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Zusammenfassung

Wir untersuchen wie viele Elektronen ein Atom der Kernladungszahl Z binden kann. Dieses
ist ein klassisches Problem der mathematischen Physik. Experimentell ist die Uberschussla-
dung () := N-Z hochstens Eins. Ziel dieser Arbeit ist es, eine obere Schranke mathematisch
fir realistische Modelle groer Atome (Z grof) herzuleiten. Fiir groBe Z sind relativistische
Modelle wesentlich. Wir untersuchen zwei Modelle.

Das erste Modell wurde von Brown und Ravenhall vorgeschlagen. Wahrend nichtrel-
ativistische Modelle detailliert untersucht wurden, ist im Brown-Ravenhall-Modell nicht
einmal klar, dass () beschriankt ist. Um eine solche Schranke zu gewinnen, folgen wir eine
Strategie von Benguria. Wir integrieren die Euler-Lagrange-Gleichung gegen das Moment
|z|, was in der nichtrelativistischen Quantenmechanik erfolgreich angewendet wurde. Der
Hauptunterschied liegt im Coulomb-Potential-Term. In der Schrédinger-Theorie ist|x||?Z‘

konstant. Aber in unserem Fall ist der entsprechende Term A+|x|A+éA+, was keine Kon-
stante mehr ist. Dabei bezeichnet A* die Projektion auf den positiven Spektralraum von
Dy. Unser erstes Hauptergebnis ist, eine obere Schranke an dieses Operators. Im mas-
selosen Fall zeigen wir sowohl eine positive obere als auch eine positive untere Schranke.
Im massiven Fall zeigen wir die Existenz der positiven oberen Schranke.

Im zweiten Teil haben wir Schranken an ) sowohl in der zeitabhédngigen nichtrelativis-
tischen Thomas-Fermi-Weizsdcker-Theorie, der zeitabhangigen relativistischen Thomas-
Fermi-Theorie als auch in der zeitunabhéngigen relativistischen Thomas-Fermi-Weizsacker-
Theorie hergeleitet und bewiesen. Das Thomas-Fermi-Funktional ist ein approximatives
Energiefunktional, das von der Teilchendichte p abhiangt. Der Weizsacker-Term ist die
fithrende Korrektur zur Thomas-Fermi-Theorie. In der nichtrelativistischen TFW-Theorie
wurde die Ionisierungsvermutung von Benguria und Lieb bewiesen.

Wir zeigen zunachst, dass auch im relativistischen Fall die Energie nach unten be-
schrankt ist. Mithilfe diese Resultats zeigen wir die Existenz eines Minimierers und damit
die Existenz einer Losung, wenn N hinreichend klein ist. Um eine Schranke an ) zu
gewinnen, verwenden wir dieselbe Idee wie im ersten Teil. Wir integrieren die Euler-
Lagrange-Gleichung gegen das Moment |z| multipliziert mit einer Funktion der Dichte. In
diesem Fall ist die Anzahl der Elektronen N kleiner als C'Z, wo C' ungefahr 2,56 ist.
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Abstract

We investigate how many electrons an atom of atomic number Z can bind. This is a classic
problem of mathematical physics. Experimentally, the excess charge @) := N — Z is at most
one. The aim of this work is to derive an upper bound mathematically for realistic models
of large atoms (Z large). For large Z, relativistic models are essential. We investigate two
models.

The first model was proposed by Brown and Ravenhall. While non-relativistic models
have been studied in detail, it is not even clear in the Brown-Ravenhall model whether
(@ is bounded. To gain such a bound, we follow a strategy by Benguria. We integrate
the Euler-Lagrange equation against the moment |z|, which has been successfully applied
in non-relativistic quantum mechanics. The main difference lies in the Coulomb potential
term. In the Schrodinger theory, |x|é is a constant. But in our case the corresponding

term is A+|x|A+%A+, which is no longer a constant. Where A* denotes the projection
onto the positive spectral subspace of Dy. Our first major result is an upper bound of
this operator. In the massless case, we show that there is both positive lower and upper
bounds. In the massive case, we show the existence of the positive upper bound.

In the second part, we have derived and proved the bounds of () in both the time-
dependent non-relativistic Thomas-Fermi-Weizsédcker theory and the time-dependent rela-
tivistic Thomas-Fermi theory as well as in the relativistic time-independent Thomas-Fermi-
Weizsécker theory. The Thomas-Fermi functional is an approximate energy functional that
depends on particle density. The Weizsacker term is the leading correction to the Thomas-
Fermi theory. In the non-relativistic TFW theory, the ionization conjecture was proved by
Benguria and Lieb.

We first show that in the relativistic case the energy is bounded from below. Using this
result, we show the existence of a minimizer and thus the existence of a solution when N
is sufficiently small. To gain a bound on (), we use the same idea as in the first part. We
integrate the Euler-Lagrange equation against the moment |z| multiplied by a function of
density. In this case, the number of electrons N is smaller than C'Z, where C is about
2.56.
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Chapter 1

Introduction

1.1 The excess charge problem

The question, how many electrons an atom or molecule can bind, has been studied by
many scientists. This is a classic problem of mathematical physics. But the question itself
is still open (Lieb and Seiringer [21), p. 228]).

In this dissertation, we only investigate the system of one atom. The nucleus has charge
Z. N is the number of electrons which the nucleus can bind. Then the excess charge is

Q:=N-2Z. (1.1)

Experimentally, it is at most one. In many-body Schrodinger theory, many authors have
studied this problem. The many-body Hamiltonian for N electrons is
N1 1

+ )
= v 1<i<j<N |v; — 2]

N
HN:ZTi—aZ (1.2)
i=1
The first term sum of 7} is the kinetic energy of the electrons. We neglect the magnetic
field in this dissertation. In the non-relativistic case, it is
1

Tnonrel = §p 5 (13)

where p := |p| and p = 1V is the canonical momentum of the electron. In a simple relativistic
case given by Chandrasekhar, it is

Tre = \/p>+m2-m (1.4)

for some m > 0 which is the mass of an electron. The second term is the electron-nucleus
attractive Coulomb interaction. The electrons are located at z; € R3 for i = 1,..., N. The
nucleus is located at origin. The constant « is the fine-structure constant. The third
term is the electron-electron repulsive interaction. The operator acts on wave functions
e AV L2(R3; C?), where ¢ is the number of spin states per electron. The energy is

En() = (¥, Hyy). (1.5)
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If the infimum of it

Eo(N) :=inf {EN(@/)) : f [(x)Pdx = 1} (1.6)

is also a minimum, then Fj is called the ground state energy. The atom can bind N elec-
trons if Ey(N) < Eo(N-1). By the HVZ theorem (Hunziker [16], Winter [36], Zhislin [3§]),
the essential spectrum of Hy starts at the ground state energy of Hy_1, i.e., inf o.ss(Hy) =
inf Hy_1 = Eo(N - 1). So Eo(N) < Eg(N - 1) is equivalent to Fo(N) < inf oess(Hy). This
means Fy(N) is an eigenvalue.

In the non-relativistic case, the following results are known. Sigal [33, 32] proved the
nonexistence of very negative ions, then showed that negative ions of charge < -18Z7 do
not exist. Ruskai [29, B0] had showed that Q < ¢Z5 for some constant c. Lieb [I9] showed
that @ < Z + 1. Later, Lieb, Sigal, Simon, and Thirring [22] proved that Zh—IEo % =1, ie.,

zh_{rgo % = 0. Fefferman and Seco [13] proved that @ = O(Z%) for o = %. Using the key

estimate of their work, Seco, Solovej, and Sigal [3I] also gave a bound of the ionization
energy. Several years ago, Nam [25] gave a new bound Q < 0.227 + 3Z'/3.

In the relativistic case, the best bound is still @ < Z+1 (Lieb and Seiringer [21], p. 229]).
It is much more difficult than the non-relativistic problem. The bound () < ¢ from numerical
estimates and experiment observations is still not proved.

The works we introduced above are all time-independent. In the time-dependent setting
the definition of the maximal number of electrons is defined by the evolution of the density.
We say the atom can bind at least N electrons, if there exists a measurable and bounded
subset B of R3, such that for all positive times ¢

/d:cpt(a:) > N. (1.7)

The maximal number of electrons which the atom can bind is the supremum over all such
N. Lenzmann and Lewin [18], inspired by the Rage Theorem (see, e.g., Perry [27, Theorem
2.1]), considered the time average of the number of electrons in any finite ball for long times
in the Hartree approximation. They proved

T

1
limsup?/dt[dxpt(x)S4Z (1.8)
0 B

T—o0

for all balls B of finite radius, where p; is the ground state density, i.e., according to the
above definition, N < 4Z. L. Chen and Siedentop [5] proved the same bounds in the
Thomas-Fermi and the Vlasov model.

1.2 Brown-Ravenhall Operators

We focus on the relativistic problems in the dissertation. We estimate the excess charge
in two different models. The first one is the Brown-Ravenhall model.
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The Dirac operator [0, [7] is a relativistic generalization of Schrédinger’s kinetic energy
operator. It is a differential operator that is a formal square root of —A. The Dirac operator
without any magnetic field is given by

Do=a-p+hm, (1.9)

where a = (a!,a?,a3) and [ are 4 x 4 matrices. A particular representation is

. (0 o (Ie 0
O“(ai o)’ 5‘(0 ]1@2)’ (1.10)

where ¢! are Pauli matrices. Different from p = |p|, the Dirac operator is a local operator.
The Hamiltonian for relativistic electrons

N N
HN = DO,i —-a/ Z
1 i=1

1=

1 1
+«

|4 1<i<j<N |2 — 2]

(1.11)

is not bounded from below. So there is not ground state energy. Brown and Ravenhall
[4] showed that, for N > 2, the spectrum of Hy is the whole real line, and there would be
no eigenvalue. They offered a solution of this unphysical behavior using the projection A*
onto the positive spectral subspace of Dy. Then the electron wave function can only live
in this positive energy subspace. The projection is given by

1 a-p+mp
A ==[1+ 22200 1.12
2( r+m2) (1.12)

Since the many-body model is too complicated for our investigation. We use the reduced
Hartree-Fock theory. The energy is

N
S A(OEDY KEN Dy-aZ 4@ [y | x|, (1.13)
i=1 || QRS v~y

N
where 1); € HY/?(R3;C*), 9y, ...,%n orthonormal, and p(z) = ¥ |;(z)[*>. So the ground
i=1

state energy in Brown-Ravenhall model is

EBR(N) := inf {EJZBRW) : / i (z)[2da = 1,1p; € HY?(R3;C*), 4y, ...,4n orthonormal in LQ}.
R3

(1.14)

The ionization conjecture is

Conjecture 1. There exists a constant ¢ > 0 such that for all Z > 0, if EER(N) has a
minimizer, then @ < c.
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Whether @ is bounded in Brown-Ravenhall model is still not clear. The method we want
to use here is proposed by Benguria [I], which is integrating the Euler-Lagrange equation
against ¢;|x|. We will give an upper bound in this direction. We need two important parts
to prove that N < cZ.

Theorem 1. For A, given in ({1.13), we have

1 1 8
2A, < Ayfx|Ay — Ay + Ay —Az|Ay < Ay, m=0 (1.15)
|| || 3
and ] ] 3
Ale|Ar—A, + AL —A|z|A, < =A,, m=#0. (1.16)
|| ] 3
The second part is
Conjecture 2. This a constant ¢, such that
cA, <A+|x|A+[dyMA+ +A+fdyMA+|x|A+. (1.17)
4 Tl A ]

Theorem [1] is the first main result we will show in this dissertation. The corresponding
inequality in Schrédinger theory is trivial. Because there is no projection in between,
A+|x|A+ﬁA+ just becomes |x|ﬁ, which is a constant. The Conjecture is still unsolved.
We are even not very confident that it is correct. If it is proved, then the bound N < ¢Z
should be also correct.

1.3 Thomas-Fermi-Weizsacker theory

Thomas-Fermi theory [35], [14] is the earliest density functional theory. Compared to many-
body Schrodinger theory, it is a semiclassical approximation and is conjectured a lower
bound of the total energy (Lieb and Seiringer |21, p. 127]). But the electron density
behaves incorrect when it is very close and very far from nucleus (Benguria, Brézis, and
Lieb [2]). Weizsiacker added a gradient term as a leading order correction to the kinetic
energy. Benguria and Lieb proved @ < 0.7335 in Thomas-Fermi-Weizsiacker theory [3].
A second order correction to Thomas-Fermi theory is given by Dirac [8]. The energy in
Thomas-Fermi-Dirac-Weizsacker theory is

ETFDW () =—7Tpf,o3(a: Y - f Zp(x) 4,1 p@)py) o dy
2] 2.5, le=yl

+CW/|V\/p(96)|2d:z:—c /p%(af)d:c,
R3 R3

(1.18)

where ypp = (%)%, W and P are positive constants. The ionization conjecture for the
non-relativistic TFW theory was proved by Frank, Nam, and van den Bosch [15].
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In the non-relativistic time-dependent TF theory, L. Chen and Siedentop proved that
an atom of atomic number Z cannot bind more than 47 electrons. We prove the same
result in the non-relativistic time-dependent TFW theory. We also consider the problem
in the relativistic case. But in that case, we drop the Weizsacker term.

The relativistic Thomas-Fermi-Dirac-Weizsécker model was derived by Engel and Drei-
zler [9, [10]. But we only use the Dirac term in some parts. The energy of the relativistic
Thomas-Fermi-Weizsacker model is

5rTFW(p) _
2 [d:c (p(a:)vp (z) +m2(2p*(x) + m?*) - m arsmh( p(o ))—gmp3(x)
+ ?’)‘(VP(QU))ZL (1 + QLarsinh (M)) (1.19)

8aZpi(x) ) x)p3(y))
BETTE 97r2 lz—y| )’

where p = (¢r Fp)% and c¢rp := 372 in this theory. The function p is in the following space
pePi= {plpe L' VH', D[p*] < 00, [V F(p)]z < oo}, (1.20)
where F(p) is given in (3.39)). The first main result is

Theorem 2. For any Z > 0, the energy EFFFW has a global minimizer py € P := {p|p €
é4 ﬂ1H516,ZD[p3] < 00, |[|[VF(p)|l2 < o0}, N := #fp%(m)dx. The excess charge @ satisfies
< IL. .

The second main result is
Theorem 3. For k=2 fized, N <27 + CZ1,

The method to prove Theorem [ follows Benguria’s idea: We integrate the Euler-
Lagrange equation against ¢;|x|. The method to prove Theorem 3| follows Frank, Nam,
and van den Bosch [I5], which they use in the non-relativistic TFDW theory. In the non-
relativistic case, the bound derived by this method is much better than Z + 1, which is
derived by Benguria’s method. But in our relativistic case, there are several disadvantages

which we can not handle them very well, so that the constant C' may be very large, i.e.,
3
Z +CZ1 could be much larger than 1.56Z7.

1.4 Structure of the Dissertation

In Chapter [2| we discuss the excess charge problem in the reduced Hartree-Fock approx-
imation of the Brown-Ravenhall model. We convert the problem to Fourier space, then
decompose the operator using spherical spinors. Then we give a proof of Theorem (1| and
look ahead how to prove Conjecture [I}



6 1. Introduction

In Section [3.1]and [3.2] we present the bounds of the excess charge for the time-dependent
non-relativistic TFW theory and the time-dependent relativistic TF theory. In the rest
of Chapter [3, we deal with the time-independent relativistic TEW theory. First we prove
that the energy can be bounded from below by N and D[p]. Then we show the existence
of a global minimizer. Finally, we show two different bounds of excess charge Q).

In the appendices, we prove the positivity of two functions used in our investigation of
the Brown-Ravenhall theory.



Chapter 2

Inequality in Brown-Ravenhall Model

2.1 Ionization Conjecture

Here we give the idea to prove the bound N < ¢Z. Since EEE(N) has a minimizer, there
are eigenfunctions ¢; € A*L2(R3;C*) and |¢;]2 = 1 such that

At (DO - C(£ + Oéﬂi[ dyLy:)y) 'lpl = )\ﬂpl (21)

| -

The eigenvalues \; are less than m. The main strategy is mentioned before. We multiply
the Euler-Lagrange equation by 1;|x| and integrate. So we have

;(wi,um(z?oaf' [d |”(_y)| )w) | 2.2)

The bound of the first summand is known (Lieb [19]).

R (s, 1A+ (Do = m) ) = R (i 2] (Vp? + m2 = m)s) > 0. (2.3)
The control of the second term is from our Theorem [1l

4

N 4
~Raz Y (w |:17|A+|?1|wi) ~5%aZ Z (13,9:) = -5 ZN. (2.4)
=1

We also need to build a relation between the third term and N2. That is why we want to
solve the Conjecture 2] From Conjecture 2, we have

Q%Z(zﬁz,xm fd p(y) )>%N2. (2.5)
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Combining the three inequalities 1} 1} and 1} we have —%ozZ N+ %N?2<0,ie.,

8
N < §Z. (2.6)
The bound N < ¢Z is implied by (2.6)).

There are two main reasons why we guess Conjecture [2|is correct. The first one is that
it is true if there is no projection. This is used in the non-relativistic Schrodinger theory.
Using triangle inequality % > 1, the constant ¢ in Conjecture |2/ is 1 in this case. The
second reason is Theorem In Theorem |1, we show that the operator A+|x|A+ﬁA+ +
/\Jrlyl‘AJr|av|AJr has both upper and lower bound. ['| It means that the projection A* does not
change the operator a lot in such form. So we hope the Conjecture [2]is also not so different
from the non-relativistic case.

2.2 Problem in Fourier Space

We want to solve the problem in Fourier space, i.e., the p space. Because the projection A*
given in in Fourier space is just a matrix multiplication operator, it is much easier
to deal with than in x space. Then the operator acts on ¢(p) which is ¢ € A*L2(R3;C*).
The inequalities in Theorem |[1] are equivalent to

(6,6) < R(, |x|A+%¢> <2(6,6), m=0 27)
and ' )

Since ¢ is in the positive spectral subspace, it satisfies

A gp(p) = o(p). (2.9)

It can be written as

~ N(p) o - pu(p)

where N(p) = \/2E(p)(E(p) +m), E(p) = \/p* +m?2 (Evans, Perry, and Siedentop [12]).
The function v € L?2(R3;C?) is a Pauli spinor. We will prove later that the operator

A+|3(:|A+ﬁ/\+ commutes with the total angular momentum. So we decompose the operator

() = —— ((E(P) + m)u(lﬂ)) 7 (2.10)

on invariant subspace. For any ¢ € L?(IR3; C*), not necessarily in the positive subspace, it

! Although we only proved this in massless case, we believe that it has the same lower bound in massive
case. But this part is not necessary for the bound N < ¢Z. So we did not spend much time on it.



2.3 Massless Case 9

can be written as

Ji,m,s(p) w
e[S

L gl,ml,)s(p) Ql,m,s(wp)

=Z( fme®) ), () ) (2.11)

9i+2s,m,— (p)
I,m,s B Ql+25,m,—s(wp)

p
=: Z ¢l,m,s(p)
l,m,s
with [ =0,1,2..., m=-l-1%,..,l+3, and s = -3, %, where p = |p| and w, = ]%, Qs are

spherical spinors

l+s+m
V 2+(lis) Yi,m % = 1
l+s—-m
v/ 5t Yimad ( 2
2(1 lm+3
Ql,m,s(w) = - K . (2'12)
l+s—-m+1
2-2l+s)i2yl m——(w) = _1
V5 Yime s (W) 2

The Y}, are normalized spherical harmonics on the unit sphere S? (Messiah [24] p. 494]).

2.3 Massless Case

The methods to prove the inequalities in Theorem (I| in the massless and massive case are
totally different. As we discussed above, we only need the upper bound to prove the bound
N < c¢Z. The proof in massive case also works in massless case. But proving the massless
case, we understand the operator A+|;1U|A+ﬁ/\Jr +A+ﬁA+|as|A+ better. It describes the exact
spectrum of this operator.

In the massless case, the operator is homogeneous in p. This is a huge advantage
comparing to the massive operator. We have Dy =a-p and A, = % (1 + %p). The massless

inequality ((1.15)) in Theorem [ is equivalent to

2, < A |z 22 p|1|A P A, |1|O‘ CPIA, < 30/\ (2.13)
First we prove the following equation
(0 2 L)) =0, () # L), .14

This implies that the subspace is invariant in the decomposition.

Proof of . In the massless case, ¢;,, s in the positive subspace can be written as

1 u) Y [ 22Q.(w)
Brm,s(P) = ﬁ (%u(p)) = ( g(ﬁQHQsm S(wp)). (2.15)
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We start to deal with the operator |:z:|°‘p 1 E and only consider ﬁ at the beginning. We
have

1 2r(1) o 1
@r)22:r(d)d,  -aP g

1 12 fd 221 21 2+1fdulpLu)Pl/(COS(g))MQl,m,s(w(I)
- -Uu q

(Q)les( )

:(27)3/2 23 Pq s(E+1)
VT g " ? (2.16)
°° 2l’ +1 i Ar g(q)
1 2[ +1 At g(q)
=— Q ,mM,S
2Wzof QG E+ D) 80 )
1
:; g,l(p)Ql,m,s(wp)'
Q) is the Legendre function of the second kind. I,; is defined by
Iy1(p) = f QG2+ D)o(0) (2.17)

Some formulas about the spherical harmonics we use in (2.16)) are in Messiah [23] p. 496].
Then we take %p into account. We have

a-p 1 ( g(p)leS(wp) )

|x| g(p€9l+2sm s(wp)

(2.18)
_Oé-p( p gl(p)les(wp) ) 1 ( ]g,l+25(p)Ql,m,s(Wp) )

- P gl+2s(p)Ql+23m s(wp) P _Ig,l(p)QHZs,m,—s(wp)



ohterwise

2.3 Massless Case 11
Then we use the integral formula for (f,pf) (Lieb and Loss [20, p. 184]). So we get
T
g(p)Q; (wp) a-p 1 g(p)leS(wp)
/dp ( ) e |.’L' g(pg
R3 —2 Ql*’+25 m/ —s’ (wp) |JZ| Q +25,m,—s(wp)
P) s+ %
2 3/[dpd (g( )Ql’m’s’( Wp ( )Ql’m’s’(wq))
R3
W( Ly 1425(P) Qs (Wp) = Ly 1425 (q) 2 m, s (wg)) (2.19)
9 \D) ~« g\q) ~x«
[ [dpdq( ( Ql’+25 m/, s( P) - ( )Ql’+2s m/, (wq))
1
W (Ig,l(p)QHQs,m,—s(wp) - ]g,l(Q)QHQs,m,—s (wq))
= Il(‘bl’,m’,s’; ¢l,m,s) + [2(¢l’,m’,s’7 (bl,m,s)-
Then we decompose W,
1
1 & 1 2+1 f Pi(u)
= du P(cos(#
oz G 2 J MA@
1 20+1 P(u) L 4n
d Y;* Y, (2.20)
24]9 242 9 ; ( (p q) )2 m; 20+ 1 l,m(wq) 1m(Wp)
T 1. p q
=) ——=0(=z(=+= Y (W) Yim(wp).
;Iﬂqg 1(2(q p))m; 1 (Wq) Yim (wp)
The function Oy is defined by
1 [ Pu)
0 ::—[d A2 2.21
l(‘r) 271 U(QT—U)Z ( )
Then we use the following properties of Y} ,,,
27 ™
V4 ==
/dcpfdﬁsin@Yl;n(H,cp):{o mom=l=0 (2.22)
0 0
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and Yy = \/%. Then we have

1 1
[l(¢l’,m’,s’a ¢l,m,s) = ﬁ f dpdqﬂ
2 P*q

(g/](Tp)ﬂ*mswp)Zoy( G+ 3 Vi)W () g0 )

0 mi=l/
g)sz;mswzoy( L2 ,Zl,Yl'* o)V ) (@) ne) (229
Oy S D) ZZIYJ 0o () Ly 1220 ()

!

gg‘-’)sz;m(wozoy( ErD) 3 Vi), l+25<p>al,m,s<wp>).

I ll

If we look at the integral over w, and wy, it is obvious that

Li(bvmssbims) =0, (I',m',s") = (l,m,s). (2.24)

Similarly, Io(dp ms s Grms) = 0, when (I';m/, s") # (I,m, s). ]
Formula implies that

(62 ow) - 3 (@b @). 22

So we only need to prove (2.13)) on subspaces, i.e.,

a-p 1
p |zl
As a byproduct of the proof of (2.14)), we have

1 1
Iy =1 (rm,s) Prm,s) = ﬁ/ fdpdqﬁ
T ma pq

(Cbl,m,s, ¢l7m,s) < S):{(qbl,m,sa | | ¢l m s) g(¢l,m,57 ¢l,m,s)~ (226)

9 1p g [ 1 1p k
(700(5(5+5))6/dk:5621+25(§(%+];))9(/<7)

9@, Lp . ayy [l (Loa K
GG [ Ak Qua G Da) (2.27)

_ Mgl(%(g + %)) f dkéans(%(% + S))g(k:)

D

9@ 1p g .1 1,p k
_TOl(ﬁ(g+2—9))b/dk‘}—9Qz+zs(§(E+§))9(k3))-
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Then we use the Mellin transform [23]

(1= = [ o)z,
2
Vg (2.28)
1
9(p) = [ g* (t)— et et
V2r p2
The function ¢g#(t) is in L?(-o00,00). After changing some variables, we have
I - fdk;f/dtdrg#(t)Ql+25( (5 +k))g#(7“) e () fdp e-i(t-r)np
43 R 2k
oo oo 11 P -
[ k[ [ dargF@Quan (GG + D) () e ™ filt, )3 - 1)
" on2 JJ 2k
- [ ARG (O
- (2.29)
The function f; is defined by
fl(t7r) =
r 1 Sitlng L ir) g, L il
0 q q2 q2
(2.30)
Then Fy(r) := £ fy(r,r). The function G,(r) is defined by
1 .
Gi(r) == fdel(z(k “k)) e (2.31)

We known that the real parts of F; and G, are positive, i.e., RF;(r) > 0 and RG,(r) > 0.
The proofs will be given later in this section. We put some parts in the appendices. Similar
to I;, we have an expression for I

L= f dr Fraos (R Gi () g () 2. (2.32)
So we have

r(Fi(r)Gras(r) + Fraas () Gi(r)) g™ (n)*. (2.
(¢zms(P) 2] =+ PP |¢zms(13)) fd (Fi(r) Graas (1) + Fraas (1) Gu(r)) g™ (r)I7. - (2.33)

To prove [2.26] now we only need to prove
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Lemma 1. 2 <R(F(7)Gias(r) + Fiios(r)Gi(r)) < %, relR.
Before the proof of this lemma, we need another relation between F; and Gj.
Lemma 2. Fi(r)Gi(r) =1, reR.

Proof. We consider

/ Do, et 5o, )

|
I'2
i [ [ w0 - et ()
TN 5 (2.34)
1 1
hj_—qu;(]g,l(p)gl,m,s (wp) - ]g,l(Q)Ql,m,s(Wq))
- [ ARG lg* ()P
But we also know
P L g(p
fdpg( les P)' | |g( )QIWS( P)
_ (2.35)
_ 2 g(p) _ 2 _ STVSAND:
= [ dpp”|==| = [ dplg(p)[" = | drlg”(r)">0.
p
R R “o
So we have
[ gt 0P = [ arR)Gi)lg* P, (2.36)
Since ¢g#(r) can be any function in L?(-o00, 00), the lemma is proved. O

By this lemma, we know that Fj(r)Gpes(r)F2s(r)Gi(r) = 1. So Fi(r)Gras(r) +
Fi25(r)G(r) has form z + % To prove 2 < %(x + %), our method is to control the ar-
gument of z — 1. We have following result

Lemma 3. [Arg(Fi(r)Gi(r) - 1)| = lsgu(r) Arg(Fra () G(lr]) - 1)] < 5.

Proof. We know

Gi(r) = [ QUG+ R ™ = —=QF G+ D). (237

\/_
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By Le Yaouanc, Oliver, and Raynal [17], the function G is a quotient of Gamma functions

l+%—ir l+%+ir
() ()
Gi(r) =7

: (2.38)
4 I+3—ir 1+3 +ir
() ()
They also give another expression of G,
1l (n+)T(n+l+1 m+l+1
Gi(ry==3 (s 5)IC ) nror (2.39)

TabD(n+ DT (n+1+2)2n+1+1)2+(r-4)>

T(n+3)0(n+l+1)

Obviously, W(Zn +1+1) is positive. So the argument of G is decided by
1  @nAl+1)2 42—t (2.40)
(2n+l+1)2+(r—%)2_((2n+l+1)2+r2—;11)2+r2' '
Consider the real part, we have
1 1
- =R - >0
a2+ (1) @nrle )2 (- 1) (2:41)
For the imaginary part, we have
J ! = r
Cn+1+1)2+(r-3%)? - (2n+l+1)2+72-1)2 4,2
1 (2.42)
= A _
sen(r) @n+1+1)2+ (] - )2
and )
J — > ().
@Cn+1+1)2+(|r|-2)? (243)
From ([2.41)) and (2.42)), we know
Gl(T) = Gl(—T). (244)
Then, using Lemma [2] we have
() = Fi(r). (2.45)
So we know RG,(r) = RG,(|r]) > 0, IG(|r]) > 0, and TG (r) = sgn(r)IG(|r]).
Compare the real part and the imaginary part
1 1
R 2 g 2 i)2
@Cn+1+1)2+(r|- %) Cn+1+1)2+(r| - %) (2.46)

@nra2n D+ (rl- 3

(2n+1+1)2+712=1)2+7r2
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So we have
%Gl(|7“|) >3Gl(|7”|) > 0. (2.47)
This implies
JG1(|’/‘|) ) T
0 < ArgGG(|r|) = arctan —. 2.48

By the definition of G;(r), we have

-1-1

RG([r]) - IGi(|r]) = f dk f dz : L (cos(rink) - sin(|r|In k),
max (k1) \/1 (k+k z+22k?
(2.49)
We compute the derivative with respect to [,
d ~
3 (RGi(Irl) = 3G (1))
1)27172
f dk / dz - (cos(rln k) —sin(|r|Ink)) (2.50)
“om max (k1) \/1 (k+k z+z2k
=(=1=1)(RGr(|r]) = IGra(|r])) <0.
This means that, RG,(|r]) - IG,(|r]) is a decreasing function. So we have
RG(Ir]) = IGi(Ir) > RGraa(Ir]) = TG (Ir]), (2.51)
ie.,
R(Gi(|r]) = Gra(Ir])) > I(G(|r]) = Gra(Ir]))- (2.52)
Similar to (2.50), we have
—JG1(|7“|)
1-2
f dk f d D77 L (k) (2.53)
“or a1} (L+k)z+22k>
=(=1-1)(3Gra(|r])) <0-
So we have
R(Gi(|r]) = Gua(lr])) > I(Gi(Ir]) = Gra(Ir])) > 0. (2.54)

From this, we know

N & (< () S (DA DR
0 < Arg(Gi(r) - Gra () = arctan  EEER=CaGR) 2 a5



2.3 Massless Case 17
Using Lemma [2] again, we have
Gi(r) ~ Gea(r)) _ Gullr)) - Gia(lr])
F(r)Gi(Ir) -1 = - = 2.56
B Y7 BT () R () 250
and
arg(Fi(Ir)Gu(|r]) - 1) = arg(Gi(Irl) = Giea(Ir])) — arg(Graa(|r]))- (2.57)
From ([2.48) and ([2.55]), we proved that
s T
=7 <Arg(Gullr]) = Gra(lr))) - Arg(Gra(Irl)) < - (2.58)
So we know -
[Arg(Ea (fr)Gu(lr]) = 1) < 7 - (2.59)
For r <0, we know
Fla(r)Gi(r) =1 = Fra(rGu(|r]) - (2.60)
It means that, for any r,
T
[Arg(£ia (r)Gi(r) = 1)] = [sgn(r) Arg(Fin (r)Gi(Ir]) = 1) < - (2.61)
0
Now we can start to prove Lemma [T}
Proof of Lemma[1. We need the value of G;(0) and F;(0). Use (B.2), we have
Bi(u)
Gi(0) = f dk cosh(= I{;)Ql(cosh k) = f du . (2.62)
22 Vi-u
By Erdélyi et al. [I1], we have
. ihlP, u (2.63)
V1-2hu+h? i
Choosing h =1, we have (Whittaker and Watson [37], p. 305])
o
== 2 = 2.64
Gi(0) = 5 f duPH(u) = 3 (2.64)
Using Lemma [2, we directly get
F(0)=G;1(0) =20+ 1. (2.65)
Using Lemma [2] again, we have
Fy(r)Gria(r) = Fiaa(r)Gra(r) = (Fia(r) = Fi(r))Gra(r) (2.66)

= 1= (Fra(r) - Fi(r))Gra(r).
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After some computations, we get

Fra(r) = Fi(r)

1 [dg(, 1,1 ) 1.1 g, L iring (2.67)
S e GO R ) | (e T

Using (A.1]), we get a bound for Fj,1(r) - Fi(r)
|Fraa(r) = Fi(r)]

1 rd 11 1.1 L 1
< [(0GG +a) -0 (G + )| |greira s Speirina
™4 q 2°q 2°q qz
- (2.68)
1 rd 1.1 1.1 L1
=—f—q(Oz(—(—+q})—Oz+1(—(—+q)))(q2+—1)
TS g 2°q 2°q e
=F1(0) - F(0)=2(1+1)+1-(2l+1) = 2.
We also have
r 11 1. p 11 1.
|Gl(r)|:lfdel(§(E+k))k—ée"mk s[dk‘@l(é(g+k))k—;e”’mk
° 0 (2.69)
11 1 1
sofdkc;l<§<z+k>>k—§-al<o>— TEE
So we write
(Flaa(r) = Fi(r)Gra(r) =a+1ib (2.70)
where a,b € R. Then we have
|(Fraa(r) = Fi(r))Gria(r)| = Va2 + b% < (2.71)

20+3°

It is easy to see that Inequalities (2.68)) and (2.69) become equalities if and only if r = 0.
So the Inequality (2.71)) becomes equality if and only if r = 0. Inequality (2.71)) leads to

20+1 21+5
RE()Gra(r) = 1= R(Fu () - RO () = 1-ae| S 222 212)
From this, we get
Fi(r)Gra(r) + Fra (r)Gi(r) = F(r)Gra(r) + (Fi(r)Gra(r)™
1 1-a+1ib
—l-q-ib+—— —1-qg-ibt——— "
b T T e Ty (2.73)

1 , 1
:(l—a)(1+m)+zb(—1+m).
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By (2.72)) and (2.73)), we have

0 < R(E(r)Grar () + Fran(NGi(r)) = (1 - ) (1 ; ;)

(1-a)?+0?
S(l—a)(1+;2):1—a+ L
(1-a) 1-a (2.74)

{2l+1 20+3 2l+5 2l+3} 20+1 21 +3
< max + , + = +

2043 20l+1°2l+3 2l+5 20+3  20+1
<1+3_10
_3 _3.

The equality holds only for b=0, [ =0, a = 2. It means that the equality in (2.71) holds.
So r should be 0. We proved the upper bound in the Lemma.

We write
F(r)Gy(r)-1=c+1id, (2.75)

where ¢,d € R. Using Lemma (3| we know ¢ > |d|. Similar to (2.73]), we have

Fra(r)Gi(r) + Fi(r)Graa(r) = Fra(r)Gi(r) + (Fia (r)Gi(r)) ™

=lreridr (2.76)

1 . !
=(1+c)(1+m)+zd(1—m).

We compute the real part

1
R(F11(r)Gi(r) + Fi(r)Graa(r)) = (1 +¢) (1 + m)

10 (1 g 003 21
+2c+2c2+¢c3
So we have
2 < R(E()Groos(r) + Fr (1)Gi(r)) < - (2.78)
O

Now the massless part of Theorem [I] follows immediately.
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Proof of Theorem[1] (1.15).
a-pl 1l a-
0<(¢lms,(| opl, lap, |)¢lms)

el "l

=29‘{/ dT(Fl(T)GHQS(T) + Fl+23(r)Gl(r))|g#(r)|2
J, (2.79)

20 20
<< [algt)E =3 [ dola)P
3 3
—00 R
10
_? ((bl,m,m ¢l,m,s) .

The last inequality is strict. Because the Inequality (2.74) becomes equality if and only if
r=0. But ¢g#(r) is a L? function. The support can not be only {0}. So we have

A+(| |O‘ pl lawp, y)A+<—0A+ (2.80)
[2] " fo] p 3
Similarly, we have
oA+ <A+(| O‘—pi+io‘—'p|m|)/\+. (2.81)
el J2l p

It means that ] 1 g
2A < AjjxlAy —A, + AL — A |z|AL < AL (2.82)

| | 3
O

Next we prove the two bounds are best possible. For the upper bound, from (2.74) and
(2.79), it is easy to see the upper bound is critical. Now we deal with the lower bound.
For [ = 0, we compute Go(r)

Go(r) = /deO( (e*+e x))cos((r—%)x)

1 X X (2.83)
=5y I (rtanh(rw) *t3 sech(rm) +14 (5 tanh(rm) — rsech(rw))) :
Since [tanh(rm)| <1 and |sech(r7)| < 1, it is easy to prove
lim Go(r) = lim MGo(r) = lim IGo(r) = 0. (2.84)

Using the same idea in (2.53), we can prove that, RG;(|r|) and IG,(|r|) are both decreasing
functions with respect to [. So we know

0< lim RGy(|r]) < lim RGo(|r]) =0. (2.85)
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It is the same for imaginary part. Using ([2.44)), we have

lim Gy(r) = 0. (2.86)

Because of (2.66)) and ([2.68]), we have

lim Fi(r)Ga (r) = 1= lim (Fi () = Fi(r))Gra (r) = 1 (2.87)

From this, we know
i (F(r)Gra () + Fia (NG ()
= lim Fy(r)Gpa(r) + lim (Fi(r)Gra(r))™ (2.88)
:}im F(r)Gq(r) + (llm Fi(r)Gra(r)) =2

So it is easy to see the constant 2 in the lower bound is also critical.

2.4 Massive Case

In the massive case, we prove the inequality in another way. We compute the norm of the
operator and use it to bound the operator.

Proof of Theorem . We want to prove there is a constant c, such that

1 a-p+mp a-p+mp 1
— 7|+ || ——————— < 2.89
d B TG (2:59)
By definition, the norm of operator is
iwm 4 mMi
| E(p) E(p) |
o \1i (2.90)
_sup |0 (LM|JC|+|$|ML) "
i\ el E(p) E(p) x| '
We compute
1l a-p+mp a-p+mp 1 2
BT T
|| (p) (p) |z (2.91)
_ia-p+mﬂ|x|2a-p+m5i+|$|a-p+mﬁia-p+mﬁ|$|+2
| E(p) E(p) x| E(p) |« Ep) '
We want to prove there is a constant ¢/, such that
lap+rmpB, ,a-p+rmfB 1 ,
— T — < C 2.92
W Be) N EG) (282)
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We multiply it by |x| from left and right. Then (2.92)) is equivalent to

a-p+mp

E(p)

afp B ¢ o

E(p)

(2.93)

Then it is equivalent to

a-p+mp

E(p)

For every ¢ € L2(R3;C*), we have

a-p+mp

(_AP) E(p)

<d(-A). (2.94)

lz fl,ml,)s(p)Ql’m’S(wp)
Yp) ="

m,s(P)
Z Lo Ql,m,s(w )
lm,s P i (295)

flms(p)
S s (wp)
= Z (gl+25,m,i(p)Q = Z wl,m,s(p)

l,m,s P l+23,m,—s(wp) l,m,s

with [=0,1,2..., m=-[- %, e L+ %, and s = —2, 2 In this proof, ¥ is not necessarily in the
positive spectral subspace. It is not so hard to prove

a-p+mp a-p+mp

(¢l,m,s(p)v E(]J) (_Ap) E(p) ¢l’m s’ (p))
=(¢z,m,s(P), (_Ap)wl’,m’,s’(p)) = 07 (l7m7 S) + (lla m,7 3,)'

(2.96)

So to prove (2.94)), we only need to prove, for all (I,m,s),

(wl,m,s(m,%;;w(—ma o8 Tﬁwlms@)) < ¢ (s (P). (A (p)). (297)
We compute
a-p+mp
E(p) wlms( )

:a-p+mﬁ f(P)les(wp> 1 (mM_g(p))les(wp) (2.98)
E(p) gﬁf”%zs,m,_s(wp) " E(p) (f(p)+mg(p))Ql+2sm ]

We ignore the lower subscripts of f and g, because they do not play roles here. By Messiah
[23, p. 496], we have

_Ap - ___2p + — (299)



2.4 Massive Case 23

where L := %(p x Vp) is the angular momentum operator in p space. Using (2.99)), we
compute

-, ()
:( ;(f; ( E(p)(mf(p) —g(p)))Ql,m,s(wp) ) ( l(;;l) E(lp)(mf(p) — 9(0)) s (wy)
11);;2 (pE(p)( (p)+mg(p)))Ql+28’m’_s(wp) (l+23);l+2s+1) E(lp)(f(p) +m9(p))Ql+28m ~o(wp)
(2.100)
Then we compute
S oo S5 (- Ap>“'g@¢%,m,s<p>
fdp(\f () +1g'(P)I* + E( )Q‘ﬁ( 9()f'(p) + F(0)d'(p)) (2.101)
m? l(l+1) 2, o 2521+ 25+ 1) [pf(p) + mg(p) |
(g ) Qs+t » 2O 2H0) o) )
It is easy to prove
f Aptorm,s(P)" (= 2p)¥1m,s (P)
(2.102)

[ (1@l @ s e+ C202 ),

RS

Suppose s = %, then we have

f dptim,s(p)” (Oé P+ mp (_AP)M + Ap) Vm,s ()
R3

E(p) E(p)

- [ - 2 S @) + T )

o i WP P §7)2%<mg(p>>)
2 - 5m?2p? + 6m* ., ,
R[dp(P_'f(p)' (p 2+2m2)E(p)4 lo(p)I+ +2 2Ig (p)] )

w1 [ (G o)

<8 [ AP, () (~ 20 1.5 ().
o (2.103)

)
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The last inequality is from Hardy’s inequality [21]. For s = -1, weset [ =1'+1, f(p) = G(p),

and g(p) = —F(p), similar to (2.103), we have

f dpty s (0)* (a ‘;(;TB(—A;:)O( g(—;;nﬁ + Ap)wl,m,s(p)

- [ (A TGIC @) -G 0) + o (GG + )

2(1+ 1) plG(p)]2 - plF (p)]? - 2m?ﬁ@F(p)) (2.104)
p E(p)

I+ 1)([’ +2)

s [ ap(IF W+ 10 G + G+ N rer)

=8 [ dpttmo(B)" (=) tms(P):
R3

So we proved

lap+rmB, ,a-p+rmp 1

— x — <9, 2.105

W EG) B ] (2109
From this, we know

a-p+mfB 1 a-p+mp

T — x| <9. 2.106

ey W Em (2100
It implies

ia-p+mﬁ|x|2a-p+m5i

x| FE E x

x| E(p) (p) || (2.107)

1
> —.
9

(papemB 1 apemp \7
{C o ont)

Using the spectral theorem (Reed and Simon [28|, p. 263]), we have

1 a-p+mp a-p+m51)2
— x| + || —————
(B B
:ia~p+mﬁ| |2a-p+mﬁi (ia-p+mﬁ| |2a-p+mﬂi)_1+2 (2.108)
| E(p) Ep) lel \ll E(p) E(p) x|
<sup A+ A ) +2=— 100
—</\<9 9
By 7We have
Laprmfb ap+rmfl 10
ol B |z| + || E(p) Ial < 3" (2.109)
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2.5 Another Attempt

Since the main difficulty is from the term f dy we try to multiply the Euler equation

lz— yl’

by ([Rf dy |‘; (yy)) 1; to make this term simpler. Equality 1) changes to

-1

N
> | v fdy us) Ay Do—oz|z—|+a[dy PLy) = Ai | Asihi | =0. (2.110)
R3 R3

'l

We start from an easier case, that we ignore the projection A,. We need to prove

-1

JZV: Vi, f o) —wz =[d:z: (x)p(y) <C. (2.111)

i=1 Rs |J} y| |!L‘| |x|fdy|x yl

But we find a counterexample showing that the integral is not bounded: We assume
that p is spherical symmetric. Using Newton’s theorem [26], we have

dp P& )p(y) _ f e p(x)p(y)
2 |:1:|f dygsy Rf3 e (ER

o o (2.112)
2
B O G R R R
0 rof dsstfﬁis} 0 OdeSQp(y) +T_[ dssp(y)
We define p as following
1 r<i
") = 2.113
pu(T) 1 v 1 ( )
b
where b > 3. We compute
: rpy(r)
dr T (o)
0o [dss?p(y) +7 [ dsspy(y)
0 r
1 . - (2.114)
= [ dr - — =3 —ln2+ln3—lnT)

'
0 Ofd382+rrfdss+rlfdsss—,,

and
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[ee]

dr . TQPb(TZO
1 [dss?pp(y) +7 [ dsspy(y)
0 r
= [ dr— — — = (b-2)(Inb-1n(b—-3) +In(b-2) - In(b+1)).
1 [dss?+ [dss?5 +7 [ dss
0 1 r
(2.115)
So we have

1
fdx% - 3(—1n2+1n3—1nb%)
g S dyEsy (2.116)

+(0-2)(Inb-In(b-3)+In(b-2) —=In(b+1)).
It is easy to see that
. po(z)
lim fd:v— = oo0.
3t 2.11
R =1

Since it is unbounded without the projection A,, it is not so hopeful that it is bounded
with the projection.



Chapter 3

Thomas-Fermi-Weizsacker theory

3.1 Bound on Excess Charge in the non-relativistic
time-dependent Thomas-Fermi-Weizsacker theo-

ry

Lenzmann and Lewin [I8] studied the long-time behavior of the repulsive nonlinear Hartree
equation. Following their work, L. Chen and Siedentop [5] studied the time-dependent
Thomas-Fermi equation and the Vlasov equation. Our work is related to L. Chen and
Siedentop’s work on TF equation. They deal with the time-dependent TF equation

1 Yyrr 2 Z -
at@t=§(V90t)2 5 P —H+Pt*|'\ g (3.1)
The function ¢ is the potential of the velocity field, p is the density of electrons. They
satisfy continuity equation
e =V (peVipr). (3.2)

L. Chen and Siedentop showed that the number of electrons in a bounded measurable set,
in temporal average for large time, does not exceed 47.

We add a Weizsidcker term to the Thomas-Fermi equation and want to get the same
result. To get the Weizsécker term, we solve the variational problem

2
( 1+€n)
p

p+EeNn / dx |V
e=0 (3.3)
f dx( A\/_) f dx(
So the time-dependent Thomas-Fermi-Weizsédcker equation is
2 VA A\/ﬁ
Orpr = (W)2 + s 2 e | [ - VY 3.4
t¥'t t 2 t | | t \/ﬁ ( )

Our corresponding result is
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Theorem 4. Assume that v, and p; is a weak solution of and with finite energy,
assume B c R3 bounded and measurable, and set

Nrpw (t, B) :=fdmpt(x). (3.5)
B
Then
L
lim sup dt Nppw (t, B) <4Z. (3.6)
T—oo
0

The idea of the proof is the same as in the TF case. We only need to deal with the
Weizsacker term related part. The proof for the other part is the same as before.

Proof. We multiply (3.4) by the operator
Wgr=Vgr-V, (3.7)

multiply by p, integrate in the space variable, and average in time, where gg(x) := R3g(|z|/R)
with g(r) := r —arctan(r). We define ¢ := \/p and ¢ := \/Agg, then compute

fdxpVgR V(—T\/_
=fd$V(¢2VgR)7 (3.8)
-2 [ an(wion) - 2O )

Using the definition of g, we know

R\/2|z|(2R? + |z )

o) =/ Ban(a) = VE B ] ) - 2 3:9)
So we have
—1A(¢?) + |Vl _ |z|® + 6 R?|x|6 + 25 R4|x|* + 24 RS|x|? — 4R8 (3.10)
¢? AR + |2?)*[aP (2R + |2[?)?
We compare this to ﬁ. The difference is
1 A(¢?) + |Vl R 12R*(|zf? + 3R?)? - 11R8 (3.11)
¢? Alz* 4(R? + |2?)?[eP(2R2 + [2[*)*
Using Hardy’s inequality [21], we have
/ dxpVgr - V(- \/\[)
(3.12)

12RY(|z|* + 3R?)? - 11R8
_2/d[L’ (_4(R2+|x|2)2|;|2(2R2 |23|2)2 (le/)) )
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We can prove
12RA(|z|? + %}%2)2 11R8

2 2\2|+2(2R2 + |2I2 5(0)°
A(R? +[a)? |z (2R + [x]?)
1 (3.13)
CRY12(J2? + 5R?)? - 11RY) 1 < 1
AR+ PR RR 1 o) (/R © (/R
where C » 0.3338% and the notation (z) := /1 +|z[%. So we have
/ dxpVgrg - (—7\/_
(3.14)
P
<0 [d 90 [ do s = 20mM
n ) apmp =2 ) gy~
where Mg(p) = [ dx 5. Adding this term to L. Chen and Siedentop’s result, we have
1
0< Z{Mg(pt))oo + 26" Cr(Mr(pt))eo - Z(MR(pt»Zo (3.15)

where (f(p))e = limsup 7 [OT dtf(p) is set by L. Chen and Siedentop. Since limg_, o Cg =
T—o0
0, we prove

1 rT
lim sup — dt f dzp(x) <4Z. (3.16)
T Jo B

T—o0

]

3.2 Bound on Excess Charge in the relativistic time-
dependent Thomas-Fermi theory

In this section, we replace the non-relativistic TF term in (3.4)) by the relativistic TF term,
and still want to have the same result as L. Chen and Siedentop [5]. Comparing to Theorem
[ we drop the Weizsdcker term. We know

7(‘%6) = qﬂ{H(m,§)<0} = q]l{T(f)—cp(a:)<O} = q1{§< 22 (z)+2mep(z)} (317)

where T'(§) := \/£2 + m? —m is the kinetic energy and ¢ = 2 for electrons. The density is

o) = [ a1 = s [ a0

4 VP @ 2me(@) s ) (3.18)
(233 / dE€” = 75 (¢ (2) + 2mep(2)) .

Solve the equation of ¢, since we need ¢ positive, we have

—2m +\/4m? + Ayppps
m m 7TFP3:\/7TFp§7+m2—m. (3.19)

90: 2
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We use local Fermi momentum [10]

1
p=rhest 320

So the massive TF term is

[ ar@ore

47Tq V2 (z)+2mep(x) 47rq P
- AET(E) = s [T aeeT ()
(27)3 Jo (2m)3 Jo (3.21)
/2 + m2
S p/p? +m2(2p? + m?) - m*In Prvy T —§mp3
1672 m 3
= f(p)-
This can also be found in Engel and Dreizler [9]. We solve the variational problem
d % 1
! (et

%%F Yrrps - my/ Yrpps +m? +m? (3.22)
=3 - n=:9(p)n-
\V yrrpd +m?

2
So the term 1Ep;} in |D is replaced by ¢(p;) here. In L. Chen and Siedentop’s proof,
there is a term

2
Ry := <[ dzp Vg - V%pﬁ) <0. (3.23)
Now Rj is
Ry := (/ dxpVgR-Vg(p)) : (3.24)
We need to find a function h(p), such that
Vh(p) = pVg(p)- (3.25)
It means
W (p)Vp=pg' (p)Vp. (3.26)

We also need lim, ., h(p)(x) = 0. This means h(0) should be 0. So we choose

h(t) :/:h'(s)ds: '[Otsg'(s)ds

t 3
/Y
2[ 5 Tr ds
0 2 9 5 1
9 YTFS3 + M*YppS3

m2~y2.ts /
’YTFt% + m2 — —/y;ﬂF ’YTFt% + m2
1y / 2
ma V%th + fYTth +m?2
+ ?hl > O,
m

|=

(3.27)

Wl

3
Y7t
12
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which satisfies (3.25)). Then we have
Ry = <f dxpVgRVg(p)) = (f dzVh(p) - Vgr
= —<f dxh(p)AgR> <0.

The non-positivity of R is kept. So the result is the same as before.

(3.28)

3.3 Bounded from below by N

From now we focus on the time-independent relativistic TFW model. We want to prove
the energy 77V (p) given in (1.19) is bounded from below by N in this section.

Theorem 5. For pe L3N P and aZ < 27’\ , there is a constant c, such that

EFEW (p) > eN. (3.29)

The idea to prove this theorem is using the positive terms, and the kinetic energy, i.e.,
TF and Weizsacker term, to control the negative Coulomb term.

Proof. For the TF term, from (3.21]), we have

. 2‘/dac(p\/p +m2(2p* +m?) -m ln(p-‘-— w)—gmpg’)

m

<oy [ [ acer© (28733 [ e [Tagee-m) (3:30)
(28:)3 fd (Zp m;p) e 2fda:p —mN.

For the Weizsécker term, there exists a function F(p), such that

dafvp(a)P—=2E__ (1+2Larsinh p(x) )
J ok s\ (%) .
= [ dalvF ()P > 4/d IF(Z‘?(;)N |

We will give the expression of F' later. For the Coulomb term we use the Schwarz inequality

P 1 POE)E ()
JEE ( [t [ |F<p<x>>|2) (3:32)

The first term can be bounded by the Weizsécker term. Then we want to bound the second
term as following
NG

[F(p(x))P ~

< Cip'(z) + Cop’(a), (3.33)
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where C7,C5 > 0. To prove the existence of C7,Cy. We want to find a lower estimate of
F(p). We have

p(x) (1 N 2& arsinh (p(;p) )) S mp(x) + 2p?(x) arsinh (’%) (3.34)

@ rm\ R m ()«

It is not hard to prove

mp + 2p? arsinh ( £
D pz _ (m) > 2’ p < 4m. (3.35)
p2+m m
Since
d p : (p)
1+2—arsmh —
dp\/p +m2( \V/p? +m? m (3.36)
m?(\/p? +m? + 2parsinh (£ )) 0
N (p2+m2)2 > U
We have
mp + 2p? arsinh ( £
pr2tusih(E) Ly, (3.37)
p2+m

Then we have
b b . b
— |1+ 2——— arsmh(—)
\/p2+m2( \V/P? +m? m )

2 (3.38)
z{m p<d ({\/m p<4m) = P2(p).

4 p>4dm

From this we know

p t t t
F(p) = / di\| —— 1+2—arsinh(—))
(®) 0 \l V2 +m? ( V2 +m? m
o ;p [P p<dm (3.39)
> [Tarfy={3Vm = F(p).
2p — gm p>4m

It is not hard to prove that

F) )
PP~ [F(p)P

<pH ) + T ). (3.40)

So we have

fdxpg(x) Qfd [F () S—Z[dxp4(x)+27g§m]\f. (3.41)

] W
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If we want to use the TF and Weizsécker term to bound this Coulomb term, we should
have

> %, 3 > 4QZ€. (3.42)
3e 4 3
So when aZ < /22, the energy £5"Y can be bounded by N from below. O

Now we also take the Dirac term into account. It is
EP(p) = fdx (—2p (z) +3(p(m)\/m m arsmh( Pl )))2) (3.43)
We consider
pt = (-2p* +3 (p p? +m?2 —m?arsinh (%))2)
m? (p2 - ZpWarsinh (TZ;) +m? arsinh? ( )) : fa(p).

We can see fy(0) = 0. It is not hard to prove that lim fdp—(;;m = (. So there exists a constant
p—>00
C >0, such that

(3.44)

2
—2p4+3(p p2+m2—m2arsinh(£)) )>pt-Cp?, (3.45)
m

numerically, this C is about 2.56. So we know that when aZ < /222, &7TFDW .= grTFW gD
is bounded by N from below.

3.4 Bounded from below by D|p]

In this section, we want to bound EFW by D[p] instead of N.

Theorem 6. Forpe P and aZ < V435 , there is a constant c, such that

£V () > eDlp]. (3.46)
Proof. We use the decomposition of Coulomb potential (Simon [34], p. 51])
1
=Vi+ V4, (3.47)
J2]

where V5 = R3 L, * 1] : |, R > 0. Since 1p,() is spherical symmetric, we can use Newton'’s
theorem [26]. We have

BE / b o3 / 1 1
"4’ Jyer Ve =y T 47 R Jyer Y max(fa], [y])

3 =
ar o T (348)
= 1 .
lz| > R

]
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We compute

87T2/d ( 8azp3(x fd 3(|Z)p:;?y))

1 das
:871'2 ( D(p ﬂBR(O))_'-_D(p 7p3))
«Q 97TZ
> (-T2 D (Lo, L) + D)) (3.49)

« 1 Iz 2 (97
_W((l)(l)g7l)3)2 4R3 D(II‘BR(O)7]‘BR(O)) ) (4R3) D(ﬂBR(0)7]‘BR(O)))

972 3aZ2
—— D1, 0), 1BR(0)) =

= 16m2RS 5R
By (3.48)), we know
1 3 |z?
——-—+— |z|<R
Vi={l|z|] 2R 2R® ) (3.50)
0 lz| > R

Obviously, V; < ﬁ Now we want to control the V; part. We define a set
A:={xlp(x) <4m}. (3.51)

By (3.39), we have

p(x) < ZF(p), x € A°. (3.52)

Then we compute

A A 3
MY R C I g TS
82 372 Jizl<r ||
aZf p*(x) aZ/‘ 3(:6)
-z dx el
372 Jiz|<R, zeA || 312 Jiz/<R, :z:eAC |x|

aZ (4m)3  aZ 2(x) (3.53)
d _ oz f d f dap’
371'2 .L|<R, zeA . |$| 672 (8 |z|<R, zeA° . |£L’|2 |z|<R, zeA° P (:E)

2
128m3R20Z  oZ 3p 1
3 672 |z|<R, zeAc |z|? € J|z|<R, zeAc

We want to use the TF term to bound this p* term. We compute the derivative of the
quotient of them:

d pV/p? +m?(2p* + m?) - m* arsinh (£) - §mp?
dp p?
4m (2p3 +3m? arsinh (%) - 3mp\/p? + m2)

3p°

(3.54)
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Then we compute the derivative of this numerator:

; (2p +3m3 arsmh( )—3mp\/p2+m2)
D m

R F ) 359
/pz T m2 -

So for p >0,
d p\/p? + m2(2p? + m?) - m* arsinh (%) - Smp?
dp p*
So this function is increasing for p > 0. The value at p > 4m is greater than the value at
p=4m. So we have

> 0. (3.56)

/P2 + m2(2p? + m?) — m4 arsinh (Z)-Emp?
P (3.57)
33

>21 17 - %arsmh(él) - —=1cp~ 1.45.

We want to use the TF and Weizsacker term to bound the negative term in (3.53]). So the
coefficient should satisfy

c_R> o/ 3A S 3ale
8n2 ~ 6m2e’ 3272 T 3272

So when aZ < ¥ the energy 57V has a lower bound. O

(3.58)

3 p2 _ 1/3 Z5/3
We can get a rough lower bound which is —~aZ min (24 + 128m*2%) _ =6(60) “maZ77 "y,
5R 3 51/

improve the bound of aZ, we replace the set A by
B, = {z|p(x) <mr}. (3.59)

Use L’Hopital’s rule, we have

lim £p) = lim F'(p)

po>oo P p—>o0
(3.60)
. p p : p
=lim | | —— 1+2—arsmh(—) = 00.
p*°°\l VP2 +m? ( p? +m? m )
Similarly, hm = (0. We compute
F F'(p)- F
dFp) _pF'()-F) |, (3.61)

dp »p p?
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The last inequality is from (3.120). Then we compare the TF term and p°.

d py/p? +m2(2p? + m?) — mA arsinh (2)-Emp?

dp p°
16mp? + 15m? arsinh (%) = 3p(5m? + 2p?)\/p? + m?
= e _

We compute the derivative of this numerator:

d
W (16mp3 + 15m™ arsinh (ﬁ) = 3p(5bm? + 2p*)\/p? + m2)
p m

_ 24p%(\/p? + m? —m)? <0
/p2+m2 -

So for p >0,

d py/p? +m2(2p? + m?) — mA arsinh (2)-Emp?

dp s <0.

By (3.56)), (3.61), and (3.64), for p > rm,

p\/ P2+ m2(2p® + m?) - mtarsinh (£ ) - Emp?
]

rVr?+1(2r2 + 1) - arsinh () - 573
2 " = qrr(r),

F(p) | F(rm)
p rm

= qp(r).

For p < rm,

p\/p? +m2(2p? +m?) = mtarsinh (£) - Smp?
5
p

o /r2 + 1(2r2 + 1) —arsinh (r) - %7“3 _ qrr(r)

7o T

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

It is easy to prove that % does not depend on m. (Note that F' has also an explicit
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dependence on m.) Using the Schwarz inequality, we rewrite (3.53|) as following

3
1 fdx8aZ§ (:10)‘/1

82

aZ (3qrr(r) 5, 4ar / p
> —— | == 7 d + dex—
67‘(‘2( daZr J|z|<R, zeB, P 3qrr(r) Jiel<R, zeB, x|$|2
aZ € F 2
) _2( I P ET)
672 \ ¢%(r) Jizl<R, zeBe ||

! dz(p\/p? + m2(2p? + m?) — m* arsinh (ﬁ) - §mp3)) (3.67)
m

eqTF(r) |z|<R, zeBg¢ 3
. qrr(r) duw’ — 8mr?R(aZ)?
~ 87%r Jjzl<R, zeB., Imqrr(r)
2
aZ( e @)
672 \ ¢%(r) Jlel<R, zeBg ||?

1
dz(p\/p? + m2(2p? + m?) — m* arsinh (2) - gmpg)) .
m

+
6(]TF(’I") |z|<R, zeBg
So (3.58)) is changed to

1 S oZ 3\ S aZe
872~ 6m2qrp(r)e’ 3212 T 6m%qn(r)

(3.68)

T 2 T .
So we have aZ </ Z24rrM1p() -y g easy to see that ¢gr#(0)g%(0) = 0. We can also prove

that lim grp(r)gs(r) = co and grp(r)gs(r) is increasing. So there always is a r satisfied
7 —>00

2
aZ =) e (gi )7:("2) Tt means that there is no constraint on a.Z any more. The energy

always has a lower bound. So

SITFW o 3aZ? 8mryR(aZ)?
Z f

. 3.69
5R 97TqTF(Tz) ( )
Optimizing this in R, we get
13
AL — (304Z2 . 8mr%R(aZ)2) __8rgmzazZ? . (3.70)
R>0 S5R 97TQTF(TZ) \/407TqTF(Tz)

Now we change our setting of c. It is not a constant any more. We set o = % and fix k = £

c”
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Then our functional becomes
gTFW (p) =

@ [ dr (p(x)\/W(QPQ(x) +m?c?) —m*c*arsinh (%) B gmcpg(w)
) BWP(I)PJ% (1 e “h(%r)))
_82p°(x) | f P}(2)p*(y) )

907r2

3C|93| |z =]

8 82 fdx(P(x)W(Qp (z) +1) arsinh(p(x))_gﬁ?,(x)

(3.71)

V() +1 P(x) +1

8kp*() 4 P*(2)p*(y) STEW
_ dui2P \I)
3|x| " 9en? |z -y = Ene (P);

- 3V P ) (1+2 2 arsmh(za(x»)

where p(z) = Zp(£), and we scale z to £. Similar as ([3.49),

O RE PR YA 0] T

Similar as (3.67)),
2 3
_mc [dx&{pS(x)v1

872
mctqrr(r) 5 8mc’r?Rk?
N 8m2r |e|<R, weB, Imqrr(r)
e (< GO (8.73)
 6m? (W le|<R, xeBc |z|?

1

€qTF(T) |z|<R, xzeBg

dz(p\/p? + 1(2p* + 1) — arsinh (p) - 2])3))

where B, := {z|p(x) < r}. The same as before, there is a r, satisfied x = \/—27’\qTF(gZ)qF(T“)
So we have

3,2 2,2 13,2 5.2 75
ETIW 5 _ min(Smc K 8mcri Rk ) ___8remezk®  8rymZz RN
£>0 SR I7qre(ry) /30mqre(ry) \/30mkqrr(ry)

3.5 Existence of the minimizer

Since ELTFW has a lower bounded, there is a finite infimum of it. We claim that the infimum
is also the minimum and there is a global minimizer.
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Theorem 7. For p e P, there is a pgy, such that

39
EFTEW (po) = inf EF W (p). (3.75)
Proof. 7™ has a lower bounded, so there is a minimizing sequence p;, such that
Tim &7 (py) = inf £ (p)

(3.76)
To prove the existence of the minimizer, we need to prove the lower semicontinuity of each
term of £7FW . First we consider the TF term. We define

8
frr(n )—gmﬁa n=0.

| Wl

So we have

%\/ R m2(2n3 +m?) -m arsmh(

(3.77)
, 1
fre(m) = fre(e) + frp(n2) (n = 12) + 5 75 (0s) (= 02)?, (3.78)
where 7; is between 1; and 7,. We compute the derivatives of frp, and have
P P e m
fre(n) = 5( 77g +m?—m),
8 (3.79)
(1) = —F 2 0.
9/ n3 +m?2n3
So we have

fre(m) > frr(n2) + fre(n2) (m —n2)

We take a weak convergent subsequence of p? in L5. The weak limit is Py We still call
this sequence p?. So we have

(3.80)
[ datre@i@) > [ do(re@he@) + fre@he@) :(2) = phe(@)))

(3.81)
Since pi.. € Ls and fr..(p?) = %(\/pQ +m2

< 2p, we have ff..(p}p) € L*. So we have
lim [ dofrr(p}(a))

>tim [ de(fre(phe(2)) + fre(phe (@) 3)(@) = P (2))) (3.82)
= [ dafre(hi(@).

Now we consider the Weizsécker term. We know |VF(p;)|2 is bounded. Since F(0) =0

it is easy to prove that F'(p;) vanish at infinity. So we know F'(p,;) € D*. D! consists of
functions that vanishes at infinity with gradient in L?

. Since |VF(p;)|2 is uniformly
bounded, we have a subsequence still called VF(p;), which converges weakly in L? to
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Vv, v e D' and v > 0 (Lieb and Loss [20, Theorem 8.6]). From (3.39)), we know F(p) is
increasing in p and lim,_ F'(p) = oo, so F'~! exists. We define py := F~1(v). So VF(p;)
converges weakly to VF (pw ). So we have

f de|VF(pw)? = lim f deVF(p;) - VF(pw)
<[ VE(pw) [lm| VF(p;) |2

(3.83)

It implies
Lm [V E(p;)l2 2 [VE(pw)]2. (3.84)

Then we consider the Coulomb term. From (3.38), we know |V F(p;)|s is also uniformly
bounded. Similar as above, we have a subsequence still called VF (pj) and a po. The
sequence converges weakly in L2 to VF(pc). By Lieb and Loss [20, Theorem 8.6], we have,
for any set A of finite measure,

XAF(pj) - XAF(pC) strongly in LP (3.85)

for every 1 <p < 6. We define g; := F(pj), qgc = F(pc). From the definition of F', we have

3 \3 16
() ol

W=

m

() = 2 3 3.86
Dj () 1 4 16 ( )
PR A

3_.3
pP;—Pc

We compute s

I gy, go < 13—6m, we have

3_.3 3.2 3 )2

p;—Pp m\34q;) —m\3qc 9

J ¢ _ (2 J) (2 ) _ _m(qj +C]C)- (3.87)
95 — 4o 4 —qc 4

If g5, gc > 1—36m, we have

pi-vt (3o +3m) - (3o + im)”

4; — qc 4; — qc
1(/1 4 \? 1 4 \? 1 4 1 4
=5 (ﬁqj+§m) +(§qc+3m) +(2q] Sm) (5q0+§m)) )
(L ) (e 1))
4\\2% 3 2 3
() o) )2t e
“2\\2¥ 3 2 3 R
Otherwise, we suppose ¢; > %6m, gc < %m. Since (F-1)3 is convex. We have
pi-pt v (F(¥m))
G-de G- Fm (3.89)

1 2\ 1
<3 (qf. + (—6m) )+ —6m2 < gqj? +16m? < g(q]hqg) +16m2.
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For 1 < v < 2, using the convexity of 27, it is easy to prove (a+b+c)? < ¢, (a¥+b7+¢), ¢, > 0.
So we have

[ dalpi(@) - pi @l

<, drlay () ~ac@)l [gm(a,() +acte)) + § (a3() + () = 3
3. 9
+_(qJ'
_(64m2) wadxlqg(:c) C_Ic(x)|”+( ) Cy/dzth](l“) qgo(2)[|g;(x) + ge(z)

+(_) Cv[d517|q3'($)—QC($)|7|q]2(x)+qé(x)|T
_(64m2) Cw/dﬂqj(x) o (@)

+(_m) Cv(fdﬂ%(x)_qc(xﬂw); (/dg%'(ﬂ?)+qc(95)\27 :

(2 e ([ et -aco) ([t - ors)
(3.90)

Since xaq; converges strongly to xaqc in LP for every 1 < p < 6. It converges strongly in
L7, L*, and L3. The norms ||xaq;|2y, ||xag;ll3y are uniformly bounded. So we have

win

lim[é}dﬂp?(x) -p& ()] = 0. (3.91)

By Lieb and Loss [20, Theorem 11.4], we have

limfdxp?(x) =/dxp%(x). (3.92)

| ]

For the D[p] term, it is easy to prove that D(p,¢) is a scaler product. So the space
Hp :={p|D[p] < oo} is a Hilbert space, and is reflexive. Since D[p?] is bounded. There is
a subsequence still called {p?} which converges weakly in Hp to pj,. So we know

D(ply, ) = lim D(pd, ph) < \/D(wh, p Nimy/ D(p?, p3). (3.93)

It means

imD(p;,p}) > D(ph, pp)- (3.94)
Now we need to prove the limits in different senses are the same. We prove py = pe first.
By Lieb and Loss [20, Theorem 8.7], there is a subsequence of {F'(p;)} still called {F(p;)},
that converges to F'(pw) almost everywhere. By the continuity of F'~1, we know that p;
converges to py almost everywhere. Using the proof of Lieb and Loss [20, Theorem 8.7],
p;j converges to pc almost everywhere. It means py = pc almost everywhere.
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We know that {p?} converges weakly in Hp to p},. For any ¢ € Cf°, ¢ := =26 is also in

C§°. So we have
o [[ 2O 7 P00 595
|z -yl |z -yl
It means

limfda:p?(x)gb(w)=/dxp3D(x)¢>(x). (3.96)

From (3.91)), p? converges to pf, strongly in L7 on A. Tt implies weak convergence. We
choose A = supp($). So we have

lim [ dap?(2) () = f daph ()b (). (3.97)

. "
Since p? converges to p}, weakly in Ls. we have

tim [ dapd(2)6(x) = [ dapde(@)o(). (3.98)
By and - p converges to p%,, p?,, and pTF in the sense of distribution.

Smce functlons are uniquely determlned by distributions, p?, = p?, = p3. almost everywhere.
So pp = pc = prr almost everywhere. We proved py = po before. So we have pp = po =
prr = pw. So it is the minimizer of EETF w -

Now we want to prove inf{E"W (p): p >0, [p3(z)dr = crpN} = inf{EF W (p):p>
0, [p*(x)dz < crpN}. The corresponding equation for the non-relativistic TFW theory
is proved by Benguria, Brézis, and Lieb [2]. We follow their proof and deal with the
different terms. Let p > 0 be such that [ p3(z)dz < ¢ypN. We only need to prove: There
is a sequence p, > 0 such that [ p3(xz)dz = cppN and liminf ELFW (p,) < EFFFW(p). We
choose

pu() = (pS(a;) . %Cﬁ(m))é (3.99)

where (,(z) = (o(£) (¢ € Cf° is any function ¢y # 0) and k = CTFINCQI(#, so that

[ p2(z)dz = crrN. Comparing to the non-relativistic case, the differences are the TF and
Weizsacker term. Using the Convexity of frr, we have

5 )= s | dxfTF (i)
TF 3 2
sf:z )+ s [ Al ()G )
Using (3.79) and by Hoélder’s inequality

87:;713 [ Ao frre(Pa(2))Galw) = 37:;713 / da(Vp;(x) +m? - m)(; ()

< [ Ao < o ([ dxpi(so)‘”l’ (f olaccf’;@c))g (3.101)

_k(errN)s (/ dxgg’(x))g -0,

3m3n

(3.100)
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We consider the Weizsacker term:
£y (p) =

3A 2 p(z) p(z) . (p(2)
@/dxwp(xﬂ W(1+2Warsmh(7)) (3.102)
= % [ anlvr @R e (),

,_.

w\»—t

77

where fy () == ——— (1 +2——— arsmh( o )) It is not hard to prove that f;,(n) <O0.
77\/773 +m2 \/773 +m2 W

Using this and the Schwarz inequality
& () s(m)i [ 5 1)
(14 )2 [ e SR () (3.103)
<+l () + (14 DY (5.

We have
k
&y (ﬁ@%(fﬁ))
/d C%(x‘*)P 1+2 2347%(:6) arsmh(M))
n3<2( ) k—ECE(I)+m2 ’fg (3 (x) +m? m

B [d G (., K@ arsmh( ‘°’<o<x>))%o.

=i \/W \/k§C§ () +m?n? (3.104)

Since £ (p) is finite, let & — 0 first, then let n - oo. We have €} (p)+(1+2)EY (L&(2(z)) -
0. That difference of other terms go to 0, is proved by Benguria, Brézis, and Lieb [2]. So
we proved liminf E7FW (p,,) < EL7FW (p). Then we consider the TFW variational problem

ELFW(N) = inf{€77W (p) : p > 0, [ p(2)de = erpNY. (3.105)
We just proved ELFW(N) = inf{€FW(p) : p > 0, [p*(z)dz < czrN}. Obviously,
ELTFW(N) is a decreasing function of N.
3.6 The excess charge problem

Proof of Theorem[J. We consider the global minimizer py. Let [ p3(z)dx = ¢ypN. To make
the Weizsacker term simpler, we consider the energy as a functional of ¥y (x) := \/F(po(x)).

So we have
eI (F (0)) = e (P (). (3.106)
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1o satisfies the Euler-Lagrange equation

() [8F (W) () (V(F1 () () +m? —m) 2,
i ( T A 107
_8aZ(F1(y?))*(x) / dy(F‘l(@DZ))Q(w)(F‘l(W))?’(y)) _0o
|| F(F=1(92) ) () 37T2 | —y[F"(F1(4?)) () '
Rewriting this equation in p yields
8p(2)(Vp*(x) + m? —m) o) SaZp*(z)
F(p)(2) DA LF @) 5,108

L8 P(@)p’(y)
5 | Wi

We prove N > Z first. In the non-relativistic case, this is proved by Benguria, Brézis, and
Lieb [2]. Our case is not so different. So we follow their proof. We choose ¢, € C¢ the
same as in Benguria, Brézis, and Lieb [2]. It is a spherically symmetric function such that
G #0, ¢o(x) =0 for |z| <1 and for |z| > 2. Set (,(z) = (o(£). By (3.108)) we have,

f dxé}%(m) (8(\/m_m) B GAF'(p)(x)AF(p)(fL’) _ 8aZ

p*(z) ||
8o P’ (y)
+ﬁfd |$ y|) 0.

Integrating by parts and using the Schwarz inequality, we have

(3.109)

_ [ dxCZF’(p)pAQF(p)

:[ (2§nvan,(p) C2(F’(p)) p)F,(p)vp (3.110)

sé/dx|V§n|2+[dx(6(F,;§p)) +(F;9(p)) '(p ))CﬁIVpF‘

Using the definition of F(p), we get

(F’(p) )' (2p% + 3m?)\/p? + m? + 4(2p? + m?)parsinh (%)
2 -
b 2pg(p2+m2)%\/\/]m+2parsmh(%)

<0. (3.111)

Define

> 0. (3.112)
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We easily get g(0) = 3m and hm g(p) 00. S0 ¢4 = mlng(p) > 0. Choose ¢ = ¢,. Then

F'(p)AF(p
f dz c?L f dz|V(,[* < Cn. (3.113)
Next, we compute
/ dz(\/p? +m?2 -m) < / daPp < e,n?, (3.114)

where ¢, > 0 as n - oco. The last inequality is proved by Benguria, Brézis, and Lieb [2].
About the rest terms, it is proved by Benguria, Brézis, and Lieb [2] that for large n

[ @G )( faZ | 8o fdypg(y))gc(N—Z)nQ. (3.115)

EREE ]

Combining (3.109)), (3.113)), (3.114)), and (3.116)), we find

ean?+Cn+c(N-2Z)n*>0. (3.116)

As n — oo, we have that Z < N.
To find the upper bound of N. We multiply (3.108) by |z|F'(p) and integrate,

[ @)@l (8p DL ) A F () (0)
_8aZp*(x) | 8a P()p(y) | _
[ F'(p)(x) 32 / V- yIF’(p)(fv)) "
Lieb [19] proved that the operator —R|z|A > 0. So we discard the term — [ dzF(p)(z)|z|AF (p)(x).

From the definition of F'(p), we know F(p) > 0 and F'(p) > 0. The first term on the
LHS is positive. So we have

p(2)F(p)(z) 1 |z[p* (z) F(p) (x)p*(v)
—Zfd ) (o) 37r2f dedy = 2 S <0 (3.118)

(3.117)

We want to compare the first term with [ dap3(z). So we need a estimate of Fo) - Wwe

pF'(p)
compute
(2p? + m?)\/p? + m? + 4m?p arsinh (%)

>0
2(p? + mz)%\/p\/p2 +m?2 + 2p? arsinh (%)

So F'(p) is an increasing function. We have

F"(p) = (3.119)

F(p) = fO " F(h)dt < fo " F(p)dt = pF' (p). (3.120)
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Use L’Hopital’s rule, we have

Fp) _ . F'(p) L 1
lim — = lim — p = lim ——
pooo pE'(p)  pooo F'(p) + pF"(p)  poee 1+pF/<§5)
1 (3.121)
_1 li F/”(p)
T )
and
pF"(p) _ lim 2(p?+m?2) 3 \/p\/p> +m?+2p? arsinh( 2 )
p—>o0 F’(p) p—o00 i} ) . ;
m(l*‘Q\/ﬁ arsmh(ﬁ)) (3122)
2p4
= hm —2\/§p4\/m =
p>ee \/2Inp
So we have )
p
o = 3.123
p~ pF'(p) (3.123)
Similarly,
) o 1 (3.124)
-0 p " pF" (p) .
p=op (p) 1+})1Hé )
and
p(2p2+m?2)\/p2+m2+4m?2p arsmh(%)
F”(p) —lim 2(p? +m2)2\/p\/p +m2+2p? arsmh(%)
=0 F'(p)  p-0 p ' )
/—2+m2 ——Jr = arsmh(E)) (3.125)
/B 1
=lim =—,
R
So we have . E
fim )2, (3.126)
=0 pF'(p) 3
Obviously, pf;ﬁf(’;) is a positive continuous function of p. By (3.123) and (3.126)), pﬁ;ﬁg) has

a positive minimum

F
0 < cp =min Ep)
r0 pF'(p)

Numerically, cp = 0.612. Using (3.127)) for the second term in (3.118]), then symmetrizing
it and using triangle inequality yields
1 2 A 3 3
_2f dady |z[p*(x) (zf)(x)p W) [ dady |z[p?(2)p* (y)
3m |z = y|F'(p)(x) R

:%//dxdy(lxl |y||3p3;|x)p N > 2(/dmp (x))

(3.127)

(3.128)
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Similarly, using (3.120)) for the y part in the same term yields

LT e EP @ E () (2)p* (y)

3 J] R

LT oy EP @ E@) (@) () F(p) (y)
> ] e )

p*(x)F(p)(x)
“6n2 (fd F'(p)(z) ) '

Combining (3.128)) and ((3.129)), we have

|z|p*(z) F'(p) (2)p*(y)
[ e

%( ([ dap?(x) ) +—(fd p F£/)(§)(P;)(£)) ) (3.130)

LI

(3.129)

F'(p)(x)
Using it in , we have
p*(z)F(p)(z) \/5 p*(z)F(p)(x)
7 [ da P10 = [ dw(@) [ do st (3.131)
So it means

(3.132)
h N < \/LC_FZ ~ 2.567. (3.133)
O

3.7 Improvement
We follow the idea of Frank, Nam, and van den Bosch [15] to improve the result.

2 4
Lemma 4. Let {f;}i1.n, be a partition of unity, satisfies V(f?) e L=, A(f?) e L>. Then

n

Serv (sh) - €2 o)
e (100l + 51a0H-) [ (3134
AL [ o)+ g (01 - D0)),

i=1
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where A = G{x e R30 < fi(x) < 1}.
=1

Proof. For the Thomas-Fermi term, it is easy to prove that fJ'%.(p) are positive for p > 0,

and frp(0) = f7.-(0) = f7/-(0) = 0. Since f; < 1, we havle%’%(fiip) < fr(p). IQJsing
q’;’F(O) = f1.-(0) = ng(O) = 0 successively, we obtain f7'.(f3p) < f2 f1p(p), f7-(fp) <
I3 frp(p), and fre(fPp) < f2frr(p). So we have

En; f Fre(fip) - f frr(p) < [ (if?—l) fre(p) = 0. (3.135)

For the gradient term, it is easy to prove that lirré fWT@ =1 and lim &2 Wp(p ) = 0. So fw(p) <
p—)

p—>o0

2
Cp for p > 0. Since fi is an increasing function and f; < 1, this gives fu (f’p) < fw (p).
Thus we have

> [ W) - [ 190w w)

=3 [ (WP £EiwnR o 2159 - 090) i) - f 190 o)

n 2 4 2 2 (3136)
Si_lfA(Ivfﬁl2p2+fﬁ|Vpl2+2ffV(ff)‘pr) fw(p)—fAWprW(p)
ORIV [t -0 [P 23, [ 9050 o).
For the last term, we have
2;Lfi3v(f¢3)-p(Vp)fw(p)SC;fAV(fﬁ)-W?’ s
N RVATE NNV T
Thus implies that
N 5oV2 50y 2
> 19U i) - [ TR ()
n 2 n 4 (3138)
<c(SIvuDIL-+ S1aHl-) [0 [0 swo)
O

Now we give the estimate of the minimizer p.
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Lemma 5. For all s >0, we have

1 5\ 2s
- =2 D3
2472 (f P ) 32 Pl

S(C’x\cs_lJr%)fpSJr988Acf|Vp|2fW(p)-

(3.139)

Proof. The non-relativistic version of this lemma is proved by Frank, Nam, and van den
Bosch [15]. We follow their method and deal with the different parts. We choose a similar
partition of unity as them, but with some different restrictions. For every [ >0, v € S2, we

choose
v-x -1

@ =g (FE), e =0 () (3.140)

where g1, go: R — R satisfy
GPrgi=1, q(t)=1ift<0, ¢(t)=0ift>1,
2 2 4 4 4 4
[(90) 1+ 1Cg3 )1+ 197 )T+ [(95)1 + (g7 )" +1(95)"| < C.

In Frank, Nam, and van den Bosch [I5], they choose xi(z) = gl(%), x2(x) =

go (%), and 6 : R3 - R? satisfying |0(z)| < |z|, 0(z)=01if |z|<r, O(z) = if x| >

(14 p)r, VO] < Cp~t. But in our case, we set r = 0 simply, i.e., O(z) = . There are two
reasons for this choice. On the one hand, to get the non-relativistic version of Theorem
they let » — 0. This is equivalent to setting » = 0 at the beginning. On the other hand,
if Af is not 0, we will have a extra Z order term. This is not what we want to have. 0
should be linear in our case, so we choose #(x) = x. This implies

2 2 (v-x=l\_v-z-I _
90 @l = [y () v < s,
3 1, (vl vz -1
ACG @)D =1000)" | —— )|V (3.142)
% /(V'x—Z)AV~x—Z‘<C "
+(97) 5 S <Cs™.
Since p is the minimizer, we have
5 2 ~ 2 -
ELEV (i) + & (x3p) - ELEY (p) 2 0. (3.143)

By Lemma [, we have
EL 0D + &L OGp) - EL ()
2 2( )3
me H/dxM+20)\mC2S_2/ dap?(2) (3.144)

h 377'2 |ZL‘| v-x—s<l<v-x

3\mc? gme
= AP () @) + 5 (D) + DIGRY] - D).
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The same as the non-relativistic case (Frank, Nam, and van den Bosch [15]), we have

mes JEE X(DP2) | e (a1 Dl - D))

372 2] O

3.145
meZ [ pa) P () (18)
< dxdy .
372 lgl/r |$| 97T4 vy<l<v-xz—s |.’L' y|
Thus (3.143)) implies that
3
2/] dzdy P @)’ (y) <CAes™ / dxp®(z)
3T vy<l<v-x—s |.I' y| v-x—-s<l<v-x (3 146)
9\ 5 p?(x) '
£ 25¢ dz|vp()| fW(p)(x)+Z/ dz2 ).
8 vx—s<l<v-x I<v-x |IE|
Integrating (3.146)) over [ € (0, c0), we have
3 3
2] ([f ddp()p(y))
3T y<l<v-x—s |ZL‘ y| <3147)

9sAc p3(x)

|

SC’)\cs‘lfp?’Jr f|Vp|2fW(p)+Zfdx[u-:c]+

Then we average over v € S? and use the proof of Frank, Nam, and van den Bosch [15]. We

obtain
() 2o

9 )\ (3.148)
sA\c
(C/\cs + —) fp Vo] fw ().
O]
Using (]3.148]), we can prove Theorem |3 now:
Proof of Theorem[3. We use [ p* =372N. This implies
1
N? < 651)[ 4 (Ches ! +22) N + 23 f Vol fiv (p) (3.149)

for all s >0. We optimize over s > 0, then we have

2.2
N<2Z+ CN‘é\/m/\CD[p?’] + 3\ f V|2 fw (p). (3.150)
94 w2
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Since p is the minimizer and using (3.74)), we have

02 €00~ 5 [ o fre) s T ) - 25 L [ O]

3| j — ]
2/ da:(fTF<p>+ P - 25 e o2 [ pgﬁ;”ifw)
e [a ( NP () + 55 [ dyp?’(;)_p;w)
~ozi 2 | dx(—MVp(x)l fw) 5y [ d p3(|j)py|y>).
(3.151)
Thus m 2
97T4CD[p3]+ - f Vol fw (p) < CZ5. (3.152)

This implies the theorem. [
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Appendix A

Proof of the Positivity of RF;

To prove the positivity, we need

Lemma 6. The function O(x) decreases in | when x is greater than 1, i.e.,
Oi(z) > Opq(x), > 1.

Proof. In this proof, = is always greater than 1. We know

P(w) _ 1 [ P(u) _
d (@) defd T-u §[du(x—u)2__ol(x)'

We use the positivity of Q; (Whittaker and Watson [37, p. 305]),

Qi(z) = [(1 u?)! (z —u)™"1dt > 0.

2[+1

Then we know

1

d 1 [+1

1
O@) =~ f(1—u2)l(a;-u)-l-1dt: o f(1—u2)l(x—u)-l-2dt>o.
e}

We integrate by parts,

1
_ 1 [)l+1(u) 1 Pl+1(u) / l+1(u)
O (z) = 2_[du(gc_u)2 =5 %—u .73 du

and use the properties of P, (Whittaker and Watson [37, p. 305])

Pl (z) —aF/(x) = (I+ 1) P(x),
(I+1)Pyi(x) - (2l +1)xP(x) +1P_1(x) =0,
B(1) =1, B(-1)=(-1)".

(A.4)

(A.5)

(A.6)
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We have
O () = 5701 (0) + 57 Oa(w) - 1Qu().
Tt implies
Or1(z) = O () = 2L+ 1)Qi(x) >0
and

1 [ Pry(u)+ (2 + 1) (x - u)Pi(u) - Pry(u)
§fdu (r—u)? =0-

From (A.6) and (A.9), we have

Zfd [Py(u) = 2L+ 1D)zP(u) + (I+1)P_1(u) _o.

(z-u)?
Using the definition of Oy, (A.10)) is equivalent to
1011(2) = (2l + 1)2O)(z) = (1 + 1)Op_1 ().

So we get

H(O(x) = Ora () <U(xOu(x) = O ()

=(I+1)(Op1(x) —20y(2)) < (I + 1)(Or_1(x) = Oy(x)).

If for some I,
Ol_l(l’) - Ol(.’ll') <0.

Then from (A.12), we have
Ol(l’) - Ol+1(l') <0.

Then

Ol,l(.’L') - Ol+1(l') = OH(x) - Ol(l’) + Ol(l') - Ol+1($) <0

There is a contradiction to (A.8)). So for all [,

Ol_l(l’) - Ol(.’L') > 0.

(A7)

(A.8)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

Now we can prove the positivity of RF;. By the definition, the imaginary part is

3=~ [ %olg(}q))(q% sin(rlng) + — sin(~rIng)
0

q2

). (A.17)
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Using Lemma [0}, we have

%fl(r,r)=[%(OO(%(éwtq))(qué)—Ol(%(é+q))(qécos(rlnq)+q%cos(rlnq)))
>Of%(oog(}q))(w3)—ol<§<§+q>>(q%+qi;))
>Of%oo<§<§+q>>(q+é—q%—qi;)

rdg . 1.1 1 1
- [ Zou5 -+ )@t + = -2)(gk + = +1) >0,
0 4 2°q q2 qz
(A.18)
So the positivity is proved.
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Appendix B

Proof of the Positivity of RG;

We start from the definition of G
1 1 1 .
f AkQi(= (5 + k)) ek
k2
1.1 1 .
= f dkQ( §(E + k:))k—l(cos(rln k) +isin(rink)).
0 2

Then we focus on the real part and change the variable k to e,

D%fdk:Ql( Gt B e /d/{:@l(2(k+k))%cos(rlnk)

[dkele( (™ +e*))e 2% cos(rk) = fdkcosh Q1 (cosh — )cosk:.

We define
k k
hy(k) := cosh g@l(COSh ;)

Then (B.2)) can be rewritten as

%fdez(2(k+k))kilei”“’“

9 oo 2(n+1)mw
=5 f dkehy (k) cos k
.

n=0 2nm

2n7r+7

i [ dk(hl(k) hz((4n+1)7T k‘) hl(k’+7r)+hl((4n+2)7r k)coskj

2nm

(B.3)

(B.4)
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Now we need the positivity of the second derivative of h;(k), for £ > 0. We compute it
directly

2
hy (k) = (cosh Q:(cosh — ))
:i cosh — ( Qi (cosh — ) (2 cosh k_ 1) Q;(cosh E) + (cosh® k_ 1)@ (cosh E)) :
r? r r r r

(B.5)
We know 7% cosh % >0, Q;(cosh é) >0, and coshé > 1 for k> 0. So we only need to prove

(2x -1)Qj(x) + (22 - 1)Q) (x) >0, = > 1. (B.6)

Because @Q(z) is a solution of Legendre’s differential equation (Erdélyi et al. [11]), we
know

(1-2)Q/ (x) - 22Q)(x) +1(1+ 1)Qy(x) = 0. (B.7)

So we have

(22 -1)Qj(z) + (2* - 1)Q] (x) = -Qi(z) + (1 + 1)Qu(x)

=O)(x) +1(1+1)Q(x) >0, > 1. (B8
The positivity of h)'(k) is proved
hy'(k) >0, k>0. (B.9)
From this, we know
hi(k)-h((An+1)m-k)-h(k+m)+h((4n+2)m-k) > 0. (B.10)

Since cosk > 0, for k € (2nm,2nm + 7), Equality (B.4) is positive. So the positivity of G,
is proved.
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