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Zusammenfassung

Die vorliegende Arbeit beschreibt die Suche nach dem Higgs Bosdih -in WW*)
Zerfallen in Proton-Antiproton-Kollisionen mit Daten des D@ Experiments am Tevatron
Beschleuniger. Diese Daten wurden zwischen April 2002 und September 2003 aufgeze-
ichnet und haben eine integrierte Luminositit von etwa 147 pBs wurde eine Analyse

im Zwei-Myonen Zerfallskanal dew-Paare entwickelt, die auf héhere integrierte Lu-
minositaten und auf den bis zum Jahr 2009 aufzuzeichnenden vollen Datensatz skaliert
werden kann. Die Anzahl der beobachteten Ereignisse in den vorliegenden Daten ist kon-
sistent mit den Erwartungen des Standardmodells. Da kein Uberschuss gesehen wurde,
sind Grenzen auf den Wirkungsquerschnittider- WW*) Produktion auch in der Kom-
bination mit anderen Leptonzerfallskanalen im 95% Vertrauensintervall berechnet wor-
den. Einen Hauptuntergrund ztt — WW*) Suche stellt die direkte Produktion von
W-Paaren dar. Eine erste Messung des Wirkungsquerschnitt§VwBaar-Produktion

beim D@ Experiment wird im Anschluld vorgestellt. Die Messung von Spuren mit ho-
her Genauigkeit ist ein wesentlicher Bestandteil beider Messungen. Die Arbeit schlief3t
mit einem Beitrag zur genauen Spurmessung beim ATLAS Experiment am zukinftigen
Large Hadron Collider (LHC). Hierzu wird ein Positionstiberwachungssystem fir ATLAS
Myondriftkammern am Hohenstrahlungsmel3stand der LMU Miinchen vorgestellt.

Abstract

This thesis describes the search for the Higgs boseh-in WW™*) decays in proton anti-
proton collisions with data taken at the D@ experiment at the Tevatron collider. The data
set was taken between April 2002 and September 2003 and has an integrated luminosity
of approximately 147 pbt. An analysis of the di-muon decay channel of tigairs was
developed which can be scaled to higher luminosities up to the full data set to be taken
until 2009 at the Tevatron collider. The number of events observed in the current data
set is consistent with expectations from standard model backgrounds. Since no excess is
observed, cross-section limits at 95% confidence leveHfer WW*) production have

been calculated both standalone and also in combination with other lepton decay chan-
nels. The production oV pairs is one major background in the searchHof> WW*)

decays. Hence a first measurement of &/ production cross-section with the DQ
experiment is presented. Experience gained during this analysis has shown the precise
track reconstruction is an essential tool for both measurements. This thesis closes with
a contribution to precise tracking in the ATLAS experiment at the future Large Hadron
Collider (LHC). An alignment system for ATLAS muon drift chambers at the cosmic ray
measurement facility at LMU Munich is presented.
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1 Introduction

Despite the great success of the Standard Model of elementary particles for the elec-
troweak and strong interaction, the mechanism of mass generation of the weak gauge
bosons and the fermions is still experimentally unsolved. In the Standard Model, the
Higgs boson is a key point of the theory. The experimental discovery of the Higgs boson
or something similar is a crucial test of the electroweak theory. Theoretical considerations
place an upper limit on a Standard Model Higgs mass around LT&Xperimental lim-

its from direct searches and theoretical calculations using loop corrections place a lower
limit at 1144 GeV [1] and an upper limit at approximately 211 Ge¥| fespectively.

The direct search for the Standard Model Higgs boson is one of the main topics at the
present and future hadron colliders. This document describes the search for the Higgs bo-
son inH — WW*) decays with the D@ experiment at the Tevatron collider at Fermilab
near Chicago, USA. Here protons and anti-protons collide at a centre of mass energy of
V/S=1.96TeV. With the full dataset of 4 8fb— an exclusion or discovery of a Stan-

dard Model Higgs boson is possible in the above mentioned mass range. In this thesis the
Higgs boson decays will be discussed in detail in khes WW™) — vy, decay
channel. Backgrounds and experimental limitations will be examined and a combination
with the di-electron and electron-muon decay channel will be presented afterwards. One
of the main remaining backgrounds ldf— WW*) decays is the Standard Mod&iw
production. A detailed understanding of this background is a key point to understanding
H — WW*) decays. Until now only fewV-pairs have been observed ip-pollisions
leading to unreliable cross-section measurements. A first attempt of a cross-section mea-
surement with the D@ experiment is presented.

In the first chapters it will be demonstrated that a good track finding with high precision
and efficiency is essential for the discovery of the Higgs boson and many other important
measurements. This fact will also be a key part of the physics programme at the next
generation collider. At CERN in Geneva, the Large Hadron Collider, LHC, will collide
protons at a centre of mass energy & = 14TeV from 2007 onwards. The ATLAS

Throughout this document, units are chosen in the rationalised Heavyside-Lorentz sydteat 1.
Masses, momenta and energies all have the units of energies.

1



2 1. Introduction

experiment is one of two general purpose experiments which will contribute to the un-
derstanding of many aspects of the Standard Model. The sophisticated muon system of
the ATLAS experiment will help to discover or exclude a Standard Model Higgs boson
over a wide mass range in certain decay channels. Parts of this system are tested at the
Cosmic Ray Measurement Facility at the Ludwig-Maximilians-Universitdt Minchen. A
muon chamber alignment system for this measurement facility was developed and allows
a precise control of the chamber positions.

In the following document Chapter 2 presents an introduction to the basic principles of
the Standard Model and Higgs boson physics, whereas Chapter 3 gives an overview of
the Tevatron collider and the D@ experiment. Chapter 4 describes details of the event re-
construction with the D@ experiment. In Chapter 5 limits onkhe> WW*) production

in the di-muon channel and a combination with other channels are presented. Chapter 6
describes a first attempt oW production cross-section measurement. In Chapter 7 the
alignment system of the cosmic ray measurement facility is described in detail. Chapter
8 provides a summary of all results presented in the different Chapters.



2 The Higgs Boson in the Standard
Model and its Extensions

This Chapter provides a very brief introduction to the theory and concepts which are used
in this thesis.

2.1 The Standard Model

Particle physics studies the fundamental constituents of matter and their interactions.
What is called fundamental evolves with the improved understanding of nature. The

modern theory, the so call&tandard Modelexplains all phenomena of particle physics

in terms of properties and interactions of a small number of particles of three distinct

types [3, 4]. The first two are spin-1/2 fermions and called leptons and quarks (Zab)le

the third are spin-1 bosons and are called gauge bosons which are the ’force carriers’ in
the theory (Table.2). All these particles are assumed to be elementary. There are three

I Il 1] Charge
Leptons| e M T -1
Ve V|_1 V'[ 0

Quarks | up  charm top | +2/3
down strange bottom —1/3

Table 2.1:The three generations of elementary particles with spin152.

generations of lepton and quark families ordered by increasing mass. The lepton families
consist of electrons, muons and taus and their corresponding neutrinos. The former par-
ticles have an electric charge of one unit whereas the neutrinos do not carry an electric
charge and are assumed to be massless. Recent measurements have proven that neutri-
nos have masses][which can be accounted for in the Standard Model. As for leptons,
quarks are also ordered into three families. Besides the electric charg8 of 21/3,

3



4 2. The Higgs Boson in the Standard Model and its Extensions

respectively, they carry an additional charge called “colour” which can be red, green or
blue. Unlike leptons quarks are not observable as free particles in nature. They are con-
fined to “colourless” objects which are “baryons” or “mesons”. Baryons consist of three
guarks with different colours which sum up to a colourless object. Mesons consist of two
quarks with colour and its anti-colour. All particles have a corresponding antiparticle with
opposite electric charge but same mass.

In the Standard Model quarks and leptons are postulated as the elementary constituents
of matter. The recently discovered dark mattgrduggests that there must be something
else. A description of the interaction between the constituents of matter is needed to
complete the picture of the elementary particles. The Standard Model is a quantum field
theory where all particles are described as fields. The interactions between fermions are
explained by exchanges of mediating particles, equivalently called “gauge bosons”, cor-
responding to their interaction fields. There are four different types of interactions, also

Force | Gauge Bosons  Mass
electromagneti % 0

strong O1..-08 0

weak w, 70 ~ 80,91 GeV

Table 2.2:The gauge bosons with spin=S1.

called forces, in nature. The “electromagnetic” force is mediated by massless photons
coupling to all charged particles. It has infinite range and the strength is determined by the
fine structure constant, ~ 10-2. The “weak” force is mediated by massive weak gauge
bosondN* andz® and is responsible for e.g. the nucl@adecay. The interaction range

of A/Mwc ~ 10~1’m and the strength, given by the Fermi cons@at~ 10-°GeV 2,

are very small. The “strong” force is mediated by eight massless gluons with colour and
is responsible for the quark interactions. The range is given by the size of a nucleus of
~ 10~1°m and the strength depends on the momentum transfer between the quarks and is
~ 0.1 at a momentum transfer scale corresponding to the mass of the electroweak gauge
bosons. The “gravitational” force is much weaker compared to the first thrd®(®)

and is too weak to be observable in particle physics laboratory experiments. It is not
included in the Standard Model.

From Noether’s Theorem follows: invariance of a physical law under a global symmetry
transformation results in a conserved quantity. The invariance with respect to translations
in time and space and rotation in space provides the conservation of energy, momentum
and angular momentum. Together with these quantities the electromagnetic, weak and
strong interactions also conserve other quantities related to internal degrees of freedom
like the electric charge or colour.
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The Standard Model is a quantum field theory which unifies the electromagnetic, weak
and strong interactions. Similar to Maxwell’s unification of electricity and magnetism the
Standard Model combines the electromagnetic and the weak force to an electroweak inter-
action. The special feature of the Standard Model is that the Lagrangian of the theory in
also invariant under local symmetry transformations, called gauge transformations. The
SU(3) symmetry of Quantum Chromodynamics (QCD) is related to rotations in colour
space. The Electroweak Theory, a unification of the weak interaction and Quantum Elec-
trodynamics (QED), has 8U(2) x U (1) symmetry related to rotations in weak iso-spin
and in hypercharge space. All left-handed fermions carry weak isotspit/2. The
hyper-chang? is defined byls = Q—Y /2 whereQ is the electric charge arld = +1/2

is the third component of the weak iso-spin.

To have predictive power a quantum field theory has to be “renormalisable”. The quan-
titative features of the interactions can be calculated to arbitrary accuracy as perturbative
expansion of the coupling constant given a few parameters by a limited set of measure-
ments. If all divergencies caused by higher order corrections can be absorbed into physical
measurable quantities the theory is “renormalisable”. All above mentioned quantum field
theories are renormalisable.

The principle of local gauge invariance is applicable to the strong and electromagnetic
interactions. The application is not directly possible for the weak interaction due to its
massive gauge fields. The introduction of the spontaneous symmetry breaking and the
so called “Higgs-mechanism7] helps to overcome this problem. The renormalisability
remains intact if gauge symmetry is spontaneously broken, that means if the Lagrangian
IS gauge invariant but the vacuum state and the spectrum of particles are not. A set of
elementary scalars fieldss introduced with a potential ener§y() that is minimised at

a value of< @ >+ 0 and the vacuum energy state is degenerateUThiggauge invariant
potential, for example, of an electrically charged scalar fie|g|e®,

V(192 = —12|@2 + Nl (2.1)

has its minimum ak |@| >= u/v2\ = v/v/2, but is independent of the phaBe The

choice of a value fof spontaneously breaks the gauge symmetry. The massive Higgs
scalar particles of massy = v/2u = v/2\v are excitations of around its vacuum value.
Excitations around the vacuum valuetfequire no energy and correspond to massless
and spinless Goldstone bosons. In the physical spectrum they appear as the longitudinal
polarisation third degree of freedom of the gauge bosons. The gauge bosons acquire
masses through their couplings to the Higgs field. Their massee given byn= gv/2

whereg are their couplings to the Higgs field amds the the vacuum value of the Higgs
field. In this model the Fermi constatis given byG = 1/2g?/8n? = 1/(v*\/2).

The theory of the electroweak interaction predicts four gauge bosons. The local invari-
ance undeBU(2) transformations requires three gauge fields: andw?® with coupling
g = esinBy, where e is the electric charge afg is the Weinberg angle. The local
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invariance undeb (1) transformations yields thB® with couplingg’ = ecosBy. The
symmetry breaking is introduced by a complex iso-doublet scalar fieldguithp, + i@
andg‘o = (p%+(p§ and a potential following Eq2.1. Minimisation of the vacuum en-
ergy givesv = 246 GeV and leaves three Goldstone bosons that are absorbed by three
massive vector bosons¥* and z° = —sinBywB® + cosBywWP° and one massless pho-

ton y = cosBwB? + sinBwW?°. The Weinberg angléy can be determined experimen-
tally throughv — e scattering, by electroweak interferencegh-e~ scattering, byz°
line-shape measurements or by the mass ratio oMfieand Z° bosons. The ratio

p = mg,/mé cos By is predicted to be 1 at Born level and probes the multiplet struc-
ture of the Higgs boson. Deviations from 1 due to higher order corrections are sensitive
to the mass of the Higgs boson.

In the Standard Model quarks and leptons also acquire their masses through the Higgs
particle. They are given by the product of the Yukawa coupdignion and the vacuum
expectation valug/+/2 of the Higgs field. These masses are non calculable parameters
of Standard Model since their Yukawa couplings to the Higgs boson are arbitrary. The
validation of the Standard Model explanation for elementary particle masses requires the
discovery of the Higgs boson.

2.2 Higgs Production

The Higgs mechanism presented in the previous Section is only one model of electroweak
symmetry breaking. Present experimental data are not sufficient to identify with certainty
the nature of dynamics behind the mechanism. The search for the origin of weak gauge
boson and fermion masses requires continuous experimentation at present and future col-
liders [3].

The mass of the Standard Model Higgs bosons is givemby= v/2u = v/2\v, with

the Higgs self-coupling paramet&r SinceA is unknown, the mass value of the Higgs
particle is unpredicted. However, the couplings of the Higgs boson to fermions and gauge
bosons are proportional to the corresponding particle masses as predicted by theory (cf.
Figure2.1).

In Higgs production and decay processes at colliders the dominant interactions involve
couplings tolV* andZ® bosons and the third generation of quarks and leptons. Fiyfire
shows the leading order diagrams of these processes in the production of a Higgs boson.
Except for very heavy Higgs bosons, the dominant production mechanggsH, via

an intermediate top quark loop (cf. Figute(a)). The cross-section for Higgs production
associated withV or Z bosons are smaller, but are useful for detecting a light Higgs boson
which decays intdob or yy pairs. The weak boson decay can be used to discriminate
the Higgs boson signal against other background sources. The weak boson fusion and
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Figure 2.1:Interactions of the Standard Model Higgs boson at tree levVEl |

associated production with is less important at the Tevatron collider (cf. Sectif),
but are also important production modes at the LHC collider (cf. Se€tifn

(c) (d)

Figure 2.2:The dominant Higgs production mechanisms at hadron colliders: (a) gluon-
gluon fusion, (b) vector boson fusion, and associated production with (c) W, Z bosons

and (d) €] 10].

Figure2.3shows the production cross-sections of a Higgs particle as a function of its mass
at a centre of mass energy ¢ = 2TeV approximately corresponding to the Tevatron
collider energy. The gluon fusion process is the dominant production mode at the Teva-
tron with a cross-section in the range 00%* 0.1pb for a Higgs mass between 100 and
200GeV. The decay modgy — H — bbis not very promising due to the overwhelming
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QCD background. For a higher mass Higgs particlethe WW*) decay mode provides
a promising discovery mode.

In the mass region below 130 GeV a promising mode igjthannihilation into a virtual

W* or Z* with subsequent radiation &* /Z* — W /ZH and followingH — bb and thén

or Z decaying leptonically. The final state leptons can be used for event trigger purposes.
The production cross-section span a range 256 0.002 pb formy = 100— 300 GeV and

are larger for thep collider than for pp collider where the gluon-gluon fusion dominates.

1025---|---|'-'|"'|'"|-"5
E G(pf)—)hSM+X) [pb]
Vs =2 TeV
10 =
M, = 175 GeV

0 & ""'"-----~~-‘..:.-__-__;_,7h___‘;—= -._ 99 —hg, W E
BRI | e FIVU T e N
0 e 82,00 hgytt bb_)hSM s E
S F ) _ ..................... e ]
L E 2g.qq—hgybb e - i
0 L L L 1 5 L L | L . ' | i L L | L L ' 1 L L L
80 LOD 120 L40 L60 L80 200

My, [GeV]

Figure 2.3:Higgs production cross-section (in units of pb) at the Tevatron as a function
of its mass 1.1].

Figure2.4 shows the branching ratios for the dominant decay modes of a Standard Model
Higgs boson as a function of its mas$Z]. For masses below about 130GeV, the decay
into bb pairs dominates, whereas for higher masses the decay Fhed&/W*), where

at least one of the tw/ bosons is off-shell becomes important. The corresponding decay
into ZZ™*) is one of the gold-plated modes for Higgs searches at the future Large Hadron
collider LHC with bothZ decaying into electrons or muons, but it is less useful at the
Tevatron.

Theory places an upper limit on the Higgs mass of around 1TeV from unitary require-
ments of the process™ f— — W-W* (where f denotes a fermion) at high energies.
Divergences can only be compensated if corrections including a Higgs coupling propor-
tional the electron mass is added.
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| Standard Model

"BR(hg,,)

10

10

80 100 120 140 160 180 200
M, [GeV]
SM

Figure 2.4:Branching ratios of the dominant decay modes of the Standard Model Higgs
boson as a function of the its mass.

The existence of the Higgs particle in the Standard Model has an impact on the values
of most electroweak parameters via higher order corrections. The theory is only renor-
malisable as mentioned in the previous Section if a Higgs particle exists. Limits can be
placed on the Higgs mass by precise measurements d¥theson and top quark mass

due to their dependence on its mass in loop corrections. The left plot in FEidusbows

the predictions of th#V boson and top quark mass from electroweak radiative corrections
using SLD and LEP-1 (solid contour) together with direct measurements from LEP-2 and
Tevatron data (dashed contour). The yellow band shows the Standard Model constraints
between the two masses depended on Higgs particle mass. Both indirect and direct mea-
surements prefer a low value for the Higgs particle mass. The arrow lalAetlstiows

the variation of the relation betweemy andm if a(m2) is changed by one standard devi-
ation. Furthermore, a joint fit of all data using 20 different electroweak parameters gives
the best constraint to the Higgs particle maggs The right plot in Figure2.5 shows the

sz curve as a function afny with a minimum ofmy = 91fg§GeV which corresponds

to a one-sided upper limit of 211 GeV at 95% CL. The fitted mass has strong correlation
with the top quark mass. The fits are shown with and without the result of the NuTeV
collaboration on neutrino-nucleon neutral to charged cross-section ratios. The NuTeV re-
sults in terms of the on-shell electroweak mixing angle is 2.9 standard deviations higher
than the expectations.

Apart from indirect constraints also direct searches for the Standard Model Higgs boson
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have been performed. The yellow shaded band in the right plot of FR)bris the ex-
cluded region of the current best lower limit of; > 1144 GeV at 95% CL set by the
combination of all four LEP experiments][

806 T————T T —— 6
—LEP1, SLD Data A
B AO(’had =
i —0.02761+0.00036
80.59 68%CL 4 - 0.02747+0.00012
— 4 4 Without NuTeV -
> ;
& N
= 80.4 . 2'3
=
£ o _
80.3 1 s
m,, [Ge ] 1
80.2 114,300 1000 Preliminary | 0 Excluded N\ .../ Preliminary
130 150 170 190 210 20 100 400
m, [GeV] m,, [GeV]

Figure 2.5:Left: Contour curves 068% CL in the plane of the top quark and W boson
mass. These values give constraints on the mass of the Standard Model Higgs boson.
Right: Ax? curve of a joint fit from different electroweak precision measurement results
as a function of the Higgs mass. The yellow band denotes the excluded mass region from
direct Higgs searches at LEP].

2.3 Background Processes

As described in the previous sections the Higgs particle will be searched in the process
pp — H — WW™). The leptonic decay channels of thé— v bosons give a clear sig-

nal of a lepton with high transverse momentum and some significant missing transverse
energy coming from the undetected neutrino. The branching ratio for each leptonic de-
cay mode is only around 10% p®f boson, nevertheless the hadronic decay modes are
swamped by background from QCD jet production with much higher cross-sections and
similar event topology.

Background processes that have a similar event topology like the pidcesg/W*) —
I*vl~v are the Drell-Yan procesg] — Z/y* — |71, the vector boson production mode

pp — WW — [Tvl~v and top quark pair productiorpp— tt — | Tvl~vbb. Figure2.6
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shows an illustration of the Drell-Yan process. The leading order (LO) cross-section
for producing a lepton pair is obtained by weighting the cross-seciipr: |1~ with

the parton distribution functiongy(x, Q?) and fq(x, Q?) extracted from deep inelastic
scattering and summing over all quark-antiquark combinatiél [The cross-section

qq — 171~ is given by:

2 N2
o(a(x Q)% @) — 1¥17) = % (2:2)

wheres= (p; + p2)? the sum of the incoming particle four momentathe electromag-

netic coupling constan@Qq the quark charge arid the colour factor. The incoming quark

and anti-quark centre of mass energy is a fraction of the collision eréég¥he next-to-
next-to-leading order corrections for the process are well calculable and are in the range
of a factor 14 [13] for masses arounbll ~ Mz. At invariant dilepton masséd ~ Mz the

Z boson resonance is clearly visible. The s-cha@nebson exchange has to be added to
theqgq — y* — |71~ process. The cross-section has the same structure as EgRation

but a different colour-averaging factor. This process will be used in the following sections
thoroughly to study different detector and algorithm efficiencies.

p\

3

Figure 2.6:Lepton pair production in the Drell-Yan model.

The processp— WW — | "vl ~vis the second remaining background. The measurement
of the production cross-section will be one part of the following analysis. The Standard
Model makes specific predictions of the gauge boson self-interactions as mentioned in the
previous sections. Anomalous couplindsl] or decays of new particles from physics
beyond the Standard Model result in enhandsdN* production. Furthermore trilinear
vector boson couplingd/ W ZandWWy can be tested as predicted by ®ig(2) x U (1)
symmetry of the electroweak interaction. Using the CTEQR parton density function

the total cross-section foW W™ production at the Tevatron with a centre of mass energy
\/S=2TeV is predicted to be approximately.5®b [16].
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2.4 Extensions of the Standard Model

The rate of events coming frort — WW*) decays may be larger in alternative theoret-
ical models. As mentioned in earlier sections the electroweak breaking mechanism might
be realised in a different way or the Standard Model is based on a more fundamental
theory which is valid in a larger energy range.

A larger production cross-section is given in a so called fourth-generation model, where
the Higgs production cross-section is approximately 8.5 times larger in a mass range
of 100GeV< my < 200GeV [L7]. In the standard model the main contribution of the
Higgs boson comes from the triangular diagram with a top quark loop (cf. Settipn

in the gluon-gluon fusion process. With an additional generation there are two additional
diagrams with replaced top quarks. The production enhancement will be visible in all
decay channels of the Higgs boson. The current limit on a fourth generation quark is
my > 199GeV [ 4].

In Fermiphobic Higgs models the coupling of fermions to the Higgs particle is sup-
pressed 9. This leads to a larger decay branching ratio iktoor y pairs. This is
especially important for the mass region below < 140GeV, where a Standard Model
Higgs particle decays mainly intab pairs.

2.5 Event Simulation

In particle physics Monte Carlo simulations are a commonly used technique to analyse
the reactions described in the previous sections. The theoretical predictions are brought
into a common data format and can be compared to measured data. First, the reactions
of the interacting particles and their daughter particles are produced with pseudo ran-
dom generators on a four vector basis obeying the underlying theory. Starting with the
particle density functions of the incoming protons and anti-protons the different matrix
elements are calculated for a given reaction. PYTH!A] s a commonly used leading

order Monte Carlo simulation programme. This programme can simulate a large set of
Standard Model processes and physics beyond the Standard Model. Most of the so called
“2 — 2" or “2 — 1” processes can be fully simulated, ie. reactions where two primary
particles produce one or two secondary particles. This includes also initial and final state
radiation. The parton distribution functiori§(x, Q%) or f1(x,Q?) are included into these
calculations. The functions parameterise the probability to find a pawdah a fraction

x of the beam energy if a proton or anti-proton is probed at virtu@fty There are many

such parameterisations. Here, the leading order parton distributions CTECUand
CTEQSL [21] are used.
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In parallel the so called “underlying event” is simulated. This is the remainder of the
primary interactions since not all partons of the initial protons and anti-protons are in-
volved in the primary hard interaction. The “underlying event” is added to the primary
interaction for the following steps of the simulation.

After the primary particle reaction, initial- and final-state radiation is simulated. In a
good approximation the parton shower model simulates higher order corrections of gluon
and/or photon radiation caused by coloured and/or charged objects in the&jefte
branching of one parton or more yield a good description of multi-jet events. In the
next step the partons are fed through a simulation of the hadronisation and a detector
simulation.

Since the primary quarks or gluons cannot be seen in a real detector a hadronisation
of these particles to mesons and baryons is simulated. The hadronisation describes the
transition of the primary produced particles to observable hadrons. This process cannot
be calculated with perturbative methods in QCD since the scale of momentum transfer
is small and so the the strong coupling constagihas large values. Phenomenological
methods are used instead for the transition of the primary particles to multi particle end
states. A commonly used model is the Lund string fragmentation madgl [n this

model the force between two primary quarks is described similar to a string. Iteratively
a mesorpQqs, €.g., is build from a primary quanp and a newly build quark paij.q;.

The remaining quarkyj; can build a stable state together with a new qugrkand so

on. The different probabilities for a new quark pair and stable mesons are given as input
parameters. The probability of the energy and momentum transfer between the new quark
pairs and remaining quarks is parameterised by a fragmentation function for each quark
flavour separately.

The commonly used detector simulation programme GEANT $imulates the reaction

of the particles and partons in their passage through matter. All hits and drift spectra the
particles would cause in a real detector are simulated in a digitisation afterwards. After

that a set of minimum bias events is overlaid to the primary reaction. Since the interaction

rate of proton and anti-proton collisions is very high and protons and anti-protons are

bunched in the accelerator, there might be some remainders of the soft interaction in
the detector from proton and anti-proton interactions in the same bunch crossing. These
events are simulated by minimum bias events.

After all these steps the theoretical predictions have the same data format as the actual
measured data and can be analysed with the same reconstruction software and same meth-
ods.



3 The Tevatron Accelerator and D@
Experiment

The DG experiment is one of two detectors located at the Tevatron collider at the Fermi
National Accelerator Laboratory (Fermilab) near Chicago, USA. Besides other important
measurements the top quark was discovered during the so called “Run I” period of data
taking between 1991 and 1996. An integrated luminosity of approximately T00ds
recorded by each experiment. In the year 2001 after major upgrades to the accelerator
complex and the two experiments a new period of data taking has begun. In this so called
Run Il it is planned to accumulate an integrated luminosity ef8fb—! per experiment

until 2009 depending on the accelerator performance.

3.1 The Tevatron Accelerator

The Tevatron is until the start of the Large Hadron Collider (LHC) in 2007 at CERN in
Geneva, Switzerland (cf. Sectionl) the worlds most energetic collider. Protons and
anti-protons collide at a centre of mass energy/sf= 1.96 TeV. It was one of the first
superconducting synchrotron when it was build in 1983. The collider is located in a
ring tunnel of 1km radius. The magnetic field aRZ is produced by superconducting
dipole and quadrupole magnets. The ultimate goal for Run Il is to reach an instantaneous
luminosity of 2-10°2cm~2s~1 though presently the maximum achieved is about a factor

of four smaller. The reason for this is caused by a sum of small effects in the accelerator
chain, but one larger effect is due to the low efficiency in the number of anti-protons that
are finally transfered to the Tevatron. Protons and anti-protons circulate in 36 bunches
each, separated by 396ns in the Tevatron during operations. In the second phase as of
Run Il is was foreseen to lower the bunch crossing time to 132ns after several upgrades
to the accelerator complex and the detectors. This lowers the number of interactions
per crossing at a given instantaneous luminosity. Recently all upgrade plans have been
changed substantially and only minor upgrades are planned now to assure a long term
reliable operation.

14
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Figure 3.1 shows an aerial view of the Fermilab accelerator complex. The Tevatron is
only the last part in a long chain of accelerators. First negatively charged hydrogen ions
(H™) are accelerated with a 750keV Cockcroft-Walton accelerator, where it is bunched
and subsequently fed into a 400 MeV linear accelerator (Linac). After that a thin graphite
foil strips off both electrons of the hydrogen ions and leaves protons that are injected to
the Booster. This is a 475m long synchrotron ring which accelerates protons to 8 GeV for
the Main Injector. The Main Injector itself is a 3km synchrotron that accelerates protons
and anti-protons to 150GeV before they are injected into the Tevatron. Anti-protons
are produced by 120GeV protons from the Main Injector which hit a nickel target. A
lithium lens focuses anti-protons with an energy of about 8 GeV from the target particle
showers. After that anti-protons are de-bunched, stochastically cooled and stored in the
accumulator before being inserted into the Main Injector. The Tevatron ring accelerates
both protons and anti-protons from 150 TeV to 980GeV. The beams will be brought to
collisions at two interaction points at the D@ and CDF detectors.

Figure 3.1:Aerial view of the Tevatron accelerator complex.

3.2 The D@ Detector

The D@ detector is a multi purpose detector with a similar layout as other modern large
scale collider physics detectors. A side view is shown in Figuge As pp collisions
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happen in the centre of the detector an almost completsofld angle coverage allows

a measurement of all reaction products and their properties. Several sub-detectors for
different particle identifications are in concentric order around the nominal interaction
point. A detailed description of all detector components is giveidh [

The D@ coordinate system is defined with its centre in the nominal interaction point and
the z-axis pointing into the proton beam direction. The x-axis is pointing towards the

centre of the Tevatron ring and the y-axis is pointing upwards. The spheric coordinates
are given by the radiuR, polar angled and azimuthal angle. The pseudo-rapidity

given by

n= —In(tang) (3.1)

is often used instead of the polar angle
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Figure 3.2:2D outline of the D@ detector.
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3.2.1 The Tracking System

The tracking system consists of an inner silicon detector and an outer scintillating fibre
tracker which are placed within a 2 Tesla superconducting solenoidBof Z22ngth and
60cm radius. Figure.3 shows a side view of the D@ tracking system which is de-
signed to detect tracks in an pseudo-rapidity range ®k n < 3. It provides charged
particle momentum measuremeggtrt separation, electron identification and detection of
secondary vertices for b quark identification. The expected momentum resolution of the
whole tracking system can be parametrised\py/pt = 0.02+0.002pt at|n| = 0. [24].

n=0 n=1,"

Preshower

Solenoid

Fiber Tracker

I
1
Silicon Tragker s« emezz

Figure 3.3:2D outline of the D@ tracking system.

The Silicon Micro-strip Tracker (SMT)

The Silicon Micro-strip Tracker (SMT) is composed of three sub-detectors: the central
barrels, the F-Disks and the H-Disks. The central barrels are made of six cylindrical
barrels with three on either side of the interaction point. They aréci@ long and

have a maximum radius of ~ 10cm. The barrels are built of four double layers of
silicon detectors in rectangular shape (ladders) which are mounted on a beryllium support
structure. The twelve F-Disks are made of twelve double-sided detectors in wedge-shape.
Six disks are located in between the barrels with one attached to each end of the barrel
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detector. Two triplets of the remaining six disks are located in a small distance from either
end of the barrel detector. About one metre from the interaction point are the H-Disks
which span the detection region abZm< r < 23.6cm. The SMT allows tracking in a
pseudo-rapidity range ofj| < 3 and has about 800000 readout channels. The micro-strip
detectors provide a hit resolution of approximatelyuf0

The Central Fibre Tracker (CFT)

The scintillating fibre tracker surrounds the silicon detector and covers the pseudo-rapidity
range within|n| < 1.62. It consists of 8 cylindrical layers of two fibre doublets with a
radius in the range of 19cm< r < 51.4cm. Each doublet is made of two layers of
835um diameter scintillating fibres separated by gi#0 Both layers have an offset of

half a fibre width to each other to fill all gaps. On each of the eight layers there is an
axial doublet forr and @ measurement and a stereo doublet rotated-BY to provide
stereo information. The axial layers are also used for for triggering (c.f. Segtioh.

The scintillating fibres are mounted on carbon fibre support structures and are.Gpto 2
long. They are connected to visible light photon counters (VLPCs) wialIm long
optical waveguides. The VLPCs are located below the whole D@ detector in a cryostat at
an operation temperature 8f 9K. They are small silicon devices highly doped with As
with excellent quantum efficiency and high gain and basically work as solid state photo-
multiplier tubes. The CFT detector has in total approximately 77000 readout channels.
The hit resolution is about 1Q@n.

The Pre-shower Detectors (CPS and FPS)

Two additional tracking detectors are located outside the solenoid magnet: the central and
forward pre-shower detectors (CPS and FPS). The CPS is mounted on the solenoid at a
radiusr = 72cm and covers a pseudo-rapidity rangemf< 1.2. The FPS sits on the

inner surface of the end calorimeter cryostat (c.f. Secliéh? and covers a pseudo-
rapidity range of 4 < n < 2.5. Both detectors consist of lead absorbers followed by
several layers of triangular shaped axial and stereo scintillator strips. Similar to the CFT
these are connected through waveguides to VLPCs. CPS and FPS are used as tracking
devices for a precise position measurement and as calorimeter for early energy sampling.
They provide an improved electron identification, triggering and a determination of the
energy loss in the solenoid.

3.2.2 The Calorimeter

The outline of the calorimeter is basically unchanged compared to Run I. Only the read-
out electronics was upgraded to cope with the higher rates and shorter bunch crossing
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intervals. Figure3.4 shows a three dimensional view with its central and two end cap
calorimeters located in separate cryostats covering a pseudo-rapidity range df The
calorimeter measures the energy of electrons, photons and jets and is used for the calcula-
tion of the missing transverse energy. It is a hermetic liquid argon sampling calorimeter.
The absorber material in the electromagnetic and inner hadronic section is made from de-
pleted uranium due to its high density and compensadimyesponse. The outer layers
consist of stainless steel and copper. The central calorimeter consists of three concentric
regions and covers a pseudo-rapidity rafige< 1.2: the four electromagnetic layers, fol-
lowed by three fine hadronic and one coarse hadronic layer. The end cap calorimeters are
covering a range of.4 < |n| < 4 and are made of four electromagnetic layers and three
concentric cylinders for hadronic showers, called inner, middle and outer modules. Each
layer is segmented into cells ofl0x 0.1 in n x @ units apart from the far forward region

(In| > 3.2) with a cell size of @ x 0.2. The third electromagnetic layer is segmented
into 0.05x 0.05 cells since electrons are expected to reach their shower maximum in
this region. All modules are grouped to semi projective towers but their boundaries are
not aligned to avoid continuous inter-modules cracks. For trigger information cells are
formed to towers of @ x 0.2 size and read out by separate electronics. The calorimeter
response for electrons and charged pions has been measured from test beam data to be:

electrons :0g/E = 15%/VE +0.3%

pions : og/E = 45%/VE + 4% 3.2
The inter-cryostat detector (ICD) is located in the overlap region between the central and
end cap calorimeter in a pseudo-rapidity range.8&0|n| < 1.4. It compensates the dead
region between the cryostats. It provides a correction for the energy loss in the this region
and improves the jet energy and missing transv&iseneasurement. The ICD consists

of one single layer of 384 scintillating tiles each mounted on both end cryostats. The
detector signals are read out by photo-tubes which are connected by wavelength-shifting
fibres.

3.2.3 The Muon System

The muon system consists of two separate systems covering the central pseudo-rapidity
region|n| < 1 and the forward region with & |n| < 2. The central muon detector is

split into 3 layers (A, B and C) of proportional drift tubes (PDTs) that provide muon
identification and a momentum measurement independent of the central tracking system.
The inner A layer and outer B and C layers are separated by a solid iron magnet which
produces a BT toroid field. The PDTs are made from extruded aluminium of rectangular
shape with a size of.3cm- 10cm. The anode wires are made of gold-plated tungsten.
The A-layer is between the calorimeter cryostat and the muon toroid magnet, whereas
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Figure 3.4:Outline of the D@ calorimeter system.
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the B and C-layers are outside the magnet with a distance of 1 m to each other. Since
the PDT's drift time of 750ns is longer than the brunch crossing time of the Tevatron
accelerator there are extra layers of scintillation counters for trigger output. There are two
different types: theA — @-counters, a layer of scintillators between the calorimeter and
the A-layer PDTs which in addition reject out-of-time cosmic rays and scattered particles
from the calorimeter. The second type are the cosmic caps that are mounted outside the
C-layer of the PDTs. Due to the support structure of the D@ detector the bottom part of
the detector is only partly covered with these scintillator counters. This leaves a hole in
the azimuthal angle range2b < ¢ < 5.15 in the trigger acceptance region of the di-muon
trigger (c.f. Sectiord.2.9.

The forward muon system consists of three layers of mini drift tubes (MDTs) and three
layers of scintillation counters. The MDTs have been newly build for Run Il and are more
radiation hard than the PDTs. They are composed of eight cells of extruded aluminium
combs with a cross-section size of a0 mn? and all have a anode wire of radiusjs.
Though the drift time of the MDTs is approximately 60 ns scintillation counters are used
for triggering and for rejection of cosmic rays and other sources of background. Time
resolutions of around.2ns are expected for the scintillation counters depending on their
size. The forward muon system has additional shielding around the beam pipe to reduce
trigger rates and the aging of the detectors by beam halo. Fighshows the outline of

the D@ muon system.

The design momentum resolution of the muon system can be parameterised approxi-
mately by:Ap/p = 0.18+ 0.003p/GeV. The resolution is limited by multiple scattering

at low momentum. At high momentum it is limited by the individual hit resolution and is
presently significantly worse measured with real data.

3.2.4 The Luminosity Monitors

The amount of luminosity delivered by the Tevatron accelerator is measured by the lu-
minosity monitors. Two hodoscopes built from plastic scintillators and read out by pho-
tomultiplier tubes are mounted on the end cap calorimeter cryostats (North and South).
They cover a pseudo-rapidity range of 2 |n| < 4.4.

The luminosity is determined by triggering on beam crossings with non-diffractive in-
elastic p interactions. The measurement of the time difference between signals from the
north and south luminosity detector discriminates between a proton-antiproton interac-
tion and beam halo. A beam proton will be measured in the south detector 9ns after it
was verified in the north detector and vice versa for anti-protons. Particles produced at
the nominal interaction point inside the D@ detector will hit both luminosity detectors ap-
proximately at the same time. The time difference of both hits allows a fast measurement
of the O-vertex position.
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The instantaneous luminosity is measured by the rate of inelastic collisions:

1 dN

with Opgeff = €M - A- Opp. The luminosity detector efficienay v is extracted from data

by studying the calorimeter energy in the cells directly behind the luminosity deteétors,
corresponds to the luminosity detector acceptance determined using Monte Casjg and

is the inelastic p cross-section measured by other experiments to Bei624 mb [25)].

The overall estimated error on all these numbers, ie. the estimated error on the D@ lumi-
nosity, is 65% [26].

3.2.5 The Trigger and DAQ-System

The trigger and data acquisition system of the D@ detector is split into three levels. The
input rate of 25MHz given by the bunch crossing time of 396ns is reduced by three
consecutive trigger levels to an event rate of about 50Hz which is written to tape. This
rate reduction is necessary since not all events are interesting from the physics point of
view and is also a financial and technical compromise since every event has a raw data
size of about 250kB which cannot be dealt with unfiltered. Figufsshows an outline

of the Level 1 and Level 2 trigger system.

Instead of filtering and triggering on interesting physic objects like e.g. muons, electrons
or jets, one can atrtificially reduce the bandwidth by randomly triggering on events. This
method is called “pre-scaling” and is used e.g. in the commissioning phase of a newly
integrated trigger or in certain jet cross-section measurements if the input rate is to high
for the DAQ system. The difficulty is to choose a real random process for “pre-scaling”

to be independent from any biases this might cause.

Level 1 trigger

The Level 1 trigger (L1) is a hardware and firmware system designed to reduce the input
rate from 25MHz to about 10kHz. It consists of a L1 trigger framework and several
subsystems which are closely connected to single sub-detectors. There are the L1 Muon
system, the L1 Calorimeter trigger for electron, photon and jets, and L1 track trigger.

Level 2 trigger

The Level 2 trigger (L2) is the first trigger level for event-wide trigger decisions. There
are similar to L1 sub-detector specific triggers which make their decision on a mixture
of firmware and software information. There are systems for muons, electrons, jets and
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Figure 3.6:0utline of the D@ trigger system.

tracks. But the final trigger decision is made a central system which can combine all L2
information for a trigger decision. The Level 2 system reduces withinug@8e input
rate in a pipe lined event queue by a factor of 10 to abdat-A kHz.

Level 3 trigger

The Level 3 system is a software only system which reduces the event rate to about 50 Hz
to tape. It performs event filtering with an optimised and simplified software which is
similar to the reconstruction software used later for full event reconstruction. The software
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isrunin parallel on 48 dual processor Linux farm nodes and has a processing time of about
100ms per event. With this long time at hand various algorithms are used for all detected
particles.

3.2.6 Muon Trigger

Events analysed in the subsequent sections are triggered and written to tape for offline
analysis by finding muons hits in trigger level 1 or 2. For a small fraction of events a track
with high transverse momentum is required in addition on trigger level 3.

Level 1 Muon

The Level 1 muon trigger at the stage used for the following analysis uses scintillator
hits in the muon detectors to pass an event to the next trigger level. A co-incidence of
two layers in the same region (central or forward muon system) and the same octant fulfil
this trigger requirement. The scintillator times are calibrated such that a muon frpm a p
collision would reach them at a tinte= 0. The trigger gate is defined by allowing only
hits within |t| < 20ns. Two of such muons are required to pass these quality criteria.

In addition the level 1 muon trigger can also use tracks that are found by the level 1 central
fibre tracker trigger (LLCTT). This trigger uses predefined roads of the axial information
of the CFT detectors to find tracks fast and efficiently. This information is passed on to
the level 1 muon trigger to build co-incidences with hits found in the scintillator or wire
chambers of the muon system.

For most of the time range of the analysed data sample an additional “fast-z” trigger is also
required. To reject cosmic muons and random hits in the muon chambers a co-incidence
of hits in the luminosity monitors, with no other sub-detector trigger requirements is used.

Level 2 Muon

For further bandwidth reduction of the very loose trigger requirement at trigger level 1,
events are filtered for muons at trigger level 2. At this level complete timing information,
including calibration constants for the wire proportional chambers and scintillator detec-
tors are available. The information is fed on two separate paths into the level 2 muon
system. On one path the information is read out directly from the different muon detector
front ends P7]. The second path uses the level 1 muon trigger information which has
additional information available from L1CTT. The hardware of the level 2 muon system
consists of several signal reshaper and multiplexer on the detector front end readout side.
All signals are fed into so called SLIC boards (Second Level Input Computer) which each
host five 160 MHz Texas Instruments DSPs. There are eleven boards for the central muon
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system and five boards for the forward system. The Level 1 muon trigger inputs are un-
packed and translated for the forward and central muon system on two of these SLIC
boards. On the remaining SLIC boards different algorithms perform a muon track finding
with the additional available information and larger time budget of approximatghg.30
Muon tracks are found by look up tables combining hits from the scintillator and wire
chambers within the A layer or combined BC layer of the muon system. After that the
information from the level 1 muon DSPs, A layer DSPs and BC layer DSPs, is gathered
by two processor boards, the so called alpha boards, which are running 500 MHz DEC
alpha processors. There is one board for the forward and one for the central muon system.
Meanwhile these boards have been replaced by the so called beta boards, running faster
Intel Pentium processors. All other sub-detectors, e.g. calorimeter or tracking, have cor-
responding alpha/beta boards with various trigger algorithms. The central trigger decision
for level 2 is done by a separate alpha/beta boards running a global level 2 algorithm.

Events for the subsequent analysis are passed to trigger level 3, if one muon of medium
quality is found at level 2. A ’medium’ muon at level 2 has to meet the following quality
requirements (at least “quality > 1”) in the A layer and BC layer each: in the forward
muon detector A layer a muon has to have at least 2 MDT chamber hits and at least 1
associated hit in the scintillator and in the BC layer a muon has to have at least 2 hits in
the B or C layer where the muon has only hits in one of the two layers. In the central
muon system a muon track has to have at least 3 PDT chamber hits with valid hit-pattern
in the look-up table for the A- and BC-layer.

Level 3 Tracking

With the increasing instantaneous luminosity and better performance of the Tevatron ac-
celerator a small fraction of events need to have an additional tracking requirement at
trigger level 3. The triggers with muon requirements at trigger level 1 and 2 only, have
been pre-scaled at periods with high 40— 50- 10°°cm~2s~1) instantaneous luminosi-

ties. To avoid conflicts with the pre-scaling system or to loose too many events, a track
with high transverse momentum eventually coming from one of the already triggered
muons is required to be in the event. With a time budget of approximately 100 ms at level
3, areduced offline reconstruction software with all sub-detector information and calibra-
tion available is run on Linux computers. The tracking algorithi# first searches for

CFT axial tracks and extrapolates them to CFT and SMT stereo clusters. Events are se-
lected for the subsequent analysis if at least one global track with a transverse momentum
of 5GeV or 10GeV depending on the run period is found.



4 Event selection

This Chapter gives an overview about the main ingredients of the two analyses on the
search of the Higgs boson in Chapfeand the measurement of tihéW cross-section in
Chapter6. The reconstruction of muons, jets and missing transverse eigrgyith the

D@ detector are discussed together with efficiencies in data and Monte Carlo and issues
of data and reconstruction quality.

4.1 Reconstruction

4.1.1 Muons

Muon tracks are reconstructed at a first stage from the hits in the muon detector scin-
tillation counters and drift chambers. The quality criteria of the muon track are divided
into three categories with increasing quality: loose, medium, and tight. A muon is called
“tight” if it has at least two hits in the wire chambers in the A layer, at least one hit in the
A layer scintillators, at least three hits in BC layer wire chambers, at least one BC layer
scintillator hit, and a converged fit through the A and BC layer muon detector hits. A
muon is called “medium” if it has at least two hits in the A layer wire chambers, at least
one hit in the A layer scintillators, at least two hits in the BC layer wire chambers and at
least one hit in the BC scintillator (except for central muons with less than four BC wire
hits). A “loose” muon is defined as a medium muon but allowing one of the above tests
to fail, with the A layer wire chamber and scintillator requirement treated as one test and
requiring always at least one scintillator hit. All these criteria have hit requirements in the
A and BC layers of the muon detectors. In addition a BC segment with match to a central
track is called “loose” if has at least one BC layer scintillator hit and has at least two hits
in the BC layer wire chambers. Similarly an A layer segment matched to a central track
is called “loose” if it has an A scintillator hit and at least two hits in the A layer wire
chambers.

After the reconstruction of the muon tracks in the muon detector only these tracks are
matched to tracks from the central tracking system consisting of the Central Fibre Tracker
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(CFT) and Silicon Micro-strip Tracker (SMT). A simultaneous “global” fit through all hits

in three detector components provides the muon track information which is used in the
following analysis. Since the intrinsic resolution of the central tracking system is much
better than from the standalone muon system (see Segttohand3.2.3, only muons

with a matching central track are retained. Events are required to have two loose muons
which are matched to a central track.

The entire muon information is obtained from the software packageevt version
pl4-br-05, muonid versionpl4-br-14 provided by the muon-ID group’f] and post
processed by0correct versionv00-00-06 provided by the common samples groGpjf

There is a non negligible rate of muons from cosmic rays present in a fraction of events
(the rate is estimated in Sectidn?). Muons from cosmic rays are rejected by a cut on
the scintillator counter times in the A and BC layer. Both times should be in the range
of —10ns< tg < 10ns. The scintillator times are calibrated such that a muon from a p
collision would reach them at a tinte= 0.

To ensure the quality of the tracks, a cut on the minimum number of hits in the tracking
system is required: all muon tracks must have at at least three hits in the silicon tracker
(SMT). Figure4.1 shows the number of hits in the silicon tracker (left) and central fibre
tracker (CFT). It can be seen that in both distributions the Monte Carlo has a higher mean
for the number of hits in both silicon and central fibre tracker. Most of the tracks with no
hits in the silicon tracker do not originate from the nominpdipteraction region. It was
studied if constraining tracks without silicon tracker hits to the nominal vertex position
improves the statistics of selected muon events. The bad momentum resolution of these
tracks distorted the correction of the missing transverse erflarggee Sectiod.4.7) and

these tracks were rejected.

For further rejection of muons from cosmic rays and to ensure that the muon tracks are
coming from the hard interaction at the nomingl mteraction point a cut on the distance

of closest approackpca of the track with respect to the reconstructed vertex is applied.
The distance of closest approach should be smallenthgrn < 0.15cm.

The analysis in the subsequent chapters uses events with high transverse momentum
muons. The transverse momentyrm should bep-*;1 > 20GeV for the first muon and

andp#2 > 10GeV for the second muon. These muons should also be isolated from jet ac-
tivity. Two isolation criteria can be used to discriminate between isolated and non-isolated
muons. Muons must fulfil the tracking isolation criteria, ig o pr < 4.0GeV (sum

of the pr of tracks in a con@&R < 0.5 around the muon not including the muon track,
whereR = /A@? +An2). The calorimeter isolatiofy 21<R<04Er < 25GeV (sum of

the calorimeter cell transverse energies in a hollow cone witkk®AR < 0.4 around the
muon) is not used throughout the analysis. Since both muons are required to have a rel-
atively large transverse momentum it was found that with the high tracking efficiency a

tracking-only isolation is sufficient to reduce QCD and multi jet background. Figure
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Figure 4.1:Distribution of number of hits in the silicon tracker (left) and the number of
hits in the central fibre tracker (right). The normalisation of the MC was obtained as

described in Section.4.6

shows the distributions of both isolation definitions. The discrepancy between data and
Monte Carlo at high values of the isolation variables is due to the missing Monte Carlo

for QCD and multi-jet events.

4.1.2 Jets and Missing Transverse Energiy

Jets

Particle jets are reconstructed with the D@ calorimeter from the energy depositions in the

calorimeter cells using a cone algorithiil] with cone sizeR = /A@? +An2 = 0.5 or
0.7. Jets are required to pass the following quality criterion:

e 0.5 < EM fraction< 0.95, whereEM fraction is the fraction of the jet energy
deposited in the electro-magnetic part of the calorimeter.

e Coarse hadronic fractiofCHF) < 0.4, where the coarse hadronic fraction is the
fraction of energy deposited in the coarse hadronic layer of the calorimeter.

e Hot fraction< 10.0, where the Hot fraction is the ratio of energy of the highest to
next-to-highest energy calorimeter tower.
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Figure 4.2: Distribution of the calorimeter isolation (left) and the tracking isolation
(right) of the muon track. The normalisation of the MC was obtained as described in
Sectiord.4.6

e Ngo > 1, whereNgg is the number of calorimeter towers containing 90% of the
energy of a jet.

e Llenergy(jetpt- (1—CHF)) > 0.4 for jets within|n| < 0.8 (CC region) ofin| >
1.5 (EC region) or> 0.2 within the ICD region of B < |n| < 1.5. L1energyis the
energy measured by the Level 1 calorimeter trigger, which uses a different readout
and calorimeter segmentation as the precision calorimeter measureheépitis
the transverse energy of the measured jet. This last quality criterion is applied to
data events only, since the Level 1 response is not simulated.

¢ Jets should be within the validity region of the Jet energy scale corre¢tjpsa:2.5

Jet Energy Scale Correction

The discrepancy between the measured jet energy and the particle level jet energy is due to
migrations into and out of the jet cone, collider effects and imperfections of the calorime-
ter measurement which cannot detect all energy deposiis The collider environment

can add additional energy in the calorimeter. This effect is often called “pile-up”. The
limited jet cone size can result into energy flows outside the jet boundary because of show-
ering in the calorimeter. The particle jet ene@';?t”ic'eis given in terms of the measured
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jet energyES3' by:
Particle _ EJet Eoffset

Ejet = TR Fs (4.1)
whereEqfset IS the energy offset correction which depends on the condssithee pseudo-
rapidity n and the instantaneous luminosity. This term arises from the underlying event,
pile-up in the calorimeter from previous bunch-crossings, additional minimum bias in-
teractions per crossing and noise from the calorimeter uranium absétheis the jet
response and the largest contribution to the correction of the jet energy. The jet response
is mainly less that one due to dead calorimeter material, not instrumented regions, module
differences.Fs is the showering correction that compensates for the energy flow out of
the cone due to patrticle interaction with the calorimeter. This interaction subsequently
forms showers of other particles depositing energy outside the original cone boundary.

Figure4.3 shows the overall correction in data as function of the jet enEfglyand the
pseudo-rapidity) (left column) together with their corresponding errors (right column).
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Figure 4.3:Correction factors (left column) of the Jet Energy Scale versus E (tophand
(bottom) and their corresponding errors (right column). These correction apply for jets
with R= 0.7. Similar factors apply for R= 0.5 cone jets B7].
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Missing transverse energyéy

Following the latest recommendations of the D@ Jet/Missing Energy-ID group the miss-
ing energy is recalculated using all calorimeter cells with an energy above 0 MeV where
the unclustered energy in the coarse hadronic layers (outer calorimeter layer 15-18) is ex-
cluded except for coarse hadronic cells which belong to &3jdt [The calculation ofzr
includes all corrections for the coarse hadronic layer, electrons from jet removal, jet en-
ergy scale correction and muon corrections. The coarse hadronic layer has been partially
removed from thdZy calculation since it showed unstable behaviour due to noise that
distorted theZr resolution or led to a wrong measurementff The jet energy scale
correction is performed with the software packagecorr versionv05-00-00. The
missing transverse enerdt is calculated using the software packagesingET ver-
sionv00-06-10 and post processed bycorrect versionv00-00-06. Every good jet as
defined in previous Section with a cone radiusct 0.7 is energy scale corrected. With

this procedure a correction for the missing transverse energy in each event is obtained. In
Run | the missing transverse energy correction baseld er0.7 jets was preferred over
correction througlR = 0.5 jets, since the 0.7 cone jets gather significantly more energy
than 0.5 cone jets, and therefore a substantially imprd&edtorrection was available

from them. Electrons can lead to a mis-measurement of jets and are therefore removed
from jets before they are corrected for their jet energy scale.

The muon corrections include the following: the energy loss of muons in the calorimeter
through ionisation is about 2 GeV, roughly independent of the muon momentum. Thus
the calorimeter-only missing transverse energy must be corrected using the value of the
momentum measured by the tracking system. The muon transverse momentum given by
the tracking system is subtracted from the missing transverse energy. The value of the
muon energy loss is obtained from an empirical function which parameterises the muon
energy loss measured in test beam data. This value is added to the missing transverse
energy taking into account the angular dependence. Only muons of the quality criteria
discussed in Sectiofil.1are used for this correction. They must have loose quality with
track match and at least three hits in the silicon tracker with a distance of closest approach
with respect to the vertex smaller thari®cm. For MC in addition to the above muon
corrections the transverse momentum of the muon is smeared with the same function as
described in Section.4.1

4.2 Data Sample

The data used in the present analysis was collected by the D@ experiment between August
2002 and September 2003. Most of the available data are centrally reconstructed by
the common reconstruction software “D@Reco” on a Fermilab Computing Linux cluster.
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The software versions p14.03.00/01/02, p14.05.00, p14.05.02 and p14.06.00 have been
used. Some parts of the data have also been re-reconstructed from an older software
version pl13.06.00 at several remote sites throughout the world. Small improvements in
reconstruction efficiency and speed have been made between these p14 versions. To have
a common basis all available data from the first software version have been post-processed
to fix some minor known issues that have been fixed with the latest software version.
All event information is stored into a so called “TMB” (Thumbnail). This has the size

of about 25 KB (Kilobyte) per event and stores the compressed information of physics
objects, like kinematics, track quality, calorimeter cells and common event information
like trigger status and detector status.

All data (=~ 500 million events for this period) are skimmed to smaller subsamples based
on physics objects like electrons, muons and jets with certain kinematic conditions. The
“2MU” skim of the D@ common sample group provides a preselection for this analy-
sis [3(]. Events passing the preselection cuts have two “loose” muons without any re-
quirement on the muon transverse momentum. The different muon quality criteria have
been discussed in Sectidril.l These are approximately 25.9 million events.

4.2.1 Trigger Efficiency

The triggers used in this analysis are a logical OR of the four di-muon triggers which have
been described in detail in Secti@®R.6 These triggers are the “unprescaled” triggers
2MU_A_T.2M0, 2MU_A_L2ETAPHI, 2MU_A_L2M0_TRK10, and2MU_A_L2M0_TRK5. They are

a combination of a muon scintillator trigger at Level 1 (L1) and a medium muon trigger

at Level 2 (L2). For the first two triggers there are no requirements for this trigger at
Level 3. The last two triggers require a track with transverse momentupy of 5 or

> 10GeV, respectively. The latter two triggers were added since the first two triggers are
prescaled in runs during July 2003 until September 2003 at high instantaneous accelerator
luminosities.

The efficiencies at the different trigger levels are studied in the data in an unbiased sample
of various calorimeter triggers. This set contains events that are triggered and recorded by
high rate electromagnetic or jet triggers. Eventually muons are also found in these events.
With these muons the trigger efficiency at the different trigger levels can be determined.

The efficiency at Level 1 is determined for reconstructed loose isolated offline muons
having a track match (see Sectiéri.1) and with fired calorimeter triggers by dividing

the number of events with a fired triggetilptxatxx by the number of all calorimeter
triggered events. The trigger termulptxatxx refers to single muon trigger at level

1 with scintillator co-incidence over the full muon detector coverage. The top row in
Figure 4.4 shows the Level 1 trigger efficiency versus the muon transverse momentum
pr, ® andn. The drop of the efficiency in the region2b < ¢ < 5.25 is due to the
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missing scintillator detector coverage at the bottom of the D@ detector. An efficiency of
€4 = 0.845+ 0.009 is obtained for offline muons withy > 10GeV.

The L2 medium muon trigger efficiency is determined by dividing the number of events
with at least one medium muon at L2Global by the number of all calorimeter triggered
events and a fired L1 trigger. The lower row in Figur€ shows the Level 2 medium
muon trigger efficiency versus versus the muon transverse momegrtupandn. Here

the drop of efficiency in the region25 < ¢ < 5.25 is due to missing events triggered by
the Level 1 muon trigger. The efficiency sums ugge= 0.901+ 0.005 for offline muons

with pt > 10GeV.

Combining the two efficiencies the total efficiency for the di-muon trigger_2_1.2M0
becomesomy A L2omo =0.76+0.02. The additional triggeaMU_A_L2ETAPHI is required

for a short data taking period of time where the triggger_2_1.2M0 is prescaled (see Sec-
tion 4.2.2. This trigger requires in addition to the requirements of the first trigger two
muons at L2 with a separation ip ~ 13.5° andAn ~ 0.15. The overall trigger effi-
ciency is assumed to be similar within the error compared to efficieneyofa_1.2M0
alone since the sample of events triggeredhy_A_L2ETAPHI contribute to only about
5% of the whole data sample. The same assumption is made for the two additional trig-
gers2MU_A_L2M0_TRK10 and2MU_A_L2M0_TRK5 which require an additional track with

pt > 5GeV orpr > 10GeV, since the trigger efficiency is measured with respect to a
reconstructed offline muon with track match.

4.2.2 Luminosity

The integrated luminosity of the data set is determined usingitheccess_pkg soft-

ware package provided by the luminosity ID groug!][ The recorded luminosity in

good luminosity blocks for all four triggers is obtained for the whole data sample. Good
luminosity blocks are measured in a time interval of about 1 min and indicate that no
detector component was in a bad status from the electronics and readout point of view.
Nevertheless, bad detector status due to noise or failed detector components are also dis-
covered after data recording. To assure the data quality and to account for detector or
reconstruction failures, runs which are classited for the muon system, tracking sys-

tem (CFT and SMT), calorimeter (CAL) & reconstruction in the run quality database

are rejectedi5]. In addition the run ranges 174207 to 174217 and 172359 to 173101 are
excluded because of problems with forward and central di-muon trigger system.

Table4.1 shows the integrated luminosities for the four different triggers and the com-
bined overall luminosity of all. A sum of all triggers is made since the trigger 2_1.2M0

is prescaled at high instantaneous luminosities whereas the other three triggers stay un-
prescaled. Only events with one of these triggers and no prescale are retained. The last
three triggers have a smaller integrated luminosity because they were introduced later into
the trigger list.
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Figure 4.4:The trigger efficiency for the Level 1 muon scintillator trigger (top row) versus
the muon transverse momentumn g andn. The corresponding trigger efficiency for the
Level 2 medium muon trigger is shown versgsgpandn (bottom row).

4.3 Monte Carlo Samples

Different Monte Carlo (MC) samples listed in Table? are used to study the signal and
background distributions. All simulated events are generated using PYTHIA 62202 |
using the CTEQA4L parton distribution functionht]. They are processed through a full
detector simulation using plate calorimeter geometry in versian 02.00, p14.03.02,
andpl14.05.02. A Poisson-distributed average of 0.8 minimum bias events is overlaid.
The cross-sections listed in Table? are taken from various sources: the NLO cross-
sections for processes 1-6 are calculated using HDECAY §nd HIGLU [11] with
CTEQS5M parton distribution function and a top quark massif 175GeV. The NLO
cross-sections for processes 7 and 8 are taken fiGjrahd the cross-section for process

9 is taken from [ 6], and and process 10 are obtained fraif] [

Further contributions fronh)B-QCD background and W+jets production are studied in
data and MC (see Sectidn2). The contribution of additional channels frox{1S),
Y(2S) andW Z production has been tested with large samples generated with PYTHIA
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Trigger L[pb]
2MU_A_L2M0 131.4
2MU_A_L2ETAPHI 121.6
2MU_A_T2M0_TRK10 61.6
2MU_A_TL.2M0_TRK5 35.2
OR of all triggers 146.9

Table 4.1: Integrated luminosityL for the trigger 2MU_A_1.2M0, 2MU_A_L2ETAPHI,
2MU_A_L2M0_TRK10 and2MU_A_TL.2M0_TRKS.

Process o0 x BR[pb] Generated Events
1 H—-WWY - pfvpv, (my =100GeV)  0.00012 10000
2 H-oww® - Fg vy (Mmy = 120GeV)  0.00095 10000
3 H—-WW" — vy, (my = 140GeV)  0.00219 10000
4 H—-WW* — prvyuv, (my = 160GeV)  0.00269 10000
5 H—WW* - pfyuv, (my = 180GeV)  0.00189 10000
6 H—WW* — v pvy, (my =200GeV)  0.00104 10000
7 Z)Y —putu 254 660715
8 Z/y—T1tT 254 305000
9 WW-— prvyp vy 0.0145 20750
10 tt — bpvbpy 0.065 39000

Table 4.2:Monte Carlo samples used in comparisons with data (see Secamal Sec-
tion 6).

as above. These samples showed negligible or no contribution already after the muon
preselection described in Sectiéri. 1

4.4 Reconstruction Efficiencies

4.4.1 Muon ldentification and Muon Momentum Smearing

Although there was a significant reconstruction quality improvement between the differ-
ent reconstruction versions p13 and p14 by tracker realignment and improved tracking
algorithms the muon momentum resolution, data and MC still differ. The resolution in
MC is overestimated since not all dead material is properly simulated and a perfect align-
ment and ideal geometry of the tracking detectors are assumed in the simulation. Also
the effect of temporarily dead readout channels cannot be properly handled. #igure
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shows the distribution of the unsmeared invariant di-muon mggleft) and the muon
transverse momentumpy of the first and second muon. The width of tAeesonance
expected by Monte Carlo is 6 GeV. Therefore, the Monte Carlo is tuned to describe the
data by smearing the muon transverse momemgrwith a smearing method following:

A~ — L (1+ fG), wheref = 0.00205 is the smearing factor afds a random variable
with standard Gaussian distribution. In Figu¥ré the result of this smearing is shown
together with an additional tuning of the Monte Carlo normalisation. The latter will be
discussed in Sectiof4.6
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Figure 4.5: Distribution of invariant di-muon mass (left) and the transverse muon mo-
mentum (right)BEFOREMC momentum smearing. The normalisation of the MC was
obtained as described in Sectidnt.G

4.4.2 Tracking Efficiency

The efficiencies determined in the following sections are based on methods described
in [37]. All efficiencies are determined using the previously described dataset and a
Z — ptu- MC. To measure the tracking efficiency two loose muons are required to have
a local muon transverse momentym > 15GeV determined standalone by the muon
system. Both muons should be separatedipy- 2.5 and isolated with calorimeter iso-
lation 3 2.1<R<04Er < 2 5GeV. The tracking times matching efficiency can be expressed
= Ni+2:N;

4.2
No+ N1+ Np) (4.2)

Etrackmatch= 2
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Figure 4.6:Distribution of invariant di-muon mass (left) and the transverse muon momen-
tum (right) AFTER MC momentum smearing. The normalisation of the MC was obtained
as described in Sectioh4.6

whereN; is the number of events with= 0,1,or2 muons matched to a central track.
Figure4.7 shows the efficiency with respect to the muon transverse momemtumand

@. Averaging over all muons witlpr > 15GeV the tracking efficiency is found to be
EtrackDATA = 0.928+ 0.008(stat ) for data anctyackmc = 0.961+ 0.005(stat ) for MC.

The drop of the efficiency for valueg| > 1.62 is due to the missing central fibre tracker
coverage in this region. Here tracks are reconstructed with the silicon tracker and only
parts of the CFT. In the full CFT coverage rangdmf< 1.62 the tracking efficiency for

data reaches a value &fackpata = 0.95+0.01(stat). The drop of the efficiency ip
around 4.5 is due to the missing events that are not triggered by the Level 1 muon trigger
in bottom hole of the muon detector.

4.4.3 Muon Reconstruction Efficiency

The efficiency to reconstruct a loose muon is determined with the help of muons identified
with the calorimeter. Muons traverse the calorimeter in a straight line with a constant en-
ergy loss of approximately 2GeV. The reconstruction and identification efficiency espe-
cially in a jet environment is not efficient enough to include these calorimeter muons to the
following analyses. One muon is required to be loose and matched to a central track with a
transverse momentupy > 20 GeV whereas the second muon with a transverse momen-
tum pr > 10GeV is tested whether it is loose or not. Both muons should be separated by
A > 2.5. The events have to be triggered by the muon trigger described in Séian
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Figure 4.7:The muon tracking efficiency determined in data (black dots) and Monte Carlo
(red triangles)

Averaging overp of the muon and excluding the bottom acceptance gap<4 @ < 5.15,

the loose muon reconstruction efficiency is found toeiggsepata = 0.9140.01(stat)

in data anctjposemc = 0.90+0.01(stat ) for MC. Exchanging the cut on the muon trans-
verse momenta yields the same efficiencies. Figuteshows the efficiency with respect

to the muon transverse momentym, N and@. The drop of the efficiency ip between

4 < @< 5.5 is due to missing muon detector coverage in the bottom part which has been
excluded from the quoted efficiencies as described above.

4.4.4 Muon Isolation Efficiency

The muon isolation efficiency is determined in data and MC with events comingZrom
decays. Two loose muons matched to a central track are required to have a transverse
momentumpr > 15GeV and need to be separateddsy > 2.5. In the mass window
70GeV< my, < 110GeV, one muon is required to be isolated accordingfif.> pr <
4.0GeV. The second muon is tested whether it fulfils the isolation criterion. Figtre
shows the efficiency with respect to the muon transverse momeptum and@. The
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Figure 4.8:The muon reconstruction efficiency determined in data (black dots) and Monte
Carlo (red triangles)

efficiency obtained is higher when the tested muon has a larger transverse momentum
than the reference muon and vice versa. Averaging over all muongwithl5GeV the

muon isolation efficiency becomegopara = 0.97+0.01(stat) in data anckjsomc =

0.98+ 0.01(stat.) for MC.

4.4.5 Remaining Efficiencies

Only events with two muons of opposite charge are retained in the following analysis.
This efficiency is determined t& pata = 0.9940.01(stat ) [35] by selecting the num-

ber of events that are rejected by a like-sign charge cut for two muons in the invariant
mass range around the peak. Cosmic muons are rejected with the standard muon-
ID group cut on the scintillator times. This efficiency is determined tedgata =
0.995+ 0.005(stat ) [3€] by selecting acolinear tracks with high scintillator tinfss
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Figure 4.9: The muon isolation efficiency determined in data (black dots) and Monte
Carlo (red triangles)

4.4.6 Monte Carlo Normalisation and Efficiency

As seen in the previous sections the efficiencies for data and MC differ in various aspects.
Two methods have been used to obtain a proper normalisation of the MC with respect to
the data.

The well measured proce&y* — U™~ is used in a mass range of 6AL120GeV to
determine a scaling factor for all Monte Carlo samples. The leading order Monte Carlo
program PYTHIA predicts a cross-section valuesoBR~ 180 pb for this process. In
Run | the D@ experiment has measured a valuegf= (218+ 11+ 12) pb [39] for

Z — ete™ decays. Taking into account the higher centre-of-mass engsgheads to a
scaling factor offs = 1.19 [4(] for the measured cross-section. Fitting &g/ — ut -
Monte Carlo with a cross-section ef 260 pb in the mass range between-6020 GeV

to the data leads to a scaling factor for all Monte Carlo normalisatigh = 0.61+

0.07. This factor has to be applied to the MC normalisation to compensate the data and
MC reconstruction differences. The error of the scaling fadtft is a combination of

the errors of thasee measurement, the determination fafand the muon momentum
smearing. This scaling factor is applied to all Monte Carlo samples subsequently.
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A second method uses the different efficiencies determined in the previous sections. The
reconstruction efficiency for proceggy* — u = is given by:

2 2 2
€2 = €acc’ Eirig " €iso " Etrack " €ioose’ Ecosm’ €q (4.3)

wheregaec = 0.424+0.01 [38] denotes the geometrical acceptance and all other values
are defined as in the previous sections. This leads to an overall efficiempya =
0.214+0.012 in data. Assuming a trigger efficiency aP@+ 0.01 for aZ/y* — pury-

MC an efficiency ofez yc = 0.264+ 0.016 is found. The scaling factor for the MC
normalisation follows to béyc = 0.60+ 0.04 which is in good agreement with the value
obtained with the first method.

4.4.7 Quality of the Missing Transverse Energy#y

Figure4.10shows the distribution of missing transverse endfgyfor events with two
isolated loose muons each matched to a central track and with a transverse momentum
p#l > 20GeV andp$2 > 10GeV. There is good agreement between data and MC. It is
particularly important to assure the quality of the muon tracks which is done by a cut
on the minimum number of SMT hits and distance of closest approach to the vertex. A
bad muon momentum resolution distorts fhe correction as mentioned in the previous
sections.
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Figure 4.10:Distribution of the missing transverse energy E



5 Limits on H — WW*) Production

This Chapter describes the search for the Higgs bosth-in WW*) decays. Here, the
decay channel of thé/ sinto two muons and two neutrinos is investigated in detail. At the
end of this Chapter a combination with the di-electron and electron-muon decay channel
of theW sis presented.

5.1 H—WW" — pfvuv, Selection

Main Selection Cuts

In Chapter4 different aspects of muon reconstruction and data quality have been dis-
cussed. The event topology df — WW®*) — tvyd vy decays is characterised by two
isolated muons with high transverse momentpmand significant missing transverse
momentumir from the undetected neutrinos. There are several processes that have a
similar event topology:Z/y* — Uy, Z/y* — 171", WW — prv uvy, tt — bpvbpv

and someébb andW-+jets production. To discriminate between signal and background
contributions various cuts are applied. The reduction of backgroundsZygm— pp~

andbb andW+jets production is limited by experimental constraints like the muon mo-
mentum or missing transverse momentum resolution. In Chaptdrwill be shown that

the latter two backgrounds show negligible contributions. There are also “irreducible”
backgrounds lik&VW — ptvypu vy, production which distinguishable in a combination

of kinematic variables fronl — WW(*) — p*v v, production. For a Higgs mass of

my = 160GeV, Figuré.1shows distributions of a few kinematic quantities that will help

to reduce the contribution of different background processes. The transverse momenta
of the decay products are expected to be mainly equally distributed, i.e. the sum of the
two muon transverse momenta is about half of the Higgs boson mass if it is produced
at rest and the undetected neutrinos (c.f. the missing transverse &greprry the re-
maining part. The range of the invariant mass calculated from the two muons will be
limited between the di-muon resonances of Yrend theZ boson. The main background
from Z/y* — putu~ production shows a large azimuthal opening angle of the two muons.
Muons from this background tends to be rather back to back compared the muons from

43
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H—WwW® — vy vy production. Figures.1(a) shows the distribution of the lead-

ing muon transverse momentywa, (b) shows the invariant di-muon masg, (c) shows

the missing transverse enery, (d) shows the azimuthal opening andig,, between

the two muons, and (e) shows the distribution of the transverse momentohthe lead-

ing jet. The different distributions of the Higgs signal Monte Carlo simulation (MC) are
compared to MC from different background processes with the most discriminate power
in this variable. For better visibility the normalisation for all distributions is arbitrarily
chosen.

Selected events must have been triggered by the four “unprescaled” di-muon triggers de-
scribed in Sectior.2.1. Furthermore events should have two opposite charged muons ful-
filling the requirements of quality and isolation as described in Sedtibri: the muons

are of loose quality with a matching central track, isolated C%g pr < 4.0GeV, have

at least three hithlsyt > 3 in the silicon tracker and are coming from the nominal vertex

region with a distance of closest approach with respect to the vertexcaf< 0.15cm.
In addition the transverse momentymfor the leading muon must h@l > 20GeV and

for the trailing muonp#2 > 10GeV. To enhance the ratio of signal over background, a
successive list of cuts is applied (see Tahl®. During the development of this analysis

a large amount of cuts on kinematic variables, angular correlations and event shapes has
been tried. In the following cuts are presented that give the best signal efficiency and
background suppression.

The major background source after the preselection iZfly¢ — utu~ production. To
reduce this background, two cuts on the invariant agsre appliedmy, > 20 GeV and
|myu— mz| > 15GeV. The first cut suppresses events with two muons ¥atacays, the
second cut suppresses events fioproduction (see Figure.2). The cut value of 15GeV

is approximately two times the measured width of aeesonance. For higher masses of
the Higgs boson this cut will be responsible for a slight loss of signal efficency. For low
Higgs masses the cut,, > 20GeV is responsible for most of the signal efficiency loss.
This cut cannot be lowered since events frgrandbb decays significantly contribute to
the regionm,, < 20GeV.

Cut name Cut range

Di-Muon mass my, > 20GeV and
|myy—mz| > 15GeV
Missing transverse enerddt | Er > 30GeV

Mismeasuredr: Fr > 0.75. p-‘Fl +10GeV
Muon opening angle: Apyu< 2.0
Jetpr (In”®Y < 2.5) pletl < 60GeV,pi*2< 30GeV

Table 5.1:Summary of signal selection cuts for-H WW*) — KV vy production.
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H—WwW® — Ty vy decays have a significant fraction of missing transverse en-
ergy Er in the events from undetected neutrinos. Therefore a vald® of 30GeV is
required (see Figurg.3). This cut effectively removes events frafify* — uu~ and

Z/y* — tT1~ production. Mis-measured muons wrongly indicate a larger missing trans-
verse momentunr. To further reduce these backgrounds with mis-measured muon
transverse momentum, a cut in the two dimensional plane between the muon with the
highest transverse momentum and the missing transverse egergyapplied: Er >

0.75- pi +10GeV (see Figurs.4).

Spin Correlation of the WW-system

The Standard Model Higgs boson has spin zero, wherea&/thbosons have spin 1. In
order to conserve angular momentum, the spins ditféosons fronH — WW* decays

must be anti-correlated. In the Higgs rest-frame (which is for the considered mass range
of the Higgs boson practically the lab frame) the decay axis ol\tN'ésystem is denoted

as the z-axis. Along this axis, thW¥-spins are quantised (W) = +£1,0 and are the
transverse (T) and longitudinal (L) polarisation direction. Only the dekays W, W,

andH — W "W~ are allowed, whereas — W:"WT is forbidden.

The W™ polarisations are not directly observable, but can be observed through the final
state leptons. The decay rateWf™ — ptv, is proportional to(1+ cosd)?, whered

is the angle of the muon momentum vecfiyy with respect to th&\,~ spin direction.

Thus the right-handed positively charged muon is preferentially emitted inithspin
direction. In contrast, the left-handed negatively charged muon is emitted in the opposite
W, spin direction following a1 — cos®)? dependence. Since thg boson spins are
anti-correlated the momentum vectors of both muons point into the same direction.

The angular dependence of the muons frwg‘i decays follows sifid, whered is the
angle of the muon momentum vectgy with respect to the z-axis. The muons are most
likely emitted perpendicular to the z-axis. If tié boson decays were uncorrelated there
would be no particular correlation between the two muon momentum directions. How-
ever, they are correlated and their decay rate is proportion@itev,) (1" - v,), where

the particle symbols correspond to the four-momenta of the partielés This product

is zero for anti-parallel muon and anti-muon three-momenta and has its maximum for
parallel momenta, just as in the&"W,~ case. Overall a small opening angle of the muon
and anti-muon momenta is expected.

Since the spins from the two decayM{g originating from the Higgs decay are correlated,

the opening angle between the two muons tends to be smaller as compared to events from
background sources. The distribution of the opening aAglg in the transverse plane is

a good discriminant between events from Higgs decays and background contribution (see
Figure5.5). A cut onA@,<2.0 significantly suppresses background contributions from
almost all channels.
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Further Selection Cuts

Multi-jet events, mostly originating frortt production, are rejected by applying a cut on
the jet transverse momentum. Jets with the highest and second highest \@ﬂehﬁuld
fulfil: pil< 60GeV andpi®?< 30GeV. All jets are required to be in the validity range
of the jet energy scale correction [gf’®] < 2.5 and should have a transverse momentum
of pietl> 20GeV. (see Figuré.6and Figures.7).

Figure5.8 demonstrates the importance of a well measured muon track momentum from
which Aqy, is directly calculated and a well understood missing transverse efgtgy
Tails from mis-measurements in both variables badly influence the signal to background
ratio. This is best seen in ti&/y* — ™y~ distribution (right plot in the top row) which

is the dominant background throughout this analysis also because of its high production
cross-section.

Table 5.2 shows the signal efficiency for the procé$s— WW*) — prvp vy for dif-

ferent Higgs masses derived from Monte Carlo with full detector simulation. Most of the
efficiency is already lost in selecting two isolated loose muons with a transverse momen-
tum pt > 10GeV andpt > 20GeV within the detector acceptance region. The following
cut on the missing transverse eneffly reduces the signal efficiency by about 0.1 but
has an high impact on the number of selected events #oyh— ptu~ production (c.f.
Table5.6). All successive cuts reduce the efficiency by about 0.02 each.

Cut/my 100GeV 120GeV 140GeV

w-1D/ pr 0.150+0.004 0253+0.005 0318+40.006
Fr & Fr vs. p$ 0.064+0.004 Q153+0.005 0208+ 0.006
My 0.064+0.003 Q1534+0.005 020240.005
AQuy 0.053£0.003 0131+0.004 Q17740.005
Jetpr 0.045£0.002 0110£0.003 01504 0.004
Cut/my 160GeV 180GeV 200GeV

p-ID/ pr 0.370+0.007 Q3754+0.007 0Q4104+0.007
Fr & Fr vs 0.281+0.006 0274+0.005 027440.005
My 0.274+0.006 0238+0.005 021240.005
Yo 0.257+£0.005 0221+0.005 (01904 0.004
Jetpr 0.2164+0.004 Q1794+0.004 0Q151+0.004

Table 5.2: Signal efficiencies for the process-HWW®*) — vy, for different
Higgs masses mderived from Monte Carlo. The quoted errors are statistical errors
only.
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5.2 bb and W+jets Background

The contribution frombb and W+jets background is determined by a combination of
data and Monte Carlo simulation. A samplebbf events was generated using PYTHIA.
EviGen [7] andd0_mess [43] were used for proper decay description and statistical en-
hancement. EvtGen is an event generator designed for the simulation of the physics of B
decays. It is especially useful in complex sequential decays such as semi-leptonic decays
and CP violating decays. EvtGen is also used in both the CLEO and BaBar collaborations,
which have an extensive b quark research programme. DO_mess is one programme in the
D@ MC generation chain. It is used to select certain rare decay processes directly on
generator level from a large of sample of generated events. This saves a large amount of
computing time and resources since only potentially interesting events have to be passed
through the whole detector simulation and reconstruction chain (see S&ciorBoth
programs were also used for a sample ofty4events generated using the Monte Carlo
generator ONETOP/f] and PYTHIA.

The contribution fronbb events is estimated in data from like-sign di-muon events with
an inverted isolation criterion. One muon has to fail the isolation cuts, i.e. track isolation:
Yo pr > 4.0GeV. By inverting the muon isolation criterion in the like-sign case an
enriched sample dfb and W+jets events with almost ryy* — putu~ contribution is
selected. The cross-section given by the Monte Carlo simulation is not used since the
uncertainty is too large for a proper normalisation of biee contribution. An overall
normalisation derived from data is used instead. FiguBeshows the distributions of

the di-muon invariant mass, the muon transverse momeiutgnthe di-muon opening
angleAq,, and the missing transverse energy in the like-sign di-muon sample. This
background is characterised by low mupgn large opening angle and a modest missing
transverse energy. The ratio between like-sign and non liketdigavents is obtained
from MC to be~ 0.344 for muons with transverse momentypm> 15GeV. The number

of bb events is given by the number of non like-sign events in I\ﬂq&ULS) times

the isolation efficiency;s, i, squared and normalised to the data by the ratio of inverted

isolated like-sign events->_ in data and MC:

NDATA LS MCLLS
) invi .,
Ny = €isob l\llnl\\//:?:c,)LS "Ny : (5.1)
inviso
The isolation efficiency is determined by the number of isolated muons divided by the
number of all muons in the MC sample:

N.U _

150D = I'\Sl—ﬁbb — 0.068-0.001(stat ) & 0.006(sys). (5.2)
all

The cut on the muon transverse momentum was varied in a ranyerof 3GeV since

muons with smallepr tend to be less isolated. This leads to an systematic errggojy
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Figure 5.9:Distributions of the di-muon invariant mass, the muon transverse momentum,
di-muon opening anglég,, and the missing transverse energy from bnd W+jets
background enriched sample.

of about 10%. Tabl&.3 shows the contribution gﬁE events after different successive
cuts. Already after the preselection the numbeblmievents is very small.

The number of events from Wb production is obtained directly from MC. Tabte4

shows the number of events after applying successive cuts. The normalisation of the
sample is done with a cross-sections 4.55pb calculated with COMPHERP!}]. This
cross-section predicted by ONETOPas~ 4.6pb. The precise value of these cross-
section depends on the kinematic cuts made at the generation stage. Due to the large
theoretical uncertainties a systematic error of 100% is assigned to this cross-section. After
all cuts the contribution from Wb production is approximately the same as frbin
production.

Table5.5shows a systematic check of the W+jet production using APLGEihstead

of ONETOP as Monte Carlo generator. Different processes for one- and two-jets pro-
duction with charm and bottom quarks and inclusive jet production have been simulated.
After all cuts only W+c and W+bb production show measurable contribution and are in
good agreement with the numbers obtained with ONETOP.
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cut Nivise ~ Miviso~ Nai-* - | Mg
1D/ pr 380 3074 9357 | 54406
Fr & Br vs.pt 84 74 209 | 1.1+02
My 74 67 193 | 1.0+0.2
AQ, 11 45 141 | 0.16+0.06
Jetpr 3 4 5 |0.02+0.02

Table 5.3:bb contribution estimated from like-sign di-muon events in data.

cut N+ b
w17 pr 0.035:£0.035
Fr & Br vs.p 0.0240.02
My 0.01+0.01
AQy, 0.01+0.01
Jetpr 0.01+0.01

Table 5.4:Number of events from ngproduction obtained from MC.

cut Wi Wjj Wc Wcj Wcc Wbb

No. of events 48350 189500 19600 19600 41150 198500
o [pb] 1970 222.1 63.2 39.75 5.82 1.543
u-ID/ pr 49+25 0 15+0.7 05+03 007+0.04 0064+0.007
Fr & Fr vs. p#l 0 0 0 0 003+0.02 0023+0.005
Myy 0 0 0 0 003+0.02 0022+0.005
AQy 0 0 0 0 002+0.02 0018+0.004
Jetpr 0 0 0 0 002+0.02 0011+0.003

Table 5.5:Number of events from W+jets production obtained from ALPGEN+PYTHIA
MC. The “j” denote inclusive jet production of light flavours (u,d,s quarks) and gluons,
whereas “b” or “c” denotes jets from b or c-quarks (or their antiquarks).
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5.3 Events with Di-muons and Missing Transverse En-
ergy

Table 5.6 shows the comparison between data and expected background events and the
expected number ¢ — WW>*) — v v, after the successive application of all cuts.

The first column denotes the events after the preselection cuts. Most of the efficiencies
discussed in Chaptérhave been determined with a subsample of these events. There is
reasonable agreement between data and Monte Carlo after all successive cuts. The muon
momentum resolution from low quality tracks and tracks with high transverse momentum
distorts the resolution of the missing transverse en&gyThis is balanced by the first

cut requiring theé#r to be dependent on the leading muon transverse momentum.

After applying all cuts 5 events remain in the data wheredas-%.6 events are expected
from background Monte Carlo, maingy/y* — ptpu~ andWW — pvp vy, production.
0.085+ 0.001 events are expected from Standard Mddlel: WW*) — v p=vy, de-
cays with a Higgs mass ofiy = 160 GeV.

wID/pr By & By vs. p#l My,
DATA 8509 98 53
Z/y— 8426+ 27 978+2.8 388+1.7
bb/W+jets 54+0.6 11+0.2 10+£0.2
Z/y- -1ttt 57.7+22 05+0.2 05+0.2
WW — ptvyuvy,  4.64+0.05 198+0.03 165+0.03
tt — bpvbpv 3.15+0.038 172+0.02 134+0.02
MC SUM 8497+ 27 1031+2.8 433+1.7

Ao Jetpr
DATA 10 5
Z/y— 128+10 39+0.6
bb/W+jets 02+01 0024+0.02
Z/y- -1t 0.1£01 0+0
WW — pfyyuv, 1.33+0.03  128+0.03
tt — buvbpw 0.88+0.01 003+0.003
MC SUM 153+14 53406

Table 5.6:Cut flow table. The quoted errors are statistical only.

Since the spins from the two decaying Ws originating from the Higgs decay are correlated,
the opening angle between the two muons tends to be smaller as compared to events from
background sources. The distribution of the opening ahglgin the transverse plane is a
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reasonable discriminant between events from Higgs decays and background contribution.
Figure 5.10 shows the opening angleg, between the two muon tracks for successive

cuts.
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Figure 5.10:Azimuthal opening anglaq,, between the two muon tracks after the dif-
ferent cuts: initial preselection (top), after invariant mass cut (middle), after all cuts.

(bottom).
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5.4 Systematic Uncertainties

Systematic uncertainties on the number of selected events have been investigated: the
uncertainty on the jet energy scale correction, the muon momentum resolution, the cross-
section variation of the main background processes and the luminosity uncertainty. The

uncertainty on the luminosity a£6.5% [26] is part of the limit calculation procedure in

the next Section and will be treated separately.

The standard procedure to estimate the error of jet energy scale correction (JES) is the
variation of the correction in &1c error range. Since in this analysis most events have
relatively few jets (see Figuré.2) and most of the jets have small transverse momenta
pr, this would lead to an overestimation of the systematic error. In addition only the
error on the fractio E $ata /JESuc is needed, which is smaller than the separate er-
rors. The correction was varied instead as follows: the missing transverse éhergy
was recalculated by adding (subtracting) 25% of every jet transverse momentum. This
is a conservative estimation of the errors given in Figufesince most of the selected

jets have a transverse momentym < 50GeV. This systematic variation changes the
sum of the background events byl 1.2% and—1.9% respectively, while the number of
data events stays unchanged. The signal efficiency only slightly change$. B and
+0.9%, respectively.

The muon transverse momentum smearing was changed in MC. In Chdmpeenfluence

of the muon transverse momentum resolution on the width ofZtihesonance and the
quality of the missing transverse enery distribution was discussed in detail. The
smearing factor off = 0.00205 was changed b¥50%. This value is a conservative
assumption on the change of the muon transverse momentum resolution, since the width
of the Z peak visibly changes under these variations by approximatélgg€V. These
variations changes the number of background events®$% and+8.1%, respectively.

The signal efficiency again only slightly changes b$.0% and—1.2%, respectively.
Though this systematic variation is done in a large range, the effect on the number of
background events or signal efficiency is rather small.

The cross-sections of the main background processes have been varied simultaneously
within their theoretical uncertainty: the cross-sectiorZgf/* production was changed

by +5.6%, theWW — pv,u~v, production cross-section was varied #¥.7% and

—7.7% and the cross-sectiontbfproduction was changed by5.9% and—14.7%. These
variations yield a change on the sum of all background processe8.G86 and—4%
respectively.
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5.5 Limits on the Cross-SectionH — WW™) in the Di-
muon Channel

The limit calculation was done following the method described iv].[ This method
calculates the cross-section limits at 95% C.L. with the integrated luminosity, number of
background events, signal acceptance and number of events in data with corresponding
errors as inputs. The integrated luminosity for the data sample with the four di-muon
triggers is(14694 9.5) pb. The uncertainty on the luminosity is386. The number of
background events and events in data is taken from Tabl& he signal efficiency for six
different Higgs boson masses is listed in Tabl2 The uncertainty on the background

was determined from the statistical and systematic error added in quadrature.

For this single decay channel the upper limits on the cross-section are calculated by de-
termining a Bayesian likelihood functidnas a function of the signal cross-section which
directly depends on the Higgs boson mass The likelihood functiorlL is interpreted as

a probability density of observing events for a signal cross-sectiorunder a combined
signal+background hypothesis. The upper limit on the cross-sectioat 95% C.L. is

given by:
095 o0 -1
0.95:/ Ldo-(/ Ldo) . (5.3)
0 0

For a detailed discussion of the Bayesian limit calculation s&€q gnd appendix B in

[27].

Table 5.7 summarises the upper limits on the cross-section times branchingoratio

BR(H — WW) for H — WW®) — pv,u~v, decays for six different Higgs masses

with BRW — pv) = 0.1057+£0.0022 [L¢]. Figure5.11shows the calculated cross-section
limits on 0 x BR(H — WW,) from the analysis of the di-muon channel assuming the
above value of the branching ra8BR\W — pv) for the different Higgs masses together
with expectations from Standard Model Higgs boson production and alternative models.
The LEP limit on the Standard Model Higgs boson production is taken figntte 4th
generation model is presented in/], and the topcolor model is presented . [It can

be seen that no mass region of a Standard Model Higgs boson or alternative model can be
excluded with this single decay channel and the current integrated luminosity. With the
expected full data set in the year 2009 and the approximately 50 time larger amount of
integrated luminosity a 4th generation and topcolor model can be excluded or discovered.
It is expected that the presented analysis easily scales with the yet to be taken data until
the end of Tevatron data taking. An exclusion or discovery of a Standard Model Higgs
boson in certain mass region needs a combination with other decay channels, which is
presented in the next section.
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my [GeV \100 120 140 160 180 200
upper limitono x BR[pb] | 827 337 247 171 207 245

Table 5.7: Upper limits at 95% CL on the cross-section times branching ratio
o x BR(H — WW) for different Higgs massesyn

D@ Run Il Preliminary
di-muon analysis

upper limit 95% C.L.

4™ Generation Model
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Figure 5.11: cross-section limit curvec x BRH — WW) for the process
H—WwW® — prvp vy, together with expectations from Standard Model Higgs bo-
son production and alternative models. The LEP limit on the Standard Model Higgs
boson production is taken from]j the 4th generation model is presented in], and the
topcolor model is presented if]
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5.6 Combination of Limits on the Cross-SectiorH — WW®*)

As described in the previous section, the limit on the~ WW*) production can be
improved by combining the limits from the di-muon channel with other decay channels
of theWs. This is done with the di-electron and electron-muon decay channels of the two
W bosons {&]. Decay channels with tau leptons are not considered, since tau decays are
much more difficult to detect and discriminate from background processes than the first
two generation leptons.

If the two or more independent data sets for a combination have the same production
cross-section, a combined limit can be calculated by multiplying the two likelihood func-
tions to a combined likelihood = L; - Ly, before applying equatiof.3. A combination

of all three channels has been performed by multiplying the individual likelihood func-
tions of all three channels resulting into a combined likelihood function. The different
experimentally measured values of the branching ratios for the electron and muon decays
of theWs and the double rate of the electron-muon decay channel have been taken into
account. The calculation is done separately for all six different masses. The cross-channel
correlation given by the luminosity uncertainty and common object ID’s in the different
channels is determined to be small.

Table5.8 sums up the individual upper limits on the cross section times branching ratio
for the three different decay channels and their combination for six different Higgs boson
massesny. The integrated luminosities for the three different channelgael 77 pb !

for theeechannel,£ ~ 158 pb ! for theepchannel, and. ~ 147 pb ! for theppchannel.

The differences are due to different quality criteria that are required for the different chan-
nels. For the di-muon channel all parts of the D@ sub-detectors should have good quality
assignments, whereas for the di-electron channel the muon detector is less relevant. The
different values of the upper limits for the three different channels especially for the two
lowest mass points are a consequence of the different background contributiorese The
andpp channels have about the same sensitivity. The differences between both channels
are due to the different integrated luminosity in both channels.€fl@annel has more
sensitivity compared to the other two channels because of the double branching ratio and
the absence of di-lepton resonances likeZlmson andy.

The combination of all channels yields approximately three times better limits than for the
single di-muon channel presented in the previous sections. The combination of the three
channels is without any efficiency losses equivalent to a four times larger integrated lumi-
nosity in a single channel. The difference between the theoretical gain of a factor of four
and the actual gain of about a factor of three is due to the different integrated luminosi-
ties and selection efficiencies in the three channels. With the full Run Il dataset certain
mass regions of the Standard Model Higgs boson can be excluded at 95 % C.L. in the
combination of all three channels. Figusel2shows the calculated cross-section limits

for 0 x BRH — WW™)) for the different Higgs boson masses compared with predictions
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from the Standard Model and alternative models. No alternative models or a Standard
Model Higgs boson mass region can be excluded yet.

my [GeV] 100 120 140 160 180 200
ee limit 0 x BRH — WW)[pb] | 1022 297 218 148 152 192
eyt limit 0 x BR(H —WW)[pb] | 900 210 131 96 92 96
ppt limit 0 x BR(H —WW) [pb] | 864 352 258 179 216 257
all: limit 6 x BRH —WW)[pb] | 401 120 82 57 58 66

Table 5.8:Upper limits on the cross-section times branching ratiodot BRIH — WW)
from the ee, e, pu final state and the combination of all three channels for different Higgs

boson massesym
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Figure 5.12: Excluded cross-section times branching mtBRH — WW*)) at 95%

C.L. together with expectations from Standard Model Higgs boson production and alter-
native models. The LEP limit on the Standard Model Higgs boson production is taken
from [1], the 4th generation model is presented ][ and the topcolor model is dis-
cussed in{].



6 Measurement of thew'w
Cross-Section

In Chapter5 limits on theH — WW®*) production have been presented in detail in the
di-muon channel and in combination with the di-electron and electron-muon channel. It
was shown that the dominant irreducible backgrounds after all cutZ afe— ptp~
andWW — ptvyu vy, production. It is very important to measure these background
with good accuracy to improve the limits ¢h— WW®*) production. In the following
Chapter limits on th&/W cross-section in the di-muon channel and a first measurement
of theWW cross-section at D@ in the combination of all three channel are presented.

6.1 Event Selection and Limit in the Di-muon Channel

The event selection fo W cross-section measurement in the di-muon channel is similar
to the selection criteria discussed in Sectiohh The kinematic properties &VW pro-
duction are comparable with them frath— WW®) production, though there are slight
differences like e.g. in the azimuthal opening antyi@,,. To further enhance the signal

to background ratio especially with respect to the remaidifngg — pu~ background a

few cuts are slightly changed. The few differences are discussed in the following. The
muons are restricted to the pseudo-rapidity rangg pk 1.8. SinceWW production is
more central than the main background frdny* — putu~ decays, no significant signal
inefficiency is expected. Figu@1shows the distributions af versusp for the different

MC contributions and data. Furthermore this cut assures a homogeneous tracking effi-
ciency since tracks in the regiofng >1.8 tend to have less track quality which distorts
the Er distribution (see Sectiof.4.9. The cut on the invariant mass,, is tightened on

the region below th& resonance with the requirement 20 Ge¥ < my, < 75GeV/c?.

This cut reduces background from mismeasugg — P~ events from theZ-peak.

The cut on the opening angle between the two muons is relaxed &gm< 2.0 to

A@,, < 2.4. To reject the dominant contribution frofYy* — p™p~ decays, a tighter cut

on the missing transverse energy is applied. Requiing> 40 GeV removes most

of the Z/y* — utu~ decays without decreasing the signal efficiency significantly. The

66
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Figure 6.1: Distribution of the muom versusg. The hole in the data acceptance for
4.25< @< 5.25andn < 1is due to the missing muon scintillation detector coverage in
the bottom part of the detector and therefor the missing level 1 trigger acceptance in the
region. For consistency reasons this region was excluded in MC. It can be seen that WW
production happens more central than e.gyZ— p™u~ production. For better visibility

the plots have arbitrary normalisation.
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remainingtt and multi-jet events are rejected by a cut on the leadingjetequiring
p%et1< 60GeV/c. The cut on the trailing jepr is dropped sinc®/W production is ex-
pected to have less jets in the events. Figiuteand 6.3 shows the jet multiplicity of

the different MC contributions and data. It can be seen\WW¥ has mainly zero or only

jet jet in the events. The disagreement between data and MC for high jet multiplicities is
expected since PYTHIA is a leading order Monte Carlo generator. This disagreement is
negligible for this analysis though, since only events with low jet multiplicity are selected.

Table6.1summarises all cuts for the measurement oMh# production. The kinematic
and quality cuts are identical to the cuts discussed in SeGtibfter this final selection,
three events remain in the data.

Cut name Cutrange

Acceptance nu<18

Di-Muon mass 20GeV< my, < 75GeV
Missing transverse enerdt | Fr > 40GeV
Mismeasuredfr: FEr > 0.75- p#l +10GeV
Muon opening angle: Ap <24

Jetpr (In’®) < 2.5) pietl < 60GeVv

Table 6.1:Summary of signal selection cuts for WA v~ vy, production.

For thep™u~ channel, the efficiency foNWW — p v, vy, production at the beginning
of the selection is (3340.2)%. Applying all the different selection criteria reduces the
efficiency to (7.4:0.2)%. The expected number of WW events is %6204 assuming
the cross-section of 13 pb (c.f. SectiarB) and an integrated luminosity of 147pb
The expectations from all the backgrounds is %280 events to whicZ /y* — prp~
decays contribute more than 90%. In Tabl2the expected numbers for all backgrounds,
the WW signal are compared with the data for all different selection criteria.

With the given numbers the significance of a cross-section measurement is very low in the
di-muon channel alone. A limit at 95% C.L. can be calculated for the di-muon channel
with the same methods described in Sectdn Neglecting systematic uncertainties the
limit calculation yields a limit ofoww < 43.1pb at 95% C.L.

6.2 Measurement of the Cross-Section

From the previous Section it can be seen that a measurement W \¥eross-section
excluding a zero cross-section is not possible in the di-muon channel alone. The cross-
section is estimated separately for all three final states of the di-muon, di-electron and
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Figure 6.2:Distribution of the jet multiplicity of the different MC contributions and data.
It can be seen that WW production has mainly zero or one jet in the event. For better
visibility the plots have arbitrary normalisation.
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Figure 6.3:Distribution of the jet multiplicity in data and MC.

electron-muon channel before combining it. To calculate the cross-section, the likelihood
method described in'f] is used. The small number of events are taken into account by
using Poisson statistics. The cross-sectiaos given by the equation

Nobs— Nbg
O=——— 6.1
L-BR-g’ (6.1)
whereNops is the number of observed evenltg,y the expected background contribution,
L is the integrated luminosit§R the branching ratio anelthe efficiency for the signal.
The likelihood for the observation &f events withNyps events in the data is given by:
NNobs N
Nobs

N is the number of signal and background events:

N=0-BR- L &+ Npg (6.3)
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w-1D/ pr n My
DATA 8509 7496 1149
WW — p+vu|,l_\7p 7.24+0.08 6.72:0.08 3.46:0.05
Z/y — iy 8426+27 7460:25 1065:10
bb/W-et 5.4+0.6 5.0+0.5 4.9+0.5
Z/y— L 57.1+2.2 53.2£2.1 50.8:2.1
tt 3.15+0.03 3.06:0.03 1.36:0.02
MC Sum 850@27+553 7528:-264+489 1125-10+73
Agllet Fr vs. p-‘ﬁl Fr
DATA 129 6 3
WW— [V v, 2.5700.04  1.88:004  1.62004
Z)V — 108.5:3.4  3.9:0.6 1.2b0.3
bb/W+jet 0.24+0.1 0.02-0.02 0.010.01
Z/y— L 0.94+0.3 0.06:0.0 0.0:0.0
tt 0.11+0.01 0.040.003 0.0A0.003
MC Sum 11223.3+7.3 5.9£0.6+0.4 2.9:£0.340.2

Table 6.2:Expected number of background events and events observed after successive
selections for an integrated luminosity 6f= 147pb ! in the pfpu~ channel. A cross-
section of 13 pb is assumed for the WW events. The statistical error is listed for all
backgrounds. The error due to the uncertainty of the integrated luminosity is only given
for the sum of all backgrounds. The different cuts are summarised in Bable

The cross-sectiog can be estimated by minimising2logL(a, Nobs, Nbg, £,BR €). For
a combination of the channels the likelihood functions can simply be multiplied:

Nchannel N N obs,

Lcomb(T, Nobs, Nbg, £,BR €) = (6.4)

Nobs

The likelihood functions of the individual measurements are shown in FigdreThe
statistical error is derived from the intersection of the likelihood function with the y-value
of the minimum of the likelihood function increased by one which is the @msror
interval under the assumption of Gaussian errors.

For the di—electron final state, the measurement yields a cross-secti@i:of |

o(pp — WW) = 13.73"139/(stat) = 0.89(lumi.) pb. (6.5)

The measurement in thé gT final state yields a cross-sections dfJ:

o(pp — WW) = 11.78"[-2(stat) + 0.77(lumi.)pb . (6.6)
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Figure 6.4:Likelihood distributions for the'ee™ (left), e*u™ (middle) and frpu~ channel
(right).

For thep™pu~ final state, the measurement yields a cross-sections of

o(pp — WW) = 14.07" 17 24(stat) - 0.91(lumi.)pb. (6.7)

The likelihood functions of the individual measurements are shown in Figjdre

The combined result of the cross-section measurement is

o(pp — WW) = 12.4439(stat) + 0.81(lumi.)pb . (6.8)

Figure 6.5 presents the likelihood distribution for the combined measurement. This pre-
liminary result is in good agreement with the NLO-calculationso¢pp — WW) =
135pb [L6].

6.3 Systematic Uncertainties

Following the study on the systematic uncertainties on the seat¢h-ofW/\W*) produc-
tion in Chaptef5.4the following systematic uncertainties have been investigated on their
effect on theVW cross-section in the di-muon channel:

e The change of the jet energy scale correction was tested by adding (subtracting)
+25% of every jet transverse momentum to the missing transverse diergye
cross-section changes by21.5% and+20.1%.

e The cross-sections @/y* — utu~ andtt production were lowered and raised si-
multaneously within their theoretical error 613.6% forZ/y* — Uty and+5.9%
or —14.7% fortt production. The cross-section changest8/7% and+4.7%.
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Figure 6.5:Combined likelihood distribution from the e~, e"puT and gy~ channel.

e The muon momentum smearing was varied#ty0% of the smearing parameter
The cross-section changes by17.0% and+25.0%. This is a rather large effect
since the background fro@/y* — u™u~ production depends on a good descrip-
tion of the muon momentum resolution. This effect can be significantly lowered by
reducing background from/y* — u™u~ production.

All these variations add up to a systematic uncertainty oW cross-section in the
di-muon channel of+4.6 pb and—3.9pb, respectively. The systematic uncertainties in

the electron-electron and electron-muon channel are in the same range, but have not been
finalised yet £(]. At the moment this measurement is statistically limited. Some system-
atic errors can also be lowered in future by a better background description in the MC,
by a better accuracy of the jet energy scale correction and a better modelling jof the
momentum resolution.



/ Precise Muon Tracking

In the previous chapters it was shown that track finding with high precision and effi-
ciency is an essential tool for the discovery of the Higgs boson and many other important
measurements. This will also be a key issue of the physics programme at the next gen-
eration collider. The Large Hadron Collider (LHC) at CERN in Geneva, Switzerland,
with a scheduled start in spring 2007, will collide protons at a centre of mass energy of
v/S= 14TeV. Due to the higher centre of mass energy and higher design luminosity,
the discovery potential of the Higgs boson will be much higher at the LHC compared to
the Tevatron collider. Two general purpose experiments, ATLAS and CMS, are currently
built.

At hadron colliders leptons play an important role in the discovery of new physics. This
was explicitly shown in the previous chapters for the search of the Higgs boson. Lep-
ton identification and precise measurement of their momenta is also a key element for
the detector design of the next generation experiments ATLAS and CMS at the LHC. The
measurement accuracy of the momentum in a magnetic field scaleﬁm‘iﬂp% ~ const

at high energies. Therefore the effort for the magnetic measurement of momenta has to
increase with the centre of mass energy of colliders. For electrons the magnetic mea-
surement of momenta can be complemented by a calorimetric measurement of their total
energy. For high momentum muons, however, precise tracking is the only feasible way to
determine their momenta.

The investigation oH — WW*) is a typical example that an effort to have precise muon
measurement as well as a precise electron measurement is rewarded by a factor of four in
statistics. The tremendous effort which has to be invested for that is reflected in the name
of both general purpose LHC experiments: ATLAS - “A Toroidal LHC ApparatuS” and
CMS - “The Compact Muon Solenoid”.

The Cosmic Ray Measurement Facility at LMU Munich is part of the effort of the ATLAS
experiment for a precise muon measurement. In the course of this thesis an alignment
system has been developed and commissioned for this facility.

74
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7.1 The ATLAS Muon Spectrometer

Figure 7.1 shows the outline of the ATLAS experiment with its different detector com-
ponents. A detailed discussion of the different components and its performance can be
found in [51]. Here only the muon spectrometer will be focused on. It is located at the
outer most part of the ATLAS detector which has a diameter of 22m and length of 44 m.
The muon spectrometer is located inside an air-core coil with a toroidal magnetic field
of average strength of. ©T. The spectrometer comprises three different detector types
and is build into three layers. This construction design assures a muon track momentum
measurement with high precision from the muon spectrometer only. Each muon track
should be measured in at least three layers of the muon chambers and with the knowledge
of the magnetic field map the muon momentum can be reconstructed from the sagitta
of the track. The precision chambers (MDT chambers, monitored drift tube) are used

Muon Detectors Electromagnetic Calorimeters

Solenoid Forward E.alorémerer;

e = ; 2 | : End Cap Toroid
A : \ : : :

Barrel Toroid Inner Detector beldi
a o Hadronic Calorimeters sbieteNag

Figure 7.1:Outline of the ATLAS detecton{].

for the bending coordinate measurement, which is parallel to the beam line in the central
pseudo-rapidity rangig | < 1 and radial in the forward pseudo-rapidity ramge> 1. The
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z-coordinate along the magnetic field needs only to be known to a precision bd Bim
since it is not as important for the momentum measurement, but is required for a safe
track reconstruction. This measurement is done by the trigger chambers.

The performance of the ATLAS muon spectrometer is driven by its physics programme
and the resolutions needed e.g. to detect signals of new physics beyond the Standard
Model. Several benchmark processes, in particular Standard Model and non-Standard
Model Higgs boson decays have been studied and require a momentum and mass resolu-
tion at the level of 1% for the reconstruction of narrow two- and four-muon final states on
top of high background levels. The procé$s— ZZ*) — 4y is an important discovery
channel for a Standard Model Higgs boson over a wide mass ragghie to its clean
signature with low backgrounds. For masses in the range 120GeM < 180GeV a

high mass resolution of about 1% is needed. To achieve this mass resolution a muon
momentum resolution apt/pr < 2% is required. It is desired that this momentum
resolution is constant over the full pseudo-rapidity range. Figuegleft) shows that

-
N

v Wire resolution and autocalibration
® Chamber alignment

O Multiple scattering

O Energy loss fluctuations
A Total

@® Muon spectrometer +
inner detector
A Muon spectrometer only

—_
o

Ml <15

oo
Resolution (%)

nl<1.5

Contribution to resolution (%)

o = N W M OO N 0 ©

3 2 3
10 10 10 10
pr (GeV) P; (GeV)

o

—_
o
—_
o

Figure 7.2: Left: ApT/pr as a function of transverse momentum fpr muons recon-
structed in the central regionn(< 1.5). Right: the p-dependence of the muon mo-
mentum resolution averaged over the azimuthal angle and in the rgmge 1.5. The
dashed curve is the resolution for the inner tracker only, with known transverse beam
position [52].

the muon spectrometer design corresponds to momentum resolution -f328% for
muons in a momentum range 10 GeMpt < 100GeV. In a combination with the tracks
from the inner detector the momentum resolution improves quite significantly and meets
the required resolutions (Figuré2 (right)). In this momentum range the muon spec-
trometer only measurement is limited due to multiple scattering in the chamber material
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and magnet structure, as well due to energy loss fluctuations in the calorimeter. For B-
physics in contrast the muon transverse momenta are typically small and here the muon
spectrometer is mainly used for muon triggering. A high pseudo-rapidity coverage and

trigger efficiency is desired from the muon spectrometer. The muon track momentum is

determined with the inner tracker.

For high muon momenta the chamber alignment plays an important role in the muon mo-
mentum resolution. This is an important lesson that can already be learnt from results of
the D@ experiment. The observation of tAdoson resonance is not possible with the

D@ muon system only. The intrinsic resolution and alignment between the muon cham-
bers is not sufficient for a proper momentum resolution in the momentum range shown in
Figure4.6. A reasonable momentum resolution is only achieved by matching the muon
chamber hits to their corresponding tracks in the central silicon and fibre tracker. Also
here the internal sub-detector alignment and the alignment between the different detector
has a major impact on the momentum resolution. As seen in FigbiMonte Carlo sim-
ulation with ideal detector geometry and alignment assumptions predid®son width

of approximately 6 GeV. Older versions of the reconstruction software prediddzba

son width in data of about 13GeV compared to.B8 GeV with the current version. This

large difference between the two different reconstruction versions is due to wrong align-
ment assumptions between an ideal detector model implemented in the old reconstruction
software and a better modelling of the “as built” detector geometry in the current software
version. From Monte Carlo, however, still some improvements are expected and ongoing
studies point to smaller smaller effects due to misalignment or dead detector material.

The ATLAS muon spectrometer has two types of trigger chambers: RPC (resistive plate
chambers) in the barrel and TGC (thin gap chambers) in the end-cap region. The gas filled
RPC chambers consist of bakelite plates separated by 2mm and attached to a high voltage
field. They provide a position resolution of about 1cm and a timing resolution of about
1ns. The TCG chambers operate like multi-wire proportional drift chambers and have a
similar resolution like RPC chambers.

MDT chambers are drift tube chambers that consist of two four-layer drift tubes in the
inner part of the ATLAS muon spectrometer. In the two outer layers the chambers are
built in two triple-layers of drift tubes. Depending on the location of the chambers in the
ATLAS detector, the drift tubes are of one to six metres length. The tubes have a diameter
of 30mm. Tube walls are made of aluminium with 400 thickness. The tungsten-
rhenium anode wire has a diameter o The drift tubes are filled with a gas mixture

of Ar — CQ, with in a ratio of 93 : 7% and a gas pressure of 3bar. They are operated at a
voltage of 3080V and have a linear gas gain o1@. The drift radius of the secondary
electrons induced by ionising muons can be measured with a precisiopiof 8howing

the anode wire position up to g, a track point can be measured with a precision
of 33um for a three-layer chamber or g& for a four-layer chamber. Muons with a
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transverse momentum @f < 1000GeV can be measured with a momentum resolution
of Apr/pr <1074 pr/GeV.

In addition to the precise chamber and tube geometry the good track position measure-
ment is provided by an alignment system within and between the muon drift chambers.
This system monitors the chamber deformations caused by thermal or mechanical ten-
sions. The core of this system is the so called Rasnik-System (Red alignment system
NIKHEF) [57]. Figure7.3shows the mode of operation of the Rasnik-System. The basic

idea is the projection of a mask with modified chess board pattern onto a CCD sensor. The

figld lens
cliffusor |\ coded mask ﬂ projection oD
|

lens SENS0r

U
U B it RS170

Figure 7.3:Working principle of the Rasnik system.

Jﬁ\.
l RjL

LED

I =]

X=2d.Td4Z
=227

& kY

PC + frameagraber

mask is lit by a infrared high intensity LEDs with a wave length of 875nm. The mask

is a high accuracy< 0.5pum) thin-film/glass slide as used in semiconductor industry and
has a size of 20mr20mm with a grid of 12@um. The projection is done by a quartz
crystal convex lens with a focal length between 300mm and 1000 mm and a diameter of
40mm. The CCD sensor is a commercial monochrome CMOS image sensor with a pixel
array size of 387287 and a pixel size of 12n-12um. The projected image is fed into

a multiplexer and then digitised by a monochrome frame-grabber card operated in a PC.
Movements in all three dimensions and rotations are calculated by a analysis software
and can be measured in steps of about 1sec if necessary. Movements transverse to the
optical axis can be measured with an accuracy upum.2Movements along the optical

axis are measured from the image size with about one order of magnitude less precision.
Figure7.4shows the resolution dfL.9+ 0.1) mm obtained from a constant movement of

the mask in 65um steps transverse to the optical axis.

Figure 7.5 shows the outline of a ATLAS MDT chamber together with the light beams

of the Rasnik alignment system. The light beams parallel to the long beam measure
the transverse movements with high precision whereas the diagonal beams measure the
longitudinal motions. With the combination of all four beams chamber distortions in all
directions can be measured.
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Figure 7.4:Resolution of the Rasnik system transverse to the optical axis. The mask was
moved in small steps (left) 625mum The resolution calculated from this variation is
(1.940.1) mm.
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Figure 7.5:0utline of a ATLAS MDT chamber with Rasnik alignment system.
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7.2 The Cosmic Ray Measurement Facility

7.2.1 General Setup

The cosmic ray measurement facility at LMU Munich allows efficiency tests and cal-
ibration studies of 88 drift tube chambers built for the ATLAS muon spectrometer at
CERN[53]. Every chamber is tested for operativeness, noise and their single tube drift-
time spectra. Extensive electronic and mechanical tests are performed. The positions of
the single tube wires are determined and measured with respect to an external reference
platform.

Muons from cosmic rays are steadily produced in the upper atmosphere by highly ener-
getic protons hitting onto atom nuclei. In these collisions pions are produced that weakly
decay into muons and neutrinos. The mean energy of muons at ground l&v4GeV.

The energy integrated intensity of vertically incidenting muons above 1GeV at sea level
is~70m?s1sr1[1q].

Figure7.6shows the a sketch of the cosmic ray measurement facility. Three chambers are
mounted on top of each other with a spatial distance of 80 mm between each of them. The
top and the bottom chamber are the so called “reference” chambers. The wire positions of
these two chambers have been determined at the CERN X-ray tomograph with a precision
of about 4um. In between these two chambers a “test” chamber is placed and measured
with respect to the two other chambers. During the planned operation time of several
hours to days the relative position of the three muon chambers with respect to each other
must be known. These positions may vary in the order of ai@because of mechanic
tensions or thermal movements. To determine the precision coordinate of the single drift
tube with a precision of about 1in, the relative movement of the chambers should be
know better than pm.

7.2.2 The Alignment System

Two different systems are used to monitor the positions. Movements of the test chamber
are monitored by a capacitive system with respect to the upper reference charijber [
Capacitive sensors mounted on four corners on the lower side of the upper reference
chamber measure movements with respect to the middle test chamber. For this thesis a
second system to measure the movements of the two outer reference chambers relative to
each other has been designed and implemented. Optical alignment systems based on the
Rasnik technology described in the previous sections are installed at every corner of the
reference chambers.

The main task of the reference chamber monitoring system is the control of coordinates
transverse to the tube wire, namely the y- and z-component {Fay. The reference
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Figure 7.6:Front view of the sensor mounting scheme on the MDT chambers in the cosmic
ray measurement facility. The blue and green arrow lines sketch the infrared light rays
from the mask through the lens to the sensor. Both sides of the measurement facility hold
the shown alignment system.
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chamber monitoring system consists of four Rasnik systems on every corner of the cham-
bers. These systems are capable of measuring the x- and z-coordinate with high precision.
Two components, the mask and lens, are mounted on the top chamber and one compo-
nent, the CCD, is mounted on the bottom chamber. In order to monitor the y-component
with a similar accuracy, four additional Rasnik systems are mounted in diagonal setups.
The stereo angle measurement is about three times less precise. More detailed mechanical
drawings of the outline of the Rasnik system are given in AppeAdix
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Figure 7.7:The Figure shows the movements in x (top) and y direction (bottom) measured
with the chamber in-plane Rasnik system due to day and night temperature changes. The
range is good agreement with the temperature variations.

The measurement facility is operated in an air-conditioned hall with a temperature sta-
bilised at(20.0+ 2.0)°C. Aluminium as main component of the chambers has a linear
extension coefficient of about & for one meter of material at a temperature change of
1°K. Figure7.7 shows the variation of the chamber geometry due to the hall temperature
changes during several day and night cycles. The variations of the chamber geometry
within 17pum and 14um, respectively, are consistent with the short term temperature vari-
ations of+0.5K within the hall.
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Figure 7.8:The Figure shows the controlled temperature change in time (top), the move-
ments measured with the reference chamber Rasnik system (middle), and the movements
measured with the internal Rasnik system (bottom).

7.2.3 Performance of the Alignment System

The performance of the reference chamber Rasnik system has been tested by a controlled
temperature change of test stand setup. One cross-plate of the upper reference chamber
was heated bAT ~ 2.7K for about 10h $5]. The temperature reached its maximum

and the original temperature after the heating in approximately 2h The aluminium cross
beam of the muon chamber was constantly heated over its full length. A theoretical ex-
pansion ofAL /L ~ 60um of pure aluminium is expected from this temperature change.
The top histogram in Figuré.8 shows the temperature change with time. The lower plot
shows the chamber geometry change in z direction calculated from a trapezoidal fit to
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the chamber geometry measured with the in-plane Rasnik system. A direct correlation
between the temperature change and the chamber deformation is visible. The middle plot
of Figure7.8 shows the chamber deformation measured with the reference chamber Ras-
nik system. There is a slight delay visible between the temperature change and chamber
deformation change. This is due to the fact that the reference chamber Rasnik system is
mounted onto the drift tubes without stiff connection to chamber cross beam which was
heated up.

Figure 7.9 shows the differential plot of the relative chamber expansion with respect to
the temperature change measured with the chamber in-plane Rasnik system. The hatched
line corresponds to the theoretical prediction of a linear expansion of the cross beam due
to heating. The dots corresponds to the measured expansion from a fit to the chamber
geometry. There is good agreement between the measurement and the prediction for
small temperature changes. There is also only a small hysteresis visible, since the in-
plane Rasnik system is directly mounted on the heated cross beam. The deviations of
the measurement from the linear predictions at ighcan be explained by mechanical
constraints of the chamber construction and uncertainties in the measurement and fitting
technique.

Figure 7.10 shows a similar differential plot expansion with respect to the temperature
change but now measured with the reference chamber Rasnik system. A prominent hys-
teresis is visible over the full range of the temperature change. As mentioned earlier
the reference chamber Rasnik system is not in direct contact with the heated cross beam
which causes the strong expected hysteresis. There is good agreement between data and
theoretical prediction over the full range for the temperature change with the given hys-
teresis. It is important to include trapezoidal distortions of the chamber geometry into
the fitting procedure. The chamber readout electronic is mounted only on one cross-plate
side. Therefore this chamber side is a few K warmer than the other side without mounted
readout electronics.

The reference chamber Rasnik system shows the expected performance and is able to
monitor chamber movements in the required range of a few micrometres. The measured
movements due to temperature changes or mechanical tensions provide corrections to
the determination of wire positions in the muon drift chambers. The operation of the
entire facility is expected to provide valuable input to the design of the online calibration
procedures which will be needed during LHC operation to achieve the required muon
momentum resolution.
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Figure 7.9:The Figure the movements of the z-coordinate of the internal Rasnik system
of the upper reference chamber due to a controlled temperature change. The hashed line
shows the theoretical prediction given by the aluminium expansion coefficient.
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8 Conclusions

The generation of fermion and weak gauge boson mass is one of the experimental un-
solved problems of the Standard Model of particle physics. The standard solution is
“Higgs mechanism” with the introduction of elementary scalar figltlsat spontaneously

break the gauge symmetry, leaving an, as yet unobserved, massive scalar boson, the
Higgs boson. In p collision at the Tevatron collider with a centre of mass energy of
\/s= 1.96TeV the main production mechanism of the Higgs boson is the gluon-gluon
fusion with a production cross-section of approximately @1pb. In this thesis re-

sults were presented from the search of the Higgs boson in its decay channel\é two
bosons. This decay channel is most sensitive for a Standard Model Higgs boson mass
my > 140GeV.

Data taken with the D@ experiment between April 2002 and September 2003 with an
integrated luminosity ofZ ~ 147 pb ! has been analysed. The emphasis was placed on
the di-muon decay channel — WW®*) — v p~v, of the twoW bosons. Different
efficiencies of trigger and reconstruction were determined. A well motivated cut-based
analysis was developed to reduce main backgrounds oyh— pp—, Z/y* — 1717,
WW — gy, tt, bb and W+jets production. The observed data was compared to
Monte Carlo predictions of the various backgrounds. Bhecontribution was deter-
mined from data and Monte Carlo. After all cuts 5 events remain in data with a Standard
Model background expectation 0f%t 0.6 events. The dominant remaining backgrounds
areZ/y* — gty andWW — pvyu-vy production. Since no excess of the data is ob-
served, upper limits on the cross-sectiotdof> WW*) have been calculated at 95% C.L.

for six Higgs boson masses in the range of 100 Geky < 200GeV. The calculated
cross-section limits range from 82b formy = 100GeV to 171 pb formy = 160GeV

with the most sensitivity. A combination of limits with the di-electron and electron-muon
channels yield about two to three times better limitstbr> WW*) with 40.1pb for

my = 100GeV to 57 pb formy = 160 GeV. No mass regions of a Standard Model Higgs
boson or alternative model can yet be excluded. The presented analysis is easily scalable
to the expected 50 times larger integrated luminosity of the full Tevatron Run Il dataset
in 2009. With the final data set certain mass regions of the Standard Model Higgs boson
can be excluded at 95% C.L.

87
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One of the dominant remaining backgrounds in the search for the Higgs boson in the decay
channeH — WW®) — |tvl~vis theWW production. This background needs to be well
understood before placing final limits on the— WW*) production and has only been
partially measured infp collision. A limit of oww < 43.1pb has been determined at 95%
C.L. in the di-muon channel with similar cuts presented inthe> WW(*) — PV Vg
analysis case. A first measurement of the combination of the di-muon, di-electron and
electron-muon final state yield a cross-sectiono@p — WW) = 1244759 (stat) +
0.81(lumi.)pb.

In the first chapters it was shown that track finding with high precision and efficiency is
essential for the discovery of the Higgs boson and many other important measurements.
From 2007 onwards the Large Hadron Collider, LHC, will collide protons at a centre of
mass energy of/s= 14TeV. The ATLAS experiment with its distinct muon system is
one of two general-purpose experiments which will take up the challenge. At the LMU
Munich Cosmic Measurement Facility 88 chambers of the muon chambers are tested for
operativeness, noise and their single tube drift-time spectra. An alignment system with
Rasnik infrared sensors was developed and commissioned to monitor chamber move-
ments in this test-stand, which works well within the specifications.



A Outline of the Alignment System

In Chapter7 an alignment system for the Cosmic Ray Measurement Facility was pre-
sented. Figuré.6 shows an outline of the chamber positions and the positions of the
alignment systems. Detailed mechanical drawings of the Rasnik system positions are
given in a front view in Figuré\.1 and in a side view in Figur@.2. All parts are fixed by

a fixture piece that is glued onto the chamber drift tubes surface (top plot in Figsire

This piece fits into the spacing between two drift tubes and offers a very stable fixture
possibility for all kind of devices that need to be placed directly onto the chamber surface.

As an example for the bars, that hold the different Rasnik components, the CCD bar is
explained in more detail. The bottom plot in Figuxe3) shows the step that is screwed on

the fixture piece to provide the correct distance in the optical system and to fit the fixture
into the free space between the reference and test chamber. The 2mm thickness of the
aluminium sheet was chosen to provide the necessary stiffness of the step. Aifjure
shows the bar that holds the CCD box. This bar is screwed onto the step from Kigure

The U-shape of the bar and the thickness of 1mm prevent the bar from unintentional
deflections in all directions. The positions of all parts in the measurement facility are
designed to deal with different test chamber positions in the test setup.

Similar fixtures have been designed for the Capacitive alignment system. These are glued
and screwed between the upper reference chamber and the test chamber. All fixtures
are made from aluminium to have the same expansion coefficient like the drift chamber
material.

89
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[ -

Figure A.1:Cutout of the front view of the Cosmic Ray Measurement Facility. The circles
indicate one drift tube layer. It is shown the top reference chamber and the top part of
the lower reference chamber together with the fixtures of the Rasnik system components
CCDs, mask and lenses. The dashed lines indicate the light rays of the Rasnik system.
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Figure A.2: Cutout of the side view of the Cosmic Ray Measurement Facility. The left
bars indicate one drift tube layer. It is shown the top reference chamber and the top part
of the lower reference chamber together with the fixtures of the Rasnik system components
CCDs, mask and lenses. The dashed line indicates the light rays of the Rasnik system.
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Figure A.3: Top: mechanical drawing of the fixture piece that is glued onto this drift
chambers to hold the CCD, mask or lens bars. Bottom: step for the CCD bar screwed to
the top fixture piece to provide the correct distance in the Measurement Facility.
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