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Summary 

The adoptive transfer of T cells expressing transgenic tumor antigen-specific T cell 

receptors (TCRs) is a continuously developing immunotherapeutic strategy for patients with 

advanced tumors, showing promising results in early clinical trials. Nevertheless, there is a 

strong need to improve efficiency and safety to enhance the clinical benefit for more patients 

and the identification of suitable therapeutic TCRs remains quite challenging.  

T cells expressing a high-affinity TCR recognizing self-antigens on self-major 

histocompatibility complex (MHC) molecules are mostly eliminated by negative selection in 

the thymus to avoid autoimmunity. Since tumor antigens are often over-expressed self-

antigens, TCRs that develop in a thymic-selected TCR repertoire are largely of low to 

intermediate affinity. Alternatively, high-avidity T cells recognizing self-antigens can be 

found in the non-tolerant allogeneic MHC-reactive T cell repertoire that have not 

encountered the target peptide-MHC complex during thymic selection. Hence, these T cells 

can serve as sources of high-affinity TCRs that can be utilized to equip patient-derived 

lymphocytes with receptors mediating the desired anti-tumor specificity. 

As previous studies have confirmed that high-avidity T cells specific for different tumor 

antigens can be isolated from the allogeneic MHC-reactive T cell repertoire using in vitro 

priming procedures, in this project the allogeneic priming approach was performed utilizing 

NY-ESO-1 as target antigen and the human leukocyte antigen (HLA)-A2 as allogeneic 

restriction element. Both molecules were introduced as in vitro transcribed (ivt)RNA into 

monocyte-derived dendritic cells (DCs) which were then utilized as antigen presenting cells 

(APCs) for stimulation and expansion of autologous CD8-enriched T cells with the final aim 

to isolate NY-ESO-1-specific T cells. The innovations of the approach were: i) the utilization 

of the complete coding region of the antigen to allow presentation of epitopes that were not 

biased by MHC binding prediction programs; ii) a unique selection process of primed T cells 

enabling the identification of T cells specific for unknown immunogenic epitopes of NY-

ESO-1. This was possible by utilizing modified K562 cells for stimulation while the 

activation-induced T cell marker CD137 was verified on T cells. Among the isolated T cell 

clones, the clone 5-271 showed the desired specificity and was further analyzed. The TCR 

5-271 sequence was cloned in vectors to enable transgenic expression in recipient T cells. 

The epitope recognized by the isolated TCR was identified and fine typed. Interestingly, the 

TCR was specific for a new unconventional peptide derived from the protein encoded by 

an alternative open reading frame (ORF) of NY-ESO-1 and presented on HLA-A2 

molecules. To evaluate the potential for therapeutic use of the isolated TCR, T cells 

expressing the transgenic TCR were tested for tumor cell recognition, killing capacity, 
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peptide sensitivity and CD8-dependency. TCR 5-271-transgenic T cells recognized the 

tested tumor cell lines only after target antigen-loading. Additionally, low peptide sensitivity 

was observed although the TCR was able to act in a CD8-independent manner. 
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Zusammenfassung 

Der adoptive Transfer von T-Zellen, die einen Tumorantigen spezifischen T-Zellrezeptor 

(TZR) exprimieren, ist eine sich kontinuierlich weiterentwickelnde Strategie der 

Immuntherapie für Patienten im fortgeschrittenen Krebsstadium mit vielversprechenden 

Ergebnissen in frühen klinischen Untersuchungen. Nichtsdestotrotz ist eine Verbesserung 

der Effizienz und der Sicherheit dringend nötig, um den klinischen Nutzen für mehr 

Patienten zu erhöhen, und auch die Identifikation von geeigneten therapeutisch nutzbaren 

TZRs gestaltet sich immer noch schwierig. 

T-Zellen, die einen hoch-affinen TZR exprimieren, der Selbst-Antigene auf selbst- 

Haupthistokompatibilitätskomplexen (MHC) erkennt, werden, um Autoimmunität zu 

verhindern, meistens durch die negative Selektion im Thymus eliminiert. Da Tumorantigene 

häufig überexprimierte Selbst-Antigene sind, sind TZRs die im Thymus selektioniert worden 

sind weitgehend von niedriger Affinität. Alternativ können hoch-avide T-Zellen für Selbst-

Antigene in einem nicht-toleranten allogenen MHC-reaktiven T-Zellrepertoire gefunden 

werden, da diese im Thymus nicht für das Zielpeptid auf dem allogenen MHC selektioniert 

wurden. Daher können diese T-Zellen als Quelle für hoch-affine TZR dienen, um von 

Patienten stammende Lymphozyten mit Rezeptoren auszustatten, die die gewünschte 

Antitumorspezifität vermitteln. 

Da frühere Studien bestätigt haben, dass T-Zellen mit hoher Affinität für verschiedene 

Tumorantigene aus dem allogenen MHC-reaktiven T-Zellrepertoire unter Verwendung von 

in vitro De-novo-Induktionsverfahren isoliert werden können, wurde in diesem Projekt der 

allogene De-novo-Induktionsansatz, unter Verwendung von NY-ESO-1 als Zielantigen und 

des humanen Leukozytenantigen (HLA)-A2 als allogenem Restriktionselement, 

durchgeführt. Beide Moleküle wurden als in vitro transkribierte (ivt)RNA in von Monozyten-

stammende dendritische Zellen (DZ) eingebracht, welche dann als Antigen-präsentierende 

Zellen (APZ) zur Stimulation und Expansion von autologen CD8-angereicherten T-Zellen 

verwendet wurden um NY-ESO-1-spezifische T-Zellen zu isolieren. Die Innovationen des 

Ansatzes waren: i) die Verwendung der vollständigen kodierenden Region des Antigens, 

um die Präsentation von Epitopen zu ermöglichen die nicht durch Programme zur 

Vorhersage der MHC-Bindung beeinflusst sind; ii) ein einzigartiger Selektionsprozess der 

die Identifizierung von T-Zellen ermöglicht, die für unbekannte immunogene Epitope von 

NY-ESO-1 spezifisch sind. Dies wurde ermöglicht indem modifizierte K562-Zellen zur 

Stimulation verwendet wurden, während der Aktivierungs-induzierte T-Zell-Marker CD137 

auf T-Zellen nachgewiesen wurde. Unter den isolierten T-Zellklonen zeigte der Klon 5-271 

die gewünschte Spezifität und wurde weiter analysiert. Die TZR 5-271-Sequenz wurde in 
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Vektoren kloniert, um eine transgene Expression in Rezipienten-T-Zellen zu ermöglichen. 

Das erkannte Epitop der isolierten TZRs wurde identifiziert und fein typisiert. 

Interessanterweise war der TZR spezifisch für ein Peptid, das von einem alternativen 

offenen Leserahmen (ORF) von NY-ESO-1 kodiert und auf HLA-A2-Molekülen präsentiert 

wurde. Um das Potential für eine therapeutische Verwendung des isolierten TZR zu 

bewerten, wurden T-Zellen, die den transgenen TZR exprimieren, auf Tumorzellerkennung 

und -eliminierung, Peptidsensitivität und CD8-Abhängigkeit getestet. TCR 5-271-transgene 

T-Zellen erkannten die getesteten Tumorzelllinien nur nach Zielantigen-Beladung. 

Außerdem wurde eine geringe Peptidempfindlichkeit und Reaktivität beobachtet, obwohl 

der TCR in der Lage war CD8-unabhängig zu agieren.
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1  Introduction 

1.1 Tumor immunosurveillance and immunoediting 

Tumor development is a multistep process including the accumulation of genetic changes 

that endow normal somatic cells with unlimited growth capacities and render such newly 

transformed cells resistant to natural cell death mechanisms [1]. In the last decades, several 

observations have demonstrated the critical role of the immune system in suppressing 

tumor growth. Firstly, it has been observed that immunosuppressed patients show an 

increased risk for developing tumors [2], [3]. Moreover, evidence of spontaneous tumor 

regression as well as correlations between the presence of lymphocytes in the tumor 

environment and improved prognosis have been observed for different types of tumors [4]–

[6]. Tumor cells can be identified and destroyed by the immune system before they can 

cause detectable tumor masses. The immune system can therefore prevent tumor 

progression (immunosurveillance). However, tumors also develop in the presence of a 

functional immune system. Experiments in mice have shown that tumors derived from 

immunodeficient mice are more immunogenic than tumors derived from immunocompetent 

mice [7]. These findings have led to the hypothesis that the immune system not only 

controls tumor formation by destroying tumor cells, but also influences tumor 

immunogenicity. This dual role of the immune system is named tumor immunoediting and 

comprises three phases: elimination, equilibrium and escape [8]. These three phases occur 

in a sequential order, however in some cases tumor cells can either naturally or influenced 

by external factors, enter in one of the last two phases without passing through earlier 

phases. The elimination phase encompasses the original concept of immunosurveillance. 

Here, innate and adaptive immune systems work together to identify and destroy 

transformed cells escaping intrinsic controls before the growing tumor becomes clinically 

observable. Progression to subsequent phases is prevented if the developing tumor is 

successfully deleted at this stage. In the case of partial tumor elimination, the residual tumor 

cells can enter in the equilibrium phase during which the immune system prevents tumor 

outgrowth and shapes the tumor immunogenicity. Tumor cells can remain in this dormancy 

phase for the entire life, without leading to clinical manifestations. On the other hand, as a 

consequence of the intrinsic genetic instability of tumor cells and of the sustained immune 

selection pressure during the equilibrium phase, tumor cells can bypass immune 

recognition by being poorly immunogenic and can emerge as growing tumors, entering into 

the escape phase [9]. Different mechanisms can lead to tumor cell escape and 

consequently to visible tumor growth. Tumor cells can acquire certain characteristics to 
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either reduce their immune recognition or to increase their resistance to immune effector 

functions. Loss of immunogenic epitope expression, defects in antigen processing 

mechanisms, down-regulation of major histocompatibility complex (MHC) molecules, lack 

of co-stimulation and induction of anti-apoptotic mechanisms are common strategies 

developed by tumor cells to evade immune responses. Alternatively, the immune system 

can be impaired by increased tumor-induced immunosuppression within the tumor 

microenvironment, i.e. production of immunosuppressive cytokines or recruitment of 

regulatory immune cells that function as immune suppressor cells [10], [11]. The broadened 

knowledge of the immune system’s role in tumor development and the tumor immune 

escape mechanisms has supported the idea of exploiting the immune system to treat 

established tumors as an attractive alternative strategy to improve the conventional cancer 

therapies. Several immunotherapeutic approaches that aim to enhance the effector 

functions of the immune system and to counteract tumor-induced immunosuppressive 

mechanisms have been developed in the last years. 

1.2 Cancer immunotherapy 

Designated “Top Scientific Breakthrough” by Science magazine in 2013, cancer 

immunotherapy is recently gaining considerable momentum [12]. Immunotherapy has 

revolutionized the field of conventional chemotherapy and radiation therapy by using the 

immune system to destroy tumors instead of directly attacking the tumor itself. 

First evidence that the immune system can eradicate tumors has been observed in studies 

of bone marrow transplantation, along with donor-derived lymphocyte infusion (DLI) from 

healthy donors to patients with hematological malignancies [13]. However, the transfer of 

allogeneic heterogeneous T cells has been associated frequently with severe adverse 

effects, designated as graft-versus-host disease (GVHD) [14]. To bypass this safety issue, 

approaches exploiting autologous T cells have been investigated. The first evidence that 

autologous T cells can mediate tumor eradication was reported in 1988 by the adoptive 

transfer of ex vivo expanded autologous tumor-infiltrating lymphocytes (TILs) in patients 

with metastatic melanoma [15]. Nevertheless, only limited responses and short-term 

persistence of the transferred T cells were observed in treated patients. A critical 

improvement in TIL therapy was achieved in 2002 showing that a lymphodepleting 

preparative regimen prior to TIL infusion was able to increase tumor regression as well as 

the persistence of the transferred T cells [16]. Starting from this finding, autologous TIL 

therapy has been used successfully to treat patients with metastatic melanoma [17], [18]. 

Nowadays, the clinical effects observed in advanced melanoma with TIL therapy are mainly 
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attributed to the presence of T cells recognizing mutated antigens in the transferred T cell 

populations [19], [20]. Despite encouraging results in melanoma patients, the principal 

limitation of this approach for broad application is the poor immunogenicity of tumors that 

impedes the isolation of TILs for many patients and for several tumor types.  

To overcome the need for tumor-reactive T cells in tumor samples, multiple therapeutic 

tumor vaccines have been developed to induce T cells specific for different tumor antigens 

starting from the autologous T cell repertoire [21], [22]. However, the majority of these 

vaccinations failed to induce complete remission in patients with advanced tumors. These 

results might be due to large tumor burdens of vaccinated patients, tumor-mediated 

immunosuppressive environments, development of tumor escape variants and 

compromised immune systems of the patients after systemic chemotherapy administration. 

Moreover, as the majority of vaccines were directed against self-antigens aberrantly 

expressed in tumors, immunotolerance might have interfered with the induction of effective 

T cell responses. 

An alternative approach that has been developed in the last years encompasses 

monoclonal antibodies designed for blocking checkpoint molecules involved in inhibitory 

pathways induced by tumor cells to evade immune controls [23]. The final aim of these 

checkpoint inhibitors is to favor and restore pre-existing anti-tumor immune responses. 

Advances in the identification of the molecules involved in immune-suppressive pathways 

have opened the way to the development of multiple checkpoint inhibitors. The inhibitory 

receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) expressed on T cells and involved in 

the down-regulation of the initial stages of T cell activation has been investigated as the 

first target of checkpoint inhibitors [24]. According to the encouraging prolongation of overall 

survival observed in the first clinical trials, the anti-CTLA-4 antibody was approved by the 

US Food and Drug Administration (FDA) in 2011 as therapy for melanoma patients with 

metastatic disease. Subsequently, antibodies targeting the inhibitory interaction of 

programmed cell death protein-1 (PD-1) and programmed cell death protein-1 ligand (PD-

L1) have been developed and tested in clinical studies with promising and durable clinical 

responses in several types of solid tumors [25]–[28]. Recently, these antibodies have also 

received the approval by the FDA as therapy for melanoma, non-small cell lung cancer and 

renal cell carcinoma. As hypothesized for TIL therapy, the clinical effects observed after 

treatment with checkpoint inhibitors are supposed to be mainly due to the presence of pre-

existing T cells targeting mutated antigens in treated patients [29]–[31]. A combination of 

either different checkpoint inhibitors or of checkpoint inhibitor with other immunotherapeutic 

strategies might improve the curative potential of these checkpoint inhibitors and enlarge 

their range of applications [32]. 
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Since tumor antigens are often over-expressed self-antigens, the clinical efficacy of 

immunotherapeutic strategies described so far is strongly limited by the tolerance of the 

autologous immune system to the most relevant tumor antigens. The adoptive transfer of 

genetically engineered tumor-specific T cells has been developed as an alternative strategy 

to bypass immunotolerance [33], [34]. This approach provides the possibility to equip 

autologous T cells with receptors mediating the desired anti-tumor specificity and showing 

enhanced functionality before transferring them into patients. The final aim is to enable the 

redirected T cells to effectively recognize and destroy tumors. To note, T cell gene 

engineering offers the possibility to create T cells with the desired anti-tumor specificity and 

enhanced functionality by selecting not only the optimal receptor according to specific 

properties, but also the composition of the genetically modified T cell population that is 

transferred into patients. T cells undergo progressive differentiation after encountering the 

antigen and their differentiation state inversely correlates with the capacity of proliferation 

and persistence [35]. Several clinical studies have shown that the therapeutic efficacy of 

adoptively transferred T cells is strictly dependent on their ability to expand and persist in 

vivo [18], [36], [37]. In pre-clinical models, it has been observed that the infusion of T cell 

populations comprising less differentiated cells is characterized by enhanced proliferative 

capacity, long-term persistence and superior anti-tumor responses [38], [39]. These 

observations suggest that the composition of the T cell population might drastically 

influence the success of adoptive T cell therapy. Therefore, the possibility to orchestrate 

and optimize the composition of the genetically engineered T cell population for the infusion 

represents an additional advantage of this therapeutic strategy for ensuring maximal clinical 

efficacy. Once the optimal T cell population for adoptive therapies is selected, its specificity 

can be re-directed by transferring either a chimeric antigen receptor (CAR) or a 

conventional αβ T cell receptor (TCR) into the cells.  

CARs are recombinant proteins comprising an extracellular target binding module that is 

usually a single-chain antibody fragment, a transmembrane domain to anchor the receptor 

into the cell membrane and one or more intracellular TCR-derived signaling domains that 

transmit activation signals into T cells [40]. As these synthetic receptors show antibody-like 

specificities, they can recognize surface molecules expressed on target cells in a MHC-

independent manner. Consequently, CARs are not affected by immune-escape strategies 

developed by tumor cells such as down-regulation of MHC molecules or alterations in 

processing mechanisms.  On the other hand, loss of target antigen expression remains a 

possible mechanism arising in the tumors to evade CAR-mediated T cell responses. 

Recently, the adoptive transfer of T cells genetically modified with a CAR targeting the B 

cell lineage restricted CD19 molecule has successfully induced long-lasting remission in 

patients with hematological malignancies [41]–[43]. Due to these promising results, this 
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protocol has recently received the approval by the FDA as therapy for the treatment of 

pediatric patients with acute lymphoblastic leukemia (ALL) and of adult patients with diffuse 

large B cell lymphoma (DLBCL). Targeting only cell surface molecules, CAR T cell therapy 

is limited by the number of suitable targets expressed on tumor cells and as a consequence 

the range of applications is quite restricted. Furthermore, T cells expressing CARs have not 

shown so far the same encouraging results in solid tumors as in hematological malignancies 

[44]–[46]. This might be mainly due to the highly immunosuppressive environment 

surrounding solid tumors. 

In contrast, TCRs are heterodimeric protein complexes composed of one α chain and one 

β chain. The TCR heterodimers are expressed on the cell surface of T cells in 

association with the CD3 complex, which is comprised of a series of non-polymorphic 

proteins that serve as the signaling apparatus of the TCR. On the molecular level, TCRα 

and TCRβ chains are assembled randomly from a multitude of germline encoded gene 

segments during early T cell development in the thymus. In the process of gene segment 

rearrangement, the TCRα chain is assembled from one polymorphic variable (TRAV) and 

joining (TRAJ) gene segment in combination with the monomorphic constant region 

(TRAC). The recombined part of the TCRβ chain consists of one polymorphic variable 

(TRBV) and joining (TRBJ) gene segment with an additionally interspersed diversifying 

(TRBD) gene segment and one of the two constant region (TRBC). During the process of 

gene segment rearrangement, germline encoded sequences adjacent to the joining regions 

get modified incidentally. The resulting hypervariable sequences that span the individual 

V(D)J segment junctions are known as complementarity determining region (CDR) 3. CDR3 

regions determine the center of the antigen-binding site of the TCR. The peripheral antigen-

binding sites of the TCR, which are mainly in contact with the MHC molecules, consist of 

CDR1 and CDR2 loops that are encoded within TRAV and TRBV gene segments. More 

precisely, TCRs recognize peptides derived from intracellular processed proteins that are 

presented on the surface of antigen presenting cells (APCs) in complex with MHC 

molecules. In particular, TCRs of CD8+ T cells recognize peptides derived from endogenous 

(cytosolic) proteins that are presented on MHC class I molecules, whereas TCRs of CD4+ 

T cells recognize peptides derived from exogenous antigens that have been taken-up by 

APCs and that are presented on MHC class II molecules. Although with less efficiency, 

exogenous antigens can be alternatively presented to CD8+ T cells on MHC class I 

molecules by physiological cross-presentation mechanisms [47]. Importantly, to avoid 

autoimmunity, T cells expressing TCRs that recognize self-peptides presented on self-MHC 

molecules with high-affinities leading to the generation of potential auto-reactive T cells are 

deleted during T cell development in the thymus by negative selection. The resulting self-

tolerant MHC-restricted T cell repertoire comprises a wide range of T cells able to react to 
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foreign antigens, while it usually lacks high-avidity T cells specific for self-antigens [48], [49]. 

Unlike CAR-based approaches, the transfer of therapeutic TCRs into T cells allows the 

targeting of any antigen that undergoes intracellular processing and that is presented on 

MHC molecules of the desired target cells. In the tumor microenvironment, stroma cells can 

take-up protein fragments released from dying tumor cells and present tumor epitopes on 

their MHC molecules. Consequently, stroma cells may become susceptible to TCR‐

mediated recognition. The targeting of tumor embedded cells may represent an important 

advantage of TCR-based strategies for successful therapy of solid tumors compared to 

CAR-based therapy [50]. 

In the last years, several clinical studies have been conducted using TCR-modified T cells 

for the treatment of several tumor types. In the first published clinical trial, T cells expressing 

a transgenic TCR targeting the melanoma antigen recognized by T cells (MART-1) were 

applied to melanoma patients. The therapeutic TCR was isolated from a TIL clone derived 

from a melanoma patient who showed a nearly complete regression after TIL therapy. 

However, only modest clinical responses were observed in the treated patients [37]. In a 

subsequent trial, a TCR specific for MART-1 derived from TILs of the same melanoma 

patient but showing higher affinity compared to the first TCR tested, was transferred in 

recipient cells and used to treat advanced melanoma. Although tumor regression was 

obtained in 30% of the patients treated, on-target/off-tumor toxicity was observed against 

healthy tissues comprising melanocytes as skin, eyes and ears [51]. Unexpected severe 

side effects have been reported also in two other studies targeting the MAGE family 

member A3 (MAGE-A3) by using T cells transduced with patient-derived and affinity-

enhanced TCRs. In these cases, the observed toxicity against healthy tissues was due to 

previously unknown cross-reactivity of the introduced TCRs which cross-recognized self-

peptides highly homologous to the actual target epitope (off-target/off-tumor toxicity) [52]–

[54]. On the other hand, an affinity-enhanced TCR targeting the cancer/testis antigen NY-

ESO-1 have shown promising results in terms of safety and efficacy for the treatment of 

melanoma, synovial cell sarcoma and myeloma. Clinical responses without any toxicity 

were observed in 55%, 61% and 80% of the treated patients, respectively [55]–[58]. These 

studies suggest the powerful curative potential of the adoptive transfer of TCR-engineered 

T cells. However, the observation of severe side effects has shown the need of further 

improvements to reduce potential toxicity and to enhance the therapeutic efficacy of TCR-

based approaches. The rigorous selection of suitable target antigen as well as of 

corresponding therapeutic TCRs are essential prerequisites for developing successful TCR 

gene therapies with minimal toxicity and maximal efficacy. 
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1.3 Choice of target antigens for TCR-based cancer therapies 

Thorough evaluation of the expression profile of the potential target antigen is the first 

element to be considered for developing TCR-based cancer therapies. An optimal target 

antigen should be expressed only in tumor cells or its expression in normal tissues should 

ideally be limited to immune-privileged organs to avoid undesired on-target/off-tumor 

toxicity reactions. To obtain complete tumor eradication, the target antigen should be 

present in all tumor cells or at least in the cells that drive tumor outgrowth. To avoid the risk 

of antigen-loss escape variants and consequent ineffective tumor destruction, a target 

antigen functionally relevant for tumor survival should be preferably selected. Furthermore, 

the target antigen should be expressed in a large group of patients and be presented on 

frequent human leukocyte antigen (HLA) molecules to allow the development of therapies 

suitable for a broad range of patients. As only very few antigens fulfill all these criteria, the 

identification of appropriate targets for TCR-based therapies is quite challenging. 

Nevertheless, potential target antigens for different tumor indications have been identified 

by evaluating the multitude of different intracellular proteins expressed in tumor cells. 

Generally, tumor antigens can be classified into three categories: viral oncogenes, tumor-

specific antigens and tumor-associated antigens [59], [60]. Tumor antigens produced by 

oncogenic viruses are ideal antigens for targeting virus-transformed tumor cells, since the 

expression of viral proteins is restricted to infected cells. However, only 15% of tumors are 

estimated to be associated with viral infections [61]. The second class of tumor antigens, 

the so-called tumor-specific antigens (TSAs), comprises tumor aberrations leading to the 

formation of mutated gene products (neo-antigens) [62]–[65] . Since neo-antigens are often 

essential for tumor cell survival and accumulate in tumor cells, they are quite interesting 

targets for TCR gene therapy. However, mutations and corresponding neo-antigens are 

mainly patient-specific, thereby their use as targets require highly personalized therapeutic 

approaches. To date, most of the TCR gene therapy approaches focus on tumor-associated 

antigens (TAAs) [62], [66]. The heterogeneous group of TAAs encompasses cancer/testis 

antigens (CTAs) (e.g. MAGE-A3 and NY-ESO-1), differentiation antigens (e.g. MART- 1; 

tyrosinase, melanocyte antigen; CD20, B lymphocyte antigen) and self-proteins over-

expressed in tumor cells (e.g. p53, transcription factor; EGFR, epidermal growth factor 

receptor). One advantage of TAAs is their expression in different types of tumors and 

consequently their broad range of applications. However, the potential expression of these 

target antigens in healthy tissue includes the risk of on-target/off-tumor toxicity through 

unwanted TCR-mediated recognition. 

Independently of the category of the tumor antigen, once a tumor antigen-specific TCR is 

isolated, the specific peptide recognized by the therapeutic TCR needs to be identified and 
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fine-typed. Although the target antigen shows the desired expression profile restricted to 

the tumor, alternative peptides highly homologous to the target epitope might be present in 

the proteome and expressed in healthy tissues. Thus, potential TCR-mediated cross-

recognition of these alternative peptides need to be carefully investigated to predict 

undesired off-target/off-tumor toxicity [67], [68]. 

1.4 Isolation of tumor antigen-specific T cells and corresponding 
TCRs 

Required characteristics of a therapeutic TCR are efficient tumor cell recognition and 

optimal affinity for the target tumor antigen in order to be able to discriminate between tumor 

cells and normal tissues. To date, multiple strategies have been established for the isolation 

of tumor antigen-specific T cells and corresponding therapeutic TCRs for subsequent 

genetic transfer into adequate recipient cells. 

Therapeutic TCRs can be isolated from ex vivo expanded tumor-reactive T cell clones 

derived from TILs of tumor patients [37], [69], [70]. However, tumors are poorly 

immunogenic and consequently the frequency of tumor-reactive T cells is very low. The 

isolation methods using patient material are often hampered by poor cell viability as a result 

of immune depleting treatments or systemic impacts of advanced disease. Additionally, due 

to the negative selection in the thymus, TCRs recognizing self-antigens with high-affinity 

are rarely included in the autologous TCR repertoire. Since the most relevant tumor antigen 

are over-expressed self-antigen, the isolation of suitable therapeutic TCRs recognizing 

TAAs from autologous T cell repertoires is extremely laborious and often leads to the 

identification of TCRs with only sub-optimal efficacy. To improve the clinical efficacy of 

these autologous TCRs, strategies to increase TCR affinity have been developed and 

applied to several TCRs [71]–[74]. These systems are powerful and attractive methods to 

convert low-affinity TCRs derived from an immunotolerant repertoire into high-affinity TCRs 

able to efficiently recognize tumor cells. However, reduced specificity and increased cross-

recognition leading to dramatic side effects have been observed in two clinical trials using 

affinity-enhanced TCRs targeting MAGE-A3 [52]–[54]. These findings show the need for 

additional pre-clinical approaches to extensively characterize therapeutic TCRs in terms of 

potential toxicity prior to clinical applications. 

An alternative TCR isolation strategy is based on in vivo priming in mice. Since the murine 

T cell repertoire is not affected by natural negative selection against human antigens, 

human MHC-transgenic mice can be exploited to isolate murine-derived therapeutic TCRs. 

These transgenic mice vaccinated with peptides derived from human tumor antigens 
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represent a source of murine T cells bearing high-affinity TCRs for human peptides 

presented on human MHC molecules [75]. However, the use of tumor antigen-specific 

murine TCRs in the clinic is problematic, due to their high degree of immunogenicity in the 

xenogeneic human host [76]. To overcome this limitation, human transgenic mice carrying 

the complete human T cell repertoire as well as one human MHC class I allele (HLA-

A*02:01) have been generated [77]. In contrast, these mice are deficient in murine TCRαβ 

as well as in murine MHC class I expression. This in vivo system enables the isolation of 

fully human TCRs from a T cell repertoire unselected for human antigens but restricted to 

HLA-A*02:01. To date, TCRs specific for different tumor antigens have been successfully 

isolated using these transgenic mice [77], [78]. However, these mice only expressing HLA-

A*02:01, thereby they are suitable only for the isolation of TCRs restricted to this MHC class 

I allele. The applicability of this in vivo system is also limited by the potential presence of 

peptides highly homologous to the actual human target epitope in the murine peptidome.  

Alternatively, as negative selection in the thymus is limited to self-peptides presented on 

self-MHC molecules, high-avidity T cells recognizing TAAs can be found in the non-tolerant 

allogeneic MHC (allo)-reactive T cell repertoire that have not encountered the target peptide 

and the MHC molecules during thymic selection. Therefore, high-avidity T cells recognizing 

peptides derived from any TAA can be potentially isolated if these peptides are presented 

on allogeneic MHC molecules [79].  Multiple protocols for in vitro induction of allogeneic 

MHC (allo)-restricted tumor antigen-specific T cells have been developed in the last years 

using cells derived from healthy donors as starting material (approaches designated as 

allogeneic priming approaches) [80]–[83]  

1.5 Aim of the project 

Adoptive transfer of T cells expressing transgenic tumor antigen-specific TCRs is a 

promising therapy for patients with advanced tumors. Nevertheless, there is an important 

need to improve efficiency and safety aiming to enhance the clinical benefit for more 

patients. Additional therapeutic TCRs, able to efficiently recognize tumor target cells without 

showing undesired cross-recognition and consequently potential toxicity, need to be 

identified and extensively characterized. Therefore, the aim of this project was to isolate T 

cells and corresponding TCRs specific for new epitopes derived from the tumor antigen NY-

ESO-1 and presented in the context of HLA-A2 molecules by using an in vitro allogeneic 

priming approach.  

Previous studies have shown that in vitro allogeneic priming approaches enabling the 

access to the non-tolerant high-affinity allo-restricted T cell repertoire can be used as 
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efficient procedures to induce functional enhanced TCRs specific for different TAAs [80]–

[83]. Our research group established a protocol to isolate allo-restricted tumor antigen-

specific T cells using mDCs derived from healthy donors negative for the MHC molecule of 

interest as APCs [84]. Briefly, mDCs are transfected with in vitro transcribed RNA (ivtRNA) 

encoding the foreign MHC molecule together with ivtRNA encoding the full-length target 

antigen and used for stimulation and expansion of autologous T cells. This method is highly 

flexible since mDCs and T cells can be derived from any healthy donor who does not carry 

the MHC molecule selected as the allogeneic molecule, any known tumor antigen can be 

used as target and any allogeneic MHC molecule can be introduced into mDCs. Moreover, 

the use of ivtRNA encoding the full-length tumor antigen allows the potential isolation of T 

cells specific for any immunogenic peptides derived from the antigen of interest. Due to 

these advantages, this allogeneic priming protocol was selected for the isolation of NY-

ESO-1-specific HLA-A2-restricted T cells in this study. 

The HLA-A*02:01 allele was chosen as the restriction element since it is the most frequent 

MHC class I allele in Caucasian populations and it has already been used for in vitro 

primings to efficiently isolate T cells specific for different TAAs [85]. NY-ESO-1 was selected 

as the target antigen because it is one of the most promising and immunogenic CTA [86]–

[88]. Indeed, NY-ESO-1 is expressed in multiple tumor types like melanoma, synovial 

sarcoma, lung, esophageal, liver, gastric, prostate and ovarian tumors as well as adult T 

cell leukemia/lymphoma (ATLL), but it is not detectable in any healthy tissues except for 

testis. Moreover, natural humoral and cellular immune responses against NY-ESO-1 have 

been demonstrated in tumor patients [89], [90]. Due to these characteristics, NY-ESO-1 

has already been used as the target antigen in different immunotherapeutic strategies. 

Therapeutic vaccines have proved that NY-ESO-1 is safe for patients and also 

immunogenic, leading to both CD4+ and CD8+ T cell responses [91]. The adoptive transfer 

of T cells genetically engineered with an affinity-enhanced HLA-A2-restricted NY-ESO-1-

specific TCR in melanoma, synovial cell sarcoma and myeloma patients has shown 

promising results in terms of safety and efficacy [55]–[58]. To date, several epitopes 

presented on different MHC class I and II molecules and recognized by CD8+ and CD4+ T 

cells have been described for NY-ESO-1 [87]. Nevertheless, the peptide NY-ESO-1157-165 is 

the only immunogenic epitope in the context of HLA-A2 molecules identified so far. 

Importantly, to enable functional characterization as well as the isolation of individual TCR 

sequences after a priming procedure, the desired T cells need to be selectively separated 

as single-cell and expanded. To date, the most common strategy used for this purpose is 

based on pre-assembled peptide-loaded MHC molecules (multimers) [92]–[94]. With the 

knowledge of immunogenic epitopes and corresponding MHC alleles, T cells with the 

defined peptide specificity can be efficiently detected using multimers. However, certain 
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criteria limit the unrestricted use of multimer-based techniques. First, if presented epitopes 

of relevant candidate antigens are unknown, peptides for multimer production need to be 

selected by using epitope prediction tools. The complexity of the multi-step process leading 

to the formation of the peptide:MHC complex and the limited data regarding MHC-bound 

peptides, as well as the limited number of experimentally confirmed immunogenic epitopes, 

make the epitope prediction by algorithms challenging and often unreliable [95], [96]. 

Currently available software algorithms can fail to accurately predict epitopes that are 

naturally processed and presented on tumor cells and that can elicit T cell responses. 

Hence, multimers binding peptides that are not physiologically relevant in tumor cells could 

be generated leading to unsuccessful isolation of the desired T cells. Second, the 

availability of multimers is limited by insufficient peptide:MHC complex stability and by 

sequence-dependent difficulties in MHC protein folding for some HLA molecules. To 

overcome these limitations, alternative sorting methods have been established that are 

based on the analysis of e.g. cytokine secretion or surface molecule expression by T cells 

upon stimulation with APCs carrying the appropriate MHC restriction and target antigen 

[97]–[101]. Unlike the multimer-based approach, these methods allow the isolation of 

antigen-specific T cells irrespective of pre-defined specificity. Thus, they represent a 

powerful system to enable identification of T cells specific for previously unknown 

immunogenic peptides for a selected target antigen. However, the applicability of these 

alternative strategies in the context of an allogeneic priming approach is hampered by the 

high number of allo-restricted T cells that are reactive independently of the presence of the 

desired tumor target antigen within the priming culture. These unwanted allo-reactive T cells 

are indistinguishable from the desired tumor-reactive T cells using sorting methods based 

on either the expression of T cell activation markers or on cytokine release by T cells, 

limiting the efficiency of these sorting procedures. Improvements are needed to increase 

the success and the efficiency of these alternative sorting strategies. Thus, an additional 

aim of this project was to develop an innovative sorting strategy based on the T cell 

activation-induced marker CD137 in order to allow the isolation of the desired T cells 

irrespective of pre-defined epitopes also using allogeneic priming approaches.  
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2 Material 

2.1 Equipment 

Table 1. Equipment 

Product Source 

Balance Sartorius 

C-Chip Neubauer Improved Carl Roth 

Cell Analyzer LSRFortessaTM BD Bioscience 

Cell Sorter FACSAria FusionTM BD Bioscience 

Centrifuge 1-16K Sigma-Aldrich 

Centrifuge Heraeus X3R Thermo Fisher Scientific 

Chemical hood MC6® Waldner 

ChemiDoc™ XRS+ System Bio-Rad 

CoolCell® Cell Freezing Containers Biocision 

Cooling incubator with shaker (bacteria) Tritec 

Electrophoresis chamber and power supply Bio-Rad 

Electroporator Gene Pulser Xcell™ Bio-Rad 

Elix® water purification system Merck 

Freezer (-150°C, -80°C) Panasonic 

Freezer (-20°C) Liebherr 

Fridge (4°C) Liebherr 

Ice machine Scotsman AF103 Ice Flaker Hubbard Systems 

Incubator (human cells) Thermo Fisher Scientific 

IncuCyte ZOOM® device Essen BioScience 

Integral water purification system Milli-Q® Merck 

Irradiation device (Xstrahl RS225) Xstrahl 

MACS separator Miltenyi Biotec 

Magnet for cell separation applications  Thermo Fisher Scientific 

Micropipettes  Eppendorf 

Microscope Primovert Zeiss 

Microwave Bosch 

Multichannel pipettes Thermo Fisher Scientific 

Multiskan™ FC Microplate Photometer Thermo Fisher Scientific 
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2.2 Consumables 

Table 2. Consumables 

Product Source 

NanoDrop 2000 Thermo Fisher Scientific 

Pipettors Integra 

Sterile laminar flow hood  Thermo Fisher Scientific  

Thermocycler  Eppendorf 

Thermomixer  Eppendorf 

UV-transluminator Bachofer 

Vortex Scientific Industries 

Water bath VWR 

Product Source 

Conical tubes (15 ml, 50 ml, 200 ml) BD Falcon Corning 

Cryovials (1.8 ml) Thermo Fisher Scientific 

Electroporation cuvettes (0.4 cm, 0.1 cm) Bio-Rad 

Filter (0.2 µm, 0.45 µm) BD Falcon 

LS Column Miltenyi Biotec 

Needles Surflo® winged infusion sets BD Falcon Termuno 

Non-tissue culture plates (6-well, 24-well) Thermo Fisher Scientific 

Nunc-Immuno™ 96 Well Plate Thermo Fisher Scientific 

Nunclon™ Delta flasks  Thermo Fisher Scientific 

Parafilm® Pechiney Plastic Packaging 

Pasteur pipettes Copan 

Petri dishes  Thermo Fisher Scientific 

Pipettes (5 ml, 10 ml, 25 ml, 50 ml) Sigma-Aldrich 

Round bottom tubes (5 ml) BD Falcon Corning 

Snap-cap tubes (14 ml) BD Falcon 

Syringes (1 ml, 10 ml, 50 ml) BD Falcon 

TipOne® Filter Tips (1-10 µl, 10 -200 µl, 200-1000 µl) Star Lab 

Tips without filter (1-10 µl, 10 -200 µl, 200-1000 µl) Thermo Fisher Scientific 

Tissue culture flasks CellStar 

TPP® tissue culture plates  Sigma-Aldrich  

TPP® unit filter (250 ml, 500 ml) Sigma-Aldrich 
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2.3 Enzyme, cytokines, reagents 

Table 3. Restriction enzymes 

Product Source 

AgeI-HF® New England BioLabs 

EcoRI-HF® New England BioLabs 

NotI-HF® New England BioLabs 

SpeI-HF® New England BioLabs 

XbaI New England BioLabs 

HF®: high-fidelity restriction enzyme 

 
 

Table 4. Cytokines and TLR-ligands 

Product Source 

GM-CSF, human Berlex 

Interferon-γ (IFN-γ), human Boehringer Ingelheim 

Interleukin-15 (IL-15), human PeproTech 

Interleukin-1β (IL-1β), human R&D Systems 

Interleukin-2 (IL-2), human Novartis 

Interleukin-4 (IL-4), human R&D Systems 

Interleukin-6 (IL-6), human R&D Systems 

Interleukin-7 (IL-7), human PeproTech 

Prostaglandin E2 (PGE2) , human Sigma-Aldrich 

Tumor necrosis factor-α (TNF-α), human R&D Systems 

 
  

Product Source 

Tube with Cell Strainer Cap BD Falcon Corning 

Tubes (0.5 ml, 1.5 ml, 2 ml, 5 ml) Eppendorf 

Tubes with filter blue cap BD Falcon Corning 
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Table 5. Enzymes and reagents 

Product Source 

100 bp DNA Ladder Thermo Fischer Scientific 

1kb-plus DNA Ladder Thermo Fischer Scientific 

2-Mercaptoethanol Thermo Fischer Scientific 

2-Propanol Sigma-Aldrich 

Agarose Ultra Pure Thermo Fischer Scientific 

Ampicillin Merck 

Bovine serum albumin (BSA) Sigma-Aldrich 

Cyclosporin A (CSA) Sigma-Aldrich 

CutSmart Buffer® New England BioLabs 

Diethyl pyrocarbonate (DEPC) Sigma-Aldrich 

Dimethylsulfoxide (DMSO) Merck 

DNA gel loading buffer Thermo Fischer Scientific 

DNA primers Sigma-Aldrich 

Dulbecco's phosphate-buffered saline (DPBS) 1X 
without calcium and magnesium 

Thermo Fischer Scientific 

Dulbecco’s Modified Eagle Medium (DMEM) Thermo Fischer Scientific 

EDTA (0,5 M) Thermo Fischer Scientific 

Ethanol  Merck 

Ethidium bromide 0.025% Carl Roth 

FACS™ Flow and Rinse BD Bioscience 

FcR Blocking Reagent, human Miltenyi Biotec 

Fetal Bovine Serum (FBS) Thermo Fischer Scientific 

Ficoll® Biochrom 

Glucose 40% Braun 

Glycerol Merck 

Heparin-Natrium  Braun 

HEPES (1M) Thermo Fischer Scientific 

Human serum (HS) Medigene Immunotherpies GmbH 

Human serum albumin (HSA) Baxalta 

IncuCyte® Annexin V Red Reagent Essen Bioscience 

IncuCyte® NucLight Red Lentivirus Reagent Essen Bioscience 

Iscove's Modified Dulbecco's Medium (IMDM) Thermo Fischer Scientific 

L-Glutamine (200 nM)  Thermo Fischer Scientific 
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Product Source 

Luria Broth Base (Miller's LB Broth Base) powder Thermo Fischer Scientific 

Minimum Essential Medium Non-Essential Amino 
Acids (MEM NEAA)  

Thermo Fischer Scientific 

OKT-3 (anti-CD3 antibody)  Helmholtz Zentrum München 

OptEIA™ TMB Substrate BD bioscience 

Paraformaldehyde solution (PFA) 4% Thermo Fischer Scientific 

PBS very low endotoxin (VLE) 1X 
without calcium and magnesium 

Biochrom 

Penicillin/Streptomycin Thermo Fischer Scientific 

Phosphoric acid 85% Merck 

Phytohaemagglutinin (PHA) Remel 

Polybrene Sigma-Aldrich 

Puromycin Invivogen 

Retronectin® Takara 

RiboRuler™ High Range RNA Ladder Thermo Fischer Scientific 

RPMI 1640  Thermo Fischer Scientific 

RPMI 1640 very low endotoxin (VLE) Biochrom  

Select Agar Thermo Fischer Scientific 

Skim milk powder Sigma-Aldrich 

SOC Medium Thermo Fischer Scientific 

Sodium acetate (C2H3NaO2) Thermo Fischer Scientific 

Sodium bicarbonate (NaHCO3) Merck 

Sodium carbonate (Na2CO3) Sigma-Aldrich 

Sodium pyruvtae Thermo Fischer Scientific 

T4 DNA Ligase New England BioLabs 

T4 DNA Ligase Reaction Buffer New England BioLabs 

TAE 50X buffer (Tris Acetate EDTA) Thermo Fischer Scientific 

TransIT®-LT1 Transfection Reagent Mirus 

TRI-Reagent® Sigma-Aldrich 

Trypan blue solution 0.4% Thermo Fischer Scientific 

Trypsin-EDTA 0,05%  Thermo Fischer Scientific 

Tween® 20 Sigma-Aldrich 
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2.4 Commercial Analytic systems 

Table 6. Commercial Analytic systems 

Product Source 

Advantage® 2 PCR Kit Clontech 

CD8+ T cell Isolation Kit Miltenyi Biotec 

Dynabeads® Human T-Activator CD3/CD28 Thermo Fischer Scientific 

JETstar Plasmid Purification Kit (Maxi and Mini) Genomed 

mMESSAGE mMACHINE™ T7 Kit Thermo Fischer Scientific 

OptEIA™ Human IFN-γ ELISA Set BD Biosciences 

QIAquick® Gel Extraction Kit Qiagen 

RNeasy Mini Kit Qiagen 

SMARTer™ RACE cDNA Amplification Kit Clontech 

TMB Substrate Reagent Set BD Bioscience 

UltraComp eBeads® eBioscience 

2.5 Cell culture media 

Table 7. Cell culture media 

Medium Components Concentration 

DC medium 
VLE RPMI 1640 
Human serum 

 
1.5% 

DMEM IV medium 

DMEM 
FBS 
L-Glutamine 
MEM NEAA 
Sodium pyruvate 

 
10% 
2 mM 
1 mM 
1 mM 

IMDM IV 20 medium 

IMDM  
FBS 
L-Glutamine 
MEM NEAA 
Sodium pyruvate  

 
20% 
2 mM 
1 mM 
1 mM 

LB agar medium 
LB medium 
Select agar 

 
15 g/l 

LB medium 
dH2O 
Luria Broth Base 

 
25 g/l 
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Medium Components Concentration 

RPMI VI 20 medium 

RPMI 1640 
FBS 
L-Glutamine 
MEM NEAA 
Sodium pyruvate  

 
20% 
2 mM 
1 mM 
1 mM 

RPMI VI medium* 

RPMI 1640 
FBS 
L-Glutamine 
MEM NEAA 
Sodium pyruvate  

 
10% 
2 mM 
1 mM 
1 mM 

T cell medium* 

RPMI 1640 
Human serum 
HEPES 
L-Glutamine 
MEM NEAA 
Sodium pyruvate 
2-Mercaptoethanol 

 
10% 
10mM 
2 mM 
1 mM 
1 mM 
50 µM 

* containing 1% Penicillin/Streptomycin when used for cell culture after sorting 

2.6 Buffers and solutions 

Table 8. Buffers and solutions 

Buffer/solution Components Concentration 

DEPC water 
dH2O 
DEPC 

 
0.1% 

ELISA blocking buffer 
DPBS 1X 
Skim milk powder 

 
1% 

ELISA coating buffer 
dH2O 
NaHCO3 

Na2CO3 

 
8.4 g/l 
3.56 g/l 

ELISA stop solution 
dH2O 
Phosphoric acid 85% 

93.2 ml 
6.8 ml 

ELISA washing buffer 
DPBS 1X 
Tween20 

 
0.05% 
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2.7 Cell lines, primary cells and bacteria 

Table 9. Human cell lines 

Name 
Origin 
tissue 

Characteristics 
Culture 
conditions 

Source 

293FT 
Embryonic 
kidney 

Packaging cells 
transformed with the 
SV40 large T antigen 

Adherent 
DMEM IV 

Thermo Fisher 
Scientific 

LAZ 388 
EBV 
transformed 
B-cells 

- 
Suspension 
RMPI IV 

Schendel D. 

LCL BW 
EBV 
transformed 
B-cells 

HLA-A24-positive 
 

Suspension 
RMPI IV 

Schendel D. 

LCL P8 
EBV 
transformed 
B-cells 

HLA-A2-positive 
HLA-A24-negative 

Suspension 
RMPI IV 

Longinotti G. 

T2 Lymphoblast  
Somatic cell hybrid 
TAP-deficient cells 

Suspension 
RPMI IV 

ATCC 

 
 
Table 10. Human tumor cell lines 

Name Origin tissue Disease 
Culture 
conditions 

Source/ 
Reference 

AMO-1 Ascitic fluid Plasmacytoma 
Suspension 
RPMI IV 20 

ATCC 

EJM Peritoneal fluid  Multiple myeloma 
Adherent/ 
suspension 
IMDM IV 20 

DSMZ 

FM3 Skin Melanoma 
Adherent 
RPMI IV 

Sigma-Aldrich 

FM3.29 Skin Melanoma 
Adherent 
RPMI IV 

Sigma-Aldrich 

FM6 Skin Melanoma 
Adherent 
RPMI IV 

Sigma-Aldrich 

IM9 
Peripheral blood/ 
B lymphoblast 

Multiple myeloma 
Suspension 
RPMI IV 

ATCC 

K562 Bone morrow 
Chronic 
myelogenous 
leukemia 

Suspension 
RPMI IV 

ATCC 
Lozzio and 
Lozzio, 1975 

KMS-12-BM Bone marrow  Multiple myeloma 
Suspension 
RPMI IV 20 

ATCC 

KMS-12-PE Peripheral blood  Multiple myeloma 
Suspension 
RPMI IV 20 

ATCC 
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Name Origin tissue Disease 
Culture 
conditions 

Source/ 
Reference 

Mel624.38 Skin Melanoma 
Adherent 
RPMI IV 

M. Panelli NCI 
Rivoltini et al., 
1995 

MelA375 Skin 
Malignant 
melanoma 

Adherent 
RPMI IV 

ATCC 

MM127 Skin Melanoma 
Adherent 
RPMI IV 

Sigma-Aldrich 

MM415 Skin Melanoma 
Adherent 
RPMI IV 

Sigma-Aldrich 

MOLP-8 Peripheral blood Multiple myeloma 
Suspension 
RPMI IV 20 

DSMZ 

RPMI-8226 
Peripheral blood/ 
B lymphocyte 

Plasmacytoma/ 
myeloma 

Suspension 
RPMI IV 

ATCC 

SAOS-2 Bone Osteosarcoma 
Suspension 
RPMI IV 

ATCC 

SK-Mel23 Skin Melanoma  
Adherent 
RPMI IV 

Schendel D. 
Memorial Sloan 
Kettering Cancer 
Center 

U266 
B lymphocyte/ 
Peripheral blood 

Myeloma/ 
Plasmocytoma 

Suspension 
RPMI IV 

ATCC 

 
 
Table 11. Primary cells 

Name Characteristics 
Culture 
conditions 

Source 

CD8+ T cells 
Derived from either PBMC or 
PBL of healthy donors by MACS 
enrichment  

Suspension 
T cell medium 

Longinotti G. 

Clone 10/24 
CD8+ T cell clone HLA-A2-
restricted HA-1H-specific 

Suspension 
T cell medium 

Sommermeyer D. 

Clone 234 
CD4+ T cell clone HLA-A24-
reactive 

Suspension 
T cell medium 

Schendel D. 

DCs 
Derived from monocytes of a 
HLA-A2-negative healthy donor 

Suspension 
DC Medium 

Longinotti G. 

PBL 
Derived from PBMC of healthy 
donors by monocyte plate 
adherence 

Suspension 
T cell medium 

Longinotti G. 

PBMC 
Derived from human peripheral 
blood of healthy donors by 
density gradient centrifugation 

Suspension 
T cell medium 

Longinotti G. 
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Table 12. Bacteria 

Name Characteristics Genotype Source 

NEB® Turbo 
Competent 
E. coli 

Chemically 
Competent 

F' proA+B+ lacIq ∆lacZM15/ 
fhuA2  ∆(lac-proAB)  glnV galK16 
galE15  R(zgb-210::Tn10)TetS  
endA1 thi-1 ∆(hsdS-mcrB)5 

New England 
BioLabs 

One Shot™ 
TOP10  
E. coli 

Chemically 
Competent 
 

F- mcrA Δ( mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 
Δ lacX74 recA1 araD139 
Δ( araleu)7697 galU galK rpsL 
(StrR) endA1 nupG 

Thermo 
Fisher 
Scientific 

XL1-blue 
E.coli 

Electrocompetent 
 

recA1 endA1 gyrA96 thi-1 hsdR17 
supE44 relA1 lac [F´ proAB lacIq 
Z∆M15 Tn10 (Tetr) 

Agilent 
Technologies 

2.8 Plasmids, primers, probes 

Table 13. Plasmids characteristics 

Name Characteristics Source 

pES12.6 
 

Retroviral self-inactivating (SIN) vector for transduction 
Elongation factor 1-α (EF1α) internal promoter, 
cytomegalovirus (CMV) enhancer, 5’ LTR of moloney 
murine leukemia virus (MoMuLV), psi/psi+ packaging 
signal of MoMuLV, woodchuck hepatitis virus 
posttranscriptional regulatory element (WPRE), self-
inactivating (SIN) 3’ long terminal repeat (LTR) of 
MoMuLV, multiple cloning site (MCS), ampicillin 
resistance cassette 

BioNTech 
Innovative 
Manufacturing 
Services/ 
Medigene 
Immunotherapies 
GmbH 

pGEM  
 

Plasmid for ivtRNA production 
T7 promoter, polyA116-tail (A116), MCS, ampicillin 
resistance cassette 

Milosevic S. 

pMP71 

Retroviral vector for transduction [102] 
Myeloproliferative sarcoma virus (MPSV)-LTR promoter-
enhancer sequences and improved UTR derived from 
the murine embryonic stem cell virus (MESV), MCS, 
ampicillin resistance cassette 
 

W. Uckert 
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Table 14. Plasmid generated in this project 

Name Cloning strategy* 

pGEM_NY-ESO-1  Traditional cloning 

pGEM_NY-ESO-1-pco  Traditional cloning  

pGEM_NY-ESO-1-ORF2  Seamless cloning  

pGEM_NY-ESO-1-ORF3  Seamless cloning  

pGEM_NY-ESO-1-ORF4  Seamless cloning  

pGEM_NY-ESO-1-ORF2_1-20 aa_eGFP  Seamless cloning  

pGEM_NY-ESO-1-ORF2_11-30 aa_eGFP  Seamless cloning  

pGEM_NY-ESO-1-ORF2_21-40 aa_eGFP  Seamless cloning  

pGEM_NY-ESO-1-ORF2_31-50 aa_eGFP  Seamless cloning  

pGEM_NY-ESO-1-ORF2_41-58 aa_eGFP  Seamless cloning  

pGEM_LAGE-1a  Traditional cloning  

pGEM_LAGE-1a-pco  Traditional cloning  

pGEM_CAMEL  Seamless cloning  

pGEM_TCR 1G4-α95:LY  Traditional cloning  

pGEM_TCR 5-271  Traditional cloning  

pES12.6_TCR 1G4-α95:LY Traditional cloning  

pES12.6_TCR 5-271 Traditional cloning  

*Cloning strategies are described in section 3.4.5 

 
 
Table 15. Plasmids kindly provided by collaborators 

Name Source 

pMP71_HLA-A*02:01 Wehner C. 

pGEM_HLA-A*02:01 Wehner C. 

pMP71_CD86 Milosevic S. 

pGEM_HA-1H Sommermeyer D. 

pGEM_eGFP Wehner C. 
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Table 16. Plasmids for retroviral transduction 

Name Characteristics Source 

pALF _env 10A1 
cDNA encoding the envelope derived 
from murine leukemia virus (MLV) 
clone/strain 10A1. 

Uckert W. 

K83-hCMV_env GALV 
cDNA encoding envelope derived 
from gibbon ape leukemia virus 
(GALV) 

BioNTech Innovative 
Manufacturing 
Services 

pcDNA3.1_gag/pol 
cDNA encoding gag/pol polyprotein 
derived from MLV 

C.Baum 

 
 
Table 17. Primers RACE-PCR 

Primer Sequence 5’ – 3’ 

5’ TRAC CGGCCACTTTCAGGAGGAGGATTCGGAAC 

5’ TRBC CCGTAGAACTGGACTTGACAGCGGAAGTGG 

5’ nTRAC CCACAGCACTGTTGCTCTTGAAGTC 

5’ nTRBC GCTCAGGCAGTATCTGGAGTCATTGA 

 
 
Table 18. Primers sequencing 

Primer Sequence 5’ – 3’ 

pGEM FW TATTACGACTCACTATAGGG 

pMP71 FW GCTCCGCCACTGTCCGAG 

pES12.6 FW CGCAACGGGTTTGCCGCCA 

P2A FW CTGCTGAAACAGGCCGGCG 

5’ TRAC CGGCCACTTTCAGGAGGAGGATTCGGAAC 

5’ TRBC CCGTAGAACTGGACTTGACAGCGGAAGTGG 

 
 
Table 19. Probes nanostring nCounter 

Probe Target sequence 5‘ – 3‘ Target region  

Probe 1 
GTCCGCATGGCGGCGCGGCTTCAGGGCTGAATGG
ATGCTGCAGATGCGGGGCCAGGGGGCCGGAGAG
CCGCCTGCTTGAGTTCTACCTCGCCATGCCTTT 

241-340 nt 
(NY-ESO-1) 

Probe 2 
CAACTGCAGCTCTCCATCAGCTCCTGTCTCCAGCA
GCTTTCCCTGTTGATGTGGATCACGCAGTGCTTTC
TGCCCGTGTTTTTGGCTCAGCCTCCCTCAG 

483-582 nt 
(NY-ESO-1/ 
LAGE-1a) 
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2.9 TCR sequences 

Table 20. TCR 1G4-α95:LY 

 V region J region  CDR3  

TCRα chain TRAV21*01 TRAJ6*01 CAVRPLYGGSYIPTF 

TCRβ chain TRBV6-5*01 TRBJ2-2*01 CASSYVGNTGELF 

HLA-A2-restricted NY-ESO-1/LAGE-1a157-165-specific TCR. 
Sequence derived from patent WO 2005/113595 A2. 

 
 
Table 21. TCR 5-271 

 V region J region  CDR3  

TCRα chain TRAV21*01 TRAJ6*01 CAVSPQWGGSYIPTF 

TCRβ chain TRBV6-5*01 TRBJ2-7*01 CASSYLRGGGYEQYF 

HLA-A2-restricted NY-ESO-1-ORF2/CAMEL11-18-specific TCR. 
Sequence identified in this project. 

 
The variable and junctional gene segments are indicated in IMGT nomenclature. TRAV, TCR alpha 
variable segment; TRAJ, TCR alpha joining segment; TRBV, TCR beta variable segment; TRBJ, 
TCR beta joining segment.  

2.10  Peptides 

Table 22. Peptides 

Sequence (aa) X-mer Antigen/protein Position Source 

MLMAQEALAFLM 12 NY-ESO-1-ORF2 1-12 Peps4LS GmbH 

MLMAQEALAFL 11 NY-ESO-1-ORF2 1-11 Peps4LS GmbH 

MLMAQEALA 9 NY-ESO-1-ORF2 1-9 Peps4LS GmbH 

MLMAQEAL 8 NY-ESO-1-ORF2 1-8 Peps4LS GmbH 

LMAQEALAFL 10 NY-ESO-1-ORF2 2-11 Peps4LS GmbH 

FLMAQGAMLAA 11 NY-ESO-1-ORF2 10-20 Peps4LS GmbH 

FLMAQGAMLA 10 NY-ESO-1-ORF2 10-19 Peps4LS GmbH 

FLMAQGAML 9 NY-ESO-1-ORF2 10-28 Peps4LS GmbH 

FLMAQGAM 8 NY-ESO-1-ORF2 10-17 Peps4LS GmbH 

LMAQGAML 8 NY-ESO-1-ORF2 11-18 Peps4LS GmbH 

LMAQGAMLAA 10 NY-ESO-1-ORF2 11-20 Peps4LS GmbH 

ALAFLMAQGAML 12 NY-ESO-1-ORF2 7-18 Peps4LS GmbH 

AQGAMLAA 8 NY-ESO-1-ORF2 13-20 Peps4LS GmbH 

MAQGAMLAA 9 NY-ESO-1-ORF2 12-20 Peps4LS GmbH 
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Sequence (aa) X-mer Antigen/protein Position Source 

GLAFLMAQGAML 12 NY-ESO-1-ORF2 7-18 (F7G) Peps4LS GmbH 

AAAFLMAQGAML 12 NY-ESO-1-ORF2 7-18 (L8A) Peps4LS GmbH 

ALGFLMAQGAML 12 NY-ESO-1-ORF2 7-18 (A9G) Peps4LS GmbH 

ALAALMAQGAML 12 NY-ESO-1-ORF2 7-18 (F10A) Peps4LS GmbH 

ALAFAMAQGAML 12 NY-ESO-1-ORF2 7-18 (L11A) Peps4LS GmbH 

ALAFLAAQGAML 12 NY-ESO-1-ORF2 7-18 (M12A) Peps4LS GmbH 

ALAFLMGQGAML 12 NY-ESO-1-ORF2 7-18 (A13G) Peps4LS GmbH 

ALAFLMAAGAML 12 NY-ESO-1-ORF2 7-18 (Q14A) Peps4LS GmbH 

ALAFLMAQAAML 12 NY-ESO-1-ORF2 7-18 (G15A) Peps4LS GmbH 

ALAFLMAQGGML 12 NY-ESO-1-ORF2 7-18 (A16G) Peps4LS GmbH 

ALAFLMAQGAAL 12 NY-ESO-1-ORF2 7-18 (M17A) Peps4LS GmbH 

ALAFLMAQGAMA 12 NY-ESO-1-ORF2 7-18 (L18A) Peps4LS GmbH 

ALMAQGAMLAA 11 NY-ESO-1-ORF2 10-20 (F10A) Peps4LS GmbH 

FAMAQGAMLAA 11 NY-ESO-1-ORF2 10-20 (L11A) Peps4LS GmbH 

FLAAQGAMLAA 11 NY-ESO-1-ORF2 10-20 (M12A) Peps4LS GmbH 

FLMGQGAMLAA 11 NY-ESO-1-ORF2 10-20 (A13G) Peps4LS GmbH 

FLMAAGAMLAA 11 NY-ESO-1-ORF2 10-20 (Q14A) Peps4LS GmbH 

FLMAQAAMLAA 11 NY-ESO-1-ORF2 10-20 (G15A) Peps4LS GmbH 

FLMAQGGMLAA 11 NY-ESO-1-ORF2 10-20 (A16G) Peps4LS GmbH 

FLMAQGAALAA 11 NY-ESO-1-ORF2 10-20 (M17A) Peps4LS GmbH 

FLMAQGAMAAA 11 NY-ESO-1-ORF2 10-20 (A18G) Peps4LS GmbH 

FLMAQGAMLGA 11 NY-ESO-1-ORF2 10-20 (A19G) Peps4LS GmbH 

FLMAQGAMLAG 11 NY-ESO-1-ORF2 10-20 (A20G) Peps4LS GmbH 

ALMAQGAML 9 NY-ESO-1-ORF2 10-18 (F10A) Peps4LS GmbH 

FAMAQGAML 9 NY-ESO-1-ORF2 10-18 (L11A) Peps4LS GmbH 

FLAAQGAML 9 NY-ESO-1-ORF2 10-18 (M12A) Peps4LS GmbH 

FLMGQGAML 9 NY-ESO-1-ORF2 10-18 (A13G) Peps4LS GmbH 

FLMAAGAML 9 NY-ESO-1-ORF2 10-18 (Q14A) Peps4LS GmbH 

FLMAQAAML 9 NY-ESO-1-ORF2 10-18 (G15A) Peps4LS GmbH 

FLMAQGGML 9 NY-ESO-1-ORF2 10-18 (A16G) Peps4LS GmbH 

FLMAQGAAL 9 NY-ESO-1-ORF2 10-18 (M17A) Peps4LS GmbH 

FLMAQGAMA 9 NY-ESO-1-ORF2 10-18 (L18A) Peps4LS GmbH 

SLLMWITQV 9 NY-ESO-1 157-165 ProteoGenix 

KVLEYVIKV 9 MAGE-A1 278-286 ProteoGenix 
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2.11  Antibodies 

Table 23. Antibodies 

Sequence (aa) X-mer Antigen/protein Position Source 

YMDGTMSQV 9 Tyrosinase 369-377 Peps4LS GmbH 

VLHDDLLEA 9 HA-1H 137-145 (H139) ProteoGenix 

VLRDDLLEA 9 HA-1R 137-145 (R139) Peps4LS GmbH 

Specificity* 
 

Fluoro- 
chrome 

Isotype Clone Source 

CD4 APC Mouse IgG1κ RPA-T4 BD 

CD8 PB Mouse IgG1κ RPA-T8 BD 

CD137 PE Mouse BALB/c IgG1κ 4B4-1 BD 

CD86 FITC Mouse BALB/c IgG1κ 2331(FUN-1) BD 

HLA-A2 APC Mouse IgG2b, κ BB7.2 BD 

CD4 FITC  Mouse BALB/c IgG1κ SK3 BD 

CD3 PercP  Mouse BALB/c IgG1κ SK7 BD 

CD56 PE Mouse IgG1κ CMSSB eBioscience 

CD80 APC-Cy7 Mouse C3H/Bi IgG1κ L307.4 BD 

CD19 PE-Cy7 Mouse IgG1κ HIB19 eBioscience 

CD3 BUV Mouse IgG1κ UCHT1 BD 

CD14 PB Mouse IgG2a M5E2 BD 

CD83 APC Mouse IgG1κ HB15e BD 

CD86 Alexa700 Mouse BALB/c IgG1κ 2331(FUN-1) BD 

CCR7 PE-vio770 Recombinant human IgG1 REA108 MiltenyiBiotec 

HLA-DR PercP Mouse BALB/c IgG2a κ L243 BD 

CD274 FITC Mouse IgG1κ MIH1 BD 

TRBV6-5 PE Mouse IgG2b IMMU222 Beckman Coulter 

*Anti-human     
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2.12 Softwares 

Table 24. Softwares 

Task Software/online tool 

Cloning simulation Clone Manager 

Data analyses 
Microsoft Excel 
Graph Pad Prism 

FACS analyses FlowJo 10 

Sequence analyses 

Chromas Lite 
NCBI BLAST 
IMGT 
ExPASy 

Reference source 
NCBI PubMed 
Mendeley 

2.13  Collaborators 

Table 25. Collaborators 

Name Company/Institute 

Milosevic S. Medigene Immunotherapies GmbH, Germany 

Moosmann A. Helmholtz Zentrum München, Germany 

Schendel D. Medigene Immunotherapies GmbH, Germany 

Sommermeyer D. Medigene Immunotherapies GmbH, Germany 

Uckert W. Max Delbrück Center, Berlin, Germany 

Wehner C. Medigene Immunotherapies GmbH, Germany 

- BioNTech Innovative Manufacturing Services, Germany 

- Medigene Immunotherapies GmbH, Germany 

- Nanostring Headquarters facility, USA 
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3 Methods 

3.1 Cell-biological methods 

To avoid contamination with bacteria, fungi or other organisms, cell cultures were 

performed under sterile conditions and sterile material, solutions and media were used. 

Cells were grown in incubators at 37°C, 6.5% CO2 and 95% humidity in laboratories of S2 

standard. 

3.1.1 Cell counting 

Cell numbers were determined using Neubauer counting chambers. Trypan blue staining 

was used to allow discrimination of viable and dead cells. Trypan blue is not taken up by 

viable cell, but passes the cell membrane of dead cells. An aliquot of the cell suspension 

(10µl) was diluted with trypan blue at a ratio of either 1:2 for samples at low cell 

concentration or 1:10 for samples at high cell concentration. Using an inverted microscope, 

the number of viable cells (unstained with trypan blue) in the four big quadrants was 

counted. The following formula was applied to determine the cell concentration per ml: cell 

number/ml = mean of cells counted in four big quadrants x dilution factor x chamber factor 

(104). 

3.1.2 Cryopreservation of cells 

Cells were collected and centrifuged at 350 g for 5 minutes at room temperature. Cell pellets 

were re-suspended in ice-cold cell freezing medium and frozen in 1 ml aliquots in cryovials. 

Peripheral blood mononuclear cells (PBMC) and peripheral blood lymphocytes (PBL) were 

frozen at the cell concentration of 5×107 cell/ml, while all the other cells were frozen at cell 

concentrations ranging between 4×106 and 1×107 cell/ml. Cryovials were placed into 

CoolCell® Cell Freezing Containers and stored at -80°C overnight. The following day, the 

cryovials were transferred into a -150°C freezer for long-term storage. 

3.1.3 Cell thawing 

Cryovials containing frozen cells were thawed at room temperature. The suspension of 

each cryovial was transferred to a 15 ml tube containing 10 ml of RPMI VI medium and 

centrifuged at 350 g for five minutes at room temperature. The supernatant was discarded 
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and cell pellet resuspended in the appropriate pre-warmed medium. Cells were counted 

and used for the required applications. 

3.1.4 Cultivation of adherent cell lines 

Adherent cell lines were cultivated in T25 - T75 cm2 tissue culture flasks adding 10 - 25 ml 

of appropriate medium. Approximately every three to four days, confluent cells were 

passaged either 1:5 or 1:10 depending on the growth rate of the cell line by detaching 

adherent cells with trypsin/EDTA. Therefore, the medium was removed, cells were washed 

once with 10 ml of warm DPBS and then incubated with 1 - 3 ml of trypsin/EDTA for three 

minutes at 37°C. Fresh medium was added into the flask to inactivate trypsin. The desired 

number of detached cells was resuspended in fresh medium to a final volume of 10 - 25 ml 

and distributed in new tissue culture flasks 

3.1.5 Cultivation of suspension cell lines 

Suspension cell lines were cultivated in T25 - T75 cm2 tissue culture flasks adding 15 - 50 

ml of the appropriate medium. Approximately every three to four days, cells were passaged 

1:3 or 1:5 depending on the growth rate of the cell line and fresh medium was added. 

3.1.6 Cell irradiation 

Cells were counted and resuspended at 3 x 106 cells/ml in the appropriate medium. 

According to the total number of cells and the corresponding total volume of medium, cells 

were seeded into either tissue culture plates or flasks (table 26). After sealing the vessel 

with Parafilm®, cells were placed into the RS225 irradiation device. For each cell type, 

irradiation was performed according to the specific protocol shown in table 27.  

Table 26. Maximum volume for irradiation                            Table 27. Irradiation conditions 

Plate 
Maximum 
volume/well 

Flask 
Maximum 
volume/flask 

 Cell type Gray 
(Gy) 

24-well  1 ml T25 12.5 ml  K562 cells 100 

12-well 2 ml T75 37.5 ml  LCL 100 

6-well  5 ml T150 50 ml  LAZ 388 100 

     PBL  50 
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3.1.7 T cell clone stimulation and expansion 

The CD8+ T cell clone 10/24 and CD4+ T cell clone 234 were (re-)stimulated and expanded 

according to the following protocols. 

The CD8+ T cell clone 10/24 was seeded in a 24-well tissue culture plate (1 x 106 cells/well) 

and mixed with an irradiated PBL pool composed of cells of several donors (1 x 106 

cells/well) as well as with irradiated HLA-A2-positive LCL P8 that were loaded with the 

peptide recognized by the clone 10/24 (1 x 105 cells/well). The final volume per well was 2 

ml of T cell medium containing IL-2 (50 IU/ml). Either phytohemagglutinin (PHA 250 ng/ml) 

or anti-CD3 antibody (OKT-3, 30 ng/ml) was added to the medium. PHA was removed from 

T cell culture after four days due to its toxicity. 

The CD4+ T cell clone 234 was seeded in 24-well tissue culture plates (1 x 106 cells/well) 

and mixed with irradiated HLA-A24-positive LCL BW (3 x 105 cells/well) in T cell medium 

containing IL-2 (50 IU/ml) (2 ml final volume/well). 

For both clones, half of the medium was substituted with fresh T cell medium containing IL-

2 (50 IU/ml) every two days. When cells were confluent, they were split either in a ratio of 

1:2 or 1:3 and fresh T cell medium containing IL-2 (50 IU/ml) was added. T cell clones were 

restimulated every 2 weeks.  

3.1.8 Isolation of human PBMC  

Fresh blood from healthy donors was collected after informed consent. PBMC were isolated 

from blood samples by density gradient centrifugation using a separating solution 

containing the synthetic copolymer Ficoll®. Syringes for collecting blood were supplemented 

with 10 IU heparin-sodium/ml of blood. Blood samples were diluted 1:2 with PBS VLE and 

35 ml of diluted blood were layered over 15 ml Ficoll® in 50 ml tubes. After centrifugation at 

840 x g for 18 minutes without brake, 15 ml of the upper phase were removed and the 

centrifugation step was repeated. PBMC located in the interphase between plasma and 

Ficoll® were collected and transferred in new 50 ml tubes (two interphases/50 ml tube). PBS 

VLE was added to each tube to a final volume of 50 ml. Tubes were centrifuged at 470 x g 

for ten minutes with brake. Supernatants were discarded and cell pellets were mixed (two 

cell pellets/50 ml tube) and resuspended in PBS VLE to a final volume of 50 ml. Tubes were 

centrifuged at 470 x g for ten minutes with brake. Supernatants were discarded and cell 

pellets were mixed (two cell pellets/50 ml tube) and resuspended in PBS VLE with 0.5% 

human serum to a final volume of 40 ml. After centrifugation at 130 x g for 15 minutes 

without brake, the step was repeated. The final cell pellet was resuspended in T cell 

medium, counted and used freshly in experiments or frozen for long-term storage. 
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3.1.9 Generation of lymphoblastoid cell lines  

The immortalization of human B cells can be achieved in vitro by infection with Epstein-

Barr-Virus (EBV) which can lead to a transformation of these cells [103]. The lines 

generated by EBV infection of B cells are called lymphoblastoid cell lines (LCL). For this 

project, LCL were generated starting from PBMC derived from a HLA-A2-positive healthy 

donor (see section 3.1.8 for PBMC isolation). The infection was performed using the B95.8 

EBV virion-containing supernatant kindly provided by Dr. Moosmann. Freshy isolated 

PBMC were seeded into a 96-well flat-bottom plate at 5 x 105 cells per well in 100 µl of 

RPMI IV medium containing 1 µg/ml of cyclosporin A (CSA). B95.8 EBV virion-containing 

supernatant was added to each well (100 µl/well). Only RPMI IV medium containing 1 µg/ml 

of CSA was added into the negative control wells (100 µl/well). The plate was incubated at 

37°C overnight. The following day, half of the medium of each well (100 µl) was exchanged 

by fresh RPMI IV medium containing CSA (1 µg/ml). The plate was kept in the incubator for 

the following days. The procedure was repeated every four days.  About two or three weeks 

after infection, each well was inspected for outgrowth of LCL showing spherical aggregates 

compared to negative control wells. Within the following six weeks, LCL were expanded 

and finally analyzed by flow cytometry for their purity and quality (staining for B cell marker 

CD19, T cell marker CD3 and live/dead staining). 

3.1.10 Generation of mDCs 

To stimulate and expand HLA-A2-allo-restricted NY-ESO-1-specific T cells, mDCs were 

used as APCs during the priming procedure. Therefore, mDCs were generated in vitro using 

an 8-day protocol and the Jonuleit maturation cocktail [104]. Monocytes were derived from 

freshly isolated PBMC by plastic adherence. Hence, PBMC were isolated from a healthy 

HLA-A2-negative donor as previously described (see section 3.1.8). Subsequently, 75 x 

106 PBMC were resuspended in 15 ml of DC medium and transferred into an 80cm2 

Nunclon® Δ surface cell culture flask. After 25 minutes of incubation at 37°C, the flask was 

gently shaken and incubated for additional 25 minutes at 37°C. Non-adherent cells were 

carefully washed away by two washing steps using 15 ml of fresh DC medium. These non-

adherent cells represented the ‘PBL fraction’. PBL were collected and frozen for other 

applications. Adherent monocytes were kept in culture overnight adding 15 ml of DC 

medium into the flask. In order to mature immature DCs (iDCs), on the following day (day 

1) as well as after three days (day 3), 100 ng/ml GM-CSF and 20 ng/ml IL-4 were added to 

the cells. Finally, on day 6, the Jonuleit maturation cocktail was added (table 28). mDCs 

were harvest on day 8 and used for further experiments. The quality and the purity of the 
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generated mDCs was evaluated by analyzing the surface expression of typical DC 

maturation markers by flow cytometry (see section 3.2.1 for staining of cell surface marker). 

Table 28. Jonuleit maturation cocktail 

Components Amount  

GM-CSF 100 ng/ml 

IL-4 20 ng/ml 

IL-1β 10 ng/ml 

IL-6 15 ng/ml 

TNF-α 10 ng/ml 

PGE2 1000 ng/ml 

3.1.11 ivtRNA electroporation into APCs 

APCs were harvested, counted and washed once with RPMI1640 medium without serum 

(VLE RPMI 1640 in case of mDCs). Cell were adjusted at 2 – 3 × 106 cells/200 µl in 

RPMI1640 medium without serum (VLE RPMI 1640 in case of mDCs) and 200 µl of the cell 

suspension were transferred into a 0.4 cm pre-cooled electroporation cuvette. 

Subsequently, either 20 µg of ivtRNA or 20 µl of water (negative control) were added into 

the cuvette (see section 3.4.10 for ivtRNA production). The suspension was shortly mixed 

by pipetting and then quickly electroporated using the Gene Pulser Xcell™ device. 

Electroporation for each cell type was performed according to the specific conditions shown 

in table 29. Immediately after electroporation, cells were transferred into the appropriate 

fresh medium and placed into the incubator. After three hours, cells were counted and 

resuspended at the adequate concentrations for further applications. 

Table 29. Electroporation conditions 

Cell type Protocol Voltage (volt) Capacitance (µF)  Time 

mDCs Exponential 150 150 ∞ 

K562 cells  Exponential 300 300 ∞ 

Tumor cell lines Exponential 300 150 ∞ 

T cells Time constant 400 - 5ms 

3.1.12 Loading of T2 cells with small synthetic peptides 

T2 cells were harvested, counted and adjusted to 1 x 106 cells/ml using appropriate medium 

in a 15 ml tube. Subsequently, the required amount of peptide was added to the cells. T2 

cells were loaded with either 10-5 M or with titrated amounts (ranging from 10-5 M to 10-12 
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M) of the peptide of interest. Cells were incubated for 1h and 30 minutes at 37°C. After 

incubation, the appropriate medium was added to a final volume of 15 ml. Cells were 

centrifuged (350 x g for five minutes) and the supernatant was discarded to remove 

unbound peptides. Cells were resuspended in fresh medium at the required concentration 

for the subsequent applications. 

3.1.13 Isolation of CD8+ T cells 

CD8+ T cells were enriched starting either from PBMC or from PBL by the MACS® 

technology. The CD8+ T cell Isolation kit was selected as means to isolate untouched CD8+ 

T cells, avoiding direct labeling of CD8+ T cell surface molecules that could interfere with 

subsequent applications. The MACS separation was performed according to the 

manufacturer’s protocol. Either PBMC or PBL were counted and resuspended in 40 µl of 

DPBS - 0.5% human serum per 1 x 107 total cells into a 15 ml tube. A biotin-antibody cocktail 

was added to the cells (10 µl per 1 x 107 total cells) and well mixed in order to label CD8-

negative cells. After incubation of five minutes at 4°C, 30 µl of DPBS - 0.5% human serum 

and 20 µl of anti-biotin MicroBeads per 1 x 107 total cells were added into the tube. The 

reaction mix was incubated for ten minutes at 4°C. Meanwhile, LS columns were placed 

into the magnetic MACS separator and rinsed with 3 ml of DPBS - 0.5% human serum. 

Subsequently, the cell suspension was applied to LS columns. The flow-through containing 

unlabeled cells represented the enriched CD8+ T cells that were collected into 50 ml tubes. 

LS columns were washed with 3 ml of DPBS - 0.5% human serum and the flow-through 

was mixed with the previously collected cells. Enriched CD8+ T cells were counted and 

resuspended in T cell medium at the required cell concentration for stimulation. Samples 

before and after enrichment were analyzed by flow cytometry to evaluate the purity of the 

enriched cell population and the efficiency of the separation process. 

3.1.14 Stimulation and expansion of T cells 

PBL and CD8-enriched T cells were (re-)stimulated and expanded using Dynabeads® 

Human T-Activator CD3/CD28. T cells were seeded at 1 x 106 cells/ml in a 24-well tissue 

culture plate in T cell medium with 50 U/ml IL-2. Dynabeads® were resuspended and the 

desired volume was transferred to a 15 ml tube (25 µl Dynabeads®/1 x 106 T cells). An 

equal volume of DPBS with 0.1 % human serum or at least 1 ml was added. After mixing, 

the tube was placed on a magnet for one minute and the supernatant was discarded. The 

tube was removed from the magnet and the washed Dynabeads® were resuspended in T 

cell medium. The washed Dynabeads® were added to the T cells and the plate was placed 
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into the incubator. After three or four days, Dynabeads® were removed from the culture. 

Therefore, T cells were transferred in a 15 ml tube and the tube was placed on the magnet 

for two minutes. The supernatant containing the cells was collected in a new tube. The 

remaining Dynabeads® were washed with fresh T cell medium and the procedure on the 

magnet was repeated. T cells were counted and placed into either a suitable tissue culture 

plate or into a tissue culture flask at 5 x 105 cells/ml. T cells were passaged 1:2 or 1:3 and 

fresh T cell medium containing IL-2 (50 IU/ml) was added every two days. Restimulation of 

the cells was performed every 2 weeks. 

3.1.15 De novo induction of CD8+ T cells using ivtRNA-transfected mDCs 

mDCs generated in vitro from an HLA-A2-negative donor were electroporated 

simultaneously with ivtRNA encoding the foreign HLA-A2 molecule and the full-length NY-

ESO-1 antigen (20 µg each ivtRNA) to utilize them as APCs for stimulation and expansion 

of autologous CD8-enriched T cells. As control, ivtRNA encoding full-length eGFP was 

transfected in combination with HLA-A2 ivtRNA into mDCs (20 µg each ivtRNA). 

Electroporation was performed as described in section 3.1.11. The expression of HLA-A2 

molecules and eGFP was evaluated by flow cytometry 3h after electroporation. On the 

same day, autologous CD8+ T cells were enriched from freshly isolated PBMC according to 

the protocol described in section 3.1.13. Co-cultures were initiated 3h after electroporation 

in 24-well tissue culture plates. The cells were seeded at an effector to target ratio of 10:1 

(1 x 106 CD8+ T cells and 1 x 105 mDCs) in T cell medium containing 5 ng/ml IL-7. Addition 

of IL-2 (50 IU/ml) was delayed for two days and then added every two days. Cells were 

expanded for 14 days and subsequently NY-ESO-1-specific T cells were selectively 

separated using the double sorting strategy (see section 3.2.2.2). 

3.1.16 Stimulation and expansion of single-cell-sorted T cells 

Single-cell-sorted T cells were stimulated immediately after the double-sorting procedure. 

Anti-CD3 antibody (30 ng/ml OKT-3), 1 x 104 irradiated LAZ 388 cells and 1 x 105 irradiated 

PBL pooled from different donors were added to each well. The final volume per well was 

200 µl of T cell medium supplemented with 50 IU/ml IL-2. After 14 days, plates were 

screened for expanded clones. The expanded clones were tested in the first screening for 

antigen specificity. Moreover, a fraction of the cells was resuspended in TRI Reagent® for 

subsequent TCR sequence analysis. A fraction of the cells was restimulated for further 

expansion according to standard CD8+ T cell clone stimulation and expansion. 
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3.1.17 Plasmid-DNA transfection into 293FT cells for retrovirus production 

Retroviruses needed for subsequent retroviral-mediated transduction were produced by 

triple plasmid DNA transfection of the packaging 293FT cells. The transgene-encoding DNA 

retroviral vector and the plasmids encoding the gag/pol and the env viral genes were 

introduced into the packaging cells using the TransIT®-LT1 transfection reagent. Therefore, 

293FT cells were seeded at 1.5 x 106 cells per 100 mm petri dish in 10 ml DMEM IV medium 

and placed into the incubator overnight. The following day, 470 µl of DMEM medium without 

serum were mixed with 30 µl of TransIT®-LT1 transfection reagent and incubated for five 

minutes at room temperature. Subsequently, plasmid DNA was added to the transfection 

mixture (see table 30). The transfection mix was incubated for 15 minutes at room 

temperature. The medium of the seeded 293FT cells was replaced by RPMI IV and the 

transfection mix was added dropwise to the 293FT cells. Petri dishes were incubated at 

37°C. After three days, the virus-containing medium was harvested and centrifuged at 200 

g for 10 minutes at 32°C. The retroviral supernatant was either used freshly or frozen at -

80°C for long-term storage. 

Table 30. Amount of plasmid DNA for transfection of 293FT cells 

Plasmid DNA encoding Amount per transfection reaction (µg) 

Transgene 4.7 

Gag/pol 4.7 

Env 3.1 

3.1.18 Retroviral-mediated transduction 

Retroviral-mediated transduction of T cells and K562 cells was performed using a 

RetroNectin® reagent to co-localize the virus with the cells in order to enhance the viral 

transduction efficiency. Transduction was done in two subsequent rounds (infection hits). 

Therefore, non-tissue culture treated 24-well plates were coated with 10 µg/ml RetroNectin® 

in 1ml DPBS per well. Plates for the first and the second infection hit were prepared in 

parallel. Plates were sealed with Parafilm® and kept at 4°C until the next day. The following 

day, RetroNectin® was replaced with DPBS containing 2% BSA. After incubation for 30 

minutes at room temperature, the solution was removed from each well. Retroviral 

supernatant (either frozen or fresh, see section 3.1.17) was added to the RetroNectin®-

coated plates (1 ml/well). If two different retroviral supernatants were used for simultaneous 

transduction, 1 ml of each retroviral supernatant was added into the well (final volume per 

well 2 ml). As negative control, only RPMI VI medium was added into RetroNectin®-coated 

wells. Plates were sealed with Parafilm® and centrifuged for 90 minutes at 3200 g at 32°C. 
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After centrifugation, the plate for the second infection hit was stored at 4°C until the next 

day. In contrast, supernatants were removed from the plate for the first infection hit and 

cells in proliferating phase were seeded into the retrovirus-coated wells (0.5 - 1 x 106 T 

cells/well in 1 ml of T cell medium with 50 IU/ml IL-2, 0.3 – 0.5 x 106 K562 cells/well in 1 ml 

of RPMI IV medium). Cells were also seeded into the negative-control wells. These cells 

were designated as untransduced cells. The plate was incubated at 37°C. The following 

day, supernatants were removed from the plate for the second infection hit. Cells were 

transferred from the plate for the first infection hit to the plate for the second infection hit. 

Fresh T cell medium was added to the cells (1 ml/well).  After three or four days, cells were 

harvested and seeded at an adequate cell concentration (0.5 x 106 T cells/ml; 0.3 x 106 

K562 cells/ml) either into tissue culture plates or into cell culture flasks in fresh medium 

(containing 50 IU/ml IL-2 in case of T cells). Transduction rate was verified by flow 

cytometry, evaluating the surface expression of the introduced molecules. After adequate 

expansion, cells were harvested, counted and used for further applications.   

3.1.19 Lentiviral-mediated transduction 

IncuCyte® NucLight Lentivirus Reagent was used for nuclear labelling of T2 cells by 

homogenous expression of the mKate2 protein (red fluorescent protein). This reagent 

enabled the generation of stable transduced cell populations using puromycin selection. T2 

cells were collected, counted and resuspended at 2 x 105 cells/ml in fresh RPMI IV medium. 

Subsequently, 500 µl of cell suspension were transferred into a 1.5 ml tube. Polybrene (8 

µg/ml) and IncuCyte® NucLight Lentivirus Reagent (multiplicity of infection, MOI 3) were 

added to the cells. The volume of lentiviral supernatant corresponding to MOI 3 was 

calculated according to the virus titer listed in the manufacturer’s datasheet. The sample 

was incubated for 1h at 37°C and then centrifuged at 400 g for 1h at room temperature. 

The pellet was resuspended in 2 - 3 ml of fresh RPMI IV medium. Cells were transferred 

into a 6-well tissue culture plate and placed into the IncuCyte® ZOOM device to monitor the 

fluorescence expression. Puromycin (1 µg/ml) was added to the plate to select the 

transduced cells five days after transduction. Red-labelled T2 cells were expanded and kept 

in culture in RPMI IV medium containing 0.5 µg/ml puromycin. Before performing the 

functional assays, T2 cells were washed to remove the puromycin. 
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3.2 Flow cytometry 

3.2.1 Staining of cell surface markers 

For each staining condition 0.2 – 1 x 106 cells were transferred into a 5 ml tube. In case of 

DC staining, FcR blocking reagent was added to the samples prior the staining to block 

unwanted binding of antibodies to human Fc receptor-expressing cells. Cells were washed 

with 1 ml DPBS - 1% FBS buffer and the supernatant removed leaving 100 µl in the tube. 

To stain the desired surface markers, appropriate antibodies were added and incubated for 

30 minutes at 4°C in the dark. After incubation, the tubes were filled with DPBS - 1% FBS 

ad 1ml, centrifuged (300 g for five minutes) and the supernatants discarded. Cells were 

resuspended in DPBS - 1% PFA for fixation and stored at 4°C until the flow cytometric 

analysis was performed using the analyzer BD LSRFortessaTM. UltraComp eBeads® were 

used for fluorescence compensation in case of multicolor flow cytometric analyses. The 

beads preparation was performed according to manufacturer's instructions. 

3.2.2 Fluorescence-activated cell sorting (FACS) 

Cell suspensions were stained with fluorochrome-conjugated antibodies as previously 

described and analyzed for fluorochrome signals. Once the photons emitted by the 

fluorochromes have been detected, cells were selected according to marker expression. 

After passing the laser beam, cells were separated using BD FACSAriaTM Fusion cell sorter. 

Cells were sorted applying either “purity” (highest cell yield) or “single cell” (highest purity) 

mode. 

3.2.2.1 Sorting of K562 cells 

To generate appropriate APCs for the double sorting procedure and for the screening 

assays, K562 cells were stably transduced with the HLA-A2 molecule and the CD86 co-

stimulatory molecule (see section 3.1.18 for retroviral-mediated transduction). After 

transduction, the expression of HLA-A2 and CD86 surface molecules was evaluated by 

surface marker staining with specific antibodies and analyzed by flow cytometry. 

Subsequently, HLA-A2-positive CD86-positive K562 cells (designated as tgK562) were 

sorted by FACS to obtain a high purity cell population.  

3.2.2.2 CD137-based double-sorting strategy 

A 2-step-sorting procedure based on the CD137 activation marker and K562 cells as target 

cells was performed to selectively separate NY-ESO-1-specific T cells after de novo T cell 
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induction and expansion. In the first step a NY-ESO-1-unspecific stimulation of primed T 

cells was performed using irradiated water-electroporated tgK562 cells at an E:T ratio of 

2:1. Stimulated T cells were stained for CD137 and CD8 cell surface expression 12 h after 

activation and the CD137-negative CD8-positive fraction was sorted by FACS (CD137-

negative cell sorting). In the second step, NY-ESO-1-specific stimulation of the sorted T 

cells was performed using irradiated NY-ESO-1 ivtRNA-transfected tgK562 cells at an E:T 

ratio of 5:1. After 12 h, stimulated T cells were stained for CD137 and CD8 cell surface 

expression and the CD137-positive CD8-positive fraction was sorted (CD137-positive cell 

sorting) as single cells into tissue culture 96-well U-bottom plates by FACS. Single-cell-

sorted T cells were stimulated and expanded as described in section 3.1.16. 

3.3 Assays for functional analyses 

3.3.1 Co-culture of T cells and APCs 

The functionality of either TCR-transgenic T cells or T cell clones was investigated by 

evaluating IFN-γ release after target antigen-specific stimulation as well as by testing the 

capacity to mediate killing of cells expressing the target antigen. T cells and T cell clones 

were harvested, counted and used for functional analyses between 10 and 14 days after 

restimulation. 

3.3.1.1 Evaluation of IFN-γ release by T cells 

Effector cells and target cells were counted and adjusted according to the desired cell 

concentration for the co-culture (30000 effector cells/100µl/well, 10000-30000 target 

cells/100µl/well). The co-cultures for each test condition were performed in duplicates. The 

effector cells were co-cultured with target cells for 24h at 37°C. After incubation, the co-

culture supernatants were harvested and the amount of secreted interferon-gamma (IFN-

γ) was assessed by enzyme-linked immunosorbent assay (ELISA) (see section 3.3.2). The 

residual supernatants were frozen at -20°C for long-term storage. 

3.3.1.2 Evaluation of killing mediated by T cells 

Killing capacity mediated by TCR-transgenic T cells was evaluated by setting up co-culture 

experiments with different types of target cells and dyes for live-cell imaging using 

IncuCyte® ZOOM - Live Cell Analysis System. 

In the first approach, red-labelled T2 cells generated as described in section 3.1.19 were 

used as target cells. Thus, peptides of interest were loaded on red-labelled T2 cells 
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according to the protocol previously described (see section 3.1.12). Subsequently, loaded 

red-labelled T2 cells were seeded into 96-well round bottom plates (1 x 103 cells/well). The 

effector cells were added into each well at an effector to target (E:T) ratio of 20:1. The co-

cultures for each test condition were performed in triplicates. After setting up the co-

cultures, the plates were incubated at room temperature for 30 minutes and then placed 

into the IncuCyte® ZOOM device. The cells were monitored over 48h by live-cell imaging 

using IncuCyte® ZOOM - Live Cell Analysis System to evaluate the decrease of the red 

fluorescence intensity showing T2 cell killing mediated by TCR-transgenic T cells. 

In the second approach, tumor cell lines transfected with target antigen ivtRNA were used 

as target cells. The electroporation was performed as described in section see 3.1.11. 

Tumor cell lines were resuspended in fresh medium and seeded in 96-well flat-bottom-

plates (1.5 x 104 cells/well) 3h after transfection. After seeding, the cells were incubated at 

room temperature for 30 minutes to allow an even distribution and settling of the cells and 

subsequently incubated at 37°C. The following day, half of the medium was removed from 

the plates. Each well was refilled with 50 µl of the red fluorescent annexin V apoptosis dye 

(resuspended and pre-diluted according to manufacturer’s instructions) and 50 µl of 

medium containing 5 x 104 effector cells. The co-cultures for each test condition were 

performed in duplicates. After adding the effector cells, the plates were incubated at room 

temperature for 30 minutes and then placed into the IncuCyte® ZOOM device. To evaluate 

apoptosis in the co-cultures, the cells were monitored over 48h by live-cell imaging using 

IncuCyte® ZOOM - Live Cell Analysis System. 

3.3.2 IFN-γ ELISA 

The measurement of IFN-γ in co-culture supernatants was performed by a sandwich ELISA 

using the OptEIA™ Human ELISA Set IFN-γ. IFN-γ ELISA was performed according to the 

manufacturer’s protocol. Nunc-Immuno™ MicroWell™ 96-well plates were coated with 50 

µl/well capture antibody diluted 1:250 in ELISA coating buffer and incubated at 4°C 

overnight. The plates were washed five times with 300 µl/well ELISA washing buffer, 

blocked with 300 µl/well ELISA blocking buffer for 1h at room temperature and washed 

again three times. Co-culture supernatants as well as serially diluted standard were 

incubated on the plates for 1h at room temperature (50 µl/well each sample). The plates 

were washed five times and 100 µl of detection antibody plus peroxidase-conjugated avidin 

(both diluted 1:250 in blocking buffer) were added into the plates for 1h at room 

temperature. To remove unbound enzyme, the plates were washed five times. The enzyme 

substrate was added to the plates (100 µl/well) and incubated for five minutes at room 

temperature. The reaction was stopped by adding 50 µl/well of ELISA stop solution. The 
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optical density of the products, that is proportional to the bound cytokines, was detected by 

a spectrophotometer at 450 nm and 620 nm. The standard curve was calculated according 

to standard IFN-γ concentration and respective detected optical density. The IFN-γ 

concentration of the samples tested was interpolated. 

3.4 Molecular biological methods 

3.4.1 Plasmid DNA digestion 

Plasmid DNA was digested with restriction enzymes to enable the cloning of the desired 

DNA fragments into corresponding expression vectors. The digestion of the plasmid DNA 

was performed in 1.5 ml tubes in a final volume of 100 µl containing 20 µg of DNA, 10X 

CutSmart buffer and 40U of the required restriction enzymes. The samples were incubated 

for 1h at 37°C. The resulting DNA fragments were separated by agarose gel electrophoresis 

and extracted from the gel as described in section 3.4.2. 

3.4.2 Agarose gel electrophoresis and extraction of DNA fragments  

The separation of DNA fragments was performed in 1% agarose electrophoresis gels with 

0.4 µg/mL of ethidium bromide. A DNA ladder (either 1 kb or 100 bp) was included as a 

size standard during electrophoresis. After 45 minutes at 80 V, DNA bands were exposed 

to a UV transilluminator and cut from the gels. Subsequently, the QIAquick® Gel Extraction 

Kit was used for the extraction of DNA fragments from agarose gel according to 

manufacturer´s instructions. 

3.4.3 Ligation of DNA fragments 

Digested DNA fragments and linearized recipient plasmids were mixed in 0.5 ml tubes (2 

µl linearized recipient plasmid and 6 µl insert). Subsequently, 1µl of T4 ligase buffer (10X) 

and 1µl of T4 ligase (1 IU) were added into the tubes. The reactions were incubated 

overnight at 16 °C. 

3.4.4 Seamless cloning 

The GENEART® Seamless Cloning and Assembly Kit exploits homologous recombination 

to fuse DNA fragments that share terminal end-homology in an in vitro cloning reaction. 

Briefly, the DNA fragment including the required end sequence homology (20 – 80 ng) was 

mixed with the linearized recipient plasmid (100 ng), 4 µl of reaction buffer (5X) and water 
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to a final volume of 18 µl. Subsequently, 2 µl of enzyme mix (10X) were added to the 

reaction mix. After incubation of 30 minutes at room temperature, the reaction mix was 

placed on ice and used for bacteria transformation. 

3.4.5 Generation of plasmids 

Plasmids containing the transgenes of interest were generated using either traditional 

cloning methods (figure 1A) or using the seamless cloning technology (figure 1B) according 

to the protocols described in more detail in previous sections. The cloning strategy to 

generate each single plasmid is listed in section 2.8 table 14. 
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Figure 1. Cloning strategies to generate plasmids containing the transgenes of interest. (A) 
Traditional cloning procedure. The transgene of interest was synthesized and cloned into a shuttle 
plasmid by Thermo Fisher Scientific. The shuttle plasmid and the appropriate recipient plasmid 
(either pGEM or pES12.6) were digested with the same combination of restriction enzymes (NotI-
HF® and EcoRI-HF®) and subsequently ligated by a T4 Ligase. (B) Seamless cloning procedure. The 
transgene of interest was produced as DNA string fragment by Thermo Fisher Scientific. The 
recipient pGEM plasmid was linearized using XbaI and Not I-HF® restriction enzymes. Subsequently, 
the GENEART® Seamless Cloning and Assembly Kit was used to fuse the DNA string fragment and 
the linearized plasmid sharing terminal end-homology (shown in blue and in green) in an in vitro 
cloning reaction. 
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3.4.6 Bacterial culture conditions 

Three different types of bacteria were transformed: electrocompetent XL1-blue E.coli, 

chemically competent One Shot™ TOP10 E. coli and chemically competent NEB® Turbo 

Turbo E. coli. Bacteria were cultivated in an incubator at 37°C. For long-term storage, 

bacterial suspensions were supplemented with glycerol (20%) and stored at -80 °C. Since 

all the plasmids used for transformation contained an ampicillin resistance cassette, 

ampicillin was added to the LB medium and to the agar plates (50 µg/ml) for selection of 

the plasmid-expressing bacteria. 

3.4.7 Bacterial transformation 

In order to obtain larger amounts of plasmid DNA, competent bacteria had to be 

transformed with the plasmid DNA of interest and expanded. According to the type of 

competent bacteria, either chemical transformation or electroporation was performed. 

3.4.7.1 Chemical transformation 

Chemically competent bacteria were slowly thawed on ice (30 µl bacteria/each 

transformation). Plasmid DNA was added and mixed with bacteria by tapping gently (3 µl 

DNA/vial). Cells were incubated on ice for 30 minutes. A heat-shock step was performed 

by transferring the cells in a water bath at 42°C for 30 seconds. Heat-shock caused the 

uptake of the DNA by the bacteria. Subsequently, the cells were placed on ice for two 

minutes. SOC medium was added to the transformation mix. The cells were gently shaken 

at 37°C for 1h. After incubation, transformation mix was diluted (1:10) in SOC medium, 

added to the agar plates containing ampicillin and distributed homogeneously. Plates were 

incubated at 37°C overnight. 

3.4.7.2 Electroporation 

Electrocompetent bacteria were slowly thawed on ice and transferred in pre-cooled 0.1 cm 

cuvettes (25 µl bacteria/cuvette). Plasmid DNA was added to the bacteria (1 µl 

DNA/cuvette) and mixed by tapping gently. The cuvettes were placed into the Gene Pulser 

Xcell™ device. Electroporation was performed using pre-set protocol for bacteria (1 mm 

cuvette and 1.8kV). After electroporation, SOC medium was added (1 ml/cuvette) and the 

samples were incubated at 37°C for 1h in new 1.5 ml tubes. The tubes were centrifuged at 

5000 g for ten minutes at room temperature. The supernatants were discarded and the 

pellets were resuspended in 200 µl of SOC medium. Transformed bacteria were added to 
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the agar plates with ampicillin and distributed homogeneously. Plates were incubated at 

37°C overnight. 

3.4.8 Selection and expansion of transformed bacteria 

Only bacteria transformed with plasmid DNA encoding resistance to the antibiotic were able 

to grow and form colonies on selection agar plates containing ampicillin. After overnight 

growth, colonies were picked from the plates. Each individual colony was inoculated into 5 

ml of LB medium containing ampicillin in a 5 ml tube. The tubes were incubated overnight 

at 37°C with vigorous shaking for efficient growth of transformed bacteria. An aliquot of the 

transformed bacteria (1 - 2 ml) was used for the isolation of plasmid DNA using JetStar™ 

2.0 Plasmid Miniprep Kit according to the manufacturer’s instructions. An additional step of 

bacteria expansion was performed for subsequent DNA isolation using JetStar™ 2.0 

Plasmid Maxiprep Kit. An aliquot of the transformed bacteria (200 – 300 µl) was transferred 

into 200 ml of LB medium with ampicillin and the sample was incubated at 37°C overnight 

with vigorous shaking for efficient growth of transformed bacteria. 

3.4.9 Plasmid DNA extraction from transformed bacteria 

For the isolation of high amount of plasmid DNA, the JetStar™ 2.0 Plasmid Purification 

MaxiPrep Kit was used according to manufacturer´s instructions. The bacteria cultures were 

centrifuged at 3400 g for ten minutes at room temperature. The supernatant was discarded 

and the pellet resuspended in 10 ml buffer E1 and transferred to a 50 ml tube. Lysis buffer 

E2 was added (10 ml) and the collection tube inverted ten times. Thereafter 10 ml 

precipitation buffer E3 was added and the tube inverted again for ten times. The suspension 

was centrifuged at 5000 g for ten minutes at room temperature and the supernatant applied 

to a 70 µm filter onto an equilibrated column. The column was filled up with washing buffer 

E5 and the flow-through was discarded. The column was placed on top of a 50 ml collection 

tube and the DNA eluted by adding 15 ml of elution buffer E6. lsopropanol was added (10.5 

ml) to the DNA, mixed and centrifuged at 5000 g for 45 minutes at 4°C. The supernatant 

was discarded and the pellet dehydrated with 1 ml 75% ethanol, air-dried and resuspended 

in nuclease-free water. The DNA concentration was determined with the Nanodrop. 

3.4.10 In vitro transcription of single-species cDNA into mRNA 

For in vitro transcription of single-species cDNA into mRNA (designated as in vitro 

transcribed RNA, ivtRNA) the mMESSAGE mMACHINE™ T7 kit was used. For this 

purpose, 20 µg of pGEM-plasmid DNA containing the T7 promoter were linearized with the 
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restriction enzyme SpeI-HF® overnight at 37°C. The SpeI-HF® recognition site is located 

downstream of a poly-A tail consisting of about 116 adenines. This poly-A tail is meant to 

increase the stability of ivtRNA. The following day, the reaction was stopped and purified 

by adding 5 µl EDTA (0.5 M), 10 µl sodium acetate (3 M) and 200 µl 100% ethanol. The 

reaction was incubated at -20 °C for 45 minutes. After centrifugation (15000 x g at 4 °C for 

15 minutes), the supernatant was discarded and the DNA pellet was resuspended in 40 µl 

nuclease-free water. The concentration of the linearized DNA was determined with the 

Nanodrop. The production of ivtRNA was performed using the mMESSAGE mMACHINE™ 

T7 kit according to the manufacturer's instructions. Briefly, linearized DNA (2 - 3 µg) was 

mixed with 20 µl NTP/CAP (7-methyl guanosine cap and nucletotides), 4µl Reaction Buffer 

(10X) and 4µl T7 polymerase. Nuclease-free water was added to a final volume of 40 µl. 

The reaction mix was incubated for 2h at 37°C. DNAse was added (2 µl/sample) and 

incubated for 30 minutes at 37°C. Subsequently, the RNeasy® Mini Kit was used to purify 

the ivtRNA according to the manufacturer's instructions. Purified ivtRNA was eluted in 40 

µl nuclease-free water. The RNA concentration was determined by the Nanodrop and 

ivtRNA was stored at -20°C. 

3.4.11 Total RNA isolation 

Total RNA was isolated from either T cell clones for TCR sequence analyses by RACE-

PCR (see section 3.4.16.1) or from tumor cell lines to evaluate NY-ESO-1 expression by 

Nanostring nCounter technology (see section 3.4.17). Cells were collected and the pellet 

was resuspended vigorously in TRI Reagent® to disrupt plasma membranes, inactivate 

released RNases and homogenize the suspension (1 x 106 cells/200 µl of TRI Reagent®). 

Incubation at room temperature for five minutes allowed the dissociation of nucleoprotein-

complexes. Linear acrylamide was added to the sample (10 µl/sample). Subsequently, 40 

µl of chloroform were added, the suspensions were vortexed for 15 seconds, incubated at 

room temperature for ten minutes and then centrifuged at 12000 g for 15 minutes at 4°C. 

The upper colorless aqueous phase was transferred into a new 1.5 ml tube and 100 µl of 

isopropanol were added to the sample. The tube was vortexed, incubated at 4°C for ten 

minutes and then centrifuged at 12000 g for 15 minutes at 4°C. Supernatant was removed 

and 500 µl of 75% ethanol were added. After centrifugation at 12000 g for ten minutes at 

4°C, supernatant was removed and the RNA pellet was air-dried at room temperature for 

five minutes. Finally, RNA was resuspended in 20 µl of nuclease-free water. 
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3.4.12 RNA denaturing-agarose gel electrophoresis 

To verify the success and the quality of the ivtRNA production, an aliquot of the produced 

ivtRNA was loaded on 1% agarose gel (0.4% ethidium bromide, 1X TAE buffer in DEPC-

treated water).  Therefore, 0.5 μl ivtRNA were mixed with 5µl RNA loading buffer (2X) and 

4.5 μl nuclease-free water and subsequently heated up to 70 °C for 10 minutes to destroy 

secondary structures. After incubation, the sample was loaded into the gel. A RNA ladder 

was included as a size standard for the electrophoresis. After 45 minutes at 80 V, RNA 

bands were analyzed using an UV transilluminator. 

3.4.13 DNA sequencing 

The sequencing of double-stranded DNA was performed in collaboration with the external 

partner MWG Eurofins (Martinsried, Germany). Primers used for sequencing are listed in 

section 2.8 table 18. The software Chromas lite was used for bioinformatic evaluation of the 

electropherograms. 

3.4.14 Measurement of DNA and RNA concentration 

DNA and RNA concentrations were determined using the Nanodrop photometer. The ratio 

of absorbance at 260 nm and 280 nm was used to assess the purity of the samples. A ratio 

of 2.0 or higher was acceptable for RNA, whereas a ratio of 1.8 or higher was acceptable 

for DNA. 

3.4.15 HLA typing 

Fresh blood (3 ml EDTA-blood sample) collected from healthy donors after informed 

consent were sent to the facility IMGM (Martinsried, Germany) for fine HLA-typing analyses 

in an anonymous format. 

3.4.16 TCR sequence analysis 

3.4.16.1 cDNA synthesis and RACE-PCR 

The rapid amplification of cDNA ends PCR (RACE-PCR) was used to analyze TCR 

sequences of single-cell-sorted T cell clones. The ‘RACE-ready’ cDNA was synthetized 

starting from total RNA using the SMARTer™ RACE cDNA Amplification Kit according to 

the manufacturer’s protocol (see section 3.4.11 for total RNA isolation). 
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This kit is based on the joint action of the SMARTScribe Reverse Transcriptase (RT) and 

SMARTer II A Oligonucleotide. The SMARTScribe RT exhibits terminal transferase activity 

upon reaching the end of the RNA template, adding 3–5 residues to the 3’ end of the first-

strand cDNA. The SMARTer oligo contains a terminal stretch of modified bases that anneal 

to the extended cDNA tail, allowing the oligonucleotide to serve as a template for the 

SMARTScribe RT. The SMARTScribe RT switches templates from the mRNA molecule to 

the SMARTer oligo, generating a complete cDNA copy of the original RNA with the 

additional SMARTer sequence at the end. 

The generated first-strand cDNA was used directly for 5’ RACE-PCR reactions using the 

Advantage® 2 PCR kit according to the manufacturer’s instructions. To amplify the cDNA 

encoding TCRα and TCRβ chains, two gene-specific 5’ primers were designed to bind the 

constant region of each TCR chain (5’ TRAC and 5’ TRBC primers). All TCRα chains have 

the same constant region, while there are two possible constant regions for the TCRβ chain 

(Cβ1 or Cβ2). Cβ1 or Cβ2 are very similar, therefore the gene-specific 5’ primer for the C 

region of the TCRβ chain was designed to detect both Cβ1 and Cβ2. Primer sequences are 

listed in material section 2.8 table 17. Two separated 5’ RACE PCR were performed for 

each sample to identify both TCRα and TCRβ chain sequences (see table 31 for 5’ RACE 

PCR program). One reaction included the 5’ primer TRAC and the other included the 5’ 

primer TRBC. The universal primer mix (UPM) binding to the SMARTer sequence at the 

end of the cDNA was used as 3’ primer for both reactions. A second round of amplification 

was performed (5’ nested RACE-PCR) using "nested" 5’ primers (see table 32 for 5’ nested 

RACE-PCR program). PCR products were loaded into a 1% agarose gel and separated by 

electrophoresis. Subsequently, QIAquick® Gel Extraction Kit was used for the extraction of 

DNA fragments from agarose gel according to manufacturer´s instructions (see section 

3.4.2). DNA fragments were sequenced using 5’ primer TRAC and 5’ primer TRBC. 

Table 31. 5’ RACE-PCR program 

Cycles Time (seconds) Temperature (°C) 

5 
30 
180 

94 
72 

5 
30 
30 
180 

94 
70 
72 

40 
30 
30 
180 

94 
68 
72 

_ 240 72 
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Table 32. Nested 5’ RACE-PCR program 

Cycles Time (seconds) Temperature(°C) 

30 
30 
30 
180 

94 
68 
72 

- 240 72 

3.4.16.2 TCR reconstruction 

Isolated TCRα and TCRβ sequences were reconstructed in adequate plasmids to allow 

TCR transgenic expression in recipient cells. Therefore, a two-gene expression cassette 

was designed (figure 2). The TCRβ chain was linked to the TCRα chain by a "self-cleaving" 

2A peptide (P2A element) and subsequently the construct was cloned using a traditional 

cloning procedure into pGEM and pES12.6 recipient plasmids as described in section 3.4.5. 

The IMGT database was used to identify the specific V regions (TRAV and TRBV) and the 

joining (J) regions (TRAVJ and TRBVJ) of the TCRα and TCRβ chains. 

 

Figure 2. Two-gene cassette designed for TCR reconstruction. The TCRβ chain (TRBV, CDR3β, 
TRBVJ, TRBC) was linked to the TCRα chain (TRAV, CDR3α, TRAVJ, TRAC) by a P2A element. 
The TCR construct was synthesized and cloned into a shuttle plasmid by Thermo Fisher Scientific. 
The shuttle plasmid containing the reconstructed TCR and the appropriate recipient plasmid (pGEM 
or pES12.6) were digested with the same combination of restriction enzymes (Not I-HF and EcoRI-
HF) and subsequently ligated by T4 Ligase. 

3.4.17 Nanostring nCounter  

Nanostring nCounter technology is based on digital detection and direct molecular 

barcoding of target molecules through the use of colour-coded probe pair. The nCounter 

gene expression assay is designed to provide an ultra-sensitive, reproducible and highly 

multiplexed method for gene expression profiling. This assay provides a method for direct 

detection of mRNA molecules without the use of reverse transcription or amplification. The 

target-specific probe (100 nt) includes a reporter probe (50 nt) and capture probe (50 nt) 

that hybridize to the target sequences of interest, forming a tripartite complex. The report 

probe is linked to the colour code signal for digital detection, while the capture probe 

includes a biotin moiety on the 3’ end for target/probe complex immobilization.  

First, the probes and the target molecules hybridize in solution forming target/probe 

complexes. Wash steps are performed for removing excess probes and non-target cellular 
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transcripts. Second, after washing, the target/probe complexes are insert in a cartridge and 

immobilized for data collection. 

Nanostring nCounter analyses were performed by Nanostring Headquarters facility 

(Seattle, USA). This technology was utilized to investigate NY-ESO-1/LAGE-1 mRNA 

expression in several tumor cell lines. Total RNA was isolated from tumor cell lines and 

utilized as starting material (see section 3.4.11 for total RNA isolation). Two target-specific 

probes were designed to detect NY-ESO-1 mRNA (see section 2.8 table 19 for probe 

sequences). The first probe (probe 1) was designed to target a sequence present in NY-

ESO-1, but not included in any isoform of the highly homologous tumor antigen LAGE-1 

(LAGE-1a and LAGE-1b). In contrast, the second probe (probe 2) was designed to target a 

region that included the sequence encoding the known immunogenic epitope NY-ESO-

1/LAGE-1a157-165. Therefore, NY-ESO-1 and LAGE-1a mRNA transcripts comprising the 

sequence encoding the known epitope were both detected by the second probe. 
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4 Results 

4.1 Isolation of NY-ESO-1-specific CD8+ T cells  

As an overview, the following steps were performed to induce, expand and separate NY-

ESO-1-specific CD8+ T cells and corresponding TCRs using an HLA-A2-allogeneic priming 

approach (figure 3). Mature DCs (mDCs) from an HLA-A2-negative healthy donor were 

generated in vitro within eight days following the Jonuleit maturation protocol [104]. mDCs 

were transfected with ivtRNA encoding the allogeneic HLA-A2 molecule (HLA-A*02:01 

allele) and the full-length NY-ESO-1 antigen in order to induce and expand autologous CD8-

enriched T cells specific for NY-ESO-1. Subsequently, NY-ESO-1-specific T cells were 

separated as single cells by FACS using an innovative sorting strategy based on the 

activation-induced cell surface marker CD137. Two weeks later, the first functional 

screening was performed to evaluate antigen specificity of expanded T cell clones. TCR 

sequence of a confirmed NY-ESO-1-specific T cell clone was analyzed and reconstructed 

for transgenic expression in recipient cells to allow characterization of the properties of the 

identified TCR. In the following chapters, each step is described in more detail.  

 

Figure 3. Schematic depiction of the procedure performed to isolate NY-ESO-1-specific T 
cells and corresponding TCRs. The isolation of NY-ESO-1-specific T cells using an HLA-A2-
allogeneic priming approach comprised several steps: mDC generation, de novo induction of CD8+ 
T cells, separation of NY-ESO-1-specific T cells, identification of NY-ESO-1-specific T cells, TCR 
sequence analysis and reconstruction for characterization in a transgenic setting. 
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4.1.1 Generation of mDCs in vitro  

mDCs are the most potent APCs for the stimulation of naïve T cells [105]. To generate 

mDCs in vitro, monocytes derived from an HLA-A2-negative healthy donor were obtained 

by plate adherence of freshly isolated PBMC, cultured in vitro for eight days and matured 

by using the Jonuleit cocktail [104]. The mDC phenotype required for efficient T cell 

stimulation was analyzed by flow cytometry. As shown in figure 4, mDCs showed no 

expression of the monocyte marker CD14, but high expression of the DC maturation marker 

CD83. The analyzed B7 family ligands (CD86 and CD80) were highly expressed on mDCs, 

as well as the inhibitory molecule CD274. The chemokine receptor CCR7 and HLA-DR, 

stained as representative marker for MHC class II molecules, showed high expression after 

in vitro maturation. CD3 as a marker of T lymphocytes was not detected, confirming that 

there were not residual autologous T cells in the DC population. 

 

Figure 4. Phenotype of mDCs generated in vitro. Cell surface expression of CD14, CD83, CD86, 
CD80, CD274, CCR7, HLA-DR and CD3 molecules was analyzed by flow cytometry on mDCs 
generated in vitro within eight days using the Jonuleit maturation cocktail. Stained samples are 
shown in black and corresponding unstained samples in grey. Populations shown are pre-gated on 
live single cells. 
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4.1.2 De novo induction of CD8+ T cells  

mDCs were transfected simultaneously with two ivtRNA, one encoding the foreign HLA-A2 

molecule and one encoding the full-length NY-ESO-1 antigen. These ivtRNA-transfected 

mDCs were utilized as APCs for induction and expansion of autologous CD8-enriched T 

cells. As control, ivtRNA encoding full-length GFP was transfected in combination with 

ivtRNA encoding the HLA-A2 molecule into the mDCs. Since there were no specific 

antibodies available for intracellular flow cytometry staining of the NY-ESO-1 protein, HLA-

A2- and GFP-transfected mDCs served as an internal control to verify the efficient 

transfection of two ivtRNA simultaneously. Expression of the transgenic HLA-A2 molecules 

and GFP was analyzed by flow cytometry. As shown in figure 5A, 99.0% of mDCs were 

positive for HLA-A2 after electroporation with HLA-A2 and NY-ESO-1, proving a good 

transfection rate. In the control sample, 100% of mDCs were positive for HLA-A2 and 75.0% 

were double-positive for HLA-A2 and GFP, showing the feasibility of transfecting two 

ivtRNA simultaneously. 

 

Figure 5. Evaluation of HLA-A2 and NY-ESO-1 expression in ivtRNA-transfected mDCs. (A) 
HLA-A2 and GFP expression was detected by flow cytometry after either HLA-A2 and NY-ESO-1 or 
HLA-A2 and GFP ivtRNA electroporation into mDCs generated from an HLA-A2-negative donor. 
mDCs without electroporation were also stained with anti-HLA-A2 antibody and used as background 
control. Populations shown are pre-gated on live single cells. (B) HLA-A2- and NY-ESO-1-
transfected mDCs and HLA-A2- and GFP-transfected mDCs were tested in a co-culture assay to 
verify their capacity to stimulate NY-ESO-1-specific T cells to release IFN-γ. T cells expressing either 
TCR 1G4-α95:LY (HLA-A2-restricted NY-ESO-1/LAGE-1a157-165-specific TCR) or an irrelevant TCR 
(negative control) were used as effector cells. IFN-γ release was measured 24h after setting up the 
co-culture by ELISA. Shown is the mean value of duplicates with standard deviations. 
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The stimulatory capacity of transfected mDCs and their ability to translate, process and 

present peptides derived from the introduced NY-ESO-1 ivtRNA on foreign HLA-A2 

molecules by internal cellular pathways was verified by testing their recognition by T cells. 

Therefore, ivtRNA-transfected mDCs were co-cultured with either transgenic T cells 

expressing an HLA-A2-restricted NY-ESO-1/LAGE-1a157-165-specific TCR (TCR 1G4-

α95:LY) or transgenic T cells expressing an HLA-A2-restricted irrelevant TCR serving as 

negative control [58], [90]. After 24h of incubation, IFN-γ release was analyzed by ELISA 

(figure 5B). TCR 1G4-α95:LY-transgenic T cells recognized mDCs transfected with HLA-

A2 and NY-ESO-1, but not mDCs transfected with HLA-A2 and GFP. T cells expressing the 

irrelevant TCR were not activated after incubation with any mDCs. These results showed 

that mDCs generated in vitro were able to process and presented a peptide derived from 

the introduced NY-ESO-1 ivtRNA on the HLA-A2 molecules and to stimulate T cells 

expressing a HLA-A2-restricted NY-ESO-1-specific TCR to release IFN-γ. 

The priming was started with as many CD8+ T cells as possible in order to enlarge the 

starting CD8+ T cell repertoire for the induction of NY-ESO-1 specific T cells. Therefore, 

autologous CD8+ T cells were enriched by depleting other cell populations in freshly isolated 

PBMC. To assess the purity of the enriched CD8+ T cell population and the efficiency of the 

separation process, the expression of CD3 and CD8 molecules was evaluated and 

compared before and after CD8-enrichment. As shown in figure 6, the sample prior to 

separation included 20.1% of CD3+CD8+ cells, while after enrichment the population was 

composed of an increased number of CD3+CD8+ cells (76.1%), confirming a CD3+CD8+ cell 

enrichment. Subsequently, CD8-enriched T cells were induced and expanded using NY-

ESO-1 and HLA-A2 ivtRNA-transfected mDCs as stimulator cells for 14 days. 

 

Figure 6. Frequency of CD3+CD8+ cells before and after CD8-enrichment. CD8+ T cells were 
enriched by depleting other cell populations in freshly PBMC isolated from the HLA-A2-negative 
healthy donor that was selected for performing the priming procedure. The ratio of CD3+CD8+ cells 
was investigated within the live single cell population by flow cytometry before and after CD8-
enrichment. 
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4.1.3 Separation of NY-ESO-1-specific T cells  

NY-ESO-1-specific T cells needed to be selectively separated as single cell and further 

expanded before performing the first functional screening in order to enable the 

identification of T cells expressing TCRs specific for NY-ESO-1 within the primed 

lymphocyte culture. Thus, a sorting method based on the cell surface marker CD137 

expressed on T cells upon antigen-specific stimulation was selected to separate NY-ESO-

1-specific T cells. CD137-mediated sorting has been shown to be an effective technique for 

the isolation of CD8+ T cells specific for various tumor antigens [99]–[101]. This strategy 

allows the isolation of antigen-specific T cells irrespective of known immunogenic epitopes 

and facilitates the isolation of T cells recognizing all potential immunogenic peptides derived 

from a selected tumor antigen. Therefore, it represented the best choice to fully exploit the 

potential of using ivtRNA encoding the full-length NY-ESO-1 protein for T cell induction. 

However, two critical aspects needed to be considered for setting up a CD137-based 

sorting strategy in the context of an allogeneic priming. 

One aspect was the selection of appropriate APCs to be used for NY-ESO-1-specific 

stimulation to induce CD137 expression on T cells. To address this issue, K562 cells, a 

tumor cell line endogenously negative for MHC class I and II molecules and for NY-ESO-1, 

were stably transduced with HLA-A2 molecule and the CD86 co-stimulatory molecule and 

subsequently transfected with ivtRNA encoding the full-length NY-ESO-1. K562 cells 

expressing CD86 molecules were used to enhance and sustain T cell clone survival after 

single cell sorting. The advantage of using K562 cells was that these cells allowed the 

stimulation and consequently isolation of T cells restricted only to the transduced allogeneic 

HLA-A2 molecules and specific for NY-ESO-1 peptides naturally processed and presented 

by a tumor cell line. Moreover, being negative for endogenous MHC class I and II 

molecules, no activation of allo-reactive T cells recognizing foreign MHC molecules other 

than the introduced HLA-A2 molecules was expected. 

The second critical aspect to be considered was that the primed T cell culture contained, 

as an unavoidable consequence of the HLA-A2-allogeneic priming, a high number of HLA-

A2-allo-reactive T cells. These T cells recognize the HLA-A2 molecules independently of 

NY-ESO-1-derived peptides. Thus, K562 cells expressing HLA-A2 and NY-ESO-1, required 

for stimulation of the desired NY-ESO-1-specific T cells, will also stimulate the large portion 

of HLA-A2-allo-reactive T cells to express CD137. An innovative sorting approach, called 

‘double-sorting’, based on the CD137 activation marker and K562 stimulator cells, was 

developed and tested for the first time in this project to reduce the stimulation of HLA-A2-

allo-reactive T cells. 
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4.1.3.1 Generation and evaluation of K562 cells as artificial APCs 

K562 cells were stably transduced with the HLA-A2 molecule and the CD86 co-stimulatory 

molecule to generate artificial APCs (aAPCs) to be used as stimulator cells for CD137-

mediated sorting. As shown in figure 7A, the transduction rate of K562 cells was evaluated 

by flow cytometry and 20.1% of the cells were positive for HLA-A2 and CD86. Transduced 

K562 cells were sorted by FACS to obtain an HLA-A2+ CD86+ high purity cell population. 

After one week of in vitro expansion, sorted K562 cells were analyzed again for HLA-A2 

and CD86 expression that resulted in 95.5% of double-positive cells. These cells are 

hereafter designated as transgenic K562 cells (tgK562). 

To verify the stimulatory capacity of tgK562 cells and to investigate their ability to translate, 

process and present peptides by internal cellular pathways on transgenic HLA-A2 

molecules after electroporation with tumor antigen ivtRNA, tgK562 cells were transfected 

with ivtRNA encoding either the full-length NY-ESO-1 or GFP and tested in a co-culture 

assay. TCR 1G4-α95:LY-transgenic T cells and untransduced T cells were used as 

effectors. Autologous LCL transfected with ivtRNA encoding NY-ESO-1 and T2 cells loaded 

with the peptide NY-ESO-1/LAGE-1a157-165, which is the epitope recognized by TCR 1G4-

α95:LY, were used as positive target controls. Autologous LCL transfected with ivtRNA 

encoding GFP and T2 cells loaded with the irrelevant peptide Tyrosinase369-377 were used 

as negative target controls. IFN-γ secretion by T cells was evaluated after 24h of incubation 

with target cells by ELISA. As shown in figure 7B, NY-ESO-1-transfected tgK562 cells 

efficiently stimulated TCR 1G4-α95:LY-transgenic T cells to release IFN-γ, demonstrating 

the capacity of tgK562 cells to process and present peptides for T cell recognition. IFN-γ 

secretion by TCR 1G4-α95:LY-expressing T cells was also observed after incubation with 

the positive target controls, whereas no IFN-γ was detected in response to the negative 

target controls. Untransduced T cells were not activated by any targets used in the assay. 

According to these findings, tgK562 cells were used as aAPCs in the following experiments. 
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Figure 7. Evaluation of transduction rate and presentation capacity of tgK562 cells. (A) K562 
cells were transduced with HLA-A2 molecule and CD86 co-stimulatory molecule to generate aAPCs. 
The transduction rate was analyzed by flow cytometry and subsequently K562 cells which were 
double-positive for HLA-A2 and CD86 were sorted by FACS to increase the purity of this population. 
Untransduced K562 cells were stained with anti-CD86 and anti-HLA-A2 antibodies and used as 
background control. Populations shown are pre-gated on live single cells. (B) After sorting, HLA-A2+ 
CD86+ K562 cells (tgK562) were transfected with ivtRNA encoding either the full-length NY-ESO-1 
or GFP and tested in a co-culture assay. TCR 1G4-α95:LY-transduced T cells (HLA-A2-restricted 
NY-ESO-1/LAGE-1a157-165-specific TCR) and untransduced T cells were used as effectors. 
Autologous LCL transfected with NY-ESO-1 ivtRNA and T2 cells loaded with peptide NY-ESO-
1/LAGE-1a157-165 (epitope recognized by TCR 1G4-α95:LY, relevant peptide) were used as positive 
target controls, while autologous LCL transfected with GFP ivtRNA and T2 cells loaded with an 
irrelevant peptide (Tyrosinase369-377) served as negative target controls. IFN-γ secretion of T cells 
was evaluated after 24h of incubation with target cells by ELISA. Shown is the mean value of 
duplicates with standard deviations. 
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4.1.3.2 Double sorting: 2-step-sorting procedure based on CD137 marker 

An innovative 2-step-sorting procedure (‘double-sorting’) was developed based on the 

CD137 activation-induced marker and tgK562 cell stimulation in order to isolate NY-ESO-

1-specific T cells. This new approach combined the sorting of T cells expressing CD137 

upon NY-ESO-1-specific stimulation with a previous step to reduce the isolation of HLA-A2-

allo-reactive T cells. As shown in figure 8, in the first step a NY-ESO-1-unspecific 

stimulation of the primed T cells was performed using irradiated water-electroporated 

tgK562 cells at an effector to target (E:T) ratio of 2:1 (NY-ESO-1-unspecific stimulation). 

Kinetic experiments showed that the maximal CD137 expression on T cells was obtained 

between 12h and 20h after stimulation with tgK562 cells (data not shown). Accordingly, 

stimulated T cells were stained for CD137 and CD8 cell surface expression 12h after 

activation and the CD137-negative CD8-positive fraction (44.8%) was sorted by FACS 

(CD137-negative cell sorting). The aim of the NY-ESO-1-unspecific stimulation and of the 

CD137-negative cell sorting step was to remove those unwanted T cells which react 

towards the HLA-A2 molecule independently of the chosen target antigen on tgK562 cells 

by enriching the CD137-negative fraction including NY-ESO-1-specific T cells. The 

unwanted CD137-positive fraction was discarded, whereas the CD137-negative fraction 

was subjected to a second stimulation, this time using irradiated NY-ESO-1 ivtRNA-

transfected tgK562 cells at an E:T ratio of 5:1 (NY-ESO-1-specific stimulation). After 12h, 

stimulated T cells were stained for CD137 and CD8 cell surface expression and the CD137-

positive CD8-positive fraction was sorted (1.3%) by FACS as single cells and immediately 

seeded into 96-well culture plates (CD137-positive cell sorting). Single-cell-sorted T cells 

(600 clones) were expanded for 14 days using irradiated feeder cells, anti-CD3 antibody 

and IL-2. 
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Figure 8. Double-sorting strategy based on the CD137 activation marker and tgK562 
stimulator cells. Primed T cells were stimulated using irradiated water-electroporated tgK562 cells 
at an E:T ratio of 2:1 (NY-ESO-1-unspecific stimulation) and stained after 12h for CD137 and CD8 
surface expression. The CD137-negative CD8-positive fraction was sorted by FACS (CD137-
negative cell sorting) and subsequently stimulated using irradiated NY-ESO-1 ivtRNA-transfected 
tgK562 cells at an E:T ratio of 5:1 (NY-ESO-1-specific stimulation). CD137 and CD8 staining was 
performed 12h after stimulation and CD137-positive CD8-positive T cells were sorted by FACS as 
single cells (CD137-positive cell sorting). Populations shown are pre-gated on live single cells. 
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4.1.4 Identification of NY-ESO-1-specific T cell clones 

Expanded T cell clones (301 expanded clones out of 600 sorted cells) were assessed for 

IFN-γ release upon stimulation with tgK562 cells transfected with ivtRNA encoding either 

NY-ESO-1 (positive target) or GFP (negative target) to identify HLA-A2-restricted NY-ESO-

1-specific T cells. Screening results for 15 exemplary clones are shown in figure 9. T cell 

clones were divided in three groups according to their reaction patterns: clones showing no 

recognition of any target cell (152 non-reactive clones), clones recognizing HLA-A2 

molecules independently of NY-ESO-1 (144 HLA-A2-allo-reactive clones) and clones 

releasing IFN-γ only after NY-ESO-1-specific stimulation (5 NY-ESO-1-reactive clones). 

Among the NY-ESO-1-specific clones, T cell clone 5-271 showed the highest amounts of 

IFN-γ secretion in the presence of NY-ESO-1-presenting tgK562 cells, but no activation 

after GFP-transfected tgK562 cell stimulation. 

 

Figure 9. Screening results of expanded clones to identify T cells with NY-ESO-1 specificity. 
Screening results of 15 exemplary clones sorted by FACS using the CD137-mediated double sorting 
approach. IFN-γ release by T cell clones was assessed by ELISA after 24h co-culture with tgK562 
cells transfected with ivtRNA encoding either NY-ESO-1 (positive target) or GFP (negative target). 
T cell clones were divided in three groups according to their reactivity patterns: non-reactive, HLA-
A2-allo-reactive and NY-ESO-1-reactive. Data are shown in single for each clone.  
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4.1.5 TCR 5-271 sequence analysis and reconstruction 

The antigen specificity of each T cell clone is defined by its individual TCR. Thus, TCR 

sequences of the five NY-ESO-1-specific T cell clones were analyzed by RACE-PCR. 

Unfortunately, due to limited amounts of starting material, the unique TCR sequence was 

successfully obtained only for the clone 5-271. Sequencing results of TCRα and TCRβ 

chains are summarized in table 33.  

Table 33. TCR sequence analysis of NYESO-1-specific T cell clone 5-271. 
 

 

In order to evaluate the expression and the functionality of the identified TCR 5-271 in a 

transgenic setting and to fully characterize the properties of the TCR, the TCRα and TCRβ 

sequences were reconstructed in expression vectors (pGEM and pES12.6). For the TCR 

5-271 reconstruction, the codon usage in the TCR encoding nucleotide sequences was 

optimized to enhance protein translation [106]. For both the TCRα and TCRβ chain, critical 

amino acids of the human constant (C) regions were exchanged for corresponding murine 

C region counterparts to enforce the pairing of the transgenic TCRα and TCRβ chains over 

the mixed pairing with the T cell’s endogenous TCR [107]. Moreover, one cysteine was 

introduced into the C regions of each TCR 5-271 chain to allow the formation of an 

additional disulfide bond between the C regions of the TCR 5-271 α and β chains, aiming 

to further reduce mixed pairing between endogenous and exogenous TCR chains [108]. To 

obtain simultaneous and equal expression of TCRα and TCRβ chains, both TCR sequences 

were inserted into the same vector whereby the TCRβ chain was linked to the TCRα chain 

by a "self-cleaving" 2A peptide (P2A element) [109]. Subsequently, the construct was 

cloned into the pGEM and pES12.6 plasmids to achieve transgenic TCR expression in 

recipient cells by either ivtRNA transfection or retroviral transduction. 
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4.2 Functional characterization of TCR 5-271-expressing T cells 

An extensive in vitro characterization in terms of specificity and functionality was performed 

for the isolated and reconstructed HLA-A2-restricted NY-ESO-1-specific TCR 5-271 in a 

transgenic setting. As a positive control, TCR 1G4-α95:LY was used for all characterization 

assays. TCR 1G4-α95:LY is a melanoma patient-derived affinity-enhanced TCR that 

recognizes the peptide NY-ESO-1/LAGE-1a157-165 in complex with HLA-A2 molecules. This 

TCR has been well-characterized by in vitro and in vivo studies and already tested in clinical 

trials for synovial cell sarcoma, melanoma, multiple myeloma, ovarian cancer and non-small 

cell lung cancer with promising results [56]–[58], [90] 

4.2.1 TCR 5-271 expression in recipient T cells 

Transfer of TCRs into recipient T cells not only serves to fully characterize potential 

candidate TCRs when the original clone is not available, but also to prove transgenic TCR 

expression and functionality required for later clinical applicability. The TCR 5-271 and the 

positive control TCR 1G4-α95:LY were expressed in different types of recipient cells, i.e. 

effector T cells and CD8-enriched effector T cells. Well-established retroviral transduction 

and ivtRNA electroporation approaches were selected as TCR transfer methods. To assess 

the successful TCR transfer, the percentage of T cells expressing either TCR 5-271 or TCR 

1G4-α95:LY was analyzed by flow cytometry. As both TCRs included the same TRBV 

chain, the TRBV6-5-specific antibody was used to evaluate the expression of both TCRs. 

Unmodified T cells were used as control for the endogenous TRBV6-5 chain expression. 

An example of one representative flow cytometry analysis is shown in figure 10. By 

subtracting the fraction of endogenously TRBV6-5-expressing T cells (2.9%, untransduced 

T cells), the percentage of effector cells expressing the transgenic TCR resulted in 43.1% 

for TCR 5-271 and in 43.6% for TCR 1G4-α95:LY. These data showed that both TCRs were 

well-expressed after the transfer into recipient T cells. 
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Figure 10. TCR 5-271 surface expression after transfer into recipient T cells. TCR 5-271 and 
the control TCR 1G4-95α:LY were introduced into recipient T cells by either ivtRNA electroporation 
or retroviral transduction. After TCR transfer, the expression level of the transgenic TCR was 
determined by FACS using the TRBV6-5 specific antibody. Unmodified recipient T cells were used 
as control for the endogenous expression of the TRBV6-5 chain. One representative experiment of 
TCR transfer by retroviral transduction into CD8-enriched T cells is shown. Populations shown are 
pre-gated on live single cells. 

4.2.2 Evaluation of antigen specificity 

After TCR transfer and evaluation of TCR expression in recipient T cells, the first step in 

the TCR evaluation process was to confirm the antigen specificity of TCR 5-271 in the 

transgenic expression setting. ivtRNA encoding TCR 5-271 was introduced into effector T 

cells derived from a healthy donor. In addition, T cells were also electroporated with ivtRNA 

encoding either TCR 1G4-α95:LY (positive control) or an HLA-A2-allo-reactive TCR (TCR 

3-9), the latter was included to assess the expression of the HLA-A2 molecule on targets 

cells. T cells electroporated with water served as the negative control. Autologous LCL and 

tgK562 cells transfected with ivtRNA encoding either NY-ESO-1 or GFP were used as 

target cells. T2 cells loaded with the TCR 1G4-α95:LY-specific peptide NY-ESO-1/LAGE-

1a157-165 or the irrelevant peptide MAGE-A1278-286 were used as internal target controls for 

the assay. Moreover, K562 cells untransduced were included as negative target to control 

the reactivity of the TCR 3-9. After 24h of effector/target co-culture, an ELISA was 

performed to evaluate IFN-γ secretion by T cells (figure 11). TCR 5-271-transfected T cells 

recognized LCL and tgK562 cells only when transfected with NY-ESO-1 ivtRNA. These 

findings confirmed the NY-ESO-1 specificity of TCR 5-271 and proved correct TCR 5-271 

heterodimer pairing and functionality of the TCRα and TCRβ transgenes in recipient T cells. 

Interestingly, TCR 5-271 showed a different peptide specificity compared to TCR 1G4-

α95:LY because it did not recognize T2 cells loaded with the peptide NY-ESO-1/LAGE-

1a157-165. TCR 1G4-α95:LY-transfected T cells also recognized LCL and tgK562 cells when 

they were transfected with NY-ESO-1 ivtRNA. Moreover, T2 cells loaded with peptide NY-
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ESO-1/LAGE-1a157-165 led to the activation of TCR 1G4-α95:LY-transfected T cells. TCR 3-

9-transfected T cells secreted IFN-γ after stimulation with all HLA-A2-positive targets used 

in the assay, confirming the HLA-A2 expression on these cells, whereas they were not 

activated by wild-type K562 cells that are not expressing HLA-A2 molecules. Water 

electroporated T cells were not activated in response to any target cells. 

 

Figure 11. Antigen specificity of TCR 5-271-transgenic T cells. T cells derived from a healthy 
donor were transfected with ivtRNA encoding either TCR 5-271 or TCR 1G4-α95:LY or an HLA-A2-
allo-reactive TCR (TCR 3-9). Water-electroporated T cells served as the negative control. 
Electroporated T cells were incubated with either autologous LCL or tgK562 cells that were 
transfected with ivtRNA encoding either NY-ESO-1 or GFP. Further target cells were T2 cells loaded 
with either TCR 1G4-α95:LY-specific peptide NY-ESO-1/LAGE-1a157-165 (N 157-165) or irrelevant 
peptide MAGE-A1278-286 (M 278-286) and K652 cells not-expressing HLA-A2 molecules (K562). Co-
cultures were set-up 3h after electroporation. IFN-γ release of transfected T cells was assessed by 
ELISA after 24h co-culture. Shown is the mean value of duplicates with standard deviations. This 
experiment was performed with two different donors. Shown is one representative experiment.  

4.2.3 Tumor cell line recognition 

To be potentially useful in a clinical setting, it is essential that T cells expressing the 

candidate TCR are able to specifically recognize tumor cells. In order to select tumor cell 

lines for testing the recognition mediated by T cells expressing TCR 5-271, the Nanostring 

nCounter® technology was used to investigate NY-ESO-1 mRNA expression in several 

tumor cell lines. To note, LAGE-1 is a tumor antigen showing high homology to NY-ESO-1 
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that comprises two alternatively spliced isoforms (figure 12A). The first isoform is 

designated as LAGE-1a and encodes a protein of 180 amino acids (aa), while the second 

one is designated as LAGE-1b and encodes a protein of 210 aa [110]. NY-ESO-1, LAGE-

1a and LAGE-1b mRNA transcripts and the corresponding proteins differ in parts of their 

sequences and in other parts they are identical (identical sequences are shown with an 

identical pattern in figure 12A). Importantly, the sequence encoding the epitope recognized 

by TCR 1G4-α95:LY is included both in NY-ESO-1 and in LAGE-1a (NY-ESO-1/LAGE-

1a157-165). To detect NY-ESO-1 mRNA expression by Nanostring nCounter® technology, 

two probes were designed. The first probe was designed to target a sequence present in 

NY-ESO-1, but not included in any isoform of LAGE-1 (probe 1, shown in black in figure 

12A). In contrast, the second probe was designed to target a region that included the 

sequence encoding the immunogenic epitope NY-ESO-1/LAGE-1a157-165 (probe 2, shown 

in grey in figure 12A). Therefore, NY-ESO-1 and LAGE-1a mRNA transcripts comprising 

the NY-ESO-1/LAGE-1a157-165-encoding sequence were both detected by the second 

probe. Nanostring results for the tumor cell lines showing the highest level of expression for 

either probe 1 or probe 2 are shown in figure 12B. The analyzed cell lines were all positive 

for probe 2, while they were either slightly positive or negative for probe 1. Consequently, 

the tumor cell lines were all positive for LAGE-1a, while only seven out of 15 were also 

positive for NY-ESO-1 (MelA375, U266, FM6, MOLP-8, EJM, RPMI-8226 and KMS-12-

BM). As LAGE-1a is highly homologous to NY-ESO-1 and the exact location of the epitope 

recognized by TCR 5-271 was unknown, the 15 tumor cell lines were all included in the 

assay to evaluate tumor recognition mediated by TCR 5-271. According to data derived 

from the TRON database (data were confirmed by flow cytometry analyses as shown in 

figure 13B), within the selected tumor cell lines, nine were endogenously positive for HLA-

A2, whereas six did not express HLA-A2 molecules. 

T cells derived from a healthy donor were transfected with ivtRNA encoding either TCR 5-

271 or TCR 1G4-α95:LY or TCR 3-9 and used as effector cells in the co-culture assays to 

assess tumor cell recognition. Additionally, water was electroporated into T cells as the 

negative control. The tumor cell line SK-Mel23 (endogenously HLA-A2-positive and NY-

ESO-1/LAGE-1a-negative) and K562 cells (endogenously HLA-A2-negative and NY-ESO-

1/LAGE-1a-negative) were used as the negative controls. To confirm the capacity of TCR-

transfected T cells to secrete IFN-γ after specific stimulation, tgK562 cells transfected with 

either NY-ESO-1 or GFP ivtRNA were included as internal target controls. IFN-γ release 

was evaluated by ELISA 24h after setting up the effector/target co-cultures. 
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Figure 12. NY-ESO-1/LAGE-1a mRNA expression evaluated by Nanostring nCounter® 
technology. (A) Schematic depiction of NY-ESO-1 and LAGE-1 mRNA transcripts and of the two 
probes designed to perform Nanostring nCounter® analyses. Probe 1 (shown in black) targeted a 
sequence included in NY-ESO-1, but not in any isoform of the highly homologous tumor antigen 
LAGE-1 (LAGE-1a and LAGE-1b). In contrast, probe 2 (shown in grey) detected a region including 
the sequence encoding the epitope recognized by TCR 1G4-α95:LY (NY-ESO-1/LAGE-1a157-165, 

shown in blue) which is present in NY-ESO-1 as well as in LAGE-1a transcripts. Identical sequences 
in mRNA transcripts are shown with an identical pattern. (B) Results of NY-ESO-1/LAGE-1a mRNA 
expression analyses for 15 tumor cell lines (nine HLA-A2+, six HLA-A2-) selected to assess tumor 
recognition by TCR 5-271-transfected T cells. SK-Mel23 cell line and tgK562 cells (HLA-A2+, NY-
ESO-1/LAGE-1-) were included as negative controls. Data obtained using probe 1 (black bars) and 
probe 2 (grey bars) are shown. Data provided by Nanostring Headquarters facility (Seattle, USA). 
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As shown in figure 13A (top graph), IFN-γ release of transfected T cells was evaluated after 

incubation with the nine HLA-A2-positive tumor cell lines. TCR 5-271-transfected T cells did 

not recognize any tested tumor cell line. Although a slight IFN-γ release was detected after 

incubation with U266 and IM9 cells, this was due to the reactivity mediated by endogenous 

TCRs of the T cells and was not related to TCR 5-271-specific recognition since the same 

level of IFN-γ secretion was detected for T cells electroporated with water. However, TCR 

5-271 recognized tgK562 cells expressing NY-ESO-1, proving the capacity of these 

transfected T cells to release IFN-γ after specific stimulation. In contrast, TCR 1G4-α95:LY-

expressing T cells recognized all tested tumor cell lines except for the negative controls. 

TCR 3-9-transfected T cells released IFN-γ after stimulation with HLA-A2-expressing target 

cells (FM6, FM3, FM3.29 and MM415 were not analyzed), confirming HLA-A2 expression 

for the target cell lines. 

Since six tumor cell lines were HLA-A2-negative, ivtRNA encoding the HLA-A2 molecule 

was electroporated into these target cells. To verify the capacity of the tumor cell lines to 

process and present the unknown NY-ESO-1 peptide recognized by TCR 5-271, the same 

cell lines were also electroporated with ivtRNA encoding HLA-A2 in combination with NY-

ESO-1. As shown in figure 13A (bottom graph), TCR 5-271-transfected T cells did not 

recognize any of the HLA-A2-transfected tumor cell line, although they were endogenously 

positive for NY-ESO-1/LAGE-1a. A slight IFN-γ release was detected after incubation with 

RPMI-8226 and KM-12-PE cells, which was again due to the reactivity mediated by 

endogenous TCRs of the T cells and was not related to TCR 5-271-specific recognition 

since the same IFN-γ secretion was detected for T cells electroporated with water. 

However, IFN-γ secretion was detected in response to all tumor cell lines electroporated 

with ivtRNA encoding HLA-A2 plus NY-ESO-1, proving that the epitope recognized by TCR 

5-271 was efficiently processed and presented by the tested tumor cell lines. In contrast, 

TCR 1G4-α95:LY-expressing T cells recognized all HLA-A2-transfected tumor cell lines 

independently of NY-ESO-1 ivtRNA transfection and TCR 3-9-transfected T cells released 

IFN-γ after stimulation with all transfected target cells, confirming HLA-A2 expression after 

transfection for all samples. 

Surface expression of HLA-A2 molecules was analyzed by flow cytometry for all tumor cell 

lines used in the assays. As shown in figure 13B, the endogenously positive as well as the 

ivtRNA-transfected tumor cell lines were all positive for HLA-A2 molecules. 
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Figure 13. Tumor cell line recognition by TCR 5-271-expressing T cells. (A) T cells derived from 
a healthy donor were transfected with ivtRNA encoding either TCR 5-271 or TCR 1G4-α95:LY or an 
HLA-A2-allo-reactive TCR (TCR 3-9). T cells electroporated with water were used as a negative 
control. Electroporated T cells were used as effectors in co-culture assays with 15 tumor cell lines 
endogenously positive for NY-ESO-1/LAGE-1a according to NanoString data (see figure 12B). 
Figure legend continues on page 72. 
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Figure 13. Of the selected lines, nine were endogenously positive for HLA-A2 (top graph), while six 
were endogenously HLA-A2-negative (bottom graph). Thus, these six cell lines were tested after 
transfection with ivtRNA encoding either HLA-A2 alone (left graph) or in combination with ivtRNA 
encoding NY-ESO-1 (right graph) to verify the capacity of the tumor cell lines to process and present 
the unknown NY-ESO-1 peptide recognized by TCR 5-271. The SK-Mel23 cell line (HLA-A2+, NY-
ESO-1/LAGE-1a-) was used as the negative control. Moreover, tgK562 cells transfected with ivtRNA 
encoding either NY-ESO-1 or GFP were included as internal target controls. IFN-γ release of 
transgenic TCR-expressing T cells was measured by ELISA after 24h co-culture. Shown is the mean 
value of duplicates with standard deviations. This experiment was performed with two different 
donors. Shown is one representative experiment. FM6, FM3, FM3.29 and MM415 cell lines were not 
analyzed (n.a.) for recognition by TCR 3-9-transfected T cells. (B) HLA-A2 surface expression was 
detected by flow cytometry for all tested tumor cell lines. Endogenous expression is shown in green, 
expression after electroporation (EP) with ivtRNA encoding HLA-A2 is shown in black, HLA-A2 
expression after EP with ivtRNA encoding HLA-A2 and NY-ESO-1 is shown in blue and the negative 
control (HLA class I-negative K562 cells stained with the HLA-A2-specific antibody) is shown in grey. 
Populations shown are pre-gated on live single cells. 

4.2.4 NY-ESO-1-ORF2 recognition 

The wild-type NY-ESO-1 sequence (NY-ESO-1_wt) includes the ORF encoding the full-

length NY-ESO-1 protein consisting of 180 aa in the first reading frame (designated as NY-

ESO-1-ORF1) and three alternative ORFs in the second and third reading frame encoding 

proteins consisting of 58 aa, 50 aa and 14 aa (designated as NY-ESO-1-ORF2, -ORF3 and 

-ORF4, respectively) (figure 14A, left panel). Since the alternative ORFs are located in 

alternative reading frames compared to NY-ESO-1-ORF1, the corresponding proteins 

present completely different amino acid sequences compared to the NY-ESO-1-ORF1-

encoded protein. After electroporation with ivtRNA encoding NY-ESO-1_wt into mDCs, 

these alternative ORFs might have been translated and the corresponding proteins 

processed and presented in addition to the full-length NY-ESO-1-ORF1 protein. 

Consequently, T cells against peptides derived from these alternative NY-ESO-1 proteins 

might have been induced during the priming process. To verify the antigen specificity of 

TCR 5-271, a partial-codon-optimized version of NY-ESO-1 (NY-ESO-1_pco) was 

designed to exclude the alternative ORFs (NY-ESO-1-ORF2, -ORF3 and -ORF4) other than 

NY-ESO-1-ORF1 and cloned into the pGEM vector (figure 14A, right panel). Additionally, 

the three alternative NY-ESO-1-ORFs were cloned separately into the pGEM vector. 

ivtRNA was produced for NY-ESO-1-ORF2, -ORF3, -ORF4, NY-ESO-1_pco and NY-ESO-

1_wt and then transfected into tgK562 cells. These cells were used to stimulate CD8+ T 

cells transduced with either TCR 5-271 or TCR 1G4-α95:LY. Untransduced T cells were 

used as a negative control. IFN-γ release was evaluated by ELISA 24h after setting up the 

co-cultures (figure 14B). 
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Figure 14. NY-ESO-1-ORF2 recognition by TCR 5-271-transgenic T cells. (A) Schematic 
depiction of the proteins encoded by alternative ORFs of NY-ESO-1. The wild-type NY-ESO-1 
sequence (NY-ESO-1_wt, left panel) includes four different ORFs in the three reading frames 
encoding proteins of 180 aa (ORF1, 5’3’ frame 1), 58 aa (ORF2, 5’3’ frame 2), 50 aa (ORF3, 5’3’ 
frame 2) and 14 aa (ORF4, 5’3’ frame 3) (ORFs are shown in blue). A partial-codon-optimized (pco) 
version of NY-ESO-1 (NY-ESO-1_pco, right panel) was designed to eliminate alternative ORFs 
(ORF2, ORF3 and ORF4) other than ORF1 encoding the full-length NY-ESO-1 protein consisting of 
180 aa. Figure wasadapted from the online translate tool ExPASy. (B) CD8+ T cells were isolated 
from a healthy donor and transduced with either TCR 5-271 or TCR 1G4-α95:LY. Untransduced T 
cells served as a negative control. IFN-γ release of TCR-transgenic CD8+ T cells was evaluated after 
24h co-culture with tgK562 cells transfected with ivtRNA encoding either NY-ESO-1_wt, NY-ESO-
1_pco, NY-ESO-1-ORF2, -ORF3 or -ORF4. Electroporation of tgK562 cells with water was 
performed as a negative target control. Shown is the mean value of duplicates with standard 
deviations. This experiment was performed with two different donors. Shown is one representative 
experiment. 
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Interestingly, TCR 5-271-transduced T cells showed IFN-γ secretion after stimulation with 

tgK562 cells expressing either NY-ESO-1_wt or NY-ESO-1-ORF2, but they were not 

activated by tgK562 cells transfected with NY-ESO-1_pco or any other NY-ESO-1-ORFs. 

On the other hand, TCR 1G4-α95:LY-transgenic T cells recognized tgK652 cells transfected 

with ivtRNA encoding NY-ESO-1_wt as well as NY-ESO-1_pco. These results 

demonstrated that TCR 5-271 was not specific for a peptide derived from the full-length NY-

ESO-1-ORF1 protein, but for an epitope present in the 58 aa NY-ESO-1-ORF2 protein. 

Moreover, they showed that after electroporation with ivtRNA encoding NY-ESO-1_wt into 

tgK562 cells, NY-ESO-1-ORF2 was translated and the corresponding protein processed 

and presented in addition to the full-length NY-ESO-1-ORF1 protein. 

4.2.5 Epitope identification 

In order to narrow down the region recognized within the NY-ESO-1-ORF2 protein by TCR 

5-271, five constructs were designed encoding 20-mer peptides derived from the NY-ESO-

1-ORF2 protein, overlapping by ten aa and linked to GFP (1-20 aa, 11-30 aa, 21-40 aa, 31-

50 aa, 41-58 aa) (figure 15A). ivtRNA was produced for each construct and used to transfect 

tgK562 cells. As shown in figure 15B, GFP expression in transfected tgK562 cells was 

detected for all five constructs, proving successful transfection. A co-culture assay was set 

up using the transfected tgK562 cells to stimulate CD8+ T cells expressing either TCR 5-

271 or TCR 1G4-α95:LY. Untransduced T cells served as a negative control. Additionally, 

ivtRNA encoding either NY-ESO-1_wt or NY-ESO-1-ORF2 full-length protein were 

transfected into tgK562 cells as internal positive controls for the assay and tgK562 cells 

were electroporated with water as the negative control. IFN-γ ELISA was performed 24h 

after setting up the co-culture (figure 15C). TCR 5-271-transduced T cells released IFN-γ 

after incubation with tgK562 cells transfected with ivtRNA encoding the 20-mer peptide 1-

20 aa of the NY-ESO-1-ORF2 protein, showing that the TCR 5-271 epitope was located in 

the first 20 aa. ivtRNA encoding the other 20-mer peptides of NY-ESO-1-ORF2 (11-30 aa, 

21-40 aa, 41-58 aa) did not lead to any activation of TCR 5-271-transduced T cells. As 

expected, TCR 1G4-α95:LY-transgenic T cells recognized only tgK652 cells transfected 

with NY-ESO-1_wt.  
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Figure 15. TCR 5-271 epitope identification: NYESO-1-ORF2 first 20 aa. (A) Schematic 
representation of the five constructs designed to produce ivtRNA encoding 20-mer peptides derived 
from NY-ESO-1-ORF2 protein overlapping by ten aa and linked to GFP (1-20 aa, 11-30 aa, 21-40 
aa, 31-50 aa, 41-58 aa). Figure legend continues on page 76. 
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Figure 15. (B) GFP expression for each construct was detected by flow cytometry after ivtRNA 
electroporation (EP) into tgK562 cells (shown in green). Water-electroporated tgK562 cells were 
used as the background control (shown in grey). Populations shown are pre-gated on live single 
cells. (C) TCR 5-271- or TCR 1G4-α95:LY-transduced T cells were incubated with tgK562 cells 
transfected with ivtRNA encoding 1-20 aa, 11-30 aa, 21-40 aa, 31-50 aa, 41-58 aa peptides derived 
from NY-ESO-1-ORF2 protein. In addition, tgK562 cells transfected with ivtRNA encoding either NY-
ESO-1_wt or NY-ESO-1-ORF2 full-length protein were included as positive controls. Water 
electroporation into tgK562 cells served as a negative control. IFN-γ ELISA was performed after 24h 
of co-culture. Shown is the mean value of duplicates with standard deviations. This experiment was 
performed with two different donors. Shown is one representative experiment. 

A group of 14 peptides that bound to HLA-A2 molecules, ranging from 8-mer to 12-mer and 

covering the first 20 aa of NY-ESO-1-ORF2 protein were selected and subsequently used 

to assess the core epitope recognized by TCR 5-271 (figure 16A). T2 cells loaded with 

either these 14 peptides or with an irrelevant peptide (MAGE-A1278-286) served as stimulator 

cells for CD8+ T cells transduced with TCR-5-271 and for untransduced T cells. IFN-γ 

secretion was determined 24h after setting up the co-cultures by ELISA. To note, whenever 

no IFN-γ release was observed it was not possible to verify whether the tested peptide 

sufficiently bound to the HLA-A2 molecules. Therefore, the absence of T cell activation 

could be due either to the abrogation of the peptide:MHC binding or to the disability of the 

TCR to interact properly with the peptide:MHC complex in order to lead to T cell activation. 

TCR 5-271-transduced T cells released IFN-γ in response to T2 cells loaded with six out of 

the 14 tested peptides (figure 16B). Peptides from 8- to 12-mer mapping from position 7 to 

position 20 of the NY-ESO-1-ORF2 protein were recognized by TCR 5-271-expressing T 

cells. As shown in figure 16A, the recognized peptides showed an identical sequence of 

eight aa, representing the minimum sequence needed for recognition by TCR 5-271 (NY-

ESO-1-ORF211-18, LMAQGAML).  
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Figure 16. TCR 5-271 core epitope identification: NY-ESO-1-ORF211-18, LMAQGAML. (A) 
Position in the NYESO-1-ORF2-protein (start - end), peptide length (X-mer) and peptide sequence 
are shown for the 14 peptides selected for the identification of the TCR 5-271 epitope. The six 
peptides recognized by TCR 5-271-transgenic T cells in the IFN-γ ELISA assay (data shown in figure. 
16B) comprised an identical sequence of eight aa (NYESO-1-ORF211-18, LMAQGAML) shown in blue. 
(B) CD8+ T cells transduced with TCR 5-271 and untransduced cells were stimulated with T2 cells 
loaded with either the 14 selected peptides or with irrelevant peptide MAGE-A1278-286. IFN-γ release 
was evaluated 24h after setting up the co-cultures by ELISA. Shown is the mean value of duplicates 
with standard deviations. This experiment was performed using two different donors. Shown is one 
representative experiment.  
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4.2.6 Fine typing of the recognized epitope  

The fine typing of an identified epitope is needed to subsequently investigate potential TCR 

cross-recognition of alternative peptides that contain amino acid exchanges compared to 

the known epitope sequence [68]. These alternative peptides can be expressed in healthy 

tissues, presented on corresponding MHC molecules and recognized equally by the 

transgenic TCR, leading to potential unwanted side effects in clinical applications 

(designated as off-target toxicity). Therefore, alanine scanning assays were performed to 

determine the contribution of each aa of the HLA-A2-bound epitope to the interaction with 

the TCR 5-271. The amino acids included in the 12-mer NY-ESO-1-ORF27-18, 11-mer NY-

ESO-1-ORF210-20 and 9-mer NY-ESO-1-ORF210-18 peptides, recognized by TCR 5-271-

transgenic T cells in previous experiments, were consecutively replaced by an alanine (or 

by a glycine where an alanine was already present in the original sequence) (figure 17). T2 

cells were loaded with these modified peptides and used as APCs to induce IFN-γ release 

of either TCR 5-271-transduced T cells or untransduced T cells. The three wild-type 

peptides were included in the assays as positive controls and the irrelevant peptide MAGE-

A1278-286 served as the negative control. To note, as discussed before, whenever no IFN-γ 

release was observed it was impossible to verify whether the tested peptide sufficiently 

bound to the HLA-A2 molecules. Therefore, the absence of T cell activation could be due 

either to the abrogation of the peptide:MHC binding or to the disability of the TCR to interact 

properly with the peptide:MHC complex in order to lead to T cell activation. Replaced amino 

acids that led to the abrogation of IFN-γ release by T cells were defined as “non-

exchangeable amino acids” within the epitope sequence. As shown in figure 17, the 

phenylalanine (F) at position 4 (P4) in the 12-mer and at P1 in the 11- and 9-mer, as well 

as the leucine (L) at P5 in the 12-mer and at P2 in the 11- and 9-mer, were identified to be 

non-exchangeable in the three peptides tested. The substitution of the glycine (G) at P9 in 

the 12-mer and at P6 in the 11- and 9-mer only affected TCR 5-271 recognition of the 9-

mer peptide. All the other aa of the peptides tested could be replaced either by alanine or 

by glycine without affecting TCR 5-271 recognition. 
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Figure 17. Fine typing of the epitope recognized by TCR 5-271. Alanine scanning analyses were 

performed for the 12-mer NY-ESO-1-ORF27-18, 11-mer NY-ESO-1-ORF210-20 and 9-mer NY-ESO-1-
ORF210-18 peptides recognized by TCR 5-271-transgenic T cells. The amino acids included in these 

peptides were consecutively replaced by an alanine or by a glycine when an alanine was already 
present in the original sequence. Peptide tables include the original peptide sequence (first line) and 
the alanine/glycine scanning peptide panel (exchanged aa are shown in bold). The identical 

sequence included in the tested peptides is shown in blue. T2 cells were loaded with the modified 
peptides and used in the co-cultures with either T cells expressing TCR 5-271 or with untransduced 

T cells to assess IFN-γ release by ELISA after 24h of incubation. The irrelevant MAGE-A1278-286 

peptide was included as the negative control. Shown is the mean value of duplicates with standard 
deviations. Each experiment was performed with two different donors. Representatively shown are 

the results of one donor.  
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4.2.7 Recognition of LAGE-1 and CAMEL 

Both isoforms of the tumor antigen LAGE-1 (highly homologous to NY-ESO-1) include not 

only the primary ORF in the first reading frame encoding the full-length protein (designated 

as LAGE-1a-ORF1 and LAGE-1b-ORF1), but also an alternative ORF in the second 

reading frame (figure 18). This alternative ORF is called LAGE-1-ORF2 and is identical in 

LAGE-1a and in LAGE-1b. The AUG start codon of the LAGE-1-ORF2 is located 40 base 

pairs (bp) downstream of the AUG of LAGE-1-ORF1. Translation of LAGE-1-ORF2 leads 

to the production of a 109 aa protein called CAMEL [111]. Importantly, the N-terminal 54 aa 

of CAMEL are identical to the N-terminal 54 aa of NY-ESO-1-ORF2 protein. Since the 

epitope recognized by TCR 5-271 (NY-ESO-1-ORF211 -18) was located in the region shared 

by NY-ESO-1-ORF2 and CAMEL, the recognition of LAGE-1 and CAMEL by TCR 5-271-

transgenic T cells was evaluated. CAMEL, LAGE-1a wild-type (LAGE-1a_wt) and a partial-

codon-optimized version of LAGE-1a including only the LAGE-1-ORF1 (LAGE-1a_pco) 

were cloned into the pGEM vector (figure 19A). ivtRNA encoding CAMEL, LAGE-1a_wt or 

LAGE-1a_pco were transfected into tgK562 cells. In addition, ivtRNA encoding NY-ESO-

1_wt, NY-ESO-1_pco or NY-ESO-1-ORF2 were transfected into tgK562 cells as positive 

controls for the assay. Water electroporation of tgK562 cells served as the negative control. 

Electroporated tgK562 cells were used as stimulator cells for CD8+ T cells transduced with 

either TCR 5-271 or TCR 1G4-α 95:LY in order to induce IFN-γ release. Untransduced 

CD8+ T cells were included as a negative control. As shown in figure 19B, T cells expressing 

TCR 5-271 recognized tgK562 cells transfected with ivtRNA encoding NY-ESO-1_wt or NY-

ESO-1-ORF2 as well as LAGE-1a_wt or CAMEL. In contrast, they did not release IFN-γ 

after incubation with NY-ESO-1_pco- and LAGE-1a_pco-transfected tgK562 cells. These 

results confirmed that the TCR 5-271 was specific for a peptide derived from the proteins 

encoded by ORF2 of NY-ESO-1 as well as by ORF2 of LAGE-1a. As expected, TCR 1G4-

α95:LY-transgenic T cells were activated only in response to tgK562 cells expressing the 

wt or pco versions of both NY-ESO-1 and LAGE-1a, confirming that TCR 1G4-α95:LY was 

specific for a peptide derived from proteins encoded by ORF1 of NY-ESO-1 and LAGE-1a. 

Furthermore, these findings showed that after electroporation with ivtRNA encoding LAGE-

1_wt into tgK562 cells, LAGE-1-ORF2 was translated and the corresponding CAMEL 

protein was processed and presented in addition to the full-length LAGE-1a-ORF1 protein. 

Interestingly, TCR 5-271-transgenic T cells showed better recognition of tgK562 cells 

expressing NY-ESO-1_wt compared to LAGE-1a_wt-transfected tgK562 cells, whereas 

TCR 1G4-α95:LY-transgenic T cells were equally activated by tgK562 cells expressing NY-

ESO-1_wt or LAGE-1a_wt. This observation could not be explained by differences in 
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transfection efficiency of NY-ESO-1 and LAGE-1a, and hence one hypothesis was that 

ORF2 of NY-ESO-1 was more efficiently translated than ORF2 of LAGE-1a. 

 

Figure 18. Schematic representation of NY-ESO-1 and LAGE-1 mRNA transcripts and protein 
products. LAGE-1 mRNA (both isoforms, LAGE-1a and LAGE-1b), as described for NY-ESO-1, 
comprises not only the ORF in the first frame (LAGE-1-ORF1) encoding the full-length protein (180 
aa LAGE-1a and 210 aa LAGE-1b), but also an alternative ORF in the second reading frame (LAGE-
1-ORF2, identical for the two LAGE-1 isoforms). Translation of LAGE-1-ORF2 leads to the 
production of a 109 aa protein called CAMEL. The N-terminal 54 aa of CAMEL are identical to the 
N-terminal 54 aa of NY-ESO-1-ORF2 protein. Identical sequences in the proteins are shown by 
identical patterns. The locations of the NY-ESO-1/LAGE-1157-165 epitope recognized by TCR 
1G4:95:LY and of the NY-ESO-1-ORF2/CAMEL11-18 epitope recognized by TCR 5-271 are shown.  
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Figure 19. Recognition of LAGE-1 and CAMEL by TCR 5-271-transgenic T cells. (A) Schematic 
depiction of NY-ESO-1_wt, NY-ESO-1_pco, NY-ESO-1-ORF2, LAGE-1a_wt, LAGE-1a_pco and 
CAMEL mRNA transcripts and corresponding protein products. Identical sequences in the proteins 
are shown by identical patterns. The locations of the NY-ESO-1/LAGE-1a 157-165 epitope recognized 
by TCR 1G4:95:LY and the NY-ESO-1-ORF2/CAMEL11-18 epitope recognized by TCR 5-271 are 
shown. (B) tgK562 cells were transfected with ivtRNA encoding NY-ESO-1_wt, NY_ESO-1_pco, NY-
ESO-1-ORF2, LAGE-1a_wt, LAGE-1a_pco or CAMEL. tgK562 cells electroporated with water 
served as negative target controls. Electroporated tgK562 cells were co-cultured with T cells 
transduced with either TCR 5-271 or TCR 1G4-α95:LY. Untransduced T cells were included as 
negative controls. IFN-γ release was evaluated 24h after T cell stimulation. Shown is the mean value 
of duplicates with standard deviations. This experiment was performed with two different donors. 
Shown is one representative experiment. 
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4.2.8 Recognition of target antigen-transfected tumor cell lines  

 To further investigate the hypothesis that ORF2 of NY-ESO-1 was more efficiently 

translated than ORF2 of LAGE-1a, ivtRNA encoding either NY-ESO-1_wt or LAGE-1a_wt 

was transfected in tumor cell lines and the recognition by TCR 5-271-transgenic T cells was 

evaluated. The NY-ESO-1/LAGE-1a-positive cell lines FM6, MM415, Mel624.38, MelA375 

and the NY-ESO-1/LAGE-1a-negative tumor cell lines MM127, SK-Mel23 and gK562 were 

selected as target cells (see Nanostring analyses for NY-ESO-1/LAGE-1a mRNA 

expression, figure 12B. Data not shown for the tumor cell line MM127). All the selected 

tumor cell lines expressed HLA-A2 molecules on the cell surface as confirmed by flow 

cytometry analysis (figure 20A). In previous experiments, it was shown that the four 

selected tumor cell lines, endogenously positive for NY-ESO-1/LAGE-1a, were recognized 

by T cells expressing TCR 1G4-α95:LY. Therefore, an additional internal control was 

needed to prove that the expected lack or reduction of LAGE-1a recognition by TCR 5-271 

was due to reduced ORF2 translation and not due to inefficient transfection. Since selected 

tumor cell lines did not express the minor histocompatibility antigen HA-1H, a CD8+ T cell 

clone specific for HA-1H (HA-1137-145(H139)) and restricted to HLA-A2 (clone 10/24) was used 

as an internal control. The tumor cell lines were transfected simultaneously with ivtRNA 

encoding either NY-ESO-1_wt or LAGE-1a_wt in combination with ivtRNA encoding HA-

1H. Untransfected and ivtRNA-transfected tumor cell lines were used to stimulate IFN-γ 

release of T cells expressing either TCR 5-271 or TCR 1G4-α95:LY. Untransduced T cells 

served as the negative control.  IFN-γ ELISA was performed 24h after setting up the co-

culture (figure 20B). As already observed, TCR 5-271-transduced T cells did not recognize 

any tumor cell lines even if they were endogenously NY-ESO-1/LAGE-1a-positive. 

However, they secreted IFN-γ when incubated with the same cell lines transfected with NY-

ESO-1_wt ivtRNA. After incubation with LAGE-1a_wt-transfected cell lines, TCR 5-271-

trangenic T cells released either lower amounts of IFN-γ compared to the amount detected 

by stimulation with NY-ESO-1-transfected cells (FM6, MM415) or did not secrete IFN-γ at 

all (Mel624.38, MelA375). TCR 1G4-α95:LY-transgenic T cells recognized all tumor cell 

lines that were endogenously positive for NY-ESO-1/LAGE-1a without the need of 

additional ivtRNA electroporation. Clone 10/24 did not release IFN-γ in response to any of 

the tested tumor cell lines without ivtRNA transfection. On the other hand, T cell activation 

was observed when clone 10/24 was co-cultured with HA-1H-transfected cell lines in 

combination with NY-ESO-1 as well as with LAGE-1a, showing efficient transfections in 

both cases.  
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Figure 20. Tumor cell line recognition after either NY-ESO-1_wt- or LAGE-1a_wt ivtRNA 
transfection by TCR 5-271-transgenic T cells. Figure legend continues on page 85. 
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Figure 20. (A) HLA-A2 expression in FM6, MM415, Mel624.38, MelA375, MM127, SK-Mel23 and 
tgK562 cell lines was evaluated by flow cytometry. Stained tumor cell lines are shown in black and 
the negative control (HLA class I-negative K562 cells stained with the HLA-A2-specific antibody) is 
shown in grey. Populations shown are pre-gated on live single cells. (B) The NY-ESO-1/LAGE-1a-
positive cell lines FM6, MM415, Mel624.38, MelA375 and the NY-ESO-1/LAGE-1a-negative tumor 
cell lines MM127, SK-Mel23 and tgK562 were transfected with ivtRNA encoding either NY-ESO-
1_wt or LAGE-1a_wt in combination with HA-1H antigen. Untransfected and transfected tumor cell 
lines were used as target cells in co-culture assays. TCR 5-271-, TCR 1G4-α95:LY-transduced T 
cells and untransduced T cells served as effector cells. The clone 10/24 was included as an internal 
effector control recognizing HA-1H peptide (HA-1137-145(H139)) on HLA-A2 molecules. IFN-γ release 
was measured by ELISA 24h after setting up the co-cultures. Shown is the mean value of duplicates 
with standard deviations.  

The tumor cell lines MM127, SK-Mel23 and tgK562, endogenously NY-ESO-1/LAGE-1a-

negative and HA-1H-negative, were recognized by TCR 5-271-transduced T cells, by TCR 

1G4-α95:LY-transduced T cells and by clone 10/24 only after ivtRNA transfection. 

Interestingly, TCR 1G4-α95:LY-transgenic T cells and clone 10/24 released similar 

amounts of IFN-γ in response to NY-ESO-1/HA-1H and to LAGE-1a/HA-1H stimulation. In 

contrast, TCR 5-271-transduced T cells showed better recognition when the three cell lines 

were transfected with NY-ESO-1/HA-1H compared to LAGE-1a/HA-1H. All together these 

results supported the hypothesis that ORF2 of NY-ESO-1 was more efficiently translated 

than ORF2 of LAGE-1a in tgK562 cells and also in the tested tumor cell lines. 

4.2.9 Killing of target epitope-loaded cells  

Functionality of TCR-transgenic T cells can be addressed by evaluating IFN-γ release upon 

target antigen-specific stimulation as well as by testing their capacity to mediate killing of 

cells expressing the target tumor antigen. Therefore, the killing capacity of TCR 5-271-

transgenic T cells was assessed by live-cell imaging. The first experiment was performed 

to assess the killing of T2 cells after specific peptide loading. T2 cells were stably 

transduced with a lentiviral vector that enabled nuclear labelling by homogenous expression 

of the mKate2 protein (red fluorescent protein) without altering cell function and with minimal 

toxicity. After transduction, T2 cells were analyzed by flow cytometry and 92.1% of the cells 

expressed mKate2 protein resulting in the red-label (figure 21A). These red-labelled T2 

cells were properly detected by the live-cell imaging system (figure 21B).  
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Figure 21. Analyses of T2 cells transduced with a red fluorescent reagent. T2 cells were stably 
transduced with a red fluorescent reagent for nuclear labelling. (A) The transduction rate was 
analyzed by flow cytometry. Transduced T2 cells are shown in red, while untransduced cells are 
shown in grey. Populations shown are pre-gated on live single cells. (B) Exemplary image of red-
labelled T2 cells detected by live-cell imaging. 

Red-labelled T2 cells were loaded with either peptide NY-ESO-1-ORF-211-18 (specific 

peptide for TCR 5-271, irrelevant peptide for TCR 1G4-α95:LY) or with NY-ESO-1/LAGE-

1a157-165 peptide (specific peptide for TCR 1G4-α95:LY, irrelevant peptide for TCR 5-271). 

After peptide loading, red-labelled T2 cells were incubated with T cells expressing TCR 5-

271 or TCR 1G4-α95:LY. Untransduced T cells served as the negative control. The cells 

were monitored over 48h by live-cell imaging to evaluate the decrease of the red 

fluorescence intensity showing T2 cell killing mediated by TCR-transgenic T cells. Images 

acquired at time point zero (0h) and 24h as well as 48h after setting up the co-cultures are 

shown in figure 22. A decrease of the red fluorescence intensity was observed only when 

TCR 5-271-transduced T cells were incubated with peptide NY-ESO-1-ORF-2/CAMEL11-18-

loaded T2 cells and when TCR 1G4-α95:LY-transduced T cells were added in the co-culture 

with peptide NY-ESO-1/LAGE-1a157-165-loaded T2 cells. In contrast, an increase of the red 

fluorescence intensity due to proliferation of the labelled T2 cells was detected when TCR 

5-271- and TCR 1G4-α95:LY-transduced T cells were incubated with irrelevant peptide-

loaded T2 cells. The red fluorescence intensity increased also when untransduced T cells 

were co-cultured with T2 cells independently of the loaded peptide.  
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Figure 22. Killing of red-labelled T2 cells loaded with specific peptide by TCR 5-271-transgenic 
T cells. Red-labelled T2 cells were loaded with either peptide NY-ESO-1-ORF-211-18 (specific peptide 
for TCR 5-271, irrelevant peptide for TCR 1G4-α95:LY) or with peptide NY-ESO-1/LAGE-1a157-165 
(specific peptide for TCR 1G4-α95:LY, irrelevant peptide for TCR 5-271). After peptide loading, red-
labelled T2 cells were incubated with T cells expressing either TCR 5-271 or TCR 1G4-α95:LY and 
with untransduced T cells served as negative control (E:T ratio of 40:1). The cells were monitored 
over a time of 48h using a live-cell imaging system to evaluate the decrease of the red fluorescence 
intensity showing T2 cell killing mediated by TCR-transgenic T cells. Images acquired at time point 
zero (0h) and 24h as well as 48h after setting up the co-cultures are shown. 



Results 

88 

In a second experiment, MM415, Mel624.38 and tgK562 cell lines were selected as target 

cells and transfected with ivtRNA encoding NY-ESO-1_wt to assess the capacity of T cells 

expressing TCR 5-271 to kill tumor cell lines that processed and presented the TCR 5-271 

epitope by internal cellular pathways. T cells transduced with either TCR 5-271 or TCR 

1G4-α95:LY were used as effector cells and untransduced T cells were used as the 

negative control. To evaluate apoptosis in the co-cultures, the Annexin V red reagent was 

added to the medium and the cells were monitored by live-cell imaging over 48h. Images 

acquired at time point zero (0h) and 24h as well as 48h after setting up the co-cultures are 

shown in figure 23. Apoptotic red cells as well as clusters of T cells and target cells were 

detected for all NY-ESO-1-transfected tumor cell lines after incubation with T cells 

expressing either TCR 5-271 or TCR 1G4-α95:LY. To note, TCR 1G4-α95:LY-transduced 

CD8+ T cell seemed to mediate killing with a better efficiency compared to TCR 5-271-

transduced T cells. In contrast, growing target cells were observed for all tumor cell lines 

when untransduced T cells were used as effectors. 

In conclusion, these data showed that TCR 5-271-transduced T cells were able to mediate 

killing of target cells loaded with the specific peptide as well as transfected with NY-ESO-

1_wt ivtRNA. 
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Figure 23. Killing of NY-ESO-1-transfected tumor cell lines by TCR 5-271-transgenic T cells. 
MM415 (A), Mel624.38 (B) and tgK562 (C) cell lines were transfected with ivtRNA encoding NY-
ESO-1_wt. T cells transduced with either TCR 5-271 or TCR 1G4-α95:LY and untransduced T cells 
were incubated with transfected tumor cell lines 24h after transfection (TF) (E:T ratio of 40:1). 
Annexin V red reagent was added to the medium for evaluation of the apoptosis over a time of 48h 
by live-cell imaging. Images acquired at time point zero (0h) and 24h as well as 48h after setting up 
the co-cultures are shown. 

4.2.10 Evaluation of T cell peptide sensitivity 

In principle, a therapeutic TCR needs to have high specificity as well as optimal sensitivity 

for its peptide:MHC complex in order to efficiently mediate tumor killing and to discriminate 

between tumor cells and normal cells to avoid unwanted side effects. TCR affinity is defined 

as strength of the monomeric interaction between the TCR and a peptide:MHC complex. 

Since T cells express more than one TCR molecule, the overall binding strength of all 

available TCR molecules, called avidity, has to be considered for accurate evaluation in a 

physiological context. Evaluation of T cell peptide sensitivity, by analyzing IFN-γ secretion 

by T cells in response to APCs loaded with graded amounts of the target epitope, 

represents one method commonly used to validate the so called functional avidity of TCR-

transgenic T cells. Serial dilutions are used to calculate effective epitope concentrations 

which induce half-maximal T cell responses, measured by IFN-γ amounts. The lower the 

amount of specific peptide that is required for half-maximal activation of the T cells, the 
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higher is the functional avidity and the peptide sensitivity. Importantly, using this method a 

direct comparison of peptide sensitivity for T cells expressing transgenic TCRs specific for 

different peptides is impossible because the outcome of the assay is influenced by the 

stability of the specific target peptide in solution and by the peptide MHC binding affinity. 

Here, peptide sensitivity of TCR 5-271-expressing CD8+ T cells was assessed by using 

serial dilutions of either the 9-mer peptide NY-ESO-1-ORF2/CAMEL10-18 or of the 8-mer 

peptide NY-ESO-1-ORF2/CAMEL11-18 loaded on T2 cells. Untransduced CD8+ T cells were 

used as the negative control. IFN-γ release by CD8+ T cells was evaluated 24h after setting 

up the co-cultures by ELISA (figure 24). Peptide sensitivity of TCR 5-271-expressing T cells 

were similar in response to titrated amounts of the 8-mer and 9-mer target peptides. TCR 

5-271-expressing T cells showed half-maximal IFN-γ release at approximately 10-6 M, 

requiring very high amounts of peptides for activation.  

 

Figure 24. Peptide sensitivity of TCR 5-271-transduced T cells. T2 cells were loaded with titrated 
amounts of either the peptide NY-ESO-1-ORF2/CAMEL 10-18 (9-mer) or of the peptide NY-ESO-1-
ORF2/CAMEL 11-18 (8-mer). Loaded T2 cells were co-cultured with TCR 5-271-expressing CD8+ T 
cells. Untransduced CD8+ T cells served as the negative controls for all conditions. An ELISA was 
performed after 24h to evaluate IFN-γ release by CD8+ T cells. Dashed lines indicate the peptide 
concentrations needed to induce the half-maximal IFN-γ secretion. This experiment was performed 
with two different donors. Shown is one representative experiment. 
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4.2.11 Evaluation of CD8-dependency 

The CD8 co-receptor is known to directly bind to MHC class I molecules and to be critical 

for the development of CD8+ T cells. CD8 stabilizes the binding of a TCR to the MHC-

peptide complex and facilitates early events of the TCR signaling cascade [112]. 

Nevertheless, it has been shown that some TCRs restricted to MHC class I molecules can 

induce T cell activation upon antigen encounter without the need of CD8-costimulation 

[113]. To evaluate the impact of CD8 co-receptor on the functionality of the identified TCR, 

TCR 5-271 was transferred into a CD8+ T cell clone (clone 10/24) and into a CD4+ T cell 

clone (clone 234) by retroviral transduction. The same clones were transduced also with 

TCR 1G4-α95:LY and used as positive controls since it has been shown that this TCR is 

CD8-independent and functions efficiently in CD4+ T cells [58]. Untransduced T cell clones 

served as negative controls. As shown in figure 25A, the transduction rates were analyzed 

by flow cytometry. Transduction was efficient for both TCRs in the CD8+ clone as well in 

the CD4+ clone. In particular, 29.0% of CD8+ cells expressed TCR 5-271 and 36.0% were 

TCR 1G4-α95:LY-positive, while 40.5% of CD4+ cells showed TCR 5-271 expression and 

42.4% expressed TCR 1G4-α95:LY. Transduced clones were tested in a co-culture assay 

using tgK562 cells electroporated with either NY-ESO-1_wt ivtRNA or with water as target 

cells and IFN-γ secretion was evaluated after 24h by ELISA. To verify the functionality in 

terms of IFN-γ release for the CD8+ and CD4+ clones, specific targets recognized by their 

endogenous TCRs were included in the assay. T2 cells loaded with either the specific 

peptide recognized by clone 10/24 (HA-1137-145(H139)) or with an irrelevant peptide (HA-1137-

145(R139)) were used as target controls for the CD8+ clones. HLA-A24-positive and HLA-A24-

negative LCL served as control targets for the CD4+ clones since the clone 234 was shown 

to be HLA-A24-reactive (data unpublished). As shown in figure 25B, CD8+ clone T cells as 

well as CD4+ clone T cells expressing TCR 5-271 recognized NY-ESO-1-transfected 

tgK562 cells, showing that the functionality of the transgenic TCR was not dependent on 

the presence of the CD8 co-receptor. TCR 1G4-α95:LY worked efficiently after transduction 

in CD8+ clone T cells and in CD4+ clone T cells, confirming its CD8-independency. The 

functionality of TCR-transduced and untransduced clones was shown by their activation 

and IFN-γ secretion after stimulation with specific targets for their endogenous TCRs. 
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Figure 25. Functionality of TCR 5-271 in CD8+ and in CD4+ T cells. (A) TCR 5-271 and TCR 1G4-
α95:LY were transferred into a CD8+ T cell clone (clone 10/24) and into a CD4+ T cell clone (clone 
234) by retroviral transduction. Transduction rates were analyzed by flow cytometry. Untransduced 
T cell clones were used as background controls. Populations shown are pre-gated on live single 
cells. (B) Transduced T cell clones were tested in a co-culture assay with tgK562 cells electroporated 
with either NY-ESO-1_wt ivtRNA or water to evaluate the role of the CD8 co-receptor for the 
functionality of TCR 5-271 and of TCR 1G4-α95:LY. Untransduced clones served as negative 
controls. T2 cells loaded with the specific peptide recognized by clone 10/24 (HA-1H

137-145(H139), HA-
1 H139) or with an irrelevant peptide (HA-1R

137-145(R139), HA-1 R139) were used as target controls for 
the CD8+ clones. HLA-A24-positive and -negative LCL were included as control targets for the CD4+ 
clones since the clone 234 was shown to be HLA-A24-reactive. IFN-γ release was measured 24h 
after setting up the co-culture. Shown is the mean value of duplicates with standard deviations. 



Discussion 

94 

5 Discussion 

In this project, a CD8+ T cell clone and the corresponding TCR specific for a new 

unconventional epitope derived from NY-ESO-1 and LAGE-1 were isolated and 

characterized. NY-ESO-1-specific T cells were induced using an in vitro allogeneic priming 

approach. An innovative sorting strategy based on the activation-induced T cell marker 

CD137 and K562 as stimulating cells was developed and tested for the first time in order to 

enable the isolation of T cells specific for unknown epitopes of NY-ESO-1. The TCR 

sequence of the isolated NY-ESO-1-reactive clone 5-271 was analyzed and reconstructed 

for transgenic expression in recipient cells to allow the characterization of the properties of 

the identified TCR. Interestingly, the recognized epitope turned out to be a peptide derived 

from the second ORF of NY-ESO-1 and LAGE-1. Tumor cell recognition was observed only 

in response to antigen-loaded or antigen-transfected tumor cell lines. TCR 5-271-

transduced T cells showed low peptide sensitivity, but a CD8-independent functionality. 

5.1 Experimental procedure for the isolation of NY-ESO-1-
specific CD8+ T cells 

5.1.1 Priming approach 

In this project, an in vitro allogeneic priming approach was performed to stimulate and 

expand HLA-A2-restricted NY-ESO-1-specific CD8+ T cells. mDCs derived from an HLA-

A2-negative healthy donor were transfected with one ivtRNA encoding the foreign HLA-A2 

molecule and one encoding the full-length NY-ESO-1 antigen and used to stimulate 

autologous CD8-enriched T cells. 

Unlike strategies in autologous settings, the allogeneic priming approach enables the 

access to the non-tolerant high-affinity allo-reactive TCR repertoire, allowing the potential 

isolation of high-avidity T cells that recognize peptides derived from the TAA of interest [79]. 

Due to the excellent capacity of mDCs to induce (prime) antigen-specific T cells from the 

naïve lymphocyte repertoire, priming procedures including in vitro mDCs have been 

successfully established [80], [84]. Accordingly, in vitro mDCs were selected as APCs for 

the priming procedure performed in this project. Protocols using other types of APCs to 

stimulate tumor antigen-specific T cells from the non-tolerant allo-reactive T cell repertoire 

of healthy donors have also been utilized by several research groups. Approaches including 

the T2 cell line (T and B cell hybrid), that has defects in the antigen-processing pathway but 
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expresses HLA-A2 molecules on its surface, have been developed to isolate tumor antigen-

specific HLA-A2-allo-restricted T cells from healthy donors [81], [83], [114]. However, many 

T cell clones isolated using these non-professional APCs were not able to efficiently 

recognize tumor cells endogenously positive for the antigen of choice. Other groups have 

utilized B cells as APCs after they coupled MHC-peptide monomers to the CD20 molecules 

on the surface [115]. This approach exploits the professional APC capacity of B cells, albeit 

it is a quite laborious procedure requiring the generation of MHC-peptide monomers for 

each tumor antigen of interest.  

In this thesis, ivtRNA transfection was chosen as method to express the desired HLA 

molecules and tumor antigen into mDCs in order to enable the induction of HLA-A2-

restricted NY-ESO-1-specific T cells. In general, MHC epitope loading can be achieved 

either by external loading of pre-defined peptides or by cell-intrinsic presentation of 

endogenous peptides by classical MHC presentation pathways [116], [117]. External 

loading of small synthetic peptides allows only the isolation of T cells with pre-defined 

specificities. The selection of peptides requires the knowledge of immunogenic epitopes 

derived from the antigen of interest. Importantly, externally loaded peptides are not subject 

to post-translational modifications. Therefore, this loading strategy includes the risk of 

isolating T cells only able to recognize synthetic peptides and not physiologically processed 

and presented epitopes. In addition, externally loaded peptide:MHC complexes frequently 

exhibit short half-lives which may hamper successful priming of T cells. All these limitations 

led to the exclusion of the usage of short peptides to load mDCs as antigen delivery strategy 

for the isolation of T cells specific for unknown epitopes derived from NY-ESO-1. 

Electroporation of ivtRNA encoding the selected tumor antigen is a strategy for antigen 

delivery that circumvents most of the disadvantages of peptide loading. Following 

transfection, ivtRNA molecules serve as the template for cell intrinsic translation, adding 

new antigens to the pool of endogenous proteins. Subsequently, full-length proteins are 

processed and presented following internal cellular pathways. The use of ivtRNA as the 

antigen source for T cell activation allows any DNA sequence to be used as a transcription 

template and facilitates the isolation of T cells specific for all potential immunogenic 

epitopes derived from the tumor antigen of interest. The electroporation of ivtRNA leads to 

a longer presentation of the selected antigen on the cell surface of mDCs, increasing the 

probability of a successful T cell induction [118], [119]. It has been shown previously that 

electroporation of mDCs with ivtRNA is effective and that mDCs retain their mature 

phenotype as well as their migratory capacities after electroporation [120], [121]. Moreover, 

simultaneous transfection of ivtRNA encoding MHC class I molecules and TAA into mDCs 

has been shown to be a reliable method for obtaining co-expression of both proteins [122].  
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For priming, a high-purity CD8+ enriched T cell population was used from autologous PBMC 

to enlarge the starting CD8+ T cell repertoire for the induction of NY-ESO-1-specific T cells. 

Although it is well-known that CD4+ T cells have a pivotal role for T cell priming and for the 

survival of CD8+ T cells in vivo, previous experiments in our group have shown that the 

presence of CD4+ T cells is not necessary for in vitro CD8+ T cell priming and expansion 

when cytokines, such as IL-7 and IL-2, are added to the priming co-culture (data 

unpublished). A CD8-untouched cell isolation procedure was used to avoid any unwanted 

activation of CD8+ T cells mediated by antibody-binding prior to priming procedure. 

CD8-enriched T cells were co-cultured with ivtRNA-transfected mDCs in the presence of 

IL-7 and IL-2 in order to sustain the proliferation of CD8+ T cells during the priming 

procedure. These cytokines are commonly used as supplements for in vitro cultivation of T 

cells to support cell survival and proliferation [123]. Importantly, IL-2 was added to the 

medium two days after setting up the co-cultures according to the findings of previous 

studies, where it was observed that T cells reactive to irrelevant antigens can be transiently 

activated and start to proliferate immediately after induction, leading to a dilution of target-

specific T cells [124]. Delaying cytokine addition was shown to help reducing the expansion 

of these unwanted T cells. Previous reports further showed that high antigen concentrations 

and repeated stimulations with mDCs could result in the deletion of high-avidity tumor 

antigen-specific T cells by activation-induced cell death (AICD), affecting the quality of the 

induced T cells [125], [126]. An effector to target ratio of 10:1 was defined and tested in 

previous allogeneic priming experiments in our group [84]. This ratio resulted in an efficient 

induction of high-avidity tumor antigen-specific T cells without causing over-stimulation and 

death of the desired T cells. Therefore, T cells and mDCs were co-cultured at this standard 

E:T ratio. In contrast to previous protocols, only one stimulation with mDCs was performed, 

aiming to improve and optimize the priming procedure. Additional stimulations might induce 

a massive growth of HLA-A2-allo-reactive T cells reducing the fraction of NY-ESO-1-

specific T cells present within the priming culture. Performing only one stimulation might 

further reduce the risk of AICD and favor survival of the desired NY-ESO-1-specific T cells. 

Moreover, the entire priming protocol was thereby simplified as the number of mDCs and 

the time required for the complete procedure were reduced. 

5.1.2 Sorting approach 

After de novo induction, NY-ESO-1-specific T cells needed to be selectively separated from 

the rest of primed T cells to enable functional characterization as well as isolation of 

individual TCR sequences. Here, it was established and tested in the context of an 

allogeneic priming a novel 2-step-sorting strategy independent of the knowledge of 
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immunogenic epitopes and based on the activation-induced CD137 marker and K562 cell 

stimulation. 

The technology based on multimers is the most common strategy used to selectively isolate 

tumor antigen-specific T cells [93], [94]. The applicability of multimer technology requires 

knowledge of immunogenic peptide sequences and corresponding MHC alleles. Therefore, 

this procedure allows the isolation of T cells only with defined peptide specificities, whereas 

it lacks the possibility to capture T cells recognizing other peptides generated by using 

ivtRNA encoding the full-length protein as the antigen source. For well-known immunogenic 

peptides, the multimer technology has been shown to be an efficient sorting method to use 

with patient samples as well as in combination with in vitro and in vivo priming protocols 

[127]–[129]. On the other hand, if less well-characterized antigens are used for T cell 

priming, peptides for multimer production need to be selected by using epitope prediction 

tools. Consequently, due to the low reliability of these tools previously discussed, multimers 

binding peptides that are not naturally processed and presented in tumor cells could be 

used for sorting, leading to isolation of T cells that are not relevant for clinical application 

[95], [96]. Furthermore, the availability of multimers is a limiting factor due to possible 

insufficient peptide:MHC complex stability and to sequence-dependent difficulties in MHC 

protein folding for some HLA molecules. Due to these limitations, an alternative method 

based on the analysis of the expression of an activation-induced marker was sought to 

isolate NY-ESO-1-specific T cells in this project. This strategy allowed to fully exploit the 

potential of the full-length tumor antigen ivtRNA used for T cell induction in the priming 

procedure. 

The sorting strategy required firstly, selecting an appropriate T cell marker which was 

upregulated strictly and strongly in response to TCR signaling, while the expression absent 

during the resting phase of T cells prior to stimulation. Accordingly, CD137 was selected as 

marker for the sorting procedure since it is one of the most promising activation-induced T 

cell marker described in the literature [99], [100]. CD137 is a member of the TNF receptor 

family that promotes proliferation and survival of activated T cells [130], [131]. In the clinical 

setting of allogeneic stem cell transplantation, the evaluation of CD137 expression on 

donor-derived T cells upon stimulation with allogeneic recipient APCs and the consequent 

depletion of CD137+ T cells prior to infusion has been proved to be an efficient procedure 

to reduce alloreactivity [132]. In previous studies, this marker has already been used to 

efficiently isolate CD8+ T cells specific for different tumor antigens from autologous T cell 

repertoires [99], [101]. Alternatively, protocols including the analysis of activation-induced 

cytokine secretion have also been developed by several research groups [97], [98]. 

Cytokine secretion by T cells upon specific activation is a tightly regulated process, 

therefore detection of cytokine secretion represents a suitable parameter for the isolation 
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of tumor antigen-specific T cells. However, such functional assays may reflect only a subset 

of specifically activated T cells. Due to very heterogeneous cytokine profiles of different T 

cell subpopulations, functionally diverse cells may not be identified by using a single 

cytokine, but have to be tracked by a multi-cytokine assays. These assays might result quite 

laborious and tedious as sorting of a high number of primed T cells need to be performed 

to meet the rare desired T cells within the population.  

Choosing efficient and appropriate APCs to induce CD137 expression on T cells was 

another crucial step for the sorting strategy. The human erythroleukemic cell line K562 

derived from a patient with chronic myelogenous leukemia in blastic crisis was chosen as 

the source of stimulating cells [133]. K562 cells represent ideal starting cell line to generate 

cell-based genetically engineered APCs and they have already been used in several 

protocols for in vitro T cell stimulation [134]. K562 cells do not express endogenous MHC 

class I and II molecules as well as costimulatory and co-inhibitory molecules, other than 

CD80 at a low level. By contrast, they express ICAM-1 (CD54) and LFA-3 (CD58), which 

are adhesion molecules required to form an effective immunological synapse [135]. Since 

they endogenously express β2-microglobulin, the introduction of MHC class I heavy chain 

molecules alone is sufficient for MHC class I surface expression [136]. Additionally, it has 

been shown that K562 cells possess fully functional antigen processing and MHC 

presentation machineries [137], [138]. There were several other advantages to use K562-

based aAPCs to induce CD137 expression on T cells compared to either standard APCs, 

such as autologous mDCs, B cells and LCL, or to other tumor cell lines. Compared to 

standard APCs, K562 cells enabled stimulation of T cells restricted to the solely desired 

allogeneic HLA-A2 molecules, excluding potential isolation of T cells restricted to self-MHC 

molecules which could be present in the priming culture. Additionally, using K652 cells it 

was possible to isolate T cells specific for NY-ESO-1 peptides that were naturally processed 

and presented by a tumor cell line, which might be different from the peptide repertoire of 

mDCs, B cells and LCL. Immune system cells, especially professional APCs, constitutively 

express immunoproteasome subunits while tumor cells contain nearly only standard 

proteasome subunits under basal conditions, albeit oxidative stress and proinflammatory 

cytokines can cause the upregulation of the immunoproteasome components. The standard 

proteasome and the immunoproteasome are different in their catalytic activity and peptide 

generation, leading to differences in the peptide repertoire of different cell types [139], [140]. 

Due to the lack of endogenous MHC molecules in K562 cells, there was no activation of T 

cells that were reactive to foreign MHC molecules other than the introduced HLA-A2. The 

activation of high numbers of allo-reactive T cells represented one of the major limitations 

to use other tumor cell lines expressing up to six different MHC class I molecules. In 

addition, compared to LCL, K562 cells lack EBV peptides and thus, activation of potentially 
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primed EBV-specific T cells during analysis of T cell samples was avoided utilizing K562 

cells as APCs. Priming of EBV-specific T cells is quite probable if the donor of the priming 

is EBV-positive, which is the case in about 95% of the world population  [141]. Having these 

advantages, K562 cells were used as a starting cell line to generate aAPCs by the 

introduction of HLA-A2 molecule and CD86 co-stimulatory molecule by retroviral 

transduction. Since in previous priming experiments in our group the survival of antigen-

specific CD8+ T clones after sorting was extremely low, CD86 co-stimulatory molecule was 

introduced into K562 cells with the final aim to enhance and sustain T cell clone survival 

(data unpublished). 

An additional critical aspect in developing the sorting strategy based on CD137 was related 

to the induction of a high number of HLA-A2-allo-reactive T cells within the culture in an 

HLA-A2-allogeneic priming approach. The T cell repertoire towards an allogeneic HLA 

molecule has not undergone negative selection. Hence, T cells recognizing allogeneic MHC 

molecules in combination with self-peptides are still present in the post-thymus selected T 

cell population [48], [49], [79]. As an unavoidable consequence of the HLA-A2-allogeneic 

priming, not only are HLA-A2-restricted tumor antigen-specific T cells induced, but also 

many unwanted HLA-A2-allo-reactive T cells. These HLA-A2-allo-reactive T cells will 

express CD137 in response to HLA-A2-positive APC stimulation, independently of the 

presence of the tumor antigen, and it is impossible to distinguish between the desired 

antigen-specific T cells and HLA-A2-allo-reactive T cells during sorting, but only in 

subsequent functional screenings at the clonal T cell level. The probability to isolate tumor 

antigen-specific T cells using an allogeneic priming approach in combination with a sorting 

method based on CD137 expression on T cells is therefore extremely low. Previous 

experiments in our group have shown that it is necessary to sort a very high number of 

clones to be able to catch a tumor antigen-specific clone, limiting the feasibility of the 

classical CD137-based sorting in combination with allogeneic priming approaches (data 

unpublished). An innovative 2-step-procedure called ‘double-sorting’ was developed and 

tested for the first time in this study in order to improve the CD137 based sorting strategy. 

The innovation within this approach was to perform an allogeneic HLA-A2 and NY-ESO-1-

unspecific stimulation of the primed T cells as first step and subsequently use the T cells 

that do not express CD137 in a next step for HLA-A2 and NY-ESO-1-specific stimulation. 

For the first NY-ESO-1-unspecific stimulation, irradiated water-electroporated tgK562 cells 

(endogenously negative for NY-ESO-1) were utilized at a high effector to target ratio of 2:1. 

The idea of using a high number of K562 cells was to provide sufficient numbers of APCs 

to activate as many HLA-A2-allo-reactive T cells as possible. At this step, the risk of 

inducing AICD was not relevant for NY-ESO-1-specific T cells since the activated T cells 

represented the unwanted cell fraction that was meant to be discarded. The final aim of the 
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first step was to enrich NY-ESO-1-specific T cells (CD137-negative fraction) by removing T 

cells that upregulated CD137 independently of NY-ESO-1. To note, the CD137-negative 

fraction sorted after NY-ESO-1-unspecific stimulation might include not only the desired 

NY-ESO-1-specific T cells, but also T cells that were either unreactive to HLA-A2 or were 

HLA-A2-allo-reactive but were not in the cell cycle phase to be activated at the time of 

sorting. In the second step, for antigen-specific stimulation of the previously sorted T cells, 

tgK562 cells transfected with ivtRNA encoding NY-ESO-1 were used at an effector to target 

ratio of 5:1. The ratio was higher compared to the number of mDCs used for de novo 

induction (E:T ratio of 10:1) since tgK562 cells are not professional APCs as mDCs.  

A high number of single-cell-sorted T cells expanded after 14 days, showing that, in general, 

T cells were able to survive and expand after two rounds of sorting by FACS. The evaluation 

of IFN-γ release of the expanded clones revealed T cell clones with different reaction 

patterns (152 non-reactive, 144 HLA-A2-allo-reactive and 5 NY-ESO-1-reactive). The 

observation of five potential NY-ESO-1-specific CD8+ T cell clones was the first proof-of-

principle for the double-sorting procedure based on CD137 and K562 cells as APCs, 

demonstrating the feasibility of this approach. However, still a lot of unwanted T cell clones 

were obtained, showing that the procedure needs to be further optimized. 

5.2 Characterization of the properties of the identified TCR 5-271  

5.2.1 Antigen specificity: unconventional epitopes 

The epitope recognized by the isolated TCR 5-271 was mapped to the protein encoded by 

ORF2 of NY-ESO-1 and the LAGE-1, supporting findings of previous studies showing the 

existence of unconventional epitopes encoded by non-primary ORFs for several tumor 

antigens [142]–[145]. Especially, NY-ESO-1-ORF2 and CAMEL proteins were already 

shown to contain epitopes recognized by both CD8+ and CD4+ T cells [111], [146]–[149]. 

Two different peptides derived from NY-ESO-1-ORF2/CAMEL and presented in the context 

of MHC class I molecules have been identified so far. Wang and colleagues have identified 

a CD8+ T cell clone derived from TILs of a melanoma patient specific for a peptide derived 

from NY-ESO-1-ORF2/CAMEL protein and presented on the HLA-A31 molecule (NY-ESO-

1-ORF2/CAMEL18-27) [149]. An HLA-A2-restricted NY-ESO-1-ORF2/CAMEL-specific (NY-

ESO-1-ORF2/CAMEL1-11) CD8+ T cell clone was obtained by Aarnoudse and colleagues 

from PBMC of a melanoma patient using autologous melanoma cells for in vitro stimulation 

in the presence of IL-2 [111]. The isolation of T cells specific for NY-ESO-1-ORF2/CAMEL 

from melanoma patients proved that epitopes derived from proteins encoded by the 

alterative ORFs can be naturally processed and presented by tumor cells eliciting T cell 
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responses. These findings together with the data regarding other antigens demonstrate the 

immunological significance of epitopes produced unconventionally [150], [151]. The 

mechanism by which proteins, derived from alternative ORFs, are translated is currently 

unclear. However, there are several potential explanations for the physiological production 

of alternative ORF-encoded proteins. One of them is that some ribosomes occasionally 

bypass the first AUG start codon with a weak kozak sequence (non-optimal adjacent 

sequences supporting the starting of the translation) and initiate translation at a 

downstream AUG. This mechanism is designated as leaky scanning [152], [153]. The leaky 

scanning enables the translation of two different ORFs and the consequent synthesis of 

two separately initiated proteins from one mRNA transcript. The derived alternative ORF-

encoded protein can either be a shorter version of the full-length ORF encoded-protein if 

the second AUG is in the same reading frame of the first AUG or a completely different 

protein if the second AUG is in an alternative reading frame. Both in NY-ESO-1 and in 

LAGE-1 mRNA transcripts, the sequences adjacent to the start codon of the primary ORF 

are not optimal for supporting the start of translation. Therefore, leaky scanning might 

happen leading to translation of primary and non-primary ORFs of NY-ESO-1 and LAGE-

1. As a consequence, NY-ESO-1-ORF2 and CAMEL proteins can be produced in addition 

to the full-length NY-ESO-1 and LAGE-1 proteins. Since NY-ESO-1-ORF2 and CAMEL 

proteins are encoded by ORFs included in alternative reading frames than the primary 

ORFs, the resulting proteins show a completely different amino acid sequence compared 

to the conventional ORF1-encoded proteins.  

In this project, the cDNA sequence used to generate NY-ESO-1 ivtRNA for the priming was 

not codon-optimized and no kozak sequence was introduced upstream of the tumor 

antigen. Codon-optimization and addition of a kozak sequence are the most common 

strategies to increase protein expression of a transgene [106], [152]. However, these 

strategies were not used in the NY-ESO-1 ivtRNA because high amounts of ivtRNA were 

introduced into mDCs to obtain adequate NY-ESO-1 protein expression to efficiently induce 

NY-ESO-1-specific T cells. Consequently, it was possible that the non-primary ORF was 

translated, the corresponding protein was processed and non-primary ORF-derived 

peptides were presented in addition to the primary ORF-derived peptides after NY-ESO-1 

ivtRNA transfection into mDCs, leading to the potential induction of T cells specific for 

unconventional peptides in the priming procedure.  

5.2.2 Low abundance of alternative ORF-encoded protein in tumor cells 

TCRs are only suitable for clinical development if they are able to recognize tumor cells 

endogenously expressing the target antigen and the MHC molecules. The recognition of 
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tumor cells by T cells expressing a transgenic tumor antigen-specific TCR requires efficient 

epitope presentation on MHC molecules by tumor cells. The latter depends on several 

factors, including the expression level of the tumor antigen in the target cells, the expression 

level of the MHC molecule on the tumor cell surface, the capacity of tumor cells to process 

and present the epitope of interest and the binding affinity of the peptide for the MHC 

molecule [154]. 

None of the tumor lines tested in the assay were recognized by the TCR 5-271, although 

NY-ESO-1/LAGE-1a mRNA expression was verified by Nanostring analyses and the 

surface expression of the HLA-A2 molecules was proved by flow cytometry. Unfortunately, 

no commercial antibodies were available to detect intracellular expression of the NY-ESO-

1-ORF2 and the CAMEL protein. Thus, no information regarding the endogenous 

expression of ORF2-encoded proteins were available. Nevertheless, the recognition of NY-

ESO-1 ivtRNA-transfected tgK562 cells and tumor cell lines by TCR 5-271-transgenic T 

cells showed that in principle ORF2 of NY-ESO-1 can be efficiently translated, the 

corresponding protein can be efficiently processed and the epitope recognized by TCR 5-

271 can be efficiently presented on HLA-A2 molecules by the tested tumor cell lines.  

Interestingly, during the characterization assays, it was hypothesized that translation of 

ORF2 of LAGE-1a was less efficient compared to the translation of ORF2 of NY-ESO-1 

after antigen ivtRNA electroporation both into tgK562 cells and into other tumor cell lines. 

According to Nanostring data, the analyzed tumor cell lines endogenously expressed 

mainly LAGE-1a, but rarely NY-ESO-1 mRNA transcripts. Consequently, the tested tumor 

cell lines might translate the LAGE-1a-ORF2 with very low efficiency and express very low 

amounts of the corresponding protein including the target epitope of TCR 5-271. Thus, 

these tumor cells might not represent the ideal targets to evaluate tumor recognition 

mediated by TCR 5-271-transgenic T cells. Tumor cell lines expressing endogenously high 

levels of NY-ESO-1 should be tested to further investigate this hypothesis.  

In general, the identification of unconventional epitopes processed and presented by tumor 

cells might enlarge the repertoire of potential targets for TCR gene therapy strategies. 

However, one potential limitation is the relatively low abundance with which alternative 

ORF-encoded products are usually naturally generated compared to primary ORF-derived 

proteins in tumor cells [150]. Consequently, TCRs specific for these unconventional 

epitopes might require a very high peptide sensitivity to efficiently recognize tumor cells 

expressing low amounts of their target peptides and to be considered as potential 

therapeutic TCRs for clinical use. 
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5.2.3 Low T cell peptide sensitivity and CD8-independent functionality 

The multistep process leading to efficient epitope presentation on MHC molecules by tumor 

cells is only one of the components that play a critical role in TCR-mediated tumor 

recognition. The other relevant element is the interaction between the TCR and its specific 

peptide:MHC complex. The strength and the stability of the interaction between TCR and 

peptide:MHC complex as well as the ensuing T cell peptide sensitivity are critical to trigger 

tumor target recognition and effective T cell responses [155], [156]. 

TCR 5-271-transduced T cells required very high amounts of peptides for activation as 

determined by the half-maximal IFN-γ secretion in response to titrated amounts of the target 

peptide. Thus, the isolated TCR 5-271 might not be a very potent TCR, albeit it was isolated 

using an allogeneic priming approach. This could explain the limited tumor cell recognition 

mediated by TCR 5-271-transgenic T cells, hence restricting its potential use in clinical 

application. Strategies to enhance TCR reactivity might be applied to TCR 5-271 with the 

final aim to improve its functionality without affecting the antigen specificity. Affinity-

enhanced TCRs can be obtained by introducing mutations in CDR regions of TCRα and 

TCRβ chains, aiming to increase the affinity of the TCR for its target peptide:MHC complex 

(strategy designated as in vitro affinity maturation) [71]–[74]. Besides in vitro affinity 

maturation, proximal TCR co-signaling pathways can be manipulated in order to increase 

TCR sensitivity for stimulation and activation [157]–[159]. 

Interestingly, the identified TCR 5-271 displayed independency of CD8 co-receptors, 

showing functionality after the transfer into CD8+ as well as CD4+ T cells. These findings 

were quite surprising since T cells expressing TCR 5-271 showed low peptide sensitivity. 

Indeed, functionality in a CD8-independent manner has mainly been observed as 

characteristic of TCRs showing high-affinity for their target MHC:peptide complex [113]. 

Nevertheless, each identified TCR needs to be evaluated individually for its CD8 

requirement in order to identify exceptions [160]. In principle, CD8-independency 

represents an advantageous property of a TCR used for T cell engineering, leading to the 

possibility to generate also tumor reactive MHC class I restricted CD4+ T cells. These 

modified CD4+ T cells can recognize MHC class I restricted peptides and provide help in 

anti-tumor reaction and support in terms of proliferation, differentiation and maintenance of 

CD8+ T cells directly at the tumor site [161], [162]. 

5.2.4 Fine typing of the recognized epitope 

A critical step in the TCR characterization process is the fine typing of the target epitope 

recognized by the candidate TCR [68]. In this project, the core epitope recognized by the 

isolated TCR 5-271 was identified and the contribution of each aa of the epitope to the TCR-
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mediated recognition was evaluated. Previous studies regarding epitopes presented on 

HLA-A2 molecules have shown that aa located at the N- and C-terminal end of the peptide 

are mainly responsible for the interaction with the MHC molecule (anchor residues). By 

contrast, the interaction with the TCR is principally governed by the central portion of the 

peptide [163]–[165]. 

During TCR 5-271 characterization, it was observed that the first and the last leucine (L) of 

the core epitope (P1 and P8 of the 8-mer peptide LMAQGAML) were essential in 

determining the target recognition mediated by the isolated TCR. Accordingly, these aa 

might be anchor residues critical for peptide binding to the HLA-A2 molecule and for the 

consequent efficient peptide presentation. 

The presence of the additional phenylalanine (F) at the N-terminal end of the core epitope 

might be crucial for further stabilizing the binding between HLA-A2 molecules and the 

peptide, enabling efficient epitope presentation, particularly under physiological conditions 

when the peptide is processed and presented by an internal cellular pathway.  

Interestingly, the substitution of the glycine (G) in the epitope affected TCR 5-271 

recognition in the context of the 9-mer peptide FLMAQGAML, but not in the extended 

versions of the peptide (11-mer and 12-mer). These results showed that the extended N-

terminal or C-terminal ends might alter the accommodation of the peptide in the MHC 

groove. Consequently, the position and the role of the G in the TCR 5-271-mediated 

recognition might be different in the extended versions of the peptide.  

In conclusion, these findings showed that the modification of single aa in the epitope 

sequence might either destroy the binding of the peptide with the TCR and/or the MHC 

molecule abrogating the recognition by the TCR or might not affect the epitope presentation 

and the TCR recognition. The possibility to modify single aa in the epitope sequence without 

altering TCR recognition is critical for the analysis of alternative peptides within the human 

proteome that show homology to the target epitope and might be potentially cross-

recognized by T cells expressing the transgenic TCR. In order to determine potentially 

cross-recognized peptides, N-terminal and C-terminal extended versions of the core 

epitope need to be also evaluated since they can also trigger T cell stimulation as shown in 

this study. Other than the alanine scanning assay, tests including combinatorial aa 

substitutions should be performed to gain more information for each single aa within the 

epitope. Three-dimensional structure models may also help to fully understand the 

interaction between peptide, MHC molecule and TCR. 
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5.3 Outlook  

The successful isolation of the T cell clone 5-271, recognizing a new epitope derived from 

NY-ESO-1-ORF2/CAMEL protein, was the first proof-of-principle study of the innovative 

double-sorting strategy based on CD137 and K562 cells combined with an HLA-A2-

allogeneic priming approach based on mDCs transfected with ivtRNA encoding the full-

length tumor antigen. Together these features enabled bypassing knowledge of pre-defined 

epitopes for tumor antigen-specific T cell isolation. However, further improvements can be 

developed to extend and increase the success and efficiency of the sorting strategy. One 

possibility could be to use K562 cells transduced only with HLA-A2 molecules without 

additional co-stimulatory molecules. CD86 was selected as co-stimulatory molecule to 

enhance and sustain T cell survival after sorting. However, its high expression on K562 

cells might also favor low-avidity T cells to upregulate CD137 which are not the desirable 

ones to be identified for clinical application. Since K562 cells can easily be genetically 

modified, it would be possible to transduce them with the tumor target antigen to obtain a 

stable and uniform antigen expression for T cell stimulation. The use of antigen-transduced 

K562 cells would simplify the double-sorting procedure and it would completely avoid any 

possible uncontrollable activation of genes in K562 cells due to the electroporation 

procedure. A ‘triple-sorting’ approach including two rounds of target antigen-unspecific 

stimulation might be tested, aiming to further reduce HLA-A2-allo-reactive T cells. 

Consequently, the entire procedure will take longer and will be even more stressful for the 

desired T cells. Hence, addition of very low doses of cytokines might be needed during the 

sorting period to assure T cell fitness and survival. Since studies in our group have shown 

that the probability to isolate the desired tumor antigen-specific T cells may differ 

substantially between donors and varies across different tumor target antigens, the double-

sorting approach should be tested in multiple priming approaches using several donors and 

different tumor target antigens to fully evaluate its feasibility and applicability in the context 

of allogeneic priming protocols. A test system using an established tumor antigen-specific 

T cell clone might be developed to evaluate the efficiency of the double-sorting procedure. 

In principle, the concept of ‘double-sorting’ could be applied to any T cell activation marker, 

other than CD137, showing expression on the surface of T cells only after TCR 

engagement. 

As observed in this project, the presence of alternative ORFs in alternative reading frames 

in the wild-type sequence of the selected tumor antigen may reduce the efficiency of the 

induction of T cells specific for peptides derived from primary ORF-encoded proteins during 

the priming procedures. Thus, alternative ORFs might be eliminated by partial-codon-

optimization of the cDNA sequence encoding the desired tumor target antigen without 
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altering the primary ORF encoding the protein of interest. Including this concept into the 

design of the tumor antigen sequences for priming protocols will abolish the induction of T 

cells specific for peptides derived from low abundant proteins encoded by alternative ORFs. 

Moreover, it will help to control the priming procedure and to increase its efficiency, allowing 

the isolation of TCRs specific only for peptides derived from defined proteins. 
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6 Abbreviations 

A Alanine 
aa Amino acid 
ALL Acute lymphoblastic leukemia 
APC Allophycocyanin 
APC-Cy7 Allophycocyanin – cynine 7 
APCs Antigen presenting cells 
aAPCs Artificial antigen presenting cells 
ATLL Adult T cell leukemia/lymphoma 
BLAST Basic local alignment search tool 
bp Base pair 
BSA Bovines serum albumin 
BUV BD horizon brilliant™ ultraviolet 
C Cysteine 
CAMEL Cytotoxic T lymphocyte-recognized antigen on melanoma  
CAR Chimeric antigen receptor 
CCR7 C-C motif chemokine receptor 7 
CD Cluster of differentiation 
cDNA Complementary DNA 
CDR Complementarity determinig region  
CMV Cytomegalovirus 
C region  Constant region 
CSA Cyclosporin A 
CTAs Cancer-testis antigens 
CTLA-4 Cytotoxic T Lymphocyte Antigen-4 
D Aspartic acid 
DCs Dendritic cells 
DEPC Diethyl pyrocarbonate 
dH2O Distilled water 
DMEM Dulbecco's Modified Eagle's medium 
DLBCL Diffuse large B cell lymphoma 
DLI Donor-derived lymphocyte infusion 
DMSO Dimethylsulfoxide 
DNA DeoxyriboNucleic Aaid 
DPBS Dulbecco's phosphate-buffered saline  
E Glutamic acid 
EBV  Epstein-Barr-Virus 
EDTA Ethylenediaminetetraacetic acid 
EF1-α Elongation factor 1-alpha 
eGFP Enhanced green fluorescent protein 
EGFR Epidermal growth factor receptor 
ELISA  Enzyme-linked immunoabsorbent assay 
Env Envelope 
EP Electroporation 
E:T ratio Effector to target ratio 
F Phenylalanine 
FACS  Fluorescence-activated cell sorting 
FBS Fetal Bovine Serum 
FDA Food and drug administration 
FITC Fluorescein isothiocyanate 
FW Forward 



Abbreviations 

108 

G Glycine 
Gag Group-specific antigen  
GM-CSF  Granulocyte-macrophage colony-stimulating factor 
GVHD Graft versus host disease 
H Histidine 
h Hours 
H2O Water 
HA-1 Histocompatibility antigen 1 
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HLA  Human leukocyte antigen 
HS Human serum 
HSA Human serum albumin 
I Isoleucine 
IFN-γ Interferon-gamma 
Ig  Immunglobulin 
IL  Interleukin 
iDCs Immature DCs 
IMDM Iscove's modified dulbecco's media 
IMGT ImMunoGeneTics 
IU  International unit 
ivtRNA In vitro transcribed RNA 
K Lysine 
L Leucine 
LAGE-1a Cancer/testis antigen 2 (CTAG2) isoform a 
LAGE-1b Cancer/testis antigen 2 (CTAG2) isoform b 
LCL Lymphoblastoid cell line 
LB Luria Broth Base 
LTR Long terminal repeat 
M Methionine 
MACS Magnetic-activated cell sorting 
MAGE-A1 MAGE Family Member A1 
MAGE-A3 MAGE Family Member A3 
MART-1 Melanoma antigen recognized by T Cells 
MCS Multiple cloning site 
mDCs Mature dendritic cells 
MEM NEAA Minimum essential medium non-essential amino acids 
MESV Murine embryonic stem cell virus 
MHC  Major histocompatibility complex 
ml Milliliter 
MoMuLV Moloney murine leukemia virus 
MPSV Myeloproliferative sarcoma virus 
mRNA Messenger RNA 
n.a. Not analyzed 
nt Nucleotide 
NCBI National center for biotechnology information 
NY-ESO1  Cancer/testis antigen 1B (CTAG1B) 
ORF  Open reading frame 
PB Pacific Blue 
PBL  Peripheral blood lymphocytes 
PBMC Peripheral blood mononuclear cells 
PBS VLE Phosphate-buffered saline very low endotoxin 
pco Partial-codon-optimization 
PD-1 Programmed cell death protein-1 
PD-L1 Programmed cell death protein ligand-1 
PE Phycoerythrin 
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PE-Cy7 Phycoerythrin – cynine 7 
PercP Peridinin-chlorophyll protein 
PFA Paraformaldehyde solution 
PGE2  Prostaglandin E2 
PHA Phytohaemagglutinin 
Pol Polymerase 
Q Glutamine 
R Arginine 
RACE-PCR  Rapid amplification of cDNA ends - polymerase chain reaction 
RNA Ribonucleic acid 
RPMI 1640  Rosewell Park Memorial Institute Medium 1640 
S Serine 
SIN Self-inactivating 
T Threonine 
TAA  Tumor-associated antigen 
TAE Tris Acetate EDTA 
TAP  Transporter associated with antigen processing 
TCR  T cell receptor 
tgK562 Transgenic K562 cells 
TF Transfection 
TILs Tumor-infiltrating lymphocytes 
TNF-α Tumor necrosis factor-alpha 
TRAC TCR alpha constant segment 
TRAJ TCR alpha joining segment 
TRAV TCR alpha variable segment 
TRBC TCR beta constant segment 
TRBJ TCR beta joining segment 
TRBV TCR beta variable segment 
TSA Tumor-specific antigen  
UTR Untranslated region 
UV Ultra-violet 
V Valine 
VLE Very low endotoxin 
W Tryptophan 
WPRE Woodchuck hepatitis virus posttranscriptional regulatory element 
wt Wild-type 
Y Tyrosine 
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