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ABSTRACT 

Alzheimer`s disease (AD), a very complex neurodegenerative disease, is characterized 

histopathological through amyloid plaques (formed by accumulation of Aβ-peptides 

which are formed by consecutive cleavage of the APP protein) and neurofibrillary tangles 

(aggregates of hyperphosphorylated tau protein). Although these two protein 

accumulations are characteristic for this disease, a mechanistic link between them has yet 

to be established. In the current study, chronic in vivo two-photon microscopy was 

performed in a transgenic AD mouse model with lack of murine tau protein to monitor 

the impact of the tau protein on early and late β-amyloid pathology. The longitudinal 

approach allowed to assess the kinetics of growth and formation of individual plaques and 

associated axonal and presynaptic dystrophies. Lack of tau could not prevent but slowed 

down the progressive β-amyloid deposition and associated synaptic pathology 

significantly. Notably, the data revealed that the accumulation of APP and BACE1 in axonal 

and presynaptic dystrophies is tau-dependent. The observed findings suggest a new 

relation between the expression of tau and amyloid beta peptide pathology which may 

have profound implications for new strategies to hold the disease progression.  
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ABSTRAKT 

Alzheimer ist eine komplexe neurodegenerative Erkrankung, die histopathologisch durch 

das Auftreten von β-amyloiden Plaques und neurofibrillären Tangles charakterisiert ist. 

Plaques entstehen durch Akkumulation des β-amyloiden Peptids (Aβ), welches durch 

sequenzielle Spaltung des APP-Proteins gebildet wird. Tangles bestehen aus 

hyperphosphoryliertem Tau Protein. Obwohl die Akkumulation dieser beiden Proteine für 

die Alzheimer-Krankheit charakteristisch ist, bleibt die mechanistische Verbindung 

zwischen ihnen bislang unklar. In der aktuellen Studie wurde der Einfluss des Tau-Proteins 

auf die frühe und späte Aβ-Pathologie untersucht. Dafür wurde chronische in vivo Zwei-

Photonen-Mikroskopie in einem transgenen Alzheimer Mausmodell mit deletiertem Tau-

Gen durchgeführt. Der longitudinale Ansatz ermöglichte die Beurteilung der 

Wachstumskinetik und Bildungsrate einzelner Plaques und damit verbundener axonaler 

Dystrophien. In Abwesenheit von Tau wurde die fortschreitende Aβ-Ablagerung und die 

damit verbundene synaptische Pathologie zwar nicht verhindert, jedoch verlangsamt. 

Bemerkenswerterweise zeigten die Daten, dass die Akkumulation von APP und BACE1 in 

axonalen und präsynaptischen Dystrophien Tau abhängig ist. Die beobachteten 

Ergebnisse deuten auf einen neuen Zusammenhang zwischen Tau und der Aβ-Pathologie 

hin. Die Erkenntnisse könnten tiefgreifende Auswirkungen auf neue Strategien zur 

potentiellen Behandlung der Alzheimer-Erkrankung haben. 
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AIM OF THE STUDY  

The hallmarks of Alzheimer` disease (AD) are amyloid plaque pathology by accumulation 

of β-amyloid (Aβ) peptides and neurofibrillary tangles by hyperphosphorylation of tau. 

The ‘amyloid cascade’ hypothesis represents a widely accepted concept for the 

description of the cellular events associated with AD. The prevalent amyloid cascade 

hypothesis postulates abnormal production and accumulation of β-amyloid (Aβ) as the 

most critical trigger in the development of Alzheimer’s disease (AD) pathology. According 

to this classical view, Aβ is an executer of tau pathology, which in turn affects neuronal 

and synaptic function, neuronal toxicity and degeneration. However, the relation 

between Aβ and tau pathology throughout the disease development is not understood 

fully. 

We aimed to investigate the dynamics of individual amyloid plaque growth and the 

development of associated presynaptic and axonal pathology by chronic, long-term in vivo 

two-photon imaging as well as immunohistochemistry. In order to tackle this question, 

we generated a Tau-/- x APPPS1 x VGlut1Venus mouse line by crossing transgenic an 

Alzheimer mouse model APPPS1 mice (Radde et al., 2006) with VGLUT1Venus mice (Herzog 

et al., 2011) and Tau-/- mice (Dawson et al., 2001).  
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INTRODUCTION 

Alzheimer`s disease 

Prevalence  

Alzheimer’s disease is a progressive, unceasing, neurodegenerative disorder that affects 

wide areas of the cerebral cortex and hippocampus (Brettschneider et al., 2015). 

Abnormalities in the frontal and temporal regions are early signs of the disease, and they 

slowly progress to other areas of the neocortex at rates varying between individuals. 

Alzheimer’s disease is a chronic and fatal neurodegenerative disease with long preclinical 

and prodromal phases (approximately 20 years) with an average clinical duration of 8–10 

years. The disease has an estimated prevalence of 10–30% of the population >65 years of 

age with an incidence of 1–3%. Most common form in patients with Alzheimer’s disease 

(>95%) is the sporadic form, which is characterized by a late onset (80–90 years of age) 

(Kawas et al., 2000; Norton et al., 2014). The sporadic form develops due to failure to clear 

the amyloid‑β (Aβ) peptide from the brain and depends on numerous genetic risk factors 

(Masters et al., 2015). Besides, co-morbidities such as cerebrovascular disease and 

hippocampal sclerosis are frequent at this age in those patients; which brings problems in 

incorrect diagnosis.  

A small proportion of patients (<1%), on the other hand, carry inherited genetic mutations 

in presenilins, amyloid precursor protein (APP) production and processing of Aβ (Terwel 

et al., 2002). The familial disease develops at a much younger age (mean age of ~45 years).  

The current gold standard in biomarkers included positron emission tomography (PET) for 

brain Aβ imaging and Aβ and tau concentrations in the cerebrospinal fluid (CSF) 

biomarkers allow detecting AD 15-20 years before clinical onset (Jansen et al., 2015; 

Ossenkoppele et al., 2015). In most clinical respects, the sporadic and familial forms of 

Alzheimer’s disease are comparable, including the rate of disease progression and 

biomarker profiles (Shah et al., 2017). Many risk factors such as mid-life hypertension (RR: 

1.61), mid- life obesity (RR: 1.60), physical inactivity (RR: 1.82), depression (RR: 1.65), 

smoking (RR: 1.59) and low educational attainment (RR: 1.59)  are also involved in the 

disease (Norton et al., 2014). Several approved drugs ameliorate some of the symptoms 
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of Alzheimer’s disease, but no current interventions can modify the underlying disease 

mechanisms. Management is focused on the support of the social networks surrounding 

the patient and the treatment of any comorbid illnesses, such as hypertension, diabetes 

and cerebrovascular disease. 

Hallmarks 

The neuropathological and neurochemical hallmarks of Alzheimer’s disease can be listed 

as: synaptic, neuronal and memory loss (Götz et al., 2004); abnormality in specific 

neurotransmitters affecting cholinergic, monoaminergic and glutamatergic systems 

(Noetzli and Eap, 2013); the presence of abnormal proteinaceous deposits in neurons 

(noted as neurofibrillary tangles) (Glenner and Wong, 1984) and in the extracellular space 

(as cerebrovascular, diffuse and neuritic plaques) (Glenner and Wong, 1984). 

In pathological levels, specific protein inclusions are observed in neurodegenerative 

disorders (Goedert, 2009). Two types of aberrant protein deposits were described in 

Alzheimer`s disease: firstly intra-neuronal tau tangles and secondly extra-neuronal 

amyloid β peptides which are also seen in the walls of blood vessels (Brion et al., 1985; 

Masters et al., 1985). Recent studies propose that protein assemblies follow self-

propagating features and alternative conformations, such as prions (Jucker and Walker, 

2013). The direct or indirect mechanical relation between tangles and plaques remains 

elusive. On the other hand, tau inclusions correlate better with cognitive impairment than 

amyloid-β deposits (Arriagada et al., 1992). 

Aβ plaques are encountered in basal temporal and orbitofrontal neocortex in the early 

stages of the AD (Braak and Braak, 1991; Thal et al., 2002). In the later stages, plaques are 

found in many brain regions such as throughout the neocortex, hippocampal formation, 

amygdala and basal ganglia (Braak and Braak, 1997). Tau inclusions are observed in locus 

coeruleus and entorhinal cortex. In later stages, tangles are also detected in the 

hippocampal formation and in the neocortex (Figure 1) (Morris et al., 2014). 

Plaques and neurofibrillary lesions were revealed by electron microscopy to be composed 

of abnormal filaments whose diameter is of ~10 nm with the fine unbranched structure 

(Eisenberg and Jucker, 2012). Amyloid filaments form several proto-filaments with β-

sheet structures stabilized through hydrogen bonds, predominantly in parallel form.   
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Amyloidogenic peptides in crystal structures complement each other across the sheet-

sheet confirmation without water, in dry-steric zipper form (Sawaya et al., 2007; 

Eisenberg and Jucker, 2012).  

Studying Alzheimer’s disease mechanisms in humans will bring new insights into the 

pathogenesis, diagnosis, and treatment of the disease. Since it is a disease associated with 

memory decline, understanding the disease will eventually lead to understanding of 

memory.  Aβ and tau are two elements contributing to Alzheimer’s disease.  

 

Figure 1. Amyloid plaques and neurofibrillary tangles progression. (A) Amyloid plaques 
and neurofibrillary tangles, from Spielmeyer’s classic textbook ‘Histopathologie des 
Nervensystems’ using the Bielschowsky method of silver impregnation to visualize the 
aggregated proteins that constitute the extracellular plaques and intracellular 
neurofibrillary tangles. (B) In typical cases of Alzheimer’s disease, Aβ deposition 
precedes neurofibrillary and neuritic changes with an apparent origin in the frontal and 
temporal lobes, hippocampus and limbic system (top row). Less commonly, the disease 
seems to emerge from other regions of the cerebral neocortex (parietal and occipital 
lobes) with relative sparing of the hippocampus. The neurofibrillary tangles and neuritic 
degeneration start in the medial temporal lobes and hippocampus and progressively 
spread to other areas of the neocortex (bottom row). Aβ deposition (stages A, B, and C) 
and neurofibrillary tangles (stages I–VI) are adapted from Braak and Braak. Image is 
used with a license details and the terms and conditions provided by Springer Nature 
and Copyright Clearance Center (Masters et al., 2015) (Licence # 4266481010097; Jan 
12, 2018). 

Amyloid cascade hypothesis: 

The APP is a type 1 transmembrane glycoprotein (Masters and Selkoe, 2012) whose N-

terminus is region located in the extracellular space and its C-terminus intracellular. N-

terminal side of the APP is cleaved by β-secretase and successively by γ-secretase (for 
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reviews see (Goedert, 2015; Montagna et al., 2017). β-site APP cleaving enzyme 1 (β-

secretase, BACE1)  is a type I transmembrane aspartyl protease, whose active site is in the 

extracellular space. It is a rate-limiting factor in Aβ peptide production by removing the 

extracellular fragment sAPPβ from APP. γ-Secretase is a membrane-embedded aspartyl 

protease. Although γ-secretase has several domains such as presenilin (PS; including PS1 

and PS2), nicastrin, anterior pharynx defective 1 (APH-1), and presenilin enhancer 2 (PEN-

2), PS domains are actively involved in APP cleavage (Zhang et al., 2014). The various 

isoforms of γ-secretase cleave APP at particular sites that produce Aβ37, Aβ38, Aβ39, 

Aβ40, Aβ42, and Aβ43 peptides (Golde et al., 2000; Selkoe, 2001). Approximately 90% of 

secreted Aβ peptides are 40 aa long (Aβ40) (Qi-Takahara et al., 2005). The second most 

common Aβ species is Aβ42, which is prone to aggregate.  Consequently, Aβ peptides 

spontaneously aggregate into soluble oligomers, which come together to form fibrils and 

plaques (Figure 2). Non-pathogenic form of APP, more explicitly P3, is produced by α-

secretase  and successively γ-secretase cleavage (Phinney et al., 1999).  

Mutations in APP are located near the β- and γ-secretase cleavage sites as well as within 

Aβ region (Benilova et al., 2012; Goedert, 2015). Mutations near the β-secretase cleavage 

site enhance production of Aβ, whereas those near the γ-secretase cleavage site increase 

the ratio of Aβ42 to Aβ40. Mutations within Aβ region increase rates of aggregation, 

suggesting that familial AD is initiated by the aggregation of Aβ.  

APP expressed on the cell surface is endocytosed. After endocytosis, endosomal Aβ is 

produced and excreted to the extracellular space (Morris et al., 2014). Aβ is a typical 

product of the APP metabolism and is generated at significant levels in neurons and low 

levels in other cell types. The neuronal function of APP is yet controversial, but it might 

be associated with synaptic plasticity. Multiple lines of evidence suggest that Aβ 

accumulation and a change of conformation to forms with a high β-sheet structure is 

essential in Alzheimer’s disease pathogenesis (Holtzman et al., 2002). 

Plaques can be identified by light microscopy using methods specific for fibrillar amyloids 

such as thioflavin-S or Congo red staining. They can be classified into two main types: 

“primitive” and “cored” plaques. Primitive plaques are composed of extracellular wisps of 

amyloid woven among a dense cluster of dystrophic neurites; whereas cored plaques 

possess a large central mass of amyloid. Sometimes this amyloid core has a star-shaped 
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appearance with spokes of amyloid extending outward, surrounded by a cluster of 

dystrophic neurites and wisps of amyloid. 

 

Figure 2: APP cleavage cascade in Alzheimer`s disease. Combinatorial action of β and γ-
secretases produce Aβ species. Especially, Aβ42 species are most prone to aggregate 
into plaques. 

Types of plaques:  

Diffuse plaques  

Diffuse plaques generally have a diameter of 10–70 µm (Armstrong, 1999; Bussière et al., 

2004; Fiala, 2007; Blazquez-Llorca et al., 2017). The smallest primitive plaques contain 

clusters of mostly regular-looking neuronal and glial processes and a few dystrophic 

neurites in the neuropil. The density of synapses is markedly diminished in neuropil at the 

diffuse plaques (Dickson et al., 1989). Electron microscopy reveals many more microscopic 

neurotic plaques that cannot be examined with the light microscopy (Blazquez-Llorca et 

al., 2017).  

Cored plaques 

Cored plaques consist of a vast central mass of amyloid, which diverges from primitive 

plaques and they are often referred to as compact or “burnt-out”. The amyloid core might 

have a star-shaped appearance with spikes of amyloid extending outward, and a spherical 

cluster of dystrophic neurites and extracellular wisps of amyloid as in the 

primitive/rudimentary plaques frequently surround it.  
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Ultrastructural studies report that this halo effect is created by glia encircling the core of 

the plaques (Kato et al., 1998; Stalder et al., 2001; Ye et al., 2003). Their cores are 

enveloped by one or two activated microglia, while large plaque cores are surrounded by 

processes from dozens of microglia and astrocytes (Ye et al., 2003).  

Tau protein (MAPT) 

Isoforms and expression pattern 

Human MAPT (microtubule-associated protein tau) gene is located on chromosome 17, 

with length over 100 kb and a number of 16 exons. Tau protein expression is mainly 

identified in neurons and localized preferentially in axons. Tau protein was observed 

likewise in astrocytes and oligodendrocytes at low levels under non-disease conditions 

(Tashiro et al., 1997). However, varied types of glial cells such as oligodendrocytes and 

astrocytes may also express high level of tau protein in taupathies like supranuclear palsy 

or Pick`s disease (Terwel et al., 2002; Kahlson and Colodner, 2015). 

Tau isoforms containing an extra exon, exon 4a, are present in the peripheral nervous 

system (PNS) (Goedert et al., 1992). Isoforms without exon 10 are encountered in early 

developmental stages, whereas isoforms with alternative splicing of exon 2, 3 and 10 are 

expressed in adult brains. Due to alternative splicing, the adult brain contains six tau 

isoforms. These six tau protein isoforms range from 352 to 441 amino acids (Figure 3).  

The shortest tau protein isoform (i.e., three-repeat tau with no amino-terminal inserts-

0N3R) is present merely in the fetal human brain, whereas in the cerebral cortex of 

healthy adults, the amounts of three-repeat and four-repeat tau are equal to each other 

(Goedert and Jakes, 1990). This might imply that the different tau species must interact 

with specific subsets of proteins and execute specific cellular functions that are 

indispensable for development. 

The expression of tau in grey matter is approximately twice as high as in the white matter 

and cerebellum. In parallel, MAPT mRNA expression in the frontal cortex (highest 

expression) and within the white matter (lowest) differs 1.5-fold. Tau protein expression 

is highest in the frontal cortex; lowest in the cerebellum and putamen (Trabzuni et al., 

2012). In the cerebellum, 0N3R isoform is determined as considerably lower compared 

with other regions. MAPT mRNA expression at the gene level and tau protein levels vary 
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in regional levels. The localized differences in the alternative mRNA splicing of MAPT 

might give rise to different roles of tau in various taupathies (Spillantini and Goedert, 

2013).  

Although Tau is expressed in many forms in vertebrates, the isoform ratios are not 

conserved. For example, in the brain of adult chickens, tau isoforms with three, four, or 

five repeats are expressed and most adult rodents express the four-repeat isoform (Götz 

et al., 1995; Yoshida and Goedert, 2002). 

Tau is expressed at high levels in murine brains. More specifically 0N4R isoform is the 

most predominant one in two-month-old adult mice. A study with subcellular 

fractionations showed how the different isoforms are distributed at subcellular level. 1N 

isoform is over-represented in the soluble nuclear fraction; also present in cell bodies and 

dendrites, but not in axons. The 0N isoform is mainly detected in cell bodies and axons, 

whereas nuclei and dendrites are only slightly stained with the 0N antibody. The 2N 

isoform is highly present in axons and in cell bodies, with a detectable localized in 

dendrites and a very slight expression in nuclei. While the 2N isoform was undetectable 

at P0, 2N isoform was mainly found localized to cell bodies and dendrites in the adult brain 

(Liu and Götz, 2013). The presence of 1N and 2N in dendrites and the absence of 1N tau 

in axons suggest not only isoform-specific functions, but also make tau more accepted as 

a post-synaptic molecule. 

N-terminal half of tau protein contains a larger variability than at C-terminal tau (León-

Espinosa et al., 2013). In parallel, the localization of threonine (or alanine) residues are 

concentrated in a higher proportion at the N-terminal region of tau protein (Avila et al., 

2016). The C-terminal part shows more conserved residues among different species which 

indicates that these fewer variable regions could be essential for some of its functions.  

Tau protein was considered being natively unfolded and not having strong secondary 

structure (α- helix or β-sheet) in solution (Schweers et al., 1994). Studies in fluorescence 

resonance energy transfer demonstrated that soluble WT tau monomers prefer a “paper 

clip” conformation by interactions of C-terminus with microtubule-binding repeats 

(MTBR) (Jeganathan et al., 2006). One of the major problems in structural studies is the 

flexible and intrinsically disordered nature of tau proteins. This type of proteins offers a 
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wide population of compact conformations with a highly dynamic structure and a complex 

network of long-range transient contacts, which is not amenable to be studied (Avila et 

al., 2016).  

Domains 

Tau protein isoforms consist of two main domains: projection domain at the amino-

terminus as well as microtubule-binding domain at the carboxy-terminus. More precisely, 

projection domains encompass an amino-terminus region with a significant proportion of 

acidic residues and a proline-rich domain. The functions of the projection domain of Tau 

protein is determining the stabilizing and spacing between axonal microtubules (Chen et 

al., 1992), interactions with other proteins such as cytoskeletal elements, mitochondria 

or neuronal plasma membrane by establishing the link between actin and tubulin (Drubin 

and Kirschner, 1986; Jung et al., 1993). In short, this projection domain is important for 

tau protein binding to plasma membrane-associated proteins (Brandt et al., 1995).  

In the microtubule-binding domain, three (Tau 3R) or four (Tau 4R) repetitive sequences 

are located. The repeats are formed by 31 or 32 similar, but not identical, residues. These 

repeats have mainly two parts: first, 18 residue sequences with a tubulin-binding capacity 

(Lee et al., 1989) and second, less conserved 13-14 sequences with inter-repeat residues 

(Goedert et al., 1989). Tau 4R isoform has higher affinity to microtubules, compared to 

Tau 3R (Goedert and Jakes, 1990; Scott et al., 1991), thus Tau 3R could be displaced by 

the other isoform. The mechanism of tau protein binding to the microtubules is explained 

by “Jaws-model”; which is not only three or four C-terminal repeats; but also flanking 

regions are fundamental in the Tau binding affinity to microtubules (Mandelkow et al., 

1995) 
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Figure 3: Structure of Tau gene and protein isoforms. Tau protein contains several 
regions such as an N-terminal acidic, a proline-rich repeat domain and C-terminal region. 
Tau isoforms vary in the N-terminal acidic region and in the number of repeat domain 
regions. Presence of various isoforms in humans, mice, and rats in PNS and CNS are 
illustrated. 

Cellular and subcellular localization of the tau protein 

Tau can bind to microtubules and to the plasma membrane. As pointed out above, murine 

tau protein isoforms have special sub-cellular distribution, including the nucleus, axons, 

dendrites and the cell body. This suggests that the particular distribution of each tau 

isoforms is likely to reflect unique functions (Liu and Götz, 2013). 

The phosphorylation of tau proteins influences its cellular localization. Its proline-rich 

phosphorylation is predominantly present in the somatodendritic compartment and 

dephosphorylation of the proline-rich region predominantly occurs in distal axonal 

compartments. Carboxyl-terminal domain of tau is mainly phosphorylated in the distal 

axons. 

Other MAPT Binding Proteins  

Several MAPT interaction partners of functional importance have been identified in 

addition to microtubules. For example, actin or protein phosphatase 2A binds to tau, 

through tau repeats (Caceres et al., 1990; Bakota and Brandt, 2016), which inhibits the 
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neurite polarity. Mutations in the carboxy-terminal, non-microtubule binding region 

affect tau protein`s bridging function of growing microtubules to the membrane within 

the growth cone. The stability of bridging and the axonal localization of tau are supported 

by membrane-associated proteins such as annexin A2 (Gauthier-Kemper et al., 2011). The 

proline-rich sequence in the amino terminus of tau (more definitely membrane-

associated components) interacts with proteins containing SH3 domains (Hwang et al., 

1996), such as FYN and SRC-family non-receptor tyrosine kinases (Lee et al., 1998). This 

advocates a mechanism for coupling extracellular signals to the cytoskeletal system; 

leading to cytoskeletal changes. In AD, this interaction is involved in conferring Aβ-toxicity 

at the post-synapses (Ittner et al., 2010).  

Protein phosphatase 2A can be listed as the primary tau phosphatase, which regulates 

phosphorylation and development of tauopathies in AD (Sontag et al., 1999; Sontag and 

Sontag, 2014).  

A recent study with tandem-mass labeling and quantitative mass-spectrometry identified 

101 proteins that either directly or indirectly interact with tau and/or with the three 

isoforms (0N, 1N, and 2N) (Liu et al., 2016). Those 101 proteins were identified as 

membrane-bound proteins (51%), cytoplasmic (17%) and cytoskeletal proteins (12%). The 

biggest group of tau-interacting proteins, which are membrane-bound proteins can be 

more specifically categorized as mitochondrial proteins (40.4%), plasma membrane 

(25.5%) and vesicle membrane proteins (21.3%), endoplasmic reticulum/Golgi apparatus 

(10.6%) and the endosome (2.1%) (Liu et al., 2016). Some of the 0N-interacting proteins 

can be counted as: ATP synthase β-subunit, α-synuclein, β-synuclein, mitochondrial 

creatine kinase U-type (MtCK), creatine kinase B-type, synapsin 2 and synaptogyrin-3. 

Some 1N interacting proteins include as ATPase, neuromodulin, tropomyosin α-1 chain 

isoform 10, calmodulin and myelin basic protein isoform 3. 2N-interacting proteins: 

APOA1, APOE, synaptotagmin, syntaxin 1B and 14-3-3ζ. Different ATPase subunits, cofilin-

1, synaptophysin and DNM1 are the ptoreins that bind to all isoforms (Liu et al., 2016). 

More importantly, exon 3 of a 2N isoform of tau protein was shown to have a distinct role 

compared to the other isoforms in neurological diseases due to their binding preference 

to disease-related proteins (Zhong et al., 2012).  
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Tau can interact with TIA1, a RNA binding protein, through a RNA intermediate 

(Vanderweyde et al., 2016). The interaction of tau with other proteins like ferritin and 

transferrin has been reported (Jahshan et al., 2016) and the residues 139–143 could be 

involved in the binding to heparin which is used as an anticoagulant (blood thinner). The 

residues 336–343 and 347–351 could be involved in chaperone-mediated autophagy 

(Wang et al., 2009). 

Another protein involved in Alzheimer`s disease is APOE (Saunders et al., 1993). The 

interaction of tau and APOE has been shown in neurofibrillary tangles and with the 

method of co-IP and even under 2% SDS presence, which indicates that this interaction is 

strong and consistent (Liu et al., 2016). Tau - actin interactions may mediate neuronal 

degeneration by altering the organization and the dynamics of the actin cytoskeleton 

(Fulga et al., 2007).  

Table 1: Tau interacting proteins are classified according to their function and 
subcellular localization 

 

The role of Tau in AD 

The MAPT  locus is involved in multiple neurodegenerative disorders, including 

progressive supranuclear palsy (Baker et al., 1999; Höglinger et al., 2011), corticobasal 

degeneration (Houlden et al., 2001), Parkinson's disease (Golbe et al., 2001) and 
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Alzheimer’s disease (Trabzuni et al., 2012). In some of these diseases such as progressive 

supranuclear palsy, corticobasal degeneration and Pick`s disease tau inclusions are also 

found in glial cells (Komori, 1999). 

Senile plaques and neurofibrillary tangles are both hallmark lesions of Alzheimer’s 

disease. The relationship between tau protein and amyloid beta protein in Alzheimer`s 

disease has been studied extensively. However, the mechanistic link between them is 

incompletely understood. 

About 5% of cases of frontotemporal dementia carry mutations in MAPT, which cause a 

toxic gain of function (Goedert et al., 2012). Most of the mutations are located in exons 

9-12, the repeat domains and in the adjacent introns. Those mutations can affect either 

the protein expression level or the alternative splicing of the tau pre-mRNA. Single amino 

acid change/deletion might also affect the protein level as well as the interaction of tau 

with microtubules (Spillantini and Goedert, 2013). Other tau mutations involved in the 

assembly of tau into filaments increases the alternative mRNA splicing of exon 10 of 

MAPT, which influences the three-repeat to four-repeat isoform ratio.  

The total tau levels in CSF were found approximately 300% higher in AD patients than in 

control subjects (Blennow et al., 2001). Increased concentrations of tau in CSF can predict 

the disease 15 years before symptoms developed, whereas global cognitive impairment 

starts 5 years before the disease prognosis (Spillantini and Goedert, 2013). However, 

total-tau level change in CSF may not be specific for AD, since they can be observed in 

patients with acute stroke, head trauma or Creutzfelt-Jakob disease (Rosén et al., 2013).  

Studies so far show that Tau takes a role in Aβ-induced neuronal dysfunction at multiple 

levels such as disassembly of microtubules (King et al., 2006; Jin et al., 2011; Zempel et al., 

2013), cell-cycle re-entry (Seward et al., 2013), cell death (Rapoport et al., 2002; Leroy et 

al., 2012; Nussbaum et al., 2012), DNA double-strand break (Suberbielle et al., 2013), 

synaptic dysfunction (Roberson et al., 2011; Shipton et al., 2011), aberrant network 

excitability (Roberson et al., 2007; Ittner et al., 2010; Roberson et al., 2011), mortality 

(Roberson et al., 2007; Ittner et al., 2010; Roberson et al., 2011; Leroy et al., 2012), 

impaired axonal transport (Vossel et al., 2010), cytotoxicity and cognitive and behavioural 

alterations (Ittner et al., 2010; Roberson et al., 2011; Leroy et al., 2012). 
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Effect of tau protein on cytoskeletal disruption has been proven in non-neuronal cells 

after MAPT transfection. Tau confers acute hyper-sensitivity of microtubules to 

prefibrillar, extracellular Aβ via its active portion in the N-terminal fragment excluding 

microtubules binding region (King et al., 2006; Jin et al., 2011). Especially microtubule 

breakdown and microtubule poly-glutamylation occuring in dendrites is mediated by tau 

(tau missorting) and missorting of Tubulin-Tyrosine-Ligase-Like-6 (TTLL6) into dendrites 

by tau-induced spastin, an MT-severing enzyme (Zempel et al., 2013). 

Amyloid β was shown to be mitotic in vitro experiments (for review (Lee et al., 2009); 

which can induce cell-cycle mediated events in AD. Although most regions of the adult 

human brain do not possess dividing neurons, cortical neurons in AD brain commonly re- 

enter the cell cycle, but then die after exiting G0 of the cell cycle (Greene et al., 2007; Lee 

et al., 2009). Loss of cortical neurons in AD is explained by dying cells through this ectopic 

cell cycle re-entry (CCR) (Mucke et al., 2000; Arendt et al., 2010). It has also been shown 

that amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in 

Alzheimer’s disease (Seward et al., 2013).  

Morphological analysis indicated that neurons expressing either mouse or human tau 

proteins degenerated in the presence of fibrillar Aβ, while tau-depleted neurons showed 

no signs of degeneration; suggesting that more dynamic microtubules might confer 

resistance to Aβ-mediated neurodegeneration (Rapoport et al., 2002). Similar results 

were also observed in vivo since AD mice crossed on TauKO background live longer 

(Roberson et al., 2007, 2011; Leroy et al., 2012; Nussbaum et al., 2012). 

Aβ causes inhibition of long-term potentiation (LTP) and enhancement of long-term 

depression (LTD) in the hippocampus (Walsh et al., 2002). Tau protein is required not only 

for amyloid β-induced impairment of hippocampal long-term potentiation, but also for 

the induction of LTD in the hippocampus. During LTD, synaptic AMPA receptors (AMPARs) 

are removed, so the synaptic efficiency is reduced and a shrinkage and elimination of 

synapses may occur (Collingridge et al., 2010). Especially, tau phosphorylation by GSK3 is 

required for LTD (Kimura et al., 2013). GSK3 is one the main tau kinase whose activation 

phosphorylates tau and eventually causes neurofibrillary tangles. In another study, lack of 

tau also reduced the active form of GSK3β (Leroy et al., 2012). These results suggest that 

not only GSK3 affects tau activity, but also tau affects GSK3 (Avila et al., 2010).  
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The physiology data indicated that tau reduction corrects several abnormalities in 

multiple hippocampal sub-regions in Alzheimer mouse models, such as 

excitation/inhibition imbalance, field potentials, LTP and PPF (paired-pulse facilitation), in 

other words for synaptic plasticity (Roberson et al., 2011; Shipton et al., 2011).  

Double-strand DNA breaks are observed in human amyloid precursor protein (hAPP) 

transgenic mice after exploration of novel environment as a behavioural test. Besides, 

increase in neuronal γH2A.X foci (Crowe et al., 2011), which is a predictor of neuronal 

death and an early marker of nonlethal neuronal harm is observed in AD mice. It was 

shown that Tau reduction prevents the Aβ-induced increase in neuronal γH2A.X foci 

(Suberbielle et al., 2013). 

Aβ-oligomers induced axonal transport defect of mitochondria and anterograde transport 

of neurotrophin receptor TrKA could be prevented with tau reduction to almost wild-type 

level (Vossel et al., 2010). 

Tau and axonal transport 

Axonal transport is one of the perturbed mechanisms in tauopathies, though the available 

data seem controversial. It was shown in several models that tau overexpression results 

in axonal cargo depletion, slowing down the axonal transport and transport deficits. 

Not only tau overexpression but also, an imbalance in 3R:4R tau isoform ratio in cultured 

neurons and mouse models impaired transport dynamics. Tau controls transport and 

subcellular mislocalization of APP intracellularly (Stamer et al., 2002; Mandelkow, 2003; 

Ebneth et al., 2011). 3R isoform promotes the anterograde movement of APP vesicles by 

increasing trafficking distance and reducing retrograde transport velocities, while 4R 

isoform favors retrograde transport by slowing down the anterograde transport (Lacovich 

et al., 2017). 

Studies performed in hippocampal neuronal culture showed that tau is taking an 

important role in mechanisms leading to Aβ-induced neurodegeneration. Tau-depleted 

neurons are not only resistant to Aβ-induced neurodegeneration, but also more 

persistent in dynamic microtubule formation (Rapoport et al., 2002).  



  Introduction
   

22 

 

Tau knockout mice 

In order to understand the physiological functions of tau protein in vivo, several mouse 

strains with tau overexpression as well as tau deletion have been generated (Figure 4) (Ke 

et al., 2012). There are four different Tau knockout mice available. First TauKO was 

generated by Harada and colleagues (Harada et al., 1994). In 2001, two additional tau 

knockout lines have been generated.  A first tau knockout mouse line was carrying GFP-

encoding cDNA in exon 1 of MAPT, which resulted in the deletion of endogenous tau 

protein and expression of a GFP fusion protein with amino acids 1 to 31 of tau under the 

promoter of MAPT (Tucker et al., 2001). Fujio et al., 2007 reported another Tau–/–  line by 

inserting a selection cassette into exon 1 with FRT flank (flippase recognition target) 

recombination motifs allowing subsequent manipulation of the targeted MAPT gene 

(Fujio et al., 2007). And Dawson et al., 2001 reported another TauKO (B6.129X1-

Mapttm1Hnd/J) whose construction was shown in Figure 4. In this study, we used B6.129X1-

Mapttm1Hnd/J TauKO. Therefore, the phenotype of B6.129X1-Mapttm1Hnd/J is in focus.  

B6.129X1-Mapttm1Hnd/J (Dawson et al., 2001): 

Dawson et al., 2001 reported that hippocampal cell culture from TauKO mice show a 

significant delay in axonal and dendritic extensions, which was contrary to what was 

observed in the previous mouse lines.  However, in E16 as well as in brains from newborn 

mice MAP1A was expressed twice as much in TauKO mice (Dawson et al., 2001). Old mice 

showed a significant decrease in P-MAP1B, P-GSK3β, SMAI31, and acetylated α-tubulin 

(Ma et al., 2014) which might suggest an age-dependent role of the tau protein in the 

brain. 

Tau knock-out mice showed a loss of excitatory synaptic proteins such as NR2B, Drebrin 

and post-synapses and pre-synapses like PSD-95, FYN, and Synaptophysin at 19-20 

months old. At 8-9 months, tyrosine hydroxylase (TH) was significantly reduced in the 

subtantia nigra (Ma et al., 2014). In another study, tau knockout mice had higher iron 

concentrations and dopaminergic nerve cell loss in the brain. Besides, increased 

quantification of Fe(II) and Fe(III) staining in the hippocampus; increased cellular APP, 

decreased surface APP were observed (Lei et al., 2012). This study suggested that lack of 

tau induces neurotoxic iron accumulation with an age-dependent manner by APP 
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trafficking. However, the same molecular changes were not reported in other studies with 

the same tau knockout line (Roberson et al., 2007; Morris et al., 2011b). 

The subtle motor deficits at 3–3.5 months, like a decrease in latency to fall and to increase 

in descending/crossing the pole, and more slipped steps, but otherwise normal motor 

functions were independent of the TH levels in the striatum (Morris et al., 2011a, 2013). 

Interestingly, at 12–15 months the knock-out mice weighed more (with 21–22 month-old 

mice showing a trend) (Morris et al.,2013), suggesting that subtle motor deficits are 

related to an increased body weight. Worsened motor abilities and deficits in Morris 

water maze were detected in TauKO mice at age 12 and 24 months (Lei et al., 2012; Ma 

et al., 2014). However, no overt behavioral abnormalities were observed in another study 

at 10-12 months of age (Dawson et al., 2010).  

In parallel, motor deficits in this strain (Dawson et al., 2010) by two different backgrounds 

at 12-months of age were investigated (Lei et al., 2014). The most pronounced phenotype 

was reported with C57BL/6/SV129 background compared C57BL/6, which could be due to 

the already-reported discrepancies in brain metal levels (Maynard et al., 2006)  

 

Figure 4. Generation of Tau knockout mice by targeting exon 1. 

AD mice crossed on Tau deficient background 

The role of tau in Aβ-induced neuronal dysfunction can occur via multiple mechanisms, 

such as DNA double-strand breaks (Suberbielle et al., 2013), cell-cycle reentry (Seward et 

al., 2013), cytoskeletal disruption (King et al., 2006; Zempel et al., 2013), cell death 
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(Rapoport et al., 2002; Leroy et al., 2012; Nussbaum et al., 2012), synaptic dysfunction 

(Roberson et al., 2011; Shipton et al., 2011), aberrant network excitability, mortality and 

cognitive and behavioural alterations (Roberson et al., 2007; Ittner et al., 2010; Roberson 

et al., 2011). 

There are several pieces of evidence showing that a reduction of the endogenous tau level 

does not only prevent behavioral deficits in transgenic mice but also protects them against 

excitotoxicity (Roberson et al., 2007, 2011). Overall tau ablation has been considered as a 

possible therapeutic approach for AD (Morris et al., 2011a; DeVos et al., 2013; Holth et 

al., 2013; Gheyara et al., 2014). Therefore, understanding the enabling role of the tau 

protein in Aβ-induced neuronal dysfunction is important for the development of new 

therapies.   

Several previous studies indicate, that tau is involved in synaptic effects of Aβ-induced 

neuronal dysfunction. Tau reduction prevents LTP impairment, NDMA receptor 

dysfunction and seizure activity in hAPP, hAPPJ9/Fyn and TASD41/Fyn mice (Roberson et 

al., 2007, 2011), (Roberson et al., 2011). Besides, increase in survival rate was observed in 

APP23 (Ittner et al., 2010), hAPP-J20 (Roberson et al., 2007), hAPPJ9/Fyn mice (Roberson 

et al., 2011). However, these changes did not affect Aβ plaque deposition, neuritic 

dystrophy and aberrant sprouting in hAPP-J20 (Roberson et al., 2007). Knowing that tau 

reduction prevents behavioral deficits, but not neuritic dystrophies it was argued with the 

fact that Aβ plaque deposition and neuritic dystrophies are formed first. In other words, 

tau acts downstream in the cascadeof  mechanism relevant in AD pathophysiology; while 

Aβ plaque deposition and neuritic dystrophies are located upstream of the cascade. 

Tau ablation was reported to change Aβ levels in mouse models. In the APPsw mouse 

model, lack of Tau reduces neuritic plaques in 10 and 12 months of age, while increasing 

soluble Aβ40 and 42 levels (Dawson et al., 2010). In the APPxPS1 mouse model (Leroy et 

al., 2012), these results were observed to be inconsistent with the findings from hAPPJ20, 

hAPPJ9, hAPPJ9/FYN, and TASD41/FYN mice.  

In regard to GSK3β and tau protein interaction, many studies have focused on the part of 

phosphorylation of tau by GSK3β regulation. However, growing evidence suggests that 

endogenous tau also regulates GSK3β levels and activity. In heat-shock-induced neuronal 
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injury (Miao et al., 2010) and APPPS1 AD models (Leroy et al., 2012), for example, tau 

reduction decreases GSK3β activity.  

Non-microtubule binding domain of tau has been shown to play a role in Aβ-induced 

deficits in mitochondrial anterograde axonal transport through different factors such as 

activation of axonal phosphotransferases, glycogen synthase kinase 3 (GSK3), protein 

phosphatase 1 (PP1), neuronal activity and through NMDAR signalling (Miao et al., 2010; 

Vossel et al., 2010; Kanaan et al., 2011; Leroy et al., 2012).  

Electrophysiological experiments showed similar NMDA/AMPA receptor currents, 

synaptic transmission and synaptic plasticity between wild-type and tau knockout mice  

(Roberson et al., 2011; Shipton et al., 2011). AD mouse model with Tau deficient 

background are more resistant to seizure-induced toxins and amyloid beta peptides. This 

suggests that tau affects in neuronal excitability via another mechanisms. Indeed, it has 

been suggested that alteration in brain oscillatory pattern could be one of these 

mechanisms (Morris et al., 2011b). Hippocampal theta waves (5–11 Hz) representing 

spatial cognition and memory formation (Itskov et al., 2008) have been shown to slow 

down. Moreover, gamma brain-circuit synchronization (30-80 Hz) has been observed to 

be altered, probably as a consequence of a reduced interneuron communication. This 

suggests that tau deficiency might alter interneuron function in the brain (Cantero et al., 

2011).  

Plaque-associated dystrophies 

Dystrophic neurites are hallmarks of Alzheimer`s Disease, already recognized by Alois 

Alzheimer because of its postive silver staining on histological sections (Alzheimer, 1907). 

Dystrophic neurites were characterized by globular type of swellings and tortuous 

neuronal processes that are associated with extracellular amyloid β (Aβ) plaques.  

Dystrophic formations develop at the very earliest time point of amyloid plaque 

deposition (Gowrishankar et al., 2015). Dystrophies are filled with distinct lysosomes type 

with low levels of Cathepsin B, D, and L (luminal proteases); which indicates that the 

maturation of lysosomes while being carried to the soma is affected.  
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Evidence from transgenic mice demonstrates that most dystrophic neurites are axons 

(Phinney et al., 1999; Tsai et al., 2004; Spires et al., 2005). The dystrophic neurites are 

highly enriched with BACE1 (Zhao et al., 2007), VGLUT1, phosphorylated-tau protein but 

also positive for GAP-43 (presynaptic/axonal growth or plasticity protein).  

In vivo and in vitro studies demonstrated that neuritic abnormalities develop in the vicinity 

of amyloid plaques and eventually result in disruption and breakage of neuronal branches. 

This phenomenon severely disturbs the neuronal connectivity and may contribute to the 

pathogenesis of dementia (Tsai et al., 2004; Blazquez-Llorca et al., 2017).  

Besides, abnormally high expression of BACE1 in dystrophic neurites supports the idea 

that APP cleavage and Aβ overproduction is increased in dystrophic neurites (Stokin et al., 

2005; Radde et al., 2006; Gouras et al., 2010). Aβ has been considered to affect axonal 

transport, which results in axonal swellings and even more Aβ production. At the same 

time, the more axonal transport is deficient, the more Aβ and dystrophic neurites are 

produced due to increased coincidence of APP and BACE in the same compartments. 

Eventually, this leads to a positive feedback loop of altered axonal transport together with 

enhanced Aβ  production as well as worsened oxidative stress and autophagy (Fiala, 

2007). 

Previously, it has been shown that kinesin-I and specifically the kinesin-light chain takes 

an important part in the axonal transport of APP (Kamal et al., 2000). Axonal damage or 

blockage by the release of kinesin-1 from moving vesicles might result in increased APP 

cleavage due to slow spontaneous rate in axons, which allows higher number of cleavage 

process. The release of the C-terminal APP fragment with the kinesin-1-binding region 

might lead to an interruption of anterograde transport as well as the retrograde transport 

of vesicles (Kamal et al., 2001). 

Morphological studies 

In human cases, morphological appearances and compositions of dystrophic neurites vary 

with the pathological stage of Alzheimer`s Disease. In AD patients, dystrophic axons were 

found abundantly in the hippocampal fiber systems originating from the subiculum, CA1, 

and the entorhinal cortex (Su et al., 1993). In the last stage of AD, several subtypes of 

dystrophies can be recognized with their complement of specific cytoskeletal proteins, 
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such as abnormally phosphorylated tau isoforms and synaptic markers (Dickson et al., 

1999). Another type of dystrophic neurites in human AD tissue is of swollen, globular 

morphology. Here dystrophic axons are filled with synaptophysin, chromogranin A and 

APP (Adams and Munoz, 1993; Guevara et al., 2004). Many proteins are involved in 

amyloidogenic and neuropathological pathways, such as GAP-43, ubiquitin, ubiquilin, 

prion protein, cytochrome C, C9 or f72, reticulon-3, and BACE1 have been implicated in 

dystrophic neurite formation (Zhan et al., 1995; Satoh et al., 2013). 

Studies in non-demented controls versus plaque-associated dystrophic neurites in mild or 

severe AD showed that approximately half of the Aβ plaques in control group contained 

neurofilament (NF) positive dystrophic neurites, whereas this ratio was three-fourths in 

AD patients. In addition to neurofilament-positive dystrophic neurites, the paired helical 

filament (PHF) as well as tau-positive dystrophic neurites can be detected at Aβ plaques 

in the control group, but very rarely; whereas half of the Aβ plaques in AD were positive 

for PHF and tau (Su et al., 1998).  

Morphologically, most common organelles in dystrophies are double-membrane-bound 

vesicles with densely compacted amorphous or multilamellar autophagosomes, which 

contain undigested compacted organelle material. Secondly, single or double membrane 

vesicles with translucent or amorphous electron-dense material observed in dystrophies 

reveal the presence of auto-phagosomes with partially digested material and/or the 

mature degradative forms of autophagolysosomes (AVs). In parallel, LC3-II, a marker of 

autophagic lipidation, has been found in dystrophies, and synaptosomal & microsomal 

fractions. This suggests impairment in autophagy mechanism in neuritic dystrophies in AD 

models. Similarly, degradation and maintenance mechanism for multiple components has 

dramatically not only increased, but also impaired in AD tissue.  The PS1 mutation in AD 

has been suggested to be the reason for this abnormality, due to its role in autolysosome 

acidification and maturation (Lee et al., 2010). 

Studies on non-AD cases might give clues to the earliest changes related to AD pathology. 

A subset of non-demented cases shows signs of pathological aging such as widespread 

neocortical amyloid plaques, but no signs of ‘classical’ neurofibrillary pathology or overt 

nerve cell degeneration. Such cases are thought to represent Braak stage III, in other 

words, a preclinical stage of AD, and contain NF triplet protein and α-internexin-labeled 
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dystrophic neurites. In contrast, dystrophic neurites in AD cases include NF triplet protein, 

α-internexin-labeled and also hyperphosphorylated-tau-labelled dystrophic neurites 

(Dickson et al., 1999).  Therefore, it was hypothesized that a NFs and internexin containing 

dystrophic neurites may be the earliest plaque-associated neuritic pathology to appear, 

while they appear in both in aging and in AD. The accumulation of phosphorylated-tau 

occurs at a later time point during AD progression (Dickson et al., 1999; Woodhouse et al., 

2009). Therefore, dystrophic neurites observed in in Tg2576 and TgCRND8 AD mouse 

models exhibited pathology that represents the pathology of aged humans rather than 

AD, due to presence of NF triplet protein, α-internexin-labeled ring like dystrophic neurite 

(Woodhouse et al., 2009). 

Dystrophic neurites surrounding amyloid plaques remain connected to neuronal bodies 

over a relatively long period of time. Then retrograde signals from the axonal terminals 

might be propagated back to the cell body and cause cytoskeletal alterations and 

neurofibrillary tangle formations. Indeed, it was shown that some dystrophic neurites 

could be still followed over the period of 168 days in AD mice models (Blazquez-Llorca et 

al., 2017). Thus, this raises the question as to how dystrophic neurites affect the rest of 

cellular compartments and why some axons (a minority) seem to be more susceptible 

than others form the dystrophic pathology. 

Neurofilaments in axons might be the explanation why some axons are more susceptible 

to the dystrophic pathology. It was demonstrated in AD patients’ tissue and two other AD 

transgenic mouse models (APP/PS1 and Tg2576) that neurofilament-positive axons were 

more susceptible to build dystrophies compared with calretinin positive axons. While the 

density of Calretinin positive neurite density was significantly reduced at the edge of the 

plaques, the loss of density of neurofilament positive neurites was significant at the edge, 

core, and periphery of plaques in all sample groups. Besides, the number of NF+, but not 

CR+, dystrophic neurites (DN) was significantly correlated to Aβ plaque size (Mitew et al., 

2013) 

Numerous other proteins are upregulated in AD patient brains, which can be classified as 

antioxidant, apoptosis-related, heat-shock, energy metabolism, protein metabolism, 

signal transduction, structural and synaptosomal and transport proteins (Fountoulakis 

and Kossida, 2006). Tau protein, dynein heavy chain, GFAP, cathepsin B and D and many 
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more membrane trafficking and cell-adhesion proteins were found enriched in amyloid 

plaques isolated by laser capture microdissection as compared with non-plaque areas in 

AD brain tissues (Kornau et al., 1995).  

In vivo multiphoton imaging studies have already shown that neuritic dystrophies develop 

after plaque formation (Calignon et al., 2008) and grow in size as the size of plaques 

increases (Sanchez-Varo et al., 2012). Over a 72-hour period, neuritic dystrophies 

appeared as very stable structures (Brendza et al., 2005). Previous studies suggested that 

dystrophic neurites were absent in areas distant from Aβ plaques, or before the formation 

of plaques. Ultra-structural morphometric analysis revealed that 64% of dystrophic 

neurites in sections are in the range of 10-50 µm2, 20% are in the range of 50-100 µm2 and 

5% over 100 µm2 range, while non-dystrophic neurites are 1.5 µm2 in size in 4.5-months-

old APPxPS1 mice (Sanchez-Varo et al., 2012). 

A study from our group on two different AD mouse models (dE9xGFP-M and APP-

PS1xGFP-M) showed that axonal dystrophies are very plastic structures that do not simply 

grow in volume over times, but rather fluctuate in size. The axonal dystrophies can also 

disappear if located at the end of the axon and if the parental axon remains intact. 

However, still new dystrophies can appear on the same axon weeks later again. If an axon 

is disrupted at the dystrophic point, re-growth of long axonal segments has been 

observed, especially in the APPxPS1 mouse model, but not in dE9xGFP-M mouse model 

(Blazquez-Llorca et al., 2017). A big advantage of this previous study was that individual 

dystrophies could be followed over a long period of time and volume dynamics could be 

related to the changes in amyloid plaque size.  

BACE1 (β-site APP cleaving enzyme) protein 

BACE1 (β-site APP cleaving enzyme) is a protease belonging to type 1 transmembrane 

protein group with two aspartate residues with the luminal site. It forms dimers or trimers 

to function (Yan et al., 1999; Liebsch et al., 2017). BACE1 mRNA expression levels are 

highest in the brain and specifically in neurons rather than in glial cells (Vassar, 2004). 

Strongest expression is found in regions like the neocortex and the hippocampus 

(Fukumoto et al., 2002). 
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In AD cases, high level of BACE1 accumulation was observed around Aβ plaques within 

axonal dystrophies together with its substrate APP (Zhao et al., 2007; Kandalepas et al., 

2013). Here it might promote the production of certain APP-cleavage products such as 

Aβ42 (Sadleir et al., 2015, 2016).  

BACE1 is degraded within cells through the following pathways: trafficking between the 

trans-Golgi network and then to the plasma membrane where BACE1 can be internalized 

into endosomes, and finally degraded in lysosome (Huse et al., 2000). A di-leucine-based 

signal is located on the carboxyl terminus of BACE1; which takes a role in sorting of BACE1 

from transmembrane proteins to endosomes and lysosomes (Sandoval and Bakke, 1994; 

Koh et al., 2005).  

Knocking out the BACE1 gene revealed that loss of BACE1 abolishes Aβ production 

completely in AD mouse models (Roberds et al., 2001). However, loss of one allele BACE1 

(BACE1+/-) lowers Aβ production only 20% in the cerebrum (McConlogue et al., 2007; Laird 

et al., 2008); which suggests that the other allele of BACE1 is necessary for Aβ production 

and partial loss of one copy can be compensated by another copy.  

BACE1 is synthesized in the endoplasmic reticulum as an immature precursor protein (pro-

BACE1) with a size of 60 kDa. The maturation of BACE1 occurs by its transportation to 

Golgi apparatus and by modification of all three oligosaccharide side chains of the protein 

and by removing the pro-peptide domain by furin proteolysis (Huse et al., 2000). The 

maturation of BACE1 increases its activity, compared with immature BACE1. In addition, 

an acidic environment is necessary for its highest activity such as Golgi apparatus, trans-

Golgi network (TGN), and endosomes (Kalvodova et al., 2005; Vassar et al., 2014). Mature 

BACE1 is highly stable which means that it is transported between the cell surface, the 

endosomal system, and the trans-Golgi network (TGN) multiple times before degradation 

(Huse et al., 2000). 

The role of BACE1 in dystrophies at plaques 

The analysis on postmortem brain and CSF of AD patients proved that not only BACE1 

activity (Tyler et al., 2002; Yang et al., 2003), but also, protein levels highly increased in 

the cortex of AD patients (specially temporal neocortex, and frontal neocortex) and 

hippocampus (Fukumoto et al., 2002; Holsinger et al., 2002; Li and Südhof, 2004) . 
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Increased BACE1 is strictly located to neurotic dystrophies associated with amyloid 

plaques  (Zhao et al., 2007; Kandalepas et al., 2013). This supports the idea that BACE1 

cleaves APP and generate Aβ at neuritic dystrophies. However, the underlying 

mechanisms of how APP and BACE accumulates in the same compartment have remained 

unclear. Dystrophic sites are not specific for the accumulation of BACE1, but also for 

tubulin and kinesin which indicates an impaired anterograde and retrograde trafficking 

(Gowrishankar et al., 2015). This relationship has already been shown by a previous study: 

Inhibition of lysosomal hydrolases cause an accumulation of BACE1 in late 

endosome/lysosomes (Koh et al., 2005). In another study revealed that the inhibition of 

lysosomal proteases disrupts the axonal transport of degradative organelles such as 

autolysosomes, late endosomes, and lysosomes, which lead to their accumulation within 

dystrophic axonal swellings (Lee et al., 2011). These results suggest that increased BACE1 

protein level in AD patients might be due to decreased degradation or impaired lysosomal 

activity. Peri-plaque dystrophies replete with multi-lamellar vesicles resembling 

autophagic intermediates and inactive pro-cathepsin D, indicating reduced and impaired 

lysosomal function (Sadleir et al., 2016).   

The Alzheimer mouse model – APPPS1 

Radde et al., 2006 generated the APPPS1 (B6-Tg(Thy1-APPswe; Thy1-PS1 L166P) mice 

which is expressing human APP with the Swedish double mutation (KM670/671NL) and a 

PSEN1 mutation at L166P under the control of a Thy1 promoter. The APP transgene is 

overexpressed approximately 3-fold in this mouse. Phenotypic characteristic observed in 

this AD mouse line is shown in Figure 5. 
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Figure 5. Timeline of APPPS1 mouse phenotypic characteristics. While plaques 
development starts at 2 months of age, cognitive impairment is observed after 6 months 
of age. 

Aβ42/Aβ40 level decreases with the beginning of the amyloid plaque deposition (Radde 

et al., 2006; Maia et al., 2013). Amyloid plaque deposition begins around six weeks of age 

in the neocortex, in the hippocampus about three to four months, then in the striatum, 

thalamus, and brainstem at four to five months. Phosphorylated tau is observed around 

amyloid plaque, whereas no fibrillary tau protein can be detected. CSF tau level increases 

with age. A 5-fold-increase in tau levels has been observed by 18-months of age (Maia et 

al., 2013). 

Behavioural deficits are not profoundly in this mouse line. Radde et al., 2006 reported an 

impairment in the food-rewarded four-arm spatial maze at eight months of age, Serneels 

et al., 2009 observed deficits in the Morris Water maze at seven months of age which 

correlates with impairments in LTP in hippocampal CA1 (Gengler et al., 2010). 

There is no severe neuronal loss in this line. Only at 17 months, there is very little neuron 

loss in the granule cell layer of the dentate gyrus (Serneels et al., 2009).  

The VGLUT1Venus mouse line 

VGLUTVenus  mouse line was generated by Herzog et al., 2011. Here, a Venus tag was 

inserted to VGlut1 in the genome. VGLUT1Venus expression is high in the neocortex, 

hippocampus, cerebellum, olfactory bulb as shown below. It has been shown that the 

Venus tag does not interrupt the functionality of the VGLUT1 transporter and the 

trafficking and the dynamics of presynaptic glutamatergic synaptic vesicles. VGLUT1Venus 
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KI mouse construct and the expression of VGLUT1 tagged with Venus in a mouse brain are 

shown in Figure 6. 

 

Figure 6. VGLUT1Venus mouse line. (A) VGLUT1Venus KI mouse construct. (B) Overview 
of direct VGLUT1Venus fluorescence in a paraformaldehyde-fixed mouse brain and within 
a sagittal section. Image is used with license details and the terms and conditions 
provided by Copyright Clearance Center (Herzog et al., 2011) (License # 11692504; Jan 
12, 2018). 
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MATERIALS AND METHODS 

Transgenic and mutant mice 

All protocols and procedures involving animals were approved and conducted in 

accordance with the regulations of the Ludwig-Maximilian University and the Government 

of Upper Bavaria (Az. 55.2-1-54-2532-62-12). Heterozygous APPPS1 mice co-express 

ahuman APP with the Swedish mutation (KM670/671NL) and mutated PS1 (L166P) under 

the pan-neuron-specific Thy1-promoter (Radde et al., 2006). APPPS1 mice were crossbred 

with Tau knock-out mice (Dawson et al., 2001) and homozygous VGLUT1Venus knock-in 

mice that express the Vesicular Glutamate Transporter 1 (VGLUT1), fused to the 

fluorescent protein Venus under the endogenous VGLUT1 promoter (Herzog et al., 2011). 

APPPS1 littermates crossed with homozygous VGLUT1Venus mice served as controls. Mice 

of both sexes were group housed under pathogen-free conditions until surgery, after 

which they were single-housed. 

DNA extraction for genotyping: 

A small section of the tail was removed from each mouse for genotyping. First, the DNA 

was extracted following instructions from the Invisorb® DNA Tissue HTS 96 Kit/C (Stratec 

molecular, Berlin, Germany). Samples were prepared according to the manufacturer's 

protocols. 

Genotyping protocol with PCR protocol: 

The PCR solution consisted of 12,5 μl OneTaq Hot Start QuickLoad (M0488S, New England 

Biolabs, Massachusetts, USA), 0,5 μl of each forward primer, 0.5 μl of each reverse primer 

(Sigma-Aldrich, Missouri, USA), 0,5 μl template DNA and 10 μl distilled water. 

Table 2. Primer list  
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The following PCR programs (6321000515, Mastercycler pro, Eppendorf, Hamburg, 

Germany) were used depending on the purpose. 

Table 3. PCR programs  
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Plasma and brain homogenization and extraction (western-blot) 

Aβ level determinations in the young mice cohort 

Blood was collected via cardiac puncture into EDTA tubes (BD micro trainer tubes with 

K2EDTA #365974) on wet ice and was centrifuged at 1500g for 15 min at 4 °C. Plasma was 

obtained from the supernatant and was frozen at -80 °C. Brains were isolated, quick-

frozen on dry ice and stored at -80 °C. Frozen murine forebrains were homogenized in 9 

volumes of ice-cold Tris-buffered saline (pH 7.4) containing Complete protease inhibitor 

cocktail (Roche Diagnostics, Penzberg, Germany) using a Sonifier 450 (Branson) and stored 

in aliquots at -80 °C. Triton X-100 (Sigma Aldrich, Missouri, USA) soluble Aβ was extracted 

by mixing 50 µl 2% Triton X-100 with 50 µl brain homogenate, incubating for 15 min on 

ice with vortexing, followed by ultracentrifugation at 100k x g for 15 min. The clear 

supernatant was diluted to a final forebrain dilution of 1:100 and used for analysis. 

Protein extraction methods 

Two-phase protein extraction (for membrane-bound and non-membrane bound 
fractions) 

Left and right cerebral hemispheres were harvested, followed by liquid nitrogen snap-

freezing and stored at -80°C. Brain tissues were lysed using DEA buffer (50 mM NaCl, 0.2% 

diethylamine, pH = 10) freshly supplemented with protease inhibitors (P8340, Sigma-

Aldrich, Missouri, USA). Then, the tissue was homogenized with syringes with 27 G needle 

(Terumo, Tokio, Japan) and centrifuged (5415R, Mastercycler pro, Eppendorf, Hamburg, 

Germany) at 5,000 g for 10 min at 4°C. The supernatant (S1) and pellet part (P1) of the 

homogenates were separated. The pellet (P1) is resuspended in RIPA buffer (20 mM Tris-

HCl, pH = 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% NP-40, 0.5% sodium 

deoxycholate, 0.05% Triton X-100) buffer for 30 min, at 4°C. The supernatant (S1) was 

centrifuged at 130,000 g for 30 min at 4°C and the supernatant (S2) and pellet (P2) were 

collected. The pellet (P2) part from ultra-centrifugation was resuspended in RIPA buffer. 

The pellet from the first centrifugation (P1) and the pellet from the ultra-centrifugation 

(P2) were together ultra-centrifuged again at 130,000 g for 60 min at 4°C to acquire the 

membrane protein fractions.  
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Protein concentrations were measured using the BCA (B9643, Sigma Aldrich, Missouri, 

USA) method. Equal amounts of protein were mixed with Laemmli sample buffer (8% SDS, 

40% Glycerol, 0.025% Bromophenol blue, 10% β-Mercaptoethanol, 125 mM Tris pH 6.8). 

Four-step protein extraction (for soluble, membrane-bound, intracellular, extracellular 
non-soluble fractions) 

Brain tissues were homogenized in TBS and protease inhibitor pH 7.6 (100 µl TBS / 10 mg 

tissue) with 25 g syringe needle. The homogenized tissue was incubated on ice for 30 min. 

and vortexed every 5 min. After the incubation, the homogenate was centrifuged with 

100.000 g for 45 min at 4o C. The supernatant was collected as soluble fraction. The pellet 

was resuspended in 1 % Triton x-100 in TBS, then incubated on ice for 30 min and vortexed 

every 5 min. The homogenate was centrifuged with 100.000 for 45 at 4o C. The 

supernatant was collected as membrane-bound fraction. The pellet was resuspended in 

2% SDS in water, incubated on ice for 30 min and vortexed every 5 min. Later on, the 

homogenate was centrifuged with 100.000 g for 45 min at 4o C. The supernatant was 

collected as intracellular fraction. The pellet was resuspended in 70% formic acid and 

centrifuged with 100.000 g for 45 min at 4o C. The supernatant was collected as 

extracellular non-soluble fractions.  

Protein Immunoblotting  

The proteins were electrophoresed in Tris-glycine gels with Tris-buffer (25 mM Tris, 190 

mM glycine and 0.1% SDS) and transferred onto polyvinylidene difluoride membranes 

(PVDF, Millipore, Massachusetts, USA). Proteins with low weight are separated with 

Schägger-gel and with anode buffer (200 mM, pH 8,9) and cathode buffer (0,1 M Tris, 0,1 

M Tricine, 0,1% SDS). Otherwise, 8-9% Tris-glycine gels were used to separate the 

proteins. 

The PVDF membranes were blocked in 6% dry-skimmed milk (Thermo Fischer Scientific, 

Massachusetts, USA) in 0.1% Tween-20 (A4974,0500 Applichem Panreac) in PBS 1X for 30 

min at room temperature.  
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Table 4. Primary antibody list 

 

Aβ quantifications 

Six-weeks and 8-months old APPPS1xVGLUTvenus and TauKO x APPPS1 x VGLUTvenus mice 

were sacrificed to collect blood and brain samples. Aβ40 and 42 levels were determined 

in the cortex and plasma using the electrochemiluminescence immunoassay kits based on 

6E10 from Meso Scale Discovery (Rockville, MD, USA) in either singlet or triplet format. 

Samples and standards were prepared according to the manufacturer's protocols. 

Cranial window surgery 

A cranial window was implanted over the right cortical hemisphere as previously reported 

(Fuhrmann et al., 2007; Holtmaat et al., 2009) and shown in figure7. In brief, the mice 

were anesthetized with an intraperitoneal injection of ketamine/xylazine (130/10 mg/kg 

body weight; WDT/Bayer Health Care). Additionally, dexamethasone (20 µL at 4 mg/ml; 

Sigma) was intraperitoneally administered immediately before surgery (Holtmaat et al., 

2009) to prevent the development of cerebral edema. Eye cream (Bepanthen, Bayer, 
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Leverkusen, Germany) is put on the eyes in order to prevent them from drying. The mouse 

was placed in a mouse holder. (A) The minimum amount of skin was removed in the 

surgery area, (B) which is cleaned from hair with vacuum suction. (C) Periosteum over the 

skull was removed gently by a scalpel (Swann Morton, Sheffield, England). (D) In order to 

make the dental cement adhere better, the skull surface was roughened and (E) location 

for the cranial window was marked (coordinates of craniotomy: Bregma ＋1.5 to －3.5 

mm, 4 mm lateral from midline). (F) With a smaller dental drill (cat. # 0297, Integra Miltex, 

NY, USA, cat. # A719003, Schick-dental, Schemmerhofen, Germany) the skull for the 

window was thinned. (G) The area for a cranial window was removed. (H) In order to 

prevent the open tissue from drying and bleeding, gel foam (cat. # 0315-08, Pfizer, NY, 

USA) sucked PBS 1X (14190-094, Life Technologies, California, USA) was placed over the 

area. (I) Imaging area was shown before window implantation. The 4 mm-diameter glass 

window (round glasses, Menzel-Glaser, VWR, Pennsylvania, USA) was implanted over the 

open region and stabilized with cement with glue (Cyano fast and retarder, 152261, 

152262, Hagen Werken, Duisburg, Germany).(J) The metal bar is also attached to fix the 

mouse head during imaging. 

After the surgery, mice received subcutaneous analgesic treatment with carprophen (7.5 

mg/kg body weight; Rimadyl; Pfizer, New York, USA) and antibiotic treatment with 

cefotaxime (5 mg/kg body weight; Pharmore, Ohio, USA). Until mouse wakes up, the body 

temperature is kept at 37 0 C.  
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Figure 7. Cranial window operation. (A) The mouse is anesthetized and placed in a 
mouse holder. The eyes are protected with cream against dryness. The region of 
operation is disinfected with alcohol. B) A triangle shaped skin piece is cut out. The 
region is cleaned with PBS 1X. (C) Periosteum over the skull is removed gently by a 
scalpel. (D) For strong adherence of the glue, the skull is roughened. E) The area of the 
window is indicated. (F) The skull for the window is thinned. (G) The piece of skull is 
removed. (H) Open brain region is cleaned regularly with PBS and bleeding is stopped 
with gel foam. (I) Imaging area before window implantation. (F) The window and mouse 
holder are placed and stabilized by dental cement and glue.  

Chronic two-photon in vivo imaging 

In vivo two-photon imaging was started after a recovery period of 3-4 weeks. For amyloid 

staining, Methoxy-X04 (4920, Tocris, Bristol, UK) was intraperitoneally injected in the 

consecutive weeks 0.012 mg with a concentration of 0.15 mg/ml. Throughout the imaging 

sessions, mice were anesthetized with isoflurane 1% (B06A16A, 1ml/ml, CP Pharma) in 

95% O2, 5% CO2 ( Forene®, Abbott, Illinois, USA), placed on a heating pad to keep body 

temperature at 37 °C (Fine Science Tools GmbH) and fixed to a custom-made holder using 

the glued metal bar. In vivo two-photon imaging was performed on an LSM 7 MP (Carls 

Zeiss, Oberkochen, Germany) equipped with standard photomultiplier detectors and a 

20X water-immersion objective (W Plan-Apochromat 20x/1.0 DIC, 1.0 NA, Carl Zeiss, 

Oberkochen, Germany). A region of interest away from big blood vessels to reduce the 

drift and movement was defined and imaged with weekly intervals (Figure 8). To resolve 

the presynaptic boutons a high-resolution 3D stack was obtained from the VGLUT1Venus 

fluorescence in cortical layer I at a resolution of 0.10 x 0.10 x 0.4 µm3 and dimensions of 

283 x 283 x 60 µm3. VGLUT1Venus was excited at 915 nm and emission was collected from 

470 to 550 nm. The imaging session was followed by a larger but less resolved 3D stack 

was obtained from the Methoxy-X04 fluorescence at a resolution of 0.33 x 0.33 x 0.4 µm3 

and dimensions of 425 x 425 x 200 µm3. Methoxy-X04 was excited at 750 nm by a Ti: Sa 

laser (Mai Tai DeepSee, Spectra-Physics, California, USA) and emission was collected 

below 485 nm. In subsequent imaging sessions, the previously imaged volumes were 

identified using the unique blood vessel pattern and coordinates, enabling precise 

alignment of the same imaged volumes. The laser intensity was adjusted to keep the 

emitted fluorescence stable at different depths in the microscope control software. 
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Figure 8. Steps to be followed by the imaging protocol. A) The mouse was placed under 
the microscope with light anaesthesia to reduce the movement during the experiment 
B) An overview image was taken as a guide to find the same region for the following 
imaging sessions. C) Max-intensity projections of imaged plaques with a zoom of 1x and 
424 µm x 424 µm x 200 μm in size. D) VGLUT1 image of the previous area with a zoom 
of 1.5X and 283 µm x 283 µm x 60 μm in size.  

Analysis of 3D microscopy image data sets 

The analysis was performed by Dr. Finn Peters following a protocol described previously 

(Peters et al., 2018). 

All data stacks obtained by in vivo two-photon microscopy were deconvolved using 

AutoQuant (AutoQuantX3, Media Cybernetics, Rockville, USA). For quantification amyloid 

plaques as well as BACE1 positive dystrophies, the 3D data stacks of fluorescence intensity 

were analyzed using custom-written MatLab (Mathworks, Massachusetts, USA) software. 

Initially, local background subtraction was performed to diminish intensity variations 

among different stacks. Subsequently, a percentile-based intensity threshold was applied, 

and a connected component analysis was used to identify contiguous clusters of voxels. 

This standard analysis was slightly modified for each of the biological readouts with the 

detailed analysis described below. 

To define BACE1 positive dystrophies the 50th percentile of immunofluorescence signal 

was used as a threshold for each image stack. The connected component analysis was 

applied to identify clusters of contiguous voxels and clusters smaller than 1 µm3 were 

excluded. 

Amyloid plaques were identified applying the 90th percentile on the Methoxy-X04 

fluorescence intensity data. Since amyloid burden typically constitutes 1 to 2 % of brain 
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volume in the imaged region of APPPS1 mice, this threshold is intendedly set to a very low 

level. It allows obtaining the total size of amyloid plaques as opposed to thresholding 

operations such as using local contrast or half-width intensity that rather detect the dense 

plaque core. Subsequently, individual amyloid plaques were tracked over time. For this 

purpose, the image data from consecutive time points were loaded as time series in Imaris 

(Version 7.7.2, Bitplane). Plaque volumes were extracted by 3D-surface-rendering and 

were semi-automatically tracked over time using the surface tracking module of Imaris. 

To identify nucleation events, plaques were tracked back to the first time point of 

appearance and were only assessed when present for at least 3 weeks to warrant 

unambiguous distinction from background signal. Therefore, quantification of plaque 

density and formation only include values up to 8 weeks post-treatment even though 

imaging was performed up to 10 weeks. Correct tracking was manually checked for each 

amyloid plaque. For reliable determination of the actual size of each amyloid plaque, the 

largest extension in XY was determined and the radius was calculated as 𝑟𝑎𝑑𝑖𝑢𝑠 =

√𝑎𝑟𝑒𝑎/𝜋 assuming a spherical shape of plaques (Hefendehl et al., 2011). The radii of 

individual plaques were fitted with a monophasic association function, and the radial 

growth rate at each time point was obtained by calculating the first derivative of the best 

fit. All plaques contacting the image border were excluded from the analysis. The 

distribution of presynaptic boutons, presynaptic dystrophies and BACE1 positive 

dystrophies was analysed with regards to proximity to the closest amyloid plaque. For this 

purpose, a quasi euclidean 3D distance transformation was performed to identify the 

distance of every voxel to the closest plaque border. Distance was calculated at 1 µm 

resolution from the outer border of plaques into surrounding tissue as well as toward the 

inside of each plaque. Voxels inside plaques were assigned negative distance from plaque 

border. To quantify the pathological impact of each plaque separately, the 3D volume was 

divided into sectors with all voxels closest to a particular plaque constituting the sector of 

that plaque. 

For the correlation of plaque formation rate with plaque distance, the distance to the 

closest already existing plaque was determined for each formation event at the respective 

time point of formation. For the analysis, all plaques formed after treatment onset were 

pooled and closest plaque distance was binned into 20 µm segments. For the frequency 
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distribution of minimal inter-plaque distance, the distance to the closest plaque was 

determined for all plaques at week 10, and inter-plaque distance was binned in 20 µm 

segments. 

Statistical Analysis 

For statistical analysis, GraphPad Prism 5 (GraphPad Software, California, USA) was used. 

Data were tested for normal distribution using D’Agostino-Pearson omnibus K2 test and 

Kolmogorov-Smirnov test. Inter-group comparisons were performed using two-tailed 

unpaired Student’s t-test. In the longitudinal measurements, variables were compared 

across groups using two-way ANOVA (TWA) and p values refer to the test of interaction 

unless specified otherwise. All results are presented as mean ± SEM unless specified 

otherwise. 

In vivo fluorescence recovery after photo-bleaching (FRAP) 

In vivo, FRAP experiments were performed with 6-6.5-months-old mice that were imaged 

chronically and the protocol followed was similar to the one described by  Herzog et al., 

2011.  The animals were ventilated with a gas mixture of isoflurane (1%), O2 (95%) and 

CO2 (5%) (Forene®, Abbott) and anesthetized with ketamine (0.02% in NaCl). The body 

temperature was kept at 37 °C with a heating pad (Fine Science Tools GmbH). In vivo two-

photon imaging was performed on an LSM 7 MP (Carls Zeiss) equipped with standard 

photomultiplier detectors and a 20x water-immersion objective (W Plan-Apochromat 

20x/1.0 DIC, 1.0 NA, Carl Zeiss). Each mouse was reimaged twice with a week interval. 

Layer I synapses in somatosensory cortex were imaged through the cranial window. 10-

12 sub-regions were selected in the center of the images and bleached with 10 – 15 % 

laser power with an iteration of 50. To resolve the presynaptic boutons a high-resolution 

3D stack was obtained from the VGLUT1Venus fluorescence in cortical layer I at a resolution 

of 0.14 x 0.14 x 0.4 µm3 and dimensions of 70.71 x 70.71 x 10 µm3 for first acquisition (6 

times 30 seconds) dimensions of 70.71 x 70.71 x 30 µm3, for later acquisitions. VGLUTVenus 

was excited at 915 nm and emission was collected from 470 to 550 nm. Six stacks with 10 

µm2 as z-depth were recorded every 30 s, to assess fast component of the recovery. Two 

minutes after the acquisition was completed, six stacks with 30 µm2 as z-depth t every 5 
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min, 3 stacks with the same z-depth every 7 min and 10 min were recorded to assess slow 

component of the recovery (Figure 9.A).  

Analysis of in vivo FRAP experiments  

Images obtained from the same region over time were aligned with the Imaris software 

(7.7.2, Bitplane, Belfast, United Kingdom).  

The region of interest (ROI) was selected manually on the bleached regions. In addition to 

that, at least two non-bleached and two background regions were selected for 

normalization. Average intensities were measured in a small stack of three layers (1.2 µm) 

and over the time. Normalization (Figure 9) was performed as described before (Herzog 

et al., 2011). 

The background intensity was subtracted from the intensity of the ROIs. Normalization 

was done in reference to the first intensity value before bleaching. The normalized 

intensities were divided by the normalized time profile of control ROIs for correcting 

ongoing bleaching. The final signal can thus be written as follows: 𝑆 =
(𝐼𝑏𝑙−𝐵)/ 〈𝐼𝑏𝑙〉

(𝐼𝑐𝑡𝑟−𝐵)/〈𝐼𝑐𝑡𝑟〉
 where 

Ibl is the intensity value of the bleached ROI at that specific time and <Ibl> its average 

before bleaching. B is the intensity value of the background. Ictr represents the intensity 

value of an unbleached ROI and is calculated as the average over a few control 

(unbleached) ROIs. <Ictr> is the average of the intensity value of an unbleached ROI before 

bleaching. Synapses with 80% initial bleaching were discarded. Traces from single 

synapses were fitted with a double exponential function (nonlinear regression, least 

square fit) to reduce the noise due to experimental artefacts (mouse movement, low 

signal-to-noise ratio), which was preferred to suppress high- frequency variations (single 

aberrant points) without suppressing the fast component of recovery. Then, the average 

of all fitted curves was fitted with a double exponential function. 
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Figure 9. FRAP experiments. (A) Timeline of the fluorescence recovery after the photo-
bleaching imaging experiment. (B) Illustration of the cellular localization of VGLU1Venus 
in neurons. (C) Example images from FRAP experiment. Individual ROIs being followed 
were indicated with orange colour squares. (D) Individual ROIs fluorescence recovery 
without nonlinear regression normalization is shown. (E) Fluorescence recovery from 
individual ROIs after non-linear regression normalization. 

Perfusion 

Deeply anesthetized mice (130/10 mg/kg b.w. ketamine/xylazine i.p. WDT/Bayer 

HealthCare) were perfused (cat # 70067811, MA, USA) phosphate-buffered saline (PBS) 

followed by a fixation with 4% formalin (Carl Roth, Karlsruhe, Germany) for 20 min at 250 

mmHg. Mouse brains were dissected and post-fixed in 4% formalin for 24 h. 

Immunohistochemistry 

Fixed brains were cut into coronal 50 μm thick sections on a vibratome (VT1000S, Leica, 

Wetzlar, Germany). Brain slices were permeabilized overnight with 2% Triton X-100 (9002-

93-1, Sigma Aldrich, Missouri, USA) – PBS 1X at RT and blocked with 10% serum (Sigma-

Aldrich, Missouri, USA) in 0.3% Triton X-100 in PBS 1X. (Zhao et al., 2007) Primary 
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antibodies were incubated in 0.3 % Triton X-100 for 2 days at 4 °C. Sections were washed 

in PBS and incubated with the secondary antibody coupled to Alexa with an affinity for 

different species (1/500, Invitrogen, California, USA) two overnights at 4 °C. To detect 

amyloid fibrils slices were incubated for 15 min with 10 µg/mL Methoxy-X04 (4920, Tocris, 

Bristol, UK) in 50% ethanol (2275.5000, Chemsalute) and washed three times with 50% 

ethanol at RT. Sections were finally washed for 3 times 10 min with PBS before being 

transferred on a glass slide (polysines slide, J2800AMNZ, Thermo Scientific, 

Massachusetts, USA) and mounted with glass coverslips (ECN631-1571, 24x24 mm, VWR, 

Pennsylvania, USA) and fluorescence conserving mounting medium (S3023, Dako, Agilent 

Pathology Solutions, Santa Clara, United States). 

Confocal imaging of dystrophies 

Images were acquired with an LSM 780 confocal microscopy (Carls Zeiss, Oberkochen, 

Germany) equipped with a 40x/1.4 oil immersion objective. For each mouse brain, 3-

dimensional 16-bit data stacks of 1024 x 1024 pixels were acquired with 32 µm pinhole 

size, in the somatosensory cortex at a lateral resolution of 0.1 µm/pixel and an axial 

resolution of 0.2 µm/pixel. For volumetric analysis, a whole plaque was imaged from top 

to bottom. 10 plaques regardless of their size from each hemisphere and both 

hemispheres from each mouse were imaged. 

Confocal imaging of mossy-fiber terminals 

Images were acquired with an LSM 780 confocal microscopy (Carls Zeiss, Oberkochen, 

Germany) equipped with a 40x/1.4 oil immersion objective. Mid-section of the 

hippocampus was acquired with the lateral resolution of 0.346 x 0.346 µm with a size of 

1024 x 1024, 16-bit data image. 10 region of interest (ROIs) were chosen in the whole 

imaged and normalized with the background on the ImageJ program.  

Confocal imaging of plaque burden 

Images were acquired with an LSM 780 confocal microscope (Carls Zeiss, Oberkochen, 

Germany) equipped with a 20X objective. Whole slice images were taken with the tile-

scan and Z-stack mode. Each tile has lateral 0.761 µm/ pixel and axial 0.8 µm/ pixel 

resolution with a 32 µm pinhole. 
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RESULTS 

Tau expression is important for plaque growth and the formation 
of new plaques 

In order to investigate the function of the tau protein throughout the progression of 

amyloid plaque pathology, we performed chronic in vivo imaging in an AD mouse model 

crossed on Tau-/- background (APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x VGlut1Venus ). 

Chronic in vivo imaging allowed us to follow individual plaques for a period of 3-months 

with weekly intervals. As shown in Figure 10.A, dynamics of plaque growth could be traced 

for every existing plaque in somatosensory cortex. Moreover, new appearing plaques in 

the imaging region could be identified. In each mouse, approximately 67 individual 

plaques were tracked at consecutive imaging time points Figure 10.A, and changes in size 

were quantified over time. In APPPS1 x VGlut1Venus mice, βamyloid burden [%] increased 

linearly over the imaging period at a rate of 0.45 ± 0.05% brain volume occupied by 

fibrillar Aβ per week. Tau deletion significantly slowed down βamyloid deposition by 15% 

Figure 10.B (Repeated measure (RM) Two-way ANOVA Interactiongenotype x age F[12, 120] = 3.3, 

p < 0.001).  

βamyloid deposition can occur either by accretion of soluble Aβ to the surface of existing 

plaques or via de novo plaque formation. In Tau-/- x APPPS1 x VGlut1Venus,  the formation 

rate of plaques was reduced significantly Figure 10.C (RM Two-way ANOVA 

Interactiongenotype x age F[12, 143] = 3.5, p < 0.001).Surprisingly, mean formation rate was 

similar up to 4.5 months of age between APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x 

VGlut1Venus  and started to decrease in Tau-/- x APPPS1 x VGlut1Venus  at compared to in the 

second week of BACE1 inhibitor treatment and reached a mean reduction by 14fold 

between five to six months of age. In six months old Tau-/- x APPPS1 mice, the total plaque 

density was reduced by 13% compared to tau expressing mice Figure 10.D (RM Two-way 

ANOVA Interactiongenotype x age F[12, 156] = 5.24, p < 0.0001). 

Growth of individual plaques was quantified as incremental increase of plaque radii per 

week. Over the imaging period, plaque growth slightly decreased with time in both 

cohorts Figure 10.E (RM Two-way ANOVA-Genotype F[1, 12] = 6.3, p < 0.05). 
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Thus, the imaging period relates to the transition phase of Aβ deposition (Burgold et al., 

2014), when the plaque surface available for further Aβ accretion, starts to exceed the 

available levels of soluble Aβ (Yan et al., 2009; Burgold et al., 2011, 2014; Bittner et al., 

2012). Apart from the age-dependent decline, the tau knockout cohort had reduced 

plaque growth rates by approximately 13% Figure 10. 

 We also witnessed that once the plaques were born, none disappeared or shrunk 

(Hefendehl et al., 2011; Peters et al., 2018). The results indicate that the presence of tau 

protein is needed for sustaining growth of plaques from the beginning as well as for 

sustaining plaque formation after 4 months of age. In addition, lack of tau in APPPS1 

mouse line decreases plaque burden and density in somatosensory region. 

 

Figure 10. Decreased plaque formation and growth in the absence of Tau in an AD 
mouse model. (A) An illustrative image of an example plaque from each cohort 
illustrating the different growth rates of plaques in the two cohorts. (B) Integrated 
volume fraction of all Aβ plaques (Repeated measure (RM) Two-way ANOVA 
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Interactiongenotype x age  F[12, 120] = 3.3, p < 0.001). Lines show linear regressions of the data 
(F-Test, p < 0.05). (C) Mean rate of formed plaques (RM Two-way ANOVA 
Interactiongenotype x age F[12, 143] = 3.5, p < 0.001). (D) Kinetics of mean plaque density (RM 
Two-way ANOVA Interactiongenotype x age F[12, 156] = 5.24, p < 0.0001). (E)  Kinetics of mean 
plaque growth rates (RM Two-way ANOVA-Genotype F[1, 12] = 6.3, p < 0.05). Data 
presented as mean ± SEM; n = 7-9 (mean plaque number analyzed per mouse = 67). 
 

Plaques are less compact in tau deficient APPPS1 mice 

If deletion of tau reduces the local production of Aβ close to plaques, the density of Aβ 

fibrils within plaques should be reduced. Methoxy-X04 staining provides a relative 

measure of Aβ fibril density and typically is low in the periphery of plaques and increases 

toward their centre Figure 11.B. In APPPS1 mice, the Methoxy-X04 intensity sharply 

increases from the border toward the centre of plaques and the maximum intensity 

increases with plaque size. In Tau-/- x APPPS1 mice, Methoxy-X04 intensity increased 

significantly less toward the plaque centre, comparing plaques of similar size Figure 11.B 

(Two-way ANOVA Interactiongenotype x distance F[42, 344] = 1.0, p > 0.05 (for plaque size of 0-4 

µm); F[44, 405] = 11.0, p < 0.0001 (for plaque size of 4-8 µm); F[48, 441] = 3.5, p < 0.0001 (for 

plaque size of 8-12 µm); F[50, 459] = 8.7, p < 0.0001 (for plaque size of 12-16 µm); F[50, 459] = 

1.7, p < 0.05 (for plaque size of 16-20 µm); F[52, 477] = 3.5, p < 0.0001 (for plaque size of 20-

24 µm). 

We addressed whether the reduced Aβ deposition might be a result of an overall reduced 

Aβ production in the brain of Tau-/- x APPPS1 mice. For this, soluble Aβ40 and Aβ42 levels 

were determined via ELISA in 2 months old mice, i.e. before onset of Aβ deposition in 

APPPS1 mice. Tau deletion did not significantly change the levels of soluble Aβ40 and 

Aβ42 in the forebrain Figure 11.C (p = 0.9, 0.8 (Aβ40, 42) > 0.05, n=5-7, t-test, Mann-

Whitney). 
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Figure 11. Methoxy-X04 stained plaques show lower intensity profiles from the plaque 
border toward their center in Tau-/- x APPPS1 x mice. (A) A representative image of an 
example plaque. (B) Integrated volume fraction of all Aβ plaques (for each plaque radius 
Two-way ANOVA Interactiongenotype x distance, except 2µm plaque radius, p < 0.01). Data 
presented as mean ± SEM; n = 7-9 mice (mean plaque number analyzed per mouse = 
118-124). (C) In the forebrain of 2 months old mice the levels of Aβ40 and Aβ42 were 
not different between genotypes. (p = 0.9, 0.8 (Aβ40, 42), n=5-7, t-test, Mann-Whitney).  
 

Tau expression contributes to the formation of new plaques in 
close proximity of pre-existing plaques  

It was shown previously; plaque formation is enhanced within 40 µm vicinity of pre-

existing plaques (Peters et al., 2018) (Figure 12.A). In order to investigate the distribution 

of plaque formation in comparison to the distance to pre-existing plaques, all the plaques 

within the imaged area were studied during the entire imaging period. In APPPS1, 

significantly more satellite plaques were formed within the radius of 10 µm around pre-

existing plaques compared to Tau-/- x APPPS1 (Figure 12.B) (Two-way ANOVA 

Interactiongenotype x distance F[4, 70] = 2.7, p < 0.05, n=7, 6 (APPPS1, Tau-/- x APPPS1 

respectively). Plaque formation was approximately 3-fold higher in 10 µm distance to the 

pre-existing plaque than the one in 30 µm distance in APPPS1. This shows clearly, that the 

expression of tau contributes to formation of new plaques in close proximity of pre-

existing plaques.  
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Figure 12. Decreased formation of new plaques in close proximity to pre-existing 
plaques in TauKO x APPPS1. (A) Illustrative image for plaque formation relative to the 
distance between plaques. Lines around the plaques define distance from the plaque to 
the border of the big plaque in the center of the image. More plaques were present 
close to the plaque border of the big plaque in the center. (B) Plaque formation rate 
relative to the distance to the side of the formation of a new plaque in APPPS1 
compared to Tau-/- x APPPS1. Plaques formed significantly more common within a 10 
μm radius (Two-way ANOVA Interactiongenotype x distance F[4, 70] = 2.7, p < 0.05, n=7, 6 
(APPPS1, Tau-/- x APPPS1 respectively). 

Lack of Tau decreases BACE1 volume fraction around plaques  

In previous experiment, we observed a reduction in the plaque formation rate and a 

reduction in plaque growth when APPPS1 mice are lacking Tau. It has been suggested that 

local Aβ production could be caused by increased BACE1 accumulation in axonal 

dystrophies surrounding plaques (Sadleir et al., 2016). In the APPPS1 mouse model, there 

are no plaques without associated dystrophies; however, the relationship between BACE1 

containing dystrophies and plaques had not been elucidated.  

Approximately 10 individual plaques for each hemisphere and two hemispheres for each 

mouse were tracked using high resolution, volumetric stack imaging. Custom-written 

MATLAB cluster analysis was applied for automated morphological segmentation in order 

to quantify the fraction of BACE1 positive structures and to estimate how BACE1 fraction 

relates to the distance of nearby plaques. Similar BACE1 accumulation with distance to 

the plaque was categorized for plaques with different sizes (between 4 -24 μm in radius) 
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in the old-cohort of APPPS1 and Tau-/- x APPPS1 mice (Figure 13-A). Accumulation of 

BACE1 at the border of plaques increased dramatically in APPPS1 with the increase in 

plaque size, while this increase was not present in Tau-/- x APPPS1. The fraction of BACE1 

positive volume declined as the distance to the plaque increased (Figure 13-B-C). 

Independent of the plaque size, BACE1 accumulation was mostly detected up to 5 µm 

away from the border of the plaque in both cohorts. This demonstrates that the corona 

of BACE1 accumulation does not correlate with the plaque size. 

 

 

Figure 13. BACE1 positive volume around plaques in the absence of Tau in APPPS1. (A) 
Representative images of BACE1 accumulation at plaques categorized for different sizes 
of plaques in APPPS1 and Tau-/- x APPPS1 mice of the old-cohort. (B) BACE1 positive 
volume fraction for APPPS1 changes according to the distance to the plaque. The highest 
fraction of BACE1 was observed at the plaque border and increased with the size of 
plaques. (C) BACE1 positive volume fraction in Tau-/- x APPPS1 mice. Highest BACE1 
staining was observed at the plaque border and did not increase with the size of plaques 
to the extend observed in APPPS1. n=4-5, a number of plaques per mouse = 10. Plaque 
border is indicated as 0 on x-axis. 
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The decrease in BACE1 volume fraction around plaques was 
observed in Tau-/- x APPPS1 mice 

Since BACE1 accumulation is characteristic of dystrophies (Gowrishankar S. et. al. 2015), 

we examined BACE1 accumulation around the plaques not only in the old-cohort (8 

months) (Figure 14.A-B) of APPPS1 and Tau-/- x APPPS1 mice.  

Secondly, the percentage of volumetric BACE1 fraction was considerably less especially at 

the plaques whose radius was 6 μm or more in Tau-/- x APPPS1 mice (Figure 14.B) (Two-

way ANOVA Genotype F[1, 52] = 40.6, p < 0.0001, n=5, 6 (APPPS1, Tau-/- x APPPS1 

respectively)). 

We concluded that absence of Tau in APPPS1 mice decreases BACE1 accumulation at the 

plaque border in an age-dependent fashion (Figure 15). While plaques with different sizes 

from both genotypes affect BACE1 accumulation at most within 5 μm distances from the 

plaque borders. 

 

Figure 14. Decreased BACE1 positive volume fraction at the plaque border was observed 
only in the old-cohort of Tau-/- x APPPS1 mice. (A) Example images of BACE1 and 
Methoxy-X04 staining in APPPS1 x VGLUT1Venus and Tau-/- x APPPS1 x VGLUT1Venus brain 
tissue sections. (B) BACE1 volumetric quantification around plaques in the 8-months old 
cohort. BACE1 volumetric fraction is significantly higher in APPPS1 x VGLUT1Venus (Two-
way ANOVA Genotype F[1, 52] = 40.6, p < 0.0001, n=5, 6 (APPPS1, Tau-/- x APPPS1 
respectively)). Plaque radius bin = 4 µm. The scale bars indicate 10 µm. 
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Figure 15. Illustration the accumulation of BACE around plaques. Although BACE1 
positive volume is significantly altered, the effect of plaques is detected mostly in the 5 
μm vicinity.  

Tau expression modulates APP-positive accumulations in peri-
plaque dystrophies    

In addition to BACE1, LAMP1 (lysosomal marker), VGLUT1 (pre-synaptic marker) and APP 

(amyloid-precursor protein) are aberrantly localized in peri-plaque dystrophic neurites 

(Cataldo et al., 1991; Nixon et al., 2005; Kandalepas et al., 2013; Sadleir et al., 2016). 

Lysosomes accumulating at amyloid plaques have been shown to have a low luminal 

protease content and are unable to degrade proteinaceous cargos (Gowrishankar et al., 

2015) To assess whether the absence of Tau has a beneficial impact on other proteins 

localized in dystrophies, the volume fraction and profiles of APP and LAMP1 were 

quantified in APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x VGlut1Venus. This analysis was 

important not only to understand the possible beneficial impact of the lack of tau in 

dystrophies, but also to shed light on mechanisms triggering the accumulation of different 

proteins in peri-plaque dystrophies.  
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APP positive volume fraction was significantly reduced in Tau-/- x APPPS1 x VGLU1Venus at 

plaque radius of 10 and 18 μm (Figure 16.B) (Two-way ANOVA Genotype F[1, 18]=24.0,  p < 

0.0001, n=4, 3 (APPPS1, Tau-/- x APPPS1 respectively)). Unlike APP, LAMP1 accumulation 

at plaques was not significantly different between APPPS1 x VGlut1Venus and Tau-/- x 

APPPS1 x VGlut1Venus in old-cohort (8-months) (Figure 16.D) (Two-way ANOVA – all factors 

p > 0.05). 

APP and BACE1 accumulated less around plaques in Tau-/- x APPPS1 x VGlut1Venus in the old 

cohort (8-months) compared with APPPS1 x VGlut1Venus (Figure 15-16) while lysosomal 

membrane marker, LAMP1, did not differ in Tau-/- x APPPS1 x VGlut1Venus in the old-cohort 

in term of its volumetric percentage and the dystrophic corona radius. This discrepancy 

between LAMP1, APP and BACE1 protein accumulations at plaques might suggest that 

APP and BACE1 are regulated by a distinct mechanism around plaques different to LAMP1. 

 

Figure 16. Decreased APP, but not LAMP1 accumulation at the plaque border in Tau-/- x 
APPPS1x VGlut1Venus at 8 months of age. (A) A representative image from APP and 
Methoxy-X04 stained 8 months old APPPS1 x VGLUT1Venus and Tau-/- x APPPS1x 
VGlut1Venus brain tissue sections. (B) APP-positive volumetric quantification around 
plaques for the old cohort (Two-way ANOVA Genotype F[1, 18]=24.0,  p < 0.0001, n=4, 3 
(APPPS1, Tau-/- x APPPS1 respectively)). (C) Representative images from LAMP1 and 
Methoxy-X04 from 8 months old APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x VGlut1Venus 
mice. (D) LAMP1-positive volumetric quantification around plaques for the old cohort 
(Two-way ANOVA – all factors p > 0.05). Plaque radius bin = 4 µm. The scale bars indicate 
10 µm. 
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Pre-synaptic transportation of VGLUT1 is not affected by absence 
of Tau 

In the previous experiment we showed that APP and BACE1 protein expression at plaques 

is changed if Tau is lacking. The Tau protein is a microtubule-associated cytoskeleton 

protein associated with anterograde axonal transport (Mandelkow, 2003). Its absence 

might affect trafficking of presynaptic proteins involved in APP cleavage and hence, might 

affect plaque growth and formation (Groemer et al., 2011). Therefore, we investigated 

the anterograde transport of VGlut1Venus (Figure 17) using fluorescence recovery (FRAP) 

(Ishikawa-Ankerhold et al., 2012), a technique to study protein mobility within cells. The 

principle behind our experiment is that initially, genetically fluorescently tagged VGlut1 

proteins are bleached. The fluorescent signal recovers due to transportation of VGlut1Venus 

into the region of interest. The same presynaptic terminals were monitored for 81 

minutes and the fluorescence recovery was measured between four different genotypes: 

VKIN x VGlut1Venus, Tau-/- x VGlut1Venus, APPPS1 x VGlut1Venus and Tau-/- x APPPS1 

xVGlut1Venus.  

The normalized intensity recovery curves of Tau-/- x VGlut1Venus and Tau-/- x APPPS1 x 

VGlut1Venus were overlapping (Figure 17.B) (least-square non-linear regression). The 

recovery period was studied in more comprehensive manner in order to understand 

whether all the components of the recovery period had similar properties. First of all, the 

difference between the mobile fraction, which was defined as the amount of recovery at 

the end of experiment, was insignificant between the groups (One-way ANOVA, p = 0.06 

> 0.05, n=4, 5) which suggests that the population variation (recovering and non-

recovering terminals) at the bleached areas was similar (Figure 17.C).  

Intensity recovery curve consists of two phases, a fast and a slow-recovery phase. The fast 

recovery phase is defined as a phase where proteins are available within the readily-

releasable pool to fuse and takes place within the range of minutes. The slow-recovery 

phase is defined as the phase of vesicles transportation along the axon. The half-life of 

these phases is defined as the time needed for signal to recovery to 50%. The half-life of 

the fast (One-way ANOVA, p = 0.2 > 0.05, n=4, 5; (Figure 17.D) and slow-recovery (One-

way ANOVA, p = 0.52 > 0.05, n=4, 5) (Figure 17.E) was not different between the groups, 
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which indicates that there was no difference in fusion and axonal transportation 

mechanism in the AD mouse model APPPS1 x VGlut1Venus, Tau-/- x APPPS1 x VGlut1Venus, 

VGlut1Venus and Tau-/- x VGlut1Venus. The percentage of fast-recovery within the imaging 

time was not considerably changed between the group (One-way ANOVA, p = 0.7 > 0.05, 

n=4,5), which means that the percentage of the readily releasable vesicle pools between 

the groups was similar (Figure 17.F). 

 

Figure 17. No change in the axonal transport of VGlut1 positive synaptic vesicles 
between mouse lines. (A) Representative images of an APPPS1 mouse during a FRAP 
experiment at different time points. (B) Normalized intensity curves for VGlut1Venus, Tau-

/- x VGlut1Venus, APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x VGlut1Venus. (C) Mobile 
fraction of bleach recovery which corresponds to the percentage of normalized intensity 
at the last imaging time point. No significant difference between the genotypes (One-
way ANOVA, p = 0.06 > 0.05). (D) Half-life of fast recovery. No significant difference in 
the comparison of the genotypes (One-way ANOVA, p = 0.2 > 0.05). (E) Half-life of slow 
recovery. No significant difference in the comparison of the genotypes (One-way 
ANOVA, p= 0.52 > 0.05). (F) Percentage of fast recovery. No significant difference in the 
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comparison of the genotypes (One-way ANOVA, p = 0.7 > 0.05, n=4 (for Tau-/- x 
VGlut1Venus and VGlut1Venus) and n=5 (for APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x 
VGlut1Venus). Number of mean ROIs per mouse = 10. Scale bar: 10 µm. 

Tau deficiency does not affect the expression of APP, BACE and 
LAMP1 in pre-synaptic terminals 

Proteins might have different anterograde transportation rate, according to their function 

(Maday et al., 2014). Therefore, the comparison of anterograde transport between 

different proteins by bleaching VGlut1Venus might not be valid for proteins involved in the 

disease, such as BACE1 (Buggia-Prévot et al., 2014; Hung and Coleman, 2016; Ye et al., 

2017), LAMP1 (Harada et al., 1998; Hendricks et al., 2010) and APP (Kamal et al., 2000). 

We hypothesized that in case of presynaptic axonal transport deficit, BACE1, VGlut1, 

LAMP1 and APP might be reduced in expression at would be expressed less in the 

presynaptic terminals. In order to investigate if any change in the presynaptic expression 

of BACE1, VGlut1, LAMP1 and APP (dystrophy-related proteins) does occur if tau is lacking, 

we compared the expression intensity of these proteins at mossy-fiber terminals, 

terminals that are known to express these proteins to high amounts (Figure 18.A).  

The localization of BACE1, LAMP1, APP and VGlut1 was not changed in Tau-/- x APPPS1 x 

VGlut1Venus compared with APPPS1 x VGlut1Venus in the old-cohort (p > 0.05, n=4, Mann-

Whitney, t=test) (Figure 18.B). This might suggest that the anterograde transport of 

BACE1, LAMP1, and APP is not altered in VGlut1 in Tau-/- x APPPS1 x VGlut1Venus compared 

to APPPS1 x VGlut1Venus.  
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Figure 18. The expression of APP, BACE, VGLUT1 and LAMP1 is not altered in 
hippocampal pre-synaptic terminals of Tau-/- x APPPS1 mice. (A) Representative images 
of mossy-fiber terminals stained with BACE1, LAMP1, APP and VGLUT1 antibodies in 8-
months old APPPS1 mice. (B) Comparison of the normalized expression of BACE1, 
LAMP1, APP and VGlut1 at mossy fiber terminals between APPPS1 and Tau-/- x APPPS1 
at 8 months of age. No significant difference was observed (p > 0.05, Mann-Whitney, 
t=test). Data presented as mean ± SEM; n=4.The scale bar indicates 50 µm. 

The anterograde transport of VGLUT1 within axonal dystrophies 
is not altered by lack of tau  

The reduced BACE1 and APP accumulation in dystrophies around plaques and the 

decreased plaque growth and formation in Tau-/- x APPPS1 x VGlut1Venus mice might be 

due to a change in anterograde axonal transport only within dystrophies, while the 

anterograde transport is generally not altered. Since dystrophies are unique in terms of 



  Results 

    

60 

 

the content and concentration of proteins that accumulate, anterograde transport deficit 

might explain the reduced BACE1 and LAMP1 protein accumulation in dystrophies at 

plaques. In order to investigate if there is any localized anterograde transport alteration, 

we performed fluorescence recovery after photo bleaching experiments in the 

dystrophies, as in Figure 17. We compared the fluorescence recovery for a period of 81 

minutes in the areas without dystrophies versus areas containing dystrophies (Figure 

19.A-B) using FRAP. The normalized intensity of the recovery did not vary significantly 

between dystrophic areas in Tau-/- x APPPS1 x VGlut1Venus and non-dystrophic areas in Tau-

/- x APPPS1 x VGlut1Venus. The percentage of a mobile fraction, also indicated by the last 

time point of the normalized intensity at 81 min, was not significantly different (p = 0.1 > 

0.05, n=5, Mann-Whitney, t-test) (Figure 19.C). The percentage of fast recovery (p = 0.7 > 

0.05, n=4, Mann-Whitney, t-test) (Figure 19.D) half-life of fast (p = 0.8 > 0.05, n=4, Mann-

Whitney, t-test) (Figure 19.E) and slow recovery (p = 0.59 > 0.05, n=4 (non-dystrophy), 

n=5 (dystrophy), Mann-Whitney, t-test) (Figure 19.F) were comparable between the 

groups.  

 

Figure 19. No change in axonal transport of VGlut1Venus within dystrophies in APPPS1 
mice lacking tau. (A) Representative images of Tau-/- x APPPS1 during FRAP experiment 
at different time points. (B) Normalized recovery curves for Tau-/- x VGlut1Venus at non-
dystrophies and Tau-/- x VGlut1Venus at dystrophies. (C) Mobile fraction, which 
corresponds to the percentage of normalized intensity at the last imaging time point. 
No significant difference between dystrophic areas in Tau-/- x APPPS1 x VGlut1Venus and 
non-dystrophic areas in Tau-/- x APPPS1 x VGlut1Venus (p = 0.1 > 0.05, n=5, Mann-
Whitney, t-test). (D) Percentage of fast recovery. No significant difference between the 
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conditions (p = 0.7 > 0.05, n=4, Mann-Whitney, t-test). (E) Half-life of fast recovery. No 
significant difference between the genotypes (p = 0.8 > 0.05, n=4, Mann-Whitney, t-
test). (F) Half-life of slow recovery. No significant difference between the conditions (p 
= 0.59 > 0.05, n=4, Mann-Whitney, t-test). Data is averaged within each mouse and then 
within each group ± SEM; n=4-5. A number of mean ROIs per mouse = 8-10. 

Microglia activation at plaques is indenpendent of the presence 
of tau 

Microglia are immune cells of central nervous system (CNS) and responsible for 

scavenging  Aß peptides, damaged neurons and synapses as well as infectious agents 

(Gehrmann et al., 1995). In order to understand whether the decrease in plaque growth 

and formation in Tau-/- x APPPS1 are might be a consequence of differences in microglia 

activation, which affects plaque growth; we measured the microglia volume fraction at 

the plaque border for different plaque sizes based on IBA1 stainings to label microglia 

(Figure 20.A-C). In addition, we analysed the volumetric profile of microglia according to 

the distance to the plaques which shows the volume taken by microglia at different 

distances to the plaque (Figure 20.B-D).  APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x 

VGlut1Venus did not display differences in the IBA1 positive volume fraction of plaques of 

different size (Figure 20.B) (p > 0.05, n=4, Mann-Whitney, t-test). Moreover, the 

distribution of IBA1 positive structures in relation to the distance to the plaque borders 

exhibited a similar tendency in both genotypes (Figure 20.D) (RM Two-way ANOVA all 

factors p = 0.7 > 0.05, n=4). These experiments suggest that molecular alterations 

observed in Tau-/- x APPPS1 x VGlut1Venus compared with APPPS1 x VGlut1Venus do most 

likely not depend on the changes in reactive microglia abundance and activity. 
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Figure 20. Lack of tau did not alter microglia activation at the plaque borders. (A) 
Representative images of IBA1 staining in APPPS1 x VGlut1Venus and Tau-/- x APPPS1 x 
VGlut1Venus. (B) The microglia volume fraction was comparable between genotypes and 
between plaque radius (p > 0.05, n=4, t-test, Mann-Whitney (test was performed 
between genotypes per plaque radius)) (C) Microglia volume fraction changes with the 
distance to the plaque border. However, change in microglia volume fraction was not 
significantly different between the mouse lines (RM Two-way ANOVA all factors p > 
0.05, n=4).  

BACE1 protein levels are significantly reduced in the whole brains 
of Tau-/- x APPPS1 

Previously we saw that certain proteins are reduced in dystrophic areas around plaques. 

In order to examine if these proteins are reduced in the entire brain, we quantified BACE1, 

LAMP1, APP levels by western-blot analysis. BACE1 protein levels were significantly 

reduced in Tau-/- x APPPS1 x VGlut1Venus (Figure 21.A-B) (p = 0.03 < 0.05, n=5, 7, t-test, 

Mann-Whitney). Additionally, we analysed the protein levels of APP in whole brain 

lysates. The results indicate that the amount of APP, whose expression was transgenically 

regulated (due to APP mutation in APPPS1 mice) and decreased in the dystrophies 

according to immunostaining, was unaffected (Figure 21.A-B) (p > 0.05, n=5, 7, t-test, 

Mann-Whitney). This result suggests that reduction in protein level at neurotic 

dystrophies is not due to a change in translation or transcription but due to changes in 
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protein degradation or distribution. We also analyzed other dystrophic markers such as 

LAMP1, LC3 and Cathepsin B, all of which were not altered in expression in whole brain 

lysates (p > 0.05, n=5, 7, t-test, Mann-Whitney) 

All these experiments suggest that BACE1 and APP are distributed in a tau dependent 

manner within neurotic dystrophies very different to other proteins accumulating at 

neuritic dystrophies like LAMP1.  

 

Figure 21. BACE1 protein levels are significantly reduced in whole brain lysates of Tau-/- 

x APPPS1 mice. (A) Representative bands from whole brain protein lysates. (B) Protein 
levels were normalized to a housekeeping protein (Calnexin for membrane-bound 
fraction and GAPDH for soluble) and compared. BACE1 protein level was significantly 
reduced in Tau-/- x APPPS1 (p = 0.03 < 0.05, n=5, 7, t-test, Mann-Whitney). Data 
presented as the mean of each mouse in the groups ± SEM. 
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DISCUSSION 

Alzheimer`s disease is an extremely complex neurodegenerative disease. Therefore, 

understanding the disease and pathology require multi-functional studies and broad 

collaborations within the scientific community. In this section, we will explain briefly our 

contribution in understanding the disease in comparison to previous studies. Additionally, 

we argue about possible follow-up studies and speculate about the mechanisms that 

underlie the observations in our mouse model. For ease of reading, the discussion is 

organized in a topic specific fashion. First of all, the physiology of compensatory 

mechanisms in different TauKO mouse models is discussed. Then, the role of 

endosomal/lysosomal proteins in subcellular trafficking of specifically APP and BACE1 is 

stated. Lastly, the way how changes in the regulation of endo/lysosomes trafficking and 

maturation might affect the disease pathology is argued.  

A growing body of genetic and biochemical evidence indicates a strong relation between 

amyloid beta and tau in the pathogenesis of AD. Here, we demonstrate with high temporal 

and spatial resolution imaging that the protein tau is not needed for the initiation of 

plaque growth and the formation of axonal dystrophies. Rather, tau seems to be a 

contributing factor in AD pathology. In other words, plaques are formed and grow still 

despite the lack of tau, but at a reduced rate. The absence of tau mostly affects the growth 

of amyloid plaques and the content of dystrophies at plaques. We observed that the effect 

of tau on plaque growth and formation is much more prominent at the cohort of older 

animals compared to younger ones. Additionally, BACE1 and APP protein abundance, 

which are two well-known markers for dystrophies in AD, are substantially reduced within 

dystrophies. Thus, therapeutics for a general reduction of tau protein may slow down the 

formation of the highly characteristic axonal dystrophies at plaques and the formation of 

new plaques in close proximity of existing neuritic plaques.   

In AD patients, pathological depositions, namely plaques and neurofibrillary tangles show 

a discrepancy from one individual to another, which applies to AD mouse models as well 

(for review Nelson et al., 2009). Even within one AD mouse line, variation is high between 

genders and individuals (Wang et al., 2003), which makes identification of true positive 
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changes in plaque load challenging. However, by tracking the changes in individual 

plaques and normalizing them for plaque growth we attempt to overcome this issue.  

One of the most important advantages of in vivo two-photon imaging is the allowance to 

follow chronical individual plaque changes. Therefore, age-dependent changes can be 

monitored and interfered with at a given time. We witnessed a more pronounced effect 

of tau in aged mice. This could be due to an accumulated effect of the lack of tau over 

time. In other words, long-term absence of tau might be needed to observe changes in 

plaque dynamics instead of short-term lack of tau. Alternatively, is the effect of tau 

depletion more important if there are more axonal dystrophies at plaques, which is the 

case if the animals are older. In order to study the short-term absence of tau on plaques 

and dystrophies, conditional knockout animals are required. By this way, the effect of the 

lack of tau only after a certain age might be able to be studied.  

Previous studies showed that partial reduction of BACE1 improves amyloid 

neuropathology and reduce Aβ levels (Laird et al., 2005; Kimura et al., 2010; Rabe et al., 

2011; Sadleir et al., 2016). Those studies compared BACE1 homozygous and heterozygous 

knockout mice crossed with APPswePS1E9  which exhibited a 50% Aβ burden in younger, 

but not older mice (Laird et al., 2005). Another study indicated that a 50% BACE1 

reduction in 5XFAD/BACE1+/− mice decreased Aβ42 plaque levels only in females to 40% 

and did not affect the Aβ42 plaque level in males (Sadleir et al., 2015). Rabe et al., 2011 

showed that 50% decrease in BACE1 enzyme activity resulted in 20% reduction in Aβ levels 

in an animal model with the Swedish mutation (APP23 mice) and 16% for non-mutated 

APP mice. In light of these studies, a slight reduction in BACE1 protein level in Tau-/- x 

APPPS1 as observed in our study might not dramatically diminish Aβ levels in the whole 

brain. This result might explain why Aβ40/42 levels in soluble and fibrillar fractions did not 

drastically differ in our study between TauKOxAPPPS1 and APPPS1, even in the old cohort. 

Previously, we showed that BACE1 inhibition in AD mice significantly reduces plaque 

formation, although do not have significant effects on presynaptic dystrophies. In those 

studies, we show that absence of tau significantly reduces accumulation of disease-

associated proteins in presynaptic dystrophies which most likely cause a reduction in 

plaque growth. All in all, these results suggest that these two approaches namely BACE1 
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inhibition and endogenous Tau reduction complement each other in terms of actions. 

While BACE1 is acting mainly on plaque formation, absence of tau affects plaque growth 

and the density of presynaptic dystrophies. Thus, the results support the notion that 

combinatorial effect of BACE1 inhibition and lack of tau might effectively prevent the 

progression of disease pathology.  

In our study, BACE1 localization in axonal dystrophies at plaques was shown to be affected 

by tau expression. This specific reduction of BACE1 in axonal dystrophies could be related 

with a change in the axonal transportation of BACE1. Therefore, axonal transportation of 

another pathology-related presynaptic protein, VGLUT1, was investigated. Although a 

significant change was not observed, it does not rule out the possibility that the axonal 

transportation of BACE1 protein is affected. As shown in the dystrophies surrounding 

amyloid plaques, the BACE1 fraction, but not VGLUT1 fraction, was reduced, indicating 

that intra-axonal accumulation of BACE1 is not simply the consequence of an altered 

transport of a presynaptic protein. Thus, more studies are needed to validate if BACE1 

axonal trafficking might be regulated by the tau protein. 

Electrophysiological experiments in hippocampal slices showed similar NMDA/AMPA 

receptor currents, synaptic transmission and synaptic plasticity between wild-type and 

tau knockout mice  (Roberson et al., 2011; Shipton et al., 2011). However, Tau knockout 

mice in Alzheimer`s disease are more resistant to seizure-induced toxins and amyloid beta 

peptides, which suggest that tau takes part in neuronal excitability or via multiple other 

mechanisms (Roberson et al., 2007; Ittner et al., 2010; Roberson et al., 2011). Thus, it was 

suggested that alterations in brain oscillatory patterns could be one of the mechanisms 

(Morris et al., 2011b). Hippocampal theta waves (5–11 Hz) representing spatial cognition 

and memory formation (Itskov et al., 2008) and levels of gamma brain-circuit 

synchronization (30-80 Hz). The later represents communication between interneurons 

(Sohal et al., 2009) which have been shown to be slowed down. This suggests that tau 

deficiency in AD mouse models might alter maturation of interneurons by disturbing long-

range gamma synchronization in the brain (Cantero et al., 2011). Finally, crossing TauKO 

mice with amyloid β-forming AD mouse lines rescued AD-related memory deficits and 

improved survival (Roberson et al., 2007; Ittner et al., 2010).  
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Although lack of tau does not affect axonal transport in physiologic condition, the 

combination of tau and Aβ in AD cases may alter axonal transport (Vossel et al., 2010). Aβ 

oligomers disrupt axonal transport of cargoes with involvement of following factors: 

mediating through N-methyl-D-aspartate receptor signalling (Decker et al., 2010), 

activation of glycogen synthase kinase 3β (Rui et al., 2006; Decker et al., 2010), casein 

kinase 2 (Pigino et al., 2009), and actin polymerization (Hiruma et al., 2003). Why tau is 

necessary for the impairment of axonal transport in the presence of Aβ is uncertain. 

However, tau might interact directly or indirectly with any of these pathways or contribute 

to the impairment by competing with motor proteins for microtubule access  (Dixit et al., 

2008). 

Possible compensatory mechanisms 

Although tau is expressed abundantly in neurons, complete tau knockout does not cause 

a severe phenotype. The lack of a severe phenotype of tau deficiency can be explained by 

compensatory mechanisms taking place by other microtubule associated proteins. 

Although exact compensatory mechanism is not known, possible changes that might take 

place in the absence of tau are argued in the following paragraphs. 

There are four different tau knockout mouse lines available (Ke et al., 2012). However, 

there are controversies in behavioral results between these models. In summary, 

hyperactivity, muscle weakness, reduced motor coordination, locomotion (Ikegami et al., 

2000; Roberson et al., 2007) and spatial memory deficits (Ma et al., 2014) in older mice 

were reported in TauKO mice lines, but no gross physical abnormalities and 

neurophysiological defects. This might be explained by confounding factors like diet (Ma 

et al., 2014), genetic background (Lei et al., 2014) and environment (Zou et al., 2016).  

The lack of obvious behavioral impairments in tau deficient mice might be due to 

compensation by other MAPs. It was reported that MAP1A expression increases under 

the lack of tau, even though MAP1A is a constituent of cross-bridge structures between 

MTs that are longer than ~ 20 nm (Sato-Yoshitake et al., 1989). Although the microtubule-

associated protein 1A (MAP1B, MAP1.2, MAP1X or MAP5) and tau are the prime members 

of neuronal MAPs (Cleveland et al., 1977; Bloom et al., 1985; Noble et al., 1989), Tau has 

a specific average velocity during axonal transport, characteristic interaction with 
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microtubules and a single kinetic pool (Mercken et al., 1995). Transfection studies have 

revealed that tau induces elongation of processes of non-neuronal cells through the 

formation of MT bundles (Kanai et al., 1989; Chen et al., 1992). However, axonal transport 

defects were not observed in tau knockout mice, as seen in Figure 16; Tau-/- exhibited a 

slight tendency for faster axonal transport. In compliance with the previous findings the 

axonal transport characteristic of tau is relatively slow (Mercken et al., 1995) due to its 

repetitive association and disassociation from microtubules while MAP1A migrates with 

0.8-1 mm/d, which might explain the tendency for faster axonal transport observed in 

TauKO mice during FRAP experiments. In addition, the entire tau population behaves like 

a single kinetic pool that is moving with 0.2-0.4 mm/d while MAP1A has two pools; the 

stationary pool is forming approximately one-third, and the kinetic pool (with the speed 

of 0.8-1 mm/d) is forming two-third of the total pool. Dynamic interaction of tau with 

microtubules is explained by “kiss and hop” mechanism (Yuan et al., 2008; Janning et al., 

2014). According to this hypothesis, tau dwells on a single microtubule for ~ 40 ms before 

it hops to the next one, while MAPs interaction with microtubules are less dynamic and 

more retained. Because of the “kiss and hop” mechanism, the microtubule-binding region 

of tau interact with other proteins localized in different cellular compartments like actin 

filaments and protein phosphatase 2A (Janning et al., 2014). Tau does not interfere with 

the function of axonal transportation related proteins such as kinesin, which has an 

average velocity of ∼1 μm/s (Kaether et al., 2000) while Tau moves much slower (Yuan et 

al., 2008; Janning et al., 2014). Therefore, pathological shifts in dwell time of tau on 

microtubules may result in the dynamic disequilibrium of tau with MTs.  

The biggest groups of tau-interacting proteins according to their localization are 

membrane-bound proteins which can be more specifically categorized as mitochondrial 

(40.4%), plasma membrane (25.5%) and vesicle membrane proteins (21.3%) (Liu et al., 

2016). However, tau in disease condition might influence not only its sub-cellular 

localization but also its binding partners and its function. As in the case of AD patients, 

colocalization of pathogenic Tau with both pre- and post-synaptic markers is enriched in 

synaptosomes (Fein et al., 2008; Sokolow et al., 2015). Because of higher subcellular 

localization of pathogenic tau in synapses, it might interfere with presynaptic functions 

such as synaptic vesicle mobility and vesicle release rate by its binding to synaptic vesicles 
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via its N-terminal domain and via the F-actin network (Zhou et al., 2017; McInnes et al., 

2018). These data imply that pathogenic mechanisms of non-aggregated Tau in neurons 

induce early synaptic deficits preceding synapse and neuronal loss in AD. 

Postsynaptically, pathogenic tau might act via glutamate receptor (NMDAR and AMPAR) 

trafficking and organization (Hoover et al., 2010; Ittner et al., 2010; Suzuki and Kimura, 

2017). Moreover it has been shown that pathogenic tau localize Fyn kinase to 

postsynaptic terminals. The Fyn-mediated interaction between NMDAR and PSD-95 has 

been proposed to be necessary for Aβ toxicity in certain AD mouse models like the APP23 

(Ittner et al., 2010). Therefore, postsynaptic accumulation of tau might affect localization 

of other postsynaptic dementia-related proteins on dendritic spines (Ittner et al., 2009). 

The role of endosomal/lysosomal proteins in subcellular trafficking of disease 

associated proteins 

In this section, the relation between regulation of endosomes and lysosomes and disease-

associated proteins is discussed: more precisely, the regulation of APP by LRP1, SorLA, 

CD2AP and the regulation of BACE1 by BIN1, reticulon/Nogo and Snapin. In general, these 

proteins are responsible for sorting APP or BACE1 into endosomes or lysosomes. Any 

dysfunction during sorting might increase the chance of APP and BACE1 encounters,or 

changes the subcellular location in which encounters take place. Therefore, the 

production and subcellular localisation of Aβ might be altered by irregular sorting.  

APP is a type-I transmembrane protein with a large extracellular and luminal moiety and 

a short cytoplasmic domain which can be proteolytically cleaved at many positions (Eggert 

et al., 2018b). Although the respective enzymes reside in diverse subcellular sites, 

intracellular APP trafficking was suggested as a main mechanism regulating the access of 

APP to its secretases (Sannerud and Annaert, 2009; Haass et al., 2012; Zhang and Song, 

2013). Altered subcellular trafficking of APP is thought to directly influence the amount of 

Aβ generated (Eggert et al., 2018b). Thus, the mechanisms underlying intracellular APP 

transport are critical not only to understand AD pathogenesis, but also to target the 

disease with pharmacological interventions.  

The intracellular itinerary of APP has been studied in undifferentiated cells (Eggert et al., 

2018b). The APP is posttranslationally modified in the ER. Afterwards APP enters the 
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secretory pathway. Then it is translocated through the Golgi apparatus, which 

consecutively localizes APP to the plasma membrane (Caporaso et al., 1994; Guo et al., 

2012; Haass et al., 2012). From there on, APP is either processed or internalized. APP 

endocytosis happens mainly via cholesterol dependent, clathrin-coated vesicles into early 

endosomes; this implicates an overlap of clathrin and cholesterol dependent endocytosis. 

After internalization of APP, it might follow three different pathways. Firstly, APP might 

go for recycling (Guo et al., 2012; Haass et al., 2012) or it can be transported retrogradely 

from endosomes back to the TGN in a retromer-mediated pathway (Willnow and 

Andersen, 2013) or APP is degraded through fusion of late endosomes with lysosomes 

(Cole et al., 1992; Haass et al., 1992).  

Intracellular sorting, targeting, and internalization of transmembrane proteins are 

facilitated by usually short sequences of amino acids on cytoplasmic domains which are 

recognized by cytosolic adaptor proteins. A number of type-I transmembrane proteins 

have been verified to modulate the intracellular itinerary of APP, its proteolytic processing 

and/or clearance of Aβ. Remarkably, specific intracellular targeting events can occur 

independently of the intracellular domain of APP, such as anterograde axonal transport 

(King and Scott Turner, 2004; Eggert et al., 2018b).  

SorLA is a type-1 transmembrane protein involved in intracellular transport of APP 

(Jacobsen et al., 1996; Yamazaki et al., 1996). It binds to APP directly and redirects it into 

the Golgi, which results in reduced processing of Aβ (Andersen et al., 2006). SorLA is 

considered as a risk factor for late and early onset AD (Andersen et al., 2016). In AD 

patients, expression levels of SorLA are significantly reduced. In parallel, SorLA knockout 

mice models possess increased Aβ levels; additionally, overexpression of SorLA in neurons 

decreases Aβ levels (Andersen et al., 2005). Thus, SorLA is considered as a negative 

regulator of APP by increasing retrogrades sorting of APP from endosomal compartments 

to the trans-Golgi network. Besides, it was shown that this redirection of APP by SorLA 

was significantly reduced after dimerization of APP (Eggert et al., 2018b, 2018a). Taken 

together, our results suggest that SorLA might play a role in trafficking of APP to 

dystrophies.  
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Another disease-associated protein, namely BACE1, can be regulated by many factors. 

One of them are the reticulon/Nogo proteins (He et al., 2004; Murayama et al., 2006) 

which retain BACE1 in the ER, where the environment is suboptimal for BACE1 activity for 

cleaving APP (Shi et al., 2014). The reticulon family of proteins has four members: RTN1, 

RTN2, RTN3 and RTN4 (also known as Nogo) (Yan et al., 2006; Yang and Strittmatter, 

2007).  An increase in the expression of any reticulon protein, specifically RTN3, 

substantially reduces the production of Aβ by reducing cell surface localized BACE1. On 

the contrary, lowering the expression of RTN3 by RNA interference increases the secretion 

of Aβ as well as expression of BACE1 (Shi et al., 2009; Araki et al., 2013), suggesting that 

reticulon proteins are negative modulators of BACE1. In the context of dystrophic 

neurites, RTN3 is enriched in dystrophic neurites around plaques in AD brain. Additionally, 

neuritic abnormalities can be caused by overexpression of RTN3 (Hu et al., 2007). 

Snapin provides another mechanistic insight into the complex regulation of BACE1. Snapin 

is a dynein motor adaptor for late endosomes and mediates retrograde transport of late 

endosomes and BACE1 in neurons (Cai et al., 2010). Deletion of snapin and disruption of 

Snapin-dynein coupling causes reduction in BACE1 transport to lysosomes and increases 

BACE1 accumulation in late endosomes and multivesicular bodies whose acidic 

environment is optimal for β-secretase activity (Huse et al., 2000) and therefore, increases 

APP processing (Ginsberg et al., 2010b; Ye and Cai, 2014). Late endosomes containing 

BACE1 and Aβ42 are clustered in distal processes and presynaptic terminals (Takahashi et 

al., 2002; Takahashi, 2004). In fact, overexpression of Snapin enhances BACE1 turnover 

and therefore reduces APP cleavage by BACE1 (Ye and Cai, 2014) and removes BACE1 from 

presynaptic terminals to the soma (Ye et al., 2017).  

BIN1 is another factor for regulating BACE1 endosomal trafficking (Miyagawa et al., 2016; 

Ubelmann et al., 2017). Reduction of BIN1 levels controls Aβ generation in axons by 

trapping BACE1 in tubules of early endosomes; as a result, BACE1 cannot be sorted for 

degradation in dendrites. On the contrary, the reduction of CD2AP levels controls Aβ 

generation by trapping APP at the membrane of early endosomes. Thus, reduction of both 

BIN1 and CD2AP increases Aβ generation by bringing BACE1 and APP in the same early 

endosomes. The reduction of BIN1 increases the possibility of an APP and BACE1 

encounter in axons. On the other hand, the reduction of CD2AP enhances their encounter 
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in dendrites (Ubelmann et al., 2017). This results in an Aβ accumulation in different 

subcellular locations. All regulating factors might play a role in reduction of Aβ generation 

by affecting volumetric BACE1 fraction in dystrophies of the Tau-/- x APPPS1 mouse. 

Endocytosis of APP and BACE into early endosomes is necessary for Aβ generation, which 

is restricted by segregating APP and BACE1 into separate compartments (Grbovic et al., 

2003; Cirrito et al., 2008). During early endosome maturation, APP is sorted into 

lysosomes (Morel et al., 2013) whereas BACE1 trafficked back to the plasma membrane 

(Buggia-Prévot et al., 2013; Morel et al., 2013). In case of dysregulation of either 

mechanism, Aβ generation is alleviated. A recent study showed that Bin1 and CD2AP take 

a role in polarisation of the Aβ generation in neurons (Ubelmann et al., 2017). As 

mentioned before, Bin1 depletion increases the chance of APP and BACE1 meeting in 

axons, whereas CD2AP increase this chance in dendrites. Different localisation of Aβ 

generation may probably influence the local Aβ toxicity as well as the overall disease 

progression. As shown in the result section, reduction plaque growth as well as a reduced 

BACE1 and APP accumulation in axonal dystrophies In TauKO x APPPS1 which led us to 

believe that local Aβ generation at the plaques might be reduced. However, 

measurements by using ELISA did not indicate changes in Aβ levels. This discrepancy could 

be explained by the possibility that Aβ production is not affected in non-dystrophic areas 

in TauKO x APPPS1.  

Impairment in maturation of endosomes 

In the previous section it was discussed how the site of Aβ generation and production 

might be affected if the localisation of APP or BACE1 in endosomes/lysosomes is altered. 

However, Aβ generation may also be affected by an intrinsic regulation of lysosomes. Any 

changes in endosome to lysosome maturation, incomplete degradation of proteins in 

lysosomes or suboptimal lysosomal environment may prolong APP and BACE1 interaction. 

Therefore, Aβ generation would be indirectly affected. In this section, regulating factors 

for functional lysosomes in disease context, mainly lysosomal proteolysis, proton or 

cholesterol regulation are discussed.  

Under normal conditions, the route of membrane components for hydrolysis goes 

through late endosomes, then lysosomes, where these components are hydrolized with 
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hydrolytic enzymes. Previous evidence supports the notion that deficiencies in retrograde 

transport of late endosomes, a lack of activity from hydrolases or dysfunction in 

cholesterol efflux might cause impairment of the maturation of endosomes. This might 

cause the formation of axonal dystrophies (Cataldo et al., 2000, 2004; Grbovic et al., 2003; 

Maxfield and Tabas, 2005; Ginsberg et al., 2010a; Lee et al., 2011). Increased cholesterol 

levels play a role in maturation and enlargement of endosomes. Although a precise 

mechanism is not known, changes in lipid composition or cholesterol content in 

endosomes might alter endocytic sorting. As a late endosome luminal protein, NPC1 binds 

cholesterol and carries cholesterol out of late endosomes (Friedland et al., 2003). Failure 

in NPC1/2 will result in imbalanced cholesterol levels in endosomes and lysosomes 

(Cossec et al., 2010b). In the disease context, both the NPC1 mRNA and protein expression 

are upregulated specially in the brain regions which are severely affected in AD such as 

the hippocampus and the frontal cortex (Kågedal et al., 2010). Moreover, the deletion of 

NPC1 in an APPPS1 mouse model increases the co-localization of APP, BACE1 and PS1 

within enlarged early, or recycling endosomes, by decreasing APP recycling to the cell 

surface (Malnar et al., 2010, 2012; Maulik et al., 2015) as well as an Aβ accumulation 

(Borbon and Erickson, 2011). Besides, the inhibition of NPC1/2 alters the localization of 

PS1 in early/later endosomes (Runz et al., 2002; Burns et al., 2003). Collectively, these 

results show that NPC1/2 is involved in cholesterol regulation in AD and potentially acting 

upstream in the Aβ production pathway. The reduction in amyloid plaque growth and APP 

accumulation at the plaques in the TauKO x APPPS1 mouse model in our study might be 

related with changes in the cholesterol and NPC1/2 function.  

Cholesterol is required in neurons. Cholesterol import is performed by apolipoprotein E 

and via lipoprotein receptor-related protein 1 (LRP1) receptors on the surface. In AD, 

malfunction of cholesterol import was thought to starve neurons of cholesterol. LRP1 is 

associated with effective clearance of Aβ from the brain to the periphery across the blood-

brain barrier. In addition, LRP1 might be an important candidate for the APP turnover. 

Indeed, an increase in LRP1 results in APP endocytosis and an increased secretion of Aβ 

(Ulery et al., 2000; Cam et al., 2005). LRP1 is transported with a velocity of less than 1 

μm/s, while APP is transported with a velocity  faster than 1 μm/s (Wagner and Pietrzik, 
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2012; Eggert et al., 2018b). This implies that LRP1 might affect APP transport by leading it 

into common transport vesicles. 

Of particular relevance to AD, cholesterol is a highly specific ligand APP–βCTF. It acts 

directly on βCTF to deliver lipid rafts and influences its access to other secretases. APP 

was already suggested as a cellular cholesterol sensor which suppresses cellular 

cholesterol uptake (Beel et al., 2008, 2010; Barrett et al., 2012). High dietary LDL 

cholesterol and overexpression of its receptor APOE are associated with high-level βCTF 

and BACE1 levels and enlargement of RAB5 endosomes (Ji et al., 2006; Cossec et al., 

2010a). Lipoprotein receptors mediating glia-derived cholesterol transport within the 

CNS, and specifically present in end lysosomes, are essential to maintain the cellular 

homeostasis (Mauch et al., 2001). The patho-molecular background of AD resembles the 

lysosomal storage disorders, such as the AD risk factor APOE4 (Fu et al., 2012; Colacurcio 

et al., 2018), and implicates that altered cholesterol homeostasis could be a common 

mechanism.  

The selective maturation or transport failure of APP and BACE1 containing autophagic 

vesicles/lysosomal compartments and axonal accumulation within dystrophic axonal 

swellings in response to tau expression provides a unique molecular mechanism specific 

for AD. Several of our observations may be relevant to the molecular mechanism by which 

tau expression impedes the transport of specifically APP and BACE1 containing organelles. 

Selective recovery of APP and BACE1 protein accumulation in dystrophies in Tau-/- x 

APPPS1 is highly distinguishable from the other accumulated proteins that are still present 

in dystrophic neurites, and which are not predominantly regulated by tau. Presenilin 1 

(PS1) is a catalytic component of γ-secretase complex, which is involved in cleavage of 

APP and generation of Aβ peptides (Steiner and Haass, 2000; Selkoe and Wolfe, 2007; De 

Strooper and Annaert, 2010; Chávez-Gutiérrez et al., 2012). In the light of a large body of 

literature describing PSEN during lysosomal functioning, PSEN1 holoprotein plays a role in 

γ-secretase-independent roles in wnt signaling (Kang et al., 1999), ER Ca2+ regulation (Tu 

et al., 2006; Shilling et al., 2014) and in lysosomal function and autophagy (Wilson et al., 

2004; Lee et al., 2010; Coen et al., 2012; Wolfe et al., 2013). Intracellular organelles 

maintain an optimal pH suited for their biochemical functions by action of a primary 

electrogenic proton pump (Wolfe et al., 2013). Vacuolar-type ATPase (v-ATPase) 
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maintains lysosomal pH, which regulates targeting and maturation of lysosomes as well 

as modulation of lysosomal Ca2+ levels (Lee et al., 2010; Mindell, 2012). PSEN1 loss-of-

function facilitates incomplete glycosylation of the V0a1 subunit, which causes V0a1 

subunit being rapidly degraded by the endoplasmic reticulum, which results in a 

deficiency in proton pumping activity of the lysosomal lumen (Lee et al., 2010, 2015). Of 

importance, PS1 takes an active role in PI3K/Akt activation. Thus, it also regulates 

phosphorylation / inactivation of glycogen synthase kinase-3 (GSK-3) which suppresses 

phosphorylation of tau (Baki et al., 2004). Therefore, a strong reduction of APP and BACE1 

at the plaques in Tau-/- x APPPS1 could be explained by the relationship between PS1 and 

tau. Consistent with this, hAPP x TauKO mouse line fail to exhibit changes in plaque growth 

and formation (Roberson et al., 2007). APP metabolites including, notably, the trans-

membrane C-terminal fragments (Siman et al., 1993; Boland et al., 2010), are known to 

disturb endosomal trafficking and size (Jiang et al. 2010). In the light of these findings, the 

increase in APP-CTF levels may underlie an additional pathogenic consequence of 

lysosomal dysfunction relevant to AD (Jiang et al., 2010) 

CONCLUSION 

According to amyloid hypothesis, Aβ peptides are considered as the main reason for the 

development of AD related pathology such as the formation of neurofibrillary tangles and 

neuronal death. However, tau does not act pathologically because of Aβ, but tau also 

contributes to that pathology in AD. Our data indicate that Tau is involved in the cascade 

that leads to accumulation of BACE1 and APP in peri-plaque dystrophies and thereby 

exacerbates Aβ deposition. Thereby, we posit a novel connection between tau and Aβ, 

suggesting of positive feed forward mechanism. In conclusion, tau contributes to the 

kinetics of plaque formation and the development of dystrophic neurites in AD. Although 

THE precise mechanism how tau is involved in the pathology is not known yet, we 

speculate that tau in combination with endosome/lysosome regulatory proteins might 

alter localization of APP and BACE1 and subsequently the generation of Aβ peptides.  
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Abstract 

BACE1 is the rate-limiting protease in the production of synaptotoxic β-amyloid (Aβ) 

species and hence one of the prime drug targets for potential therapy of Alzheimer’s 

disease (AD). However, so far pharmacological BACE1 inhibition failed to rescue the 

cognitive decline in mild-to-moderate AD patients, which indicates that treatment at 

symptomatic stage might be too late. In the current study, chronic in vivo two-photon 

microscopy was performed in a transgenic AD model to monitor the impact of 

pharmacological BACE1 inhibition on early β-amyloid pathology. The longitudinal 

approach allowed to assess the kinetics of individual plaques and associated presynaptic 

pathology, before and throughout treatment. BACE1 inhibition could not halt but slow 

down progressive β-amyloid deposition and associated synaptic pathology. Notably, the 

data revealed that the initial process of plaque formation, rather than the subsequent 

phase of gradual plaque growth, is most sensitive to BACE1 inhibition. This finding of 

particular susceptibility of plaque formation has profound implications to achieve optimal 

therapeutic efficacy for the prospective treatment of AD. 
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