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1 Einleitung 

In den letzten Jahrzehnten kam es zur Einführung einer Reihe neuartiger Kariesdiagnosesysteme mit 

dem Ziel, die klassische Kariesdiagnostik bestehend aus visuell-taktiler Diagnostik und 

Röntgendiagnostik zu ergänzen. Die Röntgendiagnostik als klassisches bildgebendes 

Diagnoseverfahren der Zahnmedizin stand außerdem immer wieder aufgrund ihres Einsatzes von 

ionisierender Strahlung im Zentrum der Diskussion und es wurde versucht, alternative Verfahren zu 

entwickeln, die den Einsatz des Röntgen minimieren können [Emde, 2013]. Das klinische Bild der 

Karies hat sich in den hochindustrialisierten Gesellschaften mit der Zeit geändert. So ist heutzutage 

unter anderem eine langsamere Progression zu verzeichnen, was den zeitlichen Spielraum für 

präventive und minimalinvasive Maßnahmen vergrößert. Neu entstandene kariöse Läsionen befinden 

sich heute vor allem an den okklusalen sowie den approximalen Zahnflächen. Der kariöse Prozess, 

der zur Demineralisation der Zahnhartsubstanzen führt, kann in der Frühphase gezielt durch 

noninvasive Maßnahmen wie Ernährungsumstellung, antibakterielle Maßnahmen sowie gezielte 

Fluoridierung arretiert und die kariöse Läsion remineralisiert werden. Die Prüfung des 

Behandlungserfolgs dieser Maßnahmen verlangt jedoch adäquate Diagnostik, die in der Lage ist, den 

klinischen Verlauf zu überwachen, um bei eventuellem Misserfolg und Fortschreiten der Karies 

möglichst frühzeitig weitere Behandlungsschritte bis hin zur minimalinvasiven Füllungstherapie 

einzuleiten. Somit stellt hochsensitive Kariesdiagnostik einen elementaren Baustein im Konzept der 

non- und minimalinvasiven Kariestherapie dar [Bühler et al., 2005, Fried et al., 2010, Karlsson, 

2010]. Die klassische Kariesdiagnostik kann dies jedoch nicht ausreichend erfüllen, da kariöse 

Läsionen mit ihrer Hilfe oft zu spät für die Anwendung von noninvasiven Therapiemethoden erkannt 

werden [Stookey et al., 2001, Young et al., 1999]. 

Eine wichtige Gruppe neuartiger Diagnosesysteme, die diese Lücke schließen sollen, sind die 

lichtoptischen Kariesdiagnosesysteme. Diese nutzen gezielt die optischen Eigenschaften von 

Zahnhartsubstanz und deren Veränderung durch kariöse Prozesse aus, um Aussagen über das 

Vorhandensein von Karies zu treffen. So wurde zum Beispiel das QLF-System (Inspektor Research 

Systems, Amsterdam, Niederlande), das auf der Veränderung der Autofluoreszenz der 

Zahnhartsubstanzen durch kariöse Prozesse beruht, entwickelt. DIAGNOdent (KaVo, Biberach, 

Deutschland) als weiteres Beispiel macht sich wiederum ein erhöhtes Vorkommen von Fluoreszenz 

im Nahen Infrarotbereich nach Beleuchtung des Zahnes mit Licht im Wellenlängenbereich 655nm 

bei Befall der Zahnhartsubstanz mit Mikroorganismen zunutze. Außerdem wurden Systeme 

entwickelt, die auf dem Prinzip der Transillumination, also Durchleuchtung, des Zahnes beruhen. 

Hier wären die Techniken FOTI und ihre Weiterentwicklung, DIFOTI, zu nennen [Karlsson, 2010]. 

Die Transilluminationsverfahren gehören im Gegensatz zu den beiden erstgenannten 

fluoreszenzbasierten Verfahren zu den intensitätsbasierten lichtoptischen Techniken [Schäfer, 2007]. 
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Sie beruhen auf dem Prinzip der Verringerung der Intensität des Lichts bei Durchleuchtung des 

Zahnes, wobei Unterschiede in den optischen Eigenschaften zwischen kariöser und gesunder 

Zahnhartsubstanz ausgenutzt werden, um Karies zu detektieren. Insbesondere die Durchleuchtung 

des Zahnes mit Wellenlängen im Nahen Infrarotbereich erwies sich hier als vorteilhaft, da sie eine 

höhere Eindringtiefe des Lichts in die Zahnhartsubstanz verspricht als lichtoptische Systeme, die auf 

Licht geringerer Wellenlänge setzen [Fried et al., 2005, Karlsson, 2010]. Im Herbst 2012 hat das 

System DIAGNOcam (KaVo, Biberach, Deutschland) den europäischen Markt erreicht und wird 

seither zur Kariesdiagnostik eingesetzt. Es beruht auf dem Prinzip der Transillumination von 

Zahnhartsubstanz mit Licht der Wellenlänge 780nm. Dabei wird das Licht mithilfe von optischen 

Fasern über zwei elastische Arme über die Gingiva und den Alveolarknochen in die Zahnwurzel 

eingeleitet. Von dort aus gelangt es über die Zahnkrone zu einem CCD-Sensor, mithilfe dessen die 

lichtoptischen Informationen ausgewertet werden können. Das Licht wird bei seinem Weg durch den 

Zahn von gesunder und kariöser Zahnhartsubstanz unterschiedlich stark abgeschwächt. Dieser 

Unterschied in der Abschwächung der Lichtintensität kann mithilfe des CCD-Sensors und der 

systemeigenen Software visuell dargestellt werden [Emde, 2013, Söchtig et al., 2014].  

Das System DIAGNOcam wurde an der Poliklinik für Zahnerhaltung und Parodontologie der 

Ludwig-Maximilians-Universität München bereits seit Jahren erfolgreich eingesetzt und klinisch 

getestet. So konnten Kühnisch et al. [2016] in ihrer klinischen Studie den Nachweis erbringen, dass 

DIAGNOcam in der Lage ist, approximale Läsionen zuverlässig zu erkennen. Dabei war das System 

in seiner Sensitivität für kariöse Dentinläsionen dem etablierten Bissflügelröntgen ebenbürtig. 

Jedoch zeigte sich als Einschränkung, dass das Ausmaß der kariösen Dentinläsionen, die in ihrer 

Ausdehnung bis zu 50% des Dentins betrafen, in vielen Fällen nicht mit dem DIAGNOcam-System 

optisch dargestellt werden konnte. Die sehr hohe Sensitivität des Systems für Dentinkaries ergab sich 

vor allem daraus, dass das System sehr gut die Ausbreitung von Karies im Schmelz bis hin zur 

Schmelzdentingrenze visualisieren konnte und man bei breitflächigem Befall der 

Schmelzdentingrenze auf das Vorkommen von Dentinkaries schloss [Kühnisch et al., 2016]. Auch 

neuere Studien zeigen das Problem, dass es mit dem System DIAGNOcam schwierig zu sein scheint, 

die Ausbreitung einer kariösen Dentinläsion sicher zu erkennen [Lederer et al., 2017a, Lederer et al., 

2017b]. Dieser Umstand war der Anlass, die optischen Eigenschaften von Zahnschmelz und Dentin 

in einer experimentellen Studie allgemein zu untersuchen. Ziel dieser Arbeit war es, eine Methode 

zu entwickeln, die es ermöglicht, die optischen Eigenschaften von gesundem sowie kariösem 

Schmelz und Dentin zu bestimmen und gezielt die Unterschiede zwischen den beiden 

Zahnhartsubstanzen aufzuzeigen. Angestrebt wurde, diese Untersuchungen für Licht verschiedener 

Wellenlängen durchzuführen. Die vorliegende Arbeit sollte einen experimentell-wissenschaftlichen 

Beitrag dazu leisten, die lichtoptische Kariesdiagnostik weiter zu erforschen und weiterzuentwickeln. 
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2 Theoretische Grundlagen und Literaturübersicht 

Auf den folgenden Seiten soll zunächst ein Überblick sowohl über die physikalischen und 

biologischen Grundlagen als auch über bereits gewonnene Erkenntnisse auf dem Gebiet der 

lichtoptischen Kariesdiagnostik gegeben werden. 

2.1 Grundlagen der Optik und Photonik 

Im Folgenden soll dabei zuerst auf die physikalischen Grundlagen der Optik und Photonik 

eingegangen werden. 

2.1.1 Licht und Laser 

Der Begriff Licht bezeichnet im engeren Sinne den vom Menschen sichtbaren Anteil des Spektrums 

elektromagnetischer Strahlung im Bereich von 400 bis 750nm [Harms, 2010], der sich in seinen 

Grundeigenschaften nicht von den anderen Bereichen unterscheidet [Wenisch, 2009]. Mit dem 

Begriff Licht werden daher im weiteren Sinne auch andere Bereiche des elektromagnetischen 

Spektrums bezeichnet, wie beispielsweise die Strahlung des Nahen Infrarotbereichs, weshalb der 

Begriff Licht im Rahmen der vorliegenden Arbeit auch auf diesen Wellenlängenbereich angewendet 

wird. 

Für die Beschreibung von Licht und der von ihm hervorgerufenen Phänomene existieren heute 

verschiedene Modelle. Lange Zeit existierte jedoch lediglich das klassische Modell der 

Strahlenoptik, das später durch die Wellentheorie des Lichts abgelöst und durch die Quantentheorie 

des Lichts erweitert wurde [Franzen, 2012], wodurch der sogenannte Welle-Teilchen-Dualismus 

entwickelt wurde. Dieser besagt, dass sich Licht sowohl wie eine elektromagnetische Welle als auch 

wie ein Teilchen verhält, dabei aber weder als klassische Welle noch als Strom klassischer Teilchen 

verstanden werden kann. Je nach Fall muss eines der beiden Modelle herangezogen werden, um 

bestimmte Phänomene des Lichts korrekt zu beschreiben [Zinth et al., 2009]. Die moderne Physik 

interpretiert daher Licht heute als Quantenfeld, welches dem Beobachter je nach Experiment erlaubt, 

Licht als Teilchen oder als Welle zu sehen [Meister et al., 2004a]. So kann beispielsweise die 

Ausbreitung des Lichts mithilfe der Wellentheorie beschrieben werden, jedoch muss Licht für die 

Beschreibung der Wechselwirkungen von Licht mit Materiepartikeln als Teilchen beziehungsweise 

Energiepaket, auch Photon genannt, interpretiert werden [Franzen, 2012]. Letzteres wird in 

Gleichung (1) verdeutlicht: 
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������� = ℎ ∗ 
 = ℎ ∗ ��
  (1) 

Dabei gilt, dass �������= Energie des Photons, ℎ= Planck’sches Wirkungsquantum, 
= Frequenz, 

��= Lichtgeschwindigkeit im Vakuum und 
= Wellenlänge des Lichts [Franzen, 2012]. 

Licht als elektromagnetische Welle besteht aus oszillierenden elektrischen und magnetischen Feldern 

und breitet sich mit einer räumlichen und zeitlichen Periodizität in einer bestimmten Richtung aus. 

Als räumliche Periodizität ist dabei die Wellenlänge definiert, die den kleinsten Abstand zweier 

Punkte gleicher Phase angibt. Die zeitliche Periodizität stellt die Frequenz dar, die die Anzahl der 

Schwingungen pro Sekunde wiedergibt. Das Produkt aus Wellenlänge und Frequenz ergibt die 

Ausbreitungsgeschwindigkeit des Lichts, die im Vakuum eine Konstante bildet und gerundet 300000 

km/s beträgt [Franzen, 2012]. Das sogenannte elektromagnetische Spektrum beinhaltet dabei einen 

großen Bereich an elektromagnetischer Strahlung, die sich bezüglich ihrer Wellenlänge 

unterscheidet. Anhand der Wellenlänge kann man elektromagnetische Strahlung somit in 

verschiedene Teilbereiche einteilen. So ist vom Menschen sichtbares Licht als elektromagnetische 

Strahlung mit den Wellenlängen 400 bis 750nm definiert [Harms, 2010], wobei die unterschiedlichen 

Wellenlängen vom Menschen als unterschiedliche Farben wahrgenommen werden. Der Nahe 

Infrarotbereich dagegen reicht von 750nm bis 2500nm Wellenlänge. Da nach der Quantentheorie des 

Lichts gilt, dass sich die Energie eines Photons direkt proportional zur Frequenz und damit indirekt 

proportional zur Wellenlänge verhält, ist, vereinfacht gesagt, Licht geringerer Wellenlängen 

beziehungsweise höherer Frequenz energiereicher als Licht höherer Wellenlänge beziehungsweise 

niedrigerer Frequenz [Meister et al., 2004a].  

Das Modell der Photonen kann verwendet werden, um die Erzeugung von Laserlicht zu beschreiben. 

Ein Lasersystem besteht aus einem aktiven Medium, in dem sich Atome mit angeregten Elektronen 

befinden. Angeregt bedeutet dabei, dass sich die entsprechenden Elektronen auf einem höheren 

Energieniveau befinden. Im Laser wird dieser angeregte Zustand durch eine sogenannte Pumpquelle 

erzeugt. Klassischerweise können als aktives Medium ein Kristall und als Pumpquelle eine 

Blitzlampe verwendet werden. Die Blitzlampe sendet Licht und damit Photonen in den Kristall aus, 

die Elektronen in Atomen, die am Aufbau des Kristalls beteiligt sind, anregen. Dabei wird durch 

externe Energiezufuhr ein künstlicher Zustand erzeugt, bei dem Atome mit angeregten Elektronen 

gegenüber Atomen mit nicht angeregten Elektronen überwiegen, was Besetzungsinversion genannt 

wird. Die angeregten Elektronen können wieder spontan auf ihr ursprüngliches Energieniveau 

zurückfallen, wobei Energie in Form eines Photons emittiert wird. Dieses emittierte Photon kann als 

störendes Photon wirken und ein angeregtes Elektron auf ein niedrigeres Energieniveau 

zurückführen, wodurch wiederum Energie in Form eines Photons entsteht, welches dieselbe 

Richtung, Frequenz und Phase hat wie das störende Photon. Dieser Vorgang wird stimulierte 

Emission genannt und kann sich beliebig oft wiederholen. Durch ein zusätzliches Resonatorsystem 

als letzten Bestandteil eines Lasers kann dann ein Laserstrahl erzeugt werden. Das Resonatorsystem 
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besteht in der einfachsten Form aus zwei Spiegeln, wobei einer davon teilreflektierend ist. Dadurch 

wird ein Teil der emittierten Photonen im System gehalten, wodurch sich der Prozess der stimulierten 

Emission immer wieder wiederholt. Schließlich können einige Photonen das System über den 

teilreflektierenden Spiegel in einer bestimmten Richtung verlassen, wodurch ein Lichtstrahl entsteht. 

Dieses Grundprinzip findet sich beispielsweise auch in Dioden- beziehungsweise Halbleiterlasern, 

die im Rahmen dieser Arbeit verwendet wurden, wobei bei diesem Typ Laser durch Anlegen einer 

Spannung zwischen zwei verschiedenen Halbleitermaterialien Grenzschichteffekte zwischen den 

Halbleitermaterialen erzeugt und ausgenutzt werden, um Laserlicht zu generieren [Franzen, 2012, 

Franzen et al., 2004]. Das Licht, das ein Lasersystem verlässt, ist quasimonochromatisch und 

hochgradig kohärent [Hecht, 2014]. 
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2.1.2 Wechselwirkung von Licht und Materie 

Wenn Licht auf Materie trifft, kommt es zu verschiedenen Formen der Wechselwirkung zwischen 

Licht und Materie, wobei hier vor allem auf diejenigen Prozesse eingegangen werden soll, die bei 

der Licht-Gewebe-Wechselwirkung eine wichtige Rolle spielen. 

Die Grundlage der Wechselwirkung von Licht und Materie beruht auf der Wechselwirkung von Licht 

mit den Atomen und Molekülen des durchdrungenen Materials. Photonen, die laut der 

Quantentheorie Energiepakete darstellen (vgl. Gleichung (1)), können dabei Energie auf Atome 

beziehungsweise auf die Elektronen in den Atomhüllen des Materials übertragen. Licht als 

elektromagnetische Welle kann außerdem Atome und Moleküle, die in vereinfachter Form als Dipole 

anzusehen sind, zu Schwingungen anregen. Durch diese Prozesse können Photonen abgelenkt oder 

aufgenommene Energie in andere Formen wie Wärme umgewandelt werden. Die wichtigste Rolle 

bei der Abschwächung von Licht bei Durchdringung von biologischem Material spielen dabei die 

Absorption, Streuung und Reflexion. Der Anteil des Lichts, welches ein Medium ungehindert 

durchdringt, wird dagegen als (kollimierte) Transmission bezeichnet [Franzen, 2012, Hecht, 2014, 

Popp et al., 2011]. Eine Übersicht dazu zeigt Abbildung 1. 

 

 

Abbildung 1: Übersicht über die Licht-Materie-Wechselwirkung in biologischem Material. 
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2.1.2.1 Absorption 

Bei der Absorption wird die Energie der Photonen beim Durchgang durch Materie vor allem in 

Wärme umgewandelt. Jedes Atom des durchdrungenen Materials besitzt Elektronen, die bestimmte 

Energieniveaus besitzen oder annehmen können. Ein Photon ist ein Energiepaket, wobei die Größe 

der Energie von der Wellenlänge beziehungsweise der Frequenz des Lichts festgelegt ist (vgl. 

Gleichung (1)). Diese Energie kann auf Elektronen eines Atoms übertragen werden, wenn die Größe 

der Energie des Photons einem Betrag entspricht, den das Elektron benötigt, um ein höheres 

Energieniveau zu erreichen. Dieser Betrag ist atom- beziehungsweise materialspezifisch und somit 

auch spezifisch für die Frequenz des einfallenden Lichts, weshalb auch von Resonanzfrequenz 

gesprochen wird. Wenn ein Elektron durch Wechselwirkung mit einem Photon Energie aufnimmt 

und den Sprung auf ein höheres Energieniveau vollzieht, hört das Photon auf zu existieren. Die 

Energie des Photons ist somit auf das Elektron übergegangen. Diese Energie kann durch 

Stoßprozesse an Nachbaratome weitergegeben werden, bevor durch Zurückfallen des Elektrons auf 

ein niedrigeres Energieniveau wiederum ein Photon entstünde, sodass die Energie letztlich dem Licht 

entzogen und das Licht beim Durchgang durch die Materie abgeschwächt wird [Franzen, 2012, 

Hecht, 2014, Popp et al., 2011]. Der Vorgang der Absorption ist neben der Abschwächung von Licht 

beispielsweise auch verantwortlich für das Phänomen der Fluoreszenz oder die Entstehung von 

Laserlicht [Franzen et al., 2004, Popp et al., 2011]. 
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2.1.2.2 Streuung und Reflexion 

Wenn ein Photon mit einem Atom interagiert, dessen Resonanzfrequenz größer ist als die Frequenz 

des die Materie durchdringenden Photons, dann kommt es zu Streuung, die zur Ablenkung des 

Photons bezüglich seiner Ausbreitungsrichtung führen kann. Das Photon kann dabei zur Seite, nach 

vorne oder rückwärts gestreut werden. Bei der Wechselwirkung von Licht mit biologischem Material 

spielt vor allem die elastische Streuung, bei der es zu keinem Energieverlust oder -gewinn des 

Photons kommt, eine Rolle, weshalb im Folgenden nur auf diese Art der Streuung eingegangen wird 

[Hecht, 2014, Meister et al., 2004b, Popp et al., 2011]. 

Grundlage des Phänomens Streuung ist, dass Licht als elektromagnetische Welle ein elektrisches 

Feld besitzt [Harms, 2010]. Dieses kann beim Durchgang durch Materie Atome oder Moleküle des 

durchdrungenen Materials, die als Dipole anzusehen sind, zum Schwingen anregen. Bei Anregung 

eines Atoms oder Moleküls entsteht somit ein oszillierender Dipol, der in derselben Frequenz 

schwingt wie das einfallende Licht und dadurch wiederum selbst elektromagnetische Strahlung 

aussendet. Die ausgesendete Strahlung besitzt dabei dieselbe Frequenz wie das auf das Atom 

einfallende Licht und Photonen werden zufällig in alle Richtungen ausgesendet. Das Licht wird somit 

elastisch, also ohne Energieverlust, gestreut. [Hecht, 2014, Popp et al., 2011]. 

Dabei gilt, dass je gleichförmiger die Moleküle eines Mediums aufgebaut sind und je gleichmäßiger 

sie verteilt sind, desto weniger Licht gestreut wird. In inhomogenen Medien wie auch in Medien, 

deren Streuzentren unregelmäßig und weit verteilt sind, nimmt die Streuung zu. Letztlich können 

auch alle Inhomogenitäten in einem Material, wie beispielsweise Tropfen, Schwebstoffe, 

Fremdpartikel oder Blasen, als Streuzentren betrachtet werden. Die Größe des einzelnen 

Streuzentrums gegenüber der Wellenlänge des einfallenden Lichts bestimmt die Art der Streuung. 

Bei der Untersuchung der Wechselwirkung zwischen Licht und biologischem Material werden 

immer wieder die Rayleigh- und die Mie-Theorie herangezogen. Wenn Licht auf Materie trifft, deren 

Streuzentren deutlich kleiner sind als die Wellenlänge des eintreffenden Lichts (bis zu Faktor 15), 

dann kann der Streuvorgang mit der Rayleigh-Theorie beschrieben werden, bei der das Phänomen 

der Interferenz zu vernachlässigen ist. Die Rayleigh-Theorie beschreibt, dass Licht in alle 

Richtungen, jedoch vor allem vorwärts- und zurückgestreut wird, was in gleichen Anteilen geschieht. 

Die Intensität der Streustrahlung hängt dabei stark von der Lichtwellenlänge ab, wobei sie sich 

umgekehrt proportional zur vierten Potenz der Wellenlänge verhält, was bedeutet, dass kurzwelliges 

Licht deutlich stärker gestreut wird als langwelliges. Bei größeren Streuzentren, deren Größe sich 

einer Lichtwellenlänge nähert, nehmen Interferenzeffekte zu, sodass sich die Verteilung des 

Streulichts ändert. Diese Streuvorgänge können mit der Mie-Theorie beschrieben werden. In diesem 

Größenbereich dominieren mehr und mehr Interferenzeffekte, die zu einer verstärkten Auslöschung 

von Licht in seitlicher und rückwärtsgerichteter Richtung führen, weshalb die Streuung in 

Vorwärtsrichtung zunimmt. Auch wird zunehmend Licht höherer Wellenlängen gestreut, sodass die 

Abhängigkeit von der Wellenlänge abnimmt und letztlich aufgehoben ist, wenn das Streuzentrum 
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die Größe der Lichtwellenlänge überschreitet [Fuhrmann-Lieker et al., 2008, Hecht, 2014, Mie, 

1908]. 

Die Grundlage des Phänomens Streuung erklärt auch die Vorgänge der Reflexion und Brechung, die 

makroskopische Erscheinungsformen der Streuung darstellen. Grundlegend ist bei der Reflexion 

zwischen der Oberflächenreflexion als Effekt der Grenzfläche zwischen zwei Medien und der 

Reflexion im Sinne der Rückstreuung von Licht im Inneren eines Mediums zu unterscheiden. Zur 

Oberflächenreflexion kommt es, wenn sich Licht in einem Medium ausbreitet und auf ein anderes 

Medium mit unterschiedlichem Brechungsindex trifft. An der Grenzfläche zwischen diesen beiden 

Medien kommt es dann zu einer Rückstreuung von Licht, die vom Verhältnis der Brechungsindizes 

der beiden Medien abhängt, wobei es bei größerem Unterschied zu größerer Reflexion kommt. Bei 

senkrechtem Lichteinfall auf eine Grenzfläche berechnet sich der Anteil des reflektierten Lichts nach 

Gleichung (2): 

� = (�� − ���� + ��)� (2) 

Dabei gilt, dass �= Reflexionsgrad als Anteil der rückreflektieren Lichtintensität im Verhältnis zur 

einfallenden Lichtintensität, ��= Brechungsindex des ersten Mediums und ��= Brechungsindex des 

zweiten Mediums. 

Bei Einfall des Lichts von weniger als 90° auf eine Grenzfläche kommt es neben der Reflexion 

zusätzlich zu Brechung, die eine makroskopische Ablenkung des Lichtstrahls aufgrund des 

Übergangs des Lichts von einem Medium in ein zweites Medium mit unterschiedlichem 

Brechungsindex darstellt [Hecht, 2014, Meister et al., 2004b, Zinth et al., 2009]. Der Versuchsaufbau 

zur Bestimmung der optischen Eigenschaften von Schmelz und Dentin (s. 4.2) musste deshalb so 

ausgelegt sein, dass Brechung bei der Durchleuchtung von Zahnproben und den damit verbundenen 

Übergängen des Lichts zwischen verschiedenen Medien minimiert wird, was vor allem bedeutet, 

dass das Licht möglichst senkrecht auf alle Grenzflächen auftreffen sollte. Außerdem existiert die 

Möglichkeit des Indexmatchings zur Minimierung der Oberflächenreflexion (vgl. Abbildung 8). Für 

die Untersuchung von Zahnproben wurden von verschiedenen Autoren verschiedene Flüssigkeiten 

benutzt, die an die Brechungsindizes von Schmelz und Dentin unterschiedlich stark angeglichen 

waren, um den Einfluss der Oberflächenreflexion zu minimieren  [Chan et al., 2014, Darling et al., 

2006, Fried et al., 1995, Jones et al., 2002, Zijp et al., 1991, Zijp et al., 1995]. 

  



Literaturübersicht 

10 
 

2.1.3 Abschwächung des Lichts beim Durchgang durch Materie 

Wenn Licht Materie durchdringt, wechselwirkt es mit den Atomen und Molekülen des 

durchdrungenen Materials. Ein Teil des Lichts wird dabei absorbiert und ein anderer Teil wird 

gestreut, sodass der Anteil des Lichts, der unbeeinflusst das Material durchdringt, sinkt. Der Abfall 

der transmittierten Lichtintensität verhält sich dabei exponentiell zur Schichtdicke des 

durchdrungenen Materials, was im Lambert-Beer’schen Gesetz ausgedrückt wird, das in Gleichung 

(3) gezeigt ist: 

�(�) = �� ∗ ���� (3) 

Mit �(�)= Intensität am Ort �, wobei �= Eindringtiefe beziehungsweise Dicke der durchleuchteten 

Schicht, ��= Intensität des einfallenden Lichtstrahls und �= Extinktionskoeffizient als Maß für die 

Lichtschwächungsfähigkeit des Materials, auch Attenuationskoeffizient genannt. 

Anstelle der Lichtintensität, die als Strahlungsleistung pro Raumwinkel oder Fläche definiert ist, 

kann die Strahlungsleistung P eingesetzt werden, sodass das Lambert-Beer’sche Gesetz nach 

Gleichung (4) lautet: 

�(�) =  �� ∗ ���� (4) 

Der Transmissionsgrad T ist als das Verhältnis der Leistung des abgeschwächten Lichts zur 

ursprünglichen Leistung definiert, was in Gleichung (5) gezeigt wird: 

� = �(�) / �� (5) 

Die Extinktion beziehungsweise Attenuation ist das Lichtschwächungsvermögen des 

durchleuchteten Materials und ergibt sich durch Logarithmieren und Umformen aus dem Lambert-

Beer’schen Gesetz (vgl. Gleichung 3 und 4), wodurch Gleichung (6) lautet: 

� =  − ln #�(�)
�� $ =  − ln(�)

= � ∗ � 

(6) 

Aus dieser Gleichung geht somit hervor, dass die Extinktion dem negativen natürlichen Logarithmus 

des Transmissionsgrads entspricht und zur Schichtdicke � über den Faktor � proportional ist. � ist 

dabei ein Maß für die Wahrscheinlichkeit, dass ein Photon aus dem einfallenden Lichtstrahl entfernt 

wird, sodass die Strahlungsleistung über die durchdrungene Schichtdicke � abnimmt. Der Faktor � 

wird daher Exktinktions- oder Attenuationskoeffizient genannt. In Medien, die bevorzugt Licht 

absorbieren, kann Streuung vernachlässigt werden und der Attenuationskoeffizient entspricht dem 

Absorptionskoeffizienten �%. In Medien, die sowohl Licht absorbieren als auch streuen setzt sich der 

Attenuationskoeffizient aus der Summe des Absorptions- und des Streukoeffizienten �& zusammen, 

der ein Maß für die Wahrscheinlichkeit, Licht zu streuen, ist.  
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Dies ist in Gleichung (7) dargestellt: 

� = �% + �& (7) 

[Bohren et al., 2004, Jones et al., 2002, Kunze et al., 2009, Popp et al., 2011, Skoog et al., 2013] 

Biologische Materialien stellen dabei in der Regel Medien dar, in denen Absorption und Streuung 

eine Rolle spielen, wobei vor allem die Streuung im Wellenlängenbereich des sichtbaren Lichts 

sowie des Nahen Infrarotbereichs dominiert [Meister et al., 2004b]. Der Attenuationskoeffizient � 

ist eine von der Wellenlänge des einfallenden Lichts abhängige Materialkonstante. Er gibt die 

Fähigkeit eines Materials an, Licht beim Durchgang durch das Material durch Streuung und 

Absorption abzuschwächen. Seine Bestimmung wurde und wird daher für die Beschreibung der 

optischen Eigenschaften von Materialien angewandt. Auch für die Bestimmung der Eigenschaften 

von Schmelz und Dentin wurde dies getan [Chan et al., 2014, Fried et al., 1995, Jones et al., 2002]. 

Dabei ist zu berücksichtigen, dass die Gültigkeit des Lambert-Beer’schen Gesetzes definitionsgemäß 

beschränkt ist. Das Gesetz wird in der analytischen Chemie für die Untersuchung von 

Substratlösungen angewandt. Das in einem Medium gelöste Substrat beziehungsweise der zu 

untersuchende Analyt darf dabei eine Konzentration von 0,01 mol/L nicht überschreiten, da es 

ansonsten verstärkt zu Wechselwirkungen zwischen dem Lösungsmittel und dem Analyten wie auch 

dem gelösten Stoff mit sich selbst kommt, welche die Messungen beeinflussen. So kann 

beispielsweise die Absorptionsfähigkeit eines Stoffs verändert werden. Auch die Erhöhung der 

Konzentration eines lichtstreuenden Stoffs über eine bestimmte Grenze hinaus kann durch 

vermehrtes Auftreten von Mehrfachstreuung Einfluss auf Messergebnisse nehmen. Eine lineare 

Beziehung zwischen Extinktion und der Schichtdicke � ist dann nicht mehr gegeben [Bastian, 2010, 

Michels, 2010, Otto, 2011, Skoog et al., 2013]. 

Einen klassischen Aufbau, mit dem das Lambert-Beer’sche Gesetz zur Charakterisierung der 

Lichtschwächung durch ein zu untersuchendes Material ermöglicht wird, stellt das Photometer dar. 

Dieses besteht aus einer Lichtquelle, deren Licht durch einen Monochromator auf einen möglichst 

engen Spektralbereich gefiltert wird. Die Lichtmenge wird über eine Blende geregelt. Das Licht trifft 

auf eine Küvette, die das zu untersuchende Substrat in gelöster Form enthält. Das abgeschwächte 

Licht fällt anschließend auf einen Photodetektor und wird registriert. Mithilfe der Dicke der Küvette, 

die der Dicke der durchstrahlten Schichtdicke des zu untersuchenden Stoffs entspricht, kann über das 

Lambert-Beer’sche Gesetz der Attenuationskoeffizient errechnet werden. Vor der Messung werden 

dabei zunächst eine Dunkelstromkalibrierung des Photodetektors sowie eine 100%-T-Kalibrierung 

durchgeführt. Bei letzterer wird ein Leerwert P0 bestimmt, der mittels Durchleuchtung der Küvette, 

die nur mit dem reinen Lösungsmittel gefüllt ist, ermittelt wird. Dieser Leerwert P0 entspricht somit 

der einfallenden Lichtleistung abzüglich derjenigen Einflüsse, die durch die Küvette selbst oder das 

Lösungsmittel verursacht werden, wie zum Beispiel Streuung durch das Lösungsmittel oder 

Reflexion an den Grenzflächen zwischen Luft und Küvette sowie Küvette und Lösungsmittel. Der 
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Leerwert P0 wird zur Bestimmung des Transmissionsgrads verwendet, mithilfe dessen über das 

Lambert-Beer’sche Gesetz der Attenuationskoeffizient bestimmt werden kann [Kunze et al., 2009, 

Otto, 2011, Skoog et al., 2013]. 

In analoger Weise haben Autoren wie Jones et al. [2002] oder Fried et al. [1995] einen Aufbau zur 

optischen Charakterisierung von Zahnhartsubstanz verwendet und Attenuationskoeffizienten 

bestimmt. Sie platzierten dabei Zahnhartsubstanzproben in einer Küvette, die mit Flüssigkeit gefüllt 

werden konnte. Hauptunterschied zur Photometrie aus der analytischen Chemie ist, dass es sich bei 

dem zu untersuchenden Substrat nicht um einen gelösten Stoff, sondern um einen Feststoff handelt. 

Das Problem dabei ist, dass hier eine zusätzliche Grenzfläche zwischen Flüssigkeit und der 

Zahnprobe besteht, an der Reflexion auftritt. Dieses Problem haben die genannten Autoren über die 

Anwendung von Indexmatching gelöst, wobei eine Flüssigkeit in die Küvette gefüllt wurde, die einen 

dem zu untersuchenden Material entsprechenden Brechungsindex besaß und somit die Reflexion an 

der Grenzfläche zwischen Flüssigkeit und Probe minimiert wurde (vgl. Gleichung (2) und Abbildung 

8). Trotz der genannten Einschränkungen wurde daher das Lambert-Beer-Gesetz zur Bestimmung 

der optischen Eigenschaften von Zahnhartsubstanz auch im Rahmen der vorliegenden Arbeit 

angewendet, um die Eigenschaften von Schmelz und Dentin zu charakterisieren. 
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2.2 Bisherige Kenntnisse und Untersuchungen 

Die Untersuchung der Eigenschaften von Zahnhartsubstanz war immer wieder Gegenstand der 

Forschung. Daher sollen in folgendem Abschnitt die wichtigsten Untersuchungen und Kenntnisse 

bezüglich Zahnschmelz und Dentin sowie deren optische Eigenschaften vorgestellt werden. 

2.2.1 Struktur von Schmelz und Dentin sowie Änderung durch kariöse Prozesse 

Die Untersuchung der optischen Eigenschaften von Schmelz und Dentin setzt Kenntnisse über die 

Struktur und den Aufbau der beiden Zahnhartsubstanzen voraus [Zijp et al., 1995]. 

Zahnschmelz ist eine natürliche Hartsubstanz, dessen weitaus größter Anteil von anorganischen 

Verbindungen aus Kalzium und Phosphat gebildet wird. Diese liegen in Form von nicht-

stöchiometrischen kristallinen Hydroxylapatitverbindungen vor, in denen neben Kalzium, Phosphat- 

und Hydroxylionen beispielsweise Carbonat oder Fluorid enthalten sein können. Der anorganische 

Anteil am Gesamtgewicht des menschlichen Schmelzes beträgt dabei circa 95%. Den Rest bilden 

Wasser mit circa 4% und ein organischer Anteil, der vor allem aus Proteinen und Lipiden besteht, 

mit circa 1%. Dies entspricht jeweils Volumenanteilen von circa 87%, 11,5% und 1,5%. Die 

Hydroxylapatitkristalle haben eine hexagonale Grundstruktur und sind durchschnittlich circa 25nm 

dick, 40nm breit und 160nm lang. Den Hauptanteil des menschlichen Schmelzes bildet prismatischer 

Schmelz, in dem die Kristalle Bündel, die sogenannten Schmelzprismen, bilden, die von der 

Schmelzdentingrenze in einem horizontal und vertikal wellenförmigen Verlauf zur Schmelz- 

beziehungsweise Zahnoberfläche verlaufen und einen Durchmesser von 4-5µm besitzen. Die 

Kristalle im Zentrum eines Prismas sind dabei parallel zur Prismenachse angeordnet, während weiter 

peripher gelegene Kristalle ausfiedern. Die Kristalle selbst sind jeweils von einer Hydrationsschale 

und einer Schicht aus Proteinen und Lipiden umgeben und die Prismen sind von der sogenannten 

Prismenscheide, in der sich Wasser und Proteine befinden, umhüllt. Zwischen den Prismen befindet 

sich der interprismatische Schmelz, in dem sich Kristalle ungeordnet in einem Winkel von circa 90° 

zur Längsachse der Prismen befinden [Arends et al., 1981, Darling et al., 2006, Hellwig et al., 2013, 

Maas et al., 1999, Zijp et al., 1995]. 

Dentin als Hauptbestandteil des Zahnes besitzt einen Gewichtsanteil an anorganischer Substanz von 

70% und ist somit weit weniger stark mineralisiert als Schmelz. Der anorganische Anteil wird 

hauptsächlich von kristallinen Kalzium- und Phosphatverbindungen gebildet. 20% des Gewichts von 

Dentin sind dagegen organischer Herkunft, dessen Hauptbestandteil Kollagen darstellt. Den Rest 

bildet Wasser. Dentin wird von spezialisierten Zellen, den Odontoblasten, gebildet. Die 

Odontoblasten befinden sich in der Pulpa an der Grenze zum Dentin und besitzen Zellfortsätze, die 

weit in das Dentin reichen und dort in Kanälchen liegen, den sogenannten Dentintubuli, die im 

koronaren Bereich in einem S-förmigen Verlauf von der Dentinpulpagrenze zur 

Schmelzdentingrenze verlaufen und neben den Fortsätzen der Odontoblasten auch mit 
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Gewebsflüssigkeit gefüllt sind. Dabei ist der Volumenanteil der Tubuli nahe der Dentinpulpagrenze 

am größten und nimmt nach peripher ab. Dasselbe gilt für den durchschnittlichen Durchmesser der 

Tubuli, der sich bei Erwachsenen auf circa 2,5 bis 0,9µm und bei Jugendlichen auf 4,5 bis 1,7µm 

beläuft. Es gilt zwischen dem peritubulären Dentin, das die Kanälchen umgibt, hoch mineralisiert ist 

und keine Kollagenfasern besitzt, und dem intertubulären Dentin als weniger stark mineralisierte 

Zwischensubstanz mit Vorkommen von Kollagen-I-Fasern zu unterscheiden. Von zentral nach 

peripher können verschiedene Schichten von intertubulärem Dentin unterschieden werden, die sich 

in Aufbau und Zusammensetzung unterscheiden. Dabei handelt es sich um das unreife 

hypomineralisierte Prädentin, das Zwischendentin als Mineralisationszone und das reife 

mineralisierte intertubuläre Dentin, das sich bis zum Manteldentin, welches eine Sonderform darstellt 

und im Bereich der Krone am Übergang von Schmelz zu Dentin zu finden ist, erstreckt. Zudem 

existieren weitere Formen wie intratubuläres Dentin, das sich in den Tubuli befindet, sowie 

verschiedene Arten von Reizdentin, die auf externe Reize hin gebildet werden und sich wiederum in 

Art und Zusammensetzung unterscheiden. Es kann daher festgehalten werden, dass Dentin im 

natürlichen Zahn ein hoch heterogenes, mineralisiertes biologisches Gewebe darstellt, wobei nicht 

nur verschiedene Formen existieren, sondern auch der intrinsische Aufbau aus verschiedenen 

Materialien und Strukturen besteht [Gängler et al., 2010, Goldberg et al., 2011, Grayson et al., 1997, 

Hellwig et al., 2013, Pashley, 1991]. 

Karies ist ein Prozess, der zur Demineralisation und Zerstörung der Zahnhartsubstanzen führt. Säuren 

als Produkte bakterieller Stoffwechselprozesse spielen dabei die Hauptrolle, wobei die 

Hartsubstanzen in der Mundhöhle einem Gleichgewicht aus De- und Remineralisation unterliegen. 

Bei Überwiegen der Demineralisation schreitet die Auflösung der Zahnhartsubstanzen voran. 

Strukturell kommt es dabei zur Auflösung der mineralisierten Anteile, wodurch es zur Bildung von 

Poren und zur Invasion von Bakterien in die durch die säurebedingte Auflösung der Hartsubstanzen 

entstandenen Freiräume und Poren kommt. In Dentinarealen, die in Diffusionskontakt mit einer 

kariösen Schmelzläsion und somit auch mit bakteriellen Toxinen et cetera stehen, führt der 

pathologische Reiz außerdem zu Reaktionen und Abwehrmechanismen der Odontoblasten. Es 

kommt zu verstärkter Bildung von peri- und intratubulärem Dentin, was auch als Dentinsklerose 

bezeichnet wird. Außerdem resultiert ein partieller Verlust an vitalen Odontoblastenfortsätzen mit 

Verödung von Dentintubuli und vermehrter Bildung von Reizdentin. Nach Einbruch des 

Zahnschmelzes im weiteren Verlauf der Karies folgt eine Invasion von Bakterien in das Dentin, 

wodurch es zur Demineralisation von Dentin entlang der Dentintubuli kommt, auf die wiederum die 

proteolytische Auflösung der organischen Dentinmatrix durch bakterielle Enzyme folgt. Gerade die 

Auflösung der Zahnhartsubstanz und die daraus resultierende Porenbildung wird in der Literatur als 

Grund für eine Veränderung der optischen Eigenschaften von Zahnschmelz im Sinne einer 

verstärkten Lichtstreuung und damit einer Zunahme der Abschwächung von Licht genannt [Darling 
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et al., 2006, Jones et al., 2003]. Klinisch ist eine frühe Kariesläsion im Schmelz visuell als 

sogenannter white spot zu sehen [Featherstone, 2008, Frank, 1990, Gängler et al., 2010]. 
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2.2.2 Untersuchungen zu den optischen Eigenschaften von Zahnschmelz und Dentin 

In den vergangenen Jahrzehnten waren die optischen Eigenschaften von Schmelz und Dentin immer 

wieder Gegenstand der Forschung. 

So haben beispielsweise Spitzer und Ten Bosch [1975] die Lichtstreuung und Absorption an Proben 

aus menschlichem Zahnschmelz und Rinderzahnschmelz mit Licht des Wellenlängenbereichs von 

220 bis 700nm untersucht. Sie verwendeten dabei menschliche Schmelzschnitte von circa 300µm 

Dicke und bestimmten zum einen den Brechungsindex und führten zum anderen Reflexions- und 

Transmissionsmessungen durch. Mithilfe des Kubelka-Munk-Modells, das ein mathematisches 

Modell des Strahlungsflusses innerhalb eines gleichzeitig absorbierenden und streuenden Mediums 

darstellt [Bastian, 2010], berechneten sie Streuungs- und Absorptionskoeffizienten für menschlichen 

und bovinen Zahnschmelz. Zudem trennten sie die organischen Anteile des Schmelzes von den 

anorganischen Anteilen mithilfe von Säure und eines Dialyseverfahrens und bestimmten das 

Absorptionsspektrum der Schmelzproben und der separierten organischen Schmelzbestandteile. Aus 

diesen Untersuchungen stach hervor, dass im Bereich des Zahnschmelzes die Streuung deutlich 

stärker war als die Absorption. Mit steigender Wellenlänge nahm die Streuung ab. Das 

Absorptionsmaximum von menschlichem Zahnschmelz lag bei 270 ± 5nm Wellenlänge, was Spitzer 

und Ten Bosch auf den organischen Anteil des Schmelzes, insbesondere auf aromatische 

Aminosäuren, zurückführten [Spitzer et al., 1975]. 

Ten Bosch und Zijp [1987] verwendeten einen ähnlichen Ansatz für die Untersuchung von Dentin 

wie zuvor Spitzer und Ten Bosch [1975] für Schmelz. Sie untersuchten mithilfe eines 

Spektrophotometers und einer Ulbrichtkugel die Absorption und Streuung für verschiedene 

Wellenlängen im Bereich des für den Menschen sichtbaren Spektrums mithilfe von 170µm dicken 

Dentinproben und nutzten ebenfalls die Kubelka-Munk-Theorie zur Berechnung der Absorptions- 

und Streuungskoeffizienten und setzten die Ergebnisse mit Ergebnissen aus 

Mikroradiographiemessungen zur Bestimmung des Mineralgehalts der Proben in Zusammenhang. 

Die Resultate der Untersuchungen waren, dass bei Vergleich ihrer Werte für Dentin mit den Werten 

von Spitzer und Ten Bosch [1975] für Schmelz sowohl Absorption als auch Streuung im Dentin 

stärker waren als im Schmelz, wobei auch im Dentin die Streuung gegenüber der Absorption 

überwog. Als Hauptstreuzentren machten Ten Bosch und Zijp [1987] die Dentintubuli aus, da das 

Ausmaß der Streuung und der Absorption keine Korrelation mit dem Mineralgehalt der Proben 

zeigte. Auch konnten die Autoren eine nur sehr geringe Wellenlängenabhängigkeit der Streuung 

nachweisen, was auf einen Streumechanismus hinwies, der von Streuzentren in Größe der 

Dentintubuli verursacht werden musste. Zudem zeigte sich bei ihren Experimenten, dass bei 

Dentinproben aus pulpanahem Dentin die Streuung stärker war als in Proben, die aus pulpafernem 

Dentin gewonnen worden waren, was die Autoren auf die höhere Dichte von Dentintubuli im 

pulpanahen Dentin zurückführten. Bei der Absorption stellten sie ebenfalls nur eine geringe 
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Abhängigkeit von der Wellenlänge fest, wobei im Ultravioletten ein Anstieg zu verzeichnen war 

[Ten Bosch et al., 1987]. 

Zijp und Ten Bosch [1991] untersuchten außerdem die Streulichtverteilung von HeNe-Laserlicht der 

Wellenlänge 632,8nm in 10-20µm dicken humanen und bovinen Dentinschnitten, wobei sie ein 

Indexmatching mit Wasser durchführten. Sie maßen sowohl die Transmission als auch die Verteilung 

der Lichtintensität um die Proben herum und bestimmten den Streukoeffizienten mithilfe des 

Lambert-Beer-Gesetzes sowie den Asymmetriefaktor g der Phasenfunktion zur Beschreibung der 

Streulichtverteilung. Ein g-Wert von 0 bedeutet, dass die Streulichtverteilung isotrop ist, was heißt, 

dass die Verteilung des Lichts sowohl in Vorwärts- als auch in Rückwärtsrichtung gleich 

wahrscheinlich ist, wogegen Werte über 0 eine zunehmend vorwärtsgerichtete Streuung anzeigen. 

Außerdem untersuchten sie den Einfluss der Lichtpolarisation auf die Streulichtverteilung sowie den 

Einfluss der Anordnung der Dentintubuli zur Streuebene. Als Ergebnis stellten sie fest, dass die 

Polarisation keinen nennenswerten Einfluss hatte, jedoch die Orientierung der Tubuli. So waren die 

Kurven der Streulichtverteilungsgraphen für Dentin, dessen Tubuli senkrecht zur Streuebene 

ausgerichtet waren, im Bereich 3° bis 90° höher und zeigten bei menschlichem Schmelz eine Spitze 

bei 5°, die die Autoren unter anderem als Beugungsmaximum erster Ordnung interpretierten, wobei 

sie erläuterten, dass der Aufbau von Dentin mit seinen Tubuli und seinem intertubulären Dentin als 

Beugungsgitter anzusehen sei. Daraus schlossen sie, dass die Dentintubuli hauptverantwortlich für 

die Streuung im Dentin sein müssen. Die von ihnen bestimmten g-Werte zeigten außerdem eine 

vorwärtsgerichtete Streuung an und der Streukoeffizient lag im Bereich 1200cm-1 [Zijp et al., 1991]. 

Ein Vergleich mit theoretischen Streumodellen untermauerte die Ergebnisse. Die gemessene 

Streulichtverteilung im Dentin ähnelte dabei am meisten Streumodellen für Einzel- und 

Doppelzylinder, woraus die Autoren schlussfolgerten, dass die Dentintubuli als zylinderähnliche 

Strukturen hauptverantwortlich für die Streuung im Dentin sein müssen. Den Beitrag der kristallinen 

Dentinstrukturen sowie von Kollagen schätzten sie als gering ein [Zijp et al., 1993]. 

Fried et al. [1995] untersuchten die Streulichtverteilung von humanem Schmelz und Dentin bei 

Durchleuchtung mit Laserlicht von 543nm, 632nm und 1053nm Wellenlänge. Dabei maßen sie 

mithilfe eines automatisierten Goniometers die Verteilung von Streulicht von 0° bis 180° um die 

Probe herum, die in eine Indexmatchingflüssigkeit getaucht war, die dem jeweils zu untersuchenden 

Material entsprach. Die Proben hatten eine Dicke von 30 bis 2000µm. Die aufgezeichneten 

Streulichtverteilungsdaten wurden mit Daten aus Monte-Carlo-Simulationen zur Streulichtverteilung 

verglichen, um den Absorptions- und Streuungskoeffizienten sowie die Phasenfunktion zur 

Verteilung des Streulichts zu bestimmen, die die Autoren als Kombination aus einer stark 

vorwärtsgerichteten Henyey-Greenstein-Funktion und einer isotropen Phasenfunktion 

identifizierten. Die entsprechenden Parameter zeigten eine sowohl im Schmelz als auch im Dentin 

vorwärtsgerichtete Streulichtverteilung. Im Schmelz jedoch herrschte ein höherer Anteil an isotroper 

Streuung vor.  Im Zahnschmelz war auch ein klarer Trend zwischen Abnahme der Wellenlänge und 
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Zunahme der Streuung zu erkennen, was im Dentin so nicht der Fall war. Die Stärke der Streuung 

zeigte sich dabei im Schmelz indirekt proportional zur dritten Potenz der Lichtwellenlänge und damit 

deutlich schwächer als bei reiner Rayleigh-Streuung, weshalb die Autoren einen komplexeren 

Streumechanismus vermuteten. Die Streuungs- und Absorptionskoeffizienten zeigten sich bei Dentin 

um fast eine Größenordnung größer als die Koeffizienten für Schmelz. In ihrer Veröffentlichung 

betonten die Autoren außerdem immer wieder die Wichtigkeit eines korrekten Indexmatchings, um 

Grenzflächeneffekte wie Reflexion auszuschließen und somit die korrekten Werte zur Beschreibung 

der optischen Materialeigenschaften zu erhalten. Zudem erwähnten sie, dass dünne Schmelzschnitte 

ein Beugungsmuster zeigen, wenn die Prismen senkrecht zur Streuebene standen, wobei sie den 

Effekt als gering betrachteten und in ihren Berechnungen vernachlässigten. Auch bei Dentinproben 

unter 300µm beobachteten sie ein Beugungsmuster, wenn die Dentintubuli senkrecht zur Streuebene 

ausgerichtet waren. Dagegen konnten sie diesen Effekt bei Dentinproben von über 300µm Dicke 

nicht mehr beobachten [Fried et al., 1995]. 

Vaarkamp et al. [1995] führten ebenfalls Messungen durch, bei denen sie Schmelz- und 

Dentinproben mit HeNe-Laserlicht der Wellenlänge 633nm durchleuchteten, wobei die 

Durchleuchtungsrichtung zum einen parallel, zum anderen im rechten Winkel zur approximalen 

Zahnfläche gewählt wurde. Ihre Proben bestanden dabei aus approximalen Schmelz- und 

Dentinblöcken, die sie durchleuchteten und deren Streulichtverteilung sie maßen. Aus den Daten 

zogen sie Rückschlüsse bezüglich des Lichtflusses in humaner Zahnhartsubstanz. Ein Ergebnis war, 

dass sowohl Schmelz als auch Dentin anisotropes Verhalten zeigen, sprich, dass sich der Lichtfluss 

von Licht, wenn dieses aus verschiedenen Richtungen auf Zahnhartsubstanz fällt, unterschiedlich 

verhält. Dieser Effekt war bei Vaarkamp et al. besonders stark bei Dentin ausgeprägt, woraus die 

Autoren folgerten, dass die Dentintubuli maßgeblich verantwortlich für Lichtstreuung im Dentin 

sind. Den Prismen im Schmelz maßen sie im Gegensatz zu den Kristallen eine weniger große 

Bedeutung zu, wenngleich sie feststellten, dass im Schmelz eine vorwärtsgerichtete Streuung zu 

beobachten war [Vaarkamp et al., 1995]. 

Zijp et al. [1995] haben die Streuung von HeNe-Laserlicht in menschlichem Zahnschmelz 

untersucht. Hierbei bestimmten sie unter anderem die Streuverteilung ähnlich wie zuvor für die 

Dentinmessungen [Zijp et al., 1991] an 80 bis 100µm dicken Schmelzschnitten, wobei sie hier für 

das Indexmatching eine exakt auf den Brechungsindex von Schmelz angeglichene Flüssigkeit 

verwendeten. Sie errechneten wiederum den Faktor g und bestimmten den Streukoeffizienten 

mithilfe des Lambert-Beer-Gesetzes mit 66±27cm-1 bei einer Wellenlänge von 632,8nm. Die 

Streukoeffizienten aus den Transmissionsmessungen verglichen sie mit theoretischen Werten für die 

Streukoeffizienten der Kristalle und der Prismen, die sie mithilfe von Literaturwerten berechneten. 

Das Resultat war, dass der anhand der Proben gemessene durchschnittliche Streukoeffizient fast 

exakt der Summe aus den theoretischen Streukoeffizienten für Kristalle und Prismen entsprach. 

Außerdem interpretierten sie ihre errechneten g-Werte als Mix aus einer isotropen Streuung, 
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hervorgerufen von den Kristallen, und aus vorwärtsgerichteter Streuung, hervorgerufen von den 

Prismen. Auch einen Vergleich zwischen theoretischen Modellen zur Streulichtverteilung und den 

gemessenen Verteilungen stellten sie an. Letztlich schlussfolgerten sie, dass die Streuung im 

Schmelz zum größten Teil von den Prismen charakterisiert wird, jedoch die Kristalle für 

Rückwärtsstreuung sorgen, und erklärten damit auch das von ihnen beobachtete Phänomen, dass 

rückgestreutes Licht an dünnen Schmelzschnitten bläulich, transmittiertes Licht dagegen gelblich 

wirkt [Zijp et al., 1995]. 

Jones und Fried veröffentlichten 2002 eine Untersuchung zur Abschwächung von Licht des Nahen 

Infrarotbereichs in gesundem menschlichem Zahnschmelz. Sie stellten Zahnproben der Dicken 100 

bis 2500µm her und führten Transmissionsmessungen mit Laserlicht der Wellenlängen 1310 und 

1550nm durch. Aus den Transmissionsdaten errechneten sie über das Lambert-Beer-Gesetz die 

Attenuationskoeffizienten und stellten sie Daten aus früheren Untersuchungen gegenüber. Dabei 

zeigte sich, dass Licht der Wellenlängen 1310 und 1550nm ein bis zwei Größenordnungen weniger 

stark abgeschwächt wurde als Licht aus dem sichtbaren Wellenlängenbereich, wobei sich bei 

1550nm ein höherer Attenuationskoeffizient zeigte als bei 1310nm, was die Autoren unter anderem 

auf die steigende Absorption des Lichts durch Wasser im Zahnmaterial zurückführten. Aus den 

Ergebnissen zogen sie den Schluss, dass der Nahe Infrarotbereich aufgrund der niedrigen Attenuation 

durch Streuung im Vergleich zum sichtbaren Wellenlängenbereich und aufgrund der geringeren 

Wasserabsorption im Vergleich zu höheren Wellenlängen ideal zur Durchleuchtung von Zähnen zur 

Kariesdiagnostik geeignet sei. Auch hier wurde die Wichtigkeit eines korrekten Indexmatchings 

betont, welches die Autoren jedoch für ihre Untersuchungen als schwieriger und noch wichtiger 

einstuften als für Untersuchungen im sichtbaren Wellenlängenbereich, da die Attenuation im Bereich 

des Nahen Infrarotbereichs sehr gering ist und somit Grenzflächeneffekte, wie Reflexion, einen 

stärkeren Einfluss auf Messergebnisse haben [Jones et al., 2002]. 

Daraufhin konnten Jones et al. [2003] das Potential zeigen, welches die Transillumination von 

Zähnen mit Licht der Wellenlänge 1310nm mit sich bringt, indem sie Zahnschnitte mit künstlichen 

Läsionen im Approximalbereich präparierten und durchleuchteten. Dabei verglichen sie die 

Transillumination mit Nahinfrarotlicht mit der Transillumination mit Licht aus dem sichtbaren 

Spektrum und zogen zudem die Röntgentechnik in den Vergleich mit ein. Dabei zeigte sich, dass bei 

Durchleuchtung mit Nahem Infrarotlicht die künstlichen Läsionen einen deutlich höheren Kontrast 

zum umliegenden Schmelz aufzeigten als es mit der Durchleuchtung mit Licht aus dem sichtbaren 

Spektrum oder auch mit der Röntgentechnik der Fall war. Auch die Darstellung von natürlichen 

Läsionen in kompletten Zähnen gelang. Diese Untersuchungen konnten somit nachweisen, dass die 

Darstellung von approximalen Läsionen im Schmelz bei Durchleuchtung mit Licht des Nahen 

Infrarotbereichs möglich ist und sogar Vorteile gegenüber herkömmlichen Techniken wie dem 

Röntgen mit sich bringt [Jones et al., 2003].  
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Bühler et al. [2005] zeigten außerdem, dass die Transillumination von Zähnen auch für die Detektion 

von okklusalen Kariesläsionen geeignet ist. Sie untersuchten extrahierte Molaren und Prämolaren, 

indem sie Licht der Wellenlänge 1310nm circa auf Höhe der ursprünglichen Gingivalinie auf den zu 

untersuchenden Zahn fokussierten. Das Licht verteilte sich daraufhin aufgrund der starken Streuung 

durch das Dentin im Zahn und es wurden Bilder aufgezeichnet, die anschließend ausgewertet werden 

konnten. Dabei stellten die Autoren beim Vergleich der beschriebenen Technik mit Röntgenbildern 

fest, dass die Nahinfrarottechnik großes Potenzial zur Erkennung von kariösen Läsionen im Bereich 

der Kauflächen besitzt, da auch Läsionen erkannt werden können, die mit den konventionellen 

Techniken nicht zu identifizieren sind [Bühler et al., 2005]. 

Darling et al. [2006] untersuchten daraufhin die optischen Eigenschaften natürlicher und mittels eines 

pH-Cycling-Verfahrens künstlich erzeugter Schmelzkariesläsionen. Sie kombinierten 

Transmissionsmessungen mit Licht der Wellenlänge 1310nm mit Streulichtverteilungsmessungen 

sowie mit digitalen Mikroradiographiemessungen zur Bestimmung des Mineralgehalts der Proben. 

Außerdem führten sie Monte-Carlo-Simulationen zur Bestimmung der optischen Konstanten und der 

Streuungsphasenfunktion durch. Das Ergebnis der Untersuchung der natürlichen Kariesläsionen war, 

dass im kariösen Schmelz die Attenuation um ein bis zwei Größenordnungen gegenüber gesundem 

Schmelz anstieg, was die Autoren auf verstärkte Lichtstreuung durch die durch Karies 

hervorgerufene Porenbildung zurückführten. Die Verteilung des Streulichts zeigte eine starke 

Abnahme des Anteils des transmittierten Lichts sowie eine stark vorwärtsgerichtete Lichtstreuung, 

was die Autoren nicht erwartet hatten. Daher stellten sie die Vermutung an, dass die Größe der 

Streuzentren im Schmelz im Mikrometerbereich liegen müsse. Deshalb überwiege nicht, wie 

erwartet, ein verstärkter isotroper Streumechanismus ähnlich der Rayleigh-Streuung, sondern ein 

Mechanismus, der der Mie-Streuung ähnelt. Die Messungen des Mineralgehalts mittels digitaler 

Mikroradiographie machten zudem deutlich, dass bereits bei einem geringen Absinken des 

Mineralgehalts eine signifikante Änderung der optischen Eigenschaften folgt. Die Ergebnisse der 

Untersuchungen der Proben mit künstlich erzeugten kariösen Schmelzläsionen zeigte insgesamt ein 

ähnliches Bild, wobei hier festgestellt wurde, dass die größte Veränderung der optischen 

Eigenschaften nach dem ersten von fünf Tagen des pH-Cyclings zu beobachten war. Daraus 

schlussfolgerten die Autoren wiederum, dass die Transillumination eine sehr hohe Sensitivität für 

beginnende schmelzkariöse Läsionen haben müsse, was ihr gegenüber anderen konventionellen 

Techniken einen Vorteil verschaffe [Darling et al., 2006]. 

Chan et al. veröffentlichten 2014 Ergebnisse aus ihren Untersuchungen bezüglich 

Attenuationsmessungen im Dentin im Wellenlängenbereich 1300-1650nm. Dabei führten sie 

Transmissionsmessungen anhand von Dentinschnitten der Dicken 50 bis 600µm durch und 

berechneten mithilfe des Lambert-Beer-Gesetzes die Attenuationskoeffizienten für die 

entsprechenden Wellenlängen. Sie kamen zu dem Schluss, dass die Werte für die 

Attenuationskoeffizienten um circa eine Größenordnung größer waren als vergleichbare Messungen 
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für Schmelz, jedoch auch um bis zu einer Größenordnung niedriger als die Werte für 1053nm für 

Dentin von Fried et al. [1995]. Aus dem Vergleich der verschiedenen Wellenlängen zueinander 

schlossen sie, dass für die Transillumination der Wellenlängenbereich 1300 bis 1400nm besser 

geeignet ist als höhere Wellenlängen, da mit steigender Wellenlänge der Einfluss der 

Wasserabsorption steigt [Chan et al., 2014]. 
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3 Hypothesen aus bisherigen Kenntnissen und Ziel der Arbeit 

Zusammenfassend können daher aus den Ergebnissen der Untersuchungen verschiedener Autoren 

(vgl. 2.2.2) Hypothesen für die Untersuchung von Schmelz und Dentin aufgestellt werden: 

1. Schmelz schwächt durchtretendes Licht deutlich weniger stark ab als Dentin. Der Hauptteil 

der Abschwächung wird im sichtbaren Wellenlängenbereich bis zu weiten Teilen des Nahen 

Infrarotbereichs durch Streuung verursacht. 

2. Die Streuung nimmt im Schmelz mit steigender Wellenlänge ab. Im Dentin ist dieser Trend 

dagegen nicht so stark ausgeprägt. Licht höherer Wellenlänge sollte daher vor allem Schmelz 

besser durchringen als Licht geringerer Wellenlänge. 

3. Karies führt neben Strukturveränderungen in Zahnhartsubstanz auch zu einer Veränderung 

der optischen Eigenschaften, wobei kariöse Zahnhartsubstanz Licht aufgrund von 

vermehrter Streuung stärker abschwächt als gesunde Zahnhartsubstanz. 

4. Licht des Nahen Infrarotbereichs eignet sich für die Kariesdiagnostik besser als Licht des 

sichtbaren Spektrums. 

5. Schmelz und Dentin zeigen anisotropes Verhalten. Dabei haben die räumliche Ausrichtung 

von Dentin zur Durchleuchtungsrichtung sowie die Nähe der untersuchten Dentinschicht zur 

Pulpa Einfluss auf das Transmissionsverhalten. 

6. Dicke Proben schwächen Licht stärker ab als dünne Proben. Bei Gültigkeit des Lambert-

Beer-Gesetzes zeigt sich ein exponentieller Abfall der Lichtleistung zur Dicke der Probe. 

Das Ziel der vorliegenden Arbeit war es, ein System zur optischen Charakterisierung von Schmelz 

und Dentin zu entwickeln und entsprechende Versuche anhand von gesunden sowie kariösen 

Schmelz- und Dentinschnitten durchzuführen. Auch Untersuchungen des Dentins bezüglich 

Anisotropie sowie die Untersuchung des Phänomens, dass pulpanahes, tubulireiches Dentin Licht 

stärker abschwächt als Dentin pulpaferner Areale, sollten durchgeführt werden. Ziel war es, sowohl 

Transmissionsmessungen zur Bestimmung der Attenuationskoeffizienten mithilfe des Lambert-

Beer-Gesetzes durchzuführen als auch die Verteilung des Streulichts bei Durchleuchtung der 

Zahnhartsubstanzproben zu registrieren. Die dafür benötigten Schmelz- und Dentinproben sollten 

aus extrahierten humanen Echtzähnen hergestellt werden. Anschließend sollten anhand der 

Ergebnisse Rückschlüsse bezüglich der lichtoptischen Unterschiede von Schmelz und Dentin 

gezogen werden, um die Transilluminationstechnik mit Nahinfrarotlicht als neues 

kariesdiagnostisches Verfahren sowie das Potenzial lichtoptischer Kariesdiagnoseverfahren, die 

mithilfe von Nahem Infrarotlicht arbeiten, zu bewerten. 
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4 Material und Methode 

Zur Charakterisierung der optischen Eigenschaften von Zahnschmelz und Dentin sollte ein 

Versuchsaufbau gewählt werden, mit dem einerseits das Transmissionsverhalten der verschiedenen 

Zahnmaterialien bei Durchleuchtung mit Licht verschiedener Wellenlängen bestimmt werden kann. 

Andererseits sollten auch Streulichtmessungen durchgeführt werden können, bei denen die 

Lichtleistung des nach Durchtritt durch die Zahnhartsubstanzen gestreuten Lichts gemessen werden 

kann. Miteinander verglichen werden sollten bezüglich ihres Transmissions- und 

Lichtstreuverhaltens zum einen gesunde, sprich in ihrer chemischen Zusammensetzung unveränderte 

Schmelz- und Dentinproben. Zum anderen sollte auch ein Vergleich mit kariös veränderten Proben 

möglich sein. Eine zusätzliche Versuchsreihe sollte außerdem die Anisotropie von Dentin und die 

Änderung der optischen Eigenschaften mit zunehmender Nähe zur Pulpa untersuchen. Aus diesen 

Zielsetzungen ergaben sich daher hohe Anforderungen an die Herstellung der Proben sowie an den 

Versuchsaufbau. Auf den folgenden Seiten soll demnach sowohl auf die jeweiligen Zielsetzungen 

eingegangen werden als auch die konkrete methodische Entwicklung aufgezeigt und erläutert 

werden. 

4.1 Herstellung der Proben aus humanem Zahnmaterial 

Für die Bestimmung der optischen Eigenschaften der humanen Zahnhartsubstanzen Schmelz und 

Dentin ist es nötig, Proben aus den entsprechenden Materialien herzustellen, die in einem zweiten 

Schritt untersucht werden können. Die Proben müssen das entsprechende Zahnmaterial ohne 

Verunreinigungen durch das jeweils andere Zahnmaterial sowie durch Fremdmaterialien wie zum 

Beispiel Füllungsmaterial enthalten. Außerdem muss gewährleistet sein, dass die Proben möglichst 

planparallel sind, um das Zahnmaterial in einem rechten Winkel gegenüber einem einfallenden 

Lichtstrahl positionieren zu können, ohne dass eine schräge Grenzfläche entsteht, an welcher der 

Lichtstrahl gebrochen wird. Als weitere Anforderungen wären eine möglichst genau definierte Dicke 

sowie die Positionierbarkeit in einem Probenhalter (s. 4.2.2) zu nennen. 

4.1.1 Herstellung der ersten Proben und Erkenntnisse 

All dies berücksichtigend wurden erste Zahnproben hergestellt, wobei zunächst angestrebt war, 

Proben herzustellen, die ausschließlich Schmelz oder Dentin enthielten. Es wurden insgesamt sechs 

Seitenzähne verwendet, die in einer Formaldehydlösung (Firma: Hedinger, Konzentration: 35%) 

gelagert worden waren. Ziel war es, einen Quader aus dem Zahn zu schneiden und diesen dann in 

Technovit einzubetten, um anschließend durch erneutes Sägen Schmelz- und Dentinschnitte zu 

gewinnen, die in einem Mantel aus Technovit eingelassen sind, welcher als Positionierungshilfe im 
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Probenhalter dienen sollte. Das exakte Prozedere sowie die verwendeten Materialien finden sich im 

Anhang (vgl. 10.1). 

Im ersten Schritt wurde die Wurzel des extrahierten Zahnes in einen Block aus Technovit eingebettet, 

wodurch ein Quader entstand, in dem der Zahn fixiert wurde und der exakt in einen Halter für eine 

Präzisionssäge (Buehler Isomet 11-1280-250) eingespannt werden konnte. Wahlweise wurde hierbei 

entweder die bukkale oder die linguale Fläche der Zahnkrone möglichst parallel zur 

Längsaußenfläche des Blocks ausgerichtet, da von dieser Zahnfläche im letzten Schritt der 

Herstellung die Zahnschnitte für Schmelz gewonnen werden sollten. Aufgrund der natürlichen 

Krümmung der Kronenaußenfläche und der Verjüngung des Schmelzmantels von koronal nach 

zervikal musste die Kronenaußenfläche so positioniert werden, dass ein möglichst großer 

Schmelzanteil parallel zur Längsaußenfläche des Technovitquaders liegt.  Im zweiten Schritt wurde 

der Zahn dann so gesägt, dass der Kauflächenanteil und die Wurzel entfernt wurden und ein 

Rechtkant entstand, dessen circa 3x3mm große Vorderfläche der bukkalen oder lingualen Zahnfläche 

entsprach. Dieser Quader wurde wiederum in einen Technovitblock eingebettet und im letzten Schritt 

wurden Zahnschnitte mit einer Präzisionssäge hergestellt, wobei der erste Schnitt möglichst dünn 

gewählt und als Anschnitt verworfen wurde. An der von außen durch den durchsichtigen 

Technovitblock visuell gut erkennbaren Schmelzdentingrenze wurde ein weiterer Schnitt gesetzt, um 

Schmelz und Dentin zu trennen. 

Es konnten so insgesamt zehn Dentin- und acht Schmelzschnitte unterschiedlicher Dicken (s. 4.2.6 

und Tabelle 5) gewonnen werden, die später trotz Einschränkungen für erste Versuche mit dem ersten 

Messaufbau (s. 4.2.2) verwendet wurden. Die Proben wurden in Leitungswasser bei 

Zimmertemperatur gelagert.  

 

 

Abbildung 2: Eingebetteter Zahnblock in Probenhalter der Säge. 
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Abbildung 3: Fertige Probe, erstes Herstellungsverfahren. 

Die hier dargestellte Methode der Probenherstellung barg insgesamt jedoch einige Nachteile. 

Während die Forderung nach Planparallelität erfüllt werden konnte, zeigten sich bei dieser Methode 

Schwächen bezüglich der Forderung nach der exakten Positionierbarkeit der Proben im Probenhalter 

sowie der Herstellung von Proben einer genau definierten Dicke. Die Präzisionssäge alleine war 

diesbezüglich nicht genau genug und es kam zum Teil zu deutlichen Abweichungen von der 

angestrebten Probendicke sowie zu Ungleichmäßigkeiten innerhalb der Probe.  

Zudem zeigte sich eine weitere Schwierigkeit vor allem beim Schmelz, da dieser im Vergleich zum 

Dentin deutlich spröder ist. Durch diese Eigenschaft des Schmelzes kommt es beim Schneiden ab 

200 bis 300µm Probendicke im Verlauf des Sägeprozesses vermehrt zu Schmelzsprüngen und 

Ausbrüchen des Schmelzes aus der Zahnprobe. Die im Rahmen der vorliegenden Arbeit gemachten 

Beobachtungen deuten darauf hin, dass es bei entsprechenden Schmelzdicken daher gehäuft zu 

Probenverlusten kommt, was den Aufwand bei der Herstellung der Proben deutlich erhöht. Dies 

deckt sich mit den Beobachtungen von Darling et al. [2006], die in ihrer Arbeit aus denselben 

Gründen empfehlen, die Dicke der Schmelzproben nicht unter 200µm zu wählen. Dieser Umstand 

stellte sich als deutliche Einschränkung heraus, da die Dicke der Proben entsprechend limitiert war 

und die Ausbeute an unbeschädigten dünnen Proben damit gering war.  

Eine weitere Komplikation war, dass die ursprünglichen Proben im Probenhalter (s. 4.2.2) nicht exakt 

zu positionieren waren. Die Hauptkomplikation war, dass die Proben durch die Befestigung mithilfe 

des Gewindestifts des ersten Probenhalters aufgrund ihrer geringen Schichtstärke teilweise verbogen 

werden konnten, da gegenüber der entsprechenden Gewindebohrung im Probenhalter eine 

Aussparung für eine Justiernadel eingelassen war. Hierdurch konnte es neben der Verbiegung der 

Probe schlimmstenfalls zum Bruch des Kunststoffmantels und damit zum Verlust der Probe 

kommen.  

Zudem bestand ein Problem hinsichtlich der Sicherstellung der Reinheit der Proben, sprich des 

sicheren Ausschließens einer möglichen Verunreinigung der Schmelzproben mit Dentinresten und 

umgekehrt. Das ursprüngliche System bestand, angelehnt an das Vorgehen von Spitzer und Ten 

Bosch [Spitzer et al., 1975], darin, getrennte Schmelz- und Dentinproben herzustellen. Dafür wurde 

letztlich ein Sägeschnitt entlang der Schmelzdentingrenze ausgeführt, die von außen durch das 
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Technovit sichtbar war. Durch den natürlichen gebogenen Verlauf der Kronenaußenflächen der 

Seitenzähne beschreibt auch die Schmelzdentingrenze keinen exakt geraden, sondern einen leicht 

gebogenen Verlauf. Durch das Anlegen eines geraden Sägeschnitts im rechten Winkel zur 

vermeintlichen, von außen sichtbaren Schmelzdentingrenze kann es daher zu einem Restbestand von 

Dentin an den Schmelzproben kommen. Da jedoch in dieser Arbeit die Charakterisierung der 

optischen Eigenschaften der beiden Zahnmaterialien und die möglichst exakte Herauskristallisierung 

ihrer jeweiligen Unterschiede angestrebt wurde, war die Forderung nach Reinheit der Proben 

essentiell. Deshalb sollte zunächst ein weiterer Bearbeitungsschritt eingeführt werden. Es sollte ein 

Fluoreszenzmikroskop verwendet werden, mithilfe dessen die höhere natürliche Fluoreszenz des 

Dentins gegenüber Schmelz ausgenutzt werden sollte [Lutskaya et al., 2012], um mögliche 

Verunreinigungen der Schmelzproben mit Dentinresten zu erkennen. Anschließend wurde mit einer 

Exakt 400 CS Mikroschleif- und Poliermaschine versucht, die Dentinreste gezielt zu entfernen. 

Dieses Vorgehen scheiterte jedoch zum einen an der schweren Erkennbarkeit und Identifizierbarkeit 

der zum Teil minimalen Dentinreste und an dem hohen Aufwand, da die Bearbeitung mit der 

Poliermaschine mehrmals erfolgen musste, da nur abgeschätzt werden konnte, wie viel von der 

Zahnhartsubstanz entfernt werden musste. Daher musste ein anderes Konzept entwickelt werden, mit 

dem die Probenverunreinigung von Anfang an ausgeschlossen werden konnte. 
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4.1.2 Endgültiges Verfahren zur Herstellung der Zahnproben 

All diese Erfahrungen haben letztlich zu einem neuen Verfahren geführt, das an das Vorgehen von 

Autoren wie Jones et al. [2002] angelehnt war und gemischte Zahnproben als Ergebnis hatte. Die 

Probleme des ursprünglichen Verfahrens konnten so gelöst werden. Dabei wurden die ersten Proben 

mit dem neuen Verfahren wiederum aus kariesfreiem Zahnmaterial hergestellt. Für die 

kariesbelasteten Proben sowie für die Proben für die Messung von Dentin mit unterschiedlicher 

räumlicher Anordnung und pulpanahem Dentin wurden jeweils Modifikationen am Verfahren 

vorgenommen. 

4.1.2.1 Herstellung der kariesfreien Schmelz- und Dentinproben 

Das neu entwickelte Verfahren wurde analog den Forderungen für das erste Verfahren entwickelt 

und fußt auf den Grundprinzipien und Grundüberlegungen des Ursprungsverfahrens. Das exakte 

Herstellungsverfahren findet sich in Kapitel 10.2. Das erste Probenherstellungsverfahren wurde zwar 

im Prinzip beibehalten, jedoch an drei entscheidenden Stellen verändert oder ergänzt. 

Es wurde nicht mehr versucht, den bukkalen beziehungsweise lingualen Schmelz für die Gewinnung 

von Schmelzproben heranzuziehen und separate Schmelz- und Dentinproben zu fertigen, sondern es 

wurden gemischte Proben, die sowohl okklusalen Schmelz als auch Dentin enthielten, angefertigt. 

Dies gelang nach Abtrennung der Zahnwurzel durch Einbetten der gesamten Zahnkrone in einen 

Block aus Technovitkunststoff, durch den Sägeschnitte in axialer Richtung geführt wurden. Die 

Zähne waren dabei so eingebettet, dass entweder die bukkale oder die linguale Fläche parallel zur 

Grundfläche des Kunststoffquaders ausgerichtet waren. Der Block wurde anschließend in den 

Probenhalter einer langsam rotierenden Präzisionskreissäge (Buehler Isomet 11-1280-250) 

eingespannt und mit dem Anschnitt, sprich dem ersten Schnitt durch den Block, wurde die bukkale 

beziehungsweise linguale Fläche des Zahnes entfernt. Die Zahnschnitte enthielten somit okklusalen 

Schmelz und Dentin, die beim späteren Durchleuchten immer in bukkolingualer Richtung 

angeordnet waren. Der Anschnitt wurde verworfen. Die Probe war bei allen Schnitten immer im 

Probenhalter fixiert und wurde zwischendurch nicht von diesem entfernt. Dieses Vorgehen hatte den 

entscheidenden Vorteil, dass die Reinheit der Proben garantiert werden konnte, da durch Entfernen 

des bukkalen beziehungsweise lingualen Schmelzes und die Erzeugung von Sagittalschnitten durch 

den Zahn eine Vermengung der Zahnhartsubstanzen ausgeschlossen war. Somit war dieses Prozedere 

deutlich besser geeignet als das erste Verfahren, um die Zahnhartsubstanzen in ihrer Reinform 

optisch zu untersuchen. Ein weiterer Vorzug gegenüber dem primären Verfahren war außerdem die 

Zeitersparnis, die das neue Vorgehen mit sich brachte, denn hier enthielt eine Probe beide 

Zahnartsubstanzen und konnte deshalb für die Charakterisierung beider Zahnmaterialien genutzt 

werden. Beim ursprünglichen Vorgehen waren sowohl für die Schmelz- als auch für die 

Dentinmessungen eigene Proben nötig gewesen, was zusätzlichen Herstellungs- und 

Bearbeitungsaufwand bedeutet hatte. 
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Außerdem wurde ein zusätzlicher Bearbeitungsschritt eingeführt. Nach dem Sägen der Zahnschnitte 

wurden diese einem Schleif- und Politurverfahren unterzogen, was eine exakte Probendicke 

ermöglichte. Der Schliff und die Politur der Zahnproben wurde dabei in einem für alle Proben 

gleichen Verfahren mithilfe eines Exakt 400 CS Mikroschleif- und Poliersystems durchgeführt. Es 

wurden alle Proben auf einem Probenhalter fixiert, anschließend mit Nassschleifpapier des 

Feinheitgrads 600 Grit auf eine bestimmte Dicke geschliffen und mit Sandpapier der Feinheitsgrade 

800, 1000 und 1200 Grit bearbeitet. Nach Ablösen der Probe vom Probenträger und Messung einer 

Zwischendicke wurde das Prozedere für die noch unbearbeitete Gegenseite ausgeführt. Dadurch 

wurden die Proben einerseits auf eine exakte Dicke geschliffen, andererseits konnten durch das rein 

maschinell durchgeführte Vorgehen Planparallelität und gleichmäßige Politur gewährleistet werden. 

Die fertig geschliffenen und polierten Proben wurden dann außerdem auf einen Sockel, der aus einem 

Probenhalter geschnitten worden war, aufgeklebt. Dieser Sockel verhinderte ein Verbiegen der Probe 

bei Einspannen in den Probenhalter (s. 4.2.2). Durch Aktivieren des Gewindestifts im Probenhalter, 

durch den die Probe im Probenhalter fixiert wurde, konnte die Probe dadurch nicht mehr verbiegen, 

da der Sockel durch seine Dicke für Stabilität sorgte und die Kraft des Gewindestifts auf eine größere 

Fläche verteilte. Ein Verbiegen oder gar Brechen der Zahnproben konnte daraufhin nicht mehr 

beobachtet werden und eine sichere Positionierbarkeit der Proben im Probenhalter war gegeben. 

All diese Veränderungen brachten die entscheidenden Verbesserungen, um die finalen Messungen 

zu ermöglichen. Es konnten die nötigen Zahnproben gewonnen und erfolgreich untersucht werden. 

Die Zähne, die zur Herstellung herangezogen wurden, wurden in einem Kühlschrank gekühlt in einer 

Natriumazidlösung gelagert. Alle fertigen Proben wurden gekühlt in Wasser gelagert und 

aufbewahrt. Dieses Verfahren diente als Grundverfahren für alle später hergestellten Proben.  

 

 

Abbildung 4: Fertige nichtkariöse Zahnprobe, endgültiges Verfahren. 
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4.1.2.2 Modifikationen zur Herstellung von kariösen Zahnproben 

Zur Generierung kariöser Zahnproben musste das oben beschriebene Herstellungsverfahren (vgl. 

4.1.2.1) abgeändert werden. So wurde aus dem ersten Herstellungsverfahren für nonkariöse Proben 

die Technik zur Herstellung eines Sägeblocks übernommen (vgl. 4.1.1 und 10.1.1). Mithilfe des 

Sägeblocks wurde der Zahn dann an der Stelle der Läsion mit der Präzisionskreissäge aufgeschnitten 

und die Karies begutachtet. Anschließend wurde die Wurzel abgetrennt und die Zahnkrone mitsamt 

der kariösen Läsion in einen Technovitblock eingebettet, aus dem analog zum endgültigen Verfahren 

zur Herstellung kariesfreier Zahnproben Zahnschnitte erzeugt wurden. Bei den kariösen Zähnen 

erfolgte die Anordnung der Zähne im Technovitblock nicht streng in bukkooraler Richtung, sondern 

die Zähne wurden je nach Lokalisation und Ausdehnung der Karies unterschiedlich angeschnitten 

und im Technovitblock eingebettet. Zudem wurde der kariöse Zahn nicht wie die nichtkariösen 

Zähne geätzt und konditioniert. Darauf wurde deshalb verzichtet, weil die Kariesläsionen in einem 

möglichst natürlichen Zustand untersucht werden sollten. Eine Behandlung der zum Teil bereits 

eingebrochenen kariösen Schmelz- und Dentinschichten mit Phosphorsäuregel und einem 

Kompositadhäsivsystem hätte womöglich zur Veränderung der Mikrostruktur der kariösen 

Zahnhartsubstanzen und zur Penetration und Infiltration der kariösen Läsion mit Primer-, Adhäsiv- 

und Bondingbestandteilen geführt. Durch den Verzicht darauf war jedoch vor allem bei dünnen 

kariösen Proben eine erhöhte Gefahr der Ablösung des Technovitmantels von der eigentlichen 

Zahnprobe zu beobachten. Insgesamt konnten jedoch 13 kariöse Zahnproben gefertigt werden aus 

Zähnen, die von April bis einschließlich September des Jahres 2017 gesammelt worden waren. Es 

wurden insgesamt jeweils 10 Messungen für kariösen Schmelz und kariöses Dentin durchgeführt. 

Die kariösen Proben wurden gekühlt in Wasser gelagert. Das genaue Vorgehen ist in Kapitel 10.3 

gezeigt. 

 

 

Abbildung 5: Eingebettete kariöse Zahnkrone. 
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4.1.2.3 Modifikation zur Herstellung von Dentinproben mit räumlich 

unterschiedlich angeordnetem Dentin 

Für die Herstellung der Dentinproben mit räumlich unterschiedlich angeordnetem Dentin sowie der 

Proben mit pulpanahem Dentin mussten ebenfalls Modifikationen am Herstellungsprozedere 

vorgenommen werden. So wurde auch hier die Technik zur Herstellung eines Sägeblocks aus dem 

ursprünglichen Herstellungsverfahren für nonkariöse Proben übernommen (vgl. 4.1.1 und 10.1.1). 

Mithilfe des Sägeblocks wurde anschließend, nachdem die mesiale und distale Facette des Zahns 

entfernt worden war, der Zahn in zwei Teile geschnitten und begutachtet. Anschließend wurde der 

Verlauf der Sägeschnitte festgelegt, durch die zum einen die Kaufläche entfernt, zum anderen zwei 

Dentinblöcke gewonnen werden sollten. Der erste dieser Dentinblöcke sollte einen möglichst großen 

Anteil an kauflächennahem Dentin enthalten, der zweite Dentin, das kurz vor der Pulpakammer 

lokalisiert war. Der erste Block wurde wiederum zweigeteilt. Alle so erzeugten Dentinblöcke wurden 

anschließend in Technovit eingebettet, wobei die Teile aus dem ersten Dentinblock so angeordnet 

wurden, dass später das Dentin in den Proben einmal in axialer Richtung und einmal in mesiodistaler 

Richtung durchleuchtet wurde. Aus den eingebetteten Blöcken wurden Proben gesägt, die dann 

wiederum geschliffen und poliert wurden. Insgesamt wurden so jeweils drei Proben mit Dentin in 

axialer und mesiodistaler Anordnung und zwei mit pulpanahem Dentin hergestellt. Diese Proben 

wurden wie alle anderen Proben gekühlt in Wasser gelagert. Die exakte Vorgehensweise ist in 

Kapitel 10.4 gezeigt. 

 

 

Abbildung 6. Dentinprobe mit mesiodistal ausgerichtetem Dentin.  
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4.2 Der Versuchsaufbau und optische Charakterisierung der Schmelz- 

und Dentinproben 

Im Einklang mit den Versuchszielen sollte ein Versuchsaufbau gewählt werden, mit dem sich sowohl 

das Transmissionsverhalten der verschiedenen Zahnhartsubstanzen bei Durchleuchtung mit Licht 

verschiedener Wellenlängen als auch die Lichtstreuung untersuchen ließen. Im Folgenden soll daher 

auf die Zielvorstellungen und deren Umsetzung eingegangen werden.  

4.2.1 Ziele der Versuchsreihe und zentrale Überlegungen 

Eines der Hauptanliegen war es, das Transmissionsverhalten von Licht bei Durchleuchtung von 

Schmelz und Dentin zu untersuchen, da dieses von materialspezifischen Eigenschaften abhängig ist 

und die verschiedenen Zahnmaterialien Unterschiede bezüglich des Transmissionsverhaltens zeigen 

sollten. Zum Beispiel haben bereits Fried et al. [1995], Jones et al. [2002] sowie Chan et al. [2014] 

mithilfe des Transmissionsgrads und des Lambert-Beer-Gesetzes Schmelz und Dentin optisch 

charakterisiert. In der vorliegenden Arbeit sollten ebenfalls Transmissionsmessungen durchgeführt 

werden. Zudem war es das Ziel, nicht nur das transmittierte Licht, sondern auch das Streulicht im 

Raum zu detektieren, um anhand des Verteilungsmusters Rückschlüsse auf die optische 

Charakteristik von Schmelz und Dentin ziehen zu können. Dies alles sollte mit unterschiedlichen 

Lichtquellen, die Licht der Wellenlängen 532nm, 650nm und 780nm emittierten, durchführbar sein, 

um die Abhängigkeit der optischen Eigenschaften von der Lichtwellenlänge zu untersuchen. Diese 

Wellenlängen wurden gewählt, da für 532nm und 650nm bereits Vergleichswerte in der Literatur 

vorhanden waren und 780nm die Wellenlänge ist, mit der das bereits in der Praxis eingesetzte System 

DIAGNOcam operiert. 

Transmissions- und Streulichtmessungen sollten somit in einem hybriden Messaufbau vereint 

werden. Der Plan bestand darin, verschiedene Laserdioden, die Licht unterschiedlicher Wellenlänge 

emittierten, auf eine Zahnprobe zu richten und das durch die Probe abgeschwächte Licht mit einem 

Detektor zu erfassen (s. Abbildung 7, Abbildung 8 und Abbildung 11). Die Probe sollte sich dabei 

in einer Glasküvette befinden, die mit einer Flüssigkeit zur Anpassung des Brechungsindex gefüllt 

werden konnte, und der Detektor sollte beweglich sein, um das Streulicht zu erfassen. Bei den 

Messungen müssen die Lichtquelle sowie die Probe auf einer Achse liegen, wobei das Licht 

senkrecht auf die Küvette und die Probe treffen muss. Dies ist von großer Wichtigkeit, da es 

ansonsten vermehrt zur Brechung des Lichts an den Grenzflächen zwischen den optisch 

unterschiedlich dichten Medien Luft, Glas, Flüssigkeit und Probe kommt. Dies würde zu einer 

Beeinträchtigung der Messergebnisse führen, da durch Brechungsphänomene die Verteilung des 

Lichts im Raum verändert werden würde. Bei Verwendung einer zylindrischen Glasküvette heißt 

das, dass der Lichtstrahl auf die Mittelpunktachse des Zylinders gerichtet sein muss. Dies ist ein 

Nachteil einer zylindrischen Glasküvette, jedoch wäre die Verwendung einer rechteckigen Küvette 

für die Streulichtmessungen schlechter geeignet, da das in der Probe gestreute und dadurch in der 
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Richtung veränderte Licht dann bei Verlassen der Küvette nicht in einem rechten Winkel auf die 

Glasoberfläche träfe, was dann wiederum zu Brechung und Ablenkung des Lichtstrahls führen 

würde. Dies müsste rechnerisch kompensiert werden, um eine Verfälschung der Ergebnisse 

bezüglich der Streulichtverteilung zu vermeiden. Deshalb wurde eine zylindrische Glasküvette 

gewählt, da hier Transmissionsmessungen wie auch Streulichtmessungen ohne weitere 

Korrekturmessungen möglich sind [Fried et al., 1995, Zijp et al., 1991]. 

Der Lichtfluss des Versuchsaufbaus sowie die optischen Phänomene sind in Abbildung 7 und 

Abbildung 8 schematisch dargestellt. Abbildung 11 zeigt den grundsätzlichen Versuchsaufbau. Das 

Licht trifft von der Lichtquelle kommend auf die Glasküvette, die Indexmatchingflüssigkeit, die 

Probe und schließlich auf den Detektor. Das Licht wird durch den Komplex aus Küvette, Flüssigkeit 

und Probe abgeschwächt. Diese Abschwächung, auch Attenuation genannt, entspricht der Summe 

der Phänomene Absorption, Streuung und Reflexion, wobei Effekte, die von der Küvette und der 

Flüssigkeit hervorgerufen werden, durch eine Leerwertmessung mit Küvette und Flüssigkeit 

berücksichtigt werden [Skoog et al., 2013]. Durch Anwendung einer Indexmatchingflüssigkeit wird 

zudem der Brechungsindex der Flüssigkeit an die Probe angeglichen, sodass auch die Reflexion an 

der Grenzfläche zwischen Flüssigkeit und Probe verringert oder bestenfalls eliminiert wird [Chan et 

al., 2014, Darling et al., 2006, Fried et al., 1995, Jones et al., 2002, Zijp et al., 1991, Zijp et al., 1995]. 

Die Abschwächung des Lichts entspricht dann der Summe der Phänomene Absorption und Streuung 

[Bohren et al., 2004] und wird von der Probe selbst hervorgerufen. Die Errechnung des 

Attenuationskoeffizienten erfolgt dann nach dem Lambert-Beer-Gesetz. Somit können Proben 

unterschiedlicher Dicke bezüglich ihrer Fähigkeit, Licht abzuschwächen, verglichen werden [Jones 

et al., 2002]. Die zusätzlich durchgeführten Streulichtmessungen können ergänzend das bei 

Durchleuchtung des Zahnmaterials gestreute Licht detektieren und somit Unterschiede in der 

Lokalisation des gestreuten Lichts nach Durchleuchtung der verschiedenen Materialien aufzeigen. 
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Abbildung 7: Schema des Lichtflusses. 

 

 

Abbildung 8: Schema optische Phänomene im Versuchsaufbau. Die optischen Phänomene an den 

Grenzflächen Luft/Glas und Glas/Flüssigkeit werden durch eine Leerwertmessung berücksichtigt. 

Die Effekte an den Grenzflächen zwischen Flüssigkeit und Probe werden durch Indexmatching 

minimiert. Der emittierte Lichtstrahl wird somit durch die Probe abgeschwächt. Das abgeschwächte 

Licht sowie das Streulicht können erfasst werden. 
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4.2.2 Erster Versuchsaufbau und Erkenntnisse 

Aus diesen Grundüberlegungen heraus wurde ein Versuchsaufbau mit einem Zweikreisgoniometer 

(Huber 415) gewählt. Dieses wurde mithilfe von zwei Schrittmotoren (VEXTA PK266-02B) 

betrieben und mit zwei Nullpunktkontrollen (Huber 9100) ausgestattet. Gesteuert wurde das 

Goniometer über einen Motorcontroller. Im Zentrum des Aufbaus war ein euzentrischer 

Goniometerkopf (Huber 1005) über eine Goniometerkopfaufnahme (Huber 1413) montiert. Auf dem 

Goniometerkopf wiederum befand sich ein zylindrischer Träger, auf dem über zwei eingelassene 

Magneten eine Glasküvette (Hellma 692.104-BF) samt Probenhalter befestigt werden konnte. Für 

die Küvette wurden ein passender Deckel aus Kunststoff sowie ein Probenhalter angefertigt. Der 

Probenhalter besaß zwei Magnete als Gegenstücke zu den Magneten des zylindrischen Trägers, auf 

dem die Küvette platziert wurde. Die Magneten sollten für die Fixierung sowie die korrekte 

Ausrichtung des Probenhalters und somit der Probe sorgen. Die beiden Goniometerarme verfügten 

über ein Schlittensystem, über das Aufbauten und Aufsätze befestigt werden konnten.  So wurde auf 

dem ersten Arm (s. Abbildung 12) eine dreh- und neigbare Halterung zur Befestigung einer CMOS-

Kamera (IDS Imaging UI-1241LE-C-HQ) installiert, welche über ein Linsensystem auf das Zentrum 

des Aufbaus fokussiert werden konnte. Über zwei parallel zur Achse der Kamera ausgerichtete 

Parallelstege konnte zusätzlich ein Siliziumdetektor (Thorlabs S120C) mithilfe eines Adapters mit 

SM1-Gewinde (Thorlabs CP02/M) angebracht werden. Der zweite Goniometerarm wurde zur 

Montage der Lichtquelle herangezogen. Hier wurde ein System bestehend aus einem in 0,5mm-

Schritten beweglichen Linearschlitten und einem selbst gefertigten Adaptersystem zur Halterung der 

verschiedenen Dioden angebracht. Letztgenanntes Adaptersystem bestand im ersten Versuchsaufbau 

aus zwei Adapterplatten und einem durch Schrauben geklemmten und somit austauschbaren 

Diodenhalter, der für jede Diode entsprechend ihrem Durchmesser individuell hergestellt worden 

war und durch eine gefräste Aussparung an der oberen Adapterplatte befestigt werden konnte. Die 

Laserdioden wurden im Diodenhalter über Gewindestifte fixiert und positioniert. Sie erzeugten 

Laserlicht der Wellenlängen 532nm (Roithner CW532-005F), 650nm (Roithner APCD-650-02-C2) 

und 780nm (Roithner RLDC780-2-3). In diesem ersten Versuchsaufbau wurden die Dioden über 

zwei 1,5V-Batterien (Varta Industrial AAA 1,5V) mit Strom versorgt. Die CMOS-Kamera wurde 

über eine USB-Schnittstelle mit einem Laptop (Fujitsu S26391-K365-V100) verbunden und mit der 

Software uEye Cockpit (Version 4.40.0000) betrieben. Der Siliziumdetektor war mit einem 

kompatiblen digitalen Leistungsmessgerät (Thorlabs PM100D) verbunden, das wiederum über USB 

mit dem Laptop verbunden war. Über eine Thorlabs-eigene Software (Thorlabs Optical Power Meter 

Utility) konnten die Messdaten des Detektors ausgelesen und gespeichert werden. Auch der 

Motorcontroller war über USB mit dem PC verknüpft. Über eine Steuerungssoftware (BRDF 1.0) 

konnten die Kamera und das Goniometer gesteuert werden. Zur Eliminierung des Einflusses von 

externen Lichtquellen wurde eine selbstgefertigte Abdunklungsvorrichtung bestehend aus einem 

Metallgerüst und schwarzem Stoff genutzt. Zusätzlich wurden die Fenster des Versuchsraumes durch 

Jalousien abgedunkelt und das elektrische Raumlicht abgeschaltet. Mit diesem ersten 
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Versuchsaufbau wurden die Proben, die im ersten Herstellungsverfahren (s. 4.1.1) produziert worden 

waren, untersucht. Diese ersten Untersuchungen dienten der Prüfung, ob das System grundsätzlich 

funktioniert, und es konnten erste Messdaten für die Wellenlänge 650nm gewonnen werden. Als 

Hauptproblem des eben beschriebenen Aufbaus stellte sich jedoch das Adaptersystem zur Halterung 

der Dioden heraus. So waren zwar die Diodenhalter repositionierbar, aber sie waren trotz 

Präzisionsfrästechnik nicht exakt genug, sodass die Laserstrahlen der unterschiedlichen Dioden 

zueinander in vertikaler und horizontaler Richtung leicht abwichen und so nicht gewährleistet war, 

dass alle Lichtstrahlen der unterschiedlichen Dioden auf dieselbe Position in der Probe trafen. Eine 

fehlende Höhenverstellbarkeit, um diese Unterschiede auszugleichen, machte es unmöglich, 

Messungen mit verschiedenen Dioden durchzuführen, sodass mit diesem Aufbau nur erste Daten für 

die Wellenlänge 650nm erzeugt wurden und ein neues System zur Halterung der Dioden installiert 

werden musste. Außerdem wurde versucht, anstelle des Detektors für die Messungen die CMOS-

Kamera heranzuziehen. Dies hätte den Vorteil gehabt, mit einem noch einfacheren Aufbau operieren 

zu können. Jedoch stellte sich als Problem bei der Kamera heraus, dass sich die Messwerte, die die 

Kamera ausgab, bei hoher einfallender Lichtintensität einem Sättigungswert anzunähern schienen. 

Dies hätte zur Folge gehabt, dass die auf die Kamera einfallende Lichtintensität über Filter gesteuert 

hätte werden müssen, was bei Verwendung des Detektors nicht nötig war. Daher war der Detektor 

die einfachere und genauere Variante, weshalb ausschließlich dieser für die Messungen heranzogen 

wurde und die Kamera lediglich zur Justierung des Versuchsaufbaus genutzt wurde (s. 4.2.4 und 

10.5).  

 

   

Abbildung 9: Probenhalter Unterseite. Abbildung 10: Probenhalter Oberseite, 

Probeneinlass seitlich geschlossen (Pfeil). 
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Abbildung 11: Schema Versuchsaufbau. Der von der Laserdiode emittierte Lichtstrahl trifft 

idealerweise im 90°-Winkel auf die Küvette und die Probenoberfläche und verlässt den Komplex aus 

Küvette samt Indexmatchingflüssigkeit und Probe, wobei beim Austritt durch die Zylinderform der 

Küvette gewährleistet ist, dass ein rechter Winkel zwischen dem austretenden Lichtstrahl und der an 

der Grenzfläche beteiligten Küvettenoberfläche vorherrscht. Das transmittierte Licht sowie das 

Streulicht können durch Verschieben des Goniometerarmes, auf dem der Detektor befestigt ist, 

erfasst werden. 
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4.2.3 Endgültiger Versuchsaufbau 

Aufgrund der Schwierigkeiten bei der Positionierung der Dioden im ersten Versuchsaufbau wurde 

der originale Messaufbau verändert. Es wurde ein neues System zur Befestigung und Ausrichtung 

der Dioden gesucht, das kleinere Inkongruenzen der unterschiedlichen Dioden ausgleichen kann. 

Eine zusätzliche vertikale Verstellbarkeit der Dioden war auch deshalb gewünscht, um in gemischten 

Zahnproben, die Schmelz und Dentin enthielten, gezielt die jeweilige zu untersuchende 

Zahnhartsubstanz anzusteuern. Daher wurde das ursprüngliche Diodenadaptersystem durch einen 

XY-Translator (Thorlabs ST1XY-S/M) ersetzt, der mit Mikrometerschrauben versehen war und so 

reproduzierbare horizontale und vertikale Bewegungen zuließ. Die horizontale Verschiebbarkeit 

wurde genutzt, um alle Dioden mittig auf die Glasküvette auszurichten. Die vertikale 

Verschiebbarkeit konnte zur Ansteuerung von Schmelz und Dentin genutzt werden. Die Dioden 

wurden durch Zweikomponentenkleber (UHU plus endfest 300) an passende Verschlussstücke 

(Thorlabs SM1CP2M) festgeklebt. Die Verschlussstücke besaßen ab Werk eine zentrierte 

Vorbohrung, die jeweils für die Aufnahme der verschiedenen Dioden erweitert wurde. Jedes 

Verschlussstück mit seinem externen SM1-Gewinde konnte in das SM1-Gewinde des XY-

Translators geschraubt werden und ermöglichte, dass die Dioden reproduzierbar vom XY-Translator 

zu entfernen und wieder anzubringen waren. Somit war das System geeignet, alle geplanten 

Messungen durchzuführen. Zudem wurde mittels 3D-Druck ein zweiter Probenhalter nach Vorbild 

und Maßen des ersten Probenhalters gefertigt, der einen Probeneinlass besaß, der entsprechend der 

Breite der Probensockel seitlich begrenzt war (s. Abbildung 9. Dies sollte Repositionierbarkeit auch 

nach Entfernen der Probe aus dem Probenhalter garantieren. Beide Probenhalter funktionierten und 

beide wurden verwendet, wobei der zweite nur für die Messungen der nichtkariösen Proben, die im 

neuen Herstellungsverfahren angefertigt worden waren, verwendet wurde und der erste Probenhalter 

für alle anderen Messungen. Der erste Probenhalter mit seitlich nicht begrenztem Probeneinlass war 

besser für die Messung der kariösen Proben geeignet, da er kleine Verschiebungen der Probe im 

Einlass erlaubte und somit gezielteres Ansteuern des Bereichs der kariösen Läsion. Zusätzlich wurde 

ein Netzteil (Amrel LPS 301) in den Versuchsaufbau integriert, welches eine dauerhaft zuverlässige 

und präzise einstellbare Stromversorgung der Dioden ermöglichte. 
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Abbildung 12: Versuchsaufbau. Links: erster Goniometerarm mit Kamera und Detektor. Rechts: 

zweiter Arm mit Lichtquelle am Netzteil angeschlossen. Zentral: Goniometerkopf mit Küvette und 

Probenhalter. Gerüst und Vorhang zur Abdunklung. 
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4.2.4 Justierung und Kalibrierung des Aufbaus und Wahl der 

Indexmatchingflüssigkeit 

Bei der Justierung des Aufbaus muss darauf geachtet werden, dass sich die Dioden und die Proben 

auf einer Achse befinden. Dabei muss die zylindrische Glasküvette möglichst mittig vom Lichtstrahl 

getroffen werden, um Brechungseffekte an der gebogenen Glasoberfläche zu vermeiden. All dies 

wurde dadurch erreicht, dass zunächst die Kamera und der Goniometerkopf mithilfe einer 

Justiernadel so ausgerichtet wurden, dass die Nadel in zwei zueinander im rechten Winkel stehenden 

Ebenen in der Bildmitte der Kamera stand und bei Bewegung des Kameraarmes die Justiernadel die 

Bildmitte nicht verließ. Mithilfe der entsprechend ausgerichteten Kamera wurden dann der 

Küvettenträger und mit ihm die Glasküvette und der Probenhalter justiert. Dies geschah mithilfe 

einer Zielscheibe und einer Justiernadel. Am Ende wurden dann die Dioden zur Kamera ausgerichtet, 

nachdem sie auf die spätere Position der Proben fokussiert worden waren. Die Parallelstege der 

Kamera wurden mittels einer Zielscheibe und der justierten Dioden parallel zur Kameraachse 

ausgerichtet. Der Detektor wurde für die Messungen an den Parallelstegen montiert und alle externen 

Lichteinflüsse mittels der Abdunklungsvorrichtung so gut wie möglich eliminiert. Zusätzlich wurde 

das elektrische Raumlicht abgeschaltet und die Fenster des Versuchsraumes abgedunkelt. Der 

Detektor wurde daraufhin mittels seiner eigenen Eichungsfunktion geeicht. Das exakte Prozedere zur 

Justierung und Kalibrierung befindet sich in Kapitel 10.5. 

Für die Messungen wurde zunächst als Indexmatchingflüssigkeit für die Dentinmessungen (n=1,45, 

[Ten Bosch et al., 1987]) eine  Glycerinlösung (Firma: Merck, n=1,45, Konzentration: 87%) und für 

die Schmelzmessungen (n=1,62, [Spitzer et al., 1975]) künstliches Anisöl (Firma: Carl Roth, n=1,49-

1,50, CAS-Nummer: 84650-59-9) verwendet. Jedoch war bei den Dentinmessungen mit Glycerin 

das Phänomen zu beobachten, dass hier die Lichtleistungsmesswerte von Messung zu Messung stark 

schwankten. Bei Verwendung von Wasser (Brechungsindex 1,33) als Indexmatchingflüssigkeit war 

dieses Phänomen nicht zu beobachten. Bei Verwendung des Glycerins fiel auf, dass sich nach 

Positionierung der in Wasser gelagerten Zahnproben in der Küvette und nach Auffüllen der Küvette 

mit Glycerin eine Art Emulsion bildete. Der Ausprägungsgrad war dabei unterschiedlich. Deshalb 

wurde vermutet, dass Glycerin nicht als Indexmatchingflüssigkeit geeignet war, da es hydrophob ist 

und deshalb die Gefahr besteht, aufgrund der Restfeuchtigkeit der Zahnproben eben beschriebenes 

Phänomen hervorzurufen. Darum wurde die Entscheidung gefällt, bei den Versuchen ein 

Indexmatching mit Wasser durchzuführen. Einen weiteren Grund für die Nutzung von Wasser haben 

bereits Darling et al. [2006] genannt. Sie gaben an, dass es gerade bei Messungen mit kariösen Proben 

aufgrund ihrer Porosität zur Aufnahme der Indexmatchingflüssigkeit in die Probe kommt. Somit 

käme es bei diesen Proben zu einer optischen Angleichung der Probe an die Flüssigkeit, die nicht der 

natürlichen Situation entspricht, wodurch entsprechende Proben in den Messungen deutlich 

lichtdurchlässiger wären als sie es eigentlich sind. Bei Verwendung von Wasser als 

Indexmatchingflüssigkeit wird dieses zwar ebenfalls von den Proben aufgenommen. Dies kommt 
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jedoch der natürlichen Situation am nächsten, da auch Speichel und Gewebsflüssigkeiten zum 

größten Teil aus Wasser bestehen. Somit entspricht der Ansatz mit Wasser als 

Indexmatchingflüssigkeit der natürlichen Situation im Mund am meisten, weshalb auch in der 

vorliegenden Arbeit Wasser für das Indexmatching verwendet wurde. Jedoch verbleibt bei 

Verwendung von Wasser als Indexmatchingflüssigkeit Oberflächenreflexion an der Grenzfläche 

zwischen Probe und Wasser, die die Messergebnisse beeinflusst. Dies muss berücksichtigt werden 

[Darling et al., 2006]. Dennoch überwiegen aus den genannten Gründen die Vorteile von Wasser. 
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4.2.5 Messungen zur Validierung des Versuchsaufbaus 

Als erstes wurden Messungen zur Prüfung des Versuchsaufbaus durchgeführt. Dabei wurde zunächst 

die zeitliche Konstanz der einzelnen Dioden getestet, indem die Versuchsanordnung ohne Küvette 

genutzt und der Detektor mit jeder Diode beleuchtet wurde, um die Leistung der Dioden über einen 

Zeitraum von 30 Minuten einmal pro Minute aufzuzeichnen. Da bei den späteren Probenmessungen 

jede Diode pro Messung circa zehn Minuten lang kontinuierlich aktiv war, bevor sie ausgeschaltet 

und durch eine andere ersetzt wurde, wurde die Länge der Konstanzmessung mit 30 Minuten je Diode 

als ausreichend erachtet. 

Als zweite Validierungsmessung wurden für eine Probe fünf Transmissionsmessungen für Dentin 

(zur Durchführung der Transmissionsmessungen s. 4.2.6) mit der 650nm-Diode durchgeführt, wobei 

nach jeder Messung die Küvette entfernt, die Probe aus dem Probenhalter entnommen sowie der XY-

Translator verstellt wurde. Die Probe wurde danach zurück in den Probenhalter und in die Küvette 

gegeben, neues Wasser wurde aufgefüllt und die Probe wurde auf dem Goniometerkopf erneut 

positioniert. Daraufhin wurde die zuvor durchleuchtete Stelle durch Verschiebung des XY-

Translators erneut angesteuert. Für diese Messungen wurde der Probenhalter mit seitlich begrenztem 

Probeneinlass (s. Abbildung 9 und 10) verwendet. Sie sollten prüfen, ob eine Probe mit dem System 

reproduzierbar positioniert und angesteuert werden konnte. Abweichungen hätten dabei darauf 

hingedeutet, dass entweder der Probenhalter nicht zuverlässig reproduzierbar die Probe auf dem 

Küvettenträger positionieren kann oder der XY-Translator nicht reproduzierbar entsprechende 

Messpunkte ansteuern kann. 

Außerdem wurden Testmessungen zur Überprüfung des Vorkommens von Lichtstreuung durch das 

System durchgeführt. Dabei wurde die Küvette samt Probenhalter mit Wasser gefüllt, im Zentrum 

des Versuchsaufbaus positioniert und eine Streulichtmessung mit jeder Diode durchgeführt (zur 

Durchführung der Streulichtmessungen s. 4.2.6). Diese Messungen sollten zeigen, ob durch den 

Komplex aus Glasküvette und Indexmatchingflüssigkeit bereits Licht gestreut oder gebrochen wird, 

was die späteren Messungen hätte beeinträchtigen können. 

Abschließend wurden zwei Streulichtmessungen (zur Durchführung der Streulichtmessungen s. 

4.2.6) an einer Probe mit der 650nm-Diode durchgeführt, bei der einmal der Raum und der 

Versuchsaufbau komplett abdunkelt worden war. Bei einer zweiten Messung war die 

Messvorrichtung mithilfe der Abdunklungsvorrichtung zwar abgedunkelt worden, jedoch blieb das 

elektrische Raumlicht angeschaltet. Diese Messungen sollten so den Einfluss von externen 

Lichtquellen auf den Versuchsaufbau simulieren und die Funktionsfähigkeit der 

Abdunklungsvorrichtung überprüfen. 
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4.2.6 Messung der Proben und statistische Auswertung 

Nach Entwicklung des endgültigen Messaufbaus, Justierung und Kalibrierung, Wahl der 

Indexmatchingflüssigkeit und Validierung des Aufbaus wurden die verschiedenen Transmissions- 

und Streulichtmessungen für die Zahnproben durchgeführt. Dabei wurden im Hauptversuch 

insgesamt 15 nichtkariöse Zahnproben aus 15 Zähnen untersucht, wobei die Dicke der nichtkariösen 

Proben zwischen 152 und 257µm lag. Zudem wurden 13 kariöse Zahnproben für die Messungen 

herangezogen. Die kariösen Proben wurden aus 12 Zähnen gewonnen, wobei insgesamt zehn Dentin- 

und zehn Schmelzmessungen durchgeführt werden konnten. Die jeweiligen Probendicken lagen hier 

zwischen 159 und 282µm. In einer zusätzlichen Versuchsreihe zur Untersuchung des 

Attenuationskoeffizienten bei verschiedenen Dicken wurden zusätzlich neun dickere Proben 

hergestellt, von denen fünf aus bereits vorhandenen Zähnen und vier aus zusätzlichen Zähnen 

gewonnen wurden. Außerdem wurden für diese Untersuchung zusätzlich die Ergebnisse der zehn 

Dentinproben und acht Schmelzproben, die im ersten Probenherstellungsverfahren aus sechs 

Molaren und Prämolaren hergestellt und mit dem ersten Versuchsaufbau vermessen worden waren, 

herangezogen. Somit konnte ein Vergleich des Attenuationskoeffizienten über einen Dickenbereich 

von 92 bis 890µm für Dentin und 152 bis 895µm für Schmelz gezogen werden. Für die Messungen, 

bei denen Dentin räumlich unterschiedlich angeordnet wurde, wurden drei Zähne herangezogen, 

wobei aus einem Zahn jeweils ein Messwert mit Dentin in mesiodistaler und axialer Anordnung 

gewonnen wurde. Zwei Proben mit pulpanahem Dentin wurden ebenfalls aus diesen Zähnen 

hergestellt und vermessen. Die Probendicken lagen hier zwischen 177 und 244µm. Für die 

nonkariösen Proben wurde der Probenhalter mit seitlich geschlossenem Probeneinlass (s. Abbildung 

9 und 10) verwendet. Alle anderen Messungen wurden mit einem Probenhalter mit seitlich offenem 

Probeneinlass durchgeführt. Die 650nm-Diode wurde mit 2,5V Spannung und 35mA, die 532nm-

Diode mit 3,0V und 299mA und die 780nm-Diode mit 3,0V und 50 mA am Netzteil (Amrel LPS 

301) betrieben. Zur Errechnung der Transmission wurden zunächst für jede Wellenlänge die 

Leerwerte bestimmt. Dabei wurden die Dioden im XY-Translator befestigt, zentriert und im 

Anschluss in 0,5mm-Schritten vertikal verschoben. Der XY-Translator ließ eine 

Gesamtverschiebung von 5mm zu, sodass insgesamt an elf Punkten gemessen wurde (s. Abbildung 

14). Aus den zehn Messwerten pro Messpunkt wurde dann wiederum jeweils ein Mittelwert 

errechnet, der dann als jeweiliger Leerwert für diesen Messpunkt für die entsprechende Diode galt. 

Für die Messung der Zahnproben wurden diese zunächst im Probenhalter befestigt. Der Probenhalter 

wurde dann in die Glasküvette eingeführt und die Küvette wurde anschließend mit Wasser befüllt, 

mit dem Deckel verschlossen und auf dem Küvettenträger auf dem Goniometerkopf im Zentrum des 

Versuchsaufbaus positioniert. Daraufhin wurden die Dioden eingeschraubt und mit dem XY-

Translator zentriert. Von dieser Zentralposition ausgehend wurden zunächst Dentin und im 

Anschluss Schmelz durch vertikale Verschiebung des XY-Translators angesteuert. Dabei wurde für 

die jeweilige Diode immer zuerst eine Transmissionsmessung durchgeführt, die aus zehn 

Einzelmessungen bestand. Aus dem Mittelwert der zehn Transmissionsmesswerte und dem 
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jeweiligen Leerwert konnte der Transmissionsgrad bestimmt werden, der zur Berechnung des 

Attenuationskoeffizienten nach dem Lambert-Beer-Gesetz herangezogen wurde. Die nichtkariösen 

Zahnproben und die Dentinproben mit Dentin unterschiedlicher räumlicher Anordnung sowie 

pulpanahem Dentin wurden bei den Messungen so angesteuert, dass alle Messungen immer exakt an 

den jeweiligen Messpunkten, an denen auch die Leerwerte bestimmt worden waren, durchgeführt 

wurden. Das war bei den kariösen Zahnproben nicht möglich, da hier auch Zwischenpositionen 

angesteuert werden mussten. Somit wurden für erstgenannte Messungen zur Berechnung des 

Transmissionsgrads und des Attenuationskoeffizienten die Leerwerte für den jeweiligen Messpunkt 

herangezogen. Für die kariösen Zahnproben, die an Zwischenpositionen gemessen wurden, wurde 

der Leerwert der Messposition verwendet, die dem eigentlichen Messpunkt am nächsten lag. Die 

Dicke der Proben zur Berechnung der Attenuationskoeffizienten wurde dabei jeweils für Schmelz 

und Dentin mithilfe einer digitalen Messuhr (Mahr MarCator 1086W) bestimmt. Nach Durchführung 

einer Transmissionsmessung wurde an derselben Position eine Streulichtmessung mit derselben 

Diode durchgeführt. Dabei wurde der Kameraarm des Goniometers, an dem sowohl die Kamera als 

auch der Detektor montiert waren, immer in 5°-Schritten verschoben. Der Kameraarm wurde so 

verschoben, dass er an jeder Position 10 Sekunden lang hielt und so zehn Messwerte an jeder Position 

mit dem Detektor aufgenommen wurden. Von diesen positionsbezogenen Messwerten wurde später 

mithilfe des Programms Excel (Version 2016) und des Programms R (Version 3.4.1) einer der 

Messwerte für jede Position ausgewählt. Für jede Position konnte somit ein Lichtleistungsmesswert 

gewonnen werden. Diese Messwerte wurden mit dem Durchschnittsleerwert für die jeweilige 

Wellenlänge ins Verhältnis gesetzt und in einem Graphen aufgetragen, welcher somit die räumliche 

Lichtleistungsverteilung skaliert auf den jeweiligen Durchschnittsleerwert der Dioden aufzeigt. 

Dieser Durchschnittsleerwert wird in den Streuungsgraphen als Referenzwert bezeichnet. Der 

Kameraarm konnte bei den Messungen um bis zu 140° ausgehend von der Grundposition, in der 

Detektor und Lichtquelle auf einer 180°-Achse liegen, verschoben werden (vgl. Abbildung 21). Eine 

weitere Bewegung es Arms war nicht möglich, da die Aufbauten der beiden Goniometerarme 

ansonsten kollidiert wären. Nach jeder Transmissions- und Streulichtmessung für eine Wellenlänge 

wurde die Kamera in Grundposition zurückgefahren und die Diode ausgetauscht, wonach dasselbe 

Messprozedere für die neue Wellenlänge durchgeführt wurde. Nach Abschluss der Dentinmessungen 

wurden die Messungen für den Zahnschmelz entsprechend durchgeführt. 

Aus den nach dem Lambert-Beer-Gesetz für jede Probe errechneten Attenuationskoeffizienten 

wurden Durchschnittskoeffizienten errechnet. Dabei wurden der Mittelwert und die 

Standardabweichung errechnet. Diese durchschnittlichen Attenuationskoeffizienten konnten 

anschließend miteinander verglichen werden. Außerdem wurden die Streulichtverteilungsgraphen 

für die einzelnen Proben erstellt. Diese beinhalten die Streulichtverteilung für Schmelz und Dentin 

einer Probe für alle getesteten Wellenlängen. Anhand des gezeigten Kurvenverlaufs können optische 

Unterschiede skizziert werden 



Material und Methode 

44 
 

 

 

Abbildung 13. Messaufbau Nahaufnahme. Links: Kamera mit Parallelstegen. Mitte: Glasküvette mit 

Probenhalter und Probe. Rechts: XY-Translator mit montierter Diode. 

 

 

Abbildung 14: Schematische Darstellung der Messpunkte für die Leerwertmessungen. Insgesamt 

wurden elf Messpunkte heranzgezogen, die durch die vertikale Verschiebung der Lichtquelle   

zustandekamen. Die einzelnen Punkte haben einen Abstand von 0,5mm.
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5 Messergebnisse und Resultate 

Im Rahmen der Untersuchungen wurden Messdaten aus den Validierungsmessungen sowie den 

Messungen zur Leerwertbestimmung für die Transmissionsmessungen erzeugt und ausgewertet. 

Außerdem wurden Attenuationskoeffizienten errechnet und Graphen zur Streulichtverteilung erzeugt. 

Auf den folgenden Seiten werden diese Ergebnisse zusammenfassend aufgezeigt. 

5.1 Resultate der Validierungsmessungen 

Die Validierungsmessungen sollten die Funktionsfähigkeit des Messaufbaus testen und aufzeigen. 

Durch sie sollte möglichst frühzeitig der Einfluss von messtechnisch bedingten Fehlern ausgeschlossen 

werden.  

5.1.1 Ergebnisse der Diodentests 

Bei den Diodentests wurde die Lichtleistung der Dioden jeweils über einen Zeitraum von 30 Minuten 

mithilfe des Detektors gemessen und die Ergebnisse grafisch dargestellt. Wie im zugehörigen Graphen 

(s. Abbildung 15) zu sehen ist, geben alle drei Dioden eine gleichbleibende Lichtleistung über einen 

Zeitraum von 30 Minuten aus. Der Mittelwert der Lichtleistung sowie die Standardabweichung sind in 

Tabelle 1 aufgeführt. Ein messtechnischer Fehler aufgrund von schwankender Diodenleistung kann 

durch den Versuch über einen Zeitraum von 30 Minuten somit vernachlässigt werden, da sich jede Diode 

sehr konstant über den getesteten Zeitraum zeigt, sodass kein wesentlicher Einfluss auf die 

Messergebnisse durch schwankende Diodenleistung zu erwarten ist. 

 

Dioden: 532nm 650nm 780nm 

Mittelwert in mW 0,8030 0,6217 2,2141 

Standardabweichung 0,0048 0,0002 0,0034 

 

Tabelle 1: Ausgangsleistung der Dioden über 30 Minuten. 
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Abbildung 15: Lichtleistung der Dioden über 30 Minuten. 
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5.1.2 Ergebnisse der Repositionierungsmessungen 

Für die Repositionierungsmessungen wurden für eine Probe insgesamt fünf Transmissionsmessungen 

durchgeführt, wobei eine Messung aus zehn Einzelmessungen bestand (zur Durchführung der 

Transmissionsmessungen s.4.2.6). Zwischen den fünf Einzelmessungen wurden Probenhalter und 

Glasküvette komplett entfernt sowie der XY-Translator verschoben und die Dioden herausgeschraubt. 

Danach wurden alle Teile repositioniert und eine erneute Messung durchgeführt. Der Mittelwert und die 

Standardabweichung der Einzelmessungen wurden danach errechnet. Die Standardabweichung 

innerhalb der Einzelmessungen befindet sich dabei zwischen 1,27 bis 5,60‰. Außerdem wurde der 

Gesamtmittelwert der Einzelmessungen berechnet wie auch dessen Standardabweichung, die 8,22% 

beträgt.  

Innerhalb der Einzelmessungen ist zu beobachten, dass die Ergebnisse sehr konstant sind. Daher sollten 

auch die Messungen aller Proben mit einer Diode sehr genau sein. Der Gesamtmittelwert der 

Einzelmessungen und dessen geringe Standardabweichung zeigen außerdem, dass das Gesamtsystem 

aus Probenhalterungssystem und XY-Translator in der Lage ist, die Proben und Dioden zuverlässig in 

eine reproduzierbare Position zu bringen. Auch das Wechseln zwischen den verschiedenen Dioden bei 

den späteren Probenmessungen, wo im Gegensatz zu den hier simulierten Messungen lediglich die 

Diode ausgetauscht und der XY-Translator nur leicht verschoben wurde, sollten somit eine geringere 

als die hier gezeigte Abweichung produzieren. 
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Messung: 1 2 3 4 5  

Leistung in Watt 2,01E-06 2,00E-06 2,17E-06 1,98E-06 2,09E-06  

 
2,00E-06 2,00E-06 2,18E-06 1,98E-06 2,09E-06  

 
2,01E-06 2,00E-06 2,18E-06 1,98E-06 2,10E-06  

 
2,01E-06 2,00E-06 2,18E-06 1,98E-06 2,08E-06  

 
2,01E-06 2,00E-06 2,18E-06 1,98E-06 2,09E-06  

 
2,01E-06 2,00E-06 2,18E-06 1,98E-06 1,94E-06  

 
2,01E-06 2,00E-06 2,19E-06 1,98E-06 2,09E-06  

 
2,02E-06 2,00E-06 2,19E-06 1,98E-06 2,09E-06  

 
2,01E-06 2,01E-06 2,18E-06 1,98E-06 2,09E-06  

 
2,01E-06 2,00E-06 2,18E-06 1,98E-06 2,07E-06 Gesamt 

Mittelwert  2,01E-06 2,00E-06 2,18E-06 1,98E-06 2,07E-06 2,05E-06 

Standardabweichung  5,60E-09 1,94E-09 4,04E-09 1,27E-09 4,80E-08 8,22E-08 

 

Tabelle 2: Messergebnisse der Repositionierungsmessungen.  
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5.1.3 Ergebnisse der Messung der Streuung im System 

Die Resultate der Streulichtmessungen, die mit Küvette, Probenhalter und Indexmatchingflüssigkeit, 

jedoch ohne Probe, durchgeführt wurden, sind in Abbildung 16 zu sehen. Hier erkennt man anhand der 

grafischen Darstellung, dass durch das System kaum Streuung verursacht wird, denn der Großteil der 

Lichtleistung wurde in der Grundposition 0° des Detektors gemessen. An allen anderen Positionen war 

dabei kaum Lichtleistung messbar. Dies gilt für alle Wellenlängen. Somit zeigt dieser Test, dass durch 

das Messsystem so gut wie keine Streuung des Lichts stattfand. Daher ist eine Beeinflussung späterer 

Messergebnisse aufgrund von unkontrollierter Streuung im Messsystem de facto ausgeschlossen, was 

insbesondere auch für die Streulichtverteilungsmessungen von Bedeutung ist. 

 

 

Abbildung 16: Streuungsmessungen ohne Probe. Ordinatenachse: gemessene Lichtleistung P im 

Verhältnis zum Referenzwert P0 (= Durchschnittsleerwert), logarithmische Darstellung. 

Abszissenachse: Messpunkte durch Verschieben des Sensors ausgehend von Ausgangsposition bei 0° 

(diese Position enstpricht der Position, bei der auch die Transmissionsmessungen durchgeführt wurden).  
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5.1.4 Ergebnisse der Messungen zum externen Lichteinfluss 

Die Streuungsmessung zum externen Lichteinfluss zeigen, dass selbst mit angeschaltetem Raumlicht so 

gut wie keine Beeinflussung des Messergebnisses vorliegt. Es wurde eine Probe verwendet und eine 

Streulichtmessung im Dentin mit der 650nm-Diode ausgeführt und ausgewertet, wobei eine Messung 

mit komplett abgedunkeltem System und ausgeschaltetem Raumlicht und die andere mit abgedunkeltem 

System, jedoch angeschaltetem Raumlicht durchgeführt wurde. Die beiden in Abbildung 17 gezeigten 

Kurven zeigen so gut wie keine Unterschiede. Beide maximalen Messwerte an der 0°-Position des 

Detektors sind praktisch identisch. Auch die Messwerte, die an der 90°-Position des Detektors gemessen 

wurden, sind gleich. Lediglich im Bereich zwischen 90° und 140° liegt die Kurve der Messungen mit 

angeschaltetem Raumlicht leicht über derjenigen ohne Raumlicht. Insgesamt sollte das System daher 

durch die Abdunklungsvorrichtung ausreichend vor externen Lichtquellen geschützt sein, da diese 

Messungen gezeigt haben, dass selbst bei aktiviertem Raumlicht kaum eine Beeinflussung der 

Messungen stattgefunden hat. Alle späteren Messungen wurden im abgedunkeltem Versuchsraum mit 

abgedunkeltem Messsystem und ausgeschaltetem Raumlicht durchgeführt, sodass die Messungen mit 

angeschaltetem Raumlicht eine Art Extremfall von externem Lichteinfluss simulierten.  

 

 

Abbildung 17: Streulichtverteilungsgraph der Probe 62 bei Durchleuchtung mit der 650nm-Diode im 

Dentin zur Untersuchung des Einflusses externer Lichtstörquellen. mLi= mit angeschaltetem Raumlicht. 

oLi= mit ausgeschaltetem Raumlicht.  
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5.2 Resultate der Transmissionsmessungen 

Zur Gewinnung der Ergebnisse der Transmissionsmessungen mussten zunächst die Leerwerte bestimmt 

werden. Daraufhin wurden mithilfe der Leerwerte die Attenuationskoeffizienten im Sinne des Lambert-

Beer-Gesetzes, in deren Berechnung der Transmissionsgrad sowie die Dicke der Proben einfließt, 

errechnet (vgl. Gleichung (4), nach � aufgelöst). All dies wurde für die nonkariösen, die kariösen und 

die Dentinproben mit räumlich unterschiedlich angeordnetem sowie pulpanahem Dentin durchgeführt. 

5.2.1 Ergebnisse der Leerwertbestimmungen 

Die Leerwerte wurden jeweils an elf Messpunkten gewonnen, wobei der XY-Translator in 0,5mm-

Schritten vertikal verschoben wurde (s. Abbildung 14). Die Leerwerte geben die Lichtleistung für jede 

Diode an jedem der Messpunkte an, die durch das System aus Glasküvette und Indexmatchingflüssigkeit 

hindurchgelassen wird und ist somit kleiner als die Ausgangslichtleistung der Dioden, die in 5.1.1. 

bestimmt worden war. Die Ergebnisse sind in Tabelle 3 zusammengefasst. Position 1 in der Tabelle 

entspricht der unteren Extremstellung des XY-Translators beziehungsweise der Diode. Position 11 

entspricht der höchsten Extremstellung und Position 6 der Mittelstellung. Der erste Teil der Tabelle 

zeigt die gemessenen Leistungswerte in Watt. Die Lichtleistung der Dioden wurde im zweiten Teil mit 

der Ausgangslichtleistung ins Verhältnis gebracht. Hier ist zu sehen, dass circa 15% bis 30% der 

Ausgangslichtleistung je nach Diode vom Messaufbau abgeschwächt wird. Am unteren Extrempunkt ist 

zu sehen, dass eine ungewöhnlich große Abschwächung des Lichts stattfand, weshalb dieser Punkt bei 

den späteren Probenmessungen ausgeschlossen wurde und somit Messungen erst ab dem zweiten 

Messpunkt durchgeführt wurden. Der Leerwert für den ersten Messpunkt wurde nicht in die Berechnung 

des Durchschnittsleerwertes beziehungsweise Referenzwertes (vgl. 4.2.6) für die 

Streulichtverteilungsgraphen einbezogen. Die Vermutung liegt nahe, dass am unteren Extrempunkt ein 

Teil des Lichts vom Probenhalter abgeschwächt wurde, sprich, dass der Lichtstrahl der Dioden zum Teil 

den Probenhalter traf und ein großer Anteil der Lichtleistung nicht am Detektor ankommen konnte. 

Dieses Phänomen war somit dem Versuchsaufbau geschuldet. Die Tatsache, dass dieses Phänomen bei 

allen drei Dioden zu sehen war, spricht dafür, dass diese Vermutung korrekt ist. 
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Gemessene Leerwerte in Watt 

Position D_S_532 D_S_650 D_S_780 

1 3,5082E-04 3,3672E-04 1,1254E-03 

2 6,5749E-04 5,2865E-04 1,5588E-03 

3 6,6472E-04 5,3461E-04 1,5783E-03 

4 6,6605E-04 5,3634E-04 1,5912E-03 

5 6,5774E-04 5,3611E-04 1,6075E-03 

6 6,5264E-04 5,3499E-04 1,5839E-03 

7 6,5649E-04 5,3472E-04 1,6188E-03 

8 6,5606E-04 5,3550E-04 1,6169E-03 

9 6,5295E-04 5,3520E-04 1,6243E-03 

10 6,5445E-04 5,3174E-04 1,6211E-03 

11 6,5558E-04 5,2775E-04 1,6413E-03 

Gemessene Leerwerte in % der Ausgangsleistung der Diode 

Position D_S_532 D_S_650 D_S_780 

1 43,85% 54,31% 50,92% 

2 82,19% 85,27% 70,54% 

3 83,09% 86,23% 71,41% 

4 83,26% 86,51% 72,00% 

5 82,22% 86,47% 72,74% 

6 81,58% 86,29% 71,67% 

7 82,06% 86,24% 73,25% 

8 82,01% 86,37% 73,16% 

9 81,62% 86,32% 73,50% 

10 81,81% 85,76% 73,35% 

11 81,95% 85,12% 74,27% 

Durchschnittswert Leerwert in Watt (Position 2 - 11, ohne Extrempunkt in Position 1) 

Durchschn. in%: 82,18% 86,06% 72,59% 

in Watt 6,5742E-04 5,3356E-04 1,6042E-03 

Standardabweichung Leerwert in Watt (Position 2 - 11, ohne Extrempunkte in Position 1) 

in Watt 4,5434E-06 3,0985E-06 2,5303E-05 

 

Tabelle 3: Übersicht der Leerwerte. Extrempunkt 1 blau markiert.  
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5.2.2 Attenuationskoeffizienten der kariösen und nonkariösen Zahnproben 

Bei den kariösen und nonkariösen Zahnproben wurden Transmissionsmessungen durchgeführt, wobei 

die nach Durchleuchtung der Proben durch den Zahn hindurchgedrungene Lichtleistung pro Diode 

gemessen wurde. Die gemessene Lichtleistung wurde im Sinne des Lambert-Beer-Gesetzes mit dem 

entsprechenden Leerwert und mit der Dicke des durchleuchteten Zahnmaterials ins Verhältnis gesetzt 

(vgl. Gleichung (4) und (6)). Dadurch konnten Attenuationskoeffizienten für jede Probe berechnet 

werden, die verglichen miteinander Aufschluss über die Abschwächung der unterschiedlichen 

Lichtquellen durch das entsprechende Zahnmaterial jeder Probe geben. Den Hauptteil der Untersuchung 

bildeten 15 Proben aus 15 dritten Molaren bei den nonkariösen Proben sowie 13 Proben aus 12 Molaren 

bei den kariösen Proben. Alle Proben lagen bezüglich ihrer Dicke in einem Bereich von 139 bis 282µm 

und bildeten den Hauptteil der Untersuchungen. Für die nonkariösen Proben wurde für alle drei 

Lichtwellenlängen je eine Messung im Schmelz und Dentin durchgeführt. Bei den kariösen Proben 

konnten aus allen Proben insgesamt je zehn Messwerte für Schmelz und Dentin gewonnen werden. Alle 

Ergebnisse sind zusammenfassend in Tabelle 4 aufgeführt. 

Es ist zu beobachten, dass bei den nonkariösen Proben die Attenuationskoeffizienten für Dentin um ein 

Vielfaches höher sind als diejenigen von Schmelz. Das bedeutet, dass Dentin das durchdringende Licht 

deutlich stärker abschwächt als Zahnschmelz. So bewegen sich im nonkariösen Dentin die 

Attenuationskoeffizienten je nach Wellenlänge gerundet zwischen 221,93 und 250,18 pro cm, im 

nonkariösen Schmelz dagegen zwischen 28,67 und 59,89 pro cm.  Die Attenuationskoeffizienten fallen 

mit zunehmender Lichtwellenlänge über alle Messungen ab, wodurch erkennbar ist, dass Licht größerer 

Wellenlängen Zahnhartsubstanz leichter durchdringt. Dies gilt insbesondere für Schmelz. Der 

Attenuationskoeffizient für Licht der Wellenlänge 780nm ist hierbei nur halb so groß wie derjenige für 

Licht der Wellenlänge 532nm. Im Dentin ist diese Tendenz zwar auch zu erkennen, jedoch sind die 

Unterschiede zwischen den Wellenlängen im Verhältnis nicht so groß wie im Schmelz. Dentin scheint 

somit insgesamt einen größeren Lichtwellenlängenbereich stärker abzuschwächen als Zahnschmelz. Im 

Schmelz kann somit bestätigt werden, dass Licht des Nahen Infrarotbereichs Schmelz besser durchdringt 

als Licht des sichtbaren Wellenlängenbereichs. Ein Vergleich der Attenuationskoeffizienten zwischen 

nonkariösem und kariösem Schmelz zeigt, dass kariöser Schmelz Licht deutlich stärker abschwächt als 

nonkariöser. Dies ist insbesondere für die Wellenlänge 780nm zu erwähnen, da hier der 

Attenuationskoeffizient von nonkariösem Schmelz zu kariösem Schmelz um mehr als das Achtfache 

ansteigt. Bei 532nm ist dagegen nur ein Faktor von circa 4,8 zu verzeichnen. Interessant ist auch, dass 

kariöser Schmelz, laut den Daten, Licht jeder Wellenlänge leicht stärker abschwächt als nonkariöses 

Dentin. Beim kariösen Dentin scheint es dagegen zu einer leichten Zunahme der Lichtdurchlässigkeit 

gekommen zu sein im Vergleich zu nonkariösem Dentin. Hier sind die Attenuationskoeffizienten für 

alle Wellenlängen leicht kleiner. 
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Probe Dicke in mm Lichtintensität bei Lichtintensität bei Lichtintensität bei 532 nm 650 nm 780 nm 

ohne Karies   532 nm [Watt] 650 nm [Watt] 780 nm [Watt] Attenuation [1/ cm] Attenuation [1/ cm] Attenuation [1/ cm] 

  D S D S D S D S D S D S D S  

P23 0,182 0,167 4,52E-06 2,69E-04 4,88E-06 3,21E-04 1,79E-05 1,18E-03 274,3 53,4 257,9 30,6 246,6 18,9 

P33 0,162 0,158 6,33E-06 2,95E-04 6,86E-06 2,95E-04 2,60E-05 1,11E-03 287,3 50,5 268,8 37,9 253,4 23,8 

P42 0,139 0,177 7,20E-06 2,76E-04 7,29E-06 3,26E-04 2,71E-05 9,47E-04 325,5 48,8 309 28 292,4 30,2 

P53 0,254 0,222 1,89E-06 1,33E-04 1,77E-06 1,63E-04 7,53E-06 7,59E-04 230,8 72 224,9 53,5 210,4 34,1 

P85 0,172 0,152 5,52E-06 2,69E-04 5,41E-06 2,81E-04 2,10E-05 1,06E-03 278,7 58,5 267,2 41,9 251,6 28,2 

P97 0,192 0,194 3,72E-06 1,86E-04 3,83E-06 1,95E-04 1,40E-05 9,29E-04 270,2 65 257,5 51,4 246,4 29,3 

P107 0,255 0,245 3,20E-06 1,35E-04 3,58E-06 1,72E-04 1,49E-05 7,26E-04 209,2 64,5 196,4 46,4 182,9 32,7 

P125 0,218 0,223 6,35E-06 1,36E-04 8,16E-06 2,53E-04 2,83E-05 9,40E-04 212,9 70,4 191,4 33,7 183,8 23,4 

P134 0,221 0,235 3,26E-06 2,03E-04 3,78E-06 2,25E-04 1,38E-05 8,95E-04 240,8 49,9 224,2 36,9 214,9 25,2 

P141 0,265 0,257 4,07E-06 1,35E-04 4,32E-06 1,65E-04 1,85E-05 6,61E-04 192,3 61,5 181,9 45,4 168,1 34,9 

P153 0,199 0,202 3,55E-06 1,81E-04 4,03E-06 1,95E-04 1,45E-05 7,80E-04 263,1 63,6 245,8 49,5 236,2 36,2 

P162 0,243 0,23 1,05E-05 1,54E-04 9,56E-06 1,50E-04 6,13E-05 8,49E-04 171 62,9 165,7 55,3 134 28,2 

P172 0,205 0,209 3,90E-06 2,04E-04 4,86E-06 2,47E-04 1,67E-05 9,08E-04 250,6 55,9 229,3 36,9 222 27,6 

P183 0,164 0,163 3,87E-06 2,42E-04 7,27E-06 2,35E-04 1,72E-05 9,46E-04 313,1 61,1 262,3 50 276,5 33 

P191 0,223 0,205 3,70E-06 1,90E-04 4,40E-06 2,70E-04 1,47E-05 9,80E-04 232,7 60,4 215,3 33,4 209,8 24,4 

Durchschnitt 0,206 0,203 4,77E-06 2,00E-04 5,33E-06 2,33E-04 2,09E-05 9,11E-04 250,2 59,9 233,2 42,1 221,9 28,7 

Standardabw. 0,038 0,033 2,11E-06 5,75E-05 2,07E-06 5,82E-05 1,25E-05 1,42E-04 43,5 7,1 38,9 8,8 42,4 4,9 

mit Karies   532 nm [Watt] 650 nm [Watt] 780 nm [Watt] Attenuation [1/ cm] Attenuation [1/ cm] Attenuation [1/ cm] 

  D S D S D S D S D S D S D S  

P252 0,159 0,159 1,57E-05 7,40E-07 1,48E-05 2,35E-06 9,83E-05 1,48E-05 234,8 426,9 225,6 341,4 175,8 295,2 

P262 0,164 0,161 7,42E-06 8,16E-06 1,22E-05 3,76E-06 4,96E-05 1,49E-04 273,5 272,5 230,8 307,9 212,1 148,1 

P281 0,28 0,265 4,63E-06 4,30E-07 6,02E-06 1,83E-06 4,68E-05 5,37E-06 177 276,6 160,3 214,2 126,3 215,4 

P291 0,247 0,259 2,07E-05 4,65E-07 2,55E-05 2,54E-06 1,62E-04 7,61E-06 140 280 123,3 206,6 92,9 207 

P321 0,26 0,278 6,60E-06 8,06E-06 9,96E-06 2,98E-06 5,00E-05 2,09E-05 176,8 158,3 153,1 186,3 133,5 156,4 

P351 0,279 0,236 5,40E-06 5,96E-07 8,14E-06 2,18E-06 2,64E-05 7,82E-06 172,1 296,8 150,1 233,1 147,3 226 

P381 0,178 0,199 6,23E-06 5,05E-07 9,66E-06 2,03E-06 2,86E-05 5,59E-06 261,7 360,3 225,7 280 226,3 284,8 

P201   0,161   1,51E-05   9,26E-06   4,52E-05   234,3   251,9   222,3 

P241   0,179   3,16E-06   2,90E-06   9,52E-06   297,3   291,5   287 

P271   0,175   5,41E-06   2,85E-06   1,16E-05   274,2   299,1   282,4 

P231 0,282   2,55E-06   2,60E-06   1,23E-05   197   188,9   172,7   

P272 0,204   1,77E-05   1,70E-05   7,33E-05   177,3   169,3   151,4   

P371 0,214   2,57E-06   6,43E-06   3,99E-05   259   206,7   172,7   

Durchschnitt 0,227 0,207 8,95E-06 4,26E-06 1,12E-05 3,27E-06 5,87E-05 2,78E-05 206,9 287,7 183,4 261,2 161,1 232,5 

Standardabw. 0,049 0,048 6,57E-06 4,93E-06 6,58E-06 2,18E-06 4,37E-05 4,43E-05 46,4 70,7 37,7 50,5 39,8 53,9 

Tabelle 4: Hauptuntersuchung der Transmissionsmessungen: Messwerte sowie errechnete Attenuationskoeffizienten für kariöse und nonkariöse Zahnproben. D= 

Dentin. S= Schmelz. Rot: Attenuation Dentin. Blau: Attenuation Schmelz. P= Probe. Nummerierung= Nummer des Zahns + Nummer des Schnitts.
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Bei der Gegenüberstellung der Attenuationskoeffizienten von nonkariösem und kariösem Schmelz und 

kariösem und nonkariösem Dentin in Form von Boxplots ist zu sehen, dass bei der Wellenlänge 780nm, 

die im DIAGNOcam-System verwendet wird, die Abgrenzung von kariöser zu nonkariöser 

Zahnhartsubstanz bei Schmelz deutlich leichter ist als bei Dentin. Bei Schmelz ist der Unterschied in 

den Attenuationskoeffizienten zwischen kariösem und nonkariösem Zustand deutlich größer als bei 

Dentin. Ein Vergleich von Boxplots verdeutlicht dies (vgl. Abbildung 18). Hier ist klar zu erkennen, 

dass bei 780nm eine klare Unterscheidung zwischen den Attenuationskoeffizienten zwischen kariösem 

und nonkariösem Schmelz getroffen werden kann, da die Boxen sehr weit auseinander liegen und die 

Boxplots hier keinerlei Überschneidungen aufweisen. Beim Dentin ist zu erkennen, dass sich zwar die 

Boxen selbst nicht überschneiden, jedoch deutlich näher zueinander liegen und sich einzelne Messungen 

überschneiden. Eine so scharfe Trennung wie im Schmelz liegt hier somit nicht vor. 
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Abbildung 18: Vergleich der Attenuationskoeffizienten von kariösem und nonkariösem Schmelz und 

Dentin bei 780nm in Form von Boxplots. Die Box gibt dabei den Bereich an, in dem die mittleren 50% 

der Daten liegen, und wird vom oberen 75%- und unteren 25%- Quantil begrenzt. Die Linie innerhalb 

der Box entspricht dem Median, oberhalb und unterhalb dessen jeweils 50% der Daten liegen. An die 

Box angrenzend liegen die Whisker, die bis zum Maximal- und Minimalwert der Datenreihe reichen. 
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5.2.3 Attenuationskoeffizienten bei verschiedenen Probendicken 

Weitere Messungen mit Zahnproben größerer Dicke wurden durchgeführt. Dabei waren zusätzliche 

Proben hergestellt worden, von denen fünf aus bereits vorhandenen Zähnen und vier aus zusätzlichen 

Zähnen hergestellt wurden. Diese Proben waren dicker als die oben genannte Gruppe, die den Hauptteil 

der Untersuchungen gebildet hatten (vgl. Tabelle 4). Die Daten der 15 nonkariösen Hauptproben sowie 

die Daten der neun zusätzlichen Proben wurden in verschiedenen Graphen aufgetragen. Außerdem 

wurden die Ergebnisse der Proben, die mit dem ursprünglichen Herstellungsverfahren angefertigt und 

im ersten Versuchsaufbau für die Wellenlänge 650nm vermessen worden waren, mit eingepflegt. 

Insgesamt waren es somit für Dentin 34 und für Schmelz 32 Messungen. Die Messergebnisse finden 

sich aufgelistet in Tabelle 5.  

 

Proben zusätzlich, 

neues System 

Dicke in mm Lichtintensität bei 

650nm [Watt] 

Attenuation [1/ cm] 

 
D S D S D S 

P34 0,307 0,301 3,89E-06 1,65E-04 160,4 38,9 

P62 0,293 0,296 1,93E-06 9,79E-05 192 57,4 

P73 0,307 0,297 2,12E-06 1,79E-04 180,2 36,9 

P95 0,311 0,300 2,98E-06 2,36E-04 167 27,1 

P112 0,322 0,340 2,09E-06 2,61E-04 172,3 20,9 

P123 0,336 0,336 2,71E-06 2,09E-04 156,9 28 

P151 0,691 0,695 1,32E-06 8,16E-05 86,7 27,1 

P161 0,855 0,867 1,16E-06 3,69E-05 71,8 30,9 

P181 0,890 0,895 8,65E-07 1,33E-04 72,2 15,6 
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Proben altes System Dicke in mm Lichtintensität bei 650nm 

[nWatt] 

Attenuation [1/ cm] 

D S D S D S D S 

P11 P1 0,092 0,446 3,29E+00 4,24E+01 425,52 30,44 

P12 P2 0,125 0,394 1,77E+00 1,31E+01 362,84 64,19 

P13 P3 0,127 0,556 1,24E+00 2,52E+01 385,10 33,76 

P14 P4 0,216 0,603 1,79E+00 8,97E-01 209,39 86,47 

P15 P5 0,298 0,744 1,29E+00 1,27E+01 162,86 34,41 

P16 P6 0,341 0,276 9,28E-01 4,18E+01 151,90 49,74 

P17 P7 0,364 0,461 9,75E-01 2,07E+01 140,96 44,97 

P18 P8 0,482 0,310 7,53E-01 5,98E+00 111,79 106,98 

P19  0,510 
 

9,55E-01 
 

100,99 
 

P20  0,522 
 

7,61E-01 
 

103,03 
 

Leerwert altes 

System [nWatt] 

1,65E+02 
 

 

Tabelle 5: Zusatzmessungen zur Überprüfung des Lambert-Beer'schen Gesetzes. D= Dentin. S= 

Schmelz. Oben: zusätzliche Proben größerer Dicke mit neuem System. Unten: Messwerte mit altem 

System. P= Probe. Nummerierung Proben neues System: Nummer des Zahns + Nummer des Schnitts. 

Nummerierung Proben altes System: durchlaufend von 1 beginnend, Schmelz einstellige Zahlenwerte, 

Dentin zweistellige Zahlenwerte. 
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Das Hauptaugenmerk dieser Messungen und Auswertungen galt der Überprüfung der mit dem Lambert-

Beer-Gesetz ermittelten Attenuationskoeffizienten über einen größeren Bereich an unterschiedlichen 

Probendicken. Es sollte geprüft werden, ob diese konstant sind und somit das Lambert-Beer-Gesetz für 

Zahnproben jeglicher Dicke grundsätzlich anwendbar ist. Wie in der Tabelle 5 zu sehen ist, nehmen die 

absolut gemessenen Lichtintensitäten mit der Probendicke ab, was zu erwarten ist. Jedoch konnte ebenso 

beobachtet werden, dass die mit dem Lambert-Beer-Gesetz errechneten Attenuationskoeffizienten bei 

dickeren Proben, vor allem im Dentin, tendenziell niedriger ausfielen als bei Proben mit geringeren 

Dicken. Besonders verdeutlicht wird dies zum Beispiel bei den Proben 161 und 181 (s. Tabelle 5). Um 

dies weiter zu verdeutlichen, wurden die Attenuationskoeffizienten in zwei Graphen gegen die 

Probendicke aufgetragen. Die entsprechenden Graphen finden sich in Abbildung 19 und Abbildung 20. 

Anhand dieser grafischen Darstellungen wird deutlich, dass kein über alle Probendicken konstanter 

Attenuationskoeffizient ermittelt werden konnte, da dieser bei größeren Dicken abfällt. Diese Aussage 

gilt insbesondere für die Dentinproben. Hier fallen die Attenuationskoeffizienten exponentiell ab. Die 

entsprechende Regressionskurve hat ein Bestimmtheitsmaß von R2=0,8718. Bei Schmelz scheint dieses 

Phänomen bei weitem nicht so stark ausgeprägt zu sein, wobei die gezeigte Ausgleichsgerade lediglich 

ein sehr geringes Bestimmtheitsmaß aufgrund großer Streuung der Messergebnisse besitzt. Aufgrund 

der Sprödigkeit von Zahnschmelz könnte es im Verlauf des Herstellungsprozesses der Schmelzproben 

trotz des Schneidens dicker Schmelzschnitte und des sukzessiven Schleif- und Polierprozesses auf die 

gewünschte Dicke zu makroskopisch nicht sichtbaren Mikrosprüngen und damit Veränderung der 

Transluzenz gekommen sein, wodurch sich die Streuung der Messwerte erklären ließe. Dennoch kann 

aus der Verteilung der Attenuationskoeffizienten im Zahnschmelz im Vergleich zum Dentin 

angenommen werden, dass diese deutlich weniger über die Dicke abfallen als es im Dentin der Fall ist. 

Entsprechende Beobachtungen wurden auch bei den Messungen mit den Wellenlängen 532nm und 

780nm gemacht. Hier standen jedoch weniger Messwerte zur Verfügung. Doch die Tendenz war 

dieselbe. 

Zum Vergleich von Zahnhartsubstanzen anhand des Attenuationskoeffizienten wurden deshalb nur die 

Attenuationskoeffizienten aus der Hauptuntersuchung (vgl. Tabelle 4) herangezogen. Hier wurden nur 

Proben der Dicken 139 bis 282µm verwendet, die somit in einem engen Dickenbereich liegen, in dem 

oben genanntes Phänomen nicht so stark ins Gewicht fallen sollte. 
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Abbildung 19: Attenuationskoeffizienten berechnet nach dem Lambert-Beer-Gesetz aufgetragen gegen 

die Probendicke. 

 

 

Abbildung 20: Attenuationskoeffizienten berechnet nach dem Lambert-Beer-Gesetz aufgetragen gegen 

die Probendicke. 
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5.2.4 Attenuationskoeffizienten bei Dentinproben mit unterschiedlicher räumlicher 

Anordnung 

Die Dentinproben, in denen Dentin so positioniert worden war, dass es zum einen axial, zum anderen 

mesiodistal durchleuchtet wurde, sowie die Proben mit pulpanahem Dentin wurden vermessen und 

ausgewertet. Es wurden analog zu den nichtkariösen Proben der Hauptgruppe (vgl. Tabelle 4) 

Attenuationskoeffizienten errechnet (s. Tabelle 6). Es stellte sich dabei heraus, dass die räumliche 

Anordnung von Dentin in den Messungen keine Auswirkung auf die Größe der 

Attenuationskoeffizienten hat. Zumindest konnte anhand der Daten kein Hinweis auf eine starke 

Veränderung gefunden werden. Auch die Proben mit pulpanahem Dentin, die wie alle anderen 

nichtkariösen Dentinproben in bukkooraler Anordnung vermessen wurden und bei denen der Anteil an 

Dentinkanälchen aufgrund der Pulpanähe größer sein sollte als bei den restlichen Dentinproben, zeigten 

keine deutliche Veränderung der Lichtdurchlässigkeit. Somit scheint die Durchleuchtungsrichtung bei 

Dentin bezüglich der optischen Eigenschaften maximal eine untergeordnete Rolle zu spielen. Dasselbe 

gilt für pulpanahes Dentin. 

 

Tabelle 6. Ergebnisse der Dentinproben unterschiedlicher räumlicher Anordnung sowie pulpanahes 

Dentin. A= Axiale Durchleuchtung. S= mesiodistale Durchleuchtung. P = pulpanah. MW= Mittelwert. 

Stabw.= Standardabweichung.  

Probe Dicke [mm] 532nm 650nm 780nm 

   Attenuation [1/ cm] Attenuation [1/ cm] Attenuation [1/ cm] 

   D D D 

P42A 0,177 297,9 274,2 219,7 

P42S 0,177 322,6 275,6 268,6 

P43A 0,142 280,2 260,3 219,0 

P43S 0,222 249,2 217,9 216,4 

P44A 0,177 314,3 278,8 283,5 

P44S 0,206 234,5 208,5 207,8 

MW. A   297,5 271,1 240,7 

Stabw. A   17,1 9,6 37,0 

MW. S   268,8 234,0 230,9 

Stabw. S   47,2 36,3 32,9 

Probe Dicke [mm] 532nm 650nm 780nm 

   Attenuation [1/ cm] Attenuation [1/ cm] Attenuation [1/ cm] 

   D D D 

P421P 0,18 327,2 281,5 292,8 

P431P 0,244 243,9 205,2 216,2 

MW. P   285,6 243,4 254,5 

Stabw. P   58,9 54,0 54,2 
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5.3 Resultate der Streulichtmessungen 

Neben den Transmissionsmessungen wurden auch Streulichtmessungen durchgeführt und ausgewertet. 

Bei den Messungen wurde der Detektor in 5°-Schritten bis insgesamt 140° um die Probe herumbewegt, 

wobei die Probe durchgehend durchleuchtet und der Goniometerarm mit dem Detektor an jeder 5°-

Position für zehn Sekunden anhielt. Während des gesamten Umlaufs wurden pro Sekunde 

Lichtleistungsmessdaten erhoben, die mit dem Programm R (Version 3.4.1) anschließend gefiltert 

wurden, sodass für jede Messposition ein Messwert bestimmt wurde. Diese Daten wurden dann in einem 

Graphen aufgetragen, der die Verteilung des Streulichts aufzeigt. Diese Untersuchungen wurden dabei 

für die kariösen und nonkariösen Zahnproben immer direkt im Anschluss an eine 

Transmissionsmessung mit der jeweiligen Diode durchgeführt. Dadurch wurden die 

Streulichtmessdaten an denselben Messpunkten wie bei den Transmissionsmessungen erhoben und sind 

somit eine Ergänzung zu den Transmissionsmessungen. 

Die 0°-Position im Graphen entspricht hierbei der Grundposition des Detektors beziehungsweise des 

Goniometerarms, der den Detektor trägt. Hier befinden sich Detektor und Lichtquelle auf einer Achse. 

Im Zuge der Messung wurde der Detektor um die Probe herumbewegt. Bei der 90°-Position liegt somit 

ein rechter Winkel zwischen Detektor und Lichtquelle vor. Darüber hinaus wird der Winkel zwischen 

Detektor und Lichtquelle kleiner als 90°. Die 0°-Position entspricht somit der Position, bei der auch die 

Transmissionsmessungen durchgeführt wurden. Daher markiert sie den Bereich, an dem die meiste 

Lichtleistung zu finden ist, den Transmissionsbereich. Der Bereich zwischen der 0°-Position und der 

90°-Position markiert den Bereich, in dem nach vorne gestreutes Licht zu finden ist, weshalb hier vom 

Vorwärtsstreubereich gesprochen wird. Der Bereich von 90° bis 180° ist die Zone, in der 

zurückgestreutes und zurückreflektiertes Licht zu finden ist. Deshalb wird dieser Bereich hier 

Rückstreu- und Reflexionsbereich genannt. Zur Verhinderung von Kollisionen zwischen den Aufbauten 

der beiden Goniometerarme wurde die maximale Verschiebung von 140° festgelegt (vgl. Abbildung 

21).  
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Abbildung 21: Versuchsschema und Bereiche. Die Grundposition des Kameraarmes und damit des 

Detektors ist 0°. Der Detektor und die Lichtquelle sind hier auf einer Achse. In dieser Position wurden 

die Transmissionsmessungen durchgeführt und sie entspricht derjenigen Position, an der die größte 

Lichtleistung zu messen ist. Der zugehörige Bereich ist der Transmissionsbereich. Von dieser 

Grundposition ausgehend wurde der Detektor in 5°- Schritten über den Vorwärtsstreubereich, der 

zwischen der Grundposition und der 90°-Position des Detektors liegt, bis 140° und somit bis in den 

Rückstreu- und Reflexionsbereich verschoben, welcher sich von 90° bis 180° erstreckt. 
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5.3.1 Graphen zur Streulichtverteilung nonkariöser Zahnproben 

Die Streulichtmessungen wurden für die Proben der Hauptgruppe (vgl. Tabelle 4) durchgeführt und 

ausgewertet. Dabei wurden zunächst die gemessenen Lichtleistungsdaten der verschiedenen Dioden für 

Schmelz und Dentin logarithmiert gegen die Messposition in je einem Graphen pro Probe aufgetragen. 

Die Werte wurden dabei auf einen Referenzwert, der dem Durchschnittsleerwert aus den 

Leerwertbestimmungen entspricht (vgl. Tabelle 3), skaliert, um die Unterschiede in der 

Ausgangsleistung der Dioden auszugleichen. Somit konnten zum einen Vergleiche gezogen werden 

bezüglich des Streuverhaltens der verschiedenen Lichtwellenlängen und zum anderen zwischen 

Schmelz und Dentin.  

Abbildung 22 zeigt ein typisches Beispiel einer gemessenen Probe. 

Auffällig an den Graphen ist, dass bei Schmelz im Transmissionsbereich deutlich mehr Licht gemessen 

wurde als bei Dentin. Somit bestätigen sich bereits hier die Ergebnisse der Transmissionsmessungen, 

die besagen, dass Schmelz deutlich lichtdurchlässiger ist als Dentin (vgl. 5.2.2). Dies gilt grundsätzlich 

für alle untersuchten Lichtwellenlängen. Der Unterschied zwischen Schmelz und Dentin beträgt dabei 

bis zu zwei Größenordnungen. Außerdem verlaufen die Dentinkurven deutlich flacher als die 

Schmelzkurven. Im Vorwärtsstreubereich der Dentinkurven ist deutlich mehr Lichtleistung gemessen 

worden als bei Schmelz. Dies deutet darauf hin, dass ein Großteil der Lichtleistung, die bei den 

Dentinkurven im Transmissionsbereich gegenüber Schmelz geringer ausfällt, im Vorwärtsstreubereich 

wiederzufinden ist. Im Rückstreu- und Reflexionsbereich sind dagegen kaum Unterschiede zwischen 

Schmelz und Dentin auszumachen. Bezüglich der verschiedenen Wellenlängen ist zu erkennen, dass 

auch hier die Unterschiede eher gering sind. Jedoch kann man sehen, dass Licht der Wellenlänge 780nm 

im Transmissionsbereich der Schmelzkurven leicht höher liegt als die beiden anderen Wellenlängen. 

780nm hat somit im Schmelz die größte Durchdringung, 532nm dagegen die geringste. Licht der 

Wellenlänge 532nm fällt gegenüber den anderen beiden Wellenlängen ab. 
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Abbildung 22: Streulichtmessung einer nonkariösen Probe (134) als Beispiel für die typische 

Streulichtverteilung für Schmelz und Dentin durchleuchtet mit Licht der Wellenlängen 532nm, 650nm 

und 780nm. D= Dentin. S= Schmelz. 
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5.3.2 Graphen zur Streulichtverteilung kariöser Zahnproben 

Auch bei den kariösen Proben wurden entsprechende Streulichtmessungen durchgeführt und 

ausgewertet. Auch hier wurden Graphen erstellt. Ein typisches Beispiel dafür zeigt Abbildung 23. 

In dieser Abbildung ist deutlich zu erkennen, dass die kariösen Dentinkurven über den kariösen 

Schmelzkurven liegen und steiler verlaufen. Im Transmissionsbereich bei 0° liegen die Dentinkurven 

mehr als eine Größenordnung über denjenigen von kariösem Schmelz. Die Durchdringung von Licht 

aller gemessenen Wellenlängen scheint somit im kariösen Dentin besser zu sein als im kariösen 

Zahnschmelz. Im Vorwärtsstreubereich liegen die Schmelzkurven unterhalb der kariösen Dentinkurven, 

jedoch im Rückstreu- und Reflexionsbereich darüber. Somit scheint durch den kariösen Prozess im 

Zahnschmelz die rückwärtsgerichtete Streuung von Licht eine größere Rolle zu spielen als im kariösen 

Dentin. Bei den verschiedenen Wellenlängen ist zu bemerken, dass Licht der Wellenlänge 780nm 

kariösen Schmelz besser durchdringt als 650nm und 532nm, wobei 532nm die geringste Durchdringung 

hat. 

 

 

Abbildung 23: Streulichtmessung einer kariösen Probe (291) als Beispiel für die typische 

Streulichtverteilung für Schmelz und Dentin durchleuchtet mit Licht der Wellenlängen 532nm, 650nm 

und 780nm. D= Dentin. S= Schmelz. 

  



Messergebnisse und Resultate 

67 
 

5.3.3 Vergleich der Streulichtverteilungsgraphen kariöser und nonkariöser Proben 

Zum Vergleich der Änderung der Streulichtverteilung durch den kariösen Prozess in Schmelz und 

Dentin, wurden Graphen erstellt, bei denen die Streulichtverteilungskurven von zwei Proben ähnlicher 

Dicke verglichen werden. Eine Probe stammte dabei aus der Gruppe der nonkariösen Proben. Die zweite 

Probe aus der Gruppe der kariösen Proben. Beide Graphen finden sich in Abbildung 24 und Abbildung 

25. 

Beim kariösen Zahnschmelz ist in Abbildung 24 eindeutig zu sehen, dass die gemessene Lichtleistung 

im Transmissionsbereich gegenüber gesundem Zahnschmelz um bis zu circa zwei Größenordnungen 

abnimmt. Es kommt somit zu einer massiven Abschwächung des Lichts, das den kariösen Zahnschmelz 

durchdringt. Gleichzeitig steigt die detektierte Leistung im Rückstreu- und Reflexionsbereich an, sodass 

davon ausgegangen werden kann, dass durch den kariösen Prozess im Schmelz die Rückstreuung von 

Licht zunimmt. Im Vorwärtsstreubereich ähneln sich die Kurven. Die Kurven des kariösen 

Zahnschmelzes sind insgesamt deutlich flacher als diejenigen des gesunden Zahnschmelzes. Bezüglich 

der verschiedenen Wellenlängen ist anzumerken, dass Licht der Wellenlänge 780nm den gesunden und 

kariösen Schmelz am besten durchdringt. 532nm hat die geringste Durchdringung. Insgesamt scheint 

durch den kariösen Prozess im Schmelz eine starke Änderung der optischen Eigenschaften stattzufinden, 

da sich der Verlauf und die Charakteristik der gezeigten Kurven stark unterscheiden. Besonders im 

Bereich der Positionen 0° bis 20° und im Rückstreu- und Reflexionsbereich sind deutliche Unterschiede 

zu erkennen. Die Kurven deuten einen starken Verlust der Transmissionsfähigkeit und erhöhte Streuung 

von Licht an. 
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Abbildung 24: Streulichtverteilung zweier ähnlich dicker Proben (172 und 381) als Beispiel für kariösen 

und nonkariösen Zahnschmelz durchleuchtet mit Licht der Wellenlängen 532nm, 650nm und 780nm. 

SNK= Schmelz nonkariös. SK= Schmelz kariös.  
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Beim Dentin in Abbildung 25 ist dagegen zu erkennen, dass kariöses Dentin leicht lichtdurchlässiger zu 

sein scheint als gesundes Dentin, da im Transmissionsbereich mehr Lichtleistung gemessen wurde. Im 

gesamten Kurvenverlauf sind aber insgesamt die Unterschiede gering. Im Grunde ändert sich der 

Verlauf der Kurven nicht. Hier scheint der kariöse Prozess keine so starken Änderungen der optischen 

Eigenschaften hervorzurufen wie im Zahnschmelz. 

 

 

Abbildung 25: Streulichtverteilung zweier ähnlich dicker Proben (172 und 381) als Beispiel für kariöses 

und nonkariöses Dentin durchleuchtet mit Licht der Wellenlängen 532nm, 650nm und 780nm. DNK= 

Dentin nonkariös. DK= Dentin kariös. 
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5.3.4 Gesamtschau der Streulichtverteilung 

Nach Erstellung der Streulichtverteilungsgraphen wurden mithilfe der Messdaten, die für diese Graphen 

gewonnen worden waren, weitere Auswertungen durchgeführt. So wurde die an allen Messpositionen 

des Detektors gemessene Lichtleistung zur gemessenen Gesamtlichtleistung aufaddiert. Danach wurden 

die gemessenen Lichtleistungen in den drei Bereichen, Transmissionsbereich, Vorwärtsstreubereich und 

Rückstreu- und Reflexionsbereich, summiert und mit der gemessenen Gesamtlichtleistung ins 

Verhältnis gesetzt, um die Verteilung der gemessenen Lichtleistung in den drei Bereichen aufzuzeigen. 

Dies wurde sowohl für die kariösen, als auch für die nonkariösen Proben durchgeführt. Die Ergebnisse 

sind in Tabelle 7 und Tabelle 8 aufgeführt. 

Es ist zu erkennen, dass bei den nichtkariösen Proben im Transmissionsbereich im Dentin weniger als 

die Hälfte der gemessenen Gesamtlichtleistung zu finden ist. Dies deutet klar auf die Eigenschaft von 

Dentin hin, Licht abzuschwächen, wogegen im Schmelz je nach Wellenlänge 96% und mehr zu finden 

sind. Im nonkariösen Dentin kann im Vorwärtsstreubereich ein Großteil der Lichtleistung detektiert 

werden, im Rückstreu- und Reflexionsbereich dagegen nur ein kleinerer Anteil. Dies bedeutet, dass im 

Dentin Licht stark nach vorne und weniger zurückgestreut wird. Schmelz dagegen lässt einen Großteil 

des Lichts hindurch. Diese Aussagen gelten für alle Lichtwellenlängen, wobei die Wellenlänge 780nm 

den Schmelz am besten durchdringt, 532nm dagegen am schlechtesten. Dentin wird ebenfalls von der 

Wellenlänge 532nm am schlechtesten durchdrungen, der Unterschied zwischen 650nm und 780nm ist 

geringer, wobei 650nm Dentin laut dieser Auswertung sogar leicht besser durchdringt als 780nm. 

Bei den kariösen Proben kann man sehen, dass der Anteil der gemessenen Lichtleistung im 

Transmissionsbereich beim kariösen Dentin gegenüber dem nonkariösen Dentin leicht steigt. Kariöses 

Dentin scheint somit leicht lichtdurchlässiger zu sein als nonkariöses. Beim kariösen Schmelz ist genau 

das Gegenteil der Fall. Hier sinkt der Anteil der gemessenen Lichtleistung im Transmissionsbereich 

stark ab. Kariöser Schmelz ist für die Wellenlängen 532nm, 650nm und 780nm ähnlich lichtdurchlässig 

wie nonkariöses Dentin. Die Wellenlänge 780nm durchdringt dabei kariösen Schmelz am besten. Im 

Vorwärtsstreubereich von kariösem Schmelz findet sich ein Großteil der Gesamtlichtleistung. Das heißt, 

dass ein Teil des Lichts nach vorne gestreut wird. Jedoch ist ebenfalls zu bemerken, dass der Anteil im 

Rückstreu- und Reflexionsbereich ebenfalls sehr hoch ist. Sind es hier beim nonkariösen Schmelz je 

nach Lichtwellenlänge noch ungefähr 0,2 bis 0,5%, ist der Anteil der Gesamtlichtleistung im kariösen 

Schmelz bei 13,2 bis 26,1%. Kariöser Schmelz streut also auch einen großen Anteil an Licht zurück. 
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Probe Transmissionsbereich (% von Licht ges.) Vorwärtsstreubereich (% von Licht ges.) Reflexions- und Rückstreubereich (% von Licht ges.) 

ohne Karies Dentin Schmelz Dentin Schmelz Dentin Schmelz 

  532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 

P23 44,97% 50,76% 52,45% 96,74% 99,02% 99,05% 46,87% 41,86% 39,87% 3,01% 0,86% 0,83% 8,15% 7,38% 7,68% 0,25% 0,11% 0,11% 

P33 66,41% 73,26% 75,26% 98,34% 98,96% 99,00% 24,70% 20,97% 19,99% 1,43% 0,91% 0,88% 8,89% 5,76% 4,75% 0,22% 0,13% 0,12% 

P42 49,84% 56,75% 56,60% 97,54% 98,95% 98,55% 46,27% 39,82% 40,24% 2,20% 0,94% 1,33% 3,88% 3,43% 3,17% 0,25% 0,11% 0,13% 

P53 26,48% 29,37% 27,17% 94,75% 97,40% 97,94% 57,62% 54,49% 60,14% 4,28% 2,16% 1,72% 15,90% 16,15% 12,69% 0,97% 0,44% 0,34% 

P85 41,20% 47,96% 40,79% 98,18% 98,88% 98,93% 54,47% 48,33% 55,62% 1,58% 1,00% 0,92% 4,33% 3,71% 3,58% 0,24% 0,13% 0,15% 

P97 28,04% 32,29% 28,89% 96,65% 97,97% 98,56% 68,15% 65,20% 68,19% 2,86% 1,74% 1,22% 3,81% 2,52% 2,93% 0,49% 0,29% 0,22% 

P107 33,08% 35,74% 37,47% 94,21% 96,64% 97,87% 61,45% 60,09% 58,94% 5,03% 2,95% 1,87% 5,47% 4,17% 3,59% 0,77% 0,41% 0,27% 

P125 42,93% 65,06% 46,90% 93,60% 98,52% 97,96% 55,29% 33,48% 52,01% 5,79% 1,31% 1,83% 1,78% 1,46% 1,09% 0,62% 0,17% 0,21% 

P134 30,78% 36,70% 34,06% 97,47% 98,46% 98,64% 65,55% 59,99% 63,40% 2,21% 1,36% 1,18% 3,67% 3,31% 2,54% 0,32% 0,17% 0,18% 

P141 38,77% 43,48% 44,50% 96,01% 97,65% 98,02% 53,06% 48,74% 48,81% 3,40% 2,05% 1,73% 8,17% 7,78% 6,69% 0,59% 0,30% 0,25% 

P153 32,96% 39,22% 36,15% 96,43% 98,12% 98,04% 59,68% 54,03% 57,45% 3,03% 1,60% 1,66% 7,36% 6,75% 6,41% 0,54% 0,28% 0,29% 

P162 38,86% 40,66% 48,19% 94,96% 96,67% 98,25% 59,41% 57,82% 50,59% 4,31% 2,85% 1,54% 1,73% 1,51% 1,21% 0,73% 0,48% 0,21% 

P172 44,27% 53,08% 51,38% 95,81% 98,22% 98,14% 45,41% 38,66% 39,63% 3,78% 1,60% 1,68% 10,32% 8,26% 8,99% 0,42% 0,18% 0,18% 

P183 40,58% 65,60% 52,00% 98,10% 98,74% 98,91% 52,79% 32,33% 43,79% 1,60% 1,08% 0,97% 6,64% 2,07% 4,21% 0,30% 0,18% 0,13% 

P191 41,28% 36,56% 43,90% 95,38% 98,33% 98,42% 54,91% 60,82% 53,46% 4,21% 1,51% 1,37% 3,80% 2,62% 2,64% 0,41% 0,16% 0,22% 

Durchschnitt 40,03% 47,10% 45,05% 96,28% 98,17% 98,42% 53,71% 47,78% 50,14% 3,25% 1,60% 1,38% 6,26% 5,12% 4,81% 0,48% 0,24% 0,20% 

Standardabw. 9,86% 13,34% 12,13% 1,49% 0,78% 0,42% 10,39% 12,83% 12,08% 1,32% 0,66% 0,37% 3,72% 3,82% 3,16% 0,22% 0,12% 0,07% 

 

Tabelle 7: Gesamtübersicht der gemessenen Lichtleistungsdaten pro Bereich im Verhältnis zur gemessenen Gesamtlichtleistung. Teil 1: nonkariöse Zahnproben. 
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Probe Transmissionsbereich (% von Licht ges.) Vorwärtsstreubereich (% von Licht ges.) Reflexions- und Rückstreubereich (% von Licht ges.) 

mit Karies Dentin Schmelz Dentin Schmelz Dentin Schmelz 

  532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 532nm 650nm 780nm 

P252 48,01% 45,88% 56,31% 23,25% 41,35% 49,51% 50,91% 53,11% 42,89% 44,85% 42,38% 39,84% 1,08% 1,01% 0,80% 31,90% 16,28% 10,65% 

P262 44,29% 52,96% 54,54% 60,53% 50,58% 86,12% 54,30% 45,60% 44,05% 26,95% 37,74% 11,66% 1,41% 1,44% 1,41% 12,53% 11,67% 2,22% 

P281 56,56% 59,40% 69,85% 18,53% 15,15% 28,17% 41,57% 38,96% 28,58% 39,37% 58,06% 48,41% 1,87% 1,64% 1,58% 42,11% 26,79% 23,42% 

P291 65,30% 62,83% 69,98% 23,56% 49,70% 37,13% 34,17% 36,65% 29,53% 35,11% 33,16% 46,34% 0,53% 0,53% 0,49% 41,33% 17,14% 16,54% 

P321 55,29% 65,66% 72,95% 60,26% 44,46% 52,99% 40,07% 31,48% 24,57% 23,19% 37,95% 37,73% 4,64% 2,86% 2,48% 16,55% 17,59% 9,28% 

P351 43,64% 46,27% 45,15% 20,49% 40,85% 39,14% 54,88% 52,95% 53,57% 41,97% 40,09% 45,32% 1,48% 0,78% 1,28% 37,54% 19,06% 15,54% 

P381 63,47% 74,40% 69,28% 17,10% 37,82% 28,52% 30,08% 23,68% 26,12% 40,77% 38,84% 52,47% 6,46% 1,92% 4,60% 42,13% 23,34% 19,01% 

P201       78,34% 71,44% 69,15%       18,38% 24,91% 26,38%       3,28% 3,66% 4,46% 

P241       57,06% 54,55% 40,87%       29,14% 34,94% 45,33%       13,80% 10,50% 13,81% 

P271       55,27% 43,66% 39,83%       25,04% 39,16% 42,90%       19,70% 17,18% 17,28% 

P231 49,25% 56,69% 53,12%       47,35% 39,22% 43,72%       3,40% 4,09% 3,16%       

P272 79,58% 85,49% 82,41%       19,01% 13,23% 15,99%       1,41% 1,28% 1,60%       

P371 59,92% 61,95% 70,73%       37,66% 36,95% 27,37%       2,43% 1,10% 1,90%       

Durchschnitt 56,53% 61,15% 64,43% 41,44% 44,96% 47,14% 41,00% 37,18% 33,64% 32,48% 38,72% 39,64% 2,47% 1,66% 1,93% 26,09% 16,32% 13,22% 

Standardabw. 11,11% 12,19% 11,46% 22,91% 14,21% 18,28% 11,40% 12,34% 11,67% 9,12% 8,35% 12,13% 1,85% 1,07% 1,21% 14,52% 6,54% 6,59% 

 

Tabelle 8: Gesamtübersicht der gemessenen Lichtleistungsdaten pro Bereich im Verhältnis zur gemessenen Gesamtlichtleistung. Teil 2: kariöse Zahnproben. 
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Probe Licht gesamt in % des Referenzwerts 

ohne Karies Dentin Schmelz 

  532nm 650nm 780nm 532nm 650nm 780nm 

P23 4,06% 4,36% 5,06% 47,64% 64,17% 79,52% 

P33 2,82% 3,05% 3,59% 50,36% 58,58% 72,89% 

P42 5,11% 5,15% 6,32% 48,10% 65,56% 64,54% 

P53 3,23% 3,10% 4,89% 24,83% 35,63% 51,74% 

P85 5,78% 5,63% 8,97% 47,26% 54,91% 69,63% 

P97 6,05% 6,64% 8,86% 33,32% 40,49% 64,36% 

P107 4,52% 5,08% 7,08% 26,23% 37,00% 51,27% 

P125 6,63% 5,81% 10,39% 24,40% 49,86% 61,39% 

P134 4,76% 4,88% 7,10% 37,00% 47,00% 61,98% 

P141 4,57% 4,96% 7,20% 27,03% 36,81% 48,05% 

P153 4,78% 5,10% 6,72% 31,56% 39,03% 52,02% 

P162 11,67% 12,53% 18,49% 27,03% 31,35% 56,05% 

P172 3,66% 4,05% 4,94% 35,96% 51,71% 60,64% 

P183 4,05% 4,88% 5,23% 42,06% 47,89% 64,68% 

P191 3,88% 5,58% 5,89% 33,68% 55,31% 66,07% 

Durchschnitt 5,04% 5,39% 7,38% 35,76% 47,69% 61,66% 

Standardabw. 2,10% 2,19% 3,56% 9,26% 10,73% 8,74% 

  

            

Probe Licht gesamt in % des Referenzwerts 

mit Karies Dentin Schmelz 

  532nm 650nm 780nm 532nm 650nm 780nm 

P252 14,43% 16,61% 23,94% 1,24% 2,05% 3,56% 

P262 7,13% 10,82% 13,64% 2,95% 2,62% 13,60% 

P281 3,21% 4,80% 7,52% 0,88% 1,14% 2,25% 

P291 10,41% 15,65% 23,62% 0,71% 1,60% 2,51% 

P321 4,81% 7,50% 10,31% 2,55% 2,21% 3,99% 

P351 6,02% 10,78% 10,55% 1,20% 1,85% 2,42% 

P381 3,06% 3,73% 4,59% 1,10% 1,61% 2,43% 

P201       4,43% 3,95% 6,05% 

P241       1,27% 2,08% 2,90% 

P271       2,11% 2,10% 2,92% 

P231 2,17% 2,30% 3,99%       

P272 5,89% 6,10% 8,86%       

P371 1,39% 4,04% 6,03%       

Durchschnitt 5,85% 8,23% 11,31% 1,84% 2,12% 4,26% 

Standardabw. 4,02% 5,04% 7,19% 1,17% 0,76% 3,47% 

 

Tabelle 9: Gesamtübersicht der gemessenen Lichtleistungsdaten in Bezug auf den 

Durchschnittsleerwert (s. Tabelle 3) als Referenzwert. 
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5.4 Zusammenfassung der Ergebnisse 

Insgesamt können anhand der ermittelten Messdaten und Auswertungen klare Aussagen über die 

optischen Eigenschaften von Schmelz und Dentin getroffen werden: 

1. Nonkariöses Dentin weist eine klare Streuungscharakteristik auf. Im Dentin wird dabei der 

allergrößte Anteil des Streulichts nach vorne gestreut. Gesunder Schmelz dagegen schwächt 

Licht viel weniger stark ab als Dentin. 

2. Nonkariöser Schmelz wird von Licht der Wellenlänge 780nm besser durchdrungen als von 

Licht geringerer Wellenlänge. Im Dentin ist diese Tendenz bei den 

Attenuationskoeffizienten auch vorhanden, jedoch relativ gesehen schwächer ausgeprägt als 

im Schmelz. Dentin schwächt somit Licht jeglicher Wellenlänge sehr stark ab. Im Schmelz 

ist ein klarer Zusammenhang zwischen schwächerer Streuung und höherer Lichtwellenlänge 

zu erkennen. 

3. Kariöser Zahnschmelz schwächt Licht deutlich stärker ab als nonkariöser. Kariöser Schmelz 

ist sogar leicht weniger lichtdurchlässig als gesundes Dentin. Beim kariösen Schmelz wird 

neben einem Anteil an vorwärtsgerichteter Streuung auch ein großer Anteil an Licht 

zurückgestreut. 

4. Kariöses Dentin zeigte sich dagegen leicht lichtdurchlässiger als gesundes Dentin. Der 

Unterschied in den optischen Eigenschaften zwischen gesundem und kariös verändertem 

Dentin ist dabei aber deutlich geringer als zwischen kariösem Schmelz und gesundem 

Schmelz. 

5. Die Wellenlänge 780nm bietet den größten Unterschied zwischen kariösem und 

nonkariösem Schmelz im Vergleich mit den anderen beiden getesteten Wellenlängen. 

6. Sowohl pulpanahes als auch axial oder mesiodistal durchleuchtetes Dentin zeigen ähnliche 

optische Grundeigenschaften wie bukkooral durchleuchtetes Dentin. 

7. Ein allgemeiner Attenuationskoeffizient über verschiedene Probendicken konnte mithilfe 

des Lambert-Beer-Gesetzes nicht errechnet werden. Vor allem im Dentin nimmt der 

Attenuationskoeffizient mit steigender Probendicke relativ ab. Bei Zahnschmelz ist dies 

weniger ausgeprägt, sodass hier das Lambert-Beer-Gesetz besser zutrifft als im Dentin. 
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Die Grundhypothesen (vgl. 3) haben sich somit in weiten Teilen erfüllt (vgl. Tabelle 10). Es konnte 

gezeigt werden, dass Dentin Licht deutlich stärker abschwächt als Zahnschmelz, wobei vor allem die 

Lichtstreuung der Grund für die Abschwächung des Lichts zu sein scheint. Auch konnte gezeigt 

werden, dass Licht höherer Wellenlänge Zahnhartsubstanz besser durchdringt als Licht geringerer 

Wellenlänge. Dies bestätigt sich insbesondere für den Schmelz. Dentin schwächt Licht jeder 

Wellenlänge stark ab. Auch die deutliche Transluzenzminderung von kariösem Schmelz im 

Gegensatz zu gesundem Schmelz konnte nachgewiesen werden. Überraschend war jedoch, dass 

kariöses Dentin aufgrund der vorliegenden Daten leicht lichtdurchlässiger ist als gesundes Dentin. 

Hier war analog zum Zahnschmelz eine weitere Transluzenzminderung erwartet worden. Aufgrund 

dessen, dass kein über alle Dicken konstanter Attenuationskoeffizient ermittelt werden konnte, 

wurden alle Aussagen auf einen kleinen Bereich an Probendicken (vgl. Tabelle 4) gestützt. 
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Resultat Erwartung aus Literatur erfüllt (vgl. 2.2.2 und 

3)? 

1. Gesundes Dentin streut Licht stärker als 

gesunder Schmelz. Die Streuung ist 

vorwärtsgerichtet.  

Ja. 

2. Licht höherer Wellenlänge durchdringt 

gesunden Schmelz besser als Licht geringerer 

Wellenlänge. Dentin streut auch Licht höherer 

Wellenlänge stark. 

Ja. 

3. Kariöser Schmelz streut Licht deutlich 

stärker als gesunder Schmelz. 

Ja. Bemerkenswert: Hoher Anteil an 

Rückstreuung im kariösen Schmelz. 

4. Kariöses Dentin zeigte sich leicht 

lichtdurchlässiger als gesundes Dentin. 

Nein. Schwierige Unterscheidbarkeit zwischen 

kariösem zu nonkariösem Dentin: Ja [Kühnisch 

et al., 2016]. 

5. Licht des Nahen Infrarotbereichs zeigt einen 

höheren Kontrast zwischen gesundem und 

kariös verändertem Schmelz als Licht des 

sichtbaren Spektrums. 

Ja. 

6. Pulpanähe sowie die Durchleuchtung von 

Dentinproben aus verschiedenen Richtungen 

zeigten keinen Einfluss auf die optischen 

Eigenschaften von Dentin. 

Nein. 

7. Ein allgemeingültiger Attenuations-

koeffizient konnte nicht mithilfe des Lambert-

Beer-Gesetzes für Zahnproben verschiedener 

Dicken errechnet werden. 

Nein. 

 

Tabelle 10: Vergleich der Resultate mit der Literatur.
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6 Diskussion 

Aus den Messergebnissen (s. Abschnitt 5) können Rückschlüsse auf die optischen Eigenschaften von 

Schmelz und Dentin gezogen werden. Da die Ergebnisse mithilfe eines experimentellen Ansatzes 

gewonnen wurden, müssen sie entsprechend wissenschaftlich hinterfragt und eingeordnet werden. 

6.1 Validierung der Messergebnisse 

Zur Sicherstellung der Korrektheit der Messresultate waren vor den eigentlichen Probenmessungen 

Validierungsmessungen mit dem Ziel der Verifizierung der Korrektheit der Daten durchgeführt 

worden. Dazu wurden verschiedene Szenarien getestet, die Einfluss auf die Messdaten haben können. 

So wurde zunächst die Diodenleistung über einen dreißigminütigen Zeitraum getestet. Die 

Reproduzierbarkeit der Messungen wurde geprüft, das Vorkommen von Lichtstreuung, die durch das 

Messsystem hervorgerufen wird, sowie der Einfluss durch externe Lichtquellen. Insgesamt wurde 

festgestellt, dass von einer sehr geringen Beeinflussung der Messdaten ausgegangen werden kann. 

So konnte eine konstante Diodenleistung nachgewiesen werden sowie eine sehr geringe durch das 

Messsystem hervorgerufene Lichtstreuung. Auch ein zu vernachlässigender externer Lichteinfluss 

lässt auf valide Messdaten schließen. Die größte Beeinflussung der Messergebnisse wurde durch den 

Umstand hervorgerufen, dass die Dioden nach den jeweiligen Messungen ausgetauscht werden 

mussten, indem sie aus dem XY-Translator ausgeschraubt wurden und der XY-Translator verstellt 

wurde. Diese Verstellung fand einerseits beim Übergang von den Dentin- zu den Schmelzmessungen 

statt. Zum anderen wurden die Dioden jeweils horizontal verschoben, um die Kongruenz der 

Lichtquellen zueinander herzustellen. Der Grad der nötigen Verschiebung war mithilfe einer zuvor 

im Rahmen der Justierung und Kalibrierung festgelegten Zentralposition der jeweiligen Dioden 

bestimmt worden. Die Messwerte der Repositionierungsmessungen, bei denen das gesamte System 

bestehend aus XY-Translator, Probenhalter, Küvette und Probe jeweils zwischen den Messungen 

verändert wurde, zeigten eine Standardabweichung von unter 10%. Die Einzelmessungen per se 

hatten eine noch höhere Genauigkeit. Hier befanden sich die Abweichungen jeweils im 

Promillebereich. Somit kann insgesamt von einer vernachlässigbaren messtechnischen 

Beeinflussung der Messergebnisse und von einer entsprechend hohen Genauigkeit der Daten 

ausgegangen werden, wenngleich andere Lösungen für die Messung mit Licht unterschiedlicher 

Wellenlängen existiert hätten. So haben zum Beispiel Jones et al. [2002] beim Vergleich der 

Attenuation von Licht der Wellenlängen 1310nm und 1550nm durch gesunden Schmelz ein System 

benutzt, bei dem eine optische Faser in den Versuchsaufbau so integriert wurde, dass ein Ende fest 

fixiert wurde und das Licht über ein Linsensystem auf die Probe fokussiert werden konnte. Das 

andere Ende der Faser konnte zwischen den Dioden ausgetauscht werden. Dieses Vorgehen hätte den 

Vorteil gehabt, dass mit höherer Sicherheit dieselbe Stelle in der Probe getroffen wird und die 
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Fokussierung immer gleich ist. Die Dioden, die im Rahmen der vorliegenden Arbeit verwendet 

wurden, verfügten je über ein eigenes Fokussierungssystem und wurden jeweils auf die spätere 

Probenposition fokussiert. Dieses System ist somit theoretisch ungenauer als das von Jones et al. 

beschriebene System. Ein Vergleich der errechneten Attenuationskoeffizienten der Proben der 

Hauptuntersuchung (vgl. Tabelle 4)  mit Literaturwerten verdeutlicht jedoch, dass das in der 

vorliegenden Arbeit verwendete Messsystem nichtsdestotrotz valide ist. So geben Fried et al. [1995] 

bei der Ermittlung ihrer Attenuationskoeffizienten für gesunden Schmelz und gesundes Dentin eine 

Standardabweichung von circa 30% an, was sie auf Unterschiede in den Proben zurückführen. Die 

im Rahmen der vorliegenden Arbeit ermittelten Attenuationskoeffizienten für gesunden Schmelz und 

Dentin haben eine Standardabweichung von durchschnittlich 17,19% und für kariösen Schmelz und 

Dentin von durchschnittlich 22,46%, wobei die Daten für gesunde Zahnhartsubstanz in derselben 

Größenordnung liegen wie die Daten von Fried et al. und sich von den genannten Literaturwerten 

nur gering unterscheiden (vgl. Tabelle 11). 

Somit scheinen die ermittelten Daten sehr valide zu sein. Ein größerer messtechnischer Einfluss kann 

ausgeschlossen werden. Der Vergleich mit der Literatur zeigt, dass das hier verwendete System sogar 

genauere Daten liefert als in vergleichbaren Arbeiten verwendete Messvorrichtungen. Somit können 

die gewonnenen Messwerte und Daten als valide betrachtet werden und mithilfe dieser Daten 

Rückschlüsse auf die optischen Eigenschaften von Schmelz und Dentin gezogen werden. 
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6.2 Anwendbarkeit des Lambert-Beer-Gesetzes 

Bei den Messungen wurde beobachtet, dass die mit dem Lambert-Beer-Gesetz errechneten 

Attenuationskoeffizienten mit zunehmender Probendicke abfielen, was insbesondere bei den 

Dentinproben auffällig war. Die gemessene absolute Lichtleistung nahm zwar mit steigender Dicke 

ab, jedoch ergab die Berechnung der Attenuationskoeffizienten, dass im Verhältnis zur Probendicke 

mehr Licht das Zahnmaterial durchdrang als vom Lambert-Beer-Gesetz vorhergesagt. Ein über alle 

Dicken konstanter Attenuationskoeffizient für Schmelz und Dentin wurde jedoch von verschiedenen 

Autoren postuliert und zum Vergleich der verschiedenen Zahnhartsubstanzen und Lichtwellenlängen 

herangezogen. So haben zum Beispiel Fried et. al. [1995] vor Durchführung ihrer Monte-Carlo-

Simulationen zur Streulichtverteilung Transmissionsmessungen durchgeführt und 

Attenuationskoeffizienten mithilfe des Lambert-Beer-Gesetzes für die Wellenlängen 543nm, 632nm 

und 1050nm für Schmelzproben verschiedener Dicken errechnet. Jones et al. [2002] haben 

Attenuationskoeffizienten für Schmelzproben unterschiedlicher Dicke für die Wellenlängen 1310 

und 1550nm errechnet und Chan et al. [2014] haben dies für Dentinproben unterschiedlicher Dicke 

für die Wellenlängen von 1300 bis 1650nm getan. Die Hauptargumentation von Chan et al. für die 

Existenz eines konstanten Attenuationskoeffizienten nach dem Lambert-Beer-Gesetz bestand dabei 

darin, dass sie die mit Licht der Wellenlänge 1300nm gemessenen Transmissionsgrade bei 

Durchleuchtung der verwendeten Proben logarithmiert gegen die Probendicken auftrugen und einen 

Lambert-Beer-Graphen aus den Daten für Proben der Dicken 0,05 bis 0,6mm erzeugten. Für den von 

Chan et al. gezeigten Graphen lässt sich Folgendes ableiten: 

 

'()�ℎ *+
,)+(�- ��. /0+1�)2 − 3��) − 4�.�25�.:  
�(�) = �, ∗ ���� 
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D�E (�� � �)
ü772. 



Diskussion 

80 
 

Anhand des gezeigten Graphen und mithilfe einer linearen Ausgleichsgeraden argumentierten Chan 

et al., dass ein über alle gemessenen Dicken konstanter Attenuationskoeffizient bestehe, da der 

Attenuationskoeffizient als Steigung der linearen Ausgleichsgeraden in diesem Graphen fungiere. 

Da bei linearen Beziehungen die Steigung der Ausgleichsgeraden konstant ist, müsse folglich auch 

ein Attenuationskoeffizient über alle gemessenen Dicken konstant sein. Chan et al. gaben dabei ein 

Bestimmtheitsmaß für die Ausgleichsgerade von 0,34 an. Da diese Argumentation mathematisch 

korrekt ist, wurden in der vorliegenden Arbeit ebenfalls entsprechende Lambert-Beer-Graphen für 

gesunden Schmelz und Dentin mit den Daten für 650nm erzeugt (vgl. Tabelle 4 und Tabelle 5). Diese 

sind in Abbildung 26 und Abbildung 27 zu sehen. 

Da in den Graphen, die aus den Messwerten für 650nm aus der vorliegenden Arbeit erzeugt wurden, 

zu sehen ist, dass die Steigung auch hier konstant ist, müsste deshalb auch hier gefolgert werden, 

dass es einen über alle Probendicken konstanten Attenuationskoeffizienten gibt. Das 

Bestimmtheitsmaß für den Lambert-Beer-Graphen für Dentin ist hierbei mit 0,66 höher als dasjenige 

von Chan et al mit 0,34. Auch das Bestimmtheitsmaß für den Graphen für Zahnschmelz liegt mit 

0,32 im Bereich des Bestimmtheitsmaßes von Chan et al. Jedoch widerspricht dies den weiteren 

Beobachtungen, dass die errechneten Attenuationskoeffizienten besonders im Dentin mit steigender 

Probendicke abnahmen, was Abbildung 19 und Abbildung 20 zeigen. In diesen Abbildungen wurden 

die errechneten Attenuationskoeffizienten gegen die Probendicken aufgetragen. Wäre der 

Attenuationskoeffizient konstant, müsste eine konstante Funktion zu sehen sein. Dies ist aber 

insbesondere beim Dentin nicht der Fall. Die Kurve fällt exponentiell ab. Mit einem 

Bestimmtheitsmaß von 0,87 für die exponentielle Funktion liegt dieses dabei deutlich über dem 

Bestimmtheitsmaß, das Chan et al. für ihren Lambert-Beer-Graphen angeben. Beim Schmelz 

dagegen ist dieser Trend nicht eindeutig zu erkennen. Hier ist eine lineare Ausgleichsgerade gezeigt, 

die bei größeren Dicken nur leicht abfällt. Das Bestimmtheitsmaß beträgt hier jedoch nur 0,03. 
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Abbildung 26: Lambert-Beer-Graph Dentin 650nm. Einbezogen wurden alle Messwerte, die für die 

Wellenlänge 650nm für gesundes Dentin gewonnen wurden. 

 

 

Abbildung 27: Lambert-Beer-Graph Schmelz 650nm. Einbezogen wurden alle Messwerte, die für 

die Wellenlänge 650nm für gesunden Schmelz gewonnen wurden. 
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Die Messdaten der vorliegenden Arbeit sind dabei grundsätzlich valide, was die Auswertung der 

Validierungsmessungen sowie ein Vergleich der errechneten Attenuationskoeffizienten der 

Hauptuntersuchung mit Attenuationskoeffizienten von Fried et al. [1995] gezeigt hat (vgl. 5.1, 6.1 

und 6.3). Auch ein Einfluss von Oberflächenstreuung und -reflexion auf die Messdaten der 

vorliegenden Arbeit kann ausgeschlossen werden. Chan et al. führten in ihrer Argumentation an, dass 

mithilfe der Lambert-Beer-Graphen auch gezeigt werden könne, dass ein größerer Einfluss von 

Streuung durch die Probenoberfläche ausgeschlossen werden kann. Sie argumentierten, dass bei 

großem Einfluss von Oberflächenstreuung im Lambert-Beer-Graphen eine über die Dicke beinahe 

konstante Funktion der Extinktion zu sehen wäre, da Oberflächenstreuung unabhängig von der 

Probendicke sei. Dies ist korrekt, denn eine konstante Funktion im Lambert-Beer-Graphen würde 

bedeuten, dass über alle Dicken eine gleichbleibende Abschwächung des Lichts stattfinden würde 

und somit die Probe selbst kaum Einfluss auf die Abschwächung des Lichts hätte. Da dies weder bei 

Chan et al. noch hier der Fall ist, ist anzunehmen, dass Oberflächenstreuung bei beiden Arbeiten eine 

untergeordnete Rolle spielt und die Probe selbst den Hauptfaktor zur Abschwächung des Lichts 

darstellt. Ebenso ist in der hier vorliegenden Arbeit zu erkennen, dass klare Unterschiede zwischen 

den verschiedenen untersuchten Zahnmaterialeien Schmelz und Dentin aufgezeigt werden konnten. 

Auch dies ist ein Anhaltspunkt dafür, dass bei den Messergebnissen der vorliegenden Arbeit 

Oberflächenstreuung eine untergeordnete Rolle spielt und die hier diskutierten Resultate durch die 

Eigenschaften der unterschiedlichen Zahnmaterialien hervorgerufen wurden. Messtechnische 

Unterschiede zwischen Chan et al. und der hier vorliegenden Arbeit könnten zwar grundsätzlich eine 

Rolle spielen, jedoch sind die Transmissionsmessungen der vorliegenden Arbeit mit denen von Chan 

et al. vergleichbar. Im Rahmen beider Arbeiten wurden die aus den Transmissionsmessungen 

gewonnenen Daten nach dem Lambert-Beer-Gesetz mit der Probendicke ins Verhältnis gebracht. Die 

Proben wurden dabei bei beiden Arbeiten in Wasser getaucht, um Indexmatching zu betreiben. Der 

Versuchsaufbau war somit grundsätzlich vergleichbar, wenngleich Chan et al. andere 

Lichtwellenlängen untersuchten. Weitere Aussagen von Chan et al. deuten ebenfalls darauf hin, dass 

die Vorgehensweise und die Ergebnisse grundsätzlich vergleichbar sind. So kommen sie in ihrer 

Arbeit zum Beispiel zum Schluss, dass Dentin Licht um den Faktor einer Größenordnung stärker 

abschwächt als Schmelz. Auch eine verminderte Abschwächung von Licht höherer Wellenlänge im 

Vergleich zu geringeren Wellenlängen konnten sie feststellen. Beides ist mit den Resultaten der 

vorliegenden Arbeit vereinbar. 

Die Anwendbarkeit Lambert-Beer-Gesetzes für die Charakterisierung der optischen Eigenschaften 

von Zahnproben muss kritisch hinterfragt werden. Das Lambert-Beer-Gesetz wurde nicht für die 

Beschreibung optischer Phänomene biologischer Materialien entwickelt, sondern beschreibt 

ursprünglich per definitionem die Abschwächung der Lichtintensität bei Durchtritt von Licht durch 

ein Medium mit einer darin gelösten absorbierenden und/oder streuenden Substanz. Das 

Lösungsmedium selbst darf dabei keinen Einfluss auf die untersuchte Substanz nehmen. Der gelöste 
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Stoff, der im Medium homogen verteilt sein muss, darf nur in geringer Konzentration vorliegen, da 

Effekte wie Mehrfachstreuung durch das Gesetz nicht berücksichtig werden, die vermehrt bei 

höheren Partikelkonzentrationen auftreten [Kunze et al., 2009, Otto, 2011, Skoog et al., 2013]. Zijp 

und Ten Bosch [1991] haben ihrer Arbeit zur Untersuchung der optischen Eigenschaften von Dentin 

beispielsweise nur sehr dünne Proben im Bereich von 10 bis 20µm verwendet, da sie den Einfluss 

der Mehrfachstreuung auf ihre Messergebnisse minimieren wollten. Die im Rahmen der 

vorliegenden Arbeit sowie von anderen Autoren, wie beispielsweise Chan et al. [2014] und Fried et 

al. [1995], verwendeten Proben waren deutlich dicker. Ein Einfluss von Mehrfachstreuung kann 

deshalb nicht ausgeschlossen werden. Die Graphen in Abbildung 19 und Abbildung 20 zeigen, dass 

vor allem im Dentin die Anwendbarkeit des Lambert-Beer-Gesetzes hinterfragt werden muss, da hier 

die errechneten Attenuationskoeffizienten klar abfallen. Gesunder Schmelz ist, wie die Messresultate 

ebenfalls verdeutlichen (vgl. 5), grundsätzlich transluzent. Dentin dagegen streut Licht sehr stark. 

Dickere Dentinproben lassen, laut dem gezeigten Graphen in Abbildung 19, im Verhältnis zu ihrer 

Dicke mehr Licht hindurch. Bei Schmelz, der eine andere biologische Struktur besitzt und Licht weit 

weniger stark streut, ist der Effekt dagegen weniger deutlich zu sehen. Dies könnte ein Hinweis 

darauf sein, dass im Dentin vermehrt Mehrfachstreueffekte die Messungen beeinflussen, wobei diese 

Effekte relativ zur Probendicke zuzunehmen scheinen. Der Einfluss von Mehrfachstreuung könnte 

also eine Erklärung für dieses Phänomen sein, jedoch kann eine abschließende Klärung nur durch 

weitergehende Untersuchungen erfolgen. Bei weiteren Untersuchungen von Dentin sollten dabei 

Methoden und Modelle herangezogen werden, die den Effekt der Mehrfachstreuung berücksichtigen. 

Das Lambert-Beer-Gesetz zur Beschreibung der Attenuation von Licht bei Durchleuchtung von 

Zahnhartsubstanz kann somit nur als Näherung betrachtet werden und es können mehr qualitative 

denn quantitative Aussagen getroffen werden. Trotz dessen wurde das Lambert-Beer-Gesetzes auch 

in der vorliegenden Arbeit zur Beschreibung der optischen Eigenschaften von Schmelz und Dentin 

herangezogen, um Vergleiche zu den Daten anderer Autoren zu ziehen und die verschiedenen 

Gruppen an Zahnhartsubstanz gegenüberstellen zu können. Dabei wurden alle Aussagen auf Proben, 

die bezüglich ihrer Dicke ausschließlich in einem Bereich von 139 bis 282µm lagen, gestützt (vgl. 

Tabelle 4), um einen Einfluss von Mehrfachstreuung möglichst gering zu halten und so valide 

Aussagen treffen zu können. Auch bei den Streulichtgraphen muss dies berücksichtigt werden, da 

ein Einfluss von Mehrfachstreuung auch die Streulichtverteilung beeinflussen könnte. Dennoch 

sollten auch hier bei der Gegenüberstellung der Graphen Rückschlüsse auf das optische Verhalten 

der unterschiedlichen untersuchten Materialien gezogen werden können. 
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6.3 Diskussion der Ergebnisse der nonkariösen Zahnproben 

Die erhobenen Daten haben gezeigt, dass gesunder Schmelz deutlich transluzenter ist als gesundes 

Dentin. Hierauf verweisen sowohl die in dieser Arbeit errechneten Attenuationskoeffizienten für 

gesunden Schmelz und Dentin als auch die dazugehörigen Graphen und Daten aus den 

Streulichtuntersuchungen. Die Attenuationskoeffizienten sind dabei Werten aus der Literatur sehr 

ähnlich, wie sie von Fried et al. [1995] beschrieben wurden. Die genannte Vergleichsarbeit 

unterscheidet dabei jeweils zwischen Streuungs- und Absorptionskoeffizient. Da die in der 

vorliegenden Arbeit bestimmten Attenuationskoeffizienten die Summe aller Ereignisse, die Licht 

beim Durchtritt durch das untersuchte Zahnmaterial abschwächen, darstellen [Bohren et al., 2004, 

Jones et al., 2002, Popp et al., 2011] und die Absorption nur eine sehr untergeordnete Rolle bei der 

Abschwächung des Lichts beim Durchtritt durch Zahnmaterial spielt [Fried et al., 1995, Jones et al., 

2002, Spitzer et al., 1975, Ten Bosch et al., 1987], kann ein direkter Vergleich zwischen den im 

Rahmen der vorliegenden Arbeit ermittelten Attenuationskoeffizienten und den 

Streuungskoeffizienten aus der Arbeit von Fried et al. gezogen werden. Eine Übersicht dazu findet 

sich in Tabelle 11. 

 

Streuungs- und Attenuationskoeffizienten [1/ cm]  

    

Zahnhartsubstanz Fried et al. 1995  Vorliegende Arbeit 

     

S 105 ± 30 (543nm) 60 ± 7 (532nm) 

D 280 ± 84 (543nm) 250 ± 43 (532nm) 

S 60 ± 18 (632nm) 42 ± 9 (650nm) 

D 280 ± 84 (632nm) 233 ± 39 (650nm) 

S 15 ± 5 (1053nm) 29 ± 5 (780nm) 

D 260 ± 78 (1053nm) 222 ± 42 (780nm) 
 

Tabelle 11: Vergleichsübersicht Streuungs- und Attenuationskoeffizienten. S= Schmelz. D= Dentin. 

In Klammern: untersuchte Lichtwellenlängen der jeweiligen Arbeiten. 
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Es ist zu sehen, dass die im Rahmen der vorliegenden Arbeit ermittelten Attenuationskoeffizienten 

im Größenbereich der Vergleichswerte aus der Literatur liegen. Die verwendeten Lichtwellenlängen 

der verschiedenen Arbeiten sind dabei trotz Unterschieden vergleichbar. In der Vergleichsarbeit 

wurden Wellenlängen von 543nm und 632nm verwendet, in der vorliegenden Arbeit 532nm und 

650nm. Ein direkter Vergleich zwischen den gezeigten Koeffizienten für die Lichtwellenlängen aus 

dem Nahen Infrarotbereich, 1053nm von Fried et al. und 780nm der vorliegenden Arbeit, kann nicht 

erfolgen, da sie sich deutlich stärker unterscheiden als 543nm und 532nm sowie 632nm und 650nm. 

Jedoch kann hier ein Trendvergleich innerhalb der Messgruppen erfolgen. Fried et al. [1995] 

untersuchten in ihrer Arbeit die Streulichtverteilung von Schmelz und Dentin bei Durchleuchtung 

mit Laserlicht von 543nm, 632nm und 1053nm Wellenlänge. Sie detektieren mithilfe eines 

automatisierten Goniometers die Verteilung von Streulicht von 0° bis 180° um die Proben herum, 

die in eine Indexmatchingflüssigkeit getaucht waren, die dem jeweils zu untersuchenden Material 

entsprach. Die Proben hatten dabei eine Dicke von 30 bis 2000µm. Die Streulichtverteilungsdaten 

sowie Daten aus Transmissionsmessungen wurden mit Daten aus Monte-Carlo-Simulationen zur 

Streulichtverteilung verglichen, um den Absorptions- und Streuungskoeffizienten zu bestimmen. 

Trotz Unterschieden in der Vorgehensweise sind die im Rahmen der vorliegenden Arbeit 

gewonnenen Daten mit denen von Fried et al. [1995] vergleichbar, da auch bei Fried et al. [1995] 

Transmissions- und Streulichtmessungen durchgeführt wurden. 

Auffällig ist, dass Fried et al. [1995] für Schmelz höhere Streuungskoeffizienten für Licht geringerer 

Wellenlänge angeben als für höhere Wellenlängen. Dies bedeutet, dass sich bei beiden Arbeiten 

bestätigt, dass langwelliges Licht Zahnschmelz am besten durchdringt, da die Streuungs- 

beziehungsweise Attenuationskoeffizienten mit zunehmender Wellenlänge abfallen. Die relativen 

Unterschiede zwischen den durchschnittlichen Koeffizienten für 543nm und 632nm bei Fried et al. 

und den Koeffizienten für 532nm und 650nm aus der vorliegenden Arbeit sind dabei sehr ähnlich. 

So hat der Koeffizient für 632nm bei Fried et al. einen Wert, der circa 57% des Werts für 543nm 

beträgt. Bei der vorliegenden Arbeit sind es 70%, wobei hier angemerkt werden muss, dass die 

untersuchten Wellenlängen 543nm und 632nm bei der Vergleichsarbeit näher zueinander liegen als 

die in der vorliegenden Arbeit untersuchten 532nm und 650nm. Dieser Trend setzt sich bei den 

Lichtwellenlängen des Nahen Infrarotbereichs fort, was die Werte von Fried et al. für 1053nm und 

die Werte der vorliegenden Arbeit für 780nm zeigen. 

Auch bei den Werten für Dentin ist zwischen beiden Arbeiten eine ähnliche Tendenz zu erkennen. 

Bei Fried et al. zeigen sich kaum Unterschiede zwischen den Koeffizienten der verschiedenen 

Wellenlängen. Lediglich bei 1053nm ist mit einem durchschnittlichen Wert von 260 gegenüber 280 

für 543nm und 632nm ein leichter Trend zu geringerer Attenuation zu erkennen, der jedoch deutlich 

weniger ausgeprägt ist als im Schmelz. Bei der vorliegenden Arbeit nehmen die 

Attenuationskoeffizienten von 543nm bis 780nm kontinuierlich von 250 auf 222 ab. Auch hier ist 

somit ein sehr geringer Verlauf hin zu kleineren Attenuationskoeffizienten zu erkennen. Insgesamt 
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zeichnet sich jedoch in beiden Arbeiten ab, dass die Werte für Dentin deutlich höher liegen als die 

zugehörigen Schmelzwerte und die Unterschiede zwischen den Wellenlängen deutlich niedriger 

ausfallen. Für Dentin bestätigt sich somit die Annahme, dass es Licht sehr viel stärker als Schmelz 

abschwächt, wobei die Streuung die Hauptrolle bei der Abnahme der Lichtintensität zu spielen 

scheint, was die zu den Attenuationskoeffizienten aus der vorliegenden Arbeit sehr ähnlichen 

Streuungskoeffizienten der Vergleichsarbeit andeuten. 

Die im Rahmen der vorliegenden Arbeit gewonnenen Daten und Graphen zur Streulichtverteilung 

untermauern die Befunde aus den Attenuationskoeffizienten. So konnte mithilfe der Graphen klar 

gezeigt werden, dass Dentin von Licht aller untersuchten Wellenlängen schlechter durchdrungen 

wird als Zahnschmelz. Der Hauptanteil des Verlustes an gemessener Lichtleistung scheint dabei von 

der deutlich höheren vorwärtsgerichteten Lichtstreuung gebildet zu werden. Die Verläufe der 

Dentinkurven sind somit deutlich flacher als die Schmelzkurven. Die zugehörigen Daten zeigen je 

nach Wellenlänge im gesunden Dentin im Transmissionsbereich nur einen durchschnittlichen Anteil 

von circa 40,0 bis 47,1% der gemessenen Gesamtlichtleistung, wogegen im Schmelz der Anteil circa 

96,3 bis 98,4% beträgt. Im gesunden Schmelz findet sich nur ein Anteil von circa 1,4 bis 3,3% der 

gemessenen Gesamtlichtleistung im Vorwärtsstreubereich.  Dagegen ist im Vorwärtsstreubereich im 

Dentin je nach Wellenlänge ein Anteil von circa 47,8 bis 53,7% zu finden. Hier muss zusätzlich 

angemerkt werden, dass sich laut den Daten im gesunden Dentin bei 650nm ein geringerer Anteil an 

Lichtintensität im Vorwärtsstreubereich findet als bei 780nm und im Transmissionsbereich ein 

höherer. Dies könnte zum einen auf Messungenauigkeiten zurückzuführen sein. Zum anderen muss 

jedoch in Betracht gezogen werden, dass die aufgeführten Zahlen nur den Anteil der Lichtleistung 

relativ zur gemessenen Gesamtlichtleistung der jeweiligen Diode wiedergeben. Diese relative 

Gesamtlichtleistung wurde aus der Summe der gemessenen Einzellichtleistungen an den 

verschiedenen Einzelmesspunkten gebildet, die in 5°-Schritten gewählt wurden. Gemessen werden 

konnte dabei nur das Licht, das sich in der Ebene zwischen Lichtquelle und Detektor befand. Licht, 

das durch Streuung dreidimensional im Raum verteilt wurde, wurde zum Teil nicht detektiert. Dies 

zeigen die Daten zum Anteil der gemessenen Gesamtlichtleistung im Verhältnis zum 

Durchschnittsleerwert (Tabelle 9). Der Durchschnittsleerwert ist dabei Maß für die Diodenleistung 

jeder Diode nach Durchdringung der mit Wasser gefüllten Küvette. Hier sieht man, dass bei der 

780nm-Diode mit einem Anteil von über 7% im gesunden Dentin deutlich mehr Lichtleistung 

gemessen wurde als bei der 650nm- oder der 532nm-Diode.  Somit geben diese Daten, einen besseren 

Eindruck, wie viel Lichtleistung tatsächlich durch die Probe abgeschwächt wurde. Beim Schmelz 

beträgt das Verhältnis der gemessenen Gesamtlichtleistung für 532nm circa 35,8%, bei 650nm 47,7% 

und bei 780nm 61,7%. Der Anteil der Lichtleistung im Vorwärtsstreubereich an der gemessenen 

Gesamtlichtleistung unterscheidet sich jedoch nur um circa 2,1%. Das heißt, dass bei 780nm im 

Schmelz von der ursprünglichen Diodenlichtleistung bei 780nm die meiste Lichtleistung nach 

Durchgang durch den Zahnschmelz gemessen werden konnte. Von dieser gemessenen Menge waren 
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98,4% im Transmissionsbereich zu finden und der Rest wurde gestreut. Die Daten, bei denen die 

Lichtleistung der einzelnen Bereiche ins Verhältnis zur gemessenen Gesamtlichtleistung gesetzt 

wurde, müssen demnach relativ zum Verhältnis der detektierten Gesamtlichtleistung zum 

durchschnittlichen Leerwert der jeweiligen Diode betrachtet werden. 

Somit scheint klar zu sein, dass Dentin insgesamt Licht jeglicher Wellenlänge deutlich stärker 

abschwächt als Zahnschmelz. Den Hauptfaktor bei der Abschwächung spielt dabei 

vorwärtsgerichtete Streuung, was auch bereits Fried et al. [1995] gezeigt haben. Für Dentin muss 

somit letztlich aufgrund der hier gezeigten Daten bei den lichtoptischen Kariesdiagnosesystemen, 

die auf Transillumination der Zahnhartsubstanz setzen, davon ausgegangen werden, dass eine 

Anwendung von Licht höherer Wellenlänge weniger Vorteile verspricht als im Schmelz. Im Schmelz 

dagegen ist die klare Tendenz bestätigt, dass Licht höherer Wellenlänge für eine bessere 

Durchleuchtung und damit höhere Eindringtiefe sorgt, was bereits Fried et al. [1995] und Darling et 

al. [2006] nachweisen konnten. Bei den Untersuchungen von Darling et al. [2006] konnte für die 

Wellenlänge 1310nm eine noch geringere Attenuation nachgewiesen werden als für 780nm in der 

vorliegenden Arbeit oder für 1053nm in der Arbeit von Fried et al. [1995]. Bei den Untersuchungen 

von Chan et al. [2014] konnten dagegen zwar auch für Dentin für den Wellenlängenbereich von 1300 

und 1650nm niedrigere Attenuationskoeffizienten als der hier gezeigte Koeffizient für 780nm 

nachgewiesen werden, doch auch dieser lag eine Größenordnung über demjenigen für Schmelz, 

sodass auch hier von deutlich stärkerer Streuung von Dentin gegenüber Zahnschmelz ausgegangen 

werden muss. Starke Lichtstreuung führt zu Hintergrundrauschen [Jones et al., 2002] und ist somit 

ein Störfaktor für die Kariesdetektion. Letztlich bleibt somit zumindest fraglich, ob eine 

Durchleuchtung mit langwelligerem Licht geeignet ist, eine deutliche Verbesserung der 

Transmission im Dentin zu erreichen. Diese wäre jedoch essentiell, da das Prinzip der 

Kariesdetektion mittels Transillumination auf dem Kontrast zwischen gesunder und kariöser 

Zahnhartsubstanz beruht. Eine bereits starke Abschwächung von Licht durch gesundes Dentin ist 

somit negativ zu bewerten. 

Die im Rahmen der vorliegenden Arbeit erzeugten Daten zu den Messungen, bei denen Dentin 

unterschiedlich räumlich angeordnet war, zeigen keinen nennenswerten Einfluss der räumlichen 

Ausrichtung auf die Transmissionsfähigkeit von Dentin (vgl. Tabelle 4 und Tabelle 6). Die Daten 

der Proben für die Durchleuchtung aus axialer und mesiodistaler Richtung liegen dabei allesamt im 

Bereich der nonkariösen Proben der Hauptuntersuchung, die in bukkooraler Richtung durchleuchtet 

wurden. Das Ergebnis von Vaarkamp et al. [1995] bestätigt sich somit nicht, wobei anzumerken ist, 

dass Vaarkamp et al. deutlich dickere Proben benutzt haben und auch der Versuchsaufbau sowie die 

rechnerische Auswertung sich von der vorliegenden Arbeit unterscheiden. Selbiges gilt für die 

Beobachtung, die Ten Bosch und Zijp [1987] beschrieben. Sie gaben an, dass bei ihren 

Untersuchungen pulpanahes Dentin Licht um den Faktor 2,67 stärker abschwächt als Dentin, das 

weiter entfernt von der Pulpa ist. Dies hat sich in den Daten der vorliegenden Arbeit nicht gezeigt. 
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Hier liegen die Daten für pulpanahes Dentin im Bereich aller anderen Dentinproben. Es ist jedoch 

anzumerken, dass für diese Untersuchungen in der vorliegenden Arbeit nur eine sehr geringe 

Stückzahl an Proben verwendet wurde, da es sich um eine Nebenuntersuchung handelte. Es galt 

lediglich abzuschätzen, ob die Trends, die in der Literatur beschrieben wurden, einen klar 

erkennbaren Einfluss auf die Messungen haben könnten, was sich jedoch nicht bestätigte. Die 

Relevanz der von Vaarkamp et al. und Ten Bosch und Zijp beschriebenen Phänomene für die Praxis 

ist zu hinterfragen, da es in der Praxis aufgrund verschiedener Zahnstellungen und unterschiedlicher 

manueller Führung von optischen Diagnosegeräten durch den Behandler schwierig wäre, den Zahn 

in exakt einer bestimmten Raumrichtung zu durchleuchten, und der Zahn und somit auch das Dentin 

als Ganzes durchleuchtet wird. Fried et al. [1995] haben außerdem gezeigt, dass bereits bei 

Dentinproben über 300µm Dicke kein Effekt durch Anisotropie mehr sichtbar ist, sodass in der Praxis 

den optischen Materialeigenschaften von Dentin ein deutlich höherer Anteil an der Ausbreitung und 

Abschwächung von Licht zukommen sollte als der Durchleuchtungsrichtung. 
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6.4 Diskussion der Ergebnisse der kariösen Zahnproben 

Bei der Untersuchung der kariösen Zahnproben hat sich herausgestellt, dass kariöser Schmelz 

deutlich weniger lichtdurchlässig ist als gesunder Schmelz. Dies ergibt sich zum einen aus den 

errechneten Attenuationskoeffizienten. Die Streuungsgraphen und -daten bestätigen dies zum 

anderen. Bei den Graphen ist deutlich zu sehen, dass die Kurven der kariösen Schmelzproben 

gegenüber den Kurven der gesunden Schmelzproben abflachen. Im Transmissionsbereich wurde 

deutlich weniger Lichtleistung gemessen als beim gesunden Schmelz. Gleichzeitig ist ein relativer 

Anstieg der gemessenen Lichtleistung im Vorwärtsstreubereich von 1,4 bis 3,3% auf 32,5 bis 40,0% 

zu verzeichnen. Gerade aber auch im Rückstreu- und Reflexionsbereich steigt der Anteil der 

gemessenen Lichtleistung an der gemessenen Gesamtlichtleistung von circa 0,2 bis 0,5% auf 13,2 

bis 26,1%. Gleichzeitig sinkt das Verhältnis der gemessenen Gesamtlichtleistung zum 

durchschnittlichen Leerwert von 35,8% bis 61,7% auf 1,80 bis 4,3%. Das alles deutet auf einen 

starken Transluzenzverlust von kariösem Schmelz gegenüber gesundem Schmelz hin. Diese 

Erkenntnisse bestätigen sich dabei auch in der Arbeit von Darling et al. [2006]. Sie haben anhand 

von natürlichen und künstlich erzeugten kariösen Schmelzproben die Verteilung der Lichtintensität 

gemessen. Die künstlichen Kariesproben wurden mittels eines fünftägigen pH-Cyclings erzeugt. Die 

Proben wurden mit Licht der Wellenlänge 1310nm gemessen. Die Autoren kamen zu dem Schluss, 

dass kariöser Schmelz Licht deutlich stärker streut als nonkariöser Schmelz und dass der Hauptteil 

der Veränderung der optischen Eigenschaften schon zu Beginn des Mineralverlustes entsteht. Die 

Streuungscharakteristik im kariösen Schmelz wies bei den Versuchen der vorliegenden Arbeit neben 

vorwärtsgerichteter Streuung einen signifikanten Anteil an rückwärtsgerichteter Streuung auf. Dies 

entspricht dem Postulat von Darling et al. [2006], die angenommen hatten, dass es bei kariösem 

Schmelz zu einem Anstieg des Anteils isotroper Streuung kommen müsse. In ihren Versuchen und 

Simulationen konnten sie dies zwar nicht nachweisen, dennoch bestätigen die Ergebnisse der 

vorliegenden Arbeit die ursprünglichen Annahmen von Darling et al. [2006] und lassen somit 

vermuten, dass es im kariösen Schmelz neben größeren auch einen signifikanten Anteil kleinerer 

Streuzentren geben muss. 

Beim Vergleich der Streulichtdaten und Attenuationskoeffizienten ist zu sehen, dass Licht der 

Wellenlänge 780nm kariösen Schmelz besser durchdringt als Licht der Wellenlängen 532nm und 

650nm. Jedoch deuten die errechneten Attenuationskoeffizienten bei 780nm darauf hin, dass hier der 

Unterschied zwischen nonkariösem Schmelz und kariösem Schmelz am größten ist. So beträgt der 

Faktor zwischen den Attenuationskoeffizienten bei kariösem Schmelz das circa 8,1-fache des 

Koeffizienten für gesunden Schmelz. Bei 650nm ist ein Faktor von 6,2 und bei 532nm ein Faktor 

von 4,8 zu verzeichnen. Das bedeutet, dass die Wellenlänge 780nm von den drei getesteten 

Wellenlängen am besten geeignet sein sollte, Schmelzkaries mittels Transillumination zu 

detektieren, denn 780nm verspricht durch die im Verhältnis stärkere Abschwächung des Lichts durch 

kariösen Schmelz somit auch den größten Kontrast zwischen kariösem und gesundem Schmelz. Da 
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das System der Kariesdetektion mittels Transillumination auf der Darstellung des Unterschieds 

zwischen gut durchleuchtetem und somit im Bild hell dargestelltem gesundem Schmelz und schlecht 

durchleuchtetem und somit dunkel dargestelltem kariösen Zahnschmelz beruht, ist diese Wellenlänge 

daher am besten geeignet, Unterschiede in der optischen Charakteristik zwischen kariösem und 

gesundem Zahnschmelz zu detektieren. Beim Dentin zeigt sich jedoch, dass die 

Attenuationskoeffizienten der verschiedenen Wellenlängen zwischen gesunder und kariöser 

Zahnhartsubstanz sich nicht so stark unterscheiden. So sind hier Faktoren von 1,37 bei 780nm, 1,27 

bei 650nm und 1,21 bei 532nm zu sehen, wobei die gemessenen kariösen Dentinproben 

lichtdurchlässiger waren als die nonkariösen. Diese Analyse zeigt, dass es deutlich schwieriger sein 

sollte, Dentinkaries zu detektieren. Der Unterschied zwischen den Wellenlängen ist nicht so groß 

wie im Schmelz, sodass zwar der Unterschied bei 780nm von allen getesteten Wellenlängen am 

größten ist, jedoch sich kariöses und nonkariöses Dentin in den optischen Eigenschaften bei weitem 

nicht so stark unterscheiden wie es bei Schmelz der Fall ist. Dies verdeutlicht auch die Analyse der 

Boxplots in Abbildung 18. Hier ist klar zu sehen, dass sich die errechneten Attenuationskoeffizienten 

von kariösem und gesundem Dentin zum Teil überschneiden. Bei Schmelz ist dagegen eine klare 

Trennung vorhanden. Dies heißt, dass es letztlich mit einem System wie DIAGNOcam deutlich 

schwerer sein sollte, Unterschiede zwischen kariösem und gesundem Dentin zu erkennen und mittels 

Kontrast bildlich darzustellen als zwischen kariösem und gesundem Schmelz. 

Der Fakt, dass kariöses Dentin bei den Messungen lichtdurchlässiger war als gesundes Dentin, war 

dabei überraschend. Zu Beginn der vorliegenden Arbeit war erwartet worden, dass sich kariöses 

Dentin zum gesunden Dentin genauso verhält wie kariöser Schmelz zu gesundem Schmelz, sprich, 

dass eine Abnahme der Lichtdurchlässigkeit zu verzeichnen ist. Dies war bei den getesteten Proben 

jedoch nicht der Fall. Möglich wäre grundsätzlich, dass durch den Bearbeitungsprozess der Proben, 

vor allem durch Schleifen und Politur, das in seiner Struktur durch die Karies geschwächte Dentin 

stärker verändert wurde als die gesunden Dentinproben. Darling et al. [2006] gaben in ihrer Arbeit 

zur Untersuchung von kariösem Zahnschmelz an, dass sie die Proben nicht mittels Schleifen und 

Politur bearbeitet haben, da dies zu einer Veränderung der Oberfläche der kariösen Läsion führe, die 

einen Großteil der optischen Eigenschaften ausmache. Für die Untersuchungen der vorliegenden 

Arbeit wurden jedoch alle Proben geschliffen und poliert. Es zeigte sich dennoch eine sehr starke 

Veränderung der optischen Eigenschaften im kariösen Schmelz gegenüber gesundem Schmelz, wie 

es Darling et al. ebenfalls beschrieben haben. Dennoch kann dieser Einfluss für die Dentinproben 

nicht gänzlich ausgeschlossen werden, da kariöses Dentin möglicherweise stärker beeinflusst wird 

durch die Oberflächenbehandlung als kariöser Schmelz. Die kariösen Dentinproben wurden im 

Rahmen der vorliegenden Arbeit auch nicht strikt in bukkooraler Richtung ausgerichtet und 

durchleuchtet wie die nonkariösen, sondern je nach Ausdehnung der Karies angeschnitten, 

eingebettet und durchleuchtet. Dies führt dazu, dass einige Dentinproben in bukkooraler Richtung, 

andere in mesiodistaler Richtung durchleuchtet wurden. Vaarkamp et al. [1995] haben in ihren 
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Untersuchungen gezeigt, dass die räumliche Ausrichtung einen Einfluss auf die 

Transmissionsfähigkeit hat, was sich jedoch in den Untersuchungen mit Dentinproben 

unterschiedlicher räumlicher Anordnung in der vorliegenden Arbeit nicht angedeutet hat (vgl. 5.2.4). 

Auch hier kann es dennoch zu einer Beeinflussung der Ergebnisse im Sinne höherer Transmission 

der kariösen Dentinproben gekommen sein, der jedoch gering sein sollte, was zumindest die 

entsprechenden Untersuchungen, die im Rahmen der vorliegenden Arbeit durchgeführt wurden, 

andeuten. Einen anderen Erklärungsansatz für dieses Phänomen liefert die Vermutung verschiedener 

Autoren, die als Hauptstreuzentren im Dentin die Dentinkanälchen vermuten (vgl. 2.2.2). Es wäre 

denkbar, dass es bei Veränderung der Dentinkanälchen durch den kariösen Prozess und 

Abwehrmechanismen durch die Odontoblasten, wie zum Beispiel die intratubuläre Dentinbildung, 

zu der beobachteten Verminderung der Lichtstreuung im kariösen Dentin kommt. So wurde bereits 

im Dentin die Entstehung der sogenannten Zone der Transparenz durch die genannten Prozesse 

beschrieben [Gängler et al., 2010]. Eine vollständige Aufklärung des Phänomens kann im Rahmen 

dieser Arbeit jedoch nicht erfolgen. Weitere Untersuchungen der optischen Eigenschaften von 

kariösem Dentin sind deshalb anzuraten.  

Festzuhalten bleibt jedoch, dass die Änderung der optischen Eigenschaften durch Karies im Dentin 

nicht so klar zu sein scheint wie es bei Schmelz der Fall ist. Auch die Untersuchungen von Kühnisch 

et al. [2016] haben dies gezeigt. Sie untersuchten im Rahmen einer klinischen Studie approximale 

Dentinläsionen mittels DIAGNOcam, um die Funktionsfähigkeit des Systems, das auf der 

Transillumination des Zahnes mittels Licht der Wellenlänge 780nm beruht, für die Erkennung von 

approximalen Kariesläsionen aufzuzeigen. Sie verglichen dabei unter anderem Bilder von kariösen 

Zähnen, die mit dem System DIAGNOcam erzeugt worden waren, mit zugehörigen 

Bissflügelröntgenaufnahmen. Die Tiefe der entsprechenden Läsionen wurde bei Therapie der 

Läsionen validiert. Kühnisch et al. [2016] unterteilten die Aufnahmen, die mit dem DIAGNOcam 

erzeugt worden waren, wiederum in zwei Gruppen. Die erste Gruppe enthielt Aufnahmen, die einen 

breiten kariösen Befall der Schmelzdentingrenze ohne gesunden Schmelz zwischen Befallszone und 

Schmelzdentingrenze zeigten und als „NILT-EDJ“ bezeichnet wurden.  Die zweite Gruppe umfasste 

Aufnahmen kariöser Zähne, in denen eine Verdunklung im Dentin zu sehen war und die Kühnisch 

et al. [2016] als „NILT-Dentin“ bezeichneten. Kühnisch et al. [2016] bescheinigten dem 

DIAGNOcam eine sehr gute, dem Bissflügelröntgen ebenbürtige Sensitivität für kariöse 

Dentinläsionen, da die erste Gruppe von Aufnahmen, die einen breiten Befall der 

Schmelzdentingrenze zeigt, zu 99,2% mit dem Auftreten einer dentinkariösen Läsion korrelierte. 

Somit schlossen Kühnisch et al. [2016] aus dem im DIAGNOcam sehr gut sichtbaren breiten 

kariösen Befall der Schmelzdentingrenze auf ein Vorkommen von Dentinkaries, was legitim ist, da 

Kühnisch et al. [2016] ein Vorkommen von Dentinkaries bei Befall der Schmelzdentingrenze in den 

DIAGNOcam-Aufnahmen nachweisen konnten. Gleichzeitig jedoch korrelierte ein Vorkommen 

einer kariösen Läsion im Dentin nur zu 29,1% mit der zweiten Gruppe von Aufnahmen, die eine 
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Verdunklung im Dentin zeigten. Das bedeutet, dass lediglich in 29,1% der Fälle eine klinisch 

validierte kariöse Dentinläsion als Verschattung in DIAGNOcam-Aufnahmen zu sehen war. Dieses 

Phänomen galt insbesondere für Dentinläsionen, die nur bis zu 50% des Dentinmantels, gemessen 

von der Schmelzdentingrenze bis zur Pulpa, betrafen. Tiefere kariöse Läsionen, die näher an die 

Pulpa reichten, waren sehr viel häufiger als Verschattung in den DIAGNOcam-Aufnahmen zu 

erkennen. Somit kann geschlussfolgert werden, dass die hohe Sensitivität für Dentinläsionen in 

dieser Studie vor allem auf der exakten Erkennung von Schmelzkaries beruhte, die einschließlich bis 

zur Schmelzdentingrenze reichte. Im Dentin selber war die Erkennung einer Läsion mittels 

DIAGNOcam deutlich schwieriger, gerade bei geringeren kariösen Dentinläsionen. Söchtig et al. 

[2014] kamen daher zu dem Schluss, dass DIAGNOcam aufgrund der schlechten Erkennbarkeit von 

Dentinläsionen das klassische Röntgen nicht ersetzen kann. Außerdem stellten auch Lederer et al. 

[2017a], die einen experimentellen Versuchsansatz wählten, fest, dass mittels DIAGNOcam keine 

sichere Erkennung der Tiefe von kariösen Dentinläsionen möglich ist. Die Untersuchungen von 

Kühnisch et al. [2016] sowie von Lederer et al. [2017a]  unterscheiden sich zwar grundsätzlich von 

den Versuchen der vorliegenden Arbeit, jedoch zeigten auch sie, dass die Erkennung von 

Dentinkaries mithilfe eines Kariesdiagnosesystems, das auf das Prinzip der Transillumination von 

Zahnhartsubstanz setzt, fraglich ist. Die sichere Erkennung von kariösen Läsionen im Dentin scheint 

deutlich schwieriger zu sein als im Schmelz. Für den Schmelz kann jedoch aus den erhobenen 

Messdaten eine sehr hohe Sensitivität für das Erkennen von Schmelzkaries abgeleitet werden, was 

auch Kühnisch et al. [2016] aufgrund ihrer klinischen Untersuchungen vermuteten. 
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6.5 Schlussfolgerungen und Ausblick 

Es ist insgesamt festzuhalten, dass es im Rahmen der vorliegenden Arbeit gelungen ist, mit einem 

selbst entwickelten Messsystem Daten über die optischen Eigenschaften von Zahnschmelz und 

Dentin zu erzeugen. Die erhobenen Daten und Ergebnisse stimmen dabei in hohem Maße mit 

Ergebnissen aus anderen experimentellen und klinischen Untersuchungen überein. Im Hinblick auf 

optische Kariesdiagnosesysteme, die die lichtoptischen Eigenschaften von Zahnhartsubstanz und 

deren Veränderung durch kariöse Prozesse ausnutzen, kann daher Folgendes unter Berücksichtigung 

der Ergebnisse der vorliegenden Arbeit sowie der Erkenntnisse anderer Autoren resümiert werden: 

1. Zahnschmelz besitzt im Vergleich zu Dentin eine sehr hohe Transluzenz. Dentin weist eine 

sehr starke Streuungscharakteristik und Abschwächung von Licht auf. 

2. Licht des Nahen Infrarotbereichs eignet sich insbesondere zur Durchleuchtung von Schmelz. 

Der Nahe Infrarotbereich bietet dabei einen sehr hohen Kontrast zwischen kariösem und 

gesundem Zahnschmelz. Daher kann hier von einer hohen Sensitivität bei der Erkennung 

schmelzkariöser Läsionen ausgegangen werden. 

3. Im Dentin dagegen wird Licht verschiedener Wellenlängen grundsätzlich deutlich stärker 

gestreut. Der Trend, dass Licht größerer Wellenlänge weniger stark gestreut wird, ist deutlich 

schwächer ausgeprägt als im Schmelz. 

4. Da kariöses Dentin sich in den optischen Eigenschaften deutlich weniger von gesundem 

Dentin zu unterscheiden scheint als kariöser Schmelz zu gesundem Schmelz, ist eine 

eindeutige Erkennung kariösen Dentins mittels Transillumination fraglich. Auch die starke 

Streuung von gesundem Dentin per se macht eine klare Erkennung von kariös bedingten 

Veränderungen im Dentin fraglich, da starke Streuung zu Hintergrundrauschen führt [Jones 

et al., 2002]. 

Die klinisch schlechte Erkennbarkeit von Dentinkaries selbst könnte somit eine Schwäche der 

optischen Kariesdiagnosesysteme sein. Sie betrifft damit auch mögliche Aussagen zur Ausdehnung 

der Dentinkaries. Die Sensitivität für kariöse Läsionen im approximalen Dentin kann man jedoch 

trotzdem als hoch bezeichnen, da die Erkennbarkeit schmelzkariöser Läsionen sehr gut zu sein 

scheint, wie aus den Daten dieser Arbeit zu vermuten ist und wie es Kühnisch et al. [2016] ebenfalls 

aus ihren klinischen Erfahrungen heraus berichten. Die klare Erkennbarkeit einer schmelzkariösen 

Läsion, die die Schmelzdentingrenze breit erfasst, war bei Kühnisch et al. [2016] ein sehr hohes Indiz 

für das Vorkommen einer Dentinkaries, was das System somit nichtsdestotrotz als probates Mittel 

zur Untersuchung von kariösen Läsionen im approximalen Bereich erscheinen lässt. 

Die starke Unterscheidbarkeit von gesundem und kariösem Schmelz wiederum macht das System zu 

einem idealen Hilfsmittel zur Früherkennung von kariösen Prozessen, da die Änderung der optischen 
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Eigenschaften von Schmelz bereits am Beginn des kariösen Prozesses stattfindet [Darling et al., 

2006]. Somit könnten DIAGNOcam und vergleichbare Systeme erfolgreich die Lücke zwischen 

traditioneller Kariesdiagnostik und dem Wunsch nach non- und minimalinvasiver Kariestherapie 

schließen, da hierfür ein möglichst frühzeitiges Erkennen von Schmelzkaries unerlässlich ist, um 

einerseits möglichst frühzeitig Therapien einzuleiten und andererseits den Erfolg noninvasiver 

Therapien zu überwachen, was auch aufgrund des Verzichts auf ionisierende Strahlung durch 

lichtoptische Diagnosesysteme im Gegensatz zum Röntgen ermöglicht wird. 

Die Schwäche der unsicheren Erkennbarkeit kariöser Dentinläsionen könnte dabei dadurch 

kompensiert werden, dass bei Verdacht auf Dentinkaries durch ein lichtoptisches System zusätzlich 

entsprechende Röntgenbilder angefertigt werden. Das Röntgen selbst wird grundsätzlich auch in 

Zukunft eine wichtige Rolle in der Zahnmedizin spielen, da es beispielsweise auch knöcherne 

Strukturen zeigen kann [Söchtig et al., 2014]. Der Zahnarzt könnte jedoch durch lichtoptische 

Kariesdiagnosesysteme dazu befähigt werden, neben der visuell-taktilen Kariesdiagnostik ein 

zusätzliches Diagnosesystem anzuwenden und erst bei Verdacht auf Dentinkaries ein entsprechendes 

Röntgenbild zur Validierung und Einschätzung des Ausmaßes anzufertigen. Der Einsatz des Röntgen 

könnte somit im Bereich der Kariesdiagnostik minimiert werden.  

Eine Möglichkeit der Weiterentwicklung und Ergänzung des Prinzips von DIAGNOcam zeigten 

dabei Jones et al. [2002, 2003], Bühler et al. [2005] und Darling et al. [2006]. Ihre Untersuchungen 

weisen darauf hin, dass Licht der Wellenlänge 1310nm Schmelz noch besser durchdringen kann und 

klinisch den besten Kontrast zwischen kariöser Läsion und gesundem Schmelz bietet. Auch die 

sogenannte Reflectance-Technik könnte vielversprechend sein. Simon et al. [2016a, 2016b, 2014] 

haben diese bereits untersucht. Bei der Reflectance-Technik wird noch niedrigfrequenteres Licht des 

Nahen Infrarotbereichs angewandt. Dabei wird die steigende Wasserabsorption von Licht bei 

steigender Lichtwellenlänge gezielt ausgenutzt, wobei Licht des Nahen Infrarotbereichs gesunden 

Schmelz durchdringt und vom darunterliegenden Dentin aufgrund der Wasserabsorption absorbiert 

wird. Ist jedoch eine kariöse Schmelzläsion vorhanden, wird dort das Licht abgeschwächt und 

vermehrt zurückgestreut. Somit erscheinen im Bild gesunde Areale dunkel, kariöse Schmelzläsionen 

hell. Die im Rahmen der vorliegenden Arbeit erhobenen Daten können auch zur Weiterentwicklung 

und Anwendung der Reflectance-Technik ermutigen, da gezeigt werden konnte, dass kariöser 

Schmelz auch einen signifikanten Anteil an Licht zurückstreut. Die Reflectance-Technik könnte 

somit ebenfalls ein weiterer Schritt zur Weiterentwicklung und Verbesserung der lichtoptischen 

Kariesdiagnosesysteme sein. 

Insgesamt ist aufgrund der im Rahmen der vorliegenden Arbeit erhobenen Daten und Ergebnisse 

sowie aufgrund von konkludenten Berichten anderer Autoren festzuhalten, dass lichtoptische 

Kariesdiagnosesysteme in Zukunft eine wichtige Rolle im Bereich der Kariesdiagnostik spielen 

können. Gerade für die Diagnostik im Zahnschmelz könnten sie ein wichtiger Baustein werden, um 
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durch Früherkennung und konsequentes Monitoring minimalinvasiven Therapieansätzen zum Erfolg 

zu verhelfen. Sie sind dabei als zusätzliches Hilfsmittel zur hochsensitiven Erkennung von Karies zu 

betrachten und könnten somit eine wichtige Lücke im Bereich der Kariesdiagnostik schließen. 
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7 Zusammenfassung 

Ziel der Arbeit war es, ein Verfahren zur optischen Charakterisierung von Zahnschmelz und Dentin 

zu entwickeln und entsprechende Versuche anhand von gesunden sowie kariösen Zahnschmelz- und 

Dentinproben durchzuführen. Zur Erreichung dieses Ziels wurden Proben aus humanen Zähnen 

hergestellt und mithilfe eines Versuchsaufbaus, der im Kern aus einem Zweikreisgoniometer 

bestand, wurden Transmissionsmessungen sowie Messungen zur Streulichtverteilung durchgeführt. 

Als Lichtquellen wurden Laserdioden der Wellenlängen 532nm, 650nm und 780nm benutzt und als 

Detektor wurde ein Siliziumdetektor verwendet. Aus den Messungen wurden 

Attenuationskoeffizienten berechnet sowie Streulichtverteilungsgraphen erstellt. 

Die berechneten Attenuationskoeffizienten für Proben der Dicke 139 bis 282µm zeigten gute 

Übereinstimmung mit Werten aus der Literatur ebenso wie die Streulichtverteilungsgraphen. Als 

Ergebnis der durchgeführten Messungen ist eine deutlich geringere Streuung von Licht durch 

gesunden Schmelz gegenüber Dentin zu nennen. Dabei konnte im Schmelz eine klare 

Wellenlängenabhängigkeit der Streuung festgestellt werden, die mit größerer Lichtwellenlänge 

abnimmt. Im Dentin war dieser Trend deutlich geringer ausgeprägt und Dentin zeigte starke 

vorwärtsgerichtete Streuung. Kariöser Schmelz zeigte im Gegensatz zum gesunden Zahnschmelz 

eine deutliche Verringerung der Lichtdurchlässigkeit. Die Streuung fand dabei sowohl in Vorwärts- 

als auch in Rückwärtsrichtung statt, wobei insbesondere ein Anstieg der rückwärtsgerichteten 

Streuung ins Auge stach. Kariöses Dentin zeigte in den Versuchen nicht wie vermutet eine reduzierte, 

sondern eine leicht erhöhte Lichtdurchlässigkeit im Vergleich zu gesundem Dentin, wobei die 

Änderung der optischen Eigenschaften zwischen gesundem und kariösem Dentin verglichen zur 

Änderung zwischen gesundem Schmelz und kariösem Schmelz minimal ausfiel. Der Unterschied 

bezüglich der optischen Eigenschaften zwischen kariösem Schmelz und gesundem Schmelz war bei 

der Wellenlänge 780nm stärker ausgeprägt als bei den beiden anderen untersuchten Wellenlängen. 

Ein stark anisotropes Verhalten von Dentin oder ein signifikanter Anstieg der Lichtschwächung von 

pulpanahem Dentin, wie sie in der Literatur für Dentin beschrieben wurden, konnten nicht 

nachgewiesen werden.  

Die Ergebnisse der vorliegenden Arbeit zeigen insgesamt das hohe Potenzial der 

Transilluminationstechnik mit Nahem Infrarotlicht für die Kariesdiagnostik. Aufgrund der sehr 

ausgeprägten und stark wellenlängenunabhängigen Lichtstreuung von gesundem Dentin und der in 

den Versuchen gezeigten nicht deutlichen Abgrenzbarkeit der optischen Eigenschaften zwischen 

gesundem und kariösem Dentin ist die Anwendung der Transilluminationstechnik mit Licht der 

Wellenlänge 780nm zur Kariesdiagnostik im Dentin als fraglich einzustufen. Ein Vergleich der 

Attenuationskoeffizienten für Proben verschiedener Dicken deutet außerdem auf den Einfluss von 
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Mehrfachstreuung hin, weshalb gerade auch für zukünftige Untersuchungen im Dentin 

entsprechende Modelle und Versuchsansätze zu Rate gezogen werden sollten. Die Ergebnisse der 

Arbeit zeigen, dass auch andere Nahinfrarotlichttechniken für die Kariesdiagnostik im Schmelz 

Erfolg versprechen. Alles in allem konnte gezeigt werden, dass lichtoptische Kariesdiagnosesysteme 

auf Basis der Nahinfrarotlichttechnik aufgrund der eindeutigen Änderung der optischen 

Eigenschaften zwischen gesundem und kariös verändertem Zahnschmelz einen wichtigen Baustein 

für die Kariesfrüherkennung und damit auch für non- und minimalinvasive Therapiekonzepte 

darstellen können. 
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10 Dokumentation und Anleitungen 

10.1 Herstellung der Proben, erstes Verfahren 

10.1.1 Herstellen des Sägeblocks 

 

 

Zähne mit Ätzgel 

 

 

Ätzgel 

 
 

• Ätzen des Zahnes mit 37%iger Phosphorsäure für 60 
Sekunden 

• Ätzgel unter laufendem Wasser abspülen 

 

 

3M ESPE Scotchbond  

 

 

 

 
 

• Zahn trocknen 
• 3M ESPE Scotchbond 20 - 25 Sekunden auf 

Zahnwurzel bis circa zum Zahnhals auftragen 
• 10 Sekunden lichthärten 
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Zähne in Silikonformen 

 
 

• Silikonformen wie in nebenstehender Abbildung 
bündig aufeinander platzieren, Glasplatte als 
Unterlage verwenden (sicherer Stand) 

• 20x15x1 (mm) großes Plexiglasplättchen als 
Platzhalter in Längsrichtung einlegen 

• Zahn mit normal viskösem Komposit an der Wurzel 
in der Form positionieren und ausrichten 

• Bukkalfläche dabei möglichst parallel zum 
Plexiglasplättchen ausrichten 

• Anschließend 20 Sekunden lichthärten 
 

 

 

Zahn in Silikonform 

 

 

Technovit 4004 

 
 

• Plexiglasplättchen entfernen 
• Technovit 4004 anmischen (Flüssigkeit:Pulver ca. 

1:2) 
• Form befüllen 
• Überschüsse mit flachem Instrument entfernen 
• Form samt Glasplatte im vorgeheizten Drucktopf 

(circa 50°C) platzieren und unter 2bar Luftdruck den 
Kunststoff 10 Minuten polymerisieren lassen 

 

 

Technovitblock in Silikonform 

 

 
 

• Technovitblock aus der Form nehmen 
• Überschüsse mit Schleifpapier entfernen 
• Parallelität und Planarität der Flächen gegebenenfalls 

nacharbeiten mit Schleifpapier 
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Technovitblock in Halter 

 
 

• Technovitblock in Halter einspannen 
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10.1.2 Sägen des Zahnes 

 

 

Zahn angesägt 

 

 

Sägeprozess 

 

 

Block gedreht 

 

 

Sägeprozess 

 

 

 
 

• Sägen bei mittlerer Umdrehungsgeschwindigkeit (5-7) 
und mittlerem Gewicht mit Präzisionskreissäge 
(Buehler Isomet 11-1280-250) 

 

 

 

 

• Mesial- und Distalflächen des Zahnes entfernen im 
Abstand von 5mm (Achtung: Sägeblatt hat circa 0,3mm 
Eigendicke) 

 

 

 

 

 

• Block um 2x 90° drehen 
• Kaufläche entfernen 
 

 

 

 

• Wurzel entfernen, Resthöhe der Probe von 3mm 
beibehalten 

 

 

 

 

 



Anleitungen 

109 

 

 

Zahnblock 

 

 

Zahnblock 

 

• Bukkalfläche gegebenenfalls mit Schleifpapier leicht 
nachbearbeiten/planieren 

 

 

 

 

 

• Zwischenergebnis: einzubettende Probe 
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10.1.3 Einbetten der Probe 

 

 

Zahnblock mit Ätzgel 

 
 

• Ätzen mit 37%iger Phosphorsäure für 15 Sekunden 
• Abspülen des Ätzgels mit Wasser 

 

 

 

Zahnblock + 3M ESPE 

Scotchbond  

 
 

• Trocknung der Probe  
• 3M ESPE Scotchbond 20 - 25 Sekunden auftragen 
• 10 Sekunden lichthärten 

 

 

Silikonform, Komposit, 

Plexiglasplättchen, 

Isolierblatt  

 

 

 

 

 

 
 

• Silikonform vorbereiten, auf Glasplatte platzieren 
• 20x15x1 (mm) Plexiglasplättchen als Platzhalter am 

Boden der Silikonform einlegen  
• 20x15 (mm) großes Stück aus 3M ESPE Anmischblock 

ausschneiden und als Isolierschicht auf das 
Plexiglasplättchen legen 
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Probe positioniert 

 
 

• Probe positionieren, Bukkalfläche möglichst parallel 
und bündig an der Form anliegen lassen 

• Flowable Komposit applizieren und 20 Sekunden 
lichthärten, um Probe sicher zu fixieren 

• Mit Technovit 4004 auffüllen, Überschüsse mit flachem 
Instrument entfernen 

• Im Drucktopf polymerisieren lassen 

 

 

Ausgebetteter Block 

 

 

Isolierschicht 

 

 

Block repositioniert 

 

 

 
 

• Block ausbetten 
• Plexiglasplättchen entfernen 

 

 

 

 

 

• Isolierschicht unter laufendem Wasser abspülen 
 

 

 

 

 

• Block an der Unterseite anrauen (Schleifpapier 320 
Grit) 

• Oberseite gegebenenfalls mit Schleifpapier 
nachbearbeiten/planieren, Überschüsse entfernen 

• Block mit Oberseite am Boden der Silikonform 
platzieren 

• Form mit Technovit 4004 auffüllen, Überschüsse mit 
flachem Instrument entfernen 

• Im Drucktopf polymerisieren lassen  
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Ausgebetteter Block 

 

 

Fertiger Block 

 

 

Block eingespannt 

 
 

• Block ausbetten 
 

 

 

 

 

 

• Gegebenenfalls Flächen mit Schleifpapier 
nachbearbeiten (Planieren, Überschüsse entfernen) 

 

 

 

 

• In den Halter der Säge (Buehler Isomet 11-1280-250) 
einspannen 

• Proben mit mittlerem Sägegewicht bei mittlerer 
Geschwindigkeit (5-7) vom Block herunterschneiden 
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10.2 Herstellung der Proben, endgültiges Verfahren, nonkariöse Proben 

10.2.1 Vorbereitung und Einbetten 

 

 

Entfernen der Wurzel 

 

 

• Säubern des Zahns und Entfernung etwaiger 
Gingivareste 

• Entfernen der Wurzel mithilfe einer 
Präzisionskreissäge (hier: Leco Vari/Cut VC-
50) 

 

 

 

Ätzen der Zahnkrone 

 

 

Adhäsivsystem Syntac classic 

 

 

 

 

• Zahn trocknen 
• Ätzen der gesamten Zahnkrone mithilfe von 

Phosphorsäuregel (37%) für 60 Sekunden 
• Abspülen des Ätzgels unter laufendem 

Wasser 
 

 

 

 

 

• Zahn trocknen 
• Applikation eines Adhäsivsystems für 

Komposite und Kunststoffe (hier: Syntac 
classic: Applikation und Verarbeitung der 
jeweiligen Einzelkomponenten nach 
Herstellerangaben) 
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Lichthärtung 

 

 

• Lichthärtung des Adhäsivsystems für 120 
Sekunden (20 Sekunden pro Fläche) 

 

 

Komposit appliziert 

 

 

Zahn am Boden der Einbettform 

fixiert 

 

 

 

 

 

• Boden der Silikonform auf einer Glasplatte 
platzieren (sicherer Stand) 

• Applikation einer geringen Menge Komposit 
(normal viskös bis stopfbar) zur Fixierung 
des Zahnes in der Einbettform 

 

 

 

 

 

• Ausrichtung der bukkalen beziehungsweise 
der lingualen Zahnfläche möglichst plan 
anliegend am Boden der Form 
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Lichthärtung 

 

• Bündiges Platzieren des Oberteils der 
Silikonform auf der Bodenplatte 

• Lichthärtung für 40 Sekunden 
 

 

 

 

 

 

Technovit 4004 

 

 

Form befüllt 

 

 

Kunststoff auspolymerisiert 

 

• Anmischen von Technovit 4004 in einem 
Kunststoffanrührbecher, dabei Pulver zu 
Monomer im Verhältnis 2:1 verwenden 

 

 

 

 

 

• Form langsam befüllen 
• Überschüsse mit flachem Instrument 

entfernen 
 

 

 

 

• Form samt Glasplatte im vorgeheizten 
Drucktopf (ca. 45°C) platzieren und unter 
2bar Luftdruck den Kunststoff 10 Minuten 
polymerisieren lassen 

• Technovitblock aus der Form nehmen 
• Überschüsse gegebenenfalls abschleifen 
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10.2.2 Sägen und Zahnschnitte 

 

 

Sägen des Technovitblocks 

 

 

Technovitblock mit eingebetteter 

Zahnkrone (Ansicht auf die 

bukkale Fläche) 

 

 

• Sägen der Seitenflächen des Technovitblocks 
in einer Präzisionskreissäge (Leco Vari/Cut 
VC-50) zur Erzeugung möglichst 
planparalleler Außenflächen 

 

 

Eingespannter Block in Isomet 

Kreissäge 

 

 

 

• Einspannen des Sägeblocks in den 
Probenhalter einer niedrigdrehenden 
Präzisionskreissäge (Buehler Isomet 11-
1280-250) 

• Auf Verwendung eines geeigneten 
Kühlschmiermittels achten (hier: Buehler 
IsoCut Fluid), um durch die so erzielte 
Verminderung von Reibung und der lokalen 
Hitzeentwicklung mögliche Rissbildungen 
vor allem im Schmelz zu verhindern 

• Anschneiden des Blocks, Anschnitt variabel 
je nach Zahnform, Ziel: Entfernen des 
bukkalen Schmelzes 
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Zahnschnitt 

 

• Verwerfen des Anschnitts 
• Sägen der Zahnproben durch gezieltes 

Einstellen der Dicke mittels 
Mikrometerschraube, Dicke der Schnitte 
circa 700µm, je nach gewünschter Dicke 
variabel (nicht weniger als 300µm 
empfohlen) 
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10.2.3 Schleifen und Polieren 

 

 

Kanten am Technovit nach 

Zahnschnitt 

 

 

• Überstehende Ecken und Kanten am 
Technovitmantel mit Skalpell entfernen 

 

 

 

Mahr MarCator 1086W 

 

• Dicke messen (Mahr MarCator 1086W) 
• Ausrechnen des Schleifbedarfs mithilfe der 

gemessenen und der angestrebten Probendicke 
 

 

 

 

 

 

Präzisionskleber 

 

 

• Säubern und Trocknen der Probe 
• Auftragen jeweils eines punktförmigen Tropfens 

Präzisionskleber (Technovit 7210 VLC) an drei 
Stellen des Kunststoffmantels der Probe und 
Aufbringen auf einen Exakt Probenträger 
(Wichtig: der Tropfen muss jeweils so klein 
gewählt werden, dass er während der 
Lichthärtung in der Präzisionsklebepresse im 
nachfolgenden Schritt nicht über den Probenrand 
hinaus gepresst wird oder er die 
Zahnhartsubstanzen mit dem Probenträger 
verklebt. Die Probe sollte an drei Stellen fixiert 
werden, damit später die Möglichkeit besteht, 
durch Einführen eines dünnen Instruments in 
den Raum zwischen Probe und Probenträger 
diese vom Probenträger zu entfernen.) 
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Fixierte Proben auf Probenträger 

(entfernbar) 

 

 
 

• Es können bis zu vier Proben gleichzeitig auf 
einem Probenträger fixiert werden 

 

 

Präzisionsklebepresse 

 

• Lichthärten des Präzisionsklebers mithilfe einer 
Präzisionsklebepresse (Exakt 402) für 10 bis 15 
Minuten 

 

 

Exakt 400 CS Mikroschleif- und 

Poliermaschine 

 

 

 

 

 

 

• Fixierung des Probenhalters mit Probe in einer 
Mikroschleif- und Poliermaschine (Exakt 400 
CS) 
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Justieren der Probendicke 

 

 

Einstellen des Abtrags 

 

 

Schleifen der Probe 

 

 

Probe fertig geschliffen/poliert 

 

• Justierung der Probendicke  
 

 

 

 

 

 

• Einstellen des gewünschten Abtrags 
 

 

 

 

 

 

• Schleifen und Polieren der Probe mit 
Nassschleifpapier verschiedener Rauigkeiten: 

o 600 Grit: Abtrag nach Bedarf 
o 800 Grit: 30µm 
o 1000 Grit: 20µm 
o 1200 Grit: 10µm 

• Einstellung Rotation: Stufe 5 
• Einstellung Oszillation: Stufe 5 

 

 

• Wiederholen der Schritte „Justierung der 
Probendicke“, „Einstellen des gewünschten 
Abtrags“ und „Schleifen der Probe“ für die 
jeweiligen Schleif- und Polierstufen 

• Entnehmen des Probenhalters nach Beendigung 
des letzten Schleifvorgangs 
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Lösen der Probe vom 

Probenhalter 

 

• Lösen der Probe vom Probenhalter mit dünnem 
Instrument (hier: Skalpell) 

• Vermessen der Dicke (Zwischenmessung) 
• Wiederbefestigen der Probe am Probenhalter mit 

der noch unpolierten Kehrseite nach außen 
zeigend 

• Wiederholen des Schleif- und Polierprozesses 
für die Kehrseite 

• Erneutes Ablösen der Probe vom Probenhalter 
nach Beendigung des Schleif- und 
Polierprozesses 

• Messen der endgültigen Dicke (Schmelz und 
Dentin) 
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10.2.4 Sockeln der Probe 

 

 

Exakt Probenhalter in Isomet 

Präzisionssäge 

 

 

Fertig geschnittener Sockel 

 

 

 

• Schneiden von Sockeln aus Exakt Probenhaltern 
in einer Präzisionssäge 

 

 

 

 

 

 

 

• Höhe: 2,5mm 

 

 

Fertige Probe 

 

 

• Verkleben der Probe mit dem Sockel mithilfe 
von Präzisionskleber und einer 
Präzisionsklebepresse 
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10.3 Herstellung der Proben, endgültiges Verfahren, kariöse Zahnproben 

10.3.1 Herstellung des Sägeblocks 

 

 

Ätzen der Wurzel 

 

 

Adhäsivsystem Syntac classic 

 

 

• Ätzung der Wurzel mit Phosphorsäureätzgel 
(37%) für 60 Sekunden 

• Entfernung des Ätzgels unter laufendem Wasser 
• Trocknung des Zahns 

 

 

 

 

 

• Konditionieren der angeätzten Fläche mit einem 
Adhäsivsystem für Kompositmaterialien (hier: 
Syntac classic) 

• Lichthärten des Zahns für 40 Sekunden 
 

 

 

 

 

Kariöser Zahn auf Bodenplatte 

fixiert 

 

 

 

• Platzieren der Bodenplatte der 
Silikoneinbettform auf einer Glasplatte (sicherer 
Stand) 

• Applikation von Komposit (Viskosität: normal, 
stopfbar) an der konditionierten Fläche 

• Ausrichtung des Zahns auf dem Boden der 
Silikoneinbettform 

• Lichthärtung für 40 Sekunden zur Fixierung der 
Position 
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Silikonform mit kariösem Zahn 

 

 

• Bündiges Platzieren des Oberteils der Form auf 
der Bodenplatte (Zahn sollte möglichst 
exzentrisch im Sägeblock liegen) 

 

 

Kariöser Zahn im Sägeblock 

 

 

• Anmischen von Technovit 4004 in einem 
Kunststoffanrührbecher (Pulver:Flüssigkeit = 
2:1) 

• Auffüllen der Form mit Technovit 4004, 
Entfernen von Überschüssen mit flachem 
Instrument 

• Auspolymerisation in einem vorgeheizten 
Drucktopf bei 45°C und 2bar Druck 

• Anschließende Entnahme aus der Form und, 
falls nötig, leichtes Nachbearbeiten der Flächen 
mittels Schleifpapier 
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10.3.2 Anschnitt, Einbetten und Zahnschnitt 

 

 

Block eingespannt und gesägt 

durch die vermutete kariöse 

Läsion 

 

 

• Einspannen in Halter für langsam drehende 
Präzisionskreissäge (Buehler Isomet 11-1280-
250) 

• Sägeschnitt entlang der vermuteten kariösen 
Läsion 

• Kontrolle der kariösen Läsion 

 

 

Schnitt entlang der 

Schmelzzementgrenze 

 

 

Vom Sägeblock getrennte Krone 

mit kariöser Läsion 

 

 

• Trennen des Zahns vom Sägeblock durch 
Sägeschnitt entlang der Schmelzzementgrenze 
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Kariöse Zahnkrone in 

Technovitblock eingebettet, 

Aufsicht auf die kariöse Läsion 

 

• Ätzung der abgetrennten Zahnkrone am apikalen 
Ende für 15 Sekunden mit Phosphorsäuregel 
(37%) 

• Konditionierung der geätzten Fläche mit 
Adhäsivsystem (Syntac classic) und 
Lichthärtung für 20 Sekunden 

• Anbringen einer kleinen Menge Komposit an der 
konditionierten Stelle und Positionierung der 
Zahnkrone mit kariöser Läsion flach am Boden 
der Silikoneinbettform sowie anschließende 
Lichthärtung zur Fixierung 

• Auffüllen der Silikoneinbettform mit Technovit 
4004 

• Auspolymerisation für 10-15 Minuten im 
vorgewärmten Drucktopf bei 45°C und 2bar 
Druck 

• Herausnahme des Blocks aus der Form 
• Zurechtschneiden des Blocks zur Erhaltung 

möglichst planparalleler Flächen 
 

 

 

 

 

 

 

• Weitere Schritte: Analoges Weiterverfahren zur 
Herstellung der nonkariösen Proben: 

o Sägen und Zahnschnitte (s. 10.2.2) 
o Schleifen und Polieren (s. 10.2.3) 
o Sockeln der Probe (s. 10.2.4) 
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10.4 Herstellung der Proben, endgültiges Verfahren, Dentin mit räumlich 

unterschiedlich ausgerichtetem Dentin 

10.4.1 Herstellung des Sägeblocks 

 

 

Ätzung der Wurzel 

 

 

Adhäsivsystem Syntac classic 

 

• Ätzung der Wurzel mit Phosphorsäureätzgel 
(37%) für 60 Sekunden 

• Entfernung des Ätzgels unter laufendem Wasser 
• Trocknung des Zahns 

 

 

 

 

 

• Konditionieren der angeätzten Fläche mit einem 
Adhäsivsystem für Kompositmaterialien (hier: 
Syntac classic) 

• Lichthärten des Zahns für 40 Sekunden 
 

 

 

 

 

Zahn positioniert in Einbettform 

 

 

 

• Platzieren der Bodenplatte der 
Silikoneinbettform auf einer Glasplatte (sicherer 
Stand) 

• Applikation von Komposit (Viskosität: normal, 
stopfbar) an der konditionierten Fläche 

• Ausrichtung des Zahns auf dem Boden der 
Silikoneinbettform (der Zahn sollte möglichst 
exzentrisch im Sägeblock liegen) 

• Lichthärtung für 40 Sekunden zur Fixierung der 
Position 

• Bündiges Platzieren des Oberteils der Form auf 
der Bodenplatte  
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Fixierter Zahn im Sägeblock 

 

• Anmischen von Technovit 4004 in einem 
Kunststoffanrührbecher (Pulver:Flüssigkeit = 
2:1) 

• Auffüllen der Form mit Technovit 4004, 
Entfernen von Überschüssen mit flachem 
Instrument 

• Auspolymerisation in einem vorgeheizten 
Drucktopf bei 45°C und 2bar Druck 

• Anschließende Entnahme aus der Form und, 
falls nötig, leichtes Nachbearbeiten der Flächen 
mittels Schleifpapier 
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10.4.2 Schneiden der Dentinblöcke 

 

 

Eingespannter Sägeblock 

 

• Einspannen des Sägeblocks samt Zahn in einen 
Probenhalter einer langsam rotierenden 
Präzisionskreissäge (Buehler Isomet 11-1280-
250) 

• Entfernen der mesialen und distalen Facetten, 
Sägeschnitte im Abstand von 3-5mm (entspricht 
der Stärke des entstehenden Dentinquaders) 

 

 

 

 

Entfernung der Kaufläche 

 

 

 

Schnittführung zur Gewinnung 

der Dentinquader 

 

 

 

• Rotieren des Blocks und Entfernung der 
Kaufläche 

 

 

 

 

 

 

• Zwei weitere Sägeschnitte parallel dazu zur 
Gewinnung von zwei Dentinquadern: 

o 1. Quader: koronales Dentin, wird später 
zweigeteilt zur Gewinnung von Proben 
zur Durchleuchtung in axialer und 
mesiodistaler Richtung 

o 2. Quader: pulpanahes Dentin, hier wird 
später eine Dentinprobe gewonnen, die 
kurz vor der Pulpakammer entnommen 
wird 
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Dentinquader (enthält 

Schmelzreste) 

 

Geteilter Dentinquader für 

spätere Messungen aus axialer 

und mesiodistaler Richtung 
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10.4.3 Einbetten der Dentinblöcke und Schneiden der Proben 

 

 

Fixierte Dentinquader 

 

 

 
 

• Ausblocken eines Teils der Silikoneinbettform 
mithilfe zweier 20x15x1mm großen 
Plexiglasplättchen als Platzhalter am Boden der 
Silikonform   

• Isolation des Platzhalters durch ein 20x15mm 
großes Stück aus einem 3M ESPE 
Anmischblock als Isolierschicht 

• Ätzung der Quader mit Phosphorsäuregel (37%) 
an einer der Flächen (je nach Ausrichtung) für 
15 Sekunden und Applikation eines 
Dentinadhäsivsystems (hier: Syntac classic) 

• Platzieren der Dentinquader je nach gewünschter 
Ausrichtung in der Einbettform 

• Applikation einer geringen Menge Komposit 
(normal viskös, stopfbar) zur Fixierung 

• Lichthärtung für 20 Sekunden 
 

 

 

Entfernen der Isolierschicht 

 

 

Block reponiert und vorbereitet 

zur Befüllung der Rückseite 

 

• Anmischen von Technovit 4004 in einem 
Kunststoffanrührbecher (Pulver:Flüssigkeit = 
2:1) 

• Befüllen der Form mit Technovit 4004, 
Entfernen von Überschüssen mit flachem 
Instrument 

• Auspolymerisation in einem vorgeheizten 
Drucktopf bei 45°C und 2bar Druck 

• Anschließende Entnahme aus der Form 
• Entfernen der Isolierschicht unter laufendem 

Wasser 
 

• Reponieren des Blocks in die Form und 
Auffüllen der Rückseite mit Technovit 4004 
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Aufsicht auf Probenblock 

 

 

Schneiden der Probe 

 

• Einspannen des Probenblocks in einen 
Probenhalter einer langsam rotierenden 
Präzisionskreissäge (Buehler Isomet 11-1280-
250) 

• Anschneiden des Blocks zur Entfernung von 
Schmelzresten in der Probe und zur Schaffung 
planparalleler Flächen, Verwerfen des 
Anschnitts 

 
 
 
 
 

• Schneiden der Proben je nach gewünschter 
Dicke 

 

 

Fertige Probe 

 

• Weitere Schritte: analog zur Herstellung 
nonkariöser Proben: 

o Schleifen und Polieren (s. 10.2.3) 
o Sockeln der Probe (s. 10.2.4) 
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10.5 Justieren und Kalibrieren des Versuchsaufbaus 

10.5.1 Kalibrierung des Zweikreisgoniometers 

 
• Manuelles Stellen beider Goniometerarme auf 5°  
• Aktivierung der Fixierungsschrauben und somit Sichern der Position 

 

 
• Öffnen des Programms BRDF (Version 1.0) 
• Öffnen des Reiters „Homing and Collision“ 
• Im Abschnitt „Homing procedure“ Aktivieren der Schaltflächen „Zero in – direction“ 

für beide Achsen 
• Visuelle Kontrolle der Position beider Goniometerarme (beide müssen auf 0° stehen) 
• Maschinelles Bewegen der Goniometerarme in eine Position, welche 180° zwischen 

beiden Achsen beschreibt, durch Eingabe der Werte -90° jeweils in den Feldern 
„Move Axis 1 to:“ und „Move Axis 2 to:“ und Aktivieren der Schaltfläche „Go“ 

 

 

Übersicht des Reiters „Homing and Collision“ im Programm BRDF (Version 1.0) 
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Zwischenergebnis: 

• Beide Goniometerarme sind auf 0° kalibriert worden und stehen nun exakt auf einer 
180°-Achse. Diese Stellung entspricht der Grundposition der beiden Goniometerarme 
für die Versuche. 
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10.5.2 Justieren des Goniometerkopfs und der Kamera 

 

• Einstellen aller Justierschrauben des Goniometerkopfs (Huber 1005) auf 
Nullposition 

• Aufsetzen der Justiernadel mittels des entsprechenden Adapters und Fixierung 
mittels Gewindeschrauben 

 

 

Justiernadel mit Adapter auf Goniometerkopf 

 

 

• Öffnen des Programms uEye Cockpit (Version 4.40.0000) 
• Öffnen des Reiters „Zeichnen“ und Einblenden des Fadenkreuzes 
• Einstellen der Neigung der Kamera auf Nullposition 
• Einstellen der Rotation der Kamera mithilfe der Justiernadel und des 

Fadenkreuzes (darauf achten, dass die vertikale Achse des Fadenkreuzes durch 
die Spitze der Justiernadel läuft), dabei Stellung der Goniometerarme zueinander 
180° 

• Schließen des Programms uEye Cockpit und Öffnen von BRDF 
• Fahren des Kameraarmes in 90°-Stellung zum zweiten Goniometerarm 
• Schließen von BRDF und Öffnen von uEye Cockpit sowie Einblenden des 

Fadenkreuzes 
 
 
 



Anleitungen 

136 

 
• Prüfung, ob auch in dieser Position das Fadenkreuz durch die Spitze der 

Justiernadel läuft 
• Falls nicht: Anpassen der Rotation der Kamera sowie leichte Justierung des 

Goniometerkopfes und gegebenenfalls Wiederholen aller Schritte, bis in beiden 
Ebenen das Fadenkreuz der Kamera und die Spitze der Justiernadel sich 
überlagern 

• Manuelles Schwenken des Kameraarmes am Ende zur Prüfung der 
Zwischenpositionen, die Justiernadel soll dabei möglichst nicht aus dem Zentrum 
des Bildes wandern 

• Bei korrekter Einstellung Fixieren der Rotationsachse der Kamera und erneutes 
Kalibrieren der Position des Kameraarmes (vgl. 5.1) und Zurückfahren in 
Grundposition (vgl. 10.5.1) 

 

 

Justierung der Kamera mittels Justiernadel. Die vertikale Achse des Fadenkreuzes läuft 

durch die Spitze der Justiernadel. Dies muss auch nach Schwenk des Kameraarmes um 

90° gegeben sein. 
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Zwischenergebnis: 

• Goniometerkopf und Kamera sind auf einer Achse 
• Der Goniometerkopf ist im Rotationszentrum des Kameraarmes 
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10.5.3 Justieren des Küvettenträgers 

 
• Maschinelles Fahren des Kameraarmes in Grundposition (vgl. 10.5.1) 
• Einspannen der Zielscheibe (s.u.) in den Adapter (s.u.) 
• Adapter samt Zielscheibe in die Glasküvette einführen und auf dem 

Küvettenträger platzieren 
 

 

Zielscheibe 

 

 

Adapter für Zielscheibe in der Glasküvette 

 
• Aufsetzen des Küvettenträgers auf den Goniometerkopf 
• 90°-Schwenk (maschinell) der Kamera und Überprüfen der Achse der 

Zielscheibe (diese muss parallel zur vertikalen Achse des Fadenkreuzes sein) 
• Zurückfahren des Kameraarmes auf Grundposition 
• Überprüfen der Ausrichtung der Zielscheibe mittels Fadenkreuz der Kamera: 

horizontale Linien sollen parallel sein, vertikale Linie des Fadenkreuzes und 
vertikale Nulllinie der Zielscheibe müssen parallel aufeinander liegen. Zunächst 
sollte die Zielscheibe gezielt rotiert werden, um dies möglichst genau zu erfüllen. 

• Rotieren des Küvettenhalters, damit vertikale Linie des Fadenkreuzes und 
vertikale Nulllinie der Zielscheibe aufeinander liegen 
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Linien Parallel, jedoch seitlich verschoben. Rotieren des Küvettenträgers nötig. 

 

• Fixieren des Küvettenträgers 
 

  

Küvettenträger wird fixiert 

 

 

Zwischenergebnis: 

• Der Küvettenträger ist so angeordnet, dass Proben im Probenhalter senkrecht zur 
Kameraachse stehen. 
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10.5.4 Justierung der Dioden 

 
• Einschrauben der Dioden in den XY-Translator (beziehungsweise im alten 

System: Einführen und Festklemmen in den Diodenhalter)  
• Fokussierung auf das Zentrum des Aufbaus auf Höhe des Probenhalters mithilfe 

einer Detektorkarte (Thorlabs VRC5) 
 

 

Detektorkarte 

 

 

Detektorkarte: Einstellung der Fokussierung 
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• Ausrichten der jeweiligen Dioden mithilfe des XY-Translators und des 
Linearschlittens 

• Ziel: Ausrichtung der Dioden mittig zur Achse der Kamera, übereinstimmende 
horizontale und vertikale Ausrichtung der Dioden zueinander 

• Kontrolle per Kamera über das Programm „uEye Cockpit“ mit eingeblendetem 
Fadenkreuz (unter dem Reiter „Zeichnen“ zu finden) 

 

 

650nm-Diode zur Achse der Kamera justiert (Programm: uEye Cockpit) 
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• Zwischenkontrolle: Einführen des Probenhalters mit fixierter Justiernadel in die 
Glasküvette und Kontrolle der Ausrichtung der Dioden relativ zur Glasküvette 

 

 

532nm-Diode mittig zur Nadel und damit zur Glasküvette ausgerichtet 

 

• Einschrauben einer Zielscheibe (s.u.) in den entsprechenden Adapter (Thorlabs 
CP02/M) zur Montierung auf den Parallelstegen der Kamerahalterung (später 
wird dort der Detektor mittels Adapter montiert) 

• Kontrolle der Ausrichtung der Dioden, im Idealfall: Übereinstimmung mit 
Kamerabild, falls Abweichung vorhanden: Justierung der Parallelstege 

 

 

 

 

 

 

 

 

 



Anleitungen 

143 

 

 

532nm-Diode zentriert auf Zielscheibe 

 

Ergebnis: 

• Die Kamera und die Dioden bilden eine Achse 
• Der Küvettenträger ist so angeordnet, dass Proben im Probenhalter senkrecht zur 

Achse zwischen Dioden und Kamera stehen 
• Der Goniometerkopf und somit Probenhalter und Proben sind im 

Rotationszentrum 
• Die Glasküvette wird von den Laserstrahlen ausgehend von den Dioden in ihrer 

Mittelpunktachse getroffen 
• Die Parallelstege der Kamera sind parallel zur Kameraachse ausgerichtet 
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10.5.5 Kalibrierung und Einstellen des Detektors 

 
• An der Konsole des Thorlabs PM100D unter „Meas Config“ unter „Zero“ die 

0%-Kalibrierung durchführen. 
• Der Detektor muss dafür mit dem Deckel abgedeckt sein. 

 
 

• Einstellung und Kalibrierung über Thorlabs-eigene Software (Thorlabs Optical 
Power Meter Utility) 

• Im oberen Drittel links befinden sich verschiedene Schaltflächen zum Einstellen 
des Detektors (rot) 

 

 

Einstellungen:  

• „Range“: Auto 
• „Wave“: die zu messende Wellenlänge eintragen 
• „Units/Display“: „Units“: Watt 

 
 

Einstellungen für die Transmissionsmessungen unter „Log Config“: 

• „No of Samples“: 10 
• „Interval Time [s]“: 6 
• „Averaging“: 10 
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Einstellungen für die Streulichtmessungen unter „Log Config“: 

• „No of Samples“: 400 
• „Interval Time [s]“: 1 
• „Averaging“: 100 

 

Zusätzliche Einstellungen für die Streulichtmessungen in BRDF 1.0: 

• Shutter set: 2000ms 
• Lichtquelle: auf -90° fixiert 
• Kameraarm: Positionswechsel von -90° in 5°-Schritten bis 140° 
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