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Zusammenfassung
Die Messenger RNA (mRNA) spielt eine zentrale Rolle in der Genregulation. Diese wird
im Zellkern durch das Ablesen eines Gens hergestellt und danach im Zellinneren durch
Ribosome in Proteine übersetzt. Die mRNA ist aufgrund ihrer transienten Natur ein sehr
�exibles Molekül, da sie weder ein permanenter genetischer Informationsspeicher ist noch
ein funktionelles Produkt darstellt. Mit Hilfe von Nanofähren kann synthetische mRNA
in Zellen transferiert und die Translation, d.h. die zell-interne Produktion beliebiger
Proteine, erreicht werden. Dabei ist sowohl der mRNA Transportprozess in Zellen als
auch die Translationskinetik wenig verstanden. Dies hat jedoch groÿe Bedeutung für den
therapeutischen Einsatz von mRNAs in der Nanomedizin.
In dieser Arbeit wurde ein in vitro Assay entwickelt, der es ermöglicht, individuelle Einzel-
zellkinetiken innerhalb einer Zellpopulation sowohl bezüglich des mRNA Nanopartikel-
transports, als auch der Translationskinetiken zu messen. Der Assay beruht auf Zeitraf-
fermikroskopie von Zellen auf proteinbeschichteten, mikrostrukturierten Feldern, sogenan-
nten Einzelzell-Arrays, zur parallelisierten Aufzeichnung von Einzelzell-Zeitverläufen der
Expressionskinetik eines Fluoreszenzproteins. Die Proteinexpression wird dabei durch
den Transport von synthetischer mRNA ins Zellinnere ausgelöst. Das Array wurde
mit einem Perfusionssystem verbunden, um einen Flüssigkeitsaustausch während der
Beobachtung am Mikroskop zu ermöglichen. Dadurch war erstmals die Aufnahme der
gesamten Fluoreszenzprotein-Expressionskinetik einschlieÿlich der Anfangsphase in Ab-
hängigkeit eines de�nierten Zeitintervalls der mRNA Nanopartikelexposition messbar. Die
Translationskinetik wurde dabei durch das Auslesen der Fluoreszenzintensitätszeitverläufe
einzelner Zellen auf der Mikrostrukturierung erhalten.
Um die Zeitverläufe der Translation zu quanti�zieren, wurden in dieser Arbeit verschiedene
biochemische Raten-Modelle auf der Grundlage gewöhnlicher Di�erentialgleichungen un-
tersucht. Das Modell, das die experimentellen Daten am besten beschreibt, wurde genutzt,
um die kinetischen Raten jeder einzelnen Zelle zu ermitteln. Die Einzelzellparameter er-
möglichten dabei die Bestimmung der Populationsverteilung jedes Parameters und damit
der Zell-zu-Zell Variabilität.
Im zweiten Teil der Arbeit wurde die präzise Messung von Einzelzellkinetiken genutzt, um
den Expressionsbeginn jeder Zelle zu bestimmen. Dieser gibt Auskunft über die Dauer des
mRNA Transportprozesses. Wir zeigten anhand von zwei Modellsystemen, Lipofectamine
und Lipidnanopartikeln (LNP), dass die Dauer des mRNA Transports nicht mit der Ef-
�zienz des Transports in einzelnen Zellen korreliert. Wir konnten zeigen, dass sich diese
Parameter in Abhängigkeit steigender Serumproteinkonzentration systematisch ändern.
Die Serumproteinadsorption beein�usst sowohl den Zeitpunkt als auch die E�zienz von
Lipofectamine negativ, während sie im Gegensatz dazu den Zeitpunkt und die E�zienz
der LNP-vermittelten Transfektion verbessert. Dies spielt für die medizinische Anwen-
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dung eine groÿe Rolle da die Nanopartikel üblicherweise über das Blut verabreicht werden
und dabei in Kontakt mit Serumproteinen kommen.

Der entwickelte Assay stellt zusätzlich eine neue Chance zur Quanti�zierung der mRNA
Halbwertszeit in lebenden Zellen dar. Die mRNA Halbwertszeit ist ein Schlüsselparameter
der Translationsregulation und unter Anderem abhängig von der poly(A) Schwanzlänge.
Es ist jedoch nicht quanti�ziert, wie genau die mRNA Halbwertszeit von der poly(A)
Schwanzlänge abhängt. Zu diesem Zweck wurden mRNA Konstrukte mit zehn unter-
schiedlichen poly(A) Längen untersucht. Auf Grundlage der Messergebnisse formulierten
wir erstmals ein einfaches Modell, das die Beziehung zwischen poly(A) Länge und mRNA
Lebenszeit mittels eines Potenzgestezes mit einem Exponenten von 0,53 beschreibt.

Nutzt man für den Einzelzell-Translationsassay die Aufnahme eines weiteren Fluoreszenz-
signals sind zusätzliche intrazelluläre Korrelationsstudien möglichen. Dies kann beispiels-
weise eingesetzt werden um die mRNA-Nanopartikel detektierbar zu machen wodurch
der zeitliche Abstand zwischen Nanopartikeladsorption an der Zellober�äche und dem
Proteinexpressionsbeginn messbar ist. Durch eine degradationsabhängige Fluoreszenz-
markierung der mRNA könnten zukünftig mit Hilfe der Einzelzellarrays die zeitlichen
Veränderungen der mRNA- und Proteinkonzentration zur genaueren Au�ösung der mRNA
Degradation simultan gemessen werden.



Summary
Messenger RNA (mRNA) plays a central role in gene regulation. The mRNA is produced
in the cell nucleus by transcribing a gene and is afterwards translated into proteins by
ribosomes in the cytoplasm. Due to its transient nature, mRNA is a very �exible molecule
because it is neither a permanent storage for genetic information nor a functional product.
With the help of nanocarriers, synthetic mRNA can be transferred into cells and the
translation, the cell-internal production of any protein, can be achieved. Both the mRNA
transport process in cells and the translation kinetics are poorly understood. However,
these are of great importance for the therapeutic use of mRNAs in nanomedicine.

In this thesis, an in vitro assay was developed which enables the measurement of individual
single-cell kinetics within a cell population with regard to mRNA nanoparticle transport
as well as translation kinetics. The assay is based on time-lapse microscopy of cells on
protein-coated microstructured �elds, so-called single-cell arrays, for parallel recording
of single-cell time courses of the expression kinetics of a �uorescent protein. Protein
expression is triggered by the transport of synthetic mRNA into the cell interior. The
array was connected to a perfusion system in order to enable the exchange of �uids during
observation at the microscope. This made it possible to measure the entire �uorescence
protein expression kinetics including the initial phase as a function of a de�ned time
interval of mRNA nanoparticle exposure for the �rst time. The translation kinetics were
obtained by reading out the �uorescence intensity time courses of individual cells on the
microstructured �elds.

In order to quantify the time courses of the translation, di�erent biochemical rate models
based on ordinary di�erential equations were investigated. The model that described the
experimental data best was used to determine the kinetic rates per cell. The single cell
parameters allowed the determination of the population distribution of each parameter
and thus the cell-to-cell variability.

In the second part of the study, the precise measurement of single-cell kinetics was used
to determine the onset of expression of each cell. This provides information on the dura-
tion of the mRNA transport process. Using two model systems, lipofectamine and lipid
nanoparticles (LNP), we showed that the duration of mRNA transport does not corre-
late with the e�ciency of transport in individual cells. We were able to show that these
parameters change systematically with increasing serum protein concentration. Serum
protein adsorption negatively a�ects both the timing and the e�ciency of lipofectamine,
whereas it improves the timing and e�ciency of LNP-mediated transfection. This is an
important �nding, as nanoparticles are usually administered via the blood for therapeutic
purposes and thus come into contact with serum proteins.

The developed assay also represents a new opportunity to quantify the mRNA half-life in
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living cells. The mRNA half-life is a key parameter of translation regulation and depends,
among other things, on the poly(A) tail length. However, how exactly the mRNA half-life
depends on the poly(A) tail length has not been quanti�ed. To this end, mRNA constructs
with ten di�erent poly(A) lengths were investigated. Based on the measurement results,
we formulated a simple model that describes the relationship between poly(A) length and
mRNA half-life using a power law function with an exponent of 0.53.

If a further �uorescence signal is recorded for the single cell translation assay, additional
intracellular correlation studies are possible. This can be used, for instance, to make the
mRNA nanoparticles detectable, which makes it possible to measure the time interval
between nanoparticle adsorption on the cell surface and the onset of protein expression.
Via a degradation-dependent �uorescence labeling of the mRNA, the temporal changes
of the mRNA and protein concentration could be measured simultaneously, which would
allow for a more accurate resolution of the mRNA degradation with help of the single cell
arrays.
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1. Introduction
�Biology is the most powerful technology ever created. DNA is software,

proteins are hardware, cells are factories.�

Arvind Gupta

The cell factory from a physical perspective

Cells are the smallest units of life and probably the most essential process for keeping a
cell alive is the expression of proteins. Even Erwin Schrödinger already dealt with the
question �What is life?� and tried to answer it by explaining living matter with physical
principles [1]. From a physical point of view, the living cell is an open system out of
equilibrium [2]. Cells constantly consume energy in order to build up and dismantle new
components and thus are in constant exchange with their environment. Consequently, the
formation and degradation of proteins is critical, as their abundance is controlled by gene
regulatory networks. A simpli�cation of these complex networks is summarized in the
central dogma of molecular biology: DNA is transcribed into messenger RNA (mRNA)
followed by translation of the mRNA into protein [3].

In order to �nd general laws for these complex networks, the �eld of systems biology
emerged [4]. Since living cells are subject to evolution, design principles have evolved
that enable the formulation of mathematical frameworks in order to describe biology [5].
Especially for gene regulation, a large number of models were developed that are based
on building block circuits which are depend on components with naturally occurring �uc-
tuations and thermal noise [6, 7, 8, 9]. These networks need to function over a large
temporal and spatial range in order to sustain life. As an example, the typical size of
a mammalian cell is 10,000 µm3 and the typical diameter of a protein is in the range of
1·10-3 µm3. It takes a protein with a di�usion rate of 10µm2/s 100 s to cross the cell which
on its own already has a large in�uence on reaction kinetics for proteins of low concentra-
tion. Furthermore, the human genome contains ∼30,000 genes that encode for proteins
with varying abundance and half-life. Taking transcription and translation together, it
takes roughly 60min to produce a protein. In order to keep the machinery running, a cell
contains 108 ribosomes that translate mRNA with a rate of 5 amino acids/s into proteins
(numbers are taken from [5, 10]). All these properties form the gene regulatory network.
Even if each of the network components is fully understood, the complex interacting sys-
tem has emergent properties. In order to understand the collaborative functioning of at
least parts of the network, a system-level perspective is needed to quantitatively analyze
it as a function of time [8]. If one of the proteins in the network is no longer produced
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1 Introduction

correctly, the system may switch from a healthy to a disease state. The error leading to
the system's change can occur on each level of gene regulation.

Targeted alteration of protein expression kinetics
In order to correct for errors within the gene regulatory network, the research �eld of
gene therapy has become more prominent during the last decades to enable the targeted
manipulation of a�ected protein expression. Gene therapy can be understood as the
delivery of protein percursors or molecules regulating protein expression. The basic idea
is to introduce missing, replace de�cient, or regulate the expression of genetic information
[11]. These functions can be controlled by the delivery of DNA, mRNA, or small interfering
RNA (siRNA) among other molecules. In 2018, the �rst siRNA based drug was approved
by the US Food and Drug Administration, which is a key event for the �eld and was
therefore taking into account as the breakthrough of the year by the journal Science
[12, 13]. As the arti�cial delivery of DNA has the risk of permanently changing the
genome, the research for gene therapy focuses on RNA based approaches. Beside siRNA,
mRNA has become a potential new drug class as it is the middleman of the central dogma
[14, 15]. mRNA itself is a highly �exible molecule due to its transient nature as it is neither
a permanent storage of genetic information nor a functional product [15]. A targeted
alteration of protein expression kinetics by introducing arti�cial mRNA is only possible
if the �rst obstacle, the cell membrane, is overcome [16]. As mRNA is a large, negatively
charged molecule, the event of spontaneous crossing of the cell membrane is very rare
due to the electrostatic repulsion of the anionic cell membrane [14, 17]. Furthermore, the
mRNA molecules are inherently unstable, as they are constantly degraded by omnipresent
nucleases which lead to a limited half-life and thus to a restricted duration of protein
expression [15].

In order to transport and protect mRNAmolecules, they need to be complexed in nanopar-
ticles that enable mRNA release into the cytosol to trigger protein expression. For the
purpose of nanoparticle formation that encapsulate mRNA, lipid-based delivery systems
are one of the most often used systems [18]. The mRNA nanoparticle transport depends
on the formation and structural changes of these nanoparticles during their interaction
with the cell's surface and inside the cell. Thereby, the mRNA nanoparticle formation has
a soft matter nature, as mRNA, which is a bioploymer, interacts with lipids to assemble to
higher structures. Furthermore, these nanoparticles have to interact with the cell's lipid
bilayer membranes, which are complex systems on their own [19], for successful release of
the mRNA cargo into the cytosol. It is not fully understood what the transport kinet-
ics execute and how physico-chemical changes of the environment in�uence the mRNA
nanoparticle transport.

After the release of mRNA from the nanoparticle into the cytosol, the mRNA triggers the
expression of the encoded protein and thus alters the regulatory network. The process
of mRNA delivery followed by protein translation can be described as multi-step kinet-
ics that can be predicted by mathematical models [20, 21]. Quantitative description of
these processes are necessary due to the naturally occurring molecular and phenotypic
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Introduction

di�erences even within an isogenic cell population and the additionally arising variance
of delivered mRNA molecules [6, 22]. The inherent heterogeneity of cell populations is a
fundamental property of cellular systems and the measurement of ensemble averages to
determine the average cell response can mask the information contained in the cell-to-cell
variability [22, 23]. In order to identify the heterogeneity of a cell population, techniques
with single-cell resolution are needed. In the case of gene expression, the process depends
on a relatively small number of molecules which lead to a high variance within a cell pop-
ulation and especially across di�erent cell types and cell states [24, 25]. The same is the
case for the arti�cial expression of mRNAs after nanoparticle transport. Therefore, the
protein expression kinetic of a single cell is not only dependent on the copy number of the
delivered mRNAs, but also on �uctuations regarding the rates that de�ne the biochemical
reaction of translation e.g. the mRNA half-life. The development of new single-cell tech-
niques that enable the observation of kinetics or the determination of mRNA abundance
in thousands of cells at one time point was acknowledged as the breakthrough of last year
in 2018 [26].

Quantification of translation after mRNA transfection

A large number of methods exist that enable the quanti�cation of mRNA or protein abun-
dance to certain time points and allow for their correlation [27, 28, 29]. These methods
are often limited to bulk measurements and it is often not possible to measure the abun-
dances of the same cells at di�erent time points which results in a low time resolution
and aggravate kinetic observation. Even single-cell measurements that investigate a large
number of genes lack good time resolution relevant for the process of interest [30]. In
order to monitor the kinetics of single cells, the development of assays based on time-
lapse measurements increased. The use of quantitative time-lapse experiments allow the
recording of spatio-temporal dynamics of thousands of cells in parallel [31]. The obser-
vation of �uorescence intensity time courses of reporter proteins proved to be a powerful
tool to investigate gene expression at the single-cell level [32, 33]. Many of these assays
rely on the use of micro�uidic chips or microstructured arrays for parallel observations
and control of extracellular factors [34, 35, 36]. The quanti�cation of �uorescence reporter
protein time courses after mRNA nanoparticle transport in single-cells is possible using
live imaging of single-cell arrays (LISCA) and results in the record of hundreds of single-
cell protein expression time courses per experiment [33]. An advantage of the assay is
that it is very �exible, as many parameters are controllable and can be systematically
varied for quantitative studies. Several di�erent scienti�c aspects can be addressed by
the variation of the used nanoparticle system e.g. the chemical composition or by mRNA
sequence modi�cations, which lead to varied protein expression kinetics.

The outline of this thesis is as follows: First, an overview of the fundamental concepts
are given in chapter 2. The basics of arti�cial gene expression is explained with special
emphasis on �uorescent reporter protein expression after mRNA transfection. In order to
quantify protein translation kinetics after transfection, system biological approaches were
used which are based on mathematical modeling of biochemical rate equations. In order
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1 Introduction

to obtain reporter protein expression time courses of living cells over a long time period,
a single-cell translation assay based on a previously published method [37] was improved
and the main elements of the assay are discussed. In chapter 3, potential sources for noise
within the single-cell time courses are discussed. The noise mainly hinges on the ability of
cell con�nement, which varies dependent on the microstructure fabrication technique, and
on the image processing algorithm to readout the time courses of the reporter �uorescence
intensity per cell.

The use of single-cell time-lapse experiments improved the quantitative understanding
of cellular processes and their heterogeneity. However, the estimated parameters that
describe the observed processes depend on the model and the estimation does not neces-
sarily provide robust results for experimental replicates. In chapter 4, a newly developed
modeling approach is discussed for the �tting of mechanistic pathway models to single-cell
protein expression time courses. It was shown that the integration of perturbation exper-
iments allowed for the robust estimation of the cell-to-cell variability of cells transfected
with mRNA across experimental replicates.

As discussed previously, the use of mRNA to investigate translation kinetics relies on
the successful transport of mRNA nanoparticles. Yet, it is not well understood how the
transport process depends on the choice of nanoparticle system or extracellular properties.
In chapter 5, a translation-maturation model based on ordinary di�erential equations
(ODEs) is introduced. By �tting this model to hundreds of protein expression time
courses, the onset time point of expression as well as the expression rate are determined.
It was shown that the timing of delivery is not correlated with expression e�ciency on
the single-cell level autonomous of the investigated model systems used as nanoparticle
system.

Beside the mRNA nanoparticle transport, a more quantitative understanding of the half-
life regulation of transfected mRNA is needed to enable targeted alteration of translation.
The half-life of mRNAs is known to be based on various sequence elements like the length
of the poly(A) tail, a stretch of adenosine residues at the 3' end of the mRNA [38]. How-
ever, there is no quantitative description how changes in poly(A) tail length change the
half-life of mRNAs and thus a�ect the protein expression kinetics at the single-cell level.
In chapter 6, mRNA constructs of ten varied poly(A) tail lengths, which covered the
range of naturally occurring poly(A) tail lengths, were observed by LISCA experiments
and analyzed using the translation-maturation model. It was shown that the only pa-
rameter distribution that systematically shifted with increasing poly(A) tail length was
the mRNA half-life. Based on the half-life distributions, a simple model was found that
described the dependency of mRNA half-life on poly(A) tail length.

Additional information is obtained by introducing a second �uorescent marker for each
cell as described in chapter 7. The dual color approach allows, for instance, correlation
studies of event times or kinetic rates of di�erent dynamics. Finally, the results and
gained insights of the described studies are summarized in chapter 8. The appendix of
the thesis contains a brief description of the used experimental protocols (Appendix A)
and the investigated pathway models for translation after mRNA delivery (Appendix B).
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2. Fundamental concepts and methods
The aim of this thesis is to investigate single-cell translation kinetics after the introduction
of arti�cial mRNA to quantify the cell-to-cell variability regarding the various scienti�c
questions discussed in chapter 3 to chapter 7. Helpful background information and an
explanation of the experimental assay used in this thesis is given in the following sections.

2.1. Artificial gene expression

The central dogma of molecular biology
Most processes in living cells rely on functioning proteins. These are produced and regu-
lated by gene expression, which is described by the central dogma of molecular biology [3].
Gene expression takes place in a two-step process: The transcription of DNA to mRNA
followed by translation of protein from the transcribed mRNA. The production of mRNA
and protein as well as the degradation of both molecules are characterized by kinetic
rates. The regulation of these rates o�ers control of mRNA and protein levels de�ning
the cellular states. The systematic quanti�cation of mRNA and protein concentrations
and the respective degradation rates allow for global characterization of gene expression
in mammalian cells [27, 39, 40]. Schwanhäusser et al. analyzed >5,000 genes in mouse
�broblasts and observed median rates for transcription of two mRNA molecules per hour
and a translation rate of 40 proteins per mRNA molecule and hour with respective mRNA
half-lives of 7.6-9 h and 46 h for proteins (Figure 2.1.) [27]. However, rates are varying
over several orders of magnitude for di�erent genes. This high variability is crucial in liv-
ing systems as proteins need to ful�ll a huge variety of functions and protein levels need
to be �exibly adjusted to changing conditions. In order to understand how cells behave
under di�erent conditions and how they regulate and adapt their protein household is of
major interest. It is an ongoing debate if transcription or translation is more important for
gene regulation [41, 42, 43]. A study by Vogel et al. showed that the variations of protein
abundance can be explained to 27% by transcriptional regulation and to 40% by processes
related to translation and protein degradation (Figure 2.1.) [28]. Further studies con�rm
that post-transcriptional regulation is at least as important as transcriptional regulation
for controlling protein levels in living cells [42, 44]. On the one hand, the studies quantify
the dynamical range of gene regulation for a large number of genes. On the other hand,
they do not take into account that there is not only a high variation between di�erent
genes but that cells of an isogenic population already have a high cell-to-cell variability
[6, 45]. In order to investigate the population heterogeneity of the kinetic rates single-cell
techniques are pivotal.
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Figure 2.1.: Gene expression involves transcription of DNA to mRNA and translation
of proteins from mRNA. The protein abundance can be controlled via the regulation of
the kinetic rates for transcription or translation represented by median values measured
in a global study for >5,000 genes [43]. About 30% of the protein concentration changes
can thereby be explained by transcription regulation and 40% by translation regulation
[42].

Transfection of nucleic acids

In order to understand the cell-to-cell variability of translation kinetics in a cell population
there is need to quantify protein expression. For this purpose, reporter proteins are
commonly used. To induce reporter protein expression in living cells it is necessary to
introduce arti�cial molecules (plamsid DNA (pDNA) or mRNA), which carry the genetic
code of the reporter protein. The process of nucleic acid (NA) delivery in cells is called
transfection. This approach is commonly used to study reporter protein expression in cells
and various transfection-methods were developed [15]. The introduction of mRNA has the
advantage that the molecule only needs to enter the cytosol for protein expression, whereas
pDNA has to be additionally introduced into the nucleus and posing the risk of permanent
integration into the genome. A further advantage of mRNA introduction is that the
observed protein expression is independent of transcriptional regulation, simplifying the
regulation network. mRNA molecules commonly exists of a 5' cap, a 5' untranslated
region (UTR), an open reading frame (ORF) coding for the protein, a 3' UTR, and a
poly(A) tail at the 3' end. The minimal functional structure of mRNA consists of the 5'
cap, an ORF, and a poly(A) tail. The stability of arti�cial mRNAs, which are in vitro
transcribed (IVT), is in�uenced by the use of chemically modi�ed nucleotides, the cap
structure, the UTR sequences as well as the poly(A) tail lengths [46, 47].

In the framework of this thesis the transfection of mRNA was used to quantify transla-
tion kinetics. For this reason, the principles of mRNA transfection are described. The
transfected mRNA needs to be transported inside the cells and translated for successful
reporter protein expression (Figure 2.2.). For the transport, the mRNA needs to pass
the cell membrane. As mRNAs have a typical molecular weight of 105 to 106Da, they
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are to large to simply di�use into the cell. In addition, the negative charge of mR-
NAs and the anionic cell membrane lead to electrostatic repulsion. Therefor, the uptake
of naked mRNA is very unlikely (less than 1 in 10,000 molecules) [15]. Consequently,
mRNA molecules need to be encapsulated to enable cell membrane crossing. In general,
the mRNA can be delivered by viral or non-viral vectors. Viral vectors typically have a
very high e�ciency but a higher risk compared to non-viral vectors as they often lead to
immunological response of the targeted cells [48]. Viral free alternatives for transfection
are for example microinjection, electroporation, or lipofection [46]. The term lipofection
refers to the transfection of NA using lipid-based systems. For this method, a mixture of
cationic lipids with neutral helper lipids is used to encapsulate the NA. Cationic lipids
interact with the negatively charged NA leading to a complex formation often referred
as lipoplex, which can be taken up by cells via endocytosis. Endocytosis is a cellular
process that leads to an uptake of particles and �uid from the cellular environment by
local invagination of the cell membrane. The invagination leads to the formation of new
cell organelles, the endosomes, from where the uptaken particles can be released into the
cytosol. A more detailed overview of lipid-based vectors and the endocytotic uptake is
given in section 5.1. After the release of mRNA into the cytosol, it can be directly trans-
lated to proteins. For the observation of translation kinetics, reporter proteins based on
luminescence or �uorescence are often used.

degradation

transportmRNA
vector endosome

translation

GFP* GFP

Figure 2.2.: The expression of arti�cial mRNA consists of two major processes: the
nanocarrier transport and the mRNA translation. Both consist of further intermediate
steps. The mRNA encapsulated in some vector is taken up by the cell via endocytosis
and the released mRNA in the cytosol is translated into protein. At all intermediate
steps degradation processes can take place.

Fluorescence reporter proteins

Fluorescence reporter proteins are widely used in biological applications to monitor the
spatial and temporal changes of the expressed protein. One common reporter protein is
the green �uorescent protein (GFP), originally derived from the jelly�sh Aequorea victoria
[49]. The GFP has a barrel structure consisting of eleven b-sheets with an a-helix inside
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holding the chromophore [50]. In order to obtain a functional chromophore, the polypep-
tide backbone has to undergo a chemical transition called maturation involving folding,
cyclisation, oxidation, and dehydration [51]. The three amino acids involved in matura-
tion are Serin65, Tyrosin66, and Glycine67 resulting in the �uorophor 4-hydroxybenzlidene
imidazolinone (HBI) [52]. The maturation time itself depends on di�erent environmental
conditions and can vary from a few minutes up to an hour [51]. Depending on the observed
kinetics it is therefore important to take the maturation step into account. GFP can be
expressed in mammalian cells for live-cell imaging and is the basis for many other arti�cial
proteins with engineered properties such as emission properties, or higher stability like
red �uorescent protein or enhanced GFP (eGFP) [53].

2.2. Mathematical modeling of single-cell dynamics
Living cells of an isogenic population, which are genetically identical, show molecular and
phenotypic di�erences in gene expression at the single-cell level [6, 22]. This heterogeneity
can arise from stochastic noise [6, 7], varied cell-cycle states [54], or spatio-temporal
di�erences of the environment [55]. Bulk measurements of a cell population can mask
the cell-to-cell variability within a population, which can lead to misinterpretation of the
investigated biological system because the heterogeneity, dynamic behavior, as well as the
cell fate cannot be monitored [56]. Methods like �uorescence activated cell sorting (FACS),
single-cell RNA sequencing, or mass cytometry enable determination of a snapshot of
the cell-to-cell variability of thousands of cells in parallel [27, 57, 58]. However, these
techniques lack the ability to measure the dynamical response of individual cells. For this
purpose, time-lapse measurements with single-cell resolution are a suitable tool [31, 32].
In order to improve quanti�cation and high-throughput screening of single-cell dynamics,
cell microarrays and micro�uidic devices were implemented for time-lapse measurements
to sort, con�ne cells locally and simplify single-cell trajectory readout of a reporter signal
[31, 59].
These techniques lead to new insights regarding population structures, the development
of cells, and intracellular processes like apoptosis or gene expression [54, 58, 60, 61, 62,
63]. To quantify mechanistic insights, deterministic models based on ordinary di�erential
equations (ODEs) are often employed [4, 64]. The models themselves are derived from
biological knowledge of the process. Here, the cell is treated as a reacting system that
experiences a time dependent input-signal and generates a certain output behavior [65].
In order to understand the cell's behavior, reaction rate equations are commonly used to
describe biochemical networks of cellular processes [5]. These biochemical rate equations
are based on ODEs and denoted as

∑
(θ) in Equation 2.1 [66]:

∑
(θ) =

{
d
dt
x(t, θ) = f(x(t, θ), θ), x(0, θ) = x0(θ)

y(ti, θ) = h(x(ti, θ), θ)
(2.1)

The concentration of molecules that are part of the network are represented by dynamical
state variables x and the rates of the reactions are given by the parameters θ. The initial
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conditions of the ODEs are de�ned as x0(θ). Typically, only some of the system variables
are determined experimentally and these are mostly measured at discrete time points ti.

With this in mind, the translation dynamics after transfection of pDNA or synthetic
mRNA was quanti�ed using ODE-based mathematical models in previous work [20, 21,
33, 67] as well as in this thesis. All deterministic models quantifying reporter protein
translation dynamics after mRNA transfection with their respective ODEs used in this
thesis are listed in Appendix B. All models describe the translation process in living
cells taking di�erent aspects of translation such as ribosome binding to the mRNA or
�uorescent protein maturation into account. The model needs to be carefully selected,
weighing accuracy of the described biological process vs. over-estimation with too many
free parameters. In order to restrict the number of parameters the translation process can
be simpli�ed by reducing a multi-step reaction to an one-step reaction, ignoring processes
or stochastic �uctuations [68]. The �tting of the model to the experimental data provides
the estimation of biological important parameters like mRNA or protein degradation rates.

2.3. Single-cell translation assay
In order to observe single-cell translation kinetics of thousands of cells in parallel, a single-
cell translation assay was used. This assay combines live cell imaging of single-cell arrays
(LISCA) with mRNA transfection to measure the translation dynamics. The transfected
mRNA encodes for a �uorescent reporter protein like eGFP. The basic principles of this
setup were developed and published in previous studies [21, 33, 37] and the assay was
further improved in the framework of this thesis.

The general work�ow of a LISCA experiment consists of the preparation of a cell mi-
croarray followed by scanning time-lapse measurement of �uorescent reporter expression
kinetics and corresponding image analysis like illustrated in Figure 2.3.. The use of a mi-
croarray enables advanced single-cell measurements due to protein coated adhesion sites
with standardized boundary conditions for every cell (Figure 2.3. A). Moreover, the align-
ment of thousands of cells on a micropattern (Figure 2.3. B) simpli�es the image analysis
signi�cantly. After self-organization of seeded cells on the microarray [69], a scanning
time-lapse measurement is set up to observe the total micropatterned area over a dura-
tion of several hours up to 30 h (Figure 2.3. C). Finally, image analysis is performed to
read out the single-cell intensity trajectories of a �uorescence reporter (Figure 2.3.D).
The following is a description of crucial steps of the single-cell translation assay, detailed
protocols of these steps are attached in Appendix A.

2.3.1. Cell microarrays
Many techniques were developed to fabricate cell microarrays to investigate cellular pro-
cesses [71, 72]. Microarrays are used for a variety of scienti�c �elds like migration studies,
cell-cell interaction, or the measurement of intracellular signals [73, 74, 75]. Di�erent
microarray fabrication techniques can be applied for single-cell translation assays, which
are explained in more detail in section 3.1. including a discussion of their advantages and
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Figure 2.3.: LISCA is based on time-lapse microscopy of single-cell microarrays consist-
ing of micropattern (A). The cells preferentially adhere on the protein coated squares
yielding an array of cells aligned on the micropattern grid (B). The cells are treated
in order to exhibit a �uorescently labeled reporter. The whole microstructured area
is observed by scanning time-lapse microscopy (C). To obtain hundreds of single-cell
traces, the recorded image stacks are background corrected and further processed to
read out the �uorescence intensity over time (D). Reprinted with permission from [70].

drawbacks for translation studies. For most of the experiments the single-cell array was
fabricated by microscale plasma induced protein patterning (µPIPP) [70]. The total array
consists of six channels, as visulaized in Figure 2.3. C, with the same microstructure on
the bottom of each channel. The cells align on the micropattern as illustrated in the phase
contrast overview of one channel in Figure 2.4.. The alignment of the cells is even better
visible for cells expressing eGFP after mRNA transfection like shown in Figure 2.4.. For
this pattern geometry with a lattice spacing of 90 µm and a typical microstructured area
of 4mm x 10mm roughly 5000 possible adhesion sites are available per channel.

For an experiment, the cells are seeded with a concentration of about 8·104 cells/ml,
resulting in a high single-cell adhesion spot occupancy and minimizing the probability of
double occupancy. The slide is incubated for at least 4 h at 37 °C before the assay with
the time-lapse measurement is conducted (Figure A.2.). In order to improve occupancy,
the cell culture medium can be exchanged after 1 h to remove non-adherent cells and to
reduce the number of double occupied adhesion spots on the micropattern. Typically,
HuH7 cells, a human hepato carcinoma cell line, were used for the presented transfection
studies. The cell line was chosen because liver cells are an often targeted cell type for gene
therapy and the HuH7 cells are a frequently used model system for liver cells [76, 77].
For other cell types it might be necessary to adjust the pattern geometry regarding the
adhesion area and the lattice spacing.

2.3.2. Fluorescence time-lapse microscopy

A motorized inverted microscope (Nikon Eclipse Ti-E) was used for wide-�eld �uorescence
time-lapse microscopy. The microscope was equipped with a 10x objective lens and suit-
able �lter cubes for the respective �uorescent dyes. Images were recorded using a cooled
CCD or CMOS camera with a LED light source. A heating chamber was used for stable
temperature condition of 37 °C during the experiment with the possibility to control CO2
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Figure 2.4.: Overview scan of a microstructured area of one single-cell array channel.
The upper part shows the phase contrast image of HuH7 cells. The �uorescence image
shows eGFP expressing cells after mRNA transfection on a square pattern. The scale
bar corresponds to 500 µm.

level and humidity.

The scanning macro for time-lapse settings was controlled using NIS-Elements Advanced
Research software (Nikon) to de�ne important parameters like exposure times, position
list, or time resolution. Time-lapse images were acquired with a frequency of 6 images per
hour and a total duration of 10-30 h. For quantitative image analysis, it was important
to keep imaging conditions as constant as possible to enable comparability within the
measurement and to reduce technical noise between experimental replicates. For a typi-
cal single-cell assay 70-100 positions were scanned and an image stack for each position
was recorded. The number of stacks mainly depends on the camera chip size, the total
micropatterend area, and the time resolution of the experiment.

2.3.3. Transfection during time-lapse measurement
Perfusion system

In order to investigate the complete translation kinetics for each single cell in the experi-
ment, it is crucial to perform mRNA transfection on the microscope during the time-lapse
measurement. For this purpose, a tailored perfusion system for sterile liquid exchanges,
as visulaized in Figure 2.5., is necessary. The perfusion system is made of PTFE micro-
tubing with an inner diameter of 0.3mm to keep the dead volume of the system low. For
sterile injection of di�erent �uids needle-free swabable valves are connected with female
luer connectors to the microtubing. For connection of the tubing to the channel slide, in-
house made male luer te�on connectors were used. The perfusion system was cleaned by
�ushing ethanol after each experiment and autoclaving the system afterwards. Depending
on the experimental design it is possible to wash each channel separately (Figure 2.5. A)
or the series connection of two or more channels (Figure 2.5. B). Two channels are con-
nected with a short piece of tube, so-called serial connector, with te�on connectors at
both ends.

The perfusion system is connected to the channel slide after cell adhesion. It is impor-
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tant for the experiment that the tubing is connected sterile and without air bubbles to
avoid damaging the cells during perfusion. In order to connect the tubing, the cell cul-
ture medium L15, which is bu�ered CO2 independently, supplemented with 10% FBS
was used. This medium is used during the time-lapse measurement, excepted for the
transfection. After connecting the perfusion system, the single-cell array was put in the
pre-heated incubation box at 37 °C on the microscope. The time-lapse experiment was
started after setting the position list and other microscope properties like exposure time
or time resolution. A detailed description of how the perfusion system is assembled and
used is given in Appendix A.

Figure 2.5.: Tailored perfusion system to enable liquid exchange during a time-lapse
measurement using a syringe. (A) In order to �ush one channel the inlet tube is pluged
in one reservoir and the outlet tube is pluged in the opposite reservoir. (B) For the
connection of two channels in a row, the inlet tube is connected to one reservoir. The
opposite reservoir is connected with a neighboring one using a short serial connector
tube. The respective opposite reservoir is connected with an outlet tube. The arrows
indicate the �ow direction.

mRNA lipoplex preparation

If not mentioned explicitly, the commercially available transfection agent LipofectamineTM

2000 (L2000) was used to prepare mRNA lipoplexes. For lipoplex formation, mRNA
was mixed with L2000 liposomes at a ratio of 2.5 µl L2000 per 1µg mRNA. L2000 and
mRNA were diluted separately in Opti-MEMTM and the L2000 dilution was incubated
for 5min at room temperature (RT). Afterwards, the L2000 solution was mixed with the
mRNA solution at a ratio of 1:1 and incubated for further 20min at RT with a mRNA
concentration of 1µg/ml. The mRNA lipoplex solution was diluted to the �nal mRNA
concentration of 0.5 ng/µl. For transfection of one channel, 300µl of the transfection
solution are needed and for two channels 500 µl are su�cient to guarantee a complete
�uid exchange to reach uniform transfection conditions in each of the microarray channels.
Before adding the lipoplex solution, the channels were �ushed with 37 °C warmed-up PBS.
Afterwards, the lipoplexes were incubated for 1 h to enable lipoplex adsorption onto the
cell surfaces and then washed with 37 °C warmed-up L15 medium supplemented with 10%
FBS, which remains in the channels for the remaining measurement. All washing steps
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were done on-stage during the time-lapse measurement and in between two time-lapse
frames. If the break between two runs was not long enough for �ushing all microarray
channels, the measurement was paused and the resulting time shift was considered for
data analysis.

2.3.4. Image stack processing

An image per time point is generated for each position yielding 70-100 image stacks per
experiment. A representative time series of one position with eGFP expressing cells on a
square micropattern is shown in Figure 2.6.. The transfection solution is added to the cells
in between two frames of the time-lapse experiment and �ushed out after the incubation
period. The successfully transfected cells start expressing eGFP after a short delay time
and the �uorescence signal intensity is increasing for several hours. Before the single-cell
trajectories can be read out, the image stacks need to be corrected for background noise.

Figure 2.6.: Protein expression dynamic of HuH7 cells on a square micropattern trans-
fected with eGFP mRNA. The transfection complexes were added at 1:20 h showing no
detectable �uorescence signal as expected. The �uorescence of eGFP expressing cells
can be detected by eye after around 3:40 h and the intensity is increasing with time.
The scale bars correspond to 100µm.

Background correction

The in-house background correction plug-in used in this thesis is based on a published
algorithm [78] and implemented for the software ImageJ [79, 80].
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The cellular �uorescence signal s(x, t) is described by Equation 2.2:

s(x, t) =
I(x, t)− b(t)g(x)− o(x)

g(x)
(2.2)

where I(x, t) is the �uorescence image at the time point t and the pixel coordinate x =
(x1, x2), b(t) is the background signal (that decreases over time due to photobleaching),
g(x) is the coordinate dependent illumination function, and o(x) is a camera speci�c
o�set. In order to calculate the cellular signal each time-lapse image was subtracted by
the illuminated background signal B(x, t) = b(t)g(x) + o(x).

Each frame of an image stack is corrected individually by reconstruction of the back-
ground image by separating the cellular from the background signal using a density-based
clustering approach (DBSCAN). For this purpose, each image is divided into small seg-
ments consisting of at least 56 pixel and the four statistical moments (mean, variance,
skewness, and kurtosis) of the intensity distribution for each segment are calculated. The
segments of the background form a very dense cluster if each segment is plotted in a
four-dimensional space because the background is typically very similar within one frame
with a weaker intensity compared to cellular signals. Each segment is assigned to either
the background or cell cluster. Afterwards, the intensity of the pixels assigned to the
background is set to the median value of the background segment intensity distribution
and the cellular segments are set to zero. The background signal of the cellular segments
is interpolated to reconstruct the complete background. The interpolated background im-
age is afterwards subtracted from the original image to reconstruct the background-free
cellular �uorescence signal s(x, t) (Equation 2.2). The background corrected image stacks
are ready for �uorescence trajectory readout.

Single-cell fluorescence time courses

In order to obtain single-cell �uorescence time courses, an in-house written semi-automated
plug-in called Microwell Analysis (MWA) written by Christian Meggele was used. Based
on the geometry of the micropattern, the orientation of the grid corresponding to the
square micropattern is set manually for each image stack. The micropattern is marked
by a grid and each outline of an adhesion spot is called well. The program calculates the
mean intensity of each well for each frame of the image stack resulting in a mean �uo-
rescence intensity trajectory over time. The wells occupied by cells need to be selected
manually. Here, cells which double, die, or are not con�ned to the adhesion spot during
the experiment need to be rejected to avoid bias of the data. The requirement is to only
select wells that show a single-cell translation kinetics without any signal disturbances.
As the exact cell contour is not taken into account by calculating the mean of the se-
lected well, expansion or shrinking of cells lead to measurement noise. Representative
trajectories of single-cell protein expression kinetics after mRNA transfection are shown
in Figure 2.3. D. This way up to 3,000 single-cell trajectories are obtained per experi-
ment and are the basis to determine the cell-to-cell variability of translation kinetics after
mRNA transfection.
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2.4. Single-cell parameter estimation
The �uorescence trajectories as measure for single-cell translation obtained by the MWA
are further used for the parameter estimation. Therefore, a deterministic model that
describes the translation process, is �tted to the data. The �uorescence intensity of each
cell over time functions as model observable y(ti, θ) that can be mapped to the variables
x(ti, θ) by a function h (Equation 2.1). A linear relation between the �uorescence intensity
y(ti, θ) and the protein concentration is assumed. In order to describe the relation between
these two quantities, a scaling factor scale and a constant o�set parameter offset are
needed:

y(ti, θ) = scale · h(x(ti, θ)) + offset (2.3)

The scaling factor can be determined experimentally by calibrating the �uorescence inten-
sity to the amount of protein using a micro�uidic chip [21]. A spatial heterogeneity within
the cells is neglected because the protein amount is measured as the average intensity sig-
nal of the whole cell and it is assumed that di�usion of the reporter protein within the cell
is fast compared to the reaction rates. Furthermore, it is assumed that the experimental
data ỹ(ti) consists of the model observable y(ti, θ) impaired by a measurement noise ε.
The noise is assumed to be normally distributed ε(ti) ∼ N (0, σ(ti; θ)) with zero mean
and an unknown standard deviation σ(ti; θ), which is independent between di�erent time
points and can be estimated by:

ỹ(ti) = y(ti, θ) + ε(ti) (2.4)

In order to estimate the single-cell parameters, a maximum likelihood estimation (MLE)
was used [81]. The method is based on the assumption that the parameter values θ are
deterministic but uncertain [82]. The parameter values of a given model are searched by
maximizing the probability p(D|θ) to �t the experimental data D = {ỹ(ti)}Ni=1. p(D|θ)
is the probability for observing D when θ are the true parameters. The probability is
called the likelihood function LD(θ). Taking the given assumptions into consideration,
the likelihood function is a distance measure between the experimental data ỹ(ti) and the
model observable y(ti, θ) [79]:

LD(θ) =
N∏
i=1

1√
2πσ2(ti; θ)

· exp
(
− 1

2σ2(ti; θ)
· (ỹ(ti)− y(ti, θ))2

)
(2.5)

To estimate the parameter vector θ̂, the optimization problem is solved for each cell using
a gradient-based algorithm [83]:

θ̂ = argmax θ (−logLD(θ)) (2.6)
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For computational reasons it is more e�cient to use the negative logarithm of the like-
lihood function. After selecting a suitable ODE based translation model, each experi-
mental trajectory is �tted by the analytical or numerical solution of the model using the
described MLE approach to determine the parameter values which yield the best �t of
the data [84]. The population densities for each parameter can be estimated using kernel
density estimations. More detailed information on the mathematical background of the
model estimation and the implementation of the approach are given in [79, 80, 83].
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3. Noise analysis of single-cell time
courses on microstructures

For quantitative measurements of gene expression, a high number of cells is needed to re-
liably estimate the distribution, re�ecting the heterogeneity within a population [85]. The
use of micropatterend surfaces enables observation of thousands of cells in parallel over a
long time period (typically a few hours, up to several days) under standardized conditions.
Microarrays were used to investigate a variety of di�erent phenomena e.g. morphology
[71], migration [73, 86], or intracellular processes [33, 75]. Stable con�nement of cells
on microstructured areas is a crucial prerequisite for a reliable readout of the respective
kinetics. In case of gene expression quanti�cation, the readout of reporter �uorescence
time courses was used to investigate the cell-to-cell variability [21, 32]. A powerful tool
to study the protein expression dynamics in a highly parallel manner is the combination
of single-cell microarrays with automated image processing [33, 83]. The reporter expres-
sion dynamics of each cell are recorded by measuring the repoter's �uorescence over time.
Here, the measurement noise of these time courses is dependent on several factors like
the micropatterning method or the image processing algorithm. Yet, it is not quanti�ed
how the quality of cell con�nement on di�erent micropattern in�uences the measurement
noise and thus parameter estimation.

In this chapter, it is shown that the choice of micropattern technique and the related
quality of cell con�nement in�uences the noise in single-cell �uorescence time courses.
Automated time-lapse �uorescence measurements with stably transfected cells expressing
actin-eGFP on di�erent microstructures were conducted. Based on the automated image
analysis of the �uorescence time courses, noise in the time courses was characterized
and quanti�ed and subsequently related to the accuracy of cell con�nement. Actin is
a micro�lament forming protein and is involved in cytoskeleton formation. Therefore,
the �uorescent labeled actin is distributed over the whole cytoplasm of a cell. As actin-
eGFP degradation and production should be in equilibrium, it is expected that an almost
constant �uorescence intensity is observed over time. From a biological perspective, the
single-cell mean �uorescence is expected to be almost noise free over time. The cell is a
closed system regarding the �uorescence protein concentration as �uorescence proteins in
the cytoplasm are too big to cross the cell membrane by di�usion. It follows that the noise
in the �uorescence time courses must be due to other factors. The measurements showed
that accurate cell con�nement plays a pivotal role in limiting the noise of �uorescence
single-cell time courses, which were analyzed by automated image analysis to a minimum
level. Furthermore, the impact of di�erent image processing algorithms is discussed. In
addition to the analysis of stable protein expression, the d2eGFP expression after mRNA
transfection was investigated. It was shown, that the type of microstructure not only
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in�uences cell con�nement but also the transfection e�ciency. The transfection e�ciency
is determined as fraction of d2eGFP positive cells. A low transfection e�ciency implies
low statistics which is a serious disadvantage. This knowledge is valuable for any kind of
quantitative analysis of single-cell �uorescence experiments like for the mRNA transfection
studies discussed in the subsequent chapters and has the potential to reduce measurement
noise in future cell experiments on cell dynamics. Parts of this chapter are based on the
manuscript [M1] (listed in Associated publications and manuscripts) and the Bachelor's
thesis of Sophia Gruber [87].

3.1. Single-cell microarray fabrication methods

The use of microstructered arrays has become an advantageous tool to systematically
analyze cellular behavior [71, 88]. The ability to shape the microenvironment of cells
and create standardized conditions by modulating the surface with molecules of di�erent
chemical properties is advantageous for quickly achieving large statistics. During the last
years, many fabrication methods for microstructured surfaces were developed to investi-
gate a variety of cellular phenomena like cell migration or signaling [72, 89]. In the scope
of this work, three methods of micropatterning were tested and compared with respect to
the quality of cell con�nement.

3.1.1. Microscale plasma-initiated protein patterning µPIPP

The method of microscale plasma-initiated protein patterning is based on the fabrica-
tion of a 2-dimensional geometric pattern of locally varying surface properties, gener-
ated by plasma treatment like described in detail in [P1] (see Associated publications
and manuscripts). Parts of the surface are activated by an oxygen plasma while the
remaining area is protected by a 3-dimensional Poly(dimethylsiloxane) (PDMS) stamp
during plasma treatment creating the prerequisite for a local variation in further treat-
ment. A cell-repellent polymer electrostatically grafts the plasma activated areas. The
non-activated areas are coated with an extracellular matrix protein like FN to generate
cell adhesive regions. The �nal result are adhesive spots coated with protein and a cell-
repellent interspace covered by polymer. The technique was used for a variety of studies
including single-cell apoptosis or cytolysis assays [74, 75], migration studies [86] or mRNA
transfection studies [33].

The important steps of the fabrication for a six-channel microarray using µPIPP are
sketched in Figure 3.1.. Firstly, the PDMS stamps are formed using a silicon master
of the desired geometry fabricated using photolithography. These stamps are cut to a
proper size covering the area of one channel. Afterwards, the stamps are placed according
to the channel positions on a coverslip (Figure 3.1. A) and treated with oxygen plasma
to activate the unprotected areas (Figure 3.1. B). These areas turn hydrophilic due to the
plasma exposure. They are passivated to avoid cell adhesion by adding a polymer solution
of poly-L-lysine grafted poly(ethylene glycol) called PLL-g-PEG to the surface, which is
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3.1 Single-cell microarray fabrication methods

drawn under the stamps by capillary forces (Figure 3.1. C). The positively charged PLL-
chains electrostatically interact with the hydrophilic surface and cover the whole plasma
treated area. The PEG side chains of PLL-g-PEG render the coated surface protein and
cell repellent. After washing out unbound PLL-g-PEG with destilled water, the stamps
are removed and the coverslip is sticked to a six-channel slide (Figure 3.1.D). In order
to coat the initially protected areas, a FN protein solution is added to each channel
(Figure 3.1. E). After a �nal washing step to remove unbound FN, the single-cell array
is ready to use (Figure 3.1. F). The treated surface results in micrometer-sized squares
of cell adhesive FN adhesion spots surrounded by a passivated area of PLL-g-PEG. The
cells preferentially adhere on the FN squares leading to a self-sorting of cells on the
micropattern [69]. The micropattern used in this study exists of squares with an edge
length of 30µm coated with FN and a distance of 60µm between neighboring squares.

B

O2-Plasma

E
FN 

protein

A

F
PBS

C
PLL-PEG

D
H2O

3D PDMS
stamp

Figure 3.1.: Schematic overview of the fabrication of a µPIPP slide including: (A) stamp
positioning, (B) oxygen plasma treatment, (C) passivation by adding a drop of PLL-
PEG to every stamp, (D) washing unbound PLL-PEG away, removig the stamps, and
sticking the six-channel slide to the coverslip, (E) FN protein coating, and (F) washing
with PBS to remove unbound FN proteins. These steps lead to a 2D microarrray of FN
protein (red squares) and a cell-repellent interface (green). Adapted and reprinted with
permission from [70].

3.1.2. Microstructured gold pattern
The second investigated technique to fabricate a 2-dimensional micropattern is based on
the same geometry as the µPIPP pattern but made of gold squares and a passivated
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3 Noise analysis of single-cell time courses on microstructures

interspace coated with Pluronic F-127. Pluronic F-127 is a triblock polymer consisting of
PEG-chains with a poly(phenylenoxid) inbetween the PEG chains [90].

The samples of gold micropattern were provided by the group of Philipp Paulitschke and
the technique is described in the supporting information of [91]. A thin layer of photoresist
is applied on a coverslip by spin coating. Afterwards, the photoresist is illuminated
through a chrome mask with the desired square pattern resulting in a locally varying resist-
solubility. The illuminated photoresist is removed resulting in a coverslip with square
cavities. Then, to improve adhesion, a thin titanium layer (∼3 µm) is �rst evaporated
on the coverslip followed by the evaporation of a gold layer (∼7µm). In order to obtain
the �nal gold pattern, the remaining photoresist is removed. The coverslip with the
goldpattern is stuck to a six-channel slide and the hydrophobic interspace between the
squares is grafted with Pluronic-F-127.

Cells are able to adhere on the gold surface in principle. But it was observed that the
adhesion on the gold structures took longer than on the FN micropattern. The cell
adhesion was improved by coating the gold islands with FN after passivation which led
to a comparable adhesion behavior for cells on gold-FN structures and cells on µPIPP
adhesion spots.

3.1.3. Micromolding in capillaries MIMIC
As a third method, 3-dimensional cavities were tested to con�ne the cells by physical
borders instead of chemical based con�nement by cell repellent polymers like for the 2-
dimensional methods. An advantage of 3-dimensional micropattern is the higher adhesion
spot density compared to 2-dimensional patterns. For 2-dimensional patterns the distance
between neighboring spots needs to be large enough to minimize the probability that
cells span over the passivated area to the next adhesion spot. This is not necessary
for 3-dimensional pattern due to the physical boundary. The distance between cavities
is mainly restricted by the structure stability. One method to produce cavities with a
diameter suitable for single-cell studies is by micromolding in capillaries referred to as
MIMIC. The method was developed to fabricate patterned structures on length scales of
micrometers [92] and further improved for high-throughput single-cell assays [35, 93, 94].

Figure 3.2.: Fabrication of µ-wells using the MIMIC method [95]: (A) A drop of PEGDA
solution is pulled under the PDMS stamp by cappilary forces. (B) Due to UV-
illumination the PEGDA is cured. (C) After removing the PDMS stamp the cured
µ-wells are left on the substrate. Reprinted from [95].

Cylindrical cavities referred to as µ-wells were fabricated by using PDMS stamps with a
pillar structure of 35 µm in diameter and 30µm height for each pillar. The stamps were

20



3.2 Noise analysis of single-cell time courses

placed on coverslips with a hydrophilic surface analog to the fabrication of µPIPP pat-
tern and the surfaces were activated by argon plasma. A mixture of PEG-diacrylate
(PEG-DA) with photoinitiator was added underneath the stamps by capillary forces
(Figure 3.2. A). The PEG-DA solution was cured under UV-light in order to crosslink the
PEG-DA (Figure 3.2. B) wherein the reaction is initiated by creation of reactive species
due to radiation of the photoinitiator [96]. After UV treatment, the PDMS stamp was
removed carefully and the µ-well structures remain on the coverslip (Figure 3.2. C). The
coverslip was sticked to a six-channel slide as for the other two methods. Before the
MIMIC array was ready to be used, the channels are washed with ethanol to avoid bac-
terial contamination. This was followed by a washing step with sterile water to remove
non-crosslinked polymer as well as ethonal to avoid cytotoxicity e�ects.

3.2. Noise analysis of single-cell time courses

The experiments were performed similar to the description in section 2.3.. After the
preparation of the respective microarrays, the cells were seeded 4 h before the time-lapse
measurement. For the time-lapse experiment, phase contrast images and �uorescence
images of the eGFP signal were recorded for each position with a 10min time resolution
for a duration of 20 h. The experiments with actin-eGFP expressing HuH7 cells were not
transfected as they stably express the �uorescently labeled actin. The HuH7 wild type cells
were transfected with mRNA encoding for d2eGFP without using the perfusion system
as the observation of the early �uorescence signal was not of importance to analyze the
noise of the single-cell time courses. One six-channel array was observed per experiment
with di�erent combinations of two fabrication methods (three channels per method) to
allow direct comparison with the same cell passage. All image stacks were background
corrected.

Two di�erent methods were used for the readout of the single-cell �uorescence time
courses. Firstly, the mean �uorescence of each cell was calculated based on the cell contour
at each time point. The �uorescence images were used for the determination of the cell
contour as the contrast between cell and background is much better for the �uorescence
images than for the phase contrast images. The main drawback of the method is that
the contour detection is computationally intensive. However, the contour analysis can be
used to determine the area of each single cell at each time point. The cell con�nement
was determined by calculating the area coe�cient as the ratio of the cell area relative to
the mean adhesion spot area. The mean adhesion spot area was determined from phase
contrast images for each micropattern and kept constant for all cells measured on the
respective micropattern. An area coe�cient of one corresponds to the situation, where
the cell area is equal to the adhesion spot area. Cell areas smaller than the adhesion spot
area result in coe�cients smaller than one and accordingly larger cells have a coe�cient
larger than one. Secondly, the mean �uorescence was calculated based on the pattern
geometry using the MWA plugin as described in subsection 2.3.4..
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3 Noise analysis of single-cell time courses on microstructures

3.2.1. Actin-eGFP expressing cells
In Figure 3.3. A the geometries of the three microarray fabrication methods are sketched.
The adhesion spots of the 2-dimensional patterns for µPIPP and the gold pattern are
squares with an edge length of 30 µm, which corresponds to an area of 900µm2. The
cylindrical 3-dimensional µ-wells have a height of 30µm and a diameter of 35µm, which
corresponds to an adhesion area of 962 µm2. The single-cell time courses of the actin-eGFP
signal are �uctuating around a mean value for most of the single-cell traces with a cell-to-
cell variability regarding the mean �uorescence level (Figure 3.3.). The mean �uorescence
time courses (Figure 3.3. B, green and orange traces ) have an almost constant level for
cells on the 2-dimensional pattern, as expected. The mean �uorescence time course of
cells in the µ-wells (Figure 3.3. B, blue trace) showed a decreasing trend. This could be
a hint that the cells are stressed by this con�nement strategy in some way. The mean
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Figure 3.3.: Single-cell actin-eGFP time courses on the three di�erent microarrays:
µPIPP, gold pattern, or MIMIC µ-wells. (A) Sketch for each microstructure with re-
spective geometries [M1]. (B) Representative single-cell time courses (gray) with the
respective mean time course (colored) for each data set. The black traces show single-cell
time courses with low or high noise.

�uorescence time course are in a similar range for all three microarrrays, which is a good
indication that the expression is not a�ected by the choice of microarray. Representative
traces of cells with a low or high noise level are highlighted. The traces with almost no
noise indicate that the cell was well con�ned over the whole observation period, whereas
noisy time courses most likely arise from cell area changes due to outgrow or shrinkage
of the cell. Interestingly, the time courses of cells in the µ-wells are noisy although it was
expected that the cells are perfectly con�ned inside the wells. The visual observation of
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3.2 Noise analysis of single-cell time courses

the time-lapse movies of cells in µ-wells showed that cells not only adhere on the bottom
of the wells but also on the surface between wells or even the well's walls. Apparently the
crosslinked PEG-DA structures are not cell repellent anymore. Furthermore, the PEG-DA
has a high auto�uorescence compared to PLL-g-PEG or Pluronic monolayers which led
to problems for the background correction [96]. It often happened that pixels of a weak
cell signal were identi�ed as background due to the high �uorescence signals of PEG-DA.
These two reasons lead to the noisy �uorescence time courses for µ-wells.
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Figure 3.4.: Single-cell actin-eGFP expressing time course on a µPIPP adhesion spot.
(A) Fluorescence intensity time course based on contour analysis (blue) or MWA (or-
ange). (B) Time dependent changes of the area coe�cient for the same cell. (C) Snap
shots of the eGFP �uorescence images at three time points. The scale bars correspond
to 25 µm. (D) Area coe�cient vs. noise of the single-cell �uorescence time courses with
respective linear regressions.

A representative single-cell �uorescence time course obtained from contour analysis (blue)
or MWA (orange) on a FN square (µPIPP) is shown in Figure 3.4. A. The MWA time
course appears to be less noisy than the contour-based time course. The respective area
coe�cient of the same cell is shown in Figure 3.4. B. For this particular cell the area coef-
�cient tends to increase over time, which could be an indication that the cell con�nement
is time dependent. The �uorescence images of a representative cell shown in Figure 3.4. C
at three di�erent time points illustrate that the cell stays on the adhesion spot over time.
However, the cell area changes over time as the cell outgrows of the adhesion spot. The
representative single-cell data presented in Figure 3.4. illustrates what was observed for
all cells independently on the microarray fabrication method. Fluctuations in intensity
occur simultaneously with the change of the area coe�cient. The noise of the �uorescence
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3 Noise analysis of single-cell time courses on microstructures

time course can be traced back to the cell con�nement of the cell to the micropattern.
The area coe�cient is negatively correlated to the noise of the �uorescence intensity time
courses, which is shown by the linear regression for both time courses (Figure 3.4.D). The
noise was determined by subtracting the mean �uorescence intensity, which is assumed
as the biological expression level. In general, it was observed that the �uorescence time
courses obtained by contour analysis had higher noise than the MWA time courses. For
this reason, beside the computationally more intensive analysis of the contour analysis,
the subsequent �uorescence intensities were obtained by the MWA approach.

It was shown that the noise is correlated with the cell area. For further analysis, the noise
was autocorrelated. If the noise was random, the autocorrelation would be zero for each
time delay larger than zero. In Figure 3.5. the autocorrelation function (ACF) of the
noise time course of the �uorescence intensity time course obtained by MWA is shown.
The ACF of the noise time course reveals that the noise is not random. It took more than
two hours for the particular cell until the noise was uncorrelated. This is an indication
that the temporal noise has a biological background.
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Figure 3.5.: Representative ACF of noise time course obtained from single-cell �uores-
cence intensity time course.

3.2.2. GFP expressing cells after mRNA transfection
The �uorescence time courses of actin-eGFP expressing cells showed that the noise can
be attributed to changes of the cell area. In the subsequent studies of this thesis, the
�uorescence intensity time courses of d2GFP expressing cells after mRNA transfection
are investigated. For this reasons HuH7 wild type cells were transfected with L2000
lipoplexes containing mRNA as described in Appendix A. Representative time courses
of d2eGFP expression after mRNA expression are shown in Figure 3.6.. The cells on
all micropattern show a similar behavior with a high cell-to-cell variability regarding the
�uorescence intensity, which corresponds to a high variation in protein level per cell.

Before the investigation of the time courses, the transfection e�ciency was analyzed de-
pending on the microarray fabrication method as the statistics for single-cell translation
assays depend, among other things, on the number of d2eGFP positive cells. Therefore,
the fraction of d2eGFP positive cells 15 h after transfection was determined for each of
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Figure 3.6.: Single-cell time courses of d2eGFP expression after mRNA transfection for
cells on µPIPP (green), gold coated with FN (orange), or µ-well (blue) microarrays.

the three microarray methods as shown in Figure 3.7.. The fraction of d2eGFP positive
cells to the total number of cells is de�ned as transfection e�ciency (TE). The TE for
cells seeded on the 2-dimensonal micropattern was on the order of 70-80% including the
day-to-day variance between replicates with slightly higher TE for the gold micropattern.
The TE for cells seeded in µ-wells dropped to 20% and it was observed that especially
cells adhered to the bottom of µ-wells are rarely transfected. A possible explanation is
that the L2000 lipolexes with their cationic surface charge stuck to the PEG-DA resulting
in a lower TE for cells inside the wells. Due to the low statistics for cells in µ-wells only
the data obtained from the 2-dimensional micropattern are further analyzed.
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Figure 3.7.: The transfection e�ciency TE as fraction of d2eGFP positive cells on di�er-
ent microarrays. The bar color indicates the microarray fabrication method and multiple
bars of the same color correspond to di�erent replicates. The error bars correspond to
the standard deviation.

Single-cell protein expression time courses after mRNA transfection are analyzed to verify
if the noise time courses are dependent on the micropattern and if they are autocorrelated.
The noise time courses of each cell was calculated by �tting a translation model based
on ODEs that was previously used to the experimental data [37]. In order to determine
the noise, the residuals of the �t to the experiment time courses were calculated. The
�tting approach and the corresponding model are explained in detail in the subsequent
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3 Noise analysis of single-cell time courses on microstructures

chapters as the �t was used for noise calculation here. The single-cell time courses of cells
in µ-wells were not further analyzed as the statistics were small due to the low TE and the
background �uorescence of PEG-DA leading to increased noise during image processing.
For the 2-dimensional patterns it was observed that the noise time courses of cells on
µPIPP pattern is higher than the noise time courses on gold pattern (Figure 3.8. A). This
is most likely due to larger cell areas on µPIPP pattern compared to cells on the gold
pattern. The mean time courses were almost zero for times longer than 5 h which indicates
that there is no technical noise source like illumination deviations. The deviations of
the mean �uorescence until 5 h is model dependent and will be discussed in chapter 4.
The autocorrelation of the noise time courses after mRNA transfection (Figure 3.8. A)
shows a similar behavior as the representative autocorrelation of actin-eGFP noise time
courses, shown in Figure 3.5.. Each of the single-cell time courses shows a certain degree
of correlation but with a high variability.
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Figure 3.8.: Noise analysis of single-cell �uorescence time courses after mRNA transfec-
tion. (A) Representative subset of single-cell time courses of cells transfected on µPIPP
pattern (left) or gold coated with FN (right). (B) ACF of the noise time courses of
cells transfected on µPIPP pattern (left) or gold coated with FN (right). The gray time
courses correspond to single-cells with the number of cells n and the respective mean
time course (colored traces).
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3.3. Discussion

It was possible to observe single-cell �uorescence time courses using each of the three
described techniques. However, the fabrication methods have di�erences in how easy and
reproducible they are to fabricate, in their ability to con�ne cells for longterm obser-
vations, and the �uorescence signal readout. The 2-dimensional micropattern appeared
more suitable than the µ-wells because the background �uorescence did not interfere with
the background correction. In addition to the image processing problems for µ-wells, the
TE dropped for µ-wells compared to the 2-dimensional micropattern (Figure 3.7.). The
µPIPP and the gold pattern lead to satisfactory results, whereby the gold pattern per-
formed slightly better (Figure 3.8. A). The noise in single-cell �uorescence time courses
proved to be correlated to the cell area (Figure 3.4.D) and thus to the cell's con�nement
on the micropattern. The autocorrelation of the noise time courses revealed that the noise
is not uncorrelated in time. However, the mean autocorrelation cannot be used to deter-
mine a typical correlation length as the bulk dynamic arises due to superposition of the
single-cell dynamics that is subject to a large cell-to-cell variability. This phenomenon
was previously observed for single-cell dynamics [65]. The single-cell noise correlation
might arise from cell motility as the time scale in the range of 10min up to an hour cor-
responds to a similar time scale of lamellipodium formation (protrusions of cells related
to migration) [97]. In order to verify if the noise correlation is dependent on cell internal
mechanisms, further investigations are necessary, which is beyond the scope of this thesis.

The use of the 3-dimensional MIMIC pattern with PEG-DA proved to be unsuitable for
the readout of �uorescence time courses. Beside the low TE and the high background
�uorescence, the cells did not preferentially adhere on the bottom of the wells. In order to
functionalize the bottom of the µ-wells, which could increase cell alignment, a combination
of protein printing (described in [73]) and the MIMIC apporach was tested. Therefore, the
stamps were pre-incubated with a FN solution before being placed on the coverslips. The
remaining MIMIC protocol was kept the same. The idea is to transfer FN onto the cov-
erslip and thus functionalize the bottom of the µ-wells to increase adhesion. The transfer
of FN was checked by immuno�uorescence staining. A primary antibody against FN was
incubated to enable binding to FN, followed by an incubation of a second �uorescently
labeled antibody speci�c to the FN antibody. Figure 3.9. shows a �uorescence intensity
pro�le of µ-wells with printed FN (purple) and µ-wells without FN (orange, the second
orange trace corresponds to a control where only the second antibody was incubated). It
is shown that the µ-wells with printed FN have a much higher �uorescence signal on the
bottoms of the wells compared to the PEG-DA structure. The opposite is the case for
µ-wells without FN. Nevertheless, the �uorescence background remains a problem besides
the low transfection e�ciency compared to the 2-dimensional micropattern techniques.

The gold pattern proved to be a suitable method for single-cell microarray fabrication.
The passivation with Pluronic-F127 showed superior passivation compared to PLL-g-PEG
as reported in literature [98] resulting in a more stable cell con�nement (Figure 3.8. A).
Additionally, the approach is highly reproducible. The fabrication needs to be performed
in a clean room which is less practicable compared to the other methods presented and the
�uorescence signal is attenuated as the illumination occurs through the metal layers. It
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3 Noise analysis of single-cell time courses on microstructures

Figure 3.9.: µ-wells with FN functionalized well bottoms. Intensity pro�le of 18 µ-
well structures. The presence of FN was veri�ed by secondary immuno�uorescence
staining against FN (purple). The control intensity pro�les of µ-wells without FN or
only incubated with labeled antibody showed higher �uorescence intensity for the PEG-
DA walls than on the bottom of the wells (orange).

was further observed that a coating of the gold squares was necessary in order to obtain
a similar adhesion behavior on the gold pattern compared to the other two methods.
However, the method is particularly interesting for sub-structuring adhesion spots like
illustrated in Figure 3.10. showing a HuH7 cell on a gold square that is sub-structured
by small gold islands over a period of 3:20 h. The phase contrast images illustrate the
good cell con�nement on the gold structures. Eventually, the protrusion dynamics can
be investigated in more detail using di�erent substructure geometries. This could have
an in�uence on the protrusion formation and increase cell con�nement beside the better
passivation of Pluronic.

Figure 3.10.: Dividing HuH7 cell on sub-structured gold adhesion square with an edge
length of 30µm. The scale bars correspond to 25 µm.

The µPIPP arrays are relatively simple to produce and high statistics for single-cell �u-
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orescence time courses are achieved. A drawback of the pattern technique is that the
pattern quality especially for passivation showed day-to-day variability. The noise for the
µPIPP time courses is only slightly higher than for the gold time courses. The autocor-
relation for both sets of time courses were very similar, which is a further indication that
the correlation occurs due to a biological process that is independent of the micropattern.
For these reasons, the µPIPP approach was used for all further studies discussed in this
thesis.
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4. Multi-experiment nonlinear mixed
effect modeling of translation
kinetics

In systems biology, mechanistic pathway models based on ODEs (see section 2.2.) are
a standard tool to quantify heterogeneity of cellular reaction networks to obtain a bet-
ter understanding of biological processes [4]. However, the estimated parameters depend
on the selected model and are limited if the estimation is only related to one kind of
experiments, which is the case for most single-cell assays [83]. The integration of data
collected under varied conditions is expected to improve parameter estimation and thus
facilitates the gain of knowledge. In order to integrate several single-cell experiments for
more robust parameter estimation, new approaches need to be developed. Here, perturba-
tion experiments using the already described single-cell translation assay (see section 2.3.)
were performed and integrated by a novel approach based on multi-experiment nonlinear
mixed e�ect modeling. The idea of the perturbation experiments is to systematically vary
one parameter of the investigated biological process and keeping the others constant. For
the translation kinetics after transfection that is achieved by changing the sequence of the
transfected mRNA. As a proof of concept, two mRNA constructs with the same struc-
ture but di�erent ORF sequences were transfected and the translation kinetics of both
constructs were assayed under the same conditions. The sequence of the two investigated
ORFs encode for eGFP or a destabilized version of eGFP called d2eGFP, which has a
lower half-life than eGFP [99].

In order to proof if perturbation experiments are bene�cial, two commonly used �tting
approaches were compared. The (I) standard two-stage (STS) and the (II) non-linear
mixed e�ect (NLME) approach were used to estimate the translation model parameters
of the obtained �uorescence trajectories:

(I) STS With the STS approach, as described in section 2.4., the single-cell para-
meters and the respective population distributions are calculated one by one
[100, 101]. An ODE based model is �tted independently to each single-cell tra-
jectory to estimate the parameter set for each cell. Afterwards, the parameter
distribution for the population is reconstructed using the single-cell parame-
ters. The approach is easy to implement and therefore often used [21, 33, 102].
The drawback of the method is that the cell-to-cell variability is overestimated
because uncertainty of the estimated parameters and biological heterogeneity
cannot be distinguished [103].

(II) NLME The single-cell parameters and the population distribution are estimated si-
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multaneously for the NLME approach [104]. The single-cell parameters are
considered as variables that are constrained by the population distribution of
each variable. The approach is in general computationally more elaborated
than the STS. The method was recently established for �tting single-cell data
[100, 101, 105, 106]. NLME reduces parameter uncertainty [101, 103] and has
less estimation bias [100] compared to STS.

In this study, it could be con�rmed that the NLME improves parameter estimation com-
pared to STS for the analysis of single-cell translation kinetics. The use of perturbation
experiments by the integration of the two GFP variants was used for an extension of the
NLME to a multi-experiment NLME that improved the parameter estimation even more.
The multi-experiment NLME was further used to investigate four di�erent translation
models. This new method presented the evidence that ribosomal activity is rate limit-
ing for translation. Moreover, the approach allows a robust parameter estimation across
experimental replicates, which enables mechanistic insights into the nature of batch ef-
fects. The study was performed in cooperation with members of Jan Hasenauer's group
(Helmholtz center, Munich), who developed the employed �tting algorithms. The chapter
is based on the publication [P2] listed in Associated publications and manuscripts. The
data and the a�liated algorithms are deposited at zenodo (doi:10.5281/zenodo.1228899).

4.1. Translation kinetics after transfection show large
cell-to-cell variability

The �uorescence time courses were obtained by the single-cell translation assay, which
was described in section 2.3.. HuH7 cells were transfected with mRNA-L2000 lipoplexes
during the �rst hour of the experiment using two di�erent mRNA constructs encoding
for eGFP and d2eGFP respectively. The kinetics were observed over a duration of 30 h.
Cooperation partner from ethris GmbH synthesized the two mRNA constructs, which
were used in this study, with the ORF of eGFP and d2eGFP cloned in the same vector
backbone pVAX1-A120 as described previously [107]. Three independent replicates of the
single-cell translation assay were performed to examine the reproducibility of the assay and
if the parameter estimation is robust regarding to day-to-day variances. A total number
of ∼2600 cell trajectories for eGFP and ∼2900 cells for d2eGFP were measured. These
numbers correspond to an average of roughly 350 trajectories per microarray channel as
visualized in Figure 2.4.. The yield of �uorescence trajectories depend on several factors
like the micropattern quality, the generation time of the used cell line, or the experiment
duration.
A large cell-to-cell variability of the translation kinetics was observed for both constructs
in all three replicates (Figure 4.1.). The �uorescence time courses of each cell originated
from the translation of �uorescence proteins after transfection with mRNA using L2000
lipoplexes (Figure 4.1. A). The heterogeneity of the �uorescence time courses occur from
a variability of all parameters describing the kinetics like the degradation rates or the
translation rate. The visual inspection of the �uorescence time courses of eGFP and
d2eGFP expressing cells already shows qualitatively di�erent translation kinetics for both
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4.1 Translation kinetics after transfection show large cell-to-cell variability

mRNA constructs (Figure 4.1. B). The mean time courses (black) of eGFP and d2eGFP
both peak around 10 h. The eGFP signal stayed almost constant afterwards, whereas the
d2eGFP signal declined subsequently. The faster decrease of the �uorescence signal for
d2eGFP expressing cells indicate a higher protein degradation rate of d2eGFP compared
to eGFP as expected from the literature [99, 108].
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Figure 4.1.: Single-cell perturbation experiments using two di�erent GFP variants. (A)
Sketch of mRNA lipofection of a cell. The mRNA-lipoplexes are taken up by the cell.
After mRNA release, the mRNA is translated into GFP with rate k. mRNA and GFP
undergo degradation with rate δ and γ respectively. The protein degradation rate γ
is systematically varied using two di�erent GFP variants. (B) The single-cell time
courses reveal qualitatively di�erent translation kinetics of eGFP (left plot) compared
to d2eGFP (right plot). A representative subset of �uorescence time courses (gray
traces) are shown with the respective mean trace (black) for each data set. The green
time courses highlight individual time courses.

Previous studies already revealed the high cell-to-cell variability of protein expression after
mRNA transfection [21, 33] suggesting stochastic mRNA delivery events [20] and limited
enzyme abundances e.g. for ribosomes [109]. The translation model used in the previous
transfection studies is an two-stage model, as visualized in Figure 4.1. A, and describes
the temporal relation between mRNA and GFP concentration after mRNA transfection:

d[mRNA]

dt
= −δ[mRNA], [mRNA](t0) = m0 (4.1)

d[GFP ]

dt
= k[mRNA]− γ[GFP ], [GFP ](t0) = 0

with k being the translation rate per mRNA molecule, m0 as amount of transfected
mRNAs released into the cytosol at time point t0, δ is the mRNA degradation rate, and
γ is the protein degradation rate. The measured �uorescence intensity y is de�ned as the
logarithm (due to computational reasons) of the GFP amount multiplied by scaling factor
scale plus the background �uorescence offset (analog to Equation 2.3):

y = log(scale[GFP ] + offset) (4.2)
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4 Multi-experiment nonlinear mixed e�ect modeling of translation kinetics

The analytic solution of the above ODE system (Equation 4.1) for the translation model
is:

[GFP ](t) =
m0k

δ − γ
(e−γ(t−t0) − e−δ(t−t0)) (4.3)

The analytical solution (Equation 4.3) reveals the structural non-identi�ability of both
degradation rates, the number of transfected mRNA molecules, and the translation rate
as previously described [21]. Therefore, the model is transformed to reduce the number
of free parameters, resulting in a combination of parameters as one �tting parameter i.e.
km0scale. The transformation was done by normalizing the mRNA concentration by
m0 and the GFP concentration by the scaling factor. Details are given in the methods
section and the supplementary information of [P2]. The degradation rates can only be
distinguished for this model if assumption are made e.g. that the protein degradation rate
is smaller than the mRNA degradation rate. This assumption cannot always be made and
depend on the properties of the IVT mRNA and the stability of the expressed reporter
protein.

4.2. Comparison of fitting approaches

4.2.1. Standard two-stage approach
The eGFP data set was �tted using the STS like illustrated in Figure 4.2. A to estimate
the parameters of the translation model given by the ODEs in Equation 4.1. In stage 1
the parameter set of an individual cell was determined using a MLE method followed by
the estimation of the parameter distribution of the cell population (stage 2) like described
in literature [100, 101]. For computational reasons the single-cell time-courses are loga-
rithmized (Figure 4.2. B) and the model �ts describe the data reasonably well as shown
in Figure 4.2. C.

The degradation rates for mRNA δ and protein γ cover two orders of magnitude and
indicate multiple modes (Figure 4.2.D). One could conclude that the multiple modes are
caused by subpopulations. Yet, the modes are caused by the parameter symmetry of δ
and γ (as can be seen in Equation 4.3) and revealed by an uncertainty analysis of the
single-cell parameters (see methods section of [P2]). The values for the degradation rates
can be interchanged without changing the translation kinetics. In Figure 4.2.D the es-
timated population distributions are shown if the degradation rates are swapped. The
symmetry of the degradation rates lead to a global structural non-identi�ability [110].
But, a structural identi�ability analysis showed that the parameters could be resolved
by measuring the mRNA and the protein concentration of each cell or by measuring two
protein levels by transfecting two mRNA constructs coding for di�erent proteins. Both
approaches are conceivable but non-trivial [111, 112]. Possible implementation of both
methods for the single-cell translation assay are discussed in chapter 7. In general, an
unique identi�cation of the parameters revealed from single-cell experiments is often not
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Figure 4.2.: Results of the parameter estimation for the STS approach. The STS ap-
proach is based on estimating the parameter set for every trace (stage 1) and calculates
the population distiribution for each parameter (stage 2) after �tting each trace (A).
Single-cell trajectories of eGFP expressing cells (B) and ten trajectories with their cor-
responding �ts (C). The parameter distributions are computed using a kernel density
estimation (D). Adapted from [P2], licensed under creative commons.

possible by established experimental methods. For population experiments it is reported
that perturbation experiments can solve structural non-identi�abilities [113]. The per-
turbation experiments are used as additional observations, which are integrated in the
model [114]. This is possible under the assumption that the model parameters are con-
served quantities and do not change between di�erent experiments. That assumptions
makes it di�cult to consider perturbation experiments for STS, as the parameters for all
experiments are assumed to be independent, which exclude conserved quantities.

4.2.2. Non-linear mixed effect approach

As STS is not suitable to resolve the structural non-identi�abilitiy of the degradation
rates, a NLME was applied to consider perturbation experiments. The NLME allows
for conserved quantities in perturbation experiments. The single-cell parameters ϕi of
the NLME are assumed to consist of a �xed e�ect β and a normally distributed e�ect
bi ∼ N (0, D): ϕi = exp(β + bi) as visualized in Figure 4.3. A. The population parameters
β and D are the mean and the covariance of the logarithmic single-cell parameters. It is
assumed that the population parameters are the same for di�erent experimental conditions
and even for individual cells. As a result, the single-cell time courses of cells transfected
with di�erent mRNA constructs can be integrated at the population level. The single-
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4 Multi-experiment nonlinear mixed e�ect modeling of translation kinetics

cell parameters and the population parameters are determined in parallel (for detailed
information see the methods section for the NLME approach in [P2]).
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Figure 4.3.: NLME and STS compared regarding the estimation of the parameter dis-
tributions. (A) Sketch of the NLME. (B) Representative time courses of eGFP and
d2eGFP (top) and the mean residuals of both approaches with respective standard de-
viation (std) (bottom). (C) Ten representative single-cell �ts (top) for eGFP expressing
cells with respective residuals (bottom). (D) Estimated parameter distributions of both
approaches. Coloring indicate the applied approach and in combination with the data
set (STS of eGFP in green, STS of d2eGFP in blue, and NLME in red). Adapted from
[P2], licensed under creative commons.

In order to examine if the degradation rates are identi�able using perturbation experi-
ments, the data sets of eGFP and d2eGFP expressing cells (Figure 4.3. B) were combined
and the NLME was extended to a multi-experiment approach (see respective method
section of [P2]). For the NLME based �tting two distinct distributions for the protein
degradation rates were assumed for eGFP γeGFP and d2eGFP γd2eGFP . All other param-
eters are assumed to be the same for the perturbation experiments. For STS it is also
assumed that the protein degradation rates di�er and the other parameters are the same
for both data sets. However, it cannot be enforced that the other parameter distributions,
like the mRNA degradation rate, are the same for the two perturbation experiments using
STS.
Both approaches yield very similar �ts of the single-cell time courses as can be seen for the
almost identical population statistics of the residuals in Figure 4.3. B and for represen-
tative single-cell �ts and the respective residuals in Figure 4.3. C. For multi-experiment
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4.3 Translation model selection

NLME, the estimation of the single-cell parameters ϕi and the estimation of the popula-
tion parameters β and D agreed with each other and describe the data reasonably well,
which suggest that the assumptions for the NLME were appropriate (Figure 4.4.). The
population distribution for both �tting approaches results in comparable distributions
(Figure 4.3.D) even for γd2eGFP . The reason why multiple modes for γd2eGFP are not
visible for STS compared to γeGFP can be explained due to the fact that the mRNA and
d2eGFP degradation rates are in a similar range. For this reason, the symmetry e�ect of
the mRNA and d2eGFP degeneration rates are neglectable. The STS approach results in
considerable di�erent distributions for the mRNA degradation rate δ depending on the
data set, while the multi-experiment NLME yields one narrower distribution compared to
STS (Figure 4.3.D). The smaller distribution for multi-experiment NLME can be traced
back to the symmetry breaking of the degradation parameters by the consideration of an
additional perturbation experiment (see supplementary information of [P2]). The single-
experiment NLME approach was not capable to break the symmetry of δ and γ and is
for that reason not further discussed (Figure S2. of [P2]). These results demonstrate that
multi-experiment NLME is suitable to consider perturbation experiments, which leads to
improved single-cell parameter estimation compared to STS.

Figure 4.4.: Comparison of distributions of estimated single-cell parameters ϕi and es-
timated population parameter distribution (β,D). Multi-experiment NLME single-cell
parameter histograms and respective kernel density estimate (red line) with the pop-
ulation constraint (black dashed line) shown for the degradation rates. Adapted from
[P2], licensed under creative commons.

4.3. Translation model selection
Yet, the suitability of the translation model needs to be questioned due to the systematic
variations between the �ts and the single-cell time courses for STS and NLME, which
can be seen by the mean residuals in Figure 4.3. B (bottom). The residuals for both data
sets reveal a clear temporal trend, indicating that the model is inappropriate to describe
the experimental data. For this reason, additional translation models were analyzed in
which some of the kinetic rates of the translation model are no longer described as �rst
order reactions. The assumption of �rst order kinetics is only true if the abundance of
the a�ected molecules is not rate limiting.
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Figure 4.5.: Four translation models are compared regarding the parameter estimation.
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In total, four translation models were compared and their respective biochemical networks
are illustrated in Figure 4.5. A. The least complex and already discussed translation model
(i) is described by the ODEs (Equation 4.1). The ODEs of the three other models are given
in Appendix B. The ribosome model (ii) describes the translation step by taking ribosome
binding to the mRNA into account for the expression of protein. The enzyme degradation
model (iii) describes the mRNA depletion depending on enzymatic activity. Model (iv)
is a combination of model (ii) and (iii). The extensions of the models were chosen due
to experimental evidence obtained in other studies [116]. An enzymatic degradation of
the protein was also considered. However, it has been reported that �uorescent reporter
proteins, like eGFP, are normally very stable and resistant to enzymatic degradation
and can be described with a �rst order degradation kinetic [99]. For d2eGFP this is
not necessarily the case because of the addition of a C-terminal PEST sequence, which
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4.4 Ribosome model identi�es and explains batch e�ects

is naturally found in short-lived proteins and is known to be important for fast protein
turn-over [108]. Li et al. [117] showed that eGFP is stable even in presence of the
translation inhibitor cycloheximide (CHX) but that d2eGFP is very unstable due to the
PEST sequence. To prove, that in our experimental set up the protein degradation of both
reporter proteins can be described by �rst order kinetics, a translation block experiment
for cells expressing d2eGFP was performed as described in the appendix and visualized
in Figure A.4. [118, 119]. The �uorescence protein degradation was investigated after
adding CHX 7h post transfection. A simple exponential decay provided a good �t to all
observed �uorescence intensity time courses, implying the su�ciency of �rst order kinetics
in the considered concentration range (see Figure S1 [P2]). The described extensions for
translation and mRNA degradation have not been studied for transfection dynamics and
it is unclear if the other models lead to signi�cant improvement of the �ts.

The ribosome binding is modeled by an initial ribosome abundance R0, which bind to
mRNA with rate k1. GFP is translated by rate k2 from the complex Ribo : mRNA
and produces free mRNA. The enzymatic mRNA degradation is described by intro-
ducing degradation enzymes with an initial abundance E0. The degradation is replaced
by a binding reaction of the enzyme Enz to mRNA with rate δ1 forming a complex
Enz : mRNA. The mRNA degradation of the bound molecule takes place with rate δ2
releasing the enzyme. For the enzyme degradation-ribosome model (iv), the translation
and mRNA degradation are replaced by both of the described binding reactions. The pa-
rameters of all four models were estimated using the described multi-experiment NLME
approach. The parameter distribution of the translation models reveal di�erences, espe-
cially for degradation rates δ, γeGFP , and γd2eGFP (Figure 4.5. B). These di�erences stress
the need of appropriate mechanistic models when estimating single-cell parameters.

In order to identify the most suitable model candidate, two model selection criteria were
considered: the Akaike Information Criterion (AIC) [120] and Bayesian Information Cri-
terion (BIC) [121]. Both criteria favor the models with ribosomal activity (model (ii) and
(iv)) like illustrated in Figure 4.5. C. Model (iv) achieved the best AIC and BIC values,
which is the most complex of the investigated models taking ribosome and enzyme bind-
ing reactions into account. Beside the model selection criteria the residuals of all models
were computed as shown in Figure 4.5.D. The residuals' magnitude of the models with
ribosomal translation (model (ii) and (iv)) are substanially smaller than for the other two
models. This indicates that the approximation of the translation process by a �rst order
kinetic is not suitable and that the concentration of free ribosomes is rate-limiting for
protein expression. The enzymatic degradation reaction in contrast is not essential for
describing the data, as the residuals' di�erences between model (ii) and (iv) are small.
For these reasons and due to the smaller number of free parameters, the ribosome model
(ii) was chosen for the subsequent analysis.

4.4. Ribosome model identifies and explains batch effects
The setup of the single-cell translation assay allowed to study both perturbation conditions
within the same experimental batch by transfecting cells of di�erent microarray channels
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4 Multi-experiment nonlinear mixed e�ect modeling of translation kinetics

with one of the mRNA constructs encoding for eGFP or d2eGFP, respectively. It is not
always possible for an experimental setup and often the di�erent perturbation experiments
have to be measured using di�erent batches. The use of di�erent batches, like cells
of a di�erent passage, makes it di�cult to distinguish batch e�ects from perturbation
e�ects. For many single-cell approaches the data of di�erent batches need to be pooled
for higher statistics [105], which complicates to di�er between cell-to-cell variability and
batch e�ects. For pooling multiple perturbation experiments, it is necessary that the
parameter estimation is robust regarding batch e�ects.
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Figure 4.6.: Uncertainty analysis of replicate e�ects using the ribosome model. Coloring
is according to the replicate. (A) Sketch of the three replicates and the corresponding
threefold split of each replicate. (B) Variability within and across replicates given by
the mean time courses and the coe�cient of variation. The shaded areas indicate the
sampling error. (C) Log-likelihood values within and across replicates. (D) Uncertainty
analysis of parameter distributions within and across replicates. (E) Correction factor
for m0 regarding the estimated parameter distributions. All errors (shaded areas and
bars) correspond to ±std. Adapted from [P2], licensed under creative commons.

In order to investigate if the parameter estimation of the multi-experiment NLME is ro-
bust and reproducible, three experimental replicates were analyzed. Furthermore, each
replicate was divided into three subsets of the same size, leading to nine data sets as
visualized in Figure 4.6. A. The mean single-cell time courses of each replicate show varia-
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4.5 Discussion

tions between the replicates, which are larger than the sampling error of the three subsets
(Figure 4.6. B). To evaluate the in�uence of these batch e�ects on parameter estimation,
each of the nine data subsets were analyzed individually. The log-likelihood values of the
replicates were very similar, which indicates that the quality of the �tting was comparable
(Figure 4.6. C).

The estimated parameter distributions were consistent within each replicate and across
replicates in most instances (Figure 4.6.D). The distributions with observable di�erences
across replicates were k2m0scale, k1m0, and R0/m0. The mean of the population di�ered
essentially across replicates for these parameters. Interestingly, all three parameter com-
binations share one parameter, the initial amount of mRNA moleculesm0. The parameter
m0 describes the average number of released mRNA molecules into the cytosol of a cell
after transfection. Since the e�ciency of mRNA delivery depend on a variety of things,
like the cell culture conditions or lipoplex formation, it is likely that di�erences between
replicates for the amount of delivered mRNA molecules are larger than the intrinsic dis-
tribution of mRNA abundance of one experiment. Figure 4.6. E shows that the correction
factors for m0 are consistent for the discussed parameters and all three replicates. It is
possible, that the observed batch e�ects could be traced back on di�erences in the av-
erage number of released mRNAs. In this case, the multi-experiment NLME allows for
mechanistic insight in the emergence and identi�cation of batch e�ects.

4.5. Discussion
Scanning time-lapse measurements are capable to quantify and unravel cellular kinetics
at the single-cell level. NLME proofed to be a powerful statistical approach to analyze
�uorescence time courses, which is in agreement with previous studies [100, 101, 105, 106].
The integration of perturbation experiments using NLME for single-cell measurements
was applied, to the best of my knowledge, for the �rst time. In this study, the expression
kinetics of a �uorescent reporter after mRNA transfection was studied with single-cell
resolution. As perturbation experiments, mRNA constructs encoding for GFP variants
with unequal degradation rates were employed. Fluorescence intensity time courses for
both GFP variants where measured in parallel for hundreds of cells per experiment. The
inclusion of both data sets into a multi-experiment NLME yield to a more robust para-
meter estimation than for the NLME of each data set by itself and even better compared to
the STS. In particular, the identi�cation of the degradation rates for mRNA and protein is
now possible for the translation model (i) (Figure 4.3.D) without prior assumption of the
relation between both rates. Interestingly, the integration of perturbation experiments
on the population level led to an improvement of the single-cell parameter estimation
(see Figure S2. of the supplementary information [P2]). Hence, the multi-experiment
extension is an important improvement. Generally speaking, the iteration of experiments
using the same readout under systematically varied conditions alters the entire parameter
set and does not improve the estimation quality.

For the less complex translation model (Figure 4.5. A (i)) a pronounced structure of the
residuals was identi�ed (Figure 4.3B, bottom). The temporal trend of the residuals dis-
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closed the limitations of the model for suitable description of the translation process. The
comparison of four model candidates showed that the ribosome binding reaction lead to a
higher agreement of the respective models with the experimental data (Figure 4.5.D). In-
dicating that the abundance of free ribosomes is rate limiting leading to another source of
heterogeneity due to stochastic variations of ribosome abundance in cells [122]. However,
the residuals for early time points around the protein expression onset still shows higher
magnitudes compared to later time points (Figure 4.5.D). The experimental single-cell
time courses show smoother onset behavior than the �ts of each model, which could be
solved by including a GFP maturation step or another more complex step like multiple
mRNA release events to distinguishable time points.

Some of the population distributions show a large variability, for example for k1m0 as
shown in Figure 4.6.D. This could result form combining variables, which both underlay
a high variability. Another explanation could be that the model for the transfection or
translation process is too simple. This lead to an accumulation of the variability along a
process of multiple steps resulting in a high variability of a few parameters [55]. The results
of these study depend on the chosen mechanistic model comparable to similar studies.
More detailed models might improve the parameter estimation but the increasing number
of parameters need to be examined carefully. It is to mention, that the determination of
the mean protein half-lives of 22.8 h for eGFP and 6.6 h for d2eGFP are in good agreement
with the literature [99]. Due to this agreement, it is concluded that the multi-experiment
NLME lead to reliable results.

Furthermore, the parameter estimation was reproducible for independent experimental
replicates (Figure 4.6.). However, batch e�ects could not be prevented between replicates.
The batch e�ects are often not taken into account for single-cell measurements and are
not handled properly for pooled data leading to an interaction of batch e�ects with the
biological cell-to-cell variability. Using the multi-experiment NLME, it was possible to
identify sources of batch e�ects, which most likely occur due to a high variation of the
average number of released mRNAs for di�erent replicates. The identi�cation of sources
for batch e�ects could be used to further improve the experimental set up and therefore
data quality.

In conclusion, the novel approach provides a powerful tool for parameter estimation of
single-cell data. The fact that the integration of perturbation experiments are bene�-
cial for parameter estimation and that the estimation gets even more robust enables new
opportunities for the analysis of translation kinetics depending on systematic sequence
modi�cation. This is of interest for gene therapeutic purposes, as it enables to quantify
the expression dynamics under varied conditions [123, 124]. Hence, an improved under-
standing of the expression kinetics and how the expression can be controlled is important
for successful treatment design [14]. The only drawback of the novel �tting approach is
the very high computational time which is needed for parameter estimation. For the pre-
sented results the total computation time took in total over 15 years cpu time. The STS
approach in contrast is computationally cheap. Only due to the high computational time,
the studies presented in the following two chapters are analyzed using the STS approach
taking into account that the width of the estimated parameter distributions result from
the interference of parameter uncertainty and biological cell-to-cell variability.
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5. Single-cell transfection studies of
lipid-based mRNA nanocarriers

One of the key challenges that needs to be solved for the application of nucleic acids
(NAs) as new drug entity is their e�cient delivery into cells [125, 126]. For this purpose
the RNA has to be complexed with some nanocarrier to enable the transfection of cells as
generally described in section 2.1.. A wide range of materials is used as nanocarriers for
NA transfection such as polymers, lipids, or hybrid molecules [18, 127]. The development
of non-viral vectors is focusing on e�cient and safe encapsulation, transport, and release
of NA into cells [128, 129, 130]. The interaction with blood serum proteins, the thereby
a�ected intracellular uptake, limited release into the cytosol and immunological response
belong to the main hindrances of lipid-based vectors [14, 16]. Each of these challenges
is a�ected independently by variations of the nanocarrier formulations and transfection
conditions. RNA encapsulated in lipid vectors is taken up by various uptake mechanisms
and subsequent intracellular pathways. It is reported, however, that the majority of
NA delivery systems is trapped inside endosomes or lysosomes after uptake and that their
release depends on endosomal recycling [131]. The uptake and fate of delivery particles has
been visualized at the single-cell level by time-resolved �uorescence microscopy studies
[132, 133, 134, 135, 136]. It was shown that siRNA release occurred during a narrow
`window of opportunity' demonstrating that timing and e�ciency are linked [135, 137].
However, the uptake pathways and mechanisms that control endosomal release of lipid-
based nanocarriers are not fully understood. In particular, the interdependence of timing
and e�ciency of gene delivery and the role of extracellular factors on the kinetics of cellular
uptake and endosomal release are poorly understood aspects in the delivery process.

The single-cell translation assay described in section 2.3. was used like described in
chapter 4 for high-throughput readout of translation kinetics. The single-cell analysis
identi�es the individual protein expression onset times of each translation kinetic. The
assay enables to determine the distribution of expression onset and expression rate after
transfection. In this context, a systematic study of nanocarrier uptake kinetics, the expres-
sion onset times, and its relation to protein expression e�ciency and external transfection
conditions has not yet been carried out at the single-cell level. The time-to-expression
after mRNA delivery as well as the expression rate are studied using high-throughput
single-cell analysis of eGFP reporter �uorescence. The single-cell trajectories are ana-
lyzed using a deterministic translation-maturation model, which expands the introduced
two-stage model (Equation 4.1) by a protein maturation step. The single-cell data reveal
large cell-to-cell variability and the insight that the delivery time and expression rate
do not correlate at the single-cell level. Nevertheless, both parameters change in a sys-
tematic manner as a function of external parameters such as the amount of serum. In
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mRNA transfection experiments using L2000 lipoplexes the e�ciency decreases and de-
livery timing increases as a function of the fraction of serum protein. In contrast, for lipid
nanoparticles (LNPs) containing the ionizable cationic lipid DLin-MC3-DMA e�ciency
improves and delivery time shortens in the course of increasing serum. The LNPs show
a more homogeneous behavior compared to L2000 lipoplexes. As LNPs show a superior
behavior compared to L2000 lipoplexes and the fact that they are one of the most promis-
ing non-viral delivery systems in current clinical trials [138], three di�erent formulation
of LNP were analyzed. The LNPs formulations distinguish only for the ionizable lipid,
which have di�erent (logarithmic) acid dissociation constant (pKa). For siRNA trans-
fection, the e�ciency of LNPs has increased considerably during the last years and the
physico-chemical properties of the siRNA-LNPs are widely studied [125, 139]. However,
the use of LNPs for mRNA transfection is less well investigated. So far, it is not known
how ionizable lipids of di�erent pKa values a�ect the delivery timing and expression e�-
ciency.

In this chapter a more detailed introduction of lipid-based vectors and their uptake path-
ways and the determination of the onset time t0 is given. Afterwards, the systematic
variation of serum fraction during transfection and its in�uence on onset time and ex-
pression rate are discussed. In the following, the expression e�ciency of the three LNP
systems is investigated. This chapter is mainly based on the publication [P3] by Reiser et
al. [140], in which the method of transfection quanti�cation of di�erent nanocarriers under
varied conditions is presented. The study on LNP formulations with di�erent ionizable
lipids and their in�uence on transfection e�ciency at the single-cell level is part of the
manuscript [M2] listed in Associated publications and manuscripts. The a�liated data
and algorithms of publication [P3] are deposited at zenodo (doi:10.5281/zenodo.2626006).

5.1. Lipid-based delivery systems and uptake pathways
Lipid-based vectors are used for the delivery of a variety of drugs like anti-cancer, anti-
in�ammatory, or nucleic acids and have been studied for more than �ve decades [141]. The
fabrication and formulations of mRNA delivery systems progressed over the last 40 years
from simple liposomes formed by spontaneous self-assembly to delivery systems of several
components produced under standardized conditions [142, 143]. In general, lipid-based
vectors are vesicles of unilamellar or multilamellar phospholipid bilayers, which surround
the NA in an aqueous solution. The materials typically used are lipids consisting of
polar head groups and nonpolar tails. The interaction between these groups drives vesicle
formation [15]. The progress of delivery system development is driven by improving
the drug loading e�ciency, the release e�ciency, and cell-type targeting by minimizing
negative e�ects like immune response at the same time [141].

Lipoplexes
Lipoplexes are a commonly used lipid-based vector for NA transfection and are typically
fabricated by bulk mixing of cationic liposomes, a mixture of cationic and neutral lipids,
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and NA [144]. It has been shown that lipoplexes arrange as multilayer structures with NA
intercalated between lipid bilayers [145]. But, lipoplex formulations are limited regarding
their physical and chemical stability and the reproducibility between batches. They belong
to the so called �rst generation of lipid-based vectors [141, 146]. In principle, each lipid-
based vector can be denoted as lipoplex. In this thesis the term is used for spontaneous
self-assembled complexes produced by bulk mixing of liposomes with mRNA.

In order to transfect negatively charged mRNA molecules, they need to be shielded to
be capable to cross the negatively charged cell membrane, and not to be hindered by
electrostatic repulsion [17]. mRNA-lipoplexes are able to ful�ll this task by complexing
the mRNA with cationic liposomes. The lipoplexes proved to be able to transfect many
di�erent cell types leading to a large amount of commercially available transfection agents
like lipofectamine [147]. Lipofectamine was already successfully used in many in vitro as
well as in vivo studies [15]. The properties of the lipoplex can be adjusted for example by
di�erent ratios of cationic to neutral lipids or the charge ratio of NA to cationic lipids. The
ratio has an in�uence on size and surface charge of the lipoplex [148, 149]. It is commonly
accepted that the properties of lipoplexes a�ect the transfection e�ciency because these
properties have an in�uence on di�erent intermediate steps of the delivery process like cell
membrane fusion or endosomal release [144]. The transfection e�ciency is furthermore
a�ected by external conditions like the presence of blood serum proteins or the targeted
cell type [148, 150, 151, 152].

Lipid nanoparticles (LNPs)
LNPs are one of the leading non-viral vectors for gene therapy development with several
active clinical trials and can be referred as lipid-based vectors of the second generation
[138, 153]. Patisiran, a siRNA-LNP drug [154], was the �rst RNA therapeutic approved
by the US Food and Drug Administration in 2018 [12]. LNP systems were originally
developed for the delivery of small molecule drugs [155] and the �rst small molecule
LNP drugs were already approved in the 1990s [153]. Most work on the development
of e�cient NA-LNP systems was done using siRNA. Published LNP formulation are
therefore optimized for double stranded RNA with a length of ∼20 bp. In order to use
LNPs for the delivery of single stranded mRNA molecules with typical lengths in the range
of 1000 nt, which have di�erent physico-chemical properties than siRNA, the formulations
need to be optimized [156].

As it is proven that cationic lipids lead toxicity e�ects and immune response of the trans-
fected host cells, ionizable lipids were developed as alternative. The positive surface charge
of lipoplexes can be neutralized by the binding of negatively charged proteins in the cell
environment (typically serum proteins) which leads to toxicity and decreased transfection
e�ciency [157]. Suitable ionizable lipids usually have a pKa value lower than the pH at
physiological conditions. If ionizable lipids are mixed with NA below their pKa value the
lipids are protonated, aiding the complexation of ionizable lipids with NA. If the pH is
increased to physiological pH after complexation, the surface charge of the delivery system
is neutral and reduces negative side e�ects, which occur for positively charged nanocar-
riers. The LNPs are mostly produced by rapid-mixing methods using micro�uidic chips.
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This manufacturing process is advantageous, in that it provides uniform properties of the
complexes such as size in the range of several tens of nm, high entrapment rates of the
NA, and a robust fabrication process [139, 158]. The most frequently used method for
encapsulating NA in LNPs is an ethanol loading approach. The ethanol solution contains
ionizable lipids, cholesterol (Chol), distearoyl phosphocholine (DSPC), and a PEG-lipid
and needs to be rapidly mixed with an aqueous bu�er containing the NA at low pH [153].
The hydrophobic Chol promotes the stability of the vesicle. Helper lipids like DSPC en-
hance the interaction of LNPs with the cell or the endosomal membrane, which is both
important for uptake as well as for release. The PEG-lipid, a PEG molecule conjugated
to a lipid, reduces the adsorption of many serum proteins [15]. The properties of the
mentioned components and the precise formulation can have large e�ects on the e�ciency
making LNPs a very variable system.

The LNPs used in this work were prepared by cooperation partners from AstraZeneca
(Sweden) by micro�uidic mixing following an already published protocol based on the
ethanol loading approach [159]. The LNPs contain one of the three ionizable lipids DLin-
DMA (DLin), DLin-KC2-DMA (KC2), or DLin-MC3-DMA (MC3). Beside the ionizable
cationic lipid, DSPC, DMPE-PEG2000, and Chol were used. The formulation of the LNPs
was as follows: Ionizable lipid:DSPC:Chol:DMPE-PEG2000 in the ratio 50:10:38.5:1.5.
The mRNA constructs, used for lipoplex and LNP formation, were purchased from Trilink
Biotechnologies (USA). Both have identical sequences containing an ORF for eGFP (con-
struct length: 996 nt length) but one of the constructs was additionally synthesized with
a fraction of Cyanine dye 5 (Cy5) labeled nucleotides to mark the transfection complexes.

Cellular particle uptake

As already mentioned, for an e�cient transfection the encapsulated mRNA need to be
taken up by cells and has to be released into the cytosol. This is mainly achieved by
endocytosis, an internalization process of extracellular material, solid and �uid, from the
cell's environment. Endocytosis is a complex biological process in which a part of the cell
membrane is inverted leading to the formation of a vesicle. The interior of the vesicle
contains material from the cell environment. This way the cell membrane engulfs the
adsorbed mRNA nanocarrier and transports the nanocarrier inside the pinched of endo-
some to the cytosol. During endocytosis the pH inside endosomes is reduced from roughly
6.8 to 4.5 by inwardly directed proton pumps, which is referred as endosome maturation.
The very acidic late endosome morph with lysosomes in which trapped macromolecules
are degraded [160]. To avoid the degradation of mRNA trapped in endosomes, they need
to be released into the cytosol. This process is called endosomal escape. It is one of the
critical barriers, which a mRNA nanocarrier needs to cross, as it has been reported that
only a small fraction of nanocarriers escape successfully [134, 161]. The mechanism of
endosomal escape is not well understood. But, it is proposed that cationic lipids of the
delivery system fuse with endogenous anionic lipids of the endosome resulting in a change
of the molecular structure of the delivery system [15]. This structural change results in a
disruption of the endosomal membrane, releasing the mRNA in the cytoplasm [162]. The
endosome maturation leads to a gradual protonation of the ionizable lipids enabling the
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electrostatic interaction of the ionizable lipids with the anionic endosomal lipids. Studies
using siRNA-LNPs showed that the release e�ciency is most successful if the ionizable
lipids have pKa values in the range from 5.5 to 7 [163, 164].

As the endosomal maturation is universal, the uptake itself consist of many di�erent
pathways which can be classi�ed based on the local membrane properties of mRNA-
nanocarrier adsorption. Several studies con�rmed that the cell membrane does not ex-
ist of an uniformly distributed milieu, but that region of more ordered clusters exists
[165]. These clusters of 10-200 nm in diameter are named �lipid rafts� and compartmen-
talize cellular uptake processes [166]. Some of the most common uptake mechanism are
clathrin-mediated uptake, phagocytosis, or macropinocytosis. These pathways dependent
on di�erent compositions of the lipid rafts and the fate of an adsorbed nanocarrier may
already depend on the location of adsorption [165]. Pozzi et al. [144] reported, that the
lipoplexes in their study where mainly taken up via macropinocytosis. In contrast, the
used LNPs were taken up by clathrin-mediated endocytosis as well as macropinocytosis.
These results show that lipid-based vectors can target di�erent endocytotic pathways,
which may result in di�erent delivery timing as well as varying transfection e�ciency
(TE).

5.2. Single-cell protein expression readout by on stage
transfection

The single-cell microarray approach described in section 2.3. was used to obtain hundreds
of single-cell translation kinetics of mRNA-L2000 transfected HuH7 cells with focus on
the protein onset time and expression rate distributions. The single-cell traces show large
heterogeneity regarding the expression levels like previously described [21, 33, 83] and a
large variability for the onset time points like shown in Figure 5.1..

For estimation of the onset time distribution without loss of the early onset time points
the use of a perfusion system is essential otherwise the transfection need to be done o�
the microscope. But the transfection o� the microscope makes it impossible to mea-
sure changes in �uorescence intensity during the incubation step and the set up of the
time-lapse measurement, which last at least 1.5 h. Furthermore, the use of a perfusion
system has the advantage of a pulse like transfection incubation of 1 h period (gray bar in
Figure 5.1.) during the time-lapse measurement that enables to control the possible time
for particle uptake. The short incubation time was chosen to eliminate the possibility
of late mRNA particle uptake, which cannot be excluded without the �ushing step of
the unbound particles. The complex adsorption kinetics and removal of unbound L2000
lipoplexes, which contain Cy5 labeled mRNA, are shown and discussed in Figure 7.6.. The
washing steps are indicated as black arrows and after the incubation period the medium is
exchanged to cell growth medium for the remaining measurement. The magni�cation in
Figure 5.1. illustrates the variability for the onset time points between di�erent cells and
that some cells already started to express protein during complex incubation or shortly
afterwards. These time points would be not detectable without the on stage transfection.
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Figure 5.1.: eGFP expression trajectories (green) show large cell-to-cell variability after
mRNA transfection. The pulse like transfection of 1 h (gray bar) is performed by �ushing
a connected perfusion system for �uid exchange of the microarray channels (exchange
steps are indicated by the arrows). The transfection on stage enables to record all
expression onset time points, even the early events, within the incubation time like
illustrated in the enlarged plot.

5.3. Onset time determination
The onset time of protein expression need to be determined automatically to allow for
high-throughput and reproducible measurements. For reliable detection of the onset time
point for each single-cell trajectory, three di�erent methods were tested and are explained
and compared in the following subsections.

5.3.1. Translation-maturation model
Fitting a translation-maturation model to the single-cell trajectories was found to be the
most reliable method. With the �tting approach the kinetic rates and the protein expres-
sion onset time were obtained. The three-stage translation-maturation model shown in
Figure 5.2. A is based on biochemical rate equations like the translation models discussed
earlier in chapter 4.

d[mRNA]

dt
= −δ[mRNA], [mRNA](t0) = m0 (5.1)

d[GFP∗]

dt
= m0kTL − kM [GFP∗]− β[GFP∗], [GFP ∗](t0) = 0

d[GFP ]

dt
= kM [GFP∗]− β[GFP ], [GFP ](t0) = 0

The model considers a translation step to a non �uorescent state of the reporter protein
GFP∗ from the transfected mRNA with rate kTL. The translation is followed by a matu-
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ration step [51, 167], which leads to a chemical transition of non �uorescent GFP∗ to the
�uorescent protein GFP with maturation rate kM . Thereby, mRNA and protein undergo
degradation with the rate δ and β, respectively, with the assumption that the two protein
states have the some degradation rate β. The same protein degradation rate was assumed
because the unmatured and matured GFP is degraded by the same proteases [168]. The
three ODEs in Equation 5.1 describe the temporal concentration changes of mRNA, un-
matured protein GFP∗, and matured protein GFP . The analytical solution for GFP of
the above ODEs is as follows:

GFP(t) = m0kTL(
kM

(δ − β)(δ − β − kM)
e−δ(t−t0)

− 1

δ − β − kM
e−(β+kM )(t−t0) +

1

δ − β
e−β(t−t0)) (5.2)

Figure 5.2.: Determination of onset time point t0 and the expression rate m0kTL by
�tting the translation-maturation model. (A) The biochemical network of translation
followed by protein maturation is sketched with the corresponding parameters next to
the reaction. The number of parameters is reduced by �xing the maturation rate kM and
protein degradation rate β to population mean values. (B) The exemplary traces (gray)
with the respective �ts (green) show the good agreement of the �t with the model. The
onset times are indicated as black dots. (C) The histograms show the distributions of
the two parameters of interest.

Here, m0 is the number of successfully transfected mRNA molecules at the onset time
point t0. The delivery time is de�ned as the duration between transfection start and
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protein expression onset. All determined onset times are relative to the time point of
lipoplex addition to the cells. The delivery time includes therefore all intermediate steps
like complex uptake or mRNA release. The model assumes one mRNA release event for
all molecules, which is clearly a simpli�cation. However, the duration of mRNA release is
short compared to the total expression and is therefore treated as one single event. The
product of released mRNA with the translation rate m0kTL is �tted as one parameter due
to parameter identi�ability and a �uorescence o�set parameter z was added. A detailed
description of the �tting routine with the corresponding starting values is given in the Ma-
terial and Methods section of the publication [P3]. The analytic solution (Equation 5.2)
was �tted to each single-cell trajectory using a Least-Square approach, which correspond
to the maximum likelihood �tting described in section 2.4 for the assumption of Gauss-
distributed measurement noise.
To robustly determine the parameters t0 and m0kTL the parameters kM and β were
�xed to mean values to avoid over �tting. The protein maturation and degradation
rate were determined by a translation block experiment using cycloheximide, which was
performed as an independent experiment previously [119] and the protocol is described
in Appendix A. With �xing the maturation and degradation rate the number of free
parameters are reduced to four. The parameter set, which is determined for each cell,
consists thereby of the �uorescence o�set, the mRNA degradation rate, the expression
rate, and the onset time. Figure 5.2. B illustrates the good agreement of the �t with the
experimental data for representative single-cell trajectories. The reliable determination of
the onset times (black dots) is illustrated in the magni�cation of the example trajectories
in Figure 5.2. B.
In order to estimate the population distributions for the parameters of interest, the onset
time and expression rate, the translation-maturation model was �tted to each single-cell
trajectory (Figure 5.2. C). The onset time distribution shows a width of roughly 2 h for
the slightly skewed distribution. The earliest onset times occur only a few minutes after
adding the transfection particles, while the later onset times extend to several hours. The
expression rates show a broad distribution over three orders of magnitude.

5.3.2. Alternative approaches for onset time determination
To enable high-throughput and reproducible results, three approaches were compared for
reliable onset time determination. The described translation-maturation model appeared
to be the most suitable approach. Besides this model, the analytical solution of the
two-stage translation model (Equation 4.3) and a model independent approach based on
hierarchical clustering analysis were tested.
The clustering approach is explained in detail in the supplementary information of the
publication [P3]. For the clustering approach, the onset time determination is treated as a
change point detection problem [169]. The change point is de�ned as the border between
the time point clusters before and after the onset time. The �uorescence intensities
�uctuate around an o�set value z before the onset time. These �uctuations are small
compared to the eGFP �uorescence signal, which increases for several hours after the
onset time. This behavior leads to a densely populated interval of �uorescence values
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Figure 5.3.: The three methods show di�erences regarding the determination of the onset
time t0. (A) Exemplary trajectories (gray) are shown with the respective �ts for the
two-stage (green) and the three-stage (blue) model. The determinated onset times are
shown as dots with the corresponding color together with the onset time determined
by clustering (orange). (B) The distribution of the two-stage onset times is shifted to
longer times compared to the other two approaches.

before the onset time and a population of lower density afterwards. The di�erences of the
densities before and after translation onset is used to determine the onset time point by
hierarchical clustering. To determine the border between the clusters a cuto� value need
to be de�ned manually.

Figure 5.3. illustrates the di�erences of onset time determination for the three methods.
Figure 5.3. A shows representative trajectories (gray) with the respective �ts for the two-
stage (green) and the three-stage (blue) model. The two-stage model implements the
onset as a sharp kink, which leads generally to an overestimation of the onset time. This
overestimation is represented in the high residuals between �ts and experimental data
like discussed in Figure 4.5.D. In contrast the translation-maturation model represent
the same onset behavior than the data. The clustering onset times (orange) are typically
located between the two model approaches and tend to be closer to the three-stage model.
These di�erences are also re�ected in the distribution of the onset times shown in the
histograms of Figure 5.3. B. The histogram of the two-stage model is shifted to later
times compared to the other two approaches. The cluster approach leads to good results
if a suitable cuto� value is set to determine the border between the two clusters. This
value can vary dependent on the data set and has to be manually chosen, which is a
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disadvantage compared to the three-stage model.

5.4. Transfection ability changes dependent on external
conditions

In order to investigate if the delivery time is correlated with the expression e�ciency at the
single-cell level, �uorescence trajectories were analyzed using the translation-maturation
model obtained from cells transfected with di�erent lipd-based vectors or varied FBS
fractions. As a model system mRNA-L2000 lipoplexes were used to study the e�ect of
nonspeci�c serum protein binding on the nanocarrier's surface by increasing the FBS
fraction within the medium during the 1 h of complex incubation. To exclude day-to-day
variances, six FBS fractions ranging from 0% to 10% (v/v) FBS were investigated in
parallel. Each FBS fraction was applied in one of the six channels of the single-cell array
with approximately the same number of cells per channel.

Figure 5.4.: The protein expression kinetics show changes dependent on FBS concen-
tration re�ected in TE and the single-cell time courses. (A) The TE (mean ±std)
decreases with increasing FBS fraction. Representative overlays of the phase contrast
image with the eGFP �uorescence image are shown with constant contrast settings for
direct comparison of intensities. (B) The single-cell trajectories show the eGFP expres-
sion kinetics (gray lines) and the respective mean trajectory (black line) of each data
set with the number n of cells. The data sets of cells treated with 0%, 2%, and 10%
FBS are exemplary shown.

The representative overlays of the phase contrast images with the corresponding eGFP
�uorescence images at the end of the measurement, 24 h after transfection, show clear
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di�erences in the �uorescence intensities as well as in the number of �uorescent cells for
di�erent FBS fractions (Figure 5.4. A). The di�erences in TE, de�ned as the ratio between
eGFP positive cells and the total number of cells per �eld of view, is determined using all
endpoint images. The TE decreases from 92% ±3% for cells treated without FBS to 31%
±6% for cells transfected with 10% FBS (the mean TE data for 0% FBS, 2% FBS, and
10% FBS is shown with the respective standard deviation in Figure 5.4. A). The decrease
of TE in the presence of serum proteins is known from literature [152, 170]. The single-
cell trajectories of the three data sets with the respective mean trajectories are shown
in Figure 5.4. B. A large di�erence of the expression kinetics is observed between cells
treated without FBS to cells treated with FBS, which is in agreement with the decreasing
TE. The serum's in�uence is re�ected in the decreasing number of single-cell trajectories,
which is expected due to the decreasing TE under the assumption of the same number of
cells per condition.

5.4.1. eGFP expression kinetics change with increasing serum
fraction

The �uorescence trajectories of the six FBS data sets are analyzed by �tting the translation-
maturation model as described in subsection 5.3.1. to obtain the parameter set of the four
free parameters for each cell. The �uorescent o�set z, which has no biological meaning,
and the mRNA degradation rate δ show no dependence on varying FBS concentration.
Figure 5.5. shows the histograms for the �uorescence o�set z (A) and the mRNA degra-
dation rate δ (B) with the respective mean values (black circles). Both parameter show
only statistical �uctuations for all data sets. The background o�set has a mean value of
13.5 ±0.4 a.u. and the mRNA degradation rate is 0.052 ±0.006 h-1. The mean mRNA
degradation rate equates to a mRNA half-life of approximately 13.4 h of the transfected
construct.

Figure 5.5.: The histograms (green) of the �uorescence o�set z (A) and the mRNA
degradation rate d (B) show non signi�cant variations between the single data sets of
di�erent FBS fractions, which is further illustrated by the overlapping mean values
(black circles) of each distribution.
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The other two free parameters, t0 and m0kTL, of the translation-maturation model show
systematic changes for changing FBS levels. Figure 5.6. A shows the parameters for t0
and m0kTL, whereas each dot correspond to the parameter set of one cell. The mean value
and the standard deviation as error bar illustrate the cell-to-cell variability for each data
set of both parameters. The onset time distributions shift to later times with a shift of
the mean onset time from 1.6 ±1.3 h for 0% FBS to 2.9 ±2.1 h for 10% FBS.

Figure 5.6.: (A) The single-cell parameters for the onset time and the expression rate
(green dots) change dependent on the FBS fraction. The mean value with respective
standard deviation is shown in black. (B) The onset time shifts to later times with in-
creasing FBS level. The distribution can be described by Gamma functions respectively
shown for 0%, 2%, and 10% FBS. The distributions broadens with increasing FBS mea-
sured by FWHM of the Gamma distributions. (C) The expression rate distributions
gets smaller if FBS is present. Log-normal distributions are used to �t the histograms
and to calculate the FWHM. The gray lines of the FBS vs. FWHM plots are to guide
the eye.

The shift of later onset times is co-occurring with a broading of the distributions, which
is measured by the full width half maximum (FWHM) of the distribution (Figure 5.6. B).
The skewed distributions of the onset time histograms are thereby well described as
Gamma-distributions. The FWHM shows a linear increase from 1.8 h to 3.4 h with in-
creasing FBS fraction. The shift of the distributions reveal a delayed mRNA release into
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the cytosol with increasing variance between the data sets regarding higher FBS fractions,
which can be seen by the increasing FWHM of the onset distributions. The expression
rate seems to be more sensitive on increasing FBS than the onset time, which can be
seen by the break-in of the expression rate to almost a steady state level for all cells
treated with FBS. The expression rate distribution widths of FBS treated cells get much
sharper compared to the cells without FBS (Figure 5.6. C). The expression rate decreases
by factor of four between untreated cells and cells treated with 10% FBS (Figure 5.6. C).
The distributions for all six data sets is thereby well described by log-normal distributions
like shown in Figure 5.6. C. The decrease of expression rate could mainly result from the
decreased number of released mRNA m0. It is expected that the translation rate kTL is
not a�ected.

Figure 5.7.: (A) Scatter plots of the single-cell data of the onset time vs. the expression
rate do not show correlation. The Pearson's correlation coe�cients r are shown with
the respective p-values for three data sets of di�erent FBS levels. (B) Both parameter
systematically change with increasing FBS fractions (left and middle plot) resulting in
a negative trend of t0 vs. m0kTL for increasing FBS level (right plot). The population
mean values are plotted with the standard error of the mean (sem) with color intensity
indicating the FBS content. The gray lines are to guide the eye.

The single-cell onset times and expression rates were then further analyzed to investigate
if fast delivery is linked with high expression e�ciency. The scatter plots of the onset
times with the expression rates are uncorrelated at the single-cell level for all six data
sets, which is exemplary shown for 0%, 2%, and 10% FBS in Figure 5.7. A. The fact that
the onset time and the expression rate is uncorrelated at the single-cell level is indicated
by the Pearson's correlation coe�cients r, which range between -0.07 and -0.27 for all data
sets. The low coe�cients indicate that there is no intrinsic mechanism linking the total
delivery time with the expression e�ciency. But, the parameters show a systematic change
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on the population level (see Figure 5.6. B). The mean onset time increases until 4-6% FBS
and show only small changes within the error for higher FBS fractions (Figure 5.7. B �rst
plot). The mean expression rates decrease and show no signi�cant changes if FBS is
present (Figure 5.7. B second plot). The population behavior of both parameters lead to
negative trend for increasing FBS fractions (Figure 5.7. last plot).

5.4.2. Effect of protein adsorption differs between lipoplexes and
LNPs

The addition of serum proteins lead to a decrease of the expression rate with an increase of
the onset time for L2000 lipoplexes. However, this dependency is not universal for lipid-
based vectors. If single-cell data of cells transfected with L2000 or LNPs is compared
an opposite behavior is observed (Figure 5.8.). LNP transfected cells show an increase
of expression rate and a shift to earlier onsets if FBS is present during transfection.
The cells treated with the ionizable MC3 LNPs show less cell-to-cell variability for both
parameters compared to lipoplex transfected cells, which can be seen in the less scattered
data (Figure 5.8.). The onset time of LNPs shifts from 4.4 ±0.7 h for untreated cells to

Figure 5.8.: Protein adsorption on the mRNA vector's surface has the opposite e�ect on
LNPs compared to lipoplexes. The single-cell scatter plots for the onset time against
the expression rate reveal the opposed e�ect on transfection ability between L2000
lipoplexes (left) and LNPs (right) dependent on FBS addition. The arrows clarify the
opposite e�ect induced by FBS. Each data point correspond to the parameter set of a
single cell and the median value for each data set is shown as thick dot.

1.5 ±0.4 h of cells transfected with FBS in the present. For comparison the onset time
of L2000 transfected cells shift from 1.6 ±1.3 h to 2.3 ±1.7 h (2% FBS data set). The
smaller cell-to-cell variability is also indicated by the smaller standard deviations of less
than one hour for the LNP treated cells. The mean expression rate increases by a factor
of four from 30 ±15 h-1 to 120 ±50 h-1 after FBS addition. But, like for lipoplexes the
single-cell parameters are uncorrelated at the single-cell level for both cases.
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5.5. Ionizable lipids and their effect on expression
efficiency

The MC3 LNPs show a more suitable behavior compared to L2000 lipoplexes with regard
to therapeutic purposes. The cell-to-cell variance is less and they are functional if serum
proteins are present, which is crucial for in vivo applications. In order to investigate how
ionizable lipids with di�erent pKa values in�uence the expression e�ciency, three di�er-
ent LNP formulations introduced in section 5.1. were tested. The analyzed LNPs are
made with one of the ionizable lipids: DLin (pKa=6.8 [171]), KC2 (pKa=6.7 [171]), or
MC3 (pKa=6.4 [172]). The three LNP formulations were analyzed using the same assay
as for the L2000 lipoplex data sets. The quanti�cation of the expression e�ciency for
the di�erent LNPs are part of the manuscript [M2] listed in Associated publications and
manuscripts. In this work, the structural changes of the LNPs under varied pH values
measured by X-ray scattering are compared to their transfection ability on a population
and single-cell level. The goal is to obtain a better understanding how internal LNP struc-
ture variation due to pH changes, which occurs during endocytosis, e�ect the transfection
e�ciency of the delivery system.
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Figure 5.9.: : Transfection of cells using di�erent mRNA-LNPs. Cells expressing eGFP
(green) on a micropatterned array transfected with one of the used LNPs 10 h after
transfection. The scale bar correspond to 100 µm. The single-cell trajectories show the
eGFP translation dynamics of cells transfected with DLin (blue), KC2 (orange), or MC3
(red). The black time course correspond to the respective population time course.

HuH7 cells were transfected with one of the LNP formulations 1 h after the time-lapse
measurement was started with a �nal concentration of 0.5 ng/µl eGFP mRNA in L15
medium supplemented with 1% FBS. The LNPs were incubated for 1 h like in the previous
experiments. Figure 5.9. shows a subset of the single-cell trajectories for the three LNP
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formulations. Comparing the translation kinetics, it is obvious that the expression levels
di�er between the LNP systems. The KC2 particles show the highest expression, followed
by cells transfected with MC3. DLin shows the weakest expression. Interestingly, all three
LNPs seem to have a narrow time interval for expression onset compared to trajectories
transfected with L2000 (Figure 5.1.).

This impression is con�rmed by the similar distributions of the onset times (Figure 5.10.A).
All LNPs show a mean onset time of ∼1.4 h with small variation regarding the standard
deviation of 0.2 h for MC3, 0.3 h for KC2, and 0.4 h for DLin. The same trend is ob-
served for the FWHM of Gamma distributions �tted to the onset times (MC3 0.5 h, KC2
0.6 h, DLin 0.8 h). The expression rate on the other hand clearly changes for di�erent
ionizable lipids (Figure 5.10. B). The distribution for DLin has the smallest mean value
of 161 ±95 h-1 followed by MC3 with a mean of 310 ±129 h-1. The expression rates for
KC2 is the highest with 538 ±269 h-1. The FWHMs of the log-normal distributions �tted
to the histograms illustrate that the distribution width of KC2 (FWHMKC2=455.3 h-1 ) is
larger than the FWHM of 147.1 h-1 for DLin and 239.3 h-1 for MC3. The translation rate
kTL is expected to be independent on the ionizable lipid, which means that the number
of successfully released mRNA molecules m0 needs to change depending on the ionizable
lipid. The scatter plot stresses the similar onset time distributions and the variation for
the expression rate distributions (Figure 5.10. C). The two parameters do not correlate
at the single-cell level for cells transfected with KC2 or MC3 like indicated by the small
Pearson's correlation coe�cients. Interestingly, cells transfected with DLin show a weak
negative correlation of r=-0.33.
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Figure 5.10.: The onset time distribution (A) for all LNP formulations do not deviate
much from each other, whereas the expression rate shows clear changes (B). The scatter
plot of both parameters illustrate the shift for the expression rates (C). Each data point
corresponds to the parameters of one cell and the Pearson's correlation coe�cients r are
given for each LNP system.

5.6. Discussion
The single-cell translation assay enables measuring the expression onset and rate in in-
dividual cells in a highly parallel manner. The onset time is thereby a measure for the
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mRNA transport process consisting of the intermediate steps of particle adsorption, up-
take, intracellular tra�cking, endosomal release, and translation. To avoid long-term
nanocarrier incubation and the ability to measure early protein expression onsets the use
of a perfusion system is necessary. Furthermore, the expression onset time relative to the
transfection start only corresponds to the total delivery time if the incubation time is
kept short. For long-term lipoplex incubation, the distribution shifts to later times and
broadens compared to the onset times of a de�ned incubation period of 1 h like illustrated
in Figure 5.11., which veri�es the need of short nanocarrier incubation periods.

Figure 5.11.: The onset time distribution shift to later times for long-term lipoplex
incubation compared to a controlled incubation period of 1 h. The mean value for each
distribution is shown as dashed line.

The short lipoplex incubation enables the measurement of mRNA delivery time in indi-
vidual cells and its correlation with expression e�ciency. The expression rate was used
as a measure for transfection e�ciency at the single-cell level. It is strongly correlated
with the �uorescent intensity at a distinct time point after transfection, which is often
used in literature [173, 174]. The correlation can be explained because the slope of a
straight line between the expression onset and a certain protein level after a certain time
interval (of for example 12 h) correspond to the translation rate kTL (Figure 5.12.). This
approximation can only be made as long as the protein increase is in a linear regime.

The distribution of onset times with single-cell resolution was measured for the �rst time.
They generally show narrow width of only a few hours (Figure 5.6. B and Figure 5.10.A).
It is reported in literature that there is only a small window of opportunity for successful
molecule release before the nanocarrier is trapped in endosomes or lysosomes [135, 137].
Since, we restrict the lipoplex incubation time to only 1 h the onset times correspond to
the delivery time distribution. If mRNA nanocarriers get stuck in endosomes or lysosomes
and are possibly degraded, the release of functional mRNA molecules for late time points
is less likely and explains why late onsets are not observed. This mechanism would sug-
gest that fast delivery time is linked with high molecule release and therefore with high
expression rates. Yet, an general intrinsic link for these parameters could not be con-
�rmed at the single-cell level due to the low Pearson's correlation coe�cients for L2000
lipoplexes (Figure 5.7.) as well as for LNPs (Figure 5.10.). However, external parameters
like increasing serum protein (FBS) concentrations can lead to a systematic change of
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Figure 5.12.: The expression rate m0kTL shows strong correlation with the intensity
level 12 h after transfection because the translation rate is approximately the straight's
slope between the onset time and the �uorescence intensity after a 12 h time interval
(left plot). The scatter plot of the expression rates, determined by �tting the three-stage
model, and the �uorescence intensities at t=12 h as measure for transfection e�ciency
TE reveals the strong correlation (right plot).

both parameters. Interestingly, the e�ect of serum proteins on the delivery system can
have the opposite e�ect for di�erent nanocarrier systems. In case of L2000 lipoplexes
the onset distribution shifts to later times and the expression rate decreases if FBS is
present during transfection. Whereas, the opposite is the case for cells transfected with
MC3 LNPs (Figure 5.8.). The unspeci�c adsorption of serum proteins can lead to the
formation of a protein corona on the nanocarrier's surface [175, 176]. The surface charge
and internal structure of the delivery particles changes depending on the protein corona
formation, which in�uences the particle delivery for example during adsorption or endo-
somal uptake [177]. The formation of a protein corona appears to have di�erent e�ects
on the delivery time and transfection e�ciency. One explanation may be the di�erent
targeting of endocytotic pathways due to di�erent properties of the delivery systems like
the lipid composition or size [144]. Proteomic studies of the corona revealed that the pro-
teins forming the corona varies regarding their composition and quantities for di�erent
nanocarrier systems [178], which di�ers for lipoplexes and LNPs. The reason why LNPs
show faster and more e�cient uptake might be attributed to apolipoprotein E (apoE)
adsorption, which is one of the proteins contained in FBS [179]. It is reported that
apoE adsorption on LNPs containing ionizable lipids and dissociable PEG-lipid increases
the uptake e�ciency in hepatocytes [153]. Typically, the LNPs have a neutral surface
charge under physiological pH, which is the reason for the poor uptake of LNPs without
serum proteins. But with serum proteins present during transfection, the adsorption of
apoE leads to a targeting e�ect via apoE recognizing receptors [180]. The reason why
LNPs without FBS are still able to transfect HuH7 cells, although rather slowly, might
be because HuH7 cells secret apoE leading to small amount of apoE present in the cells'
environment compared to medium supplemented with FBS [181]. In summary, the e�ect
of serum protein addition is adverse on both timing and e�ciency for L2000 lipoplexes,
while, in contrast, it improves both timing and e�ciency for lipid nanoparticle mediated
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transfection.

As LNPs are currently the most mature and clinical advanced delivery system [138], three
LNP systems with ionizable lipids of di�erent pKa were further analyzed. All three LNP
systems show similar delivery time distributions (Figure 5.10.A). The similarity regarding
the onset timing is not surprising due to the same biological identity of all LNP systems.
It is proposed in literature that the protein corona of a nanoparticle interacts with the
cell's surface and thereby de�nes the biological identity of the nanoparticle [175]. For
the process of LNP adsorption and the particle uptake, it is expected that the dominat-
ing properties should be the apoE containing protein corona on the PEG lipid shell of
the particles [182]. The common properties of the LNP's outer shell could contribute to
the comparable delivery time distribution. Besides the comparable outer shell compo-
sition, the ionizable lipids should show the same behavior at physiological pH, which is
higher than all three pKa values. These two reasons could explain why the delivery time
distributions show no considerable dependency regarding the ionizable lipid. However,
the expression rate distributions show a clearly di�erent behavior (Figure 5.10. B). It is
expected, that the inner structure's properties of a delivery system make the pivotal di�er-
ence after uptake and in�uence the endosomal release e�ciency [177]. As the pH declines
during endosome maturation the LNP systems show di�erent behavior due to structural
changes of the LNPs driven by the properties of the ionizable lipid [183]. Therefore, it is
not surprising that the expression rates are di�erent between the LNP systems. The pH
dependent changes should have an in�uence on the fusogenic properties of the LNPs with
the endosomal membrane leading to varied amounts of released mRNAs. Comparing the
three LNP systems regarding their transfection e�ciency, it was observed that MC3 leads
to the most homogeneous behavior taking the distribution widths of delivery time and
expression rate together. KC2 shows especially for the expression rate a higher cell-to-cell
variability. DLin shows the weakest transfection e�ciency with the broadest onset time
distributions (Figure 5.10. C). Comparing the three LNP data sets, it was observed that
a change of the population distributions of the expression rate not necessarily needs to
have an e�ect on the onset time distribution as it was the case for the addition of FBS
compared to L2000 lipoplexes and MC3 LNPs (Figure 5.8.). As for the L2000 single-cell
data sets, the LNP data sets show at most a weak correlation for delivery time and ex-
pression rate at the single-cell level reinforcing the assumption that there is no general
intrinsic mechanism linking fast delivery time with high expression e�ciency.

For further investigations of the approach, if one of the intermediate steps of the delivery
process is crucial for e�cient mRNA release and maybe linked intrinsically, improvements
are needed. It was shown in other studies using scanning-time-lapse microscopy that
more than one �uorescent marker can be used to correlate di�erent �uorescent signals for
individual cells [75, 184]. An additional �uorescent marker for labeling the nanocarriers
or endosomes might be useful to gain a deeper understanding on the delivery process.
For this purpose Cy5 labeled mRNA was encapsulated in L2000 lipoplexes and LNPs
to observe the nanocarrier signal kinetics (Figure 7.8.). Furthermore a �uorescent dye,
which labels acidic organelles such as mature endosomes or lysosomes called LysotrackerTM

(Thermo Fisher), was tested for its capability to monitor endosomal uptake dynamics.
Both approaches are discussed in detail in chapter 7. The labeled L2000 lipoplexes show
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the lipoplex adsorption on the cell surface, but do not give further insights into the
intermediate steps of transfection (Figure 7.6. B). This �nding is in agreement with a
previous study, where it was shown that the lipoplex adsorption kinetics for transfected
and non transfected cells are the same [174]. Establishing a �uorescent dye that resolve
the time event of an intermediate step of delivery, need to be carefully tested to enable
event-time correlation.

To conclude, the single-cell translation assay enables to determine the onset and expression
rate distributions depending on a variation of external conditions as well as for di�erent
nanocarrier systems. It o�ers insights into single-cell correlations of delivery timing and
expression e�ciency, which gives a new opportunity to quantify transfection e�ciency.
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6. mRNA half-life as function of
poly(A) tail length

In order to use the full potential of mRNA as a therapeutic, a better understanding of how
the translation process and therefore the amount of protein can be controlled is needed. In
chapter 5 it was shown that the choice of mRNA transport system and the environmental
conditions can have a tremendous e�ect on the delivery time and the expression rate.
However, it is expected that the kinetic rates describing the translation process, namely
the translation and degradation rates, are una�ected by the transport system. This was
shown for the degradation rates in the previous chapter (Figure 5.5. B). The expression
rate distributions are expected to be changed due to a varied number of transfected
molecules and not due to a varied translation rate. In order to change the expression
kinetics under the same transfection kinetics, the kinetic rates need to be varied. These
rates can be altered by systematically varying the sequence of the exogenous mRNAs.
As shown in chapter 4, the change of the protein degradation rate had an obvious e�ect
on single-cell translation kinetics. The increase of the protein degradation rate beween
eGFP and d2eGFP was obtained by adding the codon sequence of four additional amino
acids to the ORF coding for eGFP resulting in the expression of d2eGFP. The variation
of the protein degradation rate may be critical for therapeutic purposes, as it is possible
that other protein functions beside the stability are a�ected as well. While a change in
mRNA degradation rate is not expected to a�ect the protein function, it is one of the
key parameters for post-transcriptional expression regulation [43]. Much e�ort was put
into reducing the degradation rate and thus increasing the half-life of IVT mRNA. To
this end, analogs for the 5' cap were engineered [47], modi�ed nucleotides were used for
synthesizes [185], the in�uence of UTRs and their combinatory e�ect on mRNA stability
were studied [33, 186], and the e�ect of poly(A) tail length was investigated [187, 188].
These studies showed that the fate of exogenous mRNA in living cells is highly dependent
on its sequence as it in�uences translation e�ciency as well as mRNA half-life. However,
it is not well understood how mRNA sequence modi�cations change mRNA stability at
the single-cell level. Not to mention how these changes can be functionally described.

In a previous study, Ferizi et al. showed that the mRNA degradation rate distributions
of IVT mRNAs change signi�cantly for di�erent UTR combinations using a LISCA setup
similar to the studies of this thesis [33]. They showed that the approach is able to
determine the functional mRNA half-life in living cells. This is an advantage compared to
several other techniques used for mRNA half-life determination that measure the physical
half-life of mRNAs, additionally most of these studies are performed in yeast [189]. For
protein expression kinetics it is crucial that the mRNA is functional which means that it
is still translatable and not only physically present. However, it is di�cult to understand
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the mechanistic reasons why mRNAs with certain UTR combination are more stable than
others. In order to gain a better understanding of how the mRNA degradation rate can
be systematically varied, the dependency of poly(A) tail length on mRNA stability was
investigated. It is known for decades that the poly(A) tail is important for translation
e�ciency and stability regulation [38]. Yet, the e�ect of varied poly(A) tail length on
protein expression kinetics is not well explored on a quantitative level. For this purpose,
ten di�erent mRNA constructs of poly(A) tail lengths within the physiological range for
mammalian cells were investigated using the single-cell translation assay (section 2.3.).
The common design for all constructs consist of the minimum components of a mature
mRNA necessary for protein expression including a 5' cap, the mRNA body containing
the ORF, and the 3' poly(A) tail.

Hundreds of single-cell kinetics were measured for each construct of di�erent poly(A)
tail length to estimate the population distributions that describe cell-to-cell variability of
single-cell translation kinetics. It was shown that mainly the mRNA half-life is system-
atically e�ected by poly(A) length variations. A simple model for the interdependence of
mRNA half-life with poly(A) tail length was found enabling further insights into poly(A)
tail dependent mRNA degradation. The content of this chapter is based on the manuscript
[M3] listed in Associated publications and manuscripts. The study was done in collabora-
tion with Simone Ezendam, who contributed within the framework of her Master's thesis
[118], and in cooperation with ethris GmbH.

6.1. Post-transcriptional gene regulation

6.1.1. mRNA decay pathways

The control of mRNA turnover is one of the key parameters for post-transcriptional gene
regulation. The degradation of cytosolic mRNA in mammalian cells is mainly regulated by
enzymatic removal of adenosine residues at the 3' end, a process called deadenylation [190].
Two major pathways for mRNA degradation were identi�ed that are both initiated by
poly(A) tail removal [191]. These pathways are sketched in Figure 6.1.. After shortening
the poly(A) tail to a certain length the mRNA is �nally degraded following one of two
possible pathways. The removal of the poly(A) tail seems to be the rate limiting step for
degradation [192]. Firstly, the 5' cap is enzymatically hydrolyzed, resulting in a decapped
mRNA. The decapping of the 5' end enables the binding of a 5' exonuclease that degrades
the mRNA body in 5' to 3' direction. Secondly, a protein complex called the 3' exosome
(containing an exonuclease) binds to the 3' end after deadenylation and degrades the
mRNA body in 3' to 5' direction. Less likely pathways independent of deadenylation are
the decapping for non deadenylated mRNAs resulting in 5' exonuclease activitiy, or the
direct degradation by the 3' exosome.

Beside the mentioned mRNA decay pathways, degradation can also occur through en-
donucleotic cleavage. In this case, the mRNA body is cleaved somewhere and the thereby
generated new 5' and 3' ends are recognized by exonucleases [190]. Endonucleases can be
mediated for example by siRNA or a non-sense stop codon within the ORF. As the exoge-
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nous mRNAs in this study have an arti�cial ORF sequence, it is unlikely that edonuclease
activitiy is relevant for degradation of these mRNAs.
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Figure 6.1.: Main mRNA degradation pathway dependent on exonucleases. The major
pathway is marked by the thick arrows triggered by poly(A) tail shortening. Less likely
pathways or steps are marked by the thin arrows.

6.1.2. Deadenylation regulation
As poly(A) tail shortening is expected to be the rate limiting process for mRNA degrada-
tion, a closer look at the key players for deadenylation is given. The naturally occurring
key players are RNA sequence elements, deadenylase protein complexes, and poly(A)
binding proteins (PABPs) [190]. As the used exogenous mRNAs do not have any UTRs
and most RNA elements in�uencing deadenytlation are encoded in the UTR, RNA ele-
ments are not further discussed [38]. Therefore, the regulation can be attributed to the
interplay of PABPs and deadenylase complexes. The PABPs have two main functions,
whereat multiple PABPs can bind to the poly(A) tail at the same time [193]. The binding
of PABP to the tail protects it from degradation and the PABP can furthermore bind
to proteins that are bound to the 5' cap themselves. The interaction between cap and
tail binding proteins is called circularization and is important for translation regulation
e.g. ribosome recruitment and further protects both ends from degradation, therefore en-
hancing mRNA stability [194, 195]. The deadenylases on the other hand shortens the tail,
which �nally leads to degradation of the mRNA body by exonucleases. The process of �de-
fault� deadenylation, which is independent of any RNA element, consits of two consequent
phases with di�erent rates dependent on length [190]. For poly(A) tail lengths larger than
110 nt the protein complex Pan2/Pan3 is active and for smaller poly(A) lengths the pro-
tein complex ccr4/caf1 carries out the poly(A) tail shortening until only a few nucleotides
are left [190]. During the �rst phase, a degradation of the mRNA body is not reported.
Its degradation is mainly observed during or after the second deadenylation phase [190].
Furthermore, the two deadenylase complexes can interact with each other and form a
super complex which enables the coordination of both phases. This super complex can
be recruited to the tail as Pan3 and PABP can interact, which in principle can occur at
any PABP [190].
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Due to this biphasic mechanism of deadenylation, the mRNA half-life is dependent on
the poly(A) tail length. The naturally occurring poly(A) lengths for mammalian cells
determined by genome wide bulk studies are in the range of 0-300 nt, whereas the median
tail length varies for di�erent cell types between 65-95 nt [196, 197]. The abundance of
poly(A) tail lengths larger than 250 nt is rare [197]. The asymmetric length distributions
for mammalian cells have their maximum around 30-50 nt depending on the cell type.
Thereby, the median poly(A) tail length of di�erent genes are around 60 nt with a range
of 30-100 nt for 95% of the investigated genes [196].

6.1.3. Exogenous mRNA production of different poly(A) tail lengths

In order to study the impact of di�erent poly(A) tail lengths on protein expression, ten
in vitro transcribed mRNAs covering the physiological range of poly(A) tail length were
synthesized. The mRNA constructs for this study were produced and provided by Zeljka
Trepotec from ethris GmbH. The ORF of d2eGFP was cloned in the backbone of a plasmid
as described previously [107]. All mRNA constructs of di�erent poly(A) tail lengths are
synthesized by IVT using the same protocol. Thereby, the di�erent poly(A) tail length
nA were obtained using two di�erent techniques.

The shorter lengths of nA =(0 nt, 20 nt, 58 nt, 80 nt, 125 nt) were encoded in the pDNA
template after the ORF. Therefore, the synthetic poly(A) sequences of the desired length
were introduced into the vector backbone by PCR [198]. During IVT the mononucleotide
stretches of length nA are transcribed by the RNA polymerase generating the poly(A) tail
at the 3' end of the produced mRNA. The transcribed mRNAs of the template encoded
poly(A) tails are ready to use for transfection studies.

The longer tail lengths of nA =(60 nt, 125 nt, 190 nt, 240 nt, 290 nt) were synthesized in
a separate step after IVT of the mRNA construct without poly(A) tail by post-poly-
adenylation. Di�erent poly(A) tail lengths were generated by post-polyadenylation and
the enzyme poly(A) polymerase was mixed with the construct of nA =0 nt and adenosines.
In order to obtain �ve di�erent poly(A) tail lengths, the reaction time for post-poly-
adenylation was varied from 5min up to 1 h. The poly(A) tail lengths of all constructs
were veri�ed by gel electrophoresis and automated capillary electrophoresis.

Both of the two mentioned techniques have their limitations [198]. The encoded poly(A)
tails are limited to a length of approximately 120 nt. This is because long homopolymeric
stretches like the poly(A) tail tend to recombine during ampli�cation of the plasmid
leading to shorter plasmid encoded tails than intended. Furthermore, the error rate of
RNA polymerase during IVT increases with encoded poly(A) length as it gets more likely
for the a polymerase to slip o� the template for long homopolymeric stretches resulting
in shorter tail lengths as well [199]. For the enzymatically fabricated poly(A) tails it is
possible to generate tail lengths much longer than 120 nt. However, it is di�cult to control
the �nal length and the homogeneity of the poly(A) tail length for a certain reaction period
[198, 200].
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6.2. Translation kinetics depending on poly(A) tail length

6.2.1. Single-cell expression time courses

Each of the exogenous mRNA constructs of the �ve template encoded poly(A) tail lengths
(0 nt-125 nt) and the �ve enzymatic poly(A) tails (60 nt-290 nt) was analyzed using the
single-cell translation assay described in section 2.3. All mRNA constructs were encapsu-
lated with L2000 with a constant ratio of 2.5 µl L2000 per 1µg mRNA. As the constructs
di�er in their molecular weights due to the varied poly(A) length (∼24% deviation be-
tween the shortest and the longest construct) it has to be considered that the total number
of mRNAs, which are accessible for lipoplex formation, varies. However, it is to be ex-
pected that this only has an impact on the number of transfected molecules and that the
parameter of main interest, the mRNA half-life, is una�ected by the number of transfected
molecules. Several experimental replicates were performed using HuH7 cells to measure
all constructs at least twice.

Figure 6.2.: Single-cell time courses of cells transfected with mRNA encoding for
d2eGFP with template encoded poly(A) tails. The single-cell time courses (gray) are
plotted with the respective mean time course (blue) of di�erent poly(A) tail length
(upper left corner: speci�c length of poly(A) tail).

Representative single-cell time courses of d2eGFP expression of one replicate are shown
in Figure 6.2. for the encoded poly(A) tail constructs. The single-cell traces (gray) show
a large cell-to-cell variability as observed in the studies previously discussed. Clear di�er-
ences in the expression strength are visible for di�erent poly(A) tail lengths. No protein
expression was detectable for cells transfected with nA=0nt. As mRNA is expected to
be transfected (all other mRNAs transfected in the same experiment showed protein ex-
pression), one can conclude that the mRNA is non functional. The time courses of cells
transfected with the short 20 nt tails have low expression levels compared to the time
courses of longer poly(A) tails. The 20 nt time courses are very noisy, which is illustrated
by the still noisy mean time course (blue trace). However, the mean time course shows
a characteristic shape for d2eGFP expressing cells (as observed in Figure 4.1. B as well).
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The mean time courses indicate the population behavior and illustrate the di�erent ex-
pression levels, which are strongly increasing and less noisy for longer tails compared to
the construct with the 20 nt tail.

Figure 6.3.: Single-cell time courses of HuH7 expressing d2eGFP after mRNA transfec-
tion with enzymatically added poly(A) tails of varied lengths. Each gray time course
corresponds to one cell. The population kinetic is shown as mean time course (red line)
with the respective poly(A) tail length in the upper left corner.

The single-cell �uorescence time courses for the enzymatic poly(A) tail constructs show
a high heterogeneity regarding the translation kinetics in all experimental replicates as
representatively shown for one replicate in Figure 6.3.. The expression levels change de-
pending on poly(A) tail length and show a large heterogeneity as expected. Interestingly,
the mean expression time course decreases for the construct with 290 nt compared to the
construct with the highest mean expression (240 nt length). In general, the �uorescence
intensity time courses, which are directly proportional to the protein abundance, increase
with longer poly(A) tail lengths, which was reproducible for all replicates. This supports
the hypothesis that the mRNA half-life correlates with the poly(A) tail length.

6.2.2. Single-cell parameter estimation

In order to estimate the parameters which describe translation, the analytical solution
of the translation-maturation model (Equation 5.2) was �tted to each of the single-cell
time courses. Therefore, the same algorithm was used as for the parameter estimation in
chapter 5 and the respective algorithm is deposited at zenodo (doi:10.5281/zenodo.2626006).
Analog to the �tting of the eGFP time courses in chapter 5, the maturation rate kM and
the protein degradation rate β were �xed to a population value determined in a separate
experiment. It was assumed that the maturation rate is the same for eGFP and d2eGFP
as the proteins only di�er at the N-terminus and the amino acids forming the �uorophor
are the same for both GFP variants [99]. For the protein degradation rates it was shown
that they di�er by a factor of three (chapter 4) and therefore the degradation rate of
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6.2 Translation kinetics depending on poly(A) tail length

d2eGFP was experimentally determined using the mRNA constructs of this study. The
destabilized version was chosen because the higher turnover rate of d2eGFP allows for a
more direct monitoring of the expression kinetics compared to eGFP [117]. In order to
determine the mean protein degradation rate for d2eGFP, a translation block experiment
was performed as described in detail in Appendix A. The translation of cells transfected
with mRNA encoding for d2eGFP was blocked 8 h after transfection by adding CHX. The
�uorescence time courses monitored after translation inhibition (as shown in Figure A.4.)
were �tted by an exponential decay to determine the degradation rate. The mean value of
the estimated population distribution was used as �xed parameter for β =0.23 h-1 for each
�t. In Figure 6.4A representative time-series of d2eGFP expression are shown with the
respective �ts for the translation-maturation model (blue traces). The model describes
the single-cell kinetics in general. However, the residuals reveal that the d2eGFP kinetics
show systematic deviations (Figure 6.4B) between �t and experimental data. Further-
more, the d2eGFP kinetics are not as well described by the model as the eGFP kinetics
in chapter 5 (Figure 5.2).

In the previous study described in chapter 4, it was found that the model candidates
typically describe the eGFP kinetics better than the d2EGFP (Figure 4.5.D). The ribo-
some model described the expression kinetics for both reporters reasonable well (equations
given in Appendix B). For this reason the ribosome model was taken into account for
analyzing the d2eGFP kinetics of varied poly(A) lengths. In order to keep the number
of free parameters as low as possible, the ribosome binding kinetic was approximated as
Michaelis-Menten kinetic [118]. This approximation leads to a simpli�ed ribosome model
referred to as Michaelis-Menten model:

d[mRNA]

dt
= −δ[mRNA], [mRNA](t0) = m0 (6.1)

d[GFP ]

dt
= −β[GFP ] + kTL

[mRNA]

1 + α[mRNA]
, [GFP ](t0) = 0

The translation rate kTL is given by the quotient of the reaction's maximal speed vmax
with the Michaelis-Menten constant kMM . The parameter α = 1/kMM describes the ri-
bosome activity. The di�erence between the Michaelis-Menten model and the two-stage
model (Equation 4.1) is that it incorporates the ribosome kinetics into the translation step
but is otherwise the same. However, no analytical solution could be determined, which
is why the solution for the parameter estimation had to be solved numerically for each
time course. In Figure 6.4. A the respective �ts of the Michaelis-Menten model (green) are
plotted together with the experimental time courses (gray) and the �ts for the translation-
maturation model (blue). The Michaelis-Menten model described the experimental data
slightly better which was veri�ed by the lower residuals of the Michaelis-Menten model
(Figure 6.4. C). However, the Michaelis-Menten model did not neither resolve the system-
atic deviations of the �ts to the experimental data. Furthermore, the Michaelis-Menten
model has two more free parameters than the translation-maturation model and has to
be solved numerically, which is computationally more expensive. For these reasons, the
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parameter estimation was performed using the translation-maturation model taking sys-
tematic deviations into account.
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Figure 6.4.: Single-cell expression time courses of d2eGFP. (A) Representative �uores-
cence time courses with the corresponding �ts of the translation-maturation model
(blue) and the Michaelis-Menten model (green). (B) Residuals for both models are
shown as mean ±std. The residuals of the translation-maturation model are shown in
the background of the Michealis-Menten model in lighter color.

6.3. Influence of poly(A) tail length on single-cell
translation kinetics

6.3.1. poly(A) tail independent parameter distributions

Four parameters are determined by �tting each cell: the �uorescence o�set, the onset
time t0, the expression rate m0kTL, and the mRNA degradation rate δ. The o�set and
the onset time are expected to be independent of the tail length variation. The o�set
parameter has biologically no meaning and mainly depends on image acquisition settings
e.g. the exposure time. The distributions of the o�set parameter did not show systematic
changes for mRNAs of di�erent length. This is shown in Figure 6.5. A for one representa-
tive experiment of cells transfected with the enzymatically fabricated poly(A) tails. All
o�set distributions of di�erent replicates or the template encoded mRNAs did solely show
random variations. The protein expression onset depends on the mRNA delivery system
as well as the environmental properties like FBS concentration during transfection (see
chapter 5). All mRNA constructs were complexed using the same transfection protocol for
L2000. All mRNA lipoplex samples were incubated without FBS for one hour. For these
reasons, it is expected that the onset time distributions for mRNAs with di�erent poly(A)
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Figure 6.5.: Distributions of o�set (A) and onset time (B) for mRNAs of di�erent
poly(A) tail lengths with color intensity indicating the tail length. The median value
for each distributions is shown as a dot in the respective color.

tail length do not show substantial deviations. This expectation was con�rmed for the
onset time distributions of all replicates and is exemplarily shown for one experiment in
Figure 6.5. B.
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Figure 6.6.: The distributions of the expression rate m0kTL show the same variations
depending on poly(A) tail length (A) as for replicates of 125 nt length (B). The median
value of each data set is represented by a dot with color intensity indicating the tail
length or rather the replicate.

Beside the two discussed parameters, the expression ratem0kTL did not show a systematic
shift for increasing poly(A) tail length as well (Figure 6.6. A). The median expression rates
of one experiment for the �ve di�erent enzymatically synthesized poly(A) tail lengths
vary between 292 h-1 and 474 h-1 in a non-systematic matter. The variation within the
experiment could arise from di�erent amounts of transfected mRNA molecules m0 as each
of the L2000-lipoplexes had to be prepared separately. The random deviations within a
replicate are in the same range as for cells treated with the same mRNA construct at
di�erent days (Figure 6.6. B). The observed variation for the expression rate is likely due
to batch e�ects that possibly arise from variations within the transfection process like
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discussed in section 4.4 (see Figure 4.6.D).

6.3.2. mRNA half-life changes with increasing poly(A) tail length
The �nal parameter, which is expected to be dependent on poly(A) length, is the mRNA
degradation rate. For the following results the degradation rate is converted into mRNA
half-life τmRNA = ln(2)/δ . The single-cell data of the results shown so far were not pooled
to discuss the intra- and interexperimental variance of the data. In order to increase
statistics, the data was pooled for each mRNA construct after checking whether the
results were reproducible.
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Figure 6.7.: Day-to-day variance of the half-life distribution estimated as Kernel densi-
ties with the respective median values represented as dots depending on poly(A) tail
length. The coloring corresponds to di�erent replicates.

Figure 6.7. shows the overlay of the mRNA half-life distributions for three replicates of
the enzymatic poly(A) constructs. Most distributions of the same mRNA construct cover
a similar range across replicates indicating that pooling of the data is appropriate. Some
individual distributions (as the distribution of replicate 1 at of 125 nt) show a shift to
higher half-lives as the other two replicates. However, the trend of the median half-lives
is reproducible for all replicates. The same was observed for the other four template
encoded constructs. For this reason, the data sets of all replicates were pooled for further
analysis.
Figure 6.8. shows the single-cell data for each construct with the estimated population
distribution estimated in gray. The respective median with the �rst and third quartile are
plotted for clari�cation. No mRNA half-life was determined for nA=0nt as no d2eGFP
expression was measured. Of course, the mRNAs without a poly(A) tail have a physical
half-life but as they lead to no expression the functional half-life is zero. For the four
constructs of template encoded poly(A) tails (left plot of Figure 6.8.) the half-life dis-
tributions were shifted to higher half-lives with increasing tail lengths of almost a factor
four between the shortest tail of 20 nt and the longest one with 125 nt. Beside the shift
to higher half-lives, the estimated Kernel distributions broadened from a FWHM of 3.6 h
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Figure 6.8.: The dependency of poly(A) tail size with mRNA half-life at the single-cell
level of the pooled data sets. The left plot shows the pooled data of all experiments
with the four constructs of encoded poly(A) tails. The �ve enzymatically added poly(A)
tail constructs are shown in the right plot. Each data point correspond to a single cell.
The black lines mark the median value (thick line) and the interquartile range of each
construct. The gray areas correspond to the estimated Kernel distributions.

to 9.9 h. For the enzymatically added poly(A) tails (right plot of Figure 6.8.) the distri-
butions shift to higher half-lives as well except for the construct with the longest tail of
290 nt. The decrease may be biologically relevant as it is reported that hyperpolyadeny-
lated mRNAs can result in faster decay as longer is not always better [38, 201]. The
maximal increase for the enzymatic poly(A) tails is about a factor of three between the
tail with nA=60nt and nA=240 nt. The mean half-life for the longest tail decreased to the
same level than the mRNA construct of nA=190 nt. The trend of the distribution widths
(FWHM) is the same than for the mean values. The FWHM increases up to 22.3 h for
nA=240 nt. The mean values and FWHM for all constructs are given in Table 6.1..

The poly(A) lengths were designed to overlap each other for the template encoded and
enzymatically added tails. The poly(A) lengths of 60 nt and 125 nt were analyzed for both
fabrication methods. In Figure 6.9. the half-life distributions for the constructs of same
theoretical lengths are shown. The half-life distributions of template encoded tails (blue)
and the enzymatically added tails (red) are placed opposite to each other. For the shorter
length of 60 nt the distributions are almost identical with a divergence of the mean values
smaller than the standard error of the mean (see Table 6.1.). This is not the case for the
distributions of 125 nt length. The half-life distribution of enzymatic tails is shifted to
higher values with a divergence of 4 h for the mean values while the standard errors are in
a similar range of 0.4 h and 0.5 h respectively. This occurs most likely due to the di�erent
fabrication methods. It is expected that the enzymatically generated poly(A) tails lead
to broader tail length distribution with increasing reaction time as it is an enzymatic
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Table 6.1.: Mean half-life of mRNA constructs of template encoded (c) and enzymati-
cally added (e) poly(A) tails with the respective standard error of the mean.

length [nt] mean half-life [h] sem [h] FWHM [h]
20 c 2.73 0.12 3.62
60 c 7.35 0.19 5.46
60 e 7.31 0.13 4.98
80 c 8.96 0.22 6.96
125 c 10.48 0.40 9.93
125 e 14.48 0.48 10.90
190 e 17.91 0.68 17.55
240 e 21.32 0.83 22.28
290 e 17.32 0.81 17.08

reaction compared to template encoded poly(A) tails [200]. Furthermore, the template
encoded length of 125 nt is possibly shorter in reality due to spontaneous deletion of parts
of the encoded homonucleotide stretches during plasmid ampli�cation in bacteria [198].
These reasons could explain the di�erences for the half-life distributions as it is expected
that the poly(A) tail length distributions for the two fabrication methods are not the
same for longer poly(A) tails.
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Figure 6.9.: Half-life distributions of mRNA constructs with template encoded (blue)
and enzymatically added (red) poly(A) tails. The estimated Kernel densities are plotted
with the median (thick line) and the interquartile range (0.25 quantile and 0.75 quantile).

Figure 6.10.A shows the mean half-life of each mRNA construct as a function of poly(A)
tail length with the respective standard error of the mean. The template encoded mean
half-lives (blue) increases depending on longer poly(A) tail length. The enzymatically
fabricated poly(A) tails (red) show increasing half-lives as well. However, the half-life
of the construct with the longest tail (290 nt) has a lower half-life than the construct
with nA= 240 nt. In order to verify if the decreased half-life has biological origin further
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investigations are needed. The mean half-lives follow the same trend as discussed for the
population distributions (Figure 6.8.).

Next, a simple model was developed that describes the mRNA half-life τmRNA as a function
of the poly(A) tail length nA. It was assumed that a critical poly(A) tail length n∗ is
needed for translation initiation in order to enable eGFP expression. Furthermore, it
is assumed that the mRNA decay is sequentially depending on the poly(A) tail length
and that this dependency is non-linear. As a �rst ansatz, the dependency of the mRNA
half-life τmRNA on the poly(A) tail length nA is described by a power function depending
on a pre-factor α and an exponent ε:

τmRNA = α · (nA − n∗)ε (6.2)
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Figure 6.10.: In�uence of the poly(A) tail length on the mean mRNA half-life τmRNA.
(A) The mean half-life for each construct with template encoded (blue) and enzymat-
ically added (red) poly(A) tails are plotted with the respective sem. The gray line
corresponds to a �t with the 95% boundaries. (B) The normalized mRNA half-life to
the poly(A) tail length nA with the normalized experimental data.

The function given by Equation 6.2 was �tted to the data shown in Figure 6.10.A. The
mean values were weighted based on the standard error to �t the model (Equation 6.2) to
the data. The �t (gray trace) illustrates that the model is able to describe the experimen-
tal observations. The dashed lines mark the 95% con�dence boundaries of the �t for an
estimation of the error. The following �t parameters were determined: α=1.1, n∗=14.1,
ε=0.53. In order to investigate at which poly(A) tail length the impact of a single adeno-
sine is the highest, the mRNA half-life was normalized by the poly(A) tail length. The
normalized mRNA half-life was plotted as function of the poly(A) tail length together
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with the experimental data (Figure 6.10. B). The normalized mRNA half-life shows a fast
increase for poly(A) tails longer than the critical length n∗ which peaks around a length
of 30 nt and decreases much slower afterwards. The length at the half maximum of the
normalized half-life smaller than 30 nt is reached at a length of 16 nt. In contrast, the
length of half maximum larger than the maximum is reached at 260 nt illustrating the
asymmetric trend. The maximum nmax of 30 nt is dependent on the critical length n∗ and
the exponent ε :

nmax = −
n∗

ε− 1
(6.3)

Interestingly, a poly(A) tail length of 30 nt corresponds to the most frequent poly(A) tail
length found in several human cell lines [197].

6.4. Discussion

LISCA experiments of cells transfected with ten di�erent mRNA constructs of varied
poly(A) tail length enabled single-cell protein expression and the accurate measurement
of functional mRNA half-life distributions. A high heterogeneity of expression levels was
observed for each mRNA construct that yields to reporter protein translation (Figure 6.2.
and Figure 6.3.). This �nding already indicates that at least one of the parameters that
describe the translation kinetics is proportional to the poly(A) tail length. The param-
eters of each cell were determined using the established translation-maturation model.
The Michealis-Menten model lead to slightly better description of the experimental time
courses but at the cost of two additional �tting parameters (Figure 6.4.).

The parameter distributions for all experiments were estimated and it was investigated
whether they change systematically for increasing poly(A) tail length. The o�set pa-
rameter and the onset time appeared to be una�ected, as expected (Figure 6.5.). The
expression rate did not show a dependency on poly(A) tail length neither (Figure 6.6.)
which could have been possible as PABPs interact and stabilize proteins bound at the
5' cap and it is known that this leads to enhanced translation initiation [186]. It is con-
ceivable that the expression rate m0kTL shows correlation with poly(A) tail length. In
literature it is reported that translation e�ciency sometimes is coupled with poly(A) tail
length. Subtelny et al. showed that this is the case for translation in embryonic cells,
but that the e�ect dissolves during development and was not found for di�erentiated cells
[197]. In a di�erent study of Chang et al., it was observed that the translation e�ciency
in human cell lines did not correlate with poly(A) tail length, which is in agreement with
Subtelny et al. as they used cell lines e.g. HeLa, which are di�erentiated cells [196]. As
the used HuH7 cells are non-embryonic liver cells, it is possible that the translation rate is
una�ected by increasing poly(A) tail length as well. However, as the translation rate can-
not be estimated as single parameter it is possible that the large variation of transfected
mRNAs m0 masks changes within the translation rate kTL.
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It was shown, that the parameter that changes as a function of poly(A) tail length is the
mRNA stability measured by the functional mRNA half-life (Figure 6.7. and Figure 6.8.).
The correlation of the mean half-life with poly(A) tail length in Figure 6.10.A shows a
clearly non-linear trend. The dependency is described systematically for the �rst time.
A power function model (Equation 6.2) describes the experimental data reasonably well.
The results of the �t give new insights in the regulation of poly(A) dependent mRNA
degradation. A critical length of about 14 nt is derived from the experimental data that
is needed to observe eGFP expression. Interestingly, this is the same length scale that
is reported to bind one PABP [202]. However, at least two PABPs covering a length of
27-30 nt are needed for stable translation initiation [203]. This is one explanation why the
shortest length of 20 nt has a low expression level resulting in a low functional stability.
In addition, it is reported that poly(A) lengths shorter than ∼25 nt are immediately
enzymatically marked which functions as '�nal' signal for mRNA degradation [204]. The
length for binding two PABPs is exactly the length at which the normalized mRNA
half-life has its maximum and prevents the mRNA from marking for the �nal decay
(Figure 6.10. B). The impact for one nucleotide in the poly(A) tail range between the
critical length and 30 nt increases very fast which could be due to an increasing probability
for a second PABP to bind with increasing length up to 30 nt. Therefore, the single-cell
studies con�rm that the binding of two PABPs is an important benchmark for mRNA
stability. The poly(A) dependent mRNA degradation process has to be considered as a
dynamic interplay between cap binding proteins, the PABP and the protein complexes
containing deadenylases (Figure 6.11.).

The deadenylation process occurs in two length dependent phases [190]. It is reported
that the deadenylation happens at di�erent rates depending on the active deadenylase
complex (as described in subsection 6.1.2.). For tails longer than 110 nt the Pan2/Pan3
complex is active until a length of 70-80 nt after the protein complex of the second phase
takes over. The complex leads to a rather slow poly(A) tail shortening as it is reported
that the Pan2/Pan3 complex shows a distributive digestion of the poly(A) tail [190].
A distributive digestion is characterized by removing only a few nucleotides before the
enzyme slips o� the target and has to bind to a new one [205]. The second phase, in
contrast, is reported to show a processive digestion kinetics. During the second phase
the complex ccr4/caf1 is actively binding to poly(A) tail length in the range of 10-110 nt.
For the processive digestion by ccr4/caf1, the complex remains bound to the target and
removes nearly the whole poly(A) tail before releasing the target [205]. This would result
in an linear dependency between mRNA half-life and poly(A) tail length up to 70 nt if only
the processive degradation takes place. However, this was not resolved in the experimental
data. Furthermore, there is experimental evidence that for default deadenylation the
complexes of both phases form a �super� complex that enables the coordination of both
phases [206]. The super complex possibly gets recruited to the poly(A)-PABP complex
as Pan3 is able to interact with PABP [190]. The biphasic behavior of deadenylation
explains why the mRNA half-life does not correlate with poly(A) tail length in a linear
way but depends on slow distributive digestion for at least two thirds of the investigated
poly(A) tail range. Distributive enzyme kinetics are limited by the di�usion of the enzyme
to the target and the rates typically correlate with the abundance of target n by n0.5. A
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similar exponent of ε=0.53 was found for the model describing the dependency of poly(A)
tail length on mRNA half-life, which is an indication that the stability regulation of the
investigated constructs is dominated by a distributive poly(A) digestion.

AA[...]AAAAA[...]An

30 nt

5’-cap

PABPPABP PABP

deadenylase
1. phase nA>110 nt 
2. phase nA ~10-110 nt

mRNA

cap binding proteins

Figure 6.11.: Schematic mRNA deadenylation depending on poly(A) tail length. The
dynamic process of deadenylation depends on the interplay between the cap binding
proteins, the PABP, and the deadenylases shortening the poyl(A) tail. Two di�erent
deadenylase complexes are active in a tail length dependent manner.

In conclusion, a �rst systematic description how poly(A) tail length a�ects mRNA half-life
was given by the proposed model that described the single-cell data (Equation 6.2). This
�nding is a further veri�cation that single-cell translation studies enable new insights into
protein expression kinetics. The approach is accurate enough to measure the cell-to-cell
variability within a population and provides enough statistics to determine mean values
with a small error rate which enabled further investigation of the mRNA half-life as a
function of poly(A) tail length.
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7. Dual-color approach for combinatory
dynamic analysis

Single-cell protein expression time courses proved to be a suitable readout to quantify
translation after mRNA transfection to give new insights e.g. in mRNA nanocarrier
transport as shown in the previous chapters 4-6. In order to gain more information from
LISCA studies, the readout of two or more �uorescent signals within one cell had shown
to be bene�cial. Other studies investigated the time dependence of apoptotic events at
the single-cell level using �uorescent marker combinations to determine the occurrence of
intermediate steps of programmed cell death [75, 184]. Depending on the marker combina-
tion, this enabled the correlation of event times or whole dynamics. In this chapter, three
approaches are listed describing how the observation of two parallel �uorescence intensity
time courses can be applied for single-cell translation studies. Firstly, the expression of
two reporter proteins within the same cell can be easily achieved. This is done by the
simultaneous delivery of the genetic information for both reporter proteins. Secondly, as
the delivery process of a mRNA nanocarrier itself depends on several intermediate steps,
�uorescent markers identifying one of the intermediate steps of the transport process
would allow for further correlation studies with the potential to reveal the crucial steps
of particle uptake. Finally, the direct measuring of the mRNA concentration would be
bene�cial for the quanti�cation of translation kinetics to improve parameter estimation.

7.1. Co-expression of reporter proteins
Previous studies related to the quanti�cation of gene delivery and expression dynamics
observed �uorescence intensity time courses of cells expressing two di�erent reporter pro-
teins [67]. In order to observe two reporter protein expression kinetics within the same
cell, the genetic information for both proteins needs to be delivered. Therefore, plasmid
DNA (pDNA) encoding for a �uorescent protein or mRNA can be used. If two pDNAs
encoding for varied �uorescent proteins of di�erent spectral properties are encapsulated
in a nanocarrier, it is possible to observe the �uorescence intensity time courses for both
proteins simultaneously. Schwake et al. developed a two-step stochastic model that de-
scribed the transfection and protein expression process in single-cells [67]. They showed
that the model was able to predict the number of transfected plasmids and the distri-
butions of expression level. By investigating co-transfected cells, it could be proved that
even the co-transfection rate for the plasmids was predictable by the model. Additionaly,
the simultaneous record of two protein expression kinetics can help to break parameter
symmetries of the translation model used for �tting as mentioned in chapter 4.
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Figure 7.1.: siRNA-mediated silencing of single-cell kinetics. (A) HuH7 cells transfected
with two mRNA constructs encoding for eGFP and CayRFP (gray bar) followed by
siRNA transfection targeting the eGFP mRNA (purple bar). Cells transfected only with
mRNA (left column) as a control and cells transfected with siRNA (right column). Each
time course corresponds to a single-cell and the respective mean time course is presented
in blue for eGFP or orange for CayRFP. (B) Scatter plot of single-cell degradation
rates for eGFP δG and CayRFP δR of control cells (blue) and siRNA treated ones
(orange). (C) The histograms for the degradation rates clarify the distribution shift of
siRNA treated cells to higher rates for eGFP revealing a subpopulation structure. The
distributions for CayRFP are una�ected. Figure adapted with permission from [119].

Furthermore, the dual expression of reporter proteins can be used to compare di�erences
of expression kinetics in the same cell. This was done for single-cell protein silencing
studies, whereas the non-silenced protein expression is used as control for the silenced
protein expression [119]. This approach is described in detail in [M4] (listed in Associated
publications and manuscripts). In this study, siRNA with a complementary sequence to
the mRNA encoding for eGFP was used to study the silencing e�ect mediated by siRNA
binding at the single-cell level. After siRNA transfection, the lead strand of the double
stranded siRNA is bound in the so called RNA-induced-silencing complex (RISC). The
RISC containing the leading strand is able to bind to a complementary mRNA sequence
which induces mRNA cleavage. The cleaved mRNA is recognized by the cell and further
degraded and consequently the targeted protein expression is silenced [128]. Many clinical
trials investigated the e�ciency of siRNAs to downregulate or even knockdown disease
related protein expression [12, 207]. The basic principle for dual protein expression is
analog to the co-transfection with pDNA [67].

Two mRNAs in equal amounts encoding for two �uorescent proteins were encapsulated in
L2000 lipoplexes. The single-cell translation assay is performed as previously described
by transfecting the cells with the two di�erent mRNA sequences encoding for eGFP
and the red �uorescent protein, so-called CayenneRFP (CayRFP). As the mRNAs are
transfected in one step, it is very likely to observe a high percentage of cells expressing
both reporter proteins. The kinetics of protein expression di�ered from each other mainly
because the protein degradation rates are not the same. Representative protein expression
time courses are shown for both reporters in Figure 7.1. A. Nanoparticles containing both
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mRNAs were incubated for 1 h (gray bar) at the beginning of the experiment. A sub
set of the cells were transfected with siRNA (purple bar) after mRNA transfection with
siRNA speci�c for the eGFP encoding mRNA. The CayRFP expression time courses are
comparable between siRNA treated and untreated cells, the eGFP expression is lower
for siRNA treated cells than for the control cells (Figure 7.1. A). The single-cell time
courses were analyzed as described in subsection 5.3.1.. As the transfected siRNA is
speci�c for the eGFP coding sequence, it is expected that the mRNA degradation rate
distribution changes for the eGFP encoding mRNA depend on siRNA treatment and that
the distribution for CayRFP is una�ected. The scatter plot of the mRNA degradation
rates determined per cell is shown in Figure 7.1. B. The mRNA degradation rates for
CayRFP δR scatter over the same range for siRNA treated cells (orange) and untreated
cells (blue). This is not the case for eGFP encoding mRNA degradation rates δG. The
degradation rates for the untreated cells are less scattered than the siRNA treated cells.
The histograms for the degradation rates in Figure 7.1. C further illustrate the broader
distribution of δG after siRNA transfection compared to the distribution of the control
cells. The reference of CayRFP shows almost identical distributions independent of siRNA
transfection. In order to determine the distributions, log-normal distribution functions
were �tted to the histograms. The siRNA treated distribution of δG was �tted by two
log-normal distribution functions, which describe the data reasonably well.

The most prominent change in the protein expression kinetics after siRNA transfection
was the change of δG distributions. As the δG distribution of siRNA treated cells can be
estimated by �tting two log-normal distributions it is likely that the population consists
of two subpopulation of cells: One with lower degradation rate, overlapping with the
distribution of control cells, and a second subpopulation of higher degradation rates. The
low-level population can be partly explained by low siRNA activity (escape of siRNA
transfection or low number of delivered siRNA molecules). The most likely explanation
of the bimodal distribution is the combination of probabilistic siRNA transfection and its
independence of siRNA-unrelated mRNA degradation. Importantly, the shift of the δG

distributions allows for quanti�cation of the gene silencing e�ciency by relative increase in
eGFP-mRNA degradation constants as fold change of the median degradation constants.
The expression of two reporter proteins proved to be useful as an internal control to
investigate siRNA-silencing activity, as the internal control of a second reporter enables
to quantifye the siRNA activity and the speci�city of the siRNA for the targeted mRNA.

7.2. Endocytosis marker

The use of two �uorescent proteins is a suitable approach for internal controls, but it does
not provide further insight in the mRNA delivery process. As the mRNA transport is one
of the key challenges for translation studies after mRNA transfection, it is reasonable to
have a closer look on the uptake pathway itself. The mRNA transport into the cytosol is
carried out by endocytosis (as described in section 5.1.). Thereby, the endosomal escape
of the mRNA nanocarriers into the cytosol has been identi�ed as the main bottleneck
[135]. The endosomal escape of lipid-based nanoparticles containing mRNA is most likely
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due to lipid-fusion of the nanoparticle with the endosomal plasma membrane followed by
endosomal leakage or rupture [161]. A variety of assays are reported to investigate the
endosomal escape of nanoparticles [161]. But most of them rely on population averaged
measurements, usage of arti�cial endosomes as a model to study the mechanism itself,
or rely on high resolution microscopy of single-cells [208, 209, 210]. All of these methods
are either not suitable to be combined with the single-cell translation assay or it needs
to be veri�ed if an adaption is possible. For this reason two �uorescent markers, which
accumulate in endosomes, were tested whether their signal time courses give additional
information on the transport process.

Dextran for endosome labeling
Dextrans, which are high molecular weight, branched, and neutral polysaccharides, can
be �uorescently labeled and are often used in literature to make endosomes visible due to
their endocytotic uptake [208, 209]. Fluorescent dextrans are commercially available in a
variety of di�erent spectral properties and molecular weights, one of them is pHodroTM

(Thermo Fisher). The presented data is obtained using pHodro Red with a molecular
weight of 10,000Da. The �uorescence emission of pHodro is pH dependent in the range
of pH 4-8, which is the relevant range for endocytosis maturation, with high emission
under acidic conditions. As the �uorescence intensity is pH dependent, it is possible that
the time course of the signal shows a decrease that is related to endosomal leakage or
rupture due to nanoparticle escape. The dextran was applied using the manufacturer's
protocol [211] and added with the transfection complexes to the cells at a concentration
of 25 µg/ml.
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Figure 7.2.: Representative single-cell time courses of cells expressing eGFP after trans-
fection co-labeled with �uorescent dextran. The gray bars mark the mRNA-nanocarrier
incubation period. (A) Fluorescence intensity time courses of the endocytosis marker
pHodro (purple) and eGFP expression (green) after mRNA transfection. (B) The nor-
malized mean time courses for both �uorophores are shown.

The experiment using pHodro was performed analogously to the previously described
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single-cell translation assay by transfecting the cells with mRNA encoding for eGFP dur-
ing a time-lapse measurement. The single-cell time courses in Figure 7.2. A (left plot)
show the �uorescence signal of pHodro. The �uorescence intensity has a sharp increase
at the time of dextran addition (the gray bar marks the transfection period). The signal
during incubation remained on a maximal level, which possibly overlaid an endocytotic
particle uptake or rupture kinetic. After the washing step at the end of the incubation
period, the intensity dropped to a certain level and stayed almost constant for the remain-
ing measurement. The single-cell time courses of expressed eGFP showed the expected
kinetics and appeared to be una�ected by the additional �uorescence marker as shown in
Figure 7.2. A (right plot). The normalized mean �uorescence intensities of pHodro and
eGFP in Figure 7.2. B illustrate that the pHodro signal dynamic marked the incubation
period of the dextran. The pHodro signal gave no additional information on the particle
uptake, which could have been correlated to the eGFP expression kinetics. Therefore,
pHodro appeared to be unsuitable as a �uorescent marker to identify intermediate steps
of mRNA transport or to obtain any information about the endocytotic activity under
the applied conditions.

LysoTracker

As the endosome staining with dextran gave no information on mRNA nanoparticle related
endocytotic kinetics, a second �uorescent marker, called LysoTracker, was tested to label
acid cell organelles like late endosomes and lysosomes. The LysoTracker (Thermo Fisher)
is pH dependent as pHodro and accumulates in acidic organelles [212]. Murschhauser et
al. measured LysoTracker time courses in LISCA studies to determine the event time of
lysosome permeabilization [184]. The time courses in this study showed an initial increase
followed by a slower decrease. During the decrease the signal completely dropped to the
background level within a short time frame of 10-20min. The signal's drop marked the
time point of lysosomal rupture because the marker was non-�uorescent at cytosolic pH.
This study veri�ed that LysoTracker is a suitable �uorescent marker to record time courses
that give information on endosomal/lysosomal activity.

In order to investigate if the LysoTracker is also suitable to resolve mRNA nanoparti-
cle uptake or release, the marker was co-incubated at a concentration of 75 nM during
mRNA transfection. Figure 7.3. A (left plot) shows representative single-cell time courses
for LysoTracker treated cells. The signals showed an initial increase, longer than the
transfection incubation indicated by the gray bar, followed by a decrease, which is slower
than the increase period. In contrast to the traces recorded by Murschhauser et al., no
signal drop was observed [184]. A signal drop to the background level would indicate
an early event of programmed cell death namely lysosomal membrane permeabilization,
which is unintended for the transfection studies, and therefore a good indication that the
cells are not stressed. However, an early signal drop, which does not reach background
level, could have given an indication for endosomal rupture of some organelles due to
mRNA escape from the endosomes. The eGFP expression time courses in Figure 7.3. A
(right plot) showed the expected kinetics that are comparable to the ones of pHodro
treated cells (Figure 7.2. A), which indicates that the mRNA translation is not in�uenced
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Figure 7.3.: HuH7 cells transfected with eGFP encoding mRNA. (A) Single-cell kinetics
of the endosome marker LysoTracker (pink) and the protein expression of eGFP (green).
The gray bar marks the mRNA-nanocarrier incubation period. (B) The normalized
mean time courses for Lysotracker (pink) and eGFP (green) with �uorescence intensities
normalized to the respective maximum of the time course.

by LysoTracker. The normalized mean time courses for LysoTracker and eGFP illustrate
the population behavior (Figure 7.3. B).

Conclusion

The two investigated endosome markers, pHodro and LysoTracker, did not show any
features in their respective time courses that appeared to be suitable to extract an event
time for endosome uptake or rupture or any other information under the tested conditions.
As endocytosis is an innate mechanism of cells that is active all time, it is possible that
the endocytosis events related to mRNA delivery are overlain by the endocytotic activity
which always take place. Beside pH sensitive markers like the tested ones, the use of
self-quenching markers could be suitable to record the events of interest. Markers like
calcein are loaded in endosomes in a su�ciently high concentration that self-quenching
of the dyes occur [161], which would result in a low �uorescence level if endosomes are
intact. Calcein for example is an impermeable �uorescent dye, therefore it can cross the
cell membrane only via endocytosis and is not able to lead to endsomal escape by itself
[213]. In a transfection study using pDNA-polyplexes, calcein was used to determine
the escape rate by detecting the two phenotypes of spatial signal distribution (punctuate
pattern of intact endosomes and a uniform pattern after endosome escape), apparently
the concentration used in the study was not high enough for self-quenching [213]. In this
case the readout of the mean intensity time course would not show the excape event as the
intensity of the whole cell is constant for both spatial phenotypes. If the concnetration of
calcein is in the range of self-quenching and leakage of the endosomal membrane occurs,
the intensity within the cell is supposed to increase because the marker is diluted. The
dilution of the marker molecules means that they cannot quench each other anymore.
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7.3 Labeling transfected mRNA

However, the use of self-quenching markers has to be tested carefully that high marker
concentrations do not lead to side e�ects. It needs to be veri�ed that a change of the
marker signal occurs at the same time as mRNA release, as leakage of the membrane not
necessarily relate to the release of macromolecules like mRNA [161].

7.3. Labeling transfected mRNA

The direct measurement of cytosolic mRNA concentration after transfection with the read-
out of �uorescent reporter protein expression time courses has the potential to improve the
single-cell translation assay for several reasons. The parameter estimation would be based
on two observables, the mRNA and protein concentration per time point, which is bene-
�cial for the model �tting due to a reduced number of free parameters. Furthermore, by
measuring the �uorescence intensity of cytosolic, labeled mRNA, which is proportional to
the mRNA abundance, the number of released molecules m0 can be determined. Thereby,
the parameter non-identi�ability of released mRNA molecules with the translation rate
is resolved and the translation rate kTL can be estimated independently. Figure 7.4. il-
lustrates the expected cytosoloic mRNA dynamic of �uorescently labeled mRNA after
transfection. The mRNA release event after endocytotic uptake should result in an sharp
increase of the mRNA �uorescence intensity. The intensity maximum is proportional to
the number of released mRNAs. After reaching the maximal value, the decrease in inten-
sity should be describable by an exponential decay under the assumption that the mRNA
decay is still conform to a �rst order kinetics. Of course, models assuming an enzymatic
degradation could still be used and would bene�t from two observables instead of one (see
models in the Appendix B). The reporter protein expression e.g. GFP is expected to be
delayed due to translation initiation and protein maturation. The GFP kinetics remain
dependent on parameters like the translation rate or degradation rates.

In order to quantify the mRNA level by measuring a �uorescence intensity the mRNA
needs to be labeled. For this purpose, several possibilities are imaginable and visualized in
Figure 7.5.. The simplest approach is to directly label the IVT mRNA using nucleotides
with a �uorescent dye covalently bound during synthesis. This approach results in syn-
thetic mRNAs with several dyes per molecule (Figure 7.5. A), which is an advantage for
detecting the �uorescence as several dyes emit more photons per molecule. The results
of labeled mRNA time courses presented in subsection 7.3.1 are obtained using commer-
cial Cy5 labeled mRNA encoding for eGFP (Trilink Biotechnologies). As an alternative
to randomly distributed dyes within the whole mRNA sequence, a new method to label
only the poly(A) tail was published recently [214]. Anhäuser et al. used IVT mRNA
without an encoded poly(A) tail. They synthesized the poly(A) tail using yeast poly(A)
polymerase and incorparted azido-modi�ed adenosines. A �uorescent dye is bound to the
modi�ed adenosines using a bioorthogonal click reaction. The poly(A) labeled mRNA has
the advantage that it can be excluded that the conjugated dyes lead to changes of the sec-
ondary structure within the UTRs. This can be important for the stability, or cause steric
hindrances deteriorating protein binding of e.g. ribosomes, which could reduce translation
e�ciency dramatically. However, Althäuser et al. showed that the translation e�ciency
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Figure 7.4.: Expected cytosolic mRNA concentration changes after transfection. The
mRNA (red) shows a sharp increase shortly after transfection and a slow decrease over
time. The maximal �uorescence intensity is proportional to the number of released
molecules m0. The protein expression level increases postponed to mRNA release and
the dynamic depends on parameters like the translation rate or degradation rates.

of poly(A) labeled mRNA still leads to changes of the translation e�ciency albeit to an
improvement.

The other three possibilities which are discussed in the following are based on non-covalent
labeling of mRNA. One common technique to label mRNA in living cells, which is often
used in transcription studies is the MS2 system [215, 216, 217]. The MS2 coat protein, nat-
urally occurring in bacteriophages, binds speci�cally to a RNA stem loop sequence [218].
The MS2 RNA-binding sequence needs to be cloned in the mRNA sequence and is typi-
cally repeated several times to enable multiple binding sites as visualized in Figure 7.5. B.
As the MS2 protein is non-�uorescent by itself, a �uorescence (FL) protein is fused to the
MS2 protein. In order to make use of the MS2 system in living cells, the cells of interest
have to stably express the FL-MS2 protein and the sequence of the mRNA of interest need
to contain the repeated stem loop sequence. For transcription studies, these results in the
necessity of genetically engineered cells for the expression of the arti�cial FL-MS2 protein
as well as the altered mRNA sequence. For translation studies after mRNA transfection
the genome of the host cell still needs to be changed for stable expression of FL-MS2
proteins. The stem loop repeats need to be cloned in the pDNA vector used for IVT of
the mRNA. Even ignoring the necessary genetic modi�cation, the expression of FL-MS2
proteins leads to a permanent �uorescent background and single mRNA molecules can
only be detected due to FL protein accumulation if several FL-MS2 proteins bind to one
mRNA molecule.

In order to avoid the preparation of genetically engineered cells and the high �uorescent
background, the use of molecular beacons is promising for detection of mRNAs after
transfection. A molecular beacon (Figure 7.5. C) consists of a oligonucleotide, which forms
a hairpin structure, with a �uorescent dye at one end and a quencher molecule at the other
end [219]. This oligonucleotide design leads to only a weak �uorescence for the hairpin
conformation as the quencher molecule prevents the emission of photons of the �uorescent
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C Molecular beacon
poly(A)ORF

D Aptamer-fluorogen system
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Figure 7.5.: mRNA labeling technologies for transfection studies. (A) Fluorescent
mRNA: The mRNA is directly labeled during IVT by using nucleotides conjugated
with �uorescent dyes. As alternative the poly(A) tail can be labeled exclusively, if the
poly(A) tail is synthesized enzymatically after IVT using labeled adenosines. (B) MS2
system: labeling technique based on the interaction of the bacteriophage coating protein
MS2 with a stem loop RNA sequence. A �uorescent protein is fused to the MS2 protein.
(C) Molecular beacon: A oligonucleotide forming a hairpin is conjugated with a �uores-
cent dye at one end and a quencher molecule on the other side resulting in a molecular
beacon. The oligonucleotide sequence is able to hybridize to the mRNA and the dye
is not quenched any more and therefore �uorescent. (D) Aptamer-�uorogen system: A
RNA aptamer loop binds a small peptide (�uorogen) and induces the �uorescence of
that �uorogen.

dye. In order to label a mRNA of interest a part of the oligonucleotide sequence needs
to be complementary to the mRNA sequence. If mRNA and the molecular beacon are
in close proximity, the oligonucleotide hybridizes to the mRNA by Watson-Crick base
pairing as the duplex formation of mRNA and molecular beacon is more stable than the
self-interaction of the molecular beacon. If the quencher molecule and the �uorescent dye
lose their spacial proximity, the �uorescent dye is able to emit photons again if excited
by a suitable excitation wavelength. In order to enhance the number of emitted photons
per molecule, several molecular beacons can be engineered binding to di�erent regions of
the mRNA. The speci�city of the �uorescence signal can be further improved by using a
dual molecular beacon approach based on Förster resonance energy transfer (FRET) [220].
Two groups of molecular beacons are designed having di�erent �uorescent dyes at one end
and a suitable quencher molecule at the other end of the oligonucleotide. The two dyes
need to be a suitable FRET pair of a donor and an acceptor chromophore. If the donor
and the acceptor molecule are in close spatial proximity without being quenched, the
excited donor chromophore can transfer energy radiation free on the acceptor molecule.
This results in an excited acceptor molecule that returns into the ground state through
the emission of a photon. The use of molecular beacons has the advantage that the cells,
which will be transfected, as well as the IVT transcribed mRNA can be used without any
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changes. The molecular beacons need to be designed and synthesized depending on the
mRNA of interest taking inter- and intramolecular interaction as well as speci�city into
account. The molecular beacons need to be transfected besides the exogenous mRNA. For
single-cell translation studies it is necessary to adapt the transfection protocol to ensure
that enough molecular beacons are present to label all of the released mRNAs and to avoid
toxic e�ects due to double transfection. Furthermore, it is possible that the binding of
the molecular beacons leads to steric hindrance of translation related proteins dimishing
the translation e�ciency.

Besides the use of molecular beacons, the approach of RNA mimics of GFP is promising
for single-cell translation studies. The approach is based on a synthetic analog of the GFP
�uorophor to �uorescnetly label mRNA since GFP is used to label proteins of interest
[221]. The HBI �uorophor structure of GFP (as described in section 2.1.) was the basis
to develop a �uorogen, which processes a high quantum yield if bound to a RNA aptamer
as illustrated in Figure 7.5.D. Several derivates of HBI were analyzed and none of them
showed detectable �uorescence intensities within cells. This means that the �uorogen is
most likely not activated by any naturally occurring RNA or DNA structure. Suitable
aptamer sequences were screened based on a RNA molecule library of 5·1013 candidates
and the interaction with the HBI derivates was analyzed and optimized regarding the
quantum yield of the aptamer-�uorogen combination [52]. Paige et al. developed a RNA-
�uorogen couple consisting of 3,5-di�uoro-HBI (DFHBI) binding to one speci�c RNA
sequence called �Spinach� [52]. Spinach has a quantum yield of 0.72, which is 20% higher
than the one of eGFP. However, the molar brightness of Spinach is only about 53% of
the value of eGFP [52]. As the concentration of transfected mRNAs is much lower than
the concentration of expressed eGFP, the �uorescence intensities measured per cell are
expected to be much lower for Spinach compared to eGFP. But, an advantage of Spinach
is low photobleaching compared to eGFP. This e�ect is presumably explained by the
exchange of unbound and bound DFHBI minimizing the accumulation of photobleached
complexes [52]. In order to obtain a higher �uorescence signal per molecule Zhang et
al. showed that the �uorescence intensity increases linearly with the number of Spinach
repeats per mRNA without in�uencing the translation e�ciency or mRNA degradation
in bacteria [222]. In order to measure mRNA and FL kinetics within one cell a variety
of aptamer-�uorogen systems are available covering a broad visible spectrum [221, 223].
The same is the case for FL proteins resulting in a large number of possible combinations
of aptamer-�uorogen system with a FL protein, which are spectrally distinguishable from
each other.

Each of the mentioned approaches has their advantages and drawbacks. Several require-
ments must be considered, in order to decide which approach is the most promising to
quantify the mRNA dynamic after transfection at the single-cell level. Firstly, the sig-
nal has to be dependent on the functionality of the mRNA. If a mRNA is degraded the
�uorescence signal needs to break down. This is not the case for �uorescent nucleotides
incorporated in mRNA molecules, as will be described in subsection 7.3.1. in detail. It is
expected that the other three approaches lead to decrease of the �uorescence signal if the
mRNA is degraded. The mRNA sequence domains are destroyed by degradation so that
�uorescence cannot occur anymore. Secondly, as a low number of mRNA molecules is
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expected inside the cell the signal needs to be as bright as possible. As the FL-MS2 pro-
teins are �uorescent all the time the molecule is only detected by accumulation of several
dyes due to the repeated hair pin structures. If the mRNA intensity is readout as mean
intensity of the cell analogous to eGFP no dynamics will be visible as the total amount of
FL-MS2 proteins is independent of the mRNA transfection. Furthermore, high resolution
microscopy is needed to detect the spots of accumulated FL-MS2 proteins, which would
minimize the throughput of the assay. For the molecular beacon as well as the aptamer-
�uorogen approach a very low �uorescence background is expected, as the �uorescence of
the molecular beacons is quenched in the hairpin conformation and the �uorogen itself
is non �uorescent if not bound to the appropriate RNA aptamer. Thirdly, the mRNA
properties such as the translation rate should be in�uenced as little as possible. As it
is likely that the hybridization of several oligonucleotides to a mRNA molecule a�ects
the binding of proteins related to translation or degradation the properties and therefore
the translation dynamics are altered for the molecular beacon method. Using a tandem
Spinach array these processes seem to be not a�ected in bacteria [222]. Considering these
aspects one comes to the following conclusion. A tandem Spinach array cloned in the
IVT mRNA could be suitable to detect a su�cient mRNA �uorescence in single-cells to
quantify mRNA dynamics in mammalian cells. Yet, it needs to be clari�ed if the mRNA
signal is cytosolic or if mRNAs trapped in endosomes are labeled as well. This would lead
to a dynamic which is a superposition of the cytosolic and endosomal mRNA dynamic.
The mRNAs are in di�erent environments, such as pH, so di�erent degradation kinetics
might occur. However, the �uorescence intensity of Spinach is known to be pH dependent
and is reduced at low pH compared to physiological pH [52]. For the possible superposi-
tion of several mRNA kinetics a live-cell imaging method for transfected mRNA needs to
be established taking many aspects into account.

7.3.1. Fluorescent dyes conjugated to nucleotides

The use of directly labeled mRNA may not give information on the mRNA degradation
kinetics but it may still enable the labeling of transfection complexes and the measurement
of uptake kinetics in single-cells. The results presented in this subsection were obtained
using the single-cell translation assay as described previously using eGFP coding mRNA
of which 10% of mRNAs is directly labeled with Cy5 �urophores (Trilink Biotechnolo-
gies). During the time-lapse measurement the signals of Cy5 and eGFP were recorded
simultaneously resulting in two image stacks. These image stacks were overlaid and both
mean intensity time courses for each transfected cell were read out using the MWA plug
in. The reason why only a fraction of 10% labeled mRNA was used is that cells transfected
with 100% labeled mRNA showed a dramatically decreased eGFP expression compared
to cells transfected with the same amount of unlabeled mRNA. It was concluded that the
�uorescent dyes lead to a decrease of the translation e�ciency and only the usage of a
small fraction of labeled mRNA enabled to still measure the eGFP expression kinetic.
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Lipoplex

The use of labeled mRNA encapsulated in L2000 lipoplexes enabled a visualization of
the lipoplexes like shown in Figure 7.6. A. The L2000 lipoplexes (red) are randomly dis-
tributed during complex incubation (Figure 7.6. A left image). The yellow outlines mark
the positions of the FN squares. The location of the lipoplexes did not allow conclusions
to be drawn if a FN square was occupied by a cell or not. After one hour of incubation,
the unbound lipoplexes were washed out using the perfusion system. After the washing
step the number of lipoplexes is obviously reduced and most of the remaining lipoplexes
are located on FN squares, which were occupied by cells (Figure 7.6. A right image).
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Figure 7.6.: Cy5 labeled mRNA encapsulated in L2000 lipoplexes. (A) The L2000
lipoplexes are randomly distributed over the �eld of view (left image). After 1 h of incu-
bation the unbound complexes are �ushed out and the remaining complexes are mainly
adsorbed on cell surfaces (right image). The yellow outlines mark the FN square pat-
tern. (B) The �uorescence intensity signal of the Cy5 labeled mRNA of empty squares
shows a small signal increase during complex incubation and an abrupt signal drop after
the washing step at t=1 h (�rst plot). The signal of cell occupied squares shows a faster
and more pronounced increase compared to empty squares saturating after about 2 h
(second plot). The mean signals of empty (gray) and occupied squares (red) illustrate
the complex adsorption on the cell surface (third plot). The gray bar indicates the
transfection incubation period. Adapted from the supplementary information of [P3].

The Cy5 signal of empty squares showed an increase during the �rst hour of lipoplex incu-
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bation due to adsorbing lipoplexes on the surface. An abrupt decrease to the background
level after �ushing the only partially bound lipoplexes (Figure 7.6. B �rst plot). The Cy5
signal of lipoplexes adsorbed on cells on the other hand showed an increasing signal even
after the washing step that saturates after about two hours (Figure 7.6. B middle plot).
The mean trajectories of empty squares (gray) and cells (red) illustrates the di�erent
temporal behavior (Figure 7.6. B last plot). During lipoplex incubation the signal of Cy5
increased more than that of empty squares and interestingly increased even further for
another hour. This can be interpreted that lipoplexes adsorb strongly on the cell sur-
face and rarely detach, which can happen on empty squares. Furthermore, it is likely
that the Cy5 �uorescence of labeled mRNAs increases during lipoplex uptake because of
structural remodeling of the lipoplexes inside the endosomes leading to dequenching of
the Cy5 �uorescence, which occurs if the mRNA is densely packed inside the lipoplexes
[140].

Lipid nanoparticle

Analog experiments to L2000 lipoplexes with 10% Cy5 labeled mRNA encapsulated were
performed using the three LNP formulations DLin, KC2, and MC3 (section 5.5.). Repre-
sentative images of one time-lapse stack recording HuH7 cells transfected with MC3 LNPs
are shown in Figure 7.7.. The �uorescence signal of the Cy5 labeled mRNA (red) was over-
laid with eGFP (green) for di�erent time points of the measurement. The time indicated
in the upper left corners refers to the addition of the MC3 LNPs to the cells. After 30min
the cells aligned on the micropattern became visible as a mRNA signal appeared. Interest-
ingly, randomly distributed complexes as observed for the L2000-lipoplexes (Figure 7.6. A)
could not be monitored. After stopping the LNP incubation by �ushing unbound LNPs
after one hour the �rst cells already showed eGFP expression, which is in agreement with
the onset time distribution (Figure 5.10.A). After 2 h most of the cells of the representa-
tive �eld of view showed eGFP expression and the expression level clearly increased over
the next hours as can be seen for the overlay at 10 h after transfection.

0.5 h 1 h 2 h 10 h

Figure 7.7.: Overlaid �uorescence images of Cy5 labeled mRNA (red) and eGFP (green)
after transfection using MC3 LNPs. The time is relative to the addition of the LNP
particles and the scale bars correspond to 100µm.

The �uorescence time courses of Cy5 and eGFP were readout using the MWA plugin.
Representative time courses are shown in Figure 7.8. A. The single-cell time courses of
the Cy5 signal showed almost no increase during the �rst 20-30min after adding the
LNPs (indicated by the �rst arrow). This is di�erent compared to the Cy5 time courses
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of L2000 transfected cells (Figure 7.6. B). For some cells, like the red time course, the
signal increased after the incubation time (gray bar), which was not observed for L2000
transfected cells. But, comparable to cells transfected with L2000 the Cy5 signals sat-
urated after roughly 2 h. The di�erent kinetics for Cy5 labeled mRNA transfected with
LNPs can probably be attributed to di�erent quenching behavior of Cy5 mRNA encap-
sulated in LNPs compared to L2000 lipoplexes. The mRNA encapsulated in LNPs is
expected to be denser packed in LNPs than in lipoplexes. It was shown for siRNA con-
taining LNPs that LNPs show a high electron density of the core, which is in contrast
to the less dense structure of lipid vesicles [182]. Probably, the Cy5 �uorescence is al-
most completely quenched for intact mRNA-LNP systems and the measured time courses
correspond to the kinetic of structural remodeling of the LNPs during particle uptake.
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Figure 7.8.: Two signal readouts of Cy5 labeled mRNA and expressed eGFP at the
single-cell level. (A) The �uorescence trajectories of Cy5 labeled mRNA is shown to-
gether with the corresponding eGFP signals. The gray marked area represents the 1 h
incubation time of the LNPs. The arrows indicate the injection of the LNPs diluted in
cell growth medium containing 1% FCS and the washing step with cell growth medium
containing 10% FCS after one hour. The representative colored time courses were mea-
sured within the same cell. The dashed lines mark the onset time point of the Cy5
signal (red) and the eGFP signal (green). (B) Scatter plot of the Cy5 onset t0(Cy5)
vs. the eGFP onset t0(eGFP) for cells transfected with DLin (blue), KC2 (orange), or
MC3 (red). Each dot corresponds to a single cell.

Due to the simultaneously measurement of mRNA and eGFP signal, correlation studies
of both onset time points were possible. The onset time points of Cy5 t0(Cy5) and eGFP
t0(eGFP) were determined manually for the results presented in Figure 7.8. B. The Cy5
time courses were very noise and therefore more di�cult to determine automatically.
Subsets of the data discussed in section 5.5. of cells transfected with one of the three
investigated LNP formulations (DLin, KC2, and MC3) were used for the correlation study.
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The mean onset times for eGFP expression of all LNP formulations are in the same range
than the ones determined by �tting the translation-maturation model (manual: ∼1.5 h,
�tting: ∼1.4 h). The mean onset time of Cy5 di�ers between the formulations (DLin: 0.40
±0.20 h, KC2: 0.60 ±0.14 h, MC3: 0.72 ±0.28 h). The onset times for Cy5 and eGFP are
uncorrelated for all three LNPs with Pearson's correlation coe�cients of 0.11 for DLin,
0.18 for KC2, and 0.13 or MC3 (with p-values lower than 0.05 for all data sets). Due
to the variation of the mean Cy5 onset times, the mean duration between the Cy5 onset
and the eGFP expression is di�erent as well. The mean time-lags are 1.14 ±0.41 h for
DLin, 0.91 ±0.23 h for KC2, and 0.85 ±0.36 h for MC3. Interestingly, this is of the same
order than the pKa values (DLin: 6.8, KC2: 6.7, MC3: 6.4). As the onset time points
are determined manually, the results need further veri�cation to exclude a bias e.g. by
adapting the clustering approach introduced in subsection 5.3.2. for the Cy5 time courses.

As expected the directly labeled mRNAs are not a suitable approach to detect mRNA
degradation in living cells or to determine the number of released mRNAs. Since the
Cy5 signal did not decrease over a time period of 10 h, it can be assumed that the Cy5
dyes are not a�ected by degradation. During a 10 h time period and a mean mRNA
half-life of 13.4 h (as determined in subsection 5.4.1.) a decrease of 40% is expected for a
exponential degradation of the successfully transfected mRNAs, which was not observed
for the Cy5 time courses shown in Figure 7.8. A. Nevertheless, the Cy5 time courses of
cells transfected with Cy5 labeled mRNA using L2000 lipoplexes and LNPs showed partly
di�erent kinetics. This can lead to the conclusion that the labeled mRNA encapsulated
in LNPs may give temporal information on the endocytosis process and the structural
changes of LNPs during endocytosis.

7.3.2. Fluorescence in situ hybridization to label exogenous mRNA

The establishment of a live-cell mRNA labeling method does not appear to be trivial.
However, for �xed cells there is a widely used approach called �uorescence in situ hy-
bridization (FISH). The method is mainly used for transcription studies to quantify the
number of mRNA molecules of a certain gene at the time point of cell �xation in order
to calculate transcription rates [62, 224, 225, 226]. The idea of labeling is similar to the
molecular beacon approach (Figure 7.5. C). A set of �uorescently labeled oligonucleotides
of ∼20 nt lengths with complementary sequences to the targeted mRNA needs to be de-
signed accordingly and synthesized. The cells are �xed using e.g. formaldehyde and the
plasmamebrane is permeabilized. The oligonucleotides are added in an appropriate bu�er
to the cells and incubated for at least a few hours. During incubation the oligonucleotides
di�use into the cells and are able to hybridize to the mRNA of interest. The technique
is capable of achieving single mRNA resolution as up to 50 �uorescent dyes, mark one
molecule depending on the number of di�erent oligonucleotide sequences [227]. After
washing the unbound oligonucleotides to reduce the background signal to a minimum,
the cells are ready to be imaged using higher magni�cation (60x and higher). In order
to record the �uorescence intensities of the labeled mRNAs, a z-stack per �eld of view
is recorded to cover the whole cell volume. These z-stacks are further used for image
processing to read out the number of mRNA spots and their intensities.
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mRNA - Quasar 670 Actin - TRITC eGFP

Nuclei - DAPI mRNA, Actin, Nuclei Composite

Figure 7.9.: Maximal z-stack intensity projections of HuH7 cells encoding for eGFP
20 h after mRNA transfection. The mRNA is labeled using FISH probes labeled with
Quasar 670 (red). For cell recognition the actin skeleton was stained with Phalloidin-
TRITC (yellow). The nuclei were stained using DAPI (blue). The expressed eGFP
after transfection is colored in green. The overlay of the mRNA, actin, and nuclei signal
illustrates the spatial mRNA distribution. The overlay of all four recorded signals shows
that the presence of mRNA does not necessarily lead to eGFP expression as highlighted
by the dashed rectangle. The scale bars correspond to 25µm.

In order to establish a FISH protocol, HuH7 cells were seeded in six-channel slides and
transfected with mRNA encoding for eGFP 4h after seeding. The cells were �xed with
formaldehyde 20 h after transfection. Afterwards, the labeled oligonucleotides recognizing
the eGFP coding sequence were incubated with the cells over night to enable hybridiza-
tion to the transfected mRNA. A detailed protocol for FISH is given in Appendix A.
Figure 7.9. shows a representative z-stack projection of cells with �uorescently labeled
mRNAs using the established FISH protocol 20 h after transfection. The labeled mRNA
spots (red) appeared to be randomly distributed over the �eld of view. For easier local-
ization of the spots, if they are intra- or extracellular, the cells were stained with DAPI to
label the nuclei (blue) and Phalloidin-TRITC to make the actin skeleton (yellow) visible.
Many of the cells show a strong cytosolic eGFP signal as the cells had several hours to
express the protein before �xation. The overlay for the mRNA, actin, and nuclei signals
illustrates that most of the mRNA spots are located inside the cells as most of the mRNA
complexes are �ushed after transfection incubation. The other overlay of all four signals
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7.3 Labeling transfected mRNA

exempli�es that a cell with labeled mRNA did not necessarily express eGFP, whereas the
neighboring cell showed fewer mRNA spots but eGFP expression (dashed rectangle). The
mRNA spots of the non �uorescent cell for eGFP are most likely trapped in endosomes
or still bound on the cell surface without su�cient release of mRNA molecules in the
cytosol. Interestingly, the mRNA entrapped in endosomes and the nanocarrier are not
degraded (completely) 20 h after treatment otherwise the oligonucleotides could not have
hybridized.
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Figure 7.10.: mRNA labeling using FISH combined with single-cell translation assay.
(A) Representative cell on FN square (dashed outline). The nucleus (blue) and the
actin skeleton (yellow) of the cell are stained. The red spots correspond to mRNA
clusters labeled with Quasar670 dyes at two di�erent contrast settings. The green signal
correspond to eGFP �uorescence. All images are maximal intensity projections of a z-
stack and the scale bars correspond to 10µm. (B) Single-cell expression time courses
obtained parallel to FISH measurement. The gray bar indicates the transfection period
and the dashed lines mark the times of cell �xation for FISH labeling. (C) Number of
mRNA spots determined per cell at two di�erent �xation times. (D) Histograms of the
spot intensities 1 h (blue) and 20 h (orange) after transfection.

The established FISH protocol was further combined with the single-cell translation assay
to determine the number of mRNA molecules at di�erent time points of the time-lapse
measurement. All six channels of the single-cell array were transfected under the same
conditions and the eGFP �uorescence was recorded during the time-lapse measurement.
The channels of the array were �xed by �ushing formaldehyde at di�erent time points in
order to �x the cells in one channel. Figure 7.10.A shows a representative cell on a FN
square (dashed outline). The nucleus (blue) and the actin skeleton (yellow) illustrate the
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cell position and shape. The �uorescence image of the labeled mRNA is shown for two
di�erent contrast settings. At high contrast, sharp spots are visible. If the contrast is
adapted, spots of weaker intensities are visible (marked by the yellow arrow), which are
almost outshined by the bright spots. The eGFP signal of the cell is distributed over the
whole cytoplasm, as expected. In Figure 7.10. B single-cell time courses of eGFP expres-
sion are shown for cells �xed at the end of the time-lapse measurement. The gray bar
indicates the incubation period of mRNA transfection. The dashed lines mark the time
points of �xation at 1 h (blue), directly after transfection incubation, and at 20 h (orange)
after transfection. The number of mRNA spots was determined for a small number of cells
(Figure 7.10. C) for both �xation times tfixation. The number of spots per cell appeared to
decrease between 1 h and 20 h, but did not show a large variation. As the two contrast set-
tings for labeled mRNA already indicated, it is unlikely that each spot correspond to one
molecule due to the high variation in intensity. This assumption is often made for mRNA
detection studies after transcription as it is unlikely that the mRNAs form clusters [224].
For mRNA after transfection it is expected that clusters are visible because the mRNA
was complexed in nanoparticles or trapped in endosomes. Furthermore, it is not known
if the released mRNAs after endosomal escape are freely di�using as single molecules in
the cytosol. In order to approximate the total number of mRNAs shifts, the intensity
distribution of the mRNA spots was determined. It is expected that the distribution
shifts to smaller intensities over time due to mRNA degradation. In Figure 7.10.D the
distribution of spot intensities shows a shift between tfixation of 1 h and 20 h as expected.

In conclusion, the experimental FISH protocol to �uorescently label mRNA was straight
forward to establish. However, the image processing of exogenous mRNA clusters ap-
peared to be more complicated than for endogenous mRNA in transcription studies. For
FISH image stacks of endogenous mRNA, image processing software is available that al-
lows for quanti�cation [228]. This software was not applicable for the presented data
due to the larger range of spot intensities of exogenous mRNA clusters. Kirschman et
al. recently used FISH to study mRNA delivery in order to correlate the mRNA to the
protein level at the single-cell level after transfection. They reported the same di�culties
due to mRNA cluster formation [136]. They excluded mRNA clusters which colocalized
with a endosome marker and determined these cluster as non functional and only took the
cytosolic mRNA clusters into account for correlation studies. If FISH should be used to
determine the number of transfected molecules and for mRNA-protein correlation studies,
further re�nements of the protocol are needed especially for the image analysis.

7.4. Discussion

In this chapter, three approaches to take advantage of two �uorescent markers for single-
cell translation studies were presented. The measurement of two signals within the same
cells enables a joint analysis of both �uorescence intensity time courses. Firstly, the
expression of two reporter proteins was discussed. By co-transfection of the genetic code
for both reporters, a large fraction of cells can be observed that express both proteins.
The �uorescent protein expression time courses can be read out analogously to a single
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one. This approach was applied for siRNA silencing studies at the single-cell level [M4]
as one mRNA was targeted by siRNA and the expression of the second mRNA was
used as an intracellular reference (Figure 7.1.). The approach could be even further
improved by the synthesis of mRNA constructs encoding for both proteins at the same
time. The expression kinetics for both proteins would depend on the same number of
transfected mRNAs and the same mRNA degradation rate. This could be achieved by
mRNA sequences containing both protein coding sequences that have a so called �2A�
box in between the coding sequences. The 2A box encodes for a short peptide which is
enzymatically cleaved after translation resulting in two separated proteins [229, 230]. For
quantitative analysis the expression of both proteins could be modeled with one set of
ODEs taking the cleavage e�ciency into account and that two proteins are translated by
the same mRNA. This would reduce the number of parameters compared to model each
reporter expression kinetic by an identical ODE model with varied parameters for e.g the
degradation rates.

Secondly, the �uorescence intensity time courses of two endosome markers were analyzed
at the single-cell level to screen if they show characteristic events that could be correlated
to mRNA delivery. As endocytosis is an innate mechanism of the cell and cells engulf
particles and �uids from the environment all the time, the uptake of mRNA nanoparticles
is likely to be superimposed by the remaining endosomal activity. However, it is possible
that the endosomal escape events can be detected as the endosomes do not leak or rupture
normally [213]. Yet, such events were not detected by the two tested markers, pHodro
and Lysotracker, as can be seen in the respective �uorescence time courses (pHodro:
Figure 7.2., Lysotracker: Figure 7.3.).

Finally, several options for labeling mRNA were discussed. The most promising meth-
ods for live-cell labeling of exogenous mRNA are the molecular beacon and Spinach ap-
proach. But, both need careful implementation that could be done in the future. A
simple method to visualize mRNA, is the usage of mRNA synthesized with �uorescently
labeled nucleotides e.g. Cy5. The labeled mRNA was encapsulated in L2000-lipoplexes
(Figure 7.6.) or LNPs (Figure 7.7.) and the �uorescence signal for mRNA-Cy5 and eGFP
was recorded in parallel. The time courses of labeled mRNA encapsulated in LNPs en-
abled the correlation of the mRNA onset time with the eGFP onset time (Figure 7.8.).
It was shown that, as expected, the eGFP signals is always delayed to the one of Cy5
by roughly one hour. Interestingly, the two event times are still uncorrelated (Pearson's
coe�cient lower than 0.2 for all three investigated LNP formulations). The use of directly
labeled mRNA has two major drawbacks. Firstly, the labeled mRNA is not translated
as well as unlabeled one and therefore only a fraction of 10% labeled mRNA was trans-
fected together with unlabeled mRNA. Secondly, the signal is independent on mRNA
degradation as the dyes remain �uorescent after degradation of the mRNA. In order to
determine the number of transfected mRNAs, the mRNAs after transfection were labeled
using FISH. The method requires cell �xation and therefore loses time resolution. But,
it was directly shown that the number of mRNA clusters has a broad distribution, which
shows only small di�erences between an early �xation after transfection and a late �xation.
However, the intensity distributions of the spots, which is expected to be proportional to
the number of mRNA molecules, change depending on time. The results were explained
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due to the fact that the majority of transfected mRNAs are trapped in endosomes, as it
was shown for siRNA [135] and mRNA [136].

In summary, the gain of information through the single-cell translation assay bene�ts from
the application of a dual-color approach. Yet, the choice of the second marker needs to be
checked accurately to ensure that the marker does not have any side e�ects and is speci�c
for the feature of interest e.g. endosome rupture or cytosolic mRNA. Ideally, a �uorescent
labeling technique needs to be developed which is speci�c for intact, cytosolic mRNA and
suitable for live-cell imaging. This would allow to record the mRNA and protein kinetics
in parallel for a combinatory dynamic analysis. This method could possibly further be
combined with a marker for endosomal escape, which would lead to an even more accurate
resolution of the mRNA transport and expression process.
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In this thesis, the quanti�cation of mRNA nanoparticle transport and transfection medi-
ated protein translation was obtained by analyzing single-cell �uorescence intensity time
courses. The single-cell parameters were obtained from expression kinetics of �uorescent
reporters. To this end, deterministic rate equations were formulated in order to describe
the complex biological network within a mathematical framework. The population dis-
tributions of the expression rates as well as the degradation rates for mRNA and protein
were estimated. The parameter set for each single cell enabled quantitative studies of
the parameters depending on di�erent mRNA transport conditions or varied mRNA se-
quences. Figure 8.1. illustrates that single-cell microarrays enable the quanti�cation of
mRNA transport and translation kinetics.
Thereby, it was revealed that the delivery time of mRNA nanoparticles does not correlate
with the expression e�ciency at the single-cell level. However, the distributions showed
systematic changes dependent on extracellular factors like the nanoparticle formulation
and serum protein adsorption (chapter 5). Single-cell expression onset time distributions
after mRNA transfection, were measured here for the �rst time, which revealed that the
delivery process occurs over a time period of only a few hours. The method enables new
insights into the correlation of nanocarrier delivery timing and e�ciency. The fact that
these parameters are not correlated within single cells indicates that there is no intrinsic
mechanism that links the transport timing to the total protein expression rate. Additional
e�orts are needed to resolve the intermediate transport processes of nanoparticle delivery
to gain a better understanding of which intermediate steps are crucial for e�ective delivery.
This could possibly be achieved by endocytotic markers like discussed in the previous
chapter.
Beside the study of mRNA nanoparticle transport, the assay o�ered the chance to de-
termine protein as well as mRNA half-life distributions depending on mRNA sequence
variations on the single-cell level. An improved understanding of the expression kinetics
and how the expression can be controlled is important for successful treatment design in
gene therapeutic applications. Furthermore, the expression of �uorescence proteins with
distinct half-life distribution caused by di�erent coding sequences enabled the integration
of perturbation experiments which led to a more robust parameter estimation (chapter 4).
The newly developed modeling approach based on multi-experiment nonlinear mixed ef-
fect modeling (NLME) gave even insight in the nature of batch e�ects, which most likely
occur due to a high variation of the average number of transfected mRNAs for di�erent
experimental replicates. The characterization of sources for experimental day-to-day vari-
ances could be used for further improvements of the experimental set up and therefore
data quality.
As the regulation of mRNA degradation is a key mechanism for post-transcriptional gene
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regulation, the dependency of the poly(A) tail length on the mRNA stability was quan-
titatively analyzed at the single-cell level. The population distribution of the mRNA
half-life for constructs of ten di�erent poly(A) tail lengths were measured (chapter 6).
A model based on a power law function was introduced that described the experimental
data for all investigated poly(A) tail lengths. It was shown that the mRNA half-life as a
function of poly(A) tail length is described by a power law function with exponent 0.53.
A critical length for the poly(A) tail was derived from the data. This length is needed to
enable protein expression. Based on the proposed model, it was con�rmed that the length
necessary for binding of two PABPs is an important benchmark for mRNA stability. For
future prospects, the measurement of a degradation dependent mRNA signal would allow
to determine the translation rate as single parameter. Using the NLME approach by
integrating the data sets of proteins expression with varied poly(A) tail length, it could
be clari�ed whether translation rate and mRNA half-life correlate at the single-cell level
and possibly more detailed insights in mRNA turnover could be achieved.

Figure 8.1.: Single-cell microarrays enable the high-throughput readout of �uorescence
protein expression time courses mediated by mRNA transfection that can be modeled
by biochemical rate equations. The method enables the systematic investigations of
mRNA nanoparticle transport (blue) and translation kinetics (orange). The onset time-
expression rate pro�les of cells transfected with LNPs or lipolexes are shown as example
for mRNA transport studies. As example for translation kinetic studies the dependency
of mRNA stabiliy on poly(A) tail length is shown. The mRNA half-life distributions
τmRNA increase for longer poly(A) tail lengths. The dependency of τmRNA on poly(A)
tail length is described by a power law function.

100



Conclusion and future prospects

Single-cell translation studies mediated by mRNA transfection show great potential as a
novel method to quantify various aspects of the process. The studies showed, for instance,
that the choice of micropattern was critical for the quality of the single-cell traces regarding
to the measurement noise (chapter 3). The noise of the protein expression time courses
were found to be autocorrelated. This �nding could be used to study the cell con�nement
on microstructures in detail as it is likely that the autocorrelation occurs dependent
on the formation of cellular protrusions. The µPIPP method was chosen for further
studies as µPIPP arrays are easy to fabricate for small numbers of arrays. Compromises
in reproducibility regarding day-to-day variances a�ecting the cell con�nement had to
be accepted. The development of new methods that enable the fabrication of single-cell
arrays in a more robust fashion with better cell con�nement would have positive e�ects on
the noise of the single-cell time courses and thus on parameter estimation and on statistics
as more cells could be analyzed. A promising method to produce single-cell arrays is by
the use of photopatterning [231]. Currently, this method is established in our laboratory in
cooperation with ibidi. The basic idea is to generate a micropattern of adhesion spots on
a thin cell repellent hydrogel layer. The micropattern is obtained by a single illumination
step through a mask followed by a click reaction to functionalize the microstructures with
a RGD peptide to enable cell adhesion. The noise analysis of time courses dependent on
di�erent microarray fabrication methods revealed that the time courses not only depend
on the microarray but also on the algorithms used for image processing. To date, the
time needed to analyze the image stacks takes at least as much time as the experiment
itself. New algorithms for image processing and a better automation of the �uorescence
intensity read out would be bene�cial for the assay. The image processing could, for
instance, be automated by using published algorithms based on deep learning for cell
or pattern recognition combined with a automated selection of single-cell time courses
excluding unsuitable time courses of cells e.g. due to cell division [232]. The signal
readout could be further extended by recognizing cell internal �uorescence di�erences like
a punctuated �uorescence pattern e.g. for endosomes which probably change over time
and gives insights in release kinetics.

Further, new insights on the cell-to-cell variability that arise in gene expression could be
obtained by combining the quanti�cation of translation kinetics for hundreds of cells with
the global quanti�cation of mRNA and protein abundance. The Single-cell translation
assay enables high time resolution for one protein, whereas global quanti�cation allows
the measurement of thousands of mRNAs and proteins at a critical time point using e.g.
single-cell RNA-Seq or mass spectrometry. Recently, Cheng et al. quanti�ed the cell
population response to misfolding stress on mRNA and protein expression in mammalian
cells for four time points over a duration of 30 h [29]. They analyzed the regulation of
mRNA and protein expression on a global level using transcriptomics and proteomics
approaches. Kinetic parameters were estimated for synthesis and degradation for both
mRNA and protein using a new statistical tool. It was shown that the two regulatory levels
were equally important, but their impact on molecule abundance di�ered. Combining the
approaches of such studies with the single-cell translation assay would allow investigating
the protein expression of one reporter with much higher time resolution and even more
important would give insights in the cell-to-cell variability. The misfolding stress was
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induced by adding dithiothreitol (DTT) to the cell culture medium. This could easily be
applied for single-cell studies by �uid exchange with DTT containing medium at de�ned
time points and periods. It would enable studying how the population heterogeneity
changes under stress or even for di�erent stress levels and whether some parameters are
more a�ected than others. It is possible, that the populations broadens with increasing
misfolding stress, but also a bimodal distribution could develop in order to increase the
survival probability of the population.

In conclusion, the presented quanti�cation methods for single-cell protein expression time
courses may help to gain a deeper understanding of mRNA delivery processes and the
regulation of transfection mediated translation especially the control of mRNA half-life.
It was shown that cells can be successfully used as living test tubes to quantify protein
expression by delivering exogenous mRNA. The developed single-cell translation assay
has the potential to reveal the mechanisms of arti�cial gene delivery and to gain new
insights in degradation regulation, which is both relevant for gene therapy. In regard to
the opening quote, I would like to say:

�Cells are indeed fascinating factories that produce the hardware of choice if the right
instructions are delivered. The question is how much output you are going to get.�
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Cell culture
The liver carcinoma cell line HuH7 (Figure A.1.) was used for the translation studies in
the context of this thesis. The cells were cultured at 37 °C in a humidi�ed atmosphere at
5% CO2 and were passaged after reaching 70-80% con�uence. The cells were cultured in
the cell growth medium RPMI-1640 containing GlutaMax and supplemented with 10%
FBS, 5mM HEPES, and 1mM sodium pyruvate.
For passaging, the cells were washed with PBS before adding the detachment solution
Accutase. After incubating the detachment solution for 2min, the cells were resuspended
in cell growth medium to detach all cells from the �ask's bottom. The cells are collected
in a 15ml reaction tube and centrifuged at room temperature for 3min at 100 rcf. The cell
suspension concentration is meanwhile determined using a Neubauer counting chamber.
As the generation time for the cell line was determined to be around 30 h, the cells were
seeded in an appropriate density depending on the cultivation times (typically between
two to four days).

Figure A.1.: The phase contrast images show the liver carcinoma cell line HuH7 at two
di�erent magni�cations before passaging (5x and 20x respectively).

Single-cell array preparation
Array fabrication

A detailed description of the protocol for the single-cell microarray fabrication using
µPIPP is published by Reiser et al. in Cell-based Microarrays: Methods and Protocols
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[70]. For all studies using HuH7 cells a pattern geometry with squares of 30 µm edge
length and a distance of 60 µm between the squares was used (Figure A.2.A). The slide
was prepared the day before the experiment.

Cell seeding

Each washing step mentioned in the protocol consists of adding 120 µl of the denoted
liquid to one reservoir of the channel and removing 120µl on the other side.

1. Remove the PBS in the reservoirs of each channel.

2. Wash each channel with 37 °C warm cell growth medium.

3. Add 60µl cell growth medium to each channel and put the slide back in incubator.

4. Detach the cells from the culture �ask as described in the subsection �Cell culture�
and adjust the cell suspension to a concentration of 4·105 cells/ml.

5. Add 30µl cell suspension to each channel and mix the cell growth medium with the
cell suspension by removing liquid from one reservoir and adding it to the other to
reach a homogeneous cell distribution in the channel (Figure A.2. B).

6. The slide needs to incubate for 4 h in an incubator at 37 °C to guarantee cell adhesion
and self-sorting on the micropattern (Figure A.2. C). The single-cell occupancy of
the micropattern can be improved by exchanging the cell growth medium 1h after
adding the cell suspension to remove non adherent cells.

Figure A.2.: Cellular self-organization on µPIPP pattern. (A) Micropattern of FN adhe-
sion squares (red). (B) HuH7 cells are randomly distributed after seeding. (C) 4 h after
seeding most cells adhered on the FN squares and aligned to the pattern. Reprinted
with permission [70].

Perfusion system
Material

1. Needle-free swabable valves (Mednet)

2. Female luer lock connector (Mednet)

3. Male luer connector (in-house built)

4. PTFE microtubing with an inner diameter of 0.3mm

5. Silicon tubing with an inner diameter of 0.8mm
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6. Syringe (1ml with replacement sporn)

7. 6ml cell culture medium (e.g. L15 supplemented with 10% FBS, without phenol
red)

8. 15ml reaction tube

Inlet The valve is screwed on a female luer connector. A 2 cm piece of silicon tube
is put over a 20 cm piece of PTFE tubing at one end. This end is connected
to the female luer. The other end of the PTFE tube is agglutinated with one
male luer using a glue that is non toxic for cells (see Figure A.3.A).

Outlet A PTFE tube of 25 cm length is clued with a male luer at one end (see
Figure A.3. B).

Serial A short PTFE tube piece of 3 cm length is agglutinated to male luers at both
ends to obtain a serial connector (see Figure A.3. C).

Figure A.3.: The main components of the perfusion system, which is connected to a six
channel slide, for liquid handling on microscope. The inlet tube (A) consists of a valve
connected to the PTFE tube via a female luer. The other end of the tubing is connected
to a male luer. The outlet tube (B) is only connected to one male luer. To connect two
channels a short piece of PTFE tube is agglutinated to male luers on both ends (C).

Connection to slide

The connection of the perfusion system has to be done under sterile conditions and per-
formed as fast as possible to avoid cooling of the cells. It is very important to connect all
pieces without the inclusion of air bubbles as the bubbles would damage the cells during
liquid handling. The cell culture medium used for connection needs to be warmed up to
37 °C to slow down cooling of the cells during connection.

If L15 is used for the time-lapse measurement, remove CO2 dependent medium by washing
each channel once with 120 µl L15. All reservoirs are completely �lled with cell culture
medium (take care that no air bubble is trapped at the bottom of a reservoir). The
inlet tube is completely �lled with cell culture medium using the syringe containing 1ml
medium. Connect the inlet tube with the attached syringe to one reservoir without
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trapping an air bubble. Next, a serial connector or outlet tube can be connected to the
other reservoir of the channel. In both cases a male luer is put into the opposite reservoir
to the inlet tube. If an outlet tube was connected, carefully �ush medium through the
system using the syringe connected to the inlet tube until liquid drips out (check for
leaking). If a serial connector was connected �ll the short tube and connect the other
male luer to the neighboring reservoir. This step can be repeated for more than two
channels. Finally, connect an outlet tube as already described to the opposite reservoir.
After �ushing the outlet tube, the syringe is carefully removed and drawn up to 1ml to
connect the next channel beginning with a new inlet tube until all channels are connected.

Set up on microscope

The slide is put in the warmed up heating box on the microscope stage. To avoid move-
ment of the slide during liquid handling, each tube is �xed with some tape to the stage.
Take care that it is still possible to connect a syringe to the valve. The ends of the outlet
tubes are inserted through a hole in the cap of a 15ml reaction tube to collect the liq-
uid waste. For each washing step on stage, a syringe is plugged carefully in one of the
swabable valves and the containing liquid is slowly �ushed through the perfusion system.
Take care that the applied pressure is as low as possible to avoid any damage to the cells
or the slide. The use of a syringe with a replacement sporn is recommended for liquids
that are only available in small quantities to keep the death volume of the system low.

Reuse of tubing system

The tubing system is reusable if cleaned properly after every use. In order to clean the
perfusion system, each piece of the tubing system is rinsed with 70% ethanol and rinsed
a second time with distilled water to remove ethanol completely. Thereby, each piece is
checked for leaking. In case of leaking the tubing or sealing needs to be replaced. For
sterilization, the perfusion system is put in a glass box and autoclaved.

mRNA transfection using Lipofectamine2000
All steps of the protocol for mRNA L2000 transfection are made with nuclease free pipette
tips and reaction tubes to avoid mRNA degradation during preparation. The mRNA stock
solutions need to be kept on ice during preparation to avoid degradation. The speci�ed
volumes in this protocol are for the preparation of 3x 600 µl transfection solution for
the on stage transfection during a time-lapse experiment of three tubing systems (each
connecting two channels). In general, the ratio of L2000:mRNA of 2.5 µl:1 µg has to
be kept constant and the �nal mRNA concentration during transfection incubation was
0.5 ng/µl.

Reagents

mRNA Stock solution of IVT mRNA in nuclease free water, stored at -80 °C

L2000 Lipofectamine2000 (Thermo Fisher), stored at 4 °C

OM Opti-MEM (Thermo Fisher), stored at 4 °C

PBS pH 7.4, in-house prepared
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Lipoplex formation

Prepare the following two solutions:

I. 2.5 µl L2000 stock solution is diluted in a total volume of 500 µl OM, incubation
for 5min at RT

II. 300 ng mRNA per sample in a total volume of 150 µl OM (three samples)

150 µl of solution I. is added to each mRNA dilution (II.) and mixed well by pipetting,
resulting in a mRNA-L2000 solution of 1 ng/µl. The mixture incubated for 20min at RT.
After incubation, the mixture is diluted to the �nal mRNA concentration of 0.5 ng/µl by
adding 300 µl OM per mixture.

Tube transfection

The speci�ed volume is for the transfection using one of the tubing systems connected to
two channels of the microarray on the microscope. The tubing systems are �ushed using a
1ml syringe with a replacement sporn (to minimize the death volume) per mRNA sample.
It is important for each �uid exchange to take care that no air bubble is injected into the
tubing system. The air bubble would lead to a damage of the cells on the micropattern,
which in the worst case, makes the measurement unusable:

1. Flush the tubing system with 37 °C warm PBS

2. Flush the tubing system with 500 µl of the mRNA-L2000 transfection solution. The
transfection solution is incubated for 1 h.

3. Flush out the unbound lipoplexes by washing with 37 °C warm L15 supplemented
with 10% FBS

Translation inhibition using cycloheximide
The protocol for inhibiting translation was established previously [118, 119].

Reagents

CHX 15 µg/ml cycloheximide diluted in PBS

L15 Leibowitz 15 (without phenol red)

Protocol

1. A single-cell translation assay has been set up including single-cell array preparation,
connection of the perfusion system to the array, and mRNA transfection.

2. For control purposes at least one channel of the array is not treated any further to
record una�ected single-cell �uorescence time courses (Figure A.4.A).

3. The other channels are �ushed with 300 µl CHX solution per channel 8 h after trans-
fection.

4. The �uorescence intensity courses are recorded up to a total experiment duration
of 30 h. The single-cell time course after CHX addition (Figure A.4. B) clearly show
di�erent kinetics compared to the control cells.
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Figure A.4.: Single-cell time courses of cells expressing d2eGFP without translation in-
hibition (A) and dependent on the addition of CHX (red) 8 h after transfection (B).
Adapted from [118].

Fluorescence in situ hybridization after transfection

The following protocol is based on the protocol provided by Stellaris for adherent cells
[233]. The bu�ers for washing and hybridization were prepared similarly to a previous
study [62].

Reagents

Oligos Oligonucleotides binding against eGFP sequence labeled with Quasar Dye 670
(Stellaris)

mRNA eGFP mRNA (Trilink) transfected using L2000

FA 3.7% Formaldehyd solution in PBS

nf H20 DEPC treated water (0.1% DEPC in ultrapure water, autoclaved); nuclease
free (nf)

2x SSC prepared from 20% SSC stock and diluted in nf water

PBS pH 7.4, in-house prepared

PBST PBS supplemented with 0.1% Tween-20

DAPI nuclei label

Phalloidin Phalloidin-Rhodamine (Thermo Fisher) for actin labeling

Preparation

FISH probes

The commercial �design ready set (5nmol)� of oligonucleotides labeled with Quasar 670
(Stellaris) to detect mRNA encoding for eGFP was used.
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1. Re-dissolve dried oligonucleotides in 400µl TE bu�er (10mM TRIS, 1mM EDTA
at pH 8.0) to reach a �nal oligonucleotide concentration of 12.5 µM.

2. Mix well by pipetting the solution up and down, vortex, and centrifuge carefully

3. Prepare aliquots, which can be stored at -20 °C

Wash buffer (10ml)

Prepare fresh for each experiment and store on ice.

Agent Volume
Formamide 1.76ml
20x SSC 1ml
Tween-20 10 µl
nf water add up to 10ml

Hybridization buffer (10ml)

Bu�er is adapted from [62].

Agent Amount
Dextran sulfat 1 g
Formamide 1.76ml
20x SSC 1ml
50mg/ml BSA 40 µl
200mM Ribonucleoside vanadyl complex 100 µl
nf water add up to 10ml

1. Weigh Dextran in a 50ml reaction tube

2. Add 5ml nf water

3. Vortex the tube and put it on a shaker plate for 30-60min until Dextran is completely
dissolved

4. Add other reagents and nf water to reach the �nal volume of 10ml

5. Sterile �ltrate the bu�er and prepare 500µl aliquots

6. Aliquots can be stored at -20 °C

Fixation

The volumes are given per channel.

1. Wash with 120µl PBS to remove serum proteins.

2. Incubate with 3.7% FA for 10min at RT (or 5min at 37 °C if �xation is done during
time-lapse measurement).

3. Wash with 120µl PBS to remove FA.

4. Incubate cells with a 70% EtOH solution for at least 1 h at 6 °C for permeabilization
of the cell membrane.

5. Wash with 2x 120µl PBS. The slide can be stored at 6 °C until further use.
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Hypridization

1. Preparation of oligonucleotide solution: Dissolve the aliquoted stock solution of
12.5 µM to a �nal concentration of 125 nM in hybridization bu�er. A total volume
of 250 µl is needed for hybridization of six channels with 40 µl per channel. Protect
the solution from light to avoid damage of the �uorescent dyes.

2. Wash with 120µl PBST.

3. Add 120µl wash bu�er for 5min.

4. Remove volume in the channels completely.

5. Add 40 µl of the oligonucleotide solutions per channel. Incubate the solution over
night at 37 °C. To avoid evaporation put a piece of para�lm between the channel
slide and the lid and put the slide in a petri dish with a wet piece of tissue.

6. Add 120µl wash bu�er and incubate in the dark at 37 °C for 30min.

7. Prepare staining solution containing DAPI and Phalloidin-Rhodamine (Stock with
6.6 µM) in wash bu�er with 5 ng/µl DAPI and 150 nM Phalloidin.

8. Add 120µl staining solution and incubate in the dark at 37 °C for 30min.

9. Wash twice with 120µl PBST.

10. The slide is ready for imaging. Alternatively, remove the PBST and �ll channels
with mounting medium (ibidi).
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Translation model
The translation model is the least complex model describing the translation and degra-
dation steps as �rst order kinetics. The mRNA m is translated with rate kTL into GFP
G. mRNA and GFP molecules, are degraded by rate δ and β, respectively. The initial
amount of mRNA is given by m0.

ṁ = −δ ·m
Ġ = −β ·G+ kTL ·m

Ribosome model
The ribosome model is an extension of the translation model by describing the translation
process dependent on ribosome binding R (with the initial concentration R0), which leads
to the formation of a mRNA-ribosome complex mR. The translation thereby dependents
on two rates named k1 and k2.

ṁ = −δ ·m− k1m ·R + k2 ·mR
Ṙ = −k1 ·m ·R + k2mR

ṁR = −Ṙ
Ġ = −β ·G+ k2 ·mR

The ribosome kinetics can be approximated as a Michaelis-Menten kinetic describing the
enzymatic activity of ribosomes with the parameter α resulting in a simpli�cation of the
above ODEs [118]:

ṁ = −δ ·m

Ġ = −β ·G+ kTL ·
1

1 + α ·m
·m

Enzyme degradation model
The enzyme degradation model describes the mRNA depletion as an enzymatic step. The
degradation enzyme E (initial concentration E0) binds to the mRNA forming a complex
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mE. The degradation kinetic is described by the parameters δ1 and δ2. The enzyme
degradation model has the same number of parameters as the ribosome model.

ṁ = −δ1 ·m · E
Ė = −δ1 ·m · E + δ2 ·mE

ṁE = −Ė
Ġ = −β ·G+ kTL ·m

Enzyme degradation-ribosome model
The enzyme degradation-ribosome model is the combination of both models describing
the mRNA degradation and translation as an enzymatic reaction instead of �rst order
kinetics.

ṁ = −δ1 ·m · E − k1 ·m ·R + k2 ·mR
Ṙ = −k1 ·m ·R + k2 ·mR

ṁR = −Ṙ
Ė = −δ1 ·m · E + δ2 ·mE

ṁE = −Ė
Ġ = −β ·G+ k2 ·mR

Translation-maturation model
The translation-maturation model extends the two step translation model by an additional
maturation step. Each of the three steps are modeled as �rst order kinetics. The mRNA
is translated into the unmature variant of GFP G∗ that matures into �uorescent GFP
with rate kM .

ṁ = −δ ·m
Ġ∗ = −β ·G∗ − kM ·G∗ + kTL ·m
Ġ = −β ·G+ kM ·G∗
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Abbreviations
ACF Autocorrelation function

AIC Akaike Information Criterion

apoE Apolipoprotein E

BIC Bayesian Information Criterion

CayRFP CayenneRFP

Chol Cholesterol

CHX Cycloheximide

Cy5 Cyanine dye 5

d2eGFP Destabilized enhanced green �uorescent protein

DFHBI 3,5-di�uoro-HBI

DLin DLin-DMA

DSPC Distearoyl phosphocholine

DTT Dithiothreitol

eGFP Enhanced green �uorescent protein

FACS Fluorescence activated cell sorting

FBS Fetal bovine serum

FISH Fluorescent in situ hybridization

FL Fluorescence

FRET Förster resonance energy transfer

FWHM Full width half maximum

GFP Green �uorescent protein

HBI 4-hydroxybenzlidene imidazolinone

IVT in vitro transcribed

KC2 DLin-KC2-DMA
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L2000 Lipofectamine 2000

LISCA Live cell imaging of single-cell arrays

LNP Lipid nanoparticle

MC3 DLin-MC3-DMA

MIMIC Micromolding in capillaries

MLE Maximum likelihood estimation

mRNA messenger RNA

MWA Microwell analysis

NA Nucleic acid

nf Nuclease free

NLME Non-linear mixed e�ect approach

ODE Ordinary di�erential equations

ORF Open reading frame

PABP poly(A) binding protein

PDMS Poly(dimethylsiloxane)

pDNA Plasmid DNA

PEG Polyethylenglycol

PEG-DA PEG-diacrylate

pKa Logarithmic acid dissociation constant

PLL-g-PEG Poly-L-lysine grafted poly(ethylene glycol)

RISC RNA-induced-silencing complex

RT Room temperature

sem Standard error of the mean

siRNA small interfering RNA

std Standard deviation

STS Standard two-stage approach

TE Transfection e�ciency

UTR Untranslated region
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