
Hyperparameters, Tuning and
Meta-Learning for Random Forest and Other

Machine Learning Algorithms

Philipp Probst

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

München, 02.05.2019



Erstgutachter: Prof. Dr. Anne-Laure Boulesteix
Zweitgutachter: Prof. Dr. Bernd Bischl
Drittgutachter: Prof. Dr. Pierre Geurts
Tag der mündlichen Prüfung: 25.07.2019



Summary
In this cumulative dissertation thesis, I examine the in�uence of hyperparameters on
machine learning algorithms, with a special focus on random forest. It mainly consists
of three papers that were written in the last three years.

The �rst paper (Probst and Boulesteix, 2018) examines the in�uence of the number
of trees on the performance of a random forest. In general it is believed that the number
of trees should be set higher to achieve better performance. However, we show some
real data examples in which the expectation of measures such as accuracy and AUC
(partially) decrease with growing numbers of trees. We prove theoretically why this
can happen and argue that this only happens in very special data situations. For other
measures such as the Brier score, the logarithmic loss or the mean squared error, we
show that this cannot happen. In a benchmark study based on 306 classi�cation and
regression datasets, we illustrate the extent of this unexpected behaviour. We observe
that, on average, most of the improvement regarding performance can be achieved while
growing the �rst 100 trees. We use our new OOBCurve R package (Probst, 2017a) for
the analysis, which can be used to examine performances for a growing number of trees
of a random forest based on the out-of-bag observations.

The second paper (Probst et al., 2019b) is a more general work. Firstly we review
literature about the in�uence of hyperparameters on random forest. The di�erent hy-
perparameters considered are the number of variables drawn at each split, the sampling
scheme for drawing observations for each tree, the minimum number of observations
in a node that a tree is allowed to have, the number of trees and the splitting rule. Their
in�uence is examined regarding performance, runtime and variable importance. In the
second part of the paper di�erent tuning strategies for obtaining optimal hyperparam-
eters are presented. A new software package in R is introduced, tuneRanger. It exe-
cutes the tuning strategy sequential model-based optimization based on the out-of-bag
observations. The hyperparameters and ranges for tuning are chosen automatically. In
a benchmark study this implementation is compared with other di�erent implementa-
tions that execute tuning for random forest.

The third paper (Probst et al., 2019a) is even more general and presents a general
framework for examining the tunability of hyperparameters of machine learning al-
gorithms. It �rst de�nes the concept of defaults properly and proposes de�nitions for
measuring the tunability of the whole algorithm, of single hyperparameters and of com-
binations of hyperparameters. To apply these de�nitions to a collection of 38 binary
classi�cation datasets, a random bot is created, which generated in total around 5 mil-
lion experiment runs of 6 algorithms with di�erent hyperparameters. The details of this
bot are described in an extra paper (Kühn et al., 2018), co-authored by myself, that is
also included in this dissertation. The results of this bot are used to estimate the tun-
ability of these 6 algorithms and their speci�c hyperparameters. Furthermore, ranges
for parameter tuning of these algorithms are proposed.





Zusammenfassung

In dieser kumulativen Dissertation untersuche ich den Ein�uss von Hyperparametern
auf Machine Learning Algorithmen, mit besonderem Fokus auf Random Forest. Sie
besteht hauptsächlich aus drei Artikeln, die in den letzten drei Jahren verfasst wurden.

Der erste Artikel (Probst and Boulesteix, 2018) untersucht den Ein�uss der Anzahl
der Bäume auf die Performance von Random Forest. Im Allgemeinen wird angenom-
men, dass die Anzahl der Bäume höher eingestellt werden sollte, um eine bessere Per-
formance zu erzielen. Wir zeigen jedoch einige reale Datenbeispiele, in denen der Er-
wartungswert von Maßen wie Accuracy und AUC (teilweise) mit zunehmender An-
zahl von Bäumen abnimmt. Wir beweisen theoretisch, warum dies möglich ist, und
argumentieren, dass dies nur bei sehr speziellen Datensituationen vorkommt. Für an-
dere Maße wie den Brier-Score, den Logarithmic Loss oder den mittleren quadratis-
chen Fehler zeigen wir, dass dies nicht möglich ist. In einer Benchmark-Studie, die auf
306 Klassi�zierungs- und Regressionsdatensätzen basiert, wird das Ausmaß dieses uner-
warteten Verhaltens veranschaulicht. Wir stellen fest, dass im Durchschnitt die meis-
ten Verbesserungen bezüglich der Performance beim Trainieren der ersten 100 Bäume
erzielt werden können. Wir verwenden unser neues OOBCurve R-Paket (Probst, 2017a)
für die Analyse, mit dem die Performance eines Random Forests für eine wachsende
Anzahl von Bäumen anhand der Out-of-Bag-Beobachtungen untersucht werden kann.

Der zweite Artikel (Probst et al., 2019b) ist eine allgemeinere Arbeit. Zunächst fassen
wir die bestehende Literatur über den Ein�uss von Hyperparametern auf Random For-
est zusammen. Die verschiedenen betrachteten Hyperparameter sind die Anzahl der
Variablen, die bei jedem Split untersucht werden, das Stichprobenschema zum Ziehen
von Beobachtungen für jeden Baum, die Mindestanzahl von Beobachtungen in einem
Knoten, die ein Baum haben muss, die Anzahl der Bäume und die Regel zum Splitten. Ihr
Ein�uss auf Performance, Laufzeit und Variable Importance wird geprüft. Im zweiten
Teil des Artikels werden verschiedene Tuningstrategien zur Ermittlung optimaler Hy-
perparameter vorgestellt. Ein neues Softwarepaket in R wird eingeführt, tuneRanger.
Basierend auf den Out-of-Bag-Beobachtungen führt es das Tuning mittels sequentieller
modellbasierter Optimierung durch. Die Hyperparameter und Räume für das Tuning
werden automatisch ausgewählt. In einer Benchmark-Studie wird diese Implemen-
tierung mit anderen Implementierungen für das Tunen von Random Forest verglichen.

Der dritte Artikel (Probst et al., 2019a) ist noch allgemeiner und erläutert einen all-
gemeines Framework für die Messung der Tunebarkeit von Hyperparametern von Ma-
chine Learning Algorithmen. Zunächst wird das Konzept der Defaults erläutert und Def-
initionen zur Messung der Tunebarkeit des gesamten Algorithmus, einzelner Hyperpa-
rameter und von Kombinationen von Hyperparametern vorgeschlagen. Diese De�nitio-
nen werden auf eine Sammlung von 38 binären Klassi�zierungsdatensätzen angewen-
det, anhand eines Bots, der insgesamt rund 5 Millionen Experimente von 6 Algorith-
men mit unterschiedlichen Hyperparametern generiert. Details dieses Bots werden in
einem von mir als Koautor verfassten Zusatzartikel (Kühn et al., 2018) beschrieben, der
ebenfalls in dieser Dissertation enthalten ist. Die Ergebnisse dieses Bots werden zur Ab-
schätzung der Tunebarkeit dieser 6 Algorithmen und ihrer einzelnen Hyperparameter
verwendet. Außerdem werden Räume zum Tuning dieser Algorithmen vorgeschlagen.





Acknowledgments
Thanks for discussions and cooperations to Roman Hornung, Silke Janitza, Simon Klau,
Raphael Couronné, Riccardo de Bin, Anne-Laure Boulesteix and all the other people
that I met at the IBE. Moreover, thanks to Bernd Bischl, Giuseppe Casalicchio, Janek
Thomas, Florian P�sterer, Daniel Kühn, Quay Au, Jakob Richter, Michel Lang, Marvin
Wright, Joaquin Vanschoren, Jan van Rijn and Andreas Müller.





Contents
1 Statistical Learning Methods 1

1.1 Simple Statistics for Summarizing . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Statistical Approach . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Visualization Tools . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Information Theory Approach . . . . . . . . . . . . . . . . . . . 2

1.2 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Model Assessment in Supervised Learning . . . . . . . . . . . . . . . . 6

1.3.1 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Resampling Strategy . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Graphical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.4 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.5 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.6 Runtime, Performance and Interpretability . . . . . . . . . . . . 8

1.4 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Defaults and Hyperparameter Tuning . . . . . . . . . . . . . . 9
1.4.2 Tuning Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Automatic Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5.1 Input for Automatic Machine Learning . . . . . . . . . . . . . . 11
1.5.2 Typical Steps, Implementations and Ideal Design . . . . . . . . 12

1.6 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2 Distinction of Meta-Learning Methods . . . . . . . . . . . . . . 14
1.6.3 Task Independent Methods . . . . . . . . . . . . . . . . . . . . 14
1.6.4 Task Dependent Methods . . . . . . . . . . . . . . . . . . . . . 14
1.6.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Calibrating and Choosing an Algorithmic System . . . . . . . . . . . . 16
1.8 Hyperparameter Setting in Practice . . . . . . . . . . . . . . . . . . . . 17
1.9 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.10 Additional topics and work . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Concluding remarks and further steps 21

A Publications for the cumulative dissertation 31
A.1 To Tune or Not to Tune the Number of Trees in Random Forest . . . . 35
A.2 Hyperparameters and Tuning Strategies for Random Forest . . . . . . . 53
A.3 Tunability: Importance of Hyperparameters of Machine Learning Algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.4 Automatic Exploration of Machine Learning Experiments on OpenML . 100

ix





Preface

The human mind is limited in capturing complex patterns. We can easily reason that
when X happens Y will happen, or it will happen with a certain probability and save
this information in our mind. Slightly more complex patterns are also possible for us to
imagine, for example when X and Y happen, then Z will happen. The more complex
the connections are, the less easily we are able to envisage the relationships. From a
certain point on, it is better to write connections on a paper, because we are not able to
memorize everything in our mind and because it is easier to share it with other people.
Connections and information can get too complex to write them on paper, which is one
of the reasons for the invention of the computer. While connections and information
written on paper could still be captured by the human mind, it can be di�cult or in-
feasible to capture them from a computer. In this case simpli�cations have to be done,
so that the complex patterns are �ltered and only the most important information is
shown to us.

The division of the statistical world into two parts described in the famous article The
two cultures by Breiman et al. (2001) is strongly related to this problem. In the classical
statistical world, relations between variables were designed by hand. The design could
be determined by prior knowledge or by using visualization techniques. Growing com-
putational power and the internet have provided more and more data, data storing and
computational capacities. This has lead to the development of new algorithmic methods
nowadays called machine learning which can handle this big amount of data and can
�nd the complex patterns within the data by themselves with only limited amount of
user input. These methods can provide high predictive power but can be more di�-
cult to interpret than models for which the design was created by hand. Interpretation
methods, such as partial dependence plots (Friedman, 2001) and individual conditional
expectation (ICE) (Goldstein et al., 2015), try to tackle this problem and to make the
machine learning algorithms more interpretable.

The machine learning techniques are only used by part of the statistical community
but are increasing in popularity, which can, for example, be seen in the download statis-
tics of popular machine learning packages in R (Csardi, 2015). In some cases simple and
hand-crafted models such as linear regression can be good enough to model simple rela-
tionships between variables. Moreover, the interpretability tools and statistical tests for
these simple models are more developed although there are new developments for this
in the machine learning community (see, for example, Casalicchio et al., 2018; Molnar,
2019). In many other cases machine learning methods will provide better results and can
handle more complex data patterns, for example, in case of non-linear relationships, for



datasets with more variables than observations or for image data. Some statisticians still
hesitate to use the machine learning methods. One reason for this is, that the methods
were partly developed by scientists that are more related to computer science than to
statistics. Statistics deals with the collection, organization, analysis, interpretation and
presentation of data (Dodge, 2006). Machine learning methods have exactly the same
purpose, with a focus on computational methods and automatization. In my opinion,
an open minded statistician should be open to any method that is available and use the
one that is the most suitable for his or her purpose. The uni�cation of these two �elds
is nowadays called data science.

The topics of this thesis are based on a principle of machine learning - to automate
parts of the data analysis process. A special focus lies on using data for this automatiza-
tion although in our �rst paper (Probst and Boulesteix, 2018) we also analyse theoretical
properties of the number of trees in a random forest.



Chapter 1

Statistical Learning Methods

In this chapter, the fundamental statistical learning methods that are used in this dis-
sertation are introduced. Statistical learning is de�ned here as the process of learning
from data (Hastie et al., 2001). Statistical learning is used here as a term that emphasizes
the statistical side of machine learning although both terms are used interchangeably.

In the following, we will �rstly introduce simple measures to summarize variables.
Then machine learning algorithms are presented that can detect more complex patterns
between the variables. Afterwards model assessment techniques for these algorithms
are presented as well as tuning strategies for the hyperparameters. The concepts of
automated machine learning and meta-learning are presented in more detail as they
are not well known in the community and play an important role in most of the topics
discussed in this dissertation.

1.1 Simple Statistics for Summarizing

Statistics started with collecting data. Single data points could be captured by the human
mind, larger amounts could not, so adequate techniques had to be applied to make some
sense of piles of data. In this section, I will shortly present some of the most classical
summary statistics. They can be applied on data that consists of several observations
and one or several variables.

1.1.1 Statistical Approach

Univariate methods can be used to summarize properties of the single variables of the
collected data. The basic statistic for continuous data is the mean. More robust methods
that are not so sensitive against outliers are the trimmed mean, the median, the lower
and upper quartiles or other quantiles. For nominal data we cannot calculate these
statistics, but we can calculate the absolute and relative frequency of categories and the
mode, which is the most frequent category. For ordinal data additionally the median
and quantiles can be calculated.

The next natural step is to examine associations between the variables. One nat-
urally starts with examining associations between two variables. The techniques here



Chapter 1. Statistical Learning Methods 2

again di�er between continuous, ordinal and nominal data, but are based on the same
principles. The linear relationship between two continuous variables can be measured
by the Pearson correlation coe�cient. More robust against outliers are the rank cor-
relation coe�cients Spearman’s rho and alternatively Kendall’s tau which can also be
applied on ordinal variables. These measures can only capture linear (Pearson) or mono-
tonic (Spearman/Kendall) dependencies. To measure other relationships, one can use
the distance correlation (Székely et al., 2007) or the information theoretical approach
described in Section 1.1.3. For two nominal variables the contingency coe�cient can
be calculated. For a nominal and a continuous variable we can calculate coe�cients
such as the point biserial-correlation or a logistic regression. Other approaches are the
one-way ANOVA and the Kruskal-Wallis H test statistic.

For measuring the association of more than two variables more sophisticated meth-
ods have to be used. If one of the variables is of special interest one can use methods
of supervised learning (see Section 1.2), otherwise methods from unsupervised learn-
ing such as clustering or principal component analysis can be used to investigate the
relationship between the variables.

1.1.2 Visualization Tools

The continuous variables can be visualized in boxplots, histograms or empirical distri-
bution functions. Individual nominal variables can be adequately visualised by barplots
or pie charts. For two continuous variables a scatterplot can be used. The association
can be further visualized by a representing line, such as a linear regression line, splines
or other curves, such as the lowess (Cleveland, 1979). If we have at least one nominal
variable, some of the univariate plots mentioned above can be used and the categories
can be distinguished by putting the correspondent plots side by side or by using colors
or di�erent shapes. For a representation of three or more variables, techniques such
as 3D-plots, scatter plots with colors and facetting can be used. With more and more
dimensions it will be infeasible to plot the exact value in a way, such that the reader can
capture the values of all the variables for each observation. Then reduction methods
such as principal component analysis, clustering tools or self-organizing maps can be
used.

1.1.3 Information Theory Approach

Another approach for obtaining information on variables is the information theory ap-
proach established by Shannon (1948). In the information theoretic approach, no dis-
tribution assumption is made beforehand and also no assumption about the functional
relationship between variables. In the following, we will assume discrete distribution of
variables, although these measures can be analogously calculated for continuous vari-
ables. For a single discrete variable X on the sample space X, one can calculate the
entropy that measures the amount of uncertainty of a variable when only its distribu-
tion is known:

H(X) = EX [− log(X)] = −
∑

x∈X
p(x) log p(x). (1.1)



3 1.2. Supervised Learning

For combinations of variables, several measures can be calculated. The joint entropy of
two discrete variables X and Y is de�ned as:

H(X, Y ) = EX,Y [− log p(x, y)] = −
∑

x∈X,y∈Y
p(x, y) log p(x, y). (1.2)

The conditional entropy measures the entropy of one variable given another variable,

H(X|Y ) = EY [H(X|y)] = −
∑

y∈Y
p(y)

∑

x∈X
p(x|y) log p(x|y) = −

∑

x∈X,y∈Y
p(x, y) log p(x|y),

(1.3)
which can also be written as H(X|Y ) = H(X, Y ) −H(Y ). Strongly related to this is
the mutual information, that measures the information that can be obtained about one
random variable when another one is given:

I(X;Y ) = EX,Y

[
− log

p(x, y)

p(x) p(y)

]
=

∑

x∈X,y∈Y
p(x, y) log

p(x, y)

p(x) p(y)
. (1.4)

It can be interpreted as the di�erence of the conditional entropy and the entropy, and it
is symmetrical in the two variables:

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X, Y ) = I(Y ;X). (1.5)

Simon and Tibshirani (2014) showed in a comparison study that the mutual informa-
tion has less power than the distance correlation to detect associations in several data
situations. A disadvantage of the distance correlation is the low speed of calculation
in case of many observations, so faster calculation methods were proposed recently by
Chaudhuri and Hu (2019).

The Kullback-Leibler divergence is another measure that can be used to compare
two distributions. Given a true probability distribution and another arbitrary probability
distribution, it measures the unnecessary surprise introduced when using the arbitrary
probability distribution q(x) instead of the true probability distribution p(x):

DKL(p(X)‖q(X)) =
∑

x∈X
−p(x) log q(x) −

∑

x∈X
−p(x) log p(x) =

∑

x∈X
p(x) log

p(x)

q(x)
.

(1.6)
It is not symmetrical in the two variables.

Currently also tests are developed for information theoretical measures, for example,
for the mutual information (Berrett and Samworth, 2017).

1.2 Supervised Learning
Supervised learning is de�ned as the machine learning task of using some input vari-
ables to predict one or several outputs (Hastie et al., 2001). Other denotations for the
inputs are predictors, independent variables, covariates or features and responses or de-
pendent variables for the outputs. I will use the terms interchangeably as done in Hastie
et al. (2001).



Chapter 1. Statistical Learning Methods 4

Depending on the outputs, there are di�erent denominations for the di�erent tasks.
If we have a continuous output, the task is typically denoted as regression, for a nominal
output it is called classi�cation. In the case of several quantitative outputs, it is called
multivariate regression, in the case of several qualitative outputs, multilabel classi�ca-
tion. If it is a mix of both it is called multitarget prediction. In contrast, in unsupervised
learning there is not a known target output. Throughout this dissertation I will focus
on methods for supervised learning coming from the area of machine learning. In the
following I will shortly describe the best known ones.

Algorithms for Supervised Learning
Simple statistical methods such as the linear model need, in general, user input and
adjustments to perform well. For example, the functional relationship between two
variables has to be speci�ed beforehand properly, which can only be done by using
domain knowledge or graphical analysis. Moreover, it is important to exclude non-
important variables beforehand. A linear model is, for example, also not usable if there
are more predictors than observations. In contrast, advanced machine learning methods
are meant to learn patterns from data automatically, without needing a lot of user input.
They usually do not rely on any �xed distribution assumption beforehand. In the fol-
lowing I will shortly present some of the most well known machine learning techniques
for supervised learning. They all can be used for regression or classi�cation. For a more
indepth introduction into the methods I refer to common books of machine learning
(for example, Hastie et al., 2001).

A decision tree, is built by taking the observations and recursively performing the
split of one of the input variables that provides the best split for getting homogenous
groups regarding the outcome variable. Homogenity is usually quanti�ed by using mea-
sures such as the Gini impurity, in the case of classi�cation, or the residual sum of
squares, in the case of regression. This leads to trees that split the observations into
homogenous groups regarding the outcome variable while taking into account depen-
dencies between the other variables. See Breiman et al. (1984) for more details about
decision trees.

Usually these single trees do not provide very good predictions, because they over�t
the given data. An intelligent way to improve this is to introduce some randomness
into the single trees to get distinct trees and to aggregate these trees. A well-established
technique for this is random forest (Breiman, 2001) for which many random trees are
generated and aggregated. The randomness is introduced in two ways. Firstly, not all
observations, but only a sample is used to construct each tree. Secondly, not all variables
but only a random subset are considered as split candidates for each split. The prediction
for an observation is done by obtaining a prediction of each tree and �nally aggregating
the predictions through majority voting (for classi�cation) or by taking the average of all
predictions (for regression). The strength of the aggregation principle can be explained
by the bias-variance trade-o� (Louppe, 2014). The variance of the prediction of a single
tree is reduced signi�cantly by aggregating random trees while the bias of the single
trees is ideally not much higher than the bias of a standard decision tree.

Another successful technique is gradient boosting (Freund and Schapire, 1996; Fried-



5 1.2. Supervised Learning

man, 2001), which tries to improve base learners in a di�erent way. After having trained
a base learner, e.g. a decision tree, the algorithm evaluates how well each observation
can be predicted with the base learner. For learning the next base learner the observa-
tions that were badly predicted obtain a bigger weight. This is repeated in an iterative
way by always giving a higher weight for observations that perform bad on the current
set of base learners.

Another �exible and simple technique, which is neither directly related to trees nor
to linear models, is k-nearest neighbors (Altman, 1992). To make a prediction for a new
observation it just calculates the distance (e.g., the euclidean distance or some other
Minkowski distance) of the input variables of the new observation to the input variables
of the observations in the training set. Then the k nearest points according to this
distance are taken and used for the prediction, for example by taking the majority vote or
the (weighted) average of these points. This technique does not rely on any distribution
assumption and can take into account very local and complicated relationships between
the variables. If k is chosen too small, it is prone to over�tting, if k is too big it cannot
identify local structures. Therefore, k should be chosen and tuned carefully, for more
information about tuning see chapter 1.4.1.

A more complex machine learning method for supervised learning is the support
vector machine (SVM) (Cortes and Vapnik, 1995). It divides data by a so called hy-
perplane. Roughly speaking, the hyperplane is speci�ed so that the observations of
di�erent classes are lying on di�erent sides of the hyperplane and the distance of the
hyperplane to the nearest observations is maximized. For given data, the division of
the observations of the di�erent classes by the hyperplane is not always possible. Then
so called slack variables can be introduced to weaken this restriction. Moreover, the
input variables can be mapped into high-dimensional feature spaces by a so called ker-
nel function in order to make the separation of observations of di�erent classes easier.
SVMs are also applicable to regression analysis by reformulating the problem for the
regression case (Drucker et al., 1997).

Another popular method is elastic net (Zou and Hastie, 2005), which can be seen as
an automic variable selection method combined with a linear model. It is a mix of the
lasso and ridge regression. In lasso and ridge regression, a linear model is �tted with
a penalty term that penalizes the size of the coe�cients which leads to the shrinkage
of the coe�cients. The penalization function is the sum of the absolute values of the
coe�cients in case of lasso and the sum of the quadratic values of the coe�cients for the
ridge regression. The penalty coe�cient in this penalization function has to be tuned
carefully to obtain good performance. If set to zero we obtain a simple linear regression
for continuous output, and a multinomial logistic regression for nominal output. Elastic
net combines the two methods by using a weighted sum of these penalization functions,
the weighting factor is a hyperparameter. The optimization problem of elastic net can
be transformed to a support vector machine problem (Zhou et al., 2015), which shows
that these two algorithms are closely related.



Chapter 1. Statistical Learning Methods 6

1.3 Model Assessment in Supervised Learning

Models for supervised learning can be evaluated in di�erent ways. Usually we need two
components: one or several performance measures and a resampling strategy.

1.3.1 Performance Measures

Performance measures aim at summarizing the appropriateness of a model for a spec-
i�ed task by quantifying the quality of the model. Usually true values are compared
to predicted values by using an appropriate measure. There are di�erent performance
measures for di�erent supervised learning tasks and for di�erent purposes.

For regression, the most common measure is the mean squared error. A possibility
to scale this measure between 0 and 1 is the R-squared, which divides the mean squared
error by the mean squared error that would be achieved by simply taking the mean.
Other measures that are based on ranks instead of absolute values, and thus are more
robust, are Spearman’s rho and Kendall’s tau. They compare the predicted and the true
response by applying these rank correlation measures. For classi�cation, the most com-
mon measure is the mean missclassi�cation error. A measure that takes into account
the probabilities of a classi�er is the area under the ROC curve (AUC), for which also
multiclass variants exist (Ferri et al., 2009). Other measures that take into account prob-
abilities are the Brier score or the logarithmic loss (Ferri et al., 2009). Another thing that
can be measured while running the algorithm is the execution time for training and
predicting observations.

In the course of this PhD project, several of the above mentioned measures were im-
plemented in the mlr R package (Bischl et al., 2016) with the help of other contributors
of mlr. The measures were also extracted to an external R package called measures
(Probst, 2018b), which make them easier to use for non-mlr users and without relying on
mlr and other packages. For example, in the package varImp (Probst, 2018c) the vari-
able importance of conditional random forests of the party R package (Hothorn et al.,
2006) can be calculated for any measure that is available in measures. The use of mea-
sures other than the standard measure accuracy for assessing the variable importance
(VIMP) was proposed by Janitza et al. (2013), who showed that AUC-based permutation
VIMP is more robust against class imbalance than accuracy-based permutation VIMP.
The use of other measures may yield advantages in other speci�c situations.

A further topic that was adressed in the course of this PhD project was the imple-
mentation of survival measures in mlr. Survival analysis in mlr was implemented by
Michel Lang in his dissertation (Lang, 2015). Additionally to the already existing con-
cordance index (cindex in mlr), Uno’s concordance index (cindex.uno) (Uno et al.,
2011), Uno’s estimator of cumulative/dynamic AUC for right-censored time-to-event
data (iauc) (Uno et al., 2007) and the integrated Brier score (ibrier) (Mogensen et al.,
2012) were added to the mlr package in cooperation with Michel Lang and Moritz Her-
rmann. For the integrated Brier score, probability predictions for given time points have
to be provided and therefore mlr was modi�ed to provide probability predictions for
survival models.



7 1.3. Model Assessment in Supervised Learning

1.3.2 Resampling Strategy

The simplest approach for calculating the performance of a model is to train the model
on a dataset and then compare the predictions of this model with the real response by
using a performance measure. The problem with this technique is that it does not take
into account the over�tting on the trained data. A perfect classi�er in this sense would
just predict the true values, but that does not guarantee that the predictions on new data
would be good. To avoid this bias due to over�tting, resampling strategies are used. A
very common resampling strategy is k-fold cross-validation. The data is divided into k
folds, and iteratively the model is trained on all of the folds except of one, which is used
for evaluation. So the evaluation happens on a part of the data, that was not used for
training and over�tting does not in�uence the evaluation. This procedure is repeated k
times and a summary measure such as the average can be calculated.

The k-fold cross-validation should be repeated especially for small datasets to di-
minish the variance of the estimates of the performance measures that originates from
the random splitting into k folds (Kim, 2009; Bischl et al., 2012).

1.3.3 Graphical Analysis

Instead of reducing the predictive power to one or several numbers, it is also possible
to use graphical tools to evaluate the appropriateness of a model. In classical linear
regression, one could inspect the residuals that should be normally distributed by using
a QQ-Plot. Moreover, homoskedasticity can be examined by plotting the �tted values
and the residuals in a scatterplot. Such tools are usually not used for more complex
methods (for example, tree-based methods), as the models are quite �exible and no �xed
distribution assumption is made beforehand.

The performance results of the used resampling strategy of di�erent learners can
be compared with graphical tools such as boxplots. Furthermore, calibration plots can
be used in classi�cation to evaluate if the predicted probabilities match the true relative
frequency of observations in a certain probability interval. Receiver operating charac-
teristic (ROC) curves can be used in binary classi�cation to compare the true positive
rate and the false positive rate combinations that are possible when varying the proba-
bility threshold for classifying the observations as positive or negative.

1.3.4 Runtime

Runtime of machine learning algorithms is a factor that is not extensively discussed in
the literature but plays a more and more important role in the era of growing datasets.
The runtime for training and predicting is a random variable that can be measured by a
resampling strategy. It of course depends also on external factors such as the comput-
ing power. A good algorithm should be trained in as short time as possible. Also the
predictions should be provided as fast as possible by the algorithm.

There are di�erent possibilities to optimize the runtime. Some algorithms have the
possibility to run in parallel on several CPU cores or on other distributed systems, for
example on servers. A typical example is the random forest, for which the trees are



Chapter 1. Statistical Learning Methods 8

independent of each other and can be trained in parellel as done in the ranger pack-
age (Wright, 2016). Of course, there are other more sophisticated examples of runtime
optimization, such as the implementation of the xgboost package (Chen and Guestrin,
2016). A general possibility to reduce the runtime is to train the algorithm only on a
small part of the data. Then iteratively the amount of data can be increased while plot-
ting a so-called learning curve, that shows the performance of the algorithm (calculated
for example on the out-of-bag data) for di�erent sample sizes. With the help of this
curve it is possible to observe, if bigger amount of data leads to an improvement of the
algorithm. A stopping criteria can be de�ned with the help of this curve, for example by
stopping the iterative process of feeding the algorithm with more data when a certain
convergence criteria has been reached.

Another nice option for users is an input parameter for the algorithms to restrict
the time before starting the algorithm. Intelligent systems have to be built to take this
extra parameter into account.

1.3.5 Interpretability
Interpretability of a model can be hardly measured quantitatively but is an important
aspect for assessing a model. Often users are not only interested in receiving a well
performing model but also in a model that is interpretable, for example, by being able to
tell that one variable in�uences another variable in the model, how strong the in�uence
is and in which functional relationship the variables are related to each other.

In linear models, for example, statistical tests can provide clear-cut guidance if a
variable has a signi�cant in�uence on another and how strong this in�uence is. The
coe�cients in these models are easily interpretable. Or in a simple tree, the tree’s deci-
sions are easy to understand and to grasp for the humand mind. For other more complex
methods the interpretation is harder, although, for example, specialized tools exist, such
as the variable importance for random forest. The problem is getting more attention re-
cently and model agnostic tools as described for example in Molnar (2019) are getting
more attention.

1.3.6 Runtime, Performance and Interpretability
The three main parts that should be used to choose and evaluate a machine learning
algorithm is the triumvirate of runtime, performance and interpretability. Depending
on the user, the importance weight of each of these three factors is di�erent.

For some users runtime is very important because results have to be obtained fast or
because the computational resources are more restricted. Some users want to optimize
the prediction performance to the last decimal, for example because the model is used
in a business environment and better performance can provide immediate economical
bene�ts or can save lives in a medical context. For other users the interpretability of
the models is very important, because, for example, the underlying causal relationship
is of interest and the obtained knowledge is not immediately used for a speci�c target,
but for writing a publication. This contributes to the scienti�c community and the ob-
tained knowledge can be used by other researchers in an iterative way. Or it can be



9 1.4. Hyperparameters

applied in practice by developing guidelines or writing this knowledge in books, so that
this knowledge is transmitted in a more automated way. The pipeline in this case is
much longer although the �nal target can sometimes also be a good prediction in a less
automated way.

Between the three targets runtime, performance and interpretability there is a trade
o�. Usually more complex methods lead to higher runtime while providing better per-
formance. Well performing models can possibly better represent the underlying struc-
ture of the data and hence provide better insights than worse performing models. On
the other hand, as described in Section 1.3.5, simpler models can possibly be easier to
interpret. A possible solution for this dilemma is to use several di�erent models for the
di�erent purposes.

1.4 Hyperparameters

Hyperparameters are parameters that have to be set before executing a machine learn-
ing algorithm, as opposed to normal parameters of an algorithm that are not �xed before
execution but optimized while training the algorithm. For all of the machine learning
methods described in Section 1.2 there are hyperparameters that have to be set before-
hand. Some examples are the number of variables that are regarded in each split in
a random forest, the number of boosting steps in gradient boosting, the number k in
k-nearest neighbors, the kernel in support vector machines and the weighting of lasso
and ridge regression in elastic net.

1.4.1 Defaults and Hyperparameter Tuning

Usually, there are default hyperparameters given in the software packages. For a given
problem, they possibly provide good results, if they are set appropriately. Most of the
time, tuning the hyperparameters, that means �nding an optimal value for them, can
provide better performance than using the default value. For some of the algorithms,
for example for the support vector machine, tuning is important and setting their hy-
perparameters to optimal values can provide big performance gains. The tunability of
the di�erent algorithms and hyperparameters is de�ned and discussed in more detail
in Probst et al. (2019a). Also, the hyperparameter space on which the tuning should be
executed is an important topic in this paper.

1.4.2 Tuning Strategies

For tuning hyperparameters, di�erent strategies can be applied. Ideally, the used strat-
egy should �nd the best possible hyperparameter values and it should �nd them in the
shortest possible amount of time. Usually, an evaluation method is used to compare
di�erent hyperparameters. The most common one is cross-validation. For evaluating
the whole algorithm, including the tuning procedure, a nested cross-validation has to
be performed.



Chapter 1. Statistical Learning Methods 10

A simple tuning strategy that can be used is the grid search. For each hyperparam-
eter a �nite amount of possible values have to be de�ned and all possible hyperparam-
eter combinations are evaluated. Another simple strategy is the random search. The
hyperparameters are drawn randomly from a given hyperparameter space, for exam-
ple, by using the uniform distribution. For neural networks Bergstra and Bengio (2012)
show that random search is more e�cient in �nding good hyperparameter values than
grid search. Other designs, such as the latin hypercube (Park, 1994) or sobol sequences
(Sobol, 1976) can be used that determine all hyperparameter speci�cations in advance
that should be evaluated.

Other more sophisticated approaches determine the hyperparameter speci�cations
iteratively. A typical example for this is bayesian optimization (Hutter et al., 2011; Snoek
et al., 2012; Bischl et al., 2017), also called model-based optimization. In bayesian opti-
mization a surrogate model is trained with the performances of already run hyperpa-
rameters as output and the hyperparameters as input. With the help of this surrogate
model new hyperparameter speci�cations are proposed that ful�ll two requirements:
they should provide good results according to the trained surrogate model and they
should lie in regions of the hyperparameter space that are still unexplored. In practice,
these two goals are combined by an in�ll criterion, also called acquisition function. For
a given hyperparameter the mean and the standard deviation of the performance can be
estimated via the surrogate model and combined, for example with weighting factors
in the acquisition function (Bischl et al., 2017). The next hyperparameter speci�cation
is chosen as the value which provides the best in�ll criterion, which means optimizing
the acquisition function. The estimations of the surrogate model are cheap and simple,
so search methods such as branch and bound (Jones et al., 1998) or focus search (Bischl
et al., 2017) can be used for the optimization.

Other common procedures are based on gradient-based optimization techniques that
calculate the gradient of the hyperparameters and then use gradient descent search
methods to �nd the optimal value. Examples can be seen in Larsen et al. (1996) for
neural networks, in Chapelle et al. (2002) for support vector machines and in Foo et al.
(2008) for logistic regression.

Claesen and Moor (2015) mention some other strategies, that include swarm algo-
rithms such as particle swarm optimization (Lin et al., 2008; Meissner et al., 2006), evo-
lutionary algorithms such as genetic algorithms (Tsai et al., 2006), simulated annealing
(Xavier-de Souza et al., 2010) and racing algorithms (Birattari et al., 2010).

The tuning algorithm can also be tailored especially for a speci�c method, as pre-
sented in Chen et al. (2017) for SVM or in Probst et al. (2019b) for random forest.

1.5 Automatic Machine Learning

Automatic machine learning is the automation of the whole machine learning process
from getting data, to obtaining the desired results.



11 1.5. Automatic Machine Learning

1.5.1 Input for Automatic Machine Learning

Typical automatic machine learning algorithms nowadays take at least two inputs: data
and the target of the data scientist. These two inputs cannot be obtained automatically,
although default targets (e.g., certain performance measures for a certain task) can be
given by the algorithm. The data may need to be transformed to be in the correct format
for the algorithm. In several implementations it is also possible to restrict the runtime
beforehand.

Target De�nition

As described in Section 1.3 di�erent targets can be achieved with di�erent models. In
automatic machine learning the main target is usually to get a good performance, mea-
sured by an appropriate performance measure that can be chosen by the user. As the
performance measure can be measured quantitatively the optimization of this target
is usually easier than, for example, to optimize the interpretability. The relationship
between the targets is described in more detail in Section 1.3.6.

Interplay between Data Generation and Target De�nition

Data can be generated before formulating the target or afterwards. We visualize the
two di�erent paths in Figure 1.1. When the target is obtained while examining the data,
it is called exploratory data analysis (Tukey, 1977). Certain steps of this analysis can
also be automatized, for example, standardized visualizations and summaries that can
be well received by the human brain and can lead to new ideas. Of course, issues such
as data dredging have to be considered here (Smith and Ebrahim, 2002). Standardized
tools for data exploration such as the R package DataExplorer (Cui, 2018) facilitate
the analysis.

Data Target

Output

Exploratory data analysis

Data collection

AutoML

Figure 1.1: Overview of process of automatic machine learning: the red path is chosen
when data is given �rst, the blue path when the target is given �rst.



Chapter 1. Statistical Learning Methods 12

Starting the Algorithm

After having obtained the data and the target, the automatic machine learning algo-
rithm can be started. It �nally should provide results and information about whether
the target can be reached and how well. All the mentioned steps are not �xed - several
loops through the process could be necessary to satisfy the needs of the user.

1.5.2 Typical Steps, Implementations and Ideal Design

Typical steps that are included in the automatic machine learning process are data-
preprocessing steps such as imputation of missing values, normalization, feature cre-
ation and feature selection and transformation of speci�c variable classes (for example,
from multiclass to binary vectors). Then the main steps are the application, evalua-
tion and tuning of di�erent machine learning algorithms, choosing the best of these
algorithms and building an ensemble of these algorithms, for example to get the best
prediction or to get a good and simple model that is easily interpretable.

As the whole process is usually very time consuming, automatic machine learn-
ing algorithms can include parameters for restricting the time beforehand and a solu-
tion should be provided in time. Moreover, it is desirable that the algorithm could be
restarted building up on the current solution.

Some already existing implementations are Auto-Weka (Thornton et al., 2013), au-
tosklearn (Feurer et al., 2015), H2O AutoML (The H2O.ai team, 2017) and TPOT (Olson
et al., 2016).

How to ideally design such an algorithm? An ideal implementation works well for
the problem at hand. The no free lunch theorem (Wolpert, 2002) states that any two
optimization algorithms are equivalent when their performance is averaged across all
possible problems. But the problems that usually arise in machine learning applications
are not completely randomly chosen, but follow certain patterns. So certain algorithms
will usually (e.g., on average) work better than others (Vanschoren, 2018). Therefore,
a reasonable option for designing new algorithms is based on results on other datasets
which is known as meta-learning and which is described in detail in the following sec-
tion.

1.6 Meta-Learning

Meta-Learning is an important step in the automation of machine learning. There are
di�erent possible de�nitions and approaches for meta-learning (Brazdil et al., 2008;
Lemke et al., 2015; Vanschoren, 2018).

1.6.1 De�nitions

The �rst de�nition for meta-learning was given by Brazdil et al. (2008):



13 1.6. Meta-Learning

“Metalearning is the study of principled methods that exploit meta-knowledge
to obtain e�cient models and solutions by adapting machine learning and
data mining processes.

”Another more recent de�nition from Lemke et al. (2015) emphasizes, that informa-
tion of the current data can also be included:

“1. A meta-learning system must include a learning subsystem, which
adapts with experience.

2. Experience is gained by exploiting metaknowledge extracted
(a) ...in a previous learning episode on a single dataset, and/or
(b) ...from di�erent domains or problems.

”The de�nition in 2a) contains also approaches such as boosting (Freund and Schapire,
1995), stacked-generalization also called stacking (Wolpert, 1992) or cascade general-
ization (Gama and Brazdil, 2000) while, for example, bagging (Breiman, 1996) does not
full�ll point 2, as it does not learn from previous runs (Lemke et al., 2015). In this thesis
I will mainly focus on approaches as de�ned in 2b), which means including information
of algorithm runs on other datasets for the current dataset.

Another de�nition of meta-learning is given by Vanschoren (2018) in his overview
paper:

“Meta-Learning, or learning to learn, is the science of systematically observ-
ing how di�erent machine learning approaches perform on a wide range
of learning tasks, and then learning from this experience, or meta-data, to
learn new tasks much faster than otherwise possible.

”He emphasizes the application of machine learning approaches on tasks, the use of
meta-data and the speed as an important factor in this process.

In principle, meta-learning can be applied to anything that the algorithm consists
of. Every decision that is taken within an algorithm can be parametrized and, on each
of these parameters, meta-learning can be applied. For example, the decision of which
algorithm to choose, hyperparameters of the algorithm that have to be set before exe-
cuting the algorithm or parameters that are usually optimized in the training process
of the algorithm, can be set via meta-learning. This can even include the decision if the



Chapter 1. Statistical Learning Methods 14

parameter has to be optimized at all. In the following, I will describe some distinctions
that can be made to distinguish di�erent meta-learning methods.

1.6.2 Distinction of Meta-Learning Methods

In his overview paper Vanschoren (2018) di�erentiates between di�erent types of meta-
learning, depending on which information from the current task (e.g., a regression task
on a speci�c dataset) is used. The same distinction is made by Luo (2016). In the follow-
ing, I will give a brief overview of this di�erentiation. The focus lies on the setting of
the hyperparameters and on the de�nition of meta-learning that was given by Lemke
et al. (2015) in 2b), that means using information of other tasks for the current task.

1.6.3 Task Independent Methods

The simplest meta-learning technique is to transfer knowledge from other tasks without
using information of the current task. For example, we can make task independent rec-
ommendations for hyperparameters. This can be one so-called default hyperparameter
setting (Probst et al., 2019a) or also several and possibly ranked �xed hyperparameter
settings (Wistuba et al., 2015; P�sterer et al., 2018) that could be sequentially evaluated.

A more complex transfer of information is called con�guration space design by Van-
schoren (2018), which includes information about previous model evaluations on other
datasets but does not use any information from the dataset at hand. For example, these
model evaluations can be used to construct a fast and good performing tuning algo-
rithm for a given algorithm, by, for example, specifying which hyperparameters should
be tuned and on what hyperparameter space should be searched for the ideal solutions
(van Rijn and Hutter, 2017; Probst et al., 2019a; Weerts et al., 2018) possibly also by
transforming and reparametrizing hyperparameters (Probst et al., 2019a).

1.6.4 Task Dependent Methods

When information about the current dataset is given, more sophisticated methods could
be used to combine them with the information of other datasets. There are two di�erent
kinds of information of the current dataset that can be used - either just information
about model evaluations for speci�c hyperparameters on the current dataset - or so-
called task properties.

Using Information from Model Evaluations

Using information from model evaluations of the current dataset can be done in di�erent
ways. The di�erent methods presented here are described in more detail in Vanschoren
(2018). Relative landmarks are the performance di�erences of model evaluations on the
current and on di�erent datasets (Fürnkranz and Petrak, 2001). In active testing these
di�erences are used to iteratively choose a new hyperparameter in each round which
performs best on the most similar datasets (Leite et al., 2012). Instead of using only



15 1.6. Meta-Learning

di�erences, surrogate models can be used to measure similarity and choose new hy-
perparameter settings, for an overview of di�erent methods, see Vanschoren (2018). In
multi-task learning, a joint task representation is learned by combining the results of the
single tasks or surrogate models into one big model that is used to predict the accuracy
of hyperparameter settings on the new dataset (Vanschoren, 2018). Other techniques
described in Vanschoren (2018) include multi-armed bandits and Thompson sampling.
Learning curves describe the development of the performance after each iteration step
in the learning process. The curve on a new task can be predicted by �nding similar
learning curves on other tasks. For more details on the literature see Vanschoren (2018).
Iterative tuning strategies as discussed in Section 1.4.2 also fall into this category.

Using Task Properties

Another common approach when trying to transfer knowledge of other datasets is us-
ing task properties, also called meta-features. Typical meta-features are the number of
observations n and the number of features p or the number of classes in a classi�cation
task. Many more meta-features can be constructed, see Rivolli et al. (2018) for a detailed
overview of meta-features.

With the help of these meta-features, one can measure the similarity to other tasks
and propose promising hyperparameter settings according to this. A very simple tech-
nique, that is used in many software packages, is using simple functions depending on
meta-features for setting the hyperparameters. Prominent examples are the settings√p
for mtry (number of variables regarded in each split) in random forest or 1/p for gamma
in support vector machines. These functions are usually created by hand by observing
for example performance curves of hyperparameter settings on di�erent datasets. A
more sophisticated approach for getting simple symbolic functions automatically via
meta-learning is described in van Rijn et al. (2018).

Meta-models are more sophisticated models that take meta-features as input and
recommend hyperparameters that are expected to provide good performance. These
models can be trained by using previously obtained performances of di�erent hyper-
parameters on other datasets. They can predict the performance and provide a task
dependent ranking of promising hyperparameter settings. More literature regarding
this topic is given by Vanschoren (2018).

1.6.5 Overview

To have an overview, in Table 1.1 selected articles that describe meta-learning tech-
niques for supervised machine learning techniques are classi�ed by their application
purpose (meta-learning for simple hyperparameter setting or for tuning). Other articles
that are more complex and also have di�erent purposes are described in Vanschoren
(2018) and Brazdil and Giraud-Carrier (2018).



Chapter 1. Statistical Learning Methods 16

Hyperparameter Setting
Article Method Task dependent
Probst et al. (2019a) Defaults calculation no
Weerts et al. (2018) Defaults calculation, symbolic defaults no/yes
P�sterer et al. (2018) Ranked list of defaults no
van Rijn et al. (2018) Symbolic defaults yes
Tuning
Article Method Task dependent
van Rijn and Hutter (2017) Tuning importance, tuning priors no
Probst et al. (2019a) Tuning importance, tuning space no
Weerts et al. (2018) Tuning importance no
Wistuba et al. (2015) List of defaults for warm start tuning yes
Feurer et al. (2015) List of defaults for warm start tuning yes

Table 1.1: Selected articles regarding meta-learning for machine learning algorithms
ordered by topics.

1.7 Calibrating and Choosing an Algorithmic System

There is a multitude of methods for setting hyperparameters, tuning, automatic machine
learning and meta-learning as described above. Which of these methods should be used?
The three main parts that should be used to evaluate an approach is the triumvirate of
speed, performance and interpretability as described in Section 1.3. Following Occam’s
razor simpler models are generally prefered over more complex models, so a complex
pipeline has to show substantial advantage over simpler approaches. In addition more
complex systems will generally take more time than simpler ones.

Every step that is used in an algorithmic pipeline has to be chosen carefully. The
applied methods in the pipeline, should work on a broad range of problems, such that
a new upcoming problem should be solved adequately. The optimization of the general
pipeline structure can be done by task independent meta-learning that means that the
chosen steps should work well on many datasets and they should be robust against out-
lier datasets. New approaches have to prove their usefulness and should be compared
in fair comparison studies in many di�erent data situations. The usual presentation of
the superiority of a method over another by using just a handful of datasets is no longer
su�cient today, unless clear superiority can be shown theoretically. Open science plat-
forms such as OpenML (Vanschoren et al., 2013) facilitate the access to a plentitude of
datasets and standardized benchmarking suites such as the OpenML100 (Bischl et al.,
2017) and PMLB (Olson et al., 2017) facilitate the selection of datasets.

The pipeline could also incorporate task dependent meta-learning. For example, the
selection of the performed steps may be based on meta-features. Or the tuning algorithm
(which is part of the AutoML pipeline) could be warm-started by using hyperparameter
settings that worked well on similar datasets as proposed by Feurer et al. (2015). For
simple problems a simple model can be good enough without complex pipeline steps.
For more complex datasets with a lot of observations and variables that are possibly



17 1.8. Hyperparameter Setting in Practice

also grouped, with in�uential and non-in�uential variables, with linear and non-linear
relationships more sophisticated approaches are necessary.

In general, meta-learning can be applied to all steps of a machine learning pipeline.
Task independent meta-learning techniques are easier to implement as they do not re-
quire information of the dataset at hand. A standardized automatic machine learning
approach can serve as fast solution or also as benchmark that can be compared to a man-
ual approach. Ideally the performed steps in the algorithmic pipeline should be clearly
visible, reproducible and also changeable, for example via hyperparameters.

1.8 Hyperparameter Setting in Practice
For the purpose of setting the hyperparameters ideally (for example, regarding the per-
formance or the runtime) for a certain task there are di�erent ways to use the techniques
described above in practice:

• The most subtle one is probably the information that a user has saved in his mind
by using an algorithm several times on other datasets with di�erent hyperparam-
eters and applying this knowledge on a new dataset by, for example, trying out
certain hyperparameter settings that worked well in the past.

• Alternatively, the user can search for publications that have analysed the be-
haviour of the algorithm for di�erent hyperparameter settings. In our publication
Probst and Boulesteix (2018) (Chapter A), for example, we investigate in detail the
in�uence of the number of trees on a random forest. Moreover, in the publication
Probst et al. (2019b) (Chapter A) we wrote a review for all random forest hyper-
parameters where we summarize the information that we could �nd in available
literature.

• This knowledge transmission can be automatized in a certain way:

– A software maintainer can �x one hyperparameter setting as default in his
software package or provide a list of possible hyperparameter settings.

– Speci�c automatic machine learning algorithms that could include di�er-
ent steps, such as data preprocessing, tuning, ensemble methods and meta-
learning could be implemented in software packages. Ideally the steps should
be choosable and changeable by the user.

1.9 Structure of this thesis
In this cumulative dissertation thesis, I examine the in�uence of hyperparameters on
machine learning algorithms, with a special focus on random forest. It mainly consists
of three papers that were written in the last three years.

The �rst paper (Probst and Boulesteix, 2018) in Section A.1 in the Appendix exam-
ines the in�uence of the number of trees on the performance of a random forest. In
general it is believed that the number of trees should be set higher to achieve better



Chapter 1. Statistical Learning Methods 18

performance. However, we show some real data examples in which the expectation
of measures such as accuracy and AUC (partially) decrease with growing numbers of
trees. We prove theoretically why this can happen and argue that this only happens in
very special data situations. For other measures such as the Brier score, the logarith-
mic loss or the mean squared error, we show that this cannot happen. In a benchmark
study based on 306 classi�cation and regression datasets, we illustrate the extent of this
unexpected behaviour. We observe that, on average, most of the improvement regard-
ing performance can be achieved while growing the �rst 100 trees. We use our new
OOBCurve R package (Probst, 2017a) for the analysis, which can be used to examine
performances for a growing number of trees of a random forest based on the out-of-bag
observations.

The second paper (Probst et al., 2019b) in Section A.2 is a more general work. Firstly
we review literature about the in�uence of hyperparameters on random forest. The dif-
ferent hyperparameters considered are the number of variables drawn at each split, the
sampling scheme for drawing observations for each tree, the minimum number of obser-
vations in a node that a tree is allowed to have, the number of trees and the splitting rule.
Their in�uence is examined regarding performance, runtime and variable importance.
In the second part of the paper di�erent tuning strategies for obtaining optimal hyper-
parameters are presented. A new software package in R is introduced, tuneRanger. It
executes the tuning strategy sequential model-based optimization based on the out-of-
bag observation. The hyperparameters and ranges for tuning are chosen automatically.
In a benchmark study this implementation is compared with other di�erent implemen-
tations that execute tuning for random forest.

The third paper (Probst et al., 2019a) in Section A.3 is even more general and presents
a general framework for examining the tunability of hyperparameters of machine learn-
ing algorithms. It �rst de�nes the concept of defaults properly and proposes de�nitions
for measuring the tunability of the whole algorithm, of single hyperparameters and of
combinations of hyperparameters. For applying these de�nitions to a collection of 38
binary classi�cation datasets, a random bot is created. It generated in total around 5 mil-
lion experiment runs of 6 algorithms with di�erent hyperparameters. The details of this
bot are described in an extra paper (Kühn et al., 2018), co-authored by me, that is also
included in this dissertation in Section A.4. The results of this bot are used to estimate
the tunability of these 6 algorithms and their speci�c hyperparameters. Furthermore,
ranges for parameter tuning of these algorithms are proposed.

1.10 Additional topics and work

There were several di�erent additional topics that I worked on during my doctoral
studies. At the beginning we �nished a paper about the implementation of multilabel
classi�cation in mlr (Probst et al., 2017) that I started while writing the master the-
sis. Moreover, I co-authored several articles, including an empirical comparison of the
performance of random forest with logistic regression (Couronné et al., 2018) and an ar-
ticle about the possibilities of making prediction rules applicable for readers (Boulesteix
et al., 2018). I also contributed to the mlr tutorial (Schi�ner et al., 2016) and created the



19 1.10. Additional topics and work

R package quantregRanger (Probst, 2017b) for quantile regression with the ranger
R package (Wright, 2016) which now is available in an improved version in the ranger
package itself. I also had several consulting projects with medical researchers at IBE, for
example a project about asthma features (Matthes et al., 2018) and some other projects
that are not �nished at the present time. Last but not least, I supervised several bachelor
and master theses, including the master thesis of Eva-Maria Müntefering about boosted
random forests, a master thesis about the stability of the random forest variable impor-
tance by Thomas Klein-Heßling, a bachelor thesis about the in�uence of hyperparam-
eters on support vector machines by Frederik Ludwigs and a bachelor thesis about a
benchmarking suite of regression datasets by Merlin Raabe which we are planning to
publish in future. Moreover, I supervised the openly available master thesis of Myriam
Hatz about the in�uence of mtry in random forest (Hatz, 2018) and the master thesis of
Moritz Herrmann which consisted of a large-scale benchmark experiment of prediction
methods for survival using multi-omics data (Herrmann, 2019) which we also plan to
publish in future.



Chapter 1. Statistical Learning Methods 20



Chapter 2

Concluding remarks and further
steps

The topic of this thesis was the in�uence of hyperparameters on machine learning al-
gorithms and how to improve their setting via meta-learning. The �rst paper treated a
very speci�c hyperparameter of random forest (number of trees) (Probst and Boulesteix,
2018), while the second paper gave a general overview of the literature of hyperparam-
eters and their in�uence in random forest with a benchmark for several tuning imple-
mentations in R (Probst et al., 2019b). The third paper was more general and examined
the tunability of 6 di�erent machine learning algorithms based on experiments on 38
datasets (Probst et al., 2019a). The description of these experiments, for which the re-
sults are openly available, were published in an extra paper of Kühn et al. (2018).

The �rst three papers describe di�erent approaches for examining hyperparameters.
One can make conclusions about how they theoretically can be set ideally or one can
observe the empirical performance and behaviour of these hyperparameters on several
datasets and then make general conclusions about them. In my opinion, both sides are
important. For example, one can make theoretical considerations about the ideal kernel
in support vector machines (e.g. should be able to create �exible decision boundaries),
but without applying this kernel to real data one cannot really be sure if this kernel is
good. So the interplay between theory and application is very important for the creation
and evaluation of new algorithms and hyperparameters.

To standardize, automatize and speed-up the benchmarking of di�erent algorithms
and their hyperparameters it is useful to have standardized tools and benchmarking
datasets. A �rst step into this direction is the OpenML data sharing platform (Van-
schoren et al., 2013). Furthermore, dataset collections such as the OpenML100 classi�-
cation datasets (Bischl et al., 2017) make it easier for users to get and choose datasets
for their benchmarking. Other collections, for example for regression tasks and survival
analysis, should be made available in the future.

Moreover, the machine learning benchmarking framework that is already well es-
tablished for regression and classi�cation could be expanded to other learning tasks. It
is not yet completely clear, especially for non-expert users, which resampling methods
and performance measures should be preferably used for tasks such as ordinal regres-
sion, time series, survival, multi-target prediction and clustering. Software solutions for

21



Chapter 2. Concluding remarks and further steps 22

these tasks are still in their infancy.
Probably, the most discussed machine learning technique nowadays is neural net-

works. Due to their �exibility they are applicable on a very broad range of problems.
Their approximation capabilities have already been shown by Hornik (1991). As setting
the hyperparameters for neural networks is very important and computation is usually
very intensive, meta-learning can play a crucial role. Popular papers (Santoro et al.,
2016; Finn et al., 2017) show the importance and actuality of this topic.

Another idea we partly already worked on is the creation of a set of multiple de-
faults for an algorithm that perform well on several datasets (P�sterer et al., 2018).
Moreover, software tools that provide automatic and speci�c tuning of algorithms such
as tuneRanger (Probst, 2018a), autoxgboost (Thomas et al., 2017) and liquidSVM
(Steinwart and Thomann, 2017) can be improved and developed for further algorithms.
This is part of the process of automatizing the whole learning process which also con-
sists of data preprocessing steps and �nal ensemble aggregation methods such as stack-
ing. Software implementations such as H2O AutoML (The H2O.ai team, 2017) and au-
tosklearn (Feurer et al., 2015) are �rst steps of putting the process of training, evalu-
ating and ensemble building into one algorithm, so that users do not need to think and
program the single processing steps.

Computing time plays a crucial role here, especially for large datasets. Good pre-
dictions should be made available in a reasonable time and new software tools should
ideally provide an option to restrict the runtime of an algorithms before starting the
algorithm. Further investigations should be done to optimize the process of improv-
ing the performance of an algorithm in the shortest possible time. One possibility is
to compare learning curves across algorithms. Meta-Learning can also be applied here
(Vanschoren, 2018).

An idea to combine timing issues and tuning especially for big datasets would be to
start running an algorithm with small samples of the data (regarding observations and
input variables) and di�erent hyperparameter settings and evaluate the results on the
out-of-bag data (data that was not used for training). Then iteratively the amount of data
that is put into the algorithm is increased and the algorithm is run with hyperparameter
settings that were successful in previous runs of the algorithm. A learning curve could
show the amount of performance gain that is achieved with growing amount of data. A
stopping criterion either externally as algorithm input or internally using the learning
curve could stop the algorithm and �nally ensemble techniques could be applied to
combine the trained algorithms that were run so far.

Another idea for future work is the automatization of the exploratory data analysis.
Here it is important to �nd an ideal solution for the human-machine interaction. The
process of �nding interesting patterns in the data should be facilitated by providing user
interfaces that are also suitable for non-expert users and visualizations should be easy
to create.



Bibliography

N. S. Altman. An introduction to kernel and nearest-neighbor nonparametric regression.
The American Statistician, 46(3):175–185, 1992.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13:281–305, 2012.

T. B. Berrett and R. J. Samworth. Nonparametric independence testing via mutual in-
formation. arXiv preprint arXiv:1711.06642, 2017.

M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-Race and iterated F-Race: An
overview. In Experimental Methods for the Analysis of Optimization Algorithms, pages
311–336. Springer, 2010.

B. Bischl, O. Mersmann, H. Trautmann, and C. Weihs. Resampling methods for meta-
model validation with recommendations for evolutionary computation. Evolutionary
Computation, 20(2):249–275, 2012.

B. Bischl, M. Lang, L. Kottho�, J. Schi�ner, J. Richter, E. Studerus, G. Casalicchio, and
Z. M. Jones. mlr: Machine learning in R. Journal of Machine Learning Research, 17
(170):1–5, 2016. R package version 2.9.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn,
and J. Vanschoren. OpenML benchmarking suites and the OpenML100. ArXiv preprint
arXiv:1708.03731, Aug. 2017.

B. Bischl, J. Richter, J. Bossek, D. Horn, J. Thomas, and M. Lang. mlrMBO: A modular
framework for model-based optimization of expensive black-box functions. ArXiv
preprint arXiv:1703.03373, 2017.

A.-L. Boulesteix, S. Janitza, R. Hornung, P. Probst, H. Busen, and A. Hapfelmeier. Making
complex prediction rules applicable for readers: Current practice in random forest
literature and recommendations. Biometrical Journal, pages 1–15, 2018.

P. Brazdil and C. Giraud-Carrier. Metalearning and algorithm selection: progress, state
of the art and introduction to the 2018 special issue. Machine Learning, 107(1):1–14,
2018. ISSN 1573-0565.

P. Brazdil, C. G. Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to Data
Mining. Springer Science & Business Media, 2008.

23



Bibliography 24

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classi�cation and regression trees.
CRC press, 1984.

L. Breiman et al. Statistical modeling: The two cultures (with comments and a rejoinder
by the author). Statistical Science, 16(3):199–231, 2001.

G. Casalicchio, C. Molnar, and B. Bischl. Visualizing the feature importance for black
box models. arXiv preprint arXiv:1804.06620, 2018.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters
for support vector machines. Machine Learning, 46(1):131–159, Jan 2002. ISSN 1573-
0565.

A. Chaudhuri and W. Hu. A fast algorithm for computing distance correlation. Compu-
tational Statistics & Data Analysis, 2019.

G. Chen, W. Florero-Salinas, and D. Li. Simple, fast and accurate hyper-parameter tuning
in gaussian-kernel svm. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 348–355. IEEE, 2017.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

M. Claesen and B. D. Moor. Hyperparameter search in machine learning. MIC 2015: The
XI Metaheuristics International Conference, 2015.

W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal
of the American Statistical Association, 74(368):829–836, 1979.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

R. Couronné, P. Probst, and A.-L. Boulesteix. Random forest versus logistic regression:
a large-scale benchmark experiment. BMC Bioinformatics, 19(1):270, 2018.

G. Csardi. cranlogs: Download Logs from the ’RStudio’ ’CRAN’ Mirror, 2015. R package
version 2.1.0.

B. Cui. DataExplorer: Data Explorer, 2018. R package version 0.7.0.

Y. Dodge. The Oxford Dictionary of Statistical Terms. Oxford University Press on De-
mand, 2006.

H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support vector regres-
sion machines. In Advances in Neural Information Processing Systems, pages 155–161,
1997.



25 Bibliography

C. Ferri, J. Hernández-Orallo, and R. Modroiu. An experimental comparison of perfor-
mance measures for classi�cation. Pattern Recognition Letters, 30(1):27–38, 2009.

M. Feurer, J. T. Springenberg, and F. Hutter. Initializing bayesian hyperparameter opti-
mization via meta-learning. In Proceedings of the Twenty-Ninth AAAI Conference on
Arti�cial Intelligence, pages 1128–1135. AAAI Press, 2015.

C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR.org, 2017.

C.-s. Foo, C. B. Do, and A. Y. Ng. E�cient multiple hyperparameter learning for log-
linear models. In Advances in Neural Information Processing Systems, pages 377–384,
2008.

Y. Freund and R. E. Schapire. A desicion-theoretic generalization of on-line learning
and an application to boosting. In European Conference on Computational Learning
Theory, pages 23–37. Springer, 1995.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the Thirteenth International Conference on Machine Learning, ICML’96, pages 148–
156, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 29(5):1189–1232, 2001.

J. Fürnkranz and J. Petrak. An evaluation of landmarking variants. In Working Notes
of the ECML/PKDD 2000 Workshop on Integrating Aspects of Data Mining, Decision
Support and Meta-Learning, pages 57–68, 2001.

J. Gama and P. Brazdil. Cascade generalization. Machine Learning, 41(3):315–343, 2000.

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin. Peeking inside the black box: Visual-
izing statistical learning with plots of individual conditional expectation. Journal of
Computational and Graphical Statistics, 24(1):44–65, 2015.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

M. Hatz. Der Ein�uss von mtry auf Random Forests. PhD thesis, 2018. URL
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:
19-epub-59094-4.

M. Herrmann. Large-scale benchmark study of predictionmethods usingmulti-omics data.
PhD thesis, 2019. URL http://nbn-resolving.de/urn/resolver.pl?urn=
nbn:de:bvb:19-epub-60505-4.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.



Bibliography 26

T. Hothorn, K. Hornik, and A. Zeileis. Unbiased recursive partitioning: A conditional
inference framework. Journal of Computational and Graphical Statistics, 15(3):651–
674, 2006.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for
general algorithm con�guration, pages 507–523. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.

S. Janitza, C. Strobl, and A.-L. Boulesteix. An AUC-based permutation variable impor-
tance measure for random forests. BMC Bioinformatics, 14(1):119, 2013.

D. R. Jones, M. Schonlau, and W. J. Welch. E�cient global optimization of expensive
black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

J.-H. Kim. Estimating classi�cation error rate: Repeated cross-validation, repeated hold-
out and bootstrap. Computational Statistics and Data Analysis, 53(11):3735 – 3745,
2009. ISSN 0167-9473.

D. Kühn, P. Probst, J. Thomas, and B. Bischl. Automatic exploration of machine learning
experiments on OpenML. ArXiv preprint arXiv:1806.10961, 2018.

D. Kühn, P. Probst, J. Thomas, and B. Bischl. OpenML R bot benchmark data (�-
nal subset). 2018. URL https://figshare.com/articles/OpenML_R_Bot_
Benchmark_Data_final_subset_/5882230.

M. Lang. Automatische Modellselektion in der Überlebenszeitanalyse. PhD thesis, TU
Dortmund, 2015.

J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In Neural Networks for Signal Processing
[1996] VI. Proceedings of the 1996 IEEE Signal Processing SocietyWorkshop, pages 62–71.
IEEE, 1996.

R. Leite, P. Brazdil, and J. Vanschoren. Selecting classi�cation algorithms with active
testing. In International Workshop on Machine Learning and Data Mining in Pattern
Recognition, pages 117–131. Springer, 2012.

C. Lemke, M. Budka, and B. Gabrys. Metalearning: a survey of trends and technologies.
Arti�cial Intelligence Review, 44(1):117–130, 2015.

S.-W. Lin, K.-C. Ying, S.-C. Chen, and Z.-J. Lee. Particle swarm optimization for param-
eter determination and feature selection of support vector machines. Expert Systems
with Applications, 35(4):1817–1824, 2008.

G. Louppe. Understanding random forests: From theory to practice. arXiv preprint
arXiv:1407.7502, 2014.

G. Luo. A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Network Modeling Analysis in Health Informatics and Bioin-
formatics, 5(1):1–16, 2016.



27 Bibliography

S. Matthes, J. Stadler, J. Barton, G. Leuschner, D. Munker, P. Arnold, H. Villena-Hermoza,
M. Frankenberger, P. Probst, A. Koch, et al. Asthma features in severe COPD: Identi-
fying treatable traits. Respiratory Medicine, 145:89–94, 2018.

M. Meissner, M. Schmuker, and G. Schneider. Optimized particle swarm optimization
(opso) and its application to arti�cial neural network training. BMC Bioinformatics, 7
(1):125, 2006.

U. B. Mogensen, H. Ishwaran, and T. A. Gerds. Evaluating random forests for survival
analysis using prediction error curves. Journal of Statistical Software, 50(11):1, 2012.

C. Molnar. Interpretable Machine Learning. 2019. https://christophm.github.
io/interpretable-ml-book/.

R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore. Evaluation of a tree-based
pipeline optimization tool for automating data science. In Proceedings of the Ge-
netic and Evolutionary Computation Conference 2016, GECCO ’16, pages 485–492, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4206-3.

R. S. Olson, W. La Cava, P. Orzechowski, R. J. Urbanowicz, and J. H. Moore. PMLB:
a large benchmark suite for machine learning evaluation and comparison. BioData
mining, 10(1):36, 2017.

J.-S. Park. Optimal latin-hypercube designs for computer experiments. Journal of Sta-
tistical Planning and Inference, 39(1):95–111, 1994.

F. P�sterer, J. N. van Rijn, P. Probst, A. Müller, and B. Bischl. Learning multiple defaults
for machine learning algorithms. arXiv preprint arXiv:1811.09409, 2018.

P. Probst. OOBCurve: Out of Bag Learning Curve, 2017a. R package version 0.2.

P. Probst. quantregRanger: Quantile Regression Forests for ’ranger’, 2017b. R package
version 1.0.

P. Probst. tuneRanger: Tune random forest of the ’ranger’ package, 2018a. R package
version 0.4.

P. Probst. measures: Performance Measures for Statistical Learning, 2018b. R package
version 0.2.

P. Probst. varImp: RF Variable Importance for Arbitrary Measures, 2018c. R package
version 0.2.

P. Probst and A.-L. Boulesteix. To tune or not to tune the number of trees in random
forest. Journal of Machine Learning Research, 18(181):1–18, 2018.

P. Probst, Q. Au, G. Casalicchio, C. Stachl, and B. Bischl. Multilabel classi�cation with
R package mlr. The R Journal, 9(1):352–369, 2017.



Bibliography 28

P. Probst, A.-L. Boulesteix, and B. Bischl. Tunability: Importance of hyperparameters
of machine learning algorithms. Journal of Machine Learning Research, 20(53):1–32,
2019a.

P. Probst, M. N. Wright, and A.-L. Boulesteix. Hyperparameters and tuning strategies for
random forest. Wiley Interdisciplinary Reviews: DataMining and Knowledge Discovery,
9(3):e1301, 2019b.

A. Rivolli, L. P. Garcia, C. Soares, J. Vanschoren, and A. C. de Carvalho. Towards repro-
ducible empirical research in meta-learning. arXiv preprint arXiv:1808.10406, 2018.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap. Meta-learning with
memory-augmented neural networks. In International Conference on Machine Learn-
ing, pages 1842–1850, 2016.

J. Schi�ner, B. Bischl, M. Lang, J. Richter, Z. M. Jones, P. Probst, F. P�sterer, M. Gallo,
D. Kirchho�, T. Kühn, et al. mlr tutorial. arXiv preprint arXiv:1609.06146, 2016.

C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal,
27(3):379–423, 1948.

N. Simon and R. Tibshirani. Comment on "detecting novel associations in large data
sets" by reshef et al, science dec 16, 2011. arXiv preprint arXiv:1401.7645, 2014.

G. D. Smith and S. Ebrahim. Data dredging, bias, or confounding: They can all get you
into the BMJ and the Friday papers, 2002.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pages
2951–2959, 2012.

I. M. Sobol. Uniformly distributed sequences with an additional uniform property. USSR
Computational Mathematics and Mathematical Physics, 16(5):236–242, 1976.

I. Steinwart and P. Thomann. liquidSVM: A fast and versatile svm package. arXiv
preprint arXiv:1702.06899, 2017.

G. J. Székely, M. L. Rizzo, N. K. Bakirov, et al. Measuring and testing dependence by
correlation of distances. The Annals of Statistics, 35(6):2769–2794, 2007.

The H2O.ai team. h2o: R Interface for H2O, 2017. R package version 3.16.0.2.

J. Thomas, S. Coors, and B. Bischl. Automatic gradient boosting. 2017.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined se-
lection and hyperparameter optimization of classi�cation algorithms. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 847–855. ACM, 2013.



29 Bibliography

J.-T. Tsai, J.-H. Chou, and T.-K. Liu. Tuning the structure and parameters of a neu-
ral network by using hybrid taguchi-genetic algorithm. IEEE Transactions on Neural
Networks, 17(1):69–80, 2006.

J. W. Tukey. Exploratory data analysis. Reading, Ma 231, 32, 1977.

H. Uno, T. Cai, L. Tian, and L. Wei. Evaluating prediction rules for t-year survivors with
censored regression models. Journal of the American Statistical Association, 102(478):
527–537, 2007.

H. Uno, T. Cai, M. J. Pencina, R. B. D’Agostino, and L. Wei. On the c-statistics for eval-
uating overall adequacy of risk prediction procedures with censored survival data.
Statistics in Medicine, 30(10):1105–1117, 2011.

J. N. van Rijn and F. Hutter. Hyperparameter importance across datasets. ArXiv preprint
arXiv:1710.04725, 2017.

J. N. van Rijn, F. P�sterer, J. Thomas, A. Muller, B. Bischl, and J. Vanschoren. Meta
learning for defaults: Symbolic defaults. In Neural Information Processing Workshop
on Meta-Learning, 2018.

J. Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked science in
machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

H. Weerts, M. Meuller, and J. Vanschoren. Importance of tuning hyperparameters of
machine learning algorithms. Technical report, TU Eindhoven, 2018.

M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperparameter optimiza-
tion initializations. In Data Science and Advanced Analytics (DSAA), 2015. 36678 2015.
IEEE International Conference on, pages 1–10. IEEE, 2015.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

D. H. Wolpert. The supervised learning no-free-lunch theorems. In Soft Computing and
Industry, pages 25–42. Springer, 2002.

M. N. Wright. ranger: A Fast Implementation of Random Forests, 2016. R package version
0.6.0.

S. Xavier-de Souza, J. A. Suykens, J. Vandewalle, and D. Bollé. Coupled simulated an-
nealing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40
(2):320–335, 2010.

Q. Zhou, W. Chen, S. Song, J. Gardner, K. Weinberger, and Y. Chen. A reduction of the
elastic net to support vector machines with an application to GPU computing, 2015.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 67(2):301–320, 2005.



Bibliography 30



Appendix A

Publications for the cumulative
dissertation

ToTune orNot toTune theNumber of Trees inRandom
Forest

This chapter is a reprint of:
Probst, P. and Boulesteix, A.-L. (2018) To tune or not to tune the number of trees in
random forest. Journal of Machine Learning Research 18 (181), 1-18.

Status:
Published.

Copyright:
Journal of Machine Learning Research, 2018.

Author contributions:
Philipp Probst �rst performed experiments and observed di�erent patterns of the perfor-
mance dependent on the number of trees. The theoretical part was developed together
with Anne-Laure Boulesteix. Philipp Probst performed the benchmark analysis and pre-
pared a �rst draft of the manuscript. Anne-Laure Boulesteix added valuable input and
revised the document.

Acknowledgements:
We would like to thank Alexander Dürre for useful comments on the approximation of
the logarithmic loss and Jenny Lee for language editing.

31



Appendix A. Publications for the cumulative dissertation 32

Hyperparameters and Tuning Strategies for Random
Forest

This chapter is a reprint of:
Probst, P., Wright, M. and Boulesteix, A.-L. (2019): Hyperparameters and Tuning Strate-
gies for Random Forest.

Status:
Published.

Copyright:
WIREs Data Mining Knowledge Discovery, 2019.

Author contributions:
Philipp Probst conducted the literature search and prepared a �rst draft of the manuscript.
He developed the R package tuneRanger and realized the benchmark experiments.
Anne-Laure Boulesteix and Marvin Wright revised the article and added valuable input
(Anne-Laure Boulesteix especially in the theoretical section, Marvin Wright especially
on the practical section). Marvin Wright revised the R package tuneRanger.

Acknowledgements:
Simon Klau helped testing the tuneRanger package. Thanks to Jenny Lee for language
editing.



33

Tunability: Importance ofHyperparameters ofMachine
Learning Algorithms

This chapter is a reprint of:
Probst, P., Bischl, B. and Boulesteix, A.-L. (2019): Tunability: Importance of hyperpa-
rameters of machine learning algorithms.

Status:
Published.

Copyright:
Journal of Machine Learning Research, 2019.

Author contributions:
Methods and study design were developed by Philipp Probst in cooperation with Bernd
Bischl and Anne-Laure Boulesteix. Philipp Probst then performed the analysis and pre-
pared a �rst draft of the manuscript. Bernd Bischl and Anne-Laure Boulesteix �nally
revised the article.

Acknowledgements:
We would like to thank Joaquin Vanschoren for support regarding the OpenML platform
and Andreas Müller, Jan van Rijn, Janek Thomas and Florian P�sterer for reviewing and
useful comments. Thanks to Jenny Lee for language editing.



Appendix A. Publications for the cumulative dissertation 34

Automatic Exploration ofMachine LearningExperiments
on OpenML

This chapter is a reprint of:
Kühn, D., Probst, P., Thomas, J. and Bischl, B. (2018): Automatic Exploration of Machine
Learning Experiments on OpenML. arXiv preprint arXiv:1806.10961.

Status:
Arxiv Paper.

Author contributions:
The �rst code of the bot was created by Janek Thomas. Afterwards Daniel Kühn and
Philipp Probst revised and improved it. The experiments were run and supervised on
computer clusters by Daniel Kühn and Philipp Probst. Philipp Probst prepared a �rst
draft of the manuscript. Daniel Kühn and Bernd Bischl added valuable input and revised
it. Janek Thomas �nally revised the document. Daniel Kühn and Philipp Probst are both
�rst authors.

Acknowledgements:
We would like to thank Joaquin Vanschoren for support regarding the OpenML plat-
form.



Journal of Machine Learning Research 18 (2018) 1-18 Submitted 5/17; Revised 2/18; Published 4/18

To Tune or Not to Tune the
Number of Trees in Random Forest

Philipp Probst probst@ibe.med.uni-muenchen.de
Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie
Marchioninistr. 15, 81377 München

Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de

Institut für medizinische Informationsverarbeitung, Biometrie und Epidemiologie

Marchioninistr. 15, 81377 München

Editor: Isabelle Guyon

Abstract

The number of trees T in the random forest (RF) algorithm for supervised learning has to
be set by the user. It is unclear whether T should simply be set to the largest computa-
tionally manageable value or whether a smaller T may be sufficient or in some cases even
better. While the principle underlying bagging is that more trees are better, in practice the
classification error rate sometimes reaches a minimum before increasing again for increas-
ing number of trees. The goal of this paper is four-fold: (i) providing theoretical results
showing that the expected error rate may be a non-monotonous function of the number
of trees and explaining under which circumstances this happens; (ii) providing theoretical
results showing that such non-monotonous patterns cannot be observed for other perfor-
mance measures such as the Brier score and the logarithmic loss (for classification) and the
mean squared error (for regression); (iii) illustrating the extent of the problem through an
application to a large number (n = 306) of datasets from the public database OpenML;
(iv) finally arguing in favor of setting T to a computationally feasible large number as long
as classical error measures based on average loss are considered.

Keywords: Random forest, number of trees, bagging, out-of-bag, error rate

1. Introduction

The random forest (RF) algorithm for classification and regression, which is based on the
aggregation of a large number T of decision trees, was first described in its entirety by
Breiman (2001). T is one of several important parameters which have to be carefully
chosen by the user. Some of these parameters are tuning parameters in the sense that both
too high and too low parameter values yield sub-optimal performances; see Segal (2004) for
an early study on the effect of such parameters. It is unclear, however, whether the number
of trees T should simply be set to the largest computationally manageable value or whether
a smaller T may be sufficient or in some cases even better, in which case T should ideally
be tuned carefully. This question is relevant to any user of RF and has been the topic of
much informal discussion in the scientific community, but has to our knowledge never been
addressed systematically from a theoretical and empirical point of view.

Breiman (2001) provides proofs of convergence for the generalization error in the case
of classification random forest for growing number of trees. This means that the error rate

c©2018 Philipp Probst and Anne-Laure Boulesteix.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/17-269.html.



Probst and Boulesteix

for a given test or training dataset converges to a certain value. Moreover, Breiman (2001)
proves that there exists an upper bound for the generalization error. Similarly he proves the
convergence of the mean squared generalization error for regression random forests and also
provides an upper bound. However, these results do not answer the question of whether the
number of trees is a tuning parameter or should be set as high as computationally feasible,
although convergence properties may at first view be seen as an argument in favor of a high
number of trees. Breiman (1996a) and Friedman (1997) note that bagging and aggregation
methods can make good predictors better but poor predictors can be transformed into worse.
Hastie et al. (2001) show in a simple example that for a single observation that is incorrectly
classified (in the binary case), bagging can worsen the expected missclassification rate. In
Section 3.1 we will further analyse this issue and examine the outcome of aggregating
performances for several observations.

Since each tree is trained individually and without knowledge of previously trained trees,
however, the risk of overfitting when adding more trees discussed by Friedman (2001) in
the case of boosting is not relevant here.

The number of trees is sometimes considered as a tuning parameter in current literature
(Raghu et al., 2015); see also Barman et al. (2014) for a study in which different random
seeds are tested to obtain better forests—a strategy implicitly assuming that a random
forest with few trees may be better than a random forest with many trees. The R package
RFmarkerDetector (Palla and Armano, 2016) even provides a function, ’tuneNTREE’, to
tune the number of trees. Of note, the question of whether a smaller number of trees
may be better has often been discussed in online forums (see Supplementary File 1 for a
non-exhaustive list of links) and seems to remain a confusing issue to date, especially for
beginners.

A related but different question is whether a smaller number of trees is sufficient (as
opposed to “better”) in the sense that more trees do not improve accuracy. This question
is examined, for example, in the very early study by Latinne et al. (2001) or by Hernández-
Lobato et al. (2013). Another important contribution to that question is the study by
Oshiro et al. (2012), which compared the performance in terms of the Area Under the ROC
Curve (AUC) of random forests with different numbers of trees on 29 datasets. Their main
conclusion is that the performance of the forest does not always substantially improve as
the number of trees grows and after having trained a certain number of trees (in their case
128) the AUC performance gain obtained by adding more trees is minimal. The study of
Oshiro et al. (2012) provides important empirical support for the existence of a “plateau”,
but does not directly address the question of whether a smaller number of trees may be
substantially better and does not investigate this issue from a theoretical perspective, thus
making the conclusions dependent on the 29 examined datasets.

In this context, the goal of our paper is four-fold: (i) providing theoretical results showing
that, in the case of binary classification, the expected error rate may be a non-monotonous
function of the number of trees and explaining under which circumstances this happens;
(ii) providing theoretical results showing that such non-monotonous patterns cannot be
observed for other performance measures such as the Brier score and the logarithmic loss
(for classification) and the mean squared error (for regression); (iii) illustrating the extent of
the problem through an application to a large number (n = 306) of datasets from the public
database OpenML; (iv) finally arguing in favor of setting it to a computationally feasible

2



To Tune or Not to Tune the Number of Trees in Random Forest

0 500 1000 1500 2000

0.
15

0.
20

0.
25

0.
30

Dataset with OpenML ID 37

number of trees

m
ea

n 
O

O
B

 e
rr

or
 r

at
e

0 500 1000 1500 2000

0.
32

0
0.

33
0

0.
34

0

Dataset with OpenML ID 862

number of trees

m
ea

n 
O

O
B

 e
rr

or
 r

at
e

0 500 1000 1500 2000

0.
37

0.
39

0.
41

0.
43

Dataset with OpenML ID 938

number of trees

m
ea

n 
O

O
B

 e
rr

or
 r

at
e

Figure 1: Mean OOB error rate curves for OpenML datasets with IDs 37, 862 and 938.
The curves are averaged over 1000 independent runs of random forest.

large number as long as classical error measures based on average loss are considered.
Furthermore, we introduce our new R package OOBCurve, which can be used to examine
the convergence of various performance measures.

To set the scene, we first address this issue empirically by looking at the curve depicting
the out-of-bag (OOB) error rate (see Section 2 for a definition of the OOB error) for different
number of trees (also called OOB error rate curve) for various datasets from the OpenML
database (Vanschoren et al., 2013). To obtain more stable results and better estimations for
the expected error rate we repeat this procedure 1000 times for each dataset and average
the results.

For most datasets we observe monotonously decreasing curves with growing number of
trees as in the left panel of Figure 1, while others yield strange non-monotonous patterns,
for example the curves of the datasets with the OpenML ID 862 and 938, which are also
depicted in Figure 1. The initial error rate drops steeply before starting to increase after a
certain number of trees before finally reaching a plateau.

At first view, such non-monotonous patterns are a clear argument in favor of tuning
T . We claim, however, that it is important to understand why and in which circumstances
such patterns happen in order to decide whether or not T should be tuned in general.
In Section 3, we address this issue from a theoretical point of view, by formulating the
expected error rate as a function of the probabilities εi of correct classification by a single
tree for each observation i of the training dataset, for i = 1, . . . , n (with n denoting the
size of the training dataset). This theoretical view provides a clear explanation of the non-
monotonous error rate curve patterns in the case of classification. With a similar approach,
we show that such non-monotonous patterns cannot be obtained with the Brier score or the
logarithmic loss as performance measures, which are based on probability estimations and
also not for the mean squared error in the case of regression. Only for the AUC we can see
non-monotonous curves as well.

3



Probst and Boulesteix

The rest of this paper is structured as follows. Section 2 gives a brief introduction into
random forest and performance estimation. Theoretical results are presented in Section 3,
while the results of a large empirical study based on 306 datasets from the public database
OpenML are reported in Section 4. More precisely, we empirically validate our theoretical
model for the error as a function of the number of trees as well as our statements regarding
the properties of datasets yielding non-monotonous patterns. We finally argue in Section 5
that there is no inconvenience—except additional computational cost—in adding trees to a
random forest and that T should thus not be seen as a tuning parameter as long as classical
performance measures based on the average loss are considered.

2. Background: Random Forest and Measures of Performance

In this section we introduce the random forest method, the general notation and some well
known performance measures.

2.1 Random Forest

The random forest (RF) is an ensemble learning technique consisting of the aggregation of a
large number T of decision trees, resulting in a reduction of variance compared to the single
decision trees. In this paper we consider the original version of RF first described by Breiman
(2001), while acknowledging that other variants exist, for example RF based on conditional
inference trees (Hothorn et al., 2006) which address the problem of variable selection bias
investigated by Strobl et al. (2007). Our considerations are however generalizable to many
of the available RF variants and other methods that use randomization techniques.

A prediction is obtained for a new observation by aggregating the predictions made by
the T single trees. In the case of regression RF, the most straightforward and common
procedure consists of averaging the prediction of the single trees, while majority voting is
usually applied to aggregate classification trees. This means that the new observation is
assigned to the class that was most often predicted by the T trees.

While RF can be used for various types of response variables including censored survival
times or (as empirically investigated in Section 4) multicategorical variables, in this paper
we mainly focus on the two most common cases, binary classification and regression.

2.2 General Notations

From now on, we consider a fixed training dataset D consisting of n observations, which
is used to derive prediction rules by applying the RF algorithm with a number T of trees.
Ideally, the performance of these prediction rules is estimated based on an independent test
dataset, denoted as Dtest, consisting of ntest test observations.

Considering the ith observation from the test dataset (i = 1, . . . , ntest), we denote its
true response as yi, which can be either a numeric value (in the case of regression) or the
binary label 0 vs. 1 (in the case of binary classification). The predicted value output by
tree t (with t = 1, . . . , T ) is denoted as ŷit, while ŷi stands for the predicted value output
by the whole random forest. Note that, in the case of regression, ŷi is usually obtained by

4



To Tune or Not to Tune the Number of Trees in Random Forest

averaging as

ŷi =
1

T

T∑

t=1

ŷit.

In the case of classification, ŷi is usually obtained by majority voting. For binary classifica-
tion, it is equivalent to computing the same average as for regression, which now takes the
form

p̂i =
1

T

T∑

t=1

I(ŷit = 1)

and is denoted as p̂i (standing for probability), and finally deriving ŷi as

ŷi =

{
1 if p̂i > 0.5,

0 otherwise.

2.3 Measures of Perfomance for Binary Classification and Regression

In regression as well as in classification, the performance of a RF for observation i is usually
quantified through a so-called loss function measuring the discrepancy between the true
response yi and the predicted response ŷi or, in the case of binary classification, between yi
and p̂i. For both regression and binary classification, the classical and most straightforward
measure is defined for observation i as

ei = (yi − ŷi)2 = L(yi, ŷi),

with L(., .) standing for the loss function L(x, y) = (x − y)2. In the case of regression this
is simply the squared error. Another common loss function in the regression case is the
absolute loss L(x, y) = |x − y|. For binary classification both measures simplify to ei = 0
if observation i is classified correctly by the RF, ei = 1 otherwise, which we will simply
denote as error from now on. One can also consider the performance of single trees, that
means the discrepancy between yi and ŷit. We define eit as

eit = L(yi, ŷit) = (yi − ŷit)2

and the mean error—a quantity we need to derive our theoretical results on the dependence
of performance measures on the number of tree T—as

εi = E(eit),

where the expectation is taken over the possible trees conditionally on D. The term εi
can be interpreted as the difficulty to predict yi with single trees. In the case of binary
classification, we have (yi− ŷit)2 = |yi− ŷit| and εi can be simply estimated as |yi− p̂i| from
a RF with a large number of trees.

In the case of binary classification, it is also common to quantify performance through
the use of the Brier score, which has the form

bi = (yi − p̂i)2 = L(yi, p̂i)

5



Probst and Boulesteix

or of the logarithmic loss

li = −(yi ln(p̂i) + (1− yi) ln(1− p̂i)).
Both of them are based on p̂i rather than ŷi, and can thus be only defined for the whole
RF and not for single trees.

The area under the ROC curve (AUC) cannot be expressed in terms of single observa-
tions, as it takes into account all observations at once by ranking the p̂i-values. It can be
interpreted as the probability that the classifier ranks a randomly chosen observation with
yi = 1 higher than a randomly chosen observation with yi = 0. The larger the AUC, the
better the discrimination between the two classes. The (empirical) AUC is defined as

AUC =

∑n1
i=1

∑n2
j=1 S(p̂?i , p̂

??
j )

n1n2
,

where p̂?1, ..., p̂
?
n1

are probability estimations for the n1 observations with yi = 1, p̂??1 , ..., p̂
??
n2

are probability estimations for the n2 observations with yi = 0 and S(., .) is defined as
S(p, q) = 0 if p < q, S(p, q) = 0.5 if p = q and S(p, q) = 1 if p > q. The AUC can also be
interpreted as the Mann-Whitney U-Statistic divided by the product of n1 and n2.

2.4 Measures for Multiclass Classification

The measures defined in the previous section can be extended to the multiclass classification
case. LetK denote the number of classes (K > 2). The response yi takes values in {1, ...,K}.
The error for observation i is then defined as

ei = I(yi 6= ŷi).

We denote the estimated probability of class k for observation i as

p̂ik =
1

T

T∑

t=1

I(ŷit = k).

The logarithmic loss is then defined as

li =

K∑

k=1

−I(yi = k) log(p̂ik)

and the generalized Brier score is defined as

bi =
K∑

k=1

(p̂ik − I(yi = k))2,

which in the binary case is twice the value of the definition that was used in the previous
section. Following Hand and Till (2001), the AUC can also be generalized to the multiclass
case as

AUC =
1

K(K − 1)

K∑

j=1

K∑

k=1
k 6=j

AUC(j, k),

where AUC(j, k) is the AUC between class k and j, see also Ferri et al. (2009) for more
details. It is equivalent to the definition given in Section 2.3 in the binary classification
case.

6



To Tune or Not to Tune the Number of Trees in Random Forest

2.5 Test Dataset Error vs. Out-of-Bag Error

In the cases where a test dataset Dtest is available, performance can be assessed by averaging
the chosen performance measure (as described in the previous paragraphs) over the ntest
observations. For example the classical error rate (for binary classification) and the mean
squared error (for regression) are computed as

1

ntest

ntest∑

i=1

L(yi, ŷi),

with L(x, y) = (x−y)2, while the mean absolute error (for regression) is obtained by defining
L(., .) as L(x, y) = |x − y|. Note that, in the context of regression, Rousseeuw (1984)
proposes to consider the median med (L(y1, ŷ1), ..., L(yntest , ŷntest)) , instead of averaging,
which results in the median squared error for the loss function L(x, y) = (x − y)2 and in
the median absolute error for the loss function L(x, y) = |x− y|. These measures are more
robust against outliers and contamination (Rousseeuw, 1984).

An alternative to the use of a test dataset is the out-of-bag error which is calculated
by using the out-of-bag (OOB) estimations of the training observations. OOB predictions
are calculated by predicting the class, the probability (in the classification case) or the real
value (in the regression case) for each training observation i (for i = 1, . . . , n) by using only
the trees for which this observation was not included in the bootstrap sample (i.e., it was
not used to construct the tree). Note that these predictions are obtained based on a subset
of trees—including on average T×0.368 trees. These predictions are ultimately compared
to the true values by calculating performance measures (see Sections 2.3, 2.4 and 2.5).

3. Theoretical Results

In this section we compute the expected performance—according to the error, the Brier score
and the logarithmic loss outlined in Section 2.3—of a binary classification or regression RF
consisting of T trees as estimated based on the ntest test observations, while considering the
training dataset as fixed. For the AUC we prove that it can be a non-monotonous function
in T . The case of other measures (mean absolute error, median of squared error and median
of absolute error for regression) and multiclass classification is much more more complex to
investigate from a theoretical point of view. It will be examined empirically in Section 4.

In this section we are concerned with expected performances, where expectation is taken
over the sets of T trees. Our goal is to study the monotonicity of the expected errors
with respect to T . The number T of trees is considered a parameter of the RF and now
mentioned in parentheses everytime we refer to the whole forest.

3.1 Error Rate (Binary Classification)

We first show that for single observations the expected error rate curve can be increasing
and then show exemplified how this can influence the shape of the average curve of several
observations. The observation that bagging can worsen the expected error rate of a single
observation was already done by Hastie et al. (2001), Breiman (1996a) and Friedman (1997).
In this section we provide a general formula explaining this observation, and then extend
our theoretical considerations to further performance measures in the following sections.

7



Probst and Boulesteix

0 100 200 300 400 500

0.
0

0.
4

0.
8

number of trees

E
(e

i(T
))

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

εi

0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

0 100 200 300 400 500

0.
0

0.
4

0.
8

number of trees

E
(e

i(T
))

Figure 2: Left: Expected error rate curves for different εi values. Right: Plot of the average
curve (black) of the curves with ε1 = 0.05, ε2 = 0.1, ε3 = 0.15, ε4 = 0.2, ε5 = 0.55
and ε6 = 0.6 (depicted in grey and dotted)

3.1.1 Theoretical Considerations

Let us first consider the classical error rate ei(T ) for observation i with a RF including T
trees and derive its expectation, conditionally on the training set D,

E(ei(T )) = E

(
I

(
1

T

T∑

t=1

eit > 0.5

))
= P

(
T∑

t=1

eit > 0.5 · T
)
.

We note that eit is a binary variable with E(eit) = εi. Given a fixed training dataset D
and observation i, the eit, t = 1, ..., T are mutually independent. It follows that the sum
Xi =

∑T
t eit follows the binomial distribution B(T, εi). It is immediate that the contribution

of observation i to the expected error rate, P (Xi > 0.5 · T ), is an increasing function in T
for εi > 0.5 and a decreasing function in T for εi < 0.5.

Note that so far we ignored the case where
∑T

t=1 eit = 0.5 · T , which may happen when
T is even. In this case, the standard implementation in R (randomForest) assigns the
observation randomly to one of the two classes. This implies that 0.5 ·P (

∑T
t=1 eit = 0.5 ·T )

has to be added to the above term, which does not affect our considerations on the εi’s role.

3.1.2 Impact on Error Rate Curves

The error rate curve for observation i is defined as the curve described by the function
ei : T → R. The expectation E(ei(T )) of the error rate curve for observation i with
the mentioned adjustment in the case of an even number of trees can be seen in the left
plot of Figure 2 for different values of εi. Very high and very low values of εi lead to rapid
convergence, while for εi-values close to 0.5 more trees are needed to reach the plateau. The
error rate curve obtained for a test dataset consists of the average of the error rate curves
of the single observations. Of course, if trees are good classifiers we should have εi < 0.5
for most observations. In many cases, observations with εi > 0.5 will be compensated by

8



To Tune or Not to Tune the Number of Trees in Random Forest

observations with εi < 0.5 in such a way that the expected error rate curve is monotonously
decreasing. This is typically the case if there are many observations with εi ≈ 0 and a few
with εi ≈ 1. However, if there are many observations with εi ≈ 0 and a few observations
with εi ≥ 0.5 that are close to 0.5, the expected error rate curve initially falls down quickly
because of the observation with εi ≈ 0 and then grows again slowly as the number of trees
increases because of the observations with εi ≥ 0.5 close to 0.5. In the right plot of Figure
2 we can see (black solid line) the mean of the expected error rate curves for ε1 = 0.05,
ε2 = 0.1, ε3 = 0.15, ε4 = 0.2, ε5 = 0.55 and ε6 = 0.6 (displayed as gray dashed lines) and
can see exactly the non-monotonous pattern that we expected: due to the εi’s 0.55 and 0.6
the average curve increases again after reaching a minimum. In Section 4 we will see that
the two example datasets whose non-monotonous out-of-bag error rate curves are depicted
in the introduction have a similar distribution of εi.

We see that the convergence rate of the error rate curve is only dependent on the
distribution of the εi’s of the observations. Hence, the convergence rate of the error rate
curve is not directly dependent on the number of observations n or the number of features,
but these characteristics could influence the empirical distribution of the εi’s and hence
possibly the convergence rate as outlined in Section 4.4.1.

3.2 Brier Score (Binary Classification) and Squared Error (Regression)

We now turn to the Brier score and compute the expected Brier score contribution of
observation i for a RF including T trees, conditional on the training set D. We obtain

E(bi(T )) = E((yi − p̂i(T ))2) = E



(
yi −

1

T

T∑

t=1

ŷit

)2



= E



(

1

T

T∑

t=1

(yi − ŷit)
)2

 = E



(

1

T

T∑

t=1

eit

)2

 .

From E(Z2) = E(Z)2 + V ar(Z) with Z = 1
T

∑T
t=1 eit it follows:

E(bi(T )) = E(eit)
2 +

V ar(eit)

T
,

which is obviously a strictly monotonous decreasing function of T . This also holds for the
average over the observations of the test dataset. In the case of binary classification, we have
eit ∼ B(1, εi), yielding E(eit) = εi and V ar(eit) = εi(1−εi), thus allowing the formulation of

E(bi(T )) as E(bi(T )) = ε2i + εi(1−εi)
T . Note that the formula E(bi(T )) = E(eit)

2+V ar(eit)/T
is also valid for the squared error in the regression case, except that in this case we would
write ŷi instead of p̂i in the first line.

3.3 Logarithmic Loss (Binary Classification)

As outlined in Section 2.3, another usual performance measure based on the discrepancy
between yi and p̂i is the logarithmic loss li(T ) = −(yi ln(p̂i(T )) + (1 − yi) ln(1 − p̂i(T ))).
Noticing that p̂i(T ) = 1 − 1

T

∑T
t=1 eit for yi = 1 and p̂i(T ) = 1

T

∑T
t=1 eit for yi = 0, it can

9



Probst and Boulesteix

be in both cases yi = 0 and yi = 1 reformulated as

li(T ) = − ln

(
1− 1

T

T∑

t=1

eit

)
.

In the following we ensure that the term inside the logarithm is never zero by adding a very
small value a to 1 − 1

T

∑T
t=1 eit. The logarithmic loss li(T ) is then always defined and its

expectation exists. This is similar to the solution adopted in the mlr package, where 10−15

is added in case that the inner term of the logarithm equals zero.
With Z := 1− 1

T

∑T
t=1 eit + a, we can use the Taylor expansion,

E [f(Z)] =E [f(µZ + (Z − µZ))]

≈E
[
f(µZ) + f ′(µZ) (Z − µZ) +

1

2
f ′′(µZ) (Z − µZ)2

]

=f(µZ) +
f ′′(µZ)

2
· V ar(Z) = f(E(Z)) +

f ′′(E(Z))

2
· V ar(Z)

where µZ stands for E(Z) and f(.) as f(.) = − ln(.). We have V ar(Z) = εi(1−εi)
T , E(Z) =

1− εi + a, f(E(Z)) = − ln(1− εi + a) and f ′′(E(Z)) = (1− εi + a)−2, finally yielding

E(li(T )) ≈ − ln(1− εi + a) +
εi(1− εi)

2T (1− εi + a)2
,

which is obviously a decreasing function of T . The Taylor approximation gets better and
better for increasing T , since the variance of li(T ) decreases with increasing T and thus
li(T ) tends to get closer to its expectancy.

3.4 Area Under the ROC Curve (AUC) (Classification)

For the AUC, considerations such as those we made for the error rate, the Brier score and the
logarithmic loss are impossible, since the AUC is not the sum of individual contributions
of the observations. It is however relatively easy to see that the expected AUC is not
always an increasing function of the number T of trees. For example, think of the trivial
example of a test dataset consisting of two observations with responses y1 resp. y2 and
E(p̂1(T )) = 0.4 resp. E(p̂2(T )) = 0.6. If y1 = 0 and y2 = 1, the expected AUC curve
increases monotonously with T , as the probability of a correct ordering according to the
calculated scores p̂1(T ) and p̂2(T ) increases. However, if y1 = 1 and y2 = 0, we obtain a
monotonously decreasing function, as the probability of a wrong ordering gets higher with
increasing number of trees. It is easy to imagine that for different combinations of E(p̂i(T )),
one can obtain increasing curves, decreasing curves or non-monotonous curves.

3.5 Adapting the Models to the OOB Error

The “OOB estimator” of the performance outlined in Section 2.5 is commonly considered
as an acceptable proxy of the performance estimator obtained through the use of an inde-
pendent test dataset or through resampling-techniques such as cross-validation (Breiman,
1996b) for a random forest including T × 0.368 trees. Compared to these techniques, the

10



To Tune or Not to Tune the Number of Trees in Random Forest

OOB estimator has the major advantage that it neither necessitates to fit additional random
forests (which is advantageous in terms of computational resources) nor to reduce the size
of the dataset through data splitting. For these reasons, we will consider OOB performance
estimators in our empirical study.

However, if we consider the OOB error instead of the test error from an independent
dataset, the formulas given in the previous subsections are not directly applicable. After
having trained T trees, for making an OOB estimation for an observation we can only use
the trees for which the observation was out-of-bag. If we take a simple bootstrap sample
from the n training observation when bagging we have on average only T · (1 − 1

n)n ≈
T · exp (−1) ≈ T · 0.368 trees for predicting the considered observation. This means that
we would have to replace T by T · exp (−1) in the above formulas and that the formulas
are no longer exact because T · exp (−1) is only an average. Nonetheless it is still a good
approximation as confirmed in our benchmark experiments.

4. Empirical Results

This section shows a large-scale empirical study based on 193 classification tasks and 113
regression tasks from the public database OpenML (Vanschoren et al., 2013). The datasets
are downloaded with the help of the OpenML R package (Casalicchio et al., 2017). The goals
of this study are to (i) give an order of magnitude of the frequency of non-monotonous pat-
terns of the error rate curve in real data settings; (ii) empirically confirm our statement that
observations with εi greater than (but close to) 0.5 are responsible for non-monotonous pat-
terns; (iii) analyse the results for other classification measures, the multiclass classification
and several regression measures; (iv) analyse the convergence rate of the OOB curves.

4.1 Selection of Datasets

To select the datasets to be included in our study we define a set of candidate datasets—in
our case the datasets available from the OpenML platform (Vanschoren et al., 2013)—and
a set of inclusion criteria as recommended in Boulesteix et al. (2017). In particular, we do
not select datasets with respect to the results they yield, thus warranting representativity.

Our inclusion criteria are as follows: (i) the dataset has predefined tasks in OpenML
(see Vanschoren et al., 2013, for details on the OpenML nomenclature); (ii) it includes less
than 1000 observations; (iii) it includes less than 1000 features. The two latter criteria aim
at keeping the computation time feasible.

Cleaning procedures such as the deletion of duplicated datasets (whole datasets that
appear twice in the OpenML database) are also applied to obtain a decent collection of
datasets. No further modification of the tasks and datasets were done.

This procedure yields a total of 193 classification tasks and 113 regression tasks.

From the 193 classification tasks, 149 are binary classification tasks and 44 multiclass
classification tasks.

The tasks contained easy, medium and difficult tasks - for binary classification tasks the
mean (out-of-bag) AUC of a random forest with 2000 trees was 0.841, the minimum 0.502,
the first quartile 0.732, the median 0.870, the third quartile 0.962 and the maximum 1.
Similarly the regression tasks contained easy and difficult tasks with a mean R2 of 0.559.

11



Probst and Boulesteix

4.2 Study Design

For each dataset we run the RF algorithm with T = 2000 trees 1000 times successively
with different seeds using the R package randomForest (Liaw and Wiener, 2002) with the
default parameter settings. We choose 2000 trees because in a preliminary study on a
subset of the datasets we could observe that convergence of the OOB curves was reached
within these 2000 trees. Note that all reported results regarding the performance gain and
convergence are made with the out-of-bag predictions. As for these predictions on average
only exp(−1) · T of the T trees are used, the convergence of independent test data is faster
by the factor 2.7. For the classification tasks we calculate the OOB curves for the error
rate, the balanced error rate, the (multiclass) Brier score, the logarithmic loss and the
(multiclass) AUC using our new package OOBCurve, see details in the next section.

For the regression tasks we calculate the OOB curves using the mean squared error,
the mean absolute error, the median squared error and the median of absolute error as
performance measures. We parallelize the computations using the R package batchtools

(version 0.9.0) (Lang et al., 2017). For each measure and each dataset, the final curve is
obtained by simply averaging over the 1000 runs of RF. We plot each of them in three
files separetely for binary classification, multiclass classification and regression. In the plots
the x-axis starts at T = 11 since overall performance estimates are only defined if each
observation was out-of-bag in at least one of the T trees, which is not always the case in
practice for T < 10. We plot the curves only until T = 500, as no interesting patterns can
be observed after this number of trees (data not shown). The graphics, the R-codes and the
results of our experiment can be found on https://github.com/PhilippPro/tuneNtree.

4.3 The R Package OOBCurve

The calculation of out-of-bag estimates for different performance measures is implemented
in our new R package OOBCurve. More precisely, it takes a random forest constructed with
the R package randomForest (Liaw and Wiener, 2002) or ranger (Wright, 2016) as input
and can calculate the OOB curve for any measure that is available from the mlr package
(Bischl et al., 2016). The OOBCurve package is available on CRAN R package repository
and also on Github (https://github.com/PhilippPro/OOBCurve). It is also possible to
calculate OOB curves of other hyperparameters of RF such as mtry with this package.

4.4 Results for Binary Classification

The average gain in performance in the out-of-bag performance for 2000 trees instead of 11
trees is -0.0324 for the error rate, -0.0683 for the brier score, -2.383 for the logarithmic loss
and 0.0553 for the AUC. In the following we will concentrate on the visual analysis of the
graphs and are especially interested in the results of the error rate.

4.4.1 Overall Results for the OOB Error Rate Curves

We observe in the graphs of the OOB error rate curves that for most datasets the curve is
quickly decreasing until it converges to a dataset-specific plateau value. In 16 cases which
make approximately 10% of the datasets, however, the curve grows again after reaching
its lowest value, leading to a value at 2000 trees that is by at least 0.005 bigger than the

12



To Tune or Not to Tune the Number of Trees in Random Forest

lowest value of the OOB error rate curve for T ∈ [10, 250]. This happens mainly for smaller
datasets, where a few observations can have a high impact on the error curve. Of these 16
cases 15 belong to the smaller half of the datasets—ordered by the number of observations
multiplied with the number of features. The mean increase of these 16 datasets was 0.020
(median: 0.012). The difference in mean and median is mainly caused by one outlier where
the increase was around 0.117.

4.4.2 Datasets with Non-Monotonous OOB Error Rate Curve

We now examine in more detail the datasets yielding non-monotonous patterns. In partic-
ular, the histograms of the estimates ε̂i = |yi − p̂i| of the observation-specific errors εi are
of interest, since our theoretical results prove that the distribution of the εi determines the
form of the expected error rate curve. To get these histograms we compute the estimates ε̂i
of the observation-specific errors εi (as defined in Section 2.3) from a RF with a big number
T = 100000: the more trees, the more accurate the estimates of εi.

The histograms for the exemplary datasets considered in the introduction (see Figure 1)
are displayed in Figure 3. A typical histogram for an OOB curve with monotonously
decreasing error rate curve is displayed in the left panel. The heights of the bins of this
histogram of the ε̂i are monotonously decreasing from 0 to 1.

The histograms for the non-monotonous error rate curves from the introduction can be
seen in the middle (OpenML ID 862) and right (OpenML ID 938) panels of Figure 3. In
both cases we see that a non-negligible proportion of observations have εi larger than but
close to 0.5. This is in agreement with our theoretical results. With growing number of
trees the chance that these observations are incorrectly classified increases, while the chance
for observations with εi ≈ 0 is already very low—and thus almost constant. Intuitively we
expect such shapes of histograms for datasets with few observations—where by chance the
shape of the histogram of the ε̂i could look like in our two examples. For bigger datasets
we expect smoother shapes of the histogram, yielding strictly decreasing error rate curves.

Dataset with OpenML ID 37

Probabilities for false classification

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

Dataset with OpenML ID 862

Probabilities for false classification

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8

0
5

10
15

Dataset with OpenML ID 938

Probabilities for false classification

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

12

Figure 3: Histograms of the estimates of εi (i = 1, . . . , n) from random forests with 100000
trees for dataset with IDs 36, 862 and 938

13



Probst and Boulesteix

error rate Brier score logarithmic loss AUC
error rate 1.00 (1.00) 0.28 (0.44) 0.27 (0.45) -0.18 (-0.43)

Brier score 0.72 (0.86) 1.00 (1.00) 0.96 (0.98) -0.63 (-0.87)
logarithmic loss 0.65 (0.84) 0.93 (0.95) 1.00 (1.00) -0.63 (-0.87)

AUC -0.64 (-0.85) -0.84 (-0.95) -0.81 (-0.92) 1.00 (1.00)

Table 1: Linear (bottom-left) and rank (top-right) correlation results for binary classifica-
tion datasets and for multiclass classification (in brackets)

4.4.3 Other Measures

For the Brier score and the logarithmic loss we observe, as expected, monotonically decreas-
ing curves for all datasets. The expected AUC curve usually appears as a growing function
in T . In a few datasets such as the third binary classification example (OpenML ID 905),
however, it falls after reaching a maximum.

To assess the similarity between the different curves, we calculate the Bravais-Pearson
linear correlation and Kendall’s τ rank correlation between the values of the OOB curves of
the different performance measures and average these correlation matrices over all datasets.
Note that we do not perform any correlation tests, since the assumption of independent
identically distributed observations required by these tests is not fulfilled: our correlation
analyses are meant to be explorative. The results can be seen in Table 1. The Brier score
and logarithmic loss have the highest correlation. They are also more correlated to the
AUC than to the error rate, which has the lowest correlation to all other measures.

4.5 Results for Multiclass Classification

The average gain in out-of-bag performance for 2000 trees instead of 11 trees is -0.0753 for
the error rate, -0.1282 for the brier score, -5.3486 for the logarithmic loss and 0.0723 for the
AUC. These values are higher than the ones from binary classification. However, the visual
observations we made for the binary classification also hold for the multiclass classification.
For 5 of the 44 datasets the minimum error rate for T ∈ [11; 250] is lower by more than
0.005 than the error rate for T = 2000. In contrast to the binary classification case, 3 of
these 5 datasets belong to the bigger half of the datasets. The results for the correlation
are quite similar, although the correlation (see Table 1) is in general slightly higher than in
the binary case.

4.6 Results for Regression

The average performance gain regarding the out-of-bag performance of the R2 for 2000
trees compared to 11 trees is 0.1249. In the OOB curves for regression we can observe the
monotonously decreasing pattern expected from theory in the case of the most widely used
mean squared error (mse). The mean absolute error (mae) is also strictly decreasing for all
the datasets considered in our study.

For the median squared error (medse) and the median absolute error (medae), we get a
performance gain by using 2000 trees instead of 10 in most but not all cases (around 80% of
the datasets). In many cases (around 50%) the minimum value for T ∈ [11; 250] is smaller

14



To Tune or Not to Tune the Number of Trees in Random Forest

than the value for T = 2000 which means that growing more trees is rather disadvantagous
in these cases in terms of medse and medae. This could be explained by the fact that each
tree in a random forest tries to minimize the squared error in the splits and therefore adding
more trees to the forest will improve the mean squared error but not necessarily measures
that use the median. More specifically, one could imagine that the additional trees focus on
the reduction of the error for outlying observations at the price of an increase of the median
error. In a simulated dataset (linear model with 200 observations, 5 relevant features and 5
non-relevant features drawn from a multivariate normal distribution) we could observe this
pattern (data not shown). Without outlier all expected curves are strictly decreasing. When
adding an outlier (changing the outcome of one observation to a very big value) the expected
curves of mse and mae are still strictly decreasing, while the expected curves of medse and
medae show are increasing for higher T . The curves of the measures which take the mean of
the losses of all observations have a high linear and rank correlation (> 0.88), as well as the
curves of the measures which take the median of the losses (> 0.97). Correlation between
these two groups of measures are lower, around 0.5 for the linear correlation coefficient and
around 0.2 for the rank correlation coefficient.

4.7 Convergence

It is clearly visible from the out-of-bag curves (https://github.com/PhilippPro/tune
Ntree/tree/master/graphics) that increasing the number of trees yields a substantial
performance gain in most of the cases, but the biggest performance gain in the out-of-bag
curves can be seen while growing the first 250 trees. Setting the number of trees from 10
to 250 in the binary classification case provides an average decrease of 0.0306 of the error
rate and an increase of 0.0521 of the AUC. On the other hand, using 2000 trees instead
of 250 does not yield a big performance gain, the average error rate improvement is only
0.0018 (AUC: 0.0032). The improvement in the multiclass case is bigger with an average
improvement of the error rate of 0.0739 (AUC: 0.0665) from 10 trees to 250 and an average
improvement of 0.0039 (AUC: 0.0057) for using 2000 trees instead of 250. For regression
we have an improvement of 0.1210 of the R2 within the first 250 trees and an improvement
of 0.0039 for using 2000 trees instead of 250. These results are concordant with a comment
by Breiman (1996a) (Section 6.2) who notes that fewer bootstrap replicates are necessary
when the outcome is numerical and more are required for an increasing number of classes.

5. Conclusions and Extensions

In this section we draw conclusions of the given results and discuss possible extensions.

5.1 Assessment of the Convergence

For the assessment of the convergence in the classification case we generally recommend
using measures other than the error rate, such as AUC, the Brier score or the logarithmic
loss for which the OOB curves are much more similar as we have seen in our correlation
analysis. Their convergence rate is not so dependent on observations with εi close to 0.5
(in the binary classification case), and they give an indication of the general stability of the
probability estimations of all observations. This can be especially important if the threshold

15



Probst and Boulesteix

for classification is not set a priori to 0.5. The new OOBCurve R package is a tool to examine
the rate of convergence of the trained RF with any measure that is available in the mlr R
package. It is important to remember that for the calculation of the OOB error curve at
T only exp(−1) · T trees are used. Thus, as far as future independent data is concerned,
the convergence of the performances is by exp(1) ≈ 2.7 faster than observed from our OOB
curves. Having this in mind, our observations (see Section 4.7) are in agreement with the
results of Oshiro et al. (2012), who conclude that after growing 128 trees no big gain in the
AUC performance could be achieved by growing more trees.

5.2 Why More Trees Are Better

Non-monotonous expected error rate curves observed in the case of binary classification
might be seen as an argument in favour of tuning the number T of trees. Our results,
however, suggest that tuning is not recommendable in the case of classification. Firstly,
non-monotonous patterns are observed only with some performance measures such as the
error rate and the AUC in case of classification. Measures such as the Brier score or the
logarithmic loss, which are based on probabilities rather than on the predicted class and can
thus be seen as more refined, do not yield non-monotonous patterns, as theoretically proved
in Section 3 and empirically observed based on a very large number of datasets in Section 4.
Secondly, non-monotonous patterns in the expected error rate curves are the result of a
particular rare combination of εi’s in the training data. Especially if the training dataset
is small, the chance is high that the distribution of the εi will be different for independent
test data, for example values of εi close to but larger than 0.5 may not be present. In this
case, the expected error rate curve for this independent future dataset would not be non-
monotonous, and a large T is better. Thirdly, even in the case of non-monotonic expected
error rate curves, the minimal error rate value is usually only slightly smaller than the value
at convergence (see Section 4.4.1). We argue that this very small gain - which, as outlined
above, is relevant only for future observations with εi > 0.5 - probably does not compensate
the advantage of using more trees in terms of other performance measures or in terms of the
precision of the variable importance measures, which are very commonly used in practice.

In the case of regression, our theoretical results show that the expected out-of-bag mse
curve is monotonously decreasing. For the mean absolute error the empirical results suggest
the same. In terms of the less common measures median squared error and median absolute
error (as opposed to mean losses), however, performance may get worse with increasing
number of trees. More research is needed.

5.3 Extensions

Note that our theoretical results are not only valid for random forest but generalizable to any
ensemble method that uses a randomization technique, since the fact that the base learners
are trees and the specific randomization procedure (for example bagging) do not play any
role in our proofs. Our theoretical results could possibly be extended to the multiclass case,
as supported by our results obtained with 44 multiclass datasets.

Although we claim that increasing the number of trees cannot harm noticeably as far
as measures based on average loss are considered, our empirical results show that for most
of the examined datasets, the biggest performance gain is achieved when training the first

16



To Tune or Not to Tune the Number of Trees in Random Forest

100 trees. However, the rate of convergence may be influenced by other hyperparameters of
the RF. For example lower sample size while taking bootstrap samples for each tree, bigger
constraints on the tree depth or more variables lead to less correlated trees and hence more
trees are needed to reach convergence.

One could also think of an automatic break criterion which stops the training automat-
ically according to the convergence of the OOB curves. For example, training could be
stopped if the last Tlast trees did not improve performance by more than ∆, where Tlast
and ∆ are parameters that should be fixed by the user as a compromise between perfor-
mance and computation time. Note that, if variable importances are computed, it may be
recommended to also consider their convergence. This issue also requires more research.

Acknowledgments

We would like to thank Alexander Dürre for useful comments on the approximation of the
logarithmic loss and Jenny Lee for language editing.

References

Ranjan Kumar Barman, Sudipto Saha, and Santasabuj Das. Prediction of interactions
between viral and host proteins using supervised machine learning methods. PLOS ONE,
9(11):1–10, 2014.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,
Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning in R. Journal of
Machine Learning Research, 17(170):1–5, 2016. R package version 2.9.

Anne-Laure Boulesteix, Rory Wilson, and Alexander Hapfelmeier. Towards evidence-based
computational statistics: lessons from clinical research on the role and design of real-data
benchmark studies. BMC Medical Research Methodology, 17(1):138, 2017.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996a.

Leo Breiman. Out-of-bag estimation. Technical report, Statistics Department, University
of California 1996, 1996b.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke,
Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren, and Bernd Bischl. OpenML: An R
package to connect to the machine learning platform OpenML. Computational Statistics,
32(3):1–15, 2017.

César Ferri, José Hernández-Orallo, and R Modroiu. An experimental comparison of per-
formance measures for classification. Pattern Recognition Letters, 30(1):27–38, 2009.

Jerome H Friedman. On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data
Mining and Knowledge Discovery, 1(1):55–77, 1997.

17



Probst and Boulesteix

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 29(5):1189–1232, 2001.

David J Hand and Robert J Till. A simple generalisation of the area under the ROC curve
for multiple class classification problems. Machine Learning, 45(2):171–186, 2001.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing. Springer Series in Statistics. Springer New York Inc., New York, NY, USA, 2001.

Daniel Hernández-Lobato, Gonzalo Mart́ınez-Muñoz, and Alberto Suárez. How large should
ensembles of classifiers be? Pattern Recognition, 46(5):1323–1336, 2013.

Torsten Hothorn, Kurt Hornik, and Achim Zeileis. Unbiased recursive partitioning: A
conditional inference framework. Journal of Computational and Graphical Statistics, 15
(3):651–674, 2006.

Michel Lang, Bernd Bischl, and Dirk Surmann. batchtools: Tools for R to work on batch
systems. The Journal of Open Source Software, 2(10), 2017.

Patrice Latinne, Olivier Debeir, and Christine Decaestecker. Limiting the number of trees
in random forests. In International Workshop on Multiple Classifier Systems, pages 178–
187. Springer, 2001.

Andy Liaw and Matthew Wiener. Classification and regression by randomForest. R News,
2(3):18–22, 2002. R package version 4.6-12.

Thais Mayumi Oshiro, Pedro Santoro Perez, and José Augusto Baranauskas. How many
trees in a random forest? In International Workshop on Machine Learning and Data
Mining in Pattern Recognition, pages 154–168. Springer, 2012.

Piergiorgio Palla and Giuliano Armano. RFmarkerDetector: Multivariate Analysis of
Metabolomics Data using Random Forests, 2016. R package version 1.0.1.

Arvind Raghu, Praveen Devarsetty, Peiris David, Tarassenko Lionel, and Clifford Gari.
Implications of cardiovascular disease risk assessment using the who/ish risk prediction
charts in rural india. PLOS ONE, 10(8):1–13, 2015.

Peter J. Rousseeuw. Least median of squares regression. Journal of the American Statistical
Association, 79(388):871–880, 1984.

Mark R Segal. Machine learning benchmarks and random forest regression. Center for
Bioinformatics & Molecular Biostatistics, 2004.

Carolin Strobl, Anne-Laure Boulesteix, Achim Zeileis, and Torsten Hothorn. Bias in ran-
dom forest variable importance measures: Illustrations, sources and a solution. BMC
Bioinformatics, 8(1):25, 2007.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Marvin N. Wright. ranger: A Fast Implementation of Random Forests, 2016. R package
version 0.6.0.

18



ADVANCED REV I EW

Hyperparameters and tuning strategies for random forest

Philipp Probst1 | Marvin N. Wright2 | Anne-Laure Boulesteix1

1Institute for Medical Information Processing,
Biometry und Epidemiology, Ludwig-
Maximilians-Universität München, Munich,
Germany
2Leibniz Institute for Prevention Research and
Epidemiology – BIPS, Bremen, Germany

Correspondence
Philipp Probst, Institute for Medical Information
Processing, Biometry und Epidemiology, Ludwig-
Maximilians-Universität München, Marchioninistr.
15, 81377 Munich, Germany.
Email: probst@ibe.med.uni-muenchen.de

Funding information
Deutsche Forschungsgemeinschaft, Grant/Award
Number: BO3139/2-3BO3139/6-1;
Bundesministerium für Bildung und Forschung,
Grant/Award Number: 01IS18036A

The random forest (RF) algorithm has several hyperparameters that have to be set by
the user, for example, the number of observations drawn randomly for each tree and
whether they are drawn with or without replacement, the number of variables drawn
randomly for each split, the splitting rule, the minimum number of samples that a
node must contain, and the number of trees. In this paper, we first provide a literature
review on the parameters' influence on the prediction performance and on variable
importance measures. It is well known that in most cases RF works reasonably well
with the default values of the hyperparameters specified in software packages. Never-
theless, tuning the hyperparameters can improve the performance of RF. In the sec-
ond part of this paper, after a presenting brief overview of tuning strategies, we
demonstrate the application of one of the most established tuning strategies, model-
based optimization (MBO). To make it easier to use, we provide the tuneRanger R
package that tunes RF with MBO automatically. In a benchmark study on several
datasets, we compare the prediction performance and runtime of tuneRanger with
other tuning implementations in R and RF with default hyperparameters.

This article is categorized under:
Algorithmic Development > Biological Data Mining
Algorithmic Development > Statistics
Algorithmic Development > Hierarchies and Trees
Technologies > Machine Learning

KEYWORDS

ensemble, literature review, out-of-bag, performance evaluation, ranger,
sequential model-based optimization, tuning parameter

1 | INTRODUCTION

The random forest (RF) algorithm first introduced by Breiman (2001) has now grown to a standard nonparametric classifica-
tion and regression tool for constructing prediction rules based on various types of predictor variables without making any
prior assumption on the form of their association with the response variable. RF has been the topic of several reviews in the
last few years including our own review (Boulesteix, Janitza, Kruppa, & König, 2012) and others (Belgiu & Dr�aguţ, 2016;
Biau & Scornet, 2016; Criminisi, Shotton, & Konukoglu, 2012; Ziegler & König, 2014). RF involves several hyperparameters
controlling the structure of each individual tree (e.g., the minimal size nodesize a node should have to be split) and the struc-
ture and size of the forest (e.g., the number of trees) as well as its randomness (e.g., the number mtry of variables considered
as candidate splitting variables at each split or the sampling scheme used to generate the datasets on which the trees are built).
The impact of these hyperparameters has been studied in a number of papers. However, results on this impact are often
focused on single hyperparameters and provided as by-product of studies devoted to other topics (e.g., a new variant of RF)
and thus are difficult to find for readers without profound knowledge of the literature. Clear guidance is missing and the
choice of adequate values for the parameters remains a challenge in practice.

Received: 28 February 2018 Revised: 21 November 2018 Accepted: 12 December 2018

DOI: 10.1002/widm.1301

WIREs Data Mining Knowl Discov. 2019;e1301. wires.wiley.com/dmkd © 2019 Wiley Periodicals, Inc. 1 of 15
https://doi.org/10.1002/widm.1301



It is important to note that RF may be used in practice for two different purposes. In some RF applications, the focus is on
the construction of a classification or regression rule with good accuracy that is intended to be used as a prediction tool on
future data. In this case, the objective is to derive a rule with high prediction performance—where performance can be defined
in different ways depending on the context, the simplest approach being to consider the classification error rate in the case of
classification and the mean squared error in the case of regression. In other RF applications, however, the goal is not to derive
a classification or regression rule but to investigate the relevance of the candidate predictor variables for the prediction prob-
lem at hand or, in other words, to assess their respective contribution to the prediction of the response variable. See the discus-
sion by Shmueli (2010) on the difference between “predicting” and “explaining.” These two objectives have to be kept in
mind when investigating the effect of parameters. Note, however, that there might be overlap of these two objectives: For
example one might use a variable selection procedure based on variable importance measures to obtain a well performing pre-
diction rules using RF.

Note that most hyperparameters are so-called tuning parameters, in the sense that their values have to be optimized
carefully—because the optimal values are dependent on the dataset at hand. Optimality here refers to a certain performance
measure that has to be chosen beforehand. An important concept related to parameter tuning is overfitting: parameter values
corresponding to complex rules tend to overfit the training data, that is, to yield prediction rules that are too specific to the
training data—and perform very well for this data but probably worse for independent data. The selection of such suboptimal
parameter values can be partly avoided by using a test dataset or cross-validation procedures for tuning. In the case of random
forest, the out-of-bag observations can also be used.

We will see that for random forest not all but most presented parameters are tuning parameters. Furthermore, note that the
distinction between hyperparameters and algorithm variants is blurred. For example, the splitting rule may be considered as a
(categorical) hyperparameter, but also as defining distinct variants of the RF algorithm. Some arbitrariness is unavoidable
when distinguishing hyperparameters from variants of RF. In the present paper, considered hyperparameters are the number of
candidate variables considered at each split (commonly denoted as mtry), the hyperparameters specifying the sampling scheme
(the replace argument and the sample size), the minimal node size and related parameters, the number of trees, and the
splitting rule.

This paper addresses specifically the problem of the choice of parameters of the random forest algorithm from two differ-
ent perspectives. Its first part presents a review of the literature on the choice of the various parameters of RF, while the sec-
ond part presents different tuning strategies and software packages for obtaining optimal hyperparameter values which are
finally compared in a benchmark study.

2 | LITERATURE REVIEW

In the first section of this literature review, we focus on the influence of the hyperparameters on the prediction performance,
for example, the error rate or the area under the curve (AUC), and the runtime of random forest, while literature dealing specif-
ically with the influence on the variable importance is reviewed in the second section. In Table 1, the different hyperpara-
meters with description and typical default values are displayed.

2.1 | Influence on performance

As outlined in Breiman (2001), “[t]he randomness used in tree construction has to aim for low correlation ρ while maintain-
ing reasonable strength.” In other words, an optimal compromise between low correlation and reasonable strength of the trees
has to be found. This can be controlled by the parameters mtry, sample size, and node size which will be presented in
Section 2.1.1, 2.1.2, and 2.1.3, respectively. Section 2.1.4 handles the number of trees, while Section 2.1.5 is devoted to the
splitting criterion.

TABLE 1 Overview of the different hyperparameter of random forest and typical default values. n is the number of observations and p is the number of
variables in the dataset

Hyperparameter Description Typical default values

mtry Number of drawn candidate variables in each split
ffiffiffi

p
p

, p/3 for regression

Sample size Number of observations that are drawn for each tree n

Replacement Draw observations with or without replacement TRUE (with replacement)

Node size Minimum number of observations in a terminal node 1 for classification, 5 for regression

Number of trees Number of trees in the forest 500, 1,000

Splitting rule Splitting criteria in the nodes Gini impurity, p value, random

2 of 15 PROBST ET AL.



2.1.1 | Number of randomly drawn candidate variables (mtry)

One of the central hyperparameters of RF is mtry, as denoted in most RF packages, which is defined as the number of ran-
domly drawn candidate variables out of which each split is selected when growing a tree. Lower values of mtry lead to more
different, less correlated trees, yielding better stability when aggregating. Forests constructed with a low mtry also tend to bet-
ter exploit variables with moderate effect on the response variable that would be masked by variables with strong effect if
those had been candidates for splitting. However, lower values of mtry also lead to trees that perform on average worse, since
they are built based on suboptimal variables (that were selected out of a small set of randomly drawn candidates): possibly
nonimportant variables are chosen. We have to deal with a trade-off between stability and accuracy of the single trees.

As default value in several software packages mtry is set to
ffiffiffi

p
p

for classification and p/3 for regression with p being the
number of predictor variables. In their paper on the influence of hyperparameters on the accuracy of RF, Bernard, Heutte, and
Adam (2009) conclude that mtry ¼ ffiffiffi

p
p

is a reasonable value, but can sometimes be improved. They especially outline that the
real number of relevant predictor variables highly influences the optimal mtry. If there are many relevant predictor variables,
mtry should be set small because then not only the strongest influential variables are chosen in the splits but also less influen-
tial variables, which can provide small but relevant performance gains. These less influential variables might, for example, be
useful for the prediction of a small group of observations that stronger variables fail to predict correctly. If mtry is large, how-
ever, these less influential variables might not have the chance to contribute to prediction because stronger variables are prefer-
ably selected for splitting and thus “mask” the smaller effects. On the other hand, if there are only a few relevant variables out
of many, which is the case in many genetic datasets, mtry should be set high, so that the algorithm can find the relevant vari-
ables (Goldstein, Polley, & Briggs, 2011). A large mtry ensures that there is (with high probability) at least one strong variable
in the set of mtry candidate variables.

Further empirical results are provided by Genuer, Poggi, and Tuleau (2008). In their low dimensional classification prob-
lems mtry ¼ ffiffiffi

p
p

is convenient regarding the error rate. For low dimensional regression problems, in their examples
ffiffiffi

p
p

per-
forms better than p/3 regarding the mean squared error. For high dimensional data they observe lower error rates for higher
mtry values for both classification and regression, corroborating Goldstein et al. (2011).

Computation time decreases approximately linearly with lower mtry values (Wright & Ziegler, 2017), since most of RF's
computing time is devoted to the selection of the split variables.

2.1.2 | Sampling scheme: Sample size and replacement

The sample size parameter determines how many observations are drawn for the training of each tree. It has a similar effect as
the mtry parameter. Decreasing the sample size leads to more diverse trees and thereby lower correlation between the trees,
which has a positive effect on the prediction accuracy when aggregating the trees. However, the accuracy of the single trees
decreases, since fewer observations are used for training. Hence, similarly to the mtry parameter, the choice of the sample size
can be seen as a trade-off between stability and accuracy of the trees. Martínez-Muñoz and Suárez (2010) carried out an
empirical analysis of the dependence of the performance on the sample size. They concluded that the optimal value is problem
dependent and can be estimated with the out-of-bag predictions. In most datasets they observed better performances when
sampling less observations than the standard choice (which is to sample as many observations with replacement as the number
of observations in the dataset). Setting it to lower values reduces the runtime.

Moreover, Martínez-Muñoz and Suárez (2010) claim that there is no substantial performance difference between sampling
with replacement or without replacement when the sample size parameter is set optimally. However, both theoretical (Janitza,
Binder, & Boulesteix, 2016) and empirical results (Strobl, Boulesteix, Zeileis, & Hothorn, 2007) show that sampling with
replacement may induce a slight variable selection bias when categorical variables with varying number of categories are con-
sidered. In these specific cases, performance may be impaired by sampling with replacement, even if this impairment could
not be observed by Martínez-Muñoz and Suárez (2010) when considering averages over datasets of different types.

2.1.3 | Node size

The nodesize parameter specifies the minimum number of observations in a terminal node. Setting it lower leads to trees with
a larger depth which means that more splits are performed until the terminal nodes. In several standard software packages the
default value is 1 for classification and 5 for regression. It is believed to generally provide good results (Díaz-Uriarte & De
Andres, 2006; Goldstein et al., 2011) but performance can potentially be improved by tuning it (Lin & Jeon, 2006). In particu-
lar, Segal (2004) showed an example where increasing the number of noise variables leads to a higher optimal node size.

Our own preliminary experiments suggest that the computation time decreases approximately exponentially with increas-
ing node size. In our experience, especially in large sample datasets it may be helpful to set this parameter to a value higher
than the default one as it decreases the runtime substantially, often without substantial loss of prediction performance
(Segal, 2004).

PROBST ET AL. 3 of 15



Note that other hyperparameters than the node size may be considered to control the size of the trees. For example, the R
package party (Hothorn, Hornik, & Zeileis, 2006) allows to set the minimal size, minbucket, that child nodes should have for
the split to be performed. The hyperparameters nodesize and minbucket are obviously related, since the size of all parent nodes
equals at least twice the value of minbucket. However, setting minbucket to a certain value does not in general lead to the same
trees as setting nodesize to double this value. To explain this, let us consider a node of size n = 10 and a candidate categorical
predictor variable taking value 1 for n1 = 9 of the n = 10 observations of the node, and value 0 for the remaining observation.
If we set nodesize to 10 and do not put any restriction on minbucket (i.e., set it to 1), our candidate variable can be selected for
splitting. If, however, we proceed the other way around and set minbucket to 5 while not putting any restriction on nodesize
(i.e., while setting it to 2), our candidate variable cannot be selected, because it would produce a—too small—child node of
size 1. On one hand, one may argue that splits with two large enough child nodes are preferable—an argument in favor of set-
ting minbucket to a value larger than one. On the other hand, this may yield a selection bias in the case of categorical variables,
as demonstrated through this simple example and also discussed in Boulesteix, Bender, Lorenzo Bermejo, and Strobl (2012)
in the context of genetic data.

Furthermore, in the R package randomForest (Liaw & Wiener, 2002), it is possible to specify maxnodes, the maximum
number of terminal nodes that trees in the forest can have, while the R package party allows to specify the strongly related
hyperparameter maxdepth, the maximal depth of the trees, which is the maximum number of splits until the terminal node.

2.1.4 | Number of trees

The number of trees in a forest is a parameter that is not tunable in the classical sense but should be set sufficiently high
(Díaz-Uriarte & De Andres, 2006; Oshiro, Perez, & Baranauskas, 2012; Probst & Boulesteix, 2017; Scornet, 2018). Out-of-
bag error curves (slightly) increasing with the number of trees are occasionally observed for certain error measures (see
Probst & Boulesteix, 2017, for an empirical study based on a large number of datasets). According to measures based on the
mean quadratic loss such as the mean squared error (in case of regression) or the Brier score (in case of classification), how-
ever, more trees are always better, as theoretically proved by Probst and Boulesteix (2017).

The convergence rate, and thus the number of trees needed to obtain optimal performance, depends on the dataset's proper-
ties. Using a large number of datasets, Oshiro et al. (2012) and Probst and Boulesteix (2017) show empirically that the biggest
performance gain can often be achieved when growing the first 100 trees. The convergence behavior can be investigated by
inspecting the out-of-bag curves showing the performance for a growing number of trees. Probst and Boulesteix (2017) argue
that the error rate is not the optimal measure for that purpose because, by considering a prediction as either true or false, one
ignores much of the information output by the RF and focuses too much on observations that are close to the prediction
boundary. Instead, they recommend the use of other measures based on the predicted class probabilities such as the Brier score
or the logarithmic loss, as implemented in the R package OOBCurve (Probst, 2017).

Note that the convergence rate of RF does not only depend on the considered dataset's characteristics but possibly also on
hyperparameters. Lower sample size (see Section 2.1.2), higher node size values (see Section 2.1.3), and smaller mtry values
(see Section 2.1.1) lead to less correlated trees. These trees are more different from each other and are expected to provide
more different predictions. Therefore, we suppose that more trees are needed to get clear predictions for each observation
which leads to a higher number of trees for obtaining convergence.

The computation time increases linearly with the number of trees. As trees are trained independently from each other they
can be trained in parallel on several CPU cores which is implemented in software packages such as ranger (Wright & Zieg-
ler, 2017).

2.1.5 | Splitting rule

The splitting rule is not a classical hyperparameter as it can be seen as one of the core properties characterizing the
RF. However, it can in a large sense also be considered as a categorical hyperparameter. The default splitting rule of Breiman's
original RF (Breiman, 2001) consists of selecting, out of all splits of the (randomly selected mtry) candidate variables, the split
that minimizes the Gini impurity (in the case of classification) and the weighted variance (in case of regression). This method
favors the selection of variables with many possible splits (e.g., continuous variables or categorical variables with many cate-
gories) over variables with few splits (the extreme case being binary variables, which have only one possible split) due to mul-
tiple testing mechanisms (Strobl et al., 2007).

Conditional inference forests (CIFs) introduced by Hothorn et al. (2006) and implemented in the R package party and in
the newer package partykit (Hothorn & Zeileis, 2015) allow to avoid this variable selection bias by selecting the variable with
the smallest p value in a global test (i.e., without assessing all possible splits successively) in a first step, and selecting the best
split from the selected variable in a second step by maximizing a linear test statistic. Note that the global test to be used in the
first step depends on the scale of the predictor variables and response variable. Hothorn et al. (2006) suggest several variants.

4 of 15 PROBST ET AL.



A computationally fast alternative using p value approximations for maximally selected rank statistics is proposed by Wright,
Dankowski, and Ziegler (2017). This variant is available in the ranger package for regression and survival outcomes.

When tests are performed for split selection, it may only make sense to split if the p values fall below a certain threshold,
which should then be considered as a hyperparameter. In the R package party, the hyperparameter mincriterion represents
one minus the p value threshold and in ranger the hyperparameter alpha is the p value threshold.

To increase computational efficiency, splitting rules can be randomized (Geurts, Ernst, & Wehenkel, 2006). To this end,
only a randomly selected subset of possible splitting values is considered for a variable. The size of these subsets is specified
by the hyperparameter numRandomCuts in the extraTrees package and by num.random.splits in ranger. If this value is set to
1, this variant is called extremely randomized trees (Geurts et al., 2006). In addition to runtime reduction, randomized splitting
might also be used to add a further component of randomness to the trees, similar to mtry and the sample size.

Until now, in general none of the existing splitting rules could be proven as superior to the others in general regarding the
performance. For example, the splitting rule based on the decrease of Gini impurity implemented in Breiman's original version
is affected by a serious variable selection bias as outlined above. However, if one considers datasets in which variables with
many categories are more informative than variables with less categories, this variable selection bias—even if it is in principle
a flaw of the approach—may accidentally lead to improved accuracy. Hence, depending on the dataset and its properties one
or the other method may be better. Appropriate benchmark studies based on simulation or real data have to be designed, to
evaluate in which situations which splitting rule performs better.

Regarding runtime, extremely randomized trees are the fastest as the cutpoints are drawn completely randomly, followed
by the classical random forest, while for CIFs the runtime is the largest.

2.2 | Influence on variable importance

The RF variable importance (Breiman, 2001) is a measure reflecting the importance of a variable in a RF prediction rule.
While effect sizes and p values of the Wald test or likelihood ratio tests are often used to assess the importance of variables in
case of logistic or linear regression, the RF variable importance measure can also automatically capture nonlinear and interac-
tion effects without specifying these a priori (Wright, Ziegler, & König, 2016) and is also applicable when more variables than
observations are available. Several variants of the variable importance exist, including the Gini variable importance measure
and the permutation variable importance measure (Breiman, 2001; Strobl et al., 2007). In this section, we focus on the latter,
since the former has been shown to be strongly biased. The Gini variable importance measure assigns higher importance
values to variables with more categories or continuous variables (Strobl et al., 2007) and to categorical variables with equally
sized categories (Boulesteix, Bender, et al., 2012) even if all variables are independent of the response variable.

Many of the effects of the hyperparameters described in the previous Section 2.1 are expected to also have an effect on the
variable importance. However, specific research on this influence is still in its infancy. Most extensive is probably the research
about the influence of the number of trees. In contrast, the literature is very scarce as far as the sample size and node size are
concerned.

2.2.1 | Number of trees

More trees are generally required for stable variable importance estimates (Genuer, Poggi, & Tuleau-Malot, 2010; Goldstein
et al., 2011), than for the simple prediction purpose. Lunetta, Hayward, Segal, and Van Eerdewegh (2004) performed simula-
tions with more noisy variables than truly associated covariates and concluded that multiple thousands of trees must be trained
in order to get stable estimates of the variable importance. The more trees are trained, the more stable the predictions should
be for the variable importance. In order to assess the stability one could train several random forests with a fixed number of
trees and check whether the ranking of the variables by importance are different between the forests.

2.2.2 | mtry, splitting rule, and node size

Genuer et al. (2010) examine the influence of the parameter mtry on the variable importance. They conclude that increasing
the mtry value leads to much higher magnitudes of the variable importances. As already outlined in Section 2.1.5, the random
forest standard splitting rule is biased when predictor variables vary in their scale. This has also a substantial impact on the
variable importance (Strobl et al., 2007). In the case of the Gini variable importance, predictor variables with many categories
or numerical values receive on average a higher variable importance than binary variables if both variables have no influence
on the outcome variable. The permutation variable importance remains unbiased in these cases, but there is a higher variance
of the variable importance for variables with many categories. This could not be observed for CIFs combined with subsam-
pling (without replacement) as sampling procedure and therefore Strobl et al. (2007) recommend to use this method for getting
reliable variable importance measures.

PROBST ET AL. 5 of 15



Grömping (2009) compared the influence of mtry and the node size on the variable importance of the standard random for-
est and of the CIF. Higher mtry values lead to lower variable importance of weak regressors. The values of the variable impor-
tance from the standard random forest were far less dependent on mtry than the ones from the CIFs. This was due to the much
larger size (i.e., number of splits until the terminal node) of individual trees in the standard random forest. Decreasing the tree
size (for example by setting a higher node size value) while setting mtry to a small value leads to more equal values of the var-
iable importances of all variables, because there was less chance that relevant variables were chosen in the splitting
procedures.

3 | TUNING RANDOM FOREST

Tuning is the task of finding optimal hyperparameters for a learning algorithm for a considered dataset. In supervised learning
(e.g., regression and classification), optimality may refer to different performance measures (e.g., the error rate or the AUC)
and to the runtime which can highly depend on hyperparameters in some cases as outlined in Section 2. In this paper, we
mainly focus on the optimality regarding performance measures.

Even if the choice of adequate values of hyperparameters has been partially investigated in a number of studies as
reviewed in Section 2, unsurprisingly the literature provides general trends rather than clear-cut guidance. In practice, users of
RF are often unsure whether alternative values of tuning parameters may improve performance compared to default values.
Default values are given by software packages or can be calculated by using previous datasets (Probst, Bischl, & Boulesteix,
2018). In the following section, we will review literature about the “tunability” of random forest. “Tunability” is defined as
the amount of performance gain compared with default values that can be achieved by tuning one hyperparameter (“tunabil-
ity” of the hyperparameter) or all hyperparameters (“tunability” of the algorithm); see Probst et al. (2018) for more details.
Afterward, evaluation strategies, evaluation measures and tuning search strategies are presented. Then, we review software
implementations of tuning of RF in the programming language R and finally show the results of a large-scale benchmark study
comparing the different implementations.

3.1 | Tunability of random forest

Random forest is an algorithm which is known to provide good results in the default settings (Fernández-Delgado, Cernadas,
Barro, & Amorim, 2014). Probst et al. (2018) measure the “tunability” of algorithms and hyperparameters of algorithms and
conclude that random forest is far less tunable than other algorithms such as support vector machines. Nevertheless, a small
performance gain (e.g., an average increase of the AUC of 0.010 based on the 38 considered datasets) can be achieved via tun-
ing compared to the default software package hyperparameter values. This average performance gain, although moderate, can
be an important improvement in some cases, when, for example, each wrongly classified observation implies high costs.
Moreover, for some datasets, it is much higher than 0.01 (e.g., around 0.03).

As outlined in Section 2, all considered hyperparameters might have an effect on the performance of RF. It is not
completely clear, however, which of them should routinely be tuned in practice. Beyond the special case of RF, Probst et al.
(2018) suggest a general framework to assess the tunability of different hyperparameters of different algorithms (including
RF) and illustrate their approach through an application to 38 datasets. In their study, tuning the parameter mtry provides the
biggest average improvement of the AUC (0.006), followed by the sample size (0.004), while the node size had only a small
effect (0.001). Changing the replace parameter from drawing with replacement to drawing without replacement also had a
small positive effect (0.002). Similar results were observed in the work of van Rijn and Hutter (2018). As outlined in
Section 2.1.4, the number of trees cannot be seen as tuning parameter: higher values are generally preferable to smaller values
with respect to performance. If the performance of RF with default values of the hyperparameters can be improved by choos-
ing other values, the next question is how this choice should be performed.

3.2 | Evaluation strategies and evaluation measures

A typical strategy to evaluate the performance of an algorithm with different values of the hyperparameters in the context of
tuning is k-fold cross validation. The number k of folds is usually chosen between 2 and 10. Averaging the results of several
repetitions of the whole cross-validation procedure provides more reliable results as the variance of the estimation is reduced
(Seibold, Bernau, Boulesteix, & De Bin, 2018).

In RF (or in general when bagging is used) another strategy is possible, namely using the out-of-bag observations to evalu-
ate the trained algorithm. Generally, the results of this strategy are reliable (Breiman, 1996), that is, approximate the perfor-
mance of the RF on independent data reasonably well. A bias can be observed in special data situations (see Janitza &

6 of 15 PROBST ET AL.



Hornung, 2018, and references therein), for example, in very small datasets with n < 20, when there are many predictor vari-
ables and balanced classes. Since these problems are specific to particular and relatively rare situations and tuning based on
out-of-bag-predictions has a much smaller runtime than procedures such as k-fold cross validation (which is especially impor-
tant in big datasets), we recommend the out-of-bag approach for tuning as an appropriate procedure for most datasets.

The evaluation measure is a measure that is dependent on the learning problem. In classification, two of the most com-
monly considered measures are the classification error rate and the AUC. Two other common measures that are based on prob-
abilities are the Brier score and the logarithmic loss. An overview of evaluation measures for classification is given in Ferri,
Hernández-Orallo, and Modroiu (2009).

3.3 | Tuning search strategies

Search strategies differ in the way the candidate hyperparameter values (i.e., the values that have to be evaluated with respect
to their out-of-bag performance) are chosen. Some strategies specify all the candidate hyperparameter values from the begin-
ning, for example, random search and grid search presented in the following subsections. In contrast, other more sophisticated
methods such as F-Race (Birattari, Yuan, Balaprakash, & Stützle, 2010), general simulated annealing (Bohachevsky, John-
son, & Stein, 1986) or sequential model-based optimization (SMBO) (Hutter, Hoos, & Leyton-Brown, 2011; Jones, Schon-
lau, & Welch, 1998) iteratively use the results of the different already evaluated hyperparameter values and choose future
hyperparameters considering these results. The latter procedure, SMBO, is introduced at the end of this section and used in
two of the software implementations that are presented in the Sections 3.4 and 3.5.

3.4 | Grid search and random search

One of the simplest strategies is grid search, in which all possible combinations of given discrete parameter spaces are evalu-
ated. Continuous parameters have to be discretized beforehand. Another approach is random search, in which hyperparameter
values are drawn randomly (e.g., from a uniform distribution) from a specified hyperparameter space. Bergstra and Bengio
(2012) show that for neural networks random search is more efficient in searching good hyperparameter specifications than
grid search.

3.5 | Sequential model-based optimization

SMBO is a very successful tuning strategy that iteratively tries to find the best hyperparameter settings based on evaluations
of hyperparameters that were done beforehand. SMBO is grounded in the “black-box function optimization” literature (Jones
et al., 1998) and achieves state-of-the-art performance for solving a number of optimization problems (Hutter et al., 2011). We
shortly describe the SMBO algorithm implemented in the R package mlrMBO (Bischl, Richter, et al., 2017), which is also
used in the R package tuneRanger (Probst, 2018) described in Section 3.5. It consists of the following steps:

1. Specify an evaluation measure (e.g., the AUC in the case of classification or the mean squared error in the case of regres-
sion), also sometimes denoted as “target outcome” in the literature, an evaluation strategy (e.g., fivefold cross validation)
and a constrained hyperparameter space on which the tuning should be executed.

2. Create an initial design, that is, draw random points from the hyperparameter space and evaluate them (i.e., evaluate the
chosen evaluation measure using the chosen evaluation strategy).

3. Based on the results obtained from the previous step following steps are iteratively repeated:
a. Fit a regression model (also called surrogate model, for example, kriging (Jones et al., 1998) or RF) based on all already
evaluated design points with the evaluation measure as the dependent variable and the hyperparameters as predictor vari-
ables.
b. Propose a new point for evaluation on the hyperparameter space based on an infill criterion. This criterion is based on
the surrogate model and proposes points that have good expected outcome values and lie in regions of the hyperparameter
space where not many points were evaluated yet.
c. Evaluate the point and add it to the already existing design points.

3.6 | Existing software implementations

Several packages already implement such automatic tuning procedures for RF. We shortly describe the three most common
ones in R:

PROBST ET AL. 7 of 15



• mlrHyperopt (Richter, 2017) uses SMBO as implemented in the R package mlrMBO. It has predefined tuning parame-
ters and tuning spaces for many supervised learning algorithms that are part of the mlr package. Only one line of code is
needed to perform the tuning of these algorithms with the package. In case of ranger, the default parameters that are tuned
are mtry (between 1 and the number of variables p) and the node size (from 1 to 10), with 25 iteration steps (step number
3 in the previous subsection) and no initial design. In mlrHyperopt, the standard evaluation strategy in each iteration step
of the tuning procedure is 10-fold cross-validation and the evaluation measure is the mean missclassification error
(MMCE). The parameters, the evaluation strategy and measure can be changed by the user. As it is intended as a platform
for sharing tuning parameters and spaces, users can use their own tuning parameters and spaces and upload them to the
webservice of the package.

• caret (Kuhn, 2008) is a set of functions that attempts to streamline the process for creating predictive models. When exe-
cuting ranger via caret, it automatically performs a grid search of mtry over the whole mtry parameter space. By default,
the algorithm evaluates three points in the parameter space (smallest and biggest possible mtry and the mean of these two
values) with 25 bootstrap iterations as evaluation strategy. The algorithm finally chooses the value with the lowest error
rate in case of classification and the lowest mean squared error in case of regression.

• tuneRF from the randomForest package implements an automatic tuning procedure for the mtry parameter. First, it cal-
culates the out-of-bag error with the default mtry value (square root of the number of variables p for classification and p/3
for regression). Second, it tries out a new smaller value of mtry (default is to deflate mtry by the factor 2). If it provides a
better out-of-bag error rate (relative improvement of at least 0.05), the algorithm continues trying out smaller mtry values
in the same way. After that, the algorithm tries out larger values than the default of mtry until there is no more improve-
ment, analogously to the second step. Finally, the algorithm returns the model with the best mtry value.

3.7 | The tuneRanger package

As a by-product of our literature review on tuning for RF, we created a package, tuneRanger (Probst, 2018), for automatic
tuning of RF based on the package ranger through a single line of code, implementing all features that we identified as useful
in other packages, and intended for users who are not very familiar with tuning strategies. The package tuneRanger is mainly
based on the R packages ranger (Wright & Ziegler, 2017), mlrMBO (Bischl, Richter, et al., 2017) and mlr (Bischl et al.,
2016). The main function tuneRanger of the package works internally as follows:

• SMBO (see Section 3.3) is used as tuning strategy with 30 evaluated random points for the initial design and 70 iterative
steps in the optimization procedure. The number of steps for the initial design and in the optimization procedure are
parameters that can be changed by the user, although the default settings 30 resp. 70 provide good results in our
experiments.

• As a default, the function simultaneously tunes the three parameters mtry, sample size, and node size. mtry values are sam-
pled from the space [0, p] with p being the number of predictor variables, while sample size values are sampled from
[0.2 � n, 0.9 � n] with n being the number of observations. Node size values are sampled with higher probability (in the ini-
tial design) for smaller values by sampling x from [0, 1] and transforming the value by the formula [(n�0.2)x]. The tuned
parameters can be changed by the user by changing the argument tune.parameters, if, for example, only the mtry
value should be tuned or if additional parameters, such as the sampling strategy (sampling with or without resampling) or
the handling of unordered factors (see Hastie, Tibshirani, and Friedman (2001), chapter 9.2.4 or the help of the ranger
package for more details), should be included in the tuning process.

• Out-of-bag predictions are used for evaluation, which makes it much faster than other packages that use evaluation strate-
gies such as cross validation.

• Classification as well as regression is supported.
• The default measure that is optimized is the Brier score for classification, which yields a finer evaluation than the com-

monly used error rate (Probst & Boulesteix, 2017), and the mean squared error for regression. It can be changed to any of
the 50 measures currently implemented in the R package mlr and documented in the online tutorial (Schiffner et al.,
2016): https://mlr.mlr-org.com/articles/tutorial/measures.html.

• The final recommended hyperparameter setting is calculated by taking the best 5% of all SMBO iterations regarding the
chosen performance measure and then calculating the average of each hyperparameter of these iterations, which is rounded
in case of mtry and node size.

8 of 15 PROBST ET AL.



3.8 | Installation and execution

In the following, one can see a typical example of the execution of the algorithm. The dataset monks-problem-1 is taken from
OpenML (Vanschoren, van Rijn, Bischl, & Torgo, 2013). Execution time can be estimated beforehand with the function
estimateTimeTuneRanger which trains a random forest with default values, multiplies the training time by the number
of iterations and adds 50 for the training and prediction time of surrogate models. The function tuneRanger then executes
the tuning algorithm:

library(tuneRanger)

library(mlr)

library(OpenML)

monk_data_1 = getOMLDataSet(333)$data

monk.task = makeClassifTask(data = monk_data_1, target = “class”)

# Estimate runtime

estimateTimeTuneRanger(monk.task)

# Approximated time for tuning: 1M 13S

set.seed(123)

# Tuning

res = tuneRanger(monk.task, measure = list(multiclass.brier), num.trees = 1000,

num.threads = 2, iters = 70, iters.warmup = 30)

res

# Recommended parameter settings:

# mtry min.node.size sample.fraction

# 1 6 2 0.8988154

# Results:

# multiclass.brier exec.time

# 1 0.006925637 0.2938

#

# Ranger Model with the new tuned hyperparameters

res$model

# Model for learner.id=classif.ranger; learner.class=classif.ranger

# Trained on: task.id = monk_data; obs = 556; features = 6

# Hyperparameters: num.threads=2,verbose=FALSE,respect.unordered.factors=order,mtry=6,min.node.size=2,

# sample.fraction=0.899,num.trees=1e+03,replace=FALSE

We also performed a benchmark with five times repeated fivefold cross validation to compare it with a standard random
forest with 1,000 trees trained with ranger on this dataset. As can be seen below, we achieved an improvement of 0.014 in
the error rate and 0.120 in the Brier score.

# little benchmark

lrn = makeLearner(“classif.ranger”, num.trees = 1,000, predict.type = “prob”)

lrn2 = makeLearner(“classif.tuneRanger”, num.threads = 1, predict.type = “prob”)

set.seed(354)

rdesc = makeResampleDesc(“RepCV”, reps = 5, folds = 5)

bmr = benchmark(list(lrn, lrn2), monk.task, rdesc, measures = list(mmce, multiclass.brier))

bmr

# Result

# task.id learner.id mmce.test.mean multiclass.brier.test.mean

# 1 monk_data classif.ranger 0.01511905 0.1347917

# 2 monk_data classif.tuneRanger 0.00144144 0.0148708

3.9 | Further parameters

In the main function tuneRanger, there are several parameters that can be changed. The first argument is the task that has
to be created via the mlr functions makeClassifTask or makeRegrTask. The argument measure has to be a list of
the chosen measures that should be optimized, possible measures can be found with listMeasures or in the online tutorial

PROBST ET AL. 9 of 15



of mlr. The argument num.trees is the number of trees that are trained, num.threads is the number of cpu threads that
should be used by ranger, iters specifies the number of iterations and iters.warmup the number of warm-up steps for
the initial design. The argument tune. parameters can be used to specify manually a list of the tuned parameters. The
final recommended hyperparameter setting (average of the best 5% of the iterations) is used to train a RF model, which can be
accessed via the list element model in the final outcome.

3.10 | Benchmark study

We now compare our new R package tuneRanger with different software implementations with tuning procedures for ran-
dom forest regarding performance and execution time in a benchmark study on 39 datasets.

3.10.1 | Compared algorithms

We compare different algorithms in our benchmark study:

• Our package tuneRanger is used with its default settings (30 warm-up steps for the initial design, 70 iterations, tuning of
the parameters mtry, node size, and sample size, sampling without replacement) that were set before executing the bench-
mark experiments. The only parameter of the function that is varied is the performance measure that has to be optimized.
We do not only consider the default performance measure Brier score (tuneRangerBrier) but also examine the versions
that optimize the MMCE (tuneRangerMMCE), the AUC (tuneRangerAUC), and the logarithmic loss (tuneRangerLo-
gloss). Moreover, to examine if only tuning mtry is enough, we run the same algorithms with only tuning the mtry
parameter.

• The three tuning implementations of the R packages mlrHyperopt, caret, and tuneRF that are described in Section 3.4 are
executed with their default setting. We did not include mlrHyperopt with other performance measures because we expect
similar performance as with tuneRanger but very long runtimes.

• The standard RF algorithm as implemented in the package ranger with default settings and without tuning is used as refer-
ence, to see the improvement to the default algorithm. We use ranger instead of the randomForest package, because it is
faster due to the possibility of parallelization on several cores (Wright & Ziegler, 2017).

For each method, 2000 trees are used to train the random forest. Whenever possible (for tuneRanger, mlrHyperopt,
caret, and the default ranger algorithm) we use parallelization with 10 CPU cores with the help of the ranger package (trees
are grown in parallel).

3.10.2 | Datasets, runtime, and evaluation strategy

The benchmark study is conducted on datasets from OpenML (Vanschoren et al., 2013). We use the OpenML100 bench-
marking suite (Bischl, Casalicchio, et al., 2017) and download it via the OpenML R package (Casalicchio et al., 2017). For
classification, we only use datasets that have a binary target and no missing values, which leads to a collection of 39 datasets.
More details about these datasets such as the number of observations and variables can be found in Bischl, Casalicchio, et al.
(2017). We classify the datasets into small and big by using the estimateTimeTuneRanger function of tuneRanger with
10 cores. If the estimated runtime is less than 10 min, the dataset is classified as small, otherwise it is classified as big. This
results in 26 small datasets, 13 big datasets.

For the small datasets, we perform a fivefold cross validation and repeat it 10 times and for the big we just perform a five-
fold cross validation. We compare the algorithms by the average of the evaluation measures MMCE, AUC, Brier score, and
logarithmic loss. Definitions and a good comparison between measures for classification can be found in Ferri et al. (2009). In
case of error messages of the tuning algorithms (on two datasets for mlrHyperopt, on four datasets for caret, and on three data-
sets for tuneRF), the worst result of the other algorithms are assigned to these algorithms, if it fails in more than 20% of the
cross-validation iterations, otherwise we impute missing values by the average of the rest of the results as proposed by Bischl,
Schiffner, and Weihs (2013).

3.10.3 | Results

First, to identify possible outliers, we display the boxplots of the differences between the performances of the algorithms and
the ranger default. Afterward average results and ranks are calculated and analyzed. We denote the compared algorithms as
tuneRangerMMCE, tuneRangerAUC, tuneRangerBrier, tuneRangerLogloss, hyperopt, caret, tuneRF, and ranger default.

10 of 15 PROBST ET AL.



3.11 | Outliers and boxplots of differences

In Figure 1 on the left side, the boxplots of the differences between the performances of the algorithms and the ranger default
with outliers are depicted.

We can see that there are two datasets, for which the performance of default random forest is very bad: the error rate is by
around 0.15 higher than for all the other algorithms (other evaluation measures behave similarly). For these two datasets, it is
essential to tune mtry, which is done by all tuning algorithms. The first dataset (called monks-problems-2 in OpenML) is an
artificial dataset which has six categorical predictor variables. If two of them take the value 2 the binary outcome is 1, other-
wise 0. Setting mtry to the default 2 (or even worse to the value 1) leads to wrongly partitioned trees: the dependence structure
between the categorical variables cannot be detected perfectly as sometimes the wrong variables are used for the splitting

Error rate 

−
0
.1

5
−

0
.1

0
−

0
.0

5
0
.0

0
0
.0

5

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

Error rate (without outliers)

−
0
.0

1
5

−
0
.0

0
5

0
.0

0
5

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

AUC 

−
0
.0

5
0
.0

0
0
.0

5
0
.1

0

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

AUC (without outliers)

−
0
.0

0
4

0
.0

0
0

0
.0

0
4

0
.0

0
8

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

Brier score 

−
0
.2

5
−

0
.1

5
−

0
.0

5

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

Brier score (without outliers)

−
0
.0

5
−

0
.0

3
−

0
.0

1
0
.0

1

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

Logarithmic Loss 

−
0
.4

−
0
.2

0
.0

0
.2

0
.4

0
.6

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

Logarithmic Loss (without outliers)

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5

MMCE AUC Brier Logloss mlrHyp. caret tuneRF

tuneRanger

FIGURE 1 Boxplots of performance differences to ranger default. On the left side the boxplots with outliers are depicted and on the right side the same
plots without outliers. For the error rate, the brier score and the logarithmic loss, low values are better, while for the area under the curve (AUC), high values
are preferable. If the tuned measure equals the evaluation measure, the boxplot is displayed in gray

PROBST ET AL. 11 of 15



(since one of the two variables that were randomly chosen in the splitting procedure has to be used for the considered split).
On the other hand, setting mtry to 6 leads to nearly perfect predictions as the dependence structure can be identified perfectly.
The second dataset with bad performance of the default random forest is called madelon and has 20 informative and 480 nonin-
formative predictor variables. The default mtry value of 22 is much too low, because too many noninformative predictor vari-
ables are chosen in the splits. The tuning algorithms choose a higher mtry value and get much better performances on average.
For tuneRF we have three outliers regarding the logarithmic loss. This tuning algorithm tends to yield clear-cut predictions
with probabilities near 0 and 1 for these datasets, which lead to the bad performance regarding the logarithmic loss in these
cases.

3.12 | Average results and ranks

The average results for the 39 datasets can be seen in Table 2 and the average ranks in Table 3. The ranks are given for each
measure and each dataset separately from 1 (best) to 8 (worst) and then averaged over the datasets. Moreover, on the right side
of Figure 1, we can see the boxplots of the performance differences to the ranger default without the outliers, which give an
impression about the distribution of the performance differences.

We see that the differences are small, although on average all algorithms perform better than the ranger default. The best
algorithm is on average by around 0.013 better regarding the error rate (MMCE) and by 0.007 better in terms of the AUC.
These small differences are not very surprising as the results by Probst et al. (2018) suggest that random forest is one of the
machine learning algorithms that are less tunable.

On average, the tuneRanger methods outperform ranger with default settings for all measures. Also tuning the specific
measure does on average always provide the best results among all algorithms among the tuneRanger algorithms. It is only
partly true if we look at the ranks: tuneRangerBrier has the best average rank for the error rate, not tuneRangerMMCE. caret
and tuneRF are on average better than ranger default (with the exception of the logarithmic loss), but are clearly outper-
formed by most of the tuneRanger methods for most of the measures. mlrHyperopt is quite competitive and achieves compa-
rable performance to the tuneRanger algorithms. This is not surprising as it also uses mlrMBO for tuning like tuneRanger.
Its main disadvantage is the runtime. It uses 25 iterations in the SMBO procedure compared to 100 in our case, which makes
it a bit faster for smaller datasets. But for bigger datasets it takes longer as, unlike tuneRanger, it does not use the out-of-bag
method for internal evaluation but 10-fold cross validation, which takes around 10 times longer.

Figure 2 displays the average runtime in seconds for the different algorithms and different datasets. The datasets are
ordered by the runtime of the tuneRangerMMCE algorithm. For most of the datasets, tuneRF is the fastest tuning algorithm,

TABLE 2 Average performance results of the different algorithms

MMCE AUC Brier score Logarithmic loss Training runtime

tuneRangerMMCE 0.0923 0.9191 0.1357 0.2367 903.8218

tuneRangerAUC 0.0925 0.9199 0.1371 0.2450 823.4048

tuneRangerBrier 0.0932 0.9190 0.1325 0.2298 967.2051

tuneRangerLogloss 0.0936 0.9187 0.1330 0.2314 887.8342

mlrHyperopt 0.0934 0.9197 0.1383 0.2364 2,713.2438

caret 0.0972 0.9190 0.1439 0.2423 1,216.2770

tuneRF 0.0942 0.9174 0.1448 0.2929 862.9917

Ranger default 0.1054 0.9128 0.1604 0.2733 3.8607

Note. Training runtime in seconds. AUC, area under the curve; MMCE, mean missclassification error.

TABLE 3 Average rank results of the different algorithms

Error rate AUC Brier score Logarithmic loss Training runtime

tuneRangerMMCE 4.19 4.53 4.41 4.54 5.23

tuneRangerAUC 3.77 2.56 4.42 4.22 4.63

tuneRangerBrier 3.13 3.91 1.85 2.69 5.44

tuneRangerLogloss 3.97 4.04 2.64 2.23 5.00

mlrHyperopt 4.37 4.68 4.74 4.90 7.59

caret 5.50 5.24 6.08 5.51 4.36

tuneRF 4.90 5.08 5.44 6.23 2.76

Ranger default 6.17 5.96 6.42 5.68 1.00

Note. Training runtime in seconds. AUC, area under the curve; MMCE, mean missclassification error.

12 of 15 PROBST ET AL.



although there is one dataset for which it takes longer than all the other datasets. The runtime of mlrHyperopt is similar to the
runtime of tuneRanger for smaller datasets, but when runtime increases it gets worse and worse compared to the tuneRanger
algorithms. For this reason, we claim that tuneRanger is preferable especially for bigger datasets, when runtime also plays a
more important role.

To examine if tuning only mtry could provide comparable results to tuning the parameters mtry, node size, and sample size
all together we run the tuneRanger algorithms with only tuning mtry. The results show that tuning the node size and sample
size provides on average a valuable improvement. On average the error rate (MMCE) improves by 0.004, the AUC by 0.002,
the Brier score by 0.010, and the logarithmic loss by 0.014 when tuning all three parameters.

4 | CONCLUSION AND DISCUSSION

The RF algorithm has several hyperparameters that may influence its performance. The number of trees should be set high:
the higher the number of trees, the better the results in terms of performance and precision of variable importances. However,
the improvement obtained by adding trees diminishes as more and more trees are added. The hyperparameters mtry, sample
size, and node size are the parameters that control the randomness of the RF. They should be set to achieve a reasonable
strength of the single trees without too much correlation between the trees (bias-variance trade-off ). Out of these parameters,
mtry is the most influential both according to the literature and in our own experiments. The best value of mtry depends on the

0 10 20 30 40

0
5
,0

0
0

1
0
,0

0
0

1
5
,0

0
0

2
0
,0

0
0

Dataset number

T
im

e
 i
n
 s

e
c
o
n
d
s

tuneRangerMMCE

tuneRangerAUC

tuneRangerBrier

tuneRangerLogloss

mlrHyperopt

caret

tuneRF

ranger default

0 10 20 30 40

Dataset number

T
im

e
 i
n
 s

e
c
o
n
d
s
 (

lo
g
a
ri
th

m
ic

 s
c
a
le

)

1
0

−
1

1
0

0
1
0

1
1
0

2
1
0

3
1
0

4

FIGURE 2 Average runtime of the different algorithms on different datasets (upper plot: Unscaled, lower plot: Logarithmic scale). The datasets are ordered
by the average runtime of the tuneRangerMMCE algorithm

PROBST ET AL. 13 of 15



number of variables that are related to the outcome. Sample size and node size have a minor influence on the performance but
are worth tuning in many cases as we also showed empirically in our benchmark experiment. As far as the splitting rule is con-
cerned, there exist several alternatives to the standard RF splitting rule, for example, those used in CIFs (Hothorn et al., 2006)
or extremely randomized trees (Geurts et al., 2006).

The literature on RF cruelly lacks systematic large-scale comparison studies on the different variants and values of hyper-
parameters. It is especially scarce as far as the impact on variable importance measures is concerned. This is all the more
regrettable given that a large part of the data analysts using RF pay at least as much attention to the output variable impor-
tances as to the output prediction rule. Beyond the special case of RF, literature on computational methods tends to generally
focus on the development of new methods as opposed to comparison studies investigating existing methods. As discussed in
Boulesteix, Binder, Abrahamowicz, and Sauerbrei (2018), computational journals often require the development of novel
methods as a prequisit for publication. Comparison studies presented in papers introducing new methods are often biased in
favor of these new methods—as a result of the publication bias and publication pressure. As a result of this situation, neutral
comparison studies as defined by Boulesteix, Wilson, and Hapfelmeier (2017) (i.e., focusing on the comparison of existing
methods rather than aiming at demonstrating the superiority of a new one, and conducted by authors who are as a group
approximately equally competent on all considered methods) are important but rare.

The literature review presented in this paper, which is to some extent disappointing in the sense that clear guidance is
missing, leads us to make a plea for more studies investigating and comparing the behaviors and performances of RF variants
and hyperparameter choices, such as the very recent article by Scornet (2018). Such studies are, in our opinion, at least as
important as the development of further variants that would even increase the need for comparisons.

In the second part of the paper, different tuning methods for random forest are compared in a benchmark study. The results
and previous studies show that tuning random forest can improve the performance although the effect of tuning is much smal-
ler than for other machine learning algorithms such as support vector machines (Mantovani, Rossi, Vanschoren, Bischl, &
Carvalho, 2015). Out of existing tuning algorithms, we suggest to use SMBO to tune the parameters mtry, sample size, and
node size simultanously. Moreover, the out-of-bag predictions can be used for tuning. This approach is faster than, for exam-
ple, cross validation. The whole procedure is implemented in the R package tuneRanger. This package allows users to choose
the specific measure that should be minimized (e.g., the AUC in case of classification). In our benchmark study, it achieved
on average better performances than the standard random forest and other software that implement tuning for random forest,
while the fast tuneRF function from the package randomForest can be recommended if computational speed is an issue.

ACKNOWLEDGMENT

This article is funded by German Research Foundation (DFG), grants BO3139/6-1 and BO3139/2-3 to A.L.B and by Bundes-
ministerium für Bildung und Forschung, Grant/Award Number: 01IS18036A” to A.L.B.

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

REFERENCES

Belgiu, M., & Dr�aguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sens-
ing, 114, 24–31.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13, 281–305.
Bernard, S., Heutte, L., & Adam, S. (2009). Influence of hyperparameters on random forest accuracy. In MCS, vol. 5519 of Lecture Notes in Computer Science

(pp. 171–180). Springer.
Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25, 197–227.
Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In Experimental methods for the analysis of optimization algo-

rithms (pp. 311–336). Berlin, Germany: Springer.
Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N., & Vanschoren, J. (2017). OpenML benchmarking suites and the

OpenML100. ArXiv preprint arXiv:1708.03731. Retreived from https://arxiv.org/abs/1708.03731
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E.,… Jones, Z. M. (2016). mlr: Machine learning in R. Journal of Machine Learning Research, 17, 1–5.
Bischl, B., Richter, J., Bossek, J., Horn, D., Thomas, J., & Lang, M. (2017). mlrMBO: A modular framework for model-based optimization of expensive black-box

functions. ArXiv preprint arXiv:1703.03373. Retreived from https://arxiv.org/abs/1703.03373
Bischl, B., Schiffner, J., & Weihs, C. (2013). Benchmarking local classification methods. Computational Statistics, 28, 2599–2619.
Bohachevsky, I. O., Johnson, M. E., & Stein, M. L. (1986). Generalized simulated annealing for function optimization. Technometrics, 28, 209–217.
Boulesteix, A.-L., Bender, A., Lorenzo Bermejo, J., & Strobl, C. (2012). Random forest gini importance favours snps with large minor allele frequency: Impact, sources

and recommendations. Briefings in Bioinformatics, 13, 292–304.
Boulesteix, A.-L., Binder, H., Abrahamowicz, M., & Sauerbrei, W. (2018). On the necessity and design of studies comparing statistical methods. Biometrical Journal,

60, 216–218.

14 of 15 PROBST ET AL.



Boulesteix, A.-L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biol-
ogy and bioinformatics. WIREs: Data Mining and Knowledge Discovery, 2, 493–507.

Boulesteix, A.-L., Wilson, R., & Hapfelmeier, A. (2017). Towards evidence-based computational statistics: Lessons from clinical research on the role and design of
real-data benchmark studies. BMC Medical Research Methodology, 17, 138.

Breiman, L. (1996). Out-of-bag estimation. Technical Report, UC Berkeley, Department of Statistics.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., … Bischl, B. (2017). OpenML: An R package to connect to the machine learning plat-

form OpenML. Computational Statistics, 32, 1–15.
Criminisi, A., Shotton, J., & Konukoglu, E. (2012). Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-

supervised learning. Foundations and Trends in Computer Graphics and Vision, 7, 81–227.
Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems. Journal of

Machine Learning Research, 15, 3133–3181.
Ferri, C., Hernández-Orallo, J., & Modroiu, R. (2009). An experimental comparison of performance measures for classification. Pattern Recognition Letters, 30, 27–38.
Genuer, R., Poggi, J.-M., & Tuleau, C. (2008). Random forests: Some methodological insights. ArXiv preprint arXiv:0811.3619. Retreived from https://arxiv.

org/abs/0811.3619
Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31, 2225–2236.
Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3–42.
Goldstein, B. A., Polley, E. C., & Briggs, F. (2011). Random forests for genetic association studies. Statistical Applications in Genetics and Molecular Biology, 10, 32.
Grömping, U. (2009). Variable importance assessment in regression: Linear regression versus random forest. The American Statistician, 63, 308–319.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. Springer series in statistics. New York, NY: Springer New York Inc.
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics,

15, 651–674.
Hothorn, T., & Zeileis, A. (2015). Partykit: A modular toolkit for recursive partytioning in R. Journal of Machine Learning Research, 16, 3905–3909.
Hutter, F., Hoos, H. H. and Leyton-Brown, K. (2011) Sequential model-based optimization for general algorithm configuration, 507–523. Berlin and Heidelberg, Ger-

many: Springer Berlin Heidelberg.
Janitza, S., Binder, H., & Boulesteix, A.-L. (2016). Pitfalls of hypothesis tests and model selection on bootstrap samples: Causes and consequences in biometrical appli-

cations. Biometrical Journal, 58, 447–473.
Janitza, S., & Hornung, R. (2018). On the overestimation of random forest's out-of-bag error. PLoS One, 13, e0201904.
Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13, 455–492.
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28, 1–26.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2, 18–22.
Lin, Y., & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the American Statistical Association, 101, 578–590.
Lunetta, K. L., Hayward, L. B., Segal, J., & Van Eerdewegh, P. (2004). Screening large-scale association study data: Exploiting interactions using random forests. BMC

Genetics, 5, 32.
Mantovani, R. G., Rossi, A. L., Vanschoren, J., Bischl, B., & Carvalho, A. C. (2015). To tune or not to tune: Recommending when to adjust svm hyper-parameters via

meta-learning. In Neural Networks (IJCNN), 2015 International Joint Conference (pp. 1–8). IEEE.
Martínez-Muñoz, G., & Suárez, A. (2010). Out-of-bag estimation of the optimal sample size in bagging. Pattern Recognition, 43, 143–152.
Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random forest? In Machine Learning and Data Mining in Pattern Recognition: 8th Interna-

tional Conference, MLDM 2012, Berlin, Germany, July 13–20, 2012, Proceedings, Vol. 7376, 154. Springer.
Probst, P. (2017) OOBCurve: Out of bag learning curve. R package version 0.2.
Probst, P. (2018) tuneRanger: Tune random forest of the ‘ranger’ package. R package version 0.1.
Probst, P., Bischl, B., & Boulesteix, A.-L. (2018). Tunability: Importance of hyperparameters of machine learning algorithms. ArXiv preprint arXiv:1802.09596.

Retreived from https://arxiv.org/abs/1802.09596.
Probst, P., & Boulesteix, A.-L. (2017). To tune or not to tune the number of trees in a random forest? Journal of Machine Learning Research, 18, 1–18.
Richter, J. (2017) mlrHyperopt: Easy hyperparameter optimization with mlr and mlrMBO. R package version 0.0.1.
Schiffner, J., Bischl, B., Lang, M., Richter, J., Jones, Z. M., Probst, P., Pfisterer, F., Gallo, M., Kirchhoff, D., Kühn, T., Thomas, J., & Kotthoff, L. (2016). mlr tutorial.

ArXiv preprint arXiv:1609.06146. Retreived from https://arxiv.org/abs/1609.06146
Scornet, E. (2018). Tuning parameters in random forests. ESAIM: Proceedings And Surveys, 60, 144–162.
Segal, M. R. (2004). Machine learning benchmarks and random forest regression. UCSF: Center for Bioinformatics and Molecular Biostatistics. Retrieved from https://

escholarship.org/uc/item/35x3v9t4
Seibold, H., Bernau, C., Boulesteix, A.-L., & De Bin, R. (2018). On the choice and influence of the number of boosting steps for high-dimensional linear cox-models.

Computational Statistics, 33, 1195–1215.
Shmueli, G. (2010). To explain or to predict? Statistical Science, 25, 289–310.
Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinfor-

matics, 8, 25.
van Rijn, J. N., & Hutter, F. (2018). Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (pp. 2367–2376). ACM.
Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). OpenML: Networked science in machine learning. SIGKDD Explorations, 15, 49–60.
Wright, M. N., Dankowski, T., & Ziegler, A. (2017). Unbiased split variable selection for random survival forests using maximally selected rank statistics. Statistics in

Medicine, 36, 1272–1284.
Wright, M. N., & Ziegler, A. (2017). Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77, 1–17.
Wright, M. N., Ziegler, A., & König, I. R. (2016). Do little interactions get lost in dark random forests? BMC Bioinformatics, 17, 145.
Ziegler, A., & König, I. R. (2014). Mining data with random forests: Current options for real-world applications. WIREs: Data Mining and Knowledge Discovery, 4, 55–63.

How to cite this article: Probst P, Wright MN, Boulesteix A-L. Hyperparameters and tuning strategies for random for-
est. WIREs Data Mining Knowl Discov. 2019;e1301. https://doi.org/10.1002/widm.1301

PROBST ET AL. 15 of 15



Journal of Machine Learning Research 18 (2018) 1-32 Submitted 7/18; Revised 2/19; Published 3/19

Tunability: Importance of Hyperparameters of Machine
Learning Algorithms

Philipp Probst probst@ibe.med.uni-muenchen.de
Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich
Marchioninistr. 15, 81377 München, Germany

Anne-Laure Boulesteix boulesteix@ibe.med.uni-muenchen.de
Institute for Medical Information Processing, Biometry and Epidemiology, LMU Munich
Marchioninistr. 15, 81377 München, Germany

Bernd Bischl bernd.bischl@stat.uni-muenchen
Department of Statistics, LMU Munich
Ludwigstraße 33, 80539 München, Germany

Editor: Ryan Adams

Abstract
Modern supervised machine learning algorithms involve hyperparameters that have to be
set before running them. Options for setting hyperparameters are default values from
the software package, manual configuration by the user or configuring them for optimal
predictive performance by a tuning procedure. The goal of this paper is two-fold. Firstly,
we formalize the problem of tuning from a statistical point of view, define data-based
defaults and suggest general measures quantifying the tunability of hyperparameters of
algorithms. Secondly, we conduct a large-scale benchmarking study based on 38 datasets
from the OpenML platform and six common machine learning algorithms. We apply our
measures to assess the tunability of their parameters. Our results yield default values for
hyperparameters and enable users to decide whether it is worth conducting a possibly time
consuming tuning strategy, to focus on the most important hyperparameters and to choose
adequate hyperparameter spaces for tuning.
Keywords: machine learning, supervised learning, classification, hyperparameters, tun-
ing, meta-learning

1. Introduction

Machine learning (ML) algorithms such as gradient boosting, random forest and neural net-
works for regression and classification involve a number of hyperparameters that have to
be set before running them. In contrast to direct, first-level model parameters, which are
determined during training, these second-level tuning parameters often have to be carefully
optimized to achieve maximal performance. A related problem exists in many other algo-
rithmic areas, e.g., control parameters in evolutionary algorithms (Eiben and Smit, 2011).

In order to select an appropriate hyperparameter configuration for a specific dataset
at hand, users of ML algorithms can resort to default values of hyperparameters that are
specified in implementing software packages or manually configure them, for example, based
on recommendations from the literature, experience or trial-and-error.

c©2018 Philipp Probst, Anne-Laure Boulesteix and Bernd Bischl.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/18-444.html.



Probst, Boulesteix and Bischl

Alternatively, one can use hyperparameter tuning strategies, which are data-dependent,
second-level optimization procedures (Guyon et al., 2010), which try to minimize the ex-
pected generalization error of the inducing algorithm over a hyperparameter search space
of considered candidate configurations, usually by evaluating predictions on an independent
test set, or by running a resampling scheme such as cross-validation (Bischl et al., 2012). For
a recent overview of tuning strategies, see, e.g., Luo (2016). These search strategies range
from simple grid or random search (Bergstra and Bengio, 2012) to more complex, iterative
procedures such as Bayesian optimization (Hutter et al., 2011; Snoek et al., 2012; Bischl
et al., 2017b) or iterated F-racing (Birattari et al., 2010; Lang et al., 2017).

In addition to selecting an efficient tuning strategy, the set of tunable hyperparameters
and their corresponding ranges, scales and potential prior distributions for subsequent sam-
pling have to be determined by the user. Some hyperparameters might be safely set to
default values, if they work well across many different scenarios. Wrong decisions in these
areas can inhibit either the quality of the resulting model or at the very least the efficiency
and fast convergence of the tuning procedure. This creates a burden for:

1. ML users—Which hyperparameters should be tuned and in which ranges?

2. Designers of ML algorithms—How do I define robust defaults?

We argue that many users, especially if they do not have years of practical experience in
the field, here often rely on heuristics or spurious knowledge. It should also be noted that
designers of fully automated tuning frameworks face at least very similar problems. It is
not clear how these questions should be addressed in a data-dependent, automated, optimal
and objective manner. In other words, the scientific community not only misses answers to
these questions for many algorithms but also a systematic framework, methods and criteria,
which are required to answer these questions.

With the present paper we aim at filling this gap and formalize the problem of parameter
tuning from a statistical point of view, in order to simplify the tuning process for less
experienced users and to optimize decision making for more advanced processes.

After presenting related literature in Section 2, we define theoretical measures for assess-
ing the impact of tuning in Section 3. For this purpose we (i) define the concept of default
hyperparameters, (ii) suggest measures for quantifiying the tunability of the whole algorithm
and specific hyperparameters based on the differences between the performance of default
hyperparameters and the performance of the hyperparameters when this hyperparameter is
set to an optimal value. Then we (iii) address the tunability of hyperparameter combinations
and joint gains, (iv) provide theoretical definitions for an appropriate hyperparameter space
on which tuning should be executed and (v) propose procedures to estimate these quantities
based on the results of a benchmark study with random hyperparameter configurations with
the help of surrogate models. In sections 4 and 5 we illustrate these concepts and methods
through an application. For this purpose we use benchmark results of six machine learning
algorithms with different hyperparameters which were evaluated on 38 datasets from the
OpenML platform. Finally, in the last Section 6 we conclude and discuss the results.

2



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

2. Related Literature

To the best of our knowledge, only a limited amount of articles address the problem of
tunability and generation of tuning search spaces. Bergstra and Bengio (2012) compute the
relevance of the hyperparameters of neural networks and conclude that some are important
on all datasets, while others are only important on some datasets. Their conclusion is
primarily visual and used as an argument for why random search works better than grid
search when tuning neural networks.

A specific study for decision trees was conducted by Mantovani et al. (2016) who ap-
ply standard tuning techniques to decision trees on 102 datasets and calculate differences
of accuracy between the tuned algorithm and the algorithm with default hyperparameter
settings.

A different approach is proposed by Hutter et al. (2013), which aims at identifying the
most important hyperparameters via forward selection. In the same vein, Fawcett and Hoos
(2016) present an ablation analysis technique, which aims at identifying the hyperparameters
that contribute the most to improved performance after tuning. For each of the considered
hyperparameters, they compute the performance gain that can be achieved by changing
its value from the initial value to the value specified in the target configuration which was
determined by the tuning strategy. This procedure is iterated in a greedy forward search.

A more general framework for measuring the importance of single hyperparameters is
presented by Hutter et al. (2014). After having used a tuning strategy such as sequen-
tial model-based optimization, a functional ANOVA approach is used for measuring the
importance of hyperparameters.

These works concentrate on the importance of hyperparameters on single datasets,
mainly to retrospectively explain what happened during an already concluded tuning pro-
cess. Our main focus is the generalization across multiple datasets in order to facilitate
better general understanding of hyperparameter effects and better decision making for fu-
ture experiments. In a recent paper van Rijn and Hutter (2017) pose very similar questions
to ours to assess the importance of hyperparameters across datasets. We compare it to our
approach in Section 6.

Our framework is based on using surrogate models, also sometimes called empirical
performance models, which allow estimating the performance of arbitrary hyperparameter
configurations based on a limited number of prior experiments. The idea of surrogate models
is far from new (Audet et al., 2000), as it constitutes the central idea of Bayesian optimization
for hyperparameter search but is also used, for example, in Biedenkapp et al. (2017) for
increasing the speed of an ablation analysis and by Eggensperger et al. (2018) for speeding
up the benchmarking of tuning strategies.

3. Methods for Estimation of Defaults, Tunability and Ranges

In this section we introduce theoretical definitions for defaults, tunability and tuning ranges,
then describe how to estimate them and finally discuss the topic of reparametrization.

3



Probst, Boulesteix and Bischl

3.1. General Notation

Consider a target variable Y , a feature vector X, and an unknown joint distribution P on
(X,Y ), from which we have sampled a dataset T of n observations. A machine learning (ML)
algorithm now learns the functional relationship between X and Y by producing a prediction
model f̂(X, θ), controlled by the k-dimensional hyperparameter configuration θ = (θ1, ..., θk)
from the hyperparameter search space Θ = Θ1 × ... × Θk. In order to measure prediction
performance pointwise between the true label Y and its prediction f̂(X, θ), we define a loss
function L(Y, f̂(X, θ)). We are naturally interested in estimating the expected risk of the
inducing algorithm, w.r.t. θ on new data, also sampled from P: R(θ) = E(L(Y, f̂(X, θ))|P).
This mapping encodes, given a certain data distribution, a certain learning algorithm and a
certain performance measure, the numerical quality for any hyperparameter configuration θ.
Givenm different datasets (or data distributions) P1, ...,Pm, we arrive atm hyperparameter
risk mappings

R(j)(θ) := E(L(Y, f̂(X, θ))|Pj), j = 1, ...,m. (1)

For now, we assume all R(j)(θ) to be known, and show how to estimate them in Section 3.7.

3.2. Optimal Configuration per Dataset and Optimal Defaults

We first define the best hyperparameter configuration for dataset j as

θ(j)? := arg min
θ∈Θ

R(j)(θ). (2)

Defaults settings are supposed to work well across many different datasets and are usually
provided by software packages, in an often ad hoc or heuristic manner. We propose to define
an optimal default configuration, based on an extensive number of empirical experiments on
m different benchmark datasets, by

θ? := arg min
θ∈Θ

g(R(1)(θ), ..., R(m)(θ)). (3)

Here, g is a summary function that has to be specified. Selecting the mean (or median
as a more robust candidate) would imply minimizing the average (or median) risk over all
datasets.

The measures R(j)(θ) could potentially be scaled appropriately beforehand in order to
make them more commensurable between datasets, e.g., one could scale all R(j)(θ) to [0, 1]
by subtracting the result of a very simple baseline like a featureless dummy predictor and
dividing this difference by the absolute difference between the risk of the best possible
result (as an approximation of the Bayes error) and the result of the very simple baseline
predictor. Or one could produce a statistical z-score by subtracting the mean and dividing
by the standard deviation from all experimental results on the same dataset (Feurer et al.,
2018).

The appropriateness of the scaling highly depends on the performance measure that is
used. One could, for example, argue that the AUC does not have to be scaled by using the
probabilistic interpretation of the AUC. Given a randomly chosen observation x belonging to
class 1, and a randomly chosen observation x′ belonging to class 0, the AUC is the probability
that the evaluated classification algorithm will assign a higher score to x than to x′. Thus,

4



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

an improvement from 0.5 to 0.6 on one dataset could be seen as equally important to an
improvement from 0.8 to 0.9 on another dataset. On the other hand, averaging the mean
squared error on several datasets does not make a lot of sense, as the scale of the outcome of
different regression problems can be very different. Then scaling or using another measure
such as the R2 is reasonable. As our main risk measure is the AUC, we do not use any
scaling.1

3.3. Measuring Overall Tunability of a ML Algorithm

A general measure of the tunability of an algorithm per dataset can then be computed
based on the difference between the risk of an overall reference configuration (e.g., either the
software defaults or definition (3)) and the risk of the best possible configuration on that
dataset:

d(j) := R(j)(θ?)−R(j)(θ(j)?), for j = 1, ...,m. (4)

For each algorithm, this gives rise to an empirical distribution of performance differences
over datasets, which might be directly visualized or summarized to an aggregated tunability
measure d by using mean, median or quantiles.

3.4. Measuring Tunability of a Specific Hyperparameter

The best hyperparameter value for one parameter i on dataset j, when all other parameters
are set to defaults from θ? := (θ?1, ..., θ

?
k), is denoted by

θ
(j)?
i := arg min

θ∈Θ,θl=θ
?
l ∀l 6=i

R(j)(θ). (5)

A natural measure for tunability of the i-th parameter on dataset j is then the difference
in risk between the above and our default reference configuration:

d
(j)
i := R(j)(θ?)−R(j)(θ

(j)?
i ), for j = 1, ...,m, i = 1, ..., k. (6)

Furthermore, we define d(j),rel
i =

d
(j)
i

d(j)
as the fraction of performance gain, when we only

tune parameter i compared to tuning the complete algorithm, on dataset j. Again, one can
calculate the mean, the median or quantiles of these two differences over the n datasets, to
get a notion of the overall tunability di of this parameter.

3.5. Tunability of Hyperparamater Combinations and Joint Gains

Let us now consider two hyperparameters indexed as i1 and i2. To measure the tunability
with respect to these two parameters, we define

θ
(j)?
i1,i2

:= arg min
θ∈Θ,θl=θ

?
l ∀l 6∈{i1,i2}

R(j)(θ), (7)

1. We also tried out normalization (z-score) and got qualitatively similar results to the non-normalized
results presented in Section 5.

5



Probst, Boulesteix and Bischl

i.e., the θ-vector containing the default values for all hyperparameters other than i1 and i2,
and the optimal combination of values for the i1-th and i2-th components of θ.

Analogously to the previous section, we can now define the tunability of the set (i1, i2)
as the gain over the reference default on dataset j as

d
(j)
i1,i2

:=R(j)(θ∗)−R(j)(θ
(j)?
i1,i2

). (8)

The joint gain which can be expected when tuning not only one of the two hyperparam-
eters individually, but both of them jointly, on a dataset j, can be expressed by

g
(j)
i1,i2

:= min{(R(j)(θ
(j)?
i1

)), (R(j)(θ
(j)?
i2

))} −R(j)(θ
(j)?
i1,i2

). (9)

Furthermore, one could be interested in whether this joint gain could simply be reached
by tuning both parameters i1 and i2 in a univariate fashion sequentially, either in the order
i1 → i2 or i2 → i1, and what order would be preferable. For this purpose one could compare
the risk of the hyperparameter value that results when tuning them together R(j)(θ

(j)?
i1,i2

) with
the risks of the hyperparameter values that are obtained when tuning them sequentially, that
means R(j)(θ

(j)?
i1→i2) or R(j)(θ

(j)?
i2→i1), which is done for example in Waldron et al. (2011).

Again, all these measures should be summarized across datasets, resulting in di1,i2 and
gi1,i2 . Of course, these approaches can be further generalized by considering combinations
of more than two parameters.

3.6. Optimal Hyperparameter Ranges for Tuning

A reasonable hyperparameter space Θ? for tuning should include the optimal configuration
θ(j)? for dataset j with high probability. We denote the p-quantile of the distribution of one
parameter regarding the best hyperparameters on each dataset (θ(1)?)i, ..., (θ

(m)?)i as qi,p.
The hyperparameter tuning space can then be defined as

Θ? := {θ ∈ Θ|∀i ∈ {1, ..., k} : θi ≥ qi,p1 ∧ θi ≤ qi,p2} , (10)

with p1 and p2 being quantiles which can be set for example to the 5 % quantile and the
95 % quantile. This avoids focusing too much on outlier datasets and makes the definition
of the space independent from the number of datasets.

The definition above is only valid for numerical hyperparameters. In case of categorical
variables one could use similar rules, for example only including hyperparameter values that
were at least once or in at least 10 % of the datasets the best possible hyperparameter
setting.

3.7. Practical Estimation

In order to practically apply the previously defined concepts, two remaining issues need to be
addressed: a) We need to discuss how to obtain R(j)(θ); and b) in (2) and (3) a multivariate
optimization problem (the minimization) needs to be solved.2

2. All other previous optimization problems are univariate or two-dimensional and can simply be addressed
by simple techniques such as a fine grid search.

6



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

For a) we estimate R(j)(θ) by using surrogate models R̂(j)(θ), and replace the original
quantity by its estimator in all previous formulas. Surrogate models for each dataset j are
based on a meta dataset. This is created by evaluating a large number of configurations of the
respective ML method. The surrogate regression model then learns to map a hyperparameter
configuration to estimated performance. For b) we solve the optimization problem—now
cheap to evaluate, because of the surrogate models—through black-box optimization.

3.8. Reparametrization

All tunability measures mentioned above can possibly depend on and be influenced by
a reparametrization of hyperparameters. For example, in the case of the elastic net the
parameters λ and α could be reparametrized as λ1 = αλ and λ2 = (1−α)λ. Formally, such
a reparametrization could be defined as a (bijective) function φ : Θ → Θ̃, such that φ(θ)
maps an original configuration θ to a new representation θ̃ = φ(θ) from Θ̃, in a one-to-one
manner. Then defaults (calculated by the approach in Section 3.2) are naturally transformed
via θ̃? = φ(θ?) into the new space Θ̃, but will stay logically the same. Moreover, the general
tunability of the algorithm does (obviously) not change. Depending on the parameters that
are involved in the reparametrization, the tunability of the parameters can change. If, for
example, only one parameter is involved, all tunabilities remain the same. If two or more
parameters are involved, the single tunabilities of the parameters could change but the
tunability of the set of the transformed parameters remains the same.

One might define a reparametrization as ideal (in the sense of simplified tuning) if the
tunability is concentrated on one (or only few) hyperparameter(s), so that only this param-
eter has to be optimized and all remaining hyperparameters can remain at their (optimal)
default values, reducing a multivariate optimization problem to a 1-dimensional or at least
lower dimensional one. Using the definition above, this would imply that the joint gain of
the new parameter(s) is (close to) 0. For example, imagine that the optimal hyperparameter
values per dataset of two hyperparameters θ1 and θ2 lie on the line of equation θ1 = θ2. A
useful reparametrization would then be θ̃1 = θ1 + θ2 and the orthogonal θ̃2 = θ1 − θ2. It
would then only be necessary to tune θ̃1, while θ̃2 would be set to the default value 0.

A more general formulation is possible if we use the definition of 3.4. We could, for
example, search for a bijective and invertible function φ?(.), across a certain parameterized
function space, such that the mean tunability is concentrated on and therefore maximal for
the first parameter and minimal for the other parameters, i.e.:

φ? := arg min
φ∈Φ

1

m

m∑

j=1

min
θ̃∈Θ̃,θ̃l=θ̃

?
l ∀l 6=1

R(j)
(
φ−1

(
θ̃
))

. (11)

We could select a restricted function space for φ, e.g., restrict ourselves to the space of all
linear (invertible) transformations {φ : Rk → Rk|φ(x) = Ax,A ∈ Rk×k, det(A) 6= 0}. If
concentrating the whole tunability on only one parameter is not possible, we could try a
similar approach by concentrating it on a combination of two hyperparameters.

Note that such a reparametrization is not always helpful. For example, imagine we
have two binary parameters and transform them such that (i) one of them has 4 levels that
correspond to all possible combinations of these two parameters and (ii) the other parameter
is set to a fixed constant. This reparametrization would not be useful: all the tunability

7



Probst, Boulesteix and Bischl

is contained in the first parameter, but there is no real advantage, as still four evaluations
have to be executed in the tuning process to get the best hyperparameter combination.

Finally, note that it can also be useful to reparametrize a single hyperparameter for
the purpose of tuning. Imagine, for example, that most of the optimal parameters on
the different datasets are rather small and only a few are large. A transformation of this
parameter such as a log-transformation may then be useful. This is very similar to using
prior probabilities for tuning (based on results on previous datasets) which could be seen as
a useful alternative to a reparametrization and which is already proposed in van Rijn and
Hutter (2017).

4. Experimental Setup

In this section we give an overview about the experimental setup that is used for obtaining
surrogate models, tunability measures and tuning spaces.

4.1. Datasets from the OpenML Platform

Recently, the OpenML project (Vanschoren et al., 2013) has been created as a flexible online
platform that allows ML scientists to share their data, corresponding tasks and results of
different ML algorithms. We use a specific subset of carefully curated classification datasets
from the OpenML platform called OpenML100 (Bischl et al., 2017a). For our study we only
use the 38 binary classification tasks that do not contain any missing values.

4.2. ML Algorithms

The algorithms considered in this paper are common methods for supervised learning. We
examine elastic net (glmnet R package), decision tree (rpart), k-nearest neighbors (kknn),
support vector machine (svm), random forest (ranger) and gradient boosting (xgboost).
For more details about the used software packages see Kühn et al. (2018b). An overview of
their considered hyperparameters is displayed in Table 1, including respective data types,
box-constraints and a potential transformation function.

In the case of xgboost, the underlying package only supports numerical features, so we
opted for a dummy feature encoding for categorical features, which is performed internally
by the underlying packages for svm and glmnet.

Some hyperparameters of the algorithms are dependent on others. We take into account
these dependencies and, for example, only sample a value for gamma for the support vector
machine if the radial kernel was sampled beforehand.

4.3. Performance estimation

Several measures are regarded throughout this paper, either for evaluating our considered
classification models that should be tuned, or for evaluating our surrogate regression models.
As no optimal measure exists, we will compare several of them. In the classification case,
we consider AUC, accuracy and Brier score. In the case of surrogate regression, we consider
R2, which is directly proportional to the regular mean squared error but scaled to [0,1] and
explains the gain over a constant model estimating the overall mean of all data points. We
also compute Kendall’s tau as a ranking based measure for regression.

8



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Algorithm Hyperparameter Type Lower Upper Trafo
glmnet
(Elastic net) alpha numeric 0 1 -

lambda numeric -10 10 2x

rpart
(Decision tree) cp numeric 0 1 -

maxdepth integer 1 30 -
minbucket integer 1 60 -
minsplit integer 1 60 -

kknn - -
(k-nearest neighbor) k integer 1 30 -
svm
(Support vector machine) kernel discrete - - -

cost numeric -10 10 2x

gamma numeric -10 10 2x

degree integer 2 5 -
ranger
(Random forest) num.trees integer 1 2000 -

replace logical - - -
sample.fraction numeric 0.1 1 -
mtry numeric 0 1 x · p
respect.unordered.factors logical - - -
min.node.size numeric 0 1 nx

xgboost
(Gradient boosting) nrounds integer 1 5000 -

eta numeric -10 0 2x

subsample numeric 0.1 1 -
booster discrete - - -
max_depth integer 1 15 -
min_child_weight numeric 0 7 2x

colsample_bytree numeric 0 1 -
colsample_bylevel numeric 0 1 -
lambda numeric -10 10 2x

alpha numeric -10 10 2x

Table 1: Hyperparameters of the algorithms. p refers to the number of variables and n to the
number of observations. The columns Lower and Upper indicate the regions from which
samples of these hyperparameters are drawn. The transformation function in the trafo
column, if any, indicates how the values are transformed according to this function. The
exponential transformation is applied to obtain more candidate values in regions with
smaller hyperparameters because for these hyperparameters the performance differences
between smaller values are potentially bigger than for bigger values. The mtry value in
ranger that is drawn from [0, 1] is transformed for each dataset separately. After having
chosen the dataset, the value is multiplied by the number of variables and afterwards
rounded up. Similarly, for the min.node.size the value x is transformed by the formula
[nx] with n being the number of observations of the dataset, to obtain a positive integer
values with higher probability for smaller values (the value is finally rounded to obtain
integer values).

9



Probst, Boulesteix and Bischl

The performance estimation for the different hyperparameter experiments is computed
through 10-fold cross-validation. For the comparison of surrogate models 10 times repeated
10-fold cross-validation is used.

4.4. Random Bot sampling strategy for meta data

To reliably estimate our surrogate models we need enough evaluated configurations per
classifier and dataset. We sample these points from independent uniform distributions where
the respective support for each parameter is displayed in Table 1. Here, uniform refers to
the untransformed scale, so we sample uniformly from the interval [Lower, Upper ] of Table 1.

In order to properly facilitate the automatic computation of a large database of hyper-
parameter experiments, we implemented a so called OpenML bot. In an embarrassingly
parallel manner it chooses in each iteration a random dataset, a random classification al-
gorithm, samples a random configuration and evaluates it via cross-validation. A subset
of 500000 experiments for each algorithm and all datasets are used for our analysis here.3

More technical details regarding the random bot, its setup and results can be obtained in
Kühn et al. (2018b), furthermore, for simple and permanent access the results of the bot
are stored in a figshare repository (Kühn et al., 2018a).

4.5. Optimizing Surrogates to Obtain Optimal Defaults

Random search is also used for our black-box optimization problems in Section 3.7. For
the estimation of the defaults for each algorithm we randomly sample 100000 points in
the hyperparameter space as defined in Table 1 and determine the configuration with the
minimal average risk. The same strategy with 100000 random points is used to obtain
the best hyperparameter setting on each dataset that is needed for the estimation of the
tunability of an algorithm. For the estimation of the tunability of single hyperparameters we
also use 100000 random points for each parameter, while for the tunability of combination
of hyperparameters we only use 10000 random points to reduce runtime as this should be
enough to cover 2-dimensional hyperparameter spaces.

Of course one has to be careful with overfitting here, as our optimal defaults are chosen
with the help of the same datasets that are used to determine the performance. Therefore,
we also evaluate our approach via a “10-fold cross-validation across datasets”. Here, we
repeatedly calculate the optimal defaults based on 90% “training datasets” and evaluate the
package defaults and our optimal defaults—the latter induced from the training datasets—
on the surrogate models of the remaining 10% “test datasets”, and compare their difference
in performance.

4.6. The Problem of Hyperparameter Dependency

Some parameters are dependent on other superordinate hyperparameters and are only rele-
vant if the parameter value of this superordinate parameter was set to a specific value. For
example gamma in svm only makes sense if the kernel was set to “radial” or degree only
makes sense if the kernel was set to “polynomial”. Some of these subordinate parameters
might be invalid/inactive in the reference default configuration, rendering it impossible to

3. Only 30 experiments are used for each dataset for kknn, because we only consider the parameter k.

10



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

univariately tune them in order to compute their tunability score. In such a case we set the
superordinate parameter to a value which makes the subordinate parameter active, compute
the optimal defaults for the rest of the parameters and compute the tunability score for the
subordinate parameter with these defaults.

4.7. Software Details

All our experiments are executed in R and are run through a combination of custom code
from our random bot (Kühn et al., 2018b), the OpenML R package (Casalicchio et al., 2017),
mlr (Bischl et al., 2016) and batchtools (Lang et al., 2017) for parallelization. All results
are uploaded to the OpenML platform and there publicly available for further analysis.
mlr is also used to compare and fit all surrogate regression models. The fully reproducible
R code for all computations and analyses of our paper can be found on the github page:
https://github.com/PhilippPro/tunability. We also provide an interactive shiny app
under https://philipppro.shinyapps.io/tunability/, which displays all results of the
following section in a potentially more convenient, interactive fashion and which can simply
be accessed through a web browser.

5. Results and Discussion

We calculate all results for AUC, accuracy and Brier score but mainly discuss AUC results
here. Tables and figures for the other measures can be accessed in the appendix and in our
interactive shiny application.

5.1. Surrogate Models

We compare different possible regression models as candidates for our surrogate models: the
linear model (lm), a simple decision tree (rpart), k nearest-neighbors (kknn) and random
forest (ranger)4 All algorithms are run with their default settings. We calculate 10 times
repeated 10-fold cross-validated regression performance measures R2 and Kendall’s tau per
dataset, and average these across all datasets.5 Results for AUC are displayed in Figure 1.
A good overall performance is achieved by ranger with qualitatively similar results for
other classification performance measures (see Appendix). In the following we use random
forest as surrogate model because it performs reasonably well and is already an established
algorithm for surrogate models in the literature (Eggensperger et al., 2014; Hutter et al.,
2013).

5.2. Optimal Defaults and Tunability

Table 2 displays our mean tunability results for the algorithms as defined in formula (4)
w.r.t. package defaults (Tun.P column) and our optimal defaults (Tun.O). The distribution
of the tunability values of the optimal defaults can be seen in Figure 2 in the modified

4. We also tried cubist (Kuhn et al., 2016), which provided good results but the algorithm had some
technical problems for some combinations of datasets and algorithms. We did not include gaussian
process which is one of the standard algorithms for surrogate models as it cannot handle categorical
variables.

5. In case of kknn four datasets did not provide results for one of the surrogate models and were not used.

11



Probst, Boulesteix and Bischl

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lm kknn rpart ranger

Surrogate model

R
−

sq
ua

re
d

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

lm kknn rpart ranger

Surrogate model

K
en

da
ll'

s 
ta

u

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

Figure 1: Average performances over the datasets of different surrogate models (target:
AUC) for different algorithms (that were presented in 4.2). For an easier compar-
ison of the surrogate models the same graph with exchanged x-axis and legend is
available in the appendix in Figure 5.

12



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Algorithm Tun.P Tun.O Tun.O-CV Improv Impr-CV
glmnet 0.069± 0.019 0.024± 0.013 0.037± 0.015 0.045± 0.015 0.032± 0.015
rpart 0.038± 0.006 0.012± 0.004 0.016± 0.004 0.025± 0.006 0.022± 0.006
kknn 0.031± 0.006 0.006± 0.004 0.006± 0.004 0.025± 0.008 0.025± 0.008
svm 0.056± 0.011 0.042± 0.007 0.048± 0.008 0.014± 0.005 0.008± 0.007

ranger 0.010± 0.003 0.006± 0.001 0.007± 0.001 0.004± 0.003 0.003± 0.003
xgboost 0.043± 0.006 0.014± 0.006 0.017± 0.007 0.029± 0.003 0.026± 0.003

Table 2: Mean tunability (regarding AUC) with the package defaults (Tun.P) and the op-
timal defaults (Tun.O) as reference, cross-validated tunability (Tun.O-CV), aver-
age improvement (Improv) and cross-validated average improvement (Impr-CV)
obtained by using optimal defaults compared to package defaults. The (cross-
validated) improvement can be calculated by the (rounded) difference between
Tun.P and Tun.O (Tun.O-CV). Standard error of the mean (SEM) is given behind
the “±”-sign.

boxplots. Table 2 also displays the average improvement per algorithm when moving from
package defaults to optimal defaults (Improv), which was positive overall. This also holds
for svm and ranger although the package defaults are data dependent, which we currently
cannot model (gamma = 1/p for svm and mtry = √p for ranger). As our optimal defaults
are calculated based on all datasets, there is a risk of overfitting. So we perform a 5-fold
cross-validation on dataset level, always calculating optimal defaults on 4

5 of datasets and
evaluating them on 1

5 of the datasets. The results in the column Impr-CV in Table 2 show
that the improvement compared to the package defaults is less pronounced but still positive
for all algorithms.

From now on, when discussing tunability, we will only do this w.r.t. our optimal defaults.
Clearly, some algorithms such as glmnet and svm are much more tunable than the others,

while ranger is the algorithm with the smallest tunability, which is in line with common
knowledge in the web community. In the boxplots in Figure 2 for each ML algorithm, some
values that are much bigger than the others are visible, which indicates that tuning has a
much higher impact on some specific datasets.

5.3. Tunability of Specific Hyperparameters

In Table 3 the mean tunability (regarding the AUC) of single hyperparameters as defined
in Equation (6) in Section 3.4 can be seen. Moreover, in Figure 3 the distributions of the
tunability values of the hyperparameters are depicted in boxplots, which makes it possible to
detect outliers and to examine skewness. The same results for the Brier score and accuracy
can be found in the appendix. In the following analysis of our results, we will refer to
tunability only with respect to optimal defaults.

For glmnet lambda seems to be more tunable than alpha regarding the AUC, especially
for two datasets tuning seems to be crucial. For accuracy we observe the same pattern,
while for Brier score alpha seems to be more tunable than lambda (see Figure 11 and
Figure 13 in the appendix). We could not find any recommendation in the literature for

13



Probst, Boulesteix and Bischl

0.00

0.05

0.10

0.15

0.20

glmnet rpart kknn svm ranger xgboost

Algorithm

A
U

C
 tu

na
bi

lit
y

Figure 2: Boxplots of the tunabilities (AUC) of the different algorithms with respect to
optimal defaults. The upper and lower whiskers (upper and lower line of the
boxplot rectangle) are in our case defined as the 0.1 and 0.9 quantiles of the
tunability scores. The 0.9 quantile indicates how much performance improvement
can be expected on at least 10% of datasets. One outlier of glmnet (value 0.5) is
not shown.

these two parameters. In rpart the minbucket and minsplit parameters seem to be the
most important ones for tuning which is in line with the analysis of Mantovani et al. (2018).
k in the kknn algorithm is very tunable w.r.t. package defaults, but not regarding optimal
defaults. Note that the optimal default is 30 which is at the boundary of possible values,
so possibly bigger values can provide further improvements. A classical suggestion in the
literature (Lall and Sharma, 1996) is to use

√
n as default value. This is in line with our

results, as the number of observations is bigger than 900 in most of our datasets.
In svm the biggest gain in performance can be achieved by tuning the kernel, gamma or

degree, while the cost parameter does not seem to be very tunable. To the best of our
knowledge, this has not been noted in the literature yet. In ranger mtry is the most tunable
parameter which is already common knowledge and is implemented in software packages
such as caret (Kuhn, 2008). For xgboost there are two parameters that are quite tunable:
eta and booster. The tunability of booster is highly influenced by an outlier as can be seen
in Figure 3. The 5-fold cross-validated results can be seen in Table 10 of the appendix: they
are quite similar to the non cross-validated results and for all parameters slightly higher.

14



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Parameter Def.P Def.O Tun.P Tun.O q0.05 q0.95

glmnet 0.069 0.024
alpha 1 0.403 0.038 0.006 0.009 0.981

lambda 0 0.004 0.034 0.021 0.001 0.147
rpart 0.038 0.012

cp 0.01 0 0.025 0.002 0 0.008
maxdepth 30 21 0.004 0.002 12.1 27
minbucket 7 12 0.005 0.006 3.85 41.6
minsplit 20 24 0.004 0.004 5 49.15

kknn 0.031 0.006
k 7 30 0.031 0.006 9.95 30

svm 0.056 0.042
kernel radial radial 0.030 0.024
cost 1 682.478 0.016 0.006 0.002 920.582

gamma 1/p 0.005 0.030 0.022 0.003 18.195
degree 3 3 0.008 0.014 2 4
ranger 0.010 0.006

num.trees 500 983 0.001 0.001 206.35 1740.15
replace TRUE FALSE 0.002 0.001

sample.fraction 1 0.703 0.004 0.002 0.323 0.974
mtry √

p p · 0.257 0.006 0.003 0.035 0.692
respect.unordered.factors TRUE FALSE 0.000 0.000

min.node.size 1 1 0.001 0.001 0.007 0.513
xgboost 0.043 0.014
nrounds 500 4168 0.004 0.002 920.7 4550.95

eta 0.3 0.018 0.006 0.005 0.002 0.355
subsample 1 0.839 0.004 0.002 0.545 0.958

booster gbtree gbtree 0.015 0.008
max_depth 6 13 0.001 0.001 5.6 14

min_child_weight 1 2.06 0.008 0.002 1.295 6.984
colsample_bytree 1 0.752 0.006 0.001 0.419 0.864
colsample_bylevel 1 0.585 0.008 0.001 0.335 0.886

lambda 1 0.982 0.003 0.002 0.008 29.755
alpha 1 1.113 0.003 0.002 0.002 6.105

Table 3: Defaults (package defaults (Def.P) and optimal defaults (Def.O)), tunability of
the hyperparameters with the package defaults (Tun.P) and our optimal defaults
(Tun.O) as reference and tuning space quantiles (q0.05 and q0.95) for different pa-
rameters of the algorithms.

15



Probst, Boulesteix and Bischl

ranger xgboost

kknn svm

glmnet rpart

num.tre
es

replace

sa
mple.fra

ctio
n

mtry

resp
.unord.fa

ct.

min.node.siz
e

alpha

lambda

nrounds eta

su
bsa

mple

booste
r

max_
depth

min_ch
ild_weight

co
lsa

mple_bytr
ee

co
lsa

mple_byle
ve

l

k
ke

rnel
co

st

gamma

degree

alpha

lambda cp

maxd
epth

minbucke
t

minsp
lit

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

Hyperparameter

A
U

C
 tu

na
bi

lit
y

Figure 3: Boxplots of the tunabilities of the hyperparameters of the different algorithms with
respect to optimal defaults. The y-axis is on a logarithmic scale. All values below
10−3 were set to 10−3 to be able to display them. Same definition of whiskers as
in Figure 2.

16



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

cp maxdepth minbucket minsplit
cp 0.002 0.003 0.006 0.004
maxdepth 0.002 0.007 0.005
minbucket 0.006 0.011
minsplit 0.004

Table 4: Tunability di1,i2 of hyperparameters of rpart, diagonal shows tunability of the
single hyperparameters.

maxdepth minbucket minsplit
cp 0.0007 0.0005 0.0004
maxdepth 0.0014 0.0019
minbucket 0.0055

Table 5: Joint gain gi1,i2 of tuning two hyperparameters instead of the most important in
rpart.

5.4. Tunability of Hyperparameter Combinations and Joint Gains

As an example, Table 4 displays the average tunability di1,i2 of all 2-way hyperparameter
combinations for rpart. Obviously, the increased flexibility in tuning a 2-way combination
enables larger improvements when compared with the tunability of one of the respective
individual parameters. In Table 5 the joint gain of tuning two hyperparameters gi1,i2 instead
of only the best as defined in Section 3.5 can be seen. The parameters minsplit and
minbucket have the biggest joint effect, which is not very surprising, as they are closely
related: minsplit is the minimum number of observations that must exist in a node in
order for a split to be attempted and minbucket the minimum number of observations in
any terminal leaf node. If a higher value of minsplit than the default performs better on a
dataset it is possibly not enough to set it higher without also increasing minbucket, so the
strong relationship is quite clear. Again, further figures for other algorithms are available
through the shiny app. Another remarkable example is the combination of sample.fraction
and min.node.size in ranger: the joint gain is very low and tuning sample.fraction only
seems to be enough, which is concordant to the results of Scornet (2018). Moreover, in
xgboost the joint gain of nrounds and eta is relatively low, which is not surprising, as these
parameters are highly connected with each other (when setting nrounds higher, eta should
be set lower and vice versa).

5.5. Hyperparameter Space for Tuning

The hyperparameter space for tuning, as defined in Equation (10) in Section 3.6 and based
on the 0.05 and 0.95 quantiles, is displayed in Table 3. All optimal defaults are contained
in this hyperparameter space while some of the package defaults are not.

17



Probst, Boulesteix and Bischl

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

mtry

D
en

si
ty

Figure 4: Density and histogram of best parameter values for mtry of random forest over
all considered datasets.

As an example, Figure 4 displays the full histogram of the best values of mtry of the
random forest over all datasets. Note that for quite a few datasets much higher values than
the package defaults seem advantageous.

6. Conclusion and Discussion

Our paper provides concise and intuitive definitions for optimal defaults of ML algorithms
and the impact of tuning them either jointly, tuning individual parameters or combinations,
all based on the general concept of surrogate empirical performance models. Tunability
values as defined in our framework are easily and directly interpretable as how much per-
formance can be gained by tuning this hyperparameter?. This allows direct comparability of
the tunability values across different algorithms.

In an extensive OpenML benchmark, we computed optimal defaults for elastic net, deci-
sion tree, k-nearest neighbors, SVM, random forest and xgboost and quantified their tunabil-
ity and the tunability of their individual parameters. This—to the best of our knowledge—
has never been provided before in such a principled manner. Our results are often in line
with common knowledge from literature and our method itself now allows an analogous
analysis for other or more complex methods.

Our framework is based on the concept of default hyperparameter values, which can be
seen both as an advantage (default values are a valuable output of the approach) and as
an inconvenience (the determination of the default values is an additional analysis step and
needed as a reference point for most of our measures).

We now compare our method with van Rijn and Hutter (2017). In contrast to us, they
apply the functional ANOVA framework from Hutter et al. (2014) on a surrogate random
forest to assess the importance of hyperparameters regarding empirical performance of a
support vector machine, random forest and adaboost, which results in numerical importance

18



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

scores for individual hyperparameters. Their numerical scores are - in our opinion - less
directly interpretable, but they do not rely on defaults as a reference point, which one
might see as an advantage. They also propose a method for calculating hyperparameter
priors, combine it with the tuning procedure hyperband, and assess the performance of this
new tuning procedure. In contrast, we define and calculate ranges for all hyperparameters.
Setting ranges for the tuning space can be seen as a special case of a prior distribution - the
uniform distribution on the specified hyperparameter space. Regarding the experimental
setup, we compute more hyperparameter runs (around 2.5 million vs. 250000), but consider
only the 38 binary classification datasets of OpenML100 while van Rijn and Hutter (2017)
use all the 100 datasets which also contain multiclass datasets. We evaluate the performance
of different surrogate models by 10 times repeated 10-fold cross-validation to choose an
appropriate model and to assure that it performs reasonably well.

Our study has some limitations that could be addressed in the future: a) We only con-
sidered binary classification, where we tried to include a wider variety of datasets from
different domains. In principle this is not a restriction as our methods can easily be applied
to multiclass classification, regression, survival analysis or even algorithms not from machine
learning whose empirical performance is reliably measurable on a problem instance. b) Uni-
form random sampling of hyperparameters might not scale enough for very high dimensional
spaces, and a smarter sequential technique might be in order here, see Bossek et al. (2015)
for an potential approach of sampling across problem instances to learn optimal mappings
from problem characteristics to algorithm configurations. c) We currently are learning static
defaults, which cannot depend on dataset characteristics (like number of features, or further
statistical measures). Doing so might improve performance results of optimal defaults con-
siderably, but would require a more complicated approach. A recent paper regarding this
topic was published by van Rijn et al. (2018). d) Our approach still needs initial ranges to
be set, in order to run our sampling procedure. Only based on these wider ranges we can
then compute more precise, closer ranges.

Acknowledgments

We would like to thank Joaquin Vanschoren for support regarding the OpenML platform
and Andreas Müller, Jan van Rijn, Janek Thomas and Florian Pfisterer for reviewing and
useful comments. Thanks to Jenny Lee for language editing. This work has been partially
funded by grant BO3139/2-3 to ALB from the German Research Foundation and by the
German Federal Ministry of Education and Research (BMBF) under Grant No. 01IS18036A.
The authors of this work take full responsibilities for its content.

19



Probst, Boulesteix and Bischl

Appendix A. Additional Graphs and Tables

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

glmnet rpart kknn svm ranger xgboost

Algorithm

R
−

sq
ua

re
d

Surrogate

lm

kknn

rpart

ranger

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

glmnet rpart kknn svm ranger xgboost

Surrogate model

K
en

da
ll'

s 
ta

u

Surrogate

lm

kknn

rpart

ranger

Figure 5: Same as Figure 1 but with exchanged x-axis and legend. Average performances
over the datasets of different surrogate models (target: AUC) for different algo-
rithms (that were presented in 4.2).

20



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

R
−

sq
ua

re
d

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

K
en

da
ll'

s 
ta

u

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

Figure 6: Surrogate model comparison as in Figure 1 but with accuracy as target measure.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Algorithm

R
−

sq
ua

re
d

Surrogate

lm

kknn

rpart

ranger

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Surrogate model

K
en

da
ll'

s 
ta

u

Surrogate

lm

kknn

rpart

ranger

Figure 7: Surrogate model comparison as in Figure 6 (target: accuracy) but with exchanged
x-axis and legend.

21



Probst, Boulesteix and Bischl

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

R
−

sq
ua

re
d

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

lm kknn rpart ranger

Surrogate model

K
en

da
ll'

s 
ta

u

Algorithm

glmnet

rpart

kknn

svm

ranger

xgboost

Figure 8: Surrogate model comparison as in Figure 1 but with Brier score as target measure.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Algorithm

R
−

sq
ua

re
d

Surrogate

lm

kknn

rpart

ranger

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

glmnet rpart kknn svm ranger xgboost

Surrogate model

K
en

da
ll'

s 
ta

u

Surrogate

lm

kknn

rpart

ranger

Figure 9: Surrogate model comparison as in Figure 8 but with exchanged x-axis and legend.

22



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Algorithm Tun.P Tun.O Tun.O-CV Improv Impr-CV
glmnet 0.042± 0.020 0.019± 0.010 0.042± 0.018 0.023± 0.021 0.001± 0.013
rpart 0.020± 0.004 0.012± 0.002 0.014± 0.004 0.008± 0.003 0.005± 0.002
kknn 0.021± 0.006 0.008± 0.002 0.010± 0.004 0.013± 0.005 0.010± 0.006
svm 0.041± 0.009 0.030± 0.008 0.041± 0.012 0.011± 0.004 −0.001± 0.011

ranger 0.016± 0.004 0.007± 0.001 0.009± 0.002 0.009± 0.004 0.006± 0.004
xgboost 0.034± 0.005 0.011± 0.004 0.012± 0.004 0.023± 0.004 0.022± 0.004

Table 6: Mean tunability as in Table 2, but calculated for the accuracy. Overall tunability
(regarding accuracy) with the package defaults (Tun.P) and the optimal defaults
(Tun.O) as reference points, cross-validated tunability (Tun.O-CV), average im-
provement (Improv) and cross-validated average improvement (Impr-CV) obtained
by using optimal defaults compared to package defaults. The (cross-validated) im-
provement can be calculated by the (rounded) difference between Tun.P and Tun.O
(Tun.O-CV). Standard error of the mean (SEM) is given behind the “±”-sign.

0.00

0.05

0.10

0.15

glmnet rpart kknn svm ranger xgboost

Algorithm

A
cc

ur
ac

y 
tu

na
bi

lit
y

Figure 10: Boxplots of the tunabilities (accuracy) of the different algorithms with respect
to optimal defaults.

23



Probst, Boulesteix and Bischl

Parameter Def.P Def.O Tun.P Tun.O q0.05 q0.95

glmnet 0.042 0.019
alpha 1 0.252 0.022 0.010 0.015 0.979

lambda 0 0.005 0.029 0.017 0.001 0.223
rpart 0.020 0.012

cp 0.01 0.002 0.013 0.008 0 0.528
maxdepth 30 19 0.004 0.004 10 28
minbucket 7 5 0.005 0.006 1.85 43.15
minsplit 20 13 0.002 0.003 6.7 47.6

kknn 0.021 0.008
k 7 14 0.021 0.008 2 30

svm 0.041 0.030
kernel radial radial 0.019 0.018
cost 1 936.982 0.019 0.003 0.025 943.704

gamma 1/p 0.002 0.024 0.020 0.007 276.02
degree 3 3 0.005 0.014 2 4
ranger 0.016 0.007

num.trees 500 162 0.001 0.001 203.5 1908.25
replace TRUE FALSE 0.004 0.001

sample.fraction 1 0.76 0.003 0.003 0.257 0.971
mtry √

p p · 0.432 0.010 0.003 0.081 0.867
respect.unordered.factors TRUE TRUE 0.001 0.000

min.node.size 1 1 0.001 0.002 0.009 0.453
xgboost 0.034 0.011
nrounds 500 3342 0.004 0.002 1360 4847.15

eta 0.3 0.031 0.005 0.005 0.002 0.445
subsample 1 0.89 0.003 0.002 0.555 0.964

booster gbtree gbtree 0.008 0.005
max_depth 6 14 0.001 0.001 3 13

min_child_weight 1 1.264 0.009 0.002 1.061 7.502
colsample_bytree 1 0.712 0.005 0.001 0.334 0.887
colsample_bylevel 1 0.827 0.006 0.001 0.348 0.857

lambda 1 2.224 0.002 0.002 0.004 5.837
alpha 1 0.021 0.003 0.002 0.003 2.904

Table 7: Tunability measures for single hyperparameters and tuning spaces as in Table 3, but
calculated for the accuracy. Defaults (package defaults (Def.P) and own optimal
defaults (Def.O)), tunability of the hyperparameters with the package defaults
(Tun.P) and our optimal defaults (Tun.O) as reference and tuning space quantiles
(q0.05 and q0.95) for different parameters of the algorithms.

24



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

ranger xgboost

kknn svm

glmnet rpart

num.tre
es

replace

sa
mple.fra

ctio
n

mtry

resp
.unord.fa

ct.

min.node.siz
e

alpha

lambda

nrounds eta

su
bsa

mple

booste
r

max_
depth

min_ch
ild_weight

co
lsa

mple_bytr
ee

co
lsa

mple_byle
ve

l

k
ke

rnel
co

st

gamma

degree

alpha

lambda cp

maxd
epth

minbucke
t

minsp
lit

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

Hyperparameter

A
cc

ur
ac

y 
tu

na
bi

lit
y

Figure 11: Boxplots of the tunabilities (accuracy) of the hyperparameters of the different
algorithms with respect to optimal defaults. The y-axis is on a logarithmic scale.
All values below 10−3 were set to 10−3 to be able to display them. Same definition
of whiskers as in Figure 2.

25



Probst, Boulesteix and Bischl

Algorithm Tun.P Tun.O Tun.O-CV Improv Impr-CV
glmnet 0.022± 0.007 0.010± 0.004 0.020± 0.014 0.011± 0.006 0.001± 0.012
rpart 0.015± 0.002 0.009± 0.002 0.011± 0.003 0.006± 0.002 0.004± 0.002
kknn 0.012± 0.003 0.003± 0.001 0.003± 0.001 0.009± 0.003 0.009± 0.003
svm 0.026± 0.005 0.018± 0.004 0.023± 0.006 0.008± 0.003 0.003± 0.005

ranger 0.015± 0.004 0.005± 0.001 0.006± 0.001 0.010± 0.004 0.009± 0.004
xgboost 0.027± 0.003 0.009± 0.002 0.011± 0.003 0.018± 0.002 0.016± 0.002

Table 8: Mean tunability as in Table 2, but calculated for the Brier score. Overall tunability
(regarding Brier score) with the package defaults (Tun.P) and the optimal defaults
(Tun.O) as reference points, cross-validated tunability (Tun.O-CV), average im-
provement (Improv) and cross-validated average improvement (Impr-CV) obtained
by using optimal defaults compared to package defaults. The (cross-validated) im-
provement can be calculated by the (rounded) difference between Tun.P and Tun.O
(Tun.O-CV). Standard error of the mean (SEM) is given behind the “±”-sign.

0.00

0.05

0.10

0.15

glmnet rpart kknn svm ranger xgboost

Algorithm

B
rie

r 
sc

or
e 

tu
na

bi
lit

y

Figure 12: Boxplots of the tunabilities (Brier score) of the different algorithms with respect
to optimal defaults.

26



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Parameter Def.P Def.O Tun.P Tun.O q0.05 q0.95

glmnet 0.022 0.010
alpha 1 0.997 0.009 0.005 0.003 0.974

lambda 0 0.004 0.014 0.007 0.001 0.051
rpart 0.015 0.009

cp 0.01 0.001 0.009 0.003 0 0.035
maxdepth 30 13 0.002 0.002 9 27.15
minbucket 7 12 0.004 0.006 1 44.1
minsplit 20 18 0.002 0.002 7 49.15

kknn 0.012 0.003
k 7 19 0.012 0.003 4.85 30

svm 0.026 0.018
kernel radial radial 0.013 0.011
cost 1 950.787 0.012 0.002 0.002 963.81

gamma 1/p 0.005 0.015 0.012 0.001 4.759
degree 3 3 0.003 0.009 2 4
ranger 0.015 0.005

num.trees 500 198 0.001 0.001 187.85 1568.25
replace TRUE FALSE 0.002 0.001

sample.fraction 1 0.667 0.002 0.003 0.317 0.964
mtry √

p p · 0.666 0.010 0.002 0.072 0.954
respect.unordered.factors TRUE TRUE 0.000 0.000

min.node.size 1 1 0.001 0.001 0.008 0.394
xgboost 0.027 0.009
nrounds 500 2563 0.004 0.002 2018.55 4780.05

eta 0.3 0.052 0.004 0.005 0.003 0.436
subsample 1 0.873 0.002 0.002 0.447 0.951

booster gbtree gbtree 0.009 0.004
max_depth 6 11 0.001 0.001 2.6 13

min_child_weight 1 1.75 0.007 0.002 1.277 5.115
colsample_bytree 1 0.713 0.004 0.002 0.354 0.922
colsample_bylevel 1 0.638 0.004 0.001 0.363 0.916

lambda 1 0.101 0.002 0.003 0.006 28.032
alpha 1 0.894 0.003 0.004 0.003 2.68

Table 9: Tunability measures for single hyperparameters and tuning spaces as in Table 3, but
calculated for the Brier score. Defaults (package defaults (Def.P) and own optimal
defaults (Def.O)), tunability of the hyperparameters with the package defaults
(Tun.P) and our optimal defaults (Tun.O) as reference and tuning space quantiles
(q0.05 and q0.95) for different parameters of the algorithms.

27



Probst, Boulesteix and Bischl

ranger xgboost

kknn svm

glmnet rpart

num.tre
es

replace

sa
mple.fra

ctio
n

mtry

resp
.unord.fa

ct.

min.node.siz
e

alpha

lambda

nrounds eta

su
bsa

mple

booste
r

max_
depth

min_ch
ild_weight

co
lsa

mple_bytr
ee

co
lsa

mple_byle
ve

l

k
ke

rnel
co

st

gamma

degree

alpha

lambda cp

maxd
epth

minbucke
t

minsp
lit

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

0.001

0.005

0.01

0.05

0.1

0.5

Hyperparameter

B
rie

r 
sc

or
e 

tu
na

bi
lit

y

Figure 13: Boxplots of the tunabilities (Brier score) of the hyperparameters of the different
algorithms with respect to optimal defaults. The y-axis is on a logarithmic scale.
All values below 10−3 were set to 10−3 to be able to display them. Same definition
of whiskers as in Figure 2.

28



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Measure AUC Accuracy Brier score
Parameter Tun.O Tun.O-CV Tun.O Tun.O-CV Tun.O Tun.O-CV

glmnet 0.024 0.037 0.019 0.042 0.010 0.020
alpha 0.006 0.006 0.010 0.026 0.005 0.015

lambda 0.021 0.034 0.017 0.039 0.007 0.018
rpart 0.012 0.016 0.012 0.014 0.009 0.011

cp 0.002 0.002 0.008 0.008 0.003 0.005
maxdepth 0.002 0.002 0.004 0.004 0.002 0.003
minbucket 0.006 0.009 0.006 0.007 0.006 0.006
minsplit 0.004 0.004 0.003 0.003 0.002 0.003

kknn 0.006 0.006 0.008 0.010 0.003 0.003
k 0.006 0.006 0.008 0.010 0.003 0.003

svm 0.042 0.048 0.030 0.041 0.018 0.023
kernel 0.024 0.030 0.018 0.031 0.011 0.016
cost 0.006 0.006 0.003 0.003 0.002 0.002

gamma 0.022 0.028 0.020 0.031 0.012 0.016
degree 0.014 0.020 0.014 0.027 0.009 0.014
ranger 0.006 0.007 0.007 0.009 0.005 0.006

num.trees 0.001 0.002 0.001 0.003 0.001 0.001
replace 0.001 0.002 0.001 0.002 0.001 0.001

sample.fraction 0.002 0.002 0.003 0.003 0.003 0.003
mtry 0.003 0.004 0.003 0.005 0.002 0.003

respect.unordered.factors 0.000 0.000 0.000 0.001 0.000 0.000
min.node.size 0.001 0.001 0.002 0.002 0.001 0.001

xgboost 0.014 0.017 0.011 0.012 0.009 0.011
nrounds 0.002 0.002 0.002 0.003 0.002 0.002

eta 0.005 0.006 0.005 0.006 0.005 0.006
subsample 0.002 0.002 0.002 0.002 0.002 0.002

booster 0.008 0.008 0.005 0.005 0.004 0.004
max_depth 0.001 0.001 0.001 0.001 0.001 0.001

min_child_weight 0.002 0.003 0.002 0.002 0.002 0.003
colsample_bytree 0.001 0.002 0.001 0.001 0.002 0.002
colsample_bylevel 0.001 0.001 0.001 0.001 0.001 0.002

lambda 0.002 0.003 0.002 0.003 0.003 0.004
alpha 0.002 0.004 0.002 0.003 0.004 0.004

Table 10: Tunability with optimal defaults as reference without (Tun.O) and with (Tun.O-
CV) cross-validation for AUC, accuracy and Brier score

29



Probst, Boulesteix and Bischl

References

Charles Audet, John E. Dennis, Douglas Moore, Andrew Booker, and Paul Frank. A
surrogate-model-based method for constrained optimization. In 8th Symposium on Mul-
tidisciplinary Analysis and Optimization, page 4891, 2000.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13:281–305, 2012.

André Biedenkapp, Marius Thomas Lindauer, Katharina Eggensperger, Frank Hutter, Chris
Fawcett, and Holger H Hoos. Efficient parameter importance analysis via ablation with
surrogates. In AAAI, pages 773–779, 2017.

Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle. F-Race and it-
erated F-Race: An overview. In Experimental Methods for the Analysis of Optimization
Algorithms, pages 311–336. Springer, 2010.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Claus Weihs. Resampling methods for
meta-model validation with recommendations for evolutionary computation. Evolutionary
Computation, 20(2):249–275, 2012.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,
Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine learning in R. Journal of
Machine Learning Research, 17(170):1–5, 2016.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang, Rafael G.
Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. OpenML benchmarking suites and
the OpenML100. ArXiv preprint arXiv:1708.03731, 2017a. URL https://arxiv.org/ab
s/1708.03731.

Bernd Bischl, Jakob Richter, Jakob Bossek, Daniel Horn, Janek Thomas, and Michel Lang.
mlrMBO: A modular framework for model-based optimization of expensive black-box
functions. ArXiv preprint arXiv:1703.03373, 2017b. URL https://arxiv.org/abs/1703.
03373.

Jakob Bossek, Bernd Bischl, Tobias Wagner, and Günter Rudolph. Learning feature-
parameter mappings for parameter tuning via the profile expected improvement. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, pages
1319–1326. ACM, 2015.

Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke,
Benjamin Hofner, Heidi Seibold, Joaquin Vanschoren, and Bernd Bischl. OpenML: An R
package to connect to the machine learning platform OpenML. Computational Statistics,
32(3):1–15, 2017.

Katharina Eggensperger, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Surrogate
benchmarks for hyperparameter optimization. In Proceedings of the 2014 International
Conference on Meta-learning and Algorithm Selection-Volume 1201, pages 24–31. CEUR-
WS.org, 2014.

30



Tunability: Importance of Hyperparameters of Machine Learning Algorithms

Katharina Eggensperger, Marius Lindauer, Holger H Hoos, Frank Hutter, and Kevin Leyton-
Brown. Efficient benchmarking of algorithm configurators via model-based surrogates.
Machine Learning, pages 1–27, 2018.

Agoston E Eiben and Selmar K Smit. Parameter tuning for configuring and analyzing
evolutionary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

Chris Fawcett and Holger H Hoos. Analysing differences between algorithm configurations
through ablation. Journal of Heuristics, 22(4):431–458, 2016.

Matthias Feurer, Benjamin Letham, and Eytan Bakshy. Scalable meta-learning for bayesian
optimization. arXiv preprint 1802.02219, 2018. URL https://arxiv.org/abs/1802.
02219.

Isabelle Guyon, Amir Saffari, Gideon Dror, and Gavin Cawley. Model selection: Beyond the
bayesian/frequentist divide. Journal of Machine Learning Research, 11(Jan):61–87, 2010.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In International Conference on Learning and
Intelligent Optimization, pages 507–523. Springer, 2011.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Identifying key algorithm pa-
rameters and instance features using forward selection. In International Conference on
Learning and Intelligent Optimization, pages 364–381. Springer, 2013.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing
hyperparameter importance. In ICML, volume 32 of JMLR Workshop and Conference
Proceedings, pages 754–762, 2014.

Max Kuhn. Building predictive models in R using the caret package. Journal of statistical
software, 28(5):1–26, 2008.

Max Kuhn, Steve Weston, Chris Keefer, and Nathan Coulter. Cubist: Rule- and instance-
based regression modeling, 2016. R package version 0.0.19.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. OpenML R bot benchmark
data (final subset), 2018a. URL https://figshare.com/articles/OpenML_R_Bot_Benc
hmark_Data_final_subset_/5882230/2.

Daniel Kühn, Philipp Probst, Janek Thomas, and Bernd Bischl. Automatic Exploration of
Machine Learning Experiments on OpenML. ArXiv preprint arXiv:1806.10961, 2018b.
URL https://arxiv.org/abs/1806.10961.

Upmanu Lall and Ashish Sharma. A nearest neighbor bootstrap for resampling hydrologic
time series. Water Resources Research, 32(3):679–693, 1996.

Michel Lang, Bernd Bischl, and Dirk Surmann. batchtools: Tools for R to work on batch
systems. The Journal of Open Source Software, 2(10), 2017.

31



Probst, Boulesteix and Bischl

Gang Luo. A review of automatic selection methods for machine learning algorithms and
hyper-parameter values. Network Modeling Analysis in Health Informatics and Bioinfor-
matics, 5(1):1–16, 2016.

Rafael G. Mantovani, Tomáš Horváth, Ricardo Cerri, Andre C.P.L.F. Carvalho, and Joaquin
Vanschoren. Hyper-parameter tuning of a decision tree induction algorithm. In Brazilian
Conference on Intelligent Systems (BRACIS 2016), 2016.

Rafael Gomes Mantovani, Tomáš Horváth, Ricardo Cerri, Sylvio Barbon Junior, Joaquin
Vanschoren, André Carlos Ponce de de Carvalho, and Leon Ferreira. An empirical study
on hyperparameter tuning of decision trees. ArXiv preprint arXiv:1812.02207, 2018. URL
https://arxiv.org/abs/1812.02207.

Erwan Scornet. Tuning parameters in random forests. ESAIM: Procs, 60:144–162, 2018.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in neural information processing systems, pages
2951–2959, 2012.

Jan N. van Rijn and Frank Hutter. Hyperparameter importance across datasets. ArXiv
preprint arXiv:1710.04725, 2017. URL https://arxiv.org/abs/1710.04725.

Jan N van Rijn, Florian Pfisterer, Janek Thomas, Andreas Muller, Bernd Bischl, and J Van-
schoren. Meta learning for defaults: Symbolic defaults. In Neural Information Processing
Workshop on Meta-Learning, 2018.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Levi Waldron, Melania Pintilie, Ming-Sound Tsao, Frances A Shepherd, Curtis Huttenhower,
and Igor Jurisica. Optimized application of penalized regression methods to diverse ge-
nomic data. Bioinformatics, 27(24):3399–3406, 2011.

32



Automatic Exploration of Machine Learning Experiments on
OpenML

Daniel Kühn*a, Philipp Probst*a, Janek Thomasa, Bernd Bischla

aLudwig-Maximilians-Universität München, Germany

Abstract

Understanding the influence of hyperparameters on the performance of a machine learning
algorithm is an important scientific topic in itself and can help to improve automatic hy-
perparameter tuning procedures. Unfortunately, experimental meta data for this purpose
is still rare. This paper presents a large, free and open dataset addressing this problem,
containing results on 38 OpenML data sets, six different machine learning algorithms and
many different hyperparameter configurations. Results where generated by an automated
random sampling strategy, termed the OpenML Random Bot. Each algorithm was cross-
validated up to 20.000 times per dataset with different hyperparameters settings, resulting
in a meta dataset of around 2.5 million experiments overall.

1. Introduction

When applying machine learning algorithms on real world datasets, users have to choose
from a large selection of different algorithms with many of them offering a set of hyper-
parameters to control algorithmic performance. Although sometimes default values exist,
there is no agreed upon principle for their definition (but see our recent work in in (Probst
et al., 2018) for a potential approach). Automatic tuning of such parameters is a possible
solution (Claesen and Moor, 2015), but comes with a considerable computational burden.

Meta-learning tries to decrease this cost (Feurer et al., 2015), by reusing information
of previous runs of the algorithm on similar datasets, which obviously requires access to
such prior empirical results. With this paper we provide a freely accessible meta dataset
that contains around 2.5 million runs of six different machine learning algorithms on 38
classification datasets.

Large, freely available datasets like Imagenet (Deng et al., 2009) are important for the
progress of machine learning, we hope to support developments in the area of meta-learning
and benchmarking, meta-learning and hyperparameter tuning with our work here.

While similar meta-datasets have been created in the past, we were not able to access
them by the links provided in their respective papers: Smith et al. (2014) provides a repos-
itory with Weka-based machine learning experiments on 72 data sets, 9 machine learning
algorithms, 10 hyperparameter settings for each algorithm, and several meta-features of
each data set. Reif (2012) created a meta-dataset based on machine learning experiments
on 83 datasets, 6 classification algorithms, and 49 meta features.

In this paper, we describe our experimental setup, specify how our meta-dataset is
created by running random machine learning experiments through the OpenML platform
(Vanschoren et al., 2013) and explain how to access our results.

Email addresses: daniel.kuehn.87@gmail.com (Daniel Kühn*), philipp_probst@gmx.de (Philipp
Probst*), janek.thomas@stat.uni-muenchen.de (Janek Thomas), bernd_bischl@gmx.net (Bernd Bischl)

ar
X

iv
:1

80
6.

10
96

1v
3 

 [
st

at
.M

L
] 

 1
9 

O
ct

 2
01

8



2. Considered ML data sets, algorithms and hyperparameters

To create the meta dataset, six supervised machine learning algorithms are run on
38 classification tasks. For each algorithm the available hyperparameters are explored in
a predefined range (see Table 1). Some of these hyperparameters are transformed by the
function found in column trafo of Table 1 to allow non-uniform sampling, a usual procedure
in tuning.

algorithm hyperparameter type lower upper trafo
glmnet alpha numeric 0 1 -

lambda numeric -10 10 2x

rpart cp numeric 0 1 -
maxdepth integer 1 30 -
minbucket integer 1 60 -
minsplit integer 1 60 -

kknn k integer 1 30 -
svm kernel discrete - - -

cost numeric -10 10 2x

gamma numeric -10 10 2x

degree integer 2 5 -
ranger num.trees integer 1 2000 -

replace logical - - -
sample.fraction numeric 0 1 -
mtry numeric 0 1 x · p
respect.unordered.factors logical - - -
min.node.size numeric 0 1 nx

xgboost nrounds integer 1 5000 -
eta numeric -10 0 2x

subsample numeric 0 1 -
booster discrete - - -
max depth integer 1 15 -
min child weight numeric 0 7 2x

colsample bytree numeric 0 1 -
colsample bylevel numeric 0 1 -
lambda numeric -10 10 2x

alpha numeric -10 10 2x

Table 1: Hyperparameters of the algorithms. p refers to the number of variables and n to the number
of observations. The used algorithms are glmnet (Friedman et al., 2010), rpart (Therneau and Atkinson,
2018), kknn (Schliep and Hechenbichler, 2016), svm (Meyer et al., 2017), ranger (Wright and Ziegler, 2017)
and xgboost (Chen and Guestrin, 2016).

These algorithms are run on a subset of the OpenML100 benchmark suite (Bischl et al.,
2017), which consists of 100 classification datasets, carefully curated from the thousands of
datasets available on OpenML (Vanschoren et al., 2013). We only include datasets without
missing data and with a binary outcome resulting in 38 datasets. The datasets and their
respective characteristics can be found in Table 2.

2



Data id Task id Name n p majPerc numFeat catFeat
3 3 kr-vs-kp 3196 37 0.52 0 37

31 31 credit-g 1000 21 0.70 7 14
37 37 diabetes 768 9 0.65 8 1
44 43 spambase 4601 58 0.61 57 1
50 49 tic-tac-toe 958 10 0.65 0 10

151 219 electricity 45312 9 0.58 7 2
312 3485 scene 2407 300 0.82 294 6
333 3492 monks-problems-1 556 7 0.50 0 7
334 3493 monks-problems-2 601 7 0.66 0 7
335 3494 monks-problems-3 554 7 0.52 0 7

1036 3889 sylva agnostic 14395 217 0.94 216 1
1038 3891 gina agnostic 3468 971 0.51 970 1
1043 3896 ada agnostic 4562 49 0.75 48 1
1046 3899 mozilla4 15545 6 0.67 5 1
1049 3902 pc4 1458 38 0.88 37 1
1050 3903 pc3 1563 38 0.90 37 1
1063 3913 kc2 522 22 0.80 21 1
1067 3917 kc1 2109 22 0.85 21 1
1068 3918 pc1 1109 22 0.93 21 1
1120 3954 MagicTelescope 19020 12 0.65 11 1
1461 14965 bank-marketing 45211 17 0.88 7 10
1462 10093 banknote-authentication 1372 5 0.56 4 1
1464 10101 blood-transfusion-service-center 748 5 0.76 4 1
1467 9980 climate-model-simulation-crashes 540 21 0.91 20 1
1471 9983 eeg-eye-state 14980 15 0.55 14 1
1479 9970 hill-valley 1212 101 0.50 100 1
1480 9971 ilpd 583 11 0.71 9 2
1485 9976 madelon 2600 501 0.50 500 1
1486 9977 nomao 34465 119 0.71 89 30
1487 9978 ozone-level-8hr 2534 73 0.94 72 1
1489 9952 phoneme 5404 6 0.71 5 1
1494 9957 qsar-biodeg 1055 42 0.66 41 1
1504 9967 steel-plates-fault 1941 34 0.65 33 1
1510 9946 wdbc 569 31 0.63 30 1
1570 9914 wilt 4839 6 0.95 5 1
4134 14966 Bioresponse 3751 1777 0.54 1776 1
4534 34537 PhishingWebsites 11055 31 0.56 0 31

Table 2: Included datasets and respective characteristics. n are the number of observations, p the number
of features, maj.class the percentage of observations in the largest class, numFeat the number of numeric
features and catFeat the number of categorical features.

3. Random Experimentation Bot

To conduct a large number of experiments a bot was implemented to automatically plan
and execute runs, following the paradigm of random search. The bot iteratively executes
these steps:

1. Randomly sample a task T (with an associated data set) from Table 2.

2. Randomly sample one ML algorithm A.

3. Randomly sample a hyperparameter setting θ of algorithm A, uniformly from the
ranges specified in Table 1, then transform, if a transformation function is given.

4. Obtain task T (and dataset) from OpenML and store it locally.

5. Evaluate algorithm A with configuration θ on task T , with associated 10-fold cross-
validation from OpenML.

6. Upload run results to OpenML, including hyperparameter configuration and time
measurements.

7. OpenML now calculates various performance metrics for the uploaded cross-validated
predictions.

8. The OpenML-ID of the bot (2702) and the tag mlrRandomBot is used for identification.

A clear advantage of random sampling is that all bot runs are completely independent of
each other, making all experiments embarrassingly parallel. Furthermore, more experiments
can easily and conveniently added later on, without introducing any kind of bias into the
sampling method.

3



The bot is developed open source in R and can be found on GitHub1. The bot is
based on the R packages mlr (Bischl et al., 2016) and OpenML (Casalicchio et al., 2017)
and written in modular form such that it can be extended with new sampling strategies
for hyperparameters, algorithms and datasets in the future. Parallelization was performed
with R package batchtools (Lang et al., 2017).

After more than 6 million benchmark experiments the results of the bot are downloaded
from OpenML. For each of the algorithms 500000 experiments are used to obtain the final
dataset. The experiments are chosen by the following procedure: For each algorithm, a
threshold B is set (see below) and, if the number of results for a dataset exceeds B, we
draw randomly B of the results obtained for this algorithm and this dataset. The threshold
value B is chosen for each algorithm separately to exactly obtain in total 500000 results for
each algorithm.

For kknn we only execute 30 experiments per dataset because this number of experiments
is high enough to cover the hyperparameter space (that only consists of the parameter k
for k ∈ {1, ..., 30}) appropriately, resulting in 1140 experiments. All in all this results in
around 2.5 million experiments.

The distribution of the runs on the datasets and algorithms is displayed in Table 3.

Data id Task id glmnet rpart kknn svm ranger xgboost Total
3 3 15547 14633 30 19644 15139 16867 81860
31 31 15547 14633 30 19644 15139 16867 81860
37 37 15546 14633 30 15985 15139 16866 78199
44 43 15547 14633 30 19644 15139 16867 81860
50 49 15547 14633 30 19644 15139 16866 81859
151 219 15547 14632 30 2384 12517 16866 61976
312 3485 6613 13455 30 18740 12985 15886 67709
333 3492 15546 14632 30 19644 15139 16867 81858
334 3493 15547 14633 30 19644 14492 16867 81213
335 3494 15547 14633 30 15123 15139 10002 70474
1036 3889 14937 14633 30 2338 7397 2581 41916
1038 3891 15547 5151 30 5716 4827 1370 32641
1043 3896 6466 14633 30 10121 3788 16867 51905
1046 3899 15547 14633 30 5422 8842 11812 56286
1049 3902 7423 14632 30 12064 15139 4453 53741
1050 3903 15547 14633 30 19644 11357 13758 74969
1063 3913 15547 14633 30 19644 7914 16866 74634
1067 3917 15546 14632 30 10229 7386 16866 64689
1068 3918 15546 14633 30 13893 8173 16866 69141
1120 3954 15531 7477 30 3908 9760 8143 44849
1461 14965 6970 14073 30 2678 14323 2215 40289
1462 10093 8955 14633 30 6320 15139 16867 61944
1464 10101 15547 14632 30 19644 15139 16867 81859
1467 9980 15547 14633 30 4441 15139 16866 66656
1471 9983 15547 14633 30 9725 13523 16866 70324
1479 9970 15546 14633 30 19644 15140 16867 81860
1480 9971 15024 14633 30 19644 15139 16254 80724
1485 9976 8247 10923 30 10334 15139 9237 53910
1486 9977 3866 11389 30 1490 15139 5813 37727
1487 9978 15547 6005 30 19644 15139 11194 67559
1489 9952 15547 14633 30 17298 15139 16867 79514
1494 9957 15547 14632 30 19644 15139 16867 81859
1504 9967 15547 14633 30 19644 15140 16867 81861
1510 9946 15547 14633 30 19644 15139 16867 81860
1570 9914 15546 14632 30 19644 15139 16867 81858
4134 14966 1493 3947 30 560 14516 2222 22768
4534 34537 2801 3231 30 2476 15139 947 24624
Total 257661 486995 485368 1110 485549 484860 486953 2430835

Table 3: Number of experiments for each combination of dataset and algorithm.

1https://github.com/ja-thomas/OMLbots

4



4. Access to the results

The results of the benchmark can be accessed in different ways:

• The easiest way to access them is to go to the figshare repository (Kühn et al.,
2018) and to download the .csv files. For each algorithm there is a csv file that
contains a row for each algorithm run with the columns Data id, the hyperparameter
settings, the performance measures (auc, accuracy and brier score), the runtime, the
scimark reference runtime and some characteristics of the dataset such as the number
of features or the number of observations.

• Alternatively the code for the extraction of the data from the nightly database snap-
shot of OpenML can be found here: https://github.com/ja-thomas/OMLbots/bl

ob/master/snapshot_database/database_extraction.R. With this script all re-
sults that were created by the random bot (OpenML-ID 2702) are downloaded and
the final dataset is created. (Warning: As the OpenML database is updated daily,
changes can occur.)

5. Discussion and potential usage of the results

The presented data can be used to study the effect and influence of hyperparameter
setting on performance in various ways. Possible applications are:

• Obtaining defaults for ML algorithm that work well across many datasets (Probst
et al., 2018);

• Measuring the importance of hyperparameters, to investigate which should be tuned
(see van Rijn and Hutter, 2017; Probst et al., 2018);

• Obtaining ranges or priors of tuning parameters to focus on important regions of the
search space (see van Rijn and Hutter, 2017; Probst et al., 2018);

• Meta-Learning;

• Investigating, debugging and improving the robustness of algorithms.

Possible weaknesses of the approach, which we would like to address in the future, are:

• For each ML algorithm, a set of considered hyperparameters and their initial ranges
has to be provided. It would be much more convenient if the bot could handle the
set of all technical hyperparameters, with infinite ranges.

• Smarter, sequential sampling might be required to scale to high-dimensional hyperpa-
rameter spaces. But note that we not only care about optimal configurations but much
rather would like to learn as much as possible about the considered parameter space,
including areas of bad performance. So simply switching to Bayesian optimization or
related search techniques might not be appropriate.

References

B. Bischl, M. Lang, L. Kotthoff, J. Schiffner, J. Richter, E. Studerus, G. Casalicchio, and
Z. M. Jones. mlr: Machine learning in R. Journal of Machine Learning Research, 17
(170):1–5, 2016.

B. Bischl, G. Casalicchio, M. Feurer, F. Hutter, M. Lang, R. G. Mantovani, J. N. van Rijn,
and J. Vanschoren. OpenML benchmarking suites and the OpenML100. ArXiv preprint
arXiv:1708.03731, Aug. 2017. URL https://arxiv.org/abs/1708.03731.

5



G. Casalicchio, J. Bossek, M. Lang, D. Kirchhoff, P. Kerschke, B. Hofner, H. Seibold,
J. Vanschoren, and B. Bischl. OpenML: An R package to connect to the machine learning
platform OpenML. Computational Statistics, 32(3):1–15, 2017.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

M. Claesen and B. D. Moor. Hyperparameter search in machine learning. MIC 2015: The
XI Metaheuristics International Conference, 2015.

J. Deng, W. Dong, R. Socher, L. jia Li, K. Li, and L. Fei-fei. Imagenet: A large-scale hierar-
chical image database. IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

M. Feurer, J. T. Springenberg, and F. Hutter. Initializing bayesian hyperparameter opti-
mization via meta-learning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, pages 1128–1135. AAAI Press, 2015.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

D. Kühn, P. Probst, J. Thomas, and B. Bischl. OpenML R bot benchmark data (final
subset). 2018. URL https://figshare.com/articles/OpenML_R_Bot_Benchmark_Da

ta_final_subset_/5882230.

M. Lang, B. Bischl, and D. Surmann. batchtools: Tools for R to work on batch systems.
The Journal of Open Source Software, 2(10), 2017.

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. L. h. e1071: Misc Functions
of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien,
2017. URL https://CRAN.R-project.org/package=e1071. R package version 1.6-8.

P. Probst, B. Bischl, and A.-L. Boulesteix. Tunability: Importance of hyperparameters
of machine learning algorithms. ArXiv preprint arXiv:1802.09596, 2018. URL https:

//arxiv.org/abs/1802.09596.

M. Reif. A comprehensive dataset for evaluating approaches of various meta-learning tasks.
In ICPRAM, 2012.

K. Schliep and K. Hechenbichler. kknn: Weighted k-Nearest Neighbors, 2016. URL https:

//CRAN.R-project.org/package=kknn. R package version 1.3.1.

M. R. Smith, A. White, C. Giraud-Carrier, and T. Martinez. An easy to use repository
for comparing and improving machine learning algorithm usage. In Meta-Learning and
algorithm selection workshop at ECAI 2014, page 41, 2014.

T. Therneau and B. Atkinson. rpart: Recursive Partitioning and Regression Trees, 2018.
URL https://CRAN.R-project.org/package=rpart. R package version 4.1-12.

J. N. van Rijn and F. Hutter. Hyperparameter importance across datasets. ArXiv preprint
arXiv:1710.04725, 2017. URL https://arxiv.org/abs/1710.04725.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. OpenML: Networked Science in
Machine Learning. SIGKDD Explorations, 15(2):49–60, 2013.

M. N. Wright and A. Ziegler. ranger: A fast implementation of random forests for high
dimensional data in C++ and R. Journal of Statistical Software, 77(1):1–17, 2017.

6



Appendix A. Publications for the cumulative dissertation 106

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12. Juli 2011, § 8 Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

München, den 02.05.2019 Philipp Probst


