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1 Summary 

Generation of human porcine-specific regulatory T cells with high 

expression of IL-10, TGF-β1 and IL-35 

Background: Organ transplantation remains the most effective treatment for 

patients with late stage organ failure. Transgenic pigs provide an alternative 

organ donor source to the limited availability of human organs. However, 

cellular rejection still remains to be the obstacle for xenotransplantation. 

Regulatory T cells (Treg) play an important role in maintenance of homeostasis 

in vivo. Natural Treg (nTreg) generation in vitro is laborious and expensive. 

Antigen-specific Treg are more effective and alleviate cellular rejection with 

fewer side effects. Here, we demonstrate the use of a fast method to provide 

tolerogenic dendritic cells (tolDC) that can be used to generate effective 

porcine-specific Treg cells (PSTreg).  

Method: tolDC were produced within three days from human monocytes in 

medium supplemented with anti-inflammatory cytokines. Treg were generated 

from naïve CD4+ T cells and induced to become PSTreg by cocultivation with 

porcine-antigen-loaded tolDC.  

Results: PSTreg exhibited the expected phenotype, CD4+CD25+CD127low/-

Foxp3+, and exhibited a more activated phenotype. The specificity of PSTreg 

was demonstrated by suppression of the effector T cell (Teff) activation 

markers CD154 and CD25 at different stages and by inhibition of Teff cell 

proliferation. TolDC and PSTreg exhibited high expression of IL-10 and TGF-β1 

at both protein and RNA levels, and PSTreg also highly expressed IL-35 at RNA 

levels. Upon restimulation, PSTreg retained the activated phenotype and 

specificity. 

Conclusion: Taken together, the newly developed procedure allows efficient 

generation of highly suppressive PSTreg. 
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Generation of baboon PSTreg with high expression of IL-10 and TGF-

β1  

Background: The baboon, as a pre-clinical non-human primate experimental 

animal model, is widely used in xenotransplantation research. An effective 

method to generate baboon xeno-specific Treg would benefit research on 

immune tolerance in xenotransplantation using this model system.  

Method: Baboon tolDC were generated in three days from monocytes isolated 

from baboon peripheral blood mononuclear cells (PBMC) in medium 

supplemented with anti-inflammatory cytokines as described for human tolDC. 

After loading with porcine-specific (PS) in vitro transcribed RNA (ivtRNA), tolDC 

were used to induce CD4+ T cells to become baboon PSTreg in cocultures 

supplemented with IL-2 and rapamycin for 10 days. Anti-inflammatory and 

inflammatory cytokine expression was evaluated at the mRNA and protein 

levels in both baboon tolDC and PSTreg. PSTreg specificity was demonstrated 

by their capacity to suppress induction of activation markers on PSTeff at early 

(CD154) and intermediate (CD25) stages.  

Results: Baboon tolDC generated with this method exhibited a tolerogenic 

phenotype, expressed CCR7, and produced high levels of IL-10, whereas IL-

12p40 was not expressed. PSTreg were successfully generated in cocultures of 

CD4+ T cells and PS ivtRNA-loaded tolDC. They exhibited the known 

CD4+CD25+CD127low/-CD45RAlowFoxp3+ phenotype, and were characterized by 

high expression of IL-10 mRNA and protein. They showed upregulated 

expression of TGFB1, EBI3 and GARP mRNA. PSTreg exhibited highly 

suppressive effects towards PSTeff, secreting high amounts of IL-10 cytokine 

upon interaction with PSTeff. 

Conclusion: Our fast 3-day method is also applicable to generate baboon-

derived tolDC and allows subsequent induction of baboon PSTreg displaying 

high porcine-antigen specificity and expression of IL-10 and TGF-β1. Porcine-

specific baboon Treg can be used in porcine solid organ or cell 

xenotransplantation studies through adoptive cell transfer into host baboons. 
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Immune monitoring of baboons pre and post transplantation of 

multitransgenic pig hearts 

Background: Immunosuppressive therapy was investigated to achieve clinical 

tolerance in transplantation. Immune monitoring of pig heart-transplanted 

baboons is an important component to provide a better understanding of the 

immune reactions during xenotransplantation. 

Methods: Three groups of baboons receiving different immunosuppressive pre-

treatments were set up in this project. In group 1, baboons received α-1,3-

galactosyltransferase (GGTA1) homozygous knockout/heterozygous hCD46 pig 

hearts, and baboon 49 obtained a GGTA1 homozygous knockout/heterozygous 

hCD46/heterozygous HLA-E pig heart. In group 1, conventional 

immunosuppressive therapy with bortezomib and cyclophosphamide was used. 

In group 2, baboons received GGTA1 homozygous knockout/heterozygous 

hCD46 pig hearts, and anti-CD40 monoclonal antibody (mAb) was used to block 

antigen-presenting cell (APC)-T cell reaction instead of conventional 

immunosuppression. In group 3, baboons received GGTA1 homozygous 

knockout/heterozygous hCD46/homozygous hTM (thrombomodulin) pig hearts, 

the baboons received anti-CD40 mAb or anti-CD40L mAb. In all groups, B cells 

were depleted by anti-CD20 mAb treatment. For immune monitoring during 

transplantation, different T cell populations, monocytes, B cells, natural killer 

(NK) and NKT cells were analyzed using flow cytometry.  

Results: In group 1, under conventional immunosuppressive therapy, T cells 

were suppressed successfully before transplantation. However, activated T 

cells were increased after transplantation. In Baboon 49 who received a HLA-E-

expressing pig heart, the NK cells remained at low levels. Baboon 49 showed a 

prolonged survival in comparison to the other baboons. In group 2, blockade of 

CD40 signaling resulted in downregulation of T cells, and monocytes, especially 

in baboon 54 who also showed a longer survival. In group 3, no significant 

difference between blocking CD40 and blocking CD40L was observed. However, 

rather than depletion of T cell populations, blocking APC-T cell reaction 

inhibited T cell activation compared to group 1. In group 2 and group 3, the NK 

cell and NKT cell numbers decreased after transplantation in all baboons. 

Baboon 64 in group 3 showed the longest survival, the major difference in 
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immune monitoring was observed in the first week. Therefore based on the 

results seen in baboon 64, the decrease in activated T cells together with the 

increase in Treg in the first week after transplantation could be an indicative of 

longer transplant survival. 

Conclusion: Immunosuppression by blocking CD40:CD40L signaling pathway 

prolonged the survival compared to conventional immunosuppression. 

Suppression of NK/NKT cells, B cells and an increased level of Treg cells help to 

prolong the survival of xenotransplants. 
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Zusammenfassung 

Generierung humaner Schwein-spezifischer regulatorischer T-

Zellen, die eine hohe Expression von IL-10, TGF- und IL-35 

aufweisen 

Hintergrund: Organtransplantation ist die effektivste Behandlungsmethode für 

Patienten, bei denen das Organ so schwer geschädigt ist, dass es keine andere 

Möglichkeit der Behandlung mehr gibt. Organe transgener Schweine bieten 

eine Alternative zu humanen Organen, die nur begrenzt verfügbar sind. 

Zelluläre Abstoßung bleibt jedoch auch bei der Xenotransplantation ein 

Hindernis. Regulatorische T-Zellen (Treg) spielen eine bedeutende Rolle in der 

Erhaltung der Homöostase in vivo. Generierung ausreichender nTreg ist in vitro 

aufwendig und teuer. Abhilfe könnten Antigen-spezifische Treg schaffen, die 

effizienter sind und deren Einsatz zudem weniger Nebenwirkungen aufweisen 

würden. In dieser Arbeit zeigen wir eine schnelle Methode der Generierung 

tolerogener dendritischer Zellen (tolDC), mit deren Hilfe man Schwein-

spezifische Treg (PSTreg) herstellen kann. 

Methode: TolDC konnten innerhalb von drei Tagen aus humanen Monozyten 

generiert werden unter Verwendung eines Mediums mit anti-

inflammatorischen Zytokinen. Anschließend wurden diese tolDC mit 

Schweineantigen beladen und mit naiven CD4+ T-Zellen cokultiviert, um PSTreg 

zu erzeugen. 

Ergebnisse: PSTreg zeigten den erwarteten Phänotyp (CD4+CD25+CD127low/-

FoxP3+) und wiesen einen aktivierten Zustand auf. Die Spezifität der PSTreg 

konnte anhand der Suppression der Aktivierungsmarker CD154 (early marker) 

und CD25 (intermediate marker) auf Effektor-T-Zellen (Teff) und der 

Suppression der Proliferation  demonstriert werden. TolDC and PSTreg zeigten 

sowohl auf Protein- als auch auf RNA-Ebene eine hohe Expression von IL-10 

und TGF-. Auf RNA-Ebene konnte bei PSTreg auch eine Expression von IL-35 
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nachgewiesen werden. Auch nach Restimulation behielten die PSTreg ihre 

Aktivität und Spezifität. 

Schlussfolgerung: Die hier neu entwickelte Methode erlaubt eine effiziente 

Generierung hoch suppressiver PSTreg. 
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Generierung PSTreg aus Pavianen, die eine hohe Expression von IL-

10 und TGF- zeigen 

Hintergrund: Der Pavian ist ein weithin in der Xenotransplantation 

gebräuchliches präklinisches nicht-humanes Primaten-Tiermodell. Eine 

effiziente Methode der Herstellung xeno-spezifischer Pavian Treg würde 

vorteilhaft sein, um Immuntoleranz auch in diesem 

Xenotransplantationsmodell zu erzeugen.  

Methode: Wie im humanen System sollten tolDC generiert werden, um 

Schwein-spezifische Pavian Treg zu induzieren. Auch Pavian tolDC konnten 

innerhalb von drei Tagen aus Monozyten durch Kultivierung in einem Medium 

mit anti-inflammatorischen Zytokinen erzeugt werden. Nach Beladung mit 

Schwein-spezifischer in vitro transkribierter RNA (ivtRNA) wurden auch diese 

tolDC dazu verwendet, um in Gegenwart von IL-2 und Rapamycin aus CD4+ T-

Zellen PSTreg zu induzieren. Anti-inflammatorische und inflammatorische 

Zytokine wurden sowohl in tolDC als auch in PSTreg auf mRNA- und Protein-

Ebene analysiert. PSTreg Spezifität konnte anhand der Suppression des frühen 

(CD154) und etwas später exprimierten (CD25) Aktivierungsmarker auf PSTeff 

gezeigt werden. 

Ergebnisse: Die Pavian tolDC wiesen den bekannten tolerogenen Phänotyp auf, 

exprimierten CCR7 und produzierten hohe Mengen an IL-10, wohingegen IL-

12p40 nicht produziert wurde. Pavian PSTreg konnten erfolgreich durch 

Cokultur von CD4+ T-Zellen und PS ivtRNA-beladenen tolDC induziert werden. 

Auch sie wiesen den bekannten CD4+CD25+CD127low/-CD45RAlowFoxP3+ 

Phänotyp auf und zeichneten sich durch hohe Expression von IL-10 auf sowohl 

mRNA- als auch Protein-Ebene aus. Auch TGFB1, EBI3 und GARP mRNA wurden 

hochreguliert. PSTreg zeigten eine hohe spezifische Suppressoraktivität 

gegenüber PSTeff und sezernierten eine hohe Menge an IL-10 nach Interaktion 

mit PSTeff. 

Schlussfolgerung: Unsere schnelle 3-Tage-Methode ist auch anwendbar für die 

Generierung von Pavian tolDC und erlaubt die Induktion von PSTreg mit hoher 

Spezifität für Schweineantigen. Die Pavian Treg zeichnen sich ebenfalls durch 

die Expression hoher Mengen an IL-10 und TGF- aus. Der adoptive Transfer 
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von Schweineantigen-spezifischen Pavian Treg könnte bei der 

Xenotransplantation von Organen und Zellen aus multitransgenen Schweinen 

in Paviane Anwendung finden.  
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Immunmonitoring von Pavianen vor und nach Transplantation von 

multitransgenen Schweineherzen 

Hintergrund: Auch in der Xenotransplantation soll klinische Toleranz durch eine 

immunsuppressive Therapie erreicht werden. Für ein besseres Verständnis der 

Immunreaktionen vor und nach der Transplantation würde das 

Immunmonitoring ein geeignetes Verfahren darstellen. Hierzu wurde das 

Modell der Xenotransplantation von Schweineherzen in Paviane verwendet. 

Methode: Drei Gruppen von Pavianen bekamen unterschiedliche 

immunsuppressive Behandlungen. Die Paviane der Gruppe 1 bekamen ein 

multitransgenes Schweineherz (α-1,3-galactosyltransferase (GGTA1) 

homozygous knockout/heterozygous hCD46; Pavian 49 GGTA1 homozygous 

knockout/heterozygous hCD46/heterozygous HLA-E) und eine konventionelle 

immunsuppressive Therapie mit Bortezomib und Cyclophosphamid. Paviane 

der Gruppe 2 (GGTA1 homozygous knockout/heterozygous hCD46 

Schweineherz) bekamen statt der konventionellen immunsuppressiven 

Therapie eine immunsuppressive Therapie mit anti-CD40 monoklonalem 

Antikörper. Paviane der Gruppe 3 (GGTA1 homozygous knockout/heterozygous 

hCD46/homozygous hTM) bekamen entweder den anti-CD40 Antikörper oder 

einen anti-CD40L Antikörper. Die Antikörper sollten zur Blockade der 

Interaktionen zwischen Antigen-präsentierenden Zellen (APC) und T-Zellen 

dienen. In allen Pavianen wurden die B-Zellen durch die Gabe von anti-CD20 

Antikörper depletiert. Für das Immunmonitoring sollte die Anzahl der 

unterschiedlichen T-Zellpopulationen, Monozyten, B-Zellen, der natürlichen 

Killer (NK) Zellen sowie der NKT-Zellen mittels Durchflusszytometrie analysiert 

werden. 

Ergebnisse: In den Pavianen der Gruppe 1 konnten die T-Zellen vor der 

Transplantation durch die konventionelle immunsuppressive Therapie 

erfolgreich dezimiert werden. Nach der Transplantation nahm jedoch der Anteil 

aktivierter T-Zellen zu. In Pavian 49, der das HLA-E-transgenes Herz bekam, 

blieb die Zahl der NK-Zellen auf niedrigem Niveau. Dieser Pavian zeigte ein 

längeres Überleben im Vergleich zu den anderen Pavianen. In den Pavianen der 

Gruppe 2, resultierte die Blockade durch den CD40 Antikörper zu einer 

Herunterregulation der T-Zellen und auch der Monozyten. Hier zeigte Pavian 54 
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ein längeres Überleben. Ein signifikanter Unterschied zwischen der Blockade 

durch den CD40 oder den CD40L Antikörper zeigte sich in den Pavianen der 

Gruppe 3 nicht. Vergleicht man jedoch Gruppe 2 und Gruppe 3 mit der Gruppe 

1 konnte eine etwas stärkere Herunterregulation der aktivierten T-Zellen 

gezeigt werden und die Anzahl der NK- und NKT-Zellen nahm mehrheitlich nach 

Transplantation ab. Pavian 64 von Gruppe 3 zeigte das längste Überleben. Der 

Hauptunterschied konnte in der ersten Woche nach Transplantation 

beobachtet werden. In dieser Zeit nahmen die aktivierten T-Zellen ab und die 

Treg Zellen nahmen zu. 

Schlussfolgerung: Immunsuppression durch die Blockade des CD40:CD40L 

Signalwegs führte im Allgemeinen zu einer Verlängerung des Überlebens der 

Paviane. Die Suppression der NK/NKT-Zellen, der B-Zellen und ein höherer 

Prozentsatz an Treg Zellen scheinen außerdem eine Rolle zu spielen. 
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2. Introduction 

Organ transplantation remains the most effective treatment for patients with 

late stage organ failure. However, the shortage of human organs and cells 

remains a major obstacle for human organ transplantation. Transgenic pigs 

provide an alternative organ donor source to counteract the limited availability 

of human organs (Yang and Sykes 2007, Ekser, Ezzelarab et al. 2012).  

Although tissue reprogramming alleviates organ hyperacute rejection and 

acute humoral xenograft rejection, the subsequent cellular rejection still needs 

to be overcome (Yang and Sykes 2007, Klymiuk, Aigner et al. 2010). Several 

groups reported that immunosuppression therapy prolongs xeno-organ survival 

(Hering, Wijkstrom et al. 2006, Mohiuddin, Corcoran et al. 2012), but high dose 

administration of immune suppressive drugs is associated with severe side 

effects. Therefore, a better tolerated and effective means to alleviate xeno-

reactions is urgently needed and is the key step to be resolved for clinical 

xenotransplantation applications in the future.  

2.1 Xenotransplantation 

2.1.1 Transgenic pigs 

2.1.1.1 α-1,3-Galactosyltransferase-deficient pigs 

Major progress in xenotransplantation was accomplished by utilizing α-1,3-

galactosyltransferase (α-1,3-GalT, also known as GGTA1) deficient pigs as organ 

donors. The well-defined carbohydrate cell surface structure Galα1–3Galβ1–

4GlcNAc (α-1,3-Gal) synthesized by α-1,3-GalT is expressed in most mammals 

except humans, Old World monkeys and apes. α-1,3-Gal mediates hyperacute 

rejection in pig to human organ transplantation.  

In 1999, Cristina Costa and colleagues reported that transgenic pigs expressing 

human α-1,2-fucosyltransferase (H transferase) downregulated α-1,3-Gal 

expression (Costa, Zhao et al. 1999). In the next few years, Liangxue Lai, and 
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Carol J. Phelps both reported the successful generation of α-1,3-Gal-deficient 

pigs by mutation of the exon 9 in GGTA1 (Lai, Kolber-Simonds et al. 2002, 

Phelps, Koike et al. 2003). In 2009, transgenic pigs expressing endo-β-

galactosidase C, an enzyme that destroys α-1,3-Gal by cleaving the β-

galactosidic linkage and expressing human decay accelerating factor (hDAF, 

CD55) were reported. The pigs only expressed 2-14% of α-1,3-Gal compared to 

wild type pigs, and upregulated 10-70-fold hDAF compared to that in human 

umbilical vein endothelial cells (Yazaki, Iwamoto et al. 2009). 

Researches using α-1,3-Gal-deficient pigs as organ donor were carried out in 

xenotransplantation. In 2004, Cooper et al. reported that transplanted α-1,3-

Gal-deficient pig bone marrow into baboon prolonged the cellular 

hyporesponsiveness (Tseng, Dor et al. 2004). In the following year, α-1,3-Gal-

deficient pig heart transplantation to baboon was reported, survival of pig 

heart transplanted baboons was prolonged up to 2-6 month (Kuwaki, Tseng et 

al. 2005, Tseng, Kuwaki et al. 2005). Other studies of transplantation of α-1,3-

Gal-deficient pig skin (Weiner, Yamada et al. 2010) and liver (Kim, Schuetz et al. 

2012) to baboon was performed, extended survivals and reduced hyperacute 

rejections were observed. 

2.1.1.2 Human decay-accelerating factor (hDAF) expressing pigs 

DAF is a membrane protein which consists of 4 short consensus repeats (SCR1, 

SCR2, SCR3, SCR4). The SCR domain is attached to the cell surface by a 

glycophosphatidylinositol (GPI) anchor. The SCR2-SCR4 region is required for 

complement regulation.  

Using human DAF-transgenic pigs as organ donor resulted in prolonged survival 

of the xenograft and inhibition of hyperacute rejection. Experiments showed 

that the survival and function of hDAF-transgenic α-1,3-Gal-deficient pig liver 

was prolonged within 13 and 24 h after transplantation into baboon (Ramirez, 

Montoya et al. 2005). hDAF-transgenic α-1,3-Gal-deficient pig kidney 

transplanted into baboon avoided hyperacute rejection (Yazaki, Iwamoto et al. 

2009). 
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2.1.1.3 Human CD46-expressing pigs 

CD46 (human membrane cofactor protein) is a type I membrane complement 

regulatory protein which protects the host cells from complement-mediated 

damage. CD46 inactivates complement components C3b and C4b as a cofactor.  

In 2000, Lanteri reported that in vivo administration of soluble proteins with 

functional domains of CD46 in a hyperacute rejection model prevented 

complement-mediated rejection in mice (Lanteri, Powell et al. 2000). In 2001, 

Diamond and colleagues first reported of a transgenic human CD46 expressing 

pig and after transplantation into baboon the heart resisted to hyperacute 

rejection and survived for 23 days (Diamond, Quinn et al. 2001). 

2.1.1.4 Human CD59 expressing transgenic pigs  

CD59 (also known as membrane inhibitor of reactive lysis, MIRL) is a membrane 

glycoprotein inhibiting complement-mediated lysis. It is expressed on 

peripheral blood hematopoietic cells and endothelial cells in humans. CD59 is 

bound to the cell membrane via a GPI anchor. CD59 inhibits C9 from binding to 

C5b678 complex, thereby inhibits the formation of the membrane attack 

complex (MAC).  

In 1995 experiments showed, that human CD59 expression in mouse hearts 

inhibited MAC formation following perfusion with human plasma ex vivo 

(Diamond, McCurry et al. 1995). In the next year, in vivo experiments revealed 

that using human CD59 expressing pig hearts reduced tissue damage through 

inhibition of MAC formation (Diamond, McCurry et al. 1996). Other reports 

demonstrated that CD59 expressing pig organs were resistant to hyperacute 

rejection. In an ex vivo profusion model, Pig hearts and kidneys expressing 

transgenic human CD59 at the same level as in human organs resisted 

hyperacute rejection in contrast to wild type pig organs (Kroshus, Bolman et al. 

1996). Coexpression of human CD59 and H transferase (α-1,3-Gal-deficient) on 

pig aortic endothelial cells markedly increased the resistance to human serum-

mediated lysis compared to human CD59 or H transferase alone expressing pig 

aortic endothelial cells (Costa, Zhao et al. 2002).  
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2.1.1.5 Human CD47 expressing pigs 

CD47 is a membrane glycoprotein ubiquitously expressed on all cells. CD47 is a 

‘’marker of self’’ and is the inhibitory receptor of SIRP-α (signal regulatory 

protein ) on macrophages (Oldenborg, Zheleznyak et al. 2000) to prevent 

autologous phagocytosis. In allotransplantation, donor CD47 induced tolerance 

and controlled alloreactive T cell response (Zhang, Wang et al. 2016). 

The interspecies incompatibility of CD47 causes macrophage mediated 

xenograft rejection (Ide, Wang et al. 2007, Wang, VerHalen et al. 2007, Yang 

2010), and transgenic expression of human CD47 and mouse CD47 on porcine 

cells prevented human and mouse macrophage mediated rejection (Ide, Wang 

et al. 2007, Wang, VerHalen et al. 2007, Wang, Wang et al. 2011). 

2.1.1.6 HLA-E expressing pigs 

HLA-E is a non-classical MHC molecule that is not polymorphic and induces 

much lower T cell responses than other HLA molecules. HLA-E is considered to 

be a ligand for the NK cell inhibitory receptor CD94/NKG2A (Crew 2007).  

Ex vivo experiments revealed that pig epithelial cells surface expressing correct 

folded HLA-E molecule protects porcine cells against NK cell-mediated lysis 

(Crew, Cannon et al. 2005). Expression of HLA-E on swine endothelial cells also 

protects the cell from macrophage-mediated cytotoxicity, and the suppression 

mediated by HLA-E transgene expression against macrophage was found to be 

equivalent to the suppression mediated by CD47 transgene expression (Maeda, 

Kawamura et al. 2013). Also another group shows that transgenic pigs 

generated by pronuclear microinjection of genomic fragments of HLA-E with an 

HLA leader sequence and of human 2-microglobulin into zygotes protect 

porcine tissues against human NK cell-mediated lysis (Weiss, Lilienfeld et al. 

2009).  

2.1.2 Immune regulation and xenotransplantation  

Intensive immune suppressive therapy is used to alleviate humoral and cellular 

rejection in xenotransplantation. Blocking costimulation signaling of CD40 by 

anti-CD154 antibodies prolonged the survival of xenografts (Mohiuddin, Singh 
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et al. 2014, Choi, Lee et al. 2015, Higginbotham, Mathews et al. 2015). Inducing 

CTLA4 expression on transgenic mice islet significantly prolonged the graft 

survival (Londrigan, Sutherland et al. 2010). In 2009, a transgenic pig expressing 

CTLA4-lg was produced (Phelps, Ball et al. 2009). Mutation of major 

histocompatibility antigen class II (MHC-II) on porcine organs also reduces T cell 

immune response in host animals. When a dominant-negative mutant of the 

human class II transactivator (CIITA-DN) was specifically induced in endothelial 

cells, the expression of MHC-II on APC and aortic endothelial cells was 

significantly reduced. Human CD4+ T cell response to CIITA-DN aortic 

endothelial cells was reduced by 60-80% (Hara, Witt et al. 2013). 

2.2 Dendritic cells 

In 1973, Ralph M. Steinman and Zanvil A. Cohn found a novel cell type in mice 

spleen single cell suspensions, that had multiple branches or dendrites, and 

was hence named dendritic cell (Steinman and Cohn 1973). In 1980s, DC were 

widely accepted to be the professional antigen-presenting cell (APC) (Steinman, 

Hawiger et al. 2003).  

In vivo, immature DC originate in the bone marrow, express low levels of 

costimulation molecules, MHC molecules and adhesion molecules, and have a 

potent antigen uptake ability during migration in the body. After encounter 

with foreign antigens, DC take up the antigens and process them by an 

exogenous pathway to form MHC-I/peptide complexes, or by an endogenous 

pathway to form MHC-II/peptide complexes, and upregulate the expression of 

costimulatory molecules and adhesion molecules and migrate to the secondary 

lymphoid organs to activate CD4+ and CD8+ T cells and probably also to activate 

B cells and NK cells.  

2.2.1 Tolerogenic DC 

Besides promoting immune reactions, DC also play tolerogenic function to 

maintain homeostasis in vivo.  
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2.2.1.1 TolDC mediate homeostasis in vivo 

DC in thymus majorly localized in medulla, and promote the induction of nTreg. 

DC in thymus was also found to maintain homeostasis by contributing to the 

negative selection of CD4+ thymocytes (Oh and Shin 2015). Peripheral tolerance 

is also needed for homeostasis. At inflammatory sites, mature DC process and 

present both foreign antigens produced by virus or bacteria, and self-antigens 

from dying cells. Self-reactive T cells can escape negative selection because the 

lower affinity for self-antigens. In this case, tolDC can deplete self-reactive T 

cells in the periphery through induction of Treg (Maldonado and von Andrian 

2010).  

Oral tolerance is induced in vivo by the following way. DC in the intestinal 

mucosa transfer the intestinal tract samples to mesenteric lymph nodes in a 

CCR7 dependent manner and differentiate naïve T cells into Treg in the 

mucosal environment, which is rich in anti-inflammatory factors: TGF-β, 

retinoic acid, IL-10, vasoactive intestinal peptide, thymic stromal lymphoietin 

and hepatocyte growth factor (Maldonado and von Andrian 2010, Bekiaris, 

Persson et al. 2014). Plasmacytoid DC (pDC) in lung which exhibited immature 

phenotype: MHC-IIlowPD-L1high, was found to promote tolerance in airways, 

depletion of pDC in lung resulted in airway eosinophilia, and Th2 cytokine 

production. The pDC in lung suppressed the effector T cells generated by 

mature DC (de Heer, Hammad et al. 2004). IL-10 producing pulmonary DC 

induced tolerance by inducing CD4+ T regulatory 1-like cell which also produce 

IL-10 (Akbari, DeKruyff et al. 2001).  

2.2.1.2 TolDC generation in vitro 

By mimicking the in vivo microenvironment where DC mediate immune 

tolerance, tolDC can be also induced in vitro.  

2.2.1.2.1 IL-10 in tolDC generation 

By administration of IL-10, monocyte-derived DC exhibit tolerogenic function 

and gain the ability to induce Treg (Rutella, Bonanno et al. 2004). By 

administration of IL-10, a CD83highCCR7+IL-10 DC population expressing high 
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levels of soluble and surface CD25 can be generated, and showed higher 

capacity to induce Treg (Kryczanowsky, Raker et al. 2016). Signaling through the 

IL-10 receptor maintains DC in an immature state triggered by Janus kinases 

(JAK)-mediated phosphorylation of STAT3 (signal transducer and activator of 

transcription 3). Phosphorylated STAT3 translocates into the nucleus where it 

suppresses genes related to DC maturation. IL-10 also inhibits the expression of 

MHC-II, and the expression of the costimulatory molecules CD80 and CD86 via 

a posttranscriptional mechanism involved in inhibiting the transport of peptide-

loaded MHC-II to the cell surface (Maldonado and von Andrian 2010). 

2.2.1.2.2 TGF-β in tolDC generation 

Another cytokine widely used in DC generation in vitro is TGF-β. TGF-β prevents 

dendritic Langerhans cells maturation (Geissmann, Revy et al. 1999), and 

induces tolDC generation from CD34+
 progenitors in vitro (Strobl, Riedl et al. 

1996). TGF-β binds to the TGF-β receptor leading to heterodimerization of 

SMAD2 and SMAD3, followed by complex formation with SMAD4, which 

shuttles the complex into the nucleus to regulate gene expression (Miyazono 

2000, Zhu and Burgess 2001).  

2.2.1.2.3 Other compounds in tolDC generation 

There are some other compounds which are able to generate tolDC in vitro, for 

example vitamin D3. The phenotype of tolDC generated by vitamin D3 is 

characterized by high expression of MHC class II, intermediate expression of co-

stimulatory molecules CD80 and CD86 and low expression of CD40 and CD83. A 

clinical trial has been carried out for the treatment of rheumatoid arthritis with 

vitamin D3-derived tolDC (Hilkens and Isaacs 2013). A tolerogenic phenotype of 

DC, differentiated from human embryonic stem cells, was induced by 

treatment with rapamycin. Rapamycin-derived tolDC were able to induce Treg 

(Silk, Leishman et al. 2012). 

2.2.1.3 TolDC induce Treg 

TolDC promote Treg induction by low antigen presentation and low expression 

of costimulatory signals (Maldonado and von Andrian 2010). TolDC upregulate 
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anti-inflammatory cytokines, such as IL-10 and TGF-β, and downregulate 

inflammatory cytokines, such as IL-12p70. Treg can also induce tolDC in turn. 

Treg create the microenvironment that is rich in tolDC favoring cytokines to 

induce DC to convert into tolerogenic DC. By depletion of Treg in mice, 

researchers found out that tolDC play tolerogenic function only in the presence 

of Treg cells (Luckey, Schmidt et al. 2012), and Treg generation relies on DC–T 

cell contact in vivo (Darrasse-Jeze, Deroubaix et al. 2009). 

2.2.1.4 Adoptive transfer of tolDC  

Adoptive transfer of tolDC prolonged organ survival in heart, skin, and islet 

murine transplantation models, and along with the administration of 

immunosuppressive drugs, tolDC prolonged organ survival more than using 

immunosuppressive drugs alone (Zhou, Shan et al. 2016).  

2.3 Treg 

In the immune system, immune regulatory cells protect hosts from misguided 

or excessive immune reactions. Treg are the most potent immune cell 

population to maintain T cell central and peripheral tolerance in the immune 

system.  

Treg represent 5-10% of peripheral CD4+ T cells in humans and 1.7 % in blood T 

cells in the baboon. The phenotype is CD3+CD4+CD25+CD127low/-Foxp3+. Trig 

arise from the thymus and maintain self-tolerance and immune homeostasis, 

demonstrated by the depletion of Treg in mice (Fontenot and Rudensky 2005).  

2.3.1 Forkhead box P3 

FOXP3 (forkhead box P3), also termed scurfin, is a member of the 

forkhead/winged-helix family of transcriptional regulators involved in immune 

regulation (Brunkow, Jeffery et al. 2001). FOXP3 is encoded by a gene located 

on the X chromosome. Research in mice and humans confirmed that only 

males but not heterozygous females with FOXP3 mutants were affected by 

autoimmune diseases (Chatila, Blaeser et al. 2000, Wildin, Ramsdell et al. 

2001). FOXP3 is well accepted to be the key factor of Treg function and 
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development (Hori, Nomura et al. 2003). Foxp3 reporter mice revealed that 

Foxp3 is mainly expressed in the CD4+  T cell subpopulation and exhibits 

suppressive function (Wan and Flavell 2005).  

2.3.1.1 Foxp3 gene  

Foxp3 gene expression is regulated by conserved non-coding sequences (CNS) 

in the promoter and intron 2 region (Figure 2.1 A). Zheng and Josefowicz et al. 

found permissive histone modifications (H3K4me1, H3K4me2, H3K4me3 and 

H3K9/14Ac) located at CNS1 (enhancer 1), CNS2 (enhancer 2), CNS3 of the 

Foxp3 locus, exclusively in Treg in vivo (Zheng, Josefowicz et al. 2010). 

Experiments with CNS1, CNS2, CNS3 mutations in mice suggested that CNS1 

was critical for Treg differentiation in the periphery but not in the thymus, and 

CNS1 mutation disabled Foxp3+ Treg in gut and mesenteric lymph nodes 

primarily indicating that CNS1 mediates TGF-β regulation in Treg (Zheng, 

Josefowicz et al. 2010). CNS2 mainly influences Foxp3 maintenance in mature 

Treg but not in newly generated Treg in CNS2 deficient mice. In vitro mutation 

of CNS2 resulted in severe loss of Foxp3 expression in mutant Treg in 

comparison to wild type Treg (Zheng, Josefowicz et al. 2010). CNS3 is a pioneer 

gene element, which facilitates Foxp3 induction during thymic and peripheral 

differentiation of Treg (Zheng, Josefowicz et al. 2010). 

 

2.3.1.1.1 Transcriptional regulation of Foxp3 gene expression  

 

A 
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Figure 2.1 Transcriptional regulation of Foxp3 gene expression. (A) Mice Foxp3 gene 

structure and transcriptional regulation. Exons are shown as black numbered boxes. 

Negative numbers indicate elements upstream of the transcription start site. The region 

containing the promoter and CNS1 (enhancer 1), CNS2 (enhancer 2) and CNS3 with 

interacting transcription factors has been enlarged (modified by (Tone and Greene 2011)). 

(B) Simplified pathways that regulate Foxp3 gene expression (modified by (Nie, Li et al. 

2015)).  

Upon TCR stimulation, Foxp3 gene expression is regulated via nuclear factor 

(NF)-κB pathway. Rel is a member of the mammalian Rel/NF-κB family, 

preferentially expressed in lymphoid organs. Experiments with c-Rel deficient 

mice revealed that c-Rel deficiency results in the reduction of Treg cells, c-Rel 

acts as a pioneer transcription factor in initiating Foxp3 transcription in Treg 

precursors in the thymus  (Hori 2010). In silico analysis of CNS3 demonstrated 

that c-Rel binds to a motif as CD28 response element in CNS3, suggesting that 

after stimulation of TCR and CD28 c-Rel binds to CNS3 to open the Foxp3 locus 

(Zheng, Josefowicz et al. 2010). Luciferase-based promoter reporter assays 

revealed that c-Rel and p65, but not p50 or RelB, are involved in NF-κB 

signaling by activation of the Foxp3 promoter. First, c-Rel, p65 and NFATc2 bind 

to the Foxp3 promoter, Smad binds to enhancer-1, and pCREB binds to both 

enhancer 1 and 2. After 8 h activation, Smad and pCREB dissociate from the 

B 
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enhancer and bind to the promoter with c-Rel, p65 and NFATc2 (Ruan, 

Kameswaran et al. 2009).  

CD25 is the α-subunit of IL-2 receptor expressed on the Treg surface. High 

amounts of IL-2 are indispensable for Treg maintenance and Foxp3 expression. 

Experiments forcing expression of constitutively active STAT5b (STAT5b-CA) 

rescued IL-2Rβ ablated mice and reinduction of high levels of IL-2Rα suggested 

that IL-2Rα expression is driven by STAT5 (Chinen, Kannan et al. 2016). The 

well-established pathway of STAT5 in Treg is: IL-2 binds to the IL-2R on Treg 

which leads to tyrosine kinase JAK1 and JAK3 phosphorylation. The 

phosphorylated sequence motifs recruit the adaptor molecule SHC1 to activate 

STAT5 for binding to the FOXP3 promoter (Malek and Bayer 2004, Zorn, Nelson 

et al. 2006, Burchill, Yang et al. 2007, Laurence, Tato et al. 2007). STAT5 targets 

at CNS2 where serves as a sensor for IL-2 to maintain stable inheritance of 

Foxp3 expression (Feng, Arvey et al. 2014). After CNS2 is opened by STAT5, AP-

1 and Creb bind to CNS2 to maintain CNS2 activity, and this regulation is 

methylation sensitive (Ogawa, Tone et al. 2014). 

TGF-β signaling cascade is also involved in Treg generation (Chen, Jin et al. 

2003). TGF-β induces RUNX1 and RUNX3 binding to the FOXP3 promoter 

(Bruno, Mazzarella et al. 2009, Klunker, Chong et al. 2009). Furthermore, 

transcription factors Smad3 in TGF-β signaling cascade is essential for histone 

acetylation in CNS1, and Smad3 binding to Foxp3 promoter is required for 

Foxp3 expression (Tone, Furuuchi et al. 2008). TGF-β decreases methylation in 

the CpG islands in CNS2 of Foxp3 to facilitate Foxp3 expression (Kim and 

Leonard 2007).  

The NFAT signaling cascade is activated in the presence of TGF-β, IL-2, and low 

affinity antigen but without activation of costimulatory factors in Treg. NFAT 

binds to the promoter of Foxp3 together with AP-1, Sp1, Smad2/3 and STAT5, 

also binds to enhancer 1 together with phospho-Smad3 to facilitate Foxp3 

expression. NFAT together with Foxp3 binds to the promoters of genes like 

Ctla4, Cd25 and Gitr to upregulate their expression (Hermann-Kleiter and Baier 

2010). In activated Treg, NFAT in response to TCR activation interacts with 

CNS2 to stabilize Foxp3 expression (Li, Liang et al. 2014).   
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Foxo1 and Foxo3, inhibited by TCR engagement, directly binds to the Foxp3 

promoter region, Foxo1 also binds to the Ctla4 gene transcription initiation site 

to start CTLA-4 expression (Ohkura and Sakaguchi 2010).  

CREB-ATF facilitates Foxp3 expression by binding to the demethylation region 

in CNS2 (Kim and Leonard 2007).  

Ets-1 depleted mice resulted in low expression of Foxp3 in Treg (Mouly, Chemin 

et al. 2010). Ets-1 binds to demethylated CpG in CNS2 to facilitate Foxp3 

expression (Polansky, Schreiber et al. 2010). 

Foxp3 also regulates its own expression by binding at CNS2 as a Foxp3-Runx1-

Cbf-β complex (Zheng, Josefowicz et al. 2010). 

Tcf3 is a transcription factor that binds to the promoter of Foxp3 to positively 

regulate the expression. Id3 contains a helix-loop-helix domain which can 

dimerize with E2A to inhibit DNA transcription. However, Id3 knockout mice 

resulted in low expression of Foxp3 because GATA3 expression was 

upregulated by E2A. Therefore, the Foxp3 expression is regulated by an 

intricate balance of E2A-Id3 (Tone and Greene 2011).  

STAT3 is a critical transcriptional factor in Th17 cell differentiation, which was 

found to act as a negative modulator of Foxp3 expression (Chaudhry, Rudra et 

al. 2009). STAT3 inhibits Foxp3 expression by two ways: first, by induction of 

nTreg instability; and secondly, by inhibition of iTreg polarization from CD4+ 

naïve T cells (Laurence, Amarnath et al. 2012). 

2.3.1.2 Foxp3 function in immune tolerance 

Experiments with diphtheria toxin receptor (DTR) knock-in mice at the Foxp3 

locus suggested that ablation of Foxp3 expressing cells by administration of 

diphtheria toxin at birth resulted in death within 4 weeks. Further research 

with adult mice suggested that after ablation Foxp3 expressing cells the mice 

developed a fatal immune disease faster than in newborn mice (Kim, 

Rasmussen et al. 2007). This result demonstrates that Foxp3 expressing cells 

are critical for the immune system of newborn mice as well as of adult mice.  
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2.3.1.3 Foxp3 in Treg 

The association of Foxp3 with the suppressive function of Treg was 

demonstrated by Wen Lin and colleagues. Treg with a nonfunctional Foxp3 

fusion protein maintain their Treg signature but lose the suppressive function 

(Lin, Haribhai et al. 2007). By transduction of Foxp3 into naïve T cells, the 

expression of CD25 and other Treg-associated cell surface molecules as CTLA-4 

and GITR, were upregulated while the production of IL-2, IFN-, and IL-4 was 

suppressed (Sakaguchi, Yamaguchi et al. 2008). 

2.3.2 Treg suppressive function 

In general, Treg inhibit Tcon in several ways: a) by secretion of suppressor 

cytokines, such as IL-10 and TGF-β, which inhibit Tcon directly, b) by expression 

of high levels of CD25, leading to competition for IL-2 with Tcon, c) by acting as 

cytotoxic cells that directly kill responder T cells, and d) by inducing expression 

of galectin-1 or other unknown molecules on the cell surface leading to Tcon 

cell cycle arrest (Shevach 2009). 

2.3.2.1 Treg cytokines 

2.3.2.1.1 TGF-β 

As a major cytokine of Treg TGF-β is highly produced as a membrane-bound 

molecule and is complexed with latency-associated peptide (LAP) on activated 

Treg. Treg produced LAP-TGF-β is able to suppress the proliferation of activated 

T cells in infectious tolerance (Andersson, Tran et al. 2008). TGF-β converts 

CD4+CD25- naïve T cell into CD4+CD25+Foxp3+ cells (Chen, Jin et al. 2003). T cell-

specific TGF-β1 blocks Th1 and Th2 responses: TGF-β inhibits Th1 cell 

differentiation by interfering the production of T-bet (Gorelik, Constant et al. 

2002); in aspect of Th2, TGF-β was firstly found to inhibit Th2 proliferation by 

downregulating GATA3 expression (Heath, Murphy et al. 2000), and TGF-β 

inhibits IL-5 expression by upregulation of SOX4 binding to GATA3 and to the IL-

5 promoter (Kuwahara, Yamashita et al. 2012). Ex vivo expanded Treg by TGF-β 

showed inhibition of RORt to promote Foxp3 expression and suppress Th17 

production (Zhou, Lopes et al. 2008). Besides acting as an inhibitor of Tcon, 
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TGF-β also promotes Tcon proliferation: TGF-β together with IFN- and IL-4 

facilitates CD103+ Th1 cell proliferation (Tofukuji, Kuwahara et al. 2012); TGF-β 

together with IL-6, IL-1β, and IL-21 induces Th17 (Hu, Troutman et al. 2011). 

Furthermore, TGF-β signaling in CD8+ T cells prevents over-proliferation by 

mediating apoptosis in short-lived effector cells during bacterial infection 

(Sanjabi, Mosaheb et al. 2009, Tinoco, Alcalde et al. 2009), but complete loss of 

TGF-β signaling leads to CD8+ T cell reduction in the thymus (Travis and 

Sheppard 2014).  

2.3.2.1.2 IL-10 

IL-10 protein is a homodimer consisting of two subunits, each 178 amino acids 

long (Zdanov, Schalk-Hihi et al. 1995). The IL-10 receptor is composed of two 

IL-10R1 chains, which are ubiquitously expressed, and two IL-10R2 subunits, 

which are expressed exclusively on T cells, B cells, NK cells, monocytes, mast 

cells and DC (Tan, Braun et al. 1995, Nagalakshmi, Murphy et al. 2004). IL-10 

suppresses the expression of MHC-II and of the costimulatory molecules CD80 

and CD86 on monocytes, macrophages and DC. Furthermore, IL-10 blocks 

expression of CD28, inducible costimulator (ICOS), and CD2 to inhibit T cell 

proliferation (Palomares, Martin-Fontecha et al. 2014). IL-10 as an 

immunosuppressive cytokine is involved in Treg-mediated suppression. 

Experiments of transferring IL-10 deficient CD4+CD45RBlow cells into SCID mice 

failed to rescue colitis, while transferring wild type CD4+CD45RBlow cells 

inhibited colitis. This indicates that IL-10 secreted by Treg is a major factor for 

Treg-mediated suppression of intestinal inflammation (Asseman, Mauze et al. 

1999). During cure of experimental colitis, CD4+CD25+Foxp3+ cells were found 

to accumulate in the colon and secondary lymphoid organs. The similar 

situation was found in human colitis. IL-10-producing CD4+CD25+ T cells are the 

major population to cure colitis (Uhlig, Coombes et al. 2006). In addition, IL-10 

produced by Treg mediates experimental autoimmune encephalomyelitis 

recovery (McGeachy and Anderton 2005). Ablation of the Il-10 gene in Foxp3 

specific cells showed that IL-10 was essential for keeping immune responses in 

check at the environmental interface like in lung and colon, although no 

systemic autoimmunity was observed (Rubtsov, Rasmussen et al. 2008).  
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2.3.2.1.3 IL-35 

IL-35 is a novel IL-12 family cytokine, which drew much attention, because of its 

regulatory function. IL-35 consists of EBV-induced gene 3 (EBI3) and IL-12p35 

subunits. First, IL-35 was found to be highly expressed in mouse Foxp3+ Treg 

cells, and can directly suppress Tcon proliferation (Collison, Workman et al. 

2007). IL-35 promotes regulatory B cells (Breg) and Treg proliferation and 

converts naïve T cells into IL-35-producing induced regulatory T cells (iTR35) in 

the absence of Foxp3 and mediates suppression via IL-35 and not via IL-10 and 

TGF-. (Collison, Workman et al. 2007, Collison, Chaturvedi et al. 2010, Wang, 

Yu et al. 2014). However, in human Treg IL-35 does not seem to be 

constitutively expressed, only activated Treg produce IL-35 (Bardel, Larousserie 

et al. 2008).  

IL-27 shares the β-chain (EBI3) with IL-35, the α-chain of IL-27 is IL-27p28 (IL-

27A). Generally, IL-27 is an immune regulatory cytokine, which induces Th17 

cells to produce IL-10 (Murugaiyan, Mittal et al. 2009, Hirahara, Ghoreschi et al. 

2012), but it also exerts anti-tumor effect (Liu, Liu et al. 2013) and suppresses 

the expression of Foxp3 via STAT1 and STAT3 (Neufert, Becker et al. 2007, 

Huber, Steinwald et al. 2008). 

2.3.2.2 Treg suppressive molecules 

2.3.2.2.1 CD25 

CD25 is the IL-2 receptor  chain with high affinity for IL-2. IL-2 together with 

TGF-β is required for Foxp3 expression. However, Treg produce no IL-2. IL-2 

promotor in Treg does not undergo chromatin remodeling upon TCR activation. 

Foxp3 together with NFAT binds to the IL-2 promoter to suppress IL-2. 

Furthermore, Blimp1 which negatively regulates IL-2 expression is highly 

expressed in Treg (Malek 2008). Therefore, Treg highly express CD25 to deprive 

IL-2 from Tcon. It was found that Treg-mediated Tcon apoptosis was Bim 

associated, as Bim-depleted Tcon were completely protected from apoptosis in 

Treg coculture (Pandiyan, Zheng et al. 2007). However, others argued that 

apoptosis in human Tcon and Treg cocultures was not observed 

(Vallabhapurapu and Karin 2009). Administration of exogenous IL-2 could 
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abrogate the Treg-mediated proliferation inhibition (de la Rosa, Rutz et al. 

2004). However, another group showed that supplementation of IL-2 can partly 

abrogate Treg-mediated suppression, but a rapid suppression of IL-2 

transcription in Tcon by Treg was not interfered by adding exogenous IL-2 in 

culture (Oberle, Eberhardt et al. 2007). 

2.3.2.2.2 T-cell receptor (TCR) 

Treg can inhibit TCR induced proliferation of Tcon and induce Tcon anergy by 

upregulating GRAIL expression, GRAIL is related to anergy in lymphocytes 

(Ermann, Szanya et al. 2001). Treg can suppress TCR-mediated Tcon activation 

(Thornton and Shevach 2000, Karim, Feng et al. 2005). Additionally, Treg 

impede Tcon function directly by impacting TCR signal components. 

Researchers found out that following interaction with Treg, Ca2+ influx was 

blocked in Tcon which resulted in decreased NFAT1 dephosphorylation, and 

phosphorylation of IKK, IκBα, and p65 which inhibit NFκB activation (Schmidt, 

Oberle et al. 2011). The protein kinase c-theta (PKCθ) is an enzyme involved in 

mobilization of the transcription factors AP-1 and NFκB. Treg cells inhibit the 

recruitment of PKCθ to the immune synapse of naïve T cells if both recognize 

the same antigen and contact the same APC (Sumoza-Toledo, Eaton et al. 

2006). 

2.3.2.2.3 CTLA-4 

CTLA-4 is located primarily intracellular. Upon TCR and CD28:B7 engagement, 

CTLA-4 is also expressed on the cell surface. Strong TCR engagement results in 

more CTLA-4 expression on the surface (Linsley, Bradshaw et al. 1996, Walker 

and Sansom 2015). CTLA-4 raises the threshold of T cell activation to prevent 

over-activation of T cells (Alegre, Frauwirth et al. 2001). Depleting CTLA-4 

resulted in spontaneous autoimmunity in mice (Tivol, Borriello et al. 1995). 

CTLA-4 is expressed on the Treg surface, depleting CTLA-4 on Treg resulted in 

lymphoproliferation and T cell-mediated autoimmune disease (Wing, Onishi et 

al. 2008). In vitro experiments revealed that Treg-mediated Tcon suppression 

can be inhibited by blocking CTLA-4. However, Treg of CTLA-4 deficient mice 

mediated uncompromised suppression by upregulating secretion of IL-10 and 

TGF-β, which indicates that Treg developed into a compensatory suppressive 
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mechanism to override CTLA-4 deficiency (Tang, Boden et al. 2004). Rather 

than suppressing Tcon directly, CTLA-4 influences Tcon activation by 

downregulating CD80 and CD86 expression on APC (Wing, Onishi et al. 2008). 

Moreover, CTLA-4 can induce DC to express indoleamine-2,3-dioxygenase 

(IDO), which mediated tryptophan degradation in Tcon (Meisel, Zibert et al. 

2004, Curti, Pandolfi et al. 2007). In addition, Treg inhibits the synthesis of 

glutathione in DC by interfering the expression of -glutamylcysteine 

synthetase, which is mediated by the CTLA-4 dependent extracellular redox 

remodeling (Yan, Garg et al. 2009, Yan, Garg et al. 2010).  

2.3.2.2.4 Glycoprotein A repetitions predominant (GARP) 

GARP is a transmembrane protein highly expressed on activated Treg. The 

extracellular domain of GARP contains LRRC32 (leucine rich repeats containing 

32) (Probst-Kepper, Geffers et al. 2009), which is highly homologous to the 

extracellular domain of Toll-like receptor 3 (TLR3) (Bell, Botos et al. 2005, Sun, 

Jin et al. 2016). GARP is associated with Treg suppressive function (Wang, Wan 

et al. 2008). In recent years, GARP was used as a marker to isolate highly 

suppressive Treg (Wang, Kozhaya et al. 2009, Noyan, Lee et al. 2014, Abd Al 

Samid, Chaudhary et al. 2016). Downregulation of GARP in Treg is associated 

with the downregulation of Foxp3, CD27, and CD83 (Probst-Kepper, Geffers et 

al. 2009). Overexpression of GARP on non-Treg upregulated Foxp3 expression 

and other Treg-associated molecules: CD25, CTLA-4, LGALS3, LGMN and CD27 

(Wang, Wan et al. 2008). In return, Foxp3 depletion results in GARP decrease 

(Probst-Kepper, Geffers et al. 2009). GARP is essential for the surface 

expression of latent TGF-β on Treg: latent TGF-β binds to GARP as a LAP-GARP 

complex through disulfide linkage and non-covalent association as membrane 

bound TGF-β, after recognition by integrin αvβ6  and αvβ8, active TGF-β was 

released from the GARP-LAP complex on the Treg surface (Wang, Zhu et al. 

2012).  

2.3.2.2.5 Other molecules on Treg correlated with suppressive function 

ICOS is expressed abundantly on T follicular regulatory (Tfr) cells, and inhibits 

the germinal center reaction (Baumjohann, Preite et al. 2013). ICOS is 
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associated with IL-10 production: ICOShigh T cells express IL-10, and ICOS control 

Treg cells producing IL-10 (Greenwald, Freeman et al. 2005). 

LAG3 (lymphocyte activation gene 3) is an adhesion molecule expressed on 

Treg. It binds to MHC-II molecules. Early growth response gene 2 (Egr-2), 

characteristically expressed by LAG3+ Treg, forces naïve CD4+ cell to express 

Egr-2 and convents naïve T cells into LAG3+ Treg (Okamura, Fujio et al. 2009). 

LAG3+ Treg express TGF-β3 and suppress B cell responses in mice lupus model 

(Okamura, Sumitomo et al. 2015). Block of LAG reduced Treg suppressive 

function (Huang, Workman et al. 2004).  

Neuropilin 1 (NRP1) is a transmembrane glycoprotein, is thought selectively 

expressed on thymic-derived Treg in mice and on a subset of Treg isolated from 

secondary lymph nodes and on pDC in humans (Chaudhary, Khaled et al. 2014). 

NRP1 is involved in TGF-β signaling in Treg by acting as a high-affinity receptor 

for LAP (Solomon, Mueller et al. 2011). NRP1+ Treg exhibits higher suppressive 

function than NRP1- Treg, and the suppressive function is mediated mainly by 

TGF-β (Lin, Chen et al. 2013).  

cAMP is highly produced by Treg and inhibits the transcription of IL-2 and 

proliferation of Tcon (Bopp, Becker et al. 2007). Inducible cAMP early repressor 

(ICER) was considered to be involved in cAMP mediated suppression (Bodor, 

Bodorova et al. 2000). Through direct contacting nTreg, CD4+ Tcon accumulate 

ICER which suppresses IL-2 synthesis, and suppresses the nuclear factor of 

activated T cell c1 (NFATC1) because the promoter of NFATC1 contains two 

cAMP-responsive elements (Vaeth, Gogishvili et al. 2011). 

2.3.3 Treg in vitro expansion  

Many studies were focused on Treg ex vivo expansion. nTreg can be isolated 

and expanded using IL-2, anti-CD3 mAb, and anti-CD28 mAb ex vivo (Hoffmann, 

Eder et al. 2004, Earle, Tang et al. 2005).  

To convent CD4+CD25- T cells into CD4+CD25+Foxp3+ Treg cells ex vivo, TGF-β 

was initially widely used in Treg ex vivo expansion. Administration of TGF-β was 

found to be functional in induction of FOXP3 expression from CD4+CD25- 

precursors (Chen, Jin et al. 2003, Fantini, Becker et al. 2004, Fu, Zhang et al. 

2004).  
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In recent years, rapamycin gained much attention in Treg expansion. 

Rapamycin is an immunosuppressive drug that has been used to prevent GvHD 

in the clinic. Rapamycin inhibits mTOR, which regulates T cell early stage 

development. Deletion of RICTOR (rapamycin-insensitive companion of mTOR) 

results in systemically impaired thymocyte development, and lymphocytes 

were found to be defective in cell-cycle progression upon activation and went 

into apoptosis (Hoshii, Kasada et al. 2014). However, depletion of mTOR in T 

cells results in Treg development in the absence of IL-2 and TGF-β (Delgoffe, 

Kole et al. 2009). Now rapamycin is being used in expansion of Treg in humans 

(Strauss, Whiteside et al. 2007, Battaglia, Stabilini et al. 2012) and in baboon 

(Singh, Horvath et al. 2009, Singh, Seavey et al. 2012).  

Other compounds also contribute to Treg expansion. Anti-thymocyte globulin 

(ATG) promotes Treg generation in mice by depleting T cells (Lopez, Clarkson et 

al. 2006). Low-dose cyclosporine favors Treg in the skin of atopic dermatitis 

patients (Brandt, Pavlovic et al. 2009). Bortezomib reduces GvHD via expansion 

of Treg in vivo (Weng, Lai et al. 2013). 

2.3.4 Treg in immunotherapy 

Adoptive transfer of Treg is used to achieve immune tolerance in vivo.  

2.3.4.1 Adoptive transfer of Treg to prevent GvHD 

Several studies supported that Treg reverse GvHD in allograft transplantation. 

In 1995, Sakaguchi and colleagues showed that transfer of CD4+CD25+ cell can 

prevent autoimmune diseases within a limited period following co-

transplantation of allogeneic skin and CD4+CD25- T cells (Sakaguchi, Sakaguchi 

et al. 1995). Further experiment demonstrated that CD4+CD25+ T cells prevent 

GvHD in mouse bone marrow transplantation model (Taylor, Lees et al. 2002, 

Xia, Kovochich et al. 2004, Hanash and Levy 2005, Trenado, Sudres et al. 2006, 

Cao, Soto et al. 2009). Also, in clinical trials Treg alleviate GvHD. Hellmann et al. 

reported the first clinical trial in which GvHD could be alleviated by an adoptive 

transfer of ex vivo expanded Treg (Trzonkowski, Bieniaszewska et al. 2009). 

Adoptive transfer of Treg into HLA-haploidentical hematopoietic stem cells-

transplanted patients rebuilt immune balance and prevented GvHD in the 
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absence of post-transplantation immunosuppression (Di Ianni, Falzetti et al. 

2011). Also, in a small clinical phase I trial, isolated donor Treg were transferred 

into patients with high risk of leukemic relapse after stem cell transplantation. 

Neither GvHD nor opportunistic infections or early disease relapse occurred 

(Edinger and Hoffmann 2011). Another study showed that umbilical cord 

blood-derived Treg can prevent GvHD and no toxicity was observed: the clinical 

trial using umbilical cord blood-derived Treg expanded ex vivo with an artificial 

APC (K562 modified to express CD64 and CD86) (Brunstein, Miller et al. 2016). 

2.3.4.2 Adoptive transfer of Treg in type 1 diabetes 

Type 1 diabetes is caused by infiltration of self-reactive CD4+ and CD8+ T cells 

into the pancreatic islets, which leads to a destruction of insulin-producing -

cells. Adoptive transfer of antigen-specific CD4+CD25+ Treg, expended with 

anti-CD3/anti-CD28 beads and high amounts of IL-2, into NOD mice reversed 

diabetes and required fewer cells (Tang, Henriksen et al. 2004). 

CD4+CD25+CD62L+ islet antigen-specific Treg expanded with antigen-pulsed DC 

and IL-2 restored immune balance in non-obese diabetic (NOD) mice (Tarbell, 

Petit et al. 2007). Using a humanized mouse model transplanted with neonatal 

porcine islets, Shounan Yi and colleagues elongated survival of porcine islets by 

adoptive transfer of in vitro expanded autologous Treg (Yi, Ji et al. 2012). By 

transferring Treg to diabetic children, daily administration dose of insulin was 

reduced and 2 out of 10 children did no longer need insulin substitution. No 

toxicity was observed in this study (Marek-Trzonkowska, Mysliwiec et al. 2012).  

2.3.4.3 Adoptive transfer of Treg in rheumatoid arthritis (RA)  

Treg function also drew attention in RA. By injection of tolDC, the functionality 

of Treg was evaluated in mice with collagen-induced arthritis. It was found that 

this treatment alleviated RA (Carranza, Falcon et al. 2012). Following adoptive 

transfer of TCR gene-transduced Treg into recipient mice, Treg accumulated at 

the site of joint inflammation, resulting in a local reduction of Th17 cells. A 

significant decrease in arthritic bone destruction was observed (Wright, Notley 

et al. 2009). 
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2.4 Aim of the thesis 

Cellular rejection remains to be the obstacle for xenotransplantation. The 

adoptive transfer of Treg could be helpful for modulating the xenogeneic 

cellular immune responses. However, nTreg generation in vitro is laborious and 

expensive. Antigen-specific Treg would be more effective and would require 

lower cell numbers. The baboon, as a non-human primate experimental animal 

model, is widely used in xenotransplantation research. An effective method to 

generate baboon xeno-specific Treg would benefit research on immune 

tolerance in xenotransplantation. Therefore, the aim of this thesis was to 

establish a method for generating xeno-antigen specific Treg in both human 

and baboon system, which can be used in the future to inhibit cellular rejection 

in xenotransplantation of porcine organs or cells into host animals or into 

human recipients in the clinic.  

The second aim was to monitor subpopulations of peripheral blood 

mononuclear cells in baboons pre and post transplantation of pig hearts into 

baboons under different immunosuppressive therapies. This should provide a 

guideline for immunosuppressive treatment regime in xenotransplantation.  
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3. Materials and methods 

3.1 Materials 

3.1.1 Cells and tissues 

Human peripheral blood samples were collected from 10 healthy donors to 

isolate PBMC. They were used to generate human tolDC and non-tolerogenic 

C5-DC, human PSTreg, non-specific Treg (NTreg), PSTeff cells, and non-specific 

Teff cells (NTeff). Olive baboon peripheral blood samples (provide by Dr. Jan-

Michael Abicht and Tanja Mayr) were collected from 26 olive baboons to 

isolate PBMC that were used to generate baboon tolDC and non-tolerogenic 

C5-DC, and baboon PSTreg, NTreg, PSTeff cells, and NTeff cells, or were used as 

samples for immune monitoring pre- or post-transplantation. Wild type porcine 

aorta, heart and PBMC (provide by Dr. Jan-Michael Abicht and Tanja Mayr) 

were collected to isolate RNA for ivtRNA generation.  

3.1.2 Cell isolation and cell culture 

Table 3.1 Materials for cell isolation and cell culture 

  Company 

15 ml Centrifuge tubes BD 
50 ml Centrifuge tubes BD 
autoMACS Rinsing Solution Miltenyi Biotec 

autoMACS Running Solution Miltenyi Biotec 

Benzonase Nuclease HC Novagen 
CD14 MicroBeads, human Miltenyi Biotec 

CD14 MicroBeads, non-human primate Miltenyi Biotec 

CD4+ T Cell Isolation Kit, human Miltenyi Biotec 

CD4+ T Cell Isolation Kit non-human primate Miltenyi Biotec 

CD4+CD25+ Regulatory T Cell Isolation Kit Miltenyi Biotec 

CountessTM Automated Cell Counter Invitrogen 
Countess cell counting chamber slides Invitrogen 
CryoTube Nunc 
CTL-Wash CTL 
CTS™ OpTmizer™ T Cell Expansion SFM Life Technologies 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
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Erylyse-Puffer Klinikum Großhadern 

Ficoll-Paque 
GE Health Care  Life 
Sciences 

Freezing Medium serum-free Ibidi 
GM-CSF, recombinant, human  Leukine sargramostim 
human serum self made 
IFN-gamma, recombinant, human  Boehringer Ingelheim 
IFN-gamma, recombinant, Rhesus Macaque R&D 
IL-1β, recombinant, human  R&D 
IL-1β, recombinant, Rhesus Macaque R&D 
IL-2, (Proleukin)  Novartis 
IL-4, recombinant, Rhesus Macaque R&D 
IL-4, recombinant, human  R&D 
IL-6, recombinant, human  R&D 
IL-10, recombinant, human  PEPRO-TECH 
LEUCOSEP TUBE Greiner bio-one 
L-Glutamin Invitrogen 
MACS Separation Columns Miltenyi Biotec 

Mr. Frosty Immatics 
Nunclon™flasks  Nunc 
PBS Life Technologies 
penicillin/streptomycin Invitrogen 
PGE2 (prostaglandin E2), recombinant, human  Sigma 
R848 (Resiquimod) InvivoGen 
rapamycin Sigma 
RPMI 1640 medium Invitrogen 
T Cell Activation/Expansion Kit, human Miltenyi Biotec 

T Cell Activation/Expansion Kit, non-human primate Miltenyi Biotec 

TGF-β, 1recombinant, human  PEPRO-TECH 
TNF-α, recombinant, Rhesus Macaque  R&D 
Trypan Blue stain 0.4% Life Technologies 
TNF-α, recombinant, human  R&D 
U-bottom 96 well plate TPP 
VLE-RPMI 1640 Biochrom AG 

 

3.1.3 Antibodies 

Table 3.2 Antibodies 

Antibody Fluorescence color Clone Isotype Company 

CCR4 PE-Cy7 1G1 Mouse IgG1,  Pharmingen 
CCR7 BrilliantViolet421 G043H7 Mouse IgG2a Biolegend 
CD3 PerCP SP34-2 Mouse IgG1, λ BD 
CD3 PE-Cy7 SP34-2 Mouse IgG1, λ BD 
CD4 APC L200 Mouse IgG1,  BD 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjglpGdkMHQAhWLthoKHWuqDe0QFggkMAE&url=https%3A%2F%2Fwww.miltenyibiotec.com%2F~%2Fmedia%2FImages%2FProducts%2FImport%2F0001200%2FIM0001260.ashx%3Fforce%3D1&usg=AFQjCNGP4AWsHu3ppEiymB8srTpbBgBRyg&sig2=OWfKkXbr3X0zCeHRCybktQ
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CD14 FITC M5E2 Mouse IgG2a,  Biolegend 

CD14 PE-Cy7 M5E2 Mouse IgG2a,  Pharmingen 

CD16 APC 3G8 Mouse IgG1,  BD 
CD19 PacificBlue J3.119 Mouse IgG1 Coulter 
CD25 PE M-A251 Mouse IgG1,  BD 
CD25 APC M-A 251 IgG1k Pharmingen 
CD25 PE-Cy7 BC96 Mouse IgG1,  eBiosciences 

CD45 PerCP D058-1283 Mouse IgG1,  BD 

CD45RA BV421 5H9 Mouse IgG1,  BD 

CD80  Alexa F 700 L307.4 Mouse IgG1,  BD 

CD83 BrilliantViolet421 HB15e IgG1,  BD 

CD86 PE 2331 IgG1,  Pharmingen 
CD127 PE MB15-18C9 IgG2a Miltenyi 
CD154 (CD40L) APC TRAP1 Mouse IgG1,  BD 

CD154 (CD40L) BV421 TRAP1 Mouse IgG1,  BD 

CD273 (B7-DC) APC MIH18 Mouse IgG1,  BD 

CD274 (B7-H1) FITC MIH1 Mouse IgG1,  BD 

CD274 (B7-H1) 29E.2A3 PE Mouse IgG2b,  Biolegend 

FoxP3 eFluor450 PCH101 Rat IgG2a,  eBiosciences 
Isotype PE-Cy7 G155-178 Mouse, IgG2a Pharmingen 
Isotype FITC MOPC-21 IgG1,  Pharmingen 

Anti-human porcine MHC-class I  

  gift from 

Dr.Robert 
Kammerer 

 

3.1.4 Flow cytometry 

Table 3.3 Materials for flow cytometry 

  Company 

ArC Amine Reactive Compensation Beads Kit Invitrogen 
Anti-Mouse lg, κ/Negative Control Compensation Particles Set BD 
Anti-Rat lg, κ/Negative Control Compensation Particles Set BD 
Foxp3 Staining Buffer Set eBioscience 
LIVE/DEAD Fixable Blue Dye Cell Stain Kit Life Technologies 
 

3.1.5 Primers 

Primers for quantification of baboon GARP, EBI3, IL-12A, IL-12B, IL-27A, IL-10, 

TGFB1, GAPDH cDNA, and primers for quantification of human Foxp3, STAB1, 

GARP, EBI3, IL-12A, IL-27A cDNA were designed with online tool primer-blast 
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(http://www.ncbi.nlm.nih.gov/tools/primer-blast/), Primers were supplied by 

Eurofins (Ebersberg, Germany), sequence of primers were listed in table 3.4.  

Primers for quantification of human IL-12B, IL-10, TGFB1 and housekeeping 

genes ACTB, G6PDH and cyclophilin B (CYPB) cDNA were purchased from 

Search LC (Germany). The quality of the PCR primers was confirmed by melting 

curve analysis and agarose gel electrophoresis. 

Table 3.4 Primers 

  Forward primer Reverse primer 

cDNA amplify primers 
for ivtRNA generation 

TAATACGACTCACTATAGGGA 
GGAAGCAGTGGTAACAACGCA AAGCAGTGGTATCAACGCAGAGT 

Baboon EBI3 CTGCACCATCGCGGATGTC ACTGGAGGACAGGTGGGAAGT 
Baboon GAPDH CAGCGCATCTCTGAGACACCA ACTTGCCATGGGTGGAATCA 
Baboon IL-10 GCCGGGAAACCTGTGATTGT TCTCGAAGCATGTGAGGCAG 
Baboon IL-12A CAAAACTTGCTGAAGGCCGC GCCAGGCAACTCCCTTTAGT 
Baboon IL-12B ACCAGGGGTGCATTTCTTCG CATGGCTGCACCAGGTTAGA 
Baboon IL-27A CATCAGCGTTGGACAAGGGA TGTAGGAGCAGAGAGGGGTT 
Baboon TGFB1 CTGGCGATACCTCAGCAACC CCACTTGCAGTGTGTTATCTTTGC 
Human ACTB Search LC 

 
Human /baboon GARP GCTTGACCTGCATAGCAACG CCGGATGAGGTTGTTGGACA 
Human CYPB Search LC 

 
Human EBI3 GCTCCCTACGTGCTCAATGT CCCTGACGCTTGTAACGGAT 
Human Foxp3 AGCCATGATCAGCCTCACAC GACACCATTTGCCAGCAGTG 
Human G6PDH Search LC 

 
Human IL-10 Search LC 

 
Human IL-12A TGGCCCTGTGCCTTAGTAGT GTTTGGAGGGACCTCGCTTT 
Human IL-12B  Search LC 

 
Human IL-27A GCCAGGAGTGAACCTGTACC CACAGCTGCATCCTCTCCAT 
Human SATB1 CACTCGGGCCATCTGATGAA GGGCAGCAGAGCTATGTGAAT 

Human TGFB1  Search LC   

 

3.1.6 RNA and DNA isolation, cDNA synthesis, ivtRNA generation, 

electroporation of DC, and RT-PCR 

Table 3.5 Materials for RNA and DNA isolation, cDNA synthesis, ivtRNA 

generation, electroporation of DC, and RT-PCR 

  Company 

6× DNA Load Dye Fermentas 
Advantage 2 PCR Kit Clontech 

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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DNeasy Blood & Tissue Kit Qiagen 
FastStart Essential DNA Green Master Roche 
Gene Pulser Cuvettes BIO-RAD 
GeneRuler 1kb DANN Ladder Fermentas 
LightCycler® 8-Tube Strips Roche 
MEGAclear Kit Ambion 
mMESSAGE mMACHINE T7 Ultra Ambion 
OPTI-MEM Life Technologies 
Reverse Transcription System Progema 
RNAlater Solution Ambion 
RNeasy Mini Kit Qiagen 
SMARTer PCR cDNA Synthesis Kit Clontech 
UltraPure 10×TAE Buffer Invitrogen 
 

3.1.7 Treg functional assays 

Table 3.6 Materials for Treg functional assays 

  Company 

CellTrace™ CFSE Cell Proliferation Kit Moleculer Probes 

T Cell Activation/Expansion Kit, human Miltenyi Biotec 
T Cell Activation/Expansion Kit, non-human primate Miltenyi Biotec 
Vybrant® DiI Cell-Labeling Solution  Life Technologies 

 

3.1.8 Cytokine quantification 

Table 3.7 Materials for cytokine quantification 

  Company 

BD Cytometric Bead Array (CBA) Human Soluble Protein Master Buffer Kit BD 

Human IFN- Flex Set BD 
Human IL-10 Flex Set BD 
Human IL-10 Quantikine ELISA Kit R&D 
Human IL-12p70 Quantikine ELISA Kit R&D 
Human IL-12p70 Flex Set BD 
Human IL-17A Flex Set BD 
Human TGF-β1 Quantikine ELISA Kit R&D 
Human TGF-β1 Single Plex Flex Set BD 
Monkey IL-10 ELISA kit U-CyTech 
Monkey IL-12/23p40 ELISA kit U-CyTech 
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3.1.9 Software and technical equipment 

Table 3.8 Software and technical equipment 

  Company 

autoMACS Miltenyi Biotec 
AxioCam microscop ZEISS 
Bioanalyzer 2100 Agilent 
Cell incubator HERAEUS 
Centrifuge 5417R Eppendorf 

Countess automated cell counter Invitrogen 
E max precision microplate reader MWG-BIOTECH 
Electrophoresis Power Supply PS304 LIFE TECHNOLOGIES 
FlowJo Tree Star Inc.  
Fluor-S™ MultiImager Bio-Rad 
Freezer -80°C Heraeus 
GenePulser Xcell BIO-RAD 
graphpad prism 6 GraphPad Software, 
HERAsafe clean bench HERAEUS 
LEICA DMIL microscope LEICA 
Light Cycler 96 Roche 

LSRII flow cytometer BD Biosciences 
Megafuge 2.0 HERAEUS 
NanoDrop 2000 Thermo Fisher Scientific 
Peltier Thermal Cycler PTC-200 MJ RESEARCH 
 

3.2 Methods 

3.2.1 Generation of human and baboon tolDC and PSTreg 

3.2.1.1 RNA isolation and ivtRNA generation 

RNA of wild type porcine PBMC, porcine aorta and porcine heart was isolated 

using the RNeasy Mini Kit according to the manufacturer’s instructions. RNA 

quality and quantity was controlled by Agilent capillary electrophoresis and 

Nanodrop, respectively. Reverse transcription of porcine RNA was 

accomplished with SMARTer™ PCR cDNA Synthesis Kit. cDNA was amplified by 

Advantage® 2 PCR Enzyme System. The cDNA was analyzed using agarose gel 

electrophoresis and quantified by spectrophotometry. ivtRNA (ivtRNA) of 
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porcine PBMC was generated by mMESSAGE mMachine T7 Ultra Kit and 

purified by MEGAclear™ Transcription Clean-Up Kit. The full length capped 

mRNA was analyzed and quantified using the Agilent system. 

3.2.1.2 Generation of human and baboon tolDC and C5-DC 

Human and baboon DC were generated from monocytes which were isolated 

from PBMC of healthy human donors and baboon donors, respectively. Briefly, 

after isolation of monocytes with CD14 microbeads, human and baboon 

monocytes were resuspended in VLE-RPMI 1640 with 1.5% human serum and a 

total of 5×106 cells were seeded in Nunclon™ flasks at the concentration of 

1×106/ml. On day 0, 100 ng/ml GM-CSF and 20 ng/ml IL-4 were added to the 

cultures. At day1, 1 ng/ml TGF-β1 and 20 ng/ml IL-10 were added only to tolDC. 

On the following day, maturation cocktails (Burdek, Spranger et al. 2010) for 

human (Table 3.9) and for baboon (Table 3.10) were added to tolDC and C5-DC 

to induce maturation. For immunophenotyping of tolDC and C5-DC, the 

following antibodies were used: anti-CD14, anti-CD80, anti-CD83, anti-CD86, 

anti-B7-H1, anti-B7-DC for human, and anti-CD80, anti-CD83, anti-B7-H1, anti-

B7-DC, anti-CCR7 for baboon. 

Table 3.9 Maturation cocktail for human tolDC and C5-DC 

   tolDC  C5-DC 

GM-CSF, recombinant, human  100 ng/ml 100 ng/ml 

IL-4, recombinant, human   20 ng/ml  20 ng/ml 
IL-1β, recombinant, human   10 ng/ml  10 ng/ml 
TNF-α, recombinant, human   20 ng/ml  20 ng/ml 

PGE2, recombinant, human  250 ng/ml   1 µg/ml 

R848    --   1 µg/ml 

IFN-recombinant human    -- 5000 U/ml 

IL-6, recombinant, human   15 ng/ml    -- 
TGF-β1, recombinant, human    1 ng/ml    -- 

IL-10, recombinant, human   20 ng/ml    -- 

 

Table 3.10 Maturation cocktail for baboon tolDC and C5-DC 

   tolDC  C5-DC 

GM-CSF, recombinant, human 100 ng/ml 100 ng/ml 
IL-4,  recombinant, Rhesus Macaque  20 ng/ml  20 ng/ml 
IL-1β,  recombinant, Rhesus Macaque  10 ng/ml  10 ng/ml 
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TNF-α,  recombinant, Rhesus Macaque  20 ng/ml  20 ng/ml 

PGE2, recombinant, human 250 ng/ml   1 µg/ml 

R848    --   1 µg/ml 

IFN-,  recombinant, Rhesus Macaque    -- 5000 U/ml 

IL-6, recombinant, human  15 ng/ml    -- 
TGF-β1, recombinant, human   1 ng/ml    -- 
IL-10, recombinant, human  20 ng/ml    -- 

 

3.2.1.3 Loading of human and baboon DC with PS ivtRNA  

Gene Pulser Xcell™ from Biorad was used to perform electroporation of DC in 

0.4 cm electroporation cuvettes. The human and baboon DC were harvested 

and washed twice with Opti-MEM medium. 1.5×106 DC were resuspended in 

200 µl Opti-MEM and incubated with 10 µg ivtRNA for 5 minutes on ice. DC 

were electroporated using the following conditions: exponential protocol, 150 

µF, 300 V. DC electroporated in the presence of PBS served as controls. 

Immediately after electroporation, the cuvettes were placed on ice for 5 

minutes and then cultured with VLE-RPMI 1640 plus 1.5% human serum at 37°C 

and 5% CO2 for 24 h. The expression of porcine PBMC ivtRNA on human DC and 

baboon DC was assessed by detection of porcine MHC-class I protein. 

3.2.1.4 Generation of human and baboon PSTreg and PSTeff 

PSTreg were generated from human and baboon CD4+ T cells cocultured with 

PS ivtRNA-loaded human and baboon tolDC. Briefly, human and baboon CD4+ 

cells were isolated using the CD4+ T Cell Isolation Kit, cocultured with PS 

ivtRNA-loaded human and baboon tolDC at the ratio of 1:10. To generate 

human and baboon PSTeff, human and baboon CD4+ cells were cocultured with 

PS ivtRNA-loaded human and baboon C5-DC at the ratio of 1:10. (Spranger, 

Javorovic et al. 2010). CD4+ T cells cocultured with mock PBS-loaded tolDC and 

C5-DC were used for NTreg and NTeff controls. Human T cells were incubated 

for 10 days in medium supplemented with IL-2 (Treg: 500 U/ml Teff: 50 U/ml) 

and with or without rapamycin (Treg: 1 nM). In the human system, nTreg were 

enriched or depleted using the CD4+CD25+ Regulatory T Cell Isolation Kit. The 

remaining CD4+ cell were used as precursor cells to generate PSTreg and NTreg 

using tolDC loaded with PS-antigen- or mock-loaded tolDC as mentioned above. 
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To restimulate Treg, PSTreg and NTreg were purified with the CD4+CD25+ 

Regulatory T Cell Isolation Kit, and cocultured with DC. 

Baboon T cells were incubated for 10 days in medium supplemented with IL-2 

(Treg: 2000 U/ml Teff: 200 U/ml) and with or without rapamycin (Treg: 1 nM). 

Treg phenotype was characterized by flow cytometry (LSRII).  

The following monoclonal antibodies were used: anti-CD3, anti-CD4, anti-CD25, 

anti-CD127, anti-Foxp3, anti-CD45RA, anti-CCR7, anti-CCR4. Intracellular 

staining for Foxp3 was performed by Foxp3 staining buffer set. LIVE/DEAD® 

Fixable Blue Dead Cell Stain Kit was used to determine viable cells and to 

exclude dead cells. Evaluation of Treg was done using FlowJo software.  

3.2.1.5 Human and baboon PSTreg functional assays 

Two assays were used to evaluate the suppressive function of human and 

baboon PSTreg: inhibition of Teff early activation marker (CD154) expression 

(Ruitenberg, Boyce et al. 2011), and inhibition of Teff intermediate activation 

marker (CD25) expression. In addition, a Teff proliferation assay was used to 

test human PSTreg suppressive function. 

Cells were harvested and washed twice with culture medium. Then, the Treg 

and Teff were stained separately with the Vybrant® DiI Cell-Labeling Solution 

and with CFSE, respectively, according to the manufacturer’s instructions. 

1×105 PSTeff and PSTreg (PP) each were seeded in 96 U-bottom wells. 

CD3/CD28 beads were then added at the ratio of 1:4 according to cell numbers. 

PSTeff+NTreg (PN), NTeff+PSTreg (NP), NTeff+NTreg (NN), PSTeff+nTreg 

(PSTeff+nTreg), NTeff+nTreg (NTeff+nTreg) were set up as Treg and Teff 

controls, PSTeff (P) and NTeff (N) in humans as Teff controls, PSTeff with/or 

NTeff in baboons as Teff controls (C). In the human system, Treg and Teff were 

seeded at different ratios: Treg:Teff 1:1, 1:2, 1:4, 1:8, 1:16, 1:32. 

After 7 h incubation, human and baboon cells were harvested and stained for 

CD154. After 96 h incubation, a monoclonal antibody against CD25 was used to 

measure the human and baboon Teff activation. Human Teff proliferation was 

tested after 96 h. In all assays, LIVE/DEAD® Fixable Blue Dead Cell Stain Kit was 

used to determine the viability and exclude the dead cells during analysis. 
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Stained cells were analyzed by using the LSRII. Data were processed by using 

FlowJo software.  

3.2.1.6 Human and baboon cytokine production 

In the human system, supernatants of DC, PS/NTreg and PS/NTeff cultures, and 

supernatants of PP, PN, NP, NN, and P, N were harvested to determine cytokine 

production. Secreted IL-12p70, IL-10 and TGF-β1 levels were measured with 

enzyme-linked immunosorbent assays (ELISA) and BD™ CBA Flex Set system 

according to the manufacturers’ instructions. IL-17A and IFN- were quantified 

with BD™ CBA Flex Set system according to the manufacturer’s instructions. DC 

culture medium without cells served as control for DC supernatants. 

Similarly, in the baboon system, supernatants of DC, PS/NTreg and PS/NTeff 

cultures, supernatants of PP, PN, NP, NN, and C were harvested to determine 

cytokine production. Secreted IL-12p40, IL-10 levels were measured with ELISA 

according to the manufacturers’ instructions. DC culture medium without cells 

served as control for DC supernatants. 

3.2.1.7 Reverse transcription polymerase chain reaction (RT-PCR) 

In the human system, tol/C5-DC, PS/N Treg/Teff and PP, PN, NP, NN were 

harvested and washed twice with PBS. RNA was isolated as described above. 

Reverse transcription was accomplished using the Reverse Transcription 

System, according to the manufacturer’s instructions. Quantification of Foxp3, 

STAB1, GARP, EBI3, IL-12A, IL-12B, IL-27A, IL-10, TGFB1 mRNA and ACTB, 

G6PDH and CYPB (for housekeeping genes) was performed with RT-PCR using 

FastStart Essential DNA Green Master and Light Cycler 96. The quality of the 

PCR primers was confirmed by melting curve analysis. 

In the baboon system, tol/C5-DC and PS/N Treg/Teff were harvested and 

washed twice with PBS. RNA isolation and reverse transcription were 

accomplished as described above in the human system. Quantification of 

GARP, EBI3, IL-12A, IL-12B, IL-27A, IL-10, TGFB1 mRNA and housekeeping gene 

GAPDH mRNA was performed as described above in the human system. 

All relative amounts of the cDNA content of interest in the unknown samples 

were calculated with the Livak method: relative expression of cDNA of interest 
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was normalized with the control sample, and target gene relative expression 

was normalized by the reference gene.  

relative normalized expression ratio =

 2(−((Cq (target,unknow)−Cq (reference,unknow))−(Cq (target,control)−Cq (reference,control))))

, Cq represents the crossing point where a fluorescence value of one is 

reached. 

3.2.1.8 Statistical analysis 

Data are displayed as mean ± s.e.m. (standard error of the mean). Significance 

of data was analyzed by ONE-Way Analysis Of Variance (ANOVA) with 

Bonferroni’s Multiple Comparison Test, or turkey test, or Wilcoxon signed-rank 

test in Graphpad Prism 5.00 software. 

 

3.2.2 Immune monitoring for porcine heart transplanted baboons 

3.2.2.1 PBMC isolation from peripheral blood and leucocyte removal filter  

For PBMC isolation from baboon peripheral blood, blood was diluted 4 times 

with RPMI 1640 medium and carefully overlaid on Ficoll, then centrifuged at 

2000 rpm without break for 20 min at RT. The PBMC layer was transferred into 

a new tube and filled up with RPMI 1640 medium, and centrifuged at 1200 rpm 

for 10 min. Cell numbers and viability was determined using CountessTM 

Automated Cell Counter. 

For baboon PBMC flashed from leucocyte removal filter, the filters were rinsed 

with 100 ml 0.9% NaCl in flow direction, and then rinsed against the flow 

direction. The flow was collected and aliquoted into four 50 ml falcon tubes. 

Ery-Lysis buffer was added up to 50 ml and the cells were incubated at 37˚C for 

15 min. Following centrifugation at 1200 rpm for 10 min, cells were 

resuspended again in Ery-Lysis buffer up to 50 ml and incubated at 37˚C for 15 

min. After the last centrifugation step at 1200 rpm for 10min, cells were 

counted and the viability was determined. 
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3.2.2.2 Freezing and thawing of cells 

Cells were centrifuged at 1200 rpm for 10 min, and 1 ml Ibidi freezing medium 

was added per 1×109 cells/CryoTube. Cells were first stored in Mr. Frosty and 

put into -80˚C freezer for at least 24 h, and then transferred in the gaseous 

phase of liquid nitrogen. 

For thawing, cells were immediately transferred in 37˚C water bath and thawed 

until a little bit ice was left, and then put into 10 ml pre-warmed CTL-Wash 

solution with 50 U/ml Benzonase. Cells were centrifuged at 1200 rpm for 10 

min and resuspended again in 10 ml pre-warmed CTL-Wash with 50 U/ml 

Benzonase and centrifuged. 

3.2.2.3 Immunosuppressive therapy for baboon pre- and post-transplantation 

The xenotransplantation study was approved by the local authorities and the 

Government of Upper Bavaria. All animals received treatment in compliance 

with the Guide for the Care and Use of Laboratory Animals, published by the US 

National Institutes of Health (2011) and National Law. 

In group 1, all baboons received a pre-treatment in the last week before 

transplantation. Donor pigs of group 1 had the genotype GGTA1 homozygous 

knockout/heterozygous hCD46. The donor pig for baboon 49 had the genotype 

GGTA1 homozygous knockout/heterozygous hCD46/heterozygous HLA-E. 

The immunosuppression of group 1 is shown in table 3.11. 

Table 3.11 Immunosuppressive regimen in group 1 

Drugs Dose Timing 

Induction 
  Anti-CD20 19 mg/kg Pre-trans day -7, 0 

bortezomib 0.05 mg/kg Pre-trans day -7 & -2 
cyclophosphamide 10 mg/kg Pre-trans day -7 
Maintenance 

 Anti-CD20 19 mg/kg Post-trans weekly 
anti-thymocyte globuline (ATG) 1.5 mg/kg post-trans 0, 1, 2, 3, 4 
Tacrolimus 0.01 mg/kg daily 

mycophenolate mofetil (MMF) 20 mg/kg daily 
Methylprednisolone 10 mg/kg daily 
cyclophosphamide 1 mg/kg post-trans 4, 7 



MATERIALS AND METHODS 

44 
 

bortezomib 0.05 mg/kg post-trans 4, 7 
Heparin ACT 2x Baseline Continuous infusion 

 

All baboons in group 1 received a computer tomography-based total thoracic 

and abdominal lymphoid irradiation (TLI; single dose of cGY on day 5 post 

transplantation). 

In group 2, all baboons received a pre-treatment with anti-CD40 mAb. All the 

donor pigs of group 2 had the genotype GGTA1 homozygous 

knockout/heterozygous hCD46. 

The immunosuppression of group 2 is shown in table 3.12. 

Table 3.12 Immunosuppressive regimen in group 2 

Drugs Dose Timing 

Induction 
  Anti-CD20 19 mg/kg Pre-trans day -7, 0, 7 & 14, then weekly 

ATG 5 mg/kg Pre-trans day -2 & -1 
Anti-CD40 50 mg/kg Pre-trans day -1 & 0 

Maintenance 
 Anti-CD20 19 mg/kg Post-trans weekly 

Anti-CD40 50 mg/kg Post-trans days 3, 7, 10, 14, 19, then weekly 
MMF 20 mg/kg daily 
Tacrolimus 0.01 mg/kg daily 
Steroids 10 mg/kg 2 times daily, tapered off in 7 weeks 
Aspirin 25 mg daily 
Heparin ACT 2x Baseline Continuous infusion 

 

In group 3, all baboons received a pre-treatment with anti-CD40 mAb or anti-

CD40L mAb. All donor pigs of group 3 had the genotype GGTA1 homozygous 

knockout/heterozygous hCD46/homozygous hTM. Group A included the 

baboons 55, 57, 63 and they received anti-CD40 mAb. Group B included the 

baboons 60, 64 and they received anti-CD40L mAb. 

The immunosuppression of group 2 is shown in table 3.13. 

Table 3.13 Immunosuppression regimen in group 3 

Drugs Dose Timing 

Induction 
  Anti-CD20 19 mg/kg Pre-trans day -7, 0, 7 & 14 
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ATG 5 mg/kg Pre-trans day -2 & -1 
Anti-CD40 (Group A) 50 mg/kg Pre -trans day -1 & 0 
Anti-CD40L (Group B) 20 mg/kg Pre -trans day -1 & 0 
Maintenance 

 Anti-CD20 19 mg/kg Post-trans weekly 
Anti-CD40 (Group A) 50 mg/kg Post-trans days 3, 7, 10, 14, 19, then weekly 
Anti-CD40L (Group B) 20 mg/kg Post-trans days 3, 7, 10, 14, 19, then weekly 
MMF 40 mg/kg daily 
Steroids 10 mg/kg 2 times daily, tapered off in 7 weeks 
Aspirin 25 mg daily 
Heparin ACT 2x Baseline Continuous infusion 

 

3.2.2.4 Flow cytometric analysis of baboons pre and post porcine heart 

transplantation 

3.2.2.4.1 Overall survey analysis 

1x106 cells were aliquoted into flow cytometry tubes. 1 µl Blue Dye in 50 µl PBS 

was added and the cells were incubated for 30 min at RT. Cells were washed 

with PBS and then the antibodies were added according to table 3.14. 

Table 3.14 Staining for overall survey analysis 

  Tube 1 Tube 2 Tube 3 

    (FMO CD16) (FMO CD19) 

CD3-PE-cy7 √ √ √ 

CD14-FITC √ √ √ 

CD16-APC √ -- √ 

CD19-PacificBlue √ √ -- 

CD45-PerCP √ √ √ 

FMO: fluorescence minus one 

Gating strategy for overall survey analysis by FlowJo was shown in figure 3.1. 
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Figure 3.1 Gating strategy for overall survey analysis. For immune monitoring of leukocytes, T cells, 

monocytes, NK cells, NKT cells and B cells, the following antibodies are used: anti-NHP CD45 was 

used to determine the leukocytes, anti-human CD3 (cross-reactive with baboon) was used to 

determine the T cells, anti-human CD14 (cross-reactive with baboon) and side scatter (SSC) were 

used to determine monocytes, anti-human CD16 (cross-reactive with baboon) was used to determine 

NK cells, anti-human CD3 and anti-human CD16 were used to determine the NKT cells, anti-human 

CD19 (cross-reactive with baboon) was used to determine the B cells. 
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3.2.2.4.2 Treg analysis 

1x106 cells were aliquoted into flow cytometry tubes. 1 µl Blue Dye in 50 µl PBS 

was added and the cells were incubated for 30 min at RT. Cells were washed 

with PBS. Antibodies for CD3, CD4, CD25 and CD127 were added according to 

Table 3.15. Intracellular staining for Foxp3 was performed using Foxp3 staining 

buffer set according to manufacturer’s instruction. Foxp3 antibody was added 

to the samples afterwards.  

Table 3.15 Treg staining 

 
Tube 1 Tube 2 Tube 3 Tube 4 

  
(FMO CD25) (FMO CD127) (FMO Foxp3) 

CD3-PerCP √ √ √ √ 
CD4-APC √ √ √ √ 
CD25-PE-Cy7 √ -- √ √ 
CD127-PE √ √ -- √ 
Foxp3-ef450 √ √ √ -- 
FMO: fluorescence minus one 

Gating strategy for Treg analysis by FlowJo is shown in figure 3.2. 
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Figure 3.2 Gating strategy for Treg analysis. For immune monitoring of CD3+CD4+CD25+CD127low/-

Foxp3+ Treg, the following antibodies were used: anti-human CD3, anti-human CD4, anti-human 

CD25, anti-human CD127, and anti-human Foxp3. All these antibodies are cross-reactive with 

baboon.  

3.2.2.4.3 Analysis of activated T cells 

1x106 cells were aliquoted into flow cytometry tubes. 1 µl Blue Dye in 50 µl PBS 

was added and cells were incubated for 30 min at RT. Cells were washed with 

PBS and then antibodies were added according to table 3.16. 

Table 3.16 Staining for activated T cells 

 
Tube 1 Tube 2 Tube 3 

  
(FMO CD25) (FMO CD69) 

CD3-PE-Cy7 √ √ √ 

CD4-APC √ √ √ 
CD8-V450 √ √ √ 
CD25-PE √ -- √ 
CD69-FITC √ √ -- 
FMO: fluorescence minus one 

Gating strategy for activated T cells analysis by FlowJo is shown in figure 3.3. 

 

Figure 3.3 Gating strategy for T cell activation analysis. For immune monitoring of CD3+CD4+ and 

CD3+CD8+ T cells, and activated T cells, the following antibodies are used: anti-human CD3 (cross-
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reactive with baboon) and anti-human CD4 (cross-reactive with baboon) were used to determine the 

CD3+CD4+ T cells, anti-human CD3 and anti-human CD8 (cross-reactive with baboon) were used to 

determine the CD3+CD8+ T cells, anti-human CD25 (cross-reactive with baboon) and anti-human 

CD69 (cross-reactive with baboon) were used to determine the activated T cells. 

 

All results were analyzed by FlowJo 8.8.7 or FlowJo 10.2. 
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4 Results 

4.1 Generation of tolDC and PSTreg in the human system 

4.1.1 TolDC express IL-10, TGF-1, B7-H1, and B7-DC 

To generate tolDC and non-tolerogenic C5-DC, fresh CD14+ monocytes were 

isolated from healthy donor PBMC (Figure 4.1.1) and anti-inflammatory or 

inflammatory cytokines were added to induce tolerogenic or non-tolerogenic 

phenotypes, respectively.  

   

Figure 4.1.1 Isolation of monocytes from human PBMC. Monocytes were isolated from 

human PBMC using CD14 microbeads by positive selection. The purity of CD14+ cell was 

analyzed by flow cytometry. 

 

TolDC retained some CD14 expression compared with C5-DC, which totally lost 

CD14 expression after maturation. On the other hand, tolDC expressed 

significantly lower levels of CD83 compared with C5-DC. These results support 

the conclusion that tolDC are semi-mature cells (Figure 4.1.2 A, B) (Maldonado 

and von Andrian 2010). CD80 and CD86, as costimulation molecules of the B7 
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family, were expressed at significantly lower levels on tolDC compared to C5-

DC, showing 4-fold and 3.5-fold decrease compared to C5-DC, respectively. In 

contrast, the negative costimulators B7-H1 and B7-DC were significant highly 

expressed on tolDC compared to C5-DC. We detected 1.5- and 4-fold higher 

levels of expression of B7-H1 and B7-DC, respectively, on tolDC in comparison 

to C5-DC (Figure 4.1.2 B). 

 

A 
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Figure 4.1.2 DC generated from monocyte using anti-inflammatory cytokines exhibit a 

tolerogenic phenotype. TolDC and C5-DC were harvested after maturation and 

characterized by flow cytometry. Phenotype analysis (A) and dot chart of MFI ratio (B) of 

tolDC and C5-DC are shown. Grey histograms represent isotype control or unstained control 

in (A). Data represent 26 independent experiments from 9 healthy donors. (CD86: n=8). 

Wilcoxon signed-rank test was used to determine p values. 

 

To evaluate tolDC function, IL-10, TGF-β1, IL-12p70 and IFN- cytokine 

production was quantified using the BD™ CBA Flex Set system and ELISA. As 

expected, at the protein level, tolDC produced a significant higher amount of IL-

10 and TGF-β1, and no IL-12p70 and IFN- when compared with C5-DC, while 

C5-DC produced greater amounts of IL-12p70 and IFN-, less TGF-β1, and no IL-

10 (Figure 4.1.3).  

  

Figure 4.1.3 TolDC produce anti-inflammatory cytokines. IL-10, IL-12p70, TGF-β1 and IFN- 

were quantified in DC supernatants using BD CBA Flex Set and ELISA. Culture medium plus 

maturation cocktail without cells were used as control. These data represent 10-19 

independent experiments with cells from 9 healthy donors. ***p < 0.001, error bars: s.e.m. 

Turkey test was used to determine the p value. 

 

p=0.008 
p<0.0001 

p=0.003 

P<0.0001 

P=0.002 
P<0.0001 

B 
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Consistently, IL-10 mRNA levels were also upregulated in most tolDC of 

different donors, although the data did not meet statistical significance. Half of 

the samples showed elevated TGFB1 RNA levels in tolDC compared to C5-DC 

(Figure. 4.1.4). Generally, EBI3 and IL-12A mRNA expression showed no 

significant difference in tolDC compared with C5-DC. IL-27A expression was 

downregulated in tolDC compared with C5-DC, however with a p-value of only 

0.078. IL-12B was significantly downregulated in tolDC, which was consistent 

with the protein level results showing that C5-DC expressed high amounts of IL-

12p70 while tolDC produced no IL-12p70 (Figure 4.1.4). 

  

Figure 4.1.4 TolDC upregulate anti-inflammatory cytokine RNA. RNA was isolated from 

tolDC and C5-DC. Relative cDNA levels of EBI3, IL-12A, IL-27A, IL-12B, IL-10, TGFB1 in tolDC 

were quantified by RT-PCR, C5-DC served as control. ACTB, G6PDH or CYPB cDNA was used 

as endogenous reference gene for each sample. These data represent 7 independent 

experiments from 6 donors. Wilcoxon signed-rank test was used to determine p values. 

In summary, our tolDC express high levels of IL-10, TGF-β1, and no IL-12p70 

and IL-27. 

 

4.1.2 DC express porcine antigen following electroporation with 

porcine ivtRNA 

Electroporation of PS ivtRNA into DC is a rapid way to induce foreign antigen 

production in DC. However, unlike transfection of a specific mRNA, the 

efficiency of transfection of total cellular mRNA is difficult to assess in host 

cells. In these studies we used detection of porcine MHC-I molecule as a 

surrogate marker of PS antigen expression in DC. The quality of porcine PBMC 

p=1.000 
p=0.938 

p=0.078 
p=0.016 

p=0.578 
p=0.469 
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RNA, cDNA and ivtRNA was controlled with capillary or agarose gel 

electrophoresis (Figure 4.1.5).  

  

Figure 4.1.5 Generation of PS ivtRNA. Porcine PBMC RNA was isolated using the RNeasy 
Mini Kit, cDNA was synthesized using reverse transcription with SMARTer™ PCR cDNA 
Synthesis Kit and the Advantage® 2 PCR Enzyme System. The following primers were used: 5’ 
primer/T7: 5’-TAATACGACTCACTATAGGGAGGAAGCAGTGGTAACAACGCA-3’ 3’ CDS primer: 
5’-AAGCAGTGGTATCAACGCAGAGT-3’. Then ivtRNA was generated by mMESSAGE mMachine 
T7 Ultra Kit. The quality of porcine PBMC RNA (A, C) and ivtRNA (A, B) was tested by Agilent. 
The cDNA (D) quality was tested by agarose gel electrophoresis. 

 

Detection of porcine MHC-I expression by flow cytometry indicated that PS 

ivtRNA was successfully transfected and expressed in tolDC and C5-DC. As 

expected, PS antigen expression from ivtRNA was transient: MHC-I antigen 

became detectable on both tolDC and C5-DC after 24 h and peaked at 72 h 

(Figure 4.1.6 A, B, C). The viability was shown in the Figure 4.1.6 D. 
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Figure 4.1.6 TolDC and C5-DC successfully express porcine antigen following 
electroporation with porcine-specific ivtRNA. (A) PS MHC-I flow cytometry result, mock-
electroporated tolDC and C5-DC were used as controls (grey peak). (B-C) Line charts of PS 
MHC-I in % cells and MFI. (D) Viability of tolDC and C5-DC after electroporation. 
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4.1.3 PSTreg can be generated with PS ivtRNA loaded tolDC 

PSTreg were induced from purified CD4+ naïve T cells (Figure 4.1.7) by coculture 

with PS ivtRNA loaded tolDC in medium supplemented with high concentration 

of IL-2 and addition of rapamycin. In parallel, PSTeff were generated from CD4+ 

naïve T cells by coculture with PS ivtRNA loaded C5-DC in medium 

supplemented with a lower concentration of IL-2 and without rapamycin. 

In parallel, NTreg and NTeff were generated by coculture with mock-

electroporated tolDC and C5-DC, respectively. 

   

Figure 4.1.7 Isolation of CD4+ cells from human PBMC. CD4+ cells were isolated using the 

CD4 isolation kit by negative selection. The purity of CD4+ cell was tested by flow cytometry. 

 

PSTreg and NTreg exhibited the conventional human CD4+CD25+CD127low/- 

Foxp3+ phenotype (Figure 4.1.8 A). There was no significant difference in the 

fraction of Foxp3-positive PSTreg and NTreg in both the CD3+CD4+ cells and the 

total cell populations (Figure 4.1.8 B, C, Table 4.1.1). 
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Figure 4.1.8 PSTreg can be generated using PS ivtRNA loaded tolDC. CD4+ T cells were 

isolated and cocultured with PS antigen-expressing DC or mock-loaded DC for 10 days in the 
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presence of IL-2 w/o rapamycin. (A) Flow cytometry gating strategy for quantification of 

CD4+CD25+CD127low/-Foxp3+ Treg cells. (B, C) Ratio of PSTreg and NTreg in the alive cell 

population and in the CD3+CD4+ population after 10 days coculture. For comparison PSTeff 

and NTeff were analyzed. Data represent 14 independent experiments from 8 donors. 

ANOVA with Bonferroni’s Multiple Comparison Test was used to determine the statistical 

significance. ***p < 0.001, **p < 0.01, *p < 0.05. NS, non-significant, p > 0.05. Error bars: 

s.e.m. 

 
Table 4.1.1 Frequency of CD4+CD25+CD127low/-Foxp3+ cells in PSTreg and 
NTreg and PSTeff and NTeff populations 

  PSTreg NTreg PSTeff NTeff 
Treg in CD3+CD4+ cell fraction (%) 49.1±4.5 46.3±3.7 12.1±2.1 17.0±2.0 
Treg in live cell fraction (%) 37.5±4.3 34.5±3.4 8.1±1.6 11.0±1.5 

 

PSTreg expressed significantly more Foxp3 mRNA than NTreg (Figure 4.1.9). 

However, NTreg inhibited SATB1 mRNA expression, which at low expression is 

considered as a new marker of Treg, compared with PSTreg and non-specific 

Teff (NTeff) (Figure 4.1.9). GARP is known as an activation marker of Treg: 

PSTreg expressed significantly more GARP mRNA than NTreg (Figure 4.1.9). 

  

Figure 4.1.9 PSTreg express high levels of Foxp3, SATB1 and GARP. Relative quantification 

of Foxp3, SATB1 and GARP mRNA in PSTreg and NTreg was done by RT-PCR, NTreg and 

PSTeff served as control for PSTreg, NTeff as control for NTreg. ACTB, G6PDH or CYPB mRNA 

was used as endogenous reference gene for each sample. Data represent 8 independent 

experiments from 6 donors. Wilcoxon signed-rank test was used to determine p values. Error 

bars: s.e.m. 
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Furthermore, PSTreg exhibited a memory phenotype compared with NTreg, 

showing CD45RA-Foxp3+, and expressed significant lower levels of CCR7 (Figure 

4.1.10 A, B). Moreover, CCR4 was significantly upregulated on PSTreg 

compared with NTreg (Figure 4.1.10 B). Similar to PSTreg, PSTeff also showed a 

more prominent memory phenotype (CD45RA-CCR7low) than NTeff (Figure 

4.1.10 C, D). 

      

   

Figure 4.1.10 PSTreg express memory phenotype and high CCR4. The percentage of 

CD45RA-Foxp3+ population and CD45RA+Foxp3+ population in PSTreg and NTreg are shown 

in (A), the expression of CCR7 and CCR4 are shown in (B). The percentage of CD45RA- 

population and CD45RA+ population in PSTeff and NTeff are shown in (C), the expression of 

CCR7 is shown in (D). Turkey test was used to determine p values. Error bars: s.e.m. n=3 
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To characterize cytokine production of PSTreg, culture supernatants of 

cocultures were harvested after coculture for 7 h and 96 h. The concentrations 

of IL-10, TGF-β1, IFN-, IL-12p70 and IL-17A were measured (Figure 4.1.11 A). 

PSTreg expressed significantly higher concentrations of IL-10 and TGF-β1 

compared with both NTeff and PSTeff. Although not statistically significant they 

also showed higher concentrations than found for NTreg. PSTeff expressed the 

highest levels of IFN-, which was significantly higher than that found for 

PSTreg. IL-17A, an indicator of plasticity and instability of Treg, was 

undetectable in PSTreg and NTreg (data not shown). IL-12p70 was also not 

expressed in PSTreg and NTreg (data not shown).  

Expression levels of TGFB1 and IL-10 mRNA in PSTreg were significantly higher 

than in NTreg and PSTeff, which showed 7.5- and 23.6- fold and 16.4- and 

5071-fold higher than the expression levels of NTreg and PSTeff, respectively. 

NTreg also upregulated significantly more TGFB1 and IL-10 mRNA than NTeff 

(Figure 4.1.11 B). These results were consistent with those obtained at the 

protein level. 

  

  

Figure 4.1.11 PSTreg express high levels of IL-10 and TGF-β1. Supernatants of cocultures 

were harvested for analyzing IL-10, TGF-1, and IFN-. Relative quantification of IL-10 and 

p=0.008 

p=0.008 

p=0.031 

p=0.008 

p=0.008 

p=0.008 

A 

B 



RESULTS 

61 
 

TGFB1 mRNA in PSTreg and NTreg was done by RT-PCR, NTreg and PSTeff served as control 

for PSTreg, NTeff as control for NTreg. ACTB, G6PDH or CYPB mRNA was used as endogenous 

reference gene for each sample. Data represent 8-20 experiments from 6-7 donors. ANOVA 

with Bonferroni’s Multiple Comparison Test was used to determine the statistical 

significance of cytokine production on protein level (A). Wilcoxon signed-rank test was used 

to determine statistical significance of mRNA fold change (B). ***p < 0.001, **p < 0.01, *p < 

0.05. NS, non-significant, p > 0.05. Error bars: s.e.m. 

PSTreg expressed significantly more EBI3 and IL-12A mRNA compared to NTreg, 

and significantly more IL-12A mRNA compared to PSTeff (Figure 4.1.12). This 

indicates that PSTreg produce more IL-35 than NTreg. PSTreg did not express 

significantly higher amounts of IL-27A mRNA in comparison to NTreg and 

PSTeff. Both PSTeff and NTeff expressed 47.1- and 843-fold more IL-12B mRNA 

than PSTreg and NTreg, however, the data did not meet statistical significance 

because only 4 samples out of 8 contained detectable IL-12B RNA (Figure 

4.1.12).  

  

Figure 4.1.12 PSTreg express high levels of IL-35 gene family related mRNA. Relative 

expression of EBI3, IL-12A, IL-27A, IL-12B mRNA in PSTreg is shown. NTreg and PSTeff served 

as control for PSTreg, NTeff as control for NTreg. ACTB, G6PDH or CYPB mRNA were used as 

endogenous reference gene for each sample. Data represents 8 independent experiments 

from 6 donors. Wilcoxon signed-rank test was used to determine statistical significance. 

Error bars: s.e.m. 

 

To test the stability of PSTreg, the purified PSTreg and NTreg cells were 

restimulated with PS antigen loaded or mock loaded tolDC or C5-DC. Upon 

restimulation, PSTreg maintained Foxp3 expression (Figure 4.1.13 A) and kept 

the more prominent memory phenotype than NTreg (Figure 4.1.13 B): CD45RA-
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CCR7lowFoxp3+, and expressed significantly higher levels of CCR4 than NTreg 

(Figure 4.1.13 C). NTreg exhibited also CD45RA-Foxp3+ phenotype upon 

restimulation, but at a significant lower level than PSTreg. PSTeff also 

maintained the more prominent memory phenotype than NTeff: CD45RA-

CCR7low (Figure 4.1.13 D, E). 

  

PSTreg NTreg PSTeff NTeff 
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Figure 4.1.13 PSTreg kept Foxp3 expression, memory phenotype and high CCR4 after 

restimulation. PSTreg, NTreg and PSTeff, NTeff were harvested after cocultured with DC for 

10 days. Then PSTreg and NTreg were purified, and all cells were restimulated again with DC 

for 10 days. (A) Gating strategy for PSTreg and NTreg after restimulation for 10 day. PSTeff 

and NTeff are shown as controls. (B) Percentage of CD45RA+Foxp3+ and CD45RA-Foxp3+ 

populations in PSTreg and NTreg after restimulation. (C) CCR7 and CCR4 expression in PSTreg 

and NTreg after restimulation. (D)  Percentage of CD45RA+ and CD45RA- in PSTeff and NTeff 

after restimulation. (E) CCR7 MFI of PSTeff and NTeff after restimulation. Turkey test was 

used to determine statistical significance. ***p < 0.001, *p < 0.05. Error bars: s.e.m. 

 

By depletion of nTreg, residual CD4+ T cells were used as precursor cells to 

generate PSTreg. PSTreg can also be generated from these cells (Figure 4.1.14). 
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Figure 4.1.14 Generation of PSTreg using nTreg depleted CD4+ cells as precursors. After 

depletion of nTreg, residual CD4+ cells were cocultured with PS antigen loaded or mock 

loaded tolDC or C5-DC. After coculture for 10 days, the cells were harvested and 

phenotyped. Gating strategy of PSTreg and NTreg generated from nTreg depleted CD4+ cell 

is shown. 

 

These results confirmed that CD4+CD25+CD127-/lowFoxp3+CD45RA-

CCR7lowCCR4highGARPhigh PSTreg with high IL-10, TGF-β1 and IL-35 expression 

could be generated with our method.  

 

4.1.4 PSTreg demonstrate specific immunosuppressive activity 

CD154 is an early activation marker of Teff, which is expressed in the first few 

hours after Teff activation. After coculture of porcine-specific and non-specific 

Treg and Teff cells for 7 h, the cells were harvested and tested for CD154 

expression in the PSTeff and NTeff cells by flow cytometry (Figure 4.1.15 A, B). 

Expression of CD154 was significantly suppressed in the PSTeff/PSTreg 

coculture group (PP) group compared with the other groups: CD154 expression 

in PSTeff was suppressed by nearly 50% in the PP group at ratio 1:1 (Figure 

4.1.15 B). PSTreg specific suppressive function towards PSTeff was observed in 

different ratios, and still remained at a ratio of 1:32 (Figure 4.1.15 C). However, 

CD154 suppression of PN groups and NP groups showed no significant 

nTreg depleted CD4
+
 cells cocultured with PS antigen loaded tolDC 

nTreg depleted CD4
+
 cells cocultured with tolDC 
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difference at the different ratios, except ratio 1:32. In comparison to nTreg, 

PSTreg also exhibited a significant higher suppressive function towards PSTeff 

in the CD154 expression assay (Figure 4.1.15 D). 

  

   

  

PP PN P 

NP NN N 

1:1 1:2 1:4 1:8 1:16 1:32 
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Figure 4.1.15 PSTreg show porcine-specific immunosuppressive activity after 7 h coculture. 
To determine the specificity of PSTreg, PS/NTreg and PS/NTeff were seeded in 96 U-well 
plates with CD3/CD28 microbeads in various ratios, NTeff and PSTeff were set up as control. 
After 7 h, cells were harvested and CD154 expression was measured by flow cytometry. A 
sample of Treg to Teff ratio at 1:1 is shown in (A), CD154 suppression ratio at Treg to Teff 
ratio at 1:1 is shown in (B), data represents 15 independent experiments from 8 donors. 
CD154 suppression ratio of Treg to Teff at different ratio is shown in (C), n=3. nTreg were 
used as control for PSTreg specificity: (D) suppression of CD154, n=3. ANOVA with 
Bonferroni’s Multiple Comparison Test was used to determine the statistical significance. 
***p < 0.001. **p < 0.01. *p < 0.05. NS, non-significant, p > 0.05. Error bars: s.e.m.  

 

After 4 days of coculture, CD25, an intermediate activation marker of Teff, was 

measured to evaluate longer term regulatory function of PSTreg. As expected, 

the expression of CD25 was also suppressed significantly in the PP group 

compared to the other groups at different ratios, and PSTreg specific 

suppression was also retained at a ratio of 1:32 (Figure 4.1.16 A, B, C). However, 

PSTreg showed no significant suppressive function towards NTeff in the ratios 

1:1, 1:4, 1:8, 1:16 (Figure 4.1.16 C). PSTreg also demonstrated a significant 

higher suppressive function towards PSTeff in the CD25 expression assay 

compared to nTreg (Figure 4.1.16 D). 
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Figure 4.1.16 PSTreg show porcine-specific immunosuppressive activity after 96 h 
coculture. To determine the specificity of PSTreg generated with our method, PS/NTreg and 
PS/NTeff were seeded in 96 U-well plates with CD3/CD28 microbeads in different ratios, 
NTeff and PSTeff were set up as control. After 96 h, the expression (A) and suppression ratio 
(B) of CD25 on Teff at Treg to Teff ratio at 1:1 were measured using flow cytometry. Data 
represents 10 independent experiments of 6 donors. CD25 suppression ratio of Treg to Teff 
at different ratio is shown in (C), n=3. nTreg were used as control for PSTreg specificity: (D) 
suppression of CD25, n=3. ANOVA with Bonferroni’s Multiple Comparison Test was used to 
determine the statistical significance. ***p < 0.001. **p < 0.01. *p < 0.05. NS, non-significant, 
p > 0.05. Error bars: s.e.m. 

 

Likewise, in the T cell proliferation assay (Figure 4.1.17 A, B, C), the undivided 

population of Teff in the PP group was significantly higher than in the other 

groups at different ratios, which indicated that the proliferation of PSTeff was 

inhibited by PSTreg. As demonstrated above, PSTeff proliferation was 

significantly inhibited by PSTreg than by nTreg (Figure 4.1.17 D). 

D 



RESULTS 

69 
 

           

   

 

1:1 1:2 1:4 1:8 1:16 1:32 

A 

B 

C 

D 



RESULTS 

70 
 

Figure 4.1.17 PSTreg suppress PSTeff proliferation. After coculture of PS/NTreg and 
PS/NTeff together with CD3/CD28 microbeads for 96 h, Teff proliferation was evaluated 
using the CellTraceTM CFSE Cell Proliferation Kit, an example is shown in (A) and the 
undivided ratio is shown in (B) at Treg to Teff ratio at 1:1. Data represents 8 independent 
experiments of 5 donors. Undivided ratio of Treg to Teff at different ratios is shown in (C), 
n=3. nTreg were used as control for PSTreg specificity: (D) shows Teff undivided fraction in 
the Teff proliferation assay, n=3. Bonferroni’s Multiple Comparison Test was used to 
determine the statistical significance. ***p < 0.001. **p < 0.01. *p < 0.05. NS, non-significant, 
p > 0.05. Error bars: s.e.m. 

 

Restimulated PSTreg kept their specific suppressive function towards PSTeff 

with respect to the activation markers CD154 and CD25 (Figure 4.1.18 A, B).  

 

  

Figure 4.1.18. PSTreg retained specificity after restimulation. PSTreg, NTreg and PSTeff, 

NTeff were harvested after cocultured with DC for 10 days. Then PSTreg and NTreg were 

purified, and all cells were restimulated again with DC for 10 days. The specificity was tested 

by suppression of Teff activation marker at different ratios after restimulation, (A) CD154 

suppression, (B) CD25 suppression. n=3. ANOVA with Bonferroni’s Multiple Comparison Test 
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was used to determine the statistical significance. ***p < 0.001. **p < 0.01. *p < 0.05. NS, 

non-significant, p > 0.05. Error bars: s.e.m. 

PSTreg generated from nTreg depleted residual CD4+ cells showed no 

significant difference in suppressive function (Figure 4.1.19). 

  

 

Figure 4.1.19: Generation of PSTreg using nTreg depleted CD4+ cells as precursors. After 

depletion of nTreg, remaining CD4+ cells were cocultured with PS antigen loaded or mock-

loaded tolDC or C5-DC. After coculture for 10 days, suppression assays were set up and the 

comparison of nTreg depleted and non-depleted CD4+ cell induced PSTreg function is shown 

in (A, B). Turkey test was used to determine the statistical significance. 

 

These experiments revealed the high specificity of PSTreg towards PSTeff. 
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4.1.5 PSTreg express high amounts of IL-10, TGF-1, and IL-35 after 

interaction with PSTeff 

To further evaluate PSTreg functionality, cell supernatants were harvested after 

the functional assay to measure cytokine expression. 

As shown in Figure 4.1.20, high IL-10 levels were observed already after 7 h 

coculture of PSTreg with PSTeff. After coculture for 96h, the amount of IL-10 in 

the supernatant increased slightly. In the PN, NP and NN coculture groups 

much lower levels of IL-10 were found.  

  

Figure 4.1.20 PSTreg express high amounts of IL-10. Supernatants were harvested at the 7 h 
and 96 h time point. IL-10 was quantified with BD™ CBA Flex Set and ELISA. Data represents 
4-14 independent experiments from 4-8 donors. ***p < 0.001, **p < 0.01, *p < 0.05, NS, 
non-significant, p > 0.05. ANOVA with Bonferroni’s Multiple Comparison Test was used to 
determine the statistical significance. Error bars: s.e.m. 

 

In the first 7 h, TGF-β1 secretion in the PP group was significantly higher than in 

the NN coculture group, and in P and N cells. At the 96 h time point, almost all 

groups produced increased amounts of TGF-β1 except the NP group. Although 

the PP group maintained the highest production of TGF-β1, this was not 

statistically significant (Figure 4.1.21).  
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Figure 4.1.21 PSTreg express high amounts of TGF-β1. Supernatants were harvested at the 
7 h and 96 h time point. TGF-β1 was quantified with BD™ CBA Flex Set and ELISA. Data 
represents 4-14 independent experiments from 4-8 donors. **p < 0.01, *p < 0.05, NS, non-
significant, p > 0.05. ANOVA with Bonferroni’s Multiple Comparison Test was used to 
determine the statistical significance. Error bars: s.e.m. 

 

As expected, P and N cells secreted high amounts of IFN- after stimulation 

with CD3/CD28 beads. The production of IFN- was significantly inhibited in the 

PSTreg NTreg coculture group. In the first 7 h, PSTreg remarkably inhibited IFN-

 production of PSTeff, although not of statistical significance, while after 96 h 

incubation, all Treg with Teff coculture groups accumulated IFN- (Figure 

4.1.22).  

  

Figure 4.1.22 IFN- secretion during the functional assay. Supernatants were harvested at 

the 7 h and 96 h time point. IFN- was quantified with BD™ CBA Flex Set. Data represents 4-
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14 independent experiments from 4-8 donors. ***p < 0.001, NS, non-significant, p > 0.05. 
ANOVA with Bonferroni’s Multiple Comparison Test was used to determine the statistical 
significance. Error bars: s.e.m. 

 

 IL-17A and IL-12p70 secretion were also measured in all groups. IL-12p70 

production was only observed in a few samples of P and N cells (data not 

shown). All coculture groups failed to secrete IL-17A and IL-12p70 after 

stimulation with CD3/CD28 beads (data not shown). 

As expected, consistent with protein data, IL-10 mRNA expression of the PP 

group was significantly higher compared to other groups (Figure 4.1.23). 

Relative expression of TGFB1 mRNA in the PP group was significantly higher 

upregulated compared to the NN group, however, the relative high expression 

compared to PN and NP groups did not meet statistical significance.  

  

Figure 4.1.23 PSTreg express high levels of IL-10 and TGF-β1 mRNA after 96 h coculture. 
The cells of the functional assay were harvested, RNA was isolated and quantified by RT-PCR. 
Relative expression of IL-10, TGFB1 mRNA in PP to other groups is shown, PN, NP, NN served 
as control. Data represents 7 independent experiments from 6 donors. ACTB, G6PDH or 
CYPB mRNA were used as endogenous reference gene for each sample. Wilcoxon signed-
rank test was used to determine statistical significance. Error bars: s.e.m. 

 

As shown in Figure 4.1.24, the expression of both EBI3 and IL-12A mRNAs, 

encoding the two components of IL-35, was significantly upregulated in the PP 

group compared to the other groups. IL-12A mRNA was upregulated 

remarkably compared to EBI3 mRNA. In contrast, IL-27A mRNA expression was 

not significantly upregulated in the PP group compared to the other groups, 

and in only 4 of the 7 Treg/Teff coculture samples IL-27A was expressed. We 
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also measured IL-12B mRNA expression, which was not detected in the Treg 

and Teff groups (data not shown). 

  

Figure 4.1.24 PSTreg express high levels of the IL-35 family related gene mRNA after 96 h 
coculture. The cells of the functional assay were harvested, RNA was isolated, and quantified 
by RT-PCR. Relative expression of EBI3, IL-12A, IL-27A related mRNA in PP to other groups is 
shown, PN, NP, NN served as control. Data represents 7 independent experiments from 6 
donors. ACTB, G6PDH or CYPB mRNA was used as endogenous reference gene for each 
sample. Wilcoxon signed-rank test was used to determine statistical significance. Error bars: 
s.e.m.  

 

These results indicate that all three anti-inflammatory cytokines were 

upregulated at the mRNA level. 
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4.2 Generation of tolDC and PSTreg in the baboon system 

4.2.1 TolDC express IL-10, TGF-1, IL-35, IL-27, B7-H1, and B7-DC 

In order to characterize baboon tolDC generated with the novel 3-day method, 

phenotype and cytokine secretion at protein and RNA levels compared to C5-

DC were demonstrated in this study. 

As shown in Figure 4.2.1 A, at day 0, cells maintained round shape in culture. 

The cells developed into dendritic shape on day 1 after culture with GM-CSF 

and IL-4 for 24 h. At day 2, tolDC developed less branched projections than 

non-tolerogenic C5-DC after adding IL-10 and TGF-β1 to the culture. Following 

maturation at day 3, tolDC developed less branched projections than C5-DC. 

As expected, tolDC expressed significantly lower levels of CD83 compared with 

C5-DC. In addition, CD80 was less well expressed by tolDC compared to C5-DC, 

with respect to MFI. In contrast, significantly higher levels of B7-H1 and B7-DC 

expression were detected on tolDC (Figure 4.2.1 B-C). CCR7 was expressed on 

both tolDC and C5-DC (Figure 4.2.1 D). 
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Figure 4.2.1 Baboon DC generated from monocytes with anti-inflammatory cytokines 

exhibit a tolerogenic phenotype. (A) Microscope photographs during DC generation. Blue 

lines represent tolDC, red lines represent non-tolDC, grey lines represent unstained control. 

(B) Phenotype analysis was done using flow cytometry. (C) shows dot chart of MFI ratio.  

Data represent 9 independent experiments from 6 baboons. Wilcoxon signed-rank test was 

used to determine the p values. Error bars: s.e.m. (D) CCR7 expression on tolDC and C5-DC. 

Data represents 2 independent experiments from 2 baboons.  

The baboon-derived tolDC produced significantly more IL-10 at the protein 

level when compared to C5-DC. On the other hand, C5-DC culture supernatant 

B 

p=0.006 p=0.001 p=0.004 p=0.039 

B 

D 

C 



RESULTS 

78 
 

contained high amounts of IL-12p40 whereas tolDC produced no detectable IL-

12p40 (Figure 4.2.2).  

  

Figure 4.2.2 Baboon tolDC generated by our fast 3-day method produce anti-inflammatory 

cytokines. IL-10 and IL-12p40 quantification was done by ELISA. These data represent 6 

independent experiments from 5 baboon donors. Turkey Test was used to determine the 

statistical significance. ***p < 0.001. Error bars: s.e.m.  

 

Consistently, IL-10 mRNA was significantly upregulated in all samples of 

baboon-derived tolDC prepared from different animals relative to C5-DC 

(Figure 4.2.3). However, only half of the different samples showed elevated 

TGFB1 mRNA in tolDC relative to C5-DC (Figure 4.2.3). With respect to IL-35-

related genes (Figure 4.2.3), an upregulation of IL-12A mRNA in tolDC was 

observed, although the data meet no statistical significance (p=0.063). The 

similar trend was also observed for EBI3 mRNA, which was upregulated in most 

samples of tolDC. IL-27A mRNA was significantly upregulated in all tolDC 

samples of different baboons. Consistent with protein levels, IL-12B mRNA was 

found to be downregulated in tolDC compared to C5-DC in all samples, 

although again the data meet no statistical significance (p=0.063). 
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Figure 4.2.3 Baboon tolDC upregulated anti-inflammatory cytokine mRNA. RNA was 

isolated from tolDC and C5-DC, EBI3, IL-12A, IL-27A, IL-12B, IL-10, TGFB1 mRNA were 

quantified by RT-PCR. GAPDH in each sample was used as endogenous reference gene. 

These data represent 6 independent experiments from 5 baboons. Wilcoxon signed-rank test 

was used to determine the p values. Error bars: s.e.m. 

4.2.2 Baboon DC electroporation with porcine ivtRNA 

Following electroporation of PS ivtRNA into tol/C5-DC, porcine MHC-I was used 

again as a surrogate marker to evaluate PS ivtRNA expression in DC after 24 h 

incubation. As shown in Figure 4.2.4, porcine MHC-I expression was detectable 

at 24 h after electroporation in both types of DC. 

 

Figure 4.2.4 TolDC and C5-DC successfully express porcine antigen following 
electroporation of PS ivtRNA. Porcine MHC-I expression was analyzed by flow cytometry, 
mock-electroporated tolDC and C5-DC were used as control (grey peak).  
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4.2.3 Baboon PSTreg and PSTeff can be generated with baboon 

tolDC and C5-DC, respectively 

Baboon PSTreg were induced from naïve CD4+ T cells by coculture with porcine 

antigen-loaded tolDC in medium supplemented with a high concentration of IL-

2 and rapamycin. In parallel, baboon PSTeff were generated from cocultures of 

naïve CD4+ positive T cells with porcine antigen-loaded C5-DC, in medium 

supplemented with a lower concentration of IL-2.  

Baboon PSTreg and NTreg generated using tolDC showed a similar phenotype 

as conventional human Treg: CD3+CD4+CD25+CD127low/-Foxp3+ (Figure 4.2.5 A). 

After coculture for 10 days with PS ivtRNA-loaded baboon-derived tolDC 

supplemented with IL-2 and rapamycin, the yield of PSTreg was significantly 

greater than that found for NTreg induced in cocultures with baboon-derived 

tolDC not loaded with porcine antigen (Figure 4.2.5 B). Furthermore, PSTreg 

exhibited a CD45RAlow phenotype compared with NTreg which displayed a 

CD45RAhigh phenotype (Figure 4.2.5 C, D). 
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Figure 4.2.5 Baboon PSTreg can be generated using porcine-antigen-loaded baboon tolDC. 

After coculture of CD4+ T cells with PS ivtRNA loaded tolDC or mock-loaded tolDC in medium 

supplemented with IL-2 and rapamycin for 10 days, cells were harvested and phenotyped 

using flow cytometry. Gating strategy of CD25+CD127low/-Foxp3+ population from CD3+CD4+ 

gated cells is shown in (A). The percentage of CD3+CD4+CD25+CD127low/-Foxp3+ Treg in 

CD3+CD4+ T cells is shown in (B). 7 independent experiments from 5 baboons. Expression of 

Foxp3 and CD45RA, gated out from the CD3+CD4+CD25+CD127low/- population of PSTreg and 

NTreg is shown in (C). A bar chart demonstrating the Foxp3+CD45RAhigh and 

Foxp3+CD45RAlow population is shown in (D). Data represent 2 individual experiments from 2 

baboons (n=3). ANOVA with Bonferroni’s Multiple Comparison Test and turkey test were 

used to determine the statistical significance. **p < 0.01. ***p < 0.001. Error bars: s.e.m.  

 

Concerning the IL-35 gene family members (Figure 4.2.6), EBI3 mRNA of all 

samples of different baboons was significantly upregulated in PSTreg compared 

with NTreg and PSTeff. We detected 1.01- and 7.93-fold higher expression of 

EBI3 mRNA than in NTreg and PSTeff, respectively. However, the expression of 

IL-12A mRNA was not significantly upregulated in PSTreg in general, which was 

0.67- and 1.70-fold higher than in NTreg and PSTeff, 2 out of 6 samples and 3 

out of 5 samples showed downregulation in comparison to NTreg and PSTeff, 

respectively. IL-27A mRNA in PSTreg, on the other hand, was maintained 
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almost at the same level as in NTreg, and was downregulated in all samples 

compared to PSTeff, although again the data meet no statistical significance. IL-

12B mRNA in PSTreg was maintained almost at the same level and showed a 

slight decrease compared with NTreg. As expected, PSTeff expressed 

significantly more IL-12B mRNA than PSTreg. Similar to PSTreg, NTreg showed 

upregulation of EBI3 and IL-12A mRNA, downregulation of IL-27A mRNA 

expression, although without statistical significance, but a significant 

downregulation of IL-12B mRNA compared to NTeff. 

  

  

p=0.031 p=0.031 p=0.125 

p=0.944 p=0.351 p=0.098 

p=0.109 p=0.031 p=0.031 
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Figure 4.2.6 Baboon PSTreg express high amounts of EBI3 mRNA towards PSTeff. EBI3 (A), 

IL-12A (B), IL-12B (C) and IL-27A (D) mRNA were quantified by RT-PCR. NTreg and PSTeff 

served as control for PSTreg, NTeff as control for NTreg. GAPDH mRNA was used as 

endogenous reference gene for each sample. Data represent 5-6 independent experiments 

from 5-6 baboons. Wilcoxon signed-rank test was used to determine the p values. 

 

IL-10 was quantified in the supernatants of cultured porcine-specific and non-

specific Treg/Teff (Figure 4.2.7). Results showed that PSTreg supernatants 

contained significantly higher levels of IL-10 than PS/N Teff supernatants. 

Although the results did not meet statistical significance, NTreg produced less 

IL-10 than PSTreg at the protein level.  

 

  

Figure 4.2.7 Baboon PSTreg secrete high amounts of IL-10. Supernatants of PS/N Treg/Teff 

were harvested to evaluate IL-10 protein level by ELISA. 7 independent experiments from 5 

baboons. ANOVA with Bonferroni’s Multiple Comparison Test was used to determine the 

statistical significance. *p < 0.05, NS, non-significant, p > 0.05. Error bars: s.e.m. 

 

p=0.813 

p=0.125 
p=0.125 

D 



RESULTS 

84 
 

Consistent with the protein expression data, PSTreg showed significantly 

elevated expression of IL-10 mRNA compared with NTreg and PSTeff, 

respectively. NTreg also upregulated IL-10 mRNA compared to NTeff in most 

samples (Figure 4.2.8 A). TGFB1 mRNA was significantly elevated in PSTreg 

relative to NTreg and PSTeff (4.56- and 16.48-fold higher than PSTreg, 

respectively). NTreg also expressed more TGFB1 mRNA compared to NTeff 

(p=0.063) (Figure 4.2.8 B). 

    

  

Figure 4.2.8 Baboon PSTreg express high amounts of IL-10 and TGFB1 mRNA. IL-10 (A) and 

TGFB1 (B) mRNA were quantified in PSTreg and NTreg by RT-PCR. NTreg and PSTeff served as 

controls for PSTreg, NTeff as control for NTreg. GAPDH mRNA was used as endogenous 

reference gene for each sample. Data represent 5-6 independent experiments from 5-6 

baboons. Wilcoxon signed-rank test was used to determine the p values. 

As a marker of activated Treg and as a receptor associated with latent TGF-β 

expression on the Treg plasma membrane, GARP mRNA was significantly higher 

expressed in PSTreg than in NTreg and PSTeff, respectively. NTreg also showed 

an upregulation compared to NTeff, which expressed 0.51-fold more GARP 

mRNA than NTeff although without statistical significance (Figure 4.2.9). 

p=0.016 p=0.031 p=0.125 

p=0.031 p=0.031 p=0.062 
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Figure 4.2.9 PSTreg express high amounts of GARP mRNA. GARP mRNA was quantified by 

RT-PCR in PSTreg and NTreg. NTreg and PSTeff served as controls for PSTreg, NTeff as control 

for NTreg. GAPDH mRNA was used as endogenous reference gene for each sample. Data 

represent 5-6 independent experiments from 5-6 baboons. Wilcoxon signed-rank test was 

used to determine the p values. 

 

4.2.4 Baboon PSTreg showed specific immunosuppressive activity 

After coculture of PSTeff and PSTreg (PP) for 7 h together with CD3/CD28 beads, 

cells were harvested and tested for the early activation marker CD154 on 

PSTeff (Figure 4.2.10 A, B). PSTeff and NTreg (PN), NTeff and PSTreg (NP), NTeff 

and NTreg (NN) were set up as Treg/Teff coculture controls. NTeff and/or 

PSTeff (C) together with CD3/CD28 beads were set up as Teff controls. Results 

showed that PSTreg significantly suppressed PSTeff CD154 expression: 

72.60±3.341% of the mean of CD154 expression was suppressed in PSTeff after 

interaction with PSTreg for 7 h. However, the CD154 expression in NTeff was 

not suppressed significantly by PSTreg in comparison to the suppression by 

NTreg, suppression ratios of which were 48.67±4.731% and 43.46±3.994%, 

respectively. CD154 suppression ratio of PSTeff was 52.34±5.694% after 

interaction with NTreg.  

Furthermore, high IL-10 levels were observed after 7 h following coculture of 

PSTreg and PSTeff (Figure 4.2.10 C). The secretion of IL-10 was 4.31-, 4.50- and 

4.53-fold higher than in the PN, NP and NN groups. We also detected IL-10 in 2 

out of 5 samples of the Teff control groups, however, in mean it was only 

6.64±4.019 pg/ml (Figure 4.2.10 C).  

p=0.015 p=0.031 p=0.125 
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Figure 4.2.10 Baboon PSTreg showed specific immunosuppressive activity towards CD154 
expression on PSTeff and expressed high amounts of IL-10 after 7 h coculture. PS/N 
Treg/Teff were seeded in 96 well plates (ratio 1:1) and stimulated with CD3/CD28 beads. 
After incubation for 7 h, cells were harvested to measure CD154 expression by flow 
cytometry, an example is shown in (A), and the suppression ratio is shown in (B). Data 
represent 5 independent experiments from 5 baboons. IL-10 was quantified in the 
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supernatant by ELISA (C). Data represent 5 independent experiments from 5 baboons. 
ANOVA with Bonferroni’s Multiple Comparison Test was used to determine the statistical 
significance. ***p < 0.001, **p < 0.01, *p < 0.05, NS, non-significant, p > 0.05. Error bars: 
s.e.m. 

 

CD25, as an intermediate activation marker of Teff, was tested for expression in 

PS/NTeff after interaction with PS/NTreg for 4 days (Figure 4.2.11 A, B). 

39.73±4.282% of CD25 expression in mean of PSTeff was suppressed by PSTreg, 

which was significantly higher than in the other groups. NTreg only suppressed 

25.63±3.508 % of CD25 expression in PSTeff. PSTreg showed no specific 

suppressive function of NTeff: PSTreg only suppressed 22.86±3.095% of CD25 

expression in NTeff, and there was no significant difference compared to a 

20.41±2.769% suppression ratio of CD25 in NTeff interacting with NTreg. IL-10 

cytokine accumulated in cocultures of all groups (Figure 4.2.11 C). The culture 

medium of the PP group contained the highest amount of IL-10 compared to 

the other groups. Consistently, the IL-10 level in the NP group was not 

significantly higher than in the NN group. In the PS/NTeff control group (C), the 

level of IL-10 also increased from 6.64±4.019 pg/ml at 7 h to 86.15±52.625 

pg/ml at 96 h. 
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Figure 4.2.11 Baboon PSTreg showed specific immunosuppressive activity towards CD25 

expression on PSTeff and expressed high amounts of IL-10 after 4 days coculture. After 

incubation for 4 days, cells were harvested to analyze CD25 expression. An example is shown 

in (A), suppression ratio is shown in (B). Data represent 4 independent experiments from 4 

baboons. IL-10 was quantified in the supernatant after 4 day coculture by ELISA (C). Data 

represent 4 independent experiments from 4 baboons. ANOVA with Bonferroni’s Multiple 

Comparison Test was used to determine the statistical significance. ***p < 0.001, **p < 0.01, 

*p < 0.05, NS, non-significant, p > 0.05. Error bars: s.e.m. 

  

PP: PSTeff+PSTreg 

PN: PSTeff+NTreg 

NP: NTeff+PSTreg 

NN: NTeff+NTreg 

C: PS/NTeff 

B 

C 
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4.3 Immune monitoring of baboons pre and post porcine heart 

transplantation 

4.3.1 Immune monitoring of baboons receiving conventional 

immunosuppressive treatment 

Five baboons were included in group 1. Donor pigs had the genotype GGTA1 

homozygous knockout/heterozygous hCD46, and the donor pig of baboon 49 

had the genotype GGTA1 homozygous knockout/heterozygous 

hCD46/heterozygous HLA-E. All baboons in this group received a pre-treatment 

in the last week before heterotopic intrathoracic transplantation consisting of 

bortezomib, cyclophosphamide, and anti-CD20 mAb. Post transplantation, they 

got anti-CD20 mAb, ATG, tacrolimus, MMF, methylprednisolone, 

cyclophosphamide, bortezomib, and heparin. Furthermore, they all received 

total lymphoid irradiation (TLI) on day 5 post transplantation (except baboon 

46: day 9) (Abicht, Mayr et al. 2015). The monitoring of immune cells, including 

total and activated T cells (CD25+CD69+), monocytes, NK cells and B cells, was 

done by using flow cytometry. The immune monitoring time points are shown 

in table 4.3.1. 

Table 4.3.1 Time points of immune monitoring for baboons in group 1. 

 Survival 

[days] 

Overall survey 

assay [day] 

Determination 

of Treg cells 

[day]   

Determination of T 

cell activation[day] 

Baboon 46 17 -23, -7, -2, 8, 10, 17 -23, -7, -2, 8 10 -23, -7, -2, 8 10 

Baboon 47 7 -37, -7, -3, 3, 5, 7 -37, -7, -3 -37, -7, -3, 3, 7 

Baboon 48 15 -7, -2, 4, 6, 8, 11, 14 -7, -2, 4 -7, -2, 4 

Baboon 49 35 -8, -2, 2, 4, 6, 8, 15 -8, -2, 2, 4, 6, 8 -8, -2, 2 

Baboon 52 7 -35, -2, 7 -35, -2, 7 -35, -2, 7 

Negative numbers mean pre transplantation, positive numbers mean post transplantation. 

Transplantation was done at day 0. 

In this group of baboons, the number of total T cell, and of the CD3+CD8+ and 

CD3+CD4+ populations was unchanged after pre-treatment (except for baboon 
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52 where these populations were increased significantly after pre-treatment) 

(Figure 4.3.1). Activated CD3+CD8+ and CD3+CD4+ T cells as well as 

CD3+CD4+CD25+CD127low/-Foxp3+ Treg remained unchanged during pre-

treatment (Figure 4.3.1). 

Following transplantation, the number of total T cells, CD3+CD8+, and CD3+CD4+ 

T cells decreased significantly (Figure 4.3.1). However, the activated fraction of 

CD3+CD8+ and CD3+CD4+ T cells increased after transplantation although 

without statistical significance. In baboon 47, the activated CD3+CD8+ and 

CD3+CD4+ T cell populations were upregulated to 98.3 % and 99.3 % at the last 

time point after transplantation, respectively. In Baboon 49 and baboon 52, the 

Treg percentages among CD3+CD4+ T cells were also upregulated after 

transplantation. In baboon 46, the Treg percentage first increased until day 8 

after transplantation and then decreased during the following two days (Figure 

4.3.1). In baboon 48, Treg were downregulated following transplantation 

(Figure 4.3.1). 
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Figure 4.3.1 Immune monitoring of T cells in baboon group 1 pre and post 

xenotransplantation of porcine hearts using flow cytometry. T cells, CD3+CD4+ and 

CD3+CD8+ cells are shown as absolute numbers, activated CD3+CD4+ and CD3+CD8+ cells as 

percent of CD3+CD4+ and of CD3+CD8+ T cells, respectively. Treg cells are shown as percent of 

CD3+CD4+ cells. Baboon 49 received a GGTA1 homozygous knockout/heterozygous 

hCD46/heterozygous HLA-E pig heart transplant (grey line). Absolute T cells numbers were 

calculated using data from the overall survey assay and blood cell counts; activated 

CD3+CD4+, CD3+CD8+ cells (CD25+CD69+) were analyzed using the T cell activation panel; 

absolute numbers of CD3+CD8+, CD3+CD4+ cells of baboon 46, baboon 47, baboon 48 and 

baboon 52 were calculated using data from the T cell activation panel and blood cell counts; 

absolute numbers of CD3+CD8+, CD3+CD4+ cells of baboon 49 were calculated using data 

from the Treg determination assay and blood cell counts; Treg percentage was analyzed 

using the Treg determination assay. If not enough material was available, the curves end up 

before death of the baboons). Paired t-tests were used to determine the statistical 

significance. 

Generally, the number of monocytes (Figure 4.3.2) of all baboons in group 1 

retained unchanged after pre-treatment. Just after transplantation the 

monocytes of baboon 47 and 52 decreased dramatically. The monocytes of 

baboon 46, 48 49 were higher after transplantation, peaked at day 10, day 4 

and day 2 post transplantation, respectively, and then decreased dramatically. 
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Figure 4.3.2 Immune monitoring of monocytes in baboon group 1 pre and post 

xenotransplantation of porcine hearts. Monocytes are shown as absolute numbers and 

were calculated using data from the overall survey assay and blood counts. Paired t-tests 

were used to determine the statistical significance. 

The number of NK cells remained overall constant during pre-treatment and 

transplantation, except baboon 46, where the cells increased during pre-

treatment. In baboon 49, receiving an HLA-E-expressing pig heart, the NK cells 

were present at low level through the pre-treatment and transplantation 

compared to the other baboons (Figure 4.3.3). 

 

 

Figure 4.3.3 Immune monitoring of NK cells in baboon group 1 pre and post 

xenotransplantation of porcine hearts. NK cells are shown as absolute numbers and were 

calculated using data from the overall survey assay. Paired t-tests was used to determine the 

statistical significance. 

The number of B cells decreased significantly after pre-treatment and remained 

at low level post transplantation in all baboons (Figure 4.3.4).  
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Figure 4.3.4 Immune monitoring of B cells in baboon group 1 pre and post 

xenotransplantation of porcine hearts. B cells are shown as absolute numbers, and were 

calculated using data from the overall survey assay. Paired t-tests were used to determine 

the statistical significance. 

 

4.3.2 Immune monitoring of baboons receiving anti-CD40 

immunosuppressive treatment 

Two baboons were included in group two. Donor pigs had the genotype GGTA1 

homozygous knockout/heterozygous hCD46. Instead of bortezomib and 

cyclophosphamide, anti-CD40 mAb was given to block the interaction between 

APC and T cells. Heart transplantation was done intrathoracically at a 

heterotopic site. Immune monitoring time points for baboons in group 2 are 

shown in table 4.3.2. However, because the blood cell count data were not 

available for group 2, the data are shown only in percentage. 

Table 4.3.2 Time points of immune monitoring for baboons in group 2 

 
Survival 

[days] 

Overall survey 

assay [day] 

Treg 

determination  

[day] 

Determination of T 

cell activation 

[day] 

Baboon 53 13 -31, 14 -31, 14 -31, 14 

Baboon 54 35 -31, 2, 20, 35 -31, 2, 20, 35 -31, 2, 20, 35 

Negative numbers mean pre transplantation, positive numbers mean post transplantation. 

Transplantation was done at day 0. 

In these two baboons, the total T cell population, the CD3+CD4+ and CD3+CD8+ T 

cells decreased after transplantation. The activated CD3+CD8+, CD3+CD4+ T cells, 
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and the Treg cells decreased after transplantation in baboon 53,  However, at 

the last time point, activated CD4+ and CD8+ T cells increased in baboon 54 

(Figure 4.3.5). Treg cells increased after transplantation in baboon 54, except at 

day 20 (Figure 4.3.5). 
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Figure 4.3.5 Immune monitoring of T cells in baboon group 2 pre and post 

xenotransplantation. Total T cells, CD3+CD4+, and CD3+CD8+ T cells are shown as percent of 

living mononuclear cells. Activated CD3+CD4+ and CD3+CD8+ T cells are shown as percent of 

CD3+CD4+ and CD3+CD8+ T cells, respectively. Treg as percent of CD3+CD4+ T cells. T cells 

were analyzed using the overall survey assay; CD3+CD4+, CD3+CD8+ T cells and activated 

CD3+CD4+, CD3+CD8+ T cells were analyzed using the T cell activation panel; Treg cells were 

analyzed using the Treg determination assay. 

Monocytes increased after transplantation in baboon 53, while they slightly 

decreased in baboon 54 after transplantation (Figure 4.3.6). 

 

Figure 4.3.6 Immune monitoring of monocytes in baboon group 2 pre and post 

xenotransplantation of porcine hearts. The total population of monocytes is shown as 

percent of living mononuclear cells and was analyzed using the overall survey assay. 

NK cells decreased after transplantation. Similar tendency was also found for 

NKT cells (Figure 4.3.7).  
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Figure 4.3.7 Immune monitoring of NK and NKT cells in baboon group 2 pre and post 

xenotransplantation of porcine hearts. NK cells and NKT cells are shown as percent of living 

mononuclear cells. They were analyzed using the overall survey assay. 

As in group 1, B cells also decreased in group 2 after pre-treatment and 

transplantation (Figure 4.3.8). 

 

Figure 4.3.8 Immune monitoring of B cells in baboon group 2 pre and post 

xenotransplantation of porcine hearts. B cells are shown as percent of living mononuclear 

cells and were analyzed using the overall survey assay. 
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4.3.3 Immune monitoring of baboons receiving anti-CD40 or anti-

CD40L immunosuppressive treatment without tacrolimus 

In the third group, five baboons were included. Donor pigs had the genotype 

GGTA1 homozygous knockout/heterozygous hCD46/ homozygous hTM. All 

baboons received a pre-treatment with ATG and anti-CD20 mAb. In subgroup A, 

anti-CD40 mAb was administered to baboon 55, baboon 57, and baboon 63. In 

subgroup B, anti-CD40L mAb was administered to baboon 60 and baboon 64. 

Tacrolimus was not used after transplantation. In this group an orthotopic 

transplantation was done. Immune monitoring time points for baboons in 

group 3 are shown in table 4.3.3. 

Table 4.3.3 Time points of immune monitoring for baboons in group 3 

 
Survival 

[days] 

Overall survey 

assay [day] 

Determination of 

Treg cells [day] 

Determination of T 

cell activation 

[day] 

Baboon 55 3 -2, 4 -2, 4 -2, 4 

Baboon 57 30 -33, 7, 14, 21, 28 -33, 7, 14, 21, 28 -33, 7, 14, 21, 28 

Baboon 60 18 -7, 7, 14 -7, 7, 14 -7, 7, 14 

Baboon 63 27 -25, 7, 14, 21 -25, 7, 14, 21, -25, 7, 14, 21, 

Baboon 64 40 -138, 7, 14, 21, 28, 37, -138, 7, 14, 21, 28, 37, -138, 7, 14, 21, 28, 37, 

Negative numbers mean pre transplantation, positive numbers mean post transplantation. 

Transplantation was done at day 0.  

CD3+CD8+ T cell populations of all baboons significantly decreased until day 7 

post transplantation (Figure 4.3.9). The total T cell population and the 

CD3+CD4+ also decreased after transplantation, but the data meet no statistical 

significance. Following this time point the T cells and CD3+CD4+ and CD3+CD8+ T 

cells of baboon 60, baboon 63 and baboon 64 showed an increase. Although 

the number of these T cells populations, of baboon 57 remained at a low level 

after transplantation, at the last time point a slight increase was observed 

(Figure 4.3.9). The fraction of activated CD3+CD8+ and CD3+CD4+ T cells 

increased in all the baboons (except baboon 64) in the first week post 

transplantation (Figure 4.3.9) although data meet no statistical significance. In 

baboon 64, the fraction of activated CD8+ and CD4+ T cells decreased during the 
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first week after transplantation, followed by an increase and peaked at day 28 

post transplantation (Figure 4.3.9). Within the following 9 days a dramatic 

decrease was found in baboon 64 (Figure 4.3.9). Except for baboon 60, all 

baboons showed an upregulation of Treg cells during the first week after 

transplantation although the data meet no statistical significance. At the 

following time points a downregulation was detected in baboon 63 and 64. In 

Baboon 60 Treg cells were downregulated after transplantation, and then, a 

slight increase was followed during the next 7 days (Figure 4.3.9). 
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Figure 4.3.9 Immune monitoring of T cells in baboon group 3 pre and post 

xenotransplantation of porcine hearts. Total T cells, CD3+CD4+, and CD3+CD8+ T cells are 

shown as absolute numbers. Activated CD3+CD4+ and CD3+CD8+ T cells are shown as percent 

of CD3+CD4+ and CD3+CD8+ T cells, respectively. Treg as percent of CD3+CD4+ T cells. Baboon 

55, baboon 57, and baboon 63 were treated with anti-CD40 mAb (black lines). Baboon 60 

and baboon 64 were treated with anti-CD40L mAb (grey lines). T cells were calculated using 

data from the overall survey assay; CD3+CD4+, CD3+CD8+ T cells and activated CD3+CD4+, 

CD3+CD8+ T cells were analyzed using the T cell activation panel; Treg cells were analyzed 

using the Treg determination assay. Paired t-tests were used to determine the statistical 

significance. The absolute number of baboon 57 pre-transplantation could not be calculated 

because the blood cell count was unavailable. 

 Monocytes of all baboons increased during the first week after transplantation 

without statistical significance, and decrease afterwards (Figure 4.3.10).  

 

Figure 4.3.10 Immune monitoring of monocytes in baboon group 3 pre and post 

xenotransplantation of porcine hearts. The monocytes are shown as absolute numbers, 

calculated using data from the overall survey assay. Paired t-tests were used to determine 

the statistical significance. 

As in group 2, NK cells significantly decreased after transplantation in all 

baboons (Figure 4.3.11). Baboon 57 and baboon 64 showed a slight recovery at 
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day 14 and day 28, followed by loss, respectively. Similar to NK cell, NKT cells 

also decreased significantly after transplantation (Figure 4.3.11). 

 

 

 

 

Figure 4.3.11 Immune monitoring of NK and NKT cells in baboon group 3 pre and post 

xenotransplantation of porcine hearts. The cells are shown as absolute numbers. NK cells 

and NKT cell numbers were calculated using data from the overall survey assay. Paired t-

tests were used to determine the statistical significance. 

Similar to group 1 and group 2, B cells were depleted in all baboons (Figure 

4.3.12).  
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Figure 4.3.12 Immune monitoring of B cells in baboon group 3 pre and post 

xenotransplantation of porcine hearts. B cells are shown as absolute numbers, calculated 

using the data from the overall survey assay. Paired t-tests were used to determine the 

statistical significance. 
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5. Discussion 

5.1 Generation of human PSTreg with PS ivtRNA loaded human 

tolDC 

Several methods have been reported to generate tolDC and most require 6 or 

more days to obtain these cells. In this paper, we investigated a fast method 

that needs only 3 days to acquire functional tolDC. TolDC generated with this 

fast protocol retained a semi-mature state with preservation of CD14 

expression and low level expression of CD83, CD80 and CD86.  Elsewhere, high 

expression of B7-H1 and B7-DC was reported to be characteristic for tolDC 

(Chen, Zhang et al. 2007). B7-H1 and B7-DC, also termed PD-L1 and PD-L2 

respectively, are ligands for PD-1 (Keir, Butte et al. 2008). PD-1 signal induces T 

cell inactivation via inhibition of TCR ligation by targeting PI3K/Akt and 

Ras/MEK/Erk pathway, and inhibits T cell proliferation by inhibiting cell cycle 

progression through Cdk2 regulation, and induce iTreg production via TGF-β 

independent Smad3 regulation (Yamazaki, Bonito et al. 2007). Our tolDC 

expressed significantly high levels of B7-DC and B7-H1. In some samples B7-H1 

was downregulated, indicating some differences to the published reports of 

other tolerogenic DC. B7-H1 was found to be upregulated by IFN-(Schoop, 

Wahl et al. 2004, Abiko, Matsumura et al. 2015), which may explain its higher 

expression in some samples of C5-DC that were found to produce IFN-. In vivo, 

Treg are generated by DC that provide few or no inflammatory cytokines and 

costimulatory signals in the presence of low antigen levels (Maldonado and von 

Andrian 2010). Our tolDC shared these characteristics and were capable of 

inducing Treg in vitro. By electroporation, PS antigen was induced on DC 

generated with our fast 3 day protocol and no severe cell death was observed. 

It was also reported in our former research that the 3-day DC are more robust 

to electroporation than traditional 7-day DC (Burdek, Spranger et al. 2010).  

Antigen-specific Treg were obtained in cultures using PS-antigen-loaded tolDC. 

In order to demonstrate the type of PSTreg, we use nTreg-depleted CD4+ T cells 

as precursor to generate PSTreg. As shown in the result, PSTreg can be 
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generated with these cells, which indicates that in our method PSTreg are 

induced Treg but not expanded nTreg. As expected, Foxp3 was highly 

expressed in PSTreg but also in NTreg that were generated using non-antigen-

loaded tolDC. The development of NTreg may have resulted from exposure of T 

cells to high levels of exogenous IL-2 and rapamycin (Yamazaki, Bonito et al. 

2007). Foxp3 directly blocks SATB1 and indirectly induces microRNA which 

binds to the SATB1 3’untranslated region. Therefore, low SATB1 expression was 

found to be characteristic for Treg and their suppressive function (Beyer, 

Thabet et al. 2011). In concordance, the NTreg in our studies showed low 

SATB1 expression. While PSTreg had slightly higher expression of SATB1 

compared with PSTeff, they also showed lower expression of SATB1 compared 

with NTeff. GARP expression is a marker of activated Treg (Abd Al Samid, 

Chaudhary et al. 2016), and can be used to isolate Treg with high suppressive 

function (Wang, Kozhaya et al. 2009, Abd Al Samid, Chaudhary et al. 2016), 

GARP is associated with Foxp3 expression (Probst-Kepper, Geffers et al. 2009). 

More importantly, GARP is involved in TGF-β expression by forming the GARP-

LAP complex on the Treg surface (Wang, Zhu et al. 2012). In the cells studied 

here, higher expression of GARP was found in PSTreg compared to NTreg, 

indicating that foreign-antigen stimulation may activate Treg more efficiently 

than self-antigens. Consistently, a more memory phenotype was observed in 

our PSTreg, which showed CD45RA-CCR7low phenotype (Rosenblum, Way et al. 

2016). With IL-10 producing tolDC, induced Treg can be generated and exhibit a 

more activated phenotype that was also reported by others (Kryczanowsky, 

Raker et al. 2016). The high CCR4 expression again confirmed the high 

suppressive function of PSTreg, which demonstrated by others that the CCR4 

expressing CD45RA-FOXP3highCD4+ Treg are terminally differentiated and most 

suppressive (Sugiyama, Nishikawa et al. 2013). The stability of our PSTreg was 

demonstrated upon PS antigen loaded tolDC, by Foxp3 expression, an activated 

phenotype and specific suppressive function. Fast porcine-specific tolDC 

provide an effective tool to successfully generate PSTreg. 

High expression of IL-10 and TGF-β1 and the lack of IL-12p70, confirmed the 

tolerogenic phenotype. In contrast, C5-DC expressed IL-12p70, but not IL-10, in 

accordance with their immunogenic phenotype. Although EBI3 mRNA 

expression showed no significant difference between tolDC and C5-DC in most 

samples EBI3 mRNA was downregulated in tolDC, which can be explained by a 
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previous report demonstrating that IFN- could induce EBI3 expression in DC 

(Dixon, van der Kooij et al. 2015). IL-27A expression was upregulated more in 

C5-DC compared to tolDC, which was also consistent with the former report 

(Dixon, van der Kooij et al. 2015). In general, C5-DC, as immunogenic antigen-

presenting cells, produce IL-27 and IL-12p70, but not IL-35. Our tolDC 

downregulate IL-27, and do not express IL-12p70, as another confirmation of 

the tolerogenic character of these cells. 

As expected, PSTreg secreted high level of IL-10 and TGF-β1 at protein and RNA 

levels. Based on the mRNA expression of EBI3 and IL-12A, it is evident that 

PSTreg were more strongly activated after exposure to foreign antigens 

compared with NTreg that were activated by self-antigens. Although compared 

with PSTeff EBI3 upregulation in PSTreg meet no statistical significance, IL-12A 

was significantly upregulated, which confirms observations of others that 

human activated Treg upregulated predominantly more IL-12A than EBI3 

(Bardel, Larousserie et al. 2008). We speculate that our fully activated PSTreg 

produce IL-35. Because there is no direct method to measure IL-35 as a dimeric 

protein, we can only infer IL-35 production indirectly from their EBI3 and IL-12A 

mRNA expression.  

The functionality of PSTreg was clearly demonstrated: two activation markers 

of different activation stages were significantly suppressed on PSTeff after 

exposure to PSTreg compared with NTreg generated with mock-loaded tolDC 

and nTreg. Likewise, proliferation of PSTeff was inhibited significantly in the 

presence of PSTreg and PSTreg still retained the specific suppression towards 

PSTreg in lower ratio, indicating it is applicable in vivo. In contrast, PSTreg 

inhibited NTeff proliferation and the expression of activation markers of NTeff 

were significantly lower than in PSTreg compared to PSTeff, and in the ratio of 

1:1, PSTreg showed no significant suppressive function to NTeff. This 

demonstrates that PSTreg generated with our method exhibit high suppressive 

activity only towards PSTeff and indicates that PSTreg are highly specific and do 

not mediate non-specific, unwanted immunosuppression. In comparison with 

nTreg isolated from the same donor at the same time, NTreg suppressive 

activity towards PSTeff and NTeff showed no significant difference to nTreg in 

the aspect of activation marker expression and Teff proliferation. NTreg 

showed higher suppressive activity than nTreg in the PSTeff CD25 expression 

assay. This indicates that NTreg generated with our mock-loaded tolDC exhibit 
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comparable function to nTreg in the aspect of Teff suppression. Moreover, IL-

17A production was not detected, and PSTreg still showed the specific 

suppressive function after restimulation, which indicates high stability of our 

PSTreg. 

IL-10 secretion was reproducibly observed during the first few hours of 

coculture of PSTreg and PSTeff, and became more pronounced after longer 

incubation periods. TGF-β1 also accumulated preferentially in PP cocultures, 

although differences with other coculture combinations were less prominent. 

In line with protein levels, PP cocultures contained the highest amounts of IL-10 

and TGFB1 mRNA. Interestingly, from the statistical aspect, the increase of IL-

10 mRNA in PP was more pronounced than that of TGFB1 mRNA, which 

indicates that IL-10 might be the major cytokine of the two involved in PSTreg 

suppressive function. An additional potential candidate involved in suppressive 

function of PSTreg is IL-35, as suggested by earlier studies (Collison, Workman 

et al. 2007). The mRNAs of IL-35 components EBI3 and IL-12A were 

preferentially expressed in PSTreg upon interaction with PSTeff.  

IFN- is a cytokine that mediates inflammation and causes potent immune 

regulatory effects. As expected, IFN- was highly expressed by PSTeff in the 

absence of PSTreg. Coculture of PSTeff with PSTreg strongly suppressed IFN- 

secretion. However, after extended coculture with PSTreg, IFN- production 

increased. Due to their plasticity Treg produce IFN- when they are recruited to 

the site of Th1-type inflammation, and there is evidence that IFN- also has 

immune inhibitory effects: .i.e. by inducing PD-L1 (Schoop, Wahl et al. 2004) 

and IDO (Jurgens, Hainz et al. 2009) expression in DC and upregulates the 

expression of EBI3 (Dixon, van der Kooij et al. 2015). In addition, IFN-

mediated protection in GvHD and closely associated with Treg development 

and function in GvHD sittings (Wang and Yang 2014). Therefore, it is 

conceivable that PSTreg profit from an IFN- environment produced by PSTeff 

through upregulation of EBI3 expression, as shown in the results section.  

Treg may inhibit cellular rejection in several ways: a) by secretion of suppressor 

cytokines, such as IL-10 and TGF-β, which inhibit effector T cells directly, b) by 

expression of high levels of CD25, leading to competition for IL-2 with effector 

T cells, c) by acting as cytotoxic cells that directly kill responder T cells, and d) 

by inducing expression of galectin-1 or other unknown molecules on the cell 
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surface leading to effector T cell cycle arrest (Shevach 2009). Thus, it is unlikely 

that PSTreg mediate their specific suppressive functions solely via secretion of 

anti-inflammatory cytokines. Further investigations will be required to 

elucidate the exact mechanisms that contribute to the distinct specificity of 

PSTreg described in these studies. Such analyses become feasible through the 

capacity of tolDC to induce these cells in a rapid and efficient manner, leading 

to generation of PSTreg with high stability. 

PSTreg developed with this fast method represent Treg that exhibit a 

phenotype of activated cells and produce high levels of IL-10, TGF-β1, and IL-35 

and also have porcine-antigen specificity. In contrast to the methods used by 

others our method uses ivtRNA to induce xeno-antigen specific tolDC to 

generate PSTreg, which is safe and ivtRNA is easy to generated in large 

amounts. A recent study reports large-scale expansion of Treg with CD3/CD28 

beads together with rapamycin and IL-2 and then the cells were restimulated 

additionally with irradiated pig PBMC, but the specificity was lost following 

several restimulations (Jin, Lu et al. 2016). Our PSTreg generated with tolDC 

might provide a better protocol, but this should be demonstrated in the future. 

In the baboon system, enriched and expanded Treg can suppress xenogeneic 

immune responses, and it can be suggested that adoptive transfer of baboon 

Treg cells may be an approach to prevent xeno-graft rejection in a pig-to-

baboon xenotransplantation model (Porter, Horvath-Arcidiacono et al. 2007, 

Singh, Horvath et al. 2009). Therefore, we successfully transferred our 

technique into the baboon system. Therefore, our method of tolDC generation 

with subsequent induction of porcine-specific Treg has the potential to be 

developed for use in porcine solid organ transplantation or porcine cell 

transplantation through adoptive cell transfer into host animals or human 

transplant patients in the future.   

5.2 Generation of baboon PSTreg with PS ivtRNA loaded baboon 

tolDC 

TolDC are defined as a subset of DC that induces immune tolerance in vivo. For 

example, oral tolerance is induced by the mucosal environment, which is rich in 

various anti-inflammation factors: TGF-β, retinoic acid, IL-10, vasoactive 
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intestinal peptide, thymic stromal lymphopoietin, and hepatocyte growth 

factor (Maldonado and von Andrian 2010, Bekiaris, Persson et al. 2014). DC 

present in the intestinal mucosa transfer intestinal tract samples to mesenteric 

lymph nodes in a CCR7-dependent manner (Bekiaris, Persson et al. 2014). DC in 

lung that induce tolerance keep a semi-mature status and their high expression 

of CCR7 enables them to migrate to the lymph nodes where they induce Treg. 

Resting pulmonary stromal cells produce TGF-β as in the mucosal environment 

(Lloyd and Hawrylowicz 2009, Bakocevic, Worbs et al. 2010). By mimicking in 

vivo environments where DC are involved in immune tolerance, we developed 

a protocol to generate baboon-derived tolDC using a maturation cocktail 

containing IL-10 and TGF-β1 as we have done this for human tolDC. Immature 

DC induce Treg in vivo, presumably due to the presentation of antigens to naïve 

T cells without costimulatory signals and cytokines (Maldonado and von 

Andrian 2010). Baboon tolDC generated with our fast 3 day protocol exhibit an 

immature status, demonstrated by low expression of CD83 in comparison to 

the control immune-activating C5-DC. Low expression of the costimulatory 

molecule CD80 and high expression of inhibitory B7-H1 and B7-DC molecules 

on tolDC, is seen to be characteristic of other tolDC. These characteristics are 

exemplified by the baboon-derived tolDC described here. Baboon TolDC as well 

as C5-DC displayed CCR7 expression, which would indicate a migratory capacity 

of both cell types to lymphatic tissues in vivo. IL-10 was highly expressed also 

by our baboon tolDC while IL-12p40 was not expressed at either the protein or 

RNA levels, again reflecting another characteristic of tolDC. Only half of the 

baboon tolDC samples upregulated TGFB1 mRNA, which indicates a difference 

to human tolDC. However, non-upregulated TGF-β expression can be bypassed 

by high expression of B7-H1 and B7-DC molecules on tolDC in the aspect of 

Treg induction: the PD-1 pathway in T cell reduces the threshold of TGF-β 

mediated signal by inhibiting Cdk-2 mediated Smad3 phosphorylation, which 

results in enhanced Smad3 transactivation in a TGF-β independent manner 

(Boussiotis, Chatterjee et al. 2014). Similarly, administration of rapamycin in 

Treg induction also increases the responsiveness to the baseline level of TGF-β 

through constitutively phosphorylated Smad3 (Powell, Pollizzi et al. 2012). IL-

12A mRNA of the IL-35 gene family was upregulated in tolDC compared to C5-

DC. EBI3 mRNA in tolDC of all samples was also upregulated compared to C5-

DC although without statistical significance. This is similar to human tolDC 
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which upregulated IL-12A mRNA to a larger extent than EBI3 (Dixon, van der 

Kooij et al. 2015). Another difference to human tolDC is the upregulation of IL-

27A mRNA in all samples of baboon tolDC, compared to a downregulation 

known for human tolDC (Dixon, van der Kooij et al. 2015). Despite these subtle 

differences to reports of human tolDC, the baboon-derived tolDC generated 

with our method demonstrated a clear tolerogenic phenotype, and expressed 

high levels of IL-10, and potentially also high levels of IL-35 and IL-27. 

Others have reported that baboon-derived porcine-specific and non-specific 

Treg exhibit similar phenotypes to those described for human Treg (Porter, 

Horvath-Arcidiacono et al. 2007). They were also found to produce high 

amounts of IL-10. In contrast to our results using human tolDC and CD4+ T cell 

cocultures to induce various Treg subpopulations, baboon PSTreg were induced 

in significantly greater numbers than NTreg, and these cells expressed higher 

amounts of IL-10, as measured at both protein and RNA levels (although the 

data does not meet statistical significance at protein level, PSTreg secreted 

more IL-10 compared with NTreg in each individual experiment of different 

baboons). We assume that differences between the results of human and 

baboon experiments may be due to the baboon donors that share a more 

similar genetic background than the human PBMC donors. Also the 

environmental history of baboons and human donors differ substantially and 

may impact on cell differentiation in vitro. Although tolDC expressed less 

TGFB1 mRNA compared to C5-DC in half of the samples, PSTreg and NTreg 

expressed higher amounts of TGFB1 mRNA compared to PSTeff and NTeff, 

respectively. The high expression of TGFB1 mRNA associated with upregulated 

GARP mRNA expression in PSTreg is of interest because GARP is the receptor of 

latent TGF-β on the Treg plasma membrane surface (Wang, Zhu et al. 2012). 

GARP mRNA was most highly expressed in PSTreg, demonstrating that PSTreg 

generated with PS ivtRNA-loaded tolDC were more highly activated by xeno-

antigen compared to NTreg generated by coculture with non-loaded tolDC. 

Simultaneous to upregulated GARP expression, CD45RA expression was 

downregulated in PSTreg, again serving as evidence for greater PSTreg activity 

and higher suppressive function, as noted by others (Sakaguchi, Miyara et al. 

2010). In terms of the IL-35 gene family, all samples showed greater 

upregulation of EBI3 mRNA in PSTreg compared to NTreg and PSTeff. However, 

PSTreg IL-12A mRNA is not consistently upregulated in all samples compared to 
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NTreg and PSTeff. This differs from stimulated Treg in humans, in which  IL-12A 

is more prominently upregulated than EBI3 (Bardel, Larousserie et al. 2008). 

Like our observations in the human system, PSTreg show downregulation of IL-

12B and IL-27A mRNA compared to PSTeff, although IL-27A mRNA 

downregulation in PSTreg meets no statistical significance. In total, despite 

subtle differences to parameters known for human cells, we could demonstrate 

that  baboon PSTreg can be efficiently generated using PS loaded baboon-

derived tolDC and these antigen-induced PSTreg express high levels of IL-10, 

TGF-β1. In this work, upregulation of IL-35 related genes, EBI3 and IL-12A, were 

observed in tolDC and PSTreg, however, some of these data meet no statistical 

significance. Further research with more samples from more animals is needed 

to demonstrate the IL-35 expression in baboon. 

The specificity of baboon PSTreg towards PSTeff could be clearly demonstrated: 

baboon PSTreg significantly suppressed early and intermediate activation 

markers of PSTeff. Moreover, PSTreg failed to demonstrate suppressive 

function towards NTeff. In correlation, IL-10 was highly expressed in the 

PSTeff/PSTreg coculture group compared to the other groups as measured at 

different time points. The NTeff/PSTreg group displayed no significantly higher 

level of IL-10 than the other Treg/Teff control groups. These results indicate 

that baboon PSTreg generated with our method exhibit a high specificity 

towards PSTeff and would provoke no unwanted immune responses. 

The baboon is a non-human primate experimental animal that is used in 

important xenotransplantation research. This study provides a protocol 

allowing fast and efficient generation of baboon PSTreg using baboon-derived 

tolDC that express high levels of IL-10 and TGF-β1. Importantly, the PSTreg 

exhibit porcine-antigen specificity in their immune suppressive function, 

measured by several parameters. This approach enables our method of 

baboon-derived tolDC generation with subsequent induction of porcine-specific 

baboon Treg to be developed for use in porcine solid organ or cell 

xenotransplantation studies through adoptive cell transfer into host baboons. 
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5.3 Immune monitoring of pig heart-transplanted baboons 

In group 1, baboons received a conventional immunosuppressive therapy. 

Bortezomib should reduce the effector functions of T cells mainly by increasing 

Treg populations (Pellom, Dudimah et al. 2015). Our results indicated that T 

cells were less influenced by administration of bortezomib and 

cyclophosphamide pre transplantation. The activation of CD3+CD4+ and 

CD3+CD8+ T cells in group 1 remained unchanged after pre-treatment. Treg cells 

were also not significantly influenced by conventional immunosuppressive pre-

treatment in group 1. The same was observed for monocytes. B cells of all 

baboon groups were successfully depleted by anti-CD20 mAb, as expected. 

Following transplantation, T cells did not recover. This is mainly caused by the 

administration of ATG, tacrolimus and MMF. ATG was given at the day of 

transplantation and the first four days post transplantation in this group of 

baboons. ATG depletes T cells and NK cells, drives DC towards a tolerogenic 

phenotype, and induces B cell apoptosis (Mohty 2007, Ruan, Czer et al. 2017).  

In some baboons an increase of Treg cells was observed. This was also reported 

by Feng et al. 2008 (Feng, Kajigaya et al. 2008) and Shimony et al 2012 

(Shimony, Nagler et al. 2012). Furthermore, it was demonstrated by Broady et 

al 2009, that following ATG treatment T cells acquire an activated phenotype 

(Broady, Yu et al. 2009), this was also confirmed by the immune monitoring of 

our baboons. Therefore, Popow et al. recommend ATG preparations depleted 

of CD3-TCR complexes, CD2, and CD28 (Popow, Leitner et al. 2013). Tacrolimus 

inhibits IL-2 production and, thus should block T cell activation; MMF inhibits 

inosine monophosphate dehydrogenase (IMPDH), which is also needed for 

lymphocyte activation and function, reviewed by Ruan et al. 2017 (Ruan, Czer 

et al. 2017) and Gorantla et al. 2000 (Gorantla, Barker et al. 2000). Monocytes 

increased during the pre-treatment and dropped after transplantation, this 

might be caused by transplantation antigens that are taken up by monocytes 

causing them to mature into DC which downregulated CD14. DC presenting 

transplant antigens might also be an explanation for the emerging of activated 

T cells.  

In baboons of group 2, anti-CD40 mAb was used to block the interaction 

between APC and T cells. Pre-treatment with anti-CD40 mAb, a higher dosage 

of ATG, and the administration of MMF and tacrolimus after transplantation 
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effectively depleted T cell populations, and suppressed activation of T cells. 

Similar as in group 1, increased T cell activation was observed in baboon 54 at 

the later time point after transplantation. ATG was administered only in the 

pre-treatment phase. Baboon 54, which survived longer, showed increased 

Treg numbers pre transplantation and after transplantation at a later time 

point. Baboon 54 showed a slight decrease of monocytes. On the contrary, 

baboon 53, which survived shorter in group 2, showed an increase of 

monocytes and decrease of Treg cells after pre-treatment and transplantation. 

Both NK and NKT cells were downregulated during the pre- and post-

transplantation period. In contrast, an expansion of NKT cells was observed by 

Lan et al. 2001 in a mouse model (Lan, Zeng et al. 2001) and reviewed by 

Mohty 2007 (Mohty 2007). 

In baboons of group 3, blockade of CD40 signal with anti-CD40 mAb or anti-

CD40L mAb was performed, there was no observed difference between these 

two subgroups in respect of immune monitoring data and survival. ATG was 

administrated only during pre-treatment as in group 2. However, baboon 64, 

which was the longest survivor in group 3, showed a slight decrease of 

activated T cells after the first week after transplantation and then the cells 

increased further. However, the other baboons in this group showed the 

opposite situation. In most of the baboons Treg cells increased during pre-

transplantation and the first week after transplantation. The NK and NKT cells 

in baboon 63 and 64 first decreased and then fluctuated but on a low level. In 

group 3, baboon 64 showed the longest survival, the major difference in 

immune monitoring was observed in the first week. Therefore based on the 

results seen in baboon 64, the decrease in activated T cells together with the 

increase in Treg in the first week after transplantation could be an indicator of 

longer transplant survival. 

In group 1, baboon 49 received an HLA-E expressing pig heart which was 

different for other baboons in this group. While the NK cells in baboons of this 

group fluctuated dramatically, baboon 49 had very low numbers of NK cells 

before transplantation. It had the longest survival within this group. Thus, one 

might speculated that low NK cell numbers are beneficial for transplant 

survival. An association of NK cell numbers and HLA-E expression on the 

transplant cannot be drawn.  
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Taken together, although the groups are small and the results quite 

heterogeneous, our work demonstrates the relevance of immune monitoring 

for the schedule of immunosuppressive treatment pre and post 

transplantation. In future experiments proliferations assays using irradiated pig 

stimulator cells and baboon responder cells should be additionally performed 

to elucidate the time point which might be beneficial to perform adoptive 

therapy with porcine-specific Treg. 
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ANOVA ONE-Way Analysis Of Variance  

APC antigen presenting cells  

ATG anti-thymocyte globulin  

C porcine-specific effector T cells/non-specific effector T cells control 

C5-DC non-tolerogenic dendritic cells 

CCR7 C-C chemokine receptor type 7 

CD cluster of differentiation 

cDNA complementary DNA 

CFSE carboxyfluorescein succinimidyl ester 

CNS conserved non-coding sequences  

CTLA cytotoxic T-lymphocyte-associated protein 

CYPB cyclophilin B 

DC dendritic cells 

DNA deoxyribonucleic acid 

EBI3 epstein-barr virus-induced gene 3 

ELISA enzyme-linked immunosorbent assays  

Foxp3 forkhead box P3 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GARP glycoprotein A repetitions predominant 

GM-CSF granulocyte-macrophage colony-stimulating factor 

GPI glycophosphatidylinositol 

GvHD graft versus host disease  

hDAF human decay accelerating factor 

HLA human leukocyte antigen 

ICOS Inducible costimulator 

IFN Interferon 

IL interleukin 

IMPDH Inosine-5′-monophosphate dehydrogenase 

iTreg induced regulatory T cells 

ivtRNA in vitro transcripted RNA 

JAK janus kinases  

LAP latency-associated peptide 

mAb monoclonal antibody 
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MAC membrane attack complex  

MHC major histocompatibility complex 

MIRL membrane inhibitor of reactive lysis 

MMF mycophenolate mofetil 

MMR macrophage mannose receptor 

mRNA messenger RNA 

mTOR mechanistic target of rapamycin 

N non-specific effector T cells 

NFAT nuclear factor of activated T-cells 

NF-κB  nuclear factor-κB  

NK cells natural killer cells 

NKT natural killer T cells 

NN non-specific effector T cells + non-specific regulatory T cells 

NOD non-obese diabetic 

NP non-specific effector T cells + porcine-specific regulatory T cells 

NRP1 Neuropilin 1 

NTeff non-specific effector T cells 

nTreg natural regulatory T cells 

NTreg non-specific regulatory T cells  

P porcine-specific effector T cells 

PBMC peripheral blood mononuclear cells  

PBS phosphate buffered saline 

PCR polymerase chain reaction 

PD-L1 programmed death-ligand 1 

PD-L2 programmed death-ligand 2 

PGE2 prostaglandin E2 

PN porcine-specific effector T cells + non-specific regulatory T cells 

PP porcine-specific effector T cells + porcine-specific regulatory T cells 

PS porcine-specific 

PSTeff porcine-specific effector T cells 

PSTreg porcine-specific regulatory T cells 

R848 resiquimod 

RA rheumatoid arthritis  

RNA ribonucleic acid 

RT-PCR reverse transcription polymerase chain reaction 

SATB1 special AT-rich sequence-binding protein-1 

SCR short consensus repeats  
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STAT signal transducer and activator of transcription 

Tcon conventional T cells 

TCR T Cell Receptor 

Teff effector T cells 

Tfr T follicular regulatory cells 

TGF transforming growth factor 

Th1 T helper 1 cells 

Th17 T helper 17 cells 

Th2 T helper 2 cells 

TLR toll like receptor 

tolDC tolerogenic dendritic cells 

trans transplantation 

Treg regulatory T cells 

TSDR regulatory T cells-specific demethylation region  
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