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ABSTRACT 

Spatial learning is a complex behavior which includes, among others, 

encoding of space, sensory and motivational processes, arousal and locomotor 

performance. Today, our view on spatial navigation is largely hippocampus-

centrist. Less is known about the involvement of brain structures up- and 

downstream, or out of this circuit. Here, I provide the first in vivo assessment of 

the neural matrix underlying spatial learning, using functional manganese-

enhanced MRI (MEMRI) and voxel-wise whole brain analysis. Mice underwent 

place-learning (PL) vs. response-learning (RL) in the water cross maze (WCM) 

and its readout was correlated to the Mn2+ contrasts. Thus, I identified 

structures involved in spatial learning largely overlooked in the past, due to 

methods focused on region of interest (ROI) analyses. These structures include 

several sensory-related structures and differ between place-learners and 

response-learners, with the former (PL) comprising mostly structures involved in 

different properties of visual processing, such as horizontal gaze (e.g. nucleus 

prepositus) and saccade (e.g. fastigial nucleus), or provide vision-input and eye 

movement information from parahippocampal (e.g. presubiculum, perirhinal, 

postrhinal and ectorhinal areas) and other regions (e.g. orbital area, superior 

colliculus and vestibular ocular-reflex from the vestibular nucleus) likely to head-

direction, grid- and place-cells; and the latter (RL) presenting structures related 

to more basic rodent sensory computations, like odor (e.g main and accessory 

olfactory bulb, cortical amygdala, piriform, endopiriform and postpiriform areas) 

and acoustic stimuli representation (e.g. auditory area, nucleus of the lateral 

lemniscus and superior olivary complex), or sensory-motor properties, such as 

body representation (e.g. somatosensory area – upper limbs) and head-

direction signal. Add-on experiments pointed to preferential Mn2+ accumulation 

towards projection terminals, suggesting that our mapping was mostly formed 

by projection sites of the originally activated structures. This is corroborated by 

in-depth analysis of MEMRI data after WCM learning showing mostly 

downstream targets of the hippocampus. These differ between fornical 



xiv 
 

afferences from vCA1 and direct innervation from dCA1/iCA1 (for PL), and 

structures along the longitudinal association bundle originating in vCA1 (for RL). 

 To elucidate the pattern of Mn2+ accumulation seen on the scans, I 

performed c-fos expression analyses following learning in the WCM. This helped 

me identify the structures initially activated during spatial learning and its 

underlying connectivity to establish the matrix.  

 Finally, to test the causal involvement of selected structures from our 

previous findings I inhibited them (through DREADDs) while mice performed the 

WCM task. I also focused on the causal involvement of the vHPC-mPFC circuit on 

strategy switch during WCM learning.  

 I believe that this study might shed light into new brain structures 

involved in spatial learning and strategy switch and complement the current 

knowledge on these circuits’ connectivity. Moreover, I elucidated some 

functional mechanisms of MEMRI, clarifying the interpretation of data obtained 

with this method and its possible future applications. 
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ZUSAMMENFASSUNG 

Räumliches Lernen ist ein komplexes Verhalten, das die Kodierung der 

Umgebung, Motivations- und sensorische Prozesse, Arousal und Fortbewegung 

umfasst. Unsere heutige Sicht auf räumliche Navigation ist hauptsächlich 

Hippocampus-zentristisch. Über die Beteiligung von vor- und nachgeschalteten 

Hirnstrukturen oder solche, die nicht Teil dieses Schaltkreises sind, ist weit 

weniger bekannt. Unter der Nutzung von funktioneller manganverstärkter 

Magnetresonanztomographie (Functional Manganese-Enhanced MRI (MEMRI)) 

und voxelweiser Analyse des ganzen Gehirnes, lege ich die erste in vivo-

Untersuchung der neuronalen Matrix, die dem räumlichen Lernen bei Mäusen 

zugrunde liegt, vor.  

Mäuse durchliefen im Water Cross Maze (WCM) zwei Strategien: 

räumliches Lernen (place learning (PL)) und sensomotorisches Lernen (response 

learning (RL)). Die Ergebnisse wurden mit den Mangankationkontrasten (Mn2+) 

korreliert. Ich konnte Hirnstrukturen identifizieren, die am räumlichen Lernen 

beteiligt sind. Diese wurden in der Vergangenheit unter der Nutzung von 

Methoden, die auf der Analyse von zuvor ausgewählten Interessenregionen 

(ROIs) basieren, weitgehend übersehen. Diese Regionen umfassen mehrere 

sensorische Strukturen, die sich zwischen räumlichem Lernen und 

sensomotorischem Lernen unterscheiden. Erstere (PL) umfassen hauptsächlich 

Strukturen, die an verschiedenen Eigenschaften der visuellen Verarbeitung 

beteiligt sind, wie zum Beispiel dem horizontalen Blick (z.B. Nucleus 

praepositus) und Sakkaden (z.B. Nucleus fastigii), oder eingehende visuelle 

Signale und Informationen zur Augenbewegung von parahippocampalen (z.B. 

Präsubikulum, perirhinalen, postrhinalen und ektorhinalen Regionen) und 

anderen Regionen (z.B. orbitaler Bereich, Colliculi superiores und Vestibular-

Okular-Reflex von den Nuclei vestibulares) wahrscheinlich an sogenannte Head 

Direction Cells (Kopfrichtungszellen), Grid Cells (Rasterzellen) und Place Cells 

(Ortszellen) weitergeben. Letztere (RL) zeichnen sich durch Hirnstrukturen aus, 

die mit fundamentaleren sensorischen Verrechnungen bei Nagetieren 

zusammenhängen, wie Geruch (z.B. Haupt- und akzessorischem Riechkolben, 
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kortikale Amygdala, piriforme, endopiriforme und postpiriforme Regionen) und 

Repräsentationen von akustischen Signalen (z.B. auditorischer Bereich, Nukleus 

des Lemniscus lateralis und Nucleus olivaris superior) oder sensormotorischen 

Eigenschaften, wie Körperrepräsentation (z.B. somatosensorische Region – 

obere Gliedmaßen) und Kopfrichtungssignalen.  

Zusätzliche Experimente weisen auf einen Trend zur Ansammlung von 

Mn2+ an den Projektionsterminalen hin, was darauf hindeutet, dass unsere 

Kartierung hauptsächlich auf Projektionsregionen der ursprünglich aktivierten 

Strukturen basiert. Dies wurde durch eine detaillierte Analyse der MEMRI-Daten, 

die nach dem Lernen im WCM entstanden, bekräftigt, da diese hauptsächlich 

nachgeschaltete Ziele des Hippocampus anzeigen. Diese unterscheiden sich 

zwischen fornikalen Afferenzen von vCA1 und direkter Innervation von 

dCA1/iCA1 (bei PL) und Strukturen entlang des longitudinalen 

Assoziationsbündels, das aus der vCA1 entstammt (für RL). 

Um das Muster der Mn2+ -Ansammlung, das sich auf den Scans zeigt, zu 

erklären, habe ich eine Analyse von c-fos-Expression nach dem Lernen im WCM 

durchgeführt. Dadurch konnte ich zum anderen  Strukturen identifizieren, die 

ursprünglich während des räumlichen Lernens aktiviert waren, einschließlich 

efferenter Hirnstrukturen.  

Um schließlich einen kausalen Zusammenhang zwischen erhöhter 

neuronaler Aktivität und dem Verhalten herzustellen, habe ich ausgewählte 

Hirnstrukturen mit DREADDs inhibiert, während die Mäuse das WCM durchlaufen 

haben. Dies beinhaltete insbesondere die Rolle des vHPC-mPFC-Schaltkreises in 

Bezug auf Strategiewechsel während des WCM-Lernens.  

Zusammengefasst gewährt diese Studie Aufschluss über neue Hirnareale, 

die eine Rolle in räumlichem Lernen und Strategiewechsel spielen und die den 

aktuellen Kenntnisstand über die Konnektivität dieser Schaltkreise ergänzen. 

Des Weiteren habe ich einige funktionelle Mechanismen von MEMRI aufgedeckt, 

die die Interpretation der mit dieser Methode erhaltenen Daten und ihre 

Anwendung in der Zukunft erleichtern werden. 
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 INTRODUCTION 

Learning can be defined as the process through which subjects acquire 

and encode information, stored as new knowledge or skills, in order to elicit 

appropriate behavioral responses to further external inputs. The storage of 

information or experiences is the process termed memory (Squire, 1986). 

Learning and memory are interconnected cognitive processes that involve, 

among others, attention, arousal, sensory and motivational processes, synaptic 

plasticity, etc. These features may affect different types of learning and memory 

in distinct ways, as it will be discussed below.  

Memory processes are segmented in different phases, namely: 

acquisition, consolidation, retention and retrieval. The acquisition phase is the 

moment when individuals compute information received from the environment, 

thus, when learning occurs. Consolidation is the initial storage of the information 

learned and retention is the maintenance phase of this process. Retrieval can be 

defined as the act of recollecting learned experiences.   

Learning may be divided in different categories according to the type of 

stimuli presented (e.g. cognitive/declarative learning for new information and 

events or procedural learning for new motor actions) (Cohen et al., 1985), to 

the content of information acquired (e.g. fear learning or spatial learning), etc. 

Each different type of learning relies on specific brain structures and networks 

(for example see (Cho et al., 1999)), but it may share some common molecular 

processes. In this work we will focus on spatial learning.  

 

 Spatial learning and learning strategies    

 To explore the environment and orient oneself in different locations is of 

outmost importance for individual’s success in life. Without the ability to 

navigate from one point to the other and knowing your way back, subjects 

would be limited to a small radius of exploration around their home base. This 
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would decrease their possibilities of foraging, mating, among others. Therefore, 

spatial navigation is an important ability conserved across several species.     

Spatial learning enables animals to encode information of their 

surroundings, through representation of the spatial features of the environment 

in relation to each other and/or to the subject. In this way, animals can guide 

themselves to navigate different environments and learn relevant locations, 

increasing their success in searching for food, shelter, social and sexual partners 

and avoiding predators.  

There are two main spatial learning strategies that co-exist among 

individuals: one cognitive and another habitual (Tolman et al., 1946). These 

strategies can be used in different situations where one or another would be 

optimal for the individual’s success. On the one hand, cognitive spatial learning 

involves the formation of a cognitive map of the environment, allowing flexible 

navigation of the space from different start positions (O'Keefe and Dostrovsky, 

1971; O'Keefe and Nadel, 1978). It counts on cues of the environment and the 

representation of the cues in relation to each other on that given context – an 

allocentric view (O'Keefe, 1991; Compton et al., 1997). This type of allocentric 

learning is also known as place learning (PL), as it uses the “place” or location of 

the cues as landmarks for the orientation of the subject. On the other hand, 

procedural spatial learning focuses on the representation of the self within a 

given context – an egocentric view  (Cook and Kesner, 1988). The body 

representation of the subject, its direction and movements are the key features 

of this type of navigation (Matin and Li, 1995). For instance, the subject learns 

to turn right instead of heading west (as it would be the case for place learning) 

from a specific location to navigate to its target. As this egocentric learning is 

based on a motor response (body movement) of the subject relative to the 

environment, it is also known as response learning (RL).  

On a first view, place learning might seem more advantageous, since it is 

flexible and allows individuals to navigate in an environment independently of 

their initial position. This holds true in many situations. However, if one has to 

navigate the same path multiple times, without any change in the environment, 

response learning might be more suitable, since it is easier to learn and 
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cognitively less demanding. This means that when adopting this learning 

strategy, the individual needs less attention and focus on the navigation task 

itself and it is free to respond to other inputs or even perform other tasks in 

combination. A shift from place to response learning after overtraining was 

already demonstrated to happen in rodents (e.g. (Packard and McGaugh, 1996; 

Chang and Gold, 2003; Colombo et al., 2003; Jacobson et al., 2012). Another 

scenario where response learning would be the preferable strategy over place 

learning is during stressful situations. If the individual is under stress it should 

reserve its attention to the possible threat, or stimuli causing distress, and 

should be able to readily escape from the unwanted situation. Therefore, 

response learning would be an advantageous strategy to use in this case. The 

shift from place to response learning strategies for individuals under stress was 

already shown for mice and human subjects (Packard and Wingard, 2004; 

Schwabe et al., 2007; Elliott and Packard, 2008; Schwabe et al., 2008; Schwabe 

and Wolf, 2009).   

Place and response learning can also be differentiated considering the 

underlying brain structures involved in the performance of either strategy. While 

place learning is hippocampus-dependent (Becker et al., 1980), response 

learning is striatum-dependent (Cook and Kesner, 1988). Numerous studies 

have already confirmed these initial findings from rodents (Morris et al., 1982) 

in non-human primates (Rolls et al., 1997) and human subjects (Iaria et al., 

2003), indicating that these learning strategies and their neural anatomical 

substrates are conserved across different species, including humans. However, 

other brain structures and networks that are involved in the performance of 

each specific strategy are not yet fully elucidated. Grid cells in the medial 

entorhinal cortex were already described to be an important input (Moser and 

Moser, 2008) and to work in concert with hippocampal place cells (Bush et al., 

2014; Renno-Costa and Tort, 2017) in processing contextual information 

necessary for the formation of the cognitive map of the environment. Therefore, 

the medial entorhinal cortex is also a key structure for place learning. In 

contrast, since response learning is based on a strong body representation of 

the individual in the environment and its body movements within the space 
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where it is inserted, it is not surprising that the somatosensory and the motor 

cortices (McNaughton et al., 1994) are also implicated in this navigational 

strategy. The head direction cells in the retrosplenial cortex, pre- and 

parasubiculum also seem to be involved in the body orientation and 

directionality of the subjects performing response learning (Taube, 1998). 

Nevertheless, most of the information regarding neuroanatomical bases of 

spatial learning in general or of either place- or response learning specifically, 

was acquired with lesions or inactivation studies of pre-defined brain regions or 

with ex vivo analysis of brain sections also focusing in candidate brain regions. 

More broad analyses of the whole brain in vivo are still missing, which can be 

partly ascribed to difficulties in analyzing learning processes over the course of 

repeated training and to the lack of appropriate methods which allow for a 

holistic view with sufficient spatial resolution.       

   

 Assessment of spatial learning and memory in mice 

Spatial learning can be assessed in rodents through a number of tests, as 

the T-maze (Tolman et al., 1946), radial arm maze (Olton and Samuelson, 

1976), the Barnes maze (Barnes, 1979) and the popular Morris water maze 

(MWM; (Morris, 1984)), to name a few. The T-maze consists of three corridors 

(arms) displayed in a T shape with enclosure walls. Animals are placed inside 

the maze in the edge of the long arm of the T and are expected to find a food 

reward at the end of one of the other arms, left or right to the starting arm. On 

a classic protocol of this task, the spatial alternation test, the animals should 

alternate their visits to the arms so they will always get a reward (Tolman et al., 

1946). This is a working memory test, since it counts on the animal’s ability to 

remember the previously baited arm and navigate to the opposite arm on the 

next trial. The radial arm maze is a more complex variation of the T-maze, given 

that it is usually composed of 8 arms (variable number) arranged in a radial 

orientation from the center area. The test counts on a similar principle of 

alternating among the arms to find the food reward. This test also assesses 

reference memory in addition to working memory. For this evaluation, after the 
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initial training for testing working memory, half of the arms in the maze should 

be baited in a fixed manner (always the same arms for a given subject) and the 

exploration behavior of the animals in the maze should be analyzed. If the 

animals visit unbaited arms this would count as a reference memory error, while 

revisiting previously baited arms would count as a working memory error 

(Wenk, 2001). The Barnes maze takes advantage of the aversion rodents have 

for open and bright spaces, as it is composed of an open flat well-lit board with 

holes around its edge which the animals use to escape. Nonetheless, only 1 of 

the 20 holes (variable number) is an actual escape hole, and the animals have 

to learn the location of this target based on distal cues of the environment 

(Barnes, 1979). The Morris water maze consists of a large round water tank 

filled with water at 23oC (+/- 1oC) with a submerged platform (in one of its main 

protocols) that the animals have to find using many possible navigational 

strategies. Given that mice avoid open spaces, as mentioned above, they usually 

prefer to stay close to the maze walls (at least initially), adopting a strategy 

named thigmotaxis – where they swim around the tank along the wall, 

sometimes repeating this circular movement multiple times. This strategy is 

highly stressful and not effective, since the escape platform is not positioned 

close to the wall and the animals do not learn the platform position by simply 

swimming along the wall and not encoding information of the environment. With 

training through multiple days, mice start to adopt different strategies, as 

random swim, scanning and chaining, that indicate that animals are less anxious 

about the open space of the tank, but still not actively using spatial cues to 

locate the platform (Ruediger et al., 2012). Only after an extensive training 

period, animals seem to use spatial strategies to guide themselves on the maze 

and find the escape platform (Ruediger et al., 2012). Another drawback of this 

task is that the solid walls of the maze do not allow animals to see the extra 

maze cues when swimming close to the enclosures. Moreover, animals can 

establish the distance of the platform and the wall as a landmark, instead of 

learning the real position of the platform within the environment (Baldi et al., 

2003; Hamilton et al., 2009).  
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The tests described here are well established and informative to 

investigate many aspects of spatial learning. However, most of these tasks were 

developed for rats. Given that the behavior of mice and rats can be remarkably 

different, care should be taken when choosing an appropriate test for mice. 

 

The water cross maze (WCM) 

 The water cross maze (WCM) is comprised of 4 arms arranged in a 

cross shape with a central area connecting the arms. The maze is filled with 

water up to 1.5 cm above a submerged escape platform located in the distal 

part of one of the arms. Since the arm opposed to the start arm is blocked with 

a guillotine door, the maze is transformed in a T maze adaptable for each trial, 

according to the start position of the animal. This maze combines high 

motivation to perform (i.e., escape from the water) with the corridor enclosures 

of the arms. In that way, the stress level of the animals is decreased compared 

to the open MWM and the number of possible strategies that can be used to 

perform is limited and easy to evaluate from day 1. Furthermore, the simplicity 

of the test allows for short trials, decreasing the time animals spend in the 

water. Since the task is not based on food rewards it does not require that the 

animals are food deprived, adding up to the argument of decreased stress load 

compared to other mazes. Moreover, the WCM is made of transparent acrylic 

glass walls, allowing the animals to see the whole surroundings of the maze and 

encoding distal cues independently of the animal’s position in the apparatus. 

Therefore, this maze, which was established in the lab for mouse testing  

(Kleinknecht et al., 2012), is an optimal alternative to study different spatial 

navigation strategies in mice. Specially, this maze allows the experimenter to 

impose a specific training strategy (e.g. place learning or response learning) by 

adapting some features of the apparatus, such as start position, arm blockade 

placement and platform location, according to the intended protocol (for details 

please check Materials and Methods). Additionally, this task allows scoring of 

interesting behavioral measurements not possible to extract from other mazes 

(e.g. accuracy: percentage of correct trials within a day), given that trials can be 
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easily and objectively scored as correct or incorrect (see Materials and 

Methods).    

 

 The “hippocampus centrist view” and beyond  

 By means of lesion and pharmacological studies, in vivo recordings, 

among other methods, the hippocampus could be characterized as a 

fundamental brain structure involved in several types of learning , including 

allocentric spatial learning (Morris et al., 1982) – place learning –, and 

declarative episodic learning (learning of events) by humans (Squire, 1987, 

1992). The description of cells that code for locations (place cells) in the 

hippocampus (O'Keefe, 1976) and other cell types involved in directionality 

(head direction cells) and different features of spatial coding (grid and border 

cells) in parahippocampal regions corroborates the importance of the 

hippocampus in spatial cognition. These spatial-related cells in parahippocampal 

regions serve, among other functions, as inputs for different categories of 

information to place cells, and functional modulation of these cells’ activity 

disrupts place cells’ coding, either leading to remapping or decreased spatial 

tuning (Fyhn et al., 2007; Monaco and Abbott, 2011).  

Due to its leading role in spatial learning processing, the hippocampus 

became the main focus of many researchers studying learning and memory, and 

different brain structures that might contribute to these cognitive domains were 

simply overshadowed. We can refer to this problem as a conceptual bias. Thus, 

it would be informative to obtain a broader overview on brain structures 

implicated in spatial navigation, learning and memory other than hippocampus, 

preferentially at a whole brain level. This last point is also important to address 

due to a methodological bias which increases the single-structure analysis issue 

(hippocampus-centrist, in this discussion). Given that traditional methods to 

proof causal involvement of brain structures have restricted analysis of pre-

defined regions this type of study-bias was only reinforced. Therefore, it is 

necessary to look at the brain in broader way. In that effort, we decided to 
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employ a whole-brain analysis, instead of localized approaches, to pin-point 

structures possibly related to different spatial learning strategies (e.g. place 

learning and response learning).   

 

 Methods for functional imaging in mice  

In the following paragraphs I will go over some methods for functional 

imaging in mice, depicting their advantages and limitations. For a structured 

overview of these and other methods please see figure 1. 

Analysis of immediate early genes (IEG), such as c-Fos and Arc is 

traditionally the method of choice for identification of structures involved in 

specific cognitive processes (Guzowski et al., 2005; Kubik et al., 2007; Sauvage 

et al., 2013). However, this method is only optimal for analyses performed after 

a limited number behavioral tasks, notably the ones acquired in a single or few 

trials, since (i) the activation of the IEG is transient (Shires and Aggleton, 2008; 

Barry and Commins, 2011) and (ii) mice may acquire the task with different 

learning profiles (Ohl et al., 2001) (i.e. a mouse may learn the task in 2 days, 

another mouse in 3, 4 or 5 days, etc).  This makes it extremely difficult to define 

the cutting point for IEG analysis.  

A more recent strategy to optimize IEG analysis is named Targeted 

Recombination in Active Populations (TRAP) (Guenthner et al., 2013). The 

method consists on the use of transgenic mouse lines that express the 

tamoxifen-dependent recombinase CreERT2 in an activity dependent manner 

from the loci of the immediate early genes Arc or Fos. In the absence of 

tamoxifen recombination cannot occur in the cells because the CreERT2 

transgene will be locked in the cytoplasm. However, when tamoxifen is present 

Cre-mediated recombination is released and occurs in active cells expressing 

CreERT2, which will then express the effector gene (usually a fluorophore) 

permanently. Thus, the activated cells will be marked (“TRAPed”) by the 

expression of the fluorophore and can be further identified. This is an advantage 

to the traditional IEG analysis because it allows a temporal integration of the 
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activity marker expression (once “TRAPed” forever “TRAPed”), decreasing the 

chances of false positives due to delays of ideal time-point analysis with 

transient expression. The most used method for the identification of these cells 

is histology of brain slices under a fluorescence microscope. This relies on the 

pre-selection of candidate structures (ROIs) to be analyzed and might filter out 

other possibly interesting structures not listed for analysis. Another option for 

identification of “TRAPed” cells is the use of cleared brain approaches, such as 

the iDISCO (Renier et al., 2014) and Clarity (Chung and Deisseroth, 2013; 

Chung et al., 2013). However, these approaches are expensive, hard to 

implement and their semi-automatic analysis routines are still in their infancy, 

thus making it not easily accessible. Furthermore, all of these alternatives 

require the removal of the brain for analysis, blocking the possibility of 

longitudinal studies.         

 Another alternative to overcome the timing issue of IEG analysis would be 

to measure the accumulation of glucose derivatives (e.g. 2-deoxyglucose, 2-DG) 

(Bontempi et al., 1999). These metabolites can be used as radioactively labeled 

tracers and be later identified by autoradiography. An additional approach is 

based on measurements of changes in brain energy supply by cytochrome-c 

oxidase analysis (Miranda et al., 2006; Conejo et al., 2007). 
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Figure 1: Schematic overview of methods for identification (generation of 

hypotheses) and modulation (validation of hypotheses) of neuronal circuits 

related to given behavior outputs (reproduced from (Wotjak and Pape, 2013)) 

 

None of these methods provides in vivo functional assessment of the 

neuroanatomical substrates of spatial learning. One way to overcome this 

limitation would be the use of functional magnetic resonance imaging (fMRI). 

However, to perform fMRI in mice one needs to anesthetize the animals, which 

leads to brain activity alterations due to the different state of arousal, therefore, 

compromising the acquired data. Additionally, the classical functional analysis of 

MRI requires that the task or manipulation of interest is performed in parallel to 
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the scanning procedure, while the subjects are inside the scanner. Needless to 

say that this is not suitable for our investigation of behaving animals performing 

a spatial learning task in the water cross maze. 

Modern techniques as 2-photon microscopy (Denk et al., 1994) combined 

with calcium imaging (Carter and Sabatini, 2004; Yasuda et al., 2004) might 

come to mind when considering alternative tools for functional imaging of 

neurons in mice. The latter technique is based on the property of neuronal Ca2+ 

intake upon cellular activation (Cummings et al., 1996). With the recent 

development of genetically encoded calcium indicators (GECIs; e.g. GCaMPs; 

(Hires et al., 2008; Sun et al., 2013; Lin and Schnitzer, 2016), it became 

possible to observe neuronal calcium events (a proxy of action potential firing) 

online under a microscope, given that the indicators emit fluorescence upon 

changes in cellular Ca2+ concentration. These events can be monitored with high 

temporal and cellular resolution, allowing a precise analysis of individual 

neuronal activation state. Moreover, these calcium indicators can be genetically 

targeted to a specific neuronal population of interest (Tian et al., 2012), refining 

the study. Nevertheless, this tool also has its limitations. Namely, 2-photon 

imaging is an invasive method that requires the removal of brain tissue above 

the area to be imaged (Attardo et al., 2015). This also limits the depth of the 

region of study and the choice of this region, given that the removal of some 

cortical regions might cause tremendous behavioral and motor alterations (e.g. 

(Barth et al., 1982; Jeannerod et al., 1994; Peterson and Arezzo, 1994). 

Additionally, a major challenge to employ this technique to our investigations is 

the spatial window limitation. As we discussed before, our aim is to have a 

whole brain analysis of neuronal activity, and the use of the 2-photon 

microscopy for calcium imaging would limit our study to pre-defined regions of 

interest of few mm3.     

Another technique developed for brain-wide functional analysis is the 

positron emission tomography (PET) (Depresseux, 1977). PET is a nuclear 

medicine technique used to image cellular glucose metabolism employing 

radiotracers (e.g 18F-FDG). This is a well-established and highly used tool for 
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imaging human subjects. It can be applied on pathophysiology studies (e.g. 

detection of tumors or alteration in brain blood flow) (Schelbert, 1985; Goldman 

et al., 1997) or functional analysis of sensory stimuli in healthy individuals 

(Reivich et al., 1983). However, its low spatial resolution for small animals, as 

mice, limits its use in pre-clinical research. Nevertheless, PET is employed in 

studies investigating tau-protein aggregates in mouse models of Alzheimer 

disease (e.g. (Brendel et al., 2016)) and blood flow and metabolic alterations 

caused by infections (e.g. (Buursma et al., 2005; Weinstein et al., 2014) or 

neuroinflammation (e.g. (Semmler et al., 2008)) in rodents, to name a few. In 

the past two decades, there has been an effort to overcome the poor resolution 

issue with the development of different radiotracers (e.g. (Dedeurwaerdere et 

al., 2009; Andres et al., 2012; Schrigten et al., 2012) and special scanners for 

this purpose (e.g. (Chatziioannou et al., 1999; Del Guerra and Belcari, 2002; Tai 

et al., 2003). Unfortunately, the advances in the field were still not sufficient to 

achieve desirable imaging resolution to anatomically identify structures in the 

mouse brain with high confidence. Moreover, similar to fMRI, perfusion- or 

glucose-based PET is usually acquired in the sedated animal, further limiting its 

use in animal research. Furthermore, the rather short half-life time of the tracer 

does not permit the accumulation of the signal over the course of extended 

training protocols.  

An interesting approach to circumvent all the limitations described here is 

the combination of MRI with an activity tracer that acts both as a functional 

activity marker and as a contrast enhancer, improving the resolution of the 

acquired images. This approach was established for rodents using manganese 

ions (Mn2+) as the activity tracer, exploiting its biophysical similarity to Ca2+, 

which allows its entrance in active neurons through calcium channels. This 

technique is named manganese-enhanced magnetic resonance imaging 

(MEMRI).    
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Manganese enhanced magnetic resonance imaging (MEMRI)  

The need to non-invasively analyze brain morphology and function in vivo 

led to the development of magnetic resonance imaging (MRI). This method was 

first developed for human subjects and later adapted to non-human primates 

and rodents (Denic et al., 2011). MRI is based on the physical properties of 

hydrogen nuclei, which are ubiquitous present in animal soft tissue due to its 

high water content, to interact with magnetic fields. That is, when exposed to an 

external magnetic field hydrogen nuclear spins interact with it by adapting two 

different energy states. Using external radiofrequency pulses, these energy 

states can be perturbed, and spins will return to their equilibrium state by two 

fundamental relaxation processes: longitudinal relaxation and transverse 

relaxation, represented by the relaxation times T1 and T2, respectively. The 

response of the nuclear spins can be recorded by the receiver coil of the scanner 

and will eventually form an image of the body or organ under study  (Schröder 

and Faber, 2011). The values of the relaxation times (T1 and T2) are constant to 

a given tissue in physiological conditions and may differ among tissues. For that 

reason, they are also referred to as time constants of specific tissues. The 

distinct time constants of different tissues result in different image contrasts, 

allowing the segregation and identification of different structures within the 

sample. Pathological conditions, such as the presence of tumors alter the 

concentration of water and/or lipids of the tissue, therefore also altering its time 

constants, leading to a modification of its contrast acquired by MRI. For that 

reason, MRI is a valuable clinical tool to assess pathological alterations in tissue, 

such as to detect tumors. Moreover, MRI can also detect brain function 

(functional MRI or fMRI) using blood oxygen levels as a hallmark of cellular 

activity. Thus, brain structures with higher blood oxygen level dependent 

(BOLD) signal would be detected as more active at that specific time point and 

could be correlated to specific actions performed by the subject at that moment. 

This is a vastly used and popular method which can be applied in diverse 

investigations of brain function and possibly related behaviors. However, as 

discussed in the previous section, technical limitations, such as the need to 

perform the task of interest inside the scanner and the required immobility of 
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the subject’s head (mandatory anesthesia for mice) during scanning, do not 

allow us to implement this method in our investigation. An alternative approach 

that fits all our technical demands is manganese-enhanced MRI (MEMRI).   

MEMRI has the potential to non-invasively map whole-brain activity and 

identify structures possibly related to a specific task (Chen et al., 2007; Bissig 

and Berkowitz, 2009; Eschenko et al., 2010; Bangasser et al., 2013; Chen et 

al., 2013; Hoch et al., 2013; Tang et al., 2016; Laine et al., 2017) since Mn2+ 

enters active neurons through voltage-gated calcium channels (Drapeau and 

Nachshen, 1984) (e.g., Cav1.2; (Bedenk et al., 2018)), and is transiently kept 

intracellularly (Gavin et al., 1990). Mn2+ shortens the T1 relaxation time of 

water (Spiller et al., 1988; Nordhoy et al., 2004) leading to a contrast increase 

in T1-weigthed images (Pautler and Koretsky, 2002). Brain structures that 

accumulate Mn2+ can be detected as hotspots in T1-weighted images, indicating 

higher neuronal activity in these areas (Lin and Koretsky, 1997). This technique 

modality is also referred to as activation-induced manganese-dependent MRI 

(AIM-MRI) (Tambalo et al., 2009). If the integrity of the blood-brain barrier is 

disrupted, even dynamic accumulation of Mn2+ can be observed in a single 

experimental session (DAIM-MRI) (Aoki et al., 2002).  

MEMRI is also used for tract-tracing (for review see (Pautler et al., 2003)), 

since Mn2+ can be axonally transported to neuronal terminals after local MnCl2 

administration (Sloot and Gramsbergen, 1994; Pautler et al., 1998), revealing 

the underlying circuitry of the injection target. During this process, Mn2+ may 

cross one or more synapses (Pautler et al., 1998). We have recently shown that 

Mn2+ preferentially accumulates in projection terminals of the active entrance 

sites after systemic MnCl2 administration (Bedenk et al., 2018). This feature of 

Mn2+ allows for the combination of activity-induced dissection of structures 

related to a specific behavior, and the connectomics analysis of the neuronal 

pathways underlying these brain structures. In that way, MEMRI does not only 

provide a snapshot of the structures active in response to a given task, but also 

reveals the downstream connectivity of these brain structures. This results in a 

functional connectivity map. Furthermore, the possibility of scanning the same 
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animals at different time points allows for dynamic investigations of the 

functional circuitry in a within-subject fashion, thus reducing the number of 

required subjects while increasing the power of such studies (thus subserving 

the 3-Rs principle for ethical use of animals in testing). 

Despite those features, MEMRI is still not widely used, partially due to risk 

of potential toxic side effects, but also due to insufficient information regarding 

Mn2+ dynamics in the brain, confounding the interpretation of the results. Some 

properties, such as activity dependent entrance into cells via voltage-gated 

calcium channels (Drapeau and Nachshen, 1984), transient intracellular storage 

(Gavin et al., 1990), and preferential accumulation in projection terminals 

(Bedenk et al., 2018) have previously been reported. However, other properties 

such as the influence of neuronal activity state on intracellular Mn2+ storage and 

axonal transport have been debated in the literature with inconclusive findings. 

Therefore, a more explicit description of Mn2+ dynamics in the brain is still 

lacking and needs to be investigated. 

 

 Causal involvement of brain structures in given functions and 

modulation of neuronal circuits 

In order to identify structures possibly involved in a specific action-

outcome one needs to carefully tell apart correlation from causality. Correlation 

might suggest involvement but does not imply causality. Two correlated factors 

(A and B) might be caused by a third one (C) not causally connecting the two 

first. In this case, C causes A and also causes B. So, C and A are causally 

involved, and C and B as well, but A and B are not. The correlation between 

factors A and B might be positive or negative, depending on how C affects each 

of the individual factors. Therefore, one can extract possible candidate factors 

(effectors or outcomes) from correlations but needs to analyze each factor 

independently in order to check for causality. In the framework of neuroscience, 

causality (is the structure of interest necessary, essential or only sufficient?) 

might be tested by manipulations of brain activity of certain structures and/or 

neuronal populations and analyses of its outcomes, as it will be discussed in the 
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following paragraphs. For a structured overview of the methods presented below 

(and others) please see figure 1. 

The first attempts to identify brain structures putatively involved in given 

functions (cognitive, motor, etc) employed mechanical lesion techniques (e.g. 

stab wounds or surgical extraction) (e.g. (Lashley, 1950)) of the structure under 

study. The crudeness of these methods made it difficult to establish the 

implications of the specific structures since it affected many other regions of the 

brain, either directly by co-removal or de-afferentiation (McWilliams and Lynch, 

1978), or indirectly by compensatory mechanisms or inflammation secondary to 

the lesion (Dusart and Schwab, 1994). Nevertheless, valuable information, such 

as the involvement of the hippocampus in memory formation, could be acquired 

by the pioneer studies of Brenda Milner with a famous neuroscience subject in 

history, Henry Molaison (H.M.; 1926-2008), whose hippocampi (and 

parahippocampal regions) were surgically removed for treating a persistent case 

of temporal lobe epilepsy (Augustinack et al., 2014). Interestingly, H.M. could 

not form new explicit memories from the day of his surgery, but had his past 

and implicit memories unaffected (Milner and Penfield, 1955; Scoville and 

Milner, 1957; Penfield and Milner, 1958). This indicated that the hippocampus 

was fundamental for retaining new information, but it was not necessary for the 

storage of previous experiences. However, this successful case of investigation 

of brain function through removal of a specific structure is an exception, and the 

methods for such types of studies are constantly evolving to make the 

manipulations as specific and controlled as possible. 

 Following-up after the mechanical lesion methods previously used, 

electrolytic  and excitotoxic lesions (e.g. (Agid et al., 1974)) were also employed 

(and are still, currently) for the inactivation of specific brain structures. The 

main principal of these methods is the functional inactivation (silencing) of a 

given brain region by the local administration of a current or excitotoxin, 

respectively for each method, which will alter the intracellular balance of the 

neurons leading to cell death. Some examples of commonly used excitotoxins 

are ibotenic acid and N-methyl-D-aspartate (NMDA) (Winn et al., 1984; Wang et 
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al., 1991). Despite its extensive use, these methods lack precision since the 

extent of the lesion caused by these manipulations is hard to limit and define, 

and the lesions are nonspecific in their effects on different cell types. 

Furthermore, these interventions may cause inflammation in brain regions far 

from but connected to the lesion site (Block et al., 2005). Additionally, 

electrolytic lesions might also affect traversing fibers from other brain regions 

near the lesion site (Kirby et al., 2012). Moreover, the lesions caused by these 

methods are permanent.  

Aiming at reversibility of the manipulations the pharmacological approach 

was developed. With pharmacological inactivation (also referred to as 

pharmacological lesion or transient lesion) silencing of the brain region of 

interest is transient (variable duration from minutes to hours depending of the 

drug used), allowing longitudinal studies and within-subject comparisons, on top 

of decreasing possible compensatory mechanisms. However, the temporal 

control of this manipulation might not be ideal for many types of investigations 

and the drugs used might affect different neuronal populations. Also, these 

manipulations might be hard to delineate and limit to the target region. In 

addition, despite the transient aspect of the interventions, these approaches 

might be problematic when repeated treatment is necessary, given their 

extended invasive nature which causes tissue trauma. 

Lesions and pharmacological inactivation result in a more or less complete 

omission of neuronal activity in the target brain structures. But, how could one 

study the impact of increased neuronal activity? Until some years ago, this was 

virtually impossible. However, a recently developed technique, named 

optogenetics  (Deisseroth, 2011), allows performing such investigations. 

Optogenetics employs light-activated proteins (rhodopsins) extracted from 

algae, or bacteria, which can work as a switch (on or off) of neuronal activity. 

The rhodopsin genes can be either inserted in viral vectors to be injected in 

target brain structures or be genetically encoded in transgenic mouse lines (e.g. 

Nex-Cre-ChR2, used in this work). The transfected cells carry rhodopsins and 

can be controlled by specific focal light stimulation with so far unprecedented 
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temporal (millisecond scale) and spatial precision. Moreover, the rhodopsins 

might be targeted to specific cell-types, depending of the promotor of the viral 

vector or specific transgenic mouse line. Even though optogenetics is an elegant 

technique it has also some limitations. Its modulation effect is mostly 

categorical, i.e. neuronal activity is either turned on or off, with few gradual 

states. Moreover, the light is delivered by a focused light beam, which has a 

small diameter (approximately 200 μm), making it difficult to be employed for 

the analysis of bigger areas or entire brain structures. Furthermore, the laser 

stimulation also creates an artificial synchronized activity in the target areas, 

which is not necessarily present under natural conditions. Lastly, this it is an 

invasive technique, requiring the implantation of an optical fiber above the 

target area. 

A novel pharmacogenetic (also referred to as chemogenetics) tool may 

help to overcome these disadvantages: Designer Receptor Exclusively Activated 

by Designer Drug (DREADDs) (Armbruster et al., 2007; Farrell and Roth, 2013; 

Roth, 2016). This technique is based on mutated G protein-coupled muscarinic 

receptors, which are selectively activated by a designer drug, clozapine-N-oxide 

(CNO), but not by endogenous acetylcholine. This allows the non-invasive 

modulation of cell activity in a bidirectional manner (depending on the type of 

receptor, activator or inhibitor). Another advantage of the DREADDs is the 

control of the cell activity in a gradual manner, not only by switching on or off. 

Moreover, it allows the experimenter to affect larger brain structures and even 

multiple brain structures at the same time, either by targeting it by viral vector 

injections or in a cell type specific manner with transgenic mouse lines (Roth, 

2016).     

The different techniques described here might be useful to answer 

multiple questions related to the causal involvement of specific brain structures 

in a given behavior, for example. However, it is important to note that these 

artificial manipulations (specially the activation) only inform us of what the brain 

structure or neuronal populations might do and not what they really do in 

physiological situations. Therefore, one needs to be careful with the 
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interpretation of such results and should not overlook the fact that the brain is a 

complex and integrated organ that needs all its parts to work well and timed in 

order to keep balance and produce normal behavior. 

 One possible interesting target for neural manipulation and causal testing 

of its involvement on spatial cognition is the medial prefrontal cortex (mPFC) 

and two of its main pathways mPFC-HPC and mPFC-BLA, as described below. 

 

 The medial prefrontal cortex and basolateral amygdala 

involvement in strategy switch 

 The prefrontal cortex (PFC) is involved in a variety of cognitive functions, 

such as decision making (for review see (Euston et al., 2012)), attentional 

processing (Dalley et al., 2004; Kesner and Churchwell, 2011), working memory 

(for review see (Funahashi and Kubota, 1994; Jones, 2002)) and goal directed 

behavior (Feierstein et al., 2006) Interestingly, the PFC is not a homogeneous 

structure and is divided in several sub-regions along its dorsal-ventral axis 

(Delatour and Gisquet-Verrier, 2000). These are anatomical distinct sub-regions 

which sub-serve specific functional properties (Cook and Kesner, 1988; 

Seamans et al., 1995; Heidbreder and Groenewegen, 2003; Cassaday et al., 

2014; Hardung et al., 2017). In the spatial learning framework, different 

prefrontal sub-regions of rodents, as the orbitofrontal cortex (OFC) and the pre- 

(PrL) and infralimbic (IL) cortices were already described to be involved in 

distinct processes of behavioral flexibility. More specifically, the OFC mediates 

reversal learning of a previously acquired rule (McAlonan and Brown, 2003), 

while the medial PFC (mPFC) regions PrL and IL are necessary for strategy 

switch (or rule shift) (Ragozzino et al., 1999; Rich and Shapiro, 2007) but not 

for reversal learning (Ragozzino et al., 1999). This means that the OFC mediates 

learning of a new location target (e.g. escape platform or reward location in a 

maze), using the same rule as used to learn the old location. In contrast, the 

mPFC mediates learning of a new rule to find the novel location target (e.g. a 

place strategy instead of response strategy). 
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 The mPFC receives direct innervation from the hippocampus (Jay and 

Witter, 1991; Thierry et al., 2000; Hoover and Vertes, 2007) and it modulates 

learning and memory  (Doyere et al., 1993) by altering hippocampal 

computations, such as place field spatial tuning and stability (Kyd and Bilkey, 

2003). Therefore, the mPFC seems to coordinate information received from the 

hippocampus and inhibit associations that are no longer relevant for the 

situation, allowing adaptation of behavior (Oualian and Gisquet-Verrier, 2010) – 

also known as behavioral flexibility. Lesions or inactivation of the mPFC do not 

affect learning of a rule (Ragozzino, 2007) but lead to perseverance in an 

outdated strategy (Ragozzino et al., 1999; Block et al., 2007), decreasing 

performance success when the requirements of the environment are changed. 

Recordings of mPFC neurons confirm their selective coding of strategy switches 

(Rich and Shapiro, 2009).       

 The basolateral nucleus of the amygdala (BLA) is also involved in the shift 

of different spatial navigation strategies. As mentioned before, during stressful 

situations, or upon anxiogenic drugs administration, mice and men tend to adopt 

response-based strategies more frequently then place-based strategies when 

given free choice (Packard and Wingard, 2004; Elliott and Packard, 2008; 

Schwabe et al., 2008). It was already described that corticosteroids and 

concurrent noradrenergic activation are responsible for this unidirectional shift 

(Schwabe et al., 2010c; Schwabe et al., 2010a). The release of stress hormones 

and its binding to glucocorticoid receptors (GR) and mineralocorticoid receptors 

(MR) in response to stress exposure (Schwabe et al., 2010b; Vogel et al., 2016) 

alter functional connectivity of brain networks favoring striatal pathways (that 

support response learning) in detriment of hippocampal pathways (that support 

place learning) (Schwabe et al., 2013; Vogel et al., 2015). This functional 

connectivity shift is mediated by the BLA (Packard et al., 1994; Kim et al., 2001; 

Elliott and Packard, 2008), which is anatomically connected to both 

hippocampus (for review see (Pitkanen et al., 2000; McDonald and Mott, 2017)) 

and striatum (Kita and Kitai, 1990), and is where the interaction between 

glucocorticoids and noradrenaline takes places (Schwabe et al., 2010a). Thus, 
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the BLA is a key modulator structure of different memory systems and 

fundamental for the switch of learning strategies under stress. 

   When trained to find a hidden reward in a dry maze, animals generally 

have an initial preference for allocentric strategies (place learning) and tend to 

switch for habitual strategies (response learning) with extensive training 

(Packard and McGaugh, 1996; Chang and Gold, 2003; Colombo et al., 2003; 

Jacobson et al., 2012). In contrast, the opposite is observed when dual solution 

water based tasks are used (Kleinknecht et al., 2012; Asem and Holland, 2013). 

There are speculative reasons for these opposing behaviors observed with the 

two different types of spatial tests: (i) is perhaps due to the stress caused by 

the water, leading to a shift to the preferable use of response learning; (ii) by 

the need to search in a broader way for food (hidden in diverse locations, in a 

real-life setting), requiring the formation of a cognitive map of the environment, 

in comparison to the need of an immediate response to escape from water 

(Asem and Holland, 2013). Independently of the reasons behind it, the 

mechanisms supporting this switch during learning of the tasks are still not 

known. 

Despite all the information of the involvement of the mPFC and the BLA 

on strategy switch after initial learning, when the requirements of the 

environment change, the possible roles of these structures on strategy switch 

during initial learning are still not described.  
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 Aim and objectives 

 

The aim of this study was to identify the brain structures involved in 

different spatial learning strategies in mice in vivo in a whole brain voxel-wise 

manner. 

More specifically, we had the following objectives: 

1. Investigate Mn2+ dynamics (neuronal activity-dependent entrance, 

accumulation and transport) in the mouse brain using manganese-enhanced MRI 

(MEMRI); 

2. Visualize in vivo with MEMRI, in a whole brain voxel-wise manner, the 

brain structures involved in learning in the water cross maze (WCM) through 

either place learning (PL) or response learning (RL) strategies; 

3. Functionally test selected brain structures (identified in the previous 

objective) through neuronal activity manipulation (stimulation/inhibition) via 

chemo- and optogenetics in combination with the WCM. 

4. Functionally test the involvement of the vHPC-mPFC pathway in strategy 

switch during learning in the WCM. 
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 MATERIALS AND METHODS 

 

All experiments were carried out according to the European Community 

Council Directive 2010/63/EEC. All experimental procedures were approved by 

the local government of Upper Bavaria (AZ 142-12). Every effort was done to 

keep the number of experimental subjects at a minimum and to avoid animal 

suffering. 

 

 Animals 

A total number of 171 adult male C57BL/6N, Nex-Cre-ChR2-YFP or Nex-Cre 

mice, from our local breeding stock (Max Planck Institute of Biochemistry, 

Martinsried, Germany), were used in the experiments of this thesis. Mice were 2 

to 6 months of age at the time of experiments. They were single housed (except 

where indicated otherwise) and maintained in a room with controlled humidity 

and temperature, under a 12h dark/light cycle, with water and food at libitum. 

After transfer to the local animal facility at the Max Planck Institute of 

Psychiatry, mice were allowed to get accustomed to the holding conditions 

(standard macrolon cages type II; 267 × 207 × 140 mm, floor area 370 cm2; 

Tecniplast, Italy) for at least 10 days before experiments started. 

 

Generation of transgenic mouse lines 

The generation of the Nex-Cre and Nex-Cre-ChR2-YFP mouse lines was 

performed as previously described (Reichel et al., 2016). Briefly, the Nex-Cre 

driver line was generated by a knock-in of Cre into the Nex-locus  (Goebbels et 

al., 2006). This allowed the selective expression of Cre in forebrain 

glutamatergic neurons. The Nex-Cre-ChR2-YFP mouse line was generated by 

breeding heterozygous Nex-Cre mice to homozygous Ai32 mice (Madisen et al., 

2012) purchased from the Jackson Laboratory; Ai32:Nex-Cre). This crossing 
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resulted in a mouse line which selectively expresses ChR2 tagged with YFP in 

forebrain glutamatergic neurons. 

 

 Drugs 

- Vetalgin (MSD Animal Health, Unterschleißheim, Germany) was dissolved in 

0.9% NaCl to a final concentration of 50 mg/ml. 

- Metacam (Boehringer Ingelheim Vetmedica GmbH, Germany) was dissolved in 

0.9% NaCl to a final concentration of 0.1 mg/ml. 

- MnCl2 × 4H2O (Sigma-Aldrich, Steinheim, Germany) was dissolved in 0.9% 

NaCl to a final concentration of 50 mM (4947.5 mg−500 mL saline). The pH was 

adjusted to 6.95 with NaOH. 

- Ketamine + xylazine solution: 138 mg of ketamine and 6.8 mg of xylazine/10 

mL solution (0.9% NaCl). 

- Clozapine N-Oxide (Tocris Biosciences, Bristol, UK) was dissolved in DMSO 1% 

(0.9% NaCl solution) to a final concentration of 5 mg/ml. 

 

 Viral vectors 

- AAV5-CamKII-ArchT-GFP (UNC Vector core, Chapel Hill, USA); titer: 4.00 x 

1012 gc/ml; 

- AAV8-CamKII-hM4D(Gi)-mCherry (Addgene, Cambridge, USA); titer: 2.64 x 

1012 gc/mL; 

- pAAV8-hSyn-DIO-hM4D(Gi)-mCherry (Addgene, Cambridge, USA); titer: 2.06 

x 1012 gc/ml; 

- pAAV8-hSyn-DIO-mCherry (Addgene, Cambridge, USA); titer: 3.07 x 1012 

gc/ml. 
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  Preparation of optic fiber implants  

 Optic fiber implants for optogenetics were manufactured in house by the 

experimenter. The preparation procedure (adapted from (Sparta et al., 2011)) is 

fully described in the Appendix of this thesis. Briefly, the implants were 

comprised of an optic fiber (0.39 NA, Ø200 µm Core Multimode Optical Fiber, 

ThorLabs, Newton, NJ, USA) fixed to a ceramic ferrule (Ø1.25 mm Multimode LC 

Ceramic Ferrule, Ø230 µm Hole Size, ThorLabs, Newton, NJ, USA). The length of 

the fiber was adapted to the need of each experiment, depending on the depth 

of the implantation target (e.g. dHPC or vHPC). 

 

  Surgeries  

Animals received an intraperitoneal injection of an analgesic (200 mg/kg 

Vetalgin, MSD Animal Health, Unterschleißheim, Germany), before being 

anesthetized. Next, they were anesthetized with an isoflurane-oxygen mixture 

(4.5% for induction and 1.5.% for maintenance, with an oxygen flow of 1.0–1.4 

L/min) and mounted in a stereotactic frame (Kopf Instruments, Tujunga, CA, 

USA) where they were head fixed (frontal teeth, snout and ear bones). Eyes 

were protected from drying by the application of an eye cream (Bepanthen, 

Bayer Vital, Leverkusen, Germany). Body temperature was maintained by a 

water-based heating pad positioned under the mice. Following animal’s 

stabilization and verification of surgical tolerance, the hair on top of his head 

was shaved and a local anesthetic (10% Lidocaine spray, AstraZeneca, Wedel, 

Germany) was applied on the skin. After 5 min, a longitudinal incision was made 

on the skin, extending from behind the eyes line until just before the ears line. 

The coordinates for lambda and bregma were set as references in order to reach 

the target coordinates. Small holes were carefully drilled on the skull above the 

target coordinates and the dura mater (if still present) was removed with a 

sterile 25 G needle. The injection needle (Hamilton neuro syringe, Hamilton 

Company, Planegg, Germany) – or fiber tip, in case of implantation of optic 

fibers – was slowly lowered until the specific depth, determined by the dorso-



28 
 

ventral coordinate (DV), and the injection started. The correct volumes and 

injection rates were achieved with the use of a microinfusion pump (for specific 

injection volumes and rates see detailed injection protocols below). The needle 

was left in place for 5 min, to avoid reflux, before it was slowly pulled up. The 

procedure was repeated for the next hemisphere. Following the end of the 

second injection (or fiber implantation), animals received an intraperitoneal 

injection of analgesic (0.5 mg/kg Metacam, Boehringer Ingelheim Vetmedica, 

Rohrdorf, Germany) and the head incision was sutured and disinfected (Braunol, 

Braun Melsungen, Melsungen, Germany). Animals were placed in a clean warm 

cage until waking up.    

In the first 5 days after surgery, the health status of the animals was 

daily inspected on basis of predefined parameters (body weight, motility, 

general behavior, wound appearance, etc) in score sheets and treated with pain 

medication (subcutaneous, 0.5 mg/kg Metacam, Boehringer Ingelheim 

Vetmedica, Rohrdorf, Germany). The post-surgery recovery time before follow-

up experiments was at least 7 days. 

For coordinates, injection volume, rate and complimentary procedures, 

please check below.   

  

Injection of viral vectors 

 General surgery procedures are described above. Specifically, the 

injection targets, volumes and injection rate of the viral vectors were the 

following: 

- The CA3 region of the dorsal hippocampus. Coordinates used for 

injection were: AP: - 1.8, ML: +/-2.4, DV: - 2.2; 500 nL of the viral 

vector AAV5-CamKII-ArchT-GFP were injected at a rate of 100 nL/min. 

- The CA3 region of the ventral hippocampus. Coordinates used for 

injection were: AP: - 2.8, ML: +/- 3.2, DV: - 4.0; 500 nL of the viral 

vector AAV5-CamKII-ArchT-GFP were injected at a rate of 100 nL/min; 
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- The CA1 region of the dorsal hippocampus. Coordinates used for 

injection were: AP: - 2.30, ML: +/- 1.65, DV: - 1.40; 300 nL of the viral 

vector AAV8-CamKII-hM4D(Gi)-mCherry were injected at a rate of 50 

nL/min; 

- The CA1 region of the ventral hippocampus. Coordinates used for 

injection were: AP: - 2.9, ML: +/- 2.8, DV: - 4.5; 300 nL of the viral 

vector AAV8-CamKII-hM4D(Gi)-mCherry were injected at a rate of 50 

nL/min; 

- The infralimbic cortex (IL). Coordinates used for injection were: AP: + 

1.60, ML: +/-0.30, DV: - 2.9; 300 nL of the viral vector pAAV8-hSyn-

DIO-hM4D(Gi)-mCherry or the control pAAV8-hSyn-DIO-mCherry were 

injected at a rate of 50 nL/min. 

For each viral vector, at least 3 animals were injected and histologically 

verified for transfection efficacy (pilot studies not shown here) and localization 

before the injections of bigger cohorts was performed. All the coordinates were 

based on the on “The Mouse Brain in Stereotaxic Coordinates” (Franklin and 

Paxinos, 2007) and tested in our apparatus. Some adjustments were made to 

match specific needs for different mouse lines.  AP, ML and DV values are 

described in reference to bregma, midline and surface the skull, respectively. 

 

Optic fibers implantation 

 General surgery procedures are described above. After the optic fiber tip 

was lowered until its target, the implant was fixed to the skull with dental 

cement carefully placed to avoid covering lambda and bregma and the upper 

half of the implant’s ferrule. After the dental cement was dry and hard, the 

procedure was repeated (including the setting of lambda and bregma) in the 

next hemisphere. Finally, the whole surface of exposed skull was covered by 

dental cement. 

Specifically, the optic fiber implants were targeted at:  
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- The CA1 region of the dorsal hippocampus. Coordinates used for 

implantation were: AP: - 2.30, ML: +/- 1.65, DV: - 1.30; 

- The CA3 region of the dorsal hippocampus. Coordinates used for 

implantation were: AP: - 1.8, ML: +/-2.4, DV: - 2.0; 

- The CA3 region of the ventral hippocampus. Coordinates used for 

implantation were: AP: - 2.8, ML: +/- 3.2, DV: - 3.8. 

 

For the experiments where optogenetics was combined with behavioral 

tests, in addition to the fiber implants, 4 small metal screws were also fixed to 

the skull of the mice during surgery. The screws were placed in the rostral part 

of the skull, 2 per hemisphere, and were fixed superficially to the skull only, not 

protruding down to the brain. The screws were used to increase the stability of 

the fiber implants fixation and avoid that the construct mounted on the skull 

would fall. This surgery stage was not performed for the experiment where 

optogenetics was combined with MEMRI, because animals cannot be scanned 

when they have metal parts on their bodies.      

 

Injection of retrograde tracer (fluorogold) 

 General surgery procedures are described above. Specifically, bilateral 

injections of fluorogold (FG; Fluorochrome, Denver, USA; 1% in distilled H2O) 

were targeted at the infralimbic cortex (IL). The coordinates used for injections 

were: AP: + 1.60, ML: +/-0.30, DV: - 2.9. The total volume of 250 nL was 

injected in a rate of 25 nL/min. 
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 Histology 

 

Histological verification of fluorophores 

 The viral vectors used in this work carried a fluorophore (GFP or mCherry, 

indicated for each experiment) to allow histological verification of transfection 

efficacy and location.  

After the end of the behavioral experiments, animals injected with the 

viral vectors at least 4 weeks before were sacrificed, had their brains removed 

and snap frozen in chilled methyl-butane. Brains were kept frozen at -80oC until 

sliced with a cryostat into 30 µm sections and collected onto a glass slide. The 

slides were stored at -20oC until microscopic analysis. For microscopic analysis 

the slides were mounted with the antifade mounting medium Vectashield hard 

set with DAPI (Vector Laboratories, Burlingame, CA, USA) and coversliped. After 

hardening, the slides were checked under an epifluorescence microscope 

(Axioplan 2 Imaging, Zeiss, Oberkochen, Germany) with the appropriate filters 

for each fluorophore wavelength and for DAPI. Pictures of the brain sections 

were made using a digital camera (AxioCam MRm, Zeiss, Oberkochen, 

Germany) coupled to the microscope.  

 

Histological verification of fluorogold  

 Five to six days after fluorogold injections, mice were transcardially 

perfused with 4% PFA-PBS and had their brains removed. Brains were post-fixed 

overnight in 4% PFA-PBS and later cryoprotected with a 30% sucrose solution 

(with 0.5% PFA). Samples were stored at 4o C for at least 2 days until further 

processing for histological verification of the fluorescent tracer. Fixed brains 

were sliced in a vibratome into 30 µm sections and collected onto a glass slide. 

For microscopic analysis the slides were mounted with a 50% glycerol-PBS 

solution, coversliped and sealed with transparent nail polish on its borders. After 

drying, the slides were checked under an epifluorescence microscope (Axioplan 
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2 Imaging, Zeiss, Oberkochen, Germany) with the appropriate filter for 

fluorogold (DIC filter). Pictures of the brain sections were made using a digital 

camera (AxioCam MRm, Zeiss, Oberkochen, Germany) coupled to the 

microscope.  

 

 Water Cross Maze (WCM)  

 

Apparatus, room setup and general procedure 

The water cross maze (WCM; figure 2) consists of a transparent acrylic 

glass apparatus with four arms (50 cm long, 10 cm wide and 30 cm high) 

arranged in a cross shape and a center zone (10 cm x 10 cm) that connects the 

four arms. The arms were labeled North (N), East (E), South (S) and West (W) 

in clockwise order. The apparatus and its removable pieces were custom made 

at the MPI of Psychiatry, Munich. A removable guillotine door (arm blockade) of 

transparent acrylic glass was used to transform the cross maze into a T maze 

(Tolman et al., 1946), always blocking the arm opposite to the start arm (see 

Protocols below for details). A transparent acrylic glass platform (8 cm x 8 cm, 

10 cm high) was placed inside maze, by the end of one of its arms (W or E), as 

indicated in the protocols below. 

The maze was placed on top of a desk 65 cm elevated from the floor, in 

the middle of the experimental room (3 m x 4 m). The room displayed several 

visual cues arranged in a fixed and unspecific order, as a door to an adjacent 

room where the animals where housed, a sink with a cabinet below it, an 

emergency exit door, ventilation tubes on the ceiling and a small desk with a 

computer. As indicated by pilot tests (not shown here), there were no dominant 

cues or a preferred wall/side by the animals. There were no overt acoustic or 

odor cues in the room. Background noise consisted of air conditioning sound. 

The room was dimly lit with two table lamps fixed to the side walls and with light 

directed to the walls, not to the maze.    
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In the beginning of every testing day the maze was filled with tap water 

at 22oC (+/- 1oC) to the height of 11.5 cm above the maze floor. The surface of 

the escape platform, placed in the end of the one of the arms (W or E; see 

details under Protocols), was 1.5 cm under the water and it was not visible to 

the mice. The guillotine door was placed opposite to the start arm, in order to 

block this arm directly in front of the starting point, forcing the animals to swim 

left or right instead of straight ahead. The cages of single-housed mice were 

individually transported from the adjacent holding room to the test room and 

placed on top of the sink bench. Mice were gently taken out of the cage and 

placed on the water, facing the wall of the start arm of the maze. The 

experimenter stood still, approximately 20 cm behind the start arm wall, for the 

duration of the trial. Mice were given up to 30 s to swim and climb to the escape 

platform and were allowed to remain there for 20 s (for testing days 1 and 2) 

before being taken out (with a texturized small shovel) by the experimenter. If 

the mice did not find the platform within 30 s they were guided to it. Mice were 

given 6 trials per day, with the start arm positions North (N) or South (S) 

allocated in a pseudo-random order (e.g. N-S-S-N-N-S or S-N-N-S-S-N). The 

walls of the maze were wiped with a soft towel between every trial and the 

water was stirred every 6 trials to avoid possible odor cues of urine. For full-day 

experiments, part of the water of the maze was renewed in the break between 

morning and afternoon sessions. After each trial, mice were taken out of the 

maze and placed back in the home cage which was returned to the holding room 

and partially positioned under red warm light, so the animals could dry and 

recover their temperature. The behavioral parameters (see description below) 

were recorded manually on site by the experimenter.  
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Figure 2: Water cross maze (WCM) setup and learning protocols. (A) Picture of 

the apparatus filled with water, indicating the length of the arms (50 cm); 

representative image (upper view) of the maze, indicating the orientation of the arms 

(N, E, S and W) and location of platform, blockade and wrong platform sector for a trial 
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starting in the S arm. (B) Representation of the learning protocols (upper panel), place 

learning (PL) and response learning (RL), starting from south (S) and north (N); and 

reversal learning protocols following PL or RL. (modified from (Kleinknecht et al., 2012)). 

 

Protocols 

Animals underwent 6 trials per day (as described in details below) for up 

to 7 consecutive days (d1-d7, week 1; indicated in each experiment), following 

a specific learning protocol: place learning (PL) or response learning (RL). For 

the experiments in which the WCM was combined with MEMRI the behavioral 

protocol was extended to 8 days (d1-d8). In case of animals that were also 

subjected to reversal learning (see below), this protocol was applied in the 

second week of experiments (d9-d11, week 2; indicated in each experiment). 

For the experiments in which the WCM was combined with optogenetic inhibition 

of the hippocampus the second week (d9-d13, week 2) of WCM had the same 

protocol as the first week, and it was considered a recall week.  

Place learning (PL): in this learning protocol animals count on visual extra-maze 

distal cues to orient themselves and form a cognitive map of the environment. 

Therefore, they should be able to find the escape platform independently of the 

start location. Since the walls of the maze are transparent, mice can see the 

room cues from inside the maze and use it in order to learn where the platform 

is. For this protocol, the platform location was fixed (end of W or E arm, 

balanced between groups; except for WCM+MEMRI experiment, where the 

platform was always in the W arm) throughout the duration of the experiment 

(6 trials per day, up to 8 days) and the start positions varied between N or S in 

a pseudo-random order (e.g. day 1: N-S-S-N-N-S, day 2: S-N-N-S-S-N, etc). 

The arm opposite to the start arm was always blocked by a removable 

transparent guillotine door.       

Response learning (RL): in this learning protocol animals rely on their body 

movements (either turn right or left) in order to navigate to the escape 

platform. Learning the position of the extra-maze cues is not necessary for 

performing this protocol. The start positions varied between N or S in a pseudo-
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random order (e.g. day 1: N-S-S-N-N-S, day 2: S-N-N-S-S-N, etc) and the 

platform location varied according the start arm, always in a specific 

combination (e.g. start arm N, platform E and start arm S, platform W, for 

animals learning to turn left). The arm opposite to the start arm was always 

blocked by a removable transparent guillotine door.     

Reversal learning: this is a sub-protocol of the previously described PL and RL, 

designed to test the animal’s behavioral flexibility. To perform this protocol 

correctly, animals had to update the platform location learned the week before. 

Specifically, animals that underwent place leaning with the platform location on 

the W during week 1, had to learn the new platform location on the E during 

week 2, and vice-versa. Conversely, animals that underwent response learning 

with a left turn during week 1, had to learn to turn right in order to find the 

platform during week 2.    

Spaced training: mice were trained in cohorts of 5-6 (unless otherwise stated) in 

a spaced manner (mouse 1 trial 1, …, mouse 6 trial 1, mouse 1 trial 2, etc; 

figure 3A), allowing an inter-trial interval (ITI) of approximately 10-15 min for 

each mouse. This is the standard training protocol and it was used for most 

experiments (if not stated otherwise) shown here.  

Massed training: mice were trained individually in a massed manner (mouse 1 

trial 1, mouse 1 trial 2, …, mouse 1 trial 6, mouse 2, trial 1, etc; figure 3B), 

allowing an inter-trial interval (ITI) of approximately 3 min for each mouse. This 

training protocol was used when optogenetic approaches were combined with 

the WCM to avoid that the animals would have cables connected/disconnected 

multiple times within the same day. Cables were connected only once daily, 10 

min before the recall trials (week 2) started. Animals had this time to get 

accustomed to the connecting cables and to rest before the test started. During 

these 10 min animals were maintained in their home cages (without a lid) 

placed inside a black bucket (blind box) on top of a small stool positioned in 

front of the start arm of the maze. In between trials animals were maintained in 

the same cage and the stool was moved to face the new start arm, when it was 

the case. 
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Massed alternated training: mice were trained in cohorts of 2 in massed 

alternated manner (mouse 1 trial 1, mouse 2 trial 1, mouse 1 trial 2, etc; figure 

3C), allowing an inter-trial interval (ITI) of approximately 3 min for each mouse. 

This training protocol was used when chemogenetic approaches (DREADDs) 

were combined with the WCM to facilitate the logistics of CNO injections and 

WCM training in parallel.    

 

 

Figure 3: Training protocols with different distribution of the trials. (A) Spaced 

training: each trial is performed by all mice (cohorts of up to 6 mice) before the next 

trial starts (i.e., mouse 1 trial 1, …, mouse 6 trial 1, mouse 1 trial 2, etc), allowing an 
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inter-trial interval (ITI) of approximately 10-15 min for each mouse. (B) Massed 

training: each mouse performs all daily trials (1-6) before the next mouse starts (i.e., 

mouse 1 trial 1, mouse 1 trial 2, …, mouse 1 trial 6, mouse 2, trial 1, etc), allowing an 

inter-trial interval (ITI) of approximately 3 min for each mouse. Since the training is 

individual, the cohort size is variable and the number given here (6) is only an example. 

(C) Massed alternated protocol: the trials are performed in an alternated manner by 2 

mice and only after these individuals finish all 6 daily trials the next two mice start (ie., 

mouse 1 trial 1, mouse 2 trial 1, mouse 1 trial 2, mouse 2 trial 2, etc), allowing an inter-

trial interval (ITI) of approximately 3 min for each mouse.  

 

Performance parameters 

Accuracy: accuracy was defined as the percentage of correct trials among the 6 

trials in one day. Animals were arbitrarily considered “accurate” if they reached 

above 83% accuracy (correct performance in at least 5 out of 6 trials). A trial 

was considered correct if the animal swam directly to the target arm and 

climbed the platform. If, after leaving the start arm, the animal swam to the 

arm opposite to where the platform was, swam back to the start arm or swam 

to the target arm but did not climb the platform the trial was considered 

incorrect (inaccurate). 

Latency: latency was measured as the time it took the animals to climb the 

platform. If the animal did not find or did not climb the platform within 30 s 

(total trial time), its latency was considered 31 s. The latency displayed on the 

graphs is the daily average of the individual trials. 

Number of wrong platform visits: if an animal swam all the way to the distal end 

of the arm (last 1/3 part of the arm) opposite to where the platform was located 

a “wrong platform visit” was counted. Note that, in some cases, animals swam 

out and back again multiple times to this incorrect location within the trial 

duration (30 s). The number of wrong platform visits displayed on the graphs is 

the daily sum of the individual trials. 

Accurate learners: this parameter was derived from the accuracy, described 

above. It was simply the percentage of accurate animals (accuracy above 83%) 

within a specific experimental group in a given day. 
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Start bias: this parameter was derived from the accuracy, described above. The 

start bias score was calculated as the module of the difference in number of 

correct trials starting from N and starting from S, for each testing day: start bias 

score = |(# of correct trials N) - (# of correct trials S)|. If an animal would 

perform all trials correctly in a given day, it would have a start bias score of zero 

(3-3=0); while, if an animal would correctly perform only the trials from either 

side, N or S, it would have a start bias score of 3 (3-0=3 or |0-3|=3) and it 

would be considered as a “side biased” animal. This is an informative parameter 

to indicate animals trained under PL that adopt RL instead of the correct 

strategy.  

Good performers versus bad performers: for the segregation of mice under good 

or bad performers the individual accuracy of animals was averaged across all 

training days (d1-d8) and these values were divided by a median split. All mice 

which the accuracy values were above or at the median were considered “good 

performers”; all mice which the accuracy values were under the median were 

considered “bad performers”. 

 

 Manganese enhanced magnetic resonance imaging (MEMRI) 

All MEMRI experiments were conducted on a 7T Avance Biospec 70/30 

scanner (Bruker BioSpin, Ettlingen, Germany). In brief, essentially as described 

before (Almeida-Correa et al., 2018; Bedenk et al., 2018), mice were fixed in 

supine position on a saddle-shaped receive-only coil. Head fixation was achieved 

using a stereotactic device and the frontal teeth were fixed with a surgical fiber. 

Once fixed in the coil, mice were kept anesthetized with an isoflurane oxygen 

mixture (1.0–1.5 vol %, with an oxygen flow of 1.2–1.4 L/min) (Delta Select, 

Germany). A rectal thermometer was used for body temperature monitoring 

(Thermalert TH-5, Physitemp Instruments, USA). Body temperature was kept 

between 36.5◦C and 37.5◦C using a water-based heating pad. Pulse rate was 

continuously monitored by a plethysmographic pulse oximeter (Nonin 8600V, 

Nonin Medical Inc., USA). 
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 In situ hybridization (ISH) 

 Radioactive in situ hybridization for the detection of c-fos mRNA was 

performed as previously described elsewhere (Schmidt et al., 2007). Mice 

underwent learning in the water cross maze (WCM), were sacrificed by 

decapitation 15 min after the last trial on the day they “learned” the task 

(performed at least 5 out of 6 correct trials) and had their brains extracted. This 

time point was set individually for each animal. An even number of home cage 

controls were time-matched. Immediately upon extraction, brains were snap 

frozen in chilled methyl-butane and stored at -80oC. Frozen brains were cut on a 

cryostat in 20 µm sections and mounted on Super Frost Plus glass slides. Slides 

were stored at -20oC until further processing. 

Briefly, for riboprobe in situ hybridization sections were fixed in 4% 

paraformaldehyde (at 4oC), rinsed in PBS/DEPC (3 x 5 min) and acetylated in 

0.25% acetic anhydride in 0.1M triethanolamine/HCl. Next, slides were rinsed in 

2xSSC/DEPC (2 x 5 min) and brain sections were dehydrated in increasing 

concentrations of ethanol (60% / 75% / 95% / 100% EtOH), dipped in 

chloroform and once more in 100% EtOH. Slides were vertically placed in a rack 

and were air dried (dust free) over night. 

The antisense cRNA probes for c-fos were transcribed from a linearized 

plasmid. Tissue sections were saturated with 100μl of hybridization buffer 

containing approximately 1.4×106cpm 35S-labeled riboprobe. Brain sections were 

coverslipped and incubated overnight at 55°C. The following day the sections 

were rinsed in 2×SSC (standard saline citrate), treated with RNAse A (20mg/l) 

and washed in increasingly stringent SSC solutions at room temperature. Finally, 

sections were washed in 0.1×SSC for 1h at 65°C and dehydrated through 

increasing concentrations of alcohol. 

 The slides were exposed to an autoradiography film (Kodak Biomax MR 

films; Eastman Kodak Co., Rochester, NY) and developed after 48h. Images of 

the brain sections were obtained by digitalizing the original film.   
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 Immunohistochemistry (IHC) 

Immunohistochemistry (IHC) for detection of c-Fos positive cells was 

performed as described below. Briefly, 90 min after Y maze exposure, mice were 

transcardially perfused with 4% PFA-PBS and had their brains removed. Brains 

were post-fixed overnight in 4% PFA-PBS and later cryoprotected with a 30% 

sucrose solution (with 0.5% PFA). Samples were stored at 4oC for at least 2 

days until further processing for IHC against c-Fos. Fixed brains were sliced in a 

vibratome into 30 µm sections and collected into wells (24 well plates) filled with 

cryoprotectant solution (125 mL glycerol + 125 mL ethylenglycol + 250 mL 

1xPBS, for 500 mL solution) and stored at -20oC until processing. The next steps 

were performed under gentle shaking (orbital shaker) in room temperature. 

Brain slices were thoroughly washed (3 x 10 min) in PBS before being blocked in 

10% normal goat serum (NGS) for 1h. Next, slices were washed in PBS (3 x 5 

min) and incubated with the primary antibody anti-c-Fos (abl90289; AbCam, 

Cambridge, United Kingdom) 1:500 in PBS + 1.5% NGS for 12h.  Slices were 

washed in PBS (3 x 5 min) and incubated with the secondary antibody, 

biotinylated goat anti-rabbit IgG (BA-1000, Vector Laboratories, Burlingame, CA, 

USA) 1:500 in PBS + 1.5% NGS for 1h. Further, slices were washed in PBS (3 x 

5 min) again and then activated in AB complex (VC-PK-6100, Vectastain ABC, 

Vector Laboratories, Burlingame, CA, USA) for 1h. The following steps were still 

performed in room temperature, but not under gentle shaking. After being 

washed in PBS (3 x 5 min), slices we stained for DAB with Peroxidase Substrate 

Kit (VC-SK-4100) in distilled water. Brain sections were stained for 30 min and 

reaction was stopped in petri dishes filled with tap water. Another round of 

washes was performed (2 x 5 min in tap water and 1 x 5 min in distilled water). 

Next, sections were mounted in microscopy slides (Super Frost Plus glass 

slides), dehydrated in an ethanol series (70% / 96% / 100% EtOH) and cover-

slipped with DPX. Slides were stored horizontally overnight for drying.  

Afterwards, brain slides were analyzed under a microscope and bright 

field images (5x and 10x) of the dorsal hippocampus were acquired by a 
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camera. c-Fos positive cells were then manually quantified by the experimenter 

from the microcopy images (10x). 

 

 Definition of Brain Structures 

Brain structures shown in the figures of this thesis and listed in tables 1 

and 2 were defined using the Allen Mouse Brain Atlas (Lein et al., 2007) 

(http://mouse.brain-

ap.org/experiment/thumbnails/100048576?image_type=atlas) as reference. The 

exceptions are the “islands of Calleja,” (Figure 6 and table 1) and the 

hippocampus subfields on the retrograde tracing experiment with fluorogold 

(figure 21) defined based on “The Mouse Brain in Stereotaxic Coordinates” 

(Franklin and Paxinos, 2007). 

 

 IHC and ISH image analyses 

 Analyses of ISH digitalized images and IHC microscopy images were 

performed with ImageJ (http://rsweb.nih.gov/ij/). Regions of interest (ROIs) 

were manually defined for: (i) automatic pixel analysis (greyscale brightness of 

the ROI minus brightness of a control region) for ISH images; (ii) manual 

quantification of c-Fos positive cells after IHC DAB staining. ROIs for IHC were 

delineated by comparing the fluorescent images with the DAB stained images of 

each individual animal. A ROI was defined as the region where fluorophore 

expression was observed.  
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 Specific procedures  

 

Experiment 1: MnCl2 administration and optogenetic stimulation  

Nex-Cre-ChR2-YFP mice (n = 8) were bilaterally implanted with optic fiber 

constructs at the CA1 region of the hippocampus (as described under 

Surgeries). After 7 days of recovery, mice received the first of eight 

intraperitoneal injections of 20 mg/kg MnCl2 (Sigma-Aldrich, Steinheim, 

Germany; 8 x 20/24 h). 16-20h after each MnCl2 injection, animals were 

anesthetized with an isoflurane-oxygen mixture (4.5% for induction and 1.0-

1.2% for maintenance, with an oxygen flow of 1.0–1.4 L/min) and mounted in a 

stereotactic frame where they were loosely fixed (frontal teeth were fixed and 

ear bars were protected with thick plastic foam blocks in order to keep the head 

stable without making pressure to the skull). The body temperature of the 

animals was maintained by a water-based heating pad positioned under the 

mice. Following animal stabilization, the cap sleeve of the laser cable was 

carefully connected to the ferrule (cannula) of the optic fiber implant in the right 

hemisphere only. The laser stimulation protocol applied was, as follows: blue 

laser (470 nm), 0.75 mW, 2s, 10 repetitions, 60s intervals (0.016 Hz). This 

stimulation protocol was already tested by our group (Dine et al., 2016) and 

proved to be sufficient for local increase of neuronal activity. After the end of the 

stimulation the laser cable was carefully disconnected and anesthesia was 

gradually reduced until 0.5%. The animals were taken out of the frame and 

maintained in a heating pad until waking up. 40 min after the end of the 

stimulation the animals were anesthetized with a mix of ketamine + xylazine (as 

described under Drugs; 0.1 mL/ 10 g of mouse) and transferred to the MRI 

room, where they were prepared for scanning. For graphic representation of the 

experimental design see Figure 5A. 
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Experiment 2: Enriched housing, MnCl2 administration and sensory 

deprivation  

C57BL/6N mice (n = 9; 3/cage) were housed in large type III cages (425 

× 266 × 155 mm, floor area 820 cm2; Tecniplast, Italy) enriched with extra 

nesting material, plastic hair curlers of two different sizes (2 big, 36 mm radius; 

3 medium, 36 mm radius), used as texturized tunnels (textures on the inner and 

outer part), and a hanging thread at the metal lid with a another small hair 

curler/tunnel (28 mm radius). Mice were kept in the same group under this 

condition for 8 days, until scanned (scan 1), followed by another 7 days of 

enriched housing and a second scan (scan 2). 

All mice received intraperitoneal injections of 20 mg/kg MnCl2 (Sigma-

Aldrich, Steinheim, Germany) every 24 h for eight consecutive days (8 x 20/24 

h), in order to minimize physiological side effects (adapted from (Grunecker et 

al., 2010; Bedenk et al., 2018). Mice were always weighted immediately before 

injections to monitor animal's health status and to guarantee the correct dose 

would be injected every day. 

On day 8, animals (3 per day) were individually anesthetized with a 

mixture of ketamine and xylazine (i.p., injection of 0.1 mL/10 g mice) and 

transferred to the MRI room. With ketamine we aimed to block NMDA receptors 

(Anis et al., 1983) and thus, to avoid further Mn2+ neuronal entrance (Itoh et 

al., 2008) during the transport of the animals between rooms. For the scanning 

procedure, see above. This first MRI scanning (scan 1) took place twelve to 

twenty-four hours after the last of 8 daily MnCl2 injections. 

Immediately after scan 1, and still under sedation, animals had all their 

whiskers trimmed close to the skin on the left side of the snout. The right side 

was untouched. After trimming, animals were put back in the enriched cages. 

The trimming procedure was repeated every 2 days (under light isoflurane 

anesthesia) to avoid re-growth of the whiskers. After scan 1, animals received 

no further MnCl2 injections. 
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On the last day of enrichment after scan 1, animals (3 per day) were 

again individually anesthetized with a mixture of ketamine and xylazine (i.p., 

injection of 0.1 mL/10 g mice) and transferred to the MRI room for scan 2. 

Scans 1 and 2 were performed 7 days apart. For graphic representation of the 

experimental design see figure 6A. 

We interrogated the contrast scan 1 > scan 2 using a strict family-wise 

error corrected threshold of p FWE,cluster < 0.05, with a collection threshold of p 

uncorrected < 0.001 (Woo et al., 2014), which is in accordance with other MEMRI 

studies  (Lutkenhoff et al., 2012; Laine et al., 2017). Due to expected dilution of 

Mn2+ concentrations after cessation of the MnCl2 injections, relative local 

increases of Mn2+ accumulation in the second scan (scan 2 > scan 1) were only 

assessed qualitatively at an uncorrected threshold of p < 0.05 (cluster extent 

20). 

 

Experiment 3: WCM + MEMRI 

Two different cohorts of C57BL/6N mice were trained in the WCM under 

the place learning (PL; n = 20) or the response learning (RL; n = 24) spaced 

protocols during 8 consecutive days (d1-d8). MnCl2 injections (i.p.; 20 mg/kg) 

were performed for 8 days, approximately twelve hours before the behavioral 

(WCM) sessions. 10 min after the last trial (trial 6 of day 8), accurate learners 

(PL: 18/20; RL 22/24) were anesthetized with a mixture of ketamine + xylazine 

(as described under Drugs) and transferred to the MRI facility for scanning. The 

behavioral and scanning procedures are described above. 

 

Experiment 4: IEG analysis after WCM learning  

As previously discussed in the introduction, the time-point to sacrifice the 

animals for IEG analysis is hard to establish, given that its expression is short 

and transient. Moreover, the behavioral task I use here might take several days 

to acquire and its learning time differs among animals, complicating things 
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further. In order to sharpen our cut-off without overlooking the inter-individual 

differences in learning I defined the following rules: (i) animals would be 

sacrificed 15 minutes after learning in the WCM (and a similar number of home 

cage controls would be time-matched); (ii) learning (performing the task 

accurately: at least 5 out of 6 trials correct) would be considered in an individual 

basis; (iii) only the top 2 days where most of the animals learned the task would 

be considered for the cut-off to avoid further variability. 

Mice were divided in 3 groups (figure 4): RL, trained in the WCM under the 

response learning (RL) spaced protocol; PL, trained in the WCM under the place 

learning (PL) spaced protocol; HC, home cage controls remained in their home 

cages for the duration of the behavioral task. Brains were processed for 

radioactive ISH mRNA analysis of the IEG c-fos (as described above), as a 

marker of cellular activity. I performed a region of interest (ROI) analysis and 

group comparison in selected brain structures. The individual values displayed 

here refer to the brightness (image intensity per ROI area) of the ROI minus the 

brightness of a background region arbitrarily chosen.  
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Figure 4: Experimental design for experiment 4: IEG analysis after WCM 

learning. Mice were divided into 3 groups: PL, underwent learning in the WCM under 

the place learning protocol; RL, underwent learning in the WCM under the response 

learning protocol; HC, home cage controls, remained in their home cages for the 

duration of the behavioral task. 15 min after animals from the PL or RL groups leaned 

the task (performed at least 5 out of 6 trials correctly) they were killed and had their 

brain removed and snap frozen for future immediate early gene (IEG) analysis by in situ 

hybridization (ISH). The same number of home cage control animals was time-matched 

with their WCM-trained counterparts. 

 

Experiment 5: Optogenetic inhibition of dHPC during WCM recall 

C57BL/6N mice (n = 21) previously bilaterally injected in the dHPC 

(dCA3; see Surgeries for details) with a viral vector transducing the inhibitory 

opsin ArchT (AAV5-CamKII-ArchT-GFP) and implanted with optic fibers just 

above the injections targets, were trained in the WCM under the place learning 

(PL) massed protocol (see detailed description of massed protocol above and on 

figure 3) during 7 consecutive days (d1-d7). Animals were not connected to the 

laser cables during the training period. After 1 day of rest, animals which were 

accurate learners (n = 17) by day 7 (last day of training) started the recall tests 
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(same behavioral protocol as training) which lasted for 4 days (d9-d12). On the 

recall days animals were connected to the laser cables once daily (always 10 

min before the tests) and remained connect for the whole testing period (6 

trials). Animals had this 10-min time to get accustomed to the connecting cables 

and to rest before the tests started. During this period animals were maintained 

in their home cages (without a lid) placed inside a black bucket (blind box) on 

top of a small stool positioned in front of the start arm of the maze. In between 

trials animals were maintained in the same cage and the stool was moved to 

face the new start arm, when it was the case. 

The laser stimulation (green laser, 532 nm, 22-26 mW) was only 

performed on day 11 (laser on), for the duration of the trials (for each trial: 

laser switched on immediately before the animal was placed in the maze, and 

switched off immediately after the animal was removed from the maze; total 

duration / trial ~ 10s).     

For simplified timeline of experimental procedures see figure 15A.  

 

Experiment 6: Optogenetic inhibition of vHPC during WCM recall 

 Experimental design and procedures were similar to the ones described 

above for experiment 5. The following exceptions apply:  

(i) viral vectors were injected in the vHPC (vCA3); 

(ii) the recall tests lasted for 5 days (d9-d13); 

(iii) laser stimulation was performed on days 11 and 12.  

For simplified timeline of experimental procedures see figure 16A. 

 

Experiment 7: Chemogenetic inhibition of dHPC during WCM learning 

 C57BL/6N mice (n = 15) previously injected in the dHPC (dCA1; see 

Surgeries for details) with a viral vector transducing the inhibitory DREADD 

hM4D (AAV8-CamKII-hM4D(Gi)-mCherry) were trained in the WCM under the 
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place learning (PL) massed alternated protocol (see detailed description of 

massed alternated protocol above and on figure 3) during 6 consecutive days 

(d1-d6). Behavioral training was paired with a daily intraperitoneal injection of 

CNO (5 mg/kg; n = 9) or vehicle (n = 6) 45 min before the beginning of trials. 

On day 6 the treatment groups were inverted, meaning all animals injected with 

CNO from d1-d5 received a vehicle injection on d6, and vice-versa. After one 

day of rest, animals were trained for reversal learning during 2 days (d8-d9) 

under the same treatment regime of d1-d5.  

After 1 week of rest, mice were exposed to an unfamiliar context (Y 

maze) for 10 min under dim light to induce an increase in hippocampal activity, 

and to analyze if locomotion of the animals was affected by CNO. 45 min before 

Y maze exposure mice were injected with either CNO (i.p., 5 mg/kg) or vehicle 

(same groups as established for the WCM). 90 min after the start of exposure, 

mice were transcardially perfused with 4% PFA-PBS and had their brains 

removed. Brains were post-fixed and cryoprotected before sectioning. Fixed 

brains were sliced in a vibratome into 30 µm sections, in 2 series. One of the 

series was mounted in glass slides and coverslipped with Vecta Shield Hard set 

with DAPI for fluorophore analysis (see Histology for details), while the other 

series was further processed for IHC against c-Fos (see Immunohistochemistry 

for details).  

For simplified timeline of experimental procedures see figure 18A. 

 

Experiment 8: Chemogenetic inhibition of vHPC during WCM learning 

Experimental design and procedures were similar to the ones described 

above for experiment 7. The following exceptions apply:  

(i) viral vectors were injected in the vHPC (vCA1); 

(ii) the reversal learning lasted for 3 days (d8-d10); 
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(iii) the experiment was finalized after reversal learning in the WCM. 

There was no exposure to the Y maze and no IHC analysis performed 

afterwards. 

For simplified timeline of experimental procedures see figure 19A. 

 

Experiment 9: Chemogenetic inhibition of IL during WCM learning 

Nex-cre mice (n = 12) previously injected in the infralimbic cortex (IL; 

see Surgeries for details) with a viral vector transducing the inhibitory DREADD 

hM4D in a Cre-dependent manner (pAAV8-hSyn-DIO-hM4D(Gi)-mCherry; hM4D 

group, n= 5), or a control viral vector (pAAV8-hSyn-DIO-mCherry; mCherry 

group, n = 7), were trained in the WCM under the place learning (PL) massed 

alternated protocol (see detailed description of massed alternated protocol 

above and on figure 3) during 7 consecutive days (d1-d7). Behavioral training 

was paired with a daily intraperitoneal injection of CNO (5 mg/kg), for all 

animals, 45 min before the beginning of trials.  

For simplified timeline of experimental procedures see figure 20A. 

 

Experiment 10: Retrograde analysis of the IL-HPC pathway 

Bilateral fluorogold (FG) injections targeting the infralimbic cortex (IL) of 

naïve C57BL/6N mice (n = 4) were performed as previously described (see 

Surgeries). 5 to 6 days after injections, mice were transcardially perfused, had 

their brains removed and processed for histological analysis (see Histology for 

details), focusing on the hippocampus. 
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  Statistical analysis 

 

MEMRI analyses 

Significance was accepted after family wise error (FWE) correction on the 

cluster level p FWE, cluster < 0.05. This was determined by collecting the clusters of 

the uncorrected threshold of p < 0.001 or p < 0.005, adjusting the size of the 

cluster. 

Voxel-wise analysis of the MR images was performed in SPM8 

(www.fil.ion.ucl.ac.uk/spm). Graphics of activation maps have been created in 

MRICro (www.cabiatl.com/mricro). All images were ultimately arranged in Adobe 

Illustrator 10.0.3 (Adobe Systems Inc., NY, USA). 

 

Behavioral analyses and other comparisons 

Behavioral parameters and other data (e.g. quantification of ISH and IHC), 

were compared using: 

(i) Unpaired t-test, for 2 groups’ comparison and non-repeated measures; 

(ii) 1-way ANOVA, for single group comparison of repeated measures (e.g. 

different time-points) or for multiple groups’ comparison and non-

repeated measures (e.g. IEG analysis of RL vs PL vs HCC); 

(iii) 2-way ANOVA, for multiple groups’ comparison and repeated 

measures;  

(iv) χ2 test, for multiple groups’ comparison of contingencies (e.g. leaners 

vs non-learners). 

The statistical test (and post-hoc test, when applicable) used for each 

individual analysis is indicated in the results section and the figure legend 

relative to each specific investigation. Data are presented as mean ± s.e.m. 

Significance was accepted as p < 0.05 and a trend was considered for p < 0.06.  
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Graphs were created and analyses were performed at GraphPad Prism 7 

(GraphPad Software, La Jolla, CA, USA). 
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 RESULTS 

 

 Experiment 1: Optogenetic stimulation and its effects on local 

MEMRI signal 

To confirm the debated activity-dependent entrance of Mn2+ into neurons I 

analyzed the signal intensity of the hippocampus with MEMRI, comparing the 

hemisphere which was optogenetically stimulated (once per day for 8 

consecutive days; for detailed protocol please Materials and Methods and figure 

5) versus the hemisphere which contained a light fiber but did not receive light 

stimulation. Importantly, ChR2 was selectively expressed in cortical 

glutamatergic neurons in both hemispheres (Nex-Cre-ChR2-YFP mouse line). I 

observed a significantly higher signal in the stimulated site compared to its 

mirrored image (figure 5; within subject, between hemispheres comparison; 

collection threshold p < 0.01, Ke > 20 voxels). This cluster was not significant 

after correction for whole-brain analysis and it is shown qualitatively.  

This result indicates that increased neuronal activity after direct 

optogenetic stimulation results in higher MEMRI signal (reflecting increased Mn2+ 

accumulation) when compared to an unstimulated region (contralateral dorsal 

hippocampus) that also expresses Channelrhodopsin 2 (ChR2). Therefore, I 

confirmed that Mn2+ enters, and at least transiently accumulates, in activated 

neurons. 
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Figure 5: Mn2+ entrance in neurons is activity dependent. (A) Nex-Cre-ChR2-YFP 

mice were bilaterally implanted with optic fibers directly above the dorsal hippocampus 

subfield CA1 (dCA1). After 7 days of recovery, animals were subjected to an 8-day 

protocol of daily MnCl2 injections (i.p., 20 mg/kg) followed by a direct unilateral (right 

hemisphere only) optogenetic stimulation [blue laser (470 nm), 0.75 mW, 2s, 10 

repetitions, 60s intervals (0.016 Hz)] of the dCA1 16-20 h after. The injections were 

performed 24h apart. 40 min after the last optogenetic stimulation animals were 

anesthetized with a mix of ketamine + xylazine (i.p. 0.1 ml/g of mouse; for details see 

drugs) and transferred to the MRI facility for scanning. (B) The comparison between 

hemispheres (native image vs vertically flipped image; for details see materials and 

methods) showed a significant cluster with stronger signal at the right dHPC (collection 

threshold p < 0.01, Ke > 20 voxels; not significant after whole-brain correction; 
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qualitative representation), adjacent to the fiber tip location. This cluster can be 

visualized in several plates on the rostral-caudal extent (e.g., from AP -2.06 to -2.46) 

and it indicates that increased MEMRI signal (as a consequence of Mn2+ accumulation) is 

activity-dependent. 

 

 Experiment 2: Mn2+ dynamics in the brain after partial 

sensory deprivation (whiskers trimming) 

To investigate the possible influence of neuronal activity on Mn2+ 

accumulation and transport in neurons after its entrance, I designed the 

following experiment (figure 6A). After 8 daily injections of MnCl2 (i.p.; 20 

mg/kg; 24h intervals) and a baseline scan (scan 1), all MnCl2 injections were 

stopped and animals were subjected to partial sensory deprivation (unilateral 

whiskers trimming). 7 days later the animals were re-scanned (scan 2). From 

the first day of MnCl2 injections until the last scan (scan 2) animals were housed 

in a sensory enriched environment. For the detailed description of the 

experimental design and procedures please check Materials and Methods.  

Due to the interval between the two MEMRI scans (7 days) unspecific 

signal decay was expected, and it was corrected by adding the global image 

intensities as another nuisance regressor, together with the CSF (Grunecker et 

al., 2013). After correction, I observed only one cluster with higher signal in 

scan 1 compared to scan 2 (scan 1 > scan 2). This cluster was located in the left 

barrel cortex (pFWE, cluster = 0.009, cluster extent 236 voxel), which represents the 

untrimmed whiskers (figure 6; Table 1). On the opposite comparison (scan 1 < 

scan 2) a large number of brain structures could be observed (due to partly 

unspecific dilution of Mn2+ between scan 1 and scan 2, I used a threshold of p < 

0.05, uncorrected. The results are therefore qualitative only): olfactory bulbs, 

orbital area, islands of Calleja, supplemental somatosensory area, medial 

thalamic nuclei, caudoputamen, temporal association area, anterior pretectal 

nucleus, nucleus of the optic tract, anterolateral visual area, perirhinal area, 

temporal association area, ectorhinal area, subiculum — ventral part, dentate 

gyrus — ventral part, pontine nuclei, retrosplenial area, superior vestibular 

nucleus, cerebellum (figure 6B and table 1). Strikingly, 85% of these structures 
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are efferent of the barrel cortex (table 1), according to previous reports in the 

literature. 

These findings suggest that specific neuronal activity elicited by the 

remaining whiskers accelerates the transport of Mn2+ to efferent structures of 

the entrance site in the brain. Conversely, the activity blockade resulting from 

the sensory deprivation seems to lead to decreased or slowed Mn2+ transport to 

projection sites. Taken together, these results point to an activity-dependent 

axonal transport of Mn2+. Additionally, the fact that not only first-order, but also 

second order efferents from the barrel cortex showed higher signal intensities in 

scan 2 compared to scan 1 points to an activity-dependent transsynaptic 

transport of Mn2+. 

For a complete description of the theoretical background leading to this 

experiment, its experimental design, results and discussion please refer to the 

published manuscript (Almeida-Correa et al., 2018) in the appendix. 
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Figure 6: MEMRI contrast differences after unilateral sensory deprivation. (A) 

Graphic representation of experimental design. Mice were treated with MnCl2 (20 mg/kg; 

i.p.) for 8 days, while housed in a sensory enriched environment, until scan 1. 
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Immediately after scan 1, mice had their left whiskers trimmed (procedure repeated 

every 2 days) and remained in the sensory enriched environment for 7 more days 

without further MnCl2 injections, until scan 2. (B) Representative coronal brain slices 

indicating the structures showing differential MEMRI signal in scans 1 and 2 (yellow: 

scan 1 > scan 2; blue: scan 2 > scan 1). Brain structures indicated in the figure: 1, 

olfactory bulb; 2, orbital area; 3, islands of Calleja; 4, supplemental somatosensory 

area; 5, barrel cortex; 6, medial thalamic nuclei; 7, caudoputamen; 8, temporal 

association area; 9, anterior pretectal nucleus; 10, nucleus of the optic tract; 11, 

anterolateral visual area; 12, perirhinal area; 13, temporal association area + ectorhinal 

area + perirhinal area; 14, subiculum — ventral part; 15, dentate gyrus — ventral part; 

16, pontine nuclei; 17, retrosplenial area; 18, superior vestibular nucleus; 19, 

cerebellum. Plate numbers under brain slices correspond to the reference plate of the 

Allen Mouse Brain Atlas used to define the structures. (reproduced from (Almeida-Correa 

et al., 2018))  
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Table 1: List of structures showing differential MEMRI signal between scans 1 

and 2 (figure 6), ipsi or contralateral to the reference point (left barrel cortex). 

(reproduced from (Almeida-Correa et al., 2018)) 

 

*based on the following references: (White and DeAmicis, 1977; Ohara et al., 1980; 

Montero and Scott, 1981; Ohara and Lieberman, 1981, 1985; Hoogland et al., 1987; 

Cornwall and Phillipson, 1988; Welker et al., 1988; Hoogland et al., 1991; Chen et al., 

1992; Raos and Bentivoglio, 1993; Bourassa et al., 1995; Hazrati et al., 1995; Pinault et 
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al., 1995; Pinault and Deschenes, 1998; Veinante et al., 2000; Wright et al., 2000; 

Aronoff et al., 2010; Zakiewicz et al., 2014; Tang et al., 2016; Guo et al., 2017; Sumser 

et al., 2017) 

 

 Experiment 3: In vivo spatial learning matrices (for PL and 

RL) revealed by MEMRI  

 

WCM PL + MEMRI  

As reported before and confirmed by our experiment 1, MEMRI reflects 

Mn2+ signal correspondent to neuronal activity. Therefore, this technique can be 

used in combination with a behavioral task to detect brain structures that are 

more active during behavioral performance, and likely learning processes. With 

that in mind, I combined intraperitoneal injections of 20 mg/kg MnCl2 (Sigma-

Aldrich, Steinheim, Germany) every 24 h for eight consecutive days (8 x 20/24 

h) to C57BL/6N mice, with 8 days of learning in the water cross maze (WCM) 

under the protocol of place learning (PL). 18 out of 20 mice learned the task, as 

indicated by accuracy scores above 83% by the end of training. These mice 

were included into further analysis (figure 7). 

The whole brain voxel-wise analyses of MEMRI signal was divided into 3 

parts, using different behavioral scores as regressors: (i) latency from days 1 to 

4 (collection threshold p < 0.01, Ke > 50); (ii) latency from days 5 to 8 

(collection threshold p < 0.01, Ke > 65); (iii) accuracy from days 1 to 8 

(collection threshold p < 0.01, Ke > 65 for positive/direct correlation, Ke > 90 for 

negative/inverse correlation). With these analyses I was able to identify brain 

structures whose signal correlated with the behavioral measures. Namely, the 

signal in the dorsal hippocampus, subfield CA3 (dCA3; p FWE-corr = 0.007, Ke = 

105, T-value = 8.78), left hemisphere, inversely correlated with early latency 

(d1-d4; steep learning phase). The same brain structure, dHPC, subfields CA2 

and CA3, was also inversely correlated with late latency (d5-d8; plateau learning 

phase). This time, however, the correlation was found for both hemispheres 
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(left: p FWE-corr = 0.052, Ke = 69, T-value = 5.25; right: p FWE-corr = 0.001, Ke = 

138, T-value = 5.59). Additionally, a positive correlation was found between the 

late latency (d5-d8) and the periaqueductal grey (PAG; p FWE-corr = 0.049, Ke = 

70, T-value = 5.10). For accuracy, an inverse correlation was found with the 

basolateral amygdala (BLA, left hemisphere; p FWE-corr = 0.011, Ke = 94, T-value 

= 5.89) and at the visual cortex (VIS, right hemisphere; p FWE-corr = 0.008, Ke = 

99, T-value = 6.86); a positive correlation was found for the ventral 

hippocampus (vHPC; p FWE-corr = 0.049, Ke = 69, T-value = 7.90), left 

hemisphere. Interestingly, when directly comparing the MEMRI signal of the BLA 

with the vHPC I found a strong inverse correlation (r = 0.82; p < 0.0001), 

indicating that these structures might be working in concert, in opposite 

directions, during performance and learning of this task. There was also a 

inverse correlation between the VIS and the vHPC (r = 0.59; p < 0.01), even if 

not as strong.     
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Figure 7: WCM PL + MEMRI. (A) Animals (n = 18) were trained in the WCM under the 

place learning (PL) protocol. Latency and accuracy are displayed for the duration of 

training (d1-d8). (B) Latency values were dived into early (d1-d4) and late (d5-d8) and 

correlated with MEMRI contrasts in a whole brain voxel-wise manner (with the unspecific 

whole brain intensity used as a nuisance regressor). Latency d1-d4 inversely correlates 

with a cluster on the left dorsal hippocampus subfield CA3 (dCA3; p FWE-corr = 0.007, Ke = 

105, T-value = 8.78). Latency d5-d8 inversely correlates with the left dorsal 

hippocampus subfield CA3 (dCA3) and right dorsal hippocampus subfield CA2 (dCA2) 

(left: p FWE-corr = 0.052, Ke = 69, T-value = 5.25; right: p FWE-corr = 0.001, Ke = 138, T-

value = 5.59) and directly correlates with the periaqueductal grey (PAG; p FWE-corr = 

0.049, Ke = 70, T-value = 5.10). Accuracy inversely correlates with the left basolateral 

amygdala (BLA; p FWE-corr = 0.011, Ke = 94, T-value = 5.89) and right visual area (VIS; p 

FWE-corr = 0.008, Ke = 99, T-value = 6.86), and directly correlates with the ventral 

hippocampus (vHPC; p FWE-corr = 0.049, Ke = 69, T-value = 7.90). Color coding depicts t-

values. (C) Correlation of MEMRI signal intensities among structures depicted in the 

lower panel of B, normalized to the individual’s whole brain signal intensity. Left: 

correlation between BLA and vHPC (r = 0.82). Right: correlation between VIS and vPHC 

(r = 0.59). For A: data are presented as mean ± s.e.m.     

 

These results are in line with the already described hippocampus 

involvement in place learning in the water cross maze (Kleinknecht et al., 2012). 
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Thus, they can be used as a proof of concept of the validity of MEMRI on the 

identification of brain structures related to a given task.  

 

Good vs bad performers 

 To further investigate the possible interplay of performance level and 

specific activation in given brain structures, I first assigned the mice into good 

or bad performers according to their behavioral performance using median split. 

As explained in detail before (see materials and methods), the accuracy score of 

the animals was calculated as the average of all 8 days of training, and the 

segregation into two groups was made by a median split of this data. All animals 

with accuracy score above or at the median were considered good performers, 

all animals with accuracy score below the median were considered bad 

performers (figure 8).  

 In the analysis of the standard behavioral parameters in the WCM (figure 

8A) I observed a significant difference in accuracy levels (interaction: F (7, 112) 

= 5.9, p < 0.0001; group: F (1, 16) = 72.6, p < 0.0001; 2-way ANOVA for 

repeated measures). Post-hoc analysis revealed that this group difference was 

related to accelerated learning in the beginning of training with the performance 

of both groups converging in the end (figure 8).  Accordingly, the percentage of 

accurate learners was significantly higher in the good performers group at day 2 

(χ2 2, N=18 test = 5.143, p = 0.023) and day 3 (χ2 2, N=18 test = 11.45, p = 

0.0007), and there was a trend to difference in day 4 (χ2 2, N=18 test = 3.6, p = 

0.058) (figure 8). Interestingly, group assignment on basis of accuracy scores 

did not reflect a similar segregation of escape latencies (see latency score in 

figure 8). This indicates that latency alone is not a reliable parameter to 

evaluate how well animals perform the task. Moreover, it does not relate to the 

subsequently described group differences in Mn2+ accumulation.  

I next compared the MEMRI contrasts of good and bad performers. To 

determine clusters showing cluster-based FWE-corrected p values < 0.05, I used 

a collection threshold of p < 0.005 and minimum cluster size of 200 voxels. Only 
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one cluster was found, showing significantly stronger signal in bad performers 

compared to good performers (bad > good; figure 8B; p FWE-corr = 0.024, Ke = 

201, T-value = 6.34). This cluster is centered on the basolateral amygdala 

(BLA), extending rostrally to the perirhinal (PERI), entorhinal (ENTl, lateral part) 

and piriform (PIR) cortical areas. There was no significant cluster in the inverse 

comparison (bad < good). 

 

Figure 8: WCM PL – good vs bad performers. (A) Animals (n = 18) were categorized 

as good or bad performers by median split on basis of their accuracy score (top left), 

which was not reflected by differences in latency (top right). Assessed over the course of 

training, accuracy was higher for good performers in the beginning of training, with both 

groups converging in the end. # p < 0.06 (trend); * p < 0.05; *** p < 0.001; **** p < 
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0.0001 (2-way ANOVA followed by Sidak’s post-hoc test or χ2 test). (B) Representative 

coronal brain slices showing the results of the comparison of MEMRI contrasts of good vs 

bad performers (collection threshold p uncorrected < 0.005; p FEW-corr values < 0.05, Ke > 

200). Only one cluster was found for bad > good (p FWE-corr = 0.024, Ke = 201, T-value = 

6.34). This cluster is centered on the basolateral amygdala (BLA) and it comprises the 

perirhinal (PERI), entorhinal (ENTl, lateral part) and piriform (PIR) cortical areas. No 

significant cluster in the inverse comparison (bad < good) was found. For A: data are 

presented as mean ± s.e.m.  

 

WCM RL + MEMRI 

 Aiming to distinguish the specific brain structures involved in place and 

response learning, I repeated the experiment in a new cohort of mice using the 

response learning (RL) protocol. This time 22 out of 24 mice learned the task, as 

indicated by accuracy scores above 83% by the end of training. These mice 

were included into further analysis. 

After performing a whole brain voxel-wise analysis, as described above 

(collection threshold p < 0.001, Ke > 90 voxels), I identified several structures 

which MEMRI signal correlated with the latency measures (figure 9). More 

specifically, a cluster in the hippocampus, subfield CA3 (p FWE-corr = 0.001, Ke = 

200, T-value = 5.18), was inversely correlated with early latency (d1-d4). This 

cluster extended from the dorsal part (dCA3) to the ventral part (vCA3) of the 

hippocampus, including the intermediate part (iCA3). For the late latency (d5-

d8) there were inverse correlations with the piriform area (PIR; right 

hemisphere; p FWE-corr < 0.001, Ke = 309, T-value = 5.77), the lateral septal 

nucleus (LS; right hemisphere; p FWE-corr = 0.035, Ke = 98, T-value = 4.76), the 

primary somatosensory area – barrel field (SSp-bfd; left hemisphere; p FWE-corr < 

0.001, Ke = 530, T-value = 7.65), the ectorhinal and perirhinal areas (ECT + 

PERI; right hemisphere; p FWE-corr = 0.002, Ke = 164, T-value = 4.95), the visual 

area (VIS; left hemisphere; p FWE-corr < 0.001, Ke = 211, T-value = 6.13), the 

ventral part of the hippocampus subfields CA1 and CA3 and the substantia nigra 

– reticular part (vCA1 + vCA3 + SNr; right hemisphere; p FWE-corr = 0.011, Ke = 

126, T-value = 5.45). Direct correlations were found with the main olfactory 

bulb, the orbital area (MOB + ORB; right hemisphere; p FWE-corr = 0.004, Ke = 
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151, T-value = 7.14), the bed nucleus of the stria terminalis (BST; right 

hemisphere; p FWE-corr = 0.002, Ke = 173, T-value = 4.93), the retrosplenial area 

(RSP; midline region; p FWE-corr = 0.003, Ke = 158, T-value = 6.22), the 

basomedial amygdala (BMA; right hemisphere; p FWE-corr = 0.048, Ke = 91, T-

value = 6.40), the dentate gyrus of the hippocampus (DG; left hemisphere, p 

FWE-corr = 0.046, Ke = 92, T-value = 5.93), the ventral posteromedial nucleus of 

the thalamus (VPM; left hemisphere; p FWE-corr = 0.040, Ke = 95, T-value = 4.81) 

and the inferior colliculus (IC; right hemisphere; p FWE-corr = 0.027, Ke = 104, T-

value = 7.70). There was no correlation with accuracy. 

 

 

Figure 9: WCM RL + MEMRI. (A) Animals (n = 22) were trained in the WCM under the 

response learning (RL) protocol. Latency and accuracy are displayed for the duration of 

training (d1-d8). (B) Latency d1-d4 inversely correlates with a cluster comprising the 

right hippocampus subfield CA3 dorsal (dCA3), intermediate (iCA3) and ventral (vCA3) 

parts (p FWE-corr = 0.001, Ke = 200, T-value = 5.18). Latency d5-d8 inversely correlates 

with the right piriform area (PIR; p FWE-corr < 0.001, Ke = 309, T-value = 5.77), the 

lateral septal nucleus (LS; p FWE-corr = 0.035, Ke = 98, T-value = 4.76), the left primary 

somatosensory area – barrel field (SSp-bfd; p FWE-corr < 0.001, Ke = 530, T-value = 

7.65), the right ectorhinal and perirhinal areas (ECT + PERI; p FWE-corr = 0.002, Ke = 164, 
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T-value = 4.95), the left visual area (VIS; p FWE-corr < 0.001, Ke = 211, T-value = 6.13), 

the right ventral hippocampus subfields 1 (vCA1) and 3 (vCA3) and the substantia nigra, 

reticular part (SNr) (vCA1 + vCA3 + SNr; p FWE-corr = 0.011, Ke = 126, T-value = 5.45). 

The clusters directly correlated to latency d5-d8 were the right main olfactory bulb 

(MOB) and orbital area (ORB) (MOB + ORB; p FWE-corr = 0.004, Ke = 151, T-value = 

7.14), the right bed nucleus of the stria terminalis (BST; p FWE-corr = 0.002, Ke = 173, T-

value = 4.93), the medial retrosplenial area (RSP; p FWE-corr = 0.003, Ke = 158, T-value 

= 6.22), the right basomedial amygdala (BMA; p FWE-corr = 0.048, Ke = 91, T-value = 

6.40), the left dentate gyrus (DG; p FWE-corr = 0.046, Ke = 92, T-value = 5.93), the left 

ventral posteromedial nucleus of the thalamus (VPM; p FWE-corr = 0.040, Ke = 95, T-value 

= 4.81) and the right inferior colliculus (IC; p FWE-corr = 0.027, Ke = 104, T-value = 

7.70). There was no correlation with accuracy levels. Color coding depicts t-values. For 

A: data are presented as mean ± s.e.m.     

 

Good vs bad performers 

 Similarly to the add-on investigation of performance level presented for 

mice which underwent PL on the WCM, I also split the mice which underwent RL 

on the WCM in two groups (good performers and bad performers) on basis of 

their accuracy scores using median split. 

 I observed a significant difference between groups for accuracy levels 

(interaction: F (7, 140) = 5.849, p < 0.0001; group: F (1, 20) = 35.07, p < 

0.0001; 2-way ANOVA for repeated measures). Post-hoc analysis revealed that 

this group difference was related to an accelerated learning of good performers 

until day 4 of training with the performance of both groups converging in the 

end (figure 10). The latency values were significantly lower for good performers 

(interaction: F (7, 140) = 5.272, p < 0.0001; 2-way ANOVA for repeated 

measures) in the first 2 days of training. The percentage of accurate learners 

was significantly higher for good performers on day 1 (χ2
 2, N=22 test = 5.712, p = 

0.017), day 2 (χ2 
2, N=22 test = 8.564, p = 0.003), day 3 (χ2 

2, N=22 test = 4.09, p 

= 0.043) and day 4 (χ2 
2, N=22 test = 7.062, p = 0.008). 

 When comparing the MEMRI contrasts of good and bad performers I did 

not find any significant difference. 
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Figure 10: WCM RL – good vs bad performers. Animals (n = 22) were split into 

good or bad performers based on their accuracy score (top left) as described in figure 8 

(PL). Latency score is also shown (top right). Accuracy was higher for good performers 

on the first half of training (day 1, **** p < 0.0001; day 2, **** p < 0.0001; day 3, * 

p < 0.05; day 4, *** p = 0.001; 2-way ANOVA followed by Sidak’s post-hoc test). 

Latency values were significantly lower for good performers also in the beginning of the 

training period (day 1, ** p < 0.01; day 2, ** p < 0.01; 2-way ANOVA followed by 

Sidak’s post-hoc test). Additionally, the percentage of accurate learners was significantly 

higher in the good performers group (day 1, * p < 0.05; day 2, ** p < 0.01; day 3, * p 

< 0.05; day 4, ** p < 0.01; χ2 test). Data are presented as mean ± s.e.m.  

 

 

Behavioral performance PL vs RL 

 Before I compared MEMRI results between the two experimental groups, I 

first compared their behavioral performance (figure 11). The latency was 

significantly lower in RL than in PL animals (interaction: F (7, 266) = 6.676, p < 

0.0001; group: F (1, 38) = 28.37, p < 0.0001; 2-ANOVA for repeated 
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measures). Post-hoc analyses revealed that this difference was stronger on days 

1, 2 and 3. Accuracy levels were significantly higher for the RL group 

(interaction: F (7, 266) = 4.959, p < 0.0001; group: F (1, 38) = 6.086, p = 

0.018; 2-way ANOVA for repeated measures), specially on the first 3 days of 

training. This was also reflected in the percentage of accurate learners on day 2 

(χ2 
2, N=40 test = 5.507, p = 0.019) and day 3 (χ2 

2, N=40 test = 6.077, p = 0.014). 

The number of wrong platform visits did not differ between groups.  

Additionally, I calculated the latency and accuracy scores (as described in 

Materials and Methods) for the individual groups and observed significant 

differences in both parameters. Namely, the latency was lower for RL (t 38 = 

5.206, p < 0.0001; unpaired t-test,) and the accuracy was higher for the same 

group (t 38 = 2.467, p = 0.0182; unpaired t-test). 

Taken together, these results indicate that animals learn faster under the 

RL protocol compared to PL. This is reflected by the difference in accuracy levels 

and number of accurate learners until day 3. Nevertheless, from day 4 on there 

was no difference between groups, suggesting that animals trained under either 

protocol can learn the task if the training duration is of at least 4 days.  
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Figure 11: Mice trained under the RL protocol learn the WCM task faster. 

Animals were trained in the WCM using either PL (n = 18) or RL (n = 22) protocols. 

Latency was significantly lower for RL animals in the beginning of training (day 1, **** 

p < 0.0001; day 2, **** p < 0.0001; day 3, ** p < 0.01). Conversely, accuracy levels 

were significantly higher for the RL group (day 1, * p < 0.05; day 2, **** p < 0.0001; 

day 3, ** p < 0.01; 2-way ANOVA followed by Sidak’s post-hoc test). The number of 

wrong platform visits did not differ between groups. The percentage of accurate learners 

was significantly higher for the RL group (day 2, * p < 0.05; day 3, * p < 0.05; χ2 test). 

Latency scores were lower (**** p < 0.0001; unpaired t-test) and accuracy scores were 

higher (* p < 0.05, unpaired t-test) for the RL group. Data are presented as mean ± 

s.e.m.  

 

MEMRI PL vs MEMRI RL  

To identify the specific neuroanatomical substrates of place learning (PL) 

versus response learning (RL) I directly compared the MEMRI contrasts. I 

performed a whole brain voxel-wise analysis with the individual’s whole brain 

intensity values as regressor of no interest, with collection p value < 0.005, 
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minimum voxel size (Ke) of 20 voxels and FDR correction. I found higher 

contrast intensities (MEMRI signal) after response learning (RL > PL) in the 

following brain structures (figure 12 and table 2): accessory olfactory bulb, 

piriform area, lateral olfactory tract, anterior cingulate area, bed nucleus of the 

stria terminalis, anterior hypothalamic nuclei, thalamic nuclei, dorsal fornix, 

retrosplenial area, posterior parietal association area, cortical amygdala, 

auditory areas, endopiriform nucleus, postpiriform transition area, posterior 

nucleus of the amygdala, basomedial nucleus of the amygdala, subiculum – 

ventral part, subiculum – dorsal part, pontine grey, tegmental reticular nucleus, 

pontine reticular nucleus, periaqueductal grey, pons (nucleus of the lateral 

lemniscus and superior central nucleus raphe), superior cerebellar peduncle 

decussation and peduncle pontine nucleus. 

The other way around, place learning coincided with higher contrast 

intensities (RL < PL; figure 12 and table 2) in prelimbic cortex, orbital area, 

taenia tecta, infralimbic area, lateral septal nucleus, stria terminalis, ventral 

posterior nucleus of the thalamus, geniculate complex, anterior pretectal 

nucleus, susbtantia nigra, zona incerta, ectorhinal cortex, perirhinal cortex, 

presubiculum, temporal association area, medulla (medial vestibular nucleus, 

nucleus prepositus, nucleus raphe magnus, facial motor nucleus, medial and 

spinal vestibular nucleus, parvicellular nucleus and intermediate reticular 

nucleus), cerebellum (interposed nucleus and fastigial nucleus) and nucleus of 

the solitary tract. 

Some structures were present in both comparisons (RL > PL and RL < PL; 

figure 12 and table 2) in different slices across the rostral caudal extent: main 

olfactory bulb, motor cortex, piriform area, substantia innominata, lateral 

entorhinal cortex, simple lobule of the cerebellum. 
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Figure 12: MEMRI contrast differences for mice trained in the WCM with either 

the PL or RL protocol. Representative coronal brain slices indicating the structures 

showing differential MEMRI signal for RL and PL groups (red/orange/yellow: RL > PL; 

blue/green: RL < PL). Brain structures indicated in the figure are listed in table 2. Plate 

numbers under brain slices correspond to the reference plate of the Allen Mouse Brain 

Atlas which was used to define the structures. Color coding depicts t-values. 
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Table 2: List of structures showing differential MEMRI signal between scans of 

mice trained under the PL protocol vs mice trained under the RL protocol in the 

WCM 

Brain structure # on Figure 12 MEMRI signal ≠ p FDR corr T-value 

Main olfactory bulb 1   <0.001 15.38 / 7.99 

Accessory olfactory bulb 2  <0.001 13.16 

Motor cortex 3, 13   <0.001 7.72 / 4.88 

Prelimbic cortex 4  <0.001 4.82 

Orbital area 5  <0.001 7.74 

Piriform area 6, 10   <0.001 5.81 / 4.37 

Taenia tecta 7  <0.001 5.85 

Infralimbic cortex 8  <0.001 5.40 

Lateral septal nucleus 9   <0.001 6.24 

Substantia innominata 11, 19   <0.001 4.83 / 4.56 

Somatosensory area 12  <0.001 5.70 

Lateral olfactory tract 14  <0.001 5.40 

Anterior cingulate area 15  <0.001 5.20 

Somatosensory area – upper limbs 16  <0.001 5.28 

Bed nucleus of the stria terminalis 17  <0.001 5.53 

Stria terminalis 18  =0.001 4.36 

Anterior hypothalamic nuclei 20  0.001 7.28 

Thalamic nuclei 21  <0.001 7.53 

Dorsal fornix 22  <0.001 7.53 

Retrosplenial area 23  <0.001 9.45 

Posterior parietal association area 24  <0.001 9.25 

Ventral posterior nucleus of the thalamus 25  =0.001 4.23 

Cortical amygdala 26  <0.001 7.25 

Geniculate complex 27  <0.001 10.82 

Auditory areas 28  <0.001 7.76 

Visual areas 29  <0.001 7.36  

Anterior pretectal nucleus 30  =0.001 4.40 

Endopiriform nucleus 31  <0.001 8.16 

Postpiriform transition area 31  <0.001 8.16 

Susbtantia nigra 32  <0.001 8.97 

Posterior nucleus of the amygdala 33  <0.001 9.25 

Basomedial nucleus of the amygdala 33  <0.001 9.25 

Subiculum- ventral part 33  <0.001 9.25 

Zona incerta 34  =0.001 4.61 

Subiculum – dorsal part 35  <0.001 5.77 

Pontine grey 36  <0.001 13.70 

Tegmental reticular nucleus 37  <0.001 8.71 

Pontine reticular nucleus 38  <0.001 6.68 

Lateral entorhinal cortex 39   <0.001 7.59 / 6.72 

Ectorhinal cortex 40  <0.001 6.72 

Perirhinal cortex 40  <0.001 6.72 

Periaqueductal grey 41  <0.001 6.52 

Superior colliculus 42  <0.001 10.17 

Pons: nucleus of the lateral lemniscus 43  <0.001 13.70 
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Pons: superior central nucleus raphe 44  <0.001 9.18 

Superior cerebellar peduncle decussation 45  <0.001 5.73 

Peduncle pontine nucleus 46  <0.001 6.29 

Superior olivary complex + periolivary region 47  <0.001 7.66 

Presubiculum 48  <0.001 6.32 

Temporal association area 49  <0.001 10.17  

Cerebellum: simple lobule 50   <0.001 5.07 / 6.43 

Medulla: medial vestibular nucleus 51  <0.001 7.35 

Medulla: nucleus prepositus 51  <0.001 7.35 

Medulla: nucleus raphe magnus 52  <0.001 6.36 

Medulla: facial motor nucleus 53  <0.001 7.12 

Cerebellum:  interposed nucleus 54  <0.001 9.00 

Cerebellum: fastigial nucleus 54  <0.001 9.00 

Medulla: medial and spinal vestibular nucleus 55  <0.001 7.03 

Medulla: parvicellular nucleus 55  <0.001 7.03 

Nucleus of the solitary tract 55  <0.001 7.03 

Medulla: intermediate reticular nucleus 56  <0.001 5.91 

Cerebellar commissure and arbor vitae 57  <0.001 8.27 

   

  RL > PL and RL < PL, depending on the plate across the rostral caudal extent 

 RL > PL     

 RL < PL     

 

 

 Experiment 4: IEG (c-fos) analysis after learning in the WCM 

To elucidate the pattern of Mn2+ accumulation seen on the scans I analyzed 

c-fos expression after learning (at least 5 out of 6 correct trials in one day) in 

the WCM (PL vs RL vs home cage/HC controls). With this, I aimed at 

differentiating the structures initially activated during spatial learning (high 

density of c-fos positive cells) and its underlying connectivity (structures with 

higher Mn2+ signal in the previous experiment) to establish a spatial learning 

matrix.  

Based on the previous results pointing at the hippocampus as the source of 

signal to its downstream targets (where I observed Mn2+ accumulation), this was 

the first choice of structure to be analyzed. The dorsal and ventral portions of 

the hippocampus (CA1 subfield) were analyzed as separate ROIs. I found a 

significant difference between right dorsal hippocampus (dCA1) of the RL group 

compared to HC (figure 13; group: F (2, 17) = 3.671, p = 0.0473; 1-way 
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ANOVA). This difference was not observed when considering values averaged 

over both hemispheres. There was no difference between the PL group and the 

other two groups for dCA1. For the ventral hippocampus ROI (vCA1), I observed 

a significant difference on the left hemisphere between the PL group and HC 

(figure 13; group: F (2, 13) = 5.256, p = 0.0212; 1-way ANOVA). Once more, 

this difference was not observed when both hemispheres were considered. No 

difference was found between the RL group and the other two groups. 

Given my interest in strategy switch during performance in the WCM, and 

the putative role of the medial prefrontal cortex (mPFC) on this process, I 

selected its sub-regions, the prelimbic (PrL) and infralimbic (IL) cortices, as 

ROIs. At the PrL I found a significant difference in the left (figure 13; group: F 

(2, 22) = 4.696, p = 0.0200; 1-way ANOVA) and in the right (group: F (2, 22) 

= 3.59, p = 0.0447; 1-way ANOVA) hemispheres between the RL group and HC. 

However, the right hemisphere comparison did not survive multiple comparison 

correction (Tukey’s post-hoc test, p = 0.0546, trend). The significant difference 

was also present when both hemispheres were considered (PrL total, figure 13; 

group: F (2, 22) = 5.935, p = 0.0087; 1-way ANOVA). There was no difference 

considering the PL group. For the IL ROI, there was a significant difference 

(figure 13; group: F (2, 14) = 4.662, p = 0.0281; 1-way ANOVA) between the 

PL group and the HC in the left hemisphere. This difference was also observed 

when both hemispheres were considered (IL total, figure 13; group: F (2, 14) = 

3.776, p = 0.0488; 1-way ANOVA). No difference was found for the RL group. 

These results suggest that all structures analyzed were affected by training 

in the WCM under either the PL or RL protocols. This corroborates our 

hypothesis that these are at least some of the structures initially activated upon 

spatial learning. Moreover, they demonstrate that the hippocampus is activated 

during learning under both protocols. 
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Figure 13: IEG (c-fos) analysis after WCM learning. (A-D) Upper panels: 

representative images of the atlas plates (top left) used as references to define the 

structures of interest, and the ISH brain slices of the three groups analyzed: HC, home 

cage controls; RL, mice trained under the response learning protocol; PL, mice trained 



RESULTS   Spaced vs massed training in the WCM 

77 
 

under the place learning protocol. Lower panels: quantification of the data. (A) dCA1: 

HC (n = 7), RL (n = 7) and PL (n = 6). The values of the RL group were significantly 

higher than those of the HC group on the right dorsal hippocampus (dCA1) (* p < 0.05). 

There was no difference when both hemispheres were considered. There was no 

difference between the PL group and the other two groups. (B) vCA1: HC (n = 6), RL (n 

= 5) and PL (n = 5). The values of the PL group were significantly higher than those of 

the HC group on the left hemisphere (* p < 0.05). This difference was not observed 

when both hemispheres were considered. No difference was found between the RL group 

and the other two groups. (C) PrL: HC (n = 9), RL (n = 9) and PL (n = 7). There was a 

significant difference in the left (* p < 0.05) and trend to difference in the right 

hemisphere (# p < 0.06) between the RL group and HC. This difference was also 

present for total PrL (both hemispheres) (** p < 0.01). There was no difference 

considering the PL group. (D) IL: HC (n = 5), RL (n = 7) and PL (n = 5). The values of 

the PL group were significantly higher than those of the HC in the left hemisphere (* p < 

0.05). This difference was also observed when both hemispheres were considered (IL 

total, * p < 0.05). No difference was found for the RL group. Data are presented as 

mean ± s.e.m.  For all analyses: 1-way ANOVA followed by Tukey’s post-hoc test. dCA1, 

dorsal hippocampus subfield CA1; vCA1, ventral hippocampus subfield CA1; PrL, 

prelimbic area/cortex; IL, infralimbic area/cortex.          

        

 Spaced vs massed training in the WCM 

As previously described under materials and methods, when optogenetic 

modulation of behavior was combined with performance in the WCM, mice 

underwent a modified training protocol (regarding the distribution of the 6 daily 

trials) when compared to the “traditional” spaced protocol used in the 

experiments so far. This modification from spaced to massed trials protocol was 

necessary to avoid that animals would be connected/disconnect with the optic 

fiber cables multiple times during the day, thus increasing their stress levels and 

the chance that the head implants would be displaced or would fall off. For a 

graphical representation of the different training protocols please see figure 3. 

To check if animals could learn the task under the massed protocol, with 

the short inter-trial interval (ITI) of 3 min (as opposed to the 10-15 min ITI of 

the spaced protocol), I assigned mice to two groups. The first group was 

subjected to spaced PL (“spaced” group) with the regular ITI of 10-15 min, the 

second group was subjected to massed PL on the WCM (“massed” group) with 

the shorter ITI of 3 min, and behavioral performance was compared.  
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There was no difference between groups on latency, accuracy or number of 

wrong platform visits (figure 14; statistics not shown). There was a significant 

higher number of accurate learners in group at day 3 (χ2
 2, N=16 test = 4, p = 

0.045), but not at any other days. Therefore, I consider that both training 

protocols are appropriate for testing spatial learning behavior and might be 

applied indistinctively for a training period of at least 4 days.   
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Figure 14: Place learning in the WCM is largely unaffected by massed training 

and decreased inter-trial interval. Animals trained in the WCM under spaced (n = 8) 

or massed (n = 8) protocols had their behavioral performance compared. There was no 

significant difference between groups on latency values, accuracy levels or number of 

wrong platform visits. The percentage of accurate learners was higher for the spaced 

group on day 3 (* p < 0.05, χ2 test) but not on the other days. Data are presented as 

mean ± s.e.m.  
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 Experiment 5: dHPC optogenetic inhibition during WCM (PL) 

recall 

 As a “proof of concept” experiment to validate the combination of the 

WCM with optogenetic manipulation in our setup, I bilaterally injected a viral 

vector transducing the inhibitory opsin ArchT in the dorsal hippocampus CA3 

subfield (dCA3 / dHPC) of C57BL/6N mice and 3 weeks after implanted optic 

fibers directly above the viral injection target. Following recovery, animals (n = 

21) were trained in the WCM for 7 days under the PL protocol without 

connection to the laser cables. The animals that were accurate learners by day 7 

(n = 17 out of 21; figure 15) followed up for the next stage of the experiment. 

After 1 day of rest, animals were tested for recall of the task, under the same 

protocol as training, but at this time connected to the laser cables without laser 

activation in order to habituate them to the intervention procedure. Thus, the 

analysis presented here does not consider the behavioral data from day 9 

(habituation only). On day 10 behavioral performance did not seem to be 

affected by the cable connections (laser off) anymore and most of the animals 

could perform the task normally (accurate learners = 90.9%). On day 11, I 

optogenetically inhibited the dHPC of the animals with green laser (532 nm, 22-

26 mW) for the duration of each trial (~ 10 s). I did not observe a significant 

drop of accuracy or number of accurate learners, other than expected. The 

latency values or number of wrong platform visits did not significantly differ 

from days 10 and 11 either.  Finally, on day 12, I tested the animals once more 

with the cables connected and laser off, and also did not observe significant 

differences in behavior. 

 Despite the fact that these results are not in line with our expected 

outcomes for HPC inhibition during a spatial memory test, they brought 

awareness of the possible impact of the optic fiber implantations on learning the 

task. This issue is dealt with in more detail later (see figure 17). 
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Figure 15: Optogenetic inhibition of dHPC during spatial memory recall. (A) 

Experimental timeline, highlighting the time-points and intervals of different 

experimental procedures and the laser regime for the recall tests (d9-d12). (B) 

Behavioral performance of the mice (n = 21) on the training week (d1-d7) in the WCM 

under the PL protocol. 17 out of 21 mice learned (were considered accurate learners) 

the task by d7 and followed-up for the recall week. (C) Behavioral performance of the 

mice (n = 17) during the recall testing period (d9-d12) in the WCM under the PL 

protocol. There was no significant difference on any of the behavioral parameters 

between laser on days and laser off day. Data are presented as mean ± s.e.m.        
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 Experiment 6: vHPC optogenetic inhibition during WCM (PL) 

recall 

 In line with the previous experiment, and to further investigate the 

involvement of the ventral HPC, especially the CA3 subfield (which showed a 

strikingly strong MEMRI signal and correlation with behavioral measurements in 

experiment 3) in spatial memory in the WCM, I repeated the previous 

experiment in a new group of mice, this time targeting the ventral CA3 region. 

Additional differences in the protocol were the duration of recall tests (5 days, 

d9-d13; instead of 4, as before) and the number of days with optogenetic 

inhibition (laser on; 2 days, d11 and d12; instead of 1 day, as before). 

 From a total number of 20 mice which were trained in the WCM for 7 days 

(d1-d7), 8 have acquired the task in the end of training (figure 16). Only these 

mice followed up for the recall tests (d9-d13). During the recall period I 

observed a significant drop in accuracy levels (F (2.455, 17.18) = 5.056, p = 

0.0144; 1-way ANOVA), especially from day 10 (laser off) to day 11 (laser on), 

as revealed by the post-hoc analysis. There was no significant difference in 

accuracy among the other days or on the other behavioral parameters. 

 These results indicate a possible role of the vHPC in recall of spatial 

memory in the WCM, as it was already pointed out by other studies (see 

Discussion). Nevertheless, the small number of subjects in the recall tests 

limited the power of our analysis and was likely the reason why no further 

differences between days were observed (e.g. drop in number of accurate 

learners from days 10 to 11). 
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Figure 16: Optogenetic inhibition of vHPC during spatial memory recall. (A) 

Experimental timeline, highlighting the time-points and intervals of different 

experimental procedures and the laser regime for the recall tests (d9-d13). (B) 

Behavioral performance of the mice (n = 20) on the training week (d1-d7) in the WCM 

under the PL protocol. 8 out of 20 mice learned (were considered accurate learners) the 

task by d7 and followed-up for the recall week. (C) Behavioral performance of the mice 

(n = 8) during the recall testing period (d9-d13) in the WCM under the PL protocol. 

There was a significant drop in accuracy from day 10 (laser off) to day 11 (laser on) * p 

< 0.05 (1-way ANOVA followed by Tukey’s post-hoc test). There was no significant 

difference on the other behavioral parameters between laser on and laser off days. Data 

are presented as mean ± s.e.m.      
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 dHPC vs vHPC implantations and its effects on WCM learning 

Under normal conditions, naïve C57BL/6N mice learn the WCM PL task in 

4 to 7 days (e.g. see figure 7, figure 9 and figure 14). Thus, the training 

duration of this task is up to 7 days, unless a specific investigation requires a 

prolongation of the protocol, as in experiments 3, for example. Nevertheless, in 

the last two experiments, not all animals learned the WCM task by day 7. vHPC 

implanted mice, especially, showed a considerable decrease in accuracy and 

percentage of accurate learners by day 7. For that reason, I hypothesized that a 

lesion caused by the fiber implantation itself could have been responsible for the 

decreased accuracy and percentage of accurate learners from the last two 

experiments. Therefore, I directly compared the behavioral data of the two 

implanted groups (dHPC implanted and vHPC implanted) and naïve (non-

implanted mice, trained under the same massed PL protocol for 5 days; same 

cohort shown as “massed” group in figure 14) to better understand this issue 

(figure 17).  

Statistical analyses of behavioral performance from d1 to d5 failed to 

reveal significant differences in latency, but not the other parameters. 

Specifically, group differences were observed towards the end of training for 

accuracy levels (interaction: F (8, 184) = 3.342, p = 0.0013, group: F (2, 46) = 

17.73, p < 0.0001; 2-way ANOVA), number of wrong platform visits 

(interaction: F (8, 184) = 2.798, p = 0.0060, group: F (2, 46) = 13.54, p < 

0.0001; 2-way ANOVA) and percentage of accurate learners (day 4: χ2 
3, N=49 

test = 26.57, p < 0.0001; day 5 χ2 
3, N=49 test = 15.15, p = 0.0005).  

In the analysis of days 1 to 7 between the implanted groups (dHPC vs 

vHPC) I did not observe any differences for latency or number of wrong platform 

visits. However, the accuracy levels of the two groups showed a trend to 

significance (interaction: F (6, 234) = 2.057, p = 0.0591; 2-way ANOVA) and 

post-hoc analysis revealed a significant difference on the last day (day 7), with 

the vHPC implanted showing lower values. Additionally, the percentage of 

accurate learners was significantly lower for vHPC implanted animals (day 6: χ2 

2, N=41 test = 4.111, p = 0.043; day 7: χ2 
2, N=41 test = 7.22, p = 0.007). 
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These results suggest that the HPC implantation by itself, without further 

manipulation (e.g. cable connection or optogenetic inhibition, i.e. laser on), 

disrupts learning in the WCM. The effect was more pronounced for the vHPC 

implanted group and precluded further optogenetic experiments targeting the 

HPC. 
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Figure 17: Optic fiber implantation in the HPC affects place learning in the 

WCM. (A) Representative images of mouse brain plates (adapted from the Mouse Brain 

in Stereotaxic Coordinates) indicating location of the optic fiber implants and its 

caliber/diameter (200 μm, in scale). (B) Behavioral performance of naïve mice (n= 8), 

dHPC implanted (n = 21) and vHPC implanted (n = 20). Latency values did not differ 

among the groups. In the three groups’ comparison from d1-d5, accuracy was higher for 

naïve mice on day 3 (naïve vs vHPC, * p < 0.05), day 4 (naïve vs dHPC and naïve vs 

vHPC, **** p < 0.0001) and day 5 (naïve vs dHPC and naïve vs vHPC, **** p < 

0.0001). The number of wrong platform visits was significantly lower for naïve animals 

on day 2 (naïve vs dHPC,*** p < 0.001; naïve vs vHPC, ** p < 0.01), day 3 (naïve vs 
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dHPC, ** p < 0.01; naïve vs vHPC, **** p < 0.0001), day 4 (naïve vs dHPC, *** p < 

0.001; naïve vs vHPC, *** p < 0.001) and day 5 (naïve vs vHPC, * p = 0.05) (2-way 

ANOVA followed by Tukey’s post-hoc test). The percentage of accurate learners was 

significantly higher for naïve animals (day 4, **** p < 0.0001; day 5, *** p < 0.001; χ2 

test). In the comparison between implanted groups (dHPC vs vHPC) from d1-d7, there 

was no difference for latency or number of wrong platform visits. Accuracy was 

significantly higher for dHPC implanted mice on day 7 (* p < 0.05; 2-way ANOVA 

followed by Tukey’s post-hoc test). The percentage of accurate learners was significantly 

lower for vHPC implanted animals (days 6, * p < 0.05; day 7, ** p < 0.01; χ2 test). 

Data are presented as mean ± s.e.m.  

 

 Experiment 7: dHPC chemogenetic inhibition during WCM (PL) 

learning 

After the technical problems described in experiments 5 and 6 (also see 

figure 17), that affected the number of animals that learned the task, I changed 

our approach for neuronal inhibition: instead of using optogenetics I employed 

chemogenetics (DREADDs). C57BL/6N mice were injected in the dorsal 

hippocampus subfield CA1 (dCA1) with a viral vector transducing the inhibitory 

DREADD hM4D and after 3 weeks started training in the WCM under the PL 

protocol paired with daily CNO (i.p., 5 mg/kg; 45 min before the behavioral 

task) or vehicle injections for 5 days (d1-d5). On day 6 animals received the 

inverted treatment when compared to the previous 5 days; the behavioral 

protocol (see figure 18A) was unchanged. After 1 day of rest, animals were 

tested for reversal learning on 2 days (d8-d9) under the same treatment regime 

received on the initial 5 days (d1-d5).   

There was no difference in the behavioral parameters between the two 

groups (CNO vs vehicle) in the training period (d1-d6; figure 18B) or in the 

reversal learning period (d8-d9; figure 18C). 
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Figure 18: Chemogenetic inhibition of dHPC during learning in the WCM (PL). 

(A) Timeline of experimental procedures, including a schematic representation of the 

injection sites for the viral vector (AAV8-CamKII-hM4Di-mCherry) aimed at the dCA1 

pyramidal layer. (B) Behavioral performance of the mice trained under the place learning 

protocol in the WCM, treated with CNO (n = 9; i.p., 5 mg/kg, 45 min before behavioral 

task) or vehicle (n = 6) during the training/learning period (d1-d6). Note that on day 6 

(d6) animals received inverted treatment compared to the one from the initial 5 days. 
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There was no difference between groups on the behavioral parameters evaluated. (C) 

Behavioral performance of the same mice during the reversal learning period (d8-d9). 

Latency, accuracy and number of wrong platform visits and percentage of accurate 

learners were not different between groups. (D) Left panel: locomotion of the animals 

treated with CNO (i.p, 5 mg/kg, n = 7) or vehicle (n = 6) 45 min before a 10 min-

exposure to a new context (Y maze).  Middle and right: c-Fos expression on the dCA1 of 

animals killed 80 min after Y maze exposure. Middle panel: IHC image, indicating an 

example ROI of the area (individually defined) used for cell counting. Right panel: 

quantification of cells positive for c-Fos. There was no difference between groups. Values 

are shown as density of cells per area, in arbitrary units. Data are presented as mean ± 

s.e.m.  

 

Given  the known involvement of the dorsal hippocampus in spatial 

navigation and learning, and this lack of difference between groups, I 

hypothesized that the chemogenetic approach used here either: (i) was not 

sufficient to inhibit a large enough portion of the hippocampus to affect 

behavioral performance; or (ii) the DREADDs were not functional (i.e., did not 

lead to inhibition of the target neurons upon activation with CNO). In order to 

clarify the problem I analyzed the density of c-Fos positive cells in the 

transfected hippocampal area (tagged with mCherry of the viral vector) after the 

exposure of the mice previously treated with CNO or vehicle (45 min before) to 

a new context (which should induce activation of the dHPC). There was no 

significant difference between the groups (figure 18D), indicating that the 

DREADDs used here did not sufficiently inhibit the transfected target area.    

 

 Experiment 8: vHPC chemogenetic inhibition during WCM 

(PL) learning 

 Similarly to the experiment described above, I tested the effects of 

chemogenetically inhibiting the ventral hippocampus subfield CA1 of animals 

learning the WCM under the PL protocol. Again, there were no differences in the 

behavioral parameters between groups during either training/learning (d1-d6) or 

reversal learning (d8-d10) (figure 19). I attribute the lack of differences to a 

possible mal function of the chemogenetic approach used here, as described in 

the previous experiment which has been performed in parallel to this one.  
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Figure 19: Chemogenetic inhibition of vHPC during learning in the WCM (PL). 

(A) Timeline of experimental procedures, including a schematic representation of the 

injection sites for the viral vector (AAV8-CamKII-hM4Di-mCherry) aimed at the vCA1 

pyramidal layer and vCA1. (B) Behavioral performance of the mice trained under the 

place learning protocol in the WCM, treated with CNO (n = 7; i.p., 5 mg/kg, 45 min 

before behavioral task) or vehicle (n = 6) during the training/learning period (d1-d6). 

Note that on day 6 (d6) animals received inverted treatment compared to the one from 

the initial 5 days. There was no difference between groups on the behavioral parameters 

evaluated. (C) Behavioral performance of the same mice during the reversal learning 

period (d8-d10). Latency, accuracy, number of wrong platform visits and percentage of 

accurate learners were not different between groups. Data are presented as mean ± 

s.e.m. 
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 Experiment 9: IL chemogenetic inhibition during WCM (PL) 

learning – focus on strategy switch 

 Since the mPFC is implicated in strategy switch, as discussed in the 

introduction, I hypothesized that it might also be involved in this switch from RL 

to PL during initial learning (under the spatial strategy) in the WCM, and not 

only switching from strategies fully learned before. To test this hypothesis I 

injected the infralimbic cortex (IL) of Nex-Cre mice with either a DIO viral vector 

transducing the inhibitory DREADD hM4D or a control viral vector transducing 

mCherry only. 3 weeks after, mice were subjected to place learning (PL) in the 

water cross maze (WCM) under CNO administration (5 mg/kg; i.p.; 45 min 

before the behavioral task).  

I observed reduced accuracy on the hM4D group around the middle of the 

training period, only revealed by post-hoc analysis (figure 20; interaction: F (6, 

60) = 2.04, p = 0.0741; 2-way ANOVA followed by Sidak’s post-hoc test). The 

accuracy values for both groups converged in the end. This was reflected in the 

percentage of accurate learners (day 5: χ2 
2, N=12 test = 5.182, p = 0.0228). The 

percentage of side biased animals differed in the first day (day1: χ2 
2, N=12 test = 

5.6, p = 0.0180) and it was comparable on the other training days. 
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Figure 20. Chemogenetic inhibition of IL during learning in the WCM (PL) – 

focus on strategy switch. (A) Timeline of experimental procedures, including a 

schematic representation of the injection sites for the viral vectors (control: AAV8-hSyn-

DIO-mCherry, n = 7; or AAV8-hSyn-DIO-hM4D(Gi)-mCherry, n = 5) aimed at the IL 

(bilaterally). (B) Behavioral performance of the mice trained under the place learning 

protocol in the WCM, treated with CNO (i.p., 5 mg/kg, 45 min before behavioral task) 

during the training/learning period (d1-d7). Accuracy was significant higher for the 

control (mCherry) group on day 5 (** p < 0.01; 2-way ANOVA followed by Sidak’s post-

hoc test). The percentage of accurate learners was higher for this group on the same 
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day (day 5, * < 0.05; χ2 test). The percentage of side biased animals was higher on the 

experimental (hM4D) group on the first day (day 1, * < 0.05; χ2 test).  There was no 

difference between groups on the other behavioral parameters evaluated. Data are 

presented as mean ± s.e.m. IL, infralimbic cortex. 

 

 Experiment 10: Retrograde tracing of IL with fluorogold  

It has been previously described that the hippocampus (HPC) and the 

medial prefrontal cortex (mPFC) are functionally and anatomically 

interconnected (see Introduction for more information). Given the interplay of 

the mPFC and the HPC in strategy selection and spatial navigation (Hok et al., 

2005; Martinet et al., 2011; Negron-Oyarzo et al., 2018), I also hypothesized 

that activity of the HPC-mPFC pathway is necessary for the initial strategy 

switch during learning in the WCM. However, to determine the exact projection 

subfields of the hippocampus to the infralimbic cortex (IL) in the mouse brain, I 

analyzed the fluorescence of the retrograde tracer fluorogold (FG) after its 

injection in the target area (IL; figure 21) of 4 mice. I observed fluorescent 

signal in the dorsal and intermediate parts of the CA3 subfield (figure 21) and 

ventral part of the CA1 subfield (figure 21), indicating that these hippocampal 

regions project directly to the IL area. No fluorescence was observed in the 

dorsal part of CA1.  

This anatomical pathway analysis was used as the basis of the 

experimental design of the specific functional modulation of the vCA1-IL 

pathway, described in the Outlook (see figure 24). 
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Figure 21: IL Retrograde tracing of the infralimbic cortex (IL) to the 

hippocampus. (A) The retrograde tracer, fluorogold (FG), was bilaterally injected into 

the IL. (B) Ventral hippocampus at the level where FG signal was found with 

representative microscopy images (5x and 10x) of vCA1. (C) Dorsal and intermediate 

hippocampus at the level where FG signal was found, with representative microscopy 

images (10x) of dCA3  and iCA3.     
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 DISCUSSION 

In this thesis I revealed the neuronal matrix underlying spatial navigation 

under the place and response learning strategies in the water cross maze (WCM) 

task using manganese-enhanced MRI (MEMRI) and whole brain voxel-wise 

analysis. In this context I elucidated important functional properties of MEMRI in 

order to better interpret our results, including the influence of neuronal activity 

on (i) Mn2+ cellular uptake, followed by transient accumulation at this site, and 

(ii) increased axonal and transsynaptic transport after cellular uptake.   

Moreover, I compared the results obtained with MEMRI after training in 

the WCM with IEG expression to tell apart the likely structures initially activated 

by the task from the output structures where Mn2+ preferentially accumulates.  

I also attempted to prove the causal involvement of selected structures 

with spatial learning and strategy switch in the WCM. Follow-up experiments in 

this direction will be discussed in the outlook. 

 

 Advantages of MEMRI over other tools 

As I showed here, manganese-enhanced MRI is an interesting tool for 

analyzing brain activity in small animals given its good resolution that allows the 

delineation of brain structures not possible with other techniques, like PET scan. 

Additionally, since Mn2+ is taken-up in activity manner (Lin and Koretsky, 1997), 

and transiently accumulates at the uptake structure (Gavin et al., 1990), it can 

be detected after the performance of a behavioral task (or intervention) of 

interest (Chen et al., 2007; Bissig and Berkowitz, 2009; Eschenko et al., 2010; 

Bangasser et al., 2013; Chen et al., 2013; Hoch et al., 2013; Tang et al., 2016; 

Laine et al., 2017). This makes it possible to combine it with freely moving 

behavioral tasks out of the scanner and even with tasks that require multiple 

trials (over days) to be accomplished (e.g. WCM). Moreover, since MEMRI is 

non-invasive and performed in live animals, it brings the possibility to run 

longitudinal studies and follow-up animals with the simple passage of time (e.g. 
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aging studies) or before and after a specific manipulation (Almeida-Correa et al., 

2018). Furthermore, MEMRI has the advantage of allowing voxel-wise whole 

brain analyses (Yu et al., 2008; Soma et al., 2011) instead of pre-defined ROI 

analyses, or small windows for imaging (e.g. calcium imaging techniques). 

Lastly, this technique can also be used for connectomics analyses, either after a 

direct intracerebral injection for tract tracing investigations (for review see 

(Pautler, 2004)) or after a systemic injection with baseline and follow-up scans 

for comparison (Almeida-Correa et al., 2018).   

 

 MEMRI functional mechanisms 

Aiming at better understanding and interpreting the results obtained with 

MEMRI, I carried out investigations addressing functional mechanisms of this 

technique. These investigations were complementary to previous work from our 

lab and others. 

MEMRI studies have already employed different routes for Mn2+ 

administration, such as intracerebral injections (Pautler et al., 2003; Watanabe 

et al., 2004; Yang et al., 2011), intranasal aerosols (Henriksson et al., 1999; 

Pautler and Koretsky, 2002; Lehallier et al., 2012), intravitreal injection (Pautler 

et al., 1998; Bearer et al., 2007; Luo et al., 2012), and topic eye application 

(Lin et al., 2014). These methods are however invasive and often toxic (Bearer 

et al., 2007; Luo et al., 2012; Lin et al., 2014). Systemic injections have a 

reduced risk of toxicity if fractionated (Grunecker et al., 2010), or continuously 

delivered with osmotic mini pumps (Sepulveda et al., 2012; Poole et al., 2017). 

The delayed and limited diffusion of Mn2+ to the brain should also be considered. 

In each case, care must be taken to find an optimal balance between a sufficient 

dose to reach the best contrast while minimizing the potential side/toxic effects 

of Mn2+ in the brain. The use of systemic methods for delivering of MnCl2 has 

clear advantages, e.g., in case of prolonged behavioral procedures. In some 

cases, however, systemic treatment has to be combined with the disruption of 

the blood-brain barrier (BBB), e.g., by mannitol injection (Lin and Koretsky, 
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1997; Aoki et al., 2002) or by ultrasound (Howles et al., 2010), in order to allow 

the Mn2+ to quickly reach the brain. In these cases, a single MnCl2 spike 

injection can be applied. Even with the use of relatively small doses for a single 

injection that did not cause major apparent side/toxic effects, small impairments 

as transient motor deficit in skilled reaching, rears, and activity were already 

described in rats (Alaverdashvili et al., 2017). This limitation should be 

considered, especially when designing studies with behavioral experiments 

where fine motor skills are necessary. For long-term investigations (from many 

hours to days) the disruption of the BBB is not necessary (Yu et al., 2005; Kuo 

et al., 2006), given that Mn2+ can reach the brain and accumulate in a activity-

dependent manner in the structures related to the challenge/task performed at 

least few hours after systemic administration. This applies in particular to the 

paradigm used here in experiment 2, where I “pre-loaded” the cells with Mn2+ 

before the experimental intervention (whiskers trimming). My data suggest that 

this procedure might also be used for acute behavioral challenges where mice 

could be first treated with MnCl2 to reach sufficient contrast, followed by 

repeated scanning before and after the challenge. One should also not overlook 

clearance of Mn2+ in the brain when scans are performed long (more than 24 h) 

after the MnCl2 injections have stopped. Our lab has previously reported that the 

half-life of Mn2+, after an 8 × 30 mg/kg MnCl2 i.p. injection protocol, is about 5–

7 days, depending on the brain structures (Grunecker et al., 2013). This point 

was taken into consideration in my analysis comparing scans 1 and 2 in 

experiment 2, which were performed 1 week apart. 

Another recent work from our lab has  shown that an important entrance 

site for Mn2+ in neurons are Cav1.2 channels (Bedenk et al., 2018), supporting 

data in the literature pointing at Mn2+ entrance in neurons via calcium channels 

(Drapeau and Nachshen, 1984). In the same study we were able to additionally 

show a preferential accumulation of Mn2+ in projection sites of the neurons 

(Bedenk et al., 2018). This has to be kept in mind while interpreting the findings 

of my thesis. Experiments 1 and 2 of this thesis are in line with the findings of 

Bedenk et al (Bedenk et al., 2018) and extend the knowledge of Mn2+ dynamics 

in the brain. In experiment 1, I provide the first direct evidence of the coupling 
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between increased neuronal activity (triggered by focal unilateral optogenetic 

stimulation of dCA1) and Mn2+ accumulation, as reflected by increased MEMRI 

signal intensity. This finding supports previous investigations using 

pharmacological block or stimulation of specific targets to establish the 

involvement of neuronal activity in Mn2+ cellular uptake (Wang et al., 2015). 

Nevertheless, this does not preclude the possibility that Mn2+ can enter neurons 

also in the absence of activity (Bearer et al., 2007; Lowe et al., 2008; Wang et 

al., 2015), possibly mediated by the binding of this ion to the divalent metal 

transporter, DMT1 (Roth and Garrick, 2003; Bartelle et al., 2013). However, 

these tests were mostly performed in vitro or with intracerebral MnCl2 injections 

and used much higher concentrations of MnCl2 then the ones used in the current 

work. Our finding also suggests that Mn2+ accumulates, at least transiently, at 

the entrance site (stimulated target) upon artificial direct stimulation. I 

acknowledge that a limitation of my experimental design is the unilateral 

stimulation, given that the laser might cause heating (or burning) of the tissue, 

masking or confusing the results. However, the protocol of optogenetic 

stimulation used here was previously tested and proved to be sufficient to 

increase local neuronal firing without causing neuronal damage (Dine et al., 

2016). Nevertheless, a solution for the possible heating problem would be the 

use of wild-type mice injected in one hemisphere with a viral vector transducing 

ChR2, while the other hemisphere would be injected with a control viral vector 

(transducing fluorophore only), and stimulating both hemispheres equally. 

However, this alternative experimental design brings another limitation. That is, 

only one of the hemispheres would express ChR2. One might argue that the 

expression of the opsin itself might alter cell permeability to Mn2+ or lead to 

other unknown /unspecific modifications that would be hard to control and to 

detect. For that reason, I chose the protocol used here.    

In experiment 2 I went on to investigate the involvement of neuronal 

activity in Mn2+ transport after its entrance in the cells. I found that neuronal 

activity elicited by sensory stimulation (whisking) led to accelerated transport of 

Mn2+ to projections sites (figure 22). Additionally, I found that this transport is 

both axonal and transsynaptic, given that I observed differential MEMRI signal in 
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first and second order efferents from the target structure (barrel cortex) (table 

1). These results are in line with the findings from Bedenk et al (Bedenk et al., 

2018) and significant extend them by showing that Mn2+ may cross synapses 

and increase MEMRI signal in second order efferents. This experiment is a nice 

example of how MEMRI can be applied to longitudinal studies that investigate 

the effects of a challenge / manipulation (e.g. whiskers trimming) using a 

combination of baseline and follow-up scans. For a detailed description of this 

experiment please check the published manuscript (Almeida-Correa et al., 2018) 

enclosed in the annex of this document.  

 

Figure 22: Schematic explanation for the differences in Mn2+ accumulation 

observed after unilateral sensory deprivation. In the end of sensory enriched 

housing with intact whiskers and repeated MnCl2 injections, MEMRI (scan 1) reveals 
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equal bilateral accumulation of Mn2+ in the barrel cortices. 1 week later (scan 2) after 

unilateral sensory deprivation (left side), Mn2+ is cleared from the left but not right 

barrel cortex (cell 1), due to ongoing sensory inputs from the intact whiskers of the 

contralateral right side. At the same time, Mn2+ is accumulated in efferent brain 

structures downstream to the left barrel cortex (cell 2) following activity-dependent 

axonal/transsynaptic transport. For simplicity reasons, this scheme does not depict the 

afferences from brain stem structures and the thalamus which relay sensory information 

from the whiskers to the barrel cortex. (reproduced from (Almeida-Correa et al., 2018))  

Previous studies already investigated the possible role of neuronal activity 

in Mn2+ axonal and transsynaptic transport in specific pathways with different 

protocols and obtained, somewhat, contradicting results. These studies were 

confined to local Mn2+ application. For instance, it was shown that Mn2+ is co-

released with neurotransmitters after stimulation with high K+ (Takeda et al., 

1998), indicating that Mn2+ transport is dynamically linked to neural signaling. 

Later, many groups mapped sensory system activation in response to specific 

odors (Pautler et al., 1998; Pautler and Koretsky, 2002; Chuang et al., 2009; 

Lehallier et al., 2012), visual (Bissig and Berkowitz, 2009), or acoustic 

stimulation (Yu et al., 2005), supporting the idea that Mn2+ transport is activity-

dependent. One of these studies (Bearer et al., 2007) employed transgenic blind 

mice to investigate activity-dependency in Mn2+ dynamics after intravitreal 

MnCl2 injection and concluded that “Mn2+ is not transmitted efficiently across 

synapses in the absence of electrical activity in this system,” whereas uptake 

and axonal transport remained intact. This last conclusion is supported by the 

results of Lowe et al. (Lowe et al., 2008)  showing no difference in MEMRI signal 

intensity in the visual system between groups treated with MnCl2 only or in 

combination with cell activity blockers (APB or TTX). On the other hand, 

accelerated Mn2+ transport after MnCl2 co-treatment with AMPA was already 

described (Wang et al., 2015), indicating that axonal transport of Mn2+ is 

dynamically modulated by neuronal activity. In fact, pharmacological blockage of 

calcium channels also blocked this accelerated transport (Wang et al., 2015). 

Using the song control system in song birds as a model of neuronal plasticity 

(for review see (Van der Linden et al., 2004)), Tindemans et al. (Tindemans et 

al., 2003) were able to show an activity-dependent transsynaptic transport of 

Mn2+ from the site of local cerebral injection of Mn2+ in the HVC (high vocal 

center; a relay region of the song control system) to more downstream regions 
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[such as the nucleus robustus arcopallialis (RA) and the striatal area X].Using 

dynamic MEMRI, the authors reported that both regions showed a more rapid 

accumulation of Mn2+ in the stimulated birds. After about 10 h, this difference to 

non-stimulated birds vanished only for RA, but not for area X, suggesting a 

differential functional connectivity of the two regions in the song circuitry. 

Considering these previous reports and the results presented here, I conclude 

that, even in the case of systemic MnCl2 injection, axonal and transsynaptic 

transport of Mn2+ is modulated by the activity state of the neuronal pathway. My 

results further suggest that reduced neuronal activity due to blockage of sensory 

inputs attenuates the transport of Mn2+ from its initial accumulation site, while 

continuous neuronal activity promotes the transport of Mn2+ between neurons. 

 

 Why choosing the water cross maze (WCM) 

The water cross maze (WCM) was my behavioral task of choice to 

investigate spatial navigation, learning and memory in mice for multiple 

reasons. First, this task is very easy to establish, easy for the animals to learn 

and to record the data from trial 1 on. Also, the learning protocols are well 

defined and clearly identified by performance of the animals, allowing the 

investigation and comparison of hippocampus-dependent vs hippocampus-

independent learning. Another advantage of the WCM over other spatial 

navigation tasks is the strong motivation that animals have to escape from the 

water, which is comparable between animals. This might not be the case for dry 

mazes, where the motivation to search for food can differ from one individual to 

the other. When compared to the Morris water maze, the WCM has the 

advantage of the enclosed corridors that limit the path of the animals, avoiding 

chaining, random search, etc, making it easier to identify the strategy search of 

the subjects. Furthermore, the enclosed corridors decrease the stress of the 

animals when compared to exposure to open environments. Additionally, there 

is a large variety of information that can be acquired from the animal’s behavior 

in the WCM, such as latency, accuracy, number of wrong platform visits, start 

bias, etc (Kleinknecht et al., 2012). These behavioral measures can be used as 
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regressors for correlation analyses of functional MEMRI data, as I showed here 

in experiment 3. This combination of methods provides new interesting data that 

helps unravel the structures involved in performance of the WCM, thus involved 

in spatial navigation and learning and memory, and its underlying connectivity.  

Nevertheless, as any other method, the WCM also has its limitations. The 

most important to note was already mentioned before as an advantage: the task 

is very easy to learn. Even though this might be a beneficial characteristic, given 

that it reduces the stress load of the animals within few trials and allows an 

efficient training paradigm, it is also a disadvantage given that a “ceiling effect” 

of learning is usually reached after few days of training. Thus, manipulations 

that aim at improving spatial learning should not be tested in the WCM. 

Additionally, the maze set-up with its transparent walls is also advantageous 

and disadvantageous in different perspectives. It is advantageous given that it 

allows animals to see the extra maze cues from any position inside the maze, 

helping the individuals to orient themselves. And it is disadvantageous since 

even when animals  do not require  the hippocampus to perform the task (e.g. 

trained under RL) they acquire information of the surrounding to enhance their 

orientation capabilities as well, which might mask the detection of brain 

structures involved in one or another learning protocol. This was likely the 

reason why I did not see the hippocampus among the structures with differential 

MEMRI signal in our comparison between PL- and RL-trained animals. Moreover, 

since hippocampal functions are very redundant it is only possible to see the 

manipulation effects when hippocampal volume loss (caused by lesions or 

transient inactivation) is major (Moser et al., 1993; Kleinknecht et al., 2012). 

This “cognitive reserve” mediated effect was directly investigated in a 

longitudinal study which combined imaging and behavioral testing over the 

course of 16 months until senescence (Reichel et al., 2017).   
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 Spatial learning matrices, brain connectivity and cognitive 

domains  

The regressor analyses used to identify brain structures putatively related 

to learning in the WCM (experiment 3) highlighted the hippocampus in the 

inverse correlation with latency and the direct correlation with accuracy for PL. 

This is line with the vast literature showing the involvement of the hippocampus 

with allocentric spatial learning (i.e. place learning) (Becker et al., 1980; Morris 

et al., 1982). The PAG was directly correlated with latency, perhaps suggesting 

an impact of fear processing (for review see (Tovote et al., 2015)) in 

detrimental cognitive performance (i.e., feeling of fear and despair leading to 

decreased performance in the WCM). In line with this emotional component, the 

BLA was inversely correlated with accuracy, and BLA MEMRI signal was strongly 

inversely correlated with vHPC MEMRI signal. These results corroborate the 

hypothesis of emotional control over cognitive performance. More specifically, in 

this case, of emotional detrimental effects over spatial learning. This interplay of 

emotion and learning, likely mediated by the vHPC-BLA circuit (as previously 

mentioned in the Introduction), is really interesting for me and it will be 

revisited in the outlook. Notably, most of the clusters correlated with behavioral 

performance were found unilaterally. I believe that the most parsimonious 

explanation for this finding is the thresholding used in my analysis, which only 

considers clusters with a relatively large number of voxels (e.g. 50 voxels for 

experiment 3; check details in the Results) in order to avoid false positives. In 

turn, that has the limitation of missing some smaller clusters possibly involved 

in the behavioral task. For RL, the hippocampus was the only structure 

correlated with latency from days 1-4, suggesting that even if not necessary to 

perform the task (under this specific strategy) animals do count on hippocampal 

activity, likely to process information of its surroundings before they learn 

exactly what they have to do to escape the WCM. Several structures were 

correlated (directly or inversely) with latency from days 5-8. These structures 

are implicated in different functions, such as sensory processing (e.g. main 

olfactory bulb, piriform area), stress/emotionality (e.g. bed nucleus of the stria 

terminalis, basomedial amygdala), etc. This will be further discussed in the 
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following paragraphs (also see table 3). There was no cluster correlated with 

accuracy, possibly because of the used analysis threshold, as explained before.        

My comparison between the MEMRI signal observed in animals trained 

under place- or response learning in the WCM revealed several structures with 

differential contrasts. I analyzed a possible pattern among these structures, 

taking into consideration our previous results pointing at preferential Mn2+ 

accumulation in projection terminals (Bedenk et al., 2018) and available data in 

the literature regarding brain connectivity. I found that many of the structures 

described here to have a stronger MEMRI signal in either comparison (RL > PL 

or RL < PL) are downstream targets of the hippocampus (figure 23). Their 

connectivity, however, differs between structures along the longitudinal 

association bundle originating in vCA1 (for RL > PL) and fornical afferences from 

vCA1 and direct innervation from dCA1/iCA1 (for RL < PL). These findings 

support the idea that the MEMRI signal observed in this experiment is mainly 

comprised of outputs of the initially activated structures and suggest that 

different hippocampal pathways are involved in the different navigation 

strategies studied here (PL and RL). This last finding highlights the importance 

of the whole brain analysis performed here and the need to investigate 

structures other than the hippocampus, as mentioned before in the introduction. 

The finding also shows that even if not required to perform the response 

learning strategy in the WCM (Kleinknecht et al., 2012), the hippocampus is also 

involved in response learning by recruiting some of its outputs as the 

retrosplenial cortex and the subiculum, possibly to update head direction signals 

(Chen et al., 1994; Cho and Sharp, 2001) provided by the vestibular system 

(Smith, 1997), thus, improving performance of the animals through path 

integration (McNaughton et al., 1996; Taube, 1998). These results are in line 

with the previously described differential functional connectivity of the 

hippocampus and its downstream targets for distinct information computations 

(e.g. anxiety processing or goal-directed behavior, (Ciocchi et al., 2015).  
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Figure 23: MEMRI PL vs RL – connectivity matrix of hippocampus and cortical 

structures. Schematic representation of cortical outputs of the hippocampus and its 

different connectivity patterns. 1. Dorsal stream to the retrosplenial area and caudal end 

of the anterior cingulate area; 2. Ventral stream through the longitudinal association 

bundle 3. Rostral stream via a cortical-subcortical-cortical pathway involving the fornix 

system. Red dots represent cortical structures with higher MEMRI signal in the RL group 

(RL > PL) and blue dots represent cortical structures with higher MEMRI signal in the PL 

group (RL < PL). The connectivity pattern of the distinct groups differ between 

structures along the longitudinal association bundle originating in vCA1 (for RL > PL) 

and fornical afferences from vCA1 and direct innervation from dCA1/iCA1 (for RL < PL). 

All structures represented with dots were extracted from table 2. (Figure adapted from 

(Cenquizca and Swanson, 2007) 

 

Moreover, to understand the role of each structure with differential MEMRI 

signal, based on previous descriptions available in the literature, I categorized 

them individually into distinct cognitive domains (table 3). Namely: sensory 

processing, emotion (stress, fear, anxiety, social-related behaviors, etc), 

executive function (mental planning), memory and attention (adapted from 
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(Park et al., 2018)). Structures could fall into one or more categories, depending 

on their involvement in these different cognitive domains. 

 

Table 3: List of structures showing differential MEMRI signal between scans of 

mice trained under the PL protocol vs mice trained under the RL protocol in the 

WCM contextualized into different cognitive domains 

 Cognitive domains* 

Brain structure MEMRI 

signal ≠ 

Sensory 

processing 

Emotion Executive 

function 

Memory Attention 

Main olfactory bulb   X     

Accessory olfactory bulb  X     

Motor cortex   X  x   

Prelimbic cortex    x x x 

Orbital area  X x x x x 

Piriform area   X     

Taenia tecta  X     

Infralimbic cortex   x x x x 

Lateral septal nucleus    x x x  

Substantia innominate    x  x x 

Somatosensory area  X     

Lateral olfactory tract  X     

Anterior cingulate area   x    

Somatosensory area – upper limbs  X     

Bed nucleus of the stria terminalis   x    

Stria terminalis   x    

Anterior hypothalamic nuclei   x    

Thalamic nuclei  X x x x x 

Dorsal fornix  X  x x x 

Retrosplenial area  X x x x  

Posterior parietal association area  X  x  x 

Ventral posterior nucleus of the thalamus  X     

Cortical amygdala  X     

Geniculate complex  X     

Auditory areas  X     

Visual areas  X     

Anterior pretectal nucleus  X     

Endopiriform nucleus  X     

Postpiriform transition area   x    

Susbtantia nigra  X x    

Posterior nucleus of the amygdala   x    

Basomedial nucleus of the amygdala   x    

Subiculum- ventral part     x  

Zona incerta  X    x 

Subiculum – dorsal part     x  

Pontine grey  X   x  

Tegmental reticular nucleus  X   x  

Pontine reticular nucleus  X  x x  

Lateral entorhinal cortex   X   x  

Ectorhinal cortex  X   x  
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Perirhinal cortex  x   x  

Periaqueductal grey   x    

Superior colliculus  x     

Pons: nucleus of the lateral lemniscus  x     

Pons: superior central nucleus raphe  x x    

Superior cerebellar peduncle decussation  x     

Peduncle pontine nucleus  x    x 

Superior olivary complex + periolivary region  x     

Presubiculum     x  

Temporal association area  x     

Cerebellum: simple lobule   x     

Medulla: medial vestibular nucleus  x     

Medulla: nucleus prepositus  x    x 

Medulla: nucleus raphe magnus  x     

Medulla: facial motor nucleus  x     

Cerebellum:  interposed nucleus  x    x 

Cerebellum: fastigial nucleus  x    x 

Medulla: medial and spinal vestibular nucleus  x     

Medulla: parvicellular nucleus  x     

Nucleus of the solitary tract  x x    

Medulla: intermediate reticular nucleus  x     

Cerebellar commissure and arbor vitae       

     

  RL > PL and RL < PL, depending on the plate across the rostral caudal extent 

 RL > PL      

 RL < PL      

*based on the following references: (Berard et al., 1983; Harris, 1986; Rees and Roberts, 1993; 

Robinson et al., 1993; Chen et al., 1994; Wiig and Bilkey, 1994; Schoenbaum and Eichenbaum, 1995; 

Wiig and Bilkey, 1995; Andersen, 1997; Smith, 1997; Maddock, 1999; Bussey et al., 2000; Gaffan et 

al., 2000; Mook Jo et al., 2002; Dalley et al., 2004; Kobayashi et al., 2004; Comoli et al., 2005; 

Feierstein et al., 2006; Gittis and du Lac, 2006; Holland and Gallagher, 2006; Trageser et al., 2006; 

Notsu et al., 2008; Whitlock et al., 2008; Albrechet-Souza et al., 2011; Kesner and Churchwell, 2011; 

Condes-Lara et al., 2012; Sugai et al., 2012; Lopez Hill et al., 2013; Igarashi et al., 2014; Recio-

Spinoso and Joris, 2014; Butler and Taube, 2015; Chee et al., 2015; Escanilla et al., 2015; Li et al., 

2015; Tukker et al., 2015; Cordero et al., 2016; Kapoor et al., 2016; Lech et al., 2016; Leitner et al., 

2016; Mitra et al., 2016; Chometton et al., 2017; Cui et al., 2017; Nakamura et al., 2017; Vedder et 

al., 2017; Low et al., 2018; Nishio et al., 2018) 

 

Most of the structures listed are related to sensory processing, alone or in 

combination with other domains. This is not surprising for mouse data in a 

behavioral task, given that this species relies on several sensory modalities to 

acquire information about its surrounding in order to better react to the inputs 

perceived by them. However, it is interesting to note that within the sensory 

processing domains I could identify different patterns for the RL and PL groups. 
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That is, many of the sensory-related structures with stronger signal for PL (RL < 

PL; blue in table 2 and table 3) are part of the oculomotor system in the 

brainstem, involved in different properties of horizontal gaze (e.g. nucleus 

prepositus) and saccade (e.g. fastigial nucleus), or provide vision-input and eye 

movement information from parahipocampal (e.g. presubiculum, perirhinal, 

postrhinal and ectorhinal areas) and other brain regions (e.g. orbital area, 

superior colliculus and vestibular ocular-reflex from the vestibular nucleus) to 

head-direction, grid- and place-cells. While several sensory-related structures 

with stronger signal for RL (RL > PL; red in table 2 and table 3) are involved in 

more basic rodent sensory computations, like odor (e.g main and accessory 

olfactory bulb, cortical amygdala, piriform, endopiriform and postpiriform areas) 

and acoustic stimuli representation (e.g. auditory area, nucleus of the lateral 

lemniscus and superior olivary complex), or sensory-motor properties, such as 

body representation (e.g. somatosensory area – upper limbs) and head-

direction signal (e.g. retrosplenial area and subiculum), supporting path 

integration-based navigation (Cooper and Mizumori, 2001; Tukker et al., 2015; 

Vedder et al., 2017). Given that this analysis was based on a direct comparison 

(higher or lower than) between groups and among brain structures, I cannot 

rule out the possibility that the “higher” signal in the visual-related structures for 

PL overshadowed (or actively suppressed) other sensory-related modalities, 

rendering the ladder biased towards RL.  Nevertheless, the use of these different 

sensory modalities is not striking considering the different requirements for the 

navigation strategies. On one hand, PL requires visual processing of the extra-

maze cues (Fenton et al., 1994; Liu et al., 1994; Robinson et al., 2001)(Chen et 

al., 2016) and to keep the gaze fixed to those landmarks while navigating the 

maze, enabling animals to flexibly navigate from different start locations and 

find the escape platform. On the other hand, RL requires a strong body 

representation and self-location abilities (Taube et al., 2013; Laurens and 

Angelaki, 2018) within a given context to allow animals to perform the correct 

body movement to reach the escape platform, independently of environmental 

cues. Taken together, this is the first in vivo demonstration of different 
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implication of sensory-related brain structures in PL vs RL on a whole brain 

level. 

Furthermore, I could also observe that most of the structures comprised 

in the “emotion” category of the cognitive domains have a stronger signal in RL 

compared to PL. This is in line with the already reported interplay of stress and 

memory systems (Packard and Wingard, 2004; Elliott and Packard, 2008; 

Schwabe et al., 2008). That is, the preferential use of rigid navigation strategies 

(e.g. RL) over cognitive ones (e.g. PL) influenced by emotional or physical 

distress. In our experiments, the possible role of emotionality on behavioral 

performance and, more specifically, on strategy choice could not be evaluated 

given that animals were trained under a specific protocol (PL or RL). Therefore, 

they were not given a choice of how to perform the task accurately. However, it 

is interesting to note that even under those circumstances, it was possible to 

observe that the underlying brain matrix of the animals trained under RL shows 

structures that match the expected pathways of emotional processing (e.g. 

basolateral amygdala and bed nucleus of the stria terminalis) that bias the use 

of this navigation strategy when individuals are given the choice (Packard et al., 

1994; Kim et al., 2001; Elliott and Packard, 2008). Thus, it is possible that the 

rigid navigation strategy recruits this “emotional processing system” by itself, 

even in the absence of real stress. This could be interpreted as that rigid 

navigation enables individuals to use their energy and focus in processes other 

than navigation per se. In that way, one could hypothesize that animals 

performing under RL (rigid navigation) would have an elevated arousal level that 

would prime them to successfully react to a stressful event.  

Nevertheless, it should be noted that the results discussed here and 

presented in tables 2 and 3 refer to two separate cohorts of mice (cohort 1: PL; 

cohort 2: RL). Therefore, there is a possibility that the differential MEMRI signal, 

including that of the structures categorized as emotion-related, might be due to 

different stress levels of the cohorts prior to training and might not be related to 

the behavioral task performance. I cannot rule out such influences, but tried to 

keep the experimental designs as similar as possible for both cohorts, with the 
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exception of the training paradigm itself − which defined the different groups −, 

to reduce possible cohorts differences unrelated to the behavioral task.    

Considering the executive function and memory domains, there was no 

distinct pattern between the different MEMRI signals (RL < PL, eg. prelimbic- 

and infralimbic areas and lateral septal nucleus; or RL > PL, e.g. thalamic nuclei, 

retrosplenial area and pontine reticular nucleus), given that these domains are 

similarly required for the animals to perform both navigation strategies.         

 Further, the majority of structures categorized as attention-related (e.g. 

orbital, prelimbic- and infralimbic areas, substantia innominata and zona incerta) 

have a stronger MEMRI signal for PL. This is expected given that this navigation 

strategy is flexible and counts on the formation and use of a cognitive map of 

the environment. Thus, requiring animals to be focused to compute information 

of the context where they are inserted and update their current location in 

relation to the goal/target location (Delatour and Gisquet-Verrier, 2000; Dalley 

et al., 2004). In contrast, animals navigating under RL have only to perform the 

same body movement (e.g. turn right or left) in order to find the goal location. 

Therefore, they do not require a high attentional level for navigating, sparing 

their energy and focus for other functions. 

 Of note, one should not overlook that learning might be accomplished 

early during the training protocol, particularly in case of a trivial learning task, 

as the WCM. Accordingly, activation of the brain structures related to the task 

might be low and affect only few voxels (below the threshold) which would be 

filtered out during data analysis. Moreover, MEMRI signal might be shifted to 

first, second or third order efferent structures (as discussed before).  

 Importantly, it must be considered that the categorization and discussion 

about the role of these brain structures (table 3) were based on available data in 

the literature. Thus, the experimental designs and subjects (e.g. mice, rats, 

monkeys, humans, etc) might differ among the studies and might account for 

some inconsistencies about the definition of certain structures (including 

nomenclature) and their involvement in different brain functions.    



DISCUSSION   Manipulation of neuronal circuits 

111 
 

 Manipulation of neuronal circuits 

To prove functional causality for the activation patterns observed, I went 

on to manipulate their neuronal activity by optogenetic and chemogenetic 

means. I encountered several technical problems that led the outcomes of the 

referred experiments to be inconclusive. I will discuss these problems and 

present alternatives below. 

First, in experiments 5 and 6, I tried to inhibit the hippocampus by 

optogenetics during memory recall. I chose to interfere with an already-formed 

memory, instead of inhibiting the hippocampus during learning – memory 

acquisition (which would correspond to the WCM + MEMRI experiment; see 

experiment 3) – to avoid compensatory processes or that possible unwanted 

effects of the fiber implantations, tissue burning or overheating by the laser 

would unspecifically impair animal’s performance. In line with that, I observed a 

striking drop in behavioral performance in the WCM even before laser 

stimulation. This suggests that the implantation of the optic fiber itself caused 

damage to the tissue, which in turn led to the poor performance observed with 

these animals. This hypothesis was corroborated by our direct comparison of 

behavioral data from naïve (non-implanted) mice, with dHPC- and vHPC-

implanted mice (figure 17). In this comparison I observed a significant 

difference in behavioral performance of implanted and non-implanted animals. 

The performance drop was more pronounced in the vHPC-implanted animals, 

likely because the deep implantation caused a large brain lesion at the fiber 

tract. However, I cannot precise if the behavioral deficit I observed is due to a 

lesion caused by the fiber implantation, as I propose, or perhaps by a 

detrimental outcome (e.g. cell death) caused by the viral vector at the site of 

injection. To disentangle which of the possibilities holds true, an additional group 

of mice injected with the viral vector and without implantation would be 

necessary. Nevertheless, I believe that a possible lesion caused by the fiber 

would be more likely than a lesion caused by the viral vector injection given that 

the titration of the virus was controlled to not exceed commonly used 

concentrations (without toxic effects) and histology after the termination of the 
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behavioral tests showed neurons with apparent intact morphology. Even if 

precise stainings for detection of inflammation of cell death were not performed, 

I can exclude large scale necrosis.    

Next, I used chemogenetics as an alternative strategy to overcome the 

problems I faced with the optic fiber implantation. This method also requires the 

injection of viral vectors to transduce special membrane receptors, however the 

activation of these receptors, and consequent modulation of the neuronal 

targets, is achieved upon systemic injection of the specific ligand, clozapine N-

oxide (CNO). Therefore, it does not require invasive implantations or laser 

stimulation. Importantly, in the experiments where chemogenetics was used, 

the manipulations were performed throughout training and reversal learning. 

With this, I aimed to evaluate the inhibition of selected structures during 

learning (in a closer protocol to the one I used for the combination of WCM and 

MEMRI; see experiment 3). However, there is the shortcoming that this early 

interference may force compensatory processes aiming self-stabilization of the 

system.       

In my first attempts of implementing chemogenetics for neural activity 

inhibition (experiments 7 and 8) I injected viral vectors transducing hM4D (the 

inhibitory DREADD) in wild-type C57BL/6N mice. I did not observe behavioral 

effects of these manipulations, even if the histological analyses (presence of the 

fluorophore) suggest that the virus was expressed in the correct target location. 

Functional investigation of the DREADD was carried by ex-vivo 

electrophysiological recordings of local field potentials and showed an overall 

increase in neuronal activity in dHPC on the population level (pop-spikes) (data 

not shown; performed by Dr. Julien Dine, Electrophysiology Core Unit, MPI of 

Psychiatry). This result contradicts the expected outcome from the manipulation 

applied here. This contradiction between the expected and observed results with 

the use of the inhibitory DREADD hM4D was already reported elsewhere (Lopez 

et al., 2016). In that study the authors compared the behavioral and 

physiological outcomes of inhibitory DREADD’s manipulation of viral vectors with 

two different promoters: hSyn (neuronal targeted; (Kugler et al., 2003)) or 
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CamKII (specific to glutamatergic forebrain neurons; (Mayford et al., 1996; 

White et al., 2011; Scheyltjens et al., 2015). When using the viral vector with 

hSyn the results were the opposite of what it was expected: neural activity 

increase instead of inhibition, as observed in the present study for dHPC. When 

using the viral vector with CamKII the outcome was in line with the 

expectations: inhibition of neural activity. The authors ascribe these different 

results to the specificity of the promotor. Thus, the expression of the inhibitory 

DREADD in both excitatory and inhibitory neurons would result in local overall 

excitation of the system. While, limiting the expression of the inhibitory DREADD 

to excitatory neurons would lead to the expected inhibition of the target not only 

on the cell level, but also at the population level. These are reasonable 

explanations, however inconsistent with our observations. In our study the 

promotor used was CamKII and the results observed parallel the ones described 

by Lopez et al (Lopez et al., 2016) for hSyn. Perhaps the differences observed 

between these results might be ascribed to the different viral serotypes 

employed in each study: AAV2.8 for Lopez et al (Lopez et al., 2016), and AAV8 

in our study. Nevertheless, it is important to note that our electrophysiological 

analyses of the outcomes of the same manipulation in the vHPC were in line with 

the expectations: neural inhibition of the system (data not shown).  

The contradictory outcomes from these first DREADD attempts made us 

move to a more specific alternative. Namely, the use of transgenic mice 

expressing Cre under the Nex promoter (specific to glutamatergic forebrain 

neurons; (Goebbels et al., 2006)) injected with a Cre-dependent viral vector. In 

that way I expected to have a more precise targeting of glutamatergic neurons, 

thus manipulating the neuronal activity of excitatory neurons only. A preliminary 

evaluation of the functionality of the system was performed by ex-vivo patch 

clamp recordings after expression of the viral vector at the mPFC (in the border 

of IL and PrL) and the expected outcome was observed: inhibition of local neural 

activity (data not shown; performed by Dr. Julien Dine, Electrophysiology Core 

Unit, MPI of Psychiatry). After this functional test I checked for behavioral 

effects of the manipulation (hM4D injection at the IL + CNO systemic treatment) 

in the WCM (experiment 9) and observed significant difference between groups 
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on accuracy and percentage of accurate learners on day 5, likely due to higher 

start bias on the hM4D group (however not significantly different because of the 

small number of animals per group). In line with this hypothesis, the percentage 

of side-biased animals differed between groups on day 1 and is slightly (but not 

significantly) higher for the hM4D group from days 2 to 5. Therefore, this 

preliminary experiment supports my hypothesis of a functional involvement of 

the IL in initial strategy switch during learning in the WCM. However, this 

experiment needs to be replicated to increase the number of animals and 

substantiate the initial findings.  

Nevertheless, one should consider that the neuronal activity 

manipulations (optogenetics and chemogenetics) used here only target a small 

portion of the brain structures under study. Therefore, compensatory 

mechanisms might act to stabilize the system and lead to a zero (or small) net 

effect of the intervention (e.g. experiments 5, 6, 7 and 8). This self-stabilization 

is a core characteristic of neuronal networks. In particular, in case of 

evolutionary important capabilities such as spatial navigation, we can expect 

numerous redundancies and alternative compensatory strategies, which render 

it very complicated to demonstrate causal involvement of a single brain 

structure. As an example, Wheeler and colleagues (Wheeler et al., 2013) have 

demonstrated c-Fos changes upon recall of remote contextual fear memory in a 

high number of brain structures. However, follow-up individual chemogenetic 

inhibition of more than 20 of these structures – one by one – revealed “causal 

involvement” only for a few (Vetere et al., 2017).    
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 Conclusions 

 Taken together, I believe that the results presented here describe 

important brain substrates specifically involved in the main navigation strategies 

used by animals: place learning or response learning. These results extend the 

list of previously identified brain structures involved in spatial cognition and its 

downstream targets, complementing the current knowledge on spatial 

navigation circuits’ connectivity. By applying a whole brain voxel-wise analysis of 

MEMRI signal it was possible to identify structures overlooked in past studies 

due to the use of region of interest (ROI) analysis or specific local imaging 

methods limited to a small window of view.   

Moreover, I elucidated some key functional mechanisms of MEMRI, such 

as the influence of neuronal activity in Mn2+ cellular entrance and transport 

along axonal terminals and transsynaptically, clarifying the interpretation of data 

obtained with this method and its possible future applications.    

 

 Outlook 

 As a follow-up of the studies presented here, I intend to pursue the causal 

involvement testing of selected structures from tables 2 and 3. More specifically, 

I am interested in investigating the causal involvement of pathways likely 

involved in spatial navigation of place or response learning and in the strategy 

switch from response to place learning during initial training under the place 

learning protocol.  

  Background knowledge on strategy switch during spatial learning was 

already presented in the introductory section of this thesis, and therefore will 

not be extensively revisited. However, I would like to highlight once more that 

most studies analyzing the strategy used by animals when they are free to 

choose how to navigate show that allocentric strategies (place learning) are 

preferred initially and are substituted by egocentric strategies (response 

learning) with extensive training (e.g. (Packard and McGaugh, 1996; Chang and 
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Gold, 2003; Colombo et al., 2003; Jacobson et al., 2012). Nevertheless, our 

observations in the lab, and partially reported previously (Kleinknecht et al., 

2012), show the inverse order: response learning (until up to day 3) and place 

learning in the following days, under a place learning training. Similar 

observations were already reported in one study by Asem and Holland (Asem 

and Holland, 2013). In this work the authors raise interesting points on the 

possible reasons why their observations differ from the literature. Most 

importantly, the majority of studies analyzed spatial leaning strategies used for 

rodents to search for food rewards in dry mazes (for exceptions see (Packard 

and McGaugh, 1992; Devan and White, 1999; Lee et al., 2008), while they 

investigated the strategies used to reach an escape platform in a water T-maze. 

This difference in the experimental design has important consequences that 

should not be overlooked. First, the ethological explanation for the use of 

different strategies: food sources are widely distributed in the natural 

environment and require animals to use complex and refined foraging strategies 

to increase their chances to successfully navigate and find food. Therefore, 

allocentric-based navigation would be favored in this setting, because it is 

flexible and more effective in large and changing environments. In the artificial 

testing scenario (laboratory dry mazes) the food location is constant and this 

would facilitate navigation with time, allowing the switch to simpler, rigid 

response-based navigation strategies maintaining the cost-effectiveness of the 

choice. Second, in the water mazes the initial contact with water (considering 

that rodents are not natural swimmers) might cause despair and the need to 

react quickly to find escape, in a situation similar to fight or flight response. Also 

it might lead to the release of stress hormones that bias their navigation to the 

use of an egocentric strategy (Schwabe et al., 2010b; Schwabe et al., 2013; 

Vogel et al., 2015; Vogel et al., 2016), as discussed before. On top of that, the 

partial reinforcement of the incorrect choice (50% of correct trials if the animals 

always make the same body turn when the platform has a fixed location) might 

be sufficient for animals to persist in the wrong strategy for more than one day, 

passed the initial arousal/stress caused by water. Our observations with the 

water cross maze (WCM) are in line with this last study (Asem and Holland, 
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2013). Even if the possible reasons why this strategy switch occurs within the 

training days were already debated, the neuroanatomical substrates of this 

process are not described yet. To investigate this open question I focused on the 

pathway manipulation of the hippocampal – cortical circuit.            

Preliminary results (experiments 9 and 10) presented here are part of our 

first attempts into this direction. These experiments focused on the dissection of 

the specific projections from the hippocampus (HPC) to the medial prefrontal 

cortex (mPFC) in the modulation of strategy switch. I identified the specific 

target in the vCA1 projecting to the infralimbic cortex (IL) by retrograde tracing 

and defined this pathway as our focus of study. Next, I aim to target this 

pathway specifically with a double viral approach (figure 24) for manipulating 

neuronal activity of the projections from vCA1 to IL and evaluating its effects on 

initial training in the WCM under the place learning protocol. Namely, I will inject 

a viral vector for Cre expression in CamKII positive neurons (AAV5-CamKII-Cre-

GFP) in the vCA1 and later a retrograde viral vector for hM4D expression in a 

Cre-dependent manner (CAV2-DIO-hM4D-mCherry) in the IL. In that way I can 

dissect the specific projections from vCA1 to IL, specifically manipulate this 

pathway and investigate its functional role on strategy switch during WCM 

learning.  
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Figure 24: vCA1-IL pathway modulation – experimental design. A. Injection of 

the first viral vector (AAV5-CamKII-Cre-GFP) into the vCA1. B. 3 weeks after the first 

injection: injection of the second viral vector (CAV-DIO-hM4D-mCherry) into the IL. C. 

10 days after the second injection: CNO treatment to inhibit the neuronal activity on the 

vCA1-IL pathway during training in the WCM under the response learning protocol.   

 

I believe that this investigation will elucidate the brain circuit involved in 

an important process supporting behavioral control and choice selection aiming 

at successful navigation of the environment.    

Finally, I also intend to use this methodological approach to investigate 

the vHPC-BLA pathway in the interplay of emotion and spatial learning (as 

presented in the Introduction). 
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 APPENDIX 
 

 

 Complementary methods 

 

Preparation of optic fiber implants 

Optic fiber implants for optogenetics were manufactured in house by the 

experimenter. The preparation procedure (adapted from (Sparta et al., 2011)) 

is, as follows: 

• Strip a piece of optic fiber of approximately 25 mm 

• Leave a piece of cap of approximately 3 cm adjacent to the exposed 

segment and cut it with forceps 

• Fix the ceramic ferrule (with its flat end up) in a metal arm/holder 

• Put a small drop of high temperature glue (should be stored at -80oC 

when not in use) on the upper tip of the ferrule and carefully place the fiber 

inside, letting it protrude down for approximately 2 mm 

• Heat up the glue with heating gun for around 30 s (until the glue gets 

dark) and cut any remaining piece of fiber that is still protruding using a 

diamond knife 

• Place the new implant with its dead end down in the polishing disc and 

polish the fiber (above a polishing pad) making an ¨8 (∞) shape¨ 20x for each 

polishing paper: black - pink - green - white (in this order)  

• Cut the fiber tip at the proper length you need using a diamond knife  

 The list of materials used and its references are below: 

•        Fiber (0.39 NA, Ø200 µm Core Multimode Optical Fiber, Low-OH for 

400 - 2200 nm, TECS Clad) - reference: FT200EMT (ThorLabs, Newton, NJ, 

USA). 
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•         Fiber stripping tool (Fiber Stripping Tool, Typical Cladding/Coating: 

230 µm / 500 µm) - reference: T12S21 (ThorLabs, Newton, Newton, NJ, USA). 

•      Ceramic ferrule (Ø1.25 mm Multimode LC Ceramic Ferrule, Ø230 µm 

Hole Size) - reference: CFLC230-10 (ThorLabs, Newton, NJ, USA). 

•       High temperature glue (High Temperature & Low CTE Epoxy) - 

reference: 353NDPK (ThorLabs, Newton, NJ, USA). 

•       Polishing disc (Bare Ferrule Polishing Puck; FC/PC and SC/PC Ferrule 

Polishing Disc) – reference: D50-F (ThorLabs, Newton, NJ, USA). 

•      Polishing pad (Polishing Pad for PC Finishes, 8.75" x 13", 50 

Durometer) – reference: NRS913A (ThorLabs, Newton, NJ, USA).   

•       Polishing paper (Fiber Polishing/Lapping Film for Use with Stainless 

Steel Ferrules) – references: LF5P (11" x 9" Silicon Carbide Lapping (Polishing) 

Sheets, 5 µm Grit; black); LF3P (11" x 9" Aluminum Oxide Lapping (Polishing) 

Sheets, 3 µm Grit; pink); LF1P (11" x 9" Aluminum Oxide Lapping (Polishing) 

Sheets, 1 µm Grit; green); LF03P (11" x 9" Calcined Alumina Lapping 

(Polishing) Sheets, 0.3 µm Grit; white) (ThorLabs, Newton, NJ, USA).  

•       Diamond knife (Diamond Wedge Scribe) – reference: S90W 

[discontinued] (ThorLabs, Newton, NJ, USA). 

  



APPENDIX   Contributions 

121 
 

 Contributions  

 

 The author contributed to the design of all studies, conceptualized, 

performed and analyzed all the WCM experiments (except for the experiment 

depicted in figures 7 and 8), carried out the MEMRI scans (except for 

experiment 3), injections of MnCl2 (except for the experiment depicted in figures 

7 and 8), viral vectors and fluorogold, production and implantation of the optic 

fiber constructs, laser stimulation for optogenetics experiments, histological 

analysis of brains, injections of CNO for chemogenetics experiments and in situ 

hybridization and immunohistochemical analysis.   

 

Dr. Carsten T. Wotjak supervised all experiments and contributed to the 

design and the interpretation of all data. 

 

Dr. Michael Czisch assisted in the conceptualization of experiment 2, 

supervised all the MEMRI scanning and performed the analysis of the MEMRI 

data. 

 

Dr. Benedikt T. Bedenk conceptualized, performed and co-analyzed the 

experiment depicted in figures 7 and 8. 

 

Dr. Simona Andreea Bura performed the MEMRI scans of the experiment 

depicted in figure 9 and co-performed the brain removal of the animals from 

experiment 4. 

 

Dr. Julien Dine assisted in the conceptualization of experiment 1 and 

performed the electrophysiology experiments for functional testing of the 

DREADDs, as mentioned in the discussion (data not shown).  

 

Dr. Andreas Genewsky assisted in the conceptualization of experiment 1, in 

the production and implantation of optic fiber constructs, and laser stimulation 

for optogenetics experiments. 
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Tim Ebbert performed the behavioral tests of experiments 7 and 8, and the 

quantification of the in situ hybridization results (experiment 4).    

 

Julia Sulger translated the abstract of this manuscript from English to German. 
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 Own publications 

 

Parts of this thesis have already been published in peer review journals 

(see publications below) and as part of the doctoral thesis of Benedikt Bedenk 

(figure 7, modified). During the period of my doctoral research I contributed to 

the following publications: 

 

ALMEIDA-CORRÊA, SUELLEN; CZISCH, MICHAEL; WOTJAK, CARSTEN 

T. In vivo visualization of active polysynaptic circuits with longitudinal 

manganese-enhanced MRI (MEMRI). Frontiers in Neural Circuits, v. 12, article 

42, 2018. 

 

BEDENK, BENEDIKT T.; ALMEIDA-CORRÊA, SUELLEN; JURIK, ANGELA; 

DEDIC, NINA; GRÜNECKER, BARBARA; GENEWSKY, ANDREAS; KALTWASSER, 

SEBASTIAN F.; RIEBE, CAITLIN J.; DEUSSING, JAN M.; CZISCH, MICHAEL; 

WOTJAK, CARSTEN T. Mn2+ dynamics in manganese-enhanced MRI (MEMRI): 

CAv1.2 channel mediated uptake and preferential accumulation in projection 

terminals. NeuroImage, v. 169, p. 374-382, 2018. 

 

REICHEL, JUDITH M.; BEDENK, BENEDIKT T.; GASSEN, NILS C.; HAFNER, 

K.; BURA, S. ANDREEA; ALMEIDA-CORRÊA, SUELLEN; GENEWSKY, 

ANDREAS; DEDIC, NINA; GIESERT, F.; AGARWAL, AMIT; NAVE, K.-A.; REIN, 

THEO; CZISCH, MICHAEL; DEUSSING, JAN M. AND WOTJAK, CARSTEN T.  

Beware of your Cre-Ation: lacZ expression impairs neuronal integrity and 

hippocampus-dependent memory. Hippocampus, v. 26, issue 10, p. 1250–1264, 

2016. 

 

Part of the data presented in this thesis (figure 6, table 1 and figure 22) 

has already been published in Almeida-Corrêa et al 2018.  For that reason, it is 

reprinted in full below. Following, Bedenk et al 2018 is also reprinted to assist 

the reader in some of the interpretations of the Discussion of this thesis.  
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Almeida-Corrêa et al 2018 
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