses von Beobachtungen erforderlich sind, signifikant reduziert. Außerdem unter-

streicht die Studie das große Potential der Stichprobenfehlerkorrektur für eine Anwendung

in der Datenassimilation, wo sie entfernungsbasierte Lokalisierungstechniken ersetzen und

dadurch die Einbindung von Beobachtungen verbessern könnte.



Abstract

The accuracy of the initial conditions strongly determines the skill of numerical weather

prediction (NWP). Data assimilation systems combine millions of observations with the lat-

est short-range forecast to provide optimal initial conditions. Only recently, NWP centers

are capable of performing high-resolution, convection-permitting forecasts on a regional

scale. However, moving to a higher model resolution involves several challenges concern-

ing observations and the underlying data assimilation algorithm. The chaotic nature and

limited predictability of convection calls for spatially and temporally high resolved obser-

vations. However, limited knowledge exists on which observations are most important for

high-resolution NWP. Hence, a better understanding of the impact of different observations

on these scales is required to improve current data assimilation, forecasting, and observ-

ing systems. Furthermore, knowledge of the potential impact of observations is needed to

develop advanced observation and data assimilation strategies for future convective-scale

NWP.

This thesis, therefore, investigates the impact of observations in convective-scale ensem-

ble forecasting. The impact of assimilated observation and the potential impact of future

observations is evaluated by applying two complementary ensemble-based methods. Both

methods rely on sample correlations that are estimated with an ensemble. However, state

of the art ensemble prediction systems usually provide ensembles with only 20-250 mem-

bers for estimating the uncertainty of the forecast and its spatial and temporal covariance.

Given that the degrees of freedom of atmospheric models are several magnitudes higher,

sample correlations are significantly affected by sampling errors. Therefore, sampling er-

rors pose an issue for the impact assessment and in many other ensemble applications.

Thus, it is essential to quantify sampling errors on convective-scales and to find methods

to mitigate sampling errors. To address the previously discussed challenges, this disserta-

tion aims to estimate the impact of observations and to reduce the issue of sampling error

in convective-scale modeling and ensemble diagnostics.

The first part of this thesis evaluates the impact of about 3 million conventional obser-

vations in the regional ensemble forecasting system of Deutscher Wetterdienst. This study

presents the first evaluation of ensemble-based estimates of observation impact over an

extended period of six weeks in a convection-permitting modeling system. Nearly all pre-

vious observation impact studies used the difference between the forecast and subsequent

analysis of the same modeling system for verification. However, this kind of verification

does not adequately reflect relevant forecast aspects of convective-scale forecasting. Hence,

the observation impact is examined for different observation-based verification norms.

The second part introduces an approach for estimating the relative potential impact

of different observable quantities in convective-scale modeling. The approach is based on
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ensemble sensitivity analysis and uses accumulated squared spatiotemporal correlations as a

proxy for the potential impact. To obtain reliable spatiotemporal correlations, a very large

ensemble is required. Therefore, an unprecedented convective-scale 1000-member ensemble

was computed in collaboration with the RIKEN Institute for computational science. This

simulation allows to examine the sensitivity of the approach to the ensemble size. The

present study further highlights the scale dependence of the potential impact and provides

the basis for developing better observation and data assimilation strategies.

The third part uses the 1000-member ensemble simulation as truth to quantify sam-

pling errors on convective-scales and to evaluate a statistical sampling error correction.

The sampling error correction is a simple look-up table based approach and aims to re-

duce spurious correlations. A detailed evaluation for spatiotemporal correlations shows

that the sampling error correction significantly reduces sampling errors in sample correla-

tions that are required for estimating the impact of observations. Additionally, the study

demonstrates the great potential of the sampling error correction method for data assim-

ilation where it could replace distance-based localization techniques and thereby increase

the impact of observations.
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Chapter 1

Introduction

1.1 Numerical weather prediction

The quality of weather forecasts influences both society and economy on a daily basis.

Forecasts of extreme weather events help to protect human life and property. Weather

warnings prevent economic losses and are crucial for road traffic and aviation. Forecasts

for wind and solar radiation are necessary to predict the contribution of renewable energy

sources to the power supply. The list of applications is long, and there are many reasons

why various services require accurate weather prediction. Nowadays, operational numerical

weather prediction (NWP) centers perform multiple forecasts per day to meet the growing

demand. These forecasts range from a lead time of a few hours up to several weeks and

are performed for different areas and with different spatial resolutions.

Over the past thirty years, the skill of NWP systems enhanced tremendously. This progress

results from both scientific and technological advances in various fields (Bauer et al., 2015):

First, new computational resources allowed to move to a higher spatial resolution. Conse-

quently, most regional models nowadays represent deep convection explicitly using a hori-

zontal grid-spacing of a few kilometers. Second, new NWP models with improved physics

are available. That includes a better representation of subgrid-scale physical processes by

more sophisticated parameterizations. Third, ensemble prediction systems deliver prob-

abilistic forecasts that estimate the uncertainty of a forecast. Finally, advances in data

assimilation (DA) made one of the most important contributions to the improvement of

NWP. That includes a steadily growing observing system, which provides several millions

of observations per day. Furthermore, advanced methods enable to assimilate additional

complex observations and to exploit the provided information better.

Data assimilation Already Bjerknes (1904) postulated that weather prediction is an

initial value problem. Nowadays, we know that the atmosphere is a non-linear, chaotic

system (Lorenz, 1963) and that the accuracy of the initial state strongly determines the

practical predictability of weather and the forecast skill. Data assimilation, therefore,

aims to provide an optimal estimate of the initial state that is required to initialize a

new forecast (Lorenc, 1986). State of the art data assimilation algorithms combine the

latest short-range forecast with thousands or millions of observations to generate the best

estimate of the initial state. This process is repeated for consecutive assimilation windows

and called cycling (Figure 1.1). Operationally, near real-time cycling frequently provides
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DA cycle

Obs

FGModel

State

Obs

FGModel

State

Obs

FGModel
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FCM FC M6-h 1-dM
Forecast loop
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M

Figure 1.1: Flow-chart of an NWP system. A data assimilation cycle typically
combines a short-range forecast (background or first guess; FG) with observations (Obs)
to provide the best initial state for a new forecast. A forecast loop is performed several
times per day to provide long-range forecasts (FC) for various applications.

new initial conditions to start forecasts several times per day. Weather services apply

several different data assimilation schemes. The choice of the data assimilation scheme

differs depending on the available computational resource, observational information, or

the applied modeling system. Furthermore, the choice is a matter of the forecast resolution

as the demands on global or regional scales are quite different.

State of the art data assimilation systems are based on variational, ensemble, or hybrid DA

approaches. All these approaches are sequential DA methods that combine observations

y and a background state xb to generate a new analysis state xa accounting for the error

of both sources of information. Numerically, the state estimation for x can be solved

minimizing a quadratic cost function J

J(x) =
1

2
(x− xb)TB−1(x− xb) +

1

2
(y −H(x))TR−1(y −H(x)), (1.1)

where B is the background error covariance matrix, R the observation error covariance

matrix and H the non-linear observation operator that maps from the model into observa-

tion space. Usually, both observation and background errors are assumed to be Gaussian

distributed and unbiased. The background error covariance matrix is often named Pb

(instead of B) if it is estimated using an ensemble. In practice, adequate modeling of

the background error covariance matrix is decisive on the performance of a DA algorithm.

Insufficient modeling of error covariances leads to imbalances or a sub-optimal weighting

of the information from background and observations. Subsequently, these effects likely

cause a sub-optimal analysis and degrade the forecast.

Data assimilation methods mainly differ in the way they treat and obtain the background

error covariance matrix. For variational schemes (e.g., 3DVAR), a static background er-

ror covariance matrix B is estimated climatologically with additional constraints such as

geostrophic balance. Several prediction centers maintain a 4DVAR DA system, which is an

extension of 3DVAR that accounts for the temporal evolution of the state within the assim-

ilation window. 4DVAR additionally allows the B to develop throughout the assimilation

window. However, applying variational methods on convective-scales is challenging. Usu-
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ally, a climatologically estimated static B matrix is unsuitable for relatively fast-changing

weather situations on these scales (Hohenegger and Schar, 2007). For convective-scale DA

many operational centers, therefore, apply an Ensemble Kalman filter (EnKF) (Evensen,

1994). An EnKF uses an ensemble to estimate the error covariance matrix Pb and exhibits

a flow-dependent Pb. This flow-dependence is a significant advantage over a climatologi-

cally estimated background error (Houtekamer and Mitchell, 1998).

For global models, many weather services maintain hybrid data assimilation systems that

combine the benefits of both variational and ensemble approaches. For example, Deutscher

Wetterdienst (DWD) runs a hybrid 3D ensemble variational (3DEnVAR) DA system to

obtain the initial conditions for the global model (ICON). For the regional forecast ensem-

ble, DWD implemented a Local Ensemble Transform Kalman Filter (LETKF; Hunt et al.

(2007)) system, which is a special type of EnKF. The global observing system delivers

observations that are assimilated by all DA systems.

PROF

Space-borne

SYNOP
TE
M
P

Atmospheric

Ground-based

Satellite

?

Community

AIREP
Radar

Figure 1.2: Sketch of the regional observing network of Deutscher Wetterdienst.
Conventional and operationally assimilated observations provided by aircraft (AIREP,
green), wind profiler (PROF, blue), radiosonde (TEMP, red) and surface stations
(SYNOP). Observations that DWD is aiming to assimilate in the future (black):
satellites, weather radars, automobiles and smartphones (community data).

Observing system The global observing system provides several millions of observa-

tions per day measured by various instruments (Gustafsson et al., 2018). Remote sensing

observations from satellites by far provide the majority of observations. A significant

amount of observations are radiances in the infrared, visible and microwave spectral range

observed by radiometer or imaging spectrometer. Additionally, global positioning system

radio occultation (GPSRO) or wind lidar (Aeolus) measurements provide observations of

humidity and wind. However, the operational regional DA system of DWD so far only

makes use of radar and conventional observations (Figure 1.2). Radar observations are

indirectly assimilated using a latent heat nudging. That means a temperature increment

is obtained from the latent heat release that is approximately proportional to the near

surface precipitation rate. Conventional observations include direct observations of prog-
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nostic model variables such as temperature, wind, humidity, or pressure. Conventional

observations can be grouped into four different observational sources: Observations that

are measured by aircrafts (AIREP), wind profiler (PROF), radiosondes (TEMP) as well

as ships, drifting buoys and surface stations (SYNOP). At the moment, DWD is working

on the assimilation of additional observation types for its regional ensemble DA system:

solar (Scheck et al., 2018) and thermal (Harnisch et al., 2016) satellite observations, radar

reflectivity (Bick et al., 2016) and radar radial velocity.

This thesis presents results for two different regional modeling systems that assimilate

conventional observations applying a LETKF: The pre-operational regional forecasting

system of DWD (COSMO-KENDA) and the Japanese experimental regional modeling

system (SCALE-LETKF). Experiments that are carried out with both systems mainly

aim to assess the actual and potential impact of observations in the context of high-

resolution NWP. The next section, therefore, discusses several challenges that are crucial

for performing convective-scale DA.

1.2 Challenges for convective-scale data assimilation

The chaotic nature and limited predictability of convection pose fundamental challenges in

terms of convective-scale DA (Gustafsson et al., 2018). In particular, the higher resolution

and low predictability calls for the assimilation of spatially and temporally highly resolved

observations. Consequently, major efforts are made to assimilate high-resolution obser-

vations as radar reflectivity or cloud-affected satellite observations (Miyoshi et al., 2016b,

Harnisch et al., 2016, Scheck et al., 2018, Sawada et al., 2019). However, successfully assim-

ilating such observations requires both accurate parameterizations and observation opera-

tors as well as accurate estimates of highly flow-dependent error covariances (Houtekamer

and Zhang, 2016). Overall, major challenges can roughly be grouped based on the three

components of the data assimilation system: the numerical model, the underlying data

assimilation algorithm, and the observational information.

Model-related challenges On convective scales, model-related challenges include ran-

dom and systematic model errors (Whitaker and Hamill, 2012, Bannister, 2017). Random

errors arise from non-linear and stochastic processes such as convection or precipitation and

can only be represented using an ensemble. Systematic model errors need to be reduced

to enable successful assimilation of, for example, cloud-related observations.

As a consequence, great efforts are made to improve parameterizations that are required

to describe clouds and subgrid-scale processes in the model. Overall, given that current

models are far from perfect implies model error. Sources for model error, for example, are

insufficient parameterizations or the need for discretization. In practice, different relaxation

and inflation methods are applied to account for model error (Whitaker and Hamill, 2012,

Zeng et al., 2018). Inflating the ensemble perturbations helps to represent the uncertainty

in the forecast better and partly accounts for model deficiencies. Nevertheless, existing

methods only provide a mitigation to this issue. Consequently, the correct treatment of

model error is still a very active research field.
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Algorithm-related challenges In convective-scale data assimilation, there are many

algorithm-related challenges, such as non-Gaussianity, non-linearity, noise, or mass conser-

vation. Furthermore, under-sampling using a too small ensemble requires methodological

solutions (Houtekamer and Zhang (2016)). A too small ensemble, for example, causes

spurious correlations estimating error covariances. Error covariances overall determine the

weights for combining background and observation as well as decide how information is

spread spatially and between model variables. Thus, accurate estimates of error covariances

are crucial for optimal initial conditions. To reduce the effect of spurious nonphysical cor-

relations, usually, distance-based localization techniques are applied. However, finding an

optimal localization length-scale is an intrinsically difficult task as an optimal scale may dif-

fer for different variables, vertical levels, and regions. Therefore, a constant distance-based

localization in many cases is inappropriate (Anderson, 2012). Hence, better knowledge of

sampling errors and localization could improve many ensemble-based methods and increase

the impact of observations. How to deal with sampling error, therefore, will be one topic

of this thesis and further discussed in Section 1.4 of the introduction.

Observation-related challenges Observation-related challenges include the optimal

design of the observing network, the development of observation operators, and the mod-

eling of observation errors (Gustafsson et al., 2018). Furthermore, quality control and

pre-processing of observational information are crucial. Observation errors usually are as-

sumed to be uncorrelated, and in practice, a diagonal observation error covariance matrix

is often applied. The observation error for data assimilation is composed of three different

error sources: representativity, instrument, and operator errors. A representativity error

can appear due to unresolved processes such as missing subgrid-scale variability. The in-

strument error accounts for deficiencies of the measuring instrument or algorithm. Errors

in observation operators, for example, can arise from assumptions that are made to develop

sufficiently fast forward operators.

Performing real-time cycling, accurate and fast observation operators are especially neces-

sary to assimilate complex remote sensing observations. Consequently, many studies deal

with the development of fast forward operators for radar (Zeng et al., 2016) or satellite

observations (Scheck et al., 2018). Overall, improving the observing network and devel-

oping strategies on how to design the future observing network are significant challenges

for future data assimilation (Gustafsson et al., 2018). Therefore, it is essential to gain

knowledge of the actual and potential impact of observations within the forecasting system

to answer these questions. Estimating the impact of various observation types will be the

primary purpose of this thesis. The next section provides a detailed introduction to this

topic.

1.3 Monitoring the impact of observations

The amount and variety of observations that are available for NWP are steadily increasing.

Hence, it is essential to understand and monitor the role of various observation types. For

that reason, different methods have been developed to estimate the contribution of individ-

ual observations or observation types to the reduction of forecast error. This contribution

is usually referred to as observation impact.
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Observation impact Reliable estimates of observation impact are crucial for many rea-

sons: First, a systematically detrimental impact indicates issues with individual observa-

tions or their assimilation. Such knowledge helps to improve the usage of observations

and thereby improves the forecast. Second, observation impact can be used to enhance

the cost-benefit ratio of the observing system. For instance, if a specific observation type

turns out to be very cheap and beneficial, more of these observations could be deployed

in the future. Furthermore, observation impact tools are used to estimate the impact of

new observing systems within the existing NWP system. Hence, knowledge of observation

impact provides essential information for optimizing the observing, data assimilation, and

forecasting systems.

Over the last decades several different approaches have been developed to estimate obser-

vation impact in variational, ensemble-based or hybrid DA systems. Independent from the

DA scheme, observing system experiments (OSEs) such as data denial experiments can

be used to assess observation impact (e.g. Bouttier and Kelly (2001); Kelly et al. (2007);

Cardinali (2009); Gelaro and Zhu (2009); Benjamin et al. (2010); Weissmann et al. (2011);

Harnisch et al. (2011); Lupu et al. (2012); Bauer et al. (2014); Horányi et al. (2015a);

Horányi et al. (2015b)). However, OSEs are computationally very demanding as they re-

quire to run the full DA system and NWP model for every configuration of interest. In

practice, OSEs are therefore only feasible for very few subsets of observations and limited

time periods. Another approach is to calculate the influence of observations in the anal-

ysis (e.g. Cardinali et al. (2004); Desroziers et al. (2005); Fourrié et al. (2006); Liu et al.

(2009); Lupu et al. (2011); Cardinali and Healy (2014); Brousseau et al. (2014)). These are

valuable diagnostics for the DA system, but the observation analysis influence can deviate

from the forecast impact.

To overcome these limitations, adjoint-based methods for the assessment of observation

impact on short-term forecast error emerged with the development of 4DVAR DA schemes.

In the beginning of this century, Langland and Baker (2004) first introduced an adjoint-

based method to calculate the forecast sensitivity to observation impact (FSOI). Since then,

FSOI methods were applied to assess observation impact in several different forecasting

systems (e.g. Langland (2005); Cardinali (2009); Gelaro et al. (2010); Weissmann et al.

(2012); Lorenc and Marriott (2013); Jung et al. (2013); Holdaway et al. (2014); Privé et al.

(2014); Lupu et al. (2015); Janisková and Cardinali (2016); Horányi et al. (2017); Mallick

et al. (2017)).

More recently, Liu and Kalnay (2008), Li et al. (2010), and Kalnay et al. (2012) demon-

strated the feasibility to approximate the forecast sensitivity to observation impact in an

idealized ensemble modeling system (EFSOI). The method is based on the available output

of an ensemble data assimilation and forecasting system and thereby avoids the requirement

of an adjoint model. Based on that progress, the EFSOI method was then implemented

and tested in global and mesoscale modeling systems (e.g., Kunii et al. (2012); Ota et al.

(2013)). Recently, Buehner et al. (2018) combined the adjoint and ensemble-based ap-

proaches to estimate observation impact in a hybrid DA system.

Whereas FSOI methods are now commonly used in global modeling systems, the assess-

ment of observation impact in high-resolution regional modeling systems received much

less attention. Only recently, a few NWP centers (e.g., DWD, UK MetOffice, Meteo

France) started developing approaches for FSOI in convective-scale models. Sommer and
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Weissmann (2014) first applied the EFSOI method in a convective-scale ensemble system,

performed a quantitative evaluation of the method, and showed good agreement of the

EFSOI approximation with data denial experiments. However, their experimental period

of only 1.5 days was too short for drawing representative conclusions on the impact of

various observation types.

Another aspect that received little attention is the choice of the verification metric. Until

recently, all FSOI studies used energy-norm verification metrics that are calculated based

on differences of a model forecast and subsequent analysis fields. This type of verification

may be suitable for synoptic-scale applications as energy-norms combine different forecast

aspects. However, analysis fields are not an ideal choice for the verification of short-term

forecasts as they may be affected by model biases, and their errors are correlated with

those of the forecast. While it seems common knowledge that such a self-verification is

potentially dangerous, over 20 studies on FSOI were published without much investigation

of the choice of the verification metric and the role of model biases. For the investigation of

observation impact in convective-scale modeling systems, the issue of biases gets even more

severe as model biases tend to be larger in areas of convective precipitation. Forecasting

convective events, however, is usually one of the primary purposes of convective-scale

modeling systems. Additionally, total energy seems an inappropriate verification metric as

it does not reflect primary forecast quantities as precipitation and wind gusts.

As a first step to overcome these deficiencies, Sommer and Weissmann (2016) reformulated

the EFSOI method and introduced an observation-based verification metric. In their study,

they used a verification norm based on the departures of all observations assimilated in the

subsequent analysis cycle weighted by their errors and investigated the pre-operational re-

gional ensemble DA and modeling system of DWD. Similarly, Cardinali (2018) introduced

an observation-based norm for the adjoint-based approximation of FSOI in the global Eu-

ropean Centre for Medium-Range Weather Forecasts (ECMWF) modeling system. While

the use of observations for the verification of short-term forecasts overall seems advanta-

geous, the limitations of this approach are that the observations are unevenly distributed in

space and some observation types may be affected by observational biases. Furthermore,

it would be desirable that the verification metric reflects quantities that forecast users

are most interested in (e.g., precipitation, wind gusts, surface wind, and temperature or

total hours of sunshine). For that reason, this study analyzes EFSOI results using differ-

ent observation-based verification metrics, investigates the role of potential observational

biases and includes independent radar-derived precipitation observations for verification.

Potential impact Another major challenge is the development of observation and data

assimilation strategies for high-resolution NWP considering the vast amount of potentially

available information in developed countries (Gustafsson et al., 2018): First, NWP cen-

ters do not have the human resources to incorporate all these often complex sources of

information at the same time. Second, new data selection strategies are required consid-

ering the vast amount of unused observations provided by radars, satellites, ground-based

profilers, or community observations (e.g., smartphones, webcams, and renewable power

production). Last, technological advances have led to novel and much cheaper remote-

sensing instruments that could be deployed in the future. Therefore, better knowledge is

needed on what observations are most important for convective-scale NWP and where to
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set priorities or resources.

This thesis introduces an approach that can be used to develop observing and data assim-

ilation strategies based on ensemble sensitivity analysis (ESA; Ancell and Hakim (2007)).

The approach was first introduced by Geiss (2017) and uses spatiotemporal correlations as

a proxy for the potential impact of observable quantities. The main focus of this thesis is

to assess the potential impact of different quantities on precipitation, which is a primary

forecast quantity of convective-scale forecasting systems. The proposed approach strongly

depends on the reliability of spatiotemporal correlations derived from an ensemble. For

that reason, this thesis also introduces a novel convective-scale 1000-member ensemble

simulation. The ensemble is required to achieve reliable impact results based on realistic

spatiotemporal correlations.

Ensemble sensitivity analysis itself is an efficient method to explore probabilistic data-sets

by investigating linear relations between a forecast metric and initial quantities. ESA has

been applied for various synoptic-scale case studies (e.g. Hakim and Torn (2008); Torn and

Hakim (2008); Torn and Hakim (2009); Torn (2010); Hanley et al. (2013); Barrett et al.

(2015)). Recently, several studies showed that ESA also can provide reasonable results

for the analysis of convective-scale simulations (Bednarczyk and Ancell, 2015, Wile et al.,

2015, Hill et al., 2016, Berman et al., 2017, Limpert and Houston, 2018). Nevertheless,

nearly all previous studies on ESA applied relatively small ensembles for their analysis,

which implies sampling error. So far, earlier studies could not quantify potential sampling

errors due to spurious correlations as no larger ensemble was available for comparison.

These studies attempted to account for under-sampling by applying a confidence test that

excludes insignificant correlations (Torn and Hakim, 2008). However, this approach may

also exclude small physical correlations, which can lead to systematic effects and is therefore

not well-suited for a quantitative analysis of sensitivities. The 1000-member ensemble

simulation for the first time enables to quantify the contribution of sampling error for ESA

depending on the ensemble size.

1.4 Ensemble prediction and sampling error

Ensemble-based estimates of impact and potential impact crucially rely on accurate spa-

tiotemporal correlations that are estimated with an ensemble. However, operational en-

semble sizes only range from about 20 up to 250 members and large ensembles of 250

members are only affordable for very short lead times (Houtekamer et al., 2014, Bannister,

2017, Leutbecher, 2018, Caron and Buehner, 2018, Gustafsson et al., 2018). Given that

the number of ensemble members is therefore much smaller than the number of degrees of

freedom of the model (≈ 107) causes several problems: First, the ensemble underestimates

variances and does not sample all possible states. Second and more severe, sampling errors

significantly affect the estimates of sample correlations leading to spurious correlations. All

state of the art ensemble approaches, therefore, have to deal with sampling errors. Hence,

it is essential to investigate sampling errors and to find appropriate methods to correct

spurious correlations.

Historically, the exploration of the chaotic behavior of weather in the 1960s is the start-

ing point of present-day ensemble prediction (Lorenz, 1963). The European Centre for

Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmen-



1.4 Ensemble prediction and sampling error 9

tal Prediction (NCEP) produced their first operational ensemble forecasts in the early

1990s (Kalnay, 2003). Nowadays, most operational weather services maintain ensemble

systems to gain essential probabilistic information using various ensemble configurations.

The applied ensemble size to some extent depends on the primary purpose of the ensemble,

for example, estimating forecast uncertainty (variances) or estimating error covariances for

data assimilation, but are restricted by the available computing power. That explains why

the number of ensemble members is limited, and a trade-off between the required ensemble

size and accessible computational resource.

Sampling error correction Mitigation to the issue of under-sampling could provide

a statistical sampling error correction (SEC) approach as introduced by Anderson (2012,

2016). The SEC systematically corrects for the over-estimation of correlations due to

spurious correlations. It is a look-up table-based approach calculated using a Monte-Carlo

technique and therefore, easy to apply. One central part of this thesis explicitly applies

the SEC to spatiotemporal correlations to evaluate its potential for ESA, EFSOI, or other

ensemble applications. Additionally, the SEC is applied to spatial correlations to evaluate

its potential for ensemble or hybrid DA.

Originally, the SEC was designed for covariance localization in ensemble Kalman filter

DA. EnKF algorithms or hybrid ensemble approaches rely on accurate estimates of error

covariances. Localization techniques usually are applied to reduce the effect of spurious cor-

relations (Houtekamer and Mitchell (1998); van Leeuwen (1999); Houtekamer and Mitchell

(2001)). Localization is a physically motivated approach, which cuts off or damps spatial

correlations after a certain distance using a tapering function. An example for such a ta-

pering function is the Gaspari-Cohn function (Gaspari and Cohn, 1999) (Figure 1.3a). The

effect of the tapering function on spatial correlations is exemplarily shown in Figure 1.3b,

which displays the vertical correlation of near-surface temperature with upper-air tem-

perature. Comparing the spatial correlation of a small (40 members) and large ensemble

(1000 members) reveals the presence of spurious correlations caused by finite sample size.

Applying a perfectly fitted localization function, in this case, can significantly improve

the correlation. However, the choice of the localization length scale is an intrinsically

difficult task given that physical correlations in the atmosphere can extend horizontally

over thousands of kilometers and vertically throughout the troposphere and even into the

stratosphere (Caron and Buehner, 2018). Furthermore, different observation types and

different model variables presumably require different localization-scales.

Especially vertical localization is a challenging task for data assimilation as several obser-

vation types (e.g., passive satellite observations) can be significantly correlated with the

full vertical profile of the atmosphere (Lei et al., 2018). Furthermore, satellite observations

often cannot be assigned to a single level, which makes a distance-based localization un-

suitable. Figure 1.3c shows an example of a vertical correlation of a cloud at 500 hPa with

temperature and specific humidity in the tropospheric column. The layer of strong positive

correlation indicates that the cloud extends over a broad vertical region and can not be

assigned to a single level. Furthermore, the cloud is correlated with the full vertical column

due to adiabatic and radiative processes. For example, evaporative cooling at the surface

caused by precipitation can lead to strong negative long-range correlations. How to deal

with such situations is a challenging task. Hence, to increase the impact of observations,
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(a) (b) (c)

Figure 1.3: (a) Gaspari-Cohn localization function. (b) Example of a vertical
temperature correlation (1000 member, black, solid), spurious correlations (40 member,
blue, dash-dotted) and the effect of localization (40 member with localization, red,
dashed). (c) Example of long-range vertical correlations of hydrometeors (clouds) at
500 hPa to temperature (T, solid) and specific humidity (QV, dashed) in the entire
column. Response level in each sub-figure is indicated by the horizontal dotted line.

it is crucial to understand error covariances better, to quantify sampling error depending

on the ensemble size and to develop improved techniques for sampling error correction and

localization.

1000-member ensemble Accurate probabilistic forecasts and therefore large ensem-

bles are explicitly required in convective-scale forecasting, which aims at predicting local

weather phenomena and the occurrence of extreme weather events that are often related

to atmospheric convection (Gustafsson et al., 2018). Only recently, the latest generation

of supercomputers allows performing high-resolution big ensemble forecasts with a fre-

quent update cycling (Miyoshi et al., 2015, 2016a). These advances enable to conduct

the convective-scale 1000-member ensemble simulation, which is mandatory to answer the

target research questions of this thesis.

The 1000-member ensemble follows upon previous studies that conducted large ensemble

simulations using mainly lower-resolution or idealized models. For example, first experi-

ments using a 10240-member global ensemble showed that large ensembles can be applied

to learn about sampling error, non-Gaussianity (Miyoshi et al., 2014), or to improve co-

variance localization (Kondo and Miyoshi, 2016). Furthermore, a study by Jacques and

Zawadzki (2015) once computed 1000 convective-scale forecasts to investigate background

errors for radar data assimilation. All these studies highlight the potential of large ensemble

simulations to investigate error correlations and sampling error.

The present 1000-member ensemble simulation mainly builds upon a setup introduced by

Geiss (2017). The main difference in the setups originates from the use of improved ensem-

ble boundary conditions (BC) that lead to more realistic spread properties. The applied

1000-member ensemble simulation is the first of its kind and, therefore, requires a basic

evaluation. Consequently, this thesis compares the large ensemble to radar precipitation
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observations and the pre-operational COSMO-KENDA 40-member ensemble.

Overall, the large high-resolution ensemble for the first time provides reliable estimates

of correlations that serve as truth to quantify sampling errors that would be made with

smaller subsets of the full ensemble. The 1000-member ensemble, furthermore, is required

to estimate the potential impact of observations for convective-scale DA. Given that the

large ensemble is hardly affected by sampling errors enables more detailed evaluation of

sampling error and correction methods as it could be achieved beforehand.

1.5 Research questions and outline

This dissertation consist of three parts (Chapter 4, 5, and 6) that intend to estimate

the impact of observations in convective-scale NWP. For that purpose, two complementary

ensemble-based approaches are applied to assess the actual and potential impact of different

observations. The third part evaluates a sampling error correction, as both approaches are

ensemble-based and therefore have to deal with sampling errors. Chapter 3 introduces the

unique convective-scale 1000-member ensemble simulation that is required for two studies.

Figure 1.4 illustrates a schematic overview of the overlap of the different parts of this thesis.

Scientific questions The key scientific questions addressed in this thesis are:

1. How large is the impact of observations in the convective-scale forecasting system of

Deutscher Wetterdienst and how strongly does the impact depend on the choice of

the verification metric?

(Observation impact)

2. How can we estimate the potential impact of observable quantities for convective-scale

data assimilation?

(Potential impact)

3. Can a statistical sampling error correction approach improve spatial and spatiotemporal

correlations that are required for several ensemble applications?

(Sampling error correction)

The first part of this thesis evaluates the impact of about 3 million conventional obser-

vations in the regional operational forecasting system of Deutscher Wetterdienst. This is

the first study assessing the observation impact in a convective-scale regional DA system

over an extended period of six weeks. The observation impact is calculated by applying an

EFSOI method and using different observation-based verification norms. EFSOI measures

the observation impact, which is determined by the configuration of the data assimilation

system. Hence, it is a powerful tool for monitoring the KENDA system. Particular em-

phasis is given to the question of how the verification norm or existing biases affect the

estimated observation impact.

The second part introduces an approach that can analyze the potential impact of observable

quantities. The proposed approach is very efficient, applicable to a large amount of data

and only requires an ensemble forecast. Therefore, it could be applied in any ensemble

forecasting system and help to develop improved data assimilation and observing strategies
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Figure 1.4: Illustration of the overlap and connection between different parts of this
thesis.

in the future. The potential impact is analyzed using the spatiotemporal correlations as a

proxy for the potential impact. The present study mainly focuses on the scale dependence of

the approach and the sensitivity of the approach to the ensemble size. Overall, the approach

estimates the relative potential impact assuming a perfect data assimilation system and,

therefore, provides a different estimate of the impact and complements the EFSOI.

The third part of this thesis evaluates a sampling error correction approach that can help

to reduce sampling error performing an ensemble-based impact assessment. The sampling

error correction could be applied in various ensemble applications that incorporate sample

correlations. Initially, the SEC was introduced as an alternative to constant distance-

based localization techniques. This thesis evaluates the SEC for both spatiotemporal and

spatial correlations. Reliable spatiotemporal correlations are required for the estimation

of observation impacts as well as for ensemble sensitivity analysis. Spatial correlations are

needed in data assimilation to spread observational information in the analysis state.

In addition to the three main parts, this thesis introduces and evaluates a novel convective-

scale 1000-member ensemble simulation that is applied to quantify sampling error in

convective-scale NWP (Chapter 3). The 1000-member ensemble simulation delivers re-

liable spatial and spatiotemporal correlations. Those correlations are explicitly needed to

estimate the potential impact of observations in Chapter 5 and to evaluate the sampling

error correction in Chapter 6.

Outline The outline of this thesis is as follows: Chapter 2 gives a general introduction

to ensemble Kalman filter data assimilation and different observation impact methods.

Furthermore, ensemble sensitivity analysis and the approach for estimating the potential

impact of observable quantities are introduced. As the last step, the evaluated sampling er-

ror correction is described. Chapter 3 provides details on the operational convective-scale
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ensemble DA system (KENDA/ COSMO-DE) of Deutscher Wetterdienst and the 1000-

member ensemble simulation, which is based on the SCALE-LETKF system. Initially,

1000-member ensemble forecasts are compared to observations and forecasts performed

with the COSMO-KENDA system. Afterwards, the value of the large ensemble simulation

to quantify sampling error for variances and covariances is discussed. Chapter 4 is the

first main part of this thesis and analyzes the observation impact for a 6-week high-impact

weather period in the summer of 2016. The observation impact is evaluated using different

observation-based verification norms. Chapter 5 presents an approach for estimating the

potential impact of different observable quantities. In particular, the sensitivity of the

approach to the ensemble size and the scale dependence of the potential impact are dis-

cussed. Chapter 6 examines a statistical sampling error correction, which could mitigate

sampling error during the impact assessment. This study evaluates the SEC separately for

spatial and spatiotemporal correlations. A summary with conclusions follows in Chapter

7.
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Chapter 2

Theory and methods

Chapter 2 presents an overview of methods that are applied to answer the target research

questions. Additionally, this chapter provides the reader with essential theoretical knowl-

edge to allow a better understanding of performed experiments. Section 2.1 introduces the

basic principles of data assimilation and motivates the use of LETKF in convective-scale

NWP. Section 2.2 presents different approaches that are available for estimating observa-

tion impact. In addition, the derivation of the ensemble-based observation impact approach

is presented. This approach is applied to evaluate a regional forecasting system using ob-

servations for verification. In this context, the advantages and disadvantages of different

verification metrics are discussed. Section 2.3 introduces and refines the approach that is

used to estimate the potential impact of observable quantities. The approach is based on

ESA and uses the sensitivity of the forecast to initial conditions as a proxy for the poten-

tial impact. Finally, two different methods are presented that are evaluated for reducing

sampling error (Section 2.4): A statistical sampling error correction and a confidence test.

2.1 Sequential data assimilation

As already introduced in Section 1.1, numerical weather prediction is an initial value prob-

lem. Data assimilation systems estimate the initial state by minimizing a quadratic cost-

function (Eq. 1.1). The initial state combines atmospheric observations y with a back-

ground state xb weighting both sources of information with their errors. Sequential data

assimilation methods obtain the initial state (analysis) xa by adding a correction (incre-

ment) to the background state (first guess). The increment is determined by the difference

between background and observation in observation space (innovation) multiplied with the

optimal weight matrix K:

xa = xb + K(y −Hxb). (2.1)

The optimal weight is given by the Kalman gain matrix K

K = PbHT
(
HPbHT + R

)−1
, (2.2)

where Pb is the background error covariance matrix, R is the observation error covariance

matrix and H the linearized forward operator that transforms from model to observation



16 2. Theory and methods

space. The subscript a stands for the analysis and the subscript b for the background state,

respectively. The observation error covariance matrix R contains variances and covariances

of measurements and representativity errors. In practice, usually a diagonal R matrix is

applied assuming that observation errors are uncorrelated. The Kalman gain K depends

on the ratio of the background and observation error covariance matrices. The optimal

weight minimizes the cost-function (Eq. 1.1) or equivalently the mean analysis error over

all grid points. According to Eq. 2.2, a small observation error compared to the error of

the model background results in a large increment and the analysis will be close to the

observation.

A data assimilation cycle usually is composed of two steps: An analysis step that generates

a new analysis and a forecast step in which the forecast is propagated forward in time. The

propagation of the state xa from time t − 1 to t is done using a full non-linear numerical

model M

xt
b =Mt−1,t(xt−1

a ). (2.3)

The analysis error covariance matrix Pa can be computed using the Kalman gain, the

background error covariance matrix, and the observation operator

Pa = (I −KH)Pb. (2.4)

Table 2.1 provides a summary of variables definitions and corresponding dimensions for

the entire Section 2.1.

Name Variable Dimension
Model state vector xa/b n× 1
Observation state vector y m× 1
Background error covariance matrix Pb n× n
Observation error covariance matrix R m×m
Linear observation operator H m× n
Non-linear observation operator H m× n
Kalman gain matrix K n×m
Ensemble perturbations in model space Xa/b n×N
Ensemble perturbations in ensemble space Ya/b n×N
Analysis error covariance matrix Pa n× n
Analysis error covariance matrix in ensemble space P̃a N ×N
Weight vector wa N × 1
Weight matrix Wa N ×N

Table 2.1: Variables and their dimensions: Number of ensemble members N , number of
observations m and number of state variables n.

Frequently applied sequential data assimilation schemes in NWP are variational, and En-

semble Kalman Filter (EnKF) type approaches. Variational approaches (e.g., 3DVAR)

perform the minimization of the cost function iteratively using, for example, a conjugate

gradient method. Historically, the application of variational methods enabled the direct

assimilation of satellite radiances, which led to a massive improvement in forecast skill. In

general, 3DVAR assumes all observational information to be observed at analysis time.
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On convective scales, this assumption can be unsuitable considering rapidly changing

weather situations. A 4DVAR solves this problem by assimilating observational infor-

mation at the correct time. Furthermore, 4DVAR analysis fields are more balanced due

to the integration of the model over the assimilation window. Overall, using variational

approaches is associated with several challenges. For example, applying 4DVAR, a tangent

linear adjoint model is required, which is particularly challenging for convection-permitting

models.

One main difference between variational and ensemble DA schemes exists in the way they

obtain the background error covariance matrix Pb. For example, maintaining a 3DVAR

approach can be sub-optimal as it applies a constant background error covariance matrix

(Kalnay, 2003). For 3DVAR, the background error is usually estimated using a forecast

climatology and physical constraints such as the geostrophic or hydrostatic balance. How-

ever, balance relations are especially limited for convective-scale applications making the

estimation of the background error demanding. A significant advantage of ensemble al-

gorithms is that the estimated the background error covariance matrix is based on an

ensemble of forecasts. This feature makes the background error flow dependent, which is

crucial for convective-scale NWP. For that reason, many NWP centers apply hybrid and

EnKF approaches for convective-scale DA.

Ensemble Kalman Filter An ensemble Kalman filter uses an ensemble to calculate

the uncertainty of the background and analysis error covariance (Evensen, 1994). The

ensemble of N forecasts is used to estimate the background error covariance matrix Pb.

This means, the background error covariance matrix is calculated as sample covariance

using the ensemble deviations of each member from the ensemble mean state

Pb =
1

N − 1

N∑
n=1

(xn
b − xb)(xn

b − xb))T (2.5)

=
1

N − 1
Xb(Xb)T (2.6)

where

xb =
1

N

N∑
n=1

xn
b (2.7)

is the ensemble mean background state. According to Eq. 2.6, the uncertainty of a fore-

cast, is quantified by the ensemble with (N − 1) degrees of freedom. The performance of

an EnKF, therefore, depends on the available ensemble size. To improve the filter per-

formance usually inflation and localization techniques are applied (Whitaker and Hamill,

2012). Inflation methods increase ensemble perturbations and account for model error.

Localization reduces sampling errors by damping spurious correlations.

ETKF In general, the problem can be reformulated by solving the problem in ensemble

space. This modification yields the Ensemble Transform Kalman Filter (ETKF) (Bishop

et al., 2001). Transform means that the minimization of the cost-function is performed in

an N-dimensional subspace S for a vector w where Xb is the linear transform onto the sub-
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space S (Rhodin et al., 2013). In other words, the analysis is obtained by re-weighting the

information from each ensemble member based on departures from observations. However,

this also means that the solution is limited by the degrees of freedom in the ensemble. For

an ETKF, the optimal weights are calculated in ensemble space S and not in observation

space, which reduces the dimension of the problem significantly. Furthermore, it makes

the ETKF algorithm cheap and allows the filter to perform stably in complex atmospheric

applications. The next paragraph provides a summary on the ETKF algorithm applying

a similar notation as used by Rhodin et al. (2013).

In the ETKF, the analysis mean xa is a linear combination of the weighted background

ensemble member

xa = xb + Xbwa. (2.8)

where Xbwa represents the linear combination of ensemble perturbations. Note that the

sequential formulation in Eq. 2.8 is equivalent to the formulation in Eq. 2.1. Here, the

optimal weight wa is given by

wa = P̃a(Yb)TR−1(y −Hxb) (2.9)

with

P̃a =
[
(N − 1)I + (Yb)TR−1Yb

]−1
(2.10)

= (N − 1)−1Wa(Wa)T . (2.11)

The observation operator H again is assumed to be linear mapping from model to ob-

servation space. The analysis error covariance matrix in model space Pa is given by the

re-transformation using the background perturbation matrix Xb and the analysis error

covariance matrix in ensemble space P̃a:

Pa = XbP̃aXb
T . (2.12)

The analysis ensemble perturbations Xa can be calculated using a symmetry square root

method and the weight matrix Wa

Xa = XbWa (2.13)

with

Wa =
[
(N − 1)P̃a

] 1
2
. (2.14)

A specific implementation of the ETKF is the Local Ensemble Transform Kalman Filter

(LETKF; Hunt et al. (2007)) that often is used for atmospheric data assimilation due to

its computational efficiency.

LETKF For regional data assimilation, Deutscher Wetterdienst maintains the Kilometer

Scale Ensemble Data Assimilation (KENDA; Schraff et al. (2016)) system that is based

on a LETKF. A detailed description of the KENDA system is available in the DA system
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documentation of DWD (Rhodin et al., 2013). The term Local describes one main difference

compared to an ETKF. Local means that the analysis is performed locally and for each

grid point separately. This localization increases the number of degrees of freedom of

which the analysis is composed and therefore significantly improves the initial conditions.

In KENDA, the analysis is obtained for a coarser grid and interpolated afterward to a

finer grid, which further reduces the computational cost. Overall, the LETKF is easy to

parallelize as a local analysis is computed separately for each grid point to obtain a global

analysis state.

In atmospheric applications, the number of observations m as well as the number of state

variables in the model n is much larger than the degrees of freedom provided by the

ensemble (N << m << n). This under-sampling implies several challenges. Principally,

a limited ensemble size leads to sampling error. Sampling error, to some extent, can be

addressed applying localization and inflation techniques. Inflation increases the variance of

the ensemble to account for model error. Localization reduces spurious error correlations

between distant points (Houtekamer and Zhang, 2016). KENDA applies localization by

calculating the weights wa separately for each grid point of the analysis. In practice, the

number of observations that can affect a grid point is also limited using an observation

space localization. This R-localization reduces the number of assimilated observations

affecting the local state estimate to observations in the vicinity of the grid point. Usually,

localization is done using a distance-based damping function such as the Gaspari-Cohn

function (Gaspari and Cohn, 1999).

2.2 Estimating observation impact

General concepts

Observing system experiment There are several ways to assess the impact of obser-

vations in a data assimilation system. For every NWP system, the impact of observations

can be analyzed by performing observing system experiments (OSEs) (Bouttier and Kelly,

2001, Kelly et al., 2007). An OSE can be both a data addition or data denial experiment.

Performing a data denial experiment the impact of an observational subset d′ can be esti-

mated by removing observations d′ from the full set of observations d and repeating the

analysis and forecast step. The observation impact can then be quantified using a scalar

forecast metric J

J(d′) =
∣∣ed

f

∣∣2 − ∣∣∣ed−d′

f

∣∣∣2 (2.15)

Here, d− d′ defines the full set of observations d leaving out the subset d′. e is the forecast

error of forecast f .

In NWP, only OSEs can be used to measure the impact on long-range forecasts as data

denial experiments apply the full non-linear model in each configuration. Overall, per-

forming OSEs usually is an expensive task as the forecast system needs to run in every

configuration of interest. This fact led to the development of different approaches that can

be used to approximate the impact of observations.

In Chapter 4, an ensemble-based approach is applied to estimate the observation impact.
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This approach is a reformulation of the forecast sensitivity to observation impact (FSOI)

(Langland and Baker, 2004). The original FSOI approach combines different components

(Figure 2.1). Each of these components, to some degree, can be used on their own to

examine the impact of observations. All these components have in common that they

analyze sensitivities in the data assimilation and forecasting system. A sensitivity gradient,

for example, can be computed using the adjoint of the forecast model or data assimilation

scheme. Similarly, an ensemble can be used to compute sensitivity gradients.

The observation impact usually is measured as the reduction in forecast error. Based on

the definition of observation impact in Eq. 2.15 a detrimental impact of observations d

corresponds to a positive observation impact J(d′). The same definition is applied for

the ensemble-based observation impact experiments performed in this thesis as well as for

the majority of impact studies (e.g., Langland and Baker (2004), Kalnay et al. (2012),

Sommer and Weissmann (2014)). That means the goal is a negative observation impact

as it indicates a reduction in forecast error – a forecast improvement. Subsequently, the

components that make up the FSOI are presented.

Sensitivity of forecast metric J 
to observations y ⟺ FSO

Sensitivity of the analysis xa
to observations y ⟺ KT

Sensitivity of J to analysis xa
⟺ Sensitivity gradient (SG)

K: Kalman gain
H: Observation operator

FSOI		=	 <(y – Hxb)	,
1𝑱
1𝐲
> = <(y – Hxb),	

1𝒙6
1𝐲

1𝑱
1𝒙6

>

IDEA – Forecast Sensitivity to Observation Impact (FSOI)

Innovation d = (y – Hxb)

Innovation Analysis influence SGFSO

Figure 2.1: Components of the FSOI approach for estimating the impact of
observations.

Forecast sensitivity to observations At the beginning of this century, Baker and

Daley (2000) introduced the forecast sensitivity to observations (FSO) to estimate the

impact of observations in an adjoint-based DA system. According to Baker and Daley

(2000), the sensitivity of a scalar function J to observations y can be expressed by

∂J

∂y
=

∂J

∂xa

∂xa

∂y
(2.16)

using the derivative chain rule. The forecast metric J can be any scalar function of interest.

As can be seen from Eq. 2.16, the FSO is composed of two sensitivity gradients that each

on its own can be used as impact diagnostic.
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Sensitivity gradient The sensitivity gradient is the sensitivity of a forecast response

function J with respect to the initial conditions xa. The sensitivity gradient can be ex-

pressed using the adjoint of the tangent linear model (M)T (Rabier et al., 1996)

∂J

∂xa

= (M)T
∂J

∂xf

. (2.17)

Another possibility to approximate the sensitivity gradient is to apply an ensemble (see

Section 2.3). In general, the aim is to find regions with a large sensitivity as a change in

the initial conditions in these regions will likely have a large impact on the forecast error.

Sensitivity gradients are often used for observation targeting as they indicate sensitive

regions in the initial conditions (Ancell and Hakim, 2007, Majumdar et al., 2011).

The second component of the FSO is the observational influence in the analysis. The

sensitivity of the analysis with respect to observations ∂xa/∂y is given by the adjoint

of the data assimilation scheme, which corresponds to the transpose of the Kalman gain

matrix

∂xa

∂y
= KT (2.18)

with

KT =
(
HPbHT + R

)−1
HPb. (2.19)

Compared to the adjoint of the forecast model, the adjoint of the DA scheme is easier to

obtain as it only requires a rearrangement of matrices that are already available from the

DA cycling.

Analysis influence An often used measure to quantify the impact of observations in the

analysis is the analysis influence (AI) (Cardinali et al., 2004, Liu et al., 2009). The analysis

influence combines the observational influence in the analysis ∂xa/∂y with the first guess

departure

AI =
∂xa

∂y
d =

∂xa

∂y
(y −Hxb) . (2.20)

The analysis influence (see also Figure 2.1) is a valuable diagnostic of the DA system as

it quantifies the influence of observations in the analysis step. However, the observation

impact on the forecast may be different as a large influence on the analysis does not

necessarily coincide with a reduction in forecast error.

Forecast sensitivity to observation impact Using the components presented above,

we can obtain the formulation for the FSOI (Figure 2.1). The FSOI combines the analysis

influence with the sensitivity gradient to quantify the reduction in forecast error provided

by each observation. Following Langland and Baker (2004) the reduction in forecast error
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J(d′) is given by the inner product of the innovation and the FSO

J(d′) ≈
〈

(y −Hxb),K
T (
∂ef
∂xa

+
∂eg
∂xb

)

〉
. (2.21)

Note: The formulation of Langland and Baker (2004) (Eq. 2.21) translates to the formu-

lation in Figure 2.1 using the subsequent relation (Langland and Baker, 2004, Cardinali,

2009)

∂J

∂xa

=
∂ef
∂xa

+
∂eg
∂xb

, (2.22)

where the sensitivity gradient is expressed by the sum of two sensitivity gradients from two

different forecast trajectories.

According to Eq. 2.21, the implementation of adjoint-based FSOI approach by Langland

and Baker (2004) requires the calculation of two trajectories f and g (Figure 2.2). This

means we need the forecast error ef of the forecast trajectory f and the error eg of the

background trajectory g that excludes all observations. The majority of FSOI studies

computes the forecast error with respect to a verifying analysis xv based on an energy

norm (Ehrendorfer et al., 1999, Langland and Baker, 2004, Cardinali, 2009, Gelaro et al.,

2010). The subscript v indicates the verification time. Usually, a quadratic measure of the

forecast error is chosen such that

ef = 〈(xf − xv),C(xf − xv)〉 , (2.23)

where the matrix C is a symmetric weight matrix in model space that can be used to

restrict the energy norm to regions of interest (Park and Xu, 2009). Most frequently, a

dry-kinetic energy norm is applied, which uses the zonal wind component u and meridional

wind component v to calculate a kinetic energy difference (e.g., 1
2

(uf − uv)
2).

Overall, observation impact diagnostics are sensitive to the choice of the verification norm

as it is a critical element of the diagnostic. Depending on the verification norm, FSOI eval-

uates different forecast aspects. Recently, Janisková and Cardinali (2016) highlighted the

sensitivity of the adjoint-based FOSI to the choice of the verification norm comparing dry

and moist energy norms. So far, only a few studies avoided energy norms by using obser-

vations for verification. Observations seem to be the better choice for convective-scale ap-

plications, where an energy norm might not properly reflect relevant forecast aspects (e.g.,

precipitation). Sommer and Weissmann (2016) first applied observations for verification us-

ing the ensemble-based FSOI. Recently, Cardinali (2018) introduced an observation-based

verification norm in the context of the adjoint-based FSOI.

Ensemble-based FSOI Based on Langland and Baker (2004), Kalnay et al. (2012)

introduced an approach to estimate the observation impact in an ensemble data assimila-

tion system. Computing the ensemble forecast sensitivity to observation impact (EFSOI),

sensitivity gradients are estimated with the ensemble instead of the adjoint. The EFSOI

approach generally is similar to the one from Langland and Baker (2004) and requires the

computation of two forecast trajectories. Both approaches provide the observation impact

per observation and are significantly cheaper than performing OSEs. Nevertheless, as men-
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t0 tv

assimilation of 
observation 

set d
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time t

forecast 
error e
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forecast/verification
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efd-d’

J(d’)
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f

Figure 2.2: Illustration of the forecast sensitivity to observation impact (FSOI)
approach. FSOI aims to estimate the contribution (colored bars) of observational subsets
d′ to the reduction in forecast error e. Usually, FSOI requires the computation of two
forecast trajectories f and g. Gray trajectories indicate the ensemble of forecasts that is
required for the ensemble-based FSOI computation. The approximation of EFSOI by
Sommer and Weissmann (2016) omits trajectory g.

tioned earlier, both approaches are limited by linearity constraints. Therefore, the forecast

lead time usually does not exceed 24 h on synoptic scales or 6 h on convective-scales.

Sommer and Weissmann (2014) first applied the EFSOI approach of Kalnay et al. (2012) in

a regional modeling system. Their study compared the EFSOI results to data denial exper-

iments and showed that the approach provides reasonable estimates of observation impact

for short-range forecasts using KENDA. Nevertheless, they highlighted that a model-state-

based verification norm is especially sub-optimal for verifying short-range forecasts. The

verifying analysis can be strongly correlated to the initial analysis, which calls for an in-

dependent verification norm. Sommer and Weissmann (2016) reformulated the EFSOI

approach of Kalnay et al. (2012) to be able to use observations for verification. Addi-

tionally, the reformulation is cheaper as it does not require to compute the trajectory g

(Figure 2.2). Sommer and Weissmann (2016) initially applied conventional observations

for verification in a short experimental period. This thesis extends the approach using

independent remote sensing observations and compares the impact of different verification

norms in a 6-week summer period. Subsequently, the EFSOI approach of Sommer and

Weissmann (2016), as well as different observation-based verification norms, are discussed

in detail.
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Implementation in KENDA

Derivation of the EFSOI equation According to the definition of Kalnay et al. (2012),

the impact J of observations d′ is given by the squared forecast error difference (Eq. 2.15).

For small subset of d′, J can be approximated by the linearization around 0 using a Taylor

expansion (Sommer and Weissmann, 2016)

J(d′) = J(0) +
d

dd′

∣∣∣∣
d′=0

J(d′)d′ +O
(
|d′|2

)
. (2.24)

The first term in Eq. 2.24 vanishes and the last term is neglected. Using Eq. 2.15 gives us

J(d′) ≈ d

dd′

∣∣∣∣
d′=0

(
∣∣ed

f

∣∣2 − ∣∣∣ed−d′

f

∣∣∣2)d′. (2.25)

The derivation of
∣∣ed

f

∣∣2 with respect to d′ is zero. Performing the first part of the derivation

of
∣∣∣ed−d′

f

∣∣∣2 yields

J(d′) ≈ −2ed
f

(
d

dd′

∣∣∣∣
d′=0

ed−d′

f

)
d′. (2.26)

Here, the forecast error is defined relative to the verifying observations yveri

ed
f = H(xd

f )− yveri, (2.27)

where H stands for the corresponding observation operator and the overbar for the ensem-

ble mean.

Before we obtain the final equation for the observation impact we need to solve the re-

maining derivative in Eq. 2.26. This can be done substituting ed−d′

f using the definition

from Eq. 2.27 and the following relationships from Kalnay et al. (2012):

MXd
a ≈ Xd

f (2.28)

HXd
a = Yd

a (2.29)

d

dd′

∣∣∣∣
d′=0

Xd−d′

f = −MK. (2.30)

Consequently,

d

dd′

∣∣∣∣
d′=0

ed−d′

f =
d

dd′

∣∣∣∣
d′=0

(
H(Xd−d′

f )− yveri

)
=

d

dd′

∣∣∣∣
d′=0

H(Xd−d′

f )

= −HMK
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Using the relationships from above including the Kalman gain K (Eq. 2.2) yields

d

dd′

∣∣∣∣
d′=0

ed−d′

f = − 1

N − 1
HMXd

a (Xd
a )THTR−1 (2.31)

= − 1

N − 1
Yd

f (Yd
a )TR−1. (2.32)

Finally, we can combine Eq. 2.26 with Eq. 2.32 to obtain a formula for J(d′). Reorganized,

this gives us the ensemble-based approximation for the FSOI in an LETKF:

J(d′) ≈ 2

N − 1
ed
f · Yd

f (Yd
a )ᵀR−1d′,. (2.33)

EFSOI in KENDA Following Sommer and Weissmann (2016), the observation impact

J of any subset of observations d′ is given by Eq. 2.33, where the subscript a stands for the

analysis state and f for the forecast to the next analysis time. The superscript d stands

for the set of observations that have been used to compute the analysis or to initialize the

forecasts. Furthermore, the following notation is used:

N : Number of ensemble members,

Yd
f : Forecast ensemble perturbations in

observation space,

Yd
a : Analysis ensemble perturbations in

observation space,

R : Localized observation error

covariance matrix,

d′ : Innovation vector of a small subset

of observations.

Localization is applied in the assimilation step as well as for the calculation of the forecast

error (Eq. 2.27). Furthermore, the scalar product in Eq. (2.33) is defined through a metric

that includes a normalization with the observation error σo as well as the number of veri-

fying observations Nv to give equal weight to situations with varying observation density.

Due to the normalization with the observation error all presented observation impacts have

no unit:

∣∣ed
f

∣∣2 :=
1

Nv

Nv∑
l=1

(
ed
f

σo

)2

l

(2.34)

Depending on the verification norm, the forecast error is calculated with different sets

of observations yveri. This study uses direct observations of model variables (so-called

conventional observations) as well as a novel approach based on independent remote sensing

observations. As the forecast error differs depending on the applied norm, only the relative

observation impact can be compared directly for different norms.



26 2. Theory and methods

Verification norms

Following Eq. (2.33), all quantities that are required to compute the observation impact are

already available in KENDA, which makes the computation of observation impact cheap

and efficient. The only additional quantities required are forecast departures (observations

minus their model equivalents at the respective time) when observation impact is verified

using observations that are not assimilated.

This study mainly compares two different verification metrics: First, conventional ob-

servations are used for verification (metric abbreviated with CONV in the following) as

introduced by Sommer and Weissmann (2016). If not stated otherwise, all assimilated

conventional observation types are also used for verification. Only observations within the

second and third hour after the analysis are used for verification to avoid spin-up effects.

However, sensitivity studies showed that the results hardly change including the first hour

after the analysis. As in previous studies, this thesis uses the same horizontal and vertical

localization for the assimilation and the calculation of observation impact. Sommer and

Weissmann (2014) showed that using a static localization leads to reasonable results for

lead times up to three hours.

Second, independent radar-derived precipitation observations are used for verification (ab-

breviated with PREC ). Forecast errors are calculated for 3-h accumulated precipitation

rates. Verification is only done if the precipitation amount exceeded a threshold of 0.1 mm/h

to exclude drizzle in both forecast and observations. No vertical localization is applied in

the verification as processes that contribute to the formation of precipitation take place in

the entire tropospheric column. A coarse-graining is applied for both precipitation obser-

vations and forecast fields (see also Section 4.2). This is advantageous for several reasons:

The coarse-graining reduces the effect of double penalty errors in the verification. Ad-

ditionally, the effective resolution is lower than the model resolution (2.8 km). For this

reason, the PREC metric includes a coarse-graining of 10 × 10 grid cells (28 × 28 km),

which roughly corresponds to the lowest forecast resolution of DWD weather warnings.

The European radar precipitation product used for the PREC metric covers approximately

three-quarters of the COSMO-DE domain, excluding areas over the sea in the northwestern

and northeastern corner of the domain as well as the Alps over Austria. Besides the

European radar product, a second radar precipitation product is used for verification,

which has been adjusted by rain gauge observations. The second product covers a smaller

area slightly larger than Germany, but not the outermost parts of the model domain. This

should minimize possible boundary effects introduced by the nesting. Furthermore, the

German radar product is expected to be more accurate due to the homogeneity of the

radar systems within Germany. However, the German radar product covers a smaller area

and therefore provides fewer observations than the European radar product, which requires

a longer experimental period to obtain results with similar reliability.

In general, using independent remote sensing observations for verification provides several

advantages: First, they are independent of the analysis, which mitigates potential issues of

systematic and temporally correlated model or observation errors (issue of self-verification).

Second, precipitation is a primary forecast quantity of convective-scale models, whereas

total energy does not sufficiently reflect quantities that forecast users are interested in.

Thirdly, radar observations have good and nearly homogeneous coverage of the model

domain. However, using observations for verification can have disadvantages. Particularly,
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observational biases are an issue for every kind of verification. Furthermore, observations

usually are not homogeneously distributed and only available for specific time windows

(e.g., radiosondes).

2.3 Estimating the potential impact of observations

Ensemble sensitivity analysis

Ancell and Hakim (2007) introduced ensemble sensitivity analysis (ESA) as the sensitivity

S of a forecast response function J to the initial conditions x

∂J

∂x
≈ cov(J,x)

var(x)
:= S, (2.35)

where J and x are ensemble estimates of shape 1 × m with ensemble size m. Here, cov

denotes the covariance between two quantities and var denotes the variance of one quantity.

Note that this approach is similar to estimating the sensitivity gradient using the model

adjoint (see Section 2.2). A normalization of the sensitivity S with the ratio of the ensemble

spread of the forecast response function J to the spread of the state variable of interest x

provides the dimensionless sample correlation r̂ that can be compared for different variables

r̂ = S

√
var(x)√
var(J)

=
cov(J,x)√
var(J)var(x)

. (2.36)

In this thesis, mainly hourly precipitation averaged over a box as well as grid point tem-

perature are used as forecast metrics J to compute sensitivities or correlations. The state

variable x can be any quantity of interest. Overall, ESA assumes a linear relation between

response function and state variable and therefore is not able to account for non-linear

effects.

Potential impact

One goal of this dissertation is to estimate the relative potential impact of observable

quantities using spatiotemporal correlations computed with a large ensemble. The ap-

proach takes the squared correlations accumulated over the evaluation domain and all

response functions of interest as a proxy for the potential impact of the respective observ-

able quantity on a precipitation forecast. This gives the accumulated squared correlation

(ASC):

ASC =
n∑

i=1

N∑
I=1

(r̂i,I)
2 . (2.37)

where

r̂i,I =
cov(Ji,xI)√
var(Ji)var(xI)

. (2.38)
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with index i = 1...n (n - number of forecast response functions) and index I = 1...N (N

- number of grid points). Here, the precipitation forecast spatially averaged over kernels

of 40× 40 grid points is used as forecast response function J. The kernels do not overlap

and cover the entire ESA domain. The focus is to estimate the potential impact of observ-

able quantities on precipitation, which is a primary forecast quantity of convective-scale

ensemble forecasts. For simplicity, this study assumes that each grid point can be observed

equally well. Therefore, sensitivities at all grid points in the domain are taken into account

calculating the ASC. Finally, it is presumed that correlations obtained with a 1000-member

ensemble are hardly affected by spurious correlations and can be used as a proxy for the

potential impact. Later it will be shown that this assumption is reasonable. Two different

approaches are tested for small ensembles to mitigate the effect of sampling errors.

2.4 Reducing sampling errors

Sampling error correction (SEC)

Following Anderson (2012) the sampling error corrected correlation rsec can be obtained

by

r̂sec = γm,pr̂, (2.39)

where γ is provided by a look-up table for a given ensemble size m and a prior distribution

p given the sample correlation r̂. γm,p is calculated with an offline Monte Carlo technique

assuming that all the sampling error comes from the correlation coefficient and that the

prior distribution from which all correlation coefficients are drawn is U[-1, 1]. The offline

calculation generates a look-up table for the targeted ensemble size, which can be used

to correct sampling errors. The only input for the SEC are the ensemble size and the

calculated sample correlation r̂ and therefore no additional prior information is needed

(Anderson, 2012). The SEC statistically corrects for the overestimation of correlations due

to spurious correlations. Figure 2.3 shows the sampling error corrected correlation r̂sec as

a function of the sample correlation r̂ for different ensemble sizes. This study uses the

SEC table provided by the Data Assimilation Research Testbed (DART; Anderson et al.

(2009)).

The present study assumes that sampling errors in the 1000-member ensemble are negligible

and the large ensemble, therefore, can be seen as ’truth’ to assess the performance of SEC.

Originally, Anderson (2012) designed the SEC as localization to reduce sampling error

in EnKF data assimilation. This thesis evaluates the SEC for both spatial correlations,

which are required in data assimilation, and for spatiotemporal correlations calculated

using ensemble sensitivity analysis.

Application to ensemble sensitivity analysis The sampling error corrected sensitiv-

ity Ssec can then be obtained using a look-up table by substituting r̂ with the sampling

error corrected correlation r̂sec in Eq. 2.36

Ssec = r̂sec

√
var(J)√
var(x)

. (2.40)
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Application to ensemble and hybrid data assimilation NWP data assimilation

schemes combine observations with a short-term model forecast to achieve an optimal

estimate of the atmospheric state. How the spatially sparse observational information

is distributed in space is determined by sample correlations that are obtained from the

ensemble. However, the ensemble size is usually too small to sample all possible states.

Consequently, spurious correlations caused by under-sampling significantly degrade the

initial conditions. In this context, the sampling error correction of Anderson (2012, 2016)

provides an alternative to constant covariance localization length scales that are usually

applied. In this study, a 1000-member ensemble is used to evaluate the sampling error

correction applied to spatial correlations for different variables and ensemble sizes.

Note that the SEC is not applied during data assimilation but to spatial correlations, which

are contained in the background error covariance matrix Pb. In general, applying the SEC

for a LETKF is more complicated than using an EnKF where Pb is computed explicitly

(see Eq. 2.6). In KENDA, correlations are contained in the weights (see Eq. 2.9) that

are used to compute the linear combination of the ensemble perturbations. However, this

characteristic is only essential for application during data assimilation and consequently,

does not affect the analysis performed in this thesis.
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Figure 2.3: Absolute sampling error corrected correlation |r̂sec| as a function of
absolute sample correlation |r̂| using different ensemble sizes.

Confidence test (T95)

For spatiotemporal correlations, the SEC is compared to a confidence test, which is a

common approach to reduce spurious correlations for ESA. The confidence test is applied

to detect and exclude insignificant correlations (Torn and Hakim, 2008). This requires to
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evaluate if a state variable x is able to cause a statistically significant change in the forecast

response function J ∣∣∣∣∂J

∂x

∣∣∣∣ > δs, (2.41)

where δs is the confidence interval on the linear regression coefficient. For a given sample

size, we compute the value of |Sconf | that allows us to reject the null hypothesis with a

defined confidence (i.e. that there is no correlation between the response function and the

state variable X). |Sconf | values below that threshold are not considered in the computation

of the ASC. In this thesis, a 95% confidence interval (T95) will be used.



Chapter 3

Ensemble simulations

This chapter introduces and compares the two main ensemble simulations. Section 3.1 de-

scribes the 40-member ensemble simulations performed with the pre-operational forecasting

system of Deutscher Wetterdienst. The COSMO-KENDA ensemble simulation covers two

experimental periods: two weeks in 2014 and six weeks in 2016. These periods are mainly

applied to assess the observation impact within the DWD forecasting system in Chapter 4.

Section 3.2 presents the experimental setup of the convective-scale 1000-member ensemble

simulation. This large ensemble simulation is required to compute realistic spatial and

spatiotemporal correlations for the analysis performed in Chapter 5 and 6. Overall, the

1000-member ensemble simulation covered five days in 2016. The short period has been

chosen because of exceptionally strong summertime convective precipitation. Both ensem-

ble simulations have an overlapping time-window and roughly cover the same experimental

domain. Section 3.3 gives a synoptic overview of the five-day period. This period is used

to compare ensemble mean and spread of the two simulations investigating the most rel-

evant quantities (Section 3.4). The comparison of the simulations is needed to evaluate

the performance of the unique 1000-member ensemble simulation. At the end of this chap-

ter, two basic experiments are presented that examine the added value by using a large

ensemble simulation (Section 3.5). The first experiment quantifies the sampling error of

variances for different ensemble subsets. The second experiment evaluates spatial correla-

tions as they are crucial for data assimilation and discusses the need for localization. In all

studies, sampling errors are quantified using the 1000-member ensemble as truth. Several

sections of this chapter have been submitted for publication by Necker et al. (2019a) (see

Appendix A).

3.1 COSMO-DE 40-member ensemble

Observation impact experiments are carried out with the Km-scale ENsemble Data As-

similation (KENDA; Schraff et al. (2016)) system of Deutscher Wetterdienst. KENDA is

a 40-member Localized Ensemble Transform Kalman Filter (LETKF) coupled with the

non-hydrostatic limited-area forecast model COSMO-DE (Baldauf et al., 2011). COSMO-

DE has a horizontal grid spacing of 2.8 km, 50 vertical levels and covers approximately

1200× 1300 km of Central Europe with Germany in the center of its domain (Figure 3.1).

Boundary conditions are provided by the global model ICON (Zängl et al., 2015), which

has a horizontal resolution of about 16 km.
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The experimental setup is largely the same as in the observation impact study of Sommer

Figure 3.1: KENDA/COSMO-DE domain and spatial distribution of the assimilated
observation types on 29 May 2016 1200 UTC.

and Weissmann (2016). Compared to the operational KENDA setup of DWD, Latent Heat

Nudging (LHN) is switched off as it is not possible to estimate the impact of LHN with

EFSOI. Furthermore, the localization is fixed to 100 km in the horizontal and 0.3ln(p) in

the vertical (Gaspari-Cohn function; Gaspari and Cohn (1999)). Each experiment is given

a spin-up time of one day. An analysis has been computed every 3 h, which served as the

initialization for the next 3-h forecast. The present study covers two experimental periods.

The first one ranges from 17 May 2014 0000 UTC to 30 May 2014 2100 UTC and the second

from 26 May 2016 0000 UTC to 01 July 2016 0000 UTC. Especially the longer period in

2016 is assumed to be representative for a typical summer season as it showed several cases

with synoptic and local forcings of precipitation (Piper et al., 2016). The shorter period

in 2014 is mainly used for sensitivity experiments.

So far, KENDA only assimilates conventional observations that consist of four groups

(Figure 3.1):

(i) Temperature, wind and humidity observations from aircraft (AIREP)

(ii) Wind observations from wind profilers (PROF)

(iii) 10-m wind and surface pressure observations from synoptic surface stations (SYNOP)

(iv) Temperature, wind and humidity observations from radiosondes (TEMP)

Following the operational KENDA setup, 10-m wind observations are only assimilated in

areas with an elevation lower than 100 meters. Higher elevations likely exhibit orographic
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features that can cause large representativity errors. Except for radiosondes, all conven-

tional observations are available within almost every assimilation window.

Currently, DWD and the HErZ DA branch are working on the assimilation of additional ob-

servation types in the KENDA system, as for example solar satellite observations (Kostka

et al. (2014); Scheck et al. (2016); Scheck et al. (2018)), thermal satellite observations

(Harnisch et al., 2016), global navigation satellite systems (GNSS) total delay observa-

tions, radar reflectivity (Bick et al., 2016) and radar radial velocity. The inclusion of

all these observations emphasizes the need for reliable estimates of observation impact in

KENDA in the future.

3.2 SCALE-RM 1000-member ensemble

The large ensemble simulation comprises a set of ten 1000-member forecasts during summer

2016 with forecast lead times of 14h. Forecasts are generated coupling two domains through

an offline nesting approach (see flow-chard in Figure 3.2a). The outer domain is used for the

15-km grid spacing cycled ensemble data assimilation and driven by global forecast system

ensemble (GFSE) boundary conditions (BC). Initial conditions for the inner domain are

obtained by downscaling from 15-km to 3-km grid spacing. The convective-scale forecasts

are driven by additional forecasts performed in the outer domain.

In detail, initial conditions for the 15 km cycled experiment on 28 May 2016 00 UTC are

taken from a previous 1000-member DA experiment over the same domain that has been

spun-up for one week. Perturbed boundary conditions are provided every 6 hours and

are generated, combining the GFSE 20-member analysis ensemble with additional random

perturbations. Random perturbations at time t are obtained as the difference between

two random atmospheric states that correspond to the same season and time of the day.

This difference is re-scaled by a multiplicative factor, which in this simulation is equal to

0.1. Boundary conditions for each ensemble member are generated using different ran-

dom perturbations (e.g., the number of generated random perturbations is equal to the

ensemble size). At time t+6 hours, random perturbations are obtained from the fields

corresponding to 6 hours later with respect to the random dates used in the computation

of the perturbations at time t. This transition guarantees a smooth evolution of the ran-

dom perturbations. Atmospheric states for the computation of random perturbations are

obtained from the Climate Forecast System Reanalysis (CFSR) data-set (Saha et al., 2010)

in the period between 2006 and 2009. Sensitivity studies with the modeling system have

shown that the use of the GFSE perturbations at the boundaries significantly improves

the ensemble spread within both domains compared to using random perturbations only.

The 1000-member ensemble simulation applies the SCALE-LETKF DA system (Lien et al.

(2017)). The SCALE-LETKF system combines the open source Scalable Computing

for Advanced Library and Environment - Regional Model (SCALE-RM; version 5.1.2)

(Nishizawa et al., 2015, Sato et al., 2015, Nishizawa and Kitamura, 2018) and a Localized

Ensemble Transform Kalman Filter (LETKF) (Hunt et al., 2007). The LETKF assimilates

conventional observations using a 3-hourly assimilation window on the 15 km grid. The

localization is done with an R-localization approach (Greybush et al., 2011) using a Gaus-

sian function with a fixed localization scale of 120 km in the horizontal and 0.3ln(p) in the

vertical and a cut-off radius equal to 2
√

10/3 times the localization scale. The ensemble
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spread is inflated using relaxation to prior spread (RTPS) with a relaxation coefficient of

0.8 (Whitaker and Hamill, 2012). Figure 3.2b shows the cycling domain that is centered

over Germany. The outer domain extends over an area of 100×100 grid points (15 km mesh

size) and exhibits 31 vertical levels. The model physics configuration is similar as in (Lien

et al., 2017, Honda et al., 2018). All the experiments use the Tomita (2008) single-moment

bulk microphysics scheme, the Mellor-Yamada-Nakanishi-Niino 2.5 closure boundary layer

scheme (Nakanishi and Niino, 2004), the Model Simulation Radiation Transfer code for

the representation of radiative fluxes (Sekiguchi and Nakajima, 2008”) and the Beljaars-

type surface model (Beljaars and Holtslag, 1991) for the computation of soil variables and

surface fluxes.

GFS Ens. BC GFS Ens. BC

3-h cycling
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15-km mesh forecast
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Figure 3.2: (a) Flow-chart of the 1000-member ensemble simulation setup. (b)
Experimental domains used for 15 km cycling and forecasts (CY - dotted), for 3 km
forecasts (FC - dashed), and for ensemble sensitivity analysis (ESA - solid).

The convective-scale 14-h forecasts are computed in the inner forecast domain (Figure 3.2b).

The convective-scale domain measures 350 × 250 grid points with a 3 km mesh size and

30 vertical levels. The initial conditions for each forecast are down-scaled from the 15 km

analysis to 3 km mesh size (cold-start approach). Lower-resolution 14-h (15 km mesh size)

forecasts are performed in the cycling domain and provide frequent (hourly) boundary con-

ditions for the convective-scale forecasts. This thesis analyzes a total of ten 1000-member

ensemble forecasts. These forecasts are initialized every 12 hours from 00 UTC 29 May to

12 UTC 02 June 2016. All simulations have been performed on the K-computer in Kobe,

Japan (Miyoshi et al., 2016a,b).

3.3 Synoptic overview

Figure 3.3 shows the general weather situation during the overlapping five-day experimental

period. The short period was mainly determined by an atmospheric blocking over the

Atlantic ocean leading to a fairly stationary weather situation over central Europe (Piper

et al., 2016). An upper-level trough accompanied by a shallow surface low was located over

the experimental domain (Figure 3.3a). The low-pressure system stayed almost stationary

over France and Germany and reached its minimum pressure on 30 May (Figure 3.3c).
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This weather situation led to a highly unstable environment with weak pressure gradients

and synoptic-scale flow that changed from southerly (29./30. May) to easterly (31. May

and 1./2. June).
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(c) 31 May 2016, 00 UTC
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(d) 31 May 2016, 00 UTC

Figure 3.3: (a, c) ECMWF IFS analysis of geopotential height at 500 hPa (shaded,
dam) and contour lines of sea level pressure (white contour, hPa). (b, d) ECMWF IFS
analysis of temperature at 500 hPa (shaded, K) and contour lines of specific humidity
(white contour, g/kg).

At the beginning of the experimental period (Figure 3.3b and 3.3d), the low-level advection

of moist and warm air masses from southern Europe increased the thermal instability

over Germany. Both intense surface heating, as well as convective instability, forced the

development of deep convection and thunderstorms on all five days. In addition, low wind

speeds at 500 hPa led to several slow-moving cells causing locally extreme precipitation.

The highest number of severe precipitation events occurred on 29 May 2016 (Figure 3.4d)

producing flash floods, landslides, hail, and tornadoes over southern Germany. In some

regions, the rainfall exceeded an amount of 100 mm per day. Observed thunderstorms

showed a distinct diurnal cycle peaking in the late afternoon. Overall, the five-day period

and adjacent days were characterized by intense convective precipitation. This provides a

unique period that was also investigated as a test case in several other studies using the

COSMO-KENDA system (Rasp et al., 2018, Keil et al., 2019, Baur et al., 2019, Bachmann

et al., 2019).
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3.4 Comparison of the ensemble simulations

The 1000-member ensemble forecasts are compared against COSMO-DE forecasts and in-

dependent radar-derived precipitation observations. The radar-based precipitation product

(RADOLAN; EY-product) covers most parts of central Europe and delivers time-frequent

observations over Germany (Figure 3.4a). The main focus of the comparison is to assess if

the 1000-member ensemble captures the precipitation and provides realistic spread as this

is crucial for estimating the potential impact using ensemble correlations in Chapter 5.

(a) Radar (b) COSMO 40 (c) SCALE 1000

(d) Radar (e) COSMO 40 (f) SCALE 1000

(g) Radar (h) COSMO 40 (i) SCALE 1000

Figure 3.4: Hourly accumulated precipitation as estimated by the radar network
(a,d,g) as well as COSMO-DE 40-member (b,e,h) and SCALE-RM 1000-member (c,f,i)
ensemble mean precipitation for 29 May 2016 04 UTC (top row), 18 UTC (middle row)
and 30 May 2016 16 UTC (bottom row). The forecast lengths for the model simulations
(COSMO-DE and SCALE-RM) are 4-h (b,c,h,i) and 6-h (e,f), respectively.

Precipitation

Examples of regional distribution of precipitation Figure 3.4a displays a map of

the 1-h accumulated precipitation observations for 29 May 2016, 04 UTC. The radar com-

posite shows a precipitation event over northern Germany and several scattered smaller



3.4 Comparison of the ensemble simulations 37

cells over France, Switzerland, and southern Germany. The 4-h COSMO-DE forecast cap-

tures the precipitation event over northern Germany while the precipitation over France

and Switzerland is slightly overestimated and the precipitation in south-west Germany is

underestimated (Figure 3.4b). The SCALE-RM 1000-member ensemble forecast also pre-

dicts precipitation over northern Germany (Figure 3.4c) but exhibits smaller precipitation

amounts. Furthermore, SCALE-RM does not reveal enough precipitation over southern

Germany even though some individual members showed precipitation in this area.

Figure 3.4d shows the precipitation observations for 29 May 2016 18 UTC, which was the

strongest precipitation event occurring in the entire experimental period. On this day, both

mesoscale and synoptic-scale lifting led to the development of severe thunderstorms that

produced hail and rain-rates locally exceeding 20 mm per hour. The main precipitation

event took place over southern Germany, although, additional cells have been observed

all over central Europe. The 6-h COSMO-DE ensemble mean precipitation forecast (Fig-

ure 3.4e) covers the region of maximum precipitation but also predicts precipitation in

many other parts of the domain. The region of severe precipitation is smaller, weaker, and

slightly shifted to the north compared to the radar observation. SCALE-RM (Figure 3.4f)

underestimates the intensity of this unique event even more and shows stronger precipita-

tion over Switzerland and Austria. However, some members were at least able to produce

precipitation rates close to the ensemble mean precipitation of COSMO-DE in the area of

the maximum observed precipitation (not shown).

Figure 3.4g shows the precipitation observations at 30 May 2016, 16 UTC. At that time,

an elongated precipitation region is visible over northern Germany. COSMO-DE can pre-

dict the approximate structure and intensity of the precipitation event, but there is some

uncertainty on the exact position among the ensemble members (Figure 3.4h). In the

SCALE-RM simulation (Figure 3.4i), the precipitation band moved too slowly and is lo-

cated approximately 100 km south of the observed position. Nevertheless, SCALE-RM is

able to capture the precipitation band as well as the precipitation over France and Austria.

In summary, COSMO-DE provides slightly more accurate precipitation forecasts than

SCALE-RM, which is likely due to the high-resolution data assimilation incorporated in

COSMO-KENDA and better tuning for the region of interest. Nevertheless, the SCALE-

RM forecasts overall provide realistic precipitation amounts and patterns, which is an

essential prerequisite for studying spatial and spatiotemporal correlations based on this

data set.

Temporal evolution Figure 3.5a shows the temporal evolution of the domain mean

precipitation during all ten forecasts. Both ensemble mean and spread are investigated

for the innermost domain (see Figure 3.2b). The radar-derived domain mean precipitation

is again used as a reference for both ensemble simulations. All five days featured strong

precipitation events and showed a diurnal cycle in the precipitation amount peaking in the

afternoon. As discussed previously, most severe thunderstorms occurred in the afternoon

of 29 May 2016 indicated by the highest domain average precipitation. COSMO-DE well

captures the temporal evolution of the precipitation peaking in the afternoon at a similar

time and with a similar intensity as in the radar observation. Nevertheless, the COSMO-

DE ensemble is not able to predict the intensity of the severe rainfall on 29 May 2016.

SCALE-RM reproduces the diurnal cycle of precipitation similarly to COSMO-DE but
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(a)

(b)

Figure 3.5: (a) Domain mean hourly accumulated radar derived precipitation
observation (solid grey) as well as SCALE-RM 1000-member (solid black) and
COSMO-DE 40-member (dashed black) 12-h ensemble precipitation forecasts, 29 May
2016 00 UTC till 03 June 2016 00 UTC. (b) Domain mean spread of the hourly
accumulated precipitation forecasts for different ensemble samples and the same period
(SCALE 40-member ensemble, dotted black).

less precisely. Both timing and amplitude of the peaks are slightly different from the

radar observation, especially at the beginning of the experimental period. As discussed

previously, one reason is that SCALE-RM was not able to fully predict the correct intensity

of the severe thunderstorms over southern Germany. Additionally, most members exhibited

its strongest precipitation over the Alps, but this region is not included in the verification

domain (Figure 3.2b and 3.4f). Nevertheless, some members revealed a three times stronger

precipitation as the ensemble mean.

Overall, the first forecast hour after each analysis should be treated with caution (see

Figure 3.5). The re-initialization of a new forecast in some cases leads to an underesti-

mation of precipitation at the beginning of the forecast. This spin-up effect is especially

visible for the SCALE-LETKF system at the beginning of June. The cause of this effect

seems to originate from the downscaling, which is required to obtain the high-resolution

initial conditions. SCALE-RM requires a few model iterations to develop small-scale struc-

tures, as well as to diagnose sufficient precipitation from the prognostic variables, while

in the COSMO-KENDA system, the precipitation amount is almost preserved after the

analysis. This is reasonable recalling that for the COSMO-KENDA system the analysis is

obtained on the same resolution as the forecast (warm-start initialization; 2.8 km), while

the SCALE-RM simulation is based on a cold-start approach that includes a down-scaling

of the initial condition from a coarser grid.

Figure 3.5b shows the temporal evolution of the domain mean spread of hourly precipita-
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tion. The diurnal cycle is visible in the spread peaking in the late afternoon and showing

a smaller amplitude during the night. Except for the first day of the experimental pe-

riod, the SCALE-RM 1000-member ensemble exhibits the largest spread of all ensemble

simulations. A random 40-member subset of the 1000-member ensemble is additionally

included in the comparison to assess if the ensemble spread changes with the ensemble size

as well as to compare COSMO-DE and SCALE-RM using an equal ensemble size. The

SCALE-RM 40-member ensemble reveals a smaller spread in all forecasts resulting from

an under-sampling of the true variance and is often closer to the spread of COSMO-DE.

As discussed previously, initializing SCALE-RM from the down-scaled analysis reduces the

spread at the beginning of most forecasts.

Overall, the SCALE-RM 1000-member ensemble delivers fairly realistic precipitation fore-

casts regarding ensemble mean and spread. The amount and timing of precipitation events

do not necessarily need to coincide with an operational forecasting system or observations

as ensemble sensitivity analysis, or the analysis of sampling errors does not incorporate

observations and therefore only requires realistic scenarios. The first forecast hour has

been ignored for the ensemble evaluation to exclude potential spin-up effects originating

from downscaling. For this reason, the 1-h forecast is used as an initial state x to compute

ensemble sensitivities to precipitation.

Growth of spread for prognostic model variables

Figure 3.6 displays the evolution of the domain mean ensemble spread with forecast lead

time for different prognostic model variables. For simplicity and as the focus is on the

growth of the ensemble spread, the available ten forecasts have been averaged. The 1000-

member ensemble spread of 10-m and 500 hPa zonal wind (Figure 3.6a) is slightly larger

than for COSMO-DE. For both simulations, the ensemble spread increases equally fast

throughout the forecast, while the upper-air spread is larger than that close to the surface.

The ensemble spread of 500 hPa temperature (Figure 3.6b) hardly increases with lead time

and coincides roughly for both simulations.

In contrast to the zonal wind, the ensemble spread close to the surface is larger than in the

middle troposphere. Initially SCALE-RM and COSMO-DE exhibit a similar surface tem-

perature spread, which increases stronger in the 1000-member ensemble simulation. The

ensemble spread for 850 hPa specific humidity (Figure 3.6c) is higher for the SCALE-RM

1000-member ensemble, while the COSMO-DE ensemble spread increases slightly faster.

For all prognostic model variables, the evolution of the ensemble spread is reasonable and

well simulated by the SCALE-RM ensemble.

3.5 Added value by large ensemble size

Variance error as a function of ensemble size

Figure 3.7 displays the temporally and spatially averaged relative variance error for three

different representative variables as a function of the ensemble size. For the investigation

of variances in this subsection, multiple small ensembles are obtained by random sub-

sampling from the full 1000-member ensemble without using additional constraints. The
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(a) Zonal wind (b) Temperature (c) Specific humidity

Figure 3.6: Time-averaged domain mean spread as function of lead time for different
ensembles and prognostic variables, 29 May to 03 June 2016. (a) 500 hPa and 10-m zonal
wind (b) 500 hPa and 2-m temperature and (c) 850 hPa specific humidity.

1000-member ensemble variance serves as a reference to calculate relative errors at each

grid point. Results for smaller ensemble sizes are additionally averaged over multiple

subsets to increase the robustness of the results. Figure 3.7a shows the relative variance

error of 500 hPa zonal wind. The 20-member ensemble variance on average exhibits a

sampling error of approximately 12%. Increasing the ensemble size by a factor four from

20 to 80 members almost halves the sampling error to about 6%. Using 200 members

again halves the relative error to about 3%. A similar error reduction is found increasing

the ensemble size to 600 members. However, the relative reduction using a 600-member

ensemble is small, considering the computational effort and the overall small sampling

error. Figure 3.7b shows the relative variance error for 2-m temperature. The sampling

error of surface temperature and a 20-member ensemble is smaller compared to zonal wind.

Nevertheless, the relative reduction of the sampling error with ensemble size is similar.

Again, increasing the ensemble size to 80 members (or from 80 to 200 members) almost

halves the sampling error. A similar dependence of the sampling error on the variance

is found for precipitation (Figure 3.7c) and various other variables (not shown). These

results show that increasing the ensemble size from 20 to 80 members (or from 80 to 200

members, respectively) approximately halves the sampling error in the variance taking the

1000-member ensemble simulation as a benchmark. Considering larger ensemble sizes (e.g.,

600 members), sampling errors are relatively small, and the error curve flattens.

Spatial correlations and sampling errors

Below, horizontal and vertical spatial correlations are investigated. Such correlations are

crucial for hybrid and ensemble DA systems, which rely on accurate correlation estimates

for spreading the information from observations spatially and among different variables.

Results are discussed for three different ensemble sizes: A small (40 members), medium-

sized (200 members) and large (1000 members) ensemble. The subsets are drawn from the

1000-member ensemble with the constraints that each member of the 20-member GFSE BC

is represented equally often and that the 40-member subset is included in the 200-member

subset. Spatial correlations between different grid points and variables are calculated

using the 1-h forecast state, which is similar to using the first guess during hourly cycling.

Ensemble subsets applied for the studies in Chapter 6 and 5 are generated identically.
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(a) 500 hPa zonal wind (b) 2-m temperature (c) Precipitation

Figure 3.7: Time-averaged relative error of variance as function of ensemble size for
different variables using all ten 12-h forecasts. Relative error averaged over 20 (for 20 and
40 members), 10 (for 80 and 200 members) and 5 (for 600 members) randomly
sub-sampled ensembles.

Horizontal correlation Figure 3.8 displays the mean absolute correlation (MAC) and

error (MAE) as a function of spatial distance. The error here is the error in the correla-

tion assuming the 1000-member correlation as the truth. For each forecast, we evaluate

correlations from nine different grid points to all other grid points in the domain. These

nine grid points are evenly distributed in the domain and lie at least 150 km apart from

each other. The error at each grid point is calculated with respect to the 1000-member

ensemble correlation, and results are averaged over all forecasts.

Figure 3.8a shows the mean absolute correlation of the full 1000-member ensemble (MAC1000)

of 500 hPa temperature to 500 hPa temperature itself as a function of horizontal distance.

On short distances, tropospheric temperatures are highly correlated. The MAC1000 de-

creases to 0.5 at a distance of 200 km. From 200 to 500 km, the spatial de-correlation

continues but with a weaker gradient. Both, the MAC40 and MAC200 coincide with the

MAC1000, slightly underestimating the correlation at large distances. The 200-member

subset exhibits approximately half the mean absolute error (MAE) of the 40-member sub-

set, but the error of both samples is much smaller than the MAC. The MAE200 increases

slower with distance than MAE40 and seems to be saturated after about 150 km.

Cross-correlations of temperature to specific humidity (Figure 3.8b) are significantly weaker.

The MAC1000 exhibits a maximum value of about 0.22, decreases up to a distance of ap-

proximately 100 km and remains constant farther away. The 200-member ensemble roughly

estimates the shape of the MAC1000, while 40 members significantly overestimate the true

correlation due to spurious correlations. The MAC40 is approximately three times larger

compared to the MAC1000 after a distance of 150 km. For the 40-member ensemble, correla-

tions of distances longer than 50 km are not trustworthy as their error exceeds the absolute

value. This cross-over point roughly indicates a suitable choice as localization scale in

data assimilation. Using 200 members almost doubles the distance of this cross-over point

compared to 40 members.

Figure 3.8c shows the spatial correlation of 2-m temperature to 2-m temperature itself. As

for upper air temperatures, the MAC1000 is large on short distances but decreases faster

and is weaker at longer distances. The 200-member ensemble almost coincides with the

MAC1000 and the error does not exceed the MAC1000 before reaching 500 km distance. The

MAC40 agrees with the MAC1000 up to a distance of about 100 km, but around 200 km the
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(a) T 500 hPa (b) QV 500 hPa

(c) T 2 m (d) U 10 m

Figure 3.8: Mean absolute correlation (MAC; solid) and error (MAE; dashed) as
function of spatial distance [km] for 1000, 200 and 40 members. Correlations of 500 hPa
temperature to (a) 500 hPa temperature and (b) 500 hPa specific humidity as well as
correlations of 2-m temperature to (c) 2-m temperature and (d) 10-m zonal wind.

error starts to get larger than the absolute value.

The MAE of cross-correlations of 2-m temperature to 10-m zonal winds (Figure 3.8d) is

fairly constant at all distances, while the corresponding MAC is much smaller than for

the correlation of 2-m temperature to 2-m temperatures. As a consequence, the MAE40

exceeds the MAC1000 at a distance of slightly over 100 km, while the MAE200 remains

below up to a distance of 500 km.

In summary, these examples show that the 1000-member ensemble can be used to quan-

tify sampling errors and to investigate suitable choices for localization length scales in

convective-scale NWP. The different results for different variables highlight that it would

be desirable to select very different scales for different model variables and combinations

of variables. Such a variable-dependent localization, however, is not straight forward to

implement in some variations of ensemble DA such as the LETKF for example, where lo-

calization is applied in observation space. Finally, the results show a significant advantage
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of correlations from the 200-member subset compared to 40 members.

Vertical correlation Vertical correlations are evaluated using one 1000-member ensem-

ble forecast at 30 May 2016 and vertical profiles at all grid points in the domain. Figure 3.9a

shows the mean absolute correlation of temperature at 500 hPa to temperature at other

levels. The MAC1000 exhibits a correlation of 1 at the response level and rapidly decreases

to a value of 0.25 reaching a vertical distance of 150 hPa. Levels close to the ground and

tropopause are hardly correlated with 500 hPa. The 200-member ensemble again roughly

coincides with 1000 members with only a slight overestimating of the true correlation. The

40-member ensemble gives similar results close to the response level but overestimates the

correlation above and below by a factor two.

Next, the average root mean square error (RMSE) of the correlation is examined as a

function of height, assuming the 1000-member correlation as the truth (Figure 3.9b). The

200-member ensemble exhibits a small sampling error of about 0.05, except for the response

level and the two neighboring levels above and below. The RMSE40 exhibits a significantly

higher error with values that are up to three times higher at distances of more than 100

hPa. Comparing the amplitudes of sampling errors for both subsets with the MAC1000,

the RMSE200 does hardly exceed the true correlation. In contrast, the RMSE40 increases

faster with distance and exceeds the MAC1000 200 hPa above and below the response level.

Consequently, using a 40-member ensemble would require a narrow vertical localization to

reduce the impact of spurious correlations. For temperature, the width (in hPa) of the

required vertical localization does hardly change with the height of the chosen response

level (not shown).

Figure 3.9c displays vertical cross-correlations of 500 hPa temperature to specific humidity

(Figure 3.9d) at other levels. The MAC1000 is generally weak and exhibits a maximum

of 0.2 around 500 hPa. The 40-member ensemble overestimates the MAC by 0.1 indepen-

dently of the height. The 200-member ensemble only slightly overestimates the MAC. As

for temperature, the vertical extent of the area of increased correlation is approximately

300 hPa. Nevertheless, the relative error is larger for cross-correlations as the 1000-member

correlation is much weaker (Figure 3.9d). Using 200 members, correlations for distances

larger than about 150 hPa are not trustworthy. For the 40-member ensemble, the error

significantly exceeds the 1000-member correlation at nearly all levels except for a narrow

band around the response level. Thus a strong localization would be required to reduce

sampling errors.

Overall, 200 members appear sufficient to estimate vertical correlations of temperature,

while 40 members require a narrow vertical localization of less than 200 hPa vertical ex-

tent. In general, estimating vertical cross-correlations is more demanding than estimating

horizontal correlations. Especially, spurious correlations in combination with weak corre-

lations are an issue as significant relative errors emphasize the need for localization for

both investigated ensemble sizes. Principally, localizing after a certain distance is poten-

tially dangerous in case of long-range correlations. As discussed in Chapter 1, clouds and

hydrometeors can exhibit long-range vertical correlations. Similarly, satellite observations

often provide integrated information of the vertical profile. A possible solution for this issue

is the statistical sampling error correction (SEC) approach that aims to correct for spurious

correlations without damping correlations after a certain distance (Anderson, 2012, 2016).
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Further investigation of this approach is provided in Chapter 6.

(a) MAC (b) RMSE

(c) MAC (d) RMSE

Figure 3.9: Mean absolute correlation (MAC) and mean RMSE as function of vertical
distance [hPa] for differently sized ensembles. Correlations are calculated from 500 hPa
response level (horizontal dotted line) to all other levels. Correlations of 500 hPa
temperature to (a) temperature and to (c) specific humidity. Corresponding errors for
temperature (b) and specific humidity (d), respectively. Note: The black solid line in
(b,d) displays the MAC1000 as shown in (a,c).



Chapter 4

Observation impact

This chapter presents the first part of the results and deals with observation impact. As

elaborated in Section 1.3 and 2.2, estimates of observation impact are crucial to improve

the data assimilation, forecasting, and observing system. However, Deutscher Wetterdienst

so far does not monitor the impact of observations in the convective-scale NWP system. To

overcome this deficit, Sommer and Weissmann (2014) and Sommer and Weissmann (2016)

developed a method to estimate the ensemble forecast sensitivity to observation impact

(EFSOI) in the COSMO-KENDA system. The EFSOI approach applies an observation-

based verification norm and efficiently reuses available information from the data assim-

ilation cycling. Nevertheless, previously conducted studies by Sommer and Weissmann

(2016) have been too short of drawing representative conclusions on the actual impact.

Furthermore, Sommer and Weissmann (2016) applied a verification norm that was based

on similar observations as are assimilated during the cycling. In general, performing a self-

verification is potentially dangerous as it could affect the impact measure. Therefore, the

present study extends the approach of Sommer and Weissmann (2016) by using indepen-

dent remote sensing observations for verification. Additionally, a 6-week summer period is

analyzed to obtain representative estimates of observation impact for the convective-scale

forecasting system of Deutscher Wetterdienst.

Chapter 4 is outlined as follows: The first section examines the impact of conventional

observations during the extended summer period. The observation impact is evaluated for

different verification norms. Mainly the norm applied by Sommer and Weissmann (2016)

is compared against a new norm, which is based on radar precipitation observations. Fur-

thermore, several sensitivity studies with the FSOI method (Section 4.2) are presented.

A major focus is given to the issue of biases in assimilation and verification. In this con-

text, the connection between biases and the fraction of beneficial observations is discussed,

which turns out to be strongly connected (Section 4.3). Section 4.4 examines the contri-

bution of high-impact observations to the reduction in forecast error. Afterward, a simple

approach that can be used to verify the representativity of the impact results is presented

(Section 4.5). At the end of this chapter, Section 4.6 compares the observation impact of

two Swiss wind profilers to results from a European observing network impact study. The

last section provides the reader with a summary and conclusions. Overall, most results

from the following pages have been published by Necker et al. (2018) (see Appendix A).
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4.1 Observation impact for a 6-week period

Figure 4.1 shows the number of assimilated observations during the 6-week high-impact

weather period in summer 2016. Treating the u- and v-component of wind as two single

observations, wind profilers provide almost a million observations followed by aircraft wind

(≈ 840, 000) and surface pressure observations (≈ 490, 000). The number of aircraft hu-

midity observations is comparably small as only a few commercial aircrafts are equipped

with humidity sensors. Overall, there are ten times more aircraft than radiosonde observa-

tions as the latter are usually only launched at 0000 and 1200 UTC. The smallest number

of observations is therefore available for radiosonde temperature (≈ 45, 000) and humidity

(≈ 30, 000).
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Figure 4.1: Number of assimilated observations for different observation types and
variables during the 6-week summer period 2016: Aircraft (AIREP), wind profilers
(PROF), surface stations (SYNOP) and radiosonde (TEMP). Wind (UV), temperature
(T), humidity (RH), 10-m wind (UV10M) and surface pressure (PS).

Verification with conventional observations (CONV)

Figure 4.2a shows the mean observation impact per observation verified with the CONV

metric for the investigated 6-week period. The majority of all observation types exhibits a

beneficial impact, except radiosonde temperature. Surface pressure shows by far the largest

impact per observation followed by aircraft temperature (note that the surface pressure

impact exceeds the scale by five times). The impact of wind observations is similar for

all instruments. In contrast, aircraft and radiosonde temperature show a very different

impact, which seems to be related to biases in the verification metric (see Section 4.1 for

further investigation and discussion of this result).

A two-sided t-test is performed to obtain the 95 % confidence interval, which is indicated

by grey whiskers. For the 6-week period and the verification with the CONV metric,

the confidence is fairly high for most observation types, and the sign of the estimated

impact appears reliable for all observation types. Only for the smaller sample of radiosonde

temperature and humidity observations, the confidence interval is of similar magnitude as

the estimated impact.
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Figure 4.2b shows the corresponding total impact of different observation types and vari-

ables. Surface pressure contributes most to the overall reduction in forecast error followed

by aircraft temperature. Wind profilers exhibit the third largest impact. Radiosonde,

aircraft humidity, and surface wind observations only represent a small proportion of the

total impact due to their comparably small number.
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Figure 4.2: (a) Temporally averaged observation impact per observed variable and
type verified with the CONV metric. Grey whiskers display the 95 % confidence interval
obtained with a two-sided t-test. (b) Corresponding total impact per observed variable
and type. The bar of surface pressure exceeds the regime scale by five times in both (a)
and (b).

Biases in the verification

Given that radiosondes are reliable sensors for temperature, their detrimental impact found

in Figure 4.2a is surprising. This behavior can be explained by looking at systematic

differences between observations and their model equivalents. Figure 4.3a shows mean

vertical profiles of first-guess departures (observations minus their model equivalents; D =

O − FG) of temperature observations during the 6-week period. Usually, radiosondes

OTEMP are close to the truth as they are very reliable temperature observations. In

contrast, aircraft temperature observations OAIREP are known to exhibit some systematic

errors, which are difficult to correct as they tend to depend on the individual aircraft and

can even differ for different segments of the flight (ascent, cruise level, descent). Due to

these difficulties, the KENDA system currently has no bias correction scheme for aircraft

observations. Assuming that radiosonde temperature OTEMP is unbiased leads to the

conclusion that both the model first-guess FG and aircraft temperature OAIREP exhibit a

warm bias (Figure 4.3c). In Figure 4.3a, mean radiosonde departures DTEMP are negative

at all heights (indicating a model warm bias), and they are of a larger magnitude than

mean aircraft departures DAIREP at all heights (indicating an aircraft warm bias). Below

700 hPa, both aircraft and radiosonde first-guess departures have a negative sign and above

700 hPa, the aircraft first-guess departures reveal an opposite/negative sign.
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Figure 4.3: (a) Vertical profiles of mean first-guess departures (observation minus
model equivalents; D = O− FG) of aircraft (DAIREP ; solid gray) and radiosonde
(DTEMP ; solid black) temperature observations. (b) Vertical profiles of the corresponding
mean temperature observation impacts of aircraft (dashed gray) and radiosonde
observations (dashed black). (c) Vertical profiles of the mean temperature first-guess bias
(dash-dotted black) as well as aircraft bias (dash-dotted gray) assuming radiosonde
observations are unbiased.

Figure 4.3b displays the corresponding vertical profiles of the mean estimated impacts cal-

culated for bin widths of 100 hPa. Considering the large number of aircraft observations

(see Figure 4.1), radiosondes are mainly verified with presumably biased aircraft observa-

tions. Above 700 hPa, where mean aircraft departures DAIREP show the opposite sign of

mean radiosonde departures DTEMP , the estimated radiosonde impact is detrimental (pos-

itive impact values). Below 700 hPa, where both aircraft and radiosonde temperature are

on average colder than the model, the estimated radiosonde impact is beneficial (negative

impact values). This result indicates that the estimated radiosonde impact is systemati-

cally affected by the verification with unreliable aircraft temperature observations OAIREP

and that even a moderate bias of 0.2 – 0.5 K can significantly influence the estimated im-

pact. Section 4.2 presents bias sensitivity experiments for temperature to explore the effect

of biases further.
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Assessing the bias of other observation types, it turns out that the surface pressure obser-

vations also exhibit biases that are large enough to affect the EFSOI results. Figure 4.4b

shows the diurnal cycle of the surface pressure impact verified with two different verification

metrics. Verified with the CONV metric, surface pressure exhibits its maximum impact

in the early afternoon. The diurnal cycle vanishes if surface pressure is excluded from the

CONV metric, and the estimated impact is then close to zero. Figure 4.4a displays the

diurnal cycle of mean surface pressure first guess and analysis departures. Surface pressure

first-guess departures exhibit a clear diurnal cycle with a maximum in the afternoon. The

assimilation of surface pressure observations effectively corrects the model bias and leads

to mean analysis departures close to zero. Hence, the magnitude of this surface pressure

bias correction in the analysis and its diurnal cycle coincides with the estimated impact.
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Figure 4.4: 6-week temporally averaged diurnal cycles of surface pressure (PS)
observation minus first guess departures, observation minus analysis departures (a) and
surface pressure impact verified with the CONV metric in-/excluding surface pressure (b).

These findings emphasize the importance of monitoring potential biases in the verification

metric as there is further indication that even moderate biases (approximately 0.5 hPa at

its maximum in the afternoon) strongly influence the estimated impact. Presumably, this

effect is particularly pronounced when the same observation type is used for assimilation

and verification - or if the impact calculation is based on an analysis that contains informa-

tion from the short-term forecast. As a consequence, it seems desirable to use independent

observations for verification in the impact calculation as presented in Section 4.1.

Figure 4.5 shows the mean observation impact excluding both biased aircraft temperature

and surface pressure observations from verification. The confidence is slightly reduced

compared to the CONV metric, as fewer observations are used for verification. Surface

pressure and aircraft temperature, in this case, show fairly large detrimental impacts in

contrast to the verification including these observations (Figure 4.2a). Radiosonde temper-

ature still shows a moderate detrimental impact, but the confidence of the estimate is low,

and one should keep in mind that there are only very few temperature observations left in

the verification metric. Results for the other observations types also change slightly, but

the sign of their impact is unaffected. Sensitivity experiments for excluding other types

from the verification metric (not shown) generally revealed a decreased impact of the ob-

servation type that is excluded from verification, but changes are usually smaller than the

changes for aircraft temperature and surface pressure in Figure 4.5.
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Figure 4.5: Temporally averaged observation impact per observed variable and type
verified with the CONV metric excluding biased surface pressure and aircraft temperature
observations from verification. Grey whiskers display the 95 % confidence interval.

Verification with remote sensing observations (PREC)

Comparing the results for different verification metrics is important to achieve a complete

and reliable picture of observation impact – and generally for any evaluation of forecasts.

Furthermore, it is advantageous to use metrics that are independent from the assimilation

and metrics that reflect primary forecast parameters. Figure 4.6a shows the temporally

averaged observation impact verified with independent radar-derived precipitation observa-

tions. A coarse-graining for 10×10 grid cells is applied to account for the resolvable scale of

precipitation. Compared to the CONV metric, all observation types and variables exhibit

a beneficial impact. Aircraft temperature now exhibits a smaller impact per observation

than radiosonde temperature. This change is likely related to the aircraft temperature bias

discussed in Section 4.1. Surface pressure still shows the largest beneficial impact, which

indicates that the correction of the model surface pressure bias through the assimilation of

surface observations is also very beneficial for precipitation forecasts. The neutral impact

of radiosonde wind observations is caused by very few observations with large detrimental

impact compensating the majority of beneficial observations (see Section 4.4). The results

for all radiosonde as well as aircraft humidity observations should be treated with caution

as they exhibit low confidence.

Generally, remote sensing observations provide a better spatial and temporal coverage

than conventional observations. However, compared to the CONV metric, the confidence

is reduced as verification is only done when precipitation occurs. Achieving similar confi-

dence as for the CONV metric would, therefore, requires an extended period with more

precipitation events.

Figure 4.6b shows the total impact verified with the PREC metric. Surface pressure again

exhibits the largest beneficial impact, followed by aircraft wind observations. The impact of

profiler wind observations, in this case, is smaller compared to the CONV metric that favors

temporally continuous observations as these always have observations for verification at the

same location (Sommer and Weissmann, 2016). The impact of 10-m wind is comparably

small as for other verification metrics. This is likely related to large representativity errors
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Figure 4.6: (a) Temporally averaged observation impact per observed variable verified
with the PREC metric. Grey whiskers display the 95 % confidence interval. (b)
Corresponding total impact per observed variable.

assigned during data assimilation. Due to their low number, the total impact of aircraft

humidity and radiosonde temperature/humidity is comparably small while their impact

per observation is similar to that of aircraft wind observations.

Figure 4.7 displays the temporally averaged observation impact verified with the German

radar product that has been adjusted with rain-gauges. The overall picture is similar as

for the PREC metric based on the European radar product, which confirms the results

obtained previously. The confidence is slightly lower due to the smaller verification domain

and the reduced number of verifying observations. The surface pressure impact increases

and is still the observation type with the largest impact per observation. The strongest

change appears for radiosonde humidity, but the difference lies within the confidence inter-

val. In general, a longer period is required for reliable estimates of the impact of radiosonde

observations independent of the product used for verification.

4.2 Sensitivity studies

Recent studies performed sensitivity experiments considering different aspects of the EFSOI

method. Among other parameters, different localization length scales and the sensitivity to

the number of ensemble member were investigated (Kalnay et al. (2012); Ota et al. (2013);

Sommer and Weissmann (2014)). So far, only one study investigated the sensitivity of the

EFSOI method to observation biases. Liu and Kalnay (2008) assimilated one single biased

observation in a Lorenz 40-variable model approach and showed that a bias could change

the estimated impact of a biased observation and the unbiased observations in its vicinity.

As already shown in this study, biases seem to affect the estimated impact, particularly.

For that reason, different bias sensitivity experiments are presented in the following.
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Figure 4.7: Temporally averaged observation impact per observed variable and type
verified with the German gauge adjusted precipitation product. Grey whiskers display the
95 % confidence interval.

Biases in assimilation and verification

The first experiment investigates the sensitivity of the impact estimate to different arti-

ficially added aircraft temperature biases using the CONV metric for verification (Fig-

ure 4.8). The reference observation impact without added bias is calculated for two ran-

domly chosen days in May 2014. More than 10.000 aircraft temperature observations are

assimilated on these days. Apart from aircraft humidity, all other observation types pro-

vide at least 2.500 and up to 40.000 observations during the experiment. Two artificial

temperature biases of 0.1 K and 0.5 K are added to every aircraft temperature observation

to evaluate the sensitivity. The CONV metric excluding surface pressure is chosen for

verification, and the same artificial bias is added to aircraft temperature observations for

both assimilation and verification.

The introduced artificial bias leads to a larger aircraft temperature impact, which increases

with bias. Already a small bias of 0.1 K has a significant influence on the impact. Further-

more, the verification with biased aircraft temperature observations affects the impact of

related observation types. The second strongest influence is seen for radiosonde tempera-

ture, and also surface pressure impact is affected. The impact of radiosonde temperature

is here detrimental for a bias of 0.5 K, as the verification is performed with biased tempera-

ture observations. The impact of surface pressure is more beneficial if aircraft temperature

is warmer than the model. Besides the sensitivity experiments for aircraft temperature,

experiments for surface pressure have been performed (not shown here), which lead to

similar conclusions. In those experiments, already a bias of 5 Pa affected the observation

impact for surface pressure.

Artificial bias added to verifying observations

The second bias sensitivity experiment is performed for the verification with radar-derived

precipitation observations. For this experiment, the artificial bias is only added in the

verification metric as radar or precipitation observations are not assimilated. A coarse-

graining of 10×10 grid cells is applied as previously. The bias is added such that the
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Figure 4.8: Temporally averaged observation impact per observed variable verified with
the CONV metric excluding surface pressure for different aircraft temperature biases (K).
Wind (solid), humidity (dotted), pressure, and temperature (dashed). AIREP/A
(triangle), PROF/P (square), SYNOP/S (circle) and TEMP/T (diamond).

precipitation bias increases with precipitation amount (multiplication of observed precip-

itation data with factor 0.9, 0.95, 1.05, and 1.1). In general, COSMO-DE systematically

underestimates the amount of precipitation, compared to the European radar product by

13 % (10 % for the German radar product). The entire 6-week period is evaluated, as the

observation impact calculation is inexpensive, and the bias is only added in the verification.

Only observation types that exhibit sufficient confidence are considered. For this reason,

radiosonde wind/temperature/humidity, as well as aircraft humidity observations, are not

displayed.

Figure 4.9 shows the change in the estimated observation impact for ±5 % and ±10 %

precipitation bias. For a negative sign, the amount of observed precipitation is reduced,

and for a positive sign, the precipitation bias is increased. A bias of ±5 % has some

effect on the estimated impact, but the order of the impact for different observation types

is the same, and the changes are within the estimated confidence interval (not shown).

Even for a large bias of ±10 %, the changes in the impact are not that large in relative

terms compared to the magnitude of the introduced artificial bias. Only for -10 % the

order changes as aircraft temperature exhibits a smaller impact than 10-m wind. Overall,

a precipitation bias does influence the results but appears to be less harmful than, for

instance, an aircraft temperature bias that acts in both assimilation and verification. This

finding underlines the benefits of independent observation-based verification metrics for a

reliable observation impact assessment.

Coarse graining

The last sensitivity experiment investigates the effect of different coarse-graining kernel

sizes. As already mentioned above, all results presented previously are obtained for a

coarse-graining kernel size of 10× 10 grid cells. Figure 4.10 shows the observation impact

for 5 × 5 (effective COSMO model resolution) as well as 10 × 10 (resolvable scale for

precipitation), 20 × 20 and 30 × 30 grid cells. Again, the small samples of radiosonde

and aircraft humidity observations are not displayed due to their low confidence. The
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Figure 4.9: Temporally averaged observation impact per observed variable verified with
the PREC metric for different precipitation biases (%).
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Figure 4.10: Temporally averaged observation impact per observed variable verified
with the PREC metric for different coarse-graining kernel sizes.

strongest changes are seen for kernel sizes smaller than 10 × 10 grid cells. The changes

for larger kernel sizes are smaller, and the order remains the same from the beneficial to

detrimental observations. In general, the sensitivity to the kernel size used for verification

seems to be smaller compared to the sensitivity to a bias of observations that are used for

both assimilation and verification (see Section 4.2). Furthermore, a coarse-graining is a

reasonable choice to reduce double penalty errors and to account for the resolvable scale

of precipitation.

4.3 Fraction of beneficial observations

Several previous studies on FSOI and EFSOI discussed the fraction of beneficial obser-

vations (e.g. Gelaro et al. (2010); Lorenc and Marriott (2013); Sommer and Weissmann

(2014); Jung et al. (2013); Hotta et al. (2017); Lien et al. (2018); Cardinali (2018)). Most

studies reported that the ratio of beneficial observations is in the range of about 50 % to

55 %, but some studies showed a notably larger fraction of beneficial observations. Jung

et al. (2013), for example, reported 66 % to 72 % beneficial observations for 6-h forecasts
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impacts verified with the model analysis and attributed the larger fraction to a stronger

correlation of analysis and verification state at this short lead time. Hotta et al. (2017)

discovered that the fraction becomes larger as the lead time gets shorter, which supports

the argument that correlation of the analysis and verification state leads to a large fraction

of beneficial observations. Furthermore, Lien et al. (2018) found fractions of up to 70 %

under certain conditions for assimilating precipitation, which may be related to systematic

model deficiencies. Overall, most studies showing a significantly larger fraction indicate

somehow that this may be related to the correlation of the analysis and verification state

or systematic model deficiencies that would spuriously enhance such a correlation.

In the present experiments, a fraction of beneficial observations around 52 % is found for

the majority of observation types. The fraction of beneficial observations varies only by a

few percents except for surface pressure and temperature observations. Figure 4.11a dis-

plays the fraction of beneficial observations per observed variable verified with the CONV

metric. For surface pressure, 67 % of the observations show a beneficial impact. This frac-

tion seems to be related to the previously discussed pressure bias that is systematically

corrected during the assimilation. As the surface pressure impact is verified with later

surface pressure observations (self-verification), the majority of observations appear bene-

ficial. The same is evident for aircraft temperature observations, which exhibit the second

largest fraction of beneficial observations. Only radiosonde temperature observations have

a larger fraction of detrimental observations as their verification is mainly performed with

biased aircraft temperature observations.

(a) (b)

Figure 4.11: Fraction of beneficial observations per observed variable verified with (a)
the CONV metric and (b) the PREC metric. Note: The vertical axis for subplot (a) and
(b) is different.

The bias sensitivity experiments performed in Section 4.2 emphasize this conclusion. Adding

a bias of 0.5 K to the aircraft temperature observations increased the fraction of beneficial

aircraft temperature observations from 57 % to 67 % (not shown). These results indicate

that the fraction of beneficial observations may be used to identify biases through an

exceptionally small or large number of beneficial observations.

For the PREC metric (Figure 4.11b), the fraction of beneficial observations for all obser-
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vation types ranges from 51 % to 54 %. The largest fraction is seen for surface pressure

observations, whereas aircraft temperature observations exhibit the lowest fraction. The

result that the fraction lies close to 50 % for all types supports the assumption that corre-

lation between the analysis and verification state is less of an issue when using independent

observations.

4.4 Influence of high-impact observations

The distribution of impact values is remarkably wide compared to its calculated mean

impact. Sommer and Weissmann (2016) discovered that the distribution roughly resembles

an asymmetrically stretched exponential. Taking this into account, it is obvious that there

is only a small number of extreme impact values compared to a large number of moderate

impact values. Based on the distribution of observation impact values, it is possible to

investigate the relative contribution of a few high-impact observations versus the majority

of observations with low impacts.
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Figure 4.12: Temporally averaged observation impact per observed variable verified
with the CONV metric (a) and PREC metric (b). The differently shaded bars represent
the average impact for defined percentile ranges. For instance, the bar with the brightest
shading shows the average impact of the 2 % most extreme impact values. The order of
observation types is the same as in Figure 4.11a. Note: the bar of surface pressure in (a)
exceeds the regime scale by five times. (a) corresponds to Figure 4.2a and (b) to
Figure 4.6a.

Figure 4.12a (corresponding to Figure 4.2a) shows the averaged observation impact per

observed variable verified with the CONV metric. The bar of each observation type is now

additionally divided into the average impact of three different percentile ranges: moderate

impacts (smallest 90 %), large impacts (90 % to 98 %) and extreme impacts (most extreme

2 %). Each percentile range contains both positive and negative impacts, but the classifica-

tion is done regardless of the sign. Comparing the reduction of forecast error by moderate,

large and extreme impact values, it turns out that approximately the 10 % observations

with the highest impacts contribute as much as the other 90 % with lower impacts. The
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ratio of the contribution of large and extreme impact values is more or less the same for

most observation types using the CONV metric. For the PREC metric (Figure 4.12b

corresponding to Figure 4.6a) the contribution of few observations with extreme impact

values even increases. The extreme impact values now contribute a significant fraction,

whereas for the CONV metric the 10 % most extreme impact values contributed about

half of the total impact. This difference could be related to the non-Gaussian distribution

of precipitation with a large fraction of outliers.

Considering the stacked impact of radiosonde wind observations (Figure 4.12b) helps un-

derstanding the almost neutral impact obtained using the PREC metric (Figure 4.6a). The

98 % radiosonde wind observations with smallest impacts are on average beneficial, but as

the 2 % most extreme impact values exhibit a detrimental impact of the same amplitude,

the average impact of all radiosonde wind observations is neutral. A similar but reverse

effect can be observed for aircraft temperature observations. Here, moderate impact val-

ues on average show a neutral impact, whereas large and extreme impact values are on

average beneficial. This difference could be related to the previously mentioned aircraft

temperature bias. However, for the radiosonde wind observations, the small sample size

seems to be relevant for the different behavior of moderate and extreme impact values.

In general, all this relates to the idea of target observations in particularly sensitive areas,

which have been subject of several recent studies and field campaigns (Majumdar et al.,

2011). Observational efforts could be significantly reduced if these high impact observations

could be identified a priori through sensitive area calculations and observation targeting.

However, further research is required to understand observational needs for convective-scale

NWP better and develop approaches for observation targeting on these scales (Gustafsson

et al., 2018).

4.5 Representativity of the results for summer period

The applied two-sided t-test showed that the results for most observation types are reliable

for a 6-week period. Another option to evaluate the representativity of the results is to

look at the temporally ordered partial mean observation impact (Figure 4.13). The idea is

to check if the temporally averaged observation impact is saturated for a certain subsample

of observations and use this information as a representativity measure. This approach also

provides information if the results vary within a longer period and if there is variability due

to different weather regimes. A larger difference between the partial sum and the period

average impact indicates a larger variability. Fast convergence of the ordered partial sum

towards the temporal average corresponds to lower temporal variability of the estimated

impact.

For most observations types the mean impact is reached before the end of period (not

all shown). This indicates that the results are representative for a high-impact summer

weather period with various different weather regimes. For verification with the PREC

metric (Figure 4.13b & 4.13d) the partial mean impact converges slower than for the

verification with conventional observations (Figure 4.13a & 4.13c), which is in agreement

with the smaller confidence obtained using the t-test. Furthermore, it is seen that for

radiosonde observations (see for example Figure 4.13c & 4.13d) a larger sample size should

be considered to obtain robust results. Finally, it needs to be mentioned that the estimated
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impact to a certain extent depends on the considered experimental period and for instance

could change for a different period, weather regime or season.
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Figure 4.13: Partial mean observation impact (solid) and temporally averaged
observation impact (dashed) for verification with the CONV (a, c) and the PREC (b, d)
metric. Aircraft wind (a, b) and radiosonde temperature (c, d). Grey whiskers display the
95 % confidence interval obtained with a two-sided t-test.

4.6 Wind profiler inter-comparison

Recently, several impact studies initiated by the European Meteorological Network (EU-

METNET) assessed the impact of various observation types provided by the European

observing network. One of these studies particularly focused on the E-PROFILE network

that consists of aircraft, wind profiler, and lidar/ceilometer observations. This impact study

was conducted in collaboration by the Swiss weather service (MeteoSwiss), Deutscher Wet-

terdienst, and the ECMWF. Both aircraft and wind profiler impacts were assessed using

the routinely monitored observation impact within the ECMWF forecasting system. In

the ECMWF system, the impact is calculated applying an adjoint-based FSOI approach

for 24-h forecasts verified with a dry kinetic energy norm (Cardinali, 2009).

Overall, Ruefenacht et al. (2018) found that the wind profiler network significantly con-

tributes to the reduction in forecast error, especially in regions with few aircraft wind

measurements. However, two wind profilers in Switzerland exhibited a mainly neutral

(Schaffhausen) or detrimental (Payerne) observation impact. Therefore, the Swiss wind

profilers are evaluated for the summer period in 2016 to determine if this behavior is also

seen in the convective-scale COSMO-KENDA system and for short-range forecasts.
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Figure 4.14 shows a comparison of all wind profilers that are located in the COSMO-DE do-

main (see also map in Figure 3.1). Each wind profiler provides a significant amount of wind

observations and at least 7000 assimilated observations per station (Figure 4.14a). This

means each wind profiler contributes a similar amount of or even more wind observations as

provided by all radiosonde wind measurements together. Figure 4.14b examines the total

impact per wind profiler verified with the CONV metric. Performing a self-verification,

the wind profiler in Payerne exhibits the largest beneficial impact of all stations. How-

ever, if verified with independent radar precipitation observations (Figure 4.14c), only the

Payerne wind profiler shows a significant detrimental impact. This discrepancy between

both verification metrics is similar to the impact results found for aircraft temperature. It

seems that systematic effects for the wind profiler in Payerne cause a detrimental impact.

This finding confirms the results from the European wind profiler inter-comparison. The

second Swiss wind profiler in Schaffhausen exhibits a beneficial impact independent of the

verification metric.

(a)

(b) (c)

Figure 4.14: Number of assimilated wind profiler observations per station during the
6-week summer period 2016. Corresponding total observation impact per wind profiler
verified with (b) CONV and (c) PREC metric. Wind profiler over Switzerland (colorized)
and Germany (black). The station number is plotted on the x-axis.
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4.7 Summary and discussion

This study presents the first evaluation of observation impact in a convection-permitting

modeling system over an extended period of six weeks. The short-range observation im-

pact of about 3.3 million conventional observations is analyzed in a 6-week summer period

using the regional ensemble data assimilation system of DWD. The observation impact was

evaluated with the EFSOI method that was initially published by Kalnay et al. (2012) and

reformulated by Sommer and Weissmann (2016). Moreover, the observation impact is com-

puted using several different observation-based verification metrics, including independent

radar observations.

The results highlighted the sensitivity of the calculated impact on the choice of the veri-

fication metric, particularly in the presence of model or observational biases. Sensitivity

experiments showed that already small biases can significantly affect the estimated impact

if the verification metric is based on observation types that have been assimilated (self-

verification). Nearly all previous studies on EFSOI and FSOI used analysis-based verifica-

tion metrics, which are potentially also affected by biases that lead to a correlation of the

analysis and verification state. Especially for the impact assessment of short-term impact

during strongly convective events, the use of analysis-based verification norms, therefore,

seems potentially dangerous. Furthermore, the use of a total energy norm as verification

metric seems inappropriate for convective-scale modeling systems as such a norm does not

reflect primary forecast quantities (as, e.g., precipitation). Hence, the observation impact

should be assessed comparing results for different verification metrics and including inde-

pendent observations for verification. Additionally, the assessment of observation impact

needs to be accompanied by careful monitoring of potential biases and exclusion of biased

observations (or analysis fields) from the verification metric.

In this study, radar-derived and rain-gauge adjusted precipitation fields were used as an

additional independent verification metric that represents a specific, but particularly im-

portant aspect of the forecast. Sensitivity studies showed that a bias of such independent

observations used for verification has a smaller effect on observation impact results than if

assimilated observation types are used. This finding is of interest for the implementation

of quality control schemes that are mostly based on short-range FSOI and aim to detect

and exclude detrimental observations (Hotta et al. (2017); Lien et al. (2018)).

Using independent radar precipitation fields for verification, surface pressure showed the

largest beneficial impact followed by aircraft wind observations. Wind profiler observations

had the third largest total impact as they are the most frequent observation type. How-

ever, they exhibited a smaller impact per observation compared to the verification with

conventional observations that favors observations with a higher measurement frequency

(Sommer and Weissmann, 2016). The average impact per observation of radiosonde tem-

perature and humidity, as well as aircraft humidity, was comparable to aircraft winds, but

results should be treated with caution given the comparably small number of evaluated

observations for these observation types. Aircraft temperature exhibited a much smaller

impact per observation compared to the verification with conventional observations, which

is likely associated with uncorrected observational biases. The development of a bias cor-

rection scheme for aircraft temperature observations is currently ongoing at DWD.

Furthermore, it was demonstrated that EFSOI could be used to identify observation and

model biases. One indicator for biases is a significant difference in the impact of different
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verification metrics. Additionally, an exceptionally high or low fraction of beneficial obser-

vations appears to be an indicator of biases in the assimilation or verification as discussed

for surface pressure and aircraft temperature.

For all experiments, a two-sided t-test was performed to calculate the 95 % confidence

interval of the calculated observation impact to quantify the reliability of the results. Ad-

ditionally, a new approach to estimate the representativity of the calculated impact was

presented, which uses the partial mean of the impact as a reliability measure. Both ap-

proaches suggest that a larger sample size of radiosonde wind/temperature/humidity, as

well as aircraft humidity observations, is needed to make a reliable statement about the

actual observation impact, while for the other quantities the results are already reliable.

Recently, the presented EFSOI results could confirm an observation impact inter-comparison

study performed for the E-PROFILE network based on the ECMWF FSOI system. Rue-

fenacht et al. (2018) found a systematically detrimental impact for the Swiss wind profiler

located in Payerne. The present study for summer 2016 similarly diagnosed a detrimental

impact for Payerne for the COSMO-KENDA system. Notably, the difference in the im-

pact seen for the CONV and PREC metric suggests that systematic differences between

model and observations likely caused the detrimental impact. Currently, MeteoSwiss is

investigating the cause of this deficiency.



62 4. Observation impact



Chapter 5

Potential impact of observable

quantities

Nowadays, a vast amount of observational information is available in developed countries.

Additionally, technological developments enable to install new or additional observing sys-

tems. However, more observations are available than can be assimilated due to limited

human and computational resources. Given those developments, advanced data selection

strategies are crucial to optimize data assimilation processes in the future. In general,

knowledge of the potential impact of observations can help to focus on the assimilation of

observations that will likely have a significant impact on the forecast skill. Hence, such

knowledge is expected to increase the cost-benefit ratio of the NWP system.

The goal of this chapter is to provide guidance toward improved data assimilation strate-

gies. This chapter, therefore, presents an efficient approach that uses spatiotemporal corre-

lations as a proxy for the relative potential impact of observable quantities. The approach

has initially been proposed by Geiss (2017) and is based on ensemble sensitivity analysis

(ESA). Compared to Geiss (2017), the present study applies an improved 1000-member

ensemble simulation. Moreover, the relative potential impact is computed using a refined

methodology. This refinement, among other things, includes a scale analysis. As has been

outlined, this thesis focuses on challenges in convective-scale NWP. Section 5.3, therefore,

will explain that it is crucial to distinguish the relative potential impact depending on the

spatial scale of correlations. The present study aims to provide the reader with the central

concept of the approach. Some parts of this chapter have been submitted for publication

by Necker et al. (2019a) (see Appendix A).

Chapter 5 starts with an investigation of a case study examining ensemble sensitivities

for different quantities. The same case study is discussed in Section 3.4 and 6.1 but in a

different context. Furthermore, the first section qualitatively addresses the issue of under-

sampling comparing correlations obtained for different quantities and ensemble subsets of

the 1000-member ensemble. Section 5.2 exemplarily presents the relative potential impact

for seven different quantities. Additionally, this section includes an analysis examining the

sensitivity of the relative potential impact on the applied ensemble size. In this context,

the SEC and T95 are applied to reduce sampling error. Both approaches will be evaluated

in detail in Section 6.1 and can reduce sampling error applied to ESA. Finally, Section 5.3

highlights the scale-dependence of the potential impact.
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5.1 Ensemble sensitivity analysis

Example of correlation fields Ensemble sensitivity analysis is used to compute spa-

tiotemporal correlations for the 1000-member ensemble as well as two random subsets.

Ensemble subsets are generated identically as for spatial correlations (Section 3.5). All

results in this chapter focus on short-range forecasts with a lead time of 3-h. The response

function is fixed at 4-h lead time, and the 1-h forecast is used as the initial state. Figure 5.1a

shows the 1000-member ensemble mean precipitation forecast at 29 May 2016 4 UTC in-

cluding streamlines of 500 hPa wind. The black box marks the position of the response

function that is used to calculate the spatiotemporal correlations for the investigation of

the sensitivity of this precipitation system.

The precipitation forecast and initial sea-level pressure field are negatively correlated (Fig-

ure 5.1b). This correlation reveals that lower pressure coincides with stronger precipitation

in the ensemble. A small-scale structure with correlation values near zero is embedded

slightly south of the response function within the relatively smooth large-scale correlation

field. This small-scale structure roughly matches the position of the precipitating system at

the beginning of the forecast and likely corresponds to surface cooling due to evaporating

precipitation. The correlation field of initial 500 hPa zonal wind (Figure 5.1c) exhibits a

dipole structure. In this case, the dipole seems to indicate stronger cyclonic shear in the

south of the box.

Figure 5.1d shows the spatiotemporal correlation of precipitation inside the response func-

tion to earlier precipitation. Precipitation is positively correlated with itself as initially

stronger precipitation correlates with increased precipitation three hours later. A similar

correlation signal can be observed for hydrometeors (Figure 5.1e). Here, hydrometeors are

composed of specific cloud water, rain, ice, snow, and graupel content. For hydrometeors,

the region of maximum correlation is slightly shifted northwards compared to the precipi-

tation. This shift could originate from accumulation of the precipitation over one forecast

hour or the fact that hydrometeors appear before precipitation is observed at the ground.

Furthermore, both precipitation and hydrometeors exhibit a weak positive correlation sig-

nal over south-east Germany, which is caused by precipitation in this region in some of the

1000 members.

Similar to sea-level pressure, the upper-air temperature (Figure 5.2a) reveals a rather

smooth and large-scale correlation pattern with negative values, but positive correlation

values in the vicinity of the precipitating system that are likely related to the release of

latent heat in the precipitating system. The correlation of the specific humidity at 850 hPa

(Figure 5.2d) is weaker and only extends over a smaller area compared to temperature.

The elongated tail roughly marks the track of the precipitating system during the night

indicated by the streamlines in Figure 5.1a. It seems that the humidity signal reflects

precipitation that took place already before analysis time. The maximum correlation is

located in the same region as for temperature, showing a positive correlation of specific

humidity and precipitation intensity.

Overall, the correlations obtained from the 1000-member ensemble depict physical pro-

cesses that contribute to the evolution of the precipitating system. Consequently, these

correlations are suitable as a proxy for the relative potential impact. In this case, if the

initial conditions are warmer, more humid and exhibit a higher amount of hydrometers

at 500 hPa the resulting precipitation is more intense. The same applies to initially lower
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(a) Response function (b) Sea-level pressure (c) Zonal wind at
500 hPa

(d) Precipitation (e) Hydrometeors at
500 hPa

Figure 5.1: Sensitivity of the 3 h precipitation forecast inside the box to different initial
model fields using the 1000-member ensemble, 29 May 2016 01 UTC.

pressure and stronger precipitation.

Properties of sampling errors The subsequent paragraph presents examples of sam-

pling errors for spatiotemporal correlations of precipitation to two representative variables

(500 hPa temperature and 850 hPa specific humidity) using two ensemble subsets (40 and

200 members). The 500 hPa temperature correlation pattern is exemplary for other vari-

ables with large-scale correlation patterns (e.g., pressure), whereas 850 hPa specific hu-

midity is representative for variables that exhibit small-scale structures in the correlation

field (as, e.g., surface quantities or hydrometeors and precipitation). The 1000-member

ensemble again serves as a reference.

Reducing the ensemble size from 1000 to 200 members-only leads to moderate changes for

the correlation to 500 hPa temperature (Figure 5.2b). The region of positive correlation

still looks fairly similar regarding position and magnitude, but negative correlations far-

ther away are systematically larger in magnitude due to spurious oscillations. Differences

moving to a 40-member ensemble are significantly larger (Figure 5.2c). The local positive

correlation pattern lost its shape and negative correlations farther away intensified even

further due to sampling errors. Nevertheless, the 40-member ensemble still provides qual-

itative information as it captures the overall structure and sign of the correlation field for

500 hPa temperature.

Figure 5.2e shows the sensitivity of precipitation to specific humidity at 850 hPa using a

200-member ensemble. Similar to temperature, weak spurious correlations appear in large

parts of the domain, but the region of maximum correlation as well as its elongated tail
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(a) 1000 members (b) 200 members (c) 40 members

(d) 1000 members (e) 200 members (f) 40 members

Figure 5.2: Same as Figure 5.1, but for the sensitivity of the 3 h precipitation forecast
to temperature at 500 hPa (top row) and specific humidity at 850 hPa (bottom row) for
different ensemble sizes, 29 May 2016 01 UTC.

are well-captured. Lowering the ensemble size to 40 members (Figure 5.2f) significantly

increases sampling errors, and spurious correlations now dominate the correlation field.

These results suggest that the 40-member ensemble can provide qualitative information

for large-scale patterns, but struggles to estimate correlations for more variable fields as,

850 hPa humidity, hydrometeors, or surface temperature. The 200-member ensemble pro-

vides reasonable correlation patterns for all variables, but the fields are still affected by

spurious correlations. Caution is especially necessary when using correlations in a quanti-

tative sense as in the following.

5.2 Estimating the relative potential impact

This section introduces an approach for investigating the relative potential impact of ob-

servable quantities for improving precipitation forecasts. Again, the focus is on spatiotem-

poral correlations of precipitation obtained for 3-h lead time forecasts. As discussed in the

Section 2.3, the accumulated squared correlation (ASC) is used as a proxy for the rela-

tive potential impact. Accordingly, the squared correlations of the precipitation forecast

with an initial condition variable are accumulated over the whole domain and all available

forecasts to estimate the relative importance of that variable for data assimilation.

Senstivity to ensemble size Figure 5.3 shows the time-averaged ASC as a function

of ensemble size between the 3-h precipitation forecast and zonal wind at 500 hPa (Fig-

ure 5.3a), 2-m temperature (Figure 5.3b) and precipitation (Figure 5.3c), respectively, at
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the initial time. For all variables, the ASC evaluating small ensembles is significantly

overestimated due to spurious correlations. For instance, the ASC1000 is overestimated by

more than 200 % using a 40-member ensemble. Generally, the ASC strongly decreases with

increased ensemble size, but hardly changes from 600 to 1000 members. Given this satura-

tion for large samples, spatiotemporal correlations obtained with a 1000-member ensemble

are presumably reliable estimates.

Chapter 6 shows that the SEC significantly reduces sampling errors for spatiotemporal

correlations as they are calculated within ESA and for spatial correlations, as they are

required in data assimilation. As the potential impact approach is based on ESA, it is also

possible to mitigate sampling errors computing the ASC. Sampling errors are addressed

using two different approaches. The first is the confidence test (T95) that excludes in-

significant correlations (Torn and Hakim, 2008). The second is the statistical sampling

error correction (SEC; Anderson (2012)). In general, compared to the T95, the SEC does

not fully exclude small correlations, which is favorable for quantitative analysis. Moreover,

the SEC systematically reduces correlation values to account for the overestimation of

correlations due to spurious correlations, which corrects the magnitude bias due to spuri-

ous correlations. A detailed evaluation of both approaches for spatiotemporal correlations

follows in Section 6.1.

Examining 500 hPa zonal wind (Figure 5.3a), both approaches significantly improve the

ASC estimate for small samples. The SEC performs slightly better compared to the T95

and results for the sampling error corrected 200-member ensemble are already close to

the ASC1000. Improvements are similar for other variables (Figure 5.3b and Figure 5.3c).

Overall, 200 members including SEC seem to be a reasonable choice for estimating the

ASC if no 1000-member ensemble is available. However, it should be noted that there is

a small remaining error in the estimate and that the error differs for different variables

as sampling errors tend to be higher for smaller-scale fields. This effect can lead to a

systematic over- or underestimation of the relative potential of the respective variable. For

smaller ensembles (e.g., 40 members), this effect is even larger, and it seems questionable

if smaller ensembles are applicable for such a quantitative evaluation of correlations.

Relative potential impact Figure 5.4a shows the time-averaged ASC1000 for seven

different variables using the 1000-member ensemble. Before the discussion, it should be

noted that the primary purpose here is the evaluation of the appropriate ensemble size for

such an application. Additionally, the need for a scale-decomposition is highlighted in the

last section of this chapter. The relative potential impact of various observable quantities

needs to be analyzed in more detail by consecutive studies.

Sea-level pressure (PS) exhibits the largest ASC1000, followed by wind at 500 hPa, and

10-m height. Precipitation has a smaller sensitivity to initial perturbations of temperature

and humidity. The smallest ASC is found for precipitation. Applying a confidence test to

the 1000-member correlations hardly changes the ASC (Figure 5.4a). This small change

confirms the reliability of the results obtained for the 1000-member ensemble.

Using 200 members, the ASC is overestimated for all variables (Figure 5.4b). The largest

differences are visible for wind and precipitation. As found before, both the T95 and the

SEC significantly improve the ASC (Figure 5.4b and 5.4c). Again, the SEC performs

slightly better than the T95. The results for 200 members including the SEC are close to
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(a) 500 hPa zonal wind (b) 2-m temperature (c) Precipitation

Figure 5.3: Time-averaged accumulated squared correlation as function of ensemble
size for different variables, 29 May to 03 June 2016. Spatiotemporal correlations of
precipitation to (a) 500 hPa zonal wind, (b) 2-m temperature and (c) precipitation.

the ASC1000 but there are still some small differences, for example, an overestimation of

the ASC for precipitation.

Using a 40-member ensemble (Figure 5.4d), the ASC is significantly overestimated and the

ranking changes compared to examining the ASC1000, even when the SEC is included. For

example, the ASC for precipitation now has an equally large or higher impact as specific

humidity or surface temperature. Overall, under-sampling causes an overestimation of the

ASC, even if the T95 or the SEC are applied (Figure 5.4d and 5.4e). The 40-member

ensemble is therefore not able to estimate the ASC or relative ASC reliable. To some

extent, the small ensemble can provide qualitative guidance.

5.3 Scale-dependence of the potential impact

Convective-scale data assimilation requires observations on rapidly changing weather sit-

uations. Additionally, the high model resolution calls for dense observational information

that resolves clouds or convection. Observations, therefore, need to be able to capture spa-

tial and temporal scales that are targeted by convective-scale DA (Fabry and Sun, 2010,

Fabry, 2010). Hence, it is important to distinguish and to account for the spatial scale of

observations estimating the relative potential impact. Subsequently, small and large scales

will be divided using a border at 300 km. Accordingly, small-scale structures that are of

interest range from the effective model resolution of 15 km up to mesoscales of 300 km

extent.

As introduced previously, the potential impact measure uses accumulated squared cor-

relations as a proxy for the relative potential impact. For this purpose, spatiotemporal

correlations are computed in a regional domain. In general, the impact measure accounts

for linear relations combining signals from all spatial scales. Consequently, a sensitivity

pattern could be dominated by signals that are also influenced by scales that are not the
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(a) 1000 members +
T95

(b) 200 members +
T95

(c) 200 members +
SEC

(d) 40 members + T95 (e) 40 members +
SEC

Figure 5.4: Time-averaged ASC using a precipitation response function for all 3-h
forecasts, 29 May to 03 June 2016. 1000-member ensemble (a) as well as sub-sampled 200
(b,c) and 40 (d,e) member ensemble including sampling error correction (SEC) or
confidence test (T95). Average ASC of all variables (dashed line).

target of convective-scale DA. For example, this is the case for sea-level pressure. A pres-

sure gradient within the domain is mainly determined by the boundary conditions, which

are provided by the global model. Hence, to obtain a representative impact measure for

convective-scale DA, it is necessary to exclude large-scale effects and characterize variables

that show the strongest small-scale signals, which are relevant for convective-scale DA.

The scale analysis is done using a discrete Fourier transformation and aims to distinguish if

a correlation signal is a small or large-scale signal. The scale analysis helps to characterize

variables that are dominated by large-scale or boundary effects. Additionally, the scale

dependence of the signal intensity can provide information on which observation network

density would be desirable. For example, considering a quantity that exhibits a strong

small-scale variability, a sparse observation network would not be able to capture relevant

small-scale changes.

Figure 5.5a analyzes the correlation of a 3-h precipitation forecast to its initial pressure

field. The left graph in Figure 5.5a displays the scale dependence of the correlation signal

using a compensated sensitivity density spectrum. Compensated, in this case, means that

the sensitivity density is weighted with the wavenumber k (Craig and Selz, 2018). The

weighting is done as the results are displayed in logarithmic scales. For sea-level pressure,

mainly large-scale effects dominate the sensitivity density spectrum. The wavelength that

would fit the pressure signal best is even longer than the domain size. This result agrees
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with the large-scale pressure gradient that is visible in the correlation field.

In contrast, the correlation of precipitation to 2-m temperature has a significantly stronger

sensitivity density on scales smaller than 200 km (Figure 5.5b). Thus, for scales smaller

than 200 km, the precipitation forecast has a higher sensitivity to the 2-m temperature

field than to sea-level pressure. Consequently, 2-m temperature exhibits a higher relative

potential impact for convective-scale DA than sea-level pressure.

(a) Sea-level pressure

(b) 2-m temperature

Figure 5.5: Sensitivity of the 3 h precipitation forecast to (a) sea-level pressure and (b)
2-m temperature for 1000 members, 29 May 2016 01 UTC. (left) Compensated sensitivity
density spectrum calculated using a Fourier transformation. Grey shading indicates
wavelength smaller than the effective model resolution of 14 km. The vertical dashed line
marks the border between small and large scales. (right) Corresponding correlations field.

The goal is now to obtain a similar plot, as shown in Figure 5.4a, but accounting only

for scales that are most relevant for convective-scale DA. This goal can be achieved using

Parseval’s theorem. According to Parseval’s theorem, the integral of a squared function is

equal to the integral of the squared transform in spectral space. Accordingly, the potential

impact defined as the accumulated squared correlation is equivalent to the sum (integral)

of squared sensitivities in spectral space. Now, the Fourier transformation can be applied

to separate the scales of interest in spectral space, which is similar to applying a bandpass

filter (BPS).
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Note that both spectra that are displayed in Figure 5.5 do not display the background

mean or infinity mode. Especially for sea-level pressure, the mean background correlation

dominates the ASC of sea-level pressure in Figure 5.4a. The background mean also is a

large-scale effect and, therefore, should be excluded from the analysis. When a bandpass

filter is applied, it excludes both the background mean as well as the large-scale correlation

signal.

Finally, the most relevant quantities for convective-scale DA can be distinguished. Fig-

ure 5.6 displays the ASC after applying a BPS. In this case, only sensitivities that have a

scale smaller than 300 km are accumulated, and all large-scale signals are neglected. Sen-

sitivity studies indicate that results hardly change using a threshold of for example 250 km

or 200 km. For convective-scale DA, 2-m temperature exhibits the largest bandpass-filtered

ASC followed by specific humidity at 850 hPa. Furthermore, assimilating precipitation has

stronger relative potential impact compared to other quantities. For short-range precipita-

tion forecasts, wind and temperature at 500 hPa show a relatively small relative potential

impact. The same applies to sea-level pressure.

Figure 5.6: Same as Figure 5.4a, but illustrating the band-pass-filtered ASC
accounting only for scales smaller than 300 km.

In general, results suggest to apply a scale analysis only for a sufficiently large ensemble

sample. Spurious correlations mainly act on small scales and thus have a strong influence

on estimating the relative potential impact while performing a scale analysis. Studies for

a 200-member ensemble including SEC and BPS could provide qualitative guidance but

failed to estimate the ASC aiming for a quantitative statement.

5.4 Summary and discussion

This chapter introduces how spatiotemporal correlations can be used to gain knowledge

on the potential impact of different observable quantities for data assimilation. In detail,

the accumulated squared correlation (ASC) is used as a proxy for the relative potential

impact. The ASC is based on spatiotemporal correlations, which are the main ingredient for

ESA. The present study computes correlations using a 1000-member ensemble. The ASC

is evaluated for precipitation forecasts comparing seven different observable atmospheric
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quantities. Furthermore, the sensitivity of the ASC to the ensemble size and its scale

dependence is investigated.

Initially, a case study is presented to examine if applied correlations are reliable and mean-

ingful. Therefore, spatiotemporal correlations of precipitation with different initial con-

dition variables are discussed for a nocturnal precipitation event on 29 May 2016. The

example shows that ESA using a 1000-member ensemble can return realistic spatiotem-

poral correlations with respect to precipitation. The 1000-member ensemble can highlight

small-scale features that are traceable in space and time. Sensitivity studies on the en-

semble size suggest that a 40-member ensemble can provide some qualitative guidance for

large-scale patterns. However, more than 200 members are required to detect small-scale

structures reliably.

Moreover, sensitivity studies on ensemble size show that a 1000-member ensemble returns

reliable estimates of the ASC. A 200-member ensemble can provide sufficient estimates

of the ASC if a confidence test or sampling error correction is included. However, some

differences to the 1000-member ensemble still occurred for variable fields such as precipi-

tation. Smaller ensembles are not able to estimate the correct amplitude of the ASC but

were able to distinguish variables with considerable differences of the ASC. Overall, if a

scale analysis is applied to distinguish the relative potential impact for convective-scale

DA, only the 1000-member ensemble is able to return reliable estimates.

As discussed in Section 5.3, a scale analysis is required to determine the relative potential

impact for convective-scale DA. Spatiotemporal correlations are composed of signals from

both small-scale and large-scale features. However, as the focus here is on convective-scale

DA, signals from different scales need to be separated. This separation is achieved by

applying a bandpass filter. Including a scale analysis, highly variable fields such as 2-m

temperature or specific humidity at 850 hPa exhibit the largest relative potential impact

for precipitation forecasts. Furthermore, the assimilation of precipitation will likely have

a substantial impact on the short-range precipitation forecast. In contrast, the relative

potential impact of sea-level pressure, upper tropospheric wind, and temperature is domi-

nated by large-scale correlations that are determined by boundary conditions.

Overall, this study provides the basis for subsequent research on observing and data assim-

ilation strategies for convective-scale NWP. Further investigation is particularly required

regarding the scale dependence of the potential impact. The border to separate small and

large-scale signals in this study is chosen to be 300 km. However, a different threshold

might be required performing the analysis in a system with other properties (e.g., different

domain size, or resolution).



Chapter 6

Sampling error correction

As mentioned in Section 1.4, sampling errors pose an issue estimating a sample correla-

tion with a limited ensemble size. However, many ensemble applications rely on accurate

estimates of correlations. Reliable spatiotemporal correlations are required for ensemble

sensitivity or impact studies as performed in Chapter 4 and 5. Furthermore, achieving

better error correlations can improve the impact of observations in data assimilation sig-

nificantly. For these reasons, this chapter aims to investigate if the statistical sampling

error correction (SEC) introduced by Anderson (2012) can reduce sampling error for vari-

ous applications. Both spatial and spatiotemporal correlations are computed for different

ensemble subsets of the 1000-member ensemble simulation. The sub-sampling is done sim-

ilarly as introduced in Section 3.5. Overall, it is assumed that the 1000-member ensemble

itself is not affected by sampling error and can be seen as truth to verify the performance

of the SEC.

Chapter 6 consists of two parts. The first part (Section 6.1) evaluates the SEC for ap-

plication to ensemble sensitivity analysis (ESA). Spatiotemporal correlations as they are

calculated within ESA provide the basis to estimate the potential impact of observable

quantities in Chapter 5 or the EFSOI in Chapter 4. Previous ESA studies often applied

a confidence test using a 95 % confidence interval (T95) to reduce the effect of spurious

correlations (Torn and Hakim, 2008). This study, therefore, compares the SEC with the

T95 approach. The SEC is evaluated qualitatively using a case study and quantitatively

comparing different variable combinations and ensemble subsets. Here, the analysis focuses

on spatiotemporal correlations with respect to precipitation as these correlations are used

for subsequent analysis in Chapter 5.

The second part (Section 6.2) evaluates the SEC for application to ensemble and hybrid

data assimilation. Anderson (2012) originally designed the SEC to reduce the need for

localization in EnKF data assimilation. Anderson (2012) and Anderson (2016) success-

fully showed that the approach can compete with classical localization approaches that

apply constant tampering functions. So far, the SEC approach has not been evaluated for

a convective-scale modeling system. Subsequently, the SEC is examined for spatial cor-

relations between different prognostic quantities. The evaluation is performed separately

for horizontal and vertical correlations. All results from this chapter are submitted for

publication by Necker et al. (2019b) (see Appendix A).
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(a) Precipitation (b) Anomaly

Figure 6.1: (a) 1000-member ensemble mean precipitation and streamlines of 500 hPa
wind (a, 29 May 2016 04 UTC). (b) Initial 2-m temperature anomaly calculated comparing
the ensemble mean 2-m temperature of the 100 members with strongest and 100 member
with weakest precipitation inside the forecast response function (29 May 2016 01 UTC).

6.1 Spatiotemporal correlations

Example of spatiotemporal correlations

This section starts with a qualitative analysis of spatiotemporal correlations for the first

forecast initialized at 29 May 2016 00 UTC. Figure 6.2 displays sensitivities of the 3-h pre-

cipitation forecast (Figure 6.1a) to the initial 2-m temperature field calculated for different

ensemble sizes and with different sampling error approaches. The differences compared to

the 1000-member ensemble correlation (Figure 6.2a) illustrate the effect of sampling errors.

The 1000-member ensemble shows strong negative correlations of precipitation to the ini-

tial 2-m temperatures in a region south-west of the response function. These negative

correlations are related to evaporative-cooling caused by precipitation resulting in colder

surface temperatures in this area. Clustering each the 100 members with the strongest and

weakest precipitation inside the response function reveals a temperature anomaly in the ini-

tial surface temperature field (Figure 6.1b) that matches the area of negative sensitivities.

The southwesterly tail of negative correlation roughly marks the track of the precipitating

systems during the night (Figure 6.1a). This feature corresponds to the southwesterly wind

indicated by streamlines in Figure 6.1a. The region with positive correlations south-east of

the response function is related to a westward shift of precipitation in some of the ensemble

members. This effect is stronger for shorter lead times (not shown).

In contrast, the 40-member ensemble correlation field (Figure 6.2b) exhibits various spu-

rious correlations in the south and west of the domain. Furthermore, the small ensemble

systematically overestimates the amplitude of sensitivities in several locations. Increasing

the ensemble size to 80 or 200 ensemble member (Figure 6.2c & 6.2d) systematically re-

duces the number of spurious correlations at larger distances from the precipitation event.

However, some small positive spurious correlations are still visible for the 200-member

ensemble.

Figure 6.2e shows the 40-member ensemble correlation field corrected with the SEC. The

SEC can remove several spurious correlations and also corrects the amplitude of the

strongest negative correlations. However, it partly removes the tail south-west of the area
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of maximum correlation. Applying the confidence test (T95) to the 40-member ensemble

correlation field (Figure 6.2f) removes all correlations approximately smaller than ±0.25

and returns an incomplete correlation field. Compared to the SEC, the confidence test

eliminates nearly all positive correlations and also removes the entire tail. Nevertheless,

some spurious correlations at the French-German border remain as those exhibit compa-

rably large correlation values. Furthermore, T95 does not correct the amplitude of the

strongest correlation. Results for other variables are overall similar (not shown).

(a) 1000 member (b) 40 member

(c) 80 member (d) 200 member

(e) 40 + SEC (f) 40 + T95

Figure 6.2: Correlation of the 3 h precipitation forecast to the initials 2-m temperature
field at 29 May 2016 01 UTC for different ensemble configurations: (a) 1000 member, (b)
40 member, (c) 80 member, (d) 200 member, (e) 40 member with SEC, and (f) 40
member with T95.
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Correlation distribution

Figure 6.3 shows four different correlation frequency distributions. The histograms are

calculated using correlations from all ten 3 h lead-time forecasts and 2-m temperature as

the target state variable. The distribution of the 40-member ensemble nearly re-samples the

shape of a normal distribution peaking slightly shifted towards negative values. The 1000-

member ensemble distribution peaks at a similar position but showing an approximately

three times higher amplitude combined with a smaller width. Applying the SEC to the

40-member ensemble correlations improves the distribution significantly. The width and

the amplitude of the peak are now similar to the 1000-member ensemble but slightly shift

towards zero. The shift of the peak originates from the assumed uniform prior U(-1,1) and

may be reduced by using a more informed prior assumption when calculating the systematic

error correction off-line. A different prior would especially make sense for highly positively

or negatively correlated fields. Both, a climatological prior (Anderson, 2016) or a prior

obtained from 1000-member ensemble could be used to generate a more specified table.

Filtering all unreliable 40-member ensemble correlations using the confidence test (T95)

changes the distribution fundamentally. The confidence test removes all sensitivities smaller

than approximately ±0.25 and therefore discards the majority of correlations. Comparing

both approaches, the SEC significantly improves the distribution, whereas the application

of the T95 leads to an unrealistic distribution of correlations. The effect is similar for

correlation distributions of other variables (not shown).

Figure 6.3: Frequency distributions for correlations of the 3 h precipitation forecast to
the initial 2-m temperature field using all ten forecasts. 1000-member ensemble
correlations (bold solid grey) and 40-member ensemble (solid black) including SEC (green
dashed) or T95 (red dashed).

Sampling error as a function of correlation value

Figure 6.4 presents the mean absolute correlation error as a function of correlation value.

The sampling error of 2-m temperature using a 40-member ensemble (Figure 6.4a) is small-

est for large negative correlation values and largest for strong positive correlations. Ap-

plying the SEC significantly reduces the error for small correlation values but slightly
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degrades the performance of a few high positive correlations. However, results for large

correlation values should be treated with caution as there are only a few data points (see

frequency distribution in Figure 6.3). The absolute error obtained for correlations of pre-

cipitation with 500 hPa temperature (Figure 6.4b) looks similar as for surface temperature.

Again, the SEC mainly improves small correlation values, whereas for 500 hPa zonal wind

(Figure 6.4c) improvements are visible for the entire range of correlation values. For all

variables, the SEC has its strongest effect on small correlation values, which seems reason-

able considering the correction function displayed in Figure 2.3. For very small correlation

values, the SEC almost halves the sampling error. For larger correlation values, the effect

of the SEC is smaller and differs depending on the considered variable. Nevertheless, one

should keep in mind the relatively small sample of large correlation values.

(a) T 2 m (b) T 500 hPa

(c) U 500 hPa

Figure 6.4: Mean absolute error of the sample correlation (solid black) and sampling
error corrected correlation (grey dashed) as a function of the sample correlation using the
40-member ensemble. Correlations of the 3 h precipitation forecast to initial (a) 2-m
temperature, (b) 500 hPa temperature and (c) 500 hPa zonal wind using all ten forecasts.

Sensitivity to ensemble size

Figure 6.5a presents the time-averaged root mean square error (RMSE) of correlations as

a function of ensemble size and investigates the same correlations as shown in the previous
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two sections (precipitation correlated with 2-m temperature). Here, the RMSE of a 40-

member ensemble is given by

RMSE40 =

√√√√ 1

N

N∑
n=1

(r40,n − r1000,n)2,

where N is the number of grid points in the domain. The RMSE is calculated using

correlations obtained for the full 1000-member ensemble for verification. The RMSE of the

40-member ensemble is approximately 0.16. Doubling the sample size up to 80 members

reduces the RMSE by about 30 % whereas increasing the sample size by the factor five up

to 200 members lowers the RMSE by more than 50 %. For small ensemble samples, the

SEC strongly improves the performance. Applying the SEC to the 40-member ensemble

subset even achieves slightly better results than doubling the ensemble size. The reduction

of RMSE due to the SEC decreases with increasing ensemble size. Nevertheless, the 200-

member RMSE is still reduced by about 15 % by the SEC.

Figure 6.5b shows the corresponding time-averaged difference of the mean absolute corre-

lation (BIAS) compared to the 1000-member ensemble for all six configurations. Here,

BIAS40 =
1

N

(
N∑

n=1

|r40,n| −
N∑

n=1

|r1000,n|

)
.

Similar to the RMSE, the BIAS decreases with increasing ensemble size and applying the

SEC significantly reduces the BIAS. For nearly all subsets, the BIAS almost vanishes.

For larger subsets, the SEC also reduces the bias causing a change in sign. Nevertheless,

the improvements due to the SEC are substantial and visible for all variables. Different

prior assumptions used for computing the SEC table could presumably improve the results

further.

(a) (b)

Figure 6.5: Time-averaged root mean square error (a) and magnitude bias (b) of
correlations with/without SEC compared to 1000 members evaluated for different
ensemble subsets. Spatiotemporal correlations of precipitation to 2-m temperature.
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Sensitivity to variable

Figure 6.6a presents the RMSE for 40-member correlations of precipitation to various

initial quantities. The black and grey bars displayed for 2-m temperature coincide with

the markers of the 40-member ensemble shown in Figure 6.5a. The RMSE for all variables

ranges from approximately 0.13 to 0.18. As discussed for 2-m temperature, correcting

the correlations using the SEC significantly reduces the RMSE independent of the chosen

variable. The improvements range from about 20 % to 30 %, and are smallest for sea-level

pressure (PS).

Examining the BIAS (Figure 6.6b), sea-level pressure is the only variable that exhibits a

change in sign of the bias. This characteristic is likely related to the structure of the corre-

lation field, which is homogeneously distributed over the entire domain as sea-level pressure

exhibits a fairly smooth large-scale field consisting of mainly small negative correlations.

The SEC systematically reduces the BIAS for all variables and works most efficiently for

zonal wind. Examining the impact of the SEC on the 80 and 200-member ensemble correla-

tions (not shown), the systematic reduction of the BIAS relatively increases with increasing

ensemble size leading to changes in sign as discussed for 2-m temperature (Figure 6.5b).

Nevertheless, the reduction of BIAS is significant for all investigated ensembles sizes and

variables.

Further sensitivity studies have been conducted that are not shown in this manuscript.

These experiments targeted the sensitivity of the SEC to the precipitation metric kernel

size, the choice of the ensemble subset as well as the dependence on forecast lead time.

However, these sensitivity studies are not discussed here, as these experiments did not

reveal any fundamentally different results.

(a) (b)

Figure 6.6: Time-averaged root mean square error (a) and magnitude bias (b) of
40-member precipitation correlation to various variables on different height levels with
and without SEC. (T: Temperature; U: Zonal wind; W: Vertical wind; RH: Relative
humidity; HY: Hydrometeors; DBZ: Radar reflectivity; PS: Sea-level pressure;
DBZ CMAX: Column maximum radar reflectivity; TOT PREC: Precipitation)
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6.2 Spatial correlations

This section investigates the impact of the SEC on spatial correlations that are crucial for

ensemble or hybrid DA. Results are shown for the correlation of temperature to various

model variables. Spatial correlations are calculated using 1-h forecasts, which is similar to

taking the first guess during hourly cycling.

Example of spatial correlations

Figure 6.7a displays horizontal cross-correlations of 500 hPa temperature to 500 hPa specific

humidity at every grid point in the domain. The correlation pattern is a dipole showing a

negative correlation in the vicinity and a positive correlation to the north of the response

function. Except for the dipole, no other considerable correlations are visible. Examining

the 40-member correlations (Figure 6.7b), various spurious correlations show up all over

the domain similar as discussed for spatiotemporal correlation in Subsection 6.1. To some

degree, the dipole is still indicated by the strongest correlations. Applying the SEC (Fig-

ure 6.7c) reduces the number of spurious correlations significantly and reveals the dipole

more distinctly. Overall, the SEC can reduce the sampling error for the majority of grid

points (Figure 6.7d), showing slightly increased errors only in some small areas. The im-

provements are consistent for spatial correlations to other variables (not shown) and agree

with the results obtained for spatiotemporal correlations considering a precipitation-based

response function.

Horizontal correlation

Below, horizontal correlations are averaged using the ten available 1-h 1000-member fore-

casts. Each ensemble forecast is evaluated with nine grid point size metrics that are evenly

distributed in the domain with a distance of 50 grid points (150 km) to neighboring metrics

and boundaries. In total, 90 correlation fields are examined for each variable pair.

Figure 6.8 displays the mean absolute correlation and error as a function of spatial distance

(in km) using differently sized ensembles. Sampling errors are again calculated using the

1000-member ensemble as truth. Figure 6.8a shows the mean absolute correlation of 2-m

temperature to 2-m temperatures and Figure 6.8b the corresponding error with and without

SEC. The 1000-member ensemble exhibits a correlation of nearly 1 in the close vicinity of

the response function, dropping to a value of about 0.4 reaching a distance of 100 km. Up

to 100 km, the 40-member ensemble correlation coincides with the 1000-member ensemble

correlation. Farther away, the 40-member ensemble systematically overestimates the mean

absolute correlation due to spurious correlations. The mean absolute correlation error

(Figure 6.8b) strongly increases up to a distance of 100 km, which roughly matches the

radius of horizontal localization applied in regional DA systems. For distances larger than

100 km, the sampling error keeps increasing, but slower compared to the vicinity of the

response function. Applying the SEC increases the error close to the response function

slightly, but significantly reduces the error at larger distances. Similar changes are visible

for the mean correlation. Especially for distances larger than 150 km, the sampling error

corrected 40-member mean absolute correlation almost coincides with the 1000-member

correlation.
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(a) 1000 member (b) 40 member

(c) 40 + SEC (d) Error reduction

Figure 6.7: Cross-correlation of 500 hPa temperature (black marker) to 500 hPa specific
humidity at 29 May 2016 01 UTC for (a) 1000 member, (b) 40 member, and (c)
40-member including SEC as well as (d) changes in correlation field due to the SEC
(green - error reduction). Metric position is indicated by a black cross.

The mean absolute cross-correlation of 2-m temperature to 10-m zonal wind (Figure 6.8c)

and 2-m temperature to near-surface humidity (Figure 6.8e) show similar results. Both

variables exhibit the strongest correlation in the near vicinity dropping to a constant value

of approximately 0.2 at a distance of 150 km. The mean absolute errors (Figure 6.8d;

Figure 6.8f) slightly change with distance showing a similar absolute value for large dis-

tances as found in Figure 6.8b. However, the relative error is larger considering the weak

mean absolute correlation for these pairs. Including the SEC significantly improves both

the mean and error of the spatial cross-correlations. The SEC performs best for distances

larger than 100 km reducing the error of the humidity cross-correlation by up to 40 %.

The correlation of 2-m temperature to sea-level pressure (Figure 6.8g) is weaker com-

pared to spatial correlations discussed previously. Mean absolute correlation and error

(Figure 6.8h) hardly change with distance. Due to sampling errors, the 40-member mean

correlation is twice as large as the 1000-member mean correlation. The SEC significantly

improves the 40-member mean correlation, which is now close to the 1000-member mean

correlation. The absolute error decreases by approximately 20 %.

Figure 6.9 shows the mean absolute correlation and error as a function of horizontal dis-

tance using correlations of 500 hPa temperature to different upper-tropospheric variables.

Both the 1000 and 40-member ensemble correlation decline consistently examining spatial
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(a) T 2 m (b) T 2 m (c) U 10 m (d) U 10 m

(e) QV 925 hPa (f) QV 925 hPa (g) PS (h) PS

Figure 6.8: Mean absolute correlation (first and third column) and error (second and
fourth column) as a function of spatial distance [km] for different ensembles and with or
without SEC. Correlation of 2-m temperature to (a,b) 2-m temperature, (c,d) 10-m zonal
wind, (e,f) 925 hPa specific humidity and (g,h) sea-level pressure.

correlations of 500 hPa temperature (Figure 6.9a). The magnitude of the correlation is

larger than for all other discussed quantities. Furthermore, the 40-member mean abso-

lute correlation error is smaller, grows less rapidly, and does not appear saturated at a

horizontal distance of 500 km (Figure 6.9b). In contrast to other variables, including the

SEC degrades the performance for the entire spatial range. The mean absolute correlation

is now underestimated, and the error increases correspondingly. The negative impact of

the SEC is likely related to an insufficient prior assumption, which is fundamental for the

behavior of the SEC. In this case, a uniformly distributed prior appears to be unsuitable.

As suggested by Anderson (2012), a different prior of, for example, U(0.5,1.0) could be

used for strongly positively correlated variables and also a climatically estimated prior

(Anderson, 2016) could be suitable to improve the performance of the SEC is such cases.

Figure 6.9c and 6.9d analyze horizontal cross-correlations of 500 hPa temperature to 500 hPa

specific humidity. Again, the mean absolute correlation decreases with increasing distance.

The SEC reduces both mean and error showing an improved performance far from the

response function. Cross-correlations of 500 hPa temperature to 500 hPa hydrometeors

(Figure 6.9e) are weaker compared to cross-correlations of temperature and humidity. As

before, the SEC significantly reduces the error (Figure 6.9f) while it slightly over-adjusts

the mean absolute correlation. The results for cross-correlations of 500 hPa temperature

to 500 hPa zonal wind (Figure 6.9g and Figure 6.9h) are similar as discussed for cross-

correlations of 2-m temperature to sea-level pressure (Figure 6.8) although the mean ab-

solute cross-correlations and errors are slightly larger in this case.

Overall, the SEC reduces the sampling error for the majority of horizontal (cross-)correlations

using a uniformly distributed prior as done in this study. Furthermore, the SEC performs
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(a) T 500 hPa (b) T 500 hPa (c) QV 500 hPa (d) QV 500 hPa

(e) HY 500 hPa (f) HY 500 hPa (g) U 500 hPa (h) U 500 hPa

Figure 6.9: Same as Figure 6.8, but spatial correlation of 500 hPa temperature to (a,b)
500 hPa temperature, (c,d) 500 hPa specific humidity, (e,f) 500 hPa hydrometeors and
(g,h) 500 hPa zonal wind.

best for cross-correlations and distances larger than 100 km. Only strongly correlated

variables show ambiguous results. This problem could be addressed by a different prior

assumption or the exclusion of these variables from the correction.

Vertical correlation

Vertical correlations are evaluated using a single 1000-member ensemble forecast at 30 May

2016 13 UTC and in total 40.000 vertical profiles. For vertical correlations, the focus is on

spatial correlations of 500 hPa temperature to 20 different pressure levels and four different

variables. Figure 6.10 shows the RMSE of vertical temperature correlations with and

without SEC comparing the 40 and 1000-member ensemble. The RMSE of the temperature

correlated with itself is zero at 500 hPa (Figure 6.10a) as both 40 and 1000 members exhibit

a correlation of 1. The RMSE of the 40-member ensemble correlation increases to a value

of 0.15 reaching a vertical distance of 100 hPa and seems to be saturated for distances

larger than 150 hPa. The error, including the SEC, increases slower and saturates earlier

reducing the relative error far from the response level up to 30 %. Only at 350 hPa, the SEC

increases the RMSE as the 40-member ensemble subset on average slightly underestimates

the true correlation (not shown).

Figure 6.10b shows the RMSE for vertical cross-correlations of temperature at 500 hPa to

specific humidity in the entire tropospheric column. Compared to the previous example,

the RMSE for the 40-member ensemble does not exhibit a local minimum at 500 hPa,

and hardly changes with height. Adding the SEC reduces the RMSE at all levels, but

the reduction is smallest at 500 hPa response level. The RMSE reduction increases up

to a vertical distance of 150 hPa, and again hardly changes far from the response level.
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Evaluating vertical cross-correlations of temperature to hydrometeors (Figure 6.10c) or

zonal wind (Figure 6.10d) the effect of the SEC is independent of the vertical distance and

the SEC significantly reduces the RMSE at all levels by about 30 %.

In general, the SEC seams to perform slightly better for vertical than for horizontal cor-

relations. The impact of the SEC is most significant for vertical cross-correlations and

far from the response level. The error is roughly symmetric comparing results above and

below the response level. On average, the SEC efficiently reduces the overestimation of the

true correlation due to spurious correlations. The SEC should perform best if correlations

extend over the full vertical profile of the atmosphere (e.g., for passive satellite observa-

tions). In such situations, localization techniques are potentially dangerous as they damp

or eliminate correlations after a certain distance. The same applies to cloud information,

which can affect the surface as well as the entire tropospheric column by modified radiative

processes.

Sampling error correction as a function of correlation value

Figure 6.11 displays the 2D correlation frequency distribution comparing the 1000-member

ensemble spatial correlations with corresponding spatial correlations obtained for ensem-

ble subsets. Each analysis includes approximately 38 million spatial correlations of tem-

peratures at 500 hPa to various other variables. Each frequency distribution exhibits a

maximum at small correlation values. Positive correlations range from 0 up to 1, while

the largest negative 1000-member correlation is approximately -0.5. For the 40-member

ensemble (Figure 6.11a), the maximum around zero is elongated in the horizontal direction

indicating the overestimation of small correlations due to spurious correlations. Apply-

ing the SEC reduces this overestimation systematically and changes the pattern of the

frequency distribution (Figure 6.11b). The maximum, including SEC, is narrow and ex-

tends vertically. The Pearson correlation coefficient between both correlation samples is

displayed in the corner of each sub-figure to facilitate the comparison. Plotting the linear

regression line (dashed line) reveals the impact of the SEC as it improves both the slope

and the intersection as the SEC reduces the magnitude bias. Overall, the SEC improves

the performance of the 40-member ensemble by about 5 % using the Pearson correlation

as a measure.

Figure 6.11c shows the frequency distribution comparing 200 with 1000 members. Using

200 members significantly reduces sampling errors for the entire range of correlation val-

ues. Increasing the ensemble size by a factor of five especially improves the estimation

of small correlation values. The 200-member ensemble exhibits a maximum offset of ap-

proximately 0.4, which is significantly less than found for 40 members. Adding the SEC

(Figure 6.11d) again improves the frequency distribution systematically. The absolute im-

pact is smaller compared to 40 members, but the improvements are particularly visible for

small correlations as well as in the slope of the linear regression line.

Considering that the SEC showed ambiguous results for some highly correlated variables,

it is important to assess if the SEC systematically fails for large correlations values. Fig-

ure 6.12a shows the change in the absolute correlation error caused by the SEC as a function

of the 40-member absolute correlation value. The frequency distribution again reveals the

most significant improvements for small correlation values. Both negative and positive

impacts mainly exhibit the strength of the maximum possible adjustment that is indicated
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(a) T (b) QV

(c) HY (d) U

Figure 6.10: Root mean square error of the 40-member correlation compared to the
1000-member correlation with (red, dotted) and without (blue, dashed) SEC. Correlation
of 500 hPa temperature to (a) temperature, (b) specific humidity, (c) hydrometeors, and
(d) zonal wind at different height levels. RMSE averaged over 40.000 vertical profiles.
Note: (a) corresponds to Figure 3.9b and (b) corresponds to Figure 3.9d.

by the dashed line and derived from the correcting function. In general, the beneficial

impact of the SEC could be improved, if the correction for small correlation values would

be stronger. Examining the average improvement, the SEC systematically improves the

results independent of the amplitude of the 40-member correlation value. Overall, the SEC

improves about three-quarter of the correlations.

Figure 6.12b shows the same data as before but now distributed as a function of the

1000-member absolute correlation value. Again, the main improvements are observed for

small correlation values, and the overall impact is beneficial. However, the impact of the

SEC seems to be detrimental for 1000-member correlation values larger than 0.25. Similar
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(a) 40 member (b) 40 member + SEC

(c) 200 member (d) 200 member + SEC

Figure 6.11: 2d frequency histogram of 1000 member and corresponding sub-sample
correlations with and without SEC. The analysis includes about 38 million spatial
correlations of temperature at 500 hPa to temperature, specific humidity, hydrometeors,
zonal wind, sea-level pressure, and precipitation. Slope of the linear regression fit (dashed
line).

behavior is seen for vertical correlations (not shown). However, as the true correlation is

usually unknown, it is difficult to use this behavior to improve such cases. Overall, results

suggest that based on the available information from the small ensemble (Figure 14a), the

SEC should be applied to all correlations.

6.3 Summary and discussion

The sampling error correction (SEC) described by Anderson (2012) is evaluated applying

the first convective-scale 1000-member ensemble simulation over central Europe. This

unique data-set consists of ten 1000-member ensemble forecasts with 3 km mesh size and

has been computed using the Japanese SCALE-RM model and a LETKF based DA system.

The SEC is a simple look-up table based approach, which is calculated using a Monte-Carlo

technique. If the look-up table is already computed for a target ensemble size, only the

sample correlation and no additional prior information is needed to correct for sampling
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(a) (b)

Figure 6.12: Frequency distribution of error reduction δe applying the SEC to a
40-member ensemble as a function of the absolute value of the (a) 40-member or (b)
1000-member correlation. The solid black line shows the average change and the dashed
line sketches the maximum expected adjustment, which is restricted by the correction
function. The analysis considers the same correlations as in Figure 6.11. The SEC
improves δe for 72.3 % of the correlations (δe = |(r40 − r1000)| − |(r40+SEC − r1000)|).

errors.

This study evaluates the SEC for spatiotemporal correlations that are important for ensem-

ble sensitivity analysis (ESA, Ancell and Hakim (2007)) and for spatial correlations that

are crucial for ensemble and hybrid data assimilation systems. The 1000-member ensemble

correlations are taken as a reference to assess the performance of the sampling error cor-

rection as well as of a confidence test (T95, Torn and Hakim (2008)), which is a commonly

used approach to exclude spurious correlations in ESA. Furthermore, different subsets of

the 1000-member ensemble are used to quantify sampling errors in a convective-scale NWP

modeling system.

Examples of correlation fields demonstrate that the 1000-member ensemble provides physi-

cally meaningful correlations that are hardly affected by sampling errors while smaller sub-

sets reveal spurious correlations. The 40-member ensemble subset is able to indicate regions

of maximum correlation in short-range convective-scale forecasts qualitatively. However,

small ensembles overestimate the magnitude of the majority of correlations due to spurious

correlations. Increasing the ensemble size up to 80 or 200 members significantly reduces

the number of spurious correlations. This finding agrees with the results of Wile et al.

(2015) who performed ESA on 4 km resolution using a 96-member ensemble and different

subsets.

A confidence test can eliminate some spurious correlations by rejecting small insignificant

correlations. However, it also eliminates small true correlations. This behavior is especially

visible examining the frequency distribution of correlation values. While this is useful for

a qualitative analysis of temporal correlations, the associated removal of weak correlations

can lead to systematic errors and is therefore not optimal for quantitative analysis. In

contrast to the t-test, the SEC is able to reduce spurious correlations while still allowing for

small correlations. The SEC corrects spurious correlations independently of the strength of

the correlation and by this significantly improves the frequency distribution. Similar to the
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confidence test, the SEC has its most significant impact on small correlations. Overall, the

SEC is appropriate for both the qualitative and quantitative interpretation of correlations.

The SEC is beneficial for all evaluated ensemble sizes and variable combinations. The

mean absolute correlation bias, as well as the RMSE of correlations, are reduced essentially

independently of the sample size. For spatiotemporal correlations, the 40-member ensemble

including SEC even outperforms the 80-member ensemble as the RMSE is reduced by up

to 30 % and the magnitude bias almost vanishes.

Spatial correlations are calculated to investigate sampling errors in ensemble DA. In the

vertical, the SEC systematically reduces the RMSE in the entire tropospheric column

independently of height. The reduction is largest far from the response level, the impact

slightly decreases for distances smaller than 150 hPa, and is smallest close to the response

level. Compared to operational localization techniques, which damp or exclude long-range

correlations, the SEC allows for correlations far from the response level. This characteristic

is crucial for the assimilation of non-local observations (e.g., cloud, satellite radiance, or

pressure).

Horizontally, the SEC efficiently improves the estimation of the mean absolute correlation

and mitigates the overestimation of the absolute correlation using small ensembles. Fur-

thermore, it reduces the mean absolute error for most variable pairs and performs best on

large distances. However, the uniform prior U(-1,1), which is assumed in the calculation

of this specific SEC table, appears unsuitable for highly correlated variables. For instance,

horizontal correlations of temperatures in the upper troposphere are already sufficiently

well estimated by a small ensemble sample and therefore hardly affected by sampling er-

rors. However, the SEC performance could be improved by changing the prior assumption.

An improved prior could be estimated climatologically as described by (Anderson, 2016)

or obtained from a large ensemble sample, e.g., the 1000-member ensemble used in this

study.

Sensitivity studies on the ensemble size show that sampling error corrected correlations

using 200 members are already very close to correlations obtained for 1000 members. For

horizontal correlations, the SEC increases the correlation between the 40-member and

1000-member ensemble approximately by 5 % and by 1 % using 200 members, respectively.

Using 200 members to estimate error covariances in convective-scale DA seems to be a

reasonable choice thinking of the achieved accuracy and the computational cost compared

to 1000 members.

The SEC improves correlations regardless of their amplitude and has its largest beneficial

impact if correlations are small. In general, the SEC should be applied to all correla-

tions regardless of their strength. As the true correlation is unknown in an operational

application, it is not beneficial to exclude strong correlations from the SEC.

Overall, the results strongly encourage to use the evaluated sampling correction for en-

semble data assimilation systems and ensemble sensitivity analysis. Similarly, it could be

applied in the framework of calculating ensemble forecast sensitivity to observation impact

(Kalnay et al., 2012, Sommer and Weissmann, 2014, 2016, Buehner et al., 2018). As the

method is already implemented in DART, its application is technically simple. Further

improvements could be achieved by using more informed prior assumptions, which should

and will be the subject of future studies.



Chapter 7

Conclusion

The latest generation of NWP systems reached a convection-permitting resolution. To

provide the optimal initial conditions, convective-scale DA systems need to assimilate spa-

tially dense observations that can provide accurate information on small-scale and rapidly

changing weather situations. However, limited knowledge exists on which observations are

most important for convective-scale data assimilation. The overarching goal of this disser-

tation is to estimate the impact of observations in high-resolution NWP. For that purpose,

several convective-scale ensemble simulations are conducted using two different modeling

systems. The first modeling system is the pre-operational convective-scale 40-member en-

semble system of Deutscher Wetterdienst (COSMO-KENDA), the second an experimental

Japanese convective-scale ensemble system (SCALE-LETKF) with 1000 members.

The SCALE-LETKF simulation was computed in collaboration with the RIKEN Institute

for computational science in Japan. The simulation uses a novel setup, which allows

generating a unique convective-scale 1000-member ensemble over central Europe. This

large ensemble is required to obtain realistic spatial and temporal correlations to be able to

answer the target research questions. However, due to its novelty, the convective-scale 1000-

member ensemble simulation requires basic evaluation. A comparison of the ensembles to

radar observations shows that the SCALE-RM 1000-member ensemble provides realistic

precipitation patterns and sufficiently reproduces the diurnal cycle of precipitation. The

1000-member ensemble exhibits a realistic evolution of ensemble spread of precipitation and

other variables. Overall, the 1000-member ensemble provides an unprecedented data-set

for various applications.

All simulations are applied to examine the observation impact (EFSOI) and the potential

impact of observable quantities (ASC) in convective-scale modeling. The two impact esti-

mation approaches provide a complementary perspective on the impact of observations in

convective-scale NWP. EFSOI measures the observation impact while accounting for the

configuration of the data assimilation system. This characteristic is crucial as the actual

impact of an observation strongly depends on the applied data assimilation algorithm, the

localization length scale, and the composition of the observing network. EFSOI, therefore,

is a useful tool to monitor the forecasting system and to detect deficiencies that exist during

the assimilation process.

In contrast, the ASC provides information on the relative potential impact of an observation

assuming a perfect data assimilation system and that each quantity can be observed equally

well. Hence, it reveals the impact of an observation given an optimal data assimilation
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process. The potential impact provides guidance on the amplitude of sensitivities within

the forecasting system, which is essential for the identification of observations that can

have a significant impact on the analysis and forecast. Furthermore, the ASC can indicate

sensitive regions or height levels, where observations have the most significant impact on the

forecast. Substantial differences between both impact measures for a specific observation

type can be used to identify deficiencies in the data assimilation process.

This dissertation assesses the impact and potential impact using ensemble-based methods

that rely on sample correlations. However, ensemble systems can only afford a limited

ensemble size and have to deal with sampling error. Hence, sampling errors pose an issue

for the ensemble-based impact assessment. The last part of this dissertation, therefore,

evaluates a sampling error correction (SEC) that can mitigate sampling errors during the

impact assessment and for many other ensemble applications.

In summary, this yields three connected studies: 1.) The assessment of observation impact

in the convective-scale ensemble forecasting system of Deutscher Wetterdienst. 2.) The

estimation of the potential impact of observations for future convective-scale data assimila-

tion. 3.) The evaluation of a sampling error correction for different ensemble applications.

Subsequently, the major findings from each part are summarized. A closing remark will

highlight and discuss implications for future applications and research.

Observation impact Knowledge of observation impact is particularly required to de-

tect deficiencies in the data assimilation process. Thereby, observation impact studies

can improve the data assimilation, forecasting, and observing system. So far, Deutscher

Wetterdienst, as well as other centers, do not monitor the impact of observations in their

convective-scale systems operationally. The present and previous studies (Sommer and

Weissmann, 2014, 2016), therefore, aim towards an operational impact assessment in the

future.

The present study represents the first evaluation of short-range observation impact in a

convection-permitting modeling system over an extended period of six weeks. The obser-

vation impact of about 3.3 million conventional observations is assessed using an ensemble

forecast sensitivity to observation impact (EFSOI) method (Kalnay et al., 2012, Sommer

and Weissmann, 2016). The EFSOI approach is an efficient tool to quantify the impact

of observations using the available ensemble information from the data assimilation cy-

cling. Previous studies by Sommer and Weissmann (2014, 2016) reformulated and tested

the EFSOI approach for the COSMO-KENDA system using conventional observations for

verification. However, the experimental period was too short for drawing representative

conclusions. For that reason, the present study evaluates the observation impact for a

6-week summer period. Moreover, previous studies indicated a sensitivity of the impact

on the chosen verification norm (Janisková and Cardinali, 2016, Sommer and Weissmann,

2016). Therefore, this thesis extends the EFSOI approach by including independent radar

precipitation observations for verification.

The evaluation of assimilated conventional observations with independent radar observa-

tions shows that the dense surface pressure (SYNOP) network provides the largest reduc-

tion in forecast error followed by aircraft wind and wind profiler observations. Radiosonde

wind, temperature, and humidity observations exhibit a similar impact per observation as

found for aircraft observations of the same type. However, due to the relatively small num-
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ber of launched radiosondes, aircraft observations have a significantly larger total impact

on the regional short-range forecasts of COSMO-DE.

The verification with independent precipitation observations identified the sensitivity of the

observation impact on biases and the choice of the verification norm. For example, aircraft

temperature observations exhibited a much smaller impact per observation verified with

precipitation compared to the verification with conventional observations. This difference

turned out to be associated with uncorrected observational biases. As a consequence, the

development of a bias correction scheme for aircraft temperature observations is currently

ongoing at Deutscher Wetterdienst.

The present study shows that an exceptionally high or low fraction of beneficial observa-

tions is an indicator of biases in the assimilation or verification. This means future studies

can perform a bias monitoring by investigating the fraction of beneficial observations. Ad-

ditionally, several sensitivity experiments highlighted that even small biases significantly

affect the observation impact. Consequently, future FSOI studies should perform care-

ful monitoring of potential biases and exclude biased observations or analysis fields from

verification.

In general, convective-scale short-range forecasts should be verified with independent obser-

vations and verification norms that reflect primary forecast quantities. A self-verification

is potentially dangerous as biases or correlations between analysis and verification state

can significantly affect the observation impact. Recently, a subsequent study for a global

modeling system by Kotsuki et al. (2019) comes to similar conclusions comparing different

observation-based and model-based verification norms. All these findings are especially

of interest for pro-active quality control schemes (Hotta et al. (2017); Lien et al. (2018)).

Such systems perform a short-range FSOI step during the cycling to exclude detrimental

observations from the assimilation. By re-computing, the analysis without detrimental ob-

servations, a more accurate analysis can be achieved. This analysis is then used to initialize

long-range forecasts.

Potential impact Another major challenge for NWP is the development of data as-

similation and observing system strategies. Considering the vast amount of unused ob-

servations and the limited amount of human and computational resources to incorporate

all these observations calls for improved data selection strategies. Particularly, better

knowledge of the potential impact of observations could help to address these challenges.

Therefore, the second study introduces an approach for estimating the potential impact

of observable quantities. The approach first was proposed by Geiss (2017) and initially

considered accumulated absolute correlations. The updated approach uses accumulated

squared correlation as a proxy for the potential impact of different observable quantities.

The refinement supports a scale separation that is required to obtain the relative potential

impact for convective-scale data assimilation.

The potential impact is based on sample correlations. Therefore, a basic evaluation of spa-

tiotemporal correlations was performed for a short-range precipitation forecast comparing

seven different observable atmospheric quantities. The results show that the 1000-member

ensemble can return realistic and meaningful spatiotemporal correlations. These correla-

tions exhibit small-scale features, which are traceable in space and time.

Additionally, sensitivity studies on the ensemble size using all ten forecasts show that
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the amplitude of potential impact converges reaching an ensemble size of 1000 members.

Hence, a 1000-member ensemble can return reliable estimates of the potential impact. A

200-member ensemble can generate sufficient estimates of the potential impact if sampling

errors are reduced by applying a sampling error correction. A 40-member ensemble provides

some qualitative guidance for quantities with large-scale correlations. Smaller ensembles,

however, are not able to estimate the correct amplitude of the potential impact.

To assess the relative potential impact for convective-scale data assimilation, the scale

dependence of correlations is additionally taken into account. In principle, a correlation

field contains signals from both small-scale and large-scale structures. As convective-scale

data assimilation mainly aims to correct small-scale structures, relevant scales need to be

filtered. By applying a bandpass filter, large-scale signals can be removed, which provides

the relative potential impact for convective-scale data assimilation. The bandpass-filtered

ASC shows that highly variable fields such as surface temperature or specific humidity

exhibit a strong relative potential impact for short-range precipitation forecasts. Sea-

level pressure, upper tropospheric wind, and temperature are dominated by large-scale

correlations and, thus, are a task for global data assimilation.

Sampling error correction Usually, ensemble systems can only afford a limited num-

ber of ensemble members, which leads to under-sampling. Sampling errors, therefore, are

a severe issue for various ensemble applications that rely on sample correlations: First, the

EFSOI approach depends on sample correlations (sensitivity gradients). Second, ensem-

ble sensitivity analysis (ESA) is based on spatiotemporal sample correlations. The same

applies to the introduced potential impact approach. Finally, sampling errors significantly

affect the data assimilation process considering ensemble DA schemes that rely on accurate

background error covariance matrices. Under-sampling causes spurious correlations, which

significantly degrade the filter performance.

All these examples emphasize the relevance of sampling error for state of the art NWP. The

1000-member ensemble simulation for the first time provides a unique data-set to quantify

sampling error on convective scales. Hence, the large ensemble is applied to evaluate

a statistical sampling error correction that could improve various ensemble application,

including the two approaches that are applied to assess the impact of observations. Here,

the 1000-member ensemble is taken as a reference to verify the reduction of sampling error

for subsets of the full ensemble. The examined sampling error correction is a simple look-up

table based approach and computed applying a Monte-Carlo technique. The SEC returns

the sampling error corrected correlation, which only is a function of the sample correlation,

the ensemble size, and a prior distribution of correlation values.

The third study examines the SEC for application to ESA using spatiotemporal corre-

lations as well as for application to data assimilation assessing spatial correlations. For

spatiotemporal correlations, the SEC can reduce spurious correlations for all evaluated vari-

able combinations and ensemble sizes. Results showed that the SEC corrects correlations

of all strength and by this significantly improves the frequency distribution of observed

correlation values. For ESA, the 40-member ensemble including SEC even outperformed

the 80-member ensemble. This result highlights that the SEC efficiently corrects the over-

estimation of the correlations due to spurious correlations. Overall, the SEC should be

applied to all correlations regardless of their strength even though it has its most signifi-
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cant influence on small correlations.

For ESA, the SEC additionally is compared to a confidence test (Torn and Hakim, 2008). A

confidence test was applied by several previous ESA studies to mitigate sampling error. The

results indicate that the SEC outperforms the confidence test as it significantly reduces

spurious correlations while allowing for small correlations. This actively encourages to

apply the SEC in applications that rely on spatiotemporal correlations such as ESA or

EFSOI.

In the context of data assimilation, the SEC similarly proved to be beneficial by reducing

sampling error for spatial correlations. In all cases, the error reduction is largest for long-

range correlations. For vertical correlations, the SEC systematically reduced the error in

the entire tropospheric column independently of the height level. Compared to operational

localization techniques, which damp or exclude long-range correlations, the SEC allows

for correlations far from the response level. Such long-range correlations are crucial for

the assimilation of non-local or integrated observations (e.g., cloud, satellite radiance or

pressure). Horizontally, the SEC reduced the error for nearly all variable pairs. However,

the uniform prior, which is applied in the present study, appears sub-optimal for highly

positively correlated variables.

Overall, the SEC significantly reduced sampling error for all evaluate ensemble applica-

tions. According to Anderson (2016), the SEC performance could even be improved by

changing the uniform prior to a more informed prior. Hence, finding suitable priors (or

look-up tables) for various situations and applications is an important challenge. Ander-

son (2016), for example, used previous forecasts to estimate the prior distribution with a

climatology. Another possibility would be to estimate the prior from the introduced 1000-

member ensemble. Such a prior could be evaluated using an independent second large

ensemble simulation.

Implications for future research The two impact estimation approaches provide a

complementary perspective on the impact of different observations in convective-scale mod-

eling. Both approaches are applied to estimate the impact of observations on precipitation

forecasts. Precipitation is chosen as it is a primary forecast quantity of convective-scale

forecasting. For COSMO-KENDA, surface pressure observations exhibit the largest bene-

ficial impact on the short-range precipitation forecast followed by wind, temperature, and

humidity. Similar results are found for the potential impact in a different convective-scale

forecasting system but without accounting for the scale dependence of the potential im-

pact and only evaluating a single height level. However, when filtering relevant scales for

convective-scale DA, highly variable fields with small-scale structures such as near-surface

temperature or specific humidity show the most substantial relative potential impact.

This significant relative potential impact for highly variable fields emphasizes the need

for high-resolution and dense observing systems for convective-scale DA. For example,

radar observations already showed a substantial impact on the practical predictability

of convective precipitation (Bachmann et al., 2018). Furthermore, previous experiments

performed at MeteoSwiss showed that the assimilation of surface temperature and humidity

could have a significant impact within KENDA (Necker and Leuenberger, 2016). However,

Deutscher Wetterdienst does not yet assimilate these observations operationally mainly

due to representativity errors. Overall, these results call for operational assimilation of
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the spatially dense observations such as surface temperature and humidity in KENDA to

improve the initial conditions.

The investigation of sampling errors emphasizes the issue of under-sampling during the

impact assessment. These results strongly encourage to use the sampling error correction

for the estimation of observation impact, for ensemble sensitivity analysis and covariance

localization in ensemble data assimilation. Additionally, the SEC could be applied to other

ensemble-based applications that rely on sample correlations. Especially in the framework

of EFSOI, the SEC could improve the performance considering that the COSMO-KENDA

system consists of a relatively small 40-member ensemble. Currently, sampling errors are

addressed by applying localization during assimilation and verification, but the SEC could

be applied in addition. Overall, the application of the SEC is technically simple, and it

is already implemented in DART. As demonstrated, even assuming a rather simple prior

turned out to be beneficial for nearly all evaluated variable combinations. With a small

effort, the SEC could be improved by using more informed prior, which, for example, could

be obtained from the 1000-member ensemble simulation.

In particular, the present EFSOI study shows that ensemble-based estimates of observa-

tion impact are a powerful and efficient tool for monitoring the convective-scale forecasting

system of Deutscher Wetterdienst. In early 2019, for example, the present study confirmed

results from a European wind profiler monitoring study indicating that the Swiss wind

profiler in Payerne seems to exhibit a systematically detrimental impact. The search for

the cause is still ongoing. Certainly, this study made the next step towards operational

monitoring of observation impact in the regional forecasting system of Deutscher Wetter-

dienst. Currently, Deutscher Wetterdienst is implementing an operational framework for

EFSOI.

The approach for estimating the relative potential impact of observations provides a basis

for subsequent research on observing and data assimilation strategies for convective-scale

NWP. The approach is efficient, and only requires an ensemble of forecasts, which makes it

applicable to every ensemble system. Future studies should evaluate the relative potential

impact for a broad set of quantities, including synthetic remote sensing data (e.g., synthetic

satellite images). Furthermore, the impact time should be taken into account as some

quantities seem to have a longer-lasting impact than others (Geiss, 2017). To gain a

complete picture of the impact of different quantities, future studies will investigate other

forecast aspects that are relevant for regional forecasting such as hub-height winds or solar

radiation.

Finally, the unique convective-scale 1000-member ensemble simulation turned out to be

an exceptional data-set for performing basic research. Currently, two subsequent projects

reuse the 1000-member ensemble, and additional projects are planned. A bachelor thesis

investigates frequency distributions of different quantities concerning non-Gaussian nature

and multi-modality. Furthermore, the investigation of vertical localization for satellite data

assimilation is ongoing in a concurrent project that builds upon the simulation presented

in this dissertation.
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Contribution of journal publications

to this dissertation

This dissertation includes results from three journal articles. The first article (Necker et al.,

2018) has already been published in the Quarterly Journal of the Royal Meteorological

Society. The second (Necker et al., 2019a) and third (Necker et al., 2019b) article have

been submitted for publication to different peer review journals. Table A.1 provides an

overview of the contribution of each article to this dissertation. This table lists all sections

that are based on content from the publications.

Necker et al. (2018) Necker et al. (2019a) Necker et al. (2019b)
Section 1.3 Section 3.2 Section 6.1
Section 3.1 Section 3.3 Section 6.2
Section 4.1 Section 3.4 Section 6.3
Section 4.2 Section 3.5
Section 4.3 Section 5.1
Section 4.4 Section 5.2
Section 4.5
Section 4.7

Table A.1: Contribution of journal publications to this dissertation.
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CONV Conventional
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COSMO-DE COSMO limited-area model for Germany

COSMO-KENDA Operational regional forecasting system of DWD

DA Data Assimilation
DART Data Assimilation Research Testbed
DBZ Radar reflectivity

DWD Deutscher Wetterdienst
E-PROFILE EUMETNET Profiling Programme for wind observations

ECMWF European Centre for Medium-Range Weather Forecasts

EnKF Ensemble Kalman Filter
EPS Ensemble Prediction System

ESA Ensemble Sensitivity Analysis

ETKF Ensemble Transform Kalman Filter
EUMETNET European Meteorological Network

FC Forecast
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FSOI Forecast Sensitivity to Observation Impact
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GFSE Global Forecasting System Ensemble
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LETKF Local Ensemble Transform Kalman Filter
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MAC Mean Absolute Correlation
MAE Mean Absolute Error
METEOSAT Meteorological Satellite

MeteoSwiss Swiss Federal Office of Meteorology and Climatology

MFASIS Method for FAst Satellite Image Simulation

MODIS Moderate resolution Imaging Spectroradiometer

MW Microwave
NCEP National Centers for Environmental Prediction
NIR Near Infrared
NWP Numerical Weather Prediction
OBS Observation
OSE Observing System Experiment

OSSE Observation System Simulation Experiment

PREC Precipitation

PROF Wind profiler observations

PS Pressure
QV Specific humidity

RADOLAN Radar-based precipitation product

RH Relative Humidity

RMSE Root Mean Square Error

RTPS Relaxation To Prior Spread

SCALE Scalable Computing for Advanced Library and Environment

SCALE-LETKF SCALE data assimilation system

SCALE-RM SCALE - Regional Model

SEC Sampling Error Correction

SEVIRI Spinning Enhanced Visible and Infrared Imager

SG Sensitivity gradient

SYNOP Surface observations
T Temperature

T95 T-test with 95 % confidence interval
TEMP Radiosonde/Sounding observations

TOT PREC Total Precipitation

UTC Coordinated Universal Time
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goede ideeën gebracht die veel hebben bijgedragen aan het derde deel van dit proefschrift.

Bedankt ook voor het proeflezen.

Ein großer Dank gilt zudem meinen (Ex-)Büro-Kollegen: Fabi, Kathrin, Kevin und
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sollte sich daher jeder angesprochen fühlen, der nicht namentlich erwähnt wurde. Danke
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